diff --git a/share/man/man4/netmap.4 b/share/man/man4/netmap.4 index d247c44b0df8..da1f5ec1592b 100644 --- a/share/man/man4/netmap.4 +++ b/share/man/man4/netmap.4 @@ -1,1187 +1,1192 @@ .\" Copyright (c) 2011-2014 Matteo Landi, Luigi Rizzo, Universita` di Pisa .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" This document is derived in part from the enet man page (enet.4) .\" distributed with 4.3BSD Unix. .\" .\" $FreeBSD$ .\" -.Dd October 3, 2020 +.Dd March 6, 2022 .Dt NETMAP 4 .Os .Sh NAME .Nm netmap .Nd a framework for fast packet I/O .Sh SYNOPSIS .Cd device netmap .Sh DESCRIPTION .Nm is a framework for extremely fast and efficient packet I/O for userspace and kernel clients, and for Virtual Machines. It runs on .Fx , Linux and some versions of Windows, and supports a variety of .Nm netmap ports , including .Bl -tag -width XXXX .It Nm physical NIC ports to access individual queues of network interfaces; .It Nm host ports to inject packets into the host stack; .It Nm VALE ports implementing a very fast and modular in-kernel software switch/dataplane; .It Nm netmap pipes a shared memory packet transport channel; .It Nm netmap monitors a mechanism similar to .Xr bpf 4 to capture traffic .El .Pp All these .Nm netmap ports are accessed interchangeably with the same API, and are at least one order of magnitude faster than standard OS mechanisms (sockets, bpf, tun/tap interfaces, native switches, pipes). With suitably fast hardware (NICs, PCIe buses, CPUs), packet I/O using .Nm on supported NICs reaches 14.88 million packets per second (Mpps) with much less than one core on 10 Gbit/s NICs; 35-40 Mpps on 40 Gbit/s NICs (limited by the hardware); about 20 Mpps per core for VALE ports; and over 100 Mpps for .Nm netmap pipes . NICs without native .Nm support can still use the API in emulated mode, which uses unmodified device drivers and is 3-5 times faster than .Xr bpf 4 or raw sockets. .Pp Userspace clients can dynamically switch NICs into .Nm mode and send and receive raw packets through memory mapped buffers. Similarly, .Nm VALE switch instances and ports, .Nm netmap pipes and .Nm netmap monitors can be created dynamically, providing high speed packet I/O between processes, virtual machines, NICs and the host stack. .Pp .Nm supports both non-blocking I/O through .Xr ioctl 2 , synchronization and blocking I/O through a file descriptor and standard OS mechanisms such as .Xr select 2 , .Xr poll 2 , .Xr kqueue 2 and .Xr epoll 7 . All types of .Nm netmap ports and the .Nm VALE switch are implemented by a single kernel module, which also emulates the .Nm API over standard drivers. For best performance, .Nm requires native support in device drivers. A list of such devices is at the end of this document. .Pp In the rest of this (long) manual page we document various aspects of the .Nm and .Nm VALE architecture, features and usage. .Sh ARCHITECTURE .Nm supports raw packet I/O through a .Em port , which can be connected to a physical interface .Em ( NIC ) , to the host stack, or to a .Nm VALE switch. Ports use preallocated circular queues of buffers .Em ( rings ) residing in an mmapped region. There is one ring for each transmit/receive queue of a NIC or virtual port. An additional ring pair connects to the host stack. .Pp After binding a file descriptor to a port, a .Nm client can send or receive packets in batches through the rings, and possibly implement zero-copy forwarding between ports. .Pp All NICs operating in .Nm mode use the same memory region, accessible to all processes who own .Pa /dev/netmap file descriptors bound to NICs. Independent .Nm VALE and .Nm netmap pipe ports by default use separate memory regions, but can be independently configured to share memory. .Sh ENTERING AND EXITING NETMAP MODE The following section describes the system calls to create and control .Nm netmap ports (including .Nm VALE and .Nm netmap pipe ports). Simpler, higher level functions are described in the .Sx LIBRARIES section. .Pp Ports and rings are created and controlled through a file descriptor, created by opening a special device .Dl fd = open("/dev/netmap"); and then bound to a specific port with an .Dl ioctl(fd, NIOCREGIF, (struct nmreq *)arg); .Pp .Nm has multiple modes of operation controlled by the .Vt struct nmreq argument. .Va arg.nr_name specifies the netmap port name, as follows: .Bl -tag -width XXXX .It Dv OS network interface name (e.g., 'em0', 'eth1', ... ) the data path of the NIC is disconnected from the host stack, and the file descriptor is bound to the NIC (one or all queues), or to the host stack; .It Dv valeSSS:PPP the file descriptor is bound to port PPP of VALE switch SSS. Switch instances and ports are dynamically created if necessary. .Pp Both SSS and PPP have the form [0-9a-zA-Z_]+ , the string cannot exceed IFNAMSIZ characters, and PPP cannot be the name of any existing OS network interface. .El .Pp On return, .Va arg indicates the size of the shared memory region, and the number, size and location of all the .Nm data structures, which can be accessed by mmapping the memory .Dl char *mem = mmap(0, arg.nr_memsize, fd); .Pp Non-blocking I/O is done with special .Xr ioctl 2 .Xr select 2 and .Xr poll 2 on the file descriptor permit blocking I/O. .Pp While a NIC is in .Nm mode, the OS will still believe the interface is up and running. OS-generated packets for that NIC end up into a .Nm ring, and another ring is used to send packets into the OS network stack. A .Xr close 2 on the file descriptor removes the binding, and returns the NIC to normal mode (reconnecting the data path to the host stack), or destroys the virtual port. .Sh DATA STRUCTURES The data structures in the mmapped memory region are detailed in .In sys/net/netmap.h , which is the ultimate reference for the .Nm API. The main structures and fields are indicated below: .Bl -tag -width XXX .It Dv struct netmap_if (one per interface ) .Bd -literal struct netmap_if { ... const uint32_t ni_flags; /* properties */ ... const uint32_t ni_tx_rings; /* NIC tx rings */ const uint32_t ni_rx_rings; /* NIC rx rings */ uint32_t ni_bufs_head; /* head of extra bufs list */ ... }; .Ed .Pp Indicates the number of available rings .Pa ( struct netmap_rings ) and their position in the mmapped region. The number of tx and rx rings .Pa ( ni_tx_rings , ni_rx_rings ) normally depends on the hardware. NICs also have an extra tx/rx ring pair connected to the host stack. .Em NIOCREGIF can also request additional unbound buffers in the same memory space, to be used as temporary storage for packets. The number of extra buffers is specified in the .Va arg.nr_arg3 field. On success, the kernel writes back to .Va arg.nr_arg3 the number of extra buffers actually allocated (they may be less than the amount requested if the memory space ran out of buffers). .Pa ni_bufs_head contains the index of the first of these extra buffers, which are connected in a list (the first uint32_t of each buffer being the index of the next buffer in the list). A .Dv 0 indicates the end of the list. The application is free to modify this list and use the buffers (i.e., binding them to the slots of a netmap ring). When closing the netmap file descriptor, the kernel frees the buffers contained in the list pointed by .Pa ni_bufs_head , irrespectively of the buffers originally provided by the kernel on .Em NIOCREGIF . .It Dv struct netmap_ring (one per ring ) .Bd -literal struct netmap_ring { ... const uint32_t num_slots; /* slots in each ring */ const uint32_t nr_buf_size; /* size of each buffer */ ... uint32_t head; /* (u) first buf owned by user */ uint32_t cur; /* (u) wakeup position */ const uint32_t tail; /* (k) first buf owned by kernel */ ... uint32_t flags; struct timeval ts; /* (k) time of last rxsync() */ ... struct netmap_slot slot[0]; /* array of slots */ } .Ed .Pp Implements transmit and receive rings, with read/write pointers, metadata and an array of .Em slots describing the buffers. .It Dv struct netmap_slot (one per buffer ) .Bd -literal struct netmap_slot { uint32_t buf_idx; /* buffer index */ uint16_t len; /* packet length */ uint16_t flags; /* buf changed, etc. */ uint64_t ptr; /* address for indirect buffers */ }; .Ed .Pp Describes a packet buffer, which normally is identified by an index and resides in the mmapped region. .It Dv packet buffers Fixed size (normally 2 KB) packet buffers allocated by the kernel. .El .Pp The offset of the .Pa struct netmap_if in the mmapped region is indicated by the .Pa nr_offset field in the structure returned by .Dv NIOCREGIF . From there, all other objects are reachable through relative references (offsets or indexes). Macros and functions in .In net/netmap_user.h help converting them into actual pointers: .Pp .Dl struct netmap_if *nifp = NETMAP_IF(mem, arg.nr_offset); .Dl struct netmap_ring *txr = NETMAP_TXRING(nifp, ring_index); .Dl struct netmap_ring *rxr = NETMAP_RXRING(nifp, ring_index); .Pp .Dl char *buf = NETMAP_BUF(ring, buffer_index); .Sh RINGS, BUFFERS AND DATA I/O .Va Rings are circular queues of packets with three indexes/pointers .Va ( head , cur , tail ) ; one slot is always kept empty. The ring size .Va ( num_slots ) should not be assumed to be a power of two. .Pp .Va head is the first slot available to userspace; .Pp .Va cur is the wakeup point: select/poll will unblock when .Va tail passes .Va cur ; .Pp .Va tail is the first slot reserved to the kernel. .Pp Slot indexes .Em must only move forward; for convenience, the function .Dl nm_ring_next(ring, index) returns the next index modulo the ring size. .Pp .Va head and .Va cur are only modified by the user program; .Va tail is only modified by the kernel. The kernel only reads/writes the .Vt struct netmap_ring slots and buffers during the execution of a netmap-related system call. The only exception are slots (and buffers) in the range .Va tail\ . . . head-1 , that are explicitly assigned to the kernel. .Ss TRANSMIT RINGS On transmit rings, after a .Nm system call, slots in the range .Va head\ . . . tail-1 are available for transmission. User code should fill the slots sequentially and advance .Va head and .Va cur past slots ready to transmit. .Va cur may be moved further ahead if the user code needs more slots before further transmissions (see .Sx SCATTER GATHER I/O ) . .Pp At the next NIOCTXSYNC/select()/poll(), slots up to .Va head-1 are pushed to the port, and .Va tail may advance if further slots have become available. Below is an example of the evolution of a TX ring: .Bd -literal after the syscall, slots between cur and tail are (a)vailable head=cur tail | | v v TX [.....aaaaaaaaaaa.............] user creates new packets to (T)ransmit head=cur tail | | v v TX [.....TTTTTaaaaaa.............] NIOCTXSYNC/poll()/select() sends packets and reports new slots head=cur tail | | v v TX [..........aaaaaaaaaaa........] .Ed .Pp .Fn select and .Fn poll will block if there is no space in the ring, i.e., .Dl ring->cur == ring->tail and return when new slots have become available. .Pp High speed applications may want to amortize the cost of system calls by preparing as many packets as possible before issuing them. .Pp A transmit ring with pending transmissions has .Dl ring->head != ring->tail + 1 (modulo the ring size). The function .Va int nm_tx_pending(ring) implements this test. .Ss RECEIVE RINGS On receive rings, after a .Nm system call, the slots in the range .Va head\& . . . tail-1 contain received packets. User code should process them and advance .Va head and .Va cur past slots it wants to return to the kernel. .Va cur may be moved further ahead if the user code wants to wait for more packets without returning all the previous slots to the kernel. .Pp At the next NIOCRXSYNC/select()/poll(), slots up to .Va head-1 are returned to the kernel for further receives, and .Va tail may advance to report new incoming packets. .Pp Below is an example of the evolution of an RX ring: .Bd -literal after the syscall, there are some (h)eld and some (R)eceived slots head cur tail | | | v v v RX [..hhhhhhRRRRRRRR..........] user advances head and cur, releasing some slots and holding others head cur tail | | | v v v RX [..*****hhhRRRRRR...........] NICRXSYNC/poll()/select() recovers slots and reports new packets head cur tail | | | v v v RX [.......hhhRRRRRRRRRRRR....] .Ed .Sh SLOTS AND PACKET BUFFERS Normally, packets should be stored in the netmap-allocated buffers assigned to slots when ports are bound to a file descriptor. One packet is fully contained in a single buffer. .Pp The following flags affect slot and buffer processing: .Bl -tag -width XXX .It NS_BUF_CHANGED .Em must be used when the .Va buf_idx in the slot is changed. This can be used to implement zero-copy forwarding, see .Sx ZERO-COPY FORWARDING . .It NS_REPORT reports when this buffer has been transmitted. Normally, .Nm notifies transmit completions in batches, hence signals can be delayed indefinitely. This flag helps detect when packets have been sent and a file descriptor can be closed. .It NS_FORWARD When a ring is in 'transparent' mode, packets marked with this flag by the user application are forwarded to the other endpoint at the next system call, thus restoring (in a selective way) the connection between a NIC and the host stack. .It NS_NO_LEARN tells the forwarding code that the source MAC address for this packet must not be used in the learning bridge code. .It NS_INDIRECT indicates that the packet's payload is in a user-supplied buffer whose user virtual address is in the 'ptr' field of the slot. The size can reach 65535 bytes. .Pp This is only supported on the transmit ring of .Nm VALE ports, and it helps reducing data copies in the interconnection of virtual machines. .It NS_MOREFRAG indicates that the packet continues with subsequent buffers; the last buffer in a packet must have the flag clear. .El .Sh SCATTER GATHER I/O Packets can span multiple slots if the .Va NS_MOREFRAG flag is set in all but the last slot. The maximum length of a chain is 64 buffers. This is normally used with .Nm VALE ports when connecting virtual machines, as they generate large TSO segments that are not split unless they reach a physical device. .Pp NOTE: The length field always refers to the individual fragment; there is no place with the total length of a packet. .Pp On receive rings the macro .Va NS_RFRAGS(slot) indicates the remaining number of slots for this packet, including the current one. Slots with a value greater than 1 also have NS_MOREFRAG set. .Sh IOCTLS .Nm uses two ioctls (NIOCTXSYNC, NIOCRXSYNC) for non-blocking I/O. They take no argument. Two more ioctls (NIOCGINFO, NIOCREGIF) are used to query and configure ports, with the following argument: .Bd -literal struct nmreq { char nr_name[IFNAMSIZ]; /* (i) port name */ uint32_t nr_version; /* (i) API version */ uint32_t nr_offset; /* (o) nifp offset in mmap region */ uint32_t nr_memsize; /* (o) size of the mmap region */ uint32_t nr_tx_slots; /* (i/o) slots in tx rings */ uint32_t nr_rx_slots; /* (i/o) slots in rx rings */ uint16_t nr_tx_rings; /* (i/o) number of tx rings */ uint16_t nr_rx_rings; /* (i/o) number of rx rings */ uint16_t nr_ringid; /* (i/o) ring(s) we care about */ uint16_t nr_cmd; /* (i) special command */ uint16_t nr_arg1; /* (i/o) extra arguments */ uint16_t nr_arg2; /* (i/o) extra arguments */ uint32_t nr_arg3; /* (i/o) extra arguments */ uint32_t nr_flags /* (i/o) open mode */ ... }; .Ed .Pp A file descriptor obtained through .Pa /dev/netmap also supports the ioctl supported by network devices, see .Xr netintro 4 . .Bl -tag -width XXXX .It Dv NIOCGINFO returns EINVAL if the named port does not support netmap. Otherwise, it returns 0 and (advisory) information about the port. Note that all the information below can change before the interface is actually put in netmap mode. .Bl -tag -width XX .It Pa nr_memsize indicates the size of the .Nm memory region. NICs in .Nm mode all share the same memory region, whereas .Nm VALE ports have independent regions for each port. .It Pa nr_tx_slots , nr_rx_slots indicate the size of transmit and receive rings. .It Pa nr_tx_rings , nr_rx_rings indicate the number of transmit and receive rings. Both ring number and sizes may be configured at runtime using interface-specific functions (e.g., .Xr ethtool 8 ). .El .It Dv NIOCREGIF binds the port named in .Va nr_name to the file descriptor. For a physical device this also switches it into .Nm mode, disconnecting it from the host stack. Multiple file descriptors can be bound to the same port, with proper synchronization left to the user. .Pp The recommended way to bind a file descriptor to a port is to use function .Va nm_open(..) (see .Sx LIBRARIES ) which parses names to access specific port types and enable features. In the following we document the main features. .Pp .Dv NIOCREGIF can also bind a file descriptor to one endpoint of a .Em netmap pipe , consisting of two netmap ports with a crossover connection. A netmap pipe share the same memory space of the parent port, and is meant to enable configuration where a master process acts as a dispatcher towards slave processes. .Pp To enable this function, the .Pa nr_arg1 field of the structure can be used as a hint to the kernel to indicate how many pipes we expect to use, and reserve extra space in the memory region. .Pp On return, it gives the same info as NIOCGINFO, with .Pa nr_ringid and .Pa nr_flags indicating the identity of the rings controlled through the file descriptor. .Pp .Va nr_flags .Va nr_ringid selects which rings are controlled through this file descriptor. Possible values of .Pa nr_flags are indicated below, together with the naming schemes that application libraries (such as the .Nm nm_open indicated below) can use to indicate the specific set of rings. In the example below, "netmap:foo" is any valid netmap port name. .Bl -tag -width XXXXX .It NR_REG_ALL_NIC "netmap:foo" (default) all hardware ring pairs .It NR_REG_SW "netmap:foo^" the ``host rings'', connecting to the host stack. .It NR_REG_NIC_SW "netmap:foo+" all hardware rings and the host rings .It NR_REG_ONE_NIC "netmap:foo-i" only the i-th hardware ring pair, where the number is in .Pa nr_ringid ; .It NR_REG_PIPE_MASTER "netmap:foo{i" the master side of the netmap pipe whose identifier (i) is in .Pa nr_ringid ; .It NR_REG_PIPE_SLAVE "netmap:foo}i" the slave side of the netmap pipe whose identifier (i) is in .Pa nr_ringid . .Pp The identifier of a pipe must be thought as part of the pipe name, and does not need to be sequential. On return the pipe will only have a single ring pair with index 0, irrespective of the value of .Va i . .El .Pp By default, a .Xr poll 2 or .Xr select 2 call pushes out any pending packets on the transmit ring, even if no write events are specified. The feature can be disabled by or-ing .Va NETMAP_NO_TX_POLL to the value written to .Va nr_ringid . When this feature is used, packets are transmitted only on .Va ioctl(NIOCTXSYNC) or .Va select() / .Va poll() are called with a write event (POLLOUT/wfdset) or a full ring. .Pp When registering a virtual interface that is dynamically created to a .Nm VALE switch, we can specify the desired number of rings (1 by default, and currently up to 16) on it using nr_tx_rings and nr_rx_rings fields. .It Dv NIOCTXSYNC tells the hardware of new packets to transmit, and updates the number of slots available for transmission. .It Dv NIOCRXSYNC tells the hardware of consumed packets, and asks for newly available packets. .El .Sh SELECT, POLL, EPOLL, KQUEUE .Xr select 2 and .Xr poll 2 on a .Nm file descriptor process rings as indicated in .Sx TRANSMIT RINGS and .Sx RECEIVE RINGS , respectively when write (POLLOUT) and read (POLLIN) events are requested. Both block if no slots are available in the ring .Va ( ring->cur == ring->tail ) . Depending on the platform, .Xr epoll 7 and .Xr kqueue 2 are supported too. .Pp Packets in transmit rings are normally pushed out (and buffers reclaimed) even without requesting write events. Passing the .Dv NETMAP_NO_TX_POLL flag to .Em NIOCREGIF disables this feature. By default, receive rings are processed only if read events are requested. Passing the .Dv NETMAP_DO_RX_POLL flag to .Em NIOCREGIF updates receive rings even without read events. Note that on .Xr epoll 7 and .Xr kqueue 2 , .Dv NETMAP_NO_TX_POLL and .Dv NETMAP_DO_RX_POLL only have an effect when some event is posted for the file descriptor. .Sh LIBRARIES The .Nm API is supposed to be used directly, both because of its simplicity and for efficient integration with applications. .Pp For convenience, the .In net/netmap_user.h header provides a few macros and functions to ease creating a file descriptor and doing I/O with a .Nm port. These are loosely modeled after the .Xr pcap 3 API, to ease porting of libpcap-based applications to .Nm . To use these extra functions, programs should .Dl #define NETMAP_WITH_LIBS before .Dl #include .Pp The following functions are available: .Bl -tag -width XXXXX .It Va struct nm_desc * nm_open(const char *ifname, const struct nmreq *req, uint64_t flags, const struct nm_desc *arg ) similar to .Xr pcap_open_live 3 , binds a file descriptor to a port. .Bl -tag -width XX .It Va ifname is a port name, in the form "netmap:PPP" for a NIC and "valeSSS:PPP" for a .Nm VALE port. .It Va req provides the initial values for the argument to the NIOCREGIF ioctl. The nm_flags and nm_ringid values are overwritten by parsing ifname and flags, and other fields can be overridden through the other two arguments. .It Va arg points to a struct nm_desc containing arguments (e.g., from a previously open file descriptor) that should override the defaults. The fields are used as described below .It Va flags can be set to a combination of the following flags: .Va NETMAP_NO_TX_POLL , .Va NETMAP_DO_RX_POLL (copied into nr_ringid); .Va NM_OPEN_NO_MMAP (if arg points to the same memory region, avoids the mmap and uses the values from it); .Va NM_OPEN_IFNAME (ignores ifname and uses the values in arg); .Va NM_OPEN_ARG1 , .Va NM_OPEN_ARG2 , .Va NM_OPEN_ARG3 (uses the fields from arg); .Va NM_OPEN_RING_CFG (uses the ring number and sizes from arg). .El .It Va int nm_close(struct nm_desc *d ) closes the file descriptor, unmaps memory, frees resources. .It Va int nm_inject(struct nm_desc *d, const void *buf, size_t size ) similar to .Va pcap_inject() , pushes a packet to a ring, returns the size of the packet is successful, or 0 on error; .It Va int nm_dispatch(struct nm_desc *d, int cnt, nm_cb_t cb, u_char *arg ) similar to .Va pcap_dispatch() , applies a callback to incoming packets .It Va u_char * nm_nextpkt(struct nm_desc *d, struct nm_pkthdr *hdr ) similar to .Va pcap_next() , fetches the next packet .El .Sh SUPPORTED DEVICES .Nm natively supports the following devices: .Pp On .Fx : .Xr cxgbe 4 , .Xr em 4 , .Xr iflib 4 .Pq providing Xr igb 4 and Xr em 4 , .Xr ixgbe 4 , .Xr ixl 4 , .Xr re 4 , .Xr vtnet 4 . .Pp On Linux e1000, e1000e, i40e, igb, ixgbe, ixgbevf, r8169, virtio_net, vmxnet3. .Pp NICs without native support can still be used in .Nm mode through emulation. Performance is inferior to native netmap mode but still significantly higher than various raw socket types (bpf, PF_PACKET, etc.). Note that for slow devices (such as 1 Gbit/s and slower NICs, or several 10 Gbit/s NICs whose hardware is unable to sustain line rate), emulated and native mode will likely have similar or same throughput. .Pp When emulation is in use, packet sniffer programs such as tcpdump could see received packets before they are diverted by netmap. This behaviour is not intentional, being just an artifact of the implementation of emulation. Note that in case the netmap application subsequently moves packets received from the emulated adapter onto the host RX ring, the sniffer will intercept those packets again, since the packets are injected to the host stack as they were received by the network interface. .Pp Emulation is also available for devices with native netmap support, which can be used for testing or performance comparison. The sysctl variable .Va dev.netmap.admode globally controls how netmap mode is implemented. .Sh SYSCTL VARIABLES AND MODULE PARAMETERS Some aspects of the operation of .Nm and .Nm VALE are controlled through sysctl variables on .Fx .Em ( dev.netmap.