diff --git a/module/zfs/abd.c b/module/zfs/abd.c index bcc6ddd5e81b..0a2411a2d572 100644 --- a/module/zfs/abd.c +++ b/module/zfs/abd.c @@ -1,1173 +1,1176 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2014 by Chunwei Chen. All rights reserved. * Copyright (c) 2019 by Delphix. All rights reserved. */ /* * ARC buffer data (ABD). * * ABDs are an abstract data structure for the ARC which can use two * different ways of storing the underlying data: * * (a) Linear buffer. In this case, all the data in the ABD is stored in one * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache). * * +-------------------+ * | ABD (linear) | * | abd_flags = ... | * | abd_size = ... | +--------------------------------+ * | abd_buf ------------->| raw buffer of size abd_size | * +-------------------+ +--------------------------------+ * no abd_chunks * * (b) Scattered buffer. In this case, the data in the ABD is split into * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers * to the chunks recorded in an array at the end of the ABD structure. * * +-------------------+ * | ABD (scattered) | * | abd_flags = ... | * | abd_size = ... | * | abd_offset = 0 | +-----------+ * | abd_chunks[0] ----------------------------->| chunk 0 | * | abd_chunks[1] ---------------------+ +-----------+ * | ... | | +-----------+ * | abd_chunks[N-1] ---------+ +------->| chunk 1 | * +-------------------+ | +-----------+ * | ... * | +-----------+ * +----------------->| chunk N-1 | * +-----------+ * * In addition to directly allocating a linear or scattered ABD, it is also * possible to create an ABD by requesting the "sub-ABD" starting at an offset * within an existing ABD. In linear buffers this is simple (set abd_buf of * the new ABD to the starting point within the original raw buffer), but * scattered ABDs are a little more complex. The new ABD makes a copy of the * relevant abd_chunks pointers (but not the underlying data). However, to * provide arbitrary rather than only chunk-aligned starting offsets, it also * tracks an abd_offset field which represents the starting point of the data * within the first chunk in abd_chunks. For both linear and scattered ABDs, * creating an offset ABD marks the original ABD as the offset's parent, and the * original ABD's abd_children refcount is incremented. This data allows us to * ensure the root ABD isn't deleted before its children. * * Most consumers should never need to know what type of ABD they're using -- * the ABD public API ensures that it's possible to transparently switch from * using a linear ABD to a scattered one when doing so would be beneficial. * * If you need to use the data within an ABD directly, if you know it's linear * (because you allocated it) you can use abd_to_buf() to access the underlying * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions * which will allocate a raw buffer if necessary. Use the abd_return_buf* * functions to return any raw buffers that are no longer necessary when you're * done using them. * * There are a variety of ABD APIs that implement basic buffer operations: * compare, copy, read, write, and fill with zeroes. If you need a custom * function which progressively accesses the whole ABD, use the abd_iterate_* * functions. * * As an additional feature, linear and scatter ABD's can be stitched together * by using the gang ABD type (abd_alloc_gang_abd()). This allows for * multiple ABDs to be viewed as a singular ABD. * * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to * B_FALSE. */ #include #include #include #include #include /* see block comment above for description */ int zfs_abd_scatter_enabled = B_TRUE; void abd_verify(abd_t *abd) { #ifdef ZFS_DEBUG ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE); ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR | ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE | ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG | ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD)); IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER)); IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER); if (abd_is_linear(abd)) { ASSERT3U(abd->abd_size, >, 0); ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL); } else if (abd_is_gang(abd)) { uint_t child_sizes = 0; for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { ASSERT(list_link_active(&cabd->abd_gang_link)); child_sizes += cabd->abd_size; abd_verify(cabd); } ASSERT3U(abd->abd_size, ==, child_sizes); } else { ASSERT3U(abd->abd_size, >, 0); abd_verify_scatter(abd); } #endif } static void abd_init_struct(abd_t *abd) { list_link_init(&abd->abd_gang_link); mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL); abd->abd_flags = 0; #ifdef ZFS_DEBUG zfs_refcount_create(&abd->abd_children); abd->abd_parent = NULL; #endif abd->abd_size = 0; } static void abd_fini_struct(abd_t *abd) { mutex_destroy(&abd->abd_mtx); ASSERT(!list_link_active(&abd->abd_gang_link)); #ifdef ZFS_DEBUG zfs_refcount_destroy(&abd->abd_children); #endif } abd_t * abd_alloc_struct(size_t size) { abd_t *abd = abd_alloc_struct_impl(size); abd_init_struct(abd); abd->abd_flags |= ABD_FLAG_ALLOCD; return (abd); } void abd_free_struct(abd_t *abd) { abd_fini_struct(abd); abd_free_struct_impl(abd); } /* * Allocate an ABD, along with its own underlying data buffers. Use this if you * don't care whether the ABD is linear or not. */ abd_t * abd_alloc(size_t size, boolean_t is_metadata) { if (abd_size_alloc_linear(size)) return (abd_alloc_linear(size, is_metadata)); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); abd_t *abd = abd_alloc_struct(size); abd->abd_flags |= ABD_FLAG_OWNER; abd->abd_u.abd_scatter.abd_offset = 0; abd_alloc_chunks(abd, size); if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd->abd_size = size; abd_update_scatter_stats(abd, ABDSTAT_INCR); return (abd); } /* * Allocate an ABD that must be linear, along with its own underlying data * buffer. Only use this when it would be very annoying to write your ABD * consumer with a scattered ABD. */ abd_t * abd_alloc_linear(size_t size, boolean_t is_metadata) { abd_t *abd = abd_alloc_struct(0); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER; if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd->abd_size = size; if (is_metadata) { ABD_LINEAR_BUF(abd) = zio_buf_alloc(size); } else { ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size); } abd_update_linear_stats(abd, ABDSTAT_INCR); return (abd); } static void abd_free_linear(abd_t *abd) { if (abd_is_linear_page(abd)) { abd_free_linear_page(abd); return; } if (abd->abd_flags & ABD_FLAG_META) { zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); } else { zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size); } abd_update_linear_stats(abd, ABDSTAT_DECR); } static void abd_free_gang(abd_t *abd) { ASSERT(abd_is_gang(abd)); abd_t *cabd; while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) { /* * We must acquire the child ABDs mutex to ensure that if it * is being added to another gang ABD we will set the link * as inactive when removing it from this gang ABD and before * adding it to the other gang ABD. */ mutex_enter(&cabd->abd_mtx); ASSERT(list_link_active(&cabd->abd_gang_link)); list_remove(&ABD_GANG(abd).abd_gang_chain, cabd); mutex_exit(&cabd->abd_mtx); if (cabd->abd_flags & ABD_FLAG_GANG_FREE) abd_free(cabd); } list_destroy(&ABD_GANG(abd).abd_gang_chain); } static void abd_free_scatter(abd_t *abd) { abd_free_chunks(abd); abd_update_scatter_stats(abd, ABDSTAT_DECR); } /* * Free an ABD. Use with any kind of abd: those created with abd_alloc_*() * and abd_get_*(), including abd_get_offset_struct(). * * If the ABD was created with abd_alloc_*(), the underlying data * (scatterlist or linear buffer) will also be freed. (Subject to ownership * changes via abd_*_ownership_of_buf().) * * Unless the ABD was created with abd_get_offset_struct(), the abd_t will * also be freed. */ void abd_free(abd_t *abd) { if (abd == NULL) return; abd_verify(abd); #ifdef ZFS_DEBUG IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL); #endif if (abd_is_gang(abd)) { abd_free_gang(abd); } else if (abd_is_linear(abd)) { if (abd->abd_flags & ABD_FLAG_OWNER) abd_free_linear(abd); } else { if (abd->abd_flags & ABD_FLAG_OWNER) abd_free_scatter(abd); } #ifdef ZFS_DEBUG if (abd->abd_parent != NULL) { (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children, abd->abd_size, abd); } #endif abd_fini_struct(abd); if (abd->abd_flags & ABD_FLAG_ALLOCD) abd_free_struct_impl(abd); } /* * Allocate an ABD of the same format (same metadata flag, same scatterize * setting) as another ABD. */ abd_t * abd_alloc_sametype(abd_t *sabd, size_t size) { boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0; if (abd_is_linear(sabd) && !abd_is_linear_page(sabd)) { return (abd_alloc_linear(size, is_metadata)); } else { return (abd_alloc(size, is_metadata)); } } /* * Create gang ABD that will be the head of a list of ABD's. This is used * to "chain" scatter/gather lists together when constructing aggregated * IO's. To free this abd, abd_free() must be called. */ abd_t * abd_alloc_gang(void) { abd_t *abd = abd_alloc_struct(0); abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER; list_create(&ABD_GANG(abd).abd_gang_chain, sizeof (abd_t), offsetof(abd_t, abd_gang_link)); return (abd); } /* * Add a child gang ABD to a parent gang ABDs chained list. */ static void abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) { ASSERT(abd_is_gang(pabd)); ASSERT(abd_is_gang(cabd)); if (free_on_free) { /* * If the parent is responsible for freeing the child gang * ABD we will just splice the child's children ABD list to * the parent's list and immediately free the child gang ABD * struct. The parent gang ABDs children from the child gang * will retain all the free_on_free settings after being * added to the parents list. */ #ifdef ZFS_DEBUG /* * If cabd had abd_parent, we have to drop it here. We can't * transfer it to pabd, nor we can clear abd_size leaving it. */ if (cabd->abd_parent != NULL) { (void) zfs_refcount_remove_many( &cabd->abd_parent->abd_children, cabd->abd_size, cabd); cabd->abd_parent = NULL; } #endif pabd->abd_size += cabd->abd_size; cabd->abd_size = 0; list_move_tail(&ABD_GANG(pabd).abd_gang_chain, &ABD_GANG(cabd).abd_gang_chain); ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain)); abd_verify(pabd); abd_free(cabd); } else { for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain); child != NULL; child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) { /* * We always pass B_FALSE for free_on_free as it is the * original child gang ABDs responsibility to determine * if any of its child ABDs should be free'd on the call * to abd_free(). */ abd_gang_add(pabd, child, B_FALSE); } abd_verify(pabd); } } /* * Add a child ABD to a gang ABD's chained list. */ void abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free) { ASSERT(abd_is_gang(pabd)); abd_t *child_abd = NULL; /* * If the child being added is a gang ABD, we will add the * child's ABDs to the parent gang ABD. This allows us to account * for the offset correctly in the parent gang ABD. */ if (abd_is_gang(cabd)) { ASSERT(!list_link_active(&cabd->abd_gang_link)); return (abd_gang_add_gang(pabd, cabd, free_on_free)); } ASSERT(!abd_is_gang(cabd)); /* * In order to verify that an ABD is not already part of * another gang ABD, we must lock the child ABD's abd_mtx * to check its abd_gang_link status. We unlock the abd_mtx * only after it is has been added to a gang ABD, which * will update the abd_gang_link's status. See comment below * for how an ABD can be in multiple gang ABD's simultaneously. */ mutex_enter(&cabd->abd_mtx); if (list_link_active(&cabd->abd_gang_link)) { /* * If the child ABD is already part of another * gang ABD then we must allocate a new * ABD to use a separate link. We mark the newly * allocated ABD with ABD_FLAG_GANG_FREE, before * adding it to the gang ABD's list, to make the * gang ABD aware that it is responsible to call * abd_free(). We use abd_get_offset() in order * to just allocate a new ABD but avoid copying the * data over into the newly allocated ABD. * * An ABD may become part of multiple gang ABD's. For * example, when writing ditto bocks, the same ABD * is used to write 2 or 3 locations with 2 or 3 * zio_t's. Each of the zio's may be aggregated with * different adjacent zio's. zio aggregation uses gang * zio's, so the single ABD can become part of multiple * gang zio's. * * The ASSERT below is to make sure that if * free_on_free is passed as B_TRUE, the ABD can * not be in multiple gang ABD's. The gang ABD * can not be responsible for cleaning up the child * ABD memory allocation if the ABD can be in * multiple gang ABD's at one time. */ ASSERT3B(free_on_free, ==, B_FALSE); child_abd = abd_get_offset(cabd, 0); child_abd->abd_flags |= ABD_FLAG_GANG_FREE; } else { child_abd = cabd; if (free_on_free) child_abd->abd_flags |= ABD_FLAG_GANG_FREE; } ASSERT3P(child_abd, !