diff --git a/sys/kern/uipc_shm.c b/sys/kern/uipc_shm.c
index 14fe43524935..1136f34a6f85 100644
--- a/sys/kern/uipc_shm.c
+++ b/sys/kern/uipc_shm.c
@@ -1,2193 +1,2195 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2006, 2011, 2016-2017 Robert N. M. Watson
  * Copyright 2020 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by BAE Systems, the University of
  * Cambridge Computer Laboratory, and Memorial University under DARPA/AFRL
  * contract FA8650-15-C-7558 ("CADETS"), as part of the DARPA Transparent
  * Computing (TC) research program.
  *
  * Portions of this software were developed by Konstantin Belousov
  * under sponsorship from the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * Support for shared swap-backed anonymous memory objects via
  * shm_open(2), shm_rename(2), and shm_unlink(2).
  * While most of the implementation is here, vm_mmap.c contains
  * mapping logic changes.
  *
  * posixshmcontrol(1) allows users to inspect the state of the memory
  * objects.  Per-uid swap resource limit controls total amount of
  * memory that user can consume for anonymous objects, including
  * shared.
  */
 
 #include <sys/cdefs.h>
 #include "opt_capsicum.h"
 #include "opt_ktrace.h"
 
 #include <sys/param.h>
 #include <sys/capsicum.h>
 #include <sys/conf.h>
 #include <sys/fcntl.h>
 #include <sys/file.h>
 #include <sys/filedesc.h>
 #include <sys/filio.h>
 #include <sys/fnv_hash.h>
 #include <sys/kernel.h>
 #include <sys/limits.h>
 #include <sys/uio.h>
 #include <sys/signal.h>
 #include <sys/jail.h>
 #include <sys/ktrace.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mman.h>
 #include <sys/mutex.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/refcount.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sbuf.h>
 #include <sys/stat.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysctl.h>
 #include <sys/sysproto.h>
 #include <sys/systm.h>
 #include <sys/sx.h>
 #include <sys/time.h>
 #include <sys/vmmeter.h>
 #include <sys/vnode.h>
 #include <sys/unistd.h>
 #include <sys/user.h>
 
 #include <security/audit/audit.h>
 #include <security/mac/mac_framework.h>
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/pmap.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_map.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_object.h>
 #include <vm/vm_page.h>
 #include <vm/vm_pageout.h>
 #include <vm/vm_pager.h>
 #include <vm/swap_pager.h>
 
 struct shm_mapping {
 	char		*sm_path;
 	Fnv32_t		sm_fnv;
 	struct shmfd	*sm_shmfd;
 	LIST_ENTRY(shm_mapping) sm_link;
 };
 
 static MALLOC_DEFINE(M_SHMFD, "shmfd", "shared memory file descriptor");
 static LIST_HEAD(, shm_mapping) *shm_dictionary;
 static struct sx shm_dict_lock;
 static struct mtx shm_timestamp_lock;
 static u_long shm_hash;
 static struct unrhdr64 shm_ino_unr;
 static dev_t shm_dev_ino;
 
 #define	SHM_HASH(fnv)	(&shm_dictionary[(fnv) & shm_hash])
 
 static void	shm_init(void *arg);
 static void	shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd);
 static struct shmfd *shm_lookup(char *path, Fnv32_t fnv);
 static int	shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred);
 static void	shm_doremove(struct shm_mapping *map);
 static int	shm_dotruncate_cookie(struct shmfd *shmfd, off_t length,
     void *rl_cookie);
 static int	shm_dotruncate_locked(struct shmfd *shmfd, off_t length,
     void *rl_cookie);
 static int	shm_copyin_path(struct thread *td, const char *userpath_in,
     char **path_out);
 static int	shm_deallocate(struct shmfd *shmfd, off_t *offset,
     off_t *length, int flags);
 
 static fo_rdwr_t	shm_read;
 static fo_rdwr_t	shm_write;
 static fo_truncate_t	shm_truncate;
 static fo_ioctl_t	shm_ioctl;
 static fo_stat_t	shm_stat;
 static fo_close_t	shm_close;
 static fo_chmod_t	shm_chmod;
 static fo_chown_t	shm_chown;
 static fo_seek_t	shm_seek;
 static fo_fill_kinfo_t	shm_fill_kinfo;
 static fo_mmap_t	shm_mmap;
 static fo_get_seals_t	shm_get_seals;
 static fo_add_seals_t	shm_add_seals;
 static fo_fallocate_t	shm_fallocate;
 static fo_fspacectl_t	shm_fspacectl;
 
 /* File descriptor operations. */
 struct fileops shm_ops = {
 	.fo_read = shm_read,
 	.fo_write = shm_write,
 	.fo_truncate = shm_truncate,
 	.fo_ioctl = shm_ioctl,
 	.fo_poll = invfo_poll,
 	.fo_kqfilter = invfo_kqfilter,
 	.fo_stat = shm_stat,
 	.fo_close = shm_close,
 	.fo_chmod = shm_chmod,
 	.fo_chown = shm_chown,
 	.fo_sendfile = vn_sendfile,
 	.fo_seek = shm_seek,
 	.fo_fill_kinfo = shm_fill_kinfo,
 	.fo_mmap = shm_mmap,
 	.fo_get_seals = shm_get_seals,
 	.fo_add_seals = shm_add_seals,
 	.fo_fallocate = shm_fallocate,
 	.fo_fspacectl = shm_fspacectl,
 	.fo_cmp = file_kcmp_generic,
 	.fo_flags = DFLAG_PASSABLE | DFLAG_SEEKABLE,
 };
 
 FEATURE(posix_shm, "POSIX shared memory");
 
 static SYSCTL_NODE(_vm, OID_AUTO, largepages, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "");
 
 static int largepage_reclaim_tries = 1;
 SYSCTL_INT(_vm_largepages, OID_AUTO, reclaim_tries,
     CTLFLAG_RWTUN, &largepage_reclaim_tries, 0,
     "Number of contig reclaims before giving up for default alloc policy");
 
 #define	shm_rangelock_unlock(shmfd, cookie)				\
 	rangelock_unlock(&(shmfd)->shm_rl, (cookie), &(shmfd)->shm_mtx)
 #define	shm_rangelock_rlock(shmfd, start, end)				\
 	rangelock_rlock(&(shmfd)->shm_rl, (start), (end), &(shmfd)->shm_mtx)
 #define	shm_rangelock_tryrlock(shmfd, start, end)			\
 	rangelock_tryrlock(&(shmfd)->shm_rl, (start), (end), &(shmfd)->shm_mtx)
 #define	shm_rangelock_wlock(shmfd, start, end)				\
 	rangelock_wlock(&(shmfd)->shm_rl, (start), (end), &(shmfd)->shm_mtx)
 
 static int
 uiomove_object_page(vm_object_t obj, size_t len, struct uio *uio)
 {
 	vm_page_t m;
 	vm_pindex_t idx;
 	size_t tlen;
 	int error, offset, rv;
 
 	idx = OFF_TO_IDX(uio->uio_offset);
 	offset = uio->uio_offset & PAGE_MASK;
 	tlen = MIN(PAGE_SIZE - offset, len);
 
 	rv = vm_page_grab_valid_unlocked(&m, obj, idx,
 	    VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY | VM_ALLOC_NOCREAT);
 	if (rv == VM_PAGER_OK)
 		goto found;
 
 	/*
 	 * Read I/O without either a corresponding resident page or swap
 	 * page: use zero_region.  This is intended to avoid instantiating
 	 * pages on read from a sparse region.
 	 */
 	VM_OBJECT_WLOCK(obj);
 	m = vm_page_lookup(obj, idx);
 	if (uio->uio_rw == UIO_READ && m == NULL &&
 	    !vm_pager_has_page(obj, idx, NULL, NULL)) {
 		VM_OBJECT_WUNLOCK(obj);
 		return (uiomove(__DECONST(void *, zero_region), tlen, uio));
 	}
 
 	/*
 	 * Although the tmpfs vnode lock is held here, it is
 	 * nonetheless safe to sleep waiting for a free page.  The
 	 * pageout daemon does not need to acquire the tmpfs vnode
 	 * lock to page out tobj's pages because tobj is a OBJT_SWAP
 	 * type object.
 	 */
 	rv = vm_page_grab_valid(&m, obj, idx,
 	    VM_ALLOC_NORMAL | VM_ALLOC_SBUSY | VM_ALLOC_IGN_SBUSY);
 	if (rv != VM_PAGER_OK) {
 		VM_OBJECT_WUNLOCK(obj);
 		if (bootverbose) {
 			printf("uiomove_object: vm_obj %p idx %jd "
 			    "pager error %d\n", obj, idx, rv);
 		}
 		return (rv == VM_PAGER_AGAIN ? ENOSPC : EIO);
 	}
 	VM_OBJECT_WUNLOCK(obj);
 
 found:
 	error = uiomove_fromphys(&m, offset, tlen, uio);
 	if (uio->uio_rw == UIO_WRITE && error == 0)
 		vm_page_set_dirty(m);
 	vm_page_activate(m);
 	vm_page_sunbusy(m);
 
 	return (error);
 }
 
 int
 uiomove_object(vm_object_t obj, off_t obj_size, struct uio *uio)
 {
 	ssize_t resid;
 	size_t len;
 	int error;
 
 	error = 0;
 	while ((resid = uio->uio_resid) > 0) {
 		if (obj_size <= uio->uio_offset)
 			break;
 		len = MIN(obj_size - uio->uio_offset, resid);
 		if (len == 0)
 			break;
 		error = uiomove_object_page(obj, len, uio);
 		if (error != 0 || resid == uio->uio_resid)
 			break;
 	}
 	return (error);
 }
 
 static u_long count_largepages[MAXPAGESIZES];
 
 static int
 shm_largepage_phys_populate(vm_object_t object, vm_pindex_t pidx,
     int fault_type, vm_prot_t max_prot, vm_pindex_t *first, vm_pindex_t *last)
 {
 	vm_page_t m __diagused;
 	int psind;
 
 	psind = object->un_pager.phys.data_val;
 	if (psind == 0 || pidx >= object->size)
 		return (VM_PAGER_FAIL);
 	*first = rounddown2(pidx, pagesizes[psind] / PAGE_SIZE);
 
