diff --git a/sys/dev/cxgbe/tom/t4_cpl_io.c b/sys/dev/cxgbe/tom/t4_cpl_io.c
index 3af127c6a3a3..a75f93ded5f6 100644
--- a/sys/dev/cxgbe/tom/t4_cpl_io.c
+++ b/sys/dev/cxgbe/tom/t4_cpl_io.c
@@ -1,2361 +1,2369 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 2012, 2015 Chelsio Communications, Inc.
  * All rights reserved.
  * Written by: Navdeep Parhar <np@FreeBSD.org>
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_kern_tls.h"
 #include "opt_ratelimit.h"
 
 #ifdef TCP_OFFLOAD
 #include <sys/param.h>
 #include <sys/aio.h>
 #include <sys/file.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/module.h>
 #include <sys/proc.h>
 #include <sys/protosw.h>
 #include <sys/domain.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/sglist.h>
 #include <sys/taskqueue.h>
 #include <netinet/in.h>
 #include <netinet/in_pcb.h>
 #include <netinet/ip.h>
 #include <netinet/ip6.h>
 #define TCPSTATES
 #include <netinet/tcp_fsm.h>
 #include <netinet/tcp_seq.h>
 #include <netinet/tcp_var.h>
 #include <netinet/toecore.h>
 
 #include <security/mac/mac_framework.h>
 
 #include <vm/vm.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_page.h>
 
 #include "common/common.h"
 #include "common/t4_msg.h"
 #include "common/t4_regs.h"
 #include "common/t4_tcb.h"
 #include "tom/t4_tom_l2t.h"
 #include "tom/t4_tom.h"
 
 static void	t4_aiotx_cancel(struct kaiocb *job);
 static void	t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep);
 
 void
 send_flowc_wr(struct toepcb *toep, struct tcpcb *tp)
 {
 	struct wrqe *wr;
 	struct fw_flowc_wr *flowc;
 	unsigned int nparams, flowclen, paramidx;
 	struct vi_info *vi = toep->vi;
 	struct port_info *pi = vi->pi;
 	struct adapter *sc = pi->adapter;
 	unsigned int pfvf = sc->pf << S_FW_VIID_PFN;
 	struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
 
 	KASSERT(!(toep->flags & TPF_FLOWC_WR_SENT),
 	    ("%s: flowc for tid %u sent already", __func__, toep->tid));
 
 	if (tp != NULL)
 		nparams = 8;
 	else
 		nparams = 6;
 	if (ulp_mode(toep) == ULP_MODE_TLS)
 		nparams++;
 	if (toep->tls.fcplenmax != 0)
 		nparams++;
 	if (toep->params.tc_idx != -1) {
 		MPASS(toep->params.tc_idx >= 0 &&
 		    toep->params.tc_idx < sc->params.nsched_cls);
 		nparams++;
 	}
 
 	flowclen = sizeof(*flowc) + nparams * sizeof(struct fw_flowc_mnemval);
 
 	wr = alloc_wrqe(roundup2(flowclen, 16), &toep->ofld_txq->wrq);
 	if (wr == NULL) {
 		/* XXX */
 		panic("%s: allocation failure.", __func__);
 	}
 	flowc = wrtod(wr);
 	memset(flowc, 0, wr->wr_len);
 
 	flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
 	    V_FW_FLOWC_WR_NPARAMS(nparams));
 	flowc->flowid_len16 = htonl(V_FW_WR_LEN16(howmany(flowclen, 16)) |
 	    V_FW_WR_FLOWID(toep->tid));
 
 #define FLOWC_PARAM(__m, __v) \
 	do { \
 		flowc->mnemval[paramidx].mnemonic = FW_FLOWC_MNEM_##__m; \
 		flowc->mnemval[paramidx].val = htobe32(__v); \
 		paramidx++; \
 	} while (0)
 
 	paramidx = 0;
 
 	FLOWC_PARAM(PFNVFN, pfvf);
 	FLOWC_PARAM(CH, pi->tx_chan);
 	FLOWC_PARAM(PORT, pi->tx_chan);
 	FLOWC_PARAM(IQID, toep->ofld_rxq->iq.abs_id);
 	FLOWC_PARAM(SNDBUF, toep->params.sndbuf);
 	if (tp) {
 		FLOWC_PARAM(MSS, toep->params.emss);
 		FLOWC_PARAM(SNDNXT, tp->snd_nxt);
 		FLOWC_PARAM(RCVNXT, tp->rcv_nxt);
 	} else
 		FLOWC_PARAM(MSS, 512);
 	CTR6(KTR_CXGBE,
 	    "%s: tid %u, mss %u, sndbuf %u, snd_nxt 0x%x, rcv_nxt 0x%x",
 	    __func__, toep->tid, toep->params.emss, toep->params.sndbuf,
 	    tp ? tp->snd_nxt : 0, tp ? tp->rcv_nxt : 0);
 
 	if (ulp_mode(toep) == ULP_MODE_TLS)
 		FLOWC_PARAM(ULP_MODE, ulp_mode(toep));
 	if (toep->tls.fcplenmax != 0)
 		FLOWC_PARAM(TXDATAPLEN_MAX, toep->tls.fcplenmax);
 	if (toep->params.tc_idx != -1)
 		FLOWC_PARAM(SCHEDCLASS, toep->params.tc_idx);
 #undef FLOWC_PARAM
 
 	KASSERT(paramidx == nparams, ("nparams mismatch"));
 
 	txsd->tx_credits = howmany(flowclen, 16);
 	txsd->plen = 0;
 	KASSERT(toep->tx_credits >= txsd->tx_credits && toep->txsd_avail > 0,
 	    ("%s: not enough credits (%d)", __func__, toep->tx_credits));
 	toep->tx_credits -= txsd->tx_credits;
 	if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
 		toep->txsd_pidx = 0;
 	toep->txsd_avail--;
 
 	toep->flags |= TPF_FLOWC_WR_SENT;
         t4_wrq_tx(sc, wr);
 }
 
 #ifdef RATELIMIT
 /*
  * Input is Bytes/second (so_max_pacing_rate), chip counts in Kilobits/second.
  */
 static int
 update_tx_rate_limit(struct adapter *sc, struct toepcb *toep, u_int Bps)
 {
 	int tc_idx, rc;
 	const u_int kbps = (u_int) (uint64_t)Bps * 8ULL / 1000;
 	const int port_id = toep->vi->pi->port_id;
 
 	CTR3(KTR_CXGBE, "%s: tid %u, rate %uKbps", __func__, toep->tid, kbps);
 
 	if (kbps == 0) {
 		/* unbind */
 		tc_idx = -1;
 	} else {
 		rc = t4_reserve_cl_rl_kbps(sc, port_id, kbps, &tc_idx);
 		if (rc != 0)
 			return (rc);
 		MPASS(tc_idx >= 0 && tc_idx < sc->params.nsched_cls);
 	}
 
 	if (toep->params.tc_idx != tc_idx) {
 		struct wrqe *wr;
 		struct fw_flowc_wr *flowc;
 		int nparams = 1, flowclen, flowclen16;
 		struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
 
 		flowclen = sizeof(*flowc) + nparams * sizeof(struct
 		    fw_flowc_mnemval);
 		flowclen16 = howmany(flowclen, 16);
 		if (toep->tx_credits < flowclen16 || toep->txsd_avail == 0 ||
 		    (wr = alloc_wrqe(roundup2(flowclen, 16),
 		    &toep->ofld_txq->wrq)) == NULL) {
 			if (tc_idx >= 0)
 				t4_release_cl_rl(sc, port_id, tc_idx);
 			return (ENOMEM);
 		}
 
 		flowc = wrtod(wr);
 		memset(flowc, 0, wr->wr_len);
 
 		flowc->op_to_nparams = htobe32(V_FW_WR_OP(FW_FLOWC_WR) |
 		    V_FW_FLOWC_WR_NPARAMS(nparams));
 		flowc->flowid_len16 = htonl(V_FW_WR_LEN16(flowclen16) |
 		    V_FW_WR_FLOWID(toep->tid));
 
 		flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
 		if (tc_idx == -1)
 			flowc->mnemval[0].val = htobe32(0xff);
 		else
 			flowc->mnemval[0].val = htobe32(tc_idx);
 
 		txsd->tx_credits = flowclen16;
 		txsd->plen = 0;
 		toep->tx_credits -= txsd->tx_credits;
 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
 			toep->txsd_pidx = 0;
 		toep->txsd_avail--;
 		t4_wrq_tx(sc, wr);
 	}
 
 	if (toep->params.tc_idx >= 0)
 		t4_release_cl_rl(sc, port_id, toep->params.tc_idx);
 	toep->params.tc_idx = tc_idx;
 
 	return (0);
 }
 #endif
 
 void
 send_reset(struct adapter *sc, struct toepcb *toep, uint32_t snd_nxt)
 {
 	struct wrqe *wr;
 	struct cpl_abort_req *req;
 	int tid = toep->tid;
 	struct inpcb *inp = toep->inp;
 	struct tcpcb *tp = intotcpcb(inp);	/* don't use if INP_DROPPED */
 
 	INP_WLOCK_ASSERT(inp);
 
 	CTR6(KTR_CXGBE, "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x%s",
 	    __func__, toep->tid,
 	    inp->inp_flags & INP_DROPPED ? "inp dropped" :
 	    tcpstates[tp->t_state],
 	    toep->flags, inp->inp_flags,
 	    toep->flags & TPF_ABORT_SHUTDOWN ?
 	    " (abort already in progress)" : "");
 
 	if (toep->flags & TPF_ABORT_SHUTDOWN)
 		return;	/* abort already in progress */
 
 	toep->flags |= TPF_ABORT_SHUTDOWN;
 
 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
 	    ("%s: flowc_wr not sent for tid %d.", __func__, tid));
 
 	wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq);
 	if (wr == NULL) {
 		/* XXX */
 		panic("%s: allocation failure.", __func__);
 	}
 	req = wrtod(wr);
 
 	INIT_TP_WR_MIT_CPL(req, CPL_ABORT_REQ, tid);
 	if (inp->inp_flags & INP_DROPPED)
 		req->rsvd0 = htobe32(snd_nxt);
 	else
 		req->rsvd0 = htobe32(tp->snd_nxt);
 	req->rsvd1 = !(toep->flags & TPF_TX_DATA_SENT);
 	req->cmd = CPL_ABORT_SEND_RST;
 
 	/*
 	 * XXX: What's the correct way to tell that the inp hasn't been detached
 	 * from its socket?  Should I even be flushing the snd buffer here?
 	 */
 	if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) {
 		struct socket *so = inp->inp_socket;
 
 		if (so != NULL)	/* because I'm not sure.  See comment above */
 			sbflush(&so->so_snd);
 	}
 
 	t4_l2t_send(sc, wr, toep->l2te);
 }
 
 /*
  * Called when a connection is established to translate the TCP options
  * reported by HW to FreeBSD's native format.
  */
 static void
 assign_rxopt(struct tcpcb *tp, uint16_t opt)
 {
 	struct toepcb *toep = tp->t_toe;
 	struct inpcb *inp = tp->t_inpcb;
 	struct adapter *sc = td_adapter(toep->td);
 
