diff --git a/sys/kern/kern_prot.c b/sys/kern/kern_prot.c
index ed15cb566499..1e6073b554e4 100644
--- a/sys/kern/kern_prot.c
+++ b/sys/kern/kern_prot.c
@@ -1,2502 +1,2521 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993
  *	The Regents of the University of California.
  * (c) UNIX System Laboratories, Inc.
  * Copyright (c) 2000-2001 Robert N. M. Watson.
  * All rights reserved.
  *
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)kern_prot.c	8.6 (Berkeley) 1/21/94
  */
 
 /*
  * System calls related to processes and protection
  */
 
 #include <sys/cdefs.h>
 #include "opt_inet.h"
 #include "opt_inet6.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/acct.h>
 #include <sys/kdb.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/loginclass.h>
 #include <sys/malloc.h>
 #include <sys/mutex.h>
 #include <sys/ptrace.h>
 #include <sys/refcount.h>
 #include <sys/sx.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #ifdef COMPAT_43
 #include <sys/sysent.h>
 #endif
 #include <sys/sysproto.h>
 #include <sys/jail.h>
 #include <sys/racct.h>
 #include <sys/rctl.h>
 #include <sys/resourcevar.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysctl.h>
 
 #ifdef REGRESSION
 FEATURE(regression,
     "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)");
 #endif
 
 #include <security/audit/audit.h>
 #include <security/mac/mac_framework.h>
 
 static MALLOC_DEFINE(M_CRED, "cred", "credentials");
 
 SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "BSD security policy");
 
 static void crfree_final(struct ucred *cr);
 static void crsetgroups_locked(struct ucred *cr, int ngrp,
     gid_t *groups);
 
 #ifndef _SYS_SYSPROTO_H_
 struct getpid_args {
 	int	dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getpid(struct thread *td, struct getpid_args *uap)
 {
 	struct proc *p = td->td_proc;
 
 	td->td_retval[0] = p->p_pid;
 #if defined(COMPAT_43)
 	if (SV_PROC_FLAG(p, SV_AOUT))
 		td->td_retval[1] = kern_getppid(td);
 #endif
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getppid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getppid(struct thread *td, struct getppid_args *uap)
 {
 
 	td->td_retval[0] = kern_getppid(td);
 	return (0);
 }
 
 int
 kern_getppid(struct thread *td)
 {
 	struct proc *p = td->td_proc;
 
 	return (p->p_oppid);
 }
 
 /*
  * Get process group ID; note that POSIX getpgrp takes no parameter.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getpgrp_args {
         int     dummy;
 };
 #endif
 int
 sys_getpgrp(struct thread *td, struct getpgrp_args *uap)
 {
 	struct proc *p = td->td_proc;
 
 	PROC_LOCK(p);
 	td->td_retval[0] = p->p_pgrp->pg_id;
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 /* Get an arbitrary pid's process group id */
 #ifndef _SYS_SYSPROTO_H_
 struct getpgid_args {
 	pid_t	pid;
 };
 #endif
 int
 sys_getpgid(struct thread *td, struct getpgid_args *uap)
 {
 	struct proc *p;
 	int error;
 
 	if (uap->pid == 0) {
 		p = td->td_proc;
 		PROC_LOCK(p);
 	} else {
 		p = pfind(uap->pid);
 		if (p == NULL)
 			return (ESRCH);
 		error = p_cansee(td, p);
 		if (error) {
 			PROC_UNLOCK(p);
 			return (error);
 		}
 	}
 	td->td_retval[0] = p->p_pgrp->pg_id;
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 /*
  * Get an arbitrary pid's session id.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getsid_args {
 	pid_t	pid;
 };
 #endif
 int
 sys_getsid(struct thread *td, struct getsid_args *uap)
 {
 
 	return (kern_getsid(td, uap->pid));
 }
 
 int
 kern_getsid(struct thread *td, pid_t pid)
 {
 	struct proc *p;
 	int error;
 
 	if (pid == 0) {
 		p = td->td_proc;
 		PROC_LOCK(p);
 	} else {
 		p = pfind(pid);
 		if (p == NULL)
 			return (ESRCH);
 		error = p_cansee(td, p);
 		if (error) {
 			PROC_UNLOCK(p);
 			return (error);
 		}
 	}
 	td->td_retval[0] = p->p_session->s_sid;
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getuid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getuid(struct thread *td, struct getuid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_ruid;
 #if defined(COMPAT_43)
 	td->td_retval[1] = td->td_ucred->cr_uid;
 #endif
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct geteuid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_geteuid(struct thread *td, struct geteuid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_uid;
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getgid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getgid(struct thread *td, struct getgid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_rgid;
 #if defined(COMPAT_43)
 	td->td_retval[1] = td->td_ucred->cr_groups[0];
 #endif
 	return (0);
 }
 
 /*
  * Get effective group ID.  The "egid" is groups[0], and could be obtained
  * via getgroups.  This syscall exists because it is somewhat painful to do
  * correctly in a library function.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getegid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getegid(struct thread *td, struct getegid_args *uap)
 {
 
 	td->td_retval[0] = td->td_ucred->cr_groups[0];
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getgroups_args {
 	int	gidsetsize;
 	gid_t	*gidset;
 };
 #endif
 int
 sys_getgroups(struct thread *td, struct getgroups_args *uap)
 {
 	struct ucred *cred;
 	int ngrp, error;
 
 	cred = td->td_ucred;
 	ngrp = cred->cr_ngroups;
 
 	if (uap->gidsetsize == 0) {
 		error = 0;
 		goto out;
 	}
 	if (uap->gidsetsize < ngrp)
 		return (EINVAL);
 
 	error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t));
 out:
 	td->td_retval[0] = ngrp;
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setsid_args {
         int     dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setsid(struct thread *td, struct setsid_args *uap)
 {
 	struct pgrp *pgrp;
 	int error;
 	struct proc *p = td->td_proc;
 	struct pgrp *newpgrp;
 	struct session *newsess;
 
 	pgrp = NULL;
 
 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
 	newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO);
 
 again:
 	error = 0;
 	sx_xlock(&proctree_lock);
 
 	if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) {
 		if (pgrp != NULL)
 			PGRP_UNLOCK(pgrp);
 		error = EPERM;
 	} else {
 		error = enterpgrp(p, p->p_pid, newpgrp, newsess);
 		if (error == ERESTART)
 			goto again;
 		MPASS(error == 0);
 		td->td_retval[0] = p->p_pid;
 		newpgrp = NULL;
 		newsess = NULL;
 	}
 
 	sx_xunlock(&proctree_lock);
 
 	uma_zfree(pgrp_zone, newpgrp);
 	free(newsess, M_SESSION);
 
 	return (error);
 }
 
 /*
  * set process group (setpgid/old setpgrp)
  *
  * caller does setpgid(targpid, targpgid)
  *
  * pid must be caller or child of caller (ESRCH)
  * if a child
  *	pid must be in same session (EPERM)
  *	pid can't have done an exec (EACCES)
  * if pgid != pid
  * 	there must exist some pid in same session having pgid (EPERM)
  * pid must not be session leader (EPERM)
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setpgid_args {
 	int	pid;		/* target process id */
 	int	pgid;		/* target pgrp id */
 };
 #endif
 /* ARGSUSED */
 int
 sys_setpgid(struct thread *td, struct setpgid_args *uap)
 {
 	struct proc *curp = td->td_proc;
 	struct proc *targp;	/* target process */
 	struct pgrp *pgrp;	/* target pgrp */
 	int error;
 	struct pgrp *newpgrp;
 
 	if (uap->pgid < 0)
 		return (EINVAL);
 
 	newpgrp = uma_zalloc(pgrp_zone, M_WAITOK);
 
 again:
 	error = 0;
 
 	sx_xlock(&proctree_lock);
 	if (uap->pid != 0 && uap->pid != curp->p_pid) {
 		if ((targp = pfind(uap->pid)) == NULL) {
 			error = ESRCH;
 			goto done;
 		}
 		if (!inferior(targp)) {
 			PROC_UNLOCK(targp);
 			error = ESRCH;
 			goto done;
 		}
 		if ((error = p_cansee(td, targp))) {
 			PROC_UNLOCK(targp);
 			goto done;
 		}
 		if (targp->p_pgrp == NULL ||
 		    targp->p_session != curp->p_session) {
 			PROC_UNLOCK(targp);
 			error = EPERM;
 			goto done;
 		}
 		if (targp->p_flag & P_EXEC) {
 			PROC_UNLOCK(targp);
 			error = EACCES;
 			goto done;
 		}
 		PROC_UNLOCK(targp);
 	} else
 		targp = curp;
 	if (SESS_LEADER(targp)) {
 		error = EPERM;
 		goto done;
 	}
 	if (uap->pgid == 0)
 		uap->pgid = targp->p_pid;
 	if ((pgrp = pgfind(uap->pgid)) == NULL) {
 		if (uap->pgid == targp->p_pid) {
 			error = enterpgrp(targp, uap->pgid, newpgrp,
 			    NULL);
 			if (error == 0)
 				newpgrp = NULL;
 		} else
 			error = EPERM;
 	} else {
 		if (pgrp == targp->p_pgrp) {
 			PGRP_UNLOCK(pgrp);
 			goto done;
 		}
 		if (pgrp->pg_id != targp->p_pid &&
 		    pgrp->pg_session != curp->p_session) {
 			PGRP_UNLOCK(pgrp);
 			error = EPERM;
 			goto done;
 		}
 		PGRP_UNLOCK(pgrp);
 		error = enterthispgrp(targp, pgrp);
 	}
 done:
 	KASSERT(error == 0 || newpgrp != NULL,
 	    ("setpgid failed and newpgrp is NULL"));
 	if (error == ERESTART)
 		goto again;
 	sx_xunlock(&proctree_lock);
 	uma_zfree(pgrp_zone, newpgrp);
 	return (error);
 }
 
 /*
  * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD
  * compatible.  It says that setting the uid/gid to euid/egid is a special
  * case of "appropriate privilege".  Once the rules are expanded out, this
  * basically means that setuid(nnn) sets all three id's, in all permitted
  * cases unless _POSIX_SAVED_IDS is enabled.  In that case, setuid(getuid())
  * does not set the saved id - this is dangerous for traditional BSD
  * programs.  For this reason, we *really* do not want to set
  * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2.
  */
 #define POSIX_APPENDIX_B_4_2_2
 
 #ifndef _SYS_SYSPROTO_H_
 struct setuid_args {
 	uid_t	uid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setuid(struct thread *td, struct setuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t uid;
 	struct uidinfo *uip;
 	int error;
 
 	uid = uap->uid;
 	AUDIT_ARG_UID(uid);
 	newcred = crget();
 	uip = uifind(uid);
 	PROC_LOCK(p);
 	/*
 	 * Copy credentials so other references do not see our changes.
 	 */
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setuid(oldcred, uid);
 	if (error)
 		goto fail;
 #endif
 
 	/*
 	 * See if we have "permission" by POSIX 1003.1 rules.
 	 *
 	 * Note that setuid(geteuid()) is a special case of
 	 * "appropriate privileges" in appendix B.4.2.2.  We need
 	 * to use this clause to be compatible with traditional BSD
 	 * semantics.  Basically, it means that "setuid(xx)" sets all
 	 * three id's (assuming you have privs).
 	 *
 	 * Notes on the logic.  We do things in three steps.
 	 * 1: We determine if the euid is going to change, and do EPERM
 	 *    right away.  We unconditionally change the euid later if this
 	 *    test is satisfied, simplifying that part of the logic.
 	 * 2: We determine if the real and/or saved uids are going to
 	 *    change.  Determined by compile options.
 	 * 3: Change euid last. (after tests in #2 for "appropriate privs")
 	 */
 	if (uid != oldcred->cr_ruid &&		/* allow setuid(getuid()) */
 #ifdef _POSIX_SAVED_IDS
 	    uid != oldcred->cr_svuid &&		/* allow setuid(saved gid) */
 #endif
 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
 	    uid != oldcred->cr_uid &&		/* allow setuid(geteuid()) */
 #endif
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0)
 		goto fail;
 
 #ifdef _POSIX_SAVED_IDS
 	/*
 	 * Do we have "appropriate privileges" (are we root or uid == euid)
 	 * If so, we are changing the real uid and/or saved uid.
 	 */
 	if (
 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use the clause from B.4.2.2 */
 	    uid == oldcred->cr_uid ||
 #endif
 	    /* We are using privs. */
 	    priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0)
 #endif
 	{
 		/*
 		 * Set the real uid and transfer proc count to new user.
 		 */
 		if (uid != oldcred->cr_ruid) {
 			change_ruid(newcred, uip);
 			setsugid(p);
 		}
 		/*
 		 * Set saved uid
 		 *
 		 * XXX always set saved uid even if not _POSIX_SAVED_IDS, as
 		 * the security of seteuid() depends on it.  B.4.2.2 says it
 		 * is important that we should do this.
 		 */
 		if (uid != oldcred->cr_svuid) {
 			change_svuid(newcred, uid);
 			setsugid(p);
 		}
 	}
 
 	/*
 	 * In all permitted cases, we are changing the euid.
 	 */
 	if (uid != oldcred->cr_uid) {
 		change_euid(newcred, uip);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 #ifdef RACCT
 	racct_proc_ucred_changed(p, oldcred, newcred);
 	crhold(newcred);
 #endif
 	PROC_UNLOCK(p);
 #ifdef RCTL
 	rctl_proc_ucred_changed(p, newcred);
 	crfree(newcred);
 #endif
 	uifree(uip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(uip);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct seteuid_args {
 	uid_t	euid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_seteuid(struct thread *td, struct seteuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t euid;
 	struct uidinfo *euip;
 	int error;
 
 	euid = uap->euid;
 	AUDIT_ARG_EUID(euid);
 	newcred = crget();
 	euip = uifind(euid);
 	PROC_LOCK(p);
 	/*
 	 * Copy credentials so other references do not see our changes.
 	 */
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_seteuid(oldcred, euid);
 	if (error)
 		goto fail;
 #endif
 
 	if (euid != oldcred->cr_ruid &&		/* allow seteuid(getuid()) */
 	    euid != oldcred->cr_svuid &&	/* allow seteuid(saved uid) */
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0)
 		goto fail;
 
 	/*
 	 * Everything's okay, do it.
 	 */
 	if (oldcred->cr_uid != euid) {
 		change_euid(newcred, euip);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	uifree(euip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(euip);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setgid_args {
 	gid_t	gid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setgid(struct thread *td, struct setgid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t gid;
 	int error;
 
 	gid = uap->gid;
 	AUDIT_ARG_GID(gid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setgid(oldcred, gid);
 	if (error)
 		goto fail;
 #endif
 
 	/*
 	 * See if we have "permission" by POSIX 1003.1 rules.
 	 *
 	 * Note that setgid(getegid()) is a special case of
 	 * "appropriate privileges" in appendix B.4.2.2.  We need
 	 * to use this clause to be compatible with traditional BSD
 	 * semantics.  Basically, it means that "setgid(xx)" sets all
 	 * three id's (assuming you have privs).
 	 *
 	 * For notes on the logic here, see setuid() above.
 	 */
 	if (gid != oldcred->cr_rgid &&		/* allow setgid(getgid()) */
 #ifdef _POSIX_SAVED_IDS
 	    gid != oldcred->cr_svgid &&		/* allow setgid(saved gid) */
 #endif
 #ifdef POSIX_APPENDIX_B_4_2_2	/* Use BSD-compat clause from B.4.2.2 */
 	    gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */
 #endif
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0)
 		goto fail;
 
