diff --git a/sys/arm/arm/generic_timer.c b/sys/arm/arm/generic_timer.c
index d98c2a022d71..bad0939b6ab9 100644
--- a/sys/arm/arm/generic_timer.c
+++ b/sys/arm/arm/generic_timer.c
@@ -1,857 +1,859 @@
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2011 The FreeBSD Foundation
* Copyright (c) 2013 Ruslan Bukin
* All rights reserved.
*
* Based on mpcore_timer.c developed by Ben Gray
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/**
* Cortex-A7, Cortex-A15, ARMv8 and later Generic Timer
*/
#include "opt_acpi.h"
#include "opt_platform.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if defined(__aarch64__)
#include
#endif
#ifdef FDT
#include
#include
#include
#endif
#ifdef DEV_ACPI
#include
#include
#endif
#define GT_PHYS_SECURE 0
#define GT_PHYS_NONSECURE 1
#define GT_VIRT 2
#define GT_HYP_PHYS 3
#define GT_HYP_VIRT 4
#define GT_IRQ_COUNT 5
#define GT_CTRL_ENABLE (1 << 0)
#define GT_CTRL_INT_MASK (1 << 1)
#define GT_CTRL_INT_STAT (1 << 2)
#define GT_REG_CTRL 0
#define GT_REG_TVAL 1
#define GT_CNTKCTL_PL0PTEN (1 << 9) /* PL0 Physical timer reg access */
#define GT_CNTKCTL_PL0VTEN (1 << 8) /* PL0 Virtual timer reg access */
#define GT_CNTKCTL_EVNTI (0xf << 4) /* Virtual counter event bits */
#define GT_CNTKCTL_EVNTDIR (1 << 3) /* Virtual counter event transition */
#define GT_CNTKCTL_EVNTEN (1 << 2) /* Enables virtual counter events */
#define GT_CNTKCTL_PL0VCTEN (1 << 1) /* PL0 CNTVCT and CNTFRQ access */
#define GT_CNTKCTL_PL0PCTEN (1 << 0) /* PL0 CNTPCT and CNTFRQ access */
struct arm_tmr_softc;
struct arm_tmr_irq {
struct resource *res;
void *ihl;
int rid;
int idx;
};
struct arm_tmr_softc {
struct arm_tmr_irq irqs[GT_IRQ_COUNT];
uint64_t (*get_cntxct)(bool);
uint32_t clkfreq;
int irq_count;
struct eventtimer et;
bool physical_sys;
bool physical_user;
};
static struct arm_tmr_softc *arm_tmr_sc = NULL;
static const struct arm_tmr_irq_defs {
int idx;
const char *name;
int flags;
} arm_tmr_irq_defs[] = {
{
.idx = GT_PHYS_SECURE,
.name = "sec-phys",
.flags = RF_ACTIVE | RF_OPTIONAL,
},
{
.idx = GT_PHYS_NONSECURE,
.name = "phys",
.flags = RF_ACTIVE,
},
{
.idx = GT_VIRT,
.name = "virt",
.flags = RF_ACTIVE,
},
{
.idx = GT_HYP_PHYS,
.name = "hyp-phys",
.flags = RF_ACTIVE | RF_OPTIONAL,
},
{
.idx = GT_HYP_VIRT,
.name = "hyp-virt",
.flags = RF_ACTIVE | RF_OPTIONAL,
},
};
static int arm_tmr_attach(device_t);
static uint32_t arm_tmr_fill_vdso_timehands(struct vdso_timehands *vdso_th,
struct timecounter *tc);
static void arm_tmr_do_delay(int usec, void *);
static timecounter_get_t arm_tmr_get_timecount;
static struct timecounter arm_tmr_timecount = {
.tc_name = "ARM MPCore Timecounter",
.tc_get_timecount = arm_tmr_get_timecount,
.tc_poll_pps = NULL,
.tc_counter_mask = ~0u,
.tc_frequency = 0,
.tc_quality = 1000,
.tc_fill_vdso_timehands = arm_tmr_fill_vdso_timehands,
};
#ifdef __arm__
#define get_el0(x) cp15_## x ##_get()
#define get_el1(x) cp15_## x ##_get()
#define set_el0(x, val) cp15_## x ##_set(val)
