diff --git a/sys/dev/acpica/acpi.c b/sys/dev/acpica/acpi.c index ce396a835b4f..7066116f19a4 100644 --- a/sys/dev/acpica/acpi.c +++ b/sys/dev/acpica/acpi.c @@ -1,4505 +1,4505 @@ /*- * Copyright (c) 2000 Takanori Watanabe * Copyright (c) 2000 Mitsuru IWASAKI * Copyright (c) 2000, 2001 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(__i386__) || defined(__amd64__) #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices"); /* Hooks for the ACPI CA debugging infrastructure */ #define _COMPONENT ACPI_BUS ACPI_MODULE_NAME("ACPI") static d_open_t acpiopen; static d_close_t acpiclose; static d_ioctl_t acpiioctl; static struct cdevsw acpi_cdevsw = { .d_version = D_VERSION, .d_open = acpiopen, .d_close = acpiclose, .d_ioctl = acpiioctl, .d_name = "acpi", }; struct acpi_interface { ACPI_STRING *data; int num; }; static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL }; static char *pcilink_ids[] = { "PNP0C0F", NULL }; /* Global mutex for locking access to the ACPI subsystem. */ struct mtx acpi_mutex; struct callout acpi_sleep_timer; /* Bitmap of device quirks. */ int acpi_quirks; /* Supported sleep states. */ static BOOLEAN acpi_sleep_states[ACPI_S_STATE_COUNT]; static void acpi_lookup(void *arg, const char *name, device_t *dev); static int acpi_modevent(struct module *mod, int event, void *junk); static int acpi_probe(device_t dev); static int acpi_attach(device_t dev); static int acpi_suspend(device_t dev); static int acpi_resume(device_t dev); static int acpi_shutdown(device_t dev); static device_t acpi_add_child(device_t bus, u_int order, const char *name, int unit); static int acpi_print_child(device_t bus, device_t child); static void acpi_probe_nomatch(device_t bus, device_t child); static void acpi_driver_added(device_t dev, driver_t *driver); static void acpi_child_deleted(device_t dev, device_t child); static int acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result); static int acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value); static struct resource_list *acpi_get_rlist(device_t dev, device_t child); static void acpi_reserve_resources(device_t dev); static int acpi_sysres_alloc(device_t dev); static int acpi_set_resource(device_t dev, device_t child, int type, int rid, rman_res_t start, rman_res_t count); static struct resource *acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags); static int acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end); static int acpi_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r); static void acpi_delete_resource(device_t bus, device_t child, int type, int rid); static uint32_t acpi_isa_get_logicalid(device_t dev); static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count); static ssize_t acpi_bus_get_prop(device_t bus, device_t child, const char *propname, void *propvalue, size_t size); static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match); static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret); static ACPI_STATUS acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname, const ACPI_OBJECT **value); static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *context, void **retval); static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, int max_depth, acpi_scan_cb_t user_fn, void *arg); static ACPI_STATUS acpi_find_dsd(device_t bus, device_t dev); static int acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids); static void acpi_platform_osc(device_t dev); static void acpi_probe_children(device_t bus); static void acpi_probe_order(ACPI_HANDLE handle, int *order); static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status); static void acpi_sleep_enable(void *arg); static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc); static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state); static void acpi_shutdown_final(void *arg, int howto); static void acpi_enable_fixed_events(struct acpi_softc *sc); static void acpi_resync_clock(struct acpi_softc *sc); static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate); static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate); static int acpi_wake_prep_walk(int sstate); static int acpi_wake_sysctl_walk(device_t dev); static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS); static void acpi_system_eventhandler_sleep(void *arg, int state); static void acpi_system_eventhandler_wakeup(void *arg, int state); static int acpi_sname2sstate(const char *sname); static const char *acpi_sstate2sname(int sstate); static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS); static int acpi_pm_func(u_long cmd, void *arg, ...); static int acpi_child_location_method(device_t acdev, device_t child, struct sbuf *sb); static int acpi_child_pnpinfo_method(device_t acdev, device_t child, struct sbuf *sb); static void acpi_enable_pcie(void); static void acpi_hint_device_unit(device_t acdev, device_t child, const char *name, int *unitp); static void acpi_reset_interfaces(device_t dev); static device_method_t acpi_methods[] = { /* Device interface */ DEVMETHOD(device_probe, acpi_probe), DEVMETHOD(device_attach, acpi_attach), DEVMETHOD(device_shutdown, acpi_shutdown), DEVMETHOD(device_detach, bus_generic_detach), DEVMETHOD(device_suspend, acpi_suspend), DEVMETHOD(device_resume, acpi_resume), /* Bus interface */ DEVMETHOD(bus_add_child, acpi_add_child), DEVMETHOD(bus_print_child, acpi_print_child), DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch), DEVMETHOD(bus_driver_added, acpi_driver_added), DEVMETHOD(bus_child_deleted, acpi_child_deleted), DEVMETHOD(bus_read_ivar, acpi_read_ivar), DEVMETHOD(bus_write_ivar, acpi_write_ivar), DEVMETHOD(bus_get_resource_list, acpi_get_rlist), DEVMETHOD(bus_set_resource, acpi_set_resource), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_alloc_resource, acpi_alloc_resource), DEVMETHOD(bus_adjust_resource, acpi_adjust_resource), DEVMETHOD(bus_release_resource, acpi_release_resource), DEVMETHOD(bus_delete_resource, acpi_delete_resource), DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method), DEVMETHOD(bus_child_location, acpi_child_location_method), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bus_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit), DEVMETHOD(bus_get_cpus, acpi_get_cpus), DEVMETHOD(bus_get_domain, acpi_get_domain), DEVMETHOD(bus_get_property, acpi_bus_get_prop), /* ACPI bus */ DEVMETHOD(acpi_id_probe, acpi_device_id_probe), DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj), DEVMETHOD(acpi_get_property, acpi_device_get_prop), DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep), DEVMETHOD(acpi_scan_children, acpi_device_scan_children), /* ISA emulation */ DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe), DEVMETHOD_END }; static driver_t acpi_driver = { "acpi", acpi_methods, sizeof(struct acpi_softc), }; static devclass_t acpi_devclass; EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_devclass, acpi_modevent, 0, BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE); MODULE_VERSION(acpi, 1); ACPI_SERIAL_DECL(acpi, "ACPI root bus"); /* Local pools for managing system resources for ACPI child devices. */ static struct rman acpi_rman_io, acpi_rman_mem; #define ACPI_MINIMUM_AWAKETIME 5 /* Holds the description of the acpi0 device. */ static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2]; SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "ACPI debugging"); static char acpi_ca_version[12]; SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD, acpi_ca_version, 0, "Version of Intel ACPI-CA"); /* * Allow overriding _OSI methods. */ static char acpi_install_interface[256]; TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface, sizeof(acpi_install_interface)); static char acpi_remove_interface[256]; TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface, sizeof(acpi_remove_interface)); /* Allow users to dump Debug objects without ACPI debugger. */ static int acpi_debug_objects; TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects); SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects, CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_NEEDGIANT, NULL, 0, acpi_debug_objects_sysctl, "I", "Enable Debug objects"); /* Allow the interpreter to ignore common mistakes in BIOS. */ static int acpi_interpreter_slack = 1; TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack); SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN, &acpi_interpreter_slack, 1, "Turn on interpreter slack mode."); /* Ignore register widths set by FADT and use default widths instead. */ static int acpi_ignore_reg_width = 1; TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width); SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN, &acpi_ignore_reg_width, 1, "Ignore register widths set by FADT"); /* Allow users to override quirks. */ TUNABLE_INT("debug.acpi.quirks", &acpi_quirks); int acpi_susp_bounce; SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW, &acpi_susp_bounce, 0, "Don't actually suspend, just test devices."); /* * ACPI standard UUID for Device Specific Data Package * "Device Properties UUID for _DSD" Rev. 2.0 */ static const struct uuid acpi_dsd_uuid = { 0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91, { 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 } }; /* * ACPI can only be loaded as a module by the loader; activating it after * system bootstrap time is not useful, and can be fatal to the system. * It also cannot be unloaded, since the entire system bus hierarchy hangs * off it. */ static int acpi_modevent(struct module *mod, int event, void *junk) { switch (event) { case MOD_LOAD: if (!cold) { printf("The ACPI driver cannot be loaded after boot.\n"); return (EPERM); } break; case MOD_UNLOAD: if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI) return (EBUSY); break; default: break; } return (0); } /* * Perform early initialization. */ ACPI_STATUS acpi_Startup(void) { static int started = 0; ACPI_STATUS status; int val; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Only run the startup code once. The MADT driver also calls this. */ if (started) return_VALUE (AE_OK); started = 1; /* * Initialize the ACPICA subsystem. */ if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) { printf("ACPI: Could not initialize Subsystem: %s\n", AcpiFormatException(status)); return_VALUE (status); } /* * Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing * if more tables exist. */ if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) { printf("ACPI: Table initialisation failed: %s\n", AcpiFormatException(status)); return_VALUE (status); } /* Set up any quirks we have for this system. */ if (acpi_quirks == ACPI_Q_OK) acpi_table_quirks(&acpi_quirks); /* If the user manually set the disabled hint to 0, force-enable ACPI. */ if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0) acpi_quirks &= ~ACPI_Q_BROKEN; if (acpi_quirks & ACPI_Q_BROKEN) { printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n"); status = AE_SUPPORT; } return_VALUE (status); } /* * Detect ACPI and perform early initialisation. */ int acpi_identify(void) { ACPI_TABLE_RSDP *rsdp; ACPI_TABLE_HEADER *rsdt; ACPI_PHYSICAL_ADDRESS paddr; struct sbuf sb; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (!cold) return (ENXIO); /* Check that we haven't been disabled with a hint. */ if (resource_disabled("acpi", 0)) return (ENXIO); /* Check for other PM systems. */ if (power_pm_get_type() != POWER_PM_TYPE_NONE && power_pm_get_type() != POWER_PM_TYPE_ACPI) { printf("ACPI identify failed, other PM system enabled.\n"); return (ENXIO); } /* Initialize root tables. */ if (ACPI_FAILURE(acpi_Startup())) { printf("ACPI: Try disabling either ACPI or apic support.\n"); return (ENXIO); } if ((paddr = AcpiOsGetRootPointer()) == 0 || (rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL) return (ENXIO); if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0) paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress; else paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress; AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP)); if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL) return (ENXIO); sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN); sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE); sbuf_trim(&sb); sbuf_putc(&sb, ' '); sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE); sbuf_trim(&sb); sbuf_finish(&sb); sbuf_delete(&sb); AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER)); snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION); return (0); } /* * Fetch some descriptive data from ACPI to put in our attach message. */ static int acpi_probe(device_t dev) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); device_set_desc(dev, acpi_desc); return_VALUE (BUS_PROBE_NOWILDCARD); } static int acpi_attach(device_t dev) { struct acpi_softc *sc; ACPI_STATUS status; int error, state; UINT32 flags; UINT8 TypeA, TypeB; char *env; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); sc = device_get_softc(dev); sc->acpi_dev = dev; callout_init(&sc->susp_force_to, 1); error = ENXIO; /* Initialize resource manager. */ acpi_rman_io.rm_type = RMAN_ARRAY; acpi_rman_io.rm_start = 0; acpi_rman_io.rm_end = 0xffff; acpi_rman_io.rm_descr = "ACPI I/O ports"; if (rman_init(&acpi_rman_io) != 0) panic("acpi rman_init IO ports failed"); acpi_rman_mem.rm_type = RMAN_ARRAY; acpi_rman_mem.rm_descr = "ACPI I/O memory addresses"; if (rman_init(&acpi_rman_mem) != 0) panic("acpi rman_init memory failed"); /* Initialise the ACPI mutex */ mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF); /* * Set the globals from our tunables. This is needed because ACPI-CA * uses UINT8 for some values and we have no tunable_byte. */ AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE; AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE; #ifndef ACPI_DEBUG /* * Disable all debugging layers and levels. */ AcpiDbgLayer = 0; AcpiDbgLevel = 0; #endif /* Override OS interfaces if the user requested. */ acpi_reset_interfaces(dev); /* Load ACPI name space. */ status = AcpiLoadTables(); if (ACPI_FAILURE(status)) { device_printf(dev, "Could not load Namespace: %s\n", AcpiFormatException(status)); goto out; } /* Handle MCFG table if present. */ acpi_enable_pcie(); /* * Note that some systems (specifically, those with namespace evaluation * issues that require the avoidance of parts of the namespace) must * avoid running _INI and _STA on everything, as well as dodging the final * object init pass. * * For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT). * * XXX We should arrange for the object init pass after we have attached * all our child devices, but on many systems it works here. */ flags = 0; if (testenv("debug.acpi.avoid")) flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT; /* Bring the hardware and basic handlers online. */ if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) { device_printf(dev, "Could not enable ACPI: %s\n", AcpiFormatException(status)); goto out; } /* * Call the ECDT probe function to provide EC functionality before * the namespace has been evaluated. * * XXX This happens before the sysresource devices have been probed and * attached so its resources come from nexus0. In practice, this isn't * a problem but should be addressed eventually. */ acpi_ec_ecdt_probe(dev); /* Bring device objects and regions online. */ if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) { device_printf(dev, "Could not initialize ACPI objects: %s\n", AcpiFormatException(status)); goto out; } /* * Setup our sysctl tree. * * XXX: This doesn't check to make sure that none of these fail. */ sysctl_ctx_init(&sc->acpi_sysctl_ctx); sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx, SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev), CTLFLAG_RD | CTLFLAG_MPSAFE, 0, ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "supported_sleep_state", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, 0, 0, acpi_supported_sleep_state_sysctl, "A", "List supported ACPI sleep states."