 #ifdef _POSIX_SAVED_IDS
 	/*
 	 * Do we have "appropriate privileges" (are we root or gid == egid)
 	 * If so, we are changing the real uid and saved gid.
 	 */
 	if (
 #ifdef POSIX_APPENDIX_B_4_2_2	/* use the clause from B.4.2.2 */
 	    gid == oldcred->cr_groups[0] ||
 #endif
 	    /* We are using privs. */
 	    priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0)
 #endif
 	{
 		/*
 		 * Set real gid
 		 */
 		if (oldcred->cr_rgid != gid) {
 			change_rgid(newcred, gid);
 			setsugid(p);
 		}
 		/*
 		 * Set saved gid
 		 *
 		 * XXX always set saved gid even if not _POSIX_SAVED_IDS, as
 		 * the security of setegid() depends on it.  B.4.2.2 says it
 		 * is important that we should do this.
 		 */
 		if (oldcred->cr_svgid != gid) {
 			change_svgid(newcred, gid);
 			setsugid(p);
 		}
 	}
 	/*
 	 * In all cases permitted cases, we are changing the egid.
 	 * Copy credentials so other references do not see our changes.
 	 */
 	if (oldcred->cr_groups[0] != gid) {
 		change_egid(newcred, gid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setegid_args {
 	gid_t	egid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setegid(struct thread *td, struct setegid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t egid;
 	int error;
 
 	egid = uap->egid;
 	AUDIT_ARG_EGID(egid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setegid(oldcred, egid);
 	if (error)
 		goto fail;
 #endif
 
 	if (egid != oldcred->cr_rgid &&		/* allow setegid(getgid()) */
 	    egid != oldcred->cr_svgid &&	/* allow setegid(saved gid) */
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0)
 		goto fail;
 
 	if (oldcred->cr_groups[0] != egid) {
 		change_egid(newcred, egid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setgroups_args {
 	int	gidsetsize;
 	gid_t	*gidset;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setgroups(struct thread *td, struct setgroups_args *uap)
 {
 	gid_t smallgroups[XU_NGROUPS];
 	gid_t *groups;
 	int gidsetsize, error;
 
 	gidsetsize = uap->gidsetsize;
 	if (gidsetsize > ngroups_max + 1 || gidsetsize < 0)
 		return (EINVAL);
 
 	if (gidsetsize > XU_NGROUPS)
 		groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK);
 	else
 		groups = smallgroups;
 
 	error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t));
 	if (error == 0)
 		error = kern_setgroups(td, gidsetsize, groups);
 
 	if (gidsetsize > XU_NGROUPS)
 		free(groups, M_TEMP);
 	return (error);
 }
 
 int
 kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	int error;
 
 	MPASS(ngrp <= ngroups_max + 1);
 	AUDIT_ARG_GROUPSET(groups, ngrp);
 	newcred = crget();
 	crextend(newcred, ngrp);
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setgroups(oldcred, ngrp, groups);
 	if (error)
 		goto fail;
 #endif
 
 	error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS);
 	if (error)
 		goto fail;
 
 	if (ngrp == 0) {
 		/*
 		 * setgroups(0, NULL) is a legitimate way of clearing the
 		 * groups vector on non-BSD systems (which generally do not
 		 * have the egid in the groups[0]).  We risk security holes
 		 * when running non-BSD software if we do not do the same.
 		 */
 		newcred->cr_ngroups = 1;
 	} else {
 		crsetgroups_locked(newcred, ngrp, groups);
 	}
 	setsugid(p);
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setreuid_args {
 	uid_t	ruid;
 	uid_t	euid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setreuid(struct thread *td, struct setreuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t euid, ruid;
 	struct uidinfo *euip, *ruip;
 	int error;
 
 	euid = uap->euid;
 	ruid = uap->ruid;
 	AUDIT_ARG_EUID(euid);
 	AUDIT_ARG_RUID(ruid);
 	newcred = crget();
 	euip = uifind(euid);
 	ruip = uifind(ruid);
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setreuid(oldcred, ruid, euid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
 	      ruid != oldcred->cr_svuid) ||
 	     (euid != (uid_t)-1 && euid != oldcred->cr_uid &&
 	      euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0)
 		goto fail;
 
 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
 		change_euid(newcred, euip);
 		setsugid(p);
 	}
 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
 		change_ruid(newcred, ruip);
 		setsugid(p);
 	}
 	if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) &&
 	    newcred->cr_svuid != newcred->cr_uid) {
 		change_svuid(newcred, newcred->cr_uid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 #ifdef RACCT
 	racct_proc_ucred_changed(p, oldcred, newcred);
 	crhold(newcred);
 #endif
 	PROC_UNLOCK(p);
 #ifdef RCTL
 	rctl_proc_ucred_changed(p, newcred);
 	crfree(newcred);
 #endif
 	uifree(ruip);
 	uifree(euip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(ruip);
 	uifree(euip);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct setregid_args {
 	gid_t	rgid;
 	gid_t	egid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setregid(struct thread *td, struct setregid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t egid, rgid;
 	int error;
 
 	egid = uap->egid;
 	rgid = uap->rgid;
 	AUDIT_ARG_EGID(egid);
 	AUDIT_ARG_RGID(rgid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setregid(oldcred, rgid, egid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
 	    rgid != oldcred->cr_svgid) ||
 	     (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] &&
 	     egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0)
 		goto fail;
 
 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
 		change_egid(newcred, egid);
 		setsugid(p);
 	}
 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
 		change_rgid(newcred, rgid);
 		setsugid(p);
 	}
 	if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) &&
 	    newcred->cr_svgid != newcred->cr_groups[0]) {
 		change_svgid(newcred, newcred->cr_groups[0]);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 /*
  * setresuid(ruid, euid, suid) is like setreuid except control over the saved
  * uid is explicit.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setresuid_args {
 	uid_t	ruid;
 	uid_t	euid;
 	uid_t	suid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setresuid(struct thread *td, struct setresuid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	uid_t euid, ruid, suid;
 	struct uidinfo *euip, *ruip;
 	int error;
 
 	euid = uap->euid;
 	ruid = uap->ruid;
 	suid = uap->suid;
 	AUDIT_ARG_EUID(euid);
 	AUDIT_ARG_RUID(ruid);
 	AUDIT_ARG_SUID(suid);
 	newcred = crget();
 	euip = uifind(euid);
 	ruip = uifind(ruid);
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setresuid(oldcred, ruid, euid, suid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid &&
 	     ruid != oldcred->cr_svuid &&
 	      ruid != oldcred->cr_uid) ||
 	     (euid != (uid_t)-1 && euid != oldcred->cr_ruid &&
 	    euid != oldcred->cr_svuid &&
 	      euid != oldcred->cr_uid) ||
 	     (suid != (uid_t)-1 && suid != oldcred->cr_ruid &&
 	    suid != oldcred->cr_svuid &&
 	      suid != oldcred->cr_uid)) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0)
 		goto fail;
 
 	if (euid != (uid_t)-1 && oldcred->cr_uid != euid) {
 		change_euid(newcred, euip);
 		setsugid(p);
 	}
 	if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) {
 		change_ruid(newcred, ruip);
 		setsugid(p);
 	}
 	if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) {
 		change_svuid(newcred, suid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 #ifdef RACCT
 	racct_proc_ucred_changed(p, oldcred, newcred);
 	crhold(newcred);
 #endif
 	PROC_UNLOCK(p);
 #ifdef RCTL
 	rctl_proc_ucred_changed(p, newcred);
 	crfree(newcred);
 #endif
 	uifree(ruip);
 	uifree(euip);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	uifree(ruip);
 	uifree(euip);
 	crfree(newcred);
 	return (error);
 
 }
 
 /*
  * setresgid(rgid, egid, sgid) is like setregid except control over the saved
  * gid is explicit.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setresgid_args {
 	gid_t	rgid;
 	gid_t	egid;
 	gid_t	sgid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setresgid(struct thread *td, struct setresgid_args *uap)
 {
 	struct proc *p = td->td_proc;
 	struct ucred *newcred, *oldcred;
 	gid_t egid, rgid, sgid;
 	int error;
 
 	egid = uap->egid;
 	rgid = uap->rgid;
 	sgid = uap->sgid;
 	AUDIT_ARG_EGID(egid);
 	AUDIT_ARG_RGID(rgid);
 	AUDIT_ARG_SGID(sgid);
 	newcred = crget();
 	PROC_LOCK(p);
 	oldcred = crcopysafe(p, newcred);
 
 #ifdef MAC
 	error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid);
 	if (error)
 		goto fail;
 #endif
 
 	if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid &&
 	      rgid != oldcred->cr_svgid &&
 	      rgid != oldcred->cr_groups[0]) ||
 	     (egid != (gid_t)-1 && egid != oldcred->cr_rgid &&
 	      egid != oldcred->cr_svgid &&
 	      egid != oldcred->cr_groups[0]) ||
 	     (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid &&
 	      sgid != oldcred->cr_svgid &&
 	      sgid != oldcred->cr_groups[0])) &&
 	    (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0)
 		goto fail;
 
 	if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) {
 		change_egid(newcred, egid);
 		setsugid(p);
 	}
 	if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) {
 		change_rgid(newcred, rgid);
 		setsugid(p);
 	}
 	if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) {
 		change_svgid(newcred, sgid);
 		setsugid(p);
 	}
 	proc_set_cred(p, newcred);
 	PROC_UNLOCK(p);
 	crfree(oldcred);
 	return (0);
 
 fail:
 	PROC_UNLOCK(p);
 	crfree(newcred);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getresuid_args {
 	uid_t	*ruid;
 	uid_t	*euid;
 	uid_t	*suid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getresuid(struct thread *td, struct getresuid_args *uap)
 {
 	struct ucred *cred;
 	int error1 = 0, error2 = 0, error3 = 0;
 
 	cred = td->td_ucred;
 	if (uap->ruid)
 		error1 = copyout(&cred->cr_ruid,
 		    uap->ruid, sizeof(cred->cr_ruid));
 	if (uap->euid)
 		error2 = copyout(&cred->cr_uid,
 		    uap->euid, sizeof(cred->cr_uid));
 	if (uap->suid)
 		error3 = copyout(&cred->cr_svuid,
 		    uap->suid, sizeof(cred->cr_svuid));
 	return (error1 ? error1 : error2 ? error2 : error3);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct getresgid_args {
 	gid_t	*rgid;
 	gid_t	*egid;
 	gid_t	*sgid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getresgid(struct thread *td, struct getresgid_args *uap)
 {
 	struct ucred *cred;
 	int error1 = 0, error2 = 0, error3 = 0;
 
 	cred = td->td_ucred;
 	if (uap->rgid)
 		error1 = copyout(&cred->cr_rgid,
 		    uap->rgid, sizeof(cred->cr_rgid));
 	if (uap->egid)
 		error2 = copyout(&cred->cr_groups[0],
 		    uap->egid, sizeof(cred->cr_groups[0]));
 	if (uap->sgid)
 		error3 = copyout(&cred->cr_svgid,
 		    uap->sgid, sizeof(cred->cr_svgid));
 	return (error1 ? error1 : error2 ? error2 : error3);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct issetugid_args {
 	int dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_issetugid(struct thread *td, struct issetugid_args *uap)
 {
 	struct proc *p = td->td_proc;
 
 	/*
 	 * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time,
 	 * we use P_SUGID because we consider changing the owners as
 	 * "tainting" as well.
 	 * This is significant for procs that start as root and "become"
 	 * a user without an exec - programs cannot know *everything*
 	 * that libc *might* have put in their data segment.
 	 */
 	td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0;
 	return (0);
 }
 
 int
 sys___setugid(struct thread *td, struct __setugid_args *uap)
 {
 #ifdef REGRESSION
 	struct proc *p;
 
 	p = td->td_proc;
 	switch (uap->flag) {
 	case 0:
 		PROC_LOCK(p);
 		p->p_flag &= ~P_SUGID;
 		PROC_UNLOCK(p);
 		return (0);
 	case 1:
 		PROC_LOCK(p);
 		p->p_flag |= P_SUGID;
 		PROC_UNLOCK(p);
 		return (0);
 	default:
 		return (EINVAL);
 	}
 #else /* !REGRESSION */
 
 	return (ENOSYS);
 #endif /* REGRESSION */
 }
 
 /*
  * Check if gid is a member of the group set.
  */
 int
 groupmember(gid_t gid, struct ucred *cred)
 {
 	int l;
 	int h;
 	int m;
 
 	if (cred->cr_groups[0] == gid)
 		return(1);
 
 	/*
 	 * If gid was not our primary group, perform a binary search
 	 * of the supplemental groups.  This is possible because we
 	 * sort the groups in crsetgroups().
 	 */
 	l = 1;
 	h = cred->cr_ngroups;
 	while (l < h) {
 		m = l + ((h - l) / 2);
 		if (cred->cr_groups[m] < gid)
 			l = m + 1; 
 		else
 			h = m; 
 	}
 	if ((l < cred->cr_ngroups) && (cred->cr_groups[l] == gid))
 		return (1);
 
 	return (0);
 }
 
 /*
  * Test the active securelevel against a given level.  securelevel_gt()
  * implements (securelevel > level).  securelevel_ge() implements
  * (securelevel >= level).  Note that the logic is inverted -- these
  * functions return EPERM on "success" and 0 on "failure".
  *
  * Due to care taken when setting the securelevel, we know that no jail will
  * be less secure that its parent (or the physical system), so it is sufficient
  * to test the current jail only.
  *
  * XXXRW: Possibly since this has to do with privilege, it should move to
  * kern_priv.c.
  */
 int
 securelevel_gt(struct ucred *cr, int level)
 {
 
 	return (cr->cr_prison->pr_securelevel > level ? EPERM : 0);
 }
 
 int
 securelevel_ge(struct ucred *cr, int level)
 {
 
 	return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0);
 }
 
 /*
  * 'see_other_uids' determines whether or not visibility of processes
  * and sockets with credentials holding different real uids is possible
  * using a variety of system MIBs.
  * XXX: data declarations should be together near the beginning of the file.
  */
 static int	see_other_uids = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW,
     &see_other_uids, 0,
     "Unprivileged processes may see subjects/objects with different real uid");
 
 /*-
  * Determine if u1 "can see" the subject specified by u2, according to the
  * 'see_other_uids' policy.
  * Returns: 0 for permitted, ESRCH otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_canseeotheruids(struct ucred *u1, struct ucred *u2)
 {
 
 	if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) {
 		if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0)
 			return (ESRCH);
 	}
 	return (0);
 }
 
 /*
  * 'see_other_gids' determines whether or not visibility of processes
  * and sockets with credentials holding different real gids is possible
  * using a variety of system MIBs.
  * XXX: data declarations should be together near the beginning of the file.
  */
 static int	see_other_gids = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW,
     &see_other_gids, 0,
     "Unprivileged processes may see subjects/objects with different real gid");
 
 /*
  * Determine if u1 can "see" the subject specified by u2, according to the
  * 'see_other_gids' policy.
  * Returns: 0 for permitted, ESRCH otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_canseeothergids(struct ucred *u1, struct ucred *u2)
 {
 	int i, match;
 
 	if (!see_other_gids) {
 		match = 0;
 		for (i = 0; i < u1->cr_ngroups; i++) {
 			if (groupmember(u1->cr_groups[i], u2))
 				match = 1;
 			if (match)
 				break;
 		}
 		if (!match) {
 			if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0)
 				return (ESRCH);
 		}
 	}
 	return (0);
 }
 
 /*
  * 'see_jail_proc' determines whether or not visibility of processes and
  * sockets with credentials holding different jail ids is possible using a
  * variety of system MIBs.
  *
  * XXX: data declarations should be together near the beginning of the file.
  */
 
 static int	see_jail_proc = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW,
     &see_jail_proc, 0,
     "Unprivileged processes may see subjects/objects with different jail ids");
 
 /*-
  * Determine if u1 "can see" the subject specified by u2, according to the
  * 'see_jail_proc' policy.
  * Returns: 0 for permitted, ESRCH otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_canseejailproc(struct ucred *u1, struct ucred *u2)
 {
 	if (see_jail_proc || /* Policy deactivated. */
 	    u1->cr_prison == u2->cr_prison || /* Same jail. */
 	    priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */
 		return (0);
 
 	return (ESRCH);
 }
 
+/*
+ * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_*
+ * policies.  Determines if u1 "can see" u2 according to these policies.
+ * Returns: 0 for permitted, ESRCH otherwise
+ */
+int
+cr_bsd_visible(struct ucred *u1, struct ucred *u2)
+{
+	int error;
+
+	if ((error = cr_canseeotheruids(u1, u2)))
+		return (error);
+	if ((error = cr_canseeothergids(u1, u2)))
+		return (error);
+	if ((error = cr_canseejailproc(u1, u2)))
+		return (error);
+	return (0);
+}
+
 /*-
  * Determine if u1 "can see" the subject specified by u2.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: none
  * References: *u1 and *u2 must not change during the call
  *             u1 may equal u2, in which case only one reference is required
  */
 int
 cr_cansee(struct ucred *u1, struct ucred *u2)
 {
 	int error;
 
 	if ((error = prison_check(u1, u2)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_cred_check_visible(u1, u2)))
 		return (error);
 #endif
 	if ((error = cr_canseeotheruids(u1, u2)))
 		return (error);
 	if ((error = cr_canseeothergids(u1, u2)))
 		return (error);
 	if ((error = cr_canseejailproc(u1, u2)))
 		return (error);
 	return (0);
 }
 
