diff --git a/sys/dev/acpica/acpi_hpet.c b/sys/dev/acpica/acpi_hpet.c
index 9f92521437fd..0f0a16f336f2 100644
--- a/sys/dev/acpica/acpi_hpet.c
+++ b/sys/dev/acpica/acpi_hpet.c
@@ -1,995 +1,999 @@
 /*-
  * Copyright (c) 2005 Poul-Henning Kamp
  * Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_acpi.h"
 
 #if defined(__amd64__)
 #define	DEV_APIC
 #else
 #include "opt_apic.h"
 #endif
 #include <sys/param.h>
 #include <sys/conf.h>
 #include <sys/bus.h>
 #include <sys/kernel.h>
 #include <sys/module.h>
 #include <sys/proc.h>
 #include <sys/rman.h>
 #include <sys/mman.h>
 #include <sys/time.h>
 #include <sys/smp.h>
 #include <sys/sysctl.h>
 #include <sys/timeet.h>
 #include <sys/timetc.h>
 #include <sys/vdso.h>
 
 #include <contrib/dev/acpica/include/acpi.h>
 #include <contrib/dev/acpica/include/accommon.h>
 
 #include <dev/acpica/acpivar.h>
 #include <dev/acpica/acpi_hpet.h>
 
 #ifdef DEV_APIC
 #include "pcib_if.h"
 #endif
 
 #define HPET_VENDID_AMD		0x4353
 #define HPET_VENDID_AMD2	0x1022
 #define HPET_VENDID_HYGON	0x1d94
 #define HPET_VENDID_INTEL	0x8086
 #define HPET_VENDID_NVIDIA	0x10de
 #define HPET_VENDID_SW		0x1166
 
 ACPI_SERIAL_DECL(hpet, "ACPI HPET support");
 
 static devclass_t hpet_devclass;
 
 /* ACPI CA debugging */
 #define _COMPONENT	ACPI_TIMER
 ACPI_MODULE_NAME("HPET")
 
 struct hpet_softc {
 	device_t		dev;
 	int			mem_rid;
 	int			intr_rid;
 	int			irq;
 	int			useirq;
 	int			legacy_route;
 	int			per_cpu;
 	uint32_t		allowed_irqs;
 	struct resource		*mem_res;
 	struct resource		*intr_res;
 	void			*intr_handle;
 	ACPI_HANDLE		handle;
 	uint32_t		acpi_uid;
 	uint64_t		freq;
 	uint32_t		caps;
 	struct timecounter	tc;
 	struct hpet_timer {
 		struct eventtimer	et;
 		struct hpet_softc	*sc;
 		int			num;
 		int			mode;
 #define	TIMER_STOPPED	0
 #define	TIMER_PERIODIC	1
 #define	TIMER_ONESHOT	2
 		int			intr_rid;
 		int			irq;
 		int			pcpu_cpu;
 		int			pcpu_misrouted;
 		int			pcpu_master;
 		int			pcpu_slaves[MAXCPU];
 		struct resource		*intr_res;
 		void			*intr_handle;
 		uint32_t		caps;
 		uint32_t		vectors;
 		uint32_t		div;
 		uint32_t		next;
 		char			name[8];
 	} 			t[32];
 	int			num_timers;
 	struct cdev		*pdev;
 	int			mmap_allow;
 	int			mmap_allow_write;
 };
 
 static d_open_t hpet_open;
 static d_mmap_t hpet_mmap;
 
 static struct cdevsw hpet_cdevsw = {
 	.d_version =	D_VERSION,
 	.d_name =	"hpet",
 	.d_open =	hpet_open,
 	.d_mmap =	hpet_mmap,
 };
 
 static u_int hpet_get_timecount(struct timecounter *tc);
 static void hpet_test(struct hpet_softc *sc);
 
 static char *hpet_ids[] = { "PNP0103", NULL };
 
 /* Knob to disable acpi_hpet device */
 bool acpi_hpet_disabled = false;
 
 static u_int
 hpet_get_timecount(struct timecounter *tc)
 {
 	struct hpet_softc *sc;
 
 	sc = tc->tc_priv;
 	return (bus_read_4(sc->mem_res, HPET_MAIN_COUNTER));
 }
 
 uint32_t
 hpet_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
 {
 	struct hpet_softc *sc;
 
 	sc = tc->tc_priv;
 	vdso_th->th_algo = VDSO_TH_ALGO_X86_HPET;
 	vdso_th->th_x86_shift = 0;
 	vdso_th->th_x86_hpet_idx = device_get_unit(sc->dev);
+	vdso_th->th_x86_pvc_last_systime = 0;
+	vdso_th->th_x86_pvc_stable_mask = 0;
 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
 	return (sc->mmap_allow != 0);
 }
 
 #ifdef COMPAT_FREEBSD32
 uint32_t
 hpet_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
     struct timecounter *tc)
 {
 	struct hpet_softc *sc;
 
 	sc = tc->tc_priv;
 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_HPET;
 	vdso_th32->th_x86_shift = 0;
 	vdso_th32->th_x86_hpet_idx = device_get_unit(sc->dev);
+	vdso_th32->th_x86_pvc_last_systime = 0;
+	vdso_th32->th_x86_pvc_stable_mask = 0;
 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
 	return (sc->mmap_allow != 0);
 }
 #endif
 
 static void
 hpet_enable(struct hpet_softc *sc)
 {
 	uint32_t val;
 
 	val = bus_read_4(sc->mem_res, HPET_CONFIG);
 	if (sc->legacy_route)
 		val |= HPET_CNF_LEG_RT;
 	else
 		val &= ~HPET_CNF_LEG_RT;
 	val |= HPET_CNF_ENABLE;
 	bus_write_4(sc->mem_res, HPET_CONFIG, val);
 }
 
 static void
 hpet_disable(struct hpet_softc *sc)
 {
 	uint32_t val;
 
 	val = bus_read_4(sc->mem_res, HPET_CONFIG);
 	val &= ~HPET_CNF_ENABLE;
 	bus_write_4(sc->mem_res, HPET_CONFIG, val);
 }
 
 static int
 hpet_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
 {
 	struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
 	struct hpet_timer *t;
 	struct hpet_softc *sc = mt->sc;
 	uint32_t fdiv, now;
 
 	t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
 	if (period != 0) {
 		t->mode = TIMER_PERIODIC;
 		t->div = (sc->freq * period) >> 32;
 	} else {
 		t->mode = TIMER_ONESHOT;
 		t->div = 0;
 	}
 	if (first != 0)
 		fdiv = (sc->freq * first) >> 32;
 	else
 		fdiv = t->div;
 	if (t->irq < 0)
 		bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
 	t->caps |= HPET_TCNF_INT_ENB;
 	now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 restart:
 	t->next = now + fdiv;
 	if (t->mode == TIMER_PERIODIC && (t->caps & HPET_TCAP_PER_INT)) {
 		t->caps |= HPET_TCNF_TYPE;
 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
 		    t->caps | HPET_TCNF_VAL_SET);
 		bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
 		    t->next);
 		bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
 		    t->div);
 	} else {
 		t->caps &= ~HPET_TCNF_TYPE;
 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
 		    t->caps);
 		bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
 		    t->next);
 	}
 	now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 	if ((int32_t)(now - t->next + HPET_MIN_CYCLES) >= 0) {
 		fdiv *= 2;
 		goto restart;
 	}
 	return (0);
 }
 
 static int
 hpet_stop(struct eventtimer *et)
 {
 	struct hpet_timer *mt = (struct hpet_timer *)et->et_priv;
 	struct hpet_timer *t;
 	struct hpet_softc *sc = mt->sc;
 
 	t = (mt->pcpu_master < 0) ? mt : &sc->t[mt->pcpu_slaves[curcpu]];
 	t->mode = TIMER_STOPPED;
 	t->caps &= ~(HPET_TCNF_INT_ENB | HPET_TCNF_TYPE);
 	bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
 	return (0);
 }
 
 static int
 hpet_intr_single(void *arg)
 {
 	struct hpet_timer *t = (struct hpet_timer *)arg;
 	struct hpet_timer *mt;
 	struct hpet_softc *sc = t->sc;
 	uint32_t now;
 
 	if (t->mode == TIMER_STOPPED)
 		return (FILTER_STRAY);
 	/* Check that per-CPU timer interrupt reached right CPU. */
 	if (t->pcpu_cpu >= 0 && t->pcpu_cpu != curcpu) {
 		if ((++t->pcpu_misrouted) % 32 == 0) {
 			printf("HPET interrupt routed to the wrong CPU"
 			    " (timer %d CPU %d -> %d)!\n",
 			    t->num, t->pcpu_cpu, curcpu);
 		}
 
 		/*
 		 * Reload timer, hoping that next time may be more lucky
 		 * (system will manage proper interrupt binding).
 		 */
 		if ((t->mode == TIMER_PERIODIC &&
 		    (t->caps & HPET_TCAP_PER_INT) == 0) ||
 		    t->mode == TIMER_ONESHOT) {
 			t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER) +
 			    sc->freq / 8;
 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
 			    t->next);
 		}
 		return (FILTER_HANDLED);
 	}
 	if (t->mode == TIMER_PERIODIC &&
 	    (t->caps & HPET_TCAP_PER_INT) == 0) {
 		t->next += t->div;
 		now = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 		if ((int32_t)((now + t->div / 2) - t->next) > 0)
 			t->next = now + t->div / 2;
 		bus_write_4(sc->mem_res,
 		    HPET_TIMER_COMPARATOR(t->num), t->next);
 	} else if (t->mode == TIMER_ONESHOT)
 		t->mode = TIMER_STOPPED;
 	mt = (t->pcpu_master < 0) ? t : &sc->t[t->pcpu_master];
 	if (mt->et.et_active)
 		mt->et.et_event_cb(&mt->et, mt->et.et_arg);
 	return (FILTER_HANDLED);
 }
 
 static int
 hpet_intr(void *arg)
 {
 	struct hpet_softc *sc = (struct hpet_softc *)arg;
 	int i;
 	uint32_t val;
 
 	val = bus_read_4(sc->mem_res, HPET_ISR);
 	if (val) {
 		bus_write_4(sc->mem_res, HPET_ISR, val);
 		val &= sc->useirq;
 		for (i = 0; i < sc->num_timers; i++) {
 			if ((val & (1 << i)) == 0)
 				continue;
 			hpet_intr_single(&sc->t[i]);
 		}
 		return (FILTER_HANDLED);
 	}
 	return (FILTER_STRAY);
 }
 
 uint32_t
 hpet_get_uid(device_t dev)
 {
 	struct hpet_softc *sc;
 
 	sc = device_get_softc(dev);
 	return (sc->acpi_uid);
 }
 
 static ACPI_STATUS
 hpet_find(ACPI_HANDLE handle, UINT32 level, void *context,
     void **status)
 {
 	char 		**ids;
 	uint32_t	id = (uint32_t)(uintptr_t)context;
 	uint32_t	uid = 0;
 
 	for (ids = hpet_ids; *ids != NULL; ids++) {
 		if (acpi_MatchHid(handle, *ids))
 		        break;
 	}
 	if (*ids == NULL)
 		return (AE_OK);
 	if (ACPI_FAILURE(acpi_GetInteger(handle, "_UID", &uid)) ||
 	    id == uid)
 		*status = acpi_get_device(handle);
 	return (AE_OK);
 }
 