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "power_button_state", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->acpi_power_button_sx, 0, acpi_sleep_state_sysctl, "A", "Power button ACPI sleep state."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "sleep_button_state", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->acpi_sleep_button_sx, 0, acpi_sleep_state_sysctl, "A", "Sleep button ACPI sleep state."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "lid_switch_state", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->acpi_lid_switch_sx, 0, acpi_sleep_state_sysctl, "A", "Lid ACPI sleep state. Set to S3 if you want to suspend your laptop when close the Lid."); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "standby_state", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &sc->acpi_suspend_sx, 0, acpi_sleep_state_sysctl, "A", ""); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0, "sleep delay in seconds"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "s4bios", CTLFLAG_RW, &sc->acpi_s4bios, 0, "S4BIOS mode"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "disable_on_reboot", CTLFLAG_RW, &sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system"); SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree), OID_AUTO, "handle_reboot", CTLFLAG_RW, &sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot"); /* * Default to 1 second before sleeping to give some machines time to * stabilize. */ sc->acpi_sleep_delay = 1; if (bootverbose) sc->acpi_verbose = 1; if ((env = kern_getenv("hw.acpi.verbose")) != NULL) { if (strcmp(env, "0") != 0) sc->acpi_verbose = 1; freeenv(env); } /* Only enable reboot by default if the FADT says it is available. */ if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) sc->acpi_handle_reboot = 1; #if !ACPI_REDUCED_HARDWARE /* Only enable S4BIOS by default if the FACS says it is available. */ if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT) sc->acpi_s4bios = 1; #endif /* Probe all supported sleep states. */ acpi_sleep_states[ACPI_STATE_S0] = TRUE; for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) if (ACPI_SUCCESS(AcpiEvaluateObject(ACPI_ROOT_OBJECT, __DECONST(char *, AcpiGbl_SleepStateNames[state]), NULL, NULL)) && ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) acpi_sleep_states[state] = TRUE; /* * Dispatch the default sleep state to devices. The lid switch is set * to UNKNOWN by default to avoid surprising users. */ sc->acpi_power_button_sx = acpi_sleep_states[ACPI_STATE_S5] ? ACPI_STATE_S5 : ACPI_STATE_UNKNOWN; sc->acpi_lid_switch_sx = ACPI_STATE_UNKNOWN; sc->acpi_standby_sx = acpi_sleep_states[ACPI_STATE_S1] ? ACPI_STATE_S1 : ACPI_STATE_UNKNOWN; sc->acpi_suspend_sx = acpi_sleep_states[ACPI_STATE_S3] ? ACPI_STATE_S3 : ACPI_STATE_UNKNOWN; /* Pick the first valid sleep state for the sleep button default. */ sc->acpi_sleep_button_sx = ACPI_STATE_UNKNOWN; for (state = ACPI_STATE_S1; state <= ACPI_STATE_S4; state++) if (acpi_sleep_states[state]) { sc->acpi_sleep_button_sx = state; break; } acpi_enable_fixed_events(sc); /* * Scan the namespace and attach/initialise children. */ /* Register our shutdown handler. */ EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc, SHUTDOWN_PRI_LAST); /* * Register our acpi event handlers. * XXX should be configurable eg. via userland policy manager. */ EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep, sc, ACPI_EVENT_PRI_LAST); EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup, sc, ACPI_EVENT_PRI_LAST); /* Flag our initial states. */ sc->acpi_enabled = TRUE; sc->acpi_sstate = ACPI_STATE_S0; sc->acpi_sleep_disabled = TRUE; /* Create the control device */ sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664, "acpi"); sc->acpi_dev_t->si_drv1 = sc; if ((error = acpi_machdep_init(dev))) goto out; /* Register ACPI again to pass the correct argument of pm_func. */ power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc); acpi_platform_osc(dev); if (!acpi_disabled("bus")) { EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000); acpi_probe_children(dev); } /* Update all GPEs and enable runtime GPEs. */ status = AcpiUpdateAllGpes(); if (ACPI_FAILURE(status)) device_printf(dev, "Could not update all GPEs: %s\n", AcpiFormatException(status)); /* Allow sleep request after a while. */ callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0); callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME, acpi_sleep_enable, sc); error = 0; out: return_VALUE (error); } static void acpi_set_power_children(device_t dev, int state) { device_t child; device_t *devlist; int dstate, i, numdevs; if (device_get_children(dev, &devlist, &numdevs) != 0) return; /* * Retrieve and set D-state for the sleep state if _SxD is present. * Skip children who aren't attached since they are handled separately. */ for (i = 0; i < numdevs; i++) { child = devlist[i]; dstate = state; if (device_is_attached(child) && acpi_device_pwr_for_sleep(dev, child, &dstate) == 0) acpi_set_powerstate(child, dstate); } free(devlist, M_TEMP); } static int acpi_suspend(device_t dev) { int error; - GIANT_REQUIRED; + bus_topo_assert(); error = bus_generic_suspend(dev); if (error == 0) acpi_set_power_children(dev, ACPI_STATE_D3); return (error); } static int acpi_resume(device_t dev) { - GIANT_REQUIRED; + bus_topo_assert(); acpi_set_power_children(dev, ACPI_STATE_D0); return (bus_generic_resume(dev)); } static int acpi_shutdown(device_t dev) { - GIANT_REQUIRED; + bus_topo_assert(); /* Allow children to shutdown first. */ bus_generic_shutdown(dev); /* * Enable any GPEs that are able to power-on the system (i.e., RTC). * Also, disable any that are not valid for this state (most). */ acpi_wake_prep_walk(ACPI_STATE_S5); return (0); } /* * Handle a new device being added */ static device_t acpi_add_child(device_t bus, u_int order, const char *name, int unit) { struct acpi_device *ad; device_t child; if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL) return (NULL); resource_list_init(&ad->ad_rl); child = device_add_child_ordered(bus, order, name, unit); if (child != NULL) device_set_ivars(child, ad); else free(ad, M_ACPIDEV); return (child); } static int acpi_print_child(device_t bus, device_t child) { struct acpi_device *adev = device_get_ivars(child); struct resource_list *rl = &adev->ad_rl; int retval = 0; retval += bus_print_child_header(bus, child); retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx"); retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx"); retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd"); retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd"); if (device_get_flags(child)) retval += printf(" flags %#x", device_get_flags(child)); retval += bus_print_child_domain(bus, child); retval += bus_print_child_footer(bus, child); return (retval); } /* * If this device is an ACPI child but no one claimed it, attempt * to power it off. We'll power it back up when a driver is added. * * XXX Disabled for now since many necessary devices (like fdc and * ATA) don't claim the devices we created for them but still expect * them to be powered up. */ static void acpi_probe_nomatch(device_t bus, device_t child) { #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER acpi_set_powerstate(child, ACPI_STATE_D3); #endif } /* * If a new driver has a chance to probe a child, first power it up. * * XXX Disabled for now (see acpi_probe_nomatch for details). */ static void acpi_driver_added(device_t dev, driver_t *driver) { device_t child, *devlist; int i, numdevs; DEVICE_IDENTIFY(driver, dev); if (device_get_children(dev, &devlist, &numdevs)) return; for (i = 0; i < numdevs; i++) { child = devlist[i]; if (device_get_state(child) == DS_NOTPRESENT) { #ifdef ACPI_ENABLE_POWERDOWN_NODRIVER acpi_set_powerstate(child, ACPI_STATE_D0); if (device_probe_and_attach(child) != 0) acpi_set_powerstate(child, ACPI_STATE_D3); #else device_probe_and_attach(child); #endif } } free(devlist, M_TEMP); } /* Location hint for devctl(8) */ static int acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb) { struct acpi_device *dinfo = device_get_ivars(child); int pxm; if (dinfo->ad_handle) { sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle)); if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) { sbuf_printf(sb, " _PXM=%d", pxm); } } return (0); } /* PnP information for devctl(8) */ int acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb) { ACPI_DEVICE_INFO *adinfo; if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) { sbuf_printf(sb, "unknown"); return (0); } sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s", (adinfo->Valid & ACPI_VALID_HID) ? adinfo->HardwareId.String : "none", (adinfo->Valid & ACPI_VALID_UID) ? strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL, ((adinfo->Valid & ACPI_VALID_CID) && adinfo->CompatibleIdList.Count > 0) ? adinfo->CompatibleIdList.Ids[0].String : "none"); AcpiOsFree(adinfo); return (0); } static int acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb) { struct acpi_device *dinfo = device_get_ivars(child); return (acpi_pnpinfo(dinfo->ad_handle, sb)); } /* * Handle device deletion. */ static void acpi_child_deleted(device_t dev, device_t child) { struct acpi_device *dinfo = device_get_ivars(child); if (acpi_get_device(dinfo->ad_handle) == child) AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler); } /* * Handle per-device ivars */ static int acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result) { struct acpi_device *ad; if ((ad = device_get_ivars(child)) == NULL) { device_printf(child, "device has no ivars\n"); return (ENOENT); } /* ACPI and ISA compatibility ivars */ switch(index) { case ACPI_IVAR_HANDLE: *(ACPI_HANDLE *)result = ad->ad_handle; break; case ACPI_IVAR_PRIVATE: *(void **)result = ad->ad_private; break; case ACPI_IVAR_FLAGS: *(int *)result = ad->ad_flags; break; case ISA_IVAR_VENDORID: case ISA_IVAR_SERIAL: case ISA_IVAR_COMPATID: *(int *)result = -1; break; case ISA_IVAR_LOGICALID: *(int *)result = acpi_isa_get_logicalid(child); break; case PCI_IVAR_CLASS: *(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff; break; case PCI_IVAR_SUBCLASS: *(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff; break; case PCI_IVAR_PROGIF: *(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff; break; default: return (ENOENT); } return (0); } static int acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { struct acpi_device *ad; if ((ad = device_get_ivars(child)) == NULL) { device_printf(child, "device has no ivars\n"); return (ENOENT); } switch(index) { case ACPI_IVAR_HANDLE: ad->ad_handle = (ACPI_HANDLE)value; break; case ACPI_IVAR_PRIVATE: ad->ad_private = (void *)value; break; case ACPI_IVAR_FLAGS: ad->ad_flags = (int)value; break; default: panic("bad ivar write request (%d)", index); return (ENOENT); } return (0); } /* * Handle child resource allocation/removal */ static struct resource_list * acpi_get_rlist(device_t dev, device_t child) { struct acpi_device *ad; ad = device_get_ivars(child); return (&ad->ad_rl); } static int acpi_match_resource_hint(device_t dev, int type, long value) { struct acpi_device *ad = device_get_ivars(dev); struct resource_list *rl = &ad->ad_rl; struct resource_list_entry *rle; STAILQ_FOREACH(rle, rl, link) { if (rle->type != type) continue; if (rle->start <= value && rle->end >= value) return (1); } return (0); } /* * Wire device unit numbers based on resource matches in hints. */ static void acpi_hint_device_unit(device_t acdev, device_t child, const char *name, int *unitp) { const char *s; long value; int line, matches, unit; /* * Iterate over all the hints for the devices with the specified * name to see if one's resources are a subset of this device. */ line = 0; while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) { /* Must have an "at" for acpi or isa. */ resource_string_value(name, unit, "at", &s); if (!(strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 || strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)) continue; /* * Check for matching resources. We must have at least one match. * Since I/O and memory resources cannot be shared, if we get a * match on either of those, ignore any mismatches in IRQs or DRQs. * * XXX: We may want to revisit this to be more lenient and wire * as long as it gets one match. */ matches = 0; if (resource_long_value(name, unit, "port", &value) == 0) { /* * Floppy drive controllers are notorious for having a * wide variety of resources not all of which include the * first port that is specified by the hint (typically * 0x3f0) (see the comment above fdc_isa_alloc_resources() * in fdc_isa.c). However, they do all seem to include * port + 2 (e.g. 0x3f2) so for a floppy device, look for * 'value + 2' in the port resources instead of the hint * value. */ if (strcmp(name, "fdc") == 0) value += 2; if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value)) matches++; else continue; } if (resource_long_value(name, unit, "maddr", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value)) matches++; else continue; } if (matches > 0) goto matched; if (resource_long_value(name, unit, "irq", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_IRQ, value)) matches++; else continue; } if (resource_long_value(name, unit, "drq", &value) == 0) { if (acpi_match_resource_hint(child, SYS_RES_DRQ, value)) matches++; else continue; } matched: if (matches > 0) { /* We have a winner! */ *unitp = unit; break; } } } /* * Fetch the NUMA domain for a device by mapping the value returned by * _PXM to a NUMA domain. If the device does not have a _PXM method, * -2 is returned. If any other error occurs, -1 is returned. */ static int acpi_parse_pxm(device_t dev) { #ifdef NUMA #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) ACPI_HANDLE handle; ACPI_STATUS status; int pxm; handle = acpi_get_handle(dev); if (handle == NULL) return (-2); status = acpi_GetInteger(handle, "_PXM", &pxm); if (ACPI_SUCCESS(status)) return (acpi_map_pxm_to_vm_domainid(pxm)); if (status == AE_NOT_FOUND) return (-2); #endif #endif return (-1); } int acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { int d, error; d = acpi_parse_pxm(child); if (d < 0) return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); switch (op) { case LOCAL_CPUS: if (setsize != sizeof(cpuset_t)) return (EINVAL); *cpuset = cpuset_domain[d]; return (0); case INTR_CPUS: error = bus_generic_get_cpus(dev, child, op, setsize, cpuset); if (error != 0) return (error); if (setsize != sizeof(cpuset_t)) return (EINVAL); CPU_AND(cpuset, &cpuset_domain[d]); return (0); default: return (bus_generic_get_cpus(dev, child, op, setsize, cpuset)); } } /* * Fetch the NUMA domain for the given device 'dev'. * * If a device has a _PXM method, map that to a NUMA domain. * Otherwise, pass the request up to the parent. * If there's no matching domain or the domain cannot be * determined, return ENOENT. */ int acpi_get_domain(device_t dev, device_t child, int *domain) { int d; d = acpi_parse_pxm(child); if (d >= 0) { *domain = d; return (0); } if (d == -1) return (ENOENT); /* No _PXM node; go up a level */ return (bus_generic_get_domain(dev, child, domain)); } /* * Pre-allocate/manage all memory and IO resources. Since rman can't handle * duplicates, we merge any in the sysresource attach routine. */ static int acpi_sysres_alloc(device_t dev) { struct resource *res; struct resource_list *rl; struct resource_list_entry *rle; struct rman *rm; device_t *children; int child_count, i; /* * Probe/attach any sysresource devices. This would be unnecessary if we * had multi-pass probe/attach. */ if (device_get_children(dev, &children, &child_count) != 0) return (ENXIO); for (i = 0; i < child_count; i++) { if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) device_probe_and_attach(children[i]); } free(children, M_TEMP); rl = BUS_GET_RESOURCE_LIST(device_get_parent(dev), dev); STAILQ_FOREACH(rle, rl, link) { if (rle->res != NULL) { device_printf(dev, "duplicate resource for %jx\n", rle->start); continue; } /* Only memory and IO resources are valid here. */ switch (rle->type) { case SYS_RES_IOPORT: rm = &acpi_rman_io; break; case SYS_RES_MEMORY: rm = &acpi_rman_mem; break; default: continue; } /* Pre-allocate resource and add to our rman pool. */ res = BUS_ALLOC_RESOURCE(device_get_parent(dev), dev, rle->type, &rle->rid, rle->start, rle->start + rle->count - 1, rle->count, 0); if (res != NULL) { rman_manage_region(rm, rman_get_start(res), rman_get_end(res)); rle->res = res; } else if (bootverbose) device_printf(dev, "reservation of %jx, %jx (%d) failed\n", rle->start, rle->count, rle->type); } return (0); } /* * Reserve declared resources for devices found during attach once system * resources have been allocated. */ static void acpi_reserve_resources(device_t dev) { struct resource_list_entry *rle; struct resource_list *rl; struct acpi_device *ad; struct acpi_softc *sc; device_t *children; int child_count, i; sc = device_get_softc(dev); if (device_get_children(dev, &children, &child_count) != 0) return; for (i = 0; i < child_count; i++) { ad = device_get_ivars(children[i]); rl = &ad->ad_rl; /* Don't reserve system resources. */ if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0) continue; STAILQ_FOREACH(rle, rl, link) { /* * Don't reserve IRQ resources. There are many sticky things * to get right otherwise (e.g. IRQs for psm, atkbd, and HPET * when using legacy routing). */ if (rle->type == SYS_RES_IRQ) continue; /* * Don't reserve the resource if it is already allocated. * The acpi_ec(4) driver can allocate its resources early * if ECDT is present. */ if (rle->res != NULL) continue; /* * Try to reserve the resource from our parent. If this * fails because the resource is a system resource, just * let it be. The resource range is already reserved so * that other devices will not use it. If the driver * needs to allocate the resource, then * acpi_alloc_resource() will sub-alloc from the system * resource. */ resource_list_reserve(rl, dev, children[i], rle->type, &rle->rid, rle->start, rle->end, rle->count, 0); } } free(children, M_TEMP); sc->acpi_resources_reserved = 1; } static int acpi_set_resource(device_t dev, device_t child, int type, int rid, rman_res_t start, rman_res_t count) { struct acpi_softc *sc = device_get_softc(dev); struct acpi_device *ad = device_get_ivars(child); struct resource_list *rl = &ad->ad_rl; ACPI_DEVICE_INFO *devinfo; rman_res_t end; int allow; /* Ignore IRQ resources for PCI link devices. */ if (type == SYS_RES_IRQ && ACPI_ID_PROBE(dev, child, pcilink_ids, NULL) <= 0) return (0); /* * Ignore most resources for PCI root bridges. Some BIOSes * incorrectly enumerate the memory ranges they decode as plain * memory resources instead of as ResourceProducer ranges. Other * BIOSes incorrectly list system resource entries for I/O ranges * under the PCI bridge. Do allow the one known-correct case on * x86 of a PCI bridge claiming the I/O ports used for PCI config * access. */ if (type == SYS_RES_MEMORY || type == SYS_RES_IOPORT) { if (ACPI_SUCCESS(AcpiGetObjectInfo(ad->ad_handle, &devinfo))) { if ((devinfo->Flags & ACPI_PCI_ROOT_BRIDGE) != 0) { #if defined(__i386__) || defined(__amd64__) allow = (type == SYS_RES_IOPORT && start == CONF1_ADDR_PORT); #else allow = 0; #endif if (!allow) { AcpiOsFree(devinfo); return (0); } } AcpiOsFree(devinfo); } } #ifdef INTRNG /* map with default for now */ if (type == SYS_RES_IRQ) start = (rman_res_t)acpi_map_intr(child, (u_int)start, acpi_get_handle(child)); #endif /* If the resource is already allocated, fail. */ if (resource_list_busy(rl, type, rid)) return (EBUSY); /* If the resource is already reserved, release it. */ if (resource_list_reserved(rl, type, rid)) resource_list_unreserve(rl, dev, child, type, rid); /* Add the resource. */ end = (start + count - 1); resource_list_add(rl, type, rid, start, end, count); /* Don't reserve resources until the system resources are allocated. */ if (!sc->acpi_resources_reserved) return (0); /* Don't reserve system resources. */ if (ACPI_ID_PROBE(dev, child, sysres_ids, NULL) <= 0) return (0); /* * Don't reserve IRQ resources. There are many sticky things to * get right otherwise (e.g. IRQs for psm, atkbd, and HPET when * using legacy routing). */ if (type == SYS_RES_IRQ) return (0); /* * Don't reserve resources for CPU devices. Some of these * resources need to be allocated as shareable, but reservations * are always non-shareable. */ if (device_get_devclass(child) == devclass_find("cpu")) return (0); /* * Reserve the resource. * * XXX: Ignores failure for now. Failure here is probably a * BIOS/firmware bug? */ resource_list_reserve(rl, dev, child, type, &rid, start, end, count, 0); return (0); } static struct resource * acpi_alloc_resource(device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { #ifndef INTRNG ACPI_RESOURCE ares; #endif struct acpi_device *ad; struct resource_list_entry *rle; struct resource_list *rl; struct resource *res; int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); /* * First attempt at allocating the resource. For direct children, * use resource_list_alloc() to handle reserved resources. For * other devices, pass the request up to our parent. */ if (bus == device_get_parent(child)) { ad = device_get_ivars(child); rl = &ad->ad_rl; /* * Simulate the behavior of the ISA bus for direct children * devices. That is, if a non-default range is specified for * a resource that doesn't exist, use bus_set_resource() to * add the resource before allocating it. Note that these * resources will not be reserved. */ if (!isdefault && resource_list_find(rl, type, *rid) == NULL) resource_list_add(rl, type, *rid, start, end, count); res = resource_list_alloc(rl, bus, child, type, rid, start, end, count, flags); #ifndef INTRNG if (res != NULL && type == SYS_RES_IRQ) { /* * Since bus_config_intr() takes immediate effect, we cannot * configure the interrupt associated with a device when we * parse the resources but have to defer it until a driver * actually allocates the interrupt via bus_alloc_resource(). * * XXX: Should we handle the lookup failing? */ if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, *rid, res, &ares))) acpi_config_intr(child, &ares); } #endif /* * If this is an allocation of the "default" range for a given * RID, fetch the exact bounds for this resource from the * resource list entry to try to allocate the range from the * system resource regions. */ if (res == NULL && isdefault) { rle = resource_list_find(rl, type, *rid); if (rle != NULL) { start = rle->start; end = rle->end; count = rle->count; } } } else res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags); /* * If the first attempt failed and this is an allocation of a * specific range, try to satisfy the request via a suballocation * from our system resource regions. */ if (res == NULL && start + count - 1 == end) res = acpi_alloc_sysres(child, type, rid, start, end, count, flags); return (res); } /* * Attempt to allocate a specific resource range from the system * resource ranges. Note that we only handle memory and I/O port * system resources. */ struct resource * acpi_alloc_sysres(device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct rman *rm; struct resource *res; switch (type) { case SYS_RES_IOPORT: rm = &acpi_rman_io; break; case SYS_RES_MEMORY: rm = &acpi_rman_mem; break; default: return (NULL); } KASSERT(start + count - 1 == end, ("wildcard resource range")); res = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE, child); if (res == NULL) return (NULL); rman_set_rid(res, *rid); /* If requested, activate the resource using the parent's method. */ if (flags & RF_ACTIVE) if (bus_activate_resource(child, type, *rid, res) != 0) { rman_release_resource(res); return (NULL); } return (res); } static int acpi_is_resource_managed(int type, struct resource *r) { /* We only handle memory and IO resources through rman. */ switch (type) { case SYS_RES_IOPORT: return (rman_is_region_manager(r, &acpi_rman_io)); case SYS_RES_MEMORY: return (rman_is_region_manager(r, &acpi_rman_mem)); } return (0); } static int acpi_adjust_resource(device_t bus, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end) { if (acpi_is_resource_managed(type, r)) return (rman_adjust_resource(r, start, end)); return (bus_generic_adjust_resource(bus, child, type, r, start, end)); } static int acpi_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r) { int ret; /* * If this resource belongs to one of our internal managers, * deactivate it and release it to the local pool. */ if (acpi_is_resource_managed(type, r)) { if (rman_get_flags(r) & RF_ACTIVE) { ret = bus_deactivate_resource(child, type, rid, r); if (ret != 0) return (ret); } return (rman_release_resource(r)); } return (bus_generic_rl_release_resource(bus, child, type, rid, r)); } static void acpi_delete_resource(device_t bus, device_t child, int type, int rid) { struct resource_list *rl; rl = acpi_get_rlist(bus, child); if (resource_list_busy(rl, type, rid)) { device_printf(bus, "delete_resource: Resource still owned by child" " (type=%d, rid=%d)\n", type, rid); return; } resource_list_unreserve(rl, bus, child, type, rid); resource_list_delete(rl, type, rid); } /* Allocate an IO port or memory resource, given its GAS. */ int acpi_bus_alloc_gas(device_t dev, int *type, int *rid, ACPI_GENERIC_ADDRESS *gas, struct resource **res, u_int flags) { int error, res_type; error = ENOMEM; if (type == NULL || rid == NULL || gas == NULL || res == NULL) return (EINVAL); /* We only support memory and IO spaces. */ switch (gas->SpaceId) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: res_type = SYS_RES_MEMORY; break; case ACPI_ADR_SPACE_SYSTEM_IO: res_type = SYS_RES_IOPORT; break; default: return (EOPNOTSUPP); } /* * If the register width is less than 8, assume the BIOS author means * it is a bit field and just allocate a byte. */ if (gas->BitWidth && gas->BitWidth < 8) gas->BitWidth = 8; /* Validate the address after we're sure we support the space. */ if (gas->Address == 0 || gas->BitWidth == 0) return (EINVAL); bus_set_resource(dev, res_type, *rid, gas->Address, gas->BitWidth / 8); *res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags); if (*res != NULL) { *type = res_type; error = 0; } else bus_delete_resource(dev, res_type, *rid); return (error); } /* Probe _HID and _CID for compatible ISA PNP ids. */ static uint32_t acpi_isa_get_logicalid(device_t dev) { ACPI_DEVICE_INFO *devinfo; ACPI_HANDLE h; uint32_t pnpid; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* Fetch and validate the HID. */ if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return_VALUE (0); pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 && devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ? PNP_EISAID(devinfo->HardwareId.String) : 0; AcpiOsFree(devinfo); return_VALUE (pnpid); } static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count) { ACPI_DEVICE_INFO *devinfo; ACPI_PNP_DEVICE_ID *ids; ACPI_HANDLE h; uint32_t *pnpid; int i, valid; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); pnpid = cids; /* Fetch and validate the CID */ if ((h = acpi_get_handle(dev)) == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return_VALUE (0); if ((devinfo->Valid & ACPI_VALID_CID) == 0) { AcpiOsFree(devinfo); return_VALUE (0); } if (devinfo->CompatibleIdList.Count < count) count = devinfo->CompatibleIdList.Count; ids = devinfo->CompatibleIdList.Ids; for (i = 0, valid = 0; i < count; i++) if (ids[i].Length >= ACPI_EISAID_STRING_SIZE && strncmp(ids[i].String, "PNP", 3) == 0) { *pnpid++ = PNP_EISAID(ids[i].String); valid++; } AcpiOsFree(devinfo); return_VALUE (valid); } static int acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match) { ACPI_HANDLE h; ACPI_OBJECT_TYPE t; int rv; int i; h = acpi_get_handle(dev); if (ids == NULL || h == NULL) return (ENXIO); t = acpi_get_type(dev); if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR) return (ENXIO); /* Try to match one of the array of IDs with a HID or CID. */ for (i = 0; ids[i] != NULL; i++) { rv = acpi_MatchHid(h, ids[i]); if (rv == ACPI_MATCHHID_NOMATCH) continue; if (match != NULL) { *match = ids[i]; } return ((rv == ACPI_MATCHHID_HID)? BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY); } return (ENXIO); } static ACPI_STATUS acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname, ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret) { ACPI_HANDLE h; if (dev == NULL) h = ACPI_ROOT_OBJECT; else if ((h = acpi_get_handle(dev)) == NULL) return (AE_BAD_PARAMETER); return (AcpiEvaluateObject(h, pathname, parameters, ret)); } static ACPI_STATUS acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname, const ACPI_OBJECT **value) { const ACPI_OBJECT *pkg, *name, *val; struct acpi_device *ad; ACPI_STATUS status; int i; ad = device_get_ivars(dev); if (ad == NULL || propname == NULL) return (AE_BAD_PARAMETER); if (ad->dsd_pkg == NULL) { if (ad->dsd.Pointer == NULL) { status = acpi_find_dsd(bus, dev); if (ACPI_FAILURE(status)) return (status); } else { return (AE_NOT_FOUND); } } for (i = 0; i < ad->dsd_pkg->Package.Count; i ++) { pkg = &ad->dsd_pkg->Package.Elements[i]; if (pkg->Type != ACPI_TYPE_PACKAGE || pkg->Package.Count != 2) continue; name = &pkg->Package.Elements[0]; val = &pkg->Package.Elements[1]; if (name->Type != ACPI_TYPE_STRING) continue; if (strncmp(propname, name->String.Pointer, name->String.Length) == 0) { if (value != NULL) *value = val; return (AE_OK); } } return (AE_NOT_FOUND); } static ACPI_STATUS acpi_find_dsd(device_t bus, device_t dev) { const ACPI_OBJECT *dsd, *guid, *pkg; struct acpi_device *ad; ACPI_STATUS status; ad = device_get_ivars(dev); ad->dsd.Length = ACPI_ALLOCATE_BUFFER; ad->dsd.Pointer = NULL; ad->dsd_pkg = NULL; status = ACPI_EVALUATE_OBJECT(bus, dev, "_DSD", NULL, &ad->dsd); if (ACPI_FAILURE(status)) return (status); dsd = ad->dsd.Pointer; guid = &dsd->Package.Elements[0]; pkg = &dsd->Package.Elements[1]; if (guid->Type != ACPI_TYPE_BUFFER || pkg->Type != ACPI_TYPE_PACKAGE || guid->Buffer.Length != sizeof(acpi_dsd_uuid)) return (AE_NOT_FOUND); if (memcmp(guid->Buffer.Pointer, &acpi_dsd_uuid, sizeof(acpi_dsd_uuid)) == 0) { ad->dsd_pkg = pkg; return (AE_OK); } return (AE_NOT_FOUND); } static ssize_t acpi_bus_get_prop(device_t bus, device_t child, const char *propname, void *propvalue, size_t size) { ACPI_STATUS status; const ACPI_OBJECT *obj; status = acpi_device_get_prop(bus, child, __DECONST(char *, propname), &obj); if (ACPI_FAILURE(status)) return (-1); switch (obj->Type) { case ACPI_TYPE_INTEGER: if (propvalue != NULL && size >= sizeof(uint64_t)) *((uint64_t *) propvalue) = obj->Integer.Value; return (sizeof(uint64_t)); case ACPI_TYPE_STRING: if (propvalue != NULL && size > 0) memcpy(propvalue, obj->String.Pointer, MIN(size, obj->String.Length)); return (obj->String.Length); case ACPI_TYPE_BUFFER: if (propvalue != NULL && size > 0) memcpy(propvalue, obj->Buffer.Pointer, MIN(size, obj->Buffer.Length)); return (obj->Buffer.Length); default: return (0); } } int acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate) { struct acpi_softc *sc; ACPI_HANDLE handle; ACPI_STATUS status; char sxd[8]; handle = acpi_get_handle(dev); /* * XXX If we find these devices, don't try to power them down. * The serial and IRDA ports on my T23 hang the system when * set to D3 and it appears that such legacy devices may * need special handling in their drivers. */ if (dstate == NULL || handle == NULL || acpi_MatchHid(handle, "PNP0500") || acpi_MatchHid(handle, "PNP0501") || acpi_MatchHid(handle, "PNP0502") || acpi_MatchHid(handle, "PNP0510") || acpi_MatchHid(handle, "PNP0511")) return (ENXIO); /* * Override next state with the value from _SxD, if present. * Note illegal _S0D is evaluated because some systems expect this. */ sc = device_get_softc(bus); snprintf(sxd, sizeof(sxd), "_S%dD", sc->acpi_sstate); status = acpi_GetInteger(handle, sxd, dstate); if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { device_printf(dev, "failed to get %s on %s: %s\n", sxd, acpi_name(handle), AcpiFormatException(status)); return (ENXIO); } return (0); } /* Callback arg for our implementation of walking the namespace. */ struct acpi_device_scan_ctx { acpi_scan_cb_t user_fn; void *arg; ACPI_HANDLE parent; }; static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval) { struct acpi_device_scan_ctx *ctx; device_t dev, old_dev; ACPI_STATUS status; ACPI_OBJECT_TYPE type; /* * Skip this device if we think we'll have trouble with it or it is * the parent where the scan began. */ ctx = (struct acpi_device_scan_ctx *)arg; if (acpi_avoid(h) || h == ctx->parent) return (AE_OK); /* If this is not a valid device type (e.g., a method), skip it. */ if (ACPI_FAILURE(AcpiGetType(h, &type))) return (AE_OK); if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER) return (AE_OK); /* * Call the user function with the current device. If it is unchanged * afterwards, return. Otherwise, we update the handle to the new dev. */ old_dev = acpi_get_device(h); dev = old_dev; status = ctx->user_fn(h, &dev, level, ctx->arg); if (ACPI_FAILURE(status) || old_dev == dev) return (status); /* Remove the old child and its connection to the handle. */ if (old_dev != NULL) device_delete_child(device_get_parent(old_dev), old_dev); /* Recreate the handle association if the user created a device. */ if (dev != NULL) AcpiAttachData(h, acpi_fake_objhandler, dev); return (AE_OK); } static ACPI_STATUS acpi_device_scan_children(device_t bus, device_t dev, int max_depth, acpi_scan_cb_t user_fn, void *arg) { ACPI_HANDLE h; struct acpi_device_scan_ctx ctx; if (acpi_disabled("children")) return (AE_OK); if (dev == NULL) h = ACPI_ROOT_OBJECT; else if ((h = acpi_get_handle(dev)) == NULL) return (AE_BAD_PARAMETER); ctx.user_fn = user_fn; ctx.arg = arg; ctx.parent = h; return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth, acpi_device_scan_cb, NULL, &ctx, NULL)); } /* * Even though ACPI devices are not PCI, we use the PCI approach for setting * device power states since it's close enough to ACPI. */ int acpi_set_powerstate(device_t child, int state) { ACPI_HANDLE h; ACPI_STATUS status; h = acpi_get_handle(child); if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX) return (EINVAL); if (h == NULL) return (0); /* Ignore errors if the power methods aren't present. */ status = acpi_pwr_switch_consumer(h, state); if (ACPI_SUCCESS(status)) { if (bootverbose) device_printf(child, "set ACPI power state D%d on %s\n", state, acpi_name(h)); } else if (status != AE_NOT_FOUND) device_printf(child, "failed to set ACPI power state D%d on %s: %s\n", state, acpi_name(h), AcpiFormatException(status)); return (0); } static int acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids) { int result, cid_count, i; uint32_t lid, cids[8]; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * ISA-style drivers attached to ACPI may persist and * probe manually if we return ENOENT. We never want * that to happen, so don't ever return it. */ result = ENXIO; /* Scan the supplied IDs for a match */ lid = acpi_isa_get_logicalid(child); cid_count = acpi_isa_get_compatid(child, cids, 8); while (ids && ids->ip_id) { if (lid == ids->ip_id) { result = 0; goto out; } for (i = 0; i < cid_count; i++) { if (cids[i] == ids->ip_id) { result = 0; goto out; } } ids++; } out: if (result == 0 && ids->ip_desc) device_set_desc(child, ids->ip_desc); return_VALUE (result); } /* * Look for a MCFG table. If it is present, use the settings for * domain (segment) 0 to setup PCI config space access via the memory * map. * * On non-x86 architectures (arm64 for now), this will be done from the * PCI host bridge driver. */ static void acpi_enable_pcie(void) { #if defined(__i386__) || defined(__amd64__) ACPI_TABLE_HEADER *hdr; ACPI_MCFG_ALLOCATION *alloc, *end; ACPI_STATUS status; status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr); if (ACPI_FAILURE(status)) return; end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length); alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1); while (alloc < end) { if (alloc->PciSegment == 0) { pcie_cfgregopen(alloc->Address, alloc->StartBusNumber, alloc->EndBusNumber); return; } alloc++; } #endif } static void acpi_platform_osc(device_t dev) { ACPI_HANDLE sb_handle; ACPI_STATUS status; uint32_t cap_set[2]; /* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */ static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = { 0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44, 0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48 }; if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) return; cap_set[1] = 0x10; /* APEI Support */ status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1, nitems(cap_set), cap_set, cap_set, false); if (ACPI_FAILURE(status)) { if (status == AE_NOT_FOUND) return; device_printf(dev, "_OSC failed: %s\n", AcpiFormatException(status)); return; } } /* * Scan all of the ACPI namespace and attach child devices. * * We should only expect to find devices in the \_PR, \_TZ, \_SI, and * \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec. * However, in violation of the spec, some systems place their PCI link * devices in \, so we have to walk the whole namespace. We check the * type of namespace nodes, so this should be ok. */ static void acpi_probe_children(device_t bus) { ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); /* * Scan the namespace and insert placeholders for all the devices that * we find. We also probe/attach any early devices. * * Note that we use AcpiWalkNamespace rather than AcpiGetDevices because * we want to create nodes for all devices, not just those that are * currently present. (This assumes that we don't want to create/remove * devices as they appear, which might be smarter.) */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n")); AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child, NULL, bus, NULL); /* Pre-allocate resources for our rman from any sysresource devices. */ acpi_sysres_alloc(bus); /* Reserve resources already allocated to children. */ acpi_reserve_resources(bus); /* Create any static children by calling device identify methods. */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n")); bus_generic_probe(bus); /* Probe/attach all children, created statically and from the namespace. */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_generic_attach\n")); bus_generic_attach(bus); /* Attach wake sysctls. */ acpi_wake_sysctl_walk(bus); ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n")); return_VOID; } /* * Determine the probe order for a given device. */ static void acpi_probe_order(ACPI_HANDLE handle, int *order) { ACPI_OBJECT_TYPE type; /* * 0. CPUs * 1. I/O port and memory system resource holders * 2. Clocks and timers (to handle early accesses) * 3. Embedded controllers (to handle early accesses) * 4. PCI Link Devices */ AcpiGetType(handle, &type); if (type == ACPI_TYPE_PROCESSOR) *order = 0; else if (acpi_MatchHid(handle, "PNP0C01") || acpi_MatchHid(handle, "PNP0C02")) *order = 1; else if (acpi_MatchHid(handle, "PNP0100") || acpi_MatchHid(handle, "PNP0103") || acpi_MatchHid(handle, "PNP0B00")) *order = 2; else if (acpi_MatchHid(handle, "PNP0C09")) *order = 3; else if (acpi_MatchHid(handle, "PNP0C0F")) *order = 4; } /* * Evaluate a child device and determine whether we might attach a device to * it. */ static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status) { ACPI_DEVICE_INFO *devinfo; struct acpi_device *ad; struct acpi_prw_data prw; ACPI_OBJECT_TYPE type; ACPI_HANDLE h; device_t bus, child; char *handle_str; int order; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (acpi_disabled("children")) return_ACPI_STATUS (AE_OK); /* Skip this device if we think we'll have trouble with it. */ if (acpi_avoid(handle)) return_ACPI_STATUS (AE_OK); bus = (device_t)context; if (ACPI_SUCCESS(AcpiGetType(handle, &type))) { handle_str = acpi_name(handle); switch (type) { case ACPI_TYPE_DEVICE: /* * Since we scan from \, be sure to skip system scope objects. * \_SB_ and \_TZ_ are defined in ACPICA as devices to work around * BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run * during the initialization and \_TZ_ is to support Notify() on it. */ if (strcmp(handle_str, "\\_SB_") == 0 || strcmp(handle_str, "\\_TZ_") == 0) break; if (acpi_parse_prw(handle, &prw) == 0) AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit); /* * Ignore devices that do not have a _HID or _CID. They should * be discovered by other buses (e.g. the PCI bus driver). */ if (!acpi_has_hid(handle)) break; /* FALLTHROUGH */ case ACPI_TYPE_PROCESSOR: case ACPI_TYPE_THERMAL: case ACPI_TYPE_POWER: /* * Create a placeholder device for this node. Sort the * placeholder so that the probe/attach passes will run * breadth-first. Orders less than ACPI_DEV_BASE_ORDER * are reserved for special objects (i.e., system * resources). */ ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str)); order = level * 10 + ACPI_DEV_BASE_ORDER; acpi_probe_order(handle, &order); child = BUS_ADD_CHILD(bus, order, NULL, -1); if (child == NULL) break; /* Associate the handle with the device_t and vice versa. */ acpi_set_handle(child, handle); AcpiAttachData(handle, acpi_fake_objhandler, child); /* * Check that the device is present. If it's not present, * leave it disabled (so that we have a device_t attached to * the handle, but we don't probe it). * * XXX PCI link devices sometimes report "present" but not * "functional" (i.e. if disabled). Go ahead and probe them * anyway since we may enable them later. */ if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) { /* Never disable PCI link devices. */ if (acpi_MatchHid(handle, "PNP0C0F")) break; /* * Docking stations should remain enabled since the system * may be undocked at boot. */ if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h))) break; device_disable(child); break; } /* * Get the device's resource settings and attach them. * Note that if the device has _PRS but no _CRS, we need * to decide when it's appropriate to try to configure the * device. Ignore the return value here; it's OK for the * device not to have any resources. */ acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL); ad = device_get_ivars(child); ad->ad_cls_class = 0xffffff; if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) { if ((devinfo->Valid & ACPI_VALID_CLS) != 0 && devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) { ad->ad_cls_class = strtoul(devinfo->ClassCode.String, NULL, 16); } AcpiOsFree(devinfo); } break; } } return_ACPI_STATUS (AE_OK); } /* * AcpiAttachData() requires an object handler but never uses it. This is a * placeholder object handler so we can store a device_t in an ACPI_HANDLE. */ void acpi_fake_objhandler(ACPI_HANDLE h, void *data) { } static void acpi_shutdown_final(void *arg, int howto) { struct acpi_softc *sc = (struct acpi_softc *)arg; register_t intr; ACPI_STATUS status; /* * XXX Shutdown code should only run on the BSP (cpuid 0). * Some chipsets do not power off the system correctly if called from * an AP. */ if ((howto & RB_POWEROFF) != 0) { status = AcpiEnterSleepStatePrep(ACPI_STATE_S5); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", AcpiFormatException(status)); return; } device_printf(sc->acpi_dev, "Powering system off\n"); intr = intr_disable(); status = AcpiEnterSleepState(ACPI_STATE_S5); if (ACPI_FAILURE(status)) { intr_restore(intr); device_printf(sc->acpi_dev, "power-off failed - %s\n", AcpiFormatException(status)); } else { DELAY(1000000); intr_restore(intr); device_printf(sc->acpi_dev, "power-off failed - timeout\n"); } } else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) { /* Reboot using the reset register. */ status = AcpiReset(); if (ACPI_SUCCESS(status)) { DELAY(1000000); device_printf(sc->acpi_dev, "reset failed - timeout\n"); } else if (status != AE_NOT_EXIST) device_printf(sc->acpi_dev, "reset failed - %s\n", AcpiFormatException(status)); } else if (sc->acpi_do_disable && !KERNEL_PANICKED()) { /* * Only disable ACPI if the user requested. On some systems, writing * the disable value to SMI_CMD hangs the system. */ device_printf(sc->acpi_dev, "Shutting down\n"); AcpiTerminate(); } } static void acpi_enable_fixed_events(struct acpi_softc *sc) { static int first_time = 1; /* Enable and clear fixed events and install handlers. */ if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) { AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON, acpi_event_power_button_sleep, sc); if (first_time) device_printf(sc->acpi_dev, "Power Button (fixed)\n"); } if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) { AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON); AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON, acpi_event_sleep_button_sleep, sc); if (first_time) device_printf(sc->acpi_dev, "Sleep Button (fixed)\n"); } first_time = 0; } /* * Returns true if the device is actually present and should * be attached to. This requires the present, enabled, UI-visible * and diagnostics-passed bits to be set. */ BOOLEAN acpi_DeviceIsPresent(device_t dev) { ACPI_HANDLE h; UINT32 s; ACPI_STATUS status; h = acpi_get_handle(dev); if (h == NULL) return (FALSE); #ifdef ACPI_EARLY_EPYC_WAR /* * Certain Treadripper boards always returns 0 for FreeBSD because it * only returns non-zero for the OS string "Windows 2015". Otherwise it * will return zero. Force them to always be treated as present. * Beata versions were worse: they always returned 0. */ if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010")) return (TRUE); #endif status = acpi_GetInteger(h, "_STA", &s); /* * If no _STA method or if it failed, then assume that * the device is present. */ if (ACPI_FAILURE(status)) return (TRUE); return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE); } /* * Returns true if the battery is actually present and inserted. */ BOOLEAN acpi_BatteryIsPresent(device_t dev) { ACPI_HANDLE h; UINT32 s; ACPI_STATUS status; h = acpi_get_handle(dev); if (h == NULL) return (FALSE); status = acpi_GetInteger(h, "_STA", &s); /* * If no _STA method or if it failed, then assume that * the device is present. */ if (ACPI_FAILURE(status)) return (TRUE); return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE); } /* * Returns true if a device has at least one valid device ID. */ BOOLEAN acpi_has_hid(ACPI_HANDLE h) { ACPI_DEVICE_INFO *devinfo; BOOLEAN ret; if (h == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (FALSE); ret = FALSE; if ((devinfo->Valid & ACPI_VALID_HID) != 0) ret = TRUE; else if ((devinfo->Valid & ACPI_VALID_CID) != 0) if (devinfo->CompatibleIdList.Count > 0) ret = TRUE; AcpiOsFree(devinfo); return (ret); } /* * Match a HID string against a handle * returns ACPI_MATCHHID_HID if _HID match * ACPI_MATCHHID_CID if _CID match and not _HID match. * ACPI_MATCHHID_NOMATCH=0 if no match. */ int acpi_MatchHid(ACPI_HANDLE h, const char *hid) { ACPI_DEVICE_INFO *devinfo; BOOLEAN ret; int i; if (hid == NULL || h == NULL || ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo))) return (ACPI_MATCHHID_NOMATCH); ret = ACPI_MATCHHID_NOMATCH; if ((devinfo->Valid & ACPI_VALID_HID) != 0 && strcmp(hid, devinfo->HardwareId.String) == 0) ret = ACPI_MATCHHID_HID; else if ((devinfo->Valid & ACPI_VALID_CID) != 0) for (i = 0; i < devinfo->CompatibleIdList.Count; i++) { if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) { ret = ACPI_MATCHHID_CID; break; } } AcpiOsFree(devinfo); return (ret); } /* * Return the handle of a named object within our scope, ie. that of (parent) * or one if its parents. */ ACPI_STATUS acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result) { ACPI_HANDLE r; ACPI_STATUS status; /* Walk back up the tree to the root */ for (;;) { status = AcpiGetHandle(parent, path, &r); if (ACPI_SUCCESS(status)) { *result = r; return (AE_OK); } /* XXX Return error here? */ if (status != AE_NOT_FOUND) return (AE_OK); if (ACPI_FAILURE(AcpiGetParent(parent, &r))) return (AE_NOT_FOUND); parent = r; } } ACPI_STATUS acpi_GetProperty(device_t dev, ACPI_STRING propname, const ACPI_OBJECT **value) { device_t bus = device_get_parent(dev); return (ACPI_GET_PROPERTY(bus, dev, propname, value)); } /* * Allocate a buffer with a preset data size. */ ACPI_BUFFER * acpi_AllocBuffer(int size) { ACPI_BUFFER *buf; if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL) return (NULL); buf->Length = size; buf->Pointer = (void *)(buf + 1); return (buf); } ACPI_STATUS acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number) { ACPI_OBJECT arg1; ACPI_OBJECT_LIST args; arg1.Type = ACPI_TYPE_INTEGER; arg1.Integer.Value = number; args.Count = 1; args.Pointer = &arg1; return (AcpiEvaluateObject(handle, path, &args, NULL)); } /* * Evaluate a path that should return an integer. */ ACPI_STATUS acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number) { ACPI_STATUS status; ACPI_BUFFER buf; ACPI_OBJECT param; if (handle == NULL) handle = ACPI_ROOT_OBJECT; /* * Assume that what we've been pointed at is an Integer object, or * a method that will return an Integer. */ buf.Pointer = ¶m; buf.Length = sizeof(param); status = AcpiEvaluateObject(handle, path, NULL, &buf); if (ACPI_SUCCESS(status)) { if (param.Type == ACPI_TYPE_INTEGER) *number = param.Integer.Value; else status = AE_TYPE; } /* * In some applications, a method that's expected to return an Integer * may instead return a Buffer (probably to simplify some internal * arithmetic). We'll try to fetch whatever it is, and if it's a Buffer, * convert it into an Integer as best we can. * * This is a hack. */ if (status == AE_BUFFER_OVERFLOW) { if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) { status = AE_NO_MEMORY; } else { status = AcpiEvaluateObject(handle, path, NULL, &buf); if (ACPI_SUCCESS(status)) status = acpi_ConvertBufferToInteger(&buf, number); AcpiOsFree(buf.Pointer); } } return (status); } ACPI_STATUS acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number) { ACPI_OBJECT *p; UINT8 *val; int i; p = (ACPI_OBJECT *)bufp->Pointer; if (p->Type == ACPI_TYPE_INTEGER) { *number = p->Integer.Value; return (AE_OK); } if (p->Type != ACPI_TYPE_BUFFER) return (AE_TYPE); if (p->Buffer.Length > sizeof(int)) return (AE_BAD_DATA); *number = 0; val = p->Buffer.Pointer; for (i = 0; i < p->Buffer.Length; i++) *number += val[i] << (i * 8); return (AE_OK); } /* * Iterate over the elements of an a package object, calling the supplied * function for each element. * * XXX possible enhancement might be to abort traversal on error. */ ACPI_STATUS acpi_ForeachPackageObject(ACPI_OBJECT *pkg, void (*func)(ACPI_OBJECT *comp, void *arg), void *arg) { ACPI_OBJECT *comp; int i; if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE) return (AE_BAD_PARAMETER); /* Iterate over components */ i = 0; comp = pkg->Package.Elements; for (; i < pkg->Package.Count; i++, comp++) func(comp, arg); return (AE_OK); } /* * Find the (index)th resource object in a set. */ ACPI_STATUS acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp) { ACPI_RESOURCE *rp; int i; rp = (ACPI_RESOURCE *)buf->Pointer; i = index; while (i-- > 0) { /* Range check */ if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) return (AE_BAD_PARAMETER); /* Check for terminator */ if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) return (AE_NOT_FOUND); rp = ACPI_NEXT_RESOURCE(rp); } if (resp != NULL) *resp = rp; return (AE_OK); } /* * Append an ACPI_RESOURCE to an ACPI_BUFFER. * * Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER * provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible * backing block. If the ACPI_RESOURCE is NULL, return an empty set of * resources. */ #define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512 ACPI_STATUS acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res) { ACPI_RESOURCE *rp; void *newp; /* Initialise the buffer if necessary. */ if (buf->Pointer == NULL) { buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE; if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL) return (AE_NO_MEMORY); rp = (ACPI_RESOURCE *)buf->Pointer; rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = ACPI_RS_SIZE_MIN; } if (res == NULL) return (AE_OK); /* * Scan the current buffer looking for the terminator. * This will either find the terminator or hit the end * of the buffer and return an error. */ rp = (ACPI_RESOURCE *)buf->Pointer; for (;;) { /* Range check, don't go outside the buffer */ if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length)) return (AE_BAD_PARAMETER); if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0) break; rp = ACPI_NEXT_RESOURCE(rp); } /* * Check the size of the buffer and expand if required. * * Required size is: * size of existing resources before terminator + * size of new resource and header + * size of terminator. * * Note that this loop should really only run once, unless * for some reason we are stuffing a *really* huge resource. */ while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) + res->Length + ACPI_RS_SIZE_NO_DATA + ACPI_RS_SIZE_MIN) >= buf->Length) { if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL) return (AE_NO_MEMORY); bcopy(buf->Pointer, newp, buf->Length); rp = (ACPI_RESOURCE *)((u_int8_t *)newp + ((u_int8_t *)rp - (u_int8_t *)buf->Pointer)); AcpiOsFree(buf->Pointer); buf->Pointer = newp; buf->Length += buf->Length; } /* Insert the new resource. */ bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA); /* And add the terminator. */ rp = ACPI_NEXT_RESOURCE(rp); rp->Type = ACPI_RESOURCE_TYPE_END_TAG; rp->Length = ACPI_RS_SIZE_MIN; return (AE_OK); } UINT64 acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision) { /* * ACPI spec 9.1.1 defines this. * * "Arg2: Function Index Represents a specific function whose meaning is * specific to the UUID and Revision ID. Function indices should start * with 1. Function number zero is a query function (see the special * return code defined below)." */ ACPI_BUFFER buf; ACPI_OBJECT *obj; UINT64 ret = 0; int i; if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) { ACPI_INFO(("Failed to enumerate DSM functions\n")); return (0); } obj = (ACPI_OBJECT *)buf.Pointer; KASSERT(obj, ("Object not allowed to be NULL\n")); /* * From ACPI 6.2 spec 9.1.1: * If Function Index = 0, a Buffer containing a function index bitfield. * Otherwise, the return value and type depends on the UUID and revision * ID (see below). */ switch (obj->Type) { case ACPI_TYPE_BUFFER: for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++) ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8)); break; case ACPI_TYPE_INTEGER: ACPI_BIOS_WARNING((AE_INFO, "Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n")); ret = obj->Integer.Value; break; default: ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type)); }; AcpiOsFree(obj); return ret; } /* * DSM may return multiple types depending on the function. It is therefore * unsafe to use the typed evaluation. It is highly recommended that the caller * check the type of the returned object. */ ACPI_STATUS acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision, UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf) { return (acpi_EvaluateDSMTyped(handle, uuid, revision, function, package, out_buf, ACPI_TYPE_ANY)); } ACPI_STATUS acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision, UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf, ACPI_OBJECT_TYPE type) { ACPI_OBJECT arg[4]; ACPI_OBJECT_LIST arglist; ACPI_BUFFER buf; ACPI_STATUS status; if (out_buf == NULL) return (AE_NO_MEMORY); arg[0].Type = ACPI_TYPE_BUFFER; arg[0].Buffer.Length = ACPI_UUID_LENGTH; arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid); arg[1].Type = ACPI_TYPE_INTEGER; arg[1].Integer.Value = revision; arg[2].Type = ACPI_TYPE_INTEGER; arg[2].Integer.Value = function; if (package) { arg[3] = *package; } else { arg[3].Type = ACPI_TYPE_PACKAGE; arg[3].Package.Count = 0; arg[3].Package.Elements = NULL; } arglist.Pointer = arg; arglist.Count = 4; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type); if (ACPI_FAILURE(status)) return (status); KASSERT(ACPI_SUCCESS(status), ("Unexpected status")); *out_buf = buf; return (status); } ACPI_STATUS acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count, uint32_t *caps_in, uint32_t *caps_out, bool query) { ACPI_OBJECT arg[4], *ret; ACPI_OBJECT_LIST arglist; ACPI_BUFFER buf; ACPI_STATUS status; arglist.Pointer = arg; arglist.Count = 4; arg[0].Type = ACPI_TYPE_BUFFER; arg[0].Buffer.Length = ACPI_UUID_LENGTH; arg[0].Buffer.Pointer = uuid; arg[1].Type = ACPI_TYPE_INTEGER; arg[1].Integer.Value = revision; arg[2].Type = ACPI_TYPE_INTEGER; arg[2].Integer.Value = count; arg[3].Type = ACPI_TYPE_BUFFER; arg[3].Buffer.Length = count * sizeof(*caps_in); arg[3].Buffer.Pointer = (uint8_t *)caps_in; caps_in[0] = query ? 1 : 0; buf.Pointer = NULL; buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf, ACPI_TYPE_BUFFER); if (ACPI_FAILURE(status)) return (status); if (caps_out != NULL) { ret = buf.Pointer; if (ret->Buffer.Length != count * sizeof(*caps_out)) { AcpiOsFree(buf.Pointer); return (AE_BUFFER_OVERFLOW); } bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length); } AcpiOsFree(buf.Pointer); return (status); } /* * Set interrupt model. */ ACPI_STATUS acpi_SetIntrModel(int model) { return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model)); } /* * Walk subtables of a table and call a callback routine for each * subtable. The caller should provide the first subtable and a * pointer to the end of the table. This can be used to walk tables * such as MADT and SRAT that use subtable entries. */ void acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler, void *arg) { ACPI_SUBTABLE_HEADER *entry; for (entry = first; (void *)entry < end; ) { /* Avoid an infinite loop if we hit a bogus entry. */ if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER)) return; handler(entry, arg); entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length); } } /* * DEPRECATED. This interface has serious deficiencies and will be * removed. * * Immediately enter the sleep state. In the old model, acpiconf(8) ran * rc.suspend and rc.resume so we don't have to notify devd(8) to do this. */ ACPI_STATUS acpi_SetSleepState(struct acpi_softc *sc, int state) { static int once; if (!once) { device_printf(sc->acpi_dev, "warning: acpi_SetSleepState() deprecated, need to update your software\n"); once = 1; } return (acpi_EnterSleepState(sc, state)); } #if defined(__amd64__) || defined(__i386__) static void acpi_sleep_force_task(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) device_printf(sc->acpi_dev, "force sleep state S%d failed\n", sc->acpi_next_sstate); } static void acpi_sleep_force(void *arg) { struct acpi_softc *sc = (struct acpi_softc *)arg; device_printf(sc->acpi_dev, "suspend request timed out, forcing sleep now\n"); /* * XXX Suspending from callout causes freezes in DEVICE_SUSPEND(). * Suspend from acpi_task thread instead. */ if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_sleep_force_task, sc))) device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n"); } #endif /* * Request that the system enter the given suspend state. All /dev/apm * devices and devd(8) will be notified. Userland then has a chance to * save state and acknowledge the request. The system sleeps once all * acks are in. */ int acpi_ReqSleepState(struct acpi_softc *sc, int state) { #if defined(__amd64__) || defined(__i386__) struct apm_clone_data *clone; ACPI_STATUS status; if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) return (EINVAL); if (!acpi_sleep_states[state]) return (EOPNOTSUPP); /* * If a reboot/shutdown/suspend request is already in progress or * suspend is blocked due to an upcoming shutdown, just return. */ if (rebooting || sc->acpi_next_sstate != 0 || suspend_blocked) { return (0); } /* Wait until sleep is enabled. */ while (sc->acpi_sleep_disabled) { AcpiOsSleep(1000); } ACPI_LOCK(acpi); sc->acpi_next_sstate = state; /* S5 (soft-off) should be entered directly with no waiting. */ if (state == ACPI_STATE_S5) { ACPI_UNLOCK(acpi); status = acpi_EnterSleepState(sc, state); return (ACPI_SUCCESS(status) ? 0 : ENXIO); } /* Record the pending state and notify all apm devices. */ STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { clone->notify_status = APM_EV_NONE; if ((clone->flags & ACPI_EVF_DEVD) == 0) { selwakeuppri(&clone->sel_read, PZERO); KNOTE_LOCKED(&clone->sel_read.si_note, 0); } } /* If devd(8) is not running, immediately enter the sleep state. */ if (!devctl_process_running()) { ACPI_UNLOCK(acpi); status = acpi_EnterSleepState(sc, state); return (ACPI_SUCCESS(status) ? 