diff --git a/sys/arm/arm/generic_timer.c b/sys/arm/arm/generic_timer.c index d98c2a022d71..bad0939b6ab9 100644 --- a/sys/arm/arm/generic_timer.c +++ b/sys/arm/arm/generic_timer.c @@ -1,857 +1,859 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2011 The FreeBSD Foundation * Copyright (c) 2013 Ruslan Bukin * All rights reserved. * * Based on mpcore_timer.c developed by Ben Gray * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /** * Cortex-A7, Cortex-A15, ARMv8 and later Generic Timer */ #include "opt_acpi.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__aarch64__) #include #endif #ifdef FDT #include #include #include #endif #ifdef DEV_ACPI #include #include #endif #define GT_PHYS_SECURE 0 #define GT_PHYS_NONSECURE 1 #define GT_VIRT 2 #define GT_HYP_PHYS 3 #define GT_HYP_VIRT 4 #define GT_IRQ_COUNT 5 #define GT_CTRL_ENABLE (1 << 0) #define GT_CTRL_INT_MASK (1 << 1) #define GT_CTRL_INT_STAT (1 << 2) #define GT_REG_CTRL 0 #define GT_REG_TVAL 1 #define GT_CNTKCTL_PL0PTEN (1 << 9) /* PL0 Physical timer reg access */ #define GT_CNTKCTL_PL0VTEN (1 << 8) /* PL0 Virtual timer reg access */ #define GT_CNTKCTL_EVNTI (0xf << 4) /* Virtual counter event bits */ #define GT_CNTKCTL_EVNTDIR (1 << 3) /* Virtual counter event transition */ #define GT_CNTKCTL_EVNTEN (1 << 2) /* Enables virtual counter events */ #define GT_CNTKCTL_PL0VCTEN (1 << 1) /* PL0 CNTVCT and CNTFRQ access */ #define GT_CNTKCTL_PL0PCTEN (1 << 0) /* PL0 CNTPCT and CNTFRQ access */ struct arm_tmr_softc; struct arm_tmr_irq { struct resource *res; void *ihl; int rid; int idx; }; struct arm_tmr_softc { struct arm_tmr_irq irqs[GT_IRQ_COUNT]; uint64_t (*get_cntxct)(bool); uint32_t clkfreq; int irq_count; struct eventtimer et; bool physical_sys; bool physical_user; }; static struct arm_tmr_softc *arm_tmr_sc = NULL; static const struct arm_tmr_irq_defs { int idx; const char *name; int flags; } arm_tmr_irq_defs[] = { { .idx = GT_PHYS_SECURE, .name = "sec-phys", .flags = RF_ACTIVE | RF_OPTIONAL, }, { .idx = GT_PHYS_NONSECURE, .name = "phys", .flags = RF_ACTIVE, }, { .idx = GT_VIRT, .name = "virt", .flags = RF_ACTIVE, }, { .idx = GT_HYP_PHYS, .name = "hyp-phys", .flags = RF_ACTIVE | RF_OPTIONAL, }, { .idx = GT_HYP_VIRT, .name = "hyp-virt", .flags = RF_ACTIVE | RF_OPTIONAL, }, }; static int arm_tmr_attach(device_t); static uint32_t arm_tmr_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc); static void arm_tmr_do_delay(int usec, void *); static timecounter_get_t arm_tmr_get_timecount; static struct timecounter arm_tmr_timecount = { .tc_name = "ARM MPCore Timecounter", .tc_get_timecount = arm_tmr_get_timecount, .tc_poll_pps = NULL, .tc_counter_mask = ~0u, .tc_frequency = 0, .tc_quality = 1000, .tc_fill_vdso_timehands = arm_tmr_fill_vdso_timehands, }; #ifdef __arm__ #define get_el0(x) cp15_## x ##_get() #define get_el1(x) cp15_## x ##_get() #define set_el0(x, val) cp15_## x ##_set(val) #define set_el1(x, val) cp15_## x ##_set(val) #define HAS_PHYS true #else /* __aarch64__ */ #define get_el0(x) READ_SPECIALREG(x ##_el0) #define get_el1(x) READ_SPECIALREG(x ##_el1) #define set_el0(x, val) WRITE_SPECIALREG(x ##_el0, val) #define set_el1(x, val) WRITE_SPECIALREG(x ##_el1, val) #define HAS_PHYS has_hyp() #endif static int get_freq(void) { return (get_el0(cntfrq)); } static uint64_t get_cntxct_a64_unstable(bool physical) { uint64_t