diff --git a/share/man/man4/altq.4 b/share/man/man4/altq.4 index d1a08a89c590..505d45e86acc 100644 --- a/share/man/man4/altq.4 +++ b/share/man/man4/altq.4 @@ -1,217 +1,211 @@ .\" .\" Copyright (c) 2004 Max Laier .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd December 26, 2020 +.Dd January 26, 2021 .Dt ALTQ 4 .Os .Sh NAME .Nm ALTQ .Nd "alternate queuing of network packets" .Sh SYNOPSIS .Cd options ALTQ .Pp .Cd options ALTQ_CBQ .Cd options ALTQ_CODEL .Cd options ALTQ_RED .Cd options ALTQ_RIO .Cd options ALTQ_HFSC .Cd options ALTQ_CDNR .Cd options ALTQ_PRIQ .Cd options ALTQ_FAIRQ .Sh DESCRIPTION The .Nm system is a framework which provides several disciplines for queuing outgoing network packets. This is done by modifications to the interface packet queues. See .Xr altq 9 for details. .Pp The user interface for .Nm is implemented by the .Xr pfctl 8 utility, so please refer to the .Xr pfctl 8 and the .Xr pf.conf 5 man pages for a complete description of the .Nm capabilities and how to use it. .Ss Kernel Options The following options in the kernel configuration file are related to .Nm operation: .Pp .Bl -tag -width ".Dv ALTQ_DEBUG" -compact .It Dv ALTQ Enable .Nm . .It Dv ALTQ_CBQ Build the .Dq "Class Based Queuing" discipline. .It Dv ALTQ_CODEL Build the .Dq "Controlled Delay" discipline. .It Dv ALTQ_RED Build the .Dq "Random Early Detection" extension. .It Dv ALTQ_RIO Build .Dq "Random Early Drop" for input and output. .It Dv ALTQ_HFSC Build the .Dq "Hierarchical Packet Scheduler" discipline. .It Dv ALTQ_CDNR Build the traffic conditioner. This option is meaningless at the moment as the conditioner is not used by any of the available disciplines or consumers. .It Dv ALTQ_PRIQ Build the .Dq "Priority Queuing" discipline. .It Dv ALTQ_FAIRQ Build the .Dq "Fair Queuing" discipline. .It Dv ALTQ_NOPCC Required if the TSC is unusable. .It Dv ALTQ_DEBUG Enable additional debugging facilities. .El .Pp Note that .Nm Ns -disciplines cannot be loaded as kernel modules. In order to use a certain discipline you have to build it into a custom kernel. The .Xr pf 4 interface, that is required for the configuration process of .Nm can be loaded as a module. .Sh SUPPORTED DEVICES The driver modifications described in .Xr altq 9 are required to use a certain network card with .Nm . They have been applied to the following hardware drivers: .Xr ae 4 , .Xr age 4 , .Xr alc 4 , .Xr ale 4 , .Xr an 4 , .Xr aue 4 , .Xr axe 4 , .Xr bce 4 , .Xr bfe 4 , .Xr bge 4 , .Xr bxe 4 , .Xr cas 4 , .Xr cxgbe 4 , .Xr dc 4 , .Xr em 4 , .Xr epair 4 , .Xr et 4 , .Xr fxp 4 , .Xr gem 4 , .Xr igb 4 , .Xr ixgbe 4 , .Xr jme 4 , .Xr le 4 , .Xr liquidio 4 , .Xr msk 4 , .Xr mxge 4 , .Xr my 4 , .Xr nfe 4 , .Xr nge 4 , .Xr npe 4 , .Xr qlxgb 4 , .Xr re 4 , .Xr rl 4 , .Xr sge 4 , .Xr sis 4 , .Xr sk 4 , .Xr ste 4 , .Xr stge 4 , .Xr ti 4 , .Xr udav 4 , .Xr vge 4 , .Xr vr 4 , .Xr vte 4 , and .Xr xl 4 . .Pp The -.Xr ndis 4 -framework also has support for -.Nm -and thus all encapsulated drivers. -.Pp -The .Xr tun 4 and .Xr ng_iface 4 pseudo drivers also do support .Nm . .Pp The .Xr vlan 4 driver does not directly support .Nm , but as packets (mbufs) are passed to the underlying interface, a queue can be defined for the underlying interface, and any packets directed to the queue will be processed at the interface level. An example: .Pp .Bd -literal -offset indent altq on igb0 cbq queue { def aq } queue def bandwidth 90% cbq (default borrow) queue aq bandwidth 10Mb cbq pass in on igb0.10 proto udp all queue aq keep state .Ed .Sh SEE ALSO .Xr pf 4 , .Xr pf.conf 5 , .Xr ipfw 8 , .Xr pfctl 8 , .Xr altq 9 .Sh HISTORY The .Nm system first appeared in March 1997 and found home in the KAME project (http://www.kame.net). It was imported to .Fx in 5.3 . diff --git a/share/man/man4/ddb.4 b/share/man/man4/ddb.4 index 91b179e4e6fa..1fe3490edd36 100644 --- a/share/man/man4/ddb.4 +++ b/share/man/man4/ddb.4 @@ -1,1624 +1,1619 @@ .\" .\" Mach Operating System .\" Copyright (c) 1991,1990 Carnegie Mellon University .\" Copyright (c) 2007 Robert N. M. Watson .\" All Rights Reserved. .\" .\" Permission to use, copy, modify and distribute this software and its .\" documentation is hereby granted, provided that both the copyright .\" notice and this permission notice appear in all copies of the .\" software, derivative works or modified versions, and any portions .\" thereof, and that both notices appear in supporting documentation. .\" .\" CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" .\" CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR .\" ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. .\" .\" Carnegie Mellon requests users of this software to return to .\" .\" Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU .\" School of Computer Science .\" Carnegie Mellon University .\" Pittsburgh PA 15213-3890 .\" .\" any improvements or extensions that they make and grant Carnegie Mellon .\" the rights to redistribute these changes. .\" .\" $FreeBSD$ .\" -.Dd November 19, 2020 +.Dd January 26, 2021 .Dt DDB 4 .Os .Sh NAME .Nm ddb .Nd interactive kernel debugger .Sh SYNOPSIS In order to enable kernel debugging facilities include: .Bd -ragged -offset indent .Cd options KDB .Cd options DDB .Ed .Pp To prevent activation of the debugger on kernel .Xr panic 9 : .Bd -ragged -offset indent .Cd options KDB_UNATTENDED .Ed .Pp In order to print a stack trace of the current thread on the console for a panic: .Bd -ragged -offset indent .Cd options KDB_TRACE .Ed .Pp To print the numerical value of symbols in addition to the symbolic representation, define: .Bd -ragged -offset indent .Cd options DDB_NUMSYM .Ed .Pp To enable the .Xr gdb 1 backend, so that remote debugging with .Xr kgdb 1 is possible, include: .Bd -ragged -offset indent .Cd options GDB .Ed .Sh DESCRIPTION The .Nm kernel debugger is an interactive debugger with a syntax inspired by .Xr gdb 1 . If linked into the running kernel, it can be invoked locally with the .Ql debug .Xr keymap 5 action, usually mapped to Ctrl+Alt+Esc, or by setting the .Va debug.kdb.enter sysctl to 1. The debugger is also invoked on kernel .Xr panic 9 if the .Va debug.debugger_on_panic .Xr sysctl 8 MIB variable is set non-zero, which is the default unless the .Dv KDB_UNATTENDED option is specified. Similarly, if the .Va debug.debugger_on_recursive_panic variable is set to .Dv 1 , then the debugger will be invoked on a recursive kernel panic. This variable has a default value of .Dv 0 , and has no effect if .Va debug.debugger_on_panic is already set non-zero. .Pp The current location is called .Va dot . The .Va dot is displayed with a hexadecimal format at a prompt. The commands .Ic examine and .Ic write update .Va dot to the address of the last line examined or the last location modified, and set .Va next to the address of the next location to be examined or changed. Other commands do not change .Va dot , and set .Va next to be the same as .Va dot . .Pp The general command syntax is: .Ar command Ns Op Li / Ns Ar modifier .Oo Ar addr Oc Ns Op , Ns Ar count .Pp A blank line repeats the previous command from the address .Va next with count 1 and no modifiers. Specifying .Ar addr sets .Va dot to the address. Omitting .Ar addr uses .Va dot . A missing .Ar count is taken to be 1 for printing commands or infinity for stack traces. A .Ar count of -1 is equivalent to a missing .Ar count . Options that are supplied but not supported by the given .Ar command are usually ignored. .Pp The .Nm debugger has a pager feature (like the .Xr more 1 command) for the output. If an output line exceeds the number set in the .Va lines variable, it displays .Dq Li --More-- and waits for a response. The valid responses for it are: .Pp .Bl -tag -compact -width ".Li SPC" .It Li SPC one more page .It Li RET one more line .It Li q abort the current command, and return to the command input mode .El .Pp Finally, .Nm provides a small (currently 10 items) command history, and offers simple .Nm emacs Ns -style command line editing capabilities. In addition to the .Nm emacs control keys, the usual .Tn ANSI arrow keys may be used to browse through the history buffer, and move the cursor within the current line. .Sh COMMANDS .Ss COMMON DEBUGGER COMMANDS .Bl -tag -width indent -compact .It Ic help Print a short summary of the available commands and command abbreviations. .Pp .It Xo .Ic examine Ns Op Li / Ns Cm AISabcdghilmorsuxz ... .Oo Ar addr Oc Ns Op , Ns Ar count .Xc .It Xo .Ic x Ns Op Li / Ns Cm AISabcdghilmorsuxz ... .Oo Ar addr Oc Ns Op , Ns Ar count .Xc Display the addressed locations according to the formats in the modifier. Multiple modifier formats display multiple locations. If no format is specified, the last format specified for this command is used. .Pp The format