diff --git a/module/zfs/ddt.c b/module/zfs/ddt.c index 1fb198219904..05b28acbcd37 100644 --- a/module/zfs/ddt.c +++ b/module/zfs/ddt.c @@ -1,1248 +1,1250 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2016 by Delphix. All rights reserved. * Copyright (c) 2022 by Pawel Jakub Dawidek */ #include #include #include #include #include #include #include #include #include #include #include #include #include static kmem_cache_t *ddt_cache; static kmem_cache_t *ddt_entry_cache; /* * Enable/disable prefetching of dedup-ed blocks which are going to be freed. */ int zfs_dedup_prefetch = 0; static const ddt_ops_t *const ddt_ops[DDT_TYPES] = { &ddt_zap_ops, }; static const char *const ddt_class_name[DDT_CLASSES] = { "ditto", "duplicate", "unique", }; static void ddt_object_create(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags & ZCHECKSUM_FLAG_DEDUP; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); - ASSERT(*objectp == 0); - VERIFY(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash) == 0); - ASSERT(*objectp != 0); + ASSERT3U(*objectp, ==, 0); + VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash)); + ASSERT3U(*objectp, !=, 0); - VERIFY(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name, - sizeof (uint64_t), 1, objectp, tx) == 0); + VERIFY0(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name, + sizeof (uint64_t), 1, objectp, tx)); - VERIFY(zap_add(os, spa->spa_ddt_stat_object, name, + VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), - &ddt->ddt_histogram[type][class], tx) == 0); + &ddt->ddt_histogram[type][class], tx)); } static void ddt_object_destroy(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { spa_t *spa = ddt->ddt_spa; objset_t *os = ddt->ddt_os; uint64_t *objectp = &ddt->ddt_object[type][class]; uint64_t count; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); - ASSERT(*objectp != 0); + ASSERT3U(*objectp, !=, 0); ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class])); - VERIFY(ddt_object_count(ddt, type, class, &count) == 0 && count == 0); - VERIFY(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx) == 0); - VERIFY(zap_remove(os, spa->spa_ddt_stat_object, name, tx) == 0); - VERIFY(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx) == 0); + VERIFY0(ddt_object_count(ddt, type, class, &count)); + VERIFY0(count); + VERIFY0(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx)); + VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx)); + VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx)); memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t)); *objectp = 0; } static int ddt_object_load(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; uint64_t count; char name[DDT_NAMELEN]; int error; ddt_object_name(ddt, type, class, name); error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name, sizeof (uint64_t), 1, &ddt->ddt_object[type][class]); if (error != 0) return (error); error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), &ddt->ddt_histogram[type][class]); if (error != 0) return (error); /* * Seed the cached statistics. */ error = ddt_object_info(ddt, type, class, &doi); if (error) return (error); error = ddt_object_count(ddt, type, class, &count); if (error) return (error); ddo->ddo_count = count; ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; return (0); } static void ddt_object_sync(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_tx_t *tx) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; dmu_object_info_t doi; uint64_t count; char name[DDT_NAMELEN]; ddt_object_name(ddt, type, class, name); - VERIFY(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, + VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name, sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t), - &ddt->ddt_histogram[type][class], tx) == 0); + &ddt->ddt_histogram[type][class], tx)); /* * Cache DDT statistics; this is the only time they'll change. */ - VERIFY(ddt_object_info(ddt, type, class, &doi) == 0); - VERIFY(ddt_object_count(ddt, type, class, &count) == 