diff --git a/sys/kern/kern_ktrace.c b/sys/kern/kern_ktrace.c index b686f2e2717a..8783600df6b1 100644 --- a/sys/kern/kern_ktrace.c +++ b/sys/kern/kern_ktrace.c @@ -1,1382 +1,1392 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. * Copyright (c) 2005 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_ktrace.c 8.2 (Berkeley) 9/23/93 */ #include __FBSDID("$FreeBSD$"); #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The ktrace facility allows the tracing of certain key events in user space * processes, such as system calls, signal delivery, context switches, and * user generated events using utrace(2). It works by streaming event * records and data to a vnode associated with the process using the * ktrace(2) system call. In general, records can be written directly from * the context that generates the event. One important exception to this is * during a context switch, where sleeping is not permitted. To handle this * case, trace events are generated using in-kernel ktr_request records, and * then delivered to disk at a convenient moment -- either immediately, the * next traceable event, at system call return, or at process exit. * * When dealing with multiple threads or processes writing to the same event * log, ordering guarantees are weak: specifically, if an event has multiple * records (i.e., system call enter and return), they may be interlaced with * records from another event. Process and thread ID information is provided * in the record, and user applications can de-interlace events if required. */ static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE"); #ifdef KTRACE FEATURE(ktrace, "Kernel support for system-call tracing"); #ifndef KTRACE_REQUEST_POOL #define KTRACE_REQUEST_POOL 100 #endif struct ktr_request { struct ktr_header ktr_header; void *ktr_buffer; union { struct ktr_proc_ctor ktr_proc_ctor; struct ktr_cap_fail ktr_cap_fail; struct ktr_syscall ktr_syscall; struct ktr_sysret ktr_sysret; struct ktr_genio ktr_genio; struct ktr_psig ktr_psig; struct ktr_csw ktr_csw; struct ktr_fault ktr_fault; struct ktr_faultend ktr_faultend; struct ktr_struct_array ktr_struct_array; } ktr_data; STAILQ_ENTRY(ktr_request) ktr_list; }; static int data_lengths[] = { [KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args), [KTR_SYSRET] = sizeof(struct ktr_sysret), [KTR_NAMEI] = 0, [KTR_GENIO] = sizeof(struct ktr_genio), [KTR_PSIG] = sizeof(struct ktr_psig), [KTR_CSW] = sizeof(struct ktr_csw), [KTR_USER] = 0, [KTR_STRUCT] = 0, [KTR_SYSCTL] = 0, [KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor), [KTR_PROCDTOR] = 0, [KTR_CAPFAIL] = sizeof(struct ktr_cap_fail), [KTR_FAULT] = sizeof(struct ktr_fault), [KTR_FAULTEND] = sizeof(struct ktr_faultend), [KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array), }; static STAILQ_HEAD(, ktr_request) ktr_free; static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "KTRACE options"); static u_int ktr_requestpool = KTRACE_REQUEST_POOL; TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool); u_int ktr_geniosize = PAGE_SIZE; SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize, 0, "Maximum size of genio event payload"); +/* + * Allow to not to send signal to traced process, in which context the + * ktr record is written. The limit is applied from the process that + * set up ktrace, so killing the traced process is not completely fair. + */ +int ktr_filesize_limit_signal = 0; +SYSCTL_INT(_kern_ktrace, OID_AUTO, filesize_limit_signal, CTLFLAG_RWTUN, + &ktr_filesize_limit_signal, 0, + "Send SIGXFSZ to the traced process when the log size limit is exceeded"); + static int print_message = 1; static struct mtx ktrace_mtx; static struct sx ktrace_sx; struct ktr_io_params { struct vnode *vp; struct ucred *cr; off_t lim; u_int refs; }; static void ktrace_init(void *dummy); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS); static u_int ktrace_resize_pool(u_int oldsize, u_int newsize); static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type); static struct ktr_request *ktr_getrequest(int type); static void ktr_submitrequest(struct thread *td, struct ktr_request *req); static struct ktr_io_params *ktr_freeproc(struct proc *p); static void ktr_freerequest(struct ktr_request *req); static void ktr_freerequest_locked(struct ktr_request *req); static void ktr_writerequest(struct thread *td, struct ktr_request *req); static int ktrcanset(struct thread *,struct proc *); static int ktrsetchildren(struct thread *, struct proc *, int, int, struct ktr_io_params *); static int ktrops(struct thread *, struct proc *, int, int, struct ktr_io_params *); static void ktrprocctor_entered(struct thread *, struct proc *); /* * ktrace itself generates events, such as context switches, which we do not * wish to trace. Maintain a flag, TDP_INKTRACE, on each thread to determine * whether or not it is in a region where tracing of events should be * suppressed. */ static void ktrace_enter(struct thread *td) { KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set")); td->td_pflags |= TDP_INKTRACE; } static void ktrace_exit(struct thread *td) { KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set")); td->td_pflags &= ~TDP_INKTRACE; } static void ktrace_assert(struct thread *td) { KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set")); } static void ktrace_init(void *dummy) { struct ktr_request *req; int i; mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET); sx_init(&ktrace_sx, "ktrace_sx"); STAILQ_INIT(&ktr_free); for (i = 0; i < ktr_requestpool; i++) { req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); } } SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL); static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS) { struct thread *td; u_int newsize, oldsize, wantsize; int error; /* Handle easy read-only case first to avoid warnings from GCC. */ if (!req->newptr) { oldsize = ktr_requestpool; return (SYSCTL_OUT(req, &oldsize, sizeof(u_int))); } error = SYSCTL_IN(req, &wantsize, sizeof(u_int)); if (error) return (error); td = curthread; ktrace_enter(td); oldsize = ktr_requestpool; newsize = ktrace_resize_pool(oldsize, wantsize); ktrace_exit(td); error = SYSCTL_OUT(req, &oldsize, sizeof(u_int)); if (error) return (error); if (wantsize > oldsize && newsize < wantsize) return (ENOSPC); return (0); } SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool, CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0, sysctl_kern_ktrace_request_pool, "IU", "Pool buffer size for ktrace(1)"); static u_int ktrace_resize_pool(u_int oldsize, u_int newsize) { STAILQ_HEAD(, ktr_request) ktr_new; struct ktr_request *req; int bound; print_message = 1; bound = newsize - oldsize; if (bound == 0) return (ktr_requestpool); if (bound < 0) { mtx_lock(&ktrace_mtx); /* Shrink pool down to newsize if possible. */ while (bound++ < 0) { req = STAILQ_FIRST(&ktr_free); if (req == NULL) break; STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); ktr_requestpool--; free(req, M_KTRACE); } } else { /* Grow pool up to newsize. */ STAILQ_INIT(&ktr_new); while (bound-- > 0) { req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK); STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list); } mtx_lock(&ktrace_mtx); STAILQ_CONCAT(&ktr_free, &ktr_new); ktr_requestpool += (newsize - oldsize); } mtx_unlock(&ktrace_mtx); return (ktr_requestpool); } /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */ CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) == (sizeof((struct thread *)NULL)->td_name)); static struct ktr_request * ktr_getrequest_entered(struct thread *td, int type) { struct ktr_request *req; struct proc *p = td->td_proc; int pm; mtx_lock(&ktrace_mtx); if (!KTRCHECK(td, type)) { mtx_unlock(&ktrace_mtx); return (NULL); } req = STAILQ_FIRST(&ktr_free); if (req != NULL) { STAILQ_REMOVE_HEAD(&ktr_free, ktr_list); req->ktr_header.ktr_type = type; if (p->p_traceflag & KTRFAC_DROP) { req->ktr_header.ktr_type |= KTR_DROP; p->p_traceflag &= ~KTRFAC_DROP; } mtx_unlock(&ktrace_mtx); microtime(&req->ktr_header.ktr_time); req->ktr_header.ktr_pid = p->p_pid; req->ktr_header.ktr_tid = td->td_tid; bcopy(td->td_name, req->ktr_header.ktr_comm, sizeof(req->ktr_header.ktr_comm)); req->ktr_buffer = NULL; req->ktr_header.ktr_len = 0; } else { p->p_traceflag |= KTRFAC_DROP; pm = print_message; print_message = 0; mtx_unlock(&ktrace_mtx); if (pm) printf("Out of ktrace request objects.\n"); } return (req); } static struct ktr_request * ktr_getrequest(int type) { struct thread *td = curthread; struct ktr_request *req; ktrace_enter(td); req = ktr_getrequest_entered(td, type); if (req == NULL) ktrace_exit(td); return (req); } /* * Some trace generation environments don't permit direct access to VFS, * such as during a context switch where sleeping is not allowed. Under these * circumstances, queue a request to the thread to be written asynchronously * later. */ static void ktr_enqueuerequest(struct thread *td, struct ktr_request *req) { mtx_lock(&ktrace_mtx); STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list); mtx_unlock(&ktrace_mtx); thread_lock(td); td->td_flags |= TDF_ASTPENDING; thread_unlock(td); } /* * Drain any pending ktrace records from the per-thread queue to disk. This * is used both internally before committing other records, and also on * system call return. We drain all the ones we can find at the time when * drain is requested, but don't keep draining after that as those events * may be approximately "after" the current event. */ static void ktr_drain(struct thread *td) { struct ktr_request *queued_req; STAILQ_HEAD(, ktr_request) local_queue; ktrace_assert(td); sx_assert(&ktrace_sx, SX_XLOCKED); STAILQ_INIT(&local_queue); if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) { mtx_lock(&ktrace_mtx); STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr); mtx_unlock(&ktrace_mtx); while ((queued_req = STAILQ_FIRST(&local_queue))) { STAILQ_REMOVE_HEAD(&local_queue, ktr_list); ktr_writerequest(td, queued_req); ktr_freerequest(queued_req); } } } /* * Submit a trace record for immediate commit to disk -- to be used only * where entering VFS is OK. First drain any pending records that may have * been cached in the thread. */ static void ktr_submitrequest(struct thread *td, struct ktr_request *req) { ktrace_assert(td); sx_xlock(&ktrace_sx); ktr_drain(td); ktr_writerequest(td, req); ktr_freerequest(req); sx_xunlock(&ktrace_sx); ktrace_exit(td); } static void ktr_freerequest(struct ktr_request *req) { mtx_lock(&ktrace_mtx); ktr_freerequest_locked(req); mtx_unlock(&ktrace_mtx); } static void ktr_freerequest_locked(struct ktr_request *req) { mtx_assert(&ktrace_mtx, MA_OWNED); if (req->ktr_buffer != NULL) free(req->ktr_buffer, M_KTRACE); STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list); } static void ktr_io_params_ref(struct ktr_io_params *kiop) { mtx_assert(&ktrace_mtx, MA_OWNED); kiop->refs++; } static struct ktr_io_params * ktr_io_params_rele(struct ktr_io_params *kiop) { mtx_assert(&ktrace_mtx, MA_OWNED); if (kiop == NULL) return (NULL); KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop)); return (--(kiop->refs) == 0 ? kiop : NULL); } void ktr_io_params_free(struct ktr_io_params *kiop) { if (kiop == NULL) return; MPASS(kiop->refs == 0); vn_close(kiop->vp, FWRITE, kiop->cr, curthread); crfree(kiop->cr); free(kiop, M_KTRACE); } static struct ktr_io_params * ktr_io_params_alloc(struct thread *td, struct vnode *vp) { struct ktr_io_params *res; res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK); res->vp = vp; res->cr = crhold(td->td_ucred); res->lim = lim_cur(td, RLIMIT_FSIZE); res->refs = 1; return (res); } /* * Disable tracing for a process and release all associated resources. * The caller is responsible for releasing a reference on the returned * vnode and credentials. */ static struct ktr_io_params * ktr_freeproc(struct proc *p) { struct ktr_io_params *kiop; struct ktr_request *req; PROC_LOCK_ASSERT(p, MA_OWNED); mtx_assert(&ktrace_mtx, MA_OWNED); kiop = ktr_io_params_rele(p->p_ktrioparms); p->p_ktrioparms = NULL; p->p_traceflag = 0; while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) { STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list); ktr_freerequest_locked(req); } return (kiop); } struct vnode * ktr_get_tracevp(struct proc *p, bool ref) { struct vnode *vp; PROC_LOCK_ASSERT(p, MA_OWNED); if (p->p_ktrioparms != NULL) { vp = p->p_ktrioparms->vp; if (ref) vrefact(vp); } else { vp = NULL; } return (vp); } void ktrsyscall(int code, int narg, register_t args[]) { struct ktr_request *req; struct ktr_syscall *ktp; size_t buflen; char *buf = NULL; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; buflen = sizeof(register_t) * narg; if (buflen > 0) { buf = malloc(buflen, M_KTRACE, M_WAITOK); bcopy(args, buf, buflen); } req = ktr_getrequest(KTR_SYSCALL); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } ktp = &req->ktr_data.ktr_syscall; ktp->ktr_code = code; ktp->ktr_narg = narg; if (buflen > 0) { req->ktr_header.ktr_len = buflen; req->ktr_buffer = buf; } ktr_submitrequest(curthread, req); } void ktrsysret(int code, int error, register_t retval) { struct ktr_request *req; struct ktr_sysret *ktp; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_SYSRET); if (req == NULL) return; ktp = &req->ktr_data.ktr_sysret; ktp->ktr_code = code; ktp->ktr_error = error; ktp->ktr_retval = ((error == 0) ? retval: 0); /* what about val2 ? */ ktr_submitrequest(curthread, req); } /* * When a setuid process execs, disable tracing. * * XXX: We toss any pending asynchronous records. */ struct ktr_io_params * ktrprocexec(struct proc *p) { struct ktr_io_params *kiop; PROC_LOCK_ASSERT(p, MA_OWNED); kiop = p->p_ktrioparms; if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED)) return (NULL); mtx_lock(&ktrace_mtx); kiop = ktr_freeproc(p); mtx_unlock(&ktrace_mtx); return (kiop); } /* * When a process exits, drain per-process asynchronous trace records * and disable tracing. */ void ktrprocexit(struct thread *td) { struct ktr_request *req; struct proc *p; struct ktr_io_params *kiop; p = td->td_proc; if (p->p_traceflag == 0) return; ktrace_enter(td); req = ktr_getrequest_entered(td, KTR_PROCDTOR); if (req != NULL) ktr_enqueuerequest(td, req); sx_xlock(&ktrace_sx); ktr_drain(td); sx_xunlock(&ktrace_sx); PROC_LOCK(p); mtx_lock(&ktrace_mtx); kiop = ktr_freeproc(p); mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p); ktr_io_params_free(kiop); ktrace_exit(td); } static void ktrprocctor_entered(struct thread *td, struct