characters are: .Bl -tag -compact -width indent .It Cm b look at by bytes (8 bits) .It Cm h look at by half words (16 bits) .It Cm l look at by long words (32 bits) .It Cm g look at by quad words (64 bits) .It Cm a print the location being displayed .It Cm A print the location with a line number if possible .It Cm x display in unsigned hex .It Cm z display in signed hex .It Cm o display in unsigned octal .It Cm d display in signed decimal .It Cm u display in unsigned decimal .It Cm r display in current radix, signed .It Cm c display low 8 bits as a character. Non-printing characters are displayed as an octal escape code (e.g., .Ql \e000 ) . .It Cm s display the null-terminated string at the location. Non-printing characters are displayed as octal escapes. .It Cm m display in unsigned hex with character dump at the end of each line. The location is also displayed in hex at the beginning of each line. .It Cm i display as a disassembled instruction .It Cm I display as an disassembled instruction with possible alternate formats depending on the machine. On i386, this selects the alternate format for the instruction decoding (16 bits in a 32-bit code segment and vice versa). .It Cm S display a symbol name for the pointer stored at the address .El .Pp .It Ic xf Examine forward: execute an .Ic examine command with the last specified parameters to it except that the next address displayed by it is used as the start address. .Pp .It Ic xb Examine backward: execute an .Ic examine command with the last specified parameters to it except that the last start address subtracted by the size displayed by it is used as the start address. .Pp .It Ic print Ns Op Li / Ns Cm acdoruxz .It Ic p Ns Op Li / Ns Cm acdoruxz Print .Ar addr Ns s according to the modifier character (as described above for .Cm examine ) . Valid formats are: .Cm a , x , z , o , d , u , r , and .Cm c . If no modifier is specified, the last one specified to it is used. The argument .Ar addr can be a string, in which case it is printed as it is. For example: .Bd -literal -offset indent print/x "eax = " $eax "\enecx = " $ecx "\en" .Ed .Pp will print like: .Bd -literal -offset indent eax = xxxxxx ecx = yyyyyy .Ed .Pp .It Xo .Ic write Ns Op Li / Ns Cm bhl .Ar addr expr1 Op Ar expr2 ... .Xc .It Xo .Ic w Ns Op Li / Ns Cm bhl .Ar addr expr1 Op Ar expr2 ... .Xc Write the expressions specified after .Ar addr on the command line at succeeding locations starting with .Ar addr . The write unit size can be specified in the modifier with a letter .Cm b (byte), .Cm h (half word) or .Cm l (long word) respectively. If omitted, long word is assumed. .Pp .Sy Warning : since there is no delimiter between expressions, strange things may happen. It is best to enclose each expression in parentheses. .Pp .It Ic set Li $ Ns Ar variable Oo Li = Oc Ar expr Set the named variable or register with the value of .Ar expr . Valid variable names are described below. .Pp .It Ic break Ns Oo Li / Ns Cm u Oc Oo Ar addr Oc Ns Op , Ns Ar count .It Ic b Ns Oo Li / Ns Cm u Oc Oo Ar addr Oc Ns Op , Ns Ar count Set a break point at .Ar addr . If .Ar count is supplied, the .Ic continue command will not stop at this break point on the first .Ar count \- 1 times that it is hit. If the break point is set, a break point number is printed with .Ql # . This number can be used in deleting the break point or adding conditions to it. .Pp If the .Cm u modifier is specified, this command sets a break point in user address space. Without the .Cm u option, the address is considered to be in the kernel space, and a wrong space address is rejected with an error message. This modifier can be used only if it is supported by machine dependent routines. .Pp .Sy Warning : If a user text is shadowed by a normal user space debugger, user space break points may not work correctly. Setting a break point at the low-level code paths may also cause strange behavior. .Pp .It Ic delete Op Ar addr .It Ic d Op Ar addr .It Ic delete Li # Ns Ar number .It Ic d Li # Ns Ar number Delete the specified break point. The break point can be specified by a break point number with .Ql # , or by using the same .Ar addr specified in the original .Ic break command, or by omitting .Ar addr to get the default address of .Va dot . .Pp .It Ic halt Halt the system. .Pp .It Ic watch Oo Ar addr Oc Ns Op , Ns Ar size Set a watchpoint for a region. Execution stops when an attempt to modify the region occurs. The .Ar size argument defaults to 4. If you specify a wrong space address, the request is rejected with an error message. .Pp .Sy Warning : Attempts to watch wired kernel memory may cause unrecoverable error in some systems such as i386. Watchpoints on user addresses work best. .Pp .It Ic hwatch Oo Ar addr Oc Ns Op , Ns Ar size Set a hardware watchpoint for a region if supported by the architecture. Execution stops when an attempt to modify the region occurs. The .Ar size argument defaults to 4. .Pp .Sy Warning : The hardware debug facilities do not have a concept of separate address spaces like the watch command does. Use .Ic hwatch for setting watchpoints on kernel address locations only, and avoid its use on user mode address spaces. .Pp .It Ic dhwatch Oo Ar addr Oc Ns Op , Ns Ar size Delete specified hardware watchpoint. .Pp .It Ic kill Ar sig pid Send signal .Ar sig to process .Ar pid . The signal is acted on upon returning from the debugger. This command can be used to kill a process causing resource contention in the case of a hung system. See .Xr signal 3 for a list of signals. Note that the arguments are reversed relative to .Xr kill 2 . .Pp .It Ic step Ns Oo Li / Ns Cm p Oc Ns Op , Ns Ar count .It Ic s Ns Oo Li / Ns Cm p Oc Ns Op , Ns Ar count Single step .Ar count times. If the .Cm p modifier is specified, print each instruction at each step. Otherwise, only print the last instruction. .Pp .Sy Warning : depending on machine type, it may not be possible to single-step through some low-level code paths or user space code. On machines with software-emulated single-stepping (e.g., pmax), stepping through code executed by interrupt handlers will probably do the wrong thing. .Pp .It Ic continue Ns Op Li / Ns Cm c .It Ic c Ns Op Li / Ns Cm c Continue execution until a breakpoint or watchpoint. If the .Cm c modifier is specified, count instructions while executing. Some machines (e.g., pmax) also count loads and stores. .Pp .Sy Warning : when counting, the debugger is really silently single-stepping. This means that single-stepping on low-level code may cause strange behavior. .Pp .It Ic until Ns Op Li / Ns Cm p Stop at the next call or return instruction. If the .Cm p modifier is specified, print the call nesting depth and the cumulative instruction count at each call or return. Otherwise, only print when the matching return is hit. .Pp .It Ic next Ns Op Li / Ns Cm p .It Ic match Ns Op Li / Ns Cm p Stop at the matching return instruction. If the .Cm p modifier is specified, print the call nesting depth and the cumulative instruction count at each call or return. Otherwise, only print when the matching return is hit. .Pp .It Xo .Ic trace Ns Op Li / Ns Cm u .Op Ar pid | tid Ns .Op , Ns Ar count .Xc .It Xo .Ic t Ns Op Li / Ns Cm u .Op Ar pid | tid Ns .Op , Ns Ar count .Xc .It Xo .Ic where Ns Op Li / Ns Cm u .Op Ar pid | tid Ns .Op , Ns Ar count .Xc .It Xo .Ic bt Ns Op Li / Ns Cm u .Op Ar pid | tid Ns .Op , Ns Ar count .Xc Stack trace. The .Cm u option traces user space; if omitted, .Ic trace only traces kernel space. The optional argument .Ar count is the number of frames to be traced. If .Ar count is omitted, all frames are printed. .Pp .Sy Warning : User space stack trace is valid only if the machine dependent code supports it. .Pp .It Xo .Ic search Ns Op Li / Ns Cm bhl .Ar addr .Ar value .Op Ar mask Ns .Op , Ns Ar count .Xc Search memory for .Ar value . The optional .Ar count argument limits the search. .\" .Pp .It Ic reboot Op Ar seconds .It Ic reset Op Ar seconds Hard reset the system. If the optional argument .Ar seconds is given, the debugger will wait for this long, at most a week, before rebooting. .Pp .It Ic thread Ar addr | tid Switch the debugger to the thread with ID .Ar tid , if the argument is a decimal number, or address .Ar addr , otherwise. .El .Ss SPECIALIZED HELPER COMMANDS .Bl -tag -width indent -compact .It Xo .Ic findstack .Ar addr .Xc Prints the thread address for a thread kernel-mode stack of which contains the specified address. If the thread is not found, search the thread stack cache and prints the cached stack address. Otherwise, prints nothing. .Pp .It Ic show Cm all procs Ns Op Li / Ns Cm a .It Ic ps Ns Op Li / Ns Cm a Display all process information. The process information may not be shown if it is not supported in the machine, or the bottom of the stack of the target process is not in the main memory at that time. The .Cm a modifier will print command line arguments for each process. .