diff --git a/sys/kern/subr_gtaskqueue.c b/sys/kern/subr_gtaskqueue.c
index e68e1b9318fa..120ffaba874a 100644
--- a/sys/kern/subr_gtaskqueue.c
+++ b/sys/kern/subr_gtaskqueue.c
@@ -1,829 +1,829 @@
 /*-
  * Copyright (c) 2000 Doug Rabson
  * Copyright (c) 2014 Jeff Roberson
  * Copyright (c) 2016 Matthew Macy
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/bus.h>
 #include <sys/cpuset.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/libkern.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mutex.h>
 #include <sys/proc.h>
 #include <sys/epoch.h>
 #include <sys/sched.h>
 #include <sys/smp.h>
 #include <sys/gtaskqueue.h>
 #include <sys/unistd.h>
 #include <machine/stdarg.h>
 
 static MALLOC_DEFINE(M_GTASKQUEUE, "gtaskqueue", "Group Task Queues");
 static void	gtaskqueue_thread_enqueue(void *);
 static void	gtaskqueue_thread_loop(void *arg);
 static int	task_is_running(struct gtaskqueue *queue, struct gtask *gtask);
 static void	gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask);
 
 TASKQGROUP_DEFINE(softirq, mp_ncpus, 1);
 
 struct gtaskqueue_busy {
 	struct gtask		*tb_running;
 	u_int			 tb_seq;
 	LIST_ENTRY(gtaskqueue_busy) tb_link;
 };
 
 typedef void (*gtaskqueue_enqueue_fn)(void *context);
 
 struct gtaskqueue {
 	STAILQ_HEAD(, gtask)	tq_queue;
 	LIST_HEAD(, gtaskqueue_busy) tq_active;
 	u_int			tq_seq;
 	int			tq_callouts;
 	struct mtx_padalign	tq_mutex;
 	gtaskqueue_enqueue_fn	tq_enqueue;
 	void			*tq_context;
 	char			*tq_name;
 	struct thread		**tq_threads;
 	int			tq_tcount;
 	int			tq_spin;
 	int			tq_flags;
 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
 };
 
 #define	TQ_FLAGS_ACTIVE		(1 << 0)
 #define	TQ_FLAGS_BLOCKED	(1 << 1)
 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
 
 #define	DT_CALLOUT_ARMED	(1 << 0)
 
 #define	TQ_LOCK(tq)							\
 	do {								\
 		if ((tq)->tq_spin)					\
 			mtx_lock_spin(&(tq)->tq_mutex);			\
 		else							\
 			mtx_lock(&(tq)->tq_mutex);			\
 	} while (0)
 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
 
 #define	TQ_UNLOCK(tq)							\
 	do {								\
 		if ((tq)->tq_spin)					\
 			mtx_unlock_spin(&(tq)->tq_mutex);		\
 		else							\
 			mtx_unlock(&(tq)->tq_mutex);			\
 	} while (0)
 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
 
 #ifdef INVARIANTS
 static void
 gtask_dump(struct gtask *gtask)
 {
 	printf("gtask: %p ta_flags=%x ta_priority=%d ta_func=%p ta_context=%p\n",
 	       gtask, gtask->ta_flags, gtask->ta_priority, gtask->ta_func, gtask->ta_context);
 }
 #endif
 
 static __inline int
 TQ_SLEEP(struct gtaskqueue *tq, void *p, const char *wm)
 {
 	if (tq->tq_spin)
 		return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
 	return (msleep(p, &tq->tq_mutex, 0, wm, 0));
 }
 
 static struct gtaskqueue *
 _gtaskqueue_create(const char *name, int mflags,
 		 taskqueue_enqueue_fn enqueue, void *context,
 		 int mtxflags, const char *mtxname __unused)
 {
 	struct gtaskqueue *queue;
 	char *tq_name;
 
 	tq_name = malloc(TASKQUEUE_NAMELEN, M_GTASKQUEUE, mflags | M_ZERO);
 	if (!tq_name)
 		return (NULL);
 
 	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
 
 	queue = malloc(sizeof(struct gtaskqueue), M_GTASKQUEUE, mflags | M_ZERO);
 	if (!queue) {
 		free(tq_name, M_GTASKQUEUE);
 		return (NULL);
 	}
 
