diff --git a/sys/compat/freebsd32/freebsd32_misc.c b/sys/compat/freebsd32/freebsd32_misc.c index 46e4ffb39525..67dcaa35cae5 100644 --- a/sys/compat/freebsd32/freebsd32_misc.c +++ b/sys/compat/freebsd32/freebsd32_misc.c @@ -1,4086 +1,4086 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ffclock.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ktrace.h" #define __ELF_WORD_SIZE 32 #ifdef COMPAT_FREEBSD11 #define _WANT_FREEBSD11_KEVENT #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Must come after sys/malloc.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Must come after sys/selinfo.h */ #include /* Must come after sys/selinfo.h */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #endif #ifdef INET #include #endif #include #include #include #include #include #include #include #include #ifdef __amd64__ #include #endif #include #include #include #include #include #include #include FEATURE(compat_freebsd_32bit, "Compatible with 32-bit FreeBSD"); struct ptrace_io_desc32 { int piod_op; uint32_t piod_offs; uint32_t piod_addr; uint32_t piod_len; }; struct ptrace_sc_ret32 { uint32_t sr_retval[2]; int sr_error; }; struct ptrace_vm_entry32 { int pve_entry; int pve_timestamp; uint32_t pve_start; uint32_t pve_end; uint32_t pve_offset; u_int pve_prot; u_int pve_pathlen; int32_t pve_fileid; u_int pve_fsid; uint32_t pve_path; }; #ifdef __amd64__ CTASSERT(sizeof(struct timeval32) == 8); CTASSERT(sizeof(struct timespec32) == 8); CTASSERT(sizeof(struct itimerval32) == 16); CTASSERT(sizeof(struct bintime32) == 12); #else CTASSERT(sizeof(struct timeval32) == 16); CTASSERT(sizeof(struct timespec32) == 16); CTASSERT(sizeof(struct itimerval32) == 32); CTASSERT(sizeof(struct bintime32) == 16); #endif CTASSERT(sizeof(struct ostatfs32) == 256); #ifdef __amd64__ CTASSERT(sizeof(struct rusage32) == 72); #else CTASSERT(sizeof(struct rusage32) == 88); #endif CTASSERT(sizeof(struct sigaltstack32) == 12); #ifdef __amd64__ CTASSERT(sizeof(struct kevent32) == 56); #else CTASSERT(sizeof(struct kevent32) == 64); #endif CTASSERT(sizeof(struct iovec32) == 8); CTASSERT(sizeof(struct msghdr32) == 28); #ifdef __amd64__ CTASSERT(sizeof(struct stat32) == 208); CTASSERT(sizeof(struct freebsd11_stat32) == 96); #else CTASSERT(sizeof(struct stat32) == 224); CTASSERT(sizeof(struct freebsd11_stat32) == 120); #endif CTASSERT(sizeof(struct sigaction32) == 24); static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count); static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count); static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp); void freebsd32_rusage_out(const struct rusage *s, struct rusage32 *s32) { TV_CP(*s, *s32, ru_utime); TV_CP(*s, *s32, ru_stime); CP(*s, *s32, ru_maxrss); CP(*s, *s32, ru_ixrss); CP(*s, *s32, ru_idrss); CP(*s, *s32, ru_isrss); CP(*s, *s32, ru_minflt); CP(*s, *s32, ru_majflt); CP(*s, *s32, ru_nswap); CP(*s, *s32, ru_inblock); CP(*s, *s32, ru_oublock); CP(*s, *s32, ru_msgsnd); CP(*s, *s32, ru_msgrcv); CP(*s, *s32, ru_nsignals); CP(*s, *s32, ru_nvcsw); CP(*s, *s32, ru_nivcsw); } int freebsd32_wait4(struct thread *td, struct freebsd32_wait4_args *uap) { int error, status; struct rusage32 ru32; struct rusage ru, *rup; if (uap->rusage != NULL) rup = &ru; else rup = NULL; error = kern_wait(td, uap->pid, &status, uap->options, rup); if (error) return (error); if (uap->status != NULL) error = copyout(&status, uap->status, sizeof(status)); if (uap->rusage != NULL && error == 0) { freebsd32_rusage_out(&ru, &ru32); error = copyout(&ru32, uap->rusage, sizeof(ru32)); } return (error); } int freebsd32_wait6(struct thread *td, struct freebsd32_wait6_args *uap) { struct __wrusage32 wru32; struct __wrusage wru, *wrup; struct siginfo32 si32; struct __siginfo si, *sip; int error, status; if (uap->wrusage != NULL) wrup = &wru; else wrup = NULL; if (uap->info != NULL) { sip = &si; bzero(sip, sizeof(*sip)); } else sip = NULL; error = kern_wait6(td, uap->idtype, PAIR32TO64(id_t, uap->id), &status, uap->options, wrup, sip); if (error != 0) return (error); if (uap->status != NULL) error = copyout(&status, uap->status, sizeof(status)); if (uap->wrusage != NULL && error == 0) { freebsd32_rusage_out(&wru.wru_self, &wru32.wru_self); freebsd32_rusage_out(&wru.wru_children, &wru32.wru_children); error = copyout(&wru32, uap->wrusage, sizeof(wru32)); } if (uap->info != NULL && error == 0) { siginfo_to_siginfo32 (&si, &si32); error = copyout(&si32, uap->info, sizeof(si32)); } return (error); } #ifdef COMPAT_FREEBSD4 static void copy_statfs(struct statfs *in, struct ostatfs32 *out) { statfs_scale_blocks(in, INT32_MAX); bzero(out, sizeof(*out)); CP(*in, *out, f_bsize); out->f_iosize = MIN(in->f_iosize, INT32_MAX); CP(*in, *out, f_blocks); CP(*in, *out, f_bfree); CP(*in, *out, f_bavail); out->f_files = MIN(in->f_files, INT32_MAX); out->f_ffree = MIN(in->f_ffree, INT32_MAX); CP(*in, *out, f_fsid); CP(*in, *out, f_owner); CP(*in, *out, f_type); CP(*in, *out, f_flags); out->f_syncwrites = MIN(in->f_syncwrites, INT32_MAX); out->f_asyncwrites = MIN(in->f_asyncwrites, INT32_MAX); strlcpy(out->f_fstypename, in->f_fstypename, MFSNAMELEN); strlcpy(out->f_mntonname, in->f_mntonname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); out->f_syncreads = MIN(in->f_syncreads, INT32_MAX); out->f_asyncreads = MIN(in->f_asyncreads, INT32_MAX); strlcpy(out->f_mntfromname, in->f_mntfromname, min(MNAMELEN, FREEBSD4_OMNAMELEN)); } #endif int freebsd32_getfsstat(struct thread *td, struct freebsd32_getfsstat_args *uap) { size_t count; int error; if (uap->bufsize < 0 || uap->bufsize > SIZE_MAX) return (EINVAL); error = kern_getfsstat(td, &uap->buf, uap->bufsize, &count, UIO_USERSPACE, uap->mode); if (error == 0) td->td_retval[0] = count; return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_getfsstat(struct thread *td, struct freebsd4_freebsd32_getfsstat_args *uap) { struct statfs *buf, *sp; struct ostatfs32 stat32; size_t count, size, copycount; int error; count = uap->bufsize / sizeof(struct ostatfs32); size = count * sizeof(struct statfs); error = kern_getfsstat(td, &buf, size, &count, UIO_SYSSPACE, uap->mode); if (size > 0) { sp = buf; copycount = count; while (copycount > 0 && error == 0) { copy_statfs(sp, &stat32); error = copyout(&stat32, uap->buf, sizeof(stat32)); sp++; uap->buf++; copycount--; } free(buf, M_STATFS); } if (error == 0) td->td_retval[0] = count; return (error); } #endif #ifdef COMPAT_FREEBSD11 int freebsd11_freebsd32_getfsstat(struct thread *td, struct freebsd11_freebsd32_getfsstat_args *uap) { return(kern_freebsd11_getfsstat(td, uap->buf, uap->bufsize, uap->mode)); } #endif int freebsd32_sigaltstack(struct thread *td, struct freebsd32_sigaltstack_args *uap) { struct sigaltstack32 s32; struct sigaltstack ss, oss, *ssp; int error; if (uap->ss != NULL) { error = copyin(uap->ss, &s32, sizeof(s32)); if (error) return (error); PTRIN_CP(s32, ss, ss_sp); CP(s32, ss, ss_size); CP(s32, ss, ss_flags); ssp = &ss; } else ssp = NULL; error = kern_sigaltstack(td, ssp, &oss); if (error == 0 && uap->oss != NULL) { PTROUT_CP(oss, s32, ss_sp); CP(oss, s32, ss_size); CP(oss, s32, ss_flags); error = copyout(&s32, uap->oss, sizeof(s32)); } return (error); } /* * Custom version of exec_copyin_args() so that we can translate * the pointers. */ int freebsd32_exec_copyin_args(struct image_args *args, const char *fname, enum uio_seg segflg, uint32_t *argv, uint32_t *envv) { char *argp, *envp; uint32_t *p32, arg; int error; bzero(args, sizeof(*args)); if (argv == NULL) return (EFAULT); /* * Allocate demand-paged memory for the file name, argument, and * environment strings. */ error = exec_alloc_args(args); if (error != 0) return (error); /* * Copy the file name. */ error = exec_args_add_fname(args, fname, segflg); if (error != 0) goto err_exit; /* * extract arguments first */ p32 = argv; for (;;) { error = copyin(p32++, &arg, sizeof(arg)); if (error) goto err_exit; if (arg == 0) break; argp = PTRIN(arg); error = exec_args_add_arg(args, argp, UIO_USERSPACE); if (error != 0) goto err_exit; } /* * extract environment strings */ if (envv) { p32 = envv; for (;;) { error = copyin(p32++, &arg, sizeof(arg)); if (error) goto err_exit; if (arg == 0) break; envp = PTRIN(arg); error = exec_args_add_env(args, envp, UIO_USERSPACE); if (error != 0) goto err_exit; } } return (0); err_exit: exec_free_args(args); return (error); } int freebsd32_execve(struct thread *td, struct freebsd32_execve_args *uap) { struct image_args eargs; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = freebsd32_exec_copyin_args(&eargs, uap->fname, UIO_USERSPACE, uap->argv, uap->envv); if (error == 0) error = kern_execve(td, &eargs, NULL, oldvmspace); post_execve(td, error, oldvmspace); AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); return (error); } int freebsd32_fexecve(struct thread *td, struct freebsd32_fexecve_args *uap) { struct image_args eargs; struct vmspace *oldvmspace; int error; error = pre_execve(td, &oldvmspace); if (error != 0) return (error); error = freebsd32_exec_copyin_args(&eargs, NULL, UIO_SYSSPACE, uap->argv, uap->envv); if (error == 0) { eargs.fd = uap->fd; error = kern_execve(td, &eargs, NULL, oldvmspace); } post_execve(td, error, oldvmspace); AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); return (error); } int freebsd32_mknodat(struct thread *td, struct freebsd32_mknodat_args *uap) { return (kern_mknodat(td, uap->fd, uap->path, UIO_USERSPACE, uap->mode, PAIR32TO64(dev_t, uap->dev))); } int freebsd32_mprotect(struct thread *td, struct freebsd32_mprotect_args *uap) { int prot; prot = uap->prot; #if defined(__amd64__) if (i386_read_exec && (prot & PROT_READ) != 0) prot |= PROT_EXEC; #endif return (kern_mprotect(td, (uintptr_t)PTRIN(uap->addr), uap->len, prot)); } int freebsd32_mmap(struct thread *td, struct freebsd32_mmap_args *uap) { int prot; prot = uap->prot; #if defined(__amd64__) if (i386_read_exec && (prot & PROT_READ)) prot |= PROT_EXEC; #endif return (kern_mmap(td, &(struct mmap_req){ .mr_hint = (uintptr_t)uap->addr, .mr_len = uap->len, .mr_prot = prot, .mr_flags = uap->flags, .mr_fd = uap->fd, .mr_pos = PAIR32TO64(off_t, uap->pos), })); } #ifdef COMPAT_FREEBSD6 int freebsd6_freebsd32_mmap(struct thread *td, struct freebsd6_freebsd32_mmap_args *uap) { int prot; prot = uap->prot; #if defined(__amd64__) if (i386_read_exec && (prot & PROT_READ)) prot |= PROT_EXEC; #endif return (kern_mmap(td, &(struct mmap_req){ .mr_hint = (uintptr_t)uap->addr, .mr_len = uap->len, .mr_prot = prot, .mr_flags = uap->flags, .mr_fd = uap->fd, .mr_pos = PAIR32TO64(off_t, uap->pos), })); } #endif #ifdef COMPAT_43 int ofreebsd32_mmap(struct thread *td, struct ofreebsd32_mmap_args *uap) { return (kern_ommap(td, (uintptr_t)uap->addr, uap->len, uap->prot, uap->flags, uap->fd, uap->pos)); } #endif int freebsd32_setitimer(struct thread *td, struct freebsd32_setitimer_args *uap) { struct itimerval itv, oitv, *itvp; struct itimerval32 i32; int error; if (uap->itv != NULL) { error = copyin(uap->itv, &i32, sizeof(i32)); if (error) return (error); TV_CP(i32, itv, it_interval); TV_CP(i32, itv, it_value); itvp = &itv; } else itvp = NULL; error = kern_setitimer(td, uap->which, itvp, &oitv); if (error || uap->oitv == NULL) return (error); TV_CP(oitv, i32, it_interval); TV_CP(oitv, i32, it_value); return (copyout(&i32, uap->oitv, sizeof(i32))); } int freebsd32_getitimer(struct thread *td, struct freebsd32_getitimer_args *uap) { struct itimerval itv; struct itimerval32 i32; int error; error = kern_getitimer(td, uap->which, &itv); if (error || uap->itv == NULL) return (error); TV_CP(itv, i32, it_interval); TV_CP(itv, i32, it_value); return (copyout(&i32, uap->itv, sizeof(i32))); } int freebsd32_select(struct thread *td, struct freebsd32_select_args *uap) { struct timeval32 tv32; struct timeval tv, *tvp; int error; if (uap->tv != NULL) { error = copyin(uap->tv, &tv32, sizeof(tv32)); if (error) return (error); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); tvp = &tv; } else tvp = NULL; /* * XXX Do pointers need PTRIN()? */ return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, sizeof(int32_t) * 8)); } int freebsd32_pselect(struct thread *td, struct freebsd32_pselect_args *uap) { struct timespec32 ts32; struct timespec ts; struct timeval tv, *tvp; sigset_t set, *uset; int error; if (uap->ts != NULL) { error = copyin(uap->ts, &ts32, sizeof(ts32)); if (error != 0) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); TIMESPEC_TO_TIMEVAL(&tv, &ts); tvp = &tv; } else tvp = NULL; if (uap->sm != NULL) { error = copyin(uap->sm, &set, sizeof(set)); if (error != 0) return (error); uset = &set; } else uset = NULL; /* * XXX Do pointers need PTRIN()? */ error = kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp, uset, sizeof(int32_t) * 8); return (error); } /* * Copy 'count' items into the destination list pointed to by uap->eventlist. */ static int freebsd32_kevent_copyout(void *arg, struct kevent *kevp, int count) { struct freebsd32_kevent_args *uap; struct kevent32 ks32[KQ_NEVENTS]; uint64_t e; int i, j, error; KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); uap = (struct freebsd32_kevent_args *)arg; for (i = 0; i < count; i++) { CP(kevp[i], ks32[i], ident); CP(kevp[i], ks32[i], filter); CP(kevp[i], ks32[i], flags); CP(kevp[i], ks32[i], fflags); #if BYTE_ORDER == LITTLE_ENDIAN ks32[i].data1 = kevp[i].data; ks32[i].data2 = kevp[i].data >> 32; #else ks32[i].data1 = kevp[i].data >> 32; ks32[i].data2 = kevp[i].data; #endif PTROUT_CP(kevp[i], ks32[i], udata); for (j = 0; j < nitems(kevp->ext); j++) { e = kevp[i].ext[j]; #if BYTE_ORDER == LITTLE_ENDIAN ks32[i].ext64[2 * j] = e; ks32[i].ext64[2 * j + 1] = e >> 32; #else ks32[i].ext64[2 * j] = e >> 32; ks32[i].ext64[2 * j + 1] = e; #endif } } error = copyout(ks32, uap->eventlist, count * sizeof *ks32); if (error == 0) uap->eventlist += count; return (error); } /* * Copy 'count' items from the list pointed to by uap->changelist. */ static int freebsd32_kevent_copyin(void *arg, struct kevent *kevp, int count) { struct freebsd32_kevent_args *uap; struct kevent32 ks32[KQ_NEVENTS]; uint64_t e; int i, j, error; KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); uap = (struct freebsd32_kevent_args *)arg; error = copyin(uap->changelist, ks32, count * sizeof *ks32); if (error) goto done; uap->changelist += count; for (i = 0; i < count; i++) { CP(ks32[i], kevp[i], ident); CP(ks32[i], kevp[i], filter); CP(ks32[i], kevp[i], flags); CP(ks32[i], kevp[i], fflags); kevp[i].data = PAIR32TO64(uint64_t, ks32[i].data); PTRIN_CP(ks32[i], kevp[i], udata); for (j = 0; j < nitems(kevp->ext); j++) { #if BYTE_ORDER == LITTLE_ENDIAN e = ks32[i].ext64[2 * j + 1]; e <<= 32; e += ks32[i].ext64[2 * j]; #else e = ks32[i].ext64[2 * j]; e <<= 32; e += ks32[i].ext64[2 * j + 1]; #endif kevp[i].ext[j] = e; } } done: return (error); } int freebsd32_kevent(struct thread *td, struct freebsd32_kevent_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; struct kevent_copyops k_ops = { .arg = uap, .k_copyout = freebsd32_kevent_copyout, .k_copyin = freebsd32_kevent_copyin, }; #ifdef KTRACE struct kevent32 *eventlist = uap->eventlist; #endif int error; if (uap->timeout) { error = copyin(uap->timeout, &ts32, sizeof(ts32)); if (error) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT_ARRAY)) ktrstructarray("kevent32", UIO_USERSPACE, uap->changelist, uap->nchanges, sizeof(struct kevent32)); #endif error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, &k_ops, tsp); #ifdef KTRACE if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) ktrstructarray("kevent32", UIO_USERSPACE, eventlist, td->td_retval[0], sizeof(struct kevent32)); #endif return (error); } #ifdef COMPAT_FREEBSD11 static int freebsd32_kevent11_copyout(void *arg, struct kevent *kevp, int count) { struct freebsd11_freebsd32_kevent_args *uap; struct freebsd11_kevent32 ks32[KQ_NEVENTS]; int i, error; KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); uap = (struct freebsd11_freebsd32_kevent_args *)arg; for (i = 0; i < count; i++) { CP(kevp[i], ks32[i], ident); CP(kevp[i], ks32[i], filter); CP(kevp[i], ks32[i], flags); CP(kevp[i], ks32[i], fflags); CP(kevp[i], ks32[i], data); PTROUT_CP(kevp[i], ks32[i], udata); } error = copyout(ks32, uap->eventlist, count * sizeof *ks32); if (error == 0) uap->eventlist += count; return (error); } /* * Copy 'count' items from the list pointed to by uap->changelist. */ static int freebsd32_kevent11_copyin(void *arg, struct kevent *kevp, int count) { struct freebsd11_freebsd32_kevent_args *uap; struct freebsd11_kevent32 ks32[KQ_NEVENTS]; int i, j, error; KASSERT(count <= KQ_NEVENTS, ("count (%d) > KQ_NEVENTS", count)); uap = (struct freebsd11_freebsd32_kevent_args *)arg; error = copyin(uap->changelist, ks32, count * sizeof *ks32); if (error) goto done; uap->changelist += count; for (i = 0; i < count; i++) { CP(ks32[i], kevp[i], ident); CP(ks32[i], kevp[i], filter); CP(ks32[i], kevp[i], flags); CP(ks32[i], kevp[i], fflags); CP(ks32[i], kevp[i], data); PTRIN_CP(ks32[i], kevp[i], udata); for (j = 0; j < nitems(kevp->ext); j++) kevp[i].ext[j] = 0; } done: return (error); } int freebsd11_freebsd32_kevent(struct thread *td, struct freebsd11_freebsd32_kevent_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; struct kevent_copyops k_ops = { .arg = uap, .k_copyout = freebsd32_kevent11_copyout, .k_copyin = freebsd32_kevent11_copyin, }; #ifdef KTRACE struct freebsd11_kevent32 *eventlist = uap->eventlist; #endif int error; if (uap->timeout) { error = copyin(uap->timeout, &ts32, sizeof(ts32)); if (error) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT_ARRAY)) ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, uap->changelist, uap->nchanges, sizeof(struct freebsd11_kevent32)); #endif error = kern_kevent(td, uap->fd, uap->nchanges, uap->nevents, &k_ops, tsp); #ifdef KTRACE if (error == 0 && KTRPOINT(td, KTR_STRUCT_ARRAY)) ktrstructarray("freebsd11_kevent32", UIO_USERSPACE, eventlist, td->td_retval[0], sizeof(struct freebsd11_kevent32)); #endif return (error); } #endif int freebsd32_gettimeofday(struct thread *td, struct freebsd32_gettimeofday_args *uap) { struct timeval atv; struct timeval32 atv32; struct timezone rtz; int error = 0; if (uap->tp) { microtime(&atv); CP(atv, atv32, tv_sec); CP(atv, atv32, tv_usec); error = copyout(&atv32, uap->tp, sizeof (atv32)); } if (error == 0 && uap->tzp != NULL) { rtz.tz_minuteswest = 0; rtz.tz_dsttime = 0; error = copyout(&rtz, uap->tzp, sizeof (rtz)); } return (error); } int freebsd32_getrusage(struct thread *td, struct freebsd32_getrusage_args *uap) { struct rusage32 s32; struct rusage s; int error; error = kern_getrusage(td, uap->who, &s); if (error == 0) { freebsd32_rusage_out(&s, &s32); error = copyout(&s32, uap->rusage, sizeof(s32)); } return (error); } static void ptrace_lwpinfo_to32(const struct ptrace_lwpinfo *pl, struct ptrace_lwpinfo32 *pl32) { bzero(pl32, sizeof(*pl32)); pl32->pl_lwpid = pl->pl_lwpid; pl32->pl_event = pl->pl_event; pl32->pl_flags = pl->pl_flags; pl32->pl_sigmask = pl->pl_sigmask; pl32->pl_siglist = pl->pl_siglist; siginfo_to_siginfo32(&pl->pl_siginfo, &pl32->pl_siginfo); strcpy(pl32->pl_tdname, pl->pl_tdname); pl32->pl_child_pid = pl->pl_child_pid; pl32->pl_syscall_code = pl->pl_syscall_code; pl32->pl_syscall_narg = pl->pl_syscall_narg; } static void ptrace_sc_ret_to32(const struct ptrace_sc_ret *psr, struct ptrace_sc_ret32 *psr32) { bzero(psr32, sizeof(*psr32)); psr32->sr_retval[0] = psr->sr_retval[0]; psr32->sr_retval[1] = psr->sr_retval[1]; psr32->sr_error = psr->sr_error; } int freebsd32_ptrace(struct thread *td, struct freebsd32_ptrace_args *uap) { union { struct ptrace_io_desc piod; struct ptrace_lwpinfo pl; struct ptrace_vm_entry pve; struct ptrace_coredump pc; struct dbreg32 dbreg; struct fpreg32 fpreg; struct reg32 reg; struct iovec vec; register_t args[nitems(td->td_sa.args)]; struct ptrace_sc_ret psr; int ptevents; } r; union { struct ptrace_io_desc32 piod; struct ptrace_lwpinfo32 pl; struct ptrace_vm_entry32 pve; struct ptrace_coredump32 pc; uint32_t args[nitems(td->td_sa.args)]; struct ptrace_sc_ret32 psr; struct iovec32 vec; } r32; void *addr; int data, error, i; if (!allow_ptrace) return (ENOSYS); error = 0; AUDIT_ARG_PID(uap->pid); AUDIT_ARG_CMD(uap->req); AUDIT_ARG_VALUE(uap->data); addr = &r; data = uap->data; switch (uap->req) { case PT_GET_EVENT_MASK: case PT_GET_SC_ARGS: case PT_GET_SC_RET: break; case PT_LWPINFO: if (uap->data > sizeof(r32.pl)) return (EINVAL); /* * Pass size of native structure in 'data'. Truncate * if necessary to avoid siginfo. */ data = sizeof(r.pl); if (uap->data < offsetof(struct ptrace_lwpinfo32, pl_siginfo) + sizeof(struct siginfo32)) data = offsetof(struct ptrace_lwpinfo, pl_siginfo); break; case PT_GETREGS: bzero(&r.reg, sizeof(r.reg)); break; case PT_GETFPREGS: bzero(&r.fpreg, sizeof(r.fpreg)); break; case PT_GETDBREGS: bzero(&r.dbreg, sizeof(r.dbreg)); break; case PT_SETREGS: error = copyin(uap->addr, &r.reg, sizeof(r.reg)); break; case PT_SETFPREGS: error = copyin(uap->addr, &r.fpreg, sizeof(r.fpreg)); break; case PT_SETDBREGS: error = copyin(uap->addr, &r.dbreg, sizeof(r.dbreg)); break; case PT_GETREGSET: case PT_SETREGSET: error = copyin(uap->addr, &r32.vec, sizeof(r32.vec)); if (error != 0) break; r.vec.iov_len = r32.vec.iov_len; r.vec.iov_base = PTRIN(r32.vec.iov_base); break; case PT_SET_EVENT_MASK: if (uap->data != sizeof(r.ptevents)) error = EINVAL; else error = copyin(uap->addr, &r.ptevents, uap->data); break; case PT_IO: error = copyin(uap->addr, &r32.piod, sizeof(r32.piod)); if (error) break; CP(r32.piod, r.piod, piod_op); PTRIN_CP(r32.piod, r.piod, piod_offs); PTRIN_CP(r32.piod, r.piod, piod_addr); CP(r32.piod, r.piod, piod_len); break; case PT_VM_ENTRY: error = copyin(uap->addr, &r32.pve, sizeof(r32.pve)); if (error) break; CP(r32.pve, r.pve, pve_entry); CP(r32.pve, r.pve, pve_timestamp); CP(r32.pve, r.pve, pve_start); CP(r32.pve, r.pve, pve_end); CP(r32.pve, r.pve, pve_offset); CP(r32.pve, r.pve, pve_prot); CP(r32.pve, r.pve, pve_pathlen); CP(r32.pve, r.pve, pve_fileid); CP(r32.pve, r.pve, pve_fsid); PTRIN_CP(r32.pve, r.pve, pve_path); break; case PT_COREDUMP: if (uap->data != sizeof(r32.pc)) error = EINVAL; else error = copyin(uap->addr, &r32.pc, uap->data); CP(r32.pc, r.pc, pc_fd); CP(r32.pc, r.pc, pc_flags); r.pc.pc_limit = PAIR32TO64(off_t, r32.pc.pc_limit); data = sizeof(r.pc); break; default: addr = uap->addr; break; } if (error) return (error); error = kern_ptrace(td, uap->req, uap->pid, addr, data); if (error) return (error); switch (uap->req) { case PT_VM_ENTRY: CP(r.pve, r32.pve, pve_entry); CP(r.pve, r32.pve, pve_timestamp); CP(r.pve, r32.pve, pve_start); CP(r.pve, r32.pve, pve_end); CP(r.pve, r32.pve, pve_offset); CP(r.pve, r32.pve, pve_prot); CP(r.pve, r32.pve, pve_pathlen); CP(r.pve, r32.pve, pve_fileid); CP(r.pve, r32.pve, pve_fsid); error = copyout(&r32.pve, uap->addr, sizeof(r32.pve)); break; case PT_IO: CP(r.piod, r32.piod, piod_len); error = copyout(&r32.piod, uap->addr, sizeof(r32.piod)); break; case PT_GETREGS: error = copyout(&r.reg, uap->addr, sizeof(r.reg)); break; case PT_GETFPREGS: error = copyout(&r.fpreg, uap->addr, sizeof(r.fpreg)); break; case PT_GETDBREGS: error = copyout(&r.dbreg, uap->addr, sizeof(r.dbreg)); break; case PT_GETREGSET: r32.vec.iov_len = r.vec.iov_len; error = copyout(&r32.vec, uap->addr, sizeof(r32.vec)); break; case PT_GET_EVENT_MASK: /* NB: The size in uap->data is validated in kern_ptrace(). */ error = copyout(&r.ptevents, uap->addr, uap->data); break; case PT_LWPINFO: ptrace_lwpinfo_to32(&r.pl, &r32.pl); error = copyout(&r32.pl, uap->addr, uap->data); break; case PT_GET_SC_ARGS: for (i = 0; i < nitems(r.args); i++) r32.args[i] = (uint32_t)r.args[i]; error = copyout(r32.args, uap->addr, MIN(uap->data, sizeof(r32.args))); break; case PT_GET_SC_RET: ptrace_sc_ret_to32(&r.psr, &r32.psr); error = copyout(&r32.psr, uap->addr, MIN(uap->data, sizeof(r32.psr))); break; } return (error); } int freebsd32_copyinuio(struct iovec32 *iovp, u_int iovcnt, struct uio **uiop) { struct iovec32 iov32; struct iovec *iov; struct uio *uio; u_int iovlen; int error, i; *uiop = NULL; if (iovcnt > UIO_MAXIOV) return (EINVAL); iovlen = iovcnt * sizeof(struct iovec); uio = malloc(iovlen + sizeof *uio, M_IOV, M_WAITOK); iov = (struct iovec *)(uio + 1); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp[i], &iov32, sizeof(struct iovec32)); if (error) { free(uio, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } uio->uio_iov = iov; uio->uio_iovcnt = iovcnt; uio->uio_segflg = UIO_USERSPACE; uio->uio_offset = -1; uio->uio_resid = 0; for (i = 0; i < iovcnt; i++) { if (iov->iov_len > INT_MAX - uio->uio_resid) { free(uio, M_IOV); return (EINVAL); } uio->uio_resid += iov->iov_len; iov++; } *uiop = uio; return (0); } int freebsd32_readv(struct thread *td, struct freebsd32_readv_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_readv(td, uap->fd, auio); free(auio, M_IOV); return (error); } int freebsd32_writev(struct thread *td, struct freebsd32_writev_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_writev(td, uap->fd, auio); free(auio, M_IOV); return (error); } int freebsd32_preadv(struct thread *td, struct freebsd32_preadv_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_preadv(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); free(auio, M_IOV); return (error); } int freebsd32_pwritev(struct thread *td, struct freebsd32_pwritev_args *uap) { struct uio *auio; int error; error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_pwritev(td, uap->fd, auio, PAIR32TO64(off_t,uap->offset)); free(auio, M_IOV); return (error); } int freebsd32_copyiniov(struct iovec32 *iovp32, u_int iovcnt, struct iovec **iovp, int error) { struct iovec32 iov32; struct iovec *iov; u_int iovlen; int i; *iovp = NULL; if (iovcnt > UIO_MAXIOV) return (error); iovlen = iovcnt * sizeof(struct iovec); iov = malloc(iovlen, M_IOV, M_WAITOK); for (i = 0; i < iovcnt; i++) { error = copyin(&iovp32[i], &iov32, sizeof(struct iovec32)); if (error) { free(iov, M_IOV); return (error); } iov[i].iov_base = PTRIN(iov32.iov_base); iov[i].iov_len = iov32.iov_len; } *iovp = iov; return (0); } static int freebsd32_copyinmsghdr(const struct msghdr32 *msg32, struct msghdr *msg) { struct msghdr32 m32; int error; error = copyin(msg32, &m32, sizeof(m32)); if (error) return (error); msg->msg_name = PTRIN(m32.msg_name); msg->msg_namelen = m32.msg_namelen; msg->msg_iov = PTRIN(m32.msg_iov); msg->msg_iovlen = m32.msg_iovlen; msg->msg_control = PTRIN(m32.msg_control); msg->msg_controllen = m32.msg_controllen; msg->msg_flags = m32.msg_flags; return (0); } static int freebsd32_copyoutmsghdr(struct msghdr *msg, struct msghdr32 *msg32) { struct msghdr32 m32; int error; m32.msg_name = PTROUT(msg->msg_name); m32.msg_namelen = msg->msg_namelen; m32.msg_iov = PTROUT(msg->msg_iov); m32.msg_iovlen = msg->msg_iovlen; m32.msg_control = PTROUT(msg->msg_control); m32.msg_controllen = msg->msg_controllen; m32.msg_flags = msg->msg_flags; error = copyout(&m32, msg32, sizeof(m32)); return (error); } #ifndef __mips__ #define FREEBSD32_ALIGNBYTES (sizeof(int) - 1) #else #define FREEBSD32_ALIGNBYTES (sizeof(long) - 1) #endif #define FREEBSD32_ALIGN(p) \ (((u_long)(p) + FREEBSD32_ALIGNBYTES) & ~FREEBSD32_ALIGNBYTES) #define FREEBSD32_CMSG_SPACE(l) \ (FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + FREEBSD32_ALIGN(l)) #define FREEBSD32_CMSG_DATA(cmsg) ((unsigned char *)(cmsg) + \ FREEBSD32_ALIGN(sizeof(struct cmsghdr))) static size_t freebsd32_cmsg_convert(const struct cmsghdr *cm, void *data, socklen_t datalen) { size_t copylen; union { struct timespec32 ts; struct timeval32 tv; struct bintime32 bt; } tmp32; union { struct timespec ts; struct timeval tv; struct bintime bt; } *in; in = data; copylen = 0; switch (cm->cmsg_level) { case SOL_SOCKET: switch (cm->cmsg_type) { case SCM_TIMESTAMP: TV_CP(*in, tmp32, tv); copylen = sizeof(tmp32.tv); break; case SCM_BINTIME: BT_CP(*in, tmp32, bt); copylen = sizeof(tmp32.bt); break; case SCM_REALTIME: case SCM_MONOTONIC: TS_CP(*in, tmp32, ts); copylen = sizeof(tmp32.ts); break; default: break; } default: break; } if (copylen == 0) return (datalen); KASSERT((datalen >= copylen), ("corrupted cmsghdr")); bcopy(&tmp32, data, copylen); return (copylen); } static int freebsd32_copy_msg_out(struct msghdr *msg, struct mbuf *control) { struct cmsghdr *cm; void *data; socklen_t clen, datalen, datalen_out, oldclen; int error; caddr_t ctlbuf; int len, copylen; struct mbuf *m; error = 0; len = msg->msg_controllen; msg->msg_controllen = 0; ctlbuf = msg->msg_control; for (m = control; m != NULL && len > 0; m = m->m_next) { cm = mtod(m, struct cmsghdr *); clen = m->m_len; while (cm != NULL) { if (sizeof(struct cmsghdr) > clen || cm->cmsg_len > clen) { error = EINVAL; break; } data = CMSG_DATA(cm); datalen = (caddr_t)cm + cm->cmsg_len - (caddr_t)data; datalen_out = freebsd32_cmsg_convert(cm, data, datalen); /* * Copy out the message header. Preserve the native * message size in case we need to inspect the message * contents later. */ copylen = sizeof(struct cmsghdr); if (len < copylen) { msg->msg_flags |= MSG_CTRUNC; m_dispose_extcontrolm(m); goto exit; } oldclen = cm->cmsg_len; cm->cmsg_len = FREEBSD32_ALIGN(sizeof(struct cmsghdr)) + datalen_out; error = copyout(cm, ctlbuf, copylen); cm->cmsg_len = oldclen; if (error != 0) goto exit; ctlbuf += FREEBSD32_ALIGN(copylen); len -= FREEBSD32_ALIGN(copylen); copylen = datalen_out; if (len < copylen) { msg->msg_flags |= MSG_CTRUNC; m_dispose_extcontrolm(m); break; } /* Copy out the message data. */ error = copyout(data, ctlbuf, copylen); if (error) goto exit; ctlbuf += FREEBSD32_ALIGN(copylen); len -= FREEBSD32_ALIGN(copylen); if (CMSG_SPACE(datalen) < clen) { clen -= CMSG_SPACE(datalen); cm = (struct cmsghdr *) ((caddr_t)cm + CMSG_SPACE(datalen)); } else { clen = 0; cm = NULL; } msg->msg_controllen += FREEBSD32_CMSG_SPACE(datalen_out); } } if (len == 0 && m != NULL) { msg->msg_flags |= MSG_CTRUNC; m_dispose_extcontrolm(m); } exit: return (error); } int freebsd32_recvmsg(struct thread *td, struct freebsd32_recvmsg_args *uap) { struct msghdr msg; struct iovec *uiov, *iov; struct mbuf *control = NULL; struct mbuf **controlp; int error; error = freebsd32_copyinmsghdr(uap->msg, &msg); if (error) return (error); error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_flags = uap->flags; uiov = msg.msg_iov; msg.msg_iov = iov; controlp = (msg.msg_control != NULL) ? &control : NULL; error = kern_recvit(td, uap->s, &msg, UIO_USERSPACE, controlp); if (error == 0) { msg.msg_iov = uiov; if (control != NULL) error = freebsd32_copy_msg_out(&msg, control); else msg.msg_controllen = 0; if (error == 0) error = freebsd32_copyoutmsghdr(&msg, uap->msg); } free(iov, M_IOV); if (control != NULL) { if (error != 0) m_dispose_extcontrolm(control); m_freem(control); } return (error); } #ifdef COMPAT_43 int ofreebsd32_recvmsg(struct thread *td, struct ofreebsd32_recvmsg_args *uap) { return (ENOSYS); } #endif /* * Copy-in the array of control messages constructed using alignment * and padding suitable for a 32-bit environment and construct an * mbuf using alignment and padding suitable for a 64-bit kernel. * The alignment and padding are defined indirectly by CMSG_DATA(), * CMSG_SPACE() and CMSG_LEN(). */ static int freebsd32_copyin_control(struct mbuf **mp, caddr_t buf, u_int buflen) { struct cmsghdr *cm; struct mbuf *m; void *in, *in1, *md; u_int msglen, outlen; int error; if (buflen > MCLBYTES) return (EINVAL); in = malloc(buflen, M_TEMP, M_WAITOK); error = copyin(buf, in, buflen); if (error != 0) goto out; /* * Make a pass over the input buffer to determine the amount of space * required for 64 bit-aligned copies of the control messages. */ in1 = in; outlen = 0; while (buflen > 0) { if (buflen < sizeof(*cm)) { error = EINVAL; break; } cm = (struct cmsghdr *)in1; if (cm->cmsg_len < FREEBSD32_ALIGN(sizeof(*cm))) { error = EINVAL; break; } msglen = FREEBSD32_ALIGN(cm->cmsg_len); if (msglen > buflen || msglen < cm->cmsg_len) { error = EINVAL; break; } buflen -= msglen; in1 = (char *)in1 + msglen; outlen += CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen - FREEBSD32_ALIGN(sizeof(*cm))); } if (error == 0 && outlen > MCLBYTES) { /* * XXXMJ This implies that the upper limit on 32-bit aligned * control messages is less than MCLBYTES, and so we are not * perfectly compatible. However, there is no platform * guarantee that mbuf clusters larger than MCLBYTES can be * allocated. */ error = EINVAL; } if (error != 0) goto out; m = m_get2(outlen, M_WAITOK, MT_CONTROL, 0); m->m_len = outlen; md = mtod(m, void *); /* * Make a second pass over input messages, copying them into the output * buffer. */ in1 = in; while (outlen > 0) { /* Copy the message header and align the length field. */ cm = md; memcpy(cm, in1, sizeof(*cm)); msglen = cm->cmsg_len - FREEBSD32_ALIGN(sizeof(*cm)); cm->cmsg_len = CMSG_ALIGN(sizeof(*cm)) + msglen; /* Copy the message body. */ in1 = (char *)in1 + FREEBSD32_ALIGN(sizeof(*cm)); md = (char *)md + CMSG_ALIGN(sizeof(*cm)); memcpy(md, in1, msglen); in1 = (char *)in1 + FREEBSD32_ALIGN(msglen); md = (char *)md + CMSG_ALIGN(msglen); KASSERT(outlen >= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen), ("outlen %u underflow, msglen %u", outlen, msglen)); outlen -= CMSG_ALIGN(sizeof(*cm)) + CMSG_ALIGN(msglen); } *mp = m; out: free(in, M_TEMP); return (error); } int freebsd32_sendmsg(struct thread *td, struct freebsd32_sendmsg_args *uap) { struct msghdr msg; struct iovec *iov; struct mbuf *control = NULL; struct sockaddr *to = NULL; int error; error = freebsd32_copyinmsghdr(uap->msg, &msg); if (error) return (error); error = freebsd32_copyiniov((void *)msg.msg_iov, msg.msg_iovlen, &iov, EMSGSIZE); if (error) return (error); msg.msg_iov = iov; if (msg.msg_name != NULL) { error = getsockaddr(&to, msg.msg_name, msg.msg_namelen); if (error) { to = NULL; goto out; } msg.msg_name = to; } if (msg.msg_control) { if (msg.msg_controllen < sizeof(struct cmsghdr)) { error = EINVAL; goto out; } error = freebsd32_copyin_control(&control, msg.msg_control, msg.msg_controllen); if (error) goto out; msg.msg_control = NULL; msg.msg_controllen = 0; } error = kern_sendit(td, uap->s, &msg, uap->flags, control, UIO_USERSPACE); out: free(iov, M_IOV); if (to) free(to, M_SONAME); return (error); } #ifdef COMPAT_43 int ofreebsd32_sendmsg(struct thread *td, struct ofreebsd32_sendmsg_args *uap) { return (ENOSYS); } #endif int freebsd32_settimeofday(struct thread *td, struct freebsd32_settimeofday_args *uap) { struct timeval32 tv32; struct timeval tv, *tvp; struct timezone tz, *tzp; int error; if (uap->tv) { error = copyin(uap->tv, &tv32, sizeof(tv32)); if (error) return (error); CP(tv32, tv, tv_sec); CP(tv32, tv, tv_usec); tvp = &tv; } else tvp = NULL; if (uap->tzp) { error = copyin(uap->tzp, &tz, sizeof(tz)); if (error) return (error); tzp = &tz; } else tzp = NULL; return (kern_settimeofday(td, tvp, tzp)); } int freebsd32_utimes(struct thread *td, struct freebsd32_utimes_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->tptr != NULL) { error = copyin(uap->tptr, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_utimesat(td, AT_FDCWD, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); } int freebsd32_lutimes(struct thread *td, struct freebsd32_lutimes_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->tptr != NULL) { error = copyin(uap->tptr, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_lutimes(td, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); } int freebsd32_futimes(struct thread *td, struct freebsd32_futimes_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->tptr != NULL) { error = copyin(uap->tptr, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_futimes(td, uap->fd, sp, UIO_SYSSPACE)); } int freebsd32_futimesat(struct thread *td, struct freebsd32_futimesat_args *uap) { struct timeval32 s32[2]; struct timeval s[2], *sp; int error; if (uap->times != NULL) { error = copyin(uap->times, s32, sizeof(s32)); if (error) return (error); CP(s32[0], s[0], tv_sec); CP(s32[0], s[0], tv_usec); CP(s32[1], s[1], tv_sec); CP(s32[1], s[1], tv_usec); sp = s; } else sp = NULL; return (kern_utimesat(td, uap->fd, uap->path, UIO_USERSPACE, sp, UIO_SYSSPACE)); } int freebsd32_futimens(struct thread *td, struct freebsd32_futimens_args *uap) { struct timespec32 ts32[2]; struct timespec ts[2], *tsp; int error; if (uap->times != NULL) { error = copyin(uap->times, ts32, sizeof(ts32)); if (error) return (error); CP(ts32[0], ts[0], tv_sec); CP(ts32[0], ts[0], tv_nsec); CP(ts32[1], ts[1], tv_sec); CP(ts32[1], ts[1], tv_nsec); tsp = ts; } else tsp = NULL; return (kern_futimens(td, uap->fd, tsp, UIO_SYSSPACE)); } int freebsd32_utimensat(struct thread *td, struct freebsd32_utimensat_args *uap) { struct timespec32 ts32[2]; struct timespec ts[2], *tsp; int error; if (uap->times != NULL) { error = copyin(uap->times, ts32, sizeof(ts32)); if (error) return (error); CP(ts32[0], ts[0], tv_sec); CP(ts32[0], ts[0], tv_nsec); CP(ts32[1], ts[1], tv_sec); CP(ts32[1], ts[1], tv_nsec); tsp = ts; } else tsp = NULL; return (kern_utimensat(td, uap->fd, uap->path, UIO_USERSPACE, tsp, UIO_SYSSPACE, uap->flag)); } int freebsd32_adjtime(struct thread *td, struct freebsd32_adjtime_args *uap) { struct timeval32 tv32; struct timeval delta, olddelta, *deltap; int error; if (uap->delta) { error = copyin(uap->delta, &tv32, sizeof(tv32)); if (error) return (error); CP(tv32, delta, tv_sec); CP(tv32, delta, tv_usec); deltap = δ } else deltap = NULL; error = kern_adjtime(td, deltap, &olddelta); if (uap->olddelta && error == 0) { CP(olddelta, tv32, tv_sec); CP(olddelta, tv32, tv_usec); error = copyout(&tv32, uap->olddelta, sizeof(tv32)); } return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_statfs(struct thread *td, struct freebsd4_freebsd32_statfs_args *uap) { struct ostatfs32 s32; struct statfs *sp; int error; sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); error = kern_statfs(td, uap->path, UIO_USERSPACE, sp); if (error == 0) { copy_statfs(sp, &s32); error = copyout(&s32, uap->buf, sizeof(s32)); } free(sp, M_STATFS); return (error); } #endif #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_fstatfs(struct thread *td, struct freebsd4_freebsd32_fstatfs_args *uap) { struct ostatfs32 s32; struct statfs *sp; int error; sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); error = kern_fstatfs(td, uap->fd, sp); if (error == 0) { copy_statfs(sp, &s32); error = copyout(&s32, uap->buf, sizeof(s32)); } free(sp, M_STATFS); return (error); } #endif #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_fhstatfs(struct thread *td, struct freebsd4_freebsd32_fhstatfs_args *uap) { struct ostatfs32 s32; struct statfs *sp; fhandle_t fh; int error; if ((error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t))) != 0) return (error); sp = malloc(sizeof(struct statfs), M_STATFS, M_WAITOK); error = kern_fhstatfs(td, fh, sp); if (error == 0) { copy_statfs(sp, &s32); error = copyout(&s32, uap->buf, sizeof(s32)); } free(sp, M_STATFS); return (error); } #endif int freebsd32_pread(struct thread *td, struct freebsd32_pread_args *uap) { return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, PAIR32TO64(off_t, uap->offset))); } int freebsd32_pwrite(struct thread *td, struct freebsd32_pwrite_args *uap) { return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, PAIR32TO64(off_t, uap->offset))); } #ifdef COMPAT_43 int ofreebsd32_lseek(struct thread *td, struct ofreebsd32_lseek_args *uap) { return (kern_lseek(td, uap->fd, uap->offset, uap->whence)); } #endif int freebsd32_lseek(struct thread *td, struct freebsd32_lseek_args *uap) { int error; off_t pos; error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), uap->whence); /* Expand the quad return into two parts for eax and edx */ pos = td->td_uretoff.tdu_off; td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ return error; } int freebsd32_truncate(struct thread *td, struct freebsd32_truncate_args *uap) { return (kern_truncate(td, uap->path, UIO_USERSPACE, PAIR32TO64(off_t, uap->length))); } #ifdef COMPAT_43 int ofreebsd32_truncate(struct thread *td, struct ofreebsd32_truncate_args *uap) { return (kern_truncate(td, uap->path, UIO_USERSPACE, uap->length)); } #endif int freebsd32_ftruncate(struct thread *td, struct freebsd32_ftruncate_args *uap) { return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); } #ifdef COMPAT_43 int ofreebsd32_ftruncate(struct thread *td, struct ofreebsd32_ftruncate_args *uap) { return (kern_ftruncate(td, uap->fd, uap->length)); } int ofreebsd32_getdirentries(struct thread *td, struct ofreebsd32_getdirentries_args *uap) { struct ogetdirentries_args ap; int error; long loff; int32_t loff_cut; ap.fd = uap->fd; ap.buf = uap->buf; ap.count = uap->count; ap.basep = NULL; error = kern_ogetdirentries(td, &ap, &loff); if (error == 0) { loff_cut = loff; error = copyout(&loff_cut, uap->basep, sizeof(int32_t)); } return (error); } #endif #if defined(COMPAT_FREEBSD11) int freebsd11_freebsd32_getdirentries(struct thread *td, struct freebsd11_freebsd32_getdirentries_args *uap) { long base; int32_t base32; int error; error = freebsd11_kern_getdirentries(td, uap->fd, uap->buf, uap->count, &base, NULL); if (error) return (error); if (uap->basep != NULL) { base32 = base; error = copyout(&base32, uap->basep, sizeof(int32_t)); } return (error); } #endif /* COMPAT_FREEBSD11 */ #ifdef COMPAT_FREEBSD6 /* versions with the 'int pad' argument */ int freebsd6_freebsd32_pread(struct thread *td, struct freebsd6_freebsd32_pread_args *uap) { return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, PAIR32TO64(off_t, uap->offset))); } int freebsd6_freebsd32_pwrite(struct thread *td, struct freebsd6_freebsd32_pwrite_args *uap) { return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, PAIR32TO64(off_t, uap->offset))); } int freebsd6_freebsd32_lseek(struct thread *td, struct freebsd6_freebsd32_lseek_args *uap) { int error; off_t pos; error = kern_lseek(td, uap->fd, PAIR32TO64(off_t, uap->offset), uap->whence); /* Expand the quad return into two parts for eax and edx */ pos = *(off_t *)(td->td_retval); td->td_retval[RETVAL_LO] = pos & 0xffffffff; /* %eax */ td->td_retval[RETVAL_HI] = pos >> 32; /* %edx */ return error; } int freebsd6_freebsd32_truncate(struct thread *td, struct freebsd6_freebsd32_truncate_args *uap) { return (kern_truncate(td, uap->path, UIO_USERSPACE, PAIR32TO64(off_t, uap->length))); } int freebsd6_freebsd32_ftruncate(struct thread *td, struct freebsd6_freebsd32_ftruncate_args *uap) { return (kern_ftruncate(td, uap->fd, PAIR32TO64(off_t, uap->length))); } #endif /* COMPAT_FREEBSD6 */ struct sf_hdtr32 { uint32_t headers; int hdr_cnt; uint32_t trailers; int trl_cnt; }; static int freebsd32_do_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap, int compat) { struct sf_hdtr32 hdtr32; struct sf_hdtr hdtr; struct uio *hdr_uio, *trl_uio; struct file *fp; cap_rights_t rights; struct iovec32 *iov32; off_t offset, sbytes; int error; offset = PAIR32TO64(off_t, uap->offset); if (offset < 0) return (EINVAL); hdr_uio = trl_uio = NULL; if (uap->hdtr != NULL) { error = copyin(uap->hdtr, &hdtr32, sizeof(hdtr32)); if (error) goto out; PTRIN_CP(hdtr32, hdtr, headers); CP(hdtr32, hdtr, hdr_cnt); PTRIN_CP(hdtr32, hdtr, trailers); CP(hdtr32, hdtr, trl_cnt); if (hdtr.headers != NULL) { iov32 = PTRIN(hdtr32.headers); error = freebsd32_copyinuio(iov32, hdtr32.hdr_cnt, &hdr_uio); if (error) goto out; #ifdef COMPAT_FREEBSD4 /* * In FreeBSD < 5.0 the nbytes to send also included * the header. If compat is specified subtract the * header size from nbytes. */ if (compat) { if (uap->nbytes > hdr_uio->uio_resid) uap->nbytes -= hdr_uio->uio_resid; else uap->nbytes = 0; } #endif } if (hdtr.trailers != NULL) { iov32 = PTRIN(hdtr32.trailers); error = freebsd32_copyinuio(iov32, hdtr32.trl_cnt, &trl_uio); if (error) goto out; } } AUDIT_ARG_FD(uap->fd); if ((error = fget_read(td, uap->fd, cap_rights_init_one(&rights, CAP_PREAD), &fp)) != 0) goto out; error = fo_sendfile(fp, uap->s, hdr_uio, trl_uio, offset, uap->nbytes, &sbytes, uap->flags, td); fdrop(fp, td); if (uap->sbytes != NULL) copyout(&sbytes, uap->sbytes, sizeof(off_t)); out: if (hdr_uio) free(hdr_uio, M_IOV); if (trl_uio) free(trl_uio, M_IOV); return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_sendfile(struct thread *td, struct freebsd4_freebsd32_sendfile_args *uap) { return (freebsd32_do_sendfile(td, (struct freebsd32_sendfile_args *)uap, 1)); } #endif int freebsd32_sendfile(struct thread *td, struct freebsd32_sendfile_args *uap) { return (freebsd32_do_sendfile(td, uap, 0)); } static void copy_stat(struct stat *in, struct stat32 *out) { #ifndef __amd64__ /* * 32-bit architectures other than i386 have 64-bit time_t. This * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, * and 4 bytes of padding. Zero the padding holes in struct stat32. */ bzero(&out->st_atim, sizeof(out->st_atim)); bzero(&out->st_mtim, sizeof(out->st_mtim)); bzero(&out->st_ctim, sizeof(out->st_ctim)); bzero(&out->st_birthtim, sizeof(out->st_birthtim)); #endif CP(*in, *out, st_dev); CP(*in, *out, st_ino); CP(*in, *out, st_mode); CP(*in, *out, st_nlink); CP(*in, *out, st_uid); CP(*in, *out, st_gid); CP(*in, *out, st_rdev); TS_CP(*in, *out, st_atim); TS_CP(*in, *out, st_mtim); TS_CP(*in, *out, st_ctim); CP(*in, *out, st_size); CP(*in, *out, st_blocks); CP(*in, *out, st_blksize); CP(*in, *out, st_flags); CP(*in, *out, st_gen); TS_CP(*in, *out, st_birthtim); out->st_padding0 = 0; out->st_padding1 = 0; #ifdef __STAT32_TIME_T_EXT out->st_atim_ext = 0; out->st_mtim_ext = 0; out->st_ctim_ext = 0; out->st_btim_ext = 0; #endif bzero(out->st_spare, sizeof(out->st_spare)); } #ifdef COMPAT_43 static void copy_ostat(struct stat *in, struct ostat32 *out) { bzero(out, sizeof(*out)); CP(*in, *out, st_dev); CP(*in, *out, st_ino); CP(*in, *out, st_mode); CP(*in, *out, st_nlink); CP(*in, *out, st_uid); CP(*in, *out, st_gid); CP(*in, *out, st_rdev); out->st_size = MIN(in->st_size, INT32_MAX); TS_CP(*in, *out, st_atim); TS_CP(*in, *out, st_mtim); TS_CP(*in, *out, st_ctim); CP(*in, *out, st_blksize); CP(*in, *out, st_blocks); CP(*in, *out, st_flags); CP(*in, *out, st_gen); } #endif #ifdef COMPAT_43 int ofreebsd32_stat(struct thread *td, struct ofreebsd32_stat_args *uap) { struct stat sb; struct ostat32 sb32; int error; error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb, NULL); if (error) return (error); copy_ostat(&sb, &sb32); error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } #endif int freebsd32_fstat(struct thread *td, struct freebsd32_fstat_args *uap) { struct stat ub; struct stat32 ub32; int error; error = kern_fstat(td, uap->fd, &ub); if (error) return (error); copy_stat(&ub, &ub32); error = copyout(&ub32, uap->sb, sizeof(ub32)); return (error); } #ifdef COMPAT_43 int ofreebsd32_fstat(struct thread *td, struct ofreebsd32_fstat_args *uap) { struct stat ub; struct ostat32 ub32; int error; error = kern_fstat(td, uap->fd, &ub); if (error) return (error); copy_ostat(&ub, &ub32); error = copyout(&ub32, uap->sb, sizeof(ub32)); return (error); } #endif int freebsd32_fstatat(struct thread *td, struct freebsd32_fstatat_args *uap) { struct stat ub; struct stat32 ub32; int error; error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &ub, NULL); if (error) return (error); copy_stat(&ub, &ub32); error = copyout(&ub32, uap->buf, sizeof(ub32)); return (error); } #ifdef COMPAT_43 int ofreebsd32_lstat(struct thread *td, struct ofreebsd32_lstat_args *uap) { struct stat sb; struct ostat32 sb32; int error; error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, UIO_USERSPACE, &sb, NULL); if (error) return (error); copy_ostat(&sb, &sb32); error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } #endif int freebsd32_fhstat(struct thread *td, struct freebsd32_fhstat_args *uap) { struct stat sb; struct stat32 sb32; struct fhandle fh; int error; error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); if (error != 0) return (error); error = kern_fhstat(td, fh, &sb); if (error != 0) return (error); copy_stat(&sb, &sb32); error = copyout(&sb32, uap->sb, sizeof (sb32)); return (error); } #if defined(COMPAT_FREEBSD11) extern int ino64_trunc_error; static int freebsd11_cvtstat32(struct stat *in, struct freebsd11_stat32 *out) { #ifndef __amd64__ /* * 32-bit architectures other than i386 have 64-bit time_t. This * results in struct timespec32 with 12 bytes for tv_sec and tv_nsec, * and 4 bytes of padding. Zero the padding holes in freebsd11_stat32. */ bzero(&out->st_atim, sizeof(out->st_atim)); bzero(&out->st_mtim, sizeof(out->st_mtim)); bzero(&out->st_ctim, sizeof(out->st_ctim)); bzero(&out->st_birthtim, sizeof(out->st_birthtim)); #endif CP(*in, *out, st_ino); if (in->st_ino != out->st_ino) { switch (ino64_trunc_error) { default: case 0: break; case 1: return (EOVERFLOW); case 2: out->st_ino = UINT32_MAX; break; } } CP(*in, *out, st_nlink); if (in->st_nlink != out->st_nlink) { switch (ino64_trunc_error) { default: case 0: break; case 1: return (EOVERFLOW); case 2: out->st_nlink = UINT16_MAX; break; } } out->st_dev = in->st_dev; if (out->st_dev != in->st_dev) { switch (ino64_trunc_error) { default: break; case 1: return (EOVERFLOW); } } CP(*in, *out, st_mode); CP(*in, *out, st_uid); CP(*in, *out, st_gid); out->st_rdev = in->st_rdev; if (out->st_rdev != in->st_rdev) { switch (ino64_trunc_error) { default: break; case 1: return (EOVERFLOW); } } TS_CP(*in, *out, st_atim); TS_CP(*in, *out, st_mtim); TS_CP(*in, *out, st_ctim); CP(*in, *out, st_size); CP(*in, *out, st_blocks); CP(*in, *out, st_blksize); CP(*in, *out, st_flags); CP(*in, *out, st_gen); TS_CP(*in, *out, st_birthtim); out->st_lspare = 0; bzero((char *)&out->st_birthtim + sizeof(out->st_birthtim), sizeof(*out) - offsetof(struct freebsd11_stat32, st_birthtim) - sizeof(out->st_birthtim)); return (0); } int freebsd11_freebsd32_stat(struct thread *td, struct freebsd11_freebsd32_stat_args *uap) { struct stat sb; struct freebsd11_stat32 sb32; int error; error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb, NULL); if (error != 0) return (error); error = freebsd11_cvtstat32(&sb, &sb32); if (error == 0) error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } int freebsd11_freebsd32_fstat(struct thread *td, struct freebsd11_freebsd32_fstat_args *uap) { struct stat sb; struct freebsd11_stat32 sb32; int error; error = kern_fstat(td, uap->fd, &sb); if (error != 0) return (error); error = freebsd11_cvtstat32(&sb, &sb32); if (error == 0) error = copyout(&sb32, uap->sb, sizeof (sb32)); return (error); } int freebsd11_freebsd32_fstatat(struct thread *td, struct freebsd11_freebsd32_fstatat_args *uap) { struct stat sb; struct freebsd11_stat32 sb32; int error; error = kern_statat(td, uap->flag, uap->fd, uap->path, UIO_USERSPACE, &sb, NULL); if (error != 0) return (error); error = freebsd11_cvtstat32(&sb, &sb32); if (error == 0) error = copyout(&sb32, uap->buf, sizeof (sb32)); return (error); } int freebsd11_freebsd32_lstat(struct thread *td, struct freebsd11_freebsd32_lstat_args *uap) { struct stat sb; struct freebsd11_stat32 sb32; int error; error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, UIO_USERSPACE, &sb, NULL); if (error != 0) return (error); error = freebsd11_cvtstat32(&sb, &sb32); if (error == 0) error = copyout(&sb32, uap->ub, sizeof (sb32)); return (error); } int freebsd11_freebsd32_fhstat(struct thread *td, struct freebsd11_freebsd32_fhstat_args *uap) { struct stat sb; struct freebsd11_stat32 sb32; struct fhandle fh; int error; error = copyin(uap->u_fhp, &fh, sizeof(fhandle_t)); if (error != 0) return (error); error = kern_fhstat(td, fh, &sb); if (error != 0) return (error); error = freebsd11_cvtstat32(&sb, &sb32); if (error == 0) error = copyout(&sb32, uap->sb, sizeof (sb32)); return (error); } static int freebsd11_cvtnstat32(struct stat *sb, struct nstat32 *nsb32) { struct nstat nsb; int error; error = freebsd11_cvtnstat(sb, &nsb); if (error != 0) return (error); bzero(nsb32, sizeof(*nsb32)); CP(nsb, *nsb32, st_dev); CP(nsb, *nsb32, st_ino); CP(nsb, *nsb32, st_mode); CP(nsb, *nsb32, st_nlink); CP(nsb, *nsb32, st_uid); CP(nsb, *nsb32, st_gid); CP(nsb, *nsb32, st_rdev); CP(nsb, *nsb32, st_atim.tv_sec); CP(nsb, *nsb32, st_atim.tv_nsec); CP(nsb, *nsb32, st_mtim.tv_sec); CP(nsb, *nsb32, st_mtim.tv_nsec); CP(nsb, *nsb32, st_ctim.tv_sec); CP(nsb, *nsb32, st_ctim.tv_nsec); CP(nsb, *nsb32, st_size); CP(nsb, *nsb32, st_blocks); CP(nsb, *nsb32, st_blksize); CP(nsb, *nsb32, st_flags); CP(nsb, *nsb32, st_gen); CP(nsb, *nsb32, st_birthtim.tv_sec); CP(nsb, *nsb32, st_birthtim.tv_nsec); return (0); } int freebsd11_freebsd32_nstat(struct thread *td, struct freebsd11_freebsd32_nstat_args *uap) { struct stat sb; struct nstat32 nsb; int error; error = kern_statat(td, 0, AT_FDCWD, uap->path, UIO_USERSPACE, &sb, NULL); if (error != 0) return (error); error = freebsd11_cvtnstat32(&sb, &nsb); if (error != 0) error = copyout(&nsb, uap->ub, sizeof (nsb)); return (error); } int freebsd11_freebsd32_nlstat(struct thread *td, struct freebsd11_freebsd32_nlstat_args *uap) { struct stat sb; struct nstat32 nsb; int error; error = kern_statat(td, AT_SYMLINK_NOFOLLOW, AT_FDCWD, uap->path, UIO_USERSPACE, &sb, NULL); if (error != 0) return (error); error = freebsd11_cvtnstat32(&sb, &nsb); if (error == 0) error = copyout(&nsb, uap->ub, sizeof (nsb)); return (error); } int freebsd11_freebsd32_nfstat(struct thread *td, struct freebsd11_freebsd32_nfstat_args *uap) { struct nstat32 nub; struct stat ub; int error; error = kern_fstat(td, uap->fd, &ub); if (error != 0) return (error); error = freebsd11_cvtnstat32(&ub, &nub); if (error == 0) error = copyout(&nub, uap->sb, sizeof(nub)); return (error); } #endif int freebsd32___sysctl(struct thread *td, struct freebsd32___sysctl_args *uap) { int error, name[CTL_MAXNAME]; size_t j, oldlen; uint32_t tmp; if (uap->namelen > CTL_MAXNAME || uap->namelen < 2) return (EINVAL); error = copyin(uap->name, name, uap->namelen * sizeof(int)); if (error) return (error); if (uap->oldlenp) { error = fueword32(uap->oldlenp, &tmp); oldlen = tmp; } else { oldlen = 0; } if (error != 0) return (EFAULT); error = userland_sysctl(td, name, uap->namelen, uap->old, &oldlen, 1, uap->new, uap->newlen, &j, SCTL_MASK32); if (error) return (error); if (uap->oldlenp) suword32(uap->oldlenp, j); return (0); } int