diff --git a/sys/net80211/ieee80211_crypto.c b/sys/net80211/ieee80211_crypto.c index daa2e0c1d6ec..b1c8b750e145 100644 --- a/sys/net80211/ieee80211_crypto.c +++ b/sys/net80211/ieee80211_crypto.c @@ -1,886 +1,887 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 generic crypto support. */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include /* XXX ETHER_HDR_LEN */ #include MALLOC_DEFINE(M_80211_CRYPTO, "80211crypto", "802.11 crypto state"); static int _ieee80211_crypto_delkey(struct ieee80211vap *, struct ieee80211_key *); /* * Table of registered cipher modules. */ static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX]; /* * Default "null" key management routines. */ static int null_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { if (!ieee80211_is_key_global(vap, k)) { /* * Not in the global key table, the driver should handle this * by allocating a slot in the h/w key table/cache. In * lieu of that return key slot 0 for any unicast key * request. We disallow the request if this is a group key. * This default policy does the right thing for legacy hardware * with a 4 key table. It also handles devices that pass * packets through untouched when marked with the WEP bit * and key index 0. */ if (k->wk_flags & IEEE80211_KEY_GROUP) return 0; *keyix = 0; /* NB: use key index 0 for ucast key */ } else { *keyix = ieee80211_crypto_get_key_wepidx(vap, k); } *rxkeyix = IEEE80211_KEYIX_NONE; /* XXX maybe *keyix? */ return 1; } static int null_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k) { return 1; } static int null_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k) { return 1; } static void null_key_update(struct ieee80211vap *vap) {} /* * Write-arounds for common operations. */ static __inline void cipher_detach(struct ieee80211_key *key) { key->wk_cipher->ic_detach(key); } static __inline void * cipher_attach(struct ieee80211vap *vap, struct ieee80211_key *key) { return key->wk_cipher->ic_attach(vap, key); } /* * Wrappers for driver key management methods. */ static __inline int dev_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *key, ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix) { return vap->iv_key_alloc(vap, key, keyix, rxkeyix); } static __inline int dev_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *key) { return vap->iv_key_delete(vap, key); } static __inline int dev_key_set(struct ieee80211vap *vap, const struct ieee80211_key *key) { return vap->iv_key_set(vap, key); } /* * Setup crypto support for a device/shared instance. */ void ieee80211_crypto_attach(struct ieee80211com *ic) { /* NB: we assume everything is pre-zero'd */ ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none; /* * Default set of net80211 supported ciphers. * * These are the default set that all drivers are expected to * support, either/or in hardware and software. * * Drivers can add their own support to this and the * hardware cipher list (ic_cryptocaps.) */ ic->ic_sw_cryptocaps = IEEE80211_CRYPTO_WEP | IEEE80211_CRYPTO_TKIP | IEEE80211_CRYPTO_AES_CCM; /* * Default set of key management types supported by net80211. * * These are supported by software net80211 and announced/ * driven by hostapd + wpa_supplicant. * * Drivers doing full supplicant offload must not set * anything here. * * Note that IEEE80211_C_WPA1 and IEEE80211_C_WPA2 are the * "old" style way of drivers announcing key management * capabilities. There are many, many more key management * suites in 802.11-2016 (see 9.4.2.25.3 - AKM suites.) * For now they still need to be set - these flags are checked * when assembling a beacon to reserve space for the WPA * vendor IE (WPA 1) and RSN IE (WPA 2). */ ic->ic_sw_keymgmtcaps = 0; } /* * Teardown crypto support. */ void ieee80211_crypto_detach(struct ieee80211com *ic) { } /* * Set the supported ciphers for software encryption. */ void ieee80211_crypto_set_supported_software_ciphers(struct ieee80211com *ic, uint32_t cipher_set) { ic->ic_sw_cryptocaps = cipher_set; } /* * Set the supported ciphers for hardware encryption. */ void ieee80211_crypto_set_supported_hardware_ciphers(struct ieee80211com *ic, uint32_t cipher_set) { ic->ic_cryptocaps = cipher_set; } /* * Set the supported software key management by the driver. * * These are the key management suites that are supported via * the driver via hostapd/wpa_supplicant. * * Key management which is completely offloaded (ie, the supplicant * runs in hardware/firmware) must not be set here. */ void ieee80211_crypto_set_supported_driver_keymgmt(struct ieee80211com *ic, uint32_t keymgmt_set) { ic->ic_sw_keymgmtcaps = keymgmt_set; } /* * Setup crypto support for a vap. */ void ieee80211_crypto_vattach(struct ieee80211vap *vap) { int i; /* NB: we assume everything is pre-zero'd */ vap->iv_max_keyix = IEEE80211_WEP_NKID; vap->iv_def_txkey = IEEE80211_KEYIX_NONE; for (i = 0; i < IEEE80211_WEP_NKID; i++) ieee80211_crypto_resetkey(vap, &vap->iv_nw_keys[i], IEEE80211_KEYIX_NONE); /* * Initialize the driver key support routines to noop entries. * This is useful especially for the cipher test modules. */ vap->iv_key_alloc = null_key_alloc; vap->iv_key_set = null_key_set; vap->iv_key_delete = null_key_delete; vap->iv_key_update_begin = null_key_update; vap->iv_key_update_end = null_key_update; } /* * Teardown crypto support for a vap. */ void ieee80211_crypto_vdetach(struct ieee80211vap *vap) { ieee80211_crypto_delglobalkeys(vap); } /* * Register a crypto cipher module. */ void ieee80211_crypto_register(const struct ieee80211_cipher *cip) { if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) { printf("%s: cipher %s has an invalid cipher index %u\n", __func__, cip->ic_name, cip->ic_cipher); return; } if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) { printf("%s: cipher %s registered with a different template\n", __func__, cip->ic_name); return; } ciphers[cip->ic_cipher] = cip; } /* * Unregister a crypto cipher module. */ void ieee80211_crypto_unregister(const struct ieee80211_cipher *cip) { if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) { printf("%s: cipher %s has an invalid cipher index %u\n", __func__, cip->ic_name, cip->ic_cipher); return; } if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) { printf("%s: cipher %s registered with a different template\n", __func__, cip->ic_name); return; } /* NB: don't complain about not being registered */ /* XXX disallow if references */ ciphers[cip->ic_cipher] = NULL; } int ieee80211_crypto_available(u_int