 /*-
  * Determine if td "can see" the subject specified by p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect p->p_ucred must be held.  td really
  *        should be curthread.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_cansee(struct thread *td, struct proc *p)
 {
 	/* Wrap cr_cansee() for all functionality. */
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	if (td->td_proc == p)
 		return (0);
 	return (cr_cansee(td->td_ucred, p->p_ucred));
 }
 
 /*
  * 'conservative_signals' prevents the delivery of a broad class of
  * signals by unprivileged processes to processes that have changed their
  * credentials since the last invocation of execve().  This can prevent
  * the leakage of cached information or retained privileges as a result
  * of a common class of signal-related vulnerabilities.  However, this
  * may interfere with some applications that expect to be able to
  * deliver these signals to peer processes after having given up
  * privilege.
  */
 static int	conservative_signals = 1;
 SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW,
     &conservative_signals, 0, "Unprivileged processes prevented from "
     "sending certain signals to processes whose credentials have changed");
 /*-
  * Determine whether cred may deliver the specified signal to proc.
  * Returns: 0 for permitted, an errno value otherwise.
  * Locks: A lock must be held for proc.
  * References: cred and proc must be valid for the lifetime of the call.
  */
 int
 cr_cansignal(struct ucred *cred, struct proc *proc, int signum)
 {
 	int error;
 
 	PROC_LOCK_ASSERT(proc, MA_OWNED);
 	/*
 	 * Jail semantics limit the scope of signalling to proc in the
 	 * same jail as cred, if cred is in jail.
 	 */
 	error = prison_check(cred, proc->p_ucred);
 	if (error)
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_signal(cred, proc, signum)))
 		return (error);
 #endif
 	if ((error = cr_canseeotheruids(cred, proc->p_ucred)))
 		return (error);
 	if ((error = cr_canseeothergids(cred, proc->p_ucred)))
 		return (error);
 
 	/*
 	 * UNIX signal semantics depend on the status of the P_SUGID
 	 * bit on the target process.  If the bit is set, then additional
 	 * restrictions are placed on the set of available signals.
 	 */
 	if (conservative_signals && (proc->p_flag & P_SUGID)) {
 		switch (signum) {
 		case 0:
 		case SIGKILL:
 		case SIGINT:
 		case SIGTERM:
 		case SIGALRM:
 		case SIGSTOP:
 		case SIGTTIN:
 		case SIGTTOU:
 		case SIGTSTP:
 		case SIGHUP:
 		case SIGUSR1:
 		case SIGUSR2:
 			/*
 			 * Generally, permit job and terminal control
 			 * signals.
 			 */
 			break;
 		default:
 			/* Not permitted without privilege. */
 			error = priv_check_cred(cred, PRIV_SIGNAL_SUGID);
 			if (error)
 				return (error);
 		}
 	}
 
 	/*
 	 * Generally, the target credential's ruid or svuid must match the
 	 * subject credential's ruid or euid.
 	 */
 	if (cred->cr_ruid != proc->p_ucred->cr_ruid &&
 	    cred->cr_ruid != proc->p_ucred->cr_svuid &&
 	    cred->cr_uid != proc->p_ucred->cr_ruid &&
 	    cred->cr_uid != proc->p_ucred->cr_svuid) {
 		error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED);
 		if (error)
 			return (error);
 	}
 
 	return (0);
 }
 
 /*-
  * Determine whether td may deliver the specified signal to p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must be
  *        held for p.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_cansignal(struct thread *td, struct proc *p, int signum)
 {
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (td->td_proc == p)
 		return (0);
 
 	/*
 	 * UNIX signalling semantics require that processes in the same
 	 * session always be able to deliver SIGCONT to one another,
 	 * overriding the remaining protections.
 	 */
 	/* XXX: This will require an additional lock of some sort. */
 	if (signum == SIGCONT && td->td_proc->p_session == p->p_session)
 		return (0);
 	/*
 	 * Some compat layers use SIGTHR and higher signals for
 	 * communication between different kernel threads of the same
 	 * process, so that they expect that it's always possible to
 	 * deliver them, even for suid applications where cr_cansignal() can
 	 * deny such ability for security consideration.  It should be
 	 * pretty safe to do since the only way to create two processes
 	 * with the same p_leader is via rfork(2).
 	 */
 	if (td->td_proc->p_leader != NULL && signum >= SIGTHR &&
 	    signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader)
 		return (0);
 
 	return (cr_cansignal(td->td_ucred, p, signum));
 }
 
 /*-
  * Determine whether td may reschedule p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must
  *        be held for p.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_cansched(struct thread *td, struct proc *p)
 {
 	int error;
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (td->td_proc == p)
 		return (0);
 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_sched(td->td_ucred, p)))
 		return (error);
 #endif
 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
 		return (error);
 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
 		return (error);
 	if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid &&
 	    td->td_ucred->cr_uid != p->p_ucred->cr_ruid) {
 		error = priv_check(td, PRIV_SCHED_DIFFCRED);
 		if (error)
 			return (error);
 	}
 	return (0);
 }
 
 /*
  * Handle getting or setting the prison's unprivileged_proc_debug
  * value.
  */
 static int
 sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS)
 {
 	int error, val;
 
 	val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG);
 	error = sysctl_handle_int(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	if (val != 0 && val != 1)
 		return (EINVAL);
 	prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val);
 	return (0);
 }
 
 /*
  * The 'unprivileged_proc_debug' flag may be used to disable a variety of
  * unprivileged inter-process debugging services, including some procfs
  * functionality, ptrace(), and ktrace().  In the past, inter-process
  * debugging has been involved in a variety of security problems, and sites
  * not requiring the service might choose to disable it when hardening
  * systems.
  */
 SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug,
     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE |
     CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I",
     "Unprivileged processes may use process debugging facilities");
 
 /*-
  * Determine whether td may debug p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must
  *        be held for p.
  * References: td and p must be valid for the lifetime of the call
  */
 int
 p_candebug(struct thread *td, struct proc *p)
 {
 	int error, grpsubset, i, uidsubset;
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (td->td_proc == p)
 		return (0);
 	if ((error = priv_check(td, PRIV_DEBUG_UNPRIV)))
 		return (error);
 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_debug(td->td_ucred, p)))
 		return (error);
 #endif
 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
 		return (error);
 	if ((error = cr_canseeothergids(td->td_ucred, p->p_ucred)))
 		return (error);
 
 	/*
 	 * Is p's group set a subset of td's effective group set?  This
 	 * includes p's egid, group access list, rgid, and svgid.
 	 */
 	grpsubset = 1;
 	for (i = 0; i < p->p_ucred->cr_ngroups; i++) {
 		if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) {
 			grpsubset = 0;
 			break;
 		}
 	}
 	grpsubset = grpsubset &&
 	    groupmember(p->p_ucred->cr_rgid, td->td_ucred) &&
 	    groupmember(p->p_ucred->cr_svgid, td->td_ucred);
 
 	/*
 	 * Are the uids present in p's credential equal to td's
 	 * effective uid?  This includes p's euid, svuid, and ruid.
 	 */
 	uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid &&
 	    td->td_ucred->cr_uid == p->p_ucred->cr_svuid &&
 	    td->td_ucred->cr_uid == p->p_ucred->cr_ruid);
 
 	/*
 	 * If p's gids aren't a subset, or the uids aren't a subset,
 	 * or the credential has changed, require appropriate privilege
 	 * for td to debug p.
 	 */
 	if (!grpsubset || !uidsubset) {
 		error = priv_check(td, PRIV_DEBUG_DIFFCRED);
 		if (error)
 			return (error);
 	}
 
 	/*
 	 * Has the credential of the process changed since the last exec()?
 	 */
 	if ((p->p_flag & P_SUGID) != 0) {
 		error = priv_check(td, PRIV_DEBUG_SUGID);
 		if (error)
 			return (error);
 	}
 
 	/* Can't trace init when securelevel > 0. */
 	if (p == initproc) {
 		error = securelevel_gt(td->td_ucred, 0);
 		if (error)
 			return (error);
 	}
 
 	/*
 	 * Can't trace a process that's currently exec'ing.
 	 *
 	 * XXX: Note, this is not a security policy decision, it's a
 	 * basic correctness/functionality decision.  Therefore, this check
 	 * should be moved to the caller's of p_candebug().
 	 */
 	if ((p->p_flag & P_INEXEC) != 0)
 		return (EBUSY);
 
 	/* Denied explicitly */
 	if ((p->p_flag2 & P2_NOTRACE) != 0) {
 		error = priv_check(td, PRIV_DEBUG_DENIED);
 		if (error != 0)
 			return (error);
 	}
 
 	return (0);
 }
 
 /*-
  * Determine whether the subject represented by cred can "see" a socket.
  * Returns: 0 for permitted, ENOENT otherwise.
  */
 int
 cr_canseesocket(struct ucred *cred, struct socket *so)
 {
 	int error;
 
 	error = prison_check(cred, so->so_cred);
 	if (error)
 		return (ENOENT);
 #ifdef MAC
 	error = mac_socket_check_visible(cred, so);
 	if (error)
 		return (error);
 #endif
 	if (cr_canseeotheruids(cred, so->so_cred))
 		return (ENOENT);
 	if (cr_canseeothergids(cred, so->so_cred))
 		return (ENOENT);
 
 	return (0);
 }
 
 /*-
  * Determine whether td can wait for the exit of p.
  * Returns: 0 for permitted, an errno value otherwise
  * Locks: Sufficient locks to protect various components of td and p
  *        must be held.  td must be curthread, and a lock must
  *        be held for p.
  * References: td and p must be valid for the lifetime of the call
 
  */
 int
 p_canwait(struct thread *td, struct proc *p)
 {
 	int error;
 
 	KASSERT(td == curthread, ("%s: td not curthread", __func__));
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if ((error = prison_check(td->td_ucred, p->p_ucred)))
 		return (error);
 #ifdef MAC
 	if ((error = mac_proc_check_wait(td->td_ucred, p)))
 		return (error);
 #endif
 #if 0
 	/* XXXMAC: This could have odd effects on some shells. */
 	if ((error = cr_canseeotheruids(td->td_ucred, p->p_ucred)))
 		return (error);
 #endif
 
 	return (0);
 }
 
 /*
  * Credential management.
  *
  * struct ucred objects are rarely allocated but gain and lose references all
  * the time (e.g., on struct file alloc/dealloc) turning refcount updates into
  * a significant source of cache-line ping ponging. Common cases are worked
  * around by modifying thread-local counter instead if the cred to operate on
  * matches td_realucred.
  *
  * The counter is split into 2 parts:
  * - cr_users -- total count of all struct proc and struct thread objects
  *   which have given cred in p_ucred and td_ucred respectively
  * - cr_ref -- the actual ref count, only valid if cr_users == 0
  *
  * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if
  * the count reaches 0 the object is freeable.
  * If users > 0 and curthread->td_realucred == cred, then updates are performed
  * against td_ucredref.
  * In other cases updates are performed against cr_ref.
  *
  * Changing td_realucred into something else decrements cr_users and transfers
  * accumulated updates.
  */
 struct ucred *
 crcowget(struct ucred *cr)
 {
 
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_users++;
 	cr->cr_ref++;
 	mtx_unlock(&cr->cr_mtx);
 	return (cr);
 }
 
 static struct ucred *
 crunuse(struct thread *td)
 {
 	struct ucred *cr, *crold;
 
 	MPASS(td->td_realucred == td->td_ucred);
 	cr = td->td_realucred;
 	mtx_lock(&cr->cr_mtx);
 	cr->cr_ref += td->td_ucredref;
 	td->td_ucredref = 0;
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_users--;
 	if (cr->cr_users == 0) {
 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
 		    __func__, cr->cr_ref, cr));
 		crold = cr;
 	} else {
 		cr->cr_ref--;
 		crold = NULL;
 	}
 	mtx_unlock(&cr->cr_mtx);
 	td->td_realucred = NULL;
 	return (crold);
 }
 
 static void
 crunusebatch(struct ucred *cr, int users, int ref)
 {
 
 	KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p",
 	    __func__, users, cr));
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p",
 	    __func__, cr->cr_users, users, cr));
 	cr->cr_users -= users;
 	cr->cr_ref += ref;
 	cr->cr_ref -= users;
 	if (cr->cr_users > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
 	    __func__, cr->cr_ref, cr));
 	if (cr->cr_ref > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	crfree_final(cr);
 }
 
 void
 crcowfree(struct thread *td)
 {
 	struct ucred *cr;
 
 	cr = crunuse(td);
 	if (cr != NULL)
 		crfree(cr);
 }
 
 struct ucred *
 crcowsync(void)
 {
 	struct thread *td;
 	struct proc *p;
 	struct ucred *crnew, *crold;
 
 	td = curthread;
 	p = td->td_proc;
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	MPASS(td->td_realucred == td->td_ucred);
 	if (td->td_realucred == p->p_ucred)
 		return (NULL);
 
 	crnew = crcowget(p->p_ucred);
 	crold = crunuse(td);
 	td->td_realucred = crnew;
 	td->td_ucred = td->td_realucred;
 	return (crold);
 }
 
 /*
  * Batching.
  */
 void
 credbatch_add(struct credbatch *crb, struct thread *td)
 {
 	struct ucred *cr;
 
 	MPASS(td->td_realucred != NULL);
 	MPASS(td->td_realucred == td->td_ucred);
 	MPASS(TD_GET_STATE(td) == TDS_INACTIVE);
 	cr = td->td_realucred;
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	if (crb->cred != cr) {
 		if (crb->users > 0) {
 			MPASS(crb->cred != NULL);
 			crunusebatch(crb->cred, crb->users, crb->ref);
 			crb->users = 0;
 			crb->ref = 0;
 		}
 	}
 	crb->cred = cr;
 	crb->users++;
 	crb->ref += td->td_ucredref;
 	td->td_ucredref = 0;
 	td->td_realucred = NULL;
 }
 
 void
 credbatch_final(struct credbatch *crb)
 {
 
 	MPASS(crb->cred != NULL);
 	MPASS(crb->users > 0);
 	crunusebatch(crb->cred, crb->users, crb->ref);
 }
 
 /*
  * Allocate a zeroed cred structure.
  */
 struct ucred *
 crget(void)
 {
 	struct ucred *cr;
 
 	cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO);
 	mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF);
 	cr->cr_ref = 1;
 #ifdef AUDIT
 	audit_cred_init(cr);
 #endif
 #ifdef MAC
 	mac_cred_init(cr);
 #endif
 	cr->cr_groups = cr->cr_smallgroups;
 	cr->cr_agroups =
 	    sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]);
 	return (cr);
 }
 
 /*
  * Claim another reference to a ucred structure.
  */
 struct ucred *
 crhold(struct ucred *cr)
 {
 	struct thread *td;
 
 	td = curthread;
 	if (__predict_true(td->td_realucred == cr)) {
 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 		    __func__, cr->cr_users, cr));
 		td->td_ucredref++;
 		return (cr);
 	}
 	mtx_lock(&cr->cr_mtx);
 	cr->cr_ref++;
 	mtx_unlock(&cr->cr_mtx);
 	return (cr);
 }
 