0 : ENXIO); } /* * Set a timeout to fire if userland doesn't ack the suspend request * in time. This way we still eventually go to sleep if we were * overheating or running low on battery, even if userland is hung. * We cancel this timeout once all userland acks are in or the * suspend request is aborted. */ callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc); ACPI_UNLOCK(acpi); /* Now notify devd(8) also. */ acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, state); return (0); #else /* This platform does not support acpi suspend/resume. */ return (EOPNOTSUPP); #endif } /* * Acknowledge (or reject) a pending sleep state. The caller has * prepared for suspend and is now ready for it to proceed. If the * error argument is non-zero, it indicates suspend should be cancelled * and gives an errno value describing why. Once all votes are in, * we suspend the system. */ int acpi_AckSleepState(struct apm_clone_data *clone, int error) { #if defined(__amd64__) || defined(__i386__) struct acpi_softc *sc; int ret, sleeping; /* If no pending sleep state, return an error. */ ACPI_LOCK(acpi); sc = clone->acpi_sc; if (sc->acpi_next_sstate == 0) { ACPI_UNLOCK(acpi); return (ENXIO); } /* Caller wants to abort suspend process. */ if (error) { sc->acpi_next_sstate = 0; callout_stop(&sc->susp_force_to); device_printf(sc->acpi_dev, "listener on %s cancelled the pending suspend\n", devtoname(clone->cdev)); ACPI_UNLOCK(acpi); return (0); } /* * Mark this device as acking the suspend request. Then, walk through * all devices, seeing if they agree yet. We only count devices that * are writable since read-only devices couldn't ack the request. */ sleeping = TRUE; clone->notify_status = APM_EV_ACKED; STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) { if ((clone->flags & ACPI_EVF_WRITE) != 0 && clone->notify_status != APM_EV_ACKED) { sleeping = FALSE; break; } } /* If all devices have voted "yes", we will suspend now. */ if (sleeping) callout_stop(&sc->susp_force_to); ACPI_UNLOCK(acpi); ret = 0; if (sleeping) { if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_sstate))) ret = ENODEV; } return (ret); #else /* This platform does not support acpi suspend/resume. */ return (EOPNOTSUPP); #endif } static void acpi_sleep_enable(void *arg) { struct acpi_softc *sc = (struct acpi_softc *)arg; ACPI_LOCK_ASSERT(acpi); /* Reschedule if the system is not fully up and running. */ if (!AcpiGbl_SystemAwakeAndRunning) { callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); return; } sc->acpi_sleep_disabled = FALSE; } static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc) { ACPI_STATUS status; /* Fail if the system is not fully up and running. */ if (!AcpiGbl_SystemAwakeAndRunning) return (AE_ERROR); ACPI_LOCK(acpi); status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK; sc->acpi_sleep_disabled = TRUE; ACPI_UNLOCK(acpi); return (status); } enum acpi_sleep_state { ACPI_SS_NONE, ACPI_SS_GPE_SET, ACPI_SS_DEV_SUSPEND, ACPI_SS_SLP_PREP, ACPI_SS_SLEPT, }; /* * Enter the desired system sleep state. * * Currently we support S1-S5 but S4 is only S4BIOS */ static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc, int state) { register_t intr; ACPI_STATUS status; ACPI_EVENT_STATUS power_button_status; enum acpi_sleep_state slp_state; int sleep_result; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); if (state < ACPI_STATE_S1 || state > ACPI_S_STATES_MAX) return_ACPI_STATUS (AE_BAD_PARAMETER); if (!acpi_sleep_states[state]) { device_printf(sc->acpi_dev, "Sleep state S%d not supported by BIOS\n", state); return (AE_SUPPORT); } /* Re-entry once we're suspending is not allowed. */ status = acpi_sleep_disable(sc); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "suspend request ignored (not ready yet)\n"); return (status); } if (state == ACPI_STATE_S5) { /* * Shut down cleanly and power off. This will call us back through the * shutdown handlers. */ shutdown_nice(RB_POWEROFF); return_ACPI_STATUS (AE_OK); } EVENTHANDLER_INVOKE(power_suspend_early); stop_all_proc(); suspend_all_fs(); EVENTHANDLER_INVOKE(power_suspend); #ifdef EARLY_AP_STARTUP MPASS(mp_ncpus == 1 || smp_started); thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); #else if (smp_started) { thread_lock(curthread); sched_bind(curthread, 0); thread_unlock(curthread); } #endif /* * Be sure to hold Giant across DEVICE_SUSPEND/RESUME */ bus_topo_lock(); slp_state = ACPI_SS_NONE; sc->acpi_sstate = state; /* Enable any GPEs as appropriate and requested by the user. */ acpi_wake_prep_walk(state); slp_state = ACPI_SS_GPE_SET; /* * Inform all devices that we are going to sleep. If at least one * device fails, DEVICE_SUSPEND() automatically resumes the tree. * * XXX Note that a better two-pass approach with a 'veto' pass * followed by a "real thing" pass would be better, but the current * bus interface does not provide for this. */ if (DEVICE_SUSPEND(root_bus) != 0) { device_printf(sc->acpi_dev, "device_suspend failed\n"); goto backout; } slp_state = ACPI_SS_DEV_SUSPEND; status = AcpiEnterSleepStatePrep(state); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n", AcpiFormatException(status)); goto backout; } slp_state = ACPI_SS_SLP_PREP; if (sc->acpi_sleep_delay > 0) DELAY(sc->acpi_sleep_delay * 1000000); suspendclock(); intr = intr_disable(); if (state != ACPI_STATE_S1) { sleep_result = acpi_sleep_machdep(sc, state); acpi_wakeup_machdep(sc, state, sleep_result, 0); /* * XXX According to ACPI specification SCI_EN bit should be restored * by ACPI platform (BIOS, firmware) to its pre-sleep state. * Unfortunately some BIOSes fail to do that and that leads to * unexpected and serious consequences during wake up like a system * getting stuck in SMI handlers. * This hack is picked up from Linux, which claims that it follows * Windows behavior. */ if (sleep_result == 1 && state != ACPI_STATE_S4) AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT); if (sleep_result == 1 && state == ACPI_STATE_S3) { /* * Prevent mis-interpretation of the wakeup by power button * as a request for power off. * Ideally we should post an appropriate wakeup event, * perhaps using acpi_event_power_button_wake or alike. * * Clearing of power button status after wakeup is mandated * by ACPI specification in section "Fixed Power Button". * * XXX As of ACPICA 20121114 AcpiGetEventStatus provides * status as 0/1 corressponding to inactive/active despite * its type being ACPI_EVENT_STATUS. In other words, * we should not test for ACPI_EVENT_FLAG_SET for time being. */ if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON, &power_button_status)) && power_button_status != 0) { AcpiClearEvent(ACPI_EVENT_POWER_BUTTON); device_printf(sc->acpi_dev, "cleared fixed power button status\n"); } } intr_restore(intr); /* call acpi_wakeup_machdep() again with interrupt enabled */ acpi_wakeup_machdep(sc, state, sleep_result, 1); AcpiLeaveSleepStatePrep(state); if (sleep_result == -1) goto backout; /* Re-enable ACPI hardware on wakeup from sleep state 4. */ if (state == ACPI_STATE_S4) AcpiEnable(); } else { status = AcpiEnterSleepState(state); intr_restore(intr); AcpiLeaveSleepStatePrep(state); if (ACPI_FAILURE(status)) { device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n", AcpiFormatException(status)); goto backout; } } slp_state = ACPI_SS_SLEPT; /* * Back out state according to how far along we got in the suspend * process. This handles both the error and success cases. */ backout: if (slp_state >= ACPI_SS_SLP_PREP) resumeclock(); if (slp_state >= ACPI_SS_GPE_SET) { acpi_wake_prep_walk(state); sc->acpi_sstate = ACPI_STATE_S0; } if (slp_state >= ACPI_SS_DEV_SUSPEND) DEVICE_RESUME(root_bus); if (slp_state >= ACPI_SS_SLP_PREP) AcpiLeaveSleepState(state); if (slp_state >= ACPI_SS_SLEPT) { #if defined(__i386__) || defined(__amd64__) /* NB: we are still using ACPI timecounter at this point. */ resume_TSC(); #endif acpi_resync_clock(sc); acpi_enable_fixed_events(sc); } sc->acpi_next_sstate = 0; bus_topo_unlock(); #ifdef EARLY_AP_STARTUP thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); #else if (smp_started) { thread_lock(curthread); sched_unbind(curthread); thread_unlock(curthread); } #endif resume_all_fs(); resume_all_proc(); EVENTHANDLER_INVOKE(power_resume); /* Allow another sleep request after a while. */ callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME); /* Run /etc/rc.resume after we are back. */ if (devctl_process_running()) acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, state); return_ACPI_STATUS (status); } static void acpi_resync_clock(struct acpi_softc *sc) { /* * Warm up timecounter again and reset system clock. */ (void)timecounter->tc_get_timecount(timecounter); inittodr(time_second + sc->acpi_sleep_delay); } /* Enable or disable the device's wake GPE. */ int acpi_wake_set_enable(device_t dev, int enable) { struct acpi_prw_data prw; ACPI_STATUS status; int flags; /* Make sure the device supports waking the system and get the GPE. */ if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0) return (ENXIO); flags = acpi_get_flags(dev); if (enable) { status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); if (ACPI_FAILURE(status)) { device_printf(dev, "enable wake failed\n"); return (ENXIO); } acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED); } else { status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); if (ACPI_FAILURE(status)) { device_printf(dev, "disable wake failed\n"); return (ENXIO); } acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED); } return (0); } static int acpi_wake_sleep_prep(ACPI_HANDLE handle, int sstate) { struct acpi_prw_data prw; device_t dev; /* Check that this is a wake-capable device and get its GPE. */ if (acpi_parse_prw(handle, &prw) != 0) return (ENXIO); dev = acpi_get_device(handle); /* * The destination sleep state must be less than (i.e., higher power) * or equal to the value specified by _PRW. If this GPE cannot be * enabled for the next sleep state, then disable it. If it can and * the user requested it be enabled, turn on any required power resources * and set _PSW. */ if (sstate > prw.lowest_wake) { AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE); if (bootverbose) device_printf(dev, "wake_prep disabled wake for %s (S%d)\n", acpi_name(handle), sstate); } else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) { acpi_pwr_wake_enable(handle, 1); acpi_SetInteger(handle, "_PSW", 1); if (bootverbose) device_printf(dev, "wake_prep enabled for %s (S%d)\n", acpi_name(handle), sstate); } return (0); } static int acpi_wake_run_prep(ACPI_HANDLE handle, int sstate) { struct acpi_prw_data prw; device_t dev; /* * Check that this is a wake-capable device and get its GPE. Return * now if the user didn't enable this device for wake. */ if (acpi_parse_prw(handle, &prw) != 0) return (ENXIO); dev = acpi_get_device(handle); if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0) return (0); /* * If this GPE couldn't be enabled for the previous sleep state, it was * disabled before going to sleep so re-enable it. If it was enabled, * clear _PSW and turn off any power resources it used. */ if (sstate > prw.lowest_wake) { AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE); if (bootverbose) device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle)); } else { acpi_SetInteger(handle, "_PSW", 0); acpi_pwr_wake_enable(handle, 0); if (bootverbose) device_printf(dev, "run_prep cleaned up for %s\n", acpi_name(handle)); } return (0); } static ACPI_STATUS acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status) { int sstate; /* If suspending, run the sleep prep function, otherwise wake. */ sstate = *(int *)context; if (AcpiGbl_SystemAwakeAndRunning) acpi_wake_sleep_prep(handle, sstate); else acpi_wake_run_prep(handle, sstate); return (AE_OK); } /* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */ static int acpi_wake_prep_walk(int sstate) { ACPI_HANDLE sb_handle; if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle))) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100, acpi_wake_prep, NULL, &sstate, NULL); return (0); } /* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */ static int acpi_wake_sysctl_walk(device_t dev) { int error, i, numdevs; device_t *devlist; device_t child; ACPI_STATUS status; error = device_get_children(dev, &devlist, &numdevs); if (error != 0 || numdevs == 0) { if (numdevs == 0) free(devlist, M_TEMP); return (error); } for (i = 0; i < numdevs; i++) { child = devlist[i]; acpi_wake_sysctl_walk(child); if (!device_is_attached(child)) continue; status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL); if (ACPI_SUCCESS(status)) { SYSCTL_ADD_PROC(device_get_sysctl_ctx(child), SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO, "wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0, acpi_wake_set_sysctl, "I", "Device set to wake the system"); } } free(devlist, M_TEMP); return (0); } /* Enable or disable wake from userland. */ static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS) { int enable, error; device_t dev; dev = (device_t)arg1; enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0; error = sysctl_handle_int(oidp, &enable, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (enable != 0 && enable != 1) return (EINVAL); return (acpi_wake_set_enable(dev, enable)); } /* Parse a device's _PRW into a structure. */ int acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw) { ACPI_STATUS status; ACPI_BUFFER prw_buffer; ACPI_OBJECT *res, *res2; int error, i, power_count; if (h == NULL || prw == NULL) return (EINVAL); /* * The _PRW object (7.2.9) is only required for devices that have the * ability to wake the system from a sleeping state. */ error = EINVAL; prw_buffer.Pointer = NULL; prw_buffer.Length = ACPI_ALLOCATE_BUFFER; status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer); if (ACPI_FAILURE(status)) return (ENOENT); res = (ACPI_OBJECT *)prw_buffer.Pointer; if (res == NULL) return (ENOENT); if (!ACPI_PKG_VALID(res, 2)) goto out; /* * Element 1 of the _PRW object: * The lowest power system sleeping state that can be entered while still * providing wake functionality. The sleeping state being entered must * be less than (i.e., higher power) or equal to this value. */ if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0) goto out; /* * Element 0 of the _PRW object: */ switch (res->Package.Elements[0].Type) { case ACPI_TYPE_INTEGER: /* * If the data type of this package element is numeric, then this * _PRW package element is the bit index in the GPEx_EN, in the * GPE blocks described in the FADT, of the enable bit that is * enabled for the wake event. */ prw->gpe_handle = NULL; prw->gpe_bit = res->Package.Elements[0].Integer.Value; error = 0; break; case ACPI_TYPE_PACKAGE: /* * If the data type of this package element is a package, then this * _PRW package element is itself a package containing two * elements. The first is an object reference to the GPE Block * device that contains the GPE that will be triggered by the wake * event. The second element is numeric and it contains the bit * index in the GPEx_EN, in the GPE Block referenced by the * first element in the package, of the enable bit that is enabled for * the wake event. * * For example, if this field is a package then it is of the form: * Package() {\_SB.PCI0.ISA.GPE, 2} */ res2 = &res->Package.Elements[0]; if (!ACPI_PKG_VALID(res2, 2)) goto out; prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]); if (prw->gpe_handle == NULL) goto out; if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0) goto out; error = 0; break; default: goto out; } /* Elements 2 to N of the _PRW object are power resources. */ power_count = res->Package.Count - 2; if (power_count > ACPI_PRW_MAX_POWERRES) { printf("ACPI device %s has too many power resources\n", acpi_name(h)); power_count = 0; } prw->power_res_count = power_count; for (i = 0; i < power_count; i++) prw->power_res[i] = res->Package.Elements[i]; out: if (prw_buffer.Pointer != NULL) AcpiOsFree(prw_buffer.Pointer); return (error); } /* * ACPI Event Handlers */ /* System Event Handlers (registered by EVENTHANDLER_REGISTER) */ static void acpi_system_eventhandler_sleep(void *arg, int state) { struct acpi_softc *sc = (struct acpi_softc *)arg; int ret; ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); /* Check if button action is disabled or unknown. */ if (state == ACPI_STATE_UNKNOWN) return; /* Request that the system prepare to enter the given suspend state. */ ret = acpi_ReqSleepState(sc, state); if (ret != 0) device_printf(sc->acpi_dev, "request to enter state S%d failed (err %d)\n", state, ret); return_VOID; } static void acpi_system_eventhandler_wakeup(void *arg, int state) { ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, state); /* Currently, nothing to do for wakeup. */ return_VOID; } /* * ACPICA Event Handlers (FixedEvent, also called from button notify handler) */ static void acpi_invoke_sleep_eventhandler(void *context) { EVENTHANDLER_INVOKE(acpi_sleep_event, *(int *)context); } static void acpi_invoke_wake_eventhandler(void *context) { EVENTHANDLER_INVOKE(acpi_wakeup_event, *(int *)context); } UINT32 acpi_event_power_button_sleep(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_power_button_wake(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_wake_eventhandler, &sc->acpi_power_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_sleep_button_sleep(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } UINT32 