diff --git a/cmd/ztest.c b/cmd/ztest.c
index 721abe981dc8..4ef1b1481727 100644
--- a/cmd/ztest.c
+++ b/cmd/ztest.c
@@ -1,8308 +1,8308 @@
 /*
  * CDDL HEADER START
  *
  * The contents of this file are subject to the terms of the
  * Common Development and Distribution License (the "License").
  * You may not use this file except in compliance with the License.
  *
  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  * or https://opensource.org/licenses/CDDL-1.0.
  * See the License for the specific language governing permissions
  * and limitations under the License.
  *
  * When distributing Covered Code, include this CDDL HEADER in each
  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  * If applicable, add the following below this CDDL HEADER, with the
  * fields enclosed by brackets "[]" replaced with your own identifying
  * information: Portions Copyright [yyyy] [name of copyright owner]
  *
  * CDDL HEADER END
  */
 /*
  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  * Copyright (c) 2013 Steven Hartland. All rights reserved.
  * Copyright (c) 2014 Integros [integros.com]
  * Copyright 2017 Joyent, Inc.
  * Copyright (c) 2017, Intel Corporation.
  */
 
 /*
  * The objective of this program is to provide a DMU/ZAP/SPA stress test
  * that runs entirely in userland, is easy to use, and easy to extend.
  *
  * The overall design of the ztest program is as follows:
  *
  * (1) For each major functional area (e.g. adding vdevs to a pool,
  *     creating and destroying datasets, reading and writing objects, etc)
  *     we have a simple routine to test that functionality.  These
  *     individual routines do not have to do anything "stressful".
  *
  * (2) We turn these simple functionality tests into a stress test by
  *     running them all in parallel, with as many threads as desired,
  *     and spread across as many datasets, objects, and vdevs as desired.
  *
  * (3) While all this is happening, we inject faults into the pool to
  *     verify that self-healing data really works.
  *
  * (4) Every time we open a dataset, we change its checksum and compression
  *     functions.  Thus even individual objects vary from block to block
  *     in which checksum they use and whether they're compressed.
  *
  * (5) To verify that we never lose on-disk consistency after a crash,
  *     we run the entire test in a child of the main process.
  *     At random times, the child self-immolates with a SIGKILL.
  *     This is the software equivalent of pulling the power cord.
  *     The parent then runs the test again, using the existing
  *     storage pool, as many times as desired. If backwards compatibility
  *     testing is enabled ztest will sometimes run the "older" version
  *     of ztest after a SIGKILL.
  *
  * (6) To verify that we don't have future leaks or temporal incursions,
  *     many of the functional tests record the transaction group number
  *     as part of their data.  When reading old data, they verify that
  *     the transaction group number is less than the current, open txg.
  *     If you add a new test, please do this if applicable.
  *
  * (7) Threads are created with a reduced stack size, for sanity checking.
  *     Therefore, it's important not to allocate huge buffers on the stack.
  *
  * When run with no arguments, ztest runs for about five minutes and
  * produces no output if successful.  To get a little bit of information,
  * specify -V.  To get more information, specify -VV, and so on.
  *
  * To turn this into an overnight stress test, use -T to specify run time.
  *
  * You can ask more vdevs [-v], datasets [-d], or threads [-t]
  * to increase the pool capacity, fanout, and overall stress level.
  *
  * Use the -k option to set the desired frequency of kills.
  *
  * When ztest invokes itself it passes all relevant information through a
  * temporary file which is mmap-ed in the child process. This allows shared
  * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
  * stored at offset 0 of this file and contains information on the size and
  * number of shared structures in the file. The information stored in this file
  * must remain backwards compatible with older versions of ztest so that
  * ztest can invoke them during backwards compatibility testing (-B).
  */
 
 #include <sys/zfs_context.h>
 #include <sys/spa.h>
 #include <sys/dmu.h>
 #include <sys/txg.h>
 #include <sys/dbuf.h>
 #include <sys/zap.h>
 #include <sys/dmu_objset.h>
 #include <sys/poll.h>
 #include <sys/stat.h>
 #include <sys/time.h>
 #include <sys/wait.h>
 #include <sys/mman.h>
 #include <sys/resource.h>
 #include <sys/zio.h>
 #include <sys/zil.h>
 #include <sys/zil_impl.h>
 #include <sys/vdev_draid.h>
 #include <sys/vdev_impl.h>
 #include <sys/vdev_file.h>
 #include <sys/vdev_initialize.h>
 #include <sys/vdev_raidz.h>
 #include <sys/vdev_trim.h>
 #include <sys/spa_impl.h>
 #include <sys/metaslab_impl.h>
 #include <sys/dsl_prop.h>
 #include <sys/dsl_dataset.h>
 #include <sys/dsl_destroy.h>
 #include <sys/dsl_scan.h>
 #include <sys/zio_checksum.h>
 #include <sys/zfs_refcount.h>
 #include <sys/zfeature.h>
 #include <sys/dsl_userhold.h>
 #include <sys/abd.h>
 #include <sys/blake3.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <getopt.h>
 #include <signal.h>
 #include <umem.h>
 #include <ctype.h>
 #include <math.h>
 #include <sys/fs/zfs.h>
 #include <zfs_fletcher.h>
 #include <libnvpair.h>
 #include <libzutil.h>
 #include <sys/crypto/icp.h>
 #if (__GLIBC__ && !__UCLIBC__)
 #include <execinfo.h> /* for backtrace() */
 #endif
 
 static int ztest_fd_data = -1;
 static int ztest_fd_rand = -1;
 
 typedef struct ztest_shared_hdr {
 	uint64_t	zh_hdr_size;
 	uint64_t	zh_opts_size;
 	uint64_t	zh_size;
 	uint64_t	zh_stats_size;
 	uint64_t	zh_stats_count;
 	uint64_t	zh_ds_size;
 	uint64_t	zh_ds_count;
 } ztest_shared_hdr_t;
 
 static ztest_shared_hdr_t *ztest_shared_hdr;
 
 enum ztest_class_state {
 	ZTEST_VDEV_CLASS_OFF,
 	ZTEST_VDEV_CLASS_ON,
 	ZTEST_VDEV_CLASS_RND
 };
 
 #define	ZO_GVARS_MAX_ARGLEN	((size_t)64)
 #define	ZO_GVARS_MAX_COUNT	((size_t)10)
 
 typedef struct ztest_shared_opts {
 	char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
 	char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
 	char zo_alt_ztest[MAXNAMELEN];
 	char zo_alt_libpath[MAXNAMELEN];
 	uint64_t zo_vdevs;
 	uint64_t zo_vdevtime;
 	size_t zo_vdev_size;
 	int zo_ashift;
 	int zo_mirrors;
 	int zo_raid_children;
 	int zo_raid_parity;
 	char zo_raid_type[8];
 	int zo_draid_data;
 	int zo_draid_spares;
 	int zo_datasets;
 	int zo_threads;
 	uint64_t zo_passtime;
 	uint64_t zo_killrate;
 	int zo_verbose;
 	int zo_init;
 	uint64_t zo_time;
 	uint64_t zo_maxloops;
 	uint64_t zo_metaslab_force_ganging;
 	int zo_mmp_test;
 	int zo_special_vdevs;
 	int zo_dump_dbgmsg;
 	int zo_gvars_count;
 	char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
 } ztest_shared_opts_t;
 
 /* Default values for command line options. */
 #define	DEFAULT_POOL "ztest"
 #define	DEFAULT_VDEV_DIR "/tmp"
 #define	DEFAULT_VDEV_COUNT 5
 #define	DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4)	/* 256m default size */
 #define	DEFAULT_VDEV_SIZE_STR "256M"
 #define	DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
 #define	DEFAULT_MIRRORS 2
 #define	DEFAULT_RAID_CHILDREN 4
 #define	DEFAULT_RAID_PARITY 1
 #define	DEFAULT_DRAID_DATA 4
 #define	DEFAULT_DRAID_SPARES 1
 #define	DEFAULT_DATASETS_COUNT 7
 #define	DEFAULT_THREADS 23
 #define	DEFAULT_RUN_TIME 300 /* 300 seconds */
 #define	DEFAULT_RUN_TIME_STR "300 sec"
 #define	DEFAULT_PASS_TIME 60 /* 60 seconds */
 #define	DEFAULT_PASS_TIME_STR "60 sec"
 #define	DEFAULT_KILL_RATE 70 /* 70% kill rate */
 #define	DEFAULT_KILLRATE_STR "70%"
 #define	DEFAULT_INITS 1
 #define	DEFAULT_MAX_LOOPS 50 /* 5 minutes */
 #define	DEFAULT_FORCE_GANGING (64 << 10)
 #define	DEFAULT_FORCE_GANGING_STR "64K"
 
 /* Simplifying assumption: -1 is not a valid default. */
 #define	NO_DEFAULT -1
 
 static const ztest_shared_opts_t ztest_opts_defaults = {
 	.zo_pool = DEFAULT_POOL,
 	.zo_dir = DEFAULT_VDEV_DIR,
 	.zo_alt_ztest = { '\0' },
 	.zo_alt_libpath = { '\0' },
 	.zo_vdevs = DEFAULT_VDEV_COUNT,
 	.zo_ashift = DEFAULT_ASHIFT,
 	.zo_mirrors = DEFAULT_MIRRORS,
 	.zo_raid_children = DEFAULT_RAID_CHILDREN,
 	.zo_raid_parity = DEFAULT_RAID_PARITY,
 	.zo_raid_type = VDEV_TYPE_RAIDZ,
 	.zo_vdev_size = DEFAULT_VDEV_SIZE,
 	.zo_draid_data = DEFAULT_DRAID_DATA,	/* data drives */
 	.zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
 	.zo_datasets = DEFAULT_DATASETS_COUNT,
 	.zo_threads = DEFAULT_THREADS,
 	.zo_passtime = DEFAULT_PASS_TIME,
 	.zo_killrate = DEFAULT_KILL_RATE,
 	.zo_verbose = 0,
 	.zo_mmp_test = 0,
 	.zo_init = DEFAULT_INITS,
 	.zo_time = DEFAULT_RUN_TIME,
 	.zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
 	.zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
 	.zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
 	.zo_gvars_count = 0,
 };
 
 extern uint64_t metaslab_force_ganging;
 extern uint64_t metaslab_df_alloc_threshold;
 extern uint64_t zfs_deadman_synctime_ms;
 extern uint_t metaslab_preload_limit;
 extern int zfs_compressed_arc_enabled;
 extern int zfs_abd_scatter_enabled;
 extern uint_t dmu_object_alloc_chunk_shift;
 extern boolean_t zfs_force_some_double_word_sm_entries;
 extern unsigned long zio_decompress_fail_fraction;
 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
 
 
 static ztest_shared_opts_t *ztest_shared_opts;
 static ztest_shared_opts_t ztest_opts;
 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
 
 typedef struct ztest_shared_ds {
 	uint64_t	zd_seq;
 } ztest_shared_ds_t;
 
 static ztest_shared_ds_t *ztest_shared_ds;
 #define	ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
 
 #define	BT_MAGIC	0x123456789abcdefULL
 #define	MAXFAULTS(zs) \
 	(MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
 
 enum ztest_io_type {
 	ZTEST_IO_WRITE_TAG,
 	ZTEST_IO_WRITE_PATTERN,
 	ZTEST_IO_WRITE_ZEROES,
 	ZTEST_IO_TRUNCATE,
 	ZTEST_IO_SETATTR,
 	ZTEST_IO_REWRITE,
 	ZTEST_IO_TYPES
 };
 
 typedef struct ztest_block_tag {
 	uint64_t	bt_magic;
 	uint64_t	bt_objset;
 	uint64_t	bt_object;
 	uint64_t	bt_dnodesize;
 	uint64_t	bt_offset;
 	uint64_t	bt_gen;
 	uint64_t	bt_txg;
 	uint64_t	bt_crtxg;
 } ztest_block_tag_t;
 
 typedef struct bufwad {
 	uint64_t	bw_index;
 	uint64_t	bw_txg;
 	uint64_t	bw_data;
 } bufwad_t;
 
 /*
  * It would be better to use a rangelock_t per object.  Unfortunately
  * the rangelock_t is not a drop-in replacement for rl_t, because we
  * still need to map from object ID to rangelock_t.
  */
 typedef enum {
 	RL_READER,
 	RL_WRITER,
 	RL_APPEND
 } rl_type_t;
 
 typedef struct rll {
 	void		*rll_writer;
 	int		rll_readers;
 	kmutex_t	rll_lock;
 	kcondvar_t	rll_cv;
 } rll_t;
 
 typedef struct rl {
 	uint64_t	rl_object;
 	uint64_t	rl_offset;
 	uint64_t	rl_size;
 	rll_t		*rl_lock;
 } rl_t;
 
 #define	ZTEST_RANGE_LOCKS	64
 #define	ZTEST_OBJECT_LOCKS	64
 
 /*
  * Object descriptor.  Used as a template for object lookup/create/remove.
  */
 typedef struct ztest_od {
 	uint64_t	od_dir;
 	uint64_t	od_object;
 	dmu_object_type_t od_type;
 	dmu_object_type_t od_crtype;
 	uint64_t	od_blocksize;
 	uint64_t	od_crblocksize;
 	uint64_t	od_crdnodesize;
 	uint64_t	od_gen;
 	uint64_t	od_crgen;
 	char		od_name[ZFS_MAX_DATASET_NAME_LEN];
 } ztest_od_t;
 
 /*
  * Per-dataset state.
  */
 typedef struct ztest_ds {
 	ztest_shared_ds_t *zd_shared;
 	objset_t	*zd_os;
 	pthread_rwlock_t zd_zilog_lock;
 	zilog_t		*zd_zilog;
 	ztest_od_t	*zd_od;		/* debugging aid */
 	char		zd_name[ZFS_MAX_DATASET_NAME_LEN];
 	kmutex_t	zd_dirobj_lock;
 	rll_t		zd_object_lock[ZTEST_OBJECT_LOCKS];
 	rll_t		zd_range_lock[ZTEST_RANGE_LOCKS];
 } ztest_ds_t;
 
 /*
  * Per-iteration state.
  */
 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
 
 typedef struct ztest_info {
 	ztest_func_t	*zi_func;	/* test function */
 	uint64_t	zi_iters;	/* iterations per execution */
 	uint64_t	*zi_interval;	/* execute every <interval> seconds */
 	const char	*zi_funcname;	/* name of test function */
 } ztest_info_t;
 
 typedef struct ztest_shared_callstate {
 	uint64_t	zc_count;	/* per-pass count */
 	uint64_t	zc_time;	/* per-pass time */
 	uint64_t	zc_next;	/* next time to call this function */
 } ztest_shared_callstate_t;
 
 static ztest_shared_callstate_t *ztest_shared_callstate;
 #define	ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
 
 ztest_func_t ztest_dmu_read_write;
 ztest_func_t ztest_dmu_write_parallel;
 ztest_func_t ztest_dmu_object_alloc_free;
 ztest_func_t ztest_dmu_object_next_chunk;
 ztest_func_t ztest_dmu_commit_callbacks;
 ztest_func_t ztest_zap;
 ztest_func_t ztest_zap_parallel;
 ztest_func_t ztest_zil_commit;
 ztest_func_t ztest_zil_remount;
 ztest_func_t ztest_dmu_read_write_zcopy;
 ztest_func_t ztest_dmu_objset_create_destroy;
 ztest_func_t ztest_dmu_prealloc;
 ztest_func_t ztest_fzap;
 ztest_func_t ztest_dmu_snapshot_create_destroy;
 ztest_func_t ztest_dsl_prop_get_set;
 ztest_func_t ztest_spa_prop_get_set;
 ztest_func_t ztest_spa_create_destroy;
 ztest_func_t ztest_fault_inject;
 ztest_func_t ztest_dmu_snapshot_hold;
 ztest_func_t ztest_mmp_enable_disable;
 ztest_func_t ztest_scrub;
 ztest_func_t ztest_dsl_dataset_promote_busy;
 ztest_func_t ztest_vdev_attach_detach;
 ztest_func_t ztest_vdev_LUN_growth;
 ztest_func_t ztest_vdev_add_remove;
 ztest_func_t ztest_vdev_class_add;
 ztest_func_t ztest_vdev_aux_add_remove;
 ztest_func_t ztest_split_pool;
 ztest_func_t ztest_reguid;
 ztest_func_t ztest_spa_upgrade;
 ztest_func_t ztest_device_removal;
 ztest_func_t ztest_spa_checkpoint_create_discard;
 ztest_func_t ztest_initialize;
 ztest_func_t ztest_trim;
 ztest_func_t ztest_blake3;
 ztest_func_t ztest_fletcher;
 ztest_func_t ztest_fletcher_incr;
 ztest_func_t ztest_verify_dnode_bt;
 
 static uint64_t zopt_always = 0ULL * NANOSEC;		/* all the time */
 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10;	/* every 1/10 second */
 static uint64_t zopt_often = 1ULL * NANOSEC;		/* every second */
 static uint64_t zopt_sometimes = 10ULL * NANOSEC;	/* every 10 seconds */
 static uint64_t zopt_rarely = 60ULL * NANOSEC;		/* every 60 seconds */
 
 #define	ZTI_INIT(func, iters, interval) \
 	{   .zi_func = (func), \
 	    .zi_iters = (iters), \
 	    .zi_interval = (interval), \
 	    .zi_funcname = # func }
 
 static ztest_info_t ztest_info[] = {
 	ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
 	ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
 	ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
 	ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
 	ZTI_INIT(ztest_zap, 30, &zopt_always),
 	ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
-	ZTI_INIT(ztest_split_pool, 1, &zopt_always),
+	ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
 	ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
 	ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
 	ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
 	ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
 #if 0
 	ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
 #endif
 	ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
 	ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
 	ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
 	ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
 	ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
 	ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
 	ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
 	ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
 	ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
 	ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
 	ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
 	ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
 	ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
 	ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
 };
 
 #define	ZTEST_FUNCS	(sizeof (ztest_info) / sizeof (ztest_info_t))
 
 /*
  * The following struct is used to hold a list of uncalled commit callbacks.
  * The callbacks are ordered by txg number.
  */
 typedef struct ztest_cb_list {
 	kmutex_t	zcl_callbacks_lock;
 	list_t		zcl_callbacks;
 } ztest_cb_list_t;
 
 /*
  * Stuff we need to share writably between parent and child.
  */
 typedef struct ztest_shared {
 	boolean_t	zs_do_init;
 	hrtime_t	zs_proc_start;
 	hrtime_t	zs_proc_stop;
 	hrtime_t	zs_thread_start;
 	hrtime_t	zs_thread_stop;
 	hrtime_t	zs_thread_kill;
 	uint64_t	zs_enospc_count;
 	uint64_t	zs_vdev_next_leaf;
 	uint64_t	zs_vdev_aux;
 	uint64_t	zs_alloc;
 	uint64_t	zs_space;
 	uint64_t	zs_splits;
 	uint64_t	zs_mirrors;
 	uint64_t	zs_metaslab_sz;
 	uint64_t	zs_metaslab_df_alloc_threshold;
 	uint64_t	zs_guid;
 } ztest_shared_t;
 
 #define	ID_PARALLEL	-1ULL
 
 static char ztest_dev_template[] = "%s/%s.%llua";
 static char ztest_aux_template[] = "%s/%s.%s.%llu";
 static ztest_shared_t *ztest_shared;
 
 static spa_t *ztest_spa = NULL;
 static ztest_ds_t *ztest_ds;
 
 static kmutex_t ztest_vdev_lock;
 static boolean_t ztest_device_removal_active = B_FALSE;
 static boolean_t ztest_pool_scrubbed = B_FALSE;
 static kmutex_t ztest_checkpoint_lock;
 
 /*
  * The ztest_name_lock protects the pool and dataset namespace used by
  * the individual tests. To modify the namespace, consumers must grab
  * this lock as writer. Grabbing the lock as reader will ensure that the
  * namespace does not change while the lock is held.
  */
 static pthread_rwlock_t ztest_name_lock;
 
 static boolean_t ztest_dump_core = B_TRUE;
 static boolean_t ztest_exiting;
 
 /* Global commit callback list */
 static ztest_cb_list_t zcl;
 /* Commit cb delay */
 static uint64_t zc_min_txg_delay = UINT64_MAX;
 static int zc_cb_counter = 0;
 
 /*
  * Minimum number of commit callbacks that need to be registered for us to check
  * whether the minimum txg delay is acceptable.
  */
 #define	ZTEST_COMMIT_CB_MIN_REG	100
 
 /*
  * If a number of txgs equal to this threshold have been created after a commit
  * callback has been registered but not called, then we assume there is an
  * implementation bug.
  */
 #define	ZTEST_COMMIT_CB_THRESH	(TXG_CONCURRENT_STATES + 1000)
 
 enum ztest_object {
 	ZTEST_META_DNODE = 0,
 	ZTEST_DIROBJ,
 	ZTEST_OBJECTS
 };
 
 static __attribute__((noreturn)) void usage(boolean_t requested);
 static int ztest_scrub_impl(spa_t *spa);
 
 /*
  * These libumem hooks provide a reasonable set of defaults for the allocator's
  * debugging facilities.
  */
 const char *
 _umem_debug_init(void)
 {
 	return ("default,verbose"); /* $UMEM_DEBUG setting */
 }
 
 const char *
 _umem_logging_init(void)
 {
 	return ("fail,contents"); /* $UMEM_LOGGING setting */
 }
 
 static void
 dump_debug_buffer(void)
 {
 	ssize_t ret __attribute__((unused));
 
 	if (!ztest_opts.zo_dump_dbgmsg)
 		return;
 
 	/*
 	 * We use write() instead of printf() so that this function
 	 * is safe to call from a signal handler.
 	 */
 	ret = write(STDOUT_FILENO, "\n", 1);
 	zfs_dbgmsg_print("ztest");
 }
 
 #define	BACKTRACE_SZ	100
 
 static void sig_handler(int signo)
 {
 	struct sigaction action;
 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
 	int nptrs;
 	void *buffer[BACKTRACE_SZ];
 
 	nptrs = backtrace(buffer, BACKTRACE_SZ);
 	backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
 #endif
 	dump_debug_buffer();
 
 	/*
 	 * Restore default action and re-raise signal so SIGSEGV and
 	 * SIGABRT can trigger a core dump.
 	 */
 	action.sa_handler = SIG_DFL;
 	sigemptyset(&action.sa_mask);
 	action.sa_flags = 0;
 	(void) sigaction(signo, &action, NULL);
 	raise(signo);
 }
 
 #define	FATAL_MSG_SZ	1024
 
 static const char *fatal_msg;
 
 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
 fatal(int do_perror, const char *message, ...)
 {
 	va_list args;
 	int save_errno = errno;
 	char *buf;
 
 	(void) fflush(stdout);
 	buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
 	if (buf == NULL)
 		goto out;
 
 	va_start(args, message);
 	(void) sprintf(buf, "ztest: ");
 	/* LINTED */
 	(void) vsprintf(buf + strlen(buf), message, args);
 	va_end(args);
 	if (do_perror) {
 		(void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
 		    ": %s", strerror(save_errno));
 	}
 	(void) fprintf(stderr, "%s\n", buf);
 	fatal_msg = buf;			/* to ease debugging */
 
 out:
 	if (ztest_dump_core)
 		abort();
 	else
 		dump_debug_buffer();
 
 	exit(3);
 }
 
 static int
 str2shift(const char *buf)
 {
 	const char *ends = "BKMGTPEZ";
 	int i;
 
 	if (buf[0] == '\0')
 		return (0);
 	for (i = 0; i < strlen(ends); i++) {
 		if (toupper(buf[0]) == ends[i])
 			break;
 	}
 	if (i == strlen(ends)) {
 		(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
 		    buf);
 		usage(B_FALSE);
 	}
 	if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
 		return (10*i);
 	}
 	(void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
 	usage(B_FALSE);
 }
 
 static uint64_t
 nicenumtoull(const char *buf)
 {
 	char *end;
 	uint64_t val;
 
 	val = strtoull(buf, &end, 0);
 	if (end == buf) {
 		(void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
 		usage(B_FALSE);
 	} else if (end[0] == '.') {
 		double fval = strtod(buf, &end);
 		fval *= pow(2, str2shift(end));
 		/*
 		 * UINT64_MAX is not exactly representable as a double.
 		 * The closest representation is UINT64_MAX + 1, so we
 		 * use a >= comparison instead of > for the bounds check.
 		 */
 		if (fval >= (double)UINT64_MAX) {
 			(void) fprintf(stderr, "ztest: value too large: %s\n",
 			    buf);
 			usage(B_FALSE);
 		}
 		val = (uint64_t)fval;
 	} else {
 		int shift = str2shift(end);
 		if (shift >= 64 || (val << shift) >> shift != val) {
 			(void) fprintf(stderr, "ztest: value too large: %s\n",
 			    buf);
 			usage(B_FALSE);
 		}
 		val <<= shift;
 	}
 	return (val);
 }
 
 typedef struct ztest_option {
 	const char	short_opt;
 	const char	*long_opt;
 	const char	*long_opt_param;
 	const char	*comment;
 	unsigned int	default_int;
 	const char	*default_str;
 } ztest_option_t;
 
 /*
  * The following option_table is used for generating the usage info as well as
  * the long and short option information for calling getopt_long().
  */
 static ztest_option_t option_table[] = {
 	{ 'v',	"vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
 	    NULL},
 	{ 's',	"vdev-size", "INTEGER", "Size of each vdev",
 	    NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
 	{ 'a',	"alignment-shift", "INTEGER",
 	    "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
 	{ 'm',	"mirror-copies", "INTEGER", "Number of mirror copies",
 	    DEFAULT_MIRRORS, NULL},
 	{ 'r',	"raid-disks", "INTEGER", "Number of raidz/draid disks",
 	    DEFAULT_RAID_CHILDREN, NULL},
 	{ 'R',	"raid-parity", "INTEGER", "Raid parity",
 	    DEFAULT_RAID_PARITY, NULL},
 	{ 'K',	"raid-kind", "raidz|draid|random", "Raid kind",
 	    NO_DEFAULT, "random"},
 	{ 'D',	"draid-data", "INTEGER", "Number of draid data drives",
 	    DEFAULT_DRAID_DATA, NULL},
 	{ 'S',	"draid-spares", "INTEGER", "Number of draid spares",
 	    DEFAULT_DRAID_SPARES, NULL},
 	{ 'd',	"datasets", "INTEGER", "Number of datasets",
 	    DEFAULT_DATASETS_COUNT, NULL},
 	{ 't',	"threads", "INTEGER", "Number of ztest threads",
 	    DEFAULT_THREADS, NULL},
 	{ 'g',	"gang-block-threshold", "INTEGER",
 	    "Metaslab gang block threshold",
 	    NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
 	{ 'i',	"init-count", "INTEGER", "Number of times to initialize pool",
 	    DEFAULT_INITS, NULL},
 	{ 'k',	"kill-percentage", "INTEGER", "Kill percentage",
 	    NO_DEFAULT, DEFAULT_KILLRATE_STR},
 	{ 'p',	"pool-name", "STRING", "Pool name",
 	    NO_DEFAULT, DEFAULT_POOL},
 	{ 'f',	"vdev-file-directory", "PATH", "File directory for vdev files",
 	    NO_DEFAULT, DEFAULT_VDEV_DIR},
 	{ 'M',	"multi-host", NULL,
 	    "Multi-host; simulate pool imported on remote host",
 	    NO_DEFAULT, NULL},
 	{ 'E',	"use-existing-pool", NULL,
 	    "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
 	{ 'T',	"run-time", "INTEGER", "Total run time",
 	    NO_DEFAULT, DEFAULT_RUN_TIME_STR},
 	{ 'P',	"pass-time", "INTEGER", "Time per pass",
 	    NO_DEFAULT, DEFAULT_PASS_TIME_STR},
 	{ 'F',	"freeze-loops", "INTEGER", "Max loops in spa_freeze()",
 	    DEFAULT_MAX_LOOPS, NULL},
 	{ 'B',	"alt-ztest", "PATH", "Alternate ztest path",
 	    NO_DEFAULT, NULL},
 	{ 'C',	"vdev-class-state", "on|off|random", "vdev class state",
 	    NO_DEFAULT, "random"},
 	{ 'o',	"option", "\"OPTION=INTEGER\"",
 	    "Set global variable to an unsigned 32-bit integer value",
 	    NO_DEFAULT, NULL},
 	{ 'G',	"dump-debug-msg", NULL,
 	    "Dump zfs_dbgmsg buffer before exiting due to an error",
 	    NO_DEFAULT, NULL},
 	{ 'V',	"verbose", NULL,
 	    "Verbose (use multiple times for ever more verbosity)",
 	    NO_DEFAULT, NULL},
 	{ 'h',	"help",	NULL, "Show this help",
 	    NO_DEFAULT, NULL},
 	{0, 0, 0, 0, 0, 0}
 };
 
 static struct option *long_opts = NULL;
 static char *short_opts = NULL;
 
 static void
 init_options(void)
 {
 	ASSERT3P(long_opts, ==, NULL);
 	ASSERT3P(short_opts, ==, NULL);
 
 	int count = sizeof (option_table) / sizeof (option_table[0]);
 	long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
 
 	short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
 	int short_opt_index = 0;
 
 	for (int i = 0; i < count; i++) {
 		long_opts[i].val = option_table[i].short_opt;
 		long_opts[i].name = option_table[i].long_opt;
 		long_opts[i].has_arg = option_table[i].long_opt_param != NULL
 		    ? required_argument : no_argument;
 		long_opts[i].flag = NULL;
 		short_opts[short_opt_index++] = option_table[i].short_opt;
 		if (option_table[i].long_opt_param != NULL) {
 			short_opts[short_opt_index++] = ':';
 		}
 	}
 }
 
 static void
 fini_options(void)
 {
 	int count = sizeof (option_table) / sizeof (option_table[0]);
 
 	umem_free(long_opts, sizeof (struct option) * count);
 	umem_free(short_opts, sizeof (char) * 2 * count);
 
 	long_opts = NULL;
 	short_opts = NULL;
 }
 
 static __attribute__((noreturn)) void
 usage(boolean_t requested)
 {
 	char option[80];
 	FILE *fp = requested ? stdout : stderr;
 