 	INP_LOCK_ASSERT(inp);
 
 	toep->params.mtu_idx = G_TCPOPT_MSS(opt);
 	tp->t_maxseg = sc->params.mtus[toep->params.mtu_idx];
 	if (inp->inp_inc.inc_flags & INC_ISIPV6)
 		tp->t_maxseg -= sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
 	else
 		tp->t_maxseg -= sizeof(struct ip) + sizeof(struct tcphdr);
 
 	toep->params.emss = tp->t_maxseg;
 	if (G_TCPOPT_TSTAMP(opt)) {
 		toep->params.tstamp = 1;
 		toep->params.emss -= TCPOLEN_TSTAMP_APPA;
 		tp->t_flags |= TF_RCVD_TSTMP;	/* timestamps ok */
 		tp->ts_recent = 0;		/* hmmm */
 		tp->ts_recent_age = tcp_ts_getticks();
 	} else
 		toep->params.tstamp = 0;
 
 	if (G_TCPOPT_SACK(opt)) {
 		toep->params.sack = 1;
 		tp->t_flags |= TF_SACK_PERMIT;	/* should already be set */
 	} else {
 		toep->params.sack = 0;
 		tp->t_flags &= ~TF_SACK_PERMIT;	/* sack disallowed by peer */
 	}
 
 	if (G_TCPOPT_WSCALE_OK(opt))
 		tp->t_flags |= TF_RCVD_SCALE;
 
 	/* Doing window scaling? */
 	if ((tp->t_flags & (TF_RCVD_SCALE | TF_REQ_SCALE)) ==
 	    (TF_RCVD_SCALE | TF_REQ_SCALE)) {
 		tp->rcv_scale = tp->request_r_scale;
 		tp->snd_scale = G_TCPOPT_SND_WSCALE(opt);
 	} else
 		toep->params.wscale = 0;
 
 	CTR6(KTR_CXGBE,
 	    "assign_rxopt: tid %d, mtu_idx %u, emss %u, ts %u, sack %u, wscale %u",
 	    toep->tid, toep->params.mtu_idx, toep->params.emss,
 	    toep->params.tstamp, toep->params.sack, toep->params.wscale);
 }
 
 /*
  * Completes some final bits of initialization for just established connections
  * and changes their state to TCPS_ESTABLISHED.
  *
  * The ISNs are from the exchange of SYNs.
  */
 void
 make_established(struct toepcb *toep, uint32_t iss, uint32_t irs, uint16_t opt)
 {
 	struct inpcb *inp = toep->inp;
 	struct socket *so = inp->inp_socket;
 	struct tcpcb *tp = intotcpcb(inp);
 	uint16_t tcpopt = be16toh(opt);
 
 	INP_WLOCK_ASSERT(inp);
 	KASSERT(tp->t_state == TCPS_SYN_SENT ||
 	    tp->t_state == TCPS_SYN_RECEIVED,
 	    ("%s: TCP state %s", __func__, tcpstates[tp->t_state]));
 
 	CTR6(KTR_CXGBE, "%s: tid %d, so %p, inp %p, tp %p, toep %p",
 	    __func__, toep->tid, so, inp, tp, toep);
 
 	tcp_state_change(tp, TCPS_ESTABLISHED);
 	tp->t_starttime = ticks;
 	TCPSTAT_INC(tcps_connects);
 
 	tp->irs = irs;
 	tcp_rcvseqinit(tp);
 	tp->rcv_wnd = (u_int)toep->params.opt0_bufsize << 10;
 	tp->rcv_adv += tp->rcv_wnd;
 	tp->last_ack_sent = tp->rcv_nxt;
 
 	tp->iss = iss;
 	tcp_sendseqinit(tp);
 	tp->snd_una = iss + 1;
 	tp->snd_nxt = iss + 1;
 	tp->snd_max = iss + 1;
 
 	assign_rxopt(tp, tcpopt);
 	send_flowc_wr(toep, tp);
 
 	soisconnected(so);
 
 	if (ulp_mode(toep) == ULP_MODE_TLS)
 		tls_establish(toep);
 }
 
 int
 send_rx_credits(struct adapter *sc, struct toepcb *toep, int credits)
 {
 	struct wrqe *wr;
 	struct cpl_rx_data_ack *req;
 	uint32_t dack = F_RX_DACK_CHANGE | V_RX_DACK_MODE(1);
 
 	KASSERT(credits >= 0, ("%s: %d credits", __func__, credits));
 
 	wr = alloc_wrqe(sizeof(*req), toep->ctrlq);
 	if (wr == NULL)
 		return (0);
 	req = wrtod(wr);
 
 	INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid);
 	req->credit_dack = htobe32(dack | V_RX_CREDITS(credits));
 
 	t4_wrq_tx(sc, wr);
 	return (credits);
 }
 
 void
 send_rx_modulate(struct adapter *sc, struct toepcb *toep)
 {
 	struct wrqe *wr;
 	struct cpl_rx_data_ack *req;
 
 	wr = alloc_wrqe(sizeof(*req), toep->ctrlq);
 	if (wr == NULL)
 		return;
 	req = wrtod(wr);
 
 	INIT_TP_WR_MIT_CPL(req, CPL_RX_DATA_ACK, toep->tid);
 	req->credit_dack = htobe32(F_RX_MODULATE_RX);
 
 	t4_wrq_tx(sc, wr);
 }
 
 void
 t4_rcvd_locked(struct toedev *tod, struct tcpcb *tp)
 {
 	struct adapter *sc = tod->tod_softc;
 	struct inpcb *inp = tp->t_inpcb;
 	struct socket *so = inp->inp_socket;
 	struct sockbuf *sb = &so->so_rcv;
 	struct toepcb *toep = tp->t_toe;
 	int rx_credits;
 
 	INP_WLOCK_ASSERT(inp);
 	SOCKBUF_LOCK_ASSERT(sb);
 
 	rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0;
 	if (rx_credits > 0 &&
 	    (tp->rcv_wnd <= 32 * 1024 || rx_credits >= 64 * 1024 ||
 	    (rx_credits >= 16 * 1024 && tp->rcv_wnd <= 128 * 1024) ||
 	    sbused(sb) + tp->rcv_wnd < sb->sb_lowat)) {
 		rx_credits = send_rx_credits(sc, toep, rx_credits);
 		tp->rcv_wnd += rx_credits;
 		tp->rcv_adv += rx_credits;
 	} else if (toep->flags & TPF_FORCE_CREDITS)
 		send_rx_modulate(sc, toep);
 }
 
 void
 t4_rcvd(struct toedev *tod, struct tcpcb *tp)
 {
 	struct inpcb *inp = tp->t_inpcb;
 	struct socket *so = inp->inp_socket;
 	struct sockbuf *sb = &so->so_rcv;
 
 	SOCKBUF_LOCK(sb);
 	t4_rcvd_locked(tod, tp);
 	SOCKBUF_UNLOCK(sb);
 }
 
 /*
  * Close a connection by sending a CPL_CLOSE_CON_REQ message.
  */
 int
 t4_close_conn(struct adapter *sc, struct toepcb *toep)
 {
 	struct wrqe *wr;
 	struct cpl_close_con_req *req;
 	unsigned int tid = toep->tid;
 
 	CTR3(KTR_CXGBE, "%s: tid %u%s", __func__, toep->tid,
 	    toep->flags & TPF_FIN_SENT ? ", IGNORED" : "");
 
 	if (toep->flags & TPF_FIN_SENT)
 		return (0);
 
 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
 	    ("%s: flowc_wr not sent for tid %u.", __func__, tid));
 
 	wr = alloc_wrqe(sizeof(*req), &toep->ofld_txq->wrq);
 	if (wr == NULL) {
 		/* XXX */
 		panic("%s: allocation failure.", __func__);
 	}
 	req = wrtod(wr);
 
         req->wr.wr_hi = htonl(V_FW_WR_OP(FW_TP_WR) |
 	    V_FW_WR_IMMDLEN(sizeof(*req) - sizeof(req->wr)));
 	req->wr.wr_mid = htonl(V_FW_WR_LEN16(howmany(sizeof(*req), 16)) |
 	    V_FW_WR_FLOWID(tid));
         req->wr.wr_lo = cpu_to_be64(0);
         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, tid));
 	req->rsvd = 0;
 
 	toep->flags |= TPF_FIN_SENT;
 	toep->flags &= ~TPF_SEND_FIN;
 	t4_l2t_send(sc, wr, toep->l2te);
 
 	return (0);
 }
 
 #define MAX_OFLD_TX_CREDITS (SGE_MAX_WR_LEN / 16)
 #define MIN_OFLD_TX_CREDITS (howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16))
 
 /* Maximum amount of immediate data we could stuff in a WR */
 static inline int
 max_imm_payload(int tx_credits)
 {
 	const int n = 1;	/* Use no more than one desc for imm. data WR */
 
 	KASSERT(tx_credits >= 0 &&
 		tx_credits <= MAX_OFLD_TX_CREDITS,
 		("%s: %d credits", __func__, tx_credits));
 
 	if (tx_credits < MIN_OFLD_TX_CREDITS)
 		return (0);
 
 	if (tx_credits >= (n * EQ_ESIZE) / 16)
 		return ((n * EQ_ESIZE) - sizeof(struct fw_ofld_tx_data_wr));
 	else
 		return (tx_credits * 16 - sizeof(struct fw_ofld_tx_data_wr));
 }
 
 /* Maximum number of SGL entries we could stuff in a WR */
 static inline int
 max_dsgl_nsegs(int tx_credits)
 {
 	int nseg = 1;	/* ulptx_sgl has room for 1, rest ulp_tx_sge_pair */
 	int sge_pair_credits = tx_credits - MIN_OFLD_TX_CREDITS;
 
 	KASSERT(tx_credits >= 0 &&
 		tx_credits <= MAX_OFLD_TX_CREDITS,
 		("%s: %d credits", __func__, tx_credits));
 
 	if (tx_credits < MIN_OFLD_TX_CREDITS)
 		return (0);
 
 	nseg += 2 * (sge_pair_credits * 16 / 24);
 	if ((sge_pair_credits * 16) % 24 == 16)
 		nseg++;
 
 	return (nseg);
 }
 
 static inline void
 write_tx_wr(void *dst, struct toepcb *toep, unsigned int immdlen,
     unsigned int plen, uint8_t credits, int shove, int ulp_submode)
 {
 	struct fw_ofld_tx_data_wr *txwr = dst;
 
 	txwr->op_to_immdlen = htobe32(V_WR_OP(FW_OFLD_TX_DATA_WR) |
 	    V_FW_WR_IMMDLEN(immdlen));
 	txwr->flowid_len16 = htobe32(V_FW_WR_FLOWID(toep->tid) |
 	    V_FW_WR_LEN16(credits));
 	txwr->lsodisable_to_flags = htobe32(V_TX_ULP_MODE(ulp_mode(toep)) |
 	    V_TX_ULP_SUBMODE(ulp_submode) | V_TX_URG(0) | V_TX_SHOVE(shove));
 	txwr->plen = htobe32(plen);
 
 	if (toep->params.tx_align > 0) {
 		if (plen < 2 * toep->params.emss)
 			txwr->lsodisable_to_flags |=
 			    htobe32(F_FW_OFLD_TX_DATA_WR_LSODISABLE);
 		else
 			txwr->lsodisable_to_flags |=
 			    htobe32(F_FW_OFLD_TX_DATA_WR_ALIGNPLD |
 				(toep->params.nagle == 0 ? 0 :
 				F_FW_OFLD_TX_DATA_WR_ALIGNPLDSHOVE));
 	}
 }
 
