diff --git a/sys/net/if.c b/sys/net/if.c index 906f2256dd54..79995e3b9ea4 100644 --- a/sys/net/if.c +++ b/sys/net/if.c @@ -1,4772 +1,4763 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2010 Bjoern A. Zeeb * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_bpf.h" #include "opt_inet6.h" #include "opt_inet.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #ifdef INET #include #include #endif /* INET */ #ifdef INET6 #include #include #endif /* INET6 */ #endif /* INET || INET6 */ #include /* * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name * and ifr_ifru when it is used in SIOCGIFCONF. */ _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); __read_mostly epoch_t net_epoch_preempt; #ifdef COMPAT_FREEBSD32 #include #include struct ifreq_buffer32 { uint32_t length; /* (size_t) */ uint32_t buffer; /* (void *) */ }; /* * Interface request structure used for socket * ioctl's. All interface ioctl's must have parameter * definitions which begin with ifr_name. The * remainder may be interface specific. */ struct ifreq32 { char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct ifreq_buffer32 ifru_buffer; short ifru_flags[2]; short ifru_index; int ifru_jid; int ifru_metric; int ifru_mtu; int ifru_phys; int ifru_media; uint32_t ifru_data; int ifru_cap[2]; u_int ifru_fib; u_char ifru_vlan_pcp; } ifr_ifru; }; CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); CTASSERT(__offsetof(struct ifreq, ifr_ifru) == __offsetof(struct ifreq32, ifr_ifru)); struct ifconf32 { int32_t ifc_len; union { uint32_t ifcu_buf; uint32_t ifcu_req; } ifc_ifcu; }; #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) struct ifdrv32 { char ifd_name[IFNAMSIZ]; uint32_t ifd_cmd; uint32_t ifd_len; uint32_t ifd_data; }; #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) struct ifgroupreq32 { char ifgr_name[IFNAMSIZ]; u_int ifgr_len; union { char ifgru_group[IFNAMSIZ]; uint32_t ifgru_groups; } ifgr_ifgru; }; #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) struct ifmediareq32 { char ifm_name[IFNAMSIZ]; int ifm_current; int ifm_mask; int ifm_status; int ifm_active; int ifm_count; uint32_t ifm_ulist; /* (int *) */ }; #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) #endif /* COMPAT_FREEBSD32 */ union ifreq_union { struct ifreq ifr; #ifdef COMPAT_FREEBSD32 struct ifreq32 ifr32; #endif }; SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Generic link-management"); SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, &ifqmaxlen, 0, "max send queue size"); /* Log link state change events */ static int log_link_state_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, &log_link_state_change, 0, "log interface link state change events"); /* Log promiscuous mode change events */ static int log_promisc_mode_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, &log_promisc_mode_change, 1, "log promiscuous mode change events"); /* Interface description */ static unsigned int ifdescr_maxlen = 1024; SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, &ifdescr_maxlen, 0, "administrative maximum length for interface description"); static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); /* global sx for non-critical path ifdescr */ static struct sx ifdescr_sx; SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); void (*lagg_linkstate_p)(struct ifnet *ifp, int state); /* These are external hooks for CARP. */ void (*carp_linkstate_p)(struct ifnet *ifp); void (*carp_demote_adj_p)(int, char *); int (*carp_master_p)(struct ifaddr *); #if defined(INET) || defined(INET6) int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa); int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); int (*carp_attach_p)(struct ifaddr *, int); void (*carp_detach_p)(struct ifaddr *, bool); #endif #ifdef INET int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); #endif #ifdef INET6 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr); #endif struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; /* * XXX: Style; these should be sorted alphabetically, and unprototyped * static functions should be prototyped. Currently they are sorted by * declaration order. */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void if_input_default(struct ifnet *, struct mbuf *); static int if_requestencap_default(struct ifnet *, struct if_encap_req *); static void if_route(struct ifnet *, int flag, int fam); static int if_setflag(struct ifnet *, int, int, int *, int); static int if_transmit(struct ifnet *ifp, struct mbuf *m); static void if_unroute(struct ifnet *, int flag, int fam); static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); static void do_link_state_change(void *, int); static int if_getgroup(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); static void if_delgroups(struct ifnet *); static void if_attach_internal(struct ifnet *, bool); static int if_detach_internal(struct ifnet *, bool); static void if_siocaddmulti(void *, int); static void if_link_ifnet(struct ifnet *); static bool if_unlink_ifnet(struct ifnet *, bool); #ifdef VIMAGE static int if_vmove(struct ifnet *, struct vnet *); #endif #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif /* ipsec helper hooks */ VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); int ifqmaxlen = IFQ_MAXLEN; VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ VNET_DEFINE(struct ifgrouphead, ifg_head); /* Table of ifnet by index. */ static int if_index; static int if_indexlim = 8; static struct ifindex_entry { struct ifnet *ife_ifnet; uint16_t ife_gencnt; } *ifindex_table; SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Variables global to all interfaces"); static int sysctl_ifcount(SYSCTL_HANDLER_ARGS) { int rv = 0; IFNET_RLOCK(); for (int i = 1; i <= if_index; i++) if (ifindex_table[i].ife_ifnet != NULL && ifindex_table[i].ife_ifnet->if_vnet == curvnet) rv = i; IFNET_RUNLOCK(); return (sysctl_handle_int(oidp, &rv, 0, req)); } SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", "Maximum known interface index"); /* * The global network interface list (V_ifnet) and related state (such as * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. */ struct sx ifnet_sxlock; SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); struct sx ifnet_detach_sxlock; SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", SX_RECURSE); #ifdef VIMAGE #define VNET_IS_SHUTTING_DOWN(_vnet) \ ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) #endif static if_com_alloc_t *if_com_alloc[256]; static if_com_free_t *if_com_free[256]; static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); struct ifnet * ifnet_byindex(u_int idx) { struct ifnet *ifp; NET_EPOCH_ASSERT(); if (__predict_false(idx > if_index)) return (NULL); ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) ifp = NULL; return (ifp); } struct ifnet * ifnet_byindex_ref(u_int idx) { struct ifnet *ifp; ifp = ifnet_byindex(idx); if (ifp == NULL || (ifp->if_flags & IFF_DYING)) return (NULL); if (!if_try_ref(ifp)) return (NULL); return (ifp); } struct ifnet * ifnet_byindexgen(uint16_t idx, uint16_t gen) { struct ifnet *ifp; NET_EPOCH_ASSERT(); if (__predict_false(idx > if_index)) return (NULL); ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); if (ifindex_table[idx].ife_gencnt == gen) return (ifp); else return (NULL); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ static void if_init(void *arg __unused) { ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), M_IFNET, M_WAITOK | M_ZERO); } SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init, NULL); static void vnet_if_init(const void *unused __unused) { CK_STAILQ_INIT(&V_ifnet); CK_STAILQ_INIT(&V_ifg_head); vnet_if_clone_init(); } VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, NULL); static void if_link_ifnet(struct ifnet *ifp) { IFNET_WLOCK(); CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); #ifdef VIMAGE curvnet->vnet_ifcnt++; #endif IFNET_WUNLOCK(); } static bool if_unlink_ifnet(struct ifnet *ifp, bool vmove) { struct ifnet *iter; int found = 0; IFNET_WLOCK(); CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) if (iter == ifp) { CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); if (!vmove) ifp->if_flags |= IFF_DYING; found = 1; break; } #ifdef VIMAGE curvnet->vnet_ifcnt--; #endif IFNET_WUNLOCK(); return (found); } #ifdef VIMAGE static void vnet_if_return(const void *unused __unused) { struct ifnet *ifp, *nifp; struct ifnet **pending; int found __diagused; int i; i = 0; /* * We need to protect our access to the V_ifnet tailq. Ordinarily we'd * enter NET_EPOCH, but that's not possible, because if_vmove() calls * if_detach_internal(), which waits for NET_EPOCH callbacks to * complete. We can't do that from within NET_EPOCH. * * However, we can also use the IFNET_xLOCK, which is the V_ifnet * read/write lock. We cannot hold the lock as we call if_vmove() * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib * ctx lock. */ IFNET_WLOCK(); pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, M_IFNET, M_WAITOK | M_ZERO); /* Return all inherited interfaces to their parent vnets. */ CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { if (ifp->if_home_vnet != ifp->if_vnet) { found = if_unlink_ifnet(ifp, true); MPASS(found); pending[i++] = ifp; } } IFNET_WUNLOCK(); for (int j = 0; j < i; j++) { sx_xlock(&ifnet_detach_sxlock); if_vmove(pending[j], pending[j]->if_home_vnet); sx_xunlock(&ifnet_detach_sxlock); } free(pending, M_IFNET); } VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_if_return, NULL); #endif /* * Allocate a struct ifnet and an index for an interface. A layer 2 * common structure will also be allocated if an allocation routine is * registered for the passed type. */ static struct ifnet * if_alloc_domain(u_char type, int numa_domain) { struct ifnet *ifp; u_short idx; KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); if (numa_domain == IF_NODOM) ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK | M_ZERO); else ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); ifp->if_type = type; ifp->if_alloctype = type; ifp->if_numa_domain = numa_domain; #ifdef VIMAGE ifp->if_vnet = curvnet; #endif if (if_com_alloc[type] != NULL) { ifp->if_l2com = if_com_alloc[type](type, ifp); KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, type)); } IF_ADDR_LOCK_INIT(ifp); TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); ifp->if_afdata_initialized = 0; IF_AFDATA_LOCK_INIT(ifp); CK_STAILQ_INIT(&ifp->if_addrhead); CK_STAILQ_INIT(&ifp->if_multiaddrs); CK_STAILQ_INIT(&ifp->if_groups); #ifdef MAC mac_ifnet_init(ifp); #endif ifq_init(&ifp->if_snd, ifp); refcount_init(&ifp->if_refcount, 1); /* Index reference. */ for (int i = 0; i < IFCOUNTERS; i++) ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); ifp->if_get_counter = if_get_counter_default; ifp->if_pcp = IFNET_PCP_NONE; /* Allocate an ifindex array entry. */ IFNET_WLOCK(); /* * Try to find an empty slot below if_index. If we fail, take the * next slot. */ for (idx = 1; idx <= if_index; idx++) { if (ifindex_table[idx].ife_ifnet == NULL) break; } /* Catch if_index overflow. */ if (idx >= if_indexlim) { struct ifindex_entry *new, *old; int newlim; newlim = if_indexlim * 2; new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); old = ifindex_table; ck_pr_store_ptr(&ifindex_table, new); if_indexlim = newlim; epoch_wait_preempt(net_epoch_preempt); free(old, M_IFNET); } if (idx > if_index) if_index = idx; ifp->if_index = idx; ifp->if_idxgen = ifindex_table[idx].ife_gencnt; ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); IFNET_WUNLOCK(); return (ifp); } struct ifnet * if_alloc_dev(u_char type, device_t dev) { int numa_domain; if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) return (if_alloc_domain(type, IF_NODOM)); return (if_alloc_domain(type, numa_domain)); } struct ifnet * if_alloc(u_char type) { return (if_alloc_domain(type, IF_NODOM)); } /* * Do the actual work of freeing a struct ifnet, and layer 2 common * structure. This call is made when the network epoch guarantees * us that nobody holds a pointer to the interface. */ static void if_free_deferred(epoch_context_t ctx) { struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); KASSERT((ifp->if_flags & IFF_DYING), ("%s: interface not dying", __func__)); if (if_com_free[ifp->if_alloctype] != NULL) if_com_free[ifp->if_alloctype](ifp->if_l2com, ifp->if_alloctype); #ifdef MAC mac_ifnet_destroy(ifp); #endif /* MAC */ IF_AFDATA_DESTROY(ifp); IF_ADDR_LOCK_DESTROY(ifp); ifq_delete(&ifp->if_snd); for (int i = 0; i < IFCOUNTERS; i++) counter_u64_free(ifp->if_counters[i]); free(ifp->if_description, M_IFDESCR); free(ifp->if_hw_addr, M_IFADDR); free(ifp, M_IFNET); } /* * Deregister an interface and free the associated storage. */ void if_free(struct ifnet *ifp) { ifp->if_flags |= IFF_DYING; /* XXX: Locking */ /* * XXXGL: An interface index is really an alias to ifp pointer. * Why would we clear the alias now, and not in the deferred * context? Indeed there is nothing wrong with some network * thread obtaining ifp via ifnet_byindex() inside the network * epoch and then dereferencing ifp while we perform if_free(), * and after if_free() finished, too. * * This early index freeing was important back when ifindex was * virtualized and interface would outlive the vnet. */ IFNET_WLOCK(); MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); ifindex_table[ifp->if_index].ife_gencnt++; while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) if_index--; IFNET_WUNLOCK(); if (refcount_release(&ifp->if_refcount)) NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); } /* * Interfaces to keep an ifnet type-stable despite the possibility of the * driver calling if_free(). If there are additional references, we defer * freeing the underlying data structure. */ void if_ref(struct ifnet *ifp) { u_int old __diagused; /* We don't assert the ifnet list lock here, but arguably should. */ old = refcount_acquire(&ifp->if_refcount); KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); } bool if_try_ref(struct ifnet *ifp) { NET_EPOCH_ASSERT(); return (refcount_acquire_if_not_zero(&ifp->if_refcount)); } void if_rele(struct ifnet *ifp) { if (!refcount_release(&ifp->if_refcount)) return; NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); } void ifq_init(struct ifaltq *ifq, struct ifnet *ifp) { mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); if (ifq->ifq_maxlen == 0) ifq->ifq_maxlen = ifqmaxlen; ifq->altq_type = 0; ifq->altq_disc = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; ifq->altq_tbr = NULL; ifq->altq_ifp = ifp; } void ifq_delete(struct ifaltq *ifq) { mtx_destroy(&ifq->ifq_mtx); } /* * Perform generic interface initialization tasks and attach the interface * to the list of "active" interfaces. If vmove flag is set on entry * to if_attach_internal(), perform only a limited subset of initialization * tasks, given that we are moving from one vnet to another an ifnet which * has already been fully initialized. * * Note that if_detach_internal() removes group membership unconditionally * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. * Thus, when if_vmove() is applied to a cloned interface, group membership * is lost while a cloned one always joins a group whose name is * ifc->ifc_name. To recover this after if_detach_internal() and * if_attach_internal(), the cloner should be specified to * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() * attempts to join a group whose name is ifc->ifc_name. * * XXX: * - The decision to return void and thus require this function to * succeed is questionable. * - We should probably do more sanity checking. For instance we don't * do anything to insure if_xname is unique or non-empty. */ void if_attach(struct ifnet *ifp) { if_attach_internal(ifp, false); } /* * Compute the least common TSO limit. */ void if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) { /* * 1) If there is no limit currently, take the limit from * the network adapter. * * 2) If the network adapter has a limit below the current * limit, apply it. */ if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && ifp->if_hw_tsomax < pmax->tsomaxbytes)) { pmax->tsomaxbytes = ifp->if_hw_tsomax; } if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; } if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } /* * Update TSO limit of a network adapter. * * Returns zero if no change. Else non-zero. */ int if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) { int retval = 0; if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { ifp->if_hw_tsomax = pmax->tsomaxbytes; retval++; } if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; retval++; } if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; retval++; } return (retval); } static void if_attach_internal(struct ifnet *ifp, bool vmove) { unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); #ifdef VIMAGE ifp->if_vnet = curvnet; if (ifp->if_home_vnet == NULL) ifp->if_home_vnet = curvnet; #endif if_addgroup(ifp, IFG_ALL); #ifdef VIMAGE /* Restore group membership for cloned interface. */ if (vmove) if_clone_restoregroup(ifp); #endif getmicrotime(&ifp->if_lastchange); ifp->if_epoch = time_uptime; KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || (ifp->if_transmit != NULL && ifp->if_qflush != NULL), ("transmit and qflush must both either be set or both be NULL")); if (ifp->if_transmit == NULL) { ifp->if_transmit = if_transmit; ifp->if_qflush = if_qflush; } if (ifp->if_input == NULL) ifp->if_input = if_input_default; if (ifp->if_requestencap == NULL) ifp->if_requestencap = if_requestencap_default; if (!vmove) { #ifdef MAC mac_ifnet_create(ifp); #endif /* * Create a Link Level name for this device. */ namelen = strlen(ifp->if_xname); /* * Always save enough space for any possiable name so we * can do a rename in place later. */ masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = ifa_alloc(ifasize, M_WAITOK); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifp->if_addr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); /* Reliably crash if used uninitialized. */ ifp->if_broadcastaddr = NULL; if (ifp->if_type == IFT_ETHER) { ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, M_WAITOK | M_ZERO); } #if defined(INET) || defined(INET6) /* Use defaults for TSO, if nothing is set */ if (ifp->if_hw_tsomax == 0 && ifp->if_hw_tsomaxsegcount == 0 && ifp->if_hw_tsomaxsegsize == 0) { /* * The TSO defaults needs to be such that an * NFS mbuf list of 35 mbufs totalling just * below 64K works and that a chain of mbufs * can be defragged into at most 32 segments: */ ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); ifp->if_hw_tsomaxsegcount = 35; ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ /* XXX some drivers set IFCAP_TSO after ethernet attach */ if (ifp->if_capabilities & IFCAP_TSO) { if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", ifp->if_hw_tsomax, ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); } } #endif } #ifdef VIMAGE else { /* * Update the interface index in the link layer address * of the interface. */ for (ifa = ifp->if_addr; ifa != NULL; ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { if (ifa->ifa_addr->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_index = ifp->if_index; } } } #endif if_link_ifnet(ifp); if (domain_init_status >= 2) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); - - /* Announce the interface. */ - rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_epochalloc(void *dummy __unused) { net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); } SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); static void if_attachdomain(void *dummy) { struct ifnet *ifp; CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) if_attachdomain1(ifp); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ IF_AFDATA_LOCK(ifp); if (ifp->if_afdata_initialized >= domain_init_status) { IF_AFDATA_UNLOCK(ifp); log(LOG_WARNING, "%s called more than once on %s\n", __func__, ifp->if_xname); return; } ifp->if_afdata_initialized = domain_init_status; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } } /* * Remove any unicast or broadcast network addresses from an interface. */ void if_purgeaddrs(struct ifnet *ifp) { struct ifaddr *ifa; #ifdef INET6 /* * Need to leave multicast addresses of proxy NDP llentries * before in6_purgeifaddr() because the llentries are keys * for in6_multi objects of proxy NDP entries. * in6_purgeifaddr()s clean up llentries including proxy NDPs * then we would lose the keys if they are called earlier. */ in6_purge_proxy_ndp(ifp); #endif while (1) { struct epoch_tracker et; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) break; } NET_EPOCH_EXIT(et); if (ifa == NULL) break; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeifaddr((struct in6_ifaddr *)ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } } /* * Remove any multicast network addresses from an interface when an ifnet * is going away. */ static void if_purgemaddrs(struct ifnet *ifp) { struct ifmultiaddr *ifma; IF_ADDR_WLOCK(ifp); while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); if_delmulti_locked(ifp, ifma, 1); } IF_ADDR_WUNLOCK(ifp); } /* * Detach an interface, removing it from the list of "active" interfaces. * If vmove flag is set on entry to if_detach_internal(), perform only a * limited subset of cleanup tasks, given that we are moving an ifnet from * one vnet to another, where it must be fully operational. * * XXXRW: There are some significant questions about event ordering, and * how to prevent things from starting to use the interface during detach. */ void if_detach(struct ifnet *ifp) { bool found; CURVNET_SET_QUIET(ifp->if_vnet); found = if_unlink_ifnet(ifp, false); if (found) { sx_xlock(&ifnet_detach_sxlock); if_detach_internal(ifp, false); sx_xunlock(&ifnet_detach_sxlock); } CURVNET_RESTORE(); } /* * The vmove flag, if set, indicates that we are called from a callpath * that is moving an interface to a different vnet instance. * * The shutdown flag, if set, indicates that we are called in the * process of shutting down a vnet instance. Currently only the * vnet_if_return SYSUNINIT function sets it. Note: we can be called * on a vnet instance shutdown without this flag being set, e.g., when * the cloned interfaces are destoyed as first thing of teardown. */ static int if_detach_internal(struct ifnet *ifp, bool vmove) { struct ifaddr *ifa; int i; struct domain *dp; #ifdef VIMAGE bool shutdown; shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); #endif /* * At this point we know the interface still was on the ifnet list * and we removed it so we are in a stable state. */ epoch_wait_preempt(net_epoch_preempt); /* * Ensure all pending EPOCH(9) callbacks have been executed. This * fixes issues about late destruction of multicast options * which lead to leave group calls, which in turn access the * belonging ifnet structure: */ NET_EPOCH_DRAIN_CALLBACKS(); /* * In any case (destroy or vmove) detach us from the groups * and remove/wait for pending events on the taskq. * XXX-BZ in theory an interface could still enqueue a taskq change? */ if_delgroups(ifp); taskqueue_drain(taskqueue_swi, &ifp->if_linktask); taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); if_down(ifp); #ifdef VIMAGE /* * On VNET shutdown abort here as the stack teardown will do all * the work top-down for us. */ if (shutdown) { /* Give interface users the chance to clean up. */ EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); /* * In case of a vmove we are done here without error. * If we would signal an error it would lead to the same * abort as if we did not find the ifnet anymore. * if_detach() calls us in void context and does not care * about an early abort notification, so life is splendid :) */ goto finish_vnet_shutdown; } #endif /* * At this point we are not tearing down a VNET and are either * going to destroy or vmove the interface and have to cleanup * accordingly. */ /* * Remove routes and flush queues. */ #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif if_purgeaddrs(ifp); #ifdef INET in_ifdetach(ifp); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif if_purgemaddrs(ifp); - /* Announce that the interface is gone. */ - rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); if (!vmove) { /* * Prevent further calls into the device driver via ifnet. */ if_dead(ifp); /* * Clean up all addresses. */ IF_ADDR_WLOCK(ifp); if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } else IF_ADDR_WUNLOCK(ifp); } rt_flushifroutes(ifp); #ifdef VIMAGE finish_vnet_shutdown: #endif /* * We cannot hold the lock over dom_ifdetach calls as they might * sleep, for example trying to drain a callout, thus open up the * theoretical race with re-attaching. */ IF_AFDATA_LOCK(ifp); i = ifp->if_afdata_initialized; ifp->if_afdata_initialized = 0; IF_AFDATA_UNLOCK(ifp); for (dp = domains; i > 0 && dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); ifp->if_afdata[dp->dom_family] = NULL; } } return (0); } #ifdef VIMAGE /* * if_vmove() performs a limited version of if_detach() in current * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. */ static int if_vmove(struct ifnet *ifp, struct vnet *new_vnet) { #ifdef DEV_BPF u_int bif_dlt, bif_hdrlen; #endif int rc; #ifdef DEV_BPF /* * if_detach_internal() will call the eventhandler to notify * interface departure. That will detach if_bpf. We need to * safe the dlt and hdrlen so we can re-attach it later. */ bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); #endif /* * Detach from current vnet, but preserve LLADDR info, do not * mark as dead etc. so that the ifnet can be reattached later. * If we cannot find it, we lost the race to someone else. */ rc = if_detach_internal(ifp, true); if (rc != 0) return (rc); /* * Perform interface-specific reassignment tasks, if provided by * the driver. */ if (ifp->if_reassign != NULL) ifp->if_reassign(ifp, new_vnet, NULL); /* * Switch to the context of the target vnet. */ CURVNET_SET_QUIET(new_vnet); if_attach_internal(ifp, true); #ifdef DEV_BPF if (ifp->if_bpf == NULL) bpfattach(ifp, bif_dlt, bif_hdrlen); #endif CURVNET_RESTORE(); return (0); } /* * Move an ifnet to or from another child prison/vnet, specified by the jail id. */ static int if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) { struct prison *pr; struct ifnet *difp; int error; bool found __diagused; bool shutdown; MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Do not try to move the iface from and to the same prison. */ if (pr->pr_vnet == ifp->if_vnet) { prison_free(pr); return (EEXIST); } /* Make sure the named iface does not exists in the dst. prison/vnet. */ /* XXX Lock interfaces to avoid races. */ CURVNET_SET_QUIET(pr->pr_vnet); difp = ifunit(ifname); if (difp != NULL) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } sx_xlock(&ifnet_detach_sxlock); /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); if (shutdown) { sx_xunlock(&ifnet_detach_sxlock); CURVNET_RESTORE(); prison_free(pr); return (EBUSY); } CURVNET_RESTORE(); found = if_unlink_ifnet(ifp, true); if (! found) { sx_xunlock(&ifnet_detach_sxlock); CURVNET_RESTORE(); prison_free(pr); return (ENODEV); } /* Move the interface into the child jail/vnet. */ error = if_vmove(ifp, pr->pr_vnet); /* Report the new if_xname back to the userland on success. */ if (error == 0) sprintf(ifname, "%s", ifp->if_xname); sx_xunlock(&ifnet_detach_sxlock); prison_free(pr); return (error); } static int if_vmove_reclaim(struct thread *td, char *ifname, int jid) { struct prison *pr; struct vnet *vnet_dst; struct ifnet *ifp; int error, found __diagused; bool shutdown; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Make sure the named iface exists in the source prison/vnet. */ CURVNET_SET(pr->pr_vnet); ifp = ifunit(ifname); /* XXX Lock to avoid races. */ if (ifp == NULL) { CURVNET_RESTORE(); prison_free(pr); return (ENXIO); } /* Do not try to move the iface from and to the same prison. */ vnet_dst = TD_TO_VNET(td); if (vnet_dst == ifp->if_vnet) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); if (shutdown) { CURVNET_RESTORE(); prison_free(pr); return (EBUSY); } /* Get interface back from child jail/vnet. */ found = if_unlink_ifnet(ifp, true); MPASS(found); sx_xlock(&ifnet_detach_sxlock); error = if_vmove(ifp, vnet_dst); sx_xunlock(&ifnet_detach_sxlock); CURVNET_RESTORE(); /* Report the new if_xname back to the userland on success. */ if (error == 0) sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (error); } #endif /* VIMAGE */ /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; int new = 0; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); IFNET_WLOCK(); CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { IFNET_WUNLOCK(); return (EEXIST); } if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { IFNET_WUNLOCK(); return (ENOMEM); } if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL) { if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); free(ifgm, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; CK_STAILQ_INIT(&ifg->ifg_members); CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); new = 1; } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); IFNET_WUNLOCK(); if (new) EVENTHANDLER_INVOKE(group_attach_event, ifg); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Helper function to remove a group out of an interface. Expects the global * ifnet lock to be write-locked, and drops it before returning. */ static void _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, const char *groupname) { struct ifg_member *ifgm; bool freeifgl; IFNET_WLOCK_ASSERT(); IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); IF_ADDR_WUNLOCK(ifp); CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { if (ifgm->ifgm_ifp == ifp) { CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifg_member, ifgm_next); break; } } if (--ifgl->ifgl_group->ifg_refcnt == 0) { CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, ifg_next); freeifgl = true; } else { freeifgl = false; } IFNET_WUNLOCK(); epoch_wait_preempt(net_epoch_preempt); if (freeifgl) { EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } free(ifgm, M_TEMP); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; IFNET_WLOCK(); CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) break; if (ifgl == NULL) { IFNET_WUNLOCK(); return (ENOENT); } _if_delgroup_locked(ifp, ifgl, groupname); return (0); } /* * Remove an interface from all groups */ static void if_delgroups(struct ifnet *ifp) { struct ifg_list *ifgl; char groupname[IFNAMSIZ]; IFNET_WLOCK(); while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); _if_delgroup_locked(ifp, ifgl, groupname); IFNET_WLOCK(); } IFNET_WUNLOCK(); } /* * Stores all groups from an interface in memory pointed to by ifgr. */ static int if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; NET_EPOCH_ASSERT(); if (ifgr->ifgr_len == 0) { CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; /* XXX: wire */ CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) return (EINVAL); bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) return (error); len -= sizeof(ifgrq); ifgp++; } return (0); } /* * Stores all members of a group in memory pointed to by igfr */ static int if_getgroupmembers(struct ifgroupreq *ifgr) { struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) break; if (ifg == NULL) { IFNET_RUNLOCK(); return (ENOENT); } if (ifgr->ifgr_len == 0) { CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); IFNET_RUNLOCK(); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) { IFNET_RUNLOCK(); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IFNET_RUNLOCK(); return (error); } len -= sizeof(ifgrq); ifgp++; } IFNET_RUNLOCK(); return (0); } /* * Return counter values from counter(9)s stored in ifnet. */ uint64_t if_get_counter_default(struct ifnet *ifp, ift_counter cnt) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); return (counter_u64_fetch(ifp->if_counters[cnt])); } /* * Increase an ifnet counter. Usually used for counters shared * between the stack and a driver, but function supports them all. */ void if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); counter_u64_add(ifp->if_counters[cnt], inc); } /* * Copy data from ifnet to userland API structure if_data. */ void if_data_copy(struct ifnet *ifp, struct if_data *ifd) { ifd->ifi_type = ifp->if_type; ifd->ifi_physical = 0; ifd->ifi_addrlen = ifp->if_addrlen; ifd->ifi_hdrlen = ifp->if_hdrlen; ifd->ifi_link_state = ifp->if_link_state; ifd->ifi_vhid = 0; ifd->ifi_datalen = sizeof(struct if_data); ifd->ifi_mtu = ifp->if_mtu; ifd->ifi_metric = ifp->if_metric; ifd->ifi_baudrate = ifp->if_baudrate; ifd->ifi_hwassist = ifp->if_hwassist; ifd->ifi_epoch = ifp->if_epoch; ifd->ifi_lastchange = ifp->if_lastchange; ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); } /* * Initialization, destruction and refcounting functions for ifaddrs. */ struct ifaddr * ifa_alloc(size_t size, int flags) { struct ifaddr *ifa; KASSERT(size >= sizeof(struct ifaddr), ("%s: invalid size %zu", __func__, size)); ifa = malloc(size, M_IFADDR, M_ZERO | flags); if (ifa == NULL) return (NULL); if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) goto fail; refcount_init(&ifa->ifa_refcnt, 1); return (ifa); fail: /* free(NULL) is okay */ counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); return (NULL); } void ifa_ref(struct ifaddr *ifa) { u_int old __diagused; old = refcount_acquire(&ifa->ifa_refcnt); KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); } int ifa_try_ref(struct ifaddr *ifa) { NET_EPOCH_ASSERT(); return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); } static void ifa_destroy(epoch_context_t ctx) { struct ifaddr *ifa; ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); } void ifa_free(struct ifaddr *ifa) { if (refcount_release(&ifa->ifa_refcnt)) NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); } /* * XXX: Because sockaddr_dl has deeper structure than the sockaddr * structs used to represent other address families, it is necessary * to perform a different comparison. */ #define sa_dl_equal(a1, a2) \ ((((const struct sockaddr_dl *)(a1))->sdl_len == \ ((const struct sockaddr_dl *)(a2))->sdl_len) && \ (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ CLLADDR((const struct sockaddr_dl *)(a2)), \ ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) { goto done; } /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { goto done; } } } ifa = NULL; done: return (ifa); } int ifa_ifwithaddr_check(const struct sockaddr *addr) { struct epoch_tracker et; int rc; NET_EPOCH_ENTER(et); rc = (ifa_ifwithaddr(addr) != NULL); NET_EPOCH_EXIT(et); return (rc); } /* * Locate an interface based on the broadcast address. */ /* ARGSUSED */ struct ifaddr * ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { goto done; } } } ifa = NULL; done: return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { goto done; } } } ifa = NULL; done: return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; const char *addr_data = addr->sa_data, *cplim; NET_EPOCH_ASSERT(); /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { ifp = ifnet_byindex( ((const struct sockaddr_dl *)addr)->sdl_index); return (ifp ? ifp->if_addr : NULL); } /* * Scan though each interface, looking for ones that have addresses * in this address family and the requested fib. */ CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { const char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { goto done; } } else { /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one), or if the virtual status * of new prefix is better than of the old one, * then remember the new one before continuing * to search for an even better one. */ if (ifa_maybe == NULL || ifa_preferred(ifa_maybe, ifa) || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) { ifa_maybe = ifa; } } } } ifa = ifa_maybe; ifa_maybe = NULL; done: return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; const char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (NULL); NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: return (ifa); } /* * See whether new ifa is better than current one: * 1) A non-virtual one is preferred over virtual. * 2) A virtual in master state preferred over any other state. * * Used in several address selecting functions. */ int ifa_preferred(struct ifaddr *cur, struct ifaddr *next) { return (cur->ifa_carp && (!next->ifa_carp || ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); } struct sockaddr_dl * link_alloc_sdl(size_t size, int flags) { return (malloc(size, M_TEMP, flags)); } void link_free_sdl(struct sockaddr *sa) { free(sa, M_TEMP); } /* * Fills in given sdl with interface basic info. * Returns pointer to filled sdl. */ struct sockaddr_dl * link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)paddr; memset(sdl, 0, sizeof(struct sockaddr_dl)); sdl->sdl_len = sizeof(struct sockaddr_dl); sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = iftype; return (sdl); } /* * Mark an interface down and notify protocols of * the transition. */ static void if_unroute(struct ifnet *ifp, int flag, int fam) { KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); ifp->if_qflush(ifp); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. */ static void if_route(struct ifnet *ifp, int flag, int fam) { KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); int (*vlan_tag_p)(struct ifnet *, uint16_t *); int (*vlan_pcp_p)(struct ifnet *, uint16_t *); int (*vlan_setcookie_p)(struct ifnet *, void *); void *(*vlan_cookie_p)(struct ifnet *); /* * Handle a change in the interface link state. To avoid LORs * between driver lock and upper layer locks, as well as possible * recursions, we post event to taskqueue, and all job * is done in static do_link_state_change(). */ void if_link_state_change(struct ifnet *ifp, int link_state) { /* Return if state hasn't changed. */ if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; /* XXXGL: reference ifp? */ taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); } static void do_link_state_change(void *arg, int pending) { struct ifnet *ifp; int link_state; ifp = arg; link_state = ifp->if_link_state; CURVNET_SET(ifp->if_vnet); rt_ifmsg(ifp); if (ifp->if_vlantrunk != NULL) (*vlan_link_state_p)(ifp); if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && ifp->if_l2com != NULL) (*ng_ether_link_state_p)(ifp, link_state); if (ifp->if_carp) (*carp_linkstate_p)(ifp); if (ifp->if_bridge) ifp->if_bridge_linkstate(ifp); if (ifp->if_lagg) (*lagg_linkstate_p)(ifp, link_state); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); if (pending > 1) if_printf(ifp, "%d link states coalesced\n", pending); if (log_link_state_change) if_printf(ifp, "link state changed to %s\n", (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); CURVNET_RESTORE(); } /* * Mark an interface down and notify protocols of * the transition. */ void if_down(struct ifnet *ifp) { EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); } /* * Flush an interface queue. */ void if_qflush(struct ifnet *ifp) { struct mbuf *m, *n; struct ifaltq *ifq; ifq = &ifp->if_snd; IFQ_LOCK(ifq); #ifdef ALTQ if (ALTQ_IS_ENABLED(ifq)) ALTQ_PURGE(ifq); #endif n = ifq->ifq_head; while ((m = n) != NULL) { n = m->m_nextpkt; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; IFQ_UNLOCK(ifq); } /* * Map interface name to interface structure pointer, with or without * returning a reference. */ struct ifnet * ifunit_ref(const char *name) { struct epoch_tracker et; struct ifnet *ifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && !(ifp->if_flags & IFF_DYING)) break; } if (ifp != NULL) { if_ref(ifp); MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); } NET_EPOCH_EXIT(et); return (ifp); } struct ifnet * ifunit(const char *name) { struct epoch_tracker et; struct ifnet *ifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } NET_EPOCH_EXIT(et); return (ifp); } void * ifr_buffer_get_buffer(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return ((void *)(uintptr_t) ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); #endif return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); } static void ifr_buffer_set_buffer_null(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; else #endif ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; } size_t ifr_buffer_get_length(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); #endif return (ifrup->ifr.ifr_ifru.ifru_buffer.length); } static void ifr_buffer_set_length(void *data, size_t len) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; else #endif ifrup->ifr.ifr_ifru.ifru_buffer.length = len; } void * ifr_data_get_ptr(void *ifrp) { union ifreq_union *ifrup; ifrup = ifrp; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return ((void *)(uintptr_t) ifrup->ifr32.ifr_ifru.ifru_data); #endif return (ifrup->ifr.ifr_ifru.ifru_data); } struct ifcap_nv_bit_name { int cap_bit; const char *cap_name; }; #define CAPNV(x) {.cap_bit = IFCAP_##x, \ .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { CAPNV(RXCSUM), CAPNV(TXCSUM), CAPNV(NETCONS), CAPNV(VLAN_MTU), CAPNV(VLAN_HWTAGGING), CAPNV(JUMBO_MTU), CAPNV(POLLING), CAPNV(VLAN_HWCSUM), CAPNV(TSO4), CAPNV(TSO6), CAPNV(LRO), CAPNV(WOL_UCAST), CAPNV(WOL_MCAST), CAPNV(WOL_MAGIC), CAPNV(TOE4), CAPNV(TOE6), CAPNV(VLAN_HWFILTER), CAPNV(VLAN_HWTSO), CAPNV(LINKSTATE), CAPNV(NETMAP), CAPNV(RXCSUM_IPV6), CAPNV(TXCSUM_IPV6), CAPNV(HWSTATS), CAPNV(TXRTLMT), CAPNV(HWRXTSTMP), CAPNV(MEXTPG), CAPNV(TXTLS4), CAPNV(TXTLS6), CAPNV(VXLAN_HWCSUM), CAPNV(VXLAN_HWTSO), CAPNV(TXTLS_RTLMT), {0, NULL} }; #define CAP2NV(x) {.cap_bit = IFCAP2_##x, \ .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { CAP2NV(RXTLS4), CAP2NV(RXTLS6), {0, NULL} }; #undef CAPNV #undef CAP2NV int if_capnv_to_capint(const nvlist_t *nv, int *old_cap, const struct ifcap_nv_bit_name *nn, bool all) { int i, res; res = 0; for (i = 0; nn[i].cap_name != NULL; i++) { if (nvlist_exists_bool(nv, nn[i].cap_name)) { if (all || nvlist_get_bool(nv, nn[i].cap_name)) res |= nn[i].cap_bit; } else { res |= *old_cap & nn[i].cap_bit; } } return (res); } void if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, int ifr_cap, int ifr_req) { int i; for (i = 0; nn[i].cap_name != NULL; i++) { if ((nn[i].cap_bit & ifr_cap) != 0) { nvlist_add_bool(nv, nn[i].cap_name, (nn[i].cap_bit & ifr_req) != 0); } } } /* * Hardware specific interface ioctls. */ int ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) { struct ifreq *ifr; int error = 0, do_ifup = 0; int new_flags, temp_flags; size_t namelen, onamelen; size_t descrlen, nvbuflen; char *descrbuf, *odescrbuf; char new_name[IFNAMSIZ]; char old_name[IFNAMSIZ], strbuf[IFNAMSIZ + 8]; struct ifaddr *ifa; struct sockaddr_dl *sdl; void *buf; nvlist_t *nvcap; struct siocsifcapnv_driver_data drv_ioctl_data; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: temp_flags = ifp->if_flags | ifp->if_drv_flags; ifr->ifr_flags = temp_flags & 0xffff; ifr->ifr_flagshigh = temp_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; case SIOCGIFCAPNV: if ((ifp->if_capabilities & IFCAP_NV) == 0) { error = EINVAL; break; } buf = NULL; nvcap = nvlist_create(0); for (;;) { if_capint_to_capnv(nvcap, ifcap_nv_bit_names, ifp->if_capabilities, ifp->if_capenable); if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, ifp->if_capabilities2, ifp->if_capenable2); error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, __DECONST(caddr_t, nvcap)); if (error != 0) { if_printf(ifp, "SIOCGIFCAPNV driver mistake: nvlist error %d\n", error); break; } buf = nvlist_pack(nvcap, &nvbuflen); if (buf == NULL) { error = nvlist_error(nvcap); if (error == 0) error = EDOOFUS; break; } if (nvbuflen > ifr->ifr_cap_nv.buf_length) { ifr->ifr_cap_nv.length = nvbuflen; ifr->ifr_cap_nv.buffer = NULL; error = EFBIG; break; } ifr->ifr_cap_nv.length = nvbuflen; error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); break; } free(buf, M_NVLIST); nvlist_destroy(nvcap); break; case SIOCGIFDATA: { struct if_data ifd; /* Ensure uninitialised padding is not leaked. */ memset(&ifd, 0, sizeof(ifd)); if_data_copy(ifp, &ifd); error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); break; } #ifdef MAC case SIOCGIFMAC: error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: /* XXXGL: did this ever worked? */ ifr->ifr_phys = 0; break; case SIOCGIFDESCR: error = 0; sx_slock(&ifdescr_sx); if (ifp->if_description == NULL) error = ENOMSG; else { /* space for terminating nul */ descrlen = strlen(ifp->if_description) + 1; if (ifr_buffer_get_length(ifr) < descrlen) ifr_buffer_set_buffer_null(ifr); else error = copyout(ifp->if_description, ifr_buffer_get_buffer(ifr), descrlen); ifr_buffer_set_length(ifr, descrlen); } sx_sunlock(&ifdescr_sx); break; case SIOCSIFDESCR: error = priv_check(td, PRIV_NET_SETIFDESCR); if (error) return (error); /* * Copy only (length-1) bytes to make sure that * if_description is always nul terminated. The * length parameter is supposed to count the * terminating nul in. */ if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) return (ENAMETOOLONG); else if (ifr_buffer_get_length(ifr) == 0) descrbuf = NULL; else { descrbuf = malloc(ifr_buffer_get_length(ifr), M_IFDESCR, M_WAITOK | M_ZERO); error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, ifr_buffer_get_length(ifr) - 1); if (error) { free(descrbuf, M_IFDESCR); break; } } sx_xlock(&ifdescr_sx); odescrbuf = ifp->if_description; ifp->if_description = descrbuf; sx_xunlock(&ifdescr_sx); getmicrotime(&ifp->if_lastchange); free(odescrbuf, M_IFDESCR); break; case SIOCGIFFIB: ifr->ifr_fib = ifp->if_fib; break; case SIOCSIFFIB: error = priv_check(td, PRIV_NET_SETIFFIB); if (error) return (error); if (ifr->ifr_fib >= rt_numfibs) return (EINVAL); ifp->if_fib = ifr->ifr_fib; break; case SIOCSIFFLAGS: error = priv_check(td, PRIV_NET_SETIFFLAGS); if (error) return (error); /* * Currently, no driver owned flags pass the IFF_CANTCHANGE * check, so we don't need special handling here yet. */ new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { if_down(ifp); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { do_ifup = 1; } /* See if permanently promiscuous mode bit is about to flip */ if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { if (new_flags & IFF_PPROMISC) ifp->if_flags |= IFF_PROMISC; else if (ifp->if_pcount == 0) ifp->if_flags &= ~IFF_PROMISC; if (log_promisc_mode_change) if_printf(ifp, "permanently promiscuous mode %s\n", ((new_flags & IFF_PPROMISC) ? "enabled" : "disabled")); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) { (void) (*ifp->if_ioctl)(ifp, cmd, data); } if (do_ifup) if_up(ifp); getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = priv_check(td, PRIV_NET_SETIFCAP); if (error != 0) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAPNV: error = priv_check(td, PRIV_NET_SETIFCAP); if (error != 0) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if ((ifp->if_capabilities & IFCAP_NV) == 0) return (EINVAL); if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) return (EINVAL); nvcap = NULL; buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); for (;;) { error = copyin(ifr->ifr_cap_nv.buffer, buf, ifr->ifr_cap_nv.length); if (error != 0) break; nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); if (nvcap == NULL) { error = EINVAL; break; } drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, &ifp->if_capenable, ifcap_nv_bit_names, false); if ((drv_ioctl_data.reqcap & ~ifp->if_capabilities) != 0) { error = EINVAL; break; } drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, &ifp->if_capenable2, ifcap2_nv_bit_names, false); if ((drv_ioctl_data.reqcap2 & ~ifp->if_capabilities2) != 0) { error = EINVAL; break; } drv_ioctl_data.nvcap = nvcap; error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, (caddr_t)&drv_ioctl_data); break; } nvlist_destroy(nvcap); free(buf, M_TEMP); if (error == 0) getmicrotime(&ifp->if_lastchange); break; #ifdef MAC case SIOCSIFMAC: error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = priv_check(td, PRIV_NET_SETIFNAME); if (error) return (error); error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (strcmp(new_name, ifp->if_xname) == 0) break; if (ifunit(new_name) != NULL) return (EEXIST); /* * XXX: Locking. Nothing else seems to lock if_flags, * and there are numerous other races with the * ifunit() checks not being atomic with namespace * changes (renames, vmoves, if_attach, etc). */ ifp->if_flags |= IFF_RENAMING; - /* Announce the departure of the interface. */ - rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if_printf(ifp, "changing name to '%s'\n", new_name); IF_ADDR_WLOCK(ifp); strlcpy(old_name, ifp->if_xname, sizeof(old_name)); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); - /* Announce the return of the interface. */ - rt_ifannouncemsg(ifp, IFAN_ARRIVAL); ifp->if_flags &= ~IFF_RENAMING; snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); devctl_notify("IFNET", old_name, "RENAME", strbuf); break; #ifdef VIMAGE case SIOCSIFVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error) return (error); error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); break; #endif case SIOCSIFMETRIC: error = priv_check(td, PRIV_NET_SETIFMETRIC); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check(td, PRIV_NET_SETIFPHYS); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); /* Disallow MTU changes on bridge member interfaces. */ if (ifp->if_bridge) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); #ifdef INET DEBUGNET_NOTIFY_MTU(ifp); #endif } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif rt_updatemtu(ifp); } break; } case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = priv_check(td, PRIV_NET_ADDMULTI); else error = priv_check(td, PRIV_NET_DELMULTI); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct epoch_tracker et; struct ifmultiaddr *ifma; /* * Userland is only permitted to join groups once * via the if_addmulti() KPI, because it cannot hold * struct ifmultiaddr * between calls. It may also * lose a race while we check if the membership * already exists. */ NET_EPOCH_ENTER(et); ifma = if_findmulti(ifp, &ifr->ifr_addr); NET_EPOCH_EXIT(et); if (ifma != NULL) error = EADDRINUSE; else error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check(td, PRIV_NET_HWIOCTL); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGIFMEDIA: case SIOCGIFXMEDIA: case SIOCGIFGENERIC: case SIOCGIFRSSKEY: case SIOCGIFRSSHASH: case SIOCGIFDOWNREASON: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCSIFLLADDR: error = priv_check(td, PRIV_NET_SETLLADDR); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); break; case SIOCGHWADDR: error = if_gethwaddr(ifp, ifr); break; case SIOCAIFGROUP: error = priv_check(td, PRIV_NET_ADDIFGROUP); if (error) return (error); error = if_addgroup(ifp, ((struct ifgroupreq *)data)->ifgr_group); if (error != 0) return (error); break; case SIOCGIFGROUP: { struct epoch_tracker et; NET_EPOCH_ENTER(et); error = if_getgroup((struct ifgroupreq *)data, ifp); NET_EPOCH_EXIT(et); break; } case SIOCDIFGROUP: error = priv_check(td, PRIV_NET_DELIFGROUP); if (error) return (error); error = if_delgroup(ifp, ((struct ifgroupreq *)data)->ifgr_group); if (error != 0) return (error); break; default: error = ENOIOCTL; break; } return (error); } /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { #ifdef COMPAT_FREEBSD32 union { struct ifconf ifc; struct ifdrv ifd; struct ifgroupreq ifgr; struct ifmediareq ifmr; } thunk; u_long saved_cmd; struct ifconf32 *ifc32; struct ifdrv32 *ifd32; struct ifgroupreq32 *ifgr32; struct ifmediareq32 *ifmr32; #endif struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; #ifdef VIMAGE bool shutdown; #endif CURVNET_SET(so->so_vnet); #ifdef VIMAGE /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); if (shutdown) { CURVNET_RESTORE(); return (EBUSY); } #endif #ifdef COMPAT_FREEBSD32 saved_cmd = cmd; switch (cmd) { case SIOCGIFCONF32: ifc32 = (struct ifconf32 *)data; thunk.ifc.ifc_len = ifc32->ifc_len; thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); data = (caddr_t)&thunk.ifc; cmd = SIOCGIFCONF; break; case SIOCGDRVSPEC32: case SIOCSDRVSPEC32: ifd32 = (struct ifdrv32 *)data; memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, sizeof(thunk.ifd.ifd_name)); thunk.ifd.ifd_cmd = ifd32->ifd_cmd; thunk.ifd.ifd_len = ifd32->ifd_len; thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); data = (caddr_t)&thunk.ifd; cmd = _IOC_NEWTYPE(cmd, struct ifdrv); break; case SIOCAIFGROUP32: case SIOCGIFGROUP32: case SIOCDIFGROUP32: case SIOCGIFGMEMB32: ifgr32 = (struct ifgroupreq32 *)data; memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, sizeof(thunk.ifgr.ifgr_name)); thunk.ifgr.ifgr_len = ifgr32->ifgr_len; switch (cmd) { case SIOCAIFGROUP32: case SIOCDIFGROUP32: memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, sizeof(thunk.ifgr.ifgr_group)); break; case SIOCGIFGROUP32: case SIOCGIFGMEMB32: thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); break; } data = (caddr_t)&thunk.ifgr; cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); break; case SIOCGIFMEDIA32: case SIOCGIFXMEDIA32: ifmr32 = (struct ifmediareq32 *)data; memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, sizeof(thunk.ifmr.ifm_name)); thunk.ifmr.ifm_current = ifmr32->ifm_current; thunk.ifmr.ifm_mask = ifmr32->ifm_mask; thunk.ifmr.ifm_status = ifmr32->ifm_status; thunk.ifmr.ifm_active = ifmr32->ifm_active; thunk.ifmr.ifm_count = ifmr32->ifm_count; thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); data = (caddr_t)&thunk.ifmr; cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); break; } #endif switch (cmd) { case SIOCGIFCONF: error = ifconf(cmd, data); goto out_noref; } ifr = (struct ifreq *)data; switch (cmd) { #ifdef VIMAGE case SIOCSIFRVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error == 0) error = if_vmove_reclaim(td, ifr->ifr_name, ifr->ifr_jid); goto out_noref; #endif case SIOCIFCREATE: case SIOCIFCREATE2: error = priv_check(td, PRIV_NET_IFCREATE); if (error == 0) error = if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr_data_get_ptr(ifr) : NULL); goto out_noref; case SIOCIFDESTROY: error = priv_check(td, PRIV_NET_IFDESTROY); if (error == 0) { sx_xlock(&ifnet_detach_sxlock); error = if_clone_destroy(ifr->ifr_name); sx_xunlock(&ifnet_detach_sxlock); } goto out_noref; case SIOCIFGCLONERS: error = if_clone_list((struct if_clonereq *)data); goto out_noref; case SIOCGIFGMEMB: error = if_getgroupmembers((struct ifgroupreq *)data); goto out_noref; #if defined(INET) || defined(INET6) case SIOCSVH: case SIOCGVH: if (carp_ioctl_p == NULL) error = EPROTONOSUPPORT; else error = (*carp_ioctl_p)(ifr, cmd, td); goto out_noref; #endif } ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) { error = ENXIO; goto out_noref; } error = ifhwioctl(cmd, ifp, data, td); if (error != ENOIOCTL) goto out_ref; oif_flags = ifp->if_flags; if (so->so_proto == NULL) { error = EOPNOTSUPP; goto out_ref; } /* * Pass the request on to the socket control method, and if the * latter returns EOPNOTSUPP, directly to the interface. * * Make an exception for the legacy SIOCSIF* requests. Drivers * trust SIOCSIFADDR et al to come from an already privileged * layer, and do not perform any credentials checks or input * validation. */ error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) error = (*ifp->if_ioctl)(ifp, cmd, data); if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 if (ifp->if_flags & IFF_UP) in6_if_up(ifp); #endif } out_ref: if_rele(ifp); out_noref: CURVNET_RESTORE(); #ifdef COMPAT_FREEBSD32 if (error != 0) return (error); switch (saved_cmd) { case SIOCGIFCONF32: ifc32->ifc_len = thunk.ifc.ifc_len; break; case SIOCGDRVSPEC32: /* * SIOCGDRVSPEC is IOWR, but nothing actually touches * the struct so just assert that ifd_len (the only * field it might make sense to update) hasn't * changed. */ KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, ("ifd_len was updated %u -> %zu", ifd32->ifd_len, thunk.ifd.ifd_len)); break; case SIOCGIFGROUP32: case SIOCGIFGMEMB32: ifgr32->ifgr_len = thunk.ifgr.ifgr_len; break; case SIOCGIFMEDIA32: case SIOCGIFXMEDIA32: ifmr32->ifm_current = thunk.ifmr.ifm_current; ifmr32->ifm_mask = thunk.ifmr.ifm_mask; ifmr32->ifm_status = thunk.ifmr.ifm_status; ifmr32->ifm_active = thunk.ifmr.ifm_active; ifmr32->ifm_count = thunk.ifmr.ifm_count; break; } #endif return (error); } /* * The code common to handling reference counted flags, * e.g., in ifpromisc() and if_allmulti(). * The "pflag" argument can specify a permanent mode flag to check, * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. * * Only to be used on stack-owned flags, not driver-owned flags. */ static int if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) { struct ifreq ifr; int error; int oldflags, oldcount; /* Sanity checks to catch programming errors */ KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, ("%s: setting driver-owned flag %d", __func__, flag)); if (onswitch) KASSERT(*refcount >= 0, ("%s: increment negative refcount %d for flag %d", __func__, *refcount, flag)); else KASSERT(*refcount > 0, ("%s: decrement non-positive refcount %d for flag %d", __func__, *refcount, flag)); /* In case this mode is permanent, just touch refcount */ if (ifp->if_flags & pflag) { *refcount += onswitch ? 