diff --git a/sys/dev/hwpmc/hwpmc_mod.c b/sys/dev/hwpmc/hwpmc_mod.c
index fb6aa3ad4588..f9ea87769cae 100644
--- a/sys/dev/hwpmc/hwpmc_mod.c
+++ b/sys/dev/hwpmc/hwpmc_mod.c
@@ -1,5878 +1,5888 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2003-2008 Joseph Koshy
  * Copyright (c) 2007 The FreeBSD Foundation
  * Copyright (c) 2018 Matthew Macy
  * All rights reserved.
  *
  * Portions of this software were developed by A. Joseph Koshy under
  * sponsorship from the FreeBSD Foundation and Google, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/domainset.h>
 #include <sys/eventhandler.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/module.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/pmc.h>
 #include <sys/pmckern.h>
 #include <sys/pmclog.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/queue.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sched.h>
 #include <sys/signalvar.h>
 #include <sys/smp.h>
 #include <sys/sx.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/syslog.h>
 #include <sys/taskqueue.h>
 #include <sys/vnode.h>
 
 #include <sys/linker.h>		/* needs to be after <sys/malloc.h> */
 
 #include <machine/atomic.h>
 #include <machine/md_var.h>
 
 #include <vm/vm.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 
 #include "hwpmc_soft.h"
 
 #define PMC_EPOCH_ENTER()						\
     struct epoch_tracker pmc_et;					\
     epoch_enter_preempt(global_epoch_preempt, &pmc_et)
 
 #define PMC_EPOCH_EXIT()						\
     epoch_exit_preempt(global_epoch_preempt, &pmc_et)
 
 /*
  * Types
  */
 
 enum pmc_flags {
 	PMC_FLAG_NONE	  = 0x00, /* do nothing */
 	PMC_FLAG_REMOVE   = 0x01, /* atomically remove entry from hash */
 	PMC_FLAG_ALLOCATE = 0x02, /* add entry to hash if not found */
 	PMC_FLAG_NOWAIT   = 0x04, /* do not wait for mallocs */
 };
 
 /*
  * The offset in sysent where the syscall is allocated.
  */
 static int pmc_syscall_num = NO_SYSCALL;
 
 struct pmc_cpu		**pmc_pcpu;	 /* per-cpu state */
 pmc_value_t		*pmc_pcpu_saved; /* saved PMC values: CSW handling */
 
 #define	PMC_PCPU_SAVED(C, R)	pmc_pcpu_saved[(R) + md->pmd_npmc * (C)]
 
 struct mtx_pool		*pmc_mtxpool;
 static int		*pmc_pmcdisp;	 /* PMC row dispositions */
 
 #define	PMC_ROW_DISP_IS_FREE(R)		(pmc_pmcdisp[(R)] == 0)
 #define	PMC_ROW_DISP_IS_THREAD(R)	(pmc_pmcdisp[(R)] > 0)
 #define	PMC_ROW_DISP_IS_STANDALONE(R)	(pmc_pmcdisp[(R)] < 0)
 
 #define	PMC_MARK_ROW_FREE(R) do {					  \
 	pmc_pmcdisp[(R)] = 0;						  \
 } while (0)
 
 #define	PMC_MARK_ROW_STANDALONE(R) do {					  \
 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
 	KASSERT(pmc_pmcdisp[(R)] >= (-pmc_cpu_max_active()),		  \
 		("[pmc,%d] row disposition error", __LINE__));		  \
 } while (0)
 
 #define	PMC_UNMARK_ROW_STANDALONE(R) do { 				  \
 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
 	KASSERT(pmc_pmcdisp[(R)] <= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 } while (0)
 
 #define	PMC_MARK_ROW_THREAD(R) do {					  \
 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 	atomic_add_int(&pmc_pmcdisp[(R)], 1);				  \
 } while (0)
 
 #define	PMC_UNMARK_ROW_THREAD(R) do {					  \
 	atomic_add_int(&pmc_pmcdisp[(R)], -1);				  \
 	KASSERT(pmc_pmcdisp[(R)] >= 0, ("[pmc,%d] row disposition error", \
 		    __LINE__));						  \
 } while (0)
 
 /* various event handlers */
 static eventhandler_tag	pmc_exit_tag, pmc_fork_tag, pmc_kld_load_tag,
     pmc_kld_unload_tag;
 
 /* Module statistics */
 struct pmc_driverstats pmc_stats;
 
 /* Machine/processor dependent operations */
 static struct pmc_mdep  *md;
 
 /*
  * Hash tables mapping owner processes and target threads to PMCs.
  */
 struct mtx pmc_processhash_mtx;		/* spin mutex */
 static u_long pmc_processhashmask;
 static LIST_HEAD(pmc_processhash, pmc_process) *pmc_processhash;
 
 /*
  * Hash table of PMC owner descriptors.  This table is protected by
  * the shared PMC "sx" lock.
  */
 static u_long pmc_ownerhashmask;
 static LIST_HEAD(pmc_ownerhash, pmc_owner) *pmc_ownerhash;
 
 /*
  * List of PMC owners with system-wide sampling PMCs.
  */
 static CK_LIST_HEAD(, pmc_owner) pmc_ss_owners;
 
 /*
  * List of free thread entries. This is protected by the spin
  * mutex.
  */
 static struct mtx pmc_threadfreelist_mtx;	/* spin mutex */
 static LIST_HEAD(, pmc_thread) pmc_threadfreelist;
 static int pmc_threadfreelist_entries = 0;
 #define	THREADENTRY_SIZE	(sizeof(struct pmc_thread) +		\
     (md->pmd_npmc * sizeof(struct pmc_threadpmcstate)))
 
 /*
  * Task to free thread descriptors
  */
 static struct task free_task;
 
 /*
  * A map of row indices to classdep structures.
  */
 static struct pmc_classdep **pmc_rowindex_to_classdep;
 
 /*
  * Prototypes
  */
 
 #ifdef HWPMC_DEBUG
 static int	pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS);
 static int	pmc_debugflags_parse(char *newstr, char *fence);
 #endif
 
 static int	load(struct module *module, int cmd, void *arg);
 static int	pmc_add_sample(ring_type_t ring, struct pmc *pm,
     struct trapframe *tf);
 static void	pmc_add_thread_descriptors_from_proc(struct proc *p,
     struct pmc_process *pp);
 static int	pmc_attach_process(struct proc *p, struct pmc *pm);
 static struct pmc *pmc_allocate_pmc_descriptor(void);
 static struct pmc_owner *pmc_allocate_owner_descriptor(struct proc *p);
 static int	pmc_attach_one_process(struct proc *p, struct pmc *pm);
 static bool	pmc_can_allocate_row(int ri, enum pmc_mode mode);
 static bool	pmc_can_allocate_rowindex(struct proc *p, unsigned int ri,
     int cpu);
 static int	pmc_can_attach(struct pmc *pm, struct proc *p);
 static void	pmc_capture_user_callchain(int cpu, int soft,
     struct trapframe *tf);
 static void	pmc_cleanup(void);
 static int	pmc_detach_process(struct proc *p, struct pmc *pm);
 static int	pmc_detach_one_process(struct proc *p, struct pmc *pm,
     int flags);
 static void	pmc_destroy_owner_descriptor(struct pmc_owner *po);
 static void	pmc_destroy_pmc_descriptor(struct pmc *pm);
 static void	pmc_destroy_process_descriptor(struct pmc_process *pp);
 static struct pmc_owner *pmc_find_owner_descriptor(struct proc *p);
 static int	pmc_find_pmc(pmc_id_t pmcid, struct pmc **pm);
 static struct pmc *pmc_find_pmc_descriptor_in_process(struct pmc_owner *po,
     pmc_id_t pmc);
 static struct pmc_process *pmc_find_process_descriptor(struct proc *p,
     uint32_t mode);
 static struct pmc_thread *pmc_find_thread_descriptor(struct pmc_process *pp,
     struct thread *td, uint32_t mode);
 static void	pmc_force_context_switch(void);
 static void	pmc_link_target_process(struct pmc *pm,
     struct pmc_process *pp);
 static void	pmc_log_all_process_mappings(struct pmc_owner *po);
 static void	pmc_log_kernel_mappings(struct pmc *pm);
 static void	pmc_log_process_mappings(struct pmc_owner *po, struct proc *p);
 static void	pmc_maybe_remove_owner(struct pmc_owner *po);
 static void	pmc_post_callchain_callback(void);
 static void	pmc_process_allproc(struct pmc *pm);
 static void	pmc_process_csw_in(struct thread *td);
 static void	pmc_process_csw_out(struct thread *td);
 static void	pmc_process_exec(struct thread *td,
     struct pmckern_procexec *pk);
 static void	pmc_process_exit(void *arg, struct proc *p);
 static void	pmc_process_fork(void *arg, struct proc *p1,
     struct proc *p2, int n);
 static void	pmc_process_proccreate(struct proc *p);
 static void	pmc_process_samples(int cpu, ring_type_t soft);
 static void	pmc_process_threadcreate(struct thread *td);
 static void	pmc_process_threadexit(struct thread *td);
 static void	pmc_process_thread_add(struct thread *td);
 static void	pmc_process_thread_delete(struct thread *td);
 static void	pmc_process_thread_userret(struct thread *td);
 static void	pmc_release_pmc_descriptor(struct pmc *pmc);
 static void	pmc_remove_owner(struct pmc_owner *po);
 static void	pmc_remove_process_descriptor(struct pmc_process *pp);
 static int	pmc_start(struct pmc *pm);
 static int	pmc_stop(struct pmc *pm);
 static int	pmc_syscall_handler(struct thread *td, void *syscall_args);
 static struct pmc_thread *pmc_thread_descriptor_pool_alloc(void);
 static void	pmc_thread_descriptor_pool_drain(void);
 static void	pmc_thread_descriptor_pool_free(struct pmc_thread *pt);
 static void	pmc_unlink_target_process(struct pmc *pmc,
     struct pmc_process *pp);
 
 static int	generic_switch_in(struct pmc_cpu *pc, struct pmc_process *pp);
 static int	generic_switch_out(struct pmc_cpu *pc, struct pmc_process *pp);
 static struct pmc_mdep *pmc_generic_cpu_initialize(void);
 static void	pmc_generic_cpu_finalize(struct pmc_mdep *md);
 
 /*
  * Kernel tunables and sysctl(8) interface.
  */
 
 SYSCTL_DECL(_kern_hwpmc);
 SYSCTL_NODE(_kern_hwpmc, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "HWPMC stats");
 
 /* Stats. */
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_ignored, CTLFLAG_RW,
     &pmc_stats.pm_intr_ignored,
     "# of interrupts ignored");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_processed, CTLFLAG_RW,
     &pmc_stats.pm_intr_processed,
     "# of interrupts processed");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, intr_bufferfull, CTLFLAG_RW,
     &pmc_stats.pm_intr_bufferfull,
     "# of interrupts where buffer was full");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscalls, CTLFLAG_RW,
     &pmc_stats.pm_syscalls,
     "# of syscalls");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, syscall_errors, CTLFLAG_RW,
     &pmc_stats.pm_syscall_errors,
     "# of syscall_errors");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests, CTLFLAG_RW,
     &pmc_stats.pm_buffer_requests,
     "# of buffer requests");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, buffer_requests_failed,
     CTLFLAG_RW, &pmc_stats.pm_buffer_requests_failed,
     "# of buffer requests which failed");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, log_sweeps, CTLFLAG_RW,
     &pmc_stats.pm_log_sweeps,
     "# of times samples were processed");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, merges, CTLFLAG_RW,
     &pmc_stats.pm_merges,
     "# of times kernel stack was found for user trace");
 SYSCTL_COUNTER_U64(_kern_hwpmc_stats, OID_AUTO, overwrites, CTLFLAG_RW,
     &pmc_stats.pm_overwrites,
     "# of times a sample was overwritten before being logged");
 
 static int pmc_callchaindepth = PMC_CALLCHAIN_DEPTH;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, callchaindepth, CTLFLAG_RDTUN,
     &pmc_callchaindepth, 0,
     "depth of call chain records");
 
 char pmc_cpuid[PMC_CPUID_LEN];
 SYSCTL_STRING(_kern_hwpmc, OID_AUTO, cpuid, CTLFLAG_RD,
     pmc_cpuid, 0,
     "cpu version string");
 
 #ifdef HWPMC_DEBUG
 struct pmc_debugflags pmc_debugflags = PMC_DEBUG_DEFAULT_FLAGS;
 char	pmc_debugstr[PMC_DEBUG_STRSIZE];
 TUNABLE_STR(PMC_SYSCTL_NAME_PREFIX "debugflags", pmc_debugstr,
     sizeof(pmc_debugstr));
 SYSCTL_PROC(_kern_hwpmc, OID_AUTO, debugflags,
     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
     0, 0, pmc_debugflags_sysctl_handler, "A",
     "debug flags");
 #endif
 
 /*
  * kern.hwpmc.hashsize -- determines the number of rows in the
  * of the hash table used to look up threads
  */
 static int pmc_hashsize = PMC_HASH_SIZE;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, hashsize, CTLFLAG_RDTUN,
     &pmc_hashsize, 0,
     "rows in hash tables");
 
 /*
  * kern.hwpmc.nsamples --- number of PC samples/callchain stacks per CPU
  */
 static int pmc_nsamples = PMC_NSAMPLES;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, nsamples, CTLFLAG_RDTUN,
     &pmc_nsamples, 0,
     "number of PC samples per CPU");
 
 static uint64_t pmc_sample_mask = PMC_NSAMPLES - 1;
 
 /*
  * kern.hwpmc.mtxpoolsize -- number of mutexes in the mutex pool.
  */
 static int pmc_mtxpool_size = PMC_MTXPOOL_SIZE;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mtxpoolsize, CTLFLAG_RDTUN,
     &pmc_mtxpool_size, 0,
     "size of spin mutex pool");
 
 /*
  * kern.hwpmc.threadfreelist_entries -- number of free entries
  */
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_entries, CTLFLAG_RD,
     &pmc_threadfreelist_entries, 0,
     "number of available thread entries");
 
 /*
  * kern.hwpmc.threadfreelist_max -- maximum number of free entries
  */
 static int pmc_threadfreelist_max = PMC_THREADLIST_MAX;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, threadfreelist_max, CTLFLAG_RW,
     &pmc_threadfreelist_max, 0,
     "maximum number of available thread entries before freeing some");
 
 /*
  * kern.hwpmc.mincount -- minimum sample count
  */
 static u_int pmc_mincount = 1000;
 SYSCTL_INT(_kern_hwpmc, OID_AUTO, mincount, CTLFLAG_RWTUN,
     &pmc_mincount, 0,
     "minimum count for sampling counters");
 
 /*
  * security.bsd.unprivileged_syspmcs -- allow non-root processes to
  * allocate system-wide PMCs.
  *
  * Allowing unprivileged processes to allocate system PMCs is convenient
  * if system-wide measurements need to be taken concurrently with other
  * per-process measurements.  This feature is turned off by default.
  */
 static int pmc_unprivileged_syspmcs = 0;
 SYSCTL_INT(_security_bsd, OID_AUTO, unprivileged_syspmcs, CTLFLAG_RWTUN,
     &pmc_unprivileged_syspmcs, 0,
     "allow unprivileged process to allocate system PMCs");
 
 /*
  * Hash function.  Discard the lower 2 bits of the pointer since
  * these are always zero for our uses.  The hash multiplier is
  * round((2^LONG_BIT) * ((sqrt(5)-1)/2)).
  */
 #if	LONG_BIT == 64
 #define	_PMC_HM		11400714819323198486u
 #elif	LONG_BIT == 32
 #define	_PMC_HM		2654435769u
 #else
 #error 	Must know the size of 'long' to compile
 #endif
 
 #define	PMC_HASH_PTR(P,M)	((((unsigned long) (P) >> 2) * _PMC_HM) & (M))
 
 /*
  * Syscall structures
  */
 
 /* The `sysent' for the new syscall */
 static struct sysent pmc_sysent = {
 	.sy_narg =	2,
 	.sy_call =	pmc_syscall_handler,
 };
 
 static struct syscall_module_data pmc_syscall_mod = {
 	.chainevh =	load,
 	.chainarg =	NULL,
 	.offset =	&pmc_syscall_num,
 	.new_sysent =	&pmc_sysent,
 	.old_sysent =	{ .sy_narg = 0, .sy_call = NULL },
 	.flags =	SY_THR_STATIC_KLD,
 };
 
 static moduledata_t pmc_mod = {
 	.name =		PMC_MODULE_NAME,
 	.evhand =	syscall_module_handler,
 	.priv =		&pmc_syscall_mod,
 };
 
 #ifdef EARLY_AP_STARTUP
 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SYSCALLS, SI_ORDER_ANY);
 #else
 DECLARE_MODULE(pmc, pmc_mod, SI_SUB_SMP, SI_ORDER_ANY);
 #endif
 MODULE_VERSION(pmc, PMC_VERSION);
 
 #ifdef HWPMC_DEBUG
 enum pmc_dbgparse_state {
 	PMCDS_WS,		/* in whitespace */
 	PMCDS_MAJOR,		/* seen a major keyword */
 	PMCDS_MINOR
 };
 
 static int
 pmc_debugflags_parse(char *newstr, char *fence)
 {
 	struct pmc_debugflags *tmpflags;
 	size_t kwlen;
 	char c, *p, *q;
 	int error, *newbits, tmp;
 	int found;
 
 	tmpflags = malloc(sizeof(*tmpflags), M_PMC, M_WAITOK | M_ZERO);
 
 	error = 0;
 	for (p = newstr; p < fence && (c = *p); p++) {
 		/* skip white space */
 		if (c == ' ' || c == '\t')
 			continue;
 
 		/* look for a keyword followed by "=" */
 		for (q = p; p < fence && (c = *p) && c != '='; p++)
 			;
 		if (c != '=') {
 			error = EINVAL;
 			goto done;
 		}
 
 		kwlen = p - q;
 		newbits = NULL;
 
 		/* lookup flag group name */
 #define	DBG_SET_FLAG_MAJ(S,F)						\
 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
 			newbits = &tmpflags->pdb_ ## F;
 
 		DBG_SET_FLAG_MAJ("cpu",		CPU);
 		DBG_SET_FLAG_MAJ("csw",		CSW);
 		DBG_SET_FLAG_MAJ("logging",	LOG);
 		DBG_SET_FLAG_MAJ("module",	MOD);
 		DBG_SET_FLAG_MAJ("md", 		MDP);
 		DBG_SET_FLAG_MAJ("owner",	OWN);
 		DBG_SET_FLAG_MAJ("pmc",		PMC);
 		DBG_SET_FLAG_MAJ("process",	PRC);
 		DBG_SET_FLAG_MAJ("sampling", 	SAM);
 #undef DBG_SET_FLAG_MAJ
 
 		if (newbits == NULL) {
 			error = EINVAL;
 			goto done;
 		}
 
 		p++;		/* skip the '=' */
 
 		/* Now parse the individual flags */
 		tmp = 0;
 	newflag:
 		for (q = p; p < fence && (c = *p); p++)
 			if (c == ' ' || c == '\t' || c == ',')
 				break;
 
 		/* p == fence or c == ws or c == "," or c == 0 */
 
 		if ((kwlen = p - q) == 0) {
 			*newbits = tmp;
 			continue;
 		}
 
 		found = 0;
 #define	DBG_SET_FLAG_MIN(S,F)						\
 		if (kwlen == sizeof(S)-1 && strncmp(q, S, kwlen) == 0)	\
 			tmp |= found = (1 << PMC_DEBUG_MIN_ ## F)
 
 		/* a '*' denotes all possible flags in the group */
 		if (kwlen == 1 && *q == '*')
 			tmp = found = ~0;
 		/* look for individual flag names */
 		DBG_SET_FLAG_MIN("allocaterow", ALR);
 		DBG_SET_FLAG_MIN("allocate",	ALL);
 		DBG_SET_FLAG_MIN("attach",	ATT);
 		DBG_SET_FLAG_MIN("bind",	BND);
 		DBG_SET_FLAG_MIN("config",	CFG);
 		DBG_SET_FLAG_MIN("exec",	EXC);
 		DBG_SET_FLAG_MIN("exit",	EXT);
 		DBG_SET_FLAG_MIN("find",	FND);
 		DBG_SET_FLAG_MIN("flush",	FLS);
 		DBG_SET_FLAG_MIN("fork",	FRK);
 		DBG_SET_FLAG_MIN("getbuf",	GTB);
 		DBG_SET_FLAG_MIN("hook",	PMH);
 		DBG_SET_FLAG_MIN("init",	INI);
 		DBG_SET_FLAG_MIN("intr",	INT);
 		DBG_SET_FLAG_MIN("linktarget",	TLK);
 		DBG_SET_FLAG_MIN("mayberemove", OMR);
 		DBG_SET_FLAG_MIN("ops",		OPS);
 		DBG_SET_FLAG_MIN("read",	REA);
 		DBG_SET_FLAG_MIN("register",	REG);
 		DBG_SET_FLAG_MIN("release",	REL);
 		DBG_SET_FLAG_MIN("remove",	ORM);
 		DBG_SET_FLAG_MIN("sample",	SAM);
 		DBG_SET_FLAG_MIN("scheduleio",	SIO);
 		DBG_SET_FLAG_MIN("select",	SEL);
 		DBG_SET_FLAG_MIN("signal",	SIG);
 		DBG_SET_FLAG_MIN("swi",		SWI);
 		DBG_SET_FLAG_MIN("swo",		SWO);
 		DBG_SET_FLAG_MIN("start",	STA);
 		DBG_SET_FLAG_MIN("stop",	STO);
 		DBG_SET_FLAG_MIN("syscall",	PMS);
 		DBG_SET_FLAG_MIN("unlinktarget", TUL);
 		DBG_SET_FLAG_MIN("write",	WRI);
 #undef DBG_SET_FLAG_MIN
 		if (found == 0) {
 			/* unrecognized flag name */
 			error = EINVAL;
 			goto done;
 		}
 
 		if (c == 0 || c == ' ' || c == '\t') {	/* end of flag group */
 			*newbits = tmp;
 			continue;
 		}
 
 		p++;
 		goto newflag;
 	}
 
 	/* save the new flag set */
 	bcopy(tmpflags, &pmc_debugflags, sizeof(pmc_debugflags));
 done:
 	free(tmpflags, M_PMC);
 	return (error);
 }
 
 static int
 pmc_debugflags_sysctl_handler(SYSCTL_HANDLER_ARGS)
 {
 	char *fence, *newstr;
 	int error;
 	u_int n;
 
 	n = sizeof(pmc_debugstr);
 	newstr = malloc(n, M_PMC, M_WAITOK | M_ZERO);
 	strlcpy(newstr, pmc_debugstr, n);
 
 	error = sysctl_handle_string(oidp, newstr, n, req);
 
 	/* if there is a new string, parse and copy it */
 	if (error == 0 && req->newptr != NULL) {
 		fence = newstr + (n < req->newlen ? n : req->newlen + 1);
 		error = pmc_debugflags_parse(newstr, fence);
 		if (error == 0)
 			strlcpy(pmc_debugstr, newstr, sizeof(pmc_debugstr));
 	}
 	free(newstr, M_PMC);
 
 	return (error);
 }
 #endif
 
 /*
  * Map a row index to a classdep structure and return the adjusted row
  * index for the PMC class index.
  */
 static struct pmc_classdep *
 pmc_ri_to_classdep(struct pmc_mdep *md __unused, int ri, int *adjri)
 {
 	struct pmc_classdep *pcd;
 
 	KASSERT(ri >= 0 && ri < md->pmd_npmc,
 	    ("[pmc,%d] illegal row-index %d", __LINE__, ri));
 
 	pcd = pmc_rowindex_to_classdep[ri];
 	KASSERT(pcd != NULL,
 	    ("[pmc,%d] ri %d null pcd", __LINE__, ri));
 