#define set_el1(x, val) cp15_## x ##_set(val)
#define HAS_PHYS true
#else /* __aarch64__ */
#define get_el0(x) READ_SPECIALREG(x ##_el0)
#define get_el1(x) READ_SPECIALREG(x ##_el1)
#define set_el0(x, val) WRITE_SPECIALREG(x ##_el0, val)
#define set_el1(x, val) WRITE_SPECIALREG(x ##_el1, val)
#define HAS_PHYS has_hyp()
#endif
static int
get_freq(void)
{
return (get_el0(cntfrq));
}
static uint64_t
get_cntxct_a64_unstable(bool physical)
{
uint64_t val
;
isb();
if (physical) {
do {
val = get_el0(cntpct);
}
while (((val + 1) & 0x7FF) <= 1);
}
else {
do {
val = get_el0(cntvct);
}
while (((val + 1) & 0x7FF) <= 1);
}
return (val);
}
static uint64_t
get_cntxct(bool physical)
{
uint64_t val;
isb();
if (physical)
val = get_el0(cntpct);
else
val = get_el0(cntvct);
return (val);
}
static int
set_ctrl(uint32_t val, bool physical)
{
if (physical)
set_el0(cntp_ctl, val);
else
set_el0(cntv_ctl, val);
isb();
return (0);
}
static int
set_tval(uint32_t val, bool physical)
{
if (physical)
set_el0(cntp_tval, val);
else
set_el0(cntv_tval, val);
isb();
return (0);
}
static int
get_ctrl(bool physical)
{
uint32_t val;
if (physical)
val = get_el0(cntp_ctl);
else
val = get_el0(cntv_ctl);
return (val);
}
static void
setup_user_access(void *arg __unused)
{
uint32_t cntkctl;
cntkctl = get_el1(cntkctl);
cntkctl &= ~(GT_CNTKCTL_PL0PTEN | GT_CNTKCTL_PL0VTEN |
GT_CNTKCTL_EVNTEN | GT_CNTKCTL_PL0PCTEN);
/* Always enable the virtual timer */
cntkctl |= GT_CNTKCTL_PL0VCTEN;
/* Enable the physical timer if supported */
if (arm_tmr_sc->physical_user) {
cntkctl |= GT_CNTKCTL_PL0PCTEN;
}
set_el1(cntkctl, cntkctl);
isb();
}
#ifdef __aarch64__
static int
cntpct_handler(vm_offset_t va, uint32_t insn, struct trapframe *frame,
uint32_t esr)
{
uint64_t val;
int reg;
if ((insn & MRS_MASK) != MRS_VALUE)
return (0);
if (MRS_SPECIAL(insn) != MRS_SPECIAL(CNTPCT_EL0))
return (0);
reg = MRS_REGISTER(insn);
val = READ_SPECIALREG(cntvct_el0);
if (reg < nitems(frame->tf_x)) {
frame->tf_x[reg] = val;
} else if (reg == 30) {
frame->tf_lr = val;
}
/*
* We will handle this instruction, move to the next so we
* don't trap here again.
*/
frame->tf_elr += INSN_SIZE;
return (1);
}
#endif
static void
tmr_setup_user_access(void *arg __unused)
{
#ifdef __aarch64__
int emulate;
#endif
if (arm_tmr_sc != NULL) {
smp_rendezvous(NULL, setup_user_access, NULL, NULL);
#ifdef __aarch64__
if (TUNABLE_INT_FETCH("hw.emulate_phys_counter", &emulate) &&
emulate != 0) {
install_undef_handler(true, cntpct_handler);
}
#endif
}
}
SYSINIT(tmr_ua, SI_SUB_SMP, SI_ORDER_ANY, tmr_setup_user_access, NULL);
static unsigned
arm_tmr_get_timecount(struct timecounter *tc)
{
return (arm_tmr_sc->get_cntxct(arm_tmr_sc->physical_sys));
}
static int
arm_tmr_start(struct eventtimer *et, sbintime_t first,
sbintime_t period __unused)
{
struct arm_tmr_softc *sc;
int counts, ctrl;
sc = (struct arm_tmr_softc *)et->et_priv;
if (first != 0) {
counts = ((uint32_t)et->et_frequency * first) >> 32;
