diff --git a/stand/i386/libi386/biosdisk.c b/stand/i386/libi386/biosdisk.c index 1b6134ab2e6b..bc819d8e312e 100644 --- a/stand/i386/libi386/biosdisk.c +++ b/stand/i386/libi386/biosdisk.c @@ -1,1400 +1,1371 @@ /*- * Copyright (c) 1998 Michael Smith * Copyright (c) 2012 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * BIOS disk device handling. * * Ideas and algorithms from: * * - NetBSD libi386/biosdisk.c * - FreeBSD biosboot/disk.c * */ #include #include #include #include #include #include #include #include #include #include #include "disk.h" #include "libi386.h" #define BIOS_NUMDRIVES 0x475 #define BIOSDISK_SECSIZE 512 #define BUFSIZE (1 * BIOSDISK_SECSIZE) #define DT_ATAPI 0x10 /* disk type for ATAPI floppies */ #define WDMAJOR 0 /* major numbers for devices we frontend for */ #define WFDMAJOR 1 #define FDMAJOR 2 #define DAMAJOR 4 #define ACDMAJOR 117 #define CDMAJOR 15 /* * INT13 commands */ #define CMD_RESET 0x0000 #define CMD_READ_CHS 0x0200 #define CMD_WRITE_CHS 0x0300 #define CMD_READ_PARAM 0x0800 #define CMD_DRIVE_TYPE 0x1500 #define CMD_CHECK_EDD 0x4100 #define CMD_READ_LBA 0x4200 #define CMD_WRITE_LBA 0x4300 #define CMD_EXT_PARAM 0x4800 #define CMD_CD_GET_STATUS 0x4b01 #define DISK_BIOS 0x13 #ifdef DISK_DEBUG #define DPRINTF(fmt, args...) printf("%s: " fmt "\n", __func__, ## args) #else #define DPRINTF(fmt, args...) ((void)0) #endif struct specification_packet { uint8_t sp_size; uint8_t sp_bootmedia; uint8_t sp_drive; uint8_t sp_controller; uint32_t sp_lba; uint16_t sp_devicespec; uint16_t sp_buffersegment; uint16_t sp_loadsegment; uint16_t sp_sectorcount; uint16_t sp_cylsec; uint8_t sp_head; uint8_t sp_dummy[16]; /* Avoid memory corruption */ }; /* * List of BIOS devices, translation from disk unit number to * BIOS unit number. */ typedef struct bdinfo { STAILQ_ENTRY(bdinfo) bd_link; /* link in device list */ int bd_unit; /* BIOS unit number */ int bd_cyl; /* BIOS geometry */ int bd_hds; int bd_sec; int bd_flags; #define BD_MODEINT13 0x0000 #define BD_MODEEDD1 0x0001 #define BD_MODEEDD3 0x0002 #define BD_MODEEDD (BD_MODEEDD1 | BD_MODEEDD3) #define BD_MODEMASK 0x0003 #define BD_FLOPPY 0x0004 #define BD_CDROM 0x0008 #define BD_NO_MEDIA 0x0010 int bd_type; /* BIOS 'drive type' (floppy only) */ uint16_t bd_sectorsize; /* Sector size */ uint64_t bd_sectors; /* Disk size */ int bd_open; /* reference counter */ void *bd_bcache; /* buffer cache data */ } bdinfo_t; #define BD_RD 0 #define BD_WR 1 typedef STAILQ_HEAD(bdinfo_list, bdinfo) bdinfo_list_t; static bdinfo_list_t fdinfo = STAILQ_HEAD_INITIALIZER(fdinfo); static bdinfo_list_t cdinfo = STAILQ_HEAD_INITIALIZER(cdinfo); static bdinfo_list_t hdinfo = STAILQ_HEAD_INITIALIZER(hdinfo); static void bd_io_workaround(bdinfo_t *); static int bd_io(struct disk_devdesc *, bdinfo_t *, daddr_t, int, caddr_t, int); static bool bd_int13probe(bdinfo_t *); static int bd_init(void); static int cd_init(void); static int fd_init(void); static int bd_strategy(void *devdata, int flag, daddr_t dblk, size_t size, char *buf, size_t *rsize); static int bd_realstrategy(void *devdata, int flag, daddr_t dblk, size_t size, char *buf, size_t *rsize); static int bd_open(struct open_file *f, ...); static int bd_close(struct open_file *f); static int bd_ioctl(struct open_file *f, u_long cmd, void *data); static int bd_print(int verbose); static int cd_print(int verbose); static int fd_print(int verbose); static void bd_reset_disk(int); static int bd_get_diskinfo_std(struct bdinfo *); struct devsw biosfd = { .dv_name = "fd", .dv_type = DEVT_FD, .dv_init = fd_init, .dv_strategy = bd_strategy, .dv_open = bd_open, .dv_close = bd_close, .dv_ioctl = bd_ioctl, .dv_print = fd_print, .dv_cleanup = nullsys, }; struct devsw bioscd = { .dv_name = "cd", .dv_type = DEVT_CD, .dv_init = cd_init, .dv_strategy = bd_strategy, .dv_open = bd_open, .dv_close = bd_close, .dv_ioctl = bd_ioctl, .dv_print = cd_print, .dv_cleanup = nullsys, }; struct devsw bioshd = { .dv_name = "disk", .dv_type = DEVT_DISK, .dv_init = bd_init, .dv_strategy = bd_strategy, .dv_open = bd_open, .dv_close = bd_close, .dv_ioctl = bd_ioctl, .dv_print = bd_print, .dv_cleanup = nullsys, .dv_fmtdev = disk_fmtdev, }; static bdinfo_list_t * bd_get_bdinfo_list(struct devsw *dev) { if (dev->dv_type == DEVT_DISK) return (&hdinfo); if (dev->dv_type == DEVT_CD) return (&cdinfo); if (dev->dv_type == DEVT_FD) return (&fdinfo); return (NULL); } /* XXX this gets called way way too often, investigate */ static bdinfo_t * bd_get_bdinfo(struct devdesc *dev) { bdinfo_list_t *bdi; bdinfo_t *bd = NULL; int unit; bdi = bd_get_bdinfo_list(dev->d_dev); if (bdi == NULL) return (bd); unit = 0; STAILQ_FOREACH(bd, bdi, bd_link) { if (unit == dev->d_unit) return (bd); unit++; } return (bd); } /* * Translate between