\" .Pp .It Ic show Cm all trace .It Ic alltrace Show a stack trace for every thread in the system. .Pp .It Ic show Cm all ttys Show all TTY's within the system. Output is similar to .Xr pstat 8 , but also includes the address of the TTY structure. .\" .Pp .It Ic show Cm all vnets Show the same output as "show vnet" does, but lists all virtualized network stacks within the system. .\" .Pp .It Ic show Cm allchains Show the same information like "show lockchain" does, but for every thread in the system. .\" .Pp .It Ic show Cm alllocks Show all locks that are currently held. This command is only available if .Xr witness 4 is included in the kernel. .\" .Pp .It Ic show Cm allpcpu The same as "show pcpu", but for every CPU present in the system. .\" .Pp .It Ic show Cm allrman Show information related with resource management, including interrupt request lines, DMA request lines, I/O ports, I/O memory addresses, and Resource IDs. .\" .Pp .It Ic show Cm apic Dump data about APIC IDT vector mappings. .\" .Pp .It Ic show Cm breaks Show breakpoints set with the "break" command. .\" .Pp .It Ic show Cm bio Ar addr Show information about the bio structure .Vt struct bio present at .Ar addr . See the .Pa sys/bio.h header file and .Xr g_bio 9 for more details on the exact meaning of the structure fields. .\" .Pp .It Ic show Cm buffer Ar addr Show information about the buf structure .Vt struct buf present at .Ar addr . See the .Pa sys/buf.h header file for more details on the exact meaning of the structure fields. .\" .Pp .It Ic show Cm callout Ar addr Show information about the callout structure .Vt struct callout present at .Ar addr . .\" .Pp .It Ic show Cm cbstat Show brief information about the TTY subsystem. .\" .Pp .It Ic show Cm cdev Without argument, show the list of all created cdev's, consisting of devfs node name and struct cdev address. When address of cdev is supplied, show some internal devfs state of the cdev. .\" .Pp .It Ic show Cm conifhk Lists hooks currently waiting for completion in run_interrupt_driven_config_hooks(). .\" .Pp .It Ic show Cm cpusets Print numbered root and assigned CPU affinity sets. See .Xr cpuset 2 for more details. .\" .Pp .It Ic show Cm cyrixreg Show registers specific to the Cyrix processor. .\" .Pp .It Ic show Cm devmap Prints the contents of the static device mapping table. Currently only available on the ARM architecture. .\" .Pp .It Ic show Cm domain Ar addr Print protocol domain structure .Vt struct domain at address .Ar addr . See the .Pa sys/domain.h header file for more details on the exact meaning of the structure fields. .\" .Pp .It Ic show Cm ffs Op Ar addr Show brief information about ffs mount at the address .Ar addr , if argument is given. Otherwise, provides the summary about each ffs mount. .\" .Pp .It Ic show Cm file Ar addr Show information about the file structure .Vt struct file present at address .Ar addr . .\" .Pp .It Ic show Cm files Show information about every file structure in the system. .\" .Pp .It Ic show Cm freepages Show the number of physical pages in each of the free lists. .\" .Pp .It Ic show Cm geom Op Ar addr If the .Ar addr argument is not given, displays the entire GEOM topology. If .Ar addr is given, displays details about the given GEOM object (class, geom, provider or consumer). .\" .Pp .It Ic show Cm idt Show IDT layout. The first column specifies the IDT vector. The second one is the name of the interrupt/trap handler. Those functions are machine dependent. .\" .Pp .It Ic show Cm igi_list Ar addr Show information about the IGMP structure .Vt struct igmp_ifsoftc present at .Ar addr . .\" .Pp .It Ic show Cm inodedeps Op Ar addr Show brief information about each inodedep structure. If .Ar addr is given, only inodedeps belonging to the fs located at the supplied address are shown. .\" .Pp .It Ic show Cm inpcb Ar addr Show information on IP Control Block .Vt struct in_pcb present at .Ar addr . .\" .Pp .It Ic show Cm intr Dump information about interrupt handlers. .\" .Pp .It Ic show Cm intrcnt Dump the interrupt statistics. .\" .Pp .It Ic show Cm irqs Show interrupt lines and their respective kernel threads. .\" .Pp .It Ic show Cm jails Show the list of .Xr jail 8 instances. In addition to what .Xr jls 8 shows, also list kernel internal details. .\" .Pp .It Ic show Cm lapic Show information from the local APIC registers for this CPU. .\" .Pp .It Ic show Cm lock Ar addr Show lock structure. The output format is as follows: .Bl -tag -width "flags" .It Ic class: Class of the lock. Possible types include .Xr mutex 9 , .Xr rmlock 9 , .Xr rwlock 9 , .Xr sx 9 . .It Ic name: Name of the lock. .It Ic flags: Flags passed to the lock initialization function. .Em flags values are lock class specific. .It Ic state: Current state of a lock. .Em state values are lock class specific. .It Ic owner: Lock owner. .El .\" .Pp .It Ic show Cm lockchain Ar addr Show all threads a particular thread at address .Ar addr is waiting on based on non-spin locks. .\" .Pp .It Ic show Cm lockedbufs Show the same information as "show buf", but for every locked .Vt struct buf object. .\" .Pp .It Ic show Cm lockedvnods List all locked vnodes in the system. .\" .Pp .It Ic show Cm locks Prints all locks that are currently acquired. This command is only available if .Xr witness 4 is included in the kernel. .\" .Pp .It Ic show Cm locktree .\" .Pp .It Ic show Cm malloc Ns Op Li / Ns Cm i Prints .Xr malloc 9 memory allocator statistics. If the .Cm i modifier is specified, format output as machine-parseable comma-separated values ("CSV"). The output columns are as follows: .Pp .Bl -tag -compact -offset indent -width "Requests" .It Ic Type Specifies a type of memory. It is the same as a description string used while defining the given memory type with .Xr MALLOC_DECLARE 9 . .It Ic InUse Number of memory allocations of the given type, for which .Xr free 9 has not been called yet. .It Ic MemUse Total memory consumed by the given allocation type. .It Ic Requests Number of memory allocation requests for the given memory type. .El .Pp The same information can be gathered in userspace with .Dq Nm vmstat Fl m . .\" .Pp .It Ic show Cm map Ns Oo Li / Ns Cm f Oc Ar addr Prints the VM map at .Ar addr . If the .Cm f modifier is specified the complete map is printed. .\" .Pp .It Ic show Cm msgbuf Print the system's message buffer. It is the same output as in the .Dq Nm dmesg case. It is useful if you got a kernel panic, attached a serial cable to the machine and want to get the boot messages from before the system hang. .\" .It Ic show Cm mount Displays short info about all currently mounted file systems. .Pp .It Ic show Cm mount Ar addr Displays details about the given mount point. .\" .Pp .It Ic show Cm object Ns Oo Li / Ns Cm f Oc Ar addr Prints the VM object at .Ar addr . If the .Cm f option is specified the complete object is printed. .\" .Pp .It Ic show Cm panic Print the panic message if set. .\" .Pp .It Ic show Cm page Show statistics on VM pages. .\" .Pp .It Ic show Cm pageq Show statistics on VM page queues. .\" .Pp .It Ic show Cm pciregs Print PCI bus registers. The same information can be gathered in userspace by running .Dq Nm pciconf Fl lv . .\" .Pp .It Ic show Cm pcpu Print current processor state. The output format is as follows: .Pp .Bl -tag -compact -offset indent -width "spin locks held:" .It Ic cpuid Processor identifier. .It Ic curthread Thread pointer, process identifier and the name of the process. .It Ic curpcb Control block pointer. .It Ic fpcurthread FPU thread pointer. .It Ic idlethread Idle thread pointer. .It Ic APIC ID CPU identifier coming from APIC. .It Ic currentldt LDT pointer. .It Ic spin locks held Names of spin locks held. .El .\" .Pp .It Ic show Cm pgrpdump Dump process groups present within the system. .\" .Pp .It Ic show Cm proc Op Ar addr If no .Op Ar addr is specified, print information about the current process. Otherwise, show information about the process at address .Ar addr . .\" .Pp .It Ic show Cm procvm Show process virtual memory layout. .\" .Pp .It Ic show Cm protosw Ar addr Print protocol switch structure .Vt struct protosw at address .Ar addr . .\" .Pp .It Ic show Cm registers Ns Op Li / Ns Cm u Display the register set. If the .Cm u modifier is specified, the register contents of the thread's previous trapframe are displayed instead. Usually, this corresponds to the saved state from userspace. .Pp .\" .Pp .It Ic show Cm rman Ar addr Show resource manager object .Vt struct rman at address .Ar addr . Addresses of particular pointers can be gathered with "show allrman" command. .