diff --git a/sys/arm/arm/busdma_machdep.c b/sys/arm/arm/busdma_machdep.c index 55e02bc122a1..d2abb0d46dbd 100644 --- a/sys/arm/arm/busdma_machdep.c +++ b/sys/arm/arm/busdma_machdep.c @@ -1,1773 +1,1773 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2012-2015 Ian Lepore * Copyright (c) 2010 Mark Tinguely * Copyright (c) 2004 Olivier Houchard * Copyright (c) 2002 Peter Grehan * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From i386/busdma_machdep.c 191438 2009-04-23 20:24:19Z jhb */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#define ARM_BUSDMA_MAPLOAD_STATS #define BUSDMA_DCACHE_ALIGN cpuinfo.dcache_line_size #define BUSDMA_DCACHE_MASK cpuinfo.dcache_line_mask #define MAX_BPAGES 64 #define MAX_DMA_SEGMENTS 4096 #define BUS_DMA_EXCL_BOUNCE BUS_DMA_BUS2 #define BUS_DMA_ALIGN_BOUNCE BUS_DMA_BUS3 #define BUS_DMA_COULD_BOUNCE (BUS_DMA_EXCL_BOUNCE | BUS_DMA_ALIGN_BOUNCE) #define BUS_DMA_MIN_ALLOC_COMP BUS_DMA_BUS4 struct bounce_zone; struct bus_dma_tag { bus_dma_tag_t parent; bus_size_t alignment; bus_addr_t boundary; bus_addr_t lowaddr; bus_addr_t highaddr; bus_dma_filter_t *filter; void *filterarg; bus_size_t maxsize; u_int nsegments; bus_size_t maxsegsz; int flags; int ref_count; int map_count; bus_dma_lock_t *lockfunc; void *lockfuncarg; struct bounce_zone *bounce_zone; }; struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ vm_page_t datapage; /* physical page of client data */ vm_offset_t dataoffs; /* page offset of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; struct sync_list { vm_offset_t vaddr; /* kva of client data */ bus_addr_t paddr; /* physical address */ vm_page_t pages; /* starting page of client data */ bus_size_t datacount; /* client data count */ }; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(bp_list, bounce_page) bounce_page_list; int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int map_count; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_tree; struct sysctl_oid *sysctl_tree_top; }; static struct mtx bounce_lock; static int total_bpages; static int busdma_zonecount; static uint32_t tags_total; static uint32_t maps_total; static uint32_t maps_dmamem; static uint32_t maps_coherent; #ifdef ARM_BUSDMA_MAPLOAD_STATS static counter_u64_t maploads_total; static counter_u64_t maploads_bounced; static counter_u64_t maploads_coherent; static counter_u64_t maploads_dmamem; static counter_u64_t maploads_mbuf; static counter_u64_t maploads_physmem; #endif static STAILQ_HEAD(, bounce_zone) bounce_zone_list; static void *busdma_ih; SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Busdma parameters"); SYSCTL_UINT(_hw_busdma, OID_AUTO, tags_total, CTLFLAG_RD, &tags_total, 0, "Number of active tags"); SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_total, CTLFLAG_RD, &maps_total, 0, "Number of active maps"); SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_dmamem, CTLFLAG_RD, &maps_dmamem, 0, "Number of active maps for bus_dmamem_alloc buffers"); SYSCTL_UINT(_hw_busdma, OID_AUTO, maps_coherent, CTLFLAG_RD, &maps_coherent, 0, "Number of active maps with BUS_DMA_COHERENT flag set"); #ifdef ARM_BUSDMA_MAPLOAD_STATS SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_total, CTLFLAG_RD, &maploads_total, "Number of load operations performed"); SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_bounced, CTLFLAG_RD, &maploads_bounced, "Number of load operations that used bounce buffers"); SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_coherent, CTLFLAG_RD, &maploads_dmamem, "Number of load operations on BUS_DMA_COHERENT memory"); SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_dmamem, CTLFLAG_RD, &maploads_dmamem, "Number of load operations on bus_dmamem_alloc buffers"); SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_mbuf, CTLFLAG_RD, &maploads_mbuf, "Number of load operations for mbufs"); SYSCTL_COUNTER_U64(_hw_busdma, OID_AUTO, maploads_physmem, CTLFLAG_RD, &maploads_physmem, "Number of load operations on physical buffers"); #endif SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0, "Total bounce pages"); struct bus_dmamap { struct bp_list bpages; int pagesneeded; int pagesreserved; bus_dma_tag_t dmat; struct memdesc mem; bus_dmamap_callback_t *callback; void *callback_arg; int flags; #define DMAMAP_COHERENT (1 << 0) #define DMAMAP_DMAMEM_ALLOC (1 << 1) #define DMAMAP_MBUF (1 << 2) STAILQ_ENTRY(bus_dmamap) links; bus_dma_segment_t *segments; int sync_count; struct sync_list slist[]; }; static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist; static void init_bounce_pages(void *dummy); static int alloc_bounce_zone(bus_dma_tag_t dmat); static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages); static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit); static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size); static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage); static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap, bus_dmamap_t map, void *buf, bus_size_t buflen, int flags); static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags); static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags); static void dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size); static void dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op); static busdma_bufalloc_t coherent_allocator; /* Cache of coherent buffers */ static busdma_bufalloc_t standard_allocator; /* Cache of standard buffers */ MALLOC_DEFINE(M_BUSDMA, "busdma", "busdma metadata"); MALLOC_DEFINE(M_BOUNCE, "bounce", "busdma bounce pages"); static void busdma_init(void *dummy) { int uma_flags; #ifdef ARM_BUSDMA_MAPLOAD_STATS maploads_total = counter_u64_alloc(M_WAITOK); maploads_bounced = counter_u64_alloc(M_WAITOK); maploads_coherent = counter_u64_alloc(M_WAITOK); maploads_dmamem = counter_u64_alloc(M_WAITOK); maploads_mbuf = counter_u64_alloc(M_WAITOK); maploads_physmem = counter_u64_alloc(M_WAITOK); #endif uma_flags = 0; /* Create a cache of buffers in standard (cacheable) memory. */ standard_allocator = busdma_bufalloc_create("buffer", BUSDMA_DCACHE_ALIGN,/* minimum_alignment */ NULL, /* uma_alloc func */ NULL, /* uma_free func */ uma_flags); /* uma_zcreate_flags */ #ifdef INVARIANTS /* * Force UMA zone to allocate service structures like * slabs using own allocator. uma_debug code performs * atomic ops on uma_slab_t fields and safety of this * operation is not guaranteed for write-back caches */ uma_flags = UMA_ZONE_NOTOUCH; #endif /* * Create a cache of buffers in uncacheable memory, to implement the * BUS_DMA_COHERENT (and potentially BUS_DMA_NOCACHE) flag. */ coherent_allocator = busdma_bufalloc_create("coherent", BUSDMA_DCACHE_ALIGN,/* minimum_alignment */ busdma_bufalloc_alloc_uncacheable, busdma_bufalloc_free_uncacheable, uma_flags); /* uma_zcreate_flags */ } /* * This init historically used SI_SUB_VM, but now the init code requires * malloc(9) using M_BUSDMA memory and the pcpu zones for counter(9), which get * set up by SI_SUB_KMEM and SI_ORDER_LAST, so we'll go right after that by * using SI_SUB_KMEM+1. */ SYSINIT(busdma, SI_SUB_KMEM+1, SI_ORDER_FIRST, busdma_init, NULL); /* * This routine checks the exclusion zone constraints from a tag against the * physical RAM available on the machine. If a tag specifies an exclusion zone * but there's no RAM in that zone, then we avoid allocating resources to bounce * a request, and we can use any memory allocator (as opposed to needing * kmem_alloc_contig() just because it can allocate pages in an address range). * * Most tags have BUS_SPACE_MAXADDR or BUS_SPACE_MAXADDR_32BIT (they are the * same value on 32-bit architectures) as their lowaddr constraint, and we can't * possibly have RAM at an address higher than the highest address we can * express, so we take a fast out. */ static int exclusion_bounce_check(vm_offset_t lowaddr, vm_offset_t highaddr) { int i; if (lowaddr >= BUS_SPACE_MAXADDR) return (0); for (i = 0; phys_avail[i] && phys_avail[i + 1]; i += 2) { if ((lowaddr >= phys_avail[i] && lowaddr < phys_avail[i + 1]) || (lowaddr < phys_avail[i] && highaddr >= phys_avail[i])) return (1); } return (0); } /* * Return true if the tag has an exclusion zone that could lead to bouncing. */ static __inline int exclusion_bounce(bus_dma_tag_t dmat) { return (dmat->flags & BUS_DMA_EXCL_BOUNCE); } /* * Return true if the given address does not fall on the alignment boundary. */ static __inline int alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr) { return (!vm_addr_align_ok(addr, dmat->alignment)); } /* * Return true if the DMA should bounce because the start or end does not fall * on a cacheline boundary (which would require a partial cacheline flush). * COHERENT memory doesn't trigger cacheline flushes. Memory allocated by * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a * strict rule that such memory cannot be accessed by the CPU while DMA is in * progress (or by multiple DMA engines at once), so that it's always safe to do * full cacheline flushes even if that affects memory outside the range of a * given DMA operation that doesn't involve the full allocated buffer. If we're * mapping an mbuf, that follows the same rules as a buffer we allocated. */ static __inline int cacheline_bounce(bus_dmamap_t map, bus_addr_t addr, bus_size_t size) { if (map->flags & (DMAMAP_DMAMEM_ALLOC | DMAMAP_COHERENT | DMAMAP_MBUF)) return (0); return ((addr | size) & BUSDMA_DCACHE_MASK); } /* * Return true if we might need to bounce the DMA described by addr and size. * * This is used to quick-check whether we need to do the more expensive work of * checking the DMA page-by-page looking for alignment and exclusion bounces. * * Note that the addr argument might be either virtual or physical. It doesn't * matter because we only look at the low-order bits, which are the same in both * address spaces and maximum alignment of generic buffer is limited up to page * size. * Bouncing of buffers allocated by bus_dmamem_alloc()is not necessary, these * always comply with the required rules (alignment, boundary, and address * range). */ static __inline int might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t addr, bus_size_t size) { KASSERT(map->flags & DMAMAP_DMAMEM_ALLOC || dmat->alignment <= PAGE_SIZE, ("%s: unsupported alignment (0x%08lx) for buffer not " "allocated by bus_dmamem_alloc()", __func__, dmat->alignment)); return (!(map->flags & DMAMAP_DMAMEM_ALLOC) && ((dmat->flags & BUS_DMA_EXCL_BOUNCE) || alignment_bounce(dmat, addr) || cacheline_bounce(map, addr, size))); } /* * Return true if we must bounce the DMA described by paddr and size. * * Bouncing can be triggered by DMA that doesn't begin and end on cacheline * boundaries, or doesn't begin on an alignment boundary, or falls within the * exclusion zone of any tag in the ancestry chain. * * For exclusions, walk the chain of tags comparing paddr to the exclusion zone * within each tag. If the tag has a filter function, use it to decide whether * the DMA needs to bounce, otherwise any DMA within the zone bounces. */ static int must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr, bus_size_t size) { if (cacheline_bounce(map, paddr, size)) return (1); /* * The tag already contains ancestors' alignment restrictions so this * check doesn't need to be inside the loop. */ if (alignment_bounce(dmat, paddr)) return (1); /* * Even though each tag has an exclusion zone that is a superset of its * own and all its ancestors' exclusions, the exclusion zone of each tag * up the chain must be checked within the loop, because the busdma * rules say the filter function is called only when the address lies * within the low-highaddr range of the tag that filterfunc belongs to. */ while (dmat != NULL && exclusion_bounce(dmat)) { if ((paddr >= dmat->lowaddr && paddr <= dmat->highaddr) && (dmat->filter == NULL || dmat->filter(dmat->filterarg, paddr) != 0)) return (1); dmat = dmat->parent; } return (0); } /* * Convenience function for manipulating driver locks from busdma (during * busdma_swi, for example). */ void busdma_lock_mutex(void *arg, bus_dma_lock_op_t op) { struct mtx *dmtx; dmtx = (struct mtx *)arg; switch (op) { case BUS_DMA_LOCK: mtx_lock(dmtx); break; case BUS_DMA_UNLOCK: mtx_unlock(dmtx); break; default: panic("Unknown operation 0x%x for busdma_lock_mutex!", op); } } /* * dflt_lock should never get called. It gets put into the dma tag when * lockfunc == NULL, which is only valid if the maps that are associated * with the tag are meant to never be defered. * XXX Should have a way to identify which driver is responsible here. */ static void dflt_lock(void *arg, bus_dma_lock_op_t op) { panic("driver error: busdma dflt_lock called"); } /* * Allocate a device specific dma_tag. */ int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { bus_dma_tag_t newtag; int error = 0; /* Basic sanity checking. */ KASSERT(boundary == 0 || powerof2(boundary), ("dma tag boundary %lu, must be a power of 2", boundary)); KASSERT(boundary == 0 || boundary >= maxsegsz, ("dma tag boundary %lu is < maxsegsz %lu\n", boundary, maxsegsz)); KASSERT(alignment != 0 && powerof2(alignment), ("dma tag alignment %lu, must be non-zero power of 2", alignment)); KASSERT(maxsegsz != 0, ("dma tag maxsegsz must not be zero")); /* Return a NULL tag on failure */ *dmat = NULL; newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_BUSDMA, M_ZERO | M_NOWAIT); if (newtag == NULL) { CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, 0, error); return (ENOMEM); } newtag->parent = parent; newtag->alignment = alignment; newtag->boundary = boundary; newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1); newtag->highaddr = trunc_page((vm_paddr_t)highaddr) + (PAGE_SIZE - 1); newtag->filter = filter; newtag->filterarg = filterarg; newtag->maxsize = maxsize; newtag->nsegments = nsegments; newtag->maxsegsz = maxsegsz; newtag->flags = flags; newtag->ref_count = 1; /* Count ourself */ newtag->map_count = 0; if (lockfunc != NULL) { newtag->lockfunc = lockfunc; newtag->lockfuncarg = lockfuncarg; } else { newtag->lockfunc = dflt_lock; newtag->lockfuncarg = NULL; } /* Take into account any restrictions imposed by our parent tag */ if (parent != NULL) { newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr); newtag->highaddr = MAX(parent->highaddr, newtag->highaddr); newtag->alignment = MAX(parent->alignment, newtag->alignment); newtag->flags |= parent->flags & BUS_DMA_COULD_BOUNCE; newtag->flags |= parent->flags & BUS_DMA_COHERENT; if (newtag->boundary == 0) newtag->boundary = parent->boundary; else if (parent->boundary != 0) newtag->boundary = MIN(parent->boundary, newtag->boundary); if (newtag->filter == NULL) { /* * Short circuit to looking at our parent directly * since we have encapsulated all of its information */ newtag->filter = parent->filter; newtag->filterarg = parent->filterarg; newtag->parent = parent->parent; } if (newtag->parent != NULL) atomic_add_int(&parent->ref_count, 1); } if (exclusion_bounce_check(newtag->lowaddr, newtag->highaddr)) newtag->flags |= BUS_DMA_EXCL_BOUNCE; if (alignment_bounce(newtag, 1)) newtag->flags |= BUS_DMA_ALIGN_BOUNCE; /* * Any request can auto-bounce due to cacheline alignment, in addition * to any alignment or boundary specifications in the tag, so if the * ALLOCNOW flag is set, there's always work to do. */ if ((flags & BUS_DMA_ALLOCNOW) != 0) { struct bounce_zone *bz; /* * Round size up to a full page, and add one more page because * there can always be one more boundary crossing than the * number of pages in a transfer. */ maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE; if ((error = alloc_bounce_zone(newtag)) != 0) { free(newtag, M_BUSDMA); return (error); } bz = newtag->bounce_zone; if (ptoa(bz->total_bpages) < maxsize) { int pages; pages = atop(maxsize) - bz->total_bpages; /* Add pages to our bounce pool */ if (alloc_bounce_pages(newtag, pages) < pages) error = ENOMEM; } /* Performed initial allocation */ newtag->flags |= BUS_DMA_MIN_ALLOC_COMP; } else newtag->bounce_zone = NULL; if (error != 0) { free(newtag, M_BUSDMA); } else { atomic_add_32(&tags_total, 1); *dmat = newtag; } CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, (newtag != NULL ? newtag->flags : 0), error); return (error); } void bus_dma_template_clone(bus_dma_template_t *t, bus_dma_tag_t dmat) { if (t == NULL || dmat == NULL) return; t->parent = dmat->parent; t->alignment = dmat->alignment; t->boundary = dmat->boundary; t->lowaddr = dmat->lowaddr; t->highaddr = dmat->highaddr; t->maxsize = dmat->maxsize; t->nsegments = dmat->nsegments; t->maxsegsize = dmat->maxsegsz; t->flags = dmat->flags; t->lockfunc = dmat->lockfunc; t->lockfuncarg = dmat->lockfuncarg; } int bus_dma_tag_set_domain(bus_dma_tag_t dmat, int domain) { return (0); } int bus_dma_tag_destroy(bus_dma_tag_t dmat) { bus_dma_tag_t dmat_copy; int error; error = 0; dmat_copy = dmat; if (dmat != NULL) { if (dmat->map_count != 0) { error = EBUSY; goto out; } while (dmat != NULL) { bus_dma_tag_t parent; parent = dmat->parent; atomic_subtract_int(&dmat->ref_count, 1); if (dmat->ref_count == 0) { atomic_subtract_32(&tags_total, 1); free(dmat, M_BUSDMA); /* * Last reference count, so * release our reference * count on our parent. */ dmat = parent; } else dmat = NULL; } } out: CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error); return (error); } static int allocate_bz_and_pages(bus_dma_tag_t dmat, bus_dmamap_t mapp) { struct bounce_zone *bz; int maxpages; int error; if (dmat->bounce_zone == NULL) if ((error = alloc_bounce_zone(dmat)) != 0) return (error); bz = dmat->bounce_zone; /* Initialize the new map */ STAILQ_INIT(&(mapp->bpages)); /* * Attempt to add pages to our pool on a per-instance basis up to a sane * limit. Even if the tag isn't flagged as COULD_BOUNCE due to * alignment and boundary constraints, it could still auto-bounce due to * cacheline alignment, which requires at most two bounce pages. */ if (dmat->flags & BUS_DMA_COULD_BOUNCE) maxpages = MAX_BPAGES; else maxpages = 2 * bz->map_count; if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 || (bz->map_count > 0 && bz->total_bpages < maxpages)) { int pages; pages = atop(roundup2(dmat->maxsize, PAGE_SIZE)) + 1; pages = MIN(maxpages - bz->total_bpages, pages); pages = MAX(pages, 2); if (alloc_bounce_pages(dmat, pages) < pages) return (ENOMEM); if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0) dmat->flags |= BUS_DMA_MIN_ALLOC_COMP; } bz->map_count++; return (0); } static bus_dmamap_t allocate_map(bus_dma_tag_t dmat, int mflags) { int mapsize, segsize; bus_dmamap_t map; /* * Allocate the map. The map structure ends with an embedded * variable-sized array of sync_list structures. Following that * we allocate enough extra space to hold the array of bus_dma_segments. */ KASSERT(dmat->nsegments <= MAX_DMA_SEGMENTS, ("cannot allocate %u dma segments (max is %u)", dmat->nsegments, MAX_DMA_SEGMENTS)); segsize = sizeof(struct bus_dma_segment) * dmat->nsegments; mapsize = sizeof(*map) + sizeof(struct sync_list) * dmat->nsegments; map = malloc(mapsize + segsize, M_BUSDMA, mflags | M_ZERO); if (map == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (NULL); } map->segments = (bus_dma_segment_t *)((uintptr_t)map + mapsize); STAILQ_INIT(&map->bpages); return (map); } /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { bus_dmamap_t map; int error = 0; *mapp = map = allocate_map(dmat, M_NOWAIT); if (map == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } /* * Bouncing might be required if the driver asks for an exclusion * region, a data alignment that is stricter than 1, or DMA that begins * or ends with a partial cacheline. Whether bouncing will actually * happen can't be known until mapping time, but we need to pre-allocate * resources now because we might not be allowed to at mapping time. */ error = allocate_bz_and_pages(dmat, map); if (error != 0) { free(map, M_BUSDMA); *mapp = NULL; return (error); } if (map->flags & DMAMAP_COHERENT) atomic_add_32(&maps_coherent, 1); atomic_add_32(&maps_total, 1); dmat->map_count++; return (0); } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY); return (EBUSY); } if (dmat->bounce_zone) dmat->bounce_zone->map_count--; if (map->flags & DMAMAP_COHERENT) atomic_subtract_32(&maps_coherent, 