 /*
  * Find an existing IRQ resource that matches the requested IRQ range
  * and return its RID.  If one is not found, use a new RID.
  */
 static int
 hpet_find_irq_rid(device_t dev, u_long start, u_long end)
 {
 	rman_res_t irq;
 	int error, rid;
 
 	for (rid = 0;; rid++) {
 		error = bus_get_resource(dev, SYS_RES_IRQ, rid, &irq, NULL);
 		if (error != 0 || (start <= irq && irq <= end))
 			return (rid);
 	}
 }
 
 static int
 hpet_open(struct cdev *cdev, int oflags, int devtype, struct thread *td)
 {
 	struct hpet_softc *sc;
 
 	sc = cdev->si_drv1;
 	if (!sc->mmap_allow)
 		return (EPERM);
 	else
 		return (0);
 }
 
 static int
 hpet_mmap(struct cdev *cdev, vm_ooffset_t offset, vm_paddr_t *paddr,
     int nprot, vm_memattr_t *memattr)
 {
 	struct hpet_softc *sc;
 
 	sc = cdev->si_drv1;
 	if (offset >= rman_get_size(sc->mem_res))
 		return (EINVAL);
 	if (!sc->mmap_allow_write && (nprot & PROT_WRITE))
 		return (EPERM);
 	*paddr = rman_get_start(sc->mem_res) + offset;
 	*memattr = VM_MEMATTR_UNCACHEABLE;
 
 	return (0);
 }
 
 /* Discover the HPET via the ACPI table of the same name. */
 static void
 hpet_identify(driver_t *driver, device_t parent)
 {
 	ACPI_TABLE_HPET *hpet;
 	ACPI_STATUS	status;
 	device_t	child;
 	int		i;
 
 	/* Only one HPET device can be added. */
 	if (devclass_get_device(hpet_devclass, 0))
 		return;
 	for (i = 1; ; i++) {
 		/* Search for HPET table. */
 		status = AcpiGetTable(ACPI_SIG_HPET, i, (ACPI_TABLE_HEADER **)&hpet);
 		if (ACPI_FAILURE(status))
 			return;
 		/* Search for HPET device with same ID. */
 		child = NULL;
 		AcpiWalkNamespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
 		    100, hpet_find, NULL, (void *)(uintptr_t)hpet->Sequence,
 		    (void *)&child);
 		/* If found - let it be probed in normal way. */
 		if (child) {
 			if (bus_get_resource(child, SYS_RES_MEMORY, 0,
 			    NULL, NULL) != 0)
 				bus_set_resource(child, SYS_RES_MEMORY, 0,
 				    hpet->Address.Address, HPET_MEM_WIDTH);
 			continue;
 		}
 		/* If not - create it from table info. */
 		child = BUS_ADD_CHILD(parent, 2, "hpet", 0);
 		if (child == NULL) {
 			printf("%s: can't add child\n", __func__);
 			continue;
 		}
 		bus_set_resource(child, SYS_RES_MEMORY, 0, hpet->Address.Address,
 		    HPET_MEM_WIDTH);
 	}
 }
 
 static int
 hpet_probe(device_t dev)
 {
 	int rv;
 
 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
 	if (acpi_disabled("hpet") || acpi_hpet_disabled)
 		return (ENXIO);
 	if (acpi_get_handle(dev) != NULL)
 		rv = ACPI_ID_PROBE(device_get_parent(dev), dev, hpet_ids, NULL);
 	else
 		rv = 0;
 	if (rv <= 0)
 		device_set_desc(dev, "High Precision Event Timer");
 	return (rv);
 }
 
 static int
 hpet_attach(device_t dev)
 {
 	struct hpet_softc *sc;
 	struct hpet_timer *t;
 	struct make_dev_args mda;
 	int i, j, num_msi, num_timers, num_percpu_et, num_percpu_t, cur_cpu;
 	int pcpu_master, error;
 	static int maxhpetet = 0;
 	uint32_t val, val2, cvectors, dvectors;
 	uint16_t vendor, rev;
 
 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
 
 	sc = device_get_softc(dev);
 	sc->dev = dev;
 	sc->handle = acpi_get_handle(dev);
 
 	sc->mem_rid = 0;
 	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
 	    RF_ACTIVE);
 	if (sc->mem_res == NULL)
 		return (ENOMEM);
 
 	/* Validate that we can access the whole region. */
 	if (rman_get_size(sc->mem_res) < HPET_MEM_WIDTH) {
 		device_printf(dev, "memory region width %jd too small\n",
 		    rman_get_size(sc->mem_res));
 		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
 		return (ENXIO);
 	}
 
 	/* Be sure timer is enabled. */
 	hpet_enable(sc);
 
 	/* Read basic statistics about the timer. */
 	val = bus_read_4(sc->mem_res, HPET_PERIOD);
 	if (val == 0) {
 		device_printf(dev, "invalid period\n");
 		hpet_disable(sc);
 		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
 		return (ENXIO);
 	}
 
 	sc->freq = (1000000000000000LL + val / 2) / val;
 	sc->caps = bus_read_4(sc->mem_res, HPET_CAPABILITIES);
 	vendor = (sc->caps & HPET_CAP_VENDOR_ID) >> 16;
 	rev = sc->caps & HPET_CAP_REV_ID;
 	num_timers = 1 + ((sc->caps & HPET_CAP_NUM_TIM) >> 8);
 	/*
 	 * ATI/AMD violates IA-PC HPET (High Precision Event Timers)
 	 * Specification and provides an off by one number
 	 * of timers/comparators.
 	 * Additionally, they use unregistered value in VENDOR_ID field.
 	 */
 	if (vendor == HPET_VENDID_AMD && rev < 0x10 && num_timers > 0)
 		num_timers--;
 	sc->num_timers = num_timers;
 	if (bootverbose) {
 		device_printf(dev,
 		    "vendor 0x%x, rev 0x%x, %jdHz%s, %d timers,%s\n",
 		    vendor, rev, sc->freq,
 		    (sc->caps & HPET_CAP_COUNT_SIZE) ? " 64bit" : "",
 		    num_timers,
 		    (sc->caps & HPET_CAP_LEG_RT) ? " legacy route" : "");
 	}
 	for (i = 0; i < num_timers; i++) {
 		t = &sc->t[i];
 		t->sc = sc;
 		t->num = i;
 		t->mode = TIMER_STOPPED;
 		t->intr_rid = -1;
 		t->irq = -1;
 		t->pcpu_cpu = -1;
 		t->pcpu_misrouted = 0;
 		t->pcpu_master = -1;
 		t->caps = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i));
 		t->vectors = bus_read_4(sc->mem_res, HPET_TIMER_CAP_CNF(i) + 4);
 		if (bootverbose) {
 			device_printf(dev,
 			    " t%d: irqs 0x%08x (%d)%s%s%s\n", i,
 			    t->vectors, (t->caps & HPET_TCNF_INT_ROUTE) >> 9,
 			    (t->caps & HPET_TCAP_FSB_INT_DEL) ? ", MSI" : "",
 			    (t->caps & HPET_TCAP_SIZE) ? ", 64bit" : "",
 			    (t->caps & HPET_TCAP_PER_INT) ? ", periodic" : "");
 		}
 	}
 	if (testenv("debug.acpi.hpet_test"))
 		hpet_test(sc);
 	/*
 	 * Don't attach if the timer never increments.  Since the spec
 	 * requires it to be at least 10 MHz, it has to change in 1 us.
 	 */
 	val = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 	DELAY(1);
 	val2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 	if (val == val2) {
 		device_printf(dev, "HPET never increments, disabling\n");
 		hpet_disable(sc);
 		bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
 		return (ENXIO);
 	}
 	/* Announce first HPET as timecounter. */
 	if (device_get_unit(dev) == 0) {
 		sc->tc.tc_get_timecount = hpet_get_timecount,
 		sc->tc.tc_counter_mask = ~0u,
 		sc->tc.tc_name = "HPET",
 		sc->tc.tc_quality = 950,
 		sc->tc.tc_frequency = sc->freq;
 		sc->tc.tc_priv = sc;
 		sc->tc.tc_fill_vdso_timehands = hpet_vdso_timehands;
 #ifdef COMPAT_FREEBSD32
 		sc->tc.tc_fill_vdso_timehands32 = hpet_vdso_timehands32;
 #endif
 		tc_init(&sc->tc);
 	}
 	/* If not disabled - setup and announce event timers. */
 	if (resource_int_value(device_get_name(dev), device_get_unit(dev),
 	     "clock", &i) == 0 && i == 0)
 	        return (0);
 
 	/* Check whether we can and want legacy routing. */
 	sc->legacy_route = 0;
 	resource_int_value(device_get_name(dev), device_get_unit(dev),
 	     "legacy_route", &sc->legacy_route);
 	if ((sc->caps & HPET_CAP_LEG_RT) == 0)
 		sc->legacy_route = 0;
 	if (sc->legacy_route) {
 		sc->t[0].vectors = 0;
 		sc->t[1].vectors = 0;
 	}
 
 	/* Check what IRQs we want use. */
 	/* By default allow any PCI IRQs. */
 	sc->allowed_irqs = 0xffff0000;
 	/*
 	 * HPETs in AMD chipsets before SB800 have problems with IRQs >= 16
 	 * Lower are also not always working for different reasons.
 	 * SB800 fixed it, but seems do not implements level triggering
 	 * properly, that makes it very unreliable - it freezes after any
 	 * interrupt loss. Avoid legacy IRQs for AMD.
 	 */
 	if (vendor == HPET_VENDID_AMD || vendor == HPET_VENDID_AMD2 ||
 	    vendor == HPET_VENDID_HYGON)
 		sc->allowed_irqs = 0x00000000;
 	/*
 	 * NVidia MCP5x chipsets have number of unexplained interrupt
 	 * problems. For some reason, using HPET interrupts breaks HDA sound.
 	 */
 	if (vendor == HPET_VENDID_NVIDIA && rev <= 0x01)
 		sc->allowed_irqs = 0x00000000;
 	/*
 	 * ServerWorks HT1000 reported to have problems with IRQs >= 16.
 	 * Lower IRQs are working, but allowed mask is not set correctly.
 	 * Legacy_route mode works fine.
 	 */
 	if (vendor == HPET_VENDID_SW && rev <= 0x01)
 		sc->allowed_irqs = 0x00000000;
 	/*
 	 * Neither QEMU nor VirtualBox report supported IRQs correctly.
 	 * The only way to use HPET there is to specify IRQs manually
 	 * and/or use legacy_route. Legacy_route mode works on both.
 	 */
 	if (vm_guest)
 		sc->allowed_irqs = 0x00000000;
 	/* Let user override. */
 	resource_int_value(device_get_name(dev), device_get_unit(dev),
 	     "allowed_irqs", &sc->allowed_irqs);
 
 	/* Get how much per-CPU timers we should try to provide. */
 	sc->per_cpu = 1;
 	resource_int_value(device_get_name(dev), device_get_unit(dev),
 	     "per_cpu", &sc->per_cpu);
 
