diff --git a/sys/kern/uipc_mbuf.c b/sys/kern/uipc_mbuf.c
index f6ce9b5cc74b..3232af880925 100644
--- a/sys/kern/uipc_mbuf.c
+++ b/sys/kern/uipc_mbuf.c
@@ -1,2390 +1,2392 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1988, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_param.h"
 #include "opt_mbuf_stress_test.h"
 #include "opt_mbuf_profiling.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/kernel.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
 #include <sys/sysctl.h>
 #include <sys/domain.h>
 #include <sys/protosw.h>
 #include <sys/uio.h>
 #include <sys/vmmeter.h>
 #include <sys/sbuf.h>
 #include <sys/sdt.h>
 #include <vm/vm.h>
 #include <vm/vm_pageout.h>
 #include <vm/vm_page.h>
 
 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__init,
     "struct mbuf *", "mbufinfo_t *",
     "uint32_t", "uint32_t",
     "uint16_t", "uint16_t",
     "uint32_t", "uint32_t",
     "uint32_t", "uint32_t");
 
 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr_raw,
     "uint32_t", "uint32_t",
     "uint16_t", "uint16_t",
     "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__gethdr,
     "uint32_t", "uint32_t",
     "uint16_t", "uint16_t",
     "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get_raw,
     "uint32_t", "uint32_t",
     "uint16_t", "uint16_t",
     "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__get,
     "uint32_t", "uint32_t",
     "uint16_t", "uint16_t",
     "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__getcl,
     "uint32_t", "uint32_t",
     "uint16_t", "uint16_t",
     "uint32_t", "uint32_t",
     "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE5_XLATE(sdt, , , m__getjcl,
     "uint32_t", "uint32_t",
     "uint16_t", "uint16_t",
     "uint32_t", "uint32_t",
     "uint32_t", "uint32_t",
     "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE3_XLATE(sdt, , , m__clget,
     "struct mbuf *", "mbufinfo_t *",
     "uint32_t", "uint32_t",
     "uint32_t", "uint32_t");
 
 SDT_PROBE_DEFINE4_XLATE(sdt, , , m__cljget,
     "struct mbuf *", "mbufinfo_t *",
     "uint32_t", "uint32_t",
     "uint32_t", "uint32_t",
     "void*", "void*");
 
 SDT_PROBE_DEFINE(sdt, , , m__cljset);
 
 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__free,
         "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freem,
     "struct mbuf *", "mbufinfo_t *");
 
 SDT_PROBE_DEFINE1_XLATE(sdt, , , m__freemp,
     "struct mbuf *", "mbufinfo_t *");
 
 #include <security/mac/mac_framework.h>
 
 /*
  * Provide minimum possible defaults for link and protocol header space,
  * assuming IPv4 over Ethernet.  Enabling IPv6, IEEE802.11 or some other
  * protocol may grow these values.
  */
 u_int	max_linkhdr = 16;
 u_int	max_protohdr = 40;
 u_int	max_hdr = 16 + 40;
 SYSCTL_INT(_kern_ipc, KIPC_MAX_LINKHDR, max_linkhdr, CTLFLAG_RD,
 	   &max_linkhdr, 16, "Size of largest link layer header");
 SYSCTL_INT(_kern_ipc, KIPC_MAX_PROTOHDR, max_protohdr, CTLFLAG_RD,
 	   &max_protohdr, 40, "Size of largest protocol layer header");
 SYSCTL_INT(_kern_ipc, KIPC_MAX_HDR, max_hdr, CTLFLAG_RD,
 	   &max_hdr, 16 + 40, "Size of largest link plus protocol header");
 
 static void
 max_hdr_grow(void)
 {
 
 	max_hdr = max_linkhdr + max_protohdr;
 	MPASS(max_hdr <= MHLEN);
 }
 
 void
 max_linkhdr_grow(u_int new)
 {
 
 	if (new > max_linkhdr) {
 		max_linkhdr = new;
 		max_hdr_grow();
 	}
 }
 
 void
 max_protohdr_grow(u_int new)
 {
 
 	if (new > max_protohdr) {
 		max_protohdr = new;
 		max_hdr_grow();
 	}
 }
 
 #ifdef MBUF_STRESS_TEST
 int	m_defragpackets;
 int	m_defragbytes;
 int	m_defraguseless;
 int	m_defragfailure;
 int	m_defragrandomfailures;
 
 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragpackets, CTLFLAG_RD,
 	   &m_defragpackets, 0, "");
 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragbytes, CTLFLAG_RD,
 	   &m_defragbytes, 0, "");
 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defraguseless, CTLFLAG_RD,
 	   &m_defraguseless, 0, "");
 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragfailure, CTLFLAG_RD,
 	   &m_defragfailure, 0, "");
 SYSCTL_INT(_kern_ipc, OID_AUTO, m_defragrandomfailures, CTLFLAG_RW,
 	   &m_defragrandomfailures, 0, "");
 #endif
 
 /*
  * Ensure the correct size of various mbuf parameters.  It could be off due
  * to compiler-induced padding and alignment artifacts.
  */
 CTASSERT(MSIZE - offsetof(struct mbuf, m_dat) == MLEN);
 CTASSERT(MSIZE - offsetof(struct mbuf, m_pktdat) == MHLEN);
 
 /*
  * mbuf data storage should be 64-bit aligned regardless of architectural
  * pointer size; check this is the case with and without a packet header.
  */
 CTASSERT(offsetof(struct mbuf, m_dat) % 8 == 0);
 CTASSERT(offsetof(struct mbuf, m_pktdat) % 8 == 0);
 
 /*
  * While the specific values here don't matter too much (i.e., +/- a few
  * words), we do want to ensure that changes to these values are carefully
  * reasoned about and properly documented.  This is especially the case as
  * network-protocol and device-driver modules encode these layouts, and must
  * be recompiled if the structures change.  Check these values at compile time
  * against the ones documented in comments in mbuf.h.
  *
  * NB: Possibly they should be documented there via #define's and not just
  * comments.
  */
 #if defined(__LP64__)
 CTASSERT(offsetof(struct mbuf, m_dat) == 32);
 CTASSERT(sizeof(struct pkthdr) == 64);
 CTASSERT(sizeof(struct m_ext) == 160);
 #else
 CTASSERT(offsetof(struct mbuf, m_dat) == 24);
 CTASSERT(sizeof(struct pkthdr) == 56);
 #if defined(__powerpc__) && defined(BOOKE)
 /* PowerPC booke has 64-bit physical pointers. */
 CTASSERT(sizeof(struct m_ext) == 176);
 #else
 CTASSERT(sizeof(struct m_ext) == 172);
 #endif
 #endif
 
 /*
  * Assert that the queue(3) macros produce code of the same size as an old
  * plain pointer does.
  */
 #ifdef INVARIANTS
 static struct mbuf __used m_assertbuf;
 CTASSERT(sizeof(m_assertbuf.m_slist) == sizeof(m_assertbuf.m_next));
 CTASSERT(sizeof(m_assertbuf.m_stailq) == sizeof(m_assertbuf.m_next));
 CTASSERT(sizeof(m_assertbuf.m_slistpkt) == sizeof(m_assertbuf.m_nextpkt));
 CTASSERT(sizeof(m_assertbuf.m_stailqpkt) == sizeof(m_assertbuf.m_nextpkt));
 #endif
 
 /*
  * Attach the cluster from *m to *n, set up m_ext in *n
  * and bump the refcount of the cluster.
  */
 void
 mb_dupcl(struct mbuf *n, struct mbuf *m)
 {
 	volatile u_int *refcnt;
 
 	KASSERT(m->m_flags & (M_EXT | M_EXTPG),
 	    ("%s: M_EXT | M_EXTPG not set on %p", __func__, m));
 	KASSERT(!(n->m_flags & (M_EXT | M_EXTPG)),
 	    ("%s: M_EXT | M_EXTPG set on %p", __func__, n));
 
 	/*
 	 * Cache access optimization.
 	 *
 	 * o Regular M_EXT storage doesn't need full copy of m_ext, since
 	 *   the holder of the 'ext_count' is responsible to carry the free
 	 *   routine and its arguments.
 	 * o M_EXTPG data is split between main part of mbuf and m_ext, the
 	 *   main part is copied in full, the m_ext part is similar to M_EXT.
 	 * o EXT_EXTREF, where 'ext_cnt' doesn't point into mbuf at all, is
 	 *   special - it needs full copy of m_ext into each mbuf, since any
 	 *   copy could end up as the last to free.
 	 */
 	if (m->m_flags & M_EXTPG) {
 		bcopy(&m->m_epg_startcopy, &n->m_epg_startcopy,
 		    __rangeof(struct mbuf, m_epg_startcopy, m_epg_endcopy));
 		bcopy(&m->m_ext, &n->m_ext, m_epg_ext_copylen);
 	} else if (m->m_ext.ext_type == EXT_EXTREF)
 		bcopy(&m->m_ext, &n->m_ext, sizeof(struct m_ext));
 	else
 		bcopy(&m->m_ext, &n->m_ext, m_ext_copylen);
 
 	n->m_flags |= m->m_flags & (M_RDONLY | M_EXT | M_EXTPG);
 
 	/* See if this is the mbuf that holds the embedded refcount. */
 	if (m->m_ext.ext_flags & EXT_FLAG_EMBREF) {
 		refcnt = n->m_ext.ext_cnt = &m->m_ext.ext_count;
 		n->m_ext.ext_flags &= ~EXT_FLAG_EMBREF;
 	} else {
 		KASSERT(m->m_ext.ext_cnt != NULL,
 		    ("%s: no refcounting pointer on %p", __func__, m));
 		refcnt = m->m_ext.ext_cnt;
 	}
 
 	if (*refcnt == 1)
 		*refcnt += 1;
 	else
 		atomic_add_int(refcnt, 1);
 }
 
 void
 m_demote_pkthdr(struct mbuf *m)
 {
 
 	M_ASSERTPKTHDR(m);
 	M_ASSERT_NO_SND_TAG(m);
 
 	m_tag_delete_chain(m, NULL);
 	m->m_flags &= ~M_PKTHDR;
 	bzero(&m->m_pkthdr, sizeof(struct pkthdr));
 }
 