acpi_event_sleep_button_wake(void *context) { struct acpi_softc *sc = (struct acpi_softc *)context; ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__); if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_sx))) return_VALUE (ACPI_INTERRUPT_NOT_HANDLED); return_VALUE (ACPI_INTERRUPT_HANDLED); } /* * XXX This static buffer is suboptimal. There is no locking so only * use this for single-threaded callers. */ char * acpi_name(ACPI_HANDLE handle) { ACPI_BUFFER buf; static char data[256]; buf.Length = sizeof(data); buf.Pointer = data; if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf))) return (data); return ("(unknown)"); } /* * Debugging/bug-avoidance. Avoid trying to fetch info on various * parts of the namespace. */ int acpi_avoid(ACPI_HANDLE handle) { char *cp, *env, *np; int len; np = acpi_name(handle); if (*np == '\\') np++; if ((env = kern_getenv("debug.acpi.avoid")) == NULL) return (0); /* Scan the avoid list checking for a match */ cp = env; for (;;) { while (*cp != 0 && isspace(*cp)) cp++; if (*cp == 0) break; len = 0; while (cp[len] != 0 && !isspace(cp[len])) len++; if (!strncmp(cp, np, len)) { freeenv(env); return(1); } cp += len; } freeenv(env); return (0); } /* * Debugging/bug-avoidance. Disable ACPI subsystem components. */ int acpi_disabled(char *subsys) { char *cp, *env; int len; if ((env = kern_getenv("debug.acpi.disabled")) == NULL) return (0); if (strcmp(env, "all") == 0) { freeenv(env); return (1); } /* Scan the disable list, checking for a match. */ cp = env; for (;;) { while (*cp != '\0' && isspace(*cp)) cp++; if (*cp == '\0') break; len = 0; while (cp[len] != '\0' && !isspace(cp[len])) len++; if (strncmp(cp, subsys, len) == 0) { freeenv(env); return (1); } cp += len; } freeenv(env); return (0); } static void acpi_lookup(void *arg, const char *name, device_t *dev) { ACPI_HANDLE handle; if (*dev != NULL) return; /* * Allow any handle name that is specified as an absolute path and * starts with '\'. We could restrict this to \_SB and friends, * but see acpi_probe_children() for notes on why we scan the entire * namespace for devices. * * XXX: The pathname argument to AcpiGetHandle() should be fixed to * be const. */ if (name[0] != '\\') return; if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name), &handle))) return; *dev = acpi_get_device(handle); } /* * Control interface. * * We multiplex ioctls for all participating ACPI devices here. Individual * drivers wanting to be accessible via /dev/acpi should use the * register/deregister interface to make their handlers visible. */ struct acpi_ioctl_hook { TAILQ_ENTRY(acpi_ioctl_hook) link; u_long cmd; acpi_ioctl_fn fn; void *arg; }; static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks; static int acpi_ioctl_hooks_initted; int acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg) { struct acpi_ioctl_hook *hp; if ((hp = malloc(sizeof(*hp), M_ACPIDEV, M_NOWAIT)) == NULL) return (ENOMEM); hp->cmd = cmd; hp->fn = fn; hp->arg = arg; ACPI_LOCK(acpi); if (acpi_ioctl_hooks_initted == 0) { TAILQ_INIT(&acpi_ioctl_hooks); acpi_ioctl_hooks_initted = 1; } TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link); ACPI_UNLOCK(acpi); return (0); } void acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn) { struct acpi_ioctl_hook *hp; ACPI_LOCK(acpi); TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) if (hp->cmd == cmd && hp->fn == fn) break; if (hp != NULL) { TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link); free(hp, M_ACPIDEV); } ACPI_UNLOCK(acpi); } static int acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td) { return (0); } static int acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td) { return (0); } static int acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td) { struct acpi_softc *sc; struct acpi_ioctl_hook *hp; int error, state; error = 0; hp = NULL; sc = dev->si_drv1; /* * Scan the list of registered ioctls, looking for handlers. */ ACPI_LOCK(acpi); if (acpi_ioctl_hooks_initted) TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) { if (hp->cmd == cmd) break; } ACPI_UNLOCK(acpi); if (hp) return (hp->fn(cmd, addr, hp->arg)); /* * Core ioctls are not permitted for non-writable user. * Currently, other ioctls just fetch information. * Not changing system behavior. */ if ((flag & FWRITE) == 0) return (EPERM); /* Core system ioctls. */ switch (cmd) { case ACPIIO_REQSLPSTATE: state = *(int *)addr; if (state != ACPI_STATE_S5) return (acpi_ReqSleepState(sc, state)); device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n"); error = EOPNOTSUPP; break; case ACPIIO_ACKSLPSTATE: error = *(int *)addr; error = acpi_AckSleepState(sc->acpi_clone, error); break; case ACPIIO_SETSLPSTATE: /* DEPRECATED */ state = *(int *)addr; if (state < ACPI_STATE_S0 || state > ACPI_S_STATES_MAX) return (EINVAL); if (!acpi_sleep_states[state]) return (EOPNOTSUPP); if (ACPI_FAILURE(acpi_SetSleepState(sc, state))) error = ENXIO; break; default: error = ENXIO; break; } return (error); } static int acpi_sname2sstate(const char *sname) { int sstate; if (toupper(sname[0]) == 'S') { sstate = sname[1] - '0'; if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 && sname[2] == '\0') return (sstate); } else if (strcasecmp(sname, "NONE") == 0) return (ACPI_STATE_UNKNOWN); return (-1); } static const char * acpi_sstate2sname(int sstate) { static const char *snames[] = { "S0", "S1", "S2", "S3", "S4", "S5" }; if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5) return (snames[sstate]); else if (sstate == ACPI_STATE_UNKNOWN) return ("NONE"); return (NULL); } static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) { int error; struct sbuf sb; UINT8 state; sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND); for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++) if (acpi_sleep_states[state]) sbuf_printf(&sb, "%s ", acpi_sstate2sname(state)); sbuf_trim(&sb); sbuf_finish(&sb); error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req); sbuf_delete(&sb); return (error); } static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS) { char sleep_state[10]; int error, new_state, old_state; old_state = *(int *)oidp->oid_arg1; strlcpy(sleep_state, acpi_sstate2sname(old_state), sizeof(sleep_state)); error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req); if (error == 0 && req->newptr != NULL) { new_state = acpi_sname2sstate(sleep_state); if (new_state < ACPI_STATE_S1) return (EINVAL); if (new_state < ACPI_S_STATE_COUNT && !acpi_sleep_states[new_state]) return (EOPNOTSUPP); if (new_state != old_state) *(int *)oidp->oid_arg1 = new_state; } return (error); } /* Inform devctl(4) when we receive a Notify. */ void acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify) { char notify_buf[16]; ACPI_BUFFER handle_buf; ACPI_STATUS status; if (subsystem == NULL) return; handle_buf.Pointer = NULL; handle_buf.Length = ACPI_ALLOCATE_BUFFER; status = AcpiNsHandleToPathname(h, &handle_buf, FALSE); if (ACPI_FAILURE(status)) return; snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify); devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf); AcpiOsFree(handle_buf.Pointer); } #ifdef ACPI_DEBUG /* * Support for parsing debug options from the kernel environment. * * Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers * by specifying the names of the bits in the debug.acpi.layer and * debug.acpi.level environment variables. Bits may be unset by * prefixing the bit name with !. */ struct debugtag { char *name; UINT32 value; }; static struct debugtag dbg_layer[] = { {"ACPI_UTILITIES", ACPI_UTILITIES}, {"ACPI_HARDWARE", ACPI_HARDWARE}, {"ACPI_EVENTS", ACPI_EVENTS}, {"ACPI_TABLES", ACPI_TABLES}, {"ACPI_NAMESPACE", ACPI_NAMESPACE}, {"ACPI_PARSER", ACPI_PARSER}, {"ACPI_DISPATCHER", ACPI_DISPATCHER}, {"ACPI_EXECUTER", ACPI_EXECUTER}, {"ACPI_RESOURCES", ACPI_RESOURCES}, {"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER}, {"ACPI_OS_SERVICES", ACPI_OS_SERVICES}, {"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER}, {"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS}, {"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER}, {"ACPI_BATTERY", ACPI_BATTERY}, {"ACPI_BUS", ACPI_BUS}, {"ACPI_BUTTON", ACPI_BUTTON}, {"ACPI_EC", ACPI_EC}, {"ACPI_FAN", ACPI_FAN}, {"ACPI_POWERRES", ACPI_POWERRES}, {"ACPI_PROCESSOR", ACPI_PROCESSOR}, {"ACPI_THERMAL", ACPI_THERMAL}, {"ACPI_TIMER", ACPI_TIMER}, {"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS}, {NULL, 0} }; static struct debugtag dbg_level[] = { {"ACPI_LV_INIT", ACPI_LV_INIT}, {"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT}, {"ACPI_LV_INFO", ACPI_LV_INFO}, {"ACPI_LV_REPAIR", ACPI_LV_REPAIR}, {"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS}, /* Trace verbosity level 1 [Standard Trace Level] */ {"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES}, {"ACPI_LV_PARSE", ACPI_LV_PARSE}, {"ACPI_LV_LOAD", ACPI_LV_LOAD}, {"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH}, {"ACPI_LV_EXEC", ACPI_LV_EXEC}, {"ACPI_LV_NAMES", ACPI_LV_NAMES}, {"ACPI_LV_OPREGION", ACPI_LV_OPREGION}, {"ACPI_LV_BFIELD", ACPI_LV_BFIELD}, {"ACPI_LV_TABLES", ACPI_LV_TABLES}, {"ACPI_LV_VALUES", ACPI_LV_VALUES}, {"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS}, {"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES}, {"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS}, {"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE}, {"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1}, /* Trace verbosity level 2 [Function tracing and memory allocation] */ {"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS}, {"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS}, {"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS}, {"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2}, {"ACPI_LV_ALL", ACPI_LV_ALL}, /* Trace verbosity level 3 [Threading, I/O, and Interrupts] */ {"ACPI_LV_MUTEX", ACPI_LV_MUTEX}, {"ACPI_LV_THREADS", ACPI_LV_THREADS}, {"ACPI_LV_IO", ACPI_LV_IO}, {"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS}, {"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3}, /* Exceptionally verbose output -- also used in the global "DebugLevel" */ {"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE}, {"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO}, {"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES}, {"ACPI_LV_EVENTS", ACPI_LV_EVENTS}, {"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE}, {NULL, 0} }; static void acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag) { char *ep; int i, l; int set; while (*cp) { if (isspace(*cp)) { cp++; continue; } ep = cp; while (*ep && !isspace(*ep)) ep++; if (*cp == '!') { set = 0; cp++; if (cp == ep) continue; } else { set = 1; } l = ep - cp; for (i = 0; tag[i].name != NULL; i++) { if (!strncmp(cp, tag[i].name, l)) { if (set) *flag |= tag[i].value; else *flag &= ~tag[i].value; } } cp = ep; } } static void acpi_set_debugging(void *junk) { char *layer, *level; if (cold) { AcpiDbgLayer = 0; AcpiDbgLevel = 0; } layer = kern_getenv("debug.acpi.layer"); level = kern_getenv("debug.acpi.level"); if (layer == NULL && level == NULL) return; printf("ACPI set debug"); if (layer != NULL) { if (strcmp("NONE", layer) != 0) printf(" layer '%s'", layer); acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer); freeenv(layer); } if (level != NULL) { if (strcmp("NONE", level) != 0) printf(" level '%s'", level); acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel); freeenv(level); } printf("\n"); } SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging, NULL); static int acpi_debug_sysctl(SYSCTL_HANDLER_ARGS) { int error, *dbg; struct debugtag *tag; struct sbuf sb; char temp[128]; if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL) return (ENOMEM); if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) { tag = &dbg_layer[0]; dbg = &AcpiDbgLayer; } else { tag = &dbg_level[0]; dbg = &AcpiDbgLevel; } /* Get old values if this is a get request. */ ACPI_SERIAL_BEGIN(acpi); if (*dbg == 0) { sbuf_cpy(&sb, "NONE"); } else if (req->newptr == NULL) { for (; tag->name != NULL; tag++) { if ((*dbg & tag->value) == tag->value) sbuf_printf(&sb, "%s ", tag->name); } } sbuf_trim(&sb); sbuf_finish(&sb); strlcpy(temp, sbuf_data(&sb), sizeof(temp)); sbuf_delete(&sb); error = sysctl_handle_string(oidp, temp, sizeof(temp), req); /* Check for error or no change */ if (error == 0 && req->newptr != NULL) { *dbg = 0; kern_setenv((char *)oidp->oid_arg1, temp); acpi_set_debugging(NULL); } ACPI_SERIAL_END(acpi); return (error); } SYSCTL_PROC(_debug_acpi, OID_AUTO, layer, CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.layer", 0, acpi_debug_sysctl, "A", ""); SYSCTL_PROC(_debug_acpi, OID_AUTO, level, CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_NEEDGIANT, "debug.acpi.level", 0, acpi_debug_sysctl, "A", ""); #endif /* ACPI_DEBUG */ static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS) { int error; int old; old = acpi_debug_objects; error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (old == acpi_debug_objects || (old && acpi_debug_objects)) return (0); ACPI_SERIAL_BEGIN(acpi); AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE; ACPI_SERIAL_END(acpi); return (0); } static int acpi_parse_interfaces(char *str, struct acpi_interface *iface) { char *p; size_t len; int i, j; p = str; while (isspace(*p) || *p == ',') p++; len = strlen(p); if (len == 0) return (0); p = strdup(p, M_TEMP); for (i = 0; i < len; i++) if (p[i] == ',') p[i] = '\0'; i = j = 0; while (i < len) if (isspace(p[i]) || p[i] == '\0') i++; else { i += strlen(p + i) + 1; j++; } if (j == 0) { free(p, M_TEMP); return (0); } iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK); iface->num = j; i = j = 0; while (i < len) if (isspace(p[i]) || p[i] == '\0') i++; else { iface->data[j] = p + i; i += strlen(p + i) + 1; j++; } return (j); } static void acpi_free_interfaces(struct acpi_interface *iface) { free(iface->data[0], M_TEMP); free(iface->data, M_TEMP); } static void acpi_reset_interfaces(device_t dev) { struct acpi_interface list; ACPI_STATUS status; int i; if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) { for (i = 0; i < list.num; i++) { status = AcpiInstallInterface(list.data[i]); if (ACPI_FAILURE(status)) device_printf(dev, "failed to install _OSI(\"%s\"): %s\n", list.data[i], AcpiFormatException(status)); else if (bootverbose) device_printf(dev, "installed _OSI(\"%s\")\n", list.data[i]); } acpi_free_interfaces(&list); } if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) { for (i = 0; i < list.num; i++) { status = AcpiRemoveInterface(list.data[i]); if (ACPI_FAILURE(status)) device_printf(dev, "failed to remove _OSI(\"%s\"): %s\n", list.data[i], AcpiFormatException(status)); else if (bootverbose) device_printf(dev, "removed _OSI(\"%s\")\n", list.data[i]); } acpi_free_interfaces(&list); } } static int acpi_pm_func(u_long cmd, void *arg, ...) { int state, acpi_state; int error; struct acpi_softc *sc; va_list ap; error = 0; switch (cmd) { case POWER_CMD_SUSPEND: sc = (struct acpi_softc *)arg; if (sc == NULL) { error = EINVAL; goto out; } va_start(ap, arg); state = va_arg(ap, int); va_end(ap); switch (state) { case POWER_SLEEP_STATE_STANDBY: acpi_state = sc->acpi_standby_sx; break; case POWER_SLEEP_STATE_SUSPEND: acpi_state = sc->acpi_suspend_sx; break; case POWER_SLEEP_STATE_HIBERNATE: acpi_state = ACPI_STATE_S4; break; default: error = EINVAL; goto out; } if (ACPI_FAILURE(acpi_EnterSleepState(sc, acpi_state))) error = ENXIO; break; default: error = EINVAL; goto