1); atomic_subtract_32(&maps_total, 1); free(map, M_BUSDMA); dmat->map_count--; CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat); return (0); } /* * Allocate a piece of memory that can be efficiently mapped into bus device * space based on the constraints listed in the dma tag. Returns a pointer to * the allocated memory, and a pointer to an associated bus_dmamap. */ int bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags, bus_dmamap_t *mapp) { busdma_bufalloc_t ba; struct busdma_bufzone *bufzone; bus_dmamap_t map; vm_memattr_t memattr; int mflags; if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; if (flags & BUS_DMA_ZERO) mflags |= M_ZERO; *mapp = map = allocate_map(dmat, mflags); if (map == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, ENOMEM); return (ENOMEM); } map->flags = DMAMAP_DMAMEM_ALLOC; /* For coherent memory, set the map flag that disables sync ops. */ if (flags & BUS_DMA_COHERENT) map->flags |= DMAMAP_COHERENT; /* * Choose a busdma buffer allocator based on memory type flags. * If the tag's COHERENT flag is set, that means normal memory * is already coherent, use the normal allocator. */ if ((flags & BUS_DMA_COHERENT) && ((dmat->flags & BUS_DMA_COHERENT) == 0)) { memattr = VM_MEMATTR_UNCACHEABLE; ba = coherent_allocator; } else { memattr = VM_MEMATTR_DEFAULT; ba = standard_allocator; } /* * Try to find a bufzone in the allocator that holds a cache of buffers * of the right size for this request. If the buffer is too big to be * held in the allocator cache, this returns NULL. */ bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize); /* * Allocate the buffer from the uma(9) allocator if... * - It's small enough to be in the allocator (bufzone not NULL). * - The alignment constraint isn't larger than the allocation size * (the allocator aligns buffers to their size boundaries). * - There's no need to handle lowaddr/highaddr exclusion zones. * else allocate non-contiguous pages if... * - The page count that could get allocated doesn't exceed * nsegments also when the maximum segment size is less * than PAGE_SIZE. * - The alignment constraint isn't larger than a page boundary. * - There are no boundary-crossing constraints. * else allocate a block of contiguous pages because one or more of the * constraints is something that only the contig allocator can fulfill. */ if (bufzone != NULL && dmat->alignment <= bufzone->size && !exclusion_bounce(dmat)) { *vaddr = uma_zalloc(bufzone->umazone, mflags); } else if (dmat->nsegments >= howmany(dmat->maxsize, MIN(dmat->maxsegsz, PAGE_SIZE)) && dmat->alignment <= PAGE_SIZE && (dmat->boundary % PAGE_SIZE) == 0) { *vaddr = (void *)kmem_alloc_attr(dmat->maxsize, mflags, 0, dmat->lowaddr, memattr); } else { *vaddr = (void *)kmem_alloc_contig(dmat->maxsize, mflags, 0, dmat->lowaddr, dmat->alignment, dmat->boundary, memattr); } if (*vaddr == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, ENOMEM); free(map, M_BUSDMA); *mapp = NULL; return (ENOMEM); } if (map->flags & DMAMAP_COHERENT) atomic_add_32(&maps_coherent, 1); atomic_add_32(&maps_dmamem, 1); atomic_add_32(&maps_total, 1); dmat->map_count++; CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, 0); return (0); } /* * Free a piece of memory that was allocated via bus_dmamem_alloc, along with * its associated map. */ void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { struct busdma_bufzone *bufzone; busdma_bufalloc_t ba; if ((map->flags & DMAMAP_COHERENT) && ((dmat->flags & BUS_DMA_COHERENT) == 0)) ba = coherent_allocator; else ba = standard_allocator; bufzone = busdma_bufalloc_findzone(ba, dmat->maxsize); if (bufzone != NULL && dmat->alignment <= bufzone->size && !exclusion_bounce(dmat)) uma_zfree(bufzone->umazone, vaddr); else kmem_free((vm_offset_t)vaddr, dmat->maxsize); dmat->map_count--; if (map->flags & DMAMAP_COHERENT) atomic_subtract_32(&maps_coherent, 1); atomic_subtract_32(&maps_total, 1); atomic_subtract_32(&maps_dmamem, 1); free(map, M_BUSDMA); CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags); } static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags) { bus_addr_t curaddr; bus_size_t sgsize; if (map->pagesneeded == 0) { CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d" " map= %p, pagesneeded= %d", dmat->lowaddr, dmat->boundary, dmat->alignment, map, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ curaddr = buf; while (buflen != 0) { sgsize = MIN(buflen, dmat->maxsegsz); if (must_bounce(dmat, map, curaddr, sgsize) != 0) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); map->pagesneeded++; } curaddr += sgsize; buflen -= sgsize; } CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded); } } static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, pmap_t pmap, bus_dmamap_t map, void *buf, bus_size_t buflen, int flags) { vm_offset_t vaddr; vm_offset_t vendaddr; bus_addr_t paddr; if (map->pagesneeded == 0) { CTR5(KTR_BUSDMA, "lowaddr= %d, boundary= %d, alignment= %d" " map= %p, pagesneeded= %d", dmat->lowaddr, dmat->boundary, dmat->alignment, map, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ vaddr = (vm_offset_t)buf; vendaddr = (vm_offset_t)buf + buflen; while (vaddr < vendaddr) { if (__predict_true(pmap == kernel_pmap)) paddr = pmap_kextract(vaddr); else paddr = pmap_extract(pmap, vaddr); if (must_bounce(dmat, map, paddr, min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK)))) != 0) { map->pagesneeded++; } vaddr += (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK)); } CTR1(KTR_BUSDMA, "pagesneeded= %d", map->pagesneeded); } } static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags) { /* Reserve Necessary Bounce Pages */ mtx_lock(&bounce_lock); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { map->pagesneeded = 0; mtx_unlock(&bounce_lock); return (ENOMEM); } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links); mtx_unlock(&bounce_lock); return (EINPROGRESS); } } mtx_unlock(&bounce_lock); return (0); } /* * Add a single contiguous physical range to the segment list. */ static int _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr, bus_size_t sgsize, bus_dma_segment_t *segs, int *segp) { int seg; /* * Make sure we don't cross any boundaries. */ if (!vm_addr_bound_ok(curaddr, sgsize, dmat->boundary)) sgsize = roundup2(curaddr, dmat->boundary) - curaddr; /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ seg = *segp; if (seg == -1) { seg = 0; segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } else { if (curaddr == segs[seg].ds_addr + segs[seg].ds_len && (segs[seg].ds_len + sgsize) <= dmat->maxsegsz && - vm_addr_bound_ok(segs[seg].ds_addr, segs[seg].ds_len, - dmat->boundary)) + vm_addr_bound_ok(segs[seg].ds_addr, + segs[seg].ds_len + sgsize, dmat->boundary)) segs[seg].ds_len += sgsize; else { if (++seg >= dmat->nsegments) return (0); segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } } *segp = seg; return (sgsize); } /* * Utility function to load a physical buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ int _bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { bus_addr_t curaddr; bus_addr_t sl_end = 0; bus_size_t sgsize; struct sync_list *sl; int error; if (segs == NULL) segs = map->segments; #ifdef ARM_BUSDMA_MAPLOAD_STATS counter_u64_add(maploads_total, 1); counter_u64_add(maploads_physmem, 1); #endif if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) { _bus_dmamap_count_phys(dmat, map, buf, buflen, flags); if (map->pagesneeded != 0) { #ifdef ARM_BUSDMA_MAPLOAD_STATS counter_u64_add(maploads_bounced, 1); #endif error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } sl = map->slist + map->sync_count - 1; while (buflen > 0) { curaddr = buf; sgsize = MIN(buflen, dmat->maxsegsz); if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr, sgsize)) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); curaddr = add_bounce_page(dmat, map, 0, curaddr, sgsize); } else if ((dmat->flags & BUS_DMA_COHERENT) == 0) { if (map->sync_count > 0) sl_end = sl->paddr + sl->datacount; if (map->sync_count == 0 || curaddr != sl_end) { if (++map->sync_count > dmat->nsegments) break; sl++; sl->vaddr = 0; sl->paddr = curaddr; sl->datacount = sgsize; sl->pages = PHYS_TO_VM_PAGE(curaddr); KASSERT(sl->pages != NULL, ("%s: page at PA:0x%08lx is not in " "vm_page_array", __func__, curaddr)); } else sl->datacount += sgsize; } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; buf += sgsize; buflen -= sgsize; } /* * Did we fit? */ if (buflen != 0) { bus_dmamap_unload(dmat, map); return (EFBIG); /* XXX better return value here? */ } return (0); } int _bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map, struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags, bus_dma_segment_t *segs, int *segp) { return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags, segs, segp)); } /* * Utility function to load a linear buffer. segp contains * the starting segment on entrance, and the ending segment on exit. */ int _bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs, int *segp) { bus_size_t sgsize; bus_addr_t curaddr; bus_addr_t sl_pend = 0; vm_offset_t kvaddr, vaddr, sl_vend = 0; struct sync_list *sl; int error; #ifdef ARM_BUSDMA_MAPLOAD_STATS counter_u64_add(maploads_total, 1); if (map->flags & DMAMAP_COHERENT) counter_u64_add(maploads_coherent, 1); if (map->flags & DMAMAP_DMAMEM_ALLOC) counter_u64_add(maploads_dmamem, 1); #endif if (segs == NULL) segs = map->segments; if (flags & BUS_DMA_LOAD_MBUF) { #ifdef ARM_BUSDMA_MAPLOAD_STATS counter_u64_add(maploads_mbuf, 1); #endif map->flags |= DMAMAP_MBUF; } if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) { _bus_dmamap_count_pages(dmat, pmap, map, buf, buflen, flags); if (map->pagesneeded != 0) { #ifdef ARM_BUSDMA_MAPLOAD_STATS counter_u64_add(maploads_bounced, 1); #endif error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } sl = map->slist + map->sync_count - 1; vaddr = (vm_offset_t)buf; while (buflen > 0) { /* * Get the physical address for this segment. */ if (__predict_true(pmap == kernel_pmap)) { curaddr = pmap_kextract(vaddr); kvaddr = vaddr; } else { curaddr = pmap_extract(pmap, vaddr); kvaddr = 0; } /* * Compute the segment size, and adjust counts. */ sgsize = PAGE_SIZE - (curaddr & PAGE_MASK); if (sgsize > dmat->maxsegsz) sgsize = dmat->maxsegsz; if (buflen < sgsize) sgsize = buflen; if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr, sgsize)) { curaddr = add_bounce_page(dmat, map, kvaddr, curaddr, sgsize); } else if ((dmat->flags & BUS_DMA_COHERENT) == 0) { if (map->sync_count > 0) { sl_pend = sl->paddr + sl->datacount; sl_vend = sl->vaddr + sl->datacount; } if (map->sync_count == 0 || (kvaddr != 0 && kvaddr != sl_vend) || (curaddr != sl_pend)) { if (++map->sync_count > dmat->nsegments) goto cleanup; sl++; sl->vaddr = kvaddr; sl->paddr = curaddr; if (kvaddr != 0) { sl->pages = NULL; } else { sl->pages = PHYS_TO_VM_PAGE(curaddr); KASSERT(sl->pages != NULL, ("%s: page at PA:0x%08lx is not " "in vm_page_array", __func__, curaddr)); } sl->datacount = sgsize; } else sl->datacount += sgsize; } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; vaddr += sgsize; buflen -= sgsize; } cleanup: /* * Did we fit? */ if (buflen != 0) { bus_dmamap_unload(dmat, map); return (EFBIG); /* XXX better return value here? */ } return (0); } void _bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg) { map->mem = *mem; map->dmat = dmat; map->callback = callback; map->callback_arg = callback_arg; } bus_dma_segment_t * _bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, int error) { if (segs == NULL) segs = map->segments; return (segs); } /* * Release the mapping held by map. */ void bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; struct bounce_zone *bz; if ((bz = dmat->bounce_zone) != NULL) { while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { STAILQ_REMOVE_HEAD(&map->bpages, links); free_bounce_page(dmat, bpage); } bz = dmat->bounce_zone; bz->free_bpages += map->pagesreserved; bz->reserved_bpages -= map->pagesreserved; map->pagesreserved = 0; map->pagesneeded = 0; } map->sync_count = 0; map->flags &= ~DMAMAP_MBUF; } static void dma_preread_safe(vm_offset_t va, vm_paddr_t pa, vm_size_t size) { /* * Write back any partial cachelines immediately before and * after the DMA region. We don't need to round the address * down to the nearest cacheline or specify the exact size, * as dcache_wb_poc() will do the rounding for us and works * at cacheline granularity. */ if (va & BUSDMA_DCACHE_MASK) dcache_wb_poc(va, pa, 1); if ((va + size) & BUSDMA_DCACHE_MASK) dcache_wb_poc(va + size, pa + size, 1); dcache_inv_poc_dma(va, pa, size); } static void dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op) { uint32_t len, offset; vm_page_t m; vm_paddr_t pa; vm_offset_t va, tempva; bus_size_t size; offset = sl->paddr & PAGE_MASK; m = sl->pages; size = sl->datacount; pa = sl->paddr; for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) { tempva = 0; if (sl->vaddr == 0) { len = min(PAGE_SIZE - offset, size); tempva = pmap_quick_enter_page(m); va = tempva | offset; KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset), ("unexpected vm_page_t phys: 0x%08x != 0x%08x", VM_PAGE_TO_PHYS(m) | offset, pa)); } else { len = sl->datacount; va = sl->vaddr; } switch (op) { case BUS_DMASYNC_PREWRITE: case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD: dcache_wb_poc(va, pa, len); break; case BUS_DMASYNC_PREREAD: /* * An mbuf may start in the middle of a cacheline. There * will be no cpu writes to the beginning of that line * (which contains the mbuf header) while dma is in * progress. Handle that case by doing a writeback of * just the first cacheline before invalidating the * overall buffer. Any mbuf in a chain may have this * misalignment. Buffers which are not mbufs bounce if * they are not aligned to a cacheline. */ dma_preread_safe(va, pa, len); break; case BUS_DMASYNC_POSTREAD: case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE: dcache_inv_poc(va, pa, len); break; default: panic("unsupported combination of sync operations: " "0x%08x\n", op); } if (tempva != 0) pmap_quick_remove_page(tempva); } } void bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bounce_page *bpage; struct sync_list *sl, *end; vm_offset_t datavaddr, tempvaddr; if (op == BUS_DMASYNC_POSTWRITE) return; /* * If the buffer was from user space, it is possible that this is not * the same vm map, especially on a POST operation. It's not clear that * dma on userland buffers can work at all right now. To be safe, until * we're able to test direct userland dma, panic on a map mismatch. */ if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x " "performing bounce", __func__, dmat, dmat->flags, op); /* * For PREWRITE do a writeback. Clean the caches from the * innermost to the outermost levels. */ if (op & BUS_DMASYNC_PREWRITE) { while (bpage != NULL) { tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)datavaddr, (void *)bpage->vaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); if ((dmat->flags & BUS_DMA_COHERENT) == 0) dcache_wb_poc(bpage->vaddr, bpage->busaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } /* * Do an invalidate for PREREAD unless a writeback was already * done above due to PREWRITE also being set. The reason for a * PREREAD invalidate is to prevent dirty lines currently in the * cache from being evicted during the DMA. If a writeback was * done due to PREWRITE also being set there will be no dirty * lines and the POSTREAD invalidate handles the rest. The * invalidate is done from the innermost to outermost level. If * L2 were done first, a dirty cacheline could be automatically * evicted from L1 before we invalidated it, re-dirtying the L2. */ if ((op & BUS_DMASYNC_PREREAD) && !(op & BUS_DMASYNC_PREWRITE)) { bpage = STAILQ_FIRST(&map->bpages); while (bpage != NULL) { if ((dmat->flags & BUS_DMA_COHERENT) == 0) dcache_inv_poc_dma(bpage->vaddr, bpage->busaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } } /* * Re-invalidate the caches on a POSTREAD, even though they were * already invalidated at PREREAD time. Aggressive prefetching * due to accesses to other data near the dma buffer could have * brought buffer data into the caches which is now stale. The * caches are invalidated from the outermost to innermost; the * prefetches could be happening right now, and if L1 were * invalidated first, stale L2 data could be prefetched into L1. */ if (op & BUS_DMASYNC_POSTREAD) { while (bpage != NULL) { if ((dmat->flags & BUS_DMA_COHERENT) == 0) dcache_inv_poc(bpage->vaddr, bpage->busaddr, bpage->datacount); tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)bpage->vaddr, (void *)datavaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } } /* * For COHERENT memory no cache maintenance is necessary, but ensure all * writes have reached memory for the PREWRITE case. No action is * needed for a PREREAD without PREWRITE also set, because that would * imply that the cpu had written to the COHERENT buffer and expected * the dma device to see that change, and by definition a PREWRITE sync * is required to make that happen. */ if (map->flags & DMAMAP_COHERENT) { if (op & BUS_DMASYNC_PREWRITE) { dsb(); if ((dmat->flags & BUS_DMA_COHERENT) == 0) cpu_l2cache_drain_writebuf(); } return; } /* * Cache maintenance for normal (non-COHERENT non-bounce) buffers. All * the comments about the sequences for flushing cache levels in the * bounce buffer code above apply here as well. In particular, the fact * that the sequence is inner-to-outer for PREREAD invalidation and * outer-to-inner for POSTREAD invalidation is not a mistake. */ if (map->sync_count != 0) { sl = &map->slist[0]; end = &map->slist[map->sync_count]; CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x " "performing sync", __func__, dmat, dmat->flags, op); for ( ; sl != end; ++sl) dma_dcache_sync(sl, op); } } static void init_bounce_pages(void *dummy __unused) { total_bpages = 0; STAILQ_INIT(&bounce_zone_list); STAILQ_INIT(&bounce_map_waitinglist); STAILQ_INIT(&bounce_map_callbacklist); mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF); } SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL); static struct sysctl_ctx_list * busdma_sysctl_tree(struct bounce_zone *bz) { return (&bz->sysctl_tree); } static struct sysctl_oid * busdma_sysctl_tree_top(struct bounce_zone *bz) { return (bz->sysctl_tree_top); } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz; /* Check to see if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if ((dmat->alignment <= bz->alignment) && (dmat->lowaddr >= bz->lowaddr)) { dmat->bounce_zone = bz; return (0); } } if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_BUSDMA, M_NOWAIT | M_ZERO)) == NULL) return (ENOMEM); STAILQ_INIT(&bz->bounce_page_list); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat->lowaddr; bz->alignment = MAX(dmat->alignment, PAGE_SIZE); bz->map_count = 0; snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount); busdma_zonecount++; snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr); STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_tree); bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (bz->sysctl_tree_top == NULL) { sysctl_ctx_free(&bz->sysctl_tree); return (0); /* XXX error code? */ } SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests (pages bounced)"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_STRING(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_ULONG(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, ""); return (0); } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages) { struct bounce_zone *bz; int count; bz = dmat->bounce_zone; count = 0; while (numpages > 0) { struct bounce_page *bpage; bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_BUSDMA, M_NOWAIT | M_ZERO); if (bpage == NULL) break; bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_BOUNCE, M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); if (bpage->vaddr == 0) { free(bpage, M_BUSDMA); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); mtx_lock(&bounce_lock); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bpages++; bz->total_bpages++; bz->free_bpages++; mtx_unlock(&bounce_lock); count++; numpages--; } return (count); } static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz; int