 	/*
 	 * We only busy the first page in the superpage run.  It is
 	 * useless to busy whole run since we only remove full
 	 * superpage, and it takes too long to busy e.g. 512 * 512 ==
 	 * 262144 pages constituing 1G amd64 superage.
 	 */
 	m = vm_page_grab(object, *first, VM_ALLOC_NORMAL | VM_ALLOC_NOCREAT);
 	MPASS(m != NULL);
 
 	*last = *first + atop(pagesizes[psind]) - 1;
 	return (VM_PAGER_OK);
 }
 
 static boolean_t
 shm_largepage_phys_haspage(vm_object_t object, vm_pindex_t pindex,
     int *before, int *after)
 {
 	int psind;
 
 	psind = object->un_pager.phys.data_val;
 	if (psind == 0 || pindex >= object->size)
 		return (FALSE);
 	if (before != NULL) {
 		*before = pindex - rounddown2(pindex, pagesizes[psind] /
 		    PAGE_SIZE);
 	}
 	if (after != NULL) {
 		*after = roundup2(pindex, pagesizes[psind] / PAGE_SIZE) -
 		    pindex;
 	}
 	return (TRUE);
 }
 
 static void
 shm_largepage_phys_ctor(vm_object_t object, vm_prot_t prot,
     vm_ooffset_t foff, struct ucred *cred)
 {
 }
 
 static void
 shm_largepage_phys_dtor(vm_object_t object)
 {
 	int psind;
 
 	psind = object->un_pager.phys.data_val;
 	if (psind != 0) {
 		atomic_subtract_long(&count_largepages[psind],
 		    object->size / (pagesizes[psind] / PAGE_SIZE));
 		vm_wire_sub(object->size);
 	} else {
 		KASSERT(object->size == 0,
 		    ("largepage phys obj %p not initialized bit size %#jx > 0",
 		    object, (uintmax_t)object->size));
 	}
 }
 
 static const struct phys_pager_ops shm_largepage_phys_ops = {
 	.phys_pg_populate =	shm_largepage_phys_populate,
 	.phys_pg_haspage =	shm_largepage_phys_haspage,
 	.phys_pg_ctor =		shm_largepage_phys_ctor,
 	.phys_pg_dtor =		shm_largepage_phys_dtor,
 };
 
 bool
 shm_largepage(struct shmfd *shmfd)
 {
 	return (shmfd->shm_object->type == OBJT_PHYS);
 }
 
 static void
 shm_pager_freespace(vm_object_t obj, vm_pindex_t start, vm_size_t size)
 {
 	struct shmfd *shm;
 	vm_size_t c;
 
 	swap_pager_freespace(obj, start, size, &c);
 	if (c == 0)
 		return;
 
 	shm = obj->un_pager.swp.swp_priv;
 	if (shm == NULL)
 		return;
 	KASSERT(shm->shm_pages >= c,
 	    ("shm %p pages %jd free %jd", shm,
 	    (uintmax_t)shm->shm_pages, (uintmax_t)c));
 	shm->shm_pages -= c;
 }
 
 static void
 shm_page_inserted(vm_object_t obj, vm_page_t m)
 {
 	struct shmfd *shm;
 
 	shm = obj->un_pager.swp.swp_priv;
 	if (shm == NULL)
 		return;
 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL))
 		shm->shm_pages += 1;
 }
 
 static void
 shm_page_removed(vm_object_t obj, vm_page_t m)
 {
 	struct shmfd *shm;
 
 	shm = obj->un_pager.swp.swp_priv;
 	if (shm == NULL)
 		return;
 	if (!vm_pager_has_page(obj, m->pindex, NULL, NULL)) {
 		KASSERT(shm->shm_pages >= 1,
 		    ("shm %p pages %jd free 1", shm,
 		    (uintmax_t)shm->shm_pages));
 		shm->shm_pages -= 1;
 	}
 }
 
 static struct pagerops shm_swap_pager_ops = {
 	.pgo_kvme_type = KVME_TYPE_SWAP,
 	.pgo_freespace = shm_pager_freespace,
 	.pgo_page_inserted = shm_page_inserted,
 	.pgo_page_removed = shm_page_removed,
 };
 static int shmfd_pager_type = -1;
 
 static int
 shm_seek(struct file *fp, off_t offset, int whence, struct thread *td)
 {
 	struct shmfd *shmfd;
 	off_t foffset;
 	int error;
 
 	shmfd = fp->f_data;
 	foffset = foffset_lock(fp, 0);
 	error = 0;
 	switch (whence) {
 	case L_INCR:
 		if (foffset < 0 ||
 		    (offset > 0 && foffset > OFF_MAX - offset)) {
 			error = EOVERFLOW;
 			break;
 		}
 		offset += foffset;
 		break;
 	case L_XTND:
 		if (offset > 0 && shmfd->shm_size > OFF_MAX - offset) {
 			error = EOVERFLOW;
 			break;
 		}
 		offset += shmfd->shm_size;
 		break;
 	case L_SET:
 		break;
 	default:
 		error = EINVAL;
 	}
 	if (error == 0) {
 		if (offset < 0 || offset > shmfd->shm_size)
 			error = EINVAL;
 		else
 			td->td_uretoff.tdu_off = offset;
 	}
 	foffset_unlock(fp, offset, error != 0 ? FOF_NOUPDATE : 0);
 	return (error);
 }
 
 static int
 shm_read(struct file *fp, struct uio *uio, struct ucred *active_cred,
     int flags, struct thread *td)
 {
 	struct shmfd *shmfd;
 	void *rl_cookie;
 	int error;
 
 	shmfd = fp->f_data;
 #ifdef MAC
 	error = mac_posixshm_check_read(active_cred, fp->f_cred, shmfd);
 	if (error)
 		return (error);
 #endif
 	foffset_lock_uio(fp, uio, flags);
 	rl_cookie = shm_rangelock_rlock(shmfd, uio->uio_offset,
 	    uio->uio_offset + uio->uio_resid);
 	error = uiomove_object(shmfd->shm_object, shmfd->shm_size, uio);
 	shm_rangelock_unlock(shmfd, rl_cookie);
 	foffset_unlock_uio(fp, uio, flags);
 	return (error);
 }
 
 static int
 shm_write(struct file *fp, struct uio *uio, struct ucred *active_cred,
     int flags, struct thread *td)
 {
 	struct shmfd *shmfd;
 	void *rl_cookie;
 	int error;
 	off_t size;
 
 	shmfd = fp->f_data;
 #ifdef MAC
 	error = mac_posixshm_check_write(active_cred, fp->f_cred, shmfd);
 	if (error)
 		return (error);
 #endif
 	if (shm_largepage(shmfd) && shmfd->shm_lp_psind == 0)
 		return (EINVAL);
 	foffset_lock_uio(fp, uio, flags);
 	if (uio->uio_resid > OFF_MAX - uio->uio_offset) {
 		/*
 		 * Overflow is only an error if we're supposed to expand on
 		 * write.  Otherwise, we'll just truncate the write to the
 		 * size of the file, which can only grow up to OFF_MAX.
 		 */
 		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0) {
 			foffset_unlock_uio(fp, uio, flags);
 			return (EFBIG);
 		}
 
 		size = shmfd->shm_size;
 	} else {
 		size = uio->uio_offset + uio->uio_resid;
 	}
 	if ((flags & FOF_OFFSET) == 0)
 		rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
 	else
 		rl_cookie = shm_rangelock_wlock(shmfd, uio->uio_offset, size);
 	if ((shmfd->shm_seals & F_SEAL_WRITE) != 0) {
 		error = EPERM;
 	} else {
 		error = 0;
 		if ((shmfd->shm_flags & SHM_GROW_ON_WRITE) != 0 &&
 		    size > shmfd->shm_size) {
 			error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
 		}
 		if (error == 0)
 			error = uiomove_object(shmfd->shm_object,
 			    shmfd->shm_size, uio);
 	}
 	shm_rangelock_unlock(shmfd, rl_cookie);
 	foffset_unlock_uio(fp, uio, flags);
 	return (error);
 }
 
 static int
 shm_truncate(struct file *fp, off_t length, struct ucred *active_cred,
     struct thread *td)
 {
 	struct shmfd *shmfd;
 #ifdef MAC
 	int error;
 #endif
 
 	shmfd = fp->f_data;
 #ifdef MAC
 	error = mac_posixshm_check_truncate(active_cred, fp->f_cred, shmfd);
 	if (error)
 		return (error);
 #endif
 	return (shm_dotruncate(shmfd, length));
 }
 
 int
 shm_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
     struct thread *td)
 {
 	struct shmfd *shmfd;
 	struct shm_largepage_conf *conf;
 	void *rl_cookie;
 
 	shmfd = fp->f_data;
 	switch (com) {
 	case FIONBIO:
 	case FIOASYNC:
 		/*
 		 * Allow fcntl(fd, F_SETFL, O_NONBLOCK) to work,
 		 * just like it would on an unlinked regular file
 		 */
 		return (0);
 	case FIOSSHMLPGCNF:
 		if (!shm_largepage(shmfd))
 			return (ENOTTY);
 		conf = data;
 		if (shmfd->shm_lp_psind != 0 &&
 		    conf->psind != shmfd->shm_lp_psind)
 			return (EINVAL);
 		if (conf->psind <= 0 || conf->psind >= MAXPAGESIZES ||
 		    pagesizes[conf->psind] == 0)
 			return (EINVAL);
 		if (conf->alloc_policy != SHM_LARGEPAGE_ALLOC_DEFAULT &&
 		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_NOWAIT &&
 		    conf->alloc_policy != SHM_LARGEPAGE_ALLOC_HARD)
 			return (EINVAL);
 
 		rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
 		shmfd->shm_lp_psind = conf->psind;
 		shmfd->shm_lp_alloc_policy = conf->alloc_policy;
 		shmfd->shm_object->un_pager.phys.data_val = conf->psind;
 		shm_rangelock_unlock(shmfd, rl_cookie);
 		return (0);
 	case FIOGSHMLPGCNF:
 		if (!shm_largepage(shmfd))
 			return (ENOTTY);
 		conf = data;
 		rl_cookie = shm_rangelock_rlock(shmfd, 0, OFF_MAX);
 		conf->psind = shmfd->shm_lp_psind;
 		conf->alloc_policy = shmfd->shm_lp_alloc_policy;
 		shm_rangelock_unlock(shmfd, rl_cookie);
 		return (0);
 	default:
 		return (ENOTTY);
 	}
 }
 
 static int
 shm_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
 {
 	struct shmfd *shmfd;
 #ifdef MAC
 	int error;
 #endif
 
 	shmfd = fp->f_data;
 