 /*
  * Free a cred structure.  Throws away space when ref count gets to 0.
  */
 void
 crfree(struct ucred *cr)
 {
 	struct thread *td;
 
 	td = curthread;
 	if (__predict_true(td->td_realucred == cr)) {
 		KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 		    __func__, cr->cr_users, cr));
 		td->td_ucredref--;
 		return;
 	}
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_ref--;
 	if (cr->cr_users > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	KASSERT(cr->cr_ref >= 0, ("%s: ref %ld not >= 0 on cred %p",
 	    __func__, cr->cr_ref, cr));
 	if (cr->cr_ref > 0) {
 		mtx_unlock(&cr->cr_mtx);
 		return;
 	}
 	crfree_final(cr);
 }
 
 static void
 crfree_final(struct ucred *cr)
 {
 
 	KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	KASSERT(cr->cr_ref == 0, ("%s: ref %ld not == 0 on cred %p",
 	    __func__, cr->cr_ref, cr));
 
 	/*
 	 * Some callers of crget(), such as nfs_statfs(), allocate a temporary
 	 * credential, but don't allocate a uidinfo structure.
 	 */
 	if (cr->cr_uidinfo != NULL)
 		uifree(cr->cr_uidinfo);
 	if (cr->cr_ruidinfo != NULL)
 		uifree(cr->cr_ruidinfo);
 	if (cr->cr_prison != NULL)
 		prison_free(cr->cr_prison);
 	if (cr->cr_loginclass != NULL)
 		loginclass_free(cr->cr_loginclass);
 #ifdef AUDIT
 	audit_cred_destroy(cr);
 #endif
 #ifdef MAC
 	mac_cred_destroy(cr);
 #endif
 	mtx_destroy(&cr->cr_mtx);
 	if (cr->cr_groups != cr->cr_smallgroups)
 		free(cr->cr_groups, M_CRED);
 	free(cr, M_CRED);
 }
 
 /*
  * Copy a ucred's contents from a template.  Does not block.
  */
 void
 crcopy(struct ucred *dest, struct ucred *src)
 {
 
 	KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred"));
 	bcopy(&src->cr_startcopy, &dest->cr_startcopy,
 	    (unsigned)((caddr_t)&src->cr_endcopy -
 		(caddr_t)&src->cr_startcopy));
 	dest->cr_flags = src->cr_flags;
 	crsetgroups(dest, src->cr_ngroups, src->cr_groups);
 	uihold(dest->cr_uidinfo);
 	uihold(dest->cr_ruidinfo);
 	prison_hold(dest->cr_prison);
 	loginclass_hold(dest->cr_loginclass);
 #ifdef AUDIT
 	audit_cred_copy(src, dest);
 #endif
 #ifdef MAC
 	mac_cred_copy(src, dest);
 #endif
 }
 
 /*
  * Dup cred struct to a new held one.
  */
 struct ucred *
 crdup(struct ucred *cr)
 {
 	struct ucred *newcr;
 
 	newcr = crget();
 	crcopy(newcr, cr);
 	return (newcr);
 }
 
 /*
  * Fill in a struct xucred based on a struct ucred.
  */
 void
 cru2x(struct ucred *cr, struct xucred *xcr)
 {
 	int ngroups;
 
 	bzero(xcr, sizeof(*xcr));
 	xcr->cr_version = XUCRED_VERSION;
 	xcr->cr_uid = cr->cr_uid;
 
 	ngroups = MIN(cr->cr_ngroups, XU_NGROUPS);
 	xcr->cr_ngroups = ngroups;
 	bcopy(cr->cr_groups, xcr->cr_groups,
 	    ngroups * sizeof(*cr->cr_groups));
 }
 
 void
 cru2xt(struct thread *td, struct xucred *xcr)
 {
 
 	cru2x(td->td_ucred, xcr);
 	xcr->cr_pid = td->td_proc->p_pid;
 }
 
 /*
  * Set initial process credentials.
  * Callers are responsible for providing the reference for provided credentials.
  */
 void
 proc_set_cred_init(struct proc *p, struct ucred *newcred)
 {
 
 	p->p_ucred = crcowget(newcred);
 }
 
 /*
  * Change process credentials.
  * Callers are responsible for providing the reference for passed credentials
  * and for freeing old ones.
  *
  * Process has to be locked except when it does not have credentials (as it
  * should not be visible just yet) or when newcred is NULL (as this can be
  * only used when the process is about to be freed, at which point it should
  * not be visible anymore).
  */
 void
 proc_set_cred(struct proc *p, struct ucred *newcred)
 {
 	struct ucred *cr;
 
 	cr = p->p_ucred;
 	MPASS(cr != NULL);
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p",
 	    __func__, newcred->cr_users, newcred));
 	mtx_lock(&cr->cr_mtx);
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	cr->cr_users--;
 	mtx_unlock(&cr->cr_mtx);
 	p->p_ucred = newcred;
 	newcred->cr_users = 1;
 	PROC_UPDATE_COW(p);
 }
 
 void
 proc_unset_cred(struct proc *p)
 {
 	struct ucred *cr;
 
 	MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW);
 	cr = p->p_ucred;
 	p->p_ucred = NULL;
 	KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p",
 	    __func__, cr->cr_users, cr));
 	mtx_lock(&cr->cr_mtx);
 	cr->cr_users--;
 	if (cr->cr_users == 0)
 		KASSERT(cr->cr_ref > 0, ("%s: ref %ld not > 0 on cred %p",
 		    __func__, cr->cr_ref, cr));
 	mtx_unlock(&cr->cr_mtx);
 	crfree(cr);
 }
 
 struct ucred *
 crcopysafe(struct proc *p, struct ucred *cr)
 {
 	struct ucred *oldcred;
 	int groups;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	oldcred = p->p_ucred;
 	while (cr->cr_agroups < oldcred->cr_agroups) {
 		groups = oldcred->cr_agroups;
 		PROC_UNLOCK(p);
 		crextend(cr, groups);
 		PROC_LOCK(p);
 		oldcred = p->p_ucred;
 	}
 	crcopy(cr, oldcred);
 
 	return (oldcred);
 }
 
 /*
  * Extend the passed in credential to hold n items.
  */
 void
 crextend(struct ucred *cr, int n)
 {
 	int cnt;
 
 	/* Truncate? */
 	if (n <= cr->cr_agroups)
 		return;
 
 	/*
 	 * We extend by 2 each time since we're using a power of two
 	 * allocator until we need enough groups to fill a page.
 	 * Once we're allocating multiple pages, only allocate as many
 	 * as we actually need.  The case of processes needing a
 	 * non-power of two number of pages seems more likely than
 	 * a real world process that adds thousands of groups one at a
 	 * time.
 	 */
 	if ( n < PAGE_SIZE / sizeof(gid_t) ) {
 		if (cr->cr_agroups == 0)
 			cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t));
 		else
 			cnt = cr->cr_agroups * 2;
 
 		while (cnt < n)
 			cnt *= 2;
 	} else
 		cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t));
 
 	/* Free the old array. */
 	if (cr->cr_groups != cr->cr_smallgroups)
 		free(cr->cr_groups, M_CRED);
 
 	cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO);
 	cr->cr_agroups = cnt;
 }
 
 /*
  * Copy groups in to a credential, preserving any necessary invariants.
  * Currently this includes the sorting of all supplemental gids.
  * crextend() must have been called before hand to ensure sufficient
  * space is available.
  */
 static void
 crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups)
 {
 	int i;
 	int j;
 	gid_t g;
 
 	KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small"));
 
 	bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t));
 	cr->cr_ngroups = ngrp;
 
 	/*
 	 * Sort all groups except cr_groups[0] to allow groupmember to
 	 * perform a binary search.
 	 *
 	 * XXX: If large numbers of groups become common this should
 	 * be replaced with shell sort like linux uses or possibly
 	 * heap sort.
 	 */
 	for (i = 2; i < ngrp; i++) {
 		g = cr->cr_groups[i];
 		for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--)
 			cr->cr_groups[j + 1] = cr->cr_groups[j];
 		cr->cr_groups[j + 1] = g;
 	}
 }
 
 /*
  * Copy groups in to a credential after expanding it if required.
  * Truncate the list to (ngroups_max + 1) if it is too large.
  */
 void
 crsetgroups(struct ucred *cr, int ngrp, gid_t *groups)
 {
 
 	if (ngrp > ngroups_max + 1)
 		ngrp = ngroups_max + 1;
 
 	crextend(cr, ngrp);
 	crsetgroups_locked(cr, ngrp, groups);
 }
 
 /*
  * Get login name, if available.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getlogin_args {
 	char	*namebuf;
 	u_int	namelen;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getlogin(struct thread *td, struct getlogin_args *uap)
 {
 	char login[MAXLOGNAME];
 	struct proc *p = td->td_proc;
 	size_t len;
 
 	if (uap->namelen > MAXLOGNAME)
 		uap->namelen = MAXLOGNAME;
 	PROC_LOCK(p);
 	SESS_LOCK(p->p_session);
 	len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1;
 	SESS_UNLOCK(p->p_session);
 	PROC_UNLOCK(p);
 	if (len > uap->namelen)
 		return (ERANGE);
 	return (copyout(login, uap->namebuf, len));
 }
 
 /*
  * Set login name.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct setlogin_args {
 	char	*namebuf;
 };
 #endif
 /* ARGSUSED */
 int
 sys_setlogin(struct thread *td, struct setlogin_args *uap)
 {
 	struct proc *p = td->td_proc;
 	int error;
 	char logintmp[MAXLOGNAME];
 
 	CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp));
 
 	error = priv_check(td, PRIV_PROC_SETLOGIN);
 	if (error)
 		return (error);
 	error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL);
 	if (error != 0) {
 		if (error == ENAMETOOLONG)
 			error = EINVAL;
 		return (error);
 	}
 	AUDIT_ARG_LOGIN(logintmp);
 	PROC_LOCK(p);
 	SESS_LOCK(p->p_session);
 	strcpy(p->p_session->s_login, logintmp);
 	SESS_UNLOCK(p->p_session);
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 void
 setsugid(struct proc *p)
 {
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	p->p_flag |= P_SUGID;
 }
 
 /*-
  * Change a process's effective uid.
  * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_euid(struct ucred *newcred, struct uidinfo *euip)
 {
 
 	newcred->cr_uid = euip->ui_uid;
 	uihold(euip);
 	uifree(newcred->cr_uidinfo);
 	newcred->cr_uidinfo = euip;
 }
 
 /*-
  * Change a process's effective gid.
  * Side effects: newcred->cr_gid will be modified.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_egid(struct ucred *newcred, gid_t egid)
 {
 
 	newcred->cr_groups[0] = egid;
 }
 
 /*-
  * Change a process's real uid.
  * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo
  *               will be updated, and the old and new cr_ruidinfo proc
  *               counts will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_ruid(struct ucred *newcred, struct uidinfo *ruip)
 {
 
 	(void)chgproccnt(newcred->cr_ruidinfo, -1, 0);
 	newcred->cr_ruid = ruip->ui_uid;
 	uihold(ruip);
 	uifree(newcred->cr_ruidinfo);
 	newcred->cr_ruidinfo = ruip;
 	(void)chgproccnt(newcred->cr_ruidinfo, 1, 0);
 }
 
 /*-
  * Change a process's real gid.
  * Side effects: newcred->cr_rgid will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_rgid(struct ucred *newcred, gid_t rgid)
 {
 
 	newcred->cr_rgid = rgid;
 }
 
 /*-
  * Change a process's saved uid.
  * Side effects: newcred->cr_svuid will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_svuid(struct ucred *newcred, uid_t svuid)
 {
 
 	newcred->cr_svuid = svuid;
 }
 
 /*-
  * Change a process's saved gid.
  * Side effects: newcred->cr_svgid will be updated.
  * References: newcred must be an exclusive credential reference for the
  *             duration of the call.
  */
 void
 change_svgid(struct ucred *newcred, gid_t svgid)
 {
 
 	newcred->cr_svgid = svgid;
 }
 
 bool allow_ptrace = true;
 SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN,
     &allow_ptrace, 0,
     "Deny ptrace(2) use by returning ENOSYS");
diff --git a/sys/sys/proc.h b/sys/sys/proc.h
index 3102cae7add0..8609bbd124ad 100644
--- a/sys/sys/proc.h
+++ b/sys/sys/proc.h
@@ -1,1365 +1,1366 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1986, 1989, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)proc.h	8.15 (Berkeley) 5/19/95
  */
 
 #ifndef _SYS_PROC_H_
 #define	_SYS_PROC_H_
 
 #include <sys/callout.h>		/* For struct callout. */
 #include <sys/event.h>			/* For struct klist. */
 #ifdef _KERNEL
 #include <sys/_eventhandler.h>
 #endif
 #include <sys/condvar.h>
 #ifndef _KERNEL
 #include <sys/filedesc.h>
 #endif
 #include <sys/queue.h>
 #include <sys/_lock.h>
 #include <sys/lock_profile.h>
 #include <sys/_mutex.h>
 #include <sys/osd.h>
 #include <sys/priority.h>
 #include <sys/rtprio.h>			/* XXX. */
 #include <sys/runq.h>
 #include <sys/resource.h>
 #include <sys/sigio.h>
 #include <sys/signal.h>
 #include <sys/signalvar.h>
 #ifndef _KERNEL
 #include <sys/time.h>			/* For structs itimerval, timeval. */
 #else
 #include <sys/pcpu.h>
 #include <sys/systm.h>
 #endif
 #include <sys/ucontext.h>
 #include <sys/ucred.h>
 #include <sys/types.h>
 #include <sys/_domainset.h>
 
 #include <machine/proc.h>		/* Machine-dependent proc substruct. */
 #ifdef _KERNEL
 #include <machine/cpu.h>
 #endif
 
 /*
  * One structure allocated per session.
  *
  * List of locks
  * (m)		locked by s_mtx mtx
  * (e)		locked by proctree_lock sx
  * (c)		const until freeing
  */
 struct session {
 	u_int		s_count;	/* Ref cnt; pgrps in session - atomic. */
 	struct proc	*s_leader;	/* (m + e) Session leader. */
 	struct vnode	*s_ttyvp;	/* (m) Vnode of controlling tty. */
 	struct cdev_priv *s_ttydp;	/* (m) Device of controlling tty.  */
 	struct tty	*s_ttyp;	/* (e) Controlling tty. */
 	pid_t		s_sid;		/* (c) Session ID. */
 					/* (m) Setlogin() name: */
 	char		s_login[roundup(MAXLOGNAME, sizeof(long))];
 	struct mtx	s_mtx;		/* Mutex to protect members. */
 };
 
 /*
  * One structure allocated per process group.
  *
  * List of locks
  * (m)		locked by pg_mtx mtx
  * (e)		locked by proctree_lock sx
  * (c)		const until freeing
  */
 struct pgrp {
 	LIST_ENTRY(pgrp) pg_hash;	/* (e) Hash chain. */
 	LIST_HEAD(, proc) pg_members;	/* (m + e) Pointer to pgrp members. */
 	struct session	*pg_session;	/* (c) Pointer to session. */
 	struct sigiolst	pg_sigiolst;	/* (m) List of sigio sources. */
 	pid_t		pg_id;		/* (c) Process group id. */
 	struct mtx	pg_mtx;		/* Mutex to protect members */
 	int		pg_flags;	/* (m) PGRP_ flags */
 	struct sx	pg_killsx;	/* Mutual exclusion between group member
 					 * fork() and killpg() */
 };
 
 #define	PGRP_ORPHANED	0x00000001	/* Group is orphaned */
 
 /*
  * pargs, used to hold a copy of the command line, if it had a sane length.
  */
 struct pargs {
 	u_int	ar_ref;		/* Reference count. */
 	u_int	ar_length;	/* Length. */
 	u_char	ar_args[1];	/* Arguments. */
 };
 