ctrl = get_ctrl(sc->physical_sys);
ctrl &= ~GT_CTRL_INT_MASK;
ctrl |= GT_CTRL_ENABLE;
set_tval(counts, sc->physical_sys);
set_ctrl(ctrl, sc->physical_sys);
return (0);
}
return (EINVAL);
}
static void
arm_tmr_disable(bool physical)
{
int ctrl;
ctrl = get_ctrl(physical);
ctrl &= ~GT_CTRL_ENABLE;
set_ctrl(ctrl, physical);
}
static int
arm_tmr_stop(struct eventtimer *et)
{
struct arm_tmr_softc *sc;
sc = (struct arm_tmr_softc *)et->et_priv;
arm_tmr_disable(sc->physical_sys);
return (0);
}
static int
arm_tmr_intr(void *arg)
{
struct arm_tmr_softc *sc;
int ctrl;
sc = (struct arm_tmr_softc *)arg;
ctrl = get_ctrl(sc->physical_sys);
if (ctrl & GT_CTRL_INT_STAT) {
ctrl |= GT_CTRL_INT_MASK;
set_ctrl(ctrl, sc->physical_sys);
}
if (sc->et.et_active)
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
return (FILTER_HANDLED);
}
static int
arm_tmr_attach_irq(device_t dev, struct arm_tmr_softc *sc,
const struct arm_tmr_irq_defs *irq_def, int rid, int flags)
{
struct arm_tmr_irq *irq;
irq = &sc->irqs[sc->irq_count];
irq->res = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&rid, flags);
if (irq->res == NULL) {
if (bootverbose || (flags & RF_OPTIONAL) == 0) {
device_printf(dev,
"could not allocate irq for %s interrupt '%s'\n",
(flags & RF_OPTIONAL) != 0 ? "optional" :
"required", irq_def->name);
}
if ((flags & RF_OPTIONAL) == 0)
return (ENXIO);
} else {
if (bootverbose)
device_printf(dev, "allocated irq for '%s'\n",
irq_def->name);
irq->rid = rid;
irq->idx = irq_def->idx;
sc->irq_count++;
}
return (0);
}
#ifdef FDT
static int
arm_tmr_fdt_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "arm,armv8-timer")) {
device_set_desc(dev, "ARMv8 Generic Timer");
return (BUS_PROBE_DEFAULT);
} else if (ofw_bus_is_compatible(dev, "arm,armv7-timer")) {
device_set_desc(dev, "ARMv7 Generic Timer");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
arm_tmr_fdt_attach(device_t dev)
{
struct arm_tmr_softc *sc;
const struct arm_tmr_irq_defs *irq_def;
size_t i;
phandle_t node;
int error, rid;
bool has_names;
sc = device_get_softc(dev);
node = ofw_bus_get_node(dev);
has_names = OF_hasprop(node, "interrupt-names");
for (i = 0; i < nitems(arm_tmr_irq_defs); i++) {
int flags;
/*
* If we don't have names to go off of, we assume that they're
* in the "usual" order with sec-phys first and allocate by idx.
*/
irq_def = &arm_tmr_irq_defs[i];
rid = irq_def->idx;
flags = irq_def->flags;
if (has_names) {
error = ofw_bus_find_string_index(node,
"interrupt-names", irq_def->name, &rid);
/*
* If we have names, missing a name means we don't
* have it.
*/
if (error != 0) {
/*
* Could be noisy on a lot of platforms for no
* good cause.
*/
if (bootverbose || (flags & RF_OPTIONAL) == 0) {
device_printf(dev,
"could not find irq for %s interrupt '%s'\n",
(flags & RF_OPTIONAL) != 0 ?
"optional" : "required",
irq_def->name);
}
if ((flags & RF_OPTIONAL) == 0)
goto out;
continue;
}
/*
* Warn about failing to activate if we did actually
* have the name present.
