diff --git a/lib/libzfs_core/libzfs_core.c b/lib/libzfs_core/libzfs_core.c index 7a71b7a54588..ce33b2153062 100644 --- a/lib/libzfs_core/libzfs_core.c +++ b/lib/libzfs_core/libzfs_core.c @@ -1,1639 +1,1642 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2012, 2020 by Delphix. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2017 Datto Inc. * Copyright 2017 RackTop Systems. * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. * Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved. */ /* * LibZFS_Core (lzc) is intended to replace most functionality in libzfs. * It has the following characteristics: * * - Thread Safe. libzfs_core is accessible concurrently from multiple * threads. This is accomplished primarily by avoiding global data * (e.g. caching). Since it's thread-safe, there is no reason for a * process to have multiple libzfs "instances". Therefore, we store * our few pieces of data (e.g. the file descriptor) in global * variables. The fd is reference-counted so that the libzfs_core * library can be "initialized" multiple times (e.g. by different * consumers within the same process). * * - Committed Interface. The libzfs_core interface will be committed, * therefore consumers can compile against it and be confident that * their code will continue to work on future releases of this code. * Currently, the interface is Evolving (not Committed), but we intend * to commit to it once it is more complete and we determine that it * meets the needs of all consumers. * * - Programmatic Error Handling. libzfs_core communicates errors with * defined error numbers, and doesn't print anything to stdout/stderr. * * - Thin Layer. libzfs_core is a thin layer, marshaling arguments * to/from the kernel ioctls. There is generally a 1:1 correspondence * between libzfs_core functions and ioctls to ZFS_DEV. * * - Clear Atomicity. Because libzfs_core functions are generally 1:1 * with kernel ioctls, and kernel ioctls are general atomic, each * libzfs_core function is atomic. For example, creating multiple * snapshots with a single call to lzc_snapshot() is atomic -- it * can't fail with only some of the requested snapshots created, even * in the event of power loss or system crash. * * - Continued libzfs Support. Some higher-level operations (e.g. * support for "zfs send -R") are too complicated to fit the scope of * libzfs_core. This functionality will continue to live in libzfs. * Where appropriate, libzfs will use the underlying atomic operations * of libzfs_core. For example, libzfs may implement "zfs send -R | * zfs receive" by using individual "send one snapshot", rename, * destroy, and "receive one snapshot" operations in libzfs_core. * /sbin/zfs and /sbin/zpool will link with both libzfs and * libzfs_core. Other consumers should aim to use only libzfs_core, * since that will be the supported, stable interface going forwards. */ #include #include #include #include #include #ifdef ZFS_DEBUG #include #endif #include #include #include #include #include #include #include #include #include static int g_fd = -1; static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER; static int g_refcount; #ifdef ZFS_DEBUG static zfs_ioc_t fail_ioc_cmd = ZFS_IOC_LAST; static zfs_errno_t fail_ioc_err; static void libzfs_core_debug_ioc(void) { /* * To test running newer user space binaries with kernel's * that don't yet support an ioctl or a new ioctl arg we * provide an override to intentionally fail an ioctl. * * USAGE: * The override variable, ZFS_IOC_TEST, is of the form "cmd:err" * * For example, to fail a ZFS_IOC_POOL_CHECKPOINT with a * ZFS_ERR_IOC_CMD_UNAVAIL, the string would be "0x5a4d:1029" * * $ sudo sh -c "ZFS_IOC_TEST=0x5a4d:1029 zpool checkpoint tank" * cannot checkpoint 'tank': the loaded zfs module does not support * this operation. A reboot may be required to enable this operation. */ if (fail_ioc_cmd == ZFS_IOC_LAST) { char *ioc_test = getenv("ZFS_IOC_TEST"); unsigned int ioc_num = 0, ioc_err = 0; if (ioc_test != NULL && sscanf(ioc_test, "%i:%i", &ioc_num, &ioc_err) == 2 && ioc_num < ZFS_IOC_LAST) { fail_ioc_cmd = ioc_num; fail_ioc_err = ioc_err; } } } #endif int libzfs_core_init(void) { (void) pthread_mutex_lock(&g_lock); if (g_refcount == 0) { g_fd = open(ZFS_DEV, O_RDWR|O_CLOEXEC); if (g_fd < 0) { (void) pthread_mutex_unlock(&g_lock); return (errno); } } g_refcount++; #ifdef ZFS_DEBUG libzfs_core_debug_ioc(); #endif (void) pthread_mutex_unlock(&g_lock); return (0); } void libzfs_core_fini(void) { (void) pthread_mutex_lock(&g_lock); ASSERT3S(g_refcount, >, 0); g_refcount--; if (g_refcount == 0 && g_fd != -1) { (void) close(g_fd); g_fd = -1; } (void) pthread_mutex_unlock(&g_lock); } static int lzc_ioctl(zfs_ioc_t ioc, const char *name, nvlist_t *source, nvlist_t **resultp) { zfs_cmd_t zc = {"\0"}; int error = 0; char *packed = NULL; size_t size = 0; ASSERT3S(g_refcount, >, 0); VERIFY3S(g_fd, !