=, NULL); list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd); mutex_exit(&cabd->abd_mtx); pabd->abd_size += child_abd->abd_size; } /* * Locate the ABD for the supplied offset in the gang ABD. * Return a new offset relative to the returned ABD. */ abd_t * abd_gang_get_offset(abd_t *abd, size_t *off) { abd_t *cabd; ASSERT(abd_is_gang(abd)); ASSERT3U(*off, <, abd->abd_size); for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL; cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) { if (*off >= cabd->abd_size) *off -= cabd->abd_size; else return (cabd); } VERIFY3P(cabd, !=, NULL); return (cabd); } /* * Allocate a new ABD, using the provided struct (if non-NULL, and if * circumstances allow - otherwise allocate the struct). The returned ABD will * point to offset off of sabd. It shares the underlying buffer data with sabd. * Use abd_free() to free. sabd must not be freed while any derived ABDs exist. */ static abd_t * abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size) { abd_verify(sabd); ASSERT3U(off + size, <=, sabd->abd_size); if (abd_is_linear(sabd)) { if (abd == NULL) abd = abd_alloc_struct(0); /* * Even if this buf is filesystem metadata, we only track that * if we own the underlying data buffer, which is not true in * this case. Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags |= ABD_FLAG_LINEAR; ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off; } else if (abd_is_gang(sabd)) { size_t left = size; if (abd == NULL) { abd = abd_alloc_gang(); } else { abd->abd_flags |= ABD_FLAG_GANG; list_create(&ABD_GANG(abd).abd_gang_chain, sizeof (abd_t), offsetof(abd_t, abd_gang_link)); } abd->abd_flags &= ~ABD_FLAG_OWNER; for (abd_t *cabd = abd_gang_get_offset(sabd, &off); cabd != NULL && left > 0; cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) { int csize = MIN(left, cabd->abd_size - off); abd_t *nabd = abd_get_offset_size(cabd, off, csize); abd_gang_add(abd, nabd, B_TRUE); left -= csize; off = 0; } ASSERT3U(left, ==, 0); } else { abd = abd_get_offset_scatter(abd, sabd, off, size); } ASSERT3P(abd, !=, NULL); abd->abd_size = size; #ifdef ZFS_DEBUG abd->abd_parent = sabd; (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd); #endif return (abd); } /* * Like abd_get_offset_size(), but memory for the abd_t is provided by the * caller. Using this routine can improve performance by avoiding the cost * of allocating memory for the abd_t struct, and updating the abd stats. * Usually, the provided abd is returned, but in some circumstances (FreeBSD, * if sabd is scatter and size is more than 2 pages) a new abd_t may need to * be allocated. Therefore callers should be careful to use the returned * abd_t*. */ abd_t * abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size) { abd_t *result; abd_init_struct(abd); result = abd_get_offset_impl(abd, sabd, off, size); if (result != abd) abd_fini_struct(abd); return (result); } abd_t * abd_get_offset(abd_t *sabd, size_t off) { size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0; VERIFY3U(size, >, 0); return (abd_get_offset_impl(NULL, sabd, off, size)); } abd_t * abd_get_offset_size(abd_t *sabd, size_t off, size_t size) { ASSERT3U(off + size, <=, sabd->abd_size); return (abd_get_offset_impl(NULL, sabd, off, size)); } /* * Return a size scatter ABD containing only zeros. */ abd_t * abd_get_zeros(size_t size) { ASSERT3P(abd_zero_scatter, !