*/
flags &= ~RF_OPTIONAL;
}
error = arm_tmr_attach_irq(dev, sc, irq_def, rid, flags);
if (error != 0)
goto out;
}
error = arm_tmr_attach(dev);
out:
if (error != 0) {
for (i = 0; i < sc->irq_count; i++) {
bus_release_resource(dev, SYS_RES_IRQ, sc->irqs[i].rid,
sc->irqs[i].res);
}
}
return (error);
}
#endif
#ifdef DEV_ACPI
static void
arm_tmr_acpi_add_irq(device_t parent, device_t dev, int rid, u_int irq)
{
BUS_SET_RESOURCE(parent, dev, SYS_RES_IRQ, rid, irq, 1);
}
static void
arm_tmr_acpi_identify(driver_t *driver, device_t parent)
{
ACPI_TABLE_GTDT *gtdt;
vm_paddr_t physaddr;
device_t dev;
physaddr = acpi_find_table(ACPI_SIG_GTDT);
if (physaddr == 0)
return;
gtdt = acpi_map_table(physaddr, ACPI_SIG_GTDT);
if (gtdt == NULL) {
device_printf(parent, "gic: Unable to map the GTDT\n");
return;
}
dev = BUS_ADD_CHILD(parent, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE,
"generic_timer", -1);
if (dev == NULL) {
device_printf(parent, "add gic child failed\n");
goto out;
}
arm_tmr_acpi_add_irq(parent, dev, GT_PHYS_SECURE,
gtdt->SecureEl1Interrupt);
arm_tmr_acpi_add_irq(parent, dev, GT_PHYS_NONSECURE,
gtdt->NonSecureEl1Interrupt);
arm_tmr_acpi_add_irq(parent, dev, GT_VIRT,
gtdt->VirtualTimerInterrupt);
+ arm_tmr_acpi_add_irq(parent, dev, GT_HYP_PHYS,
+ gtdt->NonSecureEl2Interrupt);
out:
acpi_unmap_table(gtdt);
}
static int
arm_tmr_acpi_probe(device_t dev)
{
device_set_desc(dev, "ARM Generic Timer");
return (BUS_PROBE_NOWILDCARD);
}
static int
arm_tmr_acpi_attach(device_t dev)
{
const struct arm_tmr_irq_defs *irq_def;
struct arm_tmr_softc *sc;
int error;
sc = device_get_softc(dev);
for (int i = 0; i < nitems(arm_tmr_irq_defs); i++) {
irq_def = &arm_tmr_irq_defs[i];
error = arm_tmr_attach_irq(dev, sc, irq_def, irq_def->idx,
irq_def->flags);
if (error != 0)
goto out;
}
error = arm_tmr_attach(dev);
out:
if (error != 0) {
for (int i = 0; i < sc->irq_count; i++) {
bus_release_resource(dev, SYS_RES_IRQ,
sc->irqs[i].rid, sc->irqs[i].res);
}
}
return (error);
}
#endif
static int
arm_tmr_attach(device_t dev)
{
struct arm_tmr_softc *sc;
#ifdef INVARIANTS
const struct arm_tmr_irq_defs *irq_def;
#endif
#ifdef FDT
phandle_t node;
pcell_t clock;
#endif
#ifdef __aarch64__
int user_phys;
#endif
int error;
int i, first_timer, last_timer;
sc = device_get_softc(dev);
if (arm_tmr_sc)
return (ENXIO);
sc->get_cntxct = &get_cntxct;
#ifdef FDT
/* Get the base clock frequency */
node = ofw_bus_get_node(dev);
if (node > 0) {
error = OF_getencprop(node, "clock-frequency", &clock,
sizeof(clock));
if (error > 0)
sc->clkfreq = clock;
if (OF_hasprop(node, "allwinner,sun50i-a64-unstable-timer")) {
sc->get_cntxct = &get_cntxct_a64_unstable;
if (bootverbose)
device_printf(dev,
"Enabling allwinner unstable timer workaround\n");
}
}
#endif
if (sc->clkfreq == 0) {
/* Try to get clock frequency from timer */
sc->clkfreq = get_freq();
}
if (sc->clkfreq == 0) {
device_printf(dev, "No clock frequency specified\n");
return (ENXIO);
}
#ifdef INVARIANTS
/* Confirm that non-optional irqs were allocated before coming in. */
for (i = 0; i < nitems(arm_tmr_irq_defs); i++) {
int j;
irq_def = &arm_tmr_irq_defs[i];
/* Skip optional interrupts */
if ((irq_def->flags & RF_OPTIONAL) != 0)
continue;
for (j = 0; j < sc->irq_count; j++) {
if (sc->irqs[j].idx == irq_def->idx)
break;
}
KASSERT(j < sc->irq_count, ("%s: Missing required interrupt %s",
__func__, irq_def->name));
}
#endif
#ifdef __aarch64__
/*
* Use the virtual timer when we can't use the hypervisor.
* A hypervisor guest may change the virtual timer registers while
* executing so any use of the virtual timer interrupt needs to be
* coordinated with the virtual machine manager.
*/
if (!HAS_PHYS) {
sc->physical_sys = false;
first_timer = GT_VIRT;
last_timer = GT_VIRT;
} else
#endif
/* Otherwise set up the secure and non-secure physical timers. */
{
sc->physical_sys = true;
first_timer = GT_PHYS_SECURE;
last_timer = GT_PHYS_NONSECURE;
}
#ifdef __aarch64__
/*
* The virtual timer is always available on arm and arm64, tell
* userspace to use it.
*/
sc->physical_user = false;
/* Allow use of the physical counter in userspace when available */
if (TUNABLE_INT_FETCH("hw.userspace_allow_phys_counter", &user_phys) &&
user_phys != 0)
sc->physical_user = sc->physical_sys;
#else
/*
* The virtual timer depends on setting cntvoff from the hypervisor
* privilege level/el2, however this is only set on arm64.
