diff --git a/sys/net80211/ieee80211.c b/sys/net80211/ieee80211.c index e64568abb024..e4de0b439ac0 100644 --- a/sys/net80211/ieee80211.c +++ b/sys/net80211/ieee80211.c @@ -1,2789 +1,2789 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 generic handler */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = "auto", [IEEE80211_MODE_11A] = "11a", [IEEE80211_MODE_11B] = "11b", [IEEE80211_MODE_11G] = "11g", [IEEE80211_MODE_FH] = "FH", [IEEE80211_MODE_TURBO_A] = "turboA", [IEEE80211_MODE_TURBO_G] = "turboG", [IEEE80211_MODE_STURBO_A] = "sturboA", [IEEE80211_MODE_HALF] = "half", [IEEE80211_MODE_QUARTER] = "quarter", [IEEE80211_MODE_11NA] = "11na", [IEEE80211_MODE_11NG] = "11ng", [IEEE80211_MODE_VHT_2GHZ] = "11acg", [IEEE80211_MODE_VHT_5GHZ] = "11ac", }; /* map ieee80211_opmode to the corresponding capability bit */ const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = { [IEEE80211_M_IBSS] = IEEE80211_C_IBSS, [IEEE80211_M_WDS] = IEEE80211_C_WDS, [IEEE80211_M_STA] = IEEE80211_C_STA, [IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO, [IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP, [IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR, #ifdef IEEE80211_SUPPORT_MESH [IEEE80211_M_MBSS] = IEEE80211_C_MBSS, #endif }; const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag); static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag); static int ieee80211_media_setup(struct ieee80211com *ic, struct ifmedia *media, int caps, int addsta, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat); static int media_status(enum ieee80211_opmode, const struct ieee80211_channel *); static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter); MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state"); /* * Default supported rates for 802.11 operation (in IEEE .5Mb units). */ #define B(r) ((r) | IEEE80211_RATE_BASIC) static const struct ieee80211_rateset ieee80211_rateset_11a = { 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } }; static const struct ieee80211_rateset ieee80211_rateset_half = { 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } }; static const struct ieee80211_rateset ieee80211_rateset_quarter = { 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } }; static const struct ieee80211_rateset ieee80211_rateset_11b = { 4, { B(2), B(4), B(11), B(22) } }; /* NB: OFDM rates are handled specially based on mode */ static const struct ieee80211_rateset ieee80211_rateset_11g = { 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } }; #undef B static int set_vht_extchan(struct ieee80211_channel *c); /* * Fill in 802.11 available channel set, mark * all available channels as active, and pick * a default channel if not already specified. */ void ieee80211_chan_init(struct ieee80211com *ic) { #define DEFAULTRATES(m, def) do { \ if (ic->ic_sup_rates[m].rs_nrates == 0) \ ic->ic_sup_rates[m] = def; \ } while (0) struct ieee80211_channel *c; int i; KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX, ("invalid number of channels specified: %u", ic->ic_nchans)); memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail)); memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps)); setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO); for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; KASSERT(c->ic_flags != 0, ("channel with no flags")); /* * Help drivers that work only with frequencies by filling * in IEEE channel #'s if not already calculated. Note this * mimics similar work done in ieee80211_setregdomain when * changing regulatory state. */ if (c->ic_ieee == 0) c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags); /* * Setup the HT40/VHT40 upper/lower bits. * The VHT80/... math is done elsewhere. */ if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0) c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq + (IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20), c->ic_flags); /* Update VHT math */ /* * XXX VHT again, note that this assumes VHT80/... channels * are legit already. */ set_vht_extchan(c); /* default max tx power to max regulatory */ if (c->ic_maxpower == 0) c->ic_maxpower = 2*c->ic_maxregpower; setbit(ic->ic_chan_avail, c->ic_ieee); /* * Identify mode capabilities. */ if (IEEE80211_IS_CHAN_A(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11A); if (IEEE80211_IS_CHAN_B(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11B); if (IEEE80211_IS_CHAN_ANYG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11G); if (IEEE80211_IS_CHAN_FHSS(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_FH); if (IEEE80211_IS_CHAN_108A(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A); if (IEEE80211_IS_CHAN_108G(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G); if (IEEE80211_IS_CHAN_ST(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A); if (IEEE80211_IS_CHAN_HALF(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_HALF); if (IEEE80211_IS_CHAN_QUARTER(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER); if (IEEE80211_IS_CHAN_HTA(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11NA); if (IEEE80211_IS_CHAN_HTG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_11NG); if (IEEE80211_IS_CHAN_VHTA(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ); if (IEEE80211_IS_CHAN_VHTG(c)) setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ); } /* initialize candidate channels to all available */ memcpy(ic->ic_chan_active, ic->ic_chan_avail, sizeof(ic->ic_chan_avail)); /* sort channel table to allow lookup optimizations */ ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans); /* invalidate any previous state */ ic->ic_bsschan = IEEE80211_CHAN_ANYC; ic->ic_prevchan = NULL; ic->ic_csa_newchan = NULL; /* arbitrarily pick the first channel */ ic->ic_curchan = &ic->ic_channels[0]; ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); /* fillin well-known rate sets if driver has not specified */ DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b); DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half); DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter); DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a); DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g); DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a); /* * Setup required information to fill the mcsset field, if driver did * not. Assume a 2T2R setup for historic reasons. */ if (ic->ic_rxstream == 0) ic->ic_rxstream = 2; if (ic->ic_txstream == 0) ic->ic_txstream = 2; ieee80211_init_suphtrates(ic); /* * Set auto mode to reset active channel state and any desired channel. */ (void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); #undef DEFAULTRATES } static void null_update_mcast(struct ieee80211com *ic) { ic_printf(ic, "need multicast update callback\n"); } static void null_update_promisc(struct ieee80211com *ic) { ic_printf(ic, "need promiscuous mode update callback\n"); } static void null_update_chw(struct ieee80211com *ic) { ic_printf(ic, "%s: need callback\n", __func__); } int ic_printf(struct ieee80211com *ic, const char * fmt, ...) { va_list ap; int retval; retval = printf("%s: ", ic->ic_name); va_start(ap, fmt); retval += vprintf(fmt, ap); va_end(ap); return (retval); } static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head); static struct mtx ic_list_mtx; MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF); static int sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic; struct sbuf sb; char *sp; int error; error = sysctl_wire_old_buffer(req, 0); if (error) return (error); sbuf_new_for_sysctl(&sb, NULL, 8, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); sp = ""; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) { sbuf_printf(&sb, "%s%s", sp, ic->ic_name); sp = " "; } mtx_unlock(&ic_list_mtx); error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } SYSCTL_PROC(_net_wlan, OID_AUTO, devices, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_ieee80211coms, "A", "names of available 802.11 devices"); /* * Attach/setup the common net80211 state. Called by * the driver on attach to prior to creating any vap's. */ void ieee80211_ifattach(struct ieee80211com *ic) { IEEE80211_LOCK_INIT(ic, ic->ic_name); IEEE80211_TX_LOCK_INIT(ic, ic->ic_name); TAILQ_INIT(&ic->ic_vaps); /* Create a taskqueue for all state changes */ ic->ic_tq = taskqueue_create("ic_taskq", IEEE80211_M_WAITOK | IEEE80211_M_ZERO, taskqueue_thread_enqueue, &ic->ic_tq); taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq", ic->ic_name); ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK); ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK); /* * Fill in 802.11 available channel set, mark all * available channels as active, and pick a default * channel if not already specified. */ ieee80211_chan_init(ic); ic->ic_update_mcast = null_update_mcast; ic->ic_update_promisc = null_update_promisc; ic->ic_update_chw = null_update_chw; ic->ic_hash_key = arc4random(); ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT; ic->ic_lintval = ic->ic_bintval; ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX; ieee80211_crypto_attach(ic); ieee80211_node_attach(ic); ieee80211_power_attach(ic); ieee80211_proto_attach(ic); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_attach(ic); #endif ieee80211_ht_attach(ic); ieee80211_vht_attach(ic); ieee80211_scan_attach(ic); ieee80211_regdomain_attach(ic); ieee80211_dfs_attach(ic); ieee80211_sysctl_attach(ic); mtx_lock(&ic_list_mtx); LIST_INSERT_HEAD(&ic_head, ic, ic_next); mtx_unlock(&ic_list_mtx); } /* * Detach net80211 state on device detach. Tear down * all vap's and reclaim all common state prior to the * device state going away. Note we may call back into * driver; it must be prepared for this. */ void ieee80211_ifdetach(struct ieee80211com *ic) { struct ieee80211vap *vap; /* * We use this as an indicator that ifattach never had a chance to be * called, e.g. early driver attach failed and ifdetach was called * during subsequent detach. Never fear, for we have nothing to do * here. */ if (ic->ic_tq == NULL) return; mtx_lock(&ic_list_mtx); LIST_REMOVE(ic, ic_next); mtx_unlock(&ic_list_mtx); taskqueue_drain(taskqueue_thread, &ic->ic_restart_task); /* * The VAP is responsible for setting and clearing * the VIMAGE context. */ while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) { ieee80211_com_vdetach(vap); ieee80211_vap_destroy(vap); } ieee80211_waitfor_parent(ic); ieee80211_sysctl_detach(ic); ieee80211_dfs_detach(ic); ieee80211_regdomain_detach(ic); ieee80211_scan_detach(ic); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_detach(ic); #endif ieee80211_vht_detach(ic); ieee80211_ht_detach(ic); /* NB: must be called before ieee80211_node_detach */ ieee80211_proto_detach(ic); ieee80211_crypto_detach(ic); ieee80211_power_detach(ic); ieee80211_node_detach(ic); counter_u64_free(ic->ic_ierrors); counter_u64_free(ic->ic_oerrors); taskqueue_free(ic->ic_tq); IEEE80211_TX_LOCK_DESTROY(ic); IEEE80211_LOCK_DESTROY(ic); } /* * Called by drivers during attach to set the supported * cipher set for software encryption. */ void ieee80211_set_software_ciphers(struct ieee80211com *ic, uint32_t cipher_suite) { ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite); } /* * Called by drivers during attach to set the supported * cipher set for hardware encryption. */ void ieee80211_set_hardware_ciphers(struct ieee80211com *ic, uint32_t cipher_suite) { ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite); } /* * Called by drivers during attach to set the supported * key management suites by the driver/hardware. */ void ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic, uint32_t keymgmt_set) { ieee80211_crypto_set_supported_driver_keymgmt(ic, keymgmt_set); } struct ieee80211com * ieee80211_find_com(const char *name) { struct ieee80211com *ic; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) if (strcmp(ic->ic_name, name) == 0) break; mtx_unlock(&ic_list_mtx); return (ic); } void ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg) { struct ieee80211com *ic; mtx_lock(&ic_list_mtx); LIST_FOREACH(ic, &ic_head, ic_next) (*f)(arg, ic); mtx_unlock(&ic_list_mtx); } /* * Default reset method for use with the ioctl support. This * method is invoked after any state change in the 802.11 * layer that should be propagated to the hardware but not * require re-initialization of the 802.11 state machine (e.g * rescanning for an ap). We always return ENETRESET which * should cause the driver to re-initialize the device. Drivers * can override this method to implement more optimized support. */ static int default_reset(struct ieee80211vap *vap, u_long cmd) { return ENETRESET; } /* * Default for updating the VAP default TX key index. * * Drivers that support TX offload as well as hardware encryption offload * may need to be informed of key index changes separate from the key * update. */ static void default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) { /* XXX assert validity */ /* XXX assert we're in a key update block */ vap->iv_def_txkey = kid; } /* * Add underlying device errors to vap errors. */ static uint64_t ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; uint64_t rv; rv = if_get_counter_default(ifp, cnt); switch (cnt) { case IFCOUNTER_OERRORS: rv += counter_u64_fetch(ic->ic_oerrors); break; case IFCOUNTER_IERRORS: rv += counter_u64_fetch(ic->ic_ierrors); break; default: break; } return (rv); } /* * Prepare a vap for use. Drivers use this call to * setup net80211 state in new vap's prior attaching * them with ieee80211_vap_attach (below). */ int ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap, const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN]) { struct ifnet *ifp; ifp = if_alloc(IFT_ETHER); if_initname(ifp, name, unit); ifp->if_softc = vap; /* back pointer */ - ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; + if_setflags(ifp, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST); ifp->if_transmit = ieee80211_vap_transmit; ifp->if_qflush = ieee80211_vap_qflush; ifp->if_ioctl = ieee80211_ioctl; ifp->if_init = ieee80211_init; ifp->if_get_counter = ieee80211_get_counter; vap->iv_ifp = ifp; vap->iv_ic = ic; vap->iv_flags = ic->ic_flags; /* propagate common flags */ vap->iv_flags_ext = ic->ic_flags_ext; vap->iv_flags_ven = ic->ic_flags_ven; vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE; /* 11n capabilities - XXX methodize */ vap->iv_htcaps = ic->ic_htcaps; vap->iv_htextcaps = ic->ic_htextcaps; /* 11ac capabilities - XXX methodize */ vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info; vap->iv_vhtextcaps = ic->ic_vhtextcaps; vap->iv_opmode = opmode; vap->iv_caps |= ieee80211_opcap[opmode]; IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr); switch (opmode) { case IEEE80211_M_WDS: /* * WDS links must specify the bssid of the far end. * For legacy operation this is a static relationship. * For non-legacy operation the station must associate * and be authorized to pass traffic. Plumbing the * vap to the proper node happens when the vap * transitions to RUN state. */ IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid); vap->iv_flags |= IEEE80211_F_DESBSSID; if (flags & IEEE80211_CLONE_WDSLEGACY) vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY; break; #ifdef IEEE80211_SUPPORT_TDMA case IEEE80211_M_AHDEMO: if (flags & IEEE80211_CLONE_TDMA) { /* NB: checked before clone operation allowed */ KASSERT(ic->ic_caps & IEEE80211_C_TDMA, ("not TDMA capable, ic_caps 0x%x", ic->ic_caps)); /* * Propagate TDMA capability to mark vap; this * cannot be removed and is used to distinguish * regular ahdemo operation from ahdemo+tdma. */ vap->iv_caps |= IEEE80211_C_TDMA; } break; #endif default: break; } /* auto-enable s/w beacon miss support */ if (flags & IEEE80211_CLONE_NOBEACONS) vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS; /* auto-generated or user supplied MAC address */ if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR)) vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC; /* * Enable various functionality by default if we're * capable; the driver can override us if it knows better. */ if (vap->iv_caps & IEEE80211_C_WME) vap->iv_flags |= IEEE80211_F_WME; if (vap->iv_caps & IEEE80211_C_BURST) vap->iv_flags |= IEEE80211_F_BURST; /* NB: bg scanning only makes sense for station mode right now */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_caps & IEEE80211_C_BGSCAN)) vap->iv_flags |= IEEE80211_F_BGSCAN; vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */ /* NB: DFS support only makes sense for ap mode right now */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && (vap->iv_caps & IEEE80211_C_DFS)) vap->iv_flags_ext |= IEEE80211_FEXT_DFS; /* NB: only flip on U-APSD for hostap/sta for now */ if ((vap->iv_opmode == IEEE80211_M_STA) || (vap->iv_opmode == IEEE80211_M_HOSTAP)) { if (vap->iv_caps & IEEE80211_C_UAPSD) vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; } vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */ vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT; vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT; /* * Install a default reset method for the ioctl support; * the driver can override this. */ vap->iv_reset = default_reset; /* * Install a default crypto key update method, the driver * can override this. */ vap->iv_update_deftxkey = default_update_deftxkey; ieee80211_sysctl_vattach(vap); ieee80211_crypto_vattach(vap); ieee80211_node_vattach(vap); ieee80211_power_vattach(vap); ieee80211_proto_vattach(vap); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_vattach(vap); #endif ieee80211_ht_vattach(vap); ieee80211_vht_vattach(vap); ieee80211_scan_vattach(vap); ieee80211_regdomain_vattach(vap); ieee80211_radiotap_vattach(vap); ieee80211_vap_reset_erp(vap); ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE); return 0; } /* * Activate a vap. State should have been prepared with a * call to ieee80211_vap_setup and by the driver. On return * from this call the vap is ready for use. */ int ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN]) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211com *ic = vap->iv_ic; struct ifmediareq imr; int maxrate; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s flags 0x%x flags_ext 0x%x\n", __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name, vap->iv_flags, vap->iv_flags_ext); /* * Do late attach work that cannot happen until after * the driver has had a chance to override defaults. */ ieee80211_node_latevattach(vap); ieee80211_power_latevattach(vap); maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps, vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat); ieee80211_media_status(ifp, &imr); /* NB: strip explicit mode; we're actually in autoselect */ ifmedia_set(&vap->iv_media, imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO)); if (maxrate) ifp->if_baudrate = IF_Mbps(maxrate); ether_ifattach(ifp, macaddr); /* Do initial MAC address sync */ ieee80211_vap_copy_mac_address(vap); /* hook output method setup by ether_ifattach */ vap->iv_output = ifp->if_output; ifp->if_output = ieee80211_output; /* NB: if_mtu set by ether_ifattach to ETHERMTU */ IEEE80211_LOCK(ic); TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next); ieee80211_syncflag_locked(ic, IEEE80211_F_WME); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); #endif ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX); IEEE80211_UNLOCK(ic); return 1; } /* * Tear down vap state and reclaim the ifnet. * The driver is assumed to have prepared for * this; e.g. by turning off interrupts for the * underlying device. */ void ieee80211_vap_detach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int i; CURVNET_SET(ifp->if_vnet); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n", __func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name); /* NB: bpfdetach is called by ether_ifdetach and claims all taps */ ether_ifdetach(ifp); ieee80211_stop(vap); /* * Flush any deferred vap tasks. */ for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) ieee80211_draintask(ic, &vap->iv_nstate_task[i]); ieee80211_draintask(ic, &vap->iv_swbmiss_task); ieee80211_draintask(ic, &vap->iv_wme_task); ieee80211_draintask(ic, &ic->ic_parent_task); /* XXX band-aid until ifnet handles this for us */ taskqueue_drain(taskqueue_swi, &ifp->if_linktask); IEEE80211_LOCK(ic); KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running")); TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next); ieee80211_syncflag_locked(ic, IEEE80211_F_WME); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP); #endif ieee80211_syncflag_locked(ic, IEEE80211_F_PCF); ieee80211_syncflag_locked(ic, IEEE80211_F_BURST); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT); ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX); ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX); /* NB: this handles the bpfdetach done below */ ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF); if (vap->iv_ifflags & IFF_PROMISC) ieee80211_promisc(vap, false); if (vap->iv_ifflags & IFF_ALLMULTI) ieee80211_allmulti(vap, false); IEEE80211_UNLOCK(ic); ifmedia_removeall(&vap->iv_media); ieee80211_radiotap_vdetach(vap); ieee80211_regdomain_vdetach(vap); ieee80211_scan_vdetach(vap); #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_superg_vdetach(vap); #endif ieee80211_vht_vdetach(vap); ieee80211_ht_vdetach(vap); /* NB: must be before ieee80211_node_vdetach */ ieee80211_proto_vdetach(vap); ieee80211_crypto_vdetach(vap); ieee80211_power_vdetach(vap); ieee80211_node_vdetach(vap); ieee80211_sysctl_vdetach(vap); if_free(ifp); CURVNET_RESTORE(); } /* * Count number of vaps in promisc, and issue promisc on * parent respectively. */ void ieee80211_promisc(struct ieee80211vap *vap, bool on) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); if (on) { if (++ic->ic_promisc == 1) ieee80211_runtask(ic, &ic->ic_promisc_task); } else { KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc", __func__, ic)); if (--ic->ic_promisc == 0) ieee80211_runtask(ic, &ic->ic_promisc_task); } } /* * Count number of vaps in allmulti, and issue allmulti on * parent respectively. */ void ieee80211_allmulti(struct ieee80211vap *vap, bool on) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); if (on) { if (++ic->ic_allmulti == 1) ieee80211_runtask(ic, &ic->ic_mcast_task); } else { KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti", __func__, ic)); if (--ic->ic_allmulti == 0) ieee80211_runtask(ic, &ic->ic_mcast_task); } } /* * Synchronize flag bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags & flag) { bit = 1; break; } if (bit) ic->ic_flags |= flag; else ic->ic_flags &= ~flag; } void ieee80211_syncflag(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags &= ~flag; } else vap->iv_flags |= flag; ieee80211_syncflag_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_ht bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags_ht & flag) { bit = 1; break; } if (bit) ic->ic_flags_ht |= flag; else ic->ic_flags_ht &= ~flag; } void ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags_ht &= ~flag; } else vap->iv_flags_ht |= flag; ieee80211_syncflag_ht_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_vht bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_vht_flags & flag) { bit = 1; break; } if (bit) ic->ic_vht_flags |= flag; else ic->ic_vht_flags &= ~flag; } void ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_vht_flags &= ~flag; } else vap->iv_vht_flags |= flag; ieee80211_syncflag_vht_locked(ic, flag); IEEE80211_UNLOCK(ic); } /* * Synchronize flags_ext bit state in the com structure * according to the state of all vap's. This is used, * for example, to handle state changes via ioctls. */ static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag) { struct ieee80211vap *vap; int bit; IEEE80211_LOCK_ASSERT(ic); bit = 0; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_flags_ext & flag) { bit = 1; break; } if (bit) ic->ic_flags_ext |= flag; else ic->ic_flags_ext &= ~flag; } void ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (flag < 0) { flag = -flag; vap->iv_flags_ext &= ~flag; } else vap->iv_flags_ext |= flag; ieee80211_syncflag_ext_locked(ic, flag); IEEE80211_UNLOCK(ic); } static __inline int mapgsm(u_int freq, u_int flags) { freq *= 10; if (flags & IEEE80211_CHAN_QUARTER) freq += 5; else if (flags & IEEE80211_CHAN_HALF) freq += 10; else freq += 20; /* NB: there is no 907/20 wide but leave room */ return (freq - 906*10) / 5; } static __inline int mappsb(u_int freq, u_int flags) { return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5; } /* * Convert MHz frequency to IEEE channel number. */ int ieee80211_mhz2ieee(u_int freq, u_int flags) { #define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990) if (flags & IEEE80211_CHAN_GSM) return mapgsm(freq, flags); if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (freq == 2484) return 14; if (freq < 2484) return ((int) freq - 2407) / 5; else return 15 + ((freq - 2512) / 20); } else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */ if (freq <= 5000) { /* XXX check regdomain? */ if (IS_FREQ_IN_PSB(freq)) return mappsb(freq, flags); return (freq - 4000) / 5; } else return (freq - 5000) / 5; } else { /* either, guess */ if (freq == 2484) return 14; if (freq < 2484) { if (907 <= freq && freq <= 922) return mapgsm(freq, flags); return ((int) freq - 2407) / 5; } if (freq < 5000) { if (IS_FREQ_IN_PSB(freq)) return mappsb(freq, flags); else if (freq > 4900) return (freq - 4000) / 5; else return 15 + ((freq - 2512) / 20); } return (freq - 5000) / 5; } #undef IS_FREQ_IN_PSB } /* * Convert channel to IEEE channel number. */ int ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c) { if (c == NULL) { ic_printf(ic, "invalid channel (NULL)\n"); return 0; /* XXX */ } return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee); } /* * Convert IEEE channel number to MHz frequency. */ u_int ieee80211_ieee2mhz(u_int chan, u_int flags) { if (flags & IEEE80211_CHAN_GSM) return 907 + 5 * (chan / 10); if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */ if (chan == 14) return 2484; if (chan < 14) return 2407 + chan*5; else return 2512 + ((chan-15)*20); } else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */ if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) { chan -= 37; return 4940 + chan*5 + (chan % 5 ? 2 : 0); } return 5000 + (chan*5); } else { /* either, guess */ /* XXX can't distinguish PSB+GSM channels */ if (chan == 14) return 2484; if (chan < 14) /* 0-13 */ return 2407 + chan*5; if (chan < 27) /* 15-26 */ return 2512 + ((chan-15)*20); return 5000 + (chan*5); } } static __inline void set_extchan(struct ieee80211_channel *c) { /* * IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4: * "the secondary channel number shall be 'N + [1,-1] * 4' */ if (c->ic_flags & IEEE80211_CHAN_HT40U) c->ic_extieee = c->ic_ieee + 4; else if (c->ic_flags & IEEE80211_CHAN_HT40D) c->ic_extieee = c->ic_ieee - 4; else c->ic_extieee = 0; } /* * Populate the freq1/freq2 fields as appropriate for VHT channels. * * This for now uses a hard-coded list of 80MHz wide channels. * * For HT20/HT40, freq1 just is the centre frequency of the 40MHz * wide channel we've already decided upon. * * For VHT80 and VHT160, there are only a small number of fixed * 80/160MHz wide channels, so we just use those. * * This is all likely very very wrong - both the regulatory code * and this code needs to ensure that all four channels are * available and valid before the VHT80 (and eight for VHT160) channel * is created. */ struct vht_chan_range { uint16_t freq_start; uint16_t freq_end; }; struct vht_chan_range vht80_chan_ranges[] = { { 5170, 5250 }, { 5250, 5330 }, { 5490, 5570 }, { 5570, 5650 }, { 5650, 5730 }, { 5735, 5815 }, { 5815, 5895 }, { 0, 0 } }; struct vht_chan_range vht160_chan_ranges[] = { { 5170, 5330 }, { 5490, 5650 }, { 5735, 5895 }, { 0, 0 } }; static int set_vht_extchan(struct ieee80211_channel *c) { int i; if (! IEEE80211_IS_CHAN_VHT(c)) return (0); if (IEEE80211_IS_CHAN_VHT80P80(c)) { printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n", __func__, c->ic_ieee, c->ic_flags); } if (IEEE80211_IS_CHAN_VHT160(c)) { for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { if (c->ic_freq >= vht160_chan_ranges[i].freq_start && c->ic_freq < vht160_chan_ranges[i].freq_end) { int midpoint; midpoint = vht160_chan_ranges[i].freq_start + 80; c->ic_vht_ch_freq1 = ieee80211_mhz2ieee(midpoint, c->ic_flags); c->ic_vht_ch_freq2 = 0; #if 0 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", __func__, c->ic_ieee, c->ic_freq, midpoint, c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); #endif return (1); } } return (0); } if (IEEE80211_IS_CHAN_VHT80(c)) { for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { if (c->ic_freq >= vht80_chan_ranges[i].freq_start && c->ic_freq < vht80_chan_ranges[i].freq_end) { int midpoint; midpoint = vht80_chan_ranges[i].freq_start + 40; c->ic_vht_ch_freq1 = ieee80211_mhz2ieee(midpoint, c->ic_flags); c->ic_vht_ch_freq2 = 0; #if 0 printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n", __func__, c->ic_ieee, c->ic_freq, midpoint, c->ic_vht_ch_freq1, c->ic_vht_ch_freq2); #endif return (1); } } return (0); } if (IEEE80211_IS_CHAN_VHT40(c)) { if (IEEE80211_IS_CHAN_HT40U(c)) c->ic_vht_ch_freq1 = c->ic_ieee + 2; else if (IEEE80211_IS_CHAN_HT40D(c)) c->ic_vht_ch_freq1 = c->ic_ieee - 2; else return (0); return (1); } if (IEEE80211_IS_CHAN_VHT20(c)) { c->ic_vht_ch_freq1 = c->ic_ieee; return (1); } printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n", __func__, c->ic_ieee, c->ic_flags); return (0); } /* * Return whether the current channel could possibly be a part of * a VHT80/VHT160 channel. * * This doesn't check that the whole range is in the allowed list * according to regulatory. */ static bool is_vht160_valid_freq(uint16_t freq) { int i; for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) { if (freq >= vht160_chan_ranges[i].freq_start && freq < vht160_chan_ranges[i].freq_end) return (true); } return (false); } static int is_vht80_valid_freq(uint16_t freq) { int i; for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) { if (freq >= vht80_chan_ranges[i].freq_start && freq < vht80_chan_ranges[i].freq_end) return (1); } return (0); } static int addchan(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags) { struct ieee80211_channel *c; if (*nchans >= maxchans) return (ENOBUFS); #if 0 printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n", __func__, *nchans, maxchans, ieee, freq, flags); #endif c = &chans[(*nchans)++]; c->ic_ieee = ieee; c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags); c->ic_maxregpower = maxregpower; c->ic_maxpower = 2 * maxregpower; c->ic_flags = flags; c->ic_vht_ch_freq1 = 0; c->ic_vht_ch_freq2 = 0; set_extchan(c); set_vht_extchan(c); return (0); } static int copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans, uint32_t flags) { struct ieee80211_channel *c; KASSERT(*nchans > 0, ("channel list is empty\n")); if (*nchans >= maxchans) return (ENOBUFS); #if 0 printf("%s: %d of %d: flags=0x%08x\n", __func__, *nchans, maxchans, flags); #endif c = &chans[(*nchans)++]; c[0] = c[-1]; c->ic_flags = flags; c->ic_vht_ch_freq1 = 0; c->ic_vht_ch_freq2 = 0; set_extchan(c); set_vht_extchan(c); return (0); } /* * XXX VHT-2GHz */ static void getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) { int nmodes; nmodes = 0; if (isset(bands, IEEE80211_MODE_11B)) flags[nmodes++] = IEEE80211_CHAN_B; if (isset(bands, IEEE80211_MODE_11G)) flags[nmodes++] = IEEE80211_CHAN_G; if (isset(bands, IEEE80211_MODE_11NG)) flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20; if (cbw_flags & NET80211_CBW_FLAG_HT40) { flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U; flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D; } flags[nmodes] = 0; } static void getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags) { int nmodes; /* * The addchan_list() function seems to expect the flags array to * be in channel width order, so the VHT bits are interspersed * as appropriate to maintain said order. * * It also assumes HT40U is before HT40D. */ nmodes = 0; /* 20MHz */ if (isset(bands, IEEE80211_MODE_11A)) flags[nmodes++] = IEEE80211_CHAN_A; if (isset(bands, IEEE80211_MODE_11NA)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20; if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 | IEEE80211_CHAN_VHT20; } /* 40MHz */ if (cbw_flags & NET80211_CBW_FLAG_HT40) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U; if ((cbw_flags & NET80211_CBW_FLAG_HT40) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT40U; if (cbw_flags & NET80211_CBW_FLAG_HT40) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D; if ((cbw_flags & NET80211_CBW_FLAG_HT40) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT40D; /* 80MHz */ if ((cbw_flags & NET80211_CBW_FLAG_VHT80) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80; } /* VHT160 */ if ((cbw_flags & NET80211_CBW_FLAG_VHT160) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT160; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT160; } /* VHT80+80 */ if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) && isset(bands, IEEE80211_MODE_VHT_5GHZ)) { flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U | IEEE80211_CHAN_VHT80P80; flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D | IEEE80211_CHAN_VHT80P80; } flags[nmodes] = 0; } static void getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags) { flags[0] = 0; if (isset(bands, IEEE80211_MODE_11A) || isset(bands, IEEE80211_MODE_11NA) || isset(bands, IEEE80211_MODE_VHT_5GHZ)) { if (isset(bands, IEEE80211_MODE_11B) || isset(bands, IEEE80211_MODE_11G) || isset(bands, IEEE80211_MODE_11NG) || isset(bands, IEEE80211_MODE_VHT_2GHZ)) return; getflags_5ghz(bands, flags, cbw_flags); } else getflags_2ghz(bands, flags, cbw_flags); } /* * Add one 20 MHz channel into specified channel list. * You MUST NOT mix bands when calling this. It will not add 5ghz * channels if you have any B/G/N band bit set. * The _cbw() variant does also support HT40/VHT80/160/80+80. */ int ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t chan_flags, const uint8_t bands[], int cbw_flags) { uint32_t flags[IEEE80211_MODE_MAX]; int i, error; getflags(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower, flags[0] | chan_flags); for (i = 1; flags[i] != 0 && error == 0; i++) { error = copychan_prev(chans, maxchans, nchans, flags[i] | chan_flags); } return (error); } int ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t chan_flags, const uint8_t bands[]) { return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq, maxregpower, chan_flags, bands, 0)); } static struct ieee80211_channel * findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq, uint32_t flags) { struct ieee80211_channel *c; int i; flags &= IEEE80211_CHAN_ALLTURBO; /* brute force search */ for (i = 0; i < nchans; i++) { c = &chans[i]; if (c->ic_freq == freq && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; } return NULL; } /* * Add 40 MHz channel pair into specified channel list. */ /* XXX VHT */ int ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans, int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags) { struct ieee80211_channel *cent, *extc; uint16_t freq; int error; freq = ieee80211_ieee2mhz(ieee, flags); /* * Each entry defines an HT40 channel pair; find the * center channel, then the extension channel above. */ flags |= IEEE80211_CHAN_HT20; cent = findchannel(chans, *nchans, freq, flags); if (cent == NULL) return (EINVAL); extc = findchannel(chans, *nchans, freq + 20, flags); if (extc == NULL) return (ENOENT); flags &= ~IEEE80211_CHAN_HT; error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq, maxregpower, flags | IEEE80211_CHAN_HT40U); if (error != 0) return (error); error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq, maxregpower, flags | IEEE80211_CHAN_HT40D); return (error); } /* * Fetch the center frequency for the primary channel. */ uint32_t ieee80211_get_channel_center_freq(const struct ieee80211_channel *c) { return (c->ic_freq); } /* * Fetch the center frequency for the primary BAND channel. * * For 5, 10, 20MHz channels it'll be the normally configured channel * frequency. * * For 40MHz, 80MHz, 160MHz channels it will be the centre of the * wide channel, not the centre of the primary channel (that's ic_freq). * * For 80+80MHz channels this will be the centre of the primary * 80MHz channel; the secondary 80MHz channel will be center_freq2(). */ uint32_t ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c) { /* * VHT - use the pre-calculated centre frequency * of the given channel. */ if (IEEE80211_IS_CHAN_VHT(c)) return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags)); if (IEEE80211_IS_CHAN_HT40U(c)) { return (c->ic_freq + 10); } if (IEEE80211_IS_CHAN_HT40D(c)) { return (c->ic_freq - 10); } return (c->ic_freq); } /* * For now, no 80+80 support; it will likely always return 0. */ uint32_t ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0)) return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags)); return (0); } /* * Adds channels into specified channel list (ieee[] array must be sorted). * Channels are already sorted. */ static int add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, uint32_t flags[]) { uint16_t freq; int i, j, error; int is_vht; for (i = 0; i < nieee; i++) { freq = ieee80211_ieee2mhz(ieee[i], flags[0]); for (j = 0; flags[j] != 0; j++) { /* * Notes: * + HT40 and VHT40 channels occur together, so * we need to be careful that we actually allow that. * + VHT80, VHT160 will coexist with HT40/VHT40, so * make sure it's not skipped because of the overlap * check used for (V)HT40. */ is_vht = !! (flags[j] & IEEE80211_CHAN_VHT); /* XXX TODO FIXME VHT80P80. */ /* Test for VHT160 analogue to the VHT80 below. */ if (is_vht && flags[j] & IEEE80211_CHAN_VHT160) if (! is_vht160_valid_freq(freq)) continue; /* * Test for VHT80. * XXX This is all very broken right now. * What we /should/ do is: * * + check that the frequency is in the list of * allowed VHT80 ranges; and * + the other 3 channels in the list are actually * also available. */ if (is_vht && flags[j] & IEEE80211_CHAN_VHT80) if (! is_vht80_valid_freq(freq)) continue; /* * Test for (V)HT40. * * This is also a fall through from VHT80; as we only * allow a VHT80 channel if the VHT40 combination is * also valid. If the VHT40 form is not valid then * we certainly can't do VHT80.. */ if (flags[j] & IEEE80211_CHAN_HT40D) /* * Can't have a "lower" channel if we are the * first channel. * * Can't have a "lower" channel if it's below/ * within 20MHz of the first channel. * * Can't have a "lower" channel if the channel * below it is not 20MHz away. */ if (i == 0 || ieee[i] < ieee[0] + 4 || freq - 20 != ieee80211_ieee2mhz(ieee[i] - 4, flags[j])) continue; if (flags[j] & IEEE80211_CHAN_HT40U) /* * Can't have an "upper" channel if we are * the last channel. * * Can't have an "upper" channel be above the * last channel in the list. * * Can't have an "upper" channel if the next * channel according to the math isn't 20MHz * away. (Likely for channel 13/14.) */ if (i == nieee - 1 || ieee[i] + 4 > ieee[nieee - 1] || freq + 20 != ieee80211_ieee2mhz(ieee[i] + 4, flags[j])) continue; if (j == 0) { error = addchan(chans, maxchans, nchans, ieee[i], freq, 0, flags[j]); } else { error = copychan_prev(chans, maxchans, nchans, flags[j]); } if (error != 0) return (error); } } return (0); } int ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], int cbw_flags) { uint32_t flags[IEEE80211_MODE_MAX]; /* XXX no VHT for now */ getflags_2ghz(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); } int ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t bands[], int cbw_flags) { const uint8_t default_chan_list[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans, default_chan_list, nitems(default_chan_list), bands, cbw_flags)); } int ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans, int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[], int cbw_flags) { /* * XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all * uses of IEEE80211_MODE_MAX and add a new #define name for array size. */ uint32_t flags[2 * IEEE80211_MODE_MAX]; getflags_5ghz(bands, flags, cbw_flags); KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__)); return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags)); } /* * Locate a channel given a frequency+flags. We cache * the previous lookup to optimize switching between two * channels--as happens with dynamic turbo. */ struct ieee80211_channel * ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags) { struct ieee80211_channel *c; flags &= IEEE80211_CHAN_ALLTURBO; c = ic->ic_prevchan; if (c != NULL && c->ic_freq == freq && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; /* brute force search */ return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags)); } /* * Locate a channel given a channel number+flags. We cache * the previous lookup to optimize switching between two * channels--as happens with dynamic turbo. */ struct ieee80211_channel * ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags) { struct ieee80211_channel *c; int i; flags &= IEEE80211_CHAN_ALLTURBO; c = ic->ic_prevchan; if (c != NULL && c->ic_ieee == ieee && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; /* brute force search */ for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (c->ic_ieee == ieee && (c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags) return c; } return NULL; } /* * Lookup a channel suitable for the given rx status. * * This is used to find a channel for a frame (eg beacon, probe * response) based purely on the received PHY information. * * For now it tries to do it based on R_FREQ / R_IEEE. * This is enough for 11bg and 11a (and thus 11ng/11na) * but it will not be enough for GSM, PSB channels and the * like. It also doesn't know about legacy-turbog and * legacy-turbo modes, which some offload NICs actually * support in weird ways. * * Takes the ic and rxstatus; returns the channel or NULL * if not found. * * XXX TODO: Add support for that when the need arises. */ struct ieee80211_channel * ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap, const struct ieee80211_rx_stats *rxs) { struct ieee80211com *ic = vap->iv_ic; uint32_t flags; struct ieee80211_channel *c; if (rxs == NULL) return (NULL); /* * Strictly speaking we only use freq for now, * however later on we may wish to just store * the ieee for verification. */ if ((rxs->r_flags & IEEE80211_R_FREQ) == 0) return (NULL); if ((rxs->r_flags & IEEE80211_R_IEEE) == 0) return (NULL); if ((rxs->r_flags & IEEE80211_R_BAND) == 0) return (NULL); /* * If the rx status contains a valid ieee/freq, then * ensure we populate the correct channel information * in rxchan before passing it up to the scan infrastructure. * Offload NICs will pass up beacons from all channels * during background scans. */ /* Determine a band */ switch (rxs->c_band) { case IEEE80211_CHAN_2GHZ: flags = IEEE80211_CHAN_G; break; case IEEE80211_CHAN_5GHZ: flags = IEEE80211_CHAN_A; break; default: if (rxs->c_freq < 3000) { flags = IEEE80211_CHAN_G; } else { flags = IEEE80211_CHAN_A; } break; } /* Channel lookup */ c = ieee80211_find_channel(ic, rxs->c_freq, flags); IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT, "%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n", __func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c); return (c); } static void addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword) { #define ADD(_ic, _s, _o) \ ifmedia_add(media, \ IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL) static const u_int mopts[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = IFM_AUTO, [IEEE80211_MODE_11A] = IFM_IEEE80211_11A, [IEEE80211_MODE_11B] = IFM_IEEE80211_11B, [IEEE80211_MODE_11G] = IFM_IEEE80211_11G, [IEEE80211_MODE_FH] = IFM_IEEE80211_FH, [IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, [IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO, [IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO, [IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */ [IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */ [IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA, [IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG, [IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G, [IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G, }; u_int mopt; mopt = mopts[mode]; if (addsta) ADD(ic, mword, mopt); /* STA mode has no cap */ if (caps & IEEE80211_C_IBSS) ADD(media, mword, mopt | IFM_IEEE80211_ADHOC); if (caps & IEEE80211_C_HOSTAP) ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP); if (caps & IEEE80211_C_AHDEMO) ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0); if (caps & IEEE80211_C_MONITOR) ADD(media, mword, mopt | IFM_IEEE80211_MONITOR); if (caps & IEEE80211_C_WDS) ADD(media, mword, mopt | IFM_IEEE80211_WDS); if (caps & IEEE80211_C_MBSS) ADD(media, mword, mopt | IFM_IEEE80211_MBSS); #undef ADD } /* * Setup the media data structures according to the channel and * rate tables. */ static int ieee80211_media_setup(struct ieee80211com *ic, struct ifmedia *media, int caps, int addsta, ifm_change_cb_t media_change, ifm_stat_cb_t media_stat) { int i, j, rate, maxrate, mword, r; enum ieee80211_phymode mode; const struct ieee80211_rateset *rs; struct ieee80211_rateset allrates; struct ieee80211_node_txrate tn; /* * Fill in media characteristics. */ ifmedia_init(media, 0, media_change, media_stat); maxrate = 0; /* * Add media for legacy operating modes. */ memset(&allrates, 0, sizeof(allrates)); for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); if (mode == IEEE80211_MODE_AUTO) continue; rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { rate = rs->rs_rates[i]; tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate); mword = ieee80211_rate2media(ic, &tn, mode); if (mword == 0) continue; addmedia(media, caps, addsta, mode, mword); /* * Add legacy rate to the collection of all rates. */ r = rate & IEEE80211_RATE_VAL; for (j = 0; j < allrates.rs_nrates; j++) if (allrates.rs_rates[j] == r) break; if (j == allrates.rs_nrates) { /* unique, add to the set */ allrates.rs_rates[j] = r; allrates.rs_nrates++; } rate = (rate & IEEE80211_RATE_VAL) / 2; if (rate > maxrate) maxrate = rate; } } for (i = 0; i < allrates.rs_nrates; i++) { tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]); mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO); if (mword == 0) continue; /* NB: remove media options from mword */ addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword)); } /* * Add HT/11n media. Note that we do not have enough * bits in the media subtype to express the MCS so we * use a "placeholder" media subtype and any fixed MCS * must be specified with a different mechanism. */ for (; mode <= IEEE80211_MODE_11NG; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS); } if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) || isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) { addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS); i = ic->ic_txstream * 8 - 1; if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) && (ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40)) rate = ieee80211_htrates[i].ht40_rate_400ns; else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40)) rate = ieee80211_htrates[i].ht40_rate_800ns; else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20)) rate = ieee80211_htrates[i].ht20_rate_400ns; else rate = ieee80211_htrates[i].ht20_rate_800ns; if (rate > maxrate) maxrate = rate; } /* * Add VHT media. * XXX-BZ skip "VHT_2GHZ" for now. */ for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; addmedia(media, caps, addsta, mode, IFM_AUTO); addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT); } if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) { addmedia(media, caps, addsta, IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT); /* XXX TODO: VHT maxrate */ } return maxrate; } /* XXX inline or eliminate? */ const struct ieee80211_rateset * ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c) { /* XXX does this work for 11ng basic rates? */ return &ic->ic_sup_rates[ieee80211_chan2mode(c)]; } /* XXX inline or eliminate? */ const struct ieee80211_htrateset * ieee80211_get_suphtrates(struct ieee80211com *ic, const struct ieee80211_channel *c) { return &ic->ic_sup_htrates; } void ieee80211_announce(struct ieee80211com *ic) { int i, rate, mword; enum ieee80211_phymode mode; const struct ieee80211_rateset *rs; struct ieee80211_node_txrate tn; /* NB: skip AUTO since it has no rates */ for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]); rs = &ic->ic_sup_rates[mode]; for (i = 0; i < rs->rs_nrates; i++) { tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]); mword = ieee80211_rate2media(ic, &tn, mode); if (mword == 0) continue; rate = ieee80211_media2rate(mword); printf("%s%d%sMbps", (i != 0 ? " " : ""), rate / 2, ((rate & 0x1) != 0 ? ".5" : "")); } printf("\n"); } ieee80211_ht_announce(ic); ieee80211_vht_announce(ic); } void ieee80211_announce_channels(struct ieee80211com *ic) { const struct ieee80211_channel *c; char type; int i, cw; printf("Chan Freq CW RegPwr MinPwr MaxPwr\n"); for (i = 0; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (IEEE80211_IS_CHAN_ST(c)) type = 'S'; else if (IEEE80211_IS_CHAN_108A(c)) type = 'T'; else if (IEEE80211_IS_CHAN_108G(c)) type = 'G'; else if (IEEE80211_IS_CHAN_HT(c)) type = 'n'; else if (IEEE80211_IS_CHAN_A(c)) type = 'a'; else if (IEEE80211_IS_CHAN_ANYG(c)) type = 'g'; else if (IEEE80211_IS_CHAN_B(c)) type = 'b'; else type = 'f'; if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c)) cw = 40; else if (IEEE80211_IS_CHAN_HALF(c)) cw = 10; else if (IEEE80211_IS_CHAN_QUARTER(c)) cw = 5; else cw = 20; printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n" , c->ic_ieee, c->ic_freq, type , cw , IEEE80211_IS_CHAN_HT40U(c) ? '+' : IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' ' , c->ic_maxregpower , c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0 , c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0 ); } } static int media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode) { switch (IFM_MODE(ime->ifm_media)) { case IFM_IEEE80211_11A: *mode = IEEE80211_MODE_11A; break; case IFM_IEEE80211_11B: *mode = IEEE80211_MODE_11B; break; case IFM_IEEE80211_11G: *mode = IEEE80211_MODE_11G; break; case IFM_IEEE80211_FH: *mode = IEEE80211_MODE_FH; break; case IFM_IEEE80211_11NA: *mode = IEEE80211_MODE_11NA; break; case IFM_IEEE80211_11NG: *mode = IEEE80211_MODE_11NG; break; case IFM_IEEE80211_VHT2G: *mode = IEEE80211_MODE_VHT_2GHZ; break; case IFM_IEEE80211_VHT5G: *mode = IEEE80211_MODE_VHT_5GHZ; break; case IFM_AUTO: *mode = IEEE80211_MODE_AUTO; break; default: return 0; } /* * Turbo mode is an ``option''. * XXX does not apply to AUTO */ if (ime->ifm_media & IFM_IEEE80211_TURBO) { if (*mode == IEEE80211_MODE_11A) { if (flags & IEEE80211_F_TURBOP) *mode = IEEE80211_MODE_TURBO_A; else *mode = IEEE80211_MODE_STURBO_A; } else if (*mode == IEEE80211_MODE_11G) *mode = IEEE80211_MODE_TURBO_G; else return 0; } /* XXX HT40 +/- */ return 1; } /* * Handle a media change request on the vap interface. */ int ieee80211_media_change(struct ifnet *ifp) { struct ieee80211vap *vap = ifp->if_softc; struct ifmedia_entry *ime = vap->iv_media.ifm_cur; uint16_t newmode; if (!media2mode(ime, vap->iv_flags, &newmode)) return EINVAL; if (vap->iv_des_mode != newmode) { vap->iv_des_mode = newmode; /* XXX kick state machine if up+running */ } return 0; } /* * Common code to calculate the media status word * from the operating mode and channel state. */ static int media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan) { int status; status = IFM_IEEE80211; switch (opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: status |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_HOSTAP: status |= IFM_IEEE80211_HOSTAP; break; case IEEE80211_M_MONITOR: status |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: status |= IFM_IEEE80211_ADHOC | IFM_FLAG0; break; case IEEE80211_M_WDS: status |= IFM_IEEE80211_WDS; break; case IEEE80211_M_MBSS: status |= IFM_IEEE80211_MBSS; break; } if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) { status |= IFM_IEEE80211_VHT5G; } else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) { status |= IFM_IEEE80211_VHT2G; } else if (IEEE80211_IS_CHAN_HTA(chan)) { status |= IFM_IEEE80211_11NA; } else if (IEEE80211_IS_CHAN_HTG(chan)) { status |= IFM_IEEE80211_11NG; } else if (IEEE80211_IS_CHAN_A(chan)) { status |= IFM_IEEE80211_11A; } else if (IEEE80211_IS_CHAN_B(chan)) { status |= IFM_IEEE80211_11B; } else if (IEEE80211_IS_CHAN_ANYG(chan)) { status |= IFM_IEEE80211_11G; } else if (IEEE80211_IS_CHAN_FHSS(chan)) { status |= IFM_IEEE80211_FH; } /* XXX else complain? */ if (IEEE80211_IS_CHAN_TURBO(chan)) status |= IFM_IEEE80211_TURBO; #if 0 if (IEEE80211_IS_CHAN_HT20(chan)) status |= IFM_IEEE80211_HT20; if (IEEE80211_IS_CHAN_HT40(chan)) status |= IFM_IEEE80211_HT40; #endif return status; } void ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; enum ieee80211_phymode mode; struct ieee80211_node_txrate tn; imr->ifm_status = IFM_AVALID; /* * NB: use the current channel's mode to lock down a xmit * rate only when running; otherwise we may have a mismatch * in which case the rate will not be convertible. */ if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) { imr->ifm_status |= IFM_ACTIVE; mode = ieee80211_chan2mode(ic->ic_curchan); } else mode = IEEE80211_MODE_AUTO; imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan); /* * Calculate a current rate if possible. */ if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) { /* * A fixed rate is set, report that. */ tn = IEEE80211_NODE_TXRATE_INIT_LEGACY( vap->iv_txparms[mode].ucastrate); imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode); } else if (vap->iv_opmode == IEEE80211_M_STA) { /* * In station mode report the current transmit rate. */ ieee80211_node_get_txrate(vap->iv_bss, &tn); imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode); } else imr->ifm_active |= IFM_AUTO; if (imr->ifm_status & IFM_ACTIVE) imr->ifm_current = imr->ifm_active; } /* * Set the current phy mode and recalculate the active channel * set based on the available channels for this mode. Also * select a new default/current channel if the current one is * inappropriate for this mode. */ int ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode) { /* * Adjust basic rates in 11b/11g supported rate set. * Note that if operating on a hal/quarter rate channel * this is a noop as those rates sets are