 	(void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
 	for (int i = 0; option_table[i].short_opt != 0; i++) {
 		if (option_table[i].long_opt_param != NULL) {
 			(void) sprintf(option, "  -%c --%s=%s",
 			    option_table[i].short_opt,
 			    option_table[i].long_opt,
 			    option_table[i].long_opt_param);
 		} else {
 			(void) sprintf(option, "  -%c --%s",
 			    option_table[i].short_opt,
 			    option_table[i].long_opt);
 		}
 		(void) fprintf(fp, "  %-40s%s", option,
 		    option_table[i].comment);
 
 		if (option_table[i].long_opt_param != NULL) {
 			if (option_table[i].default_str != NULL) {
 				(void) fprintf(fp, " (default: %s)",
 				    option_table[i].default_str);
 			} else if (option_table[i].default_int != NO_DEFAULT) {
 				(void) fprintf(fp, " (default: %u)",
 				    option_table[i].default_int);
 			}
 		}
 		(void) fprintf(fp, "\n");
 	}
 	exit(requested ? 0 : 1);
 }
 
 static uint64_t
 ztest_random(uint64_t range)
 {
 	uint64_t r;
 
 	ASSERT3S(ztest_fd_rand, >=, 0);
 
 	if (range == 0)
 		return (0);
 
 	if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
 		fatal(B_TRUE, "short read from /dev/urandom");
 
 	return (r % range);
 }
 
 static void
 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
 {
 	char name[32];
 	char *value;
 	int state = ZTEST_VDEV_CLASS_RND;
 
 	(void) strlcpy(name, input, sizeof (name));
 
 	value = strchr(name, '=');
 	if (value == NULL) {
 		(void) fprintf(stderr, "missing value in property=value "
 		    "'-C' argument (%s)\n", input);
 		usage(B_FALSE);
 	}
 	*(value) = '\0';
 	value++;
 
 	if (strcmp(value, "on") == 0) {
 		state = ZTEST_VDEV_CLASS_ON;
 	} else if (strcmp(value, "off") == 0) {
 		state = ZTEST_VDEV_CLASS_OFF;
 	} else if (strcmp(value, "random") == 0) {
 		state = ZTEST_VDEV_CLASS_RND;
 	} else {
 		(void) fprintf(stderr, "invalid property value '%s'\n", value);
 		usage(B_FALSE);
 	}
 
 	if (strcmp(name, "special") == 0) {
 		zo->zo_special_vdevs = state;
 	} else {
 		(void) fprintf(stderr, "invalid property name '%s'\n", name);
 		usage(B_FALSE);
 	}
 	if (zo->zo_verbose >= 3)
 		(void) printf("%s vdev state is '%s'\n", name, value);
 }
 
 static void
 process_options(int argc, char **argv)
 {
 	char *path;
 	ztest_shared_opts_t *zo = &ztest_opts;
 
 	int opt;
 	uint64_t value;
 	const char *raid_kind = "random";
 
 	memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
 
 	init_options();
 
 	while ((opt = getopt_long(argc, argv, short_opts, long_opts,
 	    NULL)) != EOF) {
 		value = 0;
 		switch (opt) {
 		case 'v':
 		case 's':
 		case 'a':
 		case 'm':
 		case 'r':
 		case 'R':
 		case 'D':
 		case 'S':
 		case 'd':
 		case 't':
 		case 'g':
 		case 'i':
 		case 'k':
 		case 'T':
 		case 'P':
 		case 'F':
 			value = nicenumtoull(optarg);
 		}
 		switch (opt) {
 		case 'v':
 			zo->zo_vdevs = value;
 			break;
 		case 's':
 			zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
 			break;
 		case 'a':
 			zo->zo_ashift = value;
 			break;
 		case 'm':
 			zo->zo_mirrors = value;
 			break;
 		case 'r':
 			zo->zo_raid_children = MAX(1, value);
 			break;
 		case 'R':
 			zo->zo_raid_parity = MIN(MAX(value, 1), 3);
 			break;
 		case 'K':
 			raid_kind = optarg;
 			break;
 		case 'D':
 			zo->zo_draid_data = MAX(1, value);
 			break;
 		case 'S':
 			zo->zo_draid_spares = MAX(1, value);
 			break;
 		case 'd':
 			zo->zo_datasets = MAX(1, value);
 			break;
 		case 't':
 			zo->zo_threads = MAX(1, value);
 			break;
 		case 'g':
 			zo->zo_metaslab_force_ganging =
 			    MAX(SPA_MINBLOCKSIZE << 1, value);
 			break;
 		case 'i':
 			zo->zo_init = value;
 			break;
 		case 'k':
 			zo->zo_killrate = value;
 			break;
 		case 'p':
 			(void) strlcpy(zo->zo_pool, optarg,
 			    sizeof (zo->zo_pool));
 			break;
 		case 'f':
 			path = realpath(optarg, NULL);
 			if (path == NULL) {
 				(void) fprintf(stderr, "error: %s: %s\n",
 				    optarg, strerror(errno));
 				usage(B_FALSE);
 			} else {
 				(void) strlcpy(zo->zo_dir, path,
 				    sizeof (zo->zo_dir));
 				free(path);
 			}
 			break;
 		case 'M':
 			zo->zo_mmp_test = 1;
 			break;
 		case 'V':
 			zo->zo_verbose++;
 			break;
 		case 'E':
 			zo->zo_init = 0;
 			break;
 		case 'T':
 			zo->zo_time = value;
 			break;
 		case 'P':
 			zo->zo_passtime = MAX(1, value);
 			break;
 		case 'F':
 			zo->zo_maxloops = MAX(1, value);
 			break;
 		case 'B':
 			(void) strlcpy(zo->zo_alt_ztest, optarg,
 			    sizeof (zo->zo_alt_ztest));
 			break;
 		case 'C':
 			ztest_parse_name_value(optarg, zo);
 			break;
 		case 'o':
 			if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
 				(void) fprintf(stderr,
 				    "max global var count (%zu) exceeded\n",
 				    ZO_GVARS_MAX_COUNT);
 				usage(B_FALSE);
 			}
 			char *v = zo->zo_gvars[zo->zo_gvars_count];
 			if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
 			    ZO_GVARS_MAX_ARGLEN) {
 				(void) fprintf(stderr,
 				    "global var option '%s' is too long\n",
 				    optarg);
 				usage(B_FALSE);
 			}
 			zo->zo_gvars_count++;
 			break;
 		case 'G':
 			zo->zo_dump_dbgmsg = 1;
 			break;
 		case 'h':
 			usage(B_TRUE);
 			break;
 		case '?':
 		default:
 			usage(B_FALSE);
 			break;
 		}
 	}
 
 	fini_options();
 
 	/* When raid choice is 'random' add a draid pool 50% of the time */
 	if (strcmp(raid_kind, "random") == 0) {
 		raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz";
 
 		if (ztest_opts.zo_verbose >= 3)
 			(void) printf("choosing RAID type '%s'\n", raid_kind);
 	}
 
 	if (strcmp(raid_kind, "draid") == 0) {
 		uint64_t min_devsize;
 
 		/* With fewer disk use 256M, otherwise 128M is OK */
 		min_devsize = (ztest_opts.zo_raid_children < 16) ?
 		    (256ULL << 20) : (128ULL << 20);
 
 		/* No top-level mirrors with dRAID for now */
 		zo->zo_mirrors = 0;
 
 		/* Use more appropriate defaults for dRAID */
 		if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
 			zo->zo_vdevs = 1;
 		if (zo->zo_raid_children ==
 		    ztest_opts_defaults.zo_raid_children)
 			zo->zo_raid_children = 16;
 		if (zo->zo_ashift < 12)
 			zo->zo_ashift = 12;
 		if (zo->zo_vdev_size < min_devsize)
 			zo->zo_vdev_size = min_devsize;
 
 		if (zo->zo_draid_data + zo->zo_raid_parity >
 		    zo->zo_raid_children - zo->zo_draid_spares) {
 			(void) fprintf(stderr, "error: too few draid "
 			    "children (%d) for stripe width (%d)\n",
 			    zo->zo_raid_children,
 			    zo->zo_draid_data + zo->zo_raid_parity);
 			usage(B_FALSE);
 		}
 
 		(void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
 		    sizeof (zo->zo_raid_type));
 
 	} else /* using raidz */ {
 		ASSERT0(strcmp(raid_kind, "raidz"));
 
 		zo->zo_raid_parity = MIN(zo->zo_raid_parity,
 		    zo->zo_raid_children - 1);
 	}
 
 	zo->zo_vdevtime =
 	    (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
 	    UINT64_MAX >> 2);
 
 	if (*zo->zo_alt_ztest) {
 		const char *invalid_what = "ztest";
 		char *val = zo->zo_alt_ztest;
 		if (0 != access(val, X_OK) ||
 		    (strrchr(val, '/') == NULL && (errno == EINVAL)))
 			goto invalid;
 
 		int dirlen = strrchr(val, '/') - val;
 		strlcpy(zo->zo_alt_libpath, val,
 		    MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
 		invalid_what = "library path", val = zo->zo_alt_libpath;
 		if (strrchr(val, '/') == NULL && (errno == EINVAL))
 			goto invalid;
 		*strrchr(val, '/') = '\0';
 		strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
 
 		if (0 != access(zo->zo_alt_libpath, X_OK))
 			goto invalid;
 		return;
 
 invalid:
 		ztest_dump_core = B_FALSE;
 		fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
 	}
 }
 
 static void
 ztest_kill(ztest_shared_t *zs)
 {
 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
 	zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
 
 	/*
 	 * Before we kill ourselves, make sure that the config is updated.
 	 * See comment above spa_write_cachefile().
 	 */
 	mutex_enter(&spa_namespace_lock);
 	spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
 	mutex_exit(&spa_namespace_lock);
 
 	(void) raise(SIGKILL);
 }
 
 static void
 ztest_record_enospc(const char *s)
 {
 	(void) s;
 	ztest_shared->zs_enospc_count++;
 }
 
 static uint64_t
 ztest_get_ashift(void)
 {
 	if (ztest_opts.zo_ashift == 0)
 		return (SPA_MINBLOCKSHIFT + ztest_random(5));
 	return (ztest_opts.zo_ashift);
 }
 
 static boolean_t
 ztest_is_draid_spare(const char *name)
 {
 	uint64_t spare_id = 0, parity = 0, vdev_id = 0;
 
 	if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
 	    &parity, &vdev_id, &spare_id) == 3) {
 		return (B_TRUE);
 	}
 
 	return (B_FALSE);
 }
 
 static nvlist_t *
 make_vdev_file(const char *path, const char *aux, const char *pool,
     size_t size, uint64_t ashift)
 {
 	char *pathbuf = NULL;
 	uint64_t vdev;
 	nvlist_t *file;
 	boolean_t draid_spare = B_FALSE;
 
 
 	if (ashift == 0)
 		ashift = ztest_get_ashift();
 
 	if (path == NULL) {
 		pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 		path = pathbuf;
 
 		if (aux != NULL) {
 			vdev = ztest_shared->zs_vdev_aux;
 			(void) snprintf(pathbuf, MAXPATHLEN,
 			    ztest_aux_template, ztest_opts.zo_dir,
 			    pool == NULL ? ztest_opts.zo_pool : pool,
 			    aux, vdev);
 		} else {
 			vdev = ztest_shared->zs_vdev_next_leaf++;
 			(void) snprintf(pathbuf, MAXPATHLEN,
 			    ztest_dev_template, ztest_opts.zo_dir,
 			    pool == NULL ? ztest_opts.zo_pool : pool, vdev);
 		}
 	} else {
 		draid_spare = ztest_is_draid_spare(path);
 	}
 
 	if (size != 0 && !draid_spare) {
 		int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
 		if (fd == -1)
 			fatal(B_TRUE, "can't open %s", path);
 		if (ftruncate(fd, size) != 0)
 			fatal(B_TRUE, "can't ftruncate %s", path);
 		(void) close(fd);
 	}
 
 	file = fnvlist_alloc();
 	fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
 	    draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
 	fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
 	fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
 	umem_free(pathbuf, MAXPATHLEN);
 
 	return (file);
 }
 
 static nvlist_t *
 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
     uint64_t ashift, int r)
 {
 	nvlist_t *raid, **child;
 	int c;
 
 	if (r < 2)
 		return (make_vdev_file(path, aux, pool, size, ashift));
 	child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
 
 	for (c = 0; c < r; c++)
 		child[c] = make_vdev_file(path, aux, pool, size, ashift);
 
 	raid = fnvlist_alloc();
 	fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
 	    ztest_opts.zo_raid_type);
 	fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
 	    ztest_opts.zo_raid_parity);
 	fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
 	    (const nvlist_t **)child, r);
 
 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
 		uint64_t ndata = ztest_opts.zo_draid_data;
 		uint64_t nparity = ztest_opts.zo_raid_parity;
 		uint64_t nspares = ztest_opts.zo_draid_spares;
 		uint64_t children = ztest_opts.zo_raid_children;
 		uint64_t ngroups = 1;
 
 		/*
 		 * Calculate the minimum number of groups required to fill a
 		 * slice. This is the LCM of the stripe width (data + parity)
 		 * and the number of data drives (children - spares).
 		 */
 		while (ngroups * (ndata + nparity) % (children - nspares) != 0)
 			ngroups++;
 
 		/* Store the basic dRAID configuration. */
 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
 		fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
 	}
 
 	for (c = 0; c < r; c++)
 		fnvlist_free(child[c]);
 
 	umem_free(child, r * sizeof (nvlist_t *));
 
 	return (raid);
 }
 
 static nvlist_t *
 make_vdev_mirror(const char *path, const char *aux, const char *pool,
     size_t size, uint64_t ashift, int r, int m)
 {
 	nvlist_t *mirror, **child;
 	int c;
 
 	if (m < 1)
 		return (make_vdev_raid(path, aux, pool, size, ashift, r));
 
 	child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
 
 	for (c = 0; c < m; c++)
 		child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
 
 	mirror = fnvlist_alloc();
 	fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
 	fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
 	    (const nvlist_t **)child, m);
 
 	for (c = 0; c < m; c++)
 		fnvlist_free(child[c]);
 
 	umem_free(child, m * sizeof (nvlist_t *));
 
 	return (mirror);
 }
 
 static nvlist_t *
 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
     uint64_t ashift, const char *class, int r, int m, int t)
 {
 	nvlist_t *root, **child;
 	int c;
 	boolean_t log;
 
 	ASSERT3S(t, >, 0);
 
 	log = (class != NULL && strcmp(class, "log") == 0);
 
 	child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
 
 	for (c = 0; c < t; c++) {
 		child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
 		    r, m);
 		fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
 
 		if (class != NULL && class[0] != '\0') {
 			ASSERT(m > 1 || log);   /* expecting a mirror */
 			fnvlist_add_string(child[c],
 			    ZPOOL_CONFIG_ALLOCATION_BIAS, class);
 		}
 	}
 
 	root = fnvlist_alloc();
 	fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
 	fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
 	    (const nvlist_t **)child, t);
 
 	for (c = 0; c < t; c++)
 		fnvlist_free(child[c]);
 
 	umem_free(child, t * sizeof (nvlist_t *));
 
 	return (root);
 }
 
 /*
  * Find a random spa version. Returns back a random spa version in the
  * range [initial_version, SPA_VERSION_FEATURES].
  */
 static uint64_t
 ztest_random_spa_version(uint64_t initial_version)
 {
 	uint64_t version = initial_version;
 
 	if (version <= SPA_VERSION_BEFORE_FEATURES) {
 		version = version +
 		    ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
 	}
 
 	if (version > SPA_VERSION_BEFORE_FEATURES)
 		version = SPA_VERSION_FEATURES;
 
 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
 	return (version);
 }
 
 static int
 ztest_random_blocksize(void)
 {
 	ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
 
 	/*
 	 * Choose a block size >= the ashift.
 	 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
 	 */
 	int maxbs = SPA_OLD_MAXBLOCKSHIFT;
 	if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
 		maxbs = 20;
 	uint64_t block_shift =
 	    ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
 	return (1 << (SPA_MINBLOCKSHIFT + block_shift));
 }
 
 static int
 ztest_random_dnodesize(void)
 {
 	int slots;
 	int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
 
 	if (max_slots == DNODE_MIN_SLOTS)
 		return (DNODE_MIN_SIZE);
 
 	/*
 	 * Weight the random distribution more heavily toward smaller
 	 * dnode sizes since that is more likely to reflect real-world
 	 * usage.
 	 */
 	ASSERT3U(max_slots, >, 4);
 	switch (ztest_random(10)) {
 	case 0:
 		slots = 5 + ztest_random(max_slots - 4);
 		break;
 	case 1 ... 4:
 		slots = 2 + ztest_random(3);
 		break;
 	default:
 		slots = 1;
 		break;
 	}
 
 	return (slots << DNODE_SHIFT);
 }
 
 static int
 ztest_random_ibshift(void)
 {
 	return (DN_MIN_INDBLKSHIFT +
 	    ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
 }
 
 static uint64_t
 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
 {
 	uint64_t top;
 	vdev_t *rvd = spa->spa_root_vdev;
 	vdev_t *tvd;
 
 	ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
 
 	do {
 		top = ztest_random(rvd->vdev_children);
 		tvd = rvd->vdev_child[top];
 	} while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
 	    tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
 
 	return (top);
 }
 
 static uint64_t
 ztest_random_dsl_prop(zfs_prop_t prop)
 {
 	uint64_t value;
 
 	do {
 		value = zfs_prop_random_value(prop, ztest_random(-1ULL));
 	} while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
 
 	return (value);
 }
 
 static int
 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
     boolean_t inherit)
 {
 	const char *propname = zfs_prop_to_name(prop);
 	const char *valname;
 	char *setpoint;
 	uint64_t curval;
 	int error;
 
 	error = dsl_prop_set_int(osname, propname,
 	    (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
 
 	if (error == ENOSPC) {
 		ztest_record_enospc(FTAG);
 		return (error);
 	}
 	ASSERT0(error);
 
 	setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 	VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
 
 	if (ztest_opts.zo_verbose >= 6) {
 		int err;
 
 		err = zfs_prop_index_to_string(prop, curval, &valname);
 		if (err)
 			(void) printf("%s %s = %llu at '%s'\n", osname,
 			    propname, (unsigned long long)curval, setpoint);
 		else
 			(void) printf("%s %s = %s at '%s'\n",
 			    osname, propname, valname, setpoint);
 	}
 	umem_free(setpoint, MAXPATHLEN);
 
 	return (error);
 }
 
 static int
 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
 {
 	spa_t *spa = ztest_spa;
 	nvlist_t *props = NULL;
 	int error;
 
 	props = fnvlist_alloc();
 	fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
 
 	error = spa_prop_set(spa, props);
 
 	fnvlist_free(props);
 
 	if (error == ENOSPC) {
 		ztest_record_enospc(FTAG);
 		return (error);
 	}
 	ASSERT0(error);
 
 	return (error);
 }
 
 static int
 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
     boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
 {
 	int err;
 	char *cp = NULL;
 	char ddname[ZFS_MAX_DATASET_NAME_LEN];
 
 	strlcpy(ddname, name, sizeof (ddname));
 	cp = strchr(ddname, '@');
 	if (cp != NULL)
 		*cp = '\0';
 
 	err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
 	while (decrypt && err == EACCES) {
 		dsl_crypto_params_t *dcp;
 		nvlist_t *crypto_args = fnvlist_alloc();
 
 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
 		    crypto_args, &dcp));
 		err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
 		/*
 		 * Note: if there was an error loading, the wkey was not
 		 * consumed, and needs to be freed.
 		 */
 		dsl_crypto_params_free(dcp, (err != 0));
 		fnvlist_free(crypto_args);
 
 		if (err == EINVAL) {
 			/*
 			 * We couldn't load a key for this dataset so try
 			 * the parent. This loop will eventually hit the
 			 * encryption root since ztest only makes clones
 			 * as children of their origin datasets.
 			 */
 			cp = strrchr(ddname, '/');
 			if (cp == NULL)
 				return (err);
 
 			*cp = '\0';
 			err = EACCES;
 			continue;
 		} else if (err != 0) {
 			break;
 		}
 
 		err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
 		break;
 	}
 
 	return (err);
 }
 
 static void
 ztest_rll_init(rll_t *rll)
 {
 	rll->rll_writer = NULL;
 	rll->rll_readers = 0;
 	mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
 	cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
 }
 
 static void
 ztest_rll_destroy(rll_t *rll)
 {
 	ASSERT3P(rll->rll_writer, ==, NULL);
 	ASSERT0(rll->rll_readers);
 	mutex_destroy(&rll->rll_lock);
 	cv_destroy(&rll->rll_cv);
 }
 
 static void
 ztest_rll_lock(rll_t *rll, rl_type_t type)
 {
 	mutex_enter(&rll->rll_lock);
 
 	if (type == RL_READER) {
 		while (rll->rll_writer != NULL)
 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
 		rll->rll_readers++;
 	} else {
 		while (rll->rll_writer != NULL || rll->rll_readers)
 			(void) cv_wait(&rll->rll_cv, &rll->rll_lock);
 		rll->rll_writer = curthread;
 	}
 
 	mutex_exit(&rll->rll_lock);
 }
 
 static void
 ztest_rll_unlock(rll_t *rll)
 {
 	mutex_enter(&rll->rll_lock);
 
 	if (rll->rll_writer) {
 		ASSERT0(rll->rll_readers);
 		rll->rll_writer = NULL;
 	} else {
 		ASSERT3S(rll->rll_readers, >, 0);
 		ASSERT3P(rll->rll_writer, ==, NULL);
 		rll->rll_readers--;
 	}
 
 	if (rll->rll_writer == NULL && rll->rll_readers == 0)
 		cv_broadcast(&rll->rll_cv);
 
 	mutex_exit(&rll->rll_lock);
 }
 
 static void
 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
 {
 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
 
 	ztest_rll_lock(rll, type);
 }
 
 static void
 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
 {
 	rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
 
 	ztest_rll_unlock(rll);
 }
 
 static rl_t *
 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
     uint64_t size, rl_type_t type)
 {
 	uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
 	rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
 	rl_t *rl;
 
 	rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
 	rl->rl_object = object;
 	rl->rl_offset = offset;
 	rl->rl_size = size;
 	rl->rl_lock = rll;
 
 	ztest_rll_lock(rll, type);
 
 	return (rl);
 }
 
 static void
 ztest_range_unlock(rl_t *rl)
 {
 	rll_t *rll = rl->rl_lock;
 
 	ztest_rll_unlock(rll);
 
 	umem_free(rl, sizeof (*rl));
 }
 
 static void
 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
 {
 	zd->zd_os = os;
 	zd->zd_zilog = dmu_objset_zil(os);
 	zd->zd_shared = szd;
 	dmu_objset_name(os, zd->zd_name);
 	int l;
 
 	if (zd->zd_shared != NULL)
 		zd->zd_shared->zd_seq = 0;
 
 	VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
 	mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
 
 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
 		ztest_rll_init(&zd->zd_object_lock[l]);
 
 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
 		ztest_rll_init(&zd->zd_range_lock[l]);
 }
 
 static void
 ztest_zd_fini(ztest_ds_t *zd)
 {
 	int l;
 
 	mutex_destroy(&zd->zd_dirobj_lock);
 	(void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
 
 	for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
 		ztest_rll_destroy(&zd->zd_object_lock[l]);
 
 	for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
 		ztest_rll_destroy(&zd->zd_range_lock[l]);
 }
 
 #define	TXG_MIGHTWAIT	(ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
 
 static uint64_t
 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
 {
 	uint64_t txg;
 	int error;
 
 	/*
 	 * Attempt to assign tx to some transaction group.
 	 */
 	error = dmu_tx_assign(tx, txg_how);
 	if (error) {
 		if (error == ERESTART) {
 			ASSERT3U(txg_how, ==, TXG_NOWAIT);
 			dmu_tx_wait(tx);
 		} else {
 			ASSERT3U(error, ==, ENOSPC);
 			ztest_record_enospc(tag);
 		}
 		dmu_tx_abort(tx);
 		return (0);
 	}
 	txg = dmu_tx_get_txg(tx);
 	ASSERT3U(txg, !=, 0);
 	return (txg);
 }
 
 static void
 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
     uint64_t crtxg)
 {
 	bt->bt_magic = BT_MAGIC;
 	bt->bt_objset = dmu_objset_id(os);
 	bt->bt_object = object;
 	bt->bt_dnodesize = dnodesize;
 	bt->bt_offset = offset;
 	bt->bt_gen = gen;
 	bt->bt_txg = txg;
 	bt->bt_crtxg = crtxg;
 }
 
 static void
 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
     uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
     uint64_t crtxg)
 {
 	ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
 	ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
 	ASSERT3U(bt->bt_object, ==, object);
 	ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
 	ASSERT3U(bt->bt_offset, ==, offset);
 	ASSERT3U(bt->bt_gen, <=, gen);
 	ASSERT3U(bt->bt_txg, <=, txg);
 	ASSERT3U(bt->bt_crtxg, ==, crtxg);
 }
 
 static ztest_block_tag_t *
 ztest_bt_bonus(dmu_buf_t *db)
 {
 	dmu_object_info_t doi;
 	ztest_block_tag_t *bt;
 
 	dmu_object_info_from_db(db, &doi);
 	ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
 	ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
 	bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
 
 	return (bt);
 }
 
 /*
  * Generate a token to fill up unused bonus buffer space.  Try to make
  * it unique to the object, generation, and offset to verify that data
  * is not getting overwritten by data from other dnodes.
  */
 #define	ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
 	(((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
 
 /*
  * Fill up the unused bonus buffer region before the block tag with a
  * verifiable pattern. Filling the whole bonus area with non-zero data
  * helps ensure that all dnode traversal code properly skips the
  * interior regions of large dnodes.
  */
 static void
 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
     objset_t *os, uint64_t gen)
 {
 	uint64_t *bonusp;
 
 	ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
 
 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
 		    gen, bonusp - (uint64_t *)db->db_data);
 		*bonusp = token;
 	}
 }
 
 /*
  * Verify that the unused area of a bonus buffer is filled with the
  * expected tokens.
  */
 static void
 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
     objset_t *os, uint64_t gen)
 {
 	uint64_t *bonusp;
 
 	for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
 		uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
 		    gen, bonusp - (uint64_t *)db->db_data);
 		VERIFY3U(*bonusp, ==, token);
 	}
 }
 
 /*
  * ZIL logging ops
  */
 
 #define	lrz_type	lr_mode
 #define	lrz_blocksize	lr_uid
 #define	lrz_ibshift	lr_gid
 #define	lrz_bonustype	lr_rdev
 #define	lrz_dnodesize	lr_crtime[1]
 
 static void
 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
 {
 	char *name = (void *)(lr + 1);		/* name follows lr */
 	size_t namesize = strlen(name) + 1;
 	itx_t *itx;
 
 	if (zil_replaying(zd->zd_zilog, tx))
 		return;
 
 	itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 	    sizeof (*lr) + namesize - sizeof (lr_t));
 
 	zil_itx_assign(zd->zd_zilog, itx, tx);
 }
 
 static void
 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
 {
 	char *name = (void *)(lr + 1);		/* name follows lr */
 	size_t namesize = strlen(name) + 1;
 	itx_t *itx;
 
 	if (zil_replaying(zd->zd_zilog, tx))
 		return;
 
 	itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 	    sizeof (*lr) + namesize - sizeof (lr_t));
 
 	itx->itx_oid = object;
 	zil_itx_assign(zd->zd_zilog, itx, tx);
 }
 
 static void
 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
 {
 	itx_t *itx;
 	itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
 
 	if (zil_replaying(zd->zd_zilog, tx))
 		return;
 
 	if (lr->lr_length > zil_max_log_data(zd->zd_zilog))
 		write_state = WR_INDIRECT;
 
 	itx = zil_itx_create(TX_WRITE,
 	    sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
 
 	if (write_state == WR_COPIED &&
 	    dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
 	    ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
 		zil_itx_destroy(itx);
 		itx = zil_itx_create(TX_WRITE, sizeof (*lr));
 		write_state = WR_NEED_COPY;
 	}
 	itx->itx_private = zd;
 	itx->itx_wr_state = write_state;
 	itx->itx_sync = (ztest_random(8) == 0);
 
 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 	    sizeof (*lr) - sizeof (lr_t));
 
 	zil_itx_assign(zd->zd_zilog, itx, tx);
 }
 
 static void
 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
 {
 	itx_t *itx;
 
 	if (zil_replaying(zd->zd_zilog, tx))
 		return;
 
 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 	    sizeof (*lr) - sizeof (lr_t));
 
 	itx->itx_sync = B_FALSE;
 	zil_itx_assign(zd->zd_zilog, itx, tx);
 }
 
 static void
 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
 {
 	itx_t *itx;
 
 	if (zil_replaying(zd->zd_zilog, tx))
 		return;
 
 	itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
 	memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
 	    sizeof (*lr) - sizeof (lr_t));
 
 	itx->itx_sync = B_FALSE;
 	zil_itx_assign(zd->zd_zilog, itx, tx);
 }
 
 /*
  * ZIL replay ops
  */
 static int
 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
 {
 	ztest_ds_t *zd = arg1;
 	lr_create_t *lr = arg2;
 	char *name = (void *)(lr + 1);		/* name follows lr */
 	objset_t *os = zd->zd_os;
 	ztest_block_tag_t *bbt;
 	dmu_buf_t *db;
 	dmu_tx_t *tx;
 	uint64_t txg;
 	int error = 0;
 	int bonuslen;
 
 	if (byteswap)
 		byteswap_uint64_array(lr, sizeof (*lr));
 