BIOS device numbers and our private unit numbers. */ int bd_bios2unit(int biosdev) { bdinfo_list_t *bdi[] = { &fdinfo, &cdinfo, &hdinfo, NULL }; bdinfo_t *bd; int i, unit; DPRINTF("looking for bios device 0x%x", biosdev); for (i = 0; bdi[i] != NULL; i++) { unit = 0; STAILQ_FOREACH(bd, bdi[i], bd_link) { if (bd->bd_unit == biosdev) { DPRINTF("bd unit %d is BIOS device 0x%x", unit, bd->bd_unit); return (unit); } unit++; } } return (-1); } int bd_unit2bios(struct i386_devdesc *dev) { bdinfo_list_t *bdi; bdinfo_t *bd; int unit; bdi = bd_get_bdinfo_list(dev->dd.d_dev); if (bdi == NULL) return (-1); unit = 0; STAILQ_FOREACH(bd, bdi, bd_link) { if (unit == dev->dd.d_unit) return (bd->bd_unit); unit++; } return (-1); } /* * Use INT13 AH=15 - Read Drive Type. */ static int fd_count(void) { int drive; for (drive = 0; drive < MAXBDDEV; drive++) { bd_reset_disk(drive); v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; v86.eax = CMD_DRIVE_TYPE; v86.edx = drive; v86int(); if (V86_CY(v86.efl)) break; if ((v86.eax & 0x300) == 0) break; } return (drive); } /* * Quiz the BIOS for disk devices, save a little info about them. */ static int fd_init(void) { int unit, numfd; bdinfo_t *bd; numfd = fd_count(); for (unit = 0; unit < numfd; unit++) { if ((bd = calloc(1, sizeof(*bd))) == NULL) break; bd->bd_sectorsize = BIOSDISK_SECSIZE; bd->bd_flags = BD_FLOPPY; bd->bd_unit = unit; /* Use std diskinfo for floppy drive */ if (bd_get_diskinfo_std(bd) != 0) { free(bd); break; } if (bd->bd_sectors == 0) bd->bd_flags |= BD_NO_MEDIA; printf("BIOS drive %c: is %s%d\n", ('A' + unit), biosfd.dv_name, unit); STAILQ_INSERT_TAIL(&fdinfo, bd, bd_link); } bcache_add_dev(unit); return (0); } static int bd_init(void) { int base, unit; bdinfo_t *bd; TSENTER(); base = 0x80; for (unit = 0; unit < *(unsigned char *)PTOV(BIOS_NUMDRIVES); unit++) { /* * Check the BIOS equipment list for number of fixed disks. */ if ((bd = calloc(1, sizeof(*bd))) == NULL) break; bd->bd_unit = base + unit; if (!bd_int13probe(bd)) { free(bd); break; } printf("BIOS drive %c: is %s%d\n", ('C' + unit), bioshd.dv_name, unit); STAILQ_INSERT_TAIL(&hdinfo, bd, bd_link); } bcache_add_dev(unit); TSEXIT(); return (0); } /* * We can't quiz, we have to be told what device to use, so this function * doesn't do anything. Instead, the loader calls bc_add() with the BIOS * device number to add. */ static int cd_init(void) { return (0); } /* * Information from bootable CD-ROM. */ static int bd_get_diskinfo_cd(struct bdinfo *bd) { struct specification_packet bc_sp; int ret = -1; (void) memset(&bc_sp, 0, sizeof (bc_sp)); /* Set sp_size as per specification. */ bc_sp.sp_size = sizeof (bc_sp) - sizeof (bc_sp.sp_dummy); v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; v86.eax = CMD_CD_GET_STATUS; v86.edx = bd->bd_unit; v86.ds = VTOPSEG(&bc_sp); v86.esi = VTOPOFF(&bc_sp); v86int(); if ((v86.eax & 0xff00) == 0 && bc_sp.sp_drive == bd->bd_unit) { bd->bd_cyl = ((bc_sp.sp_cylsec & 0xc0) << 2) + ((bc_sp.sp_cylsec & 0xff00) >> 8) + 1; bd->bd_sec = bc_sp.sp_cylsec & 0x3f; bd->bd_hds = bc_sp.sp_head + 1; bd->bd_sectors = (uint64_t)bd->bd_cyl * bd->bd_hds * bd->bd_sec; if (bc_sp.sp_bootmedia & 0x0F) { /* Floppy or hard-disk emulation */ bd->bd_sectorsize = BIOSDISK_SECSIZE; return (-1); } else { bd->bd_sectorsize = 2048; bd->bd_flags = BD_MODEEDD | BD_CDROM; ret = 0; } } /* * If this is the boot_drive, default to non-emulation bootable CD-ROM. */ if (ret != 0 && bd->bd_unit >= 0x88) { bd->bd_cyl = 0; bd->bd_hds = 1; bd->bd_sec = 15; bd->bd_sectorsize = 2048; bd->bd_flags = BD_MODEEDD | BD_CDROM; bd->bd_sectors = 0; ret = 0; } /* * Note we can not use bd_get_diskinfo_ext() nor bd_get_diskinfo_std() * here - some systems do get hung with those. */ /* * Still no size? use 7.961GB. The size does not really matter * as long as it is reasonably large to make our reads to pass * the sector count check. */ if (bd->bd_sectors == 0) bd->bd_sectors = 4173824; return (ret); } int bc_add(int biosdev) { bdinfo_t *bd; int nbcinfo = 0; if (!STAILQ_EMPTY(&cdinfo)) return (-1); if ((bd = calloc(1, sizeof(*bd))) == NULL) return (-1); bd->bd_unit = biosdev; if (bd_get_diskinfo_cd(bd) < 0) { free(bd); return (-1); } STAILQ_INSERT_TAIL(&cdinfo, bd, bd_link); printf("BIOS CD is cd%d\n", nbcinfo); nbcinfo++; bcache_add_dev(nbcinfo); /* register cd device in bcache */ return(0); } /* * Return EDD version or 0 if EDD is not supported on this drive. */ static int bd_check_extensions(int unit) { /* do not use ext calls for floppy devices */ if (unit < 0x80) return (0); /* Determine if we can use EDD with this device. */ v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; v86.eax = CMD_CHECK_EDD; v86.edx = unit; v86.ebx = EDD_QUERY_MAGIC; v86int(); if (V86_CY(v86.efl) || /* carry