 #ifdef MAC
 	error = mac_posixshm_check_stat(active_cred, fp->f_cred, shmfd);
 	if (error)
 		return (error);
 #endif
 
 	/*
 	 * Attempt to return sanish values for fstat() on a memory file
 	 * descriptor.
 	 */
 	bzero(sb, sizeof(*sb));
 	sb->st_blksize = PAGE_SIZE;
 	sb->st_size = shmfd->shm_size;
 	mtx_lock(&shm_timestamp_lock);
 	sb->st_atim = shmfd->shm_atime;
 	sb->st_ctim = shmfd->shm_ctime;
 	sb->st_mtim = shmfd->shm_mtime;
 	sb->st_birthtim = shmfd->shm_birthtime;
 	sb->st_mode = S_IFREG | shmfd->shm_mode;		/* XXX */
 	sb->st_uid = shmfd->shm_uid;
 	sb->st_gid = shmfd->shm_gid;
 	mtx_unlock(&shm_timestamp_lock);
 	sb->st_dev = shm_dev_ino;
 	sb->st_ino = shmfd->shm_ino;
 	sb->st_nlink = shmfd->shm_object->ref_count;
 	if (shm_largepage(shmfd)) {
 		sb->st_blocks = shmfd->shm_object->size /
 		    (pagesizes[shmfd->shm_lp_psind] >> PAGE_SHIFT);
 	} else {
 		sb->st_blocks = shmfd->shm_pages;
 	}
 
 	return (0);
 }
 
 static int
 shm_close(struct file *fp, struct thread *td)
 {
 	struct shmfd *shmfd;
 
 	shmfd = fp->f_data;
 	fp->f_data = NULL;
 	shm_drop(shmfd);
 
 	return (0);
 }
 
 static int
 shm_copyin_path(struct thread *td, const char *userpath_in, char **path_out) {
 	int error;
 	char *path;
 	const char *pr_path;
 	size_t pr_pathlen;
 
 	path = malloc(MAXPATHLEN, M_SHMFD, M_WAITOK);
 	pr_path = td->td_ucred->cr_prison->pr_path;
 
 	/* Construct a full pathname for jailed callers. */
 	pr_pathlen = strcmp(pr_path, "/") ==
 	    0 ? 0 : strlcpy(path, pr_path, MAXPATHLEN);
 	error = copyinstr(userpath_in, path + pr_pathlen,
 	    MAXPATHLEN - pr_pathlen, NULL);
 	if (error != 0)
 		goto out;
 
 #ifdef KTRACE
 	if (KTRPOINT(curthread, KTR_NAMEI))
 		ktrnamei(path);
 #endif
 
 	/* Require paths to start with a '/' character. */
 	if (path[pr_pathlen] != '/') {
 		error = EINVAL;
 		goto out;
 	}
 
 	*path_out = path;
 
 out:
 	if (error != 0)
 		free(path, M_SHMFD);
 
 	return (error);
 }
 
 static int
 shm_partial_page_invalidate(vm_object_t object, vm_pindex_t idx, int base,
     int end)
 {
 	vm_page_t m;
 	int rv;
 
 	VM_OBJECT_ASSERT_WLOCKED(object);
 	KASSERT(base >= 0, ("%s: base %d", __func__, base));
 	KASSERT(end - base <= PAGE_SIZE, ("%s: base %d end %d", __func__, base,
 	    end));
 
 retry:
 	m = vm_page_grab(object, idx, VM_ALLOC_NOCREAT);
 	if (m != NULL) {
 		MPASS(vm_page_all_valid(m));
 	} else if (vm_pager_has_page(object, idx, NULL, NULL)) {
 		m = vm_page_alloc(object, idx,
 		    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL);
 		if (m == NULL)
 			goto retry;
 		vm_object_pip_add(object, 1);
 		VM_OBJECT_WUNLOCK(object);
 		rv = vm_pager_get_pages(object, &m, 1, NULL, NULL);
 		VM_OBJECT_WLOCK(object);
 		vm_object_pip_wakeup(object);
 		if (rv == VM_PAGER_OK) {
 			/*
 			 * Since the page was not resident, and therefore not
 			 * recently accessed, immediately enqueue it for
 			 * asynchronous laundering.  The current operation is
 			 * not regarded as an access.
 			 */
 			vm_page_launder(m);
 		} else {
 			vm_page_free(m);
 			VM_OBJECT_WUNLOCK(object);
 			return (EIO);
 		}
 	}
 	if (m != NULL) {
 		pmap_zero_page_area(m, base, end - base);
 		KASSERT(vm_page_all_valid(m), ("%s: page %p is invalid",
 		    __func__, m));
 		vm_page_set_dirty(m);
 		vm_page_xunbusy(m);
 	}
 
 	return (0);
 }
 
 static int
 shm_dotruncate_locked(struct shmfd *shmfd, off_t length, void *rl_cookie)
 {
 	vm_object_t object;
 	vm_pindex_t nobjsize;
 	vm_ooffset_t delta;
 	int base, error;
 
 	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
 	object = shmfd->shm_object;
 	VM_OBJECT_ASSERT_WLOCKED(object);
 	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
 	if (length == shmfd->shm_size)
 		return (0);
 	nobjsize = OFF_TO_IDX(length + PAGE_MASK);
 
 	/* Are we shrinking?  If so, trim the end. */
 	if (length < shmfd->shm_size) {
 		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
 			return (EPERM);
 
 		/*
 		 * Disallow any requests to shrink the size if this
 		 * object is mapped into the kernel.
 		 */
 		if (shmfd->shm_kmappings > 0)
 			return (EBUSY);
 
 		/*
 		 * Zero the truncated part of the last page.
 		 */
 		base = length & PAGE_MASK;
 		if (base != 0) {
 			error = shm_partial_page_invalidate(object,
 			    OFF_TO_IDX(length), base, PAGE_SIZE);
 			if (error)
 				return (error);
 		}
 		delta = IDX_TO_OFF(object->size - nobjsize);
 
 		if (nobjsize < object->size)
 			vm_object_page_remove(object, nobjsize, object->size,
 			    0);
 
 		/* Free the swap accounted for shm */
 		swap_release_by_cred(delta, object->cred);
 		object->charge -= delta;
 	} else {
 		if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
 			return (EPERM);
 
 		/* Try to reserve additional swap space. */
 		delta = IDX_TO_OFF(nobjsize - object->size);
 		if (!swap_reserve_by_cred(delta, object->cred))
 			return (ENOMEM);
 		object->charge += delta;
 	}
 	shmfd->shm_size = length;
 	mtx_lock(&shm_timestamp_lock);
 	vfs_timestamp(&shmfd->shm_ctime);
 	shmfd->shm_mtime = shmfd->shm_ctime;
 	mtx_unlock(&shm_timestamp_lock);
 	object->size = nobjsize;
 	return (0);
 }
 
 static int
 shm_dotruncate_largepage(struct shmfd *shmfd, off_t length, void *rl_cookie)
 {
 	vm_object_t object;
 	vm_page_t m;
 	vm_pindex_t newobjsz;
 	vm_pindex_t oldobjsz __unused;
 	int aflags, error, i, psind, try;
 
 	KASSERT(length >= 0, ("shm_dotruncate: length < 0"));
 	object = shmfd->shm_object;
 	VM_OBJECT_ASSERT_WLOCKED(object);
 	rangelock_cookie_assert(rl_cookie, RA_WLOCKED);
 
 	oldobjsz = object->size;
 	newobjsz = OFF_TO_IDX(length);
 	if (length == shmfd->shm_size)
 		return (0);
 	psind = shmfd->shm_lp_psind;
 	if (psind == 0 && length != 0)
 		return (EINVAL);
 	if ((length & (pagesizes[psind] - 1)) != 0)
 		return (EINVAL);
 
 	if (length < shmfd->shm_size) {
 		if ((shmfd->shm_seals & F_SEAL_SHRINK) != 0)
 			return (EPERM);
 		if (shmfd->shm_kmappings > 0)
 			return (EBUSY);
 		return (ENOTSUP);	/* Pages are unmanaged. */
 #if 0
 		vm_object_page_remove(object, newobjsz, oldobjsz, 0);
 		object->size = newobjsz;
 		shmfd->shm_size = length;
 		return (0);
 #endif
 	}
 
 	if ((shmfd->shm_seals & F_SEAL_GROW) != 0)
 		return (EPERM);
 
 	aflags = VM_ALLOC_NORMAL | VM_ALLOC_ZERO;
 	if (shmfd->shm_lp_alloc_policy == SHM_LARGEPAGE_ALLOC_NOWAIT)
 		aflags |= VM_ALLOC_WAITFAIL;
 	try = 0;
 