 /*-
  * Description of a process.
  *
  * This structure contains the information needed to manage a thread of
  * control, known in UN*X as a process; it has references to substructures
  * containing descriptions of things that the process uses, but may share
  * with related processes.  The process structure and the substructures
  * are always addressable except for those marked "(CPU)" below,
  * which might be addressable only on a processor on which the process
  * is running.
  *
  * Below is a key of locks used to protect each member of struct proc.  The
  * lock is indicated by a reference to a specific character in parens in the
  * associated comment.
  *      * - not yet protected
  *      a - only touched by curproc or parent during fork/wait
  *      b - created at fork, never changes
  *		(exception aiods switch vmspaces, but they are also
  *		marked 'P_SYSTEM' so hopefully it will be left alone)
  *      c - locked by proc mtx
  *      d - locked by allproc_lock lock
  *      e - locked by proctree_lock lock
  *      f - session mtx
  *      g - process group mtx
  *      h - callout_lock mtx
  *      i - by curproc or the master session mtx
  *      j - locked by proc slock
  *      k - only accessed by curthread
  *	k*- only accessed by curthread and from an interrupt
  *	kx- only accessed by curthread and by debugger
  *      l - the attaching proc or attaching proc parent
  *      n - not locked, lazy
  *      o - ktrace lock
  *      q - td_contested lock
  *      r - p_peers lock
  *      s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9)
  *      t - thread lock
  *	u - process stat lock
  *	w - process timer lock
  *      x - created at fork, only changes during single threading in exec
  *      y - created at first aio, doesn't change until exit or exec at which
  *          point we are single-threaded and only curthread changes it
  *
  * If the locking key specifies two identifiers (for example, p_pptr) then
  * either lock is sufficient for read access, but both locks must be held
  * for write access.
  */
 struct cpuset;
 struct filecaps;
 struct filemon;
 struct kaioinfo;
 struct kaudit_record;
 struct kcov_info;
 struct kdtrace_proc;
 struct kdtrace_thread;
 struct kmsan_td;
 struct kq_timer_cb_data;
 struct mqueue_notifier;
 struct p_sched;
 struct proc;
 struct procdesc;
 struct racct;
 struct sbuf;
 struct sleepqueue;
 struct socket;
 struct td_sched;
 struct thread;
 struct trapframe;
 struct turnstile;
 struct vm_map;
 struct vm_map_entry;
 struct epoch_tracker;
 
 struct syscall_args {
 	u_int code;
 	u_int original_code;
 	struct sysent *callp;
 	register_t args[8];
 };
 
 /*
  * XXX: Does this belong in resource.h or resourcevar.h instead?
  * Resource usage extension.  The times in rusage structs in the kernel are
  * never up to date.  The actual times are kept as runtimes and tick counts
  * (with control info in the "previous" times), and are converted when
  * userland asks for rusage info.  Backwards compatibility prevents putting
  * this directly in the user-visible rusage struct.
  *
  * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux.
  * Locking for td_rux: (t) for all fields.
  */
 struct rusage_ext {
 	uint64_t	rux_runtime;    /* (cu) Real time. */
 	uint64_t	rux_uticks;     /* (cu) Statclock hits in user mode. */
 	uint64_t	rux_sticks;     /* (cu) Statclock hits in sys mode. */
 	uint64_t	rux_iticks;     /* (cu) Statclock hits in intr mode. */
 	uint64_t	rux_uu;         /* (c) Previous user time in usec. */
 	uint64_t	rux_su;         /* (c) Previous sys time in usec. */
 	uint64_t	rux_tu;         /* (c) Previous total time in usec. */
 };
 
 /*
  * Kernel runnable context (thread).
  * This is what is put to sleep and reactivated.
  * Thread context.  Processes may have multiple threads.
  */
 struct thread {
 	struct mtx	*volatile td_lock; /* replaces sched lock */
 	struct proc	*td_proc;	/* (*) Associated process. */
 	TAILQ_ENTRY(thread) td_plist;	/* (*) All threads in this proc. */
 	TAILQ_ENTRY(thread) td_runq;	/* (t) Run queue. */
 	union	{
 		TAILQ_ENTRY(thread) td_slpq;	/* (t) Sleep queue. */
 		struct thread *td_zombie; /* Zombie list linkage */
 	};
 	TAILQ_ENTRY(thread) td_lockq;	/* (t) Lock queue. */
 	LIST_ENTRY(thread) td_hash;	/* (d) Hash chain. */
 	struct cpuset	*td_cpuset;	/* (t) CPU affinity mask. */
 	struct domainset_ref td_domain;	/* (a) NUMA policy */
 	struct seltd	*td_sel;	/* Select queue/channel. */
 	struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */
 	struct turnstile *td_turnstile;	/* (k) Associated turnstile. */
 	struct rl_q_entry *td_rlqe;	/* (k) Associated range lock entry. */
 	struct umtx_q   *td_umtxq;	/* (c?) Link for when we're blocked. */
 	lwpid_t		td_tid;		/* (b) Thread ID. */
 	sigqueue_t	td_sigqueue;	/* (c) Sigs arrived, not delivered. */
 #define	td_siglist	td_sigqueue.sq_signals
 	u_char		td_lend_user_pri; /* (t) Lend user pri. */
 	u_char		td_allocdomain;	/* (b) NUMA domain backing this struct thread. */
 	u_char		td_base_ithread_pri; /* (t) Base ithread pri */
 	struct kmsan_td	*td_kmsan;	/* (k) KMSAN state */
 
 /* Cleared during fork1(), thread_create(), or kthread_add(). */
 #define	td_startzero td_flags
 	int		td_flags;	/* (t) TDF_* flags. */
 	int		td_ast;		/* (t) TDA_* indicators */
 	int		td_inhibitors;	/* (t) Why can not run. */
 	int		td_pflags;	/* (k) Private thread (TDP_*) flags. */
 	int		td_pflags2;	/* (k) Private thread (TDP2_*) flags. */
 	int		td_dupfd;	/* (k) Ret value from fdopen. XXX */
 	int		td_sqqueue;	/* (t) Sleepqueue queue blocked on. */
 	const void	*td_wchan;	/* (t) Sleep address. */
 	const char	*td_wmesg;	/* (t) Reason for sleep. */
 	volatile u_char td_owepreempt;  /* (k*) Preempt on last critical_exit */
 	u_char		td_tsqueue;	/* (t) Turnstile queue blocked on. */
 	u_char		td_stopsched;	/* (k) Scheduler stopped. */
 	int		td_locks;	/* (k) Debug: count of non-spin locks */
 	int		td_rw_rlocks;	/* (k) Count of rwlock read locks. */
 	int		td_sx_slocks;	/* (k) Count of sx shared locks. */
 	int		td_lk_slocks;	/* (k) Count of lockmgr shared locks. */
 	struct turnstile *td_blocked;	/* (t) Lock thread is blocked on. */
 	const char	*td_lockname;	/* (t) Name of lock blocked on. */
 	LIST_HEAD(, turnstile) td_contested;	/* (q) Contested locks. */
 	struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */
 	int		td_intr_nesting_level; /* (k) Interrupt recursion. */
 	int		td_pinned;	/* (k) Temporary cpu pin count. */
 	struct ucred	*td_realucred;	/* (k) Reference to credentials. */
 	struct ucred	*td_ucred;	/* (k) Used credentials, temporarily switchable. */
 	struct plimit	*td_limit;	/* (k) Resource limits. */
 	int		td_slptick;	/* (t) Time at sleep. */
 	int		td_blktick;	/* (t) Time spent blocked. */
 	int		td_swvoltick;	/* (t) Time at last SW_VOL switch. */
 	int		td_swinvoltick;	/* (t) Time at last SW_INVOL switch. */
 	u_int		td_cow;		/* (*) Number of copy-on-write faults */
 	struct rusage	td_ru;		/* (t) rusage information. */
 	struct rusage_ext td_rux;	/* (t) Internal rusage information. */
 	uint64_t	td_incruntime;	/* (t) Cpu ticks to transfer to proc. */
 	uint64_t	td_runtime;	/* (t) How many cpu ticks we've run. */
 	u_int 		td_pticks;	/* (t) Statclock hits for profiling */
 	u_int		td_sticks;	/* (t) Statclock hits in system mode. */
 	u_int		td_iticks;	/* (t) Statclock hits in intr mode. */
 	u_int		td_uticks;	/* (t) Statclock hits in user mode. */
 	int		td_intrval;	/* (t) Return value for sleepq. */
 	sigset_t	td_oldsigmask;	/* (k) Saved mask from pre sigpause. */
 	volatile u_int	td_generation;	/* (k) For detection of preemption */
 	stack_t		td_sigstk;	/* (k) Stack ptr and on-stack flag. */
 	int		td_xsig;	/* (c) Signal for ptrace */
 	u_long		td_profil_addr;	/* (k) Temporary addr until AST. */
 	u_int		td_profil_ticks; /* (k) Temporary ticks until AST. */
 	char		td_name[MAXCOMLEN + 1];	/* (*) Thread name. */
 	struct file	*td_fpop;	/* (k) file referencing cdev under op */
 	int		td_dbgflags;	/* (c) Userland debugger flags */
 	siginfo_t	td_si;		/* (c) For debugger or core file */
 	int		td_ng_outbound;	/* (k) Thread entered ng from above. */
 	struct osd	td_osd;		/* (k) Object specific data. */
 	struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */
 	pid_t		td_dbg_forked;	/* (c) Child pid for debugger. */
 	struct vnode	*td_vp_reserved;/* (k) Preallocated vnode. */
 	u_int		td_no_sleeping;	/* (k) Sleeping disabled count. */
 	void		*td_su;		/* (k) FFS SU private */
 	sbintime_t	td_sleeptimo;	/* (t) Sleep timeout. */
 	int		td_rtcgen;	/* (s) rtc_generation of abs. sleep */
 	int		td_errno;	/* (k) Error from last syscall. */
 	size_t		td_vslock_sz;	/* (k) amount of vslock-ed space */
 	struct kcov_info *td_kcov_info;	/* (*) Kernel code coverage data */
 	long		td_ucredref;	/* (k) references on td_realucred */
 #define	td_endzero td_sigmask
 
 /* Copied during fork1(), thread_create(), or kthread_add(). */
 #define	td_startcopy td_endzero
 	sigset_t	td_sigmask;	/* (c) Current signal mask. */
 	u_char		td_rqindex;	/* (t) Run queue index. */
 	u_char		td_base_pri;	/* (t) Thread base kernel priority. */
 	u_char		td_priority;	/* (t) Thread active priority. */
 	u_char		td_pri_class;	/* (t) Scheduling class. */
 	u_char		td_user_pri;	/* (t) User pri from estcpu and nice. */
 	u_char		td_base_user_pri; /* (t) Base user pri */
 	uintptr_t	td_rb_list;	/* (k) Robust list head. */
 	uintptr_t	td_rbp_list;	/* (k) Robust priv list head. */
 	uintptr_t	td_rb_inact;	/* (k) Current in-action mutex loc. */
 	struct syscall_args td_sa;	/* (kx) Syscall parameters. Copied on
 					   fork for child tracing. */
 	void		*td_sigblock_ptr; /* (k) uptr for fast sigblock. */
 	uint32_t	td_sigblock_val;  /* (k) fast sigblock value read at
 					     td_sigblock_ptr on kern entry */
 #define	td_endcopy td_pcb
 
 /*
  * Fields that must be manually set in fork1(), thread_create(), kthread_add(),
  * or already have been set in the allocator, constructor, etc.
  */
 	struct pcb	*td_pcb;	/* (k) Kernel VA of pcb and kstack. */
 	enum td_states {
 		TDS_INACTIVE = 0x0,
 		TDS_INHIBITED,
 		TDS_CAN_RUN,
 		TDS_RUNQ,
 		TDS_RUNNING
 	} td_state;			/* (t) thread state */
 	/* Note: td_state must be accessed using TD_{GET,SET}_STATE(). */
 	union {
 		syscallarg_t	tdu_retval[2];
 		off_t		tdu_off;
 	} td_uretoff;			/* (k) Syscall aux returns. */
 #define td_retval	td_uretoff.tdu_retval
 	u_int		td_cowgen;	/* (k) Generation of COW pointers. */
 	/* LP64 hole */
 	struct callout	td_slpcallout;	/* (h) Callout for sleep. */
 	struct trapframe *td_frame;	/* (k) */
 	vm_offset_t	td_kstack;	/* (a) Kernel VA of kstack. */
 	int		td_kstack_pages; /* (a) Size of the kstack. */
 	volatile u_int	td_critnest;	/* (k*) Critical section nest level. */
 	struct mdthread td_md;		/* (k) Any machine-dependent fields. */
 	struct kaudit_record	*td_ar;	/* (k) Active audit record, if any. */
 	struct lpohead	td_lprof[2];	/* (a) lock profiling objects. */
 	struct kdtrace_thread	*td_dtrace; /* (*) DTrace-specific data. */
 	struct vnet	*td_vnet;	/* (k) Effective vnet. */
 	const char	*td_vnet_lpush;	/* (k) Debugging vnet push / pop. */
 	struct trapframe *td_intr_frame;/* (k) Frame of the current irq */
 	struct proc	*td_rfppwait_p;	/* (k) The vforked child */
 	struct vm_page	**td_ma;	/* (k) uio pages held */
 	int		td_ma_cnt;	/* (k) size of *td_ma */
 	/* LP64 hole */
 	void		*td_emuldata;	/* Emulator state data */
 	int		td_lastcpu;	/* (t) Last cpu we were on. */
 	int		td_oncpu;	/* (t) Which cpu we are on. */
 	void		*td_lkpi_task;	/* LinuxKPI task struct pointer */
 	int		td_pmcpend;
 	void		*td_remotereq;	/* (c) dbg remote request. */
 	off_t		td_ktr_io_lim;	/* (k) limit for ktrace file size */
 #ifdef EPOCH_TRACE
 	SLIST_HEAD(, epoch_tracker) td_epochs;
 #endif
 };
 
 struct thread0_storage {
 	struct thread t0st_thread;
 	uint64_t t0st_sched[10];
 };
 
 struct mtx *thread_lock_block(struct thread *);
 void thread_lock_block_wait(struct thread *);
 void thread_lock_set(struct thread *, struct mtx *);
 void thread_lock_unblock(struct thread *, struct mtx *);
 #define	THREAD_LOCK_ASSERT(td, type)					\
 	mtx_assert((td)->td_lock, (type))
 
 #define	THREAD_LOCK_BLOCKED_ASSERT(td, type)				\
 do {									\
 	struct mtx *__m = (td)->td_lock;				\
 	if (__m != &blocked_lock)					\
 		mtx_assert(__m, (type));				\
 } while (0)
 
 #ifdef INVARIANTS
 #define	THREAD_LOCKPTR_ASSERT(td, lock)					\
 do {									\
 	struct mtx *__m;						\
 	__m = (td)->td_lock;						\
 	KASSERT(__m == (lock),						\
 	    ("Thread %p lock %p does not match %p", td, __m, (lock)));	\
 } while (0)
 
 #define	THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock)				\
 do {									\
 	struct mtx *__m;						\
 	__m = (td)->td_lock;						\
 	KASSERT(__m == (lock) || __m == &blocked_lock,			\
 	    ("Thread %p lock %p does not match %p", td, __m, (lock)));	\
 } while (0)
 
 #define	TD_LOCKS_INC(td)	((td)->td_locks++)
 #define	TD_LOCKS_DEC(td) do {						\
 	KASSERT(SCHEDULER_STOPPED_TD(td) || (td)->td_locks > 0,		\
 	    ("Thread %p owns no locks", (td)));				\
 	(td)->td_locks--;						\
 } while (0)
 #else
 #define	THREAD_LOCKPTR_ASSERT(td, lock)
 #define	THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock)
 