 	*adjri = ri - pcd->pcd_ri;
 	KASSERT(*adjri >= 0 && *adjri < pcd->pcd_num,
 	    ("[pmc,%d] adjusted row-index %d", __LINE__, *adjri));
 
 	return (pcd);
 }
 
 /*
  * Concurrency Control
  *
  * The driver manages the following data structures:
  *
  *   - target process descriptors, one per target process
  *   - owner process descriptors (and attached lists), one per owner process
  *   - lookup hash tables for owner and target processes
  *   - PMC descriptors (and attached lists)
  *   - per-cpu hardware state
  *   - the 'hook' variable through which the kernel calls into
  *     this module
  *   - the machine hardware state (managed by the MD layer)
  *
  * These data structures are accessed from:
  *
  * - thread context-switch code
  * - interrupt handlers (possibly on multiple cpus)
  * - kernel threads on multiple cpus running on behalf of user
  *   processes doing system calls
  * - this driver's private kernel threads
  *
  * = Locks and Locking strategy =
  *
  * The driver uses four locking strategies for its operation:
  *
  * - The global SX lock "pmc_sx" is used to protect internal
  *   data structures.
  *
  *   Calls into the module by syscall() start with this lock being
  *   held in exclusive mode.  Depending on the requested operation,
  *   the lock may be downgraded to 'shared' mode to allow more
  *   concurrent readers into the module.  Calls into the module from
  *   other parts of the kernel acquire the lock in shared mode.
  *
  *   This SX lock is held in exclusive mode for any operations that
  *   modify the linkages between the driver's internal data structures.
  *
  *   The 'pmc_hook' function pointer is also protected by this lock.
  *   It is only examined with the sx lock held in exclusive mode.  The
  *   kernel module is allowed to be unloaded only with the sx lock held
  *   in exclusive mode.  In normal syscall handling, after acquiring the
  *   pmc_sx lock we first check that 'pmc_hook' is non-null before
  *   proceeding.  This prevents races between the thread unloading the module
  *   and other threads seeking to use the module.
  *
  * - Lookups of target process structures and owner process structures
  *   cannot use the global "pmc_sx" SX lock because these lookups need
  *   to happen during context switches and in other critical sections
  *   where sleeping is not allowed.  We protect these lookup tables
  *   with their own private spin-mutexes, "pmc_processhash_mtx" and
  *   "pmc_ownerhash_mtx".
  *
  * - Interrupt handlers work in a lock free manner.  At interrupt
  *   time, handlers look at the PMC pointer (phw->phw_pmc) configured
  *   when the PMC was started.  If this pointer is NULL, the interrupt
  *   is ignored after updating driver statistics.  We ensure that this
  *   pointer is set (using an atomic operation if necessary) before the
  *   PMC hardware is started.  Conversely, this pointer is unset atomically
  *   only after the PMC hardware is stopped.
  *
  *   We ensure that everything needed for the operation of an
  *   interrupt handler is available without it needing to acquire any
  *   locks.  We also ensure that a PMC's software state is destroyed only
  *   after the PMC is taken off hardware (on all CPUs).
  *
  * - Context-switch handling with process-private PMCs needs more
  *   care.
  *
  *   A given process may be the target of multiple PMCs.  For example,
  *   PMCATTACH and PMCDETACH may be requested by a process on one CPU
  *   while the target process is running on another.  A PMC could also
  *   be getting released because its owner is exiting.  We tackle
  *   these situations in the following manner:
  *
  *   - each target process structure 'pmc_process' has an array
  *     of 'struct pmc *' pointers, one for each hardware PMC.
  *
  *   - At context switch IN time, each "target" PMC in RUNNING state
  *     gets started on hardware and a pointer to each PMC is copied into
  *     the per-cpu phw array.  The 'runcount' for the PMC is
  *     incremented.
  *
  *   - At context switch OUT time, all process-virtual PMCs are stopped
  *     on hardware.  The saved value is added to the PMCs value field
  *     only if the PMC is in a non-deleted state (the PMCs state could
  *     have changed during the current time slice).
  *
  *     Note that since in-between a switch IN on a processor and a switch
  *     OUT, the PMC could have been released on another CPU.  Therefore
  *     context switch OUT always looks at the hardware state to turn
  *     OFF PMCs and will update a PMC's saved value only if reachable
  *     from the target process record.
  *
  *   - OP PMCRELEASE could be called on a PMC at any time (the PMC could
  *     be attached to many processes at the time of the call and could
  *     be active on multiple CPUs).
  *
  *     We prevent further scheduling of the PMC by marking it as in
  *     state 'DELETED'.  If the runcount of the PMC is non-zero then
  *     this PMC is currently running on a CPU somewhere.  The thread
  *     doing the PMCRELEASE operation waits by repeatedly doing a
  *     pause() till the runcount comes to zero.
  *
  * The contents of a PMC descriptor (struct pmc) are protected using
  * a spin-mutex.  In order to save space, we use a mutex pool.
  *
  * In terms of lock types used by witness(4), we use:
  * - Type "pmc-sx", used by the global SX lock.
  * - Type "pmc-sleep", for sleep mutexes used by logger threads.
  * - Type "pmc-per-proc", for protecting PMC owner descriptors.
  * - Type "pmc-leaf", used for all other spin mutexes.
  */
 
 /*
  * Save the CPU binding of the current kthread.
  */
 void
 pmc_save_cpu_binding(struct pmc_binding *pb)
 {
 	PMCDBG0(CPU,BND,2, "save-cpu");
 	thread_lock(curthread);
 	pb->pb_bound = sched_is_bound(curthread);
 	pb->pb_cpu   = curthread->td_oncpu;
 	pb->pb_priority = curthread->td_priority;
 	thread_unlock(curthread);
 	PMCDBG1(CPU,BND,2, "save-cpu cpu=%d", pb->pb_cpu);
 }
 
 /*
  * Restore the CPU binding of the current thread.
  */
 void
 pmc_restore_cpu_binding(struct pmc_binding *pb)
 {
 	PMCDBG2(CPU,BND,2, "restore-cpu curcpu=%d restore=%d",
 	    curthread->td_oncpu, pb->pb_cpu);
 	thread_lock(curthread);
 	sched_bind(curthread, pb->pb_cpu);
 	if (!pb->pb_bound)
 		sched_unbind(curthread);
 	sched_prio(curthread, pb->pb_priority);
 	thread_unlock(curthread);
 	PMCDBG0(CPU,BND,2, "restore-cpu done");
 }
 
 /*
  * Move execution over to the specified CPU and bind it there.
  */
 void
 pmc_select_cpu(int cpu)
 {
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d] bad cpu number %d", __LINE__, cpu));
 
 	/* Never move to an inactive CPU. */
 	KASSERT(pmc_cpu_is_active(cpu), ("[pmc,%d] selecting inactive "
 	    "CPU %d", __LINE__, cpu));
 
 	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d", cpu);
 	thread_lock(curthread);
 	sched_prio(curthread, PRI_MIN);
 	sched_bind(curthread, cpu);
 	thread_unlock(curthread);
 
 	KASSERT(curthread->td_oncpu == cpu,
 	    ("[pmc,%d] CPU not bound [cpu=%d, curr=%d]", __LINE__,
 		cpu, curthread->td_oncpu));
 
 	PMCDBG1(CPU,SEL,2, "select-cpu cpu=%d ok", cpu);
 }
 
 /*
  * Force a context switch.
  *
  * We do this by pause'ing for 1 tick -- invoking mi_switch() is not
  * guaranteed to force a context switch.
  */
 static void
 pmc_force_context_switch(void)
 {
 
 	pause("pmcctx", 1);
 }
 
 uint64_t
 pmc_rdtsc(void)
 {
 #if defined(__i386__) || defined(__amd64__)
 	if (__predict_true(amd_feature & AMDID_RDTSCP))
 		return (rdtscp());
 	else
 		return (rdtsc());
 #else
 	return (get_cyclecount());
 #endif
 }
 
 /*
  * Get the file name for an executable.  This is a simple wrapper
  * around vn_fullpath(9).
  */
 static void
 pmc_getfilename(struct vnode *v, char **fullpath, char **freepath)
 {
 
 	*fullpath = "unknown";
 	*freepath = NULL;
 	vn_fullpath(v, fullpath, freepath);
 }
 
 /*
  * Remove a process owning PMCs.
  */
 void
 pmc_remove_owner(struct pmc_owner *po)
 {
 	struct pmc *pm, *tmp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	PMCDBG1(OWN,ORM,1, "remove-owner po=%p", po);
 
 	/* Remove descriptor from the owner hash table */
 	LIST_REMOVE(po, po_next);
 
 	/* release all owned PMC descriptors */
 	LIST_FOREACH_SAFE(pm, &po->po_pmcs, pm_next, tmp) {
 		PMCDBG1(OWN,ORM,2, "pmc=%p", pm);
 		KASSERT(pm->pm_owner == po,
 		    ("[pmc,%d] owner %p != po %p", __LINE__, pm->pm_owner, po));
 
 		pmc_release_pmc_descriptor(pm);	/* will unlink from the list */
 		pmc_destroy_pmc_descriptor(pm);
 	}
 
 	KASSERT(po->po_sscount == 0,
 	    ("[pmc,%d] SS count not zero", __LINE__));
 	KASSERT(LIST_EMPTY(&po->po_pmcs),
 	    ("[pmc,%d] PMC list not empty", __LINE__));
 
 	/* de-configure the log file if present */
 	if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 		pmclog_deconfigure_log(po);
 }
 
 /*
  * Remove an owner process record if all conditions are met.
  */
 static void
 pmc_maybe_remove_owner(struct pmc_owner *po)
 {
 
 	PMCDBG1(OWN,OMR,1, "maybe-remove-owner po=%p", po);
 
 	/*
 	 * Remove owner record if
 	 * - this process does not own any PMCs
 	 * - this process has not allocated a system-wide sampling buffer
 	 */
 	if (LIST_EMPTY(&po->po_pmcs) &&
 	    ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)) {
 		pmc_remove_owner(po);
 		pmc_destroy_owner_descriptor(po);
 	}
 }
 
 /*
  * Add an association between a target process and a PMC.
  */
 static void
 pmc_link_target_process(struct pmc *pm, struct pmc_process *pp)
 {
 	struct pmc_target *pt;
 	struct pmc_thread *pt_td __diagused;
 	int ri;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 	KASSERT(pm != NULL && pp != NULL,
 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
 	KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
 	    ("[pmc,%d] Attaching a non-process-virtual pmc=%p to pid=%d",
 		__LINE__, pm, pp->pp_proc->p_pid));
 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= ((int) md->pmd_npmc - 1),
 	    ("[pmc,%d] Illegal reference count %d for process record %p",
 		__LINE__, pp->pp_refcnt, (void *) pp));
 
 	ri = PMC_TO_ROWINDEX(pm);
 
 	PMCDBG3(PRC,TLK,1, "link-target pmc=%p ri=%d pmc-process=%p",
 	    pm, ri, pp);
 
 #ifdef HWPMC_DEBUG
 	LIST_FOREACH(pt, &pm->pm_targets, pt_next) {
 		if (pt->pt_process == pp)
 			KASSERT(0, ("[pmc,%d] pp %p already in pmc %p targets",
 			    __LINE__, pp, pm));
 	}
 #endif
 	pt = malloc(sizeof(struct pmc_target), M_PMC, M_WAITOK | M_ZERO);
 	pt->pt_process = pp;
 
 	LIST_INSERT_HEAD(&pm->pm_targets, pt, pt_next);
 
 	atomic_store_rel_ptr((uintptr_t *)&pp->pp_pmcs[ri].pp_pmc,
 	    (uintptr_t)pm);
 
 	if (pm->pm_owner->po_owner == pp->pp_proc)
 		pm->pm_flags |= PMC_F_ATTACHED_TO_OWNER;
 
 	/*
 	 * Initialize the per-process values at this row index.
 	 */
 	pp->pp_pmcs[ri].pp_pmcval = PMC_TO_MODE(pm) == PMC_MODE_TS ?
 	    pm->pm_sc.pm_reloadcount : 0;
 	pp->pp_refcnt++;
 
 #ifdef INVARIANTS
 	/* Confirm that the per-thread values at this row index are cleared. */
 	if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
 		mtx_lock_spin(pp->pp_tdslock);
 		LIST_FOREACH(pt_td, &pp->pp_tds, pt_next) {
 			KASSERT(pt_td->pt_pmcs[ri].pt_pmcval == (pmc_value_t) 0,
 			    ("[pmc,%d] pt_pmcval not cleared for pid=%d at "
 			    "ri=%d", __LINE__, pp->pp_proc->p_pid, ri));
 		}
 		mtx_unlock_spin(pp->pp_tdslock);
 	}
 #endif
 }
 
 /*
  * Removes the association between a target process and a PMC.
  */
 static void
 pmc_unlink_target_process(struct pmc *pm, struct pmc_process *pp)
 {
 	int ri;
 	struct proc *p;
 	struct pmc_target *ptgt;
 	struct pmc_thread *pt;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	KASSERT(pm != NULL && pp != NULL,
 	    ("[pmc,%d] Null pm %p or pp %p", __LINE__, pm, pp));
 
 	KASSERT(pp->pp_refcnt >= 1 && pp->pp_refcnt <= (int) md->pmd_npmc,
 	    ("[pmc,%d] Illegal ref count %d on process record %p",
 		__LINE__, pp->pp_refcnt, (void *) pp));
 
 	ri = PMC_TO_ROWINDEX(pm);
 
 	PMCDBG3(PRC,TUL,1, "unlink-target pmc=%p ri=%d pmc-process=%p",
 	    pm, ri, pp);
 
 	KASSERT(pp->pp_pmcs[ri].pp_pmc == pm,
 	    ("[pmc,%d] PMC ri %d mismatch pmc %p pp->[ri] %p", __LINE__,
 		ri, pm, pp->pp_pmcs[ri].pp_pmc));
 
 	pp->pp_pmcs[ri].pp_pmc = NULL;
 	pp->pp_pmcs[ri].pp_pmcval = (pmc_value_t)0;
 
 	/* Clear the per-thread values at this row index. */
 	if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
 		mtx_lock_spin(pp->pp_tdslock);
 		LIST_FOREACH(pt, &pp->pp_tds, pt_next)
 			pt->pt_pmcs[ri].pt_pmcval = (pmc_value_t)0;
 		mtx_unlock_spin(pp->pp_tdslock);
 	}
 
 	/* Remove owner-specific flags */
 	if (pm->pm_owner->po_owner == pp->pp_proc) {
 		pp->pp_flags &= ~PMC_PP_ENABLE_MSR_ACCESS;
 		pm->pm_flags &= ~PMC_F_ATTACHED_TO_OWNER;
 	}
 
 	pp->pp_refcnt--;
 
 	/* Remove the target process from the PMC structure */
 	LIST_FOREACH(ptgt, &pm->pm_targets, pt_next)
 		if (ptgt->pt_process == pp)
 			break;
 
 	KASSERT(ptgt != NULL, ("[pmc,%d] process %p (pp: %p) not found "
 		    "in pmc %p", __LINE__, pp->pp_proc, pp, pm));
 
 	LIST_REMOVE(ptgt, pt_next);
 	free(ptgt, M_PMC);
 
 	/* if the PMC now lacks targets, send the owner a SIGIO */
 	if (LIST_EMPTY(&pm->pm_targets)) {
 		p = pm->pm_owner->po_owner;
 		PROC_LOCK(p);
 		kern_psignal(p, SIGIO);
 		PROC_UNLOCK(p);
 
 		PMCDBG2(PRC,SIG,2, "signalling proc=%p signal=%d", p, SIGIO);
 	}
 }
 
 /*
  * Check if PMC 'pm' may be attached to target process 't'.
  */
 
 static int
 pmc_can_attach(struct pmc *pm, struct proc *t)
 {
 	struct proc *o;		/* pmc owner */
 	struct ucred *oc, *tc;	/* owner, target credentials */
 	int decline_attach, i;
 
 	/*
 	 * A PMC's owner can always attach that PMC to itself.
 	 */
 
 	if ((o = pm->pm_owner->po_owner) == t)
 		return 0;
 
 	PROC_LOCK(o);
 	oc = o->p_ucred;
 	crhold(oc);
 	PROC_UNLOCK(o);
 
 	PROC_LOCK(t);
 	tc = t->p_ucred;
 	crhold(tc);
 	PROC_UNLOCK(t);
 
 	/*
 	 * The effective uid of the PMC owner should match at least one
 	 * of the {effective,real,saved} uids of the target process.
 	 */
 
 	decline_attach = oc->cr_uid != tc->cr_uid &&
 	    oc->cr_uid != tc->cr_svuid &&
 	    oc->cr_uid != tc->cr_ruid;
 
 	/*
 	 * Every one of the target's group ids, must be in the owner's
 	 * group list.
 	 */
 	for (i = 0; !decline_attach && i < tc->cr_ngroups; i++)
 		decline_attach = !groupmember(tc->cr_groups[i], oc);
 
 	/* check the read and saved gids too */
 	if (decline_attach == 0)
 		decline_attach = !groupmember(tc->cr_rgid, oc) ||
 		    !groupmember(tc->cr_svgid, oc);
 
 	crfree(tc);
 	crfree(oc);
 
 	return !decline_attach;
 }
 
 /*
  * Attach a process to a PMC.
  */
 static int
 pmc_attach_one_process(struct proc *p, struct pmc *pm)
 {
 	int ri, error;
 	char *fullpath, *freepath;
 	struct pmc_process	*pp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	PMCDBG5(PRC,ATT,2, "attach-one pm=%p ri=%d proc=%p (%d, %s)", pm,
 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
 
 	/*
 	 * Locate the process descriptor corresponding to process 'p',
 	 * allocating space as needed.
 	 *
 	 * Verify that rowindex 'pm_rowindex' is free in the process
 	 * descriptor.
 	 *
 	 * If not, allocate space for a descriptor and link the
 	 * process descriptor and PMC.
 	 */
 	ri = PMC_TO_ROWINDEX(pm);
 
 	/* mark process as using HWPMCs */
 	PROC_LOCK(p);
 	p->p_flag |= P_HWPMC;
 	PROC_UNLOCK(p);
 
 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_ALLOCATE)) == NULL) {
 		error = ENOMEM;
 		goto fail;
 	}
 
 	if (pp->pp_pmcs[ri].pp_pmc == pm) {/* already present at slot [ri] */
 		error = EEXIST;
 		goto fail;
 	}
 
 	if (pp->pp_pmcs[ri].pp_pmc != NULL) {
 		error = EBUSY;
 		goto fail;
 	}
 
 	pmc_link_target_process(pm, pp);
 
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) &&
 	    (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) == 0)
 		pm->pm_flags |= PMC_F_NEEDS_LOGFILE;
 
 	pm->pm_flags |= PMC_F_ATTACH_DONE; /* mark as attached */
 
 	/* issue an attach event to a configured log file */
 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE) {
 		if (p->p_flag & P_KPROC) {
 			fullpath = kernelname;
 			freepath = NULL;
 		} else {
 			pmc_getfilename(p->p_textvp, &fullpath, &freepath);
 			pmclog_process_pmcattach(pm, p->p_pid, fullpath);
 		}
 		free(freepath, M_TEMP);
 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 			pmc_log_process_mappings(pm->pm_owner, p);
 	}
 
 	return (0);
 fail:
 	PROC_LOCK(p);
 	p->p_flag &= ~P_HWPMC;
 	PROC_UNLOCK(p);
 	return (error);
 }
 
 /*
  * Attach a process and optionally its children
  */
 static int
 pmc_attach_process(struct proc *p, struct pmc *pm)
 {
 	int error;
 	struct proc *top;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	PMCDBG5(PRC,ATT,1, "attach pm=%p ri=%d proc=%p (%d, %s)", pm,
 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
 
 	/*
 	 * If this PMC successfully allowed a GETMSR operation
 	 * in the past, disallow further ATTACHes.
 	 */
 	if ((pm->pm_flags & PMC_PP_ENABLE_MSR_ACCESS) != 0)
 		return (EPERM);
 
 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
 		return (pmc_attach_one_process(p, pm));
 
 	/*
 	 * Traverse all child processes, attaching them to
 	 * this PMC.
 	 */
 	sx_slock(&proctree_lock);
 
 	top = p;
 	for (;;) {
 		if ((error = pmc_attach_one_process(p, pm)) != 0)
 			break;
 		if (!LIST_EMPTY(&p->p_children))
 			p = LIST_FIRST(&p->p_children);
 		else for (;;) {
 			if (p == top)
 				goto done;
 			if (LIST_NEXT(p, p_sibling)) {
 				p = LIST_NEXT(p, p_sibling);
 				break;
 			}
 			p = p->p_pptr;
 		}
 	}
 
 	if (error != 0)
 		(void)pmc_detach_process(top, pm);
 
 done:
 	sx_sunlock(&proctree_lock);
 	return (error);
 }
 
 /*
  * Detach a process from a PMC.  If there are no other PMCs tracking
  * this process, remove the process structure from its hash table.  If
  * 'flags' contains PMC_FLAG_REMOVE, then free the process structure.
  */
 static int
 pmc_detach_one_process(struct proc *p, struct pmc *pm, int flags)
 {
 	int ri;
 	struct pmc_process *pp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	KASSERT(pm != NULL,
 	    ("[pmc,%d] null pm pointer", __LINE__));
 
 	ri = PMC_TO_ROWINDEX(pm);
 
 	PMCDBG6(PRC,ATT,2, "detach-one pm=%p ri=%d proc=%p (%d, %s) flags=0x%x",
 	    pm, ri, p, p->p_pid, p->p_comm, flags);
 
 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL)
 		return (ESRCH);
 
 	if (pp->pp_pmcs[ri].pp_pmc != pm)
 		return (EINVAL);
 
 	pmc_unlink_target_process(pm, pp);
 
 	/* Issue a detach entry if a log file is configured */
 	if (pm->pm_owner->po_flags & PMC_PO_OWNS_LOGFILE)
 		pmclog_process_pmcdetach(pm, p->p_pid);
 
 	/*
 	 * If there are no PMCs targeting this process, we remove its
 	 * descriptor from the target hash table and unset the P_HWPMC
 	 * flag in the struct proc.
 	 */
 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= (int) md->pmd_npmc,
 	    ("[pmc,%d] Illegal refcnt %d for process struct %p",
 		__LINE__, pp->pp_refcnt, pp));
 
 	if (pp->pp_refcnt != 0)	/* still a target of some PMC */
 		return (0);
 
 	pmc_remove_process_descriptor(pp);
 
 	if (flags & PMC_FLAG_REMOVE)
 		pmc_destroy_process_descriptor(pp);
 
 	PROC_LOCK(p);
 	p->p_flag &= ~P_HWPMC;
 	PROC_UNLOCK(p);
 
 	return (0);
 }
 
 /*
  * Detach a process and optionally its descendants from a PMC.
  */
 static int
 pmc_detach_process(struct proc *p, struct pmc *pm)
 {
 	struct proc *top;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	PMCDBG5(PRC,ATT,1, "detach pm=%p ri=%d proc=%p (%d, %s)", pm,
 	    PMC_TO_ROWINDEX(pm), p, p->p_pid, p->p_comm);
 
 	if ((pm->pm_flags & PMC_F_DESCENDANTS) == 0)
 		return (pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE));
 
 	/*
 	 * Traverse all children, detaching them from this PMC.  We
 	 * ignore errors since we could be detaching a PMC from a
 	 * partially attached proc tree.
 	 */
 	sx_slock(&proctree_lock);
 
 	top = p;
 	for (;;) {
 		(void)pmc_detach_one_process(p, pm, PMC_FLAG_REMOVE);
 
 		if (!LIST_EMPTY(&p->p_children)) {
 			p = LIST_FIRST(&p->p_children);
 		} else {
 			for (;;) {
 				if (p == top)
 					goto done;
 				if (LIST_NEXT(p, p_sibling)) {
 					p = LIST_NEXT(p, p_sibling);
 					break;
 				}
 				p = p->p_pptr;
 			}
 		}
 	}
 done:
 	sx_sunlock(&proctree_lock);
 	if (LIST_EMPTY(&pm->pm_targets))
 		pm->pm_flags &= ~PMC_F_ATTACH_DONE;
 
 	return (0);
 }
 
 /*
  * Handle events after an exec() for a process:
  *  - Inform log owners of the new exec() event
  *  - Release any PMCs owned by the process before the exec()
  *  - Detach PMCs from the target if required
  */
 static void
 pmc_process_exec(struct thread *td, struct pmckern_procexec *pk)
 {
 	struct pmc *pm;
 	struct pmc_owner *po;
 	struct pmc_process *pp;
 	struct proc *p;
 	char *fullpath, *freepath;
 	u_int ri;
 	bool is_using_hwpmcs;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	p = td->td_proc;
 	pmc_getfilename(p->p_textvp, &fullpath, &freepath);
 
 	PMC_EPOCH_ENTER();
 	/* Inform owners of SS mode PMCs of the exec event. */
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
 			pmclog_process_procexec(po, PMC_ID_INVALID, p->p_pid,
 			    pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
 		}
 	}
 	PMC_EPOCH_EXIT();
 
 	PROC_LOCK(p);
 	is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
 	PROC_UNLOCK(p);
 
 	if (!is_using_hwpmcs) {
 		if (freepath != NULL)
 			free(freepath, M_TEMP);
 		return;
 	}
 
 	/*
 	 * PMCs are not inherited across an exec(): remove any PMCs that this
 	 * process is the owner of.
 	 */
 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
 		pmc_remove_owner(po);
 		pmc_destroy_owner_descriptor(po);
 	}
 
 	/*
 	 * If the process being exec'ed is not the target of any PMC, we are
 	 * done.
 	 */
 	if ((pp = pmc_find_process_descriptor(p, 0)) == NULL) {
 		if (freepath != NULL)
 			free(freepath, M_TEMP);
 		return;
 	}
 
 	/*
 	 * Log the exec event to all monitoring owners. Skip owners who have
 	 * already received the event because they had system sampling PMCs
 	 * active.
 	 */
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
 			continue;
 
 		po = pm->pm_owner;
 		if (po->po_sscount == 0 &&
 		    (po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
 			pmclog_process_procexec(po, pm->pm_id, p->p_pid,
 			    pk->pm_baseaddr, pk->pm_dynaddr, fullpath);
 		}
 	}
 
 	if (freepath != NULL)
 		free(freepath, M_TEMP);
 
 	PMCDBG4(PRC,EXC,1, "exec proc=%p (%d, %s) cred-changed=%d",
 	    p, p->p_pid, p->p_comm, pk->pm_credentialschanged);
 
 	if (pk->pm_credentialschanged == 0) /* no change */
 		return;
 