cipher) { return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL; } /* XXX well-known names! */ static const char *cipher_modnames[IEEE80211_CIPHER_MAX] = { [IEEE80211_CIPHER_WEP] = "wlan_wep", [IEEE80211_CIPHER_TKIP] = "wlan_tkip", [IEEE80211_CIPHER_AES_OCB] = "wlan_aes_ocb", [IEEE80211_CIPHER_AES_CCM] = "wlan_ccmp", [IEEE80211_CIPHER_TKIPMIC] = "#4", /* NB: reserved */ [IEEE80211_CIPHER_CKIP] = "wlan_ckip", [IEEE80211_CIPHER_NONE] = "wlan_none", [IEEE80211_CIPHER_AES_CCM_256] = "wlan_ccmp", [IEEE80211_CIPHER_BIP_CMAC_128] = "wlan_bip_cmac", [IEEE80211_CIPHER_BIP_CMAC_256] = "wlan_bip_cmac", [IEEE80211_CIPHER_BIP_GMAC_128] = "wlan_bip_gmac", [IEEE80211_CIPHER_BIP_GMAC_256] = "wlan_bip_gmac", [IEEE80211_CIPHER_AES_GCM_128] = "wlan_gcmp", [IEEE80211_CIPHER_AES_GCM_256] = "wlan_gcmp", }; /* NB: there must be no overlap between user-supplied and device-owned flags */ CTASSERT((IEEE80211_KEY_COMMON & IEEE80211_KEY_DEVICE) == 0); /* * Establish a relationship between the specified key and cipher * and, if necessary, allocate a hardware index from the driver. * Note that when a fixed key index is required it must be specified. * * This must be the first call applied to a key; all the other key * routines assume wk_cipher is setup. * * Locking must be handled by the caller using: * ieee80211_key_update_begin(vap); * ieee80211_key_update_end(vap); */ int ieee80211_crypto_newkey(struct ieee80211vap *vap, int cipher, int flags, struct ieee80211_key *key) { struct ieee80211com *ic = vap->iv_ic; const struct ieee80211_cipher *cip; ieee80211_keyix keyix, rxkeyix; void *keyctx; int oflags; IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: cipher %u flags 0x%x keyix %u\n", __func__, cipher, flags, key->wk_keyix); /* * Validate cipher and set reference to cipher routines. */ if (cipher >= IEEE80211_CIPHER_MAX) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: invalid cipher %u\n", __func__, cipher); vap->iv_stats.is_crypto_badcipher++; return 0; } cip = ciphers[cipher]; if (cip == NULL) { /* * Auto-load cipher module if we have a well-known name * for it. It might be better to use string names rather * than numbers and craft a module name based on the cipher * name; e.g. wlan_cipher_. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: unregistered cipher %u, load module %s\n", __func__, cipher, cipher_modnames[cipher]); ieee80211_load_module(cipher_modnames[cipher]); /* * If cipher module loaded it should immediately * call ieee80211_crypto_register which will fill * in the entry in the ciphers array. */ cip = ciphers[cipher]; if (cip == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: unable to load cipher %u, module %s\n", __func__, cipher, cipher_modnames[cipher]); vap->iv_stats.is_crypto_nocipher++; return 0; } } oflags = key->wk_flags; flags &= IEEE80211_KEY_COMMON; /* NB: preserve device attributes */ flags |= (oflags & IEEE80211_KEY_DEVICE); /* * If the hardware does not support the cipher then * fallback to a host-based implementation. */ if ((ic->ic_cryptocaps & (1<ic_name); flags |= IEEE80211_KEY_SWCRYPT; } /* * Hardware TKIP with software MIC is an important * combination; we handle it by flagging each key, * the cipher modules honor it. */ if (cipher == IEEE80211_CIPHER_TKIP && (ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIPMIC) == 0) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: no h/w support for TKIP MIC, falling back to s/w\n", __func__); flags |= IEEE80211_KEY_SWMIC; } /* * Bind cipher to key instance. Note we do this * after checking the device capabilities so the * cipher module can optimize space usage based on * whether or not it needs to do the cipher work. */ if (key->wk_cipher != cip || key->wk_flags != flags) { /* * Fillin the flags so cipher modules can see s/w * crypto requirements and potentially allocate * different state and/or attach different method * pointers. */ key->wk_flags = flags; keyctx = cip->ic_attach(vap, key); if (keyctx == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: unable to attach cipher %s\n", __func__, cip->ic_name); key->wk_flags = oflags; /* restore old flags */ vap->iv_stats.is_crypto_attachfail++; return 0; } cipher_detach(key); key->wk_cipher = cip; /* XXX refcnt? */ key->wk_private = keyctx; } /* * Ask the driver for a key index if we don't have one. * Note that entries in the global key table always have * an index; this means it's safe to call this routine * for these entries just to setup the reference to the * cipher template. Note also that when using software * crypto we also call the driver to give us a key index. */ if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) { if (!dev_key_alloc(vap, key, &keyix, &rxkeyix)) { /* * Unable to setup driver state. */ vap->iv_stats.is_crypto_keyfail++; IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: unable to setup cipher %s\n", __func__, cip->ic_name); return 0; } if (key->wk_flags != flags) { /* * Driver overrode flags we setup; typically because * resources were unavailable to handle _this_ key. * Re-attach the cipher context to allow cipher * modules to handle differing requirements. */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: driver override for cipher %s, flags " "0x%x -> 0x%x\n", __func__, cip->ic_name, oflags, key->wk_flags); keyctx = cip->ic_attach(vap, key); if (keyctx == NULL) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: unable to attach cipher %s with " "flags 0x%x\n", __func__, cip->ic_name, key->wk_flags); key->wk_flags = oflags; /* restore old flags */ vap->iv_stats.is_crypto_attachfail++; return 0; } cipher_detach(key); key->wk_cipher = cip; /* XXX refcnt? */ key->wk_private = keyctx; } key->wk_keyix = keyix; key->wk_rxkeyix = rxkeyix; key->wk_flags |= IEEE80211_KEY_DEVKEY; } return 1; } /* * Remove the key (no locking, for internal use). */ static int _ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key) { KASSERT(key->wk_cipher != NULL, ("No cipher!")); IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n", __func__, key->wk_cipher->ic_name, key->wk_keyix, key->wk_flags, key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc, key->wk_keylen); if (key->wk_flags & IEEE80211_KEY_DEVKEY) { /* * Remove hardware entry. */ /* XXX key cache */ if (!dev_key_delete(vap, key)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: driver did not delete key index %u\n", __func__, key->wk_keyix); vap->iv_stats.is_crypto_delkey++; /* XXX recovery? */ } } cipher_detach(key); memset(key, 