diff --git a/sys/kern/subr_epoch.c b/sys/kern/subr_epoch.c index 798dbdc4360e..651fd8b419f0 100644 --- a/sys/kern/subr_epoch.c +++ b/sys/kern/subr_epoch.c @@ -1,996 +1,996 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2018, Matthew Macy * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EPOCH_TRACE #include #include #include #endif #include #include #include #include #include #ifdef __amd64__ #define EPOCH_ALIGN CACHE_LINE_SIZE*2 #else #define EPOCH_ALIGN CACHE_LINE_SIZE #endif TAILQ_HEAD (epoch_tdlist, epoch_tracker); typedef struct epoch_record { ck_epoch_record_t er_record; struct epoch_context er_drain_ctx; struct epoch *er_parent; volatile struct epoch_tdlist er_tdlist; volatile uint32_t er_gen; uint32_t er_cpuid; #ifdef INVARIANTS /* Used to verify record ownership for non-preemptible epochs. */ struct thread *er_td; #endif } __aligned(EPOCH_ALIGN) *epoch_record_t; struct epoch { struct ck_epoch e_epoch __aligned(EPOCH_ALIGN); epoch_record_t e_pcpu_record; int e_in_use; int e_flags; struct sx e_drain_sx; struct mtx e_drain_mtx; volatile int e_drain_count; const char *e_name; }; /* arbitrary --- needs benchmarking */ #define MAX_ADAPTIVE_SPIN 100 #define MAX_EPOCHS 64 CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context)); SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "epoch information"); SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "epoch stats"); /* Stats. */ static counter_u64_t block_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW, &block_count, "# of times a thread was in an epoch when epoch_wait was called"); static counter_u64_t migrate_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW, &migrate_count, "# of times thread was migrated to another CPU in epoch_wait"); static counter_u64_t turnstile_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW, &turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait"); static counter_u64_t switch_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW, &switch_count, "# of times a thread voluntarily context switched in epoch_wait"); static counter_u64_t epoch_call_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW, &epoch_call_count, "# of times a callback was deferred"); static counter_u64_t epoch_call_task_count; SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW, &epoch_call_task_count, "# of times a callback task was run"); TAILQ_HEAD (threadlist, thread); CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry, ck_epoch_entry_container) static struct epoch epoch_array[MAX_EPOCHS]; DPCPU_DEFINE(struct grouptask, epoch_cb_task); DPCPU_DEFINE(int, epoch_cb_count); static __read_mostly int inited; __read_mostly epoch_t global_epoch; __read_mostly epoch_t global_epoch_preempt; static void epoch_call_task(void *context __unused); static uma_zone_t pcpu_zone_record; static struct sx epoch_sx; #define EPOCH_LOCK() sx_xlock(&epoch_sx) #define EPOCH_UNLOCK() sx_xunlock(&epoch_sx) #ifdef EPOCH_TRACE struct stackentry { RB_ENTRY(stackentry) se_node; struct stack se_stack; }; static int stackentry_compare(struct stackentry *a, struct stackentry *b) { if (a->se_stack.depth > b->se_stack.depth) return (1); if (a->se_stack.depth < b->se_stack.depth) return (-1); for (int i = 0; i < a->se_stack.depth; i++) { if (a->se_stack.pcs[i] > b->se_stack.pcs[i]) return (1); if (a->se_stack.pcs[i] < b->se_stack.pcs[i]) return (-1); } return (0); } RB_HEAD(stacktree, stackentry) epoch_stacks = RB_INITIALIZER(&epoch_stacks); RB_GENERATE_STATIC(stacktree, stackentry, se_node, stackentry_compare); static struct mtx epoch_stacks_lock; MTX_SYSINIT(epochstacks, &epoch_stacks_lock, "epoch_stacks", MTX_DEF); static bool epoch_trace_stack_print = true; SYSCTL_BOOL(_kern_epoch, OID_AUTO, trace_stack_print, CTLFLAG_RWTUN, &epoch_trace_stack_print, 0, "Print stack traces on epoch reports"); static void epoch_trace_report(const char *fmt, ...) __printflike(1, 2); static inline void epoch_trace_report(const char *fmt, ...) { va_list ap; struct stackentry se, *new; stack_zero(&se.se_stack); /* XXX: is it really needed? */ stack_save(&se.se_stack); /* Tree is never reduced - go lockless. */ if (RB_FIND(stacktree, &epoch_stacks, &se) != NULL) return; new = malloc(sizeof(*new), M_STACK, M_NOWAIT); if (new != NULL) { bcopy(&se.se_stack, &new->se_stack, sizeof(struct stack)); mtx_lock(&epoch_stacks_lock); new = RB_INSERT(stacktree, &epoch_stacks, new); mtx_unlock(&epoch_stacks_lock); if (new != NULL) free(new, M_STACK); } va_start(ap, fmt); (void)vprintf(fmt, ap); va_end(ap); if (epoch_trace_stack_print) stack_print_ddb(&se.se_stack); } static inline void epoch_trace_enter(struct thread *td, epoch_t epoch, epoch_tracker_t et, const char *file, int line) { epoch_tracker_t iet; SLIST_FOREACH(iet, &td->td_epochs, et_tlink) { if (iet->et_epoch != epoch) continue; epoch_trace_report("Recursively entering epoch %s " "at %s:%d, previously entered at %s:%d\n", epoch->e_name, file, line, iet->et_file, iet->et_line); } et->et_epoch = epoch; et->et_file = file; et->et_line = line; SLIST_INSERT_HEAD(&td->td_epochs, et, et_tlink); } static inline void epoch_trace_exit(struct thread *td, epoch_t epoch, epoch_tracker_t et, const char *file, int line) { if (SLIST_FIRST(&td->td_epochs) != et) { epoch_trace_report("Exiting epoch %s in a not nested order " "at %s:%d. Most recently entered %s at %s:%d\n", epoch->e_name, file, line, SLIST_FIRST(&td->td_epochs)->et_epoch->e_name, SLIST_FIRST(&td->td_epochs)->et_file, SLIST_FIRST(&td->td_epochs)->et_line); /* This will panic if et is not anywhere on td_epochs. */ SLIST_REMOVE(&td->td_epochs, et, epoch_tracker, et_tlink); } else SLIST_REMOVE_HEAD(&td->td_epochs, et_tlink); } /* Used by assertions that check thread state before going to sleep. */ void epoch_trace_list(struct thread *td) { epoch_tracker_t iet; SLIST_FOREACH(iet, &td->td_epochs, et_tlink) printf("Epoch %s entered at %s:%d\n", iet->et_epoch->e_name, iet->et_file, iet->et_line); } #endif /* EPOCH_TRACE */ static void epoch_init(void *arg __unused) { int cpu; block_count = counter_u64_alloc(M_WAITOK); migrate_count = counter_u64_alloc(M_WAITOK); turnstile_count = counter_u64_alloc(M_WAITOK); switch_count = counter_u64_alloc(M_WAITOK); epoch_call_count = counter_u64_alloc(M_WAITOK); epoch_call_task_count = counter_u64_alloc(M_WAITOK); pcpu_zone_record = uma_zcreate("epoch_record pcpu", sizeof(struct epoch_record), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_PCPU); CPU_FOREACH(cpu) { GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL); taskqgroup_attach_cpu(qgroup_softirq, DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, NULL, NULL, "epoch call task"); } #ifdef EPOCH_TRACE SLIST_INIT(&thread0.td_epochs); #endif sx_init(&epoch_sx, "epoch-sx"); inited = 1; global_epoch = epoch_alloc("Global", 0); global_epoch_preempt = epoch_alloc("Global preemptible", EPOCH_PREEMPT); } SYSINIT(epoch, SI_SUB_EPOCH, SI_ORDER_FIRST, epoch_init, NULL); #if !defined(EARLY_AP_STARTUP) static void epoch_init_smp(void *dummy __unused) { inited = 2; } SYSINIT(epoch_smp, SI_SUB_SMP + 1, SI_ORDER_FIRST, epoch_init_smp, NULL); #endif static void epoch_ctor(epoch_t epoch) { epoch_record_t er; int cpu; epoch->e_pcpu_record = uma_zalloc_pcpu(pcpu_zone_record, M_WAITOK); CPU_FOREACH(cpu) { er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); bzero(er, sizeof(*er)); ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL); TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist); er->er_cpuid = cpu; er->er_parent = epoch; } } static void epoch_adjust_prio(struct thread *td, u_char prio) { thread_lock(td); sched_prio(td, prio); thread_unlock(td); } epoch_t epoch_alloc(const char *name, int flags) { epoch_t epoch; int i; MPASS(name != NULL); if (__predict_false(!inited)) panic("%s called too early in boot", __func__); EPOCH_LOCK(); /* * Find a free index in the epoch array. If no free index is * found, try to use the index after the last one. */ for (i = 0;; i++) { /* * If too many epochs are currently allocated, * return NULL. */ if (i == MAX_EPOCHS) { epoch = NULL; goto done; } if (epoch_array[i].e_in_use == 0) break; } epoch = epoch_array + i; ck_epoch_init(&epoch->e_epoch); epoch_ctor(epoch); epoch->e_flags = flags; epoch->e_name = name; sx_init(&epoch->e_drain_sx, "epoch-drain-sx"); mtx_init(&epoch->e_drain_mtx, "epoch-drain-mtx", NULL, MTX_DEF); /* * Set e_in_use last, because when this field is set the * epoch_call_task() function will start scanning this epoch * structure. */ atomic_store_rel_int(&epoch->e_in_use, 1); done: EPOCH_UNLOCK(); return (epoch); } void epoch_free(epoch_t epoch) { #ifdef INVARIANTS int cpu; #endif EPOCH_LOCK(); MPASS(epoch->e_in_use != 0); epoch_drain_callbacks(epoch); atomic_store_rel_int(&epoch->e_in_use, 0); /* * Make sure the epoch_call_task() function see e_in_use equal * to zero, by calling epoch_wait() on the global_epoch: */ epoch_wait(global_epoch); #ifdef INVARIANTS CPU_FOREACH(cpu) { epoch_record_t er; er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); /* * Sanity check: none of the records should be in use anymore. * We drained callbacks above and freeing the pcpu records is * imminent. */ MPASS(er->er_td == NULL); MPASS(TAILQ_EMPTY(&er->er_tdlist)); } #endif uma_zfree_pcpu(pcpu_zone_record, epoch->e_pcpu_record); mtx_destroy(&epoch->e_drain_mtx); sx_destroy(&epoch->e_drain_sx); memset(epoch, 0, sizeof(*epoch)); EPOCH_UNLOCK(); } static epoch_record_t epoch_currecord(epoch_t epoch) { return (zpcpu_get(epoch->e_pcpu_record)); } #define INIT_CHECK(epoch) \ do { \ if (__predict_false((epoch) == NULL)) \ return; \ } while (0) void _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE) { struct epoch_record *er; struct thread *td; MPASS(cold || epoch != NULL); td = curthread; MPASS((vm_offset_t)et >= td->td_kstack && (vm_offset_t)et + sizeof(struct epoch_tracker) <= td->td_kstack + td->td_kstack_pages * PAGE_SIZE); INIT_CHECK(epoch); MPASS(epoch->e_flags & EPOCH_PREEMPT); #ifdef EPOCH_TRACE epoch_trace_enter(td, epoch, et, file, line); #endif et->et_td = td; THREAD_NO_SLEEPING(); critical_enter(); sched_pin(); - td->td_pre_epoch_prio = td->td_priority; + et->et_old_priority = td->td_priority; er = epoch_currecord(epoch); /* Record-level tracking is reserved for non-preemptible epochs. */ MPASS(er->er_td == NULL); TAILQ_INSERT_TAIL(&er->er_tdlist, et, et_link); ck_epoch_begin(&er->er_record, &et->et_section); critical_exit(); } void epoch_enter(epoch_t epoch) { epoch_record_t er; MPASS(cold || epoch != NULL); INIT_CHECK(epoch); critical_enter(); er = epoch_currecord(epoch); #ifdef INVARIANTS if (er->er_record.active == 0) { MPASS(er->er_td == NULL); er->er_td = curthread; } else { /* We've recursed, just make sure our accounting isn't wrong. */ MPASS(er->er_td == curthread); } #endif ck_epoch_begin(&er->er_record, NULL); } void _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE) { struct epoch_record *er; struct thread *td; INIT_CHECK(epoch); td = curthread; critical_enter(); sched_unpin(); THREAD_SLEEPING_OK(); er = epoch_currecord(epoch); MPASS(epoch->e_flags & EPOCH_PREEMPT); MPASS(et != NULL); MPASS(et->et_td == td); #ifdef INVARIANTS et->et_td = (void*)0xDEADBEEF; /* Record-level tracking is reserved for non-preemptible epochs. */ MPASS(er->er_td == NULL); #endif ck_epoch_end(&er->er_record, &et->et_section); TAILQ_REMOVE(&er->er_tdlist, et, et_link); er->er_gen++; - if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) - epoch_adjust_prio(td, td->td_pre_epoch_prio); + if (__predict_false(et->et_old_priority != td->td_priority)) + epoch_adjust_prio(td, et->et_old_priority); critical_exit(); #ifdef EPOCH_TRACE epoch_trace_exit(td, epoch, et, file, line); #endif } void epoch_exit(epoch_t epoch) { epoch_record_t er; INIT_CHECK(epoch); er = epoch_currecord(epoch); ck_epoch_end(&er->er_record, NULL); #ifdef INVARIANTS MPASS(er->er_td == curthread); if (er->er_record.active == 0) er->er_td = NULL; #endif critical_exit(); } /* * epoch_block_handler_preempt() is a callback from the CK code when another * thread is currently in an epoch section. */ static void epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr, void *arg __unused) { epoch_record_t record; struct thread *td, *owner, *curwaittd; struct epoch_tracker *tdwait; struct turnstile *ts; struct lock_object *lock; int spincount, gen; int locksheld __unused; record = __containerof(cr, struct epoch_record, er_record); td = curthread; locksheld = td->td_locks; spincount = 0; counter_u64_add(block_count, 1); /* * We lost a race and there's no longer any threads * on the CPU in an epoch section. */ if (TAILQ_EMPTY(&record->er_tdlist)) return; if (record->er_cpuid != curcpu) { /* * If the head of the list is running, we can wait for it * to remove itself from the list and thus save us the * overhead of a migration */ gen = record->er_gen; thread_unlock(td); /* * We can't actually check if the waiting thread is running * so we simply poll for it to exit before giving up and * migrating. */ do { cpu_spinwait(); } while (!TAILQ_EMPTY(&record->er_tdlist) && gen == record->er_gen && spincount++ < MAX_ADAPTIVE_SPIN); thread_lock(td); /* * If the generation has changed we can poll again * otherwise we need to migrate. */ if (gen != record->er_gen) return; /* * Being on the same CPU as that of the record on which * we need to wait allows us access to the thread * list associated with that CPU. We can then examine the * oldest thread in the queue and wait on its turnstile * until it resumes and so on until a grace period * elapses. * */ counter_u64_add(migrate_count, 1); sched_bind(td, record->er_cpuid); /* * At this point we need to return to the ck code * to scan to see if a grace period has elapsed. * We can't move on to check the thread list, because * in the meantime new threads may have arrived that * in fact belong to a different epoch. */ return; } /* * Try to find a thread in an epoch section on this CPU * waiting on a turnstile. Otherwise find the lowest * priority thread (highest prio value) and drop our priority * to match to allow it to run. */ TAILQ_FOREACH(tdwait, &record->er_tdlist, et_link) { /* * Propagate our priority to any other waiters to prevent us * from starving them. They will have their original priority * restore on exit from epoch_wait(). */ curwaittd = tdwait->et_td; if (!TD_IS_INHIBITED(curwaittd) && curwaittd->td_priority > td->td_priority) { critical_enter(); thread_unlock(td); thread_lock(curwaittd); sched_prio(curwaittd, td->td_priority); thread_unlock(curwaittd); thread_lock(td); critical_exit(); } if (TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd) && ((ts = curwaittd->td_blocked) != NULL)) { /* * We unlock td to allow turnstile_wait to reacquire * the thread lock. Before unlocking it we enter a * critical section to prevent preemption after we * reenable interrupts by dropping the thread lock in * order to prevent curwaittd from getting to run. */ critical_enter(); thread_unlock(td); if (turnstile_lock(ts, &lock, &owner)) { if (ts == curwaittd->td_blocked) { MPASS(TD_IS_INHIBITED(curwaittd) && TD_ON_LOCK(curwaittd)); critical_exit(); turnstile_wait(ts, owner, curwaittd->td_tsqueue); counter_u64_add(turnstile_count, 1); thread_lock(td); return; } turnstile_unlock(ts, lock); } thread_lock(td); critical_exit(); KASSERT(td->td_locks == locksheld, ("%d extra locks held", td->td_locks - locksheld)); } } /* * We didn't find any threads actually blocked on a lock * so we have nothing to do except context switch away. */ counter_u64_add(switch_count, 1); mi_switch(SW_VOL | SWT_RELINQUISH); /* * It is important the thread lock is dropped while yielding * to allow other threads to acquire the lock pointed to by * TDQ_LOCKPTR(td). Currently mi_switch() will unlock the * thread lock before returning. Else a deadlock like * situation might happen. */ thread_lock(td); } void epoch_wait_preempt(epoch_t epoch) { struct thread *td; int was_bound; int old_cpu; int old_pinned; u_char old_prio; int locks __unused; MPASS(cold || epoch != NULL); INIT_CHECK(epoch); td = curthread; #ifdef INVARIANTS locks = curthread->td_locks; MPASS(epoch->e_flags & EPOCH_PREEMPT); if ((epoch->e_flags & EPOCH_LOCKED) == 0) WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "epoch_wait() can be long running"); KASSERT(!in_epoch(epoch), ("epoch_wait_preempt() called in the middle " "of an epoch section of the same epoch")); #endif DROP_GIANT(); thread_lock(td); old_cpu = PCPU_GET(cpuid); old_pinned = td->td_pinned; old_prio = td->td_priority; was_bound = sched_is_bound(td); sched_unbind(td); td->td_pinned = 0; sched_bind(td, old_cpu); ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, NULL); /* restore CPU binding, if any */ if (was_bound != 0) { sched_bind(td, old_cpu); } else { /* get thread back to initial CPU, if any */ if (old_pinned != 0) sched_bind(td, old_cpu); sched_unbind(td); } /* restore pinned after bind */ td->td_pinned = old_pinned; /* restore thread priority */ sched_prio(td, old_prio); thread_unlock(td); PICKUP_GIANT(); KASSERT(td->td_locks == locks, ("%d residual locks held", td->td_locks - locks)); } static void epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused, void *arg __unused) { cpu_spinwait(); } void epoch_wait(epoch_t epoch) { MPASS(cold || epoch != NULL); INIT_CHECK(epoch); MPASS(epoch->e_flags == 0); critical_enter(); ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL); critical_exit(); } void epoch_call(epoch_t epoch, epoch_callback_t callback, epoch_context_t ctx) { epoch_record_t er; ck_epoch_entry_t *cb; cb = (void *)ctx; MPASS(callback); /* too early in boot to have epoch set up */ if (__predict_false(epoch == NULL)) goto boottime; #if !defined(EARLY_AP_STARTUP) if (__predict_false(inited < 2)) goto boottime; #endif critical_enter(); *DPCPU_PTR(epoch_cb_count) += 1; er = epoch_currecord(epoch); ck_epoch_call(&er->er_record, cb, (ck_epoch_cb_t *)callback); critical_exit(); return; boottime: callback(ctx); } static void epoch_call_task(void *arg __unused) { ck_stack_entry_t *cursor, *head, *next; ck_epoch_record_t *record; epoch_record_t er; epoch_t epoch; ck_stack_t cb_stack; int i, npending, total; ck_stack_init(&cb_stack); critical_enter(); epoch_enter(global_epoch); for (total = i = 0; i != MAX_EPOCHS; i++) { epoch = epoch_array + i; if (__predict_false( atomic_load_acq_int(&epoch->e_in_use) == 0)) continue; er = epoch_currecord(epoch); record = &er->er_record; if ((npending = record->n_pending) == 0) continue; ck_epoch_poll_deferred(record, &cb_stack); total += npending - record->n_pending; } epoch_exit(global_epoch); *DPCPU_PTR(epoch_cb_count) -= total; critical_exit(); counter_u64_add(epoch_call_count, total); counter_u64_add(epoch_call_task_count, 1); head = ck_stack_batch_pop_npsc(&cb_stack); for (cursor = head; cursor != NULL; cursor = next) { struct ck_epoch_entry *entry = ck_epoch_entry_container(cursor); next = CK_STACK_NEXT(cursor); entry->function(entry); } } static int in_epoch_verbose_preempt(epoch_t epoch, int dump_onfail) { epoch_record_t er; struct epoch_tracker *tdwait; struct thread *td; MPASS(epoch != NULL); MPASS((epoch->e_flags & EPOCH_PREEMPT) != 0); td = curthread; if (THREAD_CAN_SLEEP()) return (0); critical_enter(); er = epoch_currecord(epoch); TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) if (tdwait->et_td == td) { critical_exit(); return (1); } #ifdef INVARIANTS if (dump_onfail) { MPASS(td->td_pinned); printf("cpu: %d id: %d\n", curcpu, td->td_tid); TAILQ_FOREACH(tdwait, &er->er_tdlist, et_link) printf("td_tid: %d ", tdwait->et_td->td_tid); printf("\n"); } #endif critical_exit(); return (0); } #ifdef INVARIANTS static void epoch_assert_nocpu(epoch_t epoch, struct thread *td) { epoch_record_t er; int cpu; bool crit; crit = td->td_critnest > 0; /* Check for a critical section mishap. */ CPU_FOREACH(cpu) { er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); KASSERT(er->er_td != td, ("%s critical section in epoch '%s', from cpu %d", (crit ? "exited" : "re-entered"), epoch->e_name, cpu)); } } #else #define epoch_assert_nocpu(e, td) do {} while (0) #endif int in_epoch_verbose(epoch_t epoch, int dump_onfail) { epoch_record_t er; struct thread *td; if (__predict_false((epoch) == NULL)) return (0); if ((epoch->e_flags & EPOCH_PREEMPT) != 0) return (in_epoch_verbose_preempt(epoch, dump_onfail)); /* * The thread being in a critical section is a necessary * condition to be correctly inside a non-preemptible epoch, * so it's definitely not in this epoch. */ td = curthread; if (td->td_critnest == 0) { epoch_assert_nocpu(epoch, td); return (0); } /* * The current cpu is in a critical section, so the epoch record will be * stable for the rest of this function. Knowing that the record is not * active is sufficient for knowing whether we're in this epoch or not, * since it's a pcpu record. */ er = epoch_currecord(epoch); if (er->er_record.active == 0) { epoch_assert_nocpu(epoch, td); return (0); } MPASS(er->er_td == td); return (1); } int in_epoch(epoch_t epoch) { return (in_epoch_verbose(epoch, 0)); } static void epoch_drain_cb(struct epoch_context *ctx) { struct epoch *epoch = __containerof(ctx, struct epoch_record, er_drain_ctx)->er_parent; if (atomic_fetchadd_int(&epoch->e_drain_count, -1) == 1) { mtx_lock(&epoch->e_drain_mtx); wakeup(epoch); mtx_unlock(&epoch->e_drain_mtx); } } void epoch_drain_callbacks(epoch_t epoch) { epoch_record_t er; struct thread *td; int was_bound; int old_pinned; int old_cpu; int cpu; WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "epoch_drain_callbacks() may sleep!"); /* too early in boot to have epoch set up */ if (__predict_false(epoch == NULL)) return; #if !defined(EARLY_AP_STARTUP) if (__predict_false(inited < 2)) return; #endif DROP_GIANT(); sx_xlock(&epoch->e_drain_sx); mtx_lock(&epoch->e_drain_mtx); td = curthread; thread_lock(td); old_cpu = PCPU_GET(cpuid); old_pinned = td->td_pinned; was_bound = sched_is_bound(td); sched_unbind(td); td->td_pinned = 0; CPU_FOREACH(cpu) epoch->e_drain_count++; CPU_FOREACH(cpu) { er = zpcpu_get_cpu(epoch->e_pcpu_record, cpu); sched_bind(td, cpu); epoch_call(epoch, &epoch_drain_cb, &er->er_drain_ctx); } /* restore CPU binding, if any */ if (was_bound != 0) { sched_bind(td, old_cpu); } else { /* get thread back to initial CPU, if any */ if (old_pinned != 0) sched_bind(td, old_cpu); sched_unbind(td); } /* restore pinned after bind */ td->td_pinned = old_pinned; thread_unlock(td); while (epoch->e_drain_count != 0) msleep(epoch, &epoch->e_drain_mtx, PZERO, "EDRAIN", 0); mtx_unlock(&epoch->e_drain_mtx); sx_xunlock(&epoch->e_drain_sx); PICKUP_GIANT(); } diff --git a/sys/sys/epoch.h b/sys/sys/epoch.h index 25d2bb3dc6e3..85c791d3df6c 100644 --- a/sys/sys/epoch.h +++ b/sys/sys/epoch.h @@ -1,112 +1,113 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2018, Matthew Macy * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_EPOCH_H_ #define _SYS_EPOCH_H_ struct epoch_context { void *data[2]; } __aligned(sizeof(void *)); typedef struct epoch_context *epoch_context_t; typedef void epoch_callback_t(epoch_context_t); #ifdef _KERNEL #include #include #include struct epoch; typedef struct epoch *epoch_t; #define EPOCH_PREEMPT 0x1 #define EPOCH_LOCKED 0x2 extern epoch_t global_epoch; extern epoch_t global_epoch_preempt; struct epoch_tracker { TAILQ_ENTRY(epoch_tracker) et_link; struct thread *et_td; ck_epoch_section_t et_section; + uint8_t et_old_priority; #ifdef EPOCH_TRACE struct epoch *et_epoch; SLIST_ENTRY(epoch_tracker) et_tlink; const char *et_file; int et_line; #endif } __aligned(sizeof(void *)); typedef struct epoch_tracker *epoch_tracker_t; epoch_t epoch_alloc(const char *name, int flags); void epoch_free(epoch_t epoch); void epoch_wait(epoch_t epoch); void epoch_wait_preempt(epoch_t epoch); void epoch_drain_callbacks(epoch_t epoch); void epoch_call(epoch_t epoch, epoch_callback_t cb, epoch_context_t ctx); int in_epoch(epoch_t epoch); int in_epoch_verbose(epoch_t epoch, int dump_onfail); DPCPU_DECLARE(int, epoch_cb_count); DPCPU_DECLARE(struct grouptask, epoch_cb_task); #ifdef EPOCH_TRACE #define EPOCH_FILE_LINE , const char *file, int line #else #define EPOCH_FILE_LINE #endif void _epoch_enter_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE); void _epoch_exit_preempt(epoch_t epoch, epoch_tracker_t et EPOCH_FILE_LINE); #ifdef EPOCH_TRACE void epoch_trace_list(struct thread *); #define epoch_enter_preempt(epoch, et) _epoch_enter_preempt(epoch, et, __FILE__, __LINE__) #define epoch_exit_preempt(epoch, et) _epoch_exit_preempt(epoch, et, __FILE__, __LINE__) #else #define epoch_enter_preempt(epoch, et) _epoch_enter_preempt(epoch, et) #define epoch_exit_preempt(epoch, et) _epoch_exit_preempt(epoch, et) #endif void epoch_enter(epoch_t epoch); void epoch_exit(epoch_t epoch); /* * Globally recognized epochs in the FreeBSD kernel. */ /* Network preemptible epoch, declared in sys/net/if.c. */ extern epoch_t net_epoch_preempt; #define NET_EPOCH_ENTER(et) epoch_enter_preempt(net_epoch_preempt, &(et)) #define NET_EPOCH_EXIT(et) epoch_exit_preempt(net_epoch_preempt, &(et)) #define NET_EPOCH_WAIT() epoch_wait_preempt(net_epoch_preempt) #define NET_EPOCH_CALL(f, c) epoch_call(net_epoch_preempt, (f), (c)) #define NET_EPOCH_ASSERT() MPASS(in_epoch(net_epoch_preempt)) #define NET_TASK_INIT(t, p, f, c) TASK_INIT_FLAGS(t, p, f, c, TASK_NETWORK) #define NET_GROUPTASK_INIT(gtask, prio, func, ctx) \ GTASK_INIT(&(gtask)->gt_task, TASK_NETWORK, (prio), (func), (ctx)) #endif /* _KERNEL */ #endif /* _SYS_EPOCH_H_ */ diff --git a/sys/sys/param.h b/sys/sys/param.h index 68808f3e2185..81971777e87b 100644 --- a/sys/sys/param.h +++ b/sys/sys/param.h @@ -1,391 +1,391 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)param.h 8.3 (Berkeley) 4/4/95 * $FreeBSD$ */ #ifndef _SYS_PARAM_H_ #define _SYS_PARAM_H_ #include #define BSD 199506 /* System version (year & month). */ #define BSD4_3 1 #define BSD4_4 1 /* * __FreeBSD_version numbers are documented in the Porter's Handbook. * If you bump the version for any reason, you should update the documentation * there. * Currently this lives here in the doc/ repository: * * documentation/content/en/books/porters-handbook/versions/_index.adoc * * Encoding: Rxx * 'R' is in the range 0 to 4 if this is a release branch or * X.0-CURRENT before releng/X.0 is created, otherwise 'R' is * in the range 5 to 9. * Short hand: MMmmXXX * * __FreeBSD_version is bumped every time there's a change in the base system * that's noteworthy. A noteworthy change is any change which changes the * kernel's KBI in -CURRENT, one that changes some detail about the system that * external software (or the ports system) would want to know about, one that * adds a system call, one that adds or deletes a shipped library, a security * fix, or similar change not specifically noted here. Bumps should be limited * to one per day / a couple per week except for security fixes. * * The approved way to obtain this from a shell script is: * awk '/^\#define[[:space:]]*__FreeBSD_version/ {print $3}' * Other methods to parse this file may work, but are not guaranteed against * future changes. The above script works back to FreeBSD 3.x when this macro * was introduced. This number is propagated to other places needing it that * cannot include sys/param.h and should only be updated here. */ #undef __FreeBSD_version -#define __FreeBSD_version 1400013 +#define __FreeBSD_version 1400014 /* * __FreeBSD_kernel__ indicates that this system uses the kernel of FreeBSD, * which by definition is always true on FreeBSD. This macro is also defined * on other systems that use the kernel of FreeBSD, such as GNU/kFreeBSD. * * It is tempting to use this macro in userland code when we want to enable * kernel-specific routines, and in fact it's fine to do this in code that * is part of FreeBSD itself. However, be aware that as presence of this * macro is still not widespread (e.g. older FreeBSD versions, 3rd party * compilers, etc), it is STRONGLY DISCOURAGED to check for this macro in * external applications without also checking for __FreeBSD__ as an * alternative. */ #undef __FreeBSD_kernel__ #define __FreeBSD_kernel__ #if defined(_KERNEL) || defined(IN_RTLD) #define P_OSREL_SIGWAIT 700000 #define P_OSREL_SIGSEGV 700004 #define P_OSREL_MAP_ANON 800104 #define P_OSREL_MAP_FSTRICT 1100036 #define P_OSREL_SHUTDOWN_ENOTCONN 1100077 #define P_OSREL_MAP_GUARD 1200035 #define P_OSREL_WRFSBASE 1200041 #define P_OSREL_CK_CYLGRP 1200046 #define P_OSREL_VMTOTAL64 1200054 #define P_OSREL_CK_SUPERBLOCK 1300000 #define P_OSREL_CK_INODE 1300005 #define P_OSREL_POWERPC_NEW_AUX_ARGS 1300070 #define P_OSREL_MAJOR(x) ((x) / 100000) #endif #ifndef LOCORE #include #endif /* * Machine-independent constants (some used in following include files). * Redefined constants are from POSIX 1003.1 limits file. * * MAXCOMLEN should be >= sizeof(ac_comm) (see ) */ #include #define MAXCOMLEN 19 /* max command name remembered */ #define MAXINTERP PATH_MAX /* max interpreter file name length */ #define MAXLOGNAME 33 /* max login name length (incl. NUL) */ #define MAXUPRC CHILD_MAX /* max simultaneous processes */ #define NCARGS ARG_MAX /* max bytes for an exec function */ #define NGROUPS (NGROUPS_MAX+1) /* max number groups */ #define NOFILE OPEN_MAX /* max open files per process */ #define NOGROUP 65535 /* marker for empty group set member */ #define MAXHOSTNAMELEN 256 /* max hostname size */ #define SPECNAMELEN 255 /* max length of devicename */ /* More types and definitions used throughout the kernel. */ #ifdef _KERNEL #include #include #ifndef LOCORE #include #include #endif #ifndef FALSE #define FALSE 0 #endif #ifndef TRUE #define TRUE 1 #endif #endif #ifndef _KERNEL #ifndef LOCORE /* Signals. */ #include #endif #endif /* Machine type dependent parameters. */ #include #ifndef _KERNEL #include #endif #ifndef DEV_BSHIFT #define DEV_BSHIFT 9 /* log2(DEV_BSIZE) */ #endif #define DEV_BSIZE (1<>PAGE_SHIFT) #endif /* * btodb() is messy and perhaps slow because `bytes' may be an off_t. We * want to shift an unsigned type to avoid sign extension and we don't * want to widen `bytes' unnecessarily. Assume that the result fits in * a daddr_t. */ #ifndef btodb #define btodb(bytes) /* calculates (bytes / DEV_BSIZE) */ \ (sizeof (bytes) > sizeof(long) \ ? (daddr_t)((unsigned long long)(bytes) >> DEV_BSHIFT) \ : (daddr_t)((unsigned long)(bytes) >> DEV_BSHIFT)) #endif #ifndef dbtob #define dbtob(db) /* calculates (db * DEV_BSIZE) */ \ ((off_t)(db) << DEV_BSHIFT) #endif #define PRIMASK 0x0ff #define PCATCH 0x100 /* OR'd with pri for tsleep to check signals */ #define PDROP 0x200 /* OR'd with pri to stop re-entry of interlock mutex */ #define PRILASTFLAG 0x200 /* Last flag defined above */ #define NZERO 0 /* default "nice" */ #define NBBY 8 /* number of bits in a byte */ #define NBPW sizeof(int) /* number of bytes per word (integer) */ #define CMASK 022 /* default file mask: S_IWGRP|S_IWOTH */ #define NODEV (dev_t)(-1) /* non-existent device */ /* * File system parameters and macros. * * MAXBSIZE - Filesystems are made out of blocks of at most MAXBSIZE bytes * per block. MAXBSIZE may be made larger without effecting * any existing filesystems as long as it does not exceed MAXPHYS, * and may be made smaller at the risk of not being able to use * filesystems which require a block size exceeding MAXBSIZE. * * MAXBCACHEBUF - Maximum size of a buffer in the buffer cache. This must * be >= MAXBSIZE and can be set differently for different * architectures by defining it in . * Making this larger allows NFS to do larger