 /*
  * Clean up mbuf (chain) from any tags and packet headers.
  * If "all" is set then the first mbuf in the chain will be
  * cleaned too.
  */
 void
 m_demote(struct mbuf *m0, int all, int flags)
 {
 	struct mbuf *m;
 
 	flags |= M_DEMOTEFLAGS;
 
 	for (m = all ? m0 : m0->m_next; m != NULL; m = m->m_next) {
 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt in m %p, m0 %p",
 		    __func__, m, m0));
 		if (m->m_flags & M_PKTHDR)
 			m_demote_pkthdr(m);
 		m->m_flags &= flags;
 	}
 }
 
 /*
  * Sanity checks on mbuf (chain) for use in KASSERT() and general
  * debugging.
  * Returns 0 or panics when bad and 1 on all tests passed.
  * Sanitize, 0 to run M_SANITY_ACTION, 1 to garble things so they
  * blow up later.
  */
 int
 m_sanity(struct mbuf *m0, int sanitize)
 {
 	struct mbuf *m;
 	caddr_t a, b;
 	int pktlen = 0;
 
 #ifdef INVARIANTS
 #define	M_SANITY_ACTION(s)	panic("mbuf %p: " s, m)
 #else
 #define	M_SANITY_ACTION(s)	printf("mbuf %p: " s, m)
 #endif
 
 	for (m = m0; m != NULL; m = m->m_next) {
 		/*
 		 * Basic pointer checks.  If any of these fails then some
 		 * unrelated kernel memory before or after us is trashed.
 		 * No way to recover from that.
 		 */
 		a = M_START(m);
 		b = a + M_SIZE(m);
 		if ((caddr_t)m->m_data < a)
 			M_SANITY_ACTION("m_data outside mbuf data range left");
 		if ((caddr_t)m->m_data > b)
 			M_SANITY_ACTION("m_data outside mbuf data range right");
 		if ((caddr_t)m->m_data + m->m_len > b)
 			M_SANITY_ACTION("m_data + m_len exeeds mbuf space");
 
 		/* m->m_nextpkt may only be set on first mbuf in chain. */
 		if (m != m0 && m->m_nextpkt != NULL) {
 			if (sanitize) {
 				m_freem(m->m_nextpkt);
 				m->m_nextpkt = (struct mbuf *)0xDEADC0DE;
 			} else
 				M_SANITY_ACTION("m->m_nextpkt on in-chain mbuf");
 		}
 
 		/* packet length (not mbuf length!) calculation */
 		if (m0->m_flags & M_PKTHDR)
 			pktlen += m->m_len;
 
 		/* m_tags may only be attached to first mbuf in chain. */
 		if (m != m0 && m->m_flags & M_PKTHDR &&
 		    !SLIST_EMPTY(&m->m_pkthdr.tags)) {
 			if (sanitize) {
 				m_tag_delete_chain(m, NULL);
 				/* put in 0xDEADC0DE perhaps? */
 			} else
 				M_SANITY_ACTION("m_tags on in-chain mbuf");
 		}
 
 		/* M_PKTHDR may only be set on first mbuf in chain */
 		if (m != m0 && m->m_flags & M_PKTHDR) {
 			if (sanitize) {
 				bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
 				m->m_flags &= ~M_PKTHDR;
 				/* put in 0xDEADCODE and leave hdr flag in */
 			} else
 				M_SANITY_ACTION("M_PKTHDR on in-chain mbuf");
 		}
 	}
 	m = m0;
 	if (pktlen && pktlen != m->m_pkthdr.len) {
 		if (sanitize)
 			m->m_pkthdr.len = 0;
 		else
 			M_SANITY_ACTION("m_pkthdr.len != mbuf chain length");
 	}
 	return 1;
 
 #undef	M_SANITY_ACTION
 }
 
 /*
  * Non-inlined part of m_init().
  */
 int
 m_pkthdr_init(struct mbuf *m, int how)
 {
 #ifdef MAC
 	int error;
 #endif
 	m->m_data = m->m_pktdat;
 	bzero(&m->m_pkthdr, sizeof(m->m_pkthdr));
 #ifdef NUMA
 	m->m_pkthdr.numa_domain = M_NODOM;
 #endif
 #ifdef MAC
 	/* If the label init fails, fail the alloc */
 	error = mac_mbuf_init(m, how);
 	if (error)
 		return (error);
 #endif
 
 	return (0);
 }
 
 /*
  * "Move" mbuf pkthdr from "from" to "to".
  * "from" must have M_PKTHDR set, and "to" must be empty.
  */
 void
 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
 {
 
 #if 0
 	/* see below for why these are not enabled */
 	M_ASSERTPKTHDR(to);
 	/* Note: with MAC, this may not be a good assertion. */
 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags),
 	    ("m_move_pkthdr: to has tags"));
 #endif
 #ifdef MAC
 	/*
 	 * XXXMAC: It could be this should also occur for non-MAC?
 	 */
 	if (to->m_flags & M_PKTHDR)
 		m_tag_delete_chain(to, NULL);
 #endif
 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
 	    (to->m_flags & (M_EXT | M_EXTPG));
 	if ((to->m_flags & M_EXT) == 0)
 		to->m_data = to->m_pktdat;
 	to->m_pkthdr = from->m_pkthdr;		/* especially tags */
 	SLIST_INIT(&from->m_pkthdr.tags);	/* purge tags from src */
 	from->m_flags &= ~M_PKTHDR;
 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 		from->m_pkthdr.csum_flags &= ~CSUM_SND_TAG;
 		from->m_pkthdr.snd_tag = NULL;
 	}
 }
 
 /*
  * Duplicate "from"'s mbuf pkthdr in "to".
  * "from" must have M_PKTHDR set, and "to" must be empty.
  * In particular, this does a deep copy of the packet tags.
  */
 int
 m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how)
 {
 
 #if 0
 	/*
 	 * The mbuf allocator only initializes the pkthdr
 	 * when the mbuf is allocated with m_gethdr(). Many users
 	 * (e.g. m_copy*, m_prepend) use m_get() and then
 	 * smash the pkthdr as needed causing these
 	 * assertions to trip.  For now just disable them.
 	 */
 	M_ASSERTPKTHDR(to);
 	/* Note: with MAC, this may not be a good assertion. */
 	KASSERT(SLIST_EMPTY(&to->m_pkthdr.tags), ("m_dup_pkthdr: to has tags"));
 #endif
 	MBUF_CHECKSLEEP(how);
 #ifdef MAC
 	if (to->m_flags & M_PKTHDR)
 		m_tag_delete_chain(to, NULL);
 #endif
 	to->m_flags = (from->m_flags & M_COPYFLAGS) |
 	    (to->m_flags & (M_EXT | M_EXTPG));
 	if ((to->m_flags & M_EXT) == 0)
 		to->m_data = to->m_pktdat;
 	to->m_pkthdr = from->m_pkthdr;
 	if (from->m_pkthdr.csum_flags & CSUM_SND_TAG)
 		m_snd_tag_ref(from->m_pkthdr.snd_tag);
 	SLIST_INIT(&to->m_pkthdr.tags);
 	return (m_tag_copy_chain(to, from, how));
 }
 
 /*
  * Lesser-used path for M_PREPEND:
  * allocate new mbuf to prepend to chain,
  * copy junk along.
  */
 struct mbuf *
 m_prepend(struct mbuf *m, int len, int how)
 {
 	struct mbuf *mn;
 
 	if (m->m_flags & M_PKTHDR)
 		mn = m_gethdr(how, m->m_type);
 	else
 		mn = m_get(how, m->m_type);
 	if (mn == NULL) {
 		m_freem(m);
 		return (NULL);
 	}
 	if (m->m_flags & M_PKTHDR)
 		m_move_pkthdr(mn, m);
 	mn->m_next = m;
 	m = mn;
 	if (len < M_SIZE(m))
 		M_ALIGN(m, len);
 	m->m_len = len;
 	return (m);
 }
 
 /*
  * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
  * continuing for "len" bytes.  If len is M_COPYALL, copy to end of mbuf.
  * The wait parameter is a choice of M_WAITOK/M_NOWAIT from caller.
  * Note that the copy is read-only, because clusters are not copied,
  * only their reference counts are incremented.
  */
 struct mbuf *
 m_copym(struct mbuf *m, int off0, int len, int wait)
 {
 	struct mbuf *n, **np;
 	int off = off0;
 	struct mbuf *top;
 	int copyhdr = 0;
 