freebsd32___sysctlbyname(struct thread *td, struct freebsd32___sysctlbyname_args *uap) { size_t oldlen, rv; int error; uint32_t tmp; if (uap->oldlenp != NULL) { error = fueword32(uap->oldlenp, &tmp); oldlen = tmp; } else { error = oldlen = 0; } if (error != 0) return (EFAULT); error = kern___sysctlbyname(td, uap->name, uap->namelen, uap->old, &oldlen, uap->new, uap->newlen, &rv, SCTL_MASK32, 1); if (error != 0) return (error); if (uap->oldlenp != NULL) error = suword32(uap->oldlenp, rv); return (error); } int freebsd32_jail(struct thread *td, struct freebsd32_jail_args *uap) { uint32_t version; int error; struct jail j; error = copyin(uap->jail, &version, sizeof(uint32_t)); if (error) return (error); switch (version) { case 0: { /* FreeBSD single IPv4 jails. */ struct jail32_v0 j32_v0; bzero(&j, sizeof(struct jail)); error = copyin(uap->jail, &j32_v0, sizeof(struct jail32_v0)); if (error) return (error); CP(j32_v0, j, version); PTRIN_CP(j32_v0, j, path); PTRIN_CP(j32_v0, j, hostname); j.ip4s = htonl(j32_v0.ip_number); /* jail_v0 is host order */ break; } case 1: /* * Version 1 was used by multi-IPv4 jail implementations * that never made it into the official kernel. */ return (EINVAL); case 2: /* JAIL_API_VERSION */ { /* FreeBSD multi-IPv4/IPv6,noIP jails. */ struct jail32 j32; error = copyin(uap->jail, &j32, sizeof(struct jail32)); if (error) return (error); CP(j32, j, version); PTRIN_CP(j32, j, path); PTRIN_CP(j32, j, hostname); PTRIN_CP(j32, j, jailname); CP(j32, j, ip4s); CP(j32, j, ip6s); PTRIN_CP(j32, j, ip4); PTRIN_CP(j32, j, ip6); break; } default: /* Sci-Fi jails are not supported, sorry. */ return (EINVAL); } return (kern_jail(td, &j)); } int freebsd32_jail_set(struct thread *td, struct freebsd32_jail_set_args *uap) { struct uio *auio; int error; /* Check that we have an even number of iovecs. */ if (uap->iovcnt & 1) return (EINVAL); error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_jail_set(td, auio, uap->flags); free(auio, M_IOV); return (error); } int freebsd32_jail_get(struct thread *td, struct freebsd32_jail_get_args *uap) { struct iovec32 iov32; struct uio *auio; int error, i; /* Check that we have an even number of iovecs. */ if (uap->iovcnt & 1) return (EINVAL); error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = kern_jail_get(td, auio, uap->flags); if (error == 0) for (i = 0; i < uap->iovcnt; i++) { PTROUT_CP(auio->uio_iov[i], iov32, iov_base); CP(auio->uio_iov[i], iov32, iov_len); error = copyout(&iov32, uap->iovp + i, sizeof(iov32)); if (error != 0) break; } free(auio, M_IOV); return (error); } int freebsd32_sigaction(struct thread *td, struct freebsd32_sigaction_args *uap) { struct sigaction32 s32; struct sigaction sa, osa, *sap; int error; if (uap->act) { error = copyin(uap->act, &s32, sizeof(s32)); if (error) return (error); sa.sa_handler = PTRIN(s32.sa_u); CP(s32, sa, sa_flags); CP(s32, sa, sa_mask); sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->sig, sap, &osa, 0); if (error == 0 && uap->oact != NULL) { s32.sa_u = PTROUT(osa.sa_handler); CP(osa, s32, sa_flags); CP(osa, s32, sa_mask); error = copyout(&s32, uap->oact, sizeof(s32)); } return (error); } #ifdef COMPAT_FREEBSD4 int freebsd4_freebsd32_sigaction(struct thread *td, struct freebsd4_freebsd32_sigaction_args *uap) { struct sigaction32 s32; struct sigaction sa, osa, *sap; int error; if (uap->act) { error = copyin(uap->act, &s32, sizeof(s32)); if (error) return (error); sa.sa_handler = PTRIN(s32.sa_u); CP(s32, sa, sa_flags); CP(s32, sa, sa_mask); sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->sig, sap, &osa, KSA_FREEBSD4); if (error == 0 && uap->oact != NULL) { s32.sa_u = PTROUT(osa.sa_handler); CP(osa, s32, sa_flags); CP(osa, s32, sa_mask); error = copyout(&s32, uap->oact, sizeof(s32)); } return (error); } #endif #ifdef COMPAT_43 struct osigaction32 { uint32_t sa_u; osigset_t sa_mask; int sa_flags; }; #define ONSIG 32 int ofreebsd32_sigaction(struct thread *td, struct ofreebsd32_sigaction_args *uap) { struct osigaction32 s32; struct sigaction sa, osa, *sap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); if (uap->nsa) { error = copyin(uap->nsa, &s32, sizeof(s32)); if (error) return (error); sa.sa_handler = PTRIN(s32.sa_u); CP(s32, sa, sa_flags); OSIG2SIG(s32.sa_mask, sa.sa_mask); sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); if (error == 0 && uap->osa != NULL) { s32.sa_u = PTROUT(osa.sa_handler); CP(osa, s32, sa_flags); SIG2OSIG(osa.sa_mask, s32.sa_mask); error = copyout(&s32, uap->osa, sizeof(s32)); } return (error); } struct sigvec32 { uint32_t sv_handler; int sv_mask; int sv_flags; }; int ofreebsd32_sigvec(struct thread *td, struct ofreebsd32_sigvec_args *uap) { struct sigvec32 vec; struct sigaction sa, osa, *sap; int error; if (uap->signum <= 0 || uap->signum >= ONSIG) return (EINVAL); if (uap->nsv) { error = copyin(uap->nsv, &vec, sizeof(vec)); if (error) return (error); sa.sa_handler = PTRIN(vec.sv_handler); OSIG2SIG(vec.sv_mask, sa.sa_mask); sa.sa_flags = vec.sv_flags; sa.sa_flags ^= SA_RESTART; sap = &sa; } else sap = NULL; error = kern_sigaction(td, uap->signum, sap, &osa, KSA_OSIGSET); if (error == 0 && uap->osv != NULL) { vec.sv_handler = PTROUT(osa.sa_handler); SIG2OSIG(osa.sa_mask, vec.sv_mask); vec.sv_flags = osa.sa_flags; vec.sv_flags &= ~SA_NOCLDWAIT; vec.sv_flags ^= SA_RESTART; error = copyout(&vec, uap->osv, sizeof(vec)); } return (error); } struct sigstack32 { uint32_t ss_sp; int ss_onstack; }; int ofreebsd32_sigstack(struct thread *td, struct ofreebsd32_sigstack_args *uap) { struct sigstack32 s32; struct sigstack nss, oss; int error = 0, unss; if (uap->nss != NULL) { error = copyin(uap->nss, &s32, sizeof(s32)); if (error) return (error); nss.ss_sp = PTRIN(s32.ss_sp); CP(s32, nss, ss_onstack); unss = 1; } else { unss = 0; } oss.ss_sp = td->td_sigstk.ss_sp; oss.ss_onstack = sigonstack(cpu_getstack(td)); if (unss) { td->td_sigstk.ss_sp = nss.ss_sp; td->td_sigstk.ss_size = 0; td->td_sigstk.ss_flags |= (nss.ss_onstack & SS_ONSTACK); td->td_pflags |= TDP_ALTSTACK; } if (uap->oss != NULL) { s32.ss_sp = PTROUT(oss.ss_sp); CP(oss, s32, ss_onstack); error = copyout(&s32, uap->oss, sizeof(s32)); } return (error); } #endif int freebsd32_nanosleep(struct thread *td, struct freebsd32_nanosleep_args *uap) { return (freebsd32_user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, uap->rqtp, uap->rmtp)); } int freebsd32_clock_nanosleep(struct thread *td, struct freebsd32_clock_nanosleep_args *uap) { int error; error = freebsd32_user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, uap->rmtp); return (kern_posix_error(td, error)); } static int freebsd32_user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, const struct timespec32 *ua_rqtp, struct timespec32 *ua_rmtp) { struct timespec32 rmt32, rqt32; struct timespec rmt, rqt; int error, error2; error = copyin(ua_rqtp, &rqt32, sizeof(rqt32)); if (error) return (error); CP(rqt32, rqt, tv_sec); CP(rqt32, rqt, tv_nsec); error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { CP(rmt, rmt32, tv_sec); CP(rmt, rmt32, tv_nsec); error2 = copyout(&rmt32, ua_rmtp, sizeof(rmt32)); if (error2 != 0) error = error2; } return (error); } int freebsd32_clock_gettime(struct thread *td, struct freebsd32_clock_gettime_args *uap) { struct timespec ats; struct timespec32 ats32; int error; error = kern_clock_gettime(td, uap->clock_id, &ats); if (error == 0) { CP(ats, ats32, tv_sec); CP(ats, ats32, tv_nsec); error = copyout(&ats32, uap->tp, sizeof(ats32)); } return (error); } int freebsd32_clock_settime(struct thread *td, struct freebsd32_clock_settime_args *uap) { struct timespec ats; struct timespec32 ats32; int error; error = copyin(uap->tp, &ats32, sizeof(ats32)); if (error) return (error); CP(ats32, ats, tv_sec); CP(ats32, ats, tv_nsec); return (kern_clock_settime(td, uap->clock_id, &ats)); } int freebsd32_clock_getres(struct thread *td, struct freebsd32_clock_getres_args *uap) { struct timespec ts; struct timespec32 ts32; int error; if (uap->tp == NULL) return (0); error = kern_clock_getres(td, uap->clock_id, &ts); if (error == 0) { CP(ts, ts32, tv_sec); CP(ts, ts32, tv_nsec); error = copyout(&ts32, uap->tp, sizeof(ts32)); } return (error); } int freebsd32_ktimer_create(struct thread *td, struct freebsd32_ktimer_create_args *uap) { struct sigevent32 ev32; struct sigevent ev, *evp; int error, id; if (uap->evp == NULL) { evp = NULL; } else { evp = &ev; error = copyin(uap->evp, &ev32, sizeof(ev32)); if (error != 0) return (error); error = convert_sigevent32(&ev32, &ev); if (error != 0) return (error); } error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); if (error == 0) { error = copyout(&id, uap->timerid, sizeof(int)); if (error != 0) kern_ktimer_delete(td, id); } return (error); } int freebsd32_ktimer_settime(struct thread *td, struct freebsd32_ktimer_settime_args *uap) { struct itimerspec32 val32, oval32; struct itimerspec val, oval, *ovalp; int error; error = copyin(uap->value, &val32, sizeof(val32)); if (error != 0) return (error); ITS_CP(val32, val); ovalp = uap->ovalue != NULL ? &oval : NULL; error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); if (error == 0 && uap->ovalue != NULL) { ITS_CP(oval, oval32); error = copyout(&oval32, uap->ovalue, sizeof(oval32)); } return (error); } int freebsd32_ktimer_gettime(struct thread *td, struct freebsd32_ktimer_gettime_args *uap) { struct itimerspec32 val32; struct itimerspec val; int error; error = kern_ktimer_gettime(td, uap->timerid, &val); if (error == 0) { ITS_CP(val, val32); error = copyout(&val32, uap->value, sizeof(val32)); } return (error); } int freebsd32_clock_getcpuclockid2(struct thread *td, struct freebsd32_clock_getcpuclockid2_args *uap) { clockid_t clk_id; int error; error = kern_clock_getcpuclockid2(td, PAIR32TO64(id_t, uap->id), uap->which, &clk_id); if (error == 0) error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); return (error); } int freebsd32_thr_new(struct thread *td, struct freebsd32_thr_new_args *uap) { struct thr_param32 param32; struct thr_param param; int error; if (uap->param_size < 0 || uap->param_size > sizeof(struct thr_param32)) return (EINVAL); bzero(¶m, sizeof(struct thr_param)); bzero(¶m32, sizeof(struct thr_param32)); error = copyin(uap->param, ¶m32, uap->param_size); if (error != 0) return (error); param.start_func = PTRIN(param32.start_func); param.arg = PTRIN(param32.arg); param.stack_base = PTRIN(param32.stack_base); param.stack_size = param32.stack_size; param.tls_base = PTRIN(param32.tls_base); param.tls_size = param32.tls_size; param.child_tid = PTRIN(param32.child_tid); param.parent_tid = PTRIN(param32.parent_tid); param.flags = param32.flags; param.rtp = PTRIN(param32.rtp); param.spare[0] = PTRIN(param32.spare[0]); param.spare[1] = PTRIN(param32.spare[1]); param.spare[2] = PTRIN(param32.spare[2]); return (kern_thr_new(td, ¶m)); } int freebsd32_thr_suspend(struct thread *td, struct freebsd32_thr_suspend_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; int error; error = 0; tsp = NULL; if (uap->timeout != NULL) { error = copyin((const void *)uap->timeout, (void *)&ts32, sizeof(struct timespec32)); if (error != 0) return (error); ts.tv_sec = ts32.tv_sec; ts.tv_nsec = ts32.tv_nsec; tsp = &ts; } return (kern_thr_suspend(td, tsp)); } void siginfo_to_siginfo32(const siginfo_t *src, struct siginfo32 *dst) { bzero(dst, sizeof(*dst)); dst->si_signo = src->si_signo; dst->si_errno = src->si_errno; dst->si_code = src->si_code; dst->si_pid = src->si_pid; dst->si_uid = src->si_uid; dst->si_status = src->si_status; dst->si_addr = (uintptr_t)src->si_addr; dst->si_value.sival_int = src->si_value.sival_int; dst->si_timerid = src->si_timerid; dst->si_overrun = src->si_overrun; } #ifndef _FREEBSD32_SYSPROTO_H_ struct freebsd32_sigqueue_args { pid_t pid; int signum; /* union sigval32 */ int value; }; #endif int freebsd32_sigqueue(struct thread *td, struct freebsd32_sigqueue_args *uap) { union sigval sv; /* * On 32-bit ABIs, sival_int and sival_ptr are the same. * On 64-bit little-endian ABIs, the low bits are the same. * In 64-bit big-endian ABIs, sival_int overlaps with * sival_ptr's HIGH bits. We choose to support sival_int * rather than sival_ptr in this case as it seems to be * more common. */ bzero(&sv, sizeof(sv)); sv.sival_int = (uint32_t)(uint64_t)uap->value; return (kern_sigqueue(td, uap->pid, uap->signum, &sv)); } int freebsd32_sigtimedwait(struct thread *td, struct freebsd32_sigtimedwait_args *uap) { struct timespec32 ts32; struct timespec ts; struct timespec *timeout; sigset_t set; ksiginfo_t ksi; struct siginfo32 si32; int error; if (uap->timeout) { error = copyin(uap->timeout, &ts32, sizeof(ts32)); if (error) return (error); ts.tv_sec = ts32.tv_sec; ts.tv_nsec = ts32.tv_nsec; timeout = &ts; } else timeout = NULL; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, timeout); if (error) return (error); if (uap->info) { siginfo_to_siginfo32(&ksi.ksi_info, &si32); error = copyout(&si32, uap->info, sizeof(struct siginfo32)); } if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } /* * MPSAFE */ int freebsd32_sigwaitinfo(struct thread *td, struct freebsd32_sigwaitinfo_args *uap) { ksiginfo_t ksi; struct siginfo32 si32; sigset_t set; int error; error = copyin(uap->set, &set, sizeof(set)); if (error) return (error); error = kern_sigtimedwait(td, set, &ksi, NULL); if (error) return (error); if (uap->info) { siginfo_to_siginfo32(&ksi.ksi_info, &si32); error = copyout(&si32, uap->info, sizeof(struct siginfo32)); } if (error == 0) td->td_retval[0] = ksi.ksi_signo; return (error); } int freebsd32_cpuset_setid(struct thread *td, struct freebsd32_cpuset_setid_args *uap) { return (kern_cpuset_setid(td, uap->which, PAIR32TO64(id_t, uap->id), uap->setid)); } int freebsd32_cpuset_getid(struct thread *td, struct freebsd32_cpuset_getid_args *uap) { return (kern_cpuset_getid(td, uap->level, uap->which, PAIR32TO64(id_t, uap->id), uap->setid)); } static int copyin32_set(const void *u, void *k, size_t size) { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ int rv; struct bitset *kb = k; int *p; rv = copyin(u, k, size); if (rv != 0) return (rv); p = (int *)kb->__bits; /* Loop through swapping words. * `size' is in bytes, we need bits. */ for (int i = 0; i < __bitset_words(size * 8); i++) { int tmp = p[0]; p[0] = p[1]; p[1] = tmp; p += 2; } return (0); #else return (copyin(u, k, size)); #endif } static int copyout32_set(const void *k, void *u, size_t size) { #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const struct bitset *kb = k; struct bitset *ub = u; const int *kp = (const int *)kb->__bits; int *up = (int *)ub->__bits; int rv; for (int i = 0; i < __bitset_words(CPU_SETSIZE); i++) { /* `size' is in bytes, we need bits. */ for (int i = 0; i < __bitset_words(size * 8); i++) { rv = suword32(up, kp[1]); if (rv == 0) rv = suword32(up + 1, kp[0]); if (rv != 0) return (EFAULT); } } return (0); #else return (copyout(k, u, size)); #endif } static const struct cpuset_copy_cb cpuset_copy32_cb = { .cpuset_copyin = copyin32_set, .cpuset_copyout = copyout32_set }; int freebsd32_cpuset_getaffinity(struct thread *td, struct freebsd32_cpuset_getaffinity_args *uap) { - return (kern_cpuset_getaffinity(td, uap->level, uap->which, + return (user_cpuset_getaffinity(td, uap->level, uap->which, PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, &cpuset_copy32_cb)); } int freebsd32_cpuset_setaffinity(struct thread *td, struct freebsd32_cpuset_setaffinity_args *uap) { return (user_cpuset_setaffinity(td, uap->level, uap->which, PAIR32TO64(id_t,uap->id), uap->cpusetsize, uap->mask, &cpuset_copy32_cb)); } int freebsd32_cpuset_getdomain(struct thread *td, struct freebsd32_cpuset_getdomain_args *uap) { return (kern_cpuset_getdomain(td, uap->level, uap->which, PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, &cpuset_copy32_cb)); } int freebsd32_cpuset_setdomain(struct thread *td, struct freebsd32_cpuset_setdomain_args *uap) { return (kern_cpuset_setdomain(td, uap->level, uap->which, PAIR32TO64(id_t,uap->id), uap->domainsetsize, uap->mask, uap->policy, &cpuset_copy32_cb)); } int freebsd32_nmount(struct thread *td, struct freebsd32_nmount_args /* { struct iovec *iovp; unsigned int iovcnt; int flags; } */ *uap) { struct uio *auio; uint64_t flags; int error; /* * Mount flags are now 64-bits. On 32-bit archtectures only * 32-bits are passed in, but from here on everything handles * 64-bit flags correctly. */ flags = uap->flags; AUDIT_ARG_FFLAGS(flags); /* * Filter out MNT_ROOTFS. We do not want clients of nmount() in * userspace to set this flag, but we must filter it out if we want * MNT_UPDATE on the root file system to work. * MNT_ROOTFS should only be set by the kernel when mounting its * root file system. */ flags &= ~MNT_ROOTFS; /* * check that we have an even number of iovec's * and that we have at least two options. */ if ((uap->iovcnt & 1) || (uap->iovcnt < 4)) return (EINVAL); error = freebsd32_copyinuio(uap->iovp, uap->iovcnt, &auio); if (error) return (error); error = vfs_donmount(td, flags, auio); free(auio, M_IOV); return error; } #if 0 int freebsd32_xxx(struct thread *td, struct freebsd32_xxx_args *uap) { struct yyy32 *p32, s32; struct yyy *p = NULL, s; struct xxx_arg ap; int error; if (uap->zzz) { error = copyin(uap->zzz, &s32, sizeof(s32)); if (error) return (error); /* translate in */ p = &s; } error = kern_xxx(td, p); if (error) return (error); if (uap->zzz) { /* translate out */ error = copyout(&s32, p32, sizeof(s32)); } return (error); } #endif int syscall32_module_handler(struct module *mod, int what, void *arg) { return (kern_syscall_module_handler(freebsd32_sysent, mod, what, arg)); } int syscall32_helper_register(struct syscall_helper_data *sd, int flags) { return (kern_syscall_helper_register(freebsd32_sysent, sd, flags)); } int syscall32_helper_unregister(struct syscall_helper_data *sd) { return (kern_syscall_helper_unregister(freebsd32_sysent, sd)); } int freebsd32_copyout_strings(struct image_params *imgp, uintptr_t *stack_base) { struct sysentvec *sysent; int argc, envc, i; uint32_t *vectp; char *stringp; uintptr_t destp, ustringp; struct freebsd32_ps_strings *arginfo; char canary[sizeof(long) * 8]; int32_t pagesizes32[MAXPAGESIZES]; size_t execpath_len; int error, szsigcode; sysent = imgp->sysent; arginfo = (struct freebsd32_ps_strings *)PROC_PS_STRINGS(imgp->proc); imgp->ps_strings = arginfo; destp = (uintptr_t)arginfo; /* * Install sigcode. */ if (sysent->sv_sigcode_base == 0) { szsigcode = *sysent->sv_szsigcode; destp -= szsigcode; destp = rounddown2(destp, sizeof(uint32_t)); error = copyout(sysent->sv_sigcode, (void *)destp, szsigcode); if (error != 0) return (error); } /* * Copy the image path for the rtld. */ if (imgp->execpath != NULL && imgp->auxargs != NULL) { execpath_len = strlen(imgp->execpath) + 1; destp -= execpath_len; imgp->execpathp = (void *)destp; error = copyout(imgp->execpath, imgp->execpathp, execpath_len); if (error != 0) return (error); } /* * Prepare the canary for SSP. */ arc4rand(canary, sizeof(canary), 0); destp -= sizeof(canary); imgp->canary = (void *)destp; error = copyout(canary, imgp->canary, sizeof(canary)); if (error != 0) return (error); imgp->canarylen = sizeof(canary); /* * Prepare the pagesizes array. */ for (i = 0; i < MAXPAGESIZES; i++) pagesizes32[i] = (uint32_t)pagesizes[i]; destp -= sizeof(pagesizes32); destp = rounddown2(destp, sizeof(uint32_t)); imgp->pagesizes = (void *)destp; error = copyout(pagesizes32, imgp->pagesizes, sizeof(pagesizes32)); if (error != 0) return (error); imgp->pagesizeslen = sizeof(pagesizes32); /* * Allocate room for the argument and environment strings. */ destp -= ARG_MAX - imgp->args->stringspace; destp = rounddown2(destp, sizeof(uint32_t)); ustringp = destp; if (imgp->auxargs) { /* * Allocate room on the stack for the ELF auxargs * array. It has up to AT_COUNT entries. */ destp -= AT_COUNT * sizeof(Elf32_Auxinfo); destp = rounddown2(destp, sizeof(uint32_t)); } vectp = (uint32_t *)destp; /* * Allocate room for the argv[] and env vectors including the * terminating NULL pointers. */ vectp -= imgp->args->argc + 1 + imgp->args->envc + 1; /* * vectp also becomes our initial stack base */ *stack_base = (uintptr_t)vectp; stringp = imgp->args->begin_argv; argc = imgp->args->argc; envc = imgp->args->envc; /* * Copy out strings - arguments and environment. */ error = copyout(stringp, (void *)ustringp, ARG_MAX - imgp->args->stringspace); if (error != 0) return (error); /* * Fill in "ps_strings" struct for ps, w, etc. */ imgp->argv = vectp; if (suword32(&arginfo->ps_argvstr, (uint32_t)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nargvstr, argc) != 0) return (EFAULT); /* * Fill in argument portion of vector table. */ for (; argc > 0; --argc) { if (suword32(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* a null vector table pointer separates the argp's from the envp's */ if (suword32(vectp++, 0) != 0) return (EFAULT); imgp->envv = vectp; if (suword32(&arginfo->ps_envstr, (uint32_t)(intptr_t)vectp) != 0 || suword32(&arginfo->ps_nenvstr, envc) != 0) return (EFAULT); /* * Fill in environment portion of vector table. */ for (; envc > 0; --envc) { if (suword32(vectp++, ustringp) != 0) return (EFAULT); while (*stringp++ != 0) ustringp++; ustringp++; } /* end of vector table is a null pointer */ if (suword32(vectp, 0) != 0) return (EFAULT); if (imgp->auxargs) { vectp++; error = imgp->sysent->sv_copyout_auxargs(imgp, (uintptr_t)vectp); if (error != 0) return (error); } return (0); } int freebsd32_kldstat(struct thread *td, struct freebsd32_kldstat_args *uap) { struct kld_file_stat *stat; struct kld_file_stat32 *stat32; int error, version; if ((error = copyin(&uap->stat->version, &version, sizeof(version))) != 0) return (error); if (version != sizeof(struct kld_file_stat_1_32) && version != sizeof(struct kld_file_stat32)) return (EINVAL); stat = malloc(sizeof(*stat), M_TEMP, M_WAITOK | M_ZERO); stat32 = malloc(sizeof(*stat32), M_TEMP, M_WAITOK | M_ZERO); error = kern_kldstat(td, uap->fileid, stat); if (error == 0) { bcopy(&stat->name[0], &stat32->name[0], sizeof(stat->name)); CP(*stat, *stat32, refs); CP(*stat, *stat32, id); PTROUT_CP(*stat, *stat32, address); CP(*stat, *stat32, size); bcopy(&stat->pathname[0], &stat32->pathname[0], sizeof(stat->pathname)); stat32->version = version; error = copyout(stat32, uap->stat, version); } free(stat, M_TEMP); free(stat32, M_TEMP); return (error); } int freebsd32_posix_fallocate(struct thread *td, struct freebsd32_posix_fallocate_args *uap) { int error; error = kern_posix_fallocate(td, uap->fd, PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len)); return (kern_posix_error(td, error)); } int freebsd32_posix_fadvise(struct thread *td, struct freebsd32_posix_fadvise_args *uap) { int error; error = kern_posix_fadvise(td, uap->fd, PAIR32TO64(off_t, uap->offset), PAIR32TO64(off_t, uap->len), uap->advice); return (kern_posix_error(td, error)); } int convert_sigevent32(struct sigevent32 *sig32, struct sigevent *sig) { CP(*sig32, *sig, sigev_notify); switch (sig->sigev_notify) { case SIGEV_NONE: break; case SIGEV_THREAD_ID: CP(*sig32, *sig, sigev_notify_thread_id); /* FALLTHROUGH */ case SIGEV_SIGNAL: CP(*sig32, *sig, sigev_signo); PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); break; case SIGEV_KEVENT: CP(*sig32, *sig, sigev_notify_kqueue); CP(*sig32, *sig, sigev_notify_kevent_flags); PTRIN_CP(*sig32, *sig, sigev_value.sival_ptr); break; default: return (EINVAL); } return (0); } int freebsd32_procctl(struct thread *td, struct freebsd32_procctl_args *uap) { void *data; union { struct procctl_reaper_status rs; struct procctl_reaper_pids rp; struct procctl_reaper_kill rk; } x; union { struct procctl_reaper_pids32 rp; } x32; int error, error1, flags, signum; if (uap->com >= PROC_PROCCTL_MD_MIN) return (cpu_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), uap->com, PTRIN(uap->data))); switch (uap->com) { case PROC_ASLR_CTL: case PROC_PROTMAX_CTL: case PROC_SPROTECT: case PROC_STACKGAP_CTL: case PROC_TRACE_CTL: case PROC_TRAPCAP_CTL: case PROC_NO_NEW_PRIVS_CTL: case PROC_WXMAP_CTL: error = copyin(PTRIN(uap->data), &flags, sizeof(flags)); if (error != 0) return (error); data = &flags; break; case PROC_REAP_ACQUIRE: case PROC_REAP_RELEASE: if (uap->data != NULL) return (EINVAL); data = NULL; break; case PROC_REAP_STATUS: data = &x.rs; break; case PROC_REAP_GETPIDS: error = copyin(uap->data, &x32.rp, sizeof(x32.rp)); if (error != 0) return (error); CP(x32.rp, x.rp, rp_count); PTRIN_CP(x32.rp, x.rp, rp_pids); data = &x.rp; break; case PROC_REAP_KILL: error = copyin(uap->data, &x.rk, sizeof(x.rk)); if (error != 0) return (error); data = &x.rk; break; case PROC_ASLR_STATUS: case PROC_PROTMAX_STATUS: case PROC_STACKGAP_STATUS: case PROC_TRACE_STATUS: case PROC_TRAPCAP_STATUS: case PROC_NO_NEW_PRIVS_STATUS: case PROC_WXMAP_STATUS: data = &flags; break; case PROC_PDEATHSIG_CTL: error = copyin(uap->data, &signum, sizeof(signum)); if (error != 0) return (error); data = &signum; break; case PROC_PDEATHSIG_STATUS: data = &signum; break; default: return (EINVAL); } error = kern_procctl(td, uap->idtype, PAIR32TO64(id_t, uap->id), uap->com, data); switch (uap->com) { case PROC_REAP_STATUS: if (error == 0) error = copyout(&x.rs, uap->data, sizeof(x.rs)); break; case PROC_REAP_KILL: error1 = copyout(&x.rk, uap->data, sizeof(x.rk)); if (error == 0) error = error1; break; case PROC_ASLR_STATUS: case PROC_PROTMAX_STATUS: case PROC_STACKGAP_STATUS: case PROC_TRACE_STATUS: case PROC_TRAPCAP_STATUS: case PROC_NO_NEW_PRIVS_STATUS: case PROC_WXMAP_STATUS: if (error == 0) error = copyout(&flags, uap->data, sizeof(flags)); break; case PROC_PDEATHSIG_STATUS: if (error == 0) error = copyout(&signum, uap->data, sizeof(signum)); break; } return (error); } int freebsd32_fcntl(struct thread *td, struct freebsd32_fcntl_args *uap) { long tmp; switch (uap->cmd) { /* * Do unsigned conversion for arg when operation * interprets it as flags or pointer. */ case F_SETLK_REMOTE: case F_SETLKW: case F_SETLK: case F_GETLK: case F_SETFD: case F_SETFL: case F_OGETLK: case F_OSETLK: case F_OSETLKW: case F_KINFO: tmp = (unsigned int)(uap->arg); break; default: tmp = uap->arg; break; } return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, tmp)); } int freebsd32_ppoll(struct thread *td, struct freebsd32_ppoll_args *uap) { struct timespec32 ts32; struct timespec ts, *tsp; sigset_t set, *ssp; int error; if (uap->ts != NULL) { error = copyin(uap->ts, &ts32, sizeof(ts32)); if (error != 0) return (error); CP(ts32, ts, tv_sec); CP(ts32, ts, tv_nsec); tsp = &ts; } else tsp = NULL; if (uap->set != NULL) { error = copyin(uap->set, &set, sizeof(set)); if (error != 0) return (error); ssp = &set; } else ssp = NULL; return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp)); } int freebsd32_sched_rr_get_interval(struct thread *td, struct freebsd32_sched_rr_get_interval_args *uap) { struct timespec ts; struct timespec32 ts32; int error; error = kern_sched_rr_get_interval(td, uap->pid, &ts); if (error == 0) { CP(ts, ts32, tv_sec); CP(ts, ts32, tv_nsec); error = copyout(&ts32, uap->interval, sizeof(ts32)); } return (error); } static void timex_to_32(struct timex32 *dst, struct timex *src) { CP(*src, *dst, modes); CP(*src, *dst, offset); CP(*src, *dst, freq); CP(*src, *dst, maxerror); CP(*src, *dst, esterror); CP(*src, *dst, status); CP(*src, *dst, constant); CP(*src, *dst, precision); CP(*src, *dst, tolerance); CP(*src, *dst, ppsfreq); CP(*src, *dst, jitter); CP(*src, *dst, shift); CP(*src, *dst, stabil); CP(*src, *dst, jitcnt); CP(*src, *dst, calcnt); CP(*src, *dst, errcnt); CP(*src, *dst, stbcnt); } static void timex_from_32(struct timex *dst, struct timex32 *src) { CP(*src, *dst, modes); CP(*src, *dst, offset); CP(*src, *dst, freq); CP(*src, *dst, maxerror); CP(*src, *dst, esterror); CP(*src, *dst, status); CP(*src, *dst, constant); CP(*src, *dst, precision); CP(*src, *dst, tolerance); CP(*src, *dst, ppsfreq); CP(*src, *dst, jitter); CP(*src, *dst, shift); CP(*src, *dst, stabil); CP(*src, *dst, jitcnt); CP(*src, *dst, calcnt); CP(*src, *dst, errcnt); CP(*src, *dst, stbcnt); } int freebsd32_ntp_adjtime(struct thread *td, struct freebsd32_ntp_adjtime_args *uap) { struct timex tx; struct timex32 tx32; int error, retval; error = copyin(uap->tp, &tx32, sizeof(tx32)); if (error == 0) { timex_from_32(&tx, &tx32); error = kern_ntp_adjtime(td, &tx, &retval); if (error == 0) { timex_to_32(&tx32, &tx); error = copyout(&tx32, uap->tp, sizeof(tx32)); if (error == 0) td->td_retval[0] = retval; } } return (error); } #ifdef FFCLOCK extern struct mtx ffclock_mtx; extern struct ffclock_estimate ffclock_estimate; extern int8_t ffclock_updated; int freebsd32_ffclock_setestimate(struct thread *td, struct freebsd32_ffclock_setestimate_args *uap) { struct ffclock_estimate cest; struct ffclock_estimate32 cest32; int error; /* Reuse of PRIV_CLOCK_SETTIME. */ if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) return (error); if ((error = copyin(uap->cest, &cest32, sizeof(struct ffclock_estimate32))) != 0) return (error); CP(cest.update_time, cest32.update_time, sec); memcpy(&cest.update_time.frac, &cest32.update_time.frac, sizeof(uint64_t)); CP(cest, cest32, update_ffcount); CP(cest, cest32, leapsec_next); CP(cest, cest32, period); CP(cest, cest32, errb_abs); CP(cest, cest32, errb_rate); CP(cest, cest32, status); CP(cest, cest32, leapsec_total); CP(cest, cest32, leapsec); mtx_lock(&ffclock_mtx); memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate)); ffclock_updated++; mtx_unlock(&ffclock_mtx); return (error); } int freebsd32_ffclock_getestimate(struct thread *td, struct freebsd32_ffclock_getestimate_args *uap) { struct ffclock_estimate cest; struct ffclock_estimate32 cest32; int error; mtx_lock(&ffclock_mtx); memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate)); mtx_unlock(&ffclock_mtx); CP(cest32.update_time, cest.update_time, sec); memcpy(&cest32.update_time.frac, &cest.update_time.frac, sizeof(uint64_t)); CP(cest32, cest, update_ffcount); CP(cest32, cest, leapsec_next); CP(cest32, cest, period); CP(cest32, cest, errb_abs); CP(cest32, cest, errb_rate); CP(cest32, cest, status); CP(cest32, cest, leapsec_total); CP(cest32, cest, leapsec); error = copyout(&cest32, uap->cest, sizeof(struct ffclock_estimate32)); return (error); } #else /* !FFCLOCK */ int freebsd32_ffclock_setestimate(struct thread *td, struct freebsd32_ffclock_setestimate_args *uap) { return (ENOSYS); } int freebsd32_ffclock_getestimate(struct thread *td, struct freebsd32_ffclock_getestimate_args *uap) { return (ENOSYS); } #endif /* FFCLOCK */ #ifdef COMPAT_43 int ofreebsd32_sethostid(struct thread *td, struct ofreebsd32_sethostid_args *uap) { int name[] = { CTL_KERN, KERN_HOSTID }; long hostid; hostid = uap->hostid; return (kernel_sysctl(td, name, nitems(name), NULL, NULL, &hostid, sizeof(hostid), NULL, 0)); } #endif diff --git a/sys/compat/linux/linux_misc.c b/sys/compat/linux/linux_misc.c index 225187826677..3321c9cdd98a 100644 --- a/sys/compat/linux/linux_misc.c +++ b/sys/compat/linux/linux_misc.c @@ -1,2936 +1,2937 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2002 Doug Rabson * Copyright (c) 1994-1995 Søren Schmidt * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer * in this position and unchanged. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_compat.h" #include #include #include #if defined(__i386__) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_LINUX32 #include #include #else #include #include #endif #include #include #include #include #include #include #include #include #include #include int stclohz; /* Statistics clock frequency */ static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] = { RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK, RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE, RLIMIT_MEMLOCK, RLIMIT_AS }; struct l_sysinfo { l_long uptime; /* Seconds since boot */ l_ulong loads[3]; /* 1, 5, and 15 minute load averages */ #define LINUX_SYSINFO_LOADS_SCALE 65536 l_ulong totalram; /* Total usable main memory size */ l_ulong freeram; /* Available memory size */ l_ulong sharedram; /* Amount of shared memory */ l_ulong bufferram; /* Memory used by buffers */ l_ulong totalswap; /* Total swap space size */ l_ulong freeswap; /* swap space still available */ l_ushort procs; /* Number of current processes */ l_ushort pads; l_ulong totalhigh; l_ulong freehigh; l_uint mem_unit; char _f[20-2*sizeof(l_long)-sizeof(l_int)]; /* padding */ }; struct l_pselect6arg { l_uintptr_t ss; l_size_t ss_len; }; static int linux_utimensat_lts_to_ts(struct l_timespec *, struct timespec *); #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) static int linux_utimensat_lts64_to_ts(struct l_timespec64 *, struct timespec *); #endif static int linux_common_utimensat(struct thread *, int, const char *, struct timespec *, int); static int linux_common_pselect6(struct thread *, l_int, l_fd_set *, l_fd_set *, l_fd_set *, struct timespec *, l_uintptr_t *); static int linux_common_ppoll(struct thread *, struct pollfd *, uint32_t, struct timespec *, l_sigset_t *, l_size_t); static int linux_pollin(struct thread *, struct pollfd *, struct pollfd *, u_int); static int linux_pollout(struct thread *, struct pollfd *, struct pollfd *, u_int); int linux_sysinfo(struct thread *td, struct linux_sysinfo_args *args) { struct l_sysinfo sysinfo; int i, j; struct timespec ts; bzero(&sysinfo, sizeof(sysinfo)); getnanouptime(&ts); if (ts.tv_nsec != 0) ts.tv_sec++; sysinfo.uptime = ts.tv_sec; /* Use the information from the mib to get our load averages */ for (i = 0; i < 3; i++) sysinfo.loads[i] = averunnable.ldavg[i] * LINUX_SYSINFO_LOADS_SCALE / averunnable.fscale; sysinfo.totalram = physmem * PAGE_SIZE; sysinfo.freeram = (u_long)vm_free_count() * PAGE_SIZE; /* * sharedram counts pages allocated to named, swap-backed objects such * as shared memory segments and tmpfs files. There is no cheap way to * compute this, so just leave the field unpopulated. Linux itself only * started setting this field in the 3.x timeframe. */ sysinfo.sharedram = 0; sysinfo.bufferram = 0; swap_pager_status(&i, &j); sysinfo.totalswap = i * PAGE_SIZE; sysinfo.freeswap = (i - j) * PAGE_SIZE; sysinfo.procs = nprocs; /* * Platforms supported by the emulation layer do not have a notion of * high memory. */ sysinfo.totalhigh = 0; sysinfo.freehigh = 0; sysinfo.mem_unit = 1; return (copyout(&sysinfo, args->info, sizeof(sysinfo))); } #ifdef LINUX_LEGACY_SYSCALLS int linux_alarm(struct thread *td, struct linux_alarm_args *args) { struct itimerval it, old_it; u_int secs; int error __diagused; secs = args->secs; /* * Linux alarm() is always successful. Limit secs to INT32_MAX / 2 * to match kern_setitimer()'s limit to avoid error from it. * * XXX. Linux limit secs to INT_MAX on 32 and does not limit on 64-bit * platforms. */ if (secs > INT32_MAX / 2) secs = INT32_MAX / 2; it.it_value.tv_sec = secs; it.it_value.tv_usec = 0; timevalclear(&it.it_interval); error = kern_setitimer(td, ITIMER_REAL, &it, &old_it); KASSERT(error == 0, ("kern_setitimer returns %d", error)); if ((old_it.it_value.tv_sec == 0 && old_it.it_value.tv_usec > 0) || old_it.it_value.tv_usec >= 500000) old_it.it_value.tv_sec++; td->td_retval[0] = old_it.it_value.tv_sec; return (0); } #endif int linux_brk(struct thread *td, struct linux_brk_args *args) { struct vmspace *vm = td->td_proc->p_vmspace; uintptr_t new, old; old = (uintptr_t)vm->vm_daddr + ctob(vm->vm_dsize); new = (uintptr_t)args->dsend; if ((caddr_t)new > vm->vm_daddr && !kern_break(td, &new)) td->td_retval[0] = (register_t)new; else td->td_retval[0] = (register_t)old; return (0); } #if defined(__i386__) /* XXX: what about amd64/linux32? */ int linux_uselib(struct thread *td, struct linux_uselib_args *args) { struct nameidata ni; struct vnode *vp; struct exec *a_out; vm_map_t map; vm_map_entry_t entry; struct vattr attr; vm_offset_t vmaddr; unsigned long file_offset; unsigned long bss_size; char *library; ssize_t aresid; int error; bool locked, opened, textset; a_out = NULL; vp = NULL; locked = false; textset = false; opened = false; if (!LUSECONVPATH(td)) { NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_USERSPACE, args->library); error = namei(&ni); } else { LCONVPATHEXIST(args->library, &library); NDINIT(&ni, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, library); error = namei(&ni); LFREEPATH(library); } if (error) goto cleanup; vp = ni.ni_vp; NDFREE_PNBUF(&ni); /* * From here on down, we have a locked vnode that must be unlocked. * XXX: The code below largely duplicates exec_check_permissions(). */ locked = true; /* Executable? */ error = VOP_GETATTR(vp, &attr, td->td_ucred); if (error) goto cleanup; if ((vp->v_mount->mnt_flag & MNT_NOEXEC) || ((attr.va_mode & 0111) == 0) || (attr.va_type != VREG)) { /* EACCESS is what exec(2) returns. */ error = ENOEXEC; goto cleanup; } /* Sensible size? */ if (attr.va_size == 0) { error = ENOEXEC; goto cleanup; } /* Can we access it? */ error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td); if (error) goto cleanup; /* * XXX: This should use vn_open() so that it is properly authorized, * and to reduce code redundancy all over the place here. * XXX: Not really, it duplicates far more of exec_check_permissions() * than vn_open(). */ #ifdef MAC error = mac_vnode_check_open(td->td_ucred, vp, VREAD); if (error) goto cleanup; #endif error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL); if (error) goto cleanup; opened = true; /* Pull in executable header into exec_map */ error = vm_mmap(exec_map, (vm_offset_t *)&a_out, PAGE_SIZE, VM_PROT_READ, VM_PROT_READ, 0, OBJT_VNODE, vp, 0); if (error) goto cleanup; /* Is it a Linux binary ? */ if (((a_out->a_magic >> 16) & 0xff) != 0x64) { error = ENOEXEC; goto cleanup; } /* * While we are here, we should REALLY do some more checks */ /* Set file/virtual offset based on a.out variant. */ switch ((int)(a_out->a_magic & 0xffff)) { case 0413: /* ZMAGIC */ file_offset = 1024; break; case 0314: /* QMAGIC */ file_offset = 0; break; default: error = ENOEXEC; goto cleanup; } bss_size = round_page(a_out->a_bss); /* Check various fields in header for validity/bounds. */ if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) { error = ENOEXEC; goto cleanup; } /* text + data can't exceed file size */ if (a_out->a_data + a_out->a_text > attr.va_size) { error = EFAULT; goto cleanup; } /* * text/data/bss must not exceed limits * XXX - this is not complete. it should check current usage PLUS * the resources needed by this library. */ PROC_LOCK(td->td_proc); if (a_out->a_text > maxtsiz || a_out->a_data + bss_size > lim_cur_proc(td->td_proc, RLIMIT_DATA) || racct_set(td->td_proc, RACCT_DATA, a_out->a_data + bss_size) != 0) { PROC_UNLOCK(td->td_proc); error = ENOMEM; goto cleanup; } PROC_UNLOCK(td->td_proc); /* * Prevent more writers. */ error = VOP_SET_TEXT(vp); if (error != 0) goto cleanup; textset = true; /* * Lock no longer needed */ locked = false; VOP_UNLOCK(vp); /* * Check if file_offset page aligned. Currently we cannot handle * misalinged file offsets, and so we read in the entire image * (what a waste). */ if (file_offset & PAGE_MASK) { /* Map text+data read/write/execute */ /* a_entry is the load address and is page aligned */ vmaddr = trunc_page(a_out->a_entry); /* get anon user mapping, read+write+execute */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, a_out->a_text + a_out->a_data, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; error = vn_rdwr(UIO_READ, vp, (void *)vmaddr, file_offset, a_out->a_text + a_out->a_data, UIO_USERSPACE, 0, td->td_ucred, NOCRED, &aresid, td); if (error != 0) goto cleanup; if (aresid != 0) { error = ENOEXEC; goto cleanup; } } else { /* * for QMAGIC, a_entry is 20 bytes beyond the load address * to skip the executable header */ vmaddr = trunc_page(a_out->a_entry); /* * Map it all into the process's space as a single * copy-on-write "data" segment. */ map = &td->td_proc->p_vmspace->vm_map; error = vm_mmap(map, &vmaddr, a_out->a_text + a_out->a_data, VM_PROT_ALL, VM_PROT_ALL, MAP_PRIVATE | MAP_FIXED, OBJT_VNODE, vp, file_offset); if (error) goto cleanup; vm_map_lock(map); if (!vm_map_lookup_entry(map, vmaddr, &entry)) { vm_map_unlock(map); error = EDOOFUS; goto cleanup; } entry->eflags |= MAP_ENTRY_VN_EXEC; vm_map_unlock(map); textset = false; } if (bss_size != 0) { /* Calculate BSS start address */ vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + a_out->a_data; /* allocate some 'anon' space */ error = vm_map_find(&td->td_proc->p_vmspace->vm_map, NULL, 0, &vmaddr, bss_size, 0, VMFS_NO_SPACE, VM_PROT_ALL, VM_PROT_ALL, 0); if (error) goto cleanup; } cleanup: if (opened) { if (locked) VOP_UNLOCK(vp); locked = false; VOP_CLOSE(vp, FREAD, td->td_ucred, td); } if (textset) { if (!locked) { locked = true; VOP_LOCK(vp, LK_SHARED | LK_RETRY); } VOP_UNSET_TEXT_CHECKED(vp); } if (locked) VOP_UNLOCK(vp); /* Release the temporary mapping. */ if (a_out) kmap_free_wakeup(exec_map, (vm_offset_t)a_out, PAGE_SIZE); return (error); } #endif /* __i386__ */ #ifdef LINUX_LEGACY_SYSCALLS int linux_select(struct thread *td, struct linux_select_args *args) { l_timeval ltv; struct timeval tv0, tv1, utv, *tvp; int error; /* * Store current time for computation of the amount of * time left. */ if (args->timeout) { if ((error = copyin(args->timeout, <v, sizeof(ltv)))) goto select_out; utv.tv_sec = ltv.tv_sec; utv.tv_usec = ltv.tv_usec; if (itimerfix(&utv)) { /* * The timeval was invalid. Convert it to something * valid that will act as it does under Linux. */ utv.tv_sec += utv.tv_usec / 1000000; utv.tv_usec %= 1000000; if (utv.tv_usec < 0) { utv.tv_sec -= 1; utv.tv_usec += 1000000; } if (utv.tv_sec < 0) timevalclear(&utv); } microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_select(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tvp, LINUX_NFDBITS); if (error) goto select_out; if (args->timeout) { if (td->td_retval[0]) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); } else timevalclear(&utv); ltv.tv_sec = utv.tv_sec; ltv.tv_usec = utv.tv_usec; if ((error = copyout(<v, args->timeout, sizeof(ltv)))) goto select_out; } select_out: return (error); } #endif int linux_mremap(struct thread *td, struct linux_mremap_args *args) { uintptr_t addr; size_t len; int error = 0; if (args->flags & ~(LINUX_MREMAP_FIXED | LINUX_MREMAP_MAYMOVE)) { td->td_retval[0] = 0; return (EINVAL); } /* * Check for the page alignment. * Linux defines PAGE_MASK to be FreeBSD ~PAGE_MASK. */ if (args->addr & PAGE_MASK) { td->td_retval[0] = 0; return (EINVAL); } args->new_len = round_page(args->new_len); args->old_len = round_page(args->old_len); if (args->new_len > args->old_len) { td->td_retval[0] = 0; return (ENOMEM); } if (args->new_len < args->old_len) { addr = args->addr + args->new_len; len = args->old_len - args->new_len; error = kern_munmap(td, addr, len); } td->td_retval[0] = error ? 0 : (uintptr_t)args->addr; return (error); } #define LINUX_MS_ASYNC 0x0001 #define LINUX_MS_INVALIDATE 0x0002 #define LINUX_MS_SYNC 0x0004 int linux_msync(struct thread *td, struct linux_msync_args *args) { return (kern_msync(td, args->addr, args->len, args->fl & ~LINUX_MS_SYNC)); } #ifdef LINUX_LEGACY_SYSCALLS int linux_time(struct thread *td, struct linux_time_args *args) { struct timeval tv; l_time_t tm; int error; microtime(&tv); tm = tv.tv_sec; if (args->tm && (error = copyout(&tm, args->tm, sizeof(tm)))) return (error); td->td_retval[0] = tm; return (0); } #endif struct l_times_argv { l_clock_t tms_utime; l_clock_t tms_stime; l_clock_t tms_cutime; l_clock_t tms_cstime; }; /* * Glibc versions prior to 2.2.1 always use hard-coded CLK_TCK value. * Since 2.2.1 Glibc uses value exported from kernel via AT_CLKTCK * auxiliary vector entry. */ #define CLK_TCK 100 #define CONVOTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK)) #define CONVNTCK(r) (r.tv_sec * stclohz + r.tv_usec / (1000000 / stclohz)) #define CONVTCK(r) (linux_kernver(td) >= LINUX_KERNVER_2004000 ? \ CONVNTCK(r) : CONVOTCK(r)) int linux_times(struct thread *td, struct linux_times_args *args) { struct timeval tv, utime, stime, cutime, cstime; struct l_times_argv tms; struct proc *p; int error; if (args->buf != NULL) { p = td->td_proc; PROC_LOCK(p); PROC_STATLOCK(p); calcru(p, &utime, &stime); PROC_STATUNLOCK(p); calccru(p, &cutime, &cstime); PROC_UNLOCK(p); tms.tms_utime = CONVTCK(utime); tms.tms_stime = CONVTCK(stime); tms.tms_cutime = CONVTCK(cutime); tms.tms_cstime = CONVTCK(cstime); if ((error = copyout(&tms, args->buf, sizeof(tms)))) return (error); } microuptime(&tv); td->td_retval[0] = (int)CONVTCK(tv); return (0); } int linux_newuname(struct thread *td, struct linux_newuname_args *args) { struct l_new_utsname utsname; char osname[LINUX_MAX_UTSNAME]; char osrelease[LINUX_MAX_UTSNAME]; char *p; linux_get_osname(td, osname); linux_get_osrelease(td, osrelease); bzero(&utsname, sizeof(utsname)); strlcpy(utsname.sysname, osname, LINUX_MAX_UTSNAME); getcredhostname(td->td_ucred, utsname.nodename, LINUX_MAX_UTSNAME); getcreddomainname(td->td_ucred, utsname.domainname, LINUX_MAX_UTSNAME); strlcpy(utsname.release, osrelease, LINUX_MAX_UTSNAME); strlcpy(utsname.version, version, LINUX_MAX_UTSNAME); for (p = utsname.version; *p != '\0'; ++p) if (*p == '\n') { *p = '\0'; break; } #if defined(__amd64__) /* * On amd64, Linux uname(2) needs to return "x86_64" * for both 64-bit and 32-bit applications. On 32-bit, * the string returned by getauxval(AT_PLATFORM) needs * to remain "i686", though. */ #if defined(COMPAT_LINUX32) if (linux32_emulate_i386) strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); else #endif strlcpy(utsname.machine, "x86_64", LINUX_MAX_UTSNAME); #elif defined(__aarch64__) strlcpy(utsname.machine, "aarch64", LINUX_MAX_UTSNAME); #elif defined(__i386__) strlcpy(utsname.machine, "i686", LINUX_MAX_UTSNAME); #endif return (copyout(&utsname, args->buf, sizeof(utsname))); } struct l_utimbuf { l_time_t l_actime; l_time_t l_modtime; }; #ifdef LINUX_LEGACY_SYSCALLS int linux_utime(struct thread *td, struct linux_utime_args *args) { struct timeval tv[2], *tvp; struct l_utimbuf lut; char *fname; int error; if (args->times) { if ((error = copyin(args->times, &lut, sizeof lut)) != 0) return (error); tv[0].tv_sec = lut.l_actime; tv[0].tv_usec = 0; tv[1].tv_sec = lut.l_modtime; tv[1].tv_usec = 0; tvp = tv; } else tvp = NULL; if (!LUSECONVPATH(td)) { error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, tvp, UIO_SYSSPACE); } else { LCONVPATHEXIST(args->fname, &fname); error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); } return (error); } #endif #ifdef LINUX_LEGACY_SYSCALLS int linux_utimes(struct thread *td, struct linux_utimes_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error; if (args->tptr != NULL) { if ((error = copyin(args->tptr, ltv, sizeof ltv)) != 0) return (error); tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } if (!LUSECONVPATH(td)) { error = kern_utimesat(td, AT_FDCWD, args->fname, UIO_USERSPACE, tvp, UIO_SYSSPACE); } else { LCONVPATHEXIST(args->fname, &fname); error = kern_utimesat(td, AT_FDCWD, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); } return (error); } #endif static int linux_utimensat_lts_to_ts(struct l_timespec *l_times, struct timespec *times) { if (l_times->tv_nsec != LINUX_UTIME_OMIT && l_times->tv_nsec != LINUX_UTIME_NOW && (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) return (EINVAL); times->tv_sec = l_times->tv_sec; switch (l_times->tv_nsec) { case LINUX_UTIME_OMIT: times->tv_nsec = UTIME_OMIT; break; case LINUX_UTIME_NOW: times->tv_nsec = UTIME_NOW; break; default: times->tv_nsec = l_times->tv_nsec; } return (0); } static int linux_common_utimensat(struct thread *td, int ldfd, const char *pathname, struct timespec *timesp, int lflags) { char *path = NULL; int error, dfd, flags = 0; dfd = (ldfd == LINUX_AT_FDCWD) ? AT_FDCWD : ldfd; if (lflags & ~(LINUX_AT_SYMLINK_NOFOLLOW | LINUX_AT_EMPTY_PATH)) return (EINVAL); if (timesp != NULL) { /* This breaks POSIX, but is what the Linux kernel does * _on purpose_ (documented in the man page for utimensat(2)), * so we must follow that behaviour. */ if (timesp[0].tv_nsec == UTIME_OMIT && timesp[1].tv_nsec == UTIME_OMIT) return (0); } if (lflags & LINUX_AT_SYMLINK_NOFOLLOW) flags |= AT_SYMLINK_NOFOLLOW; if (lflags & LINUX_AT_EMPTY_PATH) flags |= AT_EMPTY_PATH; if (!LUSECONVPATH(td)) { if (pathname != NULL) { return (kern_utimensat(td, dfd, pathname, UIO_USERSPACE, timesp, UIO_SYSSPACE, flags)); } } if (pathname != NULL) LCONVPATHEXIST_AT(pathname, &path, dfd); else if (lflags != 0) return (EINVAL); if (path == NULL) error = kern_futimens(td, dfd, timesp, UIO_SYSSPACE); else { error = kern_utimensat(td, dfd, path, UIO_SYSSPACE, timesp, UIO_SYSSPACE, flags); LFREEPATH(path); } return (error); } int linux_utimensat(struct thread *td, struct linux_utimensat_args *args) { struct l_timespec l_times[2]; struct timespec times[2], *timesp; int error; if (args->times != NULL) { error = copyin(args->times, l_times, sizeof(l_times)); if (error != 0) return (error); error = linux_utimensat_lts_to_ts(&l_times[0], ×[0]); if (error != 0) return (error); error = linux_utimensat_lts_to_ts(&l_times[1], ×[1]); if (error != 0) return (error); timesp = times; } else timesp = NULL; return (linux_common_utimensat(td, args->dfd, args->pathname, timesp, args->flags)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) static int linux_utimensat_lts64_to_ts(struct l_timespec64 *l_times, struct timespec *times) { /* Zero out the padding in compat mode. */ l_times->tv_nsec &= 0xFFFFFFFFUL; if (l_times->tv_nsec != LINUX_UTIME_OMIT && l_times->tv_nsec != LINUX_UTIME_NOW && (l_times->tv_nsec < 0 || l_times->tv_nsec > 999999999)) return (EINVAL); times->tv_sec = l_times->tv_sec; switch (l_times->tv_nsec) { case LINUX_UTIME_OMIT: times->tv_nsec = UTIME_OMIT; break; case LINUX_UTIME_NOW: times->tv_nsec = UTIME_NOW; break; default: times->tv_nsec = l_times->tv_nsec; } return (0); } int linux_utimensat_time64(struct thread *td, struct linux_utimensat_time64_args *args) { struct l_timespec64 l_times[2]; struct timespec times[2], *timesp; int error; if (args->times64 != NULL) { error = copyin(args->times64, l_times, sizeof(l_times)); if (error != 0) return (error); error = linux_utimensat_lts64_to_ts(&l_times[0], ×[0]); if (error != 0) return (error); error = linux_utimensat_lts64_to_ts(&l_times[1], ×[1]); if (error != 0) return (error); timesp = times; } else timesp = NULL; return (linux_common_utimensat(td, args->dfd, args->pathname, timesp, args->flags)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ #ifdef LINUX_LEGACY_SYSCALLS int linux_futimesat(struct thread *td, struct linux_futimesat_args *args) { l_timeval ltv[2]; struct timeval tv[2], *tvp = NULL; char *fname; int error, dfd; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; if (args->utimes != NULL) { if ((error = copyin(args->utimes, ltv, sizeof ltv)) != 0) return (error); tv[0].tv_sec = ltv[0].tv_sec; tv[0].tv_usec = ltv[0].tv_usec; tv[1].tv_sec = ltv[1].tv_sec; tv[1].tv_usec = ltv[1].tv_usec; tvp = tv; } if (!LUSECONVPATH(td)) { error = kern_utimesat(td, dfd, args->filename, UIO_USERSPACE, tvp, UIO_SYSSPACE); } else { LCONVPATHEXIST_AT(args->filename, &fname, dfd); error = kern_utimesat(td, dfd, fname, UIO_SYSSPACE, tvp, UIO_SYSSPACE); LFREEPATH(fname); } return (error); } #endif static int linux_common_wait(struct thread *td, idtype_t idtype, int id, int *statusp, int options, void *rup, l_siginfo_t *infop) { l_siginfo_t lsi; siginfo_t siginfo; struct __wrusage wru; int error, status, tmpstat, sig; error = kern_wait6(td, idtype, id, &status, options, rup != NULL ? &wru : NULL, &siginfo); if (error == 0 && statusp) { tmpstat = status & 0xffff; if (WIFSIGNALED(tmpstat)) { tmpstat = (tmpstat & 0xffffff80) | bsd_to_linux_signal(WTERMSIG(tmpstat)); } else if (WIFSTOPPED(tmpstat)) { tmpstat = (tmpstat & 0xffff00ff) | (bsd_to_linux_signal(WSTOPSIG(tmpstat)) << 8); #if defined(__aarch64__) || (defined(__amd64__) && !defined(COMPAT_LINUX32)) if (WSTOPSIG(status) == SIGTRAP) { tmpstat = linux_ptrace_status(td, siginfo.si_pid, tmpstat); } #endif } else if (WIFCONTINUED(tmpstat)) { tmpstat = 0xffff; } error = copyout(&tmpstat, statusp, sizeof(int)); } if (error == 0 && rup != NULL) error = linux_copyout_rusage(&wru.wru_self, rup); if (error == 0 && infop != NULL && td->td_retval[0] != 0) { sig = bsd_to_linux_signal(siginfo.si_signo); siginfo_to_lsiginfo(&siginfo, &lsi, sig); error = copyout(&lsi, infop, sizeof(lsi)); } return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_waitpid(struct thread *td, struct linux_waitpid_args *args) { struct linux_wait4_args wait4_args; wait4_args.pid = args->pid; wait4_args.status = args->status; wait4_args.options = args->options; wait4_args.rusage = NULL; return (linux_wait4(td, &wait4_args)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_wait4(struct thread *td, struct linux_wait4_args *args) { struct proc *p; int options, id, idtype; if (args->options & ~(LINUX_WUNTRACED | LINUX_WNOHANG | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) return (EINVAL); /* -INT_MIN is not defined. */ if (args->pid == INT_MIN) return (ESRCH); options = 0; linux_to_bsd_waitopts(args->options, &options); /* * For backward compatibility we implicitly add flags WEXITED * and WTRAPPED here. */ options |= WEXITED | WTRAPPED; if (args->pid == WAIT_ANY) { idtype = P_ALL; id = 0; } else if (args->pid < 0) { idtype = P_PGID; id = (id_t)-args->pid; } else if (args->pid == 0) { idtype = P_PGID; p = td->td_proc; PROC_LOCK(p); id = p->p_pgid; PROC_UNLOCK(p); } else { idtype = P_PID; id = (id_t)args->pid; } return (linux_common_wait(td, idtype, id, args->status, options, args->rusage, NULL)); } int linux_waitid(struct thread *td, struct linux_waitid_args *args) { idtype_t idtype; int error, options; struct proc *p; pid_t id; if (args->options & ~(LINUX_WNOHANG | LINUX_WNOWAIT | LINUX_WEXITED | LINUX_WSTOPPED | LINUX_WCONTINUED | __WCLONE | __WNOTHREAD | __WALL)) return (EINVAL); options = 0; linux_to_bsd_waitopts(args->options, &options); id = args->id; switch (args->idtype) { case LINUX_P_ALL: idtype = P_ALL; break; case LINUX_P_PID: if (args->id <= 0) return (EINVAL); idtype = P_PID; break; case LINUX_P_PGID: if (linux_use54(td) && args->id == 0) { p = td->td_proc; PROC_LOCK(p); id = p->p_pgid; PROC_UNLOCK(p); } else if (args->id <= 0) return (EINVAL); idtype = P_PGID; break; case LINUX_P_PIDFD: LINUX_RATELIMIT_MSG("unsupported waitid P_PIDFD idtype"); return (ENOSYS); default: return (EINVAL); } error = linux_common_wait(td, idtype, id, NULL, options, args->rusage, args->info); td->td_retval[0] = 0; return (error); } #ifdef LINUX_LEGACY_SYSCALLS int linux_mknod(struct thread *td, struct linux_mknod_args *args) { char *path; int error; enum uio_seg seg; bool convpath; convpath = LUSECONVPATH(td); if (!convpath) { path = args->path; seg = UIO_USERSPACE; } else { LCONVPATHCREAT(args->path, &path); seg = UIO_SYSSPACE; } switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, AT_FDCWD, path, seg, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, AT_FDCWD, path, seg, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, AT_FDCWD, path, seg, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } if (convpath) LFREEPATH(path); return (error); } #endif int linux_mknodat(struct thread *td, struct linux_mknodat_args *args) { char *path; int error, dfd; enum uio_seg seg; bool convpath; dfd = (args->dfd == LINUX_AT_FDCWD) ? AT_FDCWD : args->dfd; convpath = LUSECONVPATH(td); if (!convpath) { path = __DECONST(char *, args->filename); seg = UIO_USERSPACE; } else { LCONVPATHCREAT_AT(args->filename, &path, dfd); seg = UIO_SYSSPACE; } switch (args->mode & S_IFMT) { case S_IFIFO: case S_IFSOCK: error = kern_mkfifoat(td, dfd, path, seg, args->mode); break; case S_IFCHR: case S_IFBLK: error = kern_mknodat(td, dfd, path, seg, args->mode, args->dev); break; case S_IFDIR: error = EPERM; break; case 0: args->mode |= S_IFREG; /* FALLTHROUGH */ case S_IFREG: error = kern_openat(td, dfd, path, seg, O_WRONLY | O_CREAT | O_TRUNC, args->mode); if (error == 0) kern_close(td, td->td_retval[0]); break; default: error = EINVAL; break; } if (convpath) LFREEPATH(path); return (error); } /* * UGH! This is just about the dumbest idea I've ever heard!! */ int linux_personality(struct thread *td, struct linux_personality_args *args) { struct linux_pemuldata *pem; struct proc *p = td->td_proc; uint32_t old; PROC_LOCK(p); pem = pem_find(p); old = pem->persona; if (args->per != 0xffffffff) pem->persona = args->per; PROC_UNLOCK(p); td->td_retval[0] = old; return (0); } struct l_itimerval { l_timeval it_interval; l_timeval it_value; }; #define B2L_ITIMERVAL(bip, lip) \ (bip)->it_interval.tv_sec = (lip)->it_interval.tv_sec; \ (bip)->it_interval.tv_usec = (lip)->it_interval.tv_usec; \ (bip)->it_value.tv_sec = (lip)->it_value.tv_sec; \ (bip)->it_value.tv_usec = (lip)->it_value.tv_usec; int linux_setitimer(struct thread *td, struct linux_setitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv, oitv; if (uap->itv == NULL) { uap->itv = uap->oitv; return (linux_getitimer(td, (struct linux_getitimer_args *)uap)); } error = copyin(uap->itv, &ls, sizeof(ls)); if (error != 0) return (error); B2L_ITIMERVAL(&aitv, &ls); error = kern_setitimer(td, uap->which, &aitv, &oitv); if (error != 0 || uap->oitv == NULL) return (error); B2L_ITIMERVAL(&ls, &oitv); return (copyout(&ls, uap->oitv, sizeof(ls))); } int linux_getitimer(struct thread *td, struct linux_getitimer_args *uap) { int error; struct l_itimerval ls; struct itimerval aitv; error = kern_getitimer(td, uap->which, &aitv); if (error != 0) return (error); B2L_ITIMERVAL(&ls, &aitv); return (copyout(&ls, uap->itv, sizeof(ls))); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_nice(struct thread *td, struct linux_nice_args *args) { return (kern_setpriority(td, PRIO_PROCESS, 0, args->inc)); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_setgroups(struct thread *td, struct linux_setgroups_args *args) { struct ucred *newcred, *oldcred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int ngrp, error; struct proc *p; ngrp = args->gidsetsize; if (ngrp < 0 || ngrp >= ngroups_max + 1) return (EINVAL); linux_gidset = malloc(ngrp * sizeof(*linux_gidset), M_LINUX, M_WAITOK); error = copyin(args->grouplist, linux_gidset, ngrp * sizeof(l_gid_t)); if (error) goto out; newcred = crget(); crextend(newcred, ngrp + 1); p = td->td_proc; PROC_LOCK(p); oldcred = p->p_ucred; crcopy(newcred, oldcred); /* * cr_groups[0] holds egid. Setting the whole set from * the supplied set will cause egid to be changed too. * Keep cr_groups[0] unchanged to prevent that. */ if ((error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS)) != 0) { PROC_UNLOCK(p); crfree(newcred); goto out; } if (ngrp > 0) { newcred->cr_ngroups = ngrp + 1; bsd_gidset = newcred->cr_groups; ngrp--; while (ngrp >= 0) { bsd_gidset[ngrp + 1] = linux_gidset[ngrp]; ngrp--; } } else newcred->cr_ngroups = 1; setsugid(p); proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); error = 0; out: free(linux_gidset, M_LINUX); return (error); } int linux_getgroups(struct thread *td, struct linux_getgroups_args *args) { struct ucred *cred; l_gid_t *linux_gidset; gid_t *bsd_gidset; int bsd_gidsetsz, ngrp, error; cred = td->td_ucred; bsd_gidset = cred->cr_groups; bsd_gidsetsz = cred->cr_ngroups - 1; /* * cr_groups[0] holds egid. Returning the whole set * here will cause a duplicate. Exclude cr_groups[0] * to prevent that. */ if ((ngrp = args->gidsetsize) == 0) { td->td_retval[0] = bsd_gidsetsz; return (0); } if (ngrp < bsd_gidsetsz) return (EINVAL); ngrp = 0; linux_gidset = malloc(bsd_gidsetsz * sizeof(*linux_gidset), M_LINUX, M_WAITOK); while (ngrp < bsd_gidsetsz) { linux_gidset[ngrp] = bsd_gidset[ngrp + 1]; ngrp++; } error = copyout(linux_gidset, args->grouplist, ngrp * sizeof(l_gid_t)); free(linux_gidset, M_LINUX); if (error) return (error); td->td_retval[0] = ngrp; return (0); } static bool linux_get_dummy_limit(l_uint resource, struct rlimit *rlim) { if (linux_dummy_rlimits == 0) return (false); switch (resource) { case LINUX_RLIMIT_LOCKS: case LINUX_RLIMIT_SIGPENDING: case LINUX_RLIMIT_MSGQUEUE: case LINUX_RLIMIT_RTTIME: rlim->rlim_cur = LINUX_RLIM_INFINITY; rlim->rlim_max = LINUX_RLIM_INFINITY; return (true); case LINUX_RLIMIT_NICE: case LINUX_RLIMIT_RTPRIO: rlim->rlim_cur = 0; rlim->rlim_max = 0; return (true); default: return (false); } } int linux_setrlimit(struct thread *td, struct linux_setrlimit_args *args) { struct rlimit bsd_rlim; struct l_rlimit rlim; u_int which; int error; if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); error = copyin(args->rlim, &rlim, sizeof(rlim)); if (error) return (error); bsd_rlim.rlim_cur = (rlim_t)rlim.rlim_cur; bsd_rlim.rlim_max = (rlim_t)rlim.rlim_max; return (kern_setrlimit(td, which, &bsd_rlim)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_old_getrlimit(struct thread *td, struct linux_old_getrlimit_args *args) { struct l_rlimit rlim; struct rlimit bsd_rlim; u_int which; if (linux_get_dummy_limit(args->resource, &bsd_rlim)) { rlim.rlim_cur = bsd_rlim.rlim_cur; rlim.rlim_max = bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); lim_rlimit(td, which, &bsd_rlim); #ifdef COMPAT_LINUX32 rlim.rlim_cur = (unsigned int)bsd_rlim.rlim_cur; if (rlim.rlim_cur == UINT_MAX) rlim.rlim_cur = INT_MAX; rlim.rlim_max = (unsigned int)bsd_rlim.rlim_max; if (rlim.rlim_max == UINT_MAX) rlim.rlim_max = INT_MAX; #else rlim.rlim_cur = (unsigned long)bsd_rlim.rlim_cur; if (rlim.rlim_cur == ULONG_MAX) rlim.rlim_cur = LONG_MAX; rlim.rlim_max = (unsigned long)bsd_rlim.rlim_max; if (rlim.rlim_max == ULONG_MAX) rlim.rlim_max = LONG_MAX; #endif return (copyout(&rlim, args->rlim, sizeof(rlim))); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_getrlimit(struct thread *td, struct linux_getrlimit_args *args) { struct l_rlimit rlim; struct rlimit bsd_rlim; u_int which; if (linux_get_dummy_limit(args->resource, &bsd_rlim)) { rlim.rlim_cur = bsd_rlim.rlim_cur; rlim.rlim_max = bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); lim_rlimit(td, which, &bsd_rlim); rlim.rlim_cur = (l_ulong)bsd_rlim.rlim_cur; rlim.rlim_max = (l_ulong)bsd_rlim.rlim_max; return (copyout(&rlim, args->rlim, sizeof(rlim))); } int linux_sched_setscheduler(struct thread *td, struct linux_sched_setscheduler_args *args) { struct sched_param sched_param; struct thread *tdt; int error, policy; switch (args->policy) { case LINUX_SCHED_OTHER: policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: policy = SCHED_FIFO; break; case LINUX_SCHED_RR: policy = SCHED_RR; break; default: return (EINVAL); } error = copyin(args->param, &sched_param, sizeof(sched_param)); if (error) return (error); if (linux_map_sched_prio) { switch (policy) { case SCHED_OTHER: if (sched_param.sched_priority != 0) return (EINVAL); sched_param.sched_priority = PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; break; case SCHED_FIFO: case SCHED_RR: if (sched_param.sched_priority < 1 || sched_param.sched_priority >= LINUX_MAX_RT_PRIO) return (EINVAL); /* * Map [1, LINUX_MAX_RT_PRIO - 1] to * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). */ sched_param.sched_priority = (sched_param.sched_priority - 1) * (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / (LINUX_MAX_RT_PRIO - 1); break; } } tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_setscheduler(td, tdt, policy, &sched_param); PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_getscheduler(struct thread *td, struct linux_sched_getscheduler_args *args) { struct thread *tdt; int error, policy; tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_getscheduler(td, tdt, &policy); PROC_UNLOCK(tdt->td_proc); switch (policy) { case SCHED_OTHER: td->td_retval[0] = LINUX_SCHED_OTHER; break; case SCHED_FIFO: td->td_retval[0] = LINUX_SCHED_FIFO; break; case SCHED_RR: td->td_retval[0] = LINUX_SCHED_RR; break; } return (error); } int linux_sched_get_priority_max(struct thread *td, struct linux_sched_get_priority_max_args *args) { struct sched_get_priority_max_args bsd; if (linux_map_sched_prio) { switch (args->policy) { case LINUX_SCHED_OTHER: td->td_retval[0] = 0; return (0); case LINUX_SCHED_FIFO: case LINUX_SCHED_RR: td->td_retval[0] = LINUX_MAX_RT_PRIO - 1; return (0); default: return (EINVAL); } } switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_max(td, &bsd)); } int linux_sched_get_priority_min(struct thread *td, struct linux_sched_get_priority_min_args *args) { struct sched_get_priority_min_args bsd; if (linux_map_sched_prio) { switch (args->policy) { case LINUX_SCHED_OTHER: td->td_retval[0] = 0; return (0); case LINUX_SCHED_FIFO: case LINUX_SCHED_RR: td->td_retval[0] = 1; return (0); default: return (EINVAL); } } switch (args->policy) { case LINUX_SCHED_OTHER: bsd.policy = SCHED_OTHER; break; case LINUX_SCHED_FIFO: bsd.policy = SCHED_FIFO; break; case LINUX_SCHED_RR: bsd.policy = SCHED_RR; break; default: return (EINVAL); } return (sys_sched_get_priority_min(td, &bsd)); } #define REBOOT_CAD_ON 0x89abcdef #define REBOOT_CAD_OFF 0 #define REBOOT_HALT 0xcdef0123 #define REBOOT_RESTART 0x01234567 #define REBOOT_RESTART2 0xA1B2C3D4 #define REBOOT_POWEROFF 0x4321FEDC #define REBOOT_MAGIC1 0xfee1dead #define REBOOT_MAGIC2 0x28121969 #define REBOOT_MAGIC2A 0x05121996 #define REBOOT_MAGIC2B 0x16041998 int linux_reboot(struct thread *td, struct linux_reboot_args *args) { struct reboot_args bsd_args; if (args->magic1 != REBOOT_MAGIC1) return (EINVAL); switch (args->magic2) { case REBOOT_MAGIC2: case REBOOT_MAGIC2A: case REBOOT_MAGIC2B: break; default: return (EINVAL); } switch (args->cmd) { case REBOOT_CAD_ON: case REBOOT_CAD_OFF: return (priv_check(td, PRIV_REBOOT)); case REBOOT_HALT: bsd_args.opt = RB_HALT; break; case REBOOT_RESTART: case REBOOT_RESTART2: bsd_args.opt = 0; break; case REBOOT_POWEROFF: bsd_args.opt = RB_POWEROFF; break; default: return (EINVAL); } return (sys_reboot(td, &bsd_args)); } int linux_getpid(struct thread *td, struct linux_getpid_args *args) { td->td_retval[0] = td->td_proc->p_pid; return (0); } int linux_gettid(struct thread *td, struct linux_gettid_args *args) { struct linux_emuldata *em; em = em_find(td); KASSERT(em != NULL, ("gettid: emuldata not found.\n")); td->td_retval[0] = em->em_tid; return (0); } int linux_getppid(struct thread *td, struct linux_getppid_args *args) { td->td_retval[0] = kern_getppid(td); return (0); } int linux_getgid(struct thread *td, struct linux_getgid_args *args) { td->td_retval[0] = td->td_ucred->cr_rgid; return (0); } int linux_getuid(struct thread *td, struct linux_getuid_args *args) { td->td_retval[0] = td->td_ucred->cr_ruid; return (0); } int linux_getsid(struct thread *td, struct linux_getsid_args *args) { return (kern_getsid(td, args->pid)); } int linux_nosys(struct thread *td, struct nosys_args *ignore) { return (ENOSYS); } int linux_getpriority(struct thread *td, struct linux_getpriority_args *args) { int error; error = kern_getpriority(td, args->which, args->who); td->td_retval[0] = 20 - td->td_retval[0]; return (error); } int linux_sethostname(struct thread *td, struct linux_sethostname_args *args) { int name[2]; name[0] = CTL_KERN; name[1] = KERN_HOSTNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->hostname, args->len, 0, 0)); } int linux_setdomainname(struct thread *td, struct linux_setdomainname_args *args) { int name[2]; name[0] = CTL_KERN; name[1] = KERN_NISDOMAINNAME; return (userland_sysctl(td, name, 2, 0, 0, 0, args->name, args->len, 0, 0)); } int linux_exit_group(struct thread *td, struct linux_exit_group_args *args) { LINUX_CTR2(exit_group, "thread(%d) (%d)", td->td_tid, args->error_code); /* * XXX: we should send a signal to the parent if * SIGNAL_EXIT_GROUP is set. We ignore that (temporarily?) * as it doesnt occur often. */ exit1(td, args->error_code, 0); /* NOTREACHED */ } #define _LINUX_CAPABILITY_VERSION_1 0x19980330 #define _LINUX_CAPABILITY_VERSION_2 0x20071026 #define _LINUX_CAPABILITY_VERSION_3 0x20080522 struct l_user_cap_header { l_int version; l_int pid; }; struct l_user_cap_data { l_int effective; l_int permitted; l_int inheritable; }; int linux_capget(struct thread *td, struct linux_capget_args *uap) { struct l_user_cap_header luch; struct l_user_cap_data lucd[2]; int error, u32s; if (uap->hdrp == NULL) return (EFAULT); error = copyin(uap->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); switch (luch.version) { case _LINUX_CAPABILITY_VERSION_1: u32s = 1; break; case _LINUX_CAPABILITY_VERSION_2: case _LINUX_CAPABILITY_VERSION_3: u32s = 2; break; default: luch.version = _LINUX_CAPABILITY_VERSION_1; error = copyout(&luch, uap->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); if (uap->datap) { /* * The current implementation doesn't support setting * a capability (it's essentially a stub) so indicate * that no capabilities are currently set or available * to request. */ memset(&lucd, 0, u32s * sizeof(lucd[0])); error = copyout(&lucd, uap->datap, u32s * sizeof(lucd[0])); } return (error); } int linux_capset(struct thread *td, struct linux_capset_args *uap) { struct l_user_cap_header luch; struct l_user_cap_data lucd[2]; int error, i, u32s; if (uap->hdrp == NULL || uap->datap == NULL) return (EFAULT); error = copyin(uap->hdrp, &luch, sizeof(luch)); if (error != 0) return (error); switch (luch.version) { case _LINUX_CAPABILITY_VERSION_1: u32s = 1; break; case _LINUX_CAPABILITY_VERSION_2: case _LINUX_CAPABILITY_VERSION_3: u32s = 2; break; default: luch.version = _LINUX_CAPABILITY_VERSION_1; error = copyout(&luch, uap->hdrp, sizeof(luch)); if (error) return (error); return (EINVAL); } if (luch.pid) return (EPERM); error = copyin(uap->datap, &lucd, u32s * sizeof(lucd[0])); if (error != 0) return (error); /* We currently don't support setting any capabilities. */ for (i = 0; i < u32s; i++) { if (lucd[i].effective || lucd[i].permitted || lucd[i].inheritable) { linux_msg(td, "capset[%d] effective=0x%x, permitted=0x%x, " "inheritable=0x%x is not implemented", i, (int)lucd[i].effective, (int)lucd[i].permitted, (int)lucd[i].inheritable); return (EPERM); } } return (0); } int linux_prctl(struct thread *td, struct linux_prctl_args *args) { int error = 0, max_size, arg; struct proc *p = td->td_proc; char comm[LINUX_MAX_COMM_LEN]; int pdeath_signal, trace_state; switch (args->option) { case LINUX_PR_SET_PDEATHSIG: if (!LINUX_SIG_VALID(args->arg2)) return (EINVAL); pdeath_signal = linux_to_bsd_signal(args->arg2); return (kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_CTL, &pdeath_signal)); case LINUX_PR_GET_PDEATHSIG: error = kern_procctl(td, P_PID, 0, PROC_PDEATHSIG_STATUS, &pdeath_signal); if (error != 0) return (error); pdeath_signal = bsd_to_linux_signal(pdeath_signal); return (copyout(&pdeath_signal, (void *)(register_t)args->arg2, sizeof(pdeath_signal))); /* * In Linux, this flag controls if set[gu]id processes can coredump. * There are additional semantics imposed on processes that cannot * coredump: * - Such processes can not be ptraced. * - There are some semantics around ownership of process-related files * in the /proc namespace. * * In FreeBSD, we can (and by default, do) disable setuid coredump * system-wide with 'sugid_coredump.' We control tracability on a * per-process basis with the procctl PROC_TRACE (=> P2_NOTRACE flag). * By happy coincidence, P2_NOTRACE also prevents coredumping. So the * procctl is roughly analogous to Linux's DUMPABLE. * * So, proxy these knobs to the corresponding PROC_TRACE setting. */ case LINUX_PR_GET_DUMPABLE: error = kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_STATUS, &trace_state); if (error != 0) return (error); td->td_retval[0] = (trace_state != -1); return (0); case LINUX_PR_SET_DUMPABLE: /* * It is only valid for userspace to set one of these two * flags, and only one at a time. */ switch (args->arg2) { case LINUX_SUID_DUMP_DISABLE: trace_state = PROC_TRACE_CTL_DISABLE_EXEC; break; case LINUX_SUID_DUMP_USER: trace_state = PROC_TRACE_CTL_ENABLE; break; default: return (EINVAL); } return (kern_procctl(td, P_PID, p->p_pid, PROC_TRACE_CTL, &trace_state)); case LINUX_PR_GET_KEEPCAPS: /* * Indicate that we always clear the effective and * permitted capability sets when the user id becomes * non-zero (actually the capability sets are simply * always zero in the current implementation). */ td->td_retval[0] = 0; break; case LINUX_PR_SET_KEEPCAPS: /* * Ignore requests to keep the effective and permitted * capability sets when the user id becomes non-zero. */ break; case LINUX_PR_SET_NAME: /* * To be on the safe side we need to make sure to not * overflow the size a Linux program expects. We already * do this here in the copyin, so that we don't need to * check on copyout. */ max_size = MIN(sizeof(comm), sizeof(p->p_comm)); error = copyinstr((void *)(register_t)args->arg2, comm, max_size, NULL); /* Linux silently truncates the name if it is too long. */ if (error == ENAMETOOLONG) { /* * XXX: copyinstr() isn't documented to populate the * array completely, so do a copyin() to be on the * safe side. This should be changed in case * copyinstr() is changed to guarantee this. */ error = copyin((void *)(register_t)args->arg2, comm, max_size - 1); comm[max_size - 1] = '\0'; } if (error) return (error); PROC_LOCK(p); strlcpy(p->p_comm, comm, sizeof(p->p_comm)); PROC_UNLOCK(p); break; case LINUX_PR_GET_NAME: PROC_LOCK(p); strlcpy(comm, p->p_comm, sizeof(comm)); PROC_UNLOCK(p); error = copyout(comm, (void *)(register_t)args->arg2, strlen(comm) + 1); break; case LINUX_PR_GET_SECCOMP: case LINUX_PR_SET_SECCOMP: /* * Same as returned by Linux without CONFIG_SECCOMP enabled. */ error = EINVAL; break; case LINUX_PR_CAPBSET_READ: #if 0 /* * This makes too much noise with Ubuntu Focal. */ linux_msg(td, "unsupported prctl PR_CAPBSET_READ %d", (int)args->arg2); #endif error = EINVAL; break; case LINUX_PR_SET_NO_NEW_PRIVS: arg = args->arg2 == 1 ? PROC_NO_NEW_PRIVS_ENABLE : PROC_NO_NEW_PRIVS_DISABLE; error = kern_procctl(td, P_PID, p->p_pid, PROC_NO_NEW_PRIVS_CTL, &arg); break; case LINUX_PR_SET_PTRACER: linux_msg(td, "unsupported prctl PR_SET_PTRACER"); error = EINVAL; break; default: linux_msg(td, "unsupported prctl option %d", args->option); error = EINVAL; break; } return (error); } int linux_sched_setparam(struct thread *td, struct linux_sched_setparam_args *uap) { struct sched_param sched_param; struct thread *tdt; int error, policy; error = copyin(uap->param, &sched_param, sizeof(sched_param)); if (error) return (error); tdt = linux_tdfind(td, uap->pid, -1); if (tdt == NULL) return (ESRCH); if (linux_map_sched_prio) { error = kern_sched_getscheduler(td, tdt, &policy); if (error) goto out; switch (policy) { case SCHED_OTHER: if (sched_param.sched_priority != 0) { error = EINVAL; goto out; } sched_param.sched_priority = PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE; break; case SCHED_FIFO: case SCHED_RR: if (sched_param.sched_priority < 1 || sched_param.sched_priority >= LINUX_MAX_RT_PRIO) { error = EINVAL; goto out; } /* * Map [1, LINUX_MAX_RT_PRIO - 1] to * [0, RTP_PRIO_MAX - RTP_PRIO_MIN] (rounding down). */ sched_param.sched_priority = (sched_param.sched_priority - 1) * (RTP_PRIO_MAX - RTP_PRIO_MIN + 1) / (LINUX_MAX_RT_PRIO - 1); break; } } error = kern_sched_setparam(td, tdt, &sched_param); out: PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_getparam(struct thread *td, struct linux_sched_getparam_args *uap) { struct sched_param sched_param; struct thread *tdt; int error, policy; tdt = linux_tdfind(td, uap->pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_getparam(td, tdt, &sched_param); if (error) { PROC_UNLOCK(tdt->td_proc); return (error); } if (linux_map_sched_prio) { error = kern_sched_getscheduler(td, tdt, &policy); PROC_UNLOCK(tdt->td_proc); if (error) return (error); switch (policy) { case SCHED_OTHER: sched_param.sched_priority = 0; break; case SCHED_FIFO: case SCHED_RR: /* * Map [0, RTP_PRIO_MAX - RTP_PRIO_MIN] to * [1, LINUX_MAX_RT_PRIO - 1] (rounding up). */ sched_param.sched_priority = (sched_param.sched_priority * (LINUX_MAX_RT_PRIO - 1) + (RTP_PRIO_MAX - RTP_PRIO_MIN - 1)) / (RTP_PRIO_MAX - RTP_PRIO_MIN) + 1; break; } } else PROC_UNLOCK(tdt->td_proc); error = copyout(&sched_param, uap->param, sizeof(sched_param)); return (error); } -static const struct cpuset_copy_cb copy_set = { - .cpuset_copyin = copyin, - .cpuset_copyout = copyout -}; - /* * Get affinity of a process. */ int linux_sched_getaffinity(struct thread *td, struct linux_sched_getaffinity_args *args) { struct thread *tdt; + cpuset_t *mask; + size_t size; int error; id_t tid; tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); tid = tdt->td_tid; PROC_UNLOCK(tdt->td_proc); + mask = malloc(sizeof(cpuset_t), M_LINUX, M_WAITOK | M_ZERO); + size = min(args->len, sizeof(cpuset_t)); error = kern_cpuset_getaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, - tid, args->len, (cpuset_t *)args->user_mask_ptr, ©_set); + tid, size, mask); if (error == ERANGE) error = EINVAL; + if (error == 0) + error = copyout(mask, args->user_mask_ptr, size); if (error == 0) - td->td_retval[0] = min(args->len, sizeof(cpuset_t)); - + td->td_retval[0] = size; + free(mask, M_LINUX); return (error); } /* * Set affinity of a process. */ int linux_sched_setaffinity(struct thread *td, struct linux_sched_setaffinity_args *args) { struct thread *tdt; cpuset_t *mask; int cpu, error; size_t len; id_t tid; tdt = linux_tdfind(td, args->pid, -1); if (tdt == NULL) return (ESRCH); tid = tdt->td_tid; PROC_UNLOCK(tdt->td_proc); len = min(args->len, sizeof(cpuset_t)); mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO);; error = copyin(args->user_mask_ptr, mask, len); if (error != 0) goto out; /* Linux ignore high bits */ CPU_FOREACH_ISSET(cpu, mask) if (cpu > mp_maxid) CPU_CLR(cpu, mask); error = kern_cpuset_setaffinity(td, CPU_LEVEL_WHICH, CPU_WHICH_TID, tid, mask); if (error == EDEADLK) error = EINVAL; out: free(mask, M_TEMP); return (error); } struct linux_rlimit64 { uint64_t rlim_cur; uint64_t rlim_max; }; int linux_prlimit64(struct thread *td, struct linux_prlimit64_args *args) { struct rlimit rlim, nrlim; struct linux_rlimit64 lrlim; struct proc *p; u_int which; int flags; int error; if (args->new == NULL && args->old != NULL) { if (linux_get_dummy_limit(args->resource, &rlim)) { lrlim.rlim_cur = rlim.rlim_cur; lrlim.rlim_max = rlim.rlim_max; return (copyout(&lrlim, args->old, sizeof(lrlim))); } } if (args->resource >= LINUX_RLIM_NLIMITS) return (EINVAL); which = linux_to_bsd_resource[args->resource]; if (which == -1) return (EINVAL); if (args->new != NULL) { /* * Note. Unlike FreeBSD where rlim is signed 64-bit Linux * rlim is unsigned 64-bit. FreeBSD treats negative limits * as INFINITY so we do not need a conversion even. */ error = copyin(args->new, &nrlim, sizeof(nrlim)); if (error != 0) return (error); } flags = PGET_HOLD | PGET_NOTWEXIT; if (args->new != NULL) flags |= PGET_CANDEBUG; else flags |= PGET_CANSEE; if (args->pid == 0) { p = td->td_proc; PHOLD(p); } else { error = pget(args->pid, flags, &p); if (error != 0) return (error); } if (args->old != NULL) { PROC_LOCK(p); lim_rlimit_proc(p, which, &rlim); PROC_UNLOCK(p); if (rlim.rlim_cur == RLIM_INFINITY) lrlim.rlim_cur = LINUX_RLIM_INFINITY; else lrlim.rlim_cur = rlim.rlim_cur; if (rlim.rlim_max == RLIM_INFINITY) lrlim.rlim_max = LINUX_RLIM_INFINITY; else lrlim.rlim_max = rlim.rlim_max; error = copyout(&lrlim, args->old, sizeof(lrlim)); if (error != 0) goto out; } if (args->new != NULL) error = kern_proc_setrlimit(td, p, which, &nrlim); out: PRELE(p); return (error); } int linux_pselect6(struct thread *td, struct linux_pselect6_args *args) { struct timespec ts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec(&ts, args->tsp); if (error != 0) return (error); tsp = &ts; } else tsp = NULL; error = linux_common_pselect6(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tsp, args->sig); if (args->tsp != NULL) linux_put_timespec(&ts, args->tsp); return (error); } static int linux_common_pselect6(struct thread *td, l_int nfds, l_fd_set *readfds, l_fd_set *writefds, l_fd_set *exceptfds, struct timespec *tsp, l_uintptr_t *sig) { struct timeval utv, tv0, tv1, *tvp; struct l_pselect6arg lpse6; l_sigset_t l_ss; sigset_t *ssp; sigset_t ss; int error; ssp = NULL; if (sig != NULL) { error = copyin(sig, &lpse6, sizeof(lpse6)); if (error != 0) return (error); if (lpse6.ss_len != sizeof(l_ss)) return (EINVAL); if (lpse6.ss != 0) { error = copyin(PTRIN(lpse6.ss), &l_ss, sizeof(l_ss)); if (error != 0) return (error); linux_to_bsd_sigset(&l_ss, &ss); ssp = &ss; } } else ssp = NULL; /* * Currently glibc changes nanosecond number to microsecond. * This mean losing precision but for now it is hardly seen. */ if (tsp != NULL) { TIMESPEC_TO_TIMEVAL(&utv, tsp); if (itimerfix(&utv)) return (EINVAL); microtime(&tv0); tvp = &utv; } else tvp = NULL; error = kern_pselect(td, nfds, readfds, writefds, exceptfds, tvp, ssp, LINUX_NFDBITS); if (tsp != NULL) { /* * Compute how much time was left of the timeout, * by subtracting the current time and the time * before we started the call, and subtracting * that result from the user-supplied value. */ microtime(&tv1); timevalsub(&tv1, &tv0); timevalsub(&utv, &tv1); if (utv.tv_sec < 0) timevalclear(&utv); TIMEVAL_TO_TIMESPEC(&utv, tsp); } return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_pselect6_time64(struct thread *td, struct linux_pselect6_time64_args *args) { struct