 	/*
 	 * Extend shmfd and object, keeping all already fully
 	 * allocated large pages intact even on error, because dropped
 	 * object lock might allowed mapping of them.
 	 */
 	while (object->size < newobjsz) {
 		m = vm_page_alloc_contig(object, object->size, aflags,
 		    pagesizes[psind] / PAGE_SIZE, 0, ~0,
 		    pagesizes[psind], 0,
 		    VM_MEMATTR_DEFAULT);
 		if (m == NULL) {
 			VM_OBJECT_WUNLOCK(object);
 			if (shmfd->shm_lp_alloc_policy ==
 			    SHM_LARGEPAGE_ALLOC_NOWAIT ||
 			    (shmfd->shm_lp_alloc_policy ==
 			    SHM_LARGEPAGE_ALLOC_DEFAULT &&
 			    try >= largepage_reclaim_tries)) {
 				VM_OBJECT_WLOCK(object);
 				return (ENOMEM);
 			}
 			error = vm_page_reclaim_contig(aflags,
 			    pagesizes[psind] / PAGE_SIZE, 0, ~0,
 			    pagesizes[psind], 0);
 			if (error == ENOMEM)
 				error = vm_wait_intr(object);
 			if (error != 0) {
 				VM_OBJECT_WLOCK(object);
 				return (error);
 			}
 			try++;
 			VM_OBJECT_WLOCK(object);
 			continue;
 		}
 		try = 0;
 		for (i = 0; i < pagesizes[psind] / PAGE_SIZE; i++) {
 			if ((m[i].flags & PG_ZERO) == 0)
 				pmap_zero_page(&m[i]);
 			vm_page_valid(&m[i]);
 			vm_page_xunbusy(&m[i]);
 		}
 		object->size += OFF_TO_IDX(pagesizes[psind]);
 		shmfd->shm_size += pagesizes[psind];
 		atomic_add_long(&count_largepages[psind], 1);
 		vm_wire_add(atop(pagesizes[psind]));
 	}
 	return (0);
 }
 
 static int
 shm_dotruncate_cookie(struct shmfd *shmfd, off_t length, void *rl_cookie)
 {
 	int error;
 
 	VM_OBJECT_WLOCK(shmfd->shm_object);
 	error = shm_largepage(shmfd) ? shm_dotruncate_largepage(shmfd,
 	    length, rl_cookie) : shm_dotruncate_locked(shmfd, length,
 	    rl_cookie);
 	VM_OBJECT_WUNLOCK(shmfd->shm_object);
 	return (error);
 }
 
 int
 shm_dotruncate(struct shmfd *shmfd, off_t length)
 {
 	void *rl_cookie;
 	int error;
 
 	rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
 	error = shm_dotruncate_cookie(shmfd, length, rl_cookie);
 	shm_rangelock_unlock(shmfd, rl_cookie);
 	return (error);
 }
 
 /*
  * shmfd object management including creation and reference counting
  * routines.
  */
 struct shmfd *
 shm_alloc(struct ucred *ucred, mode_t mode, bool largepage)
 {
 	struct shmfd *shmfd;
 	vm_object_t obj;
 
 	shmfd = malloc(sizeof(*shmfd), M_SHMFD, M_WAITOK | M_ZERO);
 	shmfd->shm_size = 0;
 	shmfd->shm_uid = ucred->cr_uid;
 	shmfd->shm_gid = ucred->cr_gid;
 	shmfd->shm_mode = mode;
 	if (largepage) {
 		shmfd->shm_object = phys_pager_allocate(NULL,
 		    &shm_largepage_phys_ops, NULL, shmfd->shm_size,
 		    VM_PROT_DEFAULT, 0, ucred);
 		shmfd->shm_lp_alloc_policy = SHM_LARGEPAGE_ALLOC_DEFAULT;
 	} else {
 		obj = vm_pager_allocate(shmfd_pager_type, NULL,
 		    shmfd->shm_size, VM_PROT_DEFAULT, 0, ucred);
 		VM_OBJECT_WLOCK(obj);
 		obj->un_pager.swp.swp_priv = shmfd;
 		VM_OBJECT_WUNLOCK(obj);
 		shmfd->shm_object = obj;
 	}
 	KASSERT(shmfd->shm_object != NULL, ("shm_create: vm_pager_allocate"));
 	vfs_timestamp(&shmfd->shm_birthtime);
 	shmfd->shm_atime = shmfd->shm_mtime = shmfd->shm_ctime =
 	    shmfd->shm_birthtime;
 	shmfd->shm_ino = alloc_unr64(&shm_ino_unr);
 	refcount_init(&shmfd->shm_refs, 1);
 	mtx_init(&shmfd->shm_mtx, "shmrl", NULL, MTX_DEF);
 	rangelock_init(&shmfd->shm_rl);
 #ifdef MAC
 	mac_posixshm_init(shmfd);
 	mac_posixshm_create(ucred, shmfd);
 #endif
 
 	return (shmfd);
 }
 
 struct shmfd *
 shm_hold(struct shmfd *shmfd)
 {
 
 	refcount_acquire(&shmfd->shm_refs);
 	return (shmfd);
 }
 
 void
 shm_drop(struct shmfd *shmfd)
 {
 	vm_object_t obj;
 
 	if (refcount_release(&shmfd->shm_refs)) {
 #ifdef MAC
 		mac_posixshm_destroy(shmfd);
 #endif
 		rangelock_destroy(&shmfd->shm_rl);
 		mtx_destroy(&shmfd->shm_mtx);
 		obj = shmfd->shm_object;
 		if (!shm_largepage(shmfd)) {
 			VM_OBJECT_WLOCK(obj);
 			obj->un_pager.swp.swp_priv = NULL;
 			VM_OBJECT_WUNLOCK(obj);
 		}
 		vm_object_deallocate(obj);
 		free(shmfd, M_SHMFD);
 	}
 }
 
 /*
  * Determine if the credentials have sufficient permissions for a
  * specified combination of FREAD and FWRITE.
  */
 int
 shm_access(struct shmfd *shmfd, struct ucred *ucred, int flags)
 {
 	accmode_t accmode;
 	int error;
 
 	accmode = 0;
 	if (flags & FREAD)
 		accmode |= VREAD;
 	if (flags & FWRITE)
 		accmode |= VWRITE;
 	mtx_lock(&shm_timestamp_lock);
 	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
 	    accmode, ucred);
 	mtx_unlock(&shm_timestamp_lock);
 	return (error);
 }
 
 static void
 shm_init(void *arg)
 {
 	char name[32];
 	int i;
 
 	mtx_init(&shm_timestamp_lock, "shm timestamps", NULL, MTX_DEF);
 	sx_init(&shm_dict_lock, "shm dictionary");
 	shm_dictionary = hashinit(1024, M_SHMFD, &shm_hash);
 	new_unrhdr64(&shm_ino_unr, 1);
 	shm_dev_ino = devfs_alloc_cdp_inode();
 	KASSERT(shm_dev_ino > 0, ("shm dev inode not initialized"));
 	shmfd_pager_type = vm_pager_alloc_dyn_type(&shm_swap_pager_ops,
 	    OBJT_SWAP);
 	MPASS(shmfd_pager_type != -1);
 
 	for (i = 1; i < MAXPAGESIZES; i++) {
 		if (pagesizes[i] == 0)
 			break;
 #define	M	(1024 * 1024)
 #define	G	(1024 * M)
 		if (pagesizes[i] >= G)
 			snprintf(name, sizeof(name), "%luG", pagesizes[i] / G);
 		else if (pagesizes[i] >= M)
 			snprintf(name, sizeof(name), "%luM", pagesizes[i] / M);
 		else
 			snprintf(name, sizeof(name), "%lu", pagesizes[i]);
 #undef G
 #undef M
 		SYSCTL_ADD_ULONG(NULL, SYSCTL_STATIC_CHILDREN(_vm_largepages),
 		    OID_AUTO, name, CTLFLAG_RD, &count_largepages[i],
 		    "number of non-transient largepages allocated");
 	}
 }
 SYSINIT(shm_init, SI_SUB_SYSV_SHM, SI_ORDER_ANY, shm_init, NULL);
 
 /*
  * Remove all shared memory objects that belong to a prison.
  */
 void
 shm_remove_prison(struct prison *pr)
 {
 	struct shm_mapping *shmm, *tshmm;
 	u_long i;
 
 	sx_xlock(&shm_dict_lock);
 	for (i = 0; i < shm_hash + 1; i++) {
 		LIST_FOREACH_SAFE(shmm, &shm_dictionary[i], sm_link, tshmm) {
 			if (shmm->sm_shmfd->shm_object->cred &&
 			    shmm->sm_shmfd->shm_object->cred->cr_prison == pr)
 				shm_doremove(shmm);
 		}
 	}
 	sx_xunlock(&shm_dict_lock);
 }
 
 /*
  * Dictionary management.  We maintain an in-kernel dictionary to map
  * paths to shmfd objects.  We use the FNV hash on the path to store
  * the mappings in a hash table.
  */
 static struct shmfd *
 shm_lookup(char *path, Fnv32_t fnv)
 {
 	struct shm_mapping *map;
 