 /*
  * Generate a DSGL from a starting mbuf.  The total number of segments and the
  * maximum segments in any one mbuf are provided.
  */
 static void
 write_tx_sgl(void *dst, struct mbuf *start, struct mbuf *stop, int nsegs, int n)
 {
 	struct mbuf *m;
 	struct ulptx_sgl *usgl = dst;
 	int i, j, rc;
 	struct sglist sg;
 	struct sglist_seg segs[n];
 
 	KASSERT(nsegs > 0, ("%s: nsegs 0", __func__));
 
 	sglist_init(&sg, n, segs);
 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
 	    V_ULPTX_NSGE(nsegs));
 
 	i = -1;
 	for (m = start; m != stop; m = m->m_next) {
 		if (m->m_flags & M_EXTPG)
 			rc = sglist_append_mbuf_epg(&sg, m,
 			    mtod(m, vm_offset_t), m->m_len);
 		else
 			rc = sglist_append(&sg, mtod(m, void *), m->m_len);
 		if (__predict_false(rc != 0))
 			panic("%s: sglist_append %d", __func__, rc);
 
 		for (j = 0; j < sg.sg_nseg; i++, j++) {
 			if (i < 0) {
 				usgl->len0 = htobe32(segs[j].ss_len);
 				usgl->addr0 = htobe64(segs[j].ss_paddr);
 			} else {
 				usgl->sge[i / 2].len[i & 1] =
 				    htobe32(segs[j].ss_len);
 				usgl->sge[i / 2].addr[i & 1] =
 				    htobe64(segs[j].ss_paddr);
 			}
 #ifdef INVARIANTS
 			nsegs--;
 #endif
 		}
 		sglist_reset(&sg);
 	}
 	if (i & 1)
 		usgl->sge[i / 2].len[1] = htobe32(0);
 	KASSERT(nsegs == 0, ("%s: nsegs %d, start %p, stop %p",
 	    __func__, nsegs, start, stop));
 }
 
 /*
  * Max number of SGL entries an offload tx work request can have.  This is 41
  * (1 + 40) for a full 512B work request.
  * fw_ofld_tx_data_wr(16B) + ulptx_sgl(16B, 1) + ulptx_sge_pair(480B, 40)
  */
 #define OFLD_SGL_LEN (41)
 
 /*
  * Send data and/or a FIN to the peer.
  *
  * The socket's so_snd buffer consists of a stream of data starting with sb_mb
  * and linked together with m_next.  sb_sndptr, if set, is the last mbuf that
  * was transmitted.
  *
  * drop indicates the number of bytes that should be dropped from the head of
  * the send buffer.  It is an optimization that lets do_fw4_ack avoid creating
  * contention on the send buffer lock (before this change it used to do
  * sowwakeup and then t4_push_frames right after that when recovering from tx
  * stalls).  When drop is set this function MUST drop the bytes and wake up any
  * writers.
  */
 void
 t4_push_frames(struct adapter *sc, struct toepcb *toep, int drop)
 {
 	struct mbuf *sndptr, *m, *sb_sndptr;
 	struct fw_ofld_tx_data_wr *txwr;
 	struct wrqe *wr;
 	u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
 	struct inpcb *inp = toep->inp;
 	struct tcpcb *tp = intotcpcb(inp);
 	struct socket *so = inp->inp_socket;
 	struct sockbuf *sb = &so->so_snd;
 	int tx_credits, shove, compl, sowwakeup;
 	struct ofld_tx_sdesc *txsd;
 	bool nomap_mbuf_seen;
 
 	INP_WLOCK_ASSERT(inp);
 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
 	    ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
 
 	KASSERT(ulp_mode(toep) == ULP_MODE_NONE ||
 	    ulp_mode(toep) == ULP_MODE_TCPDDP ||
 	    ulp_mode(toep) == ULP_MODE_TLS ||
 	    ulp_mode(toep) == ULP_MODE_RDMA,
 	    ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
 
 #ifdef VERBOSE_TRACES
 	CTR5(KTR_CXGBE, "%s: tid %d toep flags %#x tp flags %#x drop %d",
 	    __func__, toep->tid, toep->flags, tp->t_flags, drop);
 #endif
 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
 		return;
 
 #ifdef RATELIMIT
 	if (__predict_false(inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) &&
 	    (update_tx_rate_limit(sc, toep, so->so_max_pacing_rate) == 0)) {
 		inp->inp_flags2 &= ~INP_RATE_LIMIT_CHANGED;
 	}
 #endif
 
 	/*
 	 * This function doesn't resume by itself.  Someone else must clear the
 	 * flag and call this function.
 	 */
 	if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
 		KASSERT(drop == 0,
 		    ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
 		return;
 	}
 
 	txsd = &toep->txsd[toep->txsd_pidx];
 	do {
 		tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
 		max_imm = max_imm_payload(tx_credits);
 		max_nsegs = max_dsgl_nsegs(tx_credits);
 
 		SOCKBUF_LOCK(sb);
 		sowwakeup = drop;
 		if (drop) {
 			sbdrop_locked(sb, drop);
 			drop = 0;
 		}
 		sb_sndptr = sb->sb_sndptr;
 		sndptr = sb_sndptr ? sb_sndptr->m_next : sb->sb_mb;
 		plen = 0;
 		nsegs = 0;
 		max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
 		nomap_mbuf_seen = false;
 		for (m = sndptr; m != NULL; m = m->m_next) {
 			int n;
 
 			if ((m->m_flags & M_NOTAVAIL) != 0)
 				break;
 			if (m->m_flags & M_EXTPG) {
 #ifdef KERN_TLS
 				if (m->m_epg_tls != NULL) {
 					toep->flags |= TPF_KTLS;
 					if (plen == 0) {
 						SOCKBUF_UNLOCK(sb);
 						t4_push_ktls(sc, toep, 0);
 						return;
 					}
 					break;
 				}
 #endif
 				n = sglist_count_mbuf_epg(m,
 				    mtod(m, vm_offset_t), m->m_len);
 			} else
 				n = sglist_count(mtod(m, void *), m->m_len);
 
 			nsegs += n;
 			plen += m->m_len;
 
 			/* This mbuf sent us _over_ the nsegs limit, back out */
 			if (plen > max_imm && nsegs > max_nsegs) {
 				nsegs -= n;
 				plen -= m->m_len;
 				if (plen == 0) {
 					/* Too few credits */
 					toep->flags |= TPF_TX_SUSPENDED;
 					if (sowwakeup) {
 						if (!TAILQ_EMPTY(
 						    &toep->aiotx_jobq))
 							t4_aiotx_queue_toep(so,
 							    toep);
 						sowwakeup_locked(so);
 					} else
 						SOCKBUF_UNLOCK(sb);
 					SOCKBUF_UNLOCK_ASSERT(sb);
 					return;
 				}
 				break;
 			}
 
 			if (m->m_flags & M_EXTPG)
 				nomap_mbuf_seen = true;
 			if (max_nsegs_1mbuf < n)
 				max_nsegs_1mbuf = n;
 			sb_sndptr = m;	/* new sb->sb_sndptr if all goes well */
 
 			/* This mbuf put us right at the max_nsegs limit */
 			if (plen > max_imm && nsegs == max_nsegs) {
 				m = m->m_next;
 				break;
 			}
 		}
 
 		if (sbused(sb) > sb->sb_hiwat * 5 / 8 &&
 		    toep->plen_nocompl + plen >= sb->sb_hiwat / 4)
 			compl = 1;
 		else
 			compl = 0;
 
 		if (sb->sb_flags & SB_AUTOSIZE &&
 		    V_tcp_do_autosndbuf &&
 		    sb->sb_hiwat < V_tcp_autosndbuf_max &&
 		    sbused(sb) >= sb->sb_hiwat * 7 / 8) {
 			int newsize = min(sb->sb_hiwat + V_tcp_autosndbuf_inc,
 			    V_tcp_autosndbuf_max);
 
 			if (!sbreserve_locked(sb, newsize, so, NULL))
 				sb->sb_flags &= ~SB_AUTOSIZE;
 			else
 				sowwakeup = 1;	/* room available */
 		}
 		if (sowwakeup) {
 			if (!TAILQ_EMPTY(&toep->aiotx_jobq))
 				t4_aiotx_queue_toep(so, toep);
 			sowwakeup_locked(so);
 		} else
 			SOCKBUF_UNLOCK(sb);
 		SOCKBUF_UNLOCK_ASSERT(sb);
 
 		/* nothing to send */
 		if (plen == 0) {
 			KASSERT(m == NULL || (m->m_flags & M_NOTAVAIL) != 0,
 			    ("%s: nothing to send, but m != NULL is ready",
 			    __func__));
 			break;
 		}
 
 		if (__predict_false(toep->flags & TPF_FIN_SENT))
 			panic("%s: excess tx.", __func__);
 
 		shove = m == NULL && !(tp->t_flags & TF_MORETOCOME);
 		if (plen <= max_imm && !nomap_mbuf_seen) {
 
 			/* Immediate data tx */
 
 			wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
 					&toep->ofld_txq->wrq);
 			if (wr == NULL) {
 				/* XXX: how will we recover from this? */
 				toep->flags |= TPF_TX_SUSPENDED;
 				return;
 			}
 			txwr = wrtod(wr);
 			credits = howmany(wr->wr_len, 16);
 			write_tx_wr(txwr, toep, plen, plen, credits, shove, 0);
 			m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
 			nsegs = 0;
 		} else {
 			int wr_len;
 
 			/* DSGL tx */
 
 			wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
 			    ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
 			wr = alloc_wrqe(roundup2(wr_len, 16),
 			    &toep->ofld_txq->wrq);
 			if (wr == NULL) {
 				/* XXX: how will we recover from this? */
 				toep->flags |= TPF_TX_SUSPENDED;
 				return;
 			}
 			txwr = wrtod(wr);
 			credits = howmany(wr_len, 16);
 			write_tx_wr(txwr, toep, 0, plen, credits, shove, 0);
 			write_tx_sgl(txwr + 1, sndptr, m, nsegs,
 			    max_nsegs_1mbuf);
 			if (wr_len & 0xf) {
 				uint64_t *pad = (uint64_t *)
 				    ((uintptr_t)txwr + wr_len);
 				*pad = 0;
 			}
 		}
 