0); + VERIFY0(ddt_object_info(ddt, type, class, &doi)); + VERIFY0(ddt_object_count(ddt, type, class, &count)); ddo->ddo_count = count; ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9; ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size; } static int ddt_object_lookup(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde) { if (!ddt_object_exists(ddt, type, class)) return (SET_ERROR(ENOENT)); return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os, ddt->ddt_object[type][class], dde)); } static void ddt_object_prefetch(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde) { if (!ddt_object_exists(ddt, type, class)) return; ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os, ddt->ddt_object[type][class], dde); } int ddt_object_update(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_update(ddt->ddt_os, ddt->ddt_object[type][class], dde, tx)); } static int ddt_object_remove(ddt_t *ddt, enum ddt_type type, enum ddt_class class, ddt_entry_t *dde, dmu_tx_t *tx) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os, ddt->ddt_object[type][class], dde, tx)); } int ddt_object_walk(ddt_t *ddt, enum ddt_type type, enum ddt_class class, uint64_t *walk, ddt_entry_t *dde) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os, ddt->ddt_object[type][class], dde, walk)); } int ddt_object_count(ddt_t *ddt, enum ddt_type type, enum ddt_class class, uint64_t *count) { ASSERT(ddt_object_exists(ddt, type, class)); return (ddt_ops[type]->ddt_op_count(ddt->ddt_os, ddt->ddt_object[type][class], count)); } int ddt_object_info(ddt_t *ddt, enum ddt_type type, enum ddt_class class, dmu_object_info_t *doi) { if (!ddt_object_exists(ddt, type, class)) return (SET_ERROR(ENOENT)); return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class], doi)); } boolean_t ddt_object_exists(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { return (!!ddt->ddt_object[type][class]); } void ddt_object_name(ddt_t *ddt, enum ddt_type type, enum ddt_class class, char *name) { (void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT, zio_checksum_table[ddt->ddt_checksum].ci_name, ddt_ops[type]->ddt_op_name, ddt_class_name[class]); } void ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg) { - ASSERT(txg != 0); + ASSERT3U(txg, !=, 0); for (int d = 0; d < SPA_DVAS_PER_BP; d++) bp->blk_dva[d] = ddp->ddp_dva[d]; BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth); } /* * The bp created via this function may be used for repairs and scrub, but it * will be missing the salt / IV required to do a full decrypting read. */ void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp) { BP_ZERO(bp); if (ddp != NULL) ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth); bp->blk_cksum = ddk->ddk_cksum; BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk)); BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk)); BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk)); BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk)); BP_SET_FILL(bp, 1); BP_SET_CHECKSUM(bp, checksum); BP_SET_TYPE(bp, DMU_OT_DEDUP); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 1); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); } void ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp) { ddk->ddk_cksum = bp->blk_cksum; ddk->ddk_prop = 0; ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp)); DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp)); DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp)); DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp)); DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp)); } void ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp) { - ASSERT(ddp->ddp_phys_birth == 0); + ASSERT0(ddp->ddp_phys_birth); for (int d = 0; d < SPA_DVAS_PER_BP; d++) ddp->ddp_dva[d] = bp->blk_dva[d]; ddp->ddp_phys_birth = BP_PHYSICAL_BIRTH(bp); } void ddt_phys_clear(ddt_phys_t *ddp) { memset(ddp, 0, sizeof (*ddp)); } void ddt_phys_addref(ddt_phys_t *ddp) { ddp->ddp_refcnt++; } void ddt_phys_decref(ddt_phys_t *ddp) { if (ddp) { - ASSERT(ddp->ddp_refcnt > 0); + ASSERT3U(ddp->ddp_refcnt, >, 