 	num_msi = 0;
 	sc->useirq = 0;
 	/* Find IRQ vectors for all timers. */
 	cvectors = sc->allowed_irqs & 0xffff0000;
 	dvectors = sc->allowed_irqs & 0x0000ffff;
 	if (sc->legacy_route)
 		dvectors &= 0x0000fefe;
 	for (i = 0; i < num_timers; i++) {
 		t = &sc->t[i];
 		if (sc->legacy_route && i < 2)
 			t->irq = (i == 0) ? 0 : 8;
 #ifdef DEV_APIC
 		else if (t->caps & HPET_TCAP_FSB_INT_DEL) {
 			if ((j = PCIB_ALLOC_MSIX(
 			    device_get_parent(device_get_parent(dev)), dev,
 			    &t->irq))) {
 				device_printf(dev,
 				    "Can't allocate interrupt for t%d: %d\n",
 				    i, j);
 			}
 		}
 #endif
 		else if (dvectors & t->vectors) {
 			t->irq = ffs(dvectors & t->vectors) - 1;
 			dvectors &= ~(1 << t->irq);
 		}
 		if (t->irq >= 0) {
 			t->intr_rid = hpet_find_irq_rid(dev, t->irq, t->irq);
 			t->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
 			    &t->intr_rid, t->irq, t->irq, 1, RF_ACTIVE);
 			if (t->intr_res == NULL) {
 				t->irq = -1;
 				device_printf(dev,
 				    "Can't map interrupt for t%d.\n", i);
 			} else if (bus_setup_intr(dev, t->intr_res,
 			    INTR_TYPE_CLK, hpet_intr_single, NULL, t,
 			    &t->intr_handle) != 0) {
 				t->irq = -1;
 				device_printf(dev,
 				    "Can't setup interrupt for t%d.\n", i);
 			} else {
 				bus_describe_intr(dev, t->intr_res,
 				    t->intr_handle, "t%d", i);
 				num_msi++;
 			}
 		}
 		if (t->irq < 0 && (cvectors & t->vectors) != 0) {
 			cvectors &= t->vectors;
 			sc->useirq |= (1 << i);
 		}
 	}
 	if (sc->legacy_route && sc->t[0].irq < 0 && sc->t[1].irq < 0)
 		sc->legacy_route = 0;
 	if (sc->legacy_route)
 		hpet_enable(sc);
 	/* Group timers for per-CPU operation. */
 	num_percpu_et = min(num_msi / mp_ncpus, sc->per_cpu);
 	num_percpu_t = num_percpu_et * mp_ncpus;
 	pcpu_master = 0;
 	cur_cpu = CPU_FIRST();
 	for (i = 0; i < num_timers; i++) {
 		t = &sc->t[i];
 		if (t->irq >= 0 && num_percpu_t > 0) {
 			if (cur_cpu == CPU_FIRST())
 				pcpu_master = i;
 			t->pcpu_cpu = cur_cpu;
 			t->pcpu_master = pcpu_master;
 			sc->t[pcpu_master].
 			    pcpu_slaves[cur_cpu] = i;
 			bus_bind_intr(dev, t->intr_res, cur_cpu);
 			cur_cpu = CPU_NEXT(cur_cpu);
 			num_percpu_t--;
 		} else if (t->irq >= 0)
 			bus_bind_intr(dev, t->intr_res, CPU_FIRST());
 	}
 	bus_write_4(sc->mem_res, HPET_ISR, 0xffffffff);
 	sc->irq = -1;
 	/* If at least one timer needs legacy IRQ - set it up. */
 	if (sc->useirq) {
 		j = i = fls(cvectors) - 1;
 		while (j > 0 && (cvectors & (1 << (j - 1))) != 0)
 			j--;
 		sc->intr_rid = hpet_find_irq_rid(dev, j, i);
 		sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
 		    &sc->intr_rid, j, i, 1, RF_SHAREABLE | RF_ACTIVE);
 		if (sc->intr_res == NULL)
 			device_printf(dev, "Can't map interrupt.\n");
 		else if (bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
 		    hpet_intr, NULL, sc, &sc->intr_handle) != 0) {
 			device_printf(dev, "Can't setup interrupt.\n");
 		} else {
 			sc->irq = rman_get_start(sc->intr_res);
 			/* Bind IRQ to BSP to avoid live migration. */
 			bus_bind_intr(dev, sc->intr_res, CPU_FIRST());
 		}
 	}
 	/* Program and announce event timers. */
 	for (i = 0; i < num_timers; i++) {
 		t = &sc->t[i];
 		t->caps &= ~(HPET_TCNF_FSB_EN | HPET_TCNF_INT_ROUTE);
 		t->caps &= ~(HPET_TCNF_VAL_SET | HPET_TCNF_INT_ENB);
 		t->caps &= ~(HPET_TCNF_INT_TYPE);
 		t->caps |= HPET_TCNF_32MODE;
 		if (t->irq >= 0 && sc->legacy_route && i < 2) {
 			/* Legacy route doesn't need more configuration. */
 		} else
 #ifdef DEV_APIC
 		if ((t->caps & HPET_TCAP_FSB_INT_DEL) && t->irq >= 0) {
 			uint64_t addr;
 			uint32_t data;
 
 			if (PCIB_MAP_MSI(
 			    device_get_parent(device_get_parent(dev)), dev,
 			    t->irq, &addr, &data) == 0) {
 				bus_write_4(sc->mem_res,
 				    HPET_TIMER_FSB_ADDR(i), addr);
 				bus_write_4(sc->mem_res,
 				    HPET_TIMER_FSB_VAL(i), data);
 				t->caps |= HPET_TCNF_FSB_EN;
 			} else
 				t->irq = -2;
 		} else
 #endif
 		if (t->irq >= 0)
 			t->caps |= (t->irq << 9);
 		else if (sc->irq >= 0 && (t->vectors & (1 << sc->irq)))
 			t->caps |= (sc->irq << 9) | HPET_TCNF_INT_TYPE;
 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(i), t->caps);
 		/* Skip event timers without set up IRQ. */
 		if (t->irq < 0 &&
 		    (sc->irq < 0 || (t->vectors & (1 << sc->irq)) == 0))
 			continue;
 		/* Announce the reset. */
 		if (maxhpetet == 0)
 			t->et.et_name = "HPET";
 		else {
 			sprintf(t->name, "HPET%d", maxhpetet);
 			t->et.et_name = t->name;
 		}
 		t->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
 		t->et.et_quality = 450;
 		if (t->pcpu_master >= 0) {
 			t->et.et_flags |= ET_FLAGS_PERCPU;
 			t->et.et_quality += 100;
 		} else if (mp_ncpus >= 8)
 			t->et.et_quality -= 100;
 		if ((t->caps & HPET_TCAP_PER_INT) == 0)
 			t->et.et_quality -= 10;
 		t->et.et_frequency = sc->freq;
 		t->et.et_min_period =
 		    ((uint64_t)(HPET_MIN_CYCLES * 2) << 32) / sc->freq;
 		t->et.et_max_period = (0xfffffffeLLU << 32) / sc->freq;
 		t->et.et_start = hpet_start;
 		t->et.et_stop = hpet_stop;
 		t->et.et_priv = &sc->t[i];
 		if (t->pcpu_master < 0 || t->pcpu_master == i) {
 			et_register(&t->et);
 			maxhpetet++;
 		}
 	}
 	acpi_GetInteger(sc->handle, "_UID", &sc->acpi_uid);
 
 	make_dev_args_init(&mda);
 	mda.mda_devsw = &hpet_cdevsw;
 	mda.mda_uid = UID_ROOT;
 	mda.mda_gid = GID_WHEEL;
 	mda.mda_mode = 0644;
 	mda.mda_si_drv1 = sc;
 	error = make_dev_s(&mda, &sc->pdev, "hpet%d", device_get_unit(dev));
 	if (error == 0) {
 		sc->mmap_allow = 1;
 		TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow",
 		    &sc->mmap_allow);
 		sc->mmap_allow_write = 0;
 		TUNABLE_INT_FETCH("hw.acpi.hpet.mmap_allow_write",
 		    &sc->mmap_allow_write);
 		SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
 		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
 		    OID_AUTO, "mmap_allow",
 		    CTLFLAG_RW, &sc->mmap_allow, 0,
 		    "Allow userland to memory map HPET");
 		SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
 		    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
 		    OID_AUTO, "mmap_allow_write",
 		    CTLFLAG_RW, &sc->mmap_allow_write, 0,
 		    "Allow userland write to the HPET register space");
 	} else {
 		device_printf(dev, "could not create /dev/hpet%d, error %d\n",
 		    device_get_unit(dev), error);
 	}
 
 	return (0);
 }
 
 static int
 hpet_detach(device_t dev)
 {
 	ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
 
 	/* XXX Without a tc_remove() function, we can't detach. */
 	return (EBUSY);
 }
 
 static int
 hpet_suspend(device_t dev)
 {
 //	struct hpet_softc *sc;
 
 	/*
 	 * Disable the timer during suspend.  The timer will not lose
 	 * its state in S1 or S2, but we are required to disable
 	 * it.
 	 */
 //	sc = device_get_softc(dev);
 //	hpet_disable(sc);
 
 	return (0);
 }
 
 static int
 hpet_resume(device_t dev)
 {
 	struct hpet_softc *sc;
 	struct hpet_timer *t;
 	int i;
 
 	/* Re-enable the timer after a resume to keep the clock advancing. */
 	sc = device_get_softc(dev);
 	hpet_enable(sc);
 	/* Restart event timers that were running on suspend. */
 	for (i = 0; i < sc->num_timers; i++) {
 		t = &sc->t[i];
 #ifdef DEV_APIC
 		if (t->irq >= 0 && (sc->legacy_route == 0 || i >= 2)) {
 			uint64_t addr;
 			uint32_t data;
 
 			if (PCIB_MAP_MSI(
 			    device_get_parent(device_get_parent(dev)), dev,
 			    t->irq, &addr, &data) == 0) {
 				bus_write_4(sc->mem_res,
 				    HPET_TIMER_FSB_ADDR(i), addr);
 				bus_write_4(sc->mem_res,
 				    HPET_TIMER_FSB_VAL(i), data);
 			}
 		}
 #endif
 		if (t->mode == TIMER_STOPPED)
 			continue;
 		t->next = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 		if (t->mode == TIMER_PERIODIC &&
 		    (t->caps & HPET_TCAP_PER_INT) != 0) {
 			t->caps |= HPET_TCNF_TYPE;
 			t->next += t->div;
 			bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num),
 			    t->caps | HPET_TCNF_VAL_SET);
 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
 			    t->next);
 			bus_read_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num));
 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
 			    t->div);
 		} else {
 			t->next += sc->freq / 1024;
 			bus_write_4(sc->mem_res, HPET_TIMER_COMPARATOR(t->num),
 			    t->next);
 		}
 		bus_write_4(sc->mem_res, HPET_ISR, 1 << t->num);
 		bus_write_4(sc->mem_res, HPET_TIMER_CAP_CNF(t->num), t->caps);
 	}
 	return (0);
 }
 
 /* Print some basic latency/rate information to assist in debugging. */
 static void
 hpet_test(struct hpet_softc *sc)
 {
 	int i;
 	uint32_t u1, u2;
 	struct bintime b0, b1, b2;
 	struct timespec ts;
 
 	binuptime(&b0);
 	binuptime(&b0);
 	binuptime(&b1);
 	u1 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 	for (i = 1; i < 1000; i++)
 		u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 	binuptime(&b2);
 	u2 = bus_read_4(sc->mem_res, HPET_MAIN_COUNTER);
 
 	bintime_sub(&b2, &b1);
 	bintime_sub(&b1, &b0);
 	bintime_sub(&b2, &b1);
 	bintime2timespec(&b2, &ts);
 
 	device_printf(sc->dev, "%ld.%09ld: %u ... %u = %u\n",
 	    (long)ts.tv_sec, ts.tv_nsec, u1, u2, u2 - u1);
 
 	device_printf(sc->dev, "time per call: %ld ns\n", ts.tv_nsec / 1000);
 }
 
 #ifdef DEV_APIC
 static int
 hpet_remap_intr(device_t dev, device_t child, u_int irq)
 {
 	struct hpet_softc *sc = device_get_softc(dev);
 	struct hpet_timer *t;
 	uint64_t addr;
 	uint32_t data;
 	int error, i;
 
 	for (i = 0; i < sc->num_timers; i++) {
 		t = &sc->t[i];
 		if (t->irq != irq)
 			continue;
 		error = PCIB_MAP_MSI(
 		    device_get_parent(device_get_parent(dev)), dev,
 		    irq, &addr, &data);
 		if (error)
 			return (error);
 		hpet_disable(sc); /* Stop timer to avoid interrupt loss. */
 		bus_write_4(sc->mem_res, HPET_TIMER_FSB_ADDR(i), addr);
 		bus_write_4(sc->mem_res, HPET_TIMER_FSB_VAL(i), data);
 		hpet_enable(sc);
 		return (0);
 	}
 	return (ENOENT);
 }
 #endif
 
 static device_method_t hpet_methods[] = {
 	/* Device interface */
 	DEVMETHOD(device_identify, hpet_identify),
 	DEVMETHOD(device_probe, hpet_probe),
 	DEVMETHOD(device_attach, hpet_attach),
 	DEVMETHOD(device_detach, hpet_detach),
 	DEVMETHOD(device_suspend, hpet_suspend),
 	DEVMETHOD(device_resume, hpet_resume),
 
 #ifdef DEV_APIC
 	DEVMETHOD(bus_remap_intr, hpet_remap_intr),
 #endif
 
 	DEVMETHOD_END
 };
 
 static driver_t	hpet_driver = {
 	"hpet",
 	hpet_methods,
 	sizeof(struct hpet_softc),
 };
 