 	STAILQ_INIT(&queue->tq_queue);
 	LIST_INIT(&queue->tq_active);
 	queue->tq_enqueue = enqueue;
 	queue->tq_context = context;
 	queue->tq_name = tq_name;
 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
 	if (enqueue == gtaskqueue_thread_enqueue)
 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
 	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
 
 	return (queue);
 }
 
 /*
  * Signal a taskqueue thread to terminate.
  */
 static void
 gtaskqueue_terminate(struct thread **pp, struct gtaskqueue *tq)
 {
 
 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
 		wakeup(tq);
 		TQ_SLEEP(tq, pp, "gtq_destroy");
 	}
 }
 
 static void __unused
 gtaskqueue_free(struct gtaskqueue *queue)
 {
 
 	TQ_LOCK(queue);
 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
 	gtaskqueue_terminate(queue->tq_threads, queue);
 	KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
 	mtx_destroy(&queue->tq_mutex);
 	free(queue->tq_threads, M_GTASKQUEUE);
 	free(queue->tq_name, M_GTASKQUEUE);
 	free(queue, M_GTASKQUEUE);
 }
 
 /*
  * Wait for all to complete, then prevent it from being enqueued
  */
 void
 grouptask_block(struct grouptask *grouptask)
 {
 	struct gtaskqueue *queue = grouptask->gt_taskqueue;
 	struct gtask *gtask = &grouptask->gt_task;
 
 #ifdef INVARIANTS
 	if (queue == NULL) {
 		gtask_dump(gtask);
 		panic("queue == NULL");
 	}
 #endif
 	TQ_LOCK(queue);
 	gtask->ta_flags |= TASK_NOENQUEUE;
   	gtaskqueue_drain_locked(queue, gtask);
 	TQ_UNLOCK(queue);
 }
 
 void
 grouptask_unblock(struct grouptask *grouptask)
 {
 	struct gtaskqueue *queue = grouptask->gt_taskqueue;
 	struct gtask *gtask = &grouptask->gt_task;
 
 #ifdef INVARIANTS
 	if (queue == NULL) {
 		gtask_dump(gtask);
 		panic("queue == NULL");
 	}
 #endif
 	TQ_LOCK(queue);
 	gtask->ta_flags &= ~TASK_NOENQUEUE;
 	TQ_UNLOCK(queue);
 }
 
 int
 grouptaskqueue_enqueue(struct gtaskqueue *queue, struct gtask *gtask)
 {
 #ifdef INVARIANTS
 	if (queue == NULL) {
 		gtask_dump(gtask);
 		panic("queue == NULL");
 	}
 #endif
 	TQ_LOCK(queue);
 	if (gtask->ta_flags & TASK_ENQUEUED) {
 		TQ_UNLOCK(queue);
 		return (0);
 	}
 	if (gtask->ta_flags & TASK_NOENQUEUE) {
 		TQ_UNLOCK(queue);
 		return (EAGAIN);
 	}
 	STAILQ_INSERT_TAIL(&queue->tq_queue, gtask, ta_link);
 	gtask->ta_flags |= TASK_ENQUEUED;
 	TQ_UNLOCK(queue);
 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
 		queue->tq_enqueue(queue->tq_context);
 	return (0);
 }
 
 static void
 gtaskqueue_task_nop_fn(void *context)
 {
 }
 
 /*
  * Block until all currently queued tasks in this taskqueue
  * have begun execution.  Tasks queued during execution of
  * this function are ignored.
  */
 static void
 gtaskqueue_drain_tq_queue(struct gtaskqueue *queue)
 {
 	struct gtask t_barrier;
 
 	if (STAILQ_EMPTY(&queue->tq_queue))
 		return;
 
 	/*
 	 * Enqueue our barrier after all current tasks, but with
 	 * the highest priority so that newly queued tasks cannot
 	 * pass it.  Because of the high priority, we can not use
 	 * taskqueue_enqueue_locked directly (which drops the lock
 	 * anyway) so just insert it at tail while we have the
 	 * queue lock.
 	 */
 	GTASK_INIT(&t_barrier, 0, USHRT_MAX, gtaskqueue_task_nop_fn, &t_barrier);
 	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
 	t_barrier.ta_flags |= TASK_ENQUEUED;
 
 	/*
 	 * Once the barrier has executed, all previously queued tasks
 	 * have completed or are currently executing.
 	 */
 	while (t_barrier.ta_flags & TASK_ENQUEUED)
 		TQ_SLEEP(queue, &t_barrier, "gtq_qdrain");
 }
 