val ; isb(); if (physical) { do { val = get_el0(cntpct); } while (((val + 1) & 0x7FF) <= 1); } else { do { val = get_el0(cntvct); } while (((val + 1) & 0x7FF) <= 1); } return (val); } static uint64_t get_cntxct(bool physical) { uint64_t val; isb(); if (physical) val = get_el0(cntpct); else val = get_el0(cntvct); return (val); } static int set_ctrl(uint32_t val, bool physical) { if (physical) set_el0(cntp_ctl, val); else set_el0(cntv_ctl, val); isb(); return (0); } static int set_tval(uint32_t val, bool physical) { if (physical) set_el0(cntp_tval, val); else set_el0(cntv_tval, val); isb(); return (0); } static int get_ctrl(bool physical) { uint32_t val; if (physical) val = get_el0(cntp_ctl); else val = get_el0(cntv_ctl); return (val); } static void setup_user_access(void *arg __unused) { uint32_t cntkctl; cntkctl = get_el1(cntkctl); cntkctl &= ~(GT_CNTKCTL_PL0PTEN | GT_CNTKCTL_PL0VTEN | GT_CNTKCTL_EVNTEN | GT_CNTKCTL_PL0PCTEN); /* Always enable the virtual timer */ cntkctl |= GT_CNTKCTL_PL0VCTEN; /* Enable the physical timer if supported */ if (arm_tmr_sc->physical_user) { cntkctl |= GT_CNTKCTL_PL0PCTEN; } set_el1(cntkctl, cntkctl); isb(); } #ifdef __aarch64__ static int cntpct_handler(vm_offset_t va, uint32_t insn, struct trapframe *frame, uint32_t esr) { uint64_t val; int reg; if ((insn & MRS_MASK) != MRS_VALUE) return (0); if (MRS_SPECIAL(insn) != MRS_SPECIAL(CNTPCT_EL0)) return (0); reg = MRS_REGISTER(insn); val = READ_SPECIALREG(cntvct_el0); if (reg < nitems(frame->tf_x)) { frame->tf_x[reg] = val; } else if (reg == 30) { frame->tf_lr = val; } /* * We will handle this instruction, move to the next so we * don't trap here again. */ frame->tf_elr += INSN_SIZE; return (1); } #endif static void tmr_setup_user_access(void *arg __unused) { #ifdef __aarch64__ int emulate; #endif if (arm_tmr_sc != NULL) { smp_rendezvous(NULL, setup_user_access, NULL, NULL); #ifdef __aarch64__ if (TUNABLE_INT_FETCH("hw.emulate_phys_counter", &emulate) && emulate != 0) { install_undef_handler(true, cntpct_handler); } #endif } } SYSINIT(tmr_ua, SI_SUB_SMP, SI_ORDER_ANY, tmr_setup_user_access, NULL); static unsigned arm_tmr_get_timecount(struct timecounter *tc) { return (arm_tmr_sc->get_cntxct(arm_tmr_sc->physical_sys)); } static int arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period __unused) { struct arm_tmr_softc *sc; int counts, ctrl; sc = (struct arm_tmr_softc *)et->et_priv; if (first != 0) { counts = ((uint32_t)et->et_frequency * first) >> 32; ctrl = get_ctrl(sc->physical_sys); ctrl &= ~GT_CTRL_INT_MASK; ctrl |= GT_CTRL_ENABLE; set_tval(counts, sc->physical_sys); set_ctrl(ctrl, sc->physical_sys); return (0); } return (EINVAL); } static void arm_tmr_disable(bool physical) { int ctrl; ctrl = get_ctrl(physical); ctrl &= ~GT_CTRL_ENABLE; set_ctrl(ctrl, physical); } static int arm_tmr_stop(struct eventtimer *et) { struct arm_tmr_softc *sc; sc = (struct arm_tmr_softc *)et->et_priv; arm_tmr_disable(sc->physical_sys); return (0); } static int arm_tmr_intr(void *arg) { struct arm_tmr_softc *sc; int ctrl; sc = (struct arm_tmr_softc *)arg; ctrl = get_ctrl(sc->physical_sys); if (ctrl & GT_CTRL_INT_STAT) { ctrl |= GT_CTRL_INT_MASK; set_ctrl(ctrl, sc->physical_sys); } if (sc->et.et_active) sc->et.et_event_cb(&sc->et, sc->et.et_arg); return (FILTER_HANDLED); } static int arm_tmr_attach_irq(device_t dev, struct