0, sizeof(*key)); ieee80211_crypto_resetkey(vap, key, IEEE80211_KEYIX_NONE); return 1; } /* * Remove the specified key. */ int ieee80211_crypto_delkey(struct ieee80211vap *vap, struct ieee80211_key *key) { int status; ieee80211_key_update_begin(vap); status = _ieee80211_crypto_delkey(vap, key); ieee80211_key_update_end(vap); return status; } /* * Clear the global key table. */ void ieee80211_crypto_delglobalkeys(struct ieee80211vap *vap) { int i; ieee80211_key_update_begin(vap); for (i = 0; i < IEEE80211_WEP_NKID; i++) (void) _ieee80211_crypto_delkey(vap, &vap->iv_nw_keys[i]); ieee80211_key_update_end(vap); } /* * Set the contents of the specified key. * * Locking must be handled by the caller using: * ieee80211_key_update_begin(vap); * ieee80211_key_update_end(vap); */ int ieee80211_crypto_setkey(struct ieee80211vap *vap, struct ieee80211_key *key) { const struct ieee80211_cipher *cip = key->wk_cipher; KASSERT(cip != NULL, ("No cipher!")); IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: %s keyix %u flags 0x%x mac %s rsc %ju tsc %ju len %u\n", __func__, cip->ic_name, key->wk_keyix, key->wk_flags, ether_sprintf(key->wk_macaddr), key->wk_keyrsc[IEEE80211_NONQOS_TID], key->wk_keytsc, key->wk_keylen); if ((key->wk_flags & IEEE80211_KEY_DEVKEY) == 0) { /* XXX nothing allocated, should not happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: no device key setup done; should not happen!\n", __func__); vap->iv_stats.is_crypto_setkey_nokey++; return 0; } /* * Give cipher a chance to validate key contents. * XXX should happen before modifying state. */ if (!cip->ic_setkey(key)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_CRYPTO, "%s: cipher %s rejected key index %u len %u flags 0x%x\n", __func__, cip->ic_name, key->wk_keyix, key->wk_keylen, key->wk_flags); vap->iv_stats.is_crypto_setkey_cipher++; return 0; } return dev_key_set(vap, key); } /* * Return index if the key is a WEP key (0..3); -1 otherwise. * * This is different to "get_keyid" which defaults to returning * 0 for unicast keys; it assumes that it won't be used for WEP. */ int ieee80211_crypto_get_key_wepidx(const struct ieee80211vap *vap, const struct ieee80211_key *k) { if (ieee80211_is_key_global(vap, k)) { return (k - vap->iv_nw_keys); } return (-1); } /* * Note: only supports a single unicast key (0). */ uint8_t ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k) { if (ieee80211_is_key_global(vap, k)) { return (k - vap->iv_nw_keys); } return (0); } struct ieee80211_key * ieee80211_crypto_get_txkey(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_frame *wh; /* * Multicast traffic always uses the multicast key. * * Historically we would fall back to the default * transmit key if there was no unicast key. This * behaviour was documented up to IEEE Std 802.11-2016, * 12.9.2.2 Per-MSDU/Per-A-MSDU Tx pseudocode, in the * 'else' case but is no longer in later versions of * the standard. Additionally falling back to the * group key for unicast was a security risk. */ wh = mtod(m, struct ieee80211_frame *); if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr1, "no default transmit key (%s) deftxkey %u", __func__, vap->iv_def_txkey); vap->iv_stats.is_tx_nodefkey++; return NULL; } return &vap->iv_nw_keys[vap->iv_def_txkey]; } if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) return NULL; return &ni->ni_ucastkey; } /* * Add privacy headers appropriate for the specified key. */ struct ieee80211_key * ieee80211_crypto_encap(struct ieee80211_node *ni, struct mbuf *m) { struct ieee80211_key *k; const struct ieee80211_cipher *cip; if ((k = ieee80211_crypto_get_txkey(ni, m)) != NULL) { cip = k->wk_cipher; return (cip->ic_encap(k, m) ? k : NULL); } return NULL; } /* * Validate and strip privacy headers (and trailer) for a * received frame that has the WEP/Privacy bit set. */ int ieee80211_crypto_decap(struct ieee80211_node *ni, struct mbuf *m, int hdrlen, struct ieee80211_key **key) { #define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN) #define IEEE80211_WEP_MINLEN \ (sizeof(struct ieee80211_frame) + \ IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_key *k; struct ieee80211_frame *wh; const struct ieee80211_rx_stats *rxs; const struct ieee80211_cipher *cip; uint8_t keyid; /* * Check for hardware decryption and IV stripping. * If the IV is stripped then we definitely can't find a key. * Set the key to NULL but return true; upper layers * will need to handle a NULL key for a successful * decrypt. */ rxs = ieee80211_get_rx_params_ptr(m); if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) { if (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP) { /* * Hardware decrypted, IV stripped. * We can't find a key with a stripped IV. * Return successful. */ *key = NULL; return (1); } } /* NB: this minimum size data frame could be bigger */ if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "%s: WEP data frame too short, len %u\n", __func__, m->m_pkthdr.len); vap->iv_stats.is_rx_tooshort++; /* XXX need unique stat? */ *key = NULL; return (0); } /* * Locate the key. If unicast and there is no unicast * key then we fall back to the key id in the header. * This assumes unicast keys are only configured when * the key id in the header is meaningless (typically 0). */ wh = mtod(m, struct ieee80211_frame *); m_copydata(m, hdrlen + IEEE80211_WEP_IVLEN, sizeof(keyid), &keyid); if (IEEE80211_IS_MULTICAST(wh->i_addr1) || IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) k = &vap->iv_nw_keys[keyid >> 6]; else k = &ni->ni_ucastkey; /* * Ensure crypto header is contiguous and long enough for all * decap work. */ cip = k->wk_cipher; if (m->m_len < hdrlen + cip->ic_header) { IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "frame is too short (%d < %u) for crypto decap", cip->ic_name, m->m_len, hdrlen + cip->ic_header); vap->iv_stats.is_rx_tooshort++; *key = NULL; return (0); } /* * Attempt decryption. * * If we fail then don't return the key - return NULL * and an error. */ if (cip->ic_decap(k, m, hdrlen)) { /* success */ *key = k; return (1); } /* Failure */ *key = NULL; return (0); #undef IEEE80211_WEP_MINLEN #undef IEEE80211_WEP_HDRLEN } /* * Check and remove any MIC. */ int ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k, struct mbuf *m, int force) { const struct ieee80211_cipher *cip; const struct ieee80211_rx_stats *rxs; struct ieee80211_frame *wh; rxs = ieee80211_get_rx_params_ptr(m); wh = mtod(m, struct ieee80211_frame *); /* * Handle demic / mic errors from hardware-decrypted offload