diff --git a/sys/dev/mlx4/mlx4_en/mlx4_en_tx.c b/sys/dev/mlx4/mlx4_en/mlx4_en_tx.c index 9a73c7571fd7..d45ccacd7499 100644 --- a/sys/dev/mlx4/mlx4_en/mlx4_en_tx.c +++ b/sys/dev/mlx4/mlx4_en/mlx4_en_tx.c @@ -1,1002 +1,1002 @@ /* * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #define LINUXKPI_PARAM_PREFIX mlx4_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "en.h" int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring **pring, u32 size, u16 stride, int node, int queue_idx) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_ring *ring; uint32_t x; int tmp; int err; ring = kzalloc_node(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL, node); if (!ring) { ring = kzalloc(sizeof(struct mlx4_en_tx_ring), GFP_KERNEL); if (!ring) { en_err(priv, "Failed allocating TX ring\n"); return -ENOMEM; } } /* Create DMA descriptor TAG */ if ((err = -bus_dma_tag_create( bus_get_dma_tag(mdev->pdev->dev.bsddev), 1, /* any alignment */ 0, /* no boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MLX4_EN_TX_MAX_PAYLOAD_SIZE, /* maxsize */ MLX4_EN_TX_MAX_MBUF_FRAGS, /* nsegments */ MLX4_EN_TX_MAX_MBUF_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockfuncarg */ &ring->dma_tag))) goto done; ring->size = size; ring->size_mask = size - 1; ring->stride = stride; ring->inline_thold = MAX(MIN_PKT_LEN, MIN(priv->prof->inline_thold, MAX_INLINE)); mtx_init(&ring->tx_lock, "mlx4 tx", NULL, MTX_DEF); mtx_init(&ring->comp_lock, "mlx4 comp", NULL, MTX_DEF); tmp = size * sizeof(struct mlx4_en_tx_info); ring->tx_info = kzalloc_node(tmp, GFP_KERNEL, node); if (!ring->tx_info) { ring->tx_info = kzalloc(tmp, GFP_KERNEL); if (!ring->tx_info) { err = -ENOMEM; goto err_ring; } } /* Create DMA descriptor MAPs */ for (x = 0; x != size; x++) { err = -bus_dmamap_create(ring->dma_tag, 0, &ring->tx_info[x].dma_map); if (err != 0) { while (x--) { bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); } goto err_info; } } en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", ring->tx_info, tmp); ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); /* Allocate HW buffers on provided NUMA node */ err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 2 * PAGE_SIZE); if (err) { en_err(priv, "Failed allocating hwq resources\n"); goto err_dma_map; } err = mlx4_en_map_buffer(&ring->wqres.buf); if (err) { en_err(priv, "Failed to map TX buffer\n"); goto err_hwq_res; } ring->buf = ring->wqres.buf.direct.buf; en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d " "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size, ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map); err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, MLX4_RESERVE_ETH_BF_QP); if (err) { en_err(priv, "failed reserving qp for TX ring\n"); goto err_map; } err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp, GFP_KERNEL); if (err) { en_err(priv, "Failed allocating qp %d\n", ring->qpn); goto err_reserve; } ring->qp.event = mlx4_en_sqp_event; err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); if (err) { en_dbg(DRV, priv, "working without blueflame (%d)", err); ring->bf.uar = &mdev->priv_uar; ring->bf.uar->map = mdev->uar_map; ring->bf_enabled = false; } else ring->bf_enabled = true; ring->queue_index = queue_idx; *pring = ring; return 0; err_reserve: mlx4_qp_release_range(mdev->dev, ring->qpn, 1); err_map: mlx4_en_unmap_buffer(&ring->wqres.buf); err_hwq_res: mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); err_dma_map: for (x = 0; x != size; x++) bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); err_info: vfree(ring->tx_info); err_ring: bus_dma_tag_destroy(ring->dma_tag); done: kfree(ring); return err; } void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring **pring) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_ring *ring = *pring; uint32_t x; en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); if (ring->bf_enabled) mlx4_bf_free(mdev->dev, &ring->bf); mlx4_qp_remove(mdev->dev, &ring->qp); mlx4_qp_free(mdev->dev, &ring->qp); mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); mlx4_en_unmap_buffer(&ring->wqres.buf); mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); for (x = 0; x != ring->size; x++) bus_dmamap_destroy(ring->dma_tag, ring->tx_info[x].dma_map); vfree(ring->tx_info); mtx_destroy(&ring->tx_lock); mtx_destroy(&ring->comp_lock); bus_dma_tag_destroy(ring->dma_tag); kfree(ring); *pring = NULL; } int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int cq, int user_prio) { struct mlx4_en_dev *mdev = priv->mdev; int err; ring->cqn = cq; ring->prod = 0; ring->cons = 0xffffffff; ring->last_nr_txbb = 1; ring->poll_cnt = 0; memset(ring->buf, 0, ring->buf_size); ring->watchdog_time = 0; ring->qp_state = MLX4_QP_STATE_RST; ring->doorbell_qpn = ring->qp.qpn << 8; mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, ring->cqn, user_prio, &ring->context); if (ring->bf_enabled) ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, &ring->qp, &ring->qp_state); return err; } void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); } static volatile struct mlx4_wqe_data_seg * mlx4_en_store_inline_lso_data(volatile struct mlx4_wqe_data_seg *dseg, struct mbuf *mb, int len, __be32 owner_bit) { uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); /* copy data into place */ m_copydata(mb, 0, len, inl + 4); dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); return (dseg); } static void mlx4_en_store_inline_lso_header(volatile struct mlx4_wqe_data_seg *dseg, int len, __be32 owner_bit) { } static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, u32 index, u8 owner) { struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; struct mlx4_en_tx_desc *tx_desc = (struct mlx4_en_tx_desc *) (ring->buf + (index * TXBB_SIZE)); volatile __be32 *ptr = (__be32 *)tx_desc; const __be32 stamp = cpu_to_be32(STAMP_VAL | ((u32)owner << STAMP_SHIFT)); u32 i; /* Stamp the freed descriptor */ for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { *ptr = stamp; ptr += STAMP_DWORDS; } } static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, u32 index) { struct mlx4_en_tx_info *tx_info; struct mbuf *mb; tx_info = &ring->tx_info[index]; mb = tx_info->mb; if (mb == NULL) goto done; bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); m_freem(mb); done: return (tx_info->nr_txbb); } int mlx4_en_free_tx_buf(if_t dev, struct mlx4_en_tx_ring *ring) { struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); int cnt = 0; /* Skip last polled descriptor */ ring->cons += ring->last_nr_txbb; en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", ring->cons, ring->prod); if ((u32) (ring->prod - ring->cons) > ring->size) { en_warn(priv, "Tx consumer passed producer!