 		KASSERT(toep->tx_credits >= credits,
 			("%s: not enough credits", __func__));
 
 		toep->tx_credits -= credits;
 		toep->tx_nocompl += credits;
 		toep->plen_nocompl += plen;
 		if (toep->tx_credits <= toep->tx_total * 3 / 8 &&
 		    toep->tx_nocompl >= toep->tx_total / 4)
 			compl = 1;
 
 		if (compl || ulp_mode(toep) == ULP_MODE_RDMA) {
 			txwr->op_to_immdlen |= htobe32(F_FW_WR_COMPL);
 			toep->tx_nocompl = 0;
 			toep->plen_nocompl = 0;
 		}
 
 		tp->snd_nxt += plen;
 		tp->snd_max += plen;
 
 		SOCKBUF_LOCK(sb);
 		KASSERT(sb_sndptr, ("%s: sb_sndptr is NULL", __func__));
 		sb->sb_sndptr = sb_sndptr;
 		SOCKBUF_UNLOCK(sb);
 
 		toep->flags |= TPF_TX_DATA_SENT;
 		if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
 			toep->flags |= TPF_TX_SUSPENDED;
 
 		KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
 		txsd->plen = plen;
 		txsd->tx_credits = credits;
 		txsd++;
 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
 			toep->txsd_pidx = 0;
 			txsd = &toep->txsd[0];
 		}
 		toep->txsd_avail--;
 
 		t4_l2t_send(sc, wr, toep->l2te);
 	} while (m != NULL && (m->m_flags & M_NOTAVAIL) == 0);
 
 	/* Send a FIN if requested, but only if there's no more data to send */
 	if (m == NULL && toep->flags & TPF_SEND_FIN)
 		t4_close_conn(sc, toep);
 }
 
 static inline void
 rqdrop_locked(struct mbufq *q, int plen)
 {
 	struct mbuf *m;
 
 	while (plen > 0) {
 		m = mbufq_dequeue(q);
 
 		/* Too many credits. */
 		MPASS(m != NULL);
 		M_ASSERTPKTHDR(m);
 
 		/* Partial credits. */
 		MPASS(plen >= m->m_pkthdr.len);
 
 		plen -= m->m_pkthdr.len;
 		m_freem(m);
 	}
 }
 
 static struct wrqe *
 write_iscsi_mbuf_wr(struct toepcb *toep, struct mbuf *sndptr)
 {
 	struct mbuf *m;
 	struct fw_ofld_tx_data_wr *txwr;
 	struct wrqe *wr;
 	u_int plen, nsegs, credits, max_imm, max_nsegs, max_nsegs_1mbuf;
 	u_int adjusted_plen, ulp_submode;
 	struct inpcb *inp = toep->inp;
 	struct tcpcb *tp = intotcpcb(inp);
 	int tx_credits, shove;
 	static const u_int ulp_extra_len[] = {0, 4, 4, 8};
 
 	M_ASSERTPKTHDR(sndptr);
 
 	tx_credits = min(toep->tx_credits, MAX_OFLD_TX_CREDITS);
 	if (mbuf_raw_wr(sndptr)) {
 		plen = sndptr->m_pkthdr.len;
 		KASSERT(plen <= SGE_MAX_WR_LEN,
 		    ("raw WR len %u is greater than max WR len", plen));
 		if (plen > tx_credits * 16)
 			return (NULL);
 
 		wr = alloc_wrqe(roundup2(plen, 16), &toep->ofld_txq->wrq);
 		if (__predict_false(wr == NULL))
 			return (NULL);
 
 		m_copydata(sndptr, 0, plen, wrtod(wr));
 		return (wr);
 	}
 
 	max_imm = max_imm_payload(tx_credits);
 	max_nsegs = max_dsgl_nsegs(tx_credits);
 
 	plen = 0;
 	nsegs = 0;
 	max_nsegs_1mbuf = 0; /* max # of SGL segments in any one mbuf */
 	for (m = sndptr; m != NULL; m = m->m_next) {
 		int n = sglist_count(mtod(m, void *), m->m_len);
 
 		nsegs += n;
 		plen += m->m_len;
 
 		/*
 		 * This mbuf would send us _over_ the nsegs limit.
 		 * Suspend tx because the PDU can't be sent out.
 		 */
 		if (plen > max_imm && nsegs > max_nsegs)
 			return (NULL);
 
 		if (max_nsegs_1mbuf < n)
 			max_nsegs_1mbuf = n;
 	}
 
 	if (__predict_false(toep->flags & TPF_FIN_SENT))
 		panic("%s: excess tx.", __func__);
 
 	/*
 	 * We have a PDU to send.  All of it goes out in one WR so 'm'
 	 * is NULL.  A PDU's length is always a multiple of 4.
 	 */
 	MPASS(m == NULL);
 	MPASS((plen & 3) == 0);
 	MPASS(sndptr->m_pkthdr.len == plen);
 
 	shove = !(tp->t_flags & TF_MORETOCOME);
 	ulp_submode = mbuf_ulp_submode(sndptr);
 	MPASS(ulp_submode < nitems(ulp_extra_len));
 
 	/*
 	 * plen doesn't include header and data digests, which are
 	 * generated and inserted in the right places by the TOE, but
 	 * they do occupy TCP sequence space and need to be accounted
 	 * for.
 	 */
 	adjusted_plen = plen + ulp_extra_len[ulp_submode];
 	if (plen <= max_imm) {
 
 		/* Immediate data tx */
 
 		wr = alloc_wrqe(roundup2(sizeof(*txwr) + plen, 16),
 				&toep->ofld_txq->wrq);
 		if (wr == NULL) {
 			/* XXX: how will we recover from this? */
 			return (NULL);
 		}
 		txwr = wrtod(wr);
 		credits = howmany(wr->wr_len, 16);
 		write_tx_wr(txwr, toep, plen, adjusted_plen, credits,
 		    shove, ulp_submode);
 		m_copydata(sndptr, 0, plen, (void *)(txwr + 1));
 		nsegs = 0;
 	} else {
 		int wr_len;
 
 		/* DSGL tx */
 		wr_len = sizeof(*txwr) + sizeof(struct ulptx_sgl) +
 		    ((3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1)) * 8;
 		wr = alloc_wrqe(roundup2(wr_len, 16),
 		    &toep->ofld_txq->wrq);
 		if (wr == NULL) {
 			/* XXX: how will we recover from this? */
 			return (NULL);
 		}
 		txwr = wrtod(wr);
 		credits = howmany(wr_len, 16);
 		write_tx_wr(txwr, toep, 0, adjusted_plen, credits,
 		    shove, ulp_submode);
 		write_tx_sgl(txwr + 1, sndptr, m, nsegs, max_nsegs_1mbuf);
 		if (wr_len & 0xf) {
 			uint64_t *pad = (uint64_t *)((uintptr_t)txwr + wr_len);
 			*pad = 0;
 		}
 	}
 
 	tp->snd_nxt += adjusted_plen;
 	tp->snd_max += adjusted_plen;
 
 	counter_u64_add(toep->ofld_txq->tx_iscsi_pdus, 1);
 	counter_u64_add(toep->ofld_txq->tx_iscsi_octets, plen);
 
 	return (wr);
 }
 
 void
 t4_push_pdus(struct adapter *sc, struct toepcb *toep, int drop)
 {
 	struct mbuf *sndptr, *m;
 	struct fw_wr_hdr *wrhdr;
 	struct wrqe *wr;
 	u_int plen, credits;
 	struct inpcb *inp = toep->inp;
 	struct ofld_tx_sdesc *txsd = &toep->txsd[toep->txsd_pidx];
 	struct mbufq *pduq = &toep->ulp_pduq;
 
 	INP_WLOCK_ASSERT(inp);
 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
 	    ("%s: flowc_wr not sent for tid %u.", __func__, toep->tid));
 	KASSERT(ulp_mode(toep) == ULP_MODE_ISCSI,
 	    ("%s: ulp_mode %u for toep %p", __func__, ulp_mode(toep), toep));
 
 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN))
 		return;
 
 	/*
 	 * This function doesn't resume by itself.  Someone else must clear the
 	 * flag and call this function.
 	 */
 	if (__predict_false(toep->flags & TPF_TX_SUSPENDED)) {
 		KASSERT(drop == 0,
 		    ("%s: drop (%d) != 0 but tx is suspended", __func__, drop));
 		return;
 	}
 
 	if (drop) {
 		struct socket *so = inp->inp_socket;
 		struct sockbuf *sb = &so->so_snd;
 		int sbu;
 
 		/*
 		 * An unlocked read is ok here as the data should only
 		 * transition from a non-zero value to either another
 		 * non-zero value or zero.  Once it is zero it should
 		 * stay zero.
 		 */
 		if (__predict_false(sbused(sb)) > 0) {
 			SOCKBUF_LOCK(sb);
 			sbu = sbused(sb);
 			if (sbu > 0) {
 				/*
 				 * The data transmitted before the
 				 * tid's ULP mode changed to ISCSI is
 				 * still in so_snd.  Incoming credits
 				 * should account for so_snd first.
 				 */
 				sbdrop_locked(sb, min(sbu, drop));
 				drop -= min(sbu, drop);
 			}
 			sowwakeup_locked(so);	/* unlocks so_snd */
 		}
 		rqdrop_locked(&toep->ulp_pdu_reclaimq, drop);
 	}
 
 	while ((sndptr = mbufq_first(pduq)) != NULL) {
 		wr = write_iscsi_mbuf_wr(toep, sndptr);
 		if (wr == NULL) {
 			toep->flags |= TPF_TX_SUSPENDED;
 			return;
 		}
 
 		plen = sndptr->m_pkthdr.len;
 		credits = howmany(wr->wr_len, 16);
 		KASSERT(toep->tx_credits >= credits,
 			("%s: not enough credits", __func__));
 
 		m = mbufq_dequeue(pduq);
 		MPASS(m == sndptr);
 		mbufq_enqueue(&toep->ulp_pdu_reclaimq, m);
 
 		toep->tx_credits -= credits;
 		toep->tx_nocompl += credits;
 		toep->plen_nocompl += plen;
 
 		/*
 		 * Ensure there are enough credits for a full-sized WR
 		 * as page pod WRs can be full-sized.
 		 */
 		if (toep->tx_credits <= SGE_MAX_WR_LEN * 5 / 4 &&
 		    toep->tx_nocompl >= toep->tx_total / 4) {
 			wrhdr = wrtod(wr);
 			wrhdr->hi |= htobe32(F_FW_WR_COMPL);
 			toep->tx_nocompl = 0;
 			toep->plen_nocompl = 0;
 		}
 
 		toep->flags |= TPF_TX_DATA_SENT;
 		if (toep->tx_credits < MIN_OFLD_TX_CREDITS)
 			toep->flags |= TPF_TX_SUSPENDED;
 