 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
 	ASSERT3S(name[0], !=, '\0');
 
 	tx = dmu_tx_create(os);
 
 	dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
 
 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
 	} else {
 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
 	}
 
 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 	if (txg == 0)
 		return (ENOSPC);
 
 	ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
 	bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
 
 	if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
 		if (lr->lr_foid == 0) {
 			lr->lr_foid = zap_create_dnsize(os,
 			    lr->lrz_type, lr->lrz_bonustype,
 			    bonuslen, lr->lrz_dnodesize, tx);
 		} else {
 			error = zap_create_claim_dnsize(os, lr->lr_foid,
 			    lr->lrz_type, lr->lrz_bonustype,
 			    bonuslen, lr->lrz_dnodesize, tx);
 		}
 	} else {
 		if (lr->lr_foid == 0) {
 			lr->lr_foid = dmu_object_alloc_dnsize(os,
 			    lr->lrz_type, 0, lr->lrz_bonustype,
 			    bonuslen, lr->lrz_dnodesize, tx);
 		} else {
 			error = dmu_object_claim_dnsize(os, lr->lr_foid,
 			    lr->lrz_type, 0, lr->lrz_bonustype,
 			    bonuslen, lr->lrz_dnodesize, tx);
 		}
 	}
 
 	if (error) {
 		ASSERT3U(error, ==, EEXIST);
 		ASSERT(zd->zd_zilog->zl_replay);
 		dmu_tx_commit(tx);
 		return (error);
 	}
 
 	ASSERT3U(lr->lr_foid, !=, 0);
 
 	if (lr->lrz_type != DMU_OT_ZAP_OTHER)
 		VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
 		    lr->lrz_blocksize, lr->lrz_ibshift, tx));
 
 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
 	bbt = ztest_bt_bonus(db);
 	dmu_buf_will_dirty(db, tx);
 	ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
 	    lr->lr_gen, txg, txg);
 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
 	dmu_buf_rele(db, FTAG);
 
 	VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
 	    &lr->lr_foid, tx));
 
 	(void) ztest_log_create(zd, tx, lr);
 
 	dmu_tx_commit(tx);
 
 	return (0);
 }
 
 static int
 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
 {
 	ztest_ds_t *zd = arg1;
 	lr_remove_t *lr = arg2;
 	char *name = (void *)(lr + 1);		/* name follows lr */
 	objset_t *os = zd->zd_os;
 	dmu_object_info_t doi;
 	dmu_tx_t *tx;
 	uint64_t object, txg;
 
 	if (byteswap)
 		byteswap_uint64_array(lr, sizeof (*lr));
 
 	ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
 	ASSERT3S(name[0], !=, '\0');
 
 	VERIFY0(
 	    zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
 	ASSERT3U(object, !=, 0);
 
 	ztest_object_lock(zd, object, RL_WRITER);
 
 	VERIFY0(dmu_object_info(os, object, &doi));
 
 	tx = dmu_tx_create(os);
 
 	dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
 	dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
 
 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 	if (txg == 0) {
 		ztest_object_unlock(zd, object);
 		return (ENOSPC);
 	}
 
 	if (doi.doi_type == DMU_OT_ZAP_OTHER) {
 		VERIFY0(zap_destroy(os, object, tx));
 	} else {
 		VERIFY0(dmu_object_free(os, object, tx));
 	}
 
 	VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
 
 	(void) ztest_log_remove(zd, tx, lr, object);
 
 	dmu_tx_commit(tx);
 
 	ztest_object_unlock(zd, object);
 
 	return (0);
 }
 
 static int
 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
 {
 	ztest_ds_t *zd = arg1;
 	lr_write_t *lr = arg2;
 	objset_t *os = zd->zd_os;
 	void *data = lr + 1;			/* data follows lr */
 	uint64_t offset, length;
 	ztest_block_tag_t *bt = data;
 	ztest_block_tag_t *bbt;
 	uint64_t gen, txg, lrtxg, crtxg;
 	dmu_object_info_t doi;
 	dmu_tx_t *tx;
 	dmu_buf_t *db;
 	arc_buf_t *abuf = NULL;
 	rl_t *rl;
 
 	if (byteswap)
 		byteswap_uint64_array(lr, sizeof (*lr));
 
 	offset = lr->lr_offset;
 	length = lr->lr_length;
 
 	/* If it's a dmu_sync() block, write the whole block */
 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
 		if (length < blocksize) {
 			offset -= offset % blocksize;
 			length = blocksize;
 		}
 	}
 
 	if (bt->bt_magic == BSWAP_64(BT_MAGIC))
 		byteswap_uint64_array(bt, sizeof (*bt));
 
 	if (bt->bt_magic != BT_MAGIC)
 		bt = NULL;
 
 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
 	rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
 
 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
 
 	dmu_object_info_from_db(db, &doi);
 
 	bbt = ztest_bt_bonus(db);
 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
 	gen = bbt->bt_gen;
 	crtxg = bbt->bt_crtxg;
 	lrtxg = lr->lr_common.lrc_txg;
 
 	tx = dmu_tx_create(os);
 
 	dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
 
 	if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
 	    P2PHASE(offset, length) == 0)
 		abuf = dmu_request_arcbuf(db, length);
 
 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 	if (txg == 0) {
 		if (abuf != NULL)
 			dmu_return_arcbuf(abuf);
 		dmu_buf_rele(db, FTAG);
 		ztest_range_unlock(rl);
 		ztest_object_unlock(zd, lr->lr_foid);
 		return (ENOSPC);
 	}
 
 	if (bt != NULL) {
 		/*
 		 * Usually, verify the old data before writing new data --
 		 * but not always, because we also want to verify correct
 		 * behavior when the data was not recently read into cache.
 		 */
 		ASSERT(doi.doi_data_block_size);
 		ASSERT0(offset % doi.doi_data_block_size);
 		if (ztest_random(4) != 0) {
 			int prefetch = ztest_random(2) ?
 			    DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
 			ztest_block_tag_t rbt;
 
 			VERIFY(dmu_read(os, lr->lr_foid, offset,
 			    sizeof (rbt), &rbt, prefetch) == 0);
 			if (rbt.bt_magic == BT_MAGIC) {
 				ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
 				    offset, gen, txg, crtxg);
 			}
 		}
 
 		/*
 		 * Writes can appear to be newer than the bonus buffer because
 		 * the ztest_get_data() callback does a dmu_read() of the
 		 * open-context data, which may be different than the data
 		 * as it was when the write was generated.
 		 */
 		if (zd->zd_zilog->zl_replay) {
 			ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
 			    MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
 			    bt->bt_crtxg);
 		}
 
 		/*
 		 * Set the bt's gen/txg to the bonus buffer's gen/txg
 		 * so that all of the usual ASSERTs will work.
 		 */
 		ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
 		    crtxg);
 	}
 
 	if (abuf == NULL) {
 		dmu_write(os, lr->lr_foid, offset, length, data, tx);
 	} else {
 		memcpy(abuf->b_data, data, length);
 		VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
 	}
 
 	(void) ztest_log_write(zd, tx, lr);
 
 	dmu_buf_rele(db, FTAG);
 
 	dmu_tx_commit(tx);
 
 	ztest_range_unlock(rl);
 	ztest_object_unlock(zd, lr->lr_foid);
 
 	return (0);
 }
 
 static int
 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
 {
 	ztest_ds_t *zd = arg1;
 	lr_truncate_t *lr = arg2;
 	objset_t *os = zd->zd_os;
 	dmu_tx_t *tx;
 	uint64_t txg;
 	rl_t *rl;
 
 	if (byteswap)
 		byteswap_uint64_array(lr, sizeof (*lr));
 
 	ztest_object_lock(zd, lr->lr_foid, RL_READER);
 	rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
 	    RL_WRITER);
 
 	tx = dmu_tx_create(os);
 
 	dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
 
 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 	if (txg == 0) {
 		ztest_range_unlock(rl);
 		ztest_object_unlock(zd, lr->lr_foid);
 		return (ENOSPC);
 	}
 
 	VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
 	    lr->lr_length, tx));
 
 	(void) ztest_log_truncate(zd, tx, lr);
 
 	dmu_tx_commit(tx);
 
 	ztest_range_unlock(rl);
 	ztest_object_unlock(zd, lr->lr_foid);
 
 	return (0);
 }
 
 static int
 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
 {
 	ztest_ds_t *zd = arg1;
 	lr_setattr_t *lr = arg2;
 	objset_t *os = zd->zd_os;
 	dmu_tx_t *tx;
 	dmu_buf_t *db;
 	ztest_block_tag_t *bbt;
 	uint64_t txg, lrtxg, crtxg, dnodesize;
 
 	if (byteswap)
 		byteswap_uint64_array(lr, sizeof (*lr));
 
 	ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
 
 	VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
 
 	tx = dmu_tx_create(os);
 	dmu_tx_hold_bonus(tx, lr->lr_foid);
 
 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 	if (txg == 0) {
 		dmu_buf_rele(db, FTAG);
 		ztest_object_unlock(zd, lr->lr_foid);
 		return (ENOSPC);
 	}
 
 	bbt = ztest_bt_bonus(db);
 	ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
 	crtxg = bbt->bt_crtxg;
 	lrtxg = lr->lr_common.lrc_txg;
 	dnodesize = bbt->bt_dnodesize;
 
 	if (zd->zd_zilog->zl_replay) {
 		ASSERT3U(lr->lr_size, !=, 0);
 		ASSERT3U(lr->lr_mode, !=, 0);
 		ASSERT3U(lrtxg, !=, 0);
 	} else {
 		/*
 		 * Randomly change the size and increment the generation.
 		 */
 		lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
 		    sizeof (*bbt);
 		lr->lr_mode = bbt->bt_gen + 1;
 		ASSERT0(lrtxg);
 	}
 
 	/*
 	 * Verify that the current bonus buffer is not newer than our txg.
 	 */
 	ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
 	    MAX(txg, lrtxg), crtxg);
 
 	dmu_buf_will_dirty(db, tx);
 
 	ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
 	ASSERT3U(lr->lr_size, <=, db->db_size);
 	VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
 	bbt = ztest_bt_bonus(db);
 
 	ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
 	    txg, crtxg);
 	ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
 	dmu_buf_rele(db, FTAG);
 
 	(void) ztest_log_setattr(zd, tx, lr);
 
 	dmu_tx_commit(tx);
 
 	ztest_object_unlock(zd, lr->lr_foid);
 
 	return (0);
 }
 
 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
 	NULL,			/* 0 no such transaction type */
 	ztest_replay_create,	/* TX_CREATE */
 	NULL,			/* TX_MKDIR */
 	NULL,			/* TX_MKXATTR */
 	NULL,			/* TX_SYMLINK */
 	ztest_replay_remove,	/* TX_REMOVE */
 	NULL,			/* TX_RMDIR */
 	NULL,			/* TX_LINK */
 	NULL,			/* TX_RENAME */
 	ztest_replay_write,	/* TX_WRITE */
 	ztest_replay_truncate,	/* TX_TRUNCATE */
 	ztest_replay_setattr,	/* TX_SETATTR */
 	NULL,			/* TX_ACL */
 	NULL,			/* TX_CREATE_ACL */
 	NULL,			/* TX_CREATE_ATTR */
 	NULL,			/* TX_CREATE_ACL_ATTR */
 	NULL,			/* TX_MKDIR_ACL */
 	NULL,			/* TX_MKDIR_ATTR */
 	NULL,			/* TX_MKDIR_ACL_ATTR */
 	NULL,			/* TX_WRITE2 */
 	NULL,			/* TX_SETSAXATTR */
 	NULL,			/* TX_RENAME_EXCHANGE */
 	NULL,			/* TX_RENAME_WHITEOUT */
 };
 
 /*
  * ZIL get_data callbacks
  */
 
 static void
 ztest_get_done(zgd_t *zgd, int error)
 {
 	(void) error;
 	ztest_ds_t *zd = zgd->zgd_private;
 	uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
 
 	if (zgd->zgd_db)
 		dmu_buf_rele(zgd->zgd_db, zgd);
 
 	ztest_range_unlock((rl_t *)zgd->zgd_lr);
 	ztest_object_unlock(zd, object);
 
 	umem_free(zgd, sizeof (*zgd));
 }
 
 static int
 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
     struct lwb *lwb, zio_t *zio)
 {
 	(void) arg2;
 	ztest_ds_t *zd = arg;
 	objset_t *os = zd->zd_os;
 	uint64_t object = lr->lr_foid;
 	uint64_t offset = lr->lr_offset;
 	uint64_t size = lr->lr_length;
 	uint64_t txg = lr->lr_common.lrc_txg;
 	uint64_t crtxg;
 	dmu_object_info_t doi;
 	dmu_buf_t *db;
 	zgd_t *zgd;
 	int error;
 
 	ASSERT3P(lwb, !=, NULL);
 	ASSERT3P(zio, !=, NULL);
 	ASSERT3U(size, !=, 0);
 
 	ztest_object_lock(zd, object, RL_READER);
 	error = dmu_bonus_hold(os, object, FTAG, &db);
 	if (error) {
 		ztest_object_unlock(zd, object);
 		return (error);
 	}
 
 	crtxg = ztest_bt_bonus(db)->bt_crtxg;
 
 	if (crtxg == 0 || crtxg > txg) {
 		dmu_buf_rele(db, FTAG);
 		ztest_object_unlock(zd, object);
 		return (ENOENT);
 	}
 
 	dmu_object_info_from_db(db, &doi);
 	dmu_buf_rele(db, FTAG);
 	db = NULL;
 
 	zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
 	zgd->zgd_lwb = lwb;
 	zgd->zgd_private = zd;
 
 	if (buf != NULL) {	/* immediate write */
 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
 		    object, offset, size, RL_READER);
 
 		error = dmu_read(os, object, offset, size, buf,
 		    DMU_READ_NO_PREFETCH);
 		ASSERT0(error);
 	} else {
 		size = doi.doi_data_block_size;
 		if (ISP2(size)) {
 			offset = P2ALIGN(offset, size);
 		} else {
 			ASSERT3U(offset, <, size);
 			offset = 0;
 		}
 
 		zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
 		    object, offset, size, RL_READER);
 
 		error = dmu_buf_hold(os, object, offset, zgd, &db,
 		    DMU_READ_NO_PREFETCH);
 
 		if (error == 0) {
 			blkptr_t *bp = &lr->lr_blkptr;
 
 			zgd->zgd_db = db;
 			zgd->zgd_bp = bp;
 
 			ASSERT3U(db->db_offset, ==, offset);
 			ASSERT3U(db->db_size, ==, size);
 
 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
 			    ztest_get_done, zgd);
 
 			if (error == 0)
 				return (0);
 		}
 	}
 
 	ztest_get_done(zgd, error);
 
 	return (error);
 }
 
 static void *
 ztest_lr_alloc(size_t lrsize, char *name)
 {
 	char *lr;
 	size_t namesize = name ? strlen(name) + 1 : 0;
 
 	lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
 
 	if (name)
 		memcpy(lr + lrsize, name, namesize);
 
 	return (lr);
 }
 
 static void
 ztest_lr_free(void *lr, size_t lrsize, char *name)
 {
 	size_t namesize = name ? strlen(name) + 1 : 0;
 
 	umem_free(lr, lrsize + namesize);
 }
 
 /*
  * Lookup a bunch of objects.  Returns the number of objects not found.
  */
 static int
 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
 {
 	int missing = 0;
 	int error;
 	int i;
 
 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
 
 	for (i = 0; i < count; i++, od++) {
 		od->od_object = 0;
 		error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
 		    sizeof (uint64_t), 1, &od->od_object);
 		if (error) {
 			ASSERT3S(error, ==, ENOENT);
 			ASSERT0(od->od_object);
 			missing++;
 		} else {
 			dmu_buf_t *db;
 			ztest_block_tag_t *bbt;
 			dmu_object_info_t doi;
 
 			ASSERT3U(od->od_object, !=, 0);
 			ASSERT0(missing);	/* there should be no gaps */
 
 			ztest_object_lock(zd, od->od_object, RL_READER);
 			VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
 			    FTAG, &db));
 			dmu_object_info_from_db(db, &doi);
 			bbt = ztest_bt_bonus(db);
 			ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
 			od->od_type = doi.doi_type;
 			od->od_blocksize = doi.doi_data_block_size;
 			od->od_gen = bbt->bt_gen;
 			dmu_buf_rele(db, FTAG);
 			ztest_object_unlock(zd, od->od_object);
 		}
 	}
 
 	return (missing);
 }
 
 static int
 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
 {
 	int missing = 0;
 	int i;
 
 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
 
 	for (i = 0; i < count; i++, od++) {
 		if (missing) {
 			od->od_object = 0;
 			missing++;
 			continue;
 		}
 
 		lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
 
 		lr->lr_doid = od->od_dir;
 		lr->lr_foid = 0;	/* 0 to allocate, > 0 to claim */
 		lr->lrz_type = od->od_crtype;
 		lr->lrz_blocksize = od->od_crblocksize;
 		lr->lrz_ibshift = ztest_random_ibshift();
 		lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
 		lr->lrz_dnodesize = od->od_crdnodesize;
 		lr->lr_gen = od->od_crgen;
 		lr->lr_crtime[0] = time(NULL);
 
 		if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
 			ASSERT0(missing);
 			od->od_object = 0;
 			missing++;
 		} else {
 			od->od_object = lr->lr_foid;
 			od->od_type = od->od_crtype;
 			od->od_blocksize = od->od_crblocksize;
 			od->od_gen = od->od_crgen;
 			ASSERT3U(od->od_object, !=, 0);
 		}
 
 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
 	}
 
 	return (missing);
 }
 
 static int
 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
 {
 	int missing = 0;
 	int error;
 	int i;
 
 	ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
 
 	od += count - 1;
 
 	for (i = count - 1; i >= 0; i--, od--) {
 		if (missing) {
 			missing++;
 			continue;
 		}
 
 		/*
 		 * No object was found.
 		 */
 		if (od->od_object == 0)
 			continue;
 
 		lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
 
 		lr->lr_doid = od->od_dir;
 
 		if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
 			ASSERT3U(error, ==, ENOSPC);
 			missing++;
 		} else {
 			od->od_object = 0;
 		}
 		ztest_lr_free(lr, sizeof (*lr), od->od_name);
 	}
 
 	return (missing);
 }
 
 static int
 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
     void *data)
 {
 	lr_write_t *lr;
 	int error;
 
 	lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
 
 	lr->lr_foid = object;
 	lr->lr_offset = offset;
 	lr->lr_length = size;
 	lr->lr_blkoff = 0;
 	BP_ZERO(&lr->lr_blkptr);
 
 	memcpy(lr + 1, data, size);
 
 	error = ztest_replay_write(zd, lr, B_FALSE);
 
 	ztest_lr_free(lr, sizeof (*lr) + size, NULL);
 
 	return (error);
 }
 
 static int
 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
 {
 	lr_truncate_t *lr;
 	int error;
 
 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
 
 	lr->lr_foid = object;
 	lr->lr_offset = offset;
 	lr->lr_length = size;
 
 	error = ztest_replay_truncate(zd, lr, B_FALSE);
 
 	ztest_lr_free(lr, sizeof (*lr), NULL);
 
 	return (error);
 }
 
 static int
 ztest_setattr(ztest_ds_t *zd, uint64_t object)
 {
 	lr_setattr_t *lr;
 	int error;
 
 	lr = ztest_lr_alloc(sizeof (*lr), NULL);
 
 	lr->lr_foid = object;
 	lr->lr_size = 0;
 	lr->lr_mode = 0;
 
 	error = ztest_replay_setattr(zd, lr, B_FALSE);
 
 	ztest_lr_free(lr, sizeof (*lr), NULL);
 
 	return (error);
 }
 
 static void
 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
 {
 	objset_t *os = zd->zd_os;
 	dmu_tx_t *tx;
 	uint64_t txg;
 	rl_t *rl;
 
 	txg_wait_synced(dmu_objset_pool(os), 0);
 
 	ztest_object_lock(zd, object, RL_READER);
 	rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
 
 	tx = dmu_tx_create(os);
 
 	dmu_tx_hold_write(tx, object, offset, size);
 
 	txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
 
 	if (txg != 0) {
 		dmu_prealloc(os, object, offset, size, tx);
 		dmu_tx_commit(tx);
 		txg_wait_synced(dmu_objset_pool(os), txg);
 	} else {
 		(void) dmu_free_long_range(os, object, offset, size);
 	}
 
 	ztest_range_unlock(rl);
 	ztest_object_unlock(zd, object);
 }
 
 static void
 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
 {
 	int err;
 	ztest_block_tag_t wbt;
 	dmu_object_info_t doi;
 	enum ztest_io_type io_type;
 	uint64_t blocksize;
 	void *data;
 
 	VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
 	blocksize = doi.doi_data_block_size;
 	data = umem_alloc(blocksize, UMEM_NOFAIL);
 
 	/*
 	 * Pick an i/o type at random, biased toward writing block tags.
 	 */
 	io_type = ztest_random(ZTEST_IO_TYPES);
 	if (ztest_random(2) == 0)
 		io_type = ZTEST_IO_WRITE_TAG;
 
 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
 
 	switch (io_type) {
 
 	case ZTEST_IO_WRITE_TAG:
 		ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
 		    offset, 0, 0, 0);
 		(void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
 		break;
 
 	case ZTEST_IO_WRITE_PATTERN:
 		(void) memset(data, 'a' + (object + offset) % 5, blocksize);
 		if (ztest_random(2) == 0) {
 			/*
 			 * Induce fletcher2 collisions to ensure that
 			 * zio_ddt_collision() detects and resolves them
 			 * when using fletcher2-verify for deduplication.
 			 */
 			((uint64_t *)data)[0] ^= 1ULL << 63;
 			((uint64_t *)data)[4] ^= 1ULL << 63;
 		}
 		(void) ztest_write(zd, object, offset, blocksize, data);
 		break;
 
 	case ZTEST_IO_WRITE_ZEROES:
 		memset(data, 0, blocksize);
 		(void) ztest_write(zd, object, offset, blocksize, data);
 		break;
 
 	case ZTEST_IO_TRUNCATE:
 		(void) ztest_truncate(zd, object, offset, blocksize);
 		break;
 
 	case ZTEST_IO_SETATTR:
 		(void) ztest_setattr(zd, object);
 		break;
 	default:
 		break;
 
 	case ZTEST_IO_REWRITE:
 		(void) pthread_rwlock_rdlock(&ztest_name_lock);
 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
 		    ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
 		    B_FALSE);
 		VERIFY(err == 0 || err == ENOSPC);
 		err = ztest_dsl_prop_set_uint64(zd->zd_name,
 		    ZFS_PROP_COMPRESSION,
 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
 		    B_FALSE);
 		VERIFY(err == 0 || err == ENOSPC);
 		(void) pthread_rwlock_unlock(&ztest_name_lock);
 
 		VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
 		    DMU_READ_NO_PREFETCH));
 
 		(void) ztest_write(zd, object, offset, blocksize, data);
 		break;
 	}
 
 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
 
 	umem_free(data, blocksize);
 }
 
 /*
  * Initialize an object description template.
  */
 static void
 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
     dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
     uint64_t gen)
 {
 	od->od_dir = ZTEST_DIROBJ;
 	od->od_object = 0;
 
 	od->od_crtype = type;
 	od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
 	od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
 	od->od_crgen = gen;
 
 	od->od_type = DMU_OT_NONE;
 	od->od_blocksize = 0;
 	od->od_gen = 0;
 
 	(void) snprintf(od->od_name, sizeof (od->od_name),
 	    "%s(%"PRId64")[%"PRIu64"]",
 	    tag, id, index);
 }
 
 /*
  * Lookup or create the objects for a test using the od template.
  * If the objects do not all exist, or if 'remove' is specified,
  * remove any existing objects and create new ones.  Otherwise,
  * use the existing objects.
  */
 static int
 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
 {
 	int count = size / sizeof (*od);
 	int rv = 0;
 
 	mutex_enter(&zd->zd_dirobj_lock);
 	if ((ztest_lookup(zd, od, count) != 0 || remove) &&
 	    (ztest_remove(zd, od, count) != 0 ||
 	    ztest_create(zd, od, count) != 0))
 		rv = -1;
 	zd->zd_od = od;
 	mutex_exit(&zd->zd_dirobj_lock);
 
 	return (rv);
 }
 
 void
 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
 {
 	(void) id;
 	zilog_t *zilog = zd->zd_zilog;
 
 	(void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
 
 	zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
 
 	/*
 	 * Remember the committed values in zd, which is in parent/child
 	 * shared memory.  If we die, the next iteration of ztest_run()
 	 * will verify that the log really does contain this record.
 	 */
 	mutex_enter(&zilog->zl_lock);
 	ASSERT3P(zd->zd_shared, !=, NULL);
 	ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
 	zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
 	mutex_exit(&zilog->zl_lock);
 
 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
 }
 
 /*
  * This function is designed to simulate the operations that occur during a
  * mount/unmount operation.  We hold the dataset across these operations in an
  * attempt to expose any implicit assumptions about ZIL management.
  */
 void
 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
 {
 	(void) id;
 	objset_t *os = zd->zd_os;
 
 	/*
 	 * We hold the ztest_vdev_lock so we don't cause problems with
 	 * other threads that wish to remove a log device, such as
 	 * ztest_device_removal().
 	 */
 	mutex_enter(&ztest_vdev_lock);
 
 	/*
 	 * We grab the zd_dirobj_lock to ensure that no other thread is
 	 * updating the zil (i.e. adding in-memory log records) and the
 	 * zd_zilog_lock to block any I/O.
 	 */
 	mutex_enter(&zd->zd_dirobj_lock);
 	(void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
 
 	/* zfsvfs_teardown() */
 	zil_close(zd->zd_zilog);
 
 	/* zfsvfs_setup() */
 	VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
 	zil_replay(os, zd, ztest_replay_vector);
 
 	(void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
 	mutex_exit(&zd->zd_dirobj_lock);
 	mutex_exit(&ztest_vdev_lock);
 }
 
 /*
  * Verify that we can't destroy an active pool, create an existing pool,
  * or create a pool with a bad vdev spec.
  */
 void
 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_opts_t *zo = &ztest_opts;
 	spa_t *spa;
 	nvlist_t *nvroot;
 
 	if (zo->zo_mmp_test)
 		return;
 
 	/*
 	 * Attempt to create using a bad file.
 	 */
 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
 	VERIFY3U(ENOENT, ==,
 	    spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
 	fnvlist_free(nvroot);
 
 	/*
 	 * Attempt to create using a bad mirror.
 	 */
 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
 	VERIFY3U(ENOENT, ==,
 	    spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
 	fnvlist_free(nvroot);
 
 	/*
 	 * Attempt to create an existing pool.  It shouldn't matter
 	 * what's in the nvroot; we should fail with EEXIST.
 	 */
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 	nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
 	VERIFY3U(EEXIST, ==,
 	    spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
 	fnvlist_free(nvroot);
 
 	/*
 	 * We open a reference to the spa and then we try to export it
 	 * expecting one of the following errors:
 	 *
 	 * EBUSY
 	 *	Because of the reference we just opened.
 	 *
 	 * ZFS_ERR_EXPORT_IN_PROGRESS
 	 *	For the case that there is another ztest thread doing
 	 *	an export concurrently.
 	 */
 	VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
 	int error = spa_destroy(zo->zo_pool);
 	if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
 		fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
 		    spa->spa_name, error);
 	}
 	spa_close(spa, FTAG);
 
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 }
 
 /*
  * Start and then stop the MMP threads to ensure the startup and shutdown code
  * works properly.  Actual protection and property-related code tested via ZTS.
  */
 void
 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_opts_t *zo = &ztest_opts;
 	spa_t *spa = ztest_spa;
 
 	if (zo->zo_mmp_test)
 		return;
 
 	/*
 	 * Since enabling MMP involves setting a property, it could not be done
 	 * while the pool is suspended.
 	 */
 	if (spa_suspended(spa))
 		return;
 
 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 	mutex_enter(&spa->spa_props_lock);
 
 	zfs_multihost_fail_intervals = 0;
 
 	if (!spa_multihost(spa)) {
 		spa->spa_multihost = B_TRUE;
 		mmp_thread_start(spa);
 	}
 
 	mutex_exit(&spa->spa_props_lock);
 	spa_config_exit(spa, SCL_CONFIG, FTAG);
 
 	txg_wait_synced(spa_get_dsl(spa), 0);
 	mmp_signal_all_threads();
 	txg_wait_synced(spa_get_dsl(spa), 0);
 
 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
 	mutex_enter(&spa->spa_props_lock);
 
 	if (spa_multihost(spa)) {
 		mmp_thread_stop(spa);
 		spa->spa_multihost = B_FALSE;
 	}
 
 	mutex_exit(&spa->spa_props_lock);
 	spa_config_exit(spa, SCL_CONFIG, FTAG);
 }
 
 void
 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa;
 	uint64_t initial_version = SPA_VERSION_INITIAL;
 	uint64_t version, newversion;
 	nvlist_t *nvroot, *props;
 	char *name;
 
 	if (ztest_opts.zo_mmp_test)
 		return;
 
 	/* dRAID added after feature flags, skip upgrade test. */
 	if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
 		return;
 
 	mutex_enter(&ztest_vdev_lock);
 	name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
 
 	/*
 	 * Clean up from previous runs.
 	 */
 	(void) spa_destroy(name);
 
 	nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
 	    NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
 
 	/*
 	 * If we're configuring a RAIDZ device then make sure that the
 	 * initial version is capable of supporting that feature.
 	 */
 	switch (ztest_opts.zo_raid_parity) {
 	case 0:
 	case 1:
 		initial_version = SPA_VERSION_INITIAL;
 		break;
 	case 2:
 		initial_version = SPA_VERSION_RAIDZ2;
 		break;
 	case 3:
 		initial_version = SPA_VERSION_RAIDZ3;
 		break;
 	}
 