0); ddp->ddp_refcnt--; } } void ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg) { blkptr_t blk; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); /* * We clear the dedup bit so that zio_free() will actually free the * space, rather than just decrementing the refcount in the DDT. */ BP_SET_DEDUP(&blk, 0); ddt_phys_clear(ddp); zio_free(ddt->ddt_spa, txg, &blk); } ddt_phys_t * ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp) { ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys; for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) && BP_PHYSICAL_BIRTH(bp) == ddp->ddp_phys_birth) return (ddp); } return (NULL); } uint64_t ddt_phys_total_refcnt(const ddt_entry_t *dde) { uint64_t refcnt = 0; for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) refcnt += dde->dde_phys[p].ddp_refcnt; return (refcnt); } static void ddt_stat_generate(ddt_t *ddt, ddt_entry_t *dde, ddt_stat_t *dds) { spa_t *spa = ddt->ddt_spa; ddt_phys_t *ddp = dde->dde_phys; ddt_key_t *ddk = &dde->dde_key; uint64_t lsize = DDK_GET_LSIZE(ddk); uint64_t psize = DDK_GET_PSIZE(ddk); memset(dds, 0, sizeof (*dds)); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { uint64_t dsize = 0; uint64_t refcnt = ddp->ddp_refcnt; if (ddp->ddp_phys_birth == 0) continue; for (int d = 0; d < DDE_GET_NDVAS(dde); d++) dsize += dva_get_dsize_sync(spa, &ddp->ddp_dva[d]); dds->dds_blocks += 1; dds->dds_lsize += lsize; dds->dds_psize += psize; dds->dds_dsize += dsize; dds->dds_ref_blocks += refcnt; dds->dds_ref_lsize += lsize * refcnt; dds->dds_ref_psize += psize * refcnt; dds->dds_ref_dsize += dsize * refcnt; } } void ddt_stat_add(ddt_stat_t *dst, const ddt_stat_t *src, uint64_t neg) { const uint64_t *s = (const uint64_t *)src; uint64_t *d = (uint64_t *)dst; uint64_t *d_end = (uint64_t *)(dst + 1); ASSERT(neg == 0 || neg == -1ULL); /* add or subtract */ for (int i = 0; i < d_end - d; i++) d[i] += (s[i] ^ neg) - neg; } static void ddt_stat_update(ddt_t *ddt, ddt_entry_t *dde, uint64_t neg) { ddt_stat_t dds; ddt_histogram_t *ddh; int bucket; ddt_stat_generate(ddt, dde, &dds); bucket = highbit64(dds.dds_ref_blocks) - 1; - ASSERT(bucket >= 0); + ASSERT3U(bucket, >=, 0); ddh = &ddt->ddt_histogram[dde->dde_type][dde->dde_class]; ddt_stat_add(&ddh->ddh_stat[bucket], &dds, neg); } void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src) { for (int h = 0; h < 64; h++) ddt_stat_add(&dst->ddh_stat[h], &src->ddh_stat[h], 0); } void ddt_histogram_stat(ddt_stat_t *dds, const ddt_histogram_t *ddh) { memset(dds, 0, sizeof (*dds)); for (int h = 0; h < 64; h++) ddt_stat_add(dds, &ddh->ddh_stat[h], 0); } boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh) { const uint64_t *s = (const uint64_t *)ddh; const uint64_t *s_end = (const uint64_t *)(ddh + 1); while (s < s_end) if (*s++ != 0) return (B_FALSE); return (B_TRUE); } void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo_total) { /* Sum the statistics we cached in ddt_object_sync(). */ for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_object_t *ddo = &ddt->ddt_object_stats[type][class]; ddo_total->ddo_count += ddo->ddo_count; ddo_total->ddo_dspace += ddo->ddo_dspace; ddo_total->ddo_mspace += ddo->ddo_mspace; } } } /* ... and compute the averages. */ if (ddo_total->ddo_count != 0) { ddo_total->ddo_dspace /= ddo_total->ddo_count; ddo_total->ddo_mspace /= ddo_total->ddo_count; } } void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES && ddt; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_histogram_add(ddh, &ddt->ddt_histogram_cache[type][class]); } } } } void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total) { ddt_histogram_t *ddh_total; ddh_total = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP); ddt_get_dedup_histogram(spa, ddh_total); ddt_histogram_stat(dds_total, ddh_total); kmem_free(ddh_total, sizeof (ddt_histogram_t)); } uint64_t ddt_get_dedup_dspace(spa_t *spa) { ddt_stat_t dds_total; if (spa->spa_dedup_dspace != ~0ULL) return (spa->spa_dedup_dspace); memset(&dds_total, 0, sizeof (ddt_stat_t)); /* Calculate and cache the stats */ ddt_get_dedup_stats(spa, &dds_total); spa->spa_dedup_dspace = dds_total.dds_ref_dsize - dds_total.dds_dsize; return (spa->spa_dedup_dspace); } uint64_t ddt_get_pool_dedup_ratio(spa_t *spa) { ddt_stat_t dds_total = { 0 }; ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_dsize == 0) return (100); return (dds_total.dds_ref_dsize * 100 / dds_total.dds_dsize); } size_t ddt_compress(void *src, uchar_t *dst, size_t s_len, size_t d_len) { uchar_t *version = dst++; int cpfunc = ZIO_COMPRESS_ZLE; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; size_t c_len; - ASSERT(d_len >= s_len + 1); /* no compression plus version byte */ + ASSERT3U(d_len, >=, s_len + 1); /* no compression plus version byte */ c_len = ci->ci_compress(src, dst, s_len, d_len - 1, ci->ci_level); if (c_len == s_len) { cpfunc = ZIO_COMPRESS_OFF; memcpy(dst, src, s_len); } *version = cpfunc; if (ZFS_HOST_BYTEORDER) *version |= DDT_COMPRESS_BYTEORDER_MASK; return (c_len + 1); } void ddt_decompress(uchar_t *src, void *dst, size_t s_len, size_t d_len) { uchar_t version = *src++; int cpfunc = version & DDT_COMPRESS_FUNCTION_MASK; zio_compress_info_t *ci = &zio_compress_table[cpfunc]; if (ci->ci_decompress != NULL) (void) ci->ci_decompress(src, dst, s_len, d_len, ci->ci_level); else memcpy(dst, src, d_len); if (((version & DDT_COMPRESS_BYTEORDER_MASK) != 0) != (ZFS_HOST_BYTEORDER != 0)) byteswap_uint64_array(dst, d_len); } ddt_t * ddt_select(spa_t *spa, const blkptr_t *bp) { return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]); } void ddt_enter(ddt_t *ddt) { mutex_enter(&ddt->ddt_lock); } void ddt_exit(ddt_t *ddt) { mutex_exit(&ddt->ddt_lock); } void ddt_init(void) { ddt_cache = kmem_cache_create("ddt_cache", sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0); ddt_entry_cache = kmem_cache_create("ddt_entry_cache", sizeof (ddt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); } void ddt_fini(void) { kmem_cache_destroy(ddt_entry_cache); kmem_cache_destroy(ddt_cache); } static ddt_entry_t * ddt_alloc(const ddt_key_t *ddk) { ddt_entry_t *dde; dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP); memset(dde, 0, sizeof (ddt_entry_t)); cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL); dde->dde_key = *ddk; return (dde); } static void ddt_free(ddt_entry_t *dde) { ASSERT(!dde->dde_loading); for (int p = 0; p < DDT_PHYS_TYPES; p++) - ASSERT(dde->dde_lead_zio[p] == NULL); + ASSERT3P(dde->dde_lead_zio[p], ==, NULL); if (dde->dde_repair_abd != NULL) abd_free(dde->dde_repair_abd); cv_destroy(&dde->dde_cv); kmem_cache_free(ddt_entry_cache, dde); } void ddt_remove(ddt_t *ddt, ddt_entry_t *dde) { ASSERT(MUTEX_HELD(&ddt->ddt_lock)); avl_remove(&ddt->ddt_tree, dde); ddt_free(dde); } ddt_entry_t * ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add) { ddt_entry_t *dde, dde_search; enum ddt_type type; enum ddt_class class; avl_index_t where; int error; ASSERT(MUTEX_HELD(&ddt->ddt_lock)); ddt_key_fill(&dde_search.dde_key, bp); dde = avl_find(&ddt->ddt_tree, &dde_search, &where); if (dde == NULL) { if (!add) return (NULL); dde = ddt_alloc(&dde_search.dde_key); avl_insert(&ddt->ddt_tree, dde, where); } while (dde->dde_loading) cv_wait(&dde->dde_cv, &ddt->ddt_lock); if (dde->dde_loaded) return (dde); dde->dde_loading = B_TRUE; ddt_exit(ddt); error = ENOENT; for (type = 0; type < DDT_TYPES; type++) { for (class = 0; class < DDT_CLASSES; class++) { error = ddt_object_lookup(ddt, type, class, dde); if (error != ENOENT) { ASSERT0(error); break; } } if (error != ENOENT) break; } ddt_enter(ddt); - ASSERT(dde->dde_loaded == B_FALSE); - ASSERT(dde->dde_loading == B_TRUE); + ASSERT(!dde->dde_loaded); + ASSERT(dde->dde_loading); dde->dde_type = type; /* will be DDT_TYPES if no entry found */ dde->dde_class = class; /* will be DDT_CLASSES if no entry found */ dde->dde_loaded = B_TRUE; dde->dde_loading = B_FALSE; if (error == 0) ddt_stat_update(ddt, dde, -1ULL); cv_broadcast(&dde->dde_cv); return (dde); } void ddt_prefetch(spa_t *spa, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t