proc *p) { struct ktr_proc_ctor *ktp; struct ktr_request *req; struct thread *td2; ktrace_assert(td); td2 = FIRST_THREAD_IN_PROC(p); req = ktr_getrequest_entered(td2, KTR_PROCCTOR); if (req == NULL) return; ktp = &req->ktr_data.ktr_proc_ctor; ktp->sv_flags = p->p_sysent->sv_flags; ktr_enqueuerequest(td2, req); } void ktrprocctor(struct proc *p) { struct thread *td = curthread; if ((p->p_traceflag & KTRFAC_MASK) == 0) return; ktrace_enter(td); ktrprocctor_entered(td, p); ktrace_exit(td); } /* * When a process forks, enable tracing in the new process if needed. */ void ktrprocfork(struct proc *p1, struct proc *p2) { MPASS(p2->p_ktrioparms == NULL); MPASS(p2->p_traceflag == 0); if (p1->p_traceflag == 0) return; PROC_LOCK(p1); mtx_lock(&ktrace_mtx); if (p1->p_traceflag & KTRFAC_INHERIT) { p2->p_traceflag = p1->p_traceflag; if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL) p1->p_ktrioparms->refs++; } mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p1); ktrprocctor(p2); } /* * When a thread returns, drain any asynchronous records generated by the * system call. */ void ktruserret(struct thread *td) { ktrace_enter(td); sx_xlock(&ktrace_sx); ktr_drain(td); sx_xunlock(&ktrace_sx); ktrace_exit(td); } void ktrnamei(path) char *path; { struct ktr_request *req; int namelen; char *buf = NULL; namelen = strlen(path); if (namelen > 0) { buf = malloc(namelen, M_KTRACE, M_WAITOK); bcopy(path, buf, namelen); } req = ktr_getrequest(KTR_NAMEI); if (req == NULL) { if (buf != NULL) free(buf, M_KTRACE); return; } if (namelen > 0) { req->ktr_header.ktr_len = namelen; req->ktr_buffer = buf; } ktr_submitrequest(curthread, req); } void ktrsysctl(int *name, u_int namelen) { struct ktr_request *req; u_int mib[CTL_MAXNAME + 2]; char *mibname; size_t mibnamelen; int error; /* Lookup name of mib. */ KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long")); mib[0] = 0; mib[1] = 1; bcopy(name, mib + 2, namelen * sizeof(*name)); mibnamelen = 128; mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK); error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen, NULL, 0, &mibnamelen, 0); if (error) { free(mibname, M_KTRACE); return; } req = ktr_getrequest(KTR_SYSCTL); if (req == NULL) { free(mibname, M_KTRACE); return; } req->ktr_header.ktr_len = mibnamelen; req->ktr_buffer = mibname; ktr_submitrequest(curthread, req); } void ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error) { struct ktr_request *req; struct ktr_genio *ktg; int datalen; char *buf; if (error) { free(uio, M_IOV); return; } uio->uio_offset = 0; uio->uio_rw = UIO_WRITE; datalen = MIN(uio->uio_resid, ktr_geniosize); buf = malloc(datalen, M_KTRACE, M_WAITOK); error = uiomove(buf, datalen, uio); free(uio, M_IOV); if (error) { free(buf, M_KTRACE); return; } req = ktr_getrequest(KTR_GENIO); if (req == NULL) { free(buf, M_KTRACE); return; } ktg = &req->ktr_data.ktr_genio; ktg->ktr_fd = fd; ktg->ktr_rw = rw; req->ktr_header.ktr_len = datalen; req->ktr_buffer = buf; ktr_submitrequest(curthread, req); } void ktrpsig(int sig, sig_t action, sigset_t *mask, int code) { struct thread *td = curthread; struct ktr_request *req; struct ktr_psig *kp; req = ktr_getrequest(KTR_PSIG); if (req == NULL) return; kp = &req->ktr_data.ktr_psig; kp->signo = (char)sig; kp->action = action; kp->mask = *mask; kp->code = code; ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrcsw(int out, int user, const char *wmesg) { struct thread *td = curthread; struct ktr_request *req; struct ktr_csw *kc; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_CSW); if (req == NULL) return; kc = &req->ktr_data.ktr_csw; kc->out = out; kc->user = user; if (wmesg != NULL) strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg)); else bzero(kc->wmesg, sizeof(kc->wmesg)); ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrstruct(const char *name, const void *data, size_t datalen) { struct ktr_request *req; char *buf; size_t buflen, namelen; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; if (data == NULL) datalen = 0; namelen = strlen(name) + 1; buflen = namelen + datalen; buf = malloc(buflen, M_KTRACE, M_WAITOK); strcpy(buf, name); bcopy(data, buf + namelen, datalen); if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) { free(buf, M_KTRACE); return; } req->ktr_buffer = buf; req->ktr_header.ktr_len = buflen; ktr_submitrequest(curthread, req); } void ktrstruct_error(const char *name, const void *data, size_t datalen, int error) { if (error == 0) ktrstruct(name, data, datalen); } void ktrstructarray(const char *name, enum uio_seg seg, const void *data, int num_items, size_t struct_size) { struct ktr_request *req; struct ktr_struct_array *ksa; char *buf; size_t buflen, datalen, namelen; int max_items; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; /* Trim array length to genio size. */ max_items = ktr_geniosize / struct_size; if (num_items > max_items) { if (max_items == 0) num_items = 1; else num_items = max_items; } datalen = num_items * struct_size; if (data == NULL) datalen = 0; namelen = strlen(name) + 1; buflen = namelen + datalen; buf = malloc(buflen, M_KTRACE, M_WAITOK); strcpy(buf, name); if (seg == UIO_SYSSPACE) bcopy(data, buf + namelen, datalen); else { if (copyin(data, buf + namelen, datalen) != 0) { free(buf, M_KTRACE); return; } } if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) { free(buf, M_KTRACE); return; } ksa = &req->ktr_data.ktr_struct_array; ksa->struct_size = struct_size; req->ktr_buffer = buf; req->ktr_header.ktr_len = buflen; ktr_submitrequest(curthread, req); } void ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed, const cap_rights_t *held) { struct thread *td = curthread; struct ktr_request *req; struct ktr_cap_fail *kcf; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_CAPFAIL); if (req == NULL) return; kcf = &req->ktr_data.ktr_cap_fail; kcf->cap_type = type; if (needed != NULL) kcf->cap_needed = *needed; else cap_rights_init(&kcf->cap_needed); if (held != NULL) kcf->cap_held = *held; else cap_rights_init(&kcf->cap_held); ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrfault(vm_offset_t vaddr, int type) { struct thread *td = curthread; struct ktr_request *req; struct ktr_fault *kf; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_FAULT); if (req == NULL) return; kf = &req->ktr_data.ktr_fault; kf->vaddr = vaddr; kf->type = type; ktr_enqueuerequest(td, req); ktrace_exit(td); } void ktrfaultend(int result) { struct thread *td = curthread; struct ktr_request *req; struct ktr_faultend *kf; if (__predict_false(curthread->td_pflags & TDP_INKTRACE)) return; req = ktr_getrequest(KTR_FAULTEND); if (req == NULL) return; kf = &req->ktr_data.ktr_faultend; kf->result = result; ktr_enqueuerequest(td, req); ktrace_exit(td); } #endif /* KTRACE */ /* Interface and common routines */ #ifndef _SYS_SYSPROTO_H_ struct ktrace_args { char *fname; int ops; int facs; int pid; }; #endif /* ARGSUSED */ int sys_ktrace(struct thread *td, struct ktrace_args *uap) { #ifdef KTRACE struct vnode *vp = NULL; struct proc *p; struct pgrp *pg; int facs = uap->facs & ~KTRFAC_ROOT; int ops = KTROP(uap->ops); int descend = uap->ops & KTRFLAG_DESCEND; int nfound, ret = 0; int flags, error = 0; struct nameidata nd; struct ktr_io_params *kiop, *old_kiop; /* * Need something to (un)trace. */ if (ops != KTROP_CLEARFILE && facs == 0) return (EINVAL); kiop = NULL; ktrace_enter(td); if (ops != KTROP_CLEAR) { /* * an operation which requires a file argument. */ NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td); flags = FREAD | FWRITE | O_NOFOLLOW; error = vn_open(&nd, &flags, 0, NULL); if (error) { ktrace_exit(td); return (error); } NDFREE(&nd, NDF_ONLY_PNBUF); vp = nd.ni_vp; VOP_UNLOCK(vp); if (vp->v_type != VREG) { (void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td); ktrace_exit(td); return (EACCES); } kiop = ktr_io_params_alloc(td, vp); } /* * Clear all uses of the tracefile. */ if (ops == KTROP_CLEARFILE) { restart: sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { old_kiop = NULL; PROC_LOCK(p); if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp) { if (ktrcanset(td, p)) { mtx_lock(&ktrace_mtx); old_kiop = ktr_freeproc(p); mtx_unlock(&ktrace_mtx); } else error = EPERM; } PROC_UNLOCK(p); if (old_kiop != NULL) { sx_sunlock(&allproc_lock); ktr_io_params_free(old_kiop); goto restart; } } sx_sunlock(&allproc_lock); goto done; } /* * do it */ sx_slock(&proctree_lock); if (uap->pid < 0) { /* * by process group */ pg = pgfind(-uap->pid); if (pg == NULL) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } /* * ktrops() may call vrele(). Lock pg_members * by the proctree_lock rather than pg_mtx. */ PGRP_UNLOCK(pg); nfound = 0; LIST_FOREACH(p, &pg->pg_members, p_pglist) { PROC_LOCK(p); if (p->p_state == PRS_NEW || p_cansee(td, p) != 0) { PROC_UNLOCK(p); continue; } nfound++; if (descend) ret |= ktrsetchildren(td, p, ops, facs, kiop); else ret |= ktrops(td, p, ops, facs, kiop); } if (nfound == 0) { sx_sunlock(&proctree_lock); error = ESRCH; goto done; } } else { /* * by pid */ p = pfind(uap->pid); if (p == NULL) error = ESRCH; else error = p_cansee(td, p); if (error) { if (p != NULL) PROC_UNLOCK(p); sx_sunlock(&proctree_lock); goto done; } if (descend) ret |= ktrsetchildren(td, p, ops, facs, kiop); else ret |= ktrops(td, p, ops, facs, kiop); } sx_sunlock(&proctree_lock); if (!ret) error = EPERM; done: if (kiop != NULL) { mtx_lock(&ktrace_mtx); kiop = ktr_io_params_rele(kiop); mtx_unlock(&ktrace_mtx); ktr_io_params_free(kiop); } ktrace_exit(td); return (error); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } /* ARGSUSED */ int sys_utrace(struct thread *td, struct utrace_args *uap) { #ifdef KTRACE struct ktr_request *req; void *cp; int error; if (!KTRPOINT(td, KTR_USER)) return (0); if (uap->len > KTR_USER_MAXLEN) return (EINVAL); cp = malloc(uap->len, M_KTRACE, M_WAITOK); error = copyin(uap->addr, cp, uap->len); if (error) { free(cp, M_KTRACE); return (error); } req = ktr_getrequest(KTR_USER); if (req == NULL) { free(cp, M_KTRACE); return (ENOMEM); } req->ktr_buffer = cp; req->ktr_header.ktr_len = uap->len; ktr_submitrequest(td, req); return (0); #else /* !KTRACE */ return (ENOSYS); #endif /* KTRACE */ } #ifdef KTRACE static int ktrops(struct thread *td, struct proc *p, int ops, int facs, struct ktr_io_params *new_kiop) { struct ktr_io_params *old_kiop; PROC_LOCK_ASSERT(p, MA_OWNED); if (!ktrcanset(td, p)) { PROC_UNLOCK(p); return (0); } if (p->p_flag & P_WEXIT) { /* If the process is exiting, just ignore it. */ PROC_UNLOCK(p); return (1); } old_kiop = NULL; mtx_lock(&ktrace_mtx); if (ops == KTROP_SET) { if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp != new_kiop->vp) { /* if trace file already in use, relinquish below */ old_kiop = ktr_io_params_rele(p->p_ktrioparms); p->p_ktrioparms = NULL; } if (p->p_ktrioparms == NULL) { p->p_ktrioparms = new_kiop; ktr_io_params_ref(new_kiop); } p->p_traceflag |= facs; if (priv_check(td, PRIV_KTRACE) == 0) p->p_traceflag |= KTRFAC_ROOT; } else { /* KTROP_CLEAR */ if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0) /* no more tracing */ old_kiop = ktr_freeproc(p); } mtx_unlock(&ktrace_mtx); if ((p->p_traceflag & KTRFAC_MASK) != 0) ktrprocctor_entered(td, p); PROC_UNLOCK(p); ktr_io_params_free(old_kiop); return (1); } static int ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs, struct ktr_io_params *new_kiop) { struct proc *p; int ret = 0; p = top; PROC_LOCK_ASSERT(p, MA_OWNED); sx_assert(&proctree_lock, SX_LOCKED); for (;;) { ret |= ktrops(td, p, ops, facs, new_kiop); /* * If this process has children, descend to them next, * otherwise do any siblings, and if done with this level, * follow back up the tree (but not past top). */ if (!LIST_EMPTY(&p->p_children)) p = LIST_FIRST(&p->p_children); else for (;;) { if (p == top) return (ret); if (LIST_NEXT(p, p_sibling)) { p = LIST_NEXT(p, p_sibling); break; } p = p->p_pptr; } PROC_LOCK(p); } /*NOTREACHED*/ } static void ktr_writerequest(struct thread *td, struct ktr_request *req) { struct ktr_io_params *kiop; struct ktr_header *kth; struct vnode *vp; struct proc *p; struct ucred *cred; struct uio auio; struct iovec aiov[3]; struct mount *mp; off_t lim; int datalen, buflen; int error; p = td->td_proc; /* * We hold the vnode and credential for use in I/O in case ktrace is * disabled on the process as we write out the request. * * XXXRW: This is not ideal: we could end up performing a write after * the vnode has been closed. */ mtx_lock(&ktrace_mtx); kiop = p->p_ktrioparms; /* * If kiop is NULL, it has been cleared out from under this * request, so just drop it. */ if (kiop == NULL) { mtx_unlock(&ktrace_mtx); return; } vp = kiop->vp; cred = kiop->cr; lim = kiop->lim; vrefact(vp); KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL")); crhold(cred); mtx_unlock(&ktrace_mtx); kth = &req->ktr_header; KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths), ("data_lengths array overflow")); datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP]; buflen = kth->ktr_len; auio.uio_iov = &aiov[0]; auio.uio_offset = 0; auio.uio_segflg = UIO_SYSSPACE; auio.uio_rw = UIO_WRITE; aiov[0].iov_base = (caddr_t)kth; aiov[0].iov_len = sizeof(struct ktr_header); auio.uio_resid = sizeof(struct ktr_header); auio.uio_iovcnt = 1; auio.uio_td = td; if (datalen != 0) { aiov[1].iov_base = (caddr_t)&req->ktr_data; aiov[1].iov_len = datalen; auio.uio_resid += datalen; auio.uio_iovcnt++; kth->ktr_len += datalen; } if (buflen != 0) { KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write")); aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer; aiov[auio.uio_iovcnt].iov_len = buflen; auio.uio_resid += buflen; auio.uio_iovcnt++; } vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); td->td_ktr_io_lim = lim; #ifdef MAC error = mac_vnode_check_write(cred, NOCRED, vp); if (error == 0) #endif error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred); VOP_UNLOCK(vp); vn_finished_write(mp); crfree(cred); if (error == 0) { vrele(vp); return; } /* * If error encountered, give up tracing on this vnode on this * process. Other processes might still be suitable for * writes to this vnode. */ log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped for pid %d\n", error, p->p_pid); PROC_LOCK(p); mtx_lock(&ktrace_mtx); if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp) kiop = ktr_freeproc(p); mtx_unlock(&ktrace_mtx); PROC_UNLOCK(p); ktr_io_params_free(kiop); vrele(vp); } /* * Return true if caller has permission to set the ktracing state * of target. Essentially, the target can't possess any * more permissions than the caller. KTRFAC_ROOT signifies that * root previously set the tracing status on the target process, and * so, only root may further change it. */ static int ktrcanset(struct thread *td, struct proc *targetp) { PROC_LOCK_ASSERT(targetp, MA_OWNED); if (targetp->p_traceflag & KTRFAC_ROOT && priv_check(td, PRIV_KTRACE)) return (0); if (p_candebug(td, targetp) != 0) return (0); return (1); } #endif /* KTRACE */ diff --git a/sys/kern/vfs_vnops.c b/sys/kern/vfs_vnops.c index 9c309c83f805..9e45d1820eec 100644 --- a/sys/kern/vfs_vnops.c +++ b/sys/kern/vfs_vnops.c @@ -1,3516 +1,3520 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Copyright (c) 2012 Konstantin Belousov * Copyright (c) 2013, 2014 The FreeBSD Foundation * * Portions of this software were developed by Konstantin Belousov * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)vfs_vnops.c 8.2 (Berkeley) 1/21/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_hwpmc_hooks.