different * and used instead. */ if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B) ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode); ic->ic_curmode = mode; ieee80211_reset_erp(ic); /* reset global ERP state */ return 0; } /* * Return the phy mode for with the specified channel. */ enum ieee80211_phymode ieee80211_chan2mode(const struct ieee80211_channel *chan) { if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) return IEEE80211_MODE_VHT_2GHZ; else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) return IEEE80211_MODE_VHT_5GHZ; else if (IEEE80211_IS_CHAN_HTA(chan)) return IEEE80211_MODE_11NA; else if (IEEE80211_IS_CHAN_HTG(chan)) return IEEE80211_MODE_11NG; else if (IEEE80211_IS_CHAN_108G(chan)) return IEEE80211_MODE_TURBO_G; else if (IEEE80211_IS_CHAN_ST(chan)) return IEEE80211_MODE_STURBO_A; else if (IEEE80211_IS_CHAN_TURBO(chan)) return IEEE80211_MODE_TURBO_A; else if (IEEE80211_IS_CHAN_HALF(chan)) return IEEE80211_MODE_HALF; else if (IEEE80211_IS_CHAN_QUARTER(chan)) return IEEE80211_MODE_QUARTER; else if (IEEE80211_IS_CHAN_A(chan)) return IEEE80211_MODE_11A; else if (IEEE80211_IS_CHAN_ANYG(chan)) return IEEE80211_MODE_11G; else if (IEEE80211_IS_CHAN_B(chan)) return IEEE80211_MODE_11B; else if (IEEE80211_IS_CHAN_FHSS(chan)) return IEEE80211_MODE_FH; /* NB: should not get here */ printf("%s: cannot map channel to mode; freq %u flags 0x%x\n", __func__, chan->ic_freq, chan->ic_flags); return IEEE80211_MODE_11B; } struct ratemedia { u_int match; /* rate + mode */ u_int media; /* if_media rate */ }; static int findmedia(const struct ratemedia rates[], int n, u_int match) { int i; for (i = 0; i < n; i++) if (rates[i].match == match) return rates[i].media; return IFM_AUTO; } /* * Convert IEEE80211 rate value to ifmedia subtype. * Rate is either a legacy rate in units of 0.5Mbps * or an MCS index. */ int ieee80211_rate2media(struct ieee80211com *ic, const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode) { static const struct ratemedia rates[] = { { 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 }, { 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 }, { 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 }, { 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 }, { 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 }, { 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 }, { 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 }, { 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 }, { 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 }, { 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 }, { 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 }, { 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 }, { 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 }, { 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 }, { 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 }, { 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 }, { 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 }, { 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 }, { 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 }, { 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 }, /* NB: OFDM72 doesn't really exist so we don't handle it */ }; static const struct ratemedia htrates[] = { { 0, IFM_IEEE80211_MCS }, { 1, IFM_IEEE80211_MCS }, { 2, IFM_IEEE80211_MCS }, { 3, IFM_IEEE80211_MCS }, { 4, IFM_IEEE80211_MCS }, { 5, IFM_IEEE80211_MCS }, { 6, IFM_IEEE80211_MCS }, { 7, IFM_IEEE80211_MCS }, { 8, IFM_IEEE80211_MCS }, { 9, IFM_IEEE80211_MCS }, { 10, IFM_IEEE80211_MCS }, { 11, IFM_IEEE80211_MCS }, { 12, IFM_IEEE80211_MCS }, { 13, IFM_IEEE80211_MCS }, { 14, IFM_IEEE80211_MCS }, { 15, IFM_IEEE80211_MCS }, { 16, IFM_IEEE80211_MCS }, { 17, IFM_IEEE80211_MCS }, { 18, IFM_IEEE80211_MCS }, { 19, IFM_IEEE80211_MCS }, { 20, IFM_IEEE80211_MCS }, { 21, IFM_IEEE80211_MCS }, { 22, IFM_IEEE80211_MCS }, { 23, IFM_IEEE80211_MCS }, { 24, IFM_IEEE80211_MCS }, { 25, IFM_IEEE80211_MCS }, { 26, IFM_IEEE80211_MCS }, { 27, IFM_IEEE80211_MCS }, { 28, IFM_IEEE80211_MCS }, { 29, IFM_IEEE80211_MCS }, { 30, IFM_IEEE80211_MCS }, { 31, IFM_IEEE80211_MCS }, { 32, IFM_IEEE80211_MCS }, { 33, IFM_IEEE80211_MCS }, { 34, IFM_IEEE80211_MCS }, { 35, IFM_IEEE80211_MCS }, { 36, IFM_IEEE80211_MCS }, { 37, IFM_IEEE80211_MCS }, { 38, IFM_IEEE80211_MCS }, { 39, IFM_IEEE80211_MCS }, { 40, IFM_IEEE80211_MCS }, { 41, IFM_IEEE80211_MCS }, { 42, IFM_IEEE80211_MCS }, { 43, IFM_IEEE80211_MCS }, { 44, IFM_IEEE80211_MCS }, { 45, IFM_IEEE80211_MCS }, { 46, IFM_IEEE80211_MCS }, { 47, IFM_IEEE80211_MCS }, { 48, IFM_IEEE80211_MCS }, { 49, IFM_IEEE80211_MCS }, { 50, IFM_IEEE80211_MCS }, { 51, IFM_IEEE80211_MCS }, { 52, IFM_IEEE80211_MCS }, { 53, IFM_IEEE80211_MCS }, { 54, IFM_IEEE80211_MCS }, { 55, IFM_IEEE80211_MCS }, { 56, IFM_IEEE80211_MCS }, { 57, IFM_IEEE80211_MCS }, { 58, IFM_IEEE80211_MCS }, { 59, IFM_IEEE80211_MCS }, { 60, IFM_IEEE80211_MCS }, { 61, IFM_IEEE80211_MCS }, { 62, IFM_IEEE80211_MCS }, { 63, IFM_IEEE80211_MCS }, { 64, IFM_IEEE80211_MCS }, { 65, IFM_IEEE80211_MCS }, { 66, IFM_IEEE80211_MCS }, { 67, IFM_IEEE80211_MCS }, { 68, IFM_IEEE80211_MCS }, { 69, IFM_IEEE80211_MCS }, { 70, IFM_IEEE80211_MCS }, { 71, IFM_IEEE80211_MCS }, { 72, IFM_IEEE80211_MCS }, { 73, IFM_IEEE80211_MCS }, { 74, IFM_IEEE80211_MCS }, { 75, IFM_IEEE80211_MCS }, { 76, IFM_IEEE80211_MCS }, }; static const struct ratemedia vhtrates[] = { { 0, IFM_IEEE80211_VHT }, { 1, IFM_IEEE80211_VHT }, { 2, IFM_IEEE80211_VHT }, { 3, IFM_IEEE80211_VHT }, { 4, IFM_IEEE80211_VHT }, { 5, IFM_IEEE80211_VHT }, { 6, IFM_IEEE80211_VHT }, { 7, IFM_IEEE80211_VHT }, { 8, IFM_IEEE80211_VHT }, /* Optional. */ { 9, IFM_IEEE80211_VHT }, /* Optional. */ #if 0 /* Some QCA and BRCM seem to support this; offspec. */ { 10, IFM_IEEE80211_VHT }, { 11, IFM_IEEE80211_VHT }, #endif }; int m, rate; /* * Check 11ac/11n rates first for match as an MCS. */ if (mode == IEEE80211_MODE_VHT_5GHZ) { if (tr->type == IEEE80211_NODE_TXRATE_VHT) { m = findmedia(vhtrates, nitems(vhtrates), tr->mcs); if (m != IFM_AUTO) return (m | IFM_IEEE80211_VHT); } } else if (mode == IEEE80211_MODE_11NA) { /* NB: 12 is ambiguous, it will be treated as an MCS */ if (tr->type == IEEE80211_NODE_TXRATE_HT) { m = findmedia(htrates, nitems(htrates), tr->dot11rate & ~IEEE80211_RATE_MCS); if (m != IFM_AUTO) return m | IFM_IEEE80211_11NA; } } else if (mode == IEEE80211_MODE_11NG) { /* NB: 12 is ambiguous, it will be treated as an MCS */ if (tr->type == IEEE80211_NODE_TXRATE_HT) { m = findmedia(htrates, nitems(htrates), tr->dot11rate & ~IEEE80211_RATE_MCS); if (m != IFM_AUTO) return m | IFM_IEEE80211_11NG; } } /* * At this point it needs to be a dot11rate (legacy/HT) for the * rest of the logic to work. */ if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) && (tr->type != IEEE80211_NODE_TXRATE_HT)) return (IFM_AUTO); rate = tr->dot11rate & IEEE80211_RATE_VAL; switch (mode) { case IEEE80211_MODE_11A: case IEEE80211_MODE_HALF: /* XXX good 'nuf */ case IEEE80211_MODE_QUARTER: case IEEE80211_MODE_11NA: case IEEE80211_MODE_TURBO_A: case IEEE80211_MODE_STURBO_A: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11A); case IEEE80211_MODE_11B: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11B); case IEEE80211_MODE_FH: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_FH); case IEEE80211_MODE_AUTO: /* NB: ic may be NULL for some drivers */ if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH) return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_FH); /* NB: hack, 11g matches both 11b+11a rates */ /* fall thru... */ case IEEE80211_MODE_11G: case IEEE80211_MODE_11NG: case IEEE80211_MODE_TURBO_G: return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G); case IEEE80211_MODE_VHT_2GHZ: case IEEE80211_MODE_VHT_5GHZ: /* XXX TODO: need to figure out mapping for VHT rates */ return IFM_AUTO; } return IFM_AUTO; } int ieee80211_media2rate(int mword) { static const int ieeerates[] = { -1, /* IFM_AUTO */ 0, /* IFM_MANUAL */ 0, /* IFM_NONE */ 2, /* IFM_IEEE80211_FH1 */ 4, /* IFM_IEEE80211_FH2 */ 2, /* IFM_IEEE80211_DS1 */ 4, /* IFM_IEEE80211_DS2 */ 11, /* IFM_IEEE80211_DS5 */ 22, /* IFM_IEEE80211_DS11 */ 44, /* IFM_IEEE80211_DS22 */ 12, /* IFM_IEEE80211_OFDM6 */ 18, /* IFM_IEEE80211_OFDM9 */ 24, /* IFM_IEEE80211_OFDM12 */ 36, /* IFM_IEEE80211_OFDM18 */ 48, /* IFM_IEEE80211_OFDM24 */ 72, /* IFM_IEEE80211_OFDM36 */ 96, /* IFM_IEEE80211_OFDM48 */ 108, /* IFM_IEEE80211_OFDM54 */ 144, /* IFM_IEEE80211_OFDM72 */ 0, /* IFM_IEEE80211_DS354k */ 0, /* IFM_IEEE80211_DS512k */ 6, /* IFM_IEEE80211_OFDM3 */ 9, /* IFM_IEEE80211_OFDM4 */ 54, /* IFM_IEEE80211_OFDM27 */ -1, /* IFM_IEEE80211_MCS */ -1, /* IFM_IEEE80211_VHT */ }; return IFM_SUBTYPE(mword) < nitems(ieeerates) ? ieeerates[IFM_SUBTYPE(mword)] : 0; } /* * The following hash function is adapted from "Hash Functions" by Bob Jenkins * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). */ #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (/*CONSTCOND*/0) uint32_t ieee80211_mac_hash(const struct ieee80211com *ic, const uint8_t addr[IEEE80211_ADDR_LEN]) { uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key; b += addr[5] << 8; b += addr[4]; a += addr[3] << 24; a += addr[2] << 16; a += addr[1] << 8; a += addr[0]; mix(a, b, c); return c; } #undef mix char ieee80211_channel_type_char(const struct ieee80211_channel *c) { if (IEEE80211_IS_CHAN_ST(c)) return 'S'; if (IEEE80211_IS_CHAN_108A(c)) return 'T'; if (IEEE80211_IS_CHAN_108G(c)) return 'G'; if (IEEE80211_IS_CHAN_VHT(c)) return 'v'; if (IEEE80211_IS_CHAN_HT(c)) return 'n'; if (IEEE80211_IS_CHAN_A(c)) return 'a'; if (IEEE80211_IS_CHAN_ANYG(c)) return 'g'; if (IEEE80211_IS_CHAN_B(c)) return 'b'; return 'f'; } /* * Determine whether the given key in the given VAP is a global key. * (key index 0..3, shared between all stations on a VAP.) * * This is either a WEP key or a GROUP key. * * Note this will NOT return true if it is a IGTK key. */ bool ieee80211_is_key_global(const struct ieee80211vap *vap, const struct ieee80211_key *key) { return (&vap->iv_nw_keys[0] <= key && key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]); } /* * Determine whether the given key in the given VAP is a unicast key. */ bool ieee80211_is_key_unicast(const struct ieee80211vap *vap, const struct ieee80211_key *key) { /* * This is a short-cut for now; eventually we will need * to support multiple unicast keys, IGTK, etc) so we * will absolutely need to fix the key flags. */ return (!ieee80211_is_key_global(vap, key)); } /** * Determine whether the given control frame is from a known node * and destined to us. * * In some instances a control frame won't have a TA (eg ACKs), so * we should only verify the RA for those. * * @param ni ieee80211_node representing the sender, or BSS node * @param m0 mbuf representing the 802.11 frame. * @returns false if the frame is not a CTL frame (with a warning logged); * true if the frame is from a known sender / valid recipient, * false otherwise. */ bool ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *ni, const struct mbuf *m0) { const struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_frame *wh; uint8_t subtype; wh = mtod(m0, const struct ieee80211_frame *); subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* Verify it's a ctl frame. */ KASSERT(IEEE80211_IS_CTL(wh), ("%s: not a CTL frame (fc[0]=0x%04x)", __func__, wh->i_fc[0])); if (!IEEE80211_IS_CTL(wh)) { if_printf(vap->iv_ifp, "%s: not a control frame (fc[0]=0x%04x)\n", __func__, wh->i_fc[0]); return (false); } /* Verify the TA if present. */ switch (subtype) { case IEEE80211_FC0_SUBTYPE_CTS: case IEEE80211_FC0_SUBTYPE_ACK: /* No TA. */ break; default: /* * Verify TA matches ni->ni_macaddr; for unknown * sources it will be the BSS node and ni->ni_macaddr * will the BSS MAC. */ if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr)) return (false); break; } /* Verify the RA */ return (IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)); } diff --git a/sys/net80211/ieee80211_freebsd.c b/sys/net80211/ieee80211_freebsd.c index 0a51063e1d9a..aa3ae82d089f 100644 --- a/sys/net80211/ieee80211_freebsd.c +++ b/sys/net80211/ieee80211_freebsd.c @@ -1,1302 +1,1359 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 support (FreeBSD-specific code) */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEBUGNET_DEFINE(ieee80211); SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "IEEE 80211 parameters"); #ifdef IEEE80211_DEBUG static int ieee80211_debug = 0; SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 0, "debugging printfs"); #endif static const char wlanname[] = "wlan"; static struct if_clone *wlan_cloner; /* * priv(9) NET80211 checks. * Return 0 if operation is allowed, E* (usually EPERM) otherwise. */ int ieee80211_priv_check_vap_getkey(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY)); } int ieee80211_priv_check_vap_manage(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE)); } int ieee80211_priv_check_vap_setmac(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC)); } int ieee80211_priv_check_create_vap(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_CREATE_VAP)); } static int wlan_clone_create(struct if_clone *ifc, char *name, size_t len, struct ifc_data *ifd, struct ifnet **ifpp) { struct ieee80211_clone_params cp; struct ieee80211vap *vap; struct ieee80211com *ic; int error; error = ieee80211_priv_check_create_vap(0, NULL, NULL); if (error) return error; error = ifc_copyin(ifd, &cp, sizeof(cp)); if (error) return error; ic = ieee80211_find_com(cp.icp_parent); if (ic == NULL) return ENXIO; if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { ic_printf(ic, "%s: invalid opmode %d\n", __func__, cp.icp_opmode); return EINVAL; } if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { ic_printf(ic, "%s mode not supported\n", ieee80211_opmode_name[cp.icp_opmode]); return EOPNOTSUPP; } if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && #ifdef IEEE80211_SUPPORT_TDMA (ic->ic_caps & IEEE80211_C_TDMA) == 0 #else (1) #endif ) { ic_printf(ic, "TDMA not supported\n"); return EOPNOTSUPP; } vap = ic->ic_vap_create(ic, wlanname, ifd->unit, cp.icp_opmode, cp.icp_flags, cp.icp_bssid, cp.icp_flags & IEEE80211_CLONE_MACADDR ? cp.icp_macaddr : ic->ic_macaddr); if (vap == NULL) return (EIO); #ifdef DEBUGNET if (ic->ic_debugnet_meth != NULL) DEBUGNET_SET(vap->iv_ifp, ieee80211); #endif *ifpp = vap->iv_ifp; return (0); } static int wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; ic->ic_vap_delete(vap); return (0); } void ieee80211_vap_destroy(struct ieee80211vap *vap) { CURVNET_SET(vap->iv_ifp->if_vnet); if_clone_destroyif(wlan_cloner, vap->iv_ifp); CURVNET_RESTORE(); } int ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) { int msecs = ticks_to_msecs(*(int *)arg1); int error; error = sysctl_handle_int(oidp, &msecs, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = msecs_to_ticks(msecs); return 0; } static int ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) { int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; int error; error = sysctl_handle_int(oidp, &inact, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = inact / IEEE80211_INACT_WAIT; return 0; } static int ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; return SYSCTL_OUT_STR(req, ic->ic_name); } static int ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; IEEE80211_LOCK(ic); ieee80211_dfs_notify_radar(ic, ic->ic_curchan); IEEE80211_UNLOCK(ic); return 0; } /* * For now, just restart everything. * * Later on, it'd be nice to have a separate VAP restart to * full-device restart. */ static int ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) { struct ieee80211vap *vap = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; ieee80211_restart_all(vap->iv_ic); return 0; } void ieee80211_sysctl_attach(struct ieee80211com *ic) { } void ieee80211_sysctl_detach(struct ieee80211com *ic) { } void ieee80211_sysctl_vattach(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; char num[14]; /* sufficient for 32 bits */ ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (ctx == NULL) { if_printf(ifp, "%s: cannot allocate sysctl context!\n", __func__); return; } sysctl_ctx_init(ctx); snprintf(num, sizeof(num), "%u", ifp->if_dunit); oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, "driver capabilities"); #ifdef IEEE80211_DEBUG vap->iv_debug = ieee80211_debug; SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "debug", CTLFLAG_RW, &vap->iv_debug, 0, "control debugging printfs"); #endif SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, "consecutive beacon misses before scanning"); /* XXX inherit from tunables */ SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I", "station inactivity timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I", "station inactivity probe timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I", "station authentication timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I", "station initial state timeout (sec)"); if (vap->iv_htcaps & IEEE80211_HTC_HT) { SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_bk", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, "BK traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_be", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, "BE traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vo", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, "VO traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vi", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, "VI traffic tx aggr threshold (pps)"); } SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart"); if (vap->iv_caps & IEEE80211_C_DFS) { SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_radar, "I", "simulate radar event"); } vap->iv_sysctl = ctx; vap->iv_oid = oid; } void ieee80211_sysctl_vdetach(struct ieee80211vap *vap) { if (vap->iv_sysctl != NULL) { sysctl_ctx_free(vap->iv_sysctl); IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); vap->iv_sysctl = NULL; } } int ieee80211_com_vincref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); if (ostate & IEEE80211_COM_DETACHED) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (ENETDOWN); } if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (EOVERFLOW); } return (0); } void ieee80211_com_vdecref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD); KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0, ("com reference counter underflow")); (void) ostate; } void ieee80211_com_vdetach(struct ieee80211vap *vap) { int sleep_time; sleep_time = msecs_to_ticks(250); atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED); while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0) pause("comref", sleep_time); } int ieee80211_node_dectestref(struct ieee80211_node *ni) { /* XXX need equivalent of atomic_dec_and_test */ atomic_subtract_int(&ni->ni_refcnt, 1); return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); } void ieee80211_drain_ifq(struct ifqueue *ifq) { struct ieee80211_node *ni; struct mbuf *m; for (;;) { IF_DEQUEUE(ifq, m); if (m == NULL) break; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; KASSERT(ni != NULL, ("frame w/o node")); ieee80211_free_node(ni); m->m_pkthdr.rcvif = NULL; m_freem(m); } } void ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) { struct ieee80211_node *ni; struct mbuf *m, **mprev; IF_LOCK(ifq); mprev = &ifq->ifq_head; while ((m = *mprev) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (ni != NULL && ni->ni_vap == vap) { *mprev = m->m_nextpkt; /* remove from list */ ifq->ifq_len--; m_freem(m); ieee80211_free_node(ni); /* reclaim ref */ } else mprev = &m->m_nextpkt; } /* recalculate tail ptr */ m = ifq->ifq_head; for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) ; ifq->ifq_tail = m; IF_UNLOCK(ifq); } /* * As above, for mbufs allocated with m_gethdr/MGETHDR * or initialized by M_COPY_PKTHDR. */ #define MC_ALIGN(m, len) \ do { \ (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ } while (/* CONSTCOND */ 0) /* * Allocate and setup a management frame of the specified * size. We return the mbuf and a pointer to the start * of the contiguous data area that's been reserved based * on the packet length. The data area is forced to 32-bit * alignment and the buffer length to a multiple of 4 bytes. * This is done mainly so beacon frames (that require this) * can use this interface too. */ struct mbuf * ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) { struct mbuf *m; u_int len; /* * NB: we know the mbuf routines will align the data area * so we don't need to do anything special. */ len = roundup2(headroom + pktlen, 4); KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); if (len < MINCLSIZE) { m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); /* * Align the data in case additional headers are added. * This should only happen when a WEP header is added * which only happens for shared key authentication mgt * frames which all fit in MHLEN. */ if (m != NULL) M_ALIGN(m, len); } else { m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) MC_ALIGN(m, len); } if (m != NULL) { m->m_data += headroom; *frm = m->m_data; } return m; } #ifndef __NO_STRICT_ALIGNMENT /* * Re-align the payload in the mbuf. This is mainly used (right now) * to handle IP header alignment requirements on certain architectures. */ struct mbuf * ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) { int pktlen, space; struct mbuf *n; pktlen = m->m_pkthdr.len; space = pktlen + align; if (space < MINCLSIZE) n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); else { n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR, space <= MCLBYTES ? MCLBYTES : #if MJUMPAGESIZE != MCLBYTES space <= MJUMPAGESIZE ? MJUMPAGESIZE : #endif space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); } if (__predict_true(n != NULL)) { m_move_pkthdr(n, m); n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); m_copydata(m, 0, pktlen, mtod(n, caddr_t)); n->m_len = pktlen; } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, mtod(m, const struct ieee80211_frame *), NULL, "%s", "no mbuf to realign"); vap->iv_stats.is_rx_badalign++; } m_freem(m); return n; } #endif /* !__NO_STRICT_ALIGNMENT */ int ieee80211_add_callback(struct mbuf *m, void (*func)(struct ieee80211_node *, void *, int), void *arg) { struct m_tag *mtag; struct ieee80211_cb *cb; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT); if (mtag == NULL) return 0; cb = (struct ieee80211_cb *)(mtag+1); cb->func = func; cb->arg = arg; m_tag_prepend(m, mtag); m->m_flags |= M_TXCB; return 1; } int ieee80211_add_xmit_params(struct mbuf *m, const struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); tx = (struct ieee80211_tx_params *)(mtag+1); memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_xmit_params(struct mbuf *m, struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, NULL); if (mtag == NULL) return (-1); tx = (struct ieee80211_tx_params *)(mtag + 1); memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); return (0); } void ieee80211_process_callback(struct ieee80211_node *ni, struct mbuf *m, int status) { struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); if (mtag != NULL) { struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); cb->func(ni, cb->arg, status); } } /* * Add RX parameters to the given mbuf. * * Returns 1 if OK, 0 on error. */ int ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(&rx->params, rxs, sizeof(*rxs)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (-1); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(rxs, &rx->params, sizeof(*rxs)); return (0); } const struct ieee80211_rx_stats * ieee80211_get_rx_params_ptr(struct mbuf *m) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (NULL); rx = (struct ieee80211_rx_params *)(mtag + 1); return (&rx->params); } /* * Add TOA parameters to the given mbuf. */ int ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); memcpy(rp, p, sizeof(*rp)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, NULL); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); if (p != NULL) memcpy(p, rp, sizeof(*p)); return (1); } /* * @brief Transmit a frame to the parent interface. * * Transmit an 802.11 or 802.3 frame to the parent interface. * * This is called as part of 802.11 processing to enqueue a frame * from net80211 into the device for transmit. * * If the interface is marked as 802.3 via IEEE80211_C_8023ENCAP * (ie, doing offload), then an 802.3 frame will be sent and the * driver will need to understand what to do. * * If the interface is marked as 802.11 (ie, no offload), then * an encapsulated 802.11 frame will be queued. In the case * of an 802.11 fragmented frame this will be a list of frames * representing the fragments making up the 802.11 frame, linked * via m_nextpkt. * * A fragmented frame list will consist of: * + only the first frame with M_SEQNO_SET() assigned the sequence number; * + only the first frame with the node reference and node in rcvif; * + all frames will have the sequence + fragment number populated in * the 802.11 header. * * The driver must ensure it doesn't try releasing a node reference * for each fragment in the list. * * The provided mbuf/list is consumed both upon success and error. * * @param ic struct ieee80211com device to enqueue frame to * @param m struct mbuf chain / packet list to enqueue * @returns 0 if successful, errno if error. */ int ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) { int error; /* * Assert the IC TX lock is held - this enforces the * processing -> queuing order is maintained */ IEEE80211_TX_LOCK_ASSERT(ic); error = ic->ic_transmit(ic, m); if (error) { struct ieee80211_node *ni; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; /* XXX number of fragments */ if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); /* Note: there's only one node reference for a fragment list */ ieee80211_free_node(ni); ieee80211_free_mbuf(m); } return (error); } /* * @brief Transmit an 802.3 frame to the VAP interface. * * This is the entry point for the wifi stack to enqueue 802.3 * encapsulated frames for transmit to the given vap/ifnet instance. * This is used in paths where 802.3 frames have been received * or queued, and need to be pushed through the VAP encapsulation * and transmit processing pipeline. * * The provided mbuf/list is consumed both upon success and error. * * @param vap struct ieee80211vap instance to transmit frame to * @param m mbuf to transmit * @returns 0 if OK, errno if error */ int ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) { struct ifnet *ifp = vap->iv_ifp; /* * When transmitting via the VAP, we shouldn't hold * any IC TX lock as the VAP TX path will acquire it. */ IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); return (ifp->if_transmit(ifp, m)); } #include void net80211_get_random_bytes(void *p, size_t n) { uint8_t *dp = p; while (n > 0) { uint32_t v = arc4random(); size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); dp += sizeof(uint32_t), n -= nb; } } /* * Helper function for events that pass just a single mac address. */ static void notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211_join_event iev; CURVNET_SET(ifp->if_vnet); memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, mac); rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); if_link_state_change(ifp, LINK_STATE_UP); } else { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_node_leave(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); if_link_state_change(ifp, LINK_STATE_DOWN); } else { /* fire off wireless event station leaving */ notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_scan_done(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); /* dispatch wireless event indicating scan completed */ CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); CURVNET_RESTORE(); } void ieee80211_notify_replay_failure(struct ieee80211vap *vap, const struct ieee80211_frame *wh, const struct ieee80211_key *k, u_int64_t rsc, int tid) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "%s replay detected tid %d ", k->wk_cipher->ic_name, tid, (intmax_t) rsc, (intmax_t) rsc, (intmax_t) k->wk_keyrsc[tid], (intmax_t) k->wk_keyrsc[tid], k->wk_keyix, k->wk_rxkeyix); if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_replay_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = k->wk_cipher->ic_cipher; if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) iev.iev_keyix = k->wk_rxkeyix; else iev.iev_keyix = k->wk_keyix; iev.iev_keyrsc = k->wk_keyrsc[tid]; iev.iev_rsc = rsc; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_michael_failure(struct ieee80211vap *vap, const struct ieee80211_frame *wh, ieee80211_keyix keyix) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "michael MIC verification failed ", keyix); vap->iv_stats.is_rx_tkipmic++; if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_michael_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = IEEE80211_CIPHER_TKIP; iev.iev_keyix = keyix; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_wds_discover(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); } void ieee80211_notify_csa(struct ieee80211com *ic, const struct ieee80211_channel *c, int mode, int count) { struct ieee80211_csa_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_mode = mode; iev.iev_count = count; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_radar(struct ieee80211com *ic, const struct ieee80211_channel *c) { struct ieee80211_radar_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_cac(struct ieee80211com *ic, const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) { struct ieee80211_cac_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_type = type; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_node_deauth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); } void ieee80211_notify_node_auth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); } void ieee80211_notify_country(struct ieee80211vap *vap, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211_country_event iev; memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, bssid); iev.iev_cc[0] = cc[0]; iev.iev_cc[1] = cc[1]; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_radio(struct ieee80211com *ic, int state) { struct ieee80211_radio_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_state = state; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n", "interface state change"); CURVNET_SET(ifp->if_vnet); rt_ifmsg(ifp, if_flags_mask); CURVNET_RESTORE(); } void ieee80211_load_module(const char *modname) { #ifdef notyet (void)kern_kldload(curthread, modname, NULL); #else printf("%s: load the %s module by hand for now.\n", __func__, modname); #endif } static eventhandler_tag wlan_bpfevent; static eventhandler_tag wlan_ifllevent; static void bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) { /* NB: identify vap's by if_init */ if (dlt == DLT_IEEE802_11_RADIO && ifp->if_init == ieee80211_init) { struct ieee80211vap *vap = ifp->if_softc; /* * Track bpf radiotap listener state. We mark the vap * to indicate if any listener is present and the com * to indicate if any listener exists on any associated * vap. This flag is used by drivers to prepare radiotap * state only when needed. */ if (attach) { ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_add_int(&vap->iv_ic->ic_montaps, 1); } else if (!bpf_peers_present(vap->iv_rawbpf)) { ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); } } } /* * Change MAC address on the vap (if was not started). */ static void wlan_iflladdr(void *arg __unused, struct ifnet *ifp) { /* NB: identify vap's by if_init */ if (ifp->if_init == ieee80211_init && (ifp->if_flags & IFF_UP) == 0) { struct ieee80211vap *vap = ifp->if_softc; IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); } } /* * Fetch the VAP name. * * This returns a const char pointer suitable for debugging, * but don't expect it to stick around for much longer. */ const char * ieee80211_get_vap_ifname(struct ieee80211vap *vap) { if (vap->iv_ifp == NULL) return "(none)"; return vap->iv_ifp->if_xname; } #ifdef DEBUGNET static void ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize); IEEE80211_UNLOCK(ic); } static void ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_event(ic, ev); IEEE80211_UNLOCK(ic); } static int ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) { return (ieee80211_vap_transmit(ifp, m)); } static int ieee80211_debugnet_poll(struct ifnet *ifp, int count) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; return (ic->ic_debugnet_meth->dn8_poll(ic, count)); } #endif /** * @brief Check if the MAC address was changed by the upper layer. * * This is specifically to handle cases like the MAC address * being changed via an ioctl (eg SIOCSIFLLADDR). * * @param vap VAP to sync MAC address for */ void ieee80211_vap_sync_mac_address(struct ieee80211vap *vap) { struct epoch_tracker et; const struct ifnet *ifp = vap->iv_ifp; /* * Check if the MAC address was changed * via SIOCSIFLLADDR ioctl. * * NB: device may be detached during initialization; * use if_ioctl for existence check. */ NET_EPOCH_ENTER(et); if (ifp->if_ioctl == ieee80211_ioctl && (ifp->if_flags & IFF_UP) == 0 && !IEEE80211_ADDR_EQ(vap->iv_myaddr, IF_LLADDR(ifp))) IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); NET_EPOCH_EXIT(et); } /** * @brief Initial MAC address setup for a VAP. * * @param vap VAP to sync MAC address for */ void ieee80211_vap_copy_mac_address(struct ieee80211vap *vap) { struct epoch_tracker et; NET_EPOCH_ENTER(et); IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(vap->iv_ifp)); NET_EPOCH_EXIT(et); } /** * @brief Deliver data into the upper ifp of the VAP interface * * This delivers an 802.3 frame from net80211 up to the operating * system network interface layer. * * @param vap the current VAP * @param m the 802.3 frame to pass up to the VAP interface * * Note: this API consumes the mbuf. */ void ieee80211_vap_deliver_data(struct ieee80211vap *vap, struct mbuf *m) { struct epoch_tracker et; NET_EPOCH_ENTER(et); if_input(vap->iv_ifp, m); NET_EPOCH_EXIT(et); } +/** + * @brief Return whether the VAP is configured with monitor mode + * + * This checks the operating system layer for whether monitor mode + * is enabled. + * + * @param vap the current VAP + * @retval true if the underlying interface is in MONITOR mode, false otherwise + */ +bool +ieee80211_vap_ifp_check_is_monitor(struct ieee80211vap *vap) +{ + return ((if_getflags(vap->iv_ifp) & IFF_MONITOR) != 0); +} + +/** + * @brief Return whether the VAP is configured in simplex mode. + * + * This checks the operating system layer for whether simplex mode + * is enabled. + * + * @param vap the current VAP + * @retval true if the underlying interface is in SIMPLEX mode, false otherwise + */ +bool +ieee80211_vap_ifp_check_is_simplex(struct ieee80211vap *vap) +{ + return ((if_getflags(vap->iv_ifp) & IFF_SIMPLEX) != 0); +} + +/** + * @brief Return if the VAP underlying network interface is running + * + * @param vap the current VAP + * @retval true if the underlying interface is running; false otherwise + */ +bool +ieee80211_vap_ifp_check_is_running(struct ieee80211vap *vap) +{ + return ((if_getdrvflags(vap->iv_ifp) & IFF_DRV_RUNNING) != 0); +} + +/** + * @brief Change the VAP underlying network interface state + * + * @param vap the current VAP + * @param state true to mark the interface as RUNNING, false to clear + */ +void +ieee80211_vap_ifp_set_running_state(struct ieee80211vap *vap, bool state) +{ + if (state) + if_setdrvflagbits(vap->iv_ifp, IFF_DRV_RUNNING, 0); + else + if_setdrvflagbits(vap->iv_ifp, 0, IFF_DRV_RUNNING); +} + /* * Module glue. * * NB: the module name is "wlan" for compatibility with NetBSD. */ static int wlan_modevent(module_t mod, int type, void *unused) { switch (type) { case MOD_LOAD: if (bootverbose) printf("wlan: <802.11 Link Layer>\n"); wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, bpf_track, 0, EVENTHANDLER_PRI_ANY); wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); struct if_clone_addreq req = { .create_f = wlan_clone_create, .destroy_f = wlan_clone_destroy, .flags = IFC_F_AUTOUNIT, }; wlan_cloner = ifc_attach_cloner(wlanname, &req); return 0; case MOD_UNLOAD: ifc_detach_cloner(wlan_cloner); EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); return 0; } return EINVAL; } static moduledata_t wlan_mod = { wlanname, wlan_modevent, 0 }; DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(wlan, 1); MODULE_DEPEND(wlan, ether, 1, 1, 1); #ifdef IEEE80211_ALQ MODULE_DEPEND(wlan, alq, 1, 1, 1); #endif /* IEEE80211_ALQ */ diff --git a/sys/net80211/ieee80211_freebsd.h b/sys/net80211/ieee80211_freebsd.h index 442c5edef52d..449ff8f05202 100644 --- a/sys/net80211/ieee80211_freebsd.h +++ b/sys/net80211/ieee80211_freebsd.h @@ -1,729 +1,733 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2003-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _NET80211_IEEE80211_FREEBSD_H_ #define _NET80211_IEEE80211_FREEBSD_H_ #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include /* * priv(9) NET80211 checks. */ struct ieee80211vap; int ieee80211_priv_check_vap_getkey(u_long, struct ieee80211vap *, struct ifnet *); int ieee80211_priv_check_vap_manage(u_long, struct ieee80211vap *, struct ifnet *); int ieee80211_priv_check_vap_setmac(u_long, struct ieee80211vap *, struct ifnet *); int ieee80211_priv_check_create_vap(u_long, struct ieee80211vap *, struct ifnet *); /* * Common state locking definitions. */ typedef struct { char name[16]; /* e.g. "ath0_com_lock" */ struct mtx mtx; } ieee80211_com_lock_t; #define IEEE80211_LOCK_INIT(_ic, _name) do { \ ieee80211_com_lock_t *cl = &(_ic)->ic_comlock; \ snprintf(cl->name, sizeof(cl->name), "%s_com_lock", _name); \ mtx_init(&cl->mtx, cl->name, NULL, MTX_DEF | MTX_RECURSE); \ } while (0) #define IEEE80211_LOCK_OBJ(_ic) (&(_ic)->ic_comlock.mtx) #define IEEE80211_LOCK_DESTROY(_ic) mtx_destroy(IEEE80211_LOCK_OBJ(_ic)) #define IEEE80211_LOCK(_ic) mtx_lock(IEEE80211_LOCK_OBJ(_ic)) #define IEEE80211_UNLOCK(_ic) mtx_unlock(IEEE80211_LOCK_OBJ(_ic)) #define IEEE80211_LOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_LOCK_OBJ(_ic), MA_OWNED) #define IEEE80211_UNLOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_LOCK_OBJ(_ic), MA_NOTOWNED) #define IEEE80211_IS_LOCKED(_ic) \ mtx_owned(IEEE80211_LOCK_OBJ(_ic)) /* * Transmit lock. * * This is a (mostly) temporary lock designed to serialise all of the * transmission operations throughout the stack. */ typedef struct { char name[16]; /* e.g. "ath0_tx_lock" */ struct mtx mtx; } ieee80211_tx_lock_t; #define IEEE80211_TX_LOCK_INIT(_ic, _name) do { \ ieee80211_tx_lock_t *cl = &(_ic)->ic_txlock; \ snprintf(cl->name, sizeof(cl->name), "%s_tx_lock", _name); \ mtx_init(&cl->mtx, cl->name, NULL, MTX_DEF); \ } while (0) #define IEEE80211_TX_LOCK_OBJ(_ic) (&(_ic)->ic_txlock.mtx) #define IEEE80211_TX_LOCK_DESTROY(_ic) mtx_destroy(IEEE80211_TX_LOCK_OBJ(_ic)) #define IEEE80211_TX_LOCK(_ic) mtx_lock(IEEE80211_TX_LOCK_OBJ(_ic)) #define IEEE80211_TX_UNLOCK(_ic) mtx_unlock(IEEE80211_TX_LOCK_OBJ(_ic)) #define IEEE80211_TX_LOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_TX_LOCK_OBJ(_ic), MA_OWNED) #define IEEE80211_TX_UNLOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_TX_LOCK_OBJ(_ic), MA_NOTOWNED) /* * Stageq / ni_tx_superg lock */ typedef struct { char name[16]; /* e.g. "ath0_ff_lock" */ struct mtx mtx; } ieee80211_ff_lock_t; #define IEEE80211_FF_LOCK_INIT(_ic, _name) do { \ ieee80211_ff_lock_t *fl = &(_ic)->ic_fflock; \ snprintf(fl->name, sizeof(fl->name), "%s_ff_lock", _name); \ mtx_init(&fl->mtx, fl->name, NULL, MTX_DEF); \ } while (0) #define IEEE80211_FF_LOCK_OBJ(_ic) (&(_ic)->ic_fflock.mtx) #define IEEE80211_FF_LOCK_DESTROY(_ic) mtx_destroy(IEEE80211_FF_LOCK_OBJ(_ic)) #define IEEE80211_FF_LOCK(_ic) mtx_lock(IEEE80211_FF_LOCK_OBJ(_ic)) #define IEEE80211_FF_UNLOCK(_ic) mtx_unlock(IEEE80211_FF_LOCK_OBJ(_ic)) #define IEEE80211_FF_LOCK_ASSERT(_ic) \ mtx_assert(IEEE80211_FF_LOCK_OBJ(_ic), MA_OWNED) /* * Node locking definitions. */ typedef struct { char name[16]; /* e.g. "ath0_node_lock" */ struct mtx mtx; } ieee80211_node_lock_t; #define IEEE80211_NODE_LOCK_INIT(_nt, _name) do { \ ieee80211_node_lock_t *nl = &(_nt)->nt_nodelock; \ snprintf(nl->name, sizeof(nl->name), "%s_node_lock", _name); \ mtx_init(&nl->mtx, nl->name, NULL, MTX_DEF | MTX_RECURSE); \ } while (0) #define IEEE80211_NODE_LOCK_OBJ(_nt) (&(_nt)->nt_nodelock.mtx) #define IEEE80211_NODE_LOCK_DESTROY(_nt) \ mtx_destroy(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_LOCK(_nt) \ mtx_lock(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_IS_LOCKED(_nt) \ mtx_owned(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_UNLOCK(_nt) \ mtx_unlock(IEEE80211_NODE_LOCK_OBJ(_nt)) #define IEEE80211_NODE_LOCK_ASSERT(_nt) \ mtx_assert(IEEE80211_NODE_LOCK_OBJ(_nt), MA_OWNED) /* * Power-save queue definitions. */ typedef struct mtx ieee80211_psq_lock_t; #define IEEE80211_PSQ_INIT(_psq, _name) \ mtx_init(&(_psq)->psq_lock, _name, "802.11 ps q", MTX_DEF) #define IEEE80211_PSQ_DESTROY(_psq) mtx_destroy(&(_psq)->psq_lock) #define IEEE80211_PSQ_LOCK(_psq) mtx_lock(&(_psq)->psq_lock) #define IEEE80211_PSQ_UNLOCK(_psq) mtx_unlock(&(_psq)->psq_lock) #ifndef IF_PREPEND_LIST #define _IF_PREPEND_LIST(ifq, mhead, mtail, mcount) do { \ (mtail)->m_nextpkt = (ifq)->ifq_head; \ if ((ifq)->ifq_tail == NULL) \ (ifq)->ifq_tail = (mtail); \ (ifq)->ifq_head = (mhead); \ (ifq)->ifq_len += (mcount); \ } while (0) #define IF_PREPEND_LIST(ifq, mhead, mtail, mcount) do { \ IF_LOCK(ifq); \ _IF_PREPEND_LIST(ifq, mhead, mtail, mcount); \ IF_UNLOCK(ifq); \ } while (0) #endif /* IF_PREPEND_LIST */ /* * Age queue definitions. */ typedef struct mtx ieee80211_ageq_lock_t; #define IEEE80211_AGEQ_INIT(_aq, _name) \ mtx_init(&(_aq)->aq_lock, _name, "802.11 age q", MTX_DEF) #define IEEE80211_AGEQ_DESTROY(_aq) mtx_destroy(&(_aq)->aq_lock) #define IEEE80211_AGEQ_LOCK(_aq) mtx_lock(&(_aq)->aq_lock) #define IEEE80211_AGEQ_UNLOCK(_aq) mtx_unlock(&(_aq)->aq_lock) /* * 802.1x MAC ACL database locking definitions. */ typedef struct mtx acl_lock_t; #define ACL_LOCK_INIT(_as, _name) \ mtx_init(&(_as)->as_lock, _name, "802.11 ACL", MTX_DEF) #define ACL_LOCK_DESTROY(_as) mtx_destroy(&(_as)->as_lock) #define ACL_LOCK(_as) mtx_lock(&(_as)->as_lock) #define ACL_UNLOCK(_as) mtx_unlock(&(_as)->as_lock) #define ACL_LOCK_ASSERT(_as) \ mtx_assert((&(_as)->as_lock), MA_OWNED) /* * Scan table definitions. */ typedef struct mtx ieee80211_scan_table_lock_t; #define IEEE80211_SCAN_TABLE_LOCK_INIT(_st, _name) \ mtx_init(&(_st)->st_lock, _name, "802.11 scan table", MTX_DEF) #define IEEE80211_SCAN_TABLE_LOCK_DESTROY(_st) mtx_destroy(&(_st)->st_lock) #define IEEE80211_SCAN_TABLE_LOCK(_st) mtx_lock(&(_st)->st_lock) #define IEEE80211_SCAN_TABLE_UNLOCK(_st) mtx_unlock(&(_st)->st_lock) typedef struct mtx ieee80211_scan_iter_lock_t; #define IEEE80211_SCAN_ITER_LOCK_INIT(_st, _name) \ mtx_init(&(_st)->st_scanlock, _name, "802.11 scangen", MTX_DEF) #define IEEE80211_SCAN_ITER_LOCK_DESTROY(_st) mtx_destroy(&(_st)->st_scanlock) #define IEEE80211_SCAN_ITER_LOCK(_st) mtx_lock(&(_st)->st_scanlock) #define IEEE80211_SCAN_ITER_UNLOCK(_st) mtx_unlock(&(_st)->st_scanlock) /* * Mesh node/routing definitions. */ typedef struct mtx ieee80211_rte_lock_t; #define MESH_RT_ENTRY_LOCK_INIT(_rt, _name) \ mtx_init(&(rt)->rt_lock, _name, "802.11s route entry", MTX_DEF) #define MESH_RT_ENTRY_LOCK_DESTROY(_rt) \ mtx_destroy(&(_rt)->rt_lock) #define MESH_RT_ENTRY_LOCK(rt) mtx_lock(&(rt)->rt_lock) #define MESH_RT_ENTRY_LOCK_ASSERT(rt) mtx_assert(&(rt)->rt_lock, MA_OWNED) #define MESH_RT_ENTRY_UNLOCK(rt) mtx_unlock(&(rt)->rt_lock) typedef struct mtx ieee80211_rt_lock_t; #define MESH_RT_LOCK(ms) mtx_lock(&(ms)->ms_rt_lock) #define MESH_RT_LOCK_ASSERT(ms) mtx_assert(&(ms)->ms_rt_lock, MA_OWNED) #define MESH_RT_UNLOCK(ms) mtx_unlock(&(ms)->ms_rt_lock) #define MESH_RT_LOCK_INIT(ms, name) \ mtx_init(&(ms)->ms_rt_lock, name, "802.11s routing table", MTX_DEF) #define MESH_RT_LOCK_DESTROY(ms) \ mtx_destroy(&(ms)->ms_rt_lock) /* * Node reference counting definitions. * * ieee80211_node_initref initialize the reference count to 1 * ieee80211_node_incref add a reference * ieee80211_node_decref remove a reference * ieee80211_node_dectestref remove a reference and return 1 if this * is the last reference, otherwise 0 * ieee80211_node_refcnt reference count for printing (only) */ #include struct ieee80211vap; int ieee80211_com_vincref(struct ieee80211vap *); void ieee80211_com_vdecref(struct ieee80211vap *); void ieee80211_com_vdetach(struct ieee80211vap *); #define ieee80211_node_initref(_ni) \ do { ((_ni)->ni_refcnt = 1); } while (0) #define ieee80211_node_incref(_ni) \ atomic_add_int(&(_ni)->ni_refcnt, 1) #define ieee80211_node_decref(_ni) \ atomic_subtract_int(&(_ni)->ni_refcnt, 1) struct ieee80211_node; int ieee80211_node_dectestref(struct ieee80211_node *ni); #define ieee80211_node_refcnt(_ni) (_ni)->ni_refcnt struct ifqueue; void ieee80211_drain_ifq(struct ifqueue *); void ieee80211_flush_ifq(struct ifqueue *, struct ieee80211vap *); void ieee80211_vap_destroy(struct ieee80211vap *); const char * ieee80211_get_vap_ifname(struct ieee80211vap *); -#define IFNET_IS_UP_RUNNING(_ifp) \ - (((_ifp)->if_flags & IFF_UP) && \ - ((_ifp)->if_drv_flags & IFF_DRV_RUNNING)) +#define IFNET_IS_UP_RUNNING(_ifp) \ + (((if_getflags(_ifp) & IFF_UP) != 0) && \ + ((if_getdrvflags(_ifp) & IFF_DRV_RUNNING) != 0)) #define msecs_to_ticks(ms) MSEC_2_TICKS(ms) #define ticks_to_msecs(t) TICKS_2_MSEC(t) #define ticks_to_secs(t) ((t) / hz) #define ieee80211_time_after(a,b) ((int)(b) - (int)(a) < 0) #define ieee80211_time_before(a,b) ieee80211_time_after(b,a) #define ieee80211_time_after_eq(a,b) ((int)(a) - (int)(b) >= 0) #define ieee80211_time_before_eq(a,b) ieee80211_time_after_eq(b,a) struct mbuf *ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen); /* tx path usage */ #define M_ENCAP M_PROTO1 /* 802.11 encap done */ #define M_EAPOL M_PROTO3 /* PAE/EAPOL frame */ #define M_PWR_SAV M_PROTO4 /* bypass PS handling */ #define M_MORE_DATA M_PROTO5 /* more data frames to follow */ #define M_FF M_PROTO6 /* fast frame / A-MSDU */ #define M_TXCB M_PROTO7 /* do tx complete callback */ #define M_AMPDU_MPDU M_PROTO8 /* ok for A-MPDU aggregation */ #define M_FRAG M_PROTO9 /* frame fragmentation */ #define M_FIRSTFRAG M_PROTO10 /* first frame fragment */ #define M_LASTFRAG M_PROTO11 /* last frame fragment */ #define M_80211_TX \ (M_ENCAP|M_EAPOL|M_PWR_SAV|M_MORE_DATA|M_FF|M_TXCB| \ M_AMPDU_MPDU|M_FRAG|M_FIRSTFRAG|M_LASTFRAG) /* rx path usage */ #define M_AMPDU M_PROTO1 /* A-MPDU subframe */ #define M_WEP M_PROTO2 /* WEP done by hardware */ #if 0 #define M_AMPDU_MPDU M_PROTO8 /* A-MPDU re-order done */ #endif #define M_80211_RX (M_AMPDU|M_WEP|M_AMPDU_MPDU) #define IEEE80211_MBUF_TX_FLAG_BITS \ M_FLAG_BITS \ "\15M_ENCAP\17M_EAPOL\20M_PWR_SAV\21M_MORE_DATA\22M_FF\23M_TXCB" \ "\24M_AMPDU_MPDU\25M_FRAG\26M_FIRSTFRAG\27M_LASTFRAG" #define IEEE80211_MBUF_RX_FLAG_BITS \ M_FLAG_BITS \ "\15M_AMPDU\16M_WEP\24M_AMPDU_MPDU" /* * Store WME access control bits in the vlan tag. * This is safe since it's done after the packet is classified * (where we use any previous tag) and because it's passed * directly in to the driver and there's no chance someone * else will clobber them on us. */ #define M_WME_SETAC(m, ac) \ ((m)->m_pkthdr.ether_vtag = (ac)) #define M_WME_GETAC(m) ((m)->m_pkthdr.ether_vtag) /* * Mbufs on the power save queue are tagged with an age and * timed out. We reuse the hardware checksum field in the * mbuf packet header to store this data. */ #define M_AGE_SET(m,v) (m->m_pkthdr.csum_data = v) #define M_AGE_GET(m) (m->m_pkthdr.csum_data) #define M_AGE_SUB(m,adj) (m->m_pkthdr.csum_data -= adj) /* * Store the sequence number. */ #define M_SEQNO_SET(m, seqno) \ ((m)->m_pkthdr.tso_segsz = (seqno)) #define M_SEQNO_GET(m) ((m)->m_pkthdr.tso_segsz) #define MTAG_ABI_NET80211 1132948340 /* net80211 ABI */ struct ieee80211_cb { void (*func)(struct ieee80211_node *, void *, int status); void *arg; }; #define NET80211_TAG_CALLBACK 0 /* xmit complete callback */ int ieee80211_add_callback(struct mbuf *m, void (*func)(struct ieee80211_node *, void *, int), void *arg); void ieee80211_process_callback(struct ieee80211_node *, struct mbuf *, int); #define NET80211_TAG_XMIT_PARAMS 1 /* See below; this is after the bpf_params definition */ #define NET80211_TAG_RECV_PARAMS 2 #define NET80211_TAG_TOA_PARAMS 3 struct ieee80211com; int ieee80211_parent_xmitpkt(struct ieee80211com *, struct mbuf *); int ieee80211_vap_xmitpkt(struct ieee80211vap *, struct mbuf *); void net80211_get_random_bytes(void *, size_t); void ieee80211_sysctl_attach(struct ieee80211com *); void ieee80211_sysctl_detach(struct ieee80211com *); void ieee80211_sysctl_vattach(struct ieee80211vap *); void ieee80211_sysctl_vdetach(struct ieee80211vap *); SYSCTL_DECL(_net_wlan); int ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS); void ieee80211_load_module(const char *); /* * A "policy module" is an adjunct module to net80211 that provides * functionality that typically includes policy decisions. This * modularity enables extensibility and vendor-supplied functionality. */ #define _IEEE80211_POLICY_MODULE(policy, name, version) \ typedef void (*policy##_setup)(int); \ SET_DECLARE(policy##_set, policy##_setup); \ static int \ wlan_##name##_modevent(module_t mod, int type, void *unused) \ { \ policy##_setup * const *iter, f; \ switch (type) { \ case MOD_LOAD: \ SET_FOREACH(iter, policy##_set) { \ f = (void*) *iter; \ f(type); \ } \ return 0; \ case MOD_UNLOAD: \ case MOD_QUIESCE: \ if (nrefs) { \ printf("wlan_" #name ": still in use " \ "(%u dynamic refs)\n", nrefs); \ return EBUSY; \ } \ if (type == MOD_UNLOAD) { \ SET_FOREACH(iter, policy##_set) { \ f = (void*) *iter; \ f(type); \ } \ } \ return 0; \ } \ return EINVAL; \ } \ static moduledata_t name##_mod = { \ "wlan_" #name, \ wlan_##name##_modevent, \ 0 \ }; \ DECLARE_MODULE(wlan_##name, name##_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);\ MODULE_VERSION(wlan_##name, version); \ MODULE_DEPEND(wlan_##name, wlan, 1, 1, 1) /* * Crypto modules implement cipher support. */ #define IEEE80211_CRYPTO_MODULE_ADD(name) \ static void \ name##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_crypto_register(&name); \ else \ ieee80211_crypto_unregister(&name); \ } \ TEXT_SET(crypto##_set, name##_modevent) #define IEEE80211_CRYPTO_MODULE(name, version) \ _IEEE80211_POLICY_MODULE(crypto, name, version); \ IEEE80211_CRYPTO_MODULE_ADD(name) /* * Scanner modules provide scanning policy. */ #define IEEE80211_SCANNER_MODULE(name, version) \ _IEEE80211_POLICY_MODULE(scanner, name, version) #define IEEE80211_SCANNER_ALG(name, alg, v) \ static void \ name##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_scanner_register(alg, &v); \ else \ ieee80211_scanner_unregister(alg, &v); \ } \ TEXT_SET(scanner_set, name##_modevent); \ /* * ACL modules implement acl policy. */ #define IEEE80211_ACL_MODULE(name, alg, version) \ _IEEE80211_POLICY_MODULE(acl, name, version); \ static void \ alg##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_aclator_register(&alg); \ else \ ieee80211_aclator_unregister(&alg); \ } \ TEXT_SET(acl_set, alg##_modevent); \ /* * Authenticator modules handle 802.1x/WPA authentication. */ #define IEEE80211_AUTH_MODULE(name, version) \ _IEEE80211_POLICY_MODULE(auth, name, version) #define IEEE80211_AUTH_ALG(name, alg, v) \ static void \ name##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_authenticator_register(alg, &v); \ else \ ieee80211_authenticator_unregister(alg); \ } \ TEXT_SET(auth_set, name##_modevent) /* * Rate control modules provide tx rate control support. */ #define IEEE80211_RATECTL_MODULE(alg, version) \ _IEEE80211_POLICY_MODULE(ratectl, alg, version); \ #define IEEE80211_RATECTL_ALG(name, alg, v) \ static void \ alg##_modevent(int type) \ { \ if (type == MOD_LOAD) \ ieee80211_ratectl_register(alg, &v); \ else \ ieee80211_ratectl_unregister(alg); \ } \ TEXT_SET(ratectl##_set, alg##_modevent) struct ieee80211req; typedef int ieee80211_ioctl_getfunc(struct ieee80211vap *, struct ieee80211req *); SET_DECLARE(ieee80211_ioctl_getset, ieee80211_ioctl_getfunc); #define IEEE80211_IOCTL_GET(_name, _get) TEXT_SET(ieee80211_ioctl_getset, _get) typedef int ieee80211_ioctl_setfunc(struct ieee80211vap *, struct ieee80211req *); SET_DECLARE(ieee80211_ioctl_setset, ieee80211_ioctl_setfunc); #define IEEE80211_IOCTL_SET(_name, _set) TEXT_SET(ieee80211_ioctl_setset, _set) #ifdef DEBUGNET typedef void debugnet80211_init_t(struct ieee80211com *, int *nrxr, int *ncl, int *clsize); typedef void debugnet80211_event_t(struct ieee80211com *, enum debugnet_ev); typedef int debugnet80211_poll_t(struct ieee80211com *, int); struct debugnet80211_methods { debugnet80211_init_t *dn8_init; debugnet80211_event_t *dn8_event; debugnet80211_poll_t *dn8_poll; }; #define DEBUGNET80211_DEFINE(driver) \ static debugnet80211_init_t driver##_debugnet80211_init; \ static debugnet80211_event_t driver##_debugnet80211_event; \ static debugnet80211_poll_t driver##_debugnet80211_poll; \ \ static struct debugnet80211_methods driver##_debugnet80211_methods = { \ .dn8_init = driver##_debugnet80211_init, \ .dn8_event = driver##_debugnet80211_event, \ .dn8_poll = driver##_debugnet80211_poll, \ } #define DEBUGNET80211_SET(ic, driver) \ (ic)->ic_debugnet_meth = &driver##_debugnet80211_methods #else #define DEBUGNET80211_DEFINE(driver) #define DEBUGNET80211_SET(ic, driver) #endif /* DEBUGNET */ void ieee80211_vap_sync_mac_address(struct ieee80211vap *); void ieee80211_vap_copy_mac_address(struct ieee80211vap *); void ieee80211_vap_deliver_data(struct ieee80211vap *, struct mbuf *); +bool ieee80211_vap_ifp_check_is_monitor(struct ieee80211vap *); +bool ieee80211_vap_ifp_check_is_simplex(struct ieee80211vap *); +bool ieee80211_vap_ifp_check_is_running(struct ieee80211vap *); +void ieee80211_vap_ifp_set_running_state(struct ieee80211vap *, bool); #endif /* _KERNEL */ /* XXX this stuff belongs elsewhere */ /* * Message formats for messages from the net80211 layer to user * applications via the routing socket. These messages are appended * to an if_announcemsghdr structure. */ struct ieee80211_join_event { uint8_t iev_addr[6]; }; struct ieee80211_leave_event { uint8_t iev_addr[6]; }; struct ieee80211_replay_event { uint8_t iev_src[6]; /* src MAC */ uint8_t iev_dst[6]; /* dst MAC */ uint8_t iev_cipher; /* cipher type */ uint8_t iev_keyix; /* key id/index */ uint64_t iev_keyrsc; /* RSC from key */ uint64_t iev_rsc; /* RSC from frame */ }; struct ieee80211_michael_event { uint8_t iev_src[6]; /* src MAC */ uint8_t iev_dst[6]; /* dst