 	/*
 	 * If the newly exec()'ed process has a different credential
 	 * than before, allow it to be the target of a PMC only if
 	 * the PMC's owner has sufficient privilege.
 	 */
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
 			if (pmc_can_attach(pm, td->td_proc) != 0) {
 				pmc_detach_one_process(td->td_proc, pm,
 				    PMC_FLAG_NONE);
 			}
 		}
 	}
 
 	KASSERT(pp->pp_refcnt >= 0 && pp->pp_refcnt <= md->pmd_npmc,
 	    ("[pmc,%d] Illegal ref count %u on pp %p", __LINE__,
 		pp->pp_refcnt, pp));
 
 	/*
 	 * If this process is no longer the target of any
 	 * PMCs, we can remove the process entry and free
 	 * up space.
 	 */
 	if (pp->pp_refcnt == 0) {
 		pmc_remove_process_descriptor(pp);
 		pmc_destroy_process_descriptor(pp);
 	}
 }
 
 /*
  * Thread context switch IN.
  */
 static void
 pmc_process_csw_in(struct thread *td)
 {
 	struct pmc *pm;
 	struct pmc_classdep *pcd;
 	struct pmc_cpu *pc;
 	struct pmc_hw *phw __diagused;
 	struct pmc_process *pp;
 	struct pmc_thread *pt;
 	struct proc *p;
 	pmc_value_t newvalue;
 	int cpu;
 	u_int adjri, ri;
 
 	p = td->td_proc;
 	pt = NULL;
 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE)) == NULL)
 		return;
 
 	KASSERT(pp->pp_proc == td->td_proc,
 	    ("[pmc,%d] not my thread state", __LINE__));
 
 	critical_enter(); /* no preemption from this point */
 
 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
 
 	PMCDBG5(CSW,SWI,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
 	    p->p_pid, p->p_comm, pp);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d] weird CPU id %d", __LINE__, cpu));
 
 	pc = pmc_pcpu[cpu];
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		if ((pm = pp->pp_pmcs[ri].pp_pmc) == NULL)
 			continue;
 
 		KASSERT(PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)),
 		    ("[pmc,%d] Target PMC in non-virtual mode (%d)",
 		    __LINE__, PMC_TO_MODE(pm)));
 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
 		    ("[pmc,%d] Row index mismatch pmc %d != ri %d",
 		    __LINE__, PMC_TO_ROWINDEX(pm), ri));
 
 		/*
 		 * Only PMCs that are marked as 'RUNNING' need
 		 * be placed on hardware.
 		 */
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
 		    ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
 		    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 
 		/* increment PMC runcount */
 		counter_u64_add(pm->pm_runcount, 1);
 
 		/* configure the HWPMC we are going to use. */
 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
 		(void)pcd->pcd_config_pmc(cpu, adjri, pm);
 
 		phw = pc->pc_hwpmcs[ri];
 
 		KASSERT(phw != NULL,
 		    ("[pmc,%d] null hw pointer", __LINE__));
 
 		KASSERT(phw->phw_pmc == pm,
 		    ("[pmc,%d] hw->pmc %p != pmc %p", __LINE__,
 			phw->phw_pmc, pm));
 
 		/*
 		 * Write out saved value and start the PMC.
 		 *
 		 * Sampling PMCs use a per-thread value, while
 		 * counting mode PMCs use a per-pmc value that is
 		 * inherited across descendants.
 		 */
 		if (PMC_TO_MODE(pm) == PMC_MODE_TS) {
 			if (pt == NULL)
 				pt = pmc_find_thread_descriptor(pp, td,
 				    PMC_FLAG_NONE);
 
 			KASSERT(pt != NULL,
 			    ("[pmc,%d] No thread found for td=%p", __LINE__,
 			    td));
 
 			mtx_pool_lock_spin(pmc_mtxpool, pm);
 
 			/*
 			 * If we have a thread descriptor, use the per-thread
 			 * counter in the descriptor. If not, we will use
 			 * a per-process counter.
 			 *
 			 * TODO: Remove the per-process "safety net" once
 			 * we have thoroughly tested that we don't hit the
 			 * above assert.
 			 */
 			if (pt != NULL) {
 				if (pt->pt_pmcs[ri].pt_pmcval > 0)
 					newvalue = pt->pt_pmcs[ri].pt_pmcval;
 				else
 					newvalue = pm->pm_sc.pm_reloadcount;
 			} else {
 				/*
 				 * Use the saved value calculated after the most
 				 * recent time a thread using the shared counter
 				 * switched out. Reset the saved count in case
 				 * another thread from this process switches in
 				 * before any threads switch out.
 				 */
 				newvalue = pp->pp_pmcs[ri].pp_pmcval;
 				pp->pp_pmcs[ri].pp_pmcval =
 				    pm->pm_sc.pm_reloadcount;
 			}
 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
 			KASSERT(newvalue > 0 && newvalue <=
 			    pm->pm_sc.pm_reloadcount,
 			    ("[pmc,%d] pmcval outside of expected range cpu=%d "
 			    "ri=%d pmcval=%jx pm_reloadcount=%jx", __LINE__,
 			    cpu, ri, newvalue, pm->pm_sc.pm_reloadcount));
 		} else {
 			KASSERT(PMC_TO_MODE(pm) == PMC_MODE_TC,
 			    ("[pmc,%d] illegal mode=%d", __LINE__,
 			    PMC_TO_MODE(pm)));
 			mtx_pool_lock_spin(pmc_mtxpool, pm);
 			newvalue = PMC_PCPU_SAVED(cpu, ri) =
 			    pm->pm_gv.pm_savedvalue;
 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
 		}
 
 		PMCDBG3(CSW,SWI,1,"cpu=%d ri=%d new=%jd", cpu, ri, newvalue);
 
 		(void)pcd->pcd_write_pmc(cpu, adjri, pm, newvalue);
 
 		/* If a sampling mode PMC, reset stalled state. */
 		if (PMC_TO_MODE(pm) == PMC_MODE_TS)
 			pm->pm_pcpu_state[cpu].pps_stalled = 0;
 
 		/* Indicate that we desire this to run. */
 		pm->pm_pcpu_state[cpu].pps_cpustate = 1;
 
 		/* Start the PMC. */
 		(void)pcd->pcd_start_pmc(cpu, adjri, pm);
 	}
 
 	/*
 	 * Perform any other architecture/cpu dependent thread
 	 * switch-in actions.
 	 */
 	(void)(*md->pmd_switch_in)(pc, pp);
 
 	critical_exit();
 }
 
 /*
  * Thread context switch OUT.
  */
 static void
 pmc_process_csw_out(struct thread *td)
 {
 	struct pmc *pm;
 	struct pmc_classdep *pcd;
 	struct pmc_cpu *pc;
 	struct pmc_process *pp;
 	struct pmc_thread *pt = NULL;
 	struct proc *p;
 	pmc_value_t newvalue;
 	int64_t tmp;
 	enum pmc_mode mode;
 	int cpu;
 	u_int adjri, ri;
 
 	/*
 	 * Locate our process descriptor; this may be NULL if
 	 * this process is exiting and we have already removed
 	 * the process from the target process table.
 	 *
 	 * Note that due to kernel preemption, multiple
 	 * context switches may happen while the process is
 	 * exiting.
 	 *
 	 * Note also that if the target process cannot be
 	 * found we still need to deconfigure any PMCs that
 	 * are currently running on hardware.
 	 */
 	p = td->td_proc;
 	pp = pmc_find_process_descriptor(p, PMC_FLAG_NONE);
 
 	critical_enter();
 
 	cpu = PCPU_GET(cpuid); /* td->td_oncpu is invalid */
 
 	PMCDBG5(CSW,SWO,1, "cpu=%d proc=%p (%d, %s) pp=%p", cpu, p,
 	    p->p_pid, p->p_comm, pp);
 
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d weird CPU id %d", __LINE__, cpu));
 
 	pc = pmc_pcpu[cpu];
 
 	/*
 	 * When a PMC gets unlinked from a target PMC, it will
 	 * be removed from the target's pp_pmc[] array.
 	 *
 	 * However, on a MP system, the target could have been
 	 * executing on another CPU at the time of the unlink.
 	 * So, at context switch OUT time, we need to look at
 	 * the hardware to determine if a PMC is scheduled on
 	 * it.
 	 */
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
 		pm  = NULL;
 		(void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
 
 		if (pm == NULL)	/* nothing at this row index */
 			continue;
 
 		mode = PMC_TO_MODE(pm);
 		if (!PMC_IS_VIRTUAL_MODE(mode))
 			continue; /* not a process virtual PMC */
 
 		KASSERT(PMC_TO_ROWINDEX(pm) == ri,
 		    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
 			__LINE__, PMC_TO_ROWINDEX(pm), ri));
 
 		/*
 		 * Change desired state, and then stop if not stalled.
 		 * This two-step dance should avoid race conditions where
 		 * an interrupt re-enables the PMC after this code has
 		 * already checked the pm_stalled flag.
 		 */
 		pm->pm_pcpu_state[cpu].pps_cpustate = 0;
 		if (pm->pm_pcpu_state[cpu].pps_stalled == 0)
 			(void)pcd->pcd_stop_pmc(cpu, adjri, pm);
 
 		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
 		    ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
 		    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 
 		/* reduce this PMC's runcount */
 		counter_u64_add(pm->pm_runcount, -1);
 
 		/*
 		 * If this PMC is associated with this process,
 		 * save the reading.
 		 */
 		if (pm->pm_state != PMC_STATE_DELETED && pp != NULL &&
 		    pp->pp_pmcs[ri].pp_pmc != NULL) {
 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p", __LINE__,
 				pm, ri, pp->pp_pmcs[ri].pp_pmc));
 			KASSERT(pp->pp_refcnt > 0,
 			    ("[pmc,%d] pp refcnt = %d", __LINE__,
 				pp->pp_refcnt));
 
 			(void)pcd->pcd_read_pmc(cpu, adjri, pm, &newvalue);
 
 			if (mode == PMC_MODE_TS) {
 				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d val=%jd (samp)",
 				    cpu, ri, newvalue);
 
 				if (pt == NULL)
 					pt = pmc_find_thread_descriptor(pp, td,
 					    PMC_FLAG_NONE);
 
 				KASSERT(pt != NULL,
 				    ("[pmc,%d] No thread found for td=%p",
 				    __LINE__, td));
 
 				mtx_pool_lock_spin(pmc_mtxpool, pm);
 
 				/*
 				 * If we have a thread descriptor, save the
 				 * per-thread counter in the descriptor. If not,
 				 * we will update the per-process counter.
 				 *
 				 * TODO: Remove the per-process "safety net"
 				 * once we have thoroughly tested that we
 				 * don't hit the above assert.
 				 */
 				if (pt != NULL) {
 					pt->pt_pmcs[ri].pt_pmcval = newvalue;
 				} else {
 					/*
 					 * For sampling process-virtual PMCs,
 					 * newvalue is the number of events to
 					 * be seen until the next sampling
 					 * interrupt. We can just add the events
 					 * left from this invocation to the
 					 * counter, then adjust in case we
 					 * overflow our range.
 					 *
 					 * (Recall that we reload the counter
 					 * every time we use it.)
 					 */
 					pp->pp_pmcs[ri].pp_pmcval += newvalue;
 					if (pp->pp_pmcs[ri].pp_pmcval >
 					    pm->pm_sc.pm_reloadcount) {
 						pp->pp_pmcs[ri].pp_pmcval -=
 						    pm->pm_sc.pm_reloadcount;
 					}
 				}
 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
 			} else {
 				tmp = newvalue - PMC_PCPU_SAVED(cpu, ri);
 
 				PMCDBG3(CSW,SWO,1,"cpu=%d ri=%d tmp=%jd (count)",
 				    cpu, ri, tmp);
 
 				/*
 				 * For counting process-virtual PMCs,
 				 * we expect the count to be
 				 * increasing monotonically, modulo a 64
 				 * bit wraparound.
 				 */
 				KASSERT(tmp >= 0,
 				    ("[pmc,%d] negative increment cpu=%d "
 				     "ri=%d newvalue=%jx saved=%jx "
 				     "incr=%jx", __LINE__, cpu, ri,
 				     newvalue, PMC_PCPU_SAVED(cpu, ri), tmp));
 
 				mtx_pool_lock_spin(pmc_mtxpool, pm);
 				pm->pm_gv.pm_savedvalue += tmp;
 				pp->pp_pmcs[ri].pp_pmcval += tmp;
 				mtx_pool_unlock_spin(pmc_mtxpool, pm);
 
 				if (pm->pm_flags & PMC_F_LOG_PROCCSW)
 					pmclog_process_proccsw(pm, pp, tmp, td);
 			}
 		}
 
 		/* Mark hardware as free. */
 		(void)pcd->pcd_config_pmc(cpu, adjri, NULL);
 	}
 
 	/*
 	 * Perform any other architecture/cpu dependent thread
 	 * switch out functions.
 	 */
 	(void)(*md->pmd_switch_out)(pc, pp);
 
 	critical_exit();
 }
 
 /*
  * A new thread for a process.
  */
 static void
 pmc_process_thread_add(struct thread *td)
 {
 	struct pmc_process *pmc;
 
 	pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
 	if (pmc != NULL)
 		pmc_find_thread_descriptor(pmc, td, PMC_FLAG_ALLOCATE);
 }
 
 /*
  * A thread delete for a process.
  */
 static void
 pmc_process_thread_delete(struct thread *td)
 {
 	struct pmc_process *pmc;
 
 	pmc = pmc_find_process_descriptor(td->td_proc, PMC_FLAG_NONE);
 	if (pmc != NULL)
 		pmc_thread_descriptor_pool_free(pmc_find_thread_descriptor(pmc,
 		    td, PMC_FLAG_REMOVE));
 }
 
 /*
  * A userret() call for a thread.
  */
 static void
 pmc_process_thread_userret(struct thread *td)
 {
 	sched_pin();
 	pmc_capture_user_callchain(curcpu, PMC_UR, td->td_frame);
 	sched_unpin();
 }
 
 /*
  * A mapping change for a process.
  */
 static void
 pmc_process_mmap(struct thread *td, struct pmckern_map_in *pkm)
 {
 	const struct pmc *pm;
 	const struct pmc_process *pp;
 	struct pmc_owner *po;
 	char *fullpath, *freepath;
 	pid_t pid;
 	int ri;
 
 	MPASS(!in_epoch(global_epoch_preempt));
 
 	freepath = fullpath = NULL;
 	pmc_getfilename((struct vnode *)pkm->pm_file, &fullpath, &freepath);
 
 	pid = td->td_proc->p_pid;
 
 	PMC_EPOCH_ENTER();
 	/* Inform owners of all system-wide sampling PMCs. */
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 			pmclog_process_map_in(po, pid, pkm->pm_address,
 			    fullpath);
 	}
 
 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
 		goto done;
 
 	/*
 	 * Inform sampling PMC owners tracking this process.
 	 */
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL &&
 		    PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			pmclog_process_map_in(pm->pm_owner,
 			    pid, pkm->pm_address, fullpath);
 		}
 	}
 
 done:
 	if (freepath != NULL)
 		free(freepath, M_TEMP);
 	PMC_EPOCH_EXIT();
 }
 
 /*
  * Log an munmap request.
  */
 static void
 pmc_process_munmap(struct thread *td, struct pmckern_map_out *pkm)
 {
 	const struct pmc *pm;
 	const struct pmc_process *pp;
 	struct pmc_owner *po;
 	pid_t pid;
 	int ri;
 
 	pid = td->td_proc->p_pid;
 
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 			pmclog_process_map_out(po, pid, pkm->pm_address,
 			    pkm->pm_address + pkm->pm_size);
 	}
 	PMC_EPOCH_EXIT();
 
 	if ((pp = pmc_find_process_descriptor(td->td_proc, 0)) == NULL)
 		return;
 
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		pm = pp->pp_pmcs[ri].pp_pmc;
 		if (pm != NULL && PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			pmclog_process_map_out(pm->pm_owner, pid,
 			    pkm->pm_address, pkm->pm_address + pkm->pm_size);
 		}
 	}
 }
 
 /*
  * Log mapping information about the kernel.
  */
 static void
 pmc_log_kernel_mappings(struct pmc *pm)
 {
 	struct pmc_owner *po;
 	struct pmckern_map_in *km, *kmbase;
 
 	MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
 	KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
 	    ("[pmc,%d] non-sampling PMC (%p) desires mapping information",
 		__LINE__, (void *) pm));
 
 	po = pm->pm_owner;
 	if ((po->po_flags & PMC_PO_INITIAL_MAPPINGS_DONE) != 0)
 		return;
 
 	if (PMC_TO_MODE(pm) == PMC_MODE_SS)
 		pmc_process_allproc(pm);
 
 	/*
 	 * Log the current set of kernel modules.
 	 */
 	kmbase = linker_hwpmc_list_objects();
 	for (km = kmbase; km->pm_file != NULL; km++) {
 		PMCDBG2(LOG,REG,1,"%s %p", (char *)km->pm_file,
 		    (void *)km->pm_address);
 		pmclog_process_map_in(po, (pid_t)-1, km->pm_address,
 		    km->pm_file);
 	}
 	free(kmbase, M_LINKER);
 
 	po->po_flags |= PMC_PO_INITIAL_MAPPINGS_DONE;
 }
 
 /*
  * Log the mappings for a single process.
  */
 static void
 pmc_log_process_mappings(struct pmc_owner *po, struct proc *p)
 {
 	vm_map_t map;
 	vm_map_entry_t entry;
 	vm_object_t obj, lobj, tobj;
 	vm_offset_t last_end;
 	vm_offset_t start_addr;
 	struct vnode *vp, *last_vp;
 	struct vmspace *vm;
 	char *fullpath, *freepath;
 	u_int last_timestamp;
 
 	last_vp = NULL;
 	last_end = (vm_offset_t)0;
 	fullpath = freepath = NULL;
 
 	if ((vm = vmspace_acquire_ref(p)) == NULL)
 		return;
 
 	map = &vm->vm_map;
 	vm_map_lock_read(map);
 	VM_MAP_ENTRY_FOREACH(entry, map) {
 		if (entry == NULL) {
 			PMCDBG2(LOG,OPS,2, "hwpmc: vm_map entry unexpectedly "
 			    "NULL! pid=%d vm_map=%p\n", p->p_pid, map);
 			break;
 		}
 
 		/*
 		 * We only care about executable map entries.
 		 */
 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
 		    (entry->protection & VM_PROT_EXECUTE) == 0 ||
 		    entry->object.vm_object == NULL) {
 			continue;
 		}
 
 		obj = entry->object.vm_object;
 		VM_OBJECT_RLOCK(obj);
 
 		/*
 		 * Walk the backing_object list to find the base (non-shadowed)
 		 * vm_object.
 		 */
 		for (lobj = tobj = obj; tobj != NULL;
 		    tobj = tobj->backing_object) {
 			if (tobj != obj)
 				VM_OBJECT_RLOCK(tobj);
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			lobj = tobj;
 		}
 
 		/*
 		 * At this point lobj is the base vm_object and it is locked.
 		 */
 		if (lobj == NULL) {
 			PMCDBG3(LOG,OPS,2,
 			    "hwpmc: lobj unexpectedly NULL! pid=%d "
 			    "vm_map=%p vm_obj=%p\n", p->p_pid, map, obj);
 			VM_OBJECT_RUNLOCK(obj);
 			continue;
 		}
 
 		vp = vm_object_vnode(lobj);
 		if (vp == NULL) {
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			VM_OBJECT_RUNLOCK(obj);
 			continue;
 		}
 
 		/*
 		 * Skip contiguous regions that point to the same vnode, so we
 		 * don't emit redundant MAP-IN directives.
 		 */
 		if (entry->start == last_end && vp == last_vp) {
 			last_end = entry->end;
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			VM_OBJECT_RUNLOCK(obj);
 			continue;
 		}
 
 		/*
 		 * We don't want to keep the proc's vm_map or this vm_object
 		 * locked while we walk the pathname, since vn_fullpath() can
 		 * sleep.  However, if we drop the lock, it's possible for
 		 * concurrent activity to modify the vm_map list.  To protect
 		 * against this, we save the vm_map timestamp before we release
 		 * the lock, and check it after we reacquire the lock below.
 		 */
 		start_addr = entry->start;
 		last_end = entry->end;
 		last_timestamp = map->timestamp;
 		vm_map_unlock_read(map);
 
 		vref(vp);
 		if (lobj != obj)
 			VM_OBJECT_RUNLOCK(lobj);
 		VM_OBJECT_RUNLOCK(obj);
 
 		freepath = NULL;
 		pmc_getfilename(vp, &fullpath, &freepath);
 		last_vp = vp;
 
 		vrele(vp);
 
 		vp = NULL;
 		pmclog_process_map_in(po, p->p_pid, start_addr, fullpath);
 		if (freepath != NULL)
 			free(freepath, M_TEMP);
 
 		vm_map_lock_read(map);
 
 		/*
 		 * If our saved timestamp doesn't match, this means
 		 * that the vm_map was modified out from under us and
 		 * we can't trust our current "entry" pointer.  Do a
 		 * new lookup for this entry.  If there is no entry
 		 * for this address range, vm_map_lookup_entry() will
 		 * return the previous one, so we always want to go to
 		 * the next entry on the next loop iteration.
 		 *
 		 * There is an edge condition here that can occur if
 		 * there is no entry at or before this address.  In
 		 * this situation, vm_map_lookup_entry returns
 		 * &map->header, which would cause our loop to abort
 		 * without processing the rest of the map.  However,
 		 * in practice this will never happen for process
 		 * vm_map.  This is because the executable's text
 		 * segment is the first mapping in the proc's address
 		 * space, and this mapping is never removed until the
 		 * process exits, so there will always be a non-header
 		 * entry at or before the requested address for
 		 * vm_map_lookup_entry to return.
 		 */
 		if (map->timestamp != last_timestamp)
 			vm_map_lookup_entry(map, last_end - 1, &entry);
 	}
 
 	vm_map_unlock_read(map);
 	vmspace_free(vm);
 	return;
 }
 
 /*
  * Log mappings for all processes in the system.
  */
 static void
 pmc_log_all_process_mappings(struct pmc_owner *po)
 {
 	struct proc *p, *top;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	if ((p = pfind(1)) == NULL)
 		panic("[pmc,%d] Cannot find init", __LINE__);
 
 	PROC_UNLOCK(p);
 
 	sx_slock(&proctree_lock);
 
 	top = p;
 	for (;;) {
 		pmc_log_process_mappings(po, p);
 		if (!LIST_EMPTY(&p->p_children))
 			p = LIST_FIRST(&p->p_children);
 		else for (;;) {
 			if (p == top)
 				goto done;
 			if (LIST_NEXT(p, p_sibling)) {
 				p = LIST_NEXT(p, p_sibling);
 				break;
 			}
 			p = p->p_pptr;
 		}
 	}
 done:
 	sx_sunlock(&proctree_lock);
 }
 
 #ifdef HWPMC_DEBUG
 const char *pmc_hooknames[] = {
 	/* these strings correspond to PMC_FN_* in <sys/pmckern.h> */
 	"",
 	"EXEC",
 	"CSW-IN",
 	"CSW-OUT",
 	"SAMPLE",
 	"UNUSED1",
 	"UNUSED2",
 	"MMAP",
 	"MUNMAP",
 	"CALLCHAIN-NMI",
 	"CALLCHAIN-SOFT",
 	"SOFTSAMPLING",
 	"THR-CREATE",
 	"THR-EXIT",
 	"THR-USERRET",
 	"THR-CREATE-LOG",
 	"THR-EXIT-LOG",
 	"PROC-CREATE-LOG"
 };
 #endif
 
 /*
  * The 'hook' invoked from the kernel proper
  */
 static int
 pmc_hook_handler(struct thread *td, int function, void *arg)
 {
 	int cpu;
 
 	PMCDBG4(MOD,PMH,1, "hook td=%p func=%d \"%s\" arg=%p", td, function,
 	    pmc_hooknames[function], arg);
 
 	switch (function) {
 	case PMC_FN_PROCESS_EXEC:
 		pmc_process_exec(td, (struct pmckern_procexec *)arg);
 		break;
 
 	case PMC_FN_CSW_IN:
 		pmc_process_csw_in(td);
 		break;
 
 	case PMC_FN_CSW_OUT:
 		pmc_process_csw_out(td);
 		break;
 