pages; mtx_assert(&bounce_lock, MA_OWNED); bz = dmat->bounce_zone; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages)) return (map->pagesneeded - (map->pagesreserved + pages)); bz->free_bpages -= pages; bz->reserved_bpages += pages; map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return (pages); } static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size) { struct bounce_zone *bz; struct bounce_page *bpage; KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag")); KASSERT(map != NULL, ("add_bounce_page: bad map %p", map)); bz = dmat->bounce_zone; if (map->pagesneeded == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesneeded--; if (map->pagesreserved == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesreserved--; mtx_lock(&bounce_lock); bpage = STAILQ_FIRST(&bz->bounce_page_list); if (bpage == NULL) panic("add_bounce_page: free page list is empty"); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); bz->reserved_bpages--; bz->active_bpages++; mtx_unlock(&bounce_lock); if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) { /* Page offset needs to be preserved. */ bpage->vaddr |= addr & PAGE_MASK; bpage->busaddr |= addr & PAGE_MASK; } bpage->datavaddr = vaddr; bpage->datapage = PHYS_TO_VM_PAGE(addr); bpage->dataoffs = addr & PAGE_MASK; bpage->datacount = size; STAILQ_INSERT_TAIL(&(map->bpages), bpage, links); return (bpage->busaddr); } static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage) { struct bus_dmamap *map; struct bounce_zone *bz; bool schedule_swi; bz = dmat->bounce_zone; bpage->datavaddr = 0; bpage->datacount = 0; if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) { /* * Reset the bounce page to start at offset 0. Other uses * of this bounce page may need to store a full page of * data and/or assume it starts on a page boundary. */ bpage->vaddr &= ~PAGE_MASK; bpage->busaddr &= ~PAGE_MASK; } schedule_swi = false; mtx_lock(&bounce_lock); STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links); bz->free_bpages++; bz->active_bpages--; if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) == 0) { STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); bz->total_deferred++; schedule_swi = true; } } mtx_unlock(&bounce_lock); if (schedule_swi) swi_sched(busdma_ih, 0); } static void busdma_swi(void *dummy __unused) { bus_dma_tag_t dmat; struct bus_dmamap *map; mtx_lock(&bounce_lock); while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) { STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links); mtx_unlock(&bounce_lock); dmat = map->dmat; dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_LOCK); bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback, map->callback_arg, BUS_DMA_WAITOK); dmat->lockfunc(dmat->lockfuncarg, BUS_DMA_UNLOCK); mtx_lock(&bounce_lock); } mtx_unlock(&bounce_lock); } static void start_busdma_swi(void *dummy __unused) { if (swi_add(NULL, "busdma", busdma_swi, NULL, SWI_BUSDMA, INTR_MPSAFE, &busdma_ih)) panic("died while creating busdma swi ithread"); } SYSINIT(start_busdma_swi, SI_SUB_SOFTINTR, SI_ORDER_ANY, start_busdma_swi, NULL); diff --git a/sys/arm64/arm64/busdma_bounce.c b/sys/arm64/arm64/busdma_bounce.c index 0597b6ae8187..701411ba5b74 100644 --- a/sys/arm64/arm64/busdma_bounce.c +++ b/sys/arm64/arm64/busdma_bounce.c @@ -1,1494 +1,1494 @@ /*- * Copyright (c) 1997, 1998 Justin T. Gibbs. * Copyright (c) 2015-2016 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Andrew Turner * under sponsorship of the FreeBSD Foundation. * * Portions of this software were developed by Semihalf * under sponsorship of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_BPAGES 4096 enum { BF_COULD_BOUNCE = 0x01, BF_MIN_ALLOC_COMP = 0x02, BF_KMEM_ALLOC = 0x04, BF_COHERENT = 0x10, }; struct bounce_zone; struct bus_dma_tag { struct bus_dma_tag_common common; size_t alloc_size; size_t alloc_alignment; int map_count; int bounce_flags; bus_dma_segment_t *segments; struct bounce_zone *bounce_zone; }; struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ vm_page_t datapage; /* physical page of client data */ vm_offset_t dataoffs; /* page offset of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(bp_list, bounce_page) bounce_page_list; int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int map_count; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_tree; struct sysctl_oid *sysctl_tree_top; }; static struct mtx bounce_lock; static int total_bpages; static int busdma_zonecount; static STAILQ_HEAD(, bounce_zone) bounce_zone_list; static void *busdma_ih; static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Busdma parameters"); SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0, "Total bounce pages"); struct sync_list { vm_offset_t vaddr; /* kva of client data */ bus_addr_t paddr; /* physical address */ vm_page_t pages; /* starting page of client data */ bus_size_t datacount; /* client data count */ }; struct bus_dmamap { struct bp_list bpages; int pagesneeded; int pagesreserved; bus_dma_tag_t dmat; struct memdesc mem; bus_dmamap_callback_t *callback; void *callback_arg; STAILQ_ENTRY(bus_dmamap) links; u_int flags; #define DMAMAP_COHERENT (1 << 0) #define DMAMAP_FROM_DMAMEM (1 << 1) #define DMAMAP_MBUF (1 << 2) int sync_count; struct sync_list slist[]; }; static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist; static void init_bounce_pages(void *dummy); static int alloc_bounce_zone(bus_dma_tag_t dmat); static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages); static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit); static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size); static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage); int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr); static bool _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int *pagesneeded); static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags); static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags); static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags); /* * Return true if the DMA should bounce because the start or end does not fall * on a cacheline boundary (which would require a partial cacheline flush). * COHERENT memory doesn't trigger cacheline flushes. Memory allocated by * bus_dmamem_alloc() is always aligned to cacheline boundaries, and there's a * strict rule that such memory cannot be accessed by the CPU while DMA is in * progress (or by multiple DMA engines at once), so that it's always safe to do * full cacheline flushes even if that affects memory outside the range of a * given DMA operation that doesn't involve the full allocated buffer. If we're * mapping an mbuf, that follows the same rules as a buffer we allocated. */ static bool cacheline_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr, bus_size_t size) { #define DMAMAP_CACHELINE_FLAGS \ (DMAMAP_FROM_DMAMEM | DMAMAP_COHERENT | DMAMAP_MBUF) if ((dmat->bounce_flags & BF_COHERENT) != 0) return (false); if (map != NULL && (map->flags & DMAMAP_CACHELINE_FLAGS) != 0) return (false); return (((paddr | size) & (dcache_line_size - 1)) != 0); #undef DMAMAP_CACHELINE_FLAGS } /* * Return true if the given address does not fall on the alignment boundary. */ static bool alignment_bounce(bus_dma_tag_t dmat, bus_addr_t addr) { return (!vm_addr_align_ok(addr, dmat->common.alignment)); } static bool might_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr, bus_size_t size) { /* Memory allocated by bounce_bus_dmamem_alloc won't bounce */ if (map && (map->flags & DMAMAP_FROM_DMAMEM) != 0) return (false); if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) return (true); if (cacheline_bounce(dmat, map, paddr, size)) return (true); if (alignment_bounce(dmat, paddr)) return (true); return (false); } static bool must_bounce(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t paddr, bus_size_t size) { if (cacheline_bounce(dmat, map, paddr, size)) return (true); if (alignment_bounce(dmat, paddr)) return (true); if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0 && bus_dma_run_filter(&dmat->common, paddr)) return (true); return (false); } /* * Allocate a device specific dma_tag. */ static int bounce_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { bus_dma_tag_t newtag; int error; *dmat = NULL; error = common_bus_dma_tag_create(parent != NULL ? &parent->common : NULL, alignment, boundary, lowaddr, highaddr, filter, filterarg, maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg, sizeof (struct bus_dma_tag), (void **)&newtag); if (error != 0) return (error); newtag->common.impl = &bus_dma_bounce_impl; newtag->map_count = 0; newtag->segments = NULL; if ((flags & BUS_DMA_COHERENT) != 0) { newtag->bounce_flags |= BF_COHERENT; newtag->alloc_alignment = newtag->common.alignment; newtag->alloc_size = newtag->common.maxsize; } else { /* * Ensure the buffer is aligned to a cacheline when allocating * a non-coherent buffer. This is so we don't have any data * that another CPU may be accessing around DMA buffer * causing the cache to become dirty. */ newtag->alloc_alignment = MAX(newtag->common.alignment, dcache_line_size); newtag->alloc_size = roundup2(newtag->common.maxsize, dcache_line_size); } if (parent != NULL) { if ((newtag->common.filter != NULL || (parent->bounce_flags & BF_COULD_BOUNCE) != 0)) newtag->bounce_flags |= BF_COULD_BOUNCE; /* Copy some flags from the parent */ newtag->bounce_flags |= parent->bounce_flags & BF_COHERENT; } if (newtag->common.lowaddr < ptoa((vm_paddr_t)Maxmem) || newtag->common.alignment > 1) newtag->bounce_flags |= BF_COULD_BOUNCE; if ((flags & BUS_DMA_ALLOCNOW) != 0) { struct bounce_zone *bz; /* * Round size up to a full page, and add one more page because * there can always be one more boundary crossing than the * number of pages in a transfer. */ maxsize = roundup2(maxsize, PAGE_SIZE) + PAGE_SIZE; /* Must bounce */ if ((error = alloc_bounce_zone(newtag)) != 0) { free(newtag, M_DEVBUF); return (error); } bz = newtag->bounce_zone; if (ptoa(bz->total_bpages) < maxsize) { int pages; pages = atop(maxsize) + 1 - bz->total_bpages; /* Add pages to our bounce pool */ if (alloc_bounce_pages(newtag, pages) < pages) error = ENOMEM; } /* Performed initial allocation */ newtag->bounce_flags |= BF_MIN_ALLOC_COMP; } else error = 0; if (error != 0) free(newtag, M_DEVBUF); else *dmat = newtag; CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, (newtag != NULL ? newtag->common.flags : 0), error); return (error); } static int bounce_bus_dma_tag_destroy(bus_dma_tag_t dmat) { #ifdef KTR bus_dma_tag_t dmat_copy; #endif bus_dma_tag_t parent; int error; error = 0; #ifdef KTR dmat_copy = dmat; #endif if (dmat != NULL) { if (dmat->map_count != 0) { error = EBUSY; goto out; } while (dmat != NULL) { parent = (bus_dma_tag_t)dmat->common.parent; atomic_subtract_int(&dmat->common.ref_count, 1); if (dmat->common.ref_count == 0) { if (dmat->segments != NULL) free(dmat->segments, M_DEVBUF); free(dmat, M_DEVBUF); /* * Last reference count, so * release our reference * count on our parent. */ dmat = parent; } else dmat = NULL; } } out: CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error); return (error); } static bool bounce_bus_dma_id_mapped(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen) { if (!might_bounce(dmat, NULL, buf, buflen)) return (true); return (!_bus_dmamap_pagesneeded(dmat, NULL, buf, buflen, NULL)); } static bus_dmamap_t alloc_dmamap(bus_dma_tag_t dmat, int flags) { u_long mapsize; bus_dmamap_t map; mapsize = sizeof(*map); mapsize += sizeof(struct sync_list) * dmat->common.nsegments; map = malloc(mapsize, M_DEVBUF, flags | M_ZERO); if (map == NULL) return (NULL); /* Initialize the new map */ STAILQ_INIT(&map->bpages); return (map); } /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ static int bounce_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { struct bounce_zone *bz; int error, maxpages, pages; error = 0; if (dmat->segments == NULL) { dmat->segments = (bus_dma_segment_t *)malloc( sizeof(bus_dma_segment_t) * dmat->common.nsegments, M_DEVBUF, M_NOWAIT); if (dmat->segments == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } } *mapp = alloc_dmamap(dmat, M_NOWAIT); if (*mapp == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } /* * Bouncing might be required if the driver asks for an active * exclusion region, a data alignment that is stricter than 1, and/or * an active address boundary. */ if (dmat->bounce_zone == NULL) { if ((error = alloc_bounce_zone(dmat)) != 0) { free(*mapp, M_DEVBUF); return (error); } } bz = dmat->bounce_zone; /* * Attempt to add pages to our pool on a per-instance basis up to a sane * limit. Even if the tag isn't subject of bouncing due to alignment * and boundary constraints, it could still auto-bounce due to * cacheline alignment, which requires at most two bounce pages. */ if (dmat->common.alignment > 1) maxpages = MAX_BPAGES; else maxpages = MIN(MAX_BPAGES, Maxmem - atop(dmat->common.lowaddr)); if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0 || (bz->map_count > 0 && bz->total_bpages < maxpages)) { pages = atop(roundup2(dmat->common.maxsize, PAGE_SIZE)) + 1; pages = MIN(maxpages - bz->total_bpages, pages); pages = MAX(pages, 2); if (alloc_bounce_pages(dmat, pages) < pages) error = ENOMEM; if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0) { if (error == 0) { dmat->bounce_flags |= BF_MIN_ALLOC_COMP; } } else error = 0; } bz->map_count++; if (error == 0) { dmat->map_count++; if ((dmat->bounce_flags & BF_COHERENT) != 0) (*mapp)->flags |= DMAMAP_COHERENT; } else { free(*mapp, M_DEVBUF); } CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, error); return (error); } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ static int bounce_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { /* Check we are destroying the correct map type */ if ((map->flags & DMAMAP_FROM_DMAMEM) != 0) panic("bounce_bus_dmamap_destroy: Invalid map freed\n"); if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY); return (EBUSY); } if (dmat->bounce_zone) dmat->bounce_zone->map_count--; free(map, M_DEVBUF); dmat->map_count--; CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat); return (0); } /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ static int bounce_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { vm_memattr_t attr; int mflags; if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; if (dmat->segments == NULL) { dmat->segments = (bus_dma_segment_t *)malloc( sizeof(bus_dma_segment_t) * dmat->common.nsegments, M_DEVBUF, mflags); if (dmat->segments == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); return (ENOMEM); } } if (flags & BUS_DMA_ZERO) mflags |= M_ZERO; if (flags & BUS_DMA_NOCACHE) attr = VM_MEMATTR_UNCACHEABLE; else if ((flags & BUS_DMA_COHERENT) != 0 && (dmat->bounce_flags & BF_COHERENT) == 0) /* * If we have a non-coherent tag, and are trying to allocate * a coherent block of memory it needs to be uncached. */ attr = VM_MEMATTR_UNCACHEABLE; else attr = VM_MEMATTR_DEFAULT; /* * Create the map, but don't set the could bounce flag as * this allocation should never bounce; */ *mapp = alloc_dmamap(dmat, mflags); if (*mapp == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); return (ENOMEM); } /* * Mark the map as coherent if we used uncacheable memory or the * tag was already marked as coherent. */ if (attr == VM_MEMATTR_UNCACHEABLE || (dmat->bounce_flags & BF_COHERENT) != 0) (*mapp)->flags |= DMAMAP_COHERENT; (*mapp)->flags |= DMAMAP_FROM_DMAMEM; /* * Allocate the buffer from the malloc(9) allocator if... * - It's small enough to fit into a single power of two sized bucket. * - The alignment is less than or equal to the maximum size * - The low address requirement is fulfilled. * else allocate non-contiguous pages if... * - The page count that could get allocated doesn't exceed * nsegments also when the maximum segment size is less * than PAGE_SIZE. * - The alignment constraint isn't larger than a page boundary. * - There are no boundary-crossing constraints. * else allocate a block of contiguous pages because one or more of the * constraints is something that only the contig allocator can fulfill. * * NOTE: The (dmat->common.alignment <= dmat->maxsize) check * below is just a quick hack. The exact alignment guarantees * of malloc(9) need to be nailed down, and the code below * should be rewritten to take that into account. * * In the meantime warn the user if malloc gets it wrong. */ if ((dmat->alloc_size <= PAGE_SIZE) && (dmat->alloc_alignment <= dmat->alloc_size) && dmat->common.lowaddr >= ptoa((vm_paddr_t)Maxmem) && attr == VM_MEMATTR_DEFAULT) { *vaddr = malloc(dmat->alloc_size, M_DEVBUF, mflags); } else if (dmat->common.nsegments >= howmany(dmat->alloc_size, MIN(dmat->common.maxsegsz, PAGE_SIZE)) && dmat->alloc_alignment <= PAGE_SIZE && (dmat->common.boundary % PAGE_SIZE) == 0) { /* Page-based multi-segment allocations allowed */ *vaddr = (void *)kmem_alloc_attr(dmat->alloc_size, mflags, 0ul, dmat->common.lowaddr, attr); dmat->bounce_flags |= BF_KMEM_ALLOC; } else { *vaddr = (void *)kmem_alloc_contig(dmat->alloc_size, mflags, 0ul, dmat->common.lowaddr, dmat->alloc_alignment != 0 ? dmat->alloc_alignment : 1ul, dmat->common.boundary, attr); dmat->bounce_flags |= BF_KMEM_ALLOC; } if (*vaddr == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); free(*mapp, M_DEVBUF); return (ENOMEM); } else if (!vm_addr_align_ok(vtophys(*vaddr), dmat->alloc_alignment)) { printf("bus_dmamem_alloc failed to align memory properly.