\" .Pp .It Ic show Cm route Ar addr Show route table result for destination .Ar addr . At this time, INET and INET6 formatted addresses are supported. .\" .Pp .It Ic show Cm routetable Oo Ar af Oc Show full route table or tables. If .Ar af is specified, show only routes for the given numeric address family. If no argument is specified, dump the route table for all address families. .\" .Pp .It Ic show Cm rtc Show real time clock value. Useful for long debugging sessions. .\" .Pp .It Ic show Cm sleepchain Deprecated. Now an alias for .Ic show Cm lockchain . .\" .Pp .It Ic show Cm sleepq .It Ic show Cm sleepqueue Both commands provide the same functionality. They show sleepqueue .Vt struct sleepqueue structure. Sleepqueues are used within the .Fx kernel to implement sleepable synchronization primitives (thread holding a lock might sleep or be context switched), which at the time of writing are: .Xr condvar 9 , .Xr sx 9 and standard .Xr msleep 9 interface. .\" .Pp .It Ic show Cm sockbuf Ar addr .It Ic show Cm socket Ar addr Those commands print .Vt struct sockbuf and .Vt struct socket objects placed at .Ar addr . Output consists of all values present in structures mentioned. For exact interpretation and more details, visit .Pa sys/socket.h header file. .\" .Pp .It Ic show Cm sysregs Show system registers (e.g., .Li cr0-4 on i386.) Not present on some platforms. .\" .Pp .It Ic show Cm tcpcb Ar addr Print TCP control block .Vt struct tcpcb lying at address .Ar addr . For exact interpretation of output, visit .Pa netinet/tcp.h header file. .\" .Pp .It Ic show Cm thread Op Ar addr | tid If no .Ar addr or .Ar tid is specified, show detailed information about current thread. Otherwise, print information about the thread with ID .Ar tid or kernel address .Ar addr . (If the argument is a decimal number, it is assumed to be a tid.) .\" .Pp .It Ic show Cm threads Show all threads within the system. Output format is as follows: .Pp .Bl -tag -compact -offset indent -width "Second column" .It Ic First column Thread identifier (TID) .It Ic Second column Thread structure address .It Ic Third column Backtrace. .El .\" .Pp .It Ic show Cm tty Ar addr Display the contents of a TTY structure in a readable form. .\" .Pp .It Ic show Cm turnstile Ar addr Show turnstile .Vt struct turnstile structure at address .Ar addr . Turnstiles are structures used within the .Fx kernel to implement synchronization primitives which, while holding a specific type of lock, cannot sleep or context switch to another thread. Currently, those are: .Xr mutex 9 , .Xr rwlock 9 , .Xr rmlock 9 . .\" .Pp .It Ic show Cm uma Ns Op Li / Ns Cm i Show UMA allocator statistics. If the .Cm i modifier is specified, format output as machine-parseable comma-separated values ("CSV"). The output contains the following columns: .Pp .Bl -tag -compact -offset indent -width "Total Mem" .It Cm "Zone" Name of the UMA zone. The same string that was passed to .Xr uma_zcreate 9 as a first argument. .It Cm "Size" Size of a given memory object (slab). .It Cm "Used" Number of slabs being currently used. .It Cm "Free" Number of free slabs within the UMA zone. .It Cm "Requests" Number of allocations requests to the given zone. .It Cm "Total Mem" Total memory in use (either allocated or free) by a zone, in bytes. .It Cm "XFree" Number of free slabs within the UMA zone that were freed on a different NUMA domain than allocated. (The count in the .Cm "Free" column is inclusive of .Cm "XFree" . ) .El .Pp The same information might be gathered in the userspace with the help of .Dq Nm vmstat Fl z . .\" .Pp .It Ic show Cm unpcb Ar addr Shows UNIX domain socket private control block .Vt struct unpcb present at the address .Ar addr . .\" .Pp .It Ic show Cm vmochk Prints, whether the internal VM objects are in a map somewhere and none have zero ref counts. .\" .Pp .It Ic show Cm vmopag This is supposed to show physical addresses consumed by a VM object. Currently, it is not possible to use this command when .Xr witness 4 is compiled in the kernel. .\" .Pp .It Ic show Cm vnet Ar addr Prints virtualized network stack .Vt struct vnet structure present at the address .Ar addr . .\" .Pp .It Ic show Cm vnode Op Ar addr Prints vnode .Vt struct vnode structure lying at .Op Ar addr . For the exact interpretation of the output, look at the .Pa sys/vnode.h header file. .\" .Pp .It Ic show Cm vnodebufs Ar addr Shows clean/dirty buffer lists of the vnode located at .Ar addr . .\" .Pp .It Ic show Cm vpath Ar addr Walk the namecache to lookup the pathname of the vnode located at .Ar addr . .\" .Pp .It Ic show Cm watches Displays all watchpoints. Shows watchpoints set with "watch" command. .\" .Pp .It Ic show Cm witness Shows information about lock acquisition coming from the .Xr witness 4 subsystem. .El .Pp .Ss OFFLINE DEBUGGING COMMANDS .Bl -tag -width indent -compact .It Ic gdb Switches to remote GDB mode. In remote GDB mode, another machine is required that runs .Xr gdb 1 using the remote debug feature, with a connection to the serial console port on the target machine. .Pp .It Ic netdump Fl s Ar server Oo Fl g Ar gateway Fl c Ar client Fl i Ar iface Oc Configure .Xr netdump 4 with the provided parameters, and immediately perform a netdump. .Pp There are some known limitations. Principally, .Xr netdump 4 only supports IPv4 at this time. The address arguments to the .Ic netdump command must be dotted decimal IPv4 addresses. (Hostnames are not supported.) At present, the command only works if the machine is in a panic state. Finally, the .Nm .Ic netdump command does not provide any way to configure compression or encryption. .Pp .It Ic netgdb Fl s Ar server Oo Fl g Ar gateway Fl c Ar client Fl i Ar iface Oc Initiate a .Xr netgdb 4 session with the provided parameters. .Pp .Ic netgdb has identical limitations to .Ic netdump . .Pp .It Ic capture on .It Ic capture off .It Ic capture reset .It Ic capture status .Nm supports a basic output capture facility, which can be used to retrieve the results of debugging commands from userspace using .Xr sysctl 3 . .Ic capture on enables output capture; .Ic capture off disables capture. .Ic capture reset will clear the capture buffer and disable capture. .Ic capture status will report current buffer use, buffer size, and disposition of output capture. .Pp Userspace processes may inspect and manage .Nm capture state using .Xr sysctl 8 : .Pp .Va debug.ddb.capture.bufsize may be used to query or set the current capture buffer size. .Pp .Va debug.ddb.capture.maxbufsize may be used to query the compile-time limit on the capture buffer size. .Pp .Va debug.ddb.capture.bytes may be used to query the number of bytes of output currently in the capture buffer. .Pp .Va debug.ddb.capture.data returns the contents of the buffer as a string to an appropriately privileged process. .Pp This facility is particularly useful in concert with the scripting and .Xr textdump 4 facilities, allowing scripted debugging output to be captured and committed to disk as part of a textdump for later analysis. The contents of the capture buffer may also be inspected in a kernel core dump using .Xr kgdb 1 . .Pp .It Ic run .It Ic script .It Ic scripts .It Ic unscript Run, define, list, and delete scripts. See the .Sx SCRIPTING section for more information on the scripting facility. .Pp .It Ic textdump dump .It Ic textdump set .It Ic textdump status .It Ic textdump unset Use the .Ic textdump dump command to immediately perform a textdump. More information may be found in .Xr textdump 4 . The .Ic textdump set command may be used to force the next kernel core dump to be a textdump rather than a traditional memory dump or minidump. .Ic textdump status reports whether a textdump has been scheduled. .Ic textdump unset cancels a request to perform a textdump as the next kernel core dump. .El .Sh VARIABLES The debugger accesses registers and variables as .Li $ Ns Ar name . Register names are as in the .Dq Ic show Cm registers command. Some variables are suffixed with numbers, and may have some modifier following a colon immediately after the variable name. For example, register variables can have a .Cm u modifier to indicate user register (e.g., .Dq Li $eax:u ) . .Pp Built-in variables currently supported are: .Pp .Bl -tag -width ".Va tabstops" -compact .It Va radix Input and output radix. .It Va maxoff Addresses are printed as .Dq Ar symbol Ns Li + Ns Ar offset unless .Ar offset is greater than .Va maxoff . .It Va maxwidth The width of the displayed line. .It Va lines The number of lines. It is used by the built-in pager. Setting it to 0 disables paging. .It Va tabstops Tab stop width. .It Va work Ns Ar xx Work variable; .Ar xx can take values from 0 to 31. .El .Sh EXPRESSIONS Most expression operators in C are supported