 	/*
 	 * Process accumulated PC samples.
 	 *
 	 * This function is expected to be called by hardclock() for
 	 * each CPU that has accumulated PC samples.
 	 *
 	 * This function is to be executed on the CPU whose samples
 	 * are being processed.
 	 */
 	case PMC_FN_DO_SAMPLES:
 		/*
 		 * Clear the cpu specific bit in the CPU mask before
 		 * do the rest of the processing.  If the NMI handler
 		 * gets invoked after the "atomic_clear_int()" call
 		 * below but before "pmc_process_samples()" gets
 		 * around to processing the interrupt, then we will
 		 * come back here at the next hardclock() tick (and
 		 * may find nothing to do if "pmc_process_samples()"
 		 * had already processed the interrupt).  We don't
 		 * lose the interrupt sample.
 		 */
 		DPCPU_SET(pmc_sampled, 0);
 		cpu = PCPU_GET(cpuid);
 		pmc_process_samples(cpu, PMC_HR);
 		pmc_process_samples(cpu, PMC_SR);
 		pmc_process_samples(cpu, PMC_UR);
 		break;
 
 	case PMC_FN_MMAP:
 		pmc_process_mmap(td, (struct pmckern_map_in *)arg);
 		break;
 
 	case PMC_FN_MUNMAP:
 		MPASS(in_epoch(global_epoch_preempt) || sx_xlocked(&pmc_sx));
 		pmc_process_munmap(td, (struct pmckern_map_out *)arg);
 		break;
 
 	case PMC_FN_PROC_CREATE_LOG:
 		pmc_process_proccreate((struct proc *)arg);
 		break;
 
 	case PMC_FN_USER_CALLCHAIN:
 		/*
 		 * Record a call chain.
 		 */
 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
 		    __LINE__));
 
 		pmc_capture_user_callchain(PCPU_GET(cpuid), PMC_HR,
 		    (struct trapframe *)arg);
 
 		KASSERT(td->td_pinned == 1,
 		    ("[pmc,%d] invalid td_pinned value", __LINE__));
 		sched_unpin();  /* Can migrate safely now. */
 
 		td->td_pflags &= ~TDP_CALLCHAIN;
 		break;
 
 	case PMC_FN_USER_CALLCHAIN_SOFT:
 		/*
 		 * Record a call chain.
 		 */
 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
 		    __LINE__));
 
 		cpu = PCPU_GET(cpuid);
 		pmc_capture_user_callchain(cpu, PMC_SR,
 		    (struct trapframe *) arg);
 
 		KASSERT(td->td_pinned == 1,
 		    ("[pmc,%d] invalid td_pinned value", __LINE__));
 
 		sched_unpin();  /* Can migrate safely now. */
 
 		td->td_pflags &= ~TDP_CALLCHAIN;
 		break;
 
 	case PMC_FN_SOFT_SAMPLING:
 		/*
 		 * Call soft PMC sampling intr.
 		 */
 		pmc_soft_intr((struct pmckern_soft *)arg);
 		break;
 
 	case PMC_FN_THR_CREATE:
 		pmc_process_thread_add(td);
 		pmc_process_threadcreate(td);
 		break;
 
 	case PMC_FN_THR_CREATE_LOG:
 		pmc_process_threadcreate(td);
 		break;
 
 	case PMC_FN_THR_EXIT:
 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
 		    __LINE__));
 		pmc_process_thread_delete(td);
 		pmc_process_threadexit(td);
 		break;
 	case PMC_FN_THR_EXIT_LOG:
 		pmc_process_threadexit(td);
 		break;
 	case PMC_FN_THR_USERRET:
 		KASSERT(td == curthread, ("[pmc,%d] td != curthread",
 		    __LINE__));
 		pmc_process_thread_userret(td);
 		break;
 	default:
 #ifdef HWPMC_DEBUG
 		KASSERT(0, ("[pmc,%d] unknown hook %d\n", __LINE__, function));
 #endif
 		break;
 	}
 
 	return (0);
 }
 
 /*
  * Allocate a 'struct pmc_owner' descriptor in the owner hash table.
  */
 static struct pmc_owner *
 pmc_allocate_owner_descriptor(struct proc *p)
 {
 	struct pmc_owner *po;
 	struct pmc_ownerhash *poh;
 	uint32_t hindex;
 
 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
 	poh = &pmc_ownerhash[hindex];
 
 	/* Allocate space for N pointers and one descriptor struct. */
 	po = malloc(sizeof(struct pmc_owner), M_PMC, M_WAITOK | M_ZERO);
 	po->po_owner = p;
 	LIST_INSERT_HEAD(poh, po, po_next); /* insert into hash table */
 
 	TAILQ_INIT(&po->po_logbuffers);
 	mtx_init(&po->po_mtx, "pmc-owner-mtx", "pmc-per-proc", MTX_SPIN);
 
 	PMCDBG4(OWN,ALL,1, "allocate-owner proc=%p (%d, %s) pmc-owner=%p",
 	    p, p->p_pid, p->p_comm, po);
 
 	return (po);
 }
 
 static void
 pmc_destroy_owner_descriptor(struct pmc_owner *po)
 {
 
 	PMCDBG4(OWN,REL,1, "destroy-owner po=%p proc=%p (%d, %s)",
 	    po, po->po_owner, po->po_owner->p_pid, po->po_owner->p_comm);
 
 	mtx_destroy(&po->po_mtx);
 	free(po, M_PMC);
 }
 
 /*
  * Allocate a thread descriptor from the free pool.
  *
  * NOTE: This *can* return NULL.
  */
 static struct pmc_thread *
 pmc_thread_descriptor_pool_alloc(void)
 {
 	struct pmc_thread *pt;
 
 	mtx_lock_spin(&pmc_threadfreelist_mtx);
 	if ((pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
 		LIST_REMOVE(pt, pt_next);
 		pmc_threadfreelist_entries--;
 	}
 	mtx_unlock_spin(&pmc_threadfreelist_mtx);
 
 	return (pt);
 }
 
 /*
  * Add a thread descriptor to the free pool. We use this instead of free()
  * to maintain a cache of free entries. Additionally, we can safely call
  * this function when we cannot call free(), such as in a critical section.
  */
 static void
 pmc_thread_descriptor_pool_free(struct pmc_thread *pt)
 {
 
 	if (pt == NULL)
 		return;
 
 	memset(pt, 0, THREADENTRY_SIZE);
 	mtx_lock_spin(&pmc_threadfreelist_mtx);
 	LIST_INSERT_HEAD(&pmc_threadfreelist, pt, pt_next);
 	pmc_threadfreelist_entries++;
 	if (pmc_threadfreelist_entries > pmc_threadfreelist_max)
 		taskqueue_enqueue(taskqueue_fast, &free_task);
 	mtx_unlock_spin(&pmc_threadfreelist_mtx);
 }
 
 /*
  * An asynchronous task to manage the free list.
  */
 static void
 pmc_thread_descriptor_pool_free_task(void *arg __unused, int pending __unused)
 {
 	struct pmc_thread *pt;
 	LIST_HEAD(, pmc_thread) tmplist;
 	int delta;
 
 	LIST_INIT(&tmplist);
 
 	/* Determine what changes, if any, we need to make. */
 	mtx_lock_spin(&pmc_threadfreelist_mtx);
 	delta = pmc_threadfreelist_entries - pmc_threadfreelist_max;
 	while (delta > 0 && (pt = LIST_FIRST(&pmc_threadfreelist)) != NULL) {
 		delta--;
 		pmc_threadfreelist_entries--;
 		LIST_REMOVE(pt, pt_next);
 		LIST_INSERT_HEAD(&tmplist, pt, pt_next);
 	}
 	mtx_unlock_spin(&pmc_threadfreelist_mtx);
 
 	/* If there are entries to free, free them. */
 	while (!LIST_EMPTY(&tmplist)) {
 		pt = LIST_FIRST(&tmplist);
 		LIST_REMOVE(pt, pt_next);
 		free(pt, M_PMC);
 	}
 }
 
 /*
  * Drain the thread free pool, freeing all allocations.
  */
 static void
 pmc_thread_descriptor_pool_drain(void)
 {
 	struct pmc_thread *pt, *next;
 
 	LIST_FOREACH_SAFE(pt, &pmc_threadfreelist, pt_next, next) {
 		LIST_REMOVE(pt, pt_next);
 		free(pt, M_PMC);
 	}
 }
 
 /*
  * find the descriptor corresponding to thread 'td', adding or removing it
  * as specified by 'mode'.
  *
  * Note that this supports additional mode flags in addition to those
  * supported by pmc_find_process_descriptor():
  * PMC_FLAG_NOWAIT: Causes the function to not wait for mallocs.
  *     This makes it safe to call while holding certain other locks.
  */
 static struct pmc_thread *
 pmc_find_thread_descriptor(struct pmc_process *pp, struct thread *td,
     uint32_t mode)
 {
 	struct pmc_thread *pt = NULL, *ptnew = NULL;
 	int wait_flag;
 
 	KASSERT(td != NULL, ("[pmc,%d] called to add NULL td", __LINE__));
 
 	/*
 	 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case prior to
 	 * acquiring the lock.
 	 */
 	if ((mode & PMC_FLAG_ALLOCATE) != 0) {
 		if ((ptnew = pmc_thread_descriptor_pool_alloc()) == NULL) {
 			wait_flag = M_WAITOK;
 			if ((mode & PMC_FLAG_NOWAIT) != 0 ||
 			    in_epoch(global_epoch_preempt))
 				wait_flag = M_NOWAIT;
 
 			ptnew = malloc(THREADENTRY_SIZE, M_PMC,
 			    wait_flag | M_ZERO);
 		}
 	}
 
 	mtx_lock_spin(pp->pp_tdslock);
 	LIST_FOREACH(pt, &pp->pp_tds, pt_next) {
 		if (pt->pt_td == td)
 			break;
 	}
 
 	if ((mode & PMC_FLAG_REMOVE) != 0 && pt != NULL)
 		LIST_REMOVE(pt, pt_next);
 
 	if ((mode & PMC_FLAG_ALLOCATE) != 0 && pt == NULL && ptnew != NULL) {
 		pt = ptnew;
 		ptnew = NULL;
 		pt->pt_td = td;
 		LIST_INSERT_HEAD(&pp->pp_tds, pt, pt_next);
 	}
 
 	mtx_unlock_spin(pp->pp_tdslock);
 
 	if (ptnew != NULL) {
 		free(ptnew, M_PMC);
 	}
 
 	return (pt);
 }
 
 /*
  * Try to add thread descriptors for each thread in a process.
  */
 static void
 pmc_add_thread_descriptors_from_proc(struct proc *p, struct pmc_process *pp)
 {
 	struct pmc_thread **tdlist;
 	struct thread *curtd;
 	int i, tdcnt, tdlistsz;
 
 	KASSERT(!PROC_LOCKED(p), ("[pmc,%d] proc unexpectedly locked",
 	    __LINE__));
 	tdcnt = 32;
 restart:
 	tdlistsz = roundup2(tdcnt, 32);
 
 	tdcnt = 0;
 	tdlist = malloc(sizeof(struct pmc_thread *) * tdlistsz, M_TEMP,
 	    M_WAITOK);
 
 	PROC_LOCK(p);
 	FOREACH_THREAD_IN_PROC(p, curtd)
 		tdcnt++;
 	if (tdcnt >= tdlistsz) {
 		PROC_UNLOCK(p);
 		free(tdlist, M_TEMP);
 		goto restart;
 	}
 
 	/*
 	 * Try to add each thread to the list without sleeping. If unable,
 	 * add to a queue to retry after dropping the process lock.
 	 */
 	tdcnt = 0;
 	FOREACH_THREAD_IN_PROC(p, curtd) {
 		tdlist[tdcnt] = pmc_find_thread_descriptor(pp, curtd,
 		    PMC_FLAG_ALLOCATE | PMC_FLAG_NOWAIT);
 		if (tdlist[tdcnt] == NULL) {
 			PROC_UNLOCK(p);
 			for (i = 0; i <= tdcnt; i++)
 				pmc_thread_descriptor_pool_free(tdlist[i]);
 			free(tdlist, M_TEMP);
 			goto restart;
 		}
 		tdcnt++;
 	}
 	PROC_UNLOCK(p);
 	free(tdlist, M_TEMP);
 }
 
 /*
  * Find the descriptor corresponding to process 'p', adding or removing it
  * as specified by 'mode'.
  */
 static struct pmc_process *
 pmc_find_process_descriptor(struct proc *p, uint32_t mode)
 {
 	struct pmc_process *pp, *ppnew;
 	struct pmc_processhash *pph;
 	uint32_t hindex;
 
 	hindex = PMC_HASH_PTR(p, pmc_processhashmask);
 	pph = &pmc_processhash[hindex];
 
 	ppnew = NULL;
 
 	/*
 	 * Pre-allocate memory in the PMC_FLAG_ALLOCATE case since we
 	 * cannot call malloc(9) once we hold a spin lock.
 	 */
 	if ((mode & PMC_FLAG_ALLOCATE) != 0)
 		ppnew = malloc(sizeof(struct pmc_process) + md->pmd_npmc *
 		    sizeof(struct pmc_targetstate), M_PMC, M_WAITOK | M_ZERO);
 
 	mtx_lock_spin(&pmc_processhash_mtx);
 	LIST_FOREACH(pp, pph, pp_next) {
 		if (pp->pp_proc == p)
 			break;
 	}
 
 	if ((mode & PMC_FLAG_REMOVE) != 0 && pp != NULL)
 		LIST_REMOVE(pp, pp_next);
 
 	if ((mode & PMC_FLAG_ALLOCATE) != 0 && pp == NULL && ppnew != NULL) {
 		ppnew->pp_proc = p;
 		LIST_INIT(&ppnew->pp_tds);
 		ppnew->pp_tdslock = mtx_pool_find(pmc_mtxpool, ppnew);
 		LIST_INSERT_HEAD(pph, ppnew, pp_next);
 		mtx_unlock_spin(&pmc_processhash_mtx);
 		pp = ppnew;
 		ppnew = NULL;
 
 		/* Add thread descriptors for this process' current threads. */
 		pmc_add_thread_descriptors_from_proc(p, pp);
 	} else
 		mtx_unlock_spin(&pmc_processhash_mtx);
 
 	if (ppnew != NULL)
 		free(ppnew, M_PMC);
 	return (pp);
 }
 
 /*
  * Remove a process descriptor from the process hash table.
  */
 static void
 pmc_remove_process_descriptor(struct pmc_process *pp)
 {
 	KASSERT(pp->pp_refcnt == 0,
 	    ("[pmc,%d] Removing process descriptor %p with count %d",
 	     __LINE__, pp, pp->pp_refcnt));
 
 	mtx_lock_spin(&pmc_processhash_mtx);
 	LIST_REMOVE(pp, pp_next);
 	mtx_unlock_spin(&pmc_processhash_mtx);
 }
 
 /*
  * Destroy a process descriptor.
  */
 static void
 pmc_destroy_process_descriptor(struct pmc_process *pp)
 {
 	struct pmc_thread *pmc_td;
 
 	while ((pmc_td = LIST_FIRST(&pp->pp_tds)) != NULL) {
 		LIST_REMOVE(pmc_td, pt_next);
 		pmc_thread_descriptor_pool_free(pmc_td);
 	}
 	free(pp, M_PMC);
 }
 
 /*
  * Find an owner descriptor corresponding to proc 'p'.
  */
 static struct pmc_owner *
 pmc_find_owner_descriptor(struct proc *p)
 {
 	struct pmc_owner *po;
 	struct pmc_ownerhash *poh;
 	uint32_t hindex;
 
 	hindex = PMC_HASH_PTR(p, pmc_ownerhashmask);
 	poh = &pmc_ownerhash[hindex];
 
 	po = NULL;
 	LIST_FOREACH(po, poh, po_next) {
 		if (po->po_owner == p)
 			break;
 	}
 
 	PMCDBG5(OWN,FND,1, "find-owner proc=%p (%d, %s) hindex=0x%x -> "
 	    "pmc-owner=%p", p, p->p_pid, p->p_comm, hindex, po);
 
 	return (po);
 }
 
 /*
  * Allocate a pmc descriptor and initialize its fields.
  */
 static struct pmc *
 pmc_allocate_pmc_descriptor(void)
 {
 	struct pmc *pmc;
 
 	pmc = malloc(sizeof(struct pmc), M_PMC, M_WAITOK | M_ZERO);
 	pmc->pm_runcount = counter_u64_alloc(M_WAITOK);
 	pmc->pm_pcpu_state = malloc(sizeof(struct pmc_pcpu_state) * mp_ncpus,
 	    M_PMC, M_WAITOK | M_ZERO);
 	PMCDBG1(PMC,ALL,1, "allocate-pmc -> pmc=%p", pmc);
 
 	return (pmc);
 }
 
 /*
  * Destroy a pmc descriptor.
  */
 static void
 pmc_destroy_pmc_descriptor(struct pmc *pm)
 {
 
 	KASSERT(pm->pm_state == PMC_STATE_DELETED ||
 	    pm->pm_state == PMC_STATE_FREE,
 	    ("[pmc,%d] destroying non-deleted PMC", __LINE__));
 	KASSERT(LIST_EMPTY(&pm->pm_targets),
 	    ("[pmc,%d] destroying pmc with targets", __LINE__));
 	KASSERT(pm->pm_owner == NULL,
 	    ("[pmc,%d] destroying pmc attached to an owner", __LINE__));
 	KASSERT(counter_u64_fetch(pm->pm_runcount) == 0,
 	    ("[pmc,%d] pmc has non-zero run count %ju", __LINE__,
 	    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 
 	counter_u64_free(pm->pm_runcount);
 	free(pm->pm_pcpu_state, M_PMC);
 	free(pm, M_PMC);
 }
 
 static void
 pmc_wait_for_pmc_idle(struct pmc *pm)
 {
 #ifdef INVARIANTS
 	volatile int maxloop;
 
 	maxloop = 100 * pmc_cpu_max();
 #endif
 	/*
 	 * Loop (with a forced context switch) till the PMC's runcount
 	 * comes down to zero.
 	 */
 	pmclog_flush(pm->pm_owner, 1);
 	while (counter_u64_fetch(pm->pm_runcount) > 0) {
 		pmclog_flush(pm->pm_owner, 1);
 #ifdef INVARIANTS
 		maxloop--;
 		KASSERT(maxloop > 0,
 		    ("[pmc,%d] (ri%d, rc%ju) waiting too long for "
 		     "pmc to be free", __LINE__, PMC_TO_ROWINDEX(pm),
 		     (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 #endif
 		pmc_force_context_switch();
 	}
 }
 
 /*
  * This function does the following things:
  *
  *  - detaches the PMC from hardware
  *  - unlinks all target threads that were attached to it
  *  - removes the PMC from its owner's list
  *  - destroys the PMC private mutex
  *
  * Once this function completes, the given pmc pointer can be freed by
  * calling pmc_destroy_pmc_descriptor().
  */
 static void
 pmc_release_pmc_descriptor(struct pmc *pm)
 {
 	struct pmc_binding pb;
 	struct pmc_classdep *pcd;
 	struct pmc_hw *phw __diagused;
 	struct pmc_owner *po;
 	struct pmc_process *pp;
 	struct pmc_target *ptgt, *tmp;
 	enum pmc_mode mode;
 	u_int adjri, ri, cpu;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 	KASSERT(pm, ("[pmc,%d] null pmc", __LINE__));
 
 	ri   = PMC_TO_ROWINDEX(pm);
 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
 	mode = PMC_TO_MODE(pm);
 
 	PMCDBG3(PMC,REL,1, "release-pmc pmc=%p ri=%d mode=%d", pm, ri,
 	    mode);
 
 	/*
 	 * First, we take the PMC off hardware.
 	 */
 	cpu = 0;
 	if (PMC_IS_SYSTEM_MODE(mode)) {
 		/*
 		 * A system mode PMC runs on a specific CPU. Switch
 		 * to this CPU and turn hardware off.
 		 */
 		pmc_save_cpu_binding(&pb);
 		cpu = PMC_TO_CPU(pm);
 		pmc_select_cpu(cpu);
 
 		/* switch off non-stalled CPUs */
 		pm->pm_pcpu_state[cpu].pps_cpustate = 0;
 		if (pm->pm_state == PMC_STATE_RUNNING &&
 			pm->pm_pcpu_state[cpu].pps_stalled == 0) {
 
 			phw = pmc_pcpu[cpu]->pc_hwpmcs[ri];
 
 			KASSERT(phw->phw_pmc == pm,
 			    ("[pmc, %d] pmc ptr ri(%d) hw(%p) pm(%p)",
 				__LINE__, ri, phw->phw_pmc, pm));
 			PMCDBG2(PMC,REL,2, "stopping cpu=%d ri=%d", cpu, ri);
 
 			critical_enter();
 			(void)pcd->pcd_stop_pmc(cpu, adjri, pm);
 			critical_exit();
 		}
 
 		PMCDBG2(PMC,REL,2, "decfg cpu=%d ri=%d", cpu, ri);
 
 		critical_enter();
 		(void)pcd->pcd_config_pmc(cpu, adjri, NULL);
 		critical_exit();
 
 		/* adjust the global and process count of SS mode PMCs */
 		if (mode == PMC_MODE_SS && pm->pm_state == PMC_STATE_RUNNING) {
 			po = pm->pm_owner;
 			po->po_sscount--;
 			if (po->po_sscount == 0) {
 				atomic_subtract_rel_int(&pmc_ss_count, 1);
 				CK_LIST_REMOVE(po, po_ssnext);
 				epoch_wait_preempt(global_epoch_preempt);
 			}
 		}
 		pm->pm_state = PMC_STATE_DELETED;
 
 		pmc_restore_cpu_binding(&pb);
 
 		/*
 		 * We could have references to this PMC structure in the
 		 * per-cpu sample queues.  Wait for the queue to drain.
 		 */
 		pmc_wait_for_pmc_idle(pm);
 
 	} else if (PMC_IS_VIRTUAL_MODE(mode)) {
 		/*
 		 * A virtual PMC could be running on multiple CPUs at a given
 		 * instant.
 		 *
 		 * By marking its state as DELETED, we ensure that this PMC is
 		 * never further scheduled on hardware.
 		 *
 		 * Then we wait till all CPUs are done with this PMC.
 		 */
 		pm->pm_state = PMC_STATE_DELETED;
 
 		/* Wait for the PMCs runcount to come to zero. */
 		pmc_wait_for_pmc_idle(pm);
 
 		/*
 		 * At this point the PMC is off all CPUs and cannot be freshly
 		 * scheduled onto a CPU. It is now safe to unlink all targets
 		 * from this PMC. If a process-record's refcount falls to zero,
 		 * we remove it from the hash table. The module-wide SX lock
 		 * protects us from races.
 		 */
 		LIST_FOREACH_SAFE(ptgt, &pm->pm_targets, pt_next, tmp) {
 			pp = ptgt->pt_process;
 			pmc_unlink_target_process(pm, pp); /* frees 'ptgt' */
 
 			PMCDBG1(PMC,REL,3, "pp->refcnt=%d", pp->pp_refcnt);
 
 			/*
 			 * If the target process record shows that no PMCs are
 			 * attached to it, reclaim its space.
 			 */
 			if (pp->pp_refcnt == 0) {
 				pmc_remove_process_descriptor(pp);
 				pmc_destroy_process_descriptor(pp);
 			}
 		}
 
 		cpu = curthread->td_oncpu; /* setup cpu for pmd_release() */
 	}
 
 	/*
 	 * Release any MD resources.
 	 */
 	(void)pcd->pcd_release_pmc(cpu, adjri, pm);
 
 	/*
 	 * Update row disposition.
 	 */
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
 		PMC_UNMARK_ROW_STANDALONE(ri);
 	else
 		PMC_UNMARK_ROW_THREAD(ri);
 
 	/* Unlink from the owner's list. */
 	if (pm->pm_owner != NULL) {
 		LIST_REMOVE(pm, pm_next);
 		pm->pm_owner = NULL;
 	}
 }
 
 /*
  * Register an owner and a pmc.
  */
 static int
 pmc_register_owner(struct proc *p, struct pmc *pmc)
 {
 	struct pmc_owner *po;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	if ((po = pmc_find_owner_descriptor(p)) == NULL) {
 		if ((po = pmc_allocate_owner_descriptor(p)) == NULL)
 			return (ENOMEM);
 	}
 
 	KASSERT(pmc->pm_owner == NULL,
 	    ("[pmc,%d] attempting to own an initialized PMC", __LINE__));
 	pmc->pm_owner = po;
 
 	LIST_INSERT_HEAD(&po->po_pmcs, pmc, pm_next);
 
 	PROC_LOCK(p);
 	p->p_flag |= P_HWPMC;
 	PROC_UNLOCK(p);
 
 	if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
 		pmclog_process_pmcallocate(pmc);
 
 	PMCDBG2(PMC,REG,1, "register-owner pmc-owner=%p pmc=%p",
 	    po, pmc);
 
 	return (0);
 }
 
 /*
  * Return the current row disposition:
  * == 0 => FREE
  *  > 0 => PROCESS MODE
  *  < 0 => SYSTEM MODE
  */
 int
 pmc_getrowdisp(int ri)
 {
 	return (pmc_pmcdisp[ri]);
 }
 
 /*
  * Check if a PMC at row index 'ri' can be allocated to the current
  * process.
  *
  * Allocation can fail if:
  *   - the current process is already being profiled by a PMC at index 'ri',
  *     attached to it via OP_PMCATTACH.
  *   - the current process has already allocated a PMC at index 'ri'
  *     via OP_ALLOCATE.
  */
 static bool
 pmc_can_allocate_rowindex(struct proc *p, unsigned int ri, int cpu)
 {
 	struct pmc *pm;
 	struct pmc_owner *po;
 	struct pmc_process *pp;
 	enum pmc_mode mode;
 
 	PMCDBG5(PMC,ALR,1, "can-allocate-rowindex proc=%p (%d, %s) ri=%d "
 	    "cpu=%d", p, p->p_pid, p->p_comm, ri, cpu);
 