MAC */ uint8_t iev_cipher; /* cipher type */ uint8_t iev_keyix; /* key id/index */ }; struct ieee80211_wds_event { uint8_t iev_addr[6]; }; struct ieee80211_csa_event { uint32_t iev_flags; /* channel flags */ uint16_t iev_freq; /* setting in Mhz */ uint8_t iev_ieee; /* IEEE channel number */ uint8_t iev_mode; /* CSA mode */ uint8_t iev_count; /* CSA count */ }; struct ieee80211_cac_event { uint32_t iev_flags; /* channel flags */ uint16_t iev_freq; /* setting in Mhz */ uint8_t iev_ieee; /* IEEE channel number */ /* XXX timestamp? */ uint8_t iev_type; /* IEEE80211_NOTIFY_CAC_* */ }; struct ieee80211_radar_event { uint32_t iev_flags; /* channel flags */ uint16_t iev_freq; /* setting in Mhz */ uint8_t iev_ieee; /* IEEE channel number */ /* XXX timestamp? */ }; struct ieee80211_auth_event { uint8_t iev_addr[6]; }; struct ieee80211_deauth_event { uint8_t iev_addr[6]; }; struct ieee80211_country_event { uint8_t iev_addr[6]; uint8_t iev_cc[2]; /* ISO country code */ }; struct ieee80211_radio_event { uint8_t iev_state; /* 1 on, 0 off */ }; #define RTM_IEEE80211_ASSOC 100 /* station associate (bss mode) */ #define RTM_IEEE80211_REASSOC 101 /* station re-associate (bss mode) */ #define RTM_IEEE80211_DISASSOC 102 /* station disassociate (bss mode) */ #define RTM_IEEE80211_JOIN 103 /* station join (ap mode) */ #define RTM_IEEE80211_LEAVE 104 /* station leave (ap mode) */ #define RTM_IEEE80211_SCAN 105 /* scan complete, results available */ #define RTM_IEEE80211_REPLAY 106 /* sequence counter replay detected */ #define RTM_IEEE80211_MICHAEL 107 /* Michael MIC failure detected */ #define RTM_IEEE80211_REJOIN 108 /* station re-associate (ap mode) */ #define RTM_IEEE80211_WDS 109 /* WDS discovery (ap mode) */ #define RTM_IEEE80211_CSA 110 /* Channel Switch Announcement event */ #define RTM_IEEE80211_RADAR 111 /* radar event */ #define RTM_IEEE80211_CAC 112 /* Channel Availability Check event */ #define RTM_IEEE80211_DEAUTH 113 /* station deauthenticate */ #define RTM_IEEE80211_AUTH 114 /* station authenticate (ap mode) */ #define RTM_IEEE80211_COUNTRY 115 /* discovered country code (sta mode) */ #define RTM_IEEE80211_RADIO 116 /* RF kill switch state change */ /* * Structure prepended to raw packets sent through the bpf * interface when set to DLT_IEEE802_11_RADIO. This allows * user applications to specify pretty much everything in * an Atheros tx descriptor. XXX need to generalize. * * XXX cannot be more than 14 bytes as it is copied to a sockaddr's * XXX sa_data area. */ struct ieee80211_bpf_params { uint8_t ibp_vers; /* version */ #define IEEE80211_BPF_VERSION 0 uint8_t ibp_len; /* header length in bytes */ uint8_t ibp_flags; #define IEEE80211_BPF_SHORTPRE 0x01 /* tx with short preamble */ #define IEEE80211_BPF_NOACK 0x02 /* tx with no ack */ #define IEEE80211_BPF_CRYPTO 0x04 /* tx with h/w encryption */ #define IEEE80211_BPF_FCS 0x10 /* frame incldues FCS */ #define IEEE80211_BPF_DATAPAD 0x20 /* frame includes data padding */ #define IEEE80211_BPF_RTS 0x40 /* tx with RTS/CTS */ #define IEEE80211_BPF_CTS 0x80 /* tx with CTS only */ uint8_t ibp_pri; /* WME/WMM AC+tx antenna */ uint8_t ibp_try0; /* series 1 try count */ uint8_t ibp_rate0; /* series 1 IEEE tx rate */ uint8_t ibp_power; /* tx power (device units) */ uint8_t ibp_ctsrate; /* IEEE tx rate for CTS */ uint8_t ibp_try1; /* series 2 try count */ uint8_t ibp_rate1; /* series 2 IEEE tx rate */ uint8_t ibp_try2; /* series 3 try count */ uint8_t ibp_rate2; /* series 3 IEEE tx rate */ uint8_t ibp_try3; /* series 4 try count */ uint8_t ibp_rate3; /* series 4 IEEE tx rate */ }; #ifdef _KERNEL struct ieee80211_tx_params { struct ieee80211_bpf_params params; }; int ieee80211_add_xmit_params(struct mbuf *m, const struct ieee80211_bpf_params *); int ieee80211_get_xmit_params(struct mbuf *m, struct ieee80211_bpf_params *); struct ieee80211_rx_params; struct ieee80211_rx_stats; int ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs); int ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs); const struct ieee80211_rx_stats * ieee80211_get_rx_params_ptr(struct mbuf *m); struct ieee80211_toa_params { int request_id; }; int ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p); int ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p); #define IEEE80211_F_SURVEY_TIME 0x00000001 #define IEEE80211_F_SURVEY_TIME_BUSY 0x00000002 #define IEEE80211_F_SURVEY_NOISE_DBM 0x00000004 #define IEEE80211_F_SURVEY_TSC 0x00000008 struct ieee80211_channel_survey { uint32_t s_flags; uint32_t s_time; uint32_t s_time_busy; int32_t s_noise; uint64_t s_tsc; }; #endif /* _KERNEL */ /* * Malloc API. Other BSD operating systems have slightly * different malloc/free namings (eg DragonflyBSD.) */ #define IEEE80211_MALLOC malloc #define IEEE80211_FREE free /* XXX TODO: get rid of WAITOK, fix all the users of it? */ #define IEEE80211_M_NOWAIT M_NOWAIT #define IEEE80211_M_WAITOK M_WAITOK #define IEEE80211_M_ZERO M_ZERO /* XXX TODO: the type fields */ #endif /* _NET80211_IEEE80211_FREEBSD_H_ */ diff --git a/sys/net80211/ieee80211_ioctl.c b/sys/net80211/ieee80211_ioctl.c index d70004c0fb7a..7e698ba5cdb8 100644 --- a/sys/net80211/ieee80211_ioctl.c +++ b/sys/net80211/ieee80211_ioctl.c @@ -1,3718 +1,3718 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 ioctl support (FreeBSD-specific) */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include #define IS_UP_AUTO(_vap) \ (IFNET_IS_UP_RUNNING((_vap)->iv_ifp) && \ (_vap)->iv_roaming == IEEE80211_ROAMING_AUTO) static const uint8_t zerobssid[IEEE80211_ADDR_LEN]; static struct ieee80211_channel *findchannel(struct ieee80211com *, int ieee, int mode); static int ieee80211_scanreq(struct ieee80211vap *, struct ieee80211_scan_req *); static int ieee80211_ioctl_getkey(u_long cmd, struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; struct ieee80211req_key ik; struct ieee80211_key *wk; const struct ieee80211_cipher *cip; u_int kid; int error; if (ireq->i_len != sizeof(ik)) return EINVAL; error = copyin(ireq->i_data, &ik, sizeof(ik)); if (error) return error; kid = ik.ik_keyix; if (kid == IEEE80211_KEYIX_NONE) { ni = ieee80211_find_vap_node(&ic->ic_sta, vap, ik.ik_macaddr); if (ni == NULL) return ENOENT; wk = &ni->ni_ucastkey; } else { if (kid >= IEEE80211_WEP_NKID) return EINVAL; wk = &vap->iv_nw_keys[kid]; IEEE80211_ADDR_COPY(&ik.ik_macaddr, vap->iv_bss->ni_macaddr); ni = NULL; } cip = wk->wk_cipher; ik.ik_type = cip->ic_cipher; ik.ik_keylen = wk->wk_keylen; ik.ik_flags = wk->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV); if (wk->wk_keyix == vap->iv_def_txkey) ik.ik_flags |= IEEE80211_KEY_DEFAULT; if (ieee80211_priv_check_vap_getkey(cmd, vap, NULL) == 0) { /* NB: only root can read key data */ ik.ik_keyrsc = wk->wk_keyrsc[IEEE80211_NONQOS_TID]; ik.ik_keytsc = wk->wk_keytsc; memcpy(ik.ik_keydata, wk->wk_key, wk->wk_keylen); if (cip->ic_cipher == IEEE80211_CIPHER_TKIP) { memcpy(ik.ik_keydata+wk->wk_keylen, wk->wk_key + IEEE80211_KEYBUF_SIZE, IEEE80211_MICBUF_SIZE); ik.ik_keylen += IEEE80211_MICBUF_SIZE; } } else { ik.ik_keyrsc = 0; ik.ik_keytsc = 0; memset(ik.ik_keydata, 0, sizeof(ik.ik_keydata)); } if (ni != NULL) ieee80211_free_node(ni); return copyout(&ik, ireq->i_data, sizeof(ik)); } static int ieee80211_ioctl_getchanlist(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; if (sizeof(ic->ic_chan_active) < ireq->i_len) ireq->i_len = sizeof(ic->ic_chan_active); return copyout(&ic->ic_chan_active, ireq->i_data, ireq->i_len); } static int ieee80211_ioctl_getchaninfo(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; uint32_t space; space = __offsetof(struct ieee80211req_chaninfo, ic_chans[ic->ic_nchans]); if (space > ireq->i_len) space = ireq->i_len; /* XXX assumes compatible layout */ return copyout(&ic->ic_nchans, ireq->i_data, space); } static int ieee80211_ioctl_getwpaie(struct ieee80211vap *vap, struct ieee80211req *ireq, int req) { struct ieee80211_node *ni; struct ieee80211req_wpaie2 *wpaie; int error; if (ireq->i_len < IEEE80211_ADDR_LEN) return EINVAL; wpaie = IEEE80211_MALLOC(sizeof(*wpaie), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (wpaie == NULL) return ENOMEM; error = copyin(ireq->i_data, wpaie->wpa_macaddr, IEEE80211_ADDR_LEN); if (error != 0) goto bad; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, wpaie->wpa_macaddr); if (ni == NULL) { error = ENOENT; goto bad; } if (ni->ni_ies.wpa_ie != NULL) { int ielen = ni->ni_ies.wpa_ie[1] + 2; if (ielen > sizeof(wpaie->wpa_ie)) ielen = sizeof(wpaie->wpa_ie); memcpy(wpaie->wpa_ie, ni->ni_ies.wpa_ie, ielen); } if (req == IEEE80211_IOC_WPAIE2) { if (ni->ni_ies.rsn_ie != NULL) { int ielen = ni->ni_ies.rsn_ie[1] + 2; if (ielen > sizeof(wpaie->rsn_ie)) ielen = sizeof(wpaie->rsn_ie); memcpy(wpaie->rsn_ie, ni->ni_ies.rsn_ie, ielen); } if (ireq->i_len > sizeof(struct ieee80211req_wpaie2)) ireq->i_len = sizeof(struct ieee80211req_wpaie2); } else { /* compatibility op, may overwrite wpa ie */ /* XXX check ic_flags? */ if (ni->ni_ies.rsn_ie != NULL) { int ielen = ni->ni_ies.rsn_ie[1] + 2; if (ielen > sizeof(wpaie->wpa_ie)) ielen = sizeof(wpaie->wpa_ie); memcpy(wpaie->wpa_ie, ni->ni_ies.rsn_ie, ielen); } if (ireq->i_len > sizeof(struct ieee80211req_wpaie)) ireq->i_len = sizeof(struct ieee80211req_wpaie); } ieee80211_free_node(ni); error = copyout(wpaie, ireq->i_data, ireq->i_len); bad: IEEE80211_FREE(wpaie, M_TEMP); return error; } static int ieee80211_ioctl_getstastats(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; uint8_t macaddr[IEEE80211_ADDR_LEN]; const size_t off = __offsetof(struct ieee80211req_sta_stats, is_stats); int error; if (ireq->i_len < off) return EINVAL; error = copyin(ireq->i_data, macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, macaddr); if (ni == NULL) return ENOENT; if (ireq->i_len > sizeof(struct ieee80211req_sta_stats)) ireq->i_len = sizeof(struct ieee80211req_sta_stats); /* NB: copy out only the statistics */ error = copyout(&ni->ni_stats, (uint8_t *) ireq->i_data + off, ireq->i_len - off); ieee80211_free_node(ni); return error; } struct scanreq { struct ieee80211req_scan_result *sr; size_t space; }; static size_t scan_space(const struct ieee80211_scan_entry *se, int *ielen) { size_t len; *ielen = se->se_ies.len; /* * NB: ie's can be no more than 255 bytes and the max 802.11 * packet is <3Kbytes so we are sure this doesn't overflow * 16-bits; if this is a concern we can drop the ie's. */ len = sizeof(struct ieee80211req_scan_result) + se->se_ssid[1] + se->se_meshid[1] + *ielen; return roundup(len, sizeof(uint32_t)); } static void get_scan_space(void *arg, const struct ieee80211_scan_entry *se) { struct scanreq *req = arg; int ielen; req->space += scan_space(se, &ielen); } static void get_scan_result(void *arg, const struct ieee80211_scan_entry *se) { struct scanreq *req = arg; struct ieee80211req_scan_result *sr; int ielen, len, nr, nxr; uint8_t *cp; len = scan_space(se, &ielen); if (len > req->space) return; sr = req->sr; KASSERT(len <= 65535 && ielen <= 65535, ("len %u ssid %u ie %u", len, se->se_ssid[1], ielen)); sr->isr_len = len; sr->isr_ie_off = sizeof(struct ieee80211req_scan_result); sr->isr_ie_len = ielen; sr->isr_freq = se->se_chan->ic_freq; sr->isr_flags = se->se_chan->ic_flags; sr->isr_rssi = se->se_rssi; sr->isr_noise = se->se_noise; sr->isr_intval = se->se_intval; sr->isr_capinfo = se->se_capinfo; sr->isr_erp = se->se_erp; IEEE80211_ADDR_COPY(sr->isr_bssid, se->se_bssid); nr = min(se->se_rates[1], IEEE80211_RATE_MAXSIZE); memcpy(sr->isr_rates, se->se_rates+2, nr); nxr = min(se->se_xrates[1], IEEE80211_RATE_MAXSIZE - nr); memcpy(sr->isr_rates+nr, se->se_xrates+2, nxr); sr->isr_nrates = nr + nxr; /* copy SSID */ sr->isr_ssid_len = se->se_ssid[1]; cp = ((uint8_t *)sr) + sr->isr_ie_off; memcpy(cp, se->se_ssid+2, sr->isr_ssid_len); /* copy mesh id */ cp += sr->isr_ssid_len; sr->isr_meshid_len = se->se_meshid[1]; memcpy(cp, se->se_meshid+2, sr->isr_meshid_len); cp += sr->isr_meshid_len; if (ielen) memcpy(cp, se->se_ies.data, ielen); req->space -= len; req->sr = (struct ieee80211req_scan_result *)(((uint8_t *)sr) + len); } static int ieee80211_ioctl_getscanresults(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct scanreq req; int error; if (ireq->i_len < sizeof(struct scanreq)) return EFAULT; error = 0; req.space = 0; ieee80211_scan_iterate(vap, get_scan_space, &req); if (req.space > ireq->i_len) req.space = ireq->i_len; if (req.space > 0) { uint32_t space; void *p; space = req.space; /* XXX IEEE80211_M_WAITOK after driver lock released */ p = IEEE80211_MALLOC(space, M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (p == NULL) return ENOMEM; req.sr = p; ieee80211_scan_iterate(vap, get_scan_result, &req); ireq->i_len = space - req.space; error = copyout(p, ireq->i_data, ireq->i_len); IEEE80211_FREE(p, M_TEMP); } else ireq->i_len = 0; return error; } struct stainforeq { struct ieee80211req_sta_info *si; size_t space; }; static size_t sta_space(const struct ieee80211_node *ni, size_t *ielen) { *ielen = ni->ni_ies.len; return roundup(sizeof(struct ieee80211req_sta_info) + *ielen, sizeof(uint32_t)); } static void get_sta_space(void *arg, struct ieee80211_node *ni) { struct stainforeq *req = arg; size_t ielen; if (ni->ni_vap->iv_opmode == IEEE80211_M_HOSTAP && ni->ni_associd == 0) /* only associated stations */ return; req->space += sta_space(ni, &ielen); } static void get_sta_info(void *arg, struct ieee80211_node *ni) { struct stainforeq *req = arg; struct ieee80211_node_txrate tr; struct ieee80211vap *vap = ni->ni_vap; struct ieee80211req_sta_info *si; size_t ielen, len; uint8_t *cp; if (vap->iv_opmode == IEEE80211_M_HOSTAP && ni->ni_associd == 0) /* only associated stations */ return; if (ni->ni_chan == IEEE80211_CHAN_ANYC) /* XXX bogus entry */ return; len = sta_space(ni, &ielen); if (len > req->space) return; si = req->si; si->isi_len = len; si->isi_ie_off = sizeof(struct ieee80211req_sta_info); si->isi_ie_len = ielen; si->isi_freq = ni->ni_chan->ic_freq; si->isi_flags = ni->ni_chan->ic_flags; si->isi_state = ni->ni_flags; si->isi_authmode = ni->ni_authmode; vap->iv_ic->ic_node_getsignal(ni, &si->isi_rssi, &si->isi_noise); vap->iv_ic->ic_node_getmimoinfo(ni, &si->isi_mimo); si->isi_capinfo = ni->ni_capinfo; si->isi_erp = ni->ni_erp; IEEE80211_ADDR_COPY(si->isi_macaddr, ni->ni_macaddr); si->isi_nrates = ni->ni_rates.rs_nrates; if (si->isi_nrates > 15) si->isi_nrates = 15; memcpy(si->isi_rates, ni->ni_rates.rs_rates, si->isi_nrates); /* * isi_txrate can only represent the legacy/HT rates. * Only set it if the rate is a legacy/HT rate. * * TODO: For VHT and later rates the API will need changing. */ ieee80211_node_get_txrate(ni, &tr); if ((tr.type == IEEE80211_NODE_TXRATE_LEGACY) || (tr.type == IEEE80211_NODE_TXRATE_HT)) si->isi_txrate = ieee80211_node_get_txrate_dot11rate(ni); /* Note: txmbps is in 1/2Mbit/s units */ si->isi_txmbps = ieee80211_node_get_txrate_kbit(ni) / 500; si->isi_associd = ni->ni_associd; si->isi_txpower = ni->ni_txpower; si->isi_vlan = ni->ni_vlan; if (ni->ni_flags & IEEE80211_NODE_QOS) { memcpy(si->isi_txseqs, ni->ni_txseqs, sizeof(ni->ni_txseqs)); memcpy(si->isi_rxseqs, ni->ni_rxseqs, sizeof(ni->ni_rxseqs)); } else { si->isi_txseqs[0] = ni->ni_txseqs[IEEE80211_NONQOS_TID]; si->isi_rxseqs[0] = ni->ni_rxseqs[IEEE80211_NONQOS_TID]; } /* NB: leave all cases in case we relax ni_associd == 0 check */ if (ieee80211_node_is_authorized(ni)) si->isi_inact = vap->iv_inact_run; else if (ni->ni_associd != 0 || (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) si->isi_inact = vap->iv_inact_auth; else si->isi_inact = vap->iv_inact_init; si->isi_inact = (si->isi_inact - ni->ni_inact) * IEEE80211_INACT_WAIT; si->isi_localid = ni->ni_mllid; si->isi_peerid = ni->ni_mlpid; si->isi_peerstate = ni->ni_mlstate; if (ielen) { cp = ((uint8_t *)si) + si->isi_ie_off; memcpy(cp, ni->ni_ies.data, ielen); } req->si = (struct ieee80211req_sta_info *)(((uint8_t *)si) + len); req->space -= len; } static int getstainfo_common(struct ieee80211vap *vap, struct ieee80211req *ireq, struct ieee80211_node *ni, size_t off) { struct ieee80211com *ic = vap->iv_ic; struct stainforeq req; size_t space; void *p; int error; error = 0; req.space = 0; if (ni == NULL) { ieee80211_iterate_nodes_vap(&ic->ic_sta, vap, get_sta_space, &req); } else get_sta_space(&req, ni); if (req.space > ireq->i_len) req.space = ireq->i_len; if (req.space > 0) { space = req.space; /* XXX IEEE80211_M_WAITOK after driver lock released */ p = IEEE80211_MALLOC(space, M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (p == NULL) { error = ENOMEM; goto bad; } req.si = p; if (ni == NULL) { ieee80211_iterate_nodes_vap(&ic->ic_sta, vap, get_sta_info, &req); } else get_sta_info(&req, ni); ireq->i_len = space - req.space; error = copyout(p, (uint8_t *) ireq->i_data+off, ireq->i_len); IEEE80211_FREE(p, M_TEMP); } else ireq->i_len = 0; bad: if (ni != NULL) ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_getstainfo(struct ieee80211vap *vap, struct ieee80211req *ireq) { uint8_t macaddr[IEEE80211_ADDR_LEN]; const size_t off = __offsetof(struct ieee80211req_sta_req, info); struct ieee80211_node *ni; int error; if (ireq->i_len < sizeof(struct ieee80211req_sta_req)) return EFAULT; error = copyin(ireq->i_data, macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; if (IEEE80211_ADDR_EQ(macaddr, vap->iv_ifp->if_broadcastaddr)) { ni = NULL; } else { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, macaddr); if (ni == NULL) return ENOENT; } return getstainfo_common(vap, ireq, ni, off); } static int ieee80211_ioctl_getstatxpow(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_txpow txpow; int error; if (ireq->i_len != sizeof(txpow)) return EINVAL; error = copyin(ireq->i_data, &txpow, sizeof(txpow)); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, txpow.it_macaddr); if (ni == NULL) return ENOENT; txpow.it_txpow = ni->ni_txpower; error = copyout(&txpow, ireq->i_data, sizeof(txpow)); ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_getwmeparam(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; struct wmeParams *wmep; int ac; if ((ic->ic_caps & IEEE80211_C_WME) == 0) return EINVAL; ac = (ireq->i_len & IEEE80211_WMEPARAM_VAL); if (ac >= WME_NUM_AC) ac = WME_AC_BE; if (ireq->i_len & IEEE80211_WMEPARAM_BSS) wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac]; else wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac]; switch (ireq->i_type) { case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ ireq->i_val = wmep->wmep_logcwmin; break; case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ ireq->i_val = wmep->wmep_logcwmax; break; case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ ireq->i_val = wmep->wmep_aifsn; break; case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ ireq->i_val = wmep->wmep_txopLimit; break; case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac]; ireq->i_val = wmep->wmep_acm; break; case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only)*/ wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac]; ireq->i_val = !wmep->wmep_noackPolicy; break; } return 0; } static int ieee80211_ioctl_getmaccmd(struct ieee80211vap *vap, struct ieee80211req *ireq) { const struct ieee80211_aclator *acl = vap->iv_acl; return (acl == NULL ? EINVAL : acl->iac_getioctl(vap, ireq)); } static int ieee80211_ioctl_getcurchan(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *c; if (ireq->i_len != sizeof(struct ieee80211_channel)) return EINVAL; /* * vap's may have different operating channels when HT is * in use. When in RUN state report the vap-specific channel. * Otherwise return curchan. */ if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) c = vap->iv_bss->ni_chan; else c = ic->ic_curchan; return copyout(c, ireq->i_data, sizeof(*c)); } static int getappie(const struct ieee80211_appie *aie, struct ieee80211req *ireq) { if (aie == NULL) return EINVAL; /* NB: truncate, caller can check length */ if (ireq->i_len > aie->ie_len) ireq->i_len = aie->ie_len; return copyout(aie->ie_data, ireq->i_data, ireq->i_len); } static int ieee80211_ioctl_getappie(struct ieee80211vap *vap, struct ieee80211req *ireq) { uint8_t fc0; fc0 = ireq->i_val & 0xff; if ((fc0 & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return EINVAL; /* NB: could check iv_opmode and reject but hardly worth the effort */ switch (fc0 & IEEE80211_FC0_SUBTYPE_MASK) { case IEEE80211_FC0_SUBTYPE_BEACON: return getappie(vap->iv_appie_beacon, ireq); case IEEE80211_FC0_SUBTYPE_PROBE_RESP: return getappie(vap->iv_appie_proberesp, ireq); case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: return getappie(vap->iv_appie_assocresp, ireq); case IEEE80211_FC0_SUBTYPE_PROBE_REQ: return getappie(vap->iv_appie_probereq, ireq); case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: return getappie(vap->iv_appie_assocreq, ireq); case IEEE80211_FC0_SUBTYPE_BEACON|IEEE80211_FC0_SUBTYPE_PROBE_RESP: return getappie(vap->iv_appie_wpa, ireq); } return EINVAL; } static int ieee80211_ioctl_getregdomain(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; if (ireq->i_len != sizeof(ic->ic_regdomain)) return EINVAL; return copyout(&ic->ic_regdomain, ireq->i_data, sizeof(ic->ic_regdomain)); } static int ieee80211_ioctl_getroam(struct ieee80211vap *vap, const struct ieee80211req *ireq) { size_t len = ireq->i_len; /* NB: accept short requests for backwards compat */ if (len > sizeof(vap->iv_roamparms)) len = sizeof(vap->iv_roamparms); return copyout(vap->iv_roamparms, ireq->i_data, len); } static int ieee80211_ioctl_gettxparams(struct ieee80211vap *vap, const struct ieee80211req *ireq) { size_t len = ireq->i_len; /* NB: accept short requests for backwards compat */ if (len > sizeof(vap->iv_txparms)) len = sizeof(vap->iv_txparms); return copyout(vap->iv_txparms, ireq->i_data, len); } static int ieee80211_ioctl_getdevcaps(struct ieee80211com *ic, const struct ieee80211req *ireq) { struct ieee80211_devcaps_req *dc; struct ieee80211req_chaninfo *ci; int maxchans, error; maxchans = 1 + ((ireq->i_len - sizeof(struct ieee80211_devcaps_req)) / sizeof(struct ieee80211_channel)); /* NB: require 1 so we know ic_nchans is accessible */ if (maxchans < 1) return EINVAL; /* constrain max request size, 2K channels is ~24Kbytes */ if (maxchans > 2048) maxchans = 2048; dc = (struct ieee80211_devcaps_req *) IEEE80211_MALLOC(IEEE80211_DEVCAPS_SIZE(maxchans), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (dc == NULL) return ENOMEM; dc->dc_drivercaps = ic->ic_caps; /* * Announce the set of both hardware and software supported * ciphers. */ dc->dc_cryptocaps = ic->ic_cryptocaps | ic->ic_sw_cryptocaps; dc->dc_htcaps = ic->ic_htcaps; dc->dc_vhtcaps = ic->ic_vht_cap.vht_cap_info; ci = &dc->dc_chaninfo; ic->ic_getradiocaps(ic, maxchans, &ci->ic_nchans, ci->ic_chans); KASSERT(ci->ic_nchans <= maxchans, ("nchans %d maxchans %d", ci->ic_nchans, maxchans)); ieee80211_sort_channels(ci->ic_chans, ci->ic_nchans); error = copyout(dc, ireq->i_data, IEEE80211_DEVCAPS_SPACE(dc)); IEEE80211_FREE(dc, M_TEMP); return error; } static int ieee80211_ioctl_getstavlan(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_vlan vlan; int error; if (ireq->i_len != sizeof(vlan)) return EINVAL; error = copyin(ireq->i_data, &vlan, sizeof(vlan)); if (error != 0) return error; if (!IEEE80211_ADDR_EQ(vlan.sv_macaddr, zerobssid)) { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, vlan.sv_macaddr); if (ni == NULL) return ENOENT; } else ni = ieee80211_ref_node(vap->iv_bss); vlan.sv_vlan = ni->ni_vlan; error = copyout(&vlan, ireq->i_data, sizeof(vlan)); ieee80211_free_node(ni); return error; } /* * Dummy ioctl get handler so the linker set is defined. */ static int dummy_ioctl_get(struct ieee80211vap *vap, struct ieee80211req *ireq) { return ENOSYS; } IEEE80211_IOCTL_GET(dummy, dummy_ioctl_get); static int ieee80211_ioctl_getdefault(struct ieee80211vap *vap, struct ieee80211req *ireq) { ieee80211_ioctl_getfunc * const *get; int error; SET_FOREACH(get, ieee80211_ioctl_getset) { error = (*get)(vap, ireq); if (error != ENOSYS) return error; } return EINVAL; } static int ieee80211_ioctl_get80211(struct ieee80211vap *vap, u_long cmd, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; u_int kid, len; uint8_t tmpkey[IEEE80211_KEYBUF_SIZE]; char tmpssid[IEEE80211_NWID_LEN]; int error = 0; switch (ireq->i_type) { case IEEE80211_IOC_IC_NAME: len = strlen(ic->ic_name) + 1; if (len > ireq->i_len) return (EINVAL); ireq->i_len = len; error = copyout(ic->ic_name, ireq->i_data, ireq->i_len); break; case IEEE80211_IOC_SSID: switch (vap->iv_state) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: ireq->i_len = vap->iv_des_ssid[0].len; memcpy(tmpssid, vap->iv_des_ssid[0].ssid, ireq->i_len); break; default: ireq->i_len = vap->iv_bss->ni_esslen; memcpy(tmpssid, vap->iv_bss->ni_essid, ireq->i_len); break; } error = copyout(tmpssid, ireq->i_data, ireq->i_len); break; case IEEE80211_IOC_NUMSSIDS: ireq->i_val = 1; break; case IEEE80211_IOC_WEP: if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) ireq->i_val = IEEE80211_WEP_OFF; else if (vap->iv_flags & IEEE80211_F_DROPUNENC) ireq->i_val = IEEE80211_WEP_ON; else ireq->i_val = IEEE80211_WEP_MIXED; break; case IEEE80211_IOC_WEPKEY: kid = (u_int) ireq->i_val; if (kid >= IEEE80211_WEP_NKID) return EINVAL; len = (u_int) vap->iv_nw_keys[kid].wk_keylen; /* NB: only root can read WEP keys */ if (ieee80211_priv_check_vap_getkey(cmd, vap, NULL) == 0) { bcopy(vap->iv_nw_keys[kid].wk_key, tmpkey, len); } else { bzero(tmpkey, len); } ireq->i_len = len; error = copyout(tmpkey, ireq->i_data, len); break; case IEEE80211_IOC_NUMWEPKEYS: ireq->i_val = IEEE80211_WEP_NKID; break; case IEEE80211_IOC_WEPTXKEY: ireq->i_val = vap->iv_def_txkey; break; case IEEE80211_IOC_AUTHMODE: if (vap->iv_flags & IEEE80211_F_WPA) ireq->i_val = IEEE80211_AUTH_WPA; else ireq->i_val = vap->iv_bss->ni_authmode; break; case IEEE80211_IOC_CHANNEL: ireq->i_val = ieee80211_chan2ieee(ic, ic->ic_curchan); break; case IEEE80211_IOC_POWERSAVE: if (vap->iv_flags & IEEE80211_F_PMGTON) ireq->i_val = IEEE80211_POWERSAVE_ON; else ireq->i_val = IEEE80211_POWERSAVE_OFF; break; case IEEE80211_IOC_POWERSAVESLEEP: ireq->i_val = ic->ic_lintval; break; case IEEE80211_IOC_RTSTHRESHOLD: ireq->i_val = vap->iv_rtsthreshold; break; case IEEE80211_IOC_PROTMODE: ireq->i_val = vap->iv_protmode; break; case IEEE80211_IOC_TXPOWER: /* * Tx power limit is the min of max regulatory * power, any user-set limit, and the max the * radio can do. * * TODO: methodize this */ ireq->i_val = 2*ic->ic_curchan->ic_maxregpower; if (ireq->i_val > ic->ic_txpowlimit) ireq->i_val = ic->ic_txpowlimit; if (ireq->i_val > ic->ic_curchan->ic_maxpower) ireq->i_val = ic->ic_curchan->ic_maxpower; break; case IEEE80211_IOC_WPA: switch (vap->iv_flags & IEEE80211_F_WPA) { case IEEE80211_F_WPA1: ireq->i_val = 1; break; case IEEE80211_F_WPA2: ireq->i_val = 2; break; case IEEE80211_F_WPA1 | IEEE80211_F_WPA2: ireq->i_val = 3; break; default: ireq->i_val = 0; break; } break; case IEEE80211_IOC_CHANLIST: error = ieee80211_ioctl_getchanlist(vap, ireq); break; case IEEE80211_IOC_ROAMING: ireq->i_val = vap->iv_roaming; break; case IEEE80211_IOC_PRIVACY: ireq->i_val = (vap->iv_flags & IEEE80211_F_PRIVACY) != 0; break; case IEEE80211_IOC_DROPUNENCRYPTED: ireq->i_val = (vap->iv_flags & IEEE80211_F_DROPUNENC) != 0; break; case IEEE80211_IOC_COUNTERMEASURES: ireq->i_val = (vap->iv_flags & IEEE80211_F_COUNTERM) != 0; break; case IEEE80211_IOC_WME: ireq->i_val = (vap->iv_flags & IEEE80211_F_WME) != 0; break; case IEEE80211_IOC_HIDESSID: ireq->i_val = (vap->iv_flags & IEEE80211_F_HIDESSID) != 0; break; case IEEE80211_IOC_APBRIDGE: ireq->i_val = (vap->iv_flags & IEEE80211_F_NOBRIDGE) == 0; break; case IEEE80211_IOC_WPAKEY: error = ieee80211_ioctl_getkey(cmd, vap, ireq); break; case IEEE80211_IOC_CHANINFO: error = ieee80211_ioctl_getchaninfo(vap, ireq); break; case IEEE80211_IOC_BSSID: if (ireq->i_len != IEEE80211_ADDR_LEN) return EINVAL; if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) { error = copyout(vap->iv_opmode == IEEE80211_M_WDS ? vap->iv_bss->ni_macaddr : vap->iv_bss->ni_bssid, ireq->i_data, ireq->i_len); } else error = copyout(vap->iv_des_bssid, ireq->i_data, ireq->i_len); break; case IEEE80211_IOC_WPAIE: case IEEE80211_IOC_WPAIE2: error = ieee80211_ioctl_getwpaie(vap, ireq, ireq->i_type); break; case IEEE80211_IOC_SCAN_RESULTS: error = ieee80211_ioctl_getscanresults(vap, ireq); break; case IEEE80211_IOC_STA_STATS: error = ieee80211_ioctl_getstastats(vap, ireq); break; case IEEE80211_IOC_TXPOWMAX: ireq->i_val = vap->iv_bss->ni_txpower; break; case IEEE80211_IOC_STA_TXPOW: error = ieee80211_ioctl_getstatxpow(vap, ireq); break; case IEEE80211_IOC_STA_INFO: error = ieee80211_ioctl_getstainfo(vap, ireq); break; case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only) */ error = ieee80211_ioctl_getwmeparam(vap, ireq); break; case IEEE80211_IOC_DTIM_PERIOD: ireq->i_val = vap->iv_dtim_period; break; case IEEE80211_IOC_BEACON_INTERVAL: /* NB: get from ic_bss for station mode */ ireq->i_val = vap->iv_bss->ni_intval; break; case IEEE80211_IOC_PUREG: ireq->i_val = (vap->iv_flags & IEEE80211_F_PUREG) != 0; break; case IEEE80211_IOC_QUIET: ireq->i_val = vap->iv_quiet; break; case IEEE80211_IOC_QUIET_COUNT: ireq->i_val = vap->iv_quiet_count; break; case IEEE80211_IOC_QUIET_PERIOD: ireq->i_val = vap->iv_quiet_period; break; case IEEE80211_IOC_QUIET_DUR: ireq->i_val = vap->iv_quiet_duration; break; case IEEE80211_IOC_QUIET_OFFSET: ireq->i_val = vap->iv_quiet_offset; break; case IEEE80211_IOC_BGSCAN: ireq->i_val = (vap->iv_flags & IEEE80211_F_BGSCAN) != 0; break; case IEEE80211_IOC_BGSCAN_IDLE: ireq->i_val = vap->iv_bgscanidle*hz/1000; /* ms */ break; case IEEE80211_IOC_BGSCAN_INTERVAL: ireq->i_val = vap->iv_bgscanintvl/hz; /* seconds */ break; case IEEE80211_IOC_SCANVALID: ireq->i_val = vap->iv_scanvalid/hz; /* seconds */ break; case IEEE80211_IOC_FRAGTHRESHOLD: ireq->i_val = vap->iv_fragthreshold; break; case IEEE80211_IOC_MACCMD: error = ieee80211_ioctl_getmaccmd(vap, ireq); break; case IEEE80211_IOC_BURST: ireq->i_val = (vap->iv_flags & IEEE80211_F_BURST) != 0; break; case IEEE80211_IOC_BMISSTHRESHOLD: ireq->i_val = vap->iv_bmissthreshold; break; case IEEE80211_IOC_CURCHAN: error = ieee80211_ioctl_getcurchan(vap, ireq); break; case IEEE80211_IOC_SHORTGI: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI20) ireq->i_val |= IEEE80211_HTCAP_SHORTGI20; if (vap->iv_flags_ht & IEEE80211_FHT_SHORTGI40) ireq->i_val |= IEEE80211_HTCAP_SHORTGI40; break; case IEEE80211_IOC_AMPDU: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_AMPDU_LIMIT: /* XXX TODO: make this a per-node thing; and leave this as global */ if (vap->iv_opmode == IEEE80211_M_HOSTAP) ireq->i_val = vap->iv_ampdu_rxmax; else if (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) /* * XXX TODO: this isn't completely correct, as we've * negotiated the higher of the two. */ ireq->i_val = _IEEE80211_MASKSHIFT( vap->iv_bss->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU); else ireq->i_val = vap->iv_ampdu_limit; break; case IEEE80211_IOC_AMPDU_DENSITY: /* XXX TODO: make this a per-node thing; and leave this as global */ if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) /* * XXX TODO: this isn't completely correct, as we've * negotiated the higher of the two. */ ireq->i_val = _IEEE80211_MASKSHIFT(vap->iv_bss->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY); else ireq->i_val = vap->iv_ampdu_density; break; case IEEE80211_IOC_AMSDU: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_AMSDU_LIMIT: ireq->i_val = vap->iv_amsdu_limit; /* XXX truncation? */ break; case IEEE80211_IOC_PUREN: ireq->i_val = (vap->iv_flags_ht & IEEE80211_FHT_PUREN) != 0; break; case IEEE80211_IOC_DOTH: ireq->i_val = (vap->iv_flags & IEEE80211_F_DOTH) != 0; break; case IEEE80211_IOC_REGDOMAIN: error = ieee80211_ioctl_getregdomain(vap, ireq); break; case IEEE80211_IOC_ROAM: error = ieee80211_ioctl_getroam(vap, ireq); break; case IEEE80211_IOC_TXPARAMS: error = ieee80211_ioctl_gettxparams(vap, ireq); break; case IEEE80211_IOC_HTCOMPAT: ireq->i_val = (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) != 0; break; case IEEE80211_IOC_DWDS: ireq->i_val = (vap->iv_flags & IEEE80211_F_DWDS) != 0; break; case IEEE80211_IOC_INACTIVITY: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_INACT) != 0; break; case IEEE80211_IOC_APPIE: error = ieee80211_ioctl_getappie(vap, ireq); break; case IEEE80211_IOC_WPS: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_WPS) != 0; break; case IEEE80211_IOC_TSN: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_TSN) != 0; break; case IEEE80211_IOC_DFS: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_DFS) != 0; break; case IEEE80211_IOC_DOTD: ireq->i_val = (vap->iv_flags_ext & IEEE80211_FEXT_DOTD) != 0; break; case IEEE80211_IOC_DEVCAPS: error = ieee80211_ioctl_getdevcaps(ic, ireq); break; case IEEE80211_IOC_HTPROTMODE: ireq->i_val = vap->iv_htprotmode; break; case IEEE80211_IOC_HTCONF: if (vap->iv_flags_ht & IEEE80211_FHT_HT) { ireq->i_val = 1; if (vap->iv_flags_ht & IEEE80211_FHT_USEHT40) ireq->i_val |= 2; } else ireq->i_val = 0; break; case IEEE80211_IOC_STA_VLAN: error = ieee80211_ioctl_getstavlan(vap, ireq); break; case IEEE80211_IOC_SMPS: if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) { if (vap->iv_bss->ni_flags & IEEE80211_NODE_MIMO_RTS) ireq->i_val = IEEE80211_HTCAP_SMPS_DYNAMIC; else if (vap->iv_bss->ni_flags & IEEE80211_NODE_MIMO_PS) ireq->i_val = IEEE80211_HTCAP_SMPS_ENA; else ireq->i_val = IEEE80211_HTCAP_SMPS_OFF; } else ireq->i_val = vap->iv_htcaps & IEEE80211_HTCAP_SMPS; break; case IEEE80211_IOC_RIFS: if (vap->iv_opmode == IEEE80211_M_STA && (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) ireq->i_val = (vap->iv_bss->ni_flags & IEEE80211_NODE_RIFS) != 0; else ireq->i_val = (vap->iv_flags_ht & IEEE80211_FHT_RIFS) != 0; break; case IEEE80211_IOC_STBC: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_STBC_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_STBC_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_LDPC: ireq->i_val = 0; if (vap->iv_flags_ht & IEEE80211_FHT_LDPC_TX) ireq->i_val |= 1; if (vap->iv_flags_ht & IEEE80211_FHT_LDPC_RX) ireq->i_val |= 2; break; case IEEE80211_IOC_UAPSD: ireq->i_val = 0; if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) ireq->i_val = 1; break; case IEEE80211_IOC_VHTCONF: ireq->i_val = vap->iv_vht_flags & IEEE80211_FVHT_MASK; break; default: error = ieee80211_ioctl_getdefault(vap, ireq); break; } return error; } static int ieee80211_ioctl_setkey(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211req_key ik; struct ieee80211_node *ni; struct ieee80211_key *wk; uint16_t kid; int error, i; if (ireq->i_len != sizeof(ik)) return EINVAL; error = copyin(ireq->i_data, &ik, sizeof(ik)); if (error) return error; /* NB: cipher support is verified by ieee80211_crypt_newkey */ /* NB: this also checks ik->ik_keylen > sizeof(wk->wk_key) */ if (ik.ik_keylen > sizeof(ik.ik_keydata)) return E2BIG; kid = ik.ik_keyix; if (kid == IEEE80211_KEYIX_NONE) { /* XXX unicast keys currently must be tx/rx */ if (ik.ik_flags != (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)) return EINVAL; if (vap->iv_opmode == IEEE80211_M_STA) { ni = ieee80211_ref_node(vap->iv_bss); if (!IEEE80211_ADDR_EQ(ik.ik_macaddr, ni->ni_bssid)) { ieee80211_free_node(ni); return EADDRNOTAVAIL; } } else { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, ik.ik_macaddr); if (ni == NULL) return ENOENT; } wk = &ni->ni_ucastkey; } else { if (kid >= IEEE80211_WEP_NKID) return EINVAL; wk = &vap->iv_nw_keys[kid]; /* * Global slots start off w/o any assigned key index. * Force one here for consistency with IEEE80211_IOC_WEPKEY. */ if (wk->wk_keyix == IEEE80211_KEYIX_NONE) wk->wk_keyix = kid; ni = NULL; } error = 0; ieee80211_key_update_begin(vap); if (ieee80211_crypto_newkey(vap, ik.ik_type, ik.ik_flags, wk)) { wk->wk_keylen = ik.ik_keylen; /* NB: MIC presence is implied by cipher type */ if (wk->wk_keylen > IEEE80211_KEYBUF_SIZE) wk->wk_keylen = IEEE80211_KEYBUF_SIZE; for (i = 0; i < IEEE80211_TID_SIZE; i++) wk->wk_keyrsc[i] = ik.ik_keyrsc; wk->wk_keytsc = 0; /* new key, reset */ memset(wk->wk_key, 0, sizeof(wk->wk_key)); memcpy(wk->wk_key, ik.ik_keydata, ik.ik_keylen); IEEE80211_ADDR_COPY(wk->wk_macaddr, ni != NULL ? ni->ni_macaddr : ik.ik_macaddr); if (!ieee80211_crypto_setkey(vap, wk)) error = EIO; else if ((ik.ik_flags & IEEE80211_KEY_DEFAULT)) /* * Inform the driver that this is the default * transmit key. Now, ideally we'd just set * a flag in the key update that would * say "yes, we're the default key", but * that currently isn't the way the ioctl -> * key interface works. */ ieee80211_crypto_set_deftxkey(vap, kid); } else error = ENXIO; ieee80211_key_update_end(vap); if (ni != NULL) ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_delkey(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211req_del_key dk; int kid, error; if (ireq->i_len != sizeof(dk)) return EINVAL; error = copyin(ireq->i_data, &dk, sizeof(dk)); if (error) return error; kid = dk.idk_keyix; /* XXX uint8_t -> uint16_t */ if (dk.idk_keyix == (uint8_t) IEEE80211_KEYIX_NONE) { struct ieee80211_node *ni; if (vap->iv_opmode == IEEE80211_M_STA) { ni = ieee80211_ref_node(vap->iv_bss); if (!IEEE80211_ADDR_EQ(dk.idk_macaddr, ni->ni_bssid)) { ieee80211_free_node(ni); return EADDRNOTAVAIL; } } else { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, dk.idk_macaddr); if (ni == NULL) return ENOENT; } /* XXX error return */ ieee80211_node_delucastkey(ni); ieee80211_free_node(ni); } else { if (kid >= IEEE80211_WEP_NKID) return EINVAL; /* XXX error return */ ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[kid]); } return 0; } struct mlmeop { struct ieee80211vap *vap; int op; int reason; }; static void mlmedebug(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], int op, int reason) { #ifdef IEEE80211_DEBUG static const struct { int mask; const char *opstr; } ops[] = { { 0, "op#0" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_ASSOC, "assoc" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_ASSOC, "disassoc" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, "deauth" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, "authorize" }, { IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, "unauthorize" }, }; if (op == IEEE80211_MLME_AUTH) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_IOCTL | IEEE80211_MSG_STATE | IEEE80211_MSG_AUTH, mac, "station authenticate %s via MLME (reason: %d (%s))", reason == IEEE80211_STATUS_SUCCESS ? "ACCEPT" : "REJECT", reason, ieee80211_reason_to_string(reason)); } else if (!(IEEE80211_MLME_ASSOC <= op && op <= IEEE80211_MLME_AUTH)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ANY, mac, "unknown MLME request %d (reason: %d (%s))", op, reason, ieee80211_reason_to_string(reason)); } else if (reason == IEEE80211_STATUS_SUCCESS) { IEEE80211_NOTE_MAC(vap, ops[op].mask, mac, "station %s via MLME", ops[op].opstr); } else { IEEE80211_NOTE_MAC(vap, ops[op].mask, mac, "station %s via MLME (reason: %d (%s))", ops[op].opstr, reason, ieee80211_reason_to_string(reason)); } #endif /* IEEE80211_DEBUG */ } static void domlme(void *arg, struct ieee80211_node *ni) { struct mlmeop *mop = arg; struct ieee80211vap *vap = ni->ni_vap; if (vap != mop->vap) return; /* * NB: if ni_associd is zero then the node is already cleaned * up and we don't need to do this (we're safely holding a * reference but should otherwise not modify it's state). */ if (ni->ni_associd == 0) return; mlmedebug(vap, ni->ni_macaddr, mop->op, mop->reason); if (mop->op == IEEE80211_MLME_DEAUTH) { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, mop->reason); } else { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC, mop->reason); } ieee80211_node_leave(ni); } static int setmlme_dropsta(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], struct mlmeop *mlmeop) { struct ieee80211_node_table *nt = &vap->iv_ic->ic_sta; struct ieee80211_node *ni; int error = 0; /* NB: the broadcast address means do 'em all */ if (!IEEE80211_ADDR_EQ(mac, vap->iv_ifp->if_broadcastaddr)) { IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_node_locked(nt, mac); IEEE80211_NODE_UNLOCK(nt); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ if (ni != NULL) { domlme(mlmeop, ni); ieee80211_free_node(ni); } else error = ENOENT; } else { ieee80211_iterate_nodes(nt, domlme, mlmeop); } return error; } static int setmlme_common(struct ieee80211vap *vap, int op, const uint8_t mac[IEEE80211_ADDR_LEN], int reason) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node_table *nt = &ic->ic_sta; struct ieee80211_node *ni; struct mlmeop mlmeop; int error; error = 0; switch (op) { case IEEE80211_MLME_DISASSOC: case IEEE80211_MLME_DEAUTH: switch (vap->iv_opmode) { case IEEE80211_M_STA: mlmedebug(vap, vap->iv_bss->ni_macaddr, op, reason); /* XXX not quite right */ ieee80211_new_state(vap, IEEE80211_S_INIT, reason); break; case IEEE80211_M_HOSTAP: mlmeop.vap = vap; mlmeop.op = op; mlmeop.reason = reason; error = setmlme_dropsta(vap, mac, &mlmeop); break; case IEEE80211_M_WDS: /* XXX user app should send raw frame? */ if (op != IEEE80211_MLME_DEAUTH) { error = EINVAL; break; } #if 0 /* XXX accept any address, simplifies user code */ if (!IEEE80211_ADDR_EQ(mac, vap->iv_bss->ni_macaddr)) { error = EINVAL; break; } #endif mlmedebug(vap, vap->iv_bss->ni_macaddr, op, reason); ni = ieee80211_ref_node(vap->iv_bss); IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, reason); ieee80211_free_node(ni); break; case IEEE80211_M_MBSS: IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_node_locked(nt, mac); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ IEEE80211_NODE_UNLOCK(nt); if (ni != NULL) { ieee80211_node_leave(ni); ieee80211_free_node(ni); } else { error = ENOENT; } break; default: error = EINVAL; break; } break; case IEEE80211_MLME_AUTHORIZE: case IEEE80211_MLME_UNAUTHORIZE: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_WDS) { error = EINVAL; break; } IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_vap_node_locked(nt, vap, mac); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ IEEE80211_NODE_UNLOCK(nt); if (ni != NULL) { mlmedebug(vap, mac, op, reason); if (op == IEEE80211_MLME_AUTHORIZE) ieee80211_node_authorize(ni); else ieee80211_node_unauthorize(ni); ieee80211_free_node(ni); } else error = ENOENT; break; case IEEE80211_MLME_AUTH: if (vap->iv_opmode != IEEE80211_M_HOSTAP) { error = EINVAL; break; } IEEE80211_NODE_LOCK(nt); ni = ieee80211_find_vap_node_locked(nt, vap, mac); /* * Don't do the node update inside the node * table lock. This unfortunately causes LORs * with drivers and their TX paths. */ IEEE80211_NODE_UNLOCK(nt); if (ni != NULL) { mlmedebug(vap, mac, op, reason); if (reason == IEEE80211_STATUS_SUCCESS) { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); /* * For shared key auth, just continue the * exchange. Otherwise when 802.1x is not in * use mark the port authorized at this point * so traffic can flow. */ if (ni->ni_authmode != IEEE80211_AUTH_8021X && ni->ni_challenge == NULL) ieee80211_node_authorize(ni); } else { vap->iv_stats.is_rx_acl++; ieee80211_send_error(ni, ni->ni_macaddr, IEEE80211_FC0_SUBTYPE_AUTH, 2|(reason<<16)); ieee80211_node_leave(ni); } ieee80211_free_node(ni); } else error = ENOENT; break; default: error = EINVAL; break; } return error; } struct scanlookup { const uint8_t *mac; int esslen; const uint8_t *essid; bool found; struct ieee80211_scan_entry se; }; /* * Match mac address and any ssid. */ static void mlmelookup(void *arg, const struct ieee80211_scan_entry *se) { struct scanlookup *look = arg; int rv; if (look->found) return; if (!IEEE80211_ADDR_EQ(look->mac, se->se_macaddr)) return; if (look->esslen != 0) { if (se->se_ssid[1] != look->esslen) return; if (memcmp(look->essid, se->se_ssid+2, look->esslen)) return; } /* * First copy everything and then ensure we get our own copy of se_ies. */ look->se = *se; look->se.se_ies.data = 0; look->se.se_ies.len = 0; rv = ieee80211_ies_init(&look->se.se_ies, se->se_ies.data, se->se_ies.len); if (rv != 0) /* No error */ look->found = true; } static int setmlme_assoc_sta(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], int ssid_len, const uint8_t ssid[IEEE80211_NWID_LEN]) { struct scanlookup lookup; int rv; KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("expected opmode STA not %s", ieee80211_opmode_name[vap->iv_opmode])); /* NB: this is racey if roaming is !manual */ lookup.mac = mac; lookup.esslen = ssid_len; lookup.essid = ssid; memset(&lookup.se, 0, sizeof(lookup.se)); lookup.found = false; ieee80211_scan_iterate(vap, mlmelookup, &lookup); if (!lookup.found) return ENOENT; mlmedebug(vap, mac, IEEE80211_MLME_ASSOC, 0); rv = ieee80211_sta_join(vap, lookup.se.se_chan, &lookup.se); ieee80211_ies_cleanup(&lookup.se.se_ies); if (rv == 0) return EIO; /* XXX unique but could be better */ return 0; } static int setmlme_assoc_adhoc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN], int ssid_len, const uint8_t ssid[IEEE80211_NWID_LEN]) { struct ieee80211_scan_req *sr; int error; KASSERT(vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_AHDEMO, ("expected opmode IBSS or AHDEMO not %s", ieee80211_opmode_name[vap->iv_opmode])); if (ssid_len == 0 || ssid_len > IEEE80211_NWID_LEN) return EINVAL; sr = IEEE80211_MALLOC(sizeof(*sr), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (sr == NULL) return ENOMEM; /* NB: IEEE80211_IOC_SSID call missing for ap_scan=2. */ memset(vap->iv_des_ssid[0].ssid, 0, IEEE80211_NWID_LEN); vap->iv_des_ssid[0].len = ssid_len; memcpy(vap->iv_des_ssid[0].ssid, ssid, ssid_len); vap->iv_des_nssid = 1; sr->sr_flags = IEEE80211_IOC_SCAN_ACTIVE | IEEE80211_IOC_SCAN_ONCE; sr->sr_duration = IEEE80211_IOC_SCAN_FOREVER; memcpy(sr->sr_ssid[0].ssid, ssid, ssid_len); sr->sr_ssid[0].len = ssid_len; sr->sr_nssid = 1; error = ieee80211_scanreq(vap, sr); IEEE80211_FREE(sr, M_TEMP); return error; } static int ieee80211_ioctl_setmlme(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211req_mlme mlme; int error; if (ireq->i_len != sizeof(mlme)) return EINVAL; error = copyin(ireq->i_data, &mlme, sizeof(mlme)); if (error) return error; if (vap->iv_opmode == IEEE80211_M_STA && mlme.im_op == IEEE80211_MLME_ASSOC) return setmlme_assoc_sta(vap, mlme.im_macaddr, vap->iv_des_ssid[0].len, vap->iv_des_ssid[0].ssid); else if ((vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_AHDEMO) && mlme.im_op == IEEE80211_MLME_ASSOC) return setmlme_assoc_adhoc(vap, mlme.im_macaddr, mlme.im_ssid_len, mlme.im_ssid); else return setmlme_common(vap, mlme.im_op, mlme.im_macaddr, mlme.im_reason); } static int ieee80211_ioctl_macmac(struct ieee80211vap *vap, struct ieee80211req *ireq) { uint8_t mac[IEEE80211_ADDR_LEN]; const struct ieee80211_aclator *acl = vap->iv_acl; int error; if (ireq->i_len != sizeof(mac)) return EINVAL; error = copyin(ireq->i_data, mac, ireq->i_len); if (error) return error; if (acl == NULL) { acl = ieee80211_aclator_get("mac"); if (acl == NULL || !acl->iac_attach(vap)) return EINVAL; vap->iv_acl = acl; } if (ireq->i_type == IEEE80211_IOC_ADDMAC) acl->iac_add(vap, mac); else acl->iac_remove(vap, mac); return 0; } static int ieee80211_ioctl_setmaccmd(struct ieee80211vap *vap, struct ieee80211req *ireq) { const struct ieee80211_aclator *acl = vap->iv_acl; switch (ireq->i_val) { case IEEE80211_MACCMD_POLICY_OPEN: case IEEE80211_MACCMD_POLICY_ALLOW: case IEEE80211_MACCMD_POLICY_DENY: case IEEE80211_MACCMD_POLICY_RADIUS: if (acl == NULL) { acl = ieee80211_aclator_get("mac"); if (acl == NULL || !acl->iac_attach(vap)) return EINVAL; vap->iv_acl = acl; } acl->iac_setpolicy(vap, ireq->i_val); break; case IEEE80211_MACCMD_FLUSH: if (acl != NULL) acl->iac_flush(vap); /* NB: silently ignore when not in use */ break; case IEEE80211_MACCMD_DETACH: if (acl != NULL) { vap->iv_acl = NULL; acl->iac_detach(vap); } break; default: if (acl == NULL) return EINVAL; else return acl->iac_setioctl(vap, ireq); } return 0; } static int ieee80211_ioctl_setchanlist(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; uint8_t *chanlist, *list; int i, nchan, maxchan, error; if (ireq->i_len > sizeof(ic->ic_chan_active)) ireq->i_len = sizeof(ic->ic_chan_active); list = IEEE80211_MALLOC(ireq->i_len + IEEE80211_CHAN_BYTES, M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (list == NULL) return ENOMEM; error = copyin(ireq->i_data, list, ireq->i_len); if (error) { IEEE80211_FREE(list, M_TEMP); return error; } nchan = 0; chanlist = list + ireq->i_len; /* NB: zero'd already */ maxchan = ireq->i_len * NBBY; for (i = 0; i < ic->ic_nchans; i++) { const struct ieee80211_channel *c = &ic->ic_channels[i]; /* * Calculate the intersection of the user list and the * available channels so users can do things like specify * 1-255 to get all available channels. */ if (c->ic_ieee < maxchan && isset(list, c->ic_ieee)) { setbit(chanlist, c->ic_ieee); nchan++; } } if (nchan == 0) { IEEE80211_FREE(list, M_TEMP); return EINVAL; } if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && /* XXX */ isclr(chanlist, ic->ic_bsschan->ic_ieee)) ic->ic_bsschan = IEEE80211_CHAN_ANYC; memcpy(ic->ic_chan_active, chanlist, IEEE80211_CHAN_BYTES); ieee80211_scan_flush(vap); IEEE80211_FREE(list, M_TEMP); return ENETRESET; } static int ieee80211_ioctl_setstastats(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; uint8_t macaddr[IEEE80211_ADDR_LEN]; int error; /* * NB: we could copyin ieee80211req_sta_stats so apps * could make selective changes but that's overkill; * just clear all stats for now. */ if (ireq->i_len < IEEE80211_ADDR_LEN) return EINVAL; error = copyin(ireq->i_data, macaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, macaddr); if (ni == NULL) return ENOENT; /* XXX require ni_vap == vap? */ memset(&ni->ni_stats, 0, sizeof(ni->ni_stats)); ieee80211_free_node(ni); return 0; } static int ieee80211_ioctl_setstatxpow(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_txpow txpow; int error; if (ireq->i_len != sizeof(txpow)) return EINVAL; error = copyin(ireq->i_data, &txpow, sizeof(txpow)); if (error != 0) return error; ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, txpow.it_macaddr); if (ni == NULL) return ENOENT; ni->ni_txpower = txpow.it_txpow; ieee80211_free_node(ni); return error; } static int ieee80211_ioctl_setwmeparam(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; struct wmeParams *wmep, *chanp; int isbss, ac, aggrmode; if ((ic->ic_caps & IEEE80211_C_WME) == 0) return EOPNOTSUPP; isbss = (ireq->i_len & IEEE80211_WMEPARAM_BSS); ac = (ireq->i_len & IEEE80211_WMEPARAM_VAL); aggrmode = (wme->wme_flags & WME_F_AGGRMODE); if (ac >= WME_NUM_AC) ac = WME_AC_BE; if (isbss) { chanp = &wme->wme_bssChanParams.cap_wmeParams[ac]; wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[ac]; } else { chanp = &wme->wme_chanParams.cap_wmeParams[ac]; wmep = &wme->wme_wmeChanParams.cap_wmeParams[ac]; } switch (ireq->i_type) { case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ wmep->wmep_logcwmin = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_logcwmin = ireq->i_val; break; case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ wmep->wmep_logcwmax = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_logcwmax = ireq->i_val; break; case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ wmep->wmep_aifsn = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_aifsn = ireq->i_val; break; case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ wmep->wmep_txopLimit = ireq->i_val; if (!isbss || !aggrmode) chanp->wmep_txopLimit = ireq->i_val; break; case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ wmep->wmep_acm = ireq->i_val; if (!aggrmode) chanp->wmep_acm = ireq->i_val; break; case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only)*/ wmep->wmep_noackPolicy = chanp->wmep_noackPolicy = (ireq->i_val) == 0; break; } ieee80211_wme_updateparams(vap); return 0; } static int find11gchannel(struct ieee80211com *ic, int start, int freq) { const struct ieee80211_channel *c; int i; for (i = start+1; i < ic->ic_nchans; i++) { c = &ic->ic_channels[i]; if (c->ic_freq == freq && IEEE80211_IS_CHAN_ANYG(c)) return 1; } /* NB: should not be needed but in case things are mis-sorted */ for (i = 0; i < start; i++) { c = &ic->ic_channels[i]; if (c->ic_freq == freq && IEEE80211_IS_CHAN_ANYG(c)) return 1; } return 0; } static struct ieee80211_channel * findchannel(struct ieee80211com *ic, int ieee, int mode) { static const u_int chanflags[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = 0, [IEEE80211_MODE_11A] = IEEE80211_CHAN_A, [IEEE80211_MODE_11B] = IEEE80211_CHAN_B, [IEEE80211_MODE_11G] = IEEE80211_CHAN_G, [IEEE80211_MODE_FH] = IEEE80211_CHAN_FHSS, [IEEE80211_MODE_TURBO_A] = IEEE80211_CHAN_108A, [IEEE80211_MODE_TURBO_G] = IEEE80211_CHAN_108G, [IEEE80211_MODE_STURBO_A] = IEEE80211_CHAN_STURBO, [IEEE80211_MODE_HALF] = IEEE80211_CHAN_HALF, [IEEE80211_MODE_QUARTER] = IEEE80211_CHAN_QUARTER, /* NB: handled specially below */ [IEEE80211_MODE_11NA] = IEEE80211_CHAN_A, [IEEE80211_MODE_11NG] = IEEE80211_CHAN_G, [IEEE80211_MODE_VHT_5GHZ] = IEEE80211_CHAN_A, [IEEE80211_MODE_VHT_2GHZ] = IEEE80211_CHAN_G, }; u_int modeflags; int i; modeflags = chanflags[mode]; for (i = 0; i < ic->ic_nchans; i++) { struct ieee80211_channel *c = &ic->ic_channels[i]; if (c->ic_ieee != ieee) continue; if (mode == IEEE80211_MODE_AUTO) { /* ignore turbo channels for autoselect */ if (IEEE80211_IS_CHAN_TURBO(c)) continue; /* * XXX special-case 11b/g channels so we * always select the g channel if both * are present. * XXX prefer HT to non-HT? */ if (!IEEE80211_IS_CHAN_B(c) || !find11gchannel(ic, i, c->ic_freq)) return c; } else { /* must check VHT specifically */ if ((mode == IEEE80211_MODE_VHT_5GHZ || mode == IEEE80211_MODE_VHT_2GHZ) && !IEEE80211_IS_CHAN_VHT(c)) continue; /* * Must check HT specially - only match on HT, * not HT+VHT channels */ if ((mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) && !IEEE80211_IS_CHAN_HT(c)) continue; if ((mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG) && IEEE80211_IS_CHAN_VHT(c)) continue; /* Check that the modeflags above match */ if ((c->ic_flags & modeflags) == modeflags) return c; } } return NULL; } /* * Check the specified against any desired mode (aka netband). * This is only used (presently) when operating in hostap mode * to enforce consistency. */ static int check_mode_consistency(const struct ieee80211_channel *c, int mode) { KASSERT(c != IEEE80211_CHAN_ANYC, ("oops, no channel")); switch (mode) { case IEEE80211_MODE_11B: return (IEEE80211_IS_CHAN_B(c)); case IEEE80211_MODE_11G: return (IEEE80211_IS_CHAN_ANYG(c) && !IEEE80211_IS_CHAN_HT(c)); case IEEE80211_MODE_11A: return (IEEE80211_IS_CHAN_A(c) && !IEEE80211_IS_CHAN_HT(c)); case IEEE80211_MODE_STURBO_A: return (IEEE80211_IS_CHAN_STURBO(c)); case IEEE80211_MODE_11NA: return (IEEE80211_IS_CHAN_HTA(c)); case IEEE80211_MODE_11NG: return (IEEE80211_IS_CHAN_HTG(c)); } return 1; } /* * Common code to set the current channel. If the device * is up and running this may result in an immediate channel * change or a kick of the state machine. */ static int setcurchan(struct ieee80211vap *vap, struct ieee80211_channel *c) { struct ieee80211com *ic = vap->iv_ic; int error; if (c != IEEE80211_CHAN_ANYC) { if (IEEE80211_IS_CHAN_RADAR(c)) return EBUSY; /* XXX better code? */ if (vap->iv_opmode == IEEE80211_M_HOSTAP) { if (IEEE80211_IS_CHAN_NOHOSTAP(c)) return EINVAL; if (!check_mode_consistency(c, vap->iv_des_mode)) return EINVAL; } else if (vap->iv_opmode == IEEE80211_M_IBSS) { if (IEEE80211_IS_CHAN_NOADHOC(c)) return EINVAL; } if ((vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP) && vap->iv_bss->ni_chan == c) return 0; /* NB: nothing to do */ } vap->iv_des_chan = c; error = 0; if (vap->iv_opmode == IEEE80211_M_MONITOR && vap->iv_des_chan != IEEE80211_CHAN_ANYC) { /* * Monitor mode can switch directly. */ if (IFNET_IS_UP_RUNNING(vap->iv_ifp)) { /* XXX need state machine for other vap's to follow */ ieee80211_setcurchan(ic, vap->iv_des_chan); vap->iv_bss->ni_chan = ic->ic_curchan; } else { ic->ic_curchan = vap->iv_des_chan; ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); } } else { /* * Need to go through the state machine in case we * need to reassociate or the like. The state machine * will pickup the desired channel and avoid scanning. */ if (IS_UP_AUTO(vap)) ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); else if (vap->iv_des_chan != IEEE80211_CHAN_ANYC) { /* * When not up+running and a real channel has * been specified fix the current channel so * there is immediate feedback; e.g. via ifconfig. */ ic->ic_curchan = vap->iv_des_chan; ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan); } } return error; } /* * Old api for setting the current channel; this is * deprecated because channel numbers are ambiguous. */ static int ieee80211_ioctl_setchannel(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel *c; /* XXX 0xffff overflows 16-bit signed */ if (ireq->i_val == 0 || ireq->i_val == (int16_t) IEEE80211_CHAN_ANY) { c = IEEE80211_CHAN_ANYC; } else { struct ieee80211_channel *c2; c = findchannel(ic, ireq->i_val, vap->iv_des_mode); if (c == NULL) { c = findchannel(ic, ireq->i_val, IEEE80211_MODE_AUTO); if (c == NULL) return EINVAL; } /* * Fine tune channel selection based on desired mode: * if 11b is requested, find the 11b version of any * 11g channel returned, * if static turbo, find the turbo version of any * 11a channel return, * if 11na is requested, find the ht version of any * 11a channel returned, * if 11ng is requested, find the ht version of any * 11g channel returned, * if 11ac is requested, find the 11ac version * of any 11a/11na channel returned, * (TBD) 11acg (2GHz VHT) * otherwise we should be ok with what we've got. */ switch (vap->iv_des_mode) { case IEEE80211_MODE_11B: if (IEEE80211_IS_CHAN_ANYG(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_11B); /* NB: should not happen, =>'s 11g w/o 11b */ if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_TURBO_A: if (IEEE80211_IS_CHAN_A(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_TURBO_A); if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_11NA: if (IEEE80211_IS_CHAN_A(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_11NA); if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_11NG: if (IEEE80211_IS_CHAN_ANYG(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_11NG); if (c2 != NULL) c = c2; } break; case IEEE80211_MODE_VHT_2GHZ: printf("%s: TBD\n", __func__); break; case IEEE80211_MODE_VHT_5GHZ: if (IEEE80211_IS_CHAN_A(c)) { c2 = findchannel(ic, ireq->i_val, IEEE80211_MODE_VHT_5GHZ); if (c2 != NULL) c = c2; } break; default: /* NB: no static turboG */ break; } } return setcurchan(vap, c); } /* * New/current api for setting the current channel; a complete * channel description is provide so there is no ambiguity in * identifying the channel. */ static int ieee80211_ioctl_setcurchan(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_channel chan, *c; int error; if (ireq->i_len != sizeof(chan)) return EINVAL; error = copyin(ireq->i_data, &chan, sizeof(chan)); if (error != 0) return error; /* XXX 0xffff overflows 16-bit signed */ if (chan.ic_freq == 0 || chan.ic_freq == IEEE80211_CHAN_ANY) { c = IEEE80211_CHAN_ANYC; } else { c = ieee80211_find_channel(ic, chan.ic_freq, chan.ic_flags); if (c == NULL) return EINVAL; } return setcurchan(vap, c); } static int ieee80211_ioctl_setregdomain(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211_regdomain_req *reg; int nchans, error; nchans = 1 + ((ireq->i_len - sizeof(struct ieee80211_regdomain_req)) / sizeof(struct ieee80211_channel)); if (!