* ) and module parameters on Linux .Em ( /sys/module/netmap/parameters/* ) : .Bl -tag -width indent .It Va dev.netmap.admode: 0 Controls the use of native or emulated adapter mode. .Pp 0 uses the best available option; .Pp 1 forces native mode and fails if not available; .Pp 2 forces emulated hence never fails. .It Va dev.netmap.generic_rings: 1 Number of rings used for emulated netmap mode .It Va dev.netmap.generic_ringsize: 1024 Ring size used for emulated netmap mode .It Va dev.netmap.generic_mit: 100000 Controls interrupt moderation for emulated mode .It Va dev.netmap.fwd: 0 Forces NS_FORWARD mode .It Va dev.netmap.txsync_retry: 2 Number of txsync loops in the .Nm VALE flush function .It Va dev.netmap.no_pendintr: 1 Forces recovery of transmit buffers on system calls .It Va dev.netmap.no_timestamp: 0 Disables the update of the timestamp in the netmap ring .It Va dev.netmap.verbose: 0 Verbose kernel messages .It Va dev.netmap.buf_num: 163840 .It Va dev.netmap.buf_size: 2048 .It Va dev.netmap.ring_num: 200 .It Va dev.netmap.ring_size: 36864 .It Va dev.netmap.if_num: 100 .It Va dev.netmap.if_size: 1024 Sizes and number of objects (netmap_if, netmap_ring, buffers) for the global memory region. The only parameter worth modifying is .Va dev.netmap.buf_num as it impacts the total amount of memory used by netmap. .It Va dev.netmap.buf_curr_num: 0 .It Va dev.netmap.buf_curr_size: 0 .It Va dev.netmap.ring_curr_num: 0 .It Va dev.netmap.ring_curr_size: 0 .It Va dev.netmap.if_curr_num: 0 .It Va dev.netmap.if_curr_size: 0 Actual values in use. .It Va dev.netmap.priv_buf_num: 4098 .It Va dev.netmap.priv_buf_size: 2048 .It Va dev.netmap.priv_ring_num: 4 .It Va dev.netmap.priv_ring_size: 20480 .It Va dev.netmap.priv_if_num: 2 .It Va dev.netmap.priv_if_size: 1024 Sizes and number of objects (netmap_if, netmap_ring, buffers) for private memory regions. A separate memory region is used for each .Nm VALE port and each pair of .Nm netmap pipes . .It Va dev.netmap.bridge_batch: 1024 Batch size used when moving packets across a .Nm VALE switch. Values above 64 generally guarantee good performance. +.It Va dev.netmap.max_bridges: 8 +Max number of +.Nm VALE +switches that can be created. This tunable can be specified +at loader time. .It Va dev.netmap.ptnet_vnet_hdr: 1 Allow ptnet devices to use virtio-net headers .El .Sh SYSTEM CALLS .Nm uses .Xr select 2 , .Xr poll 2 , .Xr epoll 7 and .Xr kqueue 2 to wake up processes when significant events occur, and .Xr mmap 2 to map memory. .Xr ioctl 2 is used to configure ports and .Nm VALE switches . .Pp Applications may need to create threads and bind them to specific cores to improve performance, using standard OS primitives, see .Xr pthread 3 . In particular, .Xr pthread_setaffinity_np 3 may be of use. .Sh EXAMPLES .Ss TEST PROGRAMS .Nm comes with a few programs that can be used for testing or simple applications. See the .Pa examples/ directory in .Nm distributions, or .Pa tools/tools/netmap/ directory in .Fx distributions. .Pp .Xr pkt-gen 8 is a general purpose traffic source/sink. .Pp As an example .Dl pkt-gen -i ix0 -f tx -l 60 can generate an infinite stream of minimum size packets, and .Dl pkt-gen -i ix0 -f rx is a traffic sink. Both print traffic statistics, to help monitor how the system performs. .Pp .Xr pkt-gen 8 has many options can be uses to set packet sizes, addresses, rates, and use multiple send/receive threads and cores. .Pp .Xr bridge 4 is another test program which interconnects two .Nm ports. It can be used for transparent forwarding between interfaces, as in .Dl bridge -i netmap:ix0 -i netmap:ix1 or even connect the NIC to the host stack using netmap .Dl bridge -i netmap:ix0 .Ss USING THE NATIVE API The following code implements a traffic generator: .Pp .Bd -literal -compact #include \&... void sender(void) { struct netmap_if *nifp; struct netmap_ring *ring; struct nmreq nmr; struct pollfd fds; fd = open("/dev/netmap", O_RDWR); bzero(&nmr, sizeof(nmr)); strcpy(nmr.nr_name, "ix0"); nmr.nm_version = NETMAP_API; ioctl(fd, NIOCREGIF, &nmr); p = mmap(0, nmr.nr_memsize, fd); nifp = NETMAP_IF(p, nmr.nr_offset); ring = NETMAP_TXRING(nifp, 0); fds.fd = fd; fds.events = POLLOUT; for (;;) { poll(&fds, 1, -1); while (!nm_ring_empty(ring)) { i = ring->cur; buf = NETMAP_BUF(ring, ring->slot[i].buf_index); ... prepare packet in buf ... ring->slot[i].len = ... packet length ... ring->head = ring->cur = nm_ring_next(ring, i); } } } .Ed .Ss HELPER FUNCTIONS A simple receiver can be implemented using the helper functions: .Pp .Bd -literal -compact #define NETMAP_WITH_LIBS #include \&... void receiver(void) { struct nm_desc *d; struct pollfd fds; u_char *buf; struct nm_pkthdr h; ... d = nm_open("netmap:ix0", NULL, 0, 0); fds.fd = NETMAP_FD(d); fds.events = POLLIN; for (;;) { poll(&fds, 1, -1); while ( (buf = nm_nextpkt(d, &h)) ) consume_pkt(buf, h.len); } nm_close(d); } .Ed .Ss ZERO-COPY FORWARDING Since physical interfaces share the same memory region, it is possible to do packet forwarding between ports swapping buffers. The buffer from the transmit ring is used to replenish the receive ring: .Pp .Bd -literal -compact uint32_t tmp; struct netmap_slot *src, *dst; ... src = &src_ring->slot[rxr->cur]; dst = &dst_ring->slot[txr->cur]; tmp = dst->buf_idx; dst->buf_idx = src->buf_idx; dst->len = src->len; dst->flags = NS_BUF_CHANGED; src->buf_idx = tmp; src->flags = NS_BUF_CHANGED; rxr->head = rxr->cur = nm_ring_next(rxr, rxr->cur); txr->head = txr->cur = nm_ring_next(txr, txr->cur); ... .Ed .Ss ACCESSING THE HOST STACK The host stack is for all practical purposes just a regular ring pair, which you can access with the netmap API (e.g., with .Dl nm_open("netmap:eth0^", ... ) ; All packets that the host would send to an interface in .Nm mode end up into the RX ring, whereas all packets queued to the TX ring are send up to the host stack. .Ss VALE SWITCH A simple way to test the performance of a .Nm VALE switch is to attach a sender and a receiver to it, e.g., running the following in two different terminals: .Dl pkt-gen -i vale1:a -f rx # receiver .Dl pkt-gen -i vale1:b -f tx # sender The same example can be used to test netmap pipes, by simply changing port names, e.g., .Dl pkt-gen -i vale2:x{3 -f rx # receiver on the master side .Dl pkt-gen -i vale2:x}3 -f tx # sender on the slave side .Pp The following command attaches an interface and the host stack to a switch: .Dl valectl -h vale2:em0 Other .Nm clients attached to the same switch can now communicate with the network card or the host. .Sh SEE ALSO .Xr vale 4 , .Xr valectl 8 , .Xr bridge 8 , .Xr lb 8 , .Xr nmreplay 8 , .Xr pkt-gen 8 .Pp .Pa http://info.iet.unipi.it/~luigi/netmap/ .Pp Luigi Rizzo, Revisiting network I/O APIs: the netmap framework, Communications of the ACM, 55 (3), pp.45-51, March 2012 .Pp Luigi Rizzo, netmap: a novel framework for fast packet I/O, Usenix ATC'12, June 2012, Boston .Pp Luigi Rizzo, Giuseppe Lettieri, VALE, a switched ethernet for virtual machines, ACM CoNEXT'12, December 2012, Nice .Pp Luigi Rizzo, Giuseppe Lettieri, Vincenzo Maffione, Speeding up packet I/O in virtual machines, ACM/IEEE ANCS'13, October 2013, San Jose .Sh AUTHORS .An -nosplit The .Nm framework has been originally designed and implemented at the Universita` di Pisa in 2011 by .An Luigi Rizzo , and further extended with help from .An Matteo Landi , .An Gaetano Catalli , .An Giuseppe Lettieri , and .An Vincenzo Maffione . .Pp .Nm and .Nm VALE have been funded by the European Commission within FP7 Projects CHANGE (257422) and OPENLAB (287581). .Sh CAVEATS No matter how fast the CPU and OS are, achieving line rate on 10G and faster interfaces requires hardware with sufficient performance. Several NICs are unable to sustain line rate with small packet sizes. Insufficient PCIe or memory bandwidth can also cause reduced performance. .Pp Another frequent reason for low performance is the use of flow control on the link: a slow receiver can limit the transmit speed. Be sure to disable flow control when running high speed experiments. .Ss SPECIAL NIC FEATURES .Nm is orthogonal to some NIC features such as multiqueue, schedulers, packet filters. .Pp Multiple transmit and receive rings are supported natively and can be configured with ordinary OS tools, such as .Xr ethtool 8 or device-specific sysctl variables. The same goes for Receive Packet Steering (RPS) and filtering of incoming traffic. .Pp .Nm .Em does not use features such as .Em checksum offloading , TCP segmentation offloading , .Em encryption , VLAN encapsulation/decapsulation , etc. When using netmap to exchange packets with the host stack, make sure to disable these features. diff --git a/share/man/man4/vale.4 b/share/man/man4/vale.4 index a28114470a6e..f805b1b4031b 100644 --- a/share/man/man4/vale.4 +++ b/share/man/man4/vale.4 @@ -1,120 +1,121 @@ .\" Copyright (c) 2012 Luigi Rizzo, Universita` di Pisa .\" All rights reserved. .\" .\" Redistribution and use in source and binary forms, with or without .\" modification, are permitted provided that the following conditions .\" are met: .\" 1. Redistributions of source code must retain the above copyright .\" notice, this list of conditions and the following disclaimer. .\" 2. Redistributions in binary form must reproduce the above copyright .\" notice, this list of conditions and the following disclaimer in the .\" documentation and/or other materials provided with the distribution. .\" .\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND .\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE .\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE .\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE .\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL .\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS .\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) .\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT .\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY .\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF .\" SUCH DAMAGE. .\" .\" This document is derived in part from the enet man page (enet.4) .\" distributed with 4.3BSD Unix. .\" .\" $FreeBSD$ .\" $Id: $ .\" -.Dd February 6, 2020 +.Dd March 6, 2022 .Dt VALE 4 .Os .Sh NAME .Nm vale .Nd a very fast Virtual Local Ethernet using the netmap API .Sh SYNOPSIS .Cd device netmap .Sh DESCRIPTION .Nm is a feature of the .Xr netmap 4 module that implements multiple Virtual switches that can be used to interconnect netmap clients, including traffic sources and sinks, packet forwarders, userspace firewalls, and so on. .Pp .Nm is implemented completely in software, and is extremely fast. On a modern machine it can move almost 20 Million packets per second (Mpps) per core with small frames, and about 70 Gbit/s with 1500 byte frames. .Sh OPERATION .Nm dynamically creates switches and ports as clients connect to it using the .Xr netmap 4 API. .Pp .Nm ports are named .Pa valeSSS:PPP where .Pa vale is the prefix indicating a VALE switch rather than a standard interface, .Pa SSS indicates a specific switch (the colon is a separator), and .Pa PPP indicates a port within the switch. Both SSS and PPP have the form [0-9a-zA-Z_]+ , the string cannot exceed IFNAMSIZ characters, and PPP cannot be the name of any existing OS network interface. .Pp See .Xr netmap 4 for details on the API. .Ss LIMITS .Nm -currently supports up to 8 switches, with 254 ports per switch. +currently supports up to 254 ports per switch. The maximum +number of switches is provided by the max_bridges sysctl variable. .Sh SYSCTL VARIABLES See .Xr netmap 4 for a list of sysctl variables that affect .Nm bridges. .Sh EXAMPLES Create one switch, with a traffic generator connected to one port, and a netmap-enabled tcpdump instance on another port: .Bd -literal -offset indent tcpdump -ni valea:1 & pkt-gen -i valea:0 -f tx & .Ed .Pp Create two switches, each connected to two qemu machines on different ports. .Bd -literal -offset indent qemu -net nic -net netmap,ifname=vale1:a ... & qemu -net nic -net netmap,ifname=vale1:b ... & qemu -net nic -net netmap,ifname=vale2:c ... & qemu -net nic -net netmap,ifname=vale2:d ... & .Ed .Sh SEE ALSO .Xr netmap 4 .Pp Luigi Rizzo, Giuseppe Lettieri: VALE, a switched ethernet for virtual machines, June 2012, http://info.iet.unipi.it/~luigi/vale/ .Sh AUTHORS .An -nosplit The .Nm switch was designed and implemented in 2012 by .An Luigi Rizzo and .An Giuseppe Lettieri at the Universita` di Pisa. .Pp .Nm was funded by the European Commission within FP7 Projects CHANGE (257422) and OPENLAB (287581). diff --git a/sys/dev/netmap/netmap_bdg.c b/sys/dev/netmap/netmap_bdg.c index 4d18859e2091..1ad540df45a9 100644 --- a/sys/dev/netmap/netmap_bdg.c +++ b/sys/dev/netmap/netmap_bdg.c @@ -1,1648 +1,1648 @@ /* * Copyright (C) 2013-2016 Universita` di Pisa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * This module implements the VALE switch for netmap --- VALE SWITCH --- NMG_LOCK() serializes all modifications to switches and ports. A switch cannot be deleted until all ports are gone. For each switch, an SX lock (RWlock on linux) protects deletion of ports. When configuring or deleting a new port, the lock is acquired in exclusive mode (after holding NMG_LOCK). When forwarding, the lock is acquired in shared mode (without NMG_LOCK). The lock is held throughout the entire forwarding cycle, during which the thread may incur in a page fault. Hence it is important that sleepable shared locks are used. On the rx ring, the per-port lock is grabbed initially to reserve a number of slot in the ring, then the lock is released, packets are copied from source to destination, and then the lock is acquired again and the receive ring is updated. (A similar thing is done on the tx ring for NIC and host stack ports attached to the switch) */ /* * OS-specific code that is used only within this file. * Other OS-specific code that must be accessed by drivers * is present in netmap_kern.h */ #if defined(__FreeBSD__) #include /* prerequisite */ __FBSDID("$FreeBSD$"); #include #include #include /* defines used in kernel.h */ #include /* types used in module initialization */ #include /* cdevsw struct, UID, GID */ #include #include /* struct socket */ #include #include #include #include /* sockaddrs */ #include #include #include #include #include /* BIOCIMMEDIATE */ #include /* bus_dmamap_* */ #include #include #include #elif defined(linux) #include "bsd_glue.h" #elif defined(__APPLE__) #warning OSX support is only partial #include "osx_glue.h" #elif defined(_WIN32) #include "win_glue.h" #else #error Unsupported platform #endif /* unsupported */ /* * common headers */ #include #include #include #include const char* netmap_bdg_name(struct netmap_vp_adapter *vp) { struct nm_bridge *b = vp->na_bdg; if (b == NULL) return NULL; return b->bdg_basename; } #ifndef CONFIG_NET_NS /* * XXX in principle nm_bridges could be created dynamically * Right now we have a static array and deletions are protected * by an exclusive lock. */ struct nm_bridge *nm_bridges; #endif /* !CONFIG_NET_NS */ static int nm_is_id_char(const char c) { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || (c == '_'); } /* Validate the name of a bdg port and return the * position of the ":" character. */ static int nm_bdg_name_validate(const char *name, size_t prefixlen) { int colon_pos = -1; int i; if (!name || strlen(name) < prefixlen) { return -1; } for (i = 0; i < NM_BDG_IFNAMSIZ && name[i]; i++) { if (name[i] == ':') { colon_pos = i; break; } else if (!nm_is_id_char(name[i])) { return -1; } } if (strlen(name) - colon_pos > IFNAMSIZ) { /* interface name too long */ return -1; } return colon_pos; } /* * locate a bridge among the existing ones. * MUST BE CALLED WITH NMG_LOCK() * * a ':' in the name terminates the bridge name. Otherwise, just NM_NAME. * We assume that this is called with a name of at least NM_NAME chars. */ struct nm_bridge * nm_find_bridge(const char *name, int create, struct netmap_bdg_ops *ops) { int i, namelen; struct nm_bridge *b = NULL, *bridges; u_int num_bridges; NMG_LOCK_ASSERT(); netmap_bns_getbridges(&bridges, &num_bridges); namelen = nm_bdg_name_validate(name, (ops != NULL ? strlen(ops->name) : 0)); if (namelen < 0) { nm_prerr("invalid bridge name %s", name ? name : NULL); return NULL; } /* lookup the name, remember empty slot if there is one */ for (i = 0; i < num_bridges; i++) { struct nm_bridge *x = bridges + i; if ((x->bdg_flags & NM_BDG_ACTIVE) + x->bdg_active_ports == 0) { if (create && b == NULL) b = x; /* record empty slot */ } else if (x->bdg_namelen != namelen) { continue; } else if (strncmp(name, x->bdg_basename, namelen) == 0) { nm_prdis("found '%.*s' at %d", namelen, name, i); b = x; break; } } if (i == num_bridges && b) { /* name not found, can create entry */ /* initialize the bridge */ nm_prdis("create new bridge %s with ports %d", b->bdg_basename, b->bdg_active_ports); b->ht = nm_os_malloc(sizeof(struct nm_hash_ent) * NM_BDG_HASH); if (b->ht == NULL) { nm_prerr("failed to allocate hash table"); return NULL; } strncpy(b->bdg_basename, name, namelen); b->bdg_namelen = namelen; b->bdg_active_ports = 0; for (i = 0; i < NM_BDG_MAXPORTS; i++) b->bdg_port_index[i] = i; /* set the default function */ b->bdg_ops = b->bdg_saved_ops = *ops; b->private_data = b->ht; b->bdg_flags = 0; NM_BNS_GET(b); } return b; } int netmap_bdg_free(struct nm_bridge *b) { if ((b->bdg_flags & NM_BDG_ACTIVE) + b->bdg_active_ports != 0) { return EBUSY; } nm_prdis("marking bridge %s as free", b->bdg_basename); nm_os_free(b->ht); memset(&b->bdg_ops, 0, sizeof(b->bdg_ops)); memset(&b->bdg_saved_ops, 0, sizeof(b->bdg_saved_ops)); b->bdg_flags = 0; NM_BNS_PUT(b); return 0; } /* Called by external kernel modules (e.g., Openvswitch). * to modify the private data previously given to regops(). * 'name' may be just bridge's name (including ':' if it * is not just NM_BDG_NAME). * Called without NMG_LOCK. */ int netmap_bdg_update_private_data(const char *name, bdg_update_private_data_fn_t callback, void *callback_data, void *auth_token) { void *private_data = NULL; struct nm_bridge *b; int error = 0; NMG_LOCK(); b = nm_find_bridge(name, 0 /* don't create */, NULL); if (!b) { error = EINVAL; goto unlock_update_priv; } if (!nm_bdg_valid_auth_token(b, auth_token)) { error = EACCES; goto unlock_update_priv; } BDG_WLOCK(b); private_data = callback(b->private_data, callback_data, &error); b->private_data = private_data; BDG_WUNLOCK(b); unlock_update_priv: NMG_UNLOCK(); return error; } /* remove from bridge b the ports in slots hw and sw * (sw can be -1 if not needed) */ void netmap_bdg_detach_common(struct nm_bridge *b, int hw, int sw) { int s_hw = hw, s_sw = sw; int i, lim =b->bdg_active_ports; uint32_t *tmp = b->tmp_bdg_port_index; /* New algorithm: make a copy of bdg_port_index; lookup NA(ifp)->bdg_port and SWNA(ifp)->bdg_port in the array of bdg_port_index, replacing them with entries from the bottom of the array; decrement bdg_active_ports; acquire BDG_WLOCK() and copy back the array. */ if (netmap_debug & NM_DEBUG_BDG) nm_prinf("detach %d and %d (lim %d)", hw, sw, lim); /* make a copy of the list of active ports, update it, * and then copy back within BDG_WLOCK(). */ memcpy(b->tmp_bdg_port_index, b->bdg_port_index, sizeof(b->tmp_bdg_port_index)); for (i = 0; (hw >= 0 || sw >= 0) && i < lim; ) { if (hw >= 0 && tmp[i] == hw) { nm_prdis("detach hw %d at %d", hw, i); lim--; /* point to last active port */ tmp[i] = tmp[lim]; /* swap with i */ tmp[lim] = hw; /* now this is inactive */ hw = -1; } else if (sw >= 0 && tmp[i] == sw) { nm_prdis("detach sw %d at %d", sw, i); lim--; tmp[i] = tmp[lim]; tmp[lim] = sw; sw = -1; } else { i++; } } if (hw >= 0 || sw >= 0) { nm_prerr("delete failed hw %d sw %d, should panic...", hw, sw); } BDG_WLOCK(b); if (b->bdg_ops.dtor) b->bdg_ops.dtor(b->bdg_ports[s_hw]); b->bdg_ports[s_hw] = NULL; if (s_sw >= 0) { b->bdg_ports[s_sw] = NULL; } memcpy(b->bdg_port_index, b->tmp_bdg_port_index, sizeof(b->tmp_bdg_port_index)); b->bdg_active_ports = lim; BDG_WUNLOCK(b); nm_prdis("now %d active ports", lim); netmap_bdg_free(b); } /* nm_bdg_ctl callback for VALE ports */ int netmap_vp_bdg_ctl(struct nmreq_header *hdr, struct netmap_adapter *na) { struct netmap_vp_adapter *vpna = (struct netmap_vp_adapter *)na; struct nm_bridge *b = vpna->na_bdg; if (hdr->nr_reqtype == NETMAP_REQ_VALE_ATTACH) { return 0; /* nothing to do */ } if (b) { netmap_set_all_rings(na, 0 /* disable */); netmap_bdg_detach_common(b, vpna->bdg_port, -1); vpna->na_bdg = NULL; netmap_set_all_rings(na, 1 /* enable */); } /* I have took reference just for attach */ netmap_adapter_put(na); return 0; } int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, struct nm_bridge *b) { return NM_NEED_BWRAP; } /* Try to get a reference to a netmap adapter attached to a VALE switch. * If the adapter is found (or is created), this function returns 0, a * non NULL pointer is returned into *na, and the caller holds a * reference to the adapter. * If an adapter is not found, then no reference is grabbed and the * function returns an error code, or 0 if there is just a VALE prefix * mismatch. Therefore the caller holds a reference when * (*na != NULL && return == 0). */ int netmap_get_bdg_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create, struct netmap_bdg_ops *ops) { char *nr_name = hdr->nr_name; const char *ifname; struct ifnet *ifp = NULL; int error = 0; struct netmap_vp_adapter *vpna, *hostna = NULL; struct nm_bridge *b; uint32_t i, j; uint32_t cand = NM_BDG_NOPORT, cand2 = NM_BDG_NOPORT; int needed; *na = NULL; /* default return value */ /* first try to see if this is a bridge port. */ NMG_LOCK_ASSERT(); if (strncmp(nr_name, ops->name, strlen(ops->name) - 1)) { return 0; /* no error, but