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include +#include #include #include #include #include #include #include #include #include #include #ifdef HWPMC_HOOKS #include #endif static fo_rdwr_t vn_read; static fo_rdwr_t vn_write; static fo_rdwr_t vn_io_fault; static fo_truncate_t vn_truncate; static fo_ioctl_t vn_ioctl; static fo_poll_t vn_poll; static fo_kqfilter_t vn_kqfilter; static fo_close_t vn_closefile; static fo_mmap_t vn_mmap; static fo_fallocate_t vn_fallocate; struct fileops vnops = { .fo_read = vn_io_fault, .fo_write = vn_io_fault, .fo_truncate = vn_truncate, .fo_ioctl = vn_ioctl, .fo_poll = vn_poll, .fo_kqfilter = vn_kqfilter, .fo_stat = vn_statfile, .fo_close = vn_closefile, .fo_chmod = vn_chmod, .fo_chown = vn_chown, .fo_sendfile = vn_sendfile, .fo_seek = vn_seek, .fo_fill_kinfo = vn_fill_kinfo, .fo_mmap = vn_mmap, .fo_fallocate = vn_fallocate, .fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE }; const u_int io_hold_cnt = 16; static int vn_io_fault_enable = 1; SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_enable, CTLFLAG_RWTUN, &vn_io_fault_enable, 0, "Enable vn_io_fault lock avoidance"); static int vn_io_fault_prefault = 0; SYSCTL_INT(_debug, OID_AUTO, vn_io_fault_prefault, CTLFLAG_RWTUN, &vn_io_fault_prefault, 0, "Enable vn_io_fault prefaulting"); static int vn_io_pgcache_read_enable = 1; SYSCTL_INT(_debug, OID_AUTO, vn_io_pgcache_read_enable, CTLFLAG_RWTUN, &vn_io_pgcache_read_enable, 0, "Enable copying from page cache for reads, avoiding fs"); static u_long vn_io_faults_cnt; SYSCTL_ULONG(_debug, OID_AUTO, vn_io_faults, CTLFLAG_RD, &vn_io_faults_cnt, 0, "Count of vn_io_fault lock avoidance triggers"); static int vfs_allow_read_dir = 0; SYSCTL_INT(_security_bsd, OID_AUTO, allow_read_dir, CTLFLAG_RW, &vfs_allow_read_dir, 0, "Enable read(2) of directory by root for filesystems that support it"); /* * Returns true if vn_io_fault mode of handling the i/o request should * be used. */ static bool do_vn_io_fault(struct vnode *vp, struct uio *uio) { struct mount *mp; return (uio->uio_segflg == UIO_USERSPACE && vp->v_type == VREG && (mp = vp->v_mount) != NULL && (mp->mnt_kern_flag & MNTK_NO_IOPF) != 0 && vn_io_fault_enable); } /* * Structure used to pass arguments to vn_io_fault1(), to do either * file- or vnode-based I/O calls. */ struct vn_io_fault_args { enum { VN_IO_FAULT_FOP, VN_IO_FAULT_VOP } kind; struct ucred *cred; int flags; union { struct fop_args_tag { struct file *fp; fo_rdwr_t *doio; } fop_args; struct vop_args_tag { struct vnode *vp; } vop_args; } args; }; static int vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, struct thread *td); int vn_open(struct nameidata *ndp, int *flagp, int cmode, struct file *fp) { struct thread *td = ndp->ni_cnd.cn_thread; return (vn_open_cred(ndp, flagp, cmode, 0, td->td_ucred, fp)); } static uint64_t open2nameif(int fmode, u_int vn_open_flags) { uint64_t res; res = ISOPEN | LOCKLEAF; if ((fmode & O_RESOLVE_BENEATH) != 0) res |= RBENEATH; if ((fmode & O_EMPTY_PATH) != 0) res |= EMPTYPATH; if ((vn_open_flags & VN_OPEN_NOAUDIT) == 0) res |= AUDITVNODE1; if ((vn_open_flags & VN_OPEN_NOCAPCHECK) != 0) res |= NOCAPCHECK; return (res); } /* * Common code for vnode open operations via a name lookup. * Lookup the vnode and invoke VOP_CREATE if needed. * Check permissions, and call the VOP_OPEN or VOP_CREATE routine. * * Note that this does NOT free nameidata for the successful case, * due to the NDINIT being done elsewhere. */ int vn_open_cred(struct nameidata *ndp, int *flagp, int cmode, u_int vn_open_flags, struct ucred *cred, struct file *fp) { struct vnode *vp; struct mount *mp; struct thread *td = ndp->ni_cnd.cn_thread; struct vattr vat; struct vattr *vap = &vat; int fmode, error; bool first_open; restart: first_open = false; fmode = *flagp; if ((fmode & (O_CREAT | O_EXCL | O_DIRECTORY)) == (O_CREAT | O_EXCL | O_DIRECTORY) || (fmode & (O_CREAT | O_EMPTY_PATH)) == (O_CREAT | O_EMPTY_PATH)) return (EINVAL); else if ((fmode & (O_CREAT | O_DIRECTORY)) == O_CREAT) { ndp->ni_cnd.cn_nameiop = CREATE; ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags); /* * Set NOCACHE to avoid flushing the cache when * rolling in many files at once. * * Set NC_KEEPPOSENTRY to keep positive entries if they already * exist despite NOCACHE. */ ndp->ni_cnd.cn_flags |= LOCKPARENT | NOCACHE | NC_KEEPPOSENTRY; if ((fmode & O_EXCL) == 0 && (fmode & O_NOFOLLOW) == 0) ndp->ni_cnd.cn_flags |= FOLLOW; if ((vn_open_flags & VN_OPEN_INVFS) == 0) bwillwrite(); if ((error = namei(ndp)) != 0) return (error); if (ndp->ni_vp == NULL) { VATTR_NULL(vap); vap->va_type = VREG; vap->va_mode = cmode; if (fmode & O_EXCL) vap->va_vaflags |= VA_EXCLUSIVE; if (vn_start_write(ndp->ni_dvp, &mp, V_NOWAIT) != 0) { NDFREE(ndp, NDF_ONLY_PNBUF); vput(ndp->ni_dvp); if ((error = vn_start_write(NULL, &mp, V_XSLEEP | PCATCH)) != 0) return (error); NDREINIT(ndp); goto restart; } if ((vn_open_flags & VN_OPEN_NAMECACHE) != 0) ndp->ni_cnd.cn_flags |= MAKEENTRY; #ifdef MAC error = mac_vnode_check_create(cred, ndp->ni_dvp, &ndp->ni_cnd, vap); if (error == 0) #endif error = VOP_CREATE(ndp->ni_dvp, &ndp->ni_vp, &ndp->ni_cnd, vap); vp = ndp->ni_vp; if (error == 0 && (fmode & O_EXCL) != 0 && (fmode & (O_EXLOCK | O_SHLOCK)) != 0) { VI_LOCK(vp); vp->v_iflag |= VI_FOPENING; VI_UNLOCK(vp); first_open = true; } VOP_VPUT_PAIR(ndp->ni_dvp, error == 0 ? &vp : NULL, false); vn_finished_write(mp); if (error) { NDFREE(ndp, NDF_ONLY_PNBUF); if (error == ERELOOKUP) { NDREINIT(ndp); goto restart; } return (error); } fmode &= ~O_TRUNC; } else { if (ndp->ni_dvp == ndp->ni_vp) vrele(ndp->ni_dvp); else vput(ndp->ni_dvp); ndp->ni_dvp = NULL; vp = ndp->ni_vp; if (fmode & O_EXCL) { error = EEXIST; goto bad; } if (vp->v_type == VDIR) { error = EISDIR; goto bad; } fmode &= ~O_CREAT; } } else { ndp->ni_cnd.cn_nameiop = LOOKUP; ndp->ni_cnd.cn_flags = open2nameif(fmode, vn_open_flags); ndp->ni_cnd.cn_flags |= (fmode & O_NOFOLLOW) != 0 ? NOFOLLOW : FOLLOW; if ((fmode & FWRITE) == 0) ndp->ni_cnd.cn_flags |= LOCKSHARED; if ((error = namei(ndp)) != 0) return (error); vp = ndp->ni_vp; } error = vn_open_vnode(vp, fmode, cred, td, fp); if (first_open) { VI_LOCK(vp); vp->v_iflag &= ~VI_FOPENING; wakeup(vp); VI_UNLOCK(vp); } if (error) goto bad; *flagp = fmode; return (0); bad: NDFREE(ndp, NDF_ONLY_PNBUF); vput(vp); *flagp = fmode; ndp->ni_vp = NULL; return (error); } static int vn_open_vnode_advlock(struct vnode *vp, int fmode, struct file *fp) { struct flock lf; int error, lock_flags, type; ASSERT_VOP_LOCKED(vp, "vn_open_vnode_advlock"); if ((fmode & (O_EXLOCK | O_SHLOCK)) == 0) return (0); KASSERT(fp != NULL, ("open with flock requires fp")); if (fp->f_type != DTYPE_NONE && fp->f_type != DTYPE_VNODE) return (EOPNOTSUPP); lock_flags = VOP_ISLOCKED(vp); VOP_UNLOCK(vp); lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = (fmode & O_EXLOCK) != 0 ? F_WRLCK : F_RDLCK; type = F_FLOCK; if ((fmode & FNONBLOCK) == 0) type |= F_WAIT; if ((fmode & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) type |= F_FIRSTOPEN; error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf, type); if (error == 0) fp->f_flag |= FHASLOCK; vn_lock(vp, lock_flags | LK_RETRY); return (error); } /* * Common code for vnode open operations once a vnode is located. * Check permissions, and call the VOP_OPEN routine. */ int vn_open_vnode(struct vnode *vp, int fmode, struct ucred *cred, struct thread *td, struct file *fp) { accmode_t accmode; int error; if (vp->v_type == VLNK) { if ((fmode & O_PATH) == 0 || (fmode & FEXEC) != 0) return (EMLINK); } if (vp->v_type == VSOCK) return (EOPNOTSUPP); if (vp->v_type != VDIR && fmode & O_DIRECTORY) return (ENOTDIR); accmode = 0; if ((fmode & O_PATH) == 0) { if ((fmode & (FWRITE | O_TRUNC)) != 0) { if (vp->v_type == VDIR) return (EISDIR); accmode |= VWRITE; } if ((fmode & FREAD) != 0) accmode |= VREAD; if ((fmode & O_APPEND) && (fmode & FWRITE)) accmode |= VAPPEND; #ifdef MAC if ((fmode & O_CREAT) != 0) accmode |= VCREAT; #endif } if ((fmode & FEXEC) != 0) accmode |= VEXEC; #ifdef MAC if ((fmode & O_VERIFY) != 0) accmode |= VVERIFY; error = mac_vnode_check_open(cred, vp, accmode); if (error != 0) return (error); accmode &= ~(VCREAT | VVERIFY); #endif if ((fmode & O_CREAT) == 0 && accmode != 0) { error = VOP_ACCESS(vp, accmode, cred, td); if (error != 0) return (error); } if ((fmode & O_PATH) != 0) { if (vp->v_type == VFIFO) error = EPIPE; else error = VOP_ACCESS(vp, VREAD, cred, td); if (error == 0) fp->f_flag |= FKQALLOWED; return (0); } if (vp->v_type == VFIFO && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) vn_lock(vp, LK_UPGRADE | LK_RETRY); error = VOP_OPEN(vp, fmode, cred, td, fp); if (error != 0) return (error); error = vn_open_vnode_advlock(vp, fmode, fp); if (error == 0 && (fmode & FWRITE) != 0) { error = VOP_ADD_WRITECOUNT(vp, 1); if (error == 0) { CTR3(KTR_VFS, "%s: vp %p v_writecount increased to %d", __func__, vp, vp->v_writecount); } } /* * Error from advlock or VOP_ADD_WRITECOUNT() still requires * calling VOP_CLOSE() to pair with earlier VOP_OPEN(). */ if (error != 0) { if (fp != NULL) { /* * Arrange the call by having fdrop() to use * vn_closefile(). This is to satisfy * filesystems like devfs or tmpfs, which * override fo_close(). */ fp->f_flag |= FOPENFAILED; fp->f_vnode = vp; if (fp->f_ops == &badfileops) { fp->f_type = DTYPE_VNODE; fp->f_ops = &vnops; } vref(vp); } else { /* * If there is no fp, due to kernel-mode open, * we can call VOP_CLOSE() now. */ if (vp->v_type != VFIFO && (fmode & FWRITE) != 0 && !MNT_EXTENDED_SHARED(vp->v_mount) && VOP_ISLOCKED(vp) != LK_EXCLUSIVE) vn_lock(vp, LK_UPGRADE | LK_RETRY); (void)VOP_CLOSE(vp, fmode & (FREAD | FWRITE | FEXEC), cred, td); } } ASSERT_VOP_LOCKED(vp, "vn_open_vnode"); return (error); } /* * Check for write permissions on the specified vnode. * Prototype text segments cannot be written. * It is racy. */ int vn_writechk(struct vnode *vp) { ASSERT_VOP_LOCKED(vp, "vn_writechk"); /* * If there's shared text associated with * the vnode, try to free it up once. If * we fail, we can't allow writing. */ if (VOP_IS_TEXT(vp)) return (ETXTBSY); return (0); } /* * Vnode close call */ static int vn_close1(struct vnode *vp, int flags, struct ucred *file_cred, struct thread *td, bool keep_ref) { struct mount *mp; int error, lock_flags; if (vp->v_type != VFIFO && (flags & FWRITE) == 0 && MNT_EXTENDED_SHARED(vp->v_mount)) lock_flags = LK_SHARED; else lock_flags = LK_EXCLUSIVE; vn_start_write(vp, &mp, V_WAIT); vn_lock(vp, lock_flags | LK_RETRY); AUDIT_ARG_VNODE1(vp); if ((flags & (FWRITE | FOPENFAILED)) == FWRITE) { VOP_ADD_WRITECOUNT_CHECKED(vp, -1); CTR3(KTR_VFS, "%s: vp %p v_writecount decreased to %d", __func__, vp, vp->v_writecount); } error = VOP_CLOSE(vp, flags, file_cred, td); if (keep_ref) VOP_UNLOCK(vp); else vput(vp); vn_finished_write(mp); return (error); } int vn_close(struct vnode *vp, int flags, struct ucred *file_cred, struct thread *td) { return (vn_close1(vp, flags, file_cred, td, false)); } /* * Heuristic to detect sequential operation. */ static int sequential_heuristic(struct uio *uio, struct file *fp) { enum uio_rw rw; ASSERT_VOP_LOCKED(fp->f_vnode, __func__); rw = uio->uio_rw; if (fp->f_flag & FRDAHEAD) return (fp->f_seqcount[rw] << IO_SEQSHIFT); /* * Offset 0 is handled specially. open() sets f_seqcount to 1 so * that the first I/O is normally considered to be slightly * sequential. Seeking to offset 0 doesn't change sequentiality * unless previous seeks have reduced f_seqcount to 0, in which * case offset 0 is not special. */ if ((uio->uio_offset == 0 && fp->f_seqcount[rw] > 0) || uio->uio_offset == fp->f_nextoff[rw]) { /* * f_seqcount is in units of fixed-size blocks so that it * depends mainly on the amount of sequential I/O and not * much on the number of sequential I/O's. The fixed size * of 16384 is hard-coded here since it is (not quite) just * a magic size that works well here. This size is more * closely related to the best I/O size for real disks than * to any block size used by software. */ if (uio->uio_resid >= IO_SEQMAX * 16384) fp->f_seqcount[rw] = IO_SEQMAX; else { fp->f_seqcount[rw] += howmany(uio->uio_resid, 16384); if (fp->f_seqcount[rw] > IO_SEQMAX) fp->f_seqcount[rw] = IO_SEQMAX; } return (fp->f_seqcount[rw] << IO_SEQSHIFT); } /* Not sequential. Quickly draw-down sequentiality. */ if (fp->f_seqcount[rw] > 1) fp->f_seqcount[rw] = 1; else fp->f_seqcount[rw] = 0; return (0); } /* * Package up an I/O request on a vnode into a uio and do it. */ int vn_rdwr(enum uio_rw rw, struct vnode *vp, void *base, int len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, ssize_t *aresid, struct thread *td) { struct uio auio; struct iovec aiov; struct mount *mp; struct ucred *cred; void *rl_cookie; struct vn_io_fault_args args; int error, lock_flags; if (offset < 0 && vp->v_type != VCHR) return (EINVAL); auio.uio_iov = &aiov; auio.uio_iovcnt = 1; aiov.iov_base = base; aiov.iov_len = len; auio.uio_resid = len; auio.uio_offset = offset; auio.uio_segflg = segflg; auio.uio_rw = rw; auio.uio_td = td; error = 0; if ((ioflg & IO_NODELOCKED) == 0) { if ((ioflg & IO_RANGELOCKED) == 0) { if (rw == UIO_READ) { rl_cookie = vn_rangelock_rlock(vp, offset, offset + len); } else if ((ioflg & IO_APPEND) != 0) { rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); } else { rl_cookie = vn_rangelock_wlock(vp, offset, offset + len); } } else rl_cookie = NULL; mp = NULL; if (rw == UIO_WRITE) { if (vp->v_type != VCHR && (error = vn_start_write(vp, &mp, V_WAIT | PCATCH)) != 0) goto out; if (MNT_SHARED_WRITES(mp) || ((mp == NULL) && MNT_SHARED_WRITES(vp->v_mount))) lock_flags = LK_SHARED; else lock_flags = LK_EXCLUSIVE; } else lock_flags = LK_SHARED; vn_lock(vp, lock_flags | LK_RETRY); } else rl_cookie = NULL; ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); #ifdef MAC if ((ioflg & IO_NOMACCHECK) == 0) { if (rw == UIO_READ) error = mac_vnode_check_read(active_cred, file_cred, vp); else error = mac_vnode_check_write(active_cred, file_cred, vp); } #endif if (error == 0) { if (file_cred != NULL) cred = file_cred; else cred = active_cred; if (do_vn_io_fault(vp, &auio)) { args.kind = VN_IO_FAULT_VOP; args.cred = cred; args.flags = ioflg; args.args.vop_args.vp = vp; error = vn_io_fault1(vp, &auio, &args, td); } else if (rw == UIO_READ) { error = VOP_READ(vp, &auio, ioflg, cred); } else /* if (rw == UIO_WRITE) */ { error = VOP_WRITE(vp, &auio, ioflg, cred); } } if (aresid) *aresid = auio.uio_resid; else if (auio.uio_resid && error == 0) error = EIO; if ((ioflg & IO_NODELOCKED) == 0) { VOP_UNLOCK(vp); if (mp != NULL) vn_finished_write(mp); } out: if (rl_cookie != NULL) vn_rangelock_unlock(vp, rl_cookie); return (error); } /* * Package up an I/O request on a vnode into a uio and do it. The I/O * request is split up into smaller chunks and we try to avoid saturating * the buffer cache while potentially holding a vnode locked, so we * check bwillwrite() before calling vn_rdwr(). We also call kern_yield() * to give other processes a chance to lock the vnode (either other processes * core'ing the same binary, or unrelated processes scanning the directory). */ int vn_rdwr_inchunks(enum uio_rw rw, struct vnode *vp, void *base, size_t len, off_t offset, enum uio_seg segflg, int ioflg, struct ucred *active_cred, struct ucred *file_cred, size_t *aresid, struct thread *td) { int error = 0; ssize_t iaresid; do { int chunk; /* * Force `offset' to a multiple of MAXBSIZE except possibly * for the first chunk, so that filesystems only need to * write full blocks except possibly for the first and last * chunks. */ chunk = MAXBSIZE - (uoff_t)offset % MAXBSIZE; if (chunk > len) chunk = len; if (rw != UIO_READ && vp->v_type == VREG) bwillwrite(); iaresid = 0; error = vn_rdwr(rw, vp, base, chunk, offset, segflg, ioflg, active_cred, file_cred, &iaresid, td); len -= chunk; /* aresid calc already includes length */ if (error) break; offset += chunk; base = (char *)base + chunk; kern_yield(PRI_USER); } while (len); if (aresid) *aresid = len + iaresid; return (error); } #if OFF_MAX <= LONG_MAX off_t foffset_lock(struct file *fp, int flags) { volatile short *flagsp; off_t res; short state; KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); if ((flags & FOF_NOLOCK) != 0) return (atomic_load_long(&fp->f_offset)); /* * According to McKusick the vn lock was protecting f_offset here. * It is now protected by the FOFFSET_LOCKED flag. */ flagsp = &fp->f_vnread_flags; if (atomic_cmpset_acq_16(flagsp, 0, FOFFSET_LOCKED)) return (atomic_load_long(&fp->f_offset)); sleepq_lock(&fp->f_vnread_flags); state = atomic_load_16(flagsp); for (;;) { if ((state & FOFFSET_LOCKED) == 0) { if (!atomic_fcmpset_acq_16(flagsp, &state, FOFFSET_LOCKED)) continue; break; } if ((state & FOFFSET_LOCK_WAITING) == 0) { if (!atomic_fcmpset_acq_16(flagsp, &state, state | FOFFSET_LOCK_WAITING)) continue; } DROP_GIANT(); sleepq_add(&fp->f_vnread_flags, NULL, "vofflock", 0, 0); sleepq_wait(&fp->f_vnread_flags, PUSER -1); PICKUP_GIANT(); sleepq_lock(&fp->f_vnread_flags); state = atomic_load_16(flagsp); } res = atomic_load_long(&fp->f_offset); sleepq_release(&fp->f_vnread_flags); return (res); } void foffset_unlock(struct file *fp, off_t val, int flags) { volatile short *flagsp; short state; KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); if ((flags & FOF_NOUPDATE) == 0) atomic_store_long(&fp->f_offset, val); if ((flags & FOF_NEXTOFF_R) != 0) fp->f_nextoff[UIO_READ] = val; if ((flags & FOF_NEXTOFF_W) != 0) fp->f_nextoff[UIO_WRITE] = val; if ((flags & FOF_NOLOCK) != 0) return; flagsp = &fp->f_vnread_flags; state = atomic_load_16(flagsp); if ((state & FOFFSET_LOCK_WAITING) == 0 && atomic_cmpset_rel_16(flagsp, state, 0)) return; sleepq_lock(&fp->f_vnread_flags); MPASS((fp->f_vnread_flags & FOFFSET_LOCKED) != 0); MPASS((fp->f_vnread_flags & FOFFSET_LOCK_WAITING) != 0); fp->f_vnread_flags = 0; sleepq_broadcast(&fp->f_vnread_flags, SLEEPQ_SLEEP, 0, 0); sleepq_release(&fp->f_vnread_flags); } #else off_t foffset_lock(struct file *fp, int flags) { struct mtx *mtxp; off_t res; KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if ((flags & FOF_NOLOCK) == 0) { while (fp->f_vnread_flags & FOFFSET_LOCKED) { fp->f_vnread_flags |= FOFFSET_LOCK_WAITING; msleep(&fp->f_vnread_flags, mtxp, PUSER -1, "vofflock", 0); } fp->f_vnread_flags |= FOFFSET_LOCKED; } res = fp->f_offset; mtx_unlock(mtxp); return (res); } void foffset_unlock(struct file *fp, off_t val, int flags) { struct mtx *mtxp; KASSERT((flags & FOF_OFFSET) == 0, ("FOF_OFFSET passed")); mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if ((flags & FOF_NOUPDATE) == 0) fp->f_offset = val; if ((flags & FOF_NEXTOFF_R) != 0) fp->f_nextoff[UIO_READ] = val; if ((flags & FOF_NEXTOFF_W) != 0) fp->f_nextoff[UIO_WRITE] = val; if ((flags & FOF_NOLOCK) == 0) { KASSERT((fp->f_vnread_flags & FOFFSET_LOCKED) != 0, ("Lost FOFFSET_LOCKED")); if (fp->f_vnread_flags & FOFFSET_LOCK_WAITING) wakeup(&fp->f_vnread_flags); fp->f_vnread_flags = 0; } mtx_unlock(mtxp); } #endif void foffset_lock_uio(struct file *fp, struct uio *uio, int flags) { if ((flags & FOF_OFFSET) == 0) uio->uio_offset = foffset_lock(fp, flags); } void foffset_unlock_uio(struct file *fp, struct uio *uio, int flags) { if ((flags & FOF_OFFSET) == 0) foffset_unlock(fp, uio->uio_offset, flags); } static int get_advice(struct file *fp, struct uio *uio) { struct mtx *mtxp; int ret; ret = POSIX_FADV_NORMAL; if (fp->f_advice == NULL || fp->f_vnode->v_type != VREG) return (ret); mtxp = mtx_pool_find(mtxpool_sleep, fp); mtx_lock(mtxp); if (fp->f_advice != NULL && uio->uio_offset >= fp->f_advice->fa_start && uio->uio_offset + uio->uio_resid <= fp->f_advice->fa_end) ret = fp->f_advice->fa_advice; mtx_unlock(mtxp); return (ret); } int vn_read_from_obj(struct vnode *vp, struct uio *uio) { vm_object_t obj; vm_page_t ma[io_hold_cnt + 2]; off_t off, vsz; ssize_t resid; int error, i, j; MPASS(uio->uio_resid <= ptoa(io_hold_cnt + 2)); obj = atomic_load_ptr(&vp->v_object); if (obj == NULL) return (EJUSTRETURN); /* * Depends on type stability of vm_objects. */ vm_object_pip_add(obj, 1); if ((obj->flags & OBJ_DEAD) != 0) { /* * Note that object might be already reused from the * vnode, and the OBJ_DEAD flag cleared. This is fine, * we recheck for DOOMED vnode state after all pages * are busied, and retract then. * * But we check for OBJ_DEAD to ensure that we do not * busy pages while vm_object_terminate_pages() * processes the queue. */ error = EJUSTRETURN; goto out_pip; } resid = uio->uio_resid; off = uio->uio_offset; for (i = 0; resid > 0; i++) { MPASS(i < io_hold_cnt + 2); ma[i] = vm_page_grab_unlocked(obj, atop(off), VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOWAIT); if (ma[i] == NULL) break; /* * Skip invalid pages. Valid mask can be partial only * at EOF, and we clip later. */ if (vm_page_none_valid(ma[i])) { vm_page_sunbusy(ma[i]); break; } resid -= PAGE_SIZE; off += PAGE_SIZE; } if (i == 0) { error = EJUSTRETURN; goto out_pip; } /* * Check VIRF_DOOMED after we busied our pages. Since * vgonel() terminates the vnode' vm_object, it cannot * process past pages busied by us. */ if (VN_IS_DOOMED(vp)) { error = EJUSTRETURN; goto out; } resid = PAGE_SIZE - (uio->uio_offset & PAGE_MASK) + ptoa(i - 1); if (resid > uio->uio_resid) resid = uio->uio_resid; /* * Unlocked read of vnp_size is safe because truncation cannot * pass busied page. But we load vnp_size into a local * variable so that possible concurrent extension does not * break calculation. */ #if defined(__powerpc__) && !defined(__powerpc64__) vsz = obj->un_pager.vnp.vnp_size; #else vsz = atomic_load_64(&obj->un_pager.vnp.vnp_size); #endif if (uio->uio_offset >= vsz) { error = EJUSTRETURN; goto out; } if (uio->uio_offset + resid > vsz) resid = vsz - uio->uio_offset; error = vn_io_fault_pgmove(ma, uio->uio_offset & PAGE_MASK, resid, uio); out: for (j = 0; j < i; j++) { if (error == 0) vm_page_reference(ma[j]); vm_page_sunbusy(ma[j]); } out_pip: vm_object_pip_wakeup(obj); if (error != 0) return (error); return (uio->uio_resid == 0 ? 0 : EJUSTRETURN); } /* * File table vnode read routine. */ static int vn_read(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct vnode *vp; off_t orig_offset; int error, ioflag; int advice; KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", uio->uio_td, td)); KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); vp = fp->f_vnode; ioflag = 0; if (fp->f_flag & FNONBLOCK) ioflag |= IO_NDELAY; if (fp->f_flag & O_DIRECT) ioflag |= IO_DIRECT; /* * Try to read from page cache. VIRF_DOOMED check is racy but * allows us to avoid unneeded work outright. */ if (vn_io_pgcache_read_enable && !mac_vnode_check_read_enabled() && (vn_irflag_read(vp) & (VIRF_DOOMED | VIRF_PGREAD)) == VIRF_PGREAD) { error = VOP_READ_PGCACHE(vp, uio, ioflag, fp->f_cred); if (error == 0) { fp->f_nextoff[UIO_READ] = uio->uio_offset; return (0); } if (error != EJUSTRETURN) return (error); } advice = get_advice(fp, uio); vn_lock(vp, LK_SHARED | LK_RETRY); switch (advice) { case POSIX_FADV_NORMAL: case POSIX_FADV_SEQUENTIAL: case POSIX_FADV_NOREUSE: ioflag |= sequential_heuristic(uio, fp); break; case POSIX_FADV_RANDOM: /* Disable read-ahead for random I/O. */ break; } orig_offset = uio->uio_offset; #ifdef MAC error = mac_vnode_check_read(active_cred, fp->f_cred, vp); if (error == 0) #endif error = VOP_READ(vp, uio, ioflag, fp->f_cred); fp->f_nextoff[UIO_READ] = uio->uio_offset; VOP_UNLOCK(vp); if (error == 0 && advice == POSIX_FADV_NOREUSE && orig_offset != uio->uio_offset) /* * Use POSIX_FADV_DONTNEED to flush pages and buffers * for the backing file after a POSIX_FADV_NOREUSE * read(2). */ error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, POSIX_FADV_DONTNEED); return (error); } /* * File table vnode write routine. */ static int vn_write(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { struct vnode *vp; struct mount *mp; off_t orig_offset; int error, ioflag, lock_flags; int advice; bool need_finished_write; KASSERT(uio->uio_td == td, ("uio_td %p is not td %p", uio->uio_td, td)); KASSERT(flags & FOF_OFFSET, ("No FOF_OFFSET")); vp = fp->f_vnode; if (vp->v_type == VREG) bwillwrite(); ioflag = IO_UNIT; if (vp->v_type == VREG && (fp->f_flag & O_APPEND)) ioflag |= IO_APPEND; if (fp->f_flag & FNONBLOCK) ioflag |= IO_NDELAY; if (fp->f_flag & O_DIRECT) ioflag |= IO_DIRECT; if (fp->f_flag & O_FSYNC) { mp = atomic_load_ptr(&vp->v_mount); if (mp != NULL && mp->mnt_flag & MNT_SYNCHRONOUS) ioflag |= IO_SYNC; } /* * For O_DSYNC we set both IO_SYNC and IO_DATASYNC, so that VOP_WRITE() * implementations that don't understand IO_DATASYNC fall back to full * O_SYNC behavior. */ if (fp->f_flag & O_DSYNC) ioflag |= IO_SYNC | IO_DATASYNC; mp = NULL; need_finished_write = false; if (vp->v_type != VCHR) { error = vn_start_write(vp, &mp, V_WAIT | PCATCH); if (error != 0) goto unlock; need_finished_write = true; } advice = get_advice(fp, uio); if (MNT_SHARED_WRITES(mp) || (mp == NULL && MNT_SHARED_WRITES(vp->v_mount))) { lock_flags = LK_SHARED; } else { lock_flags = LK_EXCLUSIVE; } vn_lock(vp, lock_flags | LK_RETRY); switch (advice) { case POSIX_FADV_NORMAL: case POSIX_FADV_SEQUENTIAL: case POSIX_FADV_NOREUSE: ioflag |= sequential_heuristic(uio, fp); break; case POSIX_FADV_RANDOM: /* XXX: Is this correct? */ break; } orig_offset = uio->uio_offset; #ifdef MAC error = mac_vnode_check_write(active_cred, fp->f_cred, vp); if (error == 0) #endif error = VOP_WRITE(vp, uio, ioflag, fp->f_cred); fp->f_nextoff[UIO_WRITE] = uio->uio_offset; VOP_UNLOCK(vp); if (need_finished_write) vn_finished_write(mp); if (error == 0 && advice == POSIX_FADV_NOREUSE && orig_offset != uio->uio_offset) /* * Use POSIX_FADV_DONTNEED to flush pages and buffers * for the backing file after a POSIX_FADV_NOREUSE * write(2). */ error = VOP_ADVISE(vp, orig_offset, uio->uio_offset - 1, POSIX_FADV_DONTNEED); unlock: return (error); } /* * The vn_io_fault() is a wrapper around vn_read() and vn_write() to * prevent the following deadlock: * * Assume that the thread A reads from the vnode vp1 into userspace * buffer buf1 backed by the pages of vnode vp2. If a page in buf1 is * currently not resident, then system ends up with the call chain * vn_read() -> VOP_READ(vp1) -> uiomove() -> [Page Fault] -> * vm_fault(buf1) -> vnode_pager_getpages(vp2) -> VOP_GETPAGES(vp2) * which establishes lock order vp1->vn_lock, then vp2->vn_lock. * If, at the same time, thread B reads from vnode vp2 into buffer buf2 * backed by the pages of vnode vp1, and some page in buf2 is not * resident, we get a reversed order vp2->vn_lock, then vp1->vn_lock. * * To prevent the lock order reversal and deadlock, vn_io_fault() does * not allow page faults to happen during VOP_READ() or VOP_WRITE(). * Instead, it first tries to do the whole range i/o with pagefaults * disabled. If all pages in the i/o buffer are resident and mapped, * VOP will succeed (ignoring the genuine filesystem errors). * Otherwise, we get back EFAULT, and vn_io_fault() falls back to do * i/o in chunks, with all pages in the chunk prefaulted and held * using vm_fault_quick_hold_pages(). * * Filesystems using this deadlock avoidance scheme should use the * array of the held pages from uio, saved in the curthread->td_ma, * instead of doing uiomove(). A helper function * vn_io_fault_uiomove() converts uiomove request into * uiomove_fromphys() over td_ma array. * * Since vnode locks do not cover the whole i/o anymore, rangelocks * make the current i/o request atomic with respect to other i/os and * truncations. */ /* * Decode vn_io_fault_args and perform the corresponding i/o. */ static int vn_io_fault_doio(struct vn_io_fault_args *args, struct uio *uio, struct thread *td) { int error, save; error = 0; save = vm_fault_disable_pagefaults(); switch (args->kind) { case VN_IO_FAULT_FOP: error = (args->args.fop_args.doio)(args->args.fop_args.fp, uio, args->cred, args->flags, td); break; case VN_IO_FAULT_VOP: if (uio->uio_rw == UIO_READ) { error = VOP_READ(args->args.vop_args.vp, uio, args->flags, args->cred); } else