*/
sc->physical_user = true;
#endif
arm_tmr_sc = sc;
/* Setup secure, non-secure and virtual IRQs handler */
for (i = 0; i < sc->irq_count; i++) {
/* Only enable IRQs on timers we expect to use */
if (sc->irqs[i].idx < first_timer ||
sc->irqs[i].idx > last_timer)
continue;
error = bus_setup_intr(dev, sc->irqs[i].res, INTR_TYPE_CLK,
arm_tmr_intr, NULL, sc, &sc->irqs[i].ihl);
if (error) {
device_printf(dev, "Unable to alloc int resource.\n");
for (int j = 0; j < i; j++)
bus_teardown_intr(dev, sc->irqs[j].res,
&sc->irqs[j].ihl);
return (ENXIO);
}
}
/* Disable the timers until we are ready */
arm_tmr_disable(false);
if (HAS_PHYS)
arm_tmr_disable(true);
arm_tmr_timecount.tc_frequency = sc->clkfreq;
tc_init(&arm_tmr_timecount);
sc->et.et_name = "ARM MPCore Eventtimer";
sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
sc->et.et_quality = 1000;
sc->et.et_frequency = sc->clkfreq;
sc->et.et_min_period = (0x00000010LLU << 32) / sc->et.et_frequency;
sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency;
sc->et.et_start = arm_tmr_start;
sc->et.et_stop = arm_tmr_stop;
sc->et.et_priv = sc;
et_register(&sc->et);
#if defined(__arm__)
arm_set_delay(arm_tmr_do_delay, sc);
#endif
return (0);
}
#ifdef FDT
static device_method_t arm_tmr_fdt_methods[] = {
DEVMETHOD(device_probe, arm_tmr_fdt_probe),
DEVMETHOD(device_attach, arm_tmr_fdt_attach),
{ 0, 0 }
};
static DEFINE_CLASS_0(generic_timer, arm_tmr_fdt_driver, arm_tmr_fdt_methods,
sizeof(struct arm_tmr_softc));
EARLY_DRIVER_MODULE(timer, simplebus, arm_tmr_fdt_driver, 0, 0,
BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
EARLY_DRIVER_MODULE(timer, ofwbus, arm_tmr_fdt_driver, 0, 0,
BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
#endif
#ifdef DEV_ACPI
static device_method_t arm_tmr_acpi_methods[] = {
DEVMETHOD(device_identify, arm_tmr_acpi_identify),
DEVMETHOD(device_probe, arm_tmr_acpi_probe),
DEVMETHOD(device_attach, arm_tmr_acpi_attach),
{ 0, 0 }
};
static DEFINE_CLASS_0(generic_timer, arm_tmr_acpi_driver, arm_tmr_acpi_methods,
sizeof(struct arm_tmr_softc));
EARLY_DRIVER_MODULE(timer, acpi, arm_tmr_acpi_driver, 0, 0,
BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
#endif
static void
arm_tmr_do_delay(int usec, void *arg)
{
struct arm_tmr_softc *sc = arg;
int32_t counts, counts_per_usec;
uint32_t first, last;
/* Get the number of times to count */
counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
/*
* Clamp the timeout at a maximum value (about 32 seconds with
* a 66MHz clock). *Nobody* should be delay()ing for anywhere
* near that length of time and if they are, they should be hung
* out to dry.
*/
if (usec >= (0x80000000U / counts_per_usec))
counts = (0x80000000U / counts_per_usec) - 1;
else
counts = usec * counts_per_usec;
first = sc->get_cntxct(sc->physical_sys);
while (counts > 0) {
last = sc->get_cntxct(sc->physical_sys);
counts -= (int32_t)(last - first);
first = last;
}
}
#if defined(__aarch64__)
void
DELAY(int usec)
{
int32_t counts;
TSENTER();
/*
* Check the timers are setup, if not just
* use a for loop for the meantime
*/
if (arm_tmr_sc == NULL) {
for (; usec > 0; usec--)
for (counts = 200; counts > 0; counts--)
/*
* Prevent the compiler from optimizing
* out the loop
*/
cpufunc_nullop();
} else
arm_tmr_do_delay(usec, arm_tmr_sc);
TSEXIT();
}
#endif
static uint32_t
arm_tmr_fill_vdso_timehands(struct vdso_timehands *vdso_th,
struct timecounter *tc)
{
vdso_th->th_algo = VDSO_TH_ALGO_ARM_GENTIM;
vdso_th->th_physical = arm_tmr_sc->physical_user;
bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
return (1);
}