 	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
 		if (map->sm_fnv != fnv)
 			continue;
 		if (strcmp(map->sm_path, path) == 0)
 			return (map->sm_shmfd);
 	}
 
 	return (NULL);
 }
 
 static void
 shm_insert(char *path, Fnv32_t fnv, struct shmfd *shmfd)
 {
 	struct shm_mapping *map;
 
 	map = malloc(sizeof(struct shm_mapping), M_SHMFD, M_WAITOK);
 	map->sm_path = path;
 	map->sm_fnv = fnv;
 	map->sm_shmfd = shm_hold(shmfd);
 	shmfd->shm_path = path;
 	LIST_INSERT_HEAD(SHM_HASH(fnv), map, sm_link);
 }
 
 static int
 shm_remove(char *path, Fnv32_t fnv, struct ucred *ucred)
 {
 	struct shm_mapping *map;
 	int error;
 
 	LIST_FOREACH(map, SHM_HASH(fnv), sm_link) {
 		if (map->sm_fnv != fnv)
 			continue;
 		if (strcmp(map->sm_path, path) == 0) {
 #ifdef MAC
 			error = mac_posixshm_check_unlink(ucred, map->sm_shmfd);
 			if (error)
 				return (error);
 #endif
 			error = shm_access(map->sm_shmfd, ucred,
 			    FREAD | FWRITE);
 			if (error)
 				return (error);
 			shm_doremove(map);
 			return (0);
 		}
 	}
 
 	return (ENOENT);
 }
 
 static void
 shm_doremove(struct shm_mapping *map)
 {
 	map->sm_shmfd->shm_path = NULL;
 	LIST_REMOVE(map, sm_link);
 	shm_drop(map->sm_shmfd);
 	free(map->sm_path, M_SHMFD);
 	free(map, M_SHMFD);
 }
 
 int
 kern_shm_open2(struct thread *td, const char *userpath, int flags, mode_t mode,
     int shmflags, struct filecaps *fcaps, const char *name __unused)
 {
 	struct pwddesc *pdp;
 	struct shmfd *shmfd;
 	struct file *fp;
 	char *path;
 	void *rl_cookie;
 	Fnv32_t fnv;
 	mode_t cmode;
 	int error, fd, initial_seals;
 	bool largepage;
 
 	if ((shmflags & ~(SHM_ALLOW_SEALING | SHM_GROW_ON_WRITE |
 	    SHM_LARGEPAGE)) != 0)
 		return (EINVAL);
 
 	initial_seals = F_SEAL_SEAL;
 	if ((shmflags & SHM_ALLOW_SEALING) != 0)
 		initial_seals &= ~F_SEAL_SEAL;
 
 	AUDIT_ARG_FFLAGS(flags);
 	AUDIT_ARG_MODE(mode);
 
 	if ((flags & O_ACCMODE) != O_RDONLY && (flags & O_ACCMODE) != O_RDWR)
 		return (EINVAL);
 
 	if ((flags & ~(O_ACCMODE | O_CREAT | O_EXCL | O_TRUNC | O_CLOEXEC)) != 0)
 		return (EINVAL);
 
 	largepage = (shmflags & SHM_LARGEPAGE) != 0;
 	if (largepage && !PMAP_HAS_LARGEPAGES)
 		return (ENOTTY);
 
 	/*
 	 * Currently only F_SEAL_SEAL may be set when creating or opening shmfd.
 	 * If the decision is made later to allow additional seals, care must be
 	 * taken below to ensure that the seals are properly set if the shmfd
 	 * already existed -- this currently assumes that only F_SEAL_SEAL can
 	 * be set and doesn't take further precautions to ensure the validity of
 	 * the seals being added with respect to current mappings.
 	 */
 	if ((initial_seals & ~F_SEAL_SEAL) != 0)
 		return (EINVAL);
 
 	if (userpath != SHM_ANON) {
 		error = shm_copyin_path(td, userpath, &path);
 		if (error != 0)
 			return (error);
 
 #ifdef CAPABILITY_MODE
 		/*
 		 * shm_open(2) is only allowed for anonymous objects.
 		 */
 		if (CAP_TRACING(td))
 			ktrcapfail(CAPFAIL_NAMEI, path);
 		if (IN_CAPABILITY_MODE(td)) {
 			free(path, M_SHMFD);
 			return (ECAPMODE);
 		}
 #endif
 
 		AUDIT_ARG_UPATH1_CANON(path);
+	} else {
+		path = NULL;
 	}
 
 	pdp = td->td_proc->p_pd;
 	cmode = (mode & ~pdp->pd_cmask) & ACCESSPERMS;
 
 	/*
 	 * shm_open(2) created shm should always have O_CLOEXEC set, as mandated
 	 * by POSIX.  We allow it to be unset here so that an in-kernel
 	 * interface may be written as a thin layer around shm, optionally not
 	 * setting CLOEXEC.  For shm_open(2), O_CLOEXEC is set unconditionally
 	 * in sys_shm_open() to keep this implementation compliant.
 	 */
 	error = falloc_caps(td, &fp, &fd, flags & O_CLOEXEC, fcaps);
 	if (error) {
 		free(path, M_SHMFD);
 		return (error);
 	}
 
 	/* A SHM_ANON path pointer creates an anonymous object. */
 	if (userpath == SHM_ANON) {
 		/* A read-only anonymous object is pointless. */
 		if ((flags & O_ACCMODE) == O_RDONLY) {
 			fdclose(td, fp, fd);
 			fdrop(fp, td);
 			return (EINVAL);
 		}
 		shmfd = shm_alloc(td->td_ucred, cmode, largepage);
 		shmfd->shm_seals = initial_seals;
 		shmfd->shm_flags = shmflags;
 	} else {
 		fnv = fnv_32_str(path, FNV1_32_INIT);
 		sx_xlock(&shm_dict_lock);
 		shmfd = shm_lookup(path, fnv);
 		if (shmfd == NULL) {
 			/* Object does not yet exist, create it if requested. */
 			if (flags & O_CREAT) {
 #ifdef MAC
 				error = mac_posixshm_check_create(td->td_ucred,
 				    path);
 				if (error == 0) {
 #endif
 					shmfd = shm_alloc(td->td_ucred, cmode,
 					    largepage);
 					shmfd->shm_seals = initial_seals;
 					shmfd->shm_flags = shmflags;
 					shm_insert(path, fnv, shmfd);
 #ifdef MAC
 				}
 #endif
 			} else {
 				free(path, M_SHMFD);
 				error = ENOENT;
 			}
 		} else {
 			rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
 
 			/*
 			 * kern_shm_open() likely shouldn't ever error out on
 			 * trying to set a seal that already exists, unlike
 			 * F_ADD_SEALS.  This would break terribly as
 			 * shm_open(2) actually sets F_SEAL_SEAL to maintain
 			 * historical behavior where the underlying file could
 			 * not be sealed.
 			 */
 			initial_seals &= ~shmfd->shm_seals;
 
 			/*
 			 * Object already exists, obtain a new
 			 * reference if requested and permitted.
 			 */
 			free(path, M_SHMFD);
 
 			/*
 			 * initial_seals can't set additional seals if we've
 			 * already been set F_SEAL_SEAL.  If F_SEAL_SEAL is set,
 			 * then we've already removed that one from
 			 * initial_seals.  This is currently redundant as we
 			 * only allow setting F_SEAL_SEAL at creation time, but
 			 * it's cheap to check and decreases the effort required
 			 * to allow additional seals.
 			 */
 			if ((shmfd->shm_seals & F_SEAL_SEAL) != 0 &&
 			    initial_seals != 0)
 				error = EPERM;
 			else if ((flags & (O_CREAT | O_EXCL)) ==
 			    (O_CREAT | O_EXCL))
 				error = EEXIST;
 			else if (shmflags != 0 && shmflags != shmfd->shm_flags)
 				error = EINVAL;
 			else {
 #ifdef MAC
 				error = mac_posixshm_check_open(td->td_ucred,
 				    shmfd, FFLAGS(flags & O_ACCMODE));
 				if (error == 0)
 #endif
 				error = shm_access(shmfd, td->td_ucred,
 				    FFLAGS(flags & O_ACCMODE));
 			}
 
 			/*
 			 * Truncate the file back to zero length if
 			 * O_TRUNC was specified and the object was
 			 * opened with read/write.
 			 */
 			if (error == 0 &&
 			    (flags & (O_ACCMODE | O_TRUNC)) ==
 			    (O_RDWR | O_TRUNC)) {
 				VM_OBJECT_WLOCK(shmfd->shm_object);
 #ifdef MAC
 				error = mac_posixshm_check_truncate(
 					td->td_ucred, fp->f_cred, shmfd);
 				if (error == 0)
 #endif
 					error = shm_dotruncate_locked(shmfd, 0,
 					    rl_cookie);
 				VM_OBJECT_WUNLOCK(shmfd->shm_object);
 			}
 			if (error == 0) {
 				/*
 				 * Currently we only allow F_SEAL_SEAL to be
 				 * set initially.  As noted above, this would
 				 * need to be reworked should that change.
 				 */
 				shmfd->shm_seals |= initial_seals;
 				shm_hold(shmfd);
 			}
 			shm_rangelock_unlock(shmfd, rl_cookie);
 		}
 		sx_xunlock(&shm_dict_lock);
 
 		if (error) {
 			fdclose(td, fp, fd);
 			fdrop(fp, td);
 			return (error);
 		}
 	}
 
 	finit(fp, FFLAGS(flags & O_ACCMODE), DTYPE_SHM, shmfd, &shm_ops);
 
 	td->td_retval[0] = fd;
 	fdrop(fp, td);
 
 	return (0);
 }
 
 /* System calls. */
 #ifdef COMPAT_FREEBSD12
 int
 freebsd12_shm_open(struct thread *td, struct freebsd12_shm_open_args *uap)
 {
 
 	return (kern_shm_open(td, uap->path, uap->flags | O_CLOEXEC,
 	    uap->mode, NULL));
 }
 #endif
 
 int
 sys_shm_unlink(struct thread *td, struct shm_unlink_args *uap)
 {
 	char *path;
 	Fnv32_t fnv;
 	int error;
 
 	error = shm_copyin_path(td, uap->path, &path);
 	if (error != 0)
 		return (error);
 