 	/*
 	 * Create a pool with a spa version that can be upgraded. Pick
 	 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
 	 */
 	do {
 		version = ztest_random_spa_version(initial_version);
 	} while (version > SPA_VERSION_BEFORE_FEATURES);
 
 	props = fnvlist_alloc();
 	fnvlist_add_uint64(props,
 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
 	VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
 	fnvlist_free(nvroot);
 	fnvlist_free(props);
 
 	VERIFY0(spa_open(name, &spa, FTAG));
 	VERIFY3U(spa_version(spa), ==, version);
 	newversion = ztest_random_spa_version(version + 1);
 
 	if (ztest_opts.zo_verbose >= 4) {
 		(void) printf("upgrading spa version from "
 		    "%"PRIu64" to %"PRIu64"\n",
 		    version, newversion);
 	}
 
 	spa_upgrade(spa, newversion);
 	VERIFY3U(spa_version(spa), >, version);
 	VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
 	    zpool_prop_to_name(ZPOOL_PROP_VERSION)));
 	spa_close(spa, FTAG);
 
 	kmem_strfree(name);
 	mutex_exit(&ztest_vdev_lock);
 }
 
 static void
 ztest_spa_checkpoint(spa_t *spa)
 {
 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
 
 	int error = spa_checkpoint(spa->spa_name);
 
 	switch (error) {
 	case 0:
 	case ZFS_ERR_DEVRM_IN_PROGRESS:
 	case ZFS_ERR_DISCARDING_CHECKPOINT:
 	case ZFS_ERR_CHECKPOINT_EXISTS:
 		break;
 	case ENOSPC:
 		ztest_record_enospc(FTAG);
 		break;
 	default:
 		fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
 	}
 }
 
 static void
 ztest_spa_discard_checkpoint(spa_t *spa)
 {
 	ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
 
 	int error = spa_checkpoint_discard(spa->spa_name);
 
 	switch (error) {
 	case 0:
 	case ZFS_ERR_DISCARDING_CHECKPOINT:
 	case ZFS_ERR_NO_CHECKPOINT:
 		break;
 	default:
 		fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
 		    spa->spa_name, error);
 	}
 
 }
 
 void
 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa = ztest_spa;
 
 	mutex_enter(&ztest_checkpoint_lock);
 	if (ztest_random(2) == 0) {
 		ztest_spa_checkpoint(spa);
 	} else {
 		ztest_spa_discard_checkpoint(spa);
 	}
 	mutex_exit(&ztest_checkpoint_lock);
 }
 
 
 static vdev_t *
 vdev_lookup_by_path(vdev_t *vd, const char *path)
 {
 	vdev_t *mvd;
 	int c;
 
 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
 		return (vd);
 
 	for (c = 0; c < vd->vdev_children; c++)
 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
 		    NULL)
 			return (mvd);
 
 	return (NULL);
 }
 
 static int
 spa_num_top_vdevs(spa_t *spa)
 {
 	vdev_t *rvd = spa->spa_root_vdev;
 	ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
 	return (rvd->vdev_children);
 }
 
 /*
  * Verify that vdev_add() works as expected.
  */
 void
 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_t *zs = ztest_shared;
 	spa_t *spa = ztest_spa;
 	uint64_t leaves;
 	uint64_t guid;
 	nvlist_t *nvroot;
 	int error;
 
 	if (ztest_opts.zo_mmp_test)
 		return;
 
 	mutex_enter(&ztest_vdev_lock);
 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
 	    ztest_opts.zo_raid_children;
 
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 
 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
 
 	/*
 	 * If we have slogs then remove them 1/4 of the time.
 	 */
 	if (spa_has_slogs(spa) && ztest_random(4) == 0) {
 		metaslab_group_t *mg;
 
 		/*
 		 * find the first real slog in log allocation class
 		 */
 		mg =  spa_log_class(spa)->mc_allocator[0].mca_rotor;
 		while (!mg->mg_vd->vdev_islog)
 			mg = mg->mg_next;
 
 		guid = mg->mg_vd->vdev_guid;
 
 		spa_config_exit(spa, SCL_VDEV, FTAG);
 
 		/*
 		 * We have to grab the zs_name_lock as writer to
 		 * prevent a race between removing a slog (dmu_objset_find)
 		 * and destroying a dataset. Removing the slog will
 		 * grab a reference on the dataset which may cause
 		 * dsl_destroy_head() to fail with EBUSY thus
 		 * leaving the dataset in an inconsistent state.
 		 */
 		pthread_rwlock_wrlock(&ztest_name_lock);
 		error = spa_vdev_remove(spa, guid, B_FALSE);
 		pthread_rwlock_unlock(&ztest_name_lock);
 
 		switch (error) {
 		case 0:
 		case EEXIST:	/* Generic zil_reset() error */
 		case EBUSY:	/* Replay required */
 		case EACCES:	/* Crypto key not loaded */
 		case ZFS_ERR_CHECKPOINT_EXISTS:
 		case ZFS_ERR_DISCARDING_CHECKPOINT:
 			break;
 		default:
 			fatal(B_FALSE, "spa_vdev_remove() = %d", error);
 		}
 	} else {
 		spa_config_exit(spa, SCL_VDEV, FTAG);
 
 		/*
 		 * Make 1/4 of the devices be log devices
 		 */
 		nvroot = make_vdev_root(NULL, NULL, NULL,
 		    ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
 		    "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
 		    1);
 
 		error = spa_vdev_add(spa, nvroot);
 		fnvlist_free(nvroot);
 
 		switch (error) {
 		case 0:
 			break;
 		case ENOSPC:
 			ztest_record_enospc("spa_vdev_add");
 			break;
 		default:
 			fatal(B_FALSE, "spa_vdev_add() = %d", error);
 		}
 	}
 
 	mutex_exit(&ztest_vdev_lock);
 }
 
 void
 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_t *zs = ztest_shared;
 	spa_t *spa = ztest_spa;
 	uint64_t leaves;
 	nvlist_t *nvroot;
 	const char *class = (ztest_random(2) == 0) ?
 	    VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
 	int error;
 
 	/*
 	 * By default add a special vdev 50% of the time
 	 */
 	if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
 	    (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
 	    ztest_random(2) == 0)) {
 		return;
 	}
 
 	mutex_enter(&ztest_vdev_lock);
 
 	/* Only test with mirrors */
 	if (zs->zs_mirrors < 2) {
 		mutex_exit(&ztest_vdev_lock);
 		return;
 	}
 
 	/* requires feature@allocation_classes */
 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
 		mutex_exit(&ztest_vdev_lock);
 		return;
 	}
 
 	leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
 	    ztest_opts.zo_raid_children;
 
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 	ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
 	spa_config_exit(spa, SCL_VDEV, FTAG);
 
 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
 	    class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
 
 	error = spa_vdev_add(spa, nvroot);
 	fnvlist_free(nvroot);
 
 	if (error == ENOSPC)
 		ztest_record_enospc("spa_vdev_add");
 	else if (error != 0)
 		fatal(B_FALSE, "spa_vdev_add() = %d", error);
 
 	/*
 	 * 50% of the time allow small blocks in the special class
 	 */
 	if (error == 0 &&
 	    spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
 		if (ztest_opts.zo_verbose >= 3)
 			(void) printf("Enabling special VDEV small blocks\n");
 		(void) ztest_dsl_prop_set_uint64(zd->zd_name,
 		    ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
 	}
 
 	mutex_exit(&ztest_vdev_lock);
 
 	if (ztest_opts.zo_verbose >= 3) {
 		metaslab_class_t *mc;
 
 		if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
 			mc = spa_special_class(spa);
 		else
 			mc = spa_dedup_class(spa);
 		(void) printf("Added a %s mirrored vdev (of %d)\n",
 		    class, (int)mc->mc_groups);
 	}
 }
 
 /*
  * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
  */
 void
 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_t *zs = ztest_shared;
 	spa_t *spa = ztest_spa;
 	vdev_t *rvd = spa->spa_root_vdev;
 	spa_aux_vdev_t *sav;
 	const char *aux;
 	char *path;
 	uint64_t guid = 0;
 	int error, ignore_err = 0;
 
 	if (ztest_opts.zo_mmp_test)
 		return;
 
 	path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 
 	if (ztest_random(2) == 0) {
 		sav = &spa->spa_spares;
 		aux = ZPOOL_CONFIG_SPARES;
 	} else {
 		sav = &spa->spa_l2cache;
 		aux = ZPOOL_CONFIG_L2CACHE;
 	}
 
 	mutex_enter(&ztest_vdev_lock);
 
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 
 	if (sav->sav_count != 0 && ztest_random(4) == 0) {
 		/*
 		 * Pick a random device to remove.
 		 */
 		vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
 
 		/* dRAID spares cannot be removed; try anyways to see ENOTSUP */
 		if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
 			ignore_err = ENOTSUP;
 
 		guid = svd->vdev_guid;
 	} else {
 		/*
 		 * Find an unused device we can add.
 		 */
 		zs->zs_vdev_aux = 0;
 		for (;;) {
 			int c;
 			(void) snprintf(path, MAXPATHLEN, ztest_aux_template,
 			    ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
 			    zs->zs_vdev_aux);
 			for (c = 0; c < sav->sav_count; c++)
 				if (strcmp(sav->sav_vdevs[c]->vdev_path,
 				    path) == 0)
 					break;
 			if (c == sav->sav_count &&
 			    vdev_lookup_by_path(rvd, path) == NULL)
 				break;
 			zs->zs_vdev_aux++;
 		}
 	}
 
 	spa_config_exit(spa, SCL_VDEV, FTAG);
 
 	if (guid == 0) {
 		/*
 		 * Add a new device.
 		 */
 		nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
 		    (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
 		error = spa_vdev_add(spa, nvroot);
 
 		switch (error) {
 		case 0:
 			break;
 		default:
 			fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
 		}
 		fnvlist_free(nvroot);
 	} else {
 		/*
 		 * Remove an existing device.  Sometimes, dirty its
 		 * vdev state first to make sure we handle removal
 		 * of devices that have pending state changes.
 		 */
 		if (ztest_random(2) == 0)
 			(void) vdev_online(spa, guid, 0, NULL);
 
 		error = spa_vdev_remove(spa, guid, B_FALSE);
 
 		switch (error) {
 		case 0:
 		case EBUSY:
 		case ZFS_ERR_CHECKPOINT_EXISTS:
 		case ZFS_ERR_DISCARDING_CHECKPOINT:
 			break;
 		default:
 			if (error != ignore_err)
 				fatal(B_FALSE,
 				    "spa_vdev_remove(%"PRIu64") = %d",
 				    guid, error);
 		}
 	}
 
 	mutex_exit(&ztest_vdev_lock);
 
 	umem_free(path, MAXPATHLEN);
 }
 
 /*
  * split a pool if it has mirror tlvdevs
  */
 void
 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_t *zs = ztest_shared;
 	spa_t *spa = ztest_spa;
 	vdev_t *rvd = spa->spa_root_vdev;
 	nvlist_t *tree, **child, *config, *split, **schild;
 	uint_t c, children, schildren = 0, lastlogid = 0;
 	int error = 0;
 
 	if (ztest_opts.zo_mmp_test)
 		return;
 
 	mutex_enter(&ztest_vdev_lock);
 
 	/* ensure we have a usable config; mirrors of raidz aren't supported */
 	if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
 		mutex_exit(&ztest_vdev_lock);
 		return;
 	}
 
 	/* clean up the old pool, if any */
 	(void) spa_destroy("splitp");
 
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 
 	/* generate a config from the existing config */
 	mutex_enter(&spa->spa_props_lock);
 	tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
 	mutex_exit(&spa->spa_props_lock);
 
 	VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
 	    &child, &children));
 
 	schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
 	    UMEM_NOFAIL);
 	for (c = 0; c < children; c++) {
 		vdev_t *tvd = rvd->vdev_child[c];
 		nvlist_t **mchild;
 		uint_t mchildren;
 
 		if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
 			schild[schildren] = fnvlist_alloc();
 			fnvlist_add_string(schild[schildren],
 			    ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
 			fnvlist_add_uint64(schild[schildren],
 			    ZPOOL_CONFIG_IS_HOLE, 1);
 			if (lastlogid == 0)
 				lastlogid = schildren;
 			++schildren;
 			continue;
 		}
 		lastlogid = 0;
 		VERIFY0(nvlist_lookup_nvlist_array(child[c],
 		    ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
 		schild[schildren++] = fnvlist_dup(mchild[0]);
 	}
 
 	/* OK, create a config that can be used to split */
 	split = fnvlist_alloc();
 	fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
 	fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
 	    (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
 
 	config = fnvlist_alloc();
 	fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
 
 	for (c = 0; c < schildren; c++)
 		fnvlist_free(schild[c]);
 	umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
 	fnvlist_free(split);
 
 	spa_config_exit(spa, SCL_VDEV, FTAG);
 
 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
 	error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 
 	fnvlist_free(config);
 
 	if (error == 0) {
 		(void) printf("successful split - results:\n");
 		mutex_enter(&spa_namespace_lock);
 		show_pool_stats(spa);
 		show_pool_stats(spa_lookup("splitp"));
 		mutex_exit(&spa_namespace_lock);
 		++zs->zs_splits;
 		--zs->zs_mirrors;
 	}
 	mutex_exit(&ztest_vdev_lock);
 }
 
 /*
  * Verify that we can attach and detach devices.
  */
 void
 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_t *zs = ztest_shared;
 	spa_t *spa = ztest_spa;
 	spa_aux_vdev_t *sav = &spa->spa_spares;
 	vdev_t *rvd = spa->spa_root_vdev;
 	vdev_t *oldvd, *newvd, *pvd;
 	nvlist_t *root;
 	uint64_t leaves;
 	uint64_t leaf, top;
 	uint64_t ashift = ztest_get_ashift();
 	uint64_t oldguid, pguid;
 	uint64_t oldsize, newsize;
 	char *oldpath, *newpath;
 	int replacing;
 	int oldvd_has_siblings = B_FALSE;
 	int newvd_is_spare = B_FALSE;
 	int newvd_is_dspare = B_FALSE;
 	int oldvd_is_log;
 	int oldvd_is_special;
 	int error, expected_error;
 
 	if (ztest_opts.zo_mmp_test)
 		return;
 
 	oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 	newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 
 	mutex_enter(&ztest_vdev_lock);
 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
 
 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
 
 	/*
 	 * If a vdev is in the process of being removed, its removal may
 	 * finish while we are in progress, leading to an unexpected error
 	 * value.  Don't bother trying to attach while we are in the middle
 	 * of removal.
 	 */
 	if (ztest_device_removal_active) {
 		spa_config_exit(spa, SCL_ALL, FTAG);
 		goto out;
 	}
 
 	/*
 	 * Decide whether to do an attach or a replace.
 	 */
 	replacing = ztest_random(2);
 
 	/*
 	 * Pick a random top-level vdev.
 	 */
 	top = ztest_random_vdev_top(spa, B_TRUE);
 
 	/*
 	 * Pick a random leaf within it.
 	 */
 	leaf = ztest_random(leaves);
 
 	/*
 	 * Locate this vdev.
 	 */
 	oldvd = rvd->vdev_child[top];
 
 	/* pick a child from the mirror */
 	if (zs->zs_mirrors >= 1) {
 		ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
 		ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
 		oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
 	}
 
 	/* pick a child out of the raidz group */
 	if (ztest_opts.zo_raid_children > 1) {
 		if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
 		else
 			ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
 		ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
 		oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
 	}
 
 	/*
 	 * If we're already doing an attach or replace, oldvd may be a
 	 * mirror vdev -- in which case, pick a random child.
 	 */
 	while (oldvd->vdev_children != 0) {
 		oldvd_has_siblings = B_TRUE;
 		ASSERT3U(oldvd->vdev_children, >=, 2);
 		oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
 	}
 
 	oldguid = oldvd->vdev_guid;
 	oldsize = vdev_get_min_asize(oldvd);
 	oldvd_is_log = oldvd->vdev_top->vdev_islog;
 	oldvd_is_special =
 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
 	    oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
 	(void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
 	pvd = oldvd->vdev_parent;
 	pguid = pvd->vdev_guid;
 
 	/*
 	 * If oldvd has siblings, then half of the time, detach it.  Prior
 	 * to the detach the pool is scrubbed in order to prevent creating
 	 * unrepairable blocks as a result of the data corruption injection.
 	 */
 	if (oldvd_has_siblings && ztest_random(2) == 0) {
 		spa_config_exit(spa, SCL_ALL, FTAG);
 
 		error = ztest_scrub_impl(spa);
 		if (error)
 			goto out;
 
 		error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
 		if (error != 0 && error != ENODEV && error != EBUSY &&
 		    error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
 		    error != ZFS_ERR_DISCARDING_CHECKPOINT)
 			fatal(B_FALSE, "detach (%s) returned %d",
 			    oldpath, error);
 		goto out;
 	}
 
 	/*
 	 * For the new vdev, choose with equal probability between the two
 	 * standard paths (ending in either 'a' or 'b') or a random hot spare.
 	 */
 	if (sav->sav_count != 0 && ztest_random(3) == 0) {
 		newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
 		newvd_is_spare = B_TRUE;
 
 		if (newvd->vdev_ops == &vdev_draid_spare_ops)
 			newvd_is_dspare = B_TRUE;
 
 		(void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
 	} else {
 		(void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
 		    top * leaves + leaf);
 		if (ztest_random(2) == 0)
 			newpath[strlen(newpath) - 1] = 'b';
 		newvd = vdev_lookup_by_path(rvd, newpath);
 	}
 
 	if (newvd) {
 		/*
 		 * Reopen to ensure the vdev's asize field isn't stale.
 		 */
 		vdev_reopen(newvd);
 		newsize = vdev_get_min_asize(newvd);
 	} else {
 		/*
 		 * Make newsize a little bigger or smaller than oldsize.
 		 * If it's smaller, the attach should fail.
 		 * If it's larger, and we're doing a replace,
 		 * we should get dynamic LUN growth when we're done.
 		 */
 		newsize = 10 * oldsize / (9 + ztest_random(3));
 	}
 
 	/*
 	 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
 	 * unless it's a replace; in that case any non-replacing parent is OK.
 	 *
 	 * If newvd is already part of the pool, it should fail with EBUSY.
 	 *
 	 * If newvd is too small, it should fail with EOVERFLOW.
 	 *
 	 * If newvd is a distributed spare and it's being attached to a
 	 * dRAID which is not its parent it should fail with EINVAL.
 	 */
 	if (pvd->vdev_ops != &vdev_mirror_ops &&
 	    pvd->vdev_ops != &vdev_root_ops && (!replacing ||
 	    pvd->vdev_ops == &vdev_replacing_ops ||
 	    pvd->vdev_ops == &vdev_spare_ops))
 		expected_error = ENOTSUP;
 	else if (newvd_is_spare &&
 	    (!replacing || oldvd_is_log || oldvd_is_special))
 		expected_error = ENOTSUP;
 	else if (newvd == oldvd)
 		expected_error = replacing ? 0 : EBUSY;
 	else if (vdev_lookup_by_path(rvd, newpath) != NULL)
 		expected_error = EBUSY;
 	else if (!newvd_is_dspare && newsize < oldsize)
 		expected_error = EOVERFLOW;
 	else if (ashift > oldvd->vdev_top->vdev_ashift)
 		expected_error = EDOM;
 	else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
 		expected_error = ENOTSUP;
 	else
 		expected_error = 0;
 
 	spa_config_exit(spa, SCL_ALL, FTAG);
 
 	/*
 	 * Build the nvlist describing newpath.
 	 */
 	root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
 	    ashift, NULL, 0, 0, 1);
 
 	/*
 	 * When supported select either a healing or sequential resilver.
 	 */
 	boolean_t rebuilding = B_FALSE;
 	if (pvd->vdev_ops == &vdev_mirror_ops ||
 	    pvd->vdev_ops ==  &vdev_root_ops) {
 		rebuilding = !!ztest_random(2);
 	}
 
 	error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
 
 	fnvlist_free(root);
 
 	/*
 	 * If our parent was the replacing vdev, but the replace completed,
 	 * then instead of failing with ENOTSUP we may either succeed,
 	 * fail with ENODEV, or fail with EOVERFLOW.
 	 */
 	if (expected_error == ENOTSUP &&
 	    (error == 0 || error == ENODEV || error == EOVERFLOW))
 		expected_error = error;
 
 	/*
 	 * If someone grew the LUN, the replacement may be too small.
 	 */
 	if (error == EOVERFLOW || error == EBUSY)
 		expected_error = error;
 
 	if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
 	    error == ZFS_ERR_DISCARDING_CHECKPOINT ||
 	    error == ZFS_ERR_RESILVER_IN_PROGRESS ||
 	    error == ZFS_ERR_REBUILD_IN_PROGRESS)
 		expected_error = error;
 
 	if (error != expected_error && expected_error != EBUSY) {
 		fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
 		    "returned %d, expected %d",
 		    oldpath, oldsize, newpath,
 		    newsize, replacing, error, expected_error);
 	}
 out:
 	mutex_exit(&ztest_vdev_lock);
 
 	umem_free(oldpath, MAXPATHLEN);
 	umem_free(newpath, MAXPATHLEN);
 }
 
 void
 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa = ztest_spa;
 	vdev_t *vd;
 	uint64_t guid;
 	int error;
 
 	mutex_enter(&ztest_vdev_lock);
 
 	if (ztest_device_removal_active) {
 		mutex_exit(&ztest_vdev_lock);
 		return;
 	}
 
 	/*
 	 * Remove a random top-level vdev and wait for removal to finish.
 	 */
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 	vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
 	guid = vd->vdev_guid;
 	spa_config_exit(spa, SCL_VDEV, FTAG);
 
 	error = spa_vdev_remove(spa, guid, B_FALSE);
 	if (error == 0) {
 		ztest_device_removal_active = B_TRUE;
 		mutex_exit(&ztest_vdev_lock);
 
 		/*
 		 * spa->spa_vdev_removal is created in a sync task that
 		 * is initiated via dsl_sync_task_nowait(). Since the
 		 * task may not run before spa_vdev_remove() returns, we
 		 * must wait at least 1 txg to ensure that the removal
 		 * struct has been created.
 		 */
 		txg_wait_synced(spa_get_dsl(spa), 0);
 
 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
 			txg_wait_synced(spa_get_dsl(spa), 0);
 	} else {
 		mutex_exit(&ztest_vdev_lock);
 		return;
 	}
 
 	/*
 	 * The pool needs to be scrubbed after completing device removal.
 	 * Failure to do so may result in checksum errors due to the
 	 * strategy employed by ztest_fault_inject() when selecting which
 	 * offset are redundant and can be damaged.
 	 */
 	error = spa_scan(spa, POOL_SCAN_SCRUB);
 	if (error == 0) {
 		while (dsl_scan_scrubbing(spa_get_dsl(spa)))
 			txg_wait_synced(spa_get_dsl(spa), 0);
 	}
 
 	mutex_enter(&ztest_vdev_lock);
 	ztest_device_removal_active = B_FALSE;
 	mutex_exit(&ztest_vdev_lock);
 }
 
 /*
  * Callback function which expands the physical size of the vdev.
  */
 static vdev_t *
 grow_vdev(vdev_t *vd, void *arg)
 {
 	spa_t *spa __maybe_unused = vd->vdev_spa;
 	size_t *newsize = arg;
 	size_t fsize;
 	int fd;
 
 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 
 	if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
 		return (vd);
 
 	fsize = lseek(fd, 0, SEEK_END);
 	VERIFY0(ftruncate(fd, *newsize));
 
 	if (ztest_opts.zo_verbose >= 6) {
 		(void) printf("%s grew from %lu to %lu bytes\n",
 		    vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
 	}
 	(void) close(fd);
 	return (NULL);
 }
 
 /*
  * Callback function which expands a given vdev by calling vdev_online().
  */
 static vdev_t *
 online_vdev(vdev_t *vd, void *arg)
 {
 	(void) arg;
 	spa_t *spa = vd->vdev_spa;
 	vdev_t *tvd = vd->vdev_top;
 	uint64_t guid = vd->vdev_guid;
 	uint64_t generation = spa->spa_config_generation + 1;
 	vdev_state_t newstate = VDEV_STATE_UNKNOWN;
 	int error;
 
 	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 
 	/* Calling vdev_online will initialize the new metaslabs */
 	spa_config_exit(spa, SCL_STATE, spa);
 	error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
 
 	/*
 	 * If vdev_online returned an error or the underlying vdev_open
 	 * failed then we abort the expand. The only way to know that
 	 * vdev_open fails is by checking the returned newstate.
 	 */
 	if (error || newstate != VDEV_STATE_HEALTHY) {
 		if (ztest_opts.zo_verbose >= 5) {
 			(void) printf("Unable to expand vdev, state %u, "
 			    "error %d\n", newstate, error);
 		}
 		return (vd);
 	}
 	ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
 
 	/*
 	 * Since we dropped the lock we need to ensure that we're
 	 * still talking to the original vdev. It's possible this
 	 * vdev may have been detached/replaced while we were
 	 * trying to online it.
 	 */
 	if (generation != spa->spa_config_generation) {
 		if (ztest_opts.zo_verbose >= 5) {
 			(void) printf("vdev configuration has changed, "
 			    "guid %"PRIu64", state %"PRIu64", "
 			    "expected gen %"PRIu64", got gen %"PRIu64"\n",
 			    guid,
 			    tvd->vdev_state,
 			    generation,
 			    spa->spa_config_generation);
 		}
 		return (vd);
 	}
 	return (NULL);
 }
 
 /*
  * Traverse the vdev tree calling the supplied function.
  * We continue to walk the tree until we either have walked all
  * children or we receive a non-NULL return from the callback.
  * If a NULL callback is passed, then we just return back the first
  * leaf vdev we encounter.
  */
 static vdev_t *
 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
 {
 	uint_t c;
 
 	if (vd->vdev_ops->vdev_op_leaf) {
 		if (func == NULL)
 			return (vd);
 		else
 			return (func(vd, arg));
 	}
 
 	for (c = 0; c < vd->vdev_children; c++) {
 		vdev_t *cvd = vd->vdev_child[c];
 		if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
 			return (cvd);
 	}
 	return (NULL);
 }
 
 /*
  * Verify that dynamic LUN growth works as expected.
  */
 void
 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa = ztest_spa;
 	vdev_t *vd, *tvd;
 	metaslab_class_t *mc;
 	metaslab_group_t *mg;
 	size_t psize, newsize;
 	uint64_t top;
 	uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
 
 	mutex_enter(&ztest_checkpoint_lock);
 	mutex_enter(&ztest_vdev_lock);
 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
 
 	/*
 	 * If there is a vdev removal in progress, it could complete while
 	 * we are running, in which case we would not be able to verify
 	 * that the metaslab_class space increased (because it decreases
 	 * when the device removal completes).
 	 */
 	if (ztest_device_removal_active) {
 		spa_config_exit(spa, SCL_STATE, spa);
 		mutex_exit(&ztest_vdev_lock);
 		mutex_exit(&ztest_checkpoint_lock);
 		return;
 	}
 
 	top = ztest_random_vdev_top(spa, B_TRUE);
 
 	tvd = spa->spa_root_vdev->vdev_child[top];
 	mg = tvd->vdev_mg;
 	mc = mg->mg_class;
 	old_ms_count = tvd->vdev_ms_count;
 	old_class_space = metaslab_class_get_space(mc);
 
 	/*
 	 * Determine the size of the first leaf vdev associated with
 	 * our top-level device.
 	 */
 	vd = vdev_walk_tree(tvd, NULL, NULL);
 	ASSERT3P(vd, !=, NULL);
 	ASSERT(vd->vdev_ops->vdev_op_leaf);
 
 	psize = vd->vdev_psize;
 
 	/*
 	 * We only try to expand the vdev if it's healthy, less than 4x its
 	 * original size, and it has a valid psize.
 	 */
 	if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
 	    psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
 		spa_config_exit(spa, SCL_STATE, spa);
 		mutex_exit(&ztest_vdev_lock);
 		mutex_exit(&ztest_checkpoint_lock);
 		return;
 	}
 	ASSERT3U(psize, >, 0);
 	newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
 	ASSERT3U(newsize, >, psize);
 
 	if (ztest_opts.zo_verbose >= 6) {
 		(void) printf("Expanding LUN %s from %lu to %lu\n",
 		    vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
 	}
 
 	/*
 	 * Growing the vdev is a two step process:
 	 *	1). expand the physical size (i.e. relabel)
 	 *	2). online the vdev to create the new metaslabs
 	 */
 	if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
 	    vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
 	    tvd->vdev_state != VDEV_STATE_HEALTHY) {
 		if (ztest_opts.zo_verbose >= 5) {
 			(void) printf("Could not expand LUN because "
 			    "the vdev configuration changed.\n");
 		}
 		spa_config_exit(spa, SCL_STATE, spa);
 		mutex_exit(&ztest_vdev_lock);
 		mutex_exit(&ztest_checkpoint_lock);
 		return;
 	}
 
 	spa_config_exit(spa, SCL_STATE, spa);
 
 	/*
 	 * Expanding the LUN will update the config asynchronously,
 	 * thus we must wait for the async thread to complete any
 	 * pending tasks before proceeding.
 	 */
 	for (;;) {
 		boolean_t done;
 		mutex_enter(&spa->spa_async_lock);
 		done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
 		mutex_exit(&spa->spa_async_lock);
 		if (done)
 			break;
 		txg_wait_synced(spa_get_dsl(spa), 0);
 		(void) poll(NULL, 0, 100);
 	}
 