\n"); return 0; } while (ring->cons != ring->prod) { ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, ring->cons & ring->size_mask); ring->cons += ring->last_nr_txbb; cnt++; } if (cnt) en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); return cnt; } static bool mlx4_en_tx_ring_is_full(struct mlx4_en_tx_ring *ring) { int wqs; wqs = ring->size - (ring->prod - ring->cons); return (wqs < (HEADROOM + (2 * MLX4_EN_TX_WQE_MAX_WQEBBS))); } static int mlx4_en_process_tx_cq(if_t dev, struct mlx4_en_cq *cq) { struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); struct mlx4_cq *mcq = &cq->mcq; struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; struct mlx4_cqe *cqe; u16 index; u16 new_index, ring_index, stamp_index; u32 txbbs_skipped = 0; u32 txbbs_stamp = 0; u32 cons_index = mcq->cons_index; int size = cq->size; u32 size_mask = ring->size_mask; struct mlx4_cqe *buf = cq->buf; int factor = priv->cqe_factor; if (!priv->port_up) return 0; index = cons_index & size_mask; cqe = &buf[(index << factor) + factor]; ring_index = ring->cons & size_mask; stamp_index = ring_index; /* Process all completed CQEs */ while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, cons_index & size)) { /* * make sure we read the CQE after we read the * ownership bit */ rmb(); if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == MLX4_CQE_OPCODE_ERROR)) { en_err(priv, "CQE completed in error - vendor syndrom: 0x%x syndrom: 0x%x\n", ((struct mlx4_err_cqe *)cqe)-> vendor_err_syndrome, ((struct mlx4_err_cqe *)cqe)->syndrome); } /* Skip over last polled CQE */ new_index = be16_to_cpu(cqe->wqe_index) & size_mask; do { txbbs_skipped += ring->last_nr_txbb; ring_index = (ring_index + ring->last_nr_txbb) & size_mask; /* free next descriptor */ ring->last_nr_txbb = mlx4_en_free_tx_desc( priv, ring, ring_index); mlx4_en_stamp_wqe(priv, ring, stamp_index, !!((ring->cons + txbbs_stamp) & ring->size)); stamp_index = ring_index; txbbs_stamp = txbbs_skipped; } while (ring_index != new_index); ++cons_index; index = cons_index & size_mask; cqe = &buf[(index << factor) + factor]; } /* * To prevent CQ overflow we first update CQ consumer and only then * the ring consumer. */ mcq->cons_index = cons_index; mlx4_cq_set_ci(mcq); wmb(); ring->cons += txbbs_skipped; return (0); } void mlx4_en_tx_irq(struct mlx4_cq *mcq) { struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); struct mlx4_en_priv *priv = mlx4_netdev_priv(cq->dev); struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; if (priv->port_up == 0 || !spin_trylock(&ring->comp_lock)) return; mlx4_en_process_tx_cq(cq->dev, cq); mod_timer(&cq->timer, jiffies + 1); spin_unlock(&ring->comp_lock); } void mlx4_en_poll_tx_cq(unsigned long data) { struct mlx4_en_cq *cq = (struct mlx4_en_cq *) data; struct mlx4_en_priv *priv = mlx4_netdev_priv(cq->dev); struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->ring]; u32 inflight; INC_PERF_COUNTER(priv->pstats.tx_poll); if (priv->port_up == 0) return; if (!spin_trylock(&ring->comp_lock)) { mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); return; } mlx4_en_process_tx_cq(cq->dev, cq); inflight = (u32) (ring->prod - ring->cons - ring->last_nr_txbb); /* If there are still packets in flight and the timer has not already * been scheduled by the Tx routine then schedule it here to guarantee * completion processing of these packets */ if (inflight && priv->port_up) mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); spin_unlock(&ring->comp_lock); } static inline void mlx4_en_xmit_poll(struct mlx4_en_priv *priv, int tx_ind) { struct mlx4_en_cq *cq = priv->tx_cq[tx_ind]; struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; if (priv->port_up == 0) return; /* If we don't have a pending timer, set one up to catch our recent post in case the interface becomes idle */ if (!timer_pending(&cq->timer)) mod_timer(&cq->timer, jiffies + MLX4_EN_TX_POLL_TIMEOUT); /* Poll the CQ every mlx4_en_TX_MODER_POLL packets */ if ((++ring->poll_cnt & (MLX4_EN_TX_POLL_MODER - 1)) == 0) if (spin_trylock(&ring->comp_lock)) { mlx4_en_process_tx_cq(priv->dev, cq); spin_unlock(&ring->comp_lock); } } static u16 mlx4_en_get_inline_hdr_size(struct mlx4_en_tx_ring *ring, struct mbuf *mb) { u16 retval; /* only copy from first fragment, if possible */ retval = MIN(ring->inline_thold, mb->m_len); /* check for too little data */ if (unlikely(retval < MIN_PKT_LEN)) retval = MIN(ring->inline_thold, mb->m_pkthdr.len); return (retval); } static int mlx4_en_get_header_size(struct mbuf *mb) { struct ether_vlan_header *eh; struct tcphdr *th; struct ip *ip; int ip_hlen, tcp_hlen; struct ip6_hdr *ip6; uint16_t eth_type; int eth_hdr_len; eh = mtod(mb, struct ether_vlan_header *); if (mb->m_len < ETHER_HDR_LEN) return (0); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { eth_type = ntohs(eh->evl_proto); eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { eth_type = ntohs(eh->evl_encap_proto); eth_hdr_len = ETHER_HDR_LEN; } if (mb->m_len < eth_hdr_len) return (0); switch (eth_type) { case ETHERTYPE_IP: ip = (struct ip *)(mb->m_data + eth_hdr_len); if (mb->m_len < eth_hdr_len + sizeof(*ip)) return (0); if (ip->ip_p != IPPROTO_TCP) return (0); ip_hlen = ip->ip_hl << 2; eth_hdr_len += ip_hlen; break; case ETHERTYPE_IPV6: ip6 = (struct ip6_hdr *)(mb->m_data + eth_hdr_len); if (mb->m_len < eth_hdr_len + sizeof(*ip6)) return (0); if (ip6->ip6_nxt != IPPROTO_TCP) return (0); eth_hdr_len += sizeof(*ip6); break; default: return (0); } if (mb->m_len < eth_hdr_len + sizeof(*th)) return (0); th = (struct tcphdr *)(mb->m_data + eth_hdr_len); tcp_hlen = th->th_off << 2; eth_hdr_len += tcp_hlen; if (mb->m_len < eth_hdr_len) return (0); return (eth_hdr_len); } static volatile struct mlx4_wqe_data_seg * mlx4_en_store_inline_data(volatile struct mlx4_wqe_data_seg *dseg, struct mbuf *mb, int len, __be32 owner_bit) { uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; if (unlikely(len < MIN_PKT_LEN)) { m_copydata(mb, 0, len, inl + 4); memset(inl + 4 + len, 0, MIN_PKT_LEN - len); dseg += DIV_ROUND_UP(4 + MIN_PKT_LEN, DS_SIZE_ALIGNMENT); } else if (len <= spc) { m_copydata(mb, 0, len, inl + 4); dseg += DIV_ROUND_UP(4 + len, DS_SIZE_ALIGNMENT); } else { m_copydata(mb, 0, spc, inl + 4); m_copydata(mb, spc, len - spc, inl + 8 + spc); dseg += DIV_ROUND_UP(8 + len, DS_SIZE_ALIGNMENT); } return (dseg); } static void mlx4_en_store_inline_header(volatile struct mlx4_wqe_data_seg *dseg, int len, __be32 owner_bit) { uint8_t *inl = __DEVOLATILE(uint8_t *, dseg); const int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - 4; if (unlikely(len < MIN_PKT_LEN)) { *(volatile uint32_t *)inl = SET_BYTE_COUNT((1U << 31) | MIN_PKT_LEN); } else if (len <= spc) { *(volatile uint32_t *)inl = SET_BYTE_COUNT((1U << 31) | len); } else { *(volatile uint32_t *)(inl + 4 + spc) = SET_BYTE_COUNT((1U << 31) | (len - spc)); wmb(); *(volatile uint32_t *)inl = SET_BYTE_COUNT((1U << 31) | spc); } } static uint32_t hashrandom; static void hashrandom_init(void *arg) { /* * It is assumed that the random subsystem has been * initialized when this function is called: */ hashrandom = m_ether_tcpip_hash_init(); } SYSINIT(hashrandom_init, SI_SUB_RANDOM, SI_ORDER_ANY, &hashrandom_init, NULL); u16 mlx4_en_select_queue(if_t dev, struct mbuf *mb) { struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); u32 rings_p_up = priv->num_tx_rings_p_up; u32 up = 0; u32 queue_index; #if (MLX4_EN_NUM_UP > 1) /* Obtain VLAN information if present */ if (mb->m_flags & M_VLANTAG) { u32 vlan_tag = mb->m_pkthdr.ether_vtag; up = (vlan_tag >> 13) % MLX4_EN_NUM_UP; } #endif queue_index = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, hashrandom); return ((queue_index % rings_p_up) + (up * rings_p_up)); } static void mlx4_bf_copy(void __iomem *dst, volatile unsigned long *src, unsigned bytecnt) { __iowrite64_copy(dst, __DEVOLATILE(void *, src), bytecnt / 8); } int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp) { enum { DS_FACT = TXBB_SIZE / DS_SIZE_ALIGNMENT, CTRL_FLAGS = cpu_to_be32(MLX4_WQE_CTRL_CQ_UPDATE | MLX4_WQE_CTRL_SOLICITED), }; bus_dma_segment_t segs[MLX4_EN_TX_MAX_MBUF_FRAGS]; volatile struct mlx4_wqe_data_seg *dseg; volatile struct mlx4_wqe_data_seg *dseg_inline; volatile struct mlx4_en_tx_desc *tx_desc; struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; if_t ifp = priv->dev; struct mlx4_en_tx_info *tx_info; struct mbuf *mb = *mbp; struct mbuf *m; __be32 owner_bit; int nr_segs; int pad; int err; u32 bf_size; u32 bf_prod; u32 opcode; u16 index; u16 ds_cnt; u16 ihs; if (unlikely(!priv->port_up)) { err = EINVAL; goto tx_drop; } /* check if TX ring is full */ if (unlikely(mlx4_en_tx_ring_is_full(ring))) { /* Use interrupts to find out when queue opened */ mlx4_en_arm_cq(priv, priv->tx_cq[tx_ind]); return (ENOBUFS); } /* sanity check we are not wrapping around */ KASSERT(((~ring->prod) & ring->size_mask) >= (MLX4_EN_TX_WQE_MAX_WQEBBS - 1), ("Wrapping around TX ring")); /* Track current inflight packets for performance analysis */ AVG_PERF_COUNTER(priv->pstats.inflight_avg, (u32) (ring->prod - ring->cons - 1)); /* Track current mbuf packet header length */ AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, mb->m_pkthdr.len); /* Grab an index and try to transmit packet */ owner_bit = (ring->prod & ring->size) ? cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0; index = ring->prod & ring->size_mask; tx_desc = (volatile struct mlx4_en_tx_desc *) (ring->buf + index * TXBB_SIZE); tx_info = &ring->tx_info[index]; dseg = &tx_desc->data; /* send a copy of the frame to the BPF listener, if any */ - if (ifp != NULL && if_getbpf(ifp) != NULL) + if (ifp != NULL) ETHER_BPF_MTAP(ifp, mb); /* get default flags */ tx_desc->ctrl.srcrb_flags = CTRL_FLAGS; if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_TCP_UDP_CSUM); /* do statistics */ if (likely(tx_desc->ctrl.srcrb_flags != CTRL_FLAGS)) { priv->port_stats.tx_chksum_offload++; ring->tx_csum++; } /* check for VLAN tag */ if (mb->m_flags & M_VLANTAG) { tx_desc->ctrl.vlan_tag = cpu_to_be16(mb->m_pkthdr.ether_vtag); tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN; } else { tx_desc->ctrl.vlan_tag = 0; tx_desc->ctrl.ins_vlan = 0; } if (unlikely(mlx4_is_mfunc(priv->mdev->dev) || priv->validate_loopback)) { /* * Copy destination MAC address to WQE. This allows * loopback in eSwitch, so that VFs and PF can * communicate with each other: */ m_copydata(mb, 0, 2, __DEVOLATILE(void *, &tx_desc->ctrl.srcrb_flags16[0])); m_copydata(mb, 2, 4, __DEVOLATILE(void *, &tx_desc->ctrl.imm)); } else { /* clear immediate field */ tx_desc->ctrl.imm = 0; } /* Handle LSO (TSO) packets */ if (mb->m_pkthdr.csum_flags & CSUM_TSO) { u32 payload_len; u32 mss = mb->m_pkthdr.tso_segsz; u32 num_pkts; opcode = cpu_to_be32(MLX4_OPCODE_LSO | MLX4_WQE_CTRL_RR) | owner_bit; ihs = mlx4_en_get_header_size(mb); if (unlikely(ihs > MAX_INLINE)) { ring->oversized_packets++; err = EINVAL; goto tx_drop; } tx_desc->lso.mss_hdr_size = cpu_to_be32((mss << 16) | ihs); payload_len = mb->m_pkthdr.len - ihs; if (unlikely(payload_len == 0)) num_pkts = 1; else num_pkts = DIV_ROUND_UP(payload_len, mss); ring->bytes += payload_len + (num_pkts * ihs); ring->packets += num_pkts; ring->tso_packets++; /* store pointer to inline header */ dseg_inline = dseg; /* copy data inline */ dseg = mlx4_en_store_inline_lso_data(dseg, mb, ihs, owner_bit); } else { opcode = cpu_to_be32(MLX4_OPCODE_SEND) | owner_bit; ihs = mlx4_en_get_inline_hdr_size(ring, mb); ring->bytes += max_t (unsigned int, mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN); ring->packets++; /* store pointer to inline header */ dseg_inline = dseg; /* copy data inline */ dseg = mlx4_en_store_inline_data(dseg, mb, ihs, owner_bit); } m_adj(mb, ihs); err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, mb, segs, &nr_segs, BUS_DMA_NOWAIT); if (unlikely(err == EFBIG)) { /* Too many mbuf fragments */ ring->defrag_attempts++; m = m_defrag(mb, M_NOWAIT); if (m == NULL) { ring->oversized_packets++; goto tx_drop; } mb = m; /* Try again */ err = bus_dmamap_load_mbuf_sg(ring->dma_tag, tx_info->dma_map, mb, segs, &nr_segs, BUS_DMA_NOWAIT); } /* catch errors */ if (unlikely(err != 0)) { ring->oversized_packets++; goto tx_drop; } /* If there were no errors and we didn't load anything, don't sync. */ if (nr_segs != 0) { /* make sure all mbuf data is written to RAM */ bus_dmamap_sync(ring->dma_tag, tx_info->dma_map, BUS_DMASYNC_PREWRITE); } else { /* All data was inlined, free the mbuf. */ bus_dmamap_unload(ring->dma_tag, tx_info->dma_map); m_freem(mb); mb = NULL; } /* compute number of DS needed */ ds_cnt = (dseg - ((volatile