no VALE prefix */ } b = nm_find_bridge(nr_name, create, ops); if (b == NULL) { nm_prdis("no bridges available for '%s'", nr_name); return (create ? ENOMEM : ENXIO); } if (strlen(nr_name) < b->bdg_namelen) /* impossible */ panic("x"); /* Now we are sure that name starts with the bridge's name, * lookup the port in the bridge. We need to scan the entire * list. It is not important to hold a WLOCK on the bridge * during the search because NMG_LOCK already guarantees * that there are no other possible writers. */ /* lookup in the local list of ports */ for (j = 0; j < b->bdg_active_ports; j++) { i = b->bdg_port_index[j]; vpna = b->bdg_ports[i]; nm_prdis("checking %s", vpna->up.name); if (!strcmp(vpna->up.name, nr_name)) { netmap_adapter_get(&vpna->up); nm_prdis("found existing if %s refs %d", nr_name) *na = &vpna->up; return 0; } } /* not found, should we create it? */ if (!create) return ENXIO; /* yes we should, see if we have space to attach entries */ needed = 2; /* in some cases we only need 1 */ if (b->bdg_active_ports + needed >= NM_BDG_MAXPORTS) { nm_prerr("bridge full %d, cannot create new port", b->bdg_active_ports); return ENOMEM; } /* record the next two ports available, but do not allocate yet */ cand = b->bdg_port_index[b->bdg_active_ports]; cand2 = b->bdg_port_index[b->bdg_active_ports + 1]; nm_prdis("+++ bridge %s port %s used %d avail %d %d", b->bdg_basename, ifname, b->bdg_active_ports, cand, cand2); /* * try see if there is a matching NIC with this name * (after the bridge's name) */ ifname = nr_name + b->bdg_namelen + 1; ifp = ifunit_ref(ifname); if (!ifp) { /* Create an ephemeral virtual port. * This block contains all the ephemeral-specific logic. */ if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { error = EINVAL; goto out; } /* bdg_netmap_attach creates a struct netmap_adapter */ error = b->bdg_ops.vp_create(hdr, NULL, nmd, &vpna); if (error) { if (netmap_debug & NM_DEBUG_BDG) nm_prerr("error %d", error); goto out; } /* shortcut - we can skip get_hw_na(), * ownership check and nm_bdg_attach() */ } else { struct netmap_adapter *hw; /* the vale:nic syntax is only valid for some commands */ switch (hdr->nr_reqtype) { case NETMAP_REQ_VALE_ATTACH: case NETMAP_REQ_VALE_DETACH: case NETMAP_REQ_VALE_POLLING_ENABLE: case NETMAP_REQ_VALE_POLLING_DISABLE: break; /* ok */ default: error = EINVAL; goto out; } error = netmap_get_hw_na(ifp, nmd, &hw); if (error || hw == NULL) goto out; /* host adapter might not be created */ error = hw->nm_bdg_attach(nr_name, hw, b); if (error == NM_NEED_BWRAP) { error = b->bdg_ops.bwrap_attach(nr_name, hw); } if (error) goto out; vpna = hw->na_vp; hostna = hw->na_hostvp; if (hdr->nr_reqtype == NETMAP_REQ_VALE_ATTACH) { /* Check if we need to skip the host rings. */ struct nmreq_vale_attach *areq = (struct nmreq_vale_attach *)(uintptr_t)hdr->nr_body; if (areq->reg.nr_mode != NR_REG_NIC_SW) { hostna = NULL; } } } BDG_WLOCK(b); vpna->bdg_port = cand; nm_prdis("NIC %p to bridge port %d", vpna, cand); /* bind the port to the bridge (virtual ports are not active) */ b->bdg_ports[cand] = vpna; vpna->na_bdg = b; b->bdg_active_ports++; if (hostna != NULL) { /* also bind the host stack to the bridge */ b->bdg_ports[cand2] = hostna; hostna->bdg_port = cand2; hostna->na_bdg = b; b->bdg_active_ports++; nm_prdis("host %p to bridge port %d", hostna, cand2); } nm_prdis("if %s refs %d", ifname, vpna->up.na_refcount); BDG_WUNLOCK(b); *na = &vpna->up; netmap_adapter_get(*na); out: if (ifp) if_rele(ifp); return error; } int nm_is_bwrap(struct netmap_adapter *na) { return na->nm_register == netmap_bwrap_reg; } struct nm_bdg_polling_state; struct nm_bdg_kthread { struct nm_kctx *nmk; u_int qfirst; u_int qlast; struct nm_bdg_polling_state *bps; }; struct nm_bdg_polling_state { bool configured; bool stopped; struct netmap_bwrap_adapter *bna; uint32_t mode; u_int qfirst; u_int qlast; u_int cpu_from; u_int ncpus; struct nm_bdg_kthread *kthreads; }; static void netmap_bwrap_polling(void *data) { struct nm_bdg_kthread *nbk = data; struct netmap_bwrap_adapter *bna; u_int qfirst, qlast, i; struct netmap_kring **kring0, *kring; if (!nbk) return; qfirst = nbk->qfirst; qlast = nbk->qlast; bna = nbk->bps->bna; kring0 = NMR(bna->hwna, NR_RX); for (i = qfirst; i < qlast; i++) { kring = kring0[i]; kring->nm_notify(kring, 0); } } static int nm_bdg_create_kthreads(struct nm_bdg_polling_state *bps) { struct nm_kctx_cfg kcfg; int i, j; bps->kthreads = nm_os_malloc(sizeof(struct nm_bdg_kthread) * bps->ncpus); if (bps->kthreads == NULL) return ENOMEM; bzero(&kcfg, sizeof(kcfg)); kcfg.worker_fn = netmap_bwrap_polling; for (i = 0; i < bps->ncpus; i++) { struct nm_bdg_kthread *t = bps->kthreads + i; int all = (bps->ncpus == 1 && bps->mode == NETMAP_POLLING_MODE_SINGLE_CPU); int affinity = bps->cpu_from + i; t->bps = bps; t->qfirst = all ? bps->qfirst /* must be 0 */: affinity; t->qlast = all ? bps->qlast : t->qfirst + 1; if (netmap_verbose) nm_prinf("kthread %d a:%u qf:%u ql:%u", i, affinity, t->qfirst, t->qlast); kcfg.type = i; kcfg.worker_private = t; t->nmk = nm_os_kctx_create(&kcfg, NULL); if (t->nmk == NULL) { goto cleanup; } nm_os_kctx_worker_setaff(t->nmk, affinity); } return 0; cleanup: for (j = 0; j < i; j++) { struct nm_bdg_kthread *t = bps->kthreads + i; nm_os_kctx_destroy(t->nmk); } nm_os_free(bps->kthreads); return EFAULT; } /* A variant of ptnetmap_start_kthreads() */ static int nm_bdg_polling_start_kthreads(struct nm_bdg_polling_state *bps) { int error, i, j; if (!bps) { nm_prerr("polling is not configured"); return EFAULT; } bps->stopped = false; for (i = 0; i < bps->ncpus; i++) { struct nm_bdg_kthread *t = bps->kthreads + i; error = nm_os_kctx_worker_start(t->nmk); if (error) { nm_prerr("error in nm_kthread_start(): %d", error); goto cleanup; } } return 0; cleanup: for (j = 0; j < i; j++) { struct nm_bdg_kthread *t = bps->kthreads + i; nm_os_kctx_worker_stop(t->nmk); } bps->stopped = true; return error; } static void nm_bdg_polling_stop_delete_kthreads(struct nm_bdg_polling_state *bps) { int i; if (!bps) return; for (i = 0; i < bps->ncpus; i++) { struct nm_bdg_kthread *t = bps->kthreads + i; nm_os_kctx_worker_stop(t->nmk); nm_os_kctx_destroy(t->nmk); } bps->stopped = true; } static int get_polling_cfg(struct nmreq_vale_polling *req, struct netmap_adapter *na, struct nm_bdg_polling_state *bps) { unsigned int avail_cpus, core_from; unsigned int qfirst, qlast; uint32_t i = req->nr_first_cpu_id; uint32_t req_cpus = req->nr_num_polling_cpus; avail_cpus = nm_os_ncpus(); if (req_cpus == 0) { nm_prerr("req_cpus must be > 0"); return EINVAL; } else if (req_cpus >= avail_cpus) { nm_prerr("Cannot use all the CPUs in the system"); return EINVAL; } if (req->nr_mode == NETMAP_POLLING_MODE_MULTI_CPU) { /* Use a separate core for each ring. If nr_num_polling_cpus>1 * more consecutive rings are polled. * For example, if nr_first_cpu_id=2 and nr_num_polling_cpus=2, * ring 2 and 3 are polled by core 2 and 3, respectively. */ if (i + req_cpus > nma_get_nrings(na, NR_RX)) { nm_prerr("Rings %u-%u not in range (have %d rings)", i, i + req_cpus, nma_get_nrings(na, NR_RX)); return EINVAL; } qfirst = i; qlast = qfirst + req_cpus; core_from = qfirst; } else if (req->nr_mode == NETMAP_POLLING_MODE_SINGLE_CPU) { /* Poll all the rings using a core specified by nr_first_cpu_id. * the number of cores must be 1. */ if (req_cpus != 1) { nm_prerr("ncpus must be 1 for NETMAP_POLLING_MODE_SINGLE_CPU " "(was %d)", req_cpus); return EINVAL; } qfirst = 0; qlast = nma_get_nrings(na, NR_RX); core_from = i; } else { nm_prerr("Invalid polling mode"); return EINVAL; } bps->mode = req->nr_mode; bps->qfirst = qfirst; bps->qlast = qlast; bps->cpu_from = core_from; bps->ncpus = req_cpus; nm_prinf("%s qfirst %u qlast %u cpu_from %u ncpus %u", req->nr_mode == NETMAP_POLLING_MODE_MULTI_CPU ? "MULTI" : "SINGLE", qfirst, qlast, core_from, req_cpus); return 0; } static int nm_bdg_ctl_polling_start(struct nmreq_vale_polling *req, struct netmap_adapter *na) { struct nm_bdg_polling_state *bps; struct netmap_bwrap_adapter *bna; int error; bna = (struct netmap_bwrap_adapter *)na; if (bna->na_polling_state) { nm_prerr("ERROR adapter already in polling mode"); return EFAULT; } bps = nm_os_malloc(sizeof(*bps)); if (!bps) return ENOMEM; bps->configured = false; bps->stopped = true; if (get_polling_cfg(req, na, bps)) { nm_os_free(bps); return EINVAL; } if (nm_bdg_create_kthreads(bps)) { nm_os_free(bps); return EFAULT; } bps->configured = true; bna->na_polling_state = bps; bps->bna = bna; /* disable interrupts if possible */ nma_intr_enable(bna->hwna, 0); /* start kthread now */ error = nm_bdg_polling_start_kthreads(bps); if (error) { nm_prerr("ERROR nm_bdg_polling_start_kthread()"); nm_os_free(bps->kthreads); nm_os_free(bps); bna->na_polling_state = NULL; nma_intr_enable(bna->hwna, 1); } return error; } static int nm_bdg_ctl_polling_stop(struct netmap_adapter *na) { struct netmap_bwrap_adapter *bna = (struct netmap_bwrap_adapter *)na; struct nm_bdg_polling_state *bps; if (!bna->na_polling_state) { nm_prerr("ERROR adapter is not in polling mode"); return EFAULT; } bps = bna->na_polling_state; nm_bdg_polling_stop_delete_kthreads(bna->na_polling_state); bps->configured = false; nm_os_free(bps); bna->na_polling_state = NULL; /* reenable interrupts */ nma_intr_enable(bna->hwna, 1); return 0; } int nm_bdg_polling(struct nmreq_header *hdr) { struct nmreq_vale_polling *req = (struct nmreq_vale_polling *)(uintptr_t)hdr->nr_body; struct netmap_adapter *na = NULL; int error = 0; NMG_LOCK(); error = netmap_get_vale_na(hdr, &na, NULL, /*create=*/0); if (na && !error) { if (!nm_is_bwrap(na)) { error = EOPNOTSUPP; } else if (hdr->nr_reqtype == NETMAP_BDG_POLLING_ON) { error = nm_bdg_ctl_polling_start(req, na); if (!error) netmap_adapter_get(na); } else { error = nm_bdg_ctl_polling_stop(na); if (!error) netmap_adapter_put(na); } netmap_adapter_put(na); } else if (!na && !error) { /* Not VALE port. */ error = EINVAL; } NMG_UNLOCK(); return error; } /* Called by external kernel modules (e.g., Openvswitch). * to set configure/lookup/dtor functions of a VALE instance. * Register callbacks to the given bridge. 'name' may be just * bridge's name (including ':' if it is not just NM_BDG_NAME). * * Called without NMG_LOCK. */ int netmap_bdg_regops(const char *name, struct netmap_bdg_ops *bdg_ops, void *private_data, void *auth_token) { struct nm_bridge *b; int error = 0; NMG_LOCK(); b = nm_find_bridge(name, 0 /* don't create */, NULL); if (!b) { error = ENXIO; goto unlock_regops; } if (!nm_bdg_valid_auth_token(b, auth_token)) { error = EACCES; goto unlock_regops; } BDG_WLOCK(b); if (!bdg_ops) { /* resetting the bridge */ bzero(b->ht, sizeof(struct nm_hash_ent) * NM_BDG_HASH); b->bdg_ops = b->bdg_saved_ops; b->private_data = b->ht; } else { /* modifying the bridge */ b->private_data = private_data; #define nm_bdg_override(m) if (bdg_ops->m) b->bdg_ops.m = bdg_ops->m nm_bdg_override(lookup); nm_bdg_override(config); nm_bdg_override(dtor); nm_bdg_override(vp_create); nm_bdg_override(bwrap_attach); #undef nm_bdg_override } BDG_WUNLOCK(b); unlock_regops: NMG_UNLOCK(); return error; } int netmap_bdg_config(struct nm_ifreq *nr) { struct nm_bridge *b; int error = EINVAL; NMG_LOCK(); b = nm_find_bridge(nr->nifr_name, 0, NULL); if (!b) { NMG_UNLOCK(); return error; } NMG_UNLOCK(); /* Don't call config() with NMG_LOCK() held */ BDG_RLOCK(b); if (b->bdg_ops.config != NULL) error = b->bdg_ops.config(nr); BDG_RUNLOCK(b); return error; } /* nm_register callback for VALE ports */ int netmap_vp_reg(struct netmap_adapter *na, int onoff) { struct netmap_vp_adapter *vpna = (struct netmap_vp_adapter*)na; /* persistent ports may be put in netmap mode * before being attached to a bridge */ if (vpna->na_bdg) BDG_WLOCK(vpna->na_bdg); if (onoff) { netmap_krings_mode_commit(na, onoff); if (na->active_fds == 0) na->na_flags |= NAF_NETMAP_ON; /* XXX on FreeBSD, persistent VALE ports should also * toggle IFCAP_NETMAP in na->ifp (2014-03-16) */ } else { if (na->active_fds == 0) na->na_flags &= ~NAF_NETMAP_ON; netmap_krings_mode_commit(na, onoff); } if (vpna->na_bdg) BDG_WUNLOCK(vpna->na_bdg); return 0; } /* rxsync code used by VALE ports nm_rxsync callback and also * internally by the brwap */ static int netmap_vp_rxsync_locked(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct netmap_ring *ring = kring->ring; u_int nm_i, lim = kring->nkr_num_slots - 1; u_int head = kring->rhead; int n; if (head > lim) { nm_prerr("ouch dangerous reset!!!"); n = netmap_ring_reinit(kring); goto done; } /* First part, import newly received packets. */ /* actually nothing to do here, they are already in the kring */ /* Second part, skip past packets that userspace has released. */ nm_i = kring->nr_hwcur; if (nm_i != head) { /* consistency check, but nothing really important here */ for (n = 0; likely(nm_i != head); n++) { struct netmap_slot *slot = &ring->slot[nm_i]; void *addr = NMB(na, slot); if (addr == NETMAP_BUF_BASE(kring->na)) { /* bad buf */ nm_prerr("bad buffer index %d, ignore ?", slot->buf_idx); } slot->flags &= ~NS_BUF_CHANGED; nm_i = nm_next(nm_i, lim); } kring->nr_hwcur = head; } n = 0; done: return n; } /* * nm_rxsync callback for VALE ports * user process reading from a VALE switch. * Already protected against concurrent calls from userspace, * but we must acquire the queue's lock to protect against * writers on the same queue. */ int netmap_vp_rxsync(struct netmap_kring *kring, int flags) { int n; mtx_lock(&kring->q_lock); n = netmap_vp_rxsync_locked(kring, flags); mtx_unlock(&kring->q_lock); return n; } int netmap_bwrap_attach(const char *nr_name, struct netmap_adapter *hwna, struct netmap_bdg_ops *ops) { return ops->bwrap_attach(nr_name, hwna); } /* Bridge wrapper code (bwrap). * This is used to connect a non-VALE-port netmap_adapter (hwna) to a * VALE switch. * The main task is to swap the meaning of tx and rx rings to match the * expectations of the VALE switch code (see nm_bdg_flush). * * The bwrap works by interposing a netmap_bwrap_adapter between the * rest of the system and the hwna. The netmap_bwrap_adapter looks like * a netmap_vp_adapter to the rest the system, but, internally, it * translates all callbacks to what the hwna expects. * * Note that we have to intercept callbacks coming from two sides: * * - callbacks coming from the netmap module are intercepted by * passing around the netmap_bwrap_adapter instead of the hwna * * - callbacks coming from outside of the netmap module only know * about the hwna. This, however, only happens in interrupt * handlers, where only the hwna->nm_notify callback is called. * What the bwrap does is to overwrite the hwna->nm_notify callback * with its own netmap_bwrap_intr_notify. * XXX This assumes that the hwna->nm_notify callback was the * standard netmap_notify(), as it is the case for nic adapters. * Any additional action performed by hwna->nm_notify will not be * performed by netmap_bwrap_intr_notify. * * Additionally, the bwrap can optionally attach the host rings pair * of the wrapped adapter to a different port of the switch. */ static void netmap_bwrap_dtor(struct netmap_adapter *na) { struct netmap_bwrap_adapter *bna = (struct netmap_bwrap_adapter*)na; struct netmap_adapter *hwna = bna->hwna; struct nm_bridge *b = bna->up.na_bdg, *bh = bna->host.na_bdg; if (bna->host.up.nm_mem) netmap_mem_put(bna->host.up.nm_mem); if (b) { netmap_bdg_detach_common(b, bna->up.bdg_port, (bh ? bna->host.bdg_port : -1)); } nm_prdis("na %p", na); na->ifp = NULL; bna->host.up.ifp = NULL; hwna->na_vp = bna->saved_na_vp; hwna->na_hostvp = NULL; hwna->na_private = NULL; hwna->na_flags &= ~NAF_BUSY; netmap_adapter_put(hwna); } /* * Intr callback for NICs connected to a bridge. * Simply ignore tx interrupts (maybe we could try to recover space ?) * and pass received packets from nic to the bridge. * * XXX TODO check locking: this is called from the interrupt * handler so we should make sure that the interface is not * disconnected while passing down an interrupt. * * Note, no user process can access this NIC or the host stack. * The only part of the ring that is significant are the slots, * and head/cur/tail are set from the kring as needed * (part as a receive ring, part as a transmit ring). * * callback that overwrites the hwna notify callback. * Packets come from the outside or from the host stack and are put on an * hwna rx ring. * The bridge wrapper then sends the packets through the bridge. */ static int netmap_bwrap_intr_notify(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct netmap_bwrap_adapter *bna = na->na_private; struct netmap_kring *bkring; struct netmap_vp_adapter *vpna = &bna->up; u_int ring_nr = kring->ring_id; int ret = NM_IRQ_COMPLETED; int error; if (netmap_debug & NM_DEBUG_RXINTR) nm_prinf("%s %s 0x%x", na->name, kring->name, flags); bkring = vpna->up.tx_rings[ring_nr]; /* make sure the ring is not disabled */ if (nm_kr_tryget(kring, 0 /* can't sleep */, NULL)) { return EIO; } if (netmap_debug & NM_DEBUG_RXINTR) nm_prinf("%s head %d cur %d tail %d", na->name, kring->rhead, kring->rcur, kring->rtail); /* simulate a user wakeup on the rx ring * fetch packets that have arrived. */ error = kring->nm_sync(kring, 0); if (error) goto put_out; if (kring->nr_hwcur == kring->nr_hwtail) { if (netmap_verbose) nm_prlim(1, "interrupt with no packets on %s", kring->name); goto put_out; } /* new packets are kring->rcur to kring->nr_hwtail, and the bkring * had hwcur == bkring->rhead. So advance bkring->rhead to kring->nr_hwtail * to push all packets out. */ bkring->rhead = bkring->rcur = kring->nr_hwtail; bkring->nm_sync(bkring, flags); /* mark all buffers as released on this ring */ kring->rhead = kring->rcur = kring->rtail = kring->nr_hwtail; /* another call to actually release the buffers */ error = kring->nm_sync(kring, 0); /* The second rxsync may have further advanced hwtail. If this happens, * return NM_IRQ_RESCHED, otherwise just return NM_IRQ_COMPLETED. */ if (kring->rcur != kring->nr_hwtail) { ret = NM_IRQ_RESCHED; } put_out: nm_kr_put(kring); return error ? error : ret; } /* nm_register callback for bwrap */ int netmap_bwrap_reg(struct netmap_adapter *na, int onoff) { struct netmap_bwrap_adapter *bna = (struct netmap_bwrap_adapter *)na; struct netmap_adapter *hwna = bna->hwna; struct netmap_vp_adapter *hostna = &bna->host; int error, i; enum txrx t; nm_prdis("%s %s", na->name, onoff ? "on" : "off"); if (onoff) { /* netmap_do_regif has been called on the bwrap na. * We need to pass the information about the * memory allocator down to the hwna before * putting it in netmap mode */ hwna->na_lut = na->na_lut; if (hostna->na_bdg) { /* if the host rings have been attached to switch, * we need to copy the memory allocator information * in the hostna also */ hostna->up.na_lut = na->na_lut; } } /* pass down the pending ring state information */ for_rx_tx(t) { for (i = 0; i < netmap_all_rings(na, t); i++) { NMR(hwna, nm_txrx_swap(t))[i]->nr_pending_mode = NMR(na, t)[i]->nr_pending_mode; } } /* forward the request to the hwna */ error = hwna->nm_register(hwna, onoff); if (error) return error; /* copy up the current ring state information */ for_rx_tx(t) { for (i = 0; i < netmap_all_rings(na, t); i++) { struct netmap_kring *kring = NMR(hwna, nm_txrx_swap(t))[i]; NMR(na, t)[i]->nr_mode = kring->nr_mode; } } /* impersonate a netmap_vp_adapter */ netmap_vp_reg(na, onoff); if (hostna->na_bdg) netmap_vp_reg(&hostna->up, onoff); if (onoff) { u_int i; /* intercept the hwna nm_nofify callback on the hw rings */ for (i = 0; i < hwna->num_rx_rings; i++) { hwna->rx_rings[i]->save_notify = hwna->rx_rings[i]->nm_notify; hwna->rx_rings[i]->nm_notify = netmap_bwrap_intr_notify; } i = hwna->num_rx_rings; /* for safety */ /* save the host ring notify unconditionally */ for (; i < netmap_real_rings(hwna, NR_RX); i++) { hwna->rx_rings[i]->save_notify = hwna->rx_rings[i]->nm_notify; if (hostna->na_bdg) { /* also intercept the host ring notify */ hwna->rx_rings[i]->nm_notify = netmap_bwrap_intr_notify; na->tx_rings[i]->nm_sync = na->nm_txsync; } } if (na->active_fds == 0) na->na_flags |= NAF_NETMAP_ON; } else { u_int i; if (na->active_fds == 0) na->na_flags &= ~NAF_NETMAP_ON; /* reset all notify callbacks (including host ring) */ for (i = 0; i < netmap_all_rings(hwna, NR_RX); i++) { hwna->rx_rings[i]->nm_notify = hwna->rx_rings[i]->save_notify; hwna->rx_rings[i]->save_notify = NULL; } hwna->na_lut.lut = NULL; hwna->na_lut.plut = NULL; hwna->na_lut.objtotal = 0; hwna->na_lut.objsize = 0; /* pass ownership of the netmap rings to the hwna */ for_rx_tx(t) { for (i = 0; i < netmap_all_rings(na, t); i++) { NMR(na, t)[i]->ring = NULL; } } /* reset the number of host rings to default */ for_rx_tx(t) { nma_set_host_nrings(hwna, t, 1); } } return 0; } /* nm_config callback for bwrap */ static int netmap_bwrap_config(struct netmap_adapter *na, struct nm_config_info *info) { struct netmap_bwrap_adapter *bna = (struct netmap_bwrap_adapter *)na; struct netmap_adapter *hwna = bna->hwna; int error; /* Forward the request to the hwna. It may happen that nobody * registered hwna yet, so netmap_mem_get_lut() may have not * been called yet. */ error = netmap_mem_get_lut(hwna->nm_mem, &hwna->na_lut); if (error) return error; netmap_update_config(hwna); /* swap the results and propagate */ info->num_tx_rings = hwna->num_rx_rings; info->num_tx_descs = hwna->num_rx_desc; info->num_rx_rings = hwna->num_tx_rings; info->num_rx_descs = hwna->num_tx_desc; info->rx_buf_maxsize = hwna->rx_buf_maxsize; return 0; } /* nm_krings_create callback for bwrap */ int netmap_bwrap_krings_create_common(struct netmap_adapter *na) { struct netmap_bwrap_adapter *bna = (struct netmap_bwrap_adapter *)na; struct netmap_adapter *hwna = bna->hwna; struct netmap_adapter *hostna = &bna->host.up; int i, error = 0; enum txrx t; /* also create the hwna krings */ error = hwna->nm_krings_create(hwna); if (error) { return error; } /* increment the usage counter for all the hwna krings */ for_rx_tx(t) { for (i = 0; i < netmap_all_rings(hwna, t); i++) { NMR(hwna, t)[i]->users++; } } /* now create the actual rings */ error = netmap_mem_rings_create(hwna); if (error) { goto err_dec_users; } /* cross-link the netmap rings * The original number of rings comes from hwna, * rx rings on one side equals tx rings on the other. */ for_rx_tx(t) { enum txrx r = nm_txrx_swap(t); /* swap NR_TX <-> NR_RX */ for (i = 0; i < netmap_all_rings(hwna, r); i++) { NMR(na, t)[i]->nkr_num_slots = NMR(hwna, r)[i]->nkr_num_slots; NMR(na, t)[i]->ring = NMR(hwna, r)[i]->ring; } } if (na->na_flags & NAF_HOST_RINGS) { /* the hostna rings are the host rings of the bwrap. * The corresponding krings must point back to the * hostna */ hostna->tx_rings = &na->tx_rings[na->num_tx_rings]; hostna->rx_rings = &na->rx_rings[na->num_rx_rings]; for_rx_tx(t) { for (i = 0; i < nma_get_nrings(hostna, t); i++) { NMR(hostna, t)[i]->na = hostna; } } } return 0; err_dec_users: for_rx_tx(t) { for (i = 0; i < netmap_all_rings(hwna, t); i++) { NMR(hwna, t)[i]->users--; } } hwna->nm_krings_delete(hwna); return