dde; if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp)) return; /* * We only remove the DDT once all tables are empty and only * prefetch dedup blocks when there are entries in the DDT. * Thus no locking is required as the DDT can't disappear on us. */ ddt = ddt_select(spa, bp); ddt_key_fill(&dde.dde_key, bp); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { ddt_object_prefetch(ddt, type, class, &dde); } } } /* * Opaque struct used for ddt_key comparison */ #define DDT_KEY_CMP_LEN (sizeof (ddt_key_t) / sizeof (uint16_t)) typedef struct ddt_key_cmp { uint16_t u16[DDT_KEY_CMP_LEN]; } ddt_key_cmp_t; int ddt_entry_compare(const void *x1, const void *x2) { const ddt_entry_t *dde1 = x1; const ddt_entry_t *dde2 = x2; const ddt_key_cmp_t *k1 = (const ddt_key_cmp_t *)&dde1->dde_key; const ddt_key_cmp_t *k2 = (const ddt_key_cmp_t *)&dde2->dde_key; int32_t cmp = 0; for (int i = 0; i < DDT_KEY_CMP_LEN; i++) { cmp = (int32_t)k1->u16[i] - (int32_t)k2->u16[i]; if (likely(cmp)) break; } return (TREE_ISIGN(cmp)); } static ddt_t * ddt_table_alloc(spa_t *spa, enum zio_checksum c) { ddt_t *ddt; ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP); memset(ddt, 0, sizeof (ddt_t)); mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&ddt->ddt_tree, ddt_entry_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); avl_create(&ddt->ddt_repair_tree, ddt_entry_compare, sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node)); ddt->ddt_checksum = c; ddt->ddt_spa = spa; ddt->ddt_os = spa->spa_meta_objset; return (ddt); } static void ddt_table_free(ddt_t *ddt) { - ASSERT(avl_numnodes(&ddt->ddt_tree) == 0); - ASSERT(avl_numnodes(&ddt->ddt_repair_tree) == 0); + ASSERT0(avl_numnodes(&ddt->ddt_tree)); + ASSERT0(avl_numnodes(&ddt->ddt_repair_tree)); avl_destroy(&ddt->ddt_tree); avl_destroy(&ddt->ddt_repair_tree); mutex_destroy(&ddt->ddt_lock); kmem_cache_free(ddt_cache, ddt); } void ddt_create(spa_t *spa) { spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) spa->spa_ddt[c] = ddt_table_alloc(spa, c); } int ddt_load(spa_t *spa) { int error; ddt_create(spa); error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, sizeof (uint64_t), 1, &spa->spa_ddt_stat_object); if (error) return (error == ENOENT ? 0 : error); for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { error = ddt_object_load(ddt, type, class); if (error != 0 && error != ENOENT) return (error); } } /* * Seed the cached histograms. */ memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); spa->spa_dedup_dspace = ~0ULL; } return (0); } void ddt_unload(spa_t *spa) { for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { if (spa->spa_ddt[c]) { ddt_table_free(spa->spa_ddt[c]); spa->spa_ddt[c] = NULL; } } } boolean_t ddt_class_contains(spa_t *spa, enum ddt_class max_class, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t *dde; if (!BP_GET_DEDUP(bp)) return (B_FALSE); if (max_class == DDT_CLASS_UNIQUE) return (B_TRUE); ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)]; dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP); ddt_key_fill(&(dde->dde_key), bp); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class <= max_class; class++) { if (ddt_object_lookup(ddt, type, class, dde) == 0) { kmem_cache_free(ddt_entry_cache, dde); return (B_TRUE); } } } kmem_cache_free(ddt_entry_cache, dde); return (B_FALSE); } ddt_entry_t * ddt_repair_start(ddt_t *ddt, const blkptr_t *bp) { ddt_key_t ddk; ddt_entry_t *dde; ddt_key_fill(&ddk, bp); dde = ddt_alloc(&ddk); for (enum ddt_type type = 0; type < DDT_TYPES; type++) { for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { /* * We can only do repair if there are multiple copies * of the block. For anything in the UNIQUE class, * there's definitely only one copy, so don't even try. */ if (class != DDT_CLASS_UNIQUE && ddt_object_lookup(ddt, type, class, dde) == 0) return (dde); } } memset(dde->dde_phys, 0, sizeof (dde->dde_phys)); return (dde); } void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde) { avl_index_t where; ddt_enter(ddt); if (dde->dde_repair_abd != NULL && spa_writeable(ddt->ddt_spa) && avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL) avl_insert(&ddt->ddt_repair_tree, dde, where); else ddt_free(dde); ddt_exit(ddt); } static void ddt_repair_entry_done(zio_t *zio) { ddt_entry_t *rdde = zio->io_private; ddt_free(rdde); } static void ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio) { ddt_phys_t *ddp = dde->dde_phys; ddt_phys_t *rddp = rdde->dde_phys; ddt_key_t *ddk = &dde->dde_key; ddt_key_t *rddk = &rdde->dde_key; zio_t *zio; blkptr_t blk; zio = zio_null(rio, rio->io_spa, NULL, ddt_repair_entry_done, rdde, rio->io_flags); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) { if (ddp->ddp_phys_birth == 0 || ddp->ddp_phys_birth != rddp->ddp_phys_birth || memcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva))) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk, rdde->dde_repair_abd, DDK_GET_PSIZE(rddk), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL)); } zio_nowait(zio); } static void ddt_repair_table(ddt_t *ddt, zio_t *rio) { spa_t *spa = ddt->ddt_spa; ddt_entry_t *dde, *rdde_next, *rdde; avl_tree_t *t = &ddt->ddt_repair_tree; blkptr_t blk; if (spa_sync_pass(spa) > 1) return; ddt_enter(ddt); for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) { rdde_next = AVL_NEXT(t, rdde); avl_remove(&ddt->ddt_repair_tree, rdde); ddt_exit(ddt); ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk); dde = ddt_repair_start(ddt, &blk); ddt_repair_entry(ddt, dde, rdde, rio); ddt_repair_done(ddt, dde); ddt_enter(ddt); } ddt_exit(ddt); } static void ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg) { dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool; ddt_phys_t *ddp = dde->dde_phys; ddt_key_t *ddk = &dde->dde_key; enum ddt_type otype = dde->dde_type; enum ddt_type ntype = DDT_TYPE_CURRENT; enum ddt_class oclass = dde->dde_class; enum ddt_class nclass; uint64_t total_refcnt = 0; ASSERT(dde->dde_loaded); ASSERT(!dde->dde_loading); for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { - ASSERT(dde->dde_lead_zio[p] == NULL); + ASSERT3P(dde->dde_lead_zio[p], ==, NULL); if (ddp->ddp_phys_birth == 0) { - ASSERT(ddp->ddp_refcnt == 0); + ASSERT0(ddp->ddp_refcnt); continue; } if (p == DDT_PHYS_DITTO) { /* * Note, we no longer create DDT-DITTO blocks, but we * don't want to leak any written by older software. */ ddt_phys_free(ddt, ddk, ddp, txg); continue; } if (ddp->ddp_refcnt == 0) ddt_phys_free(ddt, ddk, ddp, txg); total_refcnt += ddp->ddp_refcnt; } /* We do not create new DDT-DITTO blocks. */ ASSERT0(dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth); if (total_refcnt > 1) nclass = DDT_CLASS_DUPLICATE; else nclass = DDT_CLASS_UNIQUE; if (otype != DDT_TYPES && (otype != ntype || oclass != nclass || total_refcnt == 0)) { - VERIFY(ddt_object_remove(ddt, otype, oclass, dde, tx) == 0); - ASSERT(ddt_object_lookup(ddt, otype, oclass, dde) == ENOENT); + VERIFY0(ddt_object_remove(ddt, otype, oclass, dde, tx)); + ASSERT3U( + ddt_object_lookup(ddt, otype, oclass, dde), ==, ENOENT); } if (total_refcnt != 0) { dde->dde_type = ntype; dde->dde_class = nclass; ddt_stat_update(ddt, dde, 0); if (!ddt_object_exists(ddt, ntype, nclass)) ddt_object_create(ddt, ntype, nclass, tx); - VERIFY(ddt_object_update(ddt, ntype, nclass, dde, tx) == 0); + VERIFY0(ddt_object_update(ddt, ntype, nclass, dde, tx)); /* * If the class changes, the order that we scan this bp * changes. If it decreases, we could miss it, so * scan it right now. (This covers both class changing * while we are doing ddt_walk(), and when we are * traversing.) */ if (nclass < oclass) { dsl_scan_ddt_entry(dp->dp_scan, ddt->ddt_checksum, dde, tx); } } } static void ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg) { spa_t *spa = ddt->ddt_spa; ddt_entry_t *dde; void *cookie = NULL; if (avl_numnodes(&ddt->ddt_tree) == 0) return; - ASSERT(spa->spa_uberblock.ub_version >= SPA_VERSION_DEDUP); + ASSERT3U(spa->spa_uberblock.ub_version, >=, SPA_VERSION_DEDUP); if (spa->spa_ddt_stat_object == 0) { spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os, DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DDT_STATS, tx); } while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) { ddt_sync_entry(ddt, dde, tx, txg); ddt_free(dde); } for (enum ddt_type type = 0; type < DDT_TYPES; type++) { uint64_t add, count = 0; for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { if (ddt_object_exists(ddt, type, class)) { ddt_object_sync(ddt, type, class, tx); - VERIFY(ddt_object_count(ddt, type, class, - &add) == 0); + VERIFY0(ddt_object_count(ddt, type, class, + &add)); count += add; } } for (enum ddt_class class = 0; class < DDT_CLASSES; class++) { if (count == 0 && ddt_object_exists(ddt, type, class)) ddt_object_destroy(ddt, type, class, tx); } } memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram, sizeof (ddt->ddt_histogram)); spa->spa_dedup_dspace = ~0ULL; } void ddt_sync(spa_t *spa, uint64_t txg) { dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; dmu_tx_t *tx; zio_t *rio; - ASSERT(spa_syncing_txg(spa) == txg); + ASSERT3U(spa_syncing_txg(spa), ==, txg); tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); rio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL); /* * This function may cause an immediate scan of ddt blocks (see * the comment above dsl_scan_ddt() for details). We set the * scan's root zio here so that we can wait for any scan IOs in * addition to the regular ddt IOs. */ ASSERT3P(scn->scn_zio_root, ==, NULL); scn->scn_zio_root = rio; for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; if (ddt == NULL) continue; ddt_sync_table(ddt, tx, txg); ddt_repair_table(ddt, rio); } (void) zio_wait(rio); scn->scn_zio_root = NULL; dmu_tx_commit(tx); } int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde) { do { do { do { ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum]; int error = ENOENT; if (ddt_object_exists(ddt, ddb->ddb_type, ddb->ddb_class)) { error = ddt_object_walk(ddt, ddb->ddb_type, ddb->ddb_class, &ddb->ddb_cursor, dde); } dde->dde_type = ddb->ddb_type; dde->dde_class = ddb->ddb_class; if (error == 0) return (0); if (error != ENOENT) return (error); ddb->ddb_cursor = 0; } while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS); ddb->ddb_checksum = 0; } while (++ddb->ddb_type < DDT_TYPES); ddb->ddb_type = 0; } while (++ddb->ddb_class < DDT_CLASSES); return (SET_ERROR(ENOENT)); } /* * This function is used by Block Cloning (brt.c) to increase reference * counter for the DDT entry if the block is already in DDT. * * Return false if the block, despite having the D bit set, is not present * in the DDT. Currently this is not possible but might be in the future. * See the comment below. */ boolean_t ddt_addref(spa_t *spa, const blkptr_t *bp) { ddt_t *ddt; ddt_entry_t *dde; boolean_t result; spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); ddt = ddt_select(spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_TRUE); - ASSERT(dde != NULL); + ASSERT3P(dde, !=, NULL); if (dde->dde_type < DDT_TYPES) { ddt_phys_t *ddp; ASSERT3S(dde->dde_class, <, DDT_CLASSES); ddp = &dde->dde_phys[BP_GET_NDVAS(bp)]; /* * This entry already existed (dde_type is real), so it must * have refcnt >0 at the start of this txg. We are called from * brt_pending_apply(), before frees are issued, so the refcnt * can't be lowered yet. Therefore, it must be >0. We assert * this because if the order of BRT and DDT interactions were * ever to change and the refcnt was ever zero here, then * likely further action is required to fill out the DDT entry, * and this is a place that is likely to be missed in testing. */ ASSERT3U(ddp->ddp_refcnt, >, 0); ddt_phys_addref(ddp); result = B_TRUE; } else { /* * At the time of implementating this if the block has the * DEDUP flag set it must exist in the DEDUP table, but * there are many advocates that want ability to remove * entries from DDT with refcnt=1. If this will happen, * we may have a block with the DEDUP set, but which doesn't * have a corresponding entry in the DDT. Be ready. */ ASSERT3S(dde->dde_class, ==, DDT_CLASSES); ddt_remove(ddt, dde); result = B_FALSE; } ddt_exit(ddt); spa_config_exit(spa, SCL_ZIO, FTAG); return (result); } ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW, "Enable prefetching dedup-ed blks"); diff --git a/module/zfs/ddt_zap.c b/module/zfs/ddt_zap.c index 8f6397a6d108..a1d296407aed 100644 --- a/module/zfs/ddt_zap.c +++ b/module/zfs/ddt_zap.c @@ -1,175 +1,175 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2018 by Delphix. All rights reserved. */ #include #include #include #include #include #include static unsigned int ddt_zap_default_bs = 15; static unsigned int ddt_zap_default_ibs = 15; static int ddt_zap_create(objset_t *os, uint64_t *objectp, dmu_tx_t *tx, boolean_t prehash) { zap_flags_t flags = ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY; if (prehash) flags |= ZAP_FLAG_PRE_HASHED_KEY; *objectp = zap_create_flags(os, 0, flags, DMU_OT_DDT_ZAP, ddt_zap_default_bs, ddt_zap_default_ibs, DMU_OT_NONE, 0, tx); return (*objectp == 0 ? SET_ERROR(ENOTSUP) : 0); } static int ddt_zap_destroy(objset_t *os, uint64_t object, dmu_tx_t *tx) { return (zap_destroy(os, object, tx)); } static int ddt_zap_lookup(objset_t *os, uint64_t object, ddt_entry_t *dde) { uchar_t *cbuf; uint64_t one, csize; int error; cbuf = kmem_alloc(sizeof (dde->dde_phys) + 1, KM_SLEEP); error = zap_length_uint64(os, object, (uint64_t *)&dde->dde_key, DDT_KEY_WORDS, &one, &csize); if (error) goto out; - ASSERT(one == 1); - ASSERT(csize <= (sizeof (dde->dde_phys) + 1)); + ASSERT3U(one, ==, 1); + ASSERT3U(csize, <=, (sizeof (dde->dde_phys) + 1)); error = zap_lookup_uint64(os, object, (uint64_t *)&dde->dde_key, DDT_KEY_WORDS, 1, csize, cbuf); if (error) goto out; ddt_decompress(cbuf, dde->dde_phys, csize, sizeof (dde->dde_phys)); out: kmem_free(cbuf, sizeof (dde->dde_phys) + 1); return (error); } static void ddt_zap_prefetch(objset_t *os, uint64_t object, ddt_entry_t *dde) { (void) zap_prefetch_uint64(os, object, (uint64_t *)&dde->dde_key, DDT_KEY_WORDS); } static int ddt_zap_update(objset_t *os, uint64_t object, ddt_entry_t *dde, dmu_tx_t *tx) { uchar_t cbuf[sizeof (dde->dde_phys) + 1]; uint64_t csize; csize = ddt_compress(dde->dde_phys, cbuf, sizeof (dde->dde_phys), sizeof (cbuf)); return (zap_update_uint64(os, object, (uint64_t *)&dde->dde_key, DDT_KEY_WORDS, 1, csize, cbuf, tx)); } static int ddt_zap_remove(objset_t *os, uint64_t object, ddt_entry_t *dde, dmu_tx_t *tx) { return (zap_remove_uint64(os, object, (uint64_t *)&dde->dde_key, DDT_KEY_WORDS, tx)); } static int ddt_zap_walk(objset_t *os, uint64_t object, ddt_entry_t *dde, uint64_t *walk) { zap_cursor_t zc; zap_attribute_t za; int error; if (*walk == 0) { /* * We don't want to prefetch the entire ZAP object, because * it can be enormous. Also the primary use of DDT iteration * is for scrubbing, in which case we will be issuing many * scrub I/Os for each ZAP block that we read in, so * reading the ZAP is unlikely to be the bottleneck. */ zap_cursor_init_noprefetch(&zc, os, object); } else { zap_cursor_init_serialized(&zc, os, object, *walk); } if ((error = zap_cursor_retrieve(&zc, &za)) == 0) { uchar_t cbuf[sizeof (dde->dde_phys) + 1]; uint64_t csize = za.za_num_integers; - ASSERT(za.za_integer_length == 1); + ASSERT3U(za.za_integer_length, ==, 1); error = zap_lookup_uint64(os, object, (uint64_t *)za.za_name, DDT_KEY_WORDS, 1, csize, cbuf); - ASSERT(error == 0); + ASSERT0(error); if (error == 0) { ddt_decompress(cbuf, dde->dde_phys, csize, sizeof (dde->dde_phys)); dde->dde_key = *(ddt_key_t *)za.za_name; } zap_cursor_advance(&zc); *walk = zap_cursor_serialize(&zc); } zap_cursor_fini(&zc); return (error); } static int ddt_zap_count(objset_t *os, uint64_t object, uint64_t *count) { return (zap_count(os, object, count)); } const ddt_ops_t ddt_zap_ops = { "zap", ddt_zap_create, ddt_zap_destroy, ddt_zap_lookup, ddt_zap_prefetch, ddt_zap_update, ddt_zap_remove, ddt_zap_walk, ddt_zap_count, }; /* BEGIN CSTYLED */ ZFS_MODULE_PARAM(zfs_dedup, , ddt_zap_default_bs, UINT, ZMOD_RW, "DDT ZAP leaf blockshift"); ZFS_MODULE_PARAM(zfs_dedup, , ddt_zap_default_ibs, UINT, ZMOD_RW, "DDT ZAP indirect blockshift"); /* END CSTYLED */