diff --git a/sys/powerpc/booke/pmap.c b/sys/powerpc/booke/pmap.c index 429544cf71fa..434d5038c3e0 100644 --- a/sys/powerpc/booke/pmap.c +++ b/sys/powerpc/booke/pmap.c @@ -1,4438 +1,3137 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski * Copyright (C) 2006 Semihalf, Marian Balakowicz * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Some hw specific parts of this pmap were derived or influenced * by NetBSD's ibm4xx pmap module. More generic code is shared with * a few other pmap modules from the FreeBSD tree. */ /* * VM layout notes: * * Kernel and user threads run within one common virtual address space * defined by AS=0. * * 32-bit pmap: * Virtual address space layout: * ----------------------------- * 0x0000_0000 - 0x7fff_ffff : user process * 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) * 0xc000_0000 - 0xc0ff_ffff : kernel reserved * 0xc000_0000 - data_end : kernel code+data, env, metadata etc. * 0xc100_0000 - 0xffff_ffff : KVA * 0xc100_0000 - 0xc100_3fff : reserved for page zero/copy * 0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs * 0xc200_4000 - 0xc200_8fff : guard page + kstack0 * 0xc200_9000 - 0xfeef_ffff : actual free KVA space * * 64-bit pmap: * Virtual address space layout: * ----------------------------- * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : user process * 0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff : text, data, heap, maps, libraries * 0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff : mmio region * 0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : stack * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff : kernel reserved * 0xc000_0000_0000_0000 - endkernel-1 : kernel code & data * endkernel - msgbufp-1 : flat device tree * msgbufp - kernel_pdir-1 : message buffer * kernel_pdir - kernel_pp2d-1 : kernel page directory * kernel_pp2d - . : kernel pointers to page directory * pmap_zero_copy_min - crashdumpmap-1 : reserved for page zero/copy * crashdumpmap - ptbl_buf_pool_vabase-1 : reserved for ptbl bufs * ptbl_buf_pool_vabase - virtual_avail-1 : user page directories and page tables * virtual_avail - 0xcfff_ffff_ffff_ffff : actual free KVA space * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff : coprocessor region * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff : mmio region * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff : direct map * 0xf000_0000_0000_0000 - +Maxmem : physmem map * - 0xffff_ffff_ffff_ffff : device direct map */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_kstack_pages.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mmu_if.h" #define SPARSE_MAPDEV #ifdef DEBUG #define debugf(fmt, args...) printf(fmt, ##args) #else #define debugf(fmt, args...) #endif #ifdef __powerpc64__ #define PRI0ptrX "016lx" #else #define PRI0ptrX "08x" #endif #define TODO panic("%s: not implemented", __func__); extern unsigned char _etext[]; extern unsigned char _end[]; extern uint32_t *bootinfo; vm_paddr_t kernload; vm_offset_t kernstart; vm_size_t kernsize; /* Message buffer and tables. */ static vm_offset_t data_start; static vm_size_t data_end; /* Phys/avail memory regions. */ static struct mem_region *availmem_regions; static int availmem_regions_sz; static struct mem_region *physmem_regions; static int physmem_regions_sz; #ifndef __powerpc64__ /* Reserved KVA space and mutex for mmu_booke_zero_page. */ static vm_offset_t zero_page_va; static struct mtx zero_page_mutex; /* Reserved KVA space and mutex for mmu_booke_copy_page. */ static vm_offset_t copy_page_src_va; static vm_offset_t copy_page_dst_va; static struct mtx copy_page_mutex; #endif static struct mtx tlbivax_mutex; /**************************************************************************/ /* PMAP */ /**************************************************************************/ static int mmu_booke_enter_locked(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); unsigned int kptbl_min; /* Index of the first kernel ptbl. */ unsigned int kernel_ptbls; /* Number of KVA ptbls. */ #ifdef __powerpc64__ unsigned int kernel_pdirs; #endif static uma_zone_t ptbl_root_zone; /* * If user pmap is processed with mmu_booke_remove and the resident count * drops to 0, there are no more pages to remove, so we need not continue. */ #define PMAP_REMOVE_DONE(pmap) \ ((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0) #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) extern int elf32_nxstack; #endif /**************************************************************************/ /* TLB and TID handling */ /**************************************************************************/ /* Translation ID busy table */ static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1]; /* * TLB0 capabilities (entry, way numbers etc.). These can vary between e500 * core revisions and should be read from h/w registers during early config. */ uint32_t tlb0_entries; uint32_t tlb0_ways; uint32_t tlb0_entries_per_way; uint32_t tlb1_entries; #define TLB0_ENTRIES (tlb0_entries) #define TLB0_WAYS (tlb0_ways) #define TLB0_ENTRIES_PER_WAY (tlb0_entries_per_way) #define TLB1_ENTRIES (tlb1_entries) -/* - * Base of the pmap_mapdev() region. On 32-bit it immediately follows the - * userspace address range. On On 64-bit it's far above, at (1 << 63), and - * ranges up to the DMAP, giving 62 bits of PA allowed. This is far larger than - * the widest Book-E address bus, the e6500 has a 40-bit PA space. This allows - * us to map akin to the DMAP, with addresses identical to the PA, offset by the - * base. - */ -#ifdef __powerpc64__ -#define VM_MAPDEV_BASE 0x8000000000000000 -#define VM_MAPDEV_PA_MAX 0x4000000000000000 /* Don't encroach on DMAP */ -#else -#define VM_MAPDEV_BASE ((vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE) -#endif - -static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE; - static tlbtid_t tid_alloc(struct pmap *); -static void tid_flush(tlbtid_t tid); #ifdef DDB #ifdef __powerpc64__ static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t); #else static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t); #endif #endif static void tlb1_read_entry(tlb_entry_t *, unsigned int); static void tlb1_write_entry(tlb_entry_t *, unsigned int); static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *); static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int); +static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma); + static vm_size_t tsize2size(unsigned int); static unsigned int size2tsize(vm_size_t); static unsigned long ilog2(unsigned long); static void set_mas4_defaults(void); static inline void tlb0_flush_entry(vm_offset_t); static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int); /**************************************************************************/ /* Page table management */ /**************************************************************************/ static struct rwlock_padalign pvh_global_lock; /* Data for the pv entry allocation mechanism */ static uma_zone_t pvzone; static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0; #define PV_ENTRY_ZONE_MIN 2048 /* min pv entries in uma zone */ #ifndef PMAP_SHPGPERPROC #define PMAP_SHPGPERPROC 200 #endif -#ifdef __powerpc64__ -#define PMAP_ROOT_SIZE (sizeof(pte_t***) * PP2D_NENTRIES) -static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **, - unsigned int, boolean_t); -static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int, vm_page_t); -static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int); -static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t); -#else -#define PMAP_ROOT_SIZE (sizeof(pte_t**) * PDIR_NENTRIES) -static void ptbl_init(void); -static struct ptbl_buf *ptbl_buf_alloc(void); -static void ptbl_buf_free(struct ptbl_buf *); -static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); - -static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); -static void ptbl_free(mmu_t, pmap_t, unsigned int); -static void ptbl_hold(mmu_t, pmap_t, unsigned int); -static int ptbl_unhold(mmu_t, pmap_t, unsigned int); -#endif - static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t); static pv_entry_t pv_alloc(void); static void pv_free(pv_entry_t); static void pv_insert(pmap_t, vm_offset_t, vm_page_t); static void pv_remove(pmap_t, vm_offset_t, vm_page_t); static void booke_pmap_init_qpages(void); -struct ptbl_buf { - TAILQ_ENTRY(ptbl_buf) link; /* list link */ - vm_offset_t kva; /* va of mapping */ -}; - -#ifndef __powerpc64__ -/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ -#define PTBL_BUFS (128 * 16) - -/* ptbl free list and a lock used for access synchronization. */ -static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; -static struct mtx ptbl_buf_freelist_lock; - -/* Base address of kva space allocated fot ptbl bufs. */ -static vm_offset_t ptbl_buf_pool_vabase; - -/* Pointer to ptbl_buf structures. */ -static struct ptbl_buf *ptbl_bufs; -#endif +static inline void tlb_miss_lock(void); +static inline void tlb_miss_unlock(void); #ifdef SMP extern tlb_entry_t __boot_tlb1[]; void pmap_bootstrap_ap(volatile uint32_t *); #endif /* * Kernel MMU interface */ static void mmu_booke_clear_modify(mmu_t, vm_page_t); static void mmu_booke_copy(mmu_t, pmap_t, pmap_t, vm_offset_t, vm_size_t, vm_offset_t); static void mmu_booke_copy_page(mmu_t, vm_page_t, vm_page_t); static void mmu_booke_copy_pages(mmu_t, vm_page_t *, vm_offset_t, vm_page_t *, vm_offset_t, int); static int mmu_booke_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int flags, int8_t psind); static void mmu_booke_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, vm_prot_t); static void mmu_booke_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); static vm_paddr_t mmu_booke_extract(mmu_t, pmap_t, vm_offset_t); static vm_page_t mmu_booke_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); static void mmu_booke_init(mmu_t); static boolean_t mmu_booke_is_modified(mmu_t, vm_page_t); static boolean_t mmu_booke_is_prefaultable(mmu_t, pmap_t, vm_offset_t); static boolean_t mmu_booke_is_referenced(mmu_t, vm_page_t); static int mmu_booke_ts_referenced(mmu_t, vm_page_t); static vm_offset_t mmu_booke_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); static int mmu_booke_mincore(mmu_t, pmap_t, vm_offset_t, vm_paddr_t *); static void mmu_booke_object_init_pt(mmu_t, pmap_t, vm_offset_t, vm_object_t, vm_pindex_t, vm_size_t); static boolean_t mmu_booke_page_exists_quick(mmu_t, pmap_t, vm_page_t); static void mmu_booke_page_init(mmu_t, vm_page_t); static int mmu_booke_page_wired_mappings(mmu_t, vm_page_t); static void mmu_booke_pinit(mmu_t, pmap_t); static void mmu_booke_pinit0(mmu_t, pmap_t); static void mmu_booke_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); static void mmu_booke_qenter(mmu_t, vm_offset_t, vm_page_t *, int); static void mmu_booke_qremove(mmu_t, vm_offset_t, int); static void mmu_booke_release(mmu_t, pmap_t); static void mmu_booke_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); static void mmu_booke_remove_all(mmu_t, vm_page_t); static void mmu_booke_remove_write(mmu_t, vm_page_t); static void mmu_booke_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); static void mmu_booke_zero_page(mmu_t, vm_page_t); static void mmu_booke_zero_page_area(mmu_t, vm_page_t, int, int); static void mmu_booke_activate(mmu_t, struct thread *); static void mmu_booke_deactivate(mmu_t, struct thread *); static void mmu_booke_bootstrap(mmu_t, vm_offset_t, vm_offset_t); static void *mmu_booke_mapdev(mmu_t, vm_paddr_t, vm_size_t); static void *mmu_booke_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t); static void mmu_booke_unmapdev(mmu_t, vm_offset_t, vm_size_t); static vm_paddr_t mmu_booke_kextract(mmu_t, vm_offset_t); static void mmu_booke_kenter(mmu_t, vm_offset_t, vm_paddr_t); static void mmu_booke_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t); static void mmu_booke_kremove(mmu_t, vm_offset_t); static boolean_t mmu_booke_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); static void mmu_booke_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); static void mmu_booke_dumpsys_map(mmu_t, vm_paddr_t pa, size_t, void **); static void mmu_booke_dumpsys_unmap(mmu_t, vm_paddr_t pa, size_t, void *); static void mmu_booke_scan_init(mmu_t); static vm_offset_t mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m); static void mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr); static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, vm_memattr_t mode); static int mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); static int mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr); static void mmu_booke_page_array_startup(mmu_t , long); static mmu_method_t mmu_booke_methods[] = { /* pmap dispatcher interface */ MMUMETHOD(mmu_clear_modify, mmu_booke_clear_modify), MMUMETHOD(mmu_copy, mmu_booke_copy), MMUMETHOD(mmu_copy_page, mmu_booke_copy_page), MMUMETHOD(mmu_copy_pages, mmu_booke_copy_pages), MMUMETHOD(mmu_enter, mmu_booke_enter), MMUMETHOD(mmu_enter_object, mmu_booke_enter_object), MMUMETHOD(mmu_enter_quick, mmu_booke_enter_quick), MMUMETHOD(mmu_extract, mmu_booke_extract), MMUMETHOD(mmu_extract_and_hold, mmu_booke_extract_and_hold), MMUMETHOD(mmu_init, mmu_booke_init), MMUMETHOD(mmu_is_modified, mmu_booke_is_modified), MMUMETHOD(mmu_is_prefaultable, mmu_booke_is_prefaultable), MMUMETHOD(mmu_is_referenced, mmu_booke_is_referenced), MMUMETHOD(mmu_ts_referenced, mmu_booke_ts_referenced), MMUMETHOD(mmu_map, mmu_booke_map), MMUMETHOD(mmu_mincore, mmu_booke_mincore), MMUMETHOD(mmu_object_init_pt, mmu_booke_object_init_pt), MMUMETHOD(mmu_page_exists_quick,mmu_booke_page_exists_quick), MMUMETHOD(mmu_page_init, mmu_booke_page_init), MMUMETHOD(mmu_page_wired_mappings, mmu_booke_page_wired_mappings), MMUMETHOD(mmu_pinit, mmu_booke_pinit), MMUMETHOD(mmu_pinit0, mmu_booke_pinit0), MMUMETHOD(mmu_protect, mmu_booke_protect), MMUMETHOD(mmu_qenter, mmu_booke_qenter), MMUMETHOD(mmu_qremove, mmu_booke_qremove), MMUMETHOD(mmu_release, mmu_booke_release), MMUMETHOD(mmu_remove, mmu_booke_remove), MMUMETHOD(mmu_remove_all, mmu_booke_remove_all), MMUMETHOD(mmu_remove_write, mmu_booke_remove_write), MMUMETHOD(mmu_sync_icache, mmu_booke_sync_icache), MMUMETHOD(mmu_unwire, mmu_booke_unwire), MMUMETHOD(mmu_zero_page, mmu_booke_zero_page), MMUMETHOD(mmu_zero_page_area, mmu_booke_zero_page_area), MMUMETHOD(mmu_activate, mmu_booke_activate), MMUMETHOD(mmu_deactivate, mmu_booke_deactivate), MMUMETHOD(mmu_quick_enter_page, mmu_booke_quick_enter_page), MMUMETHOD(mmu_quick_remove_page, mmu_booke_quick_remove_page), MMUMETHOD(mmu_page_array_startup, mmu_booke_page_array_startup), /* Internal interfaces */ MMUMETHOD(mmu_bootstrap, mmu_booke_bootstrap), MMUMETHOD(mmu_dev_direct_mapped,mmu_booke_dev_direct_mapped), MMUMETHOD(mmu_mapdev, mmu_booke_mapdev), MMUMETHOD(mmu_mapdev_attr, mmu_booke_mapdev_attr), MMUMETHOD(mmu_kenter, mmu_booke_kenter), MMUMETHOD(mmu_kenter_attr, mmu_booke_kenter_attr), MMUMETHOD(mmu_kextract, mmu_booke_kextract), MMUMETHOD(mmu_kremove, mmu_booke_kremove), MMUMETHOD(mmu_unmapdev, mmu_booke_unmapdev), MMUMETHOD(mmu_change_attr, mmu_booke_change_attr), MMUMETHOD(mmu_map_user_ptr, mmu_booke_map_user_ptr), MMUMETHOD(mmu_decode_kernel_ptr, mmu_booke_decode_kernel_ptr), /* dumpsys() support */ MMUMETHOD(mmu_dumpsys_map, mmu_booke_dumpsys_map), MMUMETHOD(mmu_dumpsys_unmap, mmu_booke_dumpsys_unmap), MMUMETHOD(mmu_scan_init, mmu_booke_scan_init), { 0, 0 } }; MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods, 0); +#ifdef __powerpc64__ +#include "pmap_64.c" +#else +#include "pmap_32.c" +#endif + +static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE; + static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) { uint32_t attrib; int i; if (ma != VM_MEMATTR_DEFAULT) { switch (ma) { case VM_MEMATTR_UNCACHEABLE: return (MAS2_I | MAS2_G); case VM_MEMATTR_WRITE_COMBINING: case VM_MEMATTR_WRITE_BACK: case VM_MEMATTR_PREFETCHABLE: return (MAS2_I); case VM_MEMATTR_WRITE_THROUGH: return (MAS2_W | MAS2_M); case VM_MEMATTR_CACHEABLE: return (MAS2_M); } } /* * Assume the page is cache inhibited and access is guarded unless * it's in our available memory array. */ attrib = _TLB_ENTRY_IO; for (i = 0; i < physmem_regions_sz; i++) { if ((pa >= physmem_regions[i].mr_start) && (pa < (physmem_regions[i].mr_start + physmem_regions[i].mr_size))) { attrib = _TLB_ENTRY_MEM; break; } } return (attrib); } static inline void tlb_miss_lock(void) { #ifdef SMP struct pcpu *pc; if (!smp_started) return; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { if (pc != pcpup) { CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, " "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock); KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)), ("tlb_miss_lock: tried to lock self")); tlb_lock(pc->pc_booke.tlb_lock); CTR1(KTR_PMAP, "%s: locked", __func__); } } #endif } static inline void tlb_miss_unlock(void) { #ifdef SMP struct pcpu *pc; if (!smp_started) return; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { if (pc != pcpup) { CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d", __func__, pc->pc_cpuid); tlb_unlock(pc->pc_booke.tlb_lock); CTR1(KTR_PMAP, "%s: unlocked", __func__); } } #endif } /* Return number of entries in TLB0. */ static __inline void tlb0_get_tlbconf(void) { uint32_t tlb0_cfg; tlb0_cfg = mfspr(SPR_TLB0CFG); tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK; tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT; tlb0_entries_per_way = tlb0_entries / tlb0_ways; } /* Return number of entries in TLB1. */ static __inline void tlb1_get_tlbconf(void) { uint32_t tlb1_cfg; - tlb1_cfg = mfspr(SPR_TLB1CFG); - tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK; -} - -/**************************************************************************/ -/* Page table related */ -/**************************************************************************/ - -#ifdef __powerpc64__ -/* Initialize pool of kva ptbl buffers. */ -static void -ptbl_init(void) -{ -} - -/* Get a pointer to a PTE in a page table. */ -static __inline pte_t * -pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) -{ - pte_t **pdir; - pte_t *ptbl; - - KASSERT((pmap != NULL), ("pte_find: invalid pmap")); - - pdir = pmap->pm_pp2d[PP2D_IDX(va)]; - if (!pdir) - return NULL; - ptbl = pdir[PDIR_IDX(va)]; - return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL); -} - -/* - * allocate a page of pointers to page directories, do not preallocate the - * page tables - */ -static pte_t ** -pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep) -{ - vm_page_t m; - pte_t **pdir; - int req; - - req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; - while ((m = vm_page_alloc(NULL, pp2d_idx, req)) == NULL) { - PMAP_UNLOCK(pmap); - if (nosleep) { - return (NULL); - } - vm_wait(NULL); - PMAP_LOCK(pmap); - } - - /* Zero whole ptbl. */ - pdir = (pte_t **)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); - mmu_booke_zero_page(mmu, m); - - return (pdir); -} - -/* Free pdir pages and invalidate pdir entry. */ -static void -pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, vm_page_t m) -{ - pte_t **pdir; - - pdir = pmap->pm_pp2d[pp2d_idx]; - - KASSERT((pdir != NULL), ("pdir_free: null pdir")); - - pmap->pm_pp2d[pp2d_idx] = NULL; - - vm_wire_sub(1); - vm_page_free_zero(m); -} - -/* - * Decrement pdir pages hold count and attempt to free pdir pages. Called - * when removing directory entry from pdir. - * - * Return 1 if pdir pages were freed. - */ -static int -pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx) -{ - pte_t **pdir; - vm_paddr_t pa; - vm_page_t m; - - KASSERT((pmap != kernel_pmap), - ("pdir_unhold: unholding kernel pdir!")); - - pdir = pmap->pm_pp2d[pp2d_idx]; - - /* decrement hold count */ - pa = DMAP_TO_PHYS((vm_offset_t) pdir); - m = PHYS_TO_VM_PAGE(pa); - - /* - * Free pdir page if there are no dir entries in this pdir. - */ - m->ref_count--; - if (m->ref_count == 0) { - pdir_free(mmu, pmap, pp2d_idx, m); - return (1); - } - return (0); -} - -/* - * Increment hold count for pdir pages. This routine is used when new ptlb - * entry is being inserted into pdir. - */ -static void -pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir) -{ - vm_page_t m; - - KASSERT((pmap != kernel_pmap), - ("pdir_hold: holding kernel pdir!")); - - KASSERT((pdir != NULL), ("pdir_hold: null pdir")); - - m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pdir)); - m->ref_count++; -} - -/* Allocate page table. */ -static pte_t * -ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, - boolean_t nosleep) -{ - vm_page_t m; - pte_t *ptbl; - int req; - - KASSERT((pdir[pdir_idx] == NULL), - ("%s: valid ptbl entry exists!", __func__)); - - req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; - while ((m = vm_page_alloc(NULL, pdir_idx, req)) == NULL) { - if (nosleep) - return (NULL); - PMAP_UNLOCK(pmap); - rw_wunlock(&pvh_global_lock); - vm_wait(NULL); - rw_wlock(&pvh_global_lock); - PMAP_LOCK(pmap); - } - - /* Zero whole ptbl. */ - ptbl = (pte_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); - mmu_booke_zero_page(mmu, m); - - return (ptbl); -} - -/* Free ptbl pages and invalidate pdir entry. */ -static void -ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, vm_page_t m) -{ - pte_t *ptbl; - - ptbl = pdir[pdir_idx]; - - KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); - - pdir[pdir_idx] = NULL; - - vm_wire_sub(1); - vm_page_free_zero(m); -} - -/* - * Decrement ptbl pages hold count and attempt to free ptbl pages. Called - * when removing pte entry from ptbl. - * - * Return 1 if ptbl pages were freed. - */ -static int -ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va) -{ - pte_t *ptbl; - vm_page_t m; - u_int pp2d_idx; - pte_t **pdir; - u_int pdir_idx; - - pp2d_idx = PP2D_IDX(va); - pdir_idx = PDIR_IDX(va); - - KASSERT((pmap != kernel_pmap), - ("ptbl_unhold: unholding kernel ptbl!")); - - pdir = pmap->pm_pp2d[pp2d_idx]; - ptbl = pdir[pdir_idx]; - - /* decrement hold count */ - m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl)); - - /* - * Free ptbl pages if there are no pte entries in this ptbl. - * ref_count has the same value for all ptbl pages, so check the - * last page. - */ - m->ref_count--; - if (m->ref_count == 0) { - ptbl_free(mmu, pmap, pdir, pdir_idx, m); - pdir_unhold(mmu, pmap, pp2d_idx); - return (1); - } - return (0); -} - -/* - * Increment hold count for ptbl pages. This routine is used when new pte - * entry is being inserted into ptbl. - */ -static void -ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) -{ - pte_t *ptbl; - vm_page_t m; - - KASSERT((pmap != kernel_pmap), - ("ptbl_hold: holding kernel ptbl!")); - - ptbl = pdir[pdir_idx]; - - KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); - - m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl)); - m->ref_count++; -} -#else - -/* Initialize pool of kva ptbl buffers. */ -static void -ptbl_init(void) -{ - int i; - - CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, - (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); - CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", - __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); - - mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); - TAILQ_INIT(&ptbl_buf_freelist); - - for (i = 0; i < PTBL_BUFS; i++) { - ptbl_bufs[i].kva = - ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; - TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); - } -} - -/* Get a ptbl_buf from the freelist. */ -static struct ptbl_buf * -ptbl_buf_alloc(void) -{ - struct ptbl_buf *buf; - - mtx_lock(&ptbl_buf_freelist_lock); - buf = TAILQ_FIRST(&ptbl_buf_freelist); - if (buf != NULL) - TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); - mtx_unlock(&ptbl_buf_freelist_lock); - - CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); - - return (buf); -} - -/* Return ptbl buff to free pool. */ -static void -ptbl_buf_free(struct ptbl_buf *buf) -{ - - CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); - - mtx_lock(&ptbl_buf_freelist_lock); - TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); - mtx_unlock(&ptbl_buf_freelist_lock); -} - -/* - * Search the list of allocated ptbl bufs and find on list of allocated ptbls - */ -static void -ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) -{ - struct ptbl_buf *pbuf; - - CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); - - PMAP_LOCK_ASSERT(pmap, MA_OWNED); - - TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) - if (pbuf->kva == (vm_offset_t)ptbl) { - /* Remove from pmap ptbl buf list. */ - TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); - - /* Free corresponding ptbl buf. */ - ptbl_buf_free(pbuf); - break; - } -} - -/* Allocate page table. */ -static pte_t * -ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) -{ - vm_page_t mtbl[PTBL_PAGES]; - vm_page_t m; - struct ptbl_buf *pbuf; - unsigned int pidx; - pte_t *ptbl; - int i, j; - - CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, - (pmap == kernel_pmap), pdir_idx); - - KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), - ("ptbl_alloc: invalid pdir_idx")); - KASSERT((pmap->pm_pdir[pdir_idx] == NULL), - ("pte_alloc: valid ptbl entry exists!")); - - pbuf = ptbl_buf_alloc(); - if (pbuf == NULL) - panic("pte_alloc: couldn't alloc kernel virtual memory"); - - ptbl = (pte_t *)pbuf->kva; - - CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); - - for (i = 0; i < PTBL_PAGES; i++) { - pidx = (PTBL_PAGES * pdir_idx) + i; - while ((m = vm_page_alloc(NULL, pidx, - VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { - if (nosleep) { - ptbl_free_pmap_ptbl(pmap, ptbl); - for (j = 0; j < i; j++) - vm_page_free(mtbl[j]); - vm_wire_sub(i); - return (NULL); - } - PMAP_UNLOCK(pmap); - rw_wunlock(&pvh_global_lock); - vm_wait(NULL); - rw_wlock(&pvh_global_lock); - PMAP_LOCK(pmap); - } - mtbl[i] = m; - } - - /* Map allocated pages into kernel_pmap. */ - mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); - - /* Zero whole ptbl. */ - bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); - - /* Add pbuf to the pmap ptbl bufs list. */ - TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); - - return (ptbl); -} - -/* Free ptbl pages and invalidate pdir entry. */ -static void -ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) -{ - pte_t *ptbl; - vm_paddr_t pa; - vm_offset_t va; - vm_page_t m; - int i; - - CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, - (pmap == kernel_pmap), pdir_idx); - - KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), - ("ptbl_free: invalid pdir_idx")); - - ptbl = pmap->pm_pdir[pdir_idx]; - - CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); - - KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); - - /* - * Invalidate the pdir entry as soon as possible, so that other CPUs - * don't attempt to look up the page tables we are releasing. - */ - mtx_lock_spin(&tlbivax_mutex); - tlb_miss_lock(); - - pmap->pm_pdir[pdir_idx] = NULL; - - tlb_miss_unlock(); - mtx_unlock_spin(&tlbivax_mutex); - - for (i = 0; i < PTBL_PAGES; i++) { - va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); - pa = pte_vatopa(mmu, kernel_pmap, va); - m = PHYS_TO_VM_PAGE(pa); - vm_page_free_zero(m); - vm_wire_sub(1); - mmu_booke_kremove(mmu, va); - } - - ptbl_free_pmap_ptbl(pmap, ptbl); -} - -/* - * Decrement ptbl pages hold count and attempt to free ptbl pages. - * Called when removing pte entry from ptbl. - * - * Return 1 if ptbl pages were freed. - */ -static int -ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) -{ - pte_t *ptbl; - vm_paddr_t pa; - vm_page_t m; - int i; - - CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, - (pmap == kernel_pmap), pdir_idx); - - KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), - ("ptbl_unhold: invalid pdir_idx")); - KASSERT((pmap != kernel_pmap), - ("ptbl_unhold: unholding kernel ptbl!")); - - ptbl = pmap->pm_pdir[pdir_idx]; - - //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); - KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), - ("ptbl_unhold: non kva ptbl")); - - /* decrement hold count */ - for (i = 0; i < PTBL_PAGES; i++) { - pa = pte_vatopa(mmu, kernel_pmap, - (vm_offset_t)ptbl + (i * PAGE_SIZE)); - m = PHYS_TO_VM_PAGE(pa); - m->ref_count--; - } - - /* - * Free ptbl pages if there are no pte etries in this ptbl. - * ref_count has the same value for all ptbl pages, so check the last - * page. - */ - if (m->ref_count == 0) { - ptbl_free(mmu, pmap, pdir_idx); - - //debugf("ptbl_unhold: e (freed ptbl)\n"); - return (1); - } - - return (0); -} - -/* - * Increment hold count for ptbl pages. This routine is used when a new pte - * entry is being inserted into the ptbl. - */ -static void -ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) -{ - vm_paddr_t pa; - pte_t *ptbl; - vm_page_t m; - int i; - - CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, - pdir_idx); - - KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), - ("ptbl_hold: invalid pdir_idx")); - KASSERT((pmap != kernel_pmap), - ("ptbl_hold: holding kernel ptbl!")); - - ptbl = pmap->pm_pdir[pdir_idx]; - - KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); - - for (i = 0; i < PTBL_PAGES; i++) { - pa = pte_vatopa(mmu, kernel_pmap, - (vm_offset_t)ptbl + (i * PAGE_SIZE)); - m = PHYS_TO_VM_PAGE(pa); - m->ref_count++; - } -} -#endif - -/* Allocate pv_entry structure. */ -pv_entry_t -pv_alloc(void) -{ - pv_entry_t pv; - - pv_entry_count++; - if (pv_entry_count > pv_entry_high_water) - pagedaemon_wakeup(0); /* XXX powerpc NUMA */ - pv = uma_zalloc(pvzone, M_NOWAIT); - - return (pv); -} - -/* Free pv_entry structure. */ -static __inline void -pv_free(pv_entry_t pve) -{ - - pv_entry_count--; - uma_zfree(pvzone, pve); -} - - -/* Allocate and initialize pv_entry structure. */ -static void -pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) -{ - pv_entry_t pve; - - //int su = (pmap == kernel_pmap); - //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, - // (u_int32_t)pmap, va, (u_int32_t)m); - - pve = pv_alloc(); - if (pve == NULL) - panic("pv_insert: no pv entries!"); - - pve->pv_pmap = pmap; - pve->pv_va = va; - - /* add to pv_list */ - PMAP_LOCK_ASSERT(pmap, MA_OWNED); - rw_assert(&pvh_global_lock, RA_WLOCKED); - - TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); - - //debugf("pv_insert: e\n"); -} - -/* Destroy pv entry. */ -static void -pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) -{ - pv_entry_t pve; - - //int su = (pmap == kernel_pmap); - //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); - - PMAP_LOCK_ASSERT(pmap, MA_OWNED); - rw_assert(&pvh_global_lock, RA_WLOCKED); - - /* find pv entry */ - TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { - if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { - /* remove from pv_list */ - TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); - if (TAILQ_EMPTY(&m->md.pv_list)) - vm_page_aflag_clear(m, PGA_WRITEABLE); - - /* free pv entry struct */ - pv_free(pve); - break; - } - } - - //debugf("pv_remove: e\n"); -} - -#ifdef __powerpc64__ -/* - * Clean pte entry, try to free page table page if requested. - * - * Return 1 if ptbl pages were freed, otherwise return 0. - */ -static int -pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags) -{ - vm_page_t m; - pte_t *pte; - - pte = pte_find(mmu, pmap, va); - KASSERT(pte != NULL, ("%s: NULL pte", __func__)); - - if (!PTE_ISVALID(pte)) - return (0); - - /* Get vm_page_t for mapped pte. */ - m = PHYS_TO_VM_PAGE(PTE_PA(pte)); - - if (PTE_ISWIRED(pte)) - pmap->pm_stats.wired_count--; - - /* Handle managed entry. */ - if (PTE_ISMANAGED(pte)) { - - /* Handle modified pages. */ - if (PTE_ISMODIFIED(pte)) - vm_page_dirty(m); - - /* Referenced pages. */ - if (PTE_ISREFERENCED(pte)) - vm_page_aflag_set(m, PGA_REFERENCED); - - /* Remove pv_entry from pv_list. */ - pv_remove(pmap, va, m); - } else if (pmap == kernel_pmap && m && m->md.pv_tracked) { - pv_remove(pmap, va, m); - if (TAILQ_EMPTY(&m->md.pv_list)) - m->md.pv_tracked = false; - } - mtx_lock_spin(&tlbivax_mutex); - tlb_miss_lock(); - - tlb0_flush_entry(va); - *pte = 0; - - tlb_miss_unlock(); - mtx_unlock_spin(&tlbivax_mutex); - - pmap->pm_stats.resident_count--; - - if (flags & PTBL_UNHOLD) { - return (ptbl_unhold(mmu, pmap, va)); - } - return (0); -} - -/* - * Insert PTE for a given page and virtual address. - */ -static int -pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, - boolean_t nosleep) -{ - unsigned int pp2d_idx = PP2D_IDX(va); - unsigned int pdir_idx = PDIR_IDX(va); - unsigned int ptbl_idx = PTBL_IDX(va); - pte_t *ptbl, *pte, pte_tmp; - pte_t **pdir; - - /* Get the page directory pointer. */ - pdir = pmap->pm_pp2d[pp2d_idx]; - if (pdir == NULL) - pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep); - - /* Get the page table pointer. */ - ptbl = pdir[pdir_idx]; - - if (ptbl == NULL) { - /* Allocate page table pages. */ - ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep); - if (ptbl == NULL) { - KASSERT(nosleep, ("nosleep and NULL ptbl")); - return (ENOMEM); - } - pte = &ptbl[ptbl_idx]; - } else { - /* - * Check if there is valid mapping for requested va, if there - * is, remove it. - */ - pte = &ptbl[ptbl_idx]; - if (PTE_ISVALID(pte)) { - pte_remove(mmu, pmap, va, PTBL_HOLD); - } else { - /* - * pte is not used, increment hold count for ptbl - * pages. - */ - if (pmap != kernel_pmap) - ptbl_hold(mmu, pmap, pdir, pdir_idx); - } - } - - if (pdir[pdir_idx] == NULL) { - if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL) - pdir_hold(mmu, pmap, pdir); - pdir[pdir_idx] = ptbl; - } - if (pmap->pm_pp2d[pp2d_idx] == NULL) - pmap->pm_pp2d[pp2d_idx] = pdir; - - /* - * Insert pv_entry into pv_list for mapped page if part of managed - * memory. - */ - if ((m->oflags & VPO_UNMANAGED) == 0) { - flags |= PTE_MANAGED; - - /* Create and insert pv entry. */ - pv_insert(pmap, va, m); - } - - pmap->pm_stats.resident_count++; - - pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); - pte_tmp |= (PTE_VALID | flags); - - mtx_lock_spin(&tlbivax_mutex); - tlb_miss_lock(); - - tlb0_flush_entry(va); - *pte = pte_tmp; - - tlb_miss_unlock(); - mtx_unlock_spin(&tlbivax_mutex); - - return (0); -} - -/* Return the pa for the given pmap/va. */ -static vm_paddr_t -pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) -{ - vm_paddr_t pa = 0; - pte_t *pte; - - pte = pte_find(mmu, pmap, va); - if ((pte != NULL) && PTE_ISVALID(pte)) - pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); - return (pa); -} - - -/* allocate pte entries to manage (addr & mask) to (addr & mask) + size */ -static void -kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) -{ - int i, j; - vm_offset_t va; - pte_t *pte; - - va = addr; - /* Initialize kernel pdir */ - for (i = 0; i < kernel_pdirs; i++) { - kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] = - (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES)); - for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES)); - j < PDIR_NENTRIES; j++) { - kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] = - (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE) + - (((i * PDIR_NENTRIES) + j) * PAGE_SIZE)); - } - } - - /* - * Fill in PTEs covering kernel code and data. They are not required - * for address translation, as this area is covered by static TLB1 - * entries, but for pte_vatopa() to work correctly with kernel area - * addresses. - */ - for (va = addr; va < data_end; va += PAGE_SIZE) { - pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]); - *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); - *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | - PTE_VALID | PTE_PS_4KB; - } -} -#else -/* - * Clean pte entry, try to free page table page if requested. - * - * Return 1 if ptbl pages were freed, otherwise return 0. - */ -static int -pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) -{ - unsigned int pdir_idx = PDIR_IDX(va); - unsigned int ptbl_idx = PTBL_IDX(va); - vm_page_t m; - pte_t *ptbl; - pte_t *pte; - - //int su = (pmap == kernel_pmap); - //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", - // su, (u_int32_t)pmap, va, flags); - - ptbl = pmap->pm_pdir[pdir_idx]; - KASSERT(ptbl, ("pte_remove: null ptbl")); - - pte = &ptbl[ptbl_idx]; - - if (pte == NULL || !PTE_ISVALID(pte)) - return (0); - - if (PTE_ISWIRED(pte)) - pmap->pm_stats.wired_count--; - - /* Get vm_page_t for mapped pte. */ - m = PHYS_TO_VM_PAGE(PTE_PA(pte)); - - /* Handle managed entry. */ - if (PTE_ISMANAGED(pte)) { - - if (PTE_ISMODIFIED(pte)) - vm_page_dirty(m); - - if (PTE_ISREFERENCED(pte)) - vm_page_aflag_set(m, PGA_REFERENCED); - - pv_remove(pmap, va, m); - } else if (pmap == kernel_pmap && m && m->md.pv_tracked) { - /* - * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is - * used. This is needed by the NCSW support code for fast - * VA<->PA translation. - */ - pv_remove(pmap, va, m); - if (TAILQ_EMPTY(&m->md.pv_list)) - m->md.pv_tracked = false; - } - - mtx_lock_spin(&tlbivax_mutex); - tlb_miss_lock(); - - tlb0_flush_entry(va); - *pte = 0; - - tlb_miss_unlock(); - mtx_unlock_spin(&tlbivax_mutex); - - pmap->pm_stats.resident_count--; - - if (flags & PTBL_UNHOLD) { - //debugf("pte_remove: e (unhold)\n"); - return (ptbl_unhold(mmu, pmap, pdir_idx)); - } - - //debugf("pte_remove: e\n"); - return (0); -} - -/* - * Insert PTE for a given page and virtual address. - */ -static int -pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, - boolean_t nosleep) -{ - unsigned int pdir_idx = PDIR_IDX(va); - unsigned int ptbl_idx = PTBL_IDX(va); - pte_t *ptbl, *pte, pte_tmp; - - CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, - pmap == kernel_pmap, pmap, va); - - /* Get the page table pointer. */ - ptbl = pmap->pm_pdir[pdir_idx]; - - if (ptbl == NULL) { - /* Allocate page table pages. */ - ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); - if (ptbl == NULL) { - KASSERT(nosleep, ("nosleep and NULL ptbl")); - return (ENOMEM); - } - pmap->pm_pdir[pdir_idx] = ptbl; - pte = &ptbl[ptbl_idx]; - } else { - /* - * Check if there is valid mapping for requested - * va, if there is, remove it. - */ - pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; - if (PTE_ISVALID(pte)) { - pte_remove(mmu, pmap, va, PTBL_HOLD); - } else { - /* - * pte is not used, increment hold count - * for ptbl pages. - */ - if (pmap != kernel_pmap) - ptbl_hold(mmu, pmap, pdir_idx); - } - } - - /* - * Insert pv_entry into pv_list for mapped page if part of managed - * memory. - */ - if ((m->oflags & VPO_UNMANAGED) == 0) { - flags |= PTE_MANAGED; - - /* Create and insert pv entry. */ - pv_insert(pmap, va, m); - } + tlb1_cfg = mfspr(SPR_TLB1CFG); + tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK; +} - pmap->pm_stats.resident_count++; - - pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); - pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ +/**************************************************************************/ +/* Page table related */ +/**************************************************************************/ - mtx_lock_spin(&tlbivax_mutex); - tlb_miss_lock(); +/* Allocate pv_entry structure. */ +pv_entry_t +pv_alloc(void) +{ + pv_entry_t pv; - tlb0_flush_entry(va); - *pte = pte_tmp; + pv_entry_count++; + if (pv_entry_count > pv_entry_high_water) + pagedaemon_wakeup(0); /* XXX powerpc NUMA */ + pv = uma_zalloc(pvzone, M_NOWAIT); - tlb_miss_unlock(); - mtx_unlock_spin(&tlbivax_mutex); - return (0); + return (pv); } -/* Return the pa for the given pmap/va. */ -static vm_paddr_t -pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) +/* Free pv_entry structure. */ +static __inline void +pv_free(pv_entry_t pve) { - vm_paddr_t pa = 0; - pte_t *pte; - pte = pte_find(mmu, pmap, va); - if ((pte != NULL) && PTE_ISVALID(pte)) - pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); - return (pa); + pv_entry_count--; + uma_zfree(pvzone, pve); } -/* Get a pointer to a PTE in a page table. */ -static pte_t * -pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) + +/* Allocate and initialize pv_entry structure. */ +static void +pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m) { - unsigned int pdir_idx = PDIR_IDX(va); - unsigned int ptbl_idx = PTBL_IDX(va); + pv_entry_t pve; + + //int su = (pmap == kernel_pmap); + //debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su, + // (u_int32_t)pmap, va, (u_int32_t)m); + + pve = pv_alloc(); + if (pve == NULL) + panic("pv_insert: no pv entries!"); + + pve->pv_pmap = pmap; + pve->pv_va = va; - KASSERT((pmap != NULL), ("pte_find: invalid pmap")); + /* add to pv_list */ + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + rw_assert(&pvh_global_lock, RA_WLOCKED); - if (pmap->pm_pdir[pdir_idx]) - return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); + TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link); - return (NULL); + //debugf("pv_insert: e\n"); } -/* Set up kernel page tables. */ +/* Destroy pv entry. */ static void -kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) +pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m) { - int i; - vm_offset_t va; - pte_t *pte; + pv_entry_t pve; - /* Initialize kernel pdir */ - for (i = 0; i < kernel_ptbls; i++) - kernel_pmap->pm_pdir[kptbl_min + i] = - (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES)); + //int su = (pmap == kernel_pmap); + //debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va); - /* - * Fill in PTEs covering kernel code and data. They are not required - * for address translation, as this area is covered by static TLB1 - * entries, but for pte_vatopa() to work correctly with kernel area - * addresses. - */ - for (va = addr; va < data_end; va += PAGE_SIZE) { - pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); - *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); - *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | - PTE_VALID | PTE_PS_4KB; + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + rw_assert(&pvh_global_lock, RA_WLOCKED); + + /* find pv entry */ + TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) { + if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { + /* remove from pv_list */ + TAILQ_REMOVE(&m->md.pv_list, pve, pv_link); + if (TAILQ_EMPTY(&m->md.pv_list)) + vm_page_aflag_clear(m, PGA_WRITEABLE); + + /* free pv entry struct */ + pv_free(pve); + break; + } } + + //debugf("pv_remove: e\n"); } -#endif /**************************************************************************/ /* PMAP related */ /**************************************************************************/ /* * This is called during booke_init, before the system is really initialized. */ static void mmu_booke_bootstrap(mmu_t mmu, vm_offset_t start, vm_offset_t kernelend) { vm_paddr_t phys_kernelend; struct mem_region *mp, *mp1; int cnt, i, j; vm_paddr_t s, e, sz; vm_paddr_t physsz, hwphyssz; u_int phys_avail_count; vm_size_t kstack0_sz; vm_offset_t kernel_pdir, kstack0; vm_paddr_t kstack0_phys; void *dpcpu; vm_offset_t kernel_ptbl_root; debugf("mmu_booke_bootstrap: entered\n"); /* Set interesting system properties */ #ifdef __powerpc64__ hw_direct_map = 1; #else hw_direct_map = 0; #endif #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__) elf32_nxstack = 1; #endif /* Initialize invalidation mutex */ mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN); /* Read TLB0 size and associativity. */ tlb0_get_tlbconf(); /* * Align kernel start and end address (kernel image). * Note that kernel end does not necessarily relate to kernsize. * kernsize is the size of the kernel that is actually mapped. */ data_start = round_page(kernelend); data_end = data_start; /* Allocate the dynamic per-cpu area. */ dpcpu = (void *)data_end; data_end += DPCPU_SIZE; /* Allocate space for the message buffer. */ msgbufp = (struct msgbuf *)data_end; data_end += msgbufsize; debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", (uintptr_t)msgbufp, data_end); data_end = round_page(data_end); #ifdef __powerpc64__ kernel_ptbl_root = data_end; data_end += PP2D_NENTRIES * sizeof(pte_t**); #else /* Allocate space for ptbl_bufs. */ ptbl_bufs = (struct ptbl_buf *)data_end; data_end += sizeof(struct ptbl_buf) * PTBL_BUFS; debugf(" ptbl_bufs at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", (uintptr_t)ptbl_bufs, data_end); data_end = round_page(data_end); kernel_ptbl_root = data_end; data_end += PDIR_NENTRIES * sizeof(pte_t*); #endif /* Allocate PTE tables for kernel KVA. */ kernel_pdir = data_end; kernel_ptbls = howmany(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS, PDIR_SIZE); #ifdef __powerpc64__ kernel_pdirs = howmany(kernel_ptbls, PDIR_NENTRIES); data_end += kernel_pdirs * PDIR_PAGES * PAGE_SIZE; #endif data_end += kernel_ptbls * PTBL_PAGES * PAGE_SIZE; debugf(" kernel ptbls: %d\n", kernel_ptbls); debugf(" kernel pdir at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", kernel_pdir, data_end); /* Retrieve phys/avail mem regions */ mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, &availmem_regions_sz); if (PHYS_AVAIL_ENTRIES < availmem_regions_sz) panic("mmu_booke_bootstrap: phys_avail too small"); data_end = round_page(data_end); vm_page_array = (vm_page_t)data_end; /* * Get a rough idea (upper bound) on the size of the page array. The * vm_page_array will not handle any more pages than we have in the * avail_regions array, and most likely much less. */ sz = 0; for (mp = availmem_regions; mp->mr_size; mp++) { sz += mp->mr_size; } sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page))); data_end += round_page(sz * sizeof(struct vm_page)); /* Pre-round up to 1MB. This wastes some space, but saves TLB entries */ data_end = roundup2(data_end, 1 << 20); debugf(" data_end: 0x%"PRI0ptrX"\n", data_end); debugf(" kernstart: %#zx\n", kernstart); debugf(" kernsize: %#zx\n", kernsize); if (data_end - kernstart > kernsize) { kernsize += tlb1_mapin_region(kernstart + kernsize, kernload + kernsize, (data_end - kernstart) - kernsize, _TLB_ENTRY_MEM); } data_end = kernstart + kernsize; debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end); /* * Clear the structures - note we can only do it safely after the * possible additional TLB1 translations are in place (above) so that * all range up to the currently calculated 'data_end' is covered. */ dpcpu_init(dpcpu, 0); #ifdef __powerpc64__ memset((void *)kernel_pdir, 0, kernel_pdirs * PDIR_PAGES * PAGE_SIZE + kernel_ptbls * PTBL_PAGES * PAGE_SIZE); #else memset((void *)ptbl_bufs, 0, sizeof(struct ptbl_buf) * PTBL_SIZE); memset((void *)kernel_pdir, 0, kernel_ptbls * PTBL_PAGES * PAGE_SIZE); #endif /*******************************************************/ /* Set the start and end of kva. */ /*******************************************************/ virtual_avail = round_page(data_end); virtual_end = VM_MAX_KERNEL_ADDRESS; #ifndef __powerpc64__ /* Allocate KVA space for page zero/copy operations. */ zero_page_va = virtual_avail; virtual_avail += PAGE_SIZE; copy_page_src_va = virtual_avail; virtual_avail += PAGE_SIZE; copy_page_dst_va = virtual_avail; virtual_avail += PAGE_SIZE; debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va); debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va); debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va); /* Initialize page zero/copy mutexes. */ mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF); mtx_init(©_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF); /* Allocate KVA space for ptbl bufs. */ ptbl_buf_pool_vabase = virtual_avail; virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE; debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n", ptbl_buf_pool_vabase, virtual_avail); #endif /* Calculate corresponding physical addresses for the kernel region. */ phys_kernelend = kernload + kernsize; debugf("kernel image and allocated data:\n"); debugf(" kernload = 0x%09jx\n", (uintmax_t)kernload); debugf(" kernstart = 0x%"PRI0ptrX"\n", kernstart); debugf(" kernsize = 0x%"PRI0ptrX"\n", kernsize); /* * Remove kernel physical address range from avail regions list. Page * align all regions. Non-page aligned memory isn't very interesting * to us. Also, sort the entries for ascending addresses. */ sz = 0; cnt = availmem_regions_sz; debugf("processing avail regions:\n"); for (mp = availmem_regions; mp->mr_size; mp++) { s = mp->mr_start; e = mp->mr_start + mp->mr_size; debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e); /* Check whether this region holds all of the kernel. */ if (s < kernload && e > phys_kernelend) { availmem_regions[cnt].mr_start = phys_kernelend; availmem_regions[cnt++].mr_size = e - phys_kernelend; e = kernload; } /* Look whether this regions starts within the kernel. */ if (s >= kernload && s < phys_kernelend) { if (e <= phys_kernelend) goto empty; s = phys_kernelend; } /* Now look whether this region ends within the kernel. */ if (e > kernload && e <= phys_kernelend) { if (s >= kernload) goto empty; e = kernload; } /* Now page align the start and size of the region. */ s = round_page(s); e = trunc_page(e); if (e < s) e = s; sz = e - s; debugf("%09jx-%09jx = %jx\n", (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz); /* Check whether some memory is left here. */ if (sz == 0) { empty: memmove(mp, mp + 1, (cnt - (mp - availmem_regions)) * sizeof(*mp)); cnt--; mp--; continue; } /* Do an insertion sort. */ for (mp1 = availmem_regions; mp1 < mp; mp1++) if (s < mp1->mr_start) break; if (mp1 < mp) { memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1); mp1->mr_start = s; mp1->mr_size = sz; } else { mp->mr_start = s; mp->mr_size = sz; } } availmem_regions_sz = cnt; /*******************************************************/ /* Steal physical memory for kernel stack from the end */ /* of the first avail region */ /*******************************************************/ kstack0_sz = kstack_pages * PAGE_SIZE; kstack0_phys = availmem_regions[0].mr_start + availmem_regions[0].mr_size; kstack0_phys -= kstack0_sz; availmem_regions[0].mr_size -= kstack0_sz; /*******************************************************/ /* Fill in phys_avail table, based on availmem_regions */ /*******************************************************/ phys_avail_count = 0; physsz = 0; hwphyssz = 0; TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); debugf("fill in phys_avail:\n"); for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) { debugf(" region: 0x%jx - 0x%jx (0x%jx)\n", (uintmax_t)availmem_regions[i].mr_start, (uintmax_t)availmem_regions[i].mr_start + availmem_regions[i].mr_size, (uintmax_t)availmem_regions[i].mr_size); if (hwphyssz != 0 && (physsz + availmem_regions[i].mr_size) >= hwphyssz) { debugf(" hw.physmem adjust\n"); if (physsz < hwphyssz) { phys_avail[j] = availmem_regions[i].mr_start; phys_avail[j + 1] = availmem_regions[i].mr_start + hwphyssz - physsz; physsz = hwphyssz; phys_avail_count++; dump_avail[j] = phys_avail[j]; dump_avail[j + 1] = phys_avail[j + 1]; } break; } phys_avail[j] = availmem_regions[i].mr_start; phys_avail[j + 1] = availmem_regions[i].mr_start + availmem_regions[i].mr_size; phys_avail_count++; physsz += availmem_regions[i].mr_size; dump_avail[j] = phys_avail[j]; dump_avail[j + 1] = phys_avail[j + 1]; } physmem = btoc(physsz); /* Calculate the last available physical address. */ for (i = 0; phys_avail[i + 2] != 0; i += 2) ; Maxmem = powerpc_btop(phys_avail[i + 1]); debugf("Maxmem = 0x%08lx\n", Maxmem); debugf("phys_avail_count = %d\n", phys_avail_count); debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n", (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem); #ifdef __powerpc64__ /* * Map the physical memory contiguously in TLB1. * Round so it fits into a single mapping. */ tlb1_mapin_region(DMAP_BASE_ADDRESS, 0, phys_avail[i + 1], _TLB_ENTRY_MEM); #endif /*******************************************************/ /* Initialize (statically allocated) kernel pmap. */ /*******************************************************/ PMAP_LOCK_INIT(kernel_pmap); #ifdef __powerpc64__ kernel_pmap->pm_pp2d = (pte_t ***)kernel_ptbl_root; #else kptbl_min = VM_MIN_KERNEL_ADDRESS / PDIR_SIZE; kernel_pmap->pm_pdir = (pte_t **)kernel_ptbl_root; #endif debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap); kernel_pte_alloc(virtual_avail, kernstart, kernel_pdir); for (i = 0; i < MAXCPU; i++) { kernel_pmap->pm_tid[i] = TID_KERNEL; /* Initialize each CPU's tidbusy entry 0 with kernel_pmap */ tidbusy[i][TID_KERNEL] = kernel_pmap; } /* Mark kernel_pmap active on all CPUs */ CPU_FILL(&kernel_pmap->pm_active); /* * Initialize the global pv list lock. */ rw_init(&pvh_global_lock, "pmap pv global"); /*******************************************************/ /* Final setup */ /*******************************************************/ /* Enter kstack0 into kernel map, provide guard page */ kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; thread0.td_kstack = kstack0; thread0.td_kstack_pages = kstack_pages; debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz); debugf("kstack0_phys at 0x%09jx - 0x%09jx\n", (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz); debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n", kstack0, kstack0 + kstack0_sz); virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz; for (i = 0; i < kstack_pages; i++) { mmu_booke_kenter(mmu, kstack0, kstack0_phys); kstack0 += PAGE_SIZE; kstack0_phys += PAGE_SIZE; } pmap_bootstrapped = 1; debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail); debugf("virtual_end = %"PRI0ptrX"\n", virtual_end); debugf("mmu_booke_bootstrap: exit\n"); } #ifdef SMP void tlb1_ap_prep(void) { tlb_entry_t *e, tmp; unsigned int i; /* Prepare TLB1 image for AP processors */ e = __boot_tlb1; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&tmp, i); if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED)) memcpy(e++, &tmp, sizeof(tmp)); } } void pmap_bootstrap_ap(volatile uint32_t *trcp __unused) { int i; /* * Finish TLB1 configuration: the BSP already set up its TLB1 and we * have the snapshot of its contents in the s/w __boot_tlb1[] table * created by tlb1_ap_prep(), so use these values directly to * (re)program AP's TLB1 hardware. * * Start at index 1 because index 0 has the kernel map. */ for (i = 1; i < TLB1_ENTRIES; i++) { if (__boot_tlb1[i].mas1 & MAS1_VALID) tlb1_write_entry(&__boot_tlb1[i], i); } set_mas4_defaults(); } #endif static void booke_pmap_init_qpages(void) { struct pcpu *pc; int i; CPU_FOREACH(i) { pc = pcpu_find(i); pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); if (pc->pc_qmap_addr == 0) panic("pmap_init_qpages: unable to allocate KVA"); } } SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL); /* * Get the physical page address for the given pmap/virtual address. */ static vm_paddr_t mmu_booke_extract(mmu_t mmu, pmap_t pmap, vm_offset_t va) { vm_paddr_t pa; PMAP_LOCK(pmap); pa = pte_vatopa(mmu, pmap, va); PMAP_UNLOCK(pmap); return (pa); } /* * Extract the physical page address associated with the given * kernel virtual address. */ static vm_paddr_t mmu_booke_kextract(mmu_t mmu, vm_offset_t va) { tlb_entry_t e; vm_paddr_t p = 0; int i; #ifdef __powerpc64__ if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) return (DMAP_TO_PHYS(va)); #endif if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS) p = pte_vatopa(mmu, kernel_pmap, va); if (p == 0) { /* Check TLB1 mappings */ for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (va >= e.virt && va < e.virt + e.size) return (e.phys + (va - e.virt)); } } return (p); } /* * Initialize the pmap module. * Called by vm_init, to initialize any structures that the pmap * system needs to map virtual memory. */ static void mmu_booke_init(mmu_t mmu) { int shpgperproc = PMAP_SHPGPERPROC; /* * Initialize the address space (zone) for the pv entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc); pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count; TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max); pv_entry_high_water = 9 * (pv_entry_max / 10); uma_zone_reserve_kva(pvzone, pv_entry_max); /* Pre-fill pvzone with initial number of pv entries. */ uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN); /* Create a UMA zone for page table roots. */ ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE, NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM); /* Initialize ptbl allocation. */ ptbl_init(); } /* * Map a list of wired pages into kernel virtual address space. This is * intended for temporary mappings which do not need page modification or * references recorded. Existing mappings in the region are overwritten. */ static void mmu_booke_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) { vm_offset_t va; va = sva; while (count-- > 0) { mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); va += PAGE_SIZE; m++; } } /* * Remove page mappings from kernel virtual address space. Intended for * temporary mappings entered by mmu_booke_qenter. */ static void mmu_booke_qremove(mmu_t mmu, vm_offset_t sva, int count) { vm_offset_t va; va = sva; while (count-- > 0) { mmu_booke_kremove(mmu, va); va += PAGE_SIZE; } } /* * Map a wired page into kernel virtual address space. */ static void mmu_booke_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) { mmu_booke_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); } static void mmu_booke_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) { uint32_t flags; pte_t *pte; KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va")); flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT; flags |= PTE_PS_4KB; pte = pte_find(mmu, kernel_pmap, va); KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va. NULL PTE")); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); if (PTE_ISVALID(pte)) { CTR1(KTR_PMAP, "%s: replacing entry!", __func__); /* Flush entry from TLB0 */ tlb0_flush_entry(va); } *pte = PTE_RPN_FROM_PA(pa) | flags; //debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x " // "pa=0x%08x rpn=0x%08x flags=0x%08x\n", // pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags); /* Flush the real memory from the instruction cache. */ if ((flags & (PTE_I | PTE_G)) == 0) __syncicache((void *)va, PAGE_SIZE); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } /* * Remove a page from kernel page table. */ static void mmu_booke_kremove(mmu_t mmu, vm_offset_t va) { pte_t *pte; CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va); KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kremove: invalid va")); pte = pte_find(mmu, kernel_pmap, va); if (!PTE_ISVALID(pte)) { CTR1(KTR_PMAP, "%s: invalid pte", __func__); return; } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Invalidate entry in TLB0, update PTE. */ tlb0_flush_entry(va); *pte = 0; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } /* * Provide a kernel pointer corresponding to a given userland pointer. * The returned pointer is valid until the next time this function is * called in this thread. This is used internally in copyin/copyout. */ int mmu_booke_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen) { if (trunc_page((uintptr_t)uaddr + ulen) > VM_MAXUSER_ADDRESS) return (EFAULT); *kaddr = (void *)(uintptr_t)uaddr; if (klen) *klen = ulen; return (0); } /* * Figure out where a given kernel pointer (usually in a fault) points * to from the VM's perspective, potentially remapping into userland's * address space. */ static int mmu_booke_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user, vm_offset_t *decoded_addr) { if (trunc_page(addr) <= VM_MAXUSER_ADDRESS) *is_user = 1; else *is_user = 0; *decoded_addr = addr; return (0); } /* * Initialize pmap associated with process 0. */ static void mmu_booke_pinit0(mmu_t mmu, pmap_t pmap) { PMAP_LOCK_INIT(pmap); mmu_booke_pinit(mmu, pmap); PCPU_SET(curpmap, pmap); } -/* - * Initialize a preallocated and zeroed pmap structure, - * such as one in a vmspace structure. - */ -static void -mmu_booke_pinit(mmu_t mmu, pmap_t pmap) -{ - int i; - - CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, - curthread->td_proc->p_pid, curthread->td_proc->p_comm); - - KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); - - for (i = 0; i < MAXCPU; i++) - pmap->pm_tid[i] = TID_NONE; - CPU_ZERO(&kernel_pmap->pm_active); - bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); -#ifdef __powerpc64__ - pmap->pm_pp2d = uma_zalloc(ptbl_root_zone, M_WAITOK); - bzero(pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES); -#else - pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK); - bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); - TAILQ_INIT(&pmap->pm_ptbl_list); -#endif -} - -/* - * Release any resources held by the given physical map. - * Called when a pmap initialized by mmu_booke_pinit is being released. - * Should only be called if the map contains no valid mappings. - */ -static void -mmu_booke_release(mmu_t mmu, pmap_t pmap) -{ - - KASSERT(pmap->pm_stats.resident_count == 0, - ("pmap_release: pmap resident count %ld != 0", - pmap->pm_stats.resident_count)); -#ifdef __powerpc64__ - uma_zfree(ptbl_root_zone, pmap->pm_pp2d); -#else - uma_zfree(ptbl_root_zone, pmap->pm_pdir); -#endif -} - /* * Insert the given physical page at the specified virtual address in the * target physical map with the protection requested. If specified the page * will be wired down. */ static int mmu_booke_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind) { int error; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); error = mmu_booke_enter_locked(mmu, pmap, va, m, prot, flags, psind); PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); return (error); } static int mmu_booke_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, u_int pmap_flags, int8_t psind __unused) { pte_t *pte; vm_paddr_t pa; uint32_t flags; int error, su, sync; pa = VM_PAGE_TO_PHYS(m); su = (pmap == kernel_pmap); sync = 0; //debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x " // "pa=0x%08x prot=0x%08x flags=%#x)\n", // (u_int32_t)pmap, su, pmap->pm_tid, // (u_int32_t)m, va, pa, prot, flags); if (su) { KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_enter_locked: kernel pmap, non kernel va")); } else { KASSERT((va <= VM_MAXUSER_ADDRESS), ("mmu_booke_enter_locked: user pmap, non user va")); } if ((m->oflags & VPO_UNMANAGED) == 0) { if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0) VM_PAGE_OBJECT_BUSY_ASSERT(m); else VM_OBJECT_ASSERT_LOCKED(m->object); } PMAP_LOCK_ASSERT(pmap, MA_OWNED); /* * If there is an existing mapping, and the physical address has not * changed, must be protection or wiring change. */ if (((pte = pte_find(mmu, pmap, va)) != NULL) && (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) { /* * Before actually updating pte->flags we calculate and * prepare its new value in a helper var. */ flags = *pte; flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED); /* Wiring change, just update stats. */ if ((pmap_flags & PMAP_ENTER_WIRED) != 0) { if (!PTE_ISWIRED(pte)) { flags |= PTE_WIRED; pmap->pm_stats.wired_count++; } } else { if (PTE_ISWIRED(pte)) { flags &= ~PTE_WIRED; pmap->pm_stats.wired_count--; } } if (prot & VM_PROT_WRITE) { /* Add write permissions. */ flags |= PTE_SW; if (!su) flags |= PTE_UW; if ((flags & PTE_MANAGED) != 0) vm_page_aflag_set(m, PGA_WRITEABLE); } else { /* Handle modified pages, sense modify status. */ /* * The PTE_MODIFIED flag could be set by underlying * TLB misses since we last read it (above), possibly * other CPUs could update it so we check in the PTE * directly rather than rely on that saved local flags * copy. */ if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); } if (prot & VM_PROT_EXECUTE) { flags |= PTE_SX; if (!su) flags |= PTE_UX; /* * Check existing flags for execute permissions: if we * are turning execute permissions on, icache should * be flushed. */ if ((*pte & (PTE_UX | PTE_SX)) == 0) sync++; } flags &= ~PTE_REFERENCED; /* * The new flags value is all calculated -- only now actually * update the PTE. */ mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(va); *pte &= ~PTE_FLAGS_MASK; *pte |= flags; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } else { /* * If there is an existing mapping, but it's for a different * physical address, pte_enter() will delete the old mapping. */ //if ((pte != NULL) && PTE_ISVALID(pte)) // debugf("mmu_booke_enter_locked: replace\n"); //else // debugf("mmu_booke_enter_locked: new\n"); /* Now set up the flags and install the new mapping. */ flags = (PTE_SR | PTE_VALID); flags |= PTE_M; if (!su) flags |= PTE_UR; if (prot & VM_PROT_WRITE) { flags |= PTE_SW; if (!su) flags |= PTE_UW; if ((m->oflags & VPO_UNMANAGED) == 0) vm_page_aflag_set(m, PGA_WRITEABLE); } if (prot & VM_PROT_EXECUTE) { flags |= PTE_SX; if (!su) flags |= PTE_UX; } /* If its wired update stats. */ if ((pmap_flags & PMAP_ENTER_WIRED) != 0) flags |= PTE_WIRED; error = pte_enter(mmu, pmap, m, va, flags, (pmap_flags & PMAP_ENTER_NOSLEEP) != 0); if (error != 0) return (KERN_RESOURCE_SHORTAGE); if ((flags & PMAP_ENTER_WIRED) != 0) pmap->pm_stats.wired_count++; /* Flush the real memory from the instruction cache. */ if (prot & VM_PROT_EXECUTE) sync++; } if (sync && (su || pmap == PCPU_GET(curpmap))) { __syncicache((void *)va, PAGE_SIZE); sync = 0; } return (KERN_SUCCESS); } /* * Maps a sequence of resident pages belonging to the same object. * The sequence begins with the given page m_start. This page is * mapped at the given virtual address start. Each subsequent page is * mapped at a virtual address that is offset from start by the same * amount as the page is offset from m_start within the object. The * last page in the sequence is the page with the largest offset from * m_start that can be mapped at a virtual address less than the given * virtual address end. Not every virtual page between start and end * is mapped; only those for which a resident page exists with the * corresponding offset from m_start are mapped. */ static void mmu_booke_enter_object(mmu_t mmu, pmap_t pmap, vm_offset_t start, vm_offset_t end, vm_page_t m_start, vm_prot_t prot) { vm_page_t m; vm_pindex_t diff, psize; VM_OBJECT_ASSERT_LOCKED(m_start->object); psize = atop(end - start); m = m_start; rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { mmu_booke_enter_locked(mmu, pmap, start + ptoa(diff), m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0); m = TAILQ_NEXT(m, listq); } PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); } static void mmu_booke_enter_quick(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot) { rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); mmu_booke_enter_locked(mmu, pmap, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0); PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); } /* * Remove the given range of addresses from the specified map. * * It is assumed that the start and end are properly rounded to the page size. */ static void mmu_booke_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t endva) { pte_t *pte; uint8_t hold_flag; int su = (pmap == kernel_pmap); //debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n", // su, (u_int32_t)pmap, pmap->pm_tid, va, endva); if (su) { KASSERT(((va >= virtual_avail) && (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_remove: kernel pmap, non kernel va")); } else { KASSERT((va <= VM_MAXUSER_ADDRESS), ("mmu_booke_remove: user pmap, non user va")); } if (PMAP_REMOVE_DONE(pmap)) { //debugf("mmu_booke_remove: e (empty)\n"); return; } hold_flag = PTBL_HOLD_FLAG(pmap); //debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); for (; va < endva; va += PAGE_SIZE) { pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) pte_remove(mmu, pmap, va, hold_flag); } PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); //debugf("mmu_booke_remove: e\n"); } /* * Remove physical page from all pmaps in which it resides. */ static void mmu_booke_remove_all(mmu_t mmu, vm_page_t m) { pv_entry_t pv, pvn; uint8_t hold_flag; rw_wlock(&pvh_global_lock); for (pv = TAILQ_FIRST(&m->md.pv_list); pv != NULL; pv = pvn) { pvn = TAILQ_NEXT(pv, pv_link); PMAP_LOCK(pv->pv_pmap); hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap); pte_remove(mmu, pv->pv_pmap, pv->pv_va, hold_flag); PMAP_UNLOCK(pv->pv_pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } /* * Map a range of physical addresses into kernel virtual address space. */ static vm_offset_t mmu_booke_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, vm_paddr_t pa_end, int prot) { vm_offset_t sva = *virt; vm_offset_t va = sva; #ifdef __powerpc64__ /* XXX: Handle memory not starting at 0x0. */ if (pa_end < ctob(Maxmem)) return (PHYS_TO_DMAP(pa_start)); #endif while (pa_start < pa_end) { mmu_booke_kenter(mmu, va, pa_start); va += PAGE_SIZE; pa_start += PAGE_SIZE; } *virt = va; return (sva); } /* * The pmap must be activated before it's address space can be accessed in any * way. */ static void mmu_booke_activate(mmu_t mmu, struct thread *td) { pmap_t pmap; u_int cpuid; pmap = &td->td_proc->p_vmspace->vm_pmap; CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")", __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!")); sched_pin(); cpuid = PCPU_GET(cpuid); CPU_SET_ATOMIC(cpuid, &pmap->pm_active); PCPU_SET(curpmap, pmap); if (pmap->pm_tid[cpuid] == TID_NONE) tid_alloc(pmap); /* Load PID0 register with pmap tid value. */ mtspr(SPR_PID0, pmap->pm_tid[cpuid]); __asm __volatile("isync"); mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0); sched_unpin(); CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__, pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm); } /* * Deactivate the specified process's address space. */ static void mmu_booke_deactivate(mmu_t mmu, struct thread *td) { pmap_t pmap; pmap = &td->td_proc->p_vmspace->vm_pmap; CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX, __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap); td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0); CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active); PCPU_SET(curpmap, NULL); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ static void mmu_booke_copy(mmu_t mmu, pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr) { } /* * Set the physical protection on the specified range of this map as requested. */ static void mmu_booke_protect(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) { vm_offset_t va; vm_page_t m; pte_t *pte; if ((prot & VM_PROT_READ) == VM_PROT_NONE) { mmu_booke_remove(mmu, pmap, sva, eva); return; } if (prot & VM_PROT_WRITE) return; PMAP_LOCK(pmap); for (va = sva; va < eva; va += PAGE_SIZE) { if ((pte = pte_find(mmu, pmap, va)) != NULL) { if (PTE_ISVALID(pte)) { m = PHYS_TO_VM_PAGE(PTE_PA(pte)); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Handle modified pages. */ if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte)) vm_page_dirty(m); tlb0_flush_entry(va); *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } } } PMAP_UNLOCK(pmap); } /* * Clear the write and modified bits in each of the given page's mappings. */ static void mmu_booke_remove_write(mmu_t mmu, vm_page_t m) { pv_entry_t pv; pte_t *pte; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_remove_write: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) { if (PTE_ISVALID(pte)) { m = PHYS_TO_VM_PAGE(PTE_PA(pte)); mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); /* Handle modified pages. */ if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); /* Flush mapping from TLB0. */ *pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED); tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } } PMAP_UNLOCK(pv->pv_pmap); } vm_page_aflag_clear(m, PGA_WRITEABLE); rw_wunlock(&pvh_global_lock); } -static void -mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) -{ - pte_t *pte; - vm_paddr_t pa = 0; - int sync_sz, valid; -#ifndef __powerpc64__ - pmap_t pmap; - vm_page_t m; - vm_offset_t addr; - int active; -#endif - -#ifndef __powerpc64__ - rw_wlock(&pvh_global_lock); - pmap = PCPU_GET(curpmap); - active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; -#endif - while (sz > 0) { - PMAP_LOCK(pm); - pte = pte_find(mmu, pm, va); - valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; - if (valid) - pa = PTE_PA(pte); - PMAP_UNLOCK(pm); - sync_sz = PAGE_SIZE - (va & PAGE_MASK); - sync_sz = min(sync_sz, sz); - if (valid) { -#ifdef __powerpc64__ - pa += (va & PAGE_MASK); - __syncicache((void *)PHYS_TO_DMAP(pa), sync_sz); -#else - if (!active) { - /* Create a mapping in the active pmap. */ - addr = 0; - m = PHYS_TO_VM_PAGE(pa); - PMAP_LOCK(pmap); - pte_enter(mmu, pmap, m, addr, - PTE_SR | PTE_VALID, FALSE); - addr += (va & PAGE_MASK); - __syncicache((void *)addr, sync_sz); - pte_remove(mmu, pmap, addr, PTBL_UNHOLD); - PMAP_UNLOCK(pmap); - } else - __syncicache((void *)va, sync_sz); -#endif - } - va += sync_sz; - sz -= sync_sz; - } -#ifndef __powerpc64__ - rw_wunlock(&pvh_global_lock); -#endif -} - /* * Atomically extract and hold the physical page with the given * pmap and virtual address pair if that mapping permits the given * protection. */ static vm_page_t mmu_booke_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) { pte_t *pte; vm_page_t m; uint32_t pte_wbit; m = NULL; PMAP_LOCK(pmap); pte = pte_find(mmu, pmap, va); if ((pte != NULL) && PTE_ISVALID(pte)) { if (pmap == kernel_pmap) pte_wbit = PTE_SW; else pte_wbit = PTE_UW; if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) { m = PHYS_TO_VM_PAGE(PTE_PA(pte)); if (!vm_page_wire_mapped(m)) m = NULL; } } PMAP_UNLOCK(pmap); return (m); } /* * Initialize a vm_page's machine-dependent fields. */ static void mmu_booke_page_init(mmu_t mmu, vm_page_t m) { m->md.pv_tracked = 0; TAILQ_INIT(&m->md.pv_list); } -/* - * mmu_booke_zero_page_area zeros the specified hardware page by - * mapping it into virtual memory and using bzero to clear - * its contents. - * - * off and size must reside within a single page. - */ -static void -mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) -{ - vm_offset_t va; - - /* XXX KASSERT off and size are within a single page? */ - -#ifdef __powerpc64__ - va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); - bzero((caddr_t)va + off, size); -#else - mtx_lock(&zero_page_mutex); - va = zero_page_va; - - mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); - bzero((caddr_t)va + off, size); - mmu_booke_kremove(mmu, va); - - mtx_unlock(&zero_page_mutex); -#endif -} - -/* - * mmu_booke_zero_page zeros the specified hardware page. - */ -static void -mmu_booke_zero_page(mmu_t mmu, vm_page_t m) -{ - vm_offset_t off, va; - -#ifdef __powerpc64__ - va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); - - for (off = 0; off < PAGE_SIZE; off += cacheline_size) - __asm __volatile("dcbz 0,%0" :: "r"(va + off)); -#else - va = zero_page_va; - mtx_lock(&zero_page_mutex); - - mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); - - for (off = 0; off < PAGE_SIZE; off += cacheline_size) - __asm __volatile("dcbz 0,%0" :: "r"(va + off)); - - mmu_booke_kremove(mmu, va); - - mtx_unlock(&zero_page_mutex); -#endif -} - -/* - * mmu_booke_copy_page copies the specified (machine independent) page by - * mapping the page into virtual memory and using memcopy to copy the page, - * one machine dependent page at a time. - */ -static void -mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) -{ - vm_offset_t sva, dva; - -#ifdef __powerpc64__ - sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm)); - dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm)); - memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); -#else - sva = copy_page_src_va; - dva = copy_page_dst_va; - - mtx_lock(©_page_mutex); - mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); - mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); - - memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); - - mmu_booke_kremove(mmu, dva); - mmu_booke_kremove(mmu, sva); - mtx_unlock(©_page_mutex); -#endif -} - -static inline void -mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, - vm_page_t *mb, vm_offset_t b_offset, int xfersize) -{ - void *a_cp, *b_cp; - vm_offset_t a_pg_offset, b_pg_offset; - int cnt; - -#ifdef __powerpc64__ - vm_page_t pa, pb; - - while (xfersize > 0) { - a_pg_offset = a_offset & PAGE_MASK; - pa = ma[a_offset >> PAGE_SHIFT]; - b_pg_offset = b_offset & PAGE_MASK; - pb = mb[b_offset >> PAGE_SHIFT]; - cnt = min(xfersize, PAGE_SIZE - a_pg_offset); - cnt = min(cnt, PAGE_SIZE - b_pg_offset); - a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) + - a_pg_offset); - b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) + - b_pg_offset); - bcopy(a_cp, b_cp, cnt); - a_offset += cnt; - b_offset += cnt; - xfersize -= cnt; - } -#else - mtx_lock(©_page_mutex); - while (xfersize > 0) { - a_pg_offset = a_offset & PAGE_MASK; - cnt = min(xfersize, PAGE_SIZE - a_pg_offset); - mmu_booke_kenter(mmu, copy_page_src_va, - VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); - a_cp = (char *)copy_page_src_va + a_pg_offset; - b_pg_offset = b_offset & PAGE_MASK; - cnt = min(cnt, PAGE_SIZE - b_pg_offset); - mmu_booke_kenter(mmu, copy_page_dst_va, - VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); - b_cp = (char *)copy_page_dst_va + b_pg_offset; - bcopy(a_cp, b_cp, cnt); - mmu_booke_kremove(mmu, copy_page_dst_va); - mmu_booke_kremove(mmu, copy_page_src_va); - a_offset += cnt; - b_offset += cnt; - xfersize -= cnt; - } - mtx_unlock(©_page_mutex); -#endif -} - -static vm_offset_t -mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) -{ -#ifdef __powerpc64__ - return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); -#else - vm_paddr_t paddr; - vm_offset_t qaddr; - uint32_t flags; - pte_t *pte; - - paddr = VM_PAGE_TO_PHYS(m); - - flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; - flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; - flags |= PTE_PS_4KB; - - critical_enter(); - qaddr = PCPU_GET(qmap_addr); - - pte = pte_find(mmu, kernel_pmap, qaddr); - - KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); - - /* - * XXX: tlbivax is broadcast to other cores, but qaddr should - * not be present in other TLBs. Is there a better instruction - * sequence to use? Or just forget it & use mmu_booke_kenter()... - */ - __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); - __asm __volatile("isync; msync"); - - *pte = PTE_RPN_FROM_PA(paddr) | flags; - - /* Flush the real memory from the instruction cache. */ - if ((flags & (PTE_I | PTE_G)) == 0) - __syncicache((void *)qaddr, PAGE_SIZE); - - return (qaddr); -#endif -} - -static void -mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) -{ -#ifndef __powerpc64__ - pte_t *pte; - - pte = pte_find(mmu, kernel_pmap, addr); - - KASSERT(PCPU_GET(qmap_addr) == addr, - ("mmu_booke_quick_remove_page: invalid address")); - KASSERT(*pte != 0, - ("mmu_booke_quick_remove_page: PTE not in use")); - - *pte = 0; - critical_exit(); -#endif -} - /* * Return whether or not the specified physical page was modified * in any of physical maps. */ static boolean_t mmu_booke_is_modified(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_is_modified: page %p is not managed", m)); rv = FALSE; /* * If the page is not busied then this check is racy. */ if (!pmap_page_is_write_mapped(m)) return (FALSE); rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISMODIFIED(pte)) rv = TRUE; } PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Return whether or not the specified virtual address is eligible * for prefault. */ static boolean_t mmu_booke_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t addr) { return (FALSE); } /* * Return whether or not the specified physical page was referenced * in any physical maps. */ static boolean_t mmu_booke_is_referenced(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_is_referenced: page %p is not managed", m)); rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISREFERENCED(pte)) rv = TRUE; } PMAP_UNLOCK(pv->pv_pmap); if (rv) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Clear the modify bits on the specified physical page. */ static void mmu_booke_clear_modify(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_clear_modify: page %p is not managed", m)); vm_page_assert_busied(m); if (!pmap_page_is_write_mapped(m)) return; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) { tlb0_flush_entry(pv->pv_va); *pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED | PTE_REFERENCED); } tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); } PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); } /* * Return a count of reference bits for a page, clearing those bits. * It is not necessary for every reference bit to be cleared, but it * is necessary that 0 only be returned when there are truly no * reference bits set. * * As an optimization, update the page's dirty field if a modified bit is * found while counting reference bits. This opportunistic update can be * performed at low cost and can eliminate the need for some future calls * to pmap_is_modified(). However, since this function stops after * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some * dirty pages. Those dirty pages will only be detected by a future call * to pmap_is_modified(). */ static int mmu_booke_ts_referenced(mmu_t mmu, vm_page_t m) { pte_t *pte; pv_entry_t pv; int count; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_ts_referenced: page %p is not managed", m)); count = 0; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL && PTE_ISVALID(pte)) { if (PTE_ISMODIFIED(pte)) vm_page_dirty(m); if (PTE_ISREFERENCED(pte)) { mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); tlb0_flush_entry(pv->pv_va); *pte &= ~PTE_REFERENCED; tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); if (++count >= PMAP_TS_REFERENCED_MAX) { PMAP_UNLOCK(pv->pv_pmap); break; } } } PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); return (count); } /* * Clear the wired attribute from the mappings for the specified range of * addresses in the given pmap. Every valid mapping within that range must * have the wired attribute set. In contrast, invalid mappings cannot have * the wired attribute set, so they are ignored. * * The wired attribute of the page table entry is not a hardware feature, so * there is no need to invalidate any TLB entries. */ static void mmu_booke_unwire(mmu_t mmu, pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { vm_offset_t va; pte_t *pte; PMAP_LOCK(pmap); for (va = sva; va < eva; va += PAGE_SIZE) { if ((pte = pte_find(mmu, pmap, va)) != NULL && PTE_ISVALID(pte)) { if (!PTE_ISWIRED(pte)) panic("mmu_booke_unwire: pte %p isn't wired", pte); *pte &= ~PTE_WIRED; pmap->pm_stats.wired_count--; } } PMAP_UNLOCK(pmap); } /* * Return true if the pmap's pv is one of the first 16 pvs linked to from this * page. This count may be changed upwards or downwards in the future; it is * only necessary that true be returned for a small subset of pmaps for proper * page aging. */ static boolean_t mmu_booke_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) { pv_entry_t pv; int loops; boolean_t rv; KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("mmu_booke_page_exists_quick: page %p is not managed", m)); loops = 0; rv = FALSE; rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { if (pv->pv_pmap == pmap) { rv = TRUE; break; } if (++loops >= 16) break; } rw_wunlock(&pvh_global_lock); return (rv); } /* * Return the number of managed mappings to the given physical page that are * wired. */ static int mmu_booke_page_wired_mappings(mmu_t mmu, vm_page_t m) { pv_entry_t pv; pte_t *pte; int count = 0; if ((m->oflags & VPO_UNMANAGED) != 0) return (count); rw_wlock(&pvh_global_lock); TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) { PMAP_LOCK(pv->pv_pmap); if ((pte = pte_find(mmu, pv->pv_pmap, pv->pv_va)) != NULL) if (PTE_ISVALID(pte) && PTE_ISWIRED(pte)) count++; PMAP_UNLOCK(pv->pv_pmap); } rw_wunlock(&pvh_global_lock); return (count); } static int mmu_booke_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { int i; vm_offset_t va; /* * This currently does not work for entries that * overlap TLB1 entries. */ for (i = 0; i < TLB1_ENTRIES; i ++) { if (tlb1_iomapped(i, pa, size, &va) == 0) return (0); } return (EFAULT); } void mmu_booke_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) { vm_paddr_t ppa; vm_offset_t ofs; vm_size_t gran; /* Minidumps are based on virtual memory addresses. */ if (do_minidump) { *va = (void *)(vm_offset_t)pa; return; } /* Raw physical memory dumps don't have a virtual address. */ /* We always map a 256MB page at 256M. */ gran = 256 * 1024 * 1024; ppa = rounddown2(pa, gran); ofs = pa - ppa; *va = (void *)gran; tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO); if (sz > (gran - ofs)) tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran, _TLB_ENTRY_IO); } void mmu_booke_dumpsys_unmap(mmu_t mmu, vm_paddr_t pa, size_t sz, void *va) { vm_paddr_t ppa; vm_offset_t ofs; vm_size_t gran; tlb_entry_t e; int i; /* Minidumps are based on virtual memory addresses. */ /* Nothing to do... */ if (do_minidump) return; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) break; } /* Raw physical memory dumps don't have a virtual address. */ i--; e.mas1 = 0; e.mas2 = 0; e.mas3 = 0; tlb1_write_entry(&e, i); gran = 256 * 1024 * 1024; ppa = rounddown2(pa, gran); ofs = pa - ppa; if (sz > (gran - ofs)) { i--; e.mas1 = 0; e.mas2 = 0; e.mas3 = 0; tlb1_write_entry(&e, i); } } extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; void mmu_booke_scan_init(mmu_t mmu) { vm_offset_t va; pte_t *pte; int i; if (!do_minidump) { /* Initialize phys. segments for dumpsys(). */ memset(&dump_map, 0, sizeof(dump_map)); mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions, &availmem_regions_sz); for (i = 0; i < physmem_regions_sz; i++) { dump_map[i].pa_start = physmem_regions[i].mr_start; dump_map[i].pa_size = physmem_regions[i].mr_size; } return; } /* Virtual segments for minidumps: */ memset(&dump_map, 0, sizeof(dump_map)); /* 1st: kernel .data and .bss. */ dump_map[0].pa_start = trunc_page((uintptr_t)_etext); dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start; /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ dump_map[1].pa_start = data_start; dump_map[1].pa_size = data_end - data_start; /* 3rd: kernel VM. */ va = dump_map[1].pa_start + dump_map[1].pa_size; /* Find start of next chunk (from va). */ while (va < virtual_end) { /* Don't dump the buffer cache. */ if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { va = kmi.buffer_eva; continue; } pte = pte_find(mmu, kernel_pmap, va); if (pte != NULL && PTE_ISVALID(pte)) break; va += PAGE_SIZE; } if (va < virtual_end) { dump_map[2].pa_start = va; va += PAGE_SIZE; /* Find last page in chunk. */ while (va < virtual_end) { /* Don't run into the buffer cache. */ if (va == kmi.buffer_sva) break; pte = pte_find(mmu, kernel_pmap, va); if (pte == NULL || !PTE_ISVALID(pte)) break; va += PAGE_SIZE; } dump_map[2].pa_size = va - dump_map[2].pa_start; } } /* * Map a set of physical memory pages into the kernel virtual address space. * Return a pointer to where it is mapped. This routine is intended to be used * for mapping device memory, NOT real memory. */ static void * mmu_booke_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) { return (mmu_booke_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); } static int tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e) { int i; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(e, i); if ((e->mas1 & MAS1_VALID) == 0) return (i); } return (-1); } static void * mmu_booke_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) { tlb_entry_t e; vm_paddr_t tmppa; #ifndef __powerpc64__ uintptr_t tmpva; #endif uintptr_t va; vm_size_t sz; int i; int wimge; /* * Check if this is premapped in TLB1. */ sz = size; tmppa = pa; va = ~0; wimge = tlb_calc_wimg(pa, ma); for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED))) continue; if (tmppa >= e.phys && tmppa < e.phys + e.size) { va = e.virt + (pa - e.phys); tmppa = e.phys + e.size; sz -= MIN(sz, e.size); while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) { if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED))) break; sz -= MIN(sz, e.size); tmppa = e.phys + e.size; } if (sz != 0) break; return ((void *)va); } } size = roundup(size, PAGE_SIZE); #ifdef __powerpc64__ KASSERT(pa < VM_MAPDEV_PA_MAX, ("Unsupported physical address! %lx", pa)); va = VM_MAPDEV_BASE + pa; #else /* * The device mapping area is between VM_MAXUSER_ADDRESS and * VM_MIN_KERNEL_ADDRESS. This gives 1GB of device addressing. */ #ifdef SPARSE_MAPDEV /* * With a sparse mapdev, align to the largest starting region. This * could feasibly be optimized for a 'best-fit' alignment, but that * calculation could be very costly. * Align to the smaller of: * - first set bit in overlap of (pa & size mask) * - largest size envelope * * It's possible the device mapping may start at a PA that's not larger * than the size mask, so we need to offset in to maximize the TLB entry * range and minimize the number of used TLB entries. */ do { tmpva = tlb1_map_base; sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa); sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1; va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa); } while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size)); va = atomic_fetchadd_int(&tlb1_map_base, size); #endif #endif if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size) return (NULL); return ((void *)va); } /* * 'Unmap' a range mapped by mmu_booke_mapdev(). */ static void mmu_booke_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) { #ifdef SUPPORTS_SHRINKING_TLB1 vm_offset_t base, offset; /* * Unmap only if this is inside kernel virtual space. */ if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) { base = trunc_page(va); offset = va & PAGE_MASK; size = roundup(offset + size, PAGE_SIZE); kva_free(base, size); } #endif } /* * mmu_booke_object_init_pt preloads the ptes for a given object into the * specified pmap. This eliminates the blast of soft faults on process startup * and immediately after an mmap. */ static void mmu_booke_object_init_pt(mmu_t mmu, pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size) { VM_OBJECT_ASSERT_WLOCKED(object); KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG, ("mmu_booke_object_init_pt: non-device object")); } /* * Perform the pmap work for mincore. */ static int mmu_booke_mincore(mmu_t mmu, pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap) { /* XXX: this should be implemented at some point */ return (0); } static int mmu_booke_change_attr(mmu_t mmu, vm_offset_t addr, vm_size_t sz, vm_memattr_t mode) { vm_offset_t va; pte_t *pte; int i, j; tlb_entry_t e; addr = trunc_page(addr); /* Only allow changes to mapped kernel addresses. This includes: * - KVA * - DMAP (powerpc64) * - Device mappings */ if (addr <= VM_MAXUSER_ADDRESS || #ifdef __powerpc64__ (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) || (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) || #else (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) || #endif (addr > VM_MAX_KERNEL_ADDRESS)) return (EINVAL); /* Check TLB1 mappings */ for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (addr >= e.virt && addr < e.virt + e.size) break; } if (i < TLB1_ENTRIES) { /* Only allow full mappings to be modified for now. */ /* Validate the range. */ for (j = i, va = addr; va < addr + sz; va += e.size, j++) { tlb1_read_entry(&e, j); if (va != e.virt || (sz - (va - addr) < e.size)) return (EINVAL); } for (va = addr; va < addr + sz; va += e.size, i++) { tlb1_read_entry(&e, i); e.mas2 &= ~MAS2_WIMGE_MASK; e.mas2 |= tlb_calc_wimg(e.phys, mode); /* * Write it out to the TLB. Should really re-sync with other * cores. */ tlb1_write_entry(&e, i); } return (0); } /* Not in TLB1, try through pmap */ /* First validate the range. */ for (va = addr; va < addr + sz; va += PAGE_SIZE) { pte = pte_find(mmu, kernel_pmap, va); if (pte == NULL || !PTE_ISVALID(pte)) return (EINVAL); } mtx_lock_spin(&tlbivax_mutex); tlb_miss_lock(); for (va = addr; va < addr + sz; va += PAGE_SIZE) { pte = pte_find(mmu, kernel_pmap, va); *pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT); *pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT; tlb0_flush_entry(va); } tlb_miss_unlock(); mtx_unlock_spin(&tlbivax_mutex); return (0); } static void mmu_booke_page_array_startup(mmu_t mmu, long pages) { vm_page_array_size = pages; } /**************************************************************************/ /* TID handling */ /**************************************************************************/ /* * Allocate a TID. If