except .Ql ~ , .Ql ^ , and unary .Ql & . Special rules in .Nm are: .Bl -tag -width ".No Identifiers" .It Identifiers The name of a symbol is translated to the value of the symbol, which is the address of the corresponding object. .Ql \&. and .Ql \&: can be used in the identifier. If supported by an object format dependent routine, .Sm off .Oo Ar filename : Oc Ar func : lineno , .Sm on .Oo Ar filename : Oc Ns Ar variable , and .Oo Ar filename : Oc Ns Ar lineno can be accepted as a symbol. .It Numbers Radix is determined by the first two letters: .Ql 0x : hex, .Ql 0o : octal, .Ql 0t : decimal; otherwise, follow current radix. .It Li \&. .Va dot .It Li + .Va next .It Li .. address of the start of the last line examined. Unlike .Va dot or .Va next , this is only changed by .Ic examine or .Ic write command. .It Li ' last address explicitly specified. .It Li $ Ns Ar variable Translated to the value of the specified variable. It may be followed by a .Ql \&: and modifiers as described above. .It Ar a Ns Li # Ns Ar b A binary operator which rounds up the left hand side to the next multiple of right hand side. .It Li * Ns Ar expr Indirection. It may be followed by a .Ql \&: and modifiers as described above. .El .Sh SCRIPTING .Nm supports a basic scripting facility to allow automating tasks or responses to specific events. Each script consists of a list of DDB commands to be executed sequentially, and is assigned a unique name. Certain script names have special meaning, and will be automatically run on various .Nm events if scripts by those names have been defined. .Pp The .Ic script command may be used to define a script by name. Scripts consist of a series of .Nm commands separated with the .Ql \&; character. For example: .Bd -literal -offset indent script kdb.enter.panic=bt; show pcpu script lockinfo=show alllocks; show lockedvnods .Ed .Pp The .Ic scripts command lists currently defined scripts. .Pp The .Ic run command execute a script by name. For example: .Bd -literal -offset indent run lockinfo .Ed .Pp The .Ic unscript command may be used to delete a script by name. For example: .Bd -literal -offset indent unscript kdb.enter.panic .Ed .Pp These functions may also be performed from userspace using the .Xr ddb 8 command. .Pp Certain scripts are run automatically, if defined, for specific .Nm events. The follow scripts are run when various events occur: .Bl -tag -width kdb.enter.powerfail .It Va kdb.enter.acpi The kernel debugger was entered as a result of an .Xr acpi 4 event. .It Va kdb.enter.bootflags The kernel debugger was entered at boot as a result of the debugger boot flag being set. .It Va kdb.enter.break The kernel debugger was entered as a result of a serial or console break. .It Va kdb.enter.cam The kernel debugger was entered as a result of a .Xr CAM 4 event. .It Va kdb.enter.mac The kernel debugger was entered as a result of an assertion failure in the .Xr mac_test 4 module of the TrustedBSD MAC Framework. -.It Va kdb.enter.ndis -The kernel debugger was entered as a result of an -.Xr ndis 4 -breakpoint event. .It Va kdb.enter.netgraph The kernel debugger was entered as a result of a .Xr netgraph 4 event. .It Va kdb.enter.panic .Xr panic 9 was called. .It Va kdb.enter.powerpc The kernel debugger was entered as a result of an unimplemented interrupt type on the powerpc platform. .It Va kdb.enter.sysctl The kernel debugger was entered as a result of the .Va debug.kdb.enter sysctl being set. .It Va kdb.enter.unionfs The kernel debugger was entered as a result of an assertion failure in the union file system. .It Va kdb.enter.unknown The kernel debugger was entered, but no reason has been set. .It Va kdb.enter.vfslock The kernel debugger was entered as a result of a VFS lock violation. .It Va kdb.enter.watchdog The kernel debugger was entered as a result of a watchdog firing. .It Va kdb.enter.witness The kernel debugger was entered as a result of a .Xr witness 4 violation. .El .Pp In the event that none of these scripts is found, .Nm will attempt to execute a default script: .Bl -tag -width kdb.enter.powerfail .It Va kdb.enter.default The kernel debugger was entered, but a script exactly matching the reason for entering was not defined. This can be used as a catch-all to handle cases not specifically of interest; for example, .Va kdb.enter.witness might be defined to have special handling, and .Va kdb.enter.default might be defined to simply panic and reboot. .El .Sh HINTS On machines with an ISA expansion bus, a simple NMI generation card can be constructed by connecting a push button between the A01 and B01 (CHCHK# and GND) card fingers. Momentarily shorting these two fingers together may cause the bridge chipset to generate an NMI, which causes the kernel to pass control to .Nm . Some bridge chipsets do not generate a NMI on CHCHK#, so your mileage may vary. The NMI allows one to break into the debugger on a wedged machine to diagnose problems. Other bus' bridge chipsets may be able to generate NMI using bus specific methods. There are many PCI and PCIe add-in cards which can generate NMI for debugging. Modern server systems typically use IPMI to generate signals to enter the debugger. The .Va devel/ipmitool port can be used to send the .Cd chassis power diag command which delivers an NMI to the processor. Embedded systems often use JTAG for debugging, but rarely use it in combination with .Nm . .Pp For serial consoles, you can enter the debugger by sending a BREAK condition on the serial line if .Cd options BREAK_TO_DEBUGGER is specified in the kernel. Most terminal emulation programs can send a break sequence with a special key sequence or via a menu item. However, in some setups, sending the break can be difficult to arrange or happens spuriously, so if the kernel contains .Cd options ALT_BREAK_TO_DEBUGGER then the sequence of CR TILDE CTRL-B enters the debugger; CR TILDE CTRL-P causes a panic instead of entering the debugger; and CR TILDE CTRL-R causes an immediate reboot. In all the above sequences, CR is a Carriage Return and is usually sent by hitting the Enter or Return key. TILDE is the ASCII tilde character (~). CTRL-x is Control x created by hitting the control key and then x and then releasing both. .Pp The break to enter the debugger behavior may be enabled at run-time by setting the .Xr sysctl 8 .Va debug.kdb.break_to_debugger to 1. The alternate sequence to enter the debugger behavior may be enabled at run-time by setting the .Xr sysctl 8 .Va debug.kdb.alt_break_to_debugger to 1. The debugger may be entered by setting the .Xr sysctl 8 .Va debug.kdb.enter to 1. .Sh FILES Header files mentioned in this manual page can be found below .Pa /usr/include directory. .Pp .Bl -dash -compact .It .Pa sys/buf.h .It .Pa sys/domain.h .It .Pa netinet/in_pcb.h .It .Pa sys/socket.h .It .Pa sys/vnode.h .El .Sh SEE ALSO .Xr gdb 1 , .Xr kgdb 1 , .Xr acpi 4 , .Xr CAM 4 , .Xr mac_test 4 , -.Xr ndis 4 , .Xr netgraph 4 , .Xr textdump 4 , .Xr witness 4 , .Xr ddb 8 , .Xr sysctl 8 , .Xr panic 9 .Sh HISTORY The .Nm debugger was developed for Mach, and ported to .Bx 386 0.1 . This manual page translated from .Xr man 7 macros by .An Garrett Wollman . .Pp .An Robert N. M. Watson added support for .Nm output capture, .Xr textdump 4 and scripting in .Fx 7.1 . diff --git a/share/man/man4/wlan.4 b/share/man/man4/wlan.4 index 2e0ebdb09c2f..d7a186a34efd 100644 --- a/share/man/man4/wlan.4 +++ b/share/man/man4/wlan.4 @@ -1,221 +1,219 @@ .\" .\" Copyright (c) 2003 Tom Rhodes .