=, NULL); ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); return (abd_get_offset_size(abd_zero_scatter, 0, size)); } /* * Allocate a linear ABD structure for buf. */ abd_t * abd_get_from_buf(void *buf, size_t size) { abd_t *abd = abd_alloc_struct(0); VERIFY3U(size, <=, SPA_MAXBLOCKSIZE); /* * Even if this buf is filesystem metadata, we only track that if we * own the underlying data buffer, which is not true in this case. * Therefore, we don't ever use ABD_FLAG_META here. */ abd->abd_flags |= ABD_FLAG_LINEAR; abd->abd_size = size; ABD_LINEAR_BUF(abd) = buf; return (abd); } /* * Get the raw buffer associated with a linear ABD. */ void * abd_to_buf(abd_t *abd) { ASSERT(abd_is_linear(abd)); abd_verify(abd); return (ABD_LINEAR_BUF(abd)); } /* * Borrow a raw buffer from an ABD without copying the contents of the ABD * into the buffer. If the ABD is scattered, this will allocate a raw buffer * whose contents are undefined. To copy over the existing data in the ABD, use * abd_borrow_buf_copy() instead. */ void * abd_borrow_buf(abd_t *abd, size_t n) { void *buf; abd_verify(abd); ASSERT3U(abd->abd_size, >=, n); if (abd_is_linear(abd)) { buf = abd_to_buf(abd); } else { buf = zio_buf_alloc(n); } #ifdef ZFS_DEBUG (void) zfs_refcount_add_many(&abd->abd_children, n, buf); #endif return (buf); } void * abd_borrow_buf_copy(abd_t *abd, size_t n) { void *buf = abd_borrow_buf(abd, n); if (!abd_is_linear(abd)) { abd_copy_to_buf(buf, abd, n); } return (buf); } /* * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will * not change the contents of the ABD and will ASSERT that you didn't modify * the buffer since it was borrowed. If you want any changes you made to buf to * be copied back to abd, use abd_return_buf_copy() instead. */ void abd_return_buf(abd_t *abd, void *buf, size_t n) { abd_verify(abd); ASSERT3U(abd->abd_size, >=, n); #ifdef ZFS_DEBUG (void) zfs_refcount_remove_many(&abd->abd_children, n, buf); #endif if (abd_is_linear(abd)) { ASSERT3P(buf, ==, abd_to_buf(abd)); } else { ASSERT0(abd_cmp_buf(abd, buf, n)); zio_buf_free(buf, n); } } void abd_return_buf_copy(abd_t *abd, void *buf, size_t n) { if (!abd_is_linear(abd)) { abd_copy_from_buf(abd, buf, n); } abd_return_buf(abd, buf, n); } void abd_release_ownership_of_buf(abd_t *abd) { ASSERT(abd_is_linear(abd)); ASSERT(abd->abd_flags & ABD_FLAG_OWNER); /* * abd_free() needs to handle LINEAR_PAGE ABD's specially. * Since that flag does not survive the * abd_release_ownership_of_buf() -> abd_get_from_buf() -> * abd_take_ownership_of_buf() sequence, we don't allow releasing * these "linear but not zio_[data_]buf_alloc()'ed" ABD's. */ ASSERT(!abd_is_linear_page(abd)); abd_verify(abd); abd->abd_flags &= ~ABD_FLAG_OWNER; /* Disable this flag since we no longer own the data buffer */ abd->abd_flags &= ~ABD_FLAG_META; abd_update_linear_stats(abd, ABDSTAT_DECR); } /* * Give this ABD ownership of the buffer that it's storing. Can only be used on * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated * with abd_alloc_linear() which subsequently released ownership of their buf * with abd_release_ownership_of_buf(). */ void abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata) { ASSERT(abd_is_linear(abd)); ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER)); abd_verify(abd); abd->abd_flags |= ABD_FLAG_OWNER; if (is_metadata) { abd->abd_flags |= ABD_FLAG_META; } abd_update_linear_stats(abd, ABDSTAT_INCR); } /* * Initializes an abd_iter based on whether the abd is a gang ABD * or just a single ABD. */ static inline abd_t * abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off) { abd_t *cabd = NULL; if (abd_is_gang(abd)) { cabd = abd_gang_get_offset(abd, &off); if (cabd) { abd_iter_init(aiter, cabd); abd_iter_advance(aiter, off); } } else { abd_iter_init(aiter, abd); abd_iter_advance(aiter, off); } return (cabd); } /* * Advances an abd_iter. We have to be careful with gang ABD as * advancing could mean that we are at the end of a particular ABD and * must grab the ABD in the gang ABD's list. */ static inline abd_t * abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter, size_t len) { abd_iter_advance(aiter, len); if (abd_is_gang(abd) && abd_iter_at_end(aiter)) { ASSERT3P(cabd, !