 DRIVER_MODULE(hpet, acpi, hpet_driver, hpet_devclass, 0, 0);
 MODULE_DEPEND(hpet, acpi, 1, 1, 1);
diff --git a/sys/dev/hyperv/vmbus/amd64/hyperv_machdep.c b/sys/dev/hyperv/vmbus/amd64/hyperv_machdep.c
index c08098138805..11d549dc18d2 100644
--- a/sys/dev/hyperv/vmbus/amd64/hyperv_machdep.c
+++ b/sys/dev/hyperv/vmbus/amd64/hyperv_machdep.c
@@ -1,234 +1,236 @@
 /*-
  * Copyright (c) 2016-2017 Microsoft Corp.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice unmodified, this list of conditions, and the following
  *    disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/conf.h>
 #include <sys/fcntl.h>
 #include <sys/kernel.h>
 #include <sys/systm.h>
 #include <sys/timetc.h>
 #include <sys/vdso.h>
 
 #include <machine/cpufunc.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 
 #include <vm/vm.h>
 
 #include <dev/hyperv/include/hyperv.h>
 #include <dev/hyperv/include/hyperv_busdma.h>
 #include <dev/hyperv/vmbus/hyperv_machdep.h>
 #include <dev/hyperv/vmbus/hyperv_reg.h>
 #include <dev/hyperv/vmbus/hyperv_var.h>
 
 struct hyperv_reftsc_ctx {
 	struct hyperv_reftsc	*tsc_ref;
 	struct hyperv_dma	tsc_ref_dma;
 };
 
 static uint32_t			hyperv_tsc_vdso_timehands(
 				    struct vdso_timehands *,
 				    struct timecounter *);
 
 static d_open_t			hyperv_tsc_open;
 static d_mmap_t			hyperv_tsc_mmap;
 
 static struct timecounter	hyperv_tsc_timecounter = {
 	.tc_get_timecount	= NULL,	/* based on CPU vendor. */
 	.tc_counter_mask	= 0xffffffff,
 	.tc_frequency		= HYPERV_TIMER_FREQ,
 	.tc_name		= "Hyper-V-TSC",
 	.tc_quality		= 3000,
 	.tc_fill_vdso_timehands = hyperv_tsc_vdso_timehands,
 };
 
 static struct cdevsw		hyperv_tsc_cdevsw = {
 	.d_version		= D_VERSION,
 	.d_open			= hyperv_tsc_open,
 	.d_mmap			= hyperv_tsc_mmap,
 	.d_name			= HYPERV_REFTSC_DEVNAME
 };
 
 static struct hyperv_reftsc_ctx	hyperv_ref_tsc;
 
 uint64_t
 hypercall_md(volatile void *hc_addr, uint64_t in_val,
     uint64_t in_paddr, uint64_t out_paddr)
 {
 	uint64_t status;
 
 	__asm__ __volatile__ ("mov %0, %%r8" : : "r" (out_paddr): "r8");
 	__asm__ __volatile__ ("call *%3" : "=a" (status) :
 	    "c" (in_val), "d" (in_paddr), "m" (hc_addr));
 	return (status);
 }
 
 static int
 hyperv_tsc_open(struct cdev *dev __unused, int oflags, int devtype __unused,
     struct thread *td __unused)
 {
 
 	if (oflags & FWRITE)
 		return (EPERM);
 	return (0);
 }
 
 static int
 hyperv_tsc_mmap(struct cdev *dev __unused, vm_ooffset_t offset,
     vm_paddr_t *paddr, int nprot __unused, vm_memattr_t *memattr __unused)
 {
 
 	KASSERT(hyperv_ref_tsc.tsc_ref != NULL, ("reftsc has not been setup"));
 
 	/*
 	 * NOTE:
 	 * 'nprot' does not contain information interested to us;
 	 * WR-open is blocked by d_open.
 	 */
 
 	if (offset != 0)
 		return (EOPNOTSUPP);
 
 	*paddr = hyperv_ref_tsc.tsc_ref_dma.hv_paddr;
 	return (0);
 }
 
 static uint32_t
 hyperv_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
     struct timecounter *tc __unused)
 {
 
 	vdso_th->th_algo = VDSO_TH_ALGO_X86_HVTSC;
 	vdso_th->th_x86_shift = 0;
 	vdso_th->th_x86_hpet_idx = 0;
+	vdso_th->th_x86_pvc_last_systime = 0;
+	vdso_th->th_x86_pvc_stable_mask = 0;
 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
 	return (1);
 }
 
 #define HYPERV_TSC_TIMECOUNT(fence)					\
 static uint64_t								\
 hyperv_tc64_tsc_##fence(void)						\
 {									\
 	struct hyperv_reftsc *tsc_ref = hyperv_ref_tsc.tsc_ref;		\
 	uint32_t seq;							\
 									\
 	while ((seq = atomic_load_acq_int(&tsc_ref->tsc_seq)) != 0) {	\
 		uint64_t disc, ret, tsc;				\
 		uint64_t scale = tsc_ref->tsc_scale;			\
 		int64_t ofs = tsc_ref->tsc_ofs;				\
 									\
 		fence();						\
 		tsc = rdtsc();						\
 									\
 		/* ret = ((tsc * scale) >> 64) + ofs */			\
 		__asm__ __volatile__ ("mulq %3" :			\
 		    "=d" (ret), "=a" (disc) :				\
 		    "a" (tsc), "r" (scale));				\
 		ret += ofs;						\
 									\
 		atomic_thread_fence_acq();				\
 		if (tsc_ref->tsc_seq == seq)				\
 			return (ret);					\
 									\
 		/* Sequence changed; re-sync. */			\
 	}								\
 	/* Fallback to the generic timecounter, i.e. rdmsr. */		\
 	return (rdmsr(MSR_HV_TIME_REF_COUNT));				\
 }									\
 									\
 static u_int								\
 hyperv_tsc_timecount_##fence(struct timecounter *tc __unused)		\
 {									\
 									\
 	return (hyperv_tc64_tsc_##fence());				\
 }									\
 struct __hack
 
 HYPERV_TSC_TIMECOUNT(lfence);
 HYPERV_TSC_TIMECOUNT(mfence);
 
 static void
 hyperv_tsc_tcinit(void *dummy __unused)
 {
 	hyperv_tc64_t tc64 = NULL;
 	uint64_t val, orig;
 
 	if ((hyperv_features &
 	     (CPUID_HV_MSR_TIME_REFCNT | CPUID_HV_MSR_REFERENCE_TSC)) !=
 	    (CPUID_HV_MSR_TIME_REFCNT | CPUID_HV_MSR_REFERENCE_TSC) ||
 	    (cpu_feature & CPUID_SSE2) == 0)	/* SSE2 for mfence/lfence */
 		return;
 
 	switch (cpu_vendor_id) {
 	case CPU_VENDOR_AMD:
 	case CPU_VENDOR_HYGON:
 		hyperv_tsc_timecounter.tc_get_timecount =
 		    hyperv_tsc_timecount_mfence;
 		tc64 = hyperv_tc64_tsc_mfence;
 		break;
 
 	case CPU_VENDOR_INTEL:
 		hyperv_tsc_timecounter.tc_get_timecount =
 		    hyperv_tsc_timecount_lfence;
 		tc64 = hyperv_tc64_tsc_lfence;
 		break;
 
 	default:
 		/* Unsupport CPU vendors. */
 		return;
 	}
 
 	hyperv_ref_tsc.tsc_ref = hyperv_dmamem_alloc(NULL, PAGE_SIZE, 0,
 	    sizeof(struct hyperv_reftsc), &hyperv_ref_tsc.tsc_ref_dma,
 	    BUS_DMA_WAITOK | BUS_DMA_ZERO);
 	if (hyperv_ref_tsc.tsc_ref == NULL) {
 		printf("hyperv: reftsc page allocation failed\n");
 		return;
 	}
 
 	orig = rdmsr(MSR_HV_REFERENCE_TSC);
 	val = MSR_HV_REFTSC_ENABLE | (orig & MSR_HV_REFTSC_RSVD_MASK) |
 	    ((hyperv_ref_tsc.tsc_ref_dma.hv_paddr >> PAGE_SHIFT) <<
 	     MSR_HV_REFTSC_PGSHIFT);
 	wrmsr(MSR_HV_REFERENCE_TSC, val);
 
 	/* Register "enlightened" timecounter. */
 	tc_init(&hyperv_tsc_timecounter);
 
 	/* Install 64 bits timecounter method for other modules to use. */
 	KASSERT(tc64 != NULL, ("tc64 is not set"));
 	hyperv_tc64 = tc64;
 
 	/* Add device for mmap(2). */
 	make_dev(&hyperv_tsc_cdevsw, 0, UID_ROOT, GID_WHEEL, 0444,
 	    HYPERV_REFTSC_DEVNAME);
 }
 SYSINIT(hyperv_tsc_init, SI_SUB_DRIVERS, SI_ORDER_FIRST, hyperv_tsc_tcinit,
     NULL);
diff --git a/sys/x86/include/pvclock.h b/sys/x86/include/pvclock.h
index 399017039dd0..023acdb80d9c 100644
--- a/sys/x86/include/pvclock.h
+++ b/sys/x86/include/pvclock.h
@@ -1,84 +1,146 @@
 /*-
  * Copyright (c) 2014, Bryan Venteicher <bryanv@FreeBSD.org>
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #ifndef X86_PVCLOCK
 #define X86_PVCLOCK
 
 #include <sys/types.h>
+
+#ifdef _KERNEL
 #include <sys/timetc.h>
+#endif /* _KERNEL */
+
+#define	PVCLOCK_CDEVNAME		"pvclock"
 
 struct pvclock_vcpu_time_info {
 	uint32_t	version;
 	uint32_t	pad0;
 	uint64_t	tsc_timestamp;
 	uint64_t	system_time;
 	uint32_t	tsc_to_system_mul;
 	int8_t		tsc_shift;
 	uint8_t		flags;
 	uint8_t		pad[2];
 };
 
 #define PVCLOCK_FLAG_TSC_STABLE		0x01
 #define PVCLOCK_FLAG_GUEST_PASUED	0x02
 
+/*
+ * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
+ * yielding a 64-bit result.
+ */
+static inline uint64_t
+pvclock_scale_delta(uint64_t delta, uint32_t mul_frac, int shift)
+{
+	uint64_t product;
+
+	if (shift < 0)
+		delta >>= -shift;
+	else
+		delta <<= shift;
+#if defined(__i386__)
+	{
+		uint32_t tmp1, tmp2;
+
+		/**
+		 * For i386, the formula looks like:
+		 *
+		 *   lower = (mul_frac * (delta & UINT_MAX)) >> 32
+		 *   upper = mul_frac * (delta >> 32)
+		 *   product = lower + upper
+		 */
+		__asm__ (
+			"mul  %5       ; "
+			"mov  %4,%%eax ; "
+			"mov  %%edx,%4 ; "
+			"mul  %5       ; "
+			"xor  %5,%5    ; "
+			"add  %4,%%eax ; "
+			"adc  %5,%%edx ; "
+			: "=A" (product), "=r" (tmp1), "=r" (tmp2)
+			: "a" ((uint32_t)delta), "1" ((uint32_t)(delta >> 32)),
+			  "2" (mul_frac) );
+	}
+#elif defined(__amd64__)
+	{
+		unsigned long tmp;
+
+		__asm__ (
+			"mulq %[mul_frac] ; shrd $32, %[hi], %[lo]"
+			: [lo]"=a" (product), [hi]"=d" (tmp)
+			: "0" (delta), [mul_frac]"rm"((uint64_t)mul_frac));
+	}
+#else
+#error "pvclock: unsupported x86 architecture?"
+#endif
+	return (product);
+}
+
+#ifdef _KERNEL
+
 typedef struct pvclock_wall_clock *pvclock_get_wallclock_t(void *arg);
 
 struct pvclock_wall_clock {
 	uint32_t	version;
 	uint32_t	sec;
 	uint32_t	nsec;
 };
 
 struct pvclock {
 	/* Public; initialized by the caller of 'pvclock_init()': */
 	pvclock_get_wallclock_t		*get_wallclock;
 	void				*get_wallclock_arg;
 	struct pvclock_vcpu_time_info	*timeinfos;
 	bool				 stable_flag_supported;
 