error; } void netmap_bwrap_krings_delete_common(struct netmap_adapter *na) { struct netmap_bwrap_adapter *bna = (struct netmap_bwrap_adapter *)na; struct netmap_adapter *hwna = bna->hwna; enum txrx t; int i; nm_prdis("%s", na->name); /* decrement the usage counter for all the hwna krings */ for_rx_tx(t) { for (i = 0; i < netmap_all_rings(hwna, t); i++) { NMR(hwna, t)[i]->users--; } } /* delete any netmap rings that are no longer needed */ netmap_mem_rings_delete(hwna); hwna->nm_krings_delete(hwna); } /* notify method for the bridge-->hwna direction */ int netmap_bwrap_notify(struct netmap_kring *kring, int flags) { struct netmap_adapter *na = kring->na; struct netmap_bwrap_adapter *bna = na->na_private; struct netmap_adapter *hwna = bna->hwna; u_int ring_n = kring->ring_id; u_int lim = kring->nkr_num_slots - 1; struct netmap_kring *hw_kring; int error; nm_prdis("%s: na %s hwna %s", (kring ? kring->name : "NULL!"), (na ? na->name : "NULL!"), (hwna ? hwna->name : "NULL!")); hw_kring = hwna->tx_rings[ring_n]; if (nm_kr_tryget(hw_kring, 0, NULL)) { return ENXIO; } /* first step: simulate a user wakeup on the rx ring */ netmap_vp_rxsync(kring, flags); nm_prdis("%s[%d] PRE rx(c%3d t%3d l%3d) ring(h%3d c%3d t%3d) tx(c%3d ht%3d t%3d)", na->name, ring_n, kring->nr_hwcur, kring->nr_hwtail, kring->nkr_hwlease, kring->rhead, kring->rcur, kring->rtail, hw_kring->nr_hwcur, hw_kring->nr_hwtail, hw_kring->rtail); /* second step: the new packets are sent on the tx ring * (which is actually the same ring) */ hw_kring->rhead = hw_kring->rcur = kring->nr_hwtail; error = hw_kring->nm_sync(hw_kring, flags); if (error) goto put_out; /* third step: now we are back the rx ring */ /* claim ownership on all hw owned bufs */ kring->rhead = kring->rcur = nm_next(hw_kring->nr_hwtail, lim); /* skip past reserved slot */ /* fourth step: the user goes to sleep again, causing another rxsync */ netmap_vp_rxsync(kring, flags); nm_prdis("%s[%d] PST rx(c%3d t%3d l%3d) ring(h%3d c%3d t%3d) tx(c%3d ht%3d t%3d)", na->name, ring_n, kring->nr_hwcur, kring->nr_hwtail, kring->nkr_hwlease, kring->rhead, kring->rcur, kring->rtail, hw_kring->nr_hwcur, hw_kring->nr_hwtail, hw_kring->rtail); put_out: nm_kr_put(hw_kring); return error ? error : NM_IRQ_COMPLETED; } /* nm_bdg_ctl callback for the bwrap. * Called on bridge-attach and detach, as an effect of valectl -[ahd]. * On attach, it needs to provide a fake netmap_priv_d structure and * perform a netmap_do_regif() on the bwrap. This will put both the * bwrap and the hwna in netmap mode, with the netmap rings shared * and cross linked. Moroever, it will start intercepting interrupts * directed to hwna. */ static int netmap_bwrap_bdg_ctl(struct nmreq_header *hdr, struct netmap_adapter *na) { struct netmap_priv_d *npriv; struct netmap_bwrap_adapter *bna = (struct netmap_bwrap_adapter*)na; int error = 0; if (hdr->nr_reqtype == NETMAP_REQ_VALE_ATTACH) { struct nmreq_vale_attach *req = (struct nmreq_vale_attach *)(uintptr_t)hdr->nr_body; if (req->reg.nr_ringid != 0 || (req->reg.nr_mode != NR_REG_ALL_NIC && req->reg.nr_mode != NR_REG_NIC_SW)) { /* We only support attaching all the NIC rings * and/or the host stack. */ return EINVAL; } if (NETMAP_OWNED_BY_ANY(na)) { return EBUSY; } if (bna->na_kpriv) { /* nothing to do */ return 0; } npriv = netmap_priv_new(); if (npriv == NULL) return ENOMEM; npriv->np_ifp = na->ifp; /* let the priv destructor release the ref */ error = netmap_do_regif(npriv, na, hdr); if (error) { netmap_priv_delete(npriv); return error; } bna->na_kpriv = npriv; na->na_flags |= NAF_BUSY; } else { if (na->active_fds == 0) /* not registered */ return EINVAL; netmap_priv_delete(bna->na_kpriv); bna->na_kpriv = NULL; na->na_flags &= ~NAF_BUSY; } return error; } /* attach a bridge wrapper to the 'real' device */ int netmap_bwrap_attach_common(struct netmap_adapter *na, struct netmap_adapter *hwna) { struct netmap_bwrap_adapter *bna; struct netmap_adapter *hostna = NULL; int error = 0; enum txrx t; /* make sure the NIC is not already in use */ if (NETMAP_OWNED_BY_ANY(hwna)) { nm_prerr("NIC %s busy, cannot attach to bridge", hwna->name); return EBUSY; } bna = (struct netmap_bwrap_adapter *)na; /* make bwrap ifp point to the real ifp */ na->ifp = hwna->ifp; if_ref(na->ifp); na->na_private = bna; /* fill the ring data for the bwrap adapter with rx/tx meanings * swapped. The real cross-linking will be done during register, * when all the krings will have been created. */ for_rx_tx(t) { enum txrx r = nm_txrx_swap(t); /* swap NR_TX <-> NR_RX */ nma_set_nrings(na, t, nma_get_nrings(hwna, r)); nma_set_ndesc(na, t, nma_get_ndesc(hwna, r)); } na->nm_dtor = netmap_bwrap_dtor; na->nm_config = netmap_bwrap_config; na->nm_bdg_ctl = netmap_bwrap_bdg_ctl; na->pdev = hwna->pdev; na->nm_mem = netmap_mem_get(hwna->nm_mem); na->virt_hdr_len = hwna->virt_hdr_len; na->rx_buf_maxsize = hwna->rx_buf_maxsize; bna->hwna = hwna; netmap_adapter_get(hwna); hwna->na_private = bna; /* weak reference */ bna->saved_na_vp = hwna->na_vp; hwna->na_vp = &bna->up; bna->up.up.na_vp = &(bna->up); if (hwna->na_flags & NAF_HOST_RINGS) { if (hwna->na_flags & NAF_SW_ONLY) na->na_flags |= NAF_SW_ONLY; na->na_flags |= NAF_HOST_RINGS; hostna = &bna->host.up; /* limit the number of host rings to that of hw */ nm_bound_var(&hostna->num_tx_rings, 1, 1, nma_get_nrings(hwna, NR_TX), NULL); nm_bound_var(&hostna->num_rx_rings, 1, 1, nma_get_nrings(hwna, NR_RX), NULL); snprintf(hostna->name, sizeof(hostna->name), "%s^", na->name); hostna->ifp = hwna->ifp; for_rx_tx(t) { enum txrx r = nm_txrx_swap(t); u_int nr = nma_get_nrings(hostna, t); nma_set_nrings(hostna, t, nr); nma_set_host_nrings(na, t, nr); if (nma_get_host_nrings(hwna, t) < nr) { nma_set_host_nrings(hwna, t, nr); } nma_set_ndesc(hostna, t, nma_get_ndesc(hwna, r)); } // hostna->nm_txsync = netmap_bwrap_host_txsync; // hostna->nm_rxsync = netmap_bwrap_host_rxsync; hostna->nm_mem = netmap_mem_get(na->nm_mem); hostna->na_private = bna; hostna->na_vp = &bna->up; na->na_hostvp = hwna->na_hostvp = hostna->na_hostvp = &bna->host; hostna->na_flags = NAF_BUSY; /* prevent NIOCREGIF */ hostna->rx_buf_maxsize = hwna->rx_buf_maxsize; } if (hwna->na_flags & NAF_MOREFRAG) na->na_flags |= NAF_MOREFRAG; nm_prdis("%s<->%s txr %d txd %d rxr %d rxd %d", na->name, ifp->if_xname, na->num_tx_rings, na->num_tx_desc, na->num_rx_rings, na->num_rx_desc); error = netmap_attach_common(na); if (error) { goto err_put; } hwna->na_flags |= NAF_BUSY; return 0; err_put: hwna->na_vp = hwna->na_hostvp = NULL; netmap_adapter_put(hwna); return error; } struct nm_bridge * netmap_init_bridges2(u_int n) { int i; struct nm_bridge *b; b = nm_os_malloc(sizeof(struct nm_bridge) * n); if (b == NULL) return NULL; for (i = 0; i < n; i++) BDG_RWINIT(&b[i]); return b; } void netmap_uninit_bridges2(struct nm_bridge *b, u_int n) { int i; if (b == NULL) return; for (i = 0; i < n; i++) BDG_RWDESTROY(&b[i]); nm_os_free(b); } int netmap_init_bridges(void) { #ifdef CONFIG_NET_NS return netmap_bns_register(); #else - nm_bridges = netmap_init_bridges2(NM_BRIDGES); + nm_bridges = netmap_init_bridges2(vale_max_bridges); if (nm_bridges == NULL) return ENOMEM; return 0; #endif } void netmap_uninit_bridges(void) { #ifdef CONFIG_NET_NS netmap_bns_unregister(); #else - netmap_uninit_bridges2(nm_bridges, NM_BRIDGES); + netmap_uninit_bridges2(nm_bridges, vale_max_bridges); #endif } diff --git a/sys/dev/netmap/netmap_kern.h b/sys/dev/netmap/netmap_kern.h index fd9db5842df3..297e4c25e641 100644 --- a/sys/dev/netmap/netmap_kern.h +++ b/sys/dev/netmap/netmap_kern.h @@ -1,2421 +1,2423 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo * Copyright (C) 2013-2016 Universita` di Pisa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * $FreeBSD$ * * The header contains the definitions of constants and function * prototypes used only in kernelspace. */ #ifndef _NET_NETMAP_KERN_H_ #define _NET_NETMAP_KERN_H_ #if defined(linux) #if defined(CONFIG_NETMAP_EXTMEM) #define WITH_EXTMEM #endif #if defined(CONFIG_NETMAP_VALE) #define WITH_VALE #endif #if defined(CONFIG_NETMAP_PIPE) #define WITH_PIPES #endif #if defined(CONFIG_NETMAP_MONITOR) #define WITH_MONITOR #endif #if defined(CONFIG_NETMAP_GENERIC) #define WITH_GENERIC #endif #if defined(CONFIG_NETMAP_PTNETMAP) #define WITH_PTNETMAP #endif #if defined(CONFIG_NETMAP_SINK) #define WITH_SINK #endif #if defined(CONFIG_NETMAP_NULL) #define WITH_NMNULL #endif #elif defined (_WIN32) #define WITH_VALE // comment out to disable VALE support #define WITH_PIPES #define WITH_MONITOR #define WITH_GENERIC #define WITH_NMNULL #else /* neither linux nor windows */ #define WITH_VALE // comment out to disable VALE support #define WITH_PIPES #define WITH_MONITOR #define WITH_GENERIC #define WITH_EXTMEM #define WITH_NMNULL #endif #if defined(__FreeBSD__) #include #define likely(x) __builtin_expect((long)!!(x), 1L) #define unlikely(x) __builtin_expect((long)!!(x), 0L) #define __user #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ #define NM_MTX_INIT(m) sx_init(&(m), #m) #define NM_MTX_DESTROY(m) sx_destroy(&(m)) #define NM_MTX_LOCK(m) sx_xlock(&(m)) #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ; #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) #define NM_SELINFO_T struct nm_selinfo #define NM_SELRECORD_T struct thread #define MBUF_LEN(m) ((m)->m_pkthdr.len) #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid) #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m)) #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif) #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */ /* atomic operations */ #include #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) #if __FreeBSD_version >= 1100030 #define WNA(_ifp) (_ifp)->if_netmap #else /* older FreeBSD */ #define WNA(_ifp) (_ifp)->if_pspare[0] #endif /* older FreeBSD */ #if __FreeBSD_version >= 1100005 struct netmap_adapter *netmap_getna(if_t ifp); #endif #if __FreeBSD_version >= 1100027 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count) #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x #else #define MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x #endif #define MBUF_QUEUED(m) 1 struct nm_selinfo { /* Support for select(2) and poll(2). */ struct selinfo si; /* Support for kqueue(9). See comments in netmap_freebsd.c */ struct taskqueue *ntfytq; struct task ntfytask; struct mtx m; char mtxname[32]; int kqueue_users; }; struct hrtimer { /* Not used in FreeBSD. */ }; #define NM_BNS_GET(b) #define NM_BNS_PUT(b) #elif defined (linux) #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h #define NM_SELINFO_T wait_queue_head_t #define MBUF_LEN(m) ((m)->len) #define MBUF_TRANSMIT(na, ifp, m) \ ({ \ /* Avoid infinite recursion with generic. */ \ m->priority = NM_MAGIC_PRIORITY_TX; \ (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \ 0; \ }) /* See explanation in nm_os_generic_xmit_frame. */ #define GEN_TX_MBUF_IFP(m) ((struct ifnet *)skb_shinfo(m)->destructor_arg) #define NM_ATOMIC_T volatile long unsigned int #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ #define NM_MTX_INIT(m) mutex_init(&(m)) #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) #define NM_MTX_LOCK(m) mutex_lock(&(m)) #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) #ifndef DEV_NETMAP #define DEV_NETMAP #endif /* DEV_NETMAP */ #elif defined (__APPLE__) #warning apple support is incomplete. #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #define NM_LOCK_T IOLock * #define NM_SELINFO_T struct selinfo #define MBUF_LEN(m) ((m)->m_pkthdr.len) #elif defined (_WIN32) #include "../../../WINDOWS/win_glue.h" #define NM_SELRECORD_T IO_STACK_LOCATION #define NM_SELINFO_T win_SELINFO // see win_glue.h #define NM_LOCK_T win_spinlock_t // see win_glue.h #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */ #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m); #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m)) #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m)) #define NM_MTX_ASSERT(m) assert(&m.Count>0) //These linknames are for the NDIS driver #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS" #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS" //Definition of internal driver-to-driver ioctl codes #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180) #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195) typedef struct hrtimer{ KTIMER timer; BOOLEAN active; KDPC deferred_proc; }; /* MSVC does not have likely/unlikely support */ #ifdef _MSC_VER #define likely(x) (x) #define unlikely(x) (x) #else #define likely(x) __builtin_expect((long)!!(x), 1L) #define unlikely(x) __builtin_expect((long)!!(x), 0L) #endif //_MSC_VER #else #error unsupported platform #endif /* end - platform-specific code */ #ifndef _WIN32 /* support for emulated sysctl */ #define SYSBEGIN(x) #define SYSEND #endif /* _WIN32 */ #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x)) #define NMG_LOCK_T NM_MTX_T #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) #if defined(__FreeBSD__) #define nm_prerr_int printf #define nm_prinf_int printf #elif defined (_WIN32) #define nm_prerr_int DbgPrint #define nm_prinf_int DbgPrint #elif defined(linux) #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg) #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg) #endif #define nm_prinf(format, ...) \ do { \ struct timeval __xxts; \ microtime(&__xxts); \ nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\ (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ __LINE__, __FUNCTION__, ##__VA_ARGS__); \ } while (0) #define nm_prerr(format, ...) \ do { \ struct timeval __xxts; \ microtime(&__xxts); \ nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\ (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ __LINE__, __FUNCTION__, ##__VA_ARGS__); \ } while (0) /* Disabled printf (used to be nm_prdis). */ #define nm_prdis(format, ...) /* Rate limited, lps indicates how many per second. */ #define nm_prlim(lps, format, ...) \ do { \ static int t0, __cnt; \ if (t0 != time_second) { \ t0 = time_second; \ __cnt = 0; \ } \ if (__cnt++ < lps) \ nm_prinf(format, ##__VA_ARGS__); \ } while (0) struct netmap_adapter; struct nm_bdg_fwd; struct nm_bridge; struct netmap_priv_d; struct nm_bdg_args; /* os-specific NM_SELINFO_T initialzation/destruction functions */ int nm_os_selinfo_init(NM_SELINFO_T *, const char *name); void nm_os_selinfo_uninit(NM_SELINFO_T *); const char *nm_dump_buf(char *p, int len, int lim, char *dst); void nm_os_selwakeup(NM_SELINFO_T *si); void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si); int nm_os_ifnet_init(void); void nm_os_ifnet_fini(void); void nm_os_ifnet_lock(void); void nm_os_ifnet_unlock(void); unsigned nm_os_ifnet_mtu(struct ifnet *ifp); void nm_os_get_module(void); void nm_os_put_module(void); void netmap_make_zombie(struct ifnet *); void netmap_undo_zombie(struct ifnet *); /* os independent alloc/realloc/free */ void *nm_os_malloc(size_t); void *nm_os_vmalloc(size_t); void *nm_os_realloc(void *, size_t new_size, size_t old_size); void nm_os_free(void *); void nm_os_vfree(void *); /* os specific attach/detach enter/exit-netmap-mode routines */ void nm_os_onattach(struct ifnet *); void nm_os_ondetach(struct ifnet *); void nm_os_onenter(struct ifnet *); void nm_os_onexit(struct ifnet *); /* passes a packet up to the host stack. * If the packet is sent (or dropped) immediately it returns NULL, * otherwise it links the packet to prev and returns m. * In this case, a final call with m=NULL and prev != NULL will send up * the entire chain to the host stack. */ void *nm_os_send_up(struct ifnet *, struct mbuf *m, struct mbuf *prev); int nm_os_mbuf_has_seg_offld(struct mbuf *m); int nm_os_mbuf_has_csum_offld(struct mbuf *m); #include "netmap_mbq.h" extern NMG_LOCK_T netmap_global_lock; enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; static __inline const char* nm_txrx2str(enum txrx t) { return (t== NR_RX ? "RX" : "TX"); } static __inline enum txrx nm_txrx_swap(enum txrx t) { return (t== NR_RX ? NR_TX : NR_RX); } #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) #ifdef WITH_MONITOR struct netmap_zmon_list { struct netmap_kring *next; struct netmap_kring *prev; }; #endif /* WITH_MONITOR */ /* * private, kernel view of a ring. Keeps track of the status of * a ring across system calls. * * nr_hwcur index of the next buffer to refill. * It corresponds to ring->head * at the time the system call returns. * * nr_hwtail index of the first buffer owned by the kernel. * On RX, hwcur->hwtail are receive buffers * not yet released. hwcur is advanced following * ring->head, hwtail is advanced on incoming packets, * and a wakeup is generated when hwtail passes ring->cur * On TX, hwcur->rcur have been filled by the sender * but not sent yet to the NIC; rcur->hwtail are available * for new transmissions, and hwtail->hwcur-1 are pending * transmissions not yet acknowledged. * * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. * This is so that, on a reset, buffers owned by userspace are not * modified by the kernel. In particular: * RX rings: the next empty buffer (hwtail + hwofs) coincides with * the next empty buffer as known by the hardware (next_to_check or so). * TX rings: hwcur + hwofs coincides with next_to_send * * The following fields are used to implement lock-free copy of packets * from input to output ports in VALE switch: * nkr_hwlease buffer after the last one being copied. * A writer in nm_bdg_flush reserves N buffers * from nr_hwlease, advances it, then does the * copy outside the lock. * In RX rings (used for VALE ports), * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 * In TX rings (used for NIC or host stack ports) * nkr_hwcur <= nkr_hwlease < nkr_hwtail * nkr_leases array of nkr_num_slots where writers can report * completion of their block. NR_NOSLOT (~0) indicates * that the writer has not finished yet * nkr_lease_idx index of next free slot in nr_leases, to be assigned * * The kring is manipulated by txsync/rxsync and generic netmap function. * * Concurrent rxsync or txsync on the same ring are prevented through * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need * for NIC rings, and for TX rings attached to the host stack. * * RX rings attached to the host stack use an mbq (rx_queue) on both * rxsync_from_host() and netmap_transmit(). The mbq is protected * by its internal lock. * * RX rings attached to the VALE switch are accessed by both senders * and receiver. They are protected through the q_lock on the RX ring. */ struct netmap_kring { struct netmap_ring *ring; uint32_t nr_hwcur; /* should be nr_hwhead */ uint32_t nr_hwtail; /* * Copies of values in user rings, so we do not need to look * at the ring (which could be modified). These are set in the * *sync_prologue()/finalize() routines. */ uint32_t rhead; uint32_t rcur; uint32_t rtail; uint32_t nr_kflags; /* private driver flags */ #define NKR_PENDINTR 0x1 // Pending interrupt. #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ #define NKR_FORWARD 0x4 /* (host ring only) there are packets to forward */ #define NKR_NEEDRING 0x8 /* ring needed even if users==0 * (used internally by pipes and * by ptnetmap host ports) */ #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */ #define NKR_FAKERING 0x20 /* don't allocate/free buffers */ uint32_t nr_mode; uint32_t nr_pending_mode; #define NKR_NETMAP_OFF 0x0 #define NKR_NETMAP_ON 0x1 uint32_t nkr_num_slots; /* * On a NIC reset, the NIC ring indexes may be reset but the * indexes in the netmap rings remain the same. nkr_hwofs * keeps track of the offset between the two. */ int32_t nkr_hwofs; /* last_reclaim is opaque marker to help reduce the frequency * of operations such as reclaiming tx buffers. A possible use * is set it to ticks and do the reclaim only once per tick. */ uint64_t last_reclaim; NM_SELINFO_T si; /* poll/select wait queue */ NM_LOCK_T q_lock; /* protects kring and ring. */ NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ /* the adapter the owns this kring */ struct netmap_adapter *na; /* the adapter that wants to be notified when this kring has * new slots avaialable. This is usually the same as the above, * but wrappers may let it point to themselves */ struct netmap_adapter *notify_na; /* The following fields are for VALE switch support */ struct nm_bdg_fwd *nkr_ft; uint32_t *nkr_leases; #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ uint32_t nkr_hwlease; uint32_t nkr_lease_idx; /* while nkr_stopped is set, no new [tr]xsync operations can * be started on this kring. * This is used by netmap_disable_all_rings() * to find a synchronization point where critical data * structures pointed to by the kring can be added or removed */ volatile int nkr_stopped; /* Support for adapters without native netmap support. * On tx rings we preallocate an array of tx buffers * (same size as the netmap ring), on rx rings we * store incoming mbufs in a queue that is drained by * a rxsync. */ struct mbuf **tx_pool; struct mbuf *tx_event; /* TX event used as a notification */ NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */ struct mbq rx_queue; /* intercepted rx mbufs. */ uint32_t users; /* existing bindings for this ring */ uint32_t ring_id; /* kring identifier */ enum txrx tx; /* kind of ring (tx or rx) */ char name[64]; /* diagnostic */ /* [tx]sync callback for this kring. * The default nm_kring_create callback (netmap_krings_create) * sets the nm_sync callback of each hardware tx(rx) kring to * the corresponding nm_txsync(nm_rxsync) taken from the * netmap_adapter; moreover, it sets the sync callback * of the host tx(rx) ring to netmap_txsync_to_host * (netmap_rxsync_from_host). * * Overrides: the above configuration is not changed by * any of the nm_krings_create callbacks. */ int (*nm_sync)(struct netmap_kring *kring, int flags); int (*nm_notify)(struct netmap_kring *kring, int flags); #ifdef WITH_PIPES struct netmap_kring *pipe; /* if this is a pipe ring, * pointer to the other end */ uint32_t pipe_tail; /* hwtail updated by the other end */ #endif /* WITH_PIPES */ int (*save_notify)(struct netmap_kring *kring, int flags); #ifdef WITH_MONITOR /* array of krings that are monitoring this kring */ struct netmap_kring **monitors; uint32_t max_monitors; /* current size of the monitors array */ uint32_t n_monitors; /* next unused entry in the monitor array */ uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */ uint32_t mon_tail; /* last seen slot on rx */ /* circular list of zero-copy monitors */ struct netmap_zmon_list zmon_list[NR_TXRX]; /* * Monitors work by intercepting the sync and notify callbacks of the * monitored krings. This is implemented by replacing the pointers * above and saving the previous ones in mon_* pointers below */ int (*mon_sync)(struct netmap_kring *kring, int flags); int (*mon_notify)(struct netmap_kring *kring, int flags); #endif } #ifdef _WIN32 __declspec(align(64)); #else __attribute__((__aligned__(64))); #endif /* return 1 iff the kring needs to be turned on */ static inline int nm_kring_pending_on(struct netmap_kring *kring) { return kring->nr_pending_mode == NKR_NETMAP_ON && kring->nr_mode == NKR_NETMAP_OFF; } /* return 1 iff the kring needs to be turned off */ static inline int nm_kring_pending_off(struct netmap_kring *kring) { return kring->nr_pending_mode == NKR_NETMAP_OFF && kring->nr_mode == NKR_NETMAP_ON; } /* return the next index, with wraparound */ static inline uint32_t nm_next(uint32_t i, uint32_t lim) { return unlikely (i == lim) ? 