 	KASSERT(off >= 0, ("m_copym, negative off %d", off));
 	KASSERT(len >= 0, ("m_copym, negative len %d", len));
 	MBUF_CHECKSLEEP(wait);
 	if (off == 0 && m->m_flags & M_PKTHDR)
 		copyhdr = 1;
 	while (off > 0) {
 		KASSERT(m != NULL, ("m_copym, offset > size of mbuf chain"));
 		if (off < m->m_len)
 			break;
 		off -= m->m_len;
 		m = m->m_next;
 	}
 	np = &top;
 	top = NULL;
 	while (len > 0) {
 		if (m == NULL) {
 			KASSERT(len == M_COPYALL,
 			    ("m_copym, length > size of mbuf chain"));
 			break;
 		}
 		if (copyhdr)
 			n = m_gethdr(wait, m->m_type);
 		else
 			n = m_get(wait, m->m_type);
 		*np = n;
 		if (n == NULL)
 			goto nospace;
 		if (copyhdr) {
 			if (!m_dup_pkthdr(n, m, wait))
 				goto nospace;
 			if (len == M_COPYALL)
 				n->m_pkthdr.len -= off0;
 			else
 				n->m_pkthdr.len = len;
 			copyhdr = 0;
 		}
 		n->m_len = min(len, m->m_len - off);
 		if (m->m_flags & (M_EXT | M_EXTPG)) {
 			n->m_data = m->m_data + off;
 			mb_dupcl(n, m);
 		} else
 			bcopy(mtod(m, caddr_t)+off, mtod(n, caddr_t),
 			    (u_int)n->m_len);
 		if (len != M_COPYALL)
 			len -= n->m_len;
 		off = 0;
 		m = m->m_next;
 		np = &n->m_next;
 	}
 
 	return (top);
 nospace:
 	m_freem(top);
 	return (NULL);
 }
 
 /*
  * Copy an entire packet, including header (which must be present).
  * An optimization of the common case `m_copym(m, 0, M_COPYALL, how)'.
  * Note that the copy is read-only, because clusters are not copied,
  * only their reference counts are incremented.
  * Preserve alignment of the first mbuf so if the creator has left
  * some room at the beginning (e.g. for inserting protocol headers)
  * the copies still have the room available.
  */
 struct mbuf *
 m_copypacket(struct mbuf *m, int how)
 {
 	struct mbuf *top, *n, *o;
 
 	MBUF_CHECKSLEEP(how);
 	n = m_get(how, m->m_type);
 	top = n;
 	if (n == NULL)
 		goto nospace;
 
 	if (!m_dup_pkthdr(n, m, how))
 		goto nospace;
 	n->m_len = m->m_len;
 	if (m->m_flags & (M_EXT | M_EXTPG)) {
 		n->m_data = m->m_data;
 		mb_dupcl(n, m);
 	} else {
 		n->m_data = n->m_pktdat + (m->m_data - m->m_pktdat );
 		bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
 	}
 
 	m = m->m_next;
 	while (m) {
 		o = m_get(how, m->m_type);
 		if (o == NULL)
 			goto nospace;
 
 		n->m_next = o;
 		n = n->m_next;
 
 		n->m_len = m->m_len;
 		if (m->m_flags & (M_EXT | M_EXTPG)) {
 			n->m_data = m->m_data;
 			mb_dupcl(n, m);
 		} else {
 			bcopy(mtod(m, char *), mtod(n, char *), n->m_len);
 		}
 
 		m = m->m_next;
 	}
 	return top;
 nospace:
 	m_freem(top);
 	return (NULL);
 }
 
 static void
 m_copyfromunmapped(const struct mbuf *m, int off, int len, caddr_t cp)
 {
 	struct iovec iov;
 	struct uio uio;
 	int error __diagused;
 
 	KASSERT(off >= 0, ("m_copyfromunmapped: negative off %d", off));
 	KASSERT(len >= 0, ("m_copyfromunmapped: negative len %d", len));
 	KASSERT(off < m->m_len,
 	    ("m_copyfromunmapped: len exceeds mbuf length"));
 	iov.iov_base = cp;
 	iov.iov_len = len;
 	uio.uio_resid = len;
 	uio.uio_iov = &iov;
 	uio.uio_segflg = UIO_SYSSPACE;
 	uio.uio_iovcnt = 1;
 	uio.uio_offset = 0;
 	uio.uio_rw = UIO_READ;
 	error = m_unmapped_uiomove(m, off, &uio, len);
 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
 	   len));
 }
 
 /*
  * Copy data from an mbuf chain starting "off" bytes from the beginning,
  * continuing for "len" bytes, into the indicated buffer.
  */
 void
 m_copydata(const struct mbuf *m, int off, int len, caddr_t cp)
 {
 	u_int count;
 
 	KASSERT(off >= 0, ("m_copydata, negative off %d", off));
 	KASSERT(len >= 0, ("m_copydata, negative len %d", len));
 	while (off > 0) {
 		KASSERT(m != NULL, ("m_copydata, offset > size of mbuf chain"));
 		if (off < m->m_len)
 			break;
 		off -= m->m_len;
 		m = m->m_next;
 	}
 	while (len > 0) {
 		KASSERT(m != NULL, ("m_copydata, length > size of mbuf chain"));
 		count = min(m->m_len - off, len);
 		if ((m->m_flags & M_EXTPG) != 0)
 			m_copyfromunmapped(m, off, count, cp);
 		else
 			bcopy(mtod(m, caddr_t) + off, cp, count);
 		len -= count;
 		cp += count;
 		off = 0;
 		m = m->m_next;
 	}
 }
 
 /*
  * Copy a packet header mbuf chain into a completely new chain, including
  * copying any mbuf clusters.  Use this instead of m_copypacket() when
  * you need a writable copy of an mbuf chain.
  */
 struct mbuf *
 m_dup(const struct mbuf *m, int how)
 {
 	struct mbuf **p, *top = NULL;
 	int remain, moff, nsize;
 
 	MBUF_CHECKSLEEP(how);
 	/* Sanity check */
 	if (m == NULL)
 		return (NULL);
 	M_ASSERTPKTHDR(m);
 
 	/* While there's more data, get a new mbuf, tack it on, and fill it */
 	remain = m->m_pkthdr.len;
 	moff = 0;
 	p = &top;
 	while (remain > 0 || top == NULL) {	/* allow m->m_pkthdr.len == 0 */
 		struct mbuf *n;
 
 		/* Get the next new mbuf */
 		if (remain >= MINCLSIZE) {
 			n = m_getcl(how, m->m_type, 0);
 			nsize = MCLBYTES;
 		} else {
 			n = m_get(how, m->m_type);
 			nsize = MLEN;
 		}
 		if (n == NULL)
 			goto nospace;
 
 		if (top == NULL) {		/* First one, must be PKTHDR */
 			if (!m_dup_pkthdr(n, m, how)) {
 				m_free(n);
 				goto nospace;
 			}
 			if ((n->m_flags & M_EXT) == 0)
 				nsize = MHLEN;
 			n->m_flags &= ~M_RDONLY;
 		}
 		n->m_len = 0;
 
 		/* Link it into the new chain */
 		*p = n;
 		p = &n->m_next;
 
 		/* Copy data from original mbuf(s) into new mbuf */
 		while (n->m_len < nsize && m != NULL) {
 			int chunk = min(nsize - n->m_len, m->m_len - moff);
 
 			m_copydata(m, moff, chunk, n->m_data + n->m_len);
 			moff += chunk;
 			n->m_len += chunk;
 			remain -= chunk;
 			if (moff == m->m_len) {
 				m = m->m_next;
 				moff = 0;
 			}
 		}
 
 		/* Check correct total mbuf length */
 		KASSERT((remain > 0 && m != NULL) || (remain == 0 && m == NULL),
 		    	("%s: bogus m_pkthdr.len", __func__));
 	}
 	return (top);
 
 nospace:
 	m_freem(top);
 	return (NULL);
 }
 
 /*
  * Concatenate mbuf chain n to m.
  * Both chains must be of the same type (e.g. MT_DATA).
  * Any m_pkthdr is not updated.
  */
 void
 m_cat(struct mbuf *m, struct mbuf *n)
 {
 	while (m->m_next)
 		m = m->m_next;
 	while (n) {
 		if (!M_WRITABLE(m) ||
 		    (n->m_flags & M_EXTPG) != 0 ||
 		    M_TRAILINGSPACE(m) < n->m_len) {
 			/* just join the two chains */
 			m->m_next = n;
 			return;
 		}
 		/* splat the data from one into the other */
 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
 		    (u_int)n->m_len);
 		m->m_len += n->m_len;
 		n = m_free(n);
 	}
 }
 
 /*
  * Concatenate two pkthdr mbuf chains.
  */
 void
 m_catpkt(struct mbuf *m, struct mbuf *n)
 {
 
 	M_ASSERTPKTHDR(m);
 	M_ASSERTPKTHDR(n);
 
 	m->m_pkthdr.len += n->m_pkthdr.len;
 	m_demote(n, 1, 0);
 
 	m_cat(m, n);
 }
 
 void
 m_adj(struct mbuf *mp, int req_len)
 {
 	int len = req_len;
 	struct mbuf *m;
 	int count;
 
 	if ((m = mp) == NULL)
 		return;
 	if (len >= 0) {
 		/*
 		 * Trim from head.
 		 */
 		while (m != NULL && len > 0) {
 			if (m->m_len <= len) {
 				len -= m->m_len;
 				m->m_len = 0;
 				m = m->m_next;
 			} else {
 				m->m_len -= len;
 				m->m_data += len;
 				len = 0;
 			}
 		}
 		if (mp->m_flags & M_PKTHDR)
 			mp->m_pkthdr.len -= (req_len - len);
 	} else {
 		/*
 		 * Trim from tail.  Scan the mbuf chain,
 		 * calculating its length and finding the last mbuf.
 		 * If the adjustment only affects this mbuf, then just
 		 * adjust and return.  Otherwise, rescan and truncate
 		 * after the remaining size.
 		 */
 		len = -len;
 		count = 0;
 		for (;;) {
 			count += m->m_len;
 			if (m->m_next == (struct mbuf *)0)
 				break;
 			m = m->m_next;
 		}
 		if (m->m_len >= len) {
 			m->m_len -= len;
 			if (mp->m_flags & M_PKTHDR)
 				mp->m_pkthdr.len -= len;
 			return;
 		}
 		count -= len;
 		if (count < 0)
 			count = 0;
 		/*
 		 * Correct length for chain is "count".
 		 * Find the mbuf with last data, adjust its length,
 		 * and toss data from remaining mbufs on chain.
 		 */
 		m = mp;
 		if (m->m_flags & M_PKTHDR)
 			m->m_pkthdr.len = count;
 		for (; m; m = m->m_next) {
 			if (m->m_len >= count) {
 				m->m_len = count;
 				if (m->m_next != NULL) {
 					m_freem(m->m_next);
 					m->m_next = NULL;
 				}
 				break;
 			}
 			count -= m->m_len;
 		}
 	}
 }
 
 void
 m_adj_decap(struct mbuf *mp, int len)
 {
 	uint8_t rsstype;
 
 	m_adj(mp, len);
 	if ((mp->m_flags & M_PKTHDR) != 0) {
 		/*
 		 * If flowid was calculated by card from the inner
 		 * headers, move flowid to the decapsulated mbuf
 		 * chain, otherwise clear.  This depends on the
 		 * internals of m_adj, which keeps pkthdr as is, in
 		 * particular not changing rsstype and flowid.
 		 */
 		rsstype = mp->m_pkthdr.rsstype;
 		if ((rsstype & M_HASHTYPE_INNER) != 0) {
 			M_HASHTYPE_SET(mp, rsstype & ~M_HASHTYPE_INNER);
 		} else {
 			M_HASHTYPE_CLEAR(mp);
 		}
 	}
 }
 