1 : -1; return (0); } /* Save ifnet parameters for if_ioctl() may fail */ oldcount = *refcount; oldflags = ifp->if_flags; /* * See if we aren't the only and touching refcount is enough. * Actually toggle interface flag if we are the first or last. */ if (onswitch) { if ((*refcount)++) return (0); ifp->if_flags |= flag; } else { if (--(*refcount)) return (0); ifp->if_flags &= ~flag; } /* Call down the driver since we've changed interface flags */ if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto recover; } ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); if (error) goto recover; /* Notify userland that interface flags have changed */ rt_ifmsg(ifp); return (0); recover: /* Recover after driver error */ *refcount = oldcount; ifp->if_flags = oldflags; return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int error; int oldflags = ifp->if_flags; error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, &ifp->if_pcount, pswitch); /* If promiscuous mode status has changed, log a message */ if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && log_promisc_mode_change) if_printf(ifp, "promiscuous mode %s\n", (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ max_len = maxphys - 1; /* Prevent hostile input from being able to crash the system */ if (ifc->ifc_len <= 0) return (EINVAL); again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { struct epoch_tracker et; int addrs; /* * Zero the ifr to make sure we don't disclose the contents * of the stack. */ memset(&ifr, 0, sizeof(ifr)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { sbuf_delete(sb); IFNET_RUNLOCK(); return (ENAMETOOLONG); } addrs = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (prison_if(curthread->td_ucred, sa) != 0) continue; addrs++; if (sa->sa_len <= sizeof(*sa)) { if (sa->sa_len < sizeof(*sa)) { memset(&ifr.ifr_ifru.ifru_addr, 0, sizeof(ifr.ifr_ifru.ifru_addr)); memcpy(&ifr.ifr_ifru.ifru_addr, sa, sa->sa_len); } else ifr.ifr_ifru.ifru_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } NET_EPOCH_EXIT(et); if (addrs == 0) { sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like ifpromisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); } struct ifmultiaddr * if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) { struct ifmultiaddr *ifma; IF_ADDR_LOCK_ASSERT(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa->sa_family == AF_LINK) { if (sa_dl_equal(ifma->ifma_addr, sa)) break; } else { if (sa_equal(ifma->ifma_addr, sa)) break; } } return ifma; } /* * Allocate a new ifmultiaddr and initialize based on passed arguments. We * make copies of passed sockaddrs. The ifmultiaddr will not be added to * the ifnet multicast address list here, so the caller must do that and * other setup work (such as notifying the device driver). The reference * count is initialized to 1. */ static struct ifmultiaddr * if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, int mflags) { struct ifmultiaddr *ifma; struct sockaddr *dupsa; ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | M_ZERO); if (ifma == NULL) return (NULL); dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma, M_IFMADDR); return (NULL); } bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; if (llsa == NULL) { ifma->ifma_lladdr = NULL; return (ifma); } dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); return (NULL); } bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_lladdr = dupsa; return (ifma); } /* * if_freemulti: free ifmultiaddr structure and possibly attached related * addresses. The caller is responsible for implementing reference * counting, notifying the driver, handling routing messages, and releasing * any dependent link layer state. */ #ifdef MCAST_VERBOSE extern void kdb_backtrace(void); #endif static void if_freemulti_internal(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", ifma->ifma_refcount)); if (ifma->ifma_lladdr != NULL) free(ifma->ifma_lladdr, M_IFMADDR); #ifdef MCAST_VERBOSE kdb_backtrace(); printf("%s freeing ifma: %p\n", __func__, ifma); #endif free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); } static void if_destroymulti(epoch_context_t ctx) { struct ifmultiaddr *ifma; ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); if_freemulti_internal(ifma); } void if_freemulti(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", ifma->ifma_refcount)); NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); } /* * Register an additional multicast address with a network interface. * * - If the address is already present, bump the reference count on the * address and return. * - If the address is not link-layer, look up a link layer address. * - Allocate address structures for one or both addresses, and attach to the * multicast address list on the interface. If automatically adding a link * layer address, the protocol address will own a reference to the link * layer address, to be freed when it is freed. * - Notify the network device driver of an addition to the multicast address * list. * * 'sa' points to caller-owned memory with the desired multicast address. * * 'retifma' will be used to return a pointer to the resulting multicast * address reference, if desired. */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct ifmultiaddr *ifma, *ll_ifma; struct sockaddr *llsa; struct sockaddr_dl sdl; int error; #ifdef INET IN_MULTI_LIST_UNLOCK_ASSERT(); #endif #ifdef INET6 IN6_MULTI_LIST_UNLOCK_ASSERT(); #endif /* * If the address is already present, return a new reference to it; * otherwise, allocate storage and set up a new address. */ IF_ADDR_WLOCK(ifp); ifma = if_findmulti(ifp, sa); if (ifma != NULL) { ifma->ifma_refcount++; if (retifma != NULL) *retifma = ifma; IF_ADDR_WUNLOCK(ifp); return (0); } /* * The address isn't already present; resolve the protocol address * into a link layer address, and then look that up, bump its * refcount or allocate an ifma for that also. * Most link layer resolving functions returns address data which * fits inside default sockaddr_dl structure. However callback * can allocate another sockaddr structure, in that case we need to * free it later. */ llsa = NULL; ll_ifma = NULL; if (ifp->if_resolvemulti != NULL) { /* Provide called function with buffer size information */ sdl.sdl_len = sizeof(sdl); llsa = (struct sockaddr *)&sdl; error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) goto unlock_out; } /* * Allocate the new address. Don't hook it up yet, as we may also * need to allocate a link layer multicast address. */ ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); if (ifma == NULL) { error = ENOMEM; goto free_llsa_out; } /* * If a link layer address is found, we'll need to see if it's * already present in the address list, or allocate is as well. * When this block finishes, the link layer address will be on the * list. */ if (llsa != NULL) { ll_ifma = if_findmulti(ifp, llsa); if (ll_ifma == NULL) { ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); if (ll_ifma == NULL) { --ifma->ifma_refcount; if_freemulti(ifma); error = ENOMEM; goto free_llsa_out; } ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, ifma_link); } else ll_ifma->ifma_refcount++; ifma->ifma_llifma = ll_ifma; } /* * We now have a new multicast address, ifma, and possibly a new or * referenced link layer address. Add the primary address to the * ifnet address list. */ ifma->ifma_flags |= IFMA_F_ENQUEUED; CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma != NULL) *retifma = ifma; /* * Must generate the message while holding the lock so that 'ifma' * pointer is still valid. */ rt_newmaddrmsg(RTM_NEWMADDR, ifma); IF_ADDR_WUNLOCK(ifp); /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if (ifp->if_ioctl != NULL) { if (THREAD_CAN_SLEEP()) (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); else taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); } if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); return (0); free_llsa_out: if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); unlock_out: IF_ADDR_WUNLOCK(ifp); return (error); } static void if_siocaddmulti(void *arg, int pending) { struct ifnet *ifp; ifp = arg; #ifdef DIAGNOSTIC if (pending > 1) if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); #endif CURVNET_SET(ifp->if_vnet); (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); CURVNET_RESTORE(); } /* * Delete a multicast group membership by network-layer group address. * * Returns ENOENT if the entry could not be found. If ifp no longer * exists, results are undefined. This entry point should only be used * from subsystems which do appropriate locking to hold ifp for the * duration of the call. * Network-layer protocol domains must use if_delmulti_ifma(). */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int lastref; KASSERT(ifp, ("%s: NULL ifp", __func__)); IF_ADDR_WLOCK(ifp); lastref = 0; ifma = if_findmulti(ifp, sa); if (ifma != NULL) lastref = if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); if (ifma == NULL) return (ENOENT); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } return (0); } /* * Delete all multicast group membership for an interface. * Should be used to quickly flush all multicast filters. */ void if_delallmulti(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); } void if_delmulti_ifma(struct ifmultiaddr *ifma) { if_delmulti_ifma_flags(ifma, 0); } /* * Delete a multicast group membership by group membership pointer. * Network-layer protocol domains must use this routine. * * It is safe to call this routine if the ifp disappeared. */ void if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) { struct ifnet *ifp; int lastref; MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); #ifdef INET IN_MULTI_LIST_UNLOCK_ASSERT(); #endif ifp = ifma->ifma_ifp; #ifdef DIAGNOSTIC if (ifp == NULL) { printf("%s: ifma_ifp seems to be detached\n", __func__); } else { struct epoch_tracker et; struct ifnet *oifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; NET_EPOCH_EXIT(et); if (ifp != oifp) ifp = NULL; } #endif /* * If and only if the ifnet instance exists: Acquire the address lock. */ if (ifp != NULL) IF_ADDR_WLOCK(ifp); lastref = if_delmulti_locked(ifp, ifma, flags); if (ifp != NULL) { /* * If and only if the ifnet instance exists: * Release the address lock. * If the group was left: update the hardware hash filter. */ IF_ADDR_WUNLOCK(ifp); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } } } /* * Perform deletion of network-layer and/or link-layer multicast address. * * Return 0 if the reference count was decremented. * Return 1 if the final reference was released, indicating that the * hardware hash filter should be reprogrammed. */ static int if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) { struct ifmultiaddr *ll_ifma; if (ifp != NULL && ifma->ifma_ifp != NULL) { KASSERT(ifma->ifma_ifp == ifp, ("%s: inconsistent ifp %p", __func__, ifp)); IF_ADDR_WLOCK_ASSERT(ifp); } ifp = ifma->ifma_ifp; MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); /* * If the ifnet is detaching, null out references to ifnet, * so that upper protocol layers will notice, and not attempt * to obtain locks for an ifnet which no longer exists. The * routing socket announcement must happen before the ifnet * instance is detached from the system. */ if (detaching) { #ifdef DIAGNOSTIC printf("%s: detaching ifnet instance %p\n", __func__, ifp); #endif /* * ifp may already be nulled out if we are being reentered * to delete the ll_ifma. */ if (ifp != NULL) { rt_newmaddrmsg(RTM_DELMADDR, ifma); ifma->ifma_ifp = NULL; } } if (--ifma->ifma_refcount > 0) return 0; if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } /* * If this ifma is a network-layer ifma, a link-layer ifma may * have been associated with it. Release it first if so. */ ll_ifma = ifma->ifma_llifma; if (ll_ifma != NULL) { KASSERT(ifma->ifma_lladdr != NULL, ("%s: llifma w/o lladdr", __func__)); if (detaching) ll_ifma->ifma_ifp = NULL; /* XXX */ if (--ll_ifma->ifma_refcount == 0) { if (ifp != NULL) { if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } } if_freemulti(ll_ifma); } } #ifdef INVARIANTS if (ifp) { struct ifmultiaddr *ifmatmp; CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) MPASS(ifma != ifmatmp); } #endif if_freemulti(ifma); /* * The last reference to this instance of struct ifmultiaddr * was released; the hardware should be notified of this change. */ return 1; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. * * Set noinline to be dtrace-friendly */ __noinline int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; ifa = ifp->if_addr; if (ifa == NULL) return (EINVAL); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) return (EINVAL); if (len != sdl->sdl_alen) /* don't allow length to change */ return (EINVAL); switch (ifp->if_type) { case IFT_ETHER: case IFT_XETHER: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_IEEE8023ADLAG: bcopy(lladdr, LLADDR(sdl), len); break; default: return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { if (ifp->if_ioctl) { ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); } } EVENTHANDLER_INVOKE(iflladdr_event, ifp); return (0); } /* * Compat function for handling basic encapsulation requests. * Not converted stacks (FDDI, IB, ..) supports traditional * output model: ARP (and other similar L2 protocols) are handled * inside output routine, arpresolve/nd6_resolve() returns MAC * address instead of full prepend. * * This function creates calculated header==MAC for IPv4/IPv6 and * returns EAFNOSUPPORT (which is then handled in ARP code) for other * address families. */ static int if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) { if (req->rtype != IFENCAP_LL) return (EOPNOTSUPP); if (req->bufsize < req->lladdr_len) return (ENOMEM); switch (req->family) { case AF_INET: case AF_INET6: break; default: return (EAFNOSUPPORT); } /* Copy lladdr to storage as is */ memmove(req->buf, req->lladdr, req->lladdr_len); req->bufsize = req->lladdr_len; req->lladdr_off = 0; return (0); } /* * Tunnel interfaces can nest, also they may cause infinite recursion * calls when misconfigured. We'll prevent this by detecting loops. * High nesting level may cause stack exhaustion. We'll prevent this * by introducing upper limit. * * Return 0, if tunnel nesting count is equal or less than limit. */ int if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, int limit) { struct m_tag *mtag; int count; count = 1; mtag = NULL; while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { if (*(struct ifnet **)(mtag + 1) == ifp) { log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); return (EIO); } count++; } if (count > limit) { log(LOG_NOTICE, "%s: if_output recursively called too many times(%d)\n", if_name(ifp), count); return (EIO); } mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); if (mtag == NULL) return (ENOMEM); *(struct ifnet **)(mtag + 1) = ifp; m_tag_prepend(m, mtag); return (0); } /* * Get the link layer address that was read from the hardware at attach. * * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type * their component interfaces as IFT_IEEE8023ADLAG. */ int if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) { if (ifp->if_hw_addr == NULL) return (ENODEV); switch (ifp->if_type) { case IFT_ETHER: case IFT_IEEE8023ADLAG: bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); return (0); default: return (ENODEV); } } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } static int if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) { char if_fmt[256]; snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); vlog(pri, if_fmt, ap); return (0); } int if_printf(struct ifnet *ifp, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if_vlog(ifp, LOG_INFO, fmt, ap); va_end(ap); return (0); } int if_log(struct ifnet *ifp, int pri, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if_vlog(ifp, pri, fmt, ap); va_end(ap); return (0); } void if_start(struct ifnet *ifp) { (*(ifp)->if_start)(ifp); } /* * Backwards compatibility interface for drivers * that have not implemented it */ static int if_transmit(struct ifnet *ifp, struct mbuf *m) { int error; IFQ_HANDOFF(ifp, m, error); return (error); } static void if_input_default(struct ifnet *ifp __unused, struct mbuf *m) { m_freem(m); } int if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) { int active = 0; IF_LOCK(ifq); if (_IF_QFULL(ifq)) { IF_UNLOCK(ifq); if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); m_freem(m); return (0); } if (ifp != NULL) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); if (m->m_flags & (M_BCAST|M_MCAST)) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); active = ifp->if_drv_flags & IFF_DRV_OACTIVE; } _IF_ENQUEUE(ifq, m); IF_UNLOCK(ifq); if (ifp != NULL && !active) (*(ifp)->if_start)(ifp); return (1); } void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f) { KASSERT(if_com_alloc[type] == NULL, ("if_register_com_alloc: %d already registered", type)); KASSERT(if_com_free[type] == NULL, ("if_register_com_alloc: %d free already registered", type)); if_com_alloc[type] = a; if_com_free[type] = f; } void if_deregister_com_alloc(u_char type) { KASSERT(if_com_alloc[type] != NULL, ("if_deregister_com_alloc: %d not registered", type)); KASSERT(if_com_free[type] != NULL, ("if_deregister_com_alloc: %d free not registered", type)); /* * Ensure all pending EPOCH(9) callbacks have been executed. This * fixes issues about late invocation of if_destroy(), which leads * to memory leak from if_com_alloc[type] allocated if_l2com. */ NET_EPOCH_DRAIN_CALLBACKS(); if_com_alloc[type] = NULL; if_com_free[type] = NULL; } /* API for driver access to network stack owned ifnet.*/ uint64_t if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) { uint64_t oldbrate; oldbrate = ifp->if_baudrate; ifp->if_baudrate = baudrate; return (oldbrate); } uint64_t if_getbaudrate(if_t ifp) { return (((struct ifnet *)ifp)->if_baudrate); } int if_setcapabilities(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capabilities = capabilities; return (0); } int if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) { ((struct ifnet *)ifp)->if_capabilities |= setbit; ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; return (0); } int if_getcapabilities(if_t ifp) { return ((struct ifnet *)ifp)->if_capabilities; } int if_setcapenable(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capenable = capabilities; return (0); } int if_setcapenablebit(if_t ifp, int setcap, int clearcap) { if(setcap) ((struct ifnet *)ifp)->if_capenable |= setcap; if(clearcap) ((struct ifnet *)ifp)->if_capenable &= ~clearcap; return (0); } const char * if_getdname(if_t ifp) { return ((struct ifnet *)ifp)->if_dname; } int if_togglecapenable(if_t ifp, int togglecap) { ((struct ifnet *)ifp)->if_capenable ^= togglecap; return (0); } int if_getcapenable(if_t ifp) { return ((struct ifnet *)ifp)->if_capenable; } /* * This is largely undesirable because it ties ifnet to a device, but does * provide flexiblity for an embedded product vendor. Should be used with * the understanding that it violates the interface boundaries, and should be * a last resort only. */ int if_setdev(if_t ifp, void *dev) { return (0); } int if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) { ((struct ifnet *)ifp)->if_drv_flags |= set_flags; ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; return (0); } int if_getdrvflags(if_t ifp) { return ((struct ifnet *)ifp)->if_drv_flags; } int if_setdrvflags(if_t ifp, int flags) { ((struct ifnet *)ifp)->if_drv_flags = flags; return (0); } int if_setflags(if_t ifp, int flags) { ifp->if_flags = flags; return (0); } int if_setflagbits(if_t ifp, int set, int clear) { ((struct ifnet *)ifp)->if_flags |= set; ((struct ifnet *)ifp)->if_flags &= ~clear; return (0); } int if_getflags(if_t ifp) { return ((struct ifnet *)ifp)->if_flags; } int if_clearhwassist(if_t ifp) { ((struct ifnet *)ifp)->if_hwassist = 0; return (0); } int if_sethwassistbits(if_t ifp, int toset, int toclear) { ((struct ifnet *)ifp)->if_hwassist |= toset; ((struct ifnet *)ifp)->if_hwassist &= ~toclear; return (0); } int if_sethwassist(if_t ifp, int hwassist_bit) { ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; return (0); } int if_gethwassist(if_t ifp) { return ((struct ifnet *)ifp)->if_hwassist; } int if_setmtu(if_t ifp, int mtu) { ((struct ifnet *)ifp)->if_mtu = mtu; return (0); } int if_getmtu(if_t ifp) { return ((struct ifnet *)ifp)->if_mtu; } int if_getmtu_family(if_t ifp, int family) { struct domain *dp; for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_family == family && dp->dom_ifmtu != NULL) return (dp->dom_ifmtu((struct ifnet *)ifp)); } return (((struct ifnet *)ifp)->if_mtu); } /* * Methods for drivers to access interface unicast and multicast * link level addresses. Driver shall not know 'struct ifaddr' neither * 'struct ifmultiaddr'. */ u_int if_lladdr_count(if_t ifp) { struct epoch_tracker et; struct ifaddr *ifa; u_int count; count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_LINK) count++; NET_EPOCH_EXIT(et); return (count); } u_int if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) { struct epoch_tracker et; struct ifaddr *ifa; u_int count; MPASS(cb); count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, count); } NET_EPOCH_EXIT(et); return (count); } u_int if_llmaddr_count(if_t ifp) { struct epoch_tracker et; struct ifmultiaddr *ifma; int count; count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (ifma->ifma_addr->sa_family == AF_LINK) count++; NET_EPOCH_EXIT(et); return (count); } u_int if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) { struct epoch_tracker et; struct ifmultiaddr *ifma; u_int count; MPASS(cb); count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, count); } NET_EPOCH_EXIT(et); return (count); } int if_setsoftc(if_t ifp, void *softc) { ((struct ifnet *)ifp)->if_softc = softc; return (0); } void * if_getsoftc(if_t ifp) { return ((struct ifnet *)ifp)->if_softc; } void if_setrcvif(struct mbuf *m, if_t ifp) { MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m->m_pkthdr.rcvif = (struct ifnet *)ifp; } void if_setvtag(struct mbuf *m, uint16_t tag) { m->m_pkthdr.ether_vtag = tag; } uint16_t if_getvtag(struct mbuf *m) { return (m->m_pkthdr.ether_vtag); } int if_sendq_empty(if_t ifp) { return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); } struct ifaddr * if_getifaddr(if_t ifp) { return ((struct ifnet *)ifp)->if_addr; } int if_getamcount(if_t ifp) { return ((struct ifnet *)ifp)->if_amcount; } int if_setsendqready(if_t ifp) { IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); return (0); } int if_setsendqlen(if_t ifp, int