=, -1); #ifdef ZFS_DEBUG if (ioc == fail_ioc_cmd) return (fail_ioc_err); #endif if (name != NULL) (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); if (source != NULL) { packed = fnvlist_pack(source, &size); zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed; zc.zc_nvlist_src_size = size; } if (resultp != NULL) { *resultp = NULL; if (ioc == ZFS_IOC_CHANNEL_PROGRAM) { zc.zc_nvlist_dst_size = fnvlist_lookup_uint64(source, ZCP_ARG_MEMLIMIT); } else { zc.zc_nvlist_dst_size = MAX(size * 2, 128 * 1024); } zc.zc_nvlist_dst = (uint64_t)(uintptr_t) malloc(zc.zc_nvlist_dst_size); if (zc.zc_nvlist_dst == (uint64_t)0) { error = ENOMEM; goto out; } } while (zfs_ioctl_fd(g_fd, ioc, &zc) != 0) { /* * If ioctl exited with ENOMEM, we retry the ioctl after * increasing the size of the destination nvlist. * * Channel programs that exit with ENOMEM ran over the * lua memory sandbox; they should not be retried. */ if (errno == ENOMEM && resultp != NULL && ioc != ZFS_IOC_CHANNEL_PROGRAM) { free((void *)(uintptr_t)zc.zc_nvlist_dst); zc.zc_nvlist_dst_size *= 2; zc.zc_nvlist_dst = (uint64_t)(uintptr_t) malloc(zc.zc_nvlist_dst_size); if (zc.zc_nvlist_dst == (uint64_t)0) { error = ENOMEM; goto out; } } else { error = errno; break; } } if (zc.zc_nvlist_dst_filled) { *resultp = fnvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst, zc.zc_nvlist_dst_size); } out: if (packed != NULL) fnvlist_pack_free(packed, size); free((void *)(uintptr_t)zc.zc_nvlist_dst); return (error); } int lzc_create(const char *fsname, enum lzc_dataset_type type, nvlist_t *props, uint8_t *wkeydata, uint_t wkeylen) { int error; nvlist_t *hidden_args = NULL; nvlist_t *args = fnvlist_alloc(); fnvlist_add_int32(args, "type", (dmu_objset_type_t)type); if (props != NULL) fnvlist_add_nvlist(args, "props", props); if (wkeydata != NULL) { hidden_args = fnvlist_alloc(); fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen); fnvlist_add_nvlist(args, ZPOOL_HIDDEN_ARGS, hidden_args); } error = lzc_ioctl(ZFS_IOC_CREATE, fsname, args, NULL); nvlist_free(hidden_args); nvlist_free(args); return (error); } int lzc_clone(const char *fsname, const char *origin, nvlist_t *props) { int error; nvlist_t *hidden_args = NULL; nvlist_t *args = fnvlist_alloc(); fnvlist_add_string(args, "origin", origin); if (props != NULL) fnvlist_add_nvlist(args, "props", props); error = lzc_ioctl(ZFS_IOC_CLONE, fsname, args, NULL); nvlist_free(hidden_args); nvlist_free(args); return (error); } int lzc_promote(const char *fsname, char *snapnamebuf, int snapnamelen) { /* * The promote ioctl is still legacy, so we need to construct our * own zfs_cmd_t rather than using lzc_ioctl(). */ zfs_cmd_t zc = {"\0"}; ASSERT3S(g_refcount, >, 0); VERIFY3S(g_fd, !=, -1); (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name)); if (zfs_ioctl_fd(g_fd, ZFS_IOC_PROMOTE, &zc) != 0) { int error = errno; if (error == EEXIST && snapnamebuf != NULL) (void) strlcpy(snapnamebuf, zc.zc_string, snapnamelen); return (error); } return (0); } int lzc_rename(const char *source, const char *target) { zfs_cmd_t zc = {"\0"}; int error; ASSERT3S(g_refcount, >, 0); VERIFY3S(g_fd, !=, -1); (void) strlcpy(zc.zc_name, source, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value)); error = zfs_ioctl_fd(g_fd, ZFS_IOC_RENAME, &zc); if (error != 0) error = errno; return (error); } + int lzc_destroy(const char *fsname) { int error; nvlist_t *args = fnvlist_alloc(); error = lzc_ioctl(ZFS_IOC_DESTROY, fsname, args, NULL); nvlist_free(args); return (error); } /* * Creates snapshots. * * The keys in the snaps nvlist are the snapshots to be created. * They must all be in the same pool. * * The props nvlist is properties to set. Currently only user properties * are supported. { user:prop_name -> string value } * * The returned results nvlist will have an entry for each snapshot that failed. * The value will be the (int32) error code. * * The return value will be 0 if all snapshots were created, otherwise it will * be the errno of a (unspecified) snapshot that failed. */ int lzc_snapshot(nvlist_t *snaps, nvlist_t *props, nvlist_t **errlist) { nvpair_t *elem; nvlist_t *args; int error; char pool[ZFS_MAX_DATASET_NAME_LEN]; *errlist = NULL; /* determine the pool name */ elem = nvlist_next_nvpair(snaps, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; args = fnvlist_alloc(); fnvlist_add_nvlist(args, "snaps", snaps); if (props != NULL) fnvlist_add_nvlist(args, "props", props); error = lzc_ioctl(ZFS_IOC_SNAPSHOT, pool, args, errlist); nvlist_free(args); return (error); } /* * Destroys snapshots. * * The keys in the snaps nvlist are the snapshots to be destroyed. * They must all be in the same pool. * * Snapshots that do not exist will be silently ignored. * * If 'defer' is not set, and a snapshot has user holds or clones, the * destroy operation will fail and none of the snapshots will be * destroyed. * * If 'defer' is set, and a snapshot has user holds or clones, it will be * marked for deferred destruction, and will be destroyed when the last hold * or clone is removed/destroyed. * * The return value will be 0 if all snapshots were destroyed (or marked for * later destruction if 'defer' is set) or didn't exist to begin with. * * Otherwise the return value will be the errno of a (unspecified) snapshot * that failed, no snapshots will be destroyed, and the errlist will have an * entry for each snapshot that failed. The value in the errlist will be * the (int32) error code. */ int lzc_destroy_snaps(nvlist_t *snaps, boolean_t defer, nvlist_t **errlist) { nvpair_t *elem; nvlist_t *args; int error; char pool[ZFS_MAX_DATASET_NAME_LEN]; /* determine the pool name */ elem = nvlist_next_nvpair(snaps, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; args = fnvlist_alloc(); fnvlist_add_nvlist(args, "snaps", snaps); if (defer) fnvlist_add_boolean(args, "defer"); error = lzc_ioctl(ZFS_IOC_DESTROY_SNAPS, pool, args, errlist); nvlist_free(args); return (error); } int lzc_snaprange_space(const char *firstsnap, const char *lastsnap, uint64_t *usedp) { nvlist_t *args; nvlist_t *result; int err; char fs[ZFS_MAX_DATASET_NAME_LEN]; char *atp; /* determine the fs name */ (void) strlcpy(fs, firstsnap, sizeof (fs)); atp = strchr(fs, '@'); if (atp == NULL) return (EINVAL); *atp = '\0'; args = fnvlist_alloc(); fnvlist_add_string(args, "firstsnap", firstsnap); err = lzc_ioctl(ZFS_IOC_SPACE_SNAPS, lastsnap, args, &result); nvlist_free(args); if (err == 0) *usedp = fnvlist_lookup_uint64(result, "used"); fnvlist_free(result); return (err); } boolean_t lzc_exists(const char *dataset) { /* * The objset_stats ioctl is still legacy, so we need to construct our * own zfs_cmd_t rather than using lzc_ioctl(). */ zfs_cmd_t zc = {"\0"}; ASSERT3S(g_refcount, >, 0); VERIFY3S(g_fd, !