diff --git a/share/man/man9/malloc.9 b/share/man/man9/malloc.9 index b8c6e504e0c0..71375e90951f 100644 --- a/share/man/man9/malloc.9 +++ b/share/man/man9/malloc.9 @@ -1,360 +1,383 @@ .\" .\" Copyright (c) 1996 The NetBSD Foundation, Inc. .\" All rights reserved. .\" .\" This code is derived from software contributed to The NetBSD Foundation .\" by Paul Kranenburg. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS .\" ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED .\" TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR .\" PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE .\" LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR .\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF .\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS .\" INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN .\" CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) .\" ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE .\" POSSIBILITY OF SUCH DAMAGE. .\" .\" $NetBSD: malloc.9,v 1.3 1996/11/11 00:05:11 lukem Exp $ .\" $FreeBSD$ .\" -.Dd March 6, 2021 +.Dd July 2, 2021 .Dt MALLOC 9 .Os .Sh NAME .Nm malloc , .Nm free , .Nm realloc , .Nm reallocf , .Nm MALLOC_DEFINE , .Nm MALLOC_DECLARE .Nd kernel memory management routines .Sh SYNOPSIS .In sys/types.h .In sys/malloc.h .Ft void * .Fn malloc "size_t size" "struct malloc_type *type" "int flags" .Ft void * .Fn mallocarray "size_t nmemb" "size_t size" "struct malloc_type *type" "int flags" .Ft void .Fn free "void *addr" "struct malloc_type *type" .Ft void .Fn zfree "void *addr" "struct malloc_type *type" .Ft void * .Fn realloc "void *addr" "size_t size" "struct malloc_type *type" "int flags" .Ft void * .Fn reallocf "void *addr" "size_t size" "struct malloc_type *type" "int flags" .Ft size_t .Fn malloc_usable_size "const void *addr" .Ft void * +.Fo malloc_aligned +.Fa "size_t size" +.Fa "size_t align" +.Fa "struct malloc_type *type" +.Fa "int flags" +.Fc +.Ft void * .Fn malloc_exec "size_t size" "struct malloc_type *type" "int flags" .Fn MALLOC_DECLARE type .In sys/param.h .In sys/malloc.h .In sys/kernel.h .Fn MALLOC_DEFINE type shortdesc longdesc .In sys/param.h .In sys/domainset.h .Ft void * .Fn malloc_domainset "size_t size" "struct malloc_type *type" "struct domainset *ds" "int flags" .Ft void * +.Fo malloc_domainset_aligned +.Fa "size_t size" +.Fa "size_t align" +.Fa "struct malloc_type *type" +.Fa "struct domainset *ds" +.Fa "int flags" +.Fc +.Ft void * .Fn malloc_domainset_exec "size_t size" "struct malloc_type *type" "struct domainset *ds" "int flags" .Ft void * .Fn mallocarray_domainset "size_t nmemb" "size_t size" "struct malloc_type *type" "struct domainset *ds" "int flags" .Sh DESCRIPTION The .Fn malloc function allocates uninitialized memory in kernel address space for an object whose size is specified by .Fa size . .Pp The .Fn malloc_domainset variant allocates memory from a specific .Xr numa 4 domain using the specified domain selection policy. See .Xr domainset 9 for some example policies. .Pp +The +.Fn malloc_aligned +and +.Fn malloc_domainset_aligned +variants return allocations aligned as specified by +.Fa align , +which must be non-zero, a power of two, and less than or equal to the page size. +.Pp Both .Fn malloc_exec and .Fn malloc_domainset_exec can be used to return executable memory. Not all platforms enforce a distinction between executable and non-executable memory. .Pp The .Fn mallocarray function allocates uninitialized memory in kernel address space for an array of .Fa nmemb entries whose size is specified by .Fa size . .Pp The .Fn mallocarray_domainset variant allocates memory from a specific .Xr numa 4 domain using the specified domain selection policy. See .Xr domainset 9 for some example policies. .Pp The .Fn free function releases memory at address .Fa addr that was previously allocated by .Fn malloc for re-use. The memory is not zeroed. If .Fa addr is .Dv NULL , then .Fn free does nothing. .Pp Like .Fn free , the .Fn zfree function releases memory at address .Fa addr that was previously allocated by .Fn malloc for re-use. However, .Fn zfree will zero the memory before it is released. .Pp The .Fn realloc function changes the size of the previously allocated memory referenced by .Fa addr to .Fa size bytes. The contents of the memory are unchanged up to the lesser of the new and old sizes. Note that the returned value may differ from .Fa addr . If the requested memory cannot be allocated, .Dv NULL is returned and the memory referenced by .Fa addr is valid and unchanged. If .Fa addr is .Dv NULL , the .Fn realloc function behaves identically to .Fn malloc for the specified size. .Pp The .Fn reallocf function is identical to .Fn realloc except that it will free the passed pointer when the requested memory cannot be allocated. .Pp The .Fn malloc_usable_size function returns the usable size of the allocation pointed to by .Fa addr . The return value may be larger than the size that was requested during allocation. .Pp Unlike its standard C library counterpart .Pq Xr malloc 3 , the kernel version takes two more arguments. The .Fa flags argument further qualifies .Fn malloc Ns 's operational characteristics as follows: .Bl -tag -width indent .It Dv M_ZERO Causes the allocated memory to be set to all zeros. .It Dv M_NODUMP For allocations greater than page size, causes the allocated memory to be excluded from kernel core dumps. .It Dv M_NOWAIT Causes .Fn malloc , .Fn realloc , and .Fn reallocf to return .Dv NULL if the request cannot be immediately fulfilled due to resource shortage. Note that .Dv M_NOWAIT is required when running in an interrupt context. .It Dv M_WAITOK Indicates that it is OK to wait for resources. If the request cannot be immediately fulfilled, the current process is put to sleep to wait for resources to be released by other processes. The .Fn malloc , .Fn mallocarray , .Fn realloc , and .Fn reallocf functions cannot return .Dv NULL if .Dv M_WAITOK is specified. If the multiplication of .Fa nmemb and .Fa size would cause an integer overflow, the .Fn mallocarray function induces a panic. .It Dv M_USE_RESERVE Indicates that the system can use its reserve of memory to satisfy the request. This option should only be used in combination with .Dv M_NOWAIT when an allocation failure cannot be tolerated by the caller without catastrophic effects on the system. .El .Pp Exactly one of either .Dv M_WAITOK or .Dv M_NOWAIT must be specified. .Pp The .Fa type argument is used to perform statistics on memory usage, and for basic sanity checks. It can be used to identify multiple allocations. The statistics can be examined by .Sq vmstat -m . .Pp A .Fa type is defined using .Vt "struct malloc_type" via the .Fn