diff --git a/sys/dev/hyperv/vmbus/vmbus.c b/sys/dev/hyperv/vmbus/vmbus.c index 31951cbf4858..f0dea84426eb 100644 --- a/sys/dev/hyperv/vmbus/vmbus.c +++ b/sys/dev/hyperv/vmbus/vmbus.c @@ -1,1679 +1,1678 @@ /*- * Copyright (c) 2009-2012,2016-2017 Microsoft Corp. * Copyright (c) 2012 NetApp Inc. * Copyright (c) 2012 Citrix Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * VM Bus Driver Implementation */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpi_if.h" #include "pcib_if.h" #include "vmbus_if.h" #define VMBUS_GPADL_START 0xe1e10 struct vmbus_msghc { struct vmbus_xact *mh_xact; struct hypercall_postmsg_in mh_inprm_save; }; static void vmbus_identify(driver_t *, device_t); static int vmbus_probe(device_t); static int vmbus_attach(device_t); static int vmbus_detach(device_t); static int vmbus_read_ivar(device_t, device_t, int, uintptr_t *); static int vmbus_child_pnpinfo(device_t, device_t, struct sbuf *); static struct resource *vmbus_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags); static int vmbus_alloc_msi(device_t bus, device_t dev, int count, int maxcount, int *irqs); static int vmbus_release_msi(device_t bus, device_t dev, int count, int *irqs); static int vmbus_alloc_msix(device_t bus, device_t dev, int *irq); static int vmbus_release_msix(device_t bus, device_t dev, int irq); static int vmbus_map_msi(device_t bus, device_t dev, int irq, uint64_t *addr, uint32_t *data); static uint32_t vmbus_get_version_method(device_t, device_t); static int vmbus_probe_guid_method(device_t, device_t, const struct hyperv_guid *); static uint32_t vmbus_get_vcpu_id_method(device_t bus, device_t dev, int cpu); static struct taskqueue *vmbus_get_eventtq_method(device_t, device_t, int); #ifdef EARLY_AP_STARTUP static void vmbus_intrhook(void *); #endif static int vmbus_init(struct vmbus_softc *); static int vmbus_connect(struct vmbus_softc *, uint32_t); static int vmbus_req_channels(struct vmbus_softc *sc); static void vmbus_disconnect(struct vmbus_softc *); static int vmbus_scan(struct vmbus_softc *); static void vmbus_scan_teardown(struct vmbus_softc *); static void vmbus_scan_done(struct vmbus_softc *, const struct vmbus_message *); static void vmbus_chanmsg_handle(struct vmbus_softc *, const struct vmbus_message *); static void vmbus_msg_task(void *, int); static void vmbus_synic_setup(void *); static void vmbus_synic_teardown(void *); static int vmbus_sysctl_version(SYSCTL_HANDLER_ARGS); static int vmbus_dma_alloc(struct vmbus_softc *); static void vmbus_dma_free(struct vmbus_softc *); static int vmbus_intr_setup(struct vmbus_softc *); static void vmbus_intr_teardown(struct vmbus_softc *); static int vmbus_doattach(struct vmbus_softc *); static void vmbus_event_proc_dummy(struct vmbus_softc *, int); static struct vmbus_softc *vmbus_sc; SYSCTL_NODE(_hw, OID_AUTO, vmbus, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "Hyper-V vmbus"); static int vmbus_pin_evttask = 1; SYSCTL_INT(_hw_vmbus, OID_AUTO, pin_evttask, CTLFLAG_RDTUN, &vmbus_pin_evttask, 0, "Pin event tasks to their respective CPU"); extern inthand_t IDTVEC(vmbus_isr), IDTVEC(vmbus_isr_pti); #define VMBUS_ISR_ADDR trunc_page((uintptr_t)IDTVEC(vmbus_isr_pti)) uint32_t vmbus_current_version; static const uint32_t vmbus_version[] = { VMBUS_VERSION_WIN10, VMBUS_VERSION_WIN8_1, VMBUS_VERSION_WIN8, VMBUS_VERSION_WIN7, VMBUS_VERSION_WS2008 }; static const vmbus_chanmsg_proc_t vmbus_chanmsg_handlers[VMBUS_CHANMSG_TYPE_MAX] = { VMBUS_CHANMSG_PROC(CHOFFER_DONE, vmbus_scan_done), VMBUS_CHANMSG_PROC_WAKEUP(CONNECT_RESP) }; static device_method_t vmbus_methods[] = { /* Device interface */ DEVMETHOD(device_identify, vmbus_identify), DEVMETHOD(device_probe, vmbus_probe), DEVMETHOD(device_attach, vmbus_attach), DEVMETHOD(device_detach, vmbus_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, bus_generic_resume), /* Bus interface */ DEVMETHOD(bus_add_child, bus_generic_add_child), DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_read_ivar, vmbus_read_ivar), DEVMETHOD(bus_child_pnpinfo, vmbus_child_pnpinfo), DEVMETHOD(bus_alloc_resource, vmbus_alloc_resource), DEVMETHOD(bus_release_resource, bus_generic_release_resource), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), #if __FreeBSD_version >= 1100000 DEVMETHOD(bus_get_cpus, bus_generic_get_cpus), #endif /* pcib interface */ DEVMETHOD(pcib_alloc_msi, vmbus_alloc_msi), DEVMETHOD(pcib_release_msi, vmbus_release_msi), DEVMETHOD(pcib_alloc_msix, vmbus_alloc_msix), DEVMETHOD(pcib_release_msix, vmbus_release_msix), DEVMETHOD(pcib_map_msi, vmbus_map_msi), /* Vmbus interface */ DEVMETHOD(vmbus_get_version, vmbus_get_version_method), DEVMETHOD(vmbus_probe_guid, vmbus_probe_guid_method), DEVMETHOD(vmbus_get_vcpu_id, vmbus_get_vcpu_id_method), DEVMETHOD(vmbus_get_event_taskq, vmbus_get_eventtq_method), DEVMETHOD_END }; static driver_t vmbus_driver = { "vmbus", vmbus_methods, sizeof(struct vmbus_softc) }; static devclass_t vmbus_devclass; DRIVER_MODULE(vmbus, pcib, vmbus_driver, vmbus_devclass, NULL, NULL); DRIVER_MODULE(vmbus, acpi_syscontainer, vmbus_driver, vmbus_devclass, NULL, NULL); MODULE_DEPEND(vmbus, acpi, 1, 1, 1); MODULE_DEPEND(vmbus, pci, 1, 1, 1); MODULE_VERSION(vmbus, 1); static __inline struct vmbus_softc * vmbus_get_softc(void) { return vmbus_sc; } void vmbus_msghc_reset(struct vmbus_msghc *mh, size_t dsize) { struct hypercall_postmsg_in *inprm; if (dsize > HYPERCALL_POSTMSGIN_DSIZE_MAX) panic("invalid data size %zu", dsize); inprm = vmbus_xact_req_data(mh->mh_xact); memset(inprm, 0, HYPERCALL_POSTMSGIN_SIZE); inprm->hc_connid = VMBUS_CONNID_MESSAGE; inprm->hc_msgtype = HYPERV_MSGTYPE_CHANNEL; inprm->hc_dsize = dsize; } struct vmbus_msghc * vmbus_msghc_get(struct vmbus_softc *sc, size_t dsize) { struct vmbus_msghc *mh; struct vmbus_xact *xact; if (dsize > HYPERCALL_POSTMSGIN_DSIZE_MAX) panic("invalid data size %zu", dsize); xact = vmbus_xact_get(sc->vmbus_xc, dsize + __offsetof(struct hypercall_postmsg_in, hc_data[0])); if (xact == NULL) return (NULL); mh = vmbus_xact_priv(xact, sizeof(*mh)); mh->mh_xact = xact; vmbus_msghc_reset(mh, dsize); return (mh); } void vmbus_msghc_put(struct vmbus_softc *sc __unused, struct vmbus_msghc *mh) { vmbus_xact_put(mh->mh_xact); } void * vmbus_msghc_dataptr(struct vmbus_msghc *mh) { struct hypercall_postmsg_in *inprm; inprm = vmbus_xact_req_data(mh->mh_xact); return (inprm->hc_data); } int vmbus_msghc_exec_noresult(struct vmbus_msghc *mh) { sbintime_t time = SBT_1MS; struct hypercall_postmsg_in *inprm; bus_addr_t inprm_paddr; int i; inprm = vmbus_xact_req_data(mh->mh_xact); inprm_paddr = vmbus_xact_req_paddr(mh->mh_xact); /* * Save the input parameter so that we could restore the input * parameter if the Hypercall failed. * * XXX * Is this really necessary?! i.e. Will the Hypercall ever * overwrite the input parameter? */ memcpy(&mh->mh_inprm_save, inprm, HYPERCALL_POSTMSGIN_SIZE); /* * In order to cope with transient failures, e.g. insufficient * resources on host side, we retry the post message Hypercall * several times. 20 retries seem sufficient. */ #define HC_RETRY_MAX 20 for (i = 0; i < HC_RETRY_MAX; ++i) { uint64_t status; status = hypercall_post_message(inprm_paddr); if (status == HYPERCALL_STATUS_SUCCESS) return 0; pause_sbt("hcpmsg", time, 0, C_HARDCLOCK); if (time < SBT_1S * 2) time *= 2; /* Restore input parameter and try again */ memcpy(inprm, &mh->mh_inprm_save, HYPERCALL_POSTMSGIN_SIZE); } #undef HC_RETRY_MAX return EIO; } int vmbus_msghc_exec(struct vmbus_softc *sc __unused, struct vmbus_msghc *mh) { int error; vmbus_xact_activate(mh->mh_xact); error = vmbus_msghc_exec_noresult(mh); if (error) vmbus_xact_deactivate(mh->mh_xact); return error; } void vmbus_msghc_exec_cancel(struct vmbus_softc *sc __unused, struct vmbus_msghc *mh) { vmbus_xact_deactivate(mh->mh_xact); } const struct vmbus_message * vmbus_msghc_wait_result(struct vmbus_softc *sc __unused, struct vmbus_msghc *mh) { size_t resp_len; return (vmbus_xact_wait(mh->mh_xact, &resp_len)); } const struct vmbus_message * vmbus_msghc_poll_result(struct vmbus_softc *sc __unused, struct vmbus_msghc *mh) { size_t resp_len; return (vmbus_xact_poll(mh->mh_xact, &resp_len)); } void vmbus_msghc_wakeup(struct vmbus_softc *sc, const struct vmbus_message *msg) { vmbus_xact_ctx_wakeup(sc->vmbus_xc, msg, sizeof(*msg)); } uint32_t vmbus_gpadl_alloc(struct vmbus_softc *sc) { uint32_t gpadl; again: gpadl = atomic_fetchadd_int(&sc->vmbus_gpadl, 1); if (gpadl == 0) goto again; return (gpadl); } /* Used for Hyper-V socket when guest client connects to host */ int vmbus_req_tl_connect(struct hyperv_guid *guest_srv_id, struct hyperv_guid *host_srv_id) { struct vmbus_softc *sc = vmbus_get_softc(); struct vmbus_chanmsg_tl_connect *req; struct vmbus_msghc *mh; int error; if (!sc) return ENXIO; mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) { device_printf(sc->vmbus_dev, "can not get msg hypercall for tl connect\n"); return ENXIO; } req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_TL_CONN; req->guest_endpoint_id = *guest_srv_id; req->host_service_id = *host_srv_id; error = vmbus_msghc_exec_noresult(mh); vmbus_msghc_put(sc, mh); if (error) { device_printf(sc->vmbus_dev, "tl connect msg hypercall failed\n"); } return error; } static int vmbus_connect(struct vmbus_softc *sc, uint32_t version) { struct vmbus_chanmsg_connect *req; const struct vmbus_message *msg; struct vmbus_msghc *mh; int error, done = 0; mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) return ENXIO; req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_CONNECT; req->chm_ver = version; req->chm_evtflags = sc->vmbus_evtflags_dma.hv_paddr; req->chm_mnf1 = sc->vmbus_mnf1_dma.hv_paddr; req->chm_mnf2 = sc->vmbus_mnf2_dma.hv_paddr; error = vmbus_msghc_exec(sc, mh); if (error) { vmbus_msghc_put(sc, mh); return error; } msg = vmbus_msghc_wait_result(sc, mh); done = ((const struct vmbus_chanmsg_connect_resp *) msg->msg_data)->chm_done; vmbus_msghc_put(sc, mh); return (done ? 