 		KASSERT(toep->txsd_avail > 0, ("%s: no txsd", __func__));
 		txsd->plen = plen;
 		txsd->tx_credits = credits;
 		txsd++;
 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total)) {
 			toep->txsd_pidx = 0;
 			txsd = &toep->txsd[0];
 		}
 		toep->txsd_avail--;
 
 		t4_l2t_send(sc, wr, toep->l2te);
 	}
 
 	/* Send a FIN if requested, but only if there are no more PDUs to send */
 	if (mbufq_first(pduq) == NULL && toep->flags & TPF_SEND_FIN)
 		t4_close_conn(sc, toep);
 }
 
 static inline void
 t4_push_data(struct adapter *sc, struct toepcb *toep, int drop)
 {
 
 	if (ulp_mode(toep) == ULP_MODE_ISCSI)
 		t4_push_pdus(sc, toep, drop);
 	else if (toep->flags & TPF_KTLS)
 		t4_push_ktls(sc, toep, drop);
 	else
 		t4_push_frames(sc, toep, drop);
 }
 
 int
 t4_tod_output(struct toedev *tod, struct tcpcb *tp)
 {
 	struct adapter *sc = tod->tod_softc;
 #ifdef INVARIANTS
 	struct inpcb *inp = tp->t_inpcb;
 #endif
 	struct toepcb *toep = tp->t_toe;
 
 	INP_WLOCK_ASSERT(inp);
 	KASSERT((inp->inp_flags & INP_DROPPED) == 0,
 	    ("%s: inp %p dropped.", __func__, inp));
 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
 
 	t4_push_data(sc, toep, 0);
 
 	return (0);
 }
 
 int
 t4_send_fin(struct toedev *tod, struct tcpcb *tp)
 {
 	struct adapter *sc = tod->tod_softc;
 #ifdef INVARIANTS
 	struct inpcb *inp = tp->t_inpcb;
 #endif
 	struct toepcb *toep = tp->t_toe;
 
 	INP_WLOCK_ASSERT(inp);
 	KASSERT((inp->inp_flags & INP_DROPPED) == 0,
 	    ("%s: inp %p dropped.", __func__, inp));
 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
 
 	toep->flags |= TPF_SEND_FIN;
 	if (tp->t_state >= TCPS_ESTABLISHED)
 		t4_push_data(sc, toep, 0);
 
 	return (0);
 }
 
 int
 t4_send_rst(struct toedev *tod, struct tcpcb *tp)
 {
 	struct adapter *sc = tod->tod_softc;
 #if defined(INVARIANTS)
 	struct inpcb *inp = tp->t_inpcb;
 #endif
 	struct toepcb *toep = tp->t_toe;
 
 	INP_WLOCK_ASSERT(inp);
 	KASSERT((inp->inp_flags & INP_DROPPED) == 0,
 	    ("%s: inp %p dropped.", __func__, inp));
 	KASSERT(toep != NULL, ("%s: toep is NULL", __func__));
 
 	/* hmmmm */
 	KASSERT(toep->flags & TPF_FLOWC_WR_SENT,
 	    ("%s: flowc for tid %u [%s] not sent already",
 	    __func__, toep->tid, tcpstates[tp->t_state]));
 
 	send_reset(sc, toep, 0);
 	return (0);
 }
 
 /*
  * Peer has sent us a FIN.
  */
 static int
 do_peer_close(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
 {
 	struct adapter *sc = iq->adapter;
 	const struct cpl_peer_close *cpl = (const void *)(rss + 1);
 	unsigned int tid = GET_TID(cpl);
 	struct toepcb *toep = lookup_tid(sc, tid);
 	struct inpcb *inp = toep->inp;
 	struct tcpcb *tp = NULL;
 	struct socket *so;
 	struct epoch_tracker et;
 #ifdef INVARIANTS
 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
 #endif
 
 	KASSERT(opcode == CPL_PEER_CLOSE,
 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
 
 	if (__predict_false(toep->flags & TPF_SYNQE)) {
 		/*
 		 * do_pass_establish must have run before do_peer_close and if
 		 * this is still a synqe instead of a toepcb then the connection
 		 * must be getting aborted.
 		 */
 		MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
 		CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
 		    toep, toep->flags);
 		return (0);
 	}
 
 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
 
 	CURVNET_SET(toep->vnet);
 	NET_EPOCH_ENTER(et);
 	INP_WLOCK(inp);
 	tp = intotcpcb(inp);
 
 	CTR6(KTR_CXGBE,
 	    "%s: tid %u (%s), toep_flags 0x%x, ddp_flags 0x%x, inp %p",
 	    __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
 	    toep->ddp.flags, inp);
 
 	if (toep->flags & TPF_ABORT_SHUTDOWN)
 		goto done;
 
-	tp->rcv_nxt++;	/* FIN */
+	if (ulp_mode(toep) == ULP_MODE_RDMA ||
+	    (ulp_mode(toep) == ULP_MODE_ISCSI && chip_id(sc) >= CHELSIO_T6)) {
+		/*
+		 * There might be data received via DDP before the FIN
+		 * not reported to the driver.  Just assume the
+		 * sequence number in the CPL is correct as the
+		 * sequence number of the FIN.
+		 */
+	} else {
+		KASSERT(tp->rcv_nxt + 1 == be32toh(cpl->rcv_nxt),
+		    ("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt,
+		    be32toh(cpl->rcv_nxt)));
+	}
+
+	tp->rcv_nxt = be32toh(cpl->rcv_nxt);
 
 	so = inp->inp_socket;
 	socantrcvmore(so);
 	if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
 		DDP_LOCK(toep);
 		if (__predict_false(toep->ddp.flags &
 		    (DDP_BUF0_ACTIVE | DDP_BUF1_ACTIVE)))
 			handle_ddp_close(toep, tp, cpl->rcv_nxt);
 		DDP_UNLOCK(toep);
 	}
 
-	if (ulp_mode(toep) != ULP_MODE_RDMA) {
-		KASSERT(tp->rcv_nxt == be32toh(cpl->rcv_nxt),
-	    		("%s: rcv_nxt mismatch: %u %u", __func__, tp->rcv_nxt,
-	    		be32toh(cpl->rcv_nxt)));
-	}
-
 	switch (tp->t_state) {
 	case TCPS_SYN_RECEIVED:
 		tp->t_starttime = ticks;
 		/* FALLTHROUGH */ 
 
 	case TCPS_ESTABLISHED:
 		tcp_state_change(tp, TCPS_CLOSE_WAIT);
 		break;
 
 	case TCPS_FIN_WAIT_1:
 		tcp_state_change(tp, TCPS_CLOSING);
 		break;
 
 	case TCPS_FIN_WAIT_2:
 		restore_so_proto(so, inp->inp_vflag & INP_IPV6);
 		tcp_twstart(tp);
 		INP_UNLOCK_ASSERT(inp);	 /* safe, we have a ref on the inp */
 		NET_EPOCH_EXIT(et);
 		CURVNET_RESTORE();
 
 		INP_WLOCK(inp);
 		final_cpl_received(toep);
 		return (0);
 
 	default:
 		log(LOG_ERR, "%s: TID %u received CPL_PEER_CLOSE in state %d\n",
 		    __func__, tid, tp->t_state);
 	}
 done:
 	INP_WUNLOCK(inp);
 	NET_EPOCH_EXIT(et);
 	CURVNET_RESTORE();
 	return (0);
 }
 
 /*
  * Peer has ACK'd our FIN.
  */
 static int
 do_close_con_rpl(struct sge_iq *iq, const struct rss_header *rss,
     struct mbuf *m)
 {
 	struct adapter *sc = iq->adapter;
 	const struct cpl_close_con_rpl *cpl = (const void *)(rss + 1);
 	unsigned int tid = GET_TID(cpl);
 	struct toepcb *toep = lookup_tid(sc, tid);
 	struct inpcb *inp = toep->inp;
 	struct tcpcb *tp = NULL;
 	struct socket *so = NULL;
 	struct epoch_tracker et;
 #ifdef INVARIANTS
 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
 #endif
 
 	KASSERT(opcode == CPL_CLOSE_CON_RPL,
 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
 
 	CURVNET_SET(toep->vnet);
 	NET_EPOCH_ENTER(et);
 	INP_WLOCK(inp);
 	tp = intotcpcb(inp);
 
 	CTR4(KTR_CXGBE, "%s: tid %u (%s), toep_flags 0x%x",
 	    __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags);
 
 	if (toep->flags & TPF_ABORT_SHUTDOWN)
 		goto done;
 
 	so = inp->inp_socket;
 	tp->snd_una = be32toh(cpl->snd_nxt) - 1;	/* exclude FIN */
 
 	switch (tp->t_state) {
 	case TCPS_CLOSING:	/* see TCPS_FIN_WAIT_2 in do_peer_close too */
 		restore_so_proto(so, inp->inp_vflag & INP_IPV6);
 		tcp_twstart(tp);
 release:
 		INP_UNLOCK_ASSERT(inp);	/* safe, we have a ref on the  inp */
 		NET_EPOCH_EXIT(et);
 		CURVNET_RESTORE();
 
 		INP_WLOCK(inp);
 		final_cpl_received(toep);	/* no more CPLs expected */
 
 		return (0);
 	case TCPS_LAST_ACK:
 		if (tcp_close(tp))
 			INP_WUNLOCK(inp);
 		goto release;
 
 	case TCPS_FIN_WAIT_1:
 		if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
 			soisdisconnected(so);
 		tcp_state_change(tp, TCPS_FIN_WAIT_2);
 		break;
 
 	default:
 		log(LOG_ERR,
 		    "%s: TID %u received CPL_CLOSE_CON_RPL in state %s\n",
 		    __func__, tid, tcpstates[tp->t_state]);
 	}
 done:
 	INP_WUNLOCK(inp);
 	NET_EPOCH_EXIT(et);
 	CURVNET_RESTORE();
 	return (0);
 }
 
 void
 send_abort_rpl(struct adapter *sc, struct sge_ofld_txq *ofld_txq, int tid,
     int rst_status)
 {
 	struct wrqe *wr;
 	struct cpl_abort_rpl *cpl;
 
 	wr = alloc_wrqe(sizeof(*cpl), &ofld_txq->wrq);
 	if (wr == NULL) {
 		/* XXX */
 		panic("%s: allocation failure.", __func__);
 	}
 	cpl = wrtod(wr);
 
 	INIT_TP_WR_MIT_CPL(cpl, CPL_ABORT_RPL, tid);
 	cpl->cmd = rst_status;
 
 	t4_wrq_tx(sc, wr);
 }
 
 static int
 abort_status_to_errno(struct tcpcb *tp, unsigned int abort_reason)
 {
 	switch (abort_reason) {
 	case CPL_ERR_BAD_SYN:
 	case CPL_ERR_CONN_RESET:
 		return (tp->t_state == TCPS_CLOSE_WAIT ? EPIPE : ECONNRESET);
 	case CPL_ERR_XMIT_TIMEDOUT:
 	case CPL_ERR_PERSIST_TIMEDOUT:
 	case CPL_ERR_FINWAIT2_TIMEDOUT:
 	case CPL_ERR_KEEPALIVE_TIMEDOUT:
 		return (ETIMEDOUT);
 	default:
 		return (EIO);
 	}
 }
 