reads/writes. * * BKVASIZE - Nominal buffer space per buffer, in bytes. BKVASIZE is the * minimum KVM memory reservation the kernel is willing to make. * Filesystems can of course request smaller chunks. Actual * backing memory uses a chunk size of a page (PAGE_SIZE). * The default value here can be overridden on a per-architecture * basis by defining it in . * * If you make BKVASIZE too small you risk seriously fragmenting * the buffer KVM map which may slow things down a bit. If you * make it too big the kernel will not be able to optimally use * the KVM memory reserved for the buffer cache and will wind * up with too-few buffers. * * The default is 16384, roughly 2x the block size used by a * normal UFS filesystem. */ #define MAXBSIZE 65536 /* must be power of 2 */ #ifndef MAXBCACHEBUF #define MAXBCACHEBUF MAXBSIZE /* must be a power of 2 >= MAXBSIZE */ #endif #ifndef BKVASIZE #define BKVASIZE 16384 /* must be power of 2 */ #endif #define BKVAMASK (BKVASIZE-1) /* * MAXPATHLEN defines the longest permissible path length after expanding * symbolic links. It is used to allocate a temporary buffer from the buffer * pool in which to do the name expansion, hence should be a power of two, * and must be less than or equal to MAXBSIZE. MAXSYMLINKS defines the * maximum number of symbolic links that may be expanded in a path name. * It should be set high enough to allow all legitimate uses, but halt * infinite loops reasonably quickly. */ #define MAXPATHLEN PATH_MAX #define MAXSYMLINKS 32 /* Bit map related macros. */ #define setbit(a,i) (((unsigned char *)(a))[(i)/NBBY] |= 1<<((i)%NBBY)) #define clrbit(a,i) (((unsigned char *)(a))[(i)/NBBY] &= ~(1<<((i)%NBBY))) #define isset(a,i) \ (((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) #define isclr(a,i) \ ((((const unsigned char *)(a))[(i)/NBBY] & (1<<((i)%NBBY))) == 0) /* Macros for counting and rounding. */ #ifndef howmany #define howmany(x, y) (((x)+((y)-1))/(y)) #endif #define nitems(x) (sizeof((x)) / sizeof((x)[0])) #define rounddown(x, y) (((x)/(y))*(y)) #define rounddown2(x, y) __align_down(x, y) /* if y is power of two */ #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */ #define roundup2(x, y) __align_up(x, y) /* if y is powers of two */ #define powerof2(x) ((((x)-1)&(x))==0) /* Macros for min/max. */ #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) #ifdef _KERNEL /* * Basic byte order function prototypes for non-inline functions. */ #ifndef LOCORE #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS __uint32_t htonl(__uint32_t); __uint16_t htons(__uint16_t); __uint32_t ntohl(__uint32_t); __uint16_t ntohs(__uint16_t); __END_DECLS #endif #endif #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif /* !_BYTEORDER_FUNC_DEFINED */ #endif /* _KERNEL */ /* * Scale factor for scaled integers used to count %cpu time and load avgs. * * The number of CPU `tick's that map to a unique `%age' can be expressed * by the formula (1 / (2 ^ (FSHIFT - 11))). The maximum load average that * can be calculated (assuming 32 bits) can be closely approximated using * the formula (2 ^ (2 * (16 - FSHIFT))) for (FSHIFT < 15). * * For the scheduler to maintain a 1:1 mapping of CPU `tick' to `%age', * FSHIFT must be at least 11; this gives us a maximum load avg of ~1024. */ #define FSHIFT 11 /* bits to right of fixed binary point */ #define FSCALE (1<> (PAGE_SHIFT - DEV_BSHIFT)) #define ctodb(db) /* calculates pages to devblks */ \ ((db) << (PAGE_SHIFT - DEV_BSHIFT)) /* * Old spelling of __containerof(). */ #define member2struct(s, m, x) \ ((struct s *)(void *)((char *)(x) - offsetof(struct s, m))) /* * Access a variable length array that has been declared as a fixed * length array. */ #define __PAST_END(array, offset) (((__typeof__(*(array)) *)(array))[offset]) #endif /* _SYS_PARAM_H_ */ diff --git a/sys/sys/proc.h b/sys/sys/proc.h index 926f0de14b84..8098bb9468ec 100644 --- a/sys/sys/proc.h +++ b/sys/sys/proc.h @@ -1,1295 +1,1294 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1986, 1989, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)proc.h 8.15 (Berkeley) 5/19/95 * $FreeBSD$ */ #ifndef _SYS_PROC_H_ #define _SYS_PROC_H_ #include /* For struct callout. */ #include /* For struct klist. */ #ifdef _KERNEL #include #endif #include #ifndef _KERNEL #include #endif #include #include #include #include #include #include #include /* XXX. */ #include #include #include #include #include #ifndef _KERNEL #include /* For structs itimerval, timeval. */ #else #include #include #endif #include #include #include #include #include /* Machine-dependent proc substruct. */ #ifdef _KERNEL #include #endif /* * One structure allocated per session. * * List of locks * (m) locked by s_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct session { u_int s_count; /* Ref cnt; pgrps in session - atomic. */ struct proc *s_leader; /* (m + e) Session leader. */ struct vnode *s_ttyvp; /* (m) Vnode of controlling tty. */ struct cdev_priv *s_ttydp; /* (m) Device of controlling tty. */ struct tty *s_ttyp; /* (e) Controlling tty. */ pid_t s_sid; /* (c) Session ID. */ /* (m) Setlogin() name: */ char s_login[roundup(MAXLOGNAME, sizeof(long))]; struct mtx s_mtx; /* Mutex to protect members. */ }; /* * One structure allocated per process group. * * List of locks * (m) locked by pg_mtx mtx * (e) locked by proctree_lock sx * (c) const until freeing */ struct pgrp { LIST_ENTRY(pgrp) pg_hash; /* (e) Hash chain. */ LIST_HEAD(, proc) pg_members; /* (m + e) Pointer to pgrp members. */ struct session *pg_session; /* (c) Pointer to session. */ struct sigiolst pg_sigiolst; /* (m) List of sigio sources. */ pid_t pg_id; /* (c) Process group id. */ struct mtx pg_mtx; /* Mutex to protect members */ int pg_flags; /* (m) PGRP_ flags */ }; #define PGRP_ORPHANED 0x00000001 /* Group is orphaned */ /* * pargs, used to hold a copy of the command line, if it had a sane length. */ struct pargs { u_int ar_ref; /* Reference count. */ u_int ar_length; /* Length. */ u_char ar_args[1]; /* Arguments. */ }; /*- * Description of a process. * * This structure contains the information needed to manage a thread of * control, known in UN*X as a process; it has references to substructures * containing descriptions of things that the process uses, but may share * with related processes. The process structure and the substructures * are always addressable except for those marked "(CPU)" below, * which might be addressable only on a processor on which the process * is running. * * Below is a key of locks used to protect each member of struct proc. The * lock is indicated by a reference to a specific character in parens in the * associated comment. * * - not yet protected * a - only touched by curproc or parent during fork/wait * b - created at fork, never changes * (exception aiods switch vmspaces, but they are also * marked 'P_SYSTEM' so hopefully it will be left alone) * c - locked by proc mtx * d - locked by allproc_lock lock * e - locked by proctree_lock lock * f - session mtx * g - process group mtx * h - callout_lock mtx * i - by curproc or the master session mtx * j - locked by proc slock * k - only accessed by curthread * k*- only accessed by curthread and from an interrupt * kx- only accessed by curthread and by debugger * l - the attaching proc or attaching proc parent * m - Giant * n - not locked, lazy * o - ktrace lock * q - td_contested lock * r - p_peers lock * s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9) * t - thread lock * u - process stat lock * w - process timer lock * x - created at fork, only changes during single threading in exec * y - created at first aio, doesn't change until exit or exec at which * point we are single-threaded and only curthread changes it * z - zombie threads lock * * If the locking key specifies two identifiers (for example, p_pptr) then * either lock is sufficient for read access, but both locks must be held * for write access. */ struct cpuset; struct filecaps; struct filemon; struct kaioinfo; struct kaudit_record; struct kcov_info; struct kdtrace_proc; struct kdtrace_thread; struct kq_timer_cb_data; struct mqueue_notifier; struct p_sched; struct proc; struct procdesc; struct racct; struct sbuf; struct sleepqueue; struct socket; struct syscall_args; struct td_sched; struct thread; struct trapframe; struct turnstile; struct vm_map; struct vm_map_entry; struct epoch_tracker; /* * XXX: Does this belong in resource.h or resourcevar.h instead? * Resource usage extension. The times in rusage structs in the kernel are * never up to date. The actual times are kept as runtimes and tick counts * (with control info in the "previous" times), and are converted when * userland asks for rusage info. Backwards compatibility prevents putting * this directly in the user-visible rusage struct. * * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux. * Locking for td_rux: (t) for all fields. */ struct rusage_ext { uint64_t rux_runtime; /* (cu) Real time. */ uint64_t rux_uticks; /* (cu) Statclock hits in user mode. */ uint64_t rux_sticks; /* (cu) Statclock hits in sys mode. */ uint64_t rux_iticks; /* (cu) Statclock hits in intr mode. */ uint64_t rux_uu; /* (c) Previous user time in usec. */ uint64_t rux_su; /* (c) Previous sys time in usec. */ uint64_t rux_tu; /* (c) Previous total time in usec. */ }; /* * Kernel runnable context (thread). * This is what is put to sleep and reactivated. * Thread context. Processes may have multiple threads. */ struct thread { struct mtx *volatile td_lock; /* replaces sched lock */ struct proc *td_proc; /* (*) Associated process. */ TAILQ_ENTRY(thread) td_plist; /* (*) All threads in this proc. */ TAILQ_ENTRY(thread) td_runq; /* (t) Run queue. */ union { TAILQ_ENTRY(thread) td_slpq; /* (t) Sleep queue. */ struct thread *td_zombie; /* Zombie list linkage */ }; TAILQ_ENTRY(thread) td_lockq; /* (t) Lock queue. */ LIST_ENTRY(thread) td_hash; /* (d) Hash chain. */ struct cpuset *td_cpuset; /* (t) CPU affinity mask. */ struct domainset_ref td_domain; /* (a) NUMA policy */ struct seltd *td_sel; /* Select queue/channel. */ struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */ struct turnstile *td_turnstile; /* (k) Associated turnstile. */ struct rl_q_entry *td_rlqe; /* (k) Associated range lock entry. */ struct umtx_q *td_umtxq; /* (c?) Link for when we're blocked. */ lwpid_t td_tid; /* (b) Thread ID. */ sigqueue_t td_sigqueue; /* (c) Sigs arrived, not delivered. */ #define td_siglist td_sigqueue.sq_signals u_char td_lend_user_pri; /* (t) Lend user pri. */ u_char td_allocdomain; /* (b) NUMA domain backing this struct thread. */ /* Cleared during fork1() */ #define td_startzero td_flags int td_flags; /* (t) TDF_* flags. */ int td_inhibitors; /* (t) Why can not run. */ int td_pflags; /* (k) Private thread (TDP_*) flags. */ int td_pflags2; /* (k) Private thread (TDP2_*) flags. */ int td_dupfd; /* (k) Ret value from fdopen. XXX */ int td_sqqueue; /* (t) Sleepqueue queue blocked on. */ const void *td_wchan; /* (t) Sleep address. */ const char *td_wmesg; /* (t) Reason for sleep. */ volatile u_char td_owepreempt; /* (k*) Preempt on last critical_exit */ u_char td_tsqueue; /* (t) Turnstile queue blocked on. */ short td_locks; /* (k) Debug: count of non-spin locks */ short td_rw_rlocks; /* (k) Count of rwlock read locks. */ short td_sx_slocks; /* (k) Count of sx shared locks. */ short td_lk_slocks; /* (k) Count of lockmgr shared locks. */ short td_stopsched; /* (k) Scheduler stopped. */ struct turnstile *td_blocked; /* (t) Lock thread is blocked on. */ const char *td_lockname; /* (t) Name of lock blocked on. */ LIST_HEAD(, turnstile) td_contested; /* (q) Contested locks. */ struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */ int td_intr_nesting_level; /* (k) Interrupt recursion. */ int td_pinned; /* (k) Temporary cpu pin count. */ struct ucred *td_realucred; /* (k) Reference to credentials. */ struct ucred *td_ucred; /* (k) Used credentials, temporarily switchable. */ struct plimit *td_limit; /* (k) Resource limits. */ int td_slptick; /* (t) Time at sleep. */ int td_blktick; /* (t) Time spent blocked. */ int td_swvoltick; /* (t) Time at last SW_VOL switch. */ int td_swinvoltick; /* (t) Time at last SW_INVOL switch. */ u_int td_cow; /* (*) Number of copy-on-write faults */ struct rusage td_ru; /* (t) rusage information. */ struct rusage_ext td_rux; /* (t) Internal rusage information. */ uint64_t td_incruntime; /* (t) Cpu ticks to transfer to proc. */ uint64_t td_runtime; /* (t) How many cpu ticks we've run. */ u_int td_pticks; /* (t) Statclock hits for profiling */ u_int td_sticks; /* (t) Statclock hits in system mode. */ u_int td_iticks; /* (t) Statclock hits in intr mode. */ u_int td_uticks; /* (t) Statclock hits in user mode. */ int td_intrval; /* (t) Return value for sleepq. */ sigset_t td_oldsigmask; /* (k) Saved mask from pre sigpause. */ volatile u_int td_generation; /* (k) For detection of preemption */ stack_t td_sigstk; /* (k) Stack ptr and on-stack flag. */ int td_xsig; /* (c) Signal for ptrace */ u_long td_profil_addr; /* (k) Temporary addr until AST. */ u_int td_profil_ticks; /* (k) Temporary ticks until AST. */ char td_name[MAXCOMLEN + 1]; /* (*) Thread name. */ struct file *td_fpop; /* (k) file referencing cdev under op */ int td_dbgflags; /* (c) Userland debugger flags */ siginfo_t td_si; /* (c) For debugger or core file */ int td_ng_outbound; /* (k) Thread entered ng from above. */ struct osd td_osd; /* (k) Object specific data. */ struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */ pid_t td_dbg_forked; /* (c) Child pid for debugger. */ struct vnode *td_vp_reserved;/* (k) Prealloated vnode. */ u_int td_no_sleeping; /* (k) Sleeping disabled count. */ void *td_su; /* (k) FFS SU private */ sbintime_t td_sleeptimo; /* (t) Sleep timeout. */ int td_rtcgen; /* (s) rtc_generation of abs. sleep */ int td_errno; /* (k) Error from last syscall. */ size_t td_vslock_sz; /* (k) amount of vslock-ed space */ struct kcov_info *td_kcov_info; /* (*) Kernel code coverage data */ u_int td_ucredref; /* (k) references on td_realucred */ #define td_endzero td_sigmask /* Copied during fork1() or create_thread(). */ #define td_startcopy td_endzero sigset_t td_sigmask; /* (c) Current signal mask. */ u_char td_rqindex; /* (t) Run queue index. */ u_char td_base_pri; /* (t) Thread base kernel priority. */ u_char td_priority; /* (t) Thread active priority. */ u_char td_pri_class; /* (t) Scheduling class. */ u_char td_user_pri; /* (t) User pri from estcpu and nice. */ u_char td_base_user_pri; /* (t) Base user pri */ - u_char td_pre_epoch_prio; /* (k) User pri on entry to epoch */ uintptr_t td_rb_list; /* (k) Robust list head. */ uintptr_t td_rbp_list; /* (k) Robust priv list head. */ uintptr_t td_rb_inact; /* (k) Current in-action mutex loc. */ struct syscall_args td_sa; /* (kx) Syscall parameters. Copied on fork for child tracing. */ void *td_sigblock_ptr; /* (k) uptr for fast sigblock. */ uint32_t td_sigblock_val; /* (k) fast sigblock value read at td_sigblock_ptr on kern entry */ #define td_endcopy td_pcb /* * Fields that must be manually set in fork1() or create_thread() * or already have been set in the allocator, constructor, etc. */ struct pcb *td_pcb; /* (k) Kernel VA of pcb and kstack. */ enum td_states { TDS_INACTIVE = 0x0, TDS_INHIBITED, TDS_CAN_RUN, TDS_RUNQ, TDS_RUNNING } td_state; /* (t) thread state */ /* Note: td_state must be accessed using TD_{GET,SET}_STATE(). */ union { register_t tdu_retval[2]; off_t tdu_off; } td_uretoff; /* (k) Syscall aux returns. */ #define td_retval td_uretoff.tdu_retval u_int td_cowgen; /* (k) Generation of COW pointers. */ /* LP64 hole */ struct callout td_slpcallout; /* (h) Callout for sleep. */ struct trapframe *td_frame; /* (k) */ vm_offset_t td_kstack; /* (a) Kernel VA of kstack. */ int td_kstack_pages; /* (a) Size of the kstack. */ volatile u_int td_critnest; /* (k*) Critical section nest level. */ struct mdthread td_md; /* (k) Any machine-dependent fields. */ struct kaudit_record *td_ar; /* (k) Active audit record, if any. */ struct lpohead td_lprof[2]; /* (a) lock profiling objects. */ struct kdtrace_thread *td_dtrace; /* (*) DTrace-specific data. */ struct vnet *td_vnet; /* (k) Effective vnet. */ const char *td_vnet_lpush; /* (k) Debugging vnet push / pop. */ struct trapframe *td_intr_frame;/* (k) Frame of the current irq */ struct proc *td_rfppwait_p; /* (k) The vforked child */ struct vm_page **td_ma; /* (k) uio pages held */ int td_ma_cnt; /* (k) size of *td_ma */ /* LP64 hole */ void *td_emuldata; /* Emulator state data */ int td_lastcpu; /* (t) Last cpu we were on. */ int td_oncpu; /* (t) Which cpu we are on. */ void *td_lkpi_task; /* LinuxKPI task struct pointer */ int td_pmcpend; void *td_coredump; /* (c) coredump request. */ off_t td_ktr_io_lim; /* (k) limit for ktrace file size */ #ifdef EPOCH_TRACE SLIST_HEAD(, epoch_tracker) td_epochs; #endif }; struct thread0_storage { struct thread t0st_thread; uint64_t t0st_sched[10]; }; struct mtx *thread_lock_block(struct thread *); void thread_lock_block_wait(struct thread *); void thread_lock_set(struct thread *, struct mtx *); void thread_lock_unblock(struct thread *, struct mtx *); #define THREAD_LOCK_ASSERT(td, type) \ mtx_assert((td)->td_lock, (type)) #define THREAD_LOCK_BLOCKED_ASSERT(td, type) \ do { \ struct mtx *__m = (td)->td_lock; \ if (__m != &blocked_lock) \ mtx_assert(__m, (type)); \ } while (0) #ifdef INVARIANTS #define THREAD_LOCKPTR_ASSERT(td, lock) \ do { \ struct mtx *__m; \ __m = (td)->td_lock; \ KASSERT(__m == (lock), \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock) \ do { \ struct mtx *__m; \ __m = (td)->td_lock; \ KASSERT(__m == (lock) || __m == &blocked_lock, \ ("Thread %p lock %p does not match %p", td, __m, (lock))); \ } while (0) #define TD_LOCKS_INC(td) ((td)->td_locks++) #define TD_LOCKS_DEC(td) do { \ KASSERT(SCHEDULER_STOPPED_TD(td) || (td)->td_locks > 0, \ ("thread %p owns no locks", (td))); \ (td)->td_locks--; \ } while (0) #else #define THREAD_LOCKPTR_ASSERT(td, lock) #define THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock) #define TD_LOCKS_INC(td) #define TD_LOCKS_DEC(td) #endif /* * Flags kept in td_flags: * To change these you MUST have the scheduler lock. */ #define TDF_BORROWING 0x00000001 /* Thread is borrowing pri from another. */ #define TDF_INPANIC 0x00000002 /* Caused a panic, let it drive crashdump. */ #define TDF_INMEM 0x00000004 /* Thread's stack is in memory. */ #define TDF_SINTR 0x00000008 /* Sleep is interruptible. */ #define TDF_TIMEOUT 0x00000010 /* Timing out during sleep. */ #define TDF_IDLETD 0x00000020 /* This is a per-CPU idle thread. */ #define TDF_CANSWAP 0x00000040 /* Thread can be swapped. */ #define TDF_UNUSED80 0x00000080 /* unused. */ #define TDF_KTH_SUSP 0x00000100 /* kthread is suspended */ #define TDF_ALLPROCSUSP 0x00000200 /* suspended by SINGLE_ALLPROC */ #define TDF_BOUNDARY 0x00000400 /* Thread suspended at user boundary */ #define TDF_ASTPENDING 0x00000800 /* Thread has some asynchronous events. */ #define TDF_UNUSED12 0x00001000 /* --available-- */ #define TDF_SBDRY 0x00002000 /* Stop only on usermode boundary. */ #define TDF_UPIBLOCKED 0x00004000 /* Thread blocked on user PI mutex. */ #define TDF_NEEDSUSPCHK 0x00008000 /* Thread may need to suspend. */ #define TDF_NEEDRESCHED 0x00010000 /* Thread needs to yield. */ #define TDF_NEEDSIGCHK 0x00020000 /* Thread may need signal delivery. */ #define TDF_NOLOAD 0x00040000 /* Ignore during load avg calculations. */ #define TDF_SERESTART 0x00080000 /* ERESTART on stop attempts. */ #define TDF_THRWAKEUP 0x00100000 /* Libthr thread must not suspend itself. */ #define TDF_SEINTR 0x00200000 /* EINTR on stop attempts. */ #define TDF_SWAPINREQ 0x00400000 /* Swapin request due to wakeup. */ #define TDF_UNUSED23 0x00800000 /* --available-- */ #define TDF_SCHED0 0x01000000 /* Reserved for scheduler private use */ #define TDF_SCHED1 0x02000000 /* Reserved for scheduler private use */ #define TDF_SCHED2 0x04000000 /* Reserved for scheduler private use */ #define TDF_SCHED3 0x08000000 /* Reserved for scheduler private use */ #define TDF_ALRMPEND 0x10000000 /* Pending SIGVTALRM needs to be posted. */ #define TDF_PROFPEND 0x20000000 /* Pending SIGPROF needs to be posted. */ #define TDF_MACPEND 0x40000000 /* AST-based MAC event pending. */ /* Userland debug flags */ #define TDB_SUSPEND 0x00000001 /* Thread is suspended by debugger */ #define TDB_XSIG 0x00000002 /* Thread is exchanging signal under trace */ #define TDB_USERWR 0x00000004 /* Debugger modified memory or registers */ #define TDB_SCE 0x00000008 /* Thread performs syscall enter */ #define TDB_SCX 0x00000010 /* Thread performs syscall exit */ #define TDB_EXEC 0x00000020 /* TDB_SCX from exec(2) family */ #define TDB_FORK 0x00000040 /* TDB_SCX from fork(2) that created new process */ #define TDB_STOPATFORK 0x00000080 /* Stop at the return from fork (child only) */ #define TDB_CHILD 0x00000100 /* New child indicator for ptrace() */ #define TDB_BORN 0x00000200 /* New LWP indicator for