set */ (v86.ebx & 0xffff) != EDD_INSTALLED) /* signature */ return (0); /* extended disk access functions (AH=42h-44h,47h,48h) supported */ if ((v86.ecx & EDD_INTERFACE_FIXED_DISK) == 0) return (0); return ((v86.eax >> 8) & 0xff); } static void bd_reset_disk(int unit) { /* reset disk */ v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; v86.eax = CMD_RESET; v86.edx = unit; v86int(); } /* * Read CHS info. Return 0 on success, error otherwise. */ static int bd_get_diskinfo_std(struct bdinfo *bd) { bzero(&v86, sizeof(v86)); v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; v86.eax = CMD_READ_PARAM; v86.edx = bd->bd_unit; v86int(); if (V86_CY(v86.efl) && ((v86.eax & 0xff00) != 0)) return ((v86.eax & 0xff00) >> 8); /* return custom error on absurd sector number */ if ((v86.ecx & 0x3f) == 0) return (0x60); bd->bd_cyl = ((v86.ecx & 0xc0) << 2) + ((v86.ecx & 0xff00) >> 8) + 1; /* Convert max head # -> # of heads */ bd->bd_hds = ((v86.edx & 0xff00) >> 8) + 1; bd->bd_sec = v86.ecx & 0x3f; bd->bd_type = v86.ebx; bd->bd_sectors = (uint64_t)bd->bd_cyl * bd->bd_hds * bd->bd_sec; return (0); } /* * Read EDD info. Return 0 on success, error otherwise. * * Avoid stack corruption on some systems by adding extra bytes to * params block. */ static int bd_get_diskinfo_ext(struct bdinfo *bd) { struct disk_params { struct edd_params head; struct edd_device_path_v3 device_path; uint8_t dummy[16]; } __packed dparams; struct edd_params *params; uint64_t total; params = &dparams.head; /* Get disk params */ bzero(&dparams, sizeof(dparams)); params->len = sizeof(struct edd_params_v3); v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; v86.eax = CMD_EXT_PARAM; v86.edx = bd->bd_unit; v86.ds = VTOPSEG(&dparams); v86.esi = VTOPOFF(&dparams); v86int(); if (V86_CY(v86.efl) && ((v86.eax & 0xff00) != 0)) return ((v86.eax & 0xff00) >> 8); /* * Sector size must be a multiple of 512 bytes. * An alternate test would be to check power of 2, * powerof2(params.sector_size). * 16K is largest read buffer we can use at this time. */ if (params->sector_size >= 512 && params->sector_size <= 16384 && (params->sector_size % BIOSDISK_SECSIZE) == 0) bd->bd_sectorsize = params->sector_size; bd->bd_cyl = params->cylinders; bd->bd_hds = params->heads; bd->bd_sec = params->sectors_per_track; if (params->sectors != 0) { total = params->sectors; } else { total = (uint64_t)params->cylinders * params->heads * params->sectors_per_track; } bd->bd_sectors = total; return (0); } /* * Try to detect a device supported by the legacy int13 BIOS */ static bool bd_int13probe(bdinfo_t *bd) { int edd, ret; bd->bd_flags &= ~BD_NO_MEDIA; if ((bd->bd_flags & BD_CDROM) != 0) { return (bd_get_diskinfo_cd(bd) == 0); } edd = bd_check_extensions(bd->bd_unit); if (edd == 0) bd->bd_flags |= BD_MODEINT13; else if (edd < 0x30) bd->bd_flags |= BD_MODEEDD1; else bd->bd_flags |= BD_MODEEDD3; /* Default sector size */ if (bd->bd_sectorsize == 0) bd->bd_sectorsize = BIOSDISK_SECSIZE; /* * Test if the floppy device is present, so we can avoid receiving * bogus information from bd_get_diskinfo_std(). */ if (bd->bd_unit < 0x80) { /* reset disk */ bd_reset_disk(bd->bd_unit); /* Get disk type */ v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; v86.eax = CMD_DRIVE_TYPE; v86.edx = bd->bd_unit; v86int(); if (V86_CY(v86.efl) || (v86.eax & 0x300) == 0) return (false); } ret = 1; if (edd != 0) ret = bd_get_diskinfo_ext(bd); if (ret != 0 || bd->bd_sectors == 0) ret = bd_get_diskinfo_std(bd); if (ret != 0 && bd->bd_unit < 0x80) { /* Set defaults for 1.44 floppy */ bd->bd_cyl = 80; bd->bd_hds = 2; bd->bd_sec = 18; bd->bd_sectors = 2880; /* Since we are there, there most likely is no media */ bd->bd_flags |= BD_NO_MEDIA; ret = 0; } if (ret != 0) { if (bd->bd_sectors != 0 && edd != 0) { bd->bd_sec = 63; bd->bd_hds = 255; bd->bd_cyl = (bd->bd_sectors + bd->bd_sec * bd->bd_hds - 1) / bd->bd_sec * bd->bd_hds; } else { const char *dv_name; if ((bd->bd_flags & BD_FLOPPY) != 0) dv_name = biosfd.dv_name; else dv_name = bioshd.dv_name; printf("Can not get information about %s unit %#x\n", dv_name, bd->bd_unit); return (false); } } if (bd->bd_sec == 0) bd->bd_sec = 63; if (bd->bd_hds == 0) bd->bd_hds = 255; if (bd->bd_sectors == 0) bd->bd_sectors = (uint64_t)bd->bd_cyl * bd->bd_hds * bd->bd_sec; DPRINTF("unit 0x%x geometry %d/%d/%d\n", bd->bd_unit, bd->bd_cyl, bd->bd_hds, bd->bd_sec); return (true); } static int bd_count(bdinfo_list_t *bdi) { bdinfo_t *bd; int i; i = 0; STAILQ_FOREACH(bd, bdi, bd_link) i++; return (i); } /* * Print information about disks */ static int bd_print_common(struct devsw *dev, bdinfo_list_t *bdi, int verbose) { char line[80]; struct disk_devdesc devd; bdinfo_t *bd; int i, ret = 0; char drive; if (STAILQ_EMPTY(bdi)) return (0); printf("%s devices:", dev->dv_name); if ((ret = pager_output("\n")) != 0) return (ret); i = -1; STAILQ_FOREACH(bd, bdi, bd_link) { i++; switch (dev->dv_type) { case DEVT_FD: drive = 'A'; break; case DEVT_CD: drive = 'C' + bd_count(&hdinfo); break; default: drive = 'C'; break; } snprintf(line, sizeof(line), " %s%d: BIOS drive %c (%s%ju X %u):\n", dev->dv_name, i, drive + i, (bd->bd_flags & BD_NO_MEDIA) == BD_NO_MEDIA ? "no media, " : "", (uintmax_t)bd->bd_sectors, bd->bd_sectorsize); if ((ret = pager_output(line)) != 0) break; if ((bd->bd_flags & BD_NO_MEDIA) == BD_NO_MEDIA) continue; if (dev->dv_type != DEVT_DISK) continue; devd.dd.d_dev = dev; devd.dd.d_unit = i; devd.d_slice = D_SLICENONE; devd.d_partition = D_PARTNONE; if (disk_open(&devd, bd->bd_sectorsize * bd->bd_sectors, bd->bd_sectorsize) == 0) { snprintf(line, sizeof(line), " %s%d", dev->dv_name, i); ret = disk_print(&devd, line, verbose); disk_close(&devd); if (ret != 0) break; } } return (ret); } static int fd_print(int verbose) { return (bd_print_common(&biosfd, &fdinfo, verbose)); } static int bd_print(int verbose) { return (bd_print_common(&bioshd, &hdinfo, verbose)); } static int cd_print(int verbose) { return (bd_print_common(&bioscd, &cdinfo, verbose)); } /* * Read disk size from partition. * This is needed to work around buggy BIOS systems returning * wrong (truncated) disk media size. * During bd_probe() we tested if the multiplication of bd_sectors * would overflow so it should be safe to perform here. */ static uint64_t bd_disk_get_sectors(struct disk_devdesc *dev) { bdinfo_t *bd; struct disk_devdesc disk; uint64_t size; bd = bd_get_bdinfo(&dev->dd); if (bd == NULL) return (0); disk.dd.d_dev = dev->dd.d_dev; disk.dd.d_unit = dev->dd.d_unit; disk.d_slice = D_SLICENONE; disk.d_partition = D_PARTNONE; disk.d_offset = 0; size = bd->bd_sectors * bd->bd_sectorsize; if (disk_open(&disk, size, bd->bd_sectorsize) == 0) { (void) disk_ioctl(&disk, DIOCGMEDIASIZE, &size); disk_close(&disk); } return (size / bd->bd_sectorsize); } /* * Attempt to open the disk described by (dev) for use by (f). * * Note that the philosophy here is "give them exactly what * they ask for". This is necessary because being too "smart" * about what the user might want leads to complications. * (eg. given no slice or partition value, with a disk that is * sliced - are they after the first BSD slice, or the DOS * slice before it?) */ static int bd_open(struct open_file *f, ...) { bdinfo_t *bd; struct disk_devdesc *dev; va_list ap; int rc; TSENTER(); va_start(ap, f); dev = va_arg(ap, struct disk_devdesc *); va_end(ap); bd = bd_get_bdinfo(&dev->dd); if (bd == NULL) return (EIO); if ((bd->bd_flags & BD_NO_MEDIA) == BD_NO_MEDIA) { if (!bd_int13probe(bd)) return (EIO); if ((bd->bd_flags & BD_NO_MEDIA) == BD_NO_MEDIA) return (EIO); } if (bd->bd_bcache == NULL) bd->bd_bcache = bcache_allocate(); if (bd->bd_open == 0) bd->bd_sectors = bd_disk_get_sectors(dev); bd->bd_open++; rc = 0; if (dev->dd.d_dev->dv_type == DEVT_DISK) { rc = disk_open(dev, bd->bd_sectors * bd->bd_sectorsize, bd->bd_sectorsize); if (rc != 0) { bd->bd_open--; if (bd->bd_open == 0) { bcache_free(bd->bd_bcache); bd->bd_bcache = NULL; } } } TSEXIT(); return (rc); } static int bd_close(struct open_file *f) { struct disk_devdesc *dev; bdinfo_t *bd; int rc = 0; dev = (struct disk_devdesc *)f->f_devdata; bd = bd_get_bdinfo(&dev->dd); if (bd == NULL) return (EIO); bd->bd_open--; if (bd->bd_open == 0) { bcache_free(bd->bd_bcache); bd->bd_bcache = NULL; } if (dev->dd.d_dev->dv_type == DEVT_DISK) rc = disk_close(dev); return (rc); } static int bd_ioctl(struct open_file *f, u_long cmd, void *data) { bdinfo_t *bd; struct disk_devdesc *dev; int rc; dev = (struct disk_devdesc *)f->f_devdata; bd = bd_get_bdinfo(&dev->dd); if (bd == NULL) return (EIO); if (dev->dd.d_dev->dv_type == DEVT_DISK) { rc = disk_ioctl(dev, cmd, data); if (rc != ENOTTY) return (rc); } switch (cmd) { case DIOCGSECTORSIZE: *(uint32_t *)data = bd->bd_sectorsize; break; case DIOCGMEDIASIZE: *(uint64_t *)data = bd->bd_sectors * bd->bd_sectorsize; break; default: return (ENOTTY); } return (0); } static int bd_strategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize) { bdinfo_t *bd; struct bcache_devdata bcd; struct disk_devdesc *dev; daddr_t offset; dev = (struct disk_devdesc *)devdata; bd = bd_get_bdinfo(&dev->dd); if (bd == NULL) return (EINVAL); bcd.dv_strategy = bd_realstrategy; bcd.dv_devdata = devdata; bcd.dv_cache = bd->bd_bcache; offset = 0; if (dev->dd.d_dev->dv_type == DEVT_DISK) { offset = dev->d_offset * bd->bd_sectorsize; offset /= BIOSDISK_SECSIZE; } return (bcache_strategy(&bcd, rw, dblk + offset, size, buf, rsize)); } static int bd_realstrategy(void *devdata, int rw, daddr_t dblk, size_t size, char *buf, size_t *rsize) { struct disk_devdesc *dev = (struct disk_devdesc *)devdata; bdinfo_t *bd; uint64_t disk_blocks, offset, d_offset; size_t blks, blkoff, bsize, bio_size, rest; caddr_t bbuf = NULL; int rc; bd = bd_get_bdinfo(&dev->dd); if (bd == NULL || (bd->bd_flags & BD_NO_MEDIA) == BD_NO_MEDIA) return (EIO); /* * First make sure the IO size is a multiple of 512 bytes. While we do * process partial reads below, the strategy mechanism is built * assuming IO is a multiple of 512B blocks. If the request is not * a multiple of 512B blocks, it has to be some sort of bug. */ if (size == 0 || (size % BIOSDISK_SECSIZE) != 0) { printf("bd_strategy: %d bytes I/O not multiple of %d\n", size, BIOSDISK_SECSIZE); return (EIO); } DPRINTF("open_disk %p", dev); offset = dblk * BIOSDISK_SECSIZE; dblk = offset / bd->bd_sectorsize; blkoff = offset % bd->bd_sectorsize; /* * Check the value of the size argument. We do have quite small * heap (64MB), but we do not know good upper limit, so we check against * INT_MAX here. This will also protect us against possible overflows * while translating block count to bytes. */ if (size > INT_MAX) { DPRINTF("too large I/O: %zu bytes", size); return (EIO); } blks = size / bd->bd_sectorsize; if (blks == 0 || (size % bd->bd_sectorsize) != 0) blks++; if (dblk > dblk + blks) return (EIO); if (rsize) *rsize = 0; /* * Get disk blocks, this value is either for whole disk or for * partition. */ d_offset = 0; disk_blocks = 0; if (dev->dd.d_dev->dv_type == DEVT_DISK) { if (disk_ioctl(dev, DIOCGMEDIASIZE, &disk_blocks) == 0) { /* DIOCGMEDIASIZE does return bytes. */ disk_blocks /= bd->bd_sectorsize; } d_offset = dev->d_offset; } if (disk_blocks == 0) disk_blocks = bd->bd_sectors * (bd->bd_sectorsize / BIOSDISK_SECSIZE) - d_offset; /* Validate source block address. */ if (dblk < d_offset || dblk >= d_offset + disk_blocks) return (EIO); /* * Truncate if we are crossing disk or partition end. */ if (dblk + blks >= d_offset + disk_blocks) { blks = d_offset + disk_blocks - dblk; size = blks * bd->bd_sectorsize; DPRINTF("short I/O %d", blks); } bio_size = min(BIO_BUFFER_SIZE, size); while (bio_size > bd->bd_sectorsize) { bbuf = bio_alloc(bio_size); if (bbuf != NULL) break; bio_size -= bd->bd_sectorsize; } if (bbuf == NULL) { bio_size = V86_IO_BUFFER_SIZE; if (bio_size / bd->bd_sectorsize == 0) panic("BUG: Real mode buffer is too small"); /* Use alternate 4k buffer */ bbuf = PTOV(V86_IO_BUFFER); } rest = size; rc = 0; while (blks > 0) { int x = min(blks, bio_size / bd->bd_sectorsize); switch (rw & F_MASK) { case F_READ: DPRINTF("read %d from %lld to %p", x, dblk, buf); bsize = bd->bd_sectorsize * x - blkoff; if (rest < bsize) bsize = rest; if ((rc = bd_io(dev, bd, dblk, x, bbuf, BD_RD)) != 0) { rc = EIO; goto error; } bcopy(bbuf + blkoff, buf, bsize); break; case F_WRITE : DPRINTF("write %d from %lld to %p", x, dblk, buf); if (blkoff != 0) { /* * We got offset to sector, read 1 sector to * bbuf. */ x = 1; bsize = bd->bd_sectorsize - blkoff; bsize = min(bsize, rest); rc = bd_io(dev, bd, dblk, x, bbuf, BD_RD); } else if (rest < bd->bd_sectorsize) { /* * The remaining block is not full * sector. Read 1 sector to bbuf. */ x = 1; bsize = rest; rc = bd_io(dev, bd, dblk, x, bbuf, BD_RD); } else { /* We can write full sector(s). */ bsize = bd->bd_sectorsize * x; } /* * Put your Data In, Put your Data out, * Put your Data In, and shake it all about */ bcopy(buf, bbuf + blkoff, bsize); if ((rc = bd_io(dev, bd, dblk, x, bbuf, BD_WR)) != 0) { rc = EIO; goto error; } break; default: /* DO NOTHING */ rc = EROFS; goto error; } blkoff = 0; buf += bsize; rest -= bsize; blks -= x; dblk += x; } if (rsize != NULL) *rsize = size; error: if (bbuf != PTOV(V86_IO_BUFFER)) bio_free(bbuf, bio_size); return (rc); } static int bd_edd_io(bdinfo_t *bd, daddr_t dblk, int blks, caddr_t dest, int dowrite) { static struct edd_packet packet; TSENTER(); packet.len = sizeof(struct edd_packet); packet.count = blks; packet.off = VTOPOFF(dest); packet.seg = VTOPSEG(dest); packet.lba = dblk; v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; if (dowrite == BD_WR) v86.eax = CMD_WRITE_LBA; /* maybe Write with verify 0x4302? */ else v86.eax = CMD_READ_LBA; v86.edx = bd->bd_unit; v86.ds = VTOPSEG(&packet); v86.esi = VTOPOFF(&packet); v86int(); if (V86_CY(v86.efl)) return (v86.eax >> 8); TSEXIT(); return (0); } static int bd_chs_io(bdinfo_t *bd, daddr_t dblk, int blks, caddr_t dest, int dowrite) { uint32_t x, bpc, cyl, hd, sec; TSENTER(); bpc = bd->bd_sec * bd->bd_hds; /* blocks per cylinder */ x = dblk; cyl = x / bpc; /* block # / blocks per cylinder */ x %= bpc; /* block offset into cylinder */ hd = x / bd->bd_sec; /* offset / blocks per track */ sec = x % bd->bd_sec; /* offset into track */ /* correct