 /*
  * Rearange an mbuf chain so that len bytes are contiguous
  * and in the data area of an mbuf (so that mtod will work
  * for a structure of size len).  Returns the resulting
  * mbuf chain on success, frees it and returns null on failure.
  * If there is room, it will add up to max_protohdr-len extra bytes to the
  * contiguous region in an attempt to avoid being called next time.
  */
 struct mbuf *
 m_pullup(struct mbuf *n, int len)
 {
 	struct mbuf *m;
 	int count;
 	int space;
 
 	KASSERT((n->m_flags & M_EXTPG) == 0,
 	    ("%s: unmapped mbuf %p", __func__, n));
 
 	/*
 	 * If first mbuf has no cluster, and has room for len bytes
 	 * without shifting current data, pullup into it,
 	 * otherwise allocate a new mbuf to prepend to the chain.
 	 */
 	if ((n->m_flags & M_EXT) == 0 &&
 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
 		if (n->m_len >= len)
 			return (n);
 		m = n;
 		n = n->m_next;
 		len -= m->m_len;
 	} else {
 		if (len > MHLEN)
 			goto bad;
 		m = m_get(M_NOWAIT, n->m_type);
 		if (m == NULL)
 			goto bad;
 		if (n->m_flags & M_PKTHDR)
 			m_move_pkthdr(m, n);
 	}
 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
 	do {
 		count = min(min(max(len, max_protohdr), space), n->m_len);
 		bcopy(mtod(n, caddr_t), mtod(m, caddr_t) + m->m_len,
 		  (u_int)count);
 		len -= count;
 		m->m_len += count;
 		n->m_len -= count;
 		space -= count;
 		if (n->m_len)
 			n->m_data += count;
 		else
 			n = m_free(n);
 	} while (len > 0 && n);
 	if (len > 0) {
 		(void) m_free(m);
 		goto bad;
 	}
 	m->m_next = n;
 	return (m);
 bad:
 	m_freem(n);
 	return (NULL);
 }
 
 /*
  * Like m_pullup(), except a new mbuf is always allocated, and we allow
  * the amount of empty space before the data in the new mbuf to be specified
  * (in the event that the caller expects to prepend later).
  */
 struct mbuf *
 m_copyup(struct mbuf *n, int len, int dstoff)
 {
 	struct mbuf *m;
 	int count, space;
 
 	if (len > (MHLEN - dstoff))
 		goto bad;
 	m = m_get(M_NOWAIT, n->m_type);
 	if (m == NULL)
 		goto bad;
 	if (n->m_flags & M_PKTHDR)
 		m_move_pkthdr(m, n);
 	m->m_data += dstoff;
 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
 	do {
 		count = min(min(max(len, max_protohdr), space), n->m_len);
 		memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
 		    (unsigned)count);
 		len -= count;
 		m->m_len += count;
 		n->m_len -= count;
 		space -= count;
 		if (n->m_len)
 			n->m_data += count;
 		else
 			n = m_free(n);
 	} while (len > 0 && n);
 	if (len > 0) {
 		(void) m_free(m);
 		goto bad;
 	}
 	m->m_next = n;
 	return (m);
  bad:
 	m_freem(n);
 	return (NULL);
 }
 
 /*
  * Partition an mbuf chain in two pieces, returning the tail --
  * all but the first len0 bytes.  In case of failure, it returns NULL and
  * attempts to restore the chain to its original state.
  *
  * Note that the resulting mbufs might be read-only, because the new
  * mbuf can end up sharing an mbuf cluster with the original mbuf if
  * the "breaking point" happens to lie within a cluster mbuf. Use the
  * M_WRITABLE() macro to check for this case.
  */
 struct mbuf *
 m_split(struct mbuf *m0, int len0, int wait)
 {
 	struct mbuf *m, *n;
 	u_int len = len0, remain;
 
 	MBUF_CHECKSLEEP(wait);
 	for (m = m0; m && len > m->m_len; m = m->m_next)
 		len -= m->m_len;
 	if (m == NULL)
 		return (NULL);
 	remain = m->m_len - len;
 	if (m0->m_flags & M_PKTHDR && remain == 0) {
 		n = m_gethdr(wait, m0->m_type);
 		if (n == NULL)
 			return (NULL);
 		n->m_next = m->m_next;
 		m->m_next = NULL;
 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 			n->m_pkthdr.snd_tag =
 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
 		} else
 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
 		m0->m_pkthdr.len = len0;
 		return (n);
 	} else if (m0->m_flags & M_PKTHDR) {
 		n = m_gethdr(wait, m0->m_type);
 		if (n == NULL)
 			return (NULL);
 		if (m0->m_pkthdr.csum_flags & CSUM_SND_TAG) {
 			n->m_pkthdr.snd_tag =
 			    m_snd_tag_ref(m0->m_pkthdr.snd_tag);
 			n->m_pkthdr.csum_flags |= CSUM_SND_TAG;
 		} else
 			n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
 		m0->m_pkthdr.len = len0;
 		if (m->m_flags & (M_EXT | M_EXTPG))
 			goto extpacket;
 		if (remain > MHLEN) {
 			/* m can't be the lead packet */
 			M_ALIGN(n, 0);
 			n->m_next = m_split(m, len, wait);
 			if (n->m_next == NULL) {
 				(void) m_free(n);
 				return (NULL);
 			} else {
 				n->m_len = 0;
 				return (n);
 			}
 		} else
 			M_ALIGN(n, remain);
 	} else if (remain == 0) {
 		n = m->m_next;
 		m->m_next = NULL;
 		return (n);
 	} else {
 		n = m_get(wait, m->m_type);
 		if (n == NULL)
 			return (NULL);
 		M_ALIGN(n, remain);
 	}
 extpacket:
 	if (m->m_flags & (M_EXT | M_EXTPG)) {
 		n->m_data = m->m_data + len;
 		mb_dupcl(n, m);
 	} else {
 		bcopy(mtod(m, caddr_t) + len, mtod(n, caddr_t), remain);
 	}
 	n->m_len = remain;
 	m->m_len = len;
 	n->m_next = m->m_next;
 	m->m_next = NULL;
 	return (n);
 }
 
 /*
  * Partition mchain in two pieces, keeping len0 bytes in head and transferring
  * remainder to tail.  In case of failure, both chains to be left untouched.
  * M_EOR is observed correctly.
  * Resulting mbufs might be read-only.
  */
 int
 mc_split(struct mchain *head, struct mchain *tail, u_int len0, int wait)
 {
 	struct mbuf *m, *n;
 	u_int len, mlen, remain;
 
 	MPASS(!(mc_first(head)->m_flags & M_PKTHDR));
 	MBUF_CHECKSLEEP(wait);
 
 	mlen = 0;
 	len = len0;
 	STAILQ_FOREACH(m, &head->mc_q, m_stailq) {
 		mlen += MSIZE;
 		if (m->m_flags & M_EXT)
 			mlen += m->m_ext.ext_size;
 		if (len > m->m_len)
 			len -= m->m_len;
 		else
 			break;
 	}
 	if (__predict_false(m == NULL)) {
 		*tail = MCHAIN_INITIALIZER(tail);
 		return (0);
 	}
 	remain = m->m_len - len;
 	if (remain > 0) {
 		if (__predict_false((n = m_get(wait, m->m_type)) == NULL))
 			return (ENOMEM);
 		m_align(n, remain);
 		if (m->m_flags & M_EXT) {
 			n->m_data = m->m_data + len;
 			mb_dupcl(n, m);
 		} else
 			bcopy(mtod(m, char *) + len, mtod(n, char *), remain);
 	}
 