\n"); } dmat->map_count++; CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, 0); return (0); } /* * Free a piece of memory and it's allociated dmamap, that was allocated * via bus_dmamem_alloc. Make the same choice for free/contigfree. */ static void bounce_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { /* * Check the map came from bounce_bus_dmamem_alloc, so the map * should be NULL and the BF_KMEM_ALLOC flag cleared if malloc() * was used and set if kmem_alloc_contig() was used. */ if ((map->flags & DMAMAP_FROM_DMAMEM) == 0) panic("bus_dmamem_free: Invalid map freed\n"); if ((dmat->bounce_flags & BF_KMEM_ALLOC) == 0) free(vaddr, M_DEVBUF); else kmem_free((vm_offset_t)vaddr, dmat->alloc_size); free(map, M_DEVBUF); dmat->map_count--; CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->bounce_flags); } static bool _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int *pagesneeded) { bus_addr_t curaddr; bus_size_t sgsize; int count; /* * Count the number of bounce pages needed in order to * complete this transfer */ count = 0; curaddr = buf; while (buflen != 0) { sgsize = MIN(buflen, dmat->common.maxsegsz); if (must_bounce(dmat, map, curaddr, sgsize)) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); if (pagesneeded == NULL) return (true); count++; } curaddr += sgsize; buflen -= sgsize; } if (pagesneeded != NULL) *pagesneeded = count; return (count != 0); } static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags) { if (map->pagesneeded == 0) { _bus_dmamap_pagesneeded(dmat, map, buf, buflen, &map->pagesneeded); CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags) { vm_offset_t vaddr; vm_offset_t vendaddr; bus_addr_t paddr; bus_size_t sg_len; if (map->pagesneeded == 0) { CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, " "alignment= %d", dmat->common.lowaddr, ptoa((vm_paddr_t)Maxmem), dmat->common.boundary, dmat->common.alignment); CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ vaddr = (vm_offset_t)buf; vendaddr = (vm_offset_t)buf + buflen; while (vaddr < vendaddr) { sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK); if (pmap == kernel_pmap) paddr = pmap_kextract(vaddr); else paddr = pmap_extract(pmap, vaddr); if (must_bounce(dmat, map, paddr, min(vendaddr - vaddr, (PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK)))) != 0) { sg_len = roundup2(sg_len, dmat->common.alignment); map->pagesneeded++; } vaddr += sg_len; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags) { /* Reserve Necessary Bounce Pages */ mtx_lock(&bounce_lock); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { mtx_unlock(&bounce_lock); return (ENOMEM); } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links); mtx_unlock(&bounce_lock); return (EINPROGRESS); } } mtx_unlock(&bounce_lock); return (0); } /* * Add a single contiguous physical range to the segment list. */ static bus_size_t _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr, bus_size_t sgsize, bus_dma_segment_t *segs, int *segp) { int seg; /* * Make sure we don't cross any boundaries. */ if (!vm_addr_bound_ok(curaddr, sgsize, dmat->common.boundary)) sgsize = roundup2(curaddr, dmat->common.boundary) - curaddr; /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ seg = *segp; if (seg == -1) { seg = 0; segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } else { if (curaddr == segs[seg].ds_addr + segs[seg].ds_len && (segs[seg].ds_len + sgsize) <= dmat->common.maxsegsz && - vm_addr_bound_ok(segs[seg].ds_addr, segs[seg].ds_len, - dmat->common.boundary)) + vm_addr_bound_ok(segs[seg].ds_addr, + segs[seg].ds_len + sgsize, dmat->common.boundary)) segs[seg].ds_len += sgsize; else { if (++seg >= dmat->common.nsegments) return (0); segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } } *segp = seg; return (sgsize); } /* * Utility function to load a physical buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static int bounce_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { struct sync_list *sl; bus_size_t sgsize; bus_addr_t curaddr, sl_end; int error; if (segs == NULL) segs = dmat->segments; if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) { _bus_dmamap_count_phys(dmat, map, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } sl = map->slist + map->sync_count - 1; sl_end = 0; while (buflen > 0) { curaddr = buf; sgsize = MIN(buflen, dmat->common.maxsegsz); if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr, sgsize)) { /* * The attempt to split a physically continuous buffer * seems very controversial, it's unclear whether we * can do this in all cases. Also, memory for bounced * buffers is allocated as pages, so we cannot * guarantee multipage alignment. */ KASSERT(dmat->common.alignment <= PAGE_SIZE, ("bounced buffer cannot have alignment bigger " "than PAGE_SIZE: %lu", dmat->common.alignment)); sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); curaddr = add_bounce_page(dmat, map, 0, curaddr, sgsize); } else if ((map->flags & DMAMAP_COHERENT) == 0) { if (map->sync_count > 0) sl_end = sl->paddr + sl->datacount; if (map->sync_count == 0 || curaddr != sl_end) { if (++map->sync_count > dmat->common.nsegments) break; sl++; sl->vaddr = 0; sl->paddr = curaddr; sl->pages = PHYS_TO_VM_PAGE(curaddr); KASSERT(sl->pages != NULL, ("%s: page at PA:0x%08lx is not in " "vm_page_array", __func__, curaddr)); sl->datacount = sgsize; } else sl->datacount += sgsize; } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; buf += sgsize; buflen -= sgsize; } /* * Did we fit? */ if (buflen != 0) { bus_dmamap_unload(dmat, map); return (EFBIG); /* XXX better return value here? */ } return (0); } /* * Utility function to load a linear buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static int bounce_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs, int *segp) { struct sync_list *sl; bus_size_t sgsize; bus_addr_t curaddr, sl_pend; vm_offset_t kvaddr, vaddr, sl_vend; int error; KASSERT((map->flags & DMAMAP_FROM_DMAMEM) != 0 || dmat->common.alignment <= PAGE_SIZE, ("loading user buffer with alignment bigger than PAGE_SIZE is not " "supported")); if (segs == NULL) segs = dmat->segments; if (flags & BUS_DMA_LOAD_MBUF) map->flags |= DMAMAP_MBUF; if (might_bounce(dmat, map, (bus_addr_t)buf, buflen)) { _bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } /* * XXX Optimally we should parse input buffer for physically * continuous segments first and then pass these segment into * load loop. */ sl = map->slist + map->sync_count - 1; vaddr = (vm_offset_t)buf; sl_pend = 0; sl_vend = 0; while (buflen > 0) { /* * Get the physical address for this segment. */ if (__predict_true(pmap == kernel_pmap)) { curaddr = pmap_kextract(vaddr); kvaddr = vaddr; } else { curaddr = pmap_extract(pmap, vaddr); kvaddr = 0; } /* * Compute the segment size, and adjust counts. */ sgsize = MIN(buflen, dmat->common.maxsegsz); if ((map->flags & DMAMAP_FROM_DMAMEM) == 0) sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); if (map->pagesneeded != 0 && must_bounce(dmat, map, curaddr, sgsize)) { /* See comment in bounce_bus_dmamap_load_phys */ KASSERT(dmat->common.alignment <= PAGE_SIZE, ("bounced buffer cannot have alignment bigger " "than PAGE_SIZE: %lu", dmat->common.alignment)); curaddr = add_bounce_page(dmat, map, kvaddr, curaddr, sgsize); } else if ((map->flags & DMAMAP_COHERENT) == 0) { if (map->sync_count > 0) { sl_pend = sl->paddr + sl->datacount; sl_vend = sl->vaddr + sl->datacount; } if (map->sync_count == 0 || (kvaddr != 0 && kvaddr != sl_vend) || (curaddr != sl_pend)) { if (++map->sync_count > dmat->common.nsegments) break; sl++; sl->vaddr = kvaddr; sl->paddr = curaddr; if (kvaddr != 0) { sl->pages = NULL; } else { sl->pages = PHYS_TO_VM_PAGE(curaddr); KASSERT(sl->pages != NULL, ("%s: page at PA:0x%08lx is not " "in vm_page_array", __func__, curaddr)); } sl->datacount = sgsize; } else sl->datacount += sgsize; } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; vaddr += sgsize; buflen -= sgsize; } /* * Did we fit? */ if (buflen != 0) { bus_dmamap_unload(dmat, map); return (EFBIG); /* XXX better return value here? */ } return (0); } static void bounce_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg) { map->mem = *mem; map->dmat = dmat; map->callback = callback; map->callback_arg = callback_arg; } static bus_dma_segment_t * bounce_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, int error) { if (segs == NULL) segs = dmat->segments; return (segs); } /* * Release the mapping held by map. */ static void bounce_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { STAILQ_REMOVE_HEAD(&map->bpages, links); free_bounce_page(dmat, bpage); } map->sync_count = 0; map->flags &= ~DMAMAP_MBUF; } static void dma_preread_safe(vm_offset_t va, vm_size_t size) { /* * Write back any partial cachelines immediately before and * after the DMA region. */ if (va & (dcache_line_size - 1)) cpu_dcache_wb_range(va, 1); if ((va + size) & (dcache_line_size - 1)) cpu_dcache_wb_range(va + size, 1); cpu_dcache_inv_range(va, size); } static void dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op) { uint32_t len, offset; vm_page_t m; vm_paddr_t pa; vm_offset_t va, tempva; bus_size_t size; offset = sl->paddr & PAGE_MASK; m = sl->pages; size = sl->datacount; pa = sl->paddr; for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) { tempva = 0; if (sl->vaddr == 0) { len = min(PAGE_SIZE - offset, size); tempva = pmap_quick_enter_page(m); va = tempva | offset; KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset), ("unexpected vm_page_t phys: 0x%16lx != 0x%16lx", VM_PAGE_TO_PHYS(m) | offset, pa)); } else { len = sl->datacount; va = sl->vaddr; } switch (op) { case BUS_DMASYNC_PREWRITE: case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD: cpu_dcache_wb_range(va, len); break; case BUS_DMASYNC_PREREAD: /* * An mbuf may start in the middle of a cacheline. There * will be no cpu writes to the beginning of that line * (which contains the mbuf header) while dma is in * progress. Handle that case by doing a writeback of * just the first cacheline before invalidating the * overall buffer. Any mbuf in a chain may have this * misalignment. Buffers which are not mbufs bounce if * they are not aligned to a cacheline. */ dma_preread_safe(va, len); break; case BUS_DMASYNC_POSTREAD: case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE: cpu_dcache_inv_range(va, len); break; default: panic("unsupported combination of sync operations: " "0x%08x\n", op); } if (tempva != 0) pmap_quick_remove_page(tempva); } } static void bounce_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bounce_page *bpage; struct sync_list *sl, *end; vm_offset_t datavaddr, tempvaddr; if (op == BUS_DMASYNC_POSTWRITE) return; if ((op & BUS_DMASYNC_POSTREAD) != 0) { /* * Wait for any DMA operations to complete before the bcopy. */ dsb(sy); } if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x " "performing bounce", __func__, dmat, dmat->common.flags, op); if ((op & BUS_DMASYNC_PREWRITE) != 0) { while (bpage != NULL) { tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)datavaddr, (void *)bpage->vaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); if ((map->flags & DMAMAP_COHERENT) == 0) cpu_dcache_wb_range(bpage->vaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } else if ((op & BUS_DMASYNC_PREREAD) != 0) { while (bpage != NULL) { if ((map->flags & DMAMAP_COHERENT) == 0) cpu_dcache_wbinv_range(bpage->vaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } } if ((op & BUS_DMASYNC_POSTREAD) != 0) { while (bpage != NULL) { if ((map->flags & DMAMAP_COHERENT) == 0) cpu_dcache_inv_range(bpage->vaddr, bpage->datacount); tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)bpage->vaddr, (void *)datavaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } } /* * Cache maintenance for normal (non-COHERENT non-bounce) buffers. */ if (map->sync_count != 0) { sl = &map->slist[0]; end = &map->slist[map->sync_count]; CTR3(KTR_BUSDMA, "%s: tag %p op 0x%x " "performing sync", __func__, dmat, op); for ( ; sl != end; ++sl) dma_dcache_sync(sl, op); } if ((op & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) != 0) { /* * Wait for the bcopy to complete before any DMA operations. */ dsb(sy); } } static void init_bounce_pages(void *dummy __unused) { total_bpages = 0; STAILQ_INIT(&bounce_zone_list); STAILQ_INIT(&bounce_map_waitinglist); STAILQ_INIT(&bounce_map_callbacklist); mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF); } SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL); static struct sysctl_ctx_list * busdma_sysctl_tree(struct bounce_zone *bz) { return (&bz->sysctl_tree); } static struct sysctl_oid * busdma_sysctl_tree_top(struct bounce_zone *bz) { return (bz->sysctl_tree_top); } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz; /* Check to see if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if ((dmat->common.alignment <= bz->alignment) && (dmat->common.lowaddr >= bz->lowaddr)) { dmat->bounce_zone = bz; return (0); } } if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) return (ENOMEM); STAILQ_INIT(&bz->bounce_page_list); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat->common.lowaddr; bz->alignment = MAX(dmat->common.alignment, PAGE_SIZE); bz->map_count = 0; snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount); busdma_zonecount++; snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr); STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_tree); bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (bz->sysctl_tree_top == NULL) { sysctl_ctx_free(&bz->sysctl_tree); return (0); /* XXX error code? */ } SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_STRING(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, ""); return (0); } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages) { struct bounce_zone *bz; int count; bz = dmat->bounce_zone; count = 0; while (numpages > 0) { struct bounce_page *bpage; bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF, M_NOWAIT | M_ZERO); if (bpage == NULL) break; bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); if (bpage->vaddr == 0) { free(bpage, M_DEVBUF); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); mtx_lock(&bounce_lock); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bpages++; bz->total_bpages++; bz->free_bpages++; mtx_unlock(&bounce_lock); count++; numpages--; } return (count); } static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz; int pages; mtx_assert(&bounce_lock, MA_OWNED); bz = dmat->bounce_zone; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages)) return (map->pagesneeded - (map->pagesreserved + pages)); bz->free_bpages -= pages; bz->reserved_bpages += pages; map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return (pages); } static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size) { struct bounce_zone *bz; struct bounce_page *bpage; KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag")); bz = dmat->bounce_zone; if (map->pagesneeded == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesneeded--; if (map->pagesreserved == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesreserved--; mtx_lock(&bounce_lock); bpage = STAILQ_FIRST(&bz->bounce_page_list); if (bpage == NULL) panic("add_bounce_page: free page list is empty"); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); bz->reserved_bpages--; bz->active_bpages++; mtx_unlock(&bounce_lock); if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) { /* Page offset needs to be preserved. */ bpage->vaddr |= addr & PAGE_MASK; bpage->busaddr |= addr & PAGE_MASK; } bpage->datavaddr = vaddr; bpage->datapage = PHYS_TO_VM_PAGE(addr); bpage->dataoffs = addr & PAGE_MASK; bpage->datacount = size; STAILQ_INSERT_TAIL(&(map->bpages), bpage, links); return (bpage->busaddr); } static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage) { struct bus_dmamap *map; struct bounce_zone *bz; bool schedule_swi; bz = dmat->bounce_zone; bpage->datavaddr = 0; bpage->datacount = 0; if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) { /* * Reset the bounce page to start at offset 0. Other uses * of this bounce page may need to store a full page of * data and/or assume it starts on a page boundary. */ bpage->vaddr &= ~PAGE_MASK; bpage->busaddr &= ~PAGE_MASK; } schedule_swi = false; mtx_lock(&bounce_lock); STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links); bz->free_bpages++; bz->active_bpages--; if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) == 0) { STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); bz->total_deferred++; schedule_swi = true; } } mtx_unlock(&bounce_lock); if (schedule_swi) swi_sched(busdma_ih, 0); } static void busdma_swi(void *dummy __unused) { bus_dma_tag_t dmat; struct bus_dmamap *map; mtx_lock(&bounce_lock); while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) { STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links); mtx_unlock(&bounce_lock); dmat = map->dmat; (dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_LOCK); bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback, map->callback_arg, BUS_DMA_WAITOK); (dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_UNLOCK); mtx_lock(&bounce_lock); } mtx_unlock(&bounce_lock); } static void start_busdma_swi(void *dummy __unused) { if (swi_add(NULL, "busdma", busdma_swi, NULL, SWI_BUSDMA, INTR_MPSAFE, &busdma_ih)) panic("died while creating busdma swi ithread"); } SYSINIT(start_busdma_swi, SI_SUB_SOFTINTR, SI_ORDER_ANY, start_busdma_swi, NULL); struct bus_dma_impl bus_dma_bounce_impl = { .tag_create = bounce_bus_dma_tag_create, .tag_destroy = bounce_bus_dma_tag_destroy, .id_mapped = bounce_bus_dma_id_mapped, .map_create = bounce_bus_dmamap_create, .map_destroy = bounce_bus_dmamap_destroy, .mem_alloc = bounce_bus_dmamem_alloc, .mem_free = bounce_bus_dmamem_free, .load_phys = bounce_bus_dmamap_load_phys, .load_buffer = bounce_bus_dmamap_load_buffer, .load_ma = bus_dmamap_load_ma_triv, .map_waitok = bounce_bus_dmamap_waitok, .map_complete = bounce_bus_dmamap_complete, .map_unload = bounce_bus_dmamap_unload, .map_sync = bounce_bus_dmamap_sync }; diff --git a/sys/powerpc/powerpc/busdma_machdep.c b/sys/powerpc/powerpc/busdma_machdep.c index 3826a380f793..f75d3e1efcf9 100644 --- a/sys/powerpc/powerpc/busdma_machdep.c +++ b/sys/powerpc/powerpc/busdma_machdep.c @@ -1,1247 +1,1247 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * From amd64/busdma_machdep.c, r204214 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iommu_if.h" #define MAX_BPAGES MIN(8192, physmem/40) struct bounce_zone; struct bus_dma_tag { bus_dma_tag_t parent; bus_size_t alignment; bus_addr_t boundary; bus_addr_t lowaddr; bus_addr_t highaddr; bus_dma_filter_t *filter; void *filterarg; bus_size_t maxsize; bus_size_t maxsegsz; u_int nsegments; int flags; int ref_count; int map_count; bus_dma_lock_t *lockfunc; void *lockfuncarg; struct bounce_zone *bounce_zone; device_t iommu; void *iommu_cookie; }; struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ vm_page_t datapage; /* physical page of client data */ vm_offset_t dataoffs; /* page offset of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(bp_list, bounce_page) bounce_page_list; int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int map_count; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_tree; struct sysctl_oid *sysctl_tree_top; }; static struct mtx bounce_lock; static int total_bpages; static int busdma_zonecount; static STAILQ_HEAD(, bounce_zone) bounce_zone_list; static void *busdma_ih; static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Busdma parameters"); SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0, "Total bounce pages"); struct bus_dmamap { struct bp_list bpages; int pagesneeded; int pagesreserved; bus_dma_tag_t dmat; struct memdesc mem; bus_dma_segment_t *segments; int nsegs; bus_dmamap_callback_t *callback; void *callback_arg; STAILQ_ENTRY(bus_dmamap) links; int contigalloc; }; static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist; static void init_bounce_pages(void *dummy); static int alloc_bounce_zone(bus_dma_tag_t dmat); static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages); static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit); static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size); static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage); static __inline int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr); /* * Return true if a match is made. * * To find a match walk the chain of bus_dma_tag_t's looking for 'paddr'. * * If paddr is within the bounds of the dma tag then call the filter callback * to check for a match, if there is no filter callback then assume a match. */ static __inline int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr) { int retval; retval = 0; do { if (dmat->filter == NULL && dmat->iommu == NULL && paddr > dmat->lowaddr && paddr <= dmat->highaddr) retval = 1; if (dmat->filter == NULL && vm_addr_align_ok(paddr, dmat->alignment)) retval = 1; if (dmat->filter != NULL && (*dmat->filter)(dmat->filterarg, paddr) != 0) retval = 1; dmat = dmat->parent; } while (retval == 0 && dmat != NULL); return (retval); } /* * Convenience function for manipulating driver locks from busdma (during * busdma_swi, for example). */ void busdma_lock_mutex(void *arg, bus_dma_lock_op_t op) { struct mtx *dmtx; dmtx = (struct mtx *)arg; switch (op) { case BUS_DMA_LOCK: mtx_lock(dmtx); break; case BUS_DMA_UNLOCK: mtx_unlock(dmtx); break; default: panic("Unknown operation 0x%x for busdma_lock_mutex!", op); } } /* * dflt_lock should never get called. It gets put into the dma tag when * lockfunc == NULL, which is only valid if the maps that are associated * with the tag are meant to never be defered. * XXX Should have a way to identify which driver is responsible here. */ static void dflt_lock(void *arg, bus_dma_lock_op_t op) { panic("driver error: busdma dflt_lock called"); } #define BUS_DMA_COULD_BOUNCE BUS_DMA_BUS3 #define BUS_DMA_MIN_ALLOC_COMP BUS_DMA_BUS4 /* * Allocate a device specific dma_tag. */ int bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { bus_dma_tag_t newtag; int error = 0; /* Basic sanity checking */ if (boundary != 0 && boundary < maxsegsz) maxsegsz = boundary; if (maxsegsz == 0) { return (EINVAL); } /* Return a NULL tag on failure */ *dmat = NULL; newtag = (bus_dma_tag_t)malloc(sizeof(*newtag), M_DEVBUF, M_ZERO | M_NOWAIT); if (newtag == NULL) { CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, 0, error); return (ENOMEM); } newtag->parent = parent; newtag->alignment = alignment; newtag->boundary = boundary; newtag->lowaddr = trunc_page((vm_paddr_t)lowaddr) + (PAGE_SIZE - 1); newtag->highaddr = trunc_page((vm_paddr_t)highaddr) + (PAGE_SIZE - 1); newtag->filter = filter; newtag->filterarg = filterarg; newtag->maxsize = maxsize; newtag->nsegments = nsegments; newtag->maxsegsz = maxsegsz; newtag->flags = flags; newtag->ref_count = 1; /* Count ourself */ newtag->map_count = 0; if (lockfunc != NULL) { newtag->lockfunc = lockfunc; newtag->lockfuncarg = lockfuncarg; } else { newtag->lockfunc = dflt_lock; newtag->lockfuncarg = NULL; } /* Take into account any restrictions imposed by our parent tag */ if (parent != NULL) { newtag->lowaddr = MIN(parent->lowaddr, newtag->lowaddr); newtag->highaddr = MAX(parent->highaddr, newtag->highaddr); if (newtag->boundary == 0) newtag->boundary = parent->boundary; else if (parent->boundary != 0) newtag->boundary = MIN(parent->boundary, newtag->boundary); if (newtag->filter == NULL) { /* * Short circuit looking at our parent directly * since we have encapsulated all of its information */ newtag->filter = parent->filter; newtag->filterarg = parent->filterarg; newtag->parent = parent->parent; } if (newtag->parent != NULL) atomic_add_int(&parent->ref_count, 1); newtag->iommu = parent->iommu; newtag->iommu_cookie = parent->iommu_cookie; } if (newtag->lowaddr < ptoa((vm_paddr_t)Maxmem) && newtag->iommu == NULL) newtag->flags |= BUS_DMA_COULD_BOUNCE; if (newtag->alignment > 1) newtag->flags |= BUS_DMA_COULD_BOUNCE; if (((newtag->flags & BUS_DMA_COULD_BOUNCE) != 0) && (flags & BUS_DMA_ALLOCNOW) != 0) { struct bounce_zone *bz; /* Must bounce */ if ((error = alloc_bounce_zone(newtag)) != 0) { free(newtag, M_DEVBUF); return (error); } bz = newtag->bounce_zone; if (ptoa(bz->total_bpages) < maxsize) { int pages; pages = atop(maxsize) - bz->total_bpages; /* Add pages to our bounce pool */ if (alloc_bounce_pages(newtag, pages) < pages) error = ENOMEM; } /* Performed initial allocation */ newtag->flags |= BUS_DMA_MIN_ALLOC_COMP; } if (error != 0) { free(newtag, M_DEVBUF); } else { *dmat = newtag; } CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, (newtag != NULL ? newtag->flags : 0), error); return (error); } void bus_dma_template_clone(bus_dma_template_t *t, bus_dma_tag_t dmat) { if (t == NULL || dmat == NULL) return; t->parent = dmat->parent; t->alignment = dmat->alignment; t->boundary = dmat->boundary; t->lowaddr = dmat->lowaddr; t->highaddr = dmat->highaddr; t->maxsize = dmat->maxsize; t->nsegments = dmat->nsegments; t->maxsegsize = dmat->maxsegsz; t->flags = dmat->flags; t->lockfunc = dmat->lockfunc; t->lockfuncarg = dmat->lockfuncarg; } int bus_dma_tag_set_domain(bus_dma_tag_t dmat, int domain) { return (0); } int bus_dma_tag_destroy(bus_dma_tag_t dmat) { bus_dma_tag_t dmat_copy __unused; int error; error = 0; dmat_copy = dmat; if (dmat != NULL) { if (dmat->map_count != 0) { error = EBUSY; goto out; } while (dmat != NULL) { bus_dma_tag_t parent; parent = dmat->parent; atomic_subtract_int(&dmat->ref_count, 1); if (dmat->ref_count == 0) { free(dmat, M_DEVBUF); /* * Last reference count, so * release our reference * count on our parent. */ dmat = parent; } else dmat = NULL; } } out: CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error); return (error); } /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { int error; error = 0; *mapp = (bus_dmamap_t)malloc(sizeof(**mapp), M_DEVBUF, M_NOWAIT | M_ZERO); if (*mapp == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } /* * Bouncing might be required if the driver asks for an active * exclusion region, a data alignment that is stricter than 1, and/or * an active address boundary. */ if (dmat->flags & BUS_DMA_COULD_BOUNCE) { /* Must bounce */ struct bounce_zone *bz; int maxpages; if (dmat->bounce_zone == NULL) { if ((error = alloc_bounce_zone(dmat)) != 0) return (error); } bz = dmat->bounce_zone; /* Initialize the new map */ STAILQ_INIT(&((*mapp)->bpages)); /* * Attempt to add pages to our pool on a per-instance * basis up to a sane limit. */ if (dmat->alignment > 1) maxpages = MAX_BPAGES; else maxpages = MIN(MAX_BPAGES, Maxmem -atop(dmat->lowaddr)); if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0 || (bz->map_count > 0 && bz->total_bpages < maxpages)) { int pages; pages = MAX(atop(dmat->maxsize), 1); pages = MIN(maxpages - bz->total_bpages, pages); pages = MAX(pages, 1); if (alloc_bounce_pages(dmat, pages) < pages) error = ENOMEM; if ((dmat->flags & BUS_DMA_MIN_ALLOC_COMP) == 0) { if (error == 0) dmat->flags |= BUS_DMA_MIN_ALLOC_COMP; } else { error = 0; } } bz->map_count++; } (*mapp)->nsegs = 0; (*mapp)->segments = (bus_dma_segment_t *)malloc( sizeof(bus_dma_segment_t) * dmat->nsegments, M_DEVBUF, M_NOWAIT); if ((*mapp)->segments == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } if (error == 0) dmat->map_count++; CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, error); return (error); } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ int bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { if (dmat->flags & BUS_DMA_COULD_BOUNCE) { if (STAILQ_FIRST(&map->bpages) != NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY); return (EBUSY); } if (dmat->bounce_zone) dmat->bounce_zone->map_count--; } free(map->segments, M_DEVBUF); free(map, M_DEVBUF); dmat->map_count--; CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat); return (0); } /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ int bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { vm_memattr_t attr; int mflags; if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; bus_dmamap_create(dmat, flags, mapp); if (flags & BUS_DMA_ZERO) mflags |= M_ZERO; if (flags & BUS_DMA_NOCACHE) attr = VM_MEMATTR_UNCACHEABLE; else attr = VM_MEMATTR_DEFAULT; /* * XXX: * (dmat->alignment <= dmat->maxsize) is just a quick hack; the exact * alignment guarantees of malloc need to be nailed down, and the * code below should be rewritten to take that into account. * * In the meantime, we'll warn the user if malloc gets it wrong. */ if ((dmat->maxsize <= PAGE_SIZE) && (dmat->alignment <= dmat->maxsize) && dmat->lowaddr >= ptoa((vm_paddr_t)Maxmem) && attr == VM_MEMATTR_DEFAULT) { *vaddr = malloc(dmat->maxsize, M_DEVBUF, mflags); } else { /* * XXX Use Contigmalloc until it is merged into this facility * and handles multi-seg allocations. Nobody is doing * multi-seg allocations yet though. * XXX Certain AGP hardware does. */ *vaddr = (void *)kmem_alloc_contig(dmat->maxsize, mflags, 0ul, dmat->lowaddr, dmat->alignment ? dmat->alignment : 1ul, dmat->boundary, attr); (*mapp)->contigalloc = 1; } if (*vaddr == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, ENOMEM); return (ENOMEM); } else if (!vm_addr_align_ok(vtophys(*vaddr), dmat->alignment)) { printf("bus_dmamem_alloc failed to align memory properly.\n"); } CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->flags, 0); return (0); } /* * Free a piece of memory and it's allociated dmamap, that was allocated * via bus_dmamem_alloc. Make the same choice for free/contigfree. */ void bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { if (!map->contigalloc) free(vaddr, M_DEVBUF); else kmem_free((vm_offset_t)vaddr, dmat->maxsize); bus_dmamap_destroy(dmat, map); CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->flags); } static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags) { bus_addr_t curaddr; bus_size_t sgsize; if (map->pagesneeded == 0) { CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, " "alignment= %d", dmat->lowaddr, ptoa((vm_paddr_t)Maxmem), dmat->boundary, dmat->alignment); CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ curaddr = buf; while (buflen != 0) { sgsize = MIN(buflen, dmat->maxsegsz); if (run_filter(dmat, curaddr) != 0) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); map->pagesneeded++; } curaddr += sgsize; buflen -= sgsize; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags) { vm_offset_t vaddr; vm_offset_t vendaddr; bus_addr_t paddr; if (map->pagesneeded == 0) { CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, " "alignment= %d", dmat->lowaddr, ptoa((vm_paddr_t)Maxmem), dmat->boundary, dmat->alignment); CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ vaddr = (vm_offset_t)buf; vendaddr = (vm_offset_t)buf + buflen; while (vaddr < vendaddr) { bus_size_t sg_len; sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK); if (pmap == kernel_pmap) paddr = pmap_kextract(vaddr); else paddr = pmap_extract(pmap, vaddr); if (run_filter(dmat, paddr) != 0) { sg_len = roundup2(sg_len, dmat->alignment); map->pagesneeded++; } vaddr += sg_len; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags) { /* Reserve Necessary Bounce Pages */ mtx_lock(&bounce_lock); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { mtx_unlock(&bounce_lock); return (ENOMEM); } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links); mtx_unlock(&bounce_lock); return (EINPROGRESS); } } mtx_unlock(&bounce_lock); return (0); } /* * Add a single contiguous physical range to the segment list. */ static int _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr, bus_size_t sgsize, bus_dma_segment_t *segs, int *segp) { int seg; /* * Make sure we don't cross any boundaries. */ if (!vm_addr_bound_ok(curaddr, sgsize, dmat->boundary)) sgsize = roundup2(curaddr, dmat->boundary) - curaddr; /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ seg = *segp; if (seg == -1) { seg = 0; segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } else { if (curaddr == segs[seg].ds_addr + segs[seg].ds_len && (segs[seg].ds_len + sgsize) <= dmat->maxsegsz && - vm_addr_bound_ok(segs[seg].ds_addr, segs[seg].ds_len, - dmat->boundary)) + vm_addr_bound_ok(segs[seg].ds_addr, + segs[seg].ds_len + sgsize, dmat->boundary)) segs[seg].ds_len += sgsize; else { if (++seg >= dmat->nsegments) return (0); segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } } *segp = seg; return (sgsize); } /* * Utility function to load a physical buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ int _bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { bus_addr_t curaddr; bus_size_t sgsize; int error; if (segs == NULL) segs = map->segments; if ((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) { _bus_dmamap_count_phys(dmat, map, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } while (buflen > 0) { curaddr = buf; sgsize = MIN(buflen, dmat->maxsegsz); if (map->pagesneeded != 0 && run_filter(dmat, curaddr)) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); curaddr = add_bounce_page(dmat, map, 0, curaddr, sgsize); } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; buf += sgsize; buflen -= sgsize; } /* * Did we fit? */ return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */ } int _bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map, struct vm_page **ma, bus_size_t tlen, int ma_offs, int flags, bus_dma_segment_t *segs, int *segp) { return (bus_dmamap_load_ma_triv(dmat, map, ma, tlen, ma_offs, flags, segs, segp)); } /* * Utility function to load a linear buffer. segp contains * the starting segment on entrance, and the ending segment on exit. */ int _bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs, int *segp) { bus_size_t sgsize; bus_addr_t curaddr; vm_offset_t kvaddr, vaddr; int error; if (segs == NULL) segs = map->segments; if ((dmat->flags & BUS_DMA_COULD_BOUNCE) != 0) { _bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } vaddr = (vm_offset_t)buf; while (buflen > 0) { bus_size_t max_sgsize; /* * Get the physical address for this segment. */ if (pmap == kernel_pmap) { curaddr = pmap_kextract(vaddr); kvaddr = vaddr; } else { curaddr = pmap_extract(pmap, vaddr); kvaddr = 0; } /* * Compute the segment size, and adjust counts. */ max_sgsize = MIN(buflen, dmat->maxsegsz); sgsize = PAGE_SIZE - (curaddr & PAGE_MASK); if (map->pagesneeded != 0 && run_filter(dmat, curaddr)) { sgsize = roundup2(sgsize, dmat->alignment); sgsize = MIN(sgsize, max_sgsize); curaddr = add_bounce_page(dmat, map, kvaddr, curaddr, sgsize); } else { sgsize = MIN(sgsize, max_sgsize); } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; vaddr += sgsize; buflen -= sgsize; } /* * Did we fit? */ return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */ } void _bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg) { if (dmat->flags & BUS_DMA_COULD_BOUNCE) { map->dmat = dmat; map->mem = *mem; map->callback = callback; map->callback_arg = callback_arg; } } bus_dma_segment_t * _bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, int error) { map->nsegs = nsegs; if (segs != NULL) memcpy(map->segments, segs, map->nsegs*sizeof(segs[0])); if (dmat->iommu != NULL) IOMMU_MAP(dmat->iommu, map->segments, &map->nsegs, dmat->lowaddr, dmat->highaddr, dmat->alignment, dmat->boundary, dmat->iommu_cookie); if (segs != NULL) memcpy(segs, map->segments, map->nsegs*sizeof(segs[0])); else segs = map->segments; return (segs); } /* * Release the mapping held by map. */ void bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; if (dmat->iommu) { IOMMU_UNMAP(dmat->iommu, map->segments, map->nsegs, dmat->iommu_cookie); map->nsegs = 0; } while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { STAILQ_REMOVE_HEAD(&map->bpages, links); free_bounce_page(dmat, bpage); } } void bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bounce_page *bpage; vm_offset_t datavaddr, tempvaddr; if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { /* * Handle data bouncing. We might also * want to add support for invalidating * the caches on broken hardware */ CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x " "performing bounce", __func__, dmat, dmat->flags, op); if (op & BUS_DMASYNC_PREWRITE) { while (bpage != NULL) { tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)datavaddr, (void *)bpage->vaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } if (op & BUS_DMASYNC_POSTREAD) { while (bpage != NULL) { tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)bpage->vaddr, (void *)datavaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } } powerpc_sync(); } static void init_bounce_pages(void *dummy __unused) { total_bpages = 0; STAILQ_INIT(&bounce_zone_list); STAILQ_INIT(&bounce_map_waitinglist); STAILQ_INIT(&bounce_map_callbacklist); mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF); } SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL); static struct sysctl_ctx_list * busdma_sysctl_tree(struct bounce_zone *bz) { return (&bz->sysctl_tree); } static struct sysctl_oid * busdma_sysctl_tree_top(struct bounce_zone *bz) { return (bz->sysctl_tree_top); } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz; /* Check to see if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if ((dmat->alignment <= bz->alignment) && (dmat->lowaddr >= bz->lowaddr)) { dmat->bounce_zone = bz; return (0); } } if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) return (ENOMEM); STAILQ_INIT(&bz->bounce_page_list); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat->lowaddr; bz->alignment = MAX(dmat->alignment, PAGE_SIZE); bz->map_count = 0; snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount); busdma_zonecount++; snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr); STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_tree); bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (bz->sysctl_tree_top == NULL) { sysctl_ctx_free(&bz->sysctl_tree); return (0); /* XXX error code? */ } SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_STRING(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, ""); return (0); } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages) { struct bounce_zone *bz; int count; bz = dmat->bounce_zone; count = 0; while (numpages > 0) { struct bounce_page *bpage; bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF, M_NOWAIT | M_ZERO); if (bpage == NULL) break; bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); if (bpage->vaddr == 0) { free(bpage, M_DEVBUF); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); mtx_lock(&bounce_lock); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bpages++; bz->total_bpages++; bz->free_bpages++; mtx_unlock(&bounce_lock); count++; numpages--; } return (count); } static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz; int pages; mtx_assert(&bounce_lock, MA_OWNED); bz = dmat->bounce_zone; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages)) return (map->pagesneeded - (map->pagesreserved + pages)); bz->free_bpages -= pages; bz->reserved_bpages += pages; map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return (pages); } static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size) { struct bounce_zone *bz; struct bounce_page *bpage; KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag")); bz = dmat->bounce_zone; if (map->pagesneeded == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesneeded--; if (map->pagesreserved == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesreserved--; mtx_lock(&bounce_lock); bpage = STAILQ_FIRST(&bz->bounce_page_list); if (bpage == NULL) panic("add_bounce_page: free page list is empty"); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); bz->reserved_bpages--; bz->active_bpages++; mtx_unlock(&bounce_lock); if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) { /* Page offset needs to be preserved. */ bpage->vaddr |= addr & PAGE_MASK; bpage->busaddr |= addr & PAGE_MASK; } bpage->datavaddr = vaddr; bpage->datapage = PHYS_TO_VM_PAGE(addr); bpage->dataoffs = addr & PAGE_MASK; bpage->datacount = size; STAILQ_INSERT_TAIL(&(map->bpages), bpage, links); return (bpage->busaddr); } static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage) { struct bus_dmamap *map; struct bounce_zone *bz; bool schedule_swi; bz = dmat->bounce_zone; bpage->datavaddr = 0; bpage->datacount = 0; if (dmat->flags & BUS_DMA_KEEP_PG_OFFSET) { /* * Reset the bounce page to start at offset 0. Other uses * of this bounce page may need to store a full page of * data and/or assume it starts on a page boundary. */ bpage->vaddr &= ~PAGE_MASK; bpage->busaddr &= ~PAGE_MASK; } schedule_swi = false; mtx_lock(&bounce_lock); STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links); bz->free_bpages++; bz->active_bpages--; if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) == 0) { STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); bz->total_deferred++; schedule_swi = true; } } mtx_unlock(&bounce_lock); if (schedule_swi) swi_sched(busdma_ih, 0); } static void busdma_swi(void *dummy __unused) { bus_dma_tag_t dmat; struct bus_dmamap *map; mtx_lock(&bounce_lock); while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) { STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links); mtx_unlock(&bounce_lock); dmat = map->dmat; (dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_LOCK); bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback, map->callback_arg, BUS_DMA_WAITOK); (dmat->lockfunc)(dmat->lockfuncarg, BUS_DMA_UNLOCK); mtx_lock(&bounce_lock); } mtx_unlock(&bounce_lock); } static void start_busdma_swi(void *dummy __unused) { if (swi_add(NULL, "busdma", busdma_swi, NULL, SWI_BUSDMA, INTR_MPSAFE, &busdma_ih)) panic("died while creating busdma swi ithread"); } SYSINIT(start_busdma_swi, SI_SUB_SOFTINTR, SI_ORDER_ANY, start_busdma_swi, NULL); int bus_dma_tag_set_iommu(bus_dma_tag_t tag, device_t iommu, void *cookie) { tag->iommu = iommu; tag->iommu_cookie = cookie; return (0); } diff --git a/sys/riscv/riscv/busdma_bounce.c b/sys/riscv/riscv/busdma_bounce.c index 062f752f5ceb..ffc05e20517f 100644 --- a/sys/riscv/riscv/busdma_bounce.c +++ b/sys/riscv/riscv/busdma_bounce.c @@ -1,1336 +1,1336 @@ /*- * Copyright (c) 1997, 1998 Justin T. Gibbs. * Copyright (c) 2015-2016 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Andrew Turner * under sponsorship of the FreeBSD Foundation. * * Portions of this software were developed by Semihalf * under sponsorship of the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_BPAGES 4096 enum { BF_COULD_BOUNCE = 0x01, BF_MIN_ALLOC_COMP = 0x02, BF_KMEM_ALLOC = 0x04, BF_COHERENT = 0x10, }; struct bounce_zone; struct bus_dma_tag { struct bus_dma_tag_common common; int map_count; int bounce_flags; bus_dma_segment_t *segments; struct bounce_zone *bounce_zone; }; struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ vm_page_t datapage; /* physical page of client data */ vm_offset_t dataoffs; /* page offset of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(bp_list, bounce_page) bounce_page_list; int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int map_count; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_tree; struct sysctl_oid *sysctl_tree_top; }; static struct mtx bounce_lock; static int total_bpages; static int