=, NULL); cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd); if (cabd) { abd_iter_init(aiter, cabd); abd_iter_advance(aiter, 0); } } return (cabd); } int abd_iterate_func(abd_t *abd, size_t off, size_t size, abd_iter_func_t *func, void *private) { struct abd_iter aiter; int ret = 0; if (size == 0) return (0); abd_verify(abd); ASSERT3U(off + size, <=, abd->abd_size); abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off); while (size > 0) { IMPLY(abd_is_gang(abd), c_abd != NULL); abd_iter_map(&aiter); size_t len = MIN(aiter.iter_mapsize, size); ASSERT3U(len, >, 0); ret = func(aiter.iter_mapaddr, len, private); abd_iter_unmap(&aiter); if (ret != 0) break; size -= len; c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len); } return (ret); } struct buf_arg { void *arg_buf; }; static int abd_copy_to_buf_off_cb(void *buf, size_t size, void *private) { struct buf_arg *ba_ptr = private; (void) memcpy(ba_ptr->arg_buf, buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (0); } /* * Copy abd to buf. (off is the offset in abd.) */ void abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size) { struct buf_arg ba_ptr = { buf }; (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb, &ba_ptr); } static int abd_cmp_buf_off_cb(void *buf, size_t size, void *private) { int ret; struct buf_arg *ba_ptr = private; ret = memcmp(buf, ba_ptr->arg_buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (ret); } /* * Compare the contents of abd to buf. (off is the offset in abd.) */ int abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) { struct buf_arg ba_ptr = { (void *) buf }; return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr)); } static int abd_copy_from_buf_off_cb(void *buf, size_t size, void *private) { struct buf_arg *ba_ptr = private; (void) memcpy(buf, ba_ptr->arg_buf, size); ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size; return (0); } /* * Copy from buf to abd. (off is the offset in abd.) */ void abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size) { struct buf_arg ba_ptr = { (void *) buf }; (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb, &ba_ptr); } static int abd_zero_off_cb(void *buf, size_t size, void *private) { (void) private; (void) memset(buf, 0, size); return (0); } /* * Zero out the abd from a particular offset to the end. */ void abd_zero_off(abd_t *abd, size_t off, size_t size) { (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL); } /* * Iterate over two ABDs and call func incrementally on the two ABDs' data in * equal-sized chunks (passed to func as raw buffers). func could be called many * times during this iteration. */ int abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size, abd_iter_func2_t *func, void *private) { int ret = 0; struct abd_iter daiter, saiter; abd_t *c_dabd, *c_sabd; if (size == 0) return (0); abd_verify(dabd); abd_verify(sabd); ASSERT3U(doff + size, <=, dabd->abd_size); ASSERT3U(soff + size, <=, sabd->abd_size); c_dabd = abd_init_abd_iter(dabd, &daiter, doff); c_sabd = abd_init_abd_iter(sabd, &saiter, soff); while (size > 0) { IMPLY(abd_is_gang(dabd), c_dabd != NULL); IMPLY(abd_is_gang(sabd), c_sabd != NULL); abd_iter_map(&daiter); abd_iter_map(&saiter); size_t dlen = MIN(daiter.iter_mapsize, size); size_t slen = MIN(saiter.iter_mapsize, size); size_t len = MIN(dlen, slen); ASSERT(dlen > 0 || slen > 0); ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len, private); abd_iter_unmap(&saiter); abd_iter_unmap(&daiter); if (ret != 0) break; size -= len; c_dabd = abd_advance_abd_iter(dabd, c_dabd, &daiter, len); c_sabd = abd_advance_abd_iter(sabd, c_sabd, &saiter, len); } return (ret); } static int abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private) { (void) private; (void) memcpy(dbuf, sbuf, size); return (0); } /* * Copy from sabd to dabd starting from soff and doff. */ void abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size) { (void) abd_iterate_func2(dabd, sabd, doff, soff, size, abd_copy_off_cb, NULL); } static int abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private) { (void) private; return (memcmp(bufa, bufb, size)); } /* * Compares the contents of two ABDs. */ int abd_cmp(abd_t *dabd, abd_t *sabd) { ASSERT3U(dabd->abd_size, ==, sabd->abd_size); return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size, abd_cmp_cb, NULL)); } /* * Iterate