 	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
 
 	tvd = spa->spa_root_vdev->vdev_child[top];
 	new_ms_count = tvd->vdev_ms_count;
 	new_class_space = metaslab_class_get_space(mc);
 
 	if (tvd->vdev_mg != mg || mg->mg_class != mc) {
 		if (ztest_opts.zo_verbose >= 5) {
 			(void) printf("Could not verify LUN expansion due to "
 			    "intervening vdev offline or remove.\n");
 		}
 		spa_config_exit(spa, SCL_STATE, spa);
 		mutex_exit(&ztest_vdev_lock);
 		mutex_exit(&ztest_checkpoint_lock);
 		return;
 	}
 
 	/*
 	 * Make sure we were able to grow the vdev.
 	 */
 	if (new_ms_count <= old_ms_count) {
 		fatal(B_FALSE,
 		    "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
 		    old_ms_count, new_ms_count);
 	}
 
 	/*
 	 * Make sure we were able to grow the pool.
 	 */
 	if (new_class_space <= old_class_space) {
 		fatal(B_FALSE,
 		    "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
 		    old_class_space, new_class_space);
 	}
 
 	if (ztest_opts.zo_verbose >= 5) {
 		char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
 
 		nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
 		nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
 		(void) printf("%s grew from %s to %s\n",
 		    spa->spa_name, oldnumbuf, newnumbuf);
 	}
 
 	spa_config_exit(spa, SCL_STATE, spa);
 	mutex_exit(&ztest_vdev_lock);
 	mutex_exit(&ztest_checkpoint_lock);
 }
 
 /*
  * Verify that dmu_objset_{create,destroy,open,close} work as expected.
  */
 static void
 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
 {
 	(void) arg, (void) cr;
 
 	/*
 	 * Create the objects common to all ztest datasets.
 	 */
 	VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
 	    DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
 }
 
 static int
 ztest_dataset_create(char *dsname)
 {
 	int err;
 	uint64_t rand;
 	dsl_crypto_params_t *dcp = NULL;
 
 	/*
 	 * 50% of the time, we create encrypted datasets
 	 * using a random cipher suite and a hard-coded
 	 * wrapping key.
 	 */
 	rand = ztest_random(2);
 	if (rand != 0) {
 		nvlist_t *crypto_args = fnvlist_alloc();
 		nvlist_t *props = fnvlist_alloc();
 
 		/* slight bias towards the default cipher suite */
 		rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
 		if (rand < ZIO_CRYPT_AES_128_CCM)
 			rand = ZIO_CRYPT_ON;
 
 		fnvlist_add_uint64(props,
 		    zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
 		fnvlist_add_uint8_array(crypto_args, "wkeydata",
 		    (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
 
 		/*
 		 * These parameters aren't really used by the kernel. They
 		 * are simply stored so that userspace knows how to load
 		 * the wrapping key.
 		 */
 		fnvlist_add_uint64(props,
 		    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
 		fnvlist_add_string(props,
 		    zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
 		fnvlist_add_uint64(props,
 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
 		fnvlist_add_uint64(props,
 		    zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
 
 		VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
 		    crypto_args, &dcp));
 
 		/*
 		 * Cycle through all available encryption implementations
 		 * to verify interoperability.
 		 */
 		VERIFY0(gcm_impl_set("cycle"));
 		VERIFY0(aes_impl_set("cycle"));
 
 		fnvlist_free(crypto_args);
 		fnvlist_free(props);
 	}
 
 	err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
 	    ztest_objset_create_cb, NULL);
 	dsl_crypto_params_free(dcp, !!err);
 
 	rand = ztest_random(100);
 	if (err || rand < 80)
 		return (err);
 
 	if (ztest_opts.zo_verbose >= 5)
 		(void) printf("Setting dataset %s to sync always\n", dsname);
 	return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
 	    ZFS_SYNC_ALWAYS, B_FALSE));
 }
 
 static int
 ztest_objset_destroy_cb(const char *name, void *arg)
 {
 	(void) arg;
 	objset_t *os;
 	dmu_object_info_t doi;
 	int error;
 
 	/*
 	 * Verify that the dataset contains a directory object.
 	 */
 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
 	    B_TRUE, FTAG, &os));
 	error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
 	if (error != ENOENT) {
 		/* We could have crashed in the middle of destroying it */
 		ASSERT0(error);
 		ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
 		ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
 	}
 	dmu_objset_disown(os, B_TRUE, FTAG);
 
 	/*
 	 * Destroy the dataset.
 	 */
 	if (strchr(name, '@') != NULL) {
 		error = dsl_destroy_snapshot(name, B_TRUE);
 		if (error != ECHRNG) {
 			/*
 			 * The program was executed, but encountered a runtime
 			 * error, such as insufficient slop, or a hold on the
 			 * dataset.
 			 */
 			ASSERT0(error);
 		}
 	} else {
 		error = dsl_destroy_head(name);
 		if (error == ENOSPC) {
 			/* There could be checkpoint or insufficient slop */
 			ztest_record_enospc(FTAG);
 		} else if (error != EBUSY) {
 			/* There could be a hold on this dataset */
 			ASSERT0(error);
 		}
 	}
 	return (0);
 }
 
 static boolean_t
 ztest_snapshot_create(char *osname, uint64_t id)
 {
 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
 	int error;
 
 	(void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
 
 	error = dmu_objset_snapshot_one(osname, snapname);
 	if (error == ENOSPC) {
 		ztest_record_enospc(FTAG);
 		return (B_FALSE);
 	}
 	if (error != 0 && error != EEXIST) {
 		fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
 		    snapname, error);
 	}
 	return (B_TRUE);
 }
 
 static boolean_t
 ztest_snapshot_destroy(char *osname, uint64_t id)
 {
 	char snapname[ZFS_MAX_DATASET_NAME_LEN];
 	int error;
 
 	(void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
 	    osname, id);
 
 	error = dsl_destroy_snapshot(snapname, B_FALSE);
 	if (error != 0 && error != ENOENT)
 		fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
 		    snapname, error);
 	return (B_TRUE);
 }
 
 void
 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd;
 	ztest_ds_t *zdtmp;
 	int iters;
 	int error;
 	objset_t *os, *os2;
 	char name[ZFS_MAX_DATASET_NAME_LEN];
 	zilog_t *zilog;
 	int i;
 
 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
 
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 
 	(void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
 	    ztest_opts.zo_pool, id);
 
 	/*
 	 * If this dataset exists from a previous run, process its replay log
 	 * half of the time.  If we don't replay it, then dsl_destroy_head()
 	 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
 	 */
 	if (ztest_random(2) == 0 &&
 	    ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
 	    B_TRUE, FTAG, &os) == 0) {
 		ztest_zd_init(zdtmp, NULL, os);
 		zil_replay(os, zdtmp, ztest_replay_vector);
 		ztest_zd_fini(zdtmp);
 		dmu_objset_disown(os, B_TRUE, FTAG);
 	}
 
 	/*
 	 * There may be an old instance of the dataset we're about to
 	 * create lying around from a previous run.  If so, destroy it
 	 * and all of its snapshots.
 	 */
 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
 	    DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
 
 	/*
 	 * Verify that the destroyed dataset is no longer in the namespace.
 	 */
 	VERIFY3U(ENOENT, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
 	    B_TRUE, FTAG, &os));
 
 	/*
 	 * Verify that we can create a new dataset.
 	 */
 	error = ztest_dataset_create(name);
 	if (error) {
 		if (error == ENOSPC) {
 			ztest_record_enospc(FTAG);
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
 	}
 
 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
 	    FTAG, &os));
 
 	ztest_zd_init(zdtmp, NULL, os);
 
 	/*
 	 * Open the intent log for it.
 	 */
 	zilog = zil_open(os, ztest_get_data, NULL);
 
 	/*
 	 * Put some objects in there, do a little I/O to them,
 	 * and randomly take a couple of snapshots along the way.
 	 */
 	iters = ztest_random(5);
 	for (i = 0; i < iters; i++) {
 		ztest_dmu_object_alloc_free(zdtmp, id);
 		if (ztest_random(iters) == 0)
 			(void) ztest_snapshot_create(name, i);
 	}
 
 	/*
 	 * Verify that we cannot create an existing dataset.
 	 */
 	VERIFY3U(EEXIST, ==,
 	    dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
 
 	/*
 	 * Verify that we can hold an objset that is also owned.
 	 */
 	VERIFY0(dmu_objset_hold(name, FTAG, &os2));
 	dmu_objset_rele(os2, FTAG);
 
 	/*
 	 * Verify that we cannot own an objset that is already owned.
 	 */
 	VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
 	    B_FALSE, B_TRUE, FTAG, &os2));
 
 	zil_close(zilog);
 	dmu_objset_disown(os, B_TRUE, FTAG);
 	ztest_zd_fini(zdtmp);
 out:
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 
 	umem_free(zdtmp, sizeof (ztest_ds_t));
 }
 
 /*
  * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
  */
 void
 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
 {
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 	(void) ztest_snapshot_destroy(zd->zd_name, id);
 	(void) ztest_snapshot_create(zd->zd_name, id);
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 }
 
 /*
  * Cleanup non-standard snapshots and clones.
  */
 static void
 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
 {
 	char *snap1name;
 	char *clone1name;
 	char *snap2name;
 	char *clone2name;
 	char *snap3name;
 	int error;
 
 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 
 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
 	    osname, id);
 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
 	    osname, id);
 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
 	    clone1name, id);
 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
 	    osname, id);
 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
 	    clone1name, id);
 
 	error = dsl_destroy_head(clone2name);
 	if (error && error != ENOENT)
 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
 	error = dsl_destroy_snapshot(snap3name, B_FALSE);
 	if (error && error != ENOENT)
 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
 		    snap3name, error);
 	error = dsl_destroy_snapshot(snap2name, B_FALSE);
 	if (error && error != ENOENT)
 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
 		    snap2name, error);
 	error = dsl_destroy_head(clone1name);
 	if (error && error != ENOENT)
 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
 	error = dsl_destroy_snapshot(snap1name, B_FALSE);
 	if (error && error != ENOENT)
 		fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
 		    snap1name, error);
 
 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
 }
 
 /*
  * Verify dsl_dataset_promote handles EBUSY
  */
 void
 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
 {
 	objset_t *os;
 	char *snap1name;
 	char *clone1name;
 	char *snap2name;
 	char *clone2name;
 	char *snap3name;
 	char *osname = zd->zd_name;
 	int error;
 
 	snap1name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	snap2name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 	snap3name  = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
 
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 
 	ztest_dsl_dataset_cleanup(osname, id);
 
 	(void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
 	    osname, id);
 	(void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
 	    osname, id);
 	(void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
 	    clone1name, id);
 	(void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
 	    osname, id);
 	(void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
 	    clone1name, id);
 
 	error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
 	if (error && error != EEXIST) {
 		if (error == ENOSPC) {
 			ztest_record_enospc(FTAG);
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
 	}
 
 	error = dmu_objset_clone(clone1name, snap1name);
 	if (error) {
 		if (error == ENOSPC) {
 			ztest_record_enospc(FTAG);
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
 	}
 
 	error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
 	if (error && error != EEXIST) {
 		if (error == ENOSPC) {
 			ztest_record_enospc(FTAG);
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
 	}
 
 	error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
 	if (error && error != EEXIST) {
 		if (error == ENOSPC) {
 			ztest_record_enospc(FTAG);
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
 	}
 
 	error = dmu_objset_clone(clone2name, snap3name);
 	if (error) {
 		if (error == ENOSPC) {
 			ztest_record_enospc(FTAG);
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
 	}
 
 	error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
 	    FTAG, &os);
 	if (error)
 		fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
 	error = dsl_dataset_promote(clone2name, NULL);
 	if (error == ENOSPC) {
 		dmu_objset_disown(os, B_TRUE, FTAG);
 		ztest_record_enospc(FTAG);
 		goto out;
 	}
 	if (error != EBUSY)
 		fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
 		    clone2name, error);
 	dmu_objset_disown(os, B_TRUE, FTAG);
 
 out:
 	ztest_dsl_dataset_cleanup(osname, id);
 
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 
 	umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
 	umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
 }
 
 #undef OD_ARRAY_SIZE
 #define	OD_ARRAY_SIZE	4
 
 /*
  * Verify that dmu_object_{alloc,free} work as expected.
  */
 void
 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
 {
 	ztest_od_t *od;
 	int batchsize;
 	int size;
 	int b;
 
 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
 	od = umem_alloc(size, UMEM_NOFAIL);
 	batchsize = OD_ARRAY_SIZE;
 
 	for (b = 0; b < batchsize; b++)
 		ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
 		    0, 0, 0);
 
 	/*
 	 * Destroy the previous batch of objects, create a new batch,
 	 * and do some I/O on the new objects.
 	 */
 	if (ztest_object_init(zd, od, size, B_TRUE) != 0)
 		return;
 
 	while (ztest_random(4 * batchsize) != 0)
 		ztest_io(zd, od[ztest_random(batchsize)].od_object,
 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 
 	umem_free(od, size);
 }
 
 /*
  * Rewind the global allocator to verify object allocation backfilling.
  */
 void
 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
 {
 	(void) id;
 	objset_t *os = zd->zd_os;
 	uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
 	uint64_t object;
 
 	/*
 	 * Rewind the global allocator randomly back to a lower object number
 	 * to force backfilling and reclamation of recently freed dnodes.
 	 */
 	mutex_enter(&os->os_obj_lock);
 	object = ztest_random(os->os_obj_next_chunk);
 	os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
 	mutex_exit(&os->os_obj_lock);
 }
 
 #undef OD_ARRAY_SIZE
 #define	OD_ARRAY_SIZE	2
 
 /*
  * Verify that dmu_{read,write} work as expected.
  */
 void
 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
 {
 	int size;
 	ztest_od_t *od;
 
 	objset_t *os = zd->zd_os;
 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
 	od = umem_alloc(size, UMEM_NOFAIL);
 	dmu_tx_t *tx;
 	int freeit, error;
 	uint64_t i, n, s, txg;
 	bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
 	uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
 	uint64_t regions = 997;
 	uint64_t stride = 123456789ULL;
 	uint64_t width = 40;
 	int free_percent = 5;
 
 	/*
 	 * This test uses two objects, packobj and bigobj, that are always
 	 * updated together (i.e. in the same tx) so that their contents are
 	 * in sync and can be compared.  Their contents relate to each other
 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
 	 * for any index n, there are three bufwads that should be identical:
 	 *
 	 *	packobj, at offset n * sizeof (bufwad_t)
 	 *	bigobj, at the head of the nth chunk
 	 *	bigobj, at the tail of the nth chunk
 	 *
 	 * The chunk size is arbitrary. It doesn't have to be a power of two,
 	 * and it doesn't have any relation to the object blocksize.
 	 * The only requirement is that it can hold at least two bufwads.
 	 *
 	 * Normally, we write the bufwad to each of these locations.
 	 * However, free_percent of the time we instead write zeroes to
 	 * packobj and perform a dmu_free_range() on bigobj.  By comparing
 	 * bigobj to packobj, we can verify that the DMU is correctly
 	 * tracking which parts of an object are allocated and free,
 	 * and that the contents of the allocated blocks are correct.
 	 */
 
 	/*
 	 * Read the directory info.  If it's the first time, set things up.
 	 */
 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
 	    chunksize);
 
 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
 		umem_free(od, size);
 		return;
 	}
 
 	bigobj = od[0].od_object;
 	packobj = od[1].od_object;
 	chunksize = od[0].od_gen;
 	ASSERT3U(chunksize, ==, od[1].od_gen);
 
 	/*
 	 * Prefetch a random chunk of the big object.
 	 * Our aim here is to get some async reads in flight
 	 * for blocks that we may free below; the DMU should
 	 * handle this race correctly.
 	 */
 	n = ztest_random(regions) * stride + ztest_random(width);
 	s = 1 + ztest_random(2 * width - 1);
 	dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
 	    ZIO_PRIORITY_SYNC_READ);
 
 	/*
 	 * Pick a random index and compute the offsets into packobj and bigobj.
 	 */
 	n = ztest_random(regions) * stride + ztest_random(width);
 	s = 1 + ztest_random(width - 1);
 
 	packoff = n * sizeof (bufwad_t);
 	packsize = s * sizeof (bufwad_t);
 
 	bigoff = n * chunksize;
 	bigsize = s * chunksize;
 
 	packbuf = umem_alloc(packsize, UMEM_NOFAIL);
 	bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
 
 	/*
 	 * free_percent of the time, free a range of bigobj rather than
 	 * overwriting it.
 	 */
 	freeit = (ztest_random(100) < free_percent);
 
 	/*
 	 * Read the current contents of our objects.
 	 */
 	error = dmu_read(os, packobj, packoff, packsize, packbuf,
 	    DMU_READ_PREFETCH);
 	ASSERT0(error);
 	error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
 	    DMU_READ_PREFETCH);
 	ASSERT0(error);
 
 	/*
 	 * Get a tx for the mods to both packobj and bigobj.
 	 */
 	tx = dmu_tx_create(os);
 
 	dmu_tx_hold_write(tx, packobj, packoff, packsize);
 
 	if (freeit)
 		dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
 	else
 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
 
 	/* This accounts for setting the checksum/compression. */
 	dmu_tx_hold_bonus(tx, bigobj);
 
 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 	if (txg == 0) {
 		umem_free(packbuf, packsize);
 		umem_free(bigbuf, bigsize);
 		umem_free(od, size);
 		return;
 	}
 
 	enum zio_checksum cksum;
 	do {
 		cksum = (enum zio_checksum)
 		    ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
 	} while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
 	dmu_object_set_checksum(os, bigobj, cksum, tx);
 
 	enum zio_compress comp;
 	do {
 		comp = (enum zio_compress)
 		    ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
 	} while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
 	dmu_object_set_compress(os, bigobj, comp, tx);
 
 	/*
 	 * For each index from n to n + s, verify that the existing bufwad
 	 * in packobj matches the bufwads at the head and tail of the
 	 * corresponding chunk in bigobj.  Then update all three bufwads
 	 * with the new values we want to write out.
 	 */
 	for (i = 0; i < s; i++) {
 		/* LINTED */
 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
 		/* LINTED */
 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
 		/* LINTED */
 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
 
 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
 
 		if (pack->bw_txg > txg)
 			fatal(B_FALSE,
 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
 			    pack->bw_txg, txg);
 
 		if (pack->bw_data != 0 && pack->bw_index != n + i)
 			fatal(B_FALSE, "wrong index: "
 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
 			    pack->bw_index, n, i);
 
 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
 			    pack, bigH);
 
 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
 			    pack, bigT);
 
 		if (freeit) {
 			memset(pack, 0, sizeof (bufwad_t));
 		} else {
 			pack->bw_index = n + i;
 			pack->bw_txg = txg;
 			pack->bw_data = 1 + ztest_random(-2ULL);
 		}
 		*bigH = *pack;
 		*bigT = *pack;
 	}
 
 	/*
 	 * We've verified all the old bufwads, and made new ones.
 	 * Now write them out.
 	 */
 	dmu_write(os, packobj, packoff, packsize, packbuf, tx);
 
 	if (freeit) {
 		if (ztest_opts.zo_verbose >= 7) {
 			(void) printf("freeing offset %"PRIx64" size %"PRIx64""
 			    " txg %"PRIx64"\n",
 			    bigoff, bigsize, txg);
 		}
 		VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
 	} else {
 		if (ztest_opts.zo_verbose >= 7) {
 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
 			    " txg %"PRIx64"\n",
 			    bigoff, bigsize, txg);
 		}
 		dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
 	}
 
 	dmu_tx_commit(tx);
 
 	/*
 	 * Sanity check the stuff we just wrote.
 	 */
 	{
 		void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
 		void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
 
 		VERIFY0(dmu_read(os, packobj, packoff,
 		    packsize, packcheck, DMU_READ_PREFETCH));
 		VERIFY0(dmu_read(os, bigobj, bigoff,
 		    bigsize, bigcheck, DMU_READ_PREFETCH));
 
 		ASSERT0(memcmp(packbuf, packcheck, packsize));
 		ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
 
 		umem_free(packcheck, packsize);
 		umem_free(bigcheck, bigsize);
 	}
 
 	umem_free(packbuf, packsize);
 	umem_free(bigbuf, bigsize);
 	umem_free(od, size);
 }
 
 static void
 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
     uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
 {
 	uint64_t i;
 	bufwad_t *pack;
 	bufwad_t *bigH;
 	bufwad_t *bigT;
 
 	/*
 	 * For each index from n to n + s, verify that the existing bufwad
 	 * in packobj matches the bufwads at the head and tail of the
 	 * corresponding chunk in bigobj.  Then update all three bufwads
 	 * with the new values we want to write out.
 	 */
 	for (i = 0; i < s; i++) {
 		/* LINTED */
 		pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
 		/* LINTED */
 		bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
 		/* LINTED */
 		bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
 
 		ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
 		ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
 
 		if (pack->bw_txg > txg)
 			fatal(B_FALSE,
 			    "future leak: got %"PRIx64", open txg is %"PRIx64"",
 			    pack->bw_txg, txg);
 
 		if (pack->bw_data != 0 && pack->bw_index != n + i)
 			fatal(B_FALSE, "wrong index: "
 			    "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
 			    pack->bw_index, n, i);
 
 		if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
 			fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
 			    pack, bigH);
 
 		if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
 			fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
 			    pack, bigT);
 
 		pack->bw_index = n + i;
 		pack->bw_txg = txg;
 		pack->bw_data = 1 + ztest_random(-2ULL);
 
 		*bigH = *pack;
 		*bigT = *pack;
 	}
 }
 
 #undef OD_ARRAY_SIZE
 #define	OD_ARRAY_SIZE	2
 
 void
 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
 {
 	objset_t *os = zd->zd_os;
 	ztest_od_t *od;
 	dmu_tx_t *tx;
 	uint64_t i;
 	int error;
 	int size;
 	uint64_t n, s, txg;
 	bufwad_t *packbuf, *bigbuf;
 	uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
 	uint64_t blocksize = ztest_random_blocksize();
 	uint64_t chunksize = blocksize;
 	uint64_t regions = 997;
 	uint64_t stride = 123456789ULL;
 	uint64_t width = 9;
 	dmu_buf_t *bonus_db;
 	arc_buf_t **bigbuf_arcbufs;
 	dmu_object_info_t doi;
 
 	size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
 	od = umem_alloc(size, UMEM_NOFAIL);
 
 	/*
 	 * This test uses two objects, packobj and bigobj, that are always
 	 * updated together (i.e. in the same tx) so that their contents are
 	 * in sync and can be compared.  Their contents relate to each other
 	 * in a simple way: packobj is a dense array of 'bufwad' structures,
 	 * while bigobj is a sparse array of the same bufwads.  Specifically,
 	 * for any index n, there are three bufwads that should be identical:
 	 *
 	 *	packobj, at offset n * sizeof (bufwad_t)
 	 *	bigobj, at the head of the nth chunk
 	 *	bigobj, at the tail of the nth chunk
 	 *
 	 * The chunk size is set equal to bigobj block size so that
 	 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
 	 */
 
 	/*
 	 * Read the directory info.  If it's the first time, set things up.
 	 */
 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
 	ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
 	    chunksize);
 
 
 	if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
 		umem_free(od, size);
 		return;
 	}
 
 	bigobj = od[0].od_object;
 	packobj = od[1].od_object;
 	blocksize = od[0].od_blocksize;
 	chunksize = blocksize;
 	ASSERT3U(chunksize, ==, od[1].od_gen);
 
 	VERIFY0(dmu_object_info(os, bigobj, &doi));
 	VERIFY(ISP2(doi.doi_data_block_size));
 	VERIFY3U(chunksize, ==, doi.doi_data_block_size);
 	VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
 
 	/*
 	 * Pick a random index and compute the offsets into packobj and bigobj.
 	 */
 	n = ztest_random(regions) * stride + ztest_random(width);
 	s = 1 + ztest_random(width - 1);
 
 	packoff = n * sizeof (bufwad_t);
 	packsize = s * sizeof (bufwad_t);
 
 	bigoff = n * chunksize;
 	bigsize = s * chunksize;
 
 	packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
 	bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
 
 	VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
 
 	bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
 
 	/*
 	 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
 	 * Iteration 1 test zcopy to already referenced dbufs.
 	 * Iteration 2 test zcopy to dirty dbuf in the same txg.
 	 * Iteration 3 test zcopy to dbuf dirty in previous txg.
 	 * Iteration 4 test zcopy when dbuf is no longer dirty.
 	 * Iteration 5 test zcopy when it can't be done.
 	 * Iteration 6 one more zcopy write.
 	 */
 	for (i = 0; i < 7; i++) {
 		uint64_t j;
 		uint64_t off;
 
 		/*
 		 * In iteration 5 (i == 5) use arcbufs
 		 * that don't match bigobj blksz to test
 		 * dmu_assign_arcbuf_by_dbuf() when it can't directly
 		 * assign an arcbuf to a dbuf.
 		 */
 		for (j = 0; j < s; j++) {
 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
 				bigbuf_arcbufs[j] =
 				    dmu_request_arcbuf(bonus_db, chunksize);
 			} else {
 				bigbuf_arcbufs[2 * j] =
 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
 				bigbuf_arcbufs[2 * j + 1] =
 				    dmu_request_arcbuf(bonus_db, chunksize / 2);
 			}
 		}
 
 		/*
 		 * Get a tx for the mods to both packobj and bigobj.
 		 */
 		tx = dmu_tx_create(os);
 
 		dmu_tx_hold_write(tx, packobj, packoff, packsize);
 		dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
 
 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 		if (txg == 0) {
 			umem_free(packbuf, packsize);
 			umem_free(bigbuf, bigsize);
 			for (j = 0; j < s; j++) {
 				if (i != 5 ||
 				    chunksize < (SPA_MINBLOCKSIZE * 2)) {
 					dmu_return_arcbuf(bigbuf_arcbufs[j]);
 				} else {
 					dmu_return_arcbuf(
 					    bigbuf_arcbufs[2 * j]);
 					dmu_return_arcbuf(
 					    bigbuf_arcbufs[2 * j + 1]);
 				}
 			}
 			umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
 			umem_free(od, size);
 			dmu_buf_rele(bonus_db, FTAG);
 			return;
 		}
 
 		/*
 		 * 50% of the time don't read objects in the 1st iteration to
 		 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
 		 * no existing dbufs for the specified offsets.
 		 */
 		if (i != 0 || ztest_random(2) != 0) {
 			error = dmu_read(os, packobj, packoff,
 			    packsize, packbuf, DMU_READ_PREFETCH);
 			ASSERT0(error);
 			error = dmu_read(os, bigobj, bigoff, bigsize,
 			    bigbuf, DMU_READ_PREFETCH);
 			ASSERT0(error);
 		}
 		compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
 		    n, chunksize, txg);
 
 		/*
 		 * We've verified all the old bufwads, and made new ones.
 		 * Now write them out.
 		 */
 		dmu_write(os, packobj, packoff, packsize, packbuf, tx);
 		if (ztest_opts.zo_verbose >= 7) {
 			(void) printf("writing offset %"PRIx64" size %"PRIx64""
 			    " txg %"PRIx64"\n",
 			    bigoff, bigsize, txg);
 		}
 		for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
 			dmu_buf_t *dbt;
 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
 				memcpy(bigbuf_arcbufs[j]->b_data,
 				    (caddr_t)bigbuf + (off - bigoff),
 				    chunksize);
 			} else {
 				memcpy(bigbuf_arcbufs[2 * j]->b_data,
 				    (caddr_t)bigbuf + (off - bigoff),
 				    chunksize / 2);
 				memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
 				    (caddr_t)bigbuf + (off - bigoff) +
 				    chunksize / 2,
 				    chunksize / 2);
 			}
 
 			if (i == 1) {
 				VERIFY(dmu_buf_hold(os, bigobj, off,
 				    FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
 			}
 			if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
 				    off, bigbuf_arcbufs[j], tx));
 			} else {
 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
 				    off, bigbuf_arcbufs[2 * j], tx));
 				VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
 				    off + chunksize / 2,
 				    bigbuf_arcbufs[2 * j + 1], tx));
 			}
 			if (i == 1) {
 				dmu_buf_rele(dbt, FTAG);
 			}
 		}
 		dmu_tx_commit(tx);
 
 		/*
 		 * Sanity check the stuff we just wrote.
 		 */
 		{
 			void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
 			void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
 
 			VERIFY0(dmu_read(os, packobj, packoff,
 			    packsize, packcheck, DMU_READ_PREFETCH));
 			VERIFY0(dmu_read(os, bigobj, bigoff,
 			    bigsize, bigcheck, DMU_READ_PREFETCH));
 
 			ASSERT0(memcmp(packbuf, packcheck, packsize));
 			ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
 
 			umem_free(packcheck, packsize);
 			umem_free(bigcheck, bigsize);
 		}
 		if (i == 2) {
 			txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
 		} else if (i == 3) {
 			txg_wait_synced(dmu_objset_pool(os), 0);
 		}
 	}
 
 	dmu_buf_rele(bonus_db, FTAG);
 	umem_free(packbuf, packsize);
 	umem_free(bigbuf, bigsize);
 	umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
 	umem_free(od, size);
 }
 
 void
 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
 {
 	(void) id;
 	ztest_od_t *od;
 
 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 	uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 
 	/*
 	 * Have multiple threads write to large offsets in an object
 	 * to verify that parallel writes to an object -- even to the
 	 * same blocks within the object -- doesn't cause any trouble.
 	 */
 	ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
 
 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
 		return;
 
 	while (ztest_random(10) != 0)
 		ztest_io(zd, od->od_object, offset);
 
 	umem_free(od, sizeof (ztest_od_t));
 }
 
 void
 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
 {
 	ztest_od_t *od;
 	uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
 	    (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 	uint64_t count = ztest_random(20) + 1;
 	uint64_t blocksize = ztest_random_blocksize();
 	void *data;
 
 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 
 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
 