=, -1); (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); return (zfs_ioctl_fd(g_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0); } /* * outnvl is unused. * It was added to preserve the function signature in case it is * needed in the future. */ /*ARGSUSED*/ int lzc_sync(const char *pool_name, nvlist_t *innvl, nvlist_t **outnvl) { return (lzc_ioctl(ZFS_IOC_POOL_SYNC, pool_name, innvl, NULL)); } /* * Create "user holds" on snapshots. If there is a hold on a snapshot, * the snapshot can not be destroyed. (However, it can be marked for deletion * by lzc_destroy_snaps(defer=B_TRUE).) * * The keys in the nvlist are snapshot names. * The snapshots must all be in the same pool. * The value is the name of the hold (string type). * * If cleanup_fd is not -1, it must be the result of open(ZFS_DEV, O_EXCL). * In this case, when the cleanup_fd is closed (including on process * termination), the holds will be released. If the system is shut down * uncleanly, the holds will be released when the pool is next opened * or imported. * * Holds for snapshots which don't exist will be skipped and have an entry * added to errlist, but will not cause an overall failure. * * The return value will be 0 if all holds, for snapshots that existed, * were successfully created. * * Otherwise the return value will be the errno of a (unspecified) hold that * failed and no holds will be created. * * In all cases the errlist will have an entry for each hold that failed * (name = snapshot), with its value being the error code (int32). */ int lzc_hold(nvlist_t *holds, int cleanup_fd, nvlist_t **errlist) { char pool[ZFS_MAX_DATASET_NAME_LEN]; nvlist_t *args; nvpair_t *elem; int error; /* determine the pool name */ elem = nvlist_next_nvpair(holds, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; args = fnvlist_alloc(); fnvlist_add_nvlist(args, "holds", holds); if (cleanup_fd != -1) fnvlist_add_int32(args, "cleanup_fd", cleanup_fd); error = lzc_ioctl(ZFS_IOC_HOLD, pool, args, errlist); nvlist_free(args); return (error); } /* * Release "user holds" on snapshots. If the snapshot has been marked for * deferred destroy (by lzc_destroy_snaps(defer=B_TRUE)), it does not have * any clones, and all the user holds are removed, then the snapshot will be * destroyed. * * The keys in the nvlist are snapshot names. * The snapshots must all be in the same pool. * The value is an nvlist whose keys are the holds to remove. * * Holds which failed to release because they didn't exist will have an entry * added to errlist, but will not cause an overall failure. * * The return value will be 0 if the nvl holds was empty or all holds that * existed, were successfully removed. * * Otherwise the return value will be the errno of a (unspecified) hold that * failed to release and no holds will be released. * * In all cases the errlist will have an entry for each hold that failed to * to release. */ int lzc_release(nvlist_t *holds, nvlist_t **errlist) { char pool[ZFS_MAX_DATASET_NAME_LEN]; nvpair_t *elem; /* determine the pool name */ elem = nvlist_next_nvpair(holds, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/@")] = '\0'; return (lzc_ioctl(ZFS_IOC_RELEASE, pool, holds, errlist)); } /* * Retrieve list of user holds on the specified snapshot. * * On success, *holdsp will be set to an nvlist which the caller must free. * The keys are the names of the holds, and the value is the creation time * of the hold (uint64) in seconds since the epoch. */ int lzc_get_holds(const char *snapname, nvlist_t **holdsp) { return (lzc_ioctl(ZFS_IOC_GET_HOLDS, snapname, NULL, holdsp)); } /* * Generate a zfs send stream for the specified snapshot and write it to * the specified file descriptor. * * "snapname" is the full name of the snapshot to send (e.g. "pool/fs@snap") * * If "from" is NULL, a full (non-incremental) stream will be sent. * If "from" is non-NULL, it must be the full name of a snapshot or * bookmark to send an incremental from (e.g. "pool/fs@earlier_snap" or * "pool/fs#earlier_bmark"). If non-NULL, the specified snapshot or * bookmark must represent an earlier point in the history of "snapname"). * It can be an earlier snapshot in the same filesystem or zvol as "snapname", * or it can be the origin of "snapname"'s filesystem, or an earlier * snapshot in the origin, etc. * * "fd" is the file descriptor to write the send stream to. * * If "flags" contains LZC_SEND_FLAG_LARGE_BLOCK, the stream is permitted * to contain DRR_WRITE records with drr_length > 128K, and DRR_OBJECT * records with drr_blksz > 128K. * * If "flags" contains LZC_SEND_FLAG_EMBED_DATA, the stream is permitted * to contain DRR_WRITE_EMBEDDED records with drr_etype==BP_EMBEDDED_TYPE_DATA, * which the receiving system must support (as indicated by support * for the "embedded_data" feature). * * If "flags" contains LZC_SEND_FLAG_COMPRESS, the stream is generated by using * compressed WRITE records for blocks which are compressed on disk and in * memory. If the lz4_compress feature is active on the sending system, then * the receiving system must have that feature enabled as well. * * If "flags" contains LZC_SEND_FLAG_RAW, the stream is generated, for encrypted * datasets, by sending data exactly as it exists on disk. This allows backups * to be taken even if encryption keys are not currently loaded. */ int lzc_send(const char *snapname, const char *from, int fd, enum lzc_send_flags flags) { return (lzc_send_resume_redacted(snapname, from, fd, flags, 0, 0, NULL)); } int lzc_send_redacted(const char *snapname, const char *from, int fd, enum lzc_send_flags flags, const