(1 <= nchans && nchans <= IEEE80211_CHAN_MAX)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: bad # chans, i_len %d nchans %d\n", __func__, ireq->i_len, nchans); return EINVAL; } reg = (struct ieee80211_regdomain_req *) IEEE80211_MALLOC(IEEE80211_REGDOMAIN_SIZE(nchans), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (reg == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: no memory, nchans %d\n", __func__, nchans); return ENOMEM; } error = copyin(ireq->i_data, reg, IEEE80211_REGDOMAIN_SIZE(nchans)); if (error == 0) { /* NB: validate inline channel count against storage size */ if (reg->chaninfo.ic_nchans != nchans) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_IOCTL, "%s: chan cnt mismatch, %d != %d\n", __func__, reg->chaninfo.ic_nchans, nchans); error = EINVAL; } else error = ieee80211_setregdomain(vap, reg); } IEEE80211_FREE(reg, M_TEMP); return (error == 0 ? ENETRESET : error); } static int checkrate(const struct ieee80211_rateset *rs, int rate) { int i; if (rate == IEEE80211_FIXED_RATE_NONE) return 1; for (i = 0; i < rs->rs_nrates; i++) if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate) return 1; return 0; } static int checkmcs(const struct ieee80211_htrateset *rs, int mcs) { int rate_val = IEEE80211_RV(mcs); int i; if (mcs == IEEE80211_FIXED_RATE_NONE) return 1; if ((mcs & IEEE80211_RATE_MCS) == 0) /* MCS always have 0x80 set */ return 0; for (i = 0; i < rs->rs_nrates; i++) if (IEEE80211_RV(rs->rs_rates[i]) == rate_val) return 1; return 0; } static int ieee80211_ioctl_setroam(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_roamparams_req *parms; struct ieee80211_roamparam *src, *dst; const struct ieee80211_htrateset *rs_ht; const struct ieee80211_rateset *rs; int changed, error, mode, is11n, nmodes; if (ireq->i_len != sizeof(vap->iv_roamparms)) return EINVAL; parms = IEEE80211_MALLOC(sizeof(*parms), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (parms == NULL) return ENOMEM; error = copyin(ireq->i_data, parms, ireq->i_len); if (error != 0) goto fail; changed = 0; nmodes = IEEE80211_MODE_MAX; /* validate parameters and check if anything changed */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; src = &parms->params[mode]; dst = &vap->iv_roamparms[mode]; rs = &ic->ic_sup_rates[mode]; /* NB: 11n maps to legacy */ rs_ht = &ic->ic_sup_htrates; is11n = (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG); /* XXX TODO: 11ac */ if (src->rate != dst->rate) { if (!checkrate(rs, src->rate) && (!is11n || !checkmcs(rs_ht, src->rate))) { error = EINVAL; goto fail; } changed++; } if (src->rssi != dst->rssi) changed++; } if (changed) { /* * Copy new parameters in place and notify the * driver so it can push state to the device. */ /* XXX locking? */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isset(ic->ic_modecaps, mode)) vap->iv_roamparms[mode] = parms->params[mode]; } if (vap->iv_roaming == IEEE80211_ROAMING_DEVICE) error = ERESTART; } fail: IEEE80211_FREE(parms, M_TEMP); return error; } static int ieee80211_ioctl_settxparams(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_txparams_req parms; /* XXX stack use? */ struct ieee80211_txparam *src, *dst; const struct ieee80211_htrateset *rs_ht; const struct ieee80211_rateset *rs; int error, mode, changed, is11n, nmodes; /* NB: accept short requests for backwards compat */ if (ireq->i_len > sizeof(parms)) return EINVAL; error = copyin(ireq->i_data, &parms, ireq->i_len); if (error != 0) return error; nmodes = ireq->i_len / sizeof(struct ieee80211_txparam); changed = 0; /* validate parameters and check if anything changed */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isclr(ic->ic_modecaps, mode)) continue; src = &parms.params[mode]; dst = &vap->iv_txparms[mode]; rs = &ic->ic_sup_rates[mode]; /* NB: 11n maps to legacy */ rs_ht = &ic->ic_sup_htrates; is11n = (mode == IEEE80211_MODE_11NA || mode == IEEE80211_MODE_11NG); if (src->ucastrate != dst->ucastrate) { if (!checkrate(rs, src->ucastrate) && (!is11n || !checkmcs(rs_ht, src->ucastrate))) return EINVAL; changed++; } if (src->mcastrate != dst->mcastrate) { if (!checkrate(rs, src->mcastrate) && (!is11n || !checkmcs(rs_ht, src->mcastrate))) return EINVAL; changed++; } if (src->mgmtrate != dst->mgmtrate) { if (!checkrate(rs, src->mgmtrate) && (!is11n || !checkmcs(rs_ht, src->mgmtrate))) return EINVAL; changed++; } if (src->maxretry != dst->maxretry) /* NB: no bounds */ changed++; } if (changed) { /* * Copy new parameters in place and notify the * driver so it can push state to the device. */ for (mode = IEEE80211_MODE_11A; mode < nmodes; mode++) { if (isset(ic->ic_modecaps, mode)) vap->iv_txparms[mode] = parms.params[mode]; } /* XXX could be more intelligent, e.g. don't reset if setting not being used */ return ENETRESET; } return 0; } /* * Application Information Element support. */ static int setappie(struct ieee80211_appie **aie, const struct ieee80211req *ireq) { struct ieee80211_appie *app = *aie; struct ieee80211_appie *napp; int error; if (ireq->i_len == 0) { /* delete any existing ie */ if (app != NULL) { *aie = NULL; /* XXX racey */ IEEE80211_FREE(app, M_80211_NODE_IE); } return 0; } if (!(2 <= ireq->i_len && ireq->i_len <= IEEE80211_MAX_APPIE)) return EINVAL; /* * Allocate a new appie structure and copy in the user data. * When done swap in the new structure. Note that we do not * guard against users holding a ref to the old structure; * this must be handled outside this code. * * XXX bad bad bad */ napp = (struct ieee80211_appie *) IEEE80211_MALLOC( sizeof(struct ieee80211_appie) + ireq->i_len, M_80211_NODE_IE, IEEE80211_M_NOWAIT); if (napp == NULL) return ENOMEM; /* XXX holding ic lock */ error = copyin(ireq->i_data, napp->ie_data, ireq->i_len); if (error) { IEEE80211_FREE(napp, M_80211_NODE_IE); return error; } napp->ie_len = ireq->i_len; *aie = napp; if (app != NULL) IEEE80211_FREE(app, M_80211_NODE_IE); return 0; } static void setwparsnie(struct ieee80211vap *vap, uint8_t *ie, int space) { /* validate data is present as best we can */ if (space == 0 || 2+ie[1] > space) return; if (ie[0] == IEEE80211_ELEMID_VENDOR) vap->iv_wpa_ie = ie; else if (ie[0] == IEEE80211_ELEMID_RSN) vap->iv_rsn_ie = ie; } static int ieee80211_ioctl_setappie_locked(struct ieee80211vap *vap, const struct ieee80211req *ireq, int fc0) { int error; IEEE80211_LOCK_ASSERT(vap->iv_ic); switch (fc0 & IEEE80211_FC0_SUBTYPE_MASK) { case IEEE80211_FC0_SUBTYPE_BEACON: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_IBSS) { error = EINVAL; break; } error = setappie(&vap->iv_appie_beacon, ireq); if (error == 0) ieee80211_beacon_notify(vap, IEEE80211_BEACON_APPIE); break; case IEEE80211_FC0_SUBTYPE_PROBE_RESP: error = setappie(&vap->iv_appie_proberesp, ireq); break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: if (vap->iv_opmode == IEEE80211_M_HOSTAP) error = setappie(&vap->iv_appie_assocresp, ireq); else error = EINVAL; break; case IEEE80211_FC0_SUBTYPE_PROBE_REQ: error = setappie(&vap->iv_appie_probereq, ireq); break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: if (vap->iv_opmode == IEEE80211_M_STA) error = setappie(&vap->iv_appie_assocreq, ireq); else error = EINVAL; break; case (IEEE80211_APPIE_WPA & IEEE80211_FC0_SUBTYPE_MASK): error = setappie(&vap->iv_appie_wpa, ireq); if (error == 0) { /* * Must split single blob of data into separate * WPA and RSN ie's because they go in different * locations in the mgt frames. * XXX use IEEE80211_IOC_WPA2 so user code does split */ vap->iv_wpa_ie = NULL; vap->iv_rsn_ie = NULL; if (vap->iv_appie_wpa != NULL) { struct ieee80211_appie *appie = vap->iv_appie_wpa; uint8_t *data = appie->ie_data; /* XXX ie length validate is painful, cheat */ setwparsnie(vap, data, appie->ie_len); setwparsnie(vap, data + 2 + data[1], appie->ie_len - (2 + data[1])); } if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { /* * Must rebuild beacon frame as the update * mechanism doesn't handle WPA/RSN ie's. * Could extend it but it doesn't normally * change; this is just to deal with hostapd * plumbing the ie after the interface is up. */ error = ENETRESET; } } break; default: error = EINVAL; break; } return error; } static int ieee80211_ioctl_setappie(struct ieee80211vap *vap, const struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; int error; uint8_t fc0; fc0 = ireq->i_val & 0xff; if ((fc0 & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return EINVAL; /* NB: could check iv_opmode and reject but hardly worth the effort */ IEEE80211_LOCK(ic); error = ieee80211_ioctl_setappie_locked(vap, ireq, fc0); IEEE80211_UNLOCK(ic); return error; } static int ieee80211_ioctl_chanswitch(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_chanswitch_req csr; struct ieee80211_channel *c; int error; if (ireq->i_len != sizeof(csr)) return EINVAL; error = copyin(ireq->i_data, &csr, sizeof(csr)); if (error != 0) return error; /* XXX adhoc mode not supported */ if (vap->iv_opmode != IEEE80211_M_HOSTAP || (vap->iv_flags & IEEE80211_F_DOTH) == 0) return EOPNOTSUPP; c = ieee80211_find_channel(ic, csr.csa_chan.ic_freq, csr.csa_chan.ic_flags); if (c == NULL) return ENOENT; IEEE80211_LOCK(ic); if ((ic->ic_flags & IEEE80211_F_CSAPENDING) == 0) ieee80211_csa_startswitch(ic, c, csr.csa_mode, csr.csa_count); else if (csr.csa_count == 0) ieee80211_csa_cancelswitch(ic); else error = EBUSY; IEEE80211_UNLOCK(ic); return error; } static int ieee80211_scanreq(struct ieee80211vap *vap, struct ieee80211_scan_req *sr) { #define IEEE80211_IOC_SCAN_FLAGS \ (IEEE80211_IOC_SCAN_NOPICK | IEEE80211_IOC_SCAN_ACTIVE | \ IEEE80211_IOC_SCAN_PICK1ST | IEEE80211_IOC_SCAN_BGSCAN | \ IEEE80211_IOC_SCAN_ONCE | IEEE80211_IOC_SCAN_NOBCAST | \ IEEE80211_IOC_SCAN_NOJOIN | IEEE80211_IOC_SCAN_FLUSH | \ IEEE80211_IOC_SCAN_CHECK) struct ieee80211com *ic = vap->iv_ic; int error, i; /* convert duration */ if (sr->sr_duration == IEEE80211_IOC_SCAN_FOREVER) sr->sr_duration = IEEE80211_SCAN_FOREVER; else { if (sr->sr_duration < IEEE80211_IOC_SCAN_DURATION_MIN || sr->sr_duration > IEEE80211_IOC_SCAN_DURATION_MAX) return EINVAL; sr->sr_duration = msecs_to_ticks(sr->sr_duration); } /* convert min/max channel dwell */ if (sr->sr_mindwell != 0) sr->sr_mindwell = msecs_to_ticks(sr->sr_mindwell); if (sr->sr_maxdwell != 0) sr->sr_maxdwell = msecs_to_ticks(sr->sr_maxdwell); /* NB: silently reduce ssid count to what is supported */ if (sr->sr_nssid > IEEE80211_SCAN_MAX_SSID) sr->sr_nssid = IEEE80211_SCAN_MAX_SSID; for (i = 0; i < sr->sr_nssid; i++) if (sr->sr_ssid[i].len > IEEE80211_NWID_LEN) return EINVAL; /* cleanse flags just in case, could reject if invalid flags */ sr->sr_flags &= IEEE80211_IOC_SCAN_FLAGS; /* * Add an implicit NOPICK if the vap is not marked UP. This * allows applications to scan without joining a bss (or picking * a channel and setting up a bss) and without forcing manual * roaming mode--you just need to mark the parent device UP. */ if ((vap->iv_ifp->if_flags & IFF_UP) == 0) sr->sr_flags |= IEEE80211_IOC_SCAN_NOPICK; IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s: vap %p iv_state %#x (%s) flags 0x%x%s " "duration 0x%x mindwell %u maxdwell %u nssid %d\n", __func__, vap, vap->iv_state, ieee80211_state_name[vap->iv_state], sr->sr_flags, (vap->iv_ifp->if_flags & IFF_UP) == 0 ? " (!IFF_UP)" : "", sr->sr_duration, sr->sr_mindwell, sr->sr_maxdwell, sr->sr_nssid); /* * If we are in INIT state then the driver has never had a chance * to setup hardware state to do a scan; we must use the state * machine to get us up to the SCAN state but once we reach SCAN * state we then want to use the supplied params. Stash the * parameters in the vap and mark IEEE80211_FEXT_SCANREQ; the * state machines will recognize this and use the stashed params * to issue the scan request. * * Otherwise just invoke the scan machinery directly. */ IEEE80211_LOCK(ic); if (ic->ic_nrunning == 0) { IEEE80211_UNLOCK(ic); return ENXIO; } if (vap->iv_state == IEEE80211_S_INIT) { /* NB: clobbers previous settings */ vap->iv_scanreq_flags = sr->sr_flags; vap->iv_scanreq_duration = sr->sr_duration; vap->iv_scanreq_nssid = sr->sr_nssid; for (i = 0; i < sr->sr_nssid; i++) { vap->iv_scanreq_ssid[i].len = sr->sr_ssid[i].len; memcpy(vap->iv_scanreq_ssid[i].ssid, sr->sr_ssid[i].ssid, sr->sr_ssid[i].len); } vap->iv_flags_ext |= IEEE80211_FEXT_SCANREQ; IEEE80211_UNLOCK(ic); ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } else { vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ; IEEE80211_UNLOCK(ic); if (sr->sr_flags & IEEE80211_IOC_SCAN_CHECK) { error = ieee80211_check_scan(vap, sr->sr_flags, sr->sr_duration, sr->sr_mindwell, sr->sr_maxdwell, sr->sr_nssid, /* NB: cheat, we assume structures are compatible */ (const struct ieee80211_scan_ssid *) &sr->sr_ssid[0]); } else { error = ieee80211_start_scan(vap, sr->sr_flags, sr->sr_duration, sr->sr_mindwell, sr->sr_maxdwell, sr->sr_nssid, /* NB: cheat, we assume structures are compatible */ (const struct ieee80211_scan_ssid *) &sr->sr_ssid[0]); } if (error == 0) return EINPROGRESS; } return 0; #undef IEEE80211_IOC_SCAN_FLAGS } static int ieee80211_ioctl_scanreq(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_scan_req *sr; int error; if (ireq->i_len != sizeof(*sr)) return EINVAL; sr = IEEE80211_MALLOC(sizeof(*sr), M_TEMP, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (sr == NULL) return ENOMEM; error = copyin(ireq->i_data, sr, sizeof(*sr)); if (error != 0) goto bad; error = ieee80211_scanreq(vap, sr); bad: IEEE80211_FREE(sr, M_TEMP); return error; } static int ieee80211_ioctl_setstavlan(struct ieee80211vap *vap, struct ieee80211req *ireq) { struct ieee80211_node *ni; struct ieee80211req_sta_vlan vlan; int error; if (ireq->i_len != sizeof(vlan)) return EINVAL; error = copyin(ireq->i_data, &vlan, sizeof(vlan)); if (error != 0) return error; if (!IEEE80211_ADDR_EQ(vlan.sv_macaddr, zerobssid)) { ni = ieee80211_find_vap_node(&vap->iv_ic->ic_sta, vap, vlan.sv_macaddr); if (ni == NULL) return ENOENT; } else ni = ieee80211_ref_node(vap->iv_bss); ni->ni_vlan = vlan.sv_vlan; ieee80211_free_node(ni); return error; } static int isvap11g(const struct ieee80211vap *vap) { const struct ieee80211_node *bss = vap->iv_bss; return bss->ni_chan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_ANYG(bss->ni_chan); } static int isvapht(const struct ieee80211vap *vap) { const struct ieee80211_node *bss = vap->iv_bss; return bss->ni_chan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_HT(bss->ni_chan); } /* * Dummy ioctl set handler so the linker set is defined. */ static int dummy_ioctl_set(struct ieee80211vap *vap, struct ieee80211req *ireq) { return ENOSYS; } IEEE80211_IOCTL_SET(dummy, dummy_ioctl_set); static int ieee80211_ioctl_setdefault(struct ieee80211vap *vap, struct ieee80211req *ireq) { ieee80211_ioctl_setfunc * const *set; int error; SET_FOREACH(set, ieee80211_ioctl_setset) { error = (*set)(vap, ireq); if (error != ENOSYS) return error; } return EINVAL; } static int ieee80211_ioctl_set80211(struct ieee80211vap *vap, u_long cmd, struct ieee80211req *ireq) { struct ieee80211com *ic = vap->iv_ic; int error; const struct ieee80211_authenticator *auth; uint8_t tmpkey[IEEE80211_KEYBUF_SIZE]; char tmpssid[IEEE80211_NWID_LEN]; uint8_t tmpbssid[IEEE80211_ADDR_LEN]; struct ieee80211_key *k; u_int kid; uint32_t flags; error = 0; switch (ireq->i_type) { case IEEE80211_IOC_SSID: if (ireq->i_val != 0 || ireq->i_len > IEEE80211_NWID_LEN) return EINVAL; error = copyin(ireq->i_data, tmpssid, ireq->i_len); if (error) break; memset(vap->iv_des_ssid[0].ssid, 0, IEEE80211_NWID_LEN); vap->iv_des_ssid[0].len = ireq->i_len; memcpy(vap->iv_des_ssid[0].ssid, tmpssid, ireq->i_len); vap->iv_des_nssid = (ireq->i_len > 0); error = ENETRESET; break; case IEEE80211_IOC_WEP: switch (ireq->i_val) { case IEEE80211_WEP_OFF: vap->iv_flags &= ~IEEE80211_F_PRIVACY; vap->iv_flags &= ~IEEE80211_F_DROPUNENC; break; case IEEE80211_WEP_ON: vap->iv_flags |= IEEE80211_F_PRIVACY; vap->iv_flags |= IEEE80211_F_DROPUNENC; break; case IEEE80211_WEP_MIXED: vap->iv_flags |= IEEE80211_F_PRIVACY; vap->iv_flags &= ~IEEE80211_F_DROPUNENC; break; } error = ENETRESET; break; case IEEE80211_IOC_WEPKEY: kid = (u_int) ireq->i_val; if (kid >= IEEE80211_WEP_NKID) return EINVAL; k = &vap->iv_nw_keys[kid]; if (ireq->i_len == 0) { /* zero-len =>'s delete any existing key */ (void) ieee80211_crypto_delkey(vap, k); break; } if (ireq->i_len > sizeof(tmpkey)) return EINVAL; memset(tmpkey, 0, sizeof(tmpkey)); error = copyin(ireq->i_data, tmpkey, ireq->i_len); if (error) break; ieee80211_key_update_begin(vap); k->wk_keyix = kid; /* NB: force fixed key id */ if (ieee80211_crypto_newkey(vap, IEEE80211_CIPHER_WEP, IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV, k)) { k->wk_keylen = ireq->i_len; memcpy(k->wk_key, tmpkey, sizeof(tmpkey)); IEEE80211_ADDR_COPY(k->wk_macaddr, vap->iv_myaddr); if (!ieee80211_crypto_setkey(vap, k)) error = EINVAL; } else error = EINVAL; ieee80211_key_update_end(vap); break; case IEEE80211_IOC_WEPTXKEY: kid = (u_int) ireq->i_val; if (kid >= IEEE80211_WEP_NKID && (uint16_t) kid != IEEE80211_KEYIX_NONE) return EINVAL; /* * Firmware devices may need to be told about an explicit * key index here, versus just inferring it from the * key set / change. Since we may also need to pause * things like transmit before the key is updated, * give the driver a chance to flush things by tying * into key update begin/end. */ ieee80211_key_update_begin(vap); ieee80211_crypto_set_deftxkey(vap, kid); ieee80211_key_update_end(vap); break; case IEEE80211_IOC_AUTHMODE: switch (ireq->i_val) { case IEEE80211_AUTH_WPA: case IEEE80211_AUTH_8021X: /* 802.1x */ case IEEE80211_AUTH_OPEN: /* open */ case IEEE80211_AUTH_SHARED: /* shared-key */ case IEEE80211_AUTH_AUTO: /* auto */ auth = ieee80211_authenticator_get(ireq->i_val); if (auth == NULL) return EINVAL; break; default: return EINVAL; } switch (ireq->i_val) { case IEEE80211_AUTH_WPA: /* WPA w/ 802.1x */ vap->iv_flags |= IEEE80211_F_PRIVACY; ireq->i_val = IEEE80211_AUTH_8021X; break; case IEEE80211_AUTH_OPEN: /* open */ vap->iv_flags &= ~(IEEE80211_F_WPA|IEEE80211_F_PRIVACY); break; case IEEE80211_AUTH_SHARED: /* shared-key */ case IEEE80211_AUTH_8021X: /* 802.1x */ vap->iv_flags &= ~IEEE80211_F_WPA; /* both require a key so mark the PRIVACY capability */ vap->iv_flags |= IEEE80211_F_PRIVACY; break; case IEEE80211_AUTH_AUTO: /* auto */ vap->iv_flags &= ~IEEE80211_F_WPA; /* XXX PRIVACY handling? */ /* XXX what's the right way to do this? */ break; } /* NB: authenticator attach/detach happens on state change */ vap->iv_bss->ni_authmode = ireq->i_val; /* XXX mixed/mode/usage? */ vap->iv_auth = auth; error = ENETRESET; break; case IEEE80211_IOC_CHANNEL: error = ieee80211_ioctl_setchannel(vap, ireq); break; case IEEE80211_IOC_POWERSAVE: switch (ireq->i_val) { case IEEE80211_POWERSAVE_OFF: if (vap->iv_flags & IEEE80211_F_PMGTON) { ieee80211_syncflag(vap, -IEEE80211_F_PMGTON); error = ERESTART; } break; case IEEE80211_POWERSAVE_ON: if ((vap->iv_caps & IEEE80211_C_PMGT) == 0) error = EOPNOTSUPP; else if ((vap->iv_flags & IEEE80211_F_PMGTON) == 0) { ieee80211_syncflag(vap, IEEE80211_F_PMGTON); error = ERESTART; } break; default: error = EINVAL; break; } break; case IEEE80211_IOC_POWERSAVESLEEP: if (ireq->i_val < 0) return EINVAL; ic->ic_lintval = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_RTSTHRESHOLD: if (!(IEEE80211_RTS_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_RTS_MAX)) return EINVAL; vap->iv_rtsthreshold = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_PROTMODE: if (ireq->i_val > IEEE80211_PROT_RTSCTS) return EINVAL; vap->iv_protmode = (enum ieee80211_protmode)ireq->i_val; /* NB: if not operating in 11g this can wait */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC && IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan)) error = ERESTART; /* driver callback for protection mode update */ ieee80211_vap_update_erp_protmode(vap); break; case IEEE80211_IOC_TXPOWER: if ((ic->ic_caps & IEEE80211_C_TXPMGT) == 0) return EOPNOTSUPP; if (!(IEEE80211_TXPOWER_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_TXPOWER_MAX)) return EINVAL; ic->ic_txpowlimit = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_ROAMING: if (!(IEEE80211_ROAMING_DEVICE <= ireq->i_val && ireq->i_val <= IEEE80211_ROAMING_MANUAL)) return EINVAL; vap->iv_roaming = (enum ieee80211_roamingmode)ireq->i_val; /* XXXX reset? */ break; case IEEE80211_IOC_PRIVACY: if (ireq->i_val) { /* XXX check for key state? */ vap->iv_flags |= IEEE80211_F_PRIVACY; } else vap->iv_flags &= ~IEEE80211_F_PRIVACY; /* XXX ERESTART? */ break; case IEEE80211_IOC_DROPUNENCRYPTED: if (ireq->i_val) vap->iv_flags |= IEEE80211_F_DROPUNENC; else vap->iv_flags &= ~IEEE80211_F_DROPUNENC; /* XXX ERESTART? */ break; case IEEE80211_IOC_WPAKEY: error = ieee80211_ioctl_setkey(vap, ireq); break; case IEEE80211_IOC_DELKEY: error = ieee80211_ioctl_delkey(vap, ireq); break; case IEEE80211_IOC_MLME: error = ieee80211_ioctl_setmlme(vap, ireq); break; case IEEE80211_IOC_COUNTERMEASURES: if (ireq->i_val) { if ((vap->iv_flags & IEEE80211_F_WPA) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_COUNTERM; } else vap->iv_flags &= ~IEEE80211_F_COUNTERM; /* XXX ERESTART? */ break; case IEEE80211_IOC_WPA: if (ireq->i_val > 3) return EINVAL; /* XXX verify ciphers available */ flags = vap->iv_flags & ~IEEE80211_F_WPA; switch (ireq->i_val) { case 0: /* wpa_supplicant calls this to clear the WPA config */ break; case 1: if (!(vap->iv_caps & IEEE80211_C_WPA1)) return EOPNOTSUPP; flags |= IEEE80211_F_WPA1; break; case 2: if (!(vap->iv_caps & IEEE80211_C_WPA2)) return EOPNOTSUPP; flags |= IEEE80211_F_WPA2; break; case 3: if ((vap->iv_caps & IEEE80211_C_WPA) != IEEE80211_C_WPA) return EOPNOTSUPP; flags |= IEEE80211_F_WPA1 | IEEE80211_F_WPA2; break; default: /* Can't set any -> error */ return EOPNOTSUPP; } vap->iv_flags = flags; error = ERESTART; /* NB: can change beacon frame */ break; case IEEE80211_IOC_WME: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_WME) == 0) return EOPNOTSUPP; ieee80211_syncflag(vap, IEEE80211_F_WME); } else ieee80211_syncflag(vap, -IEEE80211_F_WME); error = ERESTART; /* NB: can change beacon frame */ break; case IEEE80211_IOC_HIDESSID: if (ireq->i_val) vap->iv_flags |= IEEE80211_F_HIDESSID; else vap->iv_flags &= ~IEEE80211_F_HIDESSID; error = ERESTART; /* XXX ENETRESET? */ break; case IEEE80211_IOC_APBRIDGE: if (ireq->i_val == 0) vap->iv_flags |= IEEE80211_F_NOBRIDGE; else vap->iv_flags &= ~IEEE80211_F_NOBRIDGE; break; case IEEE80211_IOC_BSSID: if (ireq->i_len != sizeof(tmpbssid)) return EINVAL; error = copyin(ireq->i_data, tmpbssid, ireq->i_len); if (error) break; IEEE80211_ADDR_COPY(vap->iv_des_bssid, tmpbssid); if (IEEE80211_ADDR_EQ(vap->iv_des_bssid, zerobssid)) vap->iv_flags &= ~IEEE80211_F_DESBSSID; else vap->iv_flags |= IEEE80211_F_DESBSSID; error = ENETRESET; break; case IEEE80211_IOC_CHANLIST: error = ieee80211_ioctl_setchanlist(vap, ireq); break; #define OLD_IEEE80211_IOC_SCAN_REQ 23 #ifdef OLD_IEEE80211_IOC_SCAN_REQ case OLD_IEEE80211_IOC_SCAN_REQ: IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s: active scan request\n", __func__); /* * If we are in INIT state then the driver has never * had a chance to setup hardware state to do a scan; * use the state machine to get us up the SCAN state. * Otherwise just invoke the scan machinery to start * a one-time scan. */ if (vap->iv_state == IEEE80211_S_INIT) ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); else (void) ieee80211_start_scan(vap, IEEE80211_SCAN_ACTIVE | IEEE80211_SCAN_NOPICK | IEEE80211_SCAN_ONCE, IEEE80211_SCAN_FOREVER, 0, 0, /* XXX use ioctl params */ vap->iv_des_nssid, vap->iv_des_ssid); break; #endif /* OLD_IEEE80211_IOC_SCAN_REQ */ case IEEE80211_IOC_SCAN_REQ: error = ieee80211_ioctl_scanreq(vap, ireq); break; case IEEE80211_IOC_SCAN_CANCEL: IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s: cancel scan\n", __func__); ieee80211_cancel_scan(vap); break; case IEEE80211_IOC_HTCONF: if (ireq->i_val & 1) ieee80211_syncflag_ht(vap, IEEE80211_FHT_HT); else ieee80211_syncflag_ht(vap, -IEEE80211_FHT_HT); if (ireq->i_val & 2) ieee80211_syncflag_ht(vap, IEEE80211_FHT_USEHT40); else ieee80211_syncflag_ht(vap, -IEEE80211_FHT_USEHT40); error = ENETRESET; break; case IEEE80211_IOC_ADDMAC: case IEEE80211_IOC_DELMAC: error = ieee80211_ioctl_macmac(vap, ireq); break; case IEEE80211_IOC_MACCMD: error = ieee80211_ioctl_setmaccmd(vap, ireq); break; case IEEE80211_IOC_STA_STATS: error = ieee80211_ioctl_setstastats(vap, ireq); break; case IEEE80211_IOC_STA_TXPOW: error = ieee80211_ioctl_setstatxpow(vap, ireq); break; case IEEE80211_IOC_WME_CWMIN: /* WME: CWmin */ case IEEE80211_IOC_WME_CWMAX: /* WME: CWmax */ case IEEE80211_IOC_WME_AIFS: /* WME: AIFS */ case IEEE80211_IOC_WME_TXOPLIMIT: /* WME: txops limit */ case IEEE80211_IOC_WME_ACM: /* WME: ACM (bss only) */ case IEEE80211_IOC_WME_ACKPOLICY: /* WME: ACK policy (!bss only) */ error = ieee80211_ioctl_setwmeparam(vap, ireq); break; case IEEE80211_IOC_DTIM_PERIOD: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_MBSS && vap->iv_opmode != IEEE80211_M_IBSS) return EINVAL; if (IEEE80211_DTIM_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_DTIM_MAX) { vap->iv_dtim_period = ireq->i_val; error = ENETRESET; /* requires restart */ } else error = EINVAL; break; case IEEE80211_IOC_BEACON_INTERVAL: if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_MBSS && vap->iv_opmode != IEEE80211_M_IBSS) return EINVAL; if (IEEE80211_BINTVAL_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_BINTVAL_MAX) { ic->ic_bintval = ireq->i_val; error = ENETRESET; /* requires restart */ } else error = EINVAL; break; case IEEE80211_IOC_PUREG: if (ireq->i_val) vap->iv_flags |= IEEE80211_F_PUREG; else vap->iv_flags &= ~IEEE80211_F_PUREG; /* NB: reset only if we're operating on an 11g channel */ if (isvap11g(vap)) error = ENETRESET; break; case IEEE80211_IOC_QUIET: vap->iv_quiet= ireq->i_val; break; case IEEE80211_IOC_QUIET_COUNT: vap->iv_quiet_count=ireq->i_val; break; case IEEE80211_IOC_QUIET_PERIOD: vap->iv_quiet_period=ireq->i_val; break; case IEEE80211_IOC_QUIET_OFFSET: vap->iv_quiet_offset=ireq->i_val; break; case IEEE80211_IOC_QUIET_DUR: if(ireq->i_val < vap->iv_bss->ni_intval) vap->iv_quiet_duration = ireq->i_val; else error = EINVAL; break; case IEEE80211_IOC_BGSCAN: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_BGSCAN) == 0) return EOPNOTSUPP; vap->iv_flags |= IEEE80211_F_BGSCAN; } else vap->iv_flags &= ~IEEE80211_F_BGSCAN; break; case IEEE80211_IOC_BGSCAN_IDLE: if (ireq->i_val >= IEEE80211_BGSCAN_IDLE_MIN) vap->iv_bgscanidle = ireq->i_val*hz/1000; else error = EINVAL; break; case IEEE80211_IOC_BGSCAN_INTERVAL: if (ireq->i_val >= IEEE80211_BGSCAN_INTVAL_MIN) vap->iv_bgscanintvl = ireq->i_val*hz; else error = EINVAL; break; case IEEE80211_IOC_SCANVALID: if (ireq->i_val >= IEEE80211_SCAN_VALID_MIN) vap->iv_scanvalid = ireq->i_val*hz; else error = EINVAL; break; case IEEE80211_IOC_FRAGTHRESHOLD: if ((vap->iv_caps & IEEE80211_C_TXFRAG) == 0 && ireq->i_val != IEEE80211_FRAG_MAX) return EOPNOTSUPP; if (!(IEEE80211_FRAG_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_FRAG_MAX)) return EINVAL; vap->iv_fragthreshold = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_BURST: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_BURST) == 0) return EOPNOTSUPP; ieee80211_syncflag(vap, IEEE80211_F_BURST); } else ieee80211_syncflag(vap, -IEEE80211_F_BURST); error = ERESTART; break; case IEEE80211_IOC_BMISSTHRESHOLD: if (!(IEEE80211_HWBMISS_MIN <= ireq->i_val && ireq->i_val <= IEEE80211_HWBMISS_MAX)) return EINVAL; vap->iv_bmissthreshold = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_CURCHAN: error = ieee80211_ioctl_setcurchan(vap, ireq); break; case IEEE80211_IOC_SHORTGI: if (ireq->i_val) { #define IEEE80211_HTCAP_SHORTGI \ (IEEE80211_HTCAP_SHORTGI20 | IEEE80211_HTCAP_SHORTGI40) if (((ireq->i_val ^ vap->iv_htcaps) & IEEE80211_HTCAP_SHORTGI) != 0) return EINVAL; if (ireq->i_val & IEEE80211_HTCAP_SHORTGI20) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI20; if (ireq->i_val & IEEE80211_HTCAP_SHORTGI40) vap->iv_flags_ht |= IEEE80211_FHT_SHORTGI40; #undef IEEE80211_HTCAP_SHORTGI } else vap->iv_flags_ht &= ~(IEEE80211_FHT_SHORTGI20 | IEEE80211_FHT_SHORTGI40); error = ERESTART; break; case IEEE80211_IOC_AMPDU: if (ireq->i_val && (vap->iv_htcaps & IEEE80211_HTC_AMPDU) == 0) return EINVAL; if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMPDU_TX; if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_AMPDU_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMPDU_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_AMPDU_LIMIT: /* XXX TODO: figure out ampdu_limit versus ampdu_rxmax */ if (!(IEEE80211_HTCAP_MAXRXAMPDU_8K <= ireq->i_val && ireq->i_val <= IEEE80211_HTCAP_MAXRXAMPDU_64K)) return EINVAL; if (vap->iv_opmode == IEEE80211_M_HOSTAP) vap->iv_ampdu_rxmax = ireq->i_val; else vap->iv_ampdu_limit = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_AMPDU_DENSITY: if (!(IEEE80211_HTCAP_MPDUDENSITY_NA <= ireq->i_val && ireq->i_val <= IEEE80211_HTCAP_MPDUDENSITY_16)) return EINVAL; vap->iv_ampdu_density = ireq->i_val; error = ERESTART; break; case IEEE80211_IOC_AMSDU: if (ireq->i_val && (vap->iv_htcaps & IEEE80211_HTC_AMSDU) == 0) return EINVAL; if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMSDU_TX; if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_AMSDU_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_AMSDU_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_AMSDU_LIMIT: /* XXX validate */ vap->iv_amsdu_limit = ireq->i_val; /* XXX truncation? */ break; case IEEE80211_IOC_PUREN: if (ireq->i_val) { if ((vap->iv_flags_ht & IEEE80211_FHT_HT) == 0) return EINVAL; vap->iv_flags_ht |= IEEE80211_FHT_PUREN; } else vap->iv_flags_ht &= ~IEEE80211_FHT_PUREN; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_DOTH: if (ireq->i_val) { #if 0 /* XXX no capability */ if ((vap->iv_caps & IEEE80211_C_DOTH) == 0) return EOPNOTSUPP; #endif vap->iv_flags |= IEEE80211_F_DOTH; } else vap->iv_flags &= ~IEEE80211_F_DOTH; error = ENETRESET; break; case IEEE80211_IOC_REGDOMAIN: error = ieee80211_ioctl_setregdomain(vap, ireq); break; case IEEE80211_IOC_ROAM: error = ieee80211_ioctl_setroam(vap, ireq); break; case IEEE80211_IOC_TXPARAMS: error = ieee80211_ioctl_settxparams(vap, ireq); break; case IEEE80211_IOC_HTCOMPAT: if (ireq->i_val) { if ((vap->iv_flags_ht & IEEE80211_FHT_HT) == 0) return EOPNOTSUPP; vap->iv_flags_ht |= IEEE80211_FHT_HTCOMPAT; } else vap->iv_flags_ht &= ~IEEE80211_FHT_HTCOMPAT; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_DWDS: if (ireq->i_val) { /* NB: DWDS only makes sense for WDS-capable devices */ if ((ic->ic_caps & IEEE80211_C_WDS) == 0) return EOPNOTSUPP; /* NB: DWDS is used only with ap+sta vaps */ if (vap->iv_opmode != IEEE80211_M_HOSTAP && vap->iv_opmode != IEEE80211_M_STA) return EINVAL; vap->iv_flags |= IEEE80211_F_DWDS; if (vap->iv_opmode == IEEE80211_M_STA) vap->iv_flags_ext |= IEEE80211_FEXT_4ADDR; } else { vap->iv_flags &= ~IEEE80211_F_DWDS; if (vap->iv_opmode == IEEE80211_M_STA) vap->iv_flags_ext &= ~IEEE80211_FEXT_4ADDR; } break; case IEEE80211_IOC_INACTIVITY: if (ireq->i_val) vap->iv_flags_ext |= IEEE80211_FEXT_INACT; else vap->iv_flags_ext &= ~IEEE80211_FEXT_INACT; break; case IEEE80211_IOC_APPIE: error = ieee80211_ioctl_setappie(vap, ireq); break; case IEEE80211_IOC_WPS: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_WPA) == 0) return EOPNOTSUPP; vap->iv_flags_ext |= IEEE80211_FEXT_WPS; } else vap->iv_flags_ext &= ~IEEE80211_FEXT_WPS; break; case IEEE80211_IOC_TSN: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_WPA) == 0) return EOPNOTSUPP; vap->iv_flags_ext |= IEEE80211_FEXT_TSN; } else vap->iv_flags_ext &= ~IEEE80211_FEXT_TSN; break; case IEEE80211_IOC_CHANSWITCH: error = ieee80211_ioctl_chanswitch(vap, ireq); break; case IEEE80211_IOC_DFS: if (ireq->i_val) { if ((vap->iv_caps & IEEE80211_C_DFS) == 0) return EOPNOTSUPP; /* NB: DFS requires 11h support */ if ((vap->iv_flags & IEEE80211_F_DOTH) == 0) return EINVAL; vap->iv_flags_ext |= IEEE80211_FEXT_DFS; } else vap->iv_flags_ext &= ~IEEE80211_FEXT_DFS; break; case IEEE80211_IOC_DOTD: if (ireq->i_val) vap->iv_flags_ext |= IEEE80211_FEXT_DOTD; else vap->iv_flags_ext &= ~IEEE80211_FEXT_DOTD; if (vap->iv_opmode == IEEE80211_M_STA) error = ENETRESET; break; case IEEE80211_IOC_HTPROTMODE: if (ireq->i_val > IEEE80211_PROT_RTSCTS) return EINVAL; vap->iv_htprotmode = ireq->i_val ? IEEE80211_PROT_RTSCTS : IEEE80211_PROT_NONE; /* NB: if not operating in 11n this can wait */ if (isvapht(vap)) error = ERESTART; /* Notify driver layer of HT protmode changes */ ieee80211_vap_update_ht_protmode(vap); break; case IEEE80211_IOC_STA_VLAN: error = ieee80211_ioctl_setstavlan(vap, ireq); break; case IEEE80211_IOC_SMPS: if ((ireq->i_val &~ IEEE80211_HTCAP_SMPS) != 0 || ireq->i_val == 0x0008) /* value of 2 is reserved */ return EINVAL; if (ireq->i_val != IEEE80211_HTCAP_SMPS_OFF && (vap->iv_htcaps & IEEE80211_HTC_SMPS) == 0) return EOPNOTSUPP; vap->iv_htcaps = (vap->iv_htcaps &~ IEEE80211_HTCAP_SMPS) | ireq->i_val; /* NB: if not operating in 11n this can wait */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_RIFS: if (ireq->i_val != 0) { if ((vap->iv_htcaps & IEEE80211_HTC_RIFS) == 0) return EOPNOTSUPP; vap->iv_flags_ht |= IEEE80211_FHT_RIFS; } else vap->iv_flags_ht &= ~IEEE80211_FHT_RIFS; /* NB: if not operating in 11n this can wait */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_STBC: /* Check if we can do STBC TX/RX before changing the setting */ if ((ireq->i_val & 1) && ((vap->iv_htcaps & IEEE80211_HTCAP_TXSTBC) == 0)) return EOPNOTSUPP; if ((ireq->i_val & 2) && ((vap->iv_htcaps & IEEE80211_HTCAP_RXSTBC) == 0)) return EOPNOTSUPP; /* TX */ if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_STBC_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_STBC_TX; /* RX */ if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_STBC_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_STBC_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_LDPC: /* Check if we can do LDPC TX/RX before changing the setting */ if ((ireq->i_val & 1) && (vap->iv_htcaps & IEEE80211_HTC_TXLDPC) == 0) return EOPNOTSUPP; if ((ireq->i_val & 2) && (vap->iv_htcaps & IEEE80211_HTCAP_LDPC) == 0) return EOPNOTSUPP; /* TX */ if (ireq->i_val & 1) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_TX; else vap->iv_flags_ht &= ~IEEE80211_FHT_LDPC_TX; /* RX */ if (ireq->i_val & 2) vap->iv_flags_ht |= IEEE80211_FHT_LDPC_RX; else vap->iv_flags_ht &= ~IEEE80211_FHT_LDPC_RX; /* NB: reset only if we're operating on an 11n channel */ if (isvapht(vap)) error = ERESTART; break; case IEEE80211_IOC_UAPSD: if ((vap->iv_caps & IEEE80211_C_UAPSD) == 0) return EOPNOTSUPP; if (ireq->i_val == 0) vap->iv_flags_ext &= ~IEEE80211_FEXT_UAPSD; else if (ireq->i_val == 1) vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD; else return EINVAL; break; /* VHT */ case IEEE80211_IOC_VHTCONF: if (ireq->i_val & IEEE80211_FVHT_VHT) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_VHT); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_VHT); if (ireq->i_val & IEEE80211_FVHT_USEVHT40) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT40); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT40); if (ireq->i_val & IEEE80211_FVHT_USEVHT80) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT80); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT80); if (ireq->i_val & IEEE80211_FVHT_USEVHT160) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT160); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT160); if (ireq->i_val & IEEE80211_FVHT_USEVHT80P80) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_USEVHT80P80); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_USEVHT80P80); /* Check if we can do STBC TX/RX before changing the setting. */ if ((ireq->i_val & IEEE80211_FVHT_STBC_TX) && ((vap->iv_vht_cap.vht_cap_info & IEEE80211_VHTCAP_TXSTBC) == 0)) return EOPNOTSUPP; if ((ireq->i_val & IEEE80211_FVHT_STBC_RX) && ((vap->iv_vht_cap.vht_cap_info & IEEE80211_VHTCAP_RXSTBC_MASK) == 0)) return EOPNOTSUPP; /* TX */ if (ireq->i_val & IEEE80211_FVHT_STBC_TX) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_STBC_TX); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_STBC_TX); /* RX */ if (ireq->i_val & IEEE80211_FVHT_STBC_RX) ieee80211_syncflag_vht(vap, IEEE80211_FVHT_STBC_RX); else ieee80211_syncflag_vht(vap, -IEEE80211_FVHT_STBC_RX); error = ENETRESET; break; default: error = ieee80211_ioctl_setdefault(vap, ireq); break; } /* * The convention is that ENETRESET means an operation * requires a complete re-initialization of the device (e.g. * changing something that affects the association state). * ERESTART means the request may be handled with only a * reload of the hardware state. We hand ERESTART requests * to the iv_reset callback so the driver can decide. If * a device does not fillin iv_reset then it defaults to one * that returns ENETRESET. Otherwise a driver may return * ENETRESET (in which case a full reset will be done) or * 0 to mean there's no need to do anything (e.g. when the * change has no effect on the driver/device). */ if (error == ERESTART) error = IFNET_IS_UP_RUNNING(vap->iv_ifp) ? vap->iv_reset(vap, ireq->i_type) : 0; if (error == ENETRESET) { /* XXX need to re-think AUTO handling */ if (IS_UP_AUTO(vap)) ieee80211_init(vap); error = 0; } return error; } int ieee80211_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; int error = 0, wait = 0, ic_used; struct ifreq *ifr; struct ifaddr *ifa; /* XXX */ ic_used = (cmd != SIOCSIFMTU && cmd != SIOCG80211STATS); if (ic_used && (error = ieee80211_com_vincref(vap)) != 0) return (error); switch (cmd) { case SIOCSIFFLAGS: IEEE80211_LOCK(ic); if ((ifp->if_flags ^ vap->iv_ifflags) & IFF_PROMISC) { /* * Enable promiscuous mode when: * 1. Interface is not a member of bridge, or * 2. Requested by user, or * 3. In monitor (or adhoc-demo) mode. */ if (ifp->if_bridge == NULL || (ifp->if_flags & IFF_PPROMISC) != 0 || vap->iv_opmode == IEEE80211_M_MONITOR || (vap->iv_opmode == IEEE80211_M_AHDEMO && (vap->iv_caps & IEEE80211_C_TDMA) == 0)) { ieee80211_promisc(vap, ifp->if_flags & IFF_PROMISC); vap->iv_ifflags ^= IFF_PROMISC; } } if ((ifp->if_flags ^ vap->iv_ifflags) & IFF_ALLMULTI) { ieee80211_allmulti(vap, ifp->if_flags & IFF_ALLMULTI); vap->iv_ifflags ^= IFF_ALLMULTI; } if (ifp->if_flags & IFF_UP) { /* * Bring ourself up unless we're already operational. * If we're the first vap and the parent is not up * then it will automatically be brought up as a * side-effect of bringing ourself up. */ if (vap->iv_state == IEEE80211_S_INIT) { if (ic->ic_nrunning == 0) wait = 1; ieee80211_start_locked(vap); } - } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { + } else if (ieee80211_vap_ifp_check_is_running(vap)) { /* * Stop ourself. If we are the last vap to be * marked down the parent will also be taken down. */ if (ic->ic_nrunning == 1) wait = 1; ieee80211_stop_locked(vap); } IEEE80211_UNLOCK(ic); /* Wait for parent ioctl handler if it was queued */ if (wait) { ieee80211_waitfor_parent(ic); ieee80211_vap_sync_mac_address(vap); } break; case SIOCADDMULTI: case SIOCDELMULTI: ieee80211_runtask(ic, &ic->ic_mcast_task); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: ifr = (struct ifreq *)data; error = ifmedia_ioctl(ifp, ifr, &vap->iv_media, cmd); break; case SIOCG80211: error = ieee80211_ioctl_get80211(vap, cmd, (struct ieee80211req *) data); break; case SIOCS80211: error = ieee80211_priv_check_vap_manage(cmd, vap, ifp); if (error == 0) error = ieee80211_ioctl_set80211(vap, cmd, (struct ieee80211req *) data); break; case SIOCG80211STATS: ifr = (struct ifreq *)data; error = copyout(&vap->iv_stats, ifr_data_get_ptr(ifr), sizeof(vap->iv_stats)); break; case SIOCSIFMTU: ifr = (struct ifreq *)data; if (!(IEEE80211_MTU_MIN <= ifr->ifr_mtu && ifr->ifr_mtu <= IEEE80211_MTU_MAX)) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFADDR: /* * XXX Handle this directly so we can suppress if_init calls. * XXX This should be done in ether_ioctl but for the moment * XXX there are too many other parts of the system that * XXX set IFF_UP and so suppress if_init being called when * XXX it should be. */ ifa = (struct ifaddr *) data; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: if ((ifp->if_flags & IFF_UP) == 0) { ifp->if_flags |= IFF_UP; ifp->if_init(ifp->if_softc); } arp_ifinit(ifp, ifa); break; #endif default: if ((ifp->if_flags & IFF_UP) == 0) { ifp->if_flags |= IFF_UP; ifp->if_init(ifp->if_softc); } break; } break; case SIOCSIFLLADDR: error = ieee80211_priv_check_vap_setmac(cmd, vap, ifp); if (error == 0) break; /* Fallthrough */ default: /* * Pass unknown ioctls first to the driver, and if it * returns ENOTTY, then to the generic Ethernet handler. */ if (ic->ic_ioctl != NULL && (error = ic->ic_ioctl(ic, cmd, data)) != ENOTTY) break; error = ether_ioctl(ifp, cmd, data); break; } if (ic_used) ieee80211_com_vdecref(vap); return (error); } diff --git a/sys/net80211/ieee80211_output.c b/sys/net80211/ieee80211_output.c index 1f726f75b6c6..1b5b3373685f 100644 --- a/sys/net80211/ieee80211_output.c +++ b/sys/net80211/ieee80211_output.c @@ -1,4282 +1,4282 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #ifdef IEEE80211_SUPPORT_TDMA #include #endif #include #include #include #if defined(INET) || defined(INET6) #include #endif #ifdef INET #include #include #include #endif #ifdef INET6 #include #endif #include #define ETHER_HEADER_COPY(dst, src) \ memcpy(dst, src, sizeof(struct ether_header)) static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, u_int hdrsize, u_int ciphdrsize, u_int mtu); static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); #ifdef IEEE80211_DEBUG /* * Decide if an outbound management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: return (vap->iv_opmode == IEEE80211_M_IBSS); } return 1; } #endif /* * Transmit a frame to the given destination on the given VAP. * * It's up to the caller to figure out the details of who this * is going to and resolving the node. * * This routine takes care of queuing it for power save, * A-MPDU state stuff, fast-frames state stuff, encapsulation * if required, then passing it up to the driver layer. * * This routine (for now) consumes the mbuf and frees the node * reference; it ideally will return a TX status which reflects * whether the mbuf was consumed or not, so the caller can * free the mbuf (if appropriate) and the node reference (again, * if appropriate.) */ int ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, struct ieee80211_node *ni) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int mcast; int do_ampdu = 0; #ifdef IEEE80211_SUPPORT_SUPERG int do_amsdu = 0; int do_ampdu_amsdu = 0; int no_ampdu = 1; /* Will be set to 0 if ampdu is active */ int do_ff = 0; #endif if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && (m->m_flags & M_PWR_SAV) == 0) { /* * Station in power save mode; pass the frame * to the 802.11 layer and continue. We'll get * the frame back when the time is right. * XXX lose WDS vap linkage? */ if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); /* * We queued it fine, so tell the upper layer * that we consumed it. */ return (0); } /* calculate priority so drivers can find the tx queue */ if (ieee80211_classify(ni, m)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, ni->ni_macaddr, NULL, "%s", "classification failure"); vap->iv_stats.is_tx_classify++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (0); } /* * Stash the node pointer. Note that we do this after * any call to ieee80211_dwds_mcast because that code * uses any existing value for rcvif to identify the * interface it (might have been) received on. */ MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m->m_pkthdr.rcvif = (void *)ni; mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; BPF_MTAP(ifp, m); /* 802.3 tx */ /* * Figure out if we can do A-MPDU, A-MSDU or FF. * * A-MPDU depends upon vap/node config. * A-MSDU depends upon vap/node config. * FF depends upon vap config, IE and whether * it's 11abg (and not 11n/11ac/etc.) * * Note that these flags indiciate whether we can do * it at all, rather than the situation (eg traffic type.) */ do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)); #ifdef IEEE80211_SUPPORT_SUPERG do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) && (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX)); do_ff = ((ni->ni_flags & IEEE80211_NODE_HT) == 0) && ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) && (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)); #endif /* * Check if A-MPDU tx aggregation is setup or if we * should try to enable it. The sta must be associated * with HT and A-MPDU enabled for use. When the policy * routine decides we should enable A-MPDU we issue an * ADDBA request and wait for a reply. The frame being * encapsulated will go out w/o using A-MPDU, or possibly * it might be collected by the driver and held/retransmit. * The default ic_ampdu_enable routine handles staggering * ADDBA requests in case the receiver NAK's us or we are * otherwise unable to establish a BA stream. * * Don't treat group-addressed frames as candidates for aggregation; * net80211 doesn't support 802.11aa-2012 and so group addressed * frames will always have sequence numbers allocated from the NON_QOS * TID. */ if (!IEEE80211_CONF_AMPDU_OFFLOAD(ic) && do_ampdu) { if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) { int tid = WME_AC_TO_TID(M_WME_GETAC(m)); struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; ieee80211_txampdu_count_packet(tap); if (IEEE80211_AMPDU_RUNNING(tap)) { /* * Operational, mark frame for aggregation. * * XXX do tx aggregation here */ m->m_flags |= M_AMPDU_MPDU; } else if (!IEEE80211_AMPDU_REQUESTED(tap) && ic->ic_ampdu_enable(ni, tap)) { /* * Not negotiated yet, request service. */ ieee80211_ampdu_request(ni, tap); /* XXX hold frame for reply? */ } /* * Now update the no-ampdu flag. A-MPDU may have been * started or administratively disabled above; so now we * know whether we're running yet or not. * * This will let us know whether we should be doing A-MSDU * at this point. We only do A-MSDU if we're either not * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU * is available. * * Whilst here, update the amsdu-ampdu flag. The above may * have also set or cleared the amsdu-in-ampdu txa_flags * combination so we can correctly do A-MPDU + A-MSDU. */ #ifdef IEEE80211_SUPPORT_SUPERG no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap) || (IEEE80211_AMPDU_NACKED(tap))); do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap); #endif } } #ifdef IEEE80211_SUPPORT_SUPERG /* * Check for AMSDU/FF; queue for aggregation * * Note: we don't bother trying to do fast frames or * A-MSDU encapsulation for 802.3 drivers. Now, we * likely could do it for FF (because it's a magic * atheros tunnel LLC type) but I don't think we're going * to really need to. For A-MSDU we'd have to set the * A-MSDU QoS bit in the wifi header, so we just plain * can't do it. */ if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { if ((! mcast) && (do_ampdu_amsdu || (no_ampdu && do_amsdu)) && ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: amsdu_check queued frame\n", __func__); return (0); } } else if ((! mcast) && do_ff) { m = ieee80211_ff_check(ni, m); if (m == NULL) { /* NB: any ni ref held on stageq */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: ff_check queued frame\n", __func__); return (0); } } } #endif /* IEEE80211_SUPPORT_SUPERG */ /* * Grab the TX lock - serialise the TX process from this * point (where TX state is being checked/modified) * through to driver queue. */ IEEE80211_TX_LOCK(ic); /* * XXX make the encap and transmit code a separate function * so things like the FF (and later A-MSDU) path can just call * it for flushed frames. */ if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { /* * Encapsulate the packet in prep for transmission. */ m = ieee80211_encap(vap, ni, m); if (m == NULL) { /* NB: stat+msg handled in ieee80211_encap */ IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } } (void) ieee80211_parent_xmitpkt(ic, m); /* * Unlock at this point - no need to hold it across * ieee80211_free_node() (ie, the comlock) */ IEEE80211_TX_UNLOCK(ic); ic->ic_lastdata = ticks; return (0); } /* * Send the given mbuf through the given vap. * * This consumes the mbuf regardless of whether the transmit * was successful or not. * * This does none of the initial checks that ieee80211_start() * does (eg CAC timeout, interface wakeup) - the caller must * do this first. */ static int ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) { #define IS_DWDS(vap) \ (vap->iv_opmode == IEEE80211_M_WDS && \ (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_node *ni; struct ether_header *eh; /* * Cancel any background scan. */ if (ic->ic_flags & IEEE80211_F_SCAN) ieee80211_cancel_anyscan(vap); /* * Find the node for the destination so we can do * things like power save and fast frames aggregation. * * NB: past this point various code assumes the first * mbuf has the 802.3 header present (and contiguous). */ ni = NULL; if (m->m_len < sizeof(struct ether_header) && (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "discard frame, %s\n", "m_pullup failed"); vap->iv_stats.is_tx_nobuf++; /* XXX */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENOBUFS); } eh = mtod(m, struct ether_header *); if (ETHER_IS_MULTICAST(eh->ether_dhost)) { if (IS_DWDS(vap)) { /* * Only unicast frames from the above go out * DWDS vaps; multicast frames are handled by * dispatching the frame as it comes through * the AP vap (see below). */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, eh->ether_dhost, "mcast", "%s", "on DWDS"); vap->iv_stats.is_dwds_mcast++; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* * Spam DWDS vap's w/ multicast traffic. */ /* XXX only if dwds in use? */ ieee80211_dwds_mcast(vap, m); } } #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode != IEEE80211_M_MBSS) { #endif ni = ieee80211_find_txnode(vap, eh->ether_dhost); if (ni == NULL) { /* NB: ieee80211_find_txnode does stat+msg */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } if (ni->ni_associd == 0 && (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, eh->ether_dhost, NULL, "sta not associated (type 0x%04x)", htons(eh->ether_type)); vap->iv_stats.is_tx_notassoc++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); ieee80211_free_node(ni); /* XXX better status? */ return (ENOBUFS); } #ifdef IEEE80211_SUPPORT_MESH } else { if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { /* * Proxy station only if configured. */ if (!ieee80211_mesh_isproxyena(vap)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_MESH, eh->ether_dhost, NULL, "%s", "proxy not enabled"); vap->iv_stats.is_mesh_notproxy++; if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); m_freem(m); /* XXX better status? */ return (ENOBUFS); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "forward frame from DS SA(%6D), DA(%6D)\n", eh->ether_shost, ":", eh->ether_dhost, ":"); ieee80211_mesh_proxy_check(vap, eh->ether_shost); } ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); if (ni == NULL) { /* * NB: ieee80211_mesh_discover holds/disposes * frame (e.g. queueing on path discovery). */ if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); /* XXX better status? */ return (ENOBUFS); } } #endif /* * We've resolved the sender, so attempt to transmit it. */ if (vap->iv_state == IEEE80211_S_SLEEP) { /* * In power save; queue frame and then wakeup device * for transmit. */ ic->ic_lastdata = ticks; if (ieee80211_pwrsave(ni, m) != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); ieee80211_new_state(vap, IEEE80211_S_RUN, 0); return (0); } if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) return (ENOBUFS); return (0); #undef IS_DWDS } /* * Start method for vap's. All packets from the stack come * through here. We handle common processing of the packets * before dispatching them to the underlying device. * * if_transmit() requires that the mbuf be consumed by this call * regardless of the return condition. */ int ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; /* * No data frames go out unless we're running. * Note in particular this covers CAC and CSA * states (though maybe we should check muting * for CSA). */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_LOCK(ic); /* re-check under the com lock to avoid races */ if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_SLEEP) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: ignore queue, in %s state\n", __func__, ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_tx_badstate++; IEEE80211_UNLOCK(ic); ifp->if_drv_flags |= IFF_DRV_OACTIVE; m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return (ENETDOWN); } IEEE80211_UNLOCK(ic); } /* * Sanitize mbuf flags for net80211 use. We cannot * clear M_PWR_SAV or M_MORE_DATA because these may * be set for frames that are re-submitted from the * power save queue. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); /* * Bump to the packet transmission path. * The mbuf will be consumed here. */ return (ieee80211_start_pkt(vap, m)); } void ieee80211_vap_qflush(struct ifnet *ifp) { /* Empty for now */ } /* * 802.11 raw output routine. * * XXX TODO: this (and other send routines) should correctly * XXX keep the pwr mgmt bit set if it decides to call into the * XXX driver to send a frame whilst the state is SLEEP. * * Otherwise the peer may decide that we're awake and flood us * with traffic we are still too asleep to receive! */ int ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211com *ic = vap->iv_ic; int error; /* * Set node - the caller has taken a reference, so ensure * that the mbuf has the same node value that * it would if it were going via the normal path. */ MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m->m_pkthdr.rcvif = (void *)ni; /* * Attempt to add bpf transmit parameters. * * For now it's ok to fail; the raw_xmit api still takes * them as an option. * * Later on when ic_raw_xmit() has params removed, * they'll have to be added - so fail the transmit if * they can't be. */ if (params) (void) ieee80211_add_xmit_params(m, params); error = ic->ic_raw_xmit(ni, m, params); if (error) { if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); } return (error); } static int ieee80211_validate_frame(struct mbuf *m, const struct ieee80211_bpf_params *params) { struct ieee80211_frame *wh; int type; if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) return (EINVAL); wh = mtod(m, struct ieee80211_frame *); if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0)) return (EINVAL); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if (type != IEEE80211_FC0_TYPE_DATA) { if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_NODS) return (EINVAL); if (type != IEEE80211_FC0_TYPE_MGT && (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0) return (EINVAL); /* XXX skip other field checks? */ } if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) || (IEEE80211_IS_PROTECTED(wh))) { int subtype; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* * See IEEE Std 802.11-2012, * 8.2.4.1.9 'Protected Frame field' */ /* XXX no support for robust management frames yet. */ if (!(type == IEEE80211_FC0_TYPE_DATA || (type == IEEE80211_FC0_TYPE_MGT && subtype == IEEE80211_FC0_SUBTYPE_AUTH))) return (EINVAL); wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; } if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) return (EINVAL); return (0); } static int ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate) { struct ieee80211com *ic = ni->ni_ic; if (IEEE80211_IS_HT_RATE(rate)) { if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0) return (EINVAL); rate = IEEE80211_RV(rate); if (rate <= 31) { if (rate > ic->ic_txstream * 8 - 1) return (EINVAL); return (0); } if (rate == 32) { if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0) return (EINVAL); return (0); } if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0) return (EINVAL); switch (ic->ic_txstream) { case 0: case 1: return (EINVAL); case 2: if (rate > 38) return (EINVAL); return (0); case 3: if (rate > 52) return (EINVAL); return (0); case 4: default: if (rate > 76) return (EINVAL); return (0); } } if (!ieee80211_isratevalid(ic->ic_rt, rate)) return (EINVAL); return (0); } static int ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { int error; if (!params) return (0); /* nothing to do */ /* NB: most drivers assume that ibp_rate0 is set (!= 0). */ if (params->ibp_rate0 != 0) { error = ieee80211_validate_rate(ni, params->ibp_rate0); if (error != 0) return (error); } else { /* XXX pre-setup some default (e.g., mgmt / mcast) rate */ /* XXX __DECONST? */ (void) m; } if (params->ibp_rate1 != 0 && (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0) return (error); if (params->ibp_rate2 != 0 && (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0) return (error); if (params->ibp_rate3 != 0 && (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0) return (error); return (0); } /* * 802.11 output routine. This is (currently) used only to * connect bpf write calls to the 802.11 layer for injecting * raw 802.11 frames. */ int ieee80211_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { #define senderr(e) do { error = (e); goto bad;} while (0) const struct ieee80211_bpf_params *params = NULL; struct ieee80211_node *ni = NULL; struct ieee80211vap *vap; struct ieee80211_frame *wh; struct ieee80211com *ic = NULL; int error; int ret; if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { /* * Short-circuit requests if the vap is marked OACTIVE * as this can happen because a packet came down through * ieee80211_start before the vap entered RUN state in * which case it's ok to just drop the frame. This * should not be necessary but callers of if_output don't * check OACTIVE. */ senderr(ENETDOWN); } vap = ifp->if_softc; ic = vap->iv_ic; /* * Hand to the 802.3 code if not tagged as * a raw 802.11 frame. */ if (dst->sa_family != AF_IEEE80211) return vap->iv_output(ifp, m, dst, ro); #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) senderr(error); #endif - if (ifp->if_flags & IFF_MONITOR) + if (ieee80211_vap_ifp_check_is_monitor(vap)) senderr(ENETDOWN); if (!IFNET_IS_UP_RUNNING(ifp)) senderr(ENETDOWN); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, "block %s frame in CAC state\n", "raw data"); vap->iv_stats.is_tx_badstate++; senderr(EIO); /* XXX */ } else if (vap->iv_state == IEEE80211_S_SCAN) senderr(EIO); /* XXX bypass bridge, pfil, carp, etc. */ /* * NB: DLT_IEEE802_11_RADIO identifies the parameters are * present by setting the sa_len field of the sockaddr (yes, * this is a hack). * NB: we assume sa_data is suitably aligned to cast. */ if (dst->sa_len != 0) params = (const struct ieee80211_bpf_params *)dst->sa_data; error = ieee80211_validate_frame(m, params); if (error != 0) senderr(error); wh = mtod(m, struct ieee80211_frame *); /* locate destination node */ switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: case IEEE80211_FC1_DIR_FROMDS: ni = ieee80211_find_txnode(vap, wh->i_addr1); break; case IEEE80211_FC1_DIR_TODS: case IEEE80211_FC1_DIR_DSTODS: ni = ieee80211_find_txnode(vap, wh->i_addr3); break; default: senderr(EDOOFUS); } if (ni == NULL) { /* * Permit packets w/ bpf params through regardless * (see below about sa_len). */ if (dst->sa_len == 0) senderr(EHOSTUNREACH); ni = ieee80211_ref_node(vap->iv_bss); } /* * Sanitize mbuf for net80211 flags leaked from above. * * NB: This must be done before ieee80211_classify as * it marks EAPOL in frames with M_EAPOL. */ m->m_flags &= ~M_80211_TX; m->m_flags |= M_ENCAP; /* mark encapsulated */ if (IEEE80211_IS_DATA(wh)) { /* calculate priority so drivers can find the tx queue */ if (ieee80211_classify(ni, m)) senderr(EIO); /* XXX */ /* NB: ieee80211_encap does not include 802.11 header */ IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len - ieee80211_hdrsize(wh)); } else M_WME_SETAC(m, WME_AC_BE); error = ieee80211_sanitize_rates(ni, m, params); if (error != 0) senderr(error); IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); IEEE80211_TX_LOCK(ic); ret = ieee80211_raw_output(vap, ni, m, params); IEEE80211_TX_UNLOCK(ic); return (ret); bad: if (m != NULL) m_freem(m); if (ni != NULL) ieee80211_free_node(ni); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return error; #undef senderr } /* * Set the direction field and address fields of an outgoing * frame. Note this should be called early on in constructing * a frame as it sets i_fc[1]; other bits can then be or'd in. */ void ieee80211_send_setup( struct ieee80211_node *ni, struct mbuf *m, int type, int tid, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN]) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_tx_ampdu *tap; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, bssid); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, da); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); IEEE80211_ADDR_COPY(wh->i_addr3, bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, bssid); IEEE80211_ADDR_COPY(wh->i_addr3, sa); break; case IEEE80211_M_WDS: wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); break; case IEEE80211_M_MBSS: #ifdef IEEE80211_SUPPORT_MESH if (IEEE80211_IS_MULTICAST(da)) { wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; /* XXX next hop */ IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); } else { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, da); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); } #endif break; case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ break; } } else { wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, da); IEEE80211_ADDR_COPY(wh->i_addr2, sa); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) IEEE80211_ADDR_COPY(wh->i_addr3, sa); else #endif IEEE80211_ADDR_COPY(wh->i_addr3, bssid); } *(uint16_t *)&wh->i_dur[0] = 0; /* * XXX TODO: this is what the TX lock is for. * Here we're incrementing sequence numbers, and they * need to be in lock-step with what the driver is doing * both in TX ordering and crypto encap (IV increment.) * * If the driver does seqno itself, then we can skip * assigning sequence numbers here, and we can avoid * requiring the TX lock. */ tap = &ni->ni_tx_ampdu[tid]; if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) { m->m_flags |= M_AMPDU_MPDU; /* NB: zero out i_seq field (for s/w encryption etc) */ *(uint16_t *)&wh->i_seq[0] = 0; } else ieee80211_output_seqno_assign(ni, tid, m); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) m->m_flags |= M_MCAST; #undef WH4 } /* * Send a management frame to the specified node. The node pointer * must have a reference as the pointer will be passed to the driver * and potentially held for a long time. If the frame is successfully * dispatched to the driver, then it is responsible for freeing the * reference (and potentially free'ing up any associated storage); * otherwise deal with reclaiming any reference (on error). */ int ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, struct ieee80211_bpf_params *params) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_frame *wh; int ret; KASSERT(ni != NULL, ("null node")); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", ieee80211_mgt_subtype_name(type)); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(ni); m_freem(m); return EIO; /* XXX */ } M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); if (m == NULL) { ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, "encrypting frame (%s)", __func__); wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; } m->m_flags |= M_ENCAP; /* mark encapsulated */ KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); M_WME_SETAC(m, params->ibp_pri); #ifdef IEEE80211_DEBUG /* avoid printing too many frames */ if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || ieee80211_msg_dumppkts(vap)) { ieee80211_note(vap, "[%s] send %s on channel %u\n", ether_sprintf(wh->i_addr1), ieee80211_mgt_subtype_name(type), ieee80211_chan2ieee(ic, ic->ic_curchan)); } #endif IEEE80211_NODE_STAT(ni, tx_mgmt); ret = ieee80211_raw_output(vap, ni, m, params); IEEE80211_TX_UNLOCK(ic); return (ret); } static void ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; wakeup(vap); } /* * Send a null data frame to the specified node. If the station * is setup for QoS then a QoS Null Data frame is constructed. * If this is a WDS station then a 4-address frame is constructed. * * NB: the caller is assumed to have setup a node reference * for use; this is necessary to deal with a race condition * when probing for inactive stations. Like ieee80211_mgmt_output * we must cleanup any node reference on error; however we * can safely just unref it as we know it will never be the * last reference to the node. */ int ieee80211_send_nulldata(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct mbuf *m; struct ieee80211_frame *wh; int hdrlen; uint8_t *frm; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, ni, "block %s frame in CAC state", "null data"); ieee80211_node_decref(ni); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) hdrlen = sizeof(struct ieee80211_qosframe); else hdrlen = sizeof(struct ieee80211_frame); /* NB: only WDS vap's get 4-address frames */ if (vap->iv_opmode == IEEE80211_M_WDS) hdrlen += IEEE80211_ADDR_LEN; if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrlen = roundup(hdrlen, sizeof(uint32_t)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); if (m == NULL) { /* XXX debug msg */ ieee80211_node_decref(ni); vap->iv_stats.is_tx_nobuf++; return ENOMEM; } KASSERT(M_LEADINGSPACE(m) >= hdrlen, ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); return ENOMEM; } IEEE80211_TX_LOCK(ic); wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ if (ni->ni_flags & IEEE80211_NODE_QOS) { const int tid = WME_AC_TO_TID(WME_AC_BE); uint8_t *qos; ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); if (vap->iv_opmode == IEEE80211_M_WDS) qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; else qos = ((struct ieee80211_qosframe *) wh)->i_qos; qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; qos[1] = 0; } else { ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, IEEE80211_NONQOS_TID, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); } if (vap->iv_opmode != IEEE80211_M_WDS) { /* NB: power management bit is never sent by an AP */ if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && vap->iv_opmode != IEEE80211_M_HOSTAP) wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; } if ((ic->ic_flags & IEEE80211_F_SCAN) && (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { ieee80211_add_callback(m, ieee80211_nulldata_transmitted, NULL); } m->m_len = m->m_pkthdr.len = hdrlen; m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_data); IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, "send %snull data frame on channel %u, pwr mgt %s", ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", ieee80211_chan2ieee(ic, ic->ic_curchan), wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); ret = ieee80211_raw_output(vap, ni, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Assign priority to a frame based on any vlan tag assigned * to the station and/or any Diffserv setting in an IP header. * Finally, if an ACM policy is setup (in station mode) it's * applied. */ int ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) { const struct ether_header *eh = NULL; uint16_t ether_type; int v_wme_ac, d_wme_ac, ac; if (__predict_false(m->m_flags & M_ENCAP)) { struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); struct llc *llc; int hdrlen, subtype; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) { ac = WME_AC_BE; goto done; } hdrlen = ieee80211_hdrsize(wh); if (m->m_pkthdr.len < hdrlen + sizeof(*llc)) return 1; llc = (struct llc *)mtodo(m, hdrlen); if (llc->llc_dsap != LLC_SNAP_LSAP || llc->llc_ssap != LLC_SNAP_LSAP || llc->llc_control != LLC_UI || llc->llc_snap.org_code[0] != 0 || llc->llc_snap.org_code[1] != 0 || llc->llc_snap.org_code[2] != 0) return 1; ether_type = llc->llc_snap.ether_type; } else { eh = mtod(m, struct ether_header *); ether_type = eh->ether_type; } /* * Always promote PAE/EAPOL frames to high priority. */ if (ether_type == htons(ETHERTYPE_PAE)) { /* NB: mark so others don't need to check header */ m->m_flags |= M_EAPOL; ac = WME_AC_VO; goto done; } /* * Non-qos traffic goes to BE. */ if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { ac = WME_AC_BE; goto done; } /* * If node has a vlan tag then all traffic * to it must have a matching tag. */ v_wme_ac = 0; if (ni->ni_vlan != 0) { if ((m->m_flags & M_VLANTAG) == 0) { IEEE80211_NODE_STAT(ni, tx_novlantag); return 1; } if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != EVL_VLANOFTAG(ni->ni_vlan)) { IEEE80211_NODE_STAT(ni, tx_vlanmismatch); return 1; } /* map vlan priority to AC */ v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); } if (eh == NULL) goto no_eh; /* XXX m_copydata may be too slow for fast path */ switch (ntohs(eh->ether_type)) { #ifdef INET case ETHERTYPE_IP: { uint8_t tos; /* * IP frame, map the DSCP bits from the TOS field. */ /* NB: ip header may not be in first mbuf */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip, ip_tos), sizeof(tos), &tos); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); break; } #endif #ifdef INET6 case ETHERTYPE_IPV6: { uint32_t flow; uint8_t tos; /* * IPv6 frame, map the DSCP bits from the traffic class field. */ m_copydata(m, sizeof(struct ether_header) + offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), (caddr_t) &flow); tos = (uint8_t)(ntohl(flow) >> 20); tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ d_wme_ac = TID_TO_WME_AC(tos); break; } #endif default: no_eh: d_wme_ac = WME_AC_BE; break; } /* * Use highest priority AC. */ if (v_wme_ac > d_wme_ac) ac = v_wme_ac; else ac = d_wme_ac; /* * Apply ACM policy. */ if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { static const int acmap[4] = { WME_AC_BK, /* WME_AC_BE */ WME_AC_BK, /* WME_AC_BK */ WME_AC_BE, /* WME_AC_VI */ WME_AC_VI, /* WME_AC_VO */ }; struct ieee80211com *ic = ni->ni_ic; while (ac != WME_AC_BK && ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) ac = acmap[ac]; } done: M_WME_SETAC(m, ac); return 0; } /* * Insure there is sufficient contiguous space to encapsulate the * 802.11 data frame. If room isn't already there, arrange for it. * Drivers and cipher modules assume we have done the necessary work * and fail rudely if they don't find the space they need. */ struct mbuf * ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, struct ieee80211_key *key, struct mbuf *m) { #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) int needed_space = vap->iv_ic->ic_headroom + hdrsize; if (key != NULL) { /* XXX belongs in crypto code? */ needed_space += key->wk_cipher->ic_header; /* XXX frags */ /* * When crypto is being done in the host we must insure * the data are writable for the cipher routines; clone * a writable mbuf chain. * XXX handle SWMIC specially */ if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { m = m_unshare(m, IEEE80211_M_NOWAIT); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot get writable mbuf\n", __func__); vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ return NULL; } } } /* * We know we are called just before stripping an Ethernet * header and prepending an LLC header. This means we know * there will be * sizeof(struct ether_header) - sizeof(struct llc) * bytes recovered to which we need additional space for the * 802.11 header and any crypto header. */ /* XXX check trailing space and copy instead? */ if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type); if (n == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, "%s: cannot expand storage\n", __func__); vap->iv_stats.is_tx_nobuf++; m_freem(m); return NULL; } KASSERT(needed_space <= MHLEN, ("not enough room, need %u got %d\n", needed_space, MHLEN)); /* * Setup new mbuf to have leading space to prepend the * 802.11 header and any crypto header bits that are * required (the latter are added when the driver calls * back to ieee80211_crypto_encap to do crypto encapsulation). */ /* NB: must be first 'cuz it clobbers m_data */ m_move_pkthdr(n, m); n->m_len = 0; /* NB: m_gethdr does not set */ n->m_data += needed_space; /* * Pull up Ethernet header to create the expected layout. * We could use m_pullup but that's overkill (i.e. we don't * need the actual data) and it cannot fail so do it inline * for speed. */ /* NB: struct ether_header is known to be contiguous */ n->m_len += sizeof(struct ether_header); m->m_len -= sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); /* * Replace the head of the chain. */ n->m_next = m; m = n; } return m; #undef TO_BE_RECLAIMED } /* * Return the transmit key to use in sending a unicast frame. * If a unicast key is set we use that. When no unicast key is set * we fall back to the default transmit key. */ static __inline struct ieee80211_key * ieee80211_crypto_getucastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } else { return &ni->ni_ucastkey; } } /* * Return the transmit key to use in sending a multicast frame. * Multicast traffic always uses the group key which is installed as * the default tx key. */ static __inline struct ieee80211_key * ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, struct ieee80211_node *ni) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) return NULL; return &vap->iv_nw_keys[vap->iv_def_txkey]; } /* * Encapsulate an outbound data frame. The mbuf chain is updated. * If an error is encountered NULL is returned. The caller is required * to provide a node reference and pullup the ethernet header in the * first mbuf. * * NB: Packet is assumed to be processed by ieee80211_classify which * marked EAPOL frames w/ M_EAPOL. */ struct mbuf * ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, struct mbuf *m) { #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) struct ieee80211com *ic = ni->ni_ic; #ifdef IEEE80211_SUPPORT_MESH struct ieee80211_mesh_state *ms = vap->iv_mesh; struct ieee80211_meshcntl_ae10 *mc; struct ieee80211_mesh_route *rt = NULL; int dir = -1; #endif struct ether_header eh; struct ieee80211_frame *wh; struct ieee80211_key *key; struct llc *llc; int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast; int meshhdrsize, meshae; uint8_t *qos; int is_amsdu = 0; IEEE80211_TX_LOCK_ASSERT(ic); is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST)); /* * Copy existing Ethernet header to a safe place. The * rest of the code assumes it's ok to strip it when * reorganizing state for the final encapsulation. */ KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); /* * Insure space for additional headers. First identify * transmit key to use in calculating any buffer adjustments * required. This is also used below to do privacy * encapsulation work. Then calculate the 802.11 header * size and any padding required by the driver. * * Note key may be NULL if we fall back to the default * transmit key and that is not set. In that case the * buffer may not be expanded as needed by the cipher * routines, but they will/should discard it. */ if (vap->iv_flags & IEEE80211_F_PRIVACY) { if (vap->iv_opmode == IEEE80211_M_STA || !IEEE80211_IS_MULTICAST(eh.ether_dhost) || (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { key = ieee80211_crypto_getucastkey(vap, ni); } else if ((vap->iv_opmode == IEEE80211_M_WDS) && (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) { /* * Use ucastkey for DWDS transmit nodes, multicast * or otherwise. * * This is required to ensure that multicast frames * from a DWDS AP to a DWDS STA is encrypted with * a key that can actually work. * * There's no default key for multicast traffic * on a DWDS WDS VAP node (note NOT the DWDS enabled * AP VAP, the dynamically created per-STA WDS node) * so encap fails and transmit fails. */ key = ieee80211_crypto_getucastkey(vap, ni); } else { key = ieee80211_crypto_getmcastkey(vap, ni); } if (key == NULL && (m->m_flags & M_EAPOL) == 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, eh.ether_dhost, "no default transmit key (%s) deftxkey %u", __func__, vap->iv_def_txkey); vap->iv_stats.is_tx_nodefkey++; goto bad; } } else key = NULL; /* * XXX Some ap's don't handle QoS-encapsulated EAPOL * frames so suppress use. This may be an issue if other * ap's require all data frames to be QoS-encapsulated * once negotiated in which case we'll need to make this * configurable. * * Don't send multicast QoS frames. * Technically multicast frames can be QoS if all stations in the * BSS are also QoS. * * NB: mesh data frames are QoS, including multicast frames. */ addqos = (((is_mcast == 0) && (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) || (vap->iv_opmode == IEEE80211_M_MBSS)) && (m->m_flags & M_EAPOL) == 0; if (addqos) hdrsize = sizeof(struct ieee80211_qosframe); else hdrsize = sizeof(struct ieee80211_frame); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { /* * Mesh data frames are encapsulated according to the * rules of Section 11B.8.5 (p.139 of D3.0 spec). * o Group Addressed data (aka multicast) originating * at the local sta are sent w/ 3-address format and * address extension mode 00 * o Individually Addressed data (aka unicast) originating * at the local sta are sent w/ 4-address format and * address extension mode 00 * o Group Addressed data forwarded from a non-mesh sta are * sent w/ 3-address format and address extension mode 01 * o Individually Address data from another sta are sent * w/ 4-address format and address extension mode 10 */ is4addr = 0; /* NB: don't use, disable */ if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); KASSERT(rt != NULL, ("route is NULL")); dir = IEEE80211_FC1_DIR_DSTODS; hdrsize += IEEE80211_ADDR_LEN; if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, vap->iv_myaddr)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_MESH, eh.ether_dhost, "%s", "trying to send to ourself"); goto bad; } meshae = IEEE80211_MESH_AE_10; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae10); } else { meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } else { dir = IEEE80211_FC1_DIR_FROMDS; if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { /* proxy group */ meshae = IEEE80211_MESH_AE_01; meshhdrsize = sizeof(struct ieee80211_meshcntl_ae01); } else { /* group */ meshae = IEEE80211_MESH_AE_00; meshhdrsize = sizeof(struct ieee80211_meshcntl); } } } else { #endif /* * 4-address frames need to be generated for: * o packets sent through a WDS vap (IEEE80211_M_WDS) * o packets sent through a vap marked for relaying * (e.g. a station operating with dynamic WDS) */ is4addr = vap->iv_opmode == IEEE80211_M_WDS || ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); if (is4addr) hdrsize += IEEE80211_ADDR_LEN; meshhdrsize = meshae = 0; #ifdef IEEE80211_SUPPORT_MESH } #endif /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; if (__predict_true((m->m_flags & M_FF) == 0)) { /* * Normal frame. */ m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); if (m == NULL) { /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ goto bad; } /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh.ether_type; } else { #ifdef IEEE80211_SUPPORT_SUPERG /* * Aggregated frame. Check if it's for AMSDU or FF. * * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented * anywhere for some reason. But, since 11n requires * AMSDU RX, we can just assume "11n" == "AMSDU". */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); if (ieee80211_amsdu_tx_ok(ni)) { m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); is_amsdu = 1; } else { m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); } if (m == NULL) #endif goto bad; } datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; goto bad; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; *(uint16_t *)wh->i_dur = 0; qos = NULL; /* NB: quiet compiler */ if (is4addr) { wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); } else switch (vap->iv_opmode) { case IEEE80211_M_STA: wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); /* * NB: always use the bssid from iv_bss as the * neighbor's may be stale after an ibss merge */ IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); break; case IEEE80211_M_HOSTAP: wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); break; #ifdef IEEE80211_SUPPORT_MESH case IEEE80211_M_MBSS: /* NB: offset by hdrspace to deal with DATAPAD */ mc = (struct ieee80211_meshcntl_ae10 *) (mtod(m, uint8_t *) + hdrspace); wh->i_fc[1] = dir; switch (meshae) { case IEEE80211_MESH_AE_00: /* no proxy */ mc->mc_flags = 0; if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); qos =((struct ieee80211_qosframe_addr4 *) wh)->i_qos; } else if (dir == IEEE80211_FC1_DIR_FROMDS) { /* mcast */ IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; } break; case IEEE80211_MESH_AE_01: /* mcast, proxy */ wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); mc->mc_flags = 1; IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, eh.ether_shost); qos = ((struct ieee80211_qosframe *) wh)->i_qos; break; case IEEE80211_MESH_AE_10: /* ucast, proxy */ KASSERT(rt != NULL, ("route is NULL")); IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); mc->mc_flags = IEEE80211_MESH_AE_10; IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; break; default: KASSERT(0, ("meshae %d", meshae)); break; } mc->mc_ttl = ms->ms_ttl; ms->ms_seq++; le32enc(mc->mc_seq, ms->ms_seq); break; #endif case IEEE80211_M_WDS: /* NB: is4addr should always be true */ default: goto bad; } if (m->m_flags & M_MORE_DATA) wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; if (addqos) { int ac, tid; if (is4addr) { qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; /* NB: mesh case handled earlier */ } else if (vap->iv_opmode != IEEE80211_M_MBSS) qos = ((struct ieee80211_qosframe *) wh)->i_qos; ac = M_WME_GETAC(m); /* map from access class/queue to 11e header priorty value */ tid = WME_AC_TO_TID(ac); qos[0] = tid & IEEE80211_QOS_TID; if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) qos[1] = IEEE80211_QOS_MC; else #endif qos[1] = 0; wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA; /* * If this is an A-MSDU then ensure we set the * relevant field. */ if (is_amsdu) qos[0] |= IEEE80211_QOS_AMSDU; /* * XXX TODO TX lock is needed for atomic updates of sequence * numbers. If the driver does it, then don't do it here; * and we don't need the TX lock held. */ if ((m->m_flags & M_AMPDU_MPDU) == 0) { ieee80211_output_seqno_assign(ni, tid, m); } else { /* * NB: don't assign a sequence # to potential * aggregates; we expect this happens at the * point the frame comes off any aggregation q * as otherwise we may introduce holes in the * BA sequence space and/or make window accouting * more difficult. * * XXX may want to control this with a driver * capability; this may also change when we pull * aggregation up into net80211 */ /* NB: zero out i_seq field (for s/w encryption etc) */ *(uint16_t *)wh->i_seq = 0; } } else { ieee80211_output_seqno_assign(ni, IEEE80211_NONQOS_TID, m); /* * XXX TODO: we shouldn't allow EAPOL, etc that would * be forced to be non-QoS traffic to be A-MSDU encapsulated. */ if (is_amsdu) printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", __func__); } /* * Check if xmit fragmentation is required. * * If the hardware does fragmentation offload, then don't bother * doing it here. * * Don't send AMPDU/FF/AMSDU through fragmentation. * * 802.11-2016 10.2.7 (Fragmentation/defragmentation overview) */ if (IEEE80211_CONF_FRAG_OFFLOAD(ic)) txfrag = 0; else txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && !IEEE80211_IS_MULTICAST(wh->i_addr1) && (vap->iv_caps & IEEE80211_C_TXFRAG) && (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); if (key != NULL) { /* * IEEE 802.1X: send EAPOL frames always in the clear. * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. */ if ((m->m_flags & M_EAPOL) == 0 || ((vap->iv_flags & IEEE80211_F_WPA) && (vap->iv_opmode == IEEE80211_M_STA ? !IEEE80211_KEY_UNDEFINED(key) : !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, eh.ether_dhost, "%s", "enmic failed, discard frame"); vap->iv_stats.is_crypto_enmicfail++; goto bad; } } } if (txfrag && !ieee80211_fragment(vap, m, hdrsize, key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) goto bad; m->m_flags |= M_ENCAP; /* mark encapsulated */ IEEE80211_NODE_STAT(ni, tx_data); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_NODE_STAT(ni, tx_mcast); m->m_flags |= M_MCAST; } else IEEE80211_NODE_STAT(ni, tx_ucast); IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); return m; bad: if (m != NULL) m_freem(m); return NULL; #undef WH4 #undef MC01 } /** * @brief Free an 802.11 frame mbuf. * * Note that since a "frame" may consist of an mbuf packet * list containing the 802.11 fragments that make up said * frame, it will free everything in the mbuf packet list. * * @param m mbuf packet list to free */ void ieee80211_free_mbuf(struct mbuf *m) { struct mbuf *next; if (m == NULL) return; do { next = m->m_nextpkt; m->m_nextpkt = NULL; m_freem(m); } while ((m = next) != NULL); } /** * @brief Fragment the frame according to the specified mtu. * * This implements the fragmentation part of 802.11-2016 10.2.7 * (Fragmentation/defragmentation overview.) * * The size of the 802.11 header (w/o padding) is provided * so we don't need to recalculate it. We create a new * mbuf for each fragment and chain it through m_nextpkt; * we might be able to optimize this by reusing the original * packet's mbufs but that is significantly more complicated. * * A node reference is NOT acquired for each fragment in * the list - the caller is assumed to have taken a node * reference for the whole list. The fragment mbufs do not * have a node pointer. * * Fragments will have the sequence number and fragment numbers * assigned. However, Fragments will NOT have a sequence number * assigned via M_SEQNO_SET. * * This must be called after assigning sequence numbers; it * modifies the i_seq field in the 802.11 header to include * the fragment number. * * @param vap ieee80211vap interface * @param m0 pointer to mbuf list to fragment * @param hdrsize header size to reserver * @param ciphdrsize crypto cipher header size to reserve * @param mtu maximum fragment size * @retval 1 if successful, with the mbuf pointed at by m0 * turned into an mbuf list of fragments (with the original * mbuf being truncated.) * @retval 0 if failure, the mbuf needs to be freed by the caller */ static int ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, u_int hdrsize, u_int ciphdrsize, u_int mtu) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_frame *wh, *whf; struct mbuf *m, *prev; u_int totalhdrsize, fragno, fragsize, off, remainder, payload; u_int hdrspace; KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); KASSERT(m0->m_pkthdr.len > mtu, ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); /* * Honor driver DATAPAD requirement. */ if (ic->ic_flags & IEEE80211_F_DATAPAD) hdrspace = roundup(hdrsize, sizeof(uint32_t)); else hdrspace = hdrsize; wh = mtod(m0, struct ieee80211_frame *); /* NB: mark the first frag; it will be propagated below */ wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; totalhdrsize = hdrspace + ciphdrsize; fragno = 1; off = mtu - ciphdrsize; remainder = m0->m_pkthdr.len - off; prev = m0; do { fragsize = MIN(totalhdrsize + remainder, mtu); m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) goto bad; /* leave room to prepend any cipher header */ m_align(m, fragsize - ciphdrsize); /* * Form the header in the fragment. Note that since * we mark the first fragment with the MORE_FRAG bit * it automatically is propagated to each fragment; we * need only clear it on the last fragment (done below). * NB: frag 1+ dont have Mesh Control field present. */ whf = mtod(m, struct ieee80211_frame *); memcpy(whf, wh, hdrsize); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC; #endif *(uint16_t *)&whf->i_seq[0] |= htole16( (fragno & IEEE80211_SEQ_FRAG_MASK) << IEEE80211_SEQ_FRAG_SHIFT); fragno++; payload = fragsize - totalhdrsize; /* NB: destination is known to be contiguous */ m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); m->m_len = hdrspace + payload; m->m_pkthdr.len = hdrspace + payload; m->m_flags |= M_FRAG; /* chain up the fragment */ prev->m_nextpkt = m; prev = m; /* deduct fragment just formed */ remainder -= payload; off += payload; } while (remainder != 0); /* set the last fragment */ m->m_flags |= M_LASTFRAG; whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; /* strip first mbuf now that everything has been copied */ m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); m0->m_flags |= M_FIRSTFRAG | M_FRAG; vap->iv_stats.is_tx_fragframes++; vap->iv_stats.is_tx_frags += fragno-1; return 1; bad: /* reclaim fragments but leave original frame for caller to free */ ieee80211_free_mbuf(m0->m_nextpkt); m0->m_nextpkt = NULL; return 0; } /* * Add a supported rates element id to a frame. */ uint8_t * ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) { int nrates; *frm++ = IEEE80211_ELEMID_RATES; nrates = rs->rs_nrates; if (nrates > IEEE80211_RATE_SIZE) nrates = IEEE80211_RATE_SIZE; *frm++ = nrates; memcpy(frm, rs->rs_rates, nrates); return frm + nrates; } /* * Add an extended supported rates element id to a frame. */ uint8_t * ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) { /* * Add an extended supported rates element if operating in 11g mode. */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) { int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; *frm++ = IEEE80211_ELEMID_XRATES; *frm++ = nrates; memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); frm += nrates; } return frm; } /* * Add an ssid element to a frame. */ uint8_t * ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) { *frm++ = IEEE80211_ELEMID_SSID; *frm++ = len; memcpy(frm, ssid, len); return frm + len; } /* * Add an erp element to a frame. */ static uint8_t * ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; uint8_t erp; *frm++ = IEEE80211_ELEMID_ERP; *frm++ = 1; erp = 0; /* * TODO: This uses the global flags for now because * the per-VAP flags are fine for per-VAP, but don't * take into account which VAPs share the same channel * and which are on different channels. * * ERP and HT/VHT protection mode is a function of * how many stations are on a channel, not specifically * the VAP or global. But, until we grow that status, * the global flag will have to do. */ if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR) erp |= IEEE80211_ERP_NON_ERP_PRESENT; /* * TODO: same as above; these should be based not * on the vap or ic flags, but instead on a combination * of per-VAP and channels. */ if (ic->ic_flags & IEEE80211_F_USEPROT) erp |= IEEE80211_ERP_USE_PROTECTION; if (ic->ic_flags & IEEE80211_F_USEBARKER) erp |= IEEE80211_ERP_LONG_PREAMBLE; *frm++ = erp; return frm; } /* * Add a CFParams element to a frame. */ static uint8_t * ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) { #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) *frm++ = IEEE80211_ELEMID_CFPARMS; *frm++ = 6; *frm++ = 0; /* CFP count */ *frm++ = 2; /* CFP period */ ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ return frm; #undef ADDSHORT } static __inline uint8_t * add_appie(uint8_t *frm, const struct ieee80211_appie *ie) { memcpy(frm, ie->ie_data, ie->ie_len); return frm + ie->ie_len; } static __inline uint8_t * add_ie(uint8_t *frm, const uint8_t *ie) { memcpy(frm, ie, 2 + ie[1]); return frm + 2 + ie[1]; } #define WME_OUI_BYTES 0x00, 0x50, 0xf2 /* * Add a WME information element to a frame. */ uint8_t * ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme, struct ieee80211_node *ni) { static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE }; struct ieee80211vap *vap = ni->ni_vap; *frm++ = IEEE80211_ELEMID_VENDOR; *frm++ = sizeof(struct ieee80211_wme_info) - 2; memcpy(frm, oui, sizeof(oui)); frm += sizeof(oui); *frm++ = WME_INFO_OUI_SUBTYPE; *frm++ = WME_VERSION; /* QoS info field depends upon operating mode */ switch (vap->iv_opmode) { case IEEE80211_M_HOSTAP: *frm = wme->wme_bssChanParams.cap_info; if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD) *frm |= WME_CAPINFO_UAPSD_EN; frm++; break; case IEEE80211_M_STA: /* * NB: UAPSD drivers must set this up in their * VAP creation method. */ *frm++ = vap->iv_uapsdinfo; break; default: *frm++ = 0; break; } return frm; } /* * Add a WME parameters element to a frame. */ static uint8_t * ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme, int uapsd_enable) { #define ADDSHORT(frm, v) do { \ le16enc(frm, v); \ frm += 2; \ } while (0) /* NB: this works 'cuz a param has an info at the front */ static const struct ieee80211_wme_info param = { .wme_id = IEEE80211_ELEMID_VENDOR, .wme_len = sizeof(struct ieee80211_wme_param) - 2, .wme_oui = { WME_OUI_BYTES }, .wme_type = WME_OUI_TYPE, .wme_subtype = WME_PARAM_OUI_SUBTYPE, .wme_version = WME_VERSION, }; int i; memcpy(frm, ¶m, sizeof(param)); frm += __offsetof(struct ieee80211_wme_info, wme_info); *frm = wme->wme_bssChanParams.cap_info; /* AC info */ if (uapsd_enable) *frm |= WME_CAPINFO_UAPSD_EN; frm++; *frm++ = 0; /* reserved field */ /* XXX TODO - U-APSD bits - SP, flags below */ for (i = 0; i < WME_NUM_AC; i++) { const struct wmeParams *ac = &wme->wme_bssChanParams.cap_wmeParams[i]; *frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI) | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM) | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN) ; *frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) ; ADDSHORT(frm, ac->wmep_txopLimit); } return frm; #undef ADDSHORT } #undef WME_OUI_BYTES /* * Add an 11h Power Constraint element to a frame. */ static uint8_t * ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) { const struct ieee80211_channel *c = vap->iv_bss->ni_chan; /* XXX per-vap tx power limit? */ int8_t limit = vap->iv_ic->ic_txpowlimit / 2; frm[0] = IEEE80211_ELEMID_PWRCNSTR; frm[1] = 1; frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; return frm + 3; } /* * Add an 11h Power Capability element to a frame. */ static uint8_t * ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) { frm[0] = IEEE80211_ELEMID_PWRCAP; frm[1] = 2; frm[2] = c->ic_minpower; frm[3] = c->ic_maxpower; return frm + 4; } /* * Add an 11h Supported Channels element to a frame. */ static uint8_t * ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) { static const int ielen = 26; frm[0] = IEEE80211_ELEMID_SUPPCHAN; frm[1] = ielen; /* XXX not correct */ memcpy(frm+2, ic->ic_chan_avail, ielen); return frm + 2 + ielen; } /* * Add an 11h Quiet time element to a frame. */ static uint8_t * ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update) { struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; quiet->quiet_ie = IEEE80211_ELEMID_QUIET; quiet->len = 6; /* * Only update every beacon interval - otherwise probe responses * would update the quiet count value. */ if (update) { if (vap->iv_quiet_count_value == 1) vap->iv_quiet_count_value = vap->iv_quiet_count; else if (vap->iv_quiet_count_value > 1) vap->iv_quiet_count_value--; } if (vap->iv_quiet_count_value == 0) { /* value 0 is reserved as per 802.11h standerd */ vap->iv_quiet_count_value = 1; } quiet->tbttcount = vap->iv_quiet_count_value; quiet->period = vap->iv_quiet_period; quiet->duration = htole16(vap->iv_quiet_duration); quiet->offset = htole16(vap->iv_quiet_offset); return frm + sizeof(*quiet); } /* * Add an 11h Channel Switch Announcement element to a frame. * Note that we use the per-vap CSA count to adjust the global * counter so we can use this routine to form probe response * frames and get the current count. */ static uint8_t * ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; csa->csa_ie = IEEE80211_ELEMID_CSA; csa->csa_len = 3; csa->csa_mode = 1; /* XXX force quiet on channel */ csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; return frm + sizeof(*csa); } /* * Add an 11h country information element to a frame. */ static uint8_t * ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) { if (ic->ic_countryie == NULL || ic->ic_countryie_chan != ic->ic_bsschan) { /* * Handle lazy construction of ie. This is done on * first use and after a channel change that requires * re-calculation. */ if (ic->ic_countryie != NULL) IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); ic->ic_countryie = ieee80211_alloc_countryie(ic); if (ic->ic_countryie == NULL) return frm; ic->ic_countryie_chan = ic->ic_bsschan; } return add_appie(frm, ic->ic_countryie); } uint8_t * ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) return (add_ie(frm, vap->iv_wpa_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) { if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) return (add_ie(frm, vap->iv_rsn_ie)); else { /* XXX else complain? */ return (frm); } } uint8_t * ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) { if (ni->ni_flags & IEEE80211_NODE_QOS) { *frm++ = IEEE80211_ELEMID_QOS; *frm++ = 1; *frm++ = 0; } return (frm); } /* * ieee80211_send_probereq(): send a probe request frame with the specified ssid * and any optional information element data; some helper functions as FW based * HW scans need some of that information passed too. */ static uint32_t ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic) { const struct ieee80211_rateset *rs; rs = ieee80211_get_suprates(ic, ic->ic_curchan); /* * prreq frame format * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates (if needed) * [tlv] HT cap (optional) * [tlv] VHT cap (optional) * [tlv] WPA (optional) * [tlv] user-specified ie's */ return ( 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ? 2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0) + (((vap->iv_opmode == IEEE80211_M_IBSS) && (vap->iv_flags_ht & IEEE80211_FHT_HT)) ? sizeof(struct ieee80211_ie_htcap) : 0) #ifdef notyet + sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */ + 2 + sizeof(struct ieee80211_vht_cap) #endif + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ? vap->iv_wpa_ie[1] : 0) + (vap->iv_appie_probereq != NULL ? vap->iv_appie_probereq->ie_len : 0) ); } int ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic, uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen, bool alloc) { const struct ieee80211_rateset *rs; uint8_t *frm; uint32_t len; if (!alloc && (frmp == NULL || frmlen == NULL)) return (EINVAL); len = ieee80211_probereq_ie_len(vap, ic); if (!alloc && len > *frmlen) return (ENOBUFS); /* For HW scans we usually do not pass in the SSID as IE. */ if (ssidlen == -1) len -= (2 + IEEE80211_NWID_LEN); if (alloc) { frm = IEEE80211_MALLOC(len, M_80211_VAP, IEEE80211_M_WAITOK | IEEE80211_M_ZERO); *frmp = frm; *frmlen = len; } else frm = *frmp; if (ssidlen != -1) frm = ieee80211_add_ssid(frm, ssid, ssidlen); rs = ieee80211_get_suprates(ic, ic->ic_curchan); frm = ieee80211_add_rates(frm, rs); frm = ieee80211_add_xrates(frm, rs); /* * Note: we can't use bss; we don't have one yet. * * So, we should announce our capabilities * in this channel mode (2g/5g), not the * channel details itself. */ if ((vap->iv_opmode == IEEE80211_M_IBSS) && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { struct ieee80211_channel *c; /* * Get the HT channel that we should try upgrading to. * If we can do 40MHz then this'll upgrade it appropriately. */ c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); frm = ieee80211_add_htcap_ch(frm, vap, c); } /* * XXX TODO: need to figure out what/how to update the * VHT channel. */ #ifdef notyet if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) { struct ieee80211_channel *c; c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, vap->iv_flags_ht); c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags); frm = ieee80211_add_vhtcap_ch(frm, vap, c); } #endif frm = ieee80211_add_wpa(frm, vap); if (vap->iv_appie_probereq != NULL) frm = add_appie(frm, vap->iv_appie_probereq); if (!alloc) { *frmp = frm; *frmlen = len; } return (0); } int ieee80211_send_probereq(struct ieee80211_node *ni, const uint8_t sa[IEEE80211_ADDR_LEN], const uint8_t da[IEEE80211_ADDR_LEN], const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t *ssid, size_t ssidlen) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss; const struct ieee80211_txparam *tp; struct ieee80211_bpf_params params; struct mbuf *m; uint8_t *frm; uint32_t frmlen; int ret; bss = ieee80211_ref_node(vap->iv_bss); if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, "block %s frame in CAC state", "probe request"); vap->iv_stats.is_tx_badstate++; ieee80211_free_node(bss); return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); /* See comments above for entire frame format. */ frmlen = ieee80211_probereq_ie_len(vap, ic); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen, false); KASSERT(ret == 0, ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret)); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), ("leading space %zd", M_LEADINGSPACE(m))); M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); if (m == NULL) { /* NB: cannot happen */ ieee80211_free_node(ni); ieee80211_free_node(bss); return ENOMEM; } IEEE80211_TX_LOCK(ic); ieee80211_send_setup(ni, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, IEEE80211_NONQOS_TID, sa, da, bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_NODE_STAT(ni, tx_probereq); IEEE80211_NODE_STAT(ni, tx_mgmt); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), sa, ":", da, ":", ssidlen, ssid); memset(¶ms, 0, sizeof(params)); params.ibp_pri = M_WME_GETAC(m); tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; params.ibp_rate0 = tp->mgmtrate; if (IEEE80211_IS_MULTICAST(da)) { params.ibp_flags |= IEEE80211_BPF_NOACK; params.ibp_try0 = 1; } else params.ibp_try0 = tp->maxretry; params.ibp_power = ni->ni_txpower; ret = ieee80211_raw_output(vap, ni, m, ¶ms); IEEE80211_TX_UNLOCK(ic); ieee80211_free_node(bss); return (ret); } /* * Calculate capability information for mgt frames. * * This fills out the 16 bit capability field in various management * frames for non-DMG STAs. DMG STAs are not supported. * * See 802.11-2020 9.4.1.4 (Capability Information Field) for the * field definitions. */ uint16_t ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) { uint16_t capinfo; KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); if (vap->iv_opmode == IEEE80211_M_HOSTAP) capinfo = IEEE80211_CAPINFO_ESS; else if (vap->iv_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = 0; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (vap->iv_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; return capinfo; } /* * Send a management frame. The node is for the destination (or ic_bss * when in station mode). Nodes other than ic_bss have their reference * count bumped to reflect our use for an indeterminant time. */ int ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) { #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_node *bss = vap->iv_bss; struct ieee80211_bpf_params params; struct mbuf *m; uint8_t *frm; uint16_t capinfo; int has_challenge, is_shared_key, ret, status; KASSERT(ni != NULL, ("null node")); /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, ni, ether_sprintf(ni->ni_macaddr), ieee80211_node_refcnt(ni)+1); ieee80211_ref_node(ni); memset(¶ms, 0, sizeof(params)); switch (type) { case IEEE80211_FC0_SUBTYPE_AUTH: status = arg >> 16; arg &= 0xffff; has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || arg == IEEE80211_AUTH_SHARED_RESPONSE) && ni->ni_challenge != NULL); /* * Deduce whether we're doing open authentication or * shared key authentication. We do the latter if * we're in the middle of a shared key authentication * handshake or if we're initiating an authentication * request and configured to use shared key. */ is_shared_key = has_challenge || arg >= IEEE80211_AUTH_SHARED_RESPONSE || (arg == IEEE80211_AUTH_SHARED_REQUEST && bss->ni_authmode == IEEE80211_AUTH_SHARED); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 3 * sizeof(uint16_t) + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); ((uint16_t *)frm)[0] = (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) : htole16(IEEE80211_AUTH_ALG_OPEN); ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ ((uint16_t *)frm)[2] = htole16(status);/* status */ if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { ((uint16_t *)frm)[3] = htole16((IEEE80211_CHALLENGE_LEN << 8) | IEEE80211_ELEMID_CHALLENGE); memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, IEEE80211_CHALLENGE_LEN); m->m_pkthdr.len = m->m_len = 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "request encrypt frame (%s)", __func__); /* mark frame for encryption */ params.ibp_flags |= IEEE80211_BPF_CRYPTO; } } else m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); /* XXX not right for shared key */ if (status == IEEE80211_STATUS_SUCCESS) IEEE80211_NODE_STAT(ni, tx_auth); else IEEE80211_NODE_STAT(ni, tx_auth_fail); if (vap->iv_opmode == IEEE80211_M_STA) ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "send station deauthenticate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_deauth); IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); ieee80211_node_unauthorize(ni); /* port closed */ break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: /* * asreq frame format * [2] capability information * [2] listen interval * [6*] current AP address (reassoc only) * [tlv] ssid * [tlv] supported rates * [tlv] extended supported rates * [4] power capability (optional) * [28] supported channels (optional) * [tlv] HT capabilities * [tlv] VHT capabilities * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Atheros capabilities (if negotiated) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + IEEE80211_ADDR_LEN + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + 4 + 2 + 26 + sizeof(struct ieee80211_wme_info) + sizeof(struct ieee80211_ie_htcap) + 2 + sizeof(struct ieee80211_vht_cap) + 4 + sizeof(struct ieee80211_ie_htcap) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_wpa != NULL ? vap->iv_appie_wpa->ie_len : 0) + (vap->iv_appie_assocreq != NULL ? vap->iv_appie_assocreq->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode %u", vap->iv_opmode)); capinfo = IEEE80211_CAPINFO_ESS; if (vap->iv_flags & IEEE80211_F_PRIVACY) capinfo |= IEEE80211_CAPINFO_PRIVACY; /* * NB: Some 11a AP's reject the request when * short preamble is set. */ if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ic->ic_caps & IEEE80211_C_SHSLOT)) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && (vap->iv_flags & IEEE80211_F_DOTH)) capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; *(uint16_t *)frm = htole16(capinfo); frm += 2; KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, bss->ni_intval)); frm += 2; if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { IEEE80211_ADDR_COPY(frm, bss->ni_bssid); frm += IEEE80211_ADDR_LEN; } frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_rsn(frm, vap); frm = ieee80211_add_xrates(frm, &ni->ni_rates); if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { frm = ieee80211_add_powercapability(frm, ic->ic_curchan); frm = ieee80211_add_supportedchannels(frm, ic); } /* * Check the channel - we may be using an 11n NIC with an * 11n capable station, but we're configured to be an 11b * channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { frm = ieee80211_add_htcap(frm, ni); } if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) && IEEE80211_IS_CHAN_VHT(ni->ni_chan) && ni->ni_ies.vhtcap_ie != NULL && ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) { frm = ieee80211_add_vhtcap(frm, ni); } frm = ieee80211_add_wpa(frm, vap); if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni); /* * Same deal - only send HT info if we're on an 11n * capable channel. */ if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && IEEE80211_IS_CHAN_HT(ni->ni_chan) && ni->ni_ies.htcap_ie != NULL && ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { frm = ieee80211_add_htcap_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); } #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocreq != NULL) frm = add_appie(frm, vap->iv_appie_assocreq); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); ieee80211_add_callback(m, ieee80211_tx_mgt_cb, (void *) vap->iv_state); break; case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] HT capabilities (standard, if STA enabled) * [tlv] HT information (standard, if STA enabled) * [tlv] VHT capabilities (standard, if STA enabled) * [tlv] VHT information (standard, if STA enabled) * [tlv] WME (if configured and STA enabled) * [tlv] HT capabilities (vendor OUI, if STA enabled) * [tlv] HT information (vendor OUI, if STA enabled) * [tlv] Atheros capabilities (if STA enabled) * [tlv] AppIE's (optional) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t) + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_RATE_SIZE + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) + 4 + 2 + sizeof(struct ieee80211_vht_cap) + 2 + sizeof(struct ieee80211_vht_operation) + sizeof(struct ieee80211_wme_param) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif + (vap->iv_appie_assocresp != NULL ? vap->iv_appie_assocresp->ie_len : 0) ); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; *(uint16_t *)frm = htole16(arg); /* status */ frm += 2; if (arg == IEEE80211_STATUS_SUCCESS) { *(uint16_t *)frm = htole16(ni->ni_associd); IEEE80211_NODE_STAT(ni, tx_assoc); } else IEEE80211_NODE_STAT(ni, tx_assoc_fail); frm += 2; frm = ieee80211_add_rates(frm, &ni->ni_rates); frm = ieee80211_add_xrates(frm, &ni->ni_rates); /* NB: respond according to what we received */ if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { frm = ieee80211_add_htcap(frm, ni); frm = ieee80211_add_htinfo(frm, ni); } if ((vap->iv_flags & IEEE80211_F_WME) && ni->ni_ies.wme_ie != NULL) frm = ieee80211_add_wme_param(frm, &ic->ic_wme, !