tx_desc_count) { IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; return (0); } int if_vlantrunkinuse(if_t ifp) { return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; } int if_input(if_t ifp, struct mbuf* sendmp) { (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); return (0); } struct mbuf * if_dequeue(if_t ifp) { struct mbuf *m; IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); return (m); } int if_sendq_prepend(if_t ifp, struct mbuf *m) { IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); return (0); } int if_setifheaderlen(if_t ifp, int len) { ((struct ifnet *)ifp)->if_hdrlen = len; return (0); } caddr_t if_getlladdr(if_t ifp) { return (IF_LLADDR((struct ifnet *)ifp)); } void * if_gethandle(u_char type) { return (if_alloc(type)); } void if_bpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; BPF_MTAP(ifp, m); } void if_etherbpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; ETHER_BPF_MTAP(ifp, m); } void if_vlancap(if_t ifh) { struct ifnet *ifp = (struct ifnet *)ifh; VLAN_CAPABILITIES(ifp); } int if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) { ((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax; return (0); } int if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) { ((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; return (0); } int if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) { ((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; return (0); } u_int if_gethwtsomax(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomax); } u_int if_gethwtsomaxsegcount(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount); } u_int if_gethwtsomaxsegsize(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize); } void if_setinitfn(if_t ifp, void (*init_fn)(void *)) { ((struct ifnet *)ifp)->if_init = init_fn; } void if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) { ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; } void if_setstartfn(if_t ifp, void (*start_fn)(if_t)) { ((struct ifnet *)ifp)->if_start = (void *)start_fn; } void if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) { ((struct ifnet *)ifp)->if_transmit = start_fn; } void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) { ((struct ifnet *)ifp)->if_qflush = flush_fn; } void if_setgetcounterfn(if_t ifp, if_get_counter_t fn) { ifp->if_get_counter = fn; } #ifdef DDB static void if_show_ifnet(struct ifnet *ifp) { if (ifp == NULL) return; db_printf("%s:\n", ifp->if_xname); #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); IF_DB_PRINTF("%s", if_dname); IF_DB_PRINTF("%d", if_dunit); IF_DB_PRINTF("%s", if_description); IF_DB_PRINTF("%u", if_index); IF_DB_PRINTF("%d", if_idxgen); IF_DB_PRINTF("%u", if_refcount); IF_DB_PRINTF("%p", if_softc); IF_DB_PRINTF("%p", if_l2com); IF_DB_PRINTF("%p", if_llsoftc); IF_DB_PRINTF("%d", if_amcount); IF_DB_PRINTF("%p", if_addr); IF_DB_PRINTF("%p", if_broadcastaddr); IF_DB_PRINTF("%p", if_afdata); IF_DB_PRINTF("%d", if_afdata_initialized); IF_DB_PRINTF("%u", if_fib); IF_DB_PRINTF("%p", if_vnet); IF_DB_PRINTF("%p", if_home_vnet); IF_DB_PRINTF("%p", if_vlantrunk); IF_DB_PRINTF("%p", if_bpf); IF_DB_PRINTF("%u", if_pcount); IF_DB_PRINTF("%p", if_bridge); IF_DB_PRINTF("%p", if_lagg); IF_DB_PRINTF("%p", if_pf_kif); IF_DB_PRINTF("%p", if_carp); IF_DB_PRINTF("%p", if_label); IF_DB_PRINTF("%p", if_netmap); IF_DB_PRINTF("0x%08x", if_flags); IF_DB_PRINTF("0x%08x", if_drv_flags); IF_DB_PRINTF("0x%08x", if_capabilities); IF_DB_PRINTF("0x%08x", if_capenable); IF_DB_PRINTF("%p", if_snd.ifq_head); IF_DB_PRINTF("%p", if_snd.ifq_tail); IF_DB_PRINTF("%d", if_snd.ifq_len); IF_DB_PRINTF("%d", if_snd.ifq_maxlen); IF_DB_PRINTF("%p", if_snd.ifq_drv_head); IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); IF_DB_PRINTF("%d", if_snd.ifq_drv_len); IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); IF_DB_PRINTF("%d", if_snd.altq_type); IF_DB_PRINTF("%x", if_snd.altq_flags); #undef IF_DB_PRINTF } DB_SHOW_COMMAND(ifnet, db_show_ifnet) { if (!have_addr) { db_printf("usage: show ifnet \n"); return; } if_show_ifnet((struct ifnet *)addr); } DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) { struct ifnet *ifp; u_short idx; for (idx = 1; idx <= if_index; idx++) { ifp = ifindex_table[idx].ife_ifnet; if (ifp == NULL) continue; db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); if (db_pager_quit) break; } } #endif /* DDB */ diff --git a/sys/net/route.h b/sys/net/route.h index 931b284b664d..47e4773b4700 100644 --- a/sys/net/route.h +++ b/sys/net/route.h @@ -1,455 +1,454 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)route.h 8.4 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NET_ROUTE_H_ #define _NET_ROUTE_H_ #include /* * Kernel resident routing tables. * * The routing tables are initialized when interface addresses * are set by making entries for all directly connected interfaces. */ /* * Struct route consiste of a destination address, * a route entry pointer, link-layer prepend data pointer along * with its length. */ struct route { struct nhop_object *ro_nh; struct llentry *ro_lle; /* * ro_prepend and ro_plen are only used for bpf to pass in a * preformed header. They are not cacheable. */ char *ro_prepend; uint16_t ro_plen; uint16_t ro_flags; uint16_t ro_mtu; /* saved ro_rt mtu */ uint16_t spare; struct sockaddr ro_dst; }; #define RT_L2_ME_BIT 2 /* dst L2 addr is our address */ #define RT_MAY_LOOP_BIT 3 /* dst may require loop copy */ #define RT_HAS_HEADER_BIT 4 /* mbuf already have its header prepended */ #define RT_L2_ME (1 << RT_L2_ME_BIT) /* 0x0004 */ #define RT_MAY_LOOP (1 << RT_MAY_LOOP_BIT) /* 0x0008 */ #define RT_HAS_HEADER (1 << RT_HAS_HEADER_BIT) /* 0x0010 */ #define RT_REJECT 0x0020 /* Destination is reject */ #define RT_BLACKHOLE 0x0040 /* Destination is blackhole */ #define RT_HAS_GW 0x0080 /* Destination has GW */ #define RT_LLE_CACHE 0x0100 /* Cache link layer */ struct rt_metrics { u_long rmx_locks; /* Kernel must leave these values alone */ u_long rmx_mtu; /* MTU for this path */ u_long rmx_hopcount; /* max hops expected */ u_long rmx_expire; /* lifetime for route, e.g. redirect */ u_long rmx_recvpipe; /* inbound delay-bandwidth product */ u_long rmx_sendpipe; /* outbound delay-bandwidth product */ u_long rmx_ssthresh; /* outbound gateway buffer limit */ u_long rmx_rtt; /* estimated round trip time */ u_long rmx_rttvar; /* estimated rtt variance */ u_long rmx_pksent; /* packets sent using this route */ u_long rmx_weight; /* route weight */ u_long rmx_nhidx; /* route nexhop index */ u_long rmx_filler[2]; /* will be used for T/TCP later */ }; /* * rmx_rtt and rmx_rttvar are stored as microseconds; * RTTTOPRHZ(rtt) converts to a value suitable for use * by a protocol slowtimo counter. */ #define RTM_RTTUNIT 1000000 /* units for rtt, rttvar, as units per sec */ #define RTTTOPRHZ(r) ((r) / (RTM_RTTUNIT / PR_SLOWHZ)) /* lle state is exported in rmx_state rt_metrics field */ #define rmx_state rmx_weight /* default route weight */ #define RT_DEFAULT_WEIGHT 1 #define RT_MAX_WEIGHT 16777215 /* 3 bytes */ /* * Keep a generation count of routing table, incremented on route addition, * so we can invalidate caches. This is accessed without a lock, as precision * is not required. */ typedef volatile u_int rt_gen_t; /* tree generation (for adds) */ #define RT_GEN(fibnum, af) rt_tables_get_gen(fibnum, af) #define RT_DEFAULT_FIB 0 /* Explicitly mark fib=0 restricted cases */ #define RT_ALL_FIBS -1 /* Announce event for every fib */ #ifdef _KERNEL VNET_DECLARE(uint32_t, _rt_numfibs); /* number of existing route tables */ #define V_rt_numfibs VNET(_rt_numfibs) /* temporary compat arg */ #define rt_numfibs V_rt_numfibs VNET_DECLARE(u_int, rt_add_addr_allfibs); /* Announce interfaces to all fibs */ #define V_rt_add_addr_allfibs VNET(rt_add_addr_allfibs) /* Calculate flowid for locally-originated packets */ #define V_fib_hash_outbound VNET(fib_hash_outbound) VNET_DECLARE(u_int, fib_hash_outbound); /* Outbound flowid generation rules */ #ifdef RSS #define fib4_calc_packet_hash xps_proto_software_hash_v4 #define fib6_calc_packet_hash xps_proto_software_hash_v6 #define CALC_FLOWID_OUTBOUND_SENDTO true #ifdef ROUTE_MPATH #define CALC_FLOWID_OUTBOUND V_fib_hash_outbound #else #define CALC_FLOWID_OUTBOUND false #endif #else /* !RSS */ #define fib4_calc_packet_hash fib4_calc_software_hash #define fib6_calc_packet_hash fib6_calc_software_hash #ifdef ROUTE_MPATH #define CALC_FLOWID_OUTBOUND_SENDTO V_fib_hash_outbound #define CALC_FLOWID_OUTBOUND V_fib_hash_outbound #else #define CALC_FLOWID_OUTBOUND_SENDTO false #define CALC_FLOWID_OUTBOUND false #endif #endif /* RSS */ #endif /* _KERNEL */ /* * We distinguish between routes to hosts and routes to networks, * preferring the former if available. For each route we infer * the interface to use from the gateway address supplied when * the route was entered. Routes that forward packets through * gateways are marked so that the output routines know to address the * gateway rather than the ultimate destination. */ #define RTF_UP 0x1 /* route usable */ #define RTF_GATEWAY 0x2 /* destination is a gateway */ #define RTF_HOST 0x4 /* host entry (net otherwise) */ #define RTF_REJECT 0x8 /* host or net unreachable */ #define RTF_DYNAMIC 0x10 /* created dynamically (by redirect) */ #define RTF_MODIFIED 0x20 /* modified dynamically (by redirect) */ #define RTF_DONE 0x40 /* message confirmed */ /* 0x80 unused, was RTF_DELCLONE */ /* 0x100 unused, was RTF_CLONING */ #define RTF_XRESOLVE 0x200 /* external daemon resolves name */ #define RTF_LLINFO 0x400 /* DEPRECATED - exists ONLY for backward compatibility */ #define RTF_LLDATA 0x400 /* used by apps to add/del L2 entries */ #define RTF_STATIC 0x800 /* manually added */ #define RTF_BLACKHOLE 0x1000 /* just discard pkts (during updates) */ #define RTF_PROTO2 0x4000 /* protocol specific routing flag */ #define RTF_PROTO1 0x8000 /* protocol specific routing flag */ /* 0x10000 unused, was RTF_PRCLONING */ /* 0x20000 unused, was RTF_WASCLONED */ #define RTF_PROTO3 0x40000 /* protocol specific routing flag */ #define RTF_FIXEDMTU 0x80000 /* MTU was explicitly specified */ #define RTF_PINNED 0x100000 /* route is immutable */ #define RTF_LOCAL 0x200000 /* route represents a local address */ #define RTF_BROADCAST 0x400000 /* route represents a bcast address */ #define RTF_MULTICAST 0x800000 /* route represents a mcast address */ /* 0x8000000 and up unassigned */ #define RTF_STICKY 0x10000000 /* always route dst->src */ /* 0x40000000 unused, was RTF_RNH_LOCKED */ #define RTF_GWFLAG_COMPAT 0x80000000 /* a compatibility bit for interacting with existing routing apps */ /* Mask of RTF flags that are allowed to be modified by RTM_CHANGE. */ #define RTF_FMASK \ (RTF_PROTO1 | RTF_PROTO2 | RTF_PROTO3 | RTF_BLACKHOLE | \ RTF_REJECT | RTF_STATIC | RTF_STICKY) /* * fib_ nexthop API flags. */ /* Consumer-visible nexthop info flags */ #define NHF_MULTIPATH 0x0008 /* Nexhop is a nexthop group */ #define NHF_REJECT 0x0010 /* RTF_REJECT */ #define NHF_BLACKHOLE 0x0020 /* RTF_BLACKHOLE */ #define NHF_REDIRECT 0x0040 /* RTF_DYNAMIC|RTF_MODIFIED */ #define NHF_DEFAULT 0x0080 /* Default route */ #define NHF_BROADCAST 0x0100 /* RTF_BROADCAST */ #define NHF_GATEWAY 0x0200 /* RTF_GATEWAY */ #define NHF_HOST 0x0400 /* RTF_HOST */ /* Nexthop request flags */ #define NHR_NONE 0x00 /* empty flags field */ #define NHR_REF 0x01 /* reference nexhop */ #define NHR_NODEFAULT 0x02 /* uRPF: do not consider default route */ /* Control plane route request flags */ #define NHR_COPY 0x100 /* Copy rte data */ #define NHR_UNLOCKED 0x200 /* Do not lock table */ /* * Routing statistics. */ struct rtstat { uint64_t rts_badredirect; /* bogus redirect calls */ uint64_t rts_dynamic; /* routes created by redirects */ uint64_t rts_newgateway; /* routes modified by redirects */ uint64_t rts_unreach; /* lookups which failed */ uint64_t rts_wildcard; /* lookups satisfied by a wildcard */ uint64_t rts_nh_idx_alloc_failure; /* nexthop index alloc failure*/ uint64_t rts_nh_alloc_failure; /* nexthop allocation failure*/ uint64_t rts_add_failure; /* # of route addition failures */ uint64_t rts_add_retry; /* # of route addition retries */ uint64_t rts_del_failure; /* # of route deletion failure */ uint64_t rts_del_retry; /* # of route deletion retries */ }; /* * Structures for routing messages. */ struct rt_msghdr { u_short rtm_msglen; /* to skip over non-understood messages */ u_char rtm_version; /* future binary compatibility */ u_char rtm_type; /* message type */ u_short rtm_index; /* index for associated ifp */ u_short _rtm_spare1; int rtm_flags; /* flags, incl. kern & message, e.g. DONE */ int rtm_addrs; /* bitmask identifying sockaddrs in msg */ pid_t rtm_pid; /* identify sender */ int rtm_seq; /* for sender to identify action */ int rtm_errno; /* why failed */ int rtm_fmask; /* bitmask used in RTM_CHANGE message */ u_long rtm_inits; /* which metrics we are initializing */ struct rt_metrics rtm_rmx; /* metrics themselves */ }; #define RTM_VERSION 5 /* Up the ante and ignore older versions */ /* * Message types. * * The format for each message is annotated below using the following * identifiers: * * (1) struct rt_msghdr * (2) struct ifa_msghdr * (3) struct if_msghdr * (4) struct ifma_msghdr * (5) struct if_announcemsghdr * */ #define RTM_ADD 0x1 /* (1) Add Route */ #define RTM_DELETE 0x2 /* (1) Delete Route */ #define RTM_CHANGE 0x3 /* (1) Change Metrics or flags */ #define RTM_GET 0x4 /* (1) Report Metrics */ #define RTM_LOSING 0x5 /* (1) Kernel Suspects Partitioning */ #define RTM_REDIRECT 0x6 /* (1) Told to use different route */ #define RTM_MISS 0x7 /* (1) Lookup failed on this address */ #define RTM_LOCK 0x8 /* (1) fix specified metrics */ /* 0x9 */ /* 0xa */ #define RTM_RESOLVE 0xb /* (1) req to resolve dst to LL addr */ #define RTM_NEWADDR 0xc /* (2) address being added to iface */ #define RTM_DELADDR 0xd /* (2) address being removed from iface */ #define RTM_IFINFO 0xe /* (3) iface going up/down etc. */ #define RTM_NEWMADDR 0xf /* (4) mcast group membership being added to if */ #define RTM_DELMADDR 0x10 /* (4) mcast group membership being deleted */ #define RTM_IFANNOUNCE 0x11 /* (5) iface arrival/departure */ #define RTM_IEEE80211 0x12 /* (5) IEEE80211 wireless event */ /* * Bitmask values for rtm_inits and rmx_locks. */ #define RTV_MTU 0x1 /* init or lock _mtu */ #define RTV_HOPCOUNT 0x2 /* init or lock _hopcount */ #define RTV_EXPIRE 0x4 /* init or lock _expire */ #define RTV_RPIPE 0x8 /* init or lock _recvpipe */ #define RTV_SPIPE 0x10 /* init or lock _sendpipe */ #define RTV_SSTHRESH 0x20 /* init or lock _ssthresh */ #define RTV_RTT 0x40 /* init or lock _rtt */ #define RTV_RTTVAR 0x80 /* init or lock _rttvar */ #define RTV_WEIGHT 0x100 /* init or lock _weight */ /* * Bitmask values for rtm_addrs. */ #define RTA_DST 0x1 /* destination sockaddr present */ #define RTA_GATEWAY 0x2 /* gateway sockaddr present */ #define RTA_NETMASK 0x4 /* netmask sockaddr present */ #define RTA_GENMASK 0x8 /* cloning mask sockaddr present */ #define RTA_IFP 0x10 /* interface name sockaddr present */ #define RTA_IFA 0x20 /* interface addr sockaddr present */ #define RTA_AUTHOR 0x40 /* sockaddr for author of redirect */ #define RTA_BRD 0x80 /* for NEWADDR, broadcast or p-p dest addr */ /* * Index offsets for sockaddr array for alternate internal encoding. */ #define RTAX_DST 0 /* destination sockaddr present */ #define RTAX_GATEWAY 1 /* gateway sockaddr present */ #define RTAX_NETMASK 2 /* netmask sockaddr present */ #define RTAX_GENMASK 3 /* cloning mask sockaddr present */ #define RTAX_IFP 4 /* interface name sockaddr present */ #define RTAX_IFA 5 /* interface addr sockaddr present */ #define RTAX_AUTHOR 6 /* sockaddr for author of redirect */ #define RTAX_BRD 7 /* for NEWADDR, broadcast or p-p dest addr */ #define RTAX_MAX 8 /* size of array to allocate */ struct rtentry; struct nhop_object; typedef int rib_filter_f_t(const struct rtentry *, const struct nhop_object *, void *); struct rt_addrinfo { int rti_addrs; /* Route RTF_ flags */ int rti_flags; /* Route RTF_ flags */ struct sockaddr *rti_info[RTAX_MAX]; /* Sockaddr data */ struct ifaddr *rti_ifa; /* value of rt_ifa addr */ struct ifnet *rti_ifp; /* route interface */ rib_filter_f_t *rti_filter; /* filter function */ void *rti_filterdata; /* filter parameters */ u_long rti_mflags; /* metrics RTV_ flags */ u_long rti_spare; /* Will be used for fib */ struct rt_metrics *rti_rmx; /* Pointer to route metrics */ }; /* * This macro returns the size of a struct sockaddr when passed * through a routing socket. Basically we round up sa_len to * a multiple of sizeof(long), with a minimum of sizeof(long). * The case sa_len == 0 should only apply to empty structures. */ #define SA_SIZE(sa) \ ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ sizeof(long) : \ 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(long) - 1) ) ) #define sa_equal(a, b) ( \ (((const struct sockaddr *)(a))->sa_len == ((const struct sockaddr *)(b))->sa_len) && \ (bcmp((a), (b), ((const struct sockaddr *)(b))->sa_len) == 0)) #ifdef _KERNEL #define RT_LINK_IS_UP(ifp) (!