char *redactbook) { return (lzc_send_resume_redacted(snapname, from, fd, flags, 0, 0, redactbook)); } int lzc_send_resume(const char *snapname, const char *from, int fd, enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff) { return (lzc_send_resume_redacted(snapname, from, fd, flags, resumeobj, resumeoff, NULL)); } /* * snapname: The name of the "tosnap", or the snapshot whose contents we are * sending. * from: The name of the "fromsnap", or the incremental source. * fd: File descriptor to write the stream to. * flags: flags that determine features to be used by the stream. * resumeobj: Object to resume from, for resuming send * resumeoff: Offset to resume from, for resuming send. * redactnv: nvlist of string -> boolean(ignored) containing the names of all * the snapshots that we should redact with respect to. * redactbook: Name of the redaction bookmark to create. */ int lzc_send_resume_redacted(const char *snapname, const char *from, int fd, enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff, const char *redactbook) { nvlist_t *args; int err; args = fnvlist_alloc(); fnvlist_add_int32(args, "fd", fd); if (from != NULL) fnvlist_add_string(args, "fromsnap", from); if (flags & LZC_SEND_FLAG_LARGE_BLOCK) fnvlist_add_boolean(args, "largeblockok"); if (flags & LZC_SEND_FLAG_EMBED_DATA) fnvlist_add_boolean(args, "embedok"); if (flags & LZC_SEND_FLAG_COMPRESS) fnvlist_add_boolean(args, "compressok"); if (flags & LZC_SEND_FLAG_RAW) fnvlist_add_boolean(args, "rawok"); if (flags & LZC_SEND_FLAG_SAVED) fnvlist_add_boolean(args, "savedok"); if (resumeobj != 0 || resumeoff != 0) { fnvlist_add_uint64(args, "resume_object", resumeobj); fnvlist_add_uint64(args, "resume_offset", resumeoff); } if (redactbook != NULL) fnvlist_add_string(args, "redactbook", redactbook); err = lzc_ioctl(ZFS_IOC_SEND_NEW, snapname, args, NULL); nvlist_free(args); return (err); } /* * "from" can be NULL, a snapshot, or a bookmark. * * If from is NULL, a full (non-incremental) stream will be estimated. This * is calculated very efficiently. * * If from is a snapshot, lzc_send_space uses the deadlists attached to * each snapshot to efficiently estimate the stream size. * * If from is a bookmark, the indirect blocks in the destination snapshot * are traversed, looking for blocks with a birth time since the creation TXG of * the snapshot this bookmark was created from. This will result in * significantly more I/O and be less efficient than a send space estimation on * an equivalent snapshot. This process is also used if redact_snaps is * non-null. */ int lzc_send_space_resume_redacted(const char *snapname, const char *from, enum lzc_send_flags flags, uint64_t resumeobj, uint64_t resumeoff, uint64_t resume_bytes, const char *redactbook, int fd, uint64_t *spacep) { nvlist_t *args; nvlist_t *result; int err; args = fnvlist_alloc(); if (from != NULL) fnvlist_add_string(args, "from", from); if (flags & LZC_SEND_FLAG_LARGE_BLOCK) fnvlist_add_boolean(args, "largeblockok"); if (flags & LZC_SEND_FLAG_EMBED_DATA) fnvlist_add_boolean(args, "embedok"); if (flags & LZC_SEND_FLAG_COMPRESS) fnvlist_add_boolean(args, "compressok"); if (flags & LZC_SEND_FLAG_RAW) fnvlist_add_boolean(args, "rawok"); if (resumeobj != 0 || resumeoff != 0) { fnvlist_add_uint64(args, "resume_object", resumeobj); fnvlist_add_uint64(args, "resume_offset", resumeoff); fnvlist_add_uint64(args, "bytes", resume_bytes); } if (redactbook != NULL) fnvlist_add_string(args, "redactbook", redactbook); if (fd != -1) fnvlist_add_int32(args, "fd", fd); err = lzc_ioctl(ZFS_IOC_SEND_SPACE, snapname, args, &result); nvlist_free(args); if (err == 0) *spacep = fnvlist_lookup_uint64(result, "space"); nvlist_free(result); return (err); } int lzc_send_space(const char *snapname, const char *from, enum lzc_send_flags flags, uint64_t *spacep) { return (lzc_send_space_resume_redacted(snapname, from, flags, 0, 0, 0, NULL, -1, spacep)); } static int recv_read(int fd, void *buf, int ilen) { char *cp = buf; int rv; int len = ilen; do { rv = read(fd, cp, len); cp += rv; len -= rv; } while (rv > 0); if (rv < 0 || len != 0) return (EIO); return (0); } /* * Linux adds ZFS_IOC_RECV_NEW for resumable and raw streams and preserves the * legacy ZFS_IOC_RECV user/kernel interface. The new interface supports all * stream options but is currently only used for resumable streams. This way * updated user space utilities will interoperate with older kernel modules. * * Non-Linux OpenZFS platforms have opted to modify the legacy interface. */ static int recv_impl(const char *snapname, nvlist_t *recvdprops, nvlist_t *localprops, uint8_t *wkeydata, uint_t wkeylen, const char *origin, boolean_t force, boolean_t resumable, boolean_t raw, int input_fd, const dmu_replay_record_t *begin_record, uint64_t *read_bytes, uint64_t *errflags, nvlist_t **errors) { dmu_replay_record_t drr; char fsname[MAXPATHLEN]; char *atp; int error; boolean_t payload = B_FALSE; ASSERT3S(g_refcount, >, 0); VERIFY3S(g_fd, !