 /*
  * TCP RST from the peer, timeout, or some other such critical error.
  */
 static int
 do_abort_req(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
 {
 	struct adapter *sc = iq->adapter;
 	const struct cpl_abort_req_rss *cpl = (const void *)(rss + 1);
 	unsigned int tid = GET_TID(cpl);
 	struct toepcb *toep = lookup_tid(sc, tid);
 	struct sge_ofld_txq *ofld_txq = toep->ofld_txq;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	struct epoch_tracker et;
 #ifdef INVARIANTS
 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
 #endif
 
 	KASSERT(opcode == CPL_ABORT_REQ_RSS,
 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
 
 	if (toep->flags & TPF_SYNQE)
 		return (do_abort_req_synqe(iq, rss, m));
 
 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
 
 	if (negative_advice(cpl->status)) {
 		CTR4(KTR_CXGBE, "%s: negative advice %d for tid %d (0x%x)",
 		    __func__, cpl->status, tid, toep->flags);
 		return (0);	/* Ignore negative advice */
 	}
 
 	inp = toep->inp;
 	CURVNET_SET(toep->vnet);
 	NET_EPOCH_ENTER(et);	/* for tcp_close */
 	INP_WLOCK(inp);
 
 	tp = intotcpcb(inp);
 
 	CTR6(KTR_CXGBE,
 	    "%s: tid %d (%s), toep_flags 0x%x, inp_flags 0x%x, status %d",
 	    __func__, tid, tp ? tcpstates[tp->t_state] : "no tp", toep->flags,
 	    inp->inp_flags, cpl->status);
 
 	/*
 	 * If we'd initiated an abort earlier the reply to it is responsible for
 	 * cleaning up resources.  Otherwise we tear everything down right here
 	 * right now.  We owe the T4 a CPL_ABORT_RPL no matter what.
 	 */
 	if (toep->flags & TPF_ABORT_SHUTDOWN) {
 		INP_WUNLOCK(inp);
 		goto done;
 	}
 	toep->flags |= TPF_ABORT_SHUTDOWN;
 
 	if ((inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) == 0) {
 		struct socket *so = inp->inp_socket;
 
 		if (so != NULL)
 			so_error_set(so, abort_status_to_errno(tp,
 			    cpl->status));
 		tp = tcp_close(tp);
 		if (tp == NULL)
 			INP_WLOCK(inp);	/* re-acquire */
 	}
 
 	final_cpl_received(toep);
 done:
 	NET_EPOCH_EXIT(et);
 	CURVNET_RESTORE();
 	send_abort_rpl(sc, ofld_txq, tid, CPL_ABORT_NO_RST);
 	return (0);
 }
 
 /*
  * Reply to the CPL_ABORT_REQ (send_reset)
  */
 static int
 do_abort_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
 {
 	struct adapter *sc = iq->adapter;
 	const struct cpl_abort_rpl_rss *cpl = (const void *)(rss + 1);
 	unsigned int tid = GET_TID(cpl);
 	struct toepcb *toep = lookup_tid(sc, tid);
 	struct inpcb *inp = toep->inp;
 #ifdef INVARIANTS
 	unsigned int opcode = G_CPL_OPCODE(be32toh(OPCODE_TID(cpl)));
 #endif
 
 	KASSERT(opcode == CPL_ABORT_RPL_RSS,
 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
 
 	if (toep->flags & TPF_SYNQE)
 		return (do_abort_rpl_synqe(iq, rss, m));
 
 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
 
 	CTR5(KTR_CXGBE, "%s: tid %u, toep %p, inp %p, status %d",
 	    __func__, tid, toep, inp, cpl->status);
 
 	KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
 	    ("%s: wasn't expecting abort reply", __func__));
 
 	INP_WLOCK(inp);
 	final_cpl_received(toep);
 
 	return (0);
 }
 
 static int
 do_rx_data(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
 {
 	struct adapter *sc = iq->adapter;
 	const struct cpl_rx_data *cpl = mtod(m, const void *);
 	unsigned int tid = GET_TID(cpl);
 	struct toepcb *toep = lookup_tid(sc, tid);
 	struct inpcb *inp = toep->inp;
 	struct tcpcb *tp;
 	struct socket *so;
 	struct sockbuf *sb;
 	struct epoch_tracker et;
 	int len, rx_credits;
 	uint32_t ddp_placed = 0;
 
 	if (__predict_false(toep->flags & TPF_SYNQE)) {
 		/*
 		 * do_pass_establish must have run before do_rx_data and if this
 		 * is still a synqe instead of a toepcb then the connection must
 		 * be getting aborted.
 		 */
 		MPASS(toep->flags & TPF_ABORT_SHUTDOWN);
 		CTR4(KTR_CXGBE, "%s: tid %u, synqe %p (0x%x)", __func__, tid,
 		    toep, toep->flags);
 		m_freem(m);
 		return (0);
 	}
 
 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
 
 	/* strip off CPL header */
 	m_adj(m, sizeof(*cpl));
 	len = m->m_pkthdr.len;
 
 	INP_WLOCK(inp);
 	if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) {
 		CTR4(KTR_CXGBE, "%s: tid %u, rx (%d bytes), inp_flags 0x%x",
 		    __func__, tid, len, inp->inp_flags);
 		INP_WUNLOCK(inp);
 		m_freem(m);
 		return (0);
 	}
 
 	tp = intotcpcb(inp);
 
 	if (__predict_false(ulp_mode(toep) == ULP_MODE_TLS &&
 	   toep->flags & TPF_TLS_RECEIVE)) {
 		/* Received "raw" data on a TLS socket. */
 		CTR3(KTR_CXGBE, "%s: tid %u, raw TLS data (%d bytes)",
 		    __func__, tid, len);
 		do_rx_data_tls(cpl, toep, m);
 		return (0);
 	}
 
 	if (__predict_false(tp->rcv_nxt != be32toh(cpl->seq)))
 		ddp_placed = be32toh(cpl->seq) - tp->rcv_nxt;
 
 	tp->rcv_nxt += len;
 	if (tp->rcv_wnd < len) {
 		KASSERT(ulp_mode(toep) == ULP_MODE_RDMA,
 				("%s: negative window size", __func__));
 	}
 
 	tp->rcv_wnd -= len;
 	tp->t_rcvtime = ticks;
 
 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
 		DDP_LOCK(toep);
 	so = inp_inpcbtosocket(inp);
 	sb = &so->so_rcv;
 	SOCKBUF_LOCK(sb);
 
 	if (__predict_false(sb->sb_state & SBS_CANTRCVMORE)) {
 		CTR3(KTR_CXGBE, "%s: tid %u, excess rx (%d bytes)",
 		    __func__, tid, len);
 		m_freem(m);
 		SOCKBUF_UNLOCK(sb);
 		if (ulp_mode(toep) == ULP_MODE_TCPDDP)
 			DDP_UNLOCK(toep);
 		INP_WUNLOCK(inp);
 
 		CURVNET_SET(toep->vnet);
 		NET_EPOCH_ENTER(et);
 		INP_WLOCK(inp);
 		tp = tcp_drop(tp, ECONNRESET);
 		if (tp)
 			INP_WUNLOCK(inp);
 		NET_EPOCH_EXIT(et);
 		CURVNET_RESTORE();
 
 		return (0);
 	}
 
 	/* receive buffer autosize */
 	MPASS(toep->vnet == so->so_vnet);
 	CURVNET_SET(toep->vnet);
 	if (sb->sb_flags & SB_AUTOSIZE &&
 	    V_tcp_do_autorcvbuf &&
 	    sb->sb_hiwat < V_tcp_autorcvbuf_max &&
 	    len > (sbspace(sb) / 8 * 7)) {
 		unsigned int hiwat = sb->sb_hiwat;
 		unsigned int newsize = min(hiwat + sc->tt.autorcvbuf_inc,
 		    V_tcp_autorcvbuf_max);
 
 		if (!sbreserve_locked(sb, newsize, so, NULL))
 			sb->sb_flags &= ~SB_AUTOSIZE;
 	}
 
 	if (ulp_mode(toep) == ULP_MODE_TCPDDP) {
 		int changed = !(toep->ddp.flags & DDP_ON) ^ cpl->ddp_off;
 
 		if (toep->ddp.waiting_count != 0 || toep->ddp.active_count != 0)
 			CTR3(KTR_CXGBE, "%s: tid %u, non-ddp rx (%d bytes)",
 			    __func__, tid, len);
 
 		if (changed) {
 			if (toep->ddp.flags & DDP_SC_REQ)
 				toep->ddp.flags ^= DDP_ON | DDP_SC_REQ;
 			else {
 				KASSERT(cpl->ddp_off == 1,
 				    ("%s: DDP switched on by itself.",
 				    __func__));
 
 				/* Fell out of DDP mode */
 				toep->ddp.flags &= ~DDP_ON;
 				CTR1(KTR_CXGBE, "%s: fell out of DDP mode",
 				    __func__);
 
 				insert_ddp_data(toep, ddp_placed);
 			}
 		}
 
 		if (toep->ddp.flags & DDP_ON) {
 			/*
 			 * CPL_RX_DATA with DDP on can only be an indicate.
 			 * Start posting queued AIO requests via DDP.  The
 			 * payload that arrived in this indicate is appended
 			 * to the socket buffer as usual.
 			 */
 			handle_ddp_indicate(toep);
 		}
 	}
 
 	sbappendstream_locked(sb, m, 0);
 	rx_credits = sbspace(sb) > tp->rcv_wnd ? sbspace(sb) - tp->rcv_wnd : 0;
 	if (rx_credits > 0 && sbused(sb) + tp->rcv_wnd < sb->sb_lowat) {
 		rx_credits = send_rx_credits(sc, toep, rx_credits);
 		tp->rcv_wnd += rx_credits;
 		tp->rcv_adv += rx_credits;
 	}
 
 	if (ulp_mode(toep) == ULP_MODE_TCPDDP && toep->ddp.waiting_count > 0 &&
 	    sbavail(sb) != 0) {
 		CTR2(KTR_CXGBE, "%s: tid %u queueing AIO task", __func__,
 		    tid);
 		ddp_queue_toep(toep);
 	}
 	sorwakeup_locked(so);
 	SOCKBUF_UNLOCK_ASSERT(sb);
 	if (ulp_mode(toep) == ULP_MODE_TCPDDP)
 		DDP_UNLOCK(toep);
 
 	INP_WUNLOCK(inp);
 	CURVNET_RESTORE();
 	return (0);
 }
 
 static int
 do_fw4_ack(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
 {
 	struct adapter *sc = iq->adapter;
 	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
 	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
 	struct toepcb *toep = lookup_tid(sc, tid);
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	struct socket *so;
 	uint8_t credits = cpl->credits;
 	struct ofld_tx_sdesc *txsd;
 	int plen;
 #ifdef INVARIANTS
 	unsigned int opcode = G_CPL_FW4_ACK_OPCODE(be32toh(OPCODE_TID(cpl)));
 #endif
 