MALLOC_DECLARE and .Fn MALLOC_DEFINE macros. .Bd -literal -offset indent /* sys/something/foo_extern.h */ MALLOC_DECLARE(M_FOOBUF); /* sys/something/foo_main.c */ MALLOC_DEFINE(M_FOOBUF, "foobuffers", "Buffers to foo data into the ether"); /* sys/something/foo_subr.c */ \&... buf = malloc(sizeof(*buf), M_FOOBUF, M_NOWAIT); .Ed .Pp In order to use .Fn MALLOC_DEFINE , one must include .In sys/param.h (instead of .In sys/types.h ) and .In sys/kernel.h . .Sh CONTEXT .Fn malloc , .Fn realloc and .Fn reallocf may not be called from fast interrupts handlers. When called from threaded interrupts, .Fa flags must contain .Dv M_NOWAIT . .Pp .Fn malloc , .Fn realloc and .Fn reallocf may sleep when called with .Dv M_WAITOK . .Fn free never sleeps. However, .Fn malloc , .Fn realloc , .Fn reallocf and .Fn free may not be called in a critical section or while holding a spin lock. .Pp Any calls to .Fn malloc (even with .Dv M_NOWAIT ) or .Fn free when holding a .Xr vnode 9 interlock, will cause a LOR (Lock Order Reversal) due to the intertwining of VM Objects and Vnodes. .Sh IMPLEMENTATION NOTES The memory allocator allocates memory in chunks that have size a power of two for requests up to the size of a page of memory. For larger requests, one or more pages is allocated. While it should not be relied upon, this information may be useful for optimizing the efficiency of memory use. .Sh RETURN VALUES The .Fn malloc , .Fn realloc , and .Fn reallocf functions return a kernel virtual address that is suitably aligned for storage of any type of object, or .Dv NULL if the request could not be satisfied (implying that .Dv M_NOWAIT was set). .Sh DIAGNOSTICS A kernel compiled with the .Dv INVARIANTS configuration option attempts to detect memory corruption caused by such things as writing outside the allocated area and imbalanced calls to the .Fn malloc and .Fn free functions. Failing consistency checks will cause a panic or a system console message. .Sh SEE ALSO .Xr numa 4 , .Xr vmstat 8 , .Xr contigmalloc 9 , .Xr domainset 9 , .Xr memguard 9 , .Xr vnode 9 diff --git a/sys/kern/kern_malloc.c b/sys/kern/kern_malloc.c index 48383358e3ad..364828e6a1e6 100644 --- a/sys/kern/kern_malloc.c +++ b/sys/kern/kern_malloc.c @@ -1,1523 +1,1530 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1987, 1991, 1993 * The Regents of the University of California. * Copyright (c) 2005-2009 Robert N. M. Watson * Copyright (c) 2008 Otto Moerbeek (mallocarray) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 */ /* * Kernel malloc(9) implementation -- general purpose kernel memory allocator * based on memory types. Back end is implemented using the UMA(9) zone * allocator. A set of fixed-size buckets are used for smaller allocations, * and a special UMA allocation interface is used for larger allocations. * Callers declare memory types, and statistics are maintained independently * for each memory type. Statistics are maintained per-CPU for performance * reasons. See malloc(9) and comments in malloc.h for a detailed * description. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_vm.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EPOCH_TRACE #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG_MEMGUARD #include #endif #ifdef DEBUG_REDZONE #include #endif #if defined(INVARIANTS) && defined(__i386__) #include #endif #include #ifdef KDTRACE_HOOKS #include bool __read_frequently dtrace_malloc_enabled; dtrace_malloc_probe_func_t __read_mostly dtrace_malloc_probe; #endif #if defined(INVARIANTS) || defined(MALLOC_MAKE_FAILURES) || \ defined(DEBUG_MEMGUARD) || defined(DEBUG_REDZONE) #define MALLOC_DEBUG 1 #endif #ifdef DEBUG_REDZONE #define DEBUG_REDZONE_ARG_DEF , unsigned long osize #define DEBUG_REDZONE_ARG , osize #else #define DEBUG_REDZONE_ARG_DEF #define DEBUG_REDZONE_ARG #endif /* * When realloc() is called, if the new size is sufficiently smaller than * the old size, realloc() will allocate a new, smaller block to avoid * wasting memory. 'Sufficiently smaller' is defined as: newsize <= * oldsize / 2^n, where REALLOC_FRACTION defines the value of 'n'. */ #ifndef REALLOC_FRACTION #define REALLOC_FRACTION 1 /* new block if <= half the size */ #endif /* * Centrally define some common malloc types. */ MALLOC_DEFINE(M_CACHE, "cache", "Various Dynamically allocated caches"); MALLOC_DEFINE(M_DEVBUF, "devbuf", "device driver memory"); MALLOC_DEFINE(M_TEMP, "temp", "misc temporary data buffers"); static struct malloc_type *kmemstatistics; static int kmemcount; #define KMEM_ZSHIFT 4 #define KMEM_ZBASE 16 #define KMEM_ZMASK (KMEM_ZBASE - 1) #define KMEM_ZMAX 65536 #define KMEM_ZSIZE (KMEM_ZMAX >> KMEM_ZSHIFT) static uint8_t kmemsize[KMEM_ZSIZE + 1]; #ifndef MALLOC_DEBUG_MAXZONES #define MALLOC_DEBUG_MAXZONES 1 #endif static int numzones = MALLOC_DEBUG_MAXZONES; /* * Small malloc(9) memory allocations are allocated from a set of UMA buckets * of various sizes. * * Warning: the layout of the struct is duplicated in libmemstat for KVM support. * * XXX: The comment here used to read "These won't be powers of two for * long." It's possible that a significant amount of wasted memory could be * recovered by tuning the sizes of these buckets. */ struct { int kz_size; const char *kz_name; uma_zone_t kz_zone[MALLOC_DEBUG_MAXZONES]; } kmemzones[] = { {16, "malloc-16", }, {32, "malloc-32", }, {64, "malloc-64", }, {128, "malloc-128", }, {256, "malloc-256", }, {384, "malloc-384", }, {512, "malloc-512", }, {1024, "malloc-1024", }, {2048, "malloc-2048", }, {4096, "malloc-4096", }, {8192, "malloc-8192", }, {16384, "malloc-16384", }, {32768, "malloc-32768", }, {65536, "malloc-65536", }, {0, NULL}, }; u_long vm_kmem_size; SYSCTL_ULONG(_vm, OID_AUTO, kmem_size, CTLFLAG_RDTUN, &vm_kmem_size, 0, "Size of kernel memory"); static u_long kmem_zmax = KMEM_ZMAX; SYSCTL_ULONG(_vm, OID_AUTO, kmem_zmax, CTLFLAG_RDTUN, &kmem_zmax, 0, "Maximum allocation size that malloc(9) would use UMA as backend"); static u_long vm_kmem_size_min; SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_min, CTLFLAG_RDTUN, &vm_kmem_size_min, 0, "Minimum size of kernel memory"); static u_long vm_kmem_size_max; SYSCTL_ULONG(_vm, OID_AUTO, kmem_size_max, CTLFLAG_RDTUN, &vm_kmem_size_max, 0, "Maximum size of kernel memory"); static u_int vm_kmem_size_scale; SYSCTL_UINT(_vm, OID_AUTO, kmem_size_scale, CTLFLAG_RDTUN, &vm_kmem_size_scale, 0, "Scale factor for kernel memory size"); static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm, OID_AUTO, kmem_map_size, CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, sysctl_kmem_map_size, "LU", "Current kmem allocation size"); static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm, OID_AUTO, kmem_map_free, CTLFLAG_RD | CTLTYPE_ULONG | CTLFLAG_MPSAFE, NULL, 