 /*
  * Block until all currently executing tasks for this taskqueue
  * complete.  Tasks that begin execution during the execution
  * of this function are ignored.
  */
 static void
 gtaskqueue_drain_tq_active(struct gtaskqueue *queue)
 {
 	struct gtaskqueue_busy *tb;
 	u_int seq;
 
 	if (LIST_EMPTY(&queue->tq_active))
 		return;
 
 	/* Block taskq_terminate().*/
 	queue->tq_callouts++;
 
 	/* Wait for any active task with sequence from the past. */
 	seq = queue->tq_seq;
 restart:
 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
 		if ((int)(tb->tb_seq - seq) <= 0) {
 			TQ_SLEEP(queue, tb->tb_running, "gtq_adrain");
 			goto restart;
 		}
 	}
 
 	/* Release taskqueue_terminate(). */
 	queue->tq_callouts--;
 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
 		wakeup_one(queue->tq_threads);
 }
 
 void
 gtaskqueue_block(struct gtaskqueue *queue)
 {
 
 	TQ_LOCK(queue);
 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
 	TQ_UNLOCK(queue);
 }
 
 void
 gtaskqueue_unblock(struct gtaskqueue *queue)
 {
 
 	TQ_LOCK(queue);
 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
 	if (!STAILQ_EMPTY(&queue->tq_queue))
 		queue->tq_enqueue(queue->tq_context);
 	TQ_UNLOCK(queue);
 }
 
 static void
 gtaskqueue_run_locked(struct gtaskqueue *queue)
 {
 	struct epoch_tracker et;
 	struct gtaskqueue_busy tb;
 	struct gtask *gtask;
 	bool in_net_epoch;
 
 	KASSERT(queue != NULL, ("tq is NULL"));
 	TQ_ASSERT_LOCKED(queue);
 	tb.tb_running = NULL;
 	LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
 	in_net_epoch = false;
 
 	while ((gtask = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
 		gtask->ta_flags &= ~TASK_ENQUEUED;
 		tb.tb_running = gtask;
 		tb.tb_seq = ++queue->tq_seq;
 		TQ_UNLOCK(queue);
 
 		KASSERT(gtask->ta_func != NULL, ("task->ta_func is NULL"));
 		if (!in_net_epoch && TASK_IS_NET(gtask)) {
 			in_net_epoch = true;
 			NET_EPOCH_ENTER(et);
 		} else if (in_net_epoch && !TASK_IS_NET(gtask)) {
 			NET_EPOCH_EXIT(et);
 			in_net_epoch = false;
 		}
 		gtask->ta_func(gtask->ta_context);
 
 		TQ_LOCK(queue);
 		wakeup(gtask);
 	}
 	if (in_net_epoch)
 		NET_EPOCH_EXIT(et);
 	LIST_REMOVE(&tb, tb_link);
 }
 
 static int
 task_is_running(struct gtaskqueue *queue, struct gtask *gtask)
 {
 	struct gtaskqueue_busy *tb;
 
 	TQ_ASSERT_LOCKED(queue);
 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
 		if (tb->tb_running == gtask)
 			return (1);
 	}
 	return (0);
 }
 
 static int
 gtaskqueue_cancel_locked(struct gtaskqueue *queue, struct gtask *gtask)
 {
 
 	if (gtask->ta_flags & TASK_ENQUEUED)
 		STAILQ_REMOVE(&queue->tq_queue, gtask, gtask, ta_link);
 	gtask->ta_flags &= ~TASK_ENQUEUED;
 	return (task_is_running(queue, gtask) ? EBUSY : 0);
 }
 
 int
 gtaskqueue_cancel(struct gtaskqueue *queue, struct gtask *gtask)
 {
 	int error;
 