0 : EOPNOTSUPP); } static int vmbus_init(struct vmbus_softc *sc) { int i; for (i = 0; i < nitems(vmbus_version); ++i) { int error; error = vmbus_connect(sc, vmbus_version[i]); if (!error) { vmbus_current_version = vmbus_version[i]; sc->vmbus_version = vmbus_version[i]; device_printf(sc->vmbus_dev, "version %u.%u\n", VMBUS_VERSION_MAJOR(sc->vmbus_version), VMBUS_VERSION_MINOR(sc->vmbus_version)); return 0; } } return ENXIO; } static void vmbus_disconnect(struct vmbus_softc *sc) { struct vmbus_chanmsg_disconnect *req; struct vmbus_msghc *mh; int error; mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) { device_printf(sc->vmbus_dev, "can not get msg hypercall for disconnect\n"); return; } req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_DISCONNECT; error = vmbus_msghc_exec_noresult(mh); vmbus_msghc_put(sc, mh); if (error) { device_printf(sc->vmbus_dev, "disconnect msg hypercall failed\n"); } } static int vmbus_req_channels(struct vmbus_softc *sc) { struct vmbus_chanmsg_chrequest *req; struct vmbus_msghc *mh; int error; mh = vmbus_msghc_get(sc, sizeof(*req)); if (mh == NULL) return ENXIO; req = vmbus_msghc_dataptr(mh); req->chm_hdr.chm_type = VMBUS_CHANMSG_TYPE_CHREQUEST; error = vmbus_msghc_exec_noresult(mh); vmbus_msghc_put(sc, mh); return error; } static void vmbus_scan_done_task(void *xsc, int pending __unused) { struct vmbus_softc *sc = xsc; - mtx_lock(&Giant); + bus_topo_lock(); sc->vmbus_scandone = true; - mtx_unlock(&Giant); + bus_topo_unlock(); wakeup(&sc->vmbus_scandone); } static void vmbus_scan_done(struct vmbus_softc *sc, const struct vmbus_message *msg __unused) { taskqueue_enqueue(sc->vmbus_devtq, &sc->vmbus_scandone_task); } static int vmbus_scan(struct vmbus_softc *sc) { int error; /* * Identify, probe and attach for non-channel devices. */ bus_generic_probe(sc->vmbus_dev); bus_generic_attach(sc->vmbus_dev); /* * This taskqueue serializes vmbus devices' attach and detach * for channel offer and rescind messages. */ sc->vmbus_devtq = taskqueue_create("vmbus dev", M_WAITOK, taskqueue_thread_enqueue, &sc->vmbus_devtq); taskqueue_start_threads(&sc->vmbus_devtq, 1, PI_NET, "vmbusdev"); TASK_INIT(&sc->vmbus_scandone_task, 0, vmbus_scan_done_task, sc); /* * This taskqueue handles sub-channel detach, so that vmbus * device's detach running in vmbus_devtq can drain its sub- * channels. */ sc->vmbus_subchtq = taskqueue_create("vmbus subch", M_WAITOK, taskqueue_thread_enqueue, &sc->vmbus_subchtq); taskqueue_start_threads(&sc->vmbus_subchtq, 1, PI_NET, "vmbussch"); /* * Start vmbus scanning. */ error = vmbus_req_channels(sc); if (error) { device_printf(sc->vmbus_dev, "channel request failed: %d\n", error); return (error); } /* * Wait for all vmbus devices from the initial channel offers to be * attached. */ - GIANT_REQUIRED; + bus_topo_assert(); while (!sc->vmbus_scandone) - mtx_sleep(&sc->vmbus_scandone, &Giant, 0, "vmbusdev", 0); + mtx_sleep(&sc->vmbus_scandone, bus_topo_mtx(), 0, "vmbusdev", 0); if (bootverbose) { device_printf(sc->vmbus_dev, "device scan, probe and attach " "done\n"); } return (0); } static void vmbus_scan_teardown(struct vmbus_softc *sc) { - GIANT_REQUIRED; + bus_topo_assert(); if (sc->vmbus_devtq != NULL) { - mtx_unlock(&Giant); + bus_topo_unlock(); taskqueue_free(sc->vmbus_devtq); - mtx_lock(&Giant); + bus_topo_lock(); sc->vmbus_devtq = NULL; } if (sc->vmbus_subchtq != NULL) { - mtx_unlock(&Giant); + bus_topo_unlock(); taskqueue_free(sc->vmbus_subchtq); - mtx_lock(&Giant); + bus_topo_lock(); sc->vmbus_subchtq = NULL; } } static void vmbus_chanmsg_handle(struct vmbus_softc *sc, const struct vmbus_message *msg) { vmbus_chanmsg_proc_t msg_proc; uint32_t msg_type; msg_type = ((const struct vmbus_chanmsg_hdr *)msg->msg_data)->chm_type; if (msg_type >= VMBUS_CHANMSG_TYPE_MAX) { device_printf(sc->vmbus_dev, "unknown message type 0x%x\n", msg_type); return; } msg_proc = vmbus_chanmsg_handlers[msg_type]; if (msg_proc != NULL) msg_proc(sc, msg); /* Channel specific processing */ vmbus_chan_msgproc(sc, msg); } static void vmbus_msg_task(void *xsc, int pending __unused) { struct vmbus_softc *sc = xsc; volatile struct vmbus_message *msg; msg = VMBUS_PCPU_GET(sc, message, curcpu) + VMBUS_SINT_MESSAGE; for (;;) { if (msg->msg_type == HYPERV_MSGTYPE_NONE) { /* No message */ break; } else if (msg->msg_type == HYPERV_MSGTYPE_CHANNEL) { /* Channel message */ vmbus_chanmsg_handle(sc, __DEVOLATILE(const struct vmbus_message *, msg)); } msg->msg_type = HYPERV_MSGTYPE_NONE; /* * Make sure the write to msg_type (i.e. set to * HYPERV_MSGTYPE_NONE) happens before we read the * msg_flags and EOMing. Otherwise, the EOMing will * not deliver any more messages since there is no * empty slot * * NOTE: * mb() is used here, since atomic_thread_fence_seq_cst() * will become compiler fence on UP kernel. */ mb(); if (msg->msg_flags & VMBUS_MSGFLAG_PENDING) { /* * This will cause message queue rescan to possibly * deliver another msg from the hypervisor */ wrmsr(MSR_HV_EOM, 0); } } } static __inline int vmbus_handle_intr1(struct vmbus_softc *sc, struct trapframe *frame, int cpu) { volatile struct vmbus_message *msg; struct vmbus_message *msg_base; msg_base = VMBUS_PCPU_GET(sc, message, cpu); /* * Check event timer. * * TODO: move this to independent IDT vector. */ msg = msg_base + VMBUS_SINT_TIMER; if (msg->msg_type == HYPERV_MSGTYPE_TIMER_EXPIRED) { msg->msg_type = HYPERV_MSGTYPE_NONE; vmbus_et_intr(frame); /* * Make sure the write to msg_type (i.e. set to * HYPERV_MSGTYPE_NONE) happens before we read the * msg_flags and EOMing. Otherwise, the EOMing will * not deliver any more messages since there is no * empty slot * * NOTE: * mb() is used here, since atomic_thread_fence_seq_cst() * will become compiler fence on UP kernel. */ mb(); if (msg->msg_flags & VMBUS_MSGFLAG_PENDING) { /* * This will cause message queue rescan to possibly * deliver another msg from the hypervisor */ wrmsr(MSR_HV_EOM, 0); } } /* * Check events. Hot path for network and storage I/O data; high rate. * * NOTE: * As recommended by the Windows guest fellows, we check events before * checking messages. */ sc->vmbus_event_proc(sc, cpu); /* * Check messages. Mainly management stuffs; ultra low rate. */ msg = msg_base + VMBUS_SINT_MESSAGE; if (__predict_false(msg->msg_type != HYPERV_MSGTYPE_NONE)) { taskqueue_enqueue(VMBUS_PCPU_GET(sc, message_tq, cpu), VMBUS_PCPU_PTR(sc, message_task, cpu)); } return (FILTER_HANDLED); } void vmbus_handle_intr(struct trapframe *trap_frame) { struct vmbus_softc *sc = vmbus_get_softc(); int cpu = curcpu; /* * Disable preemption. */ critical_enter(); /* * Do a little interrupt counting. */ (*VMBUS_PCPU_GET(sc, intr_cnt, cpu))++; vmbus_handle_intr1(sc, trap_frame, cpu); /* * Enable preemption. */ critical_exit(); } static void vmbus_synic_setup(void *xsc) { struct vmbus_softc *sc = xsc; int cpu = curcpu; uint64_t val, orig; uint32_t sint; if (hyperv_features & CPUID_HV_MSR_VP_INDEX) { /* Save virtual processor id. */ VMBUS_PCPU_GET(sc, vcpuid, cpu) = rdmsr(MSR_HV_VP_INDEX); } else { /* Set virtual processor id to 0 for compatibility. */ VMBUS_PCPU_GET(sc, vcpuid, cpu) = 0; } /* * Setup the SynIC message. */ orig = rdmsr(MSR_HV_SIMP); val = MSR_HV_SIMP_ENABLE | (orig & MSR_HV_SIMP_RSVD_MASK) | ((VMBUS_PCPU_GET(sc, message_dma.hv_paddr, cpu) >> PAGE_SHIFT) << MSR_HV_SIMP_PGSHIFT); wrmsr(MSR_HV_SIMP, val); /* * Setup the SynIC event flags. */ orig = rdmsr(MSR_HV_SIEFP); val = MSR_HV_SIEFP_ENABLE | (orig & MSR_HV_SIEFP_RSVD_MASK) | ((VMBUS_PCPU_GET(sc, event_flags_dma.hv_paddr, cpu) >> PAGE_SHIFT) << MSR_HV_SIEFP_PGSHIFT); wrmsr(MSR_HV_SIEFP, val); /* * Configure and unmask SINT for message and event flags. */ sint = MSR_HV_SINT0 + VMBUS_SINT_MESSAGE; orig = rdmsr(sint); val = sc->vmbus_idtvec | MSR_HV_SINT_AUTOEOI | (orig & MSR_HV_SINT_RSVD_MASK); wrmsr(sint, val); /* * Configure and unmask SINT for timer. */ sint = MSR_HV_SINT0 + VMBUS_SINT_TIMER; orig = rdmsr(sint); val = sc->vmbus_idtvec | MSR_HV_SINT_AUTOEOI | (orig & MSR_HV_SINT_RSVD_MASK); wrmsr(sint, val); /* * All done; enable SynIC. */ orig = rdmsr(MSR_HV_SCONTROL); val = MSR_HV_SCTRL_ENABLE | (orig & MSR_HV_SCTRL_RSVD_MASK); wrmsr(MSR_HV_SCONTROL, val); } static void vmbus_synic_teardown(void *arg) { uint64_t orig; uint32_t sint; /* * Disable SynIC. */ orig = rdmsr(MSR_HV_SCONTROL); wrmsr(MSR_HV_SCONTROL, (orig & MSR_HV_SCTRL_RSVD_MASK)); /* * Mask message and event flags SINT. */ sint = MSR_HV_SINT0 + VMBUS_SINT_MESSAGE; orig = rdmsr(sint); wrmsr(sint, orig | MSR_HV_SINT_MASKED); /* * Mask timer SINT. */ sint = MSR_HV_SINT0 + VMBUS_SINT_TIMER; orig = rdmsr(sint); wrmsr(sint, orig | MSR_HV_SINT_MASKED); /* * Teardown SynIC message. */ orig = rdmsr(MSR_HV_SIMP); wrmsr(MSR_HV_SIMP, (orig & MSR_HV_SIMP_RSVD_MASK)); /* * Teardown SynIC event flags. */ orig = rdmsr(MSR_HV_SIEFP); wrmsr(MSR_HV_SIEFP, (orig & MSR_HV_SIEFP_RSVD_MASK)); } static int vmbus_dma_alloc(struct vmbus_softc *sc) { bus_dma_tag_t parent_dtag; uint8_t *evtflags; int cpu; parent_dtag = bus_get_dma_tag(sc->vmbus_dev); CPU_FOREACH(cpu) { void *ptr; /* * Per-cpu messages and event flags. */ ptr = hyperv_dmamem_alloc(parent_dtag, PAGE_SIZE, 0, PAGE_SIZE, VMBUS_PCPU_PTR(sc, message_dma, cpu), BUS_DMA_WAITOK | BUS_DMA_ZERO); if (ptr == NULL) return ENOMEM; VMBUS_PCPU_GET(sc, message, cpu) = ptr; ptr = hyperv_dmamem_alloc(parent_dtag, PAGE_SIZE, 0, PAGE_SIZE, VMBUS_PCPU_PTR(sc, event_flags_dma, cpu), BUS_DMA_WAITOK | BUS_DMA_ZERO); if (ptr == NULL) return ENOMEM; VMBUS_PCPU_GET(sc, event_flags, cpu) = ptr; } evtflags = hyperv_dmamem_alloc(parent_dtag, PAGE_SIZE, 0, PAGE_SIZE, &sc->vmbus_evtflags_dma, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (evtflags == NULL) return ENOMEM; sc->vmbus_rx_evtflags = (u_long *)evtflags; sc->vmbus_tx_evtflags = (u_long *)(evtflags + (PAGE_SIZE / 2)); sc->vmbus_evtflags = evtflags; sc->vmbus_mnf1 = hyperv_dmamem_alloc(parent_dtag, PAGE_SIZE, 0, PAGE_SIZE, &sc->vmbus_mnf1_dma, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (sc->vmbus_mnf1 == NULL) return ENOMEM; sc->vmbus_mnf2 = hyperv_dmamem_alloc(parent_dtag, PAGE_SIZE, 0, sizeof(struct vmbus_mnf), &sc->vmbus_mnf2_dma, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (sc->vmbus_mnf2 == NULL) return ENOMEM; return 0; } static void vmbus_dma_free(struct vmbus_softc *sc) { int cpu; if (sc->vmbus_evtflags != NULL) { hyperv_dmamem_free(&sc->vmbus_evtflags_dma, sc->vmbus_evtflags); sc->vmbus_evtflags = NULL; sc->vmbus_rx_evtflags = NULL; sc->vmbus_tx_evtflags = NULL; } if (sc->vmbus_mnf1 != NULL) { hyperv_dmamem_free(&sc->vmbus_mnf1_dma, sc->vmbus_mnf1); sc->vmbus_mnf1 = NULL; } if (sc->vmbus_mnf2 != NULL) { hyperv_dmamem_free(&sc->vmbus_mnf2_dma, sc->vmbus_mnf2); sc->vmbus_mnf2 = NULL; } CPU_FOREACH(cpu) { if (VMBUS_PCPU_GET(sc, message, cpu) != NULL) { hyperv_dmamem_free( VMBUS_PCPU_PTR(sc, message_dma, cpu), VMBUS_PCPU_GET(sc, message, cpu)); VMBUS_PCPU_GET(sc, message, cpu) = NULL; } if (VMBUS_PCPU_GET(sc, event_flags, cpu) != NULL) { hyperv_dmamem_free( VMBUS_PCPU_PTR(sc, event_flags_dma, cpu), VMBUS_PCPU_GET(sc, event_flags, cpu)); VMBUS_PCPU_GET(sc, event_flags, cpu) = NULL; } } } static int vmbus_intr_setup(struct vmbus_softc *sc) { int cpu; CPU_FOREACH(cpu) { char buf[MAXCOMLEN + 1]; cpuset_t cpu_mask; /* Allocate an interrupt counter for Hyper-V interrupt */ snprintf(buf, sizeof(buf), "cpu%d:hyperv", cpu); intrcnt_add(buf, VMBUS_PCPU_PTR(sc, intr_cnt, cpu)); /* * Setup taskqueue to handle events. Task will be per- * channel. */ VMBUS_PCPU_GET(sc, event_tq, cpu) = taskqueue_create_fast( "hyperv event", M_WAITOK, taskqueue_thread_enqueue, VMBUS_PCPU_PTR(sc, event_tq, cpu)); if (vmbus_pin_evttask) { CPU_SETOF(cpu, &cpu_mask); taskqueue_start_threads_cpuset( VMBUS_PCPU_PTR(sc, event_tq, cpu), 1, PI_NET, &cpu_mask, "hvevent%d", cpu); } else { taskqueue_start_threads( VMBUS_PCPU_PTR(sc, event_tq, cpu), 1, PI_NET, "hvevent%d", cpu); } /* * Setup tasks and taskqueues to handle messages. */ VMBUS_PCPU_GET(sc, message_tq, cpu) = taskqueue_create_fast( "hyperv msg", M_WAITOK, taskqueue_thread_enqueue, VMBUS_PCPU_PTR(sc, message_tq, cpu)); CPU_SETOF(cpu, &cpu_mask); taskqueue_start_threads_cpuset( VMBUS_PCPU_PTR(sc, message_tq, cpu), 1, PI_NET, &cpu_mask, "hvmsg%d", cpu); TASK_INIT(VMBUS_PCPU_PTR(sc, message_task, cpu), 0, vmbus_msg_task, sc); } #if defined(__amd64__) && defined(KLD_MODULE) pmap_pti_add_kva(VMBUS_ISR_ADDR, VMBUS_ISR_ADDR + PAGE_SIZE, true); #endif /* * All Hyper-V ISR required resources are setup, now let's find a * free IDT vector for Hyper-V ISR and set it up. */ sc->vmbus_idtvec = lapic_ipi_alloc(pti ? IDTVEC(vmbus_isr_pti) : IDTVEC(vmbus_isr)); if (sc->vmbus_idtvec < 0) { #if defined(__amd64__) && defined(KLD_MODULE) pmap_pti_remove_kva(VMBUS_ISR_ADDR, VMBUS_ISR_ADDR + PAGE_SIZE); #endif device_printf(sc->vmbus_dev, "cannot find free IDT vector\n"); return ENXIO; } if (bootverbose) { device_printf(sc->vmbus_dev, "vmbus IDT vector %d\n", sc->vmbus_idtvec); } return 0; } static void vmbus_intr_teardown(struct vmbus_softc *sc) { int cpu; if (sc->vmbus_idtvec >= 0) { lapic_ipi_free(sc->vmbus_idtvec); sc->vmbus_idtvec = -1; } #if defined(__amd64__) && defined(KLD_MODULE) pmap_pti_remove_kva(VMBUS_ISR_ADDR, VMBUS_ISR_ADDR + PAGE_SIZE); #endif CPU_FOREACH(cpu) { if (VMBUS_PCPU_GET(sc, event_tq, cpu) != NULL) { taskqueue_free(VMBUS_PCPU_GET(sc, event_tq, cpu)); VMBUS_PCPU_GET(sc, event_tq, cpu) = NULL; } if (VMBUS_PCPU_GET(sc, message_tq, cpu) != NULL) { taskqueue_drain(VMBUS_PCPU_GET(sc, message_tq, cpu), VMBUS_PCPU_PTR(sc, message_task, cpu)); taskqueue_free(VMBUS_PCPU_GET(sc, message_tq, cpu)); VMBUS_PCPU_GET(sc, message_tq, cpu) = NULL; } } } static