 	/* Private; initialized by the 'pvclock' API: */
+	bool				 vdso_force_unstable;
 	struct timecounter		 tc;
+	struct cdev			*cdev;
 };
 
 /*
  * NOTE: 'pvclock_get_timecount()' and 'pvclock_get_wallclock()' are purely
  * transitional; they should be removed after 'dev/xen/timer/timer.c' has been
  * migrated to the 'struct pvclock' API.
  */
 void		pvclock_resume(void);
 uint64_t	pvclock_tsc_freq(struct pvclock_vcpu_time_info *ti);
 uint64_t	pvclock_get_timecount(struct pvclock_vcpu_time_info *ti);
 void		pvclock_get_wallclock(struct pvclock_wall_clock *wc,
 		    struct timespec *ts);
 
 void		pvclock_init(struct pvclock *pvc, device_t dev,
 		    const char *tc_name, int tc_quality, u_int tc_flags);
 void		pvclock_gettime(struct pvclock *pvc, struct timespec *ts);
 int		pvclock_destroy(struct pvclock *pvc);
 
+#endif /* _KERNEL */
+
 #endif
diff --git a/sys/x86/include/vdso.h b/sys/x86/include/vdso.h
index 97972c660dde..ace63cbe9f62 100644
--- a/sys/x86/include/vdso.h
+++ b/sys/x86/include/vdso.h
@@ -1,53 +1,56 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright 2012 Konstantin Belousov <kib@FreeBSD.ORG>.
  * Copyright 2016 The FreeBSD Foundation.
  * All rights reserved.
  *
  * Portions of this software were developed by Konstantin Belousov
  * under sponsorship from the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #ifndef _X86_VDSO_H
 #define	_X86_VDSO_H
 
 #define	VDSO_TIMEHANDS_MD			\
 	uint32_t	th_x86_shift;		\
 	uint32_t	th_x86_hpet_idx;	\
-	uint32_t	th_res[6];
+	uint64_t	th_x86_pvc_last_systime;\
+	uint8_t		th_x86_pvc_stable_mask;	\
+	uint8_t		th_res[15];
 
 #define	VDSO_TH_ALGO_X86_TSC	VDSO_TH_ALGO_1
 #define	VDSO_TH_ALGO_X86_HPET	VDSO_TH_ALGO_2
 #define	VDSO_TH_ALGO_X86_HVTSC	VDSO_TH_ALGO_3	/* Hyper-V ref. TSC */
+#define	VDSO_TH_ALGO_X86_PVCLK	VDSO_TH_ALGO_4	/* KVM/XEN paravirtual clock */
 
 #ifdef _KERNEL
 #ifdef COMPAT_FREEBSD32
 
 #define	VDSO_TIMEHANDS_MD32	VDSO_TIMEHANDS_MD
 
 #endif
 #endif
 #endif
diff --git a/sys/x86/x86/pvclock.c b/sys/x86/x86/pvclock.c
index e0ad65d906b8..cc2377bdbcf0 100644
--- a/sys/x86/x86/pvclock.c
+++ b/sys/x86/x86/pvclock.c
@@ -1,277 +1,336 @@
 /*-
  * Copyright (c) 2009 Adrian Chadd
  * Copyright (c) 2012 Spectra Logic Corporation
  * Copyright (c) 2014 Bryan Venteicher
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/systm.h>
+#include <sys/bus.h>
 #include <sys/clock.h>
+#include <sys/conf.h>
+#include <sys/fcntl.h>
 #include <sys/limits.h>
+#include <sys/mman.h>
 #include <sys/proc.h>
+#include <sys/smp.h>
+#include <sys/sysctl.h>
+#include <sys/vdso.h>
+
+#include <vm/vm.h>
+#include <vm/pmap.h>
 
 #include <machine/atomic.h>
+#include <machine/cpufunc.h>
 #include <machine/md_var.h>
 #include <machine/pvclock.h>
 
 /*
  * Last system time. This is used to guarantee a monotonically non-decreasing
  * clock for the kernel codepath and approximate the same for the vDSO codepath.
  * In theory, this should be unnecessary absent hypervisor bug(s) and/or what
  * should be rare cases where TSC jitter may still be visible despite the
  * hypervisor's best efforts.
  */
 static volatile uint64_t pvclock_last_systime;
 
 static uint64_t		 pvclock_getsystime(struct pvclock *pvc);
 static void		 pvclock_read_time_info(
     struct pvclock_vcpu_time_info *ti, uint64_t *ns, uint8_t *flags);
 static void		 pvclock_read_wall_clock(struct pvclock_wall_clock *wc,
     struct timespec *ts);
 static u_int		 pvclock_tc_get_timecount(struct timecounter *tc);
+static uint32_t		 pvclock_tc_vdso_timehands(
+    struct vdso_timehands *vdso_th, struct timecounter *tc);
+#ifdef COMPAT_FREEBSD32
+static uint32_t		 pvclock_tc_vdso_timehands32(
+    struct vdso_timehands32 *vdso_th, struct timecounter *tc);
+#endif
+
+static d_open_t		 pvclock_cdev_open;
+static d_mmap_t		 pvclock_cdev_mmap;
+
+static struct cdevsw	 pvclock_cdev_cdevsw = {
+	.d_version =	D_VERSION,
+	.d_name =	PVCLOCK_CDEVNAME,
+	.d_open =	pvclock_cdev_open,
+	.d_mmap =	pvclock_cdev_mmap,
+};
 
 void
 pvclock_resume(void)
 {
 	atomic_store_rel_64(&pvclock_last_systime, 0);
 }
 
 uint64_t
 pvclock_tsc_freq(struct pvclock_vcpu_time_info *ti)
 {
 	uint64_t freq;
 
 	freq = (1000000000ULL << 32) / ti->tsc_to_system_mul;
 	if (ti->tsc_shift < 0)
 		freq <<= -ti->tsc_shift;
 	else
 		freq >>= ti->tsc_shift;
 	return (freq);
 }
 
-/*
- * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction,
- * yielding a 64-bit result.
- */
-static inline uint64_t
-pvclock_scale_delta(uint64_t delta, uint32_t mul_frac, int shift)
-{
-	uint64_t product;
-
-	if (shift < 0)
-		delta >>= -shift;
-	else
-		delta <<= shift;
-#if defined(__i386__)
-	{
-		uint32_t tmp1, tmp2;
-
-		/**
-		 * For i386, the formula looks like:
-		 *
-		 *   lower = (mul_frac * (delta & UINT_MAX)) >> 32
-		 *   upper = mul_frac * (delta >> 32)
-		 *   product = lower + upper
-		 */
-		__asm__ (
-			"mul  %5       ; "
-			"mov  %4,%%eax ; "
-			"mov  %%edx,%4 ; "
-			"mul  %5       ; "
-			"xor  %5,%5    ; "
-			"add  %4,%%eax ; "
-			"adc  %5,%%edx ; "
-			: "=A" (product), "=r" (tmp1), "=r" (tmp2)
-			: "a" ((uint32_t)delta), "1" ((uint32_t)(delta >> 32)),
-			  "2" (mul_frac) );
-	}
-#elif defined(__amd64__)
-	{
-		unsigned long tmp;
-
-		__asm__ (
-			"mulq %[mul_frac] ; shrd $32, %[hi], %[lo]"
-			: [lo]"=a" (product), [hi]"=d" (tmp)
-			: "0" (delta), [mul_frac]"rm"((uint64_t)mul_frac));
-	}
-#else
-#error "pvclock: unsupported x86 architecture?"
-#endif
-	return (product);
-}
-
 static void
 pvclock_read_time_info(struct pvclock_vcpu_time_info *ti,
     uint64_t *ns, uint8_t *flags)
 {
 	uint64_t delta;
 	uint32_t version;
 
 	do {
 		version = atomic_load_acq_32(&ti->version);
 		delta = rdtsc_ordered() - ti->tsc_timestamp;
 		*ns = ti->system_time + pvclock_scale_delta(delta,
 		    ti->tsc_to_system_mul, ti->tsc_shift);
 		*flags = ti->flags;
 		atomic_thread_fence_acq();
 	} while ((ti->version & 1) != 0 || ti->version != version);
 }
 
 static void
 pvclock_read_wall_clock(struct pvclock_wall_clock *wc, struct timespec *ts)
 {
 	uint32_t version;
 
 	do {
 		version = atomic_load_acq_32(&wc->version);
 		ts->tv_sec = wc->sec;
 		ts->tv_nsec = wc->nsec;
 		atomic_thread_fence_acq();
 	} while ((wc->version & 1) != 0 || wc->version != version);
 }
 
 static uint64_t
 pvclock_getsystime(struct pvclock *pvc)
 {
 	uint64_t now, last, ret;
 	uint8_t flags;
 
 	critical_enter();
 	pvclock_read_time_info(&pvc->timeinfos[curcpu], &now, &flags);
 	ret = now;
 	if ((flags & PVCLOCK_FLAG_TSC_STABLE) == 0) {
 		last = atomic_load_acq_64(&pvclock_last_systime);
 		do {
 			if (last > now) {
 				ret = last;
 				break;
 			}
 		} while (!atomic_fcmpset_rel_64(&pvclock_last_systime, &last,
 		    now));
 	}
 	critical_exit();
 	return (ret);
 }
 
 /*
  * NOTE: Transitional-only; this should be removed after 'dev/xen/timer/timer.c'
  * has been migrated to the 'struct pvclock' API.
  */
 uint64_t
 pvclock_get_timecount(struct pvclock_vcpu_time_info *ti)
 {
 	uint64_t now, last, ret;
 	uint8_t flags;
 
 	pvclock_read_time_info(ti, &now, &flags);
 	ret = now;
 	if ((flags & PVCLOCK_FLAG_TSC_STABLE) == 0) {
 		last = atomic_load_acq_64(&pvclock_last_systime);
 		do {
 			if (last > now) {
 				ret = last;
 				break;
 			}
 		} while (!atomic_fcmpset_rel_64(&pvclock_last_systime, &last,
 		    now));
 	}
 	return (ret);
 }
 
 /*
  * NOTE: Transitional-only; this should be removed after 'dev/xen/timer/timer.c'
  * has been migrated to the 'struct pvclock' API.
  */
 void
 pvclock_get_wallclock(struct pvclock_wall_clock *wc, struct timespec *ts)
 {
 	pvclock_read_wall_clock(wc, ts);
 }
 