if (uio->uio_rw == UIO_WRITE) { error = VOP_WRITE(args->args.vop_args.vp, uio, args->flags, args->cred); } break; default: panic("vn_io_fault_doio: unknown kind of io %d %d", args->kind, uio->uio_rw); } vm_fault_enable_pagefaults(save); return (error); } static int vn_io_fault_touch(char *base, const struct uio *uio) { int r; r = fubyte(base); if (r == -1 || (uio->uio_rw == UIO_READ && subyte(base, r) == -1)) return (EFAULT); return (0); } static int vn_io_fault_prefault_user(const struct uio *uio) { char *base; const struct iovec *iov; size_t len; ssize_t resid; int error, i; KASSERT(uio->uio_segflg == UIO_USERSPACE, ("vn_io_fault_prefault userspace")); error = i = 0; iov = uio->uio_iov; resid = uio->uio_resid; base = iov->iov_base; len = iov->iov_len; while (resid > 0) { error = vn_io_fault_touch(base, uio); if (error != 0) break; if (len < PAGE_SIZE) { if (len != 0) { error = vn_io_fault_touch(base + len - 1, uio); if (error != 0) break; resid -= len; } if (++i >= uio->uio_iovcnt) break; iov = uio->uio_iov + i; base = iov->iov_base; len = iov->iov_len; } else { len -= PAGE_SIZE; base += PAGE_SIZE; resid -= PAGE_SIZE; } } return (error); } /* * Common code for vn_io_fault(), agnostic to the kind of i/o request. * Uses vn_io_fault_doio() to make the call to an actual i/o function. * Used from vn_rdwr() and vn_io_fault(), which encode the i/o request * into args and call vn_io_fault1() to handle faults during the user * mode buffer accesses. */ static int vn_io_fault1(struct vnode *vp, struct uio *uio, struct vn_io_fault_args *args, struct thread *td) { vm_page_t ma[io_hold_cnt + 2]; struct uio *uio_clone, short_uio; struct iovec short_iovec[1]; vm_page_t *prev_td_ma; vm_prot_t prot; vm_offset_t addr, end; size_t len, resid; ssize_t adv; int error, cnt, saveheld, prev_td_ma_cnt; if (vn_io_fault_prefault) { error = vn_io_fault_prefault_user(uio); if (error != 0) return (error); /* Or ignore ? */ } prot = uio->uio_rw == UIO_READ ? VM_PROT_WRITE : VM_PROT_READ; /* * The UFS follows IO_UNIT directive and replays back both * uio_offset and uio_resid if an error is encountered during the * operation. But, since the iovec may be already advanced, * uio is still in an inconsistent state. * * Cache a copy of the original uio, which is advanced to the redo * point using UIO_NOCOPY below. */ uio_clone = cloneuio(uio); resid = uio->uio_resid; short_uio.uio_segflg = UIO_USERSPACE; short_uio.uio_rw = uio->uio_rw; short_uio.uio_td = uio->uio_td; error = vn_io_fault_doio(args, uio, td); if (error != EFAULT) goto out; atomic_add_long(&vn_io_faults_cnt, 1); uio_clone->uio_segflg = UIO_NOCOPY; uiomove(NULL, resid - uio->uio_resid, uio_clone); uio_clone->uio_segflg = uio->uio_segflg; saveheld = curthread_pflags_set(TDP_UIOHELD); prev_td_ma = td->td_ma; prev_td_ma_cnt = td->td_ma_cnt; while (uio_clone->uio_resid != 0) { len = uio_clone->uio_iov->iov_len; if (len == 0) { KASSERT(uio_clone->uio_iovcnt >= 1, ("iovcnt underflow")); uio_clone->uio_iov++; uio_clone->uio_iovcnt--; continue; } if (len > ptoa(io_hold_cnt)) len = ptoa(io_hold_cnt); addr = (uintptr_t)uio_clone->uio_iov->iov_base; end = round_page(addr + len); if (end < addr) { error = EFAULT; break; } cnt = atop(end - trunc_page(addr)); /* * A perfectly misaligned address and length could cause * both the start and the end of the chunk to use partial * page. +2 accounts for such a situation. */ cnt = vm_fault_quick_hold_pages(&td->td_proc->p_vmspace->vm_map, addr, len, prot, ma, io_hold_cnt + 2); if (cnt == -1) { error = EFAULT; break; } short_uio.uio_iov = &short_iovec[0]; short_iovec[0].iov_base = (void *)addr; short_uio.uio_iovcnt = 1; short_uio.uio_resid = short_iovec[0].iov_len = len; short_uio.uio_offset = uio_clone->uio_offset; td->td_ma = ma; td->td_ma_cnt = cnt; error = vn_io_fault_doio(args, &short_uio, td); vm_page_unhold_pages(ma, cnt); adv = len - short_uio.uio_resid; uio_clone->uio_iov->iov_base = (char *)uio_clone->uio_iov->iov_base + adv; uio_clone->uio_iov->iov_len -= adv; uio_clone->uio_resid -= adv; uio_clone->uio_offset += adv; uio->uio_resid -= adv; uio->uio_offset += adv; if (error != 0 || adv == 0) break; } td->td_ma = prev_td_ma; td->td_ma_cnt = prev_td_ma_cnt; curthread_pflags_restore(saveheld); out: free(uio_clone, M_IOV); return (error); } static int vn_io_fault(struct file *fp, struct uio *uio, struct ucred *active_cred, int flags, struct thread *td) { fo_rdwr_t *doio; struct vnode *vp; void *rl_cookie; struct vn_io_fault_args args; int error; doio = uio->uio_rw == UIO_READ ? vn_read : vn_write; vp = fp->f_vnode; /* * The ability to read(2) on a directory has historically been * allowed for all users, but this can and has been the source of * at least one security issue in the past. As such, it is now hidden * away behind a sysctl for those that actually need it to use it, and * restricted to root when it's turned on to make it relatively safe to * leave on for longer sessions of need. */ if (vp->v_type == VDIR) { KASSERT(uio->uio_rw == UIO_READ, ("illegal write attempted on a directory")); if (!vfs_allow_read_dir) return (EISDIR); if ((error = priv_check(td, PRIV_VFS_READ_DIR)) != 0) return (EISDIR); } foffset_lock_uio(fp, uio, flags); if (do_vn_io_fault(vp, uio)) { args.kind = VN_IO_FAULT_FOP; args.args.fop_args.fp = fp; args.args.fop_args.doio = doio; args.cred = active_cred; args.flags = flags | FOF_OFFSET; if (uio->uio_rw == UIO_READ) { rl_cookie = vn_rangelock_rlock(vp, uio->uio_offset, uio->uio_offset + uio->uio_resid); } else if ((fp->f_flag & O_APPEND) != 0 || (flags & FOF_OFFSET) == 0) { /* For appenders, punt and lock the whole range. */ rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); } else { rl_cookie = vn_rangelock_wlock(vp, uio->uio_offset, uio->uio_offset + uio->uio_resid); } error = vn_io_fault1(vp, uio, &args, td); vn_rangelock_unlock(vp, rl_cookie); } else { error = doio(fp, uio, active_cred, flags | FOF_OFFSET, td); } foffset_unlock_uio(fp, uio, flags); return (error); } /* * Helper function to perform the requested uiomove operation using * the held pages for io->uio_iov[0].iov_base buffer instead of * copyin/copyout. Access to the pages with uiomove_fromphys() * instead of iov_base prevents page faults that could occur due to * pmap_collect() invalidating the mapping created by * vm_fault_quick_hold_pages(), or pageout daemon, page laundry or * object cleanup revoking the write access from page mappings. * * Filesystems specified MNTK_NO_IOPF shall use vn_io_fault_uiomove() * instead of plain uiomove(). */ int vn_io_fault_uiomove(char *data, int xfersize, struct uio *uio) { struct uio transp_uio; struct iovec transp_iov[1]; struct thread *td; size_t adv; int error, pgadv; td = curthread; if ((td->td_pflags & TDP_UIOHELD) == 0 || uio->uio_segflg != UIO_USERSPACE) return (uiomove(data, xfersize, uio)); KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); transp_iov[0].iov_base = data; transp_uio.uio_iov = &transp_iov[0]; transp_uio.uio_iovcnt = 1; if (xfersize > uio->uio_resid) xfersize = uio->uio_resid; transp_uio.uio_resid = transp_iov[0].iov_len = xfersize; transp_uio.uio_offset = 0; transp_uio.uio_segflg = UIO_SYSSPACE; /* * Since transp_iov points to data, and td_ma page array * corresponds to original uio->uio_iov, we need to invert the * direction of the i/o operation as passed to * uiomove_fromphys(). */ switch (uio->uio_rw) { case UIO_WRITE: transp_uio.uio_rw = UIO_READ; break; case UIO_READ: transp_uio.uio_rw = UIO_WRITE; break; } transp_uio.uio_td = uio->uio_td; error = uiomove_fromphys(td->td_ma, ((vm_offset_t)uio->uio_iov->iov_base) & PAGE_MASK, xfersize, &transp_uio); adv = xfersize - transp_uio.uio_resid; pgadv = (((vm_offset_t)uio->uio_iov->iov_base + adv) >> PAGE_SHIFT) - (((vm_offset_t)uio->uio_iov->iov_base) >> PAGE_SHIFT); td->td_ma += pgadv; KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, pgadv)); td->td_ma_cnt -= pgadv; uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + adv; uio->uio_iov->iov_len -= adv; uio->uio_resid -= adv; uio->uio_offset += adv; return (error); } int vn_io_fault_pgmove(vm_page_t ma[], vm_offset_t offset, int xfersize, struct uio *uio) { struct thread *td; vm_offset_t iov_base; int cnt, pgadv; td = curthread; if ((td->td_pflags & TDP_UIOHELD) == 0 || uio->uio_segflg != UIO_USERSPACE) return (uiomove_fromphys(ma, offset, xfersize, uio)); KASSERT(uio->uio_iovcnt == 1, ("uio_iovcnt %d", uio->uio_iovcnt)); cnt = xfersize > uio->uio_resid ? uio->uio_resid : xfersize; iov_base = (vm_offset_t)uio->uio_iov->iov_base; switch (uio->uio_rw) { case UIO_WRITE: pmap_copy_pages(td->td_ma, iov_base & PAGE_MASK, ma, offset, cnt); break; case UIO_READ: pmap_copy_pages(ma, offset, td->td_ma, iov_base & PAGE_MASK, cnt); break; } pgadv = ((iov_base + cnt) >> PAGE_SHIFT) - (iov_base >> PAGE_SHIFT); td->td_ma += pgadv; KASSERT(td->td_ma_cnt >= pgadv, ("consumed pages %d %d", td->td_ma_cnt, pgadv)); td->td_ma_cnt -= pgadv; uio->uio_iov->iov_base = (char *)(iov_base + cnt); uio->uio_iov->iov_len -= cnt; uio->uio_resid -= cnt; uio->uio_offset += cnt; return (0); } /* * File table truncate routine. */ static int vn_truncate(struct file *fp, off_t length, struct ucred *active_cred, struct thread *td) { struct mount *mp; struct vnode *vp; void *rl_cookie; int error; vp = fp->f_vnode; retry: /* * Lock the whole range for truncation. Otherwise split i/o * might happen partly before and partly after the truncation. */ rl_cookie = vn_rangelock_wlock(vp, 0, OFF_MAX); error = vn_start_write(vp, &mp, V_WAIT | PCATCH); if (error) goto out1; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); AUDIT_ARG_VNODE1(vp); if (vp->v_type == VDIR) { error = EISDIR; goto out; } #ifdef MAC error = mac_vnode_check_write(active_cred, fp->f_cred, vp); if (error) goto out; #endif error = vn_truncate_locked(vp, length, (fp->f_flag & O_FSYNC) != 0, fp->f_cred); out: VOP_UNLOCK(vp); vn_finished_write(mp); out1: vn_rangelock_unlock(vp, rl_cookie); if (error == ERELOOKUP) goto retry; return (error); } /* * Truncate a file that is already locked. */ int vn_truncate_locked(struct vnode *vp, off_t length, bool sync, struct ucred *cred) { struct vattr vattr; int error; error = VOP_ADD_WRITECOUNT(vp, 1); if (error == 0) { VATTR_NULL(&vattr); vattr.va_size = length; if (sync) vattr.va_vaflags |= VA_SYNC; error = VOP_SETATTR(vp, &vattr, cred); VOP_ADD_WRITECOUNT_CHECKED(vp, -1); } return (error); } /* * File table vnode stat routine. */ int vn_statfile(struct file *fp, struct stat *sb, struct ucred *active_cred, struct thread *td) { struct vnode *vp = fp->f_vnode; int error; vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_STAT(vp, sb, active_cred, fp->f_cred, td); VOP_UNLOCK(vp); return (error); } /* * File table vnode ioctl routine. */ static int vn_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred, struct thread *td) { struct vattr vattr; struct vnode *vp; struct fiobmap2_arg *bmarg; int error; vp = fp->f_vnode; switch (vp->v_type) { case VDIR: case VREG: switch (com) { case FIONREAD: vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, active_cred); VOP_UNLOCK(vp); if (error == 0) *(int *)data = vattr.va_size - fp->f_offset; return (error); case FIOBMAP2: bmarg = (struct fiobmap2_arg *)data; vn_lock(vp, LK_SHARED | LK_RETRY); #ifdef MAC error = mac_vnode_check_read(active_cred, fp->f_cred, vp); if (error == 0) #endif error = VOP_BMAP(vp, bmarg->bn, NULL, &bmarg->bn, &bmarg->runp, &bmarg->runb); VOP_UNLOCK(vp); return (error); case FIONBIO: case FIOASYNC: return (0); default: return (VOP_IOCTL(vp, com, data, fp->f_flag, active_cred, td)); } break; case VCHR: return (VOP_IOCTL(vp, com, data, fp->f_flag, active_cred, td)); default: return (ENOTTY); } } /* * File table vnode poll routine. */ static int vn_poll(struct file *fp, int events, struct ucred *active_cred, struct thread *td) { struct vnode *vp; int error; vp = fp->f_vnode; #if defined(MAC) || defined(AUDIT) if (AUDITING_TD(td) || mac_vnode_check_poll_enabled()) { vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); AUDIT_ARG_VNODE1(vp); error = mac_vnode_check_poll(active_cred, fp->f_cred, vp); VOP_UNLOCK(vp); if (error != 0) return (error); } #endif error = VOP_POLL(vp, events, fp->f_cred, td); return (error); } /* * Acquire the requested lock and then check for validity. LK_RETRY * permits vn_lock to return doomed vnodes. */ static int __noinline _vn_lock_fallback(struct vnode *vp, int flags, const char *file, int line, int error) { KASSERT((flags & LK_RETRY) == 0 || error == 0, ("vn_lock: error %d incompatible with flags %#x", error, flags)); if (error == 0) VNASSERT(VN_IS_DOOMED(vp), vp, ("vnode not doomed")); if ((flags & LK_RETRY) == 0) { if (error == 0) { VOP_UNLOCK(vp); error = ENOENT; } return (error); } /* * LK_RETRY case. * * Nothing to do if we got the lock. */ if (error == 0) return (0); /* * Interlock was dropped by the call in _vn_lock. */ flags &= ~LK_INTERLOCK; do { error = VOP_LOCK1(vp, flags, file, line); } while (error != 0); return (0); } int _vn_lock(struct vnode *vp, int flags, const char *file, int line) { int error; VNASSERT((flags & LK_TYPE_MASK) != 0, vp, ("vn_lock: no locktype (%d passed)", flags)); VNPASS(vp->v_holdcnt > 0, vp); error = VOP_LOCK1(vp, flags, file, line); if (__predict_false(error != 0 || VN_IS_DOOMED(vp))) return (_vn_lock_fallback(vp, flags, file, line, error)); return (0); } /* * File table vnode close routine. */ static int vn_closefile(struct file *fp, struct thread *td) { struct vnode *vp; struct flock lf; int error; bool ref; vp = fp->f_vnode; fp->f_ops = &badfileops; ref = (fp->f_flag & FHASLOCK) != 0 && fp->f_type == DTYPE_VNODE; error = vn_close1(vp, fp->f_flag, fp->f_cred, td, ref); if (__predict_false(ref)) { lf.l_whence = SEEK_SET; lf.l_start = 0; lf.l_len = 0; lf.l_type = F_UNLCK; (void) VOP_ADVLOCK(vp, fp, F_UNLCK, &lf, F_FLOCK); vrele(vp); } return (error); } /* * Preparing to start a filesystem write operation. If the operation is * permitted, then we bump the count of operations in progress and * proceed. If a suspend request is in progress, we wait until the * suspension is over, and then proceed. */ static int vn_start_write_refed(struct mount *mp, int flags, bool mplocked) { struct mount_pcpu *mpcpu; int error, mflags; if (__predict_true(!mplocked) && (flags & V_XSLEEP) == 0 && vfs_op_thread_enter(mp, mpcpu)) { MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); vfs_mp_count_add_pcpu(mpcpu, writeopcount, 1); vfs_op_thread_exit(mp, mpcpu); return (0); } if (mplocked) mtx_assert(MNT_MTX(mp), MA_OWNED); else MNT_ILOCK(mp); error = 0; /* * Check on status of suspension. */ if ((curthread->td_pflags & TDP_IGNSUSP) == 0 || mp->mnt_susp_owner != curthread) { mflags = ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0) | (PUSER - 1); while ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { if (flags & V_NOWAIT) { error = EWOULDBLOCK; goto unlock; } error = msleep(&mp->mnt_flag, MNT_MTX(mp), mflags, "suspfs", 0); if (error) goto unlock; } } if (flags & V_XSLEEP) goto unlock; mp->mnt_writeopcount++; unlock: if (error != 0 || (flags & V_XSLEEP) != 0) MNT_REL(mp); MNT_IUNLOCK(mp); return (error); } int vn_start_write(struct vnode *vp, struct mount **mpp, int flags) { struct mount *mp; int error; KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), ("V_MNTREF requires mp")); error = 0; /* * If a vnode is provided, get and return the mount point that * to which it will write. */ if (vp != NULL) { if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { *mpp = NULL; if (error != EOPNOTSUPP) return (error); return (0); } } if ((mp = *mpp) == NULL) return (0); /* * VOP_GETWRITEMOUNT() returns with the mp refcount held through * a vfs_ref(). * As long as a vnode is not provided we need to acquire a * refcount for the provided mountpoint too, in order to * emulate a vfs_ref(). */ if (vp == NULL && (flags & V_MNTREF) == 0) vfs_ref(mp); return (vn_start_write_refed(mp, flags, false)); } /* * Secondary suspension. Used by operations such as vop_inactive * routines that are needed by the higher level functions. These * are allowed to proceed until all the higher level functions have * completed (indicated by mnt_writeopcount dropping to zero). At that * time, these operations are halted until the suspension is over. */ int vn_start_secondary_write(struct vnode *vp, struct mount **mpp, int flags) { struct mount *mp; int error; KASSERT((flags & V_MNTREF) == 0 || (*mpp != NULL && vp == NULL), ("V_MNTREF requires mp")); retry: if (vp != NULL) { if ((error = VOP_GETWRITEMOUNT(vp, mpp)) != 0) { *mpp = NULL; if (error != EOPNOTSUPP) return (error); return (0); } } /* * If we are not suspended or have not yet reached suspended * mode, then let the operation proceed. */ if ((mp = *mpp) == NULL) return (0); /* * VOP_GETWRITEMOUNT() returns with the mp refcount held through * a vfs_ref(). * As long as a vnode is not provided we need to acquire a * refcount for the provided mountpoint too, in order to * emulate a vfs_ref(). */ MNT_ILOCK(mp); if (vp == NULL && (flags & V_MNTREF) == 0) MNT_REF(mp); if ((mp->mnt_kern_flag & (MNTK_SUSPENDED | MNTK_SUSPEND2)) == 0) { mp->mnt_secondary_writes++; mp->mnt_secondary_accwrites++; MNT_IUNLOCK(mp); return (0); } if (flags & V_NOWAIT) { MNT_REL(mp); MNT_IUNLOCK(mp); return (EWOULDBLOCK); } /* * Wait for the suspension to finish. */ error = msleep(&mp->mnt_flag, MNT_MTX(mp), (PUSER - 1) | PDROP | ((mp->mnt_vfc->vfc_flags & VFCF_SBDRY) != 0 ? (flags & PCATCH) : 0), "suspfs", 0); vfs_rel(mp); if (error == 0) goto retry; return (error); } /* * Filesystem write operation has completed. If we are suspending and this * operation is the last one, notify the suspender that the suspension is * now in effect. */ void vn_finished_write(struct mount *mp) { struct mount_pcpu *mpcpu; int c; if (mp == NULL) return; if (vfs_op_thread_enter(mp, mpcpu)) { vfs_mp_count_sub_pcpu(mpcpu, writeopcount, 1); vfs_mp_count_sub_pcpu(mpcpu, ref, 1); vfs_op_thread_exit(mp, mpcpu); return; } MNT_ILOCK(mp); vfs_assert_mount_counters(mp); MNT_REL(mp); c = --mp->mnt_writeopcount; if (mp->mnt_vfs_ops == 0) { MPASS((mp->mnt_kern_flag & MNTK_SUSPEND) == 0); MNT_IUNLOCK(mp); return; } if (c < 0) vfs_dump_mount_counters(mp); if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && c == 0) wakeup(&mp->mnt_writeopcount); MNT_IUNLOCK(mp); } /* * Filesystem secondary write operation has completed. If we are * suspending and this operation is the last one, notify the suspender * that the suspension is now in effect. */ void vn_finished_secondary_write(struct mount *mp) { if (mp == NULL) return; MNT_ILOCK(mp); MNT_REL(mp); mp->mnt_secondary_writes--; if (mp->mnt_secondary_writes < 0) panic("vn_finished_secondary_write: neg cnt"); if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0 && mp->mnt_secondary_writes <= 0) wakeup(&mp->mnt_secondary_writes); MNT_IUNLOCK(mp); } /* * Request a filesystem to suspend write operations. */ int vfs_write_suspend(struct mount *mp, int flags) { int error; vfs_op_enter(mp); MNT_ILOCK(mp); vfs_assert_mount_counters(mp); if (mp->mnt_susp_owner == curthread) { vfs_op_exit_locked(mp); MNT_IUNLOCK(mp); return (EALREADY); } while (mp->mnt_kern_flag & MNTK_SUSPEND) msleep(&mp->mnt_flag, MNT_MTX(mp), PUSER - 1, "wsuspfs", 0); /* * Unmount holds a write reference on the mount point. If we * own busy reference and drain for writers, we deadlock with * the reference draining in the unmount path. Callers of * vfs_write_suspend() must specify VS_SKIP_UNMOUNT if * vfs_busy() reference is owned and caller is not in the * unmount context. */ if ((flags & VS_SKIP_UNMOUNT) != 0 && (mp->mnt_kern_flag & MNTK_UNMOUNT) != 0) { vfs_op_exit_locked(mp); MNT_IUNLOCK(mp); return (EBUSY); } mp->mnt_kern_flag |= MNTK_SUSPEND; mp->mnt_susp_owner = curthread; if (mp->mnt_writeopcount > 0) (void) msleep(&mp->mnt_writeopcount, MNT_MTX(mp), (PUSER - 1)|PDROP, "suspwt", 0); else MNT_IUNLOCK(mp); if ((error = VFS_SYNC(mp, MNT_SUSPEND)) != 0) { vfs_write_resume(mp, 0); /* vfs_write_resume does vfs_op_exit() for us */ } return (error); } /* * Request a filesystem to resume write operations. */ void vfs_write_resume(struct mount *mp, int flags) { MNT_ILOCK(mp); if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) { KASSERT(mp->mnt_susp_owner == curthread, ("mnt_susp_owner")); mp->mnt_kern_flag &= ~(MNTK_SUSPEND | MNTK_SUSPEND2 | MNTK_SUSPENDED); mp->mnt_susp_owner = NULL; wakeup(&mp->mnt_writeopcount); wakeup(&mp->mnt_flag); curthread->td_pflags &= ~TDP_IGNSUSP; if ((flags & VR_START_WRITE) != 0) { MNT_REF(mp); mp->mnt_writeopcount++; } MNT_IUNLOCK(mp); if ((flags & VR_NO_SUSPCLR) == 0) VFS_SUSP_CLEAN(mp); vfs_op_exit(mp); } else if ((flags & VR_START_WRITE) != 0) { MNT_REF(mp); vn_start_write_refed(mp, 0, true); } else { MNT_IUNLOCK(mp); } } /* * Helper loop around vfs_write_suspend() for filesystem unmount VFS * methods. */ int vfs_write_suspend_umnt(struct mount *mp) { int error; KASSERT((curthread->td_pflags & TDP_IGNSUSP) == 0, ("vfs_write_suspend_umnt: recursed")); /* dounmount() already called vn_start_write(). */ for (;;) { vn_finished_write(mp); error = vfs_write_suspend(mp, 0); if (error != 0) { vn_start_write(NULL, &mp, V_WAIT); return (error); } MNT_ILOCK(mp); if ((mp->mnt_kern_flag & MNTK_SUSPENDED) != 0) break; MNT_IUNLOCK(mp); vn_start_write(NULL, &mp, V_WAIT); } mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); wakeup(&mp->mnt_flag); MNT_IUNLOCK(mp); curthread->td_pflags |= TDP_IGNSUSP; return (0); } /* * Implement kqueues for files by translating it to vnode operation. */ static int vn_kqfilter(struct file *fp, struct knote *kn) { return (VOP_KQFILTER(fp->f_vnode, kn)); } int vn_kqfilter_opath(struct file *fp, struct knote *kn) { if ((fp->f_flag & FKQALLOWED) == 0) return (EBADF); return (vn_kqfilter(fp, kn)); } /* * Simplified in-kernel wrapper calls for extended attribute access. * Both calls pass in a NULL credential, authorizing as "kernel" access. * Set IO_NODELOCKED in ioflg if the vnode is already locked. */ int vn_extattr_get(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int *buflen, char *buf, struct thread *td) { struct uio auio; struct iovec iov; int error; iov.iov_len = *buflen; iov.iov_base = buf; auio.uio_iov = &iov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_READ; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_offset = 0; auio.uio_resid = *buflen; if ((ioflg & IO_NODELOCKED) == 0) vn_lock(vp, LK_SHARED | LK_RETRY); ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); /* authorize attribute retrieval as kernel */ error = VOP_GETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, NULL, td); if ((ioflg & IO_NODELOCKED) == 0) VOP_UNLOCK(vp); if (error == 0) { *buflen = *buflen - auio.uio_resid; } return (error); } /* * XXX failure mode if partially written? */ int vn_extattr_set(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, int buflen, char *buf, struct thread *td) { struct uio auio; struct iovec iov; struct mount *mp; int error; iov.iov_len = buflen; iov.iov_base = buf; auio.uio_iov = &iov; auio.uio_iovcnt = 1; auio.uio_rw = UIO_WRITE; auio.uio_segflg = UIO_SYSSPACE; auio.uio_td = td; auio.uio_offset = 0; auio.uio_resid = buflen; if ((ioflg & IO_NODELOCKED) == 0) { if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) return (error); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); /* authorize attribute setting as kernel */ error = VOP_SETEXTATTR(vp, attrnamespace, attrname, &auio, NULL, td); if ((ioflg & IO_NODELOCKED) == 0) { vn_finished_write(mp); VOP_UNLOCK(vp); } return (error); } int vn_extattr_rm(struct vnode *vp, int ioflg, int attrnamespace, const char *attrname, struct thread *td) { struct mount *mp; int error; if ((ioflg & IO_NODELOCKED) == 0) { if ((error = vn_start_write(vp, &mp, V_WAIT)) != 0) return (error); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); } ASSERT_VOP_LOCKED(vp, "IO_NODELOCKED with no vp lock held"); /* authorize attribute removal as kernel */ error = VOP_DELETEEXTATTR(vp, attrnamespace, attrname, NULL, td); if (error == EOPNOTSUPP) error = VOP_SETEXTATTR(vp, attrnamespace, attrname, NULL, NULL, td); if ((ioflg & IO_NODELOCKED) == 0) { vn_finished_write(mp); VOP_UNLOCK(vp); } return (error); } static int vn_get_ino_alloc_vget(struct mount *mp, void *arg, int lkflags, struct vnode **rvp) { return (VFS_VGET(mp, *(ino_t *)arg, lkflags, rvp)); } int vn_vget_ino(struct vnode *vp, ino_t ino, int lkflags, struct vnode **rvp) { return (vn_vget_ino_gen(vp, vn_get_ino_alloc_vget, &ino, lkflags, rvp)); } int vn_vget_ino_gen(struct vnode *vp, vn_get_ino_t alloc, void *alloc_arg, int lkflags, struct vnode **rvp) { struct mount *mp; int ltype, error; ASSERT_VOP_LOCKED(vp, "vn_vget_ino_get"); mp = vp->v_mount; ltype = VOP_ISLOCKED(vp); KASSERT(ltype == LK_EXCLUSIVE || ltype == LK_SHARED, ("vn_vget_ino: vp not locked")); error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) { vfs_ref(mp); VOP_UNLOCK(vp); error = vfs_busy(mp, 0); vn_lock(vp, ltype | LK_RETRY); vfs_rel(mp); if (error != 0) return (ENOENT); if (VN_IS_DOOMED(vp)) { vfs_unbusy(mp); return (ENOENT); } } VOP_UNLOCK(vp); error = alloc(mp, alloc_arg, lkflags, rvp); vfs_unbusy(mp); if (error != 0 || *rvp != vp) vn_lock(vp, ltype | LK_RETRY); if (VN_IS_DOOMED(vp)) { if (error == 0) { if (*rvp == vp) vunref(vp); else vput(*rvp); } error = ENOENT; } return (error); } int vn_rlimit_fsize(const struct vnode *vp, const struct uio *uio, struct thread *td) { off_t lim; + bool ktr_write; if (vp->v_type != VREG || td == NULL || (td->td_pflags2 & TDP2_ACCT) != 0) return (0); ktr_write = (td->td_pflags & TDP_INKTRACE) != 0; lim = ktr_write ? td->td_ktr_io_lim : lim_cur(td, RLIMIT_FSIZE); if ((uoff_t)uio->uio_offset + uio->uio_resid < lim) return (0); - PROC_LOCK(td->td_proc); - kern_psignal(td->td_proc, SIGXFSZ); - PROC_UNLOCK(td->td_proc); + if (!ktr_write || ktr_filesize_limit_signal) { + PROC_LOCK(td->td_proc); + kern_psignal(td->td_proc, SIGXFSZ); + PROC_UNLOCK(td->td_proc); + } return (EFBIG); } int vn_chmod(struct file *fp, mode_t mode, struct ucred *active_cred, struct thread *td) { struct vnode *vp; vp = fp->f_vnode; #ifdef AUDIT vn_lock(vp, LK_SHARED | LK_RETRY); AUDIT_ARG_VNODE1(vp); VOP_UNLOCK(vp); #endif return (setfmode(td, active_cred, vp, mode)); } int vn_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred, struct thread *td) { struct vnode *vp; vp = fp->f_vnode; #ifdef AUDIT vn_lock(vp, LK_SHARED | LK_RETRY); AUDIT_ARG_VNODE1(vp); VOP_UNLOCK(vp); #endif return (setfown(td, active_cred, vp, uid, gid)); } void vn_pages_remove(struct vnode *vp, vm_pindex_t start, vm_pindex_t end) { vm_object_t object; if ((object = vp->v_object) == NULL) return; VM_OBJECT_WLOCK(object); vm_object_page_remove(object, start, end, 0); VM_OBJECT_WUNLOCK(object); } int vn_bmap_seekhole(struct vnode *vp, u_long cmd, off_t *off, struct ucred *cred) { struct vattr va; daddr_t bn, bnp; uint64_t bsize; off_t noff; int error; KASSERT(cmd == FIOSEEKHOLE || cmd == FIOSEEKDATA, ("Wrong command %lu", cmd)); if (vn_lock(vp, LK_SHARED) != 0) return (EBADF); if (vp->v_type != VREG) { error = ENOTTY; goto unlock; } error = VOP_GETATTR(vp, &va, cred); if (error != 0) goto unlock; noff = *off; if (noff >= va.va_size) { error = ENXIO; goto unlock; } bsize = vp->v_mount->mnt_stat.f_iosize; for (bn = noff / bsize; noff < va.va_size; bn++, noff += bsize - noff % bsize) { error = VOP_BMAP(vp, bn, NULL, &bnp, NULL, NULL); if (error == EOPNOTSUPP) { error = ENOTTY; goto unlock; } if ((bnp == -1 && cmd == FIOSEEKHOLE) || (bnp != -1 && cmd == FIOSEEKDATA)) { noff = bn * bsize; if (noff < *off) noff = *off; goto unlock; } } if (noff > va.va_size) noff = va.va_size; /* noff == va.va_size. There is an implicit hole at the end of file. */ if (cmd == FIOSEEKDATA) error = ENXIO; unlock: VOP_UNLOCK(vp); if (error == 0) *off = noff; return (error); } int vn_seek(struct file *fp, off_t offset, int whence, struct thread *td) { struct ucred *cred; struct vnode *vp; struct vattr vattr; off_t foffset, size; int error, noneg; cred = td->td_ucred; vp = fp->f_vnode; foffset = foffset_lock(fp, 0); noneg = (vp->v_type != VCHR); error = 0; switch (whence) { case L_INCR: if (noneg && (foffset < 0 || (offset > 0 && foffset > OFF_MAX - offset))) { error = EOVERFLOW; break; } offset += foffset; break; case L_XTND: vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &vattr, cred); VOP_UNLOCK(vp); if (error) break; /* * If the file references a disk device, then fetch * the media size and use that to determine the ending * offset. */ if (vattr.va_size == 0 && vp->v_type == VCHR && fo_ioctl(fp, DIOCGMEDIASIZE, &size, cred, td) == 0) vattr.va_size = size; if (noneg && (vattr.va_size > OFF_MAX || (offset > 0 && vattr.va_size > OFF_MAX - offset))) { error = EOVERFLOW; break; } offset += vattr.va_size; break; case L_SET: break; case SEEK_DATA: error = fo_ioctl(fp, FIOSEEKDATA, &offset, cred, td); if (error == ENOTTY) error = EINVAL; break; case SEEK_HOLE: error = fo_ioctl(fp, FIOSEEKHOLE, &offset, cred, td); if (error == ENOTTY) error = EINVAL; break; default: error = EINVAL; } if (error == 0 && noneg && offset < 0) error = EINVAL; if (error != 0) goto drop; VFS_KNOTE_UNLOCKED(vp, 0); td->td_uretoff.tdu_off = offset; drop: foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0); return (error); } int vn_utimes_perm(struct vnode *vp, struct vattr *vap, struct ucred *cred, struct thread *td) { int error; /* * Grant permission if the caller is the owner of the file, or * the super-user, or has ACL_WRITE_ATTRIBUTES permission on * on the file. If the time pointer is null, then write * permission on the file is also sufficient. * * From NFSv4.1, draft 21, 6.2.1.3.1, Discussion of Mask Attributes: * A user having ACL_WRITE_DATA or ACL_WRITE_ATTRIBUTES * will be allowed to set the times [..] to the current * server time. */ error = VOP_ACCESSX(vp, VWRITE_ATTRIBUTES, cred, td); if (error != 0 && (vap->va_vaflags & VA_UTIMES_NULL) != 0) error = VOP_ACCESS(vp, VWRITE, cred, td); return (error); } int vn_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp) { struct vnode *vp; int error; if (fp->f_type == DTYPE_FIFO) kif->kf_type = KF_TYPE_FIFO; else kif->kf_type = KF_TYPE_VNODE; vp = fp->f_vnode; vref(vp); FILEDESC_SUNLOCK(fdp); error = vn_fill_kinfo_vnode(vp, kif); vrele(vp); FILEDESC_SLOCK(fdp); return (error); } static inline void vn_fill_junk(struct kinfo_file *kif) { size_t len, olen; /* * Simulate vn_fullpath returning changing values for a given * vp during e.g. coredump. */ len = (arc4random() % (sizeof(kif->kf_path) - 2)) + 1; olen = strlen(kif->kf_path); if (len < olen) strcpy(&kif->kf_path[len - 1], "$"); else for (; olen < len; olen++) strcpy(&kif->kf_path[olen], "A"); } int vn_fill_kinfo_vnode(struct vnode *vp, struct kinfo_file *kif) { struct vattr va; char *fullpath, *freepath; int error; kif->kf_un.kf_file.kf_file_type = vntype_to_kinfo(vp->v_type); freepath = NULL; fullpath = "-"; error = vn_fullpath(vp, &fullpath, &freepath); if (error == 0) { strlcpy(kif->kf_path, fullpath, sizeof(kif->kf_path)); } if (freepath != NULL) free(freepath, M_TEMP); KFAIL_POINT_CODE(DEBUG_FP, fill_kinfo_vnode__random_path, vn_fill_junk(kif); ); /* * Retrieve vnode attributes. */ va.va_fsid = VNOVAL; va.va_rdev = NODEV; vn_lock(vp, LK_SHARED | LK_RETRY); error = VOP_GETATTR(vp, &va, curthread->td_ucred); VOP_UNLOCK(vp); if (error != 0) return (error); if (va.va_fsid != VNOVAL) kif->kf_un.kf_file.kf_file_fsid = va.va_fsid; else kif->kf_un.kf_file.kf_file_fsid = vp->v_mount->mnt_stat.f_fsid.val[0]; kif->kf_un.kf_file.kf_file_fsid_freebsd11 = kif->kf_un.kf_file.kf_file_fsid; /* truncate */ kif->kf_un.kf_file.kf_file_fileid = va.va_fileid; kif->kf_un.kf_file.kf_file_mode = MAKEIMODE(va.va_type, va.va_mode); kif->kf_un.kf_file.kf_file_size = va.va_size; kif->kf_un.kf_file.kf_file_rdev = va.va_rdev; kif->kf_un.kf_file.kf_file_rdev_freebsd11 = kif->kf_un.kf_file.kf_file_rdev; /* truncate */ return (0); } int vn_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t size, vm_prot_t prot, vm_prot_t cap_maxprot, int flags, vm_ooffset_t foff, struct thread *td) { #ifdef HWPMC_HOOKS struct pmckern_map_in pkm; #endif struct mount *mp; struct vnode *vp; vm_object_t object; vm_prot_t maxprot; boolean_t writecounted; int error; #if defined(COMPAT_FREEBSD7) || defined(COMPAT_FREEBSD6) || \ defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) /* * POSIX shared-memory objects are defined to have * kernel persistence, and are not defined to support * read(2)/write(2) -- or even open(2). Thus, we can * use MAP_ASYNC to trade on-disk coherence for speed. * The shm_open(3) library routine turns on the FPOSIXSHM * flag to request this behavior. */ if ((fp->f_flag & FPOSIXSHM) != 0) flags |= MAP_NOSYNC; #endif vp = fp->f_vnode; /* * Ensure that file and memory protections are * compatible. Note that we only worry about * writability if mapping is shared; in this case, * current and max prot are dictated by the open file. * XXX use the vnode instead? Problem is: what * credentials do we use for determination? What if * proc does a setuid? */ mp = vp->v_mount; if (mp != NULL && (mp->mnt_flag & MNT_NOEXEC) != 0) { maxprot = VM_PROT_NONE; if ((prot & VM_PROT_EXECUTE) != 0) return (EACCES); } else maxprot = VM_PROT_EXECUTE; if ((fp->f_flag & FREAD) != 0) maxprot |= VM_PROT_READ; else if ((prot & VM_PROT_READ) != 0) return (EACCES); /* * If we are sharing potential changes via MAP_SHARED and we * are trying to get write permission although we opened it * without asking for it, bail out. */ if ((flags & MAP_SHARED) != 0) { if ((fp->f_flag & FWRITE) != 0) maxprot |= VM_PROT_WRITE; else if ((prot & VM_PROT_WRITE) != 0) return (EACCES); } else { maxprot |= VM_PROT_WRITE; cap_maxprot |= VM_PROT_WRITE; } maxprot &= cap_maxprot; /* * For regular files and shared memory, POSIX requires that * the value of foff be a legitimate offset within the data * object. In particular, negative offsets are invalid. * Blocking negative offsets and overflows here avoids * possible wraparound or user-level access into reserved * ranges of the data object later. In contrast, POSIX does * not dictate how offsets are used by device drivers, so in * the case of a device mapping a negative offset is passed * on. */ if ( #ifdef _LP64 size > OFF_MAX || #endif foff > OFF_MAX - size) return (EINVAL); writecounted = FALSE; error = vm_mmap_vnode(td, size, prot, &maxprot, &flags, vp, &foff, &object, &writecounted); if (error != 0) return (error); error = vm_mmap_object(map, addr, size, prot, maxprot, flags, object, foff, writecounted, td); if (error != 0) { /* * If this mapping was accounted for in the vnode's * writecount, then undo that now. */ if (writecounted) vm_pager_release_writecount(object, 0, size); vm_object_deallocate(object); } #ifdef HWPMC_HOOKS /* Inform hwpmc(4) if an executable is being mapped. */ if (PMC_HOOK_INSTALLED(PMC_FN_MMAP)) { if ((prot & VM_PROT_EXECUTE) != 0 && error == 0) { pkm.pm_file = vp; pkm.pm_address = (uintptr_t) *addr; PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_MMAP, (void *) &pkm); } } #endif return (error); } void vn_fsid(struct vnode *vp, struct vattr *va) { fsid_t *f; f = &vp->v_mount->mnt_stat.f_fsid; va->va_fsid = (uint32_t)f->val[1]; va->va_fsid <<= sizeof(f->val[1]) * NBBY; va->va_fsid += (uint32_t)f->val[0]; } int vn_fsync_buf(struct vnode *vp, int waitfor) { struct buf *bp, *nbp; struct bufobj *bo; struct mount *mp; int error, maxretry; error = 0; maxretry = 10000; /* large, arbitrarily chosen */ mp = NULL; if (vp->v_type == VCHR) { VI_LOCK(vp); mp = vp->v_rdev->si_mountpt; VI_UNLOCK(vp); } bo = &vp->v_bufobj; BO_LOCK(bo); loop1: /* * MARK/SCAN initialization to avoid infinite loops. */ TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { bp->b_vflags &= ~BV_SCANNED; bp->b_error = 0; } /* * Flush all dirty buffers associated with a vnode. */ loop2: TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { if ((bp->b_vflags & BV_SCANNED) != 0) continue; bp->b_vflags |= BV_SCANNED; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) { if (waitfor != MNT_WAIT) continue; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL, BO_LOCKPTR(bo)) != 0) { BO_LOCK(bo); goto loop1; } BO_LOCK(bo); } BO_UNLOCK(bo); KASSERT(bp->b_bufobj == bo, ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo)); if ((bp->b_flags & B_DELWRI) == 0) panic("fsync: not dirty"); if ((vp->v_object != NULL) && (bp->b_flags & B_CLUSTEROK)) { vfs_bio_awrite(bp); } else { bremfree(bp); bawrite(bp); } if (maxretry < 1000) pause("dirty", hz < 1000 ? 1 : hz / 1000); BO_LOCK(bo); goto loop2; } /* * If synchronous the caller expects us to completely resolve all * dirty buffers in the system. Wait for in-progress I/O to * complete (which could include background bitmap writes), then * retry if dirty blocks still exist. */ if (waitfor == MNT_WAIT) { bufobj_wwait(bo, 0, 0); if (bo->bo_dirty.bv_cnt > 0) { /* * If we are unable to write any of these buffers * then we fail now rather than trying endlessly * to write them out. */ TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) if ((error = bp->b_error) != 0) break; if ((mp != NULL && mp->mnt_secondary_writes > 0) || (error == 0 && --maxretry >= 0)) goto loop1; if (error == 0) error = EAGAIN; } } BO_UNLOCK(bo); if (error != 0) vn_printf(vp, "fsync: giving up on dirty (error = %d) ", error); return (error); } /* * Copies a byte range from invp to outvp. Calls VOP_COPY_FILE_RANGE() * or vn_generic_copy_file_range() after rangelocking the byte ranges, * to do the actual copy. * vn_generic_copy_file_range() is factored out, so it can be called * from a VOP_COPY_FILE_RANGE() call as well, but handles vnodes from * different file systems. */ int vn_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred, struct ucred *outcred, struct thread *fsize_td) { int error; size_t len; uint64_t uval; len = *lenp; *lenp = 0; /* For error returns. */ error = 0; /* Do some sanity checks on the arguments. */ if (invp->v_type == VDIR || outvp->v_type == VDIR) error = EISDIR; else if (*inoffp < 0 || *outoffp < 0 || invp->v_type != VREG || outvp->v_type != VREG) error = EINVAL; if (error != 0) goto out; /* Ensure offset + len does not wrap around. */ uval = *inoffp; uval += len; if (uval > INT64_MAX) len = INT64_MAX - *inoffp; uval = *outoffp; uval += len; if (uval > INT64_MAX) len = INT64_MAX - *outoffp; if (len == 0) goto out; /* * If the two vnode are for the same file system, call * VOP_COPY_FILE_RANGE(), otherwise call vn_generic_copy_file_range() * which can handle copies across multiple file systems. */ *lenp = len; if (invp->v_mount == outvp->v_mount) error = VOP_COPY_FILE_RANGE(invp, inoffp, outvp, outoffp, lenp, flags, incred, outcred, fsize_td); else error = vn_generic_copy_file_range(invp, inoffp, outvp, outoffp, lenp, flags, incred, outcred, fsize_td); out: return (error); } /* * Test len bytes of data starting at dat for all bytes == 0. * Return true if all bytes are zero, false otherwise. * Expects dat to be well aligned. */ static bool mem_iszero(void *dat, int len) { int i; const u_int *p; const char *cp; for (p = dat; len > 0; len -= sizeof(*p), p++) { if (len >= sizeof(*p)) { if (*p != 0) return (false); } else { cp = (const char *)p; for (i = 0; i < len; i++, cp++) if (*cp != '\0') return (false); } } return (true); } /* * Look for a hole in the output file and, if found, adjust *outoffp * and *xferp to skip past the hole. * *xferp is the entire hole length to be written and xfer2 is how many bytes * to be written as 0's upon return. */ static off_t vn_skip_hole(struct vnode *outvp, off_t xfer2, off_t *outoffp, off_t *xferp, off_t *dataoffp, off_t *holeoffp, struct ucred *cred) { int error; off_t delta; if (*holeoffp == 0 || *holeoffp <= *outoffp) { *dataoffp = *outoffp; error = VOP_IOCTL(outvp, FIOSEEKDATA, dataoffp, 0, cred, curthread); if (error == 0) { *holeoffp = *dataoffp; error = VOP_IOCTL(outvp, FIOSEEKHOLE, holeoffp, 0, cred, curthread); } if (error != 0 || *holeoffp == *dataoffp) { /* * Since outvp is unlocked, it may be possible for * another thread to do a truncate(), lseek(), write() * creating a hole at startoff between the above * VOP_IOCTL() calls, if the other thread does not do * rangelocking. * If that happens, *holeoffp == *dataoffp and finding * the hole has failed, so disable vn_skip_hole(). */ *holeoffp = -1; /* Disable use of vn_skip_hole(). */ return (xfer2); } KASSERT(*dataoffp >= *outoffp, ("vn_skip_hole: dataoff=%jd < outoff=%jd", (intmax_t)*dataoffp, (intmax_t)*outoffp)); KASSERT(*holeoffp > *dataoffp, ("vn_skip_hole: holeoff=%jd <= dataoff=%jd", (intmax_t)*holeoffp, (intmax_t)*dataoffp)); } /* * If there is a hole before the data starts, advance *outoffp and * *xferp past the hole. */ if (*dataoffp > *outoffp) { delta = *dataoffp - *outoffp; if (delta >= *xferp) { /* Entire *xferp is a hole. */ *outoffp += *xferp; *xferp = 0; return (0); } *xferp -= delta; *outoffp += delta; xfer2 = MIN(xfer2, *xferp); } /* * If a hole starts before the end of this xfer2, reduce this xfer2 so * that the write ends at the start of the hole. * *holeoffp should always be greater than *outoffp, but for the * non-INVARIANTS case, check this to make sure xfer2 remains a sane * value. */ if (*holeoffp > *outoffp && *holeoffp < *outoffp + xfer2) xfer2 = *holeoffp - *outoffp; return (xfer2); } /* * Write an xfer sized chunk to outvp in blksize blocks from dat. * dat is a maximum of blksize in length and can be written repeatedly in * the chunk. * If growfile == true, just grow the file via vn_truncate_locked() instead * of doing actual writes. * If checkhole == true, a hole is being punched, so skip over any hole * already in the output file. */ static int vn_write_outvp(struct vnode *outvp, char *dat, off_t outoff, off_t xfer, u_long blksize, bool growfile, bool checkhole, struct ucred *cred) { struct mount *mp; off_t dataoff, holeoff, xfer2; int error, lckf; /* * Loop around doing writes of blksize until write has been completed. * Lock/unlock on each loop iteration so that a bwillwrite() can be * done for each iteration, since the xfer argument can be very * large if there is a large hole to punch in the output file. */ error = 0; holeoff = 0; do { xfer2 = MIN(xfer, blksize); if (checkhole) { /* * Punching a hole. Skip writing if there is * already a hole in the output file. */ xfer2 = vn_skip_hole(outvp, xfer2, &outoff, &xfer, &dataoff, &holeoff, cred); if (xfer == 0) break; if (holeoff < 0) checkhole = false; KASSERT(xfer2 > 0, ("vn_write_outvp: xfer2=%jd", (intmax_t)xfer2)); } bwillwrite(); mp = NULL; error = vn_start_write(outvp, &mp, V_WAIT); if (error != 0) break; if (growfile) { error = vn_lock(outvp, LK_EXCLUSIVE); if (error == 0) { error = vn_truncate_locked(outvp, outoff + xfer, false, cred); VOP_UNLOCK(outvp); } } else { if (MNT_SHARED_WRITES(mp)) lckf = LK_SHARED; else lckf = LK_EXCLUSIVE; error = vn_lock(outvp, lckf); if (error == 0) { error = vn_rdwr(UIO_WRITE, outvp, dat, xfer2, outoff, UIO_SYSSPACE, IO_NODELOCKED, curthread->td_ucred, cred, NULL, curthread); outoff += xfer2; xfer -= xfer2; VOP_UNLOCK(outvp); } } if (mp != NULL) vn_finished_write(mp); } while (!growfile && xfer > 0 && error == 0); return (error); } /* * Copy a byte range of one file to another. This function can handle the * case where invp and outvp are on different file systems. * It can also be called by a VOP_COPY_FILE_RANGE() to do the work, if there * is no better file system specific way to do