0 : i + 1; } /* return the previous index, with wraparound */ static inline uint32_t nm_prev(uint32_t i, uint32_t lim) { return unlikely (i == 0) ? lim : i - 1; } /* * * Here is the layout for the Rx and Tx rings. RxRING TxRING +-----------------+ +-----------------+ | | | | | free | | free | +-----------------+ +-----------------+ head->| owned by user |<-hwcur | not sent to nic |<-hwcur | | | yet | +-----------------+ | | cur->| available to | | | | user, not read | +-----------------+ | yet | cur->| (being | | | | prepared) | | | | | +-----------------+ + ------ + tail->| |<-hwtail | |<-hwlease | (being | ... | | ... | prepared) | ... | | ... +-----------------+ ... | | ... | |<-hwlease +-----------------+ | | tail->| |<-hwtail | | | | | | | | | | | | +-----------------+ +-----------------+ * The cur/tail (user view) and hwcur/hwtail (kernel view) * are used in the normal operation of the card. * * When a ring is the output of a switch port (Rx ring for * a VALE port, Tx ring for the host stack or NIC), slots * are reserved in blocks through 'hwlease' which points * to the next unused slot. * On an Rx ring, hwlease is always after hwtail, * and completions cause hwtail to advance. * On a Tx ring, hwlease is always between cur and hwtail, * and completions cause cur to advance. * * nm_kr_space() returns the maximum number of slots that * can be assigned. * nm_kr_lease() reserves the required number of buffers, * advances nkr_hwlease and also returns an entry in * a circular array where completions should be reported. */ struct lut_entry; #ifdef __FreeBSD__ #define plut_entry lut_entry #endif struct netmap_lut { struct lut_entry *lut; struct plut_entry *plut; uint32_t objtotal; /* max buffer index */ uint32_t objsize; /* buffer size */ }; struct netmap_vp_adapter; // forward struct nm_bridge; /* Struct to be filled by nm_config callbacks. */ struct nm_config_info { unsigned num_tx_rings; unsigned num_rx_rings; unsigned num_tx_descs; unsigned num_rx_descs; unsigned rx_buf_maxsize; }; /* * default type for the magic field. * May be overriden in glue code. */ #ifndef NM_OS_MAGIC #define NM_OS_MAGIC uint32_t #endif /* !NM_OS_MAGIC */ /* * The "struct netmap_adapter" extends the "struct adapter" * (or equivalent) device descriptor. * It contains all base fields needed to support netmap operation. * There are in fact different types of netmap adapters * (native, generic, VALE switch...) so a netmap_adapter is * just the first field in the derived type. */ struct netmap_adapter { /* * On linux we do not have a good way to tell if an interface * is netmap-capable. So we always use the following trick: * NA(ifp) points here, and the first entry (which hopefully * always exists and is at least 32 bits) contains a magic * value which we can use to detect that the interface is good. */ NM_OS_MAGIC magic; uint32_t na_flags; /* enabled, and other flags */ #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. * useful during initialization */ #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when * forwarding packets coming from this * interface */ #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area * that cannot be changed */ #define NAF_NATIVE 16 /* the adapter is native. * Virtual ports (non persistent vale ports, * pipes, monitors...) should never use * this flag. */ #define NAF_NETMAP_ON 32 /* netmap is active (either native or * emulated). Where possible (e.g. FreeBSD) * IFCAP_NETMAP also mirrors this flag. */ #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ /* free */ #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */ #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */ #define NAF_BUSY (1U<<31) /* the adapter is used internally and * cannot be registered from userspace */ int active_fds; /* number of user-space descriptors using this interface, which is equal to the number of struct netmap_if objs in the mapped region. */ u_int num_rx_rings; /* number of adapter receive rings */ u_int num_tx_rings; /* number of adapter transmit rings */ u_int num_host_rx_rings; /* number of host receive rings */ u_int num_host_tx_rings; /* number of host transmit rings */ u_int num_tx_desc; /* number of descriptor in each queue */ u_int num_rx_desc; /* tx_rings and rx_rings are private but allocated as a * contiguous chunk of memory. Each array has N+K entries, * N for the hardware rings and K for the host rings. */ struct netmap_kring **tx_rings; /* array of TX rings. */ struct netmap_kring **rx_rings; /* array of RX rings. */ void *tailroom; /* space below the rings array */ /* (used for leases) */ NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ /* count users of the global wait queues */ int si_users[NR_TXRX]; void *pdev; /* used to store pci device */ /* copy of if_qflush and if_transmit pointers, to intercept * packets from the network stack when netmap is active. */ int (*if_transmit)(struct ifnet *, struct mbuf *); /* copy of if_input for netmap_send_up() */ void (*if_input)(struct ifnet *, struct mbuf *); /* Back reference to the parent ifnet struct. Used for * hardware ports (emulated netmap included). */ struct ifnet *ifp; /* adapter is ifp->if_softc */ /*---- callbacks for this netmap adapter -----*/ /* * nm_dtor() is the cleanup routine called when destroying * the adapter. * Called with NMG_LOCK held. * * nm_register() is called on NIOCREGIF and close() to enter * or exit netmap mode on the NIC * Called with NNG_LOCK held. * * nm_txsync() pushes packets to the underlying hw/switch * * nm_rxsync() collects packets from the underlying hw/switch * * nm_config() returns configuration information from the OS * Called with NMG_LOCK held. * * nm_krings_create() create and init the tx_rings and * rx_rings arrays of kring structures. In particular, * set the nm_sync callbacks for each ring. * There is no need to also allocate the corresponding * netmap_rings, since netmap_mem_rings_create() will always * be called to provide the missing ones. * Called with NNG_LOCK held. * * nm_krings_delete() cleanup and delete the tx_rings and rx_rings * arrays * Called with NMG_LOCK held. * * nm_notify() is used to act after data have become available * (or the stopped state of the ring has changed) * For hw devices this is typically a selwakeup(), * but for NIC/host ports attached to a switch (or vice-versa) * we also need to invoke the 'txsync' code downstream. * This callback pointer is actually used only to initialize * kring->nm_notify. * Return values are the same as for netmap_rx_irq(). */ void (*nm_dtor)(struct netmap_adapter *); int (*nm_register)(struct netmap_adapter *, int onoff); void (*nm_intr)(struct netmap_adapter *, int onoff); int (*nm_txsync)(struct netmap_kring *kring, int flags); int (*nm_rxsync)(struct netmap_kring *kring, int flags); int (*nm_notify)(struct netmap_kring *kring, int flags); #define NAF_FORCE_READ 1 #define NAF_FORCE_RECLAIM 2 #define NAF_CAN_FORWARD_DOWN 4 /* return configuration information */ int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info); int (*nm_krings_create)(struct netmap_adapter *); void (*nm_krings_delete)(struct netmap_adapter *); /* * nm_bdg_attach() initializes the na_vp field to point * to an adapter that can be attached to a VALE switch. If the * current adapter is already a VALE port, na_vp is simply a cast; * otherwise, na_vp points to a netmap_bwrap_adapter. * If applicable, this callback also initializes na_hostvp, * that can be used to connect the adapter host rings to the * switch. * Called with NMG_LOCK held. * * nm_bdg_ctl() is called on the actual attach/detach to/from * to/from the switch, to perform adapter-specific * initializations * Called with NMG_LOCK held. */ int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *, struct nm_bridge *); int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *); /* adapter used to attach this adapter to a VALE switch (if any) */ struct netmap_vp_adapter *na_vp; /* adapter used to attach the host rings of this adapter * to a VALE switch (if any) */ struct netmap_vp_adapter *na_hostvp; /* standard refcount to control the lifetime of the adapter * (it should be equal to the lifetime of the corresponding ifp) */ int na_refcount; /* memory allocator (opaque) * We also cache a pointer to the lut_entry for translating * buffer addresses, the total number of buffers and the buffer size. */ struct netmap_mem_d *nm_mem; struct netmap_mem_d *nm_mem_prev; struct netmap_lut na_lut; /* additional information attached to this adapter * by other netmap subsystems. Currently used by * bwrap, LINUX/v1000 and ptnetmap */ void *na_private; /* array of pipes that have this adapter as a parent */ struct netmap_pipe_adapter **na_pipes; int na_next_pipe; /* next free slot in the array */ int na_max_pipes; /* size of the array */ /* Offset of ethernet header for each packet. */ u_int virt_hdr_len; /* Max number of bytes that the NIC can store in the buffer * referenced by each RX descriptor. This translates to the maximum * bytes that a single netmap slot can reference. Larger packets * require NS_MOREFRAG support. */ unsigned rx_buf_maxsize; char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */ #ifdef WITH_MONITOR unsigned long monitor_id; /* debugging */ #endif }; static __inline u_int nma_get_ndesc(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); } static __inline void nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) { if (t == NR_TX) na->num_tx_desc = v; else na->num_rx_desc = v; } static __inline u_int nma_get_nrings(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); } static __inline u_int nma_get_host_nrings(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings); } static __inline void nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) { if (t == NR_TX) na->num_tx_rings = v; else na->num_rx_rings = v; } static __inline void nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v) { if (t == NR_TX) na->num_host_tx_rings = v; else na->num_host_rx_rings = v; } static __inline struct netmap_kring** NMR(struct netmap_adapter *na, enum txrx t) { return (t == NR_TX ? na->tx_rings : na->rx_rings); } int nma_intr_enable(struct netmap_adapter *na, int onoff); /* * If the NIC is owned by the kernel * (i.e., bridge), neither another bridge nor user can use it; * if the NIC is owned by a user, only users can share it. * Evaluation must be done under NMG_LOCK(). */ #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) #define NETMAP_OWNED_BY_ANY(na) \ (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) /* * derived netmap adapters for various types of ports */ struct netmap_vp_adapter { /* VALE software port */ struct netmap_adapter up; /* * Bridge support: * * bdg_port is the port number used in the bridge; * na_bdg points to the bridge this NA is attached to. */ int bdg_port; struct nm_bridge *na_bdg; int retry; int autodelete; /* remove the ifp on last reference */ /* Maximum Frame Size, used in bdg_mismatch_datapath() */ u_int mfs; /* Last source MAC on this port */ uint64_t last_smac; }; struct netmap_hw_adapter { /* physical device */ struct netmap_adapter up; #ifdef linux struct net_device_ops nm_ndo; struct ethtool_ops nm_eto; #endif const struct ethtool_ops* save_ethtool; int (*nm_hw_register)(struct netmap_adapter *, int onoff); }; #ifdef WITH_GENERIC /* Mitigation support. */ struct nm_generic_mit { struct hrtimer mit_timer; int mit_pending; int mit_ring_idx; /* index of the ring being mitigated */ struct netmap_adapter *mit_na; /* backpointer */ }; struct netmap_generic_adapter { /* emulated device */ struct netmap_hw_adapter up; /* Pointer to a previously used netmap adapter. */ struct netmap_adapter *prev; /* Emulated netmap adapters support: * - save_if_input saves the if_input hook (FreeBSD); * - mit implements rx interrupt mitigation; */ void (*save_if_input)(struct ifnet *, struct mbuf *); struct nm_generic_mit *mit; #ifdef linux netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); #endif /* Is the adapter able to use multiple RX slots to scatter * each packet pushed up by the driver? */ int rxsg; /* Is the transmission path controlled by a netmap-aware * device queue (i.e. qdisc on linux)? */ int txqdisc; }; #endif /* WITH_GENERIC */ static __inline u_int netmap_real_rings(struct netmap_adapter *na, enum txrx t) { return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t); } /* account for fake rings */ static __inline u_int netmap_all_rings(struct netmap_adapter *na, enum txrx t) { return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t)); } int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na, struct nm_bridge *); struct nm_bdg_polling_state; /* * Bridge wrapper for non VALE ports attached to a VALE switch. * * The real device must already have its own netmap adapter (hwna). * The bridge wrapper and the hwna adapter share the same set of * netmap rings and buffers, but they have two separate sets of * krings descriptors, with tx/rx meanings swapped: * * netmap * bwrap krings rings krings hwna * +------+ +------+ +-----+ +------+ +------+ * |tx_rings->| |\ /| |----| |<-tx_rings| * | | +------+ \ / +-----+ +------+ | | * | | X | | * | | / \ | | * | | +------+/ \+-----+ +------+ | | * |rx_rings->| | | |----| |<-rx_rings| * | | +------+ +-----+ +------+ | | * +------+ +------+ * * - packets coming from the bridge go to the brwap rx rings, * which are also the hwna tx rings. The bwrap notify callback * will then complete the hwna tx (see netmap_bwrap_notify). * * - packets coming from the outside go to the hwna rx rings, * which are also the bwrap tx rings. The (overwritten) hwna * notify method will then complete the bridge tx * (see netmap_bwrap_intr_notify). * * The bridge wrapper may optionally connect the hwna 'host' rings * to the bridge. This is done by using a second port in the * bridge and connecting it to the 'host' netmap_vp_adapter * contained in the netmap_bwrap_adapter. The brwap host adapter * cross-links the hwna host rings in the same way as shown above. * * - packets coming from the bridge and directed to the host stack * are handled by the bwrap host notify callback * (see netmap_bwrap_host_notify) * * - packets coming from the host stack are still handled by the * overwritten hwna notify callback (netmap_bwrap_intr_notify), * but are diverted to the host adapter depending on the ring number. * */ struct netmap_bwrap_adapter { struct netmap_vp_adapter up; struct netmap_vp_adapter host; /* for host rings */ struct netmap_adapter *hwna; /* the underlying device */ /* * When we attach a physical interface to the bridge, we * allow the controlling process to terminate, so we need * a place to store the n_detmap_priv_d data structure. * This is only done when physical interfaces * are attached to a bridge. */ struct netmap_priv_d *na_kpriv; struct nm_bdg_polling_state *na_polling_state; /* we overwrite the hwna->na_vp pointer, so we save * here its original value, to be restored at detach */ struct netmap_vp_adapter *saved_na_vp; }; int nm_bdg_polling(struct nmreq_header *hdr); #ifdef WITH_VALE int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token); int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token); int netmap_vale_list(struct nmreq_header *hdr); int netmap_vi_create(struct nmreq_header *hdr, int); int nm_vi_create(struct nmreq_header *); int nm_vi_destroy(const char *name); #else /* !WITH_VALE */ #define netmap_vi_create(hdr, a) (EOPNOTSUPP) #endif /* WITH_VALE */ #ifdef WITH_PIPES #define NM_MAXPIPES 64 /* max number of pipes per adapter */ struct netmap_pipe_adapter { /* pipe identifier is up.name */ struct netmap_adapter up; #define NM_PIPE_ROLE_MASTER 0x1 #define NM_PIPE_ROLE_SLAVE 0x2 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */ struct netmap_adapter *parent; /* adapter that owns the memory */ struct netmap_pipe_adapter *peer; /* the other end of the pipe */ int peer_ref; /* 1 iff we are holding a ref to the peer */ struct ifnet *parent_ifp; /* maybe null */ u_int parent_slot; /* index in the parent pipe array */ }; #endif /* WITH_PIPES */ #ifdef WITH_NMNULL struct netmap_null_adapter { struct netmap_adapter up; }; #endif /* WITH_NMNULL */ /* return slots reserved to rx clients; used in drivers */ static inline uint32_t nm_kr_rxspace(struct netmap_kring *k) { int space = k->nr_hwtail - k->nr_hwcur; if (space < 0) space += k->nkr_num_slots; nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); return space; } /* return slots reserved to tx clients */ #define nm_kr_txspace(_k) nm_kr_rxspace(_k) /* True if no space in the tx ring, only valid after txsync_prologue */ static inline int nm_kr_txempty(struct netmap_kring *kring) { return kring->rhead == kring->nr_hwtail; } /* True if no more completed slots in the rx ring, only valid after * rxsync_prologue */ #define nm_kr_rxempty(_k) nm_kr_txempty(_k) /* True if the application needs to wait for more space on the ring * (more received packets or more free tx slots). * Only valid after *xsync_prologue. */ static inline int nm_kr_wouldblock(struct netmap_kring *kring) { return kring->rcur == kring->nr_hwtail; } /* * protect against multiple threads using the same ring. * also check that the ring has not been stopped or locked */ #define NM_KR_BUSY 1 /* some other thread is syncing the ring */ #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */ #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */ /* release the previously acquired right to use the *sync() methods of the ring */ static __inline void nm_kr_put(struct netmap_kring *kr) { NM_ATOMIC_CLEAR(&kr->nr_busy); } /* true if the ifp that backed the adapter has disappeared (e.g., the * driver has been unloaded) */ static inline int nm_iszombie(struct netmap_adapter *na); /* try to obtain exclusive right to issue the *sync() operations on the ring. * The right is obtained and must be later relinquished via nm_kr_put() if and * only if nm_kr_tryget() returns 0. * If can_sleep is 1 there are only two other possible outcomes: * - the function returns NM_KR_BUSY * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr * (if non-null) * In both cases the caller will typically skip the ring, possibly collecting * errors along the way. * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep. * In the latter case, the function may also return NM_KR_LOCKED and leave *perr * untouched: ideally, the caller should try again at a later time. */ static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr) { int busy = 1, stopped; /* check a first time without taking the lock * to avoid starvation for nm_kr_get() */ retry: stopped = kr->nkr_stopped; if (unlikely(stopped)) { goto stop; } busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy); /* we should not return NM_KR_BUSY if the ring was * actually stopped, so check another time after * the barrier provided by the atomic operation */ stopped = kr->nkr_stopped; if (unlikely(stopped)) { goto stop; } if (unlikely(nm_iszombie(kr->na))) { stopped = NM_KR_STOPPED; goto stop; } return unlikely(busy) ? NM_KR_BUSY : 0; stop: if (!busy) nm_kr_put(kr); if (stopped == NM_KR_STOPPED) { /* if POLLERR is defined we want to use it to simplify netmap_poll(). * Otherwise, any non-zero value will do. */ #ifdef POLLERR #define NM_POLLERR POLLERR #else #define NM_POLLERR 1 #endif /* POLLERR */ if (perr) *perr |= NM_POLLERR; #undef NM_POLLERR } else if (can_sleep) { tsleep(kr, 0, "NM_KR_TRYGET", 4); goto retry; } return stopped; } /* put the ring in the 'stopped' state and wait for the current user (if any) to * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED */ static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped) { kr->nkr_stopped = stopped; while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) tsleep(kr, 0, "NM_KR_GET", 4); } /* restart a ring after a stop */ static __inline void nm_kr_start(struct netmap_kring *kr) { kr->nkr_stopped = 0; nm_kr_put(kr); } /* * The following functions are used by individual drivers to * support netmap operation. * * netmap_attach() initializes a struct netmap_adapter, allocating the * struct netmap_ring's and the struct selinfo. * * netmap_detach() frees the memory allocated by netmap_attach(). * * netmap_transmit() replaces the if_transmit routine of the interface, * and is used to intercept packets coming from the stack. * * netmap_load_map/netmap_reload_map are helper routines to set/reset * the dmamap for a packet buffer * * netmap_reset() is a helper routine to be called in the hw driver * when reinitializing a ring. It should not be called by * virtual ports (vale, pipes, monitor) */ int netmap_attach(struct netmap_adapter *); int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg); void netmap_detach(struct ifnet *); int netmap_transmit(struct ifnet *, struct mbuf *); struct netmap_slot *netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, u_int new_cur); int netmap_ring_reinit(struct netmap_kring *); int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *); /* Return codes for netmap_*x_irq. */ enum { /* Driver should do normal interrupt processing, e.g. because * the interface is not in netmap mode. */ NM_IRQ_PASS = 0, /* Port is in netmap mode, and the interrupt work has been * completed. The driver does not have to notify netmap * again before the next interrupt. */ NM_IRQ_COMPLETED = -1, /* Port is in netmap mode, but the interrupt work has not been * completed. The driver has to make sure netmap will be * notified again soon, even if no more interrupts come (e.g. * on Linux the driver should not call napi_complete()). */ NM_IRQ_RESCHED = -2, }; /* default functions to handle rx/tx interrupts */ int netmap_rx_irq(struct ifnet *, u_int, u_int *); #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done); #ifdef WITH_VALE /* functions used by external modules to interface with VALE */ #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) const char *netmap_bdg_name(struct netmap_vp_adapter *); #else /* !WITH_VALE */ #define netmap_vp_to_ifp(_vp) NULL #define netmap_ifp_to_vp(_ifp) NULL #define netmap_ifp_to_host_vp(_ifp) NULL #define netmap_bdg_idx(_vp) -1 #endif /* WITH_VALE */ static inline int nm_netmap_on(struct netmap_adapter *na) { return na && na->na_flags & NAF_NETMAP_ON; } static inline int nm_native_on(struct netmap_adapter *na) { return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); } static inline struct netmap_kring * netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t) { struct netmap_kring *kring = NULL; if (!nm_native_on(na)) return NULL; if (t == NR_RX && q < na->num_rx_rings) kring = na->rx_rings[q]; else