int vmbus_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { return (ENOENT); } static int vmbus_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) { const struct vmbus_channel *chan; char guidbuf[HYPERV_GUID_STRLEN]; chan = vmbus_get_channel(child); if (chan == NULL) { /* Event timer device, which does not belong to a channel */ return (0); } hyperv_guid2str(&chan->ch_guid_type, guidbuf, sizeof(guidbuf)); sbuf_printf(sb, "classid=%s", guidbuf); hyperv_guid2str(&chan->ch_guid_inst, guidbuf, sizeof(guidbuf)); sbuf_printf(sb, " deviceid=%s", guidbuf); return (0); } int vmbus_add_child(struct vmbus_channel *chan) { struct vmbus_softc *sc = chan->ch_vmbus; device_t parent = sc->vmbus_dev; - mtx_lock(&Giant); - + bus_topo_lock(); chan->ch_dev = device_add_child(parent, NULL, -1); if (chan->ch_dev == NULL) { - mtx_unlock(&Giant); + bus_topo_unlock(); device_printf(parent, "device_add_child for chan%u failed\n", chan->ch_id); return (ENXIO); } device_set_ivars(chan->ch_dev, chan); device_probe_and_attach(chan->ch_dev); + bus_topo_unlock(); - mtx_unlock(&Giant); return (0); } int vmbus_delete_child(struct vmbus_channel *chan) { int error = 0; - mtx_lock(&Giant); + bus_topo_lock(); if (chan->ch_dev != NULL) { error = device_delete_child(chan->ch_vmbus->vmbus_dev, chan->ch_dev); chan->ch_dev = NULL; } - mtx_unlock(&Giant); + bus_topo_unlock(); return (error); } static int vmbus_sysctl_version(SYSCTL_HANDLER_ARGS) { struct vmbus_softc *sc = arg1; char verstr[16]; snprintf(verstr, sizeof(verstr), "%u.%u", VMBUS_VERSION_MAJOR(sc->vmbus_version), VMBUS_VERSION_MINOR(sc->vmbus_version)); return sysctl_handle_string(oidp, verstr, sizeof(verstr), req); } /* * We need the function to make sure the MMIO resource is allocated from the * ranges found in _CRS. * * For the release function, we can use bus_generic_release_resource(). */ static struct resource * vmbus_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { device_t parent = device_get_parent(dev); struct resource *res; #ifdef NEW_PCIB if (type == SYS_RES_MEMORY) { struct vmbus_softc *sc = device_get_softc(dev); res = pcib_host_res_alloc(&sc->vmbus_mmio_res, child, type, rid, start, end, count, flags); } else #endif { res = BUS_ALLOC_RESOURCE(parent, child, type, rid, start, end, count, flags); } return (res); } static int vmbus_alloc_msi(device_t bus, device_t dev, int count, int maxcount, int *irqs) { return (PCIB_ALLOC_MSI(device_get_parent(bus), dev, count, maxcount, irqs)); } static int vmbus_release_msi(device_t bus, device_t dev, int count, int *irqs) { return (PCIB_RELEASE_MSI(device_get_parent(bus), dev, count, irqs)); } static int vmbus_alloc_msix(device_t bus, device_t dev, int *irq) { return (PCIB_ALLOC_MSIX(device_get_parent(bus), dev, irq)); } static int vmbus_release_msix(device_t bus, device_t dev, int irq) { return (PCIB_RELEASE_MSIX(device_get_parent(bus), dev, irq)); } static int vmbus_map_msi(device_t bus, device_t dev, int irq, uint64_t *addr, uint32_t *data) { return (PCIB_MAP_MSI(device_get_parent(bus), dev, irq, addr, data)); } static uint32_t vmbus_get_version_method(device_t bus, device_t dev) { struct vmbus_softc *sc = device_get_softc(bus); return sc->vmbus_version; } static int vmbus_probe_guid_method(device_t bus, device_t dev, const struct hyperv_guid *guid) { const struct vmbus_channel *chan = vmbus_get_channel(dev); if (memcmp(&chan->ch_guid_type, guid, sizeof(struct hyperv_guid)) == 0) return 0; return ENXIO; } static uint32_t vmbus_get_vcpu_id_method(device_t bus, device_t dev, int cpu) { const struct vmbus_softc *sc = device_get_softc(bus); return (VMBUS_PCPU_GET(sc, vcpuid, cpu)); } static struct taskqueue * vmbus_get_eventtq_method(device_t bus, device_t dev __unused, int cpu) { const struct vmbus_softc *sc = device_get_softc(bus); KASSERT(cpu >= 0 && cpu < mp_ncpus, ("invalid cpu%d", cpu)); return (VMBUS_PCPU_GET(sc, event_tq, cpu)); } #ifdef NEW_PCIB #define VTPM_BASE_ADDR 0xfed40000 #define FOUR_GB (1ULL << 32) enum parse_pass { parse_64, parse_32 }; struct parse_context { device_t vmbus_dev; enum parse_pass pass; }; static ACPI_STATUS parse_crs(ACPI_RESOURCE *res, void *ctx) { const struct parse_context *pc = ctx; device_t vmbus_dev = pc->vmbus_dev; struct vmbus_softc *sc = device_get_softc(vmbus_dev); UINT64 start, end; switch (res->Type) { case ACPI_RESOURCE_TYPE_ADDRESS32: start = res->Data.Address32.Address.Minimum; end = res->Data.Address32.Address.Maximum; break; case ACPI_RESOURCE_TYPE_ADDRESS64: start = res->Data.Address64.Address.Minimum; end = res->Data.Address64.Address.Maximum; break; default: /* Unused types. */ return (AE_OK); } /* * We don't use <1MB addresses. */ if (end < 0x100000) return (AE_OK); /* Don't