necessary, steal one from someone else. * The new TID is flushed from the TLB before returning. */ static tlbtid_t tid_alloc(pmap_t pmap) { tlbtid_t tid; int thiscpu; KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap")); CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap); thiscpu = PCPU_GET(cpuid); tid = PCPU_GET(booke.tid_next); if (tid > TID_MAX) tid = TID_MIN; PCPU_SET(booke.tid_next, tid + 1); /* If we are stealing TID then clear the relevant pmap's field */ if (tidbusy[thiscpu][tid] != NULL) { CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid); tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE; /* Flush all entries from TLB0 matching this TID. */ tid_flush(tid); } tidbusy[thiscpu][tid] = pmap; pmap->pm_tid[thiscpu] = tid; __asm __volatile("msync; isync"); CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid, PCPU_GET(booke.tid_next)); return (tid); } /**************************************************************************/ /* TLB0 handling */ /**************************************************************************/ /* Convert TLB0 va and way number to tlb0[] table index. */ static inline unsigned int tlb0_tableidx(vm_offset_t va, unsigned int way) { unsigned int idx; idx = (way * TLB0_ENTRIES_PER_WAY); idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT; return (idx); } /* * Invalidate TLB0 entry. */ static inline void tlb0_flush_entry(vm_offset_t va) { CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va); mtx_assert(&tlbivax_mutex, MA_OWNED); __asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK)); __asm __volatile("isync; msync"); __asm __volatile("tlbsync; msync"); CTR1(KTR_PMAP, "%s: e", __func__); } /**************************************************************************/ /* TLB1 handling */ /**************************************************************************/ /* * TLB1 mapping notes: * * TLB1[0] Kernel text and data. * TLB1[1-15] Additional kernel text and data mappings (if required), PCI * windows, other devices mappings. */ /* * Read an entry from given TLB1 slot. */ void tlb1_read_entry(tlb_entry_t *entry, unsigned int slot) { register_t msr; uint32_t mas0; KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__)); msr = mfmsr(); __asm __volatile("wrteei 0"); mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); entry->mas1 = mfspr(SPR_MAS1); entry->mas2 = mfspr(SPR_MAS2); entry->mas3 = mfspr(SPR_MAS3); switch ((mfpvr() >> 16) & 0xFFFF) { case FSL_E500v2: case FSL_E500mc: case FSL_E5500: case FSL_E6500: entry->mas7 = mfspr(SPR_MAS7); break; default: entry->mas7 = 0; break; } __asm __volatile("wrtee %0" :: "r"(msr)); entry->virt = entry->mas2 & MAS2_EPN_MASK; entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) | (entry->mas3 & MAS3_RPN); entry->size = tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT); } struct tlbwrite_args { tlb_entry_t *e; unsigned int idx; }; static uint32_t tlb1_find_free(void) { tlb_entry_t e; int i; for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if ((e.mas1 & MAS1_VALID) == 0) return (i); } return (-1); } static void tlb1_write_entry_int(void *arg) { struct tlbwrite_args *args = arg; uint32_t idx, mas0; idx = args->idx; if (idx == -1) { idx = tlb1_find_free(); if (idx == -1) panic("No free TLB1 entries!\n"); } /* Select entry */ mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx); mtspr(SPR_MAS0, mas0); mtspr(SPR_MAS1, args->e->mas1); mtspr(SPR_MAS2, args->e->mas2); mtspr(SPR_MAS3, args->e->mas3); switch ((mfpvr() >> 16) & 0xFFFF) { case FSL_E500mc: case FSL_E5500: case FSL_E6500: mtspr(SPR_MAS8, 0); /* FALLTHROUGH */ case FSL_E500v2: mtspr(SPR_MAS7, args->e->mas7); break; default: break; } __asm __volatile("isync; tlbwe; isync; msync"); } static void tlb1_write_entry_sync(void *arg) { /* Empty synchronization point for smp_rendezvous(). */ } /* * Write given entry to TLB1 hardware. */ static void tlb1_write_entry(tlb_entry_t *e, unsigned int idx) { struct tlbwrite_args args; args.e = e; args.idx = idx; #ifdef SMP if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) { mb(); smp_rendezvous(tlb1_write_entry_sync, tlb1_write_entry_int, tlb1_write_entry_sync, &args); } else #endif { register_t msr; msr = mfmsr(); __asm __volatile("wrteei 0"); tlb1_write_entry_int(&args); __asm __volatile("wrtee %0" :: "r"(msr)); } } -/* - * Return the largest uint value log such that 2^log <= num. - */ -static unsigned long -ilog2(unsigned long num) -{ - long lz; - -#ifdef __powerpc64__ - __asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num)); - return (63 - lz); -#else - __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); - return (31 - lz); -#endif -} - /* * Convert TLB TSIZE value to mapped region size. */ static vm_size_t tsize2size(unsigned int tsize) { /* * size = 4^tsize KB * size = 4^tsize * 2^10 = 2^(2 * tsize - 10) */ return ((1 << (2 * tsize)) * 1024); } /* * Convert region size (must be power of 4) to TLB TSIZE value. */ static unsigned int size2tsize(vm_size_t size) { return (ilog2(size) / 2 - 5); } /* * Register permanent kernel mapping in TLB1. * * Entries are created starting from index 0 (current free entry is * kept in tlb1_idx) and are not supposed to be invalidated. */ int tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size, uint32_t flags) { tlb_entry_t e; uint32_t ts, tid; int tsize, index; /* First try to update an existing entry. */ for (index = 0; index < TLB1_ENTRIES; index++) { tlb1_read_entry(&e, index); /* Check if we're just updating the flags, and update them. */ if (e.phys == pa && e.virt == va && e.size == size) { e.mas2 = (va & MAS2_EPN_MASK) | flags; tlb1_write_entry(&e, index); return (0); } } /* Convert size to TSIZE */ tsize = size2tsize(size); tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK; /* XXX TS is hard coded to 0 for now as we only use single address space */ ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK; e.phys = pa; e.virt = va; e.size = size; e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid; e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK); e.mas2 = (va & MAS2_EPN_MASK) | flags; /* Set supervisor RWX permission bits */ e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX; e.mas7 = (pa >> 32) & MAS7_RPN; tlb1_write_entry(&e, -1); return (0); } /* * Map in contiguous RAM region into the TLB1. */ static vm_size_t tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge) { vm_offset_t base; vm_size_t mapped, sz, ssize; mapped = 0; base = va; ssize = size; while (size > 0) { sz = 1UL << (ilog2(size) & ~1); /* Align size to PA */ if (pa % sz != 0) { do { sz >>= 2; } while (pa % sz != 0); } /* Now align from there to VA */ if (va % sz != 0) { do { sz >>= 2; } while (va % sz != 0); } #ifdef __powerpc64__ /* * Clamp TLB1 entries to 4G. * * While the e6500 supports up to 1TB mappings, the e5500 * only supports up to 4G mappings. (0b1011) * * If any e6500 machines capable of supporting a very * large amount of memory appear in the future, we can * revisit this. * * For now, though, since we have plenty of space in TLB1, * always avoid creating entries larger than 4GB. */ sz = MIN(sz, 1UL << 32); #endif if (bootverbose) printf("Wiring VA=%p to PA=%jx (size=%lx)\n", (void *)va, (uintmax_t)pa, (long)sz); if (tlb1_set_entry(va, pa, sz, _TLB_ENTRY_SHARED | wimge) < 0) return (mapped); size -= sz; pa += sz; va += sz; } mapped = (va - base); if (bootverbose) printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n", mapped, mapped - ssize); return (mapped); } /* * TLB1 initialization routine, to be called after the very first * assembler level setup done in locore.S. */ void tlb1_init() { vm_offset_t mas2; uint32_t mas0, mas1, mas3, mas7; uint32_t tsz; tlb1_get_tlbconf(); mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); kernload = ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) | (mas3 & MAS3_RPN); tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; kernsize += (tsz > 0) ? tsize2size(tsz) : 0; kernstart = trunc_page(mas2); /* Setup TLB miss defaults */ set_mas4_defaults(); } /* * pmap_early_io_unmap() should be used in short conjunction with * pmap_early_io_map(), as in the following snippet: * * x = pmap_early_io_map(...); * * pmap_early_io_unmap(x, size); * * And avoiding more allocations between. */ void pmap_early_io_unmap(vm_offset_t va, vm_size_t size) { int i; tlb_entry_t e; vm_size_t isize; size = roundup(size, PAGE_SIZE); isize = size; for (i = 0; i < TLB1_ENTRIES && size > 0; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (va <= e.virt && (va + isize) >= (e.virt + e.size)) { size -= e.size; e.mas1 &= ~MAS1_VALID; tlb1_write_entry(&e, i); } } if (tlb1_map_base == va + isize) tlb1_map_base -= isize; } vm_offset_t pmap_early_io_map(vm_paddr_t pa, vm_size_t size) { vm_paddr_t pa_base; vm_offset_t va, sz; int i; tlb_entry_t e; KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!")); for (i = 0; i < TLB1_ENTRIES; i++) { tlb1_read_entry(&e, i); if (!(e.mas1 & MAS1_VALID)) continue; if (pa >= e.phys && (pa + size) <= (e.phys + e.size)) return (e.virt + (pa - e.phys)); } pa_base = rounddown(pa, PAGE_SIZE); size = roundup(size + (pa - pa_base), PAGE_SIZE); tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1)); va = tlb1_map_base + (pa - pa_base); do { sz = 1 << (ilog2(size) & ~1); tlb1_set_entry(tlb1_map_base, pa_base, sz, _TLB_ENTRY_SHARED | _TLB_ENTRY_IO); size -= sz; pa_base += sz; tlb1_map_base += sz; } while (size > 0); return (va); } void pmap_track_page(pmap_t pmap, vm_offset_t va) { vm_paddr_t pa; vm_page_t page; struct pv_entry *pve; va = trunc_page(va); pa = pmap_kextract(va); page = PHYS_TO_VM_PAGE(pa); rw_wlock(&pvh_global_lock); PMAP_LOCK(pmap); TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) { if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) { goto out; } } page->md.pv_tracked = true; pv_insert(pmap, va, page); out: PMAP_UNLOCK(pmap); rw_wunlock(&pvh_global_lock); } /* * Setup MAS4 defaults. * These values are loaded to MAS0-2 on a TLB miss. */ static void set_mas4_defaults(void) { uint32_t mas4; /* Defaults: TLB0, PID0, TSIZED=4K */ mas4 = MAS4_TLBSELD0; mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK; #ifdef SMP mas4 |= MAS4_MD; #endif mtspr(SPR_MAS4, mas4); __asm __volatile("isync"); } /* * Return 0 if the physical IO range is encompassed by one of the * the TLB1 entries, otherwise return related error code. */ static int tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va) { uint32_t prot; vm_paddr_t pa_start; vm_paddr_t pa_end; unsigned int entry_tsize; vm_size_t entry_size; tlb_entry_t e; *va = (vm_offset_t)NULL; tlb1_read_entry(&e, i); /* Skip invalid entries */ if (!(e.mas1 & MAS1_VALID)) return (EINVAL); /* * The entry must be cache-inhibited, guarded, and r/w * so it can function as an i/o page */ prot = e.mas2 & (MAS2_I | MAS2_G); if (prot != (MAS2_I | MAS2_G)) return (EPERM); prot = e.mas3 & (MAS3_SR | MAS3_SW); if (prot != (MAS3_SR | MAS3_SW)) return (EPERM); /* The address should be within the entry range. */ entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize")); entry_size = tsize2size(entry_tsize); pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) | (e.mas3 & MAS3_RPN); pa_end = pa_start + entry_size; if ((pa < pa_start) || ((pa + size) > pa_end)) return (ERANGE); /* Return virtual address of this mapping. */ *va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start); return (0); } -/* - * Invalidate all TLB0 entries which match the given TID. Note this is - * dedicated for cases when invalidations should NOT be propagated to other - * CPUs. - */ -static void -tid_flush(tlbtid_t tid) -{ - register_t msr; - uint32_t mas0, mas1, mas2; - int entry, way; - - - /* Don't evict kernel translations */ - if (tid == TID_KERNEL) - return; - - msr = mfmsr(); - __asm __volatile("wrteei 0"); - - /* - * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use - * it for PID invalidation. - */ - switch ((mfpvr() >> 16) & 0xffff) { - case FSL_E500mc: - case FSL_E5500: - case FSL_E6500: - mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT); - /* tlbilxpid */ - __asm __volatile("isync; .long 0x7c200024; isync; msync"); - __asm __volatile("wrtee %0" :: "r"(msr)); - return; - } - - for (way = 0; way < TLB0_WAYS; way++) - for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { - - mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); - mtspr(SPR_MAS0, mas0); - - mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; - mtspr(SPR_MAS2, mas2); - - __asm __volatile("isync; tlbre"); - - mas1 = mfspr(SPR_MAS1); - - if (!(mas1 & MAS1_VALID)) - continue; - if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) - continue; - mas1 &= ~MAS1_VALID; - mtspr(SPR_MAS1, mas1); - __asm __volatile("isync; tlbwe; isync; msync"); - } - __asm __volatile("wrtee %0" :: "r"(msr)); -} - #ifdef DDB /* Print out contents of the MAS registers for each TLB0 entry */ static void #ifdef __powerpc64__ tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3, #else tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3, #endif uint32_t mas7) { int as; char desc[3]; tlbtid_t tid; vm_size_t size; unsigned int tsize; desc[2] = '\0'; if (mas1 & MAS1_VALID) desc[0] = 'V'; else desc[0] = ' '; if (mas1 & MAS1_IPROT) desc[1] = 'P'; else desc[1] = ' '; as = (mas1 & MAS1_TS_MASK) ? 1 : 0; tid = MAS1_GETTID(mas1); tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT; size = 0; if (tsize) size = tsize2size(tsize); printf("%3d: (%s) [AS=%d] " "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x " "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n", i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7); } DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries) { uint32_t mas0, mas1, mas3, mas7; #ifdef __powerpc64__ uint64_t mas2; #else uint32_t mas2; #endif int entryidx, way, idx; printf("TLB0 entries:\n"); for (way = 0; way < TLB0_WAYS; way ++) for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) { mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); mtspr(SPR_MAS0, mas0); mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT; mtspr(SPR_MAS2, mas2); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); idx = tlb0_tableidx(mas2, way); tlb_print_entry(idx, mas1, mas2, mas3, mas7); } } /* * Print out contents of the MAS registers for each TLB1 entry */ DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries) { uint32_t mas0, mas1, mas3, mas7; #ifdef __powerpc64__ uint64_t mas2; #else uint32_t mas2; #endif int i; printf("TLB1 entries:\n"); for (i = 0; i < TLB1_ENTRIES; i++) { mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i); mtspr(SPR_MAS0, mas0); __asm __volatile("isync; tlbre"); mas1 = mfspr(SPR_MAS1); mas2 = mfspr(SPR_MAS2); mas3 = mfspr(SPR_MAS3); mas7 = mfspr(SPR_MAS7); tlb_print_entry(i, mas1, mas2, mas3, mas7); } } #endif diff --git a/sys/powerpc/booke/pmap_32.c b/sys/powerpc/booke/pmap_32.c new file mode 100644 index 000000000000..a301ed0bc588 --- /dev/null +++ b/sys/powerpc/booke/pmap_32.c @@ -0,0 +1,933 @@ +/*- + * SPDX-License-Identifier: BSD-2-Clause-FreeBSD + * + * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski + * Copyright (C) 2006 Semihalf, Marian Balakowicz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN + * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED + * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * Some hw specific parts of this pmap were derived or influenced + * by NetBSD's ibm4xx pmap module. More generic code is shared with + * a few other pmap modules from the FreeBSD tree. + */ + + /* + * VM layout notes: + * + * Kernel and user threads run within one common virtual address space + * defined by AS=0. + * + * 32-bit pmap: + * Virtual address space layout: + * ----------------------------- + * 0x0000_0000 - 0x7fff_ffff : user process + * 0x8000_0000 - 0xbfff_ffff : pmap_mapdev()-ed area (PCI/PCIE etc.) + * 0xc000_0000 - 0xffff_efff : KVA + */ + +#include +__FBSDID("$FreeBSD$"); + +#include "opt_ddb.h" +#include "opt_kstack_pages.