 	/* XXXGL: need STAILQ_SPLIT */
 	STAILQ_FIRST(&tail->mc_q) = STAILQ_NEXT(m, m_stailq);
 	tail->mc_q.stqh_last = head->mc_q.stqh_last;
 	tail->mc_len = head->mc_len - len0;
 	tail->mc_mlen = head->mc_mlen - mlen;
 	if (remain > 0) {
 		MPASS(n->m_len == 0);
 		mc_prepend(tail, n);
 		n->m_len = remain;
 		m->m_len -= remain;
 		if (m->m_flags & M_EOR) {
 			m->m_flags &= ~M_EOR;
 			n->m_flags |= M_EOR;
 		}
 	}
 	head->mc_q.stqh_last = &STAILQ_NEXT(m, m_stailq);
 	STAILQ_NEXT(m, m_stailq) = NULL;
 	head->mc_len = len0;
 	head->mc_mlen = mlen;
 
 	return (0);
 }
 
 /*
  * Routine to copy from device local memory into mbufs.
  * Note that `off' argument is offset into first mbuf of target chain from
  * which to begin copying the data to.
  */
 struct mbuf *
 m_devget(char *buf, int totlen, int off, struct ifnet *ifp,
     void (*copy)(char *from, caddr_t to, u_int len))
 {
 	struct mbuf *m;
 	struct mbuf *top = NULL, **mp = &top;
 	int len;
 
 	if (off < 0 || off > MHLEN)
 		return (NULL);
 
 	while (totlen > 0) {
 		if (top == NULL) {	/* First one, must be PKTHDR */
 			if (totlen + off >= MINCLSIZE) {
 				m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 				len = MCLBYTES;
 			} else {
 				m = m_gethdr(M_NOWAIT, MT_DATA);
 				len = MHLEN;
 
 				/* Place initial small packet/header at end of mbuf */
 				if (m && totlen + off + max_linkhdr <= MHLEN) {
 					m->m_data += max_linkhdr;
 					len -= max_linkhdr;
 				}
 			}
 			if (m == NULL)
 				return NULL;
 			m->m_pkthdr.rcvif = ifp;
 			m->m_pkthdr.len = totlen;
 		} else {
 			if (totlen + off >= MINCLSIZE) {
 				m = m_getcl(M_NOWAIT, MT_DATA, 0);
 				len = MCLBYTES;
 			} else {
 				m = m_get(M_NOWAIT, MT_DATA);
 				len = MLEN;
 			}
 			if (m == NULL) {
 				m_freem(top);
 				return NULL;
 			}
 		}
 		if (off) {
 			m->m_data += off;
 			len -= off;
 			off = 0;
 		}
 		m->m_len = len = min(totlen, len);
 		if (copy)
 			copy(buf, mtod(m, caddr_t), (u_int)len);
 		else
 			bcopy(buf, mtod(m, caddr_t), (u_int)len);
 		buf += len;
 		*mp = m;
 		mp = &m->m_next;
 		totlen -= len;
 	}
 	return (top);
 }
 
 static void
 m_copytounmapped(const struct mbuf *m, int off, int len, c_caddr_t cp)
 {
 	struct iovec iov;
 	struct uio uio;
 	int error __diagused;
 
 	KASSERT(off >= 0, ("m_copytounmapped: negative off %d", off));
 	KASSERT(len >= 0, ("m_copytounmapped: negative len %d", len));
 	KASSERT(off < m->m_len, ("m_copytounmapped: len exceeds mbuf length"));
 	iov.iov_base = __DECONST(caddr_t, cp);
 	iov.iov_len = len;
 	uio.uio_resid = len;
 	uio.uio_iov = &iov;
 	uio.uio_segflg = UIO_SYSSPACE;
 	uio.uio_iovcnt = 1;
 	uio.uio_offset = 0;
 	uio.uio_rw = UIO_WRITE;
 	error = m_unmapped_uiomove(m, off, &uio, len);
 	KASSERT(error == 0, ("m_unmapped_uiomove failed: off %d, len %d", off,
 	   len));
 }
 
 /*
  * Copy data from a buffer back into the indicated mbuf chain,
  * starting "off" bytes from the beginning, extending the mbuf
  * chain if necessary.
  */
 void
 m_copyback(struct mbuf *m0, int off, int len, c_caddr_t cp)
 {
 	int mlen;
 	struct mbuf *m = m0, *n;
 	int totlen = 0;
 
 	if (m0 == NULL)
 		return;
+
+	MPASS(M_WRITABLE(m0));
 	while (off > (mlen = m->m_len)) {
 		off -= mlen;
 		totlen += mlen;
 		if (m->m_next == NULL) {
 			n = m_get(M_NOWAIT, m->m_type);
 			if (n == NULL)
 				goto out;
 			bzero(mtod(n, caddr_t), MLEN);
 			n->m_len = min(MLEN, len + off);
 			m->m_next = n;
 		}
 		m = m->m_next;
 	}
 	while (len > 0) {
 		if (m->m_next == NULL && (len > m->m_len - off)) {
 			m->m_len += min(len - (m->m_len - off),
 			    M_TRAILINGSPACE(m));
 		}
 		mlen = min (m->m_len - off, len);
 		if ((m->m_flags & M_EXTPG) != 0)
 			m_copytounmapped(m, off, mlen, cp);
 		else
 			bcopy(cp, off + mtod(m, caddr_t), (u_int)mlen);
 		cp += mlen;
 		len -= mlen;
 		mlen += off;
 		off = 0;
 		totlen += mlen;
 		if (len == 0)
 			break;
 		if (m->m_next == NULL) {
 			n = m_get(M_NOWAIT, m->m_type);
 			if (n == NULL)
 				break;
 			n->m_len = min(MLEN, len);
 			m->m_next = n;
 		}
 		m = m->m_next;
 	}
 out:	if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
 		m->m_pkthdr.len = totlen;
 }
 
 /*
  * Append the specified data to the indicated mbuf chain,
  * Extend the mbuf chain if the new data does not fit in
  * existing space.
  *
  * Return 1 if able to complete the job; otherwise 0.
  */
 int
 m_append(struct mbuf *m0, int len, c_caddr_t cp)
 {
 	struct mbuf *m, *n;
 	int remainder, space;
 
 	for (m = m0; m->m_next != NULL; m = m->m_next)
 		;
 	remainder = len;
 	space = M_TRAILINGSPACE(m);
 	if (space > 0) {
 		/*
 		 * Copy into available space.
 		 */
 		if (space > remainder)
 			space = remainder;
 		bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
 		m->m_len += space;
 		cp += space, remainder -= space;
 	}
 	while (remainder > 0) {
 		/*
 		 * Allocate a new mbuf; could check space
 		 * and allocate a cluster instead.
 		 */
 		n = m_get(M_NOWAIT, m->m_type);
 		if (n == NULL)
 			break;
 		n->m_len = min(MLEN, remainder);
 		bcopy(cp, mtod(n, caddr_t), n->m_len);
 		cp += n->m_len, remainder -= n->m_len;
 		m->m_next = n;
 		m = n;
 	}
 	if (m0->m_flags & M_PKTHDR)
 		m0->m_pkthdr.len += len - remainder;
 	return (remainder == 0);
 }
 
 static int
 m_apply_extpg_one(struct mbuf *m, int off, int len,
     int (*f)(void *, void *, u_int), void *arg)
 {
 	void *p;
 	u_int i, count, pgoff, pglen;
 	int rval;
 
 	KASSERT(PMAP_HAS_DMAP,
 	    ("m_apply_extpg_one does not support unmapped mbufs"));
 	off += mtod(m, vm_offset_t);
 	if (off < m->m_epg_hdrlen) {
 		count = min(m->m_epg_hdrlen - off, len);
 		rval = f(arg, m->m_epg_hdr + off, count);
 		if (rval)
 			return (rval);
 		len -= count;
 		off = 0;
 	} else
 		off -= m->m_epg_hdrlen;
 	pgoff = m->m_epg_1st_off;
 	for (i = 0; i < m->m_epg_npgs && len > 0; i++) {
 		pglen = m_epg_pagelen(m, i, pgoff);
 		if (off < pglen) {
 			count = min(pglen - off, len);
 			p = (void *)PHYS_TO_DMAP(m->m_epg_pa[i] + pgoff + off);
 			rval = f(arg, p, count);
 			if (rval)
 				return (rval);
 			len -= count;
 			off = 0;
 		} else
 			off -= pglen;
 		pgoff = 0;
 	}
 	if (len > 0) {
 		KASSERT(off < m->m_epg_trllen,
 		    ("m_apply_extpg_one: offset beyond trailer"));
 		KASSERT(len <= m->m_epg_trllen - off,
 		    ("m_apply_extpg_one: length beyond trailer"));
 		return (f(arg, m->m_epg_trail + off, len));
 	}
 	return (0);
 }
 
 /* Apply function f to the data in a single mbuf. */
 static int
 m_apply_one(struct mbuf *m, int off, int len,
     int (*f)(void *, void *, u_int), void *arg)
 {
 	if ((m->m_flags & M_EXTPG) != 0)
 		return (m_apply_extpg_one(m, off, len, f, arg));
 	else
 		return (f(arg, mtod(m, caddr_t) + off, len));
 }
 
 /*
  * Apply function f to the data in an mbuf chain starting "off" bytes from
  * the beginning, continuing for "len" bytes.
  */
 int
 m_apply(struct mbuf *m, int off, int len,
     int (*f)(void *, void *, u_int), void *arg)
 {
 	u_int count;
 	int rval;
 
 	KASSERT(off >= 0, ("m_apply, negative off %d", off));
 	KASSERT(len >= 0, ("m_apply, negative len %d", len));
 	while (off > 0) {
 		KASSERT(m != NULL, ("m_apply, offset > size of mbuf chain "
 		    "(%d extra)", off));
 		if (off < m->m_len)
 			break;
 		off -= m->m_len;
 		m = m->m_next;
 	}
 	while (len > 0) {
 		KASSERT(m != NULL, ("m_apply, length > size of mbuf chain "
 		    "(%d extra)", len));
 		count = min(m->m_len - off, len);
 		rval = m_apply_one(m, off, count, f, arg);
 		if (rval)
 			return (rval);
 		len -= count;
 		off = 0;
 		m = m->m_next;
 	}
 	return (0);
 }
 