+static int
+pvclock_cdev_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
+{
+	if (oflags & FWRITE)
+		return (EPERM);
+	return (0);
+}
+
+static int
+pvclock_cdev_mmap(struct cdev *dev, vm_ooffset_t offset, vm_paddr_t *paddr,
+    int nprot, vm_memattr_t *memattr)
+{
+	if (offset >= mp_ncpus * sizeof(struct pvclock_vcpu_time_info))
+		return (EINVAL);
+	if (PROT_EXTRACT(nprot) != PROT_READ)
+		return (EACCES);
+	*paddr = vtophys((uintptr_t)dev->si_drv1 + offset);
+	*memattr = VM_MEMATTR_DEFAULT;
+	return (0);
+}
+
 static u_int
 pvclock_tc_get_timecount(struct timecounter *tc)
 {
 	struct pvclock *pvc = tc->tc_priv;
 
 	return (pvclock_getsystime(pvc) & UINT_MAX);
 }
 
+static uint32_t
+pvclock_tc_vdso_timehands(struct vdso_timehands *vdso_th,
+    struct timecounter *tc)
+{
+	struct pvclock *pvc = tc->tc_priv;
+
+	vdso_th->th_algo = VDSO_TH_ALGO_X86_PVCLK;
+	vdso_th->th_x86_shift = 0;
+	vdso_th->th_x86_hpet_idx = 0;
+	vdso_th->th_x86_pvc_last_systime =
+	    atomic_load_acq_64(&pvclock_last_systime);
+	vdso_th->th_x86_pvc_stable_mask = !pvc->vdso_force_unstable &&
+	    pvc->stable_flag_supported ? PVCLOCK_FLAG_TSC_STABLE : 0;
+	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
+	return (pvc->cdev != NULL && amd_feature & AMDID_RDTSCP);
+}
+
+#ifdef COMPAT_FREEBSD32
+static uint32_t
+pvclock_tc_vdso_timehands32(struct vdso_timehands32 *vdso_th,
+    struct timecounter *tc)
+{
+	struct pvclock *pvc = tc->tc_priv;
+
+	vdso_th->th_algo = VDSO_TH_ALGO_X86_PVCLK;
+	vdso_th->th_x86_shift = 0;
+	vdso_th->th_x86_hpet_idx = 0;
+	vdso_th->th_x86_pvc_last_systime =
+	    atomic_load_acq_64(&pvclock_last_systime);
+	vdso_th->th_x86_pvc_stable_mask = !pvc->vdso_force_unstable &&
+	    pvc->stable_flag_supported ? PVCLOCK_FLAG_TSC_STABLE : 0;
+	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
+	return (pvc->cdev != NULL && amd_feature & AMDID_RDTSCP);
+}
+#endif
+
 void
 pvclock_gettime(struct pvclock *pvc, struct timespec *ts)
 {
 	struct timespec system_ts;
 	uint64_t system_ns;
 
 	pvclock_read_wall_clock(pvc->get_wallclock(pvc->get_wallclock_arg), ts);
 	system_ns = pvclock_getsystime(pvc);
 	system_ts.tv_sec = system_ns / 1000000000ULL;
 	system_ts.tv_nsec = system_ns % 1000000000ULL;
 	timespecadd(ts, &system_ts, ts);
 }
 
 void
 pvclock_init(struct pvclock *pvc, device_t dev, const char *tc_name,
     int tc_quality, u_int tc_flags)
 {
+	struct make_dev_args mda;
+	int err;
+
 	KASSERT(((uintptr_t)pvc->timeinfos & PAGE_MASK) == 0,
 	    ("Specified time info page(s) address is not page-aligned."));
 
+	/* Set up vDSO stable-flag suppression test facility: */
+	pvc->vdso_force_unstable = false;
+	SYSCTL_ADD_BOOL(device_get_sysctl_ctx(dev),
+	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
+	    "vdso_force_unstable", CTLFLAG_RW, &pvc->vdso_force_unstable, 0,
+	    "Forcibly deassert stable flag in vDSO codepath");
+
 	/* Set up timecounter and timecounter-supporting members: */
 	pvc->tc.tc_get_timecount = pvclock_tc_get_timecount;
 	pvc->tc.tc_poll_pps = NULL;
 	pvc->tc.tc_counter_mask = ~0U;
 	pvc->tc.tc_frequency = 1000000000ULL;
 	pvc->tc.tc_name = tc_name;
 	pvc->tc.tc_quality = tc_quality;
 	pvc->tc.tc_flags = tc_flags;
 	pvc->tc.tc_priv = pvc;
-	pvc->tc.tc_fill_vdso_timehands = NULL;
+	pvc->tc.tc_fill_vdso_timehands = pvclock_tc_vdso_timehands;
 #ifdef COMPAT_FREEBSD32
-	pvc->tc.tc_fill_vdso_timehands32 = NULL;
+	pvc->tc.tc_fill_vdso_timehands32 = pvclock_tc_vdso_timehands32;
 #endif
 
+	/* Set up cdev for userspace mmapping of vCPU 0 time info page: */
+	make_dev_args_init(&mda);
+	mda.mda_devsw = &pvclock_cdev_cdevsw;
+	mda.mda_uid = UID_ROOT;
+	mda.mda_gid = GID_WHEEL;
+	mda.mda_mode = 0444;
+	mda.mda_si_drv1 = pvc->timeinfos;
+	err = make_dev_s(&mda, &pvc->cdev, PVCLOCK_CDEVNAME);
+	if (err != 0) {
+		device_printf(dev, "Could not create /dev/%s, error %d. Fast "
+		    "time of day will be unavailable for this timecounter.\n",
+		    PVCLOCK_CDEVNAME, err);
+		KASSERT(pvc->cdev == NULL,
+		    ("Failed make_dev_s() unexpectedly inited cdev."));
+	}
+
 	/* Register timecounter: */
 	tc_init(&pvc->tc);
 
 	/*
 	 * Register wallclock:
 	 *     The RTC registration API expects a resolution in microseconds;
 	 *     pvclock's 1ns resolution is rounded up to 1us.
 	 */
 	clock_register(dev, 1);
 }
 
 int
 pvclock_destroy(struct pvclock *pvc)
 {
 	/*
 	 * Not currently possible since there is no teardown counterpart of
 	 * 'tc_init()'.
 	 */
 	return (EBUSY);
 }
diff --git a/sys/x86/x86/tsc.c b/sys/x86/x86/tsc.c
index 5ffbb64229e9..0ebcea895cd3 100644
--- a/sys/x86/x86/tsc.c
+++ b/sys/x86/x86/tsc.c
@@ -1,889 +1,893 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 1998-2003 Poul-Henning Kamp
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_clock.h"
 
 #include <sys/param.h>
 #include <sys/bus.h>
 #include <sys/cpu.h>
 #include <sys/eventhandler.h>
 #include <sys/limits.h>
 #include <sys/malloc.h>
 #include <sys/systm.h>
 #include <sys/sysctl.h>
 #include <sys/time.h>
 #include <sys/timetc.h>
 #include <sys/kernel.h>
 #include <sys/power.h>
 #include <sys/smp.h>
 #include <sys/vdso.h>
 #include <machine/clock.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/specialreg.h>
 #include <x86/vmware.h>
 #include <dev/acpica/acpi_hpet.h>
 #include <contrib/dev/acpica/include/acpi.h>
 
 #include "cpufreq_if.h"
 
 uint64_t	tsc_freq;
 int		tsc_is_invariant;
 int		tsc_perf_stat;
 
 static eventhandler_tag tsc_levels_tag, tsc_pre_tag, tsc_post_tag;
 
 SYSCTL_INT(_kern_timecounter, OID_AUTO, invariant_tsc, CTLFLAG_RDTUN,
     &tsc_is_invariant, 0, "Indicates whether the TSC is P-state invariant");
 
 #ifdef SMP
 int	smp_tsc;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc, CTLFLAG_RDTUN, &smp_tsc, 0,
     "Indicates whether the TSC is safe to use in SMP mode");
 
 int	smp_tsc_adjust = 0;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, smp_tsc_adjust, CTLFLAG_RDTUN,
     &smp_tsc_adjust, 0, "Try to adjust TSC on APs to match BSP");
 #endif
 
 static int	tsc_shift = 1;
 SYSCTL_INT(_kern_timecounter, OID_AUTO, tsc_shift, CTLFLAG_RDTUN,
     &tsc_shift, 0, "Shift to pre-apply for the maximum TSC frequency");
 
 static int	tsc_disabled;
 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc, CTLFLAG_RDTUN, &tsc_disabled, 0,
     "Disable x86 Time Stamp Counter");
 
 static int	tsc_skip_calibration;
 SYSCTL_INT(_machdep, OID_AUTO, disable_tsc_calibration, CTLFLAG_RDTUN,
     &tsc_skip_calibration, 0,
     "Disable TSC frequency calibration");
 
 static void tsc_freq_changed(void *arg, const struct cf_level *level,
     int status);
 static void tsc_freq_changing(void *arg, const struct cf_level *level,
     int *status);
 static u_int tsc_get_timecount(struct timecounter *tc);
 static inline u_int tsc_get_timecount_low(struct timecounter *tc);
 static u_int tsc_get_timecount_lfence(struct timecounter *tc);
 static u_int tsc_get_timecount_low_lfence(struct timecounter *tc);
 static u_int tsc_get_timecount_mfence(struct timecounter *tc);
 static u_int tsc_get_timecount_low_mfence(struct timecounter *tc);
 static u_int tscp_get_timecount(struct timecounter *tc);
 static u_int tscp_get_timecount_low(struct timecounter *tc);
 static void tsc_levels_changed(void *arg, int unit);
 static uint32_t x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th,
     struct timecounter *tc);
 #ifdef COMPAT_FREEBSD32
 static uint32_t x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
     struct timecounter *tc);
 #endif
 
 static struct timecounter tsc_timecounter = {
 	.tc_get_timecount =		tsc_get_timecount,
 	.tc_counter_mask =		~0u,
 	.tc_name =			"TSC",
 	.tc_quality =			800,	/* adjusted in code */
 	.tc_fill_vdso_timehands = 	x86_tsc_vdso_timehands,
 #ifdef COMPAT_FREEBSD32
 	.tc_fill_vdso_timehands32 = 	x86_tsc_vdso_timehands32,
 #endif
 };
 
 static void
 tsc_freq_vmware(void)
 {
 	u_int regs[4];
 
 	if (hv_high >= 0x40000010) {
 		do_cpuid(0x40000010, regs);
 		tsc_freq = regs[0] * 1000;
 	} else {
 		vmware_hvcall(VMW_HVCMD_GETHZ, regs);
 		if (regs[1] != UINT_MAX)
 			tsc_freq = regs[0] | ((uint64_t)regs[1] << 32);
 	}
 	tsc_is_invariant = 1;
 }
 
 /*
  * Calculate TSC frequency using information from the CPUID leaf 0x15
  * 'Time Stamp Counter and Nominal Core Crystal Clock'.  If leaf 0x15
  * is not functional, as it is on Skylake/Kabylake, try 0x16 'Processor
  * Frequency Information'.  Leaf 0x16 is described in the SDM as
  * informational only, but if 0x15 did not work, and TSC calibration
  * is disabled, it is the best we can get at all.  It should still be
  * an improvement over the parsing of the CPU model name in
  * tsc_freq_intel(), when available.
  */
 static bool
 tsc_freq_cpuid(uint64_t *res)
 {
 	u_int regs[4];
 
 	if (cpu_high < 0x15)
 		return (false);
 	do_cpuid(0x15, regs);
 	if (regs[0] != 0 && regs[1] != 0 && regs[2] != 0) {
 		*res = (uint64_t)regs[2] * regs[1] / regs[0];
 		return (true);
 	}
 
 	if (cpu_high < 0x16)
 		return (false);
 	do_cpuid(0x16, regs);
 	if (regs[0] != 0) {
 		*res = (uint64_t)regs[0] * 1000000;
 		return (true);
 	}
 
 	return (false);
 }
 
 static void
 tsc_freq_intel(void)
 {
 	char brand[48];
 	u_int regs[4];
 	uint64_t freq;
 	char *p;
 	u_int i;
 