sector number for 1-based BIOS numbering */ sec++; if (cyl > 1023) { /* CHS doesn't support cylinders > 1023. */ return (1); } v86.ctl = V86_FLAGS; v86.addr = DISK_BIOS; if (dowrite == BD_WR) v86.eax = CMD_WRITE_CHS | blks; else v86.eax = CMD_READ_CHS | blks; v86.ecx = ((cyl & 0xff) << 8) | ((cyl & 0x300) >> 2) | sec; v86.edx = (hd << 8) | bd->bd_unit; v86.es = VTOPSEG(dest); v86.ebx = VTOPOFF(dest); v86int(); if (V86_CY(v86.efl)) return (v86.eax >> 8); TSEXIT(); return (0); } static void bd_io_workaround(bdinfo_t *bd) { uint8_t buf[8 * 1024]; bd_edd_io(bd, 0xffffffff, 1, (caddr_t)buf, BD_RD); } static int bd_io(struct disk_devdesc *dev, bdinfo_t *bd, daddr_t dblk, int blks, caddr_t dest, int dowrite) { int result, retry; TSENTER(); /* Just in case some idiot actually tries to read/write -1 blocks... */ if (blks < 0) return (-1); /* * Workaround for a problem with some HP ProLiant BIOS failing to work * out the boot disk after installation. hrs and kuriyama discovered * this problem with an HP ProLiant DL320e Gen 8 with a 3TB HDD, and * discovered that an int13h call seems to cause a buffer overrun in * the bios. The problem is alleviated by doing an extra read before * the buggy read. It is not immediately known whether other models * are similarly affected. * Loop retrying the operation a couple of times. The BIOS * may also retry. */ if (dowrite == BD_RD && dblk >= 0x100000000) bd_io_workaround(bd); for (retry = 0; retry < 3; retry++) { if (bd->bd_flags & BD_MODEEDD) result = bd_edd_io(bd, dblk, blks, dest, dowrite); else result = bd_chs_io(bd, dblk, blks, dest, dowrite); if (result == 0) { if (bd->bd_flags & BD_NO_MEDIA) bd->bd_flags &= ~BD_NO_MEDIA; break; } bd_reset_disk(bd->bd_unit); /* * Error codes: * 20h controller failure * 31h no media in drive (IBM/MS INT 13 extensions) * 80h no media in drive, VMWare (Fusion) * There is no reason to repeat the IO with errors above. */ if (result == 0x20 || result == 0x31 || result == 0x80) { bd->bd_flags |= BD_NO_MEDIA; break; } } if (result != 0 && (bd->bd_flags & BD_NO_MEDIA) == 0) { if (dowrite == BD_WR) { printf("%s%d: Write %d sector(s) from %p (0x%x) " "to %lld: 0x%x\n", dev->dd.d_dev->dv_name, dev->dd.d_unit, blks, dest, VTOP(dest), dblk, result); } else { printf("%s%d: Read %d sector(s) from %lld to %p " "(0x%x): 0x%x\n", dev->dd.d_dev->dv_name, dev->dd.d_unit, blks, dblk, dest, VTOP(dest), result); } } TSEXIT(); return (result); } -/* - * Return the BIOS geometry of a given "fixed drive" in a format - * suitable for the legacy bootinfo structure. Since the kernel is - * expecting raw int 0x13/0x8 values for N_BIOS_GEOM drives, we - * prefer to get the information directly, rather than rely on being - * able to put it together from information already maintained for - * different purposes and for a probably different number of drives. - * - * For valid drives, the geometry is expected in the format (31..0) - * "000000cc cccccccc hhhhhhhh 00ssssss"; and invalid drives are - * indicated by returning the geometry of a "1.2M" PC-format floppy - * disk. And, incidentally, what is returned is not the geometry as - * such but the highest valid cylinder, head, and sector numbers. - */ -uint32_t -bd_getbigeom(int bunit) -{ - - v86.ctl = V86_FLAGS; - v86.addr = DISK_BIOS; - v86.eax = CMD_READ_PARAM; - v86.edx = 0x80 + bunit; - v86int(); - if (V86_CY(v86.efl)) - return (0x4f010f); - return (((v86.ecx & 0xc0) << 18) | ((v86.ecx & 0xff00) << 8) | - (v86.edx & 0xff00) | (v86.ecx & 0x3f)); -} - /* * Return a suitable dev_t value for (dev). * * In the case where it looks like (dev) is a SCSI disk, we allow the number of * IDE disks to be specified in $num_ide_disks. There should be a Better Way. */ int bd_getdev(struct i386_devdesc *d) { struct disk_devdesc *dev; bdinfo_t *bd; int biosdev; int major; int rootdev; char *nip, *cp; int i, unit, slice, partition; /* XXX: Assume partition 'a'. */ slice = 0; partition = 0; dev = (struct disk_devdesc *)d; bd = bd_get_bdinfo(&dev->dd); if (bd == NULL) return (-1); biosdev = bd_unit2bios(d); DPRINTF("unit %d BIOS device %d", dev->dd.d_unit, biosdev); if (biosdev == -1) /* not a BIOS device */ return (-1); if (dev->dd.d_dev->dv_type == DEVT_DISK) { if (disk_open(dev, bd->bd_sectors * bd->bd_sectorsize, bd->bd_sectorsize) != 0) /* oops, not a viable device */ return (-1); else disk_close(dev); slice = dev->d_slice + 1; partition = dev->d_partition; } if (biosdev < 0x80) { /* floppy (or emulated floppy) or ATAPI device */ if (bd->bd_type == DT_ATAPI) { /* is an ATAPI disk */ major = WFDMAJOR; } else { /* is a floppy disk */ major = FDMAJOR; } } else { /* assume an IDE disk */ major = WDMAJOR; } /* default root disk unit number */ unit = biosdev & 0x7f; if (dev->dd.d_dev->dv_type == DEVT_CD) { /* * XXX: Need to examine device spec here to figure out if * SCSI or ATAPI. No idea on how to figure out device number. * All we can really pass to the kernel is what bus and device * on which bus we were booted from, which dev_t isn't well * suited to since those number don't match to unit numbers * very well. We may just need to engage in a hack where * we pass -C to the boot args if we are the boot device. */ major = ACDMAJOR; unit = 0; /* XXX */ } /* XXX a better kludge to set the root disk unit number */ if ((nip = getenv("root_disk_unit")) != NULL) { i = strtol(nip, &cp, 0); /* check for parse error */ if ((cp != nip) && (*cp == 0)) unit = i; } rootdev = MAKEBOOTDEV(major, slice, unit, partition); DPRINTF("dev is 0x%x\n", rootdev); return (rootdev); } diff --git a/stand/i386/libi386/bootinfo32.c b/stand/i386/libi386/bootinfo32.c index 68aae9b67ba9..372bced917d6 100644 --- a/stand/i386/libi386/bootinfo32.c +++ b/stand/i386/libi386/bootinfo32.c @@ -1,195 +1,193 @@ /*- * Copyright (c) 1998 Michael Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include "bootstrap.h" #include "modinfo.h" #include "libi386.h" #include "btxv86.h" #ifdef LOADER_GELI_SUPPORT #include "geliboot.h" #endif static struct bootinfo bi; /* * Load the information expected by an i386 kernel. * * - The 'boothowto' argument is constructed * - The 'bootdev' argument is constructed * - The 'bootinfo' struct is constructed, and copied into the kernel space. * - The kernel environment is copied into kernel space. * - Module metadata are formatted and placed in kernel space. */ int bi_load32(char *args, int *howtop, int *bootdevp, vm_offset_t *bip, vm_offset_t *modulep, vm_offset_t *kernendp) { struct preloaded_file *xp, *kfp; struct i386_devdesc *rootdev; struct file_metadata *md; vm_offset_t addr; vm_offset_t kernend; vm_offset_t envp; vm_offset_t size; vm_offset_t ssym, esym; char *rootdevname; int bootdevnr, i, howto; char *kernelname; const char *kernelpath; howto = bi_getboothowto(args); /* * Allow the environment variable 'rootdev' to override the supplied device * This should perhaps go to MI code and/or have $rootdev tested/set by * MI code before launching the kernel. */ rootdevname = getenv("rootdev"); i386_getdev((void **)(&rootdev), rootdevname, NULL); if (rootdev == NULL) { /* bad $rootdev/$currdev */ printf("can't determine root device\n"); return(EINVAL); } /* Try reading the /etc/fstab file to select the root device */ getrootmount(devformat(&rootdev->dd)); /* Do legacy rootdev guessing */ /* XXX - use a default bootdev of 0. Is this ok??? */ bootdevnr = 0; switch(rootdev->dd.d_dev->dv_type) { case DEVT_CD: case DEVT_DISK: /* pass in the BIOS device number of the current disk */ bi.bi_bios_dev = bd_unit2bios(rootdev); bootdevnr = bd_getdev(rootdev); break; case DEVT_NET: case DEVT_ZFS: break; default: printf("WARNING - don't know how to boot from device type %d\n", rootdev->dd.d_dev->dv_type); } if (bootdevnr == -1) { printf("root device %s invalid\n", devformat(&rootdev->dd)); return (EINVAL); } free(rootdev); /* find the last module in the chain */ addr = 0; for (xp = file_findfile(NULL, NULL); xp != NULL; xp = xp->f_next) { if (addr < (xp->f_addr + xp->f_size)) addr = xp->f_addr + xp->f_size; } /* pad to a page boundary */ addr = roundup(addr, PAGE_SIZE); addr = build_font_module(addr); /* copy our environment */ envp = addr; addr = md_copyenv(addr); /* pad to a page boundary */ addr = roundup(addr, PAGE_SIZE); kfp = file_findfile(NULL, "elf kernel"); if (kfp == NULL) kfp = file_findfile(NULL, "elf32 kernel"); if (kfp == NULL) panic("can't find kernel file"); kernend = 0; /* fill it in later */ file_addmetadata(kfp, MODINFOMD_HOWTO, sizeof howto, &howto); file_addmetadata(kfp, MODINFOMD_ENVP, sizeof envp, &envp); file_addmetadata(kfp, MODINFOMD_KERNEND, sizeof kernend, &kernend); bios_addsmapdata(kfp); #ifdef LOADER_GELI_SUPPORT geli_export_key_metadata(kfp); #endif bi_load_vbe_data(kfp); /* Figure out the size and location of the metadata */ *modulep = addr; size = md_copymodules(0, false); kernend = roundup(addr + size, PAGE_SIZE); *kernendp = kernend; /* patch MODINFOMD_KERNEND */ md = file_findmetadata(kfp, MODINFOMD_KERNEND); bcopy(&kernend, md->md_data, sizeof kernend); /* copy module list and metadata */ (void)md_copymodules(addr, false); ssym = esym = 0; md = file_findmetadata(kfp, MODINFOMD_SSYM); if (md != NULL) ssym = *((vm_offset_t *)&(md->md_data)); md = file_findmetadata(kfp, MODINFOMD_ESYM); if (md != NULL) esym = *((vm_offset_t *)&(md->md_data)); if (ssym == 0 || esym == 0) ssym = esym = 0; /* sanity */ /* legacy bootinfo structure */ kernelname = getenv("kernelname"); i386_getdev(NULL, kernelname, &kernelpath); bi.bi_version = BOOTINFO_VERSION; - for (i = 0; i < N_BIOS_GEOM; i++) - bi.bi_bios_geom[i] = bd_getbigeom(i); bi.bi_size = sizeof(bi); bi.bi_memsizes_valid = 1; bi.bi_basemem = bios_basemem / 1024; bi.bi_extmem = bios_extmem / 1024; bi.bi_envp = envp; bi.bi_modulep = *modulep; bi.bi_kernend = kernend; bi.bi_kernelname = VTOP(kernelpath); bi.bi_symtab = ssym; /* XXX this is only the primary kernel symtab */ bi.bi_esymtab = esym; /* legacy boot arguments */ *howtop = howto | RB_BOOTINFO; *bootdevp = bootdevnr; *bip = VTOP(&bi); return(0); } diff --git a/stand/userboot/userboot/bootinfo32.c b/stand/userboot/userboot/bootinfo32.c index d496384fbcb5..782628c4126c 100644 --- a/stand/userboot/userboot/bootinfo32.c +++ b/stand/userboot/userboot/bootinfo32.c @@ -1,183 +1,179 @@ /*- * Copyright (c) 1998 Michael Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include "bootstrap.h" #include "modinfo.h" #include "libuserboot.h" #ifdef LOADER_GELI_SUPPORT #include "geliboot.h" #endif static struct bootinfo bi; /* * Load the information expected by an i386 kernel. * * - The 'boothowto' argument is constructed * - The 'bootdev' argument is constructed * - The 'bootinfo' struct is constructed, and copied into the kernel space. * - The kernel environment is copied into kernel space. * - Module metadata are formatted and placed in kernel space. */ int bi_load32(char *args, int *howtop, int *bootdevp, vm_offset_t *bip, vm_offset_t *modulep, vm_offset_t *kernendp) { struct preloaded_file *xp, *kfp; struct devdesc *rootdev; struct file_metadata *md; vm_offset_t addr; vm_offset_t kernend; vm_offset_t envp; vm_offset_t size; vm_offset_t ssym, esym; char *rootdevname; int bootdevnr, howto; char *kernelname; const char *kernelpath; uint64_t lowmem, highmem; howto = bi_getboothowto(args); /* * Allow the environment variable 'rootdev' to override the supplied device * This should perhaps go to MI code and/or have $rootdev tested/set by * MI code before launching the kernel. */ rootdevname = getenv("rootdev"); userboot_getdev((void **)(&rootdev), rootdevname, NULL); if (rootdev == NULL) { /* bad $rootdev/$currdev */ printf("can't determine root device\n"); return(EINVAL); } /* Try reading the /etc/fstab file to select the root device */ getrootmount(devformat(rootdev)); bootdevnr = 0; #if 0 if (bootdevnr == -1) { printf("root device %s invalid\n", devformat(rootdev)); return (EINVAL); } #endif free(rootdev); /* find the last module in the chain */ addr = 0; for (xp = file_findfile(NULL, NULL); xp != NULL; xp = xp->f_next) { if (addr < (xp->f_addr + xp->f_size)) addr = xp->f_addr + xp->f_size; } /* pad to a page boundary */ addr = roundup(addr, PAGE_SIZE); /* copy our environment */ envp = addr; addr = md_copyenv(addr); /* pad to a page boundary */ addr = roundup(addr, PAGE_SIZE); kfp = file_findfile(NULL, "elf kernel"); if (kfp == NULL) kfp = file_findfile(NULL, "elf32 kernel"); if (kfp == NULL) panic("can't find kernel file"); kernend = 0; /* fill it in later */ file_addmetadata(kfp, MODINFOMD_HOWTO, sizeof howto, &howto); file_addmetadata(kfp, MODINFOMD_ENVP, sizeof envp, &envp); file_addmetadata(kfp, MODINFOMD_KERNEND, sizeof kernend, &kernend); bios_addsmapdata(kfp); #ifdef LOADER_GELI_SUPPORT geli_export_key_metadata(kfp); #endif /* Figure out the size and location of the metadata */ *modulep = addr; size = md_copymodules(0, false); kernend = roundup(addr + size, PAGE_SIZE); *kernendp = kernend; /* patch MODINFOMD_KERNEND */ md = file_findmetadata(kfp, MODINFOMD_KERNEND); bcopy(&kernend, md->md_data, sizeof kernend); /* copy module list and metadata */ (void)md_copymodules(addr, false); ssym = esym = 0; md = file_findmetadata(kfp, MODINFOMD_SSYM); if (md != NULL) ssym = *((vm_offset_t *)&(md->md_data)); md = file_findmetadata(kfp, MODINFOMD_ESYM); if (md != NULL) esym = *((vm_offset_t *)&(md->md_data)); if (ssym == 0 || esym == 0) ssym = esym = 0; /* sanity */ /* legacy bootinfo structure */ kernelname = getenv("kernelname"); userboot_getdev(NULL, kernelname, &kernelpath); bi.bi_version = BOOTINFO_VERSION; -#if 0 - for (i = 0; i < N_BIOS_GEOM; i++) - bi.bi_bios_geom[i] = bd_getbigeom(i); -#endif bi.bi_size = sizeof(bi); CALLBACK(getmem, &lowmem, &highmem); bi.bi_memsizes_valid = 1; bi.bi_basemem = 640; bi.bi_extmem = (lowmem - 0x100000) / 1024; bi.bi_envp = envp; bi.bi_modulep = *modulep; bi.bi_kernend = kernend; bi.bi_symtab = ssym; /* XXX this is only the primary kernel symtab */ bi.bi_esymtab = esym; /* * Copy the legacy bootinfo and kernel name to the guest at 0x2000 */ bi.bi_kernelname = 0x2000 + sizeof(bi); CALLBACK(copyin, &bi, 0x2000, sizeof(bi)); CALLBACK(copyin, kernelname, 0x2000 + sizeof(bi), strlen(kernelname) + 1); /* legacy boot arguments */ *howtop = howto | RB_BOOTINFO; *bootdevp = bootdevnr; *bip = 0x2000; return(0); }