arm_tmr_softc *sc, const struct arm_tmr_irq_defs *irq_def, int rid, int flags) { struct arm_tmr_irq *irq; irq = &sc->irqs[sc->irq_count]; irq->res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, flags); if (irq->res == NULL) { if (bootverbose || (flags & RF_OPTIONAL) == 0) { device_printf(dev, "could not allocate irq for %s interrupt '%s'\n", (flags & RF_OPTIONAL) != 0 ? "optional" : "required", irq_def->name); } if ((flags & RF_OPTIONAL) == 0) return (ENXIO); } else { if (bootverbose) device_printf(dev, "allocated irq for '%s'\n", irq_def->name); irq->rid = rid; irq->idx = irq_def->idx; sc->irq_count++; } return (0); } #ifdef FDT static int arm_tmr_fdt_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); if (ofw_bus_is_compatible(dev, "arm,armv8-timer")) { device_set_desc(dev, "ARMv8 Generic Timer"); return (BUS_PROBE_DEFAULT); } else if (ofw_bus_is_compatible(dev, "arm,armv7-timer")) { device_set_desc(dev, "ARMv7 Generic Timer"); return (BUS_PROBE_DEFAULT); } return (ENXIO); } static int arm_tmr_fdt_attach(device_t dev) { struct arm_tmr_softc *sc; const struct arm_tmr_irq_defs *irq_def; size_t i; phandle_t node; int error, rid; bool has_names; sc = device_get_softc(dev); node = ofw_bus_get_node(dev); has_names = OF_hasprop(node, "interrupt-names"); for (i = 0; i < nitems(arm_tmr_irq_defs); i++) { int flags; /* * If we don't have names to go off of, we assume that they're * in the "usual" order with sec-phys first and allocate by idx. */ irq_def = &arm_tmr_irq_defs[i]; rid = irq_def->idx; flags = irq_def->flags; if (has_names) { error = ofw_bus_find_string_index(node, "interrupt-names", irq_def->name, &rid); /* * If we have names, missing a name means we don't * have it. */ if (error != 0) { /* * Could be noisy on a lot of platforms for no * good cause. */ if (bootverbose || (flags & RF_OPTIONAL) == 0) { device_printf(dev, "could not find irq for %s interrupt '%s'\n", (flags & RF_OPTIONAL) != 0 ? "optional" : "required", irq_def->name); } if ((flags & RF_OPTIONAL) == 0) goto out; continue; } /* * Warn about failing to activate if we did actually * have the name present. */ flags &= ~RF_OPTIONAL; } error = arm_tmr_attach_irq(dev, sc, irq_def, rid, flags); if (error != 0) goto out; } error = arm_tmr_attach(dev); out: if (error != 0) { for (i = 0; i < sc->irq_count; i++) { bus_release_resource(dev, SYS_RES_IRQ, sc->irqs[i].rid, sc->irqs[i].res); } } return (error); } #endif #ifdef DEV_ACPI static void arm_tmr_acpi_add_irq(device_t parent, device_t dev, int rid, u_int irq) { BUS_SET_RESOURCE(parent, dev, SYS_RES_IRQ, rid, irq, 1); } static void arm_tmr_acpi_identify(driver_t *driver, device_t parent) { ACPI_TABLE_GTDT *gtdt; vm_paddr_t physaddr; device_t dev; physaddr = acpi_find_table(ACPI_SIG_GTDT); if (physaddr == 0) return; gtdt = acpi_map_table(physaddr, ACPI_SIG_GTDT); if (gtdt == NULL) { device_printf(parent, "gic: Unable to map the GTDT\n"); return; } dev = BUS_ADD_CHILD(parent, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE, "generic_timer", -1); if (dev == NULL) { device_printf(parent, "add gic child failed\n"); goto out; } arm_tmr_acpi_add_irq(parent, dev, GT_PHYS_SECURE, gtdt->SecureEl1Interrupt); arm_tmr_acpi_add_irq(parent, dev, GT_PHYS_NONSECURE, gtdt->NonSecureEl1Interrupt); arm_tmr_acpi_add_irq(parent, dev, GT_VIRT, gtdt->VirtualTimerInterrupt); + arm_tmr_acpi_add_irq(parent, dev, GT_HYP_PHYS, + gtdt->NonSecureEl2Interrupt); out: acpi_unmap_table(gtdt); } static int arm_tmr_acpi_probe(device_t dev) { device_set_desc(dev, "ARM Generic Timer"); return (BUS_PROBE_NOWILDCARD); } static int arm_tmr_acpi_attach(device_t dev) { const struct arm_tmr_irq_defs *irq_def; struct arm_tmr_softc *sc; int error; sc = device_get_softc(dev); for (int i = 0; i < nitems(arm_tmr_irq_defs); i++) { irq_def = &arm_tmr_irq_defs[i]; error = arm_tmr_attach_irq(dev, sc, irq_def, irq_def->idx, irq_def->flags); if (error != 0) goto out; } error = arm_tmr_attach(dev); out: if (error != 0) { for (int i = 0; i < sc->irq_count; i++) { bus_release_resource(dev, SYS_RES_IRQ, sc->irqs[i].rid, sc->irqs[i].res); } } return (error); } #endif static int arm_tmr_attach(device_t dev) { struct arm_tmr_softc *sc; #ifdef INVARIANTS const struct arm_tmr_irq_defs *irq_def; #endif #ifdef FDT phandle_t node; pcell_t clock; #endif #ifdef __aarch64__ int user_phys; #endif int error; int i, first_timer, last_timer; sc = device_get_softc(dev); if (arm_tmr_sc) return (ENXIO); sc->get_cntxct = &get_cntxct; #ifdef FDT /* Get the base clock frequency */ node = ofw_bus_get_node(dev); if (node > 0) { error = OF_getencprop(node, "clock-frequency", &clock, sizeof(clock)); if (error > 0) sc->clkfreq = clock; if (OF_hasprop(node, "allwinner,sun50i-a64-unstable-timer")) { sc->get_cntxct = &get_cntxct_a64_unstable; if (bootverbose) device_printf(dev, "Enabling allwinner unstable timer workaround\n"); } } #endif if (sc->clkfreq == 0) { /* Try to get clock frequency from timer */ sc->clkfreq = get_freq(); } if (sc->clkfreq == 0) { device_printf(dev, "No clock frequency specified\n"); return (ENXIO); } #ifdef INVARIANTS /* Confirm that non-optional irqs were allocated before coming in. */ for (i = 0; i < nitems(arm_tmr_irq_defs); i++) { int j; irq_def = &arm_tmr_irq_defs[i]; /* Skip optional interrupts */ if ((irq_def->flags & RF_OPTIONAL) != 0) continue; for (j = 0; j < sc->irq_count; j++) { if (sc->irqs[j].idx == irq_def->idx) break; } KASSERT(j < sc->irq_count, ("%s: Missing required interrupt %s", __func__, irq_def->name)); } #endif #ifdef __aarch64__ /* * Use the virtual timer when we can't use the hypervisor. * A hypervisor guest may change the virtual timer registers while * executing so any use of the virtual timer interrupt needs to be * coordinated with the virtual machine manager. */ if (!HAS_PHYS) { sc->physical_sys = false; first_timer = GT_VIRT; last_timer = GT_VIRT; } else #endif /* Otherwise set up the secure and non-secure physical timers. */ { sc->physical_sys = true; first_timer = GT_PHYS_SECURE; last_timer = GT_PHYS_NONSECURE; } #ifdef __aarch64__ /* * The virtual timer is always available on arm and arm64, tell * userspace to use it. */ sc->physical_user = false; /* Allow use of the physical counter in userspace when available */ if (TUNABLE_INT_FETCH("hw.userspace_allow_phys_counter", &user_phys) && user_phys != 0) sc->physical_user = sc->physical_sys; #else /* * The virtual timer depends on setting cntvoff from the hypervisor * privilege level/el2, however this is only set on arm64. */ sc->physical_user = true; #endif arm_tmr_sc = sc; /* Setup secure, non-secure and virtual IRQs handler */ for (i = 0; i < sc->irq_count; i++) { /* Only enable IRQs on timers we expect to use */ if (sc->irqs[i].idx < first_timer || sc->irqs[i].idx > last_timer) continue; error = bus_setup_intr(dev, sc->irqs[i].res, INTR_TYPE_CLK, arm_tmr_intr, NULL, sc, &sc->irqs[i].ihl); if (error) { device_printf(dev, "Unable to alloc int resource.