 	/*
 	 * Intel Processor Identification and the CPUID Instruction
 	 * Application Note 485.
 	 * http://www.intel.com/assets/pdf/appnote/241618.pdf
 	 */
 	if (cpu_exthigh >= 0x80000004) {
 		p = brand;
 		for (i = 0x80000002; i < 0x80000005; i++) {
 			do_cpuid(i, regs);
 			memcpy(p, regs, sizeof(regs));
 			p += sizeof(regs);
 		}
 		p = NULL;
 		for (i = 0; i < sizeof(brand) - 1; i++)
 			if (brand[i] == 'H' && brand[i + 1] == 'z')
 				p = brand + i;
 		if (p != NULL) {
 			p -= 5;
 			switch (p[4]) {
 			case 'M':
 				i = 1;
 				break;
 			case 'G':
 				i = 1000;
 				break;
 			case 'T':
 				i = 1000000;
 				break;
 			default:
 				return;
 			}
 #define	C2D(c)	((c) - '0')
 			if (p[1] == '.') {
 				freq = C2D(p[0]) * 1000;
 				freq += C2D(p[2]) * 100;
 				freq += C2D(p[3]) * 10;
 				freq *= i * 1000;
 			} else {
 				freq = C2D(p[0]) * 1000;
 				freq += C2D(p[1]) * 100;
 				freq += C2D(p[2]) * 10;
 				freq += C2D(p[3]);
 				freq *= i * 1000000;
 			}
 #undef C2D
 			tsc_freq = freq;
 		}
 	}
 }
 
 static void
 probe_tsc_freq(void)
 {
 	uint64_t tmp_freq, tsc1, tsc2;
 	int no_cpuid_override;
 
 	if (cpu_power_ecx & CPUID_PERF_STAT) {
 		/*
 		 * XXX Some emulators expose host CPUID without actual support
 		 * for these MSRs.  We must test whether they really work.
 		 */
 		wrmsr(MSR_MPERF, 0);
 		wrmsr(MSR_APERF, 0);
 		DELAY(10);
 		if (rdmsr(MSR_MPERF) > 0 && rdmsr(MSR_APERF) > 0)
 			tsc_perf_stat = 1;
 	}
 
 	if (vm_guest == VM_GUEST_VMWARE) {
 		tsc_freq_vmware();
 		return;
 	}
 
 	switch (cpu_vendor_id) {
 	case CPU_VENDOR_AMD:
 	case CPU_VENDOR_HYGON:
 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
 		    (vm_guest == VM_GUEST_NO &&
 		    CPUID_TO_FAMILY(cpu_id) >= 0x10))
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_mfence;
 		}
 		break;
 	case CPU_VENDOR_INTEL:
 		if ((amd_pminfo & AMDPM_TSC_INVARIANT) != 0 ||
 		    (vm_guest == VM_GUEST_NO &&
 		    ((CPUID_TO_FAMILY(cpu_id) == 0x6 &&
 		    CPUID_TO_MODEL(cpu_id) >= 0xe) ||
 		    (CPUID_TO_FAMILY(cpu_id) == 0xf &&
 		    CPUID_TO_MODEL(cpu_id) >= 0x3))))
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_lfence;
 		}
 		break;
 	case CPU_VENDOR_CENTAUR:
 		if (vm_guest == VM_GUEST_NO &&
 		    CPUID_TO_FAMILY(cpu_id) == 0x6 &&
 		    CPUID_TO_MODEL(cpu_id) >= 0xf &&
 		    (rdmsr(0x1203) & 0x100000000ULL) == 0)
 			tsc_is_invariant = 1;
 		if (cpu_feature & CPUID_SSE2) {
 			tsc_timecounter.tc_get_timecount =
 			    tsc_get_timecount_lfence;
 		}
 		break;
 	}
 
 	if (tsc_skip_calibration) {
 		if (tsc_freq_cpuid(&tmp_freq))
 			tsc_freq = tmp_freq;
 		else if (cpu_vendor_id == CPU_VENDOR_INTEL)
 			tsc_freq_intel();
 		if (tsc_freq == 0)
 			tsc_disabled = 1;
 	} else {
 		if (bootverbose)
 			printf("Calibrating TSC clock ... ");
 		tsc1 = rdtsc();
 		DELAY(1000000);
 		tsc2 = rdtsc();
 		tsc_freq = tsc2 - tsc1;
 
 		/*
 		 * If the difference between calibrated frequency and
 		 * the frequency reported by CPUID 0x15/0x16 leafs
 		 * differ significantly, this probably means that
 		 * calibration is bogus.  It happens on machines
 		 * without 8254 timer.  The BIOS rarely properly
 		 * reports it in FADT boot flags, so just compare the
 		 * frequencies directly.
 		 */
 		if (tsc_freq_cpuid(&tmp_freq) && qabs(tsc_freq - tmp_freq) >
 		    uqmin(tsc_freq, tmp_freq)) {
 			no_cpuid_override = 0;
 			TUNABLE_INT_FETCH("machdep.disable_tsc_cpuid_override",
 			    &no_cpuid_override);
 			if (!no_cpuid_override) {
 				if (bootverbose) {
 					printf(
 	"TSC clock: calibration freq %ju Hz, CPUID freq %ju Hz%s\n",
 					    (uintmax_t)tsc_freq,
 					    (uintmax_t)tmp_freq,
 					    no_cpuid_override ? "" :
 					    ", doing CPUID override");
 				}
 				tsc_freq = tmp_freq;
 			}
 		}
 	}
 	if (bootverbose)
 		printf("TSC clock: %ju Hz\n", (intmax_t)tsc_freq);
 }
 
 void
 init_TSC(void)
 {
 
 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
 		return;
 
 #ifdef __i386__
 	/* The TSC is known to be broken on certain CPUs. */
 	switch (cpu_vendor_id) {
 	case CPU_VENDOR_AMD:
 		switch (cpu_id & 0xFF0) {
 		case 0x500:
 			/* K5 Model 0 */
 			return;
 		}
 		break;
 	case CPU_VENDOR_CENTAUR:
 		switch (cpu_id & 0xff0) {
 		case 0x540:
 			/*
 			 * http://www.centtech.com/c6_data_sheet.pdf
 			 *
 			 * I-12 RDTSC may return incoherent values in EDX:EAX
 			 * I-13 RDTSC hangs when certain event counters are used
 			 */
 			return;
 		}
 		break;
 	case CPU_VENDOR_NSC:
 		switch (cpu_id & 0xff0) {
 		case 0x540:
 			if ((cpu_id & CPUID_STEPPING) == 0)
 				return;
 			break;
 		}
 		break;
 	}
 #endif
 		
 	probe_tsc_freq();
 
 	/*
 	 * Inform CPU accounting about our boot-time clock rate.  This will
 	 * be updated if someone loads a cpufreq driver after boot that
 	 * discovers a new max frequency.
 	 */
 	if (tsc_freq != 0)
 		set_cputicker(rdtsc, tsc_freq, !tsc_is_invariant);
 
 	if (tsc_is_invariant)
 		return;
 
 	/* Register to find out about changes in CPU frequency. */
 	tsc_pre_tag = EVENTHANDLER_REGISTER(cpufreq_pre_change,
 	    tsc_freq_changing, NULL, EVENTHANDLER_PRI_FIRST);
 	tsc_post_tag = EVENTHANDLER_REGISTER(cpufreq_post_change,
 	    tsc_freq_changed, NULL, EVENTHANDLER_PRI_FIRST);
 	tsc_levels_tag = EVENTHANDLER_REGISTER(cpufreq_levels_changed,
 	    tsc_levels_changed, NULL, EVENTHANDLER_PRI_ANY);
 }
 
 #ifdef SMP
 
 /*
  * RDTSC is not a serializing instruction, and does not drain
  * instruction stream, so we need to drain the stream before executing
  * it.  It could be fixed by use of RDTSCP, except the instruction is
  * not available everywhere.
  *
  * Use CPUID for draining in the boot-time SMP constistency test.  The
  * timecounters use MFENCE for AMD CPUs, and LFENCE for others (Intel
  * and VIA) when SSE2 is present, and nothing on older machines which
  * also do not issue RDTSC prematurely.  There, testing for SSE2 and
  * vendor is too cumbersome, and we learn about TSC presence from CPUID.
  *
  * Do not use do_cpuid(), since we do not need CPUID results, which
  * have to be written into memory with do_cpuid().
  */
 #define	TSC_READ(x)							\
 static void								\
 tsc_read_##x(void *arg)							\
 {									\
 	uint64_t *tsc = arg;						\
 	u_int cpu = PCPU_GET(cpuid);					\
 									\
 	__asm __volatile("cpuid" : : : "eax", "ebx", "ecx", "edx");	\
 	tsc[cpu * 3 + x] = rdtsc();					\
 }
 TSC_READ(0)
 TSC_READ(1)
 TSC_READ(2)
 #undef TSC_READ
 
 #define	N	1000
 
 static void
 comp_smp_tsc(void *arg)
 {
 	uint64_t *tsc;
 	int64_t d1, d2;
 	u_int cpu = PCPU_GET(cpuid);
 	u_int i, j, size;
 
 	size = (mp_maxid + 1) * 3;
 	for (i = 0, tsc = arg; i < N; i++, tsc += size)
 		CPU_FOREACH(j) {
 			if (j == cpu)
 				continue;
 			d1 = tsc[cpu * 3 + 1] - tsc[j * 3];
 			d2 = tsc[cpu * 3 + 2] - tsc[j * 3 + 1];
 			if (d1 <= 0 || d2 <= 0) {
 				smp_tsc = 0;
 				return;
 			}
 		}
 }
 
 static void
 adj_smp_tsc(void *arg)
 {
 	uint64_t *tsc;
 	int64_t d, min, max;
 	u_int cpu = PCPU_GET(cpuid);
 	u_int first, i, size;
 
 	first = CPU_FIRST();
 	if (cpu == first)
 		return;
 	min = INT64_MIN;
 	max = INT64_MAX;
 	size = (mp_maxid + 1) * 3;
 	for (i = 0, tsc = arg; i < N; i++, tsc += size) {
 		d = tsc[first * 3] - tsc[cpu * 3 + 1];
 		if (d > min)
 			min = d;
 		d = tsc[first * 3 + 1] - tsc[cpu * 3 + 2];
 		if (d > min)
 			min = d;
 		d = tsc[first * 3 + 1] - tsc[cpu * 3];
 		if (d < max)
 			max = d;
 		d = tsc[first * 3 + 2] - tsc[cpu * 3 + 1];
 		if (d < max)
 			max = d;
 	}
 	if (min > max)
 		return;
 	d = min / 2 + max / 2;
 	__asm __volatile (
 		"movl $0x10, %%ecx\n\t"
 		"rdmsr\n\t"
 		"addl %%edi, %%eax\n\t"
 		"adcl %%esi, %%edx\n\t"
 		"wrmsr\n"
 		: /* No output */
 		: "D" ((uint32_t)d), "S" ((uint32_t)(d >> 32))
 		: "ax", "cx", "dx", "cc"
 	);
 }
 
 static int
 test_tsc(int adj_max_count)
 {
 	uint64_t *data, *tsc;
 	u_int i, size, adj;
 
 	if ((!smp_tsc && !tsc_is_invariant))
 		return (-100);
 	/*
 	 * Misbehavior of TSC under VirtualBox has been observed.  In
 	 * particular, threads doing small (~1 second) sleeps may miss their
 	 * wakeup and hang around in sleep state, causing hangs on shutdown.
 	 */
 	if (vm_guest == VM_GUEST_VBOX)
 		return (0);
 
 	size = (mp_maxid + 1) * 3;
 	data = malloc(sizeof(*data) * size * N, M_TEMP, M_WAITOK);
 	adj = 0;
 retry:
 	for (i = 0, tsc = data; i < N; i++, tsc += size)
 		smp_rendezvous(tsc_read_0, tsc_read_1, tsc_read_2, tsc);
 	smp_tsc = 1;	/* XXX */
 	smp_rendezvous(smp_no_rendezvous_barrier, comp_smp_tsc,
 	    smp_no_rendezvous_barrier, data);
 	if (!smp_tsc && adj < adj_max_count) {
 		adj++;
 		smp_rendezvous(smp_no_rendezvous_barrier, adj_smp_tsc,
 		    smp_no_rendezvous_barrier, data);
 		goto retry;
 	}
 	free(data, M_TEMP);
 	if (bootverbose)
 		printf("SMP: %sed TSC synchronization test%s\n",
 		    smp_tsc ? "pass" : "fail", 
 		    adj > 0 ? " after adjustment" : "");
 	if (smp_tsc && tsc_is_invariant) {
 		switch (cpu_vendor_id) {
 		case CPU_VENDOR_AMD:
 		case CPU_VENDOR_HYGON:
 			/*
 			 * Processor Programming Reference (PPR) for AMD
 			 * Family 17h states that the TSC uses a common
 			 * reference for all sockets, cores and threads.
 			 */
 			if (CPUID_TO_FAMILY(cpu_id) >= 0x17)
 				return (1000);
 			/*
 			 * Starting with Family 15h processors, TSC clock
 			 * source is in the north bridge.  Check whether
 			 * we have a single-socket/multi-core platform.
 			 * XXX Need more work for complex cases.
 			 */
 			if (CPUID_TO_FAMILY(cpu_id) < 0x15 ||
 			    (amd_feature2 & AMDID2_CMP) == 0 ||
 			    smp_cpus > (cpu_procinfo2 & AMDID_CMP_CORES) + 1)
 				break;
 			return (1000);
 		case CPU_VENDOR_INTEL:
 			/*
 			 * XXX Assume Intel platforms have synchronized TSCs.
 			 */
 			return (1000);
 		}
 		return (800);
 	}
 	return (-100);
 }
 