timespec ts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec64(&ts, args->tsp); if (error != 0) return (error); tsp = &ts; } else tsp = NULL; error = linux_common_pselect6(td, args->nfds, args->readfds, args->writefds, args->exceptfds, tsp, args->sig); if (args->tsp != NULL) linux_put_timespec64(&ts, args->tsp); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ int linux_ppoll(struct thread *td, struct linux_ppoll_args *args) { struct timespec uts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec(&uts, args->tsp); if (error != 0) return (error); tsp = &uts; } else tsp = NULL; error = linux_common_ppoll(td, args->fds, args->nfds, tsp, args->sset, args->ssize); if (error == 0 && args->tsp != NULL) error = linux_put_timespec(&uts, args->tsp); return (error); } static int linux_common_ppoll(struct thread *td, struct pollfd *fds, uint32_t nfds, struct timespec *tsp, l_sigset_t *sset, l_size_t ssize) { struct timespec ts0, ts1; struct pollfd stackfds[32]; struct pollfd *kfds; l_sigset_t l_ss; sigset_t *ssp; sigset_t ss; int error; if (kern_poll_maxfds(nfds)) return (EINVAL); if (sset != NULL) { if (ssize != sizeof(l_ss)) return (EINVAL); error = copyin(sset, &l_ss, sizeof(l_ss)); if (error) return (error); linux_to_bsd_sigset(&l_ss, &ss); ssp = &ss; } else ssp = NULL; if (tsp != NULL) nanotime(&ts0); if (nfds > nitems(stackfds)) kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK); else kfds = stackfds; error = linux_pollin(td, kfds, fds, nfds); if (error != 0) goto out; error = kern_poll_kfds(td, kfds, nfds, tsp, ssp); if (error == 0) error = linux_pollout(td, kfds, fds, nfds); if (error == 0 && tsp != NULL) { if (td->td_retval[0]) { nanotime(&ts1); timespecsub(&ts1, &ts0, &ts1); timespecsub(tsp, &ts1, tsp); if (tsp->tv_sec < 0) timespecclear(tsp); } else timespecclear(tsp); } out: if (nfds > nitems(stackfds)) free(kfds, M_TEMP); return (error); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_ppoll_time64(struct thread *td, struct linux_ppoll_time64_args *args) { struct timespec uts, *tsp; int error; if (args->tsp != NULL) { error = linux_get_timespec64(&uts, args->tsp); if (error != 0) return (error); tsp = &uts; } else tsp = NULL; error = linux_common_ppoll(td, args->fds, args->nfds, tsp, args->sset, args->ssize); if (error == 0 && args->tsp != NULL) error = linux_put_timespec64(&uts, args->tsp); return (error); } #endif /* __i386__ || (__amd64__ && COMPAT_LINUX32) */ static int linux_pollin(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) { int error; u_int i; error = copyin(ufds, fds, nfd * sizeof(*fds)); if (error != 0) return (error); for (i = 0; i < nfd; i++) { if (fds->events != 0) linux_to_bsd_poll_events(td, fds->fd, fds->events, &fds->events); fds++; } return (0); } static int linux_pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd) { int error = 0; u_int i, n = 0; for (i = 0; i < nfd; i++) { if (fds->revents != 0) { bsd_to_linux_poll_events(fds->revents, &fds->revents); n++; } error = copyout(&fds->revents, &ufds->revents, sizeof(ufds->revents)); if (error) return (error); fds++; ufds++; } td->td_retval[0] = n; return (0); } static int linux_sched_rr_get_interval_common(struct thread *td, pid_t pid, struct timespec *ts) { struct thread *tdt; int error; /* * According to man in case the invalid pid specified * EINVAL should be returned. */ if (pid < 0) return (EINVAL); tdt = linux_tdfind(td, pid, -1); if (tdt == NULL) return (ESRCH); error = kern_sched_rr_get_interval_td(td, tdt, ts); PROC_UNLOCK(tdt->td_proc); return (error); } int linux_sched_rr_get_interval(struct thread *td, struct linux_sched_rr_get_interval_args *uap) { struct timespec ts; int error; error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); if (error != 0) return (error); return (linux_put_timespec(&ts, uap->interval)); } #if defined(__i386__) || (defined(__amd64__) && defined(COMPAT_LINUX32)) int linux_sched_rr_get_interval_time64(struct thread *td, struct linux_sched_rr_get_interval_time64_args *uap) { struct timespec ts; int error; error = linux_sched_rr_get_interval_common(td, uap->pid, &ts); if (error != 0) return (error); return (linux_put_timespec64(&ts, uap->interval)); } #endif /* * In case when the Linux thread is the initial thread in * the thread group thread id is equal to the process id. * Glibc depends on this magic (assert in pthread_getattr_np.c). */ struct thread * linux_tdfind(struct thread *td, lwpid_t tid, pid_t pid) { struct linux_emuldata *em; struct thread *tdt; struct proc *p; tdt = NULL; if (tid == 0 || tid == td->td_tid) { if (pid != -1 && td->td_proc->p_pid != pid) return (NULL); PROC_LOCK(td->td_proc); return (td); } else if (tid > PID_MAX) return (tdfind(tid, pid)); /* * Initial thread where the tid equal to the pid. */ p = pfind(tid); if (p != NULL) { if (SV_PROC_ABI(p) != SV_ABI_LINUX || (pid != -1 && tid != pid)) { /* * p is not a Linuxulator process. */ PROC_UNLOCK(p); return (NULL); } FOREACH_THREAD_IN_PROC(p, tdt) { em = em_find(tdt); if (tid == em->em_tid) return (tdt); } PROC_UNLOCK(p); } return (NULL); } void linux_to_bsd_waitopts(int options, int *bsdopts) { if (options & LINUX_WNOHANG) *bsdopts |= WNOHANG; if (options & LINUX_WUNTRACED) *bsdopts |= WUNTRACED; if (options & LINUX_WEXITED) *bsdopts |= WEXITED; if (options & LINUX_WCONTINUED) *bsdopts |= WCONTINUED; if (options & LINUX_WNOWAIT) *bsdopts |= WNOWAIT; if (options & __WCLONE) *bsdopts |= WLINUXCLONE; } int linux_getrandom(struct thread *td, struct linux_getrandom_args *args) { struct uio uio; struct iovec iov; int error; if (args->flags & ~(LINUX_GRND_NONBLOCK|LINUX_GRND_RANDOM)) return (EINVAL); if (args->count > INT_MAX) args->count = INT_MAX; iov.iov_base = args->buf; iov.iov_len = args->count; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_resid = iov.iov_len; uio.uio_segflg = UIO_USERSPACE; uio.uio_rw = UIO_READ; uio.uio_td = td; error = read_random_uio(&uio, args->flags & LINUX_GRND_NONBLOCK); if (error == 0) td->td_retval[0] = args->count - uio.uio_resid; return (error); } int linux_mincore(struct thread *td, struct linux_mincore_args *args) { /* Needs to be page-aligned */ if (args->start & PAGE_MASK) return (EINVAL); return (kern_mincore(td, args->start, args->len, args->vec)); } #define SYSLOG_TAG "<6>" int linux_syslog(struct thread *td, struct linux_syslog_args *args) { char buf[128], *src, *dst; u_int seq; int buflen, error; if (args->type != LINUX_SYSLOG_ACTION_READ_ALL) { linux_msg(td, "syslog unsupported type 0x%x", args->type); return (EINVAL); } if (args->len < 6) { td->td_retval[0] = 0; return (0); } error = priv_check(td, PRIV_MSGBUF); if (error) return (error); mtx_lock(&msgbuf_lock); msgbuf_peekbytes(msgbufp, NULL, 0, &seq); mtx_unlock(&msgbuf_lock); dst = args->buf; error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); /* The -1 is to skip the trailing '\0'. */ dst += sizeof(SYSLOG_TAG) - 1; while (error == 0) { mtx_lock(&msgbuf_lock); buflen = msgbuf_peekbytes(msgbufp, buf, sizeof(buf), &seq); mtx_unlock(&msgbuf_lock); if (buflen == 0) break; for (src = buf; src < buf + buflen && error == 0; src++) { if (*src == '\0') continue; if (dst >= args->buf + args->len) goto out; error = copyout(src, dst, 1); dst++; if (*src == '\n' && *(src + 1) != '<' && dst + sizeof(SYSLOG_TAG) < args->buf + args->len) { error = copyout(&SYSLOG_TAG, dst, sizeof(SYSLOG_TAG)); dst += sizeof(SYSLOG_TAG) - 1; } } } out: td->td_retval[0] = dst - args->buf; return (error); } int linux_getcpu(struct thread *td, struct linux_getcpu_args *args) { int cpu, error, node; cpu = td->td_oncpu; /* Make sure it doesn't change during copyout(9) */ error = 0; node = cpuid_to_pcpu[cpu]->pc_domain; if (args->cpu != NULL) error = copyout(&cpu, args->cpu, sizeof(l_int)); if (args->node != NULL) error = copyout(&node, args->node, sizeof(l_int)); return (error); } #if defined(__i386__) || defined(__amd64__) int linux_poll(struct thread *td, struct linux_poll_args *args) { struct timespec ts, *tsp; if (args->timeout != INFTIM) { if (args->timeout < 0) return (EINVAL); ts.tv_sec = args->timeout / 1000; ts.tv_nsec = (args->timeout % 1000) * 1000000; tsp = &ts; } else tsp = NULL; return (linux_common_ppoll(td, args->fds, args->nfds, tsp, NULL, 0)); } #endif /* __i386__ || __amd64__ */ int linux_seccomp(struct thread *td, struct linux_seccomp_args *args) { switch (args->op) { case LINUX_SECCOMP_GET_ACTION_AVAIL: return (EOPNOTSUPP); default: /* * Ignore unknown operations, just like Linux kernel built * without CONFIG_SECCOMP. */ return (EINVAL); } } #ifndef COMPAT_LINUX32 int linux_execve(struct thread *td, struct linux_execve_args *args) { struct image_args eargs; char *path; int error; LINUX_CTR(execve); if (!LUSECONVPATH(td)) { error = exec_copyin_args(&eargs, args->path, UIO_USERSPACE, args->argp, args->envp); } else { LCONVPATHEXIST(args->path, &path); error = exec_copyin_args(&eargs, path, UIO_SYSSPACE, args->argp, args->envp); LFREEPATH(path); } if (error == 0) error = linux_common_execve(td, &eargs); AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td); return (error); } #endif diff --git a/sys/kern/kern_cpuset.c b/sys/kern/kern_cpuset.c index a5c644687241..0670d9a046a7 100644 --- a/sys/kern/kern_cpuset.c +++ b/sys/kern/kern_cpuset.c @@ -1,2511 +1,2520 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2008, Jeffrey Roberson * All rights reserved. * * Copyright (c) 2008 Nokia Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include "opt_ktrace.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif /* DDB */ /* * cpusets provide a mechanism for creating and manipulating sets of * processors for the purpose of constraining the scheduling of threads to * specific processors. * * Each process belongs to an identified set, by default this is set 1. Each * thread may further restrict the cpus it may run on to a subset of this * named set. This creates an anonymous set which other threads and processes * may not join by number. * * The named set is referred to herein as the 'base' set to avoid ambiguity. * This set is usually a child of a 'root' set while the anonymous set may * simply be referred to as a mask. In the syscall api these are referred to * as the ROOT, CPUSET, and MASK levels where CPUSET is called 'base' here. * * Threads inherit their set from their creator whether it be anonymous or * not. This means that anonymous sets are immutable because they may be * shared. To modify an anonymous set a new set is created with the desired * mask and the same parent as the existing anonymous set. This gives the * illusion of each thread having a private mask. * * Via the syscall apis a user may ask to retrieve or modify the root, base, * or mask that is discovered via a pid, tid, or setid. Modifying a set * modifies all numbered and anonymous child sets to comply with the new mask. * Modifying a pid or tid's mask applies only to that tid but must still * exist within the assigned parent set. * * A thread may not be assigned to a group separate from other threads in * the process. This is to remove ambiguity when the setid is queried with * a pid argument. There is no other technical limitation. * * This somewhat complex arrangement is intended to make it easy for * applications to query available processors and bind their threads to * specific processors while also allowing administrators to dynamically * reprovision by changing sets which apply to groups of processes. * * A simple application should not concern itself with sets at all and * rather apply masks to its own threads via CPU_WHICH_TID and a -1 id * meaning 'curthread'. It may query available cpus for that tid with a * getaffinity call using (CPU_LEVEL_CPUSET, CPU_WHICH_PID, -1, ...). */ LIST_HEAD(domainlist, domainset); struct domainset __read_mostly domainset_firsttouch; struct domainset __read_mostly domainset_fixed[MAXMEMDOM]; struct domainset __read_mostly domainset_interleave; struct domainset __read_mostly domainset_prefer[MAXMEMDOM]; struct domainset __read_mostly domainset_roundrobin; static uma_zone_t cpuset_zone; static uma_zone_t domainset_zone; static struct mtx cpuset_lock; static struct setlist cpuset_ids; static struct domainlist cpuset_domains; static struct unrhdr *cpuset_unr; static struct cpuset *cpuset_zero, *cpuset_default, *cpuset_kernel; static struct domainset *domainset0, *domainset2; /* Return the size of cpuset_t at the kernel level */ SYSCTL_INT(_kern_sched, OID_AUTO, cpusetsize, CTLFLAG_RD | CTLFLAG_CAPRD, SYSCTL_NULL_INT_PTR, sizeof(cpuset_t), "sizeof(cpuset_t)"); cpuset_t *cpuset_root; cpuset_t cpuset_domain[MAXMEMDOM]; static int domainset_valid(const struct domainset *, const struct domainset *); /* * Find the first non-anonymous set starting from 'set'. */ static struct cpuset * cpuset_getbase(struct cpuset *set) { if (set->cs_id == CPUSET_INVALID) set = set->cs_parent; return (set); } /* * Walks up the tree from 'set' to find the root. */ static struct cpuset * cpuset_getroot(struct cpuset *set) { while ((set->cs_flags & CPU_SET_ROOT) == 0 && set->cs_parent != NULL) set = set->cs_parent; return (set); } /* * Acquire a reference to a cpuset, all pointers must be tracked with refs. */ struct cpuset * cpuset_ref(struct cpuset *set) { refcount_acquire(&set->cs_ref); return (set); } /* * Walks up the tree from 'set' to find the root. Returns the root * referenced. */ static struct cpuset * cpuset_refroot(struct cpuset *set) { return (cpuset_ref(cpuset_getroot(set))); } /* * Find the first non-anonymous set starting from 'set'. Returns this set * referenced. May return the passed in set with an extra ref if it is * not anonymous. */ static struct cpuset * cpuset_refbase(struct cpuset *set) { return (cpuset_ref(cpuset_getbase(set))); } /* * Release a reference in a context where it is safe to allocate. */ void cpuset_rel(struct cpuset *set) { cpusetid_t id; if (refcount_release_if_not_last(&set->cs_ref)) return; mtx_lock_spin(&cpuset_lock); if (!refcount_release(&set->cs_ref)) { mtx_unlock_spin(&cpuset_lock); return; } LIST_REMOVE(set, cs_siblings); id = set->cs_id; if (id != CPUSET_INVALID) LIST_REMOVE(set, cs_link); mtx_unlock_spin(&cpuset_lock); cpuset_rel(set->cs_parent); uma_zfree(cpuset_zone, set); if (id != CPUSET_INVALID) free_unr(cpuset_unr, id); } /* * Deferred release must be used when in a context that is not safe to * allocate/free. This places any unreferenced sets on the list 'head'. */ static void cpuset_rel_defer(struct setlist *head, struct cpuset *set) { if (refcount_release_if_not_last(&set->cs_ref)) return; mtx_lock_spin(&cpuset_lock); if (!refcount_release(&set->cs_ref)) { mtx_unlock_spin(&cpuset_lock); return; } LIST_REMOVE(set, cs_siblings); if (set->cs_id != CPUSET_INVALID) LIST_REMOVE(set, cs_link); LIST_INSERT_HEAD(head, set, cs_link); mtx_unlock_spin(&cpuset_lock); } /* * Complete a deferred release. Removes the set from the list provided to * cpuset_rel_defer. */ static void cpuset_rel_complete(struct cpuset *set) { cpusetid_t id; id = set->cs_id; LIST_REMOVE(set, cs_link); cpuset_rel(set->cs_parent); uma_zfree(cpuset_zone, set); if (id != CPUSET_INVALID) free_unr(cpuset_unr, id); } /* * Find a set based on an id. Returns it with a ref. */ static struct cpuset * cpuset_lookup(cpusetid_t setid, struct thread *td) { struct cpuset *set; if (setid == CPUSET_INVALID) return (NULL); mtx_lock_spin(&cpuset_lock); LIST_FOREACH(set, &cpuset_ids, cs_link) if (set->cs_id == setid) break; if (set) cpuset_ref(set); mtx_unlock_spin(&cpuset_lock); KASSERT(td != NULL, ("[%s:%d] td is NULL", __func__, __LINE__)); if (set != NULL && jailed(td->td_ucred)) { struct cpuset *jset, *tset; jset = td->td_ucred->cr_prison->pr_cpuset; for (tset = set; tset != NULL; tset = tset->cs_parent) if (tset == jset) break; if (tset == NULL) { cpuset_rel(set); set = NULL; } } return (set); } /* * Initialize a set in the space provided in 'set' with the provided parameters. * The set is returned with a single ref. May return EDEADLK if the set * will have no valid cpu based on restrictions from the parent. */ static int cpuset_init(struct cpuset *set, struct cpuset *parent, const cpuset_t *mask, struct domainset *domain, cpusetid_t id) { if (domain == NULL) domain = parent->cs_domain; if (mask == NULL) mask = &parent->cs_mask; if (!CPU_OVERLAP(&parent->cs_mask, mask)) return (EDEADLK); /* The domain must be prepared ahead of time. */ if (!domainset_valid(parent->cs_domain, domain)) return (EDEADLK); CPU_COPY(mask, &set->cs_mask); LIST_INIT(&set->cs_children); refcount_init(&set->cs_ref, 1); set->cs_flags = 0; mtx_lock_spin(&cpuset_lock); set->cs_domain = domain; CPU_AND(&set->cs_mask, &set->cs_mask, &parent->cs_mask); set->cs_id = id; set->cs_parent = cpuset_ref(parent); LIST_INSERT_HEAD(&parent->cs_children, set, cs_siblings); if (set->cs_id != CPUSET_INVALID) LIST_INSERT_HEAD(&cpuset_ids, set, cs_link); mtx_unlock_spin(&cpuset_lock); return (0); } /* * Create a new non-anonymous set with the requested parent and mask. May * return failures if the mask is invalid or a new number can not be * allocated. * * If *setp is not NULL, then it will be used as-is. The caller must take * into account that *setp will be inserted at the head of cpuset_ids and * plan any potentially conflicting cs_link usage accordingly. */ static int cpuset_create(struct cpuset **setp, struct cpuset *parent, const cpuset_t *mask) { struct cpuset *set; cpusetid_t id; int error; bool dofree; id = alloc_unr(cpuset_unr); if (id == -1) return (ENFILE); dofree = (*setp == NULL); if (*setp != NULL) set = *setp; else *setp = set = uma_zalloc(cpuset_zone, M_WAITOK | M_ZERO); error = cpuset_init(set, parent, mask, NULL, id); if (error == 0) return (0); free_unr(cpuset_unr, id); if (dofree) uma_zfree(cpuset_zone, set); return (error); } static void cpuset_freelist_add(struct setlist *list, int count) { struct cpuset *set; int i; for (i = 0; i < count; i++) { set = uma_zalloc(cpuset_zone, M_ZERO | M_WAITOK); LIST_INSERT_HEAD(list, set, cs_link); } } static void cpuset_freelist_init(struct setlist *list, int count) { LIST_INIT(list); cpuset_freelist_add(list, count); } static void cpuset_freelist_free(struct setlist *list) { struct cpuset *set; while ((set = LIST_FIRST(list)) != NULL) { LIST_REMOVE(set, cs_link); uma_zfree(cpuset_zone, set); } } static void domainset_freelist_add(struct domainlist *list, int count) { struct domainset *set; int i; for (i = 0; i < count; i++) { set = uma_zalloc(domainset_zone, M_ZERO | M_WAITOK); LIST_INSERT_HEAD(list, set, ds_link); } } static void domainset_freelist_init(struct domainlist *list, int count) { LIST_INIT(list); domainset_freelist_add(list, count); } static void domainset_freelist_free(struct domainlist *list) { struct domainset *set; while ((set = LIST_FIRST(list)) != NULL) { LIST_REMOVE(set, ds_link); uma_zfree(domainset_zone, set); } } /* Copy a domainset preserving mask and policy. */ static void domainset_copy(const struct domainset *from, struct domainset *to) { DOMAINSET_COPY(&from->ds_mask, &to->ds_mask); to->ds_policy = from->ds_policy; to->ds_prefer = from->ds_prefer; } /* Return 1 if mask and policy are equal, otherwise 0. */ static int domainset_equal(const struct domainset *one, const struct domainset *two) { return (DOMAINSET_CMP(&one->ds_mask, &two->ds_mask) == 0 && one->ds_policy == two->ds_policy && one->ds_prefer == two->ds_prefer); } /* Return 1 if child is a valid subset of parent. */ static int domainset_valid(const struct domainset *parent, const struct domainset *child) { if (child->ds_policy != DOMAINSET_POLICY_PREFER) return (DOMAINSET_SUBSET(&parent->ds_mask, &child->ds_mask)); return (DOMAINSET_ISSET(child->ds_prefer, &parent->ds_mask)); } static int domainset_restrict(const struct domainset *parent, const struct domainset *child) { if (child->ds_policy != DOMAINSET_POLICY_PREFER) return (DOMAINSET_OVERLAP(&parent->ds_mask, &child->ds_mask)); return (DOMAINSET_ISSET(child->ds_prefer, &parent->ds_mask)); } /* * Lookup or create a domainset. The key is provided in ds_mask and * ds_policy. If the domainset does not yet exist the storage in * 'domain' is used to insert. Otherwise this storage is freed to the * domainset_zone and the existing domainset is returned. */ static struct domainset * _domainset_create(struct domainset *domain, struct domainlist *freelist) { struct domainset *ndomain; int i, j; KASSERT(domain->ds_cnt <= vm_ndomains, ("invalid domain count in domainset %p", domain)); KASSERT(domain->ds_policy != DOMAINSET_POLICY_PREFER || domain->ds_prefer < vm_ndomains, ("invalid preferred domain in domains %p", domain)); mtx_lock_spin(&cpuset_lock); LIST_FOREACH(ndomain, &cpuset_domains, ds_link) if (domainset_equal(ndomain, domain)) break; /* * If the domain does not yet exist we insert it and initialize * various iteration helpers which are not part of the key. */ if (ndomain == NULL) { LIST_INSERT_HEAD(&cpuset_domains, domain, ds_link); domain->ds_cnt = DOMAINSET_COUNT(&domain->ds_mask); for (i = 0, j = 0; i < DOMAINSET_FLS(&domain->ds_mask); i++) if (DOMAINSET_ISSET(i, &domain->ds_mask)) domain->ds_order[j++] = i; } mtx_unlock_spin(&cpuset_lock); if (ndomain == NULL) return (domain); if (freelist != NULL) LIST_INSERT_HEAD(freelist, domain, ds_link); else uma_zfree(domainset_zone, domain); return (ndomain); } /* * Are any of the domains in the mask empty? If so, silently * remove them and update the domainset accordingly. If only empty * domains are present, we must return failure. */ static bool domainset_empty_vm(struct domainset *domain) { domainset_t empty; int i, j; DOMAINSET_ZERO(&empty); for (i = 0; i < vm_ndomains; i++) if (VM_DOMAIN_EMPTY(i)) DOMAINSET_SET(i, &empty); if (DOMAINSET_SUBSET(&empty, &domain->ds_mask)) return (true); /* Remove empty domains from the set and recompute. */ DOMAINSET_ANDNOT(&domain->ds_mask, &empty); domain->ds_cnt = DOMAINSET_COUNT(&domain->ds_mask); for (i = j = 0; i < DOMAINSET_FLS(&domain->ds_mask); i++) if (DOMAINSET_ISSET(i, &domain->ds_mask)) domain->ds_order[j++] = i; /* Convert a PREFER policy referencing an empty domain to RR. */ if (domain->ds_policy == DOMAINSET_POLICY_PREFER && DOMAINSET_ISSET(domain->ds_prefer, &empty)) { domain->ds_policy = DOMAINSET_POLICY_ROUNDROBIN; domain->ds_prefer = -1; } return (false); } /* * Create or lookup a domainset based on the key held in 'domain'. */ struct domainset * domainset_create(const struct domainset *domain) { struct domainset *ndomain; /* * Validate the policy. It must specify a useable policy number with * only valid domains. Preferred must include the preferred domain * in the mask. */ if (domain->ds_policy <= DOMAINSET_POLICY_INVALID || domain->ds_policy > DOMAINSET_POLICY_MAX) return (NULL); if (domain->ds_policy == DOMAINSET_POLICY_PREFER && !DOMAINSET_ISSET(domain->ds_prefer, &domain->ds_mask)) return (NULL); if (!DOMAINSET_SUBSET(&domainset0->ds_mask, &domain->ds_mask)) return (NULL); ndomain = uma_zalloc(domainset_zone, M_WAITOK | M_ZERO); domainset_copy(domain, ndomain); return _domainset_create(ndomain, NULL); } /* * Update thread domainset pointers. */ static void domainset_notify(void) { struct thread *td; struct proc *p; sx_slock(&allproc_lock); FOREACH_PROC_IN_SYSTEM(p) { PROC_LOCK(p); if (p->p_state == PRS_NEW) { PROC_UNLOCK(p); continue; } FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); td->td_domain.dr_policy = td->td_cpuset->cs_domain; thread_unlock(td); } PROC_UNLOCK(p); } sx_sunlock(&allproc_lock); kernel_object->domain.dr_policy = cpuset_kernel->cs_domain; } /* * Create a new set that is a subset of a parent. */ static struct domainset * domainset_shadow(const struct domainset *pdomain, const struct domainset *domain, struct domainlist *freelist) { struct domainset *ndomain; ndomain = LIST_FIRST(freelist); LIST_REMOVE(ndomain, ds_link); /* * Initialize the key from the request. */ domainset_copy(domain, ndomain); /* * Restrict the key by the parent. */ DOMAINSET_AND(&ndomain->ds_mask, &pdomain->ds_mask); return _domainset_create(ndomain, freelist); } /* * Recursively check for errors that would occur from applying mask to * the tree of sets starting at 'set'. Checks for sets that would become * empty as well as RDONLY flags. */ static int cpuset_testupdate(struct cpuset *set, cpuset_t *mask, int augment_mask) { struct cpuset *nset; cpuset_t newmask; int error; mtx_assert(&cpuset_lock, MA_OWNED); if (set->cs_flags & CPU_SET_RDONLY) return (EPERM); if (augment_mask) { CPU_AND(&newmask, &set->cs_mask, mask); } else CPU_COPY(mask, &newmask); if (CPU_EMPTY(&newmask)) return (EDEADLK); error = 0; LIST_FOREACH(nset, &set->cs_children, cs_siblings) if ((error = cpuset_testupdate(nset, &newmask, 1)) != 0) break; return (error); } /* * Applies the mask 'mask' without checking for empty sets or permissions. */ static void cpuset_update(struct cpuset *set, cpuset_t *mask) { struct cpuset *nset; mtx_assert(&cpuset_lock, MA_OWNED); CPU_AND(&set->cs_mask, &set->cs_mask, mask); LIST_FOREACH(nset, &set->cs_children, cs_siblings) cpuset_update(nset, &set->cs_mask); return; } /* * Modify the set 'set' to use a copy of the mask provided. Apply this new * mask to restrict all children in the tree. Checks for validity before * applying the changes. */ static int cpuset_modify(struct cpuset *set, cpuset_t *mask) { struct cpuset *root; int error; error = priv_check(curthread, PRIV_SCHED_CPUSET); if (error) return (error); /* * In case we are called from within the jail, * we do not allow modifying the dedicated root * cpuset of the jail but may still allow to * change child sets, including subordinate jails' * roots. */ if ((set->cs_flags & CPU_SET_ROOT) != 0 && jailed(curthread->td_ucred) && set == curthread->td_ucred->cr_prison->pr_cpuset) return (EPERM); /* * Verify that we have access to this set of * cpus. */ if ((set->cs_flags & (CPU_SET_ROOT | CPU_SET_RDONLY)) == CPU_SET_ROOT) { KASSERT(set->cs_parent != NULL, ("jail.cpuset=%d is not a proper child of parent jail's root.", set->cs_id)); /* * cpuset_getroot() cannot work here due to how top-level jail * roots are constructed. Top-level jails are parented to * thread0's cpuset (i.e. cpuset 1) rather than the system root. */ root = set->cs_parent; } else { root = cpuset_getroot(set); } mtx_lock_spin(&cpuset_lock); if (root && !CPU_SUBSET(&root->cs_mask, mask)) { error = EINVAL; goto out; } error = cpuset_testupdate(set, mask, 0); if (error) goto out; CPU_COPY(mask, &set->cs_mask); cpuset_update(set, mask); out: mtx_unlock_spin(&cpuset_lock); return (error); } /* * Recursively check for errors that would occur from applying mask to * the tree of sets starting at 'set'. Checks for sets that would become * empty as well as RDONLY flags. */ static int cpuset_testupdate_domain(struct cpuset *set, struct domainset *dset, struct domainset *orig, int *count, int augment_mask __unused) { struct cpuset *nset; struct domainset *domain; struct domainset newset; int error; mtx_assert(&cpuset_lock, MA_OWNED); if (set->cs_flags & CPU_SET_RDONLY) return (EPERM); domain = set->cs_domain; domainset_copy(domain, &newset); if (!domainset_equal(domain, orig)) { if (!domainset_restrict(domain, dset)) return (EDEADLK); DOMAINSET_AND(&newset.ds_mask, &dset->ds_mask); /* Count the number of domains that are changing. */ (*count)++; } error = 0; LIST_FOREACH(nset, &set->cs_children, cs_siblings) if ((error = cpuset_testupdate_domain(nset, &newset, domain, count, 1)) != 0) break; return (error); } /* * Applies the mask 'mask' without checking for empty sets or permissions. */ static void cpuset_update_domain(struct cpuset *set, struct domainset *domain, struct domainset *orig, struct domainlist *domains) { struct cpuset *nset; mtx_assert(&cpuset_lock, MA_OWNED); /* * If this domainset has changed from the parent we must calculate * a new set. Otherwise it simply inherits from the parent. When * we inherit from the parent we get a new mask and policy. If the * set is modified from the parent we keep the policy and only * update the mask. */ if (set->cs_domain != orig) { orig = set->cs_domain; set->cs_domain = domainset_shadow(domain, orig, domains); } else set->cs_domain = domain; LIST_FOREACH(nset, &set->cs_children, cs_siblings) cpuset_update_domain(nset, set->cs_domain, orig, domains); return; } /* * Modify the set 'set' to use a copy the domainset provided. Apply this new * mask to restrict all children in the tree. Checks for validity before * applying the changes. */ static int cpuset_modify_domain(struct cpuset *set, struct domainset *domain) { struct domainlist domains; struct domainset temp; struct domainset *dset; struct cpuset *root; int ndomains, needed; int error; error = priv_check(curthread, PRIV_SCHED_CPUSET); if (error) return (error); /* * In case we are called from within the jail * we do not allow modifying the dedicated root * cpuset of the jail but may still allow to * change child sets. */ if (jailed(curthread->td_ucred) && set->cs_flags & CPU_SET_ROOT) return (EPERM); domainset_freelist_init(&domains, 0); domain = domainset_create(domain); ndomains = 0; mtx_lock_spin(&cpuset_lock); for (;;) { root = cpuset_getroot(set); dset = root->cs_domain; /* * Verify that we have access to this set of domains. */ if (!domainset_valid(dset, domain)) { error = EINVAL; goto out; } /* * If applying prefer we keep the current set as the fallback. */ if (domain->ds_policy == DOMAINSET_POLICY_PREFER) DOMAINSET_COPY(&set->cs_domain->ds_mask, &domain->ds_mask); /* * Determine whether we can apply this set of domains and * how many new domain structures it will require. */ domainset_copy(domain, &temp); needed = 0; error = cpuset_testupdate_domain(set, &temp, set->cs_domain, &needed, 0); if (error) goto out; if (ndomains >= needed) break; /* Dropping the lock; we'll need to re-evaluate again. */ mtx_unlock_spin(&cpuset_lock); domainset_freelist_add(&domains, needed - ndomains); ndomains = needed; mtx_lock_spin(&cpuset_lock); } dset = set->cs_domain; cpuset_update_domain(set, domain, dset, &domains); out: mtx_unlock_spin(&cpuset_lock); domainset_freelist_free(&domains); if (error == 0) domainset_notify(); return (error); } /* * Resolve the 'which' parameter of several cpuset apis. * * For WHICH_PID and WHICH_TID return a locked proc and valid proc/tid. Also * checks for permission via p_cansched(). * * For WHICH_SET returns a valid set with a new reference. * * -1 may be supplied for any argument to mean the current proc/thread or * the base set of the current thread. May fail with ESRCH/EPERM. */ int cpuset_which(cpuwhich_t which, id_t id, struct proc **pp, struct thread **tdp, struct cpuset **setp) { struct cpuset *set; struct thread *td; struct proc *p; int error; *pp = p = NULL; *tdp = td = NULL; *setp = set = NULL; switch (which) { case CPU_WHICH_PID: if (id == -1) { PROC_LOCK(curproc); p = curproc; break; } if ((p = pfind(id)) == NULL) return (ESRCH); break; case CPU_WHICH_TID: if (id == -1) { PROC_LOCK(curproc); p = curproc; td = curthread; break; } td = tdfind(id, -1); if (td == NULL) return (ESRCH); p = td->td_proc; break; case CPU_WHICH_CPUSET: if (id == -1) { thread_lock(curthread); set = cpuset_refbase(curthread->td_cpuset); thread_unlock(curthread); } else set = cpuset_lookup(id, curthread); if (set) { *setp = set; return (0); } return (ESRCH); case CPU_WHICH_JAIL: { /* Find `set' for prison with given id. */ struct prison *pr; sx_slock(&allprison_lock); pr = prison_find_child(curthread->td_ucred->cr_prison, id); sx_sunlock(&allprison_lock); if (pr == NULL) return (ESRCH); cpuset_ref(pr->pr_cpuset); *setp = pr->pr_cpuset; mtx_unlock(&pr->pr_mtx); return (0); } case CPU_WHICH_IRQ: case CPU_WHICH_DOMAIN: return (0); default: return (EINVAL); } error = p_cansched(curthread, p); if (error) { PROC_UNLOCK(p); return (error); } if (td == NULL) td = FIRST_THREAD_IN_PROC(p); *pp = p; *tdp = td; return (0); } static int cpuset_testshadow(struct cpuset *set, const cpuset_t *mask, const struct domainset *domain) { struct cpuset *parent; struct domainset *dset; parent = cpuset_getbase(set); /* * If we are restricting a cpu mask it must be a subset of the * parent or invalid CPUs have been specified. */ if (mask != NULL && !CPU_SUBSET(&parent->cs_mask, mask)) return (EINVAL); /* * If we are restricting a domain mask it must be a subset of the * parent or invalid domains have been specified. */ dset = parent->cs_domain; if (domain != NULL && !domainset_valid(dset, domain)) return (EINVAL); return (0); } /* * Create an anonymous set with the provided mask in the space provided by * 'nset'. If the passed in set is anonymous we use its parent otherwise * the new set is a child of 'set'. */ static int cpuset_shadow(struct cpuset *set, struct cpuset **nsetp, const cpuset_t *mask, const struct domainset *domain, struct setlist *cpusets, struct domainlist *domains) { struct cpuset *parent; struct cpuset *nset; struct domainset *dset; struct domainset *d; int error; error = cpuset_testshadow(set, mask, domain); if (error) return (error); parent = cpuset_getbase(set); dset = parent->cs_domain; if (mask == NULL) mask = &set->cs_mask; if (domain != NULL) d = domainset_shadow(dset, domain, domains); else d = set->cs_domain; nset = LIST_FIRST(cpusets); error = cpuset_init(nset, parent, mask, d, CPUSET_INVALID); if (error == 0) { LIST_REMOVE(nset, cs_link); *nsetp = nset; } return (error); } static struct cpuset * cpuset_update_thread(struct thread *td, struct cpuset *nset) { struct cpuset *tdset; tdset = td->td_cpuset; td->td_cpuset = nset; td->td_domain.dr_policy = nset->cs_domain; sched_affinity(td); return (tdset); } static int cpuset_setproc_test_maskthread(struct cpuset *tdset, cpuset_t *mask, struct domainset *domain) { struct cpuset *parent; parent = cpuset_getbase(tdset); if (mask == NULL) mask = &tdset->cs_mask; if (domain == NULL) domain = tdset->cs_domain; return cpuset_testshadow(parent, mask, domain); } static int cpuset_setproc_maskthread(struct cpuset *tdset, cpuset_t *mask, struct domainset *domain, struct cpuset **nsetp, struct setlist *freelist, struct domainlist *domainlist) { struct cpuset *parent; parent = cpuset_getbase(tdset); if (mask == NULL) mask = &tdset->cs_mask; if (domain == NULL) domain = tdset->cs_domain; return cpuset_shadow(parent, nsetp, mask, domain, freelist, domainlist); } static int cpuset_setproc_setthread_mask(struct cpuset *tdset, struct cpuset *set, cpuset_t *mask, struct domainset *domain) { struct cpuset *parent; parent = cpuset_getbase(tdset); /* * If the thread restricted its mask then apply that same * restriction to the new set, otherwise take it wholesale. */ if (CPU_CMP(&tdset->cs_mask, &parent->cs_mask) != 0) { CPU_AND(mask, &tdset->cs_mask, &set->cs_mask); } else CPU_COPY(&set->cs_mask, mask); /* * If the thread restricted the domain then we apply the * restriction to the new set but retain the policy. */ if (tdset->cs_domain != parent->cs_domain) { domainset_copy(tdset->cs_domain, domain); DOMAINSET_AND(&domain->ds_mask, &set->cs_domain->ds_mask); } else domainset_copy(set->cs_domain, domain); if (CPU_EMPTY(mask) || DOMAINSET_EMPTY(&domain->ds_mask)) return (EDEADLK); return (0); } static int cpuset_setproc_test_setthread(struct cpuset *tdset, struct cpuset *set) { struct domainset domain; cpuset_t mask; if (tdset->cs_id != CPUSET_INVALID) return (0); return cpuset_setproc_setthread_mask(tdset, set, &mask, &domain); } static int cpuset_setproc_setthread(struct cpuset *tdset, struct cpuset *set, struct cpuset **nsetp, struct setlist *freelist, struct domainlist *domainlist) { struct domainset domain; cpuset_t mask; int error; /* * If we're replacing on a thread that has not constrained the * original set we can simply accept the new set. */ if (tdset->cs_id != CPUSET_INVALID) { *nsetp = cpuset_ref(set); return (0); } error = cpuset_setproc_setthread_mask(tdset, set, &mask, &domain); if (error) return (error); return cpuset_shadow(set, nsetp, &mask, &domain, freelist, domainlist); } static int cpuset_setproc_newbase(struct thread *td, struct cpuset *set, struct cpuset *nroot, struct cpuset **nsetp, struct setlist *cpusets, struct domainlist *domainlist) { struct domainset ndomain; cpuset_t nmask; struct cpuset *pbase; int error; pbase = cpuset_getbase(td->td_cpuset); /* Copy process mask, then further apply the new root mask. */ CPU_AND(&nmask, &pbase->cs_mask, &nroot->cs_mask); domainset_copy(pbase->cs_domain, &ndomain); DOMAINSET_AND(&ndomain.ds_mask, &set->cs_domain->ds_mask); /* Policy is too restrictive, will not work. */ if (CPU_EMPTY(&nmask) || DOMAINSET_EMPTY(&ndomain.ds_mask)) return (EDEADLK); /* * Remove pbase from the freelist in advance, it'll be pushed to * cpuset_ids on success. We assume here that cpuset_create() will not * touch pbase on failure, and we just enqueue it back to the freelist * to remain in a consistent state. */ pbase = LIST_FIRST(cpusets); LIST_REMOVE(pbase, cs_link); error = cpuset_create(&pbase, set, &nmask); if (error != 0) { LIST_INSERT_HEAD(cpusets, pbase, cs_link); return (error); } /* Duplicates some work from above... oh well. */ pbase->cs_domain = domainset_shadow(set->cs_domain, &ndomain, domainlist); *nsetp = pbase; return (0); } /* * Handle four cases for updating an entire process. * * 1) Set is non-null and the process is not rebasing onto a new root. This * reparents all anonymous sets to the provided set and replaces all * non-anonymous td_cpusets with the provided set. * 2) Set is non-null and the process is rebasing onto a new root. This * creates a new base set if the process previously had its own base set, * then reparents all anonymous sets either to that set or the provided set * if one was not created. Non-anonymous sets are similarly replaced. * 3) Mask is non-null. This replaces or creates anonymous sets for every * thread with the existing base as a parent. * 4) domain is non-null. This creates anonymous sets for every thread * and replaces the domain set. * * This is overly complicated because we can't allocate while holding a * spinlock and spinlocks must be held while changing and examining thread * state. */ static int cpuset_setproc(pid_t pid, struct cpuset *set, cpuset_t *mask, struct domainset *domain, bool rebase) { struct setlist freelist; struct setlist droplist; struct domainlist domainlist; struct cpuset *base, *nset, *nroot, *tdroot; struct thread *td; struct proc *p; int needed; int nfree; int error; /* * The algorithm requires two passes due to locking considerations. * * 1) Lookup the process and acquire the locks in the required order. * 2) If enough cpusets have not been allocated release the locks and * allocate them. Loop. */ cpuset_freelist_init(&freelist, 1); domainset_freelist_init(&domainlist, 1); nfree = 1; LIST_INIT(&droplist); nfree = 0; base = set; nroot = NULL; if (set != NULL) nroot = cpuset_getroot(set); for (;;) { error = cpuset_which(CPU_WHICH_PID, pid, &p, &td, &nset); if (error) goto out; tdroot = cpuset_getroot(td->td_cpuset); needed = p->p_numthreads; if (set != NULL && rebase && tdroot != nroot) needed++; if (nfree >= needed) break; PROC_UNLOCK(p); if (nfree < needed) { cpuset_freelist_add(&freelist, needed - nfree); domainset_freelist_add(&domainlist, needed - nfree); nfree = needed; } } PROC_LOCK_ASSERT(p, MA_OWNED); /* * If we're changing roots and the root set is what has been specified * as the parent, then we'll check if the process was previously using * the root set and, if it wasn't, create a new base with the process's * mask applied to it. * * If the new root is incompatible with the existing mask, then we allow * the process to take on the new root if and only if they have * privilege to widen their mask anyways. Unprivileged processes get * rejected with EDEADLK. */ if (set != NULL && rebase && nroot != tdroot) { cpusetid_t base_id, root_id; root_id = td->td_ucred->cr_prison->pr_cpuset->cs_id; base_id = cpuset_getbase(td->td_cpuset)->cs_id; if (base_id != root_id) { error = cpuset_setproc_newbase(td, set, nroot, &base, &freelist, &domainlist); if (error == EDEADLK && priv_check(td, PRIV_SCHED_CPUSET) == 0) error = 0; if (error != 0) goto unlock_out; } } /* * Now that the appropriate locks are held and we have enough cpusets, * make sure the operation will succeed before applying changes. The * proc lock prevents td_cpuset from changing between calls. */ error = 0; FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (set != NULL) error = cpuset_setproc_test_setthread(td->td_cpuset, base); else error = cpuset_setproc_test_maskthread(td->td_cpuset, mask, domain); thread_unlock(td); if (error) goto unlock_out; } /* * Replace each thread's cpuset while using deferred release. We * must do this because the thread lock must be held while operating * on the thread and this limits the type of operations allowed. */ FOREACH_THREAD_IN_PROC(p, td) { thread_lock(td); if (set != NULL) error = cpuset_setproc_setthread(td->td_cpuset, base, &nset, &freelist, &domainlist); else error = cpuset_setproc_maskthread(td->td_cpuset, mask, domain, &nset, &freelist, &domainlist); if (error) { thread_unlock(td); break; } cpuset_rel_defer(&droplist, cpuset_update_thread(td, nset)); thread_unlock(td); } unlock_out: PROC_UNLOCK(p); out: if (base != NULL && base != set) cpuset_rel(base); while ((nset = LIST_FIRST(&droplist)) != NULL) cpuset_rel_complete(nset); cpuset_freelist_free(&freelist); domainset_freelist_free(&domainlist); return (error); } static int bitset_strprint(char *buf, size_t bufsiz, const struct bitset *set, int setlen) { size_t bytes; int i, once; char *p; once = 0; p = buf; for (i = 0; i < __bitset_words(setlen); i++) { if (once != 0) { if (bufsiz < 1) return (0); *p = ','; p++; bufsiz--; } else once = 1; if (bufsiz < sizeof(__STRING(ULONG_MAX))) return (0); bytes = snprintf(p, bufsiz, "%lx", set->__bits[i]); p += bytes; bufsiz -= bytes; } return (p - buf); } static int bitset_strscan(struct bitset *set, int setlen, const char *buf) { int i, ret; const char *p; BIT_ZERO(setlen, set); p = buf; for (i = 0; i < __bitset_words(setlen); i++) { if (*p == ',') { p++; continue; } ret = sscanf(p, "%lx", &set->__bits[i]); if (ret == 0 || ret == -1) break; while (isxdigit(*p)) p++; } return (p - buf); } /* * Return a string representing a valid layout for a cpuset_t object. * It expects an incoming buffer at least sized as CPUSETBUFSIZ. */ char * cpusetobj_strprint(char *buf, const cpuset_t *set) { bitset_strprint(buf, CPUSETBUFSIZ, (const struct bitset *)set, CPU_SETSIZE); return (buf); } /* * Build a valid cpuset_t object from a string representation. * It expects an incoming buffer at least sized as CPUSETBUFSIZ. */ int cpusetobj_strscan(cpuset_t *set, const char *buf) { char p; if (strlen(buf) > CPUSETBUFSIZ - 1) return (-1); p = buf[bitset_strscan((struct bitset *)set, CPU_SETSIZE, buf)]; if (p != '\0') return (-1); return (0); } /* * Handle a domainset specifier in the sysctl tree. A poiner to a pointer to * a domainset is in arg1. If the user specifies a valid domainset the * pointer is updated. * * Format is: * hex mask word 0,hex mask word 1,...:decimal policy:decimal preferred */ int sysctl_handle_domainset(SYSCTL_HANDLER_ARGS) { char buf[DOMAINSETBUFSIZ]; struct domainset *dset; struct domainset key; int policy, prefer, error; char *p; dset = *(struct domainset **)arg1; error = 0; if (dset != NULL) { p = buf + bitset_strprint(buf, DOMAINSETBUFSIZ, (const struct bitset *)&dset->ds_mask, DOMAINSET_SETSIZE); sprintf(p, ":%d:%d", dset->ds_policy, dset->ds_prefer); } else sprintf(buf, ""); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return (error); /* * Read in and validate the string. */ memset(&key, 0, sizeof(key)); p = &buf[bitset_strscan((struct bitset *)&key.ds_mask, DOMAINSET_SETSIZE, buf)]; if (p == buf) return (EINVAL); if (sscanf(p, ":%d:%d", &policy, &prefer) != 2) return (EINVAL); key.ds_policy = policy; key.ds_prefer = prefer; /* Domainset_create() validates the policy.*/ dset = domainset_create(&key); if (dset == NULL) return (EINVAL); *(struct domainset **)arg1 = dset; return (error); } /* * Apply an anonymous mask or a domain to a single thread. */ static int _cpuset_setthread(lwpid_t id, cpuset_t *mask, struct domainset *domain) { struct setlist cpusets; struct domainlist domainlist; struct cpuset *nset; struct cpuset *set; struct thread *td; struct proc *p; int error; cpuset_freelist_init(&cpusets, 1); domainset_freelist_init(&domainlist, domain != NULL); error = cpuset_which(CPU_WHICH_TID, id, &p, &td, &set); if (error) goto out; set = NULL; thread_lock(td); error = cpuset_shadow(td->td_cpuset, &nset, mask, domain, &cpusets, &domainlist); if (error == 0) set = cpuset_update_thread(td, nset); thread_unlock(td); PROC_UNLOCK(p); if (set) cpuset_rel(set); out: cpuset_freelist_free(&cpusets); domainset_freelist_free(&domainlist); return (error); } /* * Apply an anonymous mask to a single thread. */ int cpuset_setthread(lwpid_t id, cpuset_t *mask) { return _cpuset_setthread(id, mask, NULL); } /* * Apply new cpumask to the ithread. */ int cpuset_setithread(lwpid_t id, int cpu) { cpuset_t mask; CPU_ZERO(&mask); if (cpu == NOCPU) CPU_COPY(cpuset_root, &mask); else CPU_SET(cpu, &mask); return _cpuset_setthread(id, &mask, NULL); } /* * Initialize static domainsets after NUMA information is available. This is * called before memory allocators are initialized. */ void domainset_init(void) { struct domainset *dset; int i; dset = &domainset_firsttouch; DOMAINSET_COPY(&all_domains, &dset->ds_mask); dset->ds_policy = DOMAINSET_POLICY_FIRSTTOUCH; dset->ds_prefer = -1; _domainset_create(dset, NULL); dset = &domainset_interleave; DOMAINSET_COPY(&all_domains, &dset->ds_mask); dset->ds_policy = DOMAINSET_POLICY_INTERLEAVE; dset->ds_prefer = -1; _domainset_create(dset, NULL); dset = &domainset_roundrobin; DOMAINSET_COPY(&all_domains, &dset->ds_mask); dset->ds_policy = DOMAINSET_POLICY_ROUNDROBIN; dset->ds_prefer = -1; _domainset_create(dset, NULL); for (i = 0; i < vm_ndomains; i++) { dset = &domainset_fixed[i]; DOMAINSET_ZERO(&dset->ds_mask); DOMAINSET_SET(i, &dset->ds_mask); dset->ds_policy = DOMAINSET_POLICY_ROUNDROBIN; _domainset_create(dset, NULL); dset = &domainset_prefer[i]; DOMAINSET_COPY(&all_domains, &dset->ds_mask); dset->ds_policy = DOMAINSET_POLICY_PREFER; dset->ds_prefer = i; _domainset_create(dset, NULL); } } /* * Define the domainsets for cpuset 0, 1 and cpuset 2. */ void domainset_zero(void) { struct domainset *dset, *tmp; mtx_init(&cpuset_lock, "cpuset", NULL, MTX_SPIN | MTX_RECURSE); domainset0 = &domainset_firsttouch; curthread->td_domain.dr_policy = domainset0; domainset2 = &domainset_interleave; kernel_object->domain.dr_policy = domainset2; /* Remove empty domains from the global policies. */ LIST_FOREACH_SAFE(dset, &cpuset_domains, ds_link, tmp) if (domainset_empty_vm(dset)) LIST_REMOVE(dset, ds_link); } /* * Creates system-wide cpusets and the cpuset for thread0 including three * sets: * * 0 - The root set which should represent all valid processors in the * system. This set is immutable. * 1 - The default set which all processes are a member of until changed. * This allows an administrator to move all threads off of given cpus to * dedicate them to high priority tasks or save power etc. * 2 - The kernel set which allows restriction and policy to be applied only * to kernel threads and the kernel_object. */ struct cpuset * cpuset_thread0(void) { struct cpuset *set; int i; int error __unused; cpuset_zone = uma_zcreate("cpuset", sizeof(struct cpuset), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); domainset_zone = uma_zcreate("domainset", sizeof(struct domainset), NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); /* * Create the root system set (0) for the whole machine. Doesn't use * cpuset_create() due to NULL parent. */ set = uma_zalloc(cpuset_zone, M_WAITOK | M_ZERO); CPU_COPY(&all_cpus, &set->cs_mask); LIST_INIT(&set->cs_children); LIST_INSERT_HEAD(&cpuset_ids, set, cs_link); refcount_init(&set->cs_ref, 1); set->cs_flags = CPU_SET_ROOT | CPU_SET_RDONLY; set->cs_domain = domainset0; cpuset_zero = set; cpuset_root = &set->cs_mask; /* * Now derive a default (1), modifiable set from that to give out. */ set = uma_zalloc(cpuset_zone, M_WAITOK | M_ZERO); error = cpuset_init(set, cpuset_zero, NULL, NULL, 1); KASSERT(error == 0, ("Error creating default set: %d\n", error)); cpuset_default = set; /* * Create the kernel set (2). */ set = uma_zalloc(cpuset_zone, M_WAITOK | M_ZERO); error = cpuset_init(set, cpuset_zero, NULL, NULL, 2); KASSERT(error == 0, ("Error creating kernel set: %d\n", error)); set->cs_domain = domainset2; cpuset_kernel = set; /* * Initialize the unit allocator. 0 and 1 are allocated above. */ cpuset_unr = new_unrhdr(3, INT_MAX, NULL); /* * If MD code has not initialized per-domain cpusets, place all * CPUs in domain 0. */ for (i = 0; i < MAXMEMDOM; i++) if (!CPU_EMPTY(&cpuset_domain[i])) goto domains_set; CPU_COPY(&all_cpus, &cpuset_domain[0]); domains_set: return (cpuset_default); } void cpuset_kernthread(struct thread *td) { struct cpuset *set; thread_lock(td); set = td->td_cpuset; td->td_cpuset = cpuset_ref(cpuset_kernel); thread_unlock(td); cpuset_rel(set); } /* * Create a cpuset, which would be cpuset_create() but * mark the new 'set' as root. * * We are not going to reparent the td to it. Use cpuset_setproc_update_set() * for that. * * In case of no error, returns the set in *setp locked with a reference. */ int cpuset_create_root(struct prison *pr, struct cpuset **setp) { struct cpuset *set; int error; KASSERT(pr != NULL, ("[%s:%d] invalid pr", __func__, __LINE__)); KASSERT(setp != NULL, ("[%s:%d] invalid setp", __func__, __LINE__)); set = NULL; error = cpuset_create(&set, pr->pr_cpuset, &pr->pr_cpuset->cs_mask); if (error) return (error); KASSERT(set != NULL, ("[%s:%d] cpuset_create returned invalid data", __func__, __LINE__)); /* Mark the set as root. */ set->cs_flags |= CPU_SET_ROOT; *setp = set; return (0); } int cpuset_setproc_update_set(struct proc *p, struct cpuset *set) { int error; KASSERT(p != NULL, ("[%s:%d] invalid proc", __func__, __LINE__)); KASSERT(set != NULL, ("[%s:%d] invalid set", __func__, __LINE__)); cpuset_ref(set); error = cpuset_setproc(p->p_pid, set, NULL, NULL, true); if (error) return (error); cpuset_rel(set); return (0); } /* * In Capability mode, the only accesses that are permitted are to the current * thread and process' CPU and domain sets. */ static int cpuset_check_capabilities(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id) { if (IN_CAPABILITY_MODE(td)) { if (level != CPU_LEVEL_WHICH) return (ECAPMODE); if (which != CPU_WHICH_TID && which != CPU_WHICH_PID) return (ECAPMODE); if (id != -1 && !(which == CPU_WHICH_TID && id == td->td_tid) && !