 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
 	    !ztest_random(2)) != 0) {
 		umem_free(od, sizeof (ztest_od_t));
 		return;
 	}
 
 	if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
 		umem_free(od, sizeof (ztest_od_t));
 		return;
 	}
 
 	ztest_prealloc(zd, od->od_object, offset, count * blocksize);
 
 	data = umem_zalloc(blocksize, UMEM_NOFAIL);
 
 	while (ztest_random(count) != 0) {
 		uint64_t randoff = offset + (ztest_random(count) * blocksize);
 		if (ztest_write(zd, od->od_object, randoff, blocksize,
 		    data) != 0)
 			break;
 		while (ztest_random(4) != 0)
 			ztest_io(zd, od->od_object, randoff);
 	}
 
 	umem_free(data, blocksize);
 	umem_free(od, sizeof (ztest_od_t));
 }
 
 /*
  * Verify that zap_{create,destroy,add,remove,update} work as expected.
  */
 #define	ZTEST_ZAP_MIN_INTS	1
 #define	ZTEST_ZAP_MAX_INTS	4
 #define	ZTEST_ZAP_MAX_PROPS	1000
 
 void
 ztest_zap(ztest_ds_t *zd, uint64_t id)
 {
 	objset_t *os = zd->zd_os;
 	ztest_od_t *od;
 	uint64_t object;
 	uint64_t txg, last_txg;
 	uint64_t value[ZTEST_ZAP_MAX_INTS];
 	uint64_t zl_ints, zl_intsize, prop;
 	int i, ints;
 	dmu_tx_t *tx;
 	char propname[100], txgname[100];
 	int error;
 	const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
 
 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
 
 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
 	    !ztest_random(2)) != 0)
 		goto out;
 
 	object = od->od_object;
 
 	/*
 	 * Generate a known hash collision, and verify that
 	 * we can lookup and remove both entries.
 	 */
 	tx = dmu_tx_create(os);
 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 	if (txg == 0)
 		goto out;
 	for (i = 0; i < 2; i++) {
 		value[i] = i;
 		VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
 		    1, &value[i], tx));
 	}
 	for (i = 0; i < 2; i++) {
 		VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
 		    sizeof (uint64_t), 1, &value[i], tx));
 		VERIFY0(
 		    zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
 		ASSERT3U(zl_ints, ==, 1);
 	}
 	for (i = 0; i < 2; i++) {
 		VERIFY0(zap_remove(os, object, hc[i], tx));
 	}
 	dmu_tx_commit(tx);
 
 	/*
 	 * Generate a bunch of random entries.
 	 */
 	ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
 
 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
 	memset(value, 0, sizeof (value));
 	last_txg = 0;
 
 	/*
 	 * If these zap entries already exist, validate their contents.
 	 */
 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
 	if (error == 0) {
 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
 		ASSERT3U(zl_ints, ==, 1);
 
 		VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
 		    zl_ints, &last_txg));
 
 		VERIFY0(zap_length(os, object, propname, &zl_intsize,
 		    &zl_ints));
 
 		ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
 		ASSERT3U(zl_ints, ==, ints);
 
 		VERIFY0(zap_lookup(os, object, propname, zl_intsize,
 		    zl_ints, value));
 
 		for (i = 0; i < ints; i++) {
 			ASSERT3U(value[i], ==, last_txg + object + i);
 		}
 	} else {
 		ASSERT3U(error, ==, ENOENT);
 	}
 
 	/*
 	 * Atomically update two entries in our zap object.
 	 * The first is named txg_%llu, and contains the txg
 	 * in which the property was last updated.  The second
 	 * is named prop_%llu, and the nth element of its value
 	 * should be txg + object + n.
 	 */
 	tx = dmu_tx_create(os);
 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 	if (txg == 0)
 		goto out;
 
 	if (last_txg > txg)
 		fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
 		    last_txg, txg);
 
 	for (i = 0; i < ints; i++)
 		value[i] = txg + object + i;
 
 	VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
 	    1, &txg, tx));
 	VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
 	    ints, value, tx));
 
 	dmu_tx_commit(tx);
 
 	/*
 	 * Remove a random pair of entries.
 	 */
 	prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
 	(void) sprintf(propname, "prop_%"PRIu64"", prop);
 	(void) sprintf(txgname, "txg_%"PRIu64"", prop);
 
 	error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
 
 	if (error == ENOENT)
 		goto out;
 
 	ASSERT0(error);
 
 	tx = dmu_tx_create(os);
 	dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 	txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 	if (txg == 0)
 		goto out;
 	VERIFY0(zap_remove(os, object, txgname, tx));
 	VERIFY0(zap_remove(os, object, propname, tx));
 	dmu_tx_commit(tx);
 out:
 	umem_free(od, sizeof (ztest_od_t));
 }
 
 /*
  * Test case to test the upgrading of a microzap to fatzap.
  */
 void
 ztest_fzap(ztest_ds_t *zd, uint64_t id)
 {
 	objset_t *os = zd->zd_os;
 	ztest_od_t *od;
 	uint64_t object, txg, value;
 
 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 	ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
 
 	if (ztest_object_init(zd, od, sizeof (ztest_od_t),
 	    !ztest_random(2)) != 0)
 		goto out;
 	object = od->od_object;
 
 	/*
 	 * Add entries to this ZAP and make sure it spills over
 	 * and gets upgraded to a fatzap. Also, since we are adding
 	 * 2050 entries we should see ptrtbl growth and leaf-block split.
 	 */
 	for (value = 0; value < 2050; value++) {
 		char name[ZFS_MAX_DATASET_NAME_LEN];
 		dmu_tx_t *tx;
 		int error;
 
 		(void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
 		    id, value);
 
 		tx = dmu_tx_create(os);
 		dmu_tx_hold_zap(tx, object, B_TRUE, name);
 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 		if (txg == 0)
 			goto out;
 		error = zap_add(os, object, name, sizeof (uint64_t), 1,
 		    &value, tx);
 		ASSERT(error == 0 || error == EEXIST);
 		dmu_tx_commit(tx);
 	}
 out:
 	umem_free(od, sizeof (ztest_od_t));
 }
 
 void
 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
 {
 	(void) id;
 	objset_t *os = zd->zd_os;
 	ztest_od_t *od;
 	uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
 	dmu_tx_t *tx;
 	int i, namelen, error;
 	int micro = ztest_random(2);
 	char name[20], string_value[20];
 	void *data;
 
 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 	ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
 
 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
 		umem_free(od, sizeof (ztest_od_t));
 		return;
 	}
 
 	object = od->od_object;
 
 	/*
 	 * Generate a random name of the form 'xxx.....' where each
 	 * x is a random printable character and the dots are dots.
 	 * There are 94 such characters, and the name length goes from
 	 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
 	 */
 	namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
 
 	for (i = 0; i < 3; i++)
 		name[i] = '!' + ztest_random('~' - '!' + 1);
 	for (; i < namelen - 1; i++)
 		name[i] = '.';
 	name[i] = '\0';
 
 	if ((namelen & 1) || micro) {
 		wsize = sizeof (txg);
 		wc = 1;
 		data = &txg;
 	} else {
 		wsize = 1;
 		wc = namelen;
 		data = string_value;
 	}
 
 	count = -1ULL;
 	VERIFY0(zap_count(os, object, &count));
 	ASSERT3S(count, !=, -1ULL);
 
 	/*
 	 * Select an operation: length, lookup, add, update, remove.
 	 */
 	i = ztest_random(5);
 
 	if (i >= 2) {
 		tx = dmu_tx_create(os);
 		dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
 		txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
 		if (txg == 0) {
 			umem_free(od, sizeof (ztest_od_t));
 			return;
 		}
 		memcpy(string_value, name, namelen);
 	} else {
 		tx = NULL;
 		txg = 0;
 		memset(string_value, 0, namelen);
 	}
 
 	switch (i) {
 
 	case 0:
 		error = zap_length(os, object, name, &zl_wsize, &zl_wc);
 		if (error == 0) {
 			ASSERT3U(wsize, ==, zl_wsize);
 			ASSERT3U(wc, ==, zl_wc);
 		} else {
 			ASSERT3U(error, ==, ENOENT);
 		}
 		break;
 
 	case 1:
 		error = zap_lookup(os, object, name, wsize, wc, data);
 		if (error == 0) {
 			if (data == string_value &&
 			    memcmp(name, data, namelen) != 0)
 				fatal(B_FALSE, "name '%s' != val '%s' len %d",
 				    name, (char *)data, namelen);
 		} else {
 			ASSERT3U(error, ==, ENOENT);
 		}
 		break;
 
 	case 2:
 		error = zap_add(os, object, name, wsize, wc, data, tx);
 		ASSERT(error == 0 || error == EEXIST);
 		break;
 
 	case 3:
 		VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
 		break;
 
 	case 4:
 		error = zap_remove(os, object, name, tx);
 		ASSERT(error == 0 || error == ENOENT);
 		break;
 	}
 
 	if (tx != NULL)
 		dmu_tx_commit(tx);
 
 	umem_free(od, sizeof (ztest_od_t));
 }
 
 /*
  * Commit callback data.
  */
 typedef struct ztest_cb_data {
 	list_node_t		zcd_node;
 	uint64_t		zcd_txg;
 	int			zcd_expected_err;
 	boolean_t		zcd_added;
 	boolean_t		zcd_called;
 	spa_t			*zcd_spa;
 } ztest_cb_data_t;
 
 /* This is the actual commit callback function */
 static void
 ztest_commit_callback(void *arg, int error)
 {
 	ztest_cb_data_t *data = arg;
 	uint64_t synced_txg;
 
 	VERIFY3P(data, !=, NULL);
 	VERIFY3S(data->zcd_expected_err, ==, error);
 	VERIFY(!data->zcd_called);
 
 	synced_txg = spa_last_synced_txg(data->zcd_spa);
 	if (data->zcd_txg > synced_txg)
 		fatal(B_FALSE,
 		    "commit callback of txg %"PRIu64" called prematurely, "
 		    "last synced txg = %"PRIu64"\n",
 		    data->zcd_txg, synced_txg);
 
 	data->zcd_called = B_TRUE;
 
 	if (error == ECANCELED) {
 		ASSERT0(data->zcd_txg);
 		ASSERT(!data->zcd_added);
 
 		/*
 		 * The private callback data should be destroyed here, but
 		 * since we are going to check the zcd_called field after
 		 * dmu_tx_abort(), we will destroy it there.
 		 */
 		return;
 	}
 
 	ASSERT(data->zcd_added);
 	ASSERT3U(data->zcd_txg, !=, 0);
 
 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
 
 	/* See if this cb was called more quickly */
 	if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
 		zc_min_txg_delay = synced_txg - data->zcd_txg;
 
 	/* Remove our callback from the list */
 	list_remove(&zcl.zcl_callbacks, data);
 
 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
 
 	umem_free(data, sizeof (ztest_cb_data_t));
 }
 
 /* Allocate and initialize callback data structure */
 static ztest_cb_data_t *
 ztest_create_cb_data(objset_t *os, uint64_t txg)
 {
 	ztest_cb_data_t *cb_data;
 
 	cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
 
 	cb_data->zcd_txg = txg;
 	cb_data->zcd_spa = dmu_objset_spa(os);
 	list_link_init(&cb_data->zcd_node);
 
 	return (cb_data);
 }
 
 /*
  * Commit callback test.
  */
 void
 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
 {
 	objset_t *os = zd->zd_os;
 	ztest_od_t *od;
 	dmu_tx_t *tx;
 	ztest_cb_data_t *cb_data[3], *tmp_cb;
 	uint64_t old_txg, txg;
 	int i, error = 0;
 
 	od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
 	ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
 
 	if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
 		umem_free(od, sizeof (ztest_od_t));
 		return;
 	}
 
 	tx = dmu_tx_create(os);
 
 	cb_data[0] = ztest_create_cb_data(os, 0);
 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
 
 	dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
 
 	/* Every once in a while, abort the transaction on purpose */
 	if (ztest_random(100) == 0)
 		error = -1;
 
 	if (!error)
 		error = dmu_tx_assign(tx, TXG_NOWAIT);
 
 	txg = error ? 0 : dmu_tx_get_txg(tx);
 
 	cb_data[0]->zcd_txg = txg;
 	cb_data[1] = ztest_create_cb_data(os, txg);
 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
 
 	if (error) {
 		/*
 		 * It's not a strict requirement to call the registered
 		 * callbacks from inside dmu_tx_abort(), but that's what
 		 * it's supposed to happen in the current implementation
 		 * so we will check for that.
 		 */
 		for (i = 0; i < 2; i++) {
 			cb_data[i]->zcd_expected_err = ECANCELED;
 			VERIFY(!cb_data[i]->zcd_called);
 		}
 
 		dmu_tx_abort(tx);
 
 		for (i = 0; i < 2; i++) {
 			VERIFY(cb_data[i]->zcd_called);
 			umem_free(cb_data[i], sizeof (ztest_cb_data_t));
 		}
 
 		umem_free(od, sizeof (ztest_od_t));
 		return;
 	}
 
 	cb_data[2] = ztest_create_cb_data(os, txg);
 	dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
 
 	/*
 	 * Read existing data to make sure there isn't a future leak.
 	 */
 	VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
 	    &old_txg, DMU_READ_PREFETCH));
 
 	if (old_txg > txg)
 		fatal(B_FALSE,
 		    "future leak: got %"PRIu64", open txg is %"PRIu64"",
 		    old_txg, txg);
 
 	dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
 
 	(void) mutex_enter(&zcl.zcl_callbacks_lock);
 
 	/*
 	 * Since commit callbacks don't have any ordering requirement and since
 	 * it is theoretically possible for a commit callback to be called
 	 * after an arbitrary amount of time has elapsed since its txg has been
 	 * synced, it is difficult to reliably determine whether a commit
 	 * callback hasn't been called due to high load or due to a flawed
 	 * implementation.
 	 *
 	 * In practice, we will assume that if after a certain number of txgs a
 	 * commit callback hasn't been called, then most likely there's an
 	 * implementation bug..
 	 */
 	tmp_cb = list_head(&zcl.zcl_callbacks);
 	if (tmp_cb != NULL &&
 	    tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
 		fatal(B_FALSE,
 		    "Commit callback threshold exceeded, "
 		    "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
 		    tmp_cb->zcd_txg, txg);
 	}
 
 	/*
 	 * Let's find the place to insert our callbacks.
 	 *
 	 * Even though the list is ordered by txg, it is possible for the
 	 * insertion point to not be the end because our txg may already be
 	 * quiescing at this point and other callbacks in the open txg
 	 * (from other objsets) may have sneaked in.
 	 */
 	tmp_cb = list_tail(&zcl.zcl_callbacks);
 	while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
 		tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
 
 	/* Add the 3 callbacks to the list */
 	for (i = 0; i < 3; i++) {
 		if (tmp_cb == NULL)
 			list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
 		else
 			list_insert_after(&zcl.zcl_callbacks, tmp_cb,
 			    cb_data[i]);
 
 		cb_data[i]->zcd_added = B_TRUE;
 		VERIFY(!cb_data[i]->zcd_called);
 
 		tmp_cb = cb_data[i];
 	}
 
 	zc_cb_counter += 3;
 
 	(void) mutex_exit(&zcl.zcl_callbacks_lock);
 
 	dmu_tx_commit(tx);
 
 	umem_free(od, sizeof (ztest_od_t));
 }
 
 /*
  * Visit each object in the dataset. Verify that its properties
  * are consistent what was stored in the block tag when it was created,
  * and that its unused bonus buffer space has not been overwritten.
  */
 void
 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
 {
 	(void) id;
 	objset_t *os = zd->zd_os;
 	uint64_t obj;
 	int err = 0;
 
 	for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
 		ztest_block_tag_t *bt = NULL;
 		dmu_object_info_t doi;
 		dmu_buf_t *db;
 
 		ztest_object_lock(zd, obj, RL_READER);
 		if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
 			ztest_object_unlock(zd, obj);
 			continue;
 		}
 
 		dmu_object_info_from_db(db, &doi);
 		if (doi.doi_bonus_size >= sizeof (*bt))
 			bt = ztest_bt_bonus(db);
 
 		if (bt && bt->bt_magic == BT_MAGIC) {
 			ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
 			    bt->bt_offset, bt->bt_gen, bt->bt_txg,
 			    bt->bt_crtxg);
 			ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
 		}
 
 		dmu_buf_rele(db, FTAG);
 		ztest_object_unlock(zd, obj);
 	}
 }
 
 void
 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
 {
 	(void) id;
 	zfs_prop_t proplist[] = {
 		ZFS_PROP_CHECKSUM,
 		ZFS_PROP_COMPRESSION,
 		ZFS_PROP_COPIES,
 		ZFS_PROP_DEDUP
 	};
 
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 
 	for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++)
 		(void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
 		    ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
 
 	VERIFY0(ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
 	    ztest_random_blocksize(), (int)ztest_random(2)));
 
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 }
 
 void
 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	nvlist_t *props = NULL;
 
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 
 	(void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
 
 	VERIFY0(spa_prop_get(ztest_spa, &props));
 
 	if (ztest_opts.zo_verbose >= 6)
 		dump_nvlist(props, 4);
 
 	fnvlist_free(props);
 
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 }
 
 static int
 user_release_one(const char *snapname, const char *holdname)
 {
 	nvlist_t *snaps, *holds;
 	int error;
 
 	snaps = fnvlist_alloc();
 	holds = fnvlist_alloc();
 	fnvlist_add_boolean(holds, holdname);
 	fnvlist_add_nvlist(snaps, snapname, holds);
 	fnvlist_free(holds);
 	error = dsl_dataset_user_release(snaps, NULL);
 	fnvlist_free(snaps);
 	return (error);
 }
 
 /*
  * Test snapshot hold/release and deferred destroy.
  */
 void
 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
 {
 	int error;
 	objset_t *os = zd->zd_os;
 	objset_t *origin;
 	char snapname[100];
 	char fullname[100];
 	char clonename[100];
 	char tag[100];
 	char osname[ZFS_MAX_DATASET_NAME_LEN];
 	nvlist_t *holds;
 
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 
 	dmu_objset_name(os, osname);
 
 	(void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
 	(void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
 	(void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
 	    osname, id);
 	(void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
 
 	/*
 	 * Clean up from any previous run.
 	 */
 	error = dsl_destroy_head(clonename);
 	if (error != ENOENT)
 		ASSERT0(error);
 	error = user_release_one(fullname, tag);
 	if (error != ESRCH && error != ENOENT)
 		ASSERT0(error);
 	error = dsl_destroy_snapshot(fullname, B_FALSE);
 	if (error != ENOENT)
 		ASSERT0(error);
 
 	/*
 	 * Create snapshot, clone it, mark snap for deferred destroy,
 	 * destroy clone, verify snap was also destroyed.
 	 */
 	error = dmu_objset_snapshot_one(osname, snapname);
 	if (error) {
 		if (error == ENOSPC) {
 			ztest_record_enospc("dmu_objset_snapshot");
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
 	}
 
 	error = dmu_objset_clone(clonename, fullname);
 	if (error) {
 		if (error == ENOSPC) {
 			ztest_record_enospc("dmu_objset_clone");
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
 	}
 
 	error = dsl_destroy_snapshot(fullname, B_TRUE);
 	if (error) {
 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
 		    fullname, error);
 	}
 
 	error = dsl_destroy_head(clonename);
 	if (error)
 		fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
 
 	error = dmu_objset_hold(fullname, FTAG, &origin);
 	if (error != ENOENT)
 		fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
 
 	/*
 	 * Create snapshot, add temporary hold, verify that we can't
 	 * destroy a held snapshot, mark for deferred destroy,
 	 * release hold, verify snapshot was destroyed.
 	 */
 	error = dmu_objset_snapshot_one(osname, snapname);
 	if (error) {
 		if (error == ENOSPC) {
 			ztest_record_enospc("dmu_objset_snapshot");
 			goto out;
 		}
 		fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
 	}
 
 	holds = fnvlist_alloc();
 	fnvlist_add_string(holds, fullname, tag);
 	error = dsl_dataset_user_hold(holds, 0, NULL);
 	fnvlist_free(holds);
 
 	if (error == ENOSPC) {
 		ztest_record_enospc("dsl_dataset_user_hold");
 		goto out;
 	} else if (error) {
 		fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
 		    fullname, tag, error);
 	}
 
 	error = dsl_destroy_snapshot(fullname, B_FALSE);
 	if (error != EBUSY) {
 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
 		    fullname, error);
 	}
 
 	error = dsl_destroy_snapshot(fullname, B_TRUE);
 	if (error) {
 		fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
 		    fullname, error);
 	}
 
 	error = user_release_one(fullname, tag);
 	if (error)
 		fatal(B_FALSE, "user_release_one(%s, %s) = %d",
 		    fullname, tag, error);
 
 	VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
 
 out:
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 }
 
 /*
  * Inject random faults into the on-disk data.
  */
 void
 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	ztest_shared_t *zs = ztest_shared;
 	spa_t *spa = ztest_spa;
 	int fd;
 	uint64_t offset;
 	uint64_t leaves;
 	uint64_t bad = 0x1990c0ffeedecadeull;
 	uint64_t top, leaf;
 	char *path0;
 	char *pathrand;
 	size_t fsize;
 	int bshift = SPA_MAXBLOCKSHIFT + 2;
 	int iters = 1000;
 	int maxfaults;
 	int mirror_save;
 	vdev_t *vd0 = NULL;
 	uint64_t guid0 = 0;
 	boolean_t islog = B_FALSE;
 
 	path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 	pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 
 	mutex_enter(&ztest_vdev_lock);
 
 	/*
 	 * Device removal is in progress, fault injection must be disabled
 	 * until it completes and the pool is scrubbed.  The fault injection
 	 * strategy for damaging blocks does not take in to account evacuated
 	 * blocks which may have already been damaged.
 	 */
 	if (ztest_device_removal_active) {
 		mutex_exit(&ztest_vdev_lock);
 		goto out;
 	}
 
 	maxfaults = MAXFAULTS(zs);
 	leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
 	mirror_save = zs->zs_mirrors;
 	mutex_exit(&ztest_vdev_lock);
 
 	ASSERT3U(leaves, >=, 1);
 
 	/*
 	 * While ztest is running the number of leaves will not change.  This
 	 * is critical for the fault injection logic as it determines where
 	 * errors can be safely injected such that they are always repairable.
 	 *
 	 * When restarting ztest a different number of leaves may be requested
 	 * which will shift the regions to be damaged.  This is fine as long
 	 * as the pool has been scrubbed prior to using the new mapping.
 	 * Failure to do can result in non-repairable damage being injected.
 	 */
 	if (ztest_pool_scrubbed == B_FALSE)
 		goto out;
 
 	/*
 	 * Grab the name lock as reader. There are some operations
 	 * which don't like to have their vdevs changed while
 	 * they are in progress (i.e. spa_change_guid). Those
 	 * operations will have grabbed the name lock as writer.
 	 */
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 
 	/*
 	 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
 	 */
 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
 
 	if (ztest_random(2) == 0) {
 		/*
 		 * Inject errors on a normal data device or slog device.
 		 */
 		top = ztest_random_vdev_top(spa, B_TRUE);
 		leaf = ztest_random(leaves) + zs->zs_splits;
 
 		/*
 		 * Generate paths to the first leaf in this top-level vdev,
 		 * and to the random leaf we selected.  We'll induce transient
 		 * write failures and random online/offline activity on leaf 0,
 		 * and we'll write random garbage to the randomly chosen leaf.
 		 */
 		(void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
 		    top * leaves + zs->zs_splits);
 		(void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
 		    ztest_opts.zo_dir, ztest_opts.zo_pool,
 		    top * leaves + leaf);
 
 		vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
 		if (vd0 != NULL && vd0->vdev_top->vdev_islog)
 			islog = B_TRUE;
 
 		/*
 		 * If the top-level vdev needs to be resilvered
 		 * then we only allow faults on the device that is
 		 * resilvering.
 		 */
 		if (vd0 != NULL && maxfaults != 1 &&
 		    (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
 		    vd0->vdev_resilver_txg != 0)) {
 			/*
 			 * Make vd0 explicitly claim to be unreadable,
 			 * or unwritable, or reach behind its back
 			 * and close the underlying fd.  We can do this if
 			 * maxfaults == 0 because we'll fail and reexecute,
 			 * and we can do it if maxfaults >= 2 because we'll
 			 * have enough redundancy.  If maxfaults == 1, the
 			 * combination of this with injection of random data
 			 * corruption below exceeds the pool's fault tolerance.
 			 */
 			vdev_file_t *vf = vd0->vdev_tsd;
 
 			zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
 			    (long long)vd0->vdev_id, (int)maxfaults);
 
 			if (vf != NULL && ztest_random(3) == 0) {
 				(void) close(vf->vf_file->f_fd);
 				vf->vf_file->f_fd = -1;
 			} else if (ztest_random(2) == 0) {
 				vd0->vdev_cant_read = B_TRUE;
 			} else {
 				vd0->vdev_cant_write = B_TRUE;
 			}
 			guid0 = vd0->vdev_guid;
 		}
 	} else {
 		/*
 		 * Inject errors on an l2cache device.
 		 */
 		spa_aux_vdev_t *sav = &spa->spa_l2cache;
 
 		if (sav->sav_count == 0) {
 			spa_config_exit(spa, SCL_STATE, FTAG);
 			(void) pthread_rwlock_unlock(&ztest_name_lock);
 			goto out;
 		}
 		vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
 		guid0 = vd0->vdev_guid;
 		(void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
 		(void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
 
 		leaf = 0;
 		leaves = 1;
 		maxfaults = INT_MAX;	/* no limit on cache devices */
 	}
 
 	spa_config_exit(spa, SCL_STATE, FTAG);
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 
 	/*
 	 * If we can tolerate two or more faults, or we're dealing
 	 * with a slog, randomly online/offline vd0.
 	 */
 	if ((maxfaults >= 2 || islog) && guid0 != 0) {
 		if (ztest_random(10) < 6) {
 			int flags = (ztest_random(2) == 0 ?
 			    ZFS_OFFLINE_TEMPORARY : 0);
 
 			/*
 			 * We have to grab the zs_name_lock as writer to
 			 * prevent a race between offlining a slog and
 			 * destroying a dataset. Offlining the slog will
 			 * grab a reference on the dataset which may cause
 			 * dsl_destroy_head() to fail with EBUSY thus
 			 * leaving the dataset in an inconsistent state.
 			 */
 			if (islog)
 				(void) pthread_rwlock_wrlock(&ztest_name_lock);
 
 			VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
 
 			if (islog)
 				(void) pthread_rwlock_unlock(&ztest_name_lock);
 		} else {
 			/*
 			 * Ideally we would like to be able to randomly
 			 * call vdev_[on|off]line without holding locks
 			 * to force unpredictable failures but the side
 			 * effects of vdev_[on|off]line prevent us from
 			 * doing so. We grab the ztest_vdev_lock here to
 			 * prevent a race between injection testing and
 			 * aux_vdev removal.
 			 */
 			mutex_enter(&ztest_vdev_lock);
 			(void) vdev_online(spa, guid0, 0, NULL);
 			mutex_exit(&ztest_vdev_lock);
 		}
 	}
 
 	if (maxfaults == 0)
 		goto out;
 
 	/*
 	 * We have at least single-fault tolerance, so inject data corruption.
 	 */
 	fd = open(pathrand, O_RDWR);
 
 	if (fd == -1) /* we hit a gap in the device namespace */
 		goto out;
 
 	fsize = lseek(fd, 0, SEEK_END);
 
 	while (--iters != 0) {
 		/*
 		 * The offset must be chosen carefully to ensure that
 		 * we do not inject a given logical block with errors
 		 * on two different leaf devices, because ZFS can not
 		 * tolerate that (if maxfaults==1).
 		 *
 		 * To achieve this we divide each leaf device into
 		 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
 		 * Each chunk is further divided into error-injection
 		 * ranges (can accept errors) and clear ranges (we do
 		 * not inject errors in those). Each error-injection
 		 * range can accept errors only for a single leaf vdev.
 		 * Error-injection ranges are separated by clear ranges.
 		 *
 		 * For example, with 3 leaves, each chunk looks like:
 		 *    0 to  32M: injection range for leaf 0
 		 *  32M to  64M: clear range - no injection allowed
 		 *  64M to  96M: injection range for leaf 1
 		 *  96M to 128M: clear range - no injection allowed
 		 * 128M to 160M: injection range for leaf 2
 		 * 160M to 192M: clear range - no injection allowed
 		 *
 		 * Each clear range must be large enough such that a
 		 * single block cannot straddle it. This way a block
 		 * can't be a target in two different injection ranges
 		 * (on different leaf vdevs).
 		 */
 		offset = ztest_random(fsize / (leaves << bshift)) *
 		    (leaves << bshift) + (leaf << bshift) +
 		    (ztest_random(1ULL << (bshift - 1)) & -8ULL);
 
 		/*
 		 * Only allow damage to the labels at one end of the vdev.
 		 *
 		 * If all labels are damaged, the device will be totally
 		 * inaccessible, which will result in loss of data,
 		 * because we also damage (parts of) the other side of
 		 * the mirror/raidz.
 		 *
 		 * Additionally, we will always have both an even and an
 		 * odd label, so that we can handle crashes in the
 		 * middle of vdev_config_sync().
 		 */
 		if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
 			continue;
 
 		/*
 		 * The two end labels are stored at the "end" of the disk, but
 		 * the end of the disk (vdev_psize) is aligned to
 		 * sizeof (vdev_label_t).
 		 */
 		uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
 		if ((leaf & 1) == 1 &&
 		    offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
 			continue;
 
 		mutex_enter(&ztest_vdev_lock);
 		if (mirror_save != zs->zs_mirrors) {
 			mutex_exit(&ztest_vdev_lock);
 			(void) close(fd);
 			goto out;
 		}
 
 		if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
 			fatal(B_TRUE,
 			    "can't inject bad word at 0x%"PRIx64" in %s",
 			    offset, pathrand);
 
 		mutex_exit(&ztest_vdev_lock);
 
 		if (ztest_opts.zo_verbose >= 7)
 			(void) printf("injected bad word into %s,"
 			    " offset 0x%"PRIx64"\n", pathrand, offset);
 	}
 