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +#include + +#include "mmu_if.h" + +#define PRI0ptrX "08x" + +/* Reserved KVA space and mutex for mmu_booke_zero_page. */ +static vm_offset_t zero_page_va; +static struct mtx zero_page_mutex; + +/* Reserved KVA space and mutex for mmu_booke_copy_page. */ +static vm_offset_t copy_page_src_va; +static vm_offset_t copy_page_dst_va; +static struct mtx copy_page_mutex; + +/**************************************************************************/ +/* PMAP */ +/**************************************************************************/ + +#define VM_MAPDEV_BASE ((vm_offset_t)VM_MAXUSER_ADDRESS + PAGE_SIZE) + +static void tid_flush(tlbtid_t tid); +static unsigned long ilog2(unsigned long); + +/**************************************************************************/ +/* Page table management */ +/**************************************************************************/ + +#define PMAP_ROOT_SIZE (sizeof(pte_t**) * PDIR_NENTRIES) +static void ptbl_init(void); +static struct ptbl_buf *ptbl_buf_alloc(void); +static void ptbl_buf_free(struct ptbl_buf *); +static void ptbl_free_pmap_ptbl(pmap_t, pte_t *); + +static pte_t *ptbl_alloc(mmu_t, pmap_t, unsigned int, boolean_t); +static void ptbl_free(mmu_t, pmap_t, unsigned int); +static void ptbl_hold(mmu_t, pmap_t, unsigned int); +static int ptbl_unhold(mmu_t, pmap_t, unsigned int); + +static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); +static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); +static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); +static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); +static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t); + +struct ptbl_buf { + TAILQ_ENTRY(ptbl_buf) link; /* list link */ + vm_offset_t kva; /* va of mapping */ +}; + +/* Number of kva ptbl buffers, each covering one ptbl (PTBL_PAGES). */ +#define PTBL_BUFS (128 * 16) + +/* ptbl free list and a lock used for access synchronization. */ +static TAILQ_HEAD(, ptbl_buf) ptbl_buf_freelist; +static struct mtx ptbl_buf_freelist_lock; + +/* Base address of kva space allocated fot ptbl bufs. */ +static vm_offset_t ptbl_buf_pool_vabase; + +/* Pointer to ptbl_buf structures. */ +static struct ptbl_buf *ptbl_bufs; + +/**************************************************************************/ +/* Page table related */ +/**************************************************************************/ + + +/* Initialize pool of kva ptbl buffers. */ +static void +ptbl_init(void) +{ + int i; + + CTR3(KTR_PMAP, "%s: s (ptbl_bufs = 0x%08x size 0x%08x)", __func__, + (uint32_t)ptbl_bufs, sizeof(struct ptbl_buf) * PTBL_BUFS); + CTR3(KTR_PMAP, "%s: s (ptbl_buf_pool_vabase = 0x%08x size = 0x%08x)", + __func__, ptbl_buf_pool_vabase, PTBL_BUFS * PTBL_PAGES * PAGE_SIZE); + + mtx_init(&ptbl_buf_freelist_lock, "ptbl bufs lock", NULL, MTX_DEF); + TAILQ_INIT(&ptbl_buf_freelist); + + for (i = 0; i < PTBL_BUFS; i++) { + ptbl_bufs[i].kva = + ptbl_buf_pool_vabase + i * PTBL_PAGES * PAGE_SIZE; + TAILQ_INSERT_TAIL(&ptbl_buf_freelist, &ptbl_bufs[i], link); + } +} + +/* Get a ptbl_buf from the freelist. */ +static struct ptbl_buf * +ptbl_buf_alloc(void) +{ + struct ptbl_buf *buf; + + mtx_lock(&ptbl_buf_freelist_lock); + buf = TAILQ_FIRST(&ptbl_buf_freelist); + if (buf != NULL) + TAILQ_REMOVE(&ptbl_buf_freelist, buf, link); + mtx_unlock(&ptbl_buf_freelist_lock); + + CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); + + return (buf); +} + +/* Return ptbl buff to free pool. */ +static void +ptbl_buf_free(struct ptbl_buf *buf) +{ + + CTR2(KTR_PMAP, "%s: buf = %p", __func__, buf); + + mtx_lock(&ptbl_buf_freelist_lock); + TAILQ_INSERT_TAIL(&ptbl_buf_freelist, buf, link); + mtx_unlock(&ptbl_buf_freelist_lock); +} + +/* + * Search the list of allocated ptbl bufs and find on list of allocated ptbls + */ +static void +ptbl_free_pmap_ptbl(pmap_t pmap, pte_t *ptbl) +{ + struct ptbl_buf *pbuf; + + CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); + + PMAP_LOCK_ASSERT(pmap, MA_OWNED); + + TAILQ_FOREACH(pbuf, &pmap->pm_ptbl_list, link) + if (pbuf->kva == (vm_offset_t)ptbl) { + /* Remove from pmap ptbl buf list. */ + TAILQ_REMOVE(&pmap->pm_ptbl_list, pbuf, link); + + /* Free corresponding ptbl buf. */ + ptbl_buf_free(pbuf); + break; + } +} + +/* Allocate page table. */ +static pte_t * +ptbl_alloc(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx, boolean_t nosleep) +{ + vm_page_t mtbl[PTBL_PAGES]; + vm_page_t m; + struct ptbl_buf *pbuf; + unsigned int pidx; + pte_t *ptbl; + int i, j; + + CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, + (pmap == kernel_pmap), pdir_idx); + + KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), + ("ptbl_alloc: invalid pdir_idx")); + KASSERT((pmap->pm_pdir[pdir_idx] == NULL), + ("pte_alloc: valid ptbl entry exists!")); + + pbuf = ptbl_buf_alloc(); + if (pbuf == NULL) + panic("pte_alloc: couldn't alloc kernel virtual memory"); + + ptbl = (pte_t *)pbuf->kva; + + CTR2(KTR_PMAP, "%s: ptbl kva = %p", __func__, ptbl); + + for (i = 0; i < PTBL_PAGES; i++) { + pidx = (PTBL_PAGES * pdir_idx) + i; + while ((m = vm_page_alloc(NULL, pidx, + VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) { + if (nosleep) { + ptbl_free_pmap_ptbl(pmap, ptbl); + for (j = 0; j < i; j++) + vm_page_free(mtbl[j]); + vm_wire_sub(i); + return (NULL); + } + PMAP_UNLOCK(pmap); + rw_wunlock(&pvh_global_lock); + vm_wait(NULL); + rw_wlock(&pvh_global_lock); + PMAP_LOCK(pmap); + } + mtbl[i] = m; + } + + /* Map allocated pages into kernel_pmap. */ + mmu_booke_qenter(mmu, (vm_offset_t)ptbl, mtbl, PTBL_PAGES); + + /* Zero whole ptbl. */ + bzero((caddr_t)ptbl, PTBL_PAGES * PAGE_SIZE); + + /* Add pbuf to the pmap ptbl bufs list. */ + TAILQ_INSERT_TAIL(&pmap->pm_ptbl_list, pbuf, link); + + return (ptbl); +} + +/* Free ptbl pages and invalidate pdir entry. */ +static void +ptbl_free(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) +{ + pte_t *ptbl; + vm_paddr_t pa; + vm_offset_t va; + vm_page_t m; + int i; + + CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, + (pmap == kernel_pmap), pdir_idx); + + KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), + ("ptbl_free: invalid pdir_idx")); + + ptbl = pmap->pm_pdir[pdir_idx]; + + CTR2(KTR_PMAP, "%s: ptbl = %p", __func__, ptbl); + + KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); + + /* + * Invalidate the pdir entry as soon as possible, so that other CPUs + * don't attempt to look up the page tables we are releasing. + */ + mtx_lock_spin(&tlbivax_mutex); + tlb_miss_lock(); + + pmap->pm_pdir[pdir_idx] = NULL; + + tlb_miss_unlock(); + mtx_unlock_spin(&tlbivax_mutex); + + for (i = 0; i < PTBL_PAGES; i++) { + va = ((vm_offset_t)ptbl + (i * PAGE_SIZE)); + pa = pte_vatopa(mmu, kernel_pmap, va); + m = PHYS_TO_VM_PAGE(pa); + vm_page_free_zero(m); + vm_wire_sub(1); + mmu_booke_kremove(mmu, va); + } + + ptbl_free_pmap_ptbl(pmap, ptbl); +} + +/* + * Decrement ptbl pages hold count and attempt to free ptbl pages. + * Called when removing pte entry from ptbl. + * + * Return 1 if ptbl pages were freed. + */ +static int +ptbl_unhold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) +{ + pte_t *ptbl; + vm_paddr_t pa; + vm_page_t m; + int i; + + CTR4(KTR_PMAP, "%s: pmap = %p su = %d pdir_idx = %d", __func__, pmap, + (pmap == kernel_pmap), pdir_idx); + + KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), + ("ptbl_unhold: invalid pdir_idx")); + KASSERT((pmap != kernel_pmap), + ("ptbl_unhold: unholding kernel ptbl!")); + + ptbl = pmap->pm_pdir[pdir_idx]; + + //debugf("ptbl_unhold: ptbl = 0x%08x\n", (u_int32_t)ptbl); + KASSERT(((vm_offset_t)ptbl >= VM_MIN_KERNEL_ADDRESS), + ("ptbl_unhold: non kva ptbl")); + + /* decrement hold count */ + for (i = 0; i < PTBL_PAGES; i++) { + pa = pte_vatopa(mmu, kernel_pmap, + (vm_offset_t)ptbl + (i * PAGE_SIZE)); + m = PHYS_TO_VM_PAGE(pa); + m->ref_count--; + } + + /* + * Free ptbl pages if there are no pte etries in this ptbl. + * ref_count has the same value for all ptbl pages, so check the last + * page. + */ + if (m->ref_count == 0) { + ptbl_free(mmu, pmap, pdir_idx); + + //debugf("ptbl_unhold: e (freed ptbl)\n"); + return (1); + } + + return (0); +} + +/* + * Increment hold count for ptbl pages. This routine is used when a new pte + * entry is being inserted into the ptbl. + */ +static void +ptbl_hold(mmu_t mmu, pmap_t pmap, unsigned int pdir_idx) +{ + vm_paddr_t pa; + pte_t *ptbl; + vm_page_t m; + int i; + + CTR3(KTR_PMAP, "%s: pmap = %p pdir_idx = %d", __func__, pmap, + pdir_idx); + + KASSERT((pdir_idx <= (VM_MAXUSER_ADDRESS / PDIR_SIZE)), + ("ptbl_hold: invalid pdir_idx")); + KASSERT((pmap != kernel_pmap), + ("ptbl_hold: holding kernel ptbl!")); + + ptbl = pmap->pm_pdir[pdir_idx]; + + KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); + + for (i = 0; i < PTBL_PAGES; i++) { + pa = pte_vatopa(mmu, kernel_pmap, + (vm_offset_t)ptbl + (i * PAGE_SIZE)); + m = PHYS_TO_VM_PAGE(pa); + m->ref_count++; + } +} + +/* + * Clean pte entry, try to free page table page if requested. + * + * Return 1 if ptbl pages were freed, otherwise return 0. + */ +static int +pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, uint8_t flags) +{ + unsigned int pdir_idx = PDIR_IDX(va); + unsigned int ptbl_idx = PTBL_IDX(va); + vm_page_t m; + pte_t *ptbl; + pte_t *pte; + + //int su = (pmap == kernel_pmap); + //debugf("pte_remove: s (su = %d pmap = 0x%08x va = 0x%08x flags = %d)\n", + // su, (u_int32_t)pmap, va, flags); + + ptbl = pmap->pm_pdir[pdir_idx]; + KASSERT(ptbl, ("pte_remove: null ptbl")); + + pte = &ptbl[ptbl_idx]; + + if (pte == NULL || !PTE_ISVALID(pte)) + return (0); + + if (PTE_ISWIRED(pte)) + pmap->pm_stats.wired_count--; + + /* Get vm_page_t for mapped pte. */ + m = PHYS_TO_VM_PAGE(PTE_PA(pte)); + + /* Handle managed entry. */ + if (PTE_ISMANAGED(pte)) { + + if (PTE_ISMODIFIED(pte)) + vm_page_dirty(m); + + if (PTE_ISREFERENCED(pte)) + vm_page_aflag_set(m, PGA_REFERENCED); + + pv_remove(pmap, va, m); + } else if (pmap == kernel_pmap && m && m->md.pv_tracked) { + /* + * Always pv_insert()/pv_remove() on MPC85XX, in case DPAA is + * used. This is needed by the NCSW support code for fast + * VA<->PA translation. + */ + pv_remove(pmap, va, m); + if (TAILQ_EMPTY(&m->md.pv_list)) + m->md.pv_tracked = false; + } + + mtx_lock_spin(&tlbivax_mutex); + tlb_miss_lock(); + + tlb0_flush_entry(va); + *pte = 0; + + tlb_miss_unlock(); + mtx_unlock_spin(&tlbivax_mutex); + + pmap->pm_stats.resident_count--; + + if (flags & PTBL_UNHOLD) { + //debugf("pte_remove: e (unhold)\n"); + return (ptbl_unhold(mmu, pmap, pdir_idx)); + } + + //debugf("pte_remove: e\n"); + return (0); +} + +/* + * Insert PTE for a given page and virtual address. + */ +static int +pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, + boolean_t nosleep) +{ + unsigned int pdir_idx = PDIR_IDX(va); + unsigned int ptbl_idx = PTBL_IDX(va); + pte_t *ptbl, *pte, pte_tmp; + + CTR4(KTR_PMAP, "%s: su = %d pmap = %p va = %p", __func__, + pmap == kernel_pmap, pmap, va); + + /* Get the page table pointer. */ + ptbl = pmap->pm_pdir[pdir_idx]; + + if (ptbl == NULL) { + /* Allocate page table pages. */ + ptbl = ptbl_alloc(mmu, pmap, pdir_idx, nosleep); + if (ptbl == NULL) { + KASSERT(nosleep, ("nosleep and NULL ptbl")); + return (ENOMEM); + } + pmap->pm_pdir[pdir_idx] = ptbl; + pte = &ptbl[ptbl_idx]; + } else { + /* + * Check if there is valid mapping for requested + * va, if there is, remove it. + */ + pte = &pmap->pm_pdir[pdir_idx][ptbl_idx]; + if (PTE_ISVALID(pte)) { + pte_remove(mmu, pmap, va, PTBL_HOLD); + } else { + /* + * pte is not used, increment hold count + * for ptbl pages. + */ + if (pmap != kernel_pmap) + ptbl_hold(mmu, pmap, pdir_idx); + } + } + + /* + * Insert pv_entry into pv_list for mapped page if part of managed + * memory. + */ + if ((m->oflags & VPO_UNMANAGED) == 0) { + flags |= PTE_MANAGED; + + /* Create and insert pv entry. */ + pv_insert(pmap, va, m); + } + + pmap->pm_stats.resident_count++; + + pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); + pte_tmp |= (PTE_VALID | flags | PTE_PS_4KB); /* 4KB pages only */ + + mtx_lock_spin(&tlbivax_mutex); + tlb_miss_lock(); + + tlb0_flush_entry(va); + *pte = pte_tmp; + + tlb_miss_unlock(); + mtx_unlock_spin(&tlbivax_mutex); + return (0); +} + +/* Return the pa for the given pmap/va. */ +static vm_paddr_t +pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + vm_paddr_t pa = 0; + pte_t *pte; + + pte = pte_find(mmu, pmap, va); + if ((pte != NULL) && PTE_ISVALID(pte)) + pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); + return (pa); +} + +/* Get a pointer to a PTE in a page table. */ +static pte_t * +pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + unsigned int pdir_idx = PDIR_IDX(va); + unsigned int ptbl_idx = PTBL_IDX(va); + + KASSERT((pmap != NULL), ("pte_find: invalid pmap")); + + if (pmap->pm_pdir[pdir_idx]) + return (&(pmap->pm_pdir[pdir_idx][ptbl_idx])); + + return (NULL); +} + +/* Set up kernel page tables. */ +static void +kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) +{ + int i; + vm_offset_t va; + pte_t *pte; + + /* Initialize kernel pdir */ + for (i = 0; i < kernel_ptbls; i++) + kernel_pmap->pm_pdir[kptbl_min + i] = + (pte_t *)(pdir + (i * PAGE_SIZE * PTBL_PAGES)); + + /* + * Fill in PTEs covering kernel code and data. They are not required + * for address translation, as this area is covered by static TLB1 + * entries, but for pte_vatopa() to work correctly with kernel area + * addresses. + */ + for (va = addr; va < data_end; va += PAGE_SIZE) { + pte = &(kernel_pmap->pm_pdir[PDIR_IDX(va)][PTBL_IDX(va)]); + *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); + *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | + PTE_VALID | PTE_PS_4KB; + } +} + +/* + * Initialize a preallocated and zeroed pmap structure, + * such as one in a vmspace structure. + */ +static void +mmu_booke_pinit(mmu_t mmu, pmap_t pmap) +{ + int i; + + CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, + curthread->td_proc->p_pid, curthread->td_proc->p_comm); + + KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); + + for (i = 0; i < MAXCPU; i++) + pmap->pm_tid[i] = TID_NONE; + CPU_ZERO(&kernel_pmap->pm_active); + bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); + pmap->pm_pdir = uma_zalloc(ptbl_root_zone, M_WAITOK); + bzero(pmap->pm_pdir, sizeof(pte_t *) * PDIR_NENTRIES); + TAILQ_INIT(&pmap->pm_ptbl_list); +} + +/* + * Release any resources held by the given physical map. + * Called when a pmap initialized by mmu_booke_pinit is being released. + * Should only be called if the map contains no valid mappings. + */ +static void +mmu_booke_release(mmu_t mmu, pmap_t pmap) +{ + + KASSERT(pmap->pm_stats.resident_count == 0, + ("pmap_release: pmap resident count %ld != 0", + pmap->pm_stats.resident_count)); + uma_zfree(ptbl_root_zone, pmap->pm_pdir); +} + +static void +mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) +{ + pte_t *pte; + vm_paddr_t pa = 0; + int sync_sz, valid; + pmap_t pmap; + vm_page_t m; + vm_offset_t addr; + int active; + + rw_wlock(&pvh_global_lock); + pmap = PCPU_GET(curpmap); + active = (pm == kernel_pmap || pm == pmap) ? 1 : 0; + while (sz > 0) { + PMAP_LOCK(pm); + pte = pte_find(mmu, pm, va); + valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; + if (valid) + pa = PTE_PA(pte); + PMAP_UNLOCK(pm); + sync_sz = PAGE_SIZE - (va & PAGE_MASK); + sync_sz = min(sync_sz, sz); + if (valid) { + if (!active) { + /* Create a mapping in the active pmap. */ + addr = 0; + m = PHYS_TO_VM_PAGE(pa); + PMAP_LOCK(pmap); + pte_enter(mmu, pmap, m, addr, + PTE_SR | PTE_VALID, FALSE); + addr += (va & PAGE_MASK); + __syncicache((void *)addr, sync_sz); + pte_remove(mmu, pmap, addr, PTBL_UNHOLD); + PMAP_UNLOCK(pmap); + } else + __syncicache((void *)va, sync_sz); + } + va += sync_sz; + sz -= sync_sz; + } + rw_wunlock(&pvh_global_lock); +} + +/* + * mmu_booke_zero_page_area zeros the specified hardware page by + * mapping it into virtual memory and using bzero to clear + * its contents. + * + * off and size must reside within a single page. + */ +static void +mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) +{ + vm_offset_t va; + + /* XXX KASSERT off and size are within a single page? */ + + mtx_lock(&zero_page_mutex); + va = zero_page_va; + + mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); + bzero((caddr_t)va + off, size); + mmu_booke_kremove(mmu, va); + + mtx_unlock(&zero_page_mutex); +} + +/* + * mmu_booke_zero_page zeros the specified hardware page. + */ +static void +mmu_booke_zero_page(mmu_t mmu, vm_page_t m) +{ + vm_offset_t off, va; + + va = zero_page_va; + mtx_lock(&zero_page_mutex); + + mmu_booke_kenter(mmu, va, VM_PAGE_TO_PHYS(m)); + + for (off = 0; off < PAGE_SIZE; off += cacheline_size) + __asm __volatile("dcbz 0,%0" :: "r"(va + off)); + + mmu_booke_kremove(mmu, va); + + mtx_unlock(&zero_page_mutex); +} + +/* + * mmu_booke_copy_page copies the specified (machine independent) page by + * mapping the page into virtual memory and using memcopy to copy the page, + * one machine dependent page at a time. + */ +static void +mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) +{ + vm_offset_t sva, dva; + + sva = copy_page_src_va; + dva = copy_page_dst_va; + + mtx_lock(©_page_mutex); + mmu_booke_kenter(mmu, sva, VM_PAGE_TO_PHYS(sm)); + mmu_booke_kenter(mmu, dva, VM_PAGE_TO_PHYS(dm)); + + memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); + + mmu_booke_kremove(mmu, dva); + mmu_booke_kremove(mmu, sva); + mtx_unlock(©_page_mutex); +} + +static inline void +mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, + vm_page_t *mb, vm_offset_t b_offset, int xfersize) +{ + void *a_cp, *b_cp; + vm_offset_t a_pg_offset, b_pg_offset; + int cnt; + + mtx_lock(©_page_mutex); + while (xfersize > 0) { + a_pg_offset = a_offset & PAGE_MASK; + cnt = min(xfersize, PAGE_SIZE - a_pg_offset); + mmu_booke_kenter(mmu, copy_page_src_va, + VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); + a_cp = (char *)copy_page_src_va + a_pg_offset; + b_pg_offset = b_offset & PAGE_MASK; + cnt = min(cnt, PAGE_SIZE - b_pg_offset); + mmu_booke_kenter(mmu, copy_page_dst_va, + VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); + b_cp = (char *)copy_page_dst_va + b_pg_offset; + bcopy(a_cp, b_cp, cnt); + mmu_booke_kremove(mmu, copy_page_dst_va); + mmu_booke_kremove(mmu, copy_page_src_va); + a_offset += cnt; + b_offset += cnt; + xfersize -= cnt; + } + mtx_unlock(©_page_mutex); +} + +static vm_offset_t +mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) +{ + vm_paddr_t paddr; + vm_offset_t qaddr; + uint32_t flags; + pte_t *pte; + + paddr = VM_PAGE_TO_PHYS(m); + + flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID; + flags |= tlb_calc_wimg(paddr, pmap_page_get_memattr(m)) << PTE_MAS2_SHIFT; + flags |= PTE_PS_4KB; + + critical_enter(); + qaddr = PCPU_GET(qmap_addr); + + pte = pte_find(mmu, kernel_pmap, qaddr); + + KASSERT(*pte == 0, ("mmu_booke_quick_enter_page: PTE busy")); + + /* + * XXX: tlbivax is broadcast to other cores, but qaddr should + * not be present in other TLBs. Is there a better instruction + * sequence to use? Or just forget it & use mmu_booke_kenter()... + */ + __asm __volatile("tlbivax 0, %0" :: "r"(qaddr & MAS2_EPN_MASK)); + __asm __volatile("isync; msync"); + + *pte = PTE_RPN_FROM_PA(paddr) | flags; + + /* Flush the real memory from the instruction cache. */ + if ((flags & (PTE_I | PTE_G)) == 0) + __syncicache((void *)qaddr, PAGE_SIZE); + + return (qaddr); +} + +static void +mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) +{ + pte_t *pte; + + pte = pte_find(mmu, kernel_pmap, addr); + + KASSERT(PCPU_GET(qmap_addr) == addr, + ("mmu_booke_quick_remove_page: invalid address")); + KASSERT(*pte != 0, + ("mmu_booke_quick_remove_page: PTE not in use")); + + *pte = 0; + critical_exit(); +} + +/**************************************************************************/ +/* TID handling */ +/**************************************************************************/ + +/* + * Return the largest uint value log such that 2^log <= num. + */ +static unsigned long +ilog2(unsigned long num) +{ + long lz; + + __asm ("cntlzw %0, %1" : "=r" (lz) : "r" (num)); + return (31 - lz); +} + +/* + * Invalidate all TLB0 entries which match the given TID. Note this is + * dedicated for cases when invalidations should NOT be propagated to other + * CPUs. + */ +static void +tid_flush(tlbtid_t tid) +{ + register_t msr; + uint32_t mas0, mas1, mas2; + int entry, way; + + + /* Don't evict kernel translations */ + if (tid == TID_KERNEL) + return; + + msr = mfmsr(); + __asm __volatile("wrteei 0"); + + /* + * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use + * it for PID invalidation. + */ + switch ((mfpvr() >> 16) & 0xffff) { + case FSL_E500mc: + case FSL_E5500: + case FSL_E6500: + mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT); + /* tlbilxpid */ + __asm __volatile("isync; .long 0x7c200024; isync; msync"); + __asm __volatile("wrtee %0" :: "r"(msr)); + return; + } + + for (way = 0; way < TLB0_WAYS; way++) + for (entry = 0; entry < TLB0_ENTRIES_PER_WAY; entry++) { + + mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way); + mtspr(SPR_MAS0, mas0); + + mas2 = entry << MAS2_TLB0_ENTRY_IDX_SHIFT; + mtspr(SPR_MAS2, mas2); + + __asm __volatile("isync; tlbre"); + + mas1 = mfspr(SPR_MAS1); + + if (!