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd January 9, 2021 +.Dd January 26, 2021 .Dt WLAN 4 .Os .Sh NAME .Nm wlan .Nd generic 802.11 link-layer support .Sh SYNOPSIS .Cd "device wlan" .Sh DESCRIPTION The .Nm module provides generic code to support 802.11 drivers. Where a device does not directly support 802.11 functionality this layer fills in. The .Nm -module is required by all native 802.11 drivers as well as the -.Xr ndis 4 -support. +module is required by all native 802.11 drivers. .Pp .Nm supports multi-mode devices capable of operating in both 2.4GHz and 5GHz bands and supports numerous 802.11 standards: 802.11a, 802.11b, 802.11g, 802.11n, and 802.11s (Draft 3.0). The WPA, 802.11i, and 802.1x security protocols are supported through a combination of in-kernel code and user-mode applications. The WME/WMM multi-media protocols are supported entirely within the .Nm module but require a suitably capable hardware device. Likewise the 802.11h specification is supported only by suitably capable devices. .Pp Drivers provide 802.11 functionality through .Nm interfaces that are created at runtime using interface cloning. This is done with the .Xr ifconfig 8 .Cm create command or using the .Va wlans_IFX variable in .Xr rc.conf 5 . Some drivers support the creation of multiple .Nm interfaces that share the same underlying device; this is the way by which ``multi-bss support'' is provided but it can also be used to create WDS links and other interesting applications. .Pp There are several types of .Nm interfaces that may be created: .Bl -tag -width monitor .It Cm sta A client station in an infrastructure bss (i.e. one that associates to an access point). .It Cm hostap An access point in an infrastructure bss. .It Cm mesh A mesh station in an MBSS network. .It Cm adhoc A station in an IBSS network. .It Cm ahdemo A station operating in ``adhoc demo mode''. This is essentially an IBSS station that does not use management frames (e.g. no beacons are transmitted). An .Cm ahdemo interface is especially useful for applications that want to transmit and receive raw 802.11 packets. .It Cm monitor An interface used exclusively for capturing 802.11 frames. In particular this specified to have read-only properties which enables it to be operated on frequencies where one would otherwise not be allowed. .It Cm wds A station that passes 4-address 802.11 traffic for the purpose of tunneling traffic over a wireless link. Typically this station would share the same MAC address as a .Cm hostap interface. It may be possible to create .Cm wds interfaces without a companion .Cm hostap interface but that is not guaranteed; one may need to create a .Cm hostap interface that does not send beacon frames before .Cm wds interfaces may be created. .El .Pp Note that an interface's type cannot be changed once it is created. .Pp .Nm defines several mechanisms by which plugin modules may be used to extend its functionality. Cryptographic support such as WEP, TKIP, and AES-CCMP are implemented as standalone modules (if not statically configured into a system) that register with .Nm . Similarly there is an authenticator framework for defining 802.11 authentication services and a framework for integrating access control mechanisms specific to the 802.11 protocol. .Sh DEBUGGING If the .Dv IEEE80211_DEBUG option is included in the kernel configuration, debugging controls are available using: .Pp .Dl "sysctl net.wlan.X.debug=mask" .Pp where .Ar X is the number of the .Nm instance and mask is a bit-or of control bits that determine which debugging messages to enable. For example, .Pp .Dl "sysctl net.wlan.0.debug=0x00200000" .Pp enables debugging messages related to scanning for an access point, adhoc neighbor, or an unoccupied channel when operation as an access point. The .Xr wlandebug 8 tool provides a more user-friendly mechanism for doing the same thing. Note that .Pp .Dl "sysctl net.wlan.debug=mask" .Pp defines the initial value of the debugging flags for each cloned .Nm interface; this is useful to enable debug messages during interface creation. .Sh COMPATIBILITY The module name of .Nm was used to be compatible with .Nx . .Pp Mesh stations follow the 802.11s Draft 3.0 specification which is not ratified and subject to change. Be aware that this specification is incompatible with earlier drafts. Stations implementing earlier drafts (e.g., Linux) may be incompatible. .Sh SEE ALSO .Xr an 4 , .Xr ath 4 , .Xr bwi 4 , .Xr bwn 4 , .Xr ipw 4 , .Xr iwi 4 , .Xr iwm 4 , .Xr iwn 4 , .Xr malo 4 , .Xr mwl 4 , .Xr netintro 4 , .Xr otus 4 , .Xr ral 4 , .Xr rsu 4 , .Xr rtwn 4 , .Xr rum 4 , .Xr run 4 , .Xr uath 4 , .Xr upgt 4 , .Xr ural 4 , .Xr urtw 4 , .Xr wlan_acl 4 , .Xr wlan_ccmp 4 , .Xr wlan_tkip 4 , .Xr wlan_wep 4 , .Xr wlan_xauth 4 , .Xr wpi 4 , .Xr zyd 4 .Sh STANDARDS More information can be found in the IEEE 802.11 Standards. .Sh HISTORY The .Nm driver first appeared in .Fx 5.0 . .Sh AUTHORS Atsushi Onoe is the author of original .Nx software from which this work began. .An -nosplit .An Sam Leffler brought the code into .Fx and then rewrote it to support multi-mode devices, 802.11g, 802.11n, WPA/802.11i, WME, multi-bss, and add the extensible frameworks for cryptographic, authentication, and access control plugins. This manual page was written by .An Tom Rhodes Aq Mt trhodes@FreeBSD.org . diff --git a/share/man/man9/ieee80211.9 b/share/man/man9/ieee80211.9 index a6900bd57799..35624f5f39cd 100644 --- a/share/man/man9/ieee80211.9 +++ b/share/man/man9/ieee80211.9 @@ -1,718 +1,714 @@ .\" .\" Copyright (c) 2004 Bruce M. Simpson .\" Copyright (c) 2004 Darron Broad .\" Copyright (c) 2009 Sam Leffler, Errno Consulting .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" $FreeBSD$ .\" -.Dd December 31, 2017 +.Dd January 26, 2021 .Dt IEEE80211 9 .Os .Sh NAME .Nm IEEE80211 .Nd 802.11 network layer .Sh SYNOPSIS .In net80211/ieee80211_var.h .Ft void .Fn ieee80211_ifattach "struct ieee80211com *ic" .Ft void .Fn ieee80211_ifdetach "struct ieee80211com *ic" .Ft int .Fn ieee80211_mhz2ieee "u_int freq" "u_int flags" .Ft int .Fn ieee80211_chan2ieee "struct ieee80211com *ic" "const struct ieee80211_channel *c" .Ft u_int .Fn ieee80211_ieee2mhz "u_int chan" "u_int flags" .Ft int .Fn ieee80211_media_change "struct ifnet *ifp" .Ft void .Fn ieee80211_media_status "struct ifnet *ifp" "struct ifmediareq *imr" .Ft int .Fn ieee80211_setmode "struct ieee80211com *ic" "enum ieee80211_phymode mode" .Ft enum ieee80211_phymode .Fo ieee80211_chan2mode .Fa "const struct ieee80211_channel *chan" .Fc .Ft int .Fo ieee80211_rate2media .Fa "struct ieee80211com *ic" "int rate" "enum ieee80211_phymode mode" .Fc .Ft int .Fn ieee80211_media2rate "int mword" .Sh DESCRIPTION IEEE 802.11 device drivers are written to use the infrastructure provided by the .Nm software layer. This software provides a support framework for drivers that includes ifnet cloning, state management, and a user management API by which applications interact with 802.11 devices. Most drivers depend on the .Nm layer for protocol services but devices that off-load functionality -may bypass the layer to connect directly to the device -(e.g. the -.Xr ndis 4 -emulation support does this). +may bypass the layer to connect directly to the device. .Pp A .Nm device driver implements a virtual radio API that is exported to users through network interfaces (aka vaps) that are cloned from the underlying device. These interfaces have an operating mode (station, adhoc, hostap, wds, monitor, etc.\&) that is fixed for the lifetime of the interface. Devices that can support multiple concurrent interfaces allow multiple vaps to be cloned. This enables construction of interesting applications such as an AP vap and one or more WDS vaps or multiple AP vaps, each with a different security model. The .Nm layer virtualizes most 802.11 state and coordinates vap state changes including scheduling multiple vaps. State that is not virtualized includes the current channel and WME/WMM parameters. Protocol processing is typically handled entirely in the .Nm layer with drivers responsible purely for moving data between the host and device. Similarly, .Nm handles most .Xr ioctl 2 requests without entering the driver; instead drivers are notified of state changes that require their involvement. .Pp The virtual radio interface defined by the .Nm layer means that drivers must be structured to follow specific rules. Drivers that support only a single interface at any time must still follow these rules. .Pp Most of these functions require that attachment to the stack is performed before calling. .Pp .\" The .Fn ieee80211_ifattach function attaches the wireless network interface .Fa ic to the 802.11 network stack layer. This function must be called before using any of the .Nm functions which need to store driver state across invocations. .Pp .\" The .Fn ieee80211_ifdetach function frees any .Nm structures associated with the driver, and performs Ethernet and BPF detachment on behalf of the caller. .Pp .\" The .Fn ieee80211_mhz2ieee utility function converts the frequency .Fa freq (specified in MHz) to an IEEE 802.11 channel number. The .Fa flags argument is a hint which specifies whether the frequency is in the 2GHz ISM band .Pq Vt IEEE80211_CHAN_2GHZ or the 5GHz band .Pq Vt IEEE80211_CHAN_5GHZ ; appropriate clipping of the result is then performed. .Pp .\" The .Fn ieee80211_chan2ieee function converts the channel specified in .Fa *c to an IEEE channel number for the driver .Fa ic . If the conversion would be invalid, an error message is printed to the system console. This function REQUIRES that the driver is hooked up to the .Nm subsystem. .Pp .\" The .Fn ieee80211_ieee2mhz utility function converts the IEEE channel number .Ft chan to a frequency (in MHz). The .Fa flags argument is a hint which specifies whether the frequency is in the 2GHz ISM band .Pq Vt IEEE80211_CHAN_2GHZ or the 5GHz band .Pq Vt IEEE80211_CHAN_5GHZ ; appropriate clipping of the result is then performed. .Pp .