struct mlx4_wqe_data_seg *)tx_desc)) + nr_segs; /* * Check if the next request can wrap around and fill the end * of the current request with zero immediate data: */ pad = DIV_ROUND_UP(ds_cnt, DS_FACT); pad = (~(ring->prod + pad)) & ring->size_mask; if (unlikely(pad < (MLX4_EN_TX_WQE_MAX_WQEBBS - 1))) { /* * Compute the least number of DS blocks we need to * pad in order to achieve a TX ring wraparound: */ pad = (DS_FACT * (pad + 1)); } else { /* * The hardware will automatically jump to the next * TXBB. No need for padding. */ pad = 0; } /* compute total number of DS blocks */ ds_cnt += pad; /* * When modifying this code, please ensure that the following * computation is always less than or equal to 0x3F: * * ((MLX4_EN_TX_WQE_MAX_WQEBBS - 1) * DS_FACT) + * (MLX4_EN_TX_WQE_MAX_WQEBBS * DS_FACT) * * Else the "ds_cnt" variable can become too big. */ tx_desc->ctrl.fence_size = (ds_cnt & 0x3f); /* store pointer to mbuf */ tx_info->mb = mb; tx_info->nr_txbb = DIV_ROUND_UP(ds_cnt, DS_FACT); bf_size = ds_cnt * DS_SIZE_ALIGNMENT; bf_prod = ring->prod; /* compute end of "dseg" array */ dseg += nr_segs + pad; /* pad using zero immediate dseg */ while (pad--) { dseg--; dseg->addr = 0; dseg->lkey = 0; wmb(); dseg->byte_count = SET_BYTE_COUNT((1U << 31)|0); } /* fill segment list */ while (nr_segs--) { if (unlikely(segs[nr_segs].ds_len == 0)) { dseg--; dseg->addr = 0; dseg->lkey = 0; wmb(); dseg->byte_count = SET_BYTE_COUNT((1U << 31)|0); } else { dseg--; dseg->addr = cpu_to_be64((uint64_t)segs[nr_segs].ds_addr); dseg->lkey = cpu_to_be32(priv->mdev->mr.key); wmb(); dseg->byte_count = SET_BYTE_COUNT((uint32_t)segs[nr_segs].ds_len); } } wmb(); /* write owner bits in reverse order */ if ((opcode & cpu_to_be32(0x1F)) == cpu_to_be32(MLX4_OPCODE_LSO)) mlx4_en_store_inline_lso_header(dseg_inline, ihs, owner_bit); else mlx4_en_store_inline_header(dseg_inline, ihs, owner_bit); /* update producer counter */ ring->prod += tx_info->nr_txbb; if (ring->bf_enabled && bf_size <= MAX_BF && (tx_desc->ctrl.ins_vlan != MLX4_WQE_CTRL_INS_CVLAN)) { /* store doorbell number */ *(volatile __be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn); /* or in producer number for this WQE */ opcode |= cpu_to_be32((bf_prod & 0xffff) << 8); /* * Ensure the new descriptor hits memory before * setting ownership of this descriptor to HW: */ wmb(); tx_desc->ctrl.owner_opcode = opcode; wmb(); mlx4_bf_copy(((u8 *)ring->bf.reg) + ring->bf.offset, (volatile unsigned long *) &tx_desc->ctrl, bf_size); wmb(); ring->bf.offset ^= ring->bf.buf_size; } else { /* * Ensure the new descriptor hits memory before * setting ownership of this descriptor to HW: */ wmb(); tx_desc->ctrl.owner_opcode = opcode; wmb(); writel(cpu_to_be32(ring->doorbell_qpn), ((u8 *)ring->bf.uar->map) + MLX4_SEND_DOORBELL); } return (0); tx_drop: *mbp = NULL; m_freem(mb); return (err); } static int mlx4_en_transmit_locked(if_t ifp, int tx_ind, struct mbuf *mb) { struct mlx4_en_priv *priv = mlx4_netdev_priv(ifp); struct mlx4_en_tx_ring *ring = priv->tx_ring[tx_ind]; int err = 0; if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || READ_ONCE(priv->port_up) == 0)) { m_freem(mb); return (ENETDOWN); } if (mlx4_en_xmit(priv, tx_ind, &mb) != 0) { /* NOTE: m_freem() is NULL safe */ m_freem(mb); err = ENOBUFS; if (ring->watchdog_time == 0) ring->watchdog_time = ticks + MLX4_EN_WATCHDOG_TIMEOUT; } else { ring->watchdog_time = 0; } return (err); } int mlx4_en_transmit(if_t dev, struct mbuf *m) { struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); struct mlx4_en_tx_ring *ring; int i, err = 0; if (priv->port_up == 0) { m_freem(m); return (ENETDOWN); } /* Compute which queue to use */ if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { i = (m->m_pkthdr.flowid % 128) % priv->tx_ring_num; } else { i = mlx4_en_select_queue(dev, m); } ring = priv->tx_ring[i]; spin_lock(&ring->tx_lock); err = mlx4_en_transmit_locked(dev, i, m); spin_unlock(&ring->tx_lock); /* Poll CQ here */ mlx4_en_xmit_poll(priv, i); if (unlikely(err != 0)) if_inc_counter(dev, IFCOUNTER_IQDROPS, 1); return (err); } /* * Flush ring buffers. */ void mlx4_en_qflush(if_t dev) { struct mlx4_en_priv *priv = mlx4_netdev_priv(dev); if (priv->port_up == 0) return; if_qflush(dev); } diff --git a/sys/dev/mlx5/mlx5_en/mlx5_en_tx.c b/sys/dev/mlx5/mlx5_en/mlx5_en_tx.c index 1f2820abc30e..3f70e8a818ea 100644 --- a/sys/dev/mlx5/mlx5_en/mlx5_en_tx.c +++ b/sys/dev/mlx5/mlx5_en/mlx5_en_tx.c @@ -1,1177 +1,1177 @@ /*- * Copyright (c) 2015-2021 Mellanox Technologies. All rights reserved. * Copyright (c) 2022 NVIDIA corporation & affiliates. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS `AS IS' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_kern_tls.h" #include "opt_rss.h" #include "opt_ratelimit.h" #include #include static inline bool mlx5e_do_send_cqe_inline(struct mlx5e_sq *sq) { sq->cev_counter++; /* interleave the CQEs */ if (sq->cev_counter >= sq->cev_factor) { sq->cev_counter = 0; return (true); } return (false); } bool mlx5e_do_send_cqe(struct mlx5e_sq *sq) { return (mlx5e_do_send_cqe_inline(sq)); } void mlx5e_send_nop(struct mlx5e_sq *sq, u32 ds_cnt) { u16 pi = sq->pc & sq->wq.sz_m1; struct mlx5e_tx_wqe *wqe = mlx5_wq_cyc_get_wqe(&sq->wq, pi); memset(&wqe->ctrl, 0, sizeof(wqe->ctrl)); wqe->ctrl.opmod_idx_opcode = cpu_to_be32((sq->pc << 8) | MLX5_OPCODE_NOP); wqe->ctrl.qpn_ds = cpu_to_be32((sq->sqn << 8) | ds_cnt); if (mlx5e_do_send_cqe_inline(sq)) wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE; else wqe->ctrl.fm_ce_se = 0; /* Copy data for doorbell */ memcpy(sq->doorbell.d32, &wqe->ctrl, sizeof(sq->doorbell.d32)); sq->mbuf[pi].mbuf = NULL; sq->mbuf[pi].num_bytes = 0; sq->mbuf[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS); sq->pc += sq->mbuf[pi].num_wqebbs; } static uint32_t mlx5e_hash_value; static void mlx5e_hash_init(void *arg) { mlx5e_hash_value = m_ether_tcpip_hash_init(); } /* Make kernel call mlx5e_hash_init after the random stack finished initializing */ SYSINIT(mlx5e_hash_init, SI_SUB_RANDOM, SI_ORDER_ANY, &mlx5e_hash_init, NULL); static struct mlx5e_sq * mlx5e_select_queue_by_send_tag(if_t ifp, struct mbuf *mb) { struct m_snd_tag *mb_tag; struct mlx5e_sq *sq; mb_tag = mb->m_pkthdr.snd_tag; #ifdef KERN_TLS top: #endif /* get pointer to sendqueue */ switch (mb_tag->sw->type) { #ifdef RATELIMIT case IF_SND_TAG_TYPE_RATE_LIMIT: sq = container_of(mb_tag, struct mlx5e_rl_channel, tag)->sq; break; #ifdef KERN_TLS