busdma_zonecount; static STAILQ_HEAD(, bounce_zone) bounce_zone_list; static void *busdma_ih; static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Busdma parameters"); SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0, "Total bounce pages"); struct sync_list { vm_offset_t vaddr; /* kva of client data */ bus_addr_t paddr; /* physical address */ vm_page_t pages; /* starting page of client data */ bus_size_t datacount; /* client data count */ }; struct bus_dmamap { struct bp_list bpages; int pagesneeded; int pagesreserved; bus_dma_tag_t dmat; struct memdesc mem; bus_dmamap_callback_t *callback; void *callback_arg; STAILQ_ENTRY(bus_dmamap) links; u_int flags; #define DMAMAP_COULD_BOUNCE (1 << 0) #define DMAMAP_FROM_DMAMEM (1 << 1) int sync_count; struct sync_list slist[]; }; static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist; static void init_bounce_pages(void *dummy); static int alloc_bounce_zone(bus_dma_tag_t dmat); static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages); static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit); static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size); static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage); int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr); static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags); static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags); static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags); /* * Allocate a device specific dma_tag. */ static int bounce_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { bus_dma_tag_t newtag; int error; *dmat = NULL; error = common_bus_dma_tag_create(parent != NULL ? &parent->common : NULL, alignment, boundary, lowaddr, highaddr, filter, filterarg, maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg, sizeof (struct bus_dma_tag), (void **)&newtag); if (error != 0) return (error); newtag->common.impl = &bus_dma_bounce_impl; newtag->map_count = 0; newtag->segments = NULL; if ((flags & BUS_DMA_COHERENT) != 0) newtag->bounce_flags |= BF_COHERENT; if (parent != NULL) { if ((newtag->common.filter != NULL || (parent->bounce_flags & BF_COULD_BOUNCE) != 0)) newtag->bounce_flags |= BF_COULD_BOUNCE; /* Copy some flags from the parent */ newtag->bounce_flags |= parent->bounce_flags & BF_COHERENT; } if (newtag->common.lowaddr < ptoa((vm_paddr_t)Maxmem) || newtag->common.alignment > 1) newtag->bounce_flags |= BF_COULD_BOUNCE; if (((newtag->bounce_flags & BF_COULD_BOUNCE) != 0) && (flags & BUS_DMA_ALLOCNOW) != 0) { struct bounce_zone *bz; /* Must bounce */ if ((error = alloc_bounce_zone(newtag)) != 0) { free(newtag, M_DEVBUF); return (error); } bz = newtag->bounce_zone; if (ptoa(bz->total_bpages) < maxsize) { int pages; pages = atop(round_page(maxsize)) - bz->total_bpages; /* Add pages to our bounce pool */ if (alloc_bounce_pages(newtag, pages) < pages) error = ENOMEM; } /* Performed initial allocation */ newtag->bounce_flags |= BF_MIN_ALLOC_COMP; } else error = 0; if (error != 0) free(newtag, M_DEVBUF); else *dmat = newtag; CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, (newtag != NULL ? newtag->common.flags : 0), error); return (error); } static int bounce_bus_dma_tag_destroy(bus_dma_tag_t dmat) { bus_dma_tag_t dmat_copy, parent; int error; error = 0; dmat_copy = dmat; if (dmat != NULL) { if (dmat->map_count != 0) { error = EBUSY; goto out; } while (dmat != NULL) { parent = (bus_dma_tag_t)dmat->common.parent; atomic_subtract_int(&dmat->common.ref_count, 1); if (dmat->common.ref_count == 0) { if (dmat->segments != NULL) free(dmat->segments, M_DEVBUF); free(dmat, M_DEVBUF); /* * Last reference count, so * release our reference * count on our parent. */ dmat = parent; } else dmat = NULL; } } out: CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error); return (error); } static bus_dmamap_t alloc_dmamap(bus_dma_tag_t dmat, int flags) { u_long mapsize; bus_dmamap_t map; mapsize = sizeof(*map); mapsize += sizeof(struct sync_list) * dmat->common.nsegments; map = malloc(mapsize, M_DEVBUF, flags | M_ZERO); if (map == NULL) return (NULL); /* Initialize the new map */ STAILQ_INIT(&map->bpages); return (map); } /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ static int bounce_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { struct bounce_zone *bz; int error, maxpages, pages; error = 0; if (dmat->segments == NULL) { dmat->segments = (bus_dma_segment_t *)malloc( sizeof(bus_dma_segment_t) * dmat->common.nsegments, M_DEVBUF, M_NOWAIT); if (dmat->segments == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } } *mapp = alloc_dmamap(dmat, M_NOWAIT); if (*mapp == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } /* * Bouncing might be required if the driver asks for an active * exclusion region, a data alignment that is stricter than 1, and/or * an active address boundary. */ if (dmat->bounce_flags & BF_COULD_BOUNCE) { /* Must bounce */ if (dmat->bounce_zone == NULL) { if ((error = alloc_bounce_zone(dmat)) != 0) { free(*mapp, M_DEVBUF); return (error); } } bz = dmat->bounce_zone; (*mapp)->flags = DMAMAP_COULD_BOUNCE; /* * Attempt to add pages to our pool on a per-instance * basis up to a sane limit. */ if (dmat->common.alignment > 1) maxpages = MAX_BPAGES; else maxpages = MIN(MAX_BPAGES, Maxmem - atop(dmat->common.lowaddr)); if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0 || (bz->map_count > 0 && bz->total_bpages < maxpages)) { pages = MAX(atop(dmat->common.maxsize), 1); pages = MIN(maxpages - bz->total_bpages, pages); pages = MAX(pages, 1); if (alloc_bounce_pages(dmat, pages) < pages) error = ENOMEM; if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0) { if (error == 0) { dmat->bounce_flags |= BF_MIN_ALLOC_COMP; } } else error = 0; } bz->map_count++; } if (error == 0) dmat->map_count++; else free(*mapp, M_DEVBUF); CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, error); return (error); } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ static int bounce_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { /* Check we are destroying the correct map type */ if ((map->flags & DMAMAP_FROM_DMAMEM) != 0) panic("bounce_bus_dmamap_destroy: Invalid map freed\n"); if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY); return (EBUSY); } if (dmat->bounce_zone) { KASSERT((map->flags & DMAMAP_COULD_BOUNCE) != 0, ("%s: Bounce zone when cannot bounce", __func__)); dmat->bounce_zone->map_count--; } free(map, M_DEVBUF); dmat->map_count--; CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat); return (0); } /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ static int bounce_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags, bus_dmamap_t *mapp) { /* * XXX ARM64TODO: * This bus_dma implementation requires IO-Coherent architecutre. * If IO-Coherency is not guaranteed, the BUS_DMA_COHERENT flag has * to be implented using non-cacheable memory. */ vm_memattr_t attr; int mflags; if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; if (dmat->segments == NULL) { dmat->segments = (bus_dma_segment_t *)malloc( sizeof(bus_dma_segment_t) * dmat->common.nsegments, M_DEVBUF, mflags); if (dmat->segments == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); return (ENOMEM); } } if (flags & BUS_DMA_ZERO) mflags |= M_ZERO; if (flags & BUS_DMA_NOCACHE) attr = VM_MEMATTR_UNCACHEABLE; else if ((flags & BUS_DMA_COHERENT) != 0 && (dmat->bounce_flags & BF_COHERENT) == 0) /* * If we have a non-coherent tag, and are trying to allocate * a coherent block of memory it needs to be uncached. */ attr = VM_MEMATTR_UNCACHEABLE; else attr = VM_MEMATTR_DEFAULT; /* * Create the map, but don't set the could bounce flag as * this allocation should never bounce; */ *mapp = alloc_dmamap(dmat, mflags); if (*mapp == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); return (ENOMEM); } (*mapp)->flags = DMAMAP_FROM_DMAMEM; /* * Allocate the buffer from the malloc(9) allocator if... * - It's small enough to fit into a single power of two sized bucket. * - The alignment is less than or equal to the maximum size * - The low address requirement is fulfilled. * else allocate non-contiguous pages if... * - The page count that could get allocated doesn't exceed * nsegments also when the maximum segment size is less * than PAGE_SIZE. * - The alignment constraint isn't larger than a page boundary. * - There are no boundary-crossing constraints. * else allocate a block of contiguous pages because one or more of the * constraints is something that only the contig allocator can fulfill. * * NOTE: The (dmat->common.alignment <= dmat->maxsize) check * below is just a quick hack. The exact alignment guarantees * of malloc(9) need to be nailed down, and the code below * should be rewritten to take that into account. * * In the meantime warn the user if malloc gets it wrong. */ if ((dmat->common.maxsize <= PAGE_SIZE) && (dmat->common.alignment <= dmat->common.maxsize) && dmat->common.lowaddr >= ptoa((vm_paddr_t)Maxmem) && attr == VM_MEMATTR_DEFAULT) { *vaddr = malloc(dmat->common.maxsize, M_DEVBUF, mflags); } else if (dmat->common.nsegments >= howmany(dmat->common.maxsize, MIN(dmat->common.maxsegsz, PAGE_SIZE)) && dmat->common.alignment <= PAGE_SIZE && (dmat->common.boundary % PAGE_SIZE) == 0) { /* Page-based multi-segment allocations allowed */ *vaddr = (void *)kmem_alloc_attr(dmat->common.maxsize, mflags, 0ul, dmat->common.lowaddr, attr); dmat->bounce_flags |= BF_KMEM_ALLOC; } else { *vaddr = (void *)kmem_alloc_contig(dmat->common.maxsize, mflags, 0ul, dmat->common.lowaddr, dmat->common.alignment != 0 ? dmat->common.alignment : 1ul, dmat->common.boundary, attr); dmat->bounce_flags |= BF_KMEM_ALLOC; } if (*vaddr == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); free(*mapp, M_DEVBUF); return (ENOMEM); } else if (!vm_addr_align_ok(vtophys(*vaddr), dmat->common.alignment)) { printf("bus_dmamem_alloc failed to align memory properly.\n"); } dmat->map_count++; CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, 0); return (0); } /* * Free a piece of memory and it's allociated dmamap, that was allocated * via bus_dmamem_alloc. Make the same choice for free/contigfree. */ static void bounce_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { /* * Check the map came from bounce_bus_dmamem_alloc, so the map * should be NULL and the BF_KMEM_ALLOC flag cleared if malloc() * was used and set if kmem_alloc_contig() was used. */ if ((map->flags & DMAMAP_FROM_DMAMEM) == 0) panic("bus_dmamem_free: Invalid map freed\n"); if ((dmat->bounce_flags & BF_KMEM_ALLOC) == 0) free(vaddr, M_DEVBUF); else kmem_free((vm_offset_t)vaddr, dmat->common.maxsize); free(map, M_DEVBUF); dmat->map_count--; CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->bounce_flags); } static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags) { bus_addr_t curaddr; bus_size_t sgsize; if ((map->flags & DMAMAP_COULD_BOUNCE) != 0 && map->pagesneeded == 0) { /* * Count the number of bounce pages * needed in order to complete this transfer */ curaddr = buf; while (buflen != 0) { sgsize = MIN(buflen, dmat->common.maxsegsz); if (bus_dma_run_filter(&dmat->common, curaddr)) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); map->pagesneeded++; } curaddr += sgsize; buflen -= sgsize; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags) { vm_offset_t vaddr; vm_offset_t vendaddr; bus_addr_t paddr; bus_size_t sg_len; if ((map->flags & DMAMAP_COULD_BOUNCE) != 0 && map->pagesneeded == 0) { CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, " "alignment= %d", dmat->common.lowaddr, ptoa((vm_paddr_t)Maxmem), dmat->common.boundary, dmat->common.alignment); CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ vaddr = (vm_offset_t)buf; vendaddr = (vm_offset_t)buf + buflen; while (vaddr < vendaddr) { sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK); if (pmap == kernel_pmap) paddr = pmap_kextract(vaddr); else paddr = pmap_extract(pmap, vaddr); if (bus_dma_run_filter(&dmat->common, paddr) != 0) { sg_len = roundup2(sg_len, dmat->common.alignment); map->pagesneeded++; } vaddr += sg_len; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags) { /* Reserve Necessary Bounce Pages */ mtx_lock(&bounce_lock); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { mtx_unlock(&bounce_lock); return (ENOMEM); } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links); mtx_unlock(&bounce_lock); return (EINPROGRESS); } } mtx_unlock(&bounce_lock); return (0); } /* * Add a single contiguous physical range to the segment list. */ static bus_size_t _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr, bus_size_t sgsize, bus_dma_segment_t *segs, int *segp) { int seg; /* * Make sure we don't cross any boundaries. */ if (!vm_addr_bound_ok(curaddr, sgsize, dmat->common.boundary)) sgsize = roundup2(curaddr, dmat->common.boundary) - curaddr; /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ seg = *segp; if (seg == -1) { seg = 0; segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } else { if (curaddr == segs[seg].ds_addr + segs[seg].ds_len && (segs[seg].ds_len + sgsize) <= dmat->common.maxsegsz && - vm_addr_bound_ok(segs[seg].ds_addr, segs[seg].ds_len, - dmat->common.boundary)) + vm_addr_bound_ok(segs[seg].ds_addr, + segs[seg].ds_len + sgsize, dmat->common.boundary)) segs[seg].ds_len += sgsize; else { if (++seg >= dmat->common.nsegments) return (0); segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } } *segp = seg; return (sgsize); } /* * Utility function to load a physical buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static int bounce_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { struct sync_list *sl; bus_size_t sgsize; bus_addr_t curaddr, sl_end; int error; if (segs == NULL) segs = dmat->segments; if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) { _bus_dmamap_count_phys(dmat, map, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } sl = map->slist + map->sync_count - 1; sl_end = 0; while (buflen > 0) { curaddr = buf; sgsize = MIN(buflen, dmat->common.maxsegsz); if (((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) && map->pagesneeded != 0 && bus_dma_run_filter(&dmat->common, curaddr)) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); curaddr = add_bounce_page(dmat, map, 0, curaddr, sgsize); } else if ((dmat->bounce_flags & BF_COHERENT) == 0) { if (map->sync_count > 0) sl_end = sl->paddr + sl->datacount; if (map->sync_count == 0 || curaddr != sl_end) { if (++map->sync_count > dmat->common.nsegments) break; sl++; sl->vaddr = 0; sl->paddr = curaddr; sl->datacount = sgsize; sl->pages = PHYS_TO_VM_PAGE(curaddr); KASSERT(sl->pages != NULL, ("%s: page at PA:0x%08lx is not in " "vm_page_array", __func__, curaddr)); } else sl->datacount += sgsize; } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; buf += sgsize; buflen -= sgsize; } /* * Did we fit? */ return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */ } /* * Utility function to load a linear buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static int bounce_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs, int *segp) { struct sync_list *sl; bus_size_t sgsize, max_sgsize; bus_addr_t curaddr, sl_pend; vm_offset_t kvaddr, vaddr, sl_vend; int error; if (segs == NULL) segs = dmat->segments; if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) { _bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } sl = map->slist + map->sync_count - 1; vaddr = (vm_offset_t)buf; sl_pend = 0; sl_vend = 0; while (buflen > 0) { /* * Get the physical address for this segment. */ if (pmap == kernel_pmap) { curaddr = pmap_kextract(vaddr); kvaddr = vaddr; } else { curaddr = pmap_extract(pmap, vaddr); kvaddr = 0; } /* * Compute the segment size, and adjust counts. */ max_sgsize = MIN(buflen, dmat->common.maxsegsz); sgsize = PAGE_SIZE - (curaddr & PAGE_MASK); if (((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) && map->pagesneeded != 0 && bus_dma_run_filter(&dmat->common, curaddr)) { sgsize = roundup2(sgsize, dmat->common.alignment); sgsize = MIN(sgsize, max_sgsize); curaddr = add_bounce_page(dmat, map, kvaddr, curaddr, sgsize); } else if ((dmat->bounce_flags & BF_COHERENT) == 0) { sgsize = MIN(sgsize, max_sgsize); if (map->sync_count > 0) { sl_pend = sl->paddr + sl->datacount; sl_vend = sl->vaddr + sl->datacount; } if (map->sync_count == 0 || (kvaddr != 0 && kvaddr != sl_vend) || (curaddr != sl_pend)) { if (++map->sync_count > dmat->common.nsegments) goto cleanup; sl++; sl->vaddr = kvaddr; sl->paddr = curaddr; if (kvaddr != 0) { sl->pages = NULL; } else { sl->pages = PHYS_TO_VM_PAGE(curaddr); KASSERT(sl->pages != NULL, ("%s: page at PA:0x%08lx is not " "in vm_page_array", __func__, curaddr)); } sl->datacount = sgsize; } else sl->datacount += sgsize; } else { sgsize = MIN(sgsize, max_sgsize); } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; vaddr += sgsize; buflen -= sgsize; } cleanup: /* * Did we fit? */ return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */ } static void bounce_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg) { if ((map->flags & DMAMAP_COULD_BOUNCE) == 0) return; map->mem = *mem; map->dmat = dmat; map->callback = callback; map->callback_arg = callback_arg; } static bus_dma_segment_t * bounce_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, int error) { if (segs == NULL) segs = dmat->segments; return (segs); } /* * Release the mapping held by map. */ static void bounce_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { STAILQ_REMOVE_HEAD(&map->bpages, links); free_bounce_page(dmat, bpage); } map->sync_count = 0; } static void dma_preread_safe(vm_offset_t va, vm_size_t size) { /* * Write back any partial cachelines immediately before and * after the DMA region. */ if (va & (dcache_line_size - 1)) cpu_dcache_wb_range(va, 1); if ((va + size) & (dcache_line_size - 1)) cpu_dcache_wb_range(va + size, 1); cpu_dcache_inv_range(va, size); } static void dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op) { uint32_t len, offset; vm_page_t m; vm_paddr_t pa; vm_offset_t va, tempva; bus_size_t size; offset = sl->paddr & PAGE_MASK; m = sl->pages; size = sl->datacount; pa = sl->paddr; for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) { tempva = 0; if (sl->vaddr == 0) { len = min(PAGE_SIZE - offset, size); tempva = pmap_quick_enter_page(m); va = tempva | offset; KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset), ("unexpected vm_page_t phys: 0x%16lx != 0x%16lx", VM_PAGE_TO_PHYS(m) | offset, pa)); } else { len = sl->datacount; va = sl->vaddr; } switch (op) { case BUS_DMASYNC_PREWRITE: case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD: cpu_dcache_wb_range(va, len); break; case BUS_DMASYNC_PREREAD: /* * An mbuf may start in the middle of a cacheline. There * will be no cpu writes to the beginning of that line * (which contains the mbuf header) while dma is in * progress. Handle that case by doing a writeback of * just the first cacheline before invalidating the * overall buffer. Any mbuf in a chain may have this * misalignment. Buffers which are not mbufs bounce if * they are not aligned to a cacheline. */ dma_preread_safe(va, len); break; case BUS_DMASYNC_POSTREAD: case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE: cpu_dcache_inv_range(va, len); break; default: panic("unsupported combination of sync operations: " "0x%08x\n", op); } if (tempva != 0) pmap_quick_remove_page(tempva); } } static void bounce_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bounce_page *bpage; struct sync_list *sl, *end; vm_offset_t datavaddr, tempvaddr; if (op == BUS_DMASYNC_POSTWRITE) return; if ((op & BUS_DMASYNC_POSTREAD) != 0) { /* * Wait for any DMA operations to complete before the bcopy. */ fence(); } if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x " "performing bounce", __func__, dmat, dmat->common.flags, op); if ((op & BUS_DMASYNC_PREWRITE) != 0) { while (bpage != NULL) { tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)datavaddr, (void *)bpage->vaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); if ((dmat->bounce_flags & BF_COHERENT) == 0) cpu_dcache_wb_range(bpage->vaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } else if ((op & BUS_DMASYNC_PREREAD) != 0) { while (bpage != NULL) { if ((dmat->bounce_flags & BF_COHERENT) == 