\" The .Fn ieee80211_media_status and .Fn ieee80211_media_change functions are device-independent handlers for .Vt ifmedia commands and are not intended to be called directly. .Pp .\" The .Fn ieee80211_setmode function is called from within the 802.11 stack to change the mode of the driver's PHY; it is not intended to be called directly. .Pp .\" The .Fn ieee80211_chan2mode function returns the PHY mode required for use with the channel .Fa chan . This is typically used when selecting a rate set, to be advertised in beacons, for example. .Pp .\" The .Fn ieee80211_rate2media function converts the bit rate .Fa rate (measured in units of 0.5Mbps) to an .Vt ifmedia sub-type, for the device .Fa ic running in PHY mode .Fa mode . The .Fn ieee80211_media2rate performs the reverse of this conversion, returning the bit rate (in 0.5Mbps units) corresponding to an .Vt ifmedia sub-type. . .Sh DATA STRUCTURES The virtual radio architecture splits state between a single per-device .Vt ieee80211com structure and one or more .Vt ieee80211vap structures. Drivers are expected to setup various shared state in these structures at device attach and during vap creation but otherwise should treat them as read-only. The .Vt ieee80211com structure is allocated by the .Nm layer as adjunct data to a device's .Vt ifnet ; it is accessed through the .Vt if_l2com structure member. The .Vt ieee80211vap structure is allocated by the driver in the .Dq vap create method and should be extended with any driver-private state. This technique of giving the driver control to allocate data structures is used for other .Nm data structures and should be exploited to maintain driver-private state together with public .Nm state. .Pp The other main data structures are the station, or node, table that tracks peers in the local BSS, and the channel table that defines the current set of available radio channels. Both tables are bound to the .Vt ieee80211com structure and shared by all vaps. Long-lasting references to a node are counted to guard against premature reclamation. In particular every packet sent/received holds a node reference (either explicitly for transmit or implicitly on receive). .Pp The .Vt ieee80211com and .Vt ieee80211vap structures also hold a collection of method pointers that drivers fill-in and/or override to take control of certain operations. These methods are the primary way drivers are bound to the .Nm layer and are described below. .Sh DRIVER ATTACH/DETACH Drivers attach to the .Nm layer with the .Fn ieee80211_ifattach function. The driver is expected to allocate and setup any device-private data structures before passing control. The .Vt ieee80211com structure must be pre-initialized with state required to setup the .Nm layer: .Bl -tag -width ic_channels .It Dv ic_ifp Backpointer to the physical device's ifnet. .It Dv ic_caps Device/driver capabilities; see below for a complete description. .It Dv ic_channels Table of channels the device is capable of operating on. This is initially provided by the driver but may be changed through calls that change the regulatory state. .It Dv ic_nchan Number of entries in .Dv ic_channels . .El .Pp On return from .Fn ieee80211_ifattach the driver is expected to override default callback functions in the .Vt ieee80211com structure to register it's private routines. Methods marked with a .Dq * must be provided by the driver. .Bl -tag -width ic_channels .It Dv ic_vap_create* Create a vap instance of the specified type (operating mode). Any fixed BSSID and/or MAC address is provided. Drivers that support multi-bssid operation may honor the requested BSSID or assign their own. .It Dv ic_vap_delete* Destroy a vap instance created with .Dv ic_vap_create . .It Dv ic_getradiocaps Return the list of calibrated channels for the radio. The default method returns the current list of channels (space permitting). .It Dv ic_setregdomain Process a request to change regulatory state. The routine may reject a request or constrain changes (e.g. reduce transmit power caps). The default method accepts all proposed changes. .It Dv ic_send_mgmt Send an 802.11 management frame. The default method fabricates the frame using .Nm state and passes it to the driver through the .Dv ic_raw_xmit method. .It Dv ic_raw_xmit Transmit a raw 802.11 frame. The default method drops the frame and generates a message on the console. .It Dv ic_updateslot Update hardware state after an 802.11 IFS slot time change. There is no default method; the pointer may be NULL in which case it will not be used. .It Dv ic_update_mcast Update hardware for a change in the multicast packet filter. The default method prints a console message. .It Dv ic_update_promisc Update hardware for a change in the promiscuous mode setting. The default method prints a console message. .It Dv ic_newassoc Update driver/device state for association to a new AP (in station mode) or when a new station associates (e.g. in AP mode). There is no default method; the pointer may be NULL in which case it will not be used. .It Dv ic_node_alloc Allocate and initialize a .Vt ieee80211_node structure. This method cannot sleep. The default method allocates zero'd memory using .Xr malloc 9 . Drivers should override this method to allocate extended storage for their own needs. Memory allocated by the driver must be tagged with .Dv M_80211_NODE to balance the memory allocation statistics. .It Dv ic_node_free Reclaim storage of a node allocated by .Dv ic_node_alloc . Drivers are expected to .Em interpose their own method to cleanup private state but must call through this method to allow .Nm to reclaim it's private state. .It Dv ic_node_cleanup Cleanup state in a .Vt ieee80211_node created by .Dv ic_node_alloc . This operation is distinguished from .Dv ic_node_free in that it may be called long before the node is actually reclaimed to cleanup adjunct state. This can happen, for example, when a node must not be reclaimed due to references held by packets in the transmit queue. Drivers typically interpose .Dv ic_node_cleanup instead of .Dv ic_node_free . .It Dv ic_node_age Age, and potentially reclaim, resources associated with a node. The default method ages frames on the power-save queue (in AP mode) and pending frames in the receive reorder queues (for stations using A-MPDU). .It Dv ic_node_drain Reclaim all optional resources associated with a node. This call is used to free up resources when they are in short supply. .It Dv ic_node_getrssi Return the Receive Signal Strength Indication (RSSI) in .5 dBm units for the specified node. This interface returns a subset of the information returned by .Dv ic_node_getsignal . The default method calculates a filtered average over the last ten samples passed in to .Xr ieee80211_input 9 or .Xr ieee80211_input_all 9 . .It Dv ic_node_getsignal Return the RSSI and noise floor (in .5 dBm units) for a station. The default method calculates RSSI as described above; the noise floor returned is the last value supplied to .Xr ieee80211_input 9 or .Xr ieee80211_input_all 9 . .It Dv ic_node_getmimoinfo Return MIMO radio state for a station in support of the .Dv IEEE80211_IOC_STA_INFO ioctl request. The default method returns nothing. .It Dv ic_scan_start* Prepare driver/hardware state for scanning. This callback is done in a sleepable context. .It Dv ic_scan_end* Restore driver/hardware state after scanning completes. This callback is done in a sleepable context. .It Dv ic_set_channel* Set the current radio channel using .Vt ic_curchan . This callback is done in a sleepable context. .It Dv ic_scan_curchan Start scanning on a channel. This method is called immediately after each channel change and must initiate the work to scan a channel and schedule a timer to advance to the next channel in the scan list. This callback is done in a sleepable context. The default method handles active scan work (e.g. sending ProbeRequest frames), and schedules a call to .Xr ieee80211_scan_next 9 according to the maximum dwell time for the channel. Drivers that off-load scan work to firmware typically use this method to trigger per-channel scan activity. .It Dv ic_scan_mindwell Handle reaching the minimum dwell time on a channel when scanning. This event is triggered when one or more stations have been found on a channel and the minimum dwell time has been reached. This callback is done in a sleepable context. The default method signals the scan machinery to advance to the next channel as soon as possible. Drivers can use this method to preempt further work (e.g. if scanning is handled by firmware) or ignore the request to force maximum dwell time on a channel. .It Dv ic_recv_action Process a received Action frame. The default method points to .Xr ieee80211_recv_action 9 which provides a mechanism