 	TQ_LOCK(queue);
 	error = gtaskqueue_cancel_locked(queue, gtask);
 	TQ_UNLOCK(queue);
 
 	return (error);
 }
 
 static void
 gtaskqueue_drain_locked(struct gtaskqueue *queue, struct gtask *gtask)
 {
 	while ((gtask->ta_flags & TASK_ENQUEUED) || task_is_running(queue, gtask))
 		TQ_SLEEP(queue, gtask, "gtq_drain");
 }
 
 void
 gtaskqueue_drain(struct gtaskqueue *queue, struct gtask *gtask)
 {
 
 	if (!queue->tq_spin)
 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
 
 	TQ_LOCK(queue);
 	gtaskqueue_drain_locked(queue, gtask);
 	TQ_UNLOCK(queue);
 }
 
 void
 gtaskqueue_drain_all(struct gtaskqueue *queue)
 {
 
 	if (!queue->tq_spin)
 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
 
 	TQ_LOCK(queue);
 	gtaskqueue_drain_tq_queue(queue);
 	gtaskqueue_drain_tq_active(queue);
 	TQ_UNLOCK(queue);
 }
 
 static int
 _gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
     cpuset_t *mask, const char *name, va_list ap)
 {
 	char ktname[MAXCOMLEN + 1];
 	struct thread *td;
 	struct gtaskqueue *tq;
 	int i, error;
 
 	if (count <= 0)
 		return (EINVAL);
 
 	vsnprintf(ktname, sizeof(ktname), name, ap);
 	tq = *tqp;
 
 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_GTASKQUEUE,
 	    M_NOWAIT | M_ZERO);
 	if (tq->tq_threads == NULL) {
 		printf("%s: no memory for %s threads\n", __func__, ktname);
 		return (ENOMEM);
 	}
 
 	for (i = 0; i < count; i++) {
 		if (count == 1)
 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
 		else
 			error = kthread_add(gtaskqueue_thread_loop, tqp, NULL,
 			    &tq->tq_threads[i], RFSTOPPED, 0,
 			    "%s_%d", ktname, i);
 		if (error) {
 			/* should be ok to continue, taskqueue_free will dtrt */
 			printf("%s: kthread_add(%s): error %d", __func__,
 			    ktname, error);
 			tq->tq_threads[i] = NULL;		/* paranoid */
 		} else
 			tq->tq_tcount++;
 	}
 	for (i = 0; i < count; i++) {
 		if (tq->tq_threads[i] == NULL)
 			continue;
 		td = tq->tq_threads[i];
 		if (mask) {
 			error = cpuset_setthread(td->td_tid, mask);
 			/*
 			 * Failing to pin is rarely an actual fatal error;
 			 * it'll just affect performance.
 			 */
 			if (error)
 				printf("%s: curthread=%llu: can't pin; "
 				    "error=%d\n",
 				    __func__,
 				    (unsigned long long) td->td_tid,
 				    error);
 		}
 		thread_lock(td);
 		sched_prio(td, pri);
 		sched_add(td, SRQ_BORING);
 	}
 
 	return (0);
 }
 
 static int
 gtaskqueue_start_threads(struct gtaskqueue **tqp, int count, int pri,
     const char *name, ...)
 {
 	va_list ap;
 	int error;
 
 	va_start(ap, name);
 	error = _gtaskqueue_start_threads(tqp, count, pri, NULL, name, ap);
 	va_end(ap);
 	return (error);
 }
 
 static inline void
 gtaskqueue_run_callback(struct gtaskqueue *tq,
     enum taskqueue_callback_type cb_type)
 {
 	taskqueue_callback_fn tq_callback;
 
 	TQ_ASSERT_UNLOCKED(tq);
 	tq_callback = tq->tq_callbacks[cb_type];
 	if (tq_callback != NULL)
 		tq_callback(tq->tq_cb_contexts[cb_type]);
 }
 
 static void
 gtaskqueue_thread_loop(void *arg)
 {
 	struct gtaskqueue **tqp, *tq;
 
 	tqp = arg;
 	tq = *tqp;
 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
 	TQ_LOCK(tq);
 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
 		/* XXX ? */
 		gtaskqueue_run_locked(tq);
 		/*
 		 * Because taskqueue_run() can drop tq_mutex, we need to
 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
 		 * meantime, which means we missed a wakeup.
 		 */
 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
 			break;
 		TQ_SLEEP(tq, tq, "-");
 	}
 	gtaskqueue_run_locked(tq);
 	/*
 	 * This thread is on its way out, so just drop the lock temporarily
 	 * in order to call the shutdown callback.  This allows the callback
 	 * to look at the taskqueue, even just before it dies.
 	 */
 	TQ_UNLOCK(tq);
 	gtaskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
 	TQ_LOCK(tq);
 