 	AUDIT_ARG_UPATH1_CANON(path);
 	fnv = fnv_32_str(path, FNV1_32_INIT);
 	sx_xlock(&shm_dict_lock);
 	error = shm_remove(path, fnv, td->td_ucred);
 	sx_xunlock(&shm_dict_lock);
 	free(path, M_SHMFD);
 
 	return (error);
 }
 
 int
 sys_shm_rename(struct thread *td, struct shm_rename_args *uap)
 {
 	char *path_from = NULL, *path_to = NULL;
 	Fnv32_t fnv_from, fnv_to;
 	struct shmfd *fd_from;
 	struct shmfd *fd_to;
 	int error;
 	int flags;
 
 	flags = uap->flags;
 	AUDIT_ARG_FFLAGS(flags);
 
 	/*
 	 * Make sure the user passed only valid flags.
 	 * If you add a new flag, please add a new term here.
 	 */
 	if ((flags & ~(
 	    SHM_RENAME_NOREPLACE |
 	    SHM_RENAME_EXCHANGE
 	    )) != 0) {
 		error = EINVAL;
 		goto out;
 	}
 
 	/*
 	 * EXCHANGE and NOREPLACE don't quite make sense together. Let's
 	 * force the user to choose one or the other.
 	 */
 	if ((flags & SHM_RENAME_NOREPLACE) != 0 &&
 	    (flags & SHM_RENAME_EXCHANGE) != 0) {
 		error = EINVAL;
 		goto out;
 	}
 
 	/* Renaming to or from anonymous makes no sense */
 	if (uap->path_from == SHM_ANON || uap->path_to == SHM_ANON) {
 		error = EINVAL;
 		goto out;
 	}
 
 	error = shm_copyin_path(td, uap->path_from, &path_from);
 	if (error != 0)
 		goto out;
 
 	error = shm_copyin_path(td, uap->path_to, &path_to);
 	if (error != 0)
 		goto out;
 
 	AUDIT_ARG_UPATH1_CANON(path_from);
 	AUDIT_ARG_UPATH2_CANON(path_to);
 
 	/* Rename with from/to equal is a no-op */
 	if (strcmp(path_from, path_to) == 0)
 		goto out;
 
 	fnv_from = fnv_32_str(path_from, FNV1_32_INIT);
 	fnv_to = fnv_32_str(path_to, FNV1_32_INIT);
 
 	sx_xlock(&shm_dict_lock);
 
 	fd_from = shm_lookup(path_from, fnv_from);
 	if (fd_from == NULL) {
 		error = ENOENT;
 		goto out_locked;
 	}
 
 	fd_to = shm_lookup(path_to, fnv_to);
 	if ((flags & SHM_RENAME_NOREPLACE) != 0 && fd_to != NULL) {
 		error = EEXIST;
 		goto out_locked;
 	}
 
 	/*
 	 * Unconditionally prevents shm_remove from invalidating the 'from'
 	 * shm's state.
 	 */
 	shm_hold(fd_from);
 	error = shm_remove(path_from, fnv_from, td->td_ucred);
 
 	/*
 	 * One of my assumptions failed if ENOENT (e.g. locking didn't
 	 * protect us)
 	 */
 	KASSERT(error != ENOENT, ("Our shm disappeared during shm_rename: %s",
 	    path_from));
 	if (error != 0) {
 		shm_drop(fd_from);
 		goto out_locked;
 	}
 
 	/*
 	 * If we are exchanging, we need to ensure the shm_remove below
 	 * doesn't invalidate the dest shm's state.
 	 */
 	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL)
 		shm_hold(fd_to);
 
 	/*
 	 * NOTE: if path_to is not already in the hash, c'est la vie;
 	 * it simply means we have nothing already at path_to to unlink.
 	 * That is the ENOENT case.
 	 *
 	 * If we somehow don't have access to unlink this guy, but
 	 * did for the shm at path_from, then relink the shm to path_from
 	 * and abort with EACCES.
 	 *
 	 * All other errors: that is weird; let's relink and abort the
 	 * operation.
 	 */
 	error = shm_remove(path_to, fnv_to, td->td_ucred);
 	if (error != 0 && error != ENOENT) {
 		shm_insert(path_from, fnv_from, fd_from);
 		shm_drop(fd_from);
 		/* Don't free path_from now, since the hash references it */
 		path_from = NULL;
 		goto out_locked;
 	}
 
 	error = 0;
 
 	shm_insert(path_to, fnv_to, fd_from);
 
 	/* Don't free path_to now, since the hash references it */
 	path_to = NULL;
 
 	/* We kept a ref when we removed, and incremented again in insert */
 	shm_drop(fd_from);
 	KASSERT(fd_from->shm_refs > 0, ("Expected >0 refs; got: %d\n",
 	    fd_from->shm_refs));
 
 	if ((flags & SHM_RENAME_EXCHANGE) != 0 && fd_to != NULL) {
 		shm_insert(path_from, fnv_from, fd_to);
 		path_from = NULL;
 		shm_drop(fd_to);
 		KASSERT(fd_to->shm_refs > 0, ("Expected >0 refs; got: %d\n",
 		    fd_to->shm_refs));
 	}
 
 out_locked:
 	sx_xunlock(&shm_dict_lock);
 
 out:
 	free(path_from, M_SHMFD);
 	free(path_to, M_SHMFD);
 	return (error);
 }
 
 static int
 shm_mmap_large(struct shmfd *shmfd, vm_map_t map, vm_offset_t *addr,
     vm_size_t size, vm_prot_t prot, vm_prot_t max_prot, int flags,
     vm_ooffset_t foff, struct thread *td)
 {
 	struct vmspace *vms;
 	vm_map_entry_t next_entry, prev_entry;
 	vm_offset_t align, mask, maxaddr;
 	int docow, error, rv, try;
 	bool curmap;
 
 	if (shmfd->shm_lp_psind == 0)
 		return (EINVAL);
 
 	/* MAP_PRIVATE is disabled */
 	if ((flags & ~(MAP_SHARED | MAP_FIXED | MAP_EXCL |
 	    MAP_NOCORE | MAP_32BIT | MAP_ALIGNMENT_MASK)) != 0)
 		return (EINVAL);
 
 	vms = td->td_proc->p_vmspace;
 	curmap = map == &vms->vm_map;
 	if (curmap) {
 		error = kern_mmap_racct_check(td, map, size);
 		if (error != 0)
 			return (error);
 	}
 
 	docow = shmfd->shm_lp_psind << MAP_SPLIT_BOUNDARY_SHIFT;
 	docow |= MAP_INHERIT_SHARE;
 	if ((flags & MAP_NOCORE) != 0)
 		docow |= MAP_DISABLE_COREDUMP;
 
 	mask = pagesizes[shmfd->shm_lp_psind] - 1;
 	if ((foff & mask) != 0)
 		return (EINVAL);
 	maxaddr = vm_map_max(map);
 	if ((flags & MAP_32BIT) != 0 && maxaddr > MAP_32BIT_MAX_ADDR)
 		maxaddr = MAP_32BIT_MAX_ADDR;
 	if (size == 0 || (size & mask) != 0 ||
 	    (*addr != 0 && ((*addr & mask) != 0 ||
 	    *addr + size < *addr || *addr + size > maxaddr)))
 		return (EINVAL);
 
 	align = flags & MAP_ALIGNMENT_MASK;
 	if (align == 0) {
 		align = pagesizes[shmfd->shm_lp_psind];
 	} else if (align == MAP_ALIGNED_SUPER) {
 		if (shmfd->shm_lp_psind != 1)
 			return (EINVAL);
 		align = pagesizes[1];
 	} else {
 		align >>= MAP_ALIGNMENT_SHIFT;
 		align = 1ULL << align;
 		/* Also handles overflow. */
 		if (align < pagesizes[shmfd->shm_lp_psind])
 			return (EINVAL);
 	}
 
 	vm_map_lock(map);
 	if ((flags & MAP_FIXED) == 0) {
 		try = 1;
 		if (curmap && (*addr == 0 ||
 		    (*addr >= round_page((vm_offset_t)vms->vm_taddr) &&
 		    *addr < round_page((vm_offset_t)vms->vm_daddr +
 		    lim_max(td, RLIMIT_DATA))))) {
 			*addr = roundup2((vm_offset_t)vms->vm_daddr +
 			    lim_max(td, RLIMIT_DATA),
 			    pagesizes[shmfd->shm_lp_psind]);
 		}
 again:
 		rv = vm_map_find_aligned(map, addr, size, maxaddr, align);
 		if (rv != KERN_SUCCESS) {
 			if (try == 1) {
 				try = 2;
 				*addr = vm_map_min(map);
 				if ((*addr & mask) != 0)
 					*addr = (*addr + mask) & mask;
 				goto again;
 			}
 			goto fail1;
 		}
 	} else if ((flags & MAP_EXCL) == 0) {
 		rv = vm_map_delete(map, *addr, *addr + size);
 		if (rv != KERN_SUCCESS)
 			goto fail1;
 	} else {
 		error = ENOSPC;
 		if (vm_map_lookup_entry(map, *addr, &prev_entry))
 			goto fail;
 		next_entry = vm_map_entry_succ(prev_entry);
 		if (next_entry->start < *addr + size)
 			goto fail;
 	}
 
 	rv = vm_map_insert(map, shmfd->shm_object, foff, *addr, *addr + size,
 	    prot, max_prot, docow);
 fail1:
 	error = vm_mmap_to_errno(rv);
 fail:
 	vm_map_unlock(map);
 	return (error);
 }
 
 static int
 shm_mmap(struct file *fp, vm_map_t map, vm_offset_t *addr, vm_size_t objsize,
     vm_prot_t prot, vm_prot_t cap_maxprot, int flags,
     vm_ooffset_t foff, struct thread *td)
 {
 	struct shmfd *shmfd;
 	vm_prot_t maxprot;
 	int error;
 	bool writecnt;
 	void *rl_cookie;
 
 	shmfd = fp->f_data;
 	maxprot = VM_PROT_NONE;
 
 	rl_cookie = shm_rangelock_rlock(shmfd, 0, objsize);
 	/* FREAD should always be set. */
 	if ((fp->f_flag & FREAD) != 0)
 		maxprot |= VM_PROT_EXECUTE | VM_PROT_READ;
 