 #define	TD_LOCKS_INC(td)
 #define	TD_LOCKS_DEC(td)
 #endif
 
 /*
  * Flags kept in td_flags:
  * To change these you MUST have the scheduler lock.
  */
 #define	TDF_BORROWING	0x00000001 /* Thread is borrowing pri from another. */
 #define	TDF_INPANIC	0x00000002 /* Caused a panic, let it drive crashdump. */
 #define	TDF_INMEM	0x00000004 /* Thread's stack is in memory. */
 #define	TDF_SINTR	0x00000008 /* Sleep is interruptible. */
 #define	TDF_TIMEOUT	0x00000010 /* Timing out during sleep. */
 #define	TDF_IDLETD	0x00000020 /* This is a per-CPU idle thread. */
 #define	TDF_CANSWAP	0x00000040 /* Thread can be swapped. */
 #define	TDF_SIGWAIT	0x00000080 /* Ignore ignored signals */
 #define	TDF_KTH_SUSP	0x00000100 /* kthread is suspended */
 #define	TDF_ALLPROCSUSP	0x00000200 /* suspended by SINGLE_ALLPROC */
 #define	TDF_BOUNDARY	0x00000400 /* Thread suspended at user boundary */
 #define	TDF_UNUSED1	0x00000800 /* Available */
 #define	TDF_UNUSED2	0x00001000 /* Available */
 #define	TDF_SBDRY	0x00002000 /* Stop only on usermode boundary. */
 #define	TDF_UPIBLOCKED	0x00004000 /* Thread blocked on user PI mutex. */
 #define	TDF_UNUSED3	0x00008000 /* Available */
 #define	TDF_UNUSED4	0x00010000 /* Available */
 #define	TDF_UNUSED5	0x00020000 /* Available */
 #define	TDF_NOLOAD	0x00040000 /* Ignore during load avg calculations. */
 #define	TDF_SERESTART	0x00080000 /* ERESTART on stop attempts. */
 #define	TDF_THRWAKEUP	0x00100000 /* Libthr thread must not suspend itself. */
 #define	TDF_SEINTR	0x00200000 /* EINTR on stop attempts. */
 #define	TDF_SWAPINREQ	0x00400000 /* Swapin request due to wakeup. */
 #define	TDF_UNUSED6	0x00800000 /* Available */
 #define	TDF_SCHED0	0x01000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED1	0x02000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED2	0x04000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED3	0x08000000 /* Reserved for scheduler private use */
 #define	TDF_UNUSED7	0x10000000 /* Available */
 #define	TDF_UNUSED8	0x20000000 /* Available */
 #define	TDF_UNUSED9	0x40000000 /* Available */
 #define	TDF_UNUSED10	0x80000000 /* Available */
 
 enum {
 	TDA_AST = 0,		/* Special: call all non-flagged AST handlers */
 	TDA_OWEUPC,
 	TDA_HWPMC,
 	TDA_VFORK,
 	TDA_ALRM,
 	TDA_PROF,
 	TDA_MAC,
 	TDA_SCHED,
 	TDA_UFS,
 	TDA_GEOM,
 	TDA_KQUEUE,
 	TDA_RACCT,
 	TDA_MOD1,		/* For third party use, before signals are */
 	TAD_MOD2,		/* processed .. */
 	TDA_SIG,
 	TDA_KTRACE,
 	TDA_SUSPEND,
 	TDA_SIGSUSPEND,
 	TDA_MOD3,		/* .. and after */
 	TAD_MOD4,
 	TDA_MAX,
 };
 #define	TDAI(tda)		(1U << (tda))
 #define	td_ast_pending(td, tda)	((td->td_ast & TDAI(tda)) != 0)
 
 /* Userland debug flags */
 #define	TDB_SUSPEND	0x00000001 /* Thread is suspended by debugger */
 #define	TDB_XSIG	0x00000002 /* Thread is exchanging signal under trace */
 #define	TDB_USERWR	0x00000004 /* Debugger modified memory or registers */
 #define	TDB_SCE		0x00000008 /* Thread performs syscall enter */
 #define	TDB_SCX		0x00000010 /* Thread performs syscall exit */
 #define	TDB_EXEC	0x00000020 /* TDB_SCX from exec(2) family */
 #define	TDB_FORK	0x00000040 /* TDB_SCX from fork(2) that created new
 				      process */
 #define	TDB_STOPATFORK	0x00000080 /* Stop at the return from fork (child
 				      only) */
 #define	TDB_CHILD	0x00000100 /* New child indicator for ptrace() */
 #define	TDB_BORN	0x00000200 /* New LWP indicator for ptrace() */
 #define	TDB_EXIT	0x00000400 /* Exiting LWP indicator for ptrace() */
 #define	TDB_VFORK	0x00000800 /* vfork indicator for ptrace() */
 #define	TDB_FSTP	0x00001000 /* The thread is PT_ATTACH leader */
 #define	TDB_STEP	0x00002000 /* (x86) PSL_T set for PT_STEP */
 #define	TDB_SSWITCH	0x00004000 /* Suspended in ptracestop */
 #define	TDB_BOUNDARY	0x00008000 /* ptracestop() at boundary */
 #define	TDB_COREDUMPREQ	0x00010000 /* Coredump request */
 #define	TDB_SCREMOTEREQ	0x00020000 /* Remote syscall request */
 
 /*
  * "Private" flags kept in td_pflags:
  * These are only written by curthread and thus need no locking.
  */
 #define	TDP_OLDMASK	0x00000001 /* Need to restore mask after suspend. */
 #define	TDP_INKTR	0x00000002 /* Thread is currently in KTR code. */
 #define	TDP_INKTRACE	0x00000004 /* Thread is currently in KTRACE code. */
 #define	TDP_BUFNEED	0x00000008 /* Do not recurse into the buf flush */
 #define	TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */
 #define	TDP_ALTSTACK	0x00000020 /* Have alternate signal stack. */
 #define	TDP_DEADLKTREAT	0x00000040 /* Lock acquisition - deadlock treatment. */
 #define	TDP_NOFAULTING	0x00000080 /* Do not handle page faults. */
 #define	TDP_SIGFASTBLOCK 0x00000100 /* Fast sigblock active */
 #define	TDP_OWEUPC	0x00000200 /* Call addupc() at next AST. */
 #define	TDP_ITHREAD	0x00000400 /* Thread is an interrupt thread. */
 #define	TDP_SYNCIO	0x00000800 /* Local override, disable async i/o. */
 #define	TDP_SCHED1	0x00001000 /* Reserved for scheduler private use */
 #define	TDP_SCHED2	0x00002000 /* Reserved for scheduler private use */
 #define	TDP_SCHED3	0x00004000 /* Reserved for scheduler private use */
 #define	TDP_SCHED4	0x00008000 /* Reserved for scheduler private use */
 #define	TDP_GEOM	0x00010000 /* Settle GEOM before finishing syscall */
 #define	TDP_SOFTDEP	0x00020000 /* Stuck processing softdep worklist */
 #define	TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */
 #define	TDP_WAKEUP	0x00080000 /* Don't sleep in umtx cond_wait */
 #define	TDP_INBDFLUSH	0x00100000 /* Already in BO_BDFLUSH, do not recurse */
 #define	TDP_KTHREAD	0x00200000 /* This is an official kernel thread */
 #define	TDP_CALLCHAIN	0x00400000 /* Capture thread's callchain */
 #define	TDP_IGNSUSP	0x00800000 /* Permission to ignore the MNTK_SUSPEND* */
 #define	TDP_AUDITREC	0x01000000 /* Audit record pending on thread */
 #define	TDP_RFPPWAIT	0x02000000 /* Handle RFPPWAIT on syscall exit */
 #define	TDP_RESETSPUR	0x04000000 /* Reset spurious page fault history. */
 #define	TDP_NERRNO	0x08000000 /* Last errno is already in td_errno */
 #define	TDP_UIOHELD	0x10000000 /* Current uio has pages held in td_ma */
 #define	TDP_INTCPCALLOUT 0x20000000 /* used by netinet/tcp_timer.c */
 #define	TDP_EXECVMSPC	0x40000000 /* Execve destroyed old vmspace */
 #define	TDP_SIGFASTPENDING 0x80000000 /* Pending signal due to sigfastblock */
 
 #define	TDP2_SBPAGES	0x00000001 /* Owns sbusy on some pages */
 #define	TDP2_COMPAT32RB	0x00000002 /* compat32 ABI for robust lists */
 #define	TDP2_ACCT	0x00000004 /* Doing accounting */
 
 /*
  * Reasons that the current thread can not be run yet.
  * More than one may apply.
  */
 #define	TDI_SUSPENDED	0x0001	/* On suspension queue. */
 #define	TDI_SLEEPING	0x0002	/* Actually asleep! (tricky). */
 #define	TDI_SWAPPED	0x0004	/* Stack not in mem.  Bad juju if run. */
 #define	TDI_LOCK	0x0008	/* Stopped on a lock. */
 #define	TDI_IWAIT	0x0010	/* Awaiting interrupt. */
 
 #define	TD_IS_SLEEPING(td)	((td)->td_inhibitors & TDI_SLEEPING)
 #define	TD_ON_SLEEPQ(td)	((td)->td_wchan != NULL)
 #define	TD_IS_SUSPENDED(td)	((td)->td_inhibitors & TDI_SUSPENDED)
 #define	TD_IS_SWAPPED(td)	((td)->td_inhibitors & TDI_SWAPPED)
 #define	TD_ON_LOCK(td)		((td)->td_inhibitors & TDI_LOCK)
 #define	TD_AWAITING_INTR(td)	((td)->td_inhibitors & TDI_IWAIT)
 #ifdef _KERNEL
 #define	TD_GET_STATE(td)	atomic_load_int(&(td)->td_state)
 #else
 #define	TD_GET_STATE(td)	((td)->td_state)
 #endif
 #define	TD_IS_RUNNING(td)	(TD_GET_STATE(td) == TDS_RUNNING)
 #define	TD_ON_RUNQ(td)		(TD_GET_STATE(td) == TDS_RUNQ)
 #define	TD_CAN_RUN(td)		(TD_GET_STATE(td) == TDS_CAN_RUN)
 #define	TD_IS_INHIBITED(td)	(TD_GET_STATE(td) == TDS_INHIBITED)
 #define	TD_ON_UPILOCK(td)	((td)->td_flags & TDF_UPIBLOCKED)
 #define TD_IS_IDLETHREAD(td)	((td)->td_flags & TDF_IDLETD)
 
 #define	TD_CAN_ABORT(td)	(TD_ON_SLEEPQ((td)) &&			\
 				    ((td)->td_flags & TDF_SINTR) != 0)
 
 #define	KTDSTATE(td)							\
 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
 
 #define	TD_SET_INHIB(td, inhib) do {		\
 	TD_SET_STATE(td, TDS_INHIBITED);	\
 	(td)->td_inhibitors |= (inhib);		\
 } while (0)
 
 #define	TD_CLR_INHIB(td, inhib) do {			\
 	if (((td)->td_inhibitors & (inhib)) &&		\
 	    (((td)->td_inhibitors &= ~(inhib)) == 0))	\
 		TD_SET_STATE(td, TDS_CAN_RUN);		\
 } while (0)
 
 #define	TD_SET_SLEEPING(td)	TD_SET_INHIB((td), TDI_SLEEPING)
 #define	TD_SET_SWAPPED(td)	TD_SET_INHIB((td), TDI_SWAPPED)
 #define	TD_SET_LOCK(td)		TD_SET_INHIB((td), TDI_LOCK)
 #define	TD_SET_SUSPENDED(td)	TD_SET_INHIB((td), TDI_SUSPENDED)
 #define	TD_SET_IWAIT(td)	TD_SET_INHIB((td), TDI_IWAIT)
 #define	TD_SET_EXITING(td)	TD_SET_INHIB((td), TDI_EXITING)
 
 #define	TD_CLR_SLEEPING(td)	TD_CLR_INHIB((td), TDI_SLEEPING)
 #define	TD_CLR_SWAPPED(td)	TD_CLR_INHIB((td), TDI_SWAPPED)
 #define	TD_CLR_LOCK(td)		TD_CLR_INHIB((td), TDI_LOCK)
 #define	TD_CLR_SUSPENDED(td)	TD_CLR_INHIB((td), TDI_SUSPENDED)
 #define	TD_CLR_IWAIT(td)	TD_CLR_INHIB((td), TDI_IWAIT)
 
 #ifdef _KERNEL
 #define	TD_SET_STATE(td, state)	atomic_store_int(&(td)->td_state, state)
 #else
 #define	TD_SET_STATE(td, state)	(td)->td_state = state
 #endif
 #define	TD_SET_RUNNING(td)	TD_SET_STATE(td, TDS_RUNNING)
 #define	TD_SET_RUNQ(td)		TD_SET_STATE(td, TDS_RUNQ)
 #define	TD_SET_CAN_RUN(td)	TD_SET_STATE(td, TDS_CAN_RUN)
 
 
 #define	TD_SBDRY_INTR(td) \
     (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0)
 #define	TD_SBDRY_ERRNO(td) \
     (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART)
 
 /*
  * Process structure.
  */
 struct proc {
 	LIST_ENTRY(proc) p_list;	/* (d) List of all processes. */
 	TAILQ_HEAD(, thread) p_threads;	/* (c) all threads. */
 	struct mtx	p_slock;	/* process spin lock */
 	struct ucred	*p_ucred;	/* (c) Process owner's identity. */
 	struct filedesc	*p_fd;		/* (b) Open files. */
 	struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */
 	struct pwddesc	*p_pd;		/* (b) Cwd, chroot, jail, umask */
 	struct pstats	*p_stats;	/* (b) Accounting/statistics (CPU). */
 	struct plimit	*p_limit;	/* (c) Resource limits. */
 	struct callout	p_limco;	/* (c) Limit callout handle */
 	struct sigacts	*p_sigacts;	/* (x) Signal actions, state (CPU). */
 
 	int		p_flag;		/* (c) P_* flags. */
 	int		p_flag2;	/* (c) P2_* flags. */
 	enum p_states {
 		PRS_NEW = 0,		/* In creation */
 		PRS_NORMAL,		/* threads can be run. */
 		PRS_ZOMBIE
 	} p_state;			/* (j/c) Process status. */
 	pid_t		p_pid;		/* (b) Process identifier. */
 	LIST_ENTRY(proc) p_hash;	/* (d) Hash chain. */
 	LIST_ENTRY(proc) p_pglist;	/* (g + e) List of processes in pgrp. */
 	struct proc	*p_pptr;	/* (c + e) Pointer to parent process. */
 	LIST_ENTRY(proc) p_sibling;	/* (e) List of sibling processes. */
 	LIST_HEAD(, proc) p_children;	/* (e) Pointer to list of children. */
 	struct proc	*p_reaper;	/* (e) My reaper. */
 	LIST_HEAD(, proc) p_reaplist;	/* (e) List of my descendants
 					       (if I am reaper). */
 	LIST_ENTRY(proc) p_reapsibling;	/* (e) List of siblings - descendants of
 					       the same reaper. */
 	struct mtx	p_mtx;		/* (n) Lock for this struct. */
 	struct mtx	p_statmtx;	/* Lock for the stats */
 	struct mtx	p_itimmtx;	/* Lock for the virt/prof timers */
 	struct mtx	p_profmtx;	/* Lock for the profiling */
 	struct ksiginfo *p_ksi;	/* Locked by parent proc lock */
 	sigqueue_t	p_sigqueue;	/* (c) Sigs not delivered to a td. */
 #define p_siglist	p_sigqueue.sq_signals
 	pid_t		p_oppid;	/* (c + e) Real parent pid. */
 
 /* The following fields are all zeroed upon creation in fork. */
 #define	p_startzero	p_vmspace
 	struct vmspace	*p_vmspace;	/* (b) Address space. */
 	u_int		p_swtick;	/* (c) Tick when swapped in or out. */
 	u_int		p_cowgen;	/* (c) Generation of COW pointers. */
 	struct itimerval p_realtimer;	/* (c) Alarm timer. */
 	struct rusage	p_ru;		/* (a) Exit information. */
 	struct rusage_ext p_rux;	/* (cu) Internal resource usage. */
 	struct rusage_ext p_crux;	/* (c) Internal child resource usage. */
 	int		p_profthreads;	/* (c) Num threads in addupc_task. */
 	volatile int	p_exitthreads;	/* (j) Number of threads exiting */
 	int		p_traceflag;	/* (o) Kernel trace points. */
 	struct ktr_io_params	*p_ktrioparms;	/* (c + o) Params for ktrace. */
 	struct vnode	*p_textvp;	/* (b) Vnode of executable. */
 	struct vnode	*p_textdvp;	/* (b) Dir containing textvp. */
 	char		*p_binname;	/* (b) Binary hardlink name. */
 	u_int		p_lock;		/* (c) Proclock (prevent swap) count. */
 	struct sigiolst	p_sigiolst;	/* (c) List of sigio sources. */
 	int		p_sigparent;	/* (c) Signal to parent on exit. */
 	int		p_sig;		/* (n) For core dump/debugger XXX. */
 	u_int		p_ptevents;	/* (c + e) ptrace() event mask. */
 	struct kaioinfo	*p_aioinfo;	/* (y) ASYNC I/O info. */
 	struct thread	*p_singlethread;/* (c + j) If single threading this is it */
 	int		p_suspcount;	/* (j) Num threads in suspended mode. */
 	struct thread	*p_xthread;	/* (c) Trap thread */
 	int		p_boundary_count;/* (j) Num threads at user boundary */
 	int		p_pendingcnt;	/* how many signals are pending */
 	struct itimers	*p_itimers;	/* (c) POSIX interval timers. */
 	struct procdesc	*p_procdesc;	/* (e) Process descriptor, if any. */
 	u_int		p_treeflag;	/* (e) P_TREE flags */
 	int		p_pendingexits; /* (c) Count of pending thread exits. */
 	struct filemon	*p_filemon;	/* (c) filemon-specific data. */
 	int		p_pdeathsig;	/* (c) Signal from parent on exit. */
 /* End area that is zeroed on creation. */
 #define	p_endzero	p_magic
 