over code ABDs and a data ABD and call @func_raidz_gen. * * @cabds parity ABDs, must have equal size * @dabd data ABD. Can be NULL (in this case @dsize = 0) * @func_raidz_gen should be implemented so that its behaviour * is the same when taking linear and when taking scatter */ void abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off, size_t csize, size_t dsize, const unsigned parity, void (*func_raidz_gen)(void **, const void *, size_t, size_t)) { int i; size_t len, dlen; struct abd_iter caiters[3]; struct abd_iter daiter; - void *caddrs[3]; + void *caddrs[3], *daddr; unsigned long flags __maybe_unused = 0; abd_t *c_cabds[3]; abd_t *c_dabd = NULL; ASSERT3U(parity, <=, 3); for (i = 0; i < parity; i++) { abd_verify(cabds[i]); ASSERT3U(off + csize, <=, cabds[i]->abd_size); c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off); } if (dsize > 0) { ASSERT(dabd); abd_verify(dabd); ASSERT3U(off + dsize, <=, dabd->abd_size); c_dabd = abd_init_abd_iter(dabd, &daiter, off); } abd_enter_critical(flags); while (csize > 0) { len = csize; for (i = 0; i < parity; i++) { IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); abd_iter_map(&caiters[i]); caddrs[i] = caiters[i].iter_mapaddr; len = MIN(caiters[i].iter_mapsize, len); } if (dsize > 0) { IMPLY(abd_is_gang(dabd), c_dabd != NULL); abd_iter_map(&daiter); + daddr = daiter.iter_mapaddr; len = MIN(daiter.iter_mapsize, len); dlen = len; - } else + } else { + daddr = NULL; dlen = 0; + } /* must be progressive */ ASSERT3U(len, >, 0); /* * The iterated function likely will not do well if each * segment except the last one is not multiple of 512 (raidz). */ ASSERT3U(((uint64_t)len & 511ULL), ==, 0); - func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen); + func_raidz_gen(caddrs, daddr, len, dlen); for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&caiters[i]); c_cabds[i] = abd_advance_abd_iter(cabds[i], c_cabds[i], &caiters[i], len); } if (dsize > 0) { abd_iter_unmap(&daiter); c_dabd = abd_advance_abd_iter(dabd, c_dabd, &daiter, dlen); dsize -= dlen; } csize -= len; } abd_exit_critical(flags); } /* * Iterate over code ABDs and data reconstruction target ABDs and call * @func_raidz_rec. Function maps at most 6 pages atomically. * * @cabds parity ABDs, must have equal size * @tabds rec target ABDs, at most 3 * @tsize size of data target columns * @func_raidz_rec expects syndrome data in target columns. Function * reconstructs data and overwrites target columns. */ void abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds, size_t tsize, const unsigned parity, void (*func_raidz_rec)(void **t, const size_t tsize, void **c, const unsigned *mul), const unsigned *mul) { int i; size_t len; struct abd_iter citers[3]; struct abd_iter xiters[3]; void *caddrs[3], *xaddrs[3]; unsigned long flags __maybe_unused = 0; abd_t *c_cabds[3]; abd_t *c_tabds[3]; ASSERT3U(parity, <=, 3); for (i = 0; i < parity; i++) { abd_verify(cabds[i]); abd_verify(tabds[i]); ASSERT3U(tsize, <=, cabds[i]->abd_size); ASSERT3U(tsize, <=, tabds[i]->abd_size); c_cabds[i] = abd_init_abd_iter(cabds[i], &citers[i], 0); c_tabds[i] = abd_init_abd_iter(tabds[i], &xiters[i], 0); } abd_enter_critical(flags); while (tsize > 0) { len = tsize; for (i = 0; i < parity; i++) { IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL); IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL); abd_iter_map(&citers[i]); abd_iter_map(&xiters[i]); caddrs[i] = citers[i].iter_mapaddr; xaddrs[i] = xiters[i].iter_mapaddr; len = MIN(citers[i].iter_mapsize, len); len = MIN(xiters[i].iter_mapsize, len); } /* must be progressive */ ASSERT3S(len, >, 0); /* * The iterated function likely will not do well if each * segment except the last one is not multiple of 512 (raidz). */ ASSERT3U(((uint64_t)len & 511ULL), ==, 0); func_raidz_rec(xaddrs, len, caddrs, mul); for (i = parity-1; i >= 0; i--) { abd_iter_unmap(&xiters[i]); abd_iter_unmap(&citers[i]); c_tabds[i] = abd_advance_abd_iter(tabds[i], c_tabds[i], &xiters[i], len); c_cabds[i] = abd_advance_abd_iter(cabds[i], c_cabds[i], &citers[i], len); } tsize -= len; ASSERT3S(tsize, >=, 0); } abd_exit_critical(flags); }