0) cpu_dcache_wbinv_range(bpage->vaddr, bpage->datacount); bpage = STAILQ_NEXT(bpage, links); } } if ((op & BUS_DMASYNC_POSTREAD) != 0) { while (bpage != NULL) { if ((dmat->bounce_flags & BF_COHERENT) == 0) cpu_dcache_inv_range(bpage->vaddr, bpage->datacount); tempvaddr = 0; datavaddr = bpage->datavaddr; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page( bpage->datapage); datavaddr = tempvaddr | bpage->dataoffs; } bcopy((void *)bpage->vaddr, (void *)datavaddr, bpage->datacount); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } } /* * Cache maintenance for normal (non-COHERENT non-bounce) buffers. */ if (map->sync_count != 0) { sl = &map->slist[0]; end = &map->slist[map->sync_count]; CTR3(KTR_BUSDMA, "%s: tag %p op 0x%x " "performing sync", __func__, dmat, op); for ( ; sl != end; ++sl) dma_dcache_sync(sl, op); } if ((op & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) != 0) { /* * Wait for the bcopy to complete before any DMA operations. */ fence(); } } static void init_bounce_pages(void *dummy __unused) { total_bpages = 0; STAILQ_INIT(&bounce_zone_list); STAILQ_INIT(&bounce_map_waitinglist); STAILQ_INIT(&bounce_map_callbacklist); mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF); } SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL); static struct sysctl_ctx_list * busdma_sysctl_tree(struct bounce_zone *bz) { return (&bz->sysctl_tree); } static struct sysctl_oid * busdma_sysctl_tree_top(struct bounce_zone *bz) { return (bz->sysctl_tree_top); } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz; /* Check to see if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if ((dmat->common.alignment <= bz->alignment) && (dmat->common.lowaddr >= bz->lowaddr)) { dmat->bounce_zone = bz; return (0); } } if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) return (ENOMEM); STAILQ_INIT(&bz->bounce_page_list); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat->common.lowaddr; bz->alignment = MAX(dmat->common.alignment, PAGE_SIZE); bz->map_count = 0; snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount); busdma_zonecount++; snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr); STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_tree); bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (bz->sysctl_tree_top == NULL) { sysctl_ctx_free(&bz->sysctl_tree); return (0); /* XXX error code? */ } SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_STRING(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, ""); return (0); } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages) { struct bounce_zone *bz; int count; bz = dmat->bounce_zone; count = 0; while (numpages > 0) { struct bounce_page *bpage; bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF, M_NOWAIT | M_ZERO); if (bpage == NULL) break; bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF, M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); if (bpage->vaddr == 0) { free(bpage, M_DEVBUF); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); mtx_lock(&bounce_lock); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bpages++; bz->total_bpages++; bz->free_bpages++; mtx_unlock(&bounce_lock); count++; numpages--; } return (count); } static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz; int pages; mtx_assert(&bounce_lock, MA_OWNED); bz = dmat->bounce_zone; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages)) return (map->pagesneeded - (map->pagesreserved + pages)); bz->free_bpages -= pages; bz->reserved_bpages += pages; map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return (pages); } static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, bus_addr_t addr, bus_size_t size) { struct bounce_zone *bz; struct bounce_page *bpage; KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag")); KASSERT((map->flags & DMAMAP_COULD_BOUNCE) != 0, ("add_bounce_page: bad map %p", map)); bz = dmat->bounce_zone; if (map->pagesneeded == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesneeded--; if (map->pagesreserved == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesreserved--; mtx_lock(&bounce_lock); bpage = STAILQ_FIRST(&bz->bounce_page_list); if (bpage == NULL) panic("add_bounce_page: free page list is empty"); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); bz->reserved_bpages--; bz->active_bpages++; mtx_unlock(&bounce_lock); if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) { /* Page offset needs to be preserved. */ bpage->vaddr |= addr & PAGE_MASK; bpage->busaddr |= addr & PAGE_MASK; } bpage->datavaddr = vaddr; bpage->datapage = PHYS_TO_VM_PAGE(addr); bpage->dataoffs = addr & PAGE_MASK; bpage->datacount = size; STAILQ_INSERT_TAIL(&(map->bpages), bpage, links); return (bpage->busaddr); } static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage) { struct bus_dmamap *map; struct bounce_zone *bz; bool schedule_swi; bz = dmat->bounce_zone; bpage->datavaddr = 0; bpage->datacount = 0; if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) { /* * Reset the bounce page to start at offset 0. Other uses * of this bounce page may need to store a full page of * data and/or assume it starts on a page boundary. */ bpage->vaddr &= ~PAGE_MASK; bpage->busaddr &= ~PAGE_MASK; } schedule_swi = false; mtx_lock(&bounce_lock); STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links); bz->free_bpages++; bz->active_bpages--; if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) == 0) { STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); bz->total_deferred++; schedule_swi = true; } } mtx_unlock(&bounce_lock); if (schedule_swi) swi_sched(busdma_ih, 0); } static void busdma_swi(void *dummy __unused) { bus_dma_tag_t dmat; struct bus_dmamap *map; mtx_lock(&bounce_lock); while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) { STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links); mtx_unlock(&bounce_lock); dmat = map->dmat; (dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_LOCK); bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback, map->callback_arg, BUS_DMA_WAITOK); (dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_UNLOCK); mtx_lock(&bounce_lock); } mtx_unlock(&bounce_lock); } static void start_busdma_swi(void *dummy __unused) { if (swi_add(NULL, "busdma", busdma_swi, NULL, SWI_BUSDMA, INTR_MPSAFE, &busdma_ih)) panic("died while creating busdma swi ithread"); } SYSINIT(start_busdma_swi, SI_SUB_SOFTINTR, SI_ORDER_ANY, start_busdma_swi, NULL); struct bus_dma_impl bus_dma_bounce_impl = { .tag_create = bounce_bus_dma_tag_create, .tag_destroy = bounce_bus_dma_tag_destroy, .map_create = bounce_bus_dmamap_create, .map_destroy = bounce_bus_dmamap_destroy, .mem_alloc = bounce_bus_dmamem_alloc, .mem_free = bounce_bus_dmamem_free, .load_phys = bounce_bus_dmamap_load_phys, .load_buffer = bounce_bus_dmamap_load_buffer, .load_ma = bus_dmamap_load_ma_triv, .map_waitok = bounce_bus_dmamap_waitok, .map_complete = bounce_bus_dmamap_complete, .map_unload = bounce_bus_dmamap_unload, .map_sync = bounce_bus_dmamap_sync }; diff --git a/sys/x86/x86/busdma_bounce.c b/sys/x86/x86/busdma_bounce.c index 7da2ca0631ef..0d17869f8e17 100644 --- a/sys/x86/x86/busdma_bounce.c +++ b/sys/x86/x86/busdma_bounce.c @@ -1,1394 +1,1394 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997, 1998 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __i386__ #define MAX_BPAGES (Maxmem > atop(0x100000000ULL) ? 8192 : 512) #else #define MAX_BPAGES 8192 #endif enum { BUS_DMA_COULD_BOUNCE = 0x01, BUS_DMA_MIN_ALLOC_COMP = 0x02, BUS_DMA_KMEM_ALLOC = 0x04, BUS_DMA_FORCE_MAP = 0x08, }; struct bounce_zone; struct bus_dma_tag { struct bus_dma_tag_common common; int map_count; int bounce_flags; bus_dma_segment_t *segments; struct bounce_zone *bounce_zone; }; struct bounce_page { vm_offset_t vaddr; /* kva of bounce buffer */ bus_addr_t busaddr; /* Physical address */ vm_offset_t datavaddr; /* kva of client data */ vm_offset_t dataoffs; /* page offset of client data */ vm_page_t datapage[2]; /* physical page(s) of client data */ bus_size_t datacount; /* client data count */ STAILQ_ENTRY(bounce_page) links; }; struct bounce_zone { STAILQ_ENTRY(bounce_zone) links; STAILQ_HEAD(bp_list, bounce_page) bounce_page_list; int total_bpages; int free_bpages; int reserved_bpages; int active_bpages; int total_bounced; int total_deferred; int map_count; int domain; bus_size_t alignment; bus_addr_t lowaddr; char zoneid[8]; char lowaddrid[20]; struct sysctl_ctx_list sysctl_tree; struct sysctl_oid *sysctl_tree_top; }; static struct mtx bounce_lock; static int total_bpages; static int busdma_zonecount; static STAILQ_HEAD(, bounce_zone) bounce_zone_list; static void *busdma_ih; static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Busdma parameters"); SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0, "Total bounce pages"); struct bus_dmamap { struct bp_list bpages; int pagesneeded; int pagesreserved; bus_dma_tag_t dmat; struct memdesc mem; bus_dmamap_callback_t *callback; void *callback_arg; STAILQ_ENTRY(bus_dmamap) links; #ifdef KMSAN struct memdesc kmsan_mem; #endif }; static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist; static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist; static struct bus_dmamap nobounce_dmamap; static void init_bounce_pages(void *dummy); static int alloc_bounce_zone(bus_dma_tag_t dmat); static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages); static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit); static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, vm_paddr_t addr1, vm_paddr_t addr2, bus_size_t size); static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage); static bool _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen, int *pagesneeded); static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags); static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags); static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags); static int bounce_bus_dma_zone_setup(bus_dma_tag_t dmat) { struct bounce_zone *bz; int error; /* Must bounce */ if ((error = alloc_bounce_zone(dmat)) != 0) return (error); bz = dmat->bounce_zone; if (ptoa(bz->total_bpages) < dmat->common.maxsize) { int pages; pages = atop(dmat->common.maxsize) - bz->total_bpages; /* Add pages to our bounce pool */ if (alloc_bounce_pages(dmat, pages) < pages) return (ENOMEM); } /* Performed initial allocation */ dmat->bounce_flags |= BUS_DMA_MIN_ALLOC_COMP; return (0); } /* * Allocate a device specific dma_tag. */ static int bounce_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment, bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr, bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize, int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc, void *lockfuncarg, bus_dma_tag_t *dmat) { bus_dma_tag_t newtag; int error; *dmat = NULL; error = common_bus_dma_tag_create(parent != NULL ? &parent->common : NULL, alignment, boundary, lowaddr, highaddr, filter, filterarg, maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg, sizeof (struct bus_dma_tag), (void **)&newtag); if (error != 0) return (error); newtag->common.impl = &bus_dma_bounce_impl; newtag->map_count = 0; newtag->segments = NULL; #ifdef KMSAN /* * When KMSAN is configured, we need a map to store a memory descriptor * which can be used for validation. */ newtag->bounce_flags |= BUS_DMA_FORCE_MAP; #endif if (parent != NULL && (newtag->common.filter != NULL || (parent->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0)) newtag->bounce_flags |= BUS_DMA_COULD_BOUNCE; if (newtag->common.lowaddr < ptoa((vm_paddr_t)Maxmem) || newtag->common.alignment > 1) newtag->bounce_flags |= BUS_DMA_COULD_BOUNCE; if ((newtag->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0 && (flags & BUS_DMA_ALLOCNOW) != 0) error = bounce_bus_dma_zone_setup(newtag); else error = 0; if (error != 0) free(newtag, M_DEVBUF); else *dmat = newtag; CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d", __func__, newtag, (newtag != NULL ? newtag->common.flags : 0), error); return (error); } static bool bounce_bus_dma_id_mapped(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen) { if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) == 0) return (true); return (!_bus_dmamap_pagesneeded(dmat, buf, buflen, NULL)); } /* * Update the domain for the tag. We may need to reallocate the zone and * bounce pages. */ static int bounce_bus_dma_tag_set_domain(bus_dma_tag_t dmat) { KASSERT(dmat->map_count == 0, ("bounce_bus_dma_tag_set_domain: Domain set after use.\n")); if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) == 0 || dmat->bounce_zone == NULL) return (0); dmat->bounce_flags &= ~BUS_DMA_MIN_ALLOC_COMP; return (bounce_bus_dma_zone_setup(dmat)); } static int bounce_bus_dma_tag_destroy(bus_dma_tag_t dmat) { bus_dma_tag_t dmat_copy __diagused; bus_dma_tag_t parent; int error; error = 0; dmat_copy = dmat; if (dmat != NULL) { if (dmat->map_count != 0) { error = EBUSY; goto out; } while (dmat != NULL) { parent = (bus_dma_tag_t)dmat->common.parent; atomic_subtract_int(&dmat->common.ref_count, 1); if (dmat->common.ref_count == 0) { if (dmat->segments != NULL) free(dmat->segments, M_DEVBUF); free(dmat, M_DEVBUF); /* * Last reference count, so * release our reference * count on our parent. */ dmat = parent; } else dmat = NULL; } } out: CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error); return (error); } /* * Allocate a handle for mapping from kva/uva/physical * address space into bus device space. */ static int bounce_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp) { struct bounce_zone *bz; int error, maxpages, pages; error = 0; if (dmat->segments == NULL) { dmat->segments = malloc_domainset( sizeof(bus_dma_segment_t) * dmat->common.nsegments, M_DEVBUF, DOMAINSET_PREF(dmat->common.domain), M_NOWAIT); if (dmat->segments == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } } if (dmat->bounce_flags & (BUS_DMA_COULD_BOUNCE | BUS_DMA_FORCE_MAP)) { *mapp = malloc_domainset(sizeof(**mapp), M_DEVBUF, DOMAINSET_PREF(dmat->common.domain), M_NOWAIT | M_ZERO); if (*mapp == NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, ENOMEM); return (ENOMEM); } STAILQ_INIT(&(*mapp)->bpages); } else { *mapp = NULL; } /* * Bouncing might be required if the driver asks for an active * exclusion region, a data alignment that is stricter than 1, and/or * an active address boundary. */ if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0) { /* Must bounce */ if (dmat->bounce_zone == NULL && (error = alloc_bounce_zone(dmat)) != 0) goto out; bz = dmat->bounce_zone; /* * Attempt to add pages to our pool on a per-instance * basis up to a sane limit. */ if (dmat->common.alignment > 1) maxpages = MAX_BPAGES; else maxpages = MIN(MAX_BPAGES, Maxmem - atop(dmat->common.lowaddr)); if ((dmat->bounce_flags & BUS_DMA_MIN_ALLOC_COMP) == 0 || (bz->map_count > 0 && bz->total_bpages < maxpages)) { pages = MAX(atop(dmat->common.maxsize), 1); pages = MIN(maxpages - bz->total_bpages, pages); pages = MAX(pages, 1); if (alloc_bounce_pages(dmat, pages) < pages) error = ENOMEM; if ((dmat->bounce_flags & BUS_DMA_MIN_ALLOC_COMP) == 0) { if (error == 0) { dmat->bounce_flags |= BUS_DMA_MIN_ALLOC_COMP; } } else error = 0; } bz->map_count++; } out: if (error == 0) { dmat->map_count++; } else { free(*mapp, M_DEVBUF); *mapp = NULL; } CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, error); return (error); } /* * Destroy a handle for mapping from kva/uva/physical * address space into bus device space. */ static int bounce_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map) { if (map != NULL && map != &nobounce_dmamap) { if (STAILQ_FIRST(&map->bpages) != NULL) { CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY); return (EBUSY); } if (dmat->bounce_zone) dmat->bounce_zone->map_count--; free(map, M_DEVBUF); } dmat->map_count--; CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat); return (0); } /* * Allocate a piece of memory that can be efficiently mapped into * bus device space based on the constraints lited in the dma tag. * A dmamap to for use with dmamap_load is also allocated. */ static int bounce_bus_dmamem_alloc(bus_dma_tag_t dmat, void **vaddr, int flags, bus_dmamap_t *mapp) { vm_memattr_t attr; int mflags; if (flags & BUS_DMA_NOWAIT) mflags = M_NOWAIT; else mflags = M_WAITOK; /* If we succeed, no mapping/bouncing will be required */ *mapp = NULL; if (dmat->segments == NULL) { dmat->segments = (bus_dma_segment_t *)malloc_domainset( sizeof(bus_dma_segment_t) * dmat->common.nsegments, M_DEVBUF, DOMAINSET_PREF(dmat->common.domain), mflags); if (dmat->segments == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); return (ENOMEM); } } if (flags & BUS_DMA_ZERO) mflags |= M_ZERO; if (flags & BUS_DMA_NOCACHE) attr = VM_MEMATTR_UNCACHEABLE; else attr = VM_MEMATTR_DEFAULT; /* * Allocate the buffer from the malloc(9) allocator if... * - It's small enough to fit into a single page. * - Its alignment requirement is also smaller than the page size. * - The low address requirement is fulfilled. * - Default cache attributes are requested (WB). * else allocate non-contiguous pages if... * - The page count that could get allocated doesn't exceed * nsegments also when the maximum segment size is less * than PAGE_SIZE. * - The alignment constraint isn't larger than a page boundary. * - There are no boundary-crossing constraints. * else allocate a block of contiguous pages because one or more of the * constraints is something that only the contig allocator can fulfill. * * Warn the user if malloc gets it wrong. */ if (dmat->common.maxsize <= PAGE_SIZE && dmat->common.alignment <= PAGE_SIZE && dmat->common.lowaddr >= ptoa((vm_paddr_t)Maxmem) && attr == VM_MEMATTR_DEFAULT) { *vaddr = malloc_domainset_aligned(dmat->common.maxsize, dmat->common.alignment, M_DEVBUF, DOMAINSET_PREF(dmat->common.domain), mflags); KASSERT(*vaddr == NULL || ((uintptr_t)*vaddr & PAGE_MASK) + dmat->common.maxsize <= PAGE_SIZE, ("bounce_bus_dmamem_alloc: multi-page alloc %p maxsize " "%#jx align %#jx", *vaddr, (uintmax_t)dmat->common.maxsize, (uintmax_t)dmat->common.alignment)); } else if (dmat->common.nsegments >= howmany(dmat->common.maxsize, MIN(dmat->common.maxsegsz, PAGE_SIZE)) && dmat->common.alignment <= PAGE_SIZE && (dmat->common.boundary % PAGE_SIZE) == 0) { /* Page-based multi-segment allocations allowed */ *vaddr = (void *)kmem_alloc_attr_domainset( DOMAINSET_PREF(dmat->common.domain), dmat->common.maxsize, mflags, 0ul, dmat->common.lowaddr, attr); dmat->bounce_flags |= BUS_DMA_KMEM_ALLOC; } else { *vaddr = (void *)kmem_alloc_contig_domainset( DOMAINSET_PREF(dmat->common.domain), dmat->common.maxsize, mflags, 0ul, dmat->common.lowaddr, dmat->common.alignment != 0 ? dmat->common.alignment : 1ul, dmat->common.boundary, attr); dmat->bounce_flags |= BUS_DMA_KMEM_ALLOC; } if (*vaddr == NULL) { CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, ENOMEM); return (ENOMEM); } else if (!vm_addr_align_ok(vtophys(*vaddr), dmat->common.alignment)) { printf("bus_dmamem_alloc failed to align memory properly.