 /* The following fields are all copied upon creation in fork. */
 #define	p_startcopy	p_endzero
 	u_int		p_magic;	/* (b) Magic number. */
 	int		p_osrel;	/* (x) osreldate for the
 					       binary (from ELF note, if any) */
 	uint32_t	p_fctl0;	/* (x) ABI feature control, ELF note */
 	char		p_comm[MAXCOMLEN + 1];	/* (x) Process name. */
 	struct sysentvec *p_sysent;	/* (b) Syscall dispatch info. */
 	struct pargs	*p_args;	/* (c) Process arguments. */
 	rlim_t		p_cpulimit;	/* (c) Current CPU limit in seconds. */
 	signed char	p_nice;		/* (c) Process "nice" value. */
 	int		p_fibnum;	/* in this routing domain XXX MRT */
 	pid_t		p_reapsubtree;	/* (e) Pid of the direct child of the
 					       reaper which spawned
 					       our subtree. */
 	uint64_t	p_elf_flags;	/* (x) ELF flags */
 	void		*p_elf_brandinfo; /* (x) Elf_Brandinfo, NULL for
 						 non ELF binaries. */
 	sbintime_t	p_umtx_min_timeout;
 /* End area that is copied on creation. */
 #define	p_endcopy	p_xexit
 
 	u_int		p_xexit;	/* (c) Exit code. */
 	u_int		p_xsig;		/* (c) Stop/kill sig. */
 	struct pgrp	*p_pgrp;	/* (c + e) Pointer to process group. */
 	struct knlist	*p_klist;	/* (c) Knotes attached to this proc. */
 	int		p_numthreads;	/* (c) Number of threads. */
 	struct mdproc	p_md;		/* Any machine-dependent fields. */
 	struct callout	p_itcallout;	/* (h + c) Interval timer callout. */
 	u_short		p_acflag;	/* (c) Accounting flags. */
 	struct proc	*p_peers;	/* (r) */
 	struct proc	*p_leader;	/* (b) */
 	void		*p_emuldata;	/* (c) Emulator state data. */
 	struct label	*p_label;	/* (*) Proc (not subject) MAC label. */
 	STAILQ_HEAD(, ktr_request)	p_ktr;	/* (o) KTR event queue. */
 	LIST_HEAD(, mqueue_notifier)	p_mqnotifier; /* (c) mqueue notifiers.*/
 	struct kdtrace_proc	*p_dtrace; /* (*) DTrace-specific data. */
 	struct cv	p_pwait;	/* (*) wait cv for exit/exec. */
 	uint64_t	p_prev_runtime;	/* (c) Resource usage accounting. */
 	struct racct	*p_racct;	/* (b) Resource accounting. */
 	int		p_throttled;	/* (c) Flag for racct pcpu throttling */
 	/*
 	 * An orphan is the child that has been re-parented to the
 	 * debugger as a result of attaching to it.  Need to keep
 	 * track of them for parent to be able to collect the exit
 	 * status of what used to be children.
 	 */
 	LIST_ENTRY(proc) p_orphan;	/* (e) List of orphan processes. */
 	LIST_HEAD(, proc) p_orphans;	/* (e) Pointer to list of orphans. */
 
 	TAILQ_HEAD(, kq_timer_cb_data)	p_kqtim_stop;	/* (c) */
 	LIST_ENTRY(proc) p_jaillist;	/* (d) Jail process linkage. */
 };
 
 #define	p_session	p_pgrp->pg_session
 #define	p_pgid		p_pgrp->pg_id
 
 #define	NOCPU		(-1)	/* For when we aren't on a CPU. */
 #define	NOCPU_OLD	(255)
 #define	MAXCPU_OLD	(254)
 
 #define	PROC_SLOCK(p)	mtx_lock_spin(&(p)->p_slock)
 #define	PROC_SUNLOCK(p)	mtx_unlock_spin(&(p)->p_slock)
 #define	PROC_SLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_slock, (type))
 
 #define	PROC_STATLOCK(p)	mtx_lock_spin(&(p)->p_statmtx)
 #define	PROC_STATUNLOCK(p)	mtx_unlock_spin(&(p)->p_statmtx)
 #define	PROC_STATLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_statmtx, (type))
 
 #define	PROC_ITIMLOCK(p)	mtx_lock_spin(&(p)->p_itimmtx)
 #define	PROC_ITIMUNLOCK(p)	mtx_unlock_spin(&(p)->p_itimmtx)
 #define	PROC_ITIMLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_itimmtx, (type))
 
 #define	PROC_PROFLOCK(p)	mtx_lock_spin(&(p)->p_profmtx)
 #define	PROC_PROFUNLOCK(p)	mtx_unlock_spin(&(p)->p_profmtx)
 #define	PROC_PROFLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_profmtx, (type))
 
 /* These flags are kept in p_flag. */
 #define	P_ADVLOCK	0x00000001	/* Process may hold a POSIX advisory
 					   lock. */
 #define	P_CONTROLT	0x00000002	/* Has a controlling terminal. */
 #define	P_KPROC		0x00000004	/* Kernel process. */
 #define	P_UNUSED3	0x00000008	/* --available-- */
 #define	P_PPWAIT	0x00000010	/* Parent is waiting for child to
 					   exec/exit. */
 #define	P_PROFIL	0x00000020	/* Has started profiling. */
 #define	P_STOPPROF	0x00000040	/* Has thread requesting to stop
 					   profiling. */
 #define	P_HADTHREADS	0x00000080	/* Has had threads (no cleanup
 					   shortcuts) */
 #define	P_SUGID		0x00000100	/* Had set id privileges since last
 					   exec. */
 #define	P_SYSTEM	0x00000200	/* System proc: no sigs, stats or
 					   swapping. */
 #define	P_SINGLE_EXIT	0x00000400	/* Threads suspending should exit,
 					   not wait. */
 #define	P_TRACED	0x00000800	/* Debugged process being traced. */
 #define	P_WAITED	0x00001000	/* Someone is waiting for us. */
 #define	P_WEXIT		0x00002000	/* Working on exiting. */
 #define	P_EXEC		0x00004000	/* Process called exec. */
 #define	P_WKILLED	0x00008000	/* Killed, go to kernel/user boundary
 					   ASAP. */
 #define	P_CONTINUED	0x00010000	/* Proc has continued from a stopped
 					   state. */
 #define	P_STOPPED_SIG	0x00020000	/* Stopped due to SIGSTOP/SIGTSTP. */
 #define	P_STOPPED_TRACE	0x00040000	/* Stopped because of tracing. */
 #define	P_STOPPED_SINGLE 0x00080000	/* Only 1 thread can continue (not to
 					   user). */
 #define	P_PROTECTED	0x00100000	/* Do not kill on memory overcommit. */
 #define	P_SIGEVENT	0x00200000	/* Process pending signals changed. */
 #define	P_SINGLE_BOUNDARY 0x00400000	/* Threads should suspend at user
 					   boundary. */
 #define	P_HWPMC		0x00800000	/* Process is using HWPMCs */
 #define	P_JAILED	0x01000000	/* Process is in jail. */
 #define	P_TOTAL_STOP	0x02000000	/* Stopped in stop_all_proc. */
 #define	P_INEXEC	0x04000000	/* Process is in execve(). */
 #define	P_STATCHILD	0x08000000	/* Child process stopped or exited. */
 #define	P_INMEM		0x10000000	/* Loaded into memory. */
 #define	P_SWAPPINGOUT	0x20000000	/* Process is being swapped out. */
 #define	P_SWAPPINGIN	0x40000000	/* Process is being swapped in. */
 #define	P_PPTRACE	0x80000000	/* PT_TRACEME by vforked child. */
 
 #define	P_STOPPED	(P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE)
 #define	P_SHOULDSTOP(p)	((p)->p_flag & P_STOPPED)
 #define	P_KILLED(p)	((p)->p_flag & P_WKILLED)
 
 /* These flags are kept in p_flag2. */
 #define	P2_INHERIT_PROTECTED	0x00000001	/* New children get
 						   P_PROTECTED. */
 #define	P2_NOTRACE		0x00000002	/* No ptrace(2) attach or
 						   coredumps. */
 #define	P2_NOTRACE_EXEC		0x00000004	/* Keep P2_NOPTRACE on
 						   exec(2). */
 #define	P2_AST_SU		0x00000008	/* Handles SU ast for
 						   kthreads. */
 #define	P2_PTRACE_FSTP		0x00000010	/* SIGSTOP from PT_ATTACH not
 						   yet handled. */
 #define	P2_TRAPCAP		0x00000020	/* SIGTRAP on ENOTCAPABLE */
 #define	P2_ASLR_ENABLE		0x00000040	/* Force enable ASLR. */
 #define	P2_ASLR_DISABLE		0x00000080	/* Force disable ASLR. */
 #define	P2_ASLR_IGNSTART	0x00000100	/* Enable ASLR to consume sbrk
 						   area. */
 #define	P2_PROTMAX_ENABLE	0x00000200	/* Force enable implied
 						   PROT_MAX. */
 #define	P2_PROTMAX_DISABLE	0x00000400	/* Force disable implied
 						   PROT_MAX. */
 #define	P2_STKGAP_DISABLE	0x00000800	/* Disable stack gap for
 						   MAP_STACK */
 #define	P2_STKGAP_DISABLE_EXEC	0x00001000	/* Stack gap disabled
 						   after exec */
 #define	P2_ITSTOPPED		0x00002000
 #define	P2_PTRACEREQ		0x00004000	/* Active ptrace req */
 #define	P2_NO_NEW_PRIVS		0x00008000	/* Ignore setuid */
 #define	P2_WXORX_DISABLE	0x00010000	/* WX mappings enabled */
 #define	P2_WXORX_ENABLE_EXEC	0x00020000	/* WXORX enabled after exec */
 #define	P2_WEXIT		0x00040000	/* exit just started, no
 						   external thread_single() is
 						   permitted */
 #define	P2_REAPKILLED		0x00080000
 #define	P2_MEMBAR_PRIVE		0x00100000	/* membar private expedited
 						   registered */
 #define	P2_MEMBAR_PRIVE_SYNCORE	0x00200000	/* membar private expedited
 						   sync core registered */
 #define	P2_MEMBAR_GLOBE		0x00400000	/* membar global expedited
 						   registered */
 
 /* Flags protected by proctree_lock, kept in p_treeflags. */
 #define	P_TREE_ORPHANED		0x00000001	/* Reparented, on orphan list */
 #define	P_TREE_FIRST_ORPHAN	0x00000002	/* First element of orphan
 						   list */
 #define	P_TREE_REAPER		0x00000004	/* Reaper of subtree */
 #define	P_TREE_GRPEXITED	0x00000008	/* exit1() done with job ctl */
 
 /*
  * These were process status values (p_stat), now they are only used in
  * legacy conversion code.
  */
 #define	SIDL	1		/* Process being created by fork. */
 #define	SRUN	2		/* Currently runnable. */
 #define	SSLEEP	3		/* Sleeping on an address. */
 #define	SSTOP	4		/* Process debugging or suspension. */
 #define	SZOMB	5		/* Awaiting collection by parent. */
 #define	SWAIT	6		/* Waiting for interrupt. */
 #define	SLOCK	7		/* Blocked on a lock. */
 
 #define	P_MAGIC		0xbeefface
 
 #ifdef _KERNEL
 
 /* Types and flags for mi_switch(9). */
 #define	SW_TYPE_MASK		0xff	/* First 8 bits are switch type */
 #define	SWT_OWEPREEMPT		1	/* Switching due to owepreempt. */
 #define	SWT_TURNSTILE		2	/* Turnstile contention. */
 #define	SWT_SLEEPQ		3	/* Sleepq wait. */
 #define	SWT_RELINQUISH		4	/* yield call. */
 #define	SWT_NEEDRESCHED		5	/* NEEDRESCHED was set. */
 #define	SWT_IDLE		6	/* Switching from the idle thread. */
 #define	SWT_IWAIT		7	/* Waiting for interrupts. */
 #define	SWT_SUSPEND		8	/* Thread suspended. */
 #define	SWT_REMOTEPREEMPT	9	/* Remote processor preempted. */
 #define	SWT_REMOTEWAKEIDLE	10	/* Remote processor preempted idle. */
 #define	SWT_BIND		11	/* Thread bound to a new CPU. */
 #define	SWT_COUNT		12	/* Number of switch types. */
 /* Flags */
 #define	SW_VOL		0x0100		/* Voluntary switch. */
 #define	SW_INVOL	0x0200		/* Involuntary switch. */
 #define SW_PREEMPT	0x0400		/* The invol switch is a preemption */
 
 /* How values for thread_single(). */
 #define	SINGLE_NO_EXIT	0
 #define	SINGLE_EXIT	1
 #define	SINGLE_BOUNDARY	2
 #define	SINGLE_ALLPROC	3
 
 #ifdef MALLOC_DECLARE
 MALLOC_DECLARE(M_PARGS);
 MALLOC_DECLARE(M_SESSION);
 MALLOC_DECLARE(M_SUBPROC);
 #endif
 
 #define	FOREACH_PROC_IN_SYSTEM(p)					\
 	LIST_FOREACH((p), &allproc, p_list)
 #define	FOREACH_THREAD_IN_PROC(p, td)					\
 	TAILQ_FOREACH((td), &(p)->p_threads, td_plist)
 
 #define	FIRST_THREAD_IN_PROC(p)	TAILQ_FIRST(&(p)->p_threads)
 
 /*
  * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit
  * in a pid_t, as it is used to represent "no process group".
  */
 #define	PID_MAX		99999
 #define	NO_PID		100000
 #define	THREAD0_TID	NO_PID
 extern pid_t pid_max;
 
 #define	SESS_LEADER(p)	((p)->p_session->s_leader == (p))
 
 /* Lock and unlock a process. */
 #define	PROC_LOCK(p)	mtx_lock(&(p)->p_mtx)
 #define	PROC_TRYLOCK(p)	mtx_trylock(&(p)->p_mtx)
 #define	PROC_UNLOCK(p)	mtx_unlock(&(p)->p_mtx)
 #define	PROC_LOCKED(p)	mtx_owned(&(p)->p_mtx)
 #define	PROC_WAIT_UNLOCKED(p)	mtx_wait_unlocked(&(p)->p_mtx)
 #define	PROC_LOCK_ASSERT(p, type)	mtx_assert(&(p)->p_mtx, (type))
 
 /* Lock and unlock a process group. */
 #define	PGRP_LOCK(pg)	mtx_lock(&(pg)->pg_mtx)
 #define	PGRP_UNLOCK(pg)	mtx_unlock(&(pg)->pg_mtx)
 #define	PGRP_LOCKED(pg)	mtx_owned(&(pg)->pg_mtx)
 #define	PGRP_LOCK_ASSERT(pg, type)	mtx_assert(&(pg)->pg_mtx, (type))
 
 #define	PGRP_LOCK_PGSIGNAL(pg) do {					\
 	if ((pg) != NULL)						\
 		PGRP_LOCK(pg);						\
 } while (0)
 #define	PGRP_UNLOCK_PGSIGNAL(pg) do {					\
 	if ((pg) != NULL)						\
 		PGRP_UNLOCK(pg);					\
 } while (0)
 
 /* Lock and unlock a session. */
 #define	SESS_LOCK(s)	mtx_lock(&(s)->s_mtx)
 #define	SESS_UNLOCK(s)	mtx_unlock(&(s)->s_mtx)
 #define	SESS_LOCKED(s)	mtx_owned(&(s)->s_mtx)
 #define	SESS_LOCK_ASSERT(s, type)	mtx_assert(&(s)->s_mtx, (type))
 