 	/*
 	 * Very unusual case: we'd sent a flowc + abort_req for a synq entry and
 	 * now this comes back carrying the credits for the flowc.
 	 */
 	if (__predict_false(toep->flags & TPF_SYNQE)) {
 		KASSERT(toep->flags & TPF_ABORT_SHUTDOWN,
 		    ("%s: credits for a synq entry %p", __func__, toep));
 		return (0);
 	}
 
 	inp = toep->inp;
 
 	KASSERT(opcode == CPL_FW4_ACK,
 	    ("%s: unexpected opcode 0x%x", __func__, opcode));
 	KASSERT(m == NULL, ("%s: wasn't expecting payload", __func__));
 	KASSERT(toep->tid == tid, ("%s: toep tid mismatch", __func__));
 
 	INP_WLOCK(inp);
 
 	if (__predict_false(toep->flags & TPF_ABORT_SHUTDOWN)) {
 		INP_WUNLOCK(inp);
 		return (0);
 	}
 
 	KASSERT((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) == 0,
 	    ("%s: inp_flags 0x%x", __func__, inp->inp_flags));
 
 	tp = intotcpcb(inp);
 
 	if (cpl->flags & CPL_FW4_ACK_FLAGS_SEQVAL) {
 		tcp_seq snd_una = be32toh(cpl->snd_una);
 
 #ifdef INVARIANTS
 		if (__predict_false(SEQ_LT(snd_una, tp->snd_una))) {
 			log(LOG_ERR,
 			    "%s: unexpected seq# %x for TID %u, snd_una %x\n",
 			    __func__, snd_una, toep->tid, tp->snd_una);
 		}
 #endif
 
 		if (tp->snd_una != snd_una) {
 			tp->snd_una = snd_una;
 			tp->ts_recent_age = tcp_ts_getticks();
 		}
 	}
 
 #ifdef VERBOSE_TRACES
 	CTR3(KTR_CXGBE, "%s: tid %d credits %u", __func__, tid, credits);
 #endif
 	so = inp->inp_socket;
 	txsd = &toep->txsd[toep->txsd_cidx];
 	plen = 0;
 	while (credits) {
 		KASSERT(credits >= txsd->tx_credits,
 		    ("%s: too many (or partial) credits", __func__));
 		credits -= txsd->tx_credits;
 		toep->tx_credits += txsd->tx_credits;
 		plen += txsd->plen;
 		txsd++;
 		toep->txsd_avail++;
 		KASSERT(toep->txsd_avail <= toep->txsd_total,
 		    ("%s: txsd avail > total", __func__));
 		if (__predict_false(++toep->txsd_cidx == toep->txsd_total)) {
 			txsd = &toep->txsd[0];
 			toep->txsd_cidx = 0;
 		}
 	}
 
 	if (toep->tx_credits == toep->tx_total) {
 		toep->tx_nocompl = 0;
 		toep->plen_nocompl = 0;
 	}
 
 	if (toep->flags & TPF_TX_SUSPENDED &&
 	    toep->tx_credits >= toep->tx_total / 4) {
 #ifdef VERBOSE_TRACES
 		CTR2(KTR_CXGBE, "%s: tid %d calling t4_push_frames", __func__,
 		    tid);
 #endif
 		toep->flags &= ~TPF_TX_SUSPENDED;
 		CURVNET_SET(toep->vnet);
 		t4_push_data(sc, toep, plen);
 		CURVNET_RESTORE();
 	} else if (plen > 0) {
 		struct sockbuf *sb = &so->so_snd;
 		int sbu;
 
 		SOCKBUF_LOCK(sb);
 		sbu = sbused(sb);
 		if (ulp_mode(toep) == ULP_MODE_ISCSI) {
 			if (__predict_false(sbu > 0)) {
 				/*
 				 * The data transmitted before the
 				 * tid's ULP mode changed to ISCSI is
 				 * still in so_snd.  Incoming credits
 				 * should account for so_snd first.
 				 */
 				sbdrop_locked(sb, min(sbu, plen));
 				plen -= min(sbu, plen);
 			}
 			sowwakeup_locked(so);	/* unlocks so_snd */
 			rqdrop_locked(&toep->ulp_pdu_reclaimq, plen);
 		} else {
 #ifdef VERBOSE_TRACES
 			CTR3(KTR_CXGBE, "%s: tid %d dropped %d bytes", __func__,
 			    tid, plen);
 #endif
 			sbdrop_locked(sb, plen);
 			if (!TAILQ_EMPTY(&toep->aiotx_jobq))
 				t4_aiotx_queue_toep(so, toep);
 			sowwakeup_locked(so);	/* unlocks so_snd */
 		}
 		SOCKBUF_UNLOCK_ASSERT(sb);
 	}
 
 	INP_WUNLOCK(inp);
 
 	return (0);
 }
 
 void
 t4_set_tcb_field(struct adapter *sc, struct sge_wrq *wrq, struct toepcb *toep,
     uint16_t word, uint64_t mask, uint64_t val, int reply, int cookie)
 {
 	struct wrqe *wr;
 	struct cpl_set_tcb_field *req;
 	struct ofld_tx_sdesc *txsd;
 
 	MPASS((cookie & ~M_COOKIE) == 0);
 	if (reply) {
 		MPASS(cookie != CPL_COOKIE_RESERVED);
 	}
 
 	wr = alloc_wrqe(sizeof(*req), wrq);
 	if (wr == NULL) {
 		/* XXX */
 		panic("%s: allocation failure.", __func__);
 	}
 	req = wrtod(wr);
 
 	INIT_TP_WR_MIT_CPL(req, CPL_SET_TCB_FIELD, toep->tid);
 	req->reply_ctrl = htobe16(V_QUEUENO(toep->ofld_rxq->iq.abs_id));
 	if (reply == 0)
 		req->reply_ctrl |= htobe16(F_NO_REPLY);
 	req->word_cookie = htobe16(V_WORD(word) | V_COOKIE(cookie));
 	req->mask = htobe64(mask);
 	req->val = htobe64(val);
 	if (wrq->eq.type == EQ_OFLD) {
 		txsd = &toep->txsd[toep->txsd_pidx];
 		txsd->tx_credits = howmany(sizeof(*req), 16);
 		txsd->plen = 0;
 		KASSERT(toep->tx_credits >= txsd->tx_credits &&
 		    toep->txsd_avail > 0,
 		    ("%s: not enough credits (%d)", __func__,
 		    toep->tx_credits));
 		toep->tx_credits -= txsd->tx_credits;
 		if (__predict_false(++toep->txsd_pidx == toep->txsd_total))
 			toep->txsd_pidx = 0;
 		toep->txsd_avail--;
 	}
 
 	t4_wrq_tx(sc, wr);
 }
 
 void
 t4_init_cpl_io_handlers(void)
 {
 
 	t4_register_cpl_handler(CPL_PEER_CLOSE, do_peer_close);
 	t4_register_cpl_handler(CPL_CLOSE_CON_RPL, do_close_con_rpl);
 	t4_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req);
 	t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, do_abort_rpl,
 	    CPL_COOKIE_TOM);
 	t4_register_cpl_handler(CPL_RX_DATA, do_rx_data);
 	t4_register_shared_cpl_handler(CPL_FW4_ACK, do_fw4_ack, CPL_COOKIE_TOM);
 }
 
 void
 t4_uninit_cpl_io_handlers(void)
 {
 
 	t4_register_cpl_handler(CPL_PEER_CLOSE, NULL);
 	t4_register_cpl_handler(CPL_CLOSE_CON_RPL, NULL);
 	t4_register_cpl_handler(CPL_ABORT_REQ_RSS, NULL);
 	t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, NULL, CPL_COOKIE_TOM);
 	t4_register_cpl_handler(CPL_RX_DATA, NULL);
 	t4_register_shared_cpl_handler(CPL_FW4_ACK, NULL, CPL_COOKIE_TOM);
 }
 
 /*
  * Use the 'backend1' field in AIO jobs to hold an error that should
  * be reported when the job is completed, the 'backend3' field to
  * store the amount of data sent by the AIO job so far, and the
  * 'backend4' field to hold a reference count on the job.
  *
  * Each unmapped mbuf holds a reference on the job as does the queue
  * so long as the job is queued.
  */
 #define	aio_error	backend1
 #define	aio_sent	backend3
 #define	aio_refs	backend4
 
 #define	jobtotid(job)							\
 	(((struct toepcb *)(so_sototcpcb((job)->fd_file->f_data)->t_toe))->tid)
 
 static void
 aiotx_free_job(struct kaiocb *job)
 {
 	long status;
 	int error;
 
 	if (refcount_release(&job->aio_refs) == 0)
 		return;
 
 	error = (intptr_t)job->aio_error;
 	status = job->aio_sent;
 #ifdef VERBOSE_TRACES
 	CTR5(KTR_CXGBE, "%s: tid %d completed %p len %ld, error %d", __func__,
 	    jobtotid(job), job, status, error);
 #endif
 	if (error != 0 && status != 0)
 		error = 0;
 	if (error == ECANCELED)
 		aio_cancel(job);
 	else if (error)
 		aio_complete(job, -1, error);
 	else {
 		job->msgsnd = 1;
 		aio_complete(job, status, 0);
 	}
 }
 
 static void
 aiotx_free_pgs(struct mbuf *m)
 {
 	struct kaiocb *job;
 	vm_page_t pg;
 
 	M_ASSERTEXTPG(m);
 	job = m->m_ext.ext_arg1;
 #ifdef VERBOSE_TRACES
 	CTR3(KTR_CXGBE, "%s: completed %d bytes for tid %d", __func__,
 	    m->m_len, jobtotid(job));
 #endif
 
 	for (int i = 0; i < m->m_epg_npgs; i++) {
 		pg = PHYS_TO_VM_PAGE(m->m_epg_pa[i]);
 		vm_page_unwire(pg, PQ_ACTIVE);
 	}
 
 	aiotx_free_job(job);
 }
 
 /*
  * Allocate a chain of unmapped mbufs describing the next 'len' bytes
  * of an AIO job.
  */
 static struct mbuf *
 alloc_aiotx_mbuf(struct kaiocb *job, int len)
 {
 	struct vmspace *vm;
 	vm_page_t pgs[MBUF_PEXT_MAX_PGS];
 	struct mbuf *m, *top, *last;
 	vm_map_t map;
 	vm_offset_t start;
 	int i, mlen, npages, pgoff;
 
 	KASSERT(job->aio_sent + len <= job->uaiocb.aio_nbytes,
 	    ("%s(%p, %d): request to send beyond end of buffer", __func__,
 	    job, len));
 