if (t == NR_TX && q < na->num_tx_rings) kring = na->tx_rings[q]; else return NULL; return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL; } static inline int nm_iszombie(struct netmap_adapter *na) { return na == NULL || (na->na_flags & NAF_ZOMBIE); } static inline void nm_update_hostrings_mode(struct netmap_adapter *na) { /* Process nr_mode and nr_pending_mode for host rings. */ na->tx_rings[na->num_tx_rings]->nr_mode = na->tx_rings[na->num_tx_rings]->nr_pending_mode; na->rx_rings[na->num_rx_rings]->nr_mode = na->rx_rings[na->num_rx_rings]->nr_pending_mode; } void nm_set_native_flags(struct netmap_adapter *); void nm_clear_native_flags(struct netmap_adapter *); void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff); /* * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap * kthreads. * We need netmap_ring* parameter, because in ptnetmap it is decoupled * from host kring. * The user-space ring pointers (head/cur/tail) are shared through * CSB between host and guest. */ /* * validates parameters in the ring/kring, returns a value for head * If any error, returns ring_size to force a reinit. */ uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *); /* * validates parameters in the ring/kring, returns a value for head * If any error, returns ring_size lim to force a reinit. */ uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *); /* check/fix address and len in tx rings */ #if 1 /* debug version */ #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \ kring->ring_id, nm_i, slot->buf_idx, len); \ if (_l > NETMAP_BUF_SIZE(_na)) \ _l = NETMAP_BUF_SIZE(_na); \ } } while (0) #else /* no debug version */ #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ if (_l > NETMAP_BUF_SIZE(_na)) \ _l = NETMAP_BUF_SIZE(_na); \ } while (0) #endif /*---------------------------------------------------------------*/ /* * Support routines used by netmap subsystems * (native drivers, VALE, generic, pipes, monitors, ...) */ /* common routine for all functions that create a netmap adapter. It performs * two main tasks: * - if the na points to an ifp, mark the ifp as netmap capable * using na as its native adapter; * - provide defaults for the setup callbacks and the memory allocator */ int netmap_attach_common(struct netmap_adapter *); /* fill priv->np_[tr]xq{first,last} using the ringid and flags information * coming from a struct nmreq_register */ int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr); /* update the ring parameters (number and size of tx and rx rings). * It calls the nm_config callback, if available. */ int netmap_update_config(struct netmap_adapter *na); /* create and initialize the common fields of the krings array. * using the information that must be already available in the na. * tailroom can be used to request the allocation of additional * tailroom bytes after the krings array. This is used by * netmap_vp_adapter's (i.e., VALE ports) to make room for * leasing-related data structures */ int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); /* deletes the kring array of the adapter. The array must have * been created using netmap_krings_create */ void netmap_krings_delete(struct netmap_adapter *na); int netmap_hw_krings_create(struct netmap_adapter *na); void netmap_hw_krings_delete(struct netmap_adapter *na); /* set the stopped/enabled status of ring * When stopping, they also wait for all current activity on the ring to * terminate. The status change is then notified using the na nm_notify * callback. */ void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); /* set the stopped/enabled status of all rings of the adapter. */ void netmap_set_all_rings(struct netmap_adapter *, int stopped); /* convenience wrappers for netmap_set_all_rings */ void netmap_disable_all_rings(struct ifnet *); void netmap_enable_all_rings(struct ifnet *); int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu); int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, struct nmreq_header *); void netmap_do_unregif(struct netmap_priv_d *priv); u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct ifnet **ifp, struct netmap_mem_d *nmd, int create); void netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp); int netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na); #ifdef WITH_VALE uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, struct netmap_vp_adapter *, void *private_data); /* these are redefined in case of no VALE support */ int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); void *netmap_vale_create(const char *bdg_name, int *return_status); int netmap_vale_destroy(const char *bdg_name, void *auth_token); +extern unsigned int vale_max_bridges; + #else /* !WITH_VALE */ #define netmap_bdg_learning(_1, _2, _3, _4) 0 #define netmap_get_vale_na(_1, _2, _3, _4) 0 #define netmap_bdg_create(_1, _2) NULL #define netmap_bdg_destroy(_1, _2) 0 #endif /* !WITH_VALE */ #ifdef WITH_PIPES /* max number of pipes per device */ #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */ void netmap_pipe_dealloc(struct netmap_adapter *); int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); #else /* !WITH_PIPES */ #define NM_MAXPIPES 0 #define netmap_pipe_alloc(_1, _2) 0 #define netmap_pipe_dealloc(_1) #define netmap_get_pipe_na(hdr, _2, _3, _4) \ ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0) #endif #ifdef WITH_MONITOR int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); void netmap_monitor_stop(struct netmap_adapter *na); #else #define netmap_get_monitor_na(hdr, _2, _3, _4) \ (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) #endif #ifdef WITH_NMNULL int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create); #else /* !WITH_NMNULL */ #define netmap_get_null_na(hdr, _2, _3, _4) \ (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) #endif /* WITH_NMNULL */ #ifdef CONFIG_NET_NS struct net *netmap_bns_get(void); void netmap_bns_put(struct net *); void netmap_bns_getbridges(struct nm_bridge **, u_int *); #else extern struct nm_bridge *nm_bridges; #define netmap_bns_get() #define netmap_bns_put(_1) #define netmap_bns_getbridges(b, n) \ - do { *b = nm_bridges; *n = NM_BRIDGES; } while (0) + do { *b = nm_bridges; *n = vale_max_bridges; } while (0) #endif /* Various prototypes */ int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td); int netmap_init(void); void netmap_fini(void); int netmap_get_memory(struct netmap_priv_d* p); void netmap_dtor(void *data); int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, struct thread *, int nr_body_is_user); int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data, struct thread *td); size_t nmreq_size_by_type(uint16_t nr_reqtype); /* netmap_adapter creation/destruction */ // #define NM_DEBUG_PUTGET 1 #ifdef NM_DEBUG_PUTGET #define NM_DBG(f) __##f void __netmap_adapter_get(struct netmap_adapter *na); #define netmap_adapter_get(na) \ do { \ struct netmap_adapter *__na = na; \ nm_prinf("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ __netmap_adapter_get(__na); \ } while (0) int __netmap_adapter_put(struct netmap_adapter *na); #define netmap_adapter_put(na) \ ({ \ struct netmap_adapter *__na = na; \ nm_prinf("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ __netmap_adapter_put(__na); \ }) #else /* !NM_DEBUG_PUTGET */ #define NM_DBG(f) f void netmap_adapter_get(struct netmap_adapter *na); int netmap_adapter_put(struct netmap_adapter *na); #endif /* !NM_DEBUG_PUTGET */ /* * module variables */ #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr) #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize) extern int netmap_no_pendintr; extern int netmap_verbose; #ifdef CONFIG_NETMAP_DEBUG extern int netmap_debug; /* for debugging */ #else /* !CONFIG_NETMAP_DEBUG */ #define netmap_debug (0) #endif /* !CONFIG_NETMAP_DEBUG */ enum { /* debug flags */ NM_DEBUG_ON = 1, /* generic debug messsages */ NM_DEBUG_HOST = 0x2, /* debug host stack */ NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */ NM_DEBUG_TXSYNC = 0x20, NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */ NM_DEBUG_TXINTR = 0x200, NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */ NM_DEBUG_NIC_TXSYNC = 0x2000, NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */ NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */ NM_DEBUG_BDG = NM_DEBUG_VALE, }; extern int netmap_txsync_retry; extern int netmap_generic_hwcsum; extern int netmap_generic_mit; extern int netmap_generic_ringsize; extern int netmap_generic_rings; #ifdef linux extern int netmap_generic_txqdisc; #endif /* * NA returns a pointer to the struct netmap adapter from the ifp. * WNA is os-specific and must be defined in glue code. */ #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) /* * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA * based on the WNA field. * Glue code may override this by defining its own NM_ATTACH_NA */ #ifndef NM_ATTACH_NA /* * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we * overload another pointer in the netdev. * * We check if NA(ifp) is set and its first element has a related * magic value. The capenable is within the struct netmap_adapter. */ #define NETMAP_MAGIC 0x52697a7a #define NM_NA_VALID(ifp) (NA(ifp) && \ ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) #define NM_ATTACH_NA(ifp, na) do { \ WNA(ifp) = na; \ if (NA(ifp)) \ NA(ifp)->magic = \ ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \ } while(0) #define NM_RESTORE_NA(ifp, na) WNA(ifp) = na; #define NM_DETACH_NA(ifp) do { WNA(ifp) = NULL; } while (0) #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp)) #endif /* !NM_ATTACH_NA */ #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor) #if defined(__FreeBSD__) /* Assigns the device IOMMU domain to an allocator. * Returns -ENOMEM in case the domain is different */ #define nm_iommu_group_id(dev) (0) /* Callback invoked by the dma machinery after a successful dmamap_load */ static void netmap_dmamap_cb(__unused void *arg, __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) { } /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. * XXX can we do it without a callback ? */ static inline int netmap_load_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { if (map) bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); return 0; } static inline void netmap_unload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map) { if (map) bus_dmamap_unload(tag, map); } #define netmap_sync_map(na, tag, map, sz, t) /* update the map when a buffer changes. */ static inline void netmap_reload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { if (map) { bus_dmamap_unload(tag, map); bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); } } #elif defined(_WIN32) #else /* linux */ int nm_iommu_group_id(bus_dma_tag_t dev); #include /* * on linux we need * dma_map_single(&pdev->dev, virt_addr, len, direction) * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction) */ #if 0 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; /* set time_stamp *before* dma to help avoid a possible race */ buffer_info->time_stamp = jiffies; buffer_info->mapped_as_page = false; buffer_info->length = len; //buffer_info->next_to_watch = l; /* reload dma map */ dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, NETMAP_BUF_SIZE, DMA_TO_DEVICE); buffer_info->dma = dma_map_single(&adapter->pdev->dev, addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { nm_prerr("dma mapping error"); /* goto dma_error; See e1000_put_txbuf() */ /* XXX reset */ } tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX #endif static inline int netmap_load_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size) { if (map) { *map = dma_map_single(na->pdev, buf, size, DMA_BIDIRECTIONAL); if (dma_mapping_error(na->pdev, *map)) { *map = 0; return ENOMEM; } } return 0; } static inline void netmap_unload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, u_int sz) { if (*map) { dma_unmap_single(na->pdev, *map, sz, DMA_BIDIRECTIONAL); } } #ifdef NETMAP_LINUX_HAVE_DMASYNC static inline void netmap_sync_map_cpu(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) { if (*map) { dma_sync_single_for_cpu(na->pdev, *map, sz, (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); } } static inline void netmap_sync_map_dev(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t) { if (*map) { dma_sync_single_for_device(na->pdev, *map, sz, (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE)); } } static inline void netmap_reload_map(struct netmap_adapter *na, bus_dma_tag_t tag, bus_dmamap_t map, void *buf) { u_int sz = NETMAP_BUF_SIZE(na); if (*map) { dma_unmap_single(na->pdev, *map, sz, DMA_BIDIRECTIONAL); } *map = dma_map_single(na->pdev, buf, sz, DMA_BIDIRECTIONAL); } #else /* !NETMAP_LINUX_HAVE_DMASYNC */ #define netmap_sync_map_cpu(na, tag, map, sz, t) #define netmap_sync_map_dev(na, tag, map, sz, t) #endif /* NETMAP_LINUX_HAVE_DMASYNC */ #endif /* linux */ /* * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) */ static inline int netmap_idx_n2k(struct netmap_kring *kr, int idx) { int n = kr->nkr_num_slots; if (likely(kr->nkr_hwofs == 0)) { return idx; } idx += kr->nkr_hwofs; if (idx < 0) return idx + n; else if (idx < n) return idx; else return idx - n; } static inline int netmap_idx_k2n(struct netmap_kring *kr, int idx) { int n = kr->nkr_num_slots; if (likely(kr->nkr_hwofs == 0)) { return idx; } idx -= kr->nkr_hwofs; if (idx < 0) return idx + n; else if (idx < n) return idx; else return idx - n; } /* Entries of the look-up table. */ #ifdef __FreeBSD__ struct lut_entry { void *vaddr; /* virtual address. */ vm_paddr_t paddr; /* physical address. */ }; #else /* linux & _WIN32 */ /* dma-mapping in linux can assign a buffer a different address * depending on the device, so we need to have a separate * physical-address look-up table for each na. * We can still share the vaddrs, though, therefore we split * the lut_entry structure. */ struct lut_entry { void *vaddr; /* virtual address. */ }; struct plut_entry { vm_paddr_t paddr; /* physical address. */ }; #endif /* linux & _WIN32 */ struct netmap_obj_pool; /* * NMB return the virtual address of a buffer (buffer 0 on bad index) * PNMB also fills the physical address */ static inline void * NMB(struct netmap_adapter *na, struct netmap_slot *slot) { struct lut_entry *lut = na->na_lut.lut; uint32_t i = slot->buf_idx; return (unlikely(i >= na->na_lut.objtotal)) ? lut[0].vaddr : lut[i].vaddr; } static inline void * PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) { uint32_t i = slot->buf_idx; struct lut_entry *lut = na->na_lut.lut; struct plut_entry *plut = na->na_lut.plut; void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; #ifdef _WIN32 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart; #else *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr; #endif return ret; } /* * Structure associated to each netmap file descriptor. * It is created on open and left unbound (np_nifp == NULL). * A successful NIOCREGIF will set np_nifp and the first few fields; * this is protected by a global lock (NMG_LOCK) due to low contention. * * np_refs counts the number of references to the structure: one for the fd, * plus (on FreeBSD) one for each active mmap which we track ourselves * (linux automatically tracks them, but FreeBSD does not). * np_refs is protected by NMG_LOCK. * * Read access to the structure is lock free, because ni_nifp once set * can only go to 0 when nobody is using the entry anymore. Readers * must check that np_nifp != NULL before using the other fields. */ struct netmap_priv_d { struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ struct netmap_adapter *np_na; struct ifnet *np_ifp; uint32_t np_flags; /* from the ioctl */ u_int np_qfirst[NR_TXRX], np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ uint16_t np_txpoll; uint16_t np_kloop_state; /* use with NMG_LOCK held */ #define NM_SYNC_KLOOP_RUNNING (1 << 0) #define NM_SYNC_KLOOP_STOPPING (1 << 1) int np_sync_flags; /* to be passed to nm_sync */ int np_refs; /* use with NMG_LOCK held */ /* pointers to the selinfo to be used for selrecord. * Either the local or the global one depending on the * number of rings. */ NM_SELINFO_T *np_si[NR_TXRX]; /* In the optional CSB mode, the user must specify the start address * of two arrays of Communication Status Block (CSB) entries, for the * two directions (kernel read application write, and kernel write * application read). * The number of entries must agree with the number of rings bound to * the netmap file descriptor. The entries corresponding to the TX * rings are laid out before the ones corresponding to the RX rings. * * Array of CSB entries for application --> kernel communication * (N entries). */ struct nm_csb_atok *np_csb_atok_base; /* Array of CSB entries for kernel --> application communication * (N entries). */ struct nm_csb_ktoa *np_csb_ktoa_base; #ifdef linux struct file *np_filp; /* used by sync kloop */ #endif /* linux */ }; struct netmap_priv_d *netmap_priv_new(void); void netmap_priv_delete(struct netmap_priv_d *); static inline int nm_kring_pending(struct netmap_priv_d *np) { struct netmap_adapter *na = np->np_na; enum txrx t; int i; for_rx_tx(t) { for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) { struct netmap_kring *kring = NMR(na, t)[i]; if (kring->nr_mode != kring->nr_pending_mode) { return 1; } } } return 0; } /* call with NMG_LOCK held */ static __inline int nm_si_user(struct netmap_priv_d *priv, enum txrx t) { return (priv->np_na != NULL && (priv->np_qlast[t] - priv->np_qfirst[t] > 1)); } #ifdef WITH_PIPES int netmap_pipe_txsync(struct netmap_kring *txkring, int flags); int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags); int netmap_pipe_krings_create_both(struct netmap_adapter *na, struct netmap_adapter *ona); void netmap_pipe_krings_delete_both(struct netmap_adapter *na, struct netmap_adapter *ona); int netmap_pipe_reg_both(struct netmap_adapter *na, struct netmap_adapter *ona); #endif /* WITH_PIPES */ #ifdef WITH_MONITOR struct netmap_monitor_adapter { struct netmap_adapter up; struct netmap_priv_d priv; uint32_t flags; }; #endif /* WITH_MONITOR */ #ifdef WITH_GENERIC /* * generic netmap emulation for devices that do not have * native netmap support. */ int generic_netmap_attach(struct ifnet *ifp); int generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept); int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept); int na_is_generic(struct netmap_adapter *na); /* * the generic transmit routine is passed a structure to optionally * build a queue of descriptors, in an OS-specific way. * The payload is at addr, if non-null, and the routine should send or queue * the packet, returning 0 if successful, 1 on failure. * * At the end, if head is non-null, there will be an additional call * to the function with addr = NULL; this should tell the OS-specific * routine to send the queue and free any resources. Failure is ignored. */ struct nm_os_gen_arg { struct ifnet *ifp; void *m; /* os-specific mbuf-like object */ void *head, *tail; /* tailq, if the OS-specific routine needs to build one */ void *addr; /* payload of current packet */ u_int len; /* packet length */ u_int ring_nr; /* packet length */ u_int qevent; /* in txqdisc mode, place an event on this mbuf */ }; int nm_os_generic_xmit_frame(struct nm_os_gen_arg *); int nm_os_generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); void nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); void nm_os_generic_set_features(struct netmap_generic_adapter *gna); static inline struct ifnet* netmap_generic_getifp(struct netmap_generic_adapter *gna) { if (gna->prev) return gna->prev->ifp; return gna->up.up.ifp; } void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done); //#define RATE_GENERIC /* Enables communication statistics for generic. */ #ifdef RATE_GENERIC void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); #else #define generic_rate(txp, txs, txi, rxp, rxs, rxi) #endif /* * netmap_mitigation API. This is used by the generic adapter * to reduce the number of interrupt requests/selwakeup * to clients on incoming packets. */ void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na); void nm_os_mitigation_start(struct nm_generic_mit *mit); void nm_os_mitigation_restart(struct nm_generic_mit *mit); int nm_os_mitigation_active(struct nm_generic_mit *mit); void nm_os_mitigation_cleanup(struct nm_generic_mit *mit); #else /* !WITH_GENERIC */ #define generic_netmap_attach(ifp) (EOPNOTSUPP) #define na_is_generic(na) (0) #endif /* WITH_GENERIC */ /* Shared declarations for the VALE switch. */ /* * Each transmit queue accumulates a batch of packets into * a structure before forwarding. Packets to the same * destination are put in a list using ft_next as a link field. * ft_frags and ft_next are valid only on the first fragment. */ struct nm_bdg_fwd { /* forwarding entry for a bridge */ void *ft_buf; /* netmap or indirect buffer */ uint8_t ft_frags; /* how many fragments (only on 1st frag) */ uint16_t ft_offset; /* dst port (unused) */ uint16_t ft_flags; /* flags, e.g. indirect */ uint16_t ft_len; /* src fragment len */ uint16_t ft_next; /* next packet to same destination */ }; /* struct 'virtio_net_hdr' from linux. */ struct nm_vnet_hdr { #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ uint8_t flags; #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ uint8_t gso_type; uint16_t hdr_len; uint16_t gso_size; uint16_t csum_start; uint16_t csum_offset; }; #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ struct nm_iphdr { uint8_t version_ihl; uint8_t tos; uint16_t tot_len; uint16_t id; uint16_t frag_off; uint8_t ttl; uint8_t protocol; uint16_t check; uint32_t saddr; uint32_t daddr; /*The options start here. */ }; struct nm_tcphdr { uint16_t source; uint16_t dest; uint32_t seq; uint32_t ack_seq; uint8_t doff; /* Data offset + Reserved */ uint8_t flags; uint16_t window; uint16_t check; uint16_t urg_ptr; }; struct nm_udphdr { uint16_t source; uint16_t dest; uint16_t len; uint16_t check; }; struct nm_ipv6hdr { uint8_t priority_version; uint8_t flow_lbl[3]; uint16_t payload_len; uint8_t nexthdr; uint8_t hop_limit; uint8_t saddr[16]; uint8_t daddr[16]; }; /* Type used to store a checksum (in host byte order) that hasn't been * folded yet. */ #define rawsum_t uint32_t rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph); void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, size_t datalen, uint16_t *check); void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, size_t datalen, uint16_t *check); uint16_t nm_os_csum_fold(rawsum_t cur_sum); void bdg_mismatch_datapath(struct netmap_vp_adapter *na, struct netmap_vp_adapter *dst_na, const struct nm_bdg_fwd *ft_p, struct netmap_ring *dst_ring, u_int *j, u_int lim, u_int *howmany); /* persistent virtual port routines */ int nm_os_vi_persist(const char *, struct ifnet **); void nm_os_vi_detach(struct ifnet *); void nm_os_vi_init_index(void); /* * kernel thread routines */ struct nm_kctx; /* OS-specific kernel context - opaque */ typedef void (*nm_kctx_worker_fn_t)(void *data); /* kthread configuration */ struct nm_kctx_cfg { long type; /* kthread type/identifier */ nm_kctx_worker_fn_t worker_fn; /* worker function */ void *worker_private;/* worker parameter */ int attach_user; /* attach kthread to user process */ }; /* kthread configuration */ struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg, void *opaque); int nm_os_kctx_worker_start(struct nm_kctx *); void nm_os_kctx_worker_stop(struct nm_kctx *); void nm_os_kctx_destroy(struct nm_kctx *); void nm_os_kctx_worker_setaff(struct nm_kctx *, int); u_int nm_os_ncpus(void); int netmap_sync_kloop(struct netmap_priv_d *priv, struct nmreq_header *hdr); int netmap_sync_kloop_stop(struct netmap_priv_d *priv); #ifdef WITH_PTNETMAP /* ptnetmap guest routines */ /* * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver */ struct ptnetmap_memdev; int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **, uint64_t *); void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *); uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int); /* * netmap adapter for guest ptnetmap ports */ struct netmap_pt_guest_adapter { /* The netmap adapter to be used by netmap applications. * This field must be the first, to allow upcast. */ struct netmap_hw_adapter hwup; /* The netmap adapter to be used by the driver. */ struct netmap_hw_adapter dr; /* Reference counter to track users of backend netmap port: the * network stack and netmap clients. * Used to decide when we need (de)allocate krings/rings and * start (stop) ptnetmap kthreads. */ int backend_users; }; int netmap_pt_guest_attach(struct netmap_adapter *na, unsigned int nifp_offset, unsigned int memid); bool netmap_pt_guest_txsync(struct nm_csb_atok *atok, struct nm_csb_ktoa *ktoa, struct netmap_kring *kring, int flags); bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok, struct nm_csb_ktoa *ktoa, struct netmap_kring *kring, int flags); int ptnet_nm_krings_create(struct netmap_adapter *na); void ptnet_nm_krings_delete(struct netmap_adapter *na); void ptnet_nm_dtor(struct netmap_adapter *na); /* Helper function wrapping nm_sync_kloop_appl_read(). */ static inline void ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring) { struct netmap_ring *ring = kring->ring; /* Update hwcur and hwtail as known by the host. */ nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur); /* nm_sync_finalize */ ring->tail = kring->rtail = kring->nr_hwtail; } #endif /* WITH_PTNETMAP */ #ifdef __FreeBSD__ /* * FreeBSD mbuf allocator/deallocator in emulation mode: */ #if __FreeBSD_version < 1100000 /* * For older versions of FreeBSD: * * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE * so that the destructor, if invoked, will not free the packet. * In principle we should set the destructor only on demand, * but since there might be a race we better do it on allocation. * As a consequence, we also need to set the destructor or we * would leak buffers. */ /* mbuf destructor, also need to change the type to EXT_EXTREF, * add an M_NOFREE flag, and then clear the flag and * chain into uma_zfree(zone_pack, mf) * (or reinstall the buffer ?) */ #define SET_MBUF_DESTRUCTOR(m, fn) do { \ (m)->m_ext.ext_free = (void *)fn; \ (m)->m_ext.ext_type = EXT_EXTREF; \ } while (0) static int void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { /* restore original mbuf */ m->m_ext.ext_buf = m->m_data = m->m_ext.ext_arg1; m->m_ext.ext_arg1 = NULL; m->m_ext.ext_type = EXT_PACKET; m->m_ext.ext_free = NULL; if (MBUF_REFCNT(m) == 0) SET_MBUF_REFCNT(m, 1); uma_zfree(zone_pack, m); return 0; } static inline struct mbuf * nm_os_get_mbuf(struct ifnet *ifp, int len) { struct mbuf *m; (void)ifp; m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m) { /* m_getcl() (mb_ctor_mbuf) has an assert that checks that * M_NOFREE flag is not specified as third argument, * so we have to set M_NOFREE after m_getcl(). */ m->m_flags |= M_NOFREE; m->m_ext.ext_arg1 = m->m_ext.ext_buf; // XXX save m->m_ext.ext_free = (void *)void_mbuf_dtor; m->m_ext.ext_type = EXT_EXTREF; nm_prdis(5, "create m %p refcnt %d", m, MBUF_REFCNT(m)); } return m; } #else /* __FreeBSD_version >= 1100000 */ /* * Newer versions of FreeBSD, using a straightforward scheme. * * We allocate mbufs with m_gethdr(), since the mbuf header is needed * by the driver. We also attach a customly-provided external storage, * which in this case is a netmap buffer. When calling m_extadd(), however * we pass a NULL address, since the real address (and length) will be * filled in by nm_os_generic_xmit_frame() right before calling * if_transmit(). * * The dtor function does nothing, however we need it since mb_free_ext() * has a KASSERT(), checking that the mbuf dtor function is not NULL. */ #if __FreeBSD_version <= 1200050 static void void_mbuf_dtor(struct mbuf *m, void *arg1, void *arg2) { } #else /* __FreeBSD_version >= 1200051 */ /* The arg1 and arg2 pointers argument were removed by r324446, which * in included since version 1200051. */ static void void_mbuf_dtor(struct mbuf *m) { } #endif /* __FreeBSD_version >= 1200051 */ #define SET_MBUF_DESTRUCTOR(m, fn) do { \ (m)->m_ext.ext_free = (fn != NULL) ? \ (void *)fn : (void *)void_mbuf_dtor; \ } while (0) static inline struct mbuf * nm_os_get_mbuf(struct ifnet *ifp, int len) { struct mbuf *m; (void)ifp; (void)len; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { return m; } m_extadd(m, NULL /* buf */, 0 /* size */, void_mbuf_dtor, NULL, NULL, 0, EXT_NET_DRV); return m; } #endif /* __FreeBSD_version >= 1100000 */ #endif /* __FreeBSD__ */ struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t); int netmap_init_bridges(void); void netmap_uninit_bridges(void); /* Functions to read and write CSB fields from the kernel. */ #if defined (linux) #define CSB_READ(csb, field, r) (get_user(r, &csb->field)) #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field)) #else /* ! linux */ #define CSB_READ(csb, field, r) (r = fuword32(&csb->field)) #define CSB_WRITE(csb, field, v) (suword32(&csb->field, v)) #endif /* ! linux */ #endif /* _NET_NETMAP_KERN_H_ */ diff --git a/sys/dev/netmap/netmap_vale.c b/sys/dev/netmap/netmap_vale.c index d32fc246bf57..f2a0524b04a2 100644 --- a/sys/dev/netmap/netmap_vale.c +++ b/sys/dev/netmap/netmap_vale.c @@ -1,1616 +1,1621 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2013-2016 Universita` di Pisa * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #if defined(__FreeBSD__) #include /* prerequisite */ __FBSDID("$FreeBSD$"); #include #include #include /* defines used in kernel.h */ #include /* types used in module initialization */ #include /* cdevsw struct, UID, GID */ #include #include /* struct socket */ #include #include #include #include /* sockaddrs */ #include #include #include #include #include /* BIOCIMMEDIATE */ #include /* bus_dmamap_* */ #include #include #include #elif defined(linux) #include "bsd_glue.h" #elif defined(__APPLE__) #warning OSX support is only partial #include "osx_glue.h" #elif defined(_WIN32) #include "win_glue.h" #else #error Unsupported platform #endif /* unsupported */ /* * common headers */ #include #include #include #include #ifdef WITH_VALE /* * system parameters (most of them in netmap_kern.h) - * NM_BDG_NAME prefix for switch port names, default "vale" + * NM_BDG_NAME prefix for switch port names, default "vale" * NM_BDG_MAXPORTS number of ports - * NM_BRIDGES max number of switches in the system. - * XXX should become a sysctl or tunable + * NM_BRIDGES max number of switches in the system. * * Switch ports are named valeX:Y where X is the switch name and Y * is the port. If Y matches a physical interface name, the port is * connected to a physical device. * * Unlike physical interfaces, switch ports use their own memory region * for rings and buffers. * The virtual interfaces use per-queue lock instead of core lock. * In the tx loop, we aggregate traffic in batches to make all operations * faster. The batch size is bridge_batch. */ #define NM_BDG_MAXRINGS 16 /* XXX unclear how many. */ #define NM_BDG_MAXSLOTS 4096 /* XXX same as above */ #define NM_BRIDGE_RINGSIZE 1024 /* in the device */ #define NM_BDG_BATCH 1024 /* entries in the forwarding buffer */ /* actual size of the tables */ #define NM_BDG_BATCH_MAX (NM_BDG_BATCH + NETMAP_MAX_FRAGS) /* NM_FT_NULL terminates a list of slots in the ft */ #define NM_FT_NULL NM_BDG_BATCH_MAX /* * bridge_batch is set via sysctl to the max batch size to be * used in the bridge. The actual value may be larger as the * last packet in the block may overflow the size. */ static int bridge_batch = NM_BDG_BATCH; /* bridge batch size */ + +/* Max number of vale bridges (loader tunable). */ +unsigned int vale_max_bridges = NM_BRIDGES; + SYSBEGIN(vars_vale); SYSCTL_DECL(_dev_netmap); SYSCTL_INT(_dev_netmap, OID_AUTO, bridge_batch, CTLFLAG_RW, &bridge_batch, 0, "Max batch size to be used in the bridge"); +SYSCTL_UINT(_dev_netmap, OID_AUTO, max_bridges, CTLFLAG_RDTUN, &vale_max_bridges, 0, + "Max number of vale bridges"); SYSEND; static int netmap_vale_vp_create(struct nmreq_header *hdr, struct ifnet *, struct netmap_mem_d *nmd, struct netmap_vp_adapter **); static int netmap_vale_vp_bdg_attach(const char *, struct netmap_adapter *, struct nm_bridge *); static int netmap_vale_bwrap_attach(const char *, struct netmap_adapter *); /* * For each output interface, nm_vale_q is used to construct a list. * bq_len is the number of output buffers (we can have coalescing * during the copy). */ struct nm_vale_q { uint16_t bq_head; uint16_t bq_tail; uint32_t bq_len; /* number of buffers */ }; /* Holds the default callbacks */ struct netmap_bdg_ops vale_bdg_ops = { .lookup = netmap_vale_learning, .config = NULL, .dtor = NULL, .vp_create = netmap_vale_vp_create, .bwrap_attach = netmap_vale_bwrap_attach, .name = NM_BDG_NAME, }; /* * this is a slightly optimized copy routine which rounds * to multiple of 64 bytes and is often faster than dealing * with other odd sizes. We assume there is enough room * in the source and destination buffers. * * XXX only for multiples of 64 bytes, non overlapped. */ static inline void pkt_copy(void *_src, void *_dst, int l) { uint64_t *src = _src; uint64_t *dst = _dst; if (unlikely(l >= 1024)) { memcpy(dst, src, l); return; } for (; likely(l > 0); l-=64) { *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; *dst++ = *src++; } } /* * Free the forwarding tables for rings attached to switch ports. */ static void nm_free_bdgfwd(struct netmap_adapter *na) { int nrings, i; struct netmap_kring **kring; NMG_LOCK_ASSERT(); nrings = na->num_tx_rings; kring = na->tx_rings; for (i = 0; i < nrings; i++) { if (kring[i]->nkr_ft) { nm_os_free(kring[i]->nkr_ft); kring[i]->nkr_ft = NULL; /* protect from freeing twice */ } } } /* * Allocate the forwarding tables for the rings attached to the bridge ports. */ static int nm_alloc_bdgfwd(struct netmap_adapter *na) { int nrings, l, i, num_dstq; struct netmap_kring **kring; NMG_LOCK_ASSERT(); /* all port:rings + broadcast */ num_dstq = NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1; l = sizeof(struct nm_bdg_fwd) * NM_BDG_BATCH_MAX; l += sizeof(struct nm_vale_q) * num_dstq; l += sizeof(uint16_t) * NM_BDG_BATCH_MAX; nrings = netmap_real_rings(na, NR_TX); kring = na->tx_rings; for (i = 0; i < nrings; i++) { struct nm_bdg_fwd *ft; struct nm_vale_q *dstq; int j; ft = nm_os_malloc(l); if (!ft) { nm_free_bdgfwd(na); return ENOMEM; } dstq = (struct nm_vale_q *)(ft + NM_BDG_BATCH_MAX); for (j = 0; j < num_dstq; j++) { dstq[j].bq_head = dstq[j].bq_tail = NM_FT_NULL; dstq[j].bq_len = 0; } kring[i]->nkr_ft = ft; } return 0; } /* Allows external modules to create bridges in exclusive mode, * returns an authentication token that the external module will need * to provide during nm_bdg_ctl_{attach, detach}(), netmap_bdg_regops(), * and nm_bdg_update_private_data() operations. * Successfully executed if ret != NULL and *return_status == 0. */ void * netmap_vale_create(const char *bdg_name, int *return_status) { struct nm_bridge *b = NULL; void *ret = NULL; NMG_LOCK(); b = nm_find_bridge(bdg_name, 0 /* don't create */, NULL); if (b) { *return_status = EEXIST; goto unlock_bdg_create; } b = nm_find_bridge(bdg_name, 1 /* create */, &vale_bdg_ops); if (!b) { *return_status = ENOMEM; goto unlock_bdg_create; } b->bdg_flags |= NM_BDG_ACTIVE | NM_BDG_EXCLUSIVE; ret = nm_bdg_get_auth_token(b); *return_status = 0; unlock_bdg_create: NMG_UNLOCK(); return ret; } /* Allows external modules to destroy a bridge created through * netmap_bdg_create(), the bridge must be empty. */ int netmap_vale_destroy(const char *bdg_name, void *auth_token) { struct nm_bridge *b = NULL; int ret = 0; NMG_LOCK(); b = nm_find_bridge(bdg_name, 0 /* don't create */, NULL); if (!b) { ret = ENXIO; goto unlock_bdg_free; } if (!nm_bdg_valid_auth_token(b, auth_token)) { ret = EACCES; goto unlock_bdg_free; } if (!(b->bdg_flags & NM_BDG_EXCLUSIVE)) { ret = EINVAL; goto unlock_bdg_free; } b->bdg_flags &= ~(NM_BDG_EXCLUSIVE | NM_BDG_ACTIVE); ret = netmap_bdg_free(b); if (ret) { b->bdg_flags |= NM_BDG_EXCLUSIVE | NM_BDG_ACTIVE; } unlock_bdg_free: NMG_UNLOCK(); return ret; } /* Process NETMAP_REQ_VALE_LIST. */ int netmap_vale_list(struct nmreq_header *hdr) { struct nmreq_vale_list *req = (struct nmreq_vale_list *)(uintptr_t)hdr->nr_body; int namelen = strlen(hdr->nr_name); struct nm_bridge *b, *bridges; struct netmap_vp_adapter *vpna; int error = 0, i, j; u_int num_bridges; netmap_bns_getbridges(&bridges, &num_bridges); /* this is used to enumerate bridges and ports */ if (namelen) { /* look up indexes of bridge and port */ if (strncmp(hdr->nr_name, NM_BDG_NAME, strlen(NM_BDG_NAME))) { return EINVAL; } NMG_LOCK(); b = nm_find_bridge(hdr->nr_name, 0 /* don't create */, NULL); if (!b) { NMG_UNLOCK(); return ENOENT; } req->nr_bridge_idx = b - bridges; /* bridge index */ req->nr_port_idx = NM_BDG_NOPORT; for (j = 0; j < b->bdg_active_ports; j++) { i = b->bdg_port_index[j]; vpna = b->bdg_ports[i]; if (vpna == NULL) { nm_prerr("This should not happen"); continue; } /* the former and the latter identify a * virtual port and a NIC, respectively */ if (!strcmp(vpna->up.name, hdr->nr_name)) { req->nr_port_idx = i; /* port index */ break; } } NMG_UNLOCK(); } else { /* return the first non-empty entry starting from * bridge nr_arg1 and port nr_arg2. * * Users can detect the end of the same bridge by * seeing the new and old value of nr_arg1, and can * detect the end of all the bridge by error != 0 */ i = req->nr_bridge_idx; j = req->nr_port_idx; NMG_LOCK(); - for (error = ENOENT; i < NM_BRIDGES; i++) { + for (error = ENOENT; i < vale_max_bridges; i++) { b = bridges + i; for ( ; j < NM_BDG_MAXPORTS; j++) { if (b->bdg_ports[j] == NULL) continue; vpna = b->bdg_ports[j]; /* write back the VALE switch name */ strlcpy(hdr->nr_name, vpna->up.name, sizeof(hdr->nr_name)); error = 0; goto out; } j = 0; /* following bridges scan from 0 */ } out: req->nr_bridge_idx = i; req->nr_port_idx = j; NMG_UNLOCK(); } return error; } /* Process NETMAP_REQ_VALE_ATTACH. */ int netmap_vale_attach(struct nmreq_header *hdr, void *auth_token) { struct nmreq_vale_attach *req = (struct nmreq_vale_attach *)(uintptr_t)hdr->nr_body; struct netmap_vp_adapter * vpna; struct netmap_adapter *na = NULL; struct netmap_mem_d *nmd = NULL; struct nm_bridge *b = NULL; int error; NMG_LOCK(); /* permission check for modified bridges */ b = nm_find_bridge(hdr->nr_name, 0 /* don't create */, NULL); if (b && !nm_bdg_valid_auth_token(b, auth_token)) { error = EACCES; goto unlock_exit; } if (req->reg.nr_mem_id) { nmd = netmap_mem_find(req->reg.nr_mem_id); if (nmd == NULL) { error = EINVAL; goto unlock_exit; } } /* check for existing one */ error = netmap_get_vale_na(hdr, &na, nmd, 0); if (na) { error = EBUSY; goto unref_exit; } error = netmap_get_vale_na(hdr, &na, nmd, 1 /* create if not exists */); if (error) { /* no device */ goto unlock_exit; } if (na == NULL) { /* VALE prefix missing */ error = EINVAL; goto unlock_exit; } if (NETMAP_OWNED_BY_ANY(na)) { error = EBUSY; goto unref_exit; } if (na->nm_bdg_ctl) { /* nop for VALE ports. The bwrap needs to put the hwna * in netmap mode (see netmap_bwrap_bdg_ctl) */ error = na->nm_bdg_ctl(hdr, na); if (error) goto unref_exit; nm_prdis("registered %s to netmap-mode", na->name); } vpna = (struct netmap_vp_adapter *)na; req->port_index = vpna->bdg_port; if (nmd) netmap_mem_put(nmd); NMG_UNLOCK(); return 0; unref_exit: netmap_adapter_put(na); unlock_exit: if (nmd) netmap_mem_put(nmd); NMG_UNLOCK(); return error; } /* Process NETMAP_REQ_VALE_DETACH. */ int netmap_vale_detach(struct nmreq_header *hdr, void *auth_token) { struct nmreq_vale_detach *nmreq_det = (void *)(uintptr_t)hdr->nr_body; struct netmap_vp_adapter *vpna; struct netmap_adapter *na; struct nm_bridge *b = NULL; int error; NMG_LOCK(); /* permission check for modified bridges */ b = nm_find_bridge(hdr->nr_name, 0 /* don't create */, NULL); if (b && !nm_bdg_valid_auth_token(b, auth_token)) { error = EACCES; goto unlock_exit; } error = netmap_get_vale_na(hdr, &na, NULL, 0 /* don't create */); if (error) { /* no device, or another bridge or user owns the device */ goto unlock_exit; } if (na == NULL) { /* VALE prefix missing */ error = EINVAL; goto unlock_exit; } else if (nm_is_bwrap(na) && ((struct netmap_bwrap_adapter *)na)->na_polling_state) { /* Don't detach a NIC with polling */ error = EBUSY; goto unref_exit; } vpna = (struct netmap_vp_adapter *)na; if (na->na_vp != vpna) { /* trying to detach first attach of VALE persistent port attached * to 2 bridges */ error = EBUSY; goto unref_exit; } nmreq_det->port_index = vpna->bdg_port; if (na->nm_bdg_ctl) { /* remove the port from bridge. The bwrap * also needs to put the hwna in normal mode */ error = na->nm_bdg_ctl(hdr, na); } unref_exit: netmap_adapter_put(na); unlock_exit: NMG_UNLOCK(); return error; } /* nm_dtor callback for ephemeral VALE ports */ static void netmap_vale_vp_dtor(struct netmap_adapter *na) { struct netmap_vp_adapter *vpna = (struct netmap_vp_adapter*)na; struct nm_bridge *b = vpna->na_bdg; nm_prdis("%s has %d references", na->name, na->na_refcount); if (b) { netmap_bdg_detach_common(b, vpna->bdg_port, -1); } if (na->ifp != NULL && !nm_iszombie(na)) { NM_DETACH_NA(na->ifp); if (vpna->autodelete) { nm_prdis("releasing %s", na->ifp->if_xname); NMG_UNLOCK(); nm_os_vi_detach(na->ifp); NMG_LOCK(); } } } /* nm_krings_create callback for VALE ports. * Calls the standard netmap_krings_create, then adds leases on rx * rings and bdgfwd on tx rings. */ static int netmap_vale_vp_krings_create(struct netmap_adapter *na) { u_int tailroom; int error, i; uint32_t *leases; u_int nrx = netmap_real_rings(na, NR_RX); /* * Leases are attached to RX rings on vale ports */ tailroom = sizeof(uint32_t) * na->num_rx_desc * nrx; error = netmap_krings_create(na, tailroom); if (error) return error; leases = na->tailroom; for (i = 0; i < nrx; i++) { /* Receive rings */ na->rx_rings[i]->nkr_leases = leases; leases += na->num_rx_desc; } error = nm_alloc_bdgfwd(na); if (error) { netmap_krings_delete(na); return error; } return 0; } /* nm_krings_delete callback for VALE ports. */ static void netmap_vale_vp_krings_delete(struct netmap_adapter *na) { nm_free_bdgfwd(na); netmap_krings_delete(na); } static int nm_vale_flush(struct nm_bdg_fwd *ft, u_int n, struct netmap_vp_adapter *na, u_int ring_nr); /* * main dispatch routine for the bridge. * Grab packets from a kring, move them into the ft structure * associated to the tx (input) port. Max one instance per port, * filtered on input (ioctl, poll or XXX). * Returns the next position in the ring. */ static int nm_vale_preflush(struct netmap_kring *kring, u_int end) { struct netmap_vp_adapter *na = (struct netmap_vp_adapter*)kring->na; struct netmap_ring *ring = kring->ring; struct nm_bdg_fwd *ft; u_int ring_nr = kring->ring_id; u_int j = kring->nr_hwcur, lim = kring->nkr_num_slots - 1; u_int ft_i = 0; /* start from 0 */ u_int frags = 1; /* how many frags ? */ struct nm_bridge *b = na->na_bdg; /* To protect against modifications to the bridge we acquire a * shared lock, waiting if we can sleep (if the source port is * attached to a user process) or with a trylock otherwise (NICs). */ nm_prdis("wait rlock for %d packets", ((j > end ? lim+1 : 0) + end) - j); if (na->up.na_flags & NAF_BDG_MAYSLEEP) BDG_RLOCK(b); else if (!BDG_RTRYLOCK(b)) return j; nm_prdis(5, "rlock acquired for %d packets", ((j > end ? lim+1 : 0) + end) - j); ft = kring->nkr_ft; for (; likely(j != end); j = nm_next(j, lim)) { struct netmap_slot *slot = &ring->slot[j]; char *buf; ft[ft_i].ft_len = slot->len; ft[ft_i].ft_flags = slot->flags; ft[ft_i].ft_offset = 0; nm_prdis("flags is 0x%x", slot->flags); /* we do not use the buf changed flag, but we still need to reset it */ slot->flags &= ~NS_BUF_CHANGED; /* this slot goes into a list so initialize the link field */ ft[ft_i].ft_next = NM_FT_NULL; buf = ft[ft_i].ft_buf = (slot->flags & NS_INDIRECT) ? (void *)(uintptr_t)slot->ptr : NMB(&na->up, slot); if (unlikely(buf == NULL)) { nm_prlim(5, "NULL %s buffer pointer from %s slot %d len %d", (slot->flags & NS_INDIRECT) ? "INDIRECT" : "DIRECT", kring->name, j, ft[ft_i].ft_len); buf = ft[ft_i].ft_buf = NETMAP_BUF_BASE(&na->up); ft[ft_i].ft_len = 0; ft[ft_i].ft_flags = 0; } __builtin_prefetch(buf); ++ft_i; if (slot->flags & NS_MOREFRAG) { frags++; continue; } if (unlikely(netmap_verbose && frags > 1)) nm_prlim(5, "%d frags at %d", frags, ft_i - frags); ft[ft_i - frags].ft_frags = frags; frags = 1; if (unlikely((int)ft_i >= bridge_batch)) ft_i = nm_vale_flush(ft, ft_i, na, ring_nr); } if (frags > 1) { /* Here ft_i > 0, ft[ft_i-1].flags has NS_MOREFRAG, and we * have to fix frags count. */ frags--; ft[ft_i - 1].ft_flags &= ~NS_MOREFRAG; ft[ft_i - frags].ft_frags = frags; nm_prlim(5, "Truncate incomplete fragment at %d (%d frags)", ft_i, frags); } if (ft_i) ft_i = nm_vale_flush(ft, ft_i, na, ring_nr); BDG_RUNLOCK(b); return j; } /* ----- FreeBSD if_bridge hash function ------- */ /* * The following hash function is adapted from "Hash Functions" by Bob Jenkins * ("Algorithm Alley", Dr. Dobbs Journal, September 1997). * * http://www.burtleburtle.net/bob/hash/spooky.html */ #define mix(a, b, c) \ do { \ a -= b; a -= c; a ^= (c >> 13); \ b -= c; b -= a; b ^= (a << 8); \ c -= a; c -= b; c ^= (b >> 13); \ a -= b; a -= c; a ^= (c >> 12); \ b -= c; b -= a; b ^= (a << 16); \ c -= a; c -= b; c ^= (b >> 5); \ a -= b; a -= c; a ^= (c >> 3); \ b -= c; b -= a; b ^= (a << 10); \ c -= a; c -= b; c ^= (b >> 15); \ } while (/*CONSTCOND*/0) static __inline uint32_t nm_vale_rthash(const uint8_t *addr) { uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = 0; // hask key b += addr[5] << 8; b += addr[4]; a += addr[3] << 24; a += addr[2] << 16; a += addr[1] << 8; a += addr[0]; mix(a, b, c); #define BRIDGE_RTHASH_MASK (NM_BDG_HASH-1) return (c & BRIDGE_RTHASH_MASK); } #undef mix /* * Lookup function for a learning bridge. * Update the hash table with the source address, * and then returns the destination port index, and the * ring in *dst_ring (at the