 	/*
 	 * We shouldn't have already allocated a process-mode PMC at
 	 * row index 'ri'.
 	 *
 	 * We shouldn't have allocated a system-wide PMC on the same
 	 * CPU and same RI.
 	 */
 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
 		LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
 			if (PMC_TO_ROWINDEX(pm) == ri) {
 				mode = PMC_TO_MODE(pm);
 				if (PMC_IS_VIRTUAL_MODE(mode))
 					return (false);
 				if (PMC_IS_SYSTEM_MODE(mode) &&
 				    PMC_TO_CPU(pm) == cpu)
 					return (false);
 			}
 		}
 	}
 
 	/*
 	 * We also shouldn't be the target of any PMC at this index
 	 * since otherwise a PMC_ATTACH to ourselves will fail.
 	 */
 	if ((pp = pmc_find_process_descriptor(p, 0)) != NULL)
 		if (pp->pp_pmcs[ri].pp_pmc != NULL)
 			return (false);
 
 	PMCDBG4(PMC,ALR,2, "can-allocate-rowindex proc=%p (%d, %s) ri=%d ok",
 	    p, p->p_pid, p->p_comm, ri);
 	return (true);
 }
 
 /*
  * Check if a given PMC at row index 'ri' can be currently used in
  * mode 'mode'.
  */
 static bool
 pmc_can_allocate_row(int ri, enum pmc_mode mode)
 {
 	enum pmc_disp disp;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	PMCDBG2(PMC,ALR,1, "can-allocate-row ri=%d mode=%d", ri, mode);
 
 	if (PMC_IS_SYSTEM_MODE(mode))
 		disp = PMC_DISP_STANDALONE;
 	else
 		disp = PMC_DISP_THREAD;
 
 	/*
 	 * check disposition for PMC row 'ri':
 	 *
 	 * Expected disposition		Row-disposition		Result
 	 *
 	 * STANDALONE			STANDALONE or FREE	proceed
 	 * STANDALONE			THREAD			fail
 	 * THREAD			THREAD or FREE		proceed
 	 * THREAD			STANDALONE		fail
 	 */
 	if (!PMC_ROW_DISP_IS_FREE(ri) &&
 	    !(disp == PMC_DISP_THREAD && PMC_ROW_DISP_IS_THREAD(ri)) &&
 	    !(disp == PMC_DISP_STANDALONE && PMC_ROW_DISP_IS_STANDALONE(ri)))
 		return (false);
 
 	/*
 	 * All OK
 	 */
 	PMCDBG2(PMC,ALR,2, "can-allocate-row ri=%d mode=%d ok", ri, mode);
 	return (true);
 }
 
 /*
  * Find a PMC descriptor with user handle 'pmcid' for thread 'td'.
  */
 static struct pmc *
 pmc_find_pmc_descriptor_in_process(struct pmc_owner *po, pmc_id_t pmcid)
 {
 	struct pmc *pm;
 
 	KASSERT(PMC_ID_TO_ROWINDEX(pmcid) < md->pmd_npmc,
 	    ("[pmc,%d] Illegal pmc index %d (max %d)", __LINE__,
 	    PMC_ID_TO_ROWINDEX(pmcid), md->pmd_npmc));
 
 	LIST_FOREACH(pm, &po->po_pmcs, pm_next) {
 		if (pm->pm_id == pmcid)
 			return (pm);
 	}
 
 	return (NULL);
 }
 
 static int
 pmc_find_pmc(pmc_id_t pmcid, struct pmc **pmc)
 {
 	struct pmc *pm, *opm;
 	struct pmc_owner *po;
 	struct pmc_process *pp;
 
 	PMCDBG1(PMC,FND,1, "find-pmc id=%d", pmcid);
 	if (PMC_ID_TO_ROWINDEX(pmcid) >= md->pmd_npmc)
 		return (EINVAL);
 
 	if ((po = pmc_find_owner_descriptor(curthread->td_proc)) == NULL) {
 		/*
 		 * In case of PMC_F_DESCENDANTS child processes we will not find
 		 * the current process in the owners hash list.  Find the owner
 		 * process first and from there lookup the po.
 		 */
 		pp = pmc_find_process_descriptor(curthread->td_proc,
 		    PMC_FLAG_NONE);
 		if (pp == NULL)
 			return (ESRCH);
 		opm = pp->pp_pmcs[PMC_ID_TO_ROWINDEX(pmcid)].pp_pmc;
 		if (opm == NULL)
 			return (ESRCH);
 		if ((opm->pm_flags &
 		    (PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS)) !=
 		    (PMC_F_ATTACHED_TO_OWNER | PMC_F_DESCENDANTS))
 			return (ESRCH);
 
 		po = opm->pm_owner;
 	}
 
 	if ((pm = pmc_find_pmc_descriptor_in_process(po, pmcid)) == NULL)
 		return (EINVAL);
 
 	PMCDBG2(PMC,FND,2, "find-pmc id=%d -> pmc=%p", pmcid, pm);
 
 	*pmc = pm;
 	return (0);
 }
 
 /*
  * Start a PMC.
  */
 static int
 pmc_start(struct pmc *pm)
 {
 	struct pmc_binding pb;
 	struct pmc_classdep *pcd;
 	struct pmc_owner *po;
 	pmc_value_t v;
 	enum pmc_mode mode;
 	int adjri, error, cpu, ri;
 
 	KASSERT(pm != NULL,
 	    ("[pmc,%d] null pm", __LINE__));
 
 	mode = PMC_TO_MODE(pm);
 	ri   = PMC_TO_ROWINDEX(pm);
 	pcd  = pmc_ri_to_classdep(md, ri, &adjri);
 
 	error = 0;
 	po = pm->pm_owner;
 
 	PMCDBG3(PMC,OPS,1, "start pmc=%p mode=%d ri=%d", pm, mode, ri);
 
 	po = pm->pm_owner;
 
 	/*
 	 * Disallow PMCSTART if a logfile is required but has not been
 	 * configured yet.
 	 */
 	if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
 	    (po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
 		return (EDOOFUS);	/* programming error */
 
 	/*
 	 * If this is a sampling mode PMC, log mapping information for
 	 * the kernel modules that are currently loaded.
 	 */
 	if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 		pmc_log_kernel_mappings(pm);
 
 	if (PMC_IS_VIRTUAL_MODE(mode)) {
 		/*
 		 * If a PMCATTACH has never been done on this PMC,
 		 * attach it to its owner process.
 		 */
 		if (LIST_EMPTY(&pm->pm_targets)) {
 			error = (pm->pm_flags & PMC_F_ATTACH_DONE) != 0 ?
 			    ESRCH : pmc_attach_process(po->po_owner, pm);
 		}
 
 		/*
 		 * If the PMC is attached to its owner, then force a context
 		 * switch to ensure that the MD state gets set correctly.
 		 */
 		if (error == 0) {
 			pm->pm_state = PMC_STATE_RUNNING;
 			if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) != 0)
 				pmc_force_context_switch();
 		}
 
 		return (error);
 	}
 
 	/*
 	 * A system-wide PMC.
 	 *
 	 * Add the owner to the global list if this is a system-wide
 	 * sampling PMC.
 	 */
 	if (mode == PMC_MODE_SS) {
 		/*
 		 * Log mapping information for all existing processes in the
 		 * system.  Subsequent mappings are logged as they happen;
 		 * see pmc_process_mmap().
 		 */
 		if (po->po_logprocmaps == 0) {
 			pmc_log_all_process_mappings(po);
 			po->po_logprocmaps = 1;
 		}
 		po->po_sscount++;
 		if (po->po_sscount == 1) {
 			atomic_add_rel_int(&pmc_ss_count, 1);
 			CK_LIST_INSERT_HEAD(&pmc_ss_owners, po, po_ssnext);
 			PMCDBG1(PMC,OPS,1, "po=%p in global list", po);
 		}
 	}
 
 	/*
 	 * Move to the CPU associated with this
 	 * PMC, and start the hardware.
 	 */
 	pmc_save_cpu_binding(&pb);
 	cpu = PMC_TO_CPU(pm);
 	if (!pmc_cpu_is_active(cpu))
 		return (ENXIO);
 	pmc_select_cpu(cpu);
 
 	/*
 	 * global PMCs are configured at allocation time
 	 * so write out the initial value and start the PMC.
 	 */
 	pm->pm_state = PMC_STATE_RUNNING;
 
 	critical_enter();
 	v = PMC_IS_SAMPLING_MODE(mode) ? pm->pm_sc.pm_reloadcount :
 	    pm->pm_sc.pm_initial;
 	if ((error = pcd->pcd_write_pmc(cpu, adjri, pm, v)) == 0) {
 		/* If a sampling mode PMC, reset stalled state. */
 		if (PMC_IS_SAMPLING_MODE(mode))
 			pm->pm_pcpu_state[cpu].pps_stalled = 0;
 
 		/* Indicate that we desire this to run. Start it. */
 		pm->pm_pcpu_state[cpu].pps_cpustate = 1;
 		error = pcd->pcd_start_pmc(cpu, adjri, pm);
 	}
 	critical_exit();
 
 	pmc_restore_cpu_binding(&pb);
 	return (error);
 }
 
 /*
  * Stop a PMC.
  */
 static int
 pmc_stop(struct pmc *pm)
 {
 	struct pmc_binding pb;
 	struct pmc_classdep *pcd;
 	struct pmc_owner *po;
 	int adjri, cpu, error, ri;
 
 	KASSERT(pm != NULL, ("[pmc,%d] null pmc", __LINE__));
 
 	PMCDBG3(PMC,OPS,1, "stop pmc=%p mode=%d ri=%d", pm, PMC_TO_MODE(pm),
 	    PMC_TO_ROWINDEX(pm));
 
 	pm->pm_state = PMC_STATE_STOPPED;
 
 	/*
 	 * If the PMC is a virtual mode one, changing the state to non-RUNNING
 	 * is enough to ensure that the PMC never gets scheduled.
 	 *
 	 * If this PMC is current running on a CPU, then it will handled
 	 * correctly at the time its target process is context switched out.
 	 */
 	if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
 		return (0);
 
 	/*
 	 * A system-mode PMC. Move to the CPU associated with this PMC, and
 	 * stop the hardware. We update the 'initial count' so that a
 	 * subsequent PMCSTART will resume counting from the current hardware
 	 * count.
 	 */
 	pmc_save_cpu_binding(&pb);
 
 	cpu = PMC_TO_CPU(pm);
 	KASSERT(cpu >= 0 && cpu < pmc_cpu_max(),
 	    ("[pmc,%d] illegal cpu=%d", __LINE__, cpu));
 	if (!pmc_cpu_is_active(cpu))
 		return (ENXIO);
 
 	pmc_select_cpu(cpu);
 
 	ri = PMC_TO_ROWINDEX(pm);
 	pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 	pm->pm_pcpu_state[cpu].pps_cpustate = 0;
 	critical_enter();
 	if ((error = pcd->pcd_stop_pmc(cpu, adjri, pm)) == 0) {
 		error = pcd->pcd_read_pmc(cpu, adjri, pm,
 		    &pm->pm_sc.pm_initial);
 	}
 	critical_exit();
 
 	pmc_restore_cpu_binding(&pb);
 
 	/* Remove this owner from the global list of SS PMC owners. */
 	po = pm->pm_owner;
 	if (PMC_TO_MODE(pm) == PMC_MODE_SS) {
 		po->po_sscount--;
 		if (po->po_sscount == 0) {
 			atomic_subtract_rel_int(&pmc_ss_count, 1);
 			CK_LIST_REMOVE(po, po_ssnext);
 			epoch_wait_preempt(global_epoch_preempt);
 			PMCDBG1(PMC,OPS,2,"po=%p removed from global list", po);
 		}
 	}
 
 	return (error);
 }
 
 static struct pmc_classdep *
 pmc_class_to_classdep(enum pmc_class class)
 {
 	int n;
 
 	for (n = 0; n < md->pmd_nclass; n++) {
 		if (md->pmd_classdep[n].pcd_class == class)
 			return (&md->pmd_classdep[n]);
 	}
 	return (NULL);
 }
 
 #if defined(HWPMC_DEBUG) && defined(KTR)
 static const char *pmc_op_to_name[] = {
 #undef	__PMC_OP
 #define	__PMC_OP(N, D)	#N ,
 	__PMC_OPS()
 	NULL
 };
 #endif
 
 /*
  * The syscall interface
  */
 
 #define	PMC_GET_SX_XLOCK(...) do {		\
 	sx_xlock(&pmc_sx);			\
 	if (pmc_hook == NULL) {			\
 		sx_xunlock(&pmc_sx);		\
 		return __VA_ARGS__;		\
 	}					\
 } while (0)
 
 #define	PMC_DOWNGRADE_SX() do {			\
 	sx_downgrade(&pmc_sx);			\
 	is_sx_downgraded = true;		\
 } while (0)
 
 /*
  * Main body of PMC_OP_PMCALLOCATE.
  */
 static int
 pmc_do_op_pmcallocate(struct thread *td, struct pmc_op_pmcallocate *pa)
 {
 	struct proc *p;
 	struct pmc *pmc;
 	struct pmc_binding pb;
 	struct pmc_classdep *pcd;
 	struct pmc_hw *phw;
 	enum pmc_mode mode;
 	enum pmc_class class;
 	uint32_t caps;
 	u_int cpu;
 	int adjri, n;
 	int error;
 
 	class = pa->pm_class;
 	caps  = pa->pm_caps;
 	mode  = pa->pm_mode;
 	cpu   = pa->pm_cpu;
 
 	p = td->td_proc;
 
 	/* Requested mode must exist. */
 	if ((mode != PMC_MODE_SS && mode != PMC_MODE_SC &&
 	     mode != PMC_MODE_TS && mode != PMC_MODE_TC))
 		return (EINVAL);
 
 	/* Requested CPU must be valid. */
 	if (cpu != PMC_CPU_ANY && cpu >= pmc_cpu_max())
 		return (EINVAL);
 
 	/*
 	 * Virtual PMCs should only ask for a default CPU.
 	 * System mode PMCs need to specify a non-default CPU.
 	 */
 	if ((PMC_IS_VIRTUAL_MODE(mode) && cpu != PMC_CPU_ANY) ||
 	    (PMC_IS_SYSTEM_MODE(mode) && cpu == PMC_CPU_ANY))
 		return (EINVAL);
 
 	/*
 	 * Check that an inactive CPU is not being asked for.
 	 */
 	if (PMC_IS_SYSTEM_MODE(mode) && !pmc_cpu_is_active(cpu))
 		return (ENXIO);
 
 	/*
 	 * Refuse an allocation for a system-wide PMC if this process has been
 	 * jailed, or if this process lacks super-user credentials and the
 	 * sysctl tunable 'security.bsd.unprivileged_syspmcs' is zero.
 	 */
 	if (PMC_IS_SYSTEM_MODE(mode)) {
 		if (jailed(td->td_ucred))
 			return (EPERM);
 		if (!pmc_unprivileged_syspmcs) {
 			error = priv_check(td, PRIV_PMC_SYSTEM);
 			if (error != 0)
 				return (error);
 		}
 	}
 
 	/*
 	 * Look for valid values for 'pm_flags'.
 	 */
 	if ((pa->pm_flags & ~(PMC_F_DESCENDANTS | PMC_F_LOG_PROCCSW |
 	    PMC_F_LOG_PROCEXIT | PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN)) != 0)
 		return (EINVAL);
 
 	/* PMC_F_USERCALLCHAIN is only valid with PMC_F_CALLCHAIN. */
 	if ((pa->pm_flags & (PMC_F_CALLCHAIN | PMC_F_USERCALLCHAIN)) ==
 	    PMC_F_USERCALLCHAIN)
 		return (EINVAL);
 
 	/* PMC_F_USERCALLCHAIN is only valid for sampling mode. */
 	if ((pa->pm_flags & PMC_F_USERCALLCHAIN) != 0 && mode != PMC_MODE_TS &&
 	    mode != PMC_MODE_SS)
 		return (EINVAL);
 
 	/* Process logging options are not allowed for system PMCs. */
 	if (PMC_IS_SYSTEM_MODE(mode) &&
 	    (pa->pm_flags & (PMC_F_LOG_PROCCSW | PMC_F_LOG_PROCEXIT)) != 0)
 		return (EINVAL);
 
 	/*
 	 * All sampling mode PMCs need to be able to interrupt the CPU.
 	 */
 	if (PMC_IS_SAMPLING_MODE(mode))
 		caps |= PMC_CAP_INTERRUPT;
 
 	/* A valid class specifier should have been passed in. */
 	pcd = pmc_class_to_classdep(class);
 	if (pcd == NULL)
 		return (EINVAL);
 
 	/* The requested PMC capabilities should be feasible. */
 	if ((pcd->pcd_caps & caps) != caps)
 		return (EOPNOTSUPP);
 
 	PMCDBG4(PMC,ALL,2, "event=%d caps=0x%x mode=%d cpu=%d", pa->pm_ev,
 	    caps, mode, cpu);
 
 	pmc = pmc_allocate_pmc_descriptor();
 	pmc->pm_id    = PMC_ID_MAKE_ID(cpu, pa->pm_mode, class, PMC_ID_INVALID);
 	pmc->pm_event = pa->pm_ev;
 	pmc->pm_state = PMC_STATE_FREE;
 	pmc->pm_caps  = caps;
 	pmc->pm_flags = pa->pm_flags;
 
 	/* XXX set lower bound on sampling for process counters */
 	if (PMC_IS_SAMPLING_MODE(mode)) {
 		/*
 		 * Don't permit requested sample rate to be less than
 		 * pmc_mincount.
 		 */
 		if (pa->pm_count < MAX(1, pmc_mincount))
 			log(LOG_WARNING, "pmcallocate: passed sample "
 			    "rate %ju - setting to %u\n",
 			    (uintmax_t)pa->pm_count,
 			    MAX(1, pmc_mincount));
 		pmc->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
 		    pa->pm_count);
 	} else
 		pmc->pm_sc.pm_initial = pa->pm_count;
 
 	/* switch thread to CPU 'cpu' */
 	pmc_save_cpu_binding(&pb);
 
 #define	PMC_IS_SHAREABLE_PMC(cpu, n)				\
 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_state &		\
 	 PMC_PHW_FLAG_IS_SHAREABLE)
 #define	PMC_IS_UNALLOCATED(cpu, n)				\
 	(pmc_pcpu[(cpu)]->pc_hwpmcs[(n)]->phw_pmc == NULL)
 
 	if (PMC_IS_SYSTEM_MODE(mode)) {
 		pmc_select_cpu(cpu);
 		for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
 			pcd = pmc_ri_to_classdep(md, n, &adjri);
 
 			if (!pmc_can_allocate_row(n, mode) ||
 			    !pmc_can_allocate_rowindex(p, n, cpu))
 				continue;
 			if (!PMC_IS_UNALLOCATED(cpu, n) &&
 			    !PMC_IS_SHAREABLE_PMC(cpu, n))
 				continue;
 
 			if (pcd->pcd_allocate_pmc(cpu, adjri, pmc, pa) == 0) {
 				/* Success. */
 				break;
 			}
 		}
 	} else {
 		/* Process virtual mode */
 		for (n = pcd->pcd_ri; n < md->pmd_npmc; n++) {
 			pcd = pmc_ri_to_classdep(md, n, &adjri);
 
 			if (!pmc_can_allocate_row(n, mode) ||
 			    !pmc_can_allocate_rowindex(p, n, PMC_CPU_ANY))
 				continue;
 
 			if (pcd->pcd_allocate_pmc(td->td_oncpu, adjri, pmc,
 			    pa) == 0) {
 				/* Success. */
 				break;
 			}
 		}
 	}
 
 #undef	PMC_IS_UNALLOCATED
 #undef	PMC_IS_SHAREABLE_PMC
 
 	pmc_restore_cpu_binding(&pb);
 
 	if (n == md->pmd_npmc) {
 		pmc_destroy_pmc_descriptor(pmc);
 		return (EINVAL);
 	}
 
 	/* Fill in the correct value in the ID field. */
 	pmc->pm_id = PMC_ID_MAKE_ID(cpu, mode, class, n);
 
 	PMCDBG5(PMC,ALL,2, "ev=%d class=%d mode=%d n=%d -> pmcid=%x",
 	    pmc->pm_event, class, mode, n, pmc->pm_id);
 
 	/* Process mode PMCs with logging enabled need log files. */
 	if ((pmc->pm_flags & (PMC_F_LOG_PROCEXIT | PMC_F_LOG_PROCCSW)) != 0)
 		pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
 
 	/* All system mode sampling PMCs require a log file. */
 	if (PMC_IS_SAMPLING_MODE(mode) && PMC_IS_SYSTEM_MODE(mode))
 		pmc->pm_flags |= PMC_F_NEEDS_LOGFILE;
 
 	/*
 	 * Configure global pmc's immediately.
 	 */
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pmc))) {
 		pmc_save_cpu_binding(&pb);
 		pmc_select_cpu(cpu);
 
 		phw = pmc_pcpu[cpu]->pc_hwpmcs[n];
 		pcd = pmc_ri_to_classdep(md, n, &adjri);
 
 		if ((phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0 ||
 		    (error = pcd->pcd_config_pmc(cpu, adjri, pmc)) != 0) {
 			(void)pcd->pcd_release_pmc(cpu, adjri, pmc);
 			pmc_destroy_pmc_descriptor(pmc);
 			pmc_restore_cpu_binding(&pb);
 			return (EPERM);
 		}
 
 		pmc_restore_cpu_binding(&pb);
 	}
 
 	pmc->pm_state = PMC_STATE_ALLOCATED;
 	pmc->pm_class = class;
 
 	/*
 	 * Mark row disposition.
 	 */
 	if (PMC_IS_SYSTEM_MODE(mode))
 		PMC_MARK_ROW_STANDALONE(n);
 	else
 		PMC_MARK_ROW_THREAD(n);
 
 	/*
 	 * Register this PMC with the current thread as its owner.
 	 */
 	error = pmc_register_owner(p, pmc);
 	if (error != 0) {
 		pmc_release_pmc_descriptor(pmc);
 		pmc_destroy_pmc_descriptor(pmc);
 		return (error);
 	}
 
 	/*
 	 * Return the allocated index.
 	 */
 	pa->pm_pmcid = pmc->pm_id;
 	return (0);
 }
 
 /*
  * Main body of PMC_OP_PMCATTACH.
  */
 static int
 pmc_do_op_pmcattach(struct thread *td, struct pmc_op_pmcattach a)
 {
 	struct pmc *pm;
 	struct proc *p;
 	int error;
 
 	sx_assert(&pmc_sx, SX_XLOCKED);
 
 	if (a.pm_pid < 0) {
 		return (EINVAL);
 	} else if (a.pm_pid == 0) {
 		a.pm_pid = td->td_proc->p_pid;
 	}
 
 	error = pmc_find_pmc(a.pm_pmc, &pm);
 	if (error != 0)
 		return (error);
 
 	if (PMC_IS_SYSTEM_MODE(PMC_TO_MODE(pm)))
 		return (EINVAL);
 
 	/* PMCs may be (re)attached only when allocated or stopped */
 	if (pm->pm_state == PMC_STATE_RUNNING) {
 		return (EBUSY);
 	} else if (pm->pm_state != PMC_STATE_ALLOCATED &&
 	    pm->pm_state != PMC_STATE_STOPPED) {
 		return (EINVAL);
 	}
 
 	/* lookup pid */
 	if ((p = pfind(a.pm_pid)) == NULL)
 		return (ESRCH);
 
 	/*
 	 * Ignore processes that are working on exiting.
 	 */
 	if ((p->p_flag & P_WEXIT) != 0) {
 		PROC_UNLOCK(p);	/* pfind() returns a locked process */
 		return (ESRCH);
 	}
 
 	/*
 	 * We are allowed to attach a PMC to a process if we can debug it.
 	 */
 	error = p_candebug(curthread, p);
 
 	PROC_UNLOCK(p);
 
 	if (error == 0)
 		error = pmc_attach_process(p, pm);
 
 	return (error);
 }
 
 /*
  * Main body of PMC_OP_PMCDETACH.
  */
 static int
 pmc_do_op_pmcdetach(struct thread *td, struct pmc_op_pmcattach a)
 {
 	struct pmc *pm;
 	struct proc *p;
 	int error;
 
 	if (a.pm_pid < 0) {
 		return (EINVAL);
 	} else if (a.pm_pid == 0)
 		a.pm_pid = td->td_proc->p_pid;
 
 	error = pmc_find_pmc(a.pm_pmc, &pm);
 	if (error != 0)
 		return (error);
 
 	if ((p = pfind(a.pm_pid)) == NULL)
 		return (ESRCH);
 
 	/*
 	 * Treat processes that are in the process of exiting as if they were
 	 * not present.
 	 */
 	if ((p->p_flag & P_WEXIT) != 0) {
 		PROC_UNLOCK(p);
 		return (ESRCH);
 	}
 