 	/*
 	 * The AIO subsystem will cancel and drain all requests before
 	 * permitting a process to exit or exec, so p_vmspace should
 	 * be stable here.
 	 */
 	vm = job->userproc->p_vmspace;
 	map = &vm->vm_map;
 	start = (uintptr_t)job->uaiocb.aio_buf + job->aio_sent;
 	pgoff = start & PAGE_MASK;
 
 	top = NULL;
 	last = NULL;
 	while (len > 0) {
 		mlen = imin(len, MBUF_PEXT_MAX_PGS * PAGE_SIZE - pgoff);
 		KASSERT(mlen == len || ((start + mlen) & PAGE_MASK) == 0,
 		    ("%s: next start (%#jx + %#x) is not page aligned",
 		    __func__, (uintmax_t)start, mlen));
 
 		npages = vm_fault_quick_hold_pages(map, start, mlen,
 		    VM_PROT_WRITE, pgs, nitems(pgs));
 		if (npages < 0)
 			break;
 
 		m = mb_alloc_ext_pgs(M_WAITOK, aiotx_free_pgs);
 		if (m == NULL) {
 			vm_page_unhold_pages(pgs, npages);
 			break;
 		}
 
 		m->m_epg_1st_off = pgoff;
 		m->m_epg_npgs = npages;
 		if (npages == 1) {
 			KASSERT(mlen + pgoff <= PAGE_SIZE,
 			    ("%s: single page is too large (off %d len %d)",
 			    __func__, pgoff, mlen));
 			m->m_epg_last_len = mlen;
 		} else {
 			m->m_epg_last_len = mlen - (PAGE_SIZE - pgoff) -
 			    (npages - 2) * PAGE_SIZE;
 		}
 		for (i = 0; i < npages; i++)
 			m->m_epg_pa[i] = VM_PAGE_TO_PHYS(pgs[i]);
 
 		m->m_len = mlen;
 		m->m_ext.ext_size = npages * PAGE_SIZE;
 		m->m_ext.ext_arg1 = job;
 		refcount_acquire(&job->aio_refs);
 
 #ifdef VERBOSE_TRACES
 		CTR5(KTR_CXGBE, "%s: tid %d, new mbuf %p for job %p, npages %d",
 		    __func__, jobtotid(job), m, job, npages);
 #endif
 
 		if (top == NULL)
 			top = m;
 		else
 			last->m_next = m;
 		last = m;
 
 		len -= mlen;
 		start += mlen;
 		pgoff = 0;
 	}
 
 	return (top);
 }
 
 static void
 t4_aiotx_process_job(struct toepcb *toep, struct socket *so, struct kaiocb *job)
 {
 	struct sockbuf *sb;
 	struct file *fp;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	struct mbuf *m;
 	int error, len;
 	bool moretocome, sendmore;
 
 	sb = &so->so_snd;
 	SOCKBUF_UNLOCK(sb);
 	fp = job->fd_file;
 	m = NULL;
 
 #ifdef MAC
 	error = mac_socket_check_send(fp->f_cred, so);
 	if (error != 0)
 		goto out;
 #endif
 
 	/* Inline sosend_generic(). */
 
 	error = sblock(sb, SBL_WAIT);
 	MPASS(error == 0);
 
 sendanother:
 	SOCKBUF_LOCK(sb);
 	if (so->so_snd.sb_state & SBS_CANTSENDMORE) {
 		SOCKBUF_UNLOCK(sb);
 		sbunlock(sb);
 		if ((so->so_options & SO_NOSIGPIPE) == 0) {
 			PROC_LOCK(job->userproc);
 			kern_psignal(job->userproc, SIGPIPE);
 			PROC_UNLOCK(job->userproc);
 		}
 		error = EPIPE;
 		goto out;
 	}
 	if (so->so_error) {
 		error = so->so_error;
 		so->so_error = 0;
 		SOCKBUF_UNLOCK(sb);
 		sbunlock(sb);
 		goto out;
 	}
 	if ((so->so_state & SS_ISCONNECTED) == 0) {
 		SOCKBUF_UNLOCK(sb);
 		sbunlock(sb);
 		error = ENOTCONN;
 		goto out;
 	}
 	if (sbspace(sb) < sb->sb_lowat) {
 		MPASS(job->aio_sent == 0 || !(so->so_state & SS_NBIO));
 
 		/*
 		 * Don't block if there is too little room in the socket
 		 * buffer.  Instead, requeue the request.
 		 */
 		if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
 			SOCKBUF_UNLOCK(sb);
 			sbunlock(sb);
 			error = ECANCELED;
 			goto out;
 		}
 		TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
 		SOCKBUF_UNLOCK(sb);
 		sbunlock(sb);
 		goto out;
 	}
 
 	/*
 	 * Write as much data as the socket permits, but no more than a
 	 * a single sndbuf at a time.
 	 */
 	len = sbspace(sb);
 	if (len > job->uaiocb.aio_nbytes - job->aio_sent) {
 		len = job->uaiocb.aio_nbytes - job->aio_sent;
 		moretocome = false;
 	} else
 		moretocome = true;
 	if (len > toep->params.sndbuf) {
 		len = toep->params.sndbuf;
 		sendmore = true;
 	} else
 		sendmore = false;
 
 	if (!TAILQ_EMPTY(&toep->aiotx_jobq))
 		moretocome = true;
 	SOCKBUF_UNLOCK(sb);
 	MPASS(len != 0);
 
 	m = alloc_aiotx_mbuf(job, len);
 	if (m == NULL) {
 		sbunlock(sb);
 		error = EFAULT;
 		goto out;
 	}
 
 	/* Inlined tcp_usr_send(). */
 
 	inp = toep->inp;
 	INP_WLOCK(inp);
 	if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
 		INP_WUNLOCK(inp);
 		sbunlock(sb);
 		error = ECONNRESET;
 		goto out;
 	}
 
 	job->aio_sent += m_length(m, NULL);
 
 	sbappendstream(sb, m, 0);
 	m = NULL;
 
 	if (!(inp->inp_flags & INP_DROPPED)) {
 		tp = intotcpcb(inp);
 		if (moretocome)
 			tp->t_flags |= TF_MORETOCOME;
 		error = tp->t_fb->tfb_tcp_output(tp);
 		if (moretocome)
 			tp->t_flags &= ~TF_MORETOCOME;
 	}
 
 	INP_WUNLOCK(inp);
 	if (sendmore)
 		goto sendanother;
 	sbunlock(sb);
 
 	if (error)
 		goto out;
 
 	/*
 	 * If this is a blocking socket and the request has not been
 	 * fully completed, requeue it until the socket is ready
 	 * again.
 	 */
 	if (job->aio_sent < job->uaiocb.aio_nbytes &&
 	    !(so->so_state & SS_NBIO)) {
 		SOCKBUF_LOCK(sb);
 		if (!aio_set_cancel_function(job, t4_aiotx_cancel)) {
 			SOCKBUF_UNLOCK(sb);
 			error = ECANCELED;
 			goto out;
 		}
 		TAILQ_INSERT_HEAD(&toep->aiotx_jobq, job, list);
 		return;
 	}
 
 	/*
 	 * If the request will not be requeued, drop the queue's
 	 * reference to the job.  Any mbufs in flight should still
 	 * hold a reference, but this drops the reference that the
 	 * queue owns while it is waiting to queue mbufs to the
 	 * socket.
 	 */
 	aiotx_free_job(job);
 
 out:
 	if (error) {
 		job->aio_error = (void *)(intptr_t)error;
 		aiotx_free_job(job);
 	}
 	m_freem(m);
 	SOCKBUF_LOCK(sb);
 }
 
 static void
 t4_aiotx_task(void *context, int pending)
 {
 	struct toepcb *toep = context;
 	struct socket *so;
 	struct kaiocb *job;
 
 	so = toep->aiotx_so;
 	CURVNET_SET(toep->vnet);
 	SOCKBUF_LOCK(&so->so_snd);
 	while (!TAILQ_EMPTY(&toep->aiotx_jobq) && sowriteable(so)) {
 		job = TAILQ_FIRST(&toep->aiotx_jobq);
 		TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
 		if (!aio_clear_cancel_function(job))
 			continue;
 
 		t4_aiotx_process_job(toep, so, job);
 	}
 	toep->aiotx_so = NULL;
 	SOCKBUF_UNLOCK(&so->so_snd);
 	CURVNET_RESTORE();
 
 	free_toepcb(toep);
 	SOCK_LOCK(so);
 	sorele(so);
 }
 
 static void
 t4_aiotx_queue_toep(struct socket *so, struct toepcb *toep)
 {
 
 	SOCKBUF_LOCK_ASSERT(&toep->inp->inp_socket->so_snd);
 #ifdef VERBOSE_TRACES
 	CTR3(KTR_CXGBE, "%s: queueing aiotx task for tid %d, active = %s",
 	    __func__, toep->tid, toep->aiotx_so != NULL ? "true" : "false");
 #endif
 	if (toep->aiotx_so != NULL)
 		return;
 	soref(so);
 	toep->aiotx_so = so;
 	hold_toepcb(toep);
 	soaio_enqueue(&toep->aiotx_task);
 }
 
 static void
 t4_aiotx_cancel(struct kaiocb *job)
 {
 	struct socket *so;
 	struct sockbuf *sb;
 	struct tcpcb *tp;
 	struct toepcb *toep;
 
 	so = job->fd_file->f_data;
 	tp = so_sototcpcb(so);
 	toep = tp->t_toe;
 	MPASS(job->uaiocb.aio_lio_opcode == LIO_WRITE);
 	sb = &so->so_snd;
 
 	SOCKBUF_LOCK(sb);
 	if (!aio_cancel_cleared(job))
 		TAILQ_REMOVE(&toep->aiotx_jobq, job, list);
 	SOCKBUF_UNLOCK(sb);
 
 	job->aio_error = (void *)(intptr_t)ECANCELED;
 	aiotx_free_job(job);
 }
 
 int
 t4_aio_queue_aiotx(struct socket *so, struct kaiocb *job)
 {
 	struct tcpcb *tp = so_sototcpcb(so);
 	struct toepcb *toep = tp->t_toe;
 	struct adapter *sc = td_adapter(toep->td);
 
 	/* This only handles writes. */
 	if (job->uaiocb.aio_lio_opcode != LIO_WRITE)
 		return (EOPNOTSUPP);
 
 	if (!sc->tt.tx_zcopy)
 		return (EOPNOTSUPP);
 
 	if (tls_tx_key(toep))
 		return (EOPNOTSUPP);
 
 	SOCKBUF_LOCK(&so->so_snd);
 #ifdef VERBOSE_TRACES
 	CTR3(KTR_CXGBE, "%s: queueing %p for tid %u", __func__, job, toep->tid);
 #endif
 	if (!aio_set_cancel_function(job, t4_aiotx_cancel))
 		panic("new job was cancelled");
 	refcount_init(&job->aio_refs, 1);
 	TAILQ_INSERT_TAIL(&toep->aiotx_jobq, job, list);
 	if (sowriteable(so))
 		t4_aiotx_queue_toep(so, toep);
 	SOCKBUF_UNLOCK(&so->so_snd);
 	return (0);
 }
 
 void
 aiotx_init_toep(struct toepcb *toep)
 {
 
 	TAILQ_INIT(&toep->aiotx_jobq);
 	TASK_INIT(&toep->aiotx_task, 0, t4_aiotx_task, toep);
 }
 #endif