=, -1); /* Set 'fsname' to the name of containing filesystem */ (void) strlcpy(fsname, snapname, sizeof (fsname)); atp = strchr(fsname, '@'); if (atp == NULL) return (EINVAL); *atp = '\0'; /* If the fs does not exist, try its parent. */ if (!lzc_exists(fsname)) { char *slashp = strrchr(fsname, '/'); if (slashp == NULL) return (ENOENT); *slashp = '\0'; } /* * The begin_record is normally a non-byteswapped BEGIN record. * For resumable streams it may be set to any non-byteswapped * dmu_replay_record_t. */ if (begin_record == NULL) { error = recv_read(input_fd, &drr, sizeof (drr)); if (error != 0) return (error); } else { drr = *begin_record; payload = (begin_record->drr_payloadlen != 0); } /* * All receives with a payload should use the new interface. */ if (resumable || raw || wkeydata != NULL || payload) { nvlist_t *outnvl = NULL; nvlist_t *innvl = fnvlist_alloc(); fnvlist_add_string(innvl, "snapname", snapname); if (recvdprops != NULL) fnvlist_add_nvlist(innvl, "props", recvdprops); if (localprops != NULL) fnvlist_add_nvlist(innvl, "localprops", localprops); if (wkeydata != NULL) { /* * wkeydata must be placed in the special * ZPOOL_HIDDEN_ARGS nvlist so that it * will not be printed to the zpool history. */ nvlist_t *hidden_args = fnvlist_alloc(); fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen); fnvlist_add_nvlist(innvl, ZPOOL_HIDDEN_ARGS, hidden_args); nvlist_free(hidden_args); } if (origin != NULL && strlen(origin)) fnvlist_add_string(innvl, "origin", origin); fnvlist_add_byte_array(innvl, "begin_record", (uchar_t *)&drr, sizeof (drr)); fnvlist_add_int32(innvl, "input_fd", input_fd); if (force) fnvlist_add_boolean(innvl, "force"); if (resumable) fnvlist_add_boolean(innvl, "resumable"); error = lzc_ioctl(ZFS_IOC_RECV_NEW, fsname, innvl, &outnvl); if (error == 0 && read_bytes != NULL) error = nvlist_lookup_uint64(outnvl, "read_bytes", read_bytes); if (error == 0 && errflags != NULL) error = nvlist_lookup_uint64(outnvl, "error_flags", errflags); if (error == 0 && errors != NULL) { nvlist_t *nvl; error = nvlist_lookup_nvlist(outnvl, "errors", &nvl); if (error == 0) *errors = fnvlist_dup(nvl); } fnvlist_free(innvl); fnvlist_free(outnvl); } else { zfs_cmd_t zc = {"\0"}; char *packed = NULL; size_t size; ASSERT3S(g_refcount, >, 0); (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); if (recvdprops != NULL) { packed = fnvlist_pack(recvdprops, &size); zc.zc_nvlist_src = (uint64_t)(uintptr_t)packed; zc.zc_nvlist_src_size = size; } if (localprops != NULL) { packed = fnvlist_pack(localprops, &size); zc.zc_nvlist_conf = (uint64_t)(uintptr_t)packed; zc.zc_nvlist_conf_size = size; } if (origin != NULL) (void) strlcpy(zc.zc_string, origin, sizeof (zc.zc_string)); ASSERT3S(drr.drr_type, ==, DRR_BEGIN); zc.zc_begin_record = drr.drr_u.drr_begin; zc.zc_guid = force; zc.zc_cookie = input_fd; zc.zc_cleanup_fd = -1; zc.zc_action_handle = 0; zc.zc_nvlist_dst_size = 128 * 1024; zc.zc_nvlist_dst = (uint64_t)(uintptr_t) malloc(zc.zc_nvlist_dst_size); error = zfs_ioctl_fd(g_fd, ZFS_IOC_RECV, &zc); if (error != 0) { error = errno; } else { if (read_bytes != NULL) *read_bytes = zc.zc_cookie; if (errflags != NULL) *errflags = zc.zc_obj; if (errors != NULL) VERIFY0(nvlist_unpack( (void *)(uintptr_t)zc.zc_nvlist_dst, zc.zc_nvlist_dst_size, errors, KM_SLEEP)); } if (packed != NULL) fnvlist_pack_free(packed, size); free((void *)(uintptr_t)zc.zc_nvlist_dst); } return (error); } /* * The simplest receive case: receive from the specified fd, creating the * specified snapshot. Apply the specified properties as "received" properties * (which can be overridden by locally-set properties). If the stream is a * clone, its origin snapshot must be specified by 'origin'. The 'force' * flag will cause the target filesystem to be rolled back or destroyed if * necessary to receive. * * Return 0 on success or an errno on failure. * * Note: this interface does not work on dedup'd streams * (those with DMU_BACKUP_FEATURE_DEDUP). */ int lzc_receive(const char *snapname, nvlist_t *props, const char *origin, boolean_t force, boolean_t raw, int fd) { return (recv_impl(snapname, props, NULL, NULL, 0, origin, force, B_FALSE, raw, fd, NULL, NULL, NULL, NULL)); } /* * Like lzc_receive, but if the receive fails due to premature stream * termination, the intermediate state will be preserved on disk. In this * case, ECKSUM will be returned. The receive may subsequently be resumed * with a resuming send stream generated by lzc_send_resume(). */ int lzc_receive_resumable(const char *snapname, nvlist_t *props, const char *origin, boolean_t force, boolean_t raw, int fd) { return (recv_impl(snapname, props, NULL, NULL, 0, origin, force, B_TRUE, raw, fd, NULL, NULL, NULL, NULL)); } /* * Like lzc_receive, but allows the caller to read the begin record and then to * pass it in. That could be useful if the caller wants to derive, for example, * the snapname or the origin parameters based on the information contained in * the begin record. * The begin record must be in its original form as read from the stream, * in other words, it should not be byteswapped. * * The 'resumable' parameter allows to obtain the same behavior as with * lzc_receive_resumable. */ int lzc_receive_with_header(const char *snapname, nvlist_t *props, const char *origin, boolean_t force, boolean_t resumable, boolean_t raw, int fd, const dmu_replay_record_t *begin_record) { if (begin_record == NULL) return (EINVAL); return (recv_impl(snapname, props, NULL, NULL, 0, origin, force, resumable, raw, fd, begin_record, NULL, NULL, NULL)); } /* * Like lzc_receive, but allows the caller to pass all supported arguments * and retrieve all values returned. The only additional input parameter * is 'cleanup_fd' which is used to set a cleanup-on-exit file descriptor. * * The following parameters all provide return values. Several may be set * in the failure case and will contain additional information. * * The 'read_bytes' value will be set to the total number of bytes read. * * The 'errflags' value will contain zprop_errflags_t flags which are * used to describe any failures. * * The 'action_handle' and 'cleanup_fd' are no longer used, and are ignored. * * The 'errors' nvlist contains an entry for each unapplied received * property. Callers are responsible for freeing this nvlist. */ -int lzc_receive_one(const char *snapname, nvlist_t *props, +int +lzc_receive_one(const char *snapname, nvlist_t *props, const char *origin, boolean_t force, boolean_t resumable, boolean_t raw, int input_fd, const