it. */ int vn_generic_copy_file_range(struct vnode *invp, off_t *inoffp, struct vnode *outvp, off_t *outoffp, size_t *lenp, unsigned int flags, struct ucred *incred, struct ucred *outcred, struct thread *fsize_td) { struct vattr va, inva; struct mount *mp; struct uio io; off_t startoff, endoff, xfer, xfer2; u_long blksize; int error, interrupted; bool cantseek, readzeros, eof, lastblock, holetoeof; ssize_t aresid; size_t copylen, len, rem, savlen; char *dat; long holein, holeout; holein = holeout = 0; savlen = len = *lenp; error = 0; interrupted = 0; dat = NULL; error = vn_lock(invp, LK_SHARED); if (error != 0) goto out; if (VOP_PATHCONF(invp, _PC_MIN_HOLE_SIZE, &holein) != 0) holein = 0; if (holein > 0) error = VOP_GETATTR(invp, &inva, incred); VOP_UNLOCK(invp); if (error != 0) goto out; mp = NULL; error = vn_start_write(outvp, &mp, V_WAIT); if (error == 0) error = vn_lock(outvp, LK_EXCLUSIVE); if (error == 0) { /* * If fsize_td != NULL, do a vn_rlimit_fsize() call, * now that outvp is locked. */ if (fsize_td != NULL) { io.uio_offset = *outoffp; io.uio_resid = len; error = vn_rlimit_fsize(outvp, &io, fsize_td); if (error != 0) error = EFBIG; } if (VOP_PATHCONF(outvp, _PC_MIN_HOLE_SIZE, &holeout) != 0) holeout = 0; /* * Holes that are past EOF do not need to be written as a block * of zero bytes. So, truncate the output file as far as * possible and then use va.va_size to decide if writing 0 * bytes is necessary in the loop below. */ if (error == 0) error = VOP_GETATTR(outvp, &va, outcred); if (error == 0 && va.va_size > *outoffp && va.va_size <= *outoffp + len) { #ifdef MAC error = mac_vnode_check_write(curthread->td_ucred, outcred, outvp); if (error == 0) #endif error = vn_truncate_locked(outvp, *outoffp, false, outcred); if (error == 0) va.va_size = *outoffp; } VOP_UNLOCK(outvp); } if (mp != NULL) vn_finished_write(mp); if (error != 0) goto out; /* * Set the blksize to the larger of the hole sizes for invp and outvp. * If hole sizes aren't available, set the blksize to the larger * f_iosize of invp and outvp. * This code expects the hole sizes and f_iosizes to be powers of 2. * This value is clipped at 4Kbytes and 1Mbyte. */ blksize = MAX(holein, holeout); /* Clip len to end at an exact multiple of hole size. */ if (blksize > 1) { rem = *inoffp % blksize; if (rem > 0) rem = blksize - rem; if (len > rem && len - rem > blksize) len = savlen = rounddown(len - rem, blksize) + rem; } if (blksize <= 1) blksize = MAX(invp->v_mount->mnt_stat.f_iosize, outvp->v_mount->mnt_stat.f_iosize); if (blksize < 4096) blksize = 4096; else if (blksize > 1024 * 1024) blksize = 1024 * 1024; dat = malloc(blksize, M_TEMP, M_WAITOK); /* * If VOP_IOCTL(FIOSEEKHOLE) works for invp, use it and FIOSEEKDATA * to find holes. Otherwise, just scan the read block for all 0s * in the inner loop where the data copying is done. * Note that some file systems such as NFSv3, NFSv4.0 and NFSv4.1 may * support holes on the server, but do not support FIOSEEKHOLE. */ holetoeof = eof = false; while (len > 0 && error == 0 && !eof && interrupted == 0) { endoff = 0; /* To shut up compilers. */ cantseek = true; startoff = *inoffp; copylen = len; /* * Find the next data area. If there is just a hole to EOF, * FIOSEEKDATA should fail with ENXIO. * (I do not know if any file system will report a hole to * EOF via FIOSEEKHOLE, but I am pretty sure FIOSEEKDATA * will fail for those file systems.) * * For input files that don't support FIOSEEKDATA/FIOSEEKHOLE, * the code just falls through to the inner copy loop. */ error = EINVAL; if (holein > 0) { error = VOP_IOCTL(invp, FIOSEEKDATA, &startoff, 0, incred, curthread); if (error == ENXIO) { startoff = endoff = inva.va_size; eof = holetoeof = true; error = 0; } } if (error == 0 && !holetoeof) { endoff = startoff; error = VOP_IOCTL(invp, FIOSEEKHOLE, &endoff, 0, incred, curthread); /* * Since invp is unlocked, it may be possible for * another thread to do a truncate(), lseek(), write() * creating a hole at startoff between the above * VOP_IOCTL() calls, if the other thread does not do * rangelocking. * If that happens, startoff == endoff and finding * the hole has failed, so set an error. */ if (error == 0 && startoff == endoff) error = EINVAL; /* Any error. Reset to 0. */ } if (error == 0) { if (startoff > *inoffp) { /* Found hole before data block. */ xfer = MIN(startoff - *inoffp, len); if (*outoffp < va.va_size) { /* Must write 0s to punch hole. */ xfer2 = MIN(va.va_size - *outoffp, xfer); memset(dat, 0, MIN(xfer2, blksize)); error = vn_write_outvp(outvp, dat, *outoffp, xfer2, blksize, false, holeout > 0, outcred); } if (error == 0 && *outoffp + xfer > va.va_size && (xfer == len || holetoeof)) { /* Grow output file (hole at end). */ error = vn_write_outvp(outvp, dat, *outoffp, xfer, blksize, true, false, outcred); } if (error == 0) { *inoffp += xfer; *outoffp += xfer; len -= xfer; if (len < savlen) interrupted = sig_intr(); } } copylen = MIN(len, endoff - startoff); cantseek = false; } else { cantseek = true; startoff = *inoffp; copylen = len; error = 0; } xfer = blksize; if (cantseek) { /* * Set first xfer to end at a block boundary, so that * holes are more likely detected in the loop below via * the for all bytes 0 method. */ xfer -= (*inoffp % blksize); } /* Loop copying the data block. */ while (copylen > 0 && error == 0 && !eof && interrupted == 0) { if (copylen < xfer) xfer = copylen; error = vn_lock(invp, LK_SHARED); if (error != 0) goto out; error = vn_rdwr(UIO_READ, invp, dat, xfer, startoff, UIO_SYSSPACE, IO_NODELOCKED, curthread->td_ucred, incred, &aresid, curthread); VOP_UNLOCK(invp); lastblock = false; if (error == 0 && aresid > 0) { /* Stop the copy at EOF on the input file. */ xfer -= aresid; eof = true; lastblock = true; } if (error == 0) { /* * Skip the write for holes past the initial EOF * of the output file, unless this is the last * write of the output file at EOF. */ readzeros = cantseek ? mem_iszero(dat, xfer) : false; if (xfer == len) lastblock = true; if (!cantseek || *outoffp < va.va_size || lastblock || !readzeros) error = vn_write_outvp(outvp, dat, *outoffp, xfer, blksize, readzeros && lastblock && *outoffp >= va.va_size, false, outcred); if (error == 0) { *inoffp += xfer; startoff += xfer; *outoffp += xfer; copylen -= xfer; len -= xfer; if (len < savlen) interrupted = sig_intr(); } } xfer = blksize; } } out: *lenp = savlen - len; free(dat, M_TEMP); return (error); } static int vn_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td) { struct mount *mp; struct vnode *vp; off_t olen, ooffset; int error; #ifdef AUDIT int audited_vnode1 = 0; #endif vp = fp->f_vnode; if (vp->v_type != VREG) return (ENODEV); /* Allocating blocks may take a long time, so iterate. */ for (;;) { olen = len; ooffset = offset; bwillwrite(); mp = NULL; error = vn_start_write(vp, &mp, V_WAIT | PCATCH); if (error != 0) break; error = vn_lock(vp, LK_EXCLUSIVE); if (error != 0) { vn_finished_write(mp); break; } #ifdef AUDIT if (!audited_vnode1) { AUDIT_ARG_VNODE1(vp); audited_vnode1 = 1; } #endif #ifdef MAC error = mac_vnode_check_write(td->td_ucred, fp->f_cred, vp); if (error == 0) #endif error = VOP_ALLOCATE(vp, &offset, &len); VOP_UNLOCK(vp); vn_finished_write(mp); if (olen + ooffset != offset + len) { panic("offset + len changed from %jx/%jx to %jx/%jx", ooffset, olen, offset, len); } if (error != 0 || len == 0) break; KASSERT(olen > len, ("Iteration did not make progress?")); maybe_yield(); } return (error); } static u_long vn_lock_pair_pause_cnt; SYSCTL_ULONG(_debug, OID_AUTO, vn_lock_pair_pause, CTLFLAG_RD, &vn_lock_pair_pause_cnt, 0, "Count of vn_lock_pair deadlocks"); u_int vn_lock_pair_pause_max; SYSCTL_UINT(_debug, OID_AUTO, vn_lock_pair_pause_max, CTLFLAG_RW, &vn_lock_pair_pause_max, 0, "Max ticks for vn_lock_pair deadlock avoidance sleep"); static void vn_lock_pair_pause(const char *wmesg) { atomic_add_long(&vn_lock_pair_pause_cnt, 1); pause(wmesg, prng32_bounded(vn_lock_pair_pause_max)); } /* * Lock pair of vnodes vp1, vp2, avoiding lock order reversal. * vp1_locked indicates whether vp1 is exclusively locked; if not, vp1 * must be unlocked. Same for vp2 and vp2_locked. One of the vnodes * can be NULL. * * The function returns with both vnodes exclusively locked, and * guarantees that it does not create lock order reversal with other * threads during its execution. Both vnodes could be unlocked * temporary (and reclaimed). */ void vn_lock_pair(struct vnode *vp1, bool vp1_locked, struct vnode *vp2, bool vp2_locked) { int error; if (vp1 == NULL && vp2 == NULL) return; if (vp1 != NULL) { if (vp1_locked) ASSERT_VOP_ELOCKED(vp1, "vp1"); else ASSERT_VOP_UNLOCKED(vp1, "vp1"); } else { vp1_locked = true; } if (vp2 != NULL) { if (vp2_locked) ASSERT_VOP_ELOCKED(vp2, "vp2"); else ASSERT_VOP_UNLOCKED(vp2, "vp2"); } else { vp2_locked = true; } if (!vp1_locked && !vp2_locked) { vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY); vp1_locked = true; } for (;;) { if (vp1_locked && vp2_locked) break; if (vp1_locked && vp2 != NULL) { if (vp1 != NULL) { error = VOP_LOCK1(vp2, LK_EXCLUSIVE | LK_NOWAIT, __FILE__, __LINE__); if (error == 0) break; VOP_UNLOCK(vp1); vp1_locked = false; vn_lock_pair_pause("vlp1"); } vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY); vp2_locked = true; } if (vp2_locked && vp1 != NULL) { if (vp2 != NULL) { error = VOP_LOCK1(vp1, LK_EXCLUSIVE | LK_NOWAIT, __FILE__, __LINE__); if (error == 0) break; VOP_UNLOCK(vp2); vp2_locked = false; vn_lock_pair_pause("vlp2"); } vn_lock(vp1, LK_EXCLUSIVE | LK_RETRY); vp1_locked = true; } } if (vp1 != NULL) ASSERT_VOP_ELOCKED(vp1, "vp1 ret"); if (vp2 != NULL) ASSERT_VOP_ELOCKED(vp2, "vp2 ret"); } diff --git a/sys/sys/ktrace.h b/sys/sys/ktrace.h index c4ab985722c0..50030d002f97 100644 --- a/sys/sys/ktrace.h +++ b/sys/sys/ktrace.h @@ -1,313 +1,314 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ktrace.h 8.1 (Berkeley) 6/2/93 * $FreeBSD$ */ #ifndef _SYS_KTRACE_H_ #define _SYS_KTRACE_H_ #include /* * operations to ktrace system call (KTROP(op)) */ #define KTROP_SET 0 /* set trace points */ #define KTROP_CLEAR 1 /* clear trace points */ #define KTROP_CLEARFILE 2 /* stop all tracing to file */ #define KTROP(o) ((o)&3) /* macro to extract operation */ /* * flags (ORed in with operation) */ #define KTRFLAG_DESCEND 4 /* perform op on all children too */ /* * ktrace record header */ struct ktr_header { int ktr_len; /* length of buf */ short ktr_type; /* trace record type */ pid_t ktr_pid; /* process id */ char ktr_comm[MAXCOMLEN + 1];/* command name */ struct timeval ktr_time; /* timestamp */ intptr_t ktr_tid; /* was ktr_buffer */ }; /* * Test for kernel trace point (MP SAFE). * * KTRCHECK() just checks that the type is enabled and is only for * internal use in the ktrace subsystem. KTRPOINT() checks against * ktrace recursion as well as checking that the type is enabled and * is the public interface. */ #define KTRCHECK(td, type) ((td)->td_proc->p_traceflag & (1 << type)) #define KTRPOINT(td, type) (__predict_false(KTRCHECK((td), (type)))) #define KTRCHECKDRAIN(td) (!(STAILQ_EMPTY(&(td)->td_proc->p_ktr))) #define KTRUSERRET(td) do { \ if (__predict_false(KTRCHECKDRAIN(td))) \ ktruserret(td); \ } while (0) /* * ktrace record types */ /* * KTR_SYSCALL - system call record */ #define KTR_SYSCALL 1 struct ktr_syscall { short ktr_code; /* syscall number */ short ktr_narg; /* number of arguments */ /* * followed by ktr_narg register_t */ register_t ktr_args[1]; }; /* * KTR_SYSRET - return from system call record */ #define KTR_SYSRET 2 struct ktr_sysret { short ktr_code; short ktr_eosys; int ktr_error; register_t ktr_retval; }; /* * KTR_NAMEI - namei record */ #define KTR_NAMEI 3 /* record contains pathname */ /* * KTR_GENIO - trace generic process i/o */ #define KTR_GENIO 4 struct ktr_genio { int ktr_fd; enum uio_rw ktr_rw; /* * followed by data successfully read/written */ }; /* * KTR_PSIG - trace processed signal */ #define KTR_PSIG 5 struct ktr_psig { int signo; sig_t action; int code; sigset_t mask; }; /* * KTR_CSW - trace context switches */ #define KTR_CSW 6 struct ktr_csw_old { int out; /* 1 if switch out, 0 if switch in */ int user; /* 1 if usermode (ivcsw), 0 if kernel (vcsw) */ }; struct ktr_csw { int out; /* 1 if switch out, 0 if switch in */ int user; /* 1 if usermode (ivcsw), 0 if kernel (vcsw) */ char wmesg[8]; }; /* * KTR_USER - data coming from userland */ #define KTR_USER_MAXLEN 2048 /* maximum length of passed data */ #define KTR_USER 7 /* * KTR_STRUCT - misc. structs */ #define KTR_STRUCT 8 /* * record contains null-terminated struct name followed by * struct contents */ struct sockaddr; struct stat; struct sysentvec; /* * KTR_SYSCTL - name of a sysctl MIB */ #define KTR_SYSCTL 9 /* record contains null-terminated MIB name */ /* * KTR_PROCCTOR - trace process creation (multiple ABI support) */ #define KTR_PROCCTOR 10 struct ktr_proc_ctor { u_int sv_flags; /* struct sysentvec sv_flags copy */ }; /* * KTR_PROCDTOR - trace process destruction (multiple ABI support) */ #define KTR_PROCDTOR 11 /* * KTR_CAPFAIL - trace capability check failures */ #define KTR_CAPFAIL 12 enum ktr_cap_fail_type { CAPFAIL_NOTCAPABLE, /* insufficient capabilities in cap_check() */ CAPFAIL_INCREASE, /* attempt to increase capabilities */ CAPFAIL_SYSCALL, /* disallowed system call */ CAPFAIL_LOOKUP, /* disallowed VFS lookup */ }; struct ktr_cap_fail { enum ktr_cap_fail_type cap_type; cap_rights_t cap_needed; cap_rights_t cap_held; }; /* * KTR_FAULT - page fault record */ #define KTR_FAULT 13 struct ktr_fault { vm_offset_t vaddr; int type; }; /* * KTR_FAULTEND - end of page fault record */ #define KTR_FAULTEND 14 struct ktr_faultend { int result; }; /* * KTR_STRUCT_ARRAY - array of misc. structs */ #define KTR_STRUCT_ARRAY 15 struct ktr_struct_array { size_t struct_size; /* * Followed by null-terminated structure name and then payload * contents. */ }; /* * KTR_DROP - If this bit is set in ktr_type, then at least one event * between the previous record and this record was dropped. */ #define KTR_DROP 0x8000 /* * kernel trace points (in p_traceflag) */ #define KTRFAC_MASK 0x00ffffff #define KTRFAC_SYSCALL (1<sa_len) #define ktrstat(s) \ ktrstruct("stat", (s), sizeof(struct stat)) #define ktrstat_error(s, error) \ ktrstruct_error("stat", (s), sizeof(struct stat), error) extern u_int ktr_geniosize; +extern int ktr_filesize_limit_signal; #else #include __BEGIN_DECLS int ktrace(const char *, int, int, pid_t); int utrace(const void *, size_t); __END_DECLS #endif #endif