case IF_SND_TAG_TYPE_TLS_RATE_LIMIT: mb_tag = container_of(mb_tag, struct mlx5e_tls_tag, tag)->rl_tag; goto top; #endif #endif case IF_SND_TAG_TYPE_UNLIMITED: sq = &container_of(mb_tag, struct mlx5e_channel, tag)->sq[0]; KASSERT((mb_tag->refcount > 0), ("mlx5e_select_queue: Channel refs are zero for unlimited tag")); break; #ifdef KERN_TLS case IF_SND_TAG_TYPE_TLS: mb_tag = container_of(mb_tag, struct mlx5e_tls_tag, tag)->rl_tag; goto top; #endif default: sq = NULL; break; } /* check if valid */ if (sq != NULL && READ_ONCE(sq->running) != 0) return (sq); return (NULL); } static struct mlx5e_sq * mlx5e_select_queue(if_t ifp, struct mbuf *mb) { struct mlx5e_priv *priv = if_getsoftc(ifp); struct mlx5e_sq *sq; u32 ch; u32 tc; /* obtain VLAN information if present */ if (mb->m_flags & M_VLANTAG) { tc = (mb->m_pkthdr.ether_vtag >> 13); if (tc >= priv->num_tc) tc = priv->default_vlan_prio; } else { tc = priv->default_vlan_prio; } ch = priv->params.num_channels; /* check if flowid is set */ if (M_HASHTYPE_GET(mb) != M_HASHTYPE_NONE) { #ifdef RSS u32 temp; if (rss_hash2bucket(mb->m_pkthdr.flowid, M_HASHTYPE_GET(mb), &temp) == 0) ch = temp % ch; else #endif ch = (mb->m_pkthdr.flowid % 128) % ch; } else { ch = m_ether_tcpip_hash(MBUF_HASHFLAG_L3 | MBUF_HASHFLAG_L4, mb, mlx5e_hash_value) % ch; } /* check if send queue is running */ sq = &priv->channel[ch].sq[tc]; if (likely(READ_ONCE(sq->running) != 0)) return (sq); return (NULL); } static inline u16 mlx5e_get_l2_header_size(struct mlx5e_sq *sq, struct mbuf *mb) { struct ether_vlan_header *eh; uint16_t eth_type; int min_inline; eh = mtod(mb, struct ether_vlan_header *); if (unlikely(mb->m_len < ETHER_HDR_LEN)) { goto max_inline; } else if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { if (unlikely(mb->m_len < (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN))) goto max_inline; eth_type = ntohs(eh->evl_proto); min_inline = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { eth_type = ntohs(eh->evl_encap_proto); min_inline = ETHER_HDR_LEN; } switch (eth_type) { case ETHERTYPE_IP: case ETHERTYPE_IPV6: /* * Make sure the TOS(IPv4) or traffic class(IPv6) * field gets inlined. Else the SQ may stall. */ min_inline += 4; break; default: goto max_inline; } /* * m_copydata() will be used on the remaining header which * does not need to reside within the first m_len bytes of * data: */ if (mb->m_pkthdr.len < min_inline) goto max_inline; return (min_inline); max_inline: return (MIN(mb->m_pkthdr.len, sq->max_inline)); } /* * This function parse IPv4 and IPv6 packets looking for TCP and UDP * headers. * * Upon return the pointer at which the "ppth" argument points, is set * to the location of the TCP header. NULL is used if no TCP header is * present. * * The return value indicates the number of bytes from the beginning * of the packet until the first byte after the TCP or UDP header. If * this function returns zero, the parsing failed. */ int mlx5e_get_full_header_size(const struct mbuf *mb, const struct tcphdr **ppth) { const struct ether_vlan_header *eh; const struct tcphdr *th; const struct ip *ip; int ip_hlen, tcp_hlen; const struct ip6_hdr *ip6; uint16_t eth_type; int eth_hdr_len; eh = mtod(mb, const struct ether_vlan_header *); if (unlikely(mb->m_len < ETHER_HDR_LEN)) goto failure; if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { if (unlikely(mb->m_len < ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)) goto failure; eth_type = ntohs(eh->evl_proto); eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { eth_type = ntohs(eh->evl_encap_proto); eth_hdr_len = ETHER_HDR_LEN; } switch (eth_type) { case ETHERTYPE_IP: ip = (const struct ip *)(mb->m_data + eth_hdr_len); if (unlikely(mb->m_len < eth_hdr_len + sizeof(*ip))) goto failure; switch (ip->ip_p) { case IPPROTO_TCP: ip_hlen = ip->ip_hl << 2; eth_hdr_len += ip_hlen; goto tcp_packet; case IPPROTO_UDP: ip_hlen = ip->ip_hl << 2; eth_hdr_len += ip_hlen + sizeof(struct udphdr); th = NULL; goto udp_packet; default: goto failure; } break; case ETHERTYPE_IPV6: ip6 = (const struct ip6_hdr *)(mb->m_data + eth_hdr_len); if (unlikely(mb->m_len < eth_hdr_len + sizeof(*ip6))) goto failure; switch (ip6->ip6_nxt) { case IPPROTO_TCP: eth_hdr_len += sizeof(*ip6); goto tcp_packet; case IPPROTO_UDP: eth_hdr_len += sizeof(*ip6) + sizeof(struct udphdr); th = NULL; goto udp_packet; default: goto failure; } break; default: goto failure; } tcp_packet: if (unlikely(mb->m_len < eth_hdr_len + sizeof(*th))) { const struct mbuf *m_th = mb->m_next; if (unlikely(mb->m_len != eth_hdr_len || m_th == NULL || m_th->m_len < sizeof(*th))) goto failure; th = (const struct tcphdr *)(m_th->m_data); } else { th = (const struct tcphdr *)(mb->m_data + eth_hdr_len); } tcp_hlen = th->th_off << 2; eth_hdr_len += tcp_hlen; udp_packet: /* * m_copydata() will be used on the remaining header which * does not need to reside within the first m_len bytes of * data: */ if (unlikely(mb->m_pkthdr.len < eth_hdr_len)) goto failure; if (ppth != NULL) *ppth = th; return (eth_hdr_len); failure: if (ppth != NULL) *ppth = NULL; return (0); } /* * Locate a pointer inside a mbuf chain. Returns NULL upon failure. */ static inline void * mlx5e_parse_mbuf_chain(const struct mbuf **mb, int *poffset, int eth_hdr_len, int min_len) { if (unlikely(mb[0]->m_len == eth_hdr_len)) { poffset[0] = eth_hdr_len; if (unlikely((mb[0] = mb[0]->m_next) == NULL)) return (NULL); } if (unlikely(mb[0]->m_len < eth_hdr_len - poffset[0] + min_len)) return (NULL); return (mb[0]->m_data + eth_hdr_len - poffset[0]); } /* * This function parse IPv4 and IPv6 packets looking for UDP, VXLAN * and TCP headers. * * The return value indicates the number of bytes from the beginning * of the packet until the first byte after the TCP header. If this * function returns zero, the parsing failed. */ static int mlx5e_get_vxlan_header_size(const struct mbuf *mb, struct mlx5e_tx_wqe *wqe, uint8_t cs_mask, uint8_t opcode) { const struct ether_vlan_header *eh; struct ip *ip4; struct ip6_hdr *ip6; struct tcphdr *th; struct udphdr *udp; bool has_outer_vlan_tag; uint16_t eth_type; uint8_t ip_type; int pkt_hdr_len; int eth_hdr_len; int tcp_hlen; int ip_hlen; int offset; pkt_hdr_len = mb->m_pkthdr.len; has_outer_vlan_tag = (mb->m_flags & M_VLANTAG) != 0; offset = 0; eh = mtod(mb, const struct ether_vlan_header *); if (unlikely(mb->m_len < ETHER_HDR_LEN)) return (0); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { if (unlikely(mb->m_len < ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)) return (0); eth_type = eh->evl_proto; eth_hdr_len = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { eth_type = eh->evl_encap_proto; eth_hdr_len = ETHER_HDR_LEN; } switch (eth_type) { case htons(ETHERTYPE_IP): ip4 = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*ip4)); if (unlikely(ip4 == NULL)) return (0); ip_type = ip4->ip_p; if (unlikely(ip_type != IPPROTO_UDP)) return (0); wqe->eth.swp_outer_l3_offset = eth_hdr_len / 2; wqe->eth.cs_flags = MLX5_ETH_WQE_L3_CSUM | MLX5_ETH_WQE_L4_CSUM; ip_hlen = ip4->ip_hl << 2; eth_hdr_len += ip_hlen; udp = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*udp)); if (unlikely(udp == NULL)) return (0); wqe->eth.swp_outer_l4_offset = eth_hdr_len / 2; wqe->eth.swp_flags |= MLX5_ETH_WQE_SWP_OUTER_L4_TYPE; eth_hdr_len += sizeof(*udp); break; case htons(ETHERTYPE_IPV6): ip6 = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*ip6)); if (unlikely(ip6 == NULL)) return (0); ip_type = ip6->ip6_nxt; if (unlikely(ip_type != IPPROTO_UDP)) return (0); wqe->eth.swp_outer_l3_offset = eth_hdr_len / 2; wqe->eth.cs_flags = MLX5_ETH_WQE_L4_CSUM; eth_hdr_len += sizeof(*ip6); udp = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*udp)); if (unlikely(udp == NULL)) return (0); wqe->eth.swp_outer_l4_offset = eth_hdr_len / 2; wqe->eth.swp_flags |= MLX5_ETH_WQE_SWP_OUTER_L4_TYPE | MLX5_ETH_WQE_SWP_OUTER_L3_TYPE; eth_hdr_len += sizeof(*udp); break; default: return (0); } /* * If the hardware is not computing inner IP checksum, then * skip inlining the inner outer UDP and VXLAN header: */ if (unlikely((cs_mask & MLX5_ETH_WQE_L3_INNER_CSUM) == 0)) goto done; if (unlikely(mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, 8) == NULL)) return (0); eth_hdr_len += 8; /* Check for ethernet header again. */ eh = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, ETHER_HDR_LEN); if (unlikely(eh == NULL)) return (0); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { if (unlikely(mb->m_len < eth_hdr_len - offset + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)) return (0); eth_type = eh->evl_proto; eth_hdr_len += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { eth_type = eh->evl_encap_proto; eth_hdr_len += ETHER_HDR_LEN; } /* Check for IP header again. */ switch (eth_type) { case htons(ETHERTYPE_IP): ip4 = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*ip4)); if (unlikely(ip4 == NULL)) return (0); wqe->eth.swp_inner_l3_offset = eth_hdr_len / 2; wqe->eth.cs_flags |= MLX5_ETH_WQE_L3_INNER_CSUM; ip_type = ip4->ip_p; ip_hlen = ip4->ip_hl << 2; eth_hdr_len += ip_hlen; break; case htons(ETHERTYPE_IPV6): ip6 = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*ip6)); if (unlikely(ip6 == NULL)) return (0); wqe->eth.swp_inner_l3_offset = eth_hdr_len / 2; wqe->eth.swp_flags |= MLX5_ETH_WQE_SWP_INNER_L3_TYPE; ip_type = ip6->ip6_nxt; eth_hdr_len += sizeof(*ip6); break; default: return (0); } /* * If the hardware is not computing inner UDP/TCP checksum, * then skip inlining the inner UDP/TCP header: */ if (unlikely((cs_mask & MLX5_ETH_WQE_L4_INNER_CSUM) == 0)) goto done; switch (ip_type) { case IPPROTO_UDP: udp = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*udp)); if (unlikely(udp == NULL)) return (0); wqe->eth.swp_inner_l4_offset = (eth_hdr_len / 2); wqe->eth.cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM; wqe->eth.swp_flags |= MLX5_ETH_WQE_SWP_INNER_L4_TYPE; eth_hdr_len += sizeof(*udp); break; case IPPROTO_TCP: th = mlx5e_parse_mbuf_chain(&mb, &offset, eth_hdr_len, sizeof(*th)); if (unlikely(th == NULL)) return (0); wqe->eth.swp_inner_l4_offset = eth_hdr_len / 2; wqe->eth.cs_flags |= MLX5_ETH_WQE_L4_INNER_CSUM; tcp_hlen = th->th_off << 2; eth_hdr_len += tcp_hlen; break; default: return (0); } done: if (unlikely(pkt_hdr_len < eth_hdr_len)) return (0); /* Account for software inserted VLAN tag, if any. */ if (unlikely(has_outer_vlan_tag)) { wqe->eth.swp_outer_l3_offset += ETHER_VLAN_ENCAP_LEN / 2; wqe->eth.swp_outer_l4_offset += ETHER_VLAN_ENCAP_LEN / 2; wqe->eth.swp_inner_l3_offset += ETHER_VLAN_ENCAP_LEN / 2; wqe->eth.swp_inner_l4_offset += ETHER_VLAN_ENCAP_LEN / 2; } /* * When inner checksums are set, outer L4 checksum flag must * be disabled. */ if (wqe->eth.cs_flags & (MLX5_ETH_WQE_L3_INNER_CSUM | MLX5_ETH_WQE_L4_INNER_CSUM)) wqe->eth.cs_flags &= ~MLX5_ETH_WQE_L4_CSUM; return (eth_hdr_len); } struct mlx5_wqe_dump_seg { struct mlx5_wqe_ctrl_seg ctrl; struct mlx5_wqe_data_seg data; } __aligned(MLX5_SEND_WQE_BB); CTASSERT(DIV_ROUND_UP(2, MLX5_SEND_WQEBB_NUM_DS) == 1); int mlx5e_sq_dump_xmit(struct mlx5e_sq *sq, struct mlx5e_xmit_args *parg, struct mbuf **mbp) { bus_dma_segment_t segs[MLX5E_MAX_TX_MBUF_FRAGS]; struct mlx5_wqe_dump_seg *wqe; struct mlx5_wqe_dump_seg *wqe_last; int nsegs; int xsegs; u32 off; u32 msb; int err; int x; struct mbuf *mb; const u32 ds_cnt = 2; u16 pi; const u8 opcode = MLX5_OPCODE_DUMP; /* get pointer to mbuf */ mb = *mbp; /* get producer index */ pi = sq->pc & sq->wq.sz_m1; sq->mbuf[pi].num_bytes = mb->m_pkthdr.len; sq->mbuf[pi].num_wqebbs = 0; /* check number of segments in mbuf */ err = bus_dmamap_load_mbuf_sg(sq->dma_tag, sq->mbuf[pi].dma_map, mb, segs, &nsegs, BUS_DMA_NOWAIT); if (err == EFBIG) { /* update statistics */ sq->stats.defragged++; /* too many mbuf fragments */ mb = m_defrag(*mbp, M_NOWAIT); if (mb == NULL) { mb = *mbp; goto tx_drop; } /* try again */ err = bus_dmamap_load_mbuf_sg(sq->dma_tag, sq->mbuf[pi].dma_map, mb, segs, &nsegs, BUS_DMA_NOWAIT); } if (err != 0) goto tx_drop; /* make sure all mbuf data, if any, is visible to the bus */ bus_dmamap_sync(sq->dma_tag, sq->mbuf[pi].dma_map, BUS_DMASYNC_PREWRITE); /* compute number of real DUMP segments */ msb = sq->priv->params_ethtool.hw_mtu_msb; for (x = xsegs = 0; x != nsegs; x++) xsegs += howmany((u32)segs[x].ds_len, msb); /* check if there are no segments */ if (unlikely(xsegs == 0)) { bus_dmamap_unload(sq->dma_tag, sq->mbuf[pi].dma_map); m_freem(mb); *mbp = NULL; /* safety clear */ return (0); } /* return ENOBUFS if the queue is full */ if (unlikely(!mlx5e_sq_has_room_for(sq, xsegs))) { sq->stats.enobuf++; bus_dmamap_unload(sq->dma_tag, sq->mbuf[pi].dma_map); m_freem(mb); *mbp = NULL; /* safety clear */ return (ENOBUFS); } wqe = mlx5_wq_cyc_get_wqe(&sq->wq, pi); wqe_last = mlx5_wq_cyc_get_wqe(&sq->wq, sq->wq.sz_m1); for (x = 0; x != nsegs; x++) { for (off = 0; off < segs[x].ds_len; off += msb) { u32 