0, sysctl_kmem_map_free, "LU", "Free space in kmem"); static SYSCTL_NODE(_vm, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Malloc information"); static u_int vm_malloc_zone_count = nitems(kmemzones); SYSCTL_UINT(_vm_malloc, OID_AUTO, zone_count, CTLFLAG_RD, &vm_malloc_zone_count, 0, "Number of malloc zones"); static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_vm_malloc, OID_AUTO, zone_sizes, CTLFLAG_RD | CTLTYPE_OPAQUE | CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_malloc_zone_sizes, "S", "Zone sizes used by malloc"); /* * The malloc_mtx protects the kmemstatistics linked list. */ struct mtx malloc_mtx; static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS); #if defined(MALLOC_MAKE_FAILURES) || (MALLOC_DEBUG_MAXZONES > 1) static SYSCTL_NODE(_debug, OID_AUTO, malloc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Kernel malloc debugging options"); #endif /* * malloc(9) fault injection -- cause malloc failures every (n) mallocs when * the caller specifies M_NOWAIT. If set to 0, no failures are caused. */ #ifdef MALLOC_MAKE_FAILURES static int malloc_failure_rate; static int malloc_nowait_count; static int malloc_failure_count; SYSCTL_INT(_debug_malloc, OID_AUTO, failure_rate, CTLFLAG_RWTUN, &malloc_failure_rate, 0, "Every (n) mallocs with M_NOWAIT will fail"); SYSCTL_INT(_debug_malloc, OID_AUTO, failure_count, CTLFLAG_RD, &malloc_failure_count, 0, "Number of imposed M_NOWAIT malloc failures"); #endif static int sysctl_kmem_map_size(SYSCTL_HANDLER_ARGS) { u_long size; size = uma_size(); return (sysctl_handle_long(oidp, &size, 0, req)); } static int sysctl_kmem_map_free(SYSCTL_HANDLER_ARGS) { u_long size, limit; /* The sysctl is unsigned, implement as a saturation value. */ size = uma_size(); limit = uma_limit(); if (size > limit) size = 0; else size = limit - size; return (sysctl_handle_long(oidp, &size, 0, req)); } static int sysctl_vm_malloc_zone_sizes(SYSCTL_HANDLER_ARGS) { int sizes[nitems(kmemzones)]; int i; for (i = 0; i < nitems(kmemzones); i++) { sizes[i] = kmemzones[i].kz_size; } return (SYSCTL_OUT(req, &sizes, sizeof(sizes))); } /* * malloc(9) uma zone separation -- sub-page buffer overruns in one * malloc type will affect only a subset of other malloc types. */ #if MALLOC_DEBUG_MAXZONES > 1 static void tunable_set_numzones(void) { TUNABLE_INT_FETCH("debug.malloc.numzones", &numzones); /* Sanity check the number of malloc uma zones. */ if (numzones <= 0) numzones = 1; if (numzones > MALLOC_DEBUG_MAXZONES) numzones = MALLOC_DEBUG_MAXZONES; } SYSINIT(numzones, SI_SUB_TUNABLES, SI_ORDER_ANY, tunable_set_numzones, NULL); SYSCTL_INT(_debug_malloc, OID_AUTO, numzones, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &numzones, 0, "Number of malloc uma subzones"); /* * Any number that changes regularly is an okay choice for the * offset. Build numbers are pretty good of you have them. */ static u_int zone_offset = __FreeBSD_version; TUNABLE_INT("debug.malloc.zone_offset", &zone_offset); SYSCTL_UINT(_debug_malloc, OID_AUTO, zone_offset, CTLFLAG_RDTUN, &zone_offset, 0, "Separate malloc types by examining the " "Nth character in the malloc type short description."); static void mtp_set_subzone(struct malloc_type *mtp) { struct malloc_type_internal *mtip; const char *desc; size_t len; u_int val; mtip = &mtp->ks_mti; desc = mtp->ks_shortdesc; if (desc == NULL || (len = strlen(desc)) == 0) val = 0; else val = desc[zone_offset % len]; mtip->mti_zone = (val % numzones); } static inline u_int mtp_get_subzone(struct malloc_type *mtp) { struct malloc_type_internal *mtip; mtip = &mtp->ks_mti; KASSERT(mtip->mti_zone < numzones, ("mti_zone %u out of range %d", mtip->mti_zone, numzones)); return (mtip->mti_zone); } #elif MALLOC_DEBUG_MAXZONES == 0 #error "MALLOC_DEBUG_MAXZONES must be positive." #else static void mtp_set_subzone(struct malloc_type *mtp) { struct malloc_type_internal *mtip; mtip = &mtp->ks_mti; mtip->mti_zone = 0; } static inline u_int mtp_get_subzone(struct malloc_type *mtp) { return (0); } #endif /* MALLOC_DEBUG_MAXZONES > 1 */ /* * An allocation has succeeded -- update malloc type statistics for the * amount of bucket size. Occurs within a critical section so that the * thread isn't preempted and doesn't migrate while updating per-PCU * statistics. */ static void malloc_type_zone_allocated(struct malloc_type *mtp, unsigned long size, int zindx) { struct malloc_type_internal *mtip; struct malloc_type_stats *mtsp; critical_enter(); mtip = &mtp->ks_mti; mtsp = zpcpu_get(mtip->mti_stats); if (size > 0) { mtsp->mts_memalloced += size; mtsp->mts_numallocs++; } if (zindx != -1) mtsp->mts_size |= 1 << zindx; #ifdef KDTRACE_HOOKS if (__predict_false(dtrace_malloc_enabled)) { uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_MALLOC]; if (probe_id != 0) (dtrace_malloc_probe)(probe_id, (uintptr_t) mtp, (uintptr_t) mtip, (uintptr_t) mtsp, size, zindx); } #endif critical_exit(); } void malloc_type_allocated(struct malloc_type *mtp, unsigned long size) { if (size > 0) malloc_type_zone_allocated(mtp, size, -1); } /* * A free operation has occurred -- update malloc type statistics for the * amount of the bucket size. Occurs within a critical section so that the * thread isn't preempted and doesn't migrate while updating per-CPU * statistics. */ void malloc_type_freed(struct malloc_type *mtp, unsigned long size) { struct malloc_type_internal *mtip; struct malloc_type_stats *mtsp; critical_enter(); mtip = &mtp->ks_mti; mtsp = zpcpu_get(mtip->mti_stats); mtsp->mts_memfreed += size; mtsp->mts_numfrees++; #ifdef KDTRACE_HOOKS if (__predict_false(dtrace_malloc_enabled)) { uint32_t probe_id = mtip->mti_probes[DTMALLOC_PROBE_FREE]; if (probe_id != 0) (dtrace_malloc_probe)(probe_id, (uintptr_t) mtp, (uintptr_t) mtip, (uintptr_t) mtsp, size, 0); } #endif critical_exit(); } /* * contigmalloc: * * Allocate a block of physically contiguous memory. * * If M_NOWAIT is set, this routine will not block and return NULL if * the allocation fails. */ void * contigmalloc(unsigned long size, struct malloc_type *type, int flags, vm_paddr_t low, vm_paddr_t high, unsigned long alignment, vm_paddr_t boundary) { void *ret; ret = (void *)kmem_alloc_contig(size, flags, low, high, alignment, boundary, VM_MEMATTR_DEFAULT); if (ret != NULL) malloc_type_allocated(type, round_page(size)); return (ret); } void * contigmalloc_domainset(unsigned long size, struct malloc_type *type, struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, unsigned long alignment, vm_paddr_t boundary) { void *ret; ret = (void *)kmem_alloc_contig_domainset(ds, size, flags, low, high, alignment, boundary, VM_MEMATTR_DEFAULT); if (ret != NULL) malloc_type_allocated(type, round_page(size)); return (ret); } /* * contigfree: * * Free a block of memory allocated by contigmalloc. * * This routine may not block. */ void contigfree(void *addr, unsigned long size, struct malloc_type *type) { kmem_free((vm_offset_t)addr, size); malloc_type_freed(type, round_page(size)); } #ifdef MALLOC_DEBUG static int malloc_dbg(caddr_t *vap, size_t *sizep, struct malloc_type *mtp, int flags) { #ifdef INVARIANTS int indx; KASSERT(mtp->ks_version == M_VERSION, ("malloc: bad malloc type version")); /* * Check that exactly one of M_WAITOK or M_NOWAIT is specified. */ indx = flags & (M_WAITOK | M_NOWAIT); if (indx != M_NOWAIT && indx != M_WAITOK) { static struct timeval lasterr; static int curerr, once; if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) { printf("Bad malloc flags: %x\n", indx); kdb_backtrace(); flags |= M_WAITOK; once++; } } #endif #ifdef MALLOC_MAKE_FAILURES if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) { atomic_add_int(&malloc_nowait_count, 1); if ((malloc_nowait_count % malloc_failure_rate) == 0) { atomic_add_int(&malloc_failure_count, 1); *vap = NULL; return (EJUSTRETURN); } } #endif if (flags & M_WAITOK) { KASSERT(curthread->td_intr_nesting_level == 0, ("malloc(M_WAITOK) in interrupt context")); if (__predict_false(!THREAD_CAN_SLEEP())) { #ifdef EPOCH_TRACE epoch_trace_list(curthread); #endif KASSERT(1, ("malloc(M_WAITOK) with sleeping prohibited")); } } KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("malloc: called with spinlock or critical section held")); #ifdef DEBUG_MEMGUARD if (memguard_cmp_mtp(mtp, *sizep)) { *vap = memguard_alloc(*sizep, flags); if (*vap != NULL) return (EJUSTRETURN); /* This is unfortunate but should not be fatal. */ } #endif #ifdef DEBUG_REDZONE *sizep = redzone_size_ntor(*sizep); #endif return (0); } #endif /* * Handle large allocations and frees by using kmem_malloc directly. */ static inline bool malloc_large_slab(uma_slab_t slab) { uintptr_t va; va = (uintptr_t)slab; return ((va & 1) != 0); } static inline size_t malloc_large_size(uma_slab_t slab) { uintptr_t va; va = (uintptr_t)slab; return (va >> 1); } static caddr_t __noinline malloc_large(size_t *size, struct malloc_type *mtp, struct domainset *policy, int flags DEBUG_REDZONE_ARG_DEF) { vm_offset_t kva; caddr_t va; size_t sz; sz = roundup(*size, PAGE_SIZE); kva = kmem_malloc_domainset(policy, sz, flags); if (kva != 0) { /* The low bit is unused for slab pointers. */ vsetzoneslab(kva, NULL, (void *)((sz << 1) | 1)); uma_total_inc(sz); *size = sz; } va = (caddr_t)kva; malloc_type_allocated(mtp, va == NULL ? 0 : sz); if (__predict_false(va == NULL)) { KASSERT((flags & M_WAITOK) == 0, ("malloc(M_WAITOK) returned NULL")); } #ifdef DEBUG_REDZONE if (va != NULL) va = redzone_setup(va, osize); #endif return (va); } static void free_large(void *addr, size_t size) { kmem_free((vm_offset_t)addr, size); uma_total_dec(size); } /* * malloc: * * Allocate a block of memory. * * If M_NOWAIT is set, this routine will not block and return NULL if * the allocation fails. */ void * (malloc)(size_t size, struct malloc_type *mtp, int flags) { int indx; caddr_t va; uma_zone_t zone; #ifdef DEBUG_REDZONE unsigned long osize = size; #endif MPASS((flags & M_EXEC) == 0); #ifdef MALLOC_DEBUG va = NULL; if (malloc_dbg(&va, &size, mtp, flags) != 0) return (va); #endif if (__predict_false(size > kmem_zmax)) return (malloc_large(&size, mtp, DOMAINSET_RR(), flags DEBUG_REDZONE_ARG)); if (size & KMEM_ZMASK) size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; indx = kmemsize[size >> KMEM_ZSHIFT]; zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; va = uma_zalloc(zone, flags); if (va != NULL) size = zone->uz_size; malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); if (__predict_false(va == NULL)) { KASSERT((flags & M_WAITOK) == 0, ("malloc(M_WAITOK) returned NULL")); } #ifdef DEBUG_REDZONE if (va != NULL) va = redzone_setup(va, osize); #endif return ((void *) va); } static void * malloc_domain(size_t *sizep, int *indxp, struct malloc_type *mtp, int domain, int flags) { uma_zone_t zone; caddr_t va; size_t size; int indx; size = *sizep; KASSERT(size <= kmem_zmax && (flags & M_EXEC) == 0, ("malloc_domain: Called with bad flag / size combination.")); if (size & KMEM_ZMASK) size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; indx = kmemsize[size >> KMEM_ZSHIFT]; zone = kmemzones[indx].kz_zone[mtp_get_subzone(mtp)]; va = uma_zalloc_domain(zone, NULL, domain, flags); if (va != NULL) *sizep = zone->uz_size; *indxp = indx; return ((void *)va); } void * malloc_domainset(size_t size, struct malloc_type *mtp, struct domainset *ds, int flags) { struct vm_domainset_iter di; caddr_t va; int domain; int indx; #ifdef DEBUG_REDZONE unsigned long osize = size; #endif MPASS((flags & M_EXEC) == 0); #ifdef MALLOC_DEBUG va = NULL; if (malloc_dbg(&va, &size, mtp, flags) != 0) return (va); #endif if (__predict_false(size > kmem_zmax)) return (malloc_large(&size, mtp, DOMAINSET_RR(), flags DEBUG_REDZONE_ARG)); vm_domainset_iter_policy_init(&di, ds, &domain, &flags); do { va = malloc_domain(&size, &indx, mtp, domain, flags); } while (va == NULL && vm_domainset_iter_policy(&di, &domain) == 0); malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx); if (__predict_false(va == NULL)) { KASSERT((flags & M_WAITOK) == 0, ("malloc(M_WAITOK) returned NULL")); } #ifdef DEBUG_REDZONE if (va != NULL) va = redzone_setup(va, osize); #endif return (va); } /* * Allocate an executable area. */ void * malloc_exec(size_t size, struct malloc_type *mtp, int flags) { return (malloc_domainset_exec(size, mtp, DOMAINSET_RR(), flags)); } void * malloc_domainset_exec(size_t size, struct malloc_type *mtp, struct domainset *ds, int flags) { #ifdef DEBUG_REDZONE unsigned long osize = size; #endif #ifdef MALLOC_DEBUG caddr_t va; #endif flags |= M_EXEC; #ifdef MALLOC_DEBUG va = NULL; if (malloc_dbg(&va, &size, mtp, flags) != 0) return (va); #endif return (malloc_large(&size, mtp, ds, flags DEBUG_REDZONE_ARG)); } +void * +malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags) +{ + return (malloc_domainset_aligned(size, align, type, DOMAINSET_RR(), + flags)); +} + void * malloc_domainset_aligned(size_t size, size_t align, struct malloc_type *mtp, struct domainset *ds, int flags) { void *res; size_t asize; KASSERT(align != 0 && powerof2(align), ("malloc_domainset_aligned: wrong align %#zx size %#zx", align, size)); KASSERT(align <= PAGE_SIZE, ("malloc_domainset_aligned: align %#zx (size %#zx) too large", align, size)); /* * Round the allocation size up to the next power of 2, * because we can only guarantee alignment for * power-of-2-sized allocations. Further increase the * allocation size to align if the rounded size is less than * align, since malloc zones provide alignment