ptrace() */ #define TDB_EXIT 0x00000400 /* Exiting LWP indicator for ptrace() */ #define TDB_VFORK 0x00000800 /* vfork indicator for ptrace() */ #define TDB_FSTP 0x00001000 /* The thread is PT_ATTACH leader */ #define TDB_STEP 0x00002000 /* (x86) PSL_T set for PT_STEP */ #define TDB_SSWITCH 0x00004000 /* Suspended in ptracestop */ #define TDB_COREDUMPRQ 0x00008000 /* Coredump request */ /* * "Private" flags kept in td_pflags: * These are only written by curthread and thus need no locking. */ #define TDP_OLDMASK 0x00000001 /* Need to restore mask after suspend. */ #define TDP_INKTR 0x00000002 /* Thread is currently in KTR code. */ #define TDP_INKTRACE 0x00000004 /* Thread is currently in KTRACE code. */ #define TDP_BUFNEED 0x00000008 /* Do not recurse into the buf flush */ #define TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */ #define TDP_ALTSTACK 0x00000020 /* Have alternate signal stack. */ #define TDP_DEADLKTREAT 0x00000040 /* Lock acquisition - deadlock treatment. */ #define TDP_NOFAULTING 0x00000080 /* Do not handle page faults. */ #define TDP_SIGFASTBLOCK 0x00000100 /* Fast sigblock active */ #define TDP_OWEUPC 0x00000200 /* Call addupc() at next AST. */ #define TDP_ITHREAD 0x00000400 /* Thread is an interrupt thread. */ #define TDP_SYNCIO 0x00000800 /* Local override, disable async i/o. */ #define TDP_SCHED1 0x00001000 /* Reserved for scheduler private use */ #define TDP_SCHED2 0x00002000 /* Reserved for scheduler private use */ #define TDP_SCHED3 0x00004000 /* Reserved for scheduler private use */ #define TDP_SCHED4 0x00008000 /* Reserved for scheduler private use */ #define TDP_GEOM 0x00010000 /* Settle GEOM before finishing syscall */ #define TDP_SOFTDEP 0x00020000 /* Stuck processing softdep worklist */ #define TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */ #define TDP_WAKEUP 0x00080000 /* Don't sleep in umtx cond_wait */ #define TDP_INBDFLUSH 0x00100000 /* Already in BO_BDFLUSH, do not recurse */ #define TDP_KTHREAD 0x00200000 /* This is an official kernel thread */ #define TDP_CALLCHAIN 0x00400000 /* Capture thread's callchain */ #define TDP_IGNSUSP 0x00800000 /* Permission to ignore the MNTK_SUSPEND* */ #define TDP_AUDITREC 0x01000000 /* Audit record pending on thread */ #define TDP_RFPPWAIT 0x02000000 /* Handle RFPPWAIT on syscall exit */ #define TDP_RESETSPUR 0x04000000 /* Reset spurious page fault history. */ #define TDP_NERRNO 0x08000000 /* Last errno is already in td_errno */ #define TDP_UIOHELD 0x10000000 /* Current uio has pages held in td_ma */ #define TDP_FORKING 0x20000000 /* Thread is being created through fork() */ #define TDP_EXECVMSPC 0x40000000 /* Execve destroyed old vmspace */ #define TDP_SIGFASTPENDING 0x80000000 /* Pending signal due to sigfastblock */ #define TDP2_SBPAGES 0x00000001 /* Owns sbusy on some pages */ #define TDP2_COMPAT32RB 0x00000002 /* compat32 ABI for robust lists */ #define TDP2_ACCT 0x00000004 /* Doing accounting */ /* * Reasons that the current thread can not be run yet. * More than one may apply. */ #define TDI_SUSPENDED 0x0001 /* On suspension queue. */ #define TDI_SLEEPING 0x0002 /* Actually asleep! (tricky). */ #define TDI_SWAPPED 0x0004 /* Stack not in mem. Bad juju if run. */ #define TDI_LOCK 0x0008 /* Stopped on a lock. */ #define TDI_IWAIT 0x0010 /* Awaiting interrupt. */ #define TD_IS_SLEEPING(td) ((td)->td_inhibitors & TDI_SLEEPING) #define TD_ON_SLEEPQ(td) ((td)->td_wchan != NULL) #define TD_IS_SUSPENDED(td) ((td)->td_inhibitors & TDI_SUSPENDED) #define TD_IS_SWAPPED(td) ((td)->td_inhibitors & TDI_SWAPPED) #define TD_ON_LOCK(td) ((td)->td_inhibitors & TDI_LOCK) #define TD_AWAITING_INTR(td) ((td)->td_inhibitors & TDI_IWAIT) #ifdef _KERNEL #define TD_GET_STATE(td) atomic_load_int(&(td)->td_state) #else #define TD_GET_STATE(td) ((td)->td_state) #endif #define TD_IS_RUNNING(td) (TD_GET_STATE(td) == TDS_RUNNING) #define TD_ON_RUNQ(td) (TD_GET_STATE(td) == TDS_RUNQ) #define TD_CAN_RUN(td) (TD_GET_STATE(td) == TDS_CAN_RUN) #define TD_IS_INHIBITED(td) (TD_GET_STATE(td) == TDS_INHIBITED) #define TD_ON_UPILOCK(td) ((td)->td_flags & TDF_UPIBLOCKED) #define TD_IS_IDLETHREAD(td) ((td)->td_flags & TDF_IDLETD) #define TD_CAN_ABORT(td) (TD_ON_SLEEPQ((td)) && \ ((td)->td_flags & TDF_SINTR) != 0) #define KTDSTATE(td) \ (((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep" : \ ((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" : \ ((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" : \ ((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" : \ ((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding") #define TD_SET_INHIB(td, inhib) do { \ TD_SET_STATE(td, TDS_INHIBITED); \ (td)->td_inhibitors |= (inhib); \ } while (0) #define TD_CLR_INHIB(td, inhib) do { \ if (((td)->td_inhibitors & (inhib)) && \ (((td)->td_inhibitors &= ~(inhib)) == 0)) \ TD_SET_STATE(td, TDS_CAN_RUN); \ } while (0) #define TD_SET_SLEEPING(td) TD_SET_INHIB((td), TDI_SLEEPING) #define TD_SET_SWAPPED(td) TD_SET_INHIB((td), TDI_SWAPPED) #define TD_SET_LOCK(td) TD_SET_INHIB((td), TDI_LOCK) #define TD_SET_SUSPENDED(td) TD_SET_INHIB((td), TDI_SUSPENDED) #define TD_SET_IWAIT(td) TD_SET_INHIB((td), TDI_IWAIT) #define TD_SET_EXITING(td) TD_SET_INHIB((td), TDI_EXITING) #define TD_CLR_SLEEPING(td) TD_CLR_INHIB((td), TDI_SLEEPING) #define TD_CLR_SWAPPED(td) TD_CLR_INHIB((td), TDI_SWAPPED) #define TD_CLR_LOCK(td) TD_CLR_INHIB((td), TDI_LOCK) #define TD_CLR_SUSPENDED(td) TD_CLR_INHIB((td), TDI_SUSPENDED) #define TD_CLR_IWAIT(td) TD_CLR_INHIB((td), TDI_IWAIT) #ifdef _KERNEL #define TD_SET_STATE(td, state) atomic_store_int(&(td)->td_state, state) #else #define TD_SET_STATE(td, state) (td)->td_state = state #endif #define TD_SET_RUNNING(td) TD_SET_STATE(td, TDS_RUNNING) #define TD_SET_RUNQ(td) TD_SET_STATE(td, TDS_RUNQ) #define TD_SET_CAN_RUN(td) TD_SET_STATE(td, TDS_CAN_RUN) #define TD_SBDRY_INTR(td) \ (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0) #define TD_SBDRY_ERRNO(td) \ (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART) /* * Process structure. */ struct proc { LIST_ENTRY(proc) p_list; /* (d) List of all processes. */ TAILQ_HEAD(, thread) p_threads; /* (c) all threads. */ struct mtx p_slock; /* process spin lock */ struct ucred *p_ucred; /* (c) Process owner's identity. */ struct filedesc *p_fd; /* (b) Open files. */ struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */ struct pwddesc *p_pd; /* (b) Cwd, chroot, jail, umask */ struct pstats *p_stats; /* (b) Accounting/statistics (CPU). */ struct plimit *p_limit; /* (c) Resource limits. */ struct callout p_limco; /* (c) Limit callout handle */ struct sigacts *p_sigacts; /* (x) Signal actions, state (CPU). */ int p_flag; /* (c) P_* flags. */ int p_flag2; /* (c) P2_* flags. */ enum p_states { PRS_NEW = 0, /* In creation */ PRS_NORMAL, /* threads can be run. */ PRS_ZOMBIE } p_state; /* (j/c) Process status. */ pid_t p_pid; /* (b) Process identifier. */ LIST_ENTRY(proc) p_hash; /* (d) Hash chain. */ LIST_ENTRY(proc) p_pglist; /* (g + e) List of processes in pgrp. */ struct proc *p_pptr; /* (c + e) Pointer to parent process. */ LIST_ENTRY(proc) p_sibling; /* (e) List of sibling processes. */ LIST_HEAD(, proc) p_children; /* (e) Pointer to list of children. */ struct proc *p_reaper; /* (e) My reaper. */ LIST_HEAD(, proc) p_reaplist; /* (e) List of my descendants (if I am reaper). */ LIST_ENTRY(proc) p_reapsibling; /* (e) List of siblings - descendants of the same reaper. */ struct mtx p_mtx; /* (n) Lock for this struct. */ struct mtx p_statmtx; /* Lock for the stats */ struct mtx p_itimmtx; /* Lock for the virt/prof timers */ struct mtx p_profmtx; /* Lock for the profiling */ struct ksiginfo *p_ksi; /* Locked by parent proc lock */ sigqueue_t p_sigqueue; /* (c) Sigs not delivered to a td. */ #define p_siglist p_sigqueue.sq_signals pid_t p_oppid; /* (c + e) Real parent pid. */ /* The following fields are all zeroed upon creation in fork. */ #define p_startzero p_vmspace struct vmspace *p_vmspace; /* (b) Address space. */ u_int p_swtick; /* (c) Tick when swapped in or out. */ u_int p_cowgen; /* (c) Generation of COW pointers. */ struct itimerval p_realtimer; /* (c) Alarm timer. */ struct rusage p_ru; /* (a) Exit information. */ struct rusage_ext p_rux; /* (cu) Internal resource usage. */ struct rusage_ext p_crux; /* (c) Internal child resource usage. */ int p_profthreads; /* (c) Num threads in addupc_task. */ volatile int p_exitthreads; /* (j) Number of threads exiting */ int p_traceflag; /* (o) Kernel trace points. */ struct ktr_io_params *p_ktrioparms; /* (c + o) Params for ktrace. */ struct vnode *p_textvp; /* (b) Vnode of executable. */ u_int p_lock; /* (c) Proclock (prevent swap) count. */ struct sigiolst p_sigiolst; /* (c) List of sigio sources. */ int p_sigparent; /* (c) Signal to parent on exit. */ int p_sig; /* (n) For core dump/debugger XXX. */ u_int p_ptevents; /* (c + e) ptrace() event mask. */ struct kaioinfo *p_aioinfo; /* (y) ASYNC I/O info. */ struct thread *p_singlethread;/* (c + j) If single threading this is it */ int p_suspcount; /* (j) Num threads in suspended mode. */ struct thread *p_xthread; /* (c) Trap thread */ int p_boundary_count;/* (j) Num threads at user boundary */ int p_pendingcnt; /* how many signals are pending */ struct itimers *p_itimers; /* (c) POSIX interval timers. */ struct procdesc *p_procdesc; /* (e) Process descriptor, if any. */ u_int p_treeflag; /* (e) P_TREE flags */ int p_pendingexits; /* (c) Count of pending thread exits. */ struct filemon *p_filemon; /* (c) filemon-specific data. */ int p_pdeathsig; /* (c) Signal from parent on exit. */ /* End area that is zeroed on creation. */ #define p_endzero p_magic /* The following fields are all copied upon creation in fork. */ #define p_startcopy p_endzero u_int p_magic; /* (b) Magic number. */ int p_osrel; /* (x) osreldate for the binary (from ELF note, if any) */ uint32_t p_fctl0; /* (x) ABI feature control, ELF note */ char p_comm[MAXCOMLEN + 1]; /* (x) Process name. */ struct sysentvec *p_sysent; /* (b) Syscall dispatch info. */ struct pargs *p_args; /* (c) Process arguments. */ rlim_t p_cpulimit; /* (c) Current CPU limit in seconds. */ signed char p_nice; /* (c) Process "nice" value. */ int p_fibnum; /* in this routing domain XXX MRT */ pid_t p_reapsubtree; /* (e) Pid of the direct child of the reaper which spawned our subtree. */ uint16_t p_elf_machine; /* (x) ELF machine type */ uint64_t p_elf_flags; /* (x) ELF flags */ /* End area that is copied on creation. */ #define p_endcopy p_xexit u_int p_xexit; /* (c) Exit code. */ u_int p_xsig; /* (c) Stop/kill sig. */ struct pgrp *p_pgrp; /* (c + e) Pointer to process group. */ struct knlist *p_klist; /* (c) Knotes attached to this proc. */ int p_numthreads; /* (c) Number of threads. */ struct mdproc p_md; /* Any machine-dependent fields. */ struct callout p_itcallout; /* (h + c) Interval timer callout. */ u_short p_acflag; /* (c) Accounting flags. */ struct proc *p_peers; /* (r) */ struct proc *p_leader; /* (b) */ void *p_emuldata; /* (c) Emulator state data. */ struct label *p_label; /* (*) Proc (not subject) MAC label. */ STAILQ_HEAD(, ktr_request) p_ktr; /* (o) KTR event queue. */ LIST_HEAD(, mqueue_notifier) p_mqnotifier; /* (c) mqueue notifiers.