 	(void) close(fd);
 out:
 	umem_free(path0, MAXPATHLEN);
 	umem_free(pathrand, MAXPATHLEN);
 }
 
 /*
  * By design ztest will never inject uncorrectable damage in to the pool.
  * Issue a scrub, wait for it to complete, and verify there is never any
  * persistent damage.
  *
  * Only after a full scrub has been completed is it safe to start injecting
  * data corruption.  See the comment in zfs_fault_inject().
  */
 static int
 ztest_scrub_impl(spa_t *spa)
 {
 	int error = spa_scan(spa, POOL_SCAN_SCRUB);
 	if (error)
 		return (error);
 
 	while (dsl_scan_scrubbing(spa_get_dsl(spa)))
 		txg_wait_synced(spa_get_dsl(spa), 0);
 
 	if (spa_approx_errlog_size(spa) > 0)
 		return (ECKSUM);
 
 	ztest_pool_scrubbed = B_TRUE;
 
 	return (0);
 }
 
 /*
  * Scrub the pool.
  */
 void
 ztest_scrub(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa = ztest_spa;
 	int error;
 
 	/*
 	 * Scrub in progress by device removal.
 	 */
 	if (ztest_device_removal_active)
 		return;
 
 	/*
 	 * Start a scrub, wait a moment, then force a restart.
 	 */
 	(void) spa_scan(spa, POOL_SCAN_SCRUB);
 	(void) poll(NULL, 0, 100);
 
 	error = ztest_scrub_impl(spa);
 	if (error == EBUSY)
 		error = 0;
 	ASSERT0(error);
 }
 
 /*
  * Change the guid for the pool.
  */
 void
 ztest_reguid(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa = ztest_spa;
 	uint64_t orig, load;
 	int error;
 
 	if (ztest_opts.zo_mmp_test)
 		return;
 
 	orig = spa_guid(spa);
 	load = spa_load_guid(spa);
 
 	(void) pthread_rwlock_wrlock(&ztest_name_lock);
 	error = spa_change_guid(spa);
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 
 	if (error != 0)
 		return;
 
 	if (ztest_opts.zo_verbose >= 4) {
 		(void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
 		    orig, spa_guid(spa));
 	}
 
 	VERIFY3U(orig, !=, spa_guid(spa));
 	VERIFY3U(load, ==, spa_load_guid(spa));
 }
 
 void
 ztest_blake3(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	hrtime_t end = gethrtime() + NANOSEC;
 	zio_cksum_salt_t salt;
 	void *salt_ptr = &salt.zcs_bytes;
 	struct abd *abd_data, *abd_meta;
 	void *buf, *templ;
 	int i, *ptr;
 	uint32_t size;
 	BLAKE3_CTX ctx;
 
 	size = ztest_random_blocksize();
 	buf = umem_alloc(size, UMEM_NOFAIL);
 	abd_data = abd_alloc(size, B_FALSE);
 	abd_meta = abd_alloc(size, B_TRUE);
 
 	for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
 		*ptr = ztest_random(UINT_MAX);
 	memset(salt_ptr, 'A', 32);
 
 	abd_copy_from_buf_off(abd_data, buf, 0, size);
 	abd_copy_from_buf_off(abd_meta, buf, 0, size);
 
 	while (gethrtime() <= end) {
 		int run_count = 100;
 		zio_cksum_t zc_ref1, zc_ref2;
 		zio_cksum_t zc_res1, zc_res2;
 
 		void *ref1 = &zc_ref1;
 		void *ref2 = &zc_ref2;
 		void *res1 = &zc_res1;
 		void *res2 = &zc_res2;
 
 		/* BLAKE3_KEY_LEN = 32 */
 		VERIFY0(blake3_impl_setname("generic"));
 		templ = abd_checksum_blake3_tmpl_init(&salt);
 		Blake3_InitKeyed(&ctx, salt_ptr);
 		Blake3_Update(&ctx, buf, size);
 		Blake3_Final(&ctx, ref1);
 		zc_ref2 = zc_ref1;
 		ZIO_CHECKSUM_BSWAP(&zc_ref2);
 		abd_checksum_blake3_tmpl_free(templ);
 
 		VERIFY0(blake3_impl_setname("cycle"));
 		while (run_count-- > 0) {
 
 			/* Test current implementation */
 			Blake3_InitKeyed(&ctx, salt_ptr);
 			Blake3_Update(&ctx, buf, size);
 			Blake3_Final(&ctx, res1);
 			zc_res2 = zc_res1;
 			ZIO_CHECKSUM_BSWAP(&zc_res2);
 
 			VERIFY0(memcmp(ref1, res1, 32));
 			VERIFY0(memcmp(ref2, res2, 32));
 
 			/* Test ABD - data */
 			templ = abd_checksum_blake3_tmpl_init(&salt);
 			abd_checksum_blake3_native(abd_data, size,
 			    templ, &zc_res1);
 			abd_checksum_blake3_byteswap(abd_data, size,
 			    templ, &zc_res2);
 
 			VERIFY0(memcmp(ref1, res1, 32));
 			VERIFY0(memcmp(ref2, res2, 32));
 
 			/* Test ABD - metadata */
 			abd_checksum_blake3_native(abd_meta, size,
 			    templ, &zc_res1);
 			abd_checksum_blake3_byteswap(abd_meta, size,
 			    templ, &zc_res2);
 			abd_checksum_blake3_tmpl_free(templ);
 
 			VERIFY0(memcmp(ref1, res1, 32));
 			VERIFY0(memcmp(ref2, res2, 32));
 
 		}
 	}
 
 	abd_free(abd_data);
 	abd_free(abd_meta);
 	umem_free(buf, size);
 }
 
 void
 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	hrtime_t end = gethrtime() + NANOSEC;
 
 	while (gethrtime() <= end) {
 		int run_count = 100;
 		void *buf;
 		struct abd *abd_data, *abd_meta;
 		uint32_t size;
 		int *ptr;
 		int i;
 		zio_cksum_t zc_ref;
 		zio_cksum_t zc_ref_byteswap;
 
 		size = ztest_random_blocksize();
 
 		buf = umem_alloc(size, UMEM_NOFAIL);
 		abd_data = abd_alloc(size, B_FALSE);
 		abd_meta = abd_alloc(size, B_TRUE);
 
 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
 			*ptr = ztest_random(UINT_MAX);
 
 		abd_copy_from_buf_off(abd_data, buf, 0, size);
 		abd_copy_from_buf_off(abd_meta, buf, 0, size);
 
 		VERIFY0(fletcher_4_impl_set("scalar"));
 		fletcher_4_native(buf, size, NULL, &zc_ref);
 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
 
 		VERIFY0(fletcher_4_impl_set("cycle"));
 		while (run_count-- > 0) {
 			zio_cksum_t zc;
 			zio_cksum_t zc_byteswap;
 
 			fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
 			fletcher_4_native(buf, size, NULL, &zc);
 
 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
 			    sizeof (zc_byteswap)));
 
 			/* Test ABD - data */
 			abd_fletcher_4_byteswap(abd_data, size, NULL,
 			    &zc_byteswap);
 			abd_fletcher_4_native(abd_data, size, NULL, &zc);
 
 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
 			    sizeof (zc_byteswap)));
 
 			/* Test ABD - metadata */
 			abd_fletcher_4_byteswap(abd_meta, size, NULL,
 			    &zc_byteswap);
 			abd_fletcher_4_native(abd_meta, size, NULL, &zc);
 
 			VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
 			VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
 			    sizeof (zc_byteswap)));
 
 		}
 
 		umem_free(buf, size);
 		abd_free(abd_data);
 		abd_free(abd_meta);
 	}
 }
 
 void
 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	void *buf;
 	size_t size;
 	int *ptr;
 	int i;
 	zio_cksum_t zc_ref;
 	zio_cksum_t zc_ref_bswap;
 
 	hrtime_t end = gethrtime() + NANOSEC;
 
 	while (gethrtime() <= end) {
 		int run_count = 100;
 
 		size = ztest_random_blocksize();
 		buf = umem_alloc(size, UMEM_NOFAIL);
 
 		for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
 			*ptr = ztest_random(UINT_MAX);
 
 		VERIFY0(fletcher_4_impl_set("scalar"));
 		fletcher_4_native(buf, size, NULL, &zc_ref);
 		fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
 
 		VERIFY0(fletcher_4_impl_set("cycle"));
 
 		while (run_count-- > 0) {
 			zio_cksum_t zc;
 			zio_cksum_t zc_bswap;
 			size_t pos = 0;
 
 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
 
 			while (pos < size) {
 				size_t inc = 64 * ztest_random(size / 67);
 				/* sometimes add few bytes to test non-simd */
 				if (ztest_random(100) < 10)
 					inc += P2ALIGN(ztest_random(64),
 					    sizeof (uint32_t));
 
 				if (inc > (size - pos))
 					inc = size - pos;
 
 				fletcher_4_incremental_native(buf + pos, inc,
 				    &zc);
 				fletcher_4_incremental_byteswap(buf + pos, inc,
 				    &zc_bswap);
 
 				pos += inc;
 			}
 
 			VERIFY3U(pos, ==, size);
 
 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
 
 			/*
 			 * verify if incremental on the whole buffer is
 			 * equivalent to non-incremental version
 			 */
 			ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
 			ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
 
 			fletcher_4_incremental_native(buf, size, &zc);
 			fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
 
 			VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
 			VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
 		}
 
 		umem_free(buf, size);
 	}
 }
 
 static int
 ztest_set_global_vars(void)
 {
 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
 		char *kv = ztest_opts.zo_gvars[i];
 		VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
 		VERIFY3U(strlen(kv), >, 0);
 		int err = set_global_var(kv);
 		if (ztest_opts.zo_verbose > 0) {
 			(void) printf("setting global var %s ... %s\n", kv,
 			    err ? "failed" : "ok");
 		}
 		if (err != 0) {
 			(void) fprintf(stderr,
 			    "failed to set global var '%s'\n", kv);
 			return (err);
 		}
 	}
 	return (0);
 }
 
 static char **
 ztest_global_vars_to_zdb_args(void)
 {
 	char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
 	char **cur = args;
 	if (args == NULL)
 		return (NULL);
 	for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
 		*cur++ = (char *)"-o";
 		*cur++ = ztest_opts.zo_gvars[i];
 	}
 	ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
 	*cur = NULL;
 	return (args);
 }
 
 /* The end of strings is indicated by a NULL element */
 static char *
 join_strings(char **strings, const char *sep)
 {
 	size_t totallen = 0;
 	for (char **sp = strings; *sp != NULL; sp++) {
 		totallen += strlen(*sp);
 		totallen += strlen(sep);
 	}
 	if (totallen > 0) {
 		ASSERT(totallen >= strlen(sep));
 		totallen -= strlen(sep);
 	}
 
 	size_t buflen = totallen + 1;
 	char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
 	o[0] = '\0';
 	for (char **sp = strings; *sp != NULL; sp++) {
 		size_t would;
 		would = strlcat(o, *sp, buflen);
 		VERIFY3U(would, <, buflen);
 		if (*(sp+1) == NULL) {
 			break;
 		}
 		would = strlcat(o, sep, buflen);
 		VERIFY3U(would, <, buflen);
 	}
 	ASSERT3S(strlen(o), ==, totallen);
 	return (o);
 }
 
 static int
 ztest_check_path(char *path)
 {
 	struct stat s;
 	/* return true on success */
 	return (!stat(path, &s));
 }
 
 static void
 ztest_get_zdb_bin(char *bin, int len)
 {
 	char *zdb_path;
 	/*
 	 * Try to use $ZDB and in-tree zdb path. If not successful, just
 	 * let popen to search through PATH.
 	 */
 	if ((zdb_path = getenv("ZDB"))) {
 		strlcpy(bin, zdb_path, len); /* In env */
 		if (!ztest_check_path(bin)) {
 			ztest_dump_core = 0;
 			fatal(B_TRUE, "invalid ZDB '%s'", bin);
 		}
 		return;
 	}
 
 	VERIFY3P(realpath(getexecname(), bin), !=, NULL);
 	if (strstr(bin, ".libs/ztest")) {
 		strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
 		strcat(bin, "zdb");
 		if (ztest_check_path(bin))
 			return;
 	}
 	strcpy(bin, "zdb");
 }
 
 static vdev_t *
 ztest_random_concrete_vdev_leaf(vdev_t *vd)
 {
 	if (vd == NULL)
 		return (NULL);
 
 	if (vd->vdev_children == 0)
 		return (vd);
 
 	vdev_t *eligible[vd->vdev_children];
 	int eligible_idx = 0, i;
 	for (i = 0; i < vd->vdev_children; i++) {
 		vdev_t *cvd = vd->vdev_child[i];
 		if (cvd->vdev_top->vdev_removing)
 			continue;
 		if (cvd->vdev_children > 0 ||
 		    (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
 			eligible[eligible_idx++] = cvd;
 		}
 	}
 	VERIFY3S(eligible_idx, >, 0);
 
 	uint64_t child_no = ztest_random(eligible_idx);
 	return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
 }
 
 void
 ztest_initialize(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa = ztest_spa;
 	int error = 0;
 
 	mutex_enter(&ztest_vdev_lock);
 
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 
 	/* Random leaf vdev */
 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
 	if (rand_vd == NULL) {
 		spa_config_exit(spa, SCL_VDEV, FTAG);
 		mutex_exit(&ztest_vdev_lock);
 		return;
 	}
 
 	/*
 	 * The random vdev we've selected may change as soon as we
 	 * drop the spa_config_lock. We create local copies of things
 	 * we're interested in.
 	 */
 	uint64_t guid = rand_vd->vdev_guid;
 	char *path = strdup(rand_vd->vdev_path);
 	boolean_t active = rand_vd->vdev_initialize_thread != NULL;
 
 	zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
 	spa_config_exit(spa, SCL_VDEV, FTAG);
 
 	uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
 
 	nvlist_t *vdev_guids = fnvlist_alloc();
 	nvlist_t *vdev_errlist = fnvlist_alloc();
 	fnvlist_add_uint64(vdev_guids, path, guid);
 	error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
 	fnvlist_free(vdev_guids);
 	fnvlist_free(vdev_errlist);
 
 	switch (cmd) {
 	case POOL_INITIALIZE_CANCEL:
 		if (ztest_opts.zo_verbose >= 4) {
 			(void) printf("Cancel initialize %s", path);
 			if (!active)
 				(void) printf(" failed (no initialize active)");
 			(void) printf("\n");
 		}
 		break;
 	case POOL_INITIALIZE_START:
 		if (ztest_opts.zo_verbose >= 4) {
 			(void) printf("Start initialize %s", path);
 			if (active && error == 0)
 				(void) printf(" failed (already active)");
 			else if (error != 0)
 				(void) printf(" failed (error %d)", error);
 			(void) printf("\n");
 		}
 		break;
 	case POOL_INITIALIZE_SUSPEND:
 		if (ztest_opts.zo_verbose >= 4) {
 			(void) printf("Suspend initialize %s", path);
 			if (!active)
 				(void) printf(" failed (no initialize active)");
 			(void) printf("\n");
 		}
 		break;
 	}
 	free(path);
 	mutex_exit(&ztest_vdev_lock);
 }
 
 void
 ztest_trim(ztest_ds_t *zd, uint64_t id)
 {
 	(void) zd, (void) id;
 	spa_t *spa = ztest_spa;
 	int error = 0;
 
 	mutex_enter(&ztest_vdev_lock);
 
 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
 
 	/* Random leaf vdev */
 	vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
 	if (rand_vd == NULL) {
 		spa_config_exit(spa, SCL_VDEV, FTAG);
 		mutex_exit(&ztest_vdev_lock);
 		return;
 	}
 
 	/*
 	 * The random vdev we've selected may change as soon as we
 	 * drop the spa_config_lock. We create local copies of things
 	 * we're interested in.
 	 */
 	uint64_t guid = rand_vd->vdev_guid;
 	char *path = strdup(rand_vd->vdev_path);
 	boolean_t active = rand_vd->vdev_trim_thread != NULL;
 
 	zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
 	spa_config_exit(spa, SCL_VDEV, FTAG);
 
 	uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
 	uint64_t rate = 1 << ztest_random(30);
 	boolean_t partial = (ztest_random(5) > 0);
 	boolean_t secure = (ztest_random(5) > 0);
 
 	nvlist_t *vdev_guids = fnvlist_alloc();
 	nvlist_t *vdev_errlist = fnvlist_alloc();
 	fnvlist_add_uint64(vdev_guids, path, guid);
 	error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
 	    secure, vdev_errlist);
 	fnvlist_free(vdev_guids);
 	fnvlist_free(vdev_errlist);
 
 	switch (cmd) {
 	case POOL_TRIM_CANCEL:
 		if (ztest_opts.zo_verbose >= 4) {
 			(void) printf("Cancel TRIM %s", path);
 			if (!active)
 				(void) printf(" failed (no TRIM active)");
 			(void) printf("\n");
 		}
 		break;
 	case POOL_TRIM_START:
 		if (ztest_opts.zo_verbose >= 4) {
 			(void) printf("Start TRIM %s", path);
 			if (active && error == 0)
 				(void) printf(" failed (already active)");
 			else if (error != 0)
 				(void) printf(" failed (error %d)", error);
 			(void) printf("\n");
 		}
 		break;
 	case POOL_TRIM_SUSPEND:
 		if (ztest_opts.zo_verbose >= 4) {
 			(void) printf("Suspend TRIM %s", path);
 			if (!active)
 				(void) printf(" failed (no TRIM active)");
 			(void) printf("\n");
 		}
 		break;
 	}
 	free(path);
 	mutex_exit(&ztest_vdev_lock);
 }
 
 /*
  * Verify pool integrity by running zdb.
  */
 static void
 ztest_run_zdb(const char *pool)
 {
 	int status;
 	char *bin;
 	char *zdb;
 	char *zbuf;
 	const int len = MAXPATHLEN + MAXNAMELEN + 20;
 	FILE *fp;
 
 	bin = umem_alloc(len, UMEM_NOFAIL);
 	zdb = umem_alloc(len, UMEM_NOFAIL);
 	zbuf = umem_alloc(1024, UMEM_NOFAIL);
 
 	ztest_get_zdb_bin(bin, len);
 
 	char **set_gvars_args = ztest_global_vars_to_zdb_args();
 	if (set_gvars_args == NULL) {
 		fatal(B_FALSE, "Failed to allocate memory in "
 		    "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
 	}
 	char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
 	free(set_gvars_args);
 
 	size_t would = snprintf(zdb, len,
 	    "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
 	    bin,
 	    ztest_opts.zo_verbose >= 3 ? "s" : "",
 	    ztest_opts.zo_verbose >= 4 ? "v" : "",
 	    set_gvars_args_joined,
 	    ztest_opts.zo_dir,
 	    pool);
 	ASSERT3U(would, <, len);
 
 	umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
 
 	if (ztest_opts.zo_verbose >= 5)
 		(void) printf("Executing %s\n", zdb);
 
 	fp = popen(zdb, "r");
 
 	while (fgets(zbuf, 1024, fp) != NULL)
 		if (ztest_opts.zo_verbose >= 3)
 			(void) printf("%s", zbuf);
 
 	status = pclose(fp);
 
 	if (status == 0)
 		goto out;
 
 	ztest_dump_core = 0;
 	if (WIFEXITED(status))
 		fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
 	else
 		fatal(B_FALSE, "'%s' died with signal %d",
 		    zdb, WTERMSIG(status));
 out:
 	umem_free(bin, len);
 	umem_free(zdb, len);
 	umem_free(zbuf, 1024);
 }
 
 static void
 ztest_walk_pool_directory(const char *header)
 {
 	spa_t *spa = NULL;
 
 	if (ztest_opts.zo_verbose >= 6)
 		(void) puts(header);
 
 	mutex_enter(&spa_namespace_lock);
 	while ((spa = spa_next(spa)) != NULL)
 		if (ztest_opts.zo_verbose >= 6)
 			(void) printf("\t%s\n", spa_name(spa));
 	mutex_exit(&spa_namespace_lock);
 }
 
 static void
 ztest_spa_import_export(char *oldname, char *newname)
 {
 	nvlist_t *config, *newconfig;
 	uint64_t pool_guid;
 	spa_t *spa;
 	int error;
 
 	if (ztest_opts.zo_verbose >= 4) {
 		(void) printf("import/export: old = %s, new = %s\n",
 		    oldname, newname);
 	}
 
 	/*
 	 * Clean up from previous runs.
 	 */
 	(void) spa_destroy(newname);
 
 	/*
 	 * Get the pool's configuration and guid.
 	 */
 	VERIFY0(spa_open(oldname, &spa, FTAG));
 
 	/*
 	 * Kick off a scrub to tickle scrub/export races.
 	 */
 	if (ztest_random(2) == 0)
 		(void) spa_scan(spa, POOL_SCAN_SCRUB);
 
 	pool_guid = spa_guid(spa);
 	spa_close(spa, FTAG);
 
 	ztest_walk_pool_directory("pools before export");
 
 	/*
 	 * Export it.
 	 */
 	VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
 
 	ztest_walk_pool_directory("pools after export");
 
 	/*
 	 * Try to import it.
 	 */
 	newconfig = spa_tryimport(config);
 	ASSERT3P(newconfig, !=, NULL);
 	fnvlist_free(newconfig);
 
 	/*
 	 * Import it under the new name.
 	 */
 	error = spa_import(newname, config, NULL, 0);
 	if (error != 0) {
 		dump_nvlist(config, 0);
 		fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
 		    oldname, newname, error);
 	}
 
 	ztest_walk_pool_directory("pools after import");
 
 	/*
 	 * Try to import it again -- should fail with EEXIST.
 	 */
 	VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
 
 	/*
 	 * Try to import it under a different name -- should fail with EEXIST.
 	 */
 	VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
 
 	/*
 	 * Verify that the pool is no longer visible under the old name.
 	 */
 	VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
 
 	/*
 	 * Verify that we can open and close the pool using the new name.
 	 */
 	VERIFY0(spa_open(newname, &spa, FTAG));
 	ASSERT3U(pool_guid, ==, spa_guid(spa));
 	spa_close(spa, FTAG);
 
 	fnvlist_free(config);
 }
 
 static void
 ztest_resume(spa_t *spa)
 {
 	if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
 		(void) printf("resuming from suspended state\n");
 	spa_vdev_state_enter(spa, SCL_NONE);
 	vdev_clear(spa, NULL);
 	(void) spa_vdev_state_exit(spa, NULL, 0);
 	(void) zio_resume(spa);
 }
 
 static __attribute__((noreturn)) void
 ztest_resume_thread(void *arg)
 {
 	spa_t *spa = arg;
 
 	while (!ztest_exiting) {
 		if (spa_suspended(spa))
 			ztest_resume(spa);
 		(void) poll(NULL, 0, 100);
 
 		/*
 		 * Periodically change the zfs_compressed_arc_enabled setting.
 		 */
 		if (ztest_random(10) == 0)
 			zfs_compressed_arc_enabled = ztest_random(2);
 
 		/*
 		 * Periodically change the zfs_abd_scatter_enabled setting.
 		 */
 		if (ztest_random(10) == 0)
 			zfs_abd_scatter_enabled = ztest_random(2);
 	}
 
 	thread_exit();
 }
 
 static __attribute__((noreturn)) void
 ztest_deadman_thread(void *arg)
 {
 	ztest_shared_t *zs = arg;
 	spa_t *spa = ztest_spa;
 	hrtime_t delay, overdue, last_run = gethrtime();
 
 	delay = (zs->zs_thread_stop - zs->zs_thread_start) +
 	    MSEC2NSEC(zfs_deadman_synctime_ms);
 
 	while (!ztest_exiting) {
 		/*
 		 * Wait for the delay timer while checking occasionally
 		 * if we should stop.
 		 */
 		if (gethrtime() < last_run + delay) {
 			(void) poll(NULL, 0, 1000);
 			continue;
 		}
 
 		/*
 		 * If the pool is suspended then fail immediately. Otherwise,
 		 * check to see if the pool is making any progress. If
 		 * vdev_deadman() discovers that there hasn't been any recent
 		 * I/Os then it will end up aborting the tests.
 		 */
 		if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
 			fatal(B_FALSE,
 			    "aborting test after %llu seconds because "
 			    "pool has transitioned to a suspended state.",
 			    (u_longlong_t)zfs_deadman_synctime_ms / 1000);
 		}
 		vdev_deadman(spa->spa_root_vdev, FTAG);
 
 		/*
 		 * If the process doesn't complete within a grace period of
 		 * zfs_deadman_synctime_ms over the expected finish time,
 		 * then it may be hung and is terminated.
 		 */
 		overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
 		if (gethrtime() > overdue) {
 			fatal(B_FALSE,
 			    "aborting test after %llu seconds because "
 			    "the process is overdue for termination.",
 			    (gethrtime() - zs->zs_proc_start) / NANOSEC);
 		}
 
 		(void) printf("ztest has been running for %lld seconds\n",
 		    (gethrtime() - zs->zs_proc_start) / NANOSEC);
 
 		last_run = gethrtime();
 		delay = MSEC2NSEC(zfs_deadman_checktime_ms);
 	}
 
 	thread_exit();
 }
 
 static void
 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
 {
 	ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
 	ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
 	hrtime_t functime = gethrtime();
 	int i;
 
 	for (i = 0; i < zi->zi_iters; i++)
 		zi->zi_func(zd, id);
 
 	functime = gethrtime() - functime;
 
 	atomic_add_64(&zc->zc_count, 1);
 	atomic_add_64(&zc->zc_time, functime);
 
 	if (ztest_opts.zo_verbose >= 4)
 		(void) printf("%6.2f sec in %s\n",
 		    (double)functime / NANOSEC, zi->zi_funcname);
 }
 
 static __attribute__((noreturn)) void
 ztest_thread(void *arg)
 {
 	int rand;
 	uint64_t id = (uintptr_t)arg;
 	ztest_shared_t *zs = ztest_shared;
 	uint64_t call_next;
 	hrtime_t now;
 	ztest_info_t *zi;
 	ztest_shared_callstate_t *zc;
 
 	while ((now = gethrtime()) < zs->zs_thread_stop) {
 		/*
 		 * See if it's time to force a crash.
 		 */
 		if (now > zs->zs_thread_kill)
 			ztest_kill(zs);
 
 		/*
 		 * If we're getting ENOSPC with some regularity, stop.
 		 */
 		if (zs->zs_enospc_count > 10)
 			break;
 
 		/*
 		 * Pick a random function to execute.
 		 */
 		rand = ztest_random(ZTEST_FUNCS);
 		zi = &ztest_info[rand];
 		zc = ZTEST_GET_SHARED_CALLSTATE(rand);
 		call_next = zc->zc_next;
 
 		if (now >= call_next &&
 		    atomic_cas_64(&zc->zc_next, call_next, call_next +
 		    ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
 			ztest_execute(rand, zi, id);
 		}
 	}
 
 	thread_exit();
 }
 
 static void
 ztest_dataset_name(char *dsname, const char *pool, int d)
 {
 	(void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
 }
 
 static void
 ztest_dataset_destroy(int d)
 {
 	char name[ZFS_MAX_DATASET_NAME_LEN];
 	int t;
 
 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
 
 	if (ztest_opts.zo_verbose >= 3)
 		(void) printf("Destroying %s to free up space\n", name);
 
 	/*
 	 * Cleanup any non-standard clones and snapshots.  In general,
 	 * ztest thread t operates on dataset (t % zopt_datasets),
 	 * so there may be more than one thing to clean up.
 	 */
 	for (t = d; t < ztest_opts.zo_threads;
 	    t += ztest_opts.zo_datasets)
 		ztest_dsl_dataset_cleanup(name, t);
 
 	(void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
 	    DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
 }
 
 static void
 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
 {
 	uint64_t usedobjs, dirobjs, scratch;
 
 	/*
 	 * ZTEST_DIROBJ is the object directory for the entire dataset.
 	 * Therefore, the number of objects in use should equal the
 	 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
 	 * If not, we have an object leak.
 	 *
 	 * Note that we can only check this in ztest_dataset_open(),
 	 * when the open-context and syncing-context values agree.
 	 * That's because zap_count() returns the open-context value,
 	 * while dmu_objset_space() returns the rootbp fill count.
 	 */
 	VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
 	dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
 	ASSERT3U(dirobjs + 1, ==, usedobjs);
 }
 
 static int
 ztest_dataset_open(int d)
 {
 	ztest_ds_t *zd = &ztest_ds[d];
 	uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
 	objset_t *os;
 	zilog_t *zilog;
 	char name[ZFS_MAX_DATASET_NAME_LEN];
 	int error;
 
 	ztest_dataset_name(name, ztest_opts.zo_pool, d);
 
 	(void) pthread_rwlock_rdlock(&ztest_name_lock);
 
 	error = ztest_dataset_create(name);
 	if (error == ENOSPC) {
 		(void) pthread_rwlock_unlock(&ztest_name_lock);
 		ztest_record_enospc(FTAG);
 		return (error);
 	}
 	ASSERT(error == 0 || error == EEXIST);
 
 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
 	    B_TRUE, zd, &os));
 	(void) pthread_rwlock_unlock(&ztest_name_lock);
 