dmu_replay_record_t *begin_record, int cleanup_fd, uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle, nvlist_t **errors) { return (recv_impl(snapname, props, NULL, NULL, 0, origin, force, resumable, raw, input_fd, begin_record, read_bytes, errflags, errors)); } /* * Like lzc_receive_one, but allows the caller to pass an additional 'cmdprops' * argument. * * The 'cmdprops' nvlist contains both override ('zfs receive -o') and * exclude ('zfs receive -x') properties. Callers are responsible for freeing * this nvlist */ -int lzc_receive_with_cmdprops(const char *snapname, nvlist_t *props, +int +lzc_receive_with_cmdprops(const char *snapname, nvlist_t *props, nvlist_t *cmdprops, uint8_t *wkeydata, uint_t wkeylen, const char *origin, boolean_t force, boolean_t resumable, boolean_t raw, int input_fd, const dmu_replay_record_t *begin_record, int cleanup_fd, uint64_t *read_bytes, uint64_t *errflags, uint64_t *action_handle, nvlist_t **errors) { return (recv_impl(snapname, props, cmdprops, wkeydata, wkeylen, origin, force, resumable, raw, input_fd, begin_record, read_bytes, errflags, errors)); } /* * Roll back this filesystem or volume to its most recent snapshot. * If snapnamebuf is not NULL, it will be filled in with the name * of the most recent snapshot. * Note that the latest snapshot may change if a new one is concurrently * created or the current one is destroyed. lzc_rollback_to can be used * to roll back to a specific latest snapshot. * * Return 0 on success or an errno on failure. */ int lzc_rollback(const char *fsname, char *snapnamebuf, int snapnamelen) { nvlist_t *args; nvlist_t *result; int err; args = fnvlist_alloc(); err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result); nvlist_free(args); if (err == 0 && snapnamebuf != NULL) { const char *snapname = fnvlist_lookup_string(result, "target"); (void) strlcpy(snapnamebuf, snapname, snapnamelen); } nvlist_free(result); return (err); } /* * Roll back this filesystem or volume to the specified snapshot, * if possible. * * Return 0 on success or an errno on failure. */ int lzc_rollback_to(const char *fsname, const char *snapname) { nvlist_t *args; nvlist_t *result; int err; args = fnvlist_alloc(); fnvlist_add_string(args, "target", snapname); err = lzc_ioctl(ZFS_IOC_ROLLBACK, fsname, args, &result); nvlist_free(args); nvlist_free(result); return (err); } /* * Creates new bookmarks from existing snapshot or bookmark. * * The bookmarks nvlist maps from the full name of the new bookmark to * the full name of the source snapshot or bookmark. * All the bookmarks and snapshots must be in the same pool. * The new bookmarks names must be unique. * => see function dsl_bookmark_create_nvl_validate * * The returned results nvlist will have an entry for each bookmark that failed. * The value will be the (int32) error code. * * The return value will be 0 if all bookmarks were created, otherwise it will * be the errno of a (undetermined) bookmarks that failed. */ int lzc_bookmark(nvlist_t *bookmarks, nvlist_t **errlist) { nvpair_t *elem; int error; char pool[ZFS_MAX_DATASET_NAME_LEN]; /* determine pool name from first bookmark */ elem = nvlist_next_nvpair(bookmarks, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/#")] = '\0'; error = lzc_ioctl(ZFS_IOC_BOOKMARK, pool, bookmarks, errlist); return (error); } /* * Retrieve bookmarks. * * Retrieve the list of bookmarks for the given file system. The props * parameter is an nvlist of property names (with no values) that will be * returned for each bookmark. * * The following are valid properties on bookmarks, most of which are numbers * (represented as uint64 in the nvlist), except redact_snaps, which is a * uint64 array, and redact_complete, which is a boolean * * "guid" - globally unique identifier of the snapshot it refers to * "createtxg" - txg when the snapshot it refers to was created * "creation" - timestamp when the snapshot it refers to was created * "ivsetguid" - IVset guid for identifying encrypted snapshots * "redact_snaps" - list of guids of the redaction snapshots for the specified * bookmark. If the bookmark is not a redaction bookmark, the nvlist will * not contain an entry for this value. If it is redacted with respect to * no snapshots, it will contain value -> NULL uint64 array * "redact_complete" - boolean value; true if the redaction bookmark is * complete, false otherwise. * * The format of the returned nvlist as follows: * -> { * -> { * "value" -> uint64 * } * ... * "redact_snaps" -> { * "value" -> uint64 array * } * "redact_complete" -> { * "value" -> boolean value * } * } */ int lzc_get_bookmarks(const char *fsname, nvlist_t *props, nvlist_t **bmarks) { return (lzc_ioctl(ZFS_IOC_GET_BOOKMARKS, fsname, props, bmarks)); } /* * Get bookmark properties. * * Given a bookmark's full name, retrieve all properties for the bookmark. * * The format of the returned property list is as follows: * { * -> { * "value" -> uint64 * } * ... * "redact_snaps" -> { * "value" -> uint64 array * } */ int lzc_get_bookmark_props(const char *bookmark, nvlist_t **props) { int error; nvlist_t *innvl = fnvlist_alloc(); error = lzc_ioctl(ZFS_IOC_GET_BOOKMARK_PROPS, bookmark, innvl, props); fnvlist_free(innvl); return (error); } /* * Destroys bookmarks. * * The keys in the bmarks nvlist are the bookmarks to be destroyed. * They must all be in the same pool. Bookmarks are specified as * #. * * Bookmarks that do not exist will be silently ignored. * * The return value will be 0 if all bookmarks that existed were destroyed. * * Otherwise the return value will be the errno of a (undetermined) bookmark * that failed, no bookmarks will be destroyed, and the errlist will have an * entry for each bookmarks that failed. The value in the errlist