(mas1 & MAS1_VALID)) + continue; + if (((mas1 & MAS1_TID_MASK) >> MAS1_TID_SHIFT) != tid) + continue; + mas1 &= ~MAS1_VALID; + mtspr(SPR_MAS1, mas1); + __asm __volatile("isync; tlbwe; isync; msync"); + } + __asm __volatile("wrtee %0" :: "r"(msr)); +} diff --git a/sys/powerpc/booke/pmap_64.c b/sys/powerpc/booke/pmap_64.c new file mode 100644 index 000000000000..85ce5dc637d2 --- /dev/null +++ b/sys/powerpc/booke/pmap_64.c @@ -0,0 +1,759 @@ +/*- + * SPDX-License-Identifier: BSD-2-Clause-FreeBSD + * + * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski + * Copyright (C) 2006 Semihalf, Marian Balakowicz + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN + * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED + * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * Some hw specific parts of this pmap were derived or influenced + * by NetBSD's ibm4xx pmap module. More generic code is shared with + * a few other pmap modules from the FreeBSD tree. + */ + + /* + * VM layout notes: + * + * Kernel and user threads run within one common virtual address space + * defined by AS=0. + * + * 64-bit pmap: + * Virtual address space layout: + * ----------------------------- + * 0x0000_0000_0000_0000 - 0x3fff_ffff_ffff_ffff : user process + * 0x4000_0000_0000_0000 - 0x7fff_ffff_ffff_ffff : unused + * 0x8000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff : mmio region + * 0xc000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff : direct map + * 0xe000_0000_0000_0000 - 0xffff_ffff_ffff_ffff : KVA + */ + +#include +__FBSDID("$FreeBSD$"); + +#include "opt_ddb.h" +#include "opt_kstack_pages.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +#include + +#include "mmu_if.h" + +#ifdef DEBUG +#define debugf(fmt, args...) printf(fmt, ##args) +#else +#define debugf(fmt, args...) +#endif + +#define PRI0ptrX "016lx" + +/**************************************************************************/ +/* PMAP */ +/**************************************************************************/ + +unsigned int kernel_pdirs; +static uma_zone_t ptbl_root_zone; + +/* + * Base of the pmap_mapdev() region. On 32-bit it immediately follows the + * userspace address range. On On 64-bit it's far above, at (1 << 63), and + * ranges up to the DMAP, giving 62 bits of PA allowed. This is far larger than + * the widest Book-E address bus, the e6500 has a 40-bit PA space. This allows + * us to map akin to the DMAP, with addresses identical to the PA, offset by the + * base. + */ +#define VM_MAPDEV_BASE 0x8000000000000000 +#define VM_MAPDEV_PA_MAX 0x4000000000000000 /* Don't encroach on DMAP */ + +static void tid_flush(tlbtid_t tid); +static unsigned long ilog2(unsigned long); + +/**************************************************************************/ +/* Page table management */ +/**************************************************************************/ + +static struct rwlock_padalign pvh_global_lock; + +#define PMAP_ROOT_SIZE (sizeof(pte_t***) * PP2D_NENTRIES) +static pte_t *ptbl_alloc(mmu_t, pmap_t, pte_t **, + unsigned int, boolean_t); +static void ptbl_free(mmu_t, pmap_t, pte_t **, unsigned int, vm_page_t); +static void ptbl_hold(mmu_t, pmap_t, pte_t **, unsigned int); +static int ptbl_unhold(mmu_t, pmap_t, vm_offset_t); + +static vm_paddr_t pte_vatopa(mmu_t, pmap_t, vm_offset_t); +static int pte_enter(mmu_t, pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t); +static int pte_remove(mmu_t, pmap_t, vm_offset_t, uint8_t); +static pte_t *pte_find(mmu_t, pmap_t, vm_offset_t); +static void kernel_pte_alloc(vm_offset_t, vm_offset_t, vm_offset_t); + +/**************************************************************************/ +/* Page table related */ +/**************************************************************************/ + +/* Initialize pool of kva ptbl buffers. */ +static void +ptbl_init(void) +{ +} + +/* Get a pointer to a PTE in a page table. */ +static __inline pte_t * +pte_find(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + pte_t **pdir; + pte_t *ptbl; + + KASSERT((pmap != NULL), ("pte_find: invalid pmap")); + + pdir = pmap->pm_pp2d[PP2D_IDX(va)]; + if (!pdir) + return NULL; + ptbl = pdir[PDIR_IDX(va)]; + return ((ptbl != NULL) ? &ptbl[PTBL_IDX(va)] : NULL); +} + +/* + * allocate a page of pointers to page directories, do not preallocate the + * page tables + */ +static pte_t ** +pdir_alloc(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, bool nosleep) +{ + vm_page_t m; + pte_t **pdir; + int req; + + req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; + while ((m = vm_page_alloc(NULL, pp2d_idx, req)) == NULL) { + PMAP_UNLOCK(pmap); + if (nosleep) { + return (NULL); + } + vm_wait(NULL); + PMAP_LOCK(pmap); + } + + /* Zero whole ptbl. */ + pdir = (pte_t **)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); + mmu_booke_zero_page(mmu, m); + + return (pdir); +} + +/* Free pdir pages and invalidate pdir entry. */ +static void +pdir_free(mmu_t mmu, pmap_t pmap, unsigned int pp2d_idx, vm_page_t m) +{ + pte_t **pdir; + + pdir = pmap->pm_pp2d[pp2d_idx]; + + KASSERT((pdir != NULL), ("pdir_free: null pdir")); + + pmap->pm_pp2d[pp2d_idx] = NULL; + + vm_wire_sub(1); + vm_page_free_zero(m); +} + +/* + * Decrement pdir pages hold count and attempt to free pdir pages. Called + * when removing directory entry from pdir. + * + * Return 1 if pdir pages were freed. + */ +static int +pdir_unhold(mmu_t mmu, pmap_t pmap, u_int pp2d_idx) +{ + pte_t **pdir; + vm_paddr_t pa; + vm_page_t m; + + KASSERT((pmap != kernel_pmap), + ("pdir_unhold: unholding kernel pdir!")); + + pdir = pmap->pm_pp2d[pp2d_idx]; + + /* decrement hold count */ + pa = DMAP_TO_PHYS((vm_offset_t) pdir); + m = PHYS_TO_VM_PAGE(pa); + + /* + * Free pdir page if there are no dir entries in this pdir. + */ + m->ref_count--; + if (m->ref_count == 0) { + pdir_free(mmu, pmap, pp2d_idx, m); + return (1); + } + return (0); +} + +/* + * Increment hold count for pdir pages. This routine is used when new ptlb + * entry is being inserted into pdir. + */ +static void +pdir_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir) +{ + vm_page_t m; + + KASSERT((pmap != kernel_pmap), + ("pdir_hold: holding kernel pdir!")); + + KASSERT((pdir != NULL), ("pdir_hold: null pdir")); + + m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pdir)); + m->ref_count++; +} + +/* Allocate page table. */ +static pte_t * +ptbl_alloc(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, + boolean_t nosleep) +{ + vm_page_t m; + pte_t *ptbl; + int req; + + KASSERT((pdir[pdir_idx] == NULL), + ("%s: valid ptbl entry exists!", __func__)); + + req = VM_ALLOC_NOOBJ | VM_ALLOC_WIRED; + while ((m = vm_page_alloc(NULL, pdir_idx, req)) == NULL) { + if (nosleep) + return (NULL); + PMAP_UNLOCK(pmap); + rw_wunlock(&pvh_global_lock); + vm_wait(NULL); + rw_wlock(&pvh_global_lock); + PMAP_LOCK(pmap); + } + + /* Zero whole ptbl. */ + ptbl = (pte_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); + mmu_booke_zero_page(mmu, m); + + return (ptbl); +} + +/* Free ptbl pages and invalidate pdir entry. */ +static void +ptbl_free(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx, vm_page_t m) +{ + pte_t *ptbl; + + ptbl = pdir[pdir_idx]; + + KASSERT((ptbl != NULL), ("ptbl_free: null ptbl")); + + pdir[pdir_idx] = NULL; + + vm_wire_sub(1); + vm_page_free_zero(m); +} + +/* + * Decrement ptbl pages hold count and attempt to free ptbl pages. Called + * when removing pte entry from ptbl. + * + * Return 1 if ptbl pages were freed. + */ +static int +ptbl_unhold(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + pte_t *ptbl; + vm_page_t m; + u_int pp2d_idx; + pte_t **pdir; + u_int pdir_idx; + + pp2d_idx = PP2D_IDX(va); + pdir_idx = PDIR_IDX(va); + + KASSERT((pmap != kernel_pmap), + ("ptbl_unhold: unholding kernel ptbl!")); + + pdir = pmap->pm_pp2d[pp2d_idx]; + ptbl = pdir[pdir_idx]; + + /* decrement hold count */ + m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl)); + + /* + * Free ptbl pages if there are no pte entries in this ptbl. + * ref_count has the same value for all ptbl pages, so check the + * last page. + */ + m->ref_count--; + if (m->ref_count == 0) { + ptbl_free(mmu, pmap, pdir, pdir_idx, m); + pdir_unhold(mmu, pmap, pp2d_idx); + return (1); + } + return (0); +} + +/* + * Increment hold count for ptbl pages. This routine is used when new pte + * entry is being inserted into ptbl. + */ +static void +ptbl_hold(mmu_t mmu, pmap_t pmap, pte_t ** pdir, unsigned int pdir_idx) +{ + pte_t *ptbl; + vm_page_t m; + + KASSERT((pmap != kernel_pmap), + ("ptbl_hold: holding kernel ptbl!")); + + ptbl = pdir[pdir_idx]; + + KASSERT((ptbl != NULL), ("ptbl_hold: null ptbl")); + + m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t) ptbl)); + m->ref_count++; +} + +/* + * Clean pte entry, try to free page table page if requested. + * + * Return 1 if ptbl pages were freed, otherwise return 0. + */ +static int +pte_remove(mmu_t mmu, pmap_t pmap, vm_offset_t va, u_int8_t flags) +{ + vm_page_t m; + pte_t *pte; + + pte = pte_find(mmu, pmap, va); + KASSERT(pte != NULL, ("%s: NULL pte", __func__)); + + if (!PTE_ISVALID(pte)) + return (0); + + /* Get vm_page_t for mapped pte. */ + m = PHYS_TO_VM_PAGE(PTE_PA(pte)); + + if (PTE_ISWIRED(pte)) + pmap->pm_stats.wired_count--; + + /* Handle managed entry. */ + if (PTE_ISMANAGED(pte)) { + + /* Handle modified pages. */ + if (PTE_ISMODIFIED(pte)) + vm_page_dirty(m); + + /* Referenced pages. */ + if (PTE_ISREFERENCED(pte)) + vm_page_aflag_set(m, PGA_REFERENCED); + + /* Remove pv_entry from pv_list. */ + pv_remove(pmap, va, m); + } else if (pmap == kernel_pmap && m && m->md.pv_tracked) { + pv_remove(pmap, va, m); + if (TAILQ_EMPTY(&m->md.pv_list)) + m->md.pv_tracked = false; + } + mtx_lock_spin(&tlbivax_mutex); + tlb_miss_lock(); + + tlb0_flush_entry(va); + *pte = 0; + + tlb_miss_unlock(); + mtx_unlock_spin(&tlbivax_mutex); + + pmap->pm_stats.resident_count--; + + if (flags & PTBL_UNHOLD) { + return (ptbl_unhold(mmu, pmap, va)); + } + return (0); +} + +/* + * Insert PTE for a given page and virtual address. + */ +static int +pte_enter(mmu_t mmu, pmap_t pmap, vm_page_t m, vm_offset_t va, uint32_t flags, + boolean_t nosleep) +{ + unsigned int pp2d_idx = PP2D_IDX(va); + unsigned int pdir_idx = PDIR_IDX(va); + unsigned int ptbl_idx = PTBL_IDX(va); + pte_t *ptbl, *pte, pte_tmp; + pte_t **pdir; + + /* Get the page directory pointer. */ + pdir = pmap->pm_pp2d[pp2d_idx]; + if (pdir == NULL) + pdir = pdir_alloc(mmu, pmap, pp2d_idx, nosleep); + + /* Get the page table pointer. */ + ptbl = pdir[pdir_idx]; + + if (ptbl == NULL) { + /* Allocate page table pages. */ + ptbl = ptbl_alloc(mmu, pmap, pdir, pdir_idx, nosleep); + if (ptbl == NULL) { + KASSERT(nosleep, ("nosleep and NULL ptbl")); + return (ENOMEM); + } + pte = &ptbl[ptbl_idx]; + } else { + /* + * Check if there is valid mapping for requested va, if there + * is, remove it. + */ + pte = &ptbl[ptbl_idx]; + if (PTE_ISVALID(pte)) { + pte_remove(mmu, pmap, va, PTBL_HOLD); + } else { + /* + * pte is not used, increment hold count for ptbl + * pages. + */ + if (pmap != kernel_pmap) + ptbl_hold(mmu, pmap, pdir, pdir_idx); + } + } + + if (pdir[pdir_idx] == NULL) { + if (pmap != kernel_pmap && pmap->pm_pp2d[pp2d_idx] != NULL) + pdir_hold(mmu, pmap, pdir); + pdir[pdir_idx] = ptbl; + } + if (pmap->pm_pp2d[pp2d_idx] == NULL) + pmap->pm_pp2d[pp2d_idx] = pdir; + + /* + * Insert pv_entry into pv_list for mapped page if part of managed + * memory. + */ + if ((m->oflags & VPO_UNMANAGED) == 0) { + flags |= PTE_MANAGED; + + /* Create and insert pv entry. */ + pv_insert(pmap, va, m); + } + + pmap->pm_stats.resident_count++; + + pte_tmp = PTE_RPN_FROM_PA(VM_PAGE_TO_PHYS(m)); + pte_tmp |= (PTE_VALID | flags); + + mtx_lock_spin(&tlbivax_mutex); + tlb_miss_lock(); + + tlb0_flush_entry(va); + *pte = pte_tmp; + + tlb_miss_unlock(); + mtx_unlock_spin(&tlbivax_mutex); + + return (0); +} + +/* Return the pa for the given pmap/va. */ +static vm_paddr_t +pte_vatopa(mmu_t mmu, pmap_t pmap, vm_offset_t va) +{ + vm_paddr_t pa = 0; + pte_t *pte; + + pte = pte_find(mmu, pmap, va); + if ((pte != NULL) && PTE_ISVALID(pte)) + pa = (PTE_PA(pte) | (va & PTE_PA_MASK)); + return (pa); +} + + +/* allocate pte entries to manage (addr & mask) to (addr & mask) + size */ +static void +kernel_pte_alloc(vm_offset_t data_end, vm_offset_t addr, vm_offset_t pdir) +{ + int i, j; + vm_offset_t va; + pte_t *pte; + + va = addr; + /* Initialize kernel pdir */ + for (i = 0; i < kernel_pdirs; i++) { + kernel_pmap->pm_pp2d[i + PP2D_IDX(va)] = + (pte_t **)(pdir + (i * PAGE_SIZE * PDIR_PAGES)); + for (j = PDIR_IDX(va + (i * PAGE_SIZE * PDIR_NENTRIES * PTBL_NENTRIES)); + j < PDIR_NENTRIES; j++) { + kernel_pmap->pm_pp2d[i + PP2D_IDX(va)][j] = + (pte_t *)(pdir + (kernel_pdirs * PAGE_SIZE) + + (((i * PDIR_NENTRIES) + j) * PAGE_SIZE)); + } + } + + /* + * Fill in PTEs covering kernel code and data. They are not required + * for address translation, as this area is covered by static TLB1 + * entries, but for pte_vatopa() to work correctly with kernel area + * addresses. + */ + for (va = addr; va < data_end; va += PAGE_SIZE) { + pte = &(kernel_pmap->pm_pp2d[PP2D_IDX(va)][PDIR_IDX(va)][PTBL_IDX(va)]); + *pte = PTE_RPN_FROM_PA(kernload + (va - kernstart)); + *pte |= PTE_M | PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | + PTE_VALID | PTE_PS_4KB; + } +} + +/* + * Initialize a preallocated and zeroed pmap structure, + * such as one in a vmspace structure. + */ +static void +mmu_booke_pinit(mmu_t mmu, pmap_t pmap) +{ + int i; + + CTR4(KTR_PMAP, "%s: pmap = %p, proc %d '%s'", __func__, pmap, + curthread->td_proc->p_pid, curthread->td_proc->p_comm); + + KASSERT((pmap != kernel_pmap), ("pmap_pinit: initializing kernel_pmap")); + + for (i = 0; i < MAXCPU; i++) + pmap->pm_tid[i] = TID_NONE; + CPU_ZERO(&kernel_pmap->pm_active); + bzero(&pmap->pm_stats, sizeof(pmap->pm_stats)); + pmap->pm_pp2d = uma_zalloc(ptbl_root_zone, M_WAITOK); + bzero(pmap->pm_pp2d, sizeof(pte_t **) * PP2D_NENTRIES); +} + +/* + * Release any resources held by the given physical map. + * Called when a pmap initialized by mmu_booke_pinit is being released. + * Should only be called if the map contains no valid mappings. + */ +static void +mmu_booke_release(mmu_t mmu, pmap_t pmap) +{ + + KASSERT(pmap->pm_stats.resident_count == 0, + ("pmap_release: pmap resident count %ld != 0", + pmap->pm_stats.resident_count)); + uma_zfree(ptbl_root_zone, pmap->pm_pp2d); +} + +static void +mmu_booke_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) +{ + pte_t *pte; + vm_paddr_t pa = 0; + int sync_sz, valid; + + while (sz > 0) { + PMAP_LOCK(pm); + pte = pte_find(mmu, pm, va); + valid = (pte != NULL && PTE_ISVALID(pte)) ? 1 : 0; + if (valid) + pa = PTE_PA(pte); + PMAP_UNLOCK(pm); + sync_sz = PAGE_SIZE - (va & PAGE_MASK); + sync_sz = min(sync_sz, sz); + if (valid) { + pa += (va & PAGE_MASK); + __syncicache((void *)PHYS_TO_DMAP(pa), sync_sz); + } + va += sync_sz; + sz -= sync_sz; + } +} + +/* + * mmu_booke_zero_page_area zeros the specified hardware page by + * mapping it into virtual memory and using bzero to clear + * its contents. + * + * off and size must reside within a single page. + */ +static void +mmu_booke_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) +{ + vm_offset_t va; + + /* XXX KASSERT off and size are within a single page? */ + + va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); + bzero((caddr_t)va + off, size); +} + +/* + * mmu_booke_zero_page zeros the specified hardware page. + */ +static void +mmu_booke_zero_page(mmu_t mmu, vm_page_t m) +{ + vm_offset_t off, va; + + va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)); + + for (off = 0; off < PAGE_SIZE; off += cacheline_size) + __asm __volatile("dcbz 0,%0" :: "r"(va + off)); +} + +/* + * mmu_booke_copy_page copies the specified (machine independent) page by + * mapping the page into virtual memory and using memcopy to copy the page, + * one machine dependent page at a time. + */ +static void +mmu_booke_copy_page(mmu_t mmu, vm_page_t sm, vm_page_t dm) +{ + vm_offset_t sva, dva; + + sva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(sm)); + dva = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dm)); + memcpy((caddr_t)dva, (caddr_t)sva, PAGE_SIZE); +} + +static inline void +mmu_booke_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, + vm_page_t *mb, vm_offset_t b_offset, int xfersize) +{ + void *a_cp, *b_cp; + vm_offset_t a_pg_offset, b_pg_offset; + int cnt; + + vm_page_t pa, pb; + + while (xfersize > 0) { + a_pg_offset = a_offset & PAGE_MASK; + pa = ma[a_offset >> PAGE_SHIFT]; + b_pg_offset = b_offset & PAGE_MASK; + pb = mb[b_offset >> PAGE_SHIFT]; + cnt = min(xfersize, PAGE_SIZE - a_pg_offset); + cnt = min(cnt, PAGE_SIZE - b_pg_offset); + a_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pa)) + + a_pg_offset); + b_cp = (caddr_t)((uintptr_t)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pb)) + + b_pg_offset); + bcopy(a_cp, b_cp, cnt); + a_offset += cnt; + b_offset += cnt; + xfersize -= cnt; + } +} + +static vm_offset_t +mmu_booke_quick_enter_page(mmu_t mmu, vm_page_t m) +{ + return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); +} + +static void +mmu_booke_quick_remove_page(mmu_t mmu, vm_offset_t addr) +{ +} + +/**************************************************************************/ +/* TID handling */ +/**************************************************************************/ + +/* + * Return the largest uint value log such that 2^log <= num. + */ +static unsigned long +ilog2(unsigned long num) +{ + long lz; + + __asm ("cntlzd %0, %1" : "=r" (lz) : "r" (num)); + return (63 - lz); +} + +/* + * Invalidate all TLB0 entries which match the given TID. Note this is + * dedicated for cases when invalidations should NOT be propagated to other + * CPUs. + */ +static void +tid_flush(tlbtid_t tid) +{ + register_t msr; + + /* Don't evict kernel translations */ + if (tid == TID_KERNEL) + return; + + msr = mfmsr(); + __asm __volatile("wrteei 0"); + + /* + * Newer (e500mc and later) have tlbilx, which doesn't broadcast, so use + * it for PID invalidation. + */ + mtspr(SPR_MAS6, tid << MAS6_SPID0_SHIFT); + __asm __volatile("isync; .long 0x7c200024; isync; msync"); + + __asm __volatile("wrtee %0" :: "r"(msr)); +}