 /*
  * Return a pointer to mbuf/offset of location in mbuf chain.
  */
 struct mbuf *
 m_getptr(struct mbuf *m, int loc, int *off)
 {
 
 	while (loc >= 0) {
 		/* Normal end of search. */
 		if (m->m_len > loc) {
 			*off = loc;
 			return (m);
 		} else {
 			loc -= m->m_len;
 			if (m->m_next == NULL) {
 				if (loc == 0) {
 					/* Point at the end of valid data. */
 					*off = m->m_len;
 					return (m);
 				}
 				return (NULL);
 			}
 			m = m->m_next;
 		}
 	}
 	return (NULL);
 }
 
 void
 m_print(const struct mbuf *m, int maxlen)
 {
 	int len;
 	int pdata;
 	const struct mbuf *m2;
 
 	if (m == NULL) {
 		printf("mbuf: %p\n", m);
 		return;
 	}
 
 	if (m->m_flags & M_PKTHDR)
 		len = m->m_pkthdr.len;
 	else
 		len = -1;
 	m2 = m;
 	while (m2 != NULL && (len == -1 || len)) {
 		pdata = m2->m_len;
 		if (maxlen != -1 && pdata > maxlen)
 			pdata = maxlen;
 		printf("mbuf: %p len: %d, next: %p, %b%s", m2, m2->m_len,
 		    m2->m_next, m2->m_flags, "\20\20freelist\17skipfw"
 		    "\11proto5\10proto4\7proto3\6proto2\5proto1\4rdonly"
 		    "\3eor\2pkthdr\1ext", pdata ? "" : "\n");
 		if (pdata)
 			printf(", %*D\n", pdata, (u_char *)m2->m_data, "-");
 		if (len != -1)
 			len -= m2->m_len;
 		m2 = m2->m_next;
 	}
 	if (len > 0)
 		printf("%d bytes unaccounted for.\n", len);
 	return;
 }
 
 u_int
 m_fixhdr(struct mbuf *m0)
 {
 	u_int len;
 
 	len = m_length(m0, NULL);
 	m0->m_pkthdr.len = len;
 	return (len);
 }
 
 u_int
 m_length(struct mbuf *m0, struct mbuf **last)
 {
 	struct mbuf *m;
 	u_int len;
 
 	len = 0;
 	for (m = m0; m != NULL; m = m->m_next) {
 		len += m->m_len;
 		if (m->m_next == NULL)
 			break;
 	}
 	if (last != NULL)
 		*last = m;
 	return (len);
 }
 
 /*
  * Defragment a mbuf chain, returning the shortest possible
  * chain of mbufs and clusters.  If allocation fails and
  * this cannot be completed, NULL will be returned, but
  * the passed in chain will be unchanged.  Upon success,
  * the original chain will be freed, and the new chain
  * will be returned.
  *
  * If a non-packet header is passed in, the original
  * mbuf (chain?) will be returned unharmed.
  */
 struct mbuf *
 m_defrag(struct mbuf *m0, int how)
 {
 	struct mbuf *m_new = NULL, *m_final = NULL;
 	int progress = 0, length;
 
 	MBUF_CHECKSLEEP(how);
 	if (!(m0->m_flags & M_PKTHDR))
 		return (m0);
 
 	m_fixhdr(m0); /* Needed sanity check */
 
 #ifdef MBUF_STRESS_TEST
 	if (m_defragrandomfailures) {
 		int temp = arc4random() & 0xff;
 		if (temp == 0xba)
 			goto nospace;
 	}
 #endif
 
 	if (m0->m_pkthdr.len > MHLEN)
 		m_final = m_getcl(how, MT_DATA, M_PKTHDR);
 	else
 		m_final = m_gethdr(how, MT_DATA);
 
 	if (m_final == NULL)
 		goto nospace;
 
 	if (m_dup_pkthdr(m_final, m0, how) == 0)
 		goto nospace;
 
 	m_new = m_final;
 
 	while (progress < m0->m_pkthdr.len) {
 		length = m0->m_pkthdr.len - progress;
 		if (length > MCLBYTES)
 			length = MCLBYTES;
 
 		if (m_new == NULL) {
 			if (length > MLEN)
 				m_new = m_getcl(how, MT_DATA, 0);
 			else
 				m_new = m_get(how, MT_DATA);
 			if (m_new == NULL)
 				goto nospace;
 		}
 
 		m_copydata(m0, progress, length, mtod(m_new, caddr_t));
 		progress += length;
 		m_new->m_len = length;
 		if (m_new != m_final)
 			m_cat(m_final, m_new);
 		m_new = NULL;
 	}
 #ifdef MBUF_STRESS_TEST
 	if (m0->m_next == NULL)
 		m_defraguseless++;
 #endif
 	m_freem(m0);
 	m0 = m_final;
 #ifdef MBUF_STRESS_TEST
 	m_defragpackets++;
 	m_defragbytes += m0->m_pkthdr.len;
 #endif
 	return (m0);
 nospace:
 #ifdef MBUF_STRESS_TEST
 	m_defragfailure++;
 #endif
 	if (m_final)
 		m_freem(m_final);
 	return (NULL);
 }
 
 /*
  * Return the number of fragments an mbuf will use.  This is usually
  * used as a proxy for the number of scatter/gather elements needed by
  * a DMA engine to access an mbuf.  In general mapped mbufs are
  * assumed to be backed by physically contiguous buffers that only
  * need a single fragment.  Unmapped mbufs, on the other hand, can
  * span disjoint physical pages.
  */
 static int
 frags_per_mbuf(struct mbuf *m)
 {
 	int frags;
 
 	if ((m->m_flags & M_EXTPG) == 0)
 		return (1);
 
 	/*
 	 * The header and trailer are counted as a single fragment
 	 * each when present.
 	 *
 	 * XXX: This overestimates the number of fragments by assuming
 	 * all the backing physical pages are disjoint.
 	 */
 	frags = 0;
 	if (m->m_epg_hdrlen != 0)
 		frags++;
 	frags += m->m_epg_npgs;
 	if (m->m_epg_trllen != 0)
 		frags++;
 
 	return (frags);
 }
 
 /*
  * Defragment an mbuf chain, returning at most maxfrags separate
  * mbufs+clusters.  If this is not possible NULL is returned and
  * the original mbuf chain is left in its present (potentially
  * modified) state.  We use two techniques: collapsing consecutive
  * mbufs and replacing consecutive mbufs by a cluster.
  *
  * NB: this should really be named m_defrag but that name is taken
  */
 struct mbuf *
 m_collapse(struct mbuf *m0, int how, int maxfrags)
 {
 	struct mbuf *m, *n, *n2, **prev;
 	u_int curfrags;
 
 	/*
 	 * Calculate the current number of frags.
 	 */
 	curfrags = 0;
 	for (m = m0; m != NULL; m = m->m_next)
 		curfrags += frags_per_mbuf(m);
 	/*
 	 * First, try to collapse mbufs.  Note that we always collapse
 	 * towards the front so we don't need to deal with moving the
 	 * pkthdr.  This may be suboptimal if the first mbuf has much
 	 * less data than the following.
 	 */
 	m = m0;
 again:
 	for (;;) {
 		n = m->m_next;
 		if (n == NULL)
 			break;
 		if (M_WRITABLE(m) &&
 		    n->m_len < M_TRAILINGSPACE(m)) {
 			m_copydata(n, 0, n->m_len,
 			    mtod(m, char *) + m->m_len);
 			m->m_len += n->m_len;
 			m->m_next = n->m_next;
 			curfrags -= frags_per_mbuf(n);
 			m_free(n);
 			if (curfrags <= maxfrags)
 				return m0;
 		} else
 			m = n;
 	}
 	KASSERT(maxfrags > 1,
 		("maxfrags %u, but normal collapse failed", maxfrags));
 	/*
 	 * Collapse consecutive mbufs to a cluster.
 	 */
 	prev = &m0->m_next;		/* NB: not the first mbuf */
 	while ((n = *prev) != NULL) {
 		if ((n2 = n->m_next) != NULL &&
 		    n->m_len + n2->m_len < MCLBYTES) {
 			m = m_getcl(how, MT_DATA, 0);
 			if (m == NULL)
 				goto bad;
 			m_copydata(n, 0,  n->m_len, mtod(m, char *));
 			m_copydata(n2, 0,  n2->m_len,
 			    mtod(m, char *) + n->m_len);
 			m->m_len = n->m_len + n2->m_len;
 			m->m_next = n2->m_next;
 			*prev = m;
 			curfrags += 1;  /* For the new cluster */
 			curfrags -= frags_per_mbuf(n);
 			curfrags -= frags_per_mbuf(n2);
 			m_free(n);
 			m_free(n2);
 			if (curfrags <= maxfrags)
 				return m0;
 			/*
 			 * Still not there, try the normal collapse
 			 * again before we allocate another cluster.
 			 */
 			goto again;
 		}
 		prev = &n->m_next;
 	}
 	/*
 	 * No place where we can collapse to a cluster; punt.
 	 * This can occur if, for example, you request 2 frags
 	 * but the packet requires that both be clusters (we
 	 * never reallocate the first mbuf to avoid moving the
 	 * packet header).
 	 */
 bad:
 	return NULL;
 }
 