for setting up handlers for each Action frame class. .It Dv ic_send_action Transmit an Action frame. The default method points to .Xr ieee80211_send_action 9 which provides a mechanism for setting up handlers for each Action frame class. .It Dv ic_ampdu_enable Check if transmit A-MPDU should be enabled for the specified station and AC. The default method checks a per-AC traffic rate against a per-vap threshold to decide if A-MPDU should be enabled. This method also rate-limits ADDBA requests so that requests are not made too frequently when a receiver has limited resources. .It Dv ic_addba_request Request A-MPDU transmit aggregation. The default method sets up local state and issues an ADDBA Request Action frame. Drivers may interpose this method if they need to setup private state for handling transmit A-MPDU. .It Dv ic_addb_response Process a received ADDBA Response Action frame and setup resources as needed for doing transmit A-MPDU. .It Dv ic_addb_stop Shutdown an A-MPDU transmit stream for the specified station and AC. The default method reclaims local state after sending a DelBA Action frame. .It Dv ic_bar_response Process a response to a transmitted BAR control frame. .It Dv ic_ampdu_rx_start Prepare to receive A-MPDU data from the specified station for the TID. .It Dv ic_ampdu_rx_stop Terminate receipt of A-MPDU data from the specified station for the TID. .El .Pp Once the .Nm layer is attached to a driver there are two more steps typically done to complete the work: .Bl -enum .It Setup .Dq radiotap support for capturing raw 802.11 packets that pass through the device. This is done with a call to .Xr ieee80211_radiotap_attach 9 . .It Do any final device setup like enabling interrupts. .El .Pp State is torn down and reclaimed with a call to .Fn ieee80211_ifdetach . Note this call may result in multiple callbacks into the driver so it should be done before any critical driver state is reclaimed. On return from .Fn ieee80211_ifdetach all associated vaps and ifnet structures are reclaimed or inaccessible to user applications so it is safe to teardown driver state without worry about being re-entered. The driver is responsible for calling .Xr if_free 9 on the ifnet it allocated for the physical device. .Sh DRIVER CAPABILITIES Driver/device capabilities are specified using several sets of flags in the .Vt ieee80211com structure. General capabilities are specified by .Vt ic_caps . Hardware cryptographic capabilities are specified by .Vt ic_cryptocaps . 802.11n capabilities, if any, are specified by .Vt ic_htcaps . The .Nm layer propagates a subset of these capabilities to each vap through the equivalent fields: .Vt iv_caps , .Vt iv_cryptocaps , and .Vt iv_htcaps . The following general capabilities are defined: .Bl -tag -width IEEE80211_C_8023ENCAP .It Dv IEEE80211_C_STA Device is capable of operating in station (aka Infrastructure) mode. .It Dv IEEE80211_C_8023ENCAP Device requires 802.3-encapsulated frames be passed for transmit. By default .Nm will encapsulate all outbound frames as 802.11 frames (without a PLCP header). .It Dv IEEE80211_C_FF Device supports Atheros Fast-Frames. .It Dv IEEE80211_C_TURBOP Device supports Atheros Dynamic Turbo mode. .It Dv IEEE80211_C_IBSS Device is capable of operating in adhoc/IBSS mode. .It Dv IEEE80211_C_PMGT Device supports dynamic power-management (aka power save) in station mode. .It Dv IEEE80211_C_HOSTAP Device is capable of operating as an Access Point in Infrastructure mode. .It Dv IEEE80211_C_AHDEMO Device is capable of operating in Adhoc Demo mode. In this mode the device is used purely to send/receive raw 802.11 frames. .It Dv IEEE80211_C_SWRETRY Device supports software retry of transmitted frames. .It Dv IEEE80211_C_TXPMGT Device support dynamic transmit power changes on transmitted frames; also known as Transmit Power Control (TPC). .It Dv IEEE80211_C_SHSLOT Device supports short slot time operation (for 802.11g). .It Dv IEEE80211_C_SHPREAMBLE Device supports short preamble operation (for 802.11g). .It Dv IEEE80211_C_MONITOR Device is capable of operating in monitor mode. .It Dv IEEE80211_C_DFS Device supports radar detection and/or DFS. DFS protocol support can be handled by .Nm but the device must be capable of detecting radar events. .It Dv IEEE80211_C_MBSS Device is capable of operating in MeshBSS (MBSS) mode (as defined by 802.11s Draft 3.0). .It Dv IEEE80211_C_WPA1 Device supports WPA1 operation. .It Dv IEEE80211_C_WPA2 Device supports WPA2/802.11i operation. .It Dv IEEE80211_C_BURST Device supports frame bursting. .It Dv IEEE80211_C_WME Device supports WME/WMM operation (at the moment this is mostly support for sending and receiving QoS frames with EDCF). .It Dv IEEE80211_C_WDS Device supports transmit/receive of 4-address frames. .It Dv IEEE80211_C_BGSCAN Device supports background scanning. .It Dv IEEE80211_C_TXFRAG Device supports transmit of fragmented 802.11 frames. .It Dv IEEE80211_C_TDMA Device is capable of operating in TDMA mode. .El .Pp The follow general crypto capabilities are defined. In general .Nm will fall-back to software support when a device is not capable of hardware acceleration of a cipher. This can be done on a per-key basis. .Nm can also handle software .Dv Michael calculation combined with hardware .Dv AES acceleration. .Bl -tag -width IEEE80211_C_8023ENCAP .It Dv IEEE80211_CRYPTO_WEP Device supports hardware WEP cipher. .It Dv IEEE80211_CRYPTO_TKIP Device supports hardware TKIP cipher. .It Dv IEEE80211_CRYPTO_AES_OCB Device supports hardware AES-OCB cipher. .It Dv IEEE80211_CRYPTO_AES_CCM Device supports hardware AES-CCM cipher. .It Dv IEEE80211_CRYPTO_TKIPMIC Device supports hardware Michael for use with TKIP. .It Dv IEEE80211_CRYPTO_CKIP Devices supports hardware CKIP cipher. .El .Pp The follow general 802.11n capabilities are defined. The first capabilities are defined exactly as they appear in the 802.11n specification. Capabilities beginning with IEEE80211_HTC_AMPDU are used solely by the .Nm layer. .Bl -tag -width IEEE80211_C_8023ENCAP .It Dv IEEE80211_HTCAP_CHWIDTH40 Device supports 20/40 channel width operation. .It Dv IEEE80211_HTCAP_SMPS_DYNAMIC Device supports dynamic SM power save operation. .It Dv IEEE80211_HTCAP_SMPS_ENA Device supports static SM power save operation. .It Dv IEEE80211_HTCAP_GREENFIELD Device supports Greenfield preamble. .It Dv IEEE80211_HTCAP_SHORTGI20 Device supports Short Guard Interval on 20MHz channels. .It Dv IEEE80211_HTCAP_SHORTGI40 Device supports Short Guard Interval on 40MHz channels. .It Dv IEEE80211_HTCAP_TXSTBC Device supports Space Time Block Convolution (STBC) for transmit. .It Dv IEEE80211_HTCAP_RXSTBC_1STREAM Device supports 1 spatial stream for STBC receive. .It Dv IEEE80211_HTCAP_RXSTBC_2STREAM Device supports 1-2 spatial streams for STBC receive. .It Dv IEEE80211_HTCAP_RXSTBC_3STREAM Device supports 1-3 spatial streams for STBC receive. .It Dv IEEE80211_HTCAP_MAXAMSDU_7935 Device supports A-MSDU frames up to 7935 octets. .It Dv IEEE80211_HTCAP_MAXAMSDU_3839 Device supports A-MSDU frames up to 3839 octets. .It Dv IEEE80211_HTCAP_DSSSCCK40 Device supports use of DSSS/CCK on 40MHz channels. .It Dv IEEE80211_HTCAP_PSMP Device supports PSMP. .It Dv IEEE80211_HTCAP_40INTOLERANT Device is intolerant of 40MHz wide channel use. .It Dv IEEE80211_HTCAP_LSIGTXOPPROT Device supports L-SIG TXOP protection. .It Dv IEEE80211_HTC_AMPDU Device supports A-MPDU aggregation. Note that any 802.11n compliant device must support A-MPDU receive so this implicitly means support for .Em transmit of A-MPDU frames. .It Dv IEEE80211_HTC_AMSDU Device supports A-MSDU aggregation. Note that any 802.11n compliant device must support A-MSDU receive so this implicitly means support for .Em transmit of A-MSDU frames. .It Dv IEEE80211_HTC_HT Device supports High Throughput (HT) operation. This capability must be set to enable 802.11n functionality in .Nm . .It Dv IEEE80211_HTC_SMPS Device supports MIMO Power Save operation. .It Dv IEEE80211_HTC_RIFS Device supports Reduced Inter Frame Spacing (RIFS). .El .Sh SEE ALSO .Xr ioctl 2 , -.Xr ndis 4 , .Xr ieee80211_amrr 9 , .Xr ieee80211_beacon 9 , .Xr ieee80211_bmiss 9 , .Xr ieee80211_crypto 9 , .Xr ieee80211_ddb 9 , .Xr ieee80211_input 9 , .Xr ieee80211_node 9 , .Xr ieee80211_output 9 , .Xr ieee80211_proto 9 , .Xr ieee80211_radiotap 9 , .Xr ieee80211_regdomain 9 , .Xr ieee80211_scan 9 , .Xr ieee80211_vap 9 , .Xr ifnet 9 , .Xr malloc 9 .Sh HISTORY The .Nm series of functions first appeared in .Nx 1.5 , and were later ported to .Fx 4.6 . This man page was updated with the information from .Nx .Nm man page. .Sh AUTHORS .An -nosplit The original .Nx .Nm man page was written by .An Bruce M. Simpson Aq Mt bms@FreeBSD.org and .An Darron Broad Aq Mt darron@kewl.org .