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } if (ni->ni_flags & IEEE80211_NODE_VHT) { frm = ieee80211_add_vhtcap(frm, ni); frm = ieee80211_add_vhtinfo(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) frm = ieee80211_add_ath(frm, IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), ((vap->iv_flags & IEEE80211_F_WPA) == 0 && ni->ni_authmode != IEEE80211_AUTH_8021X) ? vap->iv_def_txkey : IEEE80211_KEYIX_NONE); #endif /* IEEE80211_SUPPORT_SUPERG */ if (vap->iv_appie_assocresp != NULL) frm = add_appie(frm, vap->iv_appie_assocresp); m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); break; case IEEE80211_FC0_SUBTYPE_DISASSOC: IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "send station disassociate (reason: %d (%s))", arg, ieee80211_reason_to_string(arg)); m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), sizeof(uint16_t)); if (m == NULL) senderr(ENOMEM, is_tx_nobuf); *(uint16_t *)frm = htole16(arg); /* reason */ m->m_pkthdr.len = m->m_len = sizeof(uint16_t); IEEE80211_NODE_STAT(ni, tx_disassoc); IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); break; default: IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, "invalid mgmt frame type %u", type); senderr(EINVAL, is_tx_unknownmgt); /* NOTREACHED */ } /* NB: force non-ProbeResp frames to the highest queue */ params.ibp_pri = WME_AC_VO; params.ibp_rate0 = bss->ni_txparms->mgmtrate; /* NB: we know all frames are unicast */ params.ibp_try0 = bss->ni_txparms->maxretry; params.ibp_power = bss->ni_txpower; return ieee80211_mgmt_output(ni, m, type, ¶ms); bad: ieee80211_free_node(ni); return ret; #undef senderr #undef HTFLAGS } /* * Return an mbuf with a probe response frame in it. * Space is left to prepend and 802.11 header at the * front but it's left to the caller to fill in. */ struct mbuf * ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) { struct ieee80211vap *vap = bss->ni_vap; struct ieee80211com *ic = bss->ni_ic; const struct ieee80211_rateset *rs; struct mbuf *m; uint16_t capinfo; uint8_t *frm; /* * probe response frame format * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [tlv] parameter set (FH/DS) * [tlv] parameter set (IBSS) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN (optional) * [tlv] HT capabilities * [tlv] HT information * [tlv] VHT capabilities * [tlv] VHT information * [tlv] WPA (optional) * [tlv] WME (optional) * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities * [tlv] AppIE's (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) */ m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), 8 + sizeof(uint16_t) + sizeof(uint16_t) + 2 + IEEE80211_NWID_LEN + 2 + IEEE80211_RATE_SIZE + 7 /* max(7,3) */ + IEEE80211_COUNTRY_MAX_SIZE + 3 + sizeof(struct ieee80211_csa_ie) + sizeof(struct ieee80211_quiet_ie) + 3 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_ie_htcap) + sizeof(struct ieee80211_ie_htinfo) + sizeof(struct ieee80211_ie_wpa) + sizeof(struct ieee80211_wme_param) + 4 + sizeof(struct ieee80211_ie_htcap) + 4 + sizeof(struct ieee80211_ie_htinfo) + 2 + sizeof(struct ieee80211_vht_cap) + 2 + sizeof(struct ieee80211_vht_operation) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + IEEE80211_MESHID_LEN + sizeof(struct ieee80211_meshconf_ie) #endif + (vap->iv_appie_proberesp != NULL ? vap->iv_appie_proberesp->ie_len : 0) ); if (m == NULL) { vap->iv_stats.is_tx_nobuf++; return NULL; } memset(frm, 0, 8); /* timestamp should be filled later */ frm += 8; *(uint16_t *)frm = htole16(bss->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); *(uint16_t *)frm = htole16(capinfo); frm += 2; frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); rs = ieee80211_get_suprates(ic, bss->ni_chan); frm = ieee80211_add_rates(frm, rs); if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { *frm++ = IEEE80211_ELEMID_FHPARMS; *frm++ = 5; *frm++ = bss->ni_fhdwell & 0x00ff; *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; *frm++ = IEEE80211_FH_CHANSET( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = IEEE80211_FH_CHANPAT( ieee80211_chan2ieee(ic, bss->ni_chan)); *frm++ = bss->ni_fhindex; } else { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); } if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ } if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { if (vap->iv_quiet) frm = ieee80211_add_quiet(frm, vap, 0); } } if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) frm = ieee80211_add_erp(frm, vap); frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); /* * NB: legacy 11b clients do not get certain ie's. * The caller identifies such clients by passing * a token in legacy to us. Could expand this to be * any legacy client for stuff like HT ie's. */ if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap(frm, bss); frm = ieee80211_add_htinfo(frm, bss); } if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_vhtcap(frm, bss); frm = ieee80211_add_vhtinfo(frm, bss); } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) frm = ieee80211_add_wme_param(frm, &ic->ic_wme, !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && legacy != IEEE80211_SEND_LEGACY_11B) { frm = ieee80211_add_htcap_vendor(frm, bss); frm = ieee80211_add_htinfo_vendor(frm, bss); } #ifdef IEEE80211_SUPPORT_SUPERG if ((vap->iv_flags & IEEE80211_F_ATHEROS) && legacy != IEEE80211_SEND_LEGACY_11B) frm = ieee80211_add_athcaps(frm, bss); #endif if (vap->iv_appie_proberesp != NULL) frm = add_appie(frm, vap->iv_appie_proberesp); #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); frm = ieee80211_add_meshconf(frm, vap); } #endif m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); return m; } /* * Send a probe response frame to the specified mac address. * This does not go through the normal mgt frame api so we * can specify the destination address and re-use the bss node * for the sta reference. */ int ieee80211_send_proberesp(struct ieee80211vap *vap, const uint8_t da[IEEE80211_ADDR_LEN], int legacy) { struct ieee80211_node *bss = vap->iv_bss; struct ieee80211com *ic = vap->iv_ic; struct mbuf *m; int ret; if (vap->iv_state == IEEE80211_S_CAC) { IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, "block %s frame in CAC state", "probe response"); vap->iv_stats.is_tx_badstate++; return EIO; /* XXX */ } /* * Hold a reference on the node so it doesn't go away until after * the xmit is complete all the way in the driver. On error we * will remove our reference. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), ieee80211_node_refcnt(bss)+1); ieee80211_ref_node(bss); m = ieee80211_alloc_proberesp(bss, legacy); if (m == NULL) { ieee80211_free_node(bss); return ENOMEM; } M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); KASSERT(m != NULL, ("no room for header")); IEEE80211_TX_LOCK(ic); ieee80211_send_setup(bss, m, IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); /* XXX power management? */ m->m_flags |= M_ENCAP; /* mark encapsulated */ M_WME_SETAC(m, WME_AC_BE); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, "send probe resp on channel %u to %s%s\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), legacy ? " " : ""); IEEE80211_NODE_STAT(bss, tx_mgmt); ret = ieee80211_raw_output(vap, bss, m, NULL); IEEE80211_TX_UNLOCK(ic); return (ret); } /* * Allocate and build a RTS (Request To Send) control frame. */ struct mbuf * ieee80211_alloc_rts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], const uint8_t ta[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_rts *rts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); if (m != NULL) { rts = mtod(m, struct ieee80211_frame_rts *); rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)rts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(rts->i_ra, ra); IEEE80211_ADDR_COPY(rts->i_ta, ta); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); } return m; } /* * Allocate and build a CTS (Clear To Send) control frame. */ struct mbuf * ieee80211_alloc_cts(struct ieee80211com *ic, const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) { struct ieee80211_frame_cts *cts; struct mbuf *m; /* XXX honor ic_headroom */ m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); if (m != NULL) { cts = mtod(m, struct ieee80211_frame_cts *); cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(u_int16_t *)cts->i_dur = htole16(dur); IEEE80211_ADDR_COPY(cts->i_ra, ra); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); } return m; } /* * Wrapper for CTS/RTS frame allocation. */ struct mbuf * ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m, uint8_t rate, int prot) { struct ieee80211com *ic = ni->ni_ic; struct ieee80211vap *vap = ni->ni_vap; const struct ieee80211_frame *wh; struct mbuf *mprot; uint16_t dur; int pktlen, isshort; KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, ("wrong protection type %d", prot)); wh = mtod(m, const struct ieee80211_frame *); pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0; dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) + ieee80211_ack_duration(ic->ic_rt, rate, isshort); if (prot == IEEE80211_PROT_RTSCTS) { /* NB: CTS is the same size as an ACK */ dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); } else mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur); return (mprot); } static void ieee80211_tx_mgt_timeout(void *arg) { struct ieee80211vap *vap = arg; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "vap %p mode %s state %s flags %#x & %#x\n", vap, ieee80211_opmode_name[vap->iv_opmode], ieee80211_state_name[vap->iv_state], vap->iv_ic->ic_flags, IEEE80211_F_SCAN); IEEE80211_LOCK(vap->iv_ic); if (vap->iv_state != IEEE80211_S_INIT && (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* * NB: it's safe to specify a timeout as the reason here; * it'll only be used in the right state. */ ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_TIMEOUT); } IEEE80211_UNLOCK(vap->iv_ic); } /* * This is the callback set on net80211-sourced transmitted * authentication request frames. * * This does a couple of things: * * + If the frame transmitted was a success, it schedules a future * event which will transition the interface to scan. * If a state transition _then_ occurs before that event occurs, * said state transition will cancel this callout. * * + If the frame transmit was a failure, it immediately schedules * the transition back to scan. */ static void ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) { struct ieee80211vap *vap = ni->ni_vap; enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg; /* * Frame transmit completed; arrange timer callback. If * transmit was successfully we wait for response. Otherwise * we arrange an immediate callback instead of doing the * callback directly since we don't know what state the driver * is in (e.g. what locks it is holding). This work should * not be too time-critical and not happen too often so the * added overhead is acceptable. * * XXX what happens if !acked but response shows up before callback? */ if (vap->iv_state == ostate) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "ni %p mode %s state %s arg %p status %d\n", ni, ieee80211_opmode_name[vap->iv_opmode], ieee80211_state_name[vap->iv_state], arg, status); callout_reset(&vap->iv_mgtsend, status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, ieee80211_tx_mgt_timeout, vap); } } static void ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_rateset *rs = &ni->ni_rates; uint16_t capinfo; /* * beacon frame format * * TODO: update to 802.11-2012; a lot of stuff has changed; * vendor extensions should be at the end, etc. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * XXX TODO: Quiet * XXX TODO: IBSS DFS * XXX TODO: TPC report * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * XXX TODO: BSSLOAD * (XXX EDCA parameter set, QoS capability?) * XXX TODO: AP channel report * * [tlv] HT capabilities * [tlv] HT information * XXX TODO: 20/40 BSS coexistence * Mesh: * XXX TODO: Meshid * XXX TODO: mesh config * XXX TODO: mesh awake window * XXX TODO: beacon timing (mesh, etc) * XXX TODO: MCCAOP Advertisement Overview * XXX TODO: MCCAOP Advertisement * XXX TODO: Mesh channel switch parameters * VHT: * XXX TODO: VHT capabilities * XXX TODO: VHT operation * XXX TODO: VHT transmit power envelope * XXX TODO: channel switch wrapper element * XXX TODO: extended BSS load element * * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * [tlv] Atheros capabilities (optional) * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) */ memset(bo, 0, sizeof(*bo)); memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ frm += 8; *(uint16_t *)frm = htole16(ni->ni_intval); frm += 2; capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); bo->bo_caps = (uint16_t *)frm; *(uint16_t *)frm = htole16(capinfo); frm += 2; *frm++ = IEEE80211_ELEMID_SSID; if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { *frm++ = ni->ni_esslen; memcpy(frm, ni->ni_essid, ni->ni_esslen); frm += ni->ni_esslen; } else *frm++ = 0; frm = ieee80211_add_rates(frm, rs); if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); } if (ic->ic_flags & IEEE80211_F_PCF) { bo->bo_cfp = frm; frm = ieee80211_add_cfparms(frm, ic); } bo->bo_tim = frm; if (vap->iv_opmode == IEEE80211_M_IBSS) { *frm++ = IEEE80211_ELEMID_IBSSPARMS; *frm++ = 2; *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ bo->bo_tim_len = 0; } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* TIM IE is the same for Mesh and Hostap */ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; tie->tim_ie = IEEE80211_ELEMID_TIM; tie->tim_len = 4; /* length */ tie->tim_count = 0; /* DTIM count */ tie->tim_period = vap->iv_dtim_period; /* DTIM period */ tie->tim_bitctl = 0; /* bitmap control */ tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ frm += sizeof(struct ieee80211_tim_ie); bo->bo_tim_len = 1; } bo->bo_tim_trailer = frm; if ((vap->iv_flags & IEEE80211_F_DOTH) || (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) frm = ieee80211_add_countryie(frm, ic); if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) frm = ieee80211_add_powerconstraint(frm, vap); bo->bo_csa = frm; if (ic->ic_flags & IEEE80211_F_CSAPENDING) frm = ieee80211_add_csa(frm, vap); } else bo->bo_csa = frm; bo->bo_quiet = NULL; if (vap->iv_flags & IEEE80211_F_DOTH) { if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && (vap->iv_quiet == 1)) { /* * We only insert the quiet IE offset if * the quiet IE is enabled. Otherwise don't * put it here or we'll just overwrite * some other beacon contents. */ if (vap->iv_quiet) { bo->bo_quiet = frm; frm = ieee80211_add_quiet(frm,vap, 0); } } } if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { bo->bo_erp = frm; frm = ieee80211_add_erp(frm, vap); } frm = ieee80211_add_xrates(frm, rs); frm = ieee80211_add_rsn(frm, vap); if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { frm = ieee80211_add_htcap(frm, ni); bo->bo_htinfo = frm; frm = ieee80211_add_htinfo(frm, ni); } if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) { frm = ieee80211_add_vhtcap(frm, ni); bo->bo_vhtinfo = frm; frm = ieee80211_add_vhtinfo(frm, ni); /* Transmit power envelope */ /* Channel switch wrapper element */ /* Extended bss load element */ } frm = ieee80211_add_wpa(frm, vap); if (vap->iv_flags & IEEE80211_F_WME) { bo->bo_wme = frm; frm = ieee80211_add_wme_param(frm, &ic->ic_wme, !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)); } if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { frm = ieee80211_add_htcap_vendor(frm, ni); frm = ieee80211_add_htinfo_vendor(frm, ni); } #ifdef IEEE80211_SUPPORT_SUPERG if (vap->iv_flags & IEEE80211_F_ATHEROS) { bo->bo_ath = frm; frm = ieee80211_add_athcaps(frm, ni); } #endif #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { bo->bo_tdma = frm; frm = ieee80211_add_tdma(frm, vap); } #endif if (vap->iv_appie_beacon != NULL) { bo->bo_appie = frm; bo->bo_appie_len = vap->iv_appie_beacon->ie_len; frm = add_appie(frm, vap->iv_appie_beacon); } /* XXX TODO: move meshid/meshconf up to before vendor extensions? */ #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) { frm = ieee80211_add_meshid(frm, vap); bo->bo_meshconf = frm; frm = ieee80211_add_meshconf(frm, vap); } #endif bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; bo->bo_csa_trailer_len = frm - bo->bo_csa; m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); } /* * Allocate a beacon frame and fillin the appropriate bits. */ struct mbuf * ieee80211_beacon_alloc(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; struct mbuf *m; int pktlen; uint8_t *frm; /* * Update the "We're putting the quiet IE in the beacon" state. */ if (vap->iv_quiet == 1) vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; else if (vap->iv_quiet == 0) vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; /* * beacon frame format * * Note: This needs updating for 802.11-2012. * * [8] time stamp * [2] beacon interval * [2] cabability information * [tlv] ssid * [tlv] supported rates * [3] parameter set (DS) * [8] CF parameter set (optional) * [tlv] parameter set (IBSS/TIM) * [tlv] country (optional) * [3] power control (optional) * [5] channel switch announcement (CSA) (optional) * [tlv] extended rate phy (ERP) * [tlv] extended supported rates * [tlv] RSN parameters * [tlv] HT capabilities * [tlv] HT information * [tlv] VHT capabilities * [tlv] VHT operation * [tlv] Vendor OUI HT capabilities (optional) * [tlv] Vendor OUI HT information (optional) * XXX Vendor-specific OIDs (e.g. Atheros) * [tlv] WPA parameters * [tlv] WME parameters * [tlv] TDMA parameters (optional) * [tlv] Mesh ID (MBSS) * [tlv] Mesh Conf (MBSS) * [tlv] application data (optional) * NB: we allocate the max space required for the TIM bitmap. * XXX how big is this? */ pktlen = 8 /* time stamp */ + sizeof(uint16_t) /* beacon interval */ + sizeof(uint16_t) /* capabilities */ + 2 + ni->ni_esslen /* ssid */ + 2 + IEEE80211_RATE_SIZE /* supported rates */ + 2 + 1 /* DS parameters */ + 2 + 6 /* CF parameters */ + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ + IEEE80211_COUNTRY_MAX_SIZE /* country */ + 2 + 1 /* power control */ + sizeof(struct ieee80211_csa_ie) /* CSA */ + sizeof(struct ieee80211_quiet_ie) /* Quiet */ + 2 + 1 /* ERP */ + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2*sizeof(struct ieee80211_ie_wpa) : 0) /* XXX conditional? */ + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ + 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */ + 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */ + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ sizeof(struct ieee80211_wme_param) : 0) #ifdef IEEE80211_SUPPORT_SUPERG + sizeof(struct ieee80211_ath_ie) /* ATH */ #endif #ifdef IEEE80211_SUPPORT_TDMA + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ sizeof(struct ieee80211_tdma_param) : 0) #endif #ifdef IEEE80211_SUPPORT_MESH + 2 + ni->ni_meshidlen + sizeof(struct ieee80211_meshconf_ie) #endif + IEEE80211_MAX_APPIE ; m = ieee80211_getmgtframe(&frm, ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); if (m == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "%s: cannot get buf; size %u\n", __func__, pktlen); vap->iv_stats.is_tx_nobuf++; return NULL; } ieee80211_beacon_construct(m, frm, ni); M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT); KASSERT(m != NULL, ("no space for 802.11 header?")); wh = mtod(m, struct ieee80211_frame *); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_BEACON; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; *(uint16_t *)wh->i_dur = 0; IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); *(uint16_t *)wh->i_seq = 0; return m; } /* * Update the dynamic parts of a beacon frame based on the current state. */ int ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; struct ieee80211com *ic = ni->ni_ic; int len_changed = 0; uint16_t capinfo; IEEE80211_LOCK(ic); /* * Handle 11h channel change when we've reached the count. * We must recalculate the beacon frame contents to account * for the new channel. Note we do this only for the first * vap that reaches this point; subsequent vaps just update * their beacon state to reflect the recalculated channel. */ if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && vap->iv_csa_count == ic->ic_csa_count) { vap->iv_csa_count = 0; /* * Effect channel change before reconstructing the beacon * frame contents as many places reference ni_chan. */ if (ic->ic_csa_newchan != NULL) ieee80211_csa_completeswitch(ic); /* * NB: ieee80211_beacon_construct clears all pending * updates in bo_flags so we don't need to explicitly * clear IEEE80211_BEACON_CSA. */ ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } /* * Handle the quiet time element being added and removed. * Again, for now we just cheat and reconstruct the whole * beacon - that way the gap is provided as appropriate. * * So, track whether we have already added the IE versus * whether we want to be adding the IE. */ if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) && (vap->iv_quiet == 0)) { /* * Quiet time beacon IE enabled, but it's disabled; * recalc */ vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE; ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) && (vap->iv_quiet == 1)) { /* * Quiet time beacon IE disabled, but it's now enabled; * recalc */ vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE; ieee80211_beacon_construct(m, mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); /* XXX do WME aggressive mode processing? */ IEEE80211_UNLOCK(ic); return 1; /* just assume length changed */ } /* * XXX TODO Strictly speaking this should be incremented with the TX * lock held so as to serialise access to the non-qos TID sequence * number space. * * If the driver identifies it does its own TX seqno management then * we can skip this (and still not do the TX seqno.) */ ieee80211_output_beacon_seqno_assign(ni, m); /* XXX faster to recalculate entirely or just changes? */ capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); *bo->bo_caps = htole16(capinfo); if (vap->iv_flags & IEEE80211_F_WME) { struct ieee80211_wme_state *wme = &ic->ic_wme; /* * Check for aggressive mode change. When there is * significant high priority traffic in the BSS * throttle back BE traffic by using conservative * parameters. Otherwise BE uses aggressive params * to optimize performance of legacy/non-QoS traffic. */ if (wme->wme_flags & WME_F_AGGRMODE) { if (wme->wme_hipri_traffic > wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, disable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags &= ~WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } else wme->wme_hipri_traffic = 0; } else { if (wme->wme_hipri_traffic <= wme->wme_hipri_switch_thresh) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: traffic %u, enable aggressive mode\n", __func__, wme->wme_hipri_traffic); wme->wme_flags |= WME_F_AGGRMODE; ieee80211_wme_updateparams_locked(vap); wme->wme_hipri_traffic = 0; } else wme->wme_hipri_traffic = wme->wme_hipri_switch_hysteresis; } if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { (void) ieee80211_add_wme_param(bo->bo_wme, wme, vap->iv_flags_ext & IEEE80211_FEXT_UAPSD); clrbit(bo->bo_flags, IEEE80211_BEACON_WME); } } if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { ieee80211_ht_update_beacon(vap, bo); clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); } #ifdef IEEE80211_SUPPORT_TDMA if (vap->iv_caps & IEEE80211_C_TDMA) { /* * NB: the beacon is potentially updated every TBTT. */ ieee80211_tdma_update_beacon(vap, bo); } #endif #ifdef IEEE80211_SUPPORT_MESH if (vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_mesh_update_beacon(vap, bo); #endif if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) bo->bo_tim; if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { u_int timlen, timoff, i; /* * ATIM/DTIM needs updating. If it fits in the * current space allocated then just copy in the * new bits. Otherwise we need to move any trailing * data to make room. Note that we know there is * contiguous space because ieee80211_beacon_allocate * insures there is space in the mbuf to write a * maximal-size virtual bitmap (based on iv_max_aid). */ /* * Calculate the bitmap size and offset, copy any * trailer out of the way, and then copy in the * new bitmap and update the information element. * Note that the tim bitmap must contain at least * one byte and any offset must be even. */ if (vap->iv_ps_pending != 0) { timoff = 128; /* impossibly large */ for (i = 0; i < vap->iv_tim_len; i++) if (vap->iv_tim_bitmap[i]) { timoff = i &~ 1; break; } KASSERT(timoff != 128, ("tim bitmap empty!")); for (i = vap->iv_tim_len-1; i >= timoff; i--) if (vap->iv_tim_bitmap[i]) break; timlen = 1 + (i - timoff); } else { timoff = 0; timlen = 1; } /* * TODO: validate this! */ if (timlen != bo->bo_tim_len) { /* copy up/down trailer */ int adjust = tie->tim_bitmap+timlen - bo->bo_tim_trailer; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_erp += adjust; bo->bo_htinfo += adjust; bo->bo_vhtinfo += adjust; #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += adjust; #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += adjust; #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += adjust; #endif bo->bo_appie += adjust; bo->bo_wme += adjust; bo->bo_csa += adjust; bo->bo_quiet += adjust; bo->bo_tim_len = timlen; /* update information element */ tie->tim_len = 3 + timlen; tie->tim_bitctl = timoff; len_changed = 1; } memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, bo->bo_tim_len); clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, "%s: TIM updated, pending %u, off %u, len %u\n", __func__, vap->iv_ps_pending, timoff, timlen); } /* count down DTIM period */ if (tie->tim_count == 0) tie->tim_count = tie->tim_period - 1; else tie->tim_count--; /* update state for buffered multicast frames on DTIM */ if (mcast && tie->tim_count == 0) tie->tim_bitctl |= 1; else tie->tim_bitctl &= ~1; if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) bo->bo_csa; /* * Insert or update CSA ie. If we're just starting * to count down to the channel switch then we need * to insert the CSA ie. Otherwise we just need to * drop the count. The actual change happens above * when the vap's count reaches the target count. */ if (vap->iv_csa_count == 0) { memmove(&csa[1], csa, bo->bo_csa_trailer_len); bo->bo_erp += sizeof(*csa); bo->bo_htinfo += sizeof(*csa); bo->bo_vhtinfo += sizeof(*csa); bo->bo_wme += sizeof(*csa); #ifdef IEEE80211_SUPPORT_SUPERG bo->bo_ath += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_TDMA bo->bo_tdma += sizeof(*csa); #endif #ifdef IEEE80211_SUPPORT_MESH bo->bo_meshconf += sizeof(*csa); #endif bo->bo_appie += sizeof(*csa); bo->bo_csa_trailer_len += sizeof(*csa); bo->bo_quiet += sizeof(*csa); bo->bo_tim_trailer_len += sizeof(*csa); m->m_len += sizeof(*csa); m->m_pkthdr.len += sizeof(*csa); ieee80211_add_csa(bo->bo_csa, vap); } else csa->csa_count--; vap->iv_csa_count++; /* NB: don't clear IEEE80211_BEACON_CSA */ } /* * Only add the quiet time IE if we've enabled it * as appropriate. */ if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { if (vap->iv_quiet && (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) { ieee80211_add_quiet(bo->bo_quiet, vap, 1); } } if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { /* * ERP element needs updating. */ (void) ieee80211_add_erp(bo->bo_erp, vap); clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); } #ifdef IEEE80211_SUPPORT_SUPERG if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { ieee80211_add_athcaps(bo->bo_ath, ni); clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); } #endif } if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { const struct ieee80211_appie *aie = vap->iv_appie_beacon; int aielen; uint8_t *frm; aielen = 0; if (aie != NULL) aielen += aie->ie_len; if (aielen != bo->bo_appie_len) { /* copy up/down trailer */ int adjust = aielen - bo->bo_appie_len; ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, bo->bo_tim_trailer_len); bo->bo_tim_trailer += adjust; bo->bo_appie += adjust; bo->bo_appie_len = aielen; len_changed = 1; } frm = bo->bo_appie; if (aie != NULL) frm = add_appie(frm, aie); clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); } IEEE80211_UNLOCK(ic); return len_changed; } /* * Do Ethernet-LLC encapsulation for each payload in a fast frame * tunnel encapsulation. The frame is assumed to have an Ethernet * header at the front that must be stripped before prepending the * LLC followed by the Ethernet header passed in (with an Ethernet * type that specifies the payload size). */ struct mbuf * ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, const struct ether_header *eh) { struct llc *llc; uint16_t payload; /* XXX optimize by combining m_adj+M_PREPEND */ m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); llc = mtod(m, struct llc *); llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; llc->llc_control = LLC_UI; llc->llc_snap.org_code[0] = 0; llc->llc_snap.org_code[1] = 0; llc->llc_snap.org_code[2] = 0; llc->llc_snap.ether_type = eh->ether_type; payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT); if (m == NULL) { /* XXX cannot happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: no space for ether_header\n", __func__); vap->iv_stats.is_tx_nobuf++; return NULL; } ETHER_HEADER_COPY(mtod(m, void *), eh); mtod(m, struct ether_header *)->ether_type = htons(payload); return m; } /* * Complete an mbuf transmission. * * For now, this simply processes a completed frame after the * driver has completed it's transmission and/or retransmission. * It assumes the frame is an 802.11 encapsulated frame. * * Later on it will grow to become the exit path for a given frame * from the driver and, depending upon how it's been encapsulated * and already transmitted, it may end up doing A-MPDU retransmission, * power save requeuing, etc. * * In order for the above to work, the driver entry point to this * must not hold any driver locks. Thus, the driver needs to delay * any actual mbuf completion until it can release said locks. * * This frees the mbuf and if the mbuf has a node reference, * the node reference will be freed. */ void ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) { if (ni != NULL) { struct ifnet *ifp = ni->ni_vap->iv_ifp; if (status == 0) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if (m->m_flags & M_MCAST) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); } else if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); if (m->m_flags & M_TXCB) { IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap, ieee80211_opmode_name[ni->ni_vap->iv_opmode], ieee80211_state_name[ni->ni_vap->iv_state], m, status); ieee80211_process_callback(ni, m, status); } ieee80211_free_node(ni); } m_freem(m); } /** * @brief Assign a sequence number to the given frame. * * Check the frame type and TID and assign a suitable sequence number * from the correct sequence number space. * * It assumes the mbuf has been encapsulated, and has the TID assigned * if it is a QoS frame. * * Note this also clears any existing fragment ID in the header, so it * must be called first before assigning fragment IDs. * * For now this implements parts of 802.11-2012; it doesn't do all of * the needed checks for full compliance (notably QoS-Data NULL frames). * * TODO: update to 802.11-2020 10.3.2.14.2 (Transmitter Requirements) * * @param ni ieee80211_node this frame will be transmitted to * @param arg_tid A temporary check, existing callers may set * this to a TID variable they were using, and this routine * will verify it against what's in the frame and complain if * they don't match. For new callers, use -1. * @param m mbuf to populate the sequence number into */ void ieee80211_output_seqno_assign(struct ieee80211_node *ni, int arg_tid, struct mbuf *m) { struct ieee80211_frame *wh; ieee80211_seq seqno; uint8_t tid, type, subtype; wh = mtod(m, struct ieee80211_frame *); tid = ieee80211_gettid(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* * Find places where the passed in TID doesn't match gettid() * and log. I'll have to then go and chase those down. * * If the caller knows its already setup the TID in the frame * correctly then it can pass in -1 and this check will be * skipped. */ if (arg_tid != -1 && tid != arg_tid) ic_printf(ni->ni_vap->iv_ic, "%s: called; TID mismatch; tid=%u, arg_tid=%d\n", __func__, tid, arg_tid); if (IEEE80211_HAS_SEQ(type, subtype)) { /* * 802.11-2012 9.3.2.10 - QoS multicast frames * come out of a different seqno space. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; else seqno = ni->ni_txseqs[tid]++; } else seqno = 0; /* * Assign the sequence number, clearing out any existing * sequence and fragment numbers. */ *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } /** * @brief Assign a sequence number to the given beacon frame. * * TODO: update to 802.11-2020 10.3.2.14.2 (Transmitter Requirements) * * @param ni ieee80211_node this frame will be transmitted to * @param m mbuf to populate the sequence number into */ void ieee80211_output_beacon_seqno_assign(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211_frame *wh; ieee80211_seq seqno; wh = mtod(m, struct ieee80211_frame *); seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; *(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); M_SEQNO_SET(m, seqno); } diff --git a/sys/net80211/ieee80211_proto.c b/sys/net80211/ieee80211_proto.c index 823f1ab3f486..14c0d2beaad5 100644 --- a/sys/net80211/ieee80211_proto.c +++ b/sys/net80211/ieee80211_proto.c @@ -1,2916 +1,2915 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * Copyright (c) 2012 IEEE * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 protocol support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include /* XXX for ether_sprintf */ #include #include #include #include #include #ifdef IEEE80211_SUPPORT_MESH #include #endif #include #include /* XXX tunables */ #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ const char *mgt_subtype_name[] = { "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", "probe_req", "probe_resp", "timing_adv", "reserved#7", "beacon", "atim", "disassoc", "auth", "deauth", "action", "action_noack", "reserved#15" }; const char *ctl_subtype_name[] = { "reserved#0", "reserved#1", "reserved#2", "reserved#3", "reserved#4", "reserved#5", "reserved#6", "control_wrap", "bar", "ba", "ps_poll", "rts", "cts", "ack", "cf_end", "cf_end_ack" }; const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { "IBSS", /* IEEE80211_M_IBSS */ "STA", /* IEEE80211_M_STA */ "WDS", /* IEEE80211_M_WDS */ "AHDEMO", /* IEEE80211_M_AHDEMO */ "HOSTAP", /* IEEE80211_M_HOSTAP */ "MONITOR", /* IEEE80211_M_MONITOR */ "MBSS" /* IEEE80211_M_MBSS */ }; const char *ieee80211_state_name[IEEE80211_S_MAX] = { "INIT", /* IEEE80211_S_INIT */ "SCAN", /* IEEE80211_S_SCAN */ "AUTH", /* IEEE80211_S_AUTH */ "ASSOC", /* IEEE80211_S_ASSOC */ "CAC", /* IEEE80211_S_CAC */ "RUN", /* IEEE80211_S_RUN */ "CSA", /* IEEE80211_S_CSA */ "SLEEP", /* IEEE80211_S_SLEEP */ }; const char *ieee80211_wme_acnames[] = { "WME_AC_BE", "WME_AC_BK", "WME_AC_VI", "WME_AC_VO", "WME_UPSD", }; /* * Reason code descriptions were (mostly) obtained from * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. */ const char * ieee80211_reason_to_string(uint16_t reason) { switch (reason) { case IEEE80211_REASON_UNSPECIFIED: return ("unspecified"); case IEEE80211_REASON_AUTH_EXPIRE: return ("previous authentication is expired"); case IEEE80211_REASON_AUTH_LEAVE: return ("sending STA is leaving/has left IBSS or ESS"); case IEEE80211_REASON_ASSOC_EXPIRE: return ("disassociated due to inactivity"); case IEEE80211_REASON_ASSOC_TOOMANY: return ("too many associated STAs"); case IEEE80211_REASON_NOT_AUTHED: return ("class 2 frame received from nonauthenticated STA"); case IEEE80211_REASON_NOT_ASSOCED: return ("class 3 frame received from nonassociated STA"); case IEEE80211_REASON_ASSOC_LEAVE: return ("sending STA is leaving/has left BSS"); case IEEE80211_REASON_ASSOC_NOT_AUTHED: return ("STA requesting (re)association is not authenticated"); case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: return ("information in the Power Capability element is " "unacceptable"); case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: return ("information in the Supported Channels element is " "unacceptable"); case IEEE80211_REASON_IE_INVALID: return ("invalid element"); case IEEE80211_REASON_MIC_FAILURE: return ("MIC failure"); case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: return ("4-Way handshake timeout"); case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: return ("group key update timeout"); case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: return ("element in 4-Way handshake different from " "(re)association request/probe response/beacon frame"); case IEEE80211_REASON_GROUP_CIPHER_INVALID: return ("invalid group cipher"); case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: return ("invalid pairwise cipher"); case IEEE80211_REASON_AKMP_INVALID: return ("invalid AKMP"); case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: return ("unsupported version in RSN IE"); case IEEE80211_REASON_INVALID_RSN_IE_CAP: return ("invalid capabilities in RSN IE"); case IEEE80211_REASON_802_1X_AUTH_FAILED: return ("IEEE 802.1X authentication failed"); case IEEE80211_REASON_CIPHER_SUITE_REJECTED: return ("cipher suite rejected because of the security " "policy"); case IEEE80211_REASON_UNSPECIFIED_QOS: return ("unspecified (QoS-related)"); case IEEE80211_REASON_INSUFFICIENT_BW: return ("QoS AP lacks sufficient bandwidth for this QoS STA"); case IEEE80211_REASON_TOOMANY_FRAMES: return ("too many frames need to be acknowledged"); case IEEE80211_REASON_OUTSIDE_TXOP: return ("STA is transmitting outside the limits of its TXOPs"); case IEEE80211_REASON_LEAVING_QBSS: return ("requested from peer STA (the STA is " "resetting/leaving the BSS)"); case IEEE80211_REASON_BAD_MECHANISM: return ("requested from peer STA (it does not want to use " "the mechanism)"); case IEEE80211_REASON_SETUP_NEEDED: return ("requested from peer STA (setup is required for the " "used mechanism)"); case IEEE80211_REASON_TIMEOUT: return ("requested from peer STA (timeout)"); case IEEE80211_REASON_PEER_LINK_CANCELED: return ("SME cancels the mesh peering instance (not related " "to the maximum number of peer mesh STAs)"); case IEEE80211_REASON_MESH_MAX_PEERS: return ("maximum number of peer mesh STAs was reached"); case IEEE80211_REASON_MESH_CPVIOLATION: return ("the received information violates the Mesh " "Configuration policy configured in the mesh STA " "profile"); case IEEE80211_REASON_MESH_CLOSE_RCVD: return ("the mesh STA has received a Mesh Peering Close " "message requesting to close the mesh peering"); case IEEE80211_REASON_MESH_MAX_RETRIES: return ("the mesh STA has resent dot11MeshMaxRetries Mesh " "Peering Open messages, without receiving a Mesh " "Peering Confirm message"); case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: return ("the confirmTimer for the mesh peering instance times " "out"); case IEEE80211_REASON_MESH_INVALID_GTK: return ("the mesh STA fails to unwrap the GTK or the values " "in the wrapped contents do not match"); case IEEE80211_REASON_MESH_INCONS_PARAMS: return ("the mesh STA receives inconsistent information about " "the mesh parameters between Mesh Peering Management " "frames"); case IEEE80211_REASON_MESH_INVALID_SECURITY: return ("the mesh STA fails the authenticated mesh peering " "exchange because due to failure in selecting " "pairwise/group ciphersuite"); case IEEE80211_REASON_MESH_PERR_NO_PROXY: return ("the mesh STA does not have proxy information for " "this external destination"); case IEEE80211_REASON_MESH_PERR_NO_FI: return ("the mesh STA does not have forwarding information " "for this destination"); case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: return ("the mesh STA determines that the link to the next " "hop of an active path in its forwarding information " "is no longer usable"); case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: return ("the MAC address of the STA already exists in the " "mesh BSS"); case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: return ("the mesh STA performs channel switch to meet " "regulatory requirements"); case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: return ("the mesh STA performs channel switch with " "unspecified reason"); default: return ("reserved/unknown"); } } static void beacon_miss(void *, int); static void beacon_swmiss(void *, int); static void parent_updown(void *, int); static void update_mcast(void *, int); static void update_promisc(void *, int); static void update_channel(void *, int); static void update_chw(void *, int); static void vap_update_wme(void *, int); static void vap_update_slot(void *, int); static void restart_vaps(void *, int); static void vap_update_erp_protmode(void *, int); static void vap_update_preamble(void *, int); static void vap_update_ht_protmode(void *, int); static void ieee80211_newstate_cb(void *, int); static struct ieee80211_node *vap_update_bss(struct ieee80211vap *, struct ieee80211_node *); static int null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_bpf_params *params) { ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); m_freem(m); return ENETDOWN; } void ieee80211_proto_attach(struct ieee80211com *ic) { uint8_t hdrlen; /* override the 802.3 setting */ hdrlen = ic->ic_headroom + sizeof(struct ieee80211_qosframe_addr4) + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN; /* XXX no way to recalculate on ifdetach */ max_linkhdr_grow(ALIGN(hdrlen)); //ic->ic_protmode = IEEE80211_PROT_CTSONLY; TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); ic->ic_wme.wme_hipri_switch_hysteresis = AGGRESSIVE_MODE_SWITCH_HYSTERESIS; /* initialize management frame handlers */ ic->ic_send_mgmt = ieee80211_send_mgmt; ic->ic_raw_xmit = null_raw_xmit; ieee80211_adhoc_attach(ic); ieee80211_sta_attach(ic); ieee80211_wds_attach(ic); ieee80211_hostap_attach(ic); #ifdef IEEE80211_SUPPORT_MESH ieee80211_mesh_attach(ic); #endif ieee80211_monitor_attach(ic); } void ieee80211_proto_detach(struct ieee80211com *ic) { ieee80211_monitor_detach(ic); #ifdef IEEE80211_SUPPORT_MESH ieee80211_mesh_detach(ic); #endif ieee80211_hostap_detach(ic); ieee80211_wds_detach(ic); ieee80211_adhoc_detach(ic); ieee80211_sta_detach(ic); } static void null_update_beacon(struct ieee80211vap *vap, int item) { } void ieee80211_proto_vattach(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ifnet *ifp = vap->iv_ifp; int i; /* override the 802.3 setting */ ifp->if_hdrlen = ic->ic_headroom + sizeof(struct ieee80211_qosframe_addr4) + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN; vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; vap->iv_bmiss_max = IEEE80211_BMISS_MAX; callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); callout_init(&vap->iv_mgtsend, 1); for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) TASK_INIT(&vap->iv_nstate_task[i], 0, ieee80211_newstate_cb, vap); TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); /* * Install default tx rate handling: no fixed rate, lowest * supported rate for mgmt and multicast frames. Default * max retry count. These settings can be changed by the * driver and/or user applications. */ for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { if (isclr(ic->ic_modecaps, i)) continue; const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; /* * Setting the management rate to MCS 0 assumes that the * BSS Basic rate set is empty and the BSS Basic MCS set * is not. * * Since we're not checking this, default to the lowest * defined rate for this mode. * * At least one 11n AP (DLINK DIR-825) is reported to drop * some MCS management traffic (eg BA response frames.) * * See also: 9.6.0 of the 802.11n-2009 specification. */ #ifdef NOTYET if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; } else { vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; } #endif vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; } vap->iv_roaming = IEEE80211_ROAMING_AUTO; vap->iv_update_beacon = null_update_beacon; vap->iv_deliver_data = ieee80211_deliver_data; vap->iv_protmode = IEEE80211_PROT_CTSONLY; vap->iv_update_bss = vap_update_bss; /* attach support for operating mode */ ic->ic_vattach[vap->iv_opmode](vap); } void ieee80211_proto_vdetach(struct ieee80211vap *vap) { #define FREEAPPIE(ie) do { \ if (ie != NULL) \ IEEE80211_FREE(ie, M_80211_NODE_IE); \ } while (0) /* * Detach operating mode module. */ if (vap->iv_opdetach != NULL) vap->iv_opdetach(vap); /* * This should not be needed as we detach when reseting * the state but be conservative here since the * authenticator may do things like spawn kernel threads. */ if (vap->iv_auth->ia_detach != NULL) vap->iv_auth->ia_detach(vap); /* * Detach any ACL'ator. */ if (vap->iv_acl != NULL) vap->iv_acl->iac_detach(vap); FREEAPPIE(vap->iv_appie_beacon); FREEAPPIE(vap->iv_appie_probereq); FREEAPPIE(vap->iv_appie_proberesp); FREEAPPIE(vap->iv_appie_assocreq); FREEAPPIE(vap->iv_appie_assocresp); FREEAPPIE(vap->iv_appie_wpa); #undef FREEAPPIE } /* * Simple-minded authenticator module support. */ #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) /* XXX well-known names */ static const char *auth_modnames[IEEE80211_AUTH_MAX] = { "wlan_internal", /* IEEE80211_AUTH_NONE */ "wlan_internal", /* IEEE80211_AUTH_OPEN */ "wlan_internal", /* IEEE80211_AUTH_SHARED */ "wlan_xauth", /* IEEE80211_AUTH_8021X */ "wlan_internal", /* IEEE80211_AUTH_AUTO */ "wlan_xauth", /* IEEE80211_AUTH_WPA */ }; static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; static const struct ieee80211_authenticator auth_internal = { .ia_name = "wlan_internal", .ia_attach = NULL, .ia_detach = NULL, .ia_node_join = NULL, .ia_node_leave = NULL, }; /* * Setup internal authenticators once; they are never unregistered. */ static void ieee80211_auth_setup(void) { ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); } SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); const struct ieee80211_authenticator * ieee80211_authenticator_get(int auth) { if (auth >= IEEE80211_AUTH_MAX) return NULL; if (authenticators[auth] == NULL) ieee80211_load_module(auth_modnames[auth]); return authenticators[auth]; } void ieee80211_authenticator_register(int type, const struct ieee80211_authenticator *auth) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = auth; } void ieee80211_authenticator_unregister(int type) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = NULL; } /* * Very simple-minded ACL module support. */ /* XXX just one for now */ static const struct ieee80211_aclator *acl = NULL; void ieee80211_aclator_register(const struct ieee80211_aclator *iac) { printf("wlan: %s acl policy registered\n", iac->iac_name); acl = iac; } void ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) { if (acl == iac) acl = NULL; printf("wlan: %s acl policy unregistered\n", iac->iac_name); } const struct ieee80211_aclator * ieee80211_aclator_get(const char *name) { if (acl == NULL) ieee80211_load_module("wlan_acl"); return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; } void ieee80211_print_essid(const uint8_t *essid, int len) { const uint8_t *p; int i; if (len > IEEE80211_NWID_LEN) len = IEEE80211_NWID_LEN; /* determine printable or not */ for (i = 0, p = essid; i < len; i++, p++) { if (*p < ' ' || *p > 0x7e) break; } if (i == len) { printf("\""); for (i = 0, p = essid; i < len; i++, p++) printf("%c", *p); printf("\""); } else { printf("0x"); for (i = 0, p = essid; i < len; i++, p++) printf("%02x", *p); } } void ieee80211_dump_pkt(struct ieee80211com *ic, const uint8_t *buf, int len, int rate, int rssi) { const struct ieee80211_frame *wh; int i; wh = (const struct ieee80211_frame *)buf; switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: printf("NODS %s", ether_sprintf(wh->i_addr2)); printf("->%s", ether_sprintf(wh->i_addr1)); printf("(%s)", ether_sprintf(wh->i_addr3)); break; case IEEE80211_FC1_DIR_TODS: printf("TODS %s", ether_sprintf(wh->i_addr2)); printf("->%s", ether_sprintf(wh->i_addr3)); printf("(%s)", ether_sprintf(wh->i_addr1)); break; case IEEE80211_FC1_DIR_FROMDS: printf("FRDS %s", ether_sprintf(wh->i_addr3)); printf("->%s", ether_sprintf(wh->i_addr1)); printf("(%s)", ether_sprintf(wh->i_addr2)); break; case IEEE80211_FC1_DIR_DSTODS: printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); printf("->%s", ether_sprintf(wh->i_addr3)); printf("(%s", ether_sprintf(wh->i_addr2)); printf("->%s)", ether_sprintf(wh->i_addr1)); break; } switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_DATA: printf(" data"); break; case IEEE80211_FC0_TYPE_MGT: printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); break; default: printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); break; } if (IEEE80211_QOS_HAS_SEQ(wh)) { const struct ieee80211_qosframe *qwh = (const struct ieee80211_qosframe *)buf; printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); } if (IEEE80211_IS_PROTECTED(wh)) { int off; off = ieee80211_anyhdrspace(ic, wh); printf(" WEP [IV %.02x %.02x %.02x", buf[off+0], buf[off+1], buf[off+2]); if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) printf(" %.02x %.02x %.02x", buf[off+4], buf[off+5], buf[off+6]); printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); } if (rate >= 0) printf(" %dM", rate / 2); if (rssi >= 0) printf(" +%d", rssi); printf("\n"); if (len > 0) { for (i = 0; i < len; i++) { if ((i & 1) == 0) printf(" "); printf("%02x", buf[i]); } printf("\n"); } } static __inline int findrix(const struct ieee80211_rateset *rs, int r) { int i; for (i = 0; i < rs->rs_nrates; i++) if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) return i; return -1; } int ieee80211_fix_rate(struct ieee80211_node *ni, struct ieee80211_rateset *nrs, int flags) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; int i, j, rix, error; int okrate, badrate, fixedrate, ucastrate; const struct ieee80211_rateset *srs; uint8_t r; error = 0; okrate = badrate = 0; ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; if (ucastrate != IEEE80211_FIXED_RATE_NONE) { /* * Workaround awkwardness with fixed rate. We are called * to check both the legacy rate set and the HT rate set * but we must apply any legacy fixed rate check only to the * legacy rate set and vice versa. We cannot tell what type * of rate set we've been given (legacy or HT) but we can * distinguish the fixed rate type (MCS have 0x80 set). * So to deal with this the caller communicates whether to * check MCS or legacy rate using the flags and we use the * type of any fixed rate to avoid applying an MCS to a * legacy rate and vice versa. */ if (ucastrate & 0x80) { if (flags & IEEE80211_F_DOFRATE) flags &= ~IEEE80211_F_DOFRATE; } else if ((ucastrate & 0x80) == 0) { if (flags & IEEE80211_F_DOFMCS) flags &= ~IEEE80211_F_DOFMCS; } /* NB: required to make MCS match below work */ ucastrate &= IEEE80211_RATE_VAL; } fixedrate = IEEE80211_FIXED_RATE_NONE; /* * XXX we are called to process both MCS and legacy rates; * we must use the appropriate basic rate set or chaos will * ensue; for now callers that want MCS must supply * IEEE80211_F_DOBRS; at some point we'll need to split this * function so there are two variants, one for MCS and one * for legacy rates. */ if (flags & IEEE80211_F_DOBRS) srs = (const struct ieee80211_rateset *) ieee80211_get_suphtrates(ic, ni->ni_chan); else srs = ieee80211_get_suprates(ic, ni->ni_chan); for (i = 0; i < nrs->rs_nrates; ) { if (flags & IEEE80211_F_DOSORT) { /* * Sort rates. */ for (j = i + 1; j < nrs->rs_nrates; j++) { if (IEEE80211_RV(nrs->rs_rates[i]) > IEEE80211_RV(nrs->rs_rates[j])) { r = nrs->rs_rates[i]; nrs->rs_rates[i] = nrs->rs_rates[j]; nrs->rs_rates[j] = r; } } } r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; badrate = r; /* * Check for fixed rate. */ if (r == ucastrate) fixedrate = r; /* * Check against supported rates. */ rix = findrix(srs, r); if (flags & IEEE80211_F_DONEGO) { if (rix < 0) { /* * A rate in the node's rate set is not * supported. If this is a basic rate and we * are operating as a STA then this is an error. * Otherwise we just discard/ignore the rate. */ if ((flags & IEEE80211_F_JOIN) && (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) error++; } else if ((flags & IEEE80211_F_JOIN) == 0) { /* * Overwrite with the supported rate * value so any basic rate bit is set. */ nrs->rs_rates[i] = srs->rs_rates[rix]; } } if ((flags & IEEE80211_F_DODEL) && rix < 0) { /* * Delete unacceptable rates. */ nrs->rs_nrates--; for (j = i; j < nrs->rs_nrates; j++) nrs->rs_rates[j] = nrs->rs_rates[j + 1]; nrs->rs_rates[j] = 0; continue; } if (rix >= 0) okrate = nrs->rs_rates[i]; i++; } if (okrate == 0 || error != 0 || ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && fixedrate != ucastrate)) { IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); return badrate | IEEE80211_RATE_BASIC; } else return IEEE80211_RV(okrate); } /* * Reset 11g-related state. * * This is for per-VAP ERP/11g state. * * Eventually everything in ieee80211_reset_erp() will be * per-VAP and in here. */ void ieee80211_vap_reset_erp(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; vap->iv_nonerpsta = 0; vap->iv_longslotsta = 0; vap->iv_flags &= ~IEEE80211_F_USEPROT; /* * Set short preamble and ERP barker-preamble flags. */ if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { vap->iv_flags |= IEEE80211_F_SHPREAMBLE; vap->iv_flags &= ~IEEE80211_F_USEBARKER; } else { vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; vap->iv_flags |= IEEE80211_F_USEBARKER; } /* * Short slot time is enabled only when operating in 11g * and not in an IBSS. We must also honor whether or not * the driver is capable of doing it. */ ieee80211_vap_set_shortslottime(vap, IEEE80211_IS_CHAN_A(ic->ic_curchan) || IEEE80211_IS_CHAN_HT(ic->ic_curchan) || (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && vap->iv_opmode == IEEE80211_M_HOSTAP && (ic->ic_caps & IEEE80211_C_SHSLOT))); } /* * Reset 11g-related state. * * Note this resets the global state and a caller should schedule * a re-check of all the VAPs after setup to update said state. */ void ieee80211_reset_erp(struct ieee80211com *ic) { #if 0 ic->ic_flags &= ~IEEE80211_F_USEPROT; /* * Set short preamble and ERP barker-preamble flags. */ if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { ic->ic_flags |= IEEE80211_F_SHPREAMBLE; ic->ic_flags &= ~IEEE80211_F_USEBARKER; } else { ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; ic->ic_flags |= IEEE80211_F_USEBARKER; } #endif /* XXX TODO: schedule a new per-VAP ERP calculation */ } static struct ieee80211_node * vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) { struct ieee80211_node *obss; IEEE80211_LOCK_ASSERT(vap->iv_ic); obss = vap->iv_bss; vap->iv_bss = ni; return (obss); } /* * Deferred slot time update. * * For per-VAP slot time configuration, call the VAP * method if the VAP requires it. Otherwise, just call the * older global method. * * If the per-VAP method is called then it's expected that * the driver/firmware will take care of turning the per-VAP * flags into slot time configuration. * * If the per-VAP method is not called then the global flags will be * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will * be set only if all of the vaps will have it set. * * Look at the comments for vap_update_erp_protmode() for more * background; this assumes all VAPs are on the same channel. */ static void vap_update_slot(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; struct ieee80211vap *iv; int num_shslot = 0, num_lgslot = 0; /* * Per-VAP path - we've already had the flags updated; * so just notify the driver and move on. */ if (vap->iv_updateslot != NULL) { vap->iv_updateslot(vap); return; } /* * Iterate over all of the VAP flags to update the * global flag. * * If all vaps have short slot enabled then flip on * short slot. If any vap has it disabled then * we leave it globally disabled. This should provide * correct behaviour in a multi-BSS scenario where * at least one VAP has short slot disabled for some * reason. */ IEEE80211_LOCK(ic); TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { if (iv->iv_flags & IEEE80211_F_SHSLOT) num_shslot++; else num_lgslot++; } /* * It looks backwards but - if the number of short slot VAPs * is zero then we're not short slot. Else, we have one * or more short slot VAPs and we're checking to see if ANY * of them have short slot disabled. */ if (num_shslot == 0) ic->ic_flags &= ~IEEE80211_F_SHSLOT; else if (num_lgslot == 0) ic->ic_flags |= IEEE80211_F_SHSLOT; IEEE80211_UNLOCK(ic); /* * Call the driver with our new global slot time flags. */ if (ic->ic_updateslot != NULL) ic->ic_updateslot(ic); } /* * Deferred ERP protmode update. * * This currently calculates the global ERP protection mode flag * based on each of the VAPs. Any VAP with it enabled is enough * for the global flag to be enabled. All VAPs with it disabled * is enough for it to be disabled. * * This may make sense right now for the supported hardware where * net80211 is controlling the single channel configuration, but * offload firmware that's doing channel changes (eg off-channel * TDLS, off-channel STA, off-channel P2P STA/AP) may get some * silly looking flag updates. * * Ideally the protection mode calculation is done based on the * channel, and all VAPs using that channel will inherit it. * But until that's what net80211 does, this wil have to do. */ static void vap_update_erp_protmode(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; struct ieee80211vap *iv; int enable_protmode = 0; int non_erp_present = 0; /* * Iterate over all of the VAPs to calculate the overlapping * ERP protection mode configuration and ERP present math. * * For now we assume that if a driver can handle this per-VAP * then it'll ignore the ic->ic_protmode variant and instead * will look at the vap related flags. */ IEEE80211_LOCK(ic); TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { if (iv->iv_flags & IEEE80211_F_USEPROT) enable_protmode = 1; if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) non_erp_present = 1; } if (enable_protmode) ic->ic_flags |= IEEE80211_F_USEPROT; else ic->ic_flags &= ~IEEE80211_F_USEPROT; if (non_erp_present) ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; else ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; /* Beacon update on all VAPs */ ieee80211_notify_erp_locked(ic); IEEE80211_UNLOCK(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s: called; enable_protmode=%d, non_erp_present=%d\n", __func__, enable_protmode, non_erp_present); /* * Now that the global configuration flags are calculated, * notify the VAP about its configuration. * * The global flags will be used when assembling ERP IEs * for multi-VAP operation, even if it's on a different * channel. Yes, that's going to need fixing in the * future. */ if (vap->iv_erp_protmode_update != NULL) vap->iv_erp_protmode_update(vap); } /* * Deferred ERP short preamble/barker update. * * All VAPs need to use short preamble for it to be globally * enabled or not. * * Look at the comments for vap_update_erp_protmode() for more * background; this assumes all VAPs are on the same channel. */ static void vap_update_preamble(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; struct ieee80211vap *iv; int barker_count = 0, short_preamble_count = 0, count = 0; /* * Iterate over all of the VAPs to calculate the overlapping * short or long preamble configuration. * * For now we assume that if a driver can handle this per-VAP * then it'll ignore the ic->ic_flags variant and instead * will look at the vap related flags. */ IEEE80211_LOCK(ic); TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { if (iv->iv_flags & IEEE80211_F_USEBARKER) barker_count++; if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) short_preamble_count++; count++; } /* * As with vap_update_erp_protmode(), the global flags are * currently used for beacon IEs. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s: called; barker_count=%d, short_preamble_count=%d\n", __func__, barker_count, short_preamble_count); /* * Only flip on short preamble if all of the VAPs support * it. */ if (barker_count == 0 && short_preamble_count == count) { ic->ic_flags |= IEEE80211_F_SHPREAMBLE; ic->ic_flags &= ~IEEE80211_F_USEBARKER; } else { ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; ic->ic_flags |= IEEE80211_F_USEBARKER; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s: global barker=%d preamble=%d\n", __func__, !! (ic->ic_flags & IEEE80211_F_USEBARKER), !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); /* Beacon update on all VAPs */ ieee80211_notify_erp_locked(ic); IEEE80211_UNLOCK(ic); /* Driver notification */ if (vap->iv_preamble_update != NULL) vap->iv_preamble_update(vap); } /* * Deferred HT protmode update and beacon update. * * Look at the comments for vap_update_erp_protmode() for more * background; this assumes all VAPs are on the same channel. */ static void vap_update_ht_protmode(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211vap *iv; struct ieee80211com *ic = vap->iv_ic; int num_vaps = 0, num_pure = 0; int num_optional = 0, num_ht2040 = 0, num_nonht = 0; int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; int num_nonhtpr = 0; /* * Iterate over all of the VAPs to calculate everything. * * There are a few different flags to calculate: * * + whether there's HT only or HT+legacy stations; * + whether there's HT20, HT40, or HT20+HT40 stations; * + whether the desired protection mode is mixed, pure or * one of the two above. * * For now we assume that if a driver can handle this per-VAP * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode * variant and instead will look at the vap related variables. * * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! */ IEEE80211_LOCK(ic); TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { num_vaps++; /* overlapping BSSes advertising non-HT status present */ if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) num_nonht++; /* Operating mode flags */ if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) num_nonhtpr++; switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { case IEEE80211_HTINFO_OPMODE_PURE: num_pure++; break; case IEEE80211_HTINFO_OPMODE_PROTOPT: num_optional++; break; case IEEE80211_HTINFO_OPMODE_HT20PR: num_ht2040++; break; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", __func__, ieee80211_get_vap_ifname(iv), !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), iv->iv_curhtprotmode); num_ht_sta += iv->iv_ht_sta_assoc; num_ht40_sta += iv->iv_ht40_sta_assoc; num_sta += iv->iv_sta_assoc; } /* * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS * non-HT present), set it here. This shouldn't be used by * anything but the old overlapping BSS logic so if any drivers * consume it, it's up to date. */ if (num_nonht > 0) ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; else ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; /* * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) * * + If all VAPs are PURE, we can stay PURE. * + If all VAPs are PROTOPT, we can go to PROTOPT. * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. * Note that we may have a VAP with one HT20 and a VAP with one HT40; * So we look at the sum ht and sum ht40 sta counts; if we have a * HT station and the HT20 != HT40 count, we have to do HT20PR here. * Note all stations need to be HT for this to be an option. * + The fall-through is MIXED, because it means we have some odd * non HT40-involved combination of opmode and this is the most * sensible default. */ ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; if (num_pure == num_vaps) ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; if (num_optional == num_vaps) ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; /* * Note: we need /a/ HT40 station somewhere for this to * be a possibility. */ if ((num_ht2040 > 0) || ((num_ht_sta > 0) && (num_ht40_sta > 0) && (num_ht_sta != num_ht40_sta))) ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; /* * Step 3 - if any of the stations across the VAPs are * non-HT then this needs to be flipped back to MIXED. */ if (num_ht_sta != num_sta) ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; /* * Step 4 - If we see any overlapping BSS non-HT stations * via beacons then flip on NONHT_PRESENT. */ if (num_nonhtpr > 0) ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; /* Notify all VAPs to potentially update their beacons */ TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) ieee80211_htinfo_notify(iv); IEEE80211_UNLOCK(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", __func__, !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), ic->ic_curhtprotmode); /* Driver update */ if (vap->iv_ht_protmode_update != NULL) vap->iv_ht_protmode_update(vap); } /* * Set the short slot time state and notify the driver. * * This is the per-VAP slot time state. */ void ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) { struct ieee80211com *ic = vap->iv_ic; /* XXX lock? */ /* * Only modify the per-VAP slot time. */ if (onoff) vap->iv_flags |= IEEE80211_F_SHSLOT; else vap->iv_flags &= ~IEEE80211_F_SHSLOT; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s: called; onoff=%d\n", __func__, onoff); /* schedule the deferred slot flag update and update */ ieee80211_runtask(ic, &vap->iv_slot_task); } /* * Update the VAP short /long / barker preamble state and * update beacon state if needed. * * For now it simply copies the global flags into the per-vap * flags and schedules the callback. Later this will support * both global and per-VAP flags, especially useful for * and STA+STA multi-channel operation (eg p2p). */ void ieee80211_vap_update_preamble(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; /* XXX lock? */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s: called\n", __func__); /* schedule the deferred slot flag update and update */ ieee80211_runtask(ic, &vap->iv_preamble_task); } /* * Update the VAP 11g protection mode and update beacon state * if needed. */ void ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; /* XXX lock? */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s: called\n", __func__); /* schedule the deferred slot flag update and update */ ieee80211_runtask(ic, &vap->iv_erp_protmode_task); } /* * Update the VAP 11n protection mode and update beacon state * if needed. */ void ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; /* XXX lock? */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s: called\n", __func__); /* schedule the deferred protmode update */ ieee80211_runtask(ic, &vap->iv_ht_protmode_task); } /* * Check if the specified rate set supports ERP. * NB: the rate set is assumed to be sorted. */ int ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) { static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; int i, j; if (rs->rs_nrates < nitems(rates)) return 0; for (i = 0; i < nitems(rates); i++) { for (j = 0; j < rs->rs_nrates; j++) { int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; if (rates[i] == r) goto next; if (r > rates[i]) return 0; } return 0; next: ; } return 1; } /* * Mark the basic rates for the rate table based on the * operating mode. For real 11g we mark all the 11b rates * and 6, 12, and 24 OFDM. For 11b compatibility we mark only * 11b rates. There's also a pseudo 11a-mode used to mark only * the basic OFDM rates. */ static void setbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode, int add) { static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, /* NB: mixed b/g */ [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, /* NB: mixed b/g */ [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, /* NB: mixed b/g */ [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, }; int i, j; for (i = 0; i < rs->rs_nrates; i++) { if (!add) rs->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < basic[mode].rs_nrates; j++) if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { rs->rs_rates[i] |= IEEE80211_RATE_BASIC; break; } } } /* * Set the basic rates in a rate set. */ void ieee80211_setbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode) { setbasicrates(rs, mode, 0); } /* * Add basic rates to a rate set. */ void ieee80211_addbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode) { setbasicrates(rs, mode, 1); } /* * WME protocol support. * * The default 11a/b/g/n parameters come from the WiFi Alliance WMM * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n * Draft 2.0 Test Plan (Appendix D). * * Static/Dynamic Turbo mode settings come from Atheros. */ typedef struct phyParamType { uint8_t aifsn; uint8_t logcwmin; uint8_t logcwmax; uint16_t txopLimit; uint8_t acm; } paramType; static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, }; static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, }; static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, }; static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, }; static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, }; static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, }; static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, }; static void _setifsparams(struct wmeParams *wmep, const paramType *phy) { wmep->wmep_aifsn = phy->aifsn; wmep->wmep_logcwmin = phy->logcwmin; wmep->wmep_logcwmax = phy->logcwmax; wmep->wmep_txopLimit = phy->txopLimit; } static void setwmeparams(struct ieee80211vap *vap, const char *type, int ac, struct wmeParams *wmep, const paramType *phy) { wmep->wmep_acm = phy->acm; _setifsparams(wmep, phy); IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", ieee80211_wme_acnames[ac], type, wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, wmep->wmep_logcwmax, wmep->wmep_txopLimit); } static void ieee80211_wme_initparams_locked(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; const paramType *pPhyParam, *pBssPhyParam; struct wmeParams *wmep; enum ieee80211_phymode mode; int i; IEEE80211_LOCK_ASSERT(ic); if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) return; /* * Clear the wme cap_info field so a qoscount from a previous * vap doesn't confuse later code which only parses the beacon * field and updates hardware when said field changes. * Otherwise the hardware is programmed with defaults, not what * the beacon actually announces. * * Note that we can't ever have 0xff as an actual value; * the only valid values are 0..15. */ wme->wme_wmeChanParams.cap_info = 0xfe; /* * Select mode; we can be called early in which case we * always use auto mode. We know we'll be called when * entering the RUN state with bsschan setup properly * so state will eventually get set correctly */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) mode = ieee80211_chan2mode(ic->ic_bsschan); else mode = IEEE80211_MODE_AUTO; for (i = 0; i < WME_NUM_AC; i++) { switch (i) { case WME_AC_BK: pPhyParam = &phyParamForAC_BK[mode]; pBssPhyParam = &phyParamForAC_BK[mode]; break; case WME_AC_VI: pPhyParam = &phyParamForAC_VI[mode]; pBssPhyParam = &bssPhyParamForAC_VI[mode]; break; case WME_AC_VO: pPhyParam = &phyParamForAC_VO[mode]; pBssPhyParam = &bssPhyParamForAC_VO[mode]; break; case WME_AC_BE: default: pPhyParam = &phyParamForAC_BE[mode]; pBssPhyParam = &bssPhyParamForAC_BE[mode]; break; } wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; if (ic->ic_opmode == IEEE80211_M_HOSTAP) { setwmeparams(vap, "chan", i, wmep, pPhyParam); } else { setwmeparams(vap, "chan", i, wmep, pBssPhyParam); } wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); } /* NB: check ic_bss to avoid NULL deref on initial attach */ if (vap->iv_bss != NULL) { /* * Calculate aggressive mode switching threshold based * on beacon interval. This doesn't need locking since * we're only called before entering the RUN state at * which point we start sending beacon frames. */ wme->wme_hipri_switch_thresh = (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; wme->wme_flags &= ~WME_F_AGGRMODE; ieee80211_wme_updateparams(vap); } } void ieee80211_wme_initparams(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); ieee80211_wme_initparams_locked(vap); IEEE80211_UNLOCK(ic); } /* * Update WME parameters for ourself and the BSS. */ void ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) { static const paramType aggrParam[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ }; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; const struct wmeParams *wmep; struct wmeParams *chanp, *bssp; enum ieee80211_phymode mode; int i; int do_aggrmode = 0; /* * Set up the channel access parameters for the physical * device. First populate the configured settings. */ for (i = 0; i < WME_NUM_AC; i++) { chanp = &wme->wme_chanParams.cap_wmeParams[i]; wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; chanp->wmep_aifsn = wmep->wmep_aifsn; chanp->wmep_logcwmin = wmep->wmep_logcwmin; chanp->wmep_logcwmax = wmep->wmep_logcwmax; chanp->wmep_txopLimit = wmep->wmep_txopLimit; chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; chanp->wmep_aifsn = wmep->wmep_aifsn; chanp->wmep_logcwmin = wmep->wmep_logcwmin; chanp->wmep_logcwmax = wmep->wmep_logcwmax; chanp->wmep_txopLimit = wmep->wmep_txopLimit; } /* * Select mode; we can be called early in which case we * always use auto mode. We know we'll be called when * entering the RUN state with bsschan setup properly * so state will eventually get set correctly */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) mode = ieee80211_chan2mode(ic->ic_bsschan); else mode = IEEE80211_MODE_AUTO; /* * This implements aggressive mode as found in certain * vendors' AP's. When there is significant high * priority (VI/VO) traffic in the BSS throttle back BE * traffic by using conservative parameters. Otherwise * BE uses aggressive params to optimize performance of * legacy/non-QoS traffic. */ /* Hostap? Only if aggressive mode is enabled */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && (wme->wme_flags & WME_F_AGGRMODE) != 0) do_aggrmode = 1; /* * Station? Only if we're in a non-QoS BSS. */ else if ((vap->iv_opmode == IEEE80211_M_STA && (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) do_aggrmode = 1; /* * IBSS? Only if we have WME enabled. */ else if ((vap->iv_opmode == IEEE80211_M_IBSS) && (vap->iv_flags & IEEE80211_F_WME)) do_aggrmode = 1; /* * If WME is disabled on this VAP, default to aggressive mode * regardless of the configuration. */ if ((vap->iv_flags & IEEE80211_F_WME) == 0) do_aggrmode = 1; /* XXX WDS? */ /* XXX MBSS? */ if (do_aggrmode) { chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; chanp->wmep_logcwmin = bssp->wmep_logcwmin = aggrParam[mode].logcwmin; chanp->wmep_logcwmax = bssp->wmep_logcwmax = aggrParam[mode].logcwmax; chanp->wmep_txopLimit = bssp->wmep_txopLimit = (vap->iv_flags & IEEE80211_F_BURST) ? aggrParam[mode].txopLimit : 0; IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, chanp->wmep_logcwmax, chanp->wmep_txopLimit); } /* * Change the contention window based on the number of associated * stations. If the number of associated stations is 1 and * aggressive mode is enabled, lower the contention window even * further. */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { [IEEE80211_MODE_AUTO] = 3, [IEEE80211_MODE_11A] = 3, [IEEE80211_MODE_11B] = 4, [IEEE80211_MODE_11G] = 3, [IEEE80211_MODE_FH] = 4, [IEEE80211_MODE_TURBO_A] = 3, [IEEE80211_MODE_TURBO_G] = 3, [IEEE80211_MODE_STURBO_A] = 3, [IEEE80211_MODE_HALF] = 3, [IEEE80211_MODE_QUARTER] = 3, [IEEE80211_MODE_11NA] = 3, [IEEE80211_MODE_11NG] = 3, [IEEE80211_MODE_VHT_2GHZ] = 3, [IEEE80211_MODE_VHT_5GHZ] = 3, }; chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "update %s (chan+bss) logcwmin %u\n", ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); } /* schedule the deferred WME update */ ieee80211_runtask(ic, &vap->iv_wme_task); IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: WME params updated, cap_info 0x%x\n", __func__, vap->iv_opmode == IEEE80211_M_STA ? wme->wme_wmeChanParams.cap_info : wme->wme_bssChanParams.cap_info); } void ieee80211_wme_updateparams(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if (ic->ic_caps & IEEE80211_C_WME) { IEEE80211_LOCK(ic); ieee80211_wme_updateparams_locked(vap); IEEE80211_UNLOCK(ic); } } /* * Fetch the WME parameters for the given VAP. * * When net80211 grows p2p, etc support, this may return different * parameters for each VAP. */ void ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) { memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); } /* * For NICs which only support one set of WME parameters (ie, softmac NICs) * there may be different VAP WME parameters but only one is "active". * This returns the "NIC" WME parameters for the currently active * context. */ void ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) { memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); } /* * Return whether to use QoS on a given WME queue. * * This is intended to be called from the transmit path of softmac drivers * which are setting NoAck bits in transmit descriptors. * * Ideally this would be set in some transmit field before the packet is * queued to the driver but net80211 isn't quite there yet. */ int ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) { /* Bounds/sanity check */ if (ac < 0 || ac >= WME_NUM_AC) return (0); /* Again, there's only one global context for now */ return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); } static void parent_updown(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_parent(ic); } static void update_mcast(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_update_mcast(ic); } static void update_promisc(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_update_promisc(ic); } static void update_channel(void *arg, int npending) { struct ieee80211com *ic = arg; ic->ic_set_channel(ic); ieee80211_radiotap_chan_change(ic); } static void update_chw(void *arg, int npending) { struct ieee80211com *ic = arg; /* * XXX should we defer the channel width _config_ update until now? */ ic->ic_update_chw(ic); } /* * Deferred WME parameter and beacon update. * * In preparation for per-VAP WME configuration, call the VAP * method if the VAP requires it. Otherwise, just call the * older global method. There isn't a per-VAP WME configuration * just yet so for now just use the global configuration. */ static void vap_update_wme(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; /* Driver update */ if (vap->iv_wme_update != NULL) vap->iv_wme_update(vap, ic->ic_wme.wme_chanParams.cap_wmeParams); else ic->ic_wme.wme_update(ic); IEEE80211_LOCK(ic); /* * Arrange for the beacon update. * * XXX what about MBSS, WDS? */ if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS) { /* * Arrange for a beacon update and bump the parameter * set number so associated stations load the new values. */ wme->wme_bssChanParams.cap_info = (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); } IEEE80211_UNLOCK(ic); } static void restart_vaps(void *arg, int npending) { struct ieee80211com *ic = arg; ieee80211_suspend_all(ic); ieee80211_resume_all(ic); } /* * Block until the parent is in a known state. This is * used after any operations that dispatch a task (e.g. * to auto-configure the parent device up/down). */ void ieee80211_waitfor_parent(struct ieee80211com *ic) { taskqueue_block(ic->ic_tq); ieee80211_draintask(ic, &ic->ic_parent_task); ieee80211_draintask(ic, &ic->ic_mcast_task); ieee80211_draintask(ic, &ic->ic_promisc_task); ieee80211_draintask(ic, &ic->ic_chan_task); ieee80211_draintask(ic, &ic->ic_bmiss_task); ieee80211_draintask(ic, &ic->ic_chw_task); taskqueue_unblock(ic->ic_tq); } /* * Check to see whether the current channel needs reset. * * Some devices don't handle being given an invalid channel * in their operating mode very well (eg wpi(4) will throw a * firmware exception.) * * Return 0 if we're ok, 1 if the channel needs to be reset. * * See PR kern/202502. */ static int ieee80211_start_check_reset_chan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if ((vap->iv_opmode == IEEE80211_M_IBSS && IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || (vap->iv_opmode == IEEE80211_M_HOSTAP && IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) return (1); return (0); } /* * Reset the curchan to a known good state. */ static void ieee80211_start_reset_chan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; ic->ic_curchan = &ic->ic_channels[0]; } /* * Start a vap running. If this is the first vap to be * set running on the underlying device then we * automatically bring the device up. */ void ieee80211_start_locked(struct ieee80211vap *vap) { - struct ifnet *ifp = vap->iv_ifp; struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "start running, %d vaps running\n", ic->ic_nrunning); - if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { + if (!ieee80211_vap_ifp_check_is_running(vap)) { /* * Mark us running. Note that it's ok to do this first; * if we need to bring the parent device up we defer that * to avoid dropping the com lock. We expect the device * to respond to being marked up by calling back into us * through ieee80211_start_all at which point we'll come * back in here and complete the work. */ - ifp->if_drv_flags |= IFF_DRV_RUNNING; + ieee80211_vap_ifp_set_running_state(vap, true); ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); /* * We are not running; if this we are the first vap * to be brought up auto-up the parent if necessary. */ if (ic->ic_nrunning++ == 0) { /* reset the channel to a known good channel */ if (ieee80211_start_check_reset_chan(vap)) ieee80211_start_reset_chan(vap); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "%s: up parent %s\n", __func__, ic->ic_name); ieee80211_runtask(ic, &ic->ic_parent_task); return; } } /* * If the parent is up and running, then kick the * 802.11 state machine as appropriate. */ if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { if (vap->iv_opmode == IEEE80211_M_STA) { #if 0 /* XXX bypasses scan too easily; disable for now */ /* * Try to be intelligent about clocking the state * machine. If we're currently in RUN state then * we should be able to apply any new state/parameters * simply by re-associating. Otherwise we need to * re-scan to select an appropriate ap. */ if (vap->iv_state >= IEEE80211_S_RUN) ieee80211_new_state_locked(vap, IEEE80211_S_ASSOC, 1); else #endif ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 0); } else { /* * For monitor+wds mode there's nothing to do but * start running. Otherwise if this is the first * vap to be brought up, start a scan which may be * preempted if the station is locked to a particular * channel. */ vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; if (vap->iv_opmode == IEEE80211_M_MONITOR || vap->iv_opmode == IEEE80211_M_WDS) ieee80211_new_state_locked(vap, IEEE80211_S_RUN, -1); else ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 0); } } } /* * Start a single vap. */ void ieee80211_init(void *arg) { struct ieee80211vap *vap = arg; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "%s\n", __func__); IEEE80211_LOCK(vap->iv_ic); ieee80211_start_locked(vap); IEEE80211_UNLOCK(vap->iv_ic); } /* * Start all runnable vap's on a device. */ void ieee80211_start_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ ieee80211_start_locked(vap); } IEEE80211_UNLOCK(ic); } /* * Stop a vap. We force it down using the state machine * then mark it's ifnet not running. If this is the last * vap running on the underlying device then we close it * too to insure it will be properly initialized when the * next vap is brought up. */ void ieee80211_stop_locked(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; - struct ifnet *ifp = vap->iv_ifp; IEEE80211_LOCK_ASSERT(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "stop running, %d vaps running\n", ic->ic_nrunning); ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); - if (ifp->if_drv_flags & IFF_DRV_RUNNING) { - ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ + if (ieee80211_vap_ifp_check_is_running(vap)) { + /* mark us stopped */ + ieee80211_vap_ifp_set_running_state(vap, false); ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); if (--ic->ic_nrunning == 0) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "down parent %s\n", ic->ic_name); ieee80211_runtask(ic, &ic->ic_parent_task); } } } void ieee80211_stop(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); ieee80211_stop_locked(vap); IEEE80211_UNLOCK(ic); } /* * Stop all vap's running on a device. */ void ieee80211_stop_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ ieee80211_stop_locked(vap); } IEEE80211_UNLOCK(ic); ieee80211_waitfor_parent(ic); } /* * Stop all vap's running on a device and arrange * for those that were running to be resumed. */ void ieee80211_suspend_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; ieee80211_stop_locked(vap); } } IEEE80211_UNLOCK(ic); ieee80211_waitfor_parent(ic); } /* * Start all vap's marked for resume. */ void ieee80211_resume_all(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { struct ifnet *ifp = vap->iv_ifp; if (!IFNET_IS_UP_RUNNING(ifp) && (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; ieee80211_start_locked(vap); } } IEEE80211_UNLOCK(ic); } /* * Restart all vap's running on a device. */ void ieee80211_restart_all(struct ieee80211com *ic) { /* * NB: do not use ieee80211_runtask here, we will * block & drain net80211 taskqueue. */ taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); } void ieee80211_beacon_miss(struct ieee80211com *ic) { IEEE80211_LOCK(ic); if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* Process in a taskq, the handler may reenter the driver */ ieee80211_runtask(ic, &ic->ic_bmiss_task); } IEEE80211_UNLOCK(ic); } static void beacon_miss(void *arg, int npending) { struct ieee80211com *ic = arg; struct ieee80211vap *vap; IEEE80211_LOCK(ic); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { /* * We only pass events through for sta vap's in RUN+ state; * may be too restrictive but for now this saves all the * handlers duplicating these checks. */ if (vap->iv_opmode == IEEE80211_M_STA && vap->iv_state >= IEEE80211_S_RUN && vap->iv_bmiss != NULL) vap->iv_bmiss(vap); } IEEE80211_UNLOCK(ic); } static void beacon_swmiss(void *arg, int npending) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK(ic); if (vap->iv_state >= IEEE80211_S_RUN) { /* XXX Call multiple times if npending > zero? */ vap->iv_bmiss(vap); } IEEE80211_UNLOCK(ic); } /* * Software beacon miss handling. Check if any beacons * were received in the last period. If not post a * beacon miss; otherwise reset the counter. */ void ieee80211_swbmiss(void *arg) { struct ieee80211vap *vap = arg; struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("wrong state %d", vap->iv_state)); if (ic->ic_flags & IEEE80211_F_SCAN) { /* * If scanning just ignore and reset state. If we get a * bmiss after coming out of scan because we haven't had * time to receive a beacon then we should probe the AP * before posting a real bmiss (unless iv_bmiss_max has * been artifiically lowered). A cleaner solution might * be to disable the timer on scan start/end but to handle * case of multiple sta vap's we'd need to disable the * timers of all affected vap's. */ vap->iv_swbmiss_count = 0; } else if (vap->iv_swbmiss_count == 0) { if (vap->iv_bmiss != NULL) ieee80211_runtask(ic, &vap->iv_swbmiss_task); } else vap->iv_swbmiss_count = 0; callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, ieee80211_swbmiss, vap); } /* * Start an 802.11h channel switch. We record the parameters, * mark the operation pending, notify each vap through the * beacon update mechanism so it can update the beacon frame * contents, and then switch vap's to CSA state to block outbound * traffic. Devices that handle CSA directly can use the state * switch to do the right thing so long as they call * ieee80211_csa_completeswitch when it's time to complete the * channel change. Devices that depend on the net80211 layer can * use ieee80211_beacon_update to handle the countdown and the * channel switch. */ void ieee80211_csa_startswitch(struct ieee80211com *ic, struct ieee80211_channel *c, int mode, int count) { struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); ic->ic_csa_newchan = c; ic->ic_csa_mode = mode; ic->ic_csa_count = count; ic->ic_flags |= IEEE80211_F_CSAPENDING; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_MBSS) ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); /* switch to CSA state to block outbound traffic */ if (vap->iv_state == IEEE80211_S_RUN) ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); } ieee80211_notify_csa(ic, c, mode, count); } /* * Complete the channel switch by transitioning all CSA VAPs to RUN. * This is called by both the completion and cancellation functions * so each VAP is placed back in the RUN state and can thus transmit. */ static void csa_completeswitch(struct ieee80211com *ic) { struct ieee80211vap *vap; ic->ic_csa_newchan = NULL; ic->ic_flags &= ~IEEE80211_F_CSAPENDING; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_state == IEEE80211_S_CSA) ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); } /* * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. * We clear state and move all vap's in CSA state to RUN state * so they can again transmit. * * Although this may not be completely correct, update the BSS channel * for each VAP to the newly configured channel. The setcurchan sets * the current operating channel for the interface (so the radio does * switch over) but the VAP BSS isn't updated, leading to incorrectly * reported information via ioctl. */ void ieee80211_csa_completeswitch(struct ieee80211com *ic) { struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); ieee80211_setcurchan(ic, ic->ic_csa_newchan); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_state == IEEE80211_S_CSA) vap->iv_bss->ni_chan = ic->ic_curchan; csa_completeswitch(ic); } /* * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. * We clear state and move all vap's in CSA state to RUN state * so they can again transmit. */ void ieee80211_csa_cancelswitch(struct ieee80211com *ic) { IEEE80211_LOCK_ASSERT(ic); csa_completeswitch(ic); } /* * Complete a DFS CAC started by ieee80211_dfs_cac_start. * We clear state and move all vap's in CAC state to RUN state. */ void ieee80211_cac_completeswitch(struct ieee80211vap *vap0) { struct ieee80211com *ic = vap0->iv_ic; struct ieee80211vap *vap; IEEE80211_LOCK(ic); /* * Complete CAC state change for lead vap first; then * clock all the other vap's waiting. */ KASSERT(vap0->iv_state == IEEE80211_S_CAC, ("wrong state %d", vap0->iv_state)); ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); IEEE80211_UNLOCK(ic); } /* * Force all vap's other than the specified vap to the INIT state * and mark them as waiting for a scan to complete. These vaps * will be brought up when the scan completes and the scanning vap * reaches RUN state by wakeupwaiting. */ static void markwaiting(struct ieee80211vap *vap0) { struct ieee80211com *ic = vap0->iv_ic; struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); /* * A vap list entry can not disappear since we are running on the * taskqueue and a vap destroy will queue and drain another state * change task. */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap == vap0) continue; if (vap->iv_state != IEEE80211_S_INIT) { /* NB: iv_newstate may drop the lock */ vap->iv_newstate(vap, IEEE80211_S_INIT, 0); IEEE80211_LOCK_ASSERT(ic); vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; } } } /* * Wakeup all vap's waiting for a scan to complete. This is the * companion to markwaiting (above) and is used to coordinate * multiple vaps scanning. * This is called from the state taskqueue. */ static void wakeupwaiting(struct ieee80211vap *vap0) { struct ieee80211com *ic = vap0->iv_ic; struct ieee80211vap *vap; IEEE80211_LOCK_ASSERT(ic); /* * A vap list entry can not disappear since we are running on the * taskqueue and a vap destroy will queue and drain another state * change task. */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap == vap0) continue; if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; /* NB: sta's cannot go INIT->RUN */ /* NB: iv_newstate may drop the lock */ /* * This is problematic if the interface has OACTIVE * set. Only the deferred ieee80211_newstate_cb() * will end up actually /clearing/ the OACTIVE * flag on a state transition to RUN from a non-RUN * state. * * But, we're not actually deferring this callback; * and when the deferred call occurs it shows up as * a RUN->RUN transition! So the flag isn't/wasn't * cleared! * * I'm also not sure if it's correct to actually * do the transitions here fully through the deferred * paths either as other things can be invoked as * part of that state machine. * * So just keep this in mind when looking at what * the markwaiting/wakeupwaiting routines are doing * and how they invoke vap state changes. */ vap->iv_newstate(vap, vap->iv_opmode == IEEE80211_M_STA ? IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); IEEE80211_LOCK_ASSERT(ic); } } } static int _ieee80211_newstate_get_next_empty_slot(struct ieee80211vap *vap) { int nstate_num; IEEE80211_LOCK_ASSERT(vap->iv_ic); if (vap->iv_nstate_n >= NET80211_IV_NSTATE_NUM) return (-1); nstate_num = vap->iv_nstate_b + vap->iv_nstate_n; nstate_num %= NET80211_IV_NSTATE_NUM; vap->iv_nstate_n++; return (nstate_num); } static int _ieee80211_newstate_get_next_pending_slot(struct ieee80211vap *vap) { int nstate_num; IEEE80211_LOCK_ASSERT(vap->iv_ic); KASSERT(vap->iv_nstate_n > 0, ("%s: vap %p iv_nstate_n %d\n", __func__, vap, vap->iv_nstate_n)); nstate_num = vap->iv_nstate_b; vap->iv_nstate_b++; if (vap->iv_nstate_b >= NET80211_IV_NSTATE_NUM) vap->iv_nstate_b = 0; vap->iv_nstate_n--; return (nstate_num); } static int _ieee80211_newstate_get_npending(struct ieee80211vap *vap) { IEEE80211_LOCK_ASSERT(vap->iv_ic); return (vap->iv_nstate_n); } /* * Handle post state change work common to all operating modes. */ static void ieee80211_newstate_cb(void *xvap, int npending) { struct ieee80211vap *vap = xvap; struct ieee80211com *ic = vap->iv_ic; enum ieee80211_state nstate, ostate; int arg, rc, nstate_num; KASSERT(npending == 1, ("%s: vap %p with npending %d != 1\n", __func__, vap, npending)); IEEE80211_LOCK(ic); nstate_num = _ieee80211_newstate_get_next_pending_slot(vap); /* * Update the historic fields for now as they are used in some * drivers and reduce code changes for now. */ vap->iv_nstate = nstate = vap->iv_nstates[nstate_num]; arg = vap->iv_nstate_args[nstate_num]; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s:%d: running state update %s -> %s (%d)\n", __func__, __LINE__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], npending); if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { /* * We have been requested to drop back to the INIT before * proceeding to the new state. */ /* Deny any state changes while we are here. */ vap->iv_nstate = IEEE80211_S_INIT; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s arg %d -> %s arg %d\n", __func__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[vap->iv_nstate], 0, ieee80211_state_name[nstate], arg); vap->iv_newstate(vap, vap->iv_nstate, 0); IEEE80211_LOCK_ASSERT(ic); vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | IEEE80211_FEXT_STATEWAIT); /* enqueue new state transition after cancel_scan() task */ ieee80211_new_state_locked(vap, nstate, arg); goto done; } ostate = vap->iv_state; if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { /* * SCAN was forced; e.g. on beacon miss. Force other running * vap's to INIT state and mark them as waiting for the scan to * complete. This insures they don't interfere with our * scanning. Since we are single threaded the vaps can not * transition again while we are executing. * * XXX not always right, assumes ap follows sta */ markwaiting(vap); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s arg %d\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); rc = vap->iv_newstate(vap, nstate, arg); IEEE80211_LOCK_ASSERT(ic); vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; if (rc != 0) { /* State transition failed */ KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); KASSERT(nstate != IEEE80211_S_INIT, ("INIT state change failed")); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s returned error %d\n", __func__, ieee80211_state_name[nstate], rc); goto done; } /* * Handle the case of a RUN->RUN transition occuring when STA + AP * VAPs occur on the same radio. * * The mark and wakeup waiting routines call iv_newstate() directly, * but they do not end up deferring state changes here. * Thus, although the VAP newstate method sees a transition * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN * transition. If OACTIVE is set then it is never cleared. * * So, if we're here and the state is RUN, just clear OACTIVE. * At some point if the markwaiting/wakeupwaiting paths end up * also invoking the deferred state updates then this will * be no-op code - and also if OACTIVE is finally retired, it'll * also be no-op code. */ if (nstate == IEEE80211_S_RUN) { /* * OACTIVE may be set on the vap if the upper layer * tried to transmit (e.g. IPv6 NDP) before we reach * RUN state. Clear it and restart xmit. * * Note this can also happen as a result of SLEEP->RUN * (i.e. coming out of power save mode). * * Historically this was done only for a state change * but is needed earlier; see next comment. The 2nd half * of the work is still only done in case of an actual * state change below. */ /* * Unblock the VAP queue; a RUN->RUN state can happen * on a STA+AP setup on the AP vap. See wakeupwaiting(). */ vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; /* * XXX TODO Kick-start a VAP queue - this should be a method! */ } /* No actual transition, skip post processing */ if (ostate == nstate) goto done; if (nstate == IEEE80211_S_RUN) { /* bring up any vaps waiting on us */ wakeupwaiting(vap); } else if (nstate == IEEE80211_S_INIT) { /* * Flush the scan cache if we did the last scan (XXX?) * and flush any frames on send queues from this vap. * Note the mgt q is used only for legacy drivers and * will go away shortly. */ ieee80211_scan_flush(vap); /* * XXX TODO: ic/vap queue flush */ } done: IEEE80211_UNLOCK(ic); } /* * Public interface for initiating a state machine change. * This routine single-threads the request and coordinates * the scheduling of multiple vaps for the purpose of selecting * an operating channel. Specifically the following scenarios * are handled: * o only one vap can be selecting a channel so on transition to * SCAN state if another vap is already scanning then * mark the caller for later processing and return without * doing anything (XXX? expectations by caller of synchronous operation) * o only one vap can be doing CAC of a channel so on transition to * CAC state if another vap is already scanning for radar then * mark the caller for later processing and return without * doing anything (XXX? expectations by caller of synchronous operation) * o if another vap is already running when a request is made * to SCAN then an operating channel has been chosen; bypass * the scan and just join the channel * * Note that the state change call is done through the iv_newstate * method pointer so any driver routine gets invoked. The driver * will normally call back into operating mode-specific * ieee80211_newstate routines (below) unless it needs to completely * bypass the state machine (e.g. because the firmware has it's * own idea how things should work). Bypassing the net80211 layer * is usually a mistake and indicates lack of proper integration * with the net80211 layer. */ int ieee80211_new_state_locked(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211vap *vp; enum ieee80211_state ostate; int nrunning, nscanning, nstate_num; IEEE80211_LOCK_ASSERT(ic); if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { if (vap->iv_nstate == IEEE80211_S_INIT || ((vap->iv_state == IEEE80211_S_INIT || (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && vap->iv_nstate == IEEE80211_S_SCAN && nstate > IEEE80211_S_SCAN)) { /* * XXX The vap is being stopped/started, * do not allow any other state changes * until this is completed. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s:%d: %s -> %s (%s) transition discarded\n", __func__, __LINE__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[nstate], ieee80211_state_name[vap->iv_nstate]); return -1; } } IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s:%d: starting state update %s -> %s (%s)\n", __func__, __LINE__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[vap->iv_nstate], ieee80211_state_name[nstate]); nrunning = nscanning = 0; /* XXX can track this state instead of calculating */ TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { if (vp != vap) { if (vp->iv_state >= IEEE80211_S_RUN) nrunning++; /* XXX doesn't handle bg scan */ /* NB: CAC+AUTH+ASSOC treated like SCAN */ else if (vp->iv_state > IEEE80211_S_INIT) nscanning++; } } /* * Look ahead for the "old state" at that point when the last queued * state transition is run. */ if (vap->iv_nstate_n == 0) { ostate = vap->iv_state; } else { nstate_num = (vap->iv_nstate_b + vap->iv_nstate_n - 1) % NET80211_IV_NSTATE_NUM; ostate = vap->iv_nstates[nstate_num]; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, nrunning, nscanning); switch (nstate) { case IEEE80211_S_SCAN: if (ostate == IEEE80211_S_INIT) { /* * INIT -> SCAN happens on initial bringup. */ KASSERT(!(nscanning && nrunning), ("%d scanning and %d running", nscanning, nrunning)); if (nscanning) { /* * Someone is scanning, defer our state * change until the work has completed. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: defer %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; return 0; } if (nrunning) { /* * Someone is operating; just join the channel * they have chosen. */ /* XXX kill arg? */ /* XXX check each opmode, adhoc? */ if (vap->iv_opmode == IEEE80211_M_STA) nstate = IEEE80211_S_SCAN; else nstate = IEEE80211_S_RUN; #ifdef IEEE80211_DEBUG if (nstate != IEEE80211_S_SCAN) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: override, now %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); } #endif } } break; case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_WDS && (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && nscanning) { /* * Legacy WDS with someone else scanning; don't * go online until that completes as we should * follow the other vap to the channel they choose. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: defer %s -> %s (legacy WDS)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; return 0; } if (vap->iv_opmode == IEEE80211_M_HOSTAP && IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { /* * This is a DFS channel, transition to CAC state * instead of RUN. This allows us to initiate * Channel Availability Check (CAC) as specified * by 11h/DFS. */ nstate = IEEE80211_S_CAC; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: override %s -> %s (DFS)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); } break; case IEEE80211_S_INIT: /* cancel any scan in progress */ ieee80211_cancel_scan(vap); if (ostate == IEEE80211_S_INIT ) { /* XXX don't believe this */ /* INIT -> INIT. nothing to do */ vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; } /* fall thru... */ default: break; } /* * Defer the state change to a thread. * We support up-to NET80211_IV_NSTATE_NUM pending state changes * using a separate task for each. Otherwise, if we enqueue * more than one state change they will be folded together, * npedning will be > 1 and we may run then out of sequence with * other events. * This is kind-of a hack after 10 years but we know how to provoke * these cases now (and seen them in the wild). */ nstate_num = _ieee80211_newstate_get_next_empty_slot(vap); if (nstate_num == -1) { /* * This is really bad and we should just go kaboom. * Instead drop it. No one checks the return code anyway. */ ic_printf(ic, "%s:%d: pending %s -> %s (now to %s) " "transition lost. %d/%d pending state changes:\n", __func__, __LINE__, ieee80211_state_name[vap->iv_state], ieee80211_state_name[vap->iv_nstate], ieee80211_state_name[nstate], _ieee80211_newstate_get_npending(vap), NET80211_IV_NSTATE_NUM); return (EAGAIN); } vap->iv_nstates[nstate_num] = nstate; vap->iv_nstate_args[nstate_num] = arg; vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; ieee80211_runtask(ic, &vap->iv_nstate_task[nstate_num]); return EINPROGRESS; } int ieee80211_new_state(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; int rc; IEEE80211_LOCK(ic); rc = ieee80211_new_state_locked(vap, nstate, arg); IEEE80211_UNLOCK(ic); return rc; } diff --git a/sys/net80211/ieee80211_sta.c b/sys/net80211/ieee80211_sta.c index 0dd007fef508..062b5610d082 100644 --- a/sys/net80211/ieee80211_sta.c +++ b/sys/net80211/ieee80211_sta.c @@ -1,2064 +1,2064 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * IEEE 802.11 Station mode support. */ #include "opt_inet.h" #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IEEE80211_SUPPORT_SUPERG #include #endif #include #include #include static void sta_vattach(struct ieee80211vap *); static void sta_beacon_miss(struct ieee80211vap *); static int sta_newstate(struct ieee80211vap *, enum ieee80211_state, int); static int sta_input(struct ieee80211_node *, struct mbuf *, const struct ieee80211_rx_stats *, int, int); static void sta_recv_mgmt(struct ieee80211_node *, struct mbuf *, int subtype, const struct ieee80211_rx_stats *, int rssi, int nf); static void sta_recv_ctl(struct ieee80211_node *, struct mbuf *, int subtype); void ieee80211_sta_attach(struct ieee80211com *ic) { ic->ic_vattach[IEEE80211_M_STA] = sta_vattach; } void ieee80211_sta_detach(struct ieee80211com *ic) { } static void sta_vdetach(struct ieee80211vap *vap) { } static void sta_vattach(struct ieee80211vap *vap) { vap->iv_newstate = sta_newstate; vap->iv_input = sta_input; vap->iv_recv_mgmt = sta_recv_mgmt; vap->iv_recv_ctl = sta_recv_ctl; vap->iv_opdetach = sta_vdetach; vap->iv_bmiss = sta_beacon_miss; } /* * Handle a beacon miss event. The common code filters out * spurious events that can happen when scanning and/or before * reaching RUN state. */ static void sta_beacon_miss(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_ASSERT(ic); KASSERT((ic->ic_flags & IEEE80211_F_SCAN) == 0, ("scanning")); KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("wrong state %s", ieee80211_state_name[vap->iv_state])); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "beacon miss, mode %s state %s\n", ieee80211_opmode_name[vap->iv_opmode], ieee80211_state_name[vap->iv_state]); if (vap->iv_state == IEEE80211_S_CSA) { /* * A Channel Switch is pending; assume we missed the * beacon that would've completed the process and just * force the switch. If we made a mistake we'll not * find the AP on the new channel and fall back to a * normal scan. */ ieee80211_csa_completeswitch(ic); return; } if (++vap->iv_bmiss_count < vap->iv_bmiss_max) { /* * Send a directed probe req before falling back to a * scan; if we receive a response ic_bmiss_count will * be reset. Some cards mistakenly report beacon miss * so this avoids the expensive scan if the ap is * still there. */ ieee80211_send_probereq(vap->iv_bss, vap->iv_myaddr, vap->iv_bss->ni_bssid, vap->iv_bss->ni_bssid, vap->iv_bss->ni_essid, vap->iv_bss->ni_esslen); return; } callout_stop(&vap->iv_swbmiss); vap->iv_bmiss_count = 0; vap->iv_stats.is_beacon_miss++; if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { #ifdef IEEE80211_SUPPORT_SUPERG /* * If we receive a beacon miss interrupt when using * dynamic turbo, attempt to switch modes before * reassociating. */ if (IEEE80211_ATH_CAP(vap, vap->iv_bss, IEEE80211_NODE_TURBOP)) ieee80211_dturbo_switch(vap, ic->ic_bsschan->ic_flags ^ IEEE80211_CHAN_TURBO); #endif /* * Try to reassociate before scanning for a new ap. */ ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1); } else { /* * Somebody else is controlling state changes (e.g. * a user-mode app) don't do anything that would * confuse them; just drop into scan mode so they'll * notified of the state change and given control. */ ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } } /* * Handle deauth with reason. We retry only for * the cases where we might succeed. Otherwise * we downgrade the ap and scan. */ static void sta_authretry(struct ieee80211vap *vap, struct ieee80211_node *ni, int reason) { switch (reason) { case IEEE80211_STATUS_SUCCESS: /* NB: MLME assoc */ case IEEE80211_STATUS_TIMEOUT: case IEEE80211_REASON_ASSOC_EXPIRE: case IEEE80211_REASON_NOT_AUTHED: case IEEE80211_REASON_NOT_ASSOCED: case IEEE80211_REASON_ASSOC_LEAVE: case IEEE80211_REASON_ASSOC_NOT_AUTHED: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; default: ieee80211_scan_assoc_fail(vap, vap->iv_bss->ni_macaddr, reason); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; } } static void sta_swbmiss_start(struct ieee80211vap *vap) { if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) { /* * Start s/w beacon miss timer for devices w/o * hardware support. We fudge a bit here since * we're doing this in software. */ vap->iv_swbmiss_period = IEEE80211_TU_TO_TICKS( 2 * vap->iv_bmissthreshold * vap->iv_bss->ni_intval); vap->iv_swbmiss_count = 0; callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, ieee80211_swbmiss, vap); } } /* * IEEE80211_M_STA vap state machine handler. * This routine handles the main states in the 802.11 protocol. */ static int sta_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; enum ieee80211_state ostate; IEEE80211_LOCK_ASSERT(ic); ostate = vap->iv_state; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s -> %s (%d)\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); vap->iv_state = nstate; /* state transition */ callout_stop(&vap->iv_mgtsend); /* XXX callout_drain */ if (ostate != IEEE80211_S_SCAN) ieee80211_cancel_scan(vap); /* background scan */ ni = vap->iv_bss; /* NB: no reference held */ if (vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) callout_stop(&vap->iv_swbmiss); switch (nstate) { case IEEE80211_S_INIT: switch (ostate) { case IEEE80211_S_SLEEP: /* XXX wakeup */ /* XXX driver hook to wakeup the hardware? */ case IEEE80211_S_RUN: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_sta_leave(ni); break; case IEEE80211_S_ASSOC: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_AUTH_LEAVE); break; case IEEE80211_S_SCAN: ieee80211_cancel_scan(vap); break; default: break; } if (ostate != IEEE80211_S_INIT) { /* NB: optimize INIT -> INIT case */ ieee80211_reset_bss(vap); } if (vap->iv_auth->ia_detach != NULL) vap->iv_auth->ia_detach(vap); break; case IEEE80211_S_SCAN: switch (ostate) { case IEEE80211_S_INIT: /* * Initiate a scan. We can come here as a result * of an IEEE80211_IOC_SCAN_REQ too in which case * the vap will be marked with IEEE80211_FEXT_SCANREQ * and the scan request parameters will be present * in iv_scanreq. Otherwise we do the default. */ if (vap->iv_flags_ext & IEEE80211_FEXT_SCANREQ) { ieee80211_check_scan(vap, vap->iv_scanreq_flags, vap->iv_scanreq_duration, vap->iv_scanreq_mindwell, vap->iv_scanreq_maxdwell, vap->iv_scanreq_nssid, vap->iv_scanreq_ssid); vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANREQ; } else ieee80211_check_scan_current(vap); break; case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: /* * These can happen either because of a timeout * on an assoc/auth response or because of a * change in state that requires a reset. For * the former we're called with a non-zero arg * that is the cause for the failure; pass this * to the scan code so it can update state. * Otherwise trigger a new scan unless we're in * manual roaming mode in which case an application * must issue an explicit scan request. */ if (arg != 0) ieee80211_scan_assoc_fail(vap, vap->iv_bss->ni_macaddr, arg); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; case IEEE80211_S_SLEEP: /* beacon miss */ /* * XXX if in sleep we need to wakeup the hardware. */ /* FALLTHROUGH */ case IEEE80211_S_RUN: /* beacon miss */ /* * Beacon miss. Notify user space and if not * under control of a user application (roaming * manual) kick off a scan to re-connect. */ ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan_current(vap); break; default: goto invalid; } break; case IEEE80211_S_AUTH: switch (ostate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: switch (arg & 0xff) { case IEEE80211_FC0_SUBTYPE_AUTH: /* ??? */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: sta_authretry(vap, ni, arg>>8); break; } break; case IEEE80211_S_SLEEP: case IEEE80211_S_RUN: switch (arg & 0xff) { case IEEE80211_FC0_SUBTYPE_AUTH: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); vap->iv_state = IEEE80211_S_RUN; /* stay RUN */ break; case IEEE80211_FC0_SUBTYPE_DEAUTH: ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { /* try to reauth */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); } break; } break; default: goto invalid; } break; case IEEE80211_S_ASSOC: switch (ostate) { case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); break; case IEEE80211_S_SLEEP: /* cannot happen */ case IEEE80211_S_RUN: ieee80211_sta_leave(ni); if (vap->iv_roaming == IEEE80211_ROAMING_AUTO) { IEEE80211_SEND_MGMT(ni, arg ? IEEE80211_FC0_SUBTYPE_REASSOC_REQ : IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); } break; default: goto invalid; } break; case IEEE80211_S_RUN: if (vap->iv_flags & IEEE80211_F_WPA) { /* XXX validate prerequisites */ } switch (ostate) { case IEEE80211_S_RUN: case IEEE80211_S_CSA: break; case IEEE80211_S_AUTH: /* when join is done in fw */ case IEEE80211_S_ASSOC: #ifdef IEEE80211_DEBUG if (ieee80211_msg_debug(vap)) { ieee80211_note(vap, "%s with %s ssid ", (vap->iv_opmode == IEEE80211_M_STA ? "associated" : "synchronized"), ether_sprintf(ni->ni_bssid)); ieee80211_print_essid(vap->iv_bss->ni_essid, ni->ni_esslen); printf(" channel %d start %uMbit/s\n", ieee80211_chan2ieee(ic, ic->ic_curchan), ieee80211_node_get_txrate_kbit(ni) / 1000); } #endif ieee80211_scan_assoc_success(vap, ni->ni_macaddr); ieee80211_notify_node_join(ni, arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); break; case IEEE80211_S_SLEEP: /* Wake up from sleep */ vap->iv_sta_ps(vap, 0); break; default: goto invalid; } ieee80211_sync_curchan(ic); if (ostate != IEEE80211_S_RUN) sta_swbmiss_start(vap); /* * When 802.1x is not in use mark the port authorized * at this point so traffic can flow. */ if (ni->ni_authmode != IEEE80211_AUTH_8021X) ieee80211_node_authorize(ni); /* * Fake association when joining an existing bss. * * Don't do this if we're doing SLEEP->RUN. */ if (ic->ic_newassoc != NULL && ostate != IEEE80211_S_SLEEP) ic->ic_newassoc(vap->iv_bss, (ostate != IEEE80211_S_RUN)); break; case IEEE80211_S_CSA: if (ostate != IEEE80211_S_RUN) goto invalid; break; case IEEE80211_S_SLEEP: sta_swbmiss_start(vap); vap->iv_sta_ps(vap, 1); break; default: invalid: IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: unexpected state transition %s -> %s\n", __func__, ieee80211_state_name[ostate], ieee80211_state_name[nstate]); break; } return 0; } /* * Return non-zero if the frame is an echo of a multicast * frame sent by ourself. The dir is known to be DSTODS. */ static __inline int isdstods_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh) { #define QWH4(wh) ((const struct ieee80211_qosframe_addr4 *)wh) #define WH4(wh) ((const struct ieee80211_frame_addr4 *)wh) const uint8_t *sa; KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode")); if (!IEEE80211_IS_MULTICAST(wh->i_addr3)) return 0; sa = IEEE80211_QOS_HAS_SEQ(wh) ? QWH4(wh)->i_addr4 : WH4(wh)->i_addr4; return IEEE80211_ADDR_EQ(sa, vap->iv_myaddr); #undef WH4 #undef QWH4 } /* * Return non-zero if the frame is an echo of a multicast * frame sent by ourself. The dir is known to be FROMDS. */ static __inline int isfromds_mcastecho(struct ieee80211vap *vap, const struct ieee80211_frame *wh) { KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("wrong mode")); if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) return 0; return IEEE80211_ADDR_EQ(wh->i_addr3, vap->iv_myaddr); } /* * Decide if a received management frame should be * printed when debugging is enabled. This filters some * of the less interesting frames that come frequently * (e.g. beacons). */ static __inline int doprint(struct ieee80211vap *vap, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_BEACON: return (vap->iv_ic->ic_flags & IEEE80211_F_SCAN); case IEEE80211_FC0_SUBTYPE_PROBE_REQ: return 0; } return 1; } /* * Process a received frame. The node associated with the sender * should be supplied. If nothing was found in the node table then * the caller is assumed to supply a reference to iv_bss instead. * The RSSI and a timestamp are also supplied. The RSSI data is used * during AP scanning to select a AP to associate with; it can have * any units so long as values have consistent units and higher values * mean ``better signal''. The receive timestamp is currently not used * by the 802.11 layer. */ static int sta_input(struct ieee80211_node *ni, struct mbuf *m, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ifnet *ifp = vap->iv_ifp; struct ieee80211_frame *wh; struct ieee80211_key *key; struct ether_header *eh; int hdrspace, need_tap = 1; /* mbuf need to be tapped. */ uint8_t dir, type, subtype, qos; uint8_t *bssid; int is_hw_decrypted = 0; int has_decrypted = 0; KASSERT(ni != NULL, ("%s: null node, mbuf %p", __func__, m)); /* Early init in case of early error case. */ type = -1; /* * Bit of a cheat here, we use a pointer for a 3-address * frame format but don't reference fields past outside * ieee80211_frame_min (or other shorter frames) w/o first * validating the data is present. */ wh = mtod(m, struct ieee80211_frame *); if (m->m_pkthdr.len < 2 || m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "too short (1): len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto err; } if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "wrong version, fc %02x:%02x", wh->i_fc[0], wh->i_fc[1]); vap->iv_stats.is_rx_badversion++; goto err; } /* * Some devices do hardware decryption all the way through * to pretending the frame wasn't encrypted in the first place. * So, tag it appropriately so it isn't discarded inappropriately. */ if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) is_hw_decrypted = 1; if (m->m_flags & M_AMPDU_MPDU) { /* * Fastpath for A-MPDU reorder q resubmission. Frames * w/ M_AMPDU_MPDU marked have already passed through * here but were received out of order and been held on * the reorder queue. When resubmitted they are marked * with the M_AMPDU_MPDU flag and we can bypass most of * the normal processing. */ type = IEEE80211_FC0_TYPE_DATA; dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; subtype = IEEE80211_FC0_SUBTYPE_QOS_DATA; hdrspace = ieee80211_hdrspace(ic, wh); /* XXX optimize? */ goto resubmit_ampdu; } ni->ni_inact = ni->ni_inact_reload; dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* * Control frames are not folowing the header scheme of data and mgmt * frames so we do not apply extra checks here. * We probably should do checks on RA (+TA) where available for those * too, but for now do not drop them. */ if (type != IEEE80211_FC0_TYPE_CTL && (ic->ic_flags & IEEE80211_F_SCAN) == 0) { bssid = wh->i_addr2; if (!IEEE80211_ADDR_EQ(bssid, ni->ni_bssid)) { /* not interested in */ IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, bssid, NULL, "%s", "not to bss"); vap->iv_stats.is_rx_wrongbss++; goto out; } /* * Some devices may be in a promiscuous mode * where they receive frames for multiple station * addresses. * * If we receive a data frame that isn't * destined to our VAP MAC, drop it. * * XXX TODO: This is only enforced when not scanning; * XXX it assumes a software-driven scan will put the NIC * XXX into a "no data frames" mode before setting this * XXX flag. Otherwise it may be possible that we'll still * XXX process data frames whilst scanning. */ if ((! IEEE80211_IS_MULTICAST(wh->i_addr1)) && (! IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr))) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, bssid, NULL, "not to cur sta: lladdr=%6D, addr1=%6D", vap->iv_myaddr, ":", wh->i_addr1, ":"); vap->iv_stats.is_rx_wrongbss++; goto out; } IEEE80211_RSSI_LPF(ni->ni_avgrssi, rssi); ni->ni_noise = nf; if ( IEEE80211_HAS_SEQ(type, subtype) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { uint8_t tid = ieee80211_gettid(wh); if (IEEE80211_QOS_HAS_SEQ(wh) && TID_TO_WME_AC(tid) >= WME_AC_VI) ic->ic_wme.wme_hipri_traffic++; if (! ieee80211_check_rxseq(ni, wh, bssid, rxs)) goto out; } } switch (type) { case IEEE80211_FC0_TYPE_DATA: hdrspace = ieee80211_hdrspace(ic, wh); if (m->m_len < hdrspace && (m = m_pullup(m, hdrspace)) == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, NULL, "data too short: expecting %u", hdrspace); vap->iv_stats.is_rx_tooshort++; goto out; /* XXX */ } /* * Handle A-MPDU re-ordering. If the frame is to be * processed directly then ieee80211_ampdu_reorder * will return 0; otherwise it has consumed the mbuf * and we should do nothing more with it. */ if ((m->m_flags & M_AMPDU) && (dir == IEEE80211_FC1_DIR_FROMDS || dir == IEEE80211_FC1_DIR_DSTODS) && ieee80211_ampdu_reorder(ni, m, rxs) != 0) { m = NULL; goto out; } resubmit_ampdu: if (dir == IEEE80211_FC1_DIR_FROMDS) { - if ((ifp->if_flags & IFF_SIMPLEX) && + if (ieee80211_vap_ifp_check_is_simplex(vap) && isfromds_mcastecho(vap, wh)) { /* * In IEEE802.11 network, multicast * packets sent from "me" are broadcast * from the AP; silently discard for * SIMPLEX interface. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "%s", "multicast echo"); vap->iv_stats.is_rx_mcastecho++; goto out; } if ((vap->iv_flags & IEEE80211_F_DWDS) && IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* * DWDS sta's must drop 3-address mcast frames * as they will be sent separately as a 4-addr * frame. Accepting the 3-addr frame will * confuse the bridge into thinking the sending * sta is located at the end of WDS link. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "3-address data", "%s", "DWDS enabled"); vap->iv_stats.is_rx_mcastecho++; goto out; } } else if (dir == IEEE80211_FC1_DIR_DSTODS) { if ((vap->iv_flags & IEEE80211_F_DWDS) == 0) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "4-address data", "%s", "DWDS not enabled"); vap->iv_stats.is_rx_wrongdir++; goto out; } - if ((ifp->if_flags & IFF_SIMPLEX) && + if (ieee80211_vap_ifp_check_is_simplex(vap) && isdstods_mcastecho(vap, wh)) { /* * In IEEE802.11 network, multicast * packets sent from "me" are broadcast * from the AP; silently discard for * SIMPLEX interface. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "4-address data", "%s", "multicast echo"); vap->iv_stats.is_rx_mcastecho++; goto out; } } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto out; } /* * Handle privacy requirements for hardware decryption * devices. * * For those devices, a handful of things happen. * * + If IV has been stripped, then we can't run * ieee80211_crypto_decap() - none of the key * + If MIC has been stripped, we can't validate * MIC here. * + If MIC fails, then we need to communicate a * MIC failure up to the stack - but we don't know * which key was used. */ /* * Handle privacy requirements. Note that we * must not be preempted from here until after * we (potentially) call ieee80211_crypto_demic; * otherwise we may violate assumptions in the * crypto cipher modules used to do delayed update * of replay sequence numbers. */ if (is_hw_decrypted || IEEE80211_IS_PROTECTED(wh)) { if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { /* * Discard encrypted frames when privacy is off. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "WEP", "%s", "PRIVACY off"); vap->iv_stats.is_rx_noprivacy++; IEEE80211_NODE_STAT(ni, rx_noprivacy); goto out; } if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) { /* NB: stats+msgs handled in crypto_decap */ IEEE80211_NODE_STAT(ni, rx_wepfail); goto out; } wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; has_decrypted = 1; } else { /* XXX M_WEP and IEEE80211_F_PRIVACY */ key = NULL; } /* * Save QoS bits for use below--before we strip the header. */ if (subtype == IEEE80211_FC0_SUBTYPE_QOS_DATA) qos = ieee80211_getqos(wh)[0]; else qos = 0; /* * Next up, any fragmentation. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { m = ieee80211_defrag(ni, m, hdrspace, has_decrypted); if (m == NULL) { /* Fragment dropped or frame not complete yet */ goto out; } } wh = NULL; /* no longer valid, catch any uses */ /* * Next strip any MSDU crypto bits. * * Note: we can't do MIC stripping/verification if the * upper layer has stripped it. We have to check MIC * ourselves. So, key may be NULL, but we have to check * the RX status. */ if (!ieee80211_crypto_demic(vap, key, m, 0)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "%s", "demic error"); vap->iv_stats.is_rx_demicfail++; IEEE80211_NODE_STAT(ni, rx_demicfail); goto out; } /* copy to listener after decrypt */ if (ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); need_tap = 0; /* * Finally, strip the 802.11 header. */ m = ieee80211_decap(vap, m, hdrspace, qos); if (m == NULL) { /* XXX mask bit to check for both */ /* don't count Null data frames as errors */ if (subtype == IEEE80211_FC0_SUBTYPE_NODATA || subtype == IEEE80211_FC0_SUBTYPE_QOS_NULL) goto out; IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "%s", "decap error"); vap->iv_stats.is_rx_decap++; IEEE80211_NODE_STAT(ni, rx_decap); goto err; } if (!(qos & IEEE80211_QOS_AMSDU)) eh = mtod(m, struct ether_header *); else eh = NULL; if (!ieee80211_node_is_authorized(ni)) { /* * Deny any non-PAE frames received prior to * authorization. For open/shared-key * authentication the port is mark authorized * after authentication completes. For 802.1x * the port is not marked authorized by the * authenticator until the handshake has completed. */ if (eh == NULL || eh->ether_type != htons(ETHERTYPE_PAE)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_INPUT, ni->ni_macaddr, "data", "unauthorized or " "unknown port: ether type 0x%x len %u", eh == NULL ? -1 : eh->ether_type, m->m_pkthdr.len); vap->iv_stats.is_rx_unauth++; IEEE80211_NODE_STAT(ni, rx_unauth); goto err; } } else { /* * When denying unencrypted frames, discard * any non-PAE frames received without encryption. */ if ((vap->iv_flags & IEEE80211_F_DROPUNENC) && ((has_decrypted == 0) && (m->m_flags & M_WEP) == 0) && (is_hw_decrypted == 0) && (eh == NULL || eh->ether_type != htons(ETHERTYPE_PAE))) { /* * Drop unencrypted frames. */ vap->iv_stats.is_rx_unencrypted++; IEEE80211_NODE_STAT(ni, rx_unencrypted); goto out; } } /* XXX require HT? */ if (qos & IEEE80211_QOS_AMSDU) { m = ieee80211_decap_amsdu(ni, m); if (m == NULL) return IEEE80211_FC0_TYPE_DATA; } else { #ifdef IEEE80211_SUPPORT_SUPERG m = ieee80211_decap_fastframe(vap, ni, m); if (m == NULL) return IEEE80211_FC0_TYPE_DATA; #endif } ieee80211_deliver_data(vap, ni, m); return IEEE80211_FC0_TYPE_DATA; case IEEE80211_FC0_TYPE_MGT: vap->iv_stats.is_rx_mgmt++; IEEE80211_NODE_STAT(ni, rx_mgmt); if (dir != IEEE80211_FC1_DIR_NODS) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "data", "incorrect dir 0x%x", dir); vap->iv_stats.is_rx_wrongdir++; goto err; } if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, ni->ni_macaddr, "mgt", "too short: len %u", m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; goto out; } #ifdef IEEE80211_DEBUG if ((ieee80211_msg_debug(vap) && doprint(vap, subtype)) || ieee80211_msg_dumppkts(vap)) { if_printf(ifp, "received %s from %s rssi %d\n", ieee80211_mgt_subtype_name(subtype), ether_sprintf(wh->i_addr2), rssi); } #endif /* * Note: See above for hardware offload privacy requirements. * It also applies here. */ /* * Again, having encrypted flag set check would be good, but * then we have to also handle crypto_decap() like above. */ if (IEEE80211_IS_PROTECTED(wh)) { if (subtype != IEEE80211_FC0_SUBTYPE_AUTH) { /* * Only shared key auth frames with a challenge * should be encrypted, discard all others. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, ieee80211_mgt_subtype_name(subtype), "%s", "WEP set but not permitted"); vap->iv_stats.is_rx_mgtdiscard++; /* XXX */ goto out; } if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { /* * Discard encrypted frames when privacy is off. */ IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, "mgt", "%s", "WEP set but PRIVACY off"); vap->iv_stats.is_rx_noprivacy++; goto out; } hdrspace = ieee80211_hdrspace(ic, wh); /* * Again, if IV/MIC was stripped, then this whole * setup will fail. That's going to need some poking. */ if (ieee80211_crypto_decap(ni, m, hdrspace, &key) == 0) { /* NB: stats+msgs handled in crypto_decap */ goto out; } has_decrypted = 1; wh = mtod(m, struct ieee80211_frame *); wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; } vap->iv_recv_mgmt(ni, m, subtype, rxs, rssi, nf); goto out; case IEEE80211_FC0_TYPE_CTL: vap->iv_stats.is_rx_ctl++; IEEE80211_NODE_STAT(ni, rx_ctrl); if (ieee80211_is_ctl_frame_for_vap(ni, m)) vap->iv_recv_ctl(ni, m, subtype); goto out; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, NULL, "bad frame type 0x%x", type); /* should not come here */ break; } err: if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); out: if (m != NULL) { if (need_tap && ieee80211_radiotap_active_vap(vap)) ieee80211_radiotap_rx(vap, m); m_freem(m); } return type; } static void sta_auth_open(struct ieee80211_node *ni, struct ieee80211_frame *wh, int rssi, int nf, uint16_t seq, uint16_t status) { struct ieee80211vap *vap = ni->ni_vap; if (ni->ni_authmode == IEEE80211_AUTH_SHARED) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "open auth", "bad sta auth mode %u", ni->ni_authmode); vap->iv_stats.is_rx_bad_auth++; /* XXX */ return; } if (vap->iv_state != IEEE80211_S_AUTH || seq != IEEE80211_AUTH_OPEN_RESPONSE) { vap->iv_stats.is_rx_bad_auth++; return; } if (status != 0) { IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, ni, "open auth failed (reason %d)", status); vap->iv_stats.is_rx_auth_fail++; vap->iv_stats.is_rx_authfail_code = status; ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); } else ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); } static void sta_auth_shared(struct ieee80211_node *ni, struct ieee80211_frame *wh, uint8_t *frm, uint8_t *efrm, int rssi, int nf, uint16_t seq, uint16_t status) { struct ieee80211vap *vap = ni->ni_vap; uint8_t *challenge; /* * NB: this can happen as we allow pre-shared key * authentication to be enabled w/o wep being turned * on so that configuration of these can be done * in any order. It may be better to enforce the * ordering in which case this check would just be * for sanity/consistency. */ if ((vap->iv_flags & IEEE80211_F_PRIVACY) == 0) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "%s", " PRIVACY is disabled"); goto bad; } /* * Pre-shared key authentication is evil; accept * it only if explicitly configured (it is supported * mainly for compatibility with clients like OS X). */ if (ni->ni_authmode != IEEE80211_AUTH_AUTO && ni->ni_authmode != IEEE80211_AUTH_SHARED) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "bad sta auth mode %u", ni->ni_authmode); vap->iv_stats.is_rx_bad_auth++; /* XXX maybe a unique error? */ goto bad; } challenge = NULL; if (frm + 1 < efrm) { if ((frm[1] + 2) > (efrm - frm)) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "ie %d/%d too long", frm[0], (frm[1] + 2) - (efrm - frm)); vap->iv_stats.is_rx_bad_auth++; goto bad; } if (*frm == IEEE80211_ELEMID_CHALLENGE) challenge = frm; frm += frm[1] + 2; } switch (seq) { case IEEE80211_AUTH_SHARED_CHALLENGE: case IEEE80211_AUTH_SHARED_RESPONSE: if (challenge == NULL) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "%s", "no challenge"); vap->iv_stats.is_rx_bad_auth++; goto bad; } if (challenge[1] != IEEE80211_CHALLENGE_LEN) { IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_AUTH, ni->ni_macaddr, "shared key auth", "bad challenge len %d", challenge[1]); vap->iv_stats.is_rx_bad_auth++; goto bad; } default: break; } if (vap->iv_state != IEEE80211_S_AUTH) return; switch (seq) { case IEEE80211_AUTH_SHARED_PASS: if (ni->ni_challenge != NULL) { IEEE80211_FREE(ni->ni_challenge, M_80211_NODE); ni->ni_challenge = NULL; } if (status != 0) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_AUTH, wh, "shared key auth failed (reason %d)", status); vap->iv_stats.is_rx_auth_fail++; vap->iv_stats.is_rx_authfail_code = status; return; } ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); break; case IEEE80211_AUTH_SHARED_CHALLENGE: if (!ieee80211_alloc_challenge(ni)) return; /* XXX could optimize by passing recvd challenge */ memcpy(ni->ni_challenge, &challenge[2], challenge[1]); IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, seq + 1); break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH, wh, "shared key auth", "bad seq %d", seq); vap->iv_stats.is_rx_bad_auth++; return; } return; bad: /* * Kick the state machine. This short-circuits * using the mgt frame timeout to trigger the * state transition. */ if (vap->iv_state == IEEE80211_S_AUTH) ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); } /* * Parse the WME IE for QoS and U-APSD information. * * Returns -1 if the IE isn't found, 1 if it's found. */ int ieee80211_parse_wmeie(uint8_t *frm, const struct ieee80211_frame *wh, struct ieee80211_node *ni) { u_int len = frm[1]; ni->ni_uapsd = 0; if (len < sizeof(struct ieee80211_wme_param)-2) { IEEE80211_DISCARD_IE(ni->ni_vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME, wh, "WME", "too short, len %u", len); return -1; } ni->ni_uapsd = frm[WME_CAPINFO_IE_OFFSET]; IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_POWER | IEEE80211_MSG_ASSOC, ni, "U-APSD settings from STA: 0x%02x", ni->ni_uapsd); return 1; } int ieee80211_parse_wmeparams(struct ieee80211vap *vap, uint8_t *frm, const struct ieee80211_frame *wh, uint8_t *qosinfo) { struct ieee80211_wme_state *wme = &vap->iv_ic->ic_wme; u_int len = frm[1], qosinfo_count; int i; *qosinfo = 0; if (len < sizeof(struct ieee80211_wme_param)-2) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_WME, wh, "WME", "too short, len %u", len); return -1; } *qosinfo = frm[__offsetof(struct ieee80211_wme_param, param_qosInfo)]; qosinfo_count = *qosinfo & WME_QOSINFO_COUNT; /* XXX do proper check for wraparound */ if (qosinfo_count == wme->wme_wmeChanParams.cap_info) return 0; frm += __offsetof(struct ieee80211_wme_param, params_acParams); for (i = 0; i < WME_NUM_AC; i++) { struct wmeParams *wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; /* NB: ACI not used */ wmep->wmep_acm = _IEEE80211_MASKSHIFT(frm[0], WME_PARAM_ACM); wmep->wmep_aifsn = _IEEE80211_MASKSHIFT(frm[0], WME_PARAM_AIFSN); wmep->wmep_logcwmin = _IEEE80211_MASKSHIFT(frm[1], WME_PARAM_LOGCWMIN); wmep->wmep_logcwmax = _IEEE80211_MASKSHIFT(frm[1], WME_PARAM_LOGCWMAX); wmep->wmep_txopLimit = le16dec(frm+2); IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: WME: %d: acm=%d aifsn=%d logcwmin=%d logcwmax=%d txopLimit=%d\n", __func__, i, wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, wmep->wmep_logcwmax, wmep->wmep_txopLimit); frm += 4; } wme->wme_wmeChanParams.cap_info = qosinfo_count; return 1; } /* * Process 11h Channel Switch Announcement (CSA) ie. If this * is the first CSA then initiate the switch. Otherwise we * track state and trigger completion and/or cancel of the switch. * XXX should be public for IBSS use */ static void ieee80211_parse_csaparams(struct ieee80211vap *vap, uint8_t *frm, const struct ieee80211_frame *wh) { struct ieee80211com *ic = vap->iv_ic; const struct ieee80211_csa_ie *csa = (const struct ieee80211_csa_ie *) frm; KASSERT(vap->iv_state >= IEEE80211_S_RUN, ("state %s", ieee80211_state_name[vap->iv_state])); if (csa->csa_mode > 1) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "invalid mode %u", csa->csa_mode); return; } IEEE80211_LOCK(ic); if ((ic->ic_flags & IEEE80211_F_CSAPENDING) == 0) { /* * Convert the channel number to a channel reference. We * try first to preserve turbo attribute of the current * channel then fallback. Note this will not work if the * CSA specifies a channel that requires a band switch (e.g. * 11a => 11g). This is intentional as 11h is defined only * for 5GHz/11a and because the switch does not involve a * reassociation, protocol state (capabilities, negotated * rates, etc) may/will be wrong. */ struct ieee80211_channel *c = ieee80211_find_channel_byieee(ic, csa->csa_newchan, (ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALLTURBO)); if (c == NULL) { c = ieee80211_find_channel_byieee(ic, csa->csa_newchan, (ic->ic_bsschan->ic_flags & IEEE80211_CHAN_ALL)); if (c == NULL) { IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "invalid channel %u", csa->csa_newchan); goto done; } } #if IEEE80211_CSA_COUNT_MIN > 0 if (csa->csa_count < IEEE80211_CSA_COUNT_MIN) { /* * Require at least IEEE80211_CSA_COUNT_MIN count to * reduce the risk of being redirected by a fabricated * CSA. If a valid CSA is dropped we'll still get a * beacon miss when the AP leaves the channel so we'll * eventually follow to the new channel. * * NOTE: this violates the 11h spec that states that * count may be any value and if 0 then a switch * should happen asap. */ IEEE80211_DISCARD_IE(vap, IEEE80211_MSG_ELEMID | IEEE80211_MSG_DOTH, wh, "CSA", "count %u too small, must be >= %u", csa->csa_count, IEEE80211_CSA_COUNT_MIN); goto done; } #endif ieee80211_csa_startswitch(ic, c, csa->csa_mode, csa->csa_count); } else { /* * Validate this ie against the initial CSA. We require * mode and channel not change and the count must be * monotonically decreasing. This may be pointless and * canceling the switch as a result may be too paranoid but * in the worst case if we drop out of CSA because of this * and the AP does move then we'll just end up taking a * beacon miss and scan to find the AP. * * XXX may want <= on count as we also process ProbeResp * frames and those may come in w/ the same count as the * previous beacon; but doing so leaves us open to a stuck * count until we add a dead-man timer */ if (!(csa->csa_count < ic->ic_csa_count && csa->csa_mode == ic->ic_csa_mode && csa->csa_newchan == ieee80211_chan2ieee(ic, ic->ic_csa_newchan))) { IEEE80211_NOTE_FRAME(vap, IEEE80211_MSG_DOTH, wh, "CSA ie mismatch, initial ie <%d,%d,%d>, " "this ie <%d,%d,%d>", ic->ic_csa_mode, ic->ic_csa_newchan, ic->ic_csa_count, csa->csa_mode, csa->csa_newchan, csa->csa_count); ieee80211_csa_cancelswitch(ic); } else { if (csa->csa_count <= 1) ieee80211_csa_completeswitch(ic); else ic->ic_csa_count = csa->csa_count; } } done: IEEE80211_UNLOCK(ic); } /* * Return non-zero if a background scan may be continued: * o bg scan is active * o no channel switch is pending * o there has not been any traffic recently * o no full-offload scan support (no need for explicitly continuing scan then) * * Note we do not check if there is an administrative enable; * this is only done to start the scan. We assume that any * change in state will be accompanied by a request to cancel * active scans which will otherwise cause this test to fail. */ static __inline int contbgscan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; return ((ic->ic_flags_ext & IEEE80211_FEXT_BGSCAN) && (ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 && !(vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) && vap->iv_state == IEEE80211_S_RUN && /* XXX? */ ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle)); } /* * Return non-zero if a backgrond scan may be started: * o bg scanning is administratively enabled * o no channel switch is pending * o we are not boosted on a dynamic turbo channel * o there has not been a scan recently * o there has not been any traffic recently (don't check if full-offload scan) */ static __inline int startbgscan(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; return ((vap->iv_flags & IEEE80211_F_BGSCAN) && (ic->ic_flags & IEEE80211_F_CSAPENDING) == 0 && #ifdef IEEE80211_SUPPORT_SUPERG !IEEE80211_IS_CHAN_DTURBO(ic->ic_curchan) && #endif ieee80211_time_after(ticks, ic->ic_lastscan + vap->iv_bgscanintvl) && ((vap->iv_flags_ext & IEEE80211_FEXT_SCAN_OFFLOAD) || ieee80211_time_after(ticks, ic->ic_lastdata + vap->iv_bgscanidle))); } #ifdef notyet /* * Compare two quiet IEs and return if they are equivalent. * * The tbttcount isn't checked - that's not part of the configuration. */ static int compare_quiet_ie(const struct ieee80211_quiet_ie *q1, const struct ieee80211_quiet_ie *q2) { if (q1->period != q2->period) return (0); if (le16dec(&q1->duration) != le16dec(&q2->duration)) return (0); if (le16dec(&q1->offset) != le16dec(&q2->offset)) return (0); return (1); } #endif static void sta_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m0, int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf) { #define ISREASSOC(_st) ((_st) == IEEE80211_FC0_SUBTYPE_REASSOC_RESP) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; struct ieee80211_channel *rxchan = ic->ic_curchan; struct ieee80211_frame *wh; int ht_state_change = 0, do_ht = 0; uint8_t *frm, *efrm; uint8_t *rates, *xrates, *wme, *htcap, *htinfo; uint8_t *vhtcap, *vhtopmode; uint8_t rate; uint8_t qosinfo; wh = mtod(m0, struct ieee80211_frame *); frm = (uint8_t *)&wh[1]; efrm = mtod(m0, uint8_t *) + m0->m_len; switch (subtype) { case IEEE80211_FC0_SUBTYPE_PROBE_RESP: case IEEE80211_FC0_SUBTYPE_BEACON: { struct ieee80211_scanparams scan; struct ieee80211_channel *c; /* * We process beacon/probe response frames: * o when scanning, or * o station mode when associated (to collect state * updates such as 802.11g slot time) * Frames otherwise received are discarded. */ if (!((ic->ic_flags & IEEE80211_F_SCAN) || ni->ni_associd)) { vap->iv_stats.is_rx_mgtdiscard++; return; } /* Override RX channel as appropriate */ if (rxs != NULL) { c = ieee80211_lookup_channel_rxstatus(vap, rxs); if (c != NULL) rxchan = c; } /* XXX probe response in sta mode when !scanning? */ if (ieee80211_parse_beacon(ni, m0, rxchan, &scan) != 0) { if (! (ic->ic_flags & IEEE80211_F_SCAN)) vap->iv_stats.is_beacon_bad++; return; } /* * Count frame now that we know it's to be processed. */ if (subtype == IEEE80211_FC0_SUBTYPE_BEACON) { vap->iv_stats.is_rx_beacon++; /* XXX remove */ IEEE80211_NODE_STAT(ni, rx_beacons); } else IEEE80211_NODE_STAT(ni, rx_proberesp); /* * When operating in station mode, check for state updates. * Be careful to ignore beacons received while doing a * background scan. We consider only 11g/WMM stuff right now. */ if (ni->ni_associd != 0 && ((ic->ic_flags & IEEE80211_F_SCAN) == 0 || IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_bssid))) { /* record tsf of last beacon */ memcpy(ni->ni_tstamp.data, scan.tstamp, sizeof(ni->ni_tstamp)); /* count beacon frame for s/w bmiss handling */ vap->iv_swbmiss_count++; vap->iv_bmiss_count = 0; if (ni->ni_erp != scan.erp) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "erp change: was 0x%x, now 0x%x", ni->ni_erp, scan.erp); if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ni->ni_erp & IEEE80211_ERP_USE_PROTECTION)) vap->iv_flags |= IEEE80211_F_USEPROT; else vap->iv_flags &= ~IEEE80211_F_USEPROT; ni->ni_erp = scan.erp; /* XXX statistic */ /* driver notification */ ieee80211_vap_update_erp_protmode(vap); } if ((ni->ni_capinfo ^ scan.capinfo) & IEEE80211_CAPINFO_SHORT_SLOTTIME) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "capabilities change: was 0x%x, now 0x%x", ni->ni_capinfo, scan.capinfo); /* * NB: we assume short preamble doesn't * change dynamically */ ieee80211_vap_set_shortslottime(vap, IEEE80211_IS_CHAN_A(ic->ic_bsschan) || (scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)); ni->ni_capinfo = (ni->ni_capinfo &~ IEEE80211_CAPINFO_SHORT_SLOTTIME) | (scan.capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME); /* XXX statistic */ } if (scan.wme != NULL && (ni->ni_flags & IEEE80211_NODE_QOS)) { int _retval; if ((_retval = ieee80211_parse_wmeparams(vap, scan.wme, wh, &qosinfo)) >= 0) { if (qosinfo & WME_CAPINFO_UAPSD_EN) ni->ni_flags |= IEEE80211_NODE_UAPSD; if (_retval > 0) ieee80211_wme_updateparams(vap); } } else ni->ni_flags &= ~IEEE80211_NODE_UAPSD; #ifdef IEEE80211_SUPPORT_SUPERG if (scan.ath != NULL) ieee80211_parse_athparams(ni, scan.ath, wh); #endif if (scan.htcap != NULL && scan.htinfo != NULL && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { /* XXX state changes? */ ieee80211_ht_updateparams(ni, scan.htcap, scan.htinfo); do_ht = 1; } if (scan.vhtcap != NULL && scan.vhtopmode != NULL && (vap->iv_vht_flags & IEEE80211_FVHT_VHT)) { /* XXX state changes? */ ieee80211_vht_updateparams(ni, scan.vhtcap, scan.vhtopmode); do_ht = 1; } if (do_ht) { if (ieee80211_ht_updateparams_final(ni, scan.htcap, scan.htinfo)) ht_state_change = 1; } /* * If we have a quiet time IE then report it up to * the driver. * * Otherwise, inform the driver that the quiet time * IE has disappeared - only do that once rather than * spamming it each time. */ if (scan.quiet) { ic->ic_set_quiet(ni, scan.quiet); ni->ni_quiet_ie_set = 1; memcpy(&ni->ni_quiet_ie, scan.quiet, sizeof(struct ieee80211_quiet_ie)); } else { if (ni->ni_quiet_ie_set == 1) ic->ic_set_quiet(ni, NULL); ni->ni_quiet_ie_set = 0; bzero(&ni->ni_quiet_ie, sizeof(struct ieee80211_quiet_ie)); } if (scan.tim != NULL) { struct ieee80211_tim_ie *tim = (struct ieee80211_tim_ie *) scan.tim; /* * XXX Check/debug this code; see if it's about * the right time to force the VAP awake if we * receive a frame destined for us? */ int aid = IEEE80211_AID(ni->ni_associd); int ix = aid / NBBY; int min = tim->tim_bitctl &~ 1; int max = tim->tim_len + min - 4; int tim_ucast = 0; #ifdef __notyet__ int tim_mcast = 0; #endif /* * Only do this for unicast traffic in the TIM * The multicast traffic notification for * the scan notification stuff should occur * differently. */ if (min <= ix && ix <= max && isset(tim->tim_bitmap - min, aid)) { tim_ucast = 1; } #ifdef __notyet__ /* * Do a separate notification * for the multicast bit being set. */ if (tim->tim_bitctl & 1) { tim_mcast = 1; } #endif /* * If the TIM indicates there's traffic for * us then get us out of STA mode powersave. */ if (tim_ucast == 1) { /* * Wake us out of SLEEP state if we're * in it; and if we're doing bgscan * then wake us out of STA powersave. */ ieee80211_sta_tim_notify(vap, 1); /* * This is preventing us from * continuing a bgscan; because it * tricks the contbgscan() * routine to think there's always * traffic for us. * * I think we need both an RX and * TX ic_lastdata field. */ ic->ic_lastdata = ticks; } ni->ni_dtim_count = tim->tim_count; ni->ni_dtim_period = tim->tim_period; } if (scan.csa != NULL && (vap->iv_flags & IEEE80211_F_DOTH)) ieee80211_parse_csaparams(vap, scan.csa, wh); else if (ic->ic_flags & IEEE80211_F_CSAPENDING) { /* * No CSA ie or 11h disabled, but a channel * switch is pending; drop out so we aren't * stuck in CSA state. If the AP really is * moving we'll get a beacon miss and scan. */ IEEE80211_LOCK(ic); ieee80211_csa_cancelswitch(ic); IEEE80211_UNLOCK(ic); } /* * If scanning, pass the info to the scan module. * Otherwise, check if it's the right time to do * a background scan. Background scanning must * be enabled and we must not be operating in the * turbo phase of dynamic turbo mode. Then, * it's been a while since the last background * scan and if no data frames have come through * recently, kick off a scan. Note that this * is the mechanism by which a background scan * is started _and_ continued each time we * return on-channel to receive a beacon from * our ap. */ if (ic->ic_flags & IEEE80211_F_SCAN) { ieee80211_add_scan(vap, rxchan, &scan, wh, subtype, rssi, nf); } else if (contbgscan(vap)) { ieee80211_bg_scan(vap, 0); } else if (startbgscan(vap)) { vap->iv_stats.is_scan_bg++; #if 0 /* wakeup if we are sleeing */ ieee80211_set_pwrsave(vap, 0); #endif ieee80211_bg_scan(vap, 0); } /* * Put the station to sleep if we haven't seen * traffic in a while. */ IEEE80211_LOCK(ic); ieee80211_sta_ps_timer_check(vap); IEEE80211_UNLOCK(ic); /* * If we've had a channel width change (eg HT20<->HT40) * then schedule a delayed driver notification. */ if (ht_state_change) ieee80211_update_chw(ic); return; } /* * If scanning, just pass information to the scan module. */ if (ic->ic_flags & IEEE80211_F_SCAN) { if (ic->ic_flags_ext & IEEE80211_FEXT_PROBECHAN) { /* * Actively scanning a channel marked passive; * send a probe request now that we know there * is 802.11 traffic present. * * XXX check if the beacon we recv'd gives * us what we need and suppress the probe req */ ieee80211_probe_curchan(vap, true); ic->ic_flags_ext &= ~IEEE80211_FEXT_PROBECHAN; } ieee80211_add_scan(vap, rxchan, &scan, wh, subtype, rssi, nf); return; } break; } case IEEE80211_FC0_SUBTYPE_AUTH: { uint16_t algo, seq, status; /* * auth frame format * [2] algorithm * [2] sequence * [2] status * [tlv*] challenge */ IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return); algo = le16toh(*(uint16_t *)frm); seq = le16toh(*(uint16_t *)(frm + 2)); status = le16toh(*(uint16_t *)(frm + 4)); IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr2, "recv auth frame with algorithm %d seq %d", algo, seq); if (vap->iv_flags & IEEE80211_F_COUNTERM) { IEEE80211_DISCARD(vap, IEEE80211_MSG_AUTH | IEEE80211_MSG_CRYPTO, wh, "auth", "%s", "TKIP countermeasures enabled"); vap->iv_stats.is_rx_auth_countermeasures++; if (vap->iv_opmode == IEEE80211_M_HOSTAP) { ieee80211_send_error(ni, wh->i_addr2, IEEE80211_FC0_SUBTYPE_AUTH, IEEE80211_REASON_MIC_FAILURE); } return; } if (algo == IEEE80211_AUTH_ALG_SHARED) sta_auth_shared(ni, wh, frm + 6, efrm, rssi, nf, seq, status); else if (algo == IEEE80211_AUTH_ALG_OPEN) sta_auth_open(ni, wh, rssi, nf, seq, status); else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "auth", "unsupported alg %d", algo); vap->iv_stats.is_rx_auth_unsupported++; return; } break; } case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: { uint16_t capinfo, associd; uint16_t status; if (vap->iv_state != IEEE80211_S_ASSOC) { vap->iv_stats.is_rx_mgtdiscard++; return; } /* * asresp frame format * [2] capability information * [2] status * [2] association ID * [tlv] supported rates * [tlv] extended supported rates * [tlv] WME * [tlv] HT capabilities * [tlv] HT info */ IEEE80211_VERIFY_LENGTH(efrm - frm, 6, return); ni = vap->iv_bss; capinfo = le16toh(*(uint16_t *)frm); frm += 2; status = le16toh(*(uint16_t *)frm); frm += 2; if (status != 0) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "%sassoc failed (reason %d)", ISREASSOC(subtype) ? "re" : "", status); vap->iv_stats.is_rx_auth_fail++; /* XXX */ return; } associd = le16toh(*(uint16_t *)frm); frm += 2; rates = xrates = wme = htcap = htinfo = NULL; vhtcap = vhtopmode = NULL; while (efrm - frm > 1) { IEEE80211_VERIFY_LENGTH(efrm - frm, frm[1] + 2, return); switch (*frm) { case IEEE80211_ELEMID_RATES: rates = frm; break; case IEEE80211_ELEMID_XRATES: xrates = frm; break; case IEEE80211_ELEMID_HTCAP: htcap = frm; break; case IEEE80211_ELEMID_HTINFO: htinfo = frm; break; case IEEE80211_ELEMID_VENDOR: if (iswmeoui(frm)) wme = frm; else if (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) { /* * Accept pre-draft HT ie's if the * standard ones have not been seen. */ if (ishtcapoui(frm)) { if (htcap == NULL) htcap = frm; } else if (ishtinfooui(frm)) { if (htinfo == NULL) htinfo = frm; } } /* XXX Atheros OUI support */ break; case IEEE80211_ELEMID_VHT_CAP: vhtcap = frm; break; case IEEE80211_ELEMID_VHT_OPMODE: vhtopmode = frm; break; } frm += frm[1] + 2; } IEEE80211_VERIFY_ELEMENT(rates, IEEE80211_RATE_MAXSIZE, return); if (xrates != NULL) IEEE80211_VERIFY_ELEMENT(xrates, IEEE80211_RATE_MAXSIZE - rates[1], return); rate = ieee80211_setup_rates(ni, rates, xrates, IEEE80211_F_JOIN | IEEE80211_F_DOSORT | IEEE80211_F_DOFRATE | IEEE80211_F_DONEGO | IEEE80211_F_DODEL); if (rate & IEEE80211_RATE_BASIC) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC, wh->i_addr2, "%sassoc failed (rate set mismatch)", ISREASSOC(subtype) ? "re" : ""); vap->iv_stats.is_rx_assoc_norate++; ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_STATUS); return; } ni->ni_capinfo = capinfo; ni->ni_associd = associd; if (ni->ni_jointime == 0) ni->ni_jointime = time_uptime; if (wme != NULL && ieee80211_parse_wmeparams(vap, wme, wh, &qosinfo) >= 0) { ni->ni_flags |= IEEE80211_NODE_QOS; ieee80211_wme_updateparams(vap); } else ni->ni_flags &= ~IEEE80211_NODE_QOS; /* * Setup HT state according to the negotiation. * * NB: shouldn't need to check if HT use is enabled but some * ap's send back HT ie's even when we don't indicate we * are HT capable in our AssocReq. */ if (htcap != NULL && htinfo != NULL && (vap->iv_flags_ht & IEEE80211_FHT_HT)) { ieee80211_ht_node_init(ni); ieee80211_ht_updateparams(ni, htcap, htinfo); if ((vhtcap != NULL) && (vhtopmode != NULL) & (vap->iv_vht_flags & IEEE80211_FVHT_VHT)) { /* * Log if we get a VHT assoc/reassoc response. * We aren't ready for 2GHz VHT support. */ if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { printf("%s: peer %6D: VHT on 2GHz, ignoring\n", __func__, ni->ni_macaddr, ":"); } else { ieee80211_vht_node_init(ni); ieee80211_vht_updateparams(ni, vhtcap, vhtopmode); ieee80211_setup_vht_rates(ni); } } ieee80211_ht_updateparams_final(ni, htcap, htinfo); ieee80211_setup_htrates(ni, htcap, IEEE80211_F_JOIN | IEEE80211_F_DOBRS); ieee80211_setup_basic_htrates(ni, htinfo); ieee80211_node_setuptxparms(ni); ieee80211_ratectl_node_init(ni); } /* * Always initialise FF/superg state; we can use this * for doing A-MSDU encapsulation as well. */ #ifdef IEEE80211_SUPPORT_SUPERG ieee80211_ff_node_init(ni); #endif /* * Configure state now that we are associated. * * XXX may need different/additional driver callbacks? */ if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) { vap->iv_flags |= IEEE80211_F_SHPREAMBLE; vap->iv_flags &= ~IEEE80211_F_USEBARKER; } else { vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; vap->iv_flags |= IEEE80211_F_USEBARKER; } ieee80211_vap_set_shortslottime(vap, IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME)); ieee80211_vap_update_preamble(vap); /* * Honor ERP protection. * * NB: ni_erp should zero for non-11g operation. */ if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && (ni->ni_erp & IEEE80211_ERP_USE_PROTECTION)) vap->iv_flags |= IEEE80211_F_USEPROT; else vap->iv_flags &= ~IEEE80211_F_USEPROT; ieee80211_vap_update_erp_protmode(vap); IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_ASSOC | IEEE80211_MSG_DEBUG, wh->i_addr2, "%sassoc success at aid %d: %s preamble, %s slot time%s%s%s%s%s%s%s%s%s", ISREASSOC(subtype) ? "re" : "", IEEE80211_NODE_AID(ni), vap->iv_flags&IEEE80211_F_SHPREAMBLE ? "short" : "long", vap->iv_flags&IEEE80211_F_SHSLOT ? "short" : "long", vap->iv_flags&IEEE80211_F_USEPROT ? ", protection" : "", ni->ni_flags & IEEE80211_NODE_QOS ? ", QoS" : "", ni->ni_flags & IEEE80211_NODE_HT ? (ni->ni_chw == IEEE80211_STA_RX_BW_40 ? ", HT40" : ", HT20") : "", ni->ni_flags & IEEE80211_NODE_AMPDU ? " (+AMPDU)" : "", ni->ni_flags & IEEE80211_NODE_AMSDU ? " (+AMSDU)" : "", ni->ni_flags & IEEE80211_NODE_MIMO_RTS ? " (+SMPS-DYN)" : ni->ni_flags & IEEE80211_NODE_MIMO_PS ? " (+SMPS)" : "", ni->ni_flags & IEEE80211_NODE_RIFS ? " (+RIFS)" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF) ? ", fast-frames" : "", IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_TURBOP) ? ", turbo" : "" ); ieee80211_new_state(vap, IEEE80211_S_RUN, subtype); break; } case IEEE80211_FC0_SUBTYPE_DEAUTH: { uint16_t reason; if (vap->iv_state == IEEE80211_S_SCAN) { vap->iv_stats.is_rx_mgtdiscard++; return; } if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) { /* NB: can happen when in promiscuous mode */ vap->iv_stats.is_rx_mgtdiscard++; break; } /* * deauth frame format * [2] reason */ IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return); reason = le16toh(*(uint16_t *)frm); vap->iv_stats.is_rx_deauth++; vap->iv_stats.is_rx_deauth_code = reason; IEEE80211_NODE_STAT(ni, rx_deauth); IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, "recv deauthenticate (reason: %d (%s))", reason, ieee80211_reason_to_string(reason)); ieee80211_new_state(vap, IEEE80211_S_AUTH, (reason << 8) | IEEE80211_FC0_SUBTYPE_DEAUTH); break; } case IEEE80211_FC0_SUBTYPE_DISASSOC: { uint16_t reason; if (vap->iv_state != IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_ASSOC && vap->iv_state != IEEE80211_S_AUTH) { vap->iv_stats.is_rx_mgtdiscard++; return; } if (!IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr)) { /* NB: can happen when in promiscuous mode */ vap->iv_stats.is_rx_mgtdiscard++; break; } /* * disassoc frame format * [2] reason */ IEEE80211_VERIFY_LENGTH(efrm - frm, 2, return); reason = le16toh(*(uint16_t *)frm); vap->iv_stats.is_rx_disassoc++; vap->iv_stats.is_rx_disassoc_code = reason; IEEE80211_NODE_STAT(ni, rx_disassoc); IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, "recv disassociate (reason: %d (%s))", reason, ieee80211_reason_to_string(reason)); ieee80211_new_state(vap, IEEE80211_S_ASSOC, 0); break; } case IEEE80211_FC0_SUBTYPE_ACTION: case IEEE80211_FC0_SUBTYPE_ACTION_NOACK: if (!IEEE80211_ADDR_EQ(vap->iv_myaddr, wh->i_addr1) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not for us"); vap->iv_stats.is_rx_mgtdiscard++; } else if (vap->iv_state != IEEE80211_S_RUN) { IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "wrong state %s", ieee80211_state_name[vap->iv_state]); vap->iv_stats.is_rx_mgtdiscard++; } else { if (ieee80211_parse_action(ni, m0) == 0) (void)ic->ic_recv_action(ni, wh, frm, efrm); } break; case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: case IEEE80211_FC0_SUBTYPE_PROBE_REQ: case IEEE80211_FC0_SUBTYPE_TIMING_ADV: case IEEE80211_FC0_SUBTYPE_ATIM: IEEE80211_DISCARD(vap, IEEE80211_MSG_INPUT, wh, NULL, "%s", "not handled"); vap->iv_stats.is_rx_mgtdiscard++; break; default: IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, wh, "mgt", "subtype 0x%x not handled", subtype); vap->iv_stats.is_rx_badsubtype++; break; } #undef ISREASSOC } static void sta_recv_ctl(struct ieee80211_node *ni, struct mbuf *m, int subtype) { switch (subtype) { case IEEE80211_FC0_SUBTYPE_BAR: ieee80211_recv_bar(ni, m); break; } }