 	PROC_UNLOCK(p);	/* pfind() returns a locked process */
 
 	if (error == 0)
 		error = pmc_detach_process(p, pm);
 
 	return (error);
 }
 
+/*
+ * Main body of PMC_OP_PMCRELEASE.
+ */
+static int
+pmc_do_op_pmcrelease(pmc_id_t pmcid)
+{
+	struct pmc_owner *po;
+	struct pmc *pm;
+	int error;
+
+	/*
+	 * Find PMC pointer for the named PMC.
+	 *
+	 * Use pmc_release_pmc_descriptor() to switch off the
+	 * PMC, remove all its target threads, and remove the
+	 * PMC from its owner's list.
+	 *
+	 * Remove the owner record if this is the last PMC
+	 * owned.
+	 *
+	 * Free up space.
+	 */
+	error = pmc_find_pmc(pmcid, &pm);
+	if (error != 0)
+		return (error);
+
+	po = pm->pm_owner;
+	pmc_release_pmc_descriptor(pm);
+	pmc_maybe_remove_owner(po);
+	pmc_destroy_pmc_descriptor(pm);
+
+	return (error);
+}
+
 static int
 pmc_syscall_handler(struct thread *td, void *syscall_args)
 {
 	struct pmc_syscall_args *c;
 	void *pmclog_proc_handle;
 	void *arg;
 	int error, op;
 	bool is_sx_downgraded;
 
 	c = (struct pmc_syscall_args *)syscall_args;
 	op = c->pmop_code;
 	arg = c->pmop_data;
 
 	/* PMC isn't set up yet */
 	if (pmc_hook == NULL)
 		return (EINVAL);
 
 	if (op == PMC_OP_CONFIGURELOG) {
 		/*
 		 * We cannot create the logging process inside
 		 * pmclog_configure_log() because there is a LOR
 		 * between pmc_sx and process structure locks.
 		 * Instead, pre-create the process and ignite the loop
 		 * if everything is fine, otherwise direct the process
 		 * to exit.
 		 */
 		error = pmclog_proc_create(td, &pmclog_proc_handle);
 		if (error != 0)
 			goto done_syscall;
 	}
 
 	PMC_GET_SX_XLOCK(ENOSYS);
 	is_sx_downgraded = false;
 	PMCDBG3(MOD,PMS,1, "syscall op=%d \"%s\" arg=%p", op,
 	    pmc_op_to_name[op], arg);
 
 	error = 0;
 	counter_u64_add(pmc_stats.pm_syscalls, 1);
 
 	switch (op) {
 
 
 	/*
 	 * Configure a log file.
 	 *
 	 * XXX This OP will be reworked.
 	 */
 
 	case PMC_OP_CONFIGURELOG:
 	{
 		struct proc *p;
 		struct pmc *pm;
 		struct pmc_owner *po;
 		struct pmc_op_configurelog cl;
 
 		if ((error = copyin(arg, &cl, sizeof(cl))) != 0) {
 			pmclog_proc_ignite(pmclog_proc_handle, NULL);
 			break;
 		}
 
 		/* No flags currently implemented */
 		if (cl.pm_flags != 0) {
 			error = EINVAL;
 			break;
 		}
 
 		/* mark this process as owning a log file */
 		p = td->td_proc;
 		if ((po = pmc_find_owner_descriptor(p)) == NULL)
 			if ((po = pmc_allocate_owner_descriptor(p)) == NULL) {
 				pmclog_proc_ignite(pmclog_proc_handle, NULL);
 				error = ENOMEM;
 				break;
 			}
 
 		/*
 		 * If a valid fd was passed in, try to configure that,
 		 * otherwise if 'fd' was less than zero and there was
 		 * a log file configured, flush its buffers and
 		 * de-configure it.
 		 */
 		if (cl.pm_logfd >= 0) {
 			error = pmclog_configure_log(md, po, cl.pm_logfd);
 			pmclog_proc_ignite(pmclog_proc_handle, error == 0 ?
 			    po : NULL);
 		} else if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
 			pmclog_proc_ignite(pmclog_proc_handle, NULL);
 			error = pmclog_close(po);
 			if (error == 0) {
 				LIST_FOREACH(pm, &po->po_pmcs, pm_next)
 				    if (pm->pm_flags & PMC_F_NEEDS_LOGFILE &&
 					pm->pm_state == PMC_STATE_RUNNING)
 					    pmc_stop(pm);
 				error = pmclog_deconfigure_log(po);
 			}
 		} else {
 			pmclog_proc_ignite(pmclog_proc_handle, NULL);
 			error = EINVAL;
 		}
 	}
 	break;
 
 	/*
 	 * Flush a log file.
 	 */
 
 	case PMC_OP_FLUSHLOG:
 	{
 		struct pmc_owner *po;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmclog_flush(po, 0);
 	}
 	break;
 
 	/*
 	 * Close a log file.
 	 */
 
 	case PMC_OP_CLOSELOG:
 	{
 		struct pmc_owner *po;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmclog_close(po);
 	}
 	break;
 
 	/*
 	 * Retrieve hardware configuration.
 	 */
 
 	case PMC_OP_GETCPUINFO:	/* CPU information */
 	{
 		struct pmc_op_getcpuinfo gci;
 		struct pmc_classinfo *pci;
 		struct pmc_classdep *pcd;
 		int cl;
 
 		memset(&gci, 0, sizeof(gci));
 		gci.pm_cputype = md->pmd_cputype;
 		gci.pm_ncpu    = pmc_cpu_max();
 		gci.pm_npmc    = md->pmd_npmc;
 		gci.pm_nclass  = md->pmd_nclass;
 		pci = gci.pm_classes;
 		pcd = md->pmd_classdep;
 		for (cl = 0; cl < md->pmd_nclass; cl++, pci++, pcd++) {
 			pci->pm_caps  = pcd->pcd_caps;
 			pci->pm_class = pcd->pcd_class;
 			pci->pm_width = pcd->pcd_width;
 			pci->pm_num   = pcd->pcd_num;
 		}
 		error = copyout(&gci, arg, sizeof(gci));
 	}
 	break;
 
 	/*
 	 * Retrieve soft events list.
 	 */
 	case PMC_OP_GETDYNEVENTINFO:
 	{
 		enum pmc_class			cl;
 		enum pmc_event			ev;
 		struct pmc_op_getdyneventinfo	*gei;
 		struct pmc_dyn_event_descr	dev;
 		struct pmc_soft			*ps;
 		uint32_t			nevent;
 
 		sx_assert(&pmc_sx, SX_LOCKED);
 
 		gei = (struct pmc_op_getdyneventinfo *) arg;
 
 		if ((error = copyin(&gei->pm_class, &cl, sizeof(cl))) != 0)
 			break;
 
 		/* Only SOFT class is dynamic. */
 		if (cl != PMC_CLASS_SOFT) {
 			error = EINVAL;
 			break;
 		}
 
 		nevent = 0;
 		for (ev = PMC_EV_SOFT_FIRST; (int)ev <= PMC_EV_SOFT_LAST; ev++) {
 			ps = pmc_soft_ev_acquire(ev);
 			if (ps == NULL)
 				continue;
 			bcopy(&ps->ps_ev, &dev, sizeof(dev));
 			pmc_soft_ev_release(ps);
 
 			error = copyout(&dev,
 			    &gei->pm_events[nevent],
 			    sizeof(struct pmc_dyn_event_descr));
 			if (error != 0)
 				break;
 			nevent++;
 		}
 		if (error != 0)
 			break;
 
 		error = copyout(&nevent, &gei->pm_nevent,
 		    sizeof(nevent));
 	}
 	break;
 
 	/*
 	 * Get module statistics
 	 */
 
 	case PMC_OP_GETDRIVERSTATS:
 	{
 		struct pmc_op_getdriverstats gms;
 #define CFETCH(a, b, field) a.field = counter_u64_fetch(b.field)
 		CFETCH(gms, pmc_stats, pm_intr_ignored);
 		CFETCH(gms, pmc_stats, pm_intr_processed);
 		CFETCH(gms, pmc_stats, pm_intr_bufferfull);
 		CFETCH(gms, pmc_stats, pm_syscalls);
 		CFETCH(gms, pmc_stats, pm_syscall_errors);
 		CFETCH(gms, pmc_stats, pm_buffer_requests);
 		CFETCH(gms, pmc_stats, pm_buffer_requests_failed);
 		CFETCH(gms, pmc_stats, pm_log_sweeps);
 #undef CFETCH
 		error = copyout(&gms, arg, sizeof(gms));
 	}
 	break;
 
 
 	/*
 	 * Retrieve module version number
 	 */
 
 	case PMC_OP_GETMODULEVERSION:
 	{
 		uint32_t cv, modv;
 
 		/* retrieve the client's idea of the ABI version */
 		if ((error = copyin(arg, &cv, sizeof(uint32_t))) != 0)
 			break;
 		/* don't service clients newer than our driver */
 		modv = PMC_VERSION;
 		if ((cv & 0xFFFF0000) > (modv & 0xFFFF0000)) {
 			error = EPROGMISMATCH;
 			break;
 		}
 		error = copyout(&modv, arg, sizeof(int));
 	}
 	break;
 
 
 	/*
 	 * Retrieve the state of all the PMCs on a given
 	 * CPU.
 	 */
 
 	case PMC_OP_GETPMCINFO:
 	{
 		int ari;
 		struct pmc *pm;
 		size_t pmcinfo_size;
 		uint32_t cpu, n, npmc;
 		struct pmc_owner *po;
 		struct pmc_binding pb;
 		struct pmc_classdep *pcd;
 		struct pmc_info *p, *pmcinfo;
 		struct pmc_op_getpmcinfo *gpi;
 
 		PMC_DOWNGRADE_SX();
 
 		gpi = (struct pmc_op_getpmcinfo *) arg;
 
 		if ((error = copyin(&gpi->pm_cpu, &cpu, sizeof(cpu))) != 0)
 			break;
 
 		if (cpu >= pmc_cpu_max()) {
 			error = EINVAL;
 			break;
 		}
 
 		if (!pmc_cpu_is_active(cpu)) {
 			error = ENXIO;
 			break;
 		}
 
 		/* switch to CPU 'cpu' */
 		pmc_save_cpu_binding(&pb);
 		pmc_select_cpu(cpu);
 
 		npmc = md->pmd_npmc;
 
 		pmcinfo_size = npmc * sizeof(struct pmc_info);
 		pmcinfo = malloc(pmcinfo_size, M_PMC, M_WAITOK | M_ZERO);
 
 		p = pmcinfo;
 
 		for (n = 0; n < md->pmd_npmc; n++, p++) {
 
 			pcd = pmc_ri_to_classdep(md, n, &ari);
 
 			KASSERT(pcd != NULL,
 			    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
 
 			if ((error = pcd->pcd_describe(cpu, ari, p, &pm)) != 0)
 				break;
 
 			if (PMC_ROW_DISP_IS_STANDALONE(n))
 				p->pm_rowdisp = PMC_DISP_STANDALONE;
 			else if (PMC_ROW_DISP_IS_THREAD(n))
 				p->pm_rowdisp = PMC_DISP_THREAD;
 			else
 				p->pm_rowdisp = PMC_DISP_FREE;
 
 			p->pm_ownerpid = -1;
 
 			if (pm == NULL)	/* no PMC associated */
 				continue;
 
 			po = pm->pm_owner;
 
 			KASSERT(po->po_owner != NULL,
 			    ("[pmc,%d] pmc_owner had a null proc pointer",
 				__LINE__));
 
 			p->pm_ownerpid = po->po_owner->p_pid;
 			p->pm_mode     = PMC_TO_MODE(pm);
 			p->pm_event    = pm->pm_event;
 			p->pm_flags    = pm->pm_flags;
 
 			if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)))
 				p->pm_reloadcount =
 				    pm->pm_sc.pm_reloadcount;
 		}
 
 		pmc_restore_cpu_binding(&pb);
 
 		/* now copy out the PMC info collected */
 		if (error == 0)
 			error = copyout(pmcinfo, &gpi->pm_pmcs, pmcinfo_size);
 
 		free(pmcinfo, M_PMC);
 	}
 	break;
 
 
 	/*
 	 * Set the administrative state of a PMC.  I.e. whether
 	 * the PMC is to be used or not.
 	 */
 
 	case PMC_OP_PMCADMIN:
 	{
 		int cpu, ri;
 		enum pmc_state request;
 		struct pmc_cpu *pc;
 		struct pmc_hw *phw;
 		struct pmc_op_pmcadmin pma;
 		struct pmc_binding pb;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		KASSERT(td == curthread,
 		    ("[pmc,%d] td != curthread", __LINE__));
 
 		error = priv_check(td, PRIV_PMC_MANAGE);
 		if (error)
 			break;
 
 		if ((error = copyin(arg, &pma, sizeof(pma))) != 0)
 			break;
 
 		cpu = pma.pm_cpu;
 
 		if (cpu < 0 || cpu >= (int) pmc_cpu_max()) {
 			error = EINVAL;
 			break;
 		}
 
 		if (!pmc_cpu_is_active(cpu)) {
 			error = ENXIO;
 			break;
 		}
 
 		request = pma.pm_state;
 
 		if (request != PMC_STATE_DISABLED &&
 		    request != PMC_STATE_FREE) {
 			error = EINVAL;
 			break;
 		}
 
 		ri = pma.pm_pmc; /* pmc id == row index */
 		if (ri < 0 || ri >= (int) md->pmd_npmc) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * We can't disable a PMC with a row-index allocated
 		 * for process virtual PMCs.
 		 */
 
 		if (PMC_ROW_DISP_IS_THREAD(ri) &&
 		    request == PMC_STATE_DISABLED) {
 			error = EBUSY;
 			break;
 		}
 
 		/*
 		 * otherwise, this PMC on this CPU is either free or
 		 * in system-wide mode.
 		 */
 
 		pmc_save_cpu_binding(&pb);
 		pmc_select_cpu(cpu);
 
 		pc  = pmc_pcpu[cpu];
 		phw = pc->pc_hwpmcs[ri];
 
 		/*
 		 * XXX do we need some kind of 'forced' disable?
 		 */
 
 		if (phw->phw_pmc == NULL) {
 			if (request == PMC_STATE_DISABLED &&
 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED)) {
 				phw->phw_state &= ~PMC_PHW_FLAG_IS_ENABLED;
 				PMC_MARK_ROW_STANDALONE(ri);
 			} else if (request == PMC_STATE_FREE &&
 			    (phw->phw_state & PMC_PHW_FLAG_IS_ENABLED) == 0) {
 				phw->phw_state |=  PMC_PHW_FLAG_IS_ENABLED;
 				PMC_UNMARK_ROW_STANDALONE(ri);
 			}
 			/* other cases are a no-op */
 		} else
 			error = EBUSY;
 
 		pmc_restore_cpu_binding(&pb);
 	}
 	break;
 
 
 	/*
 	 * Allocate a PMC.
 	 */
 	case PMC_OP_PMCALLOCATE:
 	{
 		struct pmc_op_pmcallocate pa;
 
 		error = copyin(arg, &pa, sizeof(pa));
 		if (error != 0)
 			break;
 
 		error = pmc_do_op_pmcallocate(td, &pa);
 		if (error != 0)
 			break;
 
 		error = copyout(&pa, arg, sizeof(pa));
 	}
 	break;
 
 	/*
 	 * Attach a PMC to a process.
 	 */
 	case PMC_OP_PMCATTACH:
 	{
 		struct pmc_op_pmcattach a;
 
 		error = copyin(arg, &a, sizeof(a));
 		if (error != 0)
 			break;
 
 		error = pmc_do_op_pmcattach(td, a);
 	}
 	break;
 
 	/*
 	 * Detach an attached PMC from a process.
 	 */
 	case PMC_OP_PMCDETACH:
 	{
 		struct pmc_op_pmcattach a;
 
 		error = copyin(arg, &a, sizeof(a));
 		if (error != 0)
 			break;
 
 		error = pmc_do_op_pmcdetach(td, a);
 	}
 	break;
 
 
 	/*
 	 * Retrieve the MSR number associated with the counter
 	 * 'pmc_id'.  This allows processes to directly use RDPMC
 	 * instructions to read their PMCs, without the overhead of a
 	 * system call.
 	 */
 
 	case PMC_OP_PMCGETMSR:
 	{
 		int adjri, ri;
 		struct pmc *pm;
 		struct pmc_target *pt;
 		struct pmc_op_getmsr gm;
 		struct pmc_classdep *pcd;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &gm, sizeof(gm))) != 0)
 			break;
 
 		if ((error = pmc_find_pmc(gm.pm_pmcid, &pm)) != 0)
 			break;
 
 		/*
 		 * The allocated PMC has to be a process virtual PMC,
 		 * i.e., of type MODE_T[CS].  Global PMCs can only be
 		 * read using the PMCREAD operation since they may be
 		 * allocated on a different CPU than the one we could
 		 * be running on at the time of the RDPMC instruction.
 		 *
 		 * The GETMSR operation is not allowed for PMCs that
 		 * are inherited across processes.
 		 */
 
 		if (!PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)) ||
 		    (pm->pm_flags & PMC_F_DESCENDANTS)) {
 			error = EINVAL;
 			break;
 		}
 
 		/*
 		 * It only makes sense to use a RDPMC (or its
 		 * equivalent instruction on non-x86 architectures) on
 		 * a process that has allocated and attached a PMC to
 		 * itself.  Conversely the PMC is only allowed to have
 		 * one process attached to it -- its owner.
 		 */
 
 		if ((pt = LIST_FIRST(&pm->pm_targets)) == NULL ||
 		    LIST_NEXT(pt, pt_next) != NULL ||
 		    pt->pt_process->pp_proc != pm->pm_owner->po_owner) {
 			error = EINVAL;
 			break;
 		}
 
 		ri = PMC_TO_ROWINDEX(pm);
 		pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 		/* PMC class has no 'GETMSR' support */
 		if (pcd->pcd_get_msr == NULL) {
 			error = ENOSYS;
 			break;
 		}
 
 		if ((error = (*pcd->pcd_get_msr)(adjri, &gm.pm_msr)) < 0)
 			break;
 
 		if ((error = copyout(&gm, arg, sizeof(gm))) < 0)
 			break;
 
 		/*
 		 * Mark our process as using MSRs.  Update machine
 		 * state using a forced context switch.
 		 */
 
 		pt->pt_process->pp_flags |= PMC_PP_ENABLE_MSR_ACCESS;
 		pmc_force_context_switch();
 
 	}
 	break;
 
 	/*
-	 * Release an allocated PMC
+	 * Release an allocated PMC.
 	 */
-
 	case PMC_OP_PMCRELEASE:
 	{
-		pmc_id_t pmcid;
-		struct pmc *pm;
-		struct pmc_owner *po;
 		struct pmc_op_simple sp;
 
-		/*
-		 * Find PMC pointer for the named PMC.
-		 *
-		 * Use pmc_release_pmc_descriptor() to switch off the
-		 * PMC, remove all its target threads, and remove the
-		 * PMC from its owner's list.
-		 *
-		 * Remove the owner record if this is the last PMC
-		 * owned.
-		 *
-		 * Free up space.
-		 */
-
-		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
-			break;
-
-		pmcid = sp.pm_pmcid;
-
-		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
+		error = copyin(arg, &sp, sizeof(sp));
+		if (error != 0)
 			break;
 
-		po = pm->pm_owner;
-		pmc_release_pmc_descriptor(pm);
-		pmc_maybe_remove_owner(po);
-		pmc_destroy_pmc_descriptor(pm);
+		error = pmc_do_op_pmcrelease(sp.pm_pmcid);
 	}
 	break;
 
 
 	/*
 	 * Read and/or write a PMC.
 	 */
 
 	case PMC_OP_PMCRW:
 	{
 		int adjri;
 		struct pmc *pm;
 		uint32_t cpu, ri;
 		pmc_value_t oldvalue;
 		struct pmc_binding pb;
 		struct pmc_op_pmcrw prw;
 		struct pmc_classdep *pcd;
 		struct pmc_op_pmcrw *pprw;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &prw, sizeof(prw))) != 0)
 			break;
 
 		PMCDBG2(PMC,OPS,1, "rw id=%d flags=0x%x", prw.pm_pmcid,
 		    prw.pm_flags);
 
 		/* must have at least one flag set */
 		if ((prw.pm_flags & (PMC_F_OLDVALUE|PMC_F_NEWVALUE)) == 0) {
 			error = EINVAL;
 			break;
 		}
 
 		/* locate pmc descriptor */
 		if ((error = pmc_find_pmc(prw.pm_pmcid, &pm)) != 0)
 			break;
 
 		/* Can't read a PMC that hasn't been started. */
 		if (pm->pm_state != PMC_STATE_ALLOCATED &&
 		    pm->pm_state != PMC_STATE_STOPPED &&
 		    pm->pm_state != PMC_STATE_RUNNING) {
 			error = EINVAL;
 			break;
 		}
 
 		/* writing a new value is allowed only for 'STOPPED' pmcs */
 		if (pm->pm_state == PMC_STATE_RUNNING &&
 		    (prw.pm_flags & PMC_F_NEWVALUE)) {
 			error = EBUSY;
 			break;
 		}
 
 		if (PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm))) {
 
 			/*
 			 * If this PMC is attached to its owner (i.e.,
 			 * the process requesting this operation) and
 			 * is running, then attempt to get an
 			 * upto-date reading from hardware for a READ.
 			 * Writes are only allowed when the PMC is
 			 * stopped, so only update the saved value
 			 * field.
 			 *
 			 * If the PMC is not running, or is not
 			 * attached to its owner, read/write to the
 			 * savedvalue field.
 			 */
 
 			ri = PMC_TO_ROWINDEX(pm);
 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 			mtx_pool_lock_spin(pmc_mtxpool, pm);
 			cpu = curthread->td_oncpu;
 
 			if (prw.pm_flags & PMC_F_OLDVALUE) {
 				if ((pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) &&
 				    (pm->pm_state == PMC_STATE_RUNNING))
 					error = (*pcd->pcd_read_pmc)(cpu, adjri,
 					    pm, &oldvalue);
 				else
 					oldvalue = pm->pm_gv.pm_savedvalue;
 			}
 			if (prw.pm_flags & PMC_F_NEWVALUE)
 				pm->pm_gv.pm_savedvalue = prw.pm_value;
 
 			mtx_pool_unlock_spin(pmc_mtxpool, pm);
 
 		} else { /* System mode PMCs */
 			cpu = PMC_TO_CPU(pm);
 			ri  = PMC_TO_ROWINDEX(pm);
 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 			if (!pmc_cpu_is_active(cpu)) {
 				error = ENXIO;
 				break;
 			}
 
 			/* move this thread to CPU 'cpu' */
 			pmc_save_cpu_binding(&pb);
 			pmc_select_cpu(cpu);
 
 			critical_enter();
 			/* save old value */
 			if (prw.pm_flags & PMC_F_OLDVALUE) {
 				if ((error = (*pcd->pcd_read_pmc)(cpu, adjri,
 				    pm, &oldvalue)))
 					goto error;
 			}
 			/* write out new value */
 			if (prw.pm_flags & PMC_F_NEWVALUE)
 				error = (*pcd->pcd_write_pmc)(cpu, adjri, pm,
 				    prw.pm_value);
 		error:
 			critical_exit();
 			pmc_restore_cpu_binding(&pb);
 			if (error)
 				break;
 		}
 
 		pprw = (struct pmc_op_pmcrw *) arg;
 
 #ifdef	HWPMC_DEBUG
 		if (prw.pm_flags & PMC_F_NEWVALUE)
 			PMCDBG3(PMC,OPS,2, "rw id=%d new %jx -> old %jx",
 			    ri, prw.pm_value, oldvalue);
 		else if (prw.pm_flags & PMC_F_OLDVALUE)
 			PMCDBG2(PMC,OPS,2, "rw id=%d -> old %jx", ri, oldvalue);
 #endif
 		/* return old value if requested */
 		if (prw.pm_flags & PMC_F_OLDVALUE)
 			if ((error = copyout(&oldvalue, &pprw->pm_value,
 				 sizeof(prw.pm_value))))
 				break;
 	}
 	break;
 
 
 	/*
 	 * Set the sampling rate for a sampling mode PMC and the
 	 * initial count for a counting mode PMC.
 	 */
 
 	case PMC_OP_PMCSETCOUNT:
 	{
 		struct pmc *pm;
 		struct pmc_op_pmcsetcount sc;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &sc, sizeof(sc))) != 0)
 			break;
 
 		if ((error = pmc_find_pmc(sc.pm_pmcid, &pm)) != 0)
 			break;
 
 		if (pm->pm_state == PMC_STATE_RUNNING) {
 			error = EBUSY;
 			break;
 		}
 
 		if (PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm))) {
 			/*
 			 * Don't permit requested sample rate to be
 			 * less than pmc_mincount.
 			 */
 			if (sc.pm_count < MAX(1, pmc_mincount))
 				log(LOG_WARNING, "pmcsetcount: passed sample "
 				    "rate %ju - setting to %u\n",
 				    (uintmax_t)sc.pm_count,
 				    MAX(1, pmc_mincount));
 			pm->pm_sc.pm_reloadcount = MAX(MAX(1, pmc_mincount),
 			    sc.pm_count);
 		} else
 			pm->pm_sc.pm_initial = sc.pm_count;
 	}
 	break;
 
 
 	/*
 	 * Start a PMC.
 	 */
 
 	case PMC_OP_PMCSTART:
 	{
 		pmc_id_t pmcid;
 		struct pmc *pm;
 		struct pmc_op_simple sp;
 
 		sx_assert(&pmc_sx, SX_XLOCKED);
 