(which == CPU_WHICH_PID && id == td->td_proc->p_pid)) return (ECAPMODE); } return (0); } static const struct cpuset_copy_cb copy_set = { .cpuset_copyin = copyin, .cpuset_copyout = copyout }; #ifndef _SYS_SYSPROTO_H_ struct cpuset_args { cpusetid_t *setid; }; #endif int sys_cpuset(struct thread *td, struct cpuset_args *uap) { struct cpuset *root; struct cpuset *set; int error; thread_lock(td); root = cpuset_refroot(td->td_cpuset); thread_unlock(td); set = NULL; error = cpuset_create(&set, root, &root->cs_mask); cpuset_rel(root); if (error) return (error); error = copyout(&set->cs_id, uap->setid, sizeof(set->cs_id)); if (error == 0) error = cpuset_setproc(-1, set, NULL, NULL, false); cpuset_rel(set); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_setid_args { cpuwhich_t which; id_t id; cpusetid_t setid; }; #endif int sys_cpuset_setid(struct thread *td, struct cpuset_setid_args *uap) { return (kern_cpuset_setid(td, uap->which, uap->id, uap->setid)); } int kern_cpuset_setid(struct thread *td, cpuwhich_t which, id_t id, cpusetid_t setid) { struct cpuset *set; int error; /* * Presently we only support per-process sets. */ if (which != CPU_WHICH_PID) return (EINVAL); set = cpuset_lookup(setid, td); if (set == NULL) return (ESRCH); error = cpuset_setproc(id, set, NULL, NULL, false); cpuset_rel(set); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_getid_args { cpulevel_t level; cpuwhich_t which; id_t id; cpusetid_t *setid; }; #endif int sys_cpuset_getid(struct thread *td, struct cpuset_getid_args *uap) { return (kern_cpuset_getid(td, uap->level, uap->which, uap->id, uap->setid)); } int kern_cpuset_getid(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, cpusetid_t *setid) { struct cpuset *nset; struct cpuset *set; struct thread *ttd; struct proc *p; cpusetid_t tmpid; int error; if (level == CPU_LEVEL_WHICH && which != CPU_WHICH_CPUSET) return (EINVAL); error = cpuset_which(which, id, &p, &ttd, &set); if (error) return (error); switch (which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_refbase(ttd->td_cpuset); thread_unlock(ttd); PROC_UNLOCK(p); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: case CPU_WHICH_DOMAIN: return (EINVAL); } switch (level) { case CPU_LEVEL_ROOT: nset = cpuset_refroot(set); cpuset_rel(set); set = nset; break; case CPU_LEVEL_CPUSET: break; case CPU_LEVEL_WHICH: break; } tmpid = set->cs_id; cpuset_rel(set); if (error == 0) error = copyout(&tmpid, setid, sizeof(tmpid)); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_getaffinity_args { cpulevel_t level; cpuwhich_t which; id_t id; size_t cpusetsize; cpuset_t *mask; }; #endif int sys_cpuset_getaffinity(struct thread *td, struct cpuset_getaffinity_args *uap) { - return (kern_cpuset_getaffinity(td, uap->level, uap->which, + return (user_cpuset_getaffinity(td, uap->level, uap->which, uap->id, uap->cpusetsize, uap->mask, ©_set)); } int kern_cpuset_getaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, - id_t id, size_t cpusetsize, cpuset_t *maskp, const struct cpuset_copy_cb *cb) + id_t id, size_t cpusetsize, cpuset_t *mask) { struct thread *ttd; struct cpuset *nset; struct cpuset *set; struct proc *p; - cpuset_t *mask; int error; - size_t size; error = cpuset_check_capabilities(td, level, which, id); if (error != 0) return (error); - mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO); error = cpuset_which(which, id, &p, &ttd, &set); - if (error) - goto out; + if (error != 0) + return (error); switch (level) { case CPU_LEVEL_ROOT: case CPU_LEVEL_CPUSET: switch (which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_ref(ttd->td_cpuset); thread_unlock(ttd); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: case CPU_WHICH_DOMAIN: - error = EINVAL; - goto out; + return (EINVAL); } if (level == CPU_LEVEL_ROOT) nset = cpuset_refroot(set); else nset = cpuset_refbase(set); CPU_COPY(&nset->cs_mask, mask); cpuset_rel(nset); break; case CPU_LEVEL_WHICH: switch (which) { case CPU_WHICH_TID: thread_lock(ttd); CPU_COPY(&ttd->td_cpuset->cs_mask, mask); thread_unlock(ttd); break; case CPU_WHICH_PID: FOREACH_THREAD_IN_PROC(p, ttd) { thread_lock(ttd); CPU_OR(mask, mask, &ttd->td_cpuset->cs_mask); thread_unlock(ttd); } break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: CPU_COPY(&set->cs_mask, mask); break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: error = intr_getaffinity(id, which, mask); break; case CPU_WHICH_DOMAIN: if (id < 0 || id >= MAXMEMDOM) error = ESRCH; else CPU_COPY(&cpuset_domain[id], mask); break; } break; default: error = EINVAL; break; } if (set) cpuset_rel(set); if (p) PROC_UNLOCK(p); if (error == 0) { - if (cpusetsize < howmany(CPU_FLS(mask), NBBY)) { - error = ERANGE; - goto out; - } - size = min(cpusetsize, sizeof(cpuset_t)); + if (cpusetsize < howmany(CPU_FLS(mask), NBBY)) + return (ERANGE); +#ifdef KTRACE + if (KTRPOINT(td, KTR_STRUCT)) + ktrcpuset(mask, cpusetsize); +#endif + } + return (error); +} + +int +user_cpuset_getaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, + id_t id, size_t cpusetsize, cpuset_t *maskp, const struct cpuset_copy_cb *cb) +{ + cpuset_t *mask; + size_t size; + int error; + + mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO); + size = min(cpusetsize, sizeof(cpuset_t)); + error = kern_cpuset_getaffinity(td, level, which, id, size, mask); + if (error == 0) { error = cb->cpuset_copyout(mask, maskp, size); if (error != 0) goto out; if (cpusetsize > size) { char *end; char *cp; int rv; end = cp = (char *)&maskp->__bits; end += cpusetsize; cp += size; while (cp != end) { rv = subyte(cp, 0); if (rv == -1) { error = EFAULT; goto out; } cp++; } } -#ifdef KTRACE - if ( KTRPOINT(td, KTR_STRUCT)) - ktrcpuset(mask, size); -#endif } out: free(mask, M_TEMP); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_setaffinity_args { cpulevel_t level; cpuwhich_t which; id_t id; size_t cpusetsize; const cpuset_t *mask; }; #endif int sys_cpuset_setaffinity(struct thread *td, struct cpuset_setaffinity_args *uap) { return (user_cpuset_setaffinity(td, uap->level, uap->which, uap->id, uap->cpusetsize, uap->mask, ©_set)); } int kern_cpuset_setaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, cpuset_t *mask) { struct cpuset *nset; struct cpuset *set; struct thread *ttd; struct proc *p; int error; #ifdef KTRACE if (KTRPOINT(td, KTR_STRUCT)) ktrcpuset(mask, sizeof(cpuset_t)); #endif error = cpuset_check_capabilities(td, level, which, id); if (error != 0) return (error); if (CPU_EMPTY(mask)) return (EDEADLK); switch (level) { case CPU_LEVEL_ROOT: case CPU_LEVEL_CPUSET: error = cpuset_which(which, id, &p, &ttd, &set); if (error) break; switch (which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_ref(ttd->td_cpuset); thread_unlock(ttd); PROC_UNLOCK(p); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: case CPU_WHICH_DOMAIN: return (EINVAL); } if (level == CPU_LEVEL_ROOT) nset = cpuset_refroot(set); else nset = cpuset_refbase(set); error = cpuset_modify(nset, mask); cpuset_rel(nset); cpuset_rel(set); break; case CPU_LEVEL_WHICH: switch (which) { case CPU_WHICH_TID: error = cpuset_setthread(id, mask); break; case CPU_WHICH_PID: error = cpuset_setproc(id, NULL, mask, NULL, false); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: error = cpuset_which(which, id, &p, &ttd, &set); if (error == 0) { error = cpuset_modify(set, mask); cpuset_rel(set); } break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: error = intr_setaffinity(id, which, mask); break; default: error = EINVAL; break; } break; default: error = EINVAL; break; } return (error); } int user_cpuset_setaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, const cpuset_t *maskp, const struct cpuset_copy_cb *cb) { cpuset_t *mask; int error; size_t size; size = min(cpusetsize, sizeof(cpuset_t)); mask = malloc(sizeof(cpuset_t), M_TEMP, M_WAITOK | M_ZERO); error = cb->cpuset_copyin(maskp, mask, size); if (error) goto out; /* * Verify that no high bits are set. */ if (cpusetsize > sizeof(cpuset_t)) { const char *end, *cp; int val; end = cp = (const char *)&maskp->__bits; end += cpusetsize; cp += sizeof(cpuset_t); while (cp != end) { val = fubyte(cp); if (val == -1) { error = EFAULT; goto out; } if (val != 0) { error = EINVAL; goto out; } cp++; } } error = kern_cpuset_setaffinity(td, level, which, id, mask); out: free(mask, M_TEMP); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_getdomain_args { cpulevel_t level; cpuwhich_t which; id_t id; size_t domainsetsize; domainset_t *mask; int *policy; }; #endif int sys_cpuset_getdomain(struct thread *td, struct cpuset_getdomain_args *uap) { return (kern_cpuset_getdomain(td, uap->level, uap->which, uap->id, uap->domainsetsize, uap->mask, uap->policy, ©_set)); } int kern_cpuset_getdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, domainset_t *maskp, int *policyp, const struct cpuset_copy_cb *cb) { struct domainset outset; struct thread *ttd; struct cpuset *nset; struct cpuset *set; struct domainset *dset; struct proc *p; domainset_t *mask; int error; if (domainsetsize < sizeof(domainset_t) || domainsetsize > DOMAINSET_MAXSIZE / NBBY) return (ERANGE); error = cpuset_check_capabilities(td, level, which, id); if (error != 0) return (error); mask = malloc(domainsetsize, M_TEMP, M_WAITOK | M_ZERO); bzero(&outset, sizeof(outset)); error = cpuset_which(which, id, &p, &ttd, &set); if (error) goto out; switch (level) { case CPU_LEVEL_ROOT: case CPU_LEVEL_CPUSET: switch (which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_ref(ttd->td_cpuset); thread_unlock(ttd); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: case CPU_WHICH_DOMAIN: error = EINVAL; goto out; } if (level == CPU_LEVEL_ROOT) nset = cpuset_refroot(set); else nset = cpuset_refbase(set); domainset_copy(nset->cs_domain, &outset); cpuset_rel(nset); break; case CPU_LEVEL_WHICH: switch (which) { case CPU_WHICH_TID: thread_lock(ttd); domainset_copy(ttd->td_cpuset->cs_domain, &outset); thread_unlock(ttd); break; case CPU_WHICH_PID: FOREACH_THREAD_IN_PROC(p, ttd) { thread_lock(ttd); dset = ttd->td_cpuset->cs_domain; /* Show all domains in the proc. */ DOMAINSET_OR(&outset.ds_mask, &dset->ds_mask); /* Last policy wins. */ outset.ds_policy = dset->ds_policy; outset.ds_prefer = dset->ds_prefer; thread_unlock(ttd); } break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: domainset_copy(set->cs_domain, &outset); break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: case CPU_WHICH_DOMAIN: error = EINVAL; break; } break; default: error = EINVAL; break; } if (set) cpuset_rel(set); if (p) PROC_UNLOCK(p); /* * Translate prefer into a set containing only the preferred domain, * not the entire fallback set. */ if (outset.ds_policy == DOMAINSET_POLICY_PREFER) { DOMAINSET_ZERO(&outset.ds_mask); DOMAINSET_SET(outset.ds_prefer, &outset.ds_mask); } DOMAINSET_COPY(&outset.ds_mask, mask); if (error == 0) error = cb->cpuset_copyout(mask, maskp, domainsetsize); if (error == 0) if (suword32(policyp, outset.ds_policy) != 0) error = EFAULT; out: free(mask, M_TEMP); return (error); } #ifndef _SYS_SYSPROTO_H_ struct cpuset_setdomain_args { cpulevel_t level; cpuwhich_t which; id_t id; size_t domainsetsize; domainset_t *mask; int policy; }; #endif int sys_cpuset_setdomain(struct thread *td, struct cpuset_setdomain_args *uap) { return (kern_cpuset_setdomain(td, uap->level, uap->which, uap->id, uap->domainsetsize, uap->mask, uap->policy, ©_set)); } int kern_cpuset_setdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, const domainset_t *maskp, int policy, const struct cpuset_copy_cb *cb) { struct cpuset *nset; struct cpuset *set; struct thread *ttd; struct proc *p; struct domainset domain; domainset_t *mask; int error; if (domainsetsize < sizeof(domainset_t) || domainsetsize > DOMAINSET_MAXSIZE / NBBY) return (ERANGE); if (policy <= DOMAINSET_POLICY_INVALID || policy > DOMAINSET_POLICY_MAX) return (EINVAL); error = cpuset_check_capabilities(td, level, which, id); if (error != 0) return (error); memset(&domain, 0, sizeof(domain)); mask = malloc(domainsetsize, M_TEMP, M_WAITOK | M_ZERO); error = cb->cpuset_copyin(maskp, mask, domainsetsize); if (error) goto out; /* * Verify that no high bits are set. */ if (domainsetsize > sizeof(domainset_t)) { char *end; char *cp; end = cp = (char *)&mask->__bits; end += domainsetsize; cp += sizeof(domainset_t); while (cp != end) if (*cp++ != 0) { error = EINVAL; goto out; } } if (DOMAINSET_EMPTY(mask)) { error = EDEADLK; goto out; } DOMAINSET_COPY(mask, &domain.ds_mask); domain.ds_policy = policy; /* * Sanitize the provided mask. */ if (!DOMAINSET_SUBSET(&all_domains, &domain.ds_mask)) { error = EINVAL; goto out; } /* Translate preferred policy into a mask and fallback. */ if (policy == DOMAINSET_POLICY_PREFER) { /* Only support a single preferred domain. */ if (DOMAINSET_COUNT(&domain.ds_mask) != 1) { error = EINVAL; goto out; } domain.ds_prefer = DOMAINSET_FFS(&domain.ds_mask) - 1; /* This will be constrained by domainset_shadow(). */ DOMAINSET_COPY(&all_domains, &domain.ds_mask); } /* * When given an impossible policy, fall back to interleaving * across all domains. */ if (domainset_empty_vm(&domain)) domainset_copy(domainset2, &domain); switch (level) { case CPU_LEVEL_ROOT: case CPU_LEVEL_CPUSET: error = cpuset_which(which, id, &p, &ttd, &set); if (error) break; switch (which) { case CPU_WHICH_TID: case CPU_WHICH_PID: thread_lock(ttd); set = cpuset_ref(ttd->td_cpuset); thread_unlock(ttd); PROC_UNLOCK(p); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: case CPU_WHICH_DOMAIN: error = EINVAL; goto out; } if (level == CPU_LEVEL_ROOT) nset = cpuset_refroot(set); else nset = cpuset_refbase(set); error = cpuset_modify_domain(nset, &domain); cpuset_rel(nset); cpuset_rel(set); break; case CPU_LEVEL_WHICH: switch (which) { case CPU_WHICH_TID: error = _cpuset_setthread(id, NULL, &domain); break; case CPU_WHICH_PID: error = cpuset_setproc(id, NULL, NULL, &domain, false); break; case CPU_WHICH_CPUSET: case CPU_WHICH_JAIL: error = cpuset_which(which, id, &p, &ttd, &set); if (error == 0) { error = cpuset_modify_domain(set, &domain); cpuset_rel(set); } break; case CPU_WHICH_IRQ: case CPU_WHICH_INTRHANDLER: case CPU_WHICH_ITHREAD: default: error = EINVAL; break; } break; default: error = EINVAL; break; } out: free(mask, M_TEMP); return (error); } #ifdef DDB static void ddb_display_bitset(const struct bitset *set, int size) { int bit, once; for (once = 0, bit = 0; bit < size; bit++) { if (CPU_ISSET(bit, set)) { if (once == 0) { db_printf("%d", bit); once = 1; } else db_printf(",%d", bit); } } if (once == 0) db_printf(""); } void ddb_display_cpuset(const cpuset_t *set) { ddb_display_bitset((const struct bitset *)set, CPU_SETSIZE); } static void ddb_display_domainset(const domainset_t *set) { ddb_display_bitset((const struct bitset *)set, DOMAINSET_SETSIZE); } DB_SHOW_COMMAND(cpusets, db_show_cpusets) { struct cpuset *set; LIST_FOREACH(set, &cpuset_ids, cs_link) { db_printf("set=%p id=%-6u ref=%-6d flags=0x%04x parent id=%d\n", set, set->cs_id, refcount_load(&set->cs_ref), set->cs_flags, (set->cs_parent != NULL) ? set->cs_parent->cs_id : 0); db_printf(" cpu mask="); ddb_display_cpuset(&set->cs_mask); db_printf("\n"); db_printf(" domain policy %d prefer %d mask=", set->cs_domain->ds_policy, set->cs_domain->ds_prefer); ddb_display_domainset(&set->cs_domain->ds_mask); db_printf("\n"); if (db_pager_quit) break; } } DB_SHOW_COMMAND(domainsets, db_show_domainsets) { struct domainset *set; LIST_FOREACH(set, &cpuset_domains, ds_link) { db_printf("set=%p policy %d prefer %d cnt %d\n", set, set->ds_policy, set->ds_prefer, set->ds_cnt); db_printf(" mask ="); ddb_display_domainset(&set->ds_mask); db_printf("\n"); } } #endif /* DDB */ diff --git a/sys/sys/syscallsubr.h b/sys/sys/syscallsubr.h index 70e33e9244c4..5520d1ea8f89 100644 --- a/sys/sys/syscallsubr.h +++ b/sys/sys/syscallsubr.h @@ -1,370 +1,372 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2002 Ian Dowse. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_SYSCALLSUBR_H_ #define _SYS_SYSCALLSUBR_H_ #include #include #include #include #include #include #include struct __wrusage; struct cpuset_copy_cb; struct file; struct filecaps; enum idtype; struct itimerval; struct image_args; struct jail; struct kevent; struct kevent_copyops; struct kld_file_stat; struct ksiginfo; struct mbuf; struct msghdr; struct msqid_ds; struct pollfd; struct ogetdirentries_args; struct rlimit; struct rusage; struct sched_param; struct sembuf; union semun; struct sockaddr; struct spacectl_range; struct stat; struct thr_param; struct timex; struct uio; struct vm_map; struct vmspace; typedef int (*mmap_check_fp_fn)(struct file *, int, int, int); struct mmap_req { vm_offset_t mr_hint; vm_size_t mr_len; int mr_prot; int mr_flags; int mr_fd; off_t mr_pos; mmap_check_fp_fn mr_check_fp_fn; }; int kern___getcwd(struct thread *td, char *buf, enum uio_seg bufseg, size_t buflen, size_t path_max); int kern_abort2(struct thread *td, const char *why, int nargs, void **uargs); int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp); int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp); int kern_accessat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int flags, int mode); int kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta); int kern_alternate_path(const char *prefix, const char *path, enum uio_seg pathseg, char **pathbuf, int create, int dirfd); int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_break(struct thread *td, uintptr_t *addr); int kern_cap_ioctls_limit(struct thread *td, int fd, u_long *cmds, size_t ncmds); int kern_cap_rights_limit(struct thread *td, int fd, cap_rights_t *rights); int kern_chdir(struct thread *td, const char *path, enum uio_seg pathseg); int kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, clockid_t *clk_id); int kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts); int kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats); int kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, const struct timespec *rqtp, struct timespec *rmtp); int kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats); void kern_thread_cputime(struct thread *targettd, struct timespec *ats); void kern_process_cputime(struct proc *targetp, struct timespec *ats); int kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd); int kern_close(struct thread *td, int fd); int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_copy_file_range(struct thread *td, int infd, off_t *inoffp, int outfd, off_t *outoffp, size_t len, unsigned int flags); -int kern_cpuset_getaffinity(struct thread *td, cpulevel_t level, +int user_cpuset_getaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, cpuset_t *maskp, const struct cpuset_copy_cb *cb); +int kern_cpuset_getaffinity(struct thread *td, cpulevel_t level, + cpuwhich_t which, id_t id, size_t cpusetsize, cpuset_t *mask); int kern_cpuset_setaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, cpuset_t *maskp); int user_cpuset_setaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, const cpuset_t *maskp, const struct cpuset_copy_cb *cb); int kern_cpuset_getdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, domainset_t *maskp, int *policyp, const struct cpuset_copy_cb *cb); int kern_cpuset_setdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, const domainset_t *maskp, int policy, const struct cpuset_copy_cb *cb); int kern_cpuset_getid(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, cpusetid_t *setid); int kern_cpuset_setid(struct thread *td, cpuwhich_t which, id_t id, cpusetid_t setid); int kern_dup(struct thread *td, u_int mode, int flags, int old, int new); int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace); int kern_fchmodat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, mode_t mode, int flag); int kern_fchownat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int uid, int gid, int flag); int kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg); int kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg); int kern_fhopen(struct thread *td, const struct fhandle *u_fhp, int flags); int kern_fhstat(struct thread *td, fhandle_t fh, struct stat *buf); int kern_fhstatfs(struct thread *td, fhandle_t fh, struct statfs *buf); int kern_fpathconf(struct thread *td, int fd, int name, long *valuep); int kern_freebsd11_getfsstat(struct thread *td, struct freebsd11_statfs *ubuf, long bufsize, int mode); int kern_fstat(struct thread *td, int fd, struct stat *sbp); int kern_fstatfs(struct thread *td, int fd, struct statfs *buf); int kern_fsync(struct thread *td, int fd, bool fullsync); int kern_ftruncate(struct thread *td, int fd, off_t length); int kern_futimes(struct thread *td, int fd, const struct timeval *tptr, enum uio_seg tptrseg); int kern_futimens(struct thread *td, int fd, const struct timespec *tptr, enum uio_seg tptrseg); int kern_getdirentries(struct thread *td, int fd, char *buf, size_t count, off_t *basep, ssize_t *residp, enum uio_seg bufseg); int kern_getfhat(struct thread *td, int flags, int fd, const char *path, enum uio_seg pathseg, fhandle_t *fhp, enum uio_seg fhseg); int kern_getfsstat(struct thread *td, struct statfs **buf, size_t bufsize, size_t *countp, enum uio_seg bufseg, int mode); int kern_getitimer(struct thread *, u_int, struct itimerval *); int kern_getppid(struct thread *); int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getpriority(struct thread *td, int which, int who); int kern_getrusage(struct thread *td, int who, struct rusage *rup); int kern_getsid(struct thread *td, pid_t pid); int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getsockopt(struct thread *td, int s, int level, int name, void *optval, enum uio_seg valseg, socklen_t *valsize); int kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data); int kern_jail(struct thread *td, struct jail *j); int kern_jail_get(struct thread *td, struct uio *options, int flags); int kern_jail_set(struct thread *td, struct uio *options, int flags); int kern_kevent(struct thread *td, int fd, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kevent_anonymous(struct thread *td, int nevents, struct kevent_copyops *k_ops); int kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kill(struct thread *td, pid_t pid, int signum); int kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps); int kern_kldload(struct thread *td, const char *file, int *fileid); int kern_kldstat(struct thread *td, int fileid, struct kld_file_stat *stat); int kern_kldunload(struct thread *td, int fileid, int flags); int kern_linkat(struct thread *td, int fd1, int fd2, const char *path1, const char *path2, enum uio_seg segflg, int flag); int kern_listen(struct thread *td, int s, int backlog); int kern_lseek(struct thread *td, int fd, off_t offset, int whence); int kern_lutimes(struct thread *td, const char *path, enum uio_seg pathseg, const struct timeval *tptr, enum uio_seg tptrseg); int kern_madvise(struct thread *td, uintptr_t addr, size_t len, int behav); int kern_mincore(struct thread *td, uintptr_t addr, size_t len, char *vec); int kern_minherit(struct thread *td, uintptr_t addr, size_t len, int inherit); int kern_mkdirat(struct thread *td, int fd, const char *path, enum uio_seg segflg, int mode); int kern_mkfifoat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int mode); int kern_mknodat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int mode, dev_t dev); int kern_mlock(struct proc *proc, struct ucred *cred, uintptr_t addr, size_t len); int kern_mmap(struct thread *td, const struct mmap_req *mrp); int kern_mmap_racct_check(struct thread *td, struct vm_map *map, vm_size_t size); int kern_mmap_maxprot(struct proc *p, int prot); int kern_mprotect(struct thread *td, uintptr_t addr, size_t size, int prot); int kern_msgctl(struct thread *, int, int, struct msqid_ds *); int kern_msgrcv(struct thread *, int, void *, size_t, long, int, long *); int kern_msgsnd(struct thread *, int, const void *, size_t, int, long); int kern_msync(struct thread *td, uintptr_t addr, size_t size, int flags); int kern_munlock(struct thread *td, uintptr_t addr, size_t size); int kern_munmap(struct thread *td, uintptr_t addr, size_t size); int kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt); int kern_ntp_adjtime(struct thread *td, struct timex *ntv, int *retvalp); int kern_ogetdirentries(struct thread *td, struct ogetdirentries_args *uap, long *ploff); int kern_ommap(struct thread *td, uintptr_t hint, int len, int oprot, int oflags, int fd, long pos); int kern_openat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int flags, int mode); int kern_pathconf(struct thread *td, const char *path, enum uio_seg pathseg, int name, u_long flags, long *valuep); int kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, struct filecaps *fcaps2); int kern_poll(struct thread *td, struct pollfd *fds, u_int nfds, struct timespec *tsp, sigset_t *uset); int kern_poll_kfds(struct thread *td, struct pollfd *fds, u_int nfds, struct timespec *tsp, sigset_t *uset); bool kern_poll_maxfds(u_int nfds); int kern_posix_error(struct thread *td, int error); int kern_posix_fadvise(struct thread *td, int fd, off_t offset, off_t len, int advice); int kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len); int kern_fspacectl(struct thread *td, int fd, int cmd, const struct spacectl_range *, int flags, struct spacectl_range *); int kern_procctl(struct thread *td, enum idtype idtype, id_t id, int com, void *data); int kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset); int kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tvp, sigset_t *uset, int abi_nfdbits); int kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data); int kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte, off_t offset); int kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_readlinkat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, char *buf, enum uio_seg bufseg, size_t count); int kern_readv(struct thread *td, int fd, struct uio *auio); int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp); int kern_renameat(struct thread *td, int oldfd, const char *old, int newfd, const char *new, enum uio_seg pathseg); int kern_frmdirat(struct thread *td, int dfd, const char *path, int fd, enum uio_seg pathseg, int flag); int kern_sched_getparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_getscheduler(struct thread *td, struct thread *targettd, int *policy); int kern_sched_setparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_setscheduler(struct thread *td, struct thread *targettd, int policy, struct sched_param *param); int kern_sched_rr_get_interval(struct thread *td, pid_t pid, struct timespec *ts); int kern_sched_rr_get_interval_td(struct thread *td, struct thread *targettd, struct timespec *ts); int kern_semctl(struct thread *td, int semid, int semnum, int cmd, union semun *arg, register_t *rval); int kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits); int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg); int kern_setgroups(struct thread *td, u_int ngrp, gid_t *groups); int kern_setitimer(struct thread *, u_int, struct itimerval *, struct itimerval *); int kern_setpriority(struct thread *td, int which, int who, int prio); int kern_setrlimit(struct thread *, u_int, struct rlimit *); int kern_setsockopt(struct thread *td, int s, int level, int name, const void *optval, enum uio_seg valseg, socklen_t valsize); int kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp); int kern_shm_open(struct thread *td, const char *userpath, int flags, mode_t mode, struct filecaps *fcaps); int kern_shm_open2(struct thread *td, const char *path, int flags, mode_t mode, int shmflags, struct filecaps *fcaps, const char *name); int kern_shmat(struct thread *td, int shmid, const void *shmaddr, int shmflg); int kern_shmctl(struct thread *td, int shmid, int cmd, void *buf, size_t *bufsz); int kern_shutdown(struct thread *td, int s, int how); int kern_sigaction(struct thread *td, int sig, const struct sigaction *act, struct sigaction *oact, int flags); int kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss); int kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, int flags); int kern_sigsuspend(struct thread *td, sigset_t mask); int kern_sigtimedwait(struct thread *td, sigset_t waitset, struct ksiginfo *ksi, struct timespec *timeout); int kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value); int kern_socket(struct thread *td, int domain, int type, int protocol); int kern_statat(struct thread *td, int flag, int fd, const char *path, enum uio_seg pathseg, struct stat *sbp, void (*hook)(struct vnode *vp, struct stat *sbp)); int kern_specialfd(struct thread *td, int type, void *arg); int kern_statfs(struct thread *td, const char *path, enum uio_seg pathseg, struct statfs *buf); int kern_symlinkat(struct thread *td, const char *path1, int fd, const char *path2, enum uio_seg segflg); int kern_sync(struct thread *td); int kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, int *timerid, int preset_id); int kern_ktimer_delete(struct thread *, int); int kern_ktimer_settime(struct thread *td, int timer_id, int flags, struct itimerspec *val, struct itimerspec *oval); int kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val); int kern_ktimer_getoverrun(struct thread *td, int timer_id); int kern_semop(struct thread *td, int usemid, struct sembuf *usops, size_t nsops, struct timespec *timeout); int kern_thr_alloc(struct proc *, int pages, struct thread **); int kern_thr_exit(struct thread *td); int kern_thr_new(struct thread *td, struct thr_param *param); int kern_thr_suspend(struct thread *td, struct timespec *tsp); int kern_truncate(struct thread *td, const char *path, enum uio_seg pathseg, off_t length); int kern_funlinkat(struct thread *td, int dfd, const char *path, int fd, enum uio_seg pathseg, int flag, ino_t oldinum); int kern_utimesat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, const struct timeval *tptr, enum uio_seg tptrseg); int kern_utimensat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, const struct timespec *tptr, enum uio_seg tptrseg, int flag); int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rup); int kern_wait6(struct thread *td, enum idtype idtype, id_t id, int *status, int options, struct __wrusage *wrup, siginfo_t *sip); int kern_writev(struct thread *td, int fd, struct uio *auio); int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv); int kern_unmount(struct thread *td, const char *path, int flags); /* flags for kern_sigaction */ #define KSA_OSIGSET 0x0001 /* uses osigact_t */ #define KSA_FREEBSD4 0x0002 /* uses ucontext4 */ struct freebsd11_dirent; int freebsd11_kern_getdirentries(struct thread *td, int fd, char *ubuf, u_int count, long *basep, void (*func)(struct freebsd11_dirent *)); #endif /* !_SYS_SYSCALLSUBR_H_ */