will be * the (int32) error code. */ int lzc_destroy_bookmarks(nvlist_t *bmarks, nvlist_t **errlist) { nvpair_t *elem; int error; char pool[ZFS_MAX_DATASET_NAME_LEN]; /* determine the pool name */ elem = nvlist_next_nvpair(bmarks, NULL); if (elem == NULL) return (0); (void) strlcpy(pool, nvpair_name(elem), sizeof (pool)); pool[strcspn(pool, "/#")] = '\0'; error = lzc_ioctl(ZFS_IOC_DESTROY_BOOKMARKS, pool, bmarks, errlist); return (error); } static int lzc_channel_program_impl(const char *pool, const char *program, boolean_t sync, uint64_t instrlimit, uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl) { int error; nvlist_t *args; args = fnvlist_alloc(); fnvlist_add_string(args, ZCP_ARG_PROGRAM, program); fnvlist_add_nvlist(args, ZCP_ARG_ARGLIST, argnvl); fnvlist_add_boolean_value(args, ZCP_ARG_SYNC, sync); fnvlist_add_uint64(args, ZCP_ARG_INSTRLIMIT, instrlimit); fnvlist_add_uint64(args, ZCP_ARG_MEMLIMIT, memlimit); error = lzc_ioctl(ZFS_IOC_CHANNEL_PROGRAM, pool, args, outnvl); fnvlist_free(args); return (error); } /* * Executes a channel program. * * If this function returns 0 the channel program was successfully loaded and * ran without failing. Note that individual commands the channel program ran * may have failed and the channel program is responsible for reporting such * errors through outnvl if they are important. * * This method may also return: * * EINVAL The program contains syntax errors, or an invalid memory or time * limit was given. No part of the channel program was executed. * If caused by syntax errors, 'outnvl' contains information about the * errors. * * ECHRNG The program was executed, but encountered a runtime error, such as * calling a function with incorrect arguments, invoking the error() * function directly, failing an assert() command, etc. Some portion * of the channel program may have executed and committed changes. * Information about the failure can be found in 'outnvl'. * * ENOMEM The program fully executed, but the output buffer was not large * enough to store the returned value. No output is returned through * 'outnvl'. * * ENOSPC The program was terminated because it exceeded its memory usage * limit. Some portion of the channel program may have executed and * committed changes to disk. No output is returned through 'outnvl'. * * ETIME The program was terminated because it exceeded its Lua instruction * limit. Some portion of the channel program may have executed and * committed changes to disk. No output is returned through 'outnvl'. */ int lzc_channel_program(const char *pool, const char *program, uint64_t instrlimit, uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl) { return (lzc_channel_program_impl(pool, program, B_TRUE, instrlimit, memlimit, argnvl, outnvl)); } /* * Creates a checkpoint for the specified pool. * * If this function returns 0 the pool was successfully checkpointed. * * This method may also return: * * ZFS_ERR_CHECKPOINT_EXISTS * The pool already has a checkpoint. A pools can only have one * checkpoint at most, at any given time. * * ZFS_ERR_DISCARDING_CHECKPOINT * ZFS is in the middle of discarding a checkpoint for this pool. * The pool can be checkpointed again once the discard is done. * * ZFS_DEVRM_IN_PROGRESS * A vdev is currently being removed. The pool cannot be * checkpointed until the device removal is done. * * ZFS_VDEV_TOO_BIG * One or more top-level vdevs exceed the maximum vdev size * supported for this feature. */ int lzc_pool_checkpoint(const char *pool) { int error; nvlist_t *result = NULL; nvlist_t *args = fnvlist_alloc(); error = lzc_ioctl(ZFS_IOC_POOL_CHECKPOINT, pool, args, &result); fnvlist_free(args); fnvlist_free(result); return (error); } /* * Discard the checkpoint from the specified pool. * * If this function returns 0 the checkpoint was successfully discarded. * * This method may also return: * * ZFS_ERR_NO_CHECKPOINT * The pool does not have a checkpoint. * * ZFS_ERR_DISCARDING_CHECKPOINT * ZFS is already in the middle of discarding the checkpoint. */ int lzc_pool_checkpoint_discard(const char *pool) { int error; nvlist_t *result = NULL; nvlist_t *args = fnvlist_alloc(); error = lzc_ioctl(ZFS_IOC_POOL_DISCARD_CHECKPOINT, pool, args, &result); fnvlist_free(args); fnvlist_free(result); return (error); } /* * Executes a read-only channel program. * * A read-only channel program works programmatically the same way as a * normal channel program executed with lzc_channel_program(). The only * difference is it runs exclusively in open-context and therefore can * return faster. The downside to that, is that the program cannot change * on-disk state by calling functions from the zfs.sync submodule. * * The return values of this function (and their meaning) are exactly the * same as the ones described in lzc_channel_program(). */ int lzc_channel_program_nosync(const char *pool, const char *program, uint64_t timeout, uint64_t memlimit, nvlist_t *argnvl, nvlist_t **outnvl) { return (lzc_channel_program_impl(pool, program, B_FALSE, timeout, memlimit, argnvl, outnvl)); } /* * Performs key management functions * * crypto_cmd should be a value from dcp_cmd_t. If the command specifies to * load or change a wrapping key, the key should be specified in the * hidden_args nvlist so that it is not logged. */ int lzc_load_key(const char *fsname, boolean_t noop, uint8_t *wkeydata, uint_t wkeylen) { int error; nvlist_t *ioc_args; nvlist_t *hidden_args; if (wkeydata == NULL) return (EINVAL); ioc_args = fnvlist_alloc(); hidden_args = fnvlist_alloc(); fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen); fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args); if (noop) fnvlist_add_boolean(ioc_args, "noop"); error = lzc_ioctl(ZFS_IOC_LOAD_KEY, fsname, ioc_args, NULL); nvlist_free(hidden_args); nvlist_free(ioc_args); return (error); } int lzc_unload_key(const char *fsname) { return (lzc_ioctl(ZFS_IOC_UNLOAD_KEY, fsname, NULL, NULL)); } int lzc_change_key(const char *fsname, uint64_t crypt_cmd, nvlist_t *props, uint8_t *wkeydata, uint_t wkeylen) { int error; nvlist_t *ioc_args = fnvlist_alloc(); nvlist_t *hidden_args = NULL; fnvlist_add_uint64(ioc_args, "crypt_cmd", crypt_cmd); if (wkeydata != NULL) { hidden_args = fnvlist_alloc(); fnvlist_add_uint8_array(hidden_args, "wkeydata", wkeydata, wkeylen); fnvlist_add_nvlist(ioc_args, ZPOOL_HIDDEN_ARGS, hidden_args); } if (props != NULL) fnvlist_add_nvlist(ioc_args, "props", props); error = lzc_ioctl(ZFS_IOC_CHANGE_KEY, fsname, ioc_args, NULL); nvlist_free(hidden_args); nvlist_free(ioc_args); return (error); } int lzc_reopen(const char *pool_name, boolean_t scrub_restart) { nvlist_t *args = fnvlist_alloc(); int error; fnvlist_add_boolean_value(args, "scrub_restart", scrub_restart); error = lzc_ioctl(ZFS_IOC_POOL_REOPEN, pool_name, args, NULL); nvlist_free(args); return (error); } /* * Changes initializing state. * * vdevs should be a list of (, guid) where guid is a uint64 vdev GUID. * The key is ignored. * * If there are errors related to vdev arguments, per-vdev errors are returned * in an nvlist with the key "vdevs". Each error is a (guid, errno) pair where * guid is stringified with PRIu64, and errno is one of the following as * an int64_t: * - ENODEV if the device was not found * - EINVAL if the devices is not a leaf or is not concrete (e.g. missing) * - EROFS if the device is not writeable * - EBUSY start requested but the device is already being either * initialized or trimmed * - ESRCH cancel/suspend requested but device is not being initialized * * If the errlist is empty, then return value will be: * - EINVAL if one or more arguments was invalid * - Other spa_open failures * - 0 if the operation succeeded */ int lzc_initialize(const char *poolname, pool_initialize_func_t cmd_type, nvlist_t *vdevs, nvlist_t **errlist) { int error; nvlist_t *args = fnvlist_alloc(); fnvlist_add_uint64(args, ZPOOL_INITIALIZE_COMMAND, (uint64_t)cmd_type); fnvlist_add_nvlist(args, ZPOOL_INITIALIZE_VDEVS, vdevs); error = lzc_ioctl(ZFS_IOC_POOL_INITIALIZE, poolname, args, errlist); fnvlist_free(args); return (error); } /* * Changes TRIM state. * * vdevs should be a list of (, guid) where guid is a uint64 vdev GUID. * The key is ignored. * * If there are errors related to vdev arguments, per-vdev errors are returned * in an nvlist with the key "vdevs". Each error is a (guid, errno) pair where * guid is stringified with PRIu64, and errno is one of the following as * an int64_t: * - ENODEV if the device was not found * - EINVAL if the devices is not a leaf or is not concrete (e.g. missing) * - EROFS if the device is not writeable * - EBUSY start requested but the device is already being either trimmed * or initialized * - ESRCH cancel/suspend requested but device is not being initialized * - EOPNOTSUPP if the device does not support TRIM (or secure TRIM) * * If the errlist is empty, then return value will be: * - EINVAL if one or more arguments was invalid * - Other spa_open failures * - 0 if the operation succeeded */ int lzc_trim(const char *poolname, pool_trim_func_t cmd_type, uint64_t rate, boolean_t secure, nvlist_t *vdevs, nvlist_t **errlist) { int error; nvlist_t *args = fnvlist_alloc(); fnvlist_add_uint64(args, ZPOOL_TRIM_COMMAND, (uint64_t)cmd_type); fnvlist_add_nvlist(args, ZPOOL_TRIM_VDEVS, vdevs); fnvlist_add_uint64(args, ZPOOL_TRIM_RATE, rate); fnvlist_add_boolean_value(args, ZPOOL_TRIM_SECURE, secure); error = lzc_ioctl(ZFS_IOC_POOL_TRIM, poolname, args, errlist); fnvlist_free(args); return (error); } /* * Create a redaction bookmark named bookname by redacting snapshot with respect * to all the snapshots in snapnv. */ int lzc_redact(const char *snapshot, const char *bookname, nvlist_t *snapnv) { nvlist_t *args = fnvlist_alloc(); fnvlist_add_string(args, "bookname", bookname); fnvlist_add_nvlist(args, "snapnv", snapnv); int error = lzc_ioctl(ZFS_IOC_REDACT, snapshot, args, NULL); fnvlist_free(args); return (error); } static int wait_common(const char *pool, zpool_wait_activity_t activity, boolean_t use_tag, uint64_t tag, boolean_t *waited) { nvlist_t *args = fnvlist_alloc(); nvlist_t *result = NULL; fnvlist_add_int32(args, ZPOOL_WAIT_ACTIVITY, activity); if (use_tag) fnvlist_add_uint64(args, ZPOOL_WAIT_TAG, tag); int error = lzc_ioctl(ZFS_IOC_WAIT, pool, args, &result); if (error == 0 && waited != NULL) *waited = fnvlist_lookup_boolean_value(result, ZPOOL_WAIT_WAITED); fnvlist_free(args); fnvlist_free(result); return (error); } int lzc_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) { return (wait_common(pool, activity, B_FALSE, 0, waited)); } int lzc_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, boolean_t *waited) { return (wait_common(pool, activity, B_TRUE, tag, waited)); } int lzc_wait_fs(const char *fs, zfs_wait_activity_t activity, boolean_t *waited) { nvlist_t *args = fnvlist_alloc(); nvlist_t *result = NULL; fnvlist_add_int32(args, ZFS_WAIT_ACTIVITY, activity); int error = lzc_ioctl(ZFS_IOC_WAIT_FS, fs, args, &result); if (error == 0 && waited != NULL) *waited = fnvlist_lookup_boolean_value(result, ZFS_WAIT_WAITED); fnvlist_free(args); fnvlist_free(result); return (error); } /* * Set the bootenv contents for the given pool. */ int lzc_set_bootenv(const char *pool, const nvlist_t *env) { return (lzc_ioctl(ZFS_IOC_SET_BOOTENV, pool, (nvlist_t *)env, NULL)); } /* * Get the contents of the bootenv of the given pool. */ int lzc_get_bootenv(const char *pool, nvlist_t **outnvl) { return (lzc_ioctl(ZFS_IOC_GET_BOOTENV, pool, NULL, outnvl)); }