 #ifdef MBUF_STRESS_TEST
 
 /*
  * Fragment an mbuf chain.  There's no reason you'd ever want to do
  * this in normal usage, but it's great for stress testing various
  * mbuf consumers.
  *
  * If fragmentation is not possible, the original chain will be
  * returned.
  *
  * Possible length values:
  * 0	 no fragmentation will occur
  * > 0	each fragment will be of the specified length
  * -1	each fragment will be the same random value in length
  * -2	each fragment's length will be entirely random
  * (Random values range from 1 to 256)
  */
 struct mbuf *
 m_fragment(struct mbuf *m0, int how, int length)
 {
 	struct mbuf *m_first, *m_last;
 	int divisor = 255, progress = 0, fraglen;
 
 	if (!(m0->m_flags & M_PKTHDR))
 		return (m0);
 
 	if (length == 0 || length < -2)
 		return (m0);
 	if (length > MCLBYTES)
 		length = MCLBYTES;
 	if (length < 0 && divisor > MCLBYTES)
 		divisor = MCLBYTES;
 	if (length == -1)
 		length = 1 + (arc4random() % divisor);
 	if (length > 0)
 		fraglen = length;
 
 	m_fixhdr(m0); /* Needed sanity check */
 
 	m_first = m_getcl(how, MT_DATA, M_PKTHDR);
 	if (m_first == NULL)
 		goto nospace;
 
 	if (m_dup_pkthdr(m_first, m0, how) == 0)
 		goto nospace;
 
 	m_last = m_first;
 
 	while (progress < m0->m_pkthdr.len) {
 		if (length == -2)
 			fraglen = 1 + (arc4random() % divisor);
 		if (fraglen > m0->m_pkthdr.len - progress)
 			fraglen = m0->m_pkthdr.len - progress;
 
 		if (progress != 0) {
 			struct mbuf *m_new = m_getcl(how, MT_DATA, 0);
 			if (m_new == NULL)
 				goto nospace;
 
 			m_last->m_next = m_new;
 			m_last = m_new;
 		}
 
 		m_copydata(m0, progress, fraglen, mtod(m_last, caddr_t));
 		progress += fraglen;
 		m_last->m_len = fraglen;
 	}
 	m_freem(m0);
 	m0 = m_first;
 	return (m0);
 nospace:
 	if (m_first)
 		m_freem(m_first);
 	/* Return the original chain on failure */
 	return (m0);
 }
 
 #endif
 
 /*
  * Free pages from mbuf_ext_pgs, assuming they were allocated via
  * vm_page_alloc() and aren't associated with any object.  Complement
  * to allocator from m_uiotombuf_nomap().
  */
 void
 mb_free_mext_pgs(struct mbuf *m)
 {
 	vm_page_t pg;
 
 	M_ASSERTEXTPG(m);
 	for (int i = 0; i < m->m_epg_npgs; i++) {
 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
 		vm_page_unwire_noq(pg);
 		vm_page_free(pg);
 	}
 }
 
 static struct mbuf *
 m_uiotombuf_nomap(struct uio *uio, int how, int len, int maxseg, int flags)
 {
 	struct mbuf *m, *mb, *prev;
 	vm_page_t pg_array[MBUF_PEXT_MAX_PGS];
 	int error, length, i, needed;
 	ssize_t total;
 	int pflags = malloc2vm_flags(how) | VM_ALLOC_NODUMP | VM_ALLOC_WIRED;
 
 	MPASS((flags & M_PKTHDR) == 0);
 	MPASS((how & M_ZERO) == 0);
 
 	/*
 	 * len can be zero or an arbitrary large value bound by
 	 * the total data supplied by the uio.
 	 */
 	if (len > 0)
 		total = MIN(uio->uio_resid, len);
 	else
 		total = uio->uio_resid;
 
 	if (maxseg == 0)
 		maxseg = MBUF_PEXT_MAX_PGS * PAGE_SIZE;
 
 	/*
 	 * If total is zero, return an empty mbuf.  This can occur
 	 * for TLS 1.0 connections which send empty fragments as
 	 * a countermeasure against the known-IV weakness in CBC
 	 * ciphersuites.
 	 */
 	if (__predict_false(total == 0)) {
 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
 		if (mb == NULL)
 			return (NULL);
 		mb->m_epg_flags = EPG_FLAG_ANON;
 		return (mb);
 	}
 
 	/*
 	 * Allocate the pages
 	 */
 	m = NULL;
 	while (total > 0) {
 		mb = mb_alloc_ext_pgs(how, mb_free_mext_pgs);
 		if (mb == NULL)
 			goto failed;
 		if (m == NULL)
 			m = mb;
 		else
 			prev->m_next = mb;
 		prev = mb;
 		mb->m_epg_flags = EPG_FLAG_ANON;
 		needed = length = MIN(maxseg, total);
 		for (i = 0; needed > 0; i++, needed -= PAGE_SIZE) {
 retry_page:
 			pg_array[i] = vm_page_alloc_noobj(pflags);
 			if (pg_array[i] == NULL) {
 				if (how & M_NOWAIT) {
 					goto failed;
 				} else {
 					vm_wait(NULL);
 					goto retry_page;
 				}
 			}
 			mb->m_epg_pa[i] = VM_PAGE_TO_PHYS(pg_array[i]);
 			mb->m_epg_npgs++;
 		}
 		mb->m_epg_last_len = length - PAGE_SIZE * (mb->m_epg_npgs - 1);
 		MBUF_EXT_PGS_ASSERT_SANITY(mb);
 		total -= length;
 		error = uiomove_fromphys(pg_array, 0, length, uio);
 		if (error != 0)
 			goto failed;
 		mb->m_len = length;
 		mb->m_ext.ext_size += PAGE_SIZE * mb->m_epg_npgs;
 		if (flags & M_PKTHDR)
 			m->m_pkthdr.len += length;
 	}
 	return (m);
 
 failed:
 	m_freem(m);
 	return (NULL);
 }
 
 /*
  * Copy the contents of uio into a properly sized mbuf chain.
  * A compat KPI.  Users are recommended to use direct calls to backing
  * functions.
  */
 struct mbuf *
 m_uiotombuf(struct uio *uio, int how, int len, int lspace, int flags)
 {
 
 	if (flags & M_EXTPG) {
 		/* XXX: 'lspace' magically becomes maxseg! */
 		return (m_uiotombuf_nomap(uio, how, len, lspace, flags));
 	} else if (__predict_false(uio->uio_resid == 0)) {
 		struct mbuf *m;
 
 		/*
 		 * m_uiotombuf() is known to return zero length buffer, keep
 		 * this compatibility. mc_uiotomc() won't do that.
 		 */
 		if (flags & M_PKTHDR) {
 			m = m_gethdr(how, MT_DATA);
 			m->m_pkthdr.memlen = MSIZE;
 		} else
 			m = m_get(how, MT_DATA);
 		if (m != NULL)
 			m->m_data += lspace;
 		return (m);
 	} else {
 		struct mchain mc;
 		int error;
 
 		error = mc_uiotomc(&mc, uio, len, lspace, how, flags);
 		if (__predict_true(error == 0)) {
 			if (flags & M_PKTHDR) {
 				mc_first(&mc)->m_pkthdr.len = mc.mc_len;
 				mc_first(&mc)->m_pkthdr.memlen = mc.mc_mlen;
 			}
 			return (mc_first(&mc));
 		} else
 			return (NULL);
 	}
 }
 
 /*
  * Copy the contents of uio into a properly sized mbuf chain.
  * In case of failure state of mchain is inconsistent.
  * @param length Limit copyout length.  If 0 entire uio_resid is copied.
  * @param lspace Provide leading space in the first mbuf in the chain.
  */
 int
 mc_uiotomc(struct mchain *mc, struct uio *uio, u_int length, u_int lspace,
     int how, int flags)
 {
 	struct mbuf *mb;
 	u_int total;
 	int error;
 
 	MPASS(lspace < MHLEN);
 	MPASS(UINT_MAX - lspace >= length);
 	MPASS(uio->uio_rw == UIO_WRITE);
 	MPASS(uio->uio_resid >= 0);
 
 	if (length > 0) {
 		if (uio->uio_resid > length) {
 			total = length;
 			flags &= ~M_EOR;
 		} else
 			total = uio->uio_resid;
 	} else if (__predict_false(uio->uio_resid + lspace > UINT_MAX))
 		return (EOVERFLOW);
 	else
 		total = uio->uio_resid;
 
 	if (__predict_false(total + lspace == 0)) {
 		*mc = MCHAIN_INITIALIZER(mc);
 		return (0);
 	}
 
 	error = mc_get(mc, total + lspace, how, MT_DATA, flags);
 	if (__predict_false(error))
 		return (error);
 	mc_first(mc)->m_data += lspace;
 
 	/* Fill all mbufs with uio data and update header information. */
 	STAILQ_FOREACH(mb, &mc->mc_q, m_stailq) {
 		u_int mlen;
 
 		mlen = min(M_TRAILINGSPACE(mb), total - mc->mc_len);
 		error = uiomove(mtod(mb, void *), mlen, uio);
 		if (__predict_false(error)) {
 			mc_freem(mc);
 			return (error);
 		}
 		mb->m_len = mlen;
 		mc->mc_len += mlen;
 	}
 	MPASS(mc->mc_len == total);
 
 	return (0);
 }
 
 /*
  * Copy data to/from an unmapped mbuf into a uio limited by len if set.
  */
 int
 m_unmapped_uiomove(const struct mbuf *m, int m_off, struct uio *uio, int len)
 {
 	vm_page_t pg;
 	int error, i, off, pglen, pgoff, seglen, segoff;
 
 	M_ASSERTEXTPG(m);
 	error = 0;
 