conflict with vTPM. */ if (end >= VTPM_BASE_ADDR && start < VTPM_BASE_ADDR) end = VTPM_BASE_ADDR - 1; if ((pc->pass == parse_32 && start < FOUR_GB) || (pc->pass == parse_64 && start >= FOUR_GB)) pcib_host_res_decodes(&sc->vmbus_mmio_res, SYS_RES_MEMORY, start, end, 0); return (AE_OK); } static void vmbus_get_crs(device_t dev, device_t vmbus_dev, enum parse_pass pass) { struct parse_context pc; ACPI_STATUS status; if (bootverbose) device_printf(dev, "walking _CRS, pass=%d\n", pass); pc.vmbus_dev = vmbus_dev; pc.pass = pass; status = AcpiWalkResources(acpi_get_handle(dev), "_CRS", parse_crs, &pc); if (bootverbose && ACPI_FAILURE(status)) device_printf(dev, "_CRS: not found, pass=%d\n", pass); } static void vmbus_get_mmio_res_pass(device_t dev, enum parse_pass pass) { device_t acpi0, parent; parent = device_get_parent(dev); acpi0 = device_get_parent(parent); if (strcmp("acpi0", device_get_nameunit(acpi0)) == 0) { device_t *children; int count; /* * Try to locate VMBUS resources and find _CRS on them. */ if (device_get_children(acpi0, &children, &count) == 0) { int i; for (i = 0; i < count; ++i) { if (!device_is_attached(children[i])) continue; if (strcmp("vmbus_res", device_get_name(children[i])) == 0) vmbus_get_crs(children[i], dev, pass); } free(children, M_TEMP); } /* * Try to find _CRS on acpi. */ vmbus_get_crs(acpi0, dev, pass); } else { device_printf(dev, "not grandchild of acpi\n"); } /* * Try to find _CRS on parent. */ vmbus_get_crs(parent, dev, pass); } static void vmbus_get_mmio_res(device_t dev) { struct vmbus_softc *sc = device_get_softc(dev); /* * We walk the resources twice to make sure that: in the resource * list, the 32-bit resources appear behind the 64-bit resources. * NB: resource_list_add() uses INSERT_TAIL. This way, when we * iterate through the list to find a range for a 64-bit BAR in * vmbus_alloc_resource(), we can make sure we try to use >4GB * ranges first. */ pcib_host_res_init(dev, &sc->vmbus_mmio_res); vmbus_get_mmio_res_pass(dev, parse_64); vmbus_get_mmio_res_pass(dev, parse_32); } /* * On Gen2 VMs, Hyper-V provides mmio space for framebuffer. * This mmio address range is not useable for other PCI devices. * Currently only efifb and vbefb drivers are using this range without * reserving it from system. * Therefore, vmbus driver reserves it before any other PCI device * drivers start to request mmio addresses. */ static struct resource *hv_fb_res; static void vmbus_fb_mmio_res(device_t dev) { struct efi_fb *efifb; struct vbe_fb *vbefb; rman_res_t fb_start, fb_end, fb_count; int fb_height, fb_width; caddr_t kmdp; struct vmbus_softc *sc = device_get_softc(dev); int rid = 0; kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); efifb = (struct efi_fb *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_FB); vbefb = (struct vbe_fb *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_VBE_FB); if (efifb != NULL) { fb_start = efifb->fb_addr; fb_end = efifb->fb_addr + efifb->fb_size; fb_count = efifb->fb_size; fb_height = efifb->fb_height; fb_width = efifb->fb_width; } else if (vbefb != NULL) { fb_start = vbefb->fb_addr; fb_end = vbefb->fb_addr + vbefb->fb_size; fb_count = vbefb->fb_size; fb_height = vbefb->fb_height; fb_width = vbefb->fb_width; } else { if (bootverbose) device_printf(dev, "no preloaded kernel fb information\n"); /* We are on Gen1 VM, just return. */ return; } if (bootverbose) device_printf(dev, "fb: fb_addr: %#jx, size: %#jx, " "actual size needed: 0x%x\n", fb_start, fb_count, fb_height * fb_width); hv_fb_res = pcib_host_res_alloc(&sc->vmbus_mmio_res, dev, SYS_RES_MEMORY, &rid, fb_start, fb_end, fb_count, RF_ACTIVE | rman_make_alignment_flags(PAGE_SIZE)); if (hv_fb_res && bootverbose) device_printf(dev, "successfully reserved memory for framebuffer " "starting at %#jx, size %#jx\n", fb_start, fb_count); } static void vmbus_free_mmio_res(device_t dev) { struct vmbus_softc *sc = device_get_softc(dev); pcib_host_res_free(dev, &sc->vmbus_mmio_res); if (hv_fb_res) hv_fb_res = NULL; } #endif /* NEW_PCIB */ static void vmbus_identify(driver_t *driver, device_t parent) { if (device_get_unit(parent) != 0 || vm_guest != VM_GUEST_HV || (hyperv_features & CPUID_HV_MSR_SYNIC) == 0) return; device_add_child(parent, "vmbus", -1); } static int vmbus_probe(device_t dev) { if (device_get_unit(dev) != 0 || vm_guest != VM_GUEST_HV || (hyperv_features & CPUID_HV_MSR_SYNIC) == 0) return (ENXIO); device_set_desc(dev, "Hyper-V Vmbus"); return (BUS_PROBE_DEFAULT); } /** * @brief Main vmbus driver initialization routine. * * Here, we * - initialize the vmbus driver context * - setup various driver entry points * - invoke the vmbus hv main init routine * - get the irq resource * - invoke the vmbus to