 	/*
 	 * If FWRITE's set, we can allow VM_PROT_WRITE unless it's a shared
 	 * mapping with a write seal applied.  Private mappings are always
 	 * writeable.
 	 */
 	if ((flags & MAP_SHARED) == 0) {
 		cap_maxprot |= VM_PROT_WRITE;
 		maxprot |= VM_PROT_WRITE;
 		writecnt = false;
 	} else {
 		if ((fp->f_flag & FWRITE) != 0 &&
 		    (shmfd->shm_seals & F_SEAL_WRITE) == 0)
 			maxprot |= VM_PROT_WRITE;
 
 		/*
 		 * Any mappings from a writable descriptor may be upgraded to
 		 * VM_PROT_WRITE with mprotect(2), unless a write-seal was
 		 * applied between the open and subsequent mmap(2).  We want to
 		 * reject application of a write seal as long as any such
 		 * mapping exists so that the seal cannot be trivially bypassed.
 		 */
 		writecnt = (maxprot & VM_PROT_WRITE) != 0;
 		if (!writecnt && (prot & VM_PROT_WRITE) != 0) {
 			error = EACCES;
 			goto out;
 		}
 	}
 	maxprot &= cap_maxprot;
 
 	/* See comment in vn_mmap(). */
 	if (
 #ifdef _LP64
 	    objsize > OFF_MAX ||
 #endif
 	    foff > OFF_MAX - objsize) {
 		error = EINVAL;
 		goto out;
 	}
 
 #ifdef MAC
 	error = mac_posixshm_check_mmap(td->td_ucred, shmfd, prot, flags);
 	if (error != 0)
 		goto out;
 #endif
 
 	mtx_lock(&shm_timestamp_lock);
 	vfs_timestamp(&shmfd->shm_atime);
 	mtx_unlock(&shm_timestamp_lock);
 	vm_object_reference(shmfd->shm_object);
 
 	if (shm_largepage(shmfd)) {
 		writecnt = false;
 		error = shm_mmap_large(shmfd, map, addr, objsize, prot,
 		    maxprot, flags, foff, td);
 	} else {
 		if (writecnt) {
 			vm_pager_update_writecount(shmfd->shm_object, 0,
 			    objsize);
 		}
 		error = vm_mmap_object(map, addr, objsize, prot, maxprot, flags,
 		    shmfd->shm_object, foff, writecnt, td);
 	}
 	if (error != 0) {
 		if (writecnt)
 			vm_pager_release_writecount(shmfd->shm_object, 0,
 			    objsize);
 		vm_object_deallocate(shmfd->shm_object);
 	}
 out:
 	shm_rangelock_unlock(shmfd, rl_cookie);
 	return (error);
 }
 
 static int
 shm_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
     struct thread *td)
 {
 	struct shmfd *shmfd;
 	int error;
 
 	error = 0;
 	shmfd = fp->f_data;
 	mtx_lock(&shm_timestamp_lock);
 	/*
 	 * SUSv4 says that x bits of permission need not be affected.
 	 * Be consistent with our shm_open there.
 	 */
 #ifdef MAC
 	error = mac_posixshm_check_setmode(active_cred, shmfd, mode);
 	if (error != 0)
 		goto out;
 #endif
 	error = vaccess(VREG, shmfd->shm_mode, shmfd->shm_uid, shmfd->shm_gid,
 	    VADMIN, active_cred);
 	if (error != 0)
 		goto out;
 	shmfd->shm_mode = mode & ACCESSPERMS;
 out:
 	mtx_unlock(&shm_timestamp_lock);
 	return (error);
 }
 
 static int
 shm_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
     struct thread *td)
 {
 	struct shmfd *shmfd;
 	int error;
 
 	error = 0;
 	shmfd = fp->f_data;
 	mtx_lock(&shm_timestamp_lock);
 #ifdef MAC
 	error = mac_posixshm_check_setowner(active_cred, shmfd, uid, gid);
 	if (error != 0)
 		goto out;
 #endif
 	if (uid == (uid_t)-1)
 		uid = shmfd->shm_uid;
 	if (gid == (gid_t)-1)
                  gid = shmfd->shm_gid;
 	if (((uid != shmfd->shm_uid && uid != active_cred->cr_uid) ||
 	    (gid != shmfd->shm_gid && !groupmember(gid, active_cred))) &&
 	    (error = priv_check_cred(active_cred, PRIV_VFS_CHOWN)))
 		goto out;
 	shmfd->shm_uid = uid;
 	shmfd->shm_gid = gid;
 out:
 	mtx_unlock(&shm_timestamp_lock);
 	return (error);
 }
 
 /*
  * Helper routines to allow the backing object of a shared memory file
  * descriptor to be mapped in the kernel.
  */
 int
 shm_map(struct file *fp, size_t size, off_t offset, void **memp)
 {
 	struct shmfd *shmfd;
 	vm_offset_t kva, ofs;
 	vm_object_t obj;
 	int rv;
 
 	if (fp->f_type != DTYPE_SHM)
 		return (EINVAL);
 	shmfd = fp->f_data;
 	obj = shmfd->shm_object;
 	VM_OBJECT_WLOCK(obj);
 	/*
 	 * XXXRW: This validation is probably insufficient, and subject to
 	 * sign errors.  It should be fixed.
 	 */
 	if (offset >= shmfd->shm_size ||
 	    offset + size > round_page(shmfd->shm_size)) {
 		VM_OBJECT_WUNLOCK(obj);
 		return (EINVAL);
 	}
 
 	shmfd->shm_kmappings++;
 	vm_object_reference_locked(obj);
 	VM_OBJECT_WUNLOCK(obj);
 
 	/* Map the object into the kernel_map and wire it. */
 	kva = vm_map_min(kernel_map);
 	ofs = offset & PAGE_MASK;
 	offset = trunc_page(offset);
 	size = round_page(size + ofs);
 	rv = vm_map_find(kernel_map, obj, offset, &kva, size, 0,
 	    VMFS_OPTIMAL_SPACE, VM_PROT_READ | VM_PROT_WRITE,
 	    VM_PROT_READ | VM_PROT_WRITE, 0);
 	if (rv == KERN_SUCCESS) {
 		rv = vm_map_wire(kernel_map, kva, kva + size,
 		    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
 		if (rv == KERN_SUCCESS) {
 			*memp = (void *)(kva + ofs);
 			return (0);
 		}
 		vm_map_remove(kernel_map, kva, kva + size);
 	} else
 		vm_object_deallocate(obj);
 
 	/* On failure, drop our mapping reference. */
 	VM_OBJECT_WLOCK(obj);
 	shmfd->shm_kmappings--;
 	VM_OBJECT_WUNLOCK(obj);
 
 	return (vm_mmap_to_errno(rv));
 }
 
 /*
  * We require the caller to unmap the entire entry.  This allows us to
  * safely decrement shm_kmappings when a mapping is removed.
  */
 int
 shm_unmap(struct file *fp, void *mem, size_t size)
 {
 	struct shmfd *shmfd;
 	vm_map_entry_t entry;
 	vm_offset_t kva, ofs;
 	vm_object_t obj;
 	vm_pindex_t pindex;
 	vm_prot_t prot;
 	boolean_t wired;
 	vm_map_t map;
 	int rv;
 
 	if (fp->f_type != DTYPE_SHM)
 		return (EINVAL);
 	shmfd = fp->f_data;
 	kva = (vm_offset_t)mem;
 	ofs = kva & PAGE_MASK;
 	kva = trunc_page(kva);
 	size = round_page(size + ofs);
 	map = kernel_map;
 	rv = vm_map_lookup(&map, kva, VM_PROT_READ | VM_PROT_WRITE, &entry,
 	    &obj, &pindex, &prot, &wired);
 	if (rv != KERN_SUCCESS)
 		return (EINVAL);
 	if (entry->start != kva || entry->end != kva + size) {
 		vm_map_lookup_done(map, entry);
 		return (EINVAL);
 	}
 	vm_map_lookup_done(map, entry);
 	if (obj != shmfd->shm_object)
 		return (EINVAL);
 	vm_map_remove(map, kva, kva + size);
 	VM_OBJECT_WLOCK(obj);
 	KASSERT(shmfd->shm_kmappings > 0, ("shm_unmap: object not mapped"));
 	shmfd->shm_kmappings--;
 	VM_OBJECT_WUNLOCK(obj);
 	return (0);
 }
 
 static int
 shm_fill_kinfo_locked(struct shmfd *shmfd, struct kinfo_file *kif, bool list)
 {
 	const char *path, *pr_path;
 	size_t pr_pathlen;
 	bool visible;
 