equal to their * size. */ asize = size <= align ? align : 1UL << flsl(size - 1); res = malloc_domainset(asize, mtp, ds, flags); KASSERT(res == NULL || ((uintptr_t)res & (align - 1)) == 0, ("malloc_domainset_aligned: result not aligned %p size %#zx " "allocsize %#zx align %#zx", res, size, asize, align)); return (res); } void * mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) { if (WOULD_OVERFLOW(nmemb, size)) panic("mallocarray: %zu * %zu overflowed", nmemb, size); return (malloc(size * nmemb, type, flags)); } void * mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, struct domainset *ds, int flags) { if (WOULD_OVERFLOW(nmemb, size)) panic("mallocarray_domainset: %zu * %zu overflowed", nmemb, size); return (malloc_domainset(size * nmemb, type, ds, flags)); } #ifdef INVARIANTS static void free_save_type(void *addr, struct malloc_type *mtp, u_long size) { struct malloc_type **mtpp = addr; /* * Cache a pointer to the malloc_type that most recently freed * this memory here. This way we know who is most likely to * have stepped on it later. * * This code assumes that size is a multiple of 8 bytes for * 64 bit machines */ mtpp = (struct malloc_type **) ((unsigned long)mtpp & ~UMA_ALIGN_PTR); mtpp += (size - sizeof(struct malloc_type *)) / sizeof(struct malloc_type *); *mtpp = mtp; } #endif #ifdef MALLOC_DEBUG static int free_dbg(void **addrp, struct malloc_type *mtp) { void *addr; addr = *addrp; KASSERT(mtp->ks_version == M_VERSION, ("free: bad malloc type version")); KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("free: called with spinlock or critical section held")); /* free(NULL, ...) does nothing */ if (addr == NULL) return (EJUSTRETURN); #ifdef DEBUG_MEMGUARD if (is_memguard_addr(addr)) { memguard_free(addr); return (EJUSTRETURN); } #endif #ifdef DEBUG_REDZONE redzone_check(addr); *addrp = redzone_addr_ntor(addr); #endif return (0); } #endif /* * free: * * Free a block of memory allocated by malloc. * * This routine may not block. */ void free(void *addr, struct malloc_type *mtp) { uma_zone_t zone; uma_slab_t slab; u_long size; #ifdef MALLOC_DEBUG if (free_dbg(&addr, mtp) != 0) return; #endif /* free(NULL, ...) does nothing */ if (addr == NULL) return; vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); if (slab == NULL) panic("free: address %p(%p) has not been allocated.\n", addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); if (__predict_true(!malloc_large_slab(slab))) { size = zone->uz_size; #ifdef INVARIANTS free_save_type(addr, mtp, size); #endif uma_zfree_arg(zone, addr, slab); } else { size = malloc_large_size(slab); free_large(addr, size); } malloc_type_freed(mtp, size); } /* * zfree: * * Zero then free a block of memory allocated by malloc. * * This routine may not block. */ void zfree(void *addr, struct malloc_type *mtp) { uma_zone_t zone; uma_slab_t slab; u_long size; #ifdef MALLOC_DEBUG if (free_dbg(&addr, mtp) != 0) return; #endif /* free(NULL, ...) does nothing */ if (addr == NULL) return; vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); if (slab == NULL) panic("free: address %p(%p) has not been allocated.\n", addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); if (__predict_true(!malloc_large_slab(slab))) { size = zone->uz_size; #ifdef INVARIANTS free_save_type(addr, mtp, size); #endif explicit_bzero(addr, size); uma_zfree_arg(zone, addr, slab); } else { size = malloc_large_size(slab); explicit_bzero(addr, size); free_large(addr, size); } malloc_type_freed(mtp, size); } /* * realloc: change the size of a memory block */ void * realloc(void *addr, size_t size, struct malloc_type *mtp, int flags) { uma_zone_t zone; uma_slab_t slab; unsigned long alloc; void *newaddr; KASSERT(mtp->ks_version == M_VERSION, ("realloc: bad malloc type version")); KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), ("realloc: called with spinlock or critical section held")); /* realloc(NULL, ...) is equivalent to malloc(...) */ if (addr == NULL) return (malloc(size, mtp, flags)); /* * XXX: Should report free of old memory and alloc of new memory to * per-CPU stats. */ #ifdef DEBUG_MEMGUARD if (is_memguard_addr(addr)) return (memguard_realloc(addr, size, mtp, flags)); #endif #ifdef DEBUG_REDZONE slab = NULL; zone = NULL; alloc = redzone_get_size(addr); #else vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); /* Sanity check */ KASSERT(slab != NULL, ("realloc: address %p out of range", (void *)addr)); /* Get the size of the original block */ if (!malloc_large_slab(slab)) alloc = zone->uz_size; else alloc = malloc_large_size(slab); /* Reuse the original block if appropriate */ if (size <= alloc && (size > (alloc >> REALLOC_FRACTION) || alloc == MINALLOCSIZE)) return (addr); #endif /* !DEBUG_REDZONE */ /* Allocate a new, bigger (or smaller) block */ if ((newaddr = malloc(size, mtp, flags)) == NULL) return (NULL); /* Copy over original contents */ bcopy(addr, newaddr, min(size, alloc)); free(addr, mtp); return (newaddr); } /* * reallocf: same as realloc() but free memory on failure. */ void * reallocf(void *addr, size_t size, struct malloc_type *mtp, int flags) { void *mem; if ((mem = realloc(addr, size, mtp, flags)) == NULL) free(addr, mtp); return (mem); } /* * malloc_size: returns the number of bytes allocated for a request of the * specified size */ size_t malloc_size(size_t size) { int indx; if (size > kmem_zmax) return (0); if (size & KMEM_ZMASK) size = (size & ~KMEM_ZMASK) + KMEM_ZBASE; indx = kmemsize[size >> KMEM_ZSHIFT]; return (kmemzones[indx].kz_size); } /* * malloc_usable_size: returns the usable size of the allocation. */ size_t malloc_usable_size(const void *addr) { #ifndef DEBUG_REDZONE uma_zone_t zone; uma_slab_t slab; #endif u_long size; if (addr == NULL) return (0); #ifdef DEBUG_MEMGUARD if (is_memguard_addr(__DECONST(void *, addr))) return (memguard_get_req_size(addr)); #endif #ifdef DEBUG_REDZONE size = redzone_get_size(__DECONST(void *, addr)); #else vtozoneslab((vm_offset_t)addr & (~UMA_SLAB_MASK), &zone, &slab); if (slab == NULL) panic("malloc_usable_size: address %p(%p) is not allocated.