\n"); } CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d", __func__, dmat, dmat->common.flags, 0); return (0); } /* * Free a piece of memory and its associated dmamap, that was allocated * via bus_dmamem_alloc. Make the same choice for free/contigfree. */ static void bounce_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map) { /* * dmamem does not need to be bounced, so the map should be * NULL and the BUS_DMA_KMEM_ALLOC flag cleared if malloc() * was used and set if kmem_alloc_contig() was used. */ if (map != NULL) panic("bus_dmamem_free: Invalid map freed\n"); if ((dmat->bounce_flags & BUS_DMA_KMEM_ALLOC) == 0) free(vaddr, M_DEVBUF); else kmem_free((vm_offset_t)vaddr, dmat->common.maxsize); CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat, dmat->bounce_flags); } static bool _bus_dmamap_pagesneeded(bus_dma_tag_t dmat, vm_paddr_t buf, bus_size_t buflen, int *pagesneeded) { vm_paddr_t curaddr; bus_size_t sgsize; int count; /* * Count the number of bounce pages needed in order to * complete this transfer */ count = 0; curaddr = buf; while (buflen != 0) { sgsize = MIN(buflen, dmat->common.maxsegsz); if (bus_dma_run_filter(&dmat->common, curaddr)) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); if (pagesneeded == NULL) return (true); count++; } curaddr += sgsize; buflen -= sgsize; } if (pagesneeded != NULL) *pagesneeded = count; return (count != 0); } static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags) { if (map != &nobounce_dmamap && map->pagesneeded == 0) { _bus_dmamap_pagesneeded(dmat, buf, buflen, &map->pagesneeded); CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap, void *buf, bus_size_t buflen, int flags) { vm_offset_t vaddr; vm_offset_t vendaddr; vm_paddr_t paddr; bus_size_t sg_len; if (map != &nobounce_dmamap && map->pagesneeded == 0) { CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, " "alignment= %d", dmat->common.lowaddr, ptoa((vm_paddr_t)Maxmem), dmat->common.boundary, dmat->common.alignment); CTR3(KTR_BUSDMA, "map= %p, nobouncemap= %p, pagesneeded= %d", map, &nobounce_dmamap, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ vaddr = (vm_offset_t)buf; vendaddr = (vm_offset_t)buf + buflen; while (vaddr < vendaddr) { sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK); if (pmap == kernel_pmap) paddr = pmap_kextract(vaddr); else paddr = pmap_extract(pmap, vaddr); if (bus_dma_run_filter(&dmat->common, paddr) != 0) { sg_len = roundup2(sg_len, dmat->common.alignment); map->pagesneeded++; } vaddr += sg_len; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static void _bus_dmamap_count_ma(bus_dma_tag_t dmat, bus_dmamap_t map, struct vm_page **ma, int ma_offs, bus_size_t buflen, int flags) { bus_size_t sg_len, max_sgsize; int page_index; vm_paddr_t paddr; if (map != &nobounce_dmamap && map->pagesneeded == 0) { CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, " "alignment= %d", dmat->common.lowaddr, ptoa((vm_paddr_t)Maxmem), dmat->common.boundary, dmat->common.alignment); CTR3(KTR_BUSDMA, "map= %p, nobouncemap= %p, pagesneeded= %d", map, &nobounce_dmamap, map->pagesneeded); /* * Count the number of bounce pages * needed in order to complete this transfer */ page_index = 0; while (buflen > 0) { paddr = VM_PAGE_TO_PHYS(ma[page_index]) + ma_offs; sg_len = PAGE_SIZE - ma_offs; max_sgsize = MIN(buflen, dmat->common.maxsegsz); sg_len = MIN(sg_len, max_sgsize); if (bus_dma_run_filter(&dmat->common, paddr) != 0) { sg_len = roundup2(sg_len, dmat->common.alignment); sg_len = MIN(sg_len, max_sgsize); KASSERT(vm_addr_align_ok(sg_len, dmat->common.alignment), ("Segment size is not aligned")); map->pagesneeded++; } if (((ma_offs + sg_len) & ~PAGE_MASK) != 0) page_index++; ma_offs = (ma_offs + sg_len) & PAGE_MASK; KASSERT(buflen >= sg_len, ("Segment length overruns original buffer")); buflen -= sg_len; } CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded); } } static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags) { /* Reserve Necessary Bounce Pages */ mtx_lock(&bounce_lock); if (flags & BUS_DMA_NOWAIT) { if (reserve_bounce_pages(dmat, map, 0) != 0) { mtx_unlock(&bounce_lock); return (ENOMEM); } } else { if (reserve_bounce_pages(dmat, map, 1) != 0) { /* Queue us for resources */ STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links); mtx_unlock(&bounce_lock); return (EINPROGRESS); } } mtx_unlock(&bounce_lock); return (0); } /* * Add a single contiguous physical range to the segment list. */ static bus_size_t _bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t curaddr, bus_size_t sgsize, bus_dma_segment_t *segs, int *segp) { int seg; KASSERT(curaddr <= BUS_SPACE_MAXADDR, ("ds_addr %#jx > BUS_SPACE_MAXADDR %#jx; dmat %p fl %#x low %#jx " "hi %#jx", (uintmax_t)curaddr, (uintmax_t)BUS_SPACE_MAXADDR, dmat, dmat->bounce_flags, (uintmax_t)dmat->common.lowaddr, (uintmax_t)dmat->common.highaddr)); /* * Make sure we don't cross any boundaries. */ if (!vm_addr_bound_ok(curaddr, sgsize, dmat->common.boundary)) sgsize = roundup2(curaddr, dmat->common.boundary) - curaddr; /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ seg = *segp; if (seg == -1) { seg = 0; segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } else { if (curaddr == segs[seg].ds_addr + segs[seg].ds_len && (segs[seg].ds_len + sgsize) <= dmat->common.maxsegsz && - vm_addr_bound_ok(segs[seg].ds_addr, segs[seg].ds_len, - dmat->common.boundary)) + vm_addr_bound_ok(segs[seg].ds_addr, + segs[seg].ds_len + sgsize, dmat->common.boundary)) segs[seg].ds_len += sgsize; else { if (++seg >= dmat->common.nsegments) return (0); segs[seg].ds_addr = curaddr; segs[seg].ds_len = sgsize; } } *segp = seg; return (sgsize); } /* * Utility function to load a physical buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static int bounce_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs, int *segp) { bus_size_t sgsize; vm_paddr_t curaddr; int error; if (map == NULL) map = &nobounce_dmamap; if (segs == NULL) segs = dmat->segments; if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0) { _bus_dmamap_count_phys(dmat, map, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } while (buflen > 0) { curaddr = buf; sgsize = MIN(buflen, dmat->common.maxsegsz); if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0 && map->pagesneeded != 0 && bus_dma_run_filter(&dmat->common, curaddr)) { sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK)); curaddr = add_bounce_page(dmat, map, 0, curaddr, 0, sgsize); } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; buf += sgsize; buflen -= sgsize; } /* * Did we fit? */ return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */ } /* * Utility function to load a linear buffer. segp contains * the starting segment on entrace, and the ending segment on exit. */ static int bounce_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf, bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs, int *segp) { bus_size_t sgsize, max_sgsize; vm_paddr_t curaddr; vm_offset_t kvaddr, vaddr; int error; if (map == NULL) map = &nobounce_dmamap; if (segs == NULL) segs = dmat->segments; if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0) { _bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } vaddr = (vm_offset_t)buf; while (buflen > 0) { /* * Get the physical address for this segment. */ if (pmap == kernel_pmap) { curaddr = pmap_kextract(vaddr); kvaddr = vaddr; } else { curaddr = pmap_extract(pmap, vaddr); kvaddr = 0; } /* * Compute the segment size, and adjust counts. */ max_sgsize = MIN(buflen, dmat->common.maxsegsz); sgsize = PAGE_SIZE - (curaddr & PAGE_MASK); if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0 && map->pagesneeded != 0 && bus_dma_run_filter(&dmat->common, curaddr)) { sgsize = roundup2(sgsize, dmat->common.alignment); sgsize = MIN(sgsize, max_sgsize); curaddr = add_bounce_page(dmat, map, kvaddr, curaddr, 0, sgsize); } else { sgsize = MIN(sgsize, max_sgsize); } sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs, segp); if (sgsize == 0) break; vaddr += sgsize; buflen -= sgsize; } /* * Did we fit? */ return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */ } static int bounce_bus_dmamap_load_ma(bus_dma_tag_t dmat, bus_dmamap_t map, struct vm_page **ma, bus_size_t buflen, int ma_offs, int flags, bus_dma_segment_t *segs, int *segp) { vm_paddr_t paddr, next_paddr; int error, page_index; bus_size_t sgsize, max_sgsize; if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) { /* * If we have to keep the offset of each page this function * is not suitable, switch back to bus_dmamap_load_ma_triv * which is going to do the right thing in this case. */ error = bus_dmamap_load_ma_triv(dmat, map, ma, buflen, ma_offs, flags, segs, segp); return (error); } if (map == NULL) map = &nobounce_dmamap; if (segs == NULL) segs = dmat->segments; if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0) { _bus_dmamap_count_ma(dmat, map, ma, ma_offs, buflen, flags); if (map->pagesneeded != 0) { error = _bus_dmamap_reserve_pages(dmat, map, flags); if (error) return (error); } } page_index = 0; while (buflen > 0) { /* * Compute the segment size, and adjust counts. */ paddr = VM_PAGE_TO_PHYS(ma[page_index]) + ma_offs; max_sgsize = MIN(buflen, dmat->common.maxsegsz); sgsize = PAGE_SIZE - ma_offs; if ((dmat->bounce_flags & BUS_DMA_COULD_BOUNCE) != 0 && map->pagesneeded != 0 && bus_dma_run_filter(&dmat->common, paddr)) { sgsize = roundup2(sgsize, dmat->common.alignment); sgsize = MIN(sgsize, max_sgsize); KASSERT(vm_addr_align_ok(sgsize, dmat->common.alignment), ("Segment size is not aligned")); /* * Check if two pages of the user provided buffer * are used. */ if ((ma_offs + sgsize) > PAGE_SIZE) next_paddr = VM_PAGE_TO_PHYS(ma[page_index + 1]); else next_paddr = 0; paddr = add_bounce_page(dmat, map, 0, paddr, next_paddr, sgsize); } else { sgsize = MIN(sgsize, max_sgsize); } sgsize = _bus_dmamap_addseg(dmat, map, paddr, sgsize, segs, segp); if (sgsize == 0) break; KASSERT(buflen >= sgsize, ("Segment length overruns original buffer")); buflen -= sgsize; if (((ma_offs + sgsize) & ~PAGE_MASK) != 0) page_index++; ma_offs = (ma_offs + sgsize) & PAGE_MASK; } /* * Did we fit? */ return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */ } static void bounce_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map, struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg) { if (map == NULL) return; map->mem = *mem; map->dmat = dmat; map->callback = callback; map->callback_arg = callback_arg; } static bus_dma_segment_t * bounce_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, int error) { if (segs == NULL) segs = dmat->segments; return (segs); } /* * Release the mapping held by map. */ static void bounce_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map) { struct bounce_page *bpage; if (map == NULL) return; while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) { STAILQ_REMOVE_HEAD(&map->bpages, links); free_bounce_page(dmat, bpage); } } static void bounce_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map, bus_dmasync_op_t op) { struct bounce_page *bpage; vm_offset_t datavaddr, tempvaddr; bus_size_t datacount1, datacount2; if (map == NULL) goto out; kmsan_bus_dmamap_sync(&map->kmsan_mem, op); if ((bpage = STAILQ_FIRST(&map->bpages)) == NULL) goto out; /* * Handle data bouncing. We might also want to add support for * invalidating the caches on broken hardware. */ CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x " "performing bounce", __func__, dmat, dmat->common.flags, op); if ((op & BUS_DMASYNC_PREWRITE) != 0) { while (bpage != NULL) { tempvaddr = 0; datavaddr = bpage->datavaddr; datacount1 = bpage->datacount; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page(bpage->datapage[0]); datavaddr = tempvaddr | bpage->dataoffs; datacount1 = min(PAGE_SIZE - bpage->dataoffs, datacount1); } bcopy((void *)datavaddr, (void *)bpage->vaddr, datacount1); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); if (bpage->datapage[1] == 0) { KASSERT(datacount1 == bpage->datacount, ("Mismatch between data size and provided memory space")); goto next_w; } /* * We are dealing with an unmapped buffer that expands * over two pages. */ datavaddr = pmap_quick_enter_page(bpage->datapage[1]); datacount2 = bpage->datacount - datacount1; bcopy((void *)datavaddr, (void *)(bpage->vaddr + datacount1), datacount2); pmap_quick_remove_page(datavaddr); next_w: bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } if ((op & BUS_DMASYNC_POSTREAD) != 0) { while (bpage != NULL) { tempvaddr = 0; datavaddr = bpage->datavaddr; datacount1 = bpage->datacount; if (datavaddr == 0) { tempvaddr = pmap_quick_enter_page(bpage->datapage[0]); datavaddr = tempvaddr | bpage->dataoffs; datacount1 = min(PAGE_SIZE - bpage->dataoffs, datacount1); } bcopy((void *)bpage->vaddr, (void *)datavaddr, datacount1); if (tempvaddr != 0) pmap_quick_remove_page(tempvaddr); if (bpage->datapage[1] == 0) { KASSERT(datacount1 == bpage->datacount, ("Mismatch between data size and provided memory space")); goto next_r; } /* * We are dealing with an unmapped buffer that expands * over two pages. */ datavaddr = pmap_quick_enter_page(bpage->datapage[1]); datacount2 = bpage->datacount - datacount1; bcopy((void *)(bpage->vaddr + datacount1), (void *)datavaddr, datacount2); pmap_quick_remove_page(datavaddr); next_r: bpage = STAILQ_NEXT(bpage, links); } dmat->bounce_zone->total_bounced++; } out: atomic_thread_fence_rel(); } #ifdef KMSAN static void bounce_bus_dmamap_load_kmsan(bus_dmamap_t map, struct memdesc *mem) { if (map == NULL) return; memcpy(&map->kmsan_mem, mem, sizeof(map->kmsan_mem)); } #endif static void init_bounce_pages(void *dummy __unused) { total_bpages = 0; STAILQ_INIT(&bounce_zone_list); STAILQ_INIT(&bounce_map_waitinglist); STAILQ_INIT(&bounce_map_callbacklist); mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF); } SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL); static struct sysctl_ctx_list * busdma_sysctl_tree(struct bounce_zone *bz) { return (&bz->sysctl_tree); } static struct sysctl_oid * busdma_sysctl_tree_top(struct bounce_zone *bz) { return (bz->sysctl_tree_top); } static int alloc_bounce_zone(bus_dma_tag_t dmat) { struct bounce_zone *bz; /* Check to see if we already have a suitable zone */ STAILQ_FOREACH(bz, &bounce_zone_list, links) { if (dmat->common.alignment <= bz->alignment && dmat->common.lowaddr >= bz->lowaddr && dmat->common.domain == bz->domain) { dmat->bounce_zone = bz; return (0); } } if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) return (ENOMEM); STAILQ_INIT(&bz->bounce_page_list); bz->free_bpages = 0; bz->reserved_bpages = 0; bz->active_bpages = 0; bz->lowaddr = dmat->common.lowaddr; bz->alignment = MAX(dmat->common.alignment, PAGE_SIZE); bz->map_count = 0; bz->domain = dmat->common.domain; snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount); busdma_zonecount++; snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr); STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links); dmat->bounce_zone = bz; sysctl_ctx_init(&bz->sysctl_tree); bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree, SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); if (bz->sysctl_tree_top == NULL) { sysctl_ctx_free(&bz->sysctl_tree); return (0); /* XXX error code? */ } SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bpages", CTLFLAG_RD, &bz->total_bpages, 0, "Total bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "free_bpages", CTLFLAG_RD, &bz->free_bpages, 0, "Free bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0, "Reserved bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "active_bpages", CTLFLAG_RD, &bz->active_bpages, 0, "Active bounce pages"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_bounced", CTLFLAG_RD, &bz->total_bounced, 0, "Total bounce requests"); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "total_deferred", CTLFLAG_RD, &bz->total_deferred, 0, "Total bounce requests that were deferred"); SYSCTL_ADD_STRING(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, ""); SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "alignment", CTLFLAG_RD, &bz->alignment, ""); SYSCTL_ADD_INT(busdma_sysctl_tree(bz), SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO, "domain", CTLFLAG_RD, &bz->domain, 0, "memory domain"); return (0); } static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages) { struct bounce_zone *bz; int count; bz = dmat->bounce_zone; count = 0; while (numpages > 0) { struct bounce_page *bpage; bpage = malloc_domainset(sizeof(*bpage), M_DEVBUF, DOMAINSET_PREF(dmat->common.domain), M_NOWAIT | M_ZERO); if (bpage == NULL) break; bpage->vaddr = (vm_offset_t)contigmalloc_domainset(PAGE_SIZE, M_DEVBUF, DOMAINSET_PREF(dmat->common.domain), M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0); if (bpage->vaddr == 0) { free(bpage, M_DEVBUF); break; } bpage->busaddr = pmap_kextract(bpage->vaddr); mtx_lock(&bounce_lock); STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links); total_bpages++; bz->total_bpages++; bz->free_bpages++; mtx_unlock(&bounce_lock); count++; numpages--; } return (count); } static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit) { struct bounce_zone *bz; int pages; mtx_assert(&bounce_lock, MA_OWNED); bz = dmat->bounce_zone; pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved); if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages)) return (map->pagesneeded - (map->pagesreserved + pages)); bz->free_bpages -= pages; bz->reserved_bpages += pages; map->pagesreserved += pages; pages = map->pagesneeded - map->pagesreserved; return (pages); } static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr, vm_paddr_t addr1, vm_paddr_t addr2, bus_size_t size) { struct bounce_zone *bz; struct bounce_page *bpage; KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag")); KASSERT(map != NULL && map != &nobounce_dmamap, ("add_bounce_page: bad map %p", map)); bz = dmat->bounce_zone; if (map->pagesneeded == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesneeded--; if (map->pagesreserved == 0) panic("add_bounce_page: map doesn't need any pages"); map->pagesreserved--; mtx_lock(&bounce_lock); bpage = STAILQ_FIRST(&bz->bounce_page_list); if (bpage == NULL) panic("add_bounce_page: free page list is empty"); STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links); bz->reserved_bpages--; bz->active_bpages++; mtx_unlock(&bounce_lock); if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) { /* Page offset needs to be preserved. */ bpage->vaddr |= addr1 & PAGE_MASK; bpage->busaddr |= addr1 & PAGE_MASK; KASSERT(addr2 == 0, ("Trying to bounce multiple pages with BUS_DMA_KEEP_PG_OFFSET")); } bpage->datavaddr = vaddr; bpage->datapage[0] = PHYS_TO_VM_PAGE(addr1); KASSERT((addr2 & PAGE_MASK) == 0, ("Second page is not aligned")); bpage->datapage[1] = PHYS_TO_VM_PAGE(addr2); bpage->dataoffs = addr1 & PAGE_MASK; bpage->datacount = size; STAILQ_INSERT_TAIL(&(map->bpages), bpage, links); return (bpage->busaddr); } static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage) { struct bus_dmamap *map; struct bounce_zone *bz; bool schedule_swi; bz = dmat->bounce_zone; bpage->datavaddr = 0; bpage->datacount = 0; if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) { /* * Reset the bounce page to start at offset 0. Other uses * of this bounce page may need to store a full page of * data and/or assume it starts on a page boundary. */ bpage->vaddr &= ~PAGE_MASK; bpage->busaddr &= ~PAGE_MASK; } schedule_swi = false; mtx_lock(&bounce_lock); STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links); bz->free_bpages++; bz->active_bpages--; if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) { if (reserve_bounce_pages(map->dmat, map, 1) == 0) { STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links); STAILQ_INSERT_TAIL(&bounce_map_callbacklist, map, links); bz->total_deferred++; schedule_swi = true; } } mtx_unlock(&bounce_lock); if (schedule_swi) swi_sched(busdma_ih, 0); } static void busdma_swi(void *dummy __unused) { bus_dma_tag_t dmat; struct bus_dmamap *map; mtx_lock(&bounce_lock); while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) { STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links); mtx_unlock(&bounce_lock); dmat = map->dmat; (dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_LOCK); bus_dmamap_load_mem(map->dmat, map, &map->mem, map->callback, map->callback_arg, BUS_DMA_WAITOK); (dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_UNLOCK); mtx_lock(&bounce_lock); } mtx_unlock(&bounce_lock); } static void start_busdma_swi(void *dummy __unused) { if (swi_add(NULL, "busdma", busdma_swi, NULL, SWI_BUSDMA, INTR_MPSAFE, &busdma_ih)) panic("died while creating busdma swi ithread"); } SYSINIT(start_busdma_swi, SI_SUB_SOFTINTR, SI_ORDER_ANY, start_busdma_swi, NULL); struct bus_dma_impl bus_dma_bounce_impl = { .tag_create = bounce_bus_dma_tag_create, .tag_destroy = bounce_bus_dma_tag_destroy, .tag_set_domain = bounce_bus_dma_tag_set_domain, .id_mapped = bounce_bus_dma_id_mapped, .map_create = bounce_bus_dmamap_create, .map_destroy = bounce_bus_dmamap_destroy, .mem_alloc = bounce_bus_dmamem_alloc, .mem_free = bounce_bus_dmamem_free, .load_phys = bounce_bus_dmamap_load_phys, .load_buffer = bounce_bus_dmamap_load_buffer, .load_ma = bounce_bus_dmamap_load_ma, .map_waitok = bounce_bus_dmamap_waitok, .map_complete = bounce_bus_dmamap_complete, .map_unload = bounce_bus_dmamap_unload, .map_sync = bounce_bus_dmamap_sync, #ifdef KMSAN .load_kmsan = bounce_bus_dmamap_load_kmsan, #endif };