len = segs[x].ds_len - off; /* limit length */ if (likely(len > msb)) len = msb; memset(&wqe->ctrl, 0, sizeof(wqe->ctrl)); /* fill control segment */ wqe->ctrl.opmod_idx_opcode = cpu_to_be32((sq->pc << 8) | opcode); wqe->ctrl.qpn_ds = cpu_to_be32((sq->sqn << 8) | ds_cnt); wqe->ctrl.imm = cpu_to_be32(parg->tisn << 8); /* fill data segment */ wqe->data.addr = cpu_to_be64((uint64_t)segs[x].ds_addr + off); wqe->data.lkey = sq->mkey_be; wqe->data.byte_count = cpu_to_be32(len); /* advance to next building block */ if (unlikely(wqe == wqe_last)) wqe = mlx5_wq_cyc_get_wqe(&sq->wq, 0); else wqe++; sq->mbuf[pi].num_wqebbs++; sq->pc++; } } wqe = mlx5_wq_cyc_get_wqe(&sq->wq, pi); wqe_last = mlx5_wq_cyc_get_wqe(&sq->wq, (sq->pc - 1) & sq->wq.sz_m1); /* put in place data fence */ wqe->ctrl.fm_ce_se |= MLX5_FENCE_MODE_INITIATOR_SMALL; /* check if we should generate a completion event */ if (mlx5e_do_send_cqe_inline(sq)) wqe_last->ctrl.fm_ce_se |= MLX5_WQE_CTRL_CQ_UPDATE; /* copy data for doorbell */ memcpy(sq->doorbell.d32, wqe_last, sizeof(sq->doorbell.d32)); /* store pointer to mbuf */ sq->mbuf[pi].mbuf = mb; sq->mbuf[pi].mst = m_snd_tag_ref(parg->mst); /* count all traffic going out */ sq->stats.packets++; sq->stats.bytes += sq->mbuf[pi].num_bytes; *mbp = NULL; /* safety clear */ return (0); tx_drop: sq->stats.dropped++; *mbp = NULL; m_freem(mb); return err; } int mlx5e_sq_xmit(struct mlx5e_sq *sq, struct mbuf **mbp) { bus_dma_segment_t segs[MLX5E_MAX_TX_MBUF_FRAGS]; struct mlx5e_xmit_args args = {}; struct mlx5_wqe_data_seg *dseg; struct mlx5e_tx_wqe *wqe; if_t ifp; int nsegs; int err; int x; struct mbuf *mb; u16 ds_cnt; u16 pi; u8 opcode; #ifdef KERN_TLS top: #endif /* Return ENOBUFS if the queue is full */ if (unlikely(!mlx5e_sq_has_room_for(sq, 2 * MLX5_SEND_WQE_MAX_WQEBBS))) { sq->stats.enobuf++; return (ENOBUFS); } /* Align SQ edge with NOPs to avoid WQE wrap around */ pi = ((~sq->pc) & sq->wq.sz_m1); if (pi < (MLX5_SEND_WQE_MAX_WQEBBS - 1)) { /* Send one multi NOP message instead of many */ mlx5e_send_nop(sq, (pi + 1) * MLX5_SEND_WQEBB_NUM_DS); pi = ((~sq->pc) & sq->wq.sz_m1); if (pi < (MLX5_SEND_WQE_MAX_WQEBBS - 1)) { sq->stats.enobuf++; return (ENOMEM); } } #ifdef KERN_TLS /* Special handling for TLS packets, if any */ switch (mlx5e_sq_tls_xmit(sq, &args, mbp)) { case MLX5E_TLS_LOOP: goto top; case MLX5E_TLS_FAILURE: mb = *mbp; err = ENOMEM; goto tx_drop; case MLX5E_TLS_DEFERRED: return (0); case MLX5E_TLS_CONTINUE: default: break; } #endif /* Setup local variables */ pi = sq->pc & sq->wq.sz_m1; wqe = mlx5_wq_cyc_get_wqe(&sq->wq, pi); ifp = sq->ifp; memset(wqe, 0, sizeof(*wqe)); /* get pointer to mbuf */ mb = *mbp; /* Send a copy of the frame to the BPF listener, if any */ - if (ifp != NULL && if_getbpf(ifp) != NULL) + if (ifp != NULL) ETHER_BPF_MTAP(ifp, mb); if (mb->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)) { wqe->eth.cs_flags |= MLX5_ETH_WQE_L3_CSUM; } if (mb->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO)) { wqe->eth.cs_flags |= MLX5_ETH_WQE_L4_CSUM; } if (wqe->eth.cs_flags == 0) { sq->stats.csum_offload_none++; } if (mb->m_pkthdr.csum_flags & CSUM_TSO) { u32 payload_len; u32 mss = mb->m_pkthdr.tso_segsz; u32 num_pkts; wqe->eth.mss = cpu_to_be16(mss); opcode = MLX5_OPCODE_LSO; if (args.ihs == 0) args.ihs = mlx5e_get_full_header_size(mb, NULL); if (unlikely(args.ihs == 0)) { err = EINVAL; goto tx_drop; } payload_len = mb->m_pkthdr.len - args.ihs; if (payload_len == 0) num_pkts = 1; else num_pkts = DIV_ROUND_UP(payload_len, mss); sq->mbuf[pi].num_bytes = payload_len + (num_pkts * args.ihs); sq->stats.tso_packets++; sq->stats.tso_bytes += payload_len; } else if (mb->m_pkthdr.csum_flags & CSUM_ENCAP_VXLAN) { /* check for inner TCP TSO first */ if (mb->m_pkthdr.csum_flags & (CSUM_INNER_IP_TSO | CSUM_INNER_IP6_TSO)) { u32 payload_len; u32 mss = mb->m_pkthdr.tso_segsz; u32 num_pkts; wqe->eth.mss = cpu_to_be16(mss); opcode = MLX5_OPCODE_LSO; if (likely(args.ihs == 0)) { args.ihs = mlx5e_get_vxlan_header_size(mb, wqe, MLX5_ETH_WQE_L3_INNER_CSUM | MLX5_ETH_WQE_L4_INNER_CSUM | MLX5_ETH_WQE_L4_CSUM | MLX5_ETH_WQE_L3_CSUM, opcode); if (unlikely(args.ihs == 0)) { err = EINVAL; goto tx_drop; } } payload_len = mb->m_pkthdr.len - args.ihs; if (payload_len == 0) num_pkts = 1; else num_pkts = DIV_ROUND_UP(payload_len, mss); sq->mbuf[pi].num_bytes = payload_len + num_pkts * args.ihs; sq->stats.tso_packets++; sq->stats.tso_bytes += payload_len; } else { opcode = MLX5_OPCODE_SEND; if (likely(args.ihs == 0)) { uint8_t cs_mask; if (mb->m_pkthdr.csum_flags & (CSUM_INNER_IP_TCP | CSUM_INNER_IP_UDP | CSUM_INNER_IP6_TCP | CSUM_INNER_IP6_UDP)) { cs_mask = MLX5_ETH_WQE_L3_INNER_CSUM | MLX5_ETH_WQE_L4_INNER_CSUM | MLX5_ETH_WQE_L4_CSUM | MLX5_ETH_WQE_L3_CSUM; } else if (mb->m_pkthdr.csum_flags & CSUM_INNER_IP) { cs_mask = MLX5_ETH_WQE_L3_INNER_CSUM | MLX5_ETH_WQE_L4_CSUM | MLX5_ETH_WQE_L3_CSUM; } else { cs_mask = MLX5_ETH_WQE_L4_CSUM | MLX5_ETH_WQE_L3_CSUM; } args.ihs = mlx5e_get_vxlan_header_size(mb, wqe, cs_mask, opcode); if (unlikely(args.ihs == 0)) { err = EINVAL; goto tx_drop; } } sq->mbuf[pi].num_bytes = max_t (unsigned int, mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN); } } else { opcode = MLX5_OPCODE_SEND; if (args.ihs == 0) { switch (sq->min_inline_mode) { case MLX5_INLINE_MODE_IP: case MLX5_INLINE_MODE_TCP_UDP: args.ihs = mlx5e_get_full_header_size(mb, NULL); if (unlikely(args.ihs == 0)) args.ihs = mlx5e_get_l2_header_size(sq, mb); break; case MLX5_INLINE_MODE_L2: args.ihs = mlx5e_get_l2_header_size(sq, mb); break; case MLX5_INLINE_MODE_NONE: /* FALLTHROUGH */ default: if ((mb->m_flags & M_VLANTAG) != 0 && (sq->min_insert_caps & MLX5E_INSERT_VLAN) != 0) { /* inlining VLAN data is not required */ wqe->eth.vlan_cmd = htons(0x8000); /* bit 0 CVLAN */ wqe->eth.vlan_hdr = htons(mb->m_pkthdr.ether_vtag); args.ihs = 0; } else if ((mb->m_flags & M_VLANTAG) == 0 && (sq->min_insert_caps & MLX5E_INSERT_NON_VLAN) != 0) { /* inlining non-VLAN data is not required */ args.ihs = 0; } else { /* we are forced to inlining L2 header, if any */ args.ihs = mlx5e_get_l2_header_size(sq, mb); } break; } } sq->mbuf[pi].num_bytes = max_t (unsigned int, mb->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN); } if (likely(args.ihs == 0)) { /* nothing to inline */ } else if ((mb->m_flags & M_VLANTAG) != 0) { struct ether_vlan_header *eh = (struct ether_vlan_header *) wqe->eth.inline_hdr_start; /* Range checks */ if (unlikely(args.ihs > (sq->max_inline - ETHER_VLAN_ENCAP_LEN))) { if (mb->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_ENCAP_VXLAN)) { err = EINVAL; goto tx_drop; } args.ihs = (sq->max_inline - ETHER_VLAN_ENCAP_LEN); } else if (unlikely(args.ihs < ETHER_HDR_LEN)) { err = EINVAL; goto tx_drop; } m_copydata(mb, 0, ETHER_HDR_LEN, (caddr_t)eh); m_adj(mb, ETHER_HDR_LEN); /* Insert 4 bytes VLAN tag into data stream */ eh->evl_proto = eh->evl_encap_proto; eh->evl_encap_proto = htons(ETHERTYPE_VLAN); eh->evl_tag = htons(mb->m_pkthdr.ether_vtag); /* Copy rest of header data, if any */ m_copydata(mb, 0, args.ihs - ETHER_HDR_LEN, (caddr_t)(eh + 1)); m_adj(mb, args.ihs - ETHER_HDR_LEN); /* Extend header by 4 bytes */ args.ihs += ETHER_VLAN_ENCAP_LEN; wqe->eth.inline_hdr_sz = cpu_to_be16(args.ihs); } else { /* check if inline header size is too big */ if (unlikely(args.ihs > sq->max_inline)) { if (unlikely(mb->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_ENCAP_VXLAN))) { err = EINVAL; goto tx_drop; } args.ihs = sq->max_inline; } m_copydata(mb, 0, args.ihs, wqe->eth.inline_hdr_start); m_adj(mb, args.ihs); wqe->eth.inline_hdr_sz = cpu_to_be16(args.ihs); } ds_cnt = sizeof(*wqe) / MLX5_SEND_WQE_DS; if (args.ihs > sizeof(wqe->eth.inline_hdr_start)) { ds_cnt += DIV_ROUND_UP(args.ihs - sizeof(wqe->eth.inline_hdr_start), MLX5_SEND_WQE_DS); } dseg = ((struct mlx5_wqe_data_seg *)&wqe->ctrl) + ds_cnt; err = bus_dmamap_load_mbuf_sg(sq->dma_tag, sq->mbuf[pi].dma_map, mb, segs, &nsegs, BUS_DMA_NOWAIT); if (err == EFBIG) { /* Update statistics */ sq->stats.defragged++; /* Too many mbuf fragments */ mb = m_defrag(*mbp, M_NOWAIT); if (mb == NULL) { mb = *mbp; goto tx_drop; } /* Try again */ err = bus_dmamap_load_mbuf_sg(sq->dma_tag, sq->mbuf[pi].dma_map, mb, segs, &nsegs, BUS_DMA_NOWAIT); } /* Catch errors */ if (err != 0) goto tx_drop; /* Make sure all mbuf data, if any, is visible to the bus */ if (nsegs != 0) { bus_dmamap_sync(sq->dma_tag, sq->mbuf[pi].dma_map, BUS_DMASYNC_PREWRITE); } else { /* All data was inlined, free the mbuf. */ bus_dmamap_unload(sq->dma_tag, sq->mbuf[pi].dma_map); m_freem(mb); mb = NULL; } for (x = 0; x != nsegs; x++) { if (segs[x].ds_len == 0) continue; dseg->addr = cpu_to_be64((uint64_t)segs[x].ds_addr); dseg->lkey = sq->mkey_be; dseg->byte_count = cpu_to_be32((uint32_t)segs[x].ds_len); dseg++; } ds_cnt = (dseg - ((struct mlx5_wqe_data_seg *)&wqe->ctrl)); wqe->ctrl.opmod_idx_opcode = cpu_to_be32((sq->pc << 8) | opcode); wqe->ctrl.qpn_ds = cpu_to_be32((sq->sqn << 8) | ds_cnt); wqe->ctrl.imm = cpu_to_be32(args.tisn << 8); if (mlx5e_do_send_cqe_inline(sq)) wqe->ctrl.fm_ce_se = MLX5_WQE_CTRL_CQ_UPDATE; else wqe->ctrl.fm_ce_se = 0; /* Copy data for doorbell */ memcpy(sq->doorbell.d32, &wqe->ctrl, sizeof(sq->doorbell.d32)); /* Store pointer to mbuf */ sq->mbuf[pi].mbuf = mb; sq->mbuf[pi].num_wqebbs = DIV_ROUND_UP(ds_cnt, MLX5_SEND_WQEBB_NUM_DS); if (unlikely(args.mst != NULL)) sq->mbuf[pi].mst = m_snd_tag_ref(args.mst); else MPASS(sq->mbuf[pi].mst == NULL); sq->pc += sq->mbuf[pi].num_wqebbs; /* Count all traffic going out */ sq->stats.packets++; sq->stats.bytes += sq->mbuf[pi].num_bytes; *mbp = NULL; /* safety clear */ return (0); tx_drop: sq->stats.dropped++; *mbp = NULL; m_freem(mb); return err; } static void mlx5e_poll_tx_cq(struct mlx5e_sq *sq, int budget) { u16 sqcc; /* * sq->cc must be updated only after mlx5_cqwq_update_db_record(), * otherwise a cq overrun may occur */ sqcc = sq->cc; while (budget > 0) { struct mlx5_cqe64 *cqe; struct m_snd_tag *mst; struct mbuf *mb; bool match; u16 sqcc_this; u16 delta; u16 x; u16 ci; cqe = mlx5e_get_cqe(&sq->cq); if (!cqe) break; mlx5_cqwq_pop(&sq->cq.wq); /* check if the completion event indicates an error */ if (unlikely(get_cqe_opcode(cqe) != MLX5_CQE_REQ)) { mlx5e_dump_err_cqe(&sq->cq, sq->sqn, (const void *)cqe); sq->stats.cqe_err++; } /* setup local variables */ sqcc_this = be16toh(cqe->wqe_counter); match = false; /* update budget according to the event factor */ budget -= sq->cev_factor; for (x = 0;; x++) { if (unlikely(match != false)) { break; } else if (unlikely(x == sq->cev_factor)) { /* WQE counter match not found */ sq->stats.cqe_err++; break; } ci = sqcc & sq->wq.sz_m1; delta = sqcc_this - sqcc; match = (delta < sq->mbuf[ci].num_wqebbs); mb = sq->mbuf[ci].mbuf; sq->mbuf[ci].mbuf = NULL; mst = sq->mbuf[ci].mst; sq->mbuf[ci].mst = NULL; if (unlikely(mb == NULL)) { if (unlikely(sq->mbuf[ci].num_bytes == 0)) sq->stats.nop++; } else { bus_dmamap_sync(sq->dma_tag, sq->mbuf[ci].dma_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sq->dma_tag, sq->mbuf[ci].dma_map); /* Free transmitted mbuf */ m_freem(mb); } if (unlikely(mst != NULL)) m_snd_tag_rele(mst); sqcc += sq->mbuf[ci].num_wqebbs; } } mlx5_cqwq_update_db_record(&sq->cq.wq); /* Ensure cq space is freed before enabling more cqes */ atomic_thread_fence_rel(); sq->cc = sqcc; } static int mlx5e_xmit_locked(if_t ifp, struct mlx5e_sq *sq, struct mbuf *mb) { int err = 0; if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || READ_ONCE(sq->running) == 0)) { m_freem(mb); return (ENETDOWN); } /* Do transmit */ if (mlx5e_sq_xmit(sq, &mb) != 0) { /* NOTE: m_freem() is NULL safe */ m_freem(mb); err = ENOBUFS; } /* Write the doorbell record, if any. */ mlx5e_tx_notify_hw(sq, false); /* * Check if we need to start the event timer which flushes the * transmit ring on timeout: */ if (unlikely(sq->cev_next_state == MLX5E_CEV_STATE_INITIAL && sq->cev_factor != 1)) { /* start the timer */ mlx5e_sq_cev_timeout(sq); } else { /* don't send NOPs yet */ sq->cev_next_state = MLX5E_CEV_STATE_HOLD_NOPS; } return (err); } int mlx5e_xmit(if_t ifp, struct mbuf *mb) { struct mlx5e_sq *sq; int ret; if (mb->m_pkthdr.csum_flags & CSUM_SND_TAG) { MPASS(mb->m_pkthdr.snd_tag->ifp == ifp); sq = mlx5e_select_queue_by_send_tag(ifp, mb); if (unlikely(sq == NULL)) { goto select_queue; } } else { select_queue: sq = mlx5e_select_queue(ifp, mb); if (unlikely(sq == NULL)) { /* Free mbuf */ m_freem(mb); /* Invalid send queue */ return (ENXIO); } } mtx_lock(&sq->lock); ret = mlx5e_xmit_locked(ifp, sq, mb); mtx_unlock(&sq->lock); return (ret); } void mlx5e_tx_cq_comp(struct mlx5_core_cq *mcq, struct mlx5_eqe *eqe __unused) { struct mlx5e_sq *sq = container_of(mcq, struct mlx5e_sq, cq.mcq); mtx_lock(&sq->comp_lock); mlx5e_poll_tx_cq(sq, MLX5E_BUDGET_MAX); mlx5e_cq_arm(&sq->cq, MLX5_GET_DOORBELL_LOCK(&sq->priv->doorbell_lock)); mtx_unlock(&sq->comp_lock); }