 #undef N
 
 #endif /* SMP */
 
 static void
 init_TSC_tc(void)
 {
 	uint64_t max_freq;
 	int shift;
 
 	if ((cpu_feature & CPUID_TSC) == 0 || tsc_disabled)
 		return;
 
 	/*
 	 * Limit timecounter frequency to fit in an int and prevent it from
 	 * overflowing too fast.
 	 */
 	max_freq = UINT_MAX;
 
 	/*
 	 * We can not use the TSC if we support APM.  Precise timekeeping
 	 * on an APM'ed machine is at best a fools pursuit, since 
 	 * any and all of the time spent in various SMM code can't 
 	 * be reliably accounted for.  Reading the RTC is your only
 	 * source of reliable time info.  The i8254 loses too, of course,
 	 * but we need to have some kind of time...
 	 * We don't know at this point whether APM is going to be used
 	 * or not, nor when it might be activated.  Play it safe.
 	 */
 	if (power_pm_get_type() == POWER_PM_TYPE_APM) {
 		tsc_timecounter.tc_quality = -1000;
 		if (bootverbose)
 			printf("TSC timecounter disabled: APM enabled.\n");
 		goto init;
 	}
 
 	/*
 	 * Intel CPUs without a C-state invariant TSC can stop the TSC
 	 * in either C2 or C3.  Disable use of C2 and C3 while using
 	 * the TSC as the timecounter.  The timecounter can be changed
 	 * to enable C2 and C3.
 	 *
 	 * Note that the TSC is used as the cputicker for computing
 	 * thread runtime regardless of the timecounter setting, so
 	 * using an alternate timecounter and enabling C2 or C3 can
 	 * result incorrect runtimes for kernel idle threads (but not
 	 * for any non-idle threads).
 	 */
 	if (cpu_vendor_id == CPU_VENDOR_INTEL &&
 	    (amd_pminfo & AMDPM_TSC_INVARIANT) == 0) {
 		tsc_timecounter.tc_flags |= TC_FLAGS_C2STOP;
 		if (bootverbose)
 			printf("TSC timecounter disables C2 and C3.\n");
 	}
 
 	/*
 	 * We can not use the TSC in SMP mode unless the TSCs on all CPUs
 	 * are synchronized.  If the user is sure that the system has
 	 * synchronized TSCs, set kern.timecounter.smp_tsc tunable to a
 	 * non-zero value.  The TSC seems unreliable in virtualized SMP
 	 * environments, so it is set to a negative quality in those cases.
 	 */
 #ifdef SMP
 	if (mp_ncpus > 1)
 		tsc_timecounter.tc_quality = test_tsc(smp_tsc_adjust);
 	else
 #endif /* SMP */
 	if (tsc_is_invariant)
 		tsc_timecounter.tc_quality = 1000;
 	max_freq >>= tsc_shift;
 
 init:
 	for (shift = 0; shift <= 31 && (tsc_freq >> shift) > max_freq; shift++)
 		;
 
 	/*
 	 * Timecounter implementation selection, top to bottom:
 	 * - If RDTSCP is available, use RDTSCP.
 	 * - If fence instructions are provided (SSE2), use LFENCE;RDTSC
 	 *   on Intel, and MFENCE;RDTSC on AMD.
 	 * - For really old CPUs, just use RDTSC.
 	 */
 	if ((amd_feature & AMDID_RDTSCP) != 0) {
 		tsc_timecounter.tc_get_timecount = shift > 0 ?
 		    tscp_get_timecount_low : tscp_get_timecount;
 	} else if ((cpu_feature & CPUID_SSE2) != 0 && mp_ncpus > 1) {
 		if (cpu_vendor_id == CPU_VENDOR_AMD ||
 		    cpu_vendor_id == CPU_VENDOR_HYGON) {
 			tsc_timecounter.tc_get_timecount = shift > 0 ?
 			    tsc_get_timecount_low_mfence :
 			    tsc_get_timecount_mfence;
 		} else {
 			tsc_timecounter.tc_get_timecount = shift > 0 ?
 			    tsc_get_timecount_low_lfence :
 			    tsc_get_timecount_lfence;
 		}
 	} else {
 		tsc_timecounter.tc_get_timecount = shift > 0 ?
 		    tsc_get_timecount_low : tsc_get_timecount;
 	}
 	if (shift > 0) {
 		tsc_timecounter.tc_name = "TSC-low";
 		if (bootverbose)
 			printf("TSC timecounter discards lower %d bit(s)\n",
 			    shift);
 	}
 	if (tsc_freq != 0) {
 		tsc_timecounter.tc_frequency = tsc_freq >> shift;
 		tsc_timecounter.tc_priv = (void *)(intptr_t)shift;
 		tc_init(&tsc_timecounter);
 	}
 }
 SYSINIT(tsc_tc, SI_SUB_SMP, SI_ORDER_ANY, init_TSC_tc, NULL);
 
 void
 resume_TSC(void)
 {
 #ifdef SMP
 	int quality;
 
 	/* If TSC was not good on boot, it is unlikely to become good now. */
 	if (tsc_timecounter.tc_quality < 0)
 		return;
 	/* Nothing to do with UP. */
 	if (mp_ncpus < 2)
 		return;
 
 	/*
 	 * If TSC was good, a single synchronization should be enough,
 	 * but honour smp_tsc_adjust if it's set.
 	 */
 	quality = test_tsc(MAX(smp_tsc_adjust, 1));
 	if (quality != tsc_timecounter.tc_quality) {
 		printf("TSC timecounter quality changed: %d -> %d\n",
 		    tsc_timecounter.tc_quality, quality);
 		tsc_timecounter.tc_quality = quality;
 	}
 #endif /* SMP */
 }
 
 /*
  * When cpufreq levels change, find out about the (new) max frequency.  We
  * use this to update CPU accounting in case it got a lower estimate at boot.
  */
 static void
 tsc_levels_changed(void *arg, int unit)
 {
 	device_t cf_dev;
 	struct cf_level *levels;
 	int count, error;
 	uint64_t max_freq;
 
 	/* Only use values from the first CPU, assuming all are equal. */
 	if (unit != 0)
 		return;
 
 	/* Find the appropriate cpufreq device instance. */
 	cf_dev = devclass_get_device(devclass_find("cpufreq"), unit);
 	if (cf_dev == NULL) {
 		printf("tsc_levels_changed() called but no cpufreq device?\n");
 		return;
 	}
 
 	/* Get settings from the device and find the max frequency. */
 	count = 64;
 	levels = malloc(count * sizeof(*levels), M_TEMP, M_NOWAIT);
 	if (levels == NULL)
 		return;
 	error = CPUFREQ_LEVELS(cf_dev, levels, &count);
 	if (error == 0 && count != 0) {
 		max_freq = (uint64_t)levels[0].total_set.freq * 1000000;
 		set_cputicker(rdtsc, max_freq, 1);
 	} else
 		printf("tsc_levels_changed: no max freq found\n");
 	free(levels, M_TEMP);
 }
 
 /*
  * If the TSC timecounter is in use, veto the pending change.  It may be
  * possible in the future to handle a dynamically-changing timecounter rate.
  */
 static void
 tsc_freq_changing(void *arg, const struct cf_level *level, int *status)
 {
 
 	if (*status != 0 || timecounter != &tsc_timecounter)
 		return;
 
 	printf("timecounter TSC must not be in use when "
 	    "changing frequencies; change denied\n");
 	*status = EBUSY;
 }
 
 /* Update TSC freq with the value indicated by the caller. */
 static void
 tsc_freq_changed(void *arg, const struct cf_level *level, int status)
 {
 	uint64_t freq;
 
 	/* If there was an error during the transition, don't do anything. */
 	if (tsc_disabled || status != 0)
 		return;
 
 	/* Total setting for this level gives the new frequency in MHz. */
 	freq = (uint64_t)level->total_set.freq * 1000000;
 	atomic_store_rel_64(&tsc_freq, freq);
 	tsc_timecounter.tc_frequency =
 	    freq >> (int)(intptr_t)tsc_timecounter.tc_priv;
 }
 
 static int
 sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	uint64_t freq;
 
 	freq = atomic_load_acq_64(&tsc_freq);
 	if (freq == 0)
 		return (EOPNOTSUPP);
 	error = sysctl_handle_64(oidp, &freq, 0, req);
 	if (error == 0 && req->newptr != NULL) {
 		atomic_store_rel_64(&tsc_freq, freq);
 		atomic_store_rel_64(&tsc_timecounter.tc_frequency,
 		    freq >> (int)(intptr_t)tsc_timecounter.tc_priv);
 	}
 	return (error);
 }
 
 SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq,
     CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
     0, 0, sysctl_machdep_tsc_freq, "QU",
     "Time Stamp Counter frequency");
 
 static u_int
 tsc_get_timecount(struct timecounter *tc __unused)
 {
 
 	return (rdtsc32());
 }
 
 static u_int
 tscp_get_timecount(struct timecounter *tc __unused)
 {
 
 	return (rdtscp32());
 }
 
 static inline u_int
 tsc_get_timecount_low(struct timecounter *tc)
 {
 	uint32_t rv;
 
 	__asm __volatile("rdtsc; shrd %%cl, %%edx, %0"
 	    : "=a" (rv) : "c" ((int)(intptr_t)tc->tc_priv) : "edx");
 	return (rv);
 }
 
 static u_int
 tscp_get_timecount_low(struct timecounter *tc)
 {
 	uint32_t rv;
 
 	__asm __volatile("rdtscp; movl %1, %%ecx; shrd %%cl, %%edx, %0"
 	    : "=&a" (rv) : "m" (tc->tc_priv) : "ecx", "edx");
 	return (rv);
 }
 
 static u_int
 tsc_get_timecount_lfence(struct timecounter *tc __unused)
 {
 
 	lfence();
 	return (rdtsc32());
 }
 
 static u_int
 tsc_get_timecount_low_lfence(struct timecounter *tc)
 {
 
 	lfence();
 	return (tsc_get_timecount_low(tc));
 }
 
 static u_int
 tsc_get_timecount_mfence(struct timecounter *tc __unused)
 {
 
 	mfence();
 	return (rdtsc32());
 }
 
 static u_int
 tsc_get_timecount_low_mfence(struct timecounter *tc)
 {
 
 	mfence();
 	return (tsc_get_timecount_low(tc));
 }
 
 static uint32_t
 x86_tsc_vdso_timehands(struct vdso_timehands *vdso_th, struct timecounter *tc)
 {
 
 	vdso_th->th_algo = VDSO_TH_ALGO_X86_TSC;
 	vdso_th->th_x86_shift = (int)(intptr_t)tc->tc_priv;
 	vdso_th->th_x86_hpet_idx = 0xffffffff;
+	vdso_th->th_x86_pvc_last_systime = 0;
+	vdso_th->th_x86_pvc_stable_mask = 0;
 	bzero(vdso_th->th_res, sizeof(vdso_th->th_res));
 	return (1);
 }
 
 #ifdef COMPAT_FREEBSD32
 static uint32_t
 x86_tsc_vdso_timehands32(struct vdso_timehands32 *vdso_th32,
     struct timecounter *tc)
 {
 
 	vdso_th32->th_algo = VDSO_TH_ALGO_X86_TSC;
 	vdso_th32->th_x86_shift = (int)(intptr_t)tc->tc_priv;
 	vdso_th32->th_x86_hpet_idx = 0xffffffff;
+	vdso_th32->th_x86_pvc_last_systime = 0;
+	vdso_th32->th_x86_pvc_stable_mask = 0;
 	bzero(vdso_th32->th_res, sizeof(vdso_th32->th_res));
 	return (1);
 }
 #endif