\n"); for (int j = 0; j < i; j++) bus_teardown_intr(dev, sc->irqs[j].res, &sc->irqs[j].ihl); return (ENXIO); } } /* Disable the timers until we are ready */ arm_tmr_disable(false); if (HAS_PHYS) arm_tmr_disable(true); arm_tmr_timecount.tc_frequency = sc->clkfreq; tc_init(&arm_tmr_timecount); sc->et.et_name = "ARM MPCore Eventtimer"; sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU; sc->et.et_quality = 1000; sc->et.et_frequency = sc->clkfreq; sc->et.et_min_period = (0x00000010LLU << 32) / sc->et.et_frequency; sc->et.et_max_period = (0xfffffffeLLU << 32) / sc->et.et_frequency; sc->et.et_start = arm_tmr_start; sc->et.et_stop = arm_tmr_stop; sc->et.et_priv = sc; et_register(&sc->et); #if defined(__arm__) arm_set_delay(arm_tmr_do_delay, sc); #endif return (0); } #ifdef FDT static device_method_t arm_tmr_fdt_methods[] = { DEVMETHOD(device_probe, arm_tmr_fdt_probe), DEVMETHOD(device_attach, arm_tmr_fdt_attach), { 0, 0 } }; static DEFINE_CLASS_0(generic_timer, arm_tmr_fdt_driver, arm_tmr_fdt_methods, sizeof(struct arm_tmr_softc)); EARLY_DRIVER_MODULE(timer, simplebus, arm_tmr_fdt_driver, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE); EARLY_DRIVER_MODULE(timer, ofwbus, arm_tmr_fdt_driver, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE); #endif #ifdef DEV_ACPI static device_method_t arm_tmr_acpi_methods[] = { DEVMETHOD(device_identify, arm_tmr_acpi_identify), DEVMETHOD(device_probe, arm_tmr_acpi_probe), DEVMETHOD(device_attach, arm_tmr_acpi_attach), { 0, 0 } }; static DEFINE_CLASS_0(generic_timer, arm_tmr_acpi_driver, arm_tmr_acpi_methods, sizeof(struct arm_tmr_softc)); EARLY_DRIVER_MODULE(timer, acpi, arm_tmr_acpi_driver, 0, 0, BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE); #endif static void arm_tmr_do_delay(int usec, void *arg) { struct arm_tmr_softc *sc = arg; int32_t counts, counts_per_usec; uint32_t first, last; /* Get the number of times to count */ counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1); /* * Clamp the timeout at a maximum value (about 32 seconds with * a 66MHz clock). *Nobody* should be delay()ing for anywhere * near that length of time and if they are, they should be hung * out to dry. */ if (usec >= (0x80000000U / counts_per_usec)) counts = (0x80000000U / counts_per_usec) - 1; else counts = usec * counts_per_usec; first = sc->get_cntxct(sc->physical_sys); while (counts > 0) { last = sc->get_cntxct(sc->physical_sys); counts -= (int32_t)(last - first); first = last; } } #if defined(__aarch64__) void DELAY(int usec) { int32_t counts; TSENTER(); /* * Check the timers are setup, if not just * use a for loop for the meantime */ if (arm_tmr_sc == NULL) { for (; usec > 0; usec--) for (counts = 200; counts > 0; counts--) /* * Prevent the compiler from optimizing * out the loop */ cpufunc_nullop(); } else arm_tmr_do_delay(usec, arm_tmr_sc); TSEXIT(); } #endif static uint32_t arm_tmr_fill_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc) { vdso_th->th_algo = VDSO_TH_ALGO_ARM_GENTIM; vdso_th->th_physical = arm_tmr_sc->physical_user; bzero(vdso_th->th_res, sizeof(vdso_th->th_res)); return (1); }