 	ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
 
 	zilog = zd->zd_zilog;
 
 	if (zilog->zl_header->zh_claim_lr_seq != 0 &&
 	    zilog->zl_header->zh_claim_lr_seq < committed_seq)
 		fatal(B_FALSE, "missing log records: "
 		    "claimed %"PRIu64" < committed %"PRIu64"",
 		    zilog->zl_header->zh_claim_lr_seq, committed_seq);
 
 	ztest_dataset_dirobj_verify(zd);
 
 	zil_replay(os, zd, ztest_replay_vector);
 
 	ztest_dataset_dirobj_verify(zd);
 
 	if (ztest_opts.zo_verbose >= 6)
 		(void) printf("%s replay %"PRIu64" blocks, "
 		    "%"PRIu64" records, seq %"PRIu64"\n",
 		    zd->zd_name,
 		    zilog->zl_parse_blk_count,
 		    zilog->zl_parse_lr_count,
 		    zilog->zl_replaying_seq);
 
 	zilog = zil_open(os, ztest_get_data, NULL);
 
 	if (zilog->zl_replaying_seq != 0 &&
 	    zilog->zl_replaying_seq < committed_seq)
 		fatal(B_FALSE, "missing log records: "
 		    "replayed %"PRIu64" < committed %"PRIu64"",
 		    zilog->zl_replaying_seq, committed_seq);
 
 	return (0);
 }
 
 static void
 ztest_dataset_close(int d)
 {
 	ztest_ds_t *zd = &ztest_ds[d];
 
 	zil_close(zd->zd_zilog);
 	dmu_objset_disown(zd->zd_os, B_TRUE, zd);
 
 	ztest_zd_fini(zd);
 }
 
 static int
 ztest_replay_zil_cb(const char *name, void *arg)
 {
 	(void) arg;
 	objset_t *os;
 	ztest_ds_t *zdtmp;
 
 	VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
 	    B_TRUE, FTAG, &os));
 
 	zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
 
 	ztest_zd_init(zdtmp, NULL, os);
 	zil_replay(os, zdtmp, ztest_replay_vector);
 	ztest_zd_fini(zdtmp);
 
 	if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
 	    ztest_opts.zo_verbose >= 6) {
 		zilog_t *zilog = dmu_objset_zil(os);
 
 		(void) printf("%s replay %"PRIu64" blocks, "
 		    "%"PRIu64" records, seq %"PRIu64"\n",
 		    name,
 		    zilog->zl_parse_blk_count,
 		    zilog->zl_parse_lr_count,
 		    zilog->zl_replaying_seq);
 	}
 
 	umem_free(zdtmp, sizeof (ztest_ds_t));
 
 	dmu_objset_disown(os, B_TRUE, FTAG);
 	return (0);
 }
 
 static void
 ztest_freeze(void)
 {
 	ztest_ds_t *zd = &ztest_ds[0];
 	spa_t *spa;
 	int numloops = 0;
 
 	if (ztest_opts.zo_verbose >= 3)
 		(void) printf("testing spa_freeze()...\n");
 
 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 	VERIFY0(ztest_dataset_open(0));
 	ztest_spa = spa;
 
 	/*
 	 * Force the first log block to be transactionally allocated.
 	 * We have to do this before we freeze the pool -- otherwise
 	 * the log chain won't be anchored.
 	 */
 	while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
 		ztest_dmu_object_alloc_free(zd, 0);
 		zil_commit(zd->zd_zilog, 0);
 	}
 
 	txg_wait_synced(spa_get_dsl(spa), 0);
 
 	/*
 	 * Freeze the pool.  This stops spa_sync() from doing anything,
 	 * so that the only way to record changes from now on is the ZIL.
 	 */
 	spa_freeze(spa);
 
 	/*
 	 * Because it is hard to predict how much space a write will actually
 	 * require beforehand, we leave ourselves some fudge space to write over
 	 * capacity.
 	 */
 	uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
 
 	/*
 	 * Run tests that generate log records but don't alter the pool config
 	 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
 	 * We do a txg_wait_synced() after each iteration to force the txg
 	 * to increase well beyond the last synced value in the uberblock.
 	 * The ZIL should be OK with that.
 	 *
 	 * Run a random number of times less than zo_maxloops and ensure we do
 	 * not run out of space on the pool.
 	 */
 	while (ztest_random(10) != 0 &&
 	    numloops++ < ztest_opts.zo_maxloops &&
 	    metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
 		ztest_od_t od;
 		ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
 		VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
 		ztest_io(zd, od.od_object,
 		    ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
 		txg_wait_synced(spa_get_dsl(spa), 0);
 	}
 
 	/*
 	 * Commit all of the changes we just generated.
 	 */
 	zil_commit(zd->zd_zilog, 0);
 	txg_wait_synced(spa_get_dsl(spa), 0);
 
 	/*
 	 * Close our dataset and close the pool.
 	 */
 	ztest_dataset_close(0);
 	spa_close(spa, FTAG);
 	kernel_fini();
 
 	/*
 	 * Open and close the pool and dataset to induce log replay.
 	 */
 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 	ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
 	VERIFY0(ztest_dataset_open(0));
 	ztest_spa = spa;
 	txg_wait_synced(spa_get_dsl(spa), 0);
 	ztest_dataset_close(0);
 	ztest_reguid(NULL, 0);
 
 	spa_close(spa, FTAG);
 	kernel_fini();
 }
 
 static void
 ztest_import_impl(void)
 {
 	importargs_t args = { 0 };
 	nvlist_t *cfg = NULL;
 	int nsearch = 1;
 	char *searchdirs[nsearch];
 	int flags = ZFS_IMPORT_MISSING_LOG;
 
 	searchdirs[0] = ztest_opts.zo_dir;
 	args.paths = nsearch;
 	args.path = searchdirs;
 	args.can_be_active = B_FALSE;
 
 	libpc_handle_t lpch = {
 		.lpc_lib_handle = NULL,
 		.lpc_ops = &libzpool_config_ops,
 		.lpc_printerr = B_TRUE
 	};
 	VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
 	VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
 	fnvlist_free(cfg);
 }
 
 /*
  * Import a storage pool with the given name.
  */
 static void
 ztest_import(ztest_shared_t *zs)
 {
 	spa_t *spa;
 
 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
 
 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 
 	ztest_import_impl();
 
 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 	zs->zs_metaslab_sz =
 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
 	spa_close(spa, FTAG);
 
 	kernel_fini();
 
 	if (!ztest_opts.zo_mmp_test) {
 		ztest_run_zdb(ztest_opts.zo_pool);
 		ztest_freeze();
 		ztest_run_zdb(ztest_opts.zo_pool);
 	}
 
 	(void) pthread_rwlock_destroy(&ztest_name_lock);
 	mutex_destroy(&ztest_vdev_lock);
 	mutex_destroy(&ztest_checkpoint_lock);
 }
 
 /*
  * Kick off threads to run tests on all datasets in parallel.
  */
 static void
 ztest_run(ztest_shared_t *zs)
 {
 	spa_t *spa;
 	objset_t *os;
 	kthread_t *resume_thread, *deadman_thread;
 	kthread_t **run_threads;
 	uint64_t object;
 	int error;
 	int t, d;
 
 	ztest_exiting = B_FALSE;
 
 	/*
 	 * Initialize parent/child shared state.
 	 */
 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
 
 	zs->zs_thread_start = gethrtime();
 	zs->zs_thread_stop =
 	    zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
 	zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
 	zs->zs_thread_kill = zs->zs_thread_stop;
 	if (ztest_random(100) < ztest_opts.zo_killrate) {
 		zs->zs_thread_kill -=
 		    ztest_random(ztest_opts.zo_passtime * NANOSEC);
 	}
 
 	mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
 
 	list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
 	    offsetof(ztest_cb_data_t, zcd_node));
 
 	/*
 	 * Open our pool.  It may need to be imported first depending on
 	 * what tests were running when the previous pass was terminated.
 	 */
 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 	error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
 	if (error) {
 		VERIFY3S(error, ==, ENOENT);
 		ztest_import_impl();
 		VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 		zs->zs_metaslab_sz =
 		    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
 	}
 
 	metaslab_preload_limit = ztest_random(20) + 1;
 	ztest_spa = spa;
 
 	VERIFY0(vdev_raidz_impl_set("cycle"));
 
 	dmu_objset_stats_t dds;
 	VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
 	    DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
 	dmu_objset_fast_stat(os, &dds);
 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
 	zs->zs_guid = dds.dds_guid;
 	dmu_objset_disown(os, B_TRUE, FTAG);
 
 	/*
 	 * Create a thread to periodically resume suspended I/O.
 	 */
 	resume_thread = thread_create(NULL, 0, ztest_resume_thread,
 	    spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
 
 	/*
 	 * Create a deadman thread and set to panic if we hang.
 	 */
 	deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
 	    zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
 
 	spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
 
 	/*
 	 * Verify that we can safely inquire about any object,
 	 * whether it's allocated or not.  To make it interesting,
 	 * we probe a 5-wide window around each power of two.
 	 * This hits all edge cases, including zero and the max.
 	 */
 	for (t = 0; t < 64; t++) {
 		for (d = -5; d <= 5; d++) {
 			error = dmu_object_info(spa->spa_meta_objset,
 			    (1ULL << t) + d, NULL);
 			ASSERT(error == 0 || error == ENOENT ||
 			    error == EINVAL);
 		}
 	}
 
 	/*
 	 * If we got any ENOSPC errors on the previous run, destroy something.
 	 */
 	if (zs->zs_enospc_count != 0) {
 		int d = ztest_random(ztest_opts.zo_datasets);
 		ztest_dataset_destroy(d);
 	}
 	zs->zs_enospc_count = 0;
 
 	/*
 	 * If we were in the middle of ztest_device_removal() and were killed
 	 * we need to ensure the removal and scrub complete before running
 	 * any tests that check ztest_device_removal_active. The removal will
 	 * be restarted automatically when the spa is opened, but we need to
 	 * initiate the scrub manually if it is not already in progress. Note
 	 * that we always run the scrub whenever an indirect vdev exists
 	 * because we have no way of knowing for sure if ztest_device_removal()
 	 * fully completed its scrub before the pool was reimported.
 	 */
 	if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
 		while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
 			txg_wait_synced(spa_get_dsl(spa), 0);
 
 		error = ztest_scrub_impl(spa);
 		if (error == EBUSY)
 			error = 0;
 		ASSERT0(error);
 	}
 
 	run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
 	    UMEM_NOFAIL);
 
 	if (ztest_opts.zo_verbose >= 4)
 		(void) printf("starting main threads...\n");
 
 	/*
 	 * Replay all logs of all datasets in the pool. This is primarily for
 	 * temporary datasets which wouldn't otherwise get replayed, which
 	 * can trigger failures when attempting to offline a SLOG in
 	 * ztest_fault_inject().
 	 */
 	(void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
 	    NULL, DS_FIND_CHILDREN);
 
 	/*
 	 * Kick off all the tests that run in parallel.
 	 */
 	for (t = 0; t < ztest_opts.zo_threads; t++) {
 		if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
 			umem_free(run_threads, ztest_opts.zo_threads *
 			    sizeof (kthread_t *));
 			return;
 		}
 
 		run_threads[t] = thread_create(NULL, 0, ztest_thread,
 		    (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
 		    defclsyspri);
 	}
 
 	/*
 	 * Wait for all of the tests to complete.
 	 */
 	for (t = 0; t < ztest_opts.zo_threads; t++)
 		VERIFY0(thread_join(run_threads[t]));
 
 	/*
 	 * Close all datasets. This must be done after all the threads
 	 * are joined so we can be sure none of the datasets are in-use
 	 * by any of the threads.
 	 */
 	for (t = 0; t < ztest_opts.zo_threads; t++) {
 		if (t < ztest_opts.zo_datasets)
 			ztest_dataset_close(t);
 	}
 
 	txg_wait_synced(spa_get_dsl(spa), 0);
 
 	zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
 	zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
 
 	umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
 
 	/* Kill the resume and deadman threads */
 	ztest_exiting = B_TRUE;
 	VERIFY0(thread_join(resume_thread));
 	VERIFY0(thread_join(deadman_thread));
 	ztest_resume(spa);
 
 	/*
 	 * Right before closing the pool, kick off a bunch of async I/O;
 	 * spa_close() should wait for it to complete.
 	 */
 	for (object = 1; object < 50; object++) {
 		dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
 		    ZIO_PRIORITY_SYNC_READ);
 	}
 
 	/* Verify that at least one commit cb was called in a timely fashion */
 	if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
 		VERIFY0(zc_min_txg_delay);
 
 	spa_close(spa, FTAG);
 
 	/*
 	 * Verify that we can loop over all pools.
 	 */
 	mutex_enter(&spa_namespace_lock);
 	for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
 		if (ztest_opts.zo_verbose > 3)
 			(void) printf("spa_next: found %s\n", spa_name(spa));
 	mutex_exit(&spa_namespace_lock);
 
 	/*
 	 * Verify that we can export the pool and reimport it under a
 	 * different name.
 	 */
 	if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
 		char name[ZFS_MAX_DATASET_NAME_LEN];
 		(void) snprintf(name, sizeof (name), "%s_import",
 		    ztest_opts.zo_pool);
 		ztest_spa_import_export(ztest_opts.zo_pool, name);
 		ztest_spa_import_export(name, ztest_opts.zo_pool);
 	}
 
 	kernel_fini();
 
 	list_destroy(&zcl.zcl_callbacks);
 	mutex_destroy(&zcl.zcl_callbacks_lock);
 	(void) pthread_rwlock_destroy(&ztest_name_lock);
 	mutex_destroy(&ztest_vdev_lock);
 	mutex_destroy(&ztest_checkpoint_lock);
 }
 
 static void
 print_time(hrtime_t t, char *timebuf)
 {
 	hrtime_t s = t / NANOSEC;
 	hrtime_t m = s / 60;
 	hrtime_t h = m / 60;
 	hrtime_t d = h / 24;
 
 	s -= m * 60;
 	m -= h * 60;
 	h -= d * 24;
 
 	timebuf[0] = '\0';
 
 	if (d)
 		(void) sprintf(timebuf,
 		    "%llud%02lluh%02llum%02llus", d, h, m, s);
 	else if (h)
 		(void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
 	else if (m)
 		(void) sprintf(timebuf, "%llum%02llus", m, s);
 	else
 		(void) sprintf(timebuf, "%llus", s);
 }
 
 static nvlist_t *
 make_random_props(void)
 {
 	nvlist_t *props;
 
 	props = fnvlist_alloc();
 
 	if (ztest_random(2) == 0)
 		return (props);
 
 	fnvlist_add_uint64(props,
 	    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
 
 	return (props);
 }
 
 /*
  * Create a storage pool with the given name and initial vdev size.
  * Then test spa_freeze() functionality.
  */
 static void
 ztest_init(ztest_shared_t *zs)
 {
 	spa_t *spa;
 	nvlist_t *nvroot, *props;
 	int i;
 
 	mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
 	mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
 	VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
 
 	kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
 
 	/*
 	 * Create the storage pool.
 	 */
 	(void) spa_destroy(ztest_opts.zo_pool);
 	ztest_shared->zs_vdev_next_leaf = 0;
 	zs->zs_splits = 0;
 	zs->zs_mirrors = ztest_opts.zo_mirrors;
 	nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
 	    NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
 	props = make_random_props();
 
 	/*
 	 * We don't expect the pool to suspend unless maxfaults == 0,
 	 * in which case ztest_fault_inject() temporarily takes away
 	 * the only valid replica.
 	 */
 	fnvlist_add_uint64(props,
 	    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
 	    MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
 
 	for (i = 0; i < SPA_FEATURES; i++) {
 		char *buf;
 
 		if (!spa_feature_table[i].fi_zfs_mod_supported)
 			continue;
 
 		/*
 		 * 75% chance of using the log space map feature. We want ztest
 		 * to exercise both the code paths that use the log space map
 		 * feature and the ones that don't.
 		 */
 		if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
 			continue;
 
 		VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
 		    spa_feature_table[i].fi_uname));
 		fnvlist_add_uint64(props, buf, 0);
 		free(buf);
 	}
 
 	VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
 	fnvlist_free(nvroot);
 	fnvlist_free(props);
 
 	VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
 	zs->zs_metaslab_sz =
 	    1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
 	spa_close(spa, FTAG);
 
 	kernel_fini();
 
 	if (!ztest_opts.zo_mmp_test) {
 		ztest_run_zdb(ztest_opts.zo_pool);
 		ztest_freeze();
 		ztest_run_zdb(ztest_opts.zo_pool);
 	}
 
 	(void) pthread_rwlock_destroy(&ztest_name_lock);
 	mutex_destroy(&ztest_vdev_lock);
 	mutex_destroy(&ztest_checkpoint_lock);
 }
 
 static void
 setup_data_fd(void)
 {
 	static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
 
 	ztest_fd_data = mkstemp(ztest_name_data);
 	ASSERT3S(ztest_fd_data, >=, 0);
 	(void) unlink(ztest_name_data);
 }
 
 static int
 shared_data_size(ztest_shared_hdr_t *hdr)
 {
 	int size;
 
 	size = hdr->zh_hdr_size;
 	size += hdr->zh_opts_size;
 	size += hdr->zh_size;
 	size += hdr->zh_stats_size * hdr->zh_stats_count;
 	size += hdr->zh_ds_size * hdr->zh_ds_count;
 
 	return (size);
 }
 
 static void
 setup_hdr(void)
 {
 	int size;
 	ztest_shared_hdr_t *hdr;
 
 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
 	ASSERT3P(hdr, !=, MAP_FAILED);
 
 	VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
 
 	hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
 	hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
 	hdr->zh_size = sizeof (ztest_shared_t);
 	hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
 	hdr->zh_stats_count = ZTEST_FUNCS;
 	hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
 	hdr->zh_ds_count = ztest_opts.zo_datasets;
 
 	size = shared_data_size(hdr);
 	VERIFY0(ftruncate(ztest_fd_data, size));
 
 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
 }
 
 static void
 setup_data(void)
 {
 	int size, offset;
 	ztest_shared_hdr_t *hdr;
 	uint8_t *buf;
 
 	hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
 	    PROT_READ, MAP_SHARED, ztest_fd_data, 0);
 	ASSERT3P(hdr, !=, MAP_FAILED);
 
 	size = shared_data_size(hdr);
 
 	(void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
 	hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
 	    PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
 	ASSERT3P(hdr, !=, MAP_FAILED);
 	buf = (uint8_t *)hdr;
 
 	offset = hdr->zh_hdr_size;
 	ztest_shared_opts = (void *)&buf[offset];
 	offset += hdr->zh_opts_size;
 	ztest_shared = (void *)&buf[offset];
 	offset += hdr->zh_size;
 	ztest_shared_callstate = (void *)&buf[offset];
 	offset += hdr->zh_stats_size * hdr->zh_stats_count;
 	ztest_shared_ds = (void *)&buf[offset];
 }
 
 static boolean_t
 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
 {
 	pid_t pid;
 	int status;
 	char *cmdbuf = NULL;
 
 	pid = fork();
 
 	if (cmd == NULL) {
 		cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
 		(void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
 		cmd = cmdbuf;
 	}
 
 	if (pid == -1)
 		fatal(B_TRUE, "fork failed");
 
 	if (pid == 0) {	/* child */
 		char fd_data_str[12];
 
 		VERIFY3S(11, >=,
 		    snprintf(fd_data_str, 12, "%d", ztest_fd_data));
 		VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
 
 		if (libpath != NULL) {
 			const char *curlp = getenv("LD_LIBRARY_PATH");
 			if (curlp == NULL)
 				VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
 			else {
 				char *newlp = NULL;
 				VERIFY3S(-1, !=,
 				    asprintf(&newlp, "%s:%s", libpath, curlp));
 				VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
 				free(newlp);
 			}
 		}
 		(void) execl(cmd, cmd, (char *)NULL);
 		ztest_dump_core = B_FALSE;
 		fatal(B_TRUE, "exec failed: %s", cmd);
 	}
 
 	if (cmdbuf != NULL) {
 		umem_free(cmdbuf, MAXPATHLEN);
 		cmd = NULL;
 	}
 
 	while (waitpid(pid, &status, 0) != pid)
 		continue;
 	if (statusp != NULL)
 		*statusp = status;
 
 	if (WIFEXITED(status)) {
 		if (WEXITSTATUS(status) != 0) {
 			(void) fprintf(stderr, "child exited with code %d\n",
 			    WEXITSTATUS(status));
 			exit(2);
 		}
 		return (B_FALSE);
 	} else if (WIFSIGNALED(status)) {
 		if (!ignorekill || WTERMSIG(status) != SIGKILL) {
 			(void) fprintf(stderr, "child died with signal %d\n",
 			    WTERMSIG(status));
 			exit(3);
 		}
 		return (B_TRUE);
 	} else {
 		(void) fprintf(stderr, "something strange happened to child\n");
 		exit(4);
 	}
 }
 
 static void
 ztest_run_init(void)
 {
 	int i;
 
 	ztest_shared_t *zs = ztest_shared;
 
 	/*
 	 * Blow away any existing copy of zpool.cache
 	 */
 	(void) remove(spa_config_path);
 
 	if (ztest_opts.zo_init == 0) {
 		if (ztest_opts.zo_verbose >= 1)
 			(void) printf("Importing pool %s\n",
 			    ztest_opts.zo_pool);
 		ztest_import(zs);
 		return;
 	}
 
 	/*
 	 * Create and initialize our storage pool.
 	 */
 	for (i = 1; i <= ztest_opts.zo_init; i++) {
 		memset(zs, 0, sizeof (*zs));
 		if (ztest_opts.zo_verbose >= 3 &&
 		    ztest_opts.zo_init != 1) {
 			(void) printf("ztest_init(), pass %d\n", i);
 		}
 		ztest_init(zs);
 	}
 }
 
 int
 main(int argc, char **argv)
 {
 	int kills = 0;
 	int iters = 0;
 	int older = 0;
 	int newer = 0;
 	ztest_shared_t *zs;
 	ztest_info_t *zi;
 	ztest_shared_callstate_t *zc;
 	char timebuf[100];
 	char numbuf[NN_NUMBUF_SZ];
 	char *cmd;
 	boolean_t hasalt;
 	int f, err;
 	char *fd_data_str = getenv("ZTEST_FD_DATA");
 	struct sigaction action;
 
 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
 
 	dprintf_setup(&argc, argv);
 	zfs_deadman_synctime_ms = 300000;
 	zfs_deadman_checktime_ms = 30000;
 	/*
 	 * As two-word space map entries may not come up often (especially
 	 * if pool and vdev sizes are small) we want to force at least some
 	 * of them so the feature get tested.
 	 */
 	zfs_force_some_double_word_sm_entries = B_TRUE;
 
 	/*
 	 * Verify that even extensively damaged split blocks with many
 	 * segments can be reconstructed in a reasonable amount of time
 	 * when reconstruction is known to be possible.
 	 *
 	 * Note: the lower this value is, the more damage we inflict, and
 	 * the more time ztest spends in recovering that damage. We chose
 	 * to induce damage 1/100th of the time so recovery is tested but
 	 * not so frequently that ztest doesn't get to test other code paths.
 	 */
 	zfs_reconstruct_indirect_damage_fraction = 100;
 
 	action.sa_handler = sig_handler;
 	sigemptyset(&action.sa_mask);
 	action.sa_flags = 0;
 
 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
 		(void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
 		    strerror(errno));
 		exit(EXIT_FAILURE);
 	}
 
 	if (sigaction(SIGABRT, &action, NULL) < 0) {
 		(void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
 		    strerror(errno));
 		exit(EXIT_FAILURE);
 	}
 
 	/*
 	 * Force random_get_bytes() to use /dev/urandom in order to prevent
 	 * ztest from needlessly depleting the system entropy pool.
 	 */
 	random_path = "/dev/urandom";
 	ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
 	ASSERT3S(ztest_fd_rand, >=, 0);
 
 	if (!fd_data_str) {
 		process_options(argc, argv);
 
 		setup_data_fd();
 		setup_hdr();
 		setup_data();
 		memcpy(ztest_shared_opts, &ztest_opts,
 		    sizeof (*ztest_shared_opts));
 	} else {
 		ztest_fd_data = atoi(fd_data_str);
 		setup_data();
 		memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
 	}
 	ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
 
 	err = ztest_set_global_vars();
 	if (err != 0 && !fd_data_str) {
 		/* error message done by ztest_set_global_vars */
 		exit(EXIT_FAILURE);
 	} else {
 		/* children should not be spawned if setting gvars fails */
 		VERIFY3S(err, ==, 0);
 	}
 
 	/* Override location of zpool.cache */
 	VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
 	    ztest_opts.zo_dir), !=, -1);
 
 	ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
 	    UMEM_NOFAIL);
 	zs = ztest_shared;
 
 	if (fd_data_str) {
 		metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
 		metaslab_df_alloc_threshold =
 		    zs->zs_metaslab_df_alloc_threshold;
 
 		if (zs->zs_do_init)
 			ztest_run_init();
 		else
 			ztest_run(zs);
 		exit(0);
 	}
 
 	hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
 
 	if (ztest_opts.zo_verbose >= 1) {
 		(void) printf("%"PRIu64" vdevs, %d datasets, %d threads,"
 		    "%d %s disks, %"PRIu64" seconds...\n\n",
 		    ztest_opts.zo_vdevs,
 		    ztest_opts.zo_datasets,
 		    ztest_opts.zo_threads,
 		    ztest_opts.zo_raid_children,
 		    ztest_opts.zo_raid_type,
 		    ztest_opts.zo_time);
 	}
 
 	cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
 	(void) strlcpy(cmd, getexecname(), MAXNAMELEN);
 
 	zs->zs_do_init = B_TRUE;
 	if (strlen(ztest_opts.zo_alt_ztest) != 0) {
 		if (ztest_opts.zo_verbose >= 1) {
 			(void) printf("Executing older ztest for "
 			    "initialization: %s\n", ztest_opts.zo_alt_ztest);
 		}
 		VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
 		    ztest_opts.zo_alt_libpath, B_FALSE, NULL));
 	} else {
 		VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
 	}
 	zs->zs_do_init = B_FALSE;
 
 	zs->zs_proc_start = gethrtime();
 	zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
 
 	for (f = 0; f < ZTEST_FUNCS; f++) {
 		zi = &ztest_info[f];
 		zc = ZTEST_GET_SHARED_CALLSTATE(f);
 		if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
 			zc->zc_next = UINT64_MAX;
 		else
 			zc->zc_next = zs->zs_proc_start +
 			    ztest_random(2 * zi->zi_interval[0] + 1);
 	}
 
 	/*
 	 * Run the tests in a loop.  These tests include fault injection
 	 * to verify that self-healing data works, and forced crashes
 	 * to verify that we never lose on-disk consistency.
 	 */
 	while (gethrtime() < zs->zs_proc_stop) {
 		int status;
 		boolean_t killed;
 
 		/*
 		 * Initialize the workload counters for each function.
 		 */
 		for (f = 0; f < ZTEST_FUNCS; f++) {
 			zc = ZTEST_GET_SHARED_CALLSTATE(f);
 			zc->zc_count = 0;
 			zc->zc_time = 0;
 		}
 
 		/* Set the allocation switch size */
 		zs->zs_metaslab_df_alloc_threshold =
 		    ztest_random(zs->zs_metaslab_sz / 4) + 1;
 
 		if (!hasalt || ztest_random(2) == 0) {
 			if (hasalt && ztest_opts.zo_verbose >= 1) {
 				(void) printf("Executing newer ztest: %s\n",
 				    cmd);
 			}
 			newer++;
 			killed = exec_child(cmd, NULL, B_TRUE, &status);
 		} else {
 			if (hasalt && ztest_opts.zo_verbose >= 1) {
 				(void) printf("Executing older ztest: %s\n",
 				    ztest_opts.zo_alt_ztest);
 			}
 			older++;
 			killed = exec_child(ztest_opts.zo_alt_ztest,
 			    ztest_opts.zo_alt_libpath, B_TRUE, &status);
 		}
 
 		if (killed)
 			kills++;
 		iters++;
 
 		if (ztest_opts.zo_verbose >= 1) {
 			hrtime_t now = gethrtime();
 
 			now = MIN(now, zs->zs_proc_stop);
 			print_time(zs->zs_proc_stop - now, timebuf);
 			nicenum(zs->zs_space, numbuf, sizeof (numbuf));
 
 			(void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
 			    "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
 			    iters,
 			    WIFEXITED(status) ? "Complete" : "SIGKILL",
 			    zs->zs_enospc_count,
 			    100.0 * zs->zs_alloc / zs->zs_space,
 			    numbuf,
 			    100.0 * (now - zs->zs_proc_start) /
 			    (ztest_opts.zo_time * NANOSEC), timebuf);
 		}
 
 		if (ztest_opts.zo_verbose >= 2) {
 			(void) printf("\nWorkload summary:\n\n");
 			(void) printf("%7s %9s   %s\n",
 			    "Calls", "Time", "Function");
 			(void) printf("%7s %9s   %s\n",
 			    "-----", "----", "--------");
 			for (f = 0; f < ZTEST_FUNCS; f++) {
 				zi = &ztest_info[f];
 				zc = ZTEST_GET_SHARED_CALLSTATE(f);
 				print_time(zc->zc_time, timebuf);
 				(void) printf("%7"PRIu64" %9s   %s\n",
 				    zc->zc_count, timebuf,
 				    zi->zi_funcname);
 			}
 			(void) printf("\n");
 		}
 
 		if (!ztest_opts.zo_mmp_test)
 			ztest_run_zdb(ztest_opts.zo_pool);
 	}
 
 	if (ztest_opts.zo_verbose >= 1) {
 		if (hasalt) {
 			(void) printf("%d runs of older ztest: %s\n", older,
 			    ztest_opts.zo_alt_ztest);
 			(void) printf("%d runs of newer ztest: %s\n", newer,
 			    cmd);
 		}
 		(void) printf("%d killed, %d completed, %.0f%% kill rate\n",
 		    kills, iters - kills, (100.0 * kills) / MAX(1, iters));
 	}
 
 	umem_free(cmd, MAXNAMELEN);
 
 	return (0);
 }