 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
 			break;
 
 		pmcid = sp.pm_pmcid;
 
 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
 			break;
 
 		KASSERT(pmcid == pm->pm_id,
 		    ("[pmc,%d] pmcid %x != id %x", __LINE__,
 			pm->pm_id, pmcid));
 
 		if (pm->pm_state == PMC_STATE_RUNNING) /* already running */
 			break;
 		else if (pm->pm_state != PMC_STATE_STOPPED &&
 		    pm->pm_state != PMC_STATE_ALLOCATED) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmc_start(pm);
 	}
 	break;
 
 
 	/*
 	 * Stop a PMC.
 	 */
 
 	case PMC_OP_PMCSTOP:
 	{
 		pmc_id_t pmcid;
 		struct pmc *pm;
 		struct pmc_op_simple sp;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &sp, sizeof(sp))) != 0)
 			break;
 
 		pmcid = sp.pm_pmcid;
 
 		/*
 		 * Mark the PMC as inactive and invoke the MD stop
 		 * routines if needed.
 		 */
 
 		if ((error = pmc_find_pmc(pmcid, &pm)) != 0)
 			break;
 
 		KASSERT(pmcid == pm->pm_id,
 		    ("[pmc,%d] pmc id %x != pmcid %x", __LINE__,
 			pm->pm_id, pmcid));
 
 		if (pm->pm_state == PMC_STATE_STOPPED) /* already stopped */
 			break;
 		else if (pm->pm_state != PMC_STATE_RUNNING) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmc_stop(pm);
 	}
 	break;
 
 
 	/*
 	 * Write a user supplied value to the log file.
 	 */
 
 	case PMC_OP_WRITELOG:
 	{
 		struct pmc_op_writelog wl;
 		struct pmc_owner *po;
 
 		PMC_DOWNGRADE_SX();
 
 		if ((error = copyin(arg, &wl, sizeof(wl))) != 0)
 			break;
 
 		if ((po = pmc_find_owner_descriptor(td->td_proc)) == NULL) {
 			error = EINVAL;
 			break;
 		}
 
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0) {
 			error = EINVAL;
 			break;
 		}
 
 		error = pmclog_process_userlog(po, &wl);
 	}
 	break;
 
 
 	default:
 		error = EINVAL;
 		break;
 	}
 
 	if (is_sx_downgraded)
 		sx_sunlock(&pmc_sx);
 	else
 		sx_xunlock(&pmc_sx);
 done_syscall:
 	if (error)
 		counter_u64_add(pmc_stats.pm_syscall_errors, 1);
 
 	return (error);
 }
 
 /*
  * Helper functions
  */
 
 /*
  * Mark the thread as needing callchain capture and post an AST.  The
  * actual callchain capture will be done in a context where it is safe
  * to take page faults.
  */
 static void
 pmc_post_callchain_callback(void)
 {
 	struct thread *td;
 
 	td = curthread;
 
 	/*
 	 * If there is multiple PMCs for the same interrupt ignore new post
 	 */
 	if ((td->td_pflags & TDP_CALLCHAIN) != 0)
 		return;
 
 	/*
 	 * Mark this thread as needing callchain capture.
 	 * `td->td_pflags' will be safe to touch because this thread
 	 * was in user space when it was interrupted.
 	 */
 	td->td_pflags |= TDP_CALLCHAIN;
 
 	/*
 	 * Don't let this thread migrate between CPUs until callchain
 	 * capture completes.
 	 */
 	sched_pin();
 
 	return;
 }
 
 /*
  * Find a free slot in the per-cpu array of samples and capture the
  * current callchain there.  If a sample was successfully added, a bit
  * is set in mask 'pmc_cpumask' denoting that the DO_SAMPLES hook
  * needs to be invoked from the clock handler.
  *
  * This function is meant to be called from an NMI handler.  It cannot
  * use any of the locking primitives supplied by the OS.
  */
 static int
 pmc_add_sample(ring_type_t ring, struct pmc *pm, struct trapframe *tf)
 {
 	struct pmc_sample *ps;
 	struct pmc_samplebuffer *psb;
 	struct thread *td;
 	int error, cpu, callchaindepth;
 	bool inuserspace;
 
 	error = 0;
 
 	/*
 	 * Allocate space for a sample buffer.
 	 */
 	cpu = curcpu;
 	psb = pmc_pcpu[cpu]->pc_sb[ring];
 	inuserspace = TRAPF_USERMODE(tf);
 	ps = PMC_PROD_SAMPLE(psb);
 	if (psb->ps_considx != psb->ps_prodidx &&
 		ps->ps_nsamples) {	/* in use, reader hasn't caught up */
 		pm->pm_pcpu_state[cpu].pps_stalled = 1;
 		counter_u64_add(pmc_stats.pm_intr_bufferfull, 1);
 		PMCDBG6(SAM,INT,1,"(spc) cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d",
 		    cpu, pm, tf, inuserspace,
 		    (int)(psb->ps_prodidx & pmc_sample_mask),
 		    (int)(psb->ps_considx & pmc_sample_mask));
 		callchaindepth = 1;
 		error = ENOMEM;
 		goto done;
 	}
 
 	/* Fill in entry. */
 	PMCDBG6(SAM,INT,1,"cpu=%d pm=%p tf=%p um=%d wr=%d rd=%d", cpu, pm, tf,
 	    inuserspace, (int)(psb->ps_prodidx & pmc_sample_mask),
 	    (int)(psb->ps_considx & pmc_sample_mask));
 
 	td = curthread;
 	ps->ps_pmc = pm;
 	ps->ps_td = td;
 	ps->ps_pid = td->td_proc->p_pid;
 	ps->ps_tid = td->td_tid;
 	ps->ps_tsc = pmc_rdtsc();
 	ps->ps_ticks = ticks;
 	ps->ps_cpu = cpu;
 	ps->ps_flags = inuserspace ? PMC_CC_F_USERSPACE : 0;
 
 	callchaindepth = (pm->pm_flags & PMC_F_CALLCHAIN) ?
 	    pmc_callchaindepth : 1;
 
 	MPASS(ps->ps_pc != NULL);
 	if (callchaindepth == 1) {
 		ps->ps_pc[0] = PMC_TRAPFRAME_TO_PC(tf);
 	} else {
 		/*
 		 * Kernel stack traversals can be done immediately, while we
 		 * defer to an AST for user space traversals.
 		 */
 		if (!inuserspace) {
 			callchaindepth = pmc_save_kernel_callchain(ps->ps_pc,
 			    callchaindepth, tf);
 		} else {
 			pmc_post_callchain_callback();
 			callchaindepth = PMC_USER_CALLCHAIN_PENDING;
 		}
 	}
 
 	ps->ps_nsamples = callchaindepth; /* mark entry as in-use */
 	if (ring == PMC_UR) {
 		ps->ps_nsamples_actual = callchaindepth;
 		ps->ps_nsamples = PMC_USER_CALLCHAIN_PENDING;
 	}
 
 	KASSERT(counter_u64_fetch(pm->pm_runcount) >= 0,
 	    ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
 	    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 
 	counter_u64_add(pm->pm_runcount, 1);	/* hold onto PMC */
 	/* increment write pointer */
 	psb->ps_prodidx++;
 done:
 	/* mark CPU as needing processing */
 	if (callchaindepth != PMC_USER_CALLCHAIN_PENDING)
 		DPCPU_SET(pmc_sampled, 1);
 
 	return (error);
 }
 
 /*
  * Interrupt processing.
  *
  * This function may be called from an NMI handler. It cannot use any of the
  * locking primitives supplied by the OS.
  */
 int
 pmc_process_interrupt(int ring, struct pmc *pm, struct trapframe *tf)
 {
 	struct thread *td;
 
 	td = curthread;
 	if ((pm->pm_flags & PMC_F_USERCALLCHAIN) &&
 	    (td->td_proc->p_flag & P_KPROC) == 0 && !TRAPF_USERMODE(tf)) {
 		atomic_add_int(&td->td_pmcpend, 1);
 		return (pmc_add_sample(PMC_UR, pm, tf));
 	}
 	return (pmc_add_sample(ring, pm, tf));
 }
 
 /*
  * Capture a user call chain. This function will be called from ast()
  * before control returns to userland and before the process gets
  * rescheduled.
  */
 static void
 pmc_capture_user_callchain(int cpu, int ring, struct trapframe *tf)
 {
 	struct pmc *pm;
 	struct pmc_sample *ps;
 	struct pmc_samplebuffer *psb;
 	struct thread *td;
 	uint64_t considx, prodidx;
 	int nsamples, nrecords, pass, iter;
 	int start_ticks __diagused;
 
 	psb = pmc_pcpu[cpu]->pc_sb[ring];
 	td = curthread;
 	nrecords = INT_MAX;
 	pass = 0;
 	start_ticks = ticks;
 
 	KASSERT(td->td_pflags & TDP_CALLCHAIN,
 	    ("[pmc,%d] Retrieving callchain for thread that doesn't want it",
 	    __LINE__));
 restart:
 	if (ring == PMC_UR)
 		nrecords = atomic_readandclear_32(&td->td_pmcpend);
 
 	for (iter = 0, considx = psb->ps_considx, prodidx = psb->ps_prodidx;
 	    considx < prodidx && iter < pmc_nsamples; considx++, iter++) {
 		ps = PMC_CONS_SAMPLE_OFF(psb, considx);
 
 		/*
 		 * Iterate through all deferred callchain requests. Walk from
 		 * the current read pointer to the current write pointer.
 		 */
 #ifdef INVARIANTS
 		if (ps->ps_nsamples == PMC_SAMPLE_FREE) {
 			continue;
 		}
 #endif
 		if (ps->ps_td != td ||
 		    ps->ps_nsamples != PMC_USER_CALLCHAIN_PENDING ||
 		    ps->ps_pmc->pm_state != PMC_STATE_RUNNING)
 			continue;
 
 		KASSERT(ps->ps_cpu == cpu,
 		    ("[pmc,%d] cpu mismatch ps_cpu=%d pcpu=%d", __LINE__,
 		    ps->ps_cpu, PCPU_GET(cpuid)));
 
 		pm = ps->ps_pmc;
 		KASSERT(pm->pm_flags & PMC_F_CALLCHAIN,
 		    ("[pmc,%d] Retrieving callchain for PMC that doesn't "
 		    "want it", __LINE__));
 		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
 		    ("[pmc,%d] runcount %ju", __LINE__,
 		    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 
 		if (ring == PMC_UR) {
 			nsamples = ps->ps_nsamples_actual;
 			counter_u64_add(pmc_stats.pm_merges, 1);
 		} else
 			nsamples = 0;
 
 		/*
 		 * Retrieve the callchain and mark the sample buffer
 		 * as 'processable' by the timer tick sweep code.
 		 */
 		if (__predict_true(nsamples < pmc_callchaindepth - 1))
 			nsamples += pmc_save_user_callchain(ps->ps_pc + nsamples,
 			    pmc_callchaindepth - nsamples - 1, tf);
 
 		/*
 		 * We have to prevent hardclock from potentially overwriting
 		 * this sample between when we read the value and when we set
 		 * it.
 		 */
 		spinlock_enter();
 
 		/*
 		 * Verify that the sample hasn't been dropped in the meantime.
 		 */
 		if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
 			ps->ps_nsamples = nsamples;
 			/*
 			 * If we couldn't get a sample, simply drop the
 			 * reference.
 			 */
 			if (nsamples == 0)
 				counter_u64_add(pm->pm_runcount, -1);
 		}
 		spinlock_exit();
 		if (nrecords-- == 1)
 			break;
 	}
 	if (__predict_false(ring == PMC_UR && td->td_pmcpend)) {
 		if (pass == 0) {
 			pass = 1;
 			goto restart;
 		}
 		/* only collect samples for this part once */
 		td->td_pmcpend = 0;
 	}
 
 #ifdef INVARIANTS
 	if ((ticks - start_ticks) > hz)
 		log(LOG_ERR, "%s took %d ticks\n", __func__, (ticks - start_ticks));
 #endif
 	/* mark CPU as needing processing */
 	DPCPU_SET(pmc_sampled, 1);
 }
 
 /*
  * Process saved PC samples.
  */
 static void
 pmc_process_samples(int cpu, ring_type_t ring)
 {
 	struct pmc *pm;
 	struct thread *td;
 	struct pmc_owner *po;
 	struct pmc_sample *ps;
 	struct pmc_classdep *pcd;
 	struct pmc_samplebuffer *psb;
 	uint64_t delta __diagused;
 	int adjri, n;
 
 	KASSERT(PCPU_GET(cpuid) == cpu,
 	    ("[pmc,%d] not on the correct CPU pcpu=%d cpu=%d", __LINE__,
 		PCPU_GET(cpuid), cpu));
 
 	psb = pmc_pcpu[cpu]->pc_sb[ring];
 	delta = psb->ps_prodidx - psb->ps_considx;
 	MPASS(delta <= pmc_nsamples);
 	MPASS(psb->ps_considx <= psb->ps_prodidx);
 	for (n = 0; psb->ps_considx < psb->ps_prodidx; psb->ps_considx++, n++) {
 		ps = PMC_CONS_SAMPLE(psb);
 
 		if (__predict_false(ps->ps_nsamples == PMC_SAMPLE_FREE))
 			continue;
 
 		/* skip non-running samples */
 		pm = ps->ps_pmc;
 		if (pm->pm_state != PMC_STATE_RUNNING)
 			goto entrydone;
 
 		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
 		    ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
 		    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 		KASSERT(PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)),
 		    ("[pmc,%d] pmc=%p non-sampling mode=%d", __LINE__,
 		    pm, PMC_TO_MODE(pm)));
 
 		po = pm->pm_owner;
 
 		/* If there is a pending AST wait for completion */
 		if (ps->ps_nsamples == PMC_USER_CALLCHAIN_PENDING) {
 			/*
 			 * If we've been waiting more than 1 tick to
 			 * collect a callchain for this record then
 			 * drop it and move on.
 			 */
 			if (ticks - ps->ps_ticks > 1) {
 				/*
 				 * Track how often we hit this as it will
 				 * preferentially lose user samples
 				 * for long running system calls.
 				 */
 				counter_u64_add(pmc_stats.pm_overwrites, 1);
 				goto entrydone;
 			}
 			/* Need a rescan at a later time. */
 			DPCPU_SET(pmc_sampled, 1);
 			break;
 		}
 
 		PMCDBG6(SAM,OPS,1,"cpu=%d pm=%p n=%d fl=%x wr=%d rd=%d", cpu,
 		    pm, ps->ps_nsamples, ps->ps_flags,
 		    (int)(psb->ps_prodidx & pmc_sample_mask),
 		    (int)(psb->ps_considx & pmc_sample_mask));
 
 		/*
 		 * If this is a process-mode PMC that is attached to
 		 * its owner, and if the PC is in user mode, update
 		 * profiling statistics like timer-based profiling
 		 * would have done.
 		 *
 		 * Otherwise, this is either a sampling-mode PMC that
 		 * is attached to a different process than its owner,
 		 * or a system-wide sampling PMC. Dispatch a log
 		 * entry to the PMC's owner process.
 		 */
 		if (pm->pm_flags & PMC_F_ATTACHED_TO_OWNER) {
 			if (ps->ps_flags & PMC_CC_F_USERSPACE) {
 				td = FIRST_THREAD_IN_PROC(po->po_owner);
 				addupc_intr(td, ps->ps_pc[0], 1);
 			}
 		} else
 			pmclog_process_callchain(pm, ps);
 
 entrydone:
 		ps->ps_nsamples = 0; /* mark entry as free */
 		KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
 		    ("[pmc,%d] pm=%p runcount %ju", __LINE__, pm,
 		    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 
 		counter_u64_add(pm->pm_runcount, -1);
 	}
 
 	counter_u64_add(pmc_stats.pm_log_sweeps, 1);
 
 	/* Do not re-enable stalled PMCs if we failed to process any samples */
 	if (n == 0)
 		return;
 
 	/*
 	 * Restart any stalled sampling PMCs on this CPU.
 	 *
 	 * If the NMI handler sets the pm_stalled field of a PMC after
 	 * the check below, we'll end up processing the stalled PMC at
 	 * the next hardclock tick.
 	 */
 	for (n = 0; n < md->pmd_npmc; n++) {
 		pcd = pmc_ri_to_classdep(md, n, &adjri);
 		KASSERT(pcd != NULL,
 		    ("[pmc,%d] null pcd ri=%d", __LINE__, n));
 		(void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
 
 		if (pm == NULL ||				/* !cfg'ed */
 		    pm->pm_state != PMC_STATE_RUNNING ||	/* !active */
 		    !PMC_IS_SAMPLING_MODE(PMC_TO_MODE(pm)) ||	/* !sampling */
 		    !pm->pm_pcpu_state[cpu].pps_cpustate ||	/* !desired */
 		    !pm->pm_pcpu_state[cpu].pps_stalled)	/* !stalled */
 			continue;
 
 		pm->pm_pcpu_state[cpu].pps_stalled = 0;
 		(void)(*pcd->pcd_start_pmc)(cpu, adjri, pm);
 	}
 }
 
 /*
  * Event handlers.
  */
 
 /*
  * Handle a process exit.
  *
  * Remove this process from all hash tables.  If this process
  * owned any PMCs, turn off those PMCs and deallocate them,
  * removing any associations with target processes.
  *
  * This function will be called by the last 'thread' of a
  * process.
  *
  * XXX This eventhandler gets called early in the exit process.
  * Consider using a 'hook' invocation from thread_exit() or equivalent
  * spot.  Another negative is that kse_exit doesn't seem to call
  * exit1() [??].
  */
 static void
 pmc_process_exit(void *arg __unused, struct proc *p)
 {
 	struct pmc *pm;
 	struct pmc_owner *po;
 	struct pmc_process *pp;
 	struct pmc_classdep *pcd;
 	pmc_value_t newvalue, tmp;
 	int ri, adjri, cpu;
 	bool is_using_hwpmcs;
 
 	PROC_LOCK(p);
 	is_using_hwpmcs = (p->p_flag & P_HWPMC) != 0;
 	PROC_UNLOCK(p);
 
 	/*
 	 * Log a sysexit event to all SS PMC owners.
 	 */
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
 			pmclog_process_sysexit(po, p->p_pid);
 	}
 	PMC_EPOCH_EXIT();
 
 	if (!is_using_hwpmcs)
 		return;
 
 	PMC_GET_SX_XLOCK();
 	PMCDBG3(PRC,EXT,1,"process-exit proc=%p (%d, %s)", p, p->p_pid,
 	    p->p_comm);
 
 	/*
 	 * Since this code is invoked by the last thread in an exiting
 	 * process, we would have context switched IN at some prior
 	 * point.  However, with PREEMPTION, kernel mode context
 	 * switches may happen any time, so we want to disable a
 	 * context switch OUT till we get any PMCs targeting this
 	 * process off the hardware.
 	 *
 	 * We also need to atomically remove this process'
 	 * entry from our target process hash table, using
 	 * PMC_FLAG_REMOVE.
 	 */
 	PMCDBG3(PRC,EXT,1, "process-exit proc=%p (%d, %s)", p, p->p_pid,
 	    p->p_comm);
 
 	critical_enter(); /* no preemption */
 
 	cpu = curthread->td_oncpu;
 	if ((pp = pmc_find_process_descriptor(p, PMC_FLAG_REMOVE)) != NULL) {
 
 		PMCDBG2(PRC,EXT,2,
 		    "process-exit proc=%p pmc-process=%p", p, pp);
 
 		/*
 		 * The exiting process could the target of
 		 * some PMCs which will be running on
 		 * currently executing CPU.
 		 *
 		 * We need to turn these PMCs off like we
 		 * would do at context switch OUT time.
 		 */
 		for (ri = 0; ri < md->pmd_npmc; ri++) {
 			/*
 			 * Pick up the pmc pointer from hardware
 			 * state similar to the CSW_OUT code.
 			 */
 			pm = NULL;
 
 			pcd = pmc_ri_to_classdep(md, ri, &adjri);
 
 			(void)(*pcd->pcd_get_config)(cpu, adjri, &pm);
 
 			PMCDBG2(PRC,EXT,2, "ri=%d pm=%p", ri, pm);
 
 			if (pm == NULL || !PMC_IS_VIRTUAL_MODE(PMC_TO_MODE(pm)))
 				continue;
 
 			PMCDBG4(PRC,EXT,2, "ppmcs[%d]=%p pm=%p "
 			    "state=%d", ri, pp->pp_pmcs[ri].pp_pmc,
 			    pm, pm->pm_state);
 
 			KASSERT(PMC_TO_ROWINDEX(pm) == ri,
 			    ("[pmc,%d] ri mismatch pmc(%d) ri(%d)",
 			    __LINE__, PMC_TO_ROWINDEX(pm), ri));
 			KASSERT(pm == pp->pp_pmcs[ri].pp_pmc,
 			    ("[pmc,%d] pm %p != pp_pmcs[%d] %p",
 			    __LINE__, pm, ri, pp->pp_pmcs[ri].pp_pmc));
 			KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
 			    ("[pmc,%d] bad runcount ri %d rc %ju",
 			    __LINE__, ri,
 			    (uintmax_t)counter_u64_fetch(pm->pm_runcount)));
 
 			/*
 			 * Change desired state, and then stop if not
 			 * stalled. This two-step dance should avoid
 			 * race conditions where an interrupt re-enables
 			 * the PMC after this code has already checked
 			 * the pm_stalled flag.
 			 */
 			if (pm->pm_pcpu_state[cpu].pps_cpustate) {
 				pm->pm_pcpu_state[cpu].pps_cpustate = 0;
 				if (!pm->pm_pcpu_state[cpu].pps_stalled) {
 					(void)pcd->pcd_stop_pmc(cpu, adjri, pm);
 
 					if (PMC_TO_MODE(pm) == PMC_MODE_TC) {
 						pcd->pcd_read_pmc(cpu, adjri,
 						    pm, &newvalue);
 						tmp = newvalue -
 						    PMC_PCPU_SAVED(cpu, ri);
 
 						mtx_pool_lock_spin(pmc_mtxpool,
 						    pm);
 						pm->pm_gv.pm_savedvalue += tmp;
 						pp->pp_pmcs[ri].pp_pmcval +=
 						    tmp;
 						mtx_pool_unlock_spin(
 						    pmc_mtxpool, pm);
 					}
 				}
 			}
 
 			KASSERT(counter_u64_fetch(pm->pm_runcount) > 0,
 			    ("[pmc,%d] runcount is %d", __LINE__, ri));
 
 			counter_u64_add(pm->pm_runcount, -1);
 			(void)pcd->pcd_config_pmc(cpu, adjri, NULL);
 		}
 
 		/*
 		 * Inform the MD layer of this pseudo "context switch
 		 * out"
 		 */
 		(void)md->pmd_switch_out(pmc_pcpu[cpu], pp);
 
 		critical_exit(); /* ok to be pre-empted now */
 
 		/*
 		 * Unlink this process from the PMCs that are
 		 * targeting it.  This will send a signal to
 		 * all PMC owner's whose PMCs are orphaned.
 		 *
 		 * Log PMC value at exit time if requested.
 		 */
 		for (ri = 0; ri < md->pmd_npmc; ri++) {
 			if ((pm = pp->pp_pmcs[ri].pp_pmc) != NULL) {
 				if ((pm->pm_flags & PMC_F_NEEDS_LOGFILE) != 0 &&
 				    PMC_IS_COUNTING_MODE(PMC_TO_MODE(pm))) {
 					pmclog_process_procexit(pm, pp);
 				}
 				pmc_unlink_target_process(pm, pp);
 			}
 		}
 		free(pp, M_PMC);
 	} else
 		critical_exit(); /* pp == NULL */
 
 	/*
 	 * If the process owned PMCs, free them up and free up
 	 * memory.
 	 */
 	if ((po = pmc_find_owner_descriptor(p)) != NULL) {
 		pmc_remove_owner(po);
 		pmc_destroy_owner_descriptor(po);
 	}
 
 	sx_xunlock(&pmc_sx);
 }
 
 /*
  * Handle a process fork.
  *
  * If the parent process 'p1' is under HWPMC monitoring, then copy
  * over any attached PMCs that have 'do_descendants' semantics.
  */
 static void
 pmc_process_fork(void *arg __unused, struct proc *p1, struct proc *newproc,
     int flags __unused)
 {
 	struct pmc *pm;
 	struct pmc_owner *po;
 	struct pmc_process *ppnew, *ppold;
 	unsigned int ri;
 	bool is_using_hwpmcs, do_descendants;
 
 	PROC_LOCK(p1);
 	is_using_hwpmcs = (p1->p_flag & P_HWPMC) != 0;
 	PROC_UNLOCK(p1);
 
 	/*
 	 * If there are system-wide sampling PMCs active, we need to
 	 * log all fork events to their owner's logs.
 	 */
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if (po->po_flags & PMC_PO_OWNS_LOGFILE) {
 			pmclog_process_procfork(po, p1->p_pid, newproc->p_pid);
 			pmclog_process_proccreate(po, newproc, 1);
 		}
 	}
 	PMC_EPOCH_EXIT();
 
 	if (!is_using_hwpmcs)
 		return;
 