 	/* Skip over any data removed from the front. */
 	off = mtod(m, vm_offset_t);
 
 	off += m_off;
 	if (m->m_epg_hdrlen != 0) {
 		if (off >= m->m_epg_hdrlen) {
 			off -= m->m_epg_hdrlen;
 		} else {
 			seglen = m->m_epg_hdrlen - off;
 			segoff = off;
 			seglen = min(seglen, len);
 			off = 0;
 			len -= seglen;
 			error = uiomove(__DECONST(void *,
 			    &m->m_epg_hdr[segoff]), seglen, uio);
 		}
 	}
 	pgoff = m->m_epg_1st_off;
 	for (i = 0; i < m->m_epg_npgs && error == 0 && len > 0; i++) {
 		pglen = m_epg_pagelen(m, i, pgoff);
 		if (off >= pglen) {
 			off -= pglen;
 			pgoff = 0;
 			continue;
 		}
 		seglen = pglen - off;
 		segoff = pgoff + off;
 		off = 0;
 		seglen = min(seglen, len);
 		len -= seglen;
 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
 		error = uiomove_fromphys(&pg, segoff, seglen, uio);
 		pgoff = 0;
 	};
 	if (len != 0 && error == 0) {
 		KASSERT((off + len) <= m->m_epg_trllen,
 		    ("off + len > trail (%d + %d > %d, m_off = %d)", off, len,
 		    m->m_epg_trllen, m_off));
 		error = uiomove(__DECONST(void *, &m->m_epg_trail[off]),
 		    len, uio);
 	}
 	return (error);
 }
 
 /*
  * Copy an mbuf chain into a uio limited by len if set.
  */
 int
 m_mbuftouio(struct uio *uio, const struct mbuf *m, int len)
 {
 	int error, length, total;
 	int progress = 0;
 
 	if (len > 0)
 		total = min(uio->uio_resid, len);
 	else
 		total = uio->uio_resid;
 
 	/* Fill the uio with data from the mbufs. */
 	for (; m != NULL; m = m->m_next) {
 		length = min(m->m_len, total - progress);
 
 		if ((m->m_flags & M_EXTPG) != 0)
 			error = m_unmapped_uiomove(m, 0, uio, length);
 		else
 			error = uiomove(mtod(m, void *), length, uio);
 		if (error)
 			return (error);
 
 		progress += length;
 	}
 
 	return (0);
 }
 
 /*
  * Create a writable copy of the mbuf chain.  While doing this
  * we compact the chain with a goal of producing a chain with
  * at most two mbufs.  The second mbuf in this chain is likely
  * to be a cluster.  The primary purpose of this work is to create
  * a writable packet for encryption, compression, etc.  The
  * secondary goal is to linearize the data so the data can be
  * passed to crypto hardware in the most efficient manner possible.
  */
 struct mbuf *
 m_unshare(struct mbuf *m0, int how)
 {
 	struct mbuf *m, *mprev;
 	struct mbuf *n, *mfirst, *mlast;
 	int len, off;
 
 	mprev = NULL;
 	for (m = m0; m != NULL; m = mprev->m_next) {
 		/*
 		 * Regular mbufs are ignored unless there's a cluster
 		 * in front of it that we can use to coalesce.  We do
 		 * the latter mainly so later clusters can be coalesced
 		 * also w/o having to handle them specially (i.e. convert
 		 * mbuf+cluster -> cluster).  This optimization is heavily
 		 * influenced by the assumption that we're running over
 		 * Ethernet where MCLBYTES is large enough that the max
 		 * packet size will permit lots of coalescing into a
 		 * single cluster.  This in turn permits efficient
 		 * crypto operations, especially when using hardware.
 		 */
 		if ((m->m_flags & M_EXT) == 0) {
 			if (mprev && (mprev->m_flags & M_EXT) &&
 			    m->m_len <= M_TRAILINGSPACE(mprev)) {
 				/* XXX: this ignores mbuf types */
 				memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 				    mtod(m, caddr_t), m->m_len);
 				mprev->m_len += m->m_len;
 				mprev->m_next = m->m_next;	/* unlink from chain */
 				m_free(m);			/* reclaim mbuf */
 			} else {
 				mprev = m;
 			}
 			continue;
 		}
 		/*
 		 * Writable mbufs are left alone (for now).
 		 */
 		if (M_WRITABLE(m)) {
 			mprev = m;
 			continue;
 		}
 
 		/*
 		 * Not writable, replace with a copy or coalesce with
 		 * the previous mbuf if possible (since we have to copy
 		 * it anyway, we try to reduce the number of mbufs and
 		 * clusters so that future work is easier).
 		 */
 		KASSERT(m->m_flags & M_EXT, ("m_flags 0x%x", m->m_flags));
 		/* NB: we only coalesce into a cluster or larger */
 		if (mprev != NULL && (mprev->m_flags & M_EXT) &&
 		    m->m_len <= M_TRAILINGSPACE(mprev)) {
 			/* XXX: this ignores mbuf types */
 			memcpy(mtod(mprev, caddr_t) + mprev->m_len,
 			    mtod(m, caddr_t), m->m_len);
 			mprev->m_len += m->m_len;
 			mprev->m_next = m->m_next;	/* unlink from chain */
 			m_free(m);			/* reclaim mbuf */
 			continue;
 		}
 
 		/*
 		 * Allocate new space to hold the copy and copy the data.
 		 * We deal with jumbo mbufs (i.e. m_len > MCLBYTES) by
 		 * splitting them into clusters.  We could just malloc a
 		 * buffer and make it external but too many device drivers
 		 * don't know how to break up the non-contiguous memory when
 		 * doing DMA.
 		 */
 		n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 		if (n == NULL) {
 			m_freem(m0);
 			return (NULL);
 		}
 		if (m->m_flags & M_PKTHDR) {
 			KASSERT(mprev == NULL, ("%s: m0 %p, m %p has M_PKTHDR",
 			    __func__, m0, m));
 			m_move_pkthdr(n, m);
 		}
 		len = m->m_len;
 		off = 0;
 		mfirst = n;
 		mlast = NULL;
 		for (;;) {
 			int cc = min(len, MCLBYTES);
 			memcpy(mtod(n, caddr_t), mtod(m, caddr_t) + off, cc);
 			n->m_len = cc;
 			if (mlast != NULL)
 				mlast->m_next = n;
 			mlast = n;
 #if 0
 			newipsecstat.ips_clcopied++;
 #endif
 
 			len -= cc;
 			if (len <= 0)
 				break;
 			off += cc;
 
 			n = m_getcl(how, m->m_type, m->m_flags & M_COPYFLAGS);
 			if (n == NULL) {
 				m_freem(mfirst);
 				m_freem(m0);
 				return (NULL);
 			}
 		}
 		n->m_next = m->m_next;
 		if (mprev == NULL)
 			m0 = mfirst;		/* new head of chain */
 		else
 			mprev->m_next = mfirst;	/* replace old mbuf */
 		m_free(m);			/* release old mbuf */
 		mprev = mfirst;
 	}
 	return (m0);
 }
 
 #ifdef MBUF_PROFILING
 
 #define MP_BUCKETS 32 /* don't just change this as things may overflow.*/
 struct mbufprofile {
 	uintmax_t wasted[MP_BUCKETS];
 	uintmax_t used[MP_BUCKETS];
 	uintmax_t segments[MP_BUCKETS];
 } mbprof;
 
 void
 m_profile(struct mbuf *m)
 {
 	int segments = 0;
 	int used = 0;
 	int wasted = 0;
 
 	while (m) {
 		segments++;
 		used += m->m_len;
 		if (m->m_flags & M_EXT) {
 			wasted += MHLEN - sizeof(m->m_ext) +
 			    m->m_ext.ext_size - m->m_len;
 		} else {
 			if (m->m_flags & M_PKTHDR)
 				wasted += MHLEN - m->m_len;
 			else
 				wasted += MLEN - m->m_len;
 		}
 		m = m->m_next;
 	}
 	/* be paranoid.. it helps */
 	if (segments > MP_BUCKETS - 1)
 		segments = MP_BUCKETS - 1;
 	if (used > 100000)
 		used = 100000;
 	if (wasted > 100000)
 		wasted = 100000;
 	/* store in the appropriate bucket */
 	/* don't bother locking. if it's slightly off, so what? */
 	mbprof.segments[segments]++;
 	mbprof.used[fls(used)]++;
 	mbprof.wasted[fls(wasted)]++;
 }
 
 static int
 mbprof_handler(SYSCTL_HANDLER_ARGS)
 {
 	char buf[256];
 	struct sbuf sb;
 	int error;
 	uint64_t *p;
 
 	sbuf_new_for_sysctl(&sb, buf, sizeof(buf), req);
 
 	p = &mbprof.wasted[0];
 	sbuf_printf(&sb,
 	    "wasted:\n"
 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 #ifdef BIG_ARRAY
 	p = &mbprof.wasted[16];
 	sbuf_printf(&sb,
 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 #endif
 	p = &mbprof.used[0];
 	sbuf_printf(&sb,
 	    "used:\n"
 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 #ifdef BIG_ARRAY
 	p = &mbprof.used[16];
 	sbuf_printf(&sb,
 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 #endif
 	p = &mbprof.segments[0];
 	sbuf_printf(&sb,
 	    "segments:\n"
 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
 	    "%ju %ju %ju %ju %ju %ju %ju %ju\n",
 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 #ifdef BIG_ARRAY
 	p = &mbprof.segments[16];
 	sbuf_printf(&sb,
 	    "%ju %ju %ju %ju %ju %ju %ju %ju "
 	    "%ju %ju %ju %ju %ju %ju %ju %jju",
 	    p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
 	    p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
 #endif
 
 	error = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error);
 }
 
 static int
 mbprof_clr_handler(SYSCTL_HANDLER_ARGS)
 {
 	int clear, error;
 
 	clear = 0;
 	error = sysctl_handle_int(oidp, &clear, 0, req);
 	if (error || !req->newptr)
 		return (error);
 
 	if (clear) {
 		bzero(&mbprof, sizeof(mbprof));
 	}
 
 	return (error);
 }
 
 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofile,
     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
     mbprof_handler, "A",
     "mbuf profiling statistics");
 
 SYSCTL_PROC(_kern_ipc, OID_AUTO, mbufprofileclr,
     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
     mbprof_clr_handler, "I",
     "clear mbuf profiling statistics");
 #endif