moment, always use ring 0) */ uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, struct netmap_vp_adapter *na, void *private_data) { uint8_t *buf = ((uint8_t *)ft->ft_buf) + ft->ft_offset; u_int buf_len = ft->ft_len - ft->ft_offset; struct nm_hash_ent *ht = private_data; uint32_t sh, dh; u_int dst, mysrc = na->bdg_port; uint64_t smac, dmac; uint8_t indbuf[12]; if (buf_len < 14) { return NM_BDG_NOPORT; } if (ft->ft_flags & NS_INDIRECT) { if (copyin(buf, indbuf, sizeof(indbuf))) { return NM_BDG_NOPORT; } buf = indbuf; } dmac = le64toh(*(uint64_t *)(buf)) & 0xffffffffffff; smac = le64toh(*(uint64_t *)(buf + 4)); smac >>= 16; /* * The hash is somewhat expensive, there might be some * worthwhile optimizations here. */ if (((buf[6] & 1) == 0) && (na->last_smac != smac)) { /* valid src */ uint8_t *s = buf+6; sh = nm_vale_rthash(s); /* hash of source */ /* update source port forwarding entry */ na->last_smac = ht[sh].mac = smac; /* XXX expire ? */ ht[sh].ports = mysrc; if (netmap_debug & NM_DEBUG_VALE) nm_prinf("src %02x:%02x:%02x:%02x:%02x:%02x on port %d", s[0], s[1], s[2], s[3], s[4], s[5], mysrc); } dst = NM_BDG_BROADCAST; if ((buf[0] & 1) == 0) { /* unicast */ dh = nm_vale_rthash(buf); /* hash of dst */ if (ht[dh].mac == dmac) { /* found dst */ dst = ht[dh].ports; } } return dst; } /* * Available space in the ring. Only used in VALE code * and only with is_rx = 1 */ static inline uint32_t nm_kr_space(struct netmap_kring *k, int is_rx) { int space; if (is_rx) { int busy = k->nkr_hwlease - k->nr_hwcur; if (busy < 0) busy += k->nkr_num_slots; space = k->nkr_num_slots - 1 - busy; } else { /* XXX never used in this branch */ space = k->nr_hwtail - k->nkr_hwlease; if (space < 0) space += k->nkr_num_slots; } #if 0 // sanity check if (k->nkr_hwlease >= k->nkr_num_slots || k->nr_hwcur >= k->nkr_num_slots || k->nr_tail >= k->nkr_num_slots || busy < 0 || busy >= k->nkr_num_slots) { nm_prerr("invalid kring, cur %d tail %d lease %d lease_idx %d lim %d", k->nr_hwcur, k->nr_hwtail, k->nkr_hwlease, k->nkr_lease_idx, k->nkr_num_slots); } #endif return space; } /* make a lease on the kring for N positions. return the * lease index * XXX only used in VALE code and with is_rx = 1 */ static inline uint32_t nm_kr_lease(struct netmap_kring *k, u_int n, int is_rx) { uint32_t lim = k->nkr_num_slots - 1; uint32_t lease_idx = k->nkr_lease_idx; k->nkr_leases[lease_idx] = NR_NOSLOT; k->nkr_lease_idx = nm_next(lease_idx, lim); #ifdef CONFIG_NETMAP_DEBUG if (n > nm_kr_space(k, is_rx)) { nm_prerr("invalid request for %d slots", n); panic("x"); } #endif /* CONFIG NETMAP_DEBUG */ /* XXX verify that there are n slots */ k->nkr_hwlease += n; if (k->nkr_hwlease > lim) k->nkr_hwlease -= lim + 1; #ifdef CONFIG_NETMAP_DEBUG if (k->nkr_hwlease >= k->nkr_num_slots || k->nr_hwcur >= k->nkr_num_slots || k->nr_hwtail >= k->nkr_num_slots || k->nkr_lease_idx >= k->nkr_num_slots) { nm_prerr("invalid kring %s, cur %d tail %d lease %d lease_idx %d lim %d", k->na->name, k->nr_hwcur, k->nr_hwtail, k->nkr_hwlease, k->nkr_lease_idx, k->nkr_num_slots); } #endif /* CONFIG_NETMAP_DEBUG */ return lease_idx; } /* * * This flush routine supports only unicast and broadcast but a large * number of ports, and lets us replace the learn and dispatch functions. */ int nm_vale_flush(struct nm_bdg_fwd *ft, u_int n, struct netmap_vp_adapter *na, u_int ring_nr) { struct nm_vale_q *dst_ents, *brddst; uint16_t num_dsts = 0, *dsts; struct nm_bridge *b = na->na_bdg; u_int i, me = na->bdg_port; /* * The work area (pointed by ft) is followed by an array of * pointers to queues , dst_ents; there are NM_BDG_MAXRINGS * queues per port plus one for the broadcast traffic. * Then we have an array of destination indexes. */ dst_ents = (struct nm_vale_q *)(ft + NM_BDG_BATCH_MAX); dsts = (uint16_t *)(dst_ents + NM_BDG_MAXPORTS * NM_BDG_MAXRINGS + 1); /* first pass: find a destination for each packet in the batch */ for (i = 0; likely(i < n); i += ft[i].ft_frags) { uint8_t dst_ring = ring_nr; /* default, same ring as origin */ uint16_t dst_port, d_i; struct nm_vale_q *d; struct nm_bdg_fwd *start_ft = NULL; nm_prdis("slot %d frags %d", i, ft[i].ft_frags); if (na->up.virt_hdr_len < ft[i].ft_len) { ft[i].ft_offset = na->up.virt_hdr_len; start_ft = &ft[i]; } else if (na->up.virt_hdr_len == ft[i].ft_len && ft[i].ft_flags & NS_MOREFRAG) { ft[i].ft_offset = ft[i].ft_len; start_ft = &ft[i+1]; } else { /* Drop the packet if the virtio-net header is not into the first * fragment nor at the very beginning of the second. */ continue; } dst_port = b->bdg_ops.lookup(start_ft, &dst_ring, na, b->private_data); if (netmap_verbose > 255) nm_prlim(5, "slot %d port %d -> %d", i, me, dst_port); if (dst_port >= NM_BDG_NOPORT) continue; /* this packet is identified to be dropped */ else if (dst_port == NM_BDG_BROADCAST) dst_ring = 0; /* broadcasts always go to ring 0 */ else if (unlikely(dst_port == me || !b->bdg_ports[dst_port])) continue; /* get a position in the scratch pad */ d_i = dst_port * NM_BDG_MAXRINGS + dst_ring; d = dst_ents + d_i; /* append the first fragment to the list */ if (d->bq_head == NM_FT_NULL) { /* new destination */ d->bq_head = d->bq_tail = i; /* remember this position to be scanned later */ if (dst_port != NM_BDG_BROADCAST) dsts[num_dsts++] = d_i; } else { ft[d->bq_tail].ft_next = i; d->bq_tail = i; } d->bq_len += ft[i].ft_frags; } /* * Broadcast traffic goes to ring 0 on all destinations. * So we need to add these rings to the list of ports to scan. * XXX at the moment we scan all NM_BDG_MAXPORTS ports, which is * expensive. We should keep a compact list of active destinations * so we could shorten this loop. */ brddst = dst_ents + NM_BDG_BROADCAST * NM_BDG_MAXRINGS; if (brddst->bq_head != NM_FT_NULL) { u_int j; for (j = 0; likely(j < b->bdg_active_ports); j++) { uint16_t d_i; i = b->bdg_port_index[j]; if (unlikely(i == me)) continue; d_i = i * NM_BDG_MAXRINGS; if (dst_ents[d_i].bq_head == NM_FT_NULL) dsts[num_dsts++] = d_i; } } nm_prdis(5, "pass 1 done %d pkts %d dsts", n, num_dsts); /* second pass: scan destinations */ for (i = 0; i < num_dsts; i++) { struct netmap_vp_adapter *dst_na; struct netmap_kring *kring; struct netmap_ring *ring; u_int dst_nr, lim, j, d_i, next, brd_next; u_int needed, howmany; int retry = netmap_txsync_retry; struct nm_vale_q *d; uint32_t my_start = 0, lease_idx = 0; int nrings; int virt_hdr_mismatch = 0; d_i = dsts[i]; nm_prdis("second pass %d port %d", i, d_i); d = dst_ents + d_i; // XXX fix the division dst_na = b->bdg_ports[d_i/NM_BDG_MAXRINGS]; /* protect from the lookup function returning an inactive * destination port */ if (unlikely(dst_na == NULL)) goto cleanup; if (dst_na->up.na_flags & NAF_SW_ONLY) goto cleanup; /* * The interface may be in !netmap mode in two cases: * - when na is attached but not activated yet; * - when na is being deactivated but is still attached. */ if (unlikely(!nm_netmap_on(&dst_na->up))) { nm_prdis("not in netmap mode!"); goto cleanup; } /* there is at least one either unicast or broadcast packet */ brd_next = brddst->bq_head; next = d->bq_head; /* we need to reserve this many slots. If fewer are * available, some packets will be dropped. * Packets may have multiple fragments, so we may not use * there is a chance that we may not use all of the slots * we have claimed, so we will need to handle the leftover * ones when we regain the lock. */ needed = d->bq_len + brddst->bq_len; if (unlikely(dst_na->up.virt_hdr_len != na->up.virt_hdr_len)) { if (netmap_verbose) { nm_prlim(3, "virt_hdr_mismatch, src %d dst %d", na->up.virt_hdr_len, dst_na->up.virt_hdr_len); } /* There is a virtio-net header/offloadings mismatch between * source and destination. The slower mismatch datapath will * be used to cope with all the mismatches. */ virt_hdr_mismatch = 1; if (dst_na->mfs < na->mfs) { /* We may need to do segmentation offloadings, and so * we may need a number of destination slots greater * than the number of input slots ('needed'). * We look for the smallest integer 'x' which satisfies: * needed * na->mfs + x * H <= x * na->mfs * where 'H' is the length of the longest header that may * be replicated in the segmentation process (e.g. for * TCPv4 we must account for ethernet header, IP header * and TCPv4 header). */ KASSERT(dst_na->mfs > 0, ("vpna->mfs is 0")); needed = (needed * na->mfs) / (dst_na->mfs - WORST_CASE_GSO_HEADER) + 1; nm_prdis(3, "srcmtu=%u, dstmtu=%u, x=%u", na->mfs, dst_na->mfs, needed); } } nm_prdis(5, "pass 2 dst %d is %x %s", i, d_i, nm_is_bwrap(&dst_na->up) ? "nic/host" : "virtual"); dst_nr = d_i & (NM_BDG_MAXRINGS-1); nrings = dst_na->up.num_rx_rings; if (dst_nr >= nrings) dst_nr = dst_nr % nrings; kring = dst_na->up.rx_rings[dst_nr]; ring = kring->ring; /* the destination ring may have not been opened for RX */ if (unlikely(ring == NULL || kring->nr_mode != NKR_NETMAP_ON)) goto cleanup; lim = kring->nkr_num_slots - 1; retry: if (dst_na->retry && retry) { /* try to get some free slot from the previous run */ kring->nm_notify(kring, NAF_FORCE_RECLAIM); /* actually useful only for bwraps, since there * the notify will trigger a txsync on the hwna. VALE ports * have dst_na->retry == 0 */ } /* reserve the buffers in the queue and an entry * to report completion, and drop lock. * XXX this might become a helper function. */ mtx_lock(&kring->q_lock); if (kring->nkr_stopped) { mtx_unlock(&kring->q_lock); goto cleanup; } my_start = j = kring->nkr_hwlease; howmany = nm_kr_space(kring, 1); if (needed < howmany) howmany = needed; lease_idx = nm_kr_lease(kring, howmany, 1); mtx_unlock(&kring->q_lock); /* only retry if we need more than available slots */ if (retry && needed <= howmany) retry = 0; /* copy to the destination queue */ while (howmany > 0) { struct netmap_slot *slot; struct nm_bdg_fwd *ft_p, *ft_end; u_int cnt; /* find the queue from which we pick next packet. * NM_FT_NULL is always higher than valid indexes * so we never dereference it if the other list * has packets (and if both are empty we never * get here). */ if (next < brd_next) { ft_p = ft + next; next = ft_p->ft_next; } else { /* insert broadcast */ ft_p = ft + brd_next; brd_next = ft_p->ft_next; } cnt = ft_p->ft_frags; // cnt > 0 if (unlikely(cnt > howmany)) break; /* no more space */ if (netmap_verbose && cnt > 1) nm_prlim(5, "rx %d frags to %d", cnt, j); ft_end = ft_p + cnt; if (unlikely(virt_hdr_mismatch)) { bdg_mismatch_datapath(na, dst_na, ft_p, ring, &j, lim, &howmany); } else { howmany -= cnt; do { char *dst, *src = ft_p->ft_buf; size_t copy_len = ft_p->ft_len, dst_len = copy_len; slot = &ring->slot[j]; dst = NMB(&dst_na->up, slot); nm_prdis("send [%d] %d(%d) bytes at %s:%d", i, (int)copy_len, (int)dst_len, dst_na->up.name, j); /* round to a multiple of 64 */ copy_len = (copy_len + 63) & ~63; if (unlikely(copy_len > NETMAP_BUF_SIZE(&dst_na->up) || copy_len > NETMAP_BUF_SIZE(&na->up))) { nm_prlim(5, "invalid len %d, down to 64", (int)copy_len); copy_len = dst_len = 64; // XXX } if (ft_p->ft_flags & NS_INDIRECT) { if (copyin(src, dst, copy_len)) { // invalid user pointer, pretend len is 0 dst_len = 0; } } else { //memcpy(dst, src, copy_len); pkt_copy(src, dst, (int)copy_len); } slot->len = dst_len; slot->flags = (cnt << 8)| NS_MOREFRAG; j = nm_next(j, lim); needed--; ft_p++; } while (ft_p != ft_end); slot->flags = (cnt << 8); /* clear flag on last entry */ } /* are we done ? */ if (next == NM_FT_NULL && brd_next == NM_FT_NULL) break; } { /* current position */ uint32_t *p = kring->nkr_leases; /* shorthand */ uint32_t update_pos; int still_locked = 1; mtx_lock(&kring->q_lock); if (unlikely(howmany > 0)) { /* not used all bufs. If i am the last one * i can recover the slots, otherwise must * fill them with 0 to mark empty packets. */ nm_prdis("leftover %d bufs", howmany); if (nm_next(lease_idx, lim) == kring->nkr_lease_idx) { /* yes i am the last one */ nm_prdis("roll back nkr_hwlease to %d", j); kring->nkr_hwlease = j; } else { while (howmany-- > 0) { ring->slot[j].len = 0; ring->slot[j].flags = 0; j = nm_next(j, lim); } } } p[lease_idx] = j; /* report I am done */ update_pos = kring->nr_hwtail; if (my_start == update_pos) { /* all slots before my_start have been reported, * so scan subsequent leases to see if other ranges * have been completed, and to a selwakeup or txsync. */ while (lease_idx != kring->nkr_lease_idx && p[lease_idx] != NR_NOSLOT) { j = p[lease_idx]; p[lease_idx] = NR_NOSLOT; lease_idx = nm_next(lease_idx, lim); } /* j is the new 'write' position. j != my_start * means there are new buffers to report */ if (likely(j != my_start)) { kring->nr_hwtail = j; still_locked = 0; mtx_unlock(&kring->q_lock); kring->nm_notify(kring, 0); /* this is netmap_notify for VALE ports and * netmap_bwrap_notify for bwrap. The latter will * trigger a txsync on the underlying hwna */ if (dst_na->retry && retry--) { /* XXX this is going to call nm_notify again. * Only useful for bwrap in virtual machines */ goto retry; } } } if (still_locked) mtx_unlock(&kring->q_lock); } cleanup: d->bq_head = d->bq_tail = NM_FT_NULL; /* cleanup */ d->bq_len = 0; } brddst->bq_head = brddst->bq_tail = NM_FT_NULL; /* cleanup */ brddst->bq_len = 0; return 0; } /* nm_txsync callback for VALE ports */ static int netmap_vale_vp_txsync(struct netmap_kring *kring, int flags) { struct netmap_vp_adapter *na = (struct netmap_vp_adapter *)kring->na; u_int done; u_int const lim = kring->nkr_num_slots - 1; u_int const head = kring->rhead; if (bridge_batch <= 0) { /* testing only */ done = head; // used all goto done; } if (!na->na_bdg) { done = head; goto done; } if (bridge_batch > NM_BDG_BATCH) bridge_batch = NM_BDG_BATCH; done = nm_vale_preflush(kring, head); done: if (done != head) nm_prerr("early break at %d/ %d, tail %d", done, head, kring->nr_hwtail); /* * packets between 'done' and 'cur' are left unsent. */ kring->nr_hwcur = done; kring->nr_hwtail = nm_prev(done, lim); if (netmap_debug & NM_DEBUG_TXSYNC) nm_prinf("%s ring %d flags %d", na->up.name, kring->ring_id, flags); return 0; } /* create a netmap_vp_adapter that describes a VALE port. * Only persistent VALE ports have a non-null ifp. */ static int netmap_vale_vp_create(struct nmreq_header *hdr, struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_vp_adapter **ret) { struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; struct netmap_vp_adapter *vpna; struct netmap_adapter *na; int error = 0; u_int npipes = 0; u_int extrabufs = 0; if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { return EINVAL; } vpna = nm_os_malloc(sizeof(*vpna)); if (vpna == NULL) return ENOMEM; na = &vpna->up; na->ifp = ifp; strlcpy(na->name, hdr->nr_name, sizeof(na->name)); /* bound checking */ na->num_tx_rings = req->nr_tx_rings; nm_bound_var(&na->num_tx_rings, 1, 1, NM_BDG_MAXRINGS, NULL); req->nr_tx_rings = na->num_tx_rings; /* write back */ na->num_rx_rings = req->nr_rx_rings; nm_bound_var(&na->num_rx_rings, 1, 1, NM_BDG_MAXRINGS, NULL); req->nr_rx_rings = na->num_rx_rings; /* write back */ nm_bound_var(&req->nr_tx_slots, NM_BRIDGE_RINGSIZE, 1, NM_BDG_MAXSLOTS, NULL); na->num_tx_desc = req->nr_tx_slots; nm_bound_var(&req->nr_rx_slots, NM_BRIDGE_RINGSIZE, 1, NM_BDG_MAXSLOTS, NULL); /* validate number of pipes. We want at least 1, * but probably can do with some more. * So let's use 2 as default (when 0 is supplied) */ nm_bound_var(&npipes, 2, 1, NM_MAXPIPES, NULL); /* validate extra bufs */ extrabufs = req->nr_extra_bufs; nm_bound_var(&extrabufs, 0, 0, 128*NM_BDG_MAXSLOTS, NULL); req->nr_extra_bufs = extrabufs; /* write back */ na->num_rx_desc = req->nr_rx_slots; /* Set the mfs to a default value, as it is needed on the VALE * mismatch datapath. XXX We should set it according to the MTU * known to the kernel. */ vpna->mfs = NM_BDG_MFS_DEFAULT; vpna->last_smac = ~0llu; /*if (vpna->mfs > netmap_buf_size) TODO netmap_buf_size is zero?? vpna->mfs = netmap_buf_size; */ if (netmap_verbose) nm_prinf("max frame size %u", vpna->mfs); na->na_flags |= NAF_BDG_MAYSLEEP; /* persistent VALE ports look like hw devices * with a native netmap adapter */ if (ifp) na->na_flags |= NAF_NATIVE; na->nm_txsync = netmap_vale_vp_txsync; na->nm_rxsync = netmap_vp_rxsync; /* use the one provided by bdg */ na->nm_register = netmap_vp_reg; /* use the one provided by bdg */ na->nm_krings_create = netmap_vale_vp_krings_create; na->nm_krings_delete = netmap_vale_vp_krings_delete; na->nm_dtor = netmap_vale_vp_dtor; nm_prdis("nr_mem_id %d", req->nr_mem_id); na->nm_mem = nmd ? netmap_mem_get(nmd): netmap_mem_private_new( na->num_tx_rings, na->num_tx_desc, na->num_rx_rings, na->num_rx_desc, req->nr_extra_bufs, npipes, &error); if (na->nm_mem == NULL) goto err; na->nm_bdg_attach = netmap_vale_vp_bdg_attach; /* other nmd fields are set in the common routine */ error = netmap_attach_common(na); if (error) goto err; *ret = vpna; return 0; err: if (na->nm_mem != NULL) netmap_mem_put(na->nm_mem); nm_os_free(vpna); return error; } /* nm_bdg_attach callback for VALE ports * The na_vp port is this same netmap_adapter. There is no host port. */ static int netmap_vale_vp_bdg_attach(const char *name, struct netmap_adapter *na, struct nm_bridge *b) { struct netmap_vp_adapter *vpna = (struct netmap_vp_adapter *)na; if ((b->bdg_flags & NM_BDG_NEED_BWRAP) || vpna->na_bdg) { return NM_NEED_BWRAP; } na->na_vp = vpna; strlcpy(na->name, name, sizeof(na->name)); na->na_hostvp = NULL; return 0; } static int netmap_vale_bwrap_krings_create(struct netmap_adapter *na) { int error; /* impersonate a netmap_vp_adapter */ error = netmap_vale_vp_krings_create(na); if (error) return error; error = netmap_bwrap_krings_create_common(na); if (error) { netmap_vale_vp_krings_delete(na); } return error; } static void netmap_vale_bwrap_krings_delete(struct netmap_adapter *na) { netmap_bwrap_krings_delete_common(na); netmap_vale_vp_krings_delete(na); } static int netmap_vale_bwrap_attach(const char *nr_name, struct netmap_adapter *hwna) { struct netmap_bwrap_adapter *bna; struct netmap_adapter *na = NULL; struct netmap_adapter *hostna = NULL; int error; bna = nm_os_malloc(sizeof(*bna)); if (bna == NULL) { return ENOMEM; } na = &bna->up.up; strlcpy(na->name, nr_name, sizeof(na->name)); na->nm_register = netmap_bwrap_reg; na->nm_txsync = netmap_vale_vp_txsync; // na->nm_rxsync = netmap_bwrap_rxsync; na->nm_krings_create = netmap_vale_bwrap_krings_create; na->nm_krings_delete = netmap_vale_bwrap_krings_delete; na->nm_notify = netmap_bwrap_notify; bna->up.retry = 1; /* XXX maybe this should depend on the hwna */ /* Set the mfs, needed on the VALE mismatch datapath. */ bna->up.mfs = NM_BDG_MFS_DEFAULT; if (hwna->na_flags & NAF_HOST_RINGS) { hostna = &bna->host.up; hostna->nm_notify = netmap_bwrap_notify; bna->host.mfs = NM_BDG_MFS_DEFAULT; } error = netmap_bwrap_attach_common(na, hwna); if (error) { nm_os_free(bna); } return error; } int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na, struct netmap_mem_d *nmd, int create) { return netmap_get_bdg_na(hdr, na, nmd, create, &vale_bdg_ops); } /* creates a persistent VALE port */ int nm_vi_create(struct nmreq_header *hdr) { struct nmreq_vale_newif *req = (struct nmreq_vale_newif *)(uintptr_t)hdr->nr_body; int error = 0; /* Build a nmreq_register out of the nmreq_vale_newif, * so that we can call netmap_get_bdg_na(). */ struct nmreq_register regreq; bzero(®req, sizeof(regreq)); regreq.nr_tx_slots = req->nr_tx_slots; regreq.nr_rx_slots = req->nr_rx_slots; regreq.nr_tx_rings = req->nr_tx_rings; regreq.nr_rx_rings = req->nr_rx_rings; regreq.nr_mem_id = req->nr_mem_id; hdr->nr_reqtype = NETMAP_REQ_REGISTER; hdr->nr_body = (uintptr_t)®req; error = netmap_vi_create(hdr, 0 /* no autodelete */); hdr->nr_reqtype = NETMAP_REQ_VALE_NEWIF; hdr->nr_body = (uintptr_t)req; /* Write back to the original struct. */ req->nr_tx_slots = regreq.nr_tx_slots; req->nr_rx_slots = regreq.nr_rx_slots; req->nr_tx_rings = regreq.nr_tx_rings; req->nr_rx_rings = regreq.nr_rx_rings; req->nr_mem_id = regreq.nr_mem_id; return error; } /* remove a persistent VALE port from the system */ int nm_vi_destroy(const char *name) { struct ifnet *ifp; struct netmap_vp_adapter *vpna; int error; ifp = ifunit_ref(name); if (!ifp) return ENXIO; NMG_LOCK(); /* make sure this is actually a VALE port */ if (!NM_NA_VALID(ifp) || NA(ifp)->nm_register != netmap_vp_reg) { error = EINVAL; goto err; } vpna = (struct netmap_vp_adapter *)NA(ifp); /* we can only destroy ports that were created via NETMAP_BDG_NEWIF */ if (vpna->autodelete) { error = EINVAL; goto err; } /* also make sure that nobody is using the inferface */ if (NETMAP_OWNED_BY_ANY(&vpna->up) || vpna->up.na_refcount > 1 /* any ref besides the one in nm_vi_create()? */) { error = EBUSY; goto err; } NMG_UNLOCK(); if (netmap_verbose) nm_prinf("destroying a persistent vale interface %s", ifp->if_xname); /* Linux requires all the references are released * before unregister */ netmap_detach(ifp); if_rele(ifp); nm_os_vi_detach(ifp); return 0; err: NMG_UNLOCK(); if_rele(ifp); return error; } static int nm_update_info(struct nmreq_register *req, struct netmap_adapter *na) { req->nr_rx_rings = na->num_rx_rings; req->nr_tx_rings = na->num_tx_rings; req->nr_rx_slots = na->num_rx_desc; req->nr_tx_slots = na->num_tx_desc; return netmap_mem_get_info(na->nm_mem, &req->nr_memsize, NULL, &req->nr_mem_id); } /* * Create a virtual interface registered to the system. * The interface will be attached to a bridge later. */ int netmap_vi_create(struct nmreq_header *hdr, int autodelete) { struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; struct ifnet *ifp; struct netmap_vp_adapter *vpna; struct netmap_mem_d *nmd = NULL; int error; if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { return EINVAL; } /* don't include VALE prefix */ if (!strncmp(hdr->nr_name, NM_BDG_NAME, strlen(NM_BDG_NAME))) return EINVAL; if (strlen(hdr->nr_name) >= IFNAMSIZ) { return EINVAL; } ifp = ifunit_ref(hdr->nr_name); if (ifp) { /* already exist, cannot create new one */ error = EEXIST; NMG_LOCK(); if (NM_NA_VALID(ifp)) { int update_err = nm_update_info(req, NA(ifp)); if (update_err) error = update_err; } NMG_UNLOCK(); if_rele(ifp); return error; } error = nm_os_vi_persist(hdr->nr_name, &ifp); if (error) return error; NMG_LOCK(); if (req->nr_mem_id) { nmd = netmap_mem_find(req->nr_mem_id); if (nmd == NULL) { error = EINVAL; goto err_1; } } /* netmap_vp_create creates a struct netmap_vp_adapter */ error = netmap_vale_vp_create(hdr, ifp, nmd, &vpna); if (error) { if (netmap_debug & NM_DEBUG_VALE) nm_prerr("error %d", error); goto err_1; } /* persist-specific routines */ vpna->up.nm_bdg_ctl = netmap_vp_bdg_ctl; if (!autodelete) { netmap_adapter_get(&vpna->up); } else { vpna->autodelete = 1; } NM_ATTACH_NA(ifp, &vpna->up); /* return the updated info */ error = nm_update_info(req, &vpna->up); if (error) { goto err_2; } nm_prdis("returning nr_mem_id %d", req->nr_mem_id); if (nmd) netmap_mem_put(nmd); NMG_UNLOCK(); nm_prdis("created %s", ifp->if_xname); return 0; err_2: netmap_detach(ifp); err_1: if (nmd) netmap_mem_put(nmd); NMG_UNLOCK(); nm_os_vi_detach(ifp); return error; } #endif /* WITH_VALE */