devices. */ if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_DECRYPTED)) { if ((rxs->c_pktflags & IEEE80211_RX_F_FAIL_MMIC) != 0) { /* * Hardware has said MMIC failed. We don't care about * whether it was stripped or not. * * Eventually - teach the demic methods in crypto * modules to handle a NULL key and not to dereference * it. */ - ieee80211_notify_michael_failure(vap, wh, -1); + ieee80211_notify_michael_failure(vap, wh, + IEEE80211_KEYIX_NONE); return (0); } if ((rxs->c_pktflags & (IEEE80211_RX_F_MIC_STRIP|IEEE80211_RX_F_MMIC_STRIP)) != 0) { /* * Hardware has decrypted and not indicated a * MIC failure and has stripped the MIC. * We may not have a key, so for now just * return OK. */ return (1); } } /* * If we don't have a key at this point then we don't * have to demic anything. */ if (k == NULL) return (1); cip = k->wk_cipher; return (cip->ic_miclen > 0 ? cip->ic_demic(k, m, force) : 1); } static void load_ucastkey(void *arg, struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ieee80211_key *k; if (vap->iv_state != IEEE80211_S_RUN) return; k = &ni->ni_ucastkey; if (k->wk_flags & IEEE80211_KEY_DEVKEY) dev_key_set(vap, k); } /* * Re-load all keys known to the 802.11 layer that may * have hardware state backing them. This is used by * drivers on resume to push keys down into the device. */ void ieee80211_crypto_reload_keys(struct ieee80211com *ic) { struct ieee80211vap *vap; int i; /* * Keys in the global key table of each vap. */ /* NB: used only during resume so don't lock for now */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { if (vap->iv_state != IEEE80211_S_RUN) continue; for (i = 0; i < IEEE80211_WEP_NKID; i++) { const struct ieee80211_key *k = &vap->iv_nw_keys[i]; if (k->wk_flags & IEEE80211_KEY_DEVKEY) dev_key_set(vap, k); } } /* * Unicast keys. */ ieee80211_iterate_nodes(&ic->ic_sta, load_ucastkey, NULL); } /* * Set the default key index for WEP, or KEYIX_NONE for no default TX key. * * This should be done as part of a key update block (iv_key_update_begin / * iv_key_update_end.) */ void ieee80211_crypto_set_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid) { /* XXX TODO: assert we're in a key update block */ vap->iv_update_deftxkey(vap, kid); } diff --git a/sys/net80211/ieee80211_crypto.h b/sys/net80211/ieee80211_crypto.h index 5a365dd37aa3..a830d89c6dc8 100644 --- a/sys/net80211/ieee80211_crypto.h +++ b/sys/net80211/ieee80211_crypto.h @@ -1,278 +1,278 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _NET80211_IEEE80211_CRYPTO_H_ #define _NET80211_IEEE80211_CRYPTO_H_ /* * 802.11 protocol crypto-related definitions. */ #define IEEE80211_KEYBUF_SIZE 16 #define IEEE80211_MICBUF_SIZE (8+8) /* space for both tx+rx keys */ /* * Old WEP-style key. Deprecated. */ struct ieee80211_wepkey { u_int wk_len; /* key length in bytes */ uint8_t wk_key[IEEE80211_KEYBUF_SIZE]; }; struct ieee80211_rsnparms { uint8_t rsn_mcastcipher; /* mcast/group cipher */ uint8_t rsn_mcastkeylen; /* mcast key length */ uint8_t rsn_ucastcipher; /* selected unicast cipher */ uint8_t rsn_ucastkeylen; /* unicast key length */ uint8_t rsn_keymgmt; /* selected key mgmt algo */ uint16_t rsn_caps; /* capabilities */ }; struct ieee80211_cipher; /* * Crypto key state. There is sufficient room for all supported * ciphers (see below). The underlying ciphers are handled * separately through loadable cipher modules that register with * the generic crypto support. A key has a reference to an instance * of the cipher; any per-key state is hung off wk_private by the * cipher when it is attached. Ciphers are automatically called * to detach and cleanup any such state when the key is deleted. * * The generic crypto support handles encap/decap of cipher-related * frame contents for both hardware- and software-based implementations. * A key requiring software crypto support is automatically flagged and * the cipher is expected to honor this and do the necessary work. * Ciphers such as TKIP may also support mixed hardware/software * encrypt/decrypt and MIC processing. */ typedef uint16_t ieee80211_keyix; /* h/w key index */ struct ieee80211_key { uint8_t wk_keylen; /* key length in bytes */ uint8_t wk_pad; /* .. some drivers use this. Fix that. */ uint8_t wk_pad1[2]; uint32_t wk_flags; #define IEEE80211_KEY_XMIT 0x00000001 /* key used for xmit */ #define IEEE80211_KEY_RECV 0x00000002 /* key used for recv */ #define IEEE80211_KEY_GROUP 0x00000004 /* key used for WPA group operation */ #define IEEE80211_KEY_NOREPLAY 0x00000008 /* ignore replay failures */ #define IEEE80211_KEY_SWENCRYPT 0x00000010 /* host-based encrypt */ #define IEEE80211_KEY_SWDECRYPT 0x00000020 /* host-based decrypt */ #define IEEE80211_KEY_SWENMIC 0x00000040 /* host-based enmic */ #define IEEE80211_KEY_SWDEMIC 0x00000080 /* host-based demic */ #define IEEE80211_KEY_DEVKEY 0x00000100 /* device key request completed */ #define IEEE80211_KEY_CIPHER0 0x00001000 /* cipher-specific action 0 */ #define IEEE80211_KEY_CIPHER1 0x00002000 /* cipher-specific action 1 */ #define IEEE80211_KEY_NOIV 0x00004000 /* don't insert IV/MIC for !mgmt */ #define IEEE80211_KEY_NOIVMGT 0x00008000 /* don't insert IV/MIC for mgmt */ #define IEEE80211_KEY_NOMIC 0x00010000 /* don't insert MIC for !mgmt */ #define IEEE80211_KEY_NOMICMGT 0x00020000 /* don't insert MIC for mgmt */ ieee80211_keyix wk_keyix; /* h/w key index */ ieee80211_keyix wk_rxkeyix; /* optional h/w rx key index */ uint8_t wk_key[IEEE80211_KEYBUF_SIZE+IEEE80211_MICBUF_SIZE]; #define wk_txmic wk_key+IEEE80211_KEYBUF_SIZE+0 /* XXX can't () right */ #define wk_rxmic wk_key+IEEE80211_KEYBUF_SIZE+8 /* XXX can't () right */ /* key receive sequence counter */ uint64_t wk_keyrsc[IEEE80211_TID_SIZE]; uint64_t wk_keytsc; /* key transmit sequence counter */ const struct ieee80211_cipher *wk_cipher; void *wk_private; /* private cipher state */ uint8_t wk_macaddr[IEEE80211_ADDR_LEN]; }; #define IEEE80211_KEY_COMMON /* common flags passed in by apps */\ (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV | IEEE80211_KEY_GROUP | \ IEEE80211_KEY_NOREPLAY) #define IEEE80211_KEY_SWCRYPT \ (IEEE80211_KEY_SWENCRYPT | IEEE80211_KEY_SWDECRYPT) #define IEEE80211_KEY_SWMIC (IEEE80211_KEY_SWENMIC | IEEE80211_KEY_SWDEMIC) #define IEEE80211_KEY_DEVICE /* flags owned by device driver */\ (IEEE80211_KEY_DEVKEY|IEEE80211_KEY_CIPHER0|IEEE80211_KEY_CIPHER1| \ IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC|IEEE80211_KEY_NOIV | \ IEEE80211_KEY_NOIVMGT|IEEE80211_KEY_NOMIC|IEEE80211_KEY_NOMICMGT) #define