 	/* rendezvous with thread that asked us to terminate */
 	tq->tq_tcount--;
 	wakeup_one(tq->tq_threads);
 	TQ_UNLOCK(tq);
 	kthread_exit();
 }
 
 static void
 gtaskqueue_thread_enqueue(void *context)
 {
 	struct gtaskqueue **tqp, *tq;
 
 	tqp = context;
 	tq = *tqp;
 	wakeup_any(tq);
 }
 
 static struct gtaskqueue *
 gtaskqueue_create_fast(const char *name, int mflags,
 		 taskqueue_enqueue_fn enqueue, void *context)
 {
 	return _gtaskqueue_create(name, mflags, enqueue, context,
 			MTX_SPIN, "fast_taskqueue");
 }
 
 struct taskqgroup_cpu {
 	LIST_HEAD(, grouptask) tgc_tasks;
 	struct gtaskqueue *tgc_taskq;
 	int		tgc_cnt;
 	int		tgc_cpu;
 };
 
 struct taskqgroup {
 	struct taskqgroup_cpu tqg_queue[MAXCPU];
 	struct mtx	tqg_lock;
 	const char *	tqg_name;
 	int		tqg_cnt;
 };
 
 struct taskq_bind_task {
 	struct gtask bt_task;
 	int	bt_cpuid;
 };
 
 static void
 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx, int cpu)
 {
 	struct taskqgroup_cpu *qcpu;
 
 	qcpu = &qgroup->tqg_queue[idx];
 	LIST_INIT(&qcpu->tgc_tasks);
 	qcpu->tgc_taskq = gtaskqueue_create_fast(NULL, M_WAITOK,
-	    taskqueue_thread_enqueue, &qcpu->tgc_taskq);
+	    gtaskqueue_thread_enqueue, &qcpu->tgc_taskq);
 	gtaskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
 	    "%s_%d", qgroup->tqg_name, idx);
 	qcpu->tgc_cpu = cpu;
 }
 
 /*
  * Find the taskq with least # of tasks that doesn't currently have any
  * other queues from the uniq identifier.
  */
 static int
 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
 {
 	struct grouptask *n;
 	int i, idx, mincnt;
 	int strict;
 
 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
 	KASSERT(qgroup->tqg_cnt != 0,
 	    ("qgroup %s has no queues", qgroup->tqg_name));
 
 	/*
 	 * Two passes: first scan for a queue with the least tasks that
 	 * does not already service this uniq id.  If that fails simply find
 	 * the queue with the least total tasks.
 	 */
 	for (idx = -1, mincnt = INT_MAX, strict = 1; mincnt == INT_MAX;
 	    strict = 0) {
 		for (i = 0; i < qgroup->tqg_cnt; i++) {
 			if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
 				continue;
 			if (strict) {
 				LIST_FOREACH(n, &qgroup->tqg_queue[i].tgc_tasks,
 				    gt_list)
 					if (n->gt_uniq == uniq)
 						break;
 				if (n != NULL)
 					continue;
 			}
 			mincnt = qgroup->tqg_queue[i].tgc_cnt;
 			idx = i;
 		}
 	}
 	if (idx == -1)
 		panic("%s: failed to pick a qid.", __func__);
 
 	return (idx);
 }
 
 void
 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
     void *uniq, device_t dev, struct resource *irq, const char *name)
 {
 	int cpu, qid, error;
 
 	KASSERT(qgroup->tqg_cnt > 0,
 	    ("qgroup %s has no queues", qgroup->tqg_name));
 
 	gtask->gt_uniq = uniq;
 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
 	gtask->gt_dev = dev;
 	gtask->gt_irq = irq;
 	gtask->gt_cpu = -1;
 	mtx_lock(&qgroup->tqg_lock);
 	qid = taskqgroup_find(qgroup, uniq);
 	qgroup->tqg_queue[qid].tgc_cnt++;
 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
 	if (dev != NULL && irq != NULL) {
 		cpu = qgroup->tqg_queue[qid].tgc_cpu;
 		gtask->gt_cpu = cpu;
 		mtx_unlock(&qgroup->tqg_lock);
 		error = bus_bind_intr(dev, irq, cpu);
 		if (error)
 			printf("%s: binding interrupt failed for %s: %d\n",
 			    __func__, gtask->gt_name, error);
 	} else
 		mtx_unlock(&qgroup->tqg_lock);
 }
 
 int
 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
     void *uniq, int cpu, device_t dev, struct resource *irq, const char *name)
 {
 	int i, qid, error;
 