add the vmbus root device * - setup the vmbus root device * - retrieve the channel offers */ static int vmbus_doattach(struct vmbus_softc *sc) { struct sysctl_oid_list *child; struct sysctl_ctx_list *ctx; int ret; if (sc->vmbus_flags & VMBUS_FLAG_ATTACHED) return (0); #ifdef NEW_PCIB vmbus_get_mmio_res(sc->vmbus_dev); vmbus_fb_mmio_res(sc->vmbus_dev); #endif sc->vmbus_flags |= VMBUS_FLAG_ATTACHED; sc->vmbus_gpadl = VMBUS_GPADL_START; mtx_init(&sc->vmbus_prichan_lock, "vmbus prichan", NULL, MTX_DEF); TAILQ_INIT(&sc->vmbus_prichans); mtx_init(&sc->vmbus_chan_lock, "vmbus channel", NULL, MTX_DEF); TAILQ_INIT(&sc->vmbus_chans); sc->vmbus_chmap = malloc( sizeof(struct vmbus_channel *) * VMBUS_CHAN_MAX, M_DEVBUF, M_WAITOK | M_ZERO); /* * Create context for "post message" Hypercalls */ sc->vmbus_xc = vmbus_xact_ctx_create(bus_get_dma_tag(sc->vmbus_dev), HYPERCALL_POSTMSGIN_SIZE, VMBUS_MSG_SIZE, sizeof(struct vmbus_msghc)); if (sc->vmbus_xc == NULL) { ret = ENXIO; goto cleanup; } /* * Allocate DMA stuffs. */ ret = vmbus_dma_alloc(sc); if (ret != 0) goto cleanup; /* * Setup interrupt. */ ret = vmbus_intr_setup(sc); if (ret != 0) goto cleanup; /* * Setup SynIC. */ if (bootverbose) device_printf(sc->vmbus_dev, "smp_started = %d\n", smp_started); smp_rendezvous(NULL, vmbus_synic_setup, NULL, sc); sc->vmbus_flags |= VMBUS_FLAG_SYNIC; /* * Initialize vmbus, e.g. connect to Hypervisor. */ ret = vmbus_init(sc); if (ret != 0) goto cleanup; if (sc->vmbus_version == VMBUS_VERSION_WS2008 || sc->vmbus_version == VMBUS_VERSION_WIN7) sc->vmbus_event_proc = vmbus_event_proc_compat; else sc->vmbus_event_proc = vmbus_event_proc; ret = vmbus_scan(sc); if (ret != 0) goto cleanup; ctx = device_get_sysctl_ctx(sc->vmbus_dev); child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vmbus_dev)); SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "version", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, vmbus_sysctl_version, "A", "vmbus version"); return (ret); cleanup: vmbus_scan_teardown(sc); vmbus_intr_teardown(sc); vmbus_dma_free(sc); if (sc->vmbus_xc != NULL) { vmbus_xact_ctx_destroy(sc->vmbus_xc); sc->vmbus_xc = NULL; } free(__DEVOLATILE(void *, sc->vmbus_chmap), M_DEVBUF); mtx_destroy(&sc->vmbus_prichan_lock); mtx_destroy(&sc->vmbus_chan_lock); return (ret); } static void vmbus_event_proc_dummy(struct vmbus_softc *sc __unused, int cpu __unused) { } #ifdef EARLY_AP_STARTUP static void vmbus_intrhook(void *xsc) { struct vmbus_softc *sc = xsc; if (bootverbose) device_printf(sc->vmbus_dev, "intrhook\n"); vmbus_doattach(sc); config_intrhook_disestablish(&sc->vmbus_intrhook); } #endif /* EARLY_AP_STARTUP */ static int vmbus_attach(device_t dev) { vmbus_sc = device_get_softc(dev); vmbus_sc->vmbus_dev = dev; vmbus_sc->vmbus_idtvec = -1; /* * Event processing logic will be configured: * - After the vmbus protocol version negotiation. * - Before we request channel offers. */ vmbus_sc->vmbus_event_proc = vmbus_event_proc_dummy; #ifdef EARLY_AP_STARTUP /* * Defer the real attach until the pause(9) works as expected. */ vmbus_sc->vmbus_intrhook.ich_func = vmbus_intrhook; vmbus_sc->vmbus_intrhook.ich_arg = vmbus_sc; config_intrhook_establish(&vmbus_sc->vmbus_intrhook); #else /* !EARLY_AP_STARTUP */ /* * If the system has already booted and thread * scheduling is possible indicated by the global * cold set to zero, we just call the driver * initialization directly. */ if (!cold) vmbus_doattach(vmbus_sc); #endif /* EARLY_AP_STARTUP */ return (0); } static int vmbus_detach(device_t dev) { struct vmbus_softc *sc = device_get_softc(dev); bus_generic_detach(dev); vmbus_chan_destroy_all(sc); vmbus_scan_teardown(sc); vmbus_disconnect(sc); if (sc->vmbus_flags & VMBUS_FLAG_SYNIC) { sc->vmbus_flags &= ~VMBUS_FLAG_SYNIC; smp_rendezvous(NULL, vmbus_synic_teardown, NULL, NULL); } vmbus_intr_teardown(sc); vmbus_dma_free(sc); if (sc->vmbus_xc != NULL) { vmbus_xact_ctx_destroy(sc->vmbus_xc); sc->vmbus_xc = NULL; } free(__DEVOLATILE(void *, sc->vmbus_chmap), M_DEVBUF); mtx_destroy(&sc->vmbus_prichan_lock); mtx_destroy(&sc->vmbus_chan_lock); #ifdef NEW_PCIB vmbus_free_mmio_res(dev); #endif return (0); } #ifndef EARLY_AP_STARTUP static void vmbus_sysinit(void *arg __unused) { struct vmbus_softc *sc = vmbus_get_softc(); if (vm_guest != VM_GUEST_HV || sc == NULL) return; /* * If the system has already booted and thread * scheduling is possible, as indicated by the * global cold set to zero, we just call the driver * initialization directly. */ if (!cold) vmbus_doattach(sc); } /* * NOTE: * We have to start as the last step of SI_SUB_SMP, i.e. after SMP is * initialized. */ SYSINIT(vmbus_initialize, SI_SUB_SMP, SI_ORDER_ANY, vmbus_sysinit, NULL); #endif /* !EARLY_AP_STARTUP */