*/ struct kdtrace_proc *p_dtrace; /* (*) DTrace-specific data. */ struct cv p_pwait; /* (*) wait cv for exit/exec. */ uint64_t p_prev_runtime; /* (c) Resource usage accounting. */ struct racct *p_racct; /* (b) Resource accounting. */ int p_throttled; /* (c) Flag for racct pcpu throttling */ /* * An orphan is the child that has been re-parented to the * debugger as a result of attaching to it. Need to keep * track of them for parent to be able to collect the exit * status of what used to be children. */ LIST_ENTRY(proc) p_orphan; /* (e) List of orphan processes. */ LIST_HEAD(, proc) p_orphans; /* (e) Pointer to list of orphans. */ TAILQ_HEAD(, kq_timer_cb_data) p_kqtim_stop; /* (c) */ }; #define p_session p_pgrp->pg_session #define p_pgid p_pgrp->pg_id #define NOCPU (-1) /* For when we aren't on a CPU. */ #define NOCPU_OLD (255) #define MAXCPU_OLD (254) #define PROC_SLOCK(p) mtx_lock_spin(&(p)->p_slock) #define PROC_SUNLOCK(p) mtx_unlock_spin(&(p)->p_slock) #define PROC_SLOCK_ASSERT(p, type) mtx_assert(&(p)->p_slock, (type)) #define PROC_STATLOCK(p) mtx_lock_spin(&(p)->p_statmtx) #define PROC_STATUNLOCK(p) mtx_unlock_spin(&(p)->p_statmtx) #define PROC_STATLOCK_ASSERT(p, type) mtx_assert(&(p)->p_statmtx, (type)) #define PROC_ITIMLOCK(p) mtx_lock_spin(&(p)->p_itimmtx) #define PROC_ITIMUNLOCK(p) mtx_unlock_spin(&(p)->p_itimmtx) #define PROC_ITIMLOCK_ASSERT(p, type) mtx_assert(&(p)->p_itimmtx, (type)) #define PROC_PROFLOCK(p) mtx_lock_spin(&(p)->p_profmtx) #define PROC_PROFUNLOCK(p) mtx_unlock_spin(&(p)->p_profmtx) #define PROC_PROFLOCK_ASSERT(p, type) mtx_assert(&(p)->p_profmtx, (type)) /* These flags are kept in p_flag. */ #define P_ADVLOCK 0x00000001 /* Process may hold a POSIX advisory lock. */ #define P_CONTROLT 0x00000002 /* Has a controlling terminal. */ #define P_KPROC 0x00000004 /* Kernel process. */ #define P_UNUSED3 0x00000008 /* --available-- */ #define P_PPWAIT 0x00000010 /* Parent is waiting for child to exec/exit. */ #define P_PROFIL 0x00000020 /* Has started profiling. */ #define P_STOPPROF 0x00000040 /* Has thread requesting to stop profiling. */ #define P_HADTHREADS 0x00000080 /* Has had threads (no cleanup shortcuts) */ #define P_SUGID 0x00000100 /* Had set id privileges since last exec. */ #define P_SYSTEM 0x00000200 /* System proc: no sigs, stats or swapping. */ #define P_SINGLE_EXIT 0x00000400 /* Threads suspending should exit, not wait. */ #define P_TRACED 0x00000800 /* Debugged process being traced. */ #define P_WAITED 0x00001000 /* Someone is waiting for us. */ #define P_WEXIT 0x00002000 /* Working on exiting. */ #define P_EXEC 0x00004000 /* Process called exec. */ #define P_WKILLED 0x00008000 /* Killed, go to kernel/user boundary ASAP. */ #define P_CONTINUED 0x00010000 /* Proc has continued from a stopped state. */ #define P_STOPPED_SIG 0x00020000 /* Stopped due to SIGSTOP/SIGTSTP. */ #define P_STOPPED_TRACE 0x00040000 /* Stopped because of tracing. */ #define P_STOPPED_SINGLE 0x00080000 /* Only 1 thread can continue (not to user). */ #define P_PROTECTED 0x00100000 /* Do not kill on memory overcommit. */ #define P_SIGEVENT 0x00200000 /* Process pending signals changed. */ #define P_SINGLE_BOUNDARY 0x00400000 /* Threads should suspend at user boundary. */ #define P_HWPMC 0x00800000 /* Process is using HWPMCs */ #define P_JAILED 0x01000000 /* Process is in jail. */ #define P_TOTAL_STOP 0x02000000 /* Stopped in stop_all_proc. */ #define P_INEXEC 0x04000000 /* Process is in execve(). */ #define P_STATCHILD 0x08000000 /* Child process stopped or exited. */ #define P_INMEM 0x10000000 /* Loaded into memory. */ #define P_SWAPPINGOUT 0x20000000 /* Process is being swapped out. */ #define P_SWAPPINGIN 0x40000000 /* Process is being swapped in. */ #define P_PPTRACE 0x80000000 /* PT_TRACEME by vforked child. */ #define P_STOPPED (P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE) #define P_SHOULDSTOP(p) ((p)->p_flag & P_STOPPED) #define P_KILLED(p) ((p)->p_flag & P_WKILLED) /* These flags are kept in p_flag2. */ #define P2_INHERIT_PROTECTED 0x00000001 /* New children get P_PROTECTED. */ #define P2_NOTRACE 0x00000002 /* No ptrace(2) attach or coredumps. */ #define P2_NOTRACE_EXEC 0x00000004 /* Keep P2_NOPTRACE on exec(2). */ #define P2_AST_SU 0x00000008 /* Handles SU ast for kthreads. */ #define P2_PTRACE_FSTP 0x00000010 /* SIGSTOP from PT_ATTACH not yet handled. */ #define P2_TRAPCAP 0x00000020 /* SIGTRAP on ENOTCAPABLE */ #define P2_ASLR_ENABLE 0x00000040 /* Force enable ASLR. */ #define P2_ASLR_DISABLE 0x00000080 /* Force disable ASLR. */ #define P2_ASLR_IGNSTART 0x00000100 /* Enable ASLR to consume sbrk area. */ #define P2_PROTMAX_ENABLE 0x00000200 /* Force enable implied PROT_MAX. */ #define P2_PROTMAX_DISABLE 0x00000400 /* Force disable implied PROT_MAX. */ #define P2_STKGAP_DISABLE 0x00000800 /* Disable stack gap for MAP_STACK */ #define P2_STKGAP_DISABLE_EXEC 0x00001000 /* Stack gap disabled after exec */ #define P2_ITSTOPPED 0x00002000 #define P2_PTRACEREQ 0x00004000 /* Active ptrace req */ /* Flags protected by proctree_lock, kept in p_treeflags. */ #define P_TREE_ORPHANED 0x00000001 /* Reparented, on orphan list */ #define P_TREE_FIRST_ORPHAN 0x00000002 /* First element of orphan list */ #define P_TREE_REAPER 0x00000004 /* Reaper of subtree */ #define P_TREE_GRPEXITED 0x00000008 /* exit1() done with job ctl */ /* * These were process status values (p_stat), now they are only used in * legacy conversion code. */ #define SIDL 1 /* Process being created by fork. */ #define SRUN 2 /* Currently runnable. */ #define SSLEEP 3 /* Sleeping on an address. */ #define SSTOP 4 /* Process debugging or suspension. */ #define SZOMB 5 /* Awaiting collection by parent. */ #define SWAIT 6 /* Waiting for interrupt. */ #define SLOCK 7 /* Blocked on a lock. */ #define P_MAGIC 0xbeefface #ifdef _KERNEL /* Types and flags for mi_switch(). */ #define SW_TYPE_MASK 0xff /* First 8 bits are switch type */ #define SWT_NONE 0 /* Unspecified switch. */ #define SWT_PREEMPT 1 /* Switching due to preemption. */ #define SWT_OWEPREEMPT 2 /* Switching due to owepreempt. */ #define SWT_TURNSTILE 3 /* Turnstile contention. */ #define SWT_SLEEPQ 4 /* Sleepq wait. */ #define SWT_SLEEPQTIMO 5 /* Sleepq timeout wait. */ #define SWT_RELINQUISH 6 /* yield call. */ #define SWT_NEEDRESCHED 7 /* NEEDRESCHED was set. */ #define SWT_IDLE 8 /* Switching from the idle thread. */ #define SWT_IWAIT 9 /* Waiting for interrupts. */ #define SWT_SUSPEND 10 /* Thread suspended. */ #define SWT_REMOTEPREEMPT 11 /* Remote processor preempted. */ #define SWT_REMOTEWAKEIDLE 12 /* Remote processor preempted idle. */ #define SWT_COUNT 13 /* Number of switch types. */ /* Flags */ #define SW_VOL 0x0100 /* Voluntary switch. */ #define SW_INVOL 0x0200 /* Involuntary switch. */ #define SW_PREEMPT 0x0400 /* The invol switch is a preemption */ /* How values for thread_single(). */ #define SINGLE_NO_EXIT 0 #define SINGLE_EXIT 1 #define SINGLE_BOUNDARY 2 #define SINGLE_ALLPROC 3 #ifdef MALLOC_DECLARE MALLOC_DECLARE(M_PARGS); MALLOC_DECLARE(M_SESSION); MALLOC_DECLARE(M_SUBPROC); #endif #define FOREACH_PROC_IN_SYSTEM(p) \ LIST_FOREACH((p), &allproc, p_list) #define FOREACH_THREAD_IN_PROC(p, td) \ TAILQ_FOREACH((td), &(p)->p_threads, td_plist) #define FIRST_THREAD_IN_PROC(p) TAILQ_FIRST(&(p)->p_threads) /* * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit * in a pid_t, as it is used to represent "no process group". */ #define PID_MAX 99999 #define NO_PID 100000 #define THREAD0_TID NO_PID extern pid_t pid_max; #define SESS_LEADER(p) ((p)->p_session->s_leader == (p)) /* Lock and unlock a process. */ #define PROC_LOCK(p) mtx_lock(&(p)->p_mtx) #define PROC_TRYLOCK(p) mtx_trylock(&(p)->p_mtx) #define PROC_UNLOCK(p) mtx_unlock(&(p)->p_mtx) #define PROC_LOCKED(p) mtx_owned(&(p)->p_mtx) #define PROC_LOCK_ASSERT(p, type) mtx_assert(&(p)->p_mtx, (type)) /* Lock and unlock a process group. */ #define PGRP_LOCK(pg) mtx_lock(&(pg)->pg_mtx) #define PGRP_UNLOCK(pg) mtx_unlock(&(pg)->pg_mtx) #define PGRP_LOCKED(pg) mtx_owned(&(pg)->pg_mtx) #define PGRP_LOCK_ASSERT(pg, type) mtx_assert(&(pg)->pg_mtx, (type)) #define PGRP_LOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_LOCK(pg); \ } while (0) #define PGRP_UNLOCK_PGSIGNAL(pg) do { \ if ((pg) != NULL) \ PGRP_UNLOCK(pg); \ } while (0) /* Lock and unlock a session. */ #define SESS_LOCK(s) mtx_lock(&(s)->s_mtx) #define SESS_UNLOCK(s) mtx_unlock(&(s)->s_mtx) #define SESS_LOCKED(s) mtx_owned(&(s)->s_mtx) #define SESS_LOCK_ASSERT(s, type) mtx_assert(&(s)->s_mtx, (type)) /* * Non-zero p_lock ensures that: * - exit1() is not performed until p_lock reaches zero; * - the process' threads stack are not swapped out if they are currently * not (P_INMEM). * * PHOLD() asserts that the process (except the current process) is * not exiting, increments p_lock and swaps threads stacks into memory, * if needed. * _PHOLD() is same as PHOLD(), it takes the process locked. * _PHOLD_LITE() also takes the process locked, but comparing with * _PHOLD(), it only guarantees that exit1() is not executed, * faultin() is not called. */ #define PHOLD(p) do { \ PROC_LOCK(p); \ _PHOLD(p); \ PROC_UNLOCK(p); \ } while (0) #define _PHOLD(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ if (((p)->p_flag & P_INMEM) == 0) \ faultin((p)); \ } while (0) #define _PHOLD_LITE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc, \ ("PHOLD of exiting process %p", p)); \ (p)->p_lock++; \ } while (0) #define PROC_ASSERT_HELD(p) do { \ KASSERT((p)->p_lock > 0, ("process %p not held", p)); \ } while (0) #define PRELE(p) do { \ PROC_LOCK((p)); \ _PRELE((p)); \ PROC_UNLOCK((p)); \ } while (0) #define _PRELE(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ PROC_ASSERT_HELD(p); \ (--(p)->p_lock); \ if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0) \ wakeup(&(p)->p_lock); \ } while (0) #define PROC_ASSERT_NOT_HELD(p) do { \ KASSERT((p)->p_lock == 0, ("process %p held", p)); \ } while (0) #define PROC_UPDATE_COW(p) do { \ PROC_LOCK_ASSERT((p), MA_OWNED); \ (p)->p_cowgen++; \ } while (0) /* Check whether a thread is safe to be swapped out. */ #define thread_safetoswapout(td) ((td)->td_flags & TDF_CANSWAP) /* Control whether or not it is safe for curthread to sleep. */ #define THREAD_NO_SLEEPING() do { \ curthread->td_no_sleeping++; \ MPASS(curthread->td_no_sleeping > 0); \ } while (0) #define THREAD_SLEEPING_OK() do { \ MPASS(curthread->td_no_sleeping > 0); \ curthread->td_no_sleeping--; \ } while (0) #define THREAD_CAN_SLEEP() ((curthread)->td_no_sleeping == 0) #define PIDHASH(pid) (&pidhashtbl[(pid) & pidhash]) #define PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)]) extern LIST_HEAD(pidhashhead, proc) *pidhashtbl; extern struct sx *pidhashtbl_lock; extern u_long pidhash; extern u_long pidhashlock; #define PGRPHASH(pgid) (&pgrphashtbl[(pgid) & pgrphash]) extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl; extern u_long pgrphash; extern struct sx allproc_lock; extern int allproc_gen; extern struct sx proctree_lock; extern struct mtx ppeers_lock; extern struct mtx procid_lock; extern struct proc proc0; /* Process slot for swapper. */ extern struct thread0_storage thread0_st; /* Primary thread in proc0. */ #define thread0 (thread0_st.t0st_thread) extern struct vmspace vmspace0; /* VM space for proc0. */ extern int hogticks; /* Limit on kernel cpu hogs. */ extern int lastpid; extern int nprocs, maxproc; /* Current and max number of procs. */ extern int maxprocperuid; /* Max procs per uid. */ extern u_long ps_arg_cache_limit; LIST_HEAD(proclist, proc); TAILQ_HEAD(procqueue, proc); TAILQ_HEAD(threadqueue, thread); extern struct proclist allproc; /* List of all processes. */ extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */ extern struct uma_zone *proc_zone; extern struct uma_zone *pgrp_zone; struct proc *pfind(pid_t); /* Find process by id. */ struct proc *pfind_any(pid_t); /* Find (zombie) process by id. */ struct proc *pfind_any_locked(pid_t pid); /* Find process by id, locked. */ struct pgrp *pgfind(pid_t); /* Find process group by id. */ void pidhash_slockall(void); /* Shared lock all pid hash lists. */ void pidhash_sunlockall(void); /* Shared unlock all pid hash lists. */ struct fork_req { int fr_flags; int fr_pages; int *fr_pidp; struct proc **fr_procp; int *fr_pd_fd; int fr_pd_flags; struct filecaps *fr_pd_fcaps; int fr_flags2; #define FR2_DROPSIG_CAUGHT 0x00000001 /* Drop caught non-DFL signals */ #define FR2_SHARE_PATHS 0x00000002 /* Invert sense of RFFDG for paths */ #define FR2_KPROC 0x00000004 /* Create a kernel process */ }; /* * pget() flags. */ #define PGET_HOLD 0x00001 /* Hold the process. */ #define PGET_CANSEE 0x00002 /* Check against p_cansee(). */ #define PGET_CANDEBUG 0x00004 /* Check against p_candebug(). */ #define PGET_ISCURRENT 0x00008 /* Check that the found process is current. */ #define PGET_NOTWEXIT 0x00010 /* Check that the process is not in P_WEXIT. */ #define PGET_NOTINEXEC 0x00020 /* Check that the process is not in P_INEXEC. */ #define PGET_NOTID 0x00040 /* Do not assume tid if pid > PID_MAX. */ #define PGET_WANTREAD (PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT) int pget(pid_t pid, int flags, struct proc **pp); void ast(struct trapframe *framep); struct thread *choosethread(void); int cr_cansee(struct ucred *u1, struct ucred *u2); int cr_canseesocket(struct ucred *cred, struct socket *so); int cr_canseeothergids(struct ucred *u1, struct ucred *u2); int cr_canseeotheruids(struct ucred *u1, struct ucred *u2); int cr_canseejailproc(struct ucred *u1, struct ucred *u2); int cr_cansignal(struct ucred *cred, struct proc *proc, int signum); int enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess); int enterthispgrp(struct proc *p, struct pgrp *pgrp); void faultin(struct proc *p); int fork1(struct thread *, struct fork_req *); void fork_rfppwait(struct thread *); void fork_exit(void (*)(void *, struct trapframe *), void *, struct trapframe *); void fork_return(struct thread *, struct trapframe *); int inferior(struct proc *p); void itimer_proc_continue(struct proc *p); void kqtimer_proc_continue(struct proc *p); void kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry, int *resident_count, bool *super); void kern_yield(int); void kick_proc0(void); void killjobc(void); int leavepgrp(struct proc *p); int maybe_preempt(struct thread *td); void maybe_yield(void); void mi_switch(int flags); int p_candebug(struct thread *td, struct proc *p); int p_cansee(struct thread *td, struct proc *p); int p_cansched(struct thread *td, struct proc *p); int p_cansignal(struct thread *td, struct proc *p, int signum); int p_canwait(struct thread *td, struct proc *p); struct pargs *pargs_alloc(int len); void pargs_drop(struct pargs *pa); void pargs_hold(struct pargs *pa); int proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb); int proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb); void procinit(void); int proc_iterate(int (*cb)(struct proc *, void *), void *cbarg); void proc_linkup0(struct proc *p, struct thread *td); void proc_linkup(struct proc *p, struct thread *td); struct proc *proc_realparent(struct proc *child); void proc_reap(struct thread *td, struct proc *p, int *status, int options); void proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid); void proc_add_orphan(struct proc *child, struct proc *parent); void proc_set_traced(struct proc *p, bool stop); void proc_wkilled(struct proc *p); struct pstats *pstats_alloc(void); void pstats_fork(struct pstats *src, struct pstats *dst); void pstats_free(struct pstats *ps); void proc_clear_orphan(struct proc *p); void reaper_abandon_children(struct proc *p, bool exiting); int securelevel_ge(struct ucred *cr, int level); int securelevel_gt(struct ucred *cr, int level); void sess_hold(struct session *); void sess_release(struct session *); int setrunnable(struct thread *, int); void setsugid(struct proc *p); int should_yield(void); int sigonstack(size_t sp); void stopevent(struct proc *, u_int, u_int); struct thread *tdfind(lwpid_t, pid_t); void threadinit(void); void tidhash_add(struct thread *); void tidhash_remove(struct thread *); void cpu_idle(int); int cpu_idle_wakeup(int); extern void (*cpu_idle_hook)(sbintime_t); /* Hook to machdep CPU idler. */ void cpu_switch(struct thread *, struct thread *, struct mtx *); void cpu_throw(struct thread *, struct thread *) __dead2; void unsleep(struct thread *); void userret(struct thread *, struct trapframe *); void cpu_exit(struct thread *); void exit1(struct thread *, int, int) __dead2; void cpu_copy_thread(struct thread *td, struct thread *td0); bool cpu_exec_vmspace_reuse(struct proc *p, struct vm_map *map); int cpu_fetch_syscall_args(struct thread *td); void cpu_fork(struct thread *, struct proc *, struct thread *, int); void cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *); int cpu_procctl(struct thread *td, int idtype, id_t id, int com, void *data); void cpu_set_syscall_retval(struct thread *, int); void cpu_set_upcall(struct thread *, void (*)(void *), void *, stack_t *); int cpu_set_user_tls(struct thread *, void *tls_base); void cpu_thread_alloc(struct thread *); void cpu_thread_clean(struct thread *); void cpu_thread_exit(struct thread *); void cpu_thread_free(struct thread *); void cpu_thread_swapin(struct thread *); void cpu_thread_swapout(struct thread *); struct thread *thread_alloc(int pages); int thread_alloc_stack(struct thread *, int pages); int thread_check_susp(struct thread *td, bool sleep); void thread_cow_get_proc(struct thread *newtd, struct proc *p); void thread_cow_get(struct thread *newtd, struct thread *td); void thread_cow_free(struct thread *td); void thread_cow_update(struct thread *td); int thread_create(struct thread *td, struct rtprio *rtp, int (*initialize_thread)(struct thread *, void *), void *thunk); void thread_exit(void) __dead2; void thread_free(struct thread *td); void thread_link(struct thread *td, struct proc *p); int thread_single(struct proc *p, int how); void thread_single_end(struct proc *p, int how); void thread_stash(struct thread *td); void thread_stopped(struct proc *p); void childproc_stopped(struct proc *child, int reason); void childproc_continued(struct proc *child); void childproc_exited(struct proc *child); void thread_run_flash(struct thread *td); int thread_suspend_check(int how); bool thread_suspend_check_needed(void); void thread_suspend_switch(struct thread *, struct proc *p); void thread_suspend_one(struct thread *td); void thread_unlink(struct thread *td); void thread_unsuspend(struct proc *p); void thread_wait(struct proc *p); void stop_all_proc(void); void resume_all_proc(void); static __inline int curthread_pflags_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags & flags); td->td_pflags |= flags; return (save); } static __inline void curthread_pflags_restore(int save) { curthread->td_pflags &= save; } static __inline int curthread_pflags2_set(int flags) { struct thread *td; int save; td = curthread; save = ~flags | (td->td_pflags2 & flags); td->td_pflags2 |= flags; return (save); } static __inline void curthread_pflags2_restore(int save) { curthread->td_pflags2 &= save; } static __inline bool kstack_contains(struct thread *td, vm_offset_t va, size_t len) { return (va >= td->td_kstack && va + len >= va && va + len <= td->td_kstack + td->td_kstack_pages * PAGE_SIZE); } static __inline __pure2 struct td_sched * td_get_sched(struct thread *td) { return ((struct td_sched *)&td[1]); } extern void (*softdep_ast_cleanup)(struct thread *); static __inline void td_softdep_cleanup(struct thread *td) { if (td->td_su != NULL && softdep_ast_cleanup != NULL) softdep_ast_cleanup(td); } #define PROC_ID_PID 0 #define PROC_ID_GROUP 1 #define PROC_ID_SESSION 2 #define PROC_ID_REAP 3 void proc_id_set(int type, pid_t id); void proc_id_set_cond(int type, pid_t id); void proc_id_clear(int type, pid_t id); EVENTHANDLER_LIST_DECLARE(process_ctor); EVENTHANDLER_LIST_DECLARE(process_dtor); EVENTHANDLER_LIST_DECLARE(process_init); EVENTHANDLER_LIST_DECLARE(process_fini); EVENTHANDLER_LIST_DECLARE(process_exit); EVENTHANDLER_LIST_DECLARE(process_fork); EVENTHANDLER_LIST_DECLARE(process_exec); EVENTHANDLER_LIST_DECLARE(thread_ctor); EVENTHANDLER_LIST_DECLARE(thread_dtor); EVENTHANDLER_LIST_DECLARE(thread_init); #endif /* _KERNEL */ #endif /* !_SYS_PROC_H_ */