 /*
  * Non-zero p_lock ensures that:
  * - exit1() is not performed until p_lock reaches zero;
  * - the process' threads stack are not swapped out if they are currently
  *   not (P_INMEM).
  *
  * PHOLD() asserts that the process (except the current process) is
  * not exiting, increments p_lock and swaps threads stacks into memory,
  * if needed.
  * _PHOLD() is same as PHOLD(), it takes the process locked.
  * _PHOLD_LITE() also takes the process locked, but comparing with
  * _PHOLD(), it only guarantees that exit1() is not executed,
  * faultin() is not called.
  */
 #define	PHOLD(p) do {							\
 	PROC_LOCK(p);							\
 	_PHOLD(p);							\
 	PROC_UNLOCK(p);							\
 } while (0)
 #define	_PHOLD(p) do {							\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc,		\
 	    ("PHOLD of exiting process %p", p));			\
 	(p)->p_lock++;							\
 	if (((p)->p_flag & P_INMEM) == 0)				\
 		faultin((p));						\
 } while (0)
 #define	_PHOLD_LITE(p) do {						\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc,		\
 	    ("PHOLD of exiting process %p", p));			\
 	(p)->p_lock++;							\
 } while (0)
 #define	PROC_ASSERT_HELD(p) do {					\
 	KASSERT((p)->p_lock > 0, ("process %p not held", p));		\
 } while (0)
 
 #define	PRELE(p) do {							\
 	PROC_LOCK((p));							\
 	_PRELE((p));							\
 	PROC_UNLOCK((p));						\
 } while (0)
 #define	_PRELE(p) do {							\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	PROC_ASSERT_HELD(p);						\
 	(--(p)->p_lock);						\
 	if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0)		\
 		wakeup(&(p)->p_lock);					\
 } while (0)
 #define	PROC_ASSERT_NOT_HELD(p) do {					\
 	KASSERT((p)->p_lock == 0, ("process %p held", p));		\
 } while (0)
 
 #define	PROC_UPDATE_COW(p) do {						\
 	struct proc *_p = (p);						\
 	PROC_LOCK_ASSERT((_p), MA_OWNED);				\
 	atomic_store_int(&_p->p_cowgen, _p->p_cowgen + 1);		\
 } while (0)
 
 #define	PROC_COW_CHANGECOUNT(td, p) ({					\
 	struct thread *_td = (td);					\
 	struct proc *_p = (p);						\
 	MPASS(_td == curthread);					\
 	PROC_LOCK_ASSERT(_p, MA_OWNED);					\
 	_p->p_cowgen - _td->td_cowgen;					\
 })
 
 /* Check whether a thread is safe to be swapped out. */
 #define	thread_safetoswapout(td)	((td)->td_flags & TDF_CANSWAP)
 
 /* Control whether or not it is safe for curthread to sleep. */
 #define	THREAD_NO_SLEEPING()		do {				\
 	curthread->td_no_sleeping++;					\
 	MPASS(curthread->td_no_sleeping > 0);				\
 } while (0)
 
 #define	THREAD_SLEEPING_OK()		do {				\
 	MPASS(curthread->td_no_sleeping > 0);				\
 	curthread->td_no_sleeping--;					\
 } while (0)
 
 #define	THREAD_CAN_SLEEP()		((curthread)->td_no_sleeping == 0)
 
 #define	PIDHASH(pid)	(&pidhashtbl[(pid) & pidhash])
 #define	PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)])
 extern LIST_HEAD(pidhashhead, proc) *pidhashtbl;
 extern struct sx *pidhashtbl_lock;
 extern u_long pidhash;
 extern u_long pidhashlock;
 
 #define	PGRPHASH(pgid)	(&pgrphashtbl[(pgid) & pgrphash])
 extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl;
 extern u_long pgrphash;
 
 extern struct sx allproc_lock;
 extern int allproc_gen;
 extern struct sx proctree_lock;
 extern struct mtx ppeers_lock;
 extern struct mtx procid_lock;
 extern struct proc proc0;		/* Process slot for swapper. */
 extern struct thread0_storage thread0_st;	/* Primary thread in proc0. */
 #define	thread0 (thread0_st.t0st_thread)
 extern struct vmspace vmspace0;		/* VM space for proc0. */
 extern int hogticks;			/* Limit on kernel cpu hogs. */
 extern int lastpid;
 extern int nprocs, maxproc;		/* Current and max number of procs. */
 extern int maxprocperuid;		/* Max procs per uid. */
 extern u_long ps_arg_cache_limit;
 
 LIST_HEAD(proclist, proc);
 TAILQ_HEAD(procqueue, proc);
 TAILQ_HEAD(threadqueue, thread);
 extern struct proclist allproc;		/* List of all processes. */
 extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */
 
 extern struct uma_zone *proc_zone;
 extern struct uma_zone *pgrp_zone;
 
 struct	proc *pfind(pid_t);		/* Find process by id. */
 struct	proc *pfind_any(pid_t);		/* Find (zombie) process by id. */
 struct	proc *pfind_any_locked(pid_t pid); /* Find process by id, locked. */
 struct	pgrp *pgfind(pid_t);		/* Find process group by id. */
 void	pidhash_slockall(void);		/* Shared lock all pid hash lists. */
 void	pidhash_sunlockall(void);	/* Shared unlock all pid hash lists. */
 
 struct	fork_req {
 	int		fr_flags;
 	int		fr_pages;
 	int 		*fr_pidp;
 	struct proc 	**fr_procp;
 	int 		*fr_pd_fd;
 	int 		fr_pd_flags;
 	struct filecaps	*fr_pd_fcaps;
 	int 		fr_flags2;
 #define	FR2_DROPSIG_CAUGHT	0x00000001 /* Drop caught non-DFL signals */
 #define	FR2_SHARE_PATHS		0x00000002 /* Invert sense of RFFDG for paths */
 #define	FR2_KPROC		0x00000004 /* Create a kernel process */
 };
 
 /*
  * pget() flags.
  */
 #define	PGET_HOLD	0x00001	/* Hold the process. */
 #define	PGET_CANSEE	0x00002	/* Check against p_cansee(). */
 #define	PGET_CANDEBUG	0x00004	/* Check against p_candebug(). */
 #define	PGET_ISCURRENT	0x00008	/* Check that the found process is current. */
 #define	PGET_NOTWEXIT	0x00010	/* Check that the process is not in P_WEXIT. */
 #define	PGET_NOTINEXEC	0x00020	/* Check that the process is not in P_INEXEC. */
 #define	PGET_NOTID	0x00040	/* Do not assume tid if pid > PID_MAX. */
 
 #define	PGET_WANTREAD	(PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT)
 
 int	pget(pid_t pid, int flags, struct proc **pp);
 
 /* ast_register() flags */
 #define	ASTR_ASTF_REQUIRED	0x0001	/* td_ast TDAI(TDA_X) flag set is
 					   required for call */
 #define	ASTR_TDP		0x0002	/* td_pflags flag set is required */
 #define	ASTR_KCLEAR		0x0004	/* call me on ast_kclear() */
 #define	ASTR_UNCOND		0x0008	/* call me always */
 
 void	ast(struct trapframe *framep);
 void	ast_kclear(struct thread *td);
 void	ast_register(int ast, int ast_flags, int tdp,
 	    void (*f)(struct thread *td, int asts));
 void	ast_deregister(int tda);
 void	ast_sched_locked(struct thread *td, int tda);
 void	ast_sched_mask(struct thread *td, int ast);
 void	ast_sched(struct thread *td, int tda);
 void	ast_unsched_locked(struct thread *td, int tda);
 
 struct	thread *choosethread(void);
+int	cr_bsd_visible(struct ucred *u1, struct ucred *u2);
 int	cr_cansee(struct ucred *u1, struct ucred *u2);
 int	cr_canseesocket(struct ucred *cred, struct socket *so);
 int	cr_canseeothergids(struct ucred *u1, struct ucred *u2);
 int	cr_canseeotheruids(struct ucred *u1, struct ucred *u2);
 int	cr_canseejailproc(struct ucred *u1, struct ucred *u2);
 int	cr_cansignal(struct ucred *cred, struct proc *proc, int signum);
 int	enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp,
 	    struct session *sess);
 int	enterthispgrp(struct proc *p, struct pgrp *pgrp);
 void	faultin(struct proc *p);
 int	fork1(struct thread *, struct fork_req *);
 void	fork_exit(void (*)(void *, struct trapframe *), void *,
 	    struct trapframe *);
 void	fork_return(struct thread *, struct trapframe *);
 int	inferior(struct proc *p);
 void	itimer_proc_continue(struct proc *p);
 void	kqtimer_proc_continue(struct proc *p);
 void	kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry,
 	    int *resident_count, bool *super);
 void	kern_yield(int);
 void 	kick_proc0(void);
 void	killjobc(void);
 int	leavepgrp(struct proc *p);
 int	maybe_preempt(struct thread *td);
 void	maybe_yield(void);
 void	mi_switch(int flags);
 int	p_candebug(struct thread *td, struct proc *p);
 int	p_cansee(struct thread *td, struct proc *p);
 int	p_cansched(struct thread *td, struct proc *p);
 int	p_cansignal(struct thread *td, struct proc *p, int signum);
 int	p_canwait(struct thread *td, struct proc *p);
 struct	pargs *pargs_alloc(int len);
 void	pargs_drop(struct pargs *pa);
 void	pargs_hold(struct pargs *pa);
 void	proc_add_orphan(struct proc *child, struct proc *parent);
 int	proc_get_binpath(struct proc *p, char *binname, char **fullpath,
 	    char **freepath);
 int	proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb);
 int	proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb);
 int	proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb);
 void	procinit(void);
 int	proc_iterate(int (*cb)(struct proc *, void *), void *cbarg);
 void	proc_linkup0(struct proc *p, struct thread *td);
 void	proc_linkup(struct proc *p, struct thread *td);
 struct proc *proc_realparent(struct proc *child);
 void	proc_reap(struct thread *td, struct proc *p, int *status, int options);
 void	proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid);
 void	proc_set_p2_wexit(struct proc *p);
 void	proc_set_traced(struct proc *p, bool stop);
 void	proc_wkilled(struct proc *p);
 struct	pstats *pstats_alloc(void);
 void	pstats_fork(struct pstats *src, struct pstats *dst);
 void	pstats_free(struct pstats *ps);
 void	proc_clear_orphan(struct proc *p);
 void	reaper_abandon_children(struct proc *p, bool exiting);
 int	securelevel_ge(struct ucred *cr, int level);
 int	securelevel_gt(struct ucred *cr, int level);
 void	sess_hold(struct session *);
 void	sess_release(struct session *);
 int	setrunnable(struct thread *, int);
 void	setsugid(struct proc *p);
 bool	should_yield(void);
 int	sigonstack(size_t sp);
 void	stopevent(struct proc *, u_int, u_int);
 struct	thread *tdfind(lwpid_t, pid_t);
 void	threadinit(void);
 void	tidhash_add(struct thread *);
 void	tidhash_remove(struct thread *);
 void	cpu_idle(int);
 int	cpu_idle_wakeup(int);
 extern	void (*cpu_idle_hook)(sbintime_t);	/* Hook to machdep CPU idler. */
 void	cpu_switch(struct thread *, struct thread *, struct mtx *);
 void	cpu_sync_core(void);
 void	cpu_throw(struct thread *, struct thread *) __dead2;
 bool	curproc_sigkilled(void);
 void	userret(struct thread *, struct trapframe *);
 
 void	cpu_exit(struct thread *);
 void	exit1(struct thread *, int, int) __dead2;
 void	cpu_copy_thread(struct thread *td, struct thread *td0);
 bool	cpu_exec_vmspace_reuse(struct proc *p, struct vm_map *map);
 int	cpu_fetch_syscall_args(struct thread *td);
 void	cpu_fork(struct thread *, struct proc *, struct thread *, int);
 void	cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *);
 int	cpu_procctl(struct thread *td, int idtype, id_t id, int com,
 	    void *data);
 void	cpu_set_syscall_retval(struct thread *, int);
 void	cpu_set_upcall(struct thread *, void (*)(void *), void *,
 	    stack_t *);
 int	cpu_set_user_tls(struct thread *, void *tls_base);
 void	cpu_thread_alloc(struct thread *);
 void	cpu_thread_clean(struct thread *);
 void	cpu_thread_exit(struct thread *);
 void	cpu_thread_free(struct thread *);
 void	cpu_thread_swapin(struct thread *);
 void	cpu_thread_swapout(struct thread *);
 struct	thread *thread_alloc(int pages);
 int	thread_alloc_stack(struct thread *, int pages);
 int	thread_check_susp(struct thread *td, bool sleep);
 void	thread_cow_get_proc(struct thread *newtd, struct proc *p);
 void	thread_cow_get(struct thread *newtd, struct thread *td);
 void	thread_cow_free(struct thread *td);
 void	thread_cow_update(struct thread *td);
 void	thread_cow_synced(struct thread *td);
 int	thread_create(struct thread *td, struct rtprio *rtp,
 	    int (*initialize_thread)(struct thread *, void *), void *thunk);
 void	thread_exit(void) __dead2;
 void	thread_free(struct thread *td);
 void	thread_link(struct thread *td, struct proc *p);
 void	thread_reap_barrier(void);
 int	thread_single(struct proc *p, int how);
 void	thread_single_end(struct proc *p, int how);
 void	thread_stash(struct thread *td);
 void	thread_stopped(struct proc *p);
 void	childproc_stopped(struct proc *child, int reason);
 void	childproc_continued(struct proc *child);
 void	childproc_exited(struct proc *child);
 void	thread_run_flash(struct thread *td);
 int	thread_suspend_check(int how);
 bool	thread_suspend_check_needed(void);
 void	thread_suspend_switch(struct thread *, struct proc *p);
 void	thread_suspend_one(struct thread *td);
 void	thread_unlink(struct thread *td);
 void	thread_unsuspend(struct proc *p);
 void	thread_wait(struct proc *p);
 
 bool	stop_all_proc_block(void);
 void	stop_all_proc_unblock(void);
 void	stop_all_proc(void);
 void	resume_all_proc(void);
 
 static __inline int
 curthread_pflags_set(int flags)
 {
 	struct thread *td;
 	int save;
 
 	td = curthread;
 	save = ~flags | (td->td_pflags & flags);
 	td->td_pflags |= flags;
 	return (save);
 }
 
 static __inline void
 curthread_pflags_restore(int save)
 {
 
 	curthread->td_pflags &= save;
 }
 
 static __inline int
 curthread_pflags2_set(int flags)
 {
 	struct thread *td;
 	int save;
 
 	td = curthread;
 	save = ~flags | (td->td_pflags2 & flags);
 	td->td_pflags2 |= flags;
 	return (save);
 }
 
 static __inline void
 curthread_pflags2_restore(int save)
 {
 
 	curthread->td_pflags2 &= save;
 }
 
 static __inline __pure2 struct td_sched *
 td_get_sched(struct thread *td)
 {
 
 	return ((struct td_sched *)&td[1]);
 }
 
 #define	PROC_ID_PID	0
 #define	PROC_ID_GROUP	1
 #define	PROC_ID_SESSION	2
 #define	PROC_ID_REAP	3
 
 void	proc_id_set(int type, pid_t id);
 void	proc_id_set_cond(int type, pid_t id);
 void	proc_id_clear(int type, pid_t id);
 
 EVENTHANDLER_LIST_DECLARE(process_ctor);
 EVENTHANDLER_LIST_DECLARE(process_dtor);
 EVENTHANDLER_LIST_DECLARE(process_init);
 EVENTHANDLER_LIST_DECLARE(process_fini);
 EVENTHANDLER_LIST_DECLARE(process_exit);
 EVENTHANDLER_LIST_DECLARE(process_fork);
 EVENTHANDLER_LIST_DECLARE(process_exec);
 
 EVENTHANDLER_LIST_DECLARE(thread_ctor);
 EVENTHANDLER_LIST_DECLARE(thread_dtor);
 EVENTHANDLER_LIST_DECLARE(thread_init);
 
 #endif	/* _KERNEL */
 
 #endif	/* !_SYS_PROC_H_ */