 	sx_assert(&shm_dict_lock, SA_LOCKED);
 	kif->kf_type = KF_TYPE_SHM;
 	kif->kf_un.kf_file.kf_file_mode = S_IFREG | shmfd->shm_mode;
 	kif->kf_un.kf_file.kf_file_size = shmfd->shm_size;
 	if (shmfd->shm_path != NULL) {
 		if (shmfd->shm_path != NULL) {
 			path = shmfd->shm_path;
 			pr_path = curthread->td_ucred->cr_prison->pr_path;
 			if (strcmp(pr_path, "/") != 0) {
 				/* Return the jail-rooted pathname. */
 				pr_pathlen = strlen(pr_path);
 				visible = strncmp(path, pr_path, pr_pathlen)
 				    == 0 && path[pr_pathlen] == '/';
 				if (list && !visible)
 					return (EPERM);
 				if (visible)
 					path += pr_pathlen;
 			}
 			strlcpy(kif->kf_path, path, sizeof(kif->kf_path));
 		}
 	}
 	return (0);
 }
 
 static int
 shm_fill_kinfo(struct file *fp, struct kinfo_file *kif,
     struct filedesc *fdp __unused)
 {
 	int res;
 
 	sx_slock(&shm_dict_lock);
 	res = shm_fill_kinfo_locked(fp->f_data, kif, false);
 	sx_sunlock(&shm_dict_lock);
 	return (res);
 }
 
 static int
 shm_add_seals(struct file *fp, int seals)
 {
 	struct shmfd *shmfd;
 	void *rl_cookie;
 	vm_ooffset_t writemappings;
 	int error, nseals;
 
 	error = 0;
 	shmfd = fp->f_data;
 	rl_cookie = shm_rangelock_wlock(shmfd, 0, OFF_MAX);
 
 	/* Even already-set seals should result in EPERM. */
 	if ((shmfd->shm_seals & F_SEAL_SEAL) != 0) {
 		error = EPERM;
 		goto out;
 	}
 	nseals = seals & ~shmfd->shm_seals;
 	if ((nseals & F_SEAL_WRITE) != 0) {
 		if (shm_largepage(shmfd)) {
 			error = ENOTSUP;
 			goto out;
 		}
 
 		/*
 		 * The rangelock above prevents writable mappings from being
 		 * added after we've started applying seals.  The RLOCK here
 		 * is to avoid torn reads on ILP32 arches as unmapping/reducing
 		 * writemappings will be done without a rangelock.
 		 */
 		VM_OBJECT_RLOCK(shmfd->shm_object);
 		writemappings = shmfd->shm_object->un_pager.swp.writemappings;
 		VM_OBJECT_RUNLOCK(shmfd->shm_object);
 		/* kmappings are also writable */
 		if (writemappings > 0) {
 			error = EBUSY;
 			goto out;
 		}
 	}
 	shmfd->shm_seals |= nseals;
 out:
 	shm_rangelock_unlock(shmfd, rl_cookie);
 	return (error);
 }
 
 static int
 shm_get_seals(struct file *fp, int *seals)
 {
 	struct shmfd *shmfd;
 
 	shmfd = fp->f_data;
 	*seals = shmfd->shm_seals;
 	return (0);
 }
 
 static int
 shm_deallocate(struct shmfd *shmfd, off_t *offset, off_t *length, int flags)
 {
 	vm_object_t object;
 	vm_pindex_t pistart, pi, piend;
 	vm_ooffset_t off, len;
 	int startofs, endofs, end;
 	int error;
 
 	off = *offset;
 	len = *length;
 	KASSERT(off + len <= (vm_ooffset_t)OFF_MAX, ("off + len overflows"));
 	if (off + len > shmfd->shm_size)
 		len = shmfd->shm_size - off;
 	object = shmfd->shm_object;
 	startofs = off & PAGE_MASK;
 	endofs = (off + len) & PAGE_MASK;
 	pistart = OFF_TO_IDX(off);
 	piend = OFF_TO_IDX(off + len);
 	pi = OFF_TO_IDX(off + PAGE_MASK);
 	error = 0;
 
 	/* Handle the case when offset is on or beyond shm size. */
 	if ((off_t)len <= 0) {
 		*length = 0;
 		return (0);
 	}
 
 	VM_OBJECT_WLOCK(object);
 
 	if (startofs != 0) {
 		end = pistart != piend ? PAGE_SIZE : endofs;
 		error = shm_partial_page_invalidate(object, pistart, startofs,
 		    end);
 		if (error)
 			goto out;
 		off += end - startofs;
 		len -= end - startofs;
 	}
 
 	if (pi < piend) {
 		vm_object_page_remove(object, pi, piend, 0);
 		off += IDX_TO_OFF(piend - pi);
 		len -= IDX_TO_OFF(piend - pi);
 	}
 
 	if (endofs != 0 && pistart != piend) {
 		error = shm_partial_page_invalidate(object, piend, 0, endofs);
 		if (error)
 			goto out;
 		off += endofs;
 		len -= endofs;
 	}
 
 out:
 	VM_OBJECT_WUNLOCK(shmfd->shm_object);
 	*offset = off;
 	*length = len;
 	return (error);
 }
 
 static int
 shm_fspacectl(struct file *fp, int cmd, off_t *offset, off_t *length, int flags,
     struct ucred *active_cred, struct thread *td)
 {
 	void *rl_cookie;
 	struct shmfd *shmfd;
 	off_t off, len;
 	int error;
 
 	KASSERT(cmd == SPACECTL_DEALLOC, ("shm_fspacectl: Invalid cmd"));
 	KASSERT((flags & ~SPACECTL_F_SUPPORTED) == 0,
 	    ("shm_fspacectl: non-zero flags"));
 	KASSERT(*offset >= 0 && *length > 0 && *length <= OFF_MAX - *offset,
 	    ("shm_fspacectl: offset/length overflow or underflow"));
 	error = EINVAL;
 	shmfd = fp->f_data;
 	off = *offset;
 	len = *length;
 
 	rl_cookie = shm_rangelock_wlock(shmfd, off, off + len);
 	switch (cmd) {
 	case SPACECTL_DEALLOC:
 		if ((shmfd->shm_seals & F_SEAL_WRITE) != 0) {
 			error = EPERM;
 			break;
 		}
 		error = shm_deallocate(shmfd, &off, &len, flags);
 		*offset = off;
 		*length = len;
 		break;
 	default:
 		__assert_unreachable();
 	}
 	shm_rangelock_unlock(shmfd, rl_cookie);
 	return (error);
 }
 
 
 static int
 shm_fallocate(struct file *fp, off_t offset, off_t len, struct thread *td)
 {
 	void *rl_cookie;
 	struct shmfd *shmfd;
 	size_t size;
 	int error;
 
 	/* This assumes that the caller already checked for overflow. */
 	error = 0;
 	shmfd = fp->f_data;
 	size = offset + len;
 
 	/*
 	 * Just grab the rangelock for the range that we may be attempting to
 	 * grow, rather than blocking read/write for regions we won't be
 	 * touching while this (potential) resize is in progress.  Other
 	 * attempts to resize the shmfd will have to take a write lock from 0 to
 	 * OFF_MAX, so this being potentially beyond the current usable range of
 	 * the shmfd is not necessarily a concern.  If other mechanisms are
 	 * added to grow a shmfd, this may need to be re-evaluated.
 	 */
 	rl_cookie = shm_rangelock_wlock(shmfd, offset, size);
 	if (size > shmfd->shm_size)
 		error = shm_dotruncate_cookie(shmfd, size, rl_cookie);
 	shm_rangelock_unlock(shmfd, rl_cookie);
 	/* Translate to posix_fallocate(2) return value as needed. */
 	if (error == ENOMEM)
 		error = ENOSPC;
 	return (error);
 }
 
 static int
 sysctl_posix_shm_list(SYSCTL_HANDLER_ARGS)
 {
 	struct shm_mapping *shmm;
 	struct sbuf sb;
 	struct kinfo_file kif;
 	u_long i;
 	int error, error2;
 
 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file) * 5, req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = 0;
 	sx_slock(&shm_dict_lock);
 	for (i = 0; i < shm_hash + 1; i++) {
 		LIST_FOREACH(shmm, &shm_dictionary[i], sm_link) {
 			error = shm_fill_kinfo_locked(shmm->sm_shmfd,
 			    &kif, true);
 			if (error == EPERM) {
 				error = 0;
 				continue;
 			}
 			if (error != 0)
 				break;
 			pack_kinfo(&kif);
 			error = sbuf_bcat(&sb, &kif, kif.kf_structsize) == 0 ?
 			    0 : ENOMEM;
 			if (error != 0)
 				break;
 		}
 	}
 	sx_sunlock(&shm_dict_lock);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 SYSCTL_PROC(_kern_ipc, OID_AUTO, posix_shm_list,
     CTLFLAG_RD | CTLFLAG_PRISON | CTLFLAG_MPSAFE | CTLTYPE_OPAQUE,
     NULL, 0, sysctl_posix_shm_list, "",
     "POSIX SHM list");
 
 int
 kern_shm_open(struct thread *td, const char *path, int flags, mode_t mode,
     struct filecaps *caps)
 {
 
 	return (kern_shm_open2(td, path, flags, mode, 0, caps, NULL));
 }
 
 /*
  * This version of the shm_open() interface leaves CLOEXEC behavior up to the
  * caller, and libc will enforce it for the traditional shm_open() call.  This
  * allows other consumers, like memfd_create(), to opt-in for CLOEXEC.  This
  * interface also includes a 'name' argument that is currently unused, but could
  * potentially be exported later via some interface for debugging purposes.
  * From the kernel's perspective, it is optional.  Individual consumers like
  * memfd_create() may require it in order to be compatible with other systems
  * implementing the same function.
  */
 int
 sys_shm_open2(struct thread *td, struct shm_open2_args *uap)
 {
 
 	return (kern_shm_open2(td, uap->path, uap->flags, uap->mode,
 	    uap->shmflags, NULL, uap->name));
 }