((ifp)->if_capabilities & IFCAP_LINKSTATE) \ || (ifp)->if_link_state == LINK_STATE_UP) #define RO_NHFREE(_ro) do { \ if ((_ro)->ro_nh) { \ NH_FREE((_ro)->ro_nh); \ (_ro)->ro_nh = NULL; \ } \ } while (0) #define RO_INVALIDATE_CACHE(ro) do { \ if ((ro)->ro_lle != NULL) { \ LLE_FREE((ro)->ro_lle); \ (ro)->ro_lle = NULL; \ } \ if ((ro)->ro_nh != NULL) { \ NH_FREE((ro)->ro_nh); \ (ro)->ro_nh = NULL; \ } \ } while (0) #define RO_GET_FAMILY(ro, dst) ((ro) != NULL && \ (ro)->ro_flags & RT_HAS_GW \ ? (ro)->ro_dst.sa_family : (dst)->sa_family) /* * Validate a cached route based on a supplied cookie. If there is an * out-of-date cache, simply free it. Update the generation number * for the new allocation */ #define NH_VALIDATE(ro, cookiep, fibnum) do { \ rt_gen_t cookie = RT_GEN(fibnum, (ro)->ro_dst.sa_family); \ if (*(cookiep) != cookie) { \ RO_INVALIDATE_CACHE(ro); \ *(cookiep) = cookie; \ } \ } while (0) struct ifmultiaddr; struct rib_head; void rt_ieee80211msg(struct ifnet *, int, void *, size_t); -void rt_ifannouncemsg(struct ifnet *, int); void rt_ifmsg(struct ifnet *); void rt_missmsg(int, struct rt_addrinfo *, int, int); void rt_missmsg_fib(int, struct rt_addrinfo *, int, int, int); int rt_addrmsg(int, struct ifaddr *, int); int rt_routemsg(int, struct rtentry *, struct nhop_object *, int); int rt_routemsg_info(int, struct rt_addrinfo *, int); void rt_newmaddrmsg(int, struct ifmultiaddr *); void rt_maskedcopy(const struct sockaddr *, struct sockaddr *, const struct sockaddr *); struct rib_head *rt_table_init(int, int, u_int); void rt_table_destroy(struct rib_head *); u_int rt_tables_get_gen(uint32_t table, sa_family_t family); struct sockaddr *rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, struct sockaddr_storage *dmask); void rt_updatemtu(struct ifnet *); void rt_flushifroutes(struct ifnet *ifp); /* XXX MRT NEW VERSIONS THAT USE FIBs * For now the protocol indepedent versions are the same as the AF_INET ones * but this will change.. */ int rtioctl_fib(u_long, caddr_t, u_int); int rib_lookup_info(uint32_t, const struct sockaddr *, uint32_t, uint32_t, struct rt_addrinfo *); void rib_free_info(struct rt_addrinfo *info); /* New API */ void rib_flush_routes_family(int family); struct nhop_object *rib_lookup(uint32_t fibnum, const struct sockaddr *dst, uint32_t flags, uint32_t flowid); const char *rib_print_family(int family); #endif #endif diff --git a/sys/net/rtsock.c b/sys/net/rtsock.c index c9b521eed9ca..0c6c5f067dd3 100644 --- a/sys/net/rtsock.c +++ b/sys/net/rtsock.c @@ -1,2671 +1,2686 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.7 (Berkeley) 10/12/95 * $FreeBSD$ */ #include "opt_ddb.h" #include "opt_route.h" #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #endif #include #define DEBUG_MOD_NAME rtsock #define DEBUG_MAX_LEVEL LOG_DEBUG #include _DECLARE_DEBUG(LOG_INFO); #ifdef COMPAT_FREEBSD32 #include #include struct if_msghdr32 { uint16_t ifm_msglen; uint8_t ifm_version; uint8_t ifm_type; int32_t ifm_addrs; int32_t ifm_flags; uint16_t ifm_index; uint16_t _ifm_spare1; struct if_data ifm_data; }; struct if_msghdrl32 { uint16_t ifm_msglen; uint8_t ifm_version; uint8_t ifm_type; int32_t ifm_addrs; int32_t ifm_flags; uint16_t ifm_index; uint16_t _ifm_spare1; uint16_t ifm_len; uint16_t ifm_data_off; uint32_t _ifm_spare2; struct if_data ifm_data; }; struct ifa_msghdrl32 { uint16_t ifam_msglen; uint8_t ifam_version; uint8_t ifam_type; int32_t ifam_addrs; int32_t ifam_flags; uint16_t ifam_index; uint16_t _ifam_spare1; uint16_t ifam_len; uint16_t ifam_data_off; int32_t ifam_metric; struct if_data ifam_data; }; #define SA_SIZE32(sa) \ ( (((struct sockaddr *)(sa))->sa_len == 0) ? \ sizeof(int) : \ 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(int) - 1) ) ) #endif /* COMPAT_FREEBSD32 */ struct linear_buffer { char *base; /* Base allocated memory pointer */ uint32_t offset; /* Currently used offset */ uint32_t size; /* Total buffer size */ }; #define SCRATCH_BUFFER_SIZE 1024 #define RTS_PID_LOG(_l, _fmt, ...) RT_LOG_##_l(_l, "PID %d: " _fmt, curproc ? curproc->p_pid : 0, ## __VA_ARGS__) MALLOC_DEFINE(M_RTABLE, "routetbl", "routing tables"); /* NB: these are not modified */ static struct sockaddr route_src = { 2, PF_ROUTE, }; static struct sockaddr sa_zero = { sizeof(sa_zero), AF_INET, }; /* These are external hooks for CARP. */ int (*carp_get_vhid_p)(struct ifaddr *); /* * Used by rtsock callback code to decide whether to filter the update * notification to a socket bound to a particular FIB. */ #define RTS_FILTER_FIB M_PROTO8 /* * Used to store address family of the notification. */ #define m_rtsock_family m_pkthdr.PH_loc.eight[0] struct rcb { LIST_ENTRY(rcb) list; struct socket *rcb_socket; sa_family_t rcb_family; }; typedef struct { LIST_HEAD(, rcb) cblist; int ip_count; /* attached w/ AF_INET */ int ip6_count; /* attached w/ AF_INET6 */ int any_count; /* total attached */ } route_cb_t; VNET_DEFINE_STATIC(route_cb_t, route_cb); #define V_route_cb VNET(route_cb) struct mtx rtsock_mtx; MTX_SYSINIT(rtsock, &rtsock_mtx, "rtsock route_cb lock", MTX_DEF); #define RTSOCK_LOCK() mtx_lock(&rtsock_mtx) #define RTSOCK_UNLOCK() mtx_unlock(&rtsock_mtx) #define RTSOCK_LOCK_ASSERT() mtx_assert(&rtsock_mtx, MA_OWNED) SYSCTL_NODE(_net, OID_AUTO, route, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); struct walkarg { int family; int w_tmemsize; int w_op, w_arg; caddr_t w_tmem; struct sysctl_req *w_req; struct sockaddr *dst; struct sockaddr *mask; }; static void rts_input(struct mbuf *m); static struct mbuf *rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo); static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen); static int rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo); static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb); static int sysctl_dumpentry(struct rtentry *rt, void *vw); static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, struct walkarg *w); static int sysctl_iflist(int af, struct walkarg *w); static int sysctl_ifmalist(int af, struct walkarg *w); static void rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, struct rt_metrics *out); static void rt_dispatch(struct mbuf *, sa_family_t); +static void rt_ifannouncemsg(struct ifnet *ifp, int what); static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, struct rt_msghdr *rtm, struct rib_cmd_info *rc); static int update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh); static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, sa_family_t saf, u_int fibnum, int rtm_errno); static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, const struct sockaddr *rt_dst); static struct netisr_handler rtsock_nh = { .nh_name = "rtsock", .nh_handler = rts_input, .nh_proto = NETISR_ROUTE, .nh_policy = NETISR_POLICY_SOURCE, }; static int sysctl_route_netisr_maxqlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&rtsock_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&rtsock_nh, qlimit)); } SYSCTL_PROC(_net_route, OID_AUTO, netisr_maxqlen, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_route_netisr_maxqlen, "I", "maximum routing socket dispatch queue length"); static void vnet_rts_init(void) { int tmp; if (IS_DEFAULT_VNET(curvnet)) { if (TUNABLE_INT_FETCH("net.route.netisr_maxqlen", &tmp)) rtsock_nh.nh_qlimit = tmp; netisr_register(&rtsock_nh); } #ifdef VIMAGE else netisr_register_vnet(&rtsock_nh); #endif } VNET_SYSINIT(vnet_rtsock, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_rts_init, 0); #ifdef VIMAGE static void vnet_rts_uninit(void) { netisr_unregister_vnet(&rtsock_nh); } VNET_SYSUNINIT(vnet_rts_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_rts_uninit, 0); #endif +static void +rts_handle_ifnet_arrival(void *arg __unused, struct ifnet *ifp) +{ + rt_ifannouncemsg(ifp, IFAN_ARRIVAL); +} +EVENTHANDLER_DEFINE(ifnet_arrival_event, rts_handle_ifnet_arrival, NULL, 0); + +static void +rts_handle_ifnet_departure(void *arg __unused, struct ifnet *ifp) +{ + rt_ifannouncemsg(ifp, IFAN_DEPARTURE); +} +EVENTHANDLER_DEFINE(ifnet_departure_event, rts_handle_ifnet_departure, NULL, 0); + static void rts_append_data(struct socket *so, struct mbuf *m) { if (sbappendaddr(&so->so_rcv, &route_src, m, NULL) == 0) { soroverflow(so); m_freem(m); } else sorwakeup(so); } static void rts_input(struct mbuf *m) { struct rcb *rcb; struct socket *last; last = NULL; RTSOCK_LOCK(); LIST_FOREACH(rcb, &V_route_cb.cblist, list) { if (rcb->rcb_family != AF_UNSPEC && rcb->rcb_family != m->m_rtsock_family) continue; if ((m->m_flags & RTS_FILTER_FIB) && M_GETFIB(m) != rcb->rcb_socket->so_fibnum) continue; if (last != NULL) { struct mbuf *n; n = m_copym(m, 0, M_COPYALL, M_NOWAIT); if (n != NULL) rts_append_data(last, n); } last = rcb->rcb_socket; } if (last != NULL) rts_append_data(last, m); else m_freem(m); RTSOCK_UNLOCK(); } static void rts_close(struct socket *so) { soisdisconnected(so); } static SYSCTL_NODE(_net, OID_AUTO, rtsock, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Routing socket infrastructure"); static u_long rts_sendspace = 8192; SYSCTL_ULONG(_net_rtsock, OID_AUTO, sendspace, CTLFLAG_RW, &rts_sendspace, 0, "Default routing socket send space"); static u_long rts_recvspace = 8192; SYSCTL_ULONG(_net_rtsock, OID_AUTO, recvspace, CTLFLAG_RW, &rts_recvspace, 0, "Default routing socket receive space"); static int rts_attach(struct socket *so, int proto, struct thread *td) { struct rcb *rcb; int error; error = soreserve(so, rts_sendspace, rts_recvspace); if (error) return (error); rcb = malloc(sizeof(*rcb), M_PCB, M_WAITOK); rcb->rcb_socket = so; rcb->rcb_family = proto; so->so_pcb = rcb; so->so_fibnum = td->td_proc->p_fibnum; so->so_options |= SO_USELOOPBACK; RTSOCK_LOCK(); LIST_INSERT_HEAD(&V_route_cb.cblist, rcb, list); switch (proto) { case AF_INET: V_route_cb.ip_count++; break; case AF_INET6: V_route_cb.ip6_count++; break; } V_route_cb.any_count++; RTSOCK_UNLOCK(); soisconnected(so); return (0); } static void rts_detach(struct socket *so) { struct rcb *rcb = so->so_pcb; RTSOCK_LOCK(); LIST_REMOVE(rcb, list); switch(rcb->rcb_family) { case AF_INET: V_route_cb.ip_count--; break; case AF_INET6: V_route_cb.ip6_count--; break; } V_route_cb.any_count--; RTSOCK_UNLOCK(); free(rcb, M_PCB); so->so_pcb = NULL; } static int rts_shutdown(struct socket *so) { socantsendmore(so); return (0); } #ifndef _SOCKADDR_UNION_DEFINED #define _SOCKADDR_UNION_DEFINED /* * The union of all possible address formats we handle. */ union sockaddr_union { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_in6 sin6; }; #endif /* _SOCKADDR_UNION_DEFINED */ static int rtm_get_jailed(struct rt_addrinfo *info, struct ifnet *ifp, struct nhop_object *nh, union sockaddr_union *saun, struct ucred *cred) { #if defined(INET) || defined(INET6) struct epoch_tracker et; #endif /* First, see if the returned address is part of the jail. */ if (prison_if(cred, nh->nh_ifa->ifa_addr) == 0) { info->rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; return (0); } switch (info->rti_info[RTAX_DST]->sa_family) { #ifdef INET case AF_INET: { struct in_addr ia; struct ifaddr *ifa; int found; found = 0; /* * Try to find an address on the given outgoing interface * that belongs to the jail. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa; sa = ifa->ifa_addr; if (sa->sa_family != AF_INET) continue; ia = ((struct sockaddr_in *)sa)->sin_addr; if (prison_check_ip4(cred, &ia) == 0) { found = 1; break; } } NET_EPOCH_EXIT(et); if (!found) { /* * As a last resort return the 'default' jail address. */ ia = ((struct sockaddr_in *)nh->nh_ifa->ifa_addr)-> sin_addr; if (prison_get_ip4(cred, &ia) != 0) return (ESRCH); } bzero(&saun->sin, sizeof(struct sockaddr_in)); saun->sin.sin_len = sizeof(struct sockaddr_in); saun->sin.sin_family = AF_INET; saun->sin.sin_addr.s_addr = ia.s_addr; info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin; break; } #endif #ifdef INET6 case AF_INET6: { struct in6_addr ia6; struct ifaddr *ifa; int found; found = 0; /* * Try to find an address on the given outgoing interface * that belongs to the jail. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa; sa = ifa->ifa_addr; if (sa->sa_family != AF_INET6) continue; bcopy(&((struct sockaddr_in6 *)sa)->sin6_addr, &ia6, sizeof(struct in6_addr)); if (prison_check_ip6(cred, &ia6) == 0) { found = 1; break; } } NET_EPOCH_EXIT(et); if (!found) { /* * As a last resort return the 'default' jail address. */ ia6 = ((struct sockaddr_in6 *)nh->nh_ifa->ifa_addr)-> sin6_addr; if (prison_get_ip6(cred, &ia6) != 0) return (ESRCH); } bzero(&saun->sin6, sizeof(struct sockaddr_in6)); saun->sin6.sin6_len = sizeof(struct sockaddr_in6); saun->sin6.sin6_family = AF_INET6; bcopy(&ia6, &saun->sin6.sin6_addr, sizeof(struct in6_addr)); if (sa6_recoverscope(&saun->sin6) != 0) return (ESRCH); info->rti_info[RTAX_IFA] = (struct sockaddr *)&saun->sin6; break; } #endif default: return (ESRCH); } return (0); } static int fill_blackholeinfo(struct rt_addrinfo *info, union sockaddr_union *saun) { struct ifaddr *ifa; sa_family_t saf; if (V_loif == NULL) { RTS_PID_LOG(LOG_INFO, "Unable to add blackhole/reject nhop without loopback"); return (ENOTSUP); } info->rti_ifp = V_loif; saf = info->rti_info[RTAX_DST]->sa_family; CK_STAILQ_FOREACH(ifa, &info->rti_ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == saf) { info->rti_ifa = ifa; break; } } if (info->rti_ifa == NULL) { RTS_PID_LOG(LOG_INFO, "Unable to find ifa for blackhole/reject nhop"); return (ENOTSUP); } bzero(saun, sizeof(union sockaddr_union)); switch (saf) { #ifdef INET case AF_INET: saun->sin.sin_family = AF_INET; saun->sin.sin_len = sizeof(struct sockaddr_in); saun->sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); break; #endif #ifdef INET6 case AF_INET6: saun->sin6.sin6_family = AF_INET6; saun->sin6.sin6_len = sizeof(struct sockaddr_in6); saun->sin6.sin6_addr = in6addr_loopback; break; #endif default: RTS_PID_LOG(LOG_INFO, "unsupported family: %d", saf); return (ENOTSUP); } info->rti_info[RTAX_GATEWAY] = &saun->sa; info->rti_flags |= RTF_GATEWAY; return (0); } /* * Fills in @info based on userland-provided @rtm message. * * Returns 0 on success. */ static int fill_addrinfo(struct rt_msghdr *rtm, int len, struct linear_buffer *lb, u_int fibnum, struct rt_addrinfo *info) { int error; rtm->rtm_pid = curproc->p_pid; info->rti_addrs = rtm->rtm_addrs; info->rti_mflags = rtm->rtm_inits; info->rti_rmx = &rtm->rtm_rmx; /* * rt_xaddrs() performs s6_addr[2] := sin6_scope_id for AF_INET6 * link-local address because rtrequest requires addresses with * embedded scope id. */ if (rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, info)) return (EINVAL); info->rti_flags = rtm->rtm_flags; error = cleanup_xaddrs(info, lb); if (error != 0) return (error); /* * Verify that the caller has the appropriate privilege; RTM_GET * is the only operation the non-superuser is allowed. */ if (rtm->rtm_type != RTM_GET) { error = priv_check(curthread, PRIV_NET_ROUTE); if (error != 0) return (error); } /* * The given gateway address may be an interface address. * For example, issuing a "route change" command on a route * entry that was created from a tunnel, and the gateway * address given is the local end point. In this case the * RTF_GATEWAY flag must be cleared or the destination will * not be reachable even though there is no error message. */ if (info->rti_info[RTAX_GATEWAY] != NULL && info->rti_info[RTAX_GATEWAY]->sa_family != AF_LINK) { struct rt_addrinfo ginfo; struct sockaddr *gdst; struct sockaddr_storage ss; bzero(&ginfo, sizeof(ginfo)); bzero(&ss, sizeof(ss)); ss.ss_len = sizeof(ss); ginfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&ss; gdst = info->rti_info[RTAX_GATEWAY]; /* * A host route through the loopback interface is * installed for each interface adddress. In pre 8.0 * releases the interface address of a PPP link type * is not reachable locally. This behavior is fixed as * part of the new L2/L3 redesign and rewrite work. The * signature of this interface address route is the * AF_LINK sa_family type of the gateway, and the * rt_ifp has the IFF_LOOPBACK flag set. */ if (rib_lookup_info(fibnum, gdst, NHR_REF, 0, &ginfo) == 0) { if (ss.ss_family == AF_LINK && ginfo.rti_ifp->if_flags & IFF_LOOPBACK) { info->rti_flags &= ~RTF_GATEWAY; info->rti_flags |= RTF_GWFLAG_COMPAT; } rib_free_info(&ginfo); } } return (0); } static struct nhop_object * select_nhop(struct nhop_object *nh, const struct sockaddr *gw) { if (!NH_IS_NHGRP(nh)) return (nh); #ifdef ROUTE_MPATH const struct weightened_nhop *wn; uint32_t num_nhops; wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); if (gw == NULL) return (wn[0].nh); for (int i = 0; i < num_nhops; i++) { if (match_nhop_gw(wn[i].nh, gw)) return (wn[i].nh); } #endif return (NULL); } /* * Handles RTM_GET message from routing socket, returning matching rt. * * Returns: * 0 on success, with locked and referenced matching rt in @rt_nrt * errno of failure */ static int handle_rtm_get(struct rt_addrinfo *info, u_int fibnum, struct rt_msghdr *rtm, struct rib_cmd_info *rc) { RIB_RLOCK_TRACKER; struct rib_head *rnh; struct nhop_object *nh; sa_family_t saf; saf = info->rti_info[RTAX_DST]->sa_family; rnh = rt_tables_get_rnh(fibnum, saf); if (rnh == NULL) return (EAFNOSUPPORT); RIB_RLOCK(rnh); /* * By (implicit) convention host route (one without netmask) * means longest-prefix-match request and the route with netmask * means exact-match lookup. * As cleanup_xaddrs() cleans up info flags&addrs for the /32,/128 * prefixes, use original data to check for the netmask presence. */ if ((rtm->rtm_addrs & RTA_NETMASK) == 0) { /* * Provide longest prefix match for * address lookup (no mask). * 'route -n get addr' */ rc->rc_rt = (struct rtentry *) rnh->rnh_matchaddr( info->rti_info[RTAX_DST], &rnh->head); } else rc->rc_rt = (struct rtentry *) rnh->rnh_lookup( info->rti_info[RTAX_DST], info->rti_info[RTAX_NETMASK], &rnh->head); if (rc->rc_rt == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); if (nh == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } /* * If performing proxied L2 entry insertion, and * the actual PPP host entry is found, perform * another search to retrieve the prefix route of * the local end point of the PPP link. * TODO: move this logic to userland. */ if (rtm->rtm_flags & RTF_ANNOUNCE) { struct sockaddr_storage laddr; if (nh->nh_ifp != NULL && nh->nh_ifp->if_type == IFT_PROPVIRTUAL) { struct ifaddr *ifa; ifa = ifa_ifwithnet(info->rti_info[RTAX_DST], 1, RT_ALL_FIBS); if (ifa != NULL) rt_maskedcopy(ifa->ifa_addr, (struct sockaddr *)&laddr, ifa->ifa_netmask); } else rt_maskedcopy(nh->nh_ifa->ifa_addr, (struct sockaddr *)&laddr, nh->nh_ifa->ifa_netmask); /* * refactor rt and no lock operation necessary */ rc->rc_rt = (struct rtentry *)rnh->rnh_matchaddr( (struct sockaddr *)&laddr, &rnh->head); if (rc->rc_rt == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } nh = select_nhop(rt_get_raw_nhop(rc->rc_rt), info->rti_info[RTAX_GATEWAY]); if (nh == NULL) { RIB_RUNLOCK(rnh); return (ESRCH); } } rc->rc_nh_new = nh; rc->rc_nh_weight = rc->rc_rt->rt_weight; RIB_RUNLOCK(rnh); return (0); } static void init_sockaddrs_family(int family, struct sockaddr *dst, struct sockaddr *mask) { #ifdef INET if (family == AF_INET) { struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; bzero(dst4, sizeof(struct sockaddr_in)); bzero(mask4, sizeof(struct sockaddr_in)); dst4->sin_family = AF_INET; dst4->sin_len = sizeof(struct sockaddr_in); mask4->sin_family = AF_INET; mask4->sin_len = sizeof(struct sockaddr_in); } #endif #ifdef INET6 if (family == AF_INET6) { struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; bzero(dst6, sizeof(struct sockaddr_in6)); bzero(mask6, sizeof(struct sockaddr_in6)); dst6->sin6_family = AF_INET6; dst6->sin6_len = sizeof(struct sockaddr_in6); mask6->sin6_family = AF_INET6; mask6->sin6_len = sizeof(struct sockaddr_in6); } #endif } static void export_rtaddrs(const struct rtentry *rt, struct sockaddr *dst, struct sockaddr *mask) { #ifdef INET if (dst->sa_family == AF_INET) { struct sockaddr_in *dst4 = (struct sockaddr_in *)dst; struct sockaddr_in *mask4 = (struct sockaddr_in *)mask; uint32_t scopeid = 0; rt_get_inet_prefix_pmask(rt, &dst4->sin_addr, &mask4->sin_addr, &scopeid); return; } #endif #ifdef INET6 if (dst->sa_family == AF_INET6) { struct sockaddr_in6 *dst6 = (struct sockaddr_in6 *)dst; struct sockaddr_in6 *mask6 = (struct sockaddr_in6 *)mask; uint32_t scopeid = 0; rt_get_inet6_prefix_pmask(rt, &dst6->sin6_addr, &mask6->sin6_addr, &scopeid); dst6->sin6_scope_id = scopeid; return; } #endif } static int update_rtm_from_info(struct rt_addrinfo *info, struct rt_msghdr **prtm, int alloc_len) { struct rt_msghdr *rtm, *orig_rtm = NULL; struct walkarg w; int len; rtm = *prtm; /* Check if we need to realloc storage */ rtsock_msg_buffer(rtm->rtm_type, info, NULL, &len); if (len > alloc_len) { struct rt_msghdr *tmp_rtm; tmp_rtm = malloc(len, M_TEMP, M_NOWAIT); if (tmp_rtm == NULL) return (ENOBUFS); bcopy(rtm, tmp_rtm, rtm->rtm_msglen); orig_rtm = rtm; rtm = tmp_rtm; alloc_len = len; /* * Delay freeing original rtm as info contains * data referencing it. */ } w.w_tmem = (caddr_t)rtm; w.w_tmemsize = alloc_len; rtsock_msg_buffer(rtm->rtm_type, info, &w, &len); rtm->rtm_addrs = info->rti_addrs; if (orig_rtm != NULL) free(orig_rtm, M_TEMP); *prtm = rtm; return (0); } /* * Update sockaddrs, flags, etc in @prtm based on @rc data. * rtm can be reallocated. * * Returns 0 on success, along with pointer to (potentially reallocated) * rtm. * */ static int update_rtm_from_rc(struct rt_addrinfo *info, struct rt_msghdr **prtm, int alloc_len, struct rib_cmd_info *rc, struct nhop_object *nh) { union sockaddr_union saun; struct rt_msghdr *rtm; struct ifnet *ifp; int error; rtm = *prtm; union sockaddr_union sa_dst, sa_mask; int family = info->rti_info[RTAX_DST]->sa_family; init_sockaddrs_family(family, &sa_dst.sa, &sa_mask.sa); export_rtaddrs(rc->rc_rt, &sa_dst.sa, &sa_mask.sa); info->rti_info[RTAX_DST] = &sa_dst.sa; info->rti_info[RTAX_NETMASK] = rt_is_host(rc->rc_rt) ? NULL : &sa_mask.sa; info->rti_info[RTAX_GATEWAY] = &nh->gw_sa; info->rti_info[RTAX_GENMASK] = 0; ifp = nh->nh_ifp; if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { if (ifp) { info->rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; error = rtm_get_jailed(info, ifp, nh, &saun, curthread->td_ucred); if (error != 0) return (error); if (ifp->if_flags & IFF_POINTOPOINT) info->rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; rtm->rtm_index = ifp->if_index; } else { info->rti_info[RTAX_IFP] = NULL; info->rti_info[RTAX_IFA] = NULL; } } else if (ifp != NULL) rtm->rtm_index = ifp->if_index; if ((error = update_rtm_from_info(info, prtm, alloc_len)) != 0) return (error); rtm = *prtm; rtm->rtm_flags = rc->rc_rt->rte_flags | nhop_get_rtflags(nh); if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) rtm->rtm_flags = RTF_GATEWAY | (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); rt_getmetrics(rc->rc_rt, nh, &rtm->rtm_rmx); rtm->rtm_rmx.rmx_weight = rc->rc_nh_weight; return (0); } #ifdef ROUTE_MPATH static void save_del_notification(struct rib_cmd_info *rc, void *_cbdata) { struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; if (rc->rc_cmd == RTM_DELETE) *rc_new = *rc; } static void save_add_notification(struct rib_cmd_info *rc, void *_cbdata) { struct rib_cmd_info *rc_new = (struct rib_cmd_info *)_cbdata; if (rc->rc_cmd == RTM_ADD) *rc_new = *rc; } #endif #if defined(INET6) || defined(INET) static struct sockaddr * alloc_sockaddr_aligned(struct linear_buffer *lb, int len) { len = roundup2(len, sizeof(uint64_t)); if (lb->offset + len > lb->size) return (NULL); struct sockaddr *sa = (struct sockaddr *)(lb->base + lb->offset); lb->offset += len; return (sa); } #endif static int rts_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct rt_msghdr *rtm = NULL; struct rt_addrinfo info; struct epoch_tracker et; #ifdef INET6 struct sockaddr_storage ss; struct sockaddr_in6 *sin6; int i, rti_need_deembed = 0; #endif int alloc_len = 0, len, error = 0, fibnum; sa_family_t saf = AF_UNSPEC; struct rib_cmd_info rc; struct nhop_object *nh; if ((flags & PRUS_OOB) || control != NULL) { m_freem(m); if (control != NULL) m_freem(control); return (EOPNOTSUPP); } fibnum = so->so_fibnum; #define senderr(e) { error = e; goto flush;} if (m == NULL || ((m->m_len < sizeof(long)) && (m = m_pullup(m, sizeof(long))) == NULL)) return (ENOBUFS); if ((m->m_flags & M_PKTHDR) == 0) panic("route_output"); NET_EPOCH_ENTER(et); len = m->m_pkthdr.len; if (len < sizeof(*rtm) || len != mtod(m, struct rt_msghdr *)->rtm_msglen) senderr(EINVAL); /* * Most of current messages are in range 200-240 bytes, * minimize possible re-allocation on reply using larger size * buffer aligned on 1k boundaty. */ alloc_len = roundup2(len, 1024); int total_len = alloc_len + SCRATCH_BUFFER_SIZE; if ((rtm = malloc(total_len, M_TEMP, M_NOWAIT)) == NULL) senderr(ENOBUFS); m_copydata(m, 0, len, (caddr_t)rtm); bzero(&info, sizeof(info)); nh = NULL; struct linear_buffer lb = { .base = (char *)rtm + alloc_len, .size = SCRATCH_BUFFER_SIZE, }; if (rtm->rtm_version != RTM_VERSION) { /* Do not touch message since format is unknown */ free(rtm, M_TEMP); rtm = NULL; senderr(EPROTONOSUPPORT); } /* * Starting from here, it is possible * to alter original message and insert * caller PID and error value. */ if ((error = fill_addrinfo(rtm, len, &lb, fibnum, &info)) != 0) { senderr(error); } /* fill_addringo() embeds scope into IPv6 addresses */ #ifdef INET6 rti_need_deembed = 1; #endif saf = info.rti_info[RTAX_DST]->sa_family; /* support for new ARP code */ if (rtm->rtm_flags & RTF_LLDATA) { error = lla_rt_output(rtm, &info); goto flush; } union sockaddr_union gw_saun; int blackhole_flags = rtm->rtm_flags & (RTF_BLACKHOLE|RTF_REJECT); if (blackhole_flags != 0) { if (blackhole_flags != (RTF_BLACKHOLE | RTF_REJECT)) error = fill_blackholeinfo(&info, &gw_saun); else { RTS_PID_LOG(LOG_DEBUG, "both BLACKHOLE and REJECT flags specifiied"); error = EINVAL; } if (error != 0) senderr(error); } switch (rtm->rtm_type) { case RTM_ADD: case RTM_CHANGE: if (rtm->rtm_type == RTM_ADD) { if (info.rti_info[RTAX_GATEWAY] == NULL) { RTS_PID_LOG(LOG_DEBUG, "RTM_ADD w/o gateway"); senderr(EINVAL); } } error = rib_action(fibnum, rtm->rtm_type, &info, &rc); if (error == 0) { #ifdef ROUTE_MPATH if (NH_IS_NHGRP(rc.rc_nh_new) || (rc.rc_nh_old && NH_IS_NHGRP(rc.rc_nh_old))) { struct rib_cmd_info rc_simple = {}; rib_decompose_notification(&rc, save_add_notification, (void *)&rc_simple); rc = rc_simple; } #endif /* nh MAY be empty if RTM_CHANGE request is no-op */ nh = rc.rc_nh_new; if (nh != NULL) { rtm->rtm_index = nh->nh_ifp->if_index; rtm->rtm_flags = rc.rc_rt->rte_flags | nhop_get_rtflags(nh); } } break; case RTM_DELETE: error = rib_action(fibnum, RTM_DELETE, &info, &rc); if (error == 0) { #ifdef ROUTE_MPATH if (NH_IS_NHGRP(rc.rc_nh_old) || (rc.rc_nh_new && NH_IS_NHGRP(rc.rc_nh_new))) { struct rib_cmd_info rc_simple = {}; rib_decompose_notification(&rc, save_del_notification, (void *)&rc_simple); rc = rc_simple; } #endif nh = rc.rc_nh_old; } break; case RTM_GET: error = handle_rtm_get(&info, fibnum, rtm, &rc); if (error != 0) senderr(error); nh = rc.rc_nh_new; if (!can_export_rte(curthread->td_ucred, info.rti_info[RTAX_NETMASK] == NULL, info.rti_info[RTAX_DST])) { senderr(ESRCH); } break; default: senderr(EOPNOTSUPP); } if (error == 0 && nh != NULL) { error = update_rtm_from_rc(&info, &rtm, alloc_len, &rc, nh); /* * Note that some sockaddr pointers may have changed to * point to memory outsize @rtm. Some may be pointing * to the on-stack variables. * Given that, any pointer in @info CANNOT BE USED. */ /* * scopeid deembedding has been performed while * writing updated rtm in rtsock_msg_buffer(). * With that in mind, skip deembedding procedure below. */ #ifdef INET6 rti_need_deembed = 0; #endif } flush: NET_EPOCH_EXIT(et); #ifdef INET6 if (rtm != NULL) { if (rti_need_deembed) { /* sin6_scope_id is recovered before sending rtm. */ sin6 = (struct sockaddr_in6 *)&ss; for (i = 0; i < RTAX_MAX; i++) { if (info.rti_info[i] == NULL) continue; if (info.rti_info[i]->sa_family != AF_INET6) continue; bcopy(info.rti_info[i], sin6, sizeof(*sin6)); if (sa6_recoverscope(sin6) == 0) bcopy(sin6, info.rti_info[i], sizeof(*sin6)); } if (update_rtm_from_info(&info, &rtm, alloc_len) != 0) { if (error != 0) error = ENOBUFS; } } } #endif send_rtm_reply(so, rtm, m, saf, fibnum, error); return (error); } /* * Sends the prepared reply message in @rtm to all rtsock clients. * Frees @m and @rtm. * */ static void send_rtm_reply(struct socket *so, struct rt_msghdr *rtm, struct mbuf *m, sa_family_t saf, u_int fibnum, int rtm_errno) { struct rcb *rcb = NULL; /* * Check to see if we don't want our own messages. */ if ((so->so_options & SO_USELOOPBACK) == 0) { if (V_route_cb.any_count <= 1) { if (rtm != NULL) free(rtm, M_TEMP); m_freem(m); return; } /* There is another listener, so construct message */ rcb = so->so_pcb; } if (rtm != NULL) { if (rtm_errno!= 0) rtm->rtm_errno = rtm_errno; else rtm->rtm_flags |= RTF_DONE; m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm); if (m->m_pkthdr.len < rtm->rtm_msglen) { m_freem(m); m = NULL; } else if (m->m_pkthdr.len > rtm->rtm_msglen) m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len); free(rtm, M_TEMP); } if (m != NULL) { M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; if (rcb) { /* * XXX insure we don't get a copy by * invalidating our protocol */ sa_family_t family = rcb->rcb_family; rcb->rcb_family = AF_UNSPEC; rt_dispatch(m, saf); rcb->rcb_family = family; } else rt_dispatch(m, saf); } } static void rt_getmetrics(const struct rtentry *rt, const struct nhop_object *nh, struct rt_metrics *out) { bzero(out, sizeof(*out)); out->rmx_mtu = nh->nh_mtu; out->rmx_weight = rt->rt_weight; out->rmx_nhidx = nhop_get_idx(nh); /* Kernel -> userland timebase conversion. */ out->rmx_expire = nhop_get_expire(nh) ? nhop_get_expire(nh) - time_uptime + time_second : 0; } /* * Extract the addresses of the passed sockaddrs. * Do a little sanity checking so as to avoid bad memory references. * This data is derived straight from userland. */ static int rt_xaddrs(caddr_t cp, caddr_t cplim, struct rt_addrinfo *rtinfo) { struct sockaddr *sa; int i; for (i = 0; i < RTAX_MAX && cp < cplim; i++) { if ((rtinfo->rti_addrs & (1 << i)) == 0) continue; sa = (struct sockaddr *)cp; /* * It won't fit. */ if (cp + sa->sa_len > cplim) { RTS_PID_LOG(LOG_DEBUG, "sa_len too big for sa type %d", i); return (EINVAL); } /* * there are no more.. quit now * If there are more bits, they are in error. * I've seen this. route(1) can evidently generate these. * This causes kernel to core dump. * for compatibility, If we see this, point to a safe address. */ if (sa->sa_len == 0) { rtinfo->rti_info[i] = &sa_zero; return (0); /* should be EINVAL but for compat */ } /* accept it */ #ifdef INET6 if (sa->sa_family == AF_INET6) sa6_embedscope((struct sockaddr_in6 *)sa, V_ip6_use_defzone); #endif rtinfo->rti_info[i] = sa; cp += SA_SIZE(sa); } return (0); } #ifdef INET static inline void fill_sockaddr_inet(struct sockaddr_in *sin, struct in_addr addr) { const struct sockaddr_in nsin = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr = addr, }; *sin = nsin; } #endif #ifdef INET6 static inline void fill_sockaddr_inet6(struct sockaddr_in6 *sin6, const struct in6_addr *addr6, uint32_t scopeid) { const struct sockaddr_in6 nsin6 = { .sin6_family = AF_INET6, .sin6_len = sizeof(struct sockaddr_in6), .sin6_addr = *addr6, .sin6_scope_id = scopeid, }; *sin6 = nsin6; } #endif #if defined(INET6) || defined(INET) /* * Checks if gateway is suitable for lltable operations. * Lltable code requires AF_LINK gateway with ifindex * and mac address specified. * Returns 0 on success. */ static int cleanup_xaddrs_lladdr(struct rt_addrinfo *info) { struct sockaddr_dl *sdl = (struct sockaddr_dl *)info->rti_info[RTAX_GATEWAY]; if (sdl->sdl_family != AF_LINK) return (EINVAL); if (sdl->sdl_index == 0) { RTS_PID_LOG(LOG_DEBUG, "AF_LINK gateway w/o ifindex"); return (EINVAL); } if (offsetof(struct sockaddr_dl, sdl_data) + sdl->sdl_nlen + sdl->sdl_alen > sdl->sdl_len) { RTS_PID_LOG(LOG_DEBUG, "AF_LINK gw: sdl_nlen/sdl_alen too large"); return (EINVAL); } return (0); } static int cleanup_xaddrs_gateway(struct rt_addrinfo *info, struct linear_buffer *lb) { struct sockaddr *gw = info->rti_info[RTAX_GATEWAY]; struct sockaddr *sa; if (info->rti_flags & RTF_LLDATA) return (cleanup_xaddrs_lladdr(info)); switch (gw->sa_family) { #ifdef INET case AF_INET: { struct sockaddr_in *gw_sin = (struct sockaddr_in *)gw; /* Ensure reads do not go beyoud SA boundary */ if (SA_SIZE(gw) < offsetof(struct sockaddr_in, sin_zero)) { RTS_PID_LOG(LOG_DEBUG, "gateway sin_len too small: %d", gw->sa_len); return (EINVAL); } sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_in)); if (sa == NULL) return (ENOBUFS); fill_sockaddr_inet((struct sockaddr_in *)sa, gw_sin->sin_addr); info->rti_info[RTAX_GATEWAY] = sa; } break; #endif #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *gw_sin6 = (struct sockaddr_in6 *)gw; if (gw_sin6->sin6_len < sizeof(struct sockaddr_in6)) { RTS_PID_LOG(LOG_DEBUG, "gateway sin6_len too small: %d", gw->sa_len); return (EINVAL); } fill_sockaddr_inet6(gw_sin6, &gw_sin6->sin6_addr, 0); break; } #endif case AF_LINK: { struct sockaddr_dl *gw_sdl; size_t sdl_min_len = offsetof(struct sockaddr_dl, sdl_data); gw_sdl = (struct sockaddr_dl *)gw; if (gw_sdl->sdl_len < sdl_min_len) { RTS_PID_LOG(LOG_DEBUG, "gateway sdl_len too small: %d", gw_sdl->sdl_len); return (EINVAL); } sa = alloc_sockaddr_aligned(lb, sizeof(struct sockaddr_dl_short)); if (sa == NULL) return (ENOBUFS); const struct sockaddr_dl_short sdl = { .sdl_family = AF_LINK, .sdl_len = sizeof(struct sockaddr_dl_short), .sdl_index = gw_sdl->sdl_index, }; *((struct sockaddr_dl_short *)sa) = sdl; info->rti_info[RTAX_GATEWAY] = sa; break; } } return (0); } #endif static void remove_netmask(struct rt_addrinfo *info) { info->rti_info[RTAX_NETMASK] = NULL; info->rti_flags |= RTF_HOST; info->rti_addrs &= ~RTA_NETMASK; } #ifdef INET static int cleanup_xaddrs_inet(struct rt_addrinfo *info, struct linear_buffer *lb) { struct sockaddr_in *dst_sa, *mask_sa; const int sa_len = sizeof(struct sockaddr_in); struct in_addr dst, mask; /* Check & fixup dst/netmask combination first */ dst_sa = (struct sockaddr_in *)info->rti_info[RTAX_DST]; mask_sa = (struct sockaddr_in *)info->rti_info[RTAX_NETMASK]; /* Ensure reads do not go beyound the buffer size */ if (SA_SIZE(dst_sa) < offsetof(struct sockaddr_in, sin_zero)) { RTS_PID_LOG(LOG_DEBUG, "prefix dst sin_len too small: %d", dst_sa->sin_len); return (EINVAL); } if ((mask_sa != NULL) && mask_sa->sin_len < sizeof(struct sockaddr_in)) { /* * Some older routing software encode mask length into the * sin_len, thus resulting in "truncated" sockaddr. */ int len = mask_sa->sin_len - offsetof(struct sockaddr_in, sin_addr); if (len >= 0) { mask.s_addr = 0; if (len > sizeof(struct in_addr)) len = sizeof(struct in_addr); memcpy(&mask, &mask_sa->sin_addr, len); } else { RTS_PID_LOG(LOG_DEBUG, "prefix mask sin_len too small: %d", mask_sa->sin_len); return (EINVAL); } } else mask.s_addr = mask_sa ? mask_sa->sin_addr.s_addr : INADDR_BROADCAST; dst.s_addr = htonl(ntohl(dst_sa->sin_addr.s_addr) & ntohl(mask.s_addr)); /* Construct new "clean" dst/mask sockaddresses */ if ((dst_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) return (ENOBUFS); fill_sockaddr_inet(dst_sa, dst); info->rti_info[RTAX_DST] = (struct sockaddr *)dst_sa; if (mask.s_addr != INADDR_BROADCAST) { if ((mask_sa = (struct sockaddr_in *)alloc_sockaddr_aligned(lb, sa_len)) == NULL) return (ENOBUFS); fill_sockaddr_inet(mask_sa, mask); info->rti_info[RTAX_NETMASK] = (struct sockaddr *)mask_sa; info->rti_flags &= ~RTF_HOST; } else remove_netmask(info); /* Check gateway */ if (info->rti_info[RTAX_GATEWAY] != NULL) return (cleanup_xaddrs_gateway(info, lb)); return (0); } #endif #ifdef INET6 static int cleanup_xaddrs_inet6(struct rt_addrinfo *info, struct linear_buffer *lb) { struct sockaddr *sa; struct sockaddr_in6 *dst_sa, *mask_sa; struct in6_addr mask, *dst; const int sa_len = sizeof(struct sockaddr_in6); /* Check & fixup dst/netmask combination first */ dst_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_DST]; mask_sa = (struct sockaddr_in6 *)info->rti_info[RTAX_NETMASK]; if (dst_sa->sin6_len < sizeof(struct sockaddr_in6)) { RTS_PID_LOG(LOG_DEBUG, "prefix dst sin6_len too small: %d", dst_sa->sin6_len); return (EINVAL); } if (mask_sa && mask_sa->sin6_len < sizeof(struct sockaddr_in6)) { /* * Some older routing software encode mask length into the * sin6_len, thus resulting in "truncated" sockaddr. */ int len = mask_sa->sin6_len - offsetof(struct sockaddr_in6, sin6_addr); if (len >= 0) { bzero(&mask, sizeof(mask)); if (len > sizeof(struct in6_addr)) len = sizeof(struct in6_addr); memcpy(&mask, &mask_sa->sin6_addr, len); } else { RTS_PID_LOG(LOG_DEBUG, "rtsock: prefix mask sin6_len too small: %d", mask_sa->sin6_len); return (EINVAL); } } else mask = mask_sa ? mask_sa->sin6_addr : in6mask128; dst = &dst_sa->sin6_addr; IN6_MASK_ADDR(dst, &mask); if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) return (ENOBUFS); fill_sockaddr_inet6((struct sockaddr_in6 *)sa, dst, 0); info->rti_info[RTAX_DST] = sa; if (!IN6_ARE_ADDR_EQUAL(&mask, &in6mask128)) { if ((sa = alloc_sockaddr_aligned(lb, sa_len)) == NULL) return (ENOBUFS); fill_sockaddr_inet6((struct sockaddr_in6 *)sa, &mask, 0); info->rti_info[RTAX_NETMASK] = sa; info->rti_flags &= ~RTF_HOST; } else remove_netmask(info); /* Check gateway */ if (info->rti_info[RTAX_GATEWAY] != NULL) return (cleanup_xaddrs_gateway(info, lb)); return (0); } #endif static int cleanup_xaddrs(struct rt_addrinfo *info, struct linear_buffer *lb) { int error = EAFNOSUPPORT; if (info->rti_info[RTAX_DST] == NULL) { RTS_PID_LOG(LOG_DEBUG, "prefix dst is not set"); return (EINVAL); } if (info->rti_flags & RTF_LLDATA) { /* * arp(8)/ndp(8) sends RTA_NETMASK for the associated * prefix along with the actual address in RTA_DST. * Remove netmask to avoid unnecessary address masking. */ remove_netmask(info); } switch (info->rti_info[RTAX_DST]->sa_family) { #ifdef INET case AF_INET: error = cleanup_xaddrs_inet(info, lb); break; #endif #ifdef INET6 case AF_INET6: error = cleanup_xaddrs_inet6(info, lb); break; #endif } return (error); } /* * Fill in @dmask with valid netmask leaving original @smask * intact. Mostly used with radix netmasks. */ struct sockaddr * rtsock_fix_netmask(const struct sockaddr *dst, const struct sockaddr *smask, struct sockaddr_storage *dmask) { if (dst == NULL || smask == NULL) return (NULL); memset(dmask, 0, dst->sa_len); memcpy(dmask, smask, smask->sa_len); dmask->ss_len = dst->sa_len; dmask->ss_family = dst->sa_family; return ((struct sockaddr *)dmask); } /* * Writes information related to @rtinfo object to newly-allocated mbuf. * Assumes MCLBYTES is enough to construct any message. * Used for OS notifications of vaious events (if/ifa announces,etc) * * Returns allocated mbuf or NULL on failure. */ static struct mbuf * rtsock_msg_mbuf(int type, struct rt_addrinfo *rtinfo) { struct sockaddr_storage ss; struct rt_msghdr *rtm; struct mbuf *m; int i; struct sockaddr *sa; #ifdef INET6 struct sockaddr_in6 *sin6; #endif int len, dlen; switch (type) { case RTM_DELADDR: case RTM_NEWADDR: len = sizeof(struct ifa_msghdr); break; case RTM_DELMADDR: case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; case RTM_IFINFO: len = sizeof(struct if_msghdr); break; case RTM_IFANNOUNCE: case RTM_IEEE80211: len = sizeof(struct if_announcemsghdr); break; default: len = sizeof(struct rt_msghdr); } /* XXXGL: can we use MJUMPAGESIZE cluster here? */ KASSERT(len <= MCLBYTES, ("%s: message too big", __func__)); if (len > MHLEN) m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); else m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (m); m->m_pkthdr.len = m->m_len = len; rtm = mtod(m, struct rt_msghdr *); bzero((caddr_t)rtm, len); for (i = 0; i < RTAX_MAX; i++) { if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); dlen = SA_SIZE(sa); KASSERT(dlen <= sizeof(ss), ("%s: sockaddr size overflow", __func__)); bzero(&ss, sizeof(ss)); bcopy(sa, &ss, sa->sa_len); sa = (struct sockaddr *)&ss; #ifdef INET6 if (sa->sa_family == AF_INET6) { sin6 = (struct sockaddr_in6 *)sa; (void)sa6_recoverscope(sin6); } #endif m_copyback(m, len, dlen, (caddr_t)sa); len += dlen; } if (m->m_pkthdr.len != len) { m_freem(m); return (NULL); } rtm->rtm_msglen = len; rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; return (m); } /* * Writes information related to @rtinfo object to preallocated buffer. * Stores needed size in @plen. If @w is NULL, calculates size without * writing. * Used for sysctl dumps and rtsock answers (RTM_DEL/RTM_GET) generation. * * Returns 0 on success. * */ static int rtsock_msg_buffer(int type, struct rt_addrinfo *rtinfo, struct walkarg *w, int *plen) { struct sockaddr_storage ss; int len, buflen = 0, dlen, i; caddr_t cp = NULL; struct rt_msghdr *rtm = NULL; #ifdef INET6 struct sockaddr_in6 *sin6; #endif #ifdef COMPAT_FREEBSD32 bool compat32 = false; #endif switch (type) { case RTM_DELADDR: case RTM_NEWADDR: if (w != NULL && w->w_op == NET_RT_IFLISTL) { #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { len = sizeof(struct ifa_msghdrl32); compat32 = true; } else #endif len = sizeof(struct ifa_msghdrl); } else len = sizeof(struct ifa_msghdr); break; case RTM_IFINFO: #ifdef COMPAT_FREEBSD32 if (w != NULL && w->w_req->flags & SCTL_MASK32) { if (w->w_op == NET_RT_IFLISTL) len = sizeof(struct if_msghdrl32); else len = sizeof(struct if_msghdr32); compat32 = true; break; } #endif if (w != NULL && w->w_op == NET_RT_IFLISTL) len = sizeof(struct if_msghdrl); else len = sizeof(struct if_msghdr); break; case RTM_NEWMADDR: len = sizeof(struct ifma_msghdr); break; default: len = sizeof(struct rt_msghdr); } if (w != NULL) { rtm = (struct rt_msghdr *)w->w_tmem; buflen = w->w_tmemsize - len; cp = (caddr_t)w->w_tmem + len; } rtinfo->rti_addrs = 0; for (i = 0; i < RTAX_MAX; i++) { struct sockaddr *sa; if ((sa = rtinfo->rti_info[i]) == NULL) continue; rtinfo->rti_addrs |= (1 << i); #ifdef COMPAT_FREEBSD32 if (compat32) dlen = SA_SIZE32(sa); else #endif dlen = SA_SIZE(sa); if (cp != NULL && buflen >= dlen) { KASSERT(dlen <= sizeof(ss), ("%s: sockaddr size overflow", __func__)); bzero(&ss, sizeof(ss)); bcopy(sa, &ss, sa->sa_len); sa = (struct sockaddr *)&ss; #ifdef INET6 if (sa->sa_family == AF_INET6) { sin6 = (struct sockaddr_in6 *)sa; (void)sa6_recoverscope(sin6); } #endif bcopy((caddr_t)sa, cp, (unsigned)dlen); cp += dlen; buflen -= dlen; } else if (cp != NULL) { /* * Buffer too small. Count needed size * and return with error. */ cp = NULL; } len += dlen; } if (cp != NULL) { dlen = ALIGN(len) - len; if (buflen < dlen) cp = NULL; else { bzero(cp, dlen); cp += dlen; buflen -= dlen; } } len = ALIGN(len); if (cp != NULL) { /* fill header iff buffer is large enough */ rtm->rtm_version = RTM_VERSION; rtm->rtm_type = type; rtm->rtm_msglen = len; } *plen = len; if (w != NULL && cp == NULL) return (ENOBUFS); return (0); } /* * This routine is called to generate a message from the routing * socket indicating that a redirect has occurred, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. */ void rt_missmsg_fib(int type, struct rt_addrinfo *rtinfo, int flags, int error, int fibnum) { struct rt_msghdr *rtm; struct mbuf *m; struct sockaddr *sa = rtinfo->rti_info[RTAX_DST]; if (V_route_cb.any_count == 0) return; m = rtsock_msg_mbuf(type, rtinfo); if (m == NULL) return; if (fibnum != RT_ALL_FIBS) { KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; } rtm = mtod(m, struct rt_msghdr *); rtm->rtm_flags = RTF_DONE | flags; rtm->rtm_errno = error; rtm->rtm_addrs = rtinfo->rti_addrs; rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); } void rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error) { rt_missmsg_fib(type, rtinfo, flags, error, RT_ALL_FIBS); } /* * This routine is called to generate a message from the routing * socket indicating that the status of a network interface has changed. */ void rt_ifmsg(struct ifnet *ifp) { struct if_msghdr *ifm; struct mbuf *m; struct rt_addrinfo info; if (V_route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); m = rtsock_msg_mbuf(RTM_IFINFO, &info); if (m == NULL) return; ifm = mtod(m, struct if_msghdr *); ifm->ifm_index = ifp->if_index; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; if_data_copy(ifp, &ifm->ifm_data); ifm->ifm_addrs = 0; rt_dispatch(m, AF_UNSPEC); } /* * Announce interface address arrival/withdraw. * Please do not call directly, use rt_addrmsg(). * Assume input data to be valid. * Returns 0 on success. */ int rtsock_addrmsg(int cmd, struct ifaddr *ifa, int fibnum) { struct rt_addrinfo info; struct sockaddr *sa; int ncmd; struct mbuf *m; struct ifa_msghdr *ifam; struct ifnet *ifp = ifa->ifa_ifp; struct sockaddr_storage ss; if (V_route_cb.any_count == 0) return (0); ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr; info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( info.rti_info[RTAX_IFA], ifa->ifa_netmask, &ss); info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; if ((m = rtsock_msg_mbuf(ncmd, &info)) == NULL) return (ENOBUFS); ifam = mtod(m, struct ifa_msghdr *); ifam->ifam_index = ifp->if_index; ifam->ifam_metric = ifa->ifa_ifp->if_metric; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_addrs = info.rti_addrs; if (fibnum != RT_ALL_FIBS) { M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; } rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); return (0); } /* * Announce route addition/removal to rtsock based on @rt data. * Callers are advives to use rt_routemsg() instead of using this * function directly. * Assume @rt data is consistent. * * Returns 0 on success. */ int rtsock_routemsg(int cmd, struct rtentry *rt, struct nhop_object *nh, int fibnum) { union sockaddr_union dst, mask; struct rt_addrinfo info; if (V_route_cb.any_count == 0) return (0); int family = rt_get_family(rt); init_sockaddrs_family(family, &dst.sa, &mask.sa); export_rtaddrs(rt, &dst.sa, &mask.sa); bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = &dst.sa; info.rti_info[RTAX_NETMASK] = &mask.sa; info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; info.rti_flags = rt->rte_flags | nhop_get_rtflags(nh); info.rti_ifp = nh->nh_ifp; return (rtsock_routemsg_info(cmd, &info, fibnum)); } int rtsock_routemsg_info(int cmd, struct rt_addrinfo *info, int fibnum) { struct rt_msghdr *rtm; struct sockaddr *sa; struct mbuf *m; if (V_route_cb.any_count == 0) return (0); if (info->rti_flags & RTF_HOST) info->rti_info[RTAX_NETMASK] = NULL; m = rtsock_msg_mbuf(cmd, info); if (m == NULL) return (ENOBUFS); if (fibnum != RT_ALL_FIBS) { KASSERT(fibnum >= 0 && fibnum < rt_numfibs, ("%s: fibnum out " "of range 0 <= %d < %d", __func__, fibnum, rt_numfibs)); M_SETFIB(m, fibnum); m->m_flags |= RTS_FILTER_FIB; } rtm = mtod(m, struct rt_msghdr *); rtm->rtm_addrs = info->rti_addrs; if (info->rti_ifp != NULL) rtm->rtm_index = info->rti_ifp->if_index; /* Add RTF_DONE to indicate command 'completion' required by API */ info->rti_flags |= RTF_DONE; /* Reported routes has to be up */ if (cmd == RTM_ADD || cmd == RTM_CHANGE) info->rti_flags |= RTF_UP; rtm->rtm_flags = info->rti_flags; sa = info->rti_info[RTAX_DST]; rt_dispatch(m, sa ? sa->sa_family : AF_UNSPEC); return (0); } /* * This is the analogue to the rt_newaddrmsg which performs the same * function but for multicast group memberhips. This is easier since * there is no route state to worry about. */ void rt_newmaddrmsg(int cmd, struct ifmultiaddr *ifma) { struct rt_addrinfo info; struct mbuf *m = NULL; struct ifnet *ifp = ifma->ifma_ifp; struct ifma_msghdr *ifmam; if (V_route_cb.any_count == 0) return; bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_IFA] = ifma->ifma_addr; if (ifp && ifp->if_addr) info.rti_info[RTAX_IFP] = ifp->if_addr->ifa_addr; else info.rti_info[RTAX_IFP] = NULL; /* * If a link-layer address is present, present it as a ``gateway'' * (similarly to how ARP entries, e.g., are presented). */ info.rti_info[RTAX_GATEWAY] = ifma->ifma_lladdr; m = rtsock_msg_mbuf(cmd, &info); if (m == NULL) return; ifmam = mtod(m, struct ifma_msghdr *); KASSERT(ifp != NULL, ("%s: link-layer multicast address w/o ifp\n", __func__)); ifmam->ifmam_index = ifp->if_index; ifmam->ifmam_addrs = info.rti_addrs; rt_dispatch(m, ifma->ifma_addr ? ifma->ifma_addr->sa_family : AF_UNSPEC); } static struct mbuf * rt_makeifannouncemsg(struct ifnet *ifp, int type, int what, struct rt_addrinfo *info) { struct if_announcemsghdr *ifan; struct mbuf *m; if (V_route_cb.any_count == 0) return NULL; bzero((caddr_t)info, sizeof(*info)); m = rtsock_msg_mbuf(type, info); if (m != NULL) { ifan = mtod(m, struct if_announcemsghdr *); ifan->ifan_index = ifp->if_index; strlcpy(ifan->ifan_name, ifp->if_xname, sizeof(ifan->ifan_name)); ifan->ifan_what = what; } return m; } /* * This is called to generate routing socket messages indicating * IEEE80211 wireless events. * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way. */ void rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len) { struct mbuf *m; struct rt_addrinfo info; m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info); if (m != NULL) { /* * Append the ieee80211 data. Try to stick it in the * mbuf containing the ifannounce msg; otherwise allocate * a new mbuf and append. * * NB: we assume m is a single mbuf. */ if (data_len > M_TRAILINGSPACE(m)) { struct mbuf *n = m_get(M_NOWAIT, MT_DATA); if (n == NULL) { m_freem(m); return; } bcopy(data, mtod(n, void *), data_len); n->m_len = data_len; m->m_next = n; } else if (data_len > 0) { bcopy(data, mtod(m, u_int8_t *) + m->m_len, data_len); m->m_len += data_len; } if (m->m_flags & M_PKTHDR) m->m_pkthdr.len += data_len; mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len; rt_dispatch(m, AF_UNSPEC); } } /* * This is called to generate routing socket messages indicating * network interface arrival and departure. */ -void +static void rt_ifannouncemsg(struct ifnet *ifp, int what) { struct mbuf *m; struct rt_addrinfo info; m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info); if (m != NULL) rt_dispatch(m, AF_UNSPEC); } static void rt_dispatch(struct mbuf *m, sa_family_t saf) { M_ASSERTPKTHDR(m); m->m_rtsock_family = saf; if (V_loif) m->m_pkthdr.rcvif = V_loif; else { m_freem(m); return; } netisr_queue(NETISR_ROUTE, m); /* mbuf is free'd on failure. */ } /* * Checks if rte can be exported w.r.t jails/vnets. * * Returns true if it can, false otherwise. */ static bool can_export_rte(struct ucred *td_ucred, bool rt_is_host, const struct sockaddr *rt_dst) { if ((!rt_is_host) ? jailed_without_vnet(td_ucred) : prison_if(td_ucred, rt_dst) != 0) return (false); return (true); } /* * This is used in dumping the kernel table via sysctl(). */ static int sysctl_dumpentry(struct rtentry *rt, void *vw) { struct walkarg *w = vw; struct nhop_object *nh; NET_EPOCH_ASSERT(); export_rtaddrs(rt, w->dst, w->mask); if (!can_export_rte(w->w_req->td->td_ucred, rt_is_host(rt), w->dst)) return (0); nh = rt_get_raw_nhop(rt); #ifdef ROUTE_MPATH if (NH_IS_NHGRP(nh)) { const struct weightened_nhop *wn; uint32_t num_nhops; int error; wn = nhgrp_get_nhops((struct nhgrp_object *)nh, &num_nhops); for (int i = 0; i < num_nhops; i++) { error = sysctl_dumpnhop(rt, wn[i].nh, wn[i].weight, w); if (error != 0) return (error); } } else #endif sysctl_dumpnhop(rt, nh, rt->rt_weight, w); return (0); } static int sysctl_dumpnhop(struct rtentry *rt, struct nhop_object *nh, uint32_t weight, struct walkarg *w) { struct rt_addrinfo info; int error = 0, size; uint32_t rtflags; rtflags = nhop_get_rtflags(nh); if (w->w_op == NET_RT_FLAGS && !(rtflags & w->w_arg)) return (0); bzero((caddr_t)&info, sizeof(info)); info.rti_info[RTAX_DST] = w->dst; info.rti_info[RTAX_GATEWAY] = &nh->gw_sa; info.rti_info[RTAX_NETMASK] = (rtflags & RTF_HOST) ? NULL : w->mask; info.rti_info[RTAX_GENMASK] = 0; if (nh->nh_ifp && !(nh->nh_ifp->if_flags & IFF_DYING)) { info.rti_info[RTAX_IFP] = nh->nh_ifp->if_addr->ifa_addr; info.rti_info[RTAX_IFA] = nh->nh_ifa->ifa_addr; if (nh->nh_ifp->if_flags & IFF_POINTOPOINT) info.rti_info[RTAX_BRD] = nh->nh_ifa->ifa_dstaddr; } if ((error = rtsock_msg_buffer(RTM_GET, &info, w, &size)) != 0) return (error); if (w->w_req && w->w_tmem) { struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem; bzero(&rtm->rtm_index, sizeof(*rtm) - offsetof(struct rt_msghdr, rtm_index)); /* * rte flags may consist of RTF_HOST (duplicated in nhop rtflags) * and RTF_UP (if entry is linked, which is always true here). * Given that, use nhop rtflags & add RTF_UP. */ rtm->rtm_flags = rtflags | RTF_UP; if (rtm->rtm_flags & RTF_GWFLAG_COMPAT) rtm->rtm_flags = RTF_GATEWAY | (rtm->rtm_flags & ~RTF_GWFLAG_COMPAT); rt_getmetrics(rt, nh, &rtm->rtm_rmx); rtm->rtm_rmx.rmx_weight = weight; rtm->rtm_index = nh->nh_ifp->if_index; rtm->rtm_addrs = info.rti_addrs; error = SYSCTL_OUT(w->w_req, (caddr_t)rtm, size); return (error); } return (error); } static int sysctl_iflist_ifml(struct ifnet *ifp, const struct if_data *src_ifd, struct rt_addrinfo *info, struct walkarg *w, int len) { struct if_msghdrl *ifm; struct if_data *ifd; ifm = (struct if_msghdrl *)w->w_tmem; #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { struct if_msghdrl32 *ifm32; ifm32 = (struct if_msghdrl32 *)ifm; ifm32->ifm_addrs = info->rti_addrs; ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm32->ifm_index = ifp->if_index; ifm32->_ifm_spare1 = 0; ifm32->ifm_len = sizeof(*ifm32); ifm32->ifm_data_off = offsetof(struct if_msghdrl32, ifm_data); ifm32->_ifm_spare2 = 0; ifd = &ifm32->ifm_data; } else #endif { ifm->ifm_addrs = info->rti_addrs; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm->ifm_index = ifp->if_index; ifm->_ifm_spare1 = 0; ifm->ifm_len = sizeof(*ifm); ifm->ifm_data_off = offsetof(struct if_msghdrl, ifm_data); ifm->_ifm_spare2 = 0; ifd = &ifm->ifm_data; } memcpy(ifd, src_ifd, sizeof(*ifd)); return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); } static int sysctl_iflist_ifm(struct ifnet *ifp, const struct if_data *src_ifd, struct rt_addrinfo *info, struct walkarg *w, int len) { struct if_msghdr *ifm; struct if_data *ifd; ifm = (struct if_msghdr *)w->w_tmem; #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { struct if_msghdr32 *ifm32; ifm32 = (struct if_msghdr32 *)ifm; ifm32->ifm_addrs = info->rti_addrs; ifm32->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm32->ifm_index = ifp->if_index; ifm32->_ifm_spare1 = 0; ifd = &ifm32->ifm_data; } else #endif { ifm->ifm_addrs = info->rti_addrs; ifm->ifm_flags = ifp->if_flags | ifp->if_drv_flags; ifm->ifm_index = ifp->if_index; ifm->_ifm_spare1 = 0; ifd = &ifm->ifm_data; } memcpy(ifd, src_ifd, sizeof(*ifd)); return (SYSCTL_OUT(w->w_req, (caddr_t)ifm, len)); } static int sysctl_iflist_ifaml(struct ifaddr *ifa, struct rt_addrinfo *info, struct walkarg *w, int len) { struct ifa_msghdrl *ifam; struct if_data *ifd; ifam = (struct ifa_msghdrl *)w->w_tmem; #ifdef COMPAT_FREEBSD32 if (w->w_req->flags & SCTL_MASK32) { struct ifa_msghdrl32 *ifam32; ifam32 = (struct ifa_msghdrl32 *)ifam; ifam32->ifam_addrs = info->rti_addrs; ifam32->ifam_flags = ifa->ifa_flags; ifam32->ifam_index = ifa->ifa_ifp->if_index; ifam32->_ifam_spare1 = 0; ifam32->ifam_len = sizeof(*ifam32); ifam32->ifam_data_off = offsetof(struct ifa_msghdrl32, ifam_data); ifam32->ifam_metric = ifa->ifa_ifp->if_metric; ifd = &ifam32->ifam_data; } else #endif { ifam->ifam_addrs = info->rti_addrs; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->_ifam_spare1 = 0; ifam->ifam_len = sizeof(*ifam); ifam->ifam_data_off = offsetof(struct ifa_msghdrl, ifam_data); ifam->ifam_metric = ifa->ifa_ifp->if_metric; ifd = &ifam->ifam_data; } bzero(ifd, sizeof(*ifd)); ifd->ifi_datalen = sizeof(struct if_data); ifd->ifi_ipackets = counter_u64_fetch(ifa->ifa_ipackets); ifd->ifi_opackets = counter_u64_fetch(ifa->ifa_opackets); ifd->ifi_ibytes = counter_u64_fetch(ifa->ifa_ibytes); ifd->ifi_obytes = counter_u64_fetch(ifa->ifa_obytes); /* Fixup if_data carp(4) vhid. */ if (carp_get_vhid_p != NULL) ifd->ifi_vhid = (*carp_get_vhid_p)(ifa); return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); } static int sysctl_iflist_ifam(struct ifaddr *ifa, struct rt_addrinfo *info, struct walkarg *w, int len) { struct ifa_msghdr *ifam; ifam = (struct ifa_msghdr *)w->w_tmem; ifam->ifam_addrs = info->rti_addrs; ifam->ifam_flags = ifa->ifa_flags; ifam->ifam_index = ifa->ifa_ifp->if_index; ifam->_ifam_spare1 = 0; ifam->ifam_metric = ifa->ifa_ifp->if_metric; return (SYSCTL_OUT(w->w_req, w->w_tmem, len)); } static int sysctl_iflist(int af, struct walkarg *w) { struct ifnet *ifp; struct ifaddr *ifa; struct if_data ifd; struct rt_addrinfo info; int len, error = 0; struct sockaddr_storage ss; bzero((caddr_t)&info, sizeof(info)); bzero(&ifd, sizeof(ifd)); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; if_data_copy(ifp, &ifd); ifa = ifp->if_addr; info.rti_info[RTAX_IFP] = ifa->ifa_addr; error = rtsock_msg_buffer(RTM_IFINFO, &info, w, &len); if (error != 0) goto done; info.rti_info[RTAX_IFP] = NULL; if (w->w_req && w->w_tmem) { if (w->w_op == NET_RT_IFLISTL) error = sysctl_iflist_ifml(ifp, &ifd, &info, w, len); else error = sysctl_iflist_ifm(ifp, &ifd, &info, w, len); if (error) goto done; } while ((ifa = CK_STAILQ_NEXT(ifa, ifa_link)) != NULL) { if (af && af != ifa->ifa_addr->sa_family) continue; if (prison_if(w->w_req->td->td_ucred, ifa->ifa_addr) != 0) continue; info.rti_info[RTAX_IFA] = ifa->ifa_addr; info.rti_info[RTAX_NETMASK] = rtsock_fix_netmask( ifa->ifa_addr, ifa->ifa_netmask, &ss); info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr; error = rtsock_msg_buffer(RTM_NEWADDR, &info, w, &len); if (error != 0) goto done; if (w->w_req && w->w_tmem) { if (w->w_op == NET_RT_IFLISTL) error = sysctl_iflist_ifaml(ifa, &info, w, len); else error = sysctl_iflist_ifam(ifa, &info, w, len); if (error) goto done; } } info.rti_info[RTAX_IFA] = NULL; info.rti_info[RTAX_NETMASK] = NULL; info.rti_info[RTAX_BRD] = NULL; } done: return (error); } static int sysctl_ifmalist(int af, struct walkarg *w) { struct rt_addrinfo info; struct ifaddr *ifa; struct ifmultiaddr *ifma; struct ifnet *ifp; int error, len; NET_EPOCH_ASSERT(); error = 0; bzero((caddr_t)&info, sizeof(info)); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (w->w_arg && w->w_arg != ifp->if_index) continue; ifa = ifp->if_addr; info.rti_info[RTAX_IFP] = ifa ? ifa->ifa_addr : NULL; CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (af && af != ifma->ifma_addr->sa_family) continue; if (prison_if(w->w_req->td->td_ucred, ifma->ifma_addr) != 0) continue; info.rti_info[RTAX_IFA] = ifma->ifma_addr; info.rti_info[RTAX_GATEWAY] = (ifma->ifma_addr->sa_family != AF_LINK) ? ifma->ifma_lladdr : NULL; error = rtsock_msg_buffer(RTM_NEWMADDR, &info, w, &len); if (error != 0) break; if (w->w_req && w->w_tmem) { struct ifma_msghdr *ifmam; ifmam = (struct ifma_msghdr *)w->w_tmem; ifmam->ifmam_index = ifma->ifma_ifp->if_index; ifmam->ifmam_flags = 0; ifmam->ifmam_addrs = info.rti_addrs; ifmam->_ifmam_spare1 = 0; error = SYSCTL_OUT(w->w_req, w->w_tmem, len); if (error != 0) break; } } if (error != 0) break; } return (error); } static void rtable_sysctl_dump(uint32_t fibnum, int family, struct walkarg *w) { union sockaddr_union sa_dst, sa_mask; w->family = family; w->dst = (struct sockaddr *)&sa_dst; w->mask = (struct sockaddr *)&sa_mask; init_sockaddrs_family(family, w->dst, w->mask); rib_walk(fibnum, family, false, sysctl_dumpentry, w); } static int sysctl_rtsock(SYSCTL_HANDLER_ARGS) { struct epoch_tracker et; int *name = (int *)arg1; u_int namelen = arg2; struct rib_head *rnh = NULL; /* silence compiler. */ int i, lim, error = EINVAL; int fib = 0; u_char af; struct walkarg w; if (namelen < 3) return (EINVAL); name++; namelen--; if (req->newptr) return (EPERM); if (name[1] == NET_RT_DUMP || name[1] == NET_RT_NHOP || name[1] == NET_RT_NHGRP) { if (namelen == 3) fib = req->td->td_proc->p_fibnum; else if (namelen == 4) fib = (name[3] == RT_ALL_FIBS) ? req->td->td_proc->p_fibnum : name[3]; else return ((namelen < 3) ? EISDIR : ENOTDIR); if (fib < 0 || fib >= rt_numfibs) return (EINVAL); } else if (namelen != 3) return ((namelen < 3) ? EISDIR : ENOTDIR); af = name[0]; if (af > AF_MAX) return (EINVAL); bzero(&w, sizeof(w)); w.w_op = name[1]; w.w_arg = name[2]; w.w_req = req; error = sysctl_wire_old_buffer(req, 0); if (error) return (error); /* * Allocate reply buffer in advance. * All rtsock messages has maximum length of u_short. */ w.w_tmemsize = 65536; w.w_tmem = malloc(w.w_tmemsize, M_TEMP, M_WAITOK); NET_EPOCH_ENTER(et); switch (w.w_op) { case NET_RT_DUMP: case NET_RT_FLAGS: if (af == 0) { /* dump all tables */ i = 1; lim = AF_MAX; } else /* dump only one table */ i = lim = af; /* * take care of llinfo entries, the caller must * specify an AF */ if (w.w_op == NET_RT_FLAGS && (w.w_arg == 0 || w.w_arg & RTF_LLINFO)) { if (af != 0) error = lltable_sysctl_dumparp(af, w.w_req); else error = EINVAL; break; } /* * take care of routing entries */ for (error = 0; error == 0 && i <= lim; i++) { rnh = rt_tables_get_rnh(fib, i); if (rnh != NULL) { rtable_sysctl_dump(fib, i, &w); } else if (af != 0) error = EAFNOSUPPORT; } break; case NET_RT_NHOP: case NET_RT_NHGRP: /* Allow dumping one specific af/fib at a time */ if (namelen < 4) { error = EINVAL; break; } fib = name[3]; if (fib < 0 || fib > rt_numfibs) { error = EINVAL; break; } rnh = rt_tables_get_rnh(fib, af); if (rnh == NULL) { error = EAFNOSUPPORT; break; } if (w.w_op == NET_RT_NHOP) error = nhops_dump_sysctl(rnh, w.w_req); else #ifdef ROUTE_MPATH error = nhgrp_dump_sysctl(rnh, w.w_req); #else error = ENOTSUP; #endif break; case NET_RT_IFLIST: case NET_RT_IFLISTL: error = sysctl_iflist(af, &w); break; case NET_RT_IFMALIST: error = sysctl_ifmalist(af, &w); break; } NET_EPOCH_EXIT(et); free(w.w_tmem, M_TEMP); return (error); } static SYSCTL_NODE(_net, PF_ROUTE, routetable, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_rtsock, "Return route tables and interface/address lists"); /* * Definitions of protocols supported in the ROUTE domain. */ static struct domain routedomain; /* or at least forward */ static struct pr_usrreqs route_usrreqs = { .pru_abort = rts_close, .pru_attach = rts_attach, .pru_detach = rts_detach, .pru_send = rts_send, .pru_shutdown = rts_shutdown, .pru_close = rts_close, }; static struct protosw routesw[] = { { .pr_type = SOCK_RAW, .pr_domain = &routedomain, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_usrreqs = &route_usrreqs } }; static struct domain routedomain = { .dom_family = PF_ROUTE, .dom_name = "route", .dom_protosw = routesw, .dom_protoswNPROTOSW = &routesw[nitems(routesw)] }; DOMAIN_SET(route);