 	gtask->gt_uniq = uniq;
 	snprintf(gtask->gt_name, GROUPTASK_NAMELEN, "%s", name ? name : "grouptask");
 	gtask->gt_dev = dev;
 	gtask->gt_irq = irq;
 	gtask->gt_cpu = cpu;
 	mtx_lock(&qgroup->tqg_lock);
 	for (i = 0, qid = -1; i < qgroup->tqg_cnt; i++)
 		if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
 			qid = i;
 			break;
 		}
 	if (qid == -1) {
 		mtx_unlock(&qgroup->tqg_lock);
 		printf("%s: qid not found for %s cpu=%d\n", __func__, gtask->gt_name, cpu);
 		return (EINVAL);
 	}
 	qgroup->tqg_queue[qid].tgc_cnt++;
 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
 	cpu = qgroup->tqg_queue[qid].tgc_cpu;
 	mtx_unlock(&qgroup->tqg_lock);
 
 	if (dev != NULL && irq != NULL) {
 		error = bus_bind_intr(dev, irq, cpu);
 		if (error)
 			printf("%s: binding interrupt failed for %s: %d\n",
 			    __func__, gtask->gt_name, error);
 	}
 	return (0);
 }
 
 void
 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
 {
 	int i;
 
 	grouptask_block(gtask);
 	mtx_lock(&qgroup->tqg_lock);
 	for (i = 0; i < qgroup->tqg_cnt; i++)
 		if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
 			break;
 	if (i == qgroup->tqg_cnt)
 		panic("%s: task %s not in group", __func__, gtask->gt_name);
 	qgroup->tqg_queue[i].tgc_cnt--;
 	LIST_REMOVE(gtask, gt_list);
 	mtx_unlock(&qgroup->tqg_lock);
 	gtask->gt_taskqueue = NULL;
 	gtask->gt_task.ta_flags &= ~TASK_NOENQUEUE;
 }
 
 static void
 taskqgroup_binder(void *ctx)
 {
 	struct taskq_bind_task *gtask;
 	cpuset_t mask;
 	int error;
 
 	gtask = ctx;
 	CPU_ZERO(&mask);
 	CPU_SET(gtask->bt_cpuid, &mask);
 	error = cpuset_setthread(curthread->td_tid, &mask);
 	thread_lock(curthread);
 	sched_bind(curthread, gtask->bt_cpuid);
 	thread_unlock(curthread);
 
 	if (error)
 		printf("%s: binding curthread failed: %d\n", __func__, error);
 	free(gtask, M_DEVBUF);
 }
 
 void
 taskqgroup_bind(struct taskqgroup *qgroup)
 {
 	struct taskq_bind_task *gtask;
 	int i;
 
 	/*
 	 * Bind taskqueue threads to specific CPUs, if they have been assigned
 	 * one.
 	 */
 	if (qgroup->tqg_cnt == 1)
 		return;
 
 	for (i = 0; i < qgroup->tqg_cnt; i++) {
 		gtask = malloc(sizeof(*gtask), M_DEVBUF, M_WAITOK);
 		GTASK_INIT(&gtask->bt_task, 0, 0, taskqgroup_binder, gtask);
 		gtask->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
 		grouptaskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
 		    &gtask->bt_task);
 	}
 }
 
 struct taskqgroup *
 taskqgroup_create(const char *name, int cnt, int stride)
 {
 	struct taskqgroup *qgroup;
 	int cpu, i, j;
 
 	qgroup = malloc(sizeof(*qgroup), M_GTASKQUEUE, M_WAITOK | M_ZERO);
 	mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
 	qgroup->tqg_name = name;
 	qgroup->tqg_cnt = cnt;
 
 	for (cpu = i = 0; i < cnt; i++) {
 		taskqgroup_cpu_create(qgroup, i, cpu);
 		for (j = 0; j < stride; j++)
 			cpu = CPU_NEXT(cpu);
 	}
 	return (qgroup);
 }
 
 void
 taskqgroup_destroy(struct taskqgroup *qgroup)
 {
 }
 
 void
 taskqgroup_drain_all(struct taskqgroup *tqg)
 {
 	struct gtaskqueue *q;
 
 	for (int i = 0; i < mp_ncpus; i++) {
 		q = tqg->tqg_queue[i].tgc_taskq;
 		if (q == NULL)
 			continue;
 		gtaskqueue_drain_all(q);
 	}
 }