IEEE80211_KEY_BITS \ "\20\1XMIT\2RECV\3GROUP\4NOREPLAY\5SWENCRYPT\6SWDECRYPT\7SWENMIC\10SWDEMIC" \ "\11DEVKEY\12CIPHER0\13CIPHER1\14NOIV\15NOIVMGT\16NOMIC\17NOMICMGT" #define IEEE80211_KEYIX_NONE ((ieee80211_keyix) -1) /* * NB: these values are ordered carefully; there are lots of * of implications in any reordering. Beware that 4 is used * only to indicate h/w TKIP MIC support in driver capabilities; * there is no separate cipher support (it's rolled into the * TKIP cipher support). */ #define IEEE80211_CIPHER_WEP 0 #define IEEE80211_CIPHER_TKIP 1 #define IEEE80211_CIPHER_AES_OCB 2 #define IEEE80211_CIPHER_AES_CCM 3 #define IEEE80211_CIPHER_TKIPMIC 4 /* TKIP MIC capability */ #define IEEE80211_CIPHER_CKIP 5 #define IEEE80211_CIPHER_NONE 6 /* pseudo value */ #define IEEE80211_CIPHER_AES_CCM_256 7 #define IEEE80211_CIPHER_BIP_CMAC_128 8 #define IEEE80211_CIPHER_BIP_CMAC_256 9 #define IEEE80211_CIPHER_BIP_GMAC_128 10 #define IEEE80211_CIPHER_BIP_GMAC_256 11 #define IEEE80211_CIPHER_AES_GCM_128 12 #define IEEE80211_CIPHER_AES_GCM_256 13 #define IEEE80211_CIPHER_LAST 13 #define IEEE80211_CIPHER_MAX (IEEE80211_CIPHER_LAST+1) /* capability bits in ic_cryptocaps/iv_cryptocaps */ #define IEEE80211_CRYPTO_WEP (1<wk_cipher == &ieee80211_cipher_none) void ieee80211_crypto_register(const struct ieee80211_cipher *); void ieee80211_crypto_unregister(const struct ieee80211_cipher *); int ieee80211_crypto_available(u_int cipher); int ieee80211_crypto_get_key_wepidx(const struct ieee80211vap *, const struct ieee80211_key *k); uint8_t ieee80211_crypto_get_keyid(struct ieee80211vap *vap, struct ieee80211_key *k); struct ieee80211_key *ieee80211_crypto_get_txkey(struct ieee80211_node *, struct mbuf *); struct ieee80211_key *ieee80211_crypto_encap(struct ieee80211_node *, struct mbuf *); int ieee80211_crypto_decap(struct ieee80211_node *, struct mbuf *, int, struct ieee80211_key **); int ieee80211_crypto_demic(struct ieee80211vap *vap, struct ieee80211_key *k, struct mbuf *, int); /* * Add any MIC. */ static __inline int ieee80211_crypto_enmic(struct ieee80211vap *vap, struct ieee80211_key *k, struct mbuf *m, int force) { const struct ieee80211_cipher *cip = k->wk_cipher; return (cip->ic_miclen > 0 ? cip->ic_enmic(k, m, force) : 1); } /* * Reset key state to an unused state. The crypto * key allocation mechanism insures other state (e.g. * key data) is properly setup before a key is used. */ static __inline void ieee80211_crypto_resetkey(struct ieee80211vap *vap, struct ieee80211_key *k, ieee80211_keyix ix) { k->wk_cipher = &ieee80211_cipher_none; k->wk_private = k->wk_cipher->ic_attach(vap, k); k->wk_keyix = k->wk_rxkeyix = ix; k->wk_flags = IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV; } /* * Crypt-related notification methods. */ void ieee80211_notify_replay_failure(struct ieee80211vap *, const struct ieee80211_frame *, const struct ieee80211_key *, uint64_t rsc, int tid); void ieee80211_notify_michael_failure(struct ieee80211vap *, - const struct ieee80211_frame *, u_int keyix); + const struct ieee80211_frame *, ieee80211_keyix keyix); #endif /* defined(__KERNEL__) || defined(_KERNEL) */ #endif /* _NET80211_IEEE80211_CRYPTO_H_ */ diff --git a/sys/net80211/ieee80211_freebsd.c b/sys/net80211/ieee80211_freebsd.c index db118bc19d16..d3c8352ab411 100644 --- a/sys/net80211/ieee80211_freebsd.c +++ b/sys/net80211/ieee80211_freebsd.c @@ -1,1193 +1,1193 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include /* * IEEE 802.11 support (FreeBSD-specific code) */ #include "opt_wlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEBUGNET_DEFINE(ieee80211); SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "IEEE 80211 parameters"); #ifdef IEEE80211_DEBUG static int ieee80211_debug = 0; SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug, 0, "debugging printfs"); #endif static const char wlanname[] = "wlan"; static struct if_clone *wlan_cloner; /* * priv(9) NET80211 checks. * Return 0 if operation is allowed, E* (usually EPERM) otherwise. */ int ieee80211_priv_check_vap_getkey(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY)); } int ieee80211_priv_check_vap_manage(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE)); } int ieee80211_priv_check_vap_setmac(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC)); } int ieee80211_priv_check_create_vap(u_long cmd __unused, struct ieee80211vap *vap __unused, struct ifnet *ifp __unused) { return (priv_check(curthread, PRIV_NET80211_CREATE_VAP)); } static int wlan_clone_create(struct if_clone *ifc, char *name, size_t len, struct ifc_data *ifd, struct ifnet **ifpp) { struct ieee80211_clone_params cp; struct ieee80211vap *vap; struct ieee80211com *ic; int error; error = ieee80211_priv_check_create_vap(0, NULL, NULL); if (error) return error; error = ifc_copyin(ifd, &cp, sizeof(cp)); if (error) return error; ic = ieee80211_find_com(cp.icp_parent); if (ic == NULL) return ENXIO; if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) { ic_printf(ic, "%s: invalid opmode %d\n", __func__, cp.icp_opmode); return EINVAL; } if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) { ic_printf(ic, "%s mode not supported\n", ieee80211_opmode_name[cp.icp_opmode]); return EOPNOTSUPP; } if ((cp.icp_flags & IEEE80211_CLONE_TDMA) && #ifdef IEEE80211_SUPPORT_TDMA (ic->ic_caps & IEEE80211_C_TDMA) == 0 #else (1) #endif ) { ic_printf(ic, "TDMA not supported\n"); return EOPNOTSUPP; } vap = ic->ic_vap_create(ic, wlanname, ifd->unit, cp.icp_opmode, cp.icp_flags, cp.icp_bssid, cp.icp_flags & IEEE80211_CLONE_MACADDR ? cp.icp_macaddr : ic->ic_macaddr); if (vap == NULL) return (EIO); #ifdef DEBUGNET if (ic->ic_debugnet_meth != NULL) DEBUGNET_SET(vap->iv_ifp, ieee80211); #endif *ifpp = vap->iv_ifp; return (0); } static int wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags) { struct ieee80211vap *vap = ifp->if_softc; struct ieee80211com *ic = vap->iv_ic; ic->ic_vap_delete(vap); return (0); } void ieee80211_vap_destroy(struct ieee80211vap *vap) { CURVNET_SET(vap->iv_ifp->if_vnet); if_clone_destroyif(wlan_cloner, vap->iv_ifp); CURVNET_RESTORE(); } int ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS) { int msecs = ticks_to_msecs(*(int *)arg1); int error; error = sysctl_handle_int(oidp, &msecs, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = msecs_to_ticks(msecs); return 0; } static int ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS) { int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT; int error; error = sysctl_handle_int(oidp, &inact, 0, req); if (error || !req->newptr) return error; *(int *)arg1 = inact / IEEE80211_INACT_WAIT; return 0; } static int ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; return SYSCTL_OUT_STR(req, ic->ic_name); } static int ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS) { struct ieee80211com *ic = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; IEEE80211_LOCK(ic); ieee80211_dfs_notify_radar(ic, ic->ic_curchan); IEEE80211_UNLOCK(ic); return 0; } /* * For now, just restart everything. * * Later on, it'd be nice to have a separate VAP restart to * full-device restart. */ static int ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS) { struct ieee80211vap *vap = arg1; int t = 0, error; error = sysctl_handle_int(oidp, &t, 0, req); if (error || !req->newptr) return error; ieee80211_restart_all(vap->iv_ic); return 0; } void ieee80211_sysctl_attach(struct ieee80211com *ic) { } void ieee80211_sysctl_detach(struct ieee80211com *ic) { } void ieee80211_sysctl_vattach(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; struct sysctl_ctx_list *ctx; struct sysctl_oid *oid; char num[14]; /* sufficient for 32 bits */ ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list), M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); if (ctx == NULL) { if_printf(ifp, "%s: cannot allocate sysctl context!\n", __func__); return; } sysctl_ctx_init(ctx); snprintf(num, sizeof(num), "%u", ifp->if_dunit); oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan), OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0, "driver capabilities"); #ifdef IEEE80211_DEBUG vap->iv_debug = ieee80211_debug; SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "debug", CTLFLAG_RW, &vap->iv_debug, 0, "control debugging printfs"); #endif SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0, "consecutive beacon misses before scanning"); /* XXX inherit from tunables */ SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I", "station inactivity timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I", "station inactivity probe timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I", "station authentication timeout (sec)"); SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I", "station initial state timeout (sec)"); if (vap->iv_htcaps & IEEE80211_HTC_HT) { SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_bk", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BK], 0, "BK traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_be", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_BE], 0, "BE traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vo", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VO], 0, "VO traffic tx aggr threshold (pps)"); SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "ampdu_mintraffic_vi", CTLFLAG_RW, &vap->iv_ampdu_mintraffic[WME_AC_VI], 0, "VI traffic tx aggr threshold (pps)"); } SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart"); if (vap->iv_caps & IEEE80211_C_DFS) { SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO, "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, vap->iv_ic, 0, ieee80211_sysctl_radar, "I", "simulate radar event"); } vap->iv_sysctl = ctx; vap->iv_oid = oid; } void ieee80211_sysctl_vdetach(struct ieee80211vap *vap) { if (vap->iv_sysctl != NULL) { sysctl_ctx_free(vap->iv_sysctl); IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF); vap->iv_sysctl = NULL; } } int ieee80211_com_vincref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); if (ostate & IEEE80211_COM_DETACHED) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (ENETDOWN); } if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) == IEEE80211_COM_REF_MAX) { atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD); return (EOVERFLOW); } return (0); } void ieee80211_com_vdecref(struct ieee80211vap *vap) { uint32_t ostate; ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD); KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0, ("com reference counter underflow")); (void) ostate; } void ieee80211_com_vdetach(struct ieee80211vap *vap) { int sleep_time; sleep_time = msecs_to_ticks(250); atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED); while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state), IEEE80211_COM_REF) != 0) pause("comref", sleep_time); } int ieee80211_node_dectestref(struct ieee80211_node *ni) { /* XXX need equivalent of atomic_dec_and_test */ atomic_subtract_int(&ni->ni_refcnt, 1); return atomic_cmpset_int(&ni->ni_refcnt, 0, 1); } void ieee80211_drain_ifq(struct ifqueue *ifq) { struct ieee80211_node *ni; struct mbuf *m; for (;;) { IF_DEQUEUE(ifq, m); if (m == NULL) break; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; KASSERT(ni != NULL, ("frame w/o node")); ieee80211_free_node(ni); m->m_pkthdr.rcvif = NULL; m_freem(m); } } void ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap) { struct ieee80211_node *ni; struct mbuf *m, **mprev; IF_LOCK(ifq); mprev = &ifq->ifq_head; while ((m = *mprev) != NULL) { ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; if (ni != NULL && ni->ni_vap == vap) { *mprev = m->m_nextpkt; /* remove from list */ ifq->ifq_len--; m_freem(m); ieee80211_free_node(ni); /* reclaim ref */ } else mprev = &m->m_nextpkt; } /* recalculate tail ptr */ m = ifq->ifq_head; for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt) ; ifq->ifq_tail = m; IF_UNLOCK(ifq); } /* * As above, for mbufs allocated with m_gethdr/MGETHDR * or initialized by M_COPY_PKTHDR. */ #define MC_ALIGN(m, len) \ do { \ (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \ } while (/* CONSTCOND */ 0) /* * Allocate and setup a management frame of the specified * size. We return the mbuf and a pointer to the start * of the contiguous data area that's been reserved based * on the packet length. The data area is forced to 32-bit * alignment and the buffer length to a multiple of 4 bytes. * This is done mainly so beacon frames (that require this) * can use this interface too. */ struct mbuf * ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen) { struct mbuf *m; u_int len; /* * NB: we know the mbuf routines will align the data area * so we don't need to do anything special. */ len = roundup2(headroom + pktlen, 4); KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len)); if (len < MINCLSIZE) { m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); /* * Align the data in case additional headers are added. * This should only happen when a WEP header is added * which