\n", addr, (void *)((u_long)addr & (~UMA_SLAB_MASK))); if (!malloc_large_slab(slab)) size = zone->uz_size; else size = malloc_large_size(slab); #endif return (size); } CTASSERT(VM_KMEM_SIZE_SCALE >= 1); /* * Initialize the kernel memory (kmem) arena. */ void kmeminit(void) { u_long mem_size; u_long tmp; #ifdef VM_KMEM_SIZE if (vm_kmem_size == 0) vm_kmem_size = VM_KMEM_SIZE; #endif #ifdef VM_KMEM_SIZE_MIN if (vm_kmem_size_min == 0) vm_kmem_size_min = VM_KMEM_SIZE_MIN; #endif #ifdef VM_KMEM_SIZE_MAX if (vm_kmem_size_max == 0) vm_kmem_size_max = VM_KMEM_SIZE_MAX; #endif /* * Calculate the amount of kernel virtual address (KVA) space that is * preallocated to the kmem arena. In order to support a wide range * of machines, it is a function of the physical memory size, * specifically, * * min(max(physical memory size / VM_KMEM_SIZE_SCALE, * VM_KMEM_SIZE_MIN), VM_KMEM_SIZE_MAX) * * Every architecture must define an integral value for * VM_KMEM_SIZE_SCALE. However, the definitions of VM_KMEM_SIZE_MIN * and VM_KMEM_SIZE_MAX, which represent respectively the floor and * ceiling on this preallocation, are optional. Typically, * VM_KMEM_SIZE_MAX is itself a function of the available KVA space on * a given architecture. */ mem_size = vm_cnt.v_page_count; if (mem_size <= 32768) /* delphij XXX 128MB */ kmem_zmax = PAGE_SIZE; if (vm_kmem_size_scale < 1) vm_kmem_size_scale = VM_KMEM_SIZE_SCALE; /* * Check if we should use defaults for the "vm_kmem_size" * variable: */ if (vm_kmem_size == 0) { vm_kmem_size = mem_size / vm_kmem_size_scale; vm_kmem_size = vm_kmem_size * PAGE_SIZE < vm_kmem_size ? vm_kmem_size_max : vm_kmem_size * PAGE_SIZE; if (vm_kmem_size_min > 0 && vm_kmem_size < vm_kmem_size_min) vm_kmem_size = vm_kmem_size_min; if (vm_kmem_size_max > 0 && vm_kmem_size >= vm_kmem_size_max) vm_kmem_size = vm_kmem_size_max; } if (vm_kmem_size == 0) panic("Tune VM_KMEM_SIZE_* for the platform"); /* * The amount of KVA space that is preallocated to the * kmem arena can be set statically at compile-time or manually * through the kernel environment. However, it is still limited to * twice the physical memory size, which has been sufficient to handle * the most severe cases of external fragmentation in the kmem arena. */ if (vm_kmem_size / 2 / PAGE_SIZE > mem_size) vm_kmem_size = 2 * mem_size * PAGE_SIZE; vm_kmem_size = round_page(vm_kmem_size); #ifdef DEBUG_MEMGUARD tmp = memguard_fudge(vm_kmem_size, kernel_map); #else tmp = vm_kmem_size; #endif uma_set_limit(tmp); #ifdef DEBUG_MEMGUARD /* * Initialize MemGuard if support compiled in. MemGuard is a * replacement allocator used for detecting tamper-after-free * scenarios as they occur. It is only used for debugging. */ memguard_init(kernel_arena); #endif } /* * Initialize the kernel memory allocator */ /* ARGSUSED*/ static void mallocinit(void *dummy) { int i; uint8_t indx; mtx_init(&malloc_mtx, "malloc", NULL, MTX_DEF); kmeminit(); if (kmem_zmax < PAGE_SIZE || kmem_zmax > KMEM_ZMAX) kmem_zmax = KMEM_ZMAX; for (i = 0, indx = 0; kmemzones[indx].kz_size != 0; indx++) { int size = kmemzones[indx].kz_size; const char *name = kmemzones[indx].kz_name; size_t align; int subzone; align = UMA_ALIGN_PTR; if (powerof2(size) && size > sizeof(void *)) align = MIN(size, PAGE_SIZE) - 1; for (subzone = 0; subzone < numzones; subzone++) { kmemzones[indx].kz_zone[subzone] = uma_zcreate(name, size, #ifdef INVARIANTS mtrash_ctor, mtrash_dtor, mtrash_init, mtrash_fini, #else NULL, NULL, NULL, NULL, #endif align, UMA_ZONE_MALLOC); } for (;i <= size; i+= KMEM_ZBASE) kmemsize[i >> KMEM_ZSHIFT] = indx; } } SYSINIT(kmem, SI_SUB_KMEM, SI_ORDER_SECOND, mallocinit, NULL); void malloc_init(void *data) { struct malloc_type_internal *mtip; struct malloc_type *mtp; KASSERT(vm_cnt.v_page_count != 0, ("malloc_register before vm_init")); mtp = data; if (mtp->ks_version != M_VERSION) panic("malloc_init: type %s with unsupported version %lu", mtp->ks_shortdesc, mtp->ks_version); mtip = &mtp->ks_mti; mtip->mti_stats = uma_zalloc_pcpu(pcpu_zone_64, M_WAITOK | M_ZERO); mtp_set_subzone(mtp); mtx_lock(&malloc_mtx); mtp->ks_next = kmemstatistics; kmemstatistics = mtp; kmemcount++; mtx_unlock(&malloc_mtx); } void malloc_uninit(void *data) { struct malloc_type_internal *mtip; struct malloc_type_stats *mtsp; struct malloc_type *mtp, *temp; long temp_allocs, temp_bytes; int i; mtp = data; KASSERT(mtp->ks_version == M_VERSION, ("malloc_uninit: bad malloc type version")); mtx_lock(&malloc_mtx); mtip = &mtp->ks_mti; if (mtp != kmemstatistics) { for (temp = kmemstatistics; temp != NULL; temp = temp->ks_next) { if (temp->ks_next == mtp) { temp->ks_next = mtp->ks_next; break; } } KASSERT(temp, ("malloc_uninit: type '%s' not found", mtp->ks_shortdesc)); } else kmemstatistics = mtp->ks_next; kmemcount--; mtx_unlock(&malloc_mtx); /* * Look for memory leaks. */ temp_allocs = temp_bytes = 0; for (i = 0; i <= mp_maxid; i++) { mtsp = zpcpu_get_cpu(mtip->mti_stats, i); temp_allocs += mtsp->mts_numallocs; temp_allocs -= mtsp->mts_numfrees; temp_bytes += mtsp->mts_memalloced; temp_bytes -= mtsp->mts_memfreed; } if (temp_allocs > 0 || temp_bytes > 0) { printf("Warning: memory type %s leaked memory on destroy " "(%ld allocations, %ld bytes leaked).\n", mtp->ks_shortdesc, temp_allocs, temp_bytes); } uma_zfree_pcpu(pcpu_zone_64, mtip->mti_stats); } struct malloc_type * malloc_desc2type(const char *desc) { struct malloc_type *mtp; mtx_assert(&malloc_mtx, MA_OWNED); for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { if (strcmp(mtp->ks_shortdesc, desc) == 0) return (mtp); } return (NULL); } static int sysctl_kern_malloc_stats(SYSCTL_HANDLER_ARGS) { struct malloc_type_stream_header mtsh; struct malloc_type_internal *mtip; struct malloc_type_stats *mtsp, zeromts; struct malloc_type_header mth; struct malloc_type *mtp; int error, i; struct sbuf sbuf; error = sysctl_wire_old_buffer(req, 0); if (error != 0) return (error); sbuf_new_for_sysctl(&sbuf, NULL, 128, req); sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); mtx_lock(&malloc_mtx); bzero(&zeromts, sizeof(zeromts)); /* * Insert stream header. */ bzero(&mtsh, sizeof(mtsh)); mtsh.mtsh_version = MALLOC_TYPE_STREAM_VERSION; mtsh.mtsh_maxcpus = MAXCPU; mtsh.mtsh_count = kmemcount; (void)sbuf_bcat(&sbuf, &mtsh, sizeof(mtsh)); /* * Insert alternating sequence of type headers and type statistics. */ for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { mtip = &mtp->ks_mti; /* * Insert type header. */ bzero(&mth, sizeof(mth)); strlcpy(mth.mth_name, mtp->ks_shortdesc, MALLOC_MAX_NAME); (void)sbuf_bcat(&sbuf, &mth, sizeof(mth)); /* * Insert type statistics for each CPU. */ for (i = 0; i <= mp_maxid; i++) { mtsp = zpcpu_get_cpu(mtip->mti_stats, i); (void)sbuf_bcat(&sbuf, mtsp, sizeof(*mtsp)); } /* * Fill in the missing CPUs. */ for (; i < MAXCPU; i++) { (void)sbuf_bcat(&sbuf, &zeromts, sizeof(zeromts)); } } mtx_unlock(&malloc_mtx); error = sbuf_finish(&sbuf); sbuf_delete(&sbuf); return (error); } SYSCTL_PROC(_kern, OID_AUTO, malloc_stats, CTLFLAG_RD | CTLTYPE_STRUCT | CTLFLAG_MPSAFE, 0, 0, sysctl_kern_malloc_stats, "s,malloc_type_ustats", "Return malloc types"); SYSCTL_INT(_kern, OID_AUTO, malloc_count, CTLFLAG_RD, &kmemcount, 0, "Count of kernel malloc types"); void malloc_type_list(malloc_type_list_func_t *func, void *arg) { struct malloc_type *mtp, **bufmtp; int count, i; size_t buflen; mtx_lock(&malloc_mtx); restart: mtx_assert(&malloc_mtx, MA_OWNED); count = kmemcount; mtx_unlock(&malloc_mtx); buflen = sizeof(struct malloc_type *) * count; bufmtp = malloc(buflen, M_TEMP, M_WAITOK); mtx_lock(&malloc_mtx); if (count < kmemcount) { free(bufmtp, M_TEMP); goto restart; } for (mtp = kmemstatistics, i = 0; mtp != NULL; mtp = mtp->ks_next, i++) bufmtp[i] = mtp; mtx_unlock(&malloc_mtx); for (i = 0; i < count; i++) (func)(bufmtp[i], arg); free(bufmtp, M_TEMP); } #ifdef DDB static int64_t get_malloc_stats(const struct malloc_type_internal *mtip, uint64_t *allocs, uint64_t *inuse) { const struct malloc_type_stats *mtsp; uint64_t frees, alloced, freed; int i; *allocs = 0; frees = 0; alloced = 0; freed = 0; for (i = 0; i <= mp_maxid; i++) { mtsp = zpcpu_get_cpu(mtip->mti_stats, i); *allocs += mtsp->mts_numallocs; frees += mtsp->mts_numfrees; alloced += mtsp->mts_memalloced; freed += mtsp->mts_memfreed; } *inuse = *allocs - frees; return (alloced - freed); } DB_SHOW_COMMAND(malloc, db_show_malloc) { const char *fmt_hdr, *fmt_entry; struct malloc_type *mtp; uint64_t allocs, inuse; int64_t size; /* variables for sorting */ struct malloc_type *last_mtype, *cur_mtype; int64_t cur_size, last_size; int ties; if (modif[0] == 'i') { fmt_hdr = "%s,%s,%s,%s\n"; fmt_entry = "\"%s\",%ju,%jdK,%ju\n"; } else { fmt_hdr = "%18s %12s %12s %12s\n"; fmt_entry = "%18s %12ju %12jdK %12ju\n"; } db_printf(fmt_hdr, "Type", "InUse", "MemUse", "Requests"); /* Select sort, largest size first. */ last_mtype = NULL; last_size = INT64_MAX; for (;;) { cur_mtype = NULL; cur_size = -1; ties = 0; for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { /* * In the case of size ties, print out mtypes * in the order they are encountered. That is, * when we encounter the most recently output * mtype, we have already printed all preceding * ties, and we must print all following ties. */ if (mtp == last_mtype) { ties = 1; continue; } size = get_malloc_stats(&mtp->ks_mti, &allocs, &inuse); if (size > cur_size && size < last_size + ties) { cur_size = size; cur_mtype = mtp; } } if (cur_mtype == NULL) break; size = get_malloc_stats(&cur_mtype->ks_mti, &allocs, &inuse); db_printf(fmt_entry, cur_mtype->ks_shortdesc, inuse, howmany(size, 1024), allocs); if (db_pager_quit) break; last_mtype = cur_mtype; last_size = cur_size; } } #if MALLOC_DEBUG_MAXZONES > 1 DB_SHOW_COMMAND(multizone_matches, db_show_multizone_matches) { struct malloc_type_internal *mtip; struct malloc_type *mtp; u_int subzone; if (!have_addr) { db_printf("Usage: show multizone_matches \n"); return; } mtp = (void *)addr; if (mtp->ks_version != M_VERSION) { db_printf("Version %lx does not match expected %x\n", mtp->ks_version, M_VERSION); return; } mtip = &mtp->ks_mti; subzone = mtip->mti_zone; for (mtp = kmemstatistics; mtp != NULL; mtp = mtp->ks_next) { mtip = &mtp->ks_mti; if (mtip->mti_zone != subzone) continue; db_printf("%s\n", mtp->ks_shortdesc); if (db_pager_quit) break; } } #endif /* MALLOC_DEBUG_MAXZONES > 1 */ #endif /* DDB */ diff --git a/sys/sys/malloc.h b/sys/sys/malloc.h index 8982e534fc22..93ec81c252ff 100644 --- a/sys/sys/malloc.h +++ b/sys/sys/malloc.h @@ -1,323 +1,325 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1987, 1993 * The Regents of the University of California. * Copyright (c) 2005, 2009 Robert N. M. Watson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)malloc.h 8.5 (Berkeley) 5/3/95 * $FreeBSD$ */ #ifndef _SYS_MALLOC_H_ #define _SYS_MALLOC_H_ #ifndef _STANDALONE #include #ifdef _KERNEL #include #endif #include #include #include #include #define MINALLOCSIZE UMA_SMALLEST_UNIT /* * Flags to memory allocation functions. */ #define M_NOWAIT 0x0001 /* do not block */ #define M_WAITOK 0x0002 /* ok to block */ #define M_ZERO 0x0100 /* bzero the allocation */ #define M_NOVM 0x0200 /* don't ask VM for pages */ #define M_USE_RESERVE 0x0400 /* can alloc out of reserve memory */ #define M_NODUMP 0x0800 /* don't dump pages in this allocation */ #define M_FIRSTFIT 0x1000 /* only for vmem, fast fit */ #define M_BESTFIT 0x2000 /* only for vmem, low fragmentation */ #define M_EXEC 0x4000 /* allocate executable space */ #define M_NEXTFIT 0x8000 /* only for vmem, follow cursor */ #define M_VERSION 2020110501 /* * Two malloc type structures are present: malloc_type, which is used by a * type owner to declare the type, and malloc_type_internal, which holds * malloc-owned statistics and other ABI-sensitive fields, such as the set of * malloc statistics indexed by the compile-time MAXCPU constant. * Applications should avoid introducing dependence on the allocator private * data layout and size. * * The malloc_type ks_next field is protected by malloc_mtx. Other fields in * malloc_type are static after initialization so unsynchronized. * * Statistics in malloc_type_stats are written only when holding a critical * section and running on the CPU associated with the index into the stat * array, but read lock-free resulting in possible (minor) races, which the * monitoring app should take into account. */ struct malloc_type_stats { uint64_t mts_memalloced; /* Bytes allocated on CPU. */ uint64_t mts_memfreed; /* Bytes freed on CPU. */ uint64_t mts_numallocs; /* Number of allocates on CPU. */ uint64_t mts_numfrees; /* number of frees on CPU. */ uint64_t mts_size; /* Bitmask of sizes allocated on CPU. */ uint64_t _mts_reserved1; /* Reserved field. */ uint64_t _mts_reserved2; /* Reserved field. */ uint64_t _mts_reserved3; /* Reserved field. */ }; _Static_assert(sizeof(struct malloc_type_stats) == 64, "allocations come from pcpu_zone_64"); /* * Index definitions for the mti_probes[] array. */ #define DTMALLOC_PROBE_MALLOC 0 #define DTMALLOC_PROBE_FREE 1 #define DTMALLOC_PROBE_MAX 2 struct malloc_type_internal { uint32_t mti_probes[DTMALLOC_PROBE_MAX]; /* DTrace probe ID array. */ u_char mti_zone; struct malloc_type_stats *mti_stats; u_long mti_spare[8]; }; /* * Public data structure describing a malloc type. */ struct malloc_type { struct malloc_type *ks_next; /* Next in global chain. */ u_long ks_version; /* Detect programmer error. */ const char *ks_shortdesc; /* Printable type name. */ struct malloc_type_internal ks_mti; }; /* * Statistics structure headers for user space. The kern.malloc sysctl * exposes a structure stream consisting of a stream header, then a series of * malloc type headers and statistics structures (quantity maxcpus). For * convenience, the kernel will provide the current value of maxcpus at the * head of the stream. */ #define MALLOC_TYPE_STREAM_VERSION 0x00000001 struct malloc_type_stream_header { uint32_t mtsh_version; /* Stream format version. */ uint32_t mtsh_maxcpus; /* Value of MAXCPU for stream. */ uint32_t mtsh_count; /* Number of records. */ uint32_t _mtsh_pad; /* Pad/reserved field. */ }; #define MALLOC_MAX_NAME 32 struct malloc_type_header { char mth_name[MALLOC_MAX_NAME]; }; #ifdef _KERNEL #define MALLOC_DEFINE(type, shortdesc, longdesc) \ struct malloc_type type[1] = { \ { \ .ks_next = NULL, \ .ks_version = M_VERSION, \ .ks_shortdesc = shortdesc, \ } \ }; \ SYSINIT(type##_init, SI_SUB_KMEM, SI_ORDER_THIRD, malloc_init, \ type); \ SYSUNINIT(type##_uninit, SI_SUB_KMEM, SI_ORDER_ANY, \ malloc_uninit, type) #define MALLOC_DECLARE(type) \ extern struct malloc_type type[1] MALLOC_DECLARE(M_CACHE); MALLOC_DECLARE(M_DEVBUF); MALLOC_DECLARE(M_TEMP); /* * XXX this should be declared in , but that tends to fail * because is included in a header before the source file * has a chance to include to get MALLOC_DECLARE() defined. */ MALLOC_DECLARE(M_IOV); struct domainset; extern struct mtx malloc_mtx; /* * Function type used when iterating over the list of malloc types. */ typedef void malloc_type_list_func_t(struct malloc_type *, void *); void contigfree(void *addr, unsigned long size, struct malloc_type *type); void *contigmalloc(unsigned long size, struct malloc_type *type, int flags, vm_paddr_t low, vm_paddr_t high, unsigned long alignment, vm_paddr_t boundary) __malloc_like __result_use_check __alloc_size(1) __alloc_align(6); void *contigmalloc_domainset(unsigned long size, struct malloc_type *type, struct domainset *ds, int flags, vm_paddr_t low, vm_paddr_t high, unsigned long alignment, vm_paddr_t boundary) __malloc_like __result_use_check __alloc_size(1) __alloc_align(7); void free(void *addr, struct malloc_type *type); void zfree(void *addr, struct malloc_type *type); void *malloc(size_t size, struct malloc_type *type, int flags) __malloc_like __result_use_check __alloc_size(1); /* * Try to optimize malloc(..., ..., M_ZERO) allocations by doing zeroing in * place if the size is known at compilation time. * * Passing the flag down requires malloc to blindly zero the entire object. * In practice a lot of the zeroing can be avoided if most of the object * gets explicitly initialized after the allocation. Letting the compiler * zero in place gives it the opportunity to take advantage of this state. * * Note that the operation is only applicable if both flags and size are * known at compilation time. If M_ZERO is passed but M_WAITOK is not, the * allocation can fail and a NULL check is needed. However, if M_WAITOK is * passed we know the allocation must succeed and the check can be elided. * * _malloc_item = malloc(_size, type, (flags) &~ M_ZERO); * if (((flags) & M_WAITOK) != 0 || _malloc_item != NULL) * bzero(_malloc_item, _size); * * If the flag is set, the compiler knows the left side is always true, * therefore the entire statement is true and the callsite is: * * _malloc_item = malloc(_size, type, (flags) &~ M_ZERO); * bzero(_malloc_item, _size); * * If the flag is not set, the compiler knows the left size is always false * and the NULL check is needed, therefore the callsite is: * * _malloc_item = malloc(_size, type, (flags) &~ M_ZERO); * if (_malloc_item != NULL) * bzero(_malloc_item, _size); * * The implementation is a macro because of what appears to be a clang 6 bug: * an inline function variant ended up being compiled to a mere malloc call * regardless of argument. gcc generates expected code (like the above). */ #define malloc(size, type, flags) ({ \ void *_malloc_item; \ size_t _size = (size); \ if (__builtin_constant_p(size) && __builtin_constant_p(flags) &&\ ((flags) & M_ZERO) != 0) { \ _malloc_item = malloc(_size, type, (flags) &~ M_ZERO); \ if (((flags) & M_WAITOK) != 0 || \ __predict_true(_malloc_item != NULL)) \ bzero(_malloc_item, _size); \ } else { \ _malloc_item = malloc(_size, type, flags); \ } \ _malloc_item; \ }) void *malloc_domainset(size_t size, struct malloc_type *type, struct domainset *ds, int flags) __malloc_like __result_use_check __alloc_size(1); void *mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags) __malloc_like __result_use_check __alloc_size2(1, 2); void *mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, struct domainset *ds, int flags) __malloc_like __result_use_check __alloc_size2(1, 2); void *malloc_exec(size_t size, struct malloc_type *type, int flags) __malloc_like __result_use_check __alloc_size(1); void *malloc_domainset_exec(size_t size, struct malloc_type *type, struct domainset *ds, int flags) __malloc_like __result_use_check __alloc_size(1); void malloc_init(void *); void malloc_type_allocated(struct malloc_type *type, unsigned long size); void malloc_type_freed(struct malloc_type *type, unsigned long size); void malloc_type_list(malloc_type_list_func_t *, void *); void malloc_uninit(void *); size_t malloc_size(size_t); size_t malloc_usable_size(const void *); void *realloc(void *addr, size_t size, struct malloc_type *type, int flags) __result_use_check __alloc_size(2); void *reallocf(void *addr, size_t size, struct malloc_type *type, int flags) __result_use_check __alloc_size(2); +void *malloc_aligned(size_t size, size_t align, struct malloc_type *type, + int flags) __malloc_like __result_use_check __alloc_size(1); void *malloc_domainset_aligned(size_t size, size_t align, struct malloc_type *mtp, struct domainset *ds, int flags) __malloc_like __result_use_check __alloc_size(1); struct malloc_type *malloc_desc2type(const char *desc); /* * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW */ #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 8 / 2)) static inline bool WOULD_OVERFLOW(size_t nmemb, size_t size) { return ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) && nmemb > 0 && __SIZE_T_MAX / nmemb < size); } #undef MUL_NO_OVERFLOW #endif /* _KERNEL */ #else /* * The native stand malloc / free interface we're mapping to */ extern void Free(void *p, const char *file, int line); extern void *Malloc(size_t bytes, const char *file, int line); /* * Minimal standalone malloc implementation / environment. None of the * flags mean anything and there's no need declare malloc types. * Define the simple alloc / free routines in terms of Malloc and * Free. None of the kernel features that this stuff disables are needed. */ #define M_WAITOK 1 #define M_ZERO 0 #define M_NOWAIT 2 #define MALLOC_DECLARE(x) #define kmem_zalloc(size, flags) ({ \ void *p = Malloc((size), __FILE__, __LINE__); \ if (p == NULL && (flags & M_WAITOK) != 0) \ panic("Could not malloc %zd bytes with M_WAITOK from %s line %d", \ (size_t)size, __FILE__, __LINE__); \ p; \ }) #define kmem_free(p, size) Free(p, __FILE__, __LINE__) /* * ZFS mem.h define that's the OpenZFS porting layer way of saying * M_WAITOK. Given the above, it will also be a nop. */ #define KM_SLEEP M_WAITOK #define KM_NOSLEEP M_NOWAIT #endif /* _STANDALONE */ #endif /* !_SYS_MALLOC_H_ */