 	PMC_GET_SX_XLOCK();
 	PMCDBG4(PMC,FRK,1, "process-fork proc=%p (%d, %s) -> %p", p1,
 	    p1->p_pid, p1->p_comm, newproc);
 
 	/*
 	 * If the parent process (curthread->td_proc) is a
 	 * target of any PMCs, look for PMCs that are to be
 	 * inherited, and link these into the new process
 	 * descriptor.
 	 */
 	ppold = pmc_find_process_descriptor(curthread->td_proc, PMC_FLAG_NONE);
 	if (ppold == NULL)
 		goto done; /* nothing to do */
 
 	do_descendants = false;
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
 		    (pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
 			do_descendants = true;
 			break;
 		}
 	}
 	if (!do_descendants) /* nothing to do */
 		goto done;
 
 	/*
 	 * Now mark the new process as being tracked by this driver.
 	 */
 	PROC_LOCK(newproc);
 	newproc->p_flag |= P_HWPMC;
 	PROC_UNLOCK(newproc);
 
 	/* Allocate a descriptor for the new process. */
 	ppnew = pmc_find_process_descriptor(newproc, PMC_FLAG_ALLOCATE);
 	if (ppnew == NULL)
 		goto done;
 
 	/*
 	 * Run through all PMCs that were targeting the old process
 	 * and which specified F_DESCENDANTS and attach them to the
 	 * new process.
 	 *
 	 * Log the fork event to all owners of PMCs attached to this
 	 * process, if not already logged.
 	 */
 	for (ri = 0; ri < md->pmd_npmc; ri++) {
 		if ((pm = ppold->pp_pmcs[ri].pp_pmc) != NULL &&
 		    (pm->pm_flags & PMC_F_DESCENDANTS) != 0) {
 			pmc_link_target_process(pm, ppnew);
 			po = pm->pm_owner;
 			if (po->po_sscount == 0 &&
 			    (po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
 				pmclog_process_procfork(po, p1->p_pid,
 				    newproc->p_pid);
 			}
 		}
 	}
 
 done:
 	sx_xunlock(&pmc_sx);
 }
 
 static void
 pmc_process_threadcreate(struct thread *td)
 {
 	struct pmc_owner *po;
 
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
 			pmclog_process_threadcreate(po, td, 1);
 	}
 	PMC_EPOCH_EXIT();
 }
 
 static void
 pmc_process_threadexit(struct thread *td)
 {
 	struct pmc_owner *po;
 
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
 			pmclog_process_threadexit(po, td);
 	}
 	PMC_EPOCH_EXIT();
 }
 
 static void
 pmc_process_proccreate(struct proc *p)
 {
 	struct pmc_owner *po;
 
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0)
 			pmclog_process_proccreate(po, p, 1 /* sync */);
 	}
 	PMC_EPOCH_EXIT();
 }
 
 static void
 pmc_process_allproc(struct pmc *pm)
 {
 	struct pmc_owner *po;
 	struct thread *td;
 	struct proc *p;
 
 	po = pm->pm_owner;
 	if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
 		return;
 
 	sx_slock(&allproc_lock);
 	FOREACH_PROC_IN_SYSTEM(p) {
 		pmclog_process_proccreate(po, p, 0 /* sync */);
 		PROC_LOCK(p);
 		FOREACH_THREAD_IN_PROC(p, td)
 			pmclog_process_threadcreate(po, td, 0 /* sync */);
 		PROC_UNLOCK(p);
 	}
 	sx_sunlock(&allproc_lock);
 	pmclog_flush(po, 0);
 }
 
 static void
 pmc_kld_load(void *arg __unused, linker_file_t lf)
 {
 	struct pmc_owner *po;
 
 	/*
 	 * Notify owners of system sampling PMCs about KLD operations.
 	 */
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if (po->po_flags & PMC_PO_OWNS_LOGFILE)
 			pmclog_process_map_in(po, (pid_t) -1,
 			    (uintfptr_t) lf->address, lf->pathname);
 	}
 	PMC_EPOCH_EXIT();
 
 	/*
 	 * TODO: Notify owners of (all) process-sampling PMCs too.
 	 */
 }
 
 static void
 pmc_kld_unload(void *arg __unused, const char *filename __unused,
     caddr_t address, size_t size)
 {
 	struct pmc_owner *po;
 
 	PMC_EPOCH_ENTER();
 	CK_LIST_FOREACH(po, &pmc_ss_owners, po_ssnext) {
 		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) != 0) {
 			pmclog_process_map_out(po, (pid_t)-1,
 			    (uintfptr_t)address, (uintfptr_t)address + size);
 		}
 	}
 	PMC_EPOCH_EXIT();
 
 	/*
 	 * TODO: Notify owners of process-sampling PMCs.
 	 */
 }
 
 /*
  * initialization
  */
 static const char *
 pmc_name_of_pmcclass(enum pmc_class class)
 {
 
 	switch (class) {
 #undef	__PMC_CLASS
 #define	__PMC_CLASS(S,V,D)						\
 	case PMC_CLASS_##S:						\
 		return #S;
 	__PMC_CLASSES();
 	default:
 		return ("<unknown>");
 	}
 }
 
 /*
  * Base class initializer: allocate structure and set default classes.
  */
 struct pmc_mdep *
 pmc_mdep_alloc(int nclasses)
 {
 	struct pmc_mdep *md;
 	int n;
 
 	/* SOFT + md classes */
 	n = 1 + nclasses;
 	md = malloc(sizeof(struct pmc_mdep) + n * sizeof(struct pmc_classdep),
 	    M_PMC, M_WAITOK | M_ZERO);
 	md->pmd_nclass = n;
 
 	/* Default methods */
 	md->pmd_switch_in = generic_switch_in;
 	md->pmd_switch_out = generic_switch_out;
 
 	/* Add base class. */
 	pmc_soft_initialize(md);
 	return (md);
 }
 
 void
 pmc_mdep_free(struct pmc_mdep *md)
 {
 	pmc_soft_finalize(md);
 	free(md, M_PMC);
 }
 
 static int
 generic_switch_in(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
 {
 
 	return (0);
 }
 
 static int
 generic_switch_out(struct pmc_cpu *pc __unused, struct pmc_process *pp __unused)
 {
 
 	return (0);
 }
 
 static struct pmc_mdep *
 pmc_generic_cpu_initialize(void)
 {
 	struct pmc_mdep *md;
 
 	md = pmc_mdep_alloc(0);
 
 	md->pmd_cputype = PMC_CPU_GENERIC;
 
 	return (md);
 }
 
 static void
 pmc_generic_cpu_finalize(struct pmc_mdep *md __unused)
 {
 
 }
 
 static int
 pmc_initialize(void)
 {
 	struct pcpu *pc;
 	struct pmc_binding pb;
 	struct pmc_classdep *pcd;
 	struct pmc_sample *ps;
 	struct pmc_samplebuffer *sb;
 	int c, cpu, error, n, ri;
 	u_int maxcpu, domain;
 
 	md = NULL;
 	error = 0;
 
 	pmc_stats.pm_intr_ignored = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_intr_processed = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_intr_bufferfull = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_syscalls = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_syscall_errors = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_buffer_requests = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_buffer_requests_failed = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_log_sweeps = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_merges = counter_u64_alloc(M_WAITOK);
 	pmc_stats.pm_overwrites = counter_u64_alloc(M_WAITOK);
 
 #ifdef HWPMC_DEBUG
 	/* parse debug flags first */
 	if (TUNABLE_STR_FETCH(PMC_SYSCTL_NAME_PREFIX "debugflags",
 	    pmc_debugstr, sizeof(pmc_debugstr))) {
 		pmc_debugflags_parse(pmc_debugstr, pmc_debugstr +
 		    strlen(pmc_debugstr));
 	}
 #endif
 
 	PMCDBG1(MOD,INI,0, "PMC Initialize (version %x)", PMC_VERSION);
 
 	/* check kernel version */
 	if (pmc_kernel_version != PMC_VERSION) {
 		if (pmc_kernel_version == 0)
 			printf("hwpmc: this kernel has not been compiled with "
 			    "'options HWPMC_HOOKS'.\n");
 		else
 			printf("hwpmc: kernel version (0x%x) does not match "
 			    "module version (0x%x).\n", pmc_kernel_version,
 			    PMC_VERSION);
 		return (EPROGMISMATCH);
 	}
 
 	/*
 	 * check sysctl parameters
 	 */
 	if (pmc_hashsize <= 0) {
 		printf("hwpmc: tunable \"hashsize\"=%d must be "
 		    "greater than zero.\n", pmc_hashsize);
 		pmc_hashsize = PMC_HASH_SIZE;
 	}
 
 	if (pmc_nsamples <= 0 || pmc_nsamples > 65535) {
 		printf("hwpmc: tunable \"nsamples\"=%d out of "
 		    "range.\n", pmc_nsamples);
 		pmc_nsamples = PMC_NSAMPLES;
 	}
 	pmc_sample_mask = pmc_nsamples - 1;
 
 	if (pmc_callchaindepth <= 0 ||
 	    pmc_callchaindepth > PMC_CALLCHAIN_DEPTH_MAX) {
 		printf("hwpmc: tunable \"callchaindepth\"=%d out of "
 		    "range - using %d.\n", pmc_callchaindepth,
 		    PMC_CALLCHAIN_DEPTH_MAX);
 		pmc_callchaindepth = PMC_CALLCHAIN_DEPTH_MAX;
 	}
 
 	md = pmc_md_initialize();
 	if (md == NULL) {
 		/* Default to generic CPU. */
 		md = pmc_generic_cpu_initialize();
 		if (md == NULL)
 			return (ENOSYS);
         }
 
 	/*
 	 * Refresh classes base ri. Optional classes may come in different
 	 * order.
 	 */
 	for (ri = c = 0; c < md->pmd_nclass; c++) {
 		pcd = &md->pmd_classdep[c];
 		pcd->pcd_ri = ri;
 		ri += pcd->pcd_num;
 	}
 
 	KASSERT(md->pmd_nclass >= 1 && md->pmd_npmc >= 1,
 	    ("[pmc,%d] no classes or pmcs", __LINE__));
 
 	/* Compute the map from row-indices to classdep pointers. */
 	pmc_rowindex_to_classdep = malloc(sizeof(struct pmc_classdep *) *
 	    md->pmd_npmc, M_PMC, M_WAITOK | M_ZERO);
 
 	for (n = 0; n < md->pmd_npmc; n++)
 		pmc_rowindex_to_classdep[n] = NULL;
 
 	for (ri = c = 0; c < md->pmd_nclass; c++) {
 		pcd = &md->pmd_classdep[c];
 		for (n = 0; n < pcd->pcd_num; n++, ri++)
 			pmc_rowindex_to_classdep[ri] = pcd;
 	}
 
 	KASSERT(ri == md->pmd_npmc,
 	    ("[pmc,%d] npmc miscomputed: ri=%d, md->npmc=%d", __LINE__,
 	    ri, md->pmd_npmc));
 
 	maxcpu = pmc_cpu_max();
 
 	/* allocate space for the per-cpu array */
 	pmc_pcpu = malloc(maxcpu * sizeof(struct pmc_cpu *), M_PMC,
 	    M_WAITOK | M_ZERO);
 
 	/* per-cpu 'saved values' for managing process-mode PMCs */
 	pmc_pcpu_saved = malloc(sizeof(pmc_value_t) * maxcpu * md->pmd_npmc,
 	    M_PMC, M_WAITOK);
 
 	/* Perform CPU-dependent initialization. */
 	pmc_save_cpu_binding(&pb);
 	error = 0;
 	for (cpu = 0; error == 0 && cpu < maxcpu; cpu++) {
 		if (!pmc_cpu_is_active(cpu))
 			continue;
 		pmc_select_cpu(cpu);
 		pmc_pcpu[cpu] = malloc(sizeof(struct pmc_cpu) +
 		    md->pmd_npmc * sizeof(struct pmc_hw *), M_PMC,
 		    M_WAITOK | M_ZERO);
 		for (n = 0; error == 0 && n < md->pmd_nclass; n++)
 			if (md->pmd_classdep[n].pcd_num > 0)
 				error = md->pmd_classdep[n].pcd_pcpu_init(md,
 				    cpu);
 	}
 	pmc_restore_cpu_binding(&pb);
 
 	if (error != 0)
 		return (error);
 
 	/* allocate space for the sample array */
 	for (cpu = 0; cpu < maxcpu; cpu++) {
 		if (!pmc_cpu_is_active(cpu))
 			continue;
 		pc = pcpu_find(cpu);
 		domain = pc->pc_domain;
 		sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
 		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
 
 		KASSERT(pmc_pcpu[cpu] != NULL,
 		    ("[pmc,%d] cpu=%d Null per-cpu data", __LINE__, cpu));
 
 		sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
 		    pmc_nsamples * sizeof(uintptr_t), M_PMC,
 		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
 
 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
 			ps->ps_pc = sb->ps_callchains +
 			    (n * pmc_callchaindepth);
 
 		pmc_pcpu[cpu]->pc_sb[PMC_HR] = sb;
 
 		sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
 		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
 
 		sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
 		    pmc_nsamples * sizeof(uintptr_t), M_PMC,
 		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
 			ps->ps_pc = sb->ps_callchains +
 			    (n * pmc_callchaindepth);
 
 		pmc_pcpu[cpu]->pc_sb[PMC_SR] = sb;
 
 		sb = malloc_domainset(sizeof(struct pmc_samplebuffer) +
 		    pmc_nsamples * sizeof(struct pmc_sample), M_PMC,
 		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
 		sb->ps_callchains = malloc_domainset(pmc_callchaindepth *
 		    pmc_nsamples * sizeof(uintptr_t), M_PMC,
 		    DOMAINSET_PREF(domain), M_WAITOK | M_ZERO);
 		for (n = 0, ps = sb->ps_samples; n < pmc_nsamples; n++, ps++)
 			ps->ps_pc = sb->ps_callchains + n * pmc_callchaindepth;
 
 		pmc_pcpu[cpu]->pc_sb[PMC_UR] = sb;
 	}
 
 	/* allocate space for the row disposition array */
 	pmc_pmcdisp = malloc(sizeof(enum pmc_mode) * md->pmd_npmc,
 	    M_PMC, M_WAITOK | M_ZERO);
 
 	/* mark all PMCs as available */
 	for (n = 0; n < md->pmd_npmc; n++)
 		PMC_MARK_ROW_FREE(n);
 
 	/* allocate thread hash tables */
 	pmc_ownerhash = hashinit(pmc_hashsize, M_PMC,
 	    &pmc_ownerhashmask);
 
 	pmc_processhash = hashinit(pmc_hashsize, M_PMC,
 	    &pmc_processhashmask);
 	mtx_init(&pmc_processhash_mtx, "pmc-process-hash", "pmc-leaf",
 	    MTX_SPIN);
 
 	CK_LIST_INIT(&pmc_ss_owners);
 	pmc_ss_count = 0;
 
 	/* allocate a pool of spin mutexes */
 	pmc_mtxpool = mtx_pool_create("pmc-leaf", pmc_mtxpool_size,
 	    MTX_SPIN);
 
 	PMCDBG4(MOD,INI,1, "pmc_ownerhash=%p, mask=0x%lx "
 	    "targethash=%p mask=0x%lx", pmc_ownerhash, pmc_ownerhashmask,
 	    pmc_processhash, pmc_processhashmask);
 
 	/* Initialize a spin mutex for the thread free list. */
 	mtx_init(&pmc_threadfreelist_mtx, "pmc-threadfreelist", "pmc-leaf",
 	    MTX_SPIN);
 
 	/* Initialize the task to prune the thread free list. */
 	TASK_INIT(&free_task, 0, pmc_thread_descriptor_pool_free_task, NULL);
 
 	/* register process {exit,fork,exec} handlers */
 	pmc_exit_tag = EVENTHANDLER_REGISTER(process_exit,
 	    pmc_process_exit, NULL, EVENTHANDLER_PRI_ANY);
 	pmc_fork_tag = EVENTHANDLER_REGISTER(process_fork,
 	    pmc_process_fork, NULL, EVENTHANDLER_PRI_ANY);
 
 	/* register kld event handlers */
 	pmc_kld_load_tag = EVENTHANDLER_REGISTER(kld_load, pmc_kld_load,
 	    NULL, EVENTHANDLER_PRI_ANY);
 	pmc_kld_unload_tag = EVENTHANDLER_REGISTER(kld_unload, pmc_kld_unload,
 	    NULL, EVENTHANDLER_PRI_ANY);
 
 	/* initialize logging */
 	pmclog_initialize();
 
 	/* set hook functions */
 	pmc_intr = md->pmd_intr;
 	wmb();
 	pmc_hook = pmc_hook_handler;
 
 	if (error == 0) {
 		printf(PMC_MODULE_NAME ":");
 		for (n = 0; n < md->pmd_nclass; n++) {
 			if (md->pmd_classdep[n].pcd_num == 0)
 				continue;
 			pcd = &md->pmd_classdep[n];
 			printf(" %s/%d/%d/0x%b",
 			    pmc_name_of_pmcclass(pcd->pcd_class),
 			    pcd->pcd_num,
 			    pcd->pcd_width,
 			    pcd->pcd_caps,
 			    "\20"
 			    "\1INT\2USR\3SYS\4EDG\5THR"
 			    "\6REA\7WRI\10INV\11QUA\12PRC"
 			    "\13TAG\14CSC");
 		}
 		printf("\n");
 	}
 
 	return (error);
 }
 
 /* prepare to be unloaded */
 static void
 pmc_cleanup(void)
 {
 	struct pmc_binding pb;
 	struct pmc_owner *po, *tmp;
 	struct pmc_ownerhash *ph;
 	struct pmc_processhash *prh __pmcdbg_used;
 	u_int maxcpu;
 	int cpu, c;
 
 	PMCDBG0(MOD,INI,0, "cleanup");
 
 	/* switch off sampling */
 	CPU_FOREACH(cpu)
 		DPCPU_ID_SET(cpu, pmc_sampled, 0);
 	pmc_intr = NULL;
 
 	sx_xlock(&pmc_sx);
 	if (pmc_hook == NULL) {	/* being unloaded already */
 		sx_xunlock(&pmc_sx);
 		return;
 	}
 
 	pmc_hook = NULL; /* prevent new threads from entering module */
 
 	/* deregister event handlers */
 	EVENTHANDLER_DEREGISTER(process_fork, pmc_fork_tag);
 	EVENTHANDLER_DEREGISTER(process_exit, pmc_exit_tag);
 	EVENTHANDLER_DEREGISTER(kld_load, pmc_kld_load_tag);
 	EVENTHANDLER_DEREGISTER(kld_unload, pmc_kld_unload_tag);
 
 	/* send SIGBUS to all owner threads, free up allocations */
 	if (pmc_ownerhash != NULL) {
 		for (ph = pmc_ownerhash;
 		     ph <= &pmc_ownerhash[pmc_ownerhashmask];
 		     ph++) {
 			LIST_FOREACH_SAFE(po, ph, po_next, tmp) {
 				pmc_remove_owner(po);
 
 				PMCDBG3(MOD,INI,2,
 				    "cleanup signal proc=%p (%d, %s)",
 				    po->po_owner, po->po_owner->p_pid,
 				    po->po_owner->p_comm);
 
 				PROC_LOCK(po->po_owner);
 				kern_psignal(po->po_owner, SIGBUS);
 				PROC_UNLOCK(po->po_owner);
 
 				pmc_destroy_owner_descriptor(po);
 			}
 		}
 	}
 
 	/* reclaim allocated data structures */
 	taskqueue_drain(taskqueue_fast, &free_task);
 	mtx_destroy(&pmc_threadfreelist_mtx);
 	pmc_thread_descriptor_pool_drain();
 
 	if (pmc_mtxpool != NULL)
 		mtx_pool_destroy(&pmc_mtxpool);
 
 	mtx_destroy(&pmc_processhash_mtx);
 	if (pmc_processhash != NULL) {
 #ifdef HWPMC_DEBUG
 		struct pmc_process *pp;
 
 		PMCDBG0(MOD,INI,3, "destroy process hash");
 		for (prh = pmc_processhash;
 		     prh <= &pmc_processhash[pmc_processhashmask];
 		     prh++)
 			LIST_FOREACH(pp, prh, pp_next)
 			    PMCDBG1(MOD,INI,3, "pid=%d", pp->pp_proc->p_pid);
 #endif
 
 		hashdestroy(pmc_processhash, M_PMC, pmc_processhashmask);
 		pmc_processhash = NULL;
 	}
 
 	if (pmc_ownerhash != NULL) {
 		PMCDBG0(MOD,INI,3, "destroy owner hash");
 		hashdestroy(pmc_ownerhash, M_PMC, pmc_ownerhashmask);
 		pmc_ownerhash = NULL;
 	}
 
 	KASSERT(CK_LIST_EMPTY(&pmc_ss_owners),
 	    ("[pmc,%d] Global SS owner list not empty", __LINE__));
 	KASSERT(pmc_ss_count == 0,
 	    ("[pmc,%d] Global SS count not empty", __LINE__));
 
  	/* do processor and pmc-class dependent cleanup */
 	maxcpu = pmc_cpu_max();
 
 	PMCDBG0(MOD,INI,3, "md cleanup");
 	if (md) {
 		pmc_save_cpu_binding(&pb);
 		for (cpu = 0; cpu < maxcpu; cpu++) {
 			PMCDBG2(MOD,INI,1,"pmc-cleanup cpu=%d pcs=%p",
 			    cpu, pmc_pcpu[cpu]);
 			if (!pmc_cpu_is_active(cpu) || pmc_pcpu[cpu] == NULL)
 				continue;
 
 			pmc_select_cpu(cpu);
 			for (c = 0; c < md->pmd_nclass; c++) {
 				if (md->pmd_classdep[c].pcd_num > 0) {
 					md->pmd_classdep[c].pcd_pcpu_fini(md,
 					    cpu);
 				}
 			}
 		}
 
 		if (md->pmd_cputype == PMC_CPU_GENERIC)
 			pmc_generic_cpu_finalize(md);
 		else
 			pmc_md_finalize(md);
 
 		pmc_mdep_free(md);
 		md = NULL;
 		pmc_restore_cpu_binding(&pb);
 	}
 
 	/* Free per-cpu descriptors. */
 	for (cpu = 0; cpu < maxcpu; cpu++) {
 		if (!pmc_cpu_is_active(cpu))
 			continue;
 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_HR] != NULL,
 		    ("[pmc,%d] Null hw cpu sample buffer cpu=%d", __LINE__,
 			cpu));
 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_SR] != NULL,
 		    ("[pmc,%d] Null sw cpu sample buffer cpu=%d", __LINE__,
 			cpu));
 		KASSERT(pmc_pcpu[cpu]->pc_sb[PMC_UR] != NULL,
 		    ("[pmc,%d] Null userret cpu sample buffer cpu=%d", __LINE__,
 			cpu));
 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR]->ps_callchains, M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_HR], M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR]->ps_callchains, M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_SR], M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_UR]->ps_callchains, M_PMC);
 		free(pmc_pcpu[cpu]->pc_sb[PMC_UR], M_PMC);
 		free(pmc_pcpu[cpu], M_PMC);
 	}
 
 	free(pmc_pcpu, M_PMC);
 	pmc_pcpu = NULL;
 
 	free(pmc_pcpu_saved, M_PMC);
 	pmc_pcpu_saved = NULL;
 
 	if (pmc_pmcdisp != NULL) {
 		free(pmc_pmcdisp, M_PMC);
 		pmc_pmcdisp = NULL;
 	}
 
 	if (pmc_rowindex_to_classdep != NULL) {
 		free(pmc_rowindex_to_classdep, M_PMC);
 		pmc_rowindex_to_classdep = NULL;
 	}
 
 	pmclog_shutdown();
 	counter_u64_free(pmc_stats.pm_intr_ignored);
 	counter_u64_free(pmc_stats.pm_intr_processed);
 	counter_u64_free(pmc_stats.pm_intr_bufferfull);
 	counter_u64_free(pmc_stats.pm_syscalls);
 	counter_u64_free(pmc_stats.pm_syscall_errors);
 	counter_u64_free(pmc_stats.pm_buffer_requests);
 	counter_u64_free(pmc_stats.pm_buffer_requests_failed);
 	counter_u64_free(pmc_stats.pm_log_sweeps);
 	counter_u64_free(pmc_stats.pm_merges);
 	counter_u64_free(pmc_stats.pm_overwrites);
 	sx_xunlock(&pmc_sx);	/* we are done */
 }
 
 /*
  * The function called at load/unload.
  */
 static int
 load(struct module *module __unused, int cmd, void *arg __unused)
 {
 	int error;
 
 	error = 0;
 
 	switch (cmd) {
 	case MOD_LOAD:
 		/* initialize the subsystem */
 		error = pmc_initialize();
 		if (error != 0)
 			break;
 		PMCDBG2(MOD,INI,1, "syscall=%d maxcpu=%d", pmc_syscall_num,
 		    pmc_cpu_max());
 		break;
 	case MOD_UNLOAD:
 	case MOD_SHUTDOWN:
 		pmc_cleanup();
 		PMCDBG0(MOD,INI,1, "unloaded");
 		break;
 	default:
 		error = EINVAL;
 		break;
 	}
 
 	return (error);
 }