only happens for shared key authentication mgt * frames which all fit in MHLEN. */ if (m != NULL) M_ALIGN(m, len); } else { m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR); if (m != NULL) MC_ALIGN(m, len); } if (m != NULL) { m->m_data += headroom; *frm = m->m_data; } return m; } #ifndef __NO_STRICT_ALIGNMENT /* * Re-align the payload in the mbuf. This is mainly used (right now) * to handle IP header alignment requirements on certain architectures. */ struct mbuf * ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align) { int pktlen, space; struct mbuf *n; pktlen = m->m_pkthdr.len; space = pktlen + align; if (space < MINCLSIZE) n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA); else { n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR, space <= MCLBYTES ? MCLBYTES : #if MJUMPAGESIZE != MCLBYTES space <= MJUMPAGESIZE ? MJUMPAGESIZE : #endif space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES); } if (__predict_true(n != NULL)) { m_move_pkthdr(n, m); n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align); m_copydata(m, 0, pktlen, mtod(n, caddr_t)); n->m_len = pktlen; } else { IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY, mtod(m, const struct ieee80211_frame *), NULL, "%s", "no mbuf to realign"); vap->iv_stats.is_rx_badalign++; } m_freem(m); return n; } #endif /* !__NO_STRICT_ALIGNMENT */ int ieee80211_add_callback(struct mbuf *m, void (*func)(struct ieee80211_node *, void *, int), void *arg) { struct m_tag *mtag; struct ieee80211_cb *cb; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT); if (mtag == NULL) return 0; cb = (struct ieee80211_cb *)(mtag+1); cb->func = func; cb->arg = arg; m_tag_prepend(m, mtag); m->m_flags |= M_TXCB; return 1; } int ieee80211_add_xmit_params(struct mbuf *m, const struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); tx = (struct ieee80211_tx_params *)(mtag+1); memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_xmit_params(struct mbuf *m, struct ieee80211_bpf_params *params) { struct m_tag *mtag; struct ieee80211_tx_params *tx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS, NULL); if (mtag == NULL) return (-1); tx = (struct ieee80211_tx_params *)(mtag + 1); memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params)); return (0); } void ieee80211_process_callback(struct ieee80211_node *ni, struct mbuf *m, int status) { struct m_tag *mtag; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL); if (mtag != NULL) { struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1); cb->func(ni, cb->arg, status); } } /* * Add RX parameters to the given mbuf. * * Returns 1 if OK, 0 on error. */ int ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(&rx->params, rxs, sizeof(*rxs)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (-1); rx = (struct ieee80211_rx_params *)(mtag + 1); memcpy(rxs, &rx->params, sizeof(*rxs)); return (0); } const struct ieee80211_rx_stats * ieee80211_get_rx_params_ptr(struct mbuf *m) { struct m_tag *mtag; struct ieee80211_rx_params *rx; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS, NULL); if (mtag == NULL) return (NULL); rx = (struct ieee80211_rx_params *)(mtag + 1); return (&rx->params); } /* * Add TOA parameters to the given mbuf. */ int ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); memcpy(rp, p, sizeof(*rp)); m_tag_prepend(m, mtag); return (1); } int ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p) { struct m_tag *mtag; struct ieee80211_toa_params *rp; mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS, NULL); if (mtag == NULL) return (0); rp = (struct ieee80211_toa_params *)(mtag + 1); if (p != NULL) memcpy(p, rp, sizeof(*p)); return (1); } /* * Transmit a frame to the parent interface. */ int ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m) { int error; /* * Assert the IC TX lock is held - this enforces the * processing -> queuing order is maintained */ IEEE80211_TX_LOCK_ASSERT(ic); error = ic->ic_transmit(ic, m); if (error) { struct ieee80211_node *ni; ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; /* XXX number of fragments */ if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1); ieee80211_free_node(ni); ieee80211_free_mbuf(m); } return (error); } /* * Transmit a frame to the VAP interface. */ int ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m) { struct ifnet *ifp = vap->iv_ifp; /* * When transmitting via the VAP, we shouldn't hold * any IC TX lock as the VAP TX path will acquire it. */ IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic); return (ifp->if_transmit(ifp, m)); } #include void net80211_get_random_bytes(void *p, size_t n) { uint8_t *dp = p; while (n > 0) { uint32_t v = arc4random(); size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n; bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n); dp += sizeof(uint32_t), n -= nb; } } /* * Helper function for events that pass just a single mac address. */ static void notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN]) { struct ieee80211_join_event iev; CURVNET_SET(ifp->if_vnet); memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, mac); rt_ieee80211msg(ifp, op, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid); if_link_state_change(ifp, LINK_STATE_UP); } else { notify_macaddr(ifp, newassoc ? RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_node_leave(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; CURVNET_SET_QUIET(ifp->if_vnet); IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave", (ni == vap->iv_bss) ? "bss " : ""); if (ni == vap->iv_bss) { rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0); if_link_state_change(ifp, LINK_STATE_DOWN); } else { /* fire off wireless event station leaving */ notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr); } CURVNET_RESTORE(); } void ieee80211_notify_scan_done(struct ieee80211vap *vap) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done"); /* dispatch wireless event indicating scan completed */ CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0); CURVNET_RESTORE(); } void ieee80211_notify_replay_failure(struct ieee80211vap *vap, const struct ieee80211_frame *wh, const struct ieee80211_key *k, u_int64_t rsc, int tid) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "%s replay detected tid %d ", k->wk_cipher->ic_name, tid, (intmax_t) rsc, (intmax_t) rsc, (intmax_t) k->wk_keyrsc[tid], (intmax_t) k->wk_keyrsc[tid], k->wk_keyix, k->wk_rxkeyix); if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_replay_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = k->wk_cipher->ic_cipher; if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE) iev.iev_keyix = k->wk_rxkeyix; else iev.iev_keyix = k->wk_keyix; iev.iev_keyrsc = k->wk_keyrsc[tid]; iev.iev_rsc = rsc; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_michael_failure(struct ieee80211vap *vap, - const struct ieee80211_frame *wh, u_int keyix) + const struct ieee80211_frame *wh, ieee80211_keyix keyix) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2, "michael MIC verification failed ", keyix); vap->iv_stats.is_rx_tkipmic++; if (ifp != NULL) { /* NB: for cipher test modules */ struct ieee80211_michael_event iev; IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1); IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2); iev.iev_cipher = IEEE80211_CIPHER_TKIP; iev.iev_keyix = keyix; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_wds_discover(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr); } void ieee80211_notify_csa(struct ieee80211com *ic, const struct ieee80211_channel *c, int mode, int count) { struct ieee80211_csa_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_mode = mode; iev.iev_count = count; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_radar(struct ieee80211com *ic, const struct ieee80211_channel *c) { struct ieee80211_radar_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_cac(struct ieee80211com *ic, const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type) { struct ieee80211_cac_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_flags = c->ic_flags; iev.iev_freq = c->ic_freq; iev.iev_ieee = c->ic_ieee; iev.iev_type = type; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_node_deauth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth"); notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr); } void ieee80211_notify_node_auth(struct ieee80211_node *ni) { struct ieee80211vap *vap = ni->ni_vap; struct ifnet *ifp = vap->iv_ifp; IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth"); notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr); } void ieee80211_notify_country(struct ieee80211vap *vap, const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2]) { struct ifnet *ifp = vap->iv_ifp; struct ieee80211_country_event iev; memset(&iev, 0, sizeof(iev)); IEEE80211_ADDR_COPY(iev.iev_addr, bssid); iev.iev_cc[0] = cc[0]; iev.iev_cc[1] = cc[1]; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev)); CURVNET_RESTORE(); } void ieee80211_notify_radio(struct ieee80211com *ic, int state) { struct ieee80211_radio_event iev; struct ieee80211vap *vap; struct ifnet *ifp; memset(&iev, 0, sizeof(iev)); iev.iev_state = state; TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { ifp = vap->iv_ifp; CURVNET_SET(ifp->if_vnet); rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev)); CURVNET_RESTORE(); } } void ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask) { struct ifnet *ifp = vap->iv_ifp; IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n", "interface state change"); CURVNET_SET(ifp->if_vnet); rt_ifmsg(ifp, if_flags_mask); CURVNET_RESTORE(); } void ieee80211_load_module(const char *modname) { #ifdef notyet (void)kern_kldload(curthread, modname, NULL); #else printf("%s: load the %s module by hand for now.\n", __func__, modname); #endif } static eventhandler_tag wlan_bpfevent; static eventhandler_tag wlan_ifllevent; static void bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach) { /* NB: identify vap's by if_init */ if (dlt == DLT_IEEE802_11_RADIO && ifp->if_init == ieee80211_init) { struct ieee80211vap *vap = ifp->if_softc; /* * Track bpf radiotap listener state. We mark the vap * to indicate if any listener is present and the com * to indicate if any listener exists on any associated * vap. This flag is used by drivers to prepare radiotap * state only when needed. */ if (attach) { ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_add_int(&vap->iv_ic->ic_montaps, 1); } else if (!bpf_peers_present(vap->iv_rawbpf)) { ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF); if (vap->iv_opmode == IEEE80211_M_MONITOR) atomic_subtract_int(&vap->iv_ic->ic_montaps, 1); } } } /* * Change MAC address on the vap (if was not started). */ static void wlan_iflladdr(void *arg __unused, struct ifnet *ifp) { /* NB: identify vap's by if_init */ if (ifp->if_init == ieee80211_init && (ifp->if_flags & IFF_UP) == 0) { struct ieee80211vap *vap = ifp->if_softc; IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp)); } } /* * Fetch the VAP name. * * This returns a const char pointer suitable for debugging, * but don't expect it to stick around for much longer. */ const char * ieee80211_get_vap_ifname(struct ieee80211vap *vap) { if (vap->iv_ifp == NULL) return "(none)"; return vap->iv_ifp->if_xname; } #ifdef DEBUGNET static void ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize); IEEE80211_UNLOCK(ic); } static void ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; IEEE80211_LOCK(ic); ic->ic_debugnet_meth->dn8_event(ic, ev); IEEE80211_UNLOCK(ic); } static int ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) { return (ieee80211_vap_transmit(ifp, m)); } static int ieee80211_debugnet_poll(struct ifnet *ifp, int count) { struct ieee80211vap *vap; struct ieee80211com *ic; vap = if_getsoftc(ifp); ic = vap->iv_ic; return (ic->ic_debugnet_meth->dn8_poll(ic, count)); } #endif /* * Module glue. * * NB: the module name is "wlan" for compatibility with NetBSD. */ static int wlan_modevent(module_t mod, int type, void *unused) { switch (type) { case MOD_LOAD: if (bootverbose) printf("wlan: <802.11 Link Layer>\n"); wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track, bpf_track, 0, EVENTHANDLER_PRI_ANY); wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event, wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY); struct if_clone_addreq req = { .create_f = wlan_clone_create, .destroy_f = wlan_clone_destroy, .flags = IFC_F_AUTOUNIT, }; wlan_cloner = ifc_attach_cloner(wlanname, &req); return 0; case MOD_UNLOAD: ifc_detach_cloner(wlan_cloner); EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent); EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent); return 0; } return EINVAL; } static moduledata_t wlan_mod = { wlanname, wlan_modevent, 0 }; DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); MODULE_VERSION(wlan, 1); MODULE_DEPEND(wlan, ether, 1, 1, 1); #ifdef IEEE80211_ALQ MODULE_DEPEND(wlan, alq, 1, 1, 1); #endif /* IEEE80211_ALQ */