out; } out: return (error); } static void acpi_pm_register(void *arg) { if (!cold || resource_disabled("acpi", 0)) return; power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL); } SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL); diff --git a/sys/dev/bhnd/bhnd.c b/sys/dev/bhnd/bhnd.c index 654f42864233..0413970e5665 100644 --- a/sys/dev/bhnd/bhnd.c +++ b/sys/dev/bhnd/bhnd.c @@ -1,1194 +1,1194 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2015-2016 Landon Fuller * Copyright (c) 2017 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Landon Fuller * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); /* * Broadcom Home Networking Division (HND) Bus Driver. * * The Broadcom HND family of devices consists of both SoCs and host-connected * networking chipsets containing a common family of Broadcom IP cores, * including an integrated MIPS and/or ARM cores. * * HND devices expose a nearly identical interface whether accessible over a * native SoC interconnect, or when connected via a host interface such as * PCIe. As a result, the majority of hardware support code should be re-usable * across host drivers for HND networking chipsets, as well as FreeBSD support * for Broadcom MIPS/ARM HND SoCs. * * Earlier HND models used the siba(4) on-chip interconnect, while later models * use bcma(4); the programming model is almost entirely independent * of the actual underlying interconect. */ #include #include #include #include #include #include #include #include #include #include #include "bhnd_chipc_if.h" #include "bhnd_nvram_if.h" #include "bhnd.h" #include "bhndreg.h" #include "bhndvar.h" #include "bhnd_private.h" MALLOC_DEFINE(M_BHND, "bhnd", "bhnd bus data structures"); /** * bhnd_generic_probe_nomatch() reporting configuration. */ static const struct bhnd_nomatch { uint16_t vendor; /**< core designer */ uint16_t device; /**< core id */ bool if_verbose; /**< print when bootverbose is set. */ } bhnd_nomatch_table[] = { { BHND_MFGID_ARM, BHND_COREID_OOB_ROUTER, true }, { BHND_MFGID_ARM, BHND_COREID_EROM, true }, { BHND_MFGID_ARM, BHND_COREID_PL301, true }, { BHND_MFGID_ARM, BHND_COREID_APB_BRIDGE, true }, { BHND_MFGID_ARM, BHND_COREID_AXI_UNMAPPED, false }, { BHND_MFGID_INVALID, BHND_COREID_INVALID, false } }; static int bhnd_delete_children(struct bhnd_softc *sc); /** * Default bhnd(4) bus driver implementation of DEVICE_ATTACH(). * * This implementation calls device_probe_and_attach() for each of the device's * children, in bhnd probe order. */ int bhnd_generic_attach(device_t dev) { struct bhnd_softc *sc; int error; if (device_is_attached(dev)) return (EBUSY); sc = device_get_softc(dev); sc->dev = dev; /* Probe and attach all children */ if ((error = bhnd_bus_probe_children(dev))) { bhnd_delete_children(sc); return (error); } return (0); } /** * Detach and delete all children, in reverse of their attach order. */ static int bhnd_delete_children(struct bhnd_softc *sc) { device_t *devs; int ndevs; int error; /* Fetch children in detach order */ error = bhnd_bus_get_children(sc->dev, &devs, &ndevs, BHND_DEVICE_ORDER_DETACH); if (error) return (error); /* Perform detach */ for (int i = 0; i < ndevs; i++) { device_t child = devs[i]; /* Terminate on first error */ if ((error = device_delete_child(sc->dev, child))) goto cleanup; } cleanup: bhnd_bus_free_children(devs); return (error); } /** * Default bhnd(4) bus driver implementation of DEVICE_DETACH(). * * This implementation calls device_detach() for each of the device's * children, in reverse bhnd probe order, terminating if any call to * device_detach() fails. */ int bhnd_generic_detach(device_t dev) { struct bhnd_softc *sc; int error; if (!device_is_attached(dev)) return (EBUSY); sc = device_get_softc(dev); if ((error = bhnd_delete_children(sc))) return (error); return (0); } /** * Default bhnd(4) bus driver implementation of DEVICE_SHUTDOWN(). * * This implementation calls device_shutdown() for each of the device's * children, in reverse bhnd probe order, terminating if any call to * device_shutdown() fails. */ int bhnd_generic_shutdown(device_t dev) { device_t *devs; int ndevs; int error; if (!device_is_attached(dev)) return (EBUSY); /* Fetch children in detach order */ error = bhnd_bus_get_children(dev, &devs, &ndevs, BHND_DEVICE_ORDER_DETACH); if (error) return (error); /* Perform shutdown */ for (int i = 0; i < ndevs; i++) { device_t child = devs[i]; /* Terminate on first error */ if ((error = device_shutdown(child))) goto cleanup; } cleanup: bhnd_bus_free_children(devs); return (error); } /** * Default bhnd(4) bus driver implementation of DEVICE_RESUME(). * * This implementation calls BUS_RESUME_CHILD() for each of the device's * children in bhnd probe order, terminating if any call to BUS_RESUME_CHILD() * fails. */ int bhnd_generic_resume(device_t dev) { device_t *devs; int ndevs; int error; if (!device_is_attached(dev)) return (EBUSY); /* Fetch children in attach order */ error = bhnd_bus_get_children(dev, &devs, &ndevs, BHND_DEVICE_ORDER_ATTACH); if (error) return (error); /* Perform resume */ for (int i = 0; i < ndevs; i++) { device_t child = devs[i]; /* Terminate on first error */ if ((error = BUS_RESUME_CHILD(device_get_parent(child), child))) goto cleanup; } cleanup: bhnd_bus_free_children(devs); return (error); } /** * Default bhnd(4) bus driver implementation of DEVICE_SUSPEND(). * * This implementation calls BUS_SUSPEND_CHILD() for each of the device's * children in reverse bhnd probe order. If any call to BUS_SUSPEND_CHILD() * fails, the suspend operation is terminated and any devices that were * suspended are resumed immediately by calling their BUS_RESUME_CHILD() * methods. */ int bhnd_generic_suspend(device_t dev) { device_t *devs; int ndevs; int error; if (!device_is_attached(dev)) return (EBUSY); /* Fetch children in detach order */ error = bhnd_bus_get_children(dev, &devs, &ndevs, BHND_DEVICE_ORDER_DETACH); if (error) return (error); /* Perform suspend */ for (int i = 0; i < ndevs; i++) { device_t child = devs[i]; error = BUS_SUSPEND_CHILD(device_get_parent(child), child); /* On error, resume suspended devices and then terminate */ if (error) { for (int j = 0; j < i; j++) { BUS_RESUME_CHILD(device_get_parent(devs[j]), devs[j]); } goto cleanup; } } cleanup: bhnd_bus_free_children(devs); return (error); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_GET_PROBE_ORDER(). * * This implementation determines probe ordering based on the device's class * and other properties, including whether the device is serving as a host * bridge. */ int bhnd_generic_get_probe_order(device_t dev, device_t child) { switch (bhnd_get_class(child)) { case BHND_DEVCLASS_CC: /* Must be early enough to provide NVRAM access to the * host bridge */ return (BHND_PROBE_ROOT + BHND_PROBE_ORDER_FIRST); case BHND_DEVCLASS_CC_B: /* fall through */ case BHND_DEVCLASS_PMU: return (BHND_PROBE_BUS + BHND_PROBE_ORDER_EARLY); case BHND_DEVCLASS_SOC_ROUTER: return (BHND_PROBE_BUS + BHND_PROBE_ORDER_LATE); case BHND_DEVCLASS_SOC_BRIDGE: return (BHND_PROBE_BUS + BHND_PROBE_ORDER_LAST); case BHND_DEVCLASS_CPU: return (BHND_PROBE_CPU + BHND_PROBE_ORDER_FIRST); case BHND_DEVCLASS_RAM: /* fall through */ case BHND_DEVCLASS_MEMC: return (BHND_PROBE_CPU + BHND_PROBE_ORDER_EARLY); case BHND_DEVCLASS_NVRAM: return (BHND_PROBE_RESOURCE + BHND_PROBE_ORDER_EARLY); case BHND_DEVCLASS_PCI: case BHND_DEVCLASS_PCIE: case BHND_DEVCLASS_PCCARD: case BHND_DEVCLASS_ENET: case BHND_DEVCLASS_ENET_MAC: case BHND_DEVCLASS_ENET_PHY: case BHND_DEVCLASS_WLAN: case BHND_DEVCLASS_WLAN_MAC: case BHND_DEVCLASS_WLAN_PHY: case BHND_DEVCLASS_EROM: case BHND_DEVCLASS_OTHER: case BHND_DEVCLASS_INVALID: if (bhnd_bus_find_hostb_device(dev) == child) return (BHND_PROBE_ROOT + BHND_PROBE_ORDER_EARLY); return (BHND_PROBE_DEFAULT); default: return (BHND_PROBE_DEFAULT); } } /** * Default bhnd(4) bus driver implementation of BHND_BUS_ALLOC_PMU(). */ int bhnd_generic_alloc_pmu(device_t dev, device_t child) { struct bhnd_softc *sc; struct bhnd_resource *r; struct bhnd_core_clkctl *clkctl; struct resource_list *rl; struct resource_list_entry *rle; device_t pmu_dev; bhnd_addr_t r_addr; bhnd_size_t r_size; bus_size_t pmu_regs; u_int max_latency; int error; - GIANT_REQUIRED; /* for newbus */ + bus_topo_assert(); if (device_get_parent(child) != dev) return (EINVAL); sc = device_get_softc(dev); clkctl = bhnd_get_pmu_info(child); pmu_regs = BHND_CLK_CTL_ST; /* already allocated? */ if (clkctl != NULL) { panic("duplicate PMU allocation for %s", device_get_nameunit(child)); } /* Determine address+size of the core's PMU register block */ error = bhnd_get_region_addr(child, BHND_PORT_DEVICE, 0, 0, &r_addr, &r_size); if (error) { device_printf(sc->dev, "error fetching register block info for " "%s: %d\n", device_get_nameunit(child), error); return (error); } if (r_size < (pmu_regs + sizeof(uint32_t))) { device_printf(sc->dev, "pmu offset %#jx would overrun %s " "register block\n", (uintmax_t)pmu_regs, device_get_nameunit(child)); return (ENODEV); } /* Locate actual resource containing the core's register block */ if ((rl = BUS_GET_RESOURCE_LIST(dev, child)) == NULL) { device_printf(dev, "NULL resource list returned for %s\n", device_get_nameunit(child)); return (ENXIO); } if ((rle = resource_list_find(rl, SYS_RES_MEMORY, 0)) == NULL) { device_printf(dev, "cannot locate core register resource " "for %s\n", device_get_nameunit(child)); return (ENXIO); } if (rle->res == NULL) { device_printf(dev, "core register resource unallocated for " "%s\n", device_get_nameunit(child)); return (ENXIO); } if (r_addr+pmu_regs < rman_get_start(rle->res) || r_addr+pmu_regs >= rman_get_end(rle->res)) { device_printf(dev, "core register resource does not map PMU " "registers at %#jx\n for %s\n", r_addr+pmu_regs, device_get_nameunit(child)); return (ENXIO); } /* Adjust PMU register offset relative to the actual start address * of the core's register block allocation. * * XXX: The saved offset will be invalid if bus_adjust_resource is * used to modify the resource's start address. */ if (rman_get_start(rle->res) > r_addr) pmu_regs -= rman_get_start(rle->res) - r_addr; else pmu_regs -= r_addr - rman_get_start(rle->res); /* Retain a PMU reference for the clkctl instance state */ pmu_dev = bhnd_retain_provider(child, BHND_SERVICE_PMU); if (pmu_dev == NULL) { device_printf(sc->dev, "PMU not found\n"); return (ENXIO); } /* Fetch the maximum transition latency from our PMU */ max_latency = bhnd_pmu_get_max_transition_latency(pmu_dev); /* Allocate a new bhnd_resource wrapping the standard resource we * fetched from the resource list; we'll free this in * bhnd_generic_release_pmu() */ r = malloc(sizeof(struct bhnd_resource), M_BHND, M_NOWAIT); if (r == NULL) { bhnd_release_provider(child, pmu_dev, BHND_SERVICE_PMU); return (ENOMEM); } r->res = rle->res; r->direct = ((rman_get_flags(rle->res) & RF_ACTIVE) != 0); /* Allocate the clkctl instance */ clkctl = bhnd_alloc_core_clkctl(child, pmu_dev, r, pmu_regs, max_latency); if (clkctl == NULL) { free(r, M_BHND); bhnd_release_provider(child, pmu_dev, BHND_SERVICE_PMU); return (ENOMEM); } bhnd_set_pmu_info(child, clkctl); return (0); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_RELEASE_PMU(). */ int bhnd_generic_release_pmu(device_t dev, device_t child) { struct bhnd_softc *sc; struct bhnd_core_clkctl *clkctl; struct bhnd_resource *r; device_t pmu_dev; - GIANT_REQUIRED; /* for newbus */ + bus_topo_assert(); sc = device_get_softc(dev); if (device_get_parent(child) != dev) return (EINVAL); clkctl = bhnd_get_pmu_info(child); if (clkctl == NULL) panic("pmu over-release for %s", device_get_nameunit(child)); /* Clear all FORCE, AREQ, and ERSRC flags, unless we're already in * RESET. Suspending a core clears clkctl automatically (and attempting * to access the PMU registers in a suspended core will trigger a * system livelock). */ if (!bhnd_is_hw_suspended(clkctl->cc_dev)) { BHND_CLKCTL_LOCK(clkctl); /* Clear all FORCE, AREQ, and ERSRC flags */ BHND_CLKCTL_SET_4(clkctl, 0x0, BHND_CCS_FORCE_MASK | BHND_CCS_AREQ_MASK | BHND_CCS_ERSRC_REQ_MASK); BHND_CLKCTL_UNLOCK(clkctl); } /* Clear child's PMU info reference */ bhnd_set_pmu_info(child, NULL); /* Before freeing the clkctl instance, save a pointer to resources we * need to clean up manually */ r = clkctl->cc_res; pmu_dev = clkctl->cc_pmu_dev; /* Free the clkctl instance */ bhnd_free_core_clkctl(clkctl); /* Free the child's bhnd resource wrapper */ free(r, M_BHND); /* Release the child's PMU provider reference */ bhnd_release_provider(child, pmu_dev, BHND_SERVICE_PMU); return (0); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_GET_CLOCK_LATENCY(). */ int bhnd_generic_get_clock_latency(device_t dev, device_t child, bhnd_clock clock, u_int *latency) { struct bhnd_core_clkctl *clkctl; if (device_get_parent(child) != dev) return (EINVAL); if ((clkctl = bhnd_get_pmu_info(child)) == NULL) panic("no active PMU allocation"); return (bhnd_pmu_get_clock_latency(clkctl->cc_pmu_dev, clock, latency)); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_GET_CLOCK_FREQ(). */ int bhnd_generic_get_clock_freq(device_t dev, device_t child, bhnd_clock clock, u_int *freq) { struct bhnd_core_clkctl *clkctl; if (device_get_parent(child) != dev) return (EINVAL); if ((clkctl = bhnd_get_pmu_info(child)) == NULL) panic("no active PMU allocation"); return (bhnd_pmu_get_clock_freq(clkctl->cc_pmu_dev, clock, freq)); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_REQUEST_CLOCK(). */ int bhnd_generic_request_clock(device_t dev, device_t child, bhnd_clock clock) { struct bhnd_softc *sc; struct bhnd_core_clkctl *clkctl; uint32_t avail; uint32_t req; int error; sc = device_get_softc(dev); if (device_get_parent(child) != dev) return (EINVAL); if ((clkctl = bhnd_get_pmu_info(child)) == NULL) panic("no active PMU allocation"); BHND_ASSERT_CLKCTL_AVAIL(clkctl); avail = 0x0; req = 0x0; switch (clock) { case BHND_CLOCK_DYN: break; case BHND_CLOCK_ILP: req |= BHND_CCS_FORCEILP; break; case BHND_CLOCK_ALP: req |= BHND_CCS_FORCEALP; avail |= BHND_CCS_ALPAVAIL; break; case BHND_CLOCK_HT: req |= BHND_CCS_FORCEHT; avail |= BHND_CCS_HTAVAIL; break; default: device_printf(dev, "%s requested unknown clock: %#x\n", device_get_nameunit(clkctl->cc_dev), clock); return (ENODEV); } BHND_CLKCTL_LOCK(clkctl); /* Issue request */ BHND_CLKCTL_SET_4(clkctl, req, BHND_CCS_FORCE_MASK); /* Wait for clock availability */ error = bhnd_core_clkctl_wait(clkctl, avail, avail); BHND_CLKCTL_UNLOCK(clkctl); return (error); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_ENABLE_CLOCKS(). */ int bhnd_generic_enable_clocks(device_t dev, device_t child, uint32_t clocks) { struct bhnd_core_clkctl *clkctl; uint32_t avail; uint32_t req; int error; if (device_get_parent(child) != dev) return (EINVAL); if ((clkctl = bhnd_get_pmu_info(child)) == NULL) panic("no active PMU allocation"); BHND_ASSERT_CLKCTL_AVAIL(clkctl); avail = 0x0; req = 0x0; /* Build clock request flags */ if (clocks & BHND_CLOCK_DYN) /* nothing to enable */ clocks &= ~BHND_CLOCK_DYN; if (clocks & BHND_CLOCK_ILP) /* nothing to enable */ clocks &= ~BHND_CLOCK_ILP; if (clocks & BHND_CLOCK_ALP) { req |= BHND_CCS_ALPAREQ; avail |= BHND_CCS_ALPAVAIL; clocks &= ~BHND_CLOCK_ALP; } if (clocks & BHND_CLOCK_HT) { req |= BHND_CCS_HTAREQ; avail |= BHND_CCS_HTAVAIL; clocks &= ~BHND_CLOCK_HT; } /* Check for unknown clock values */ if (clocks != 0x0) { device_printf(dev, "%s requested unknown clocks: %#x\n", device_get_nameunit(clkctl->cc_dev), clocks); return (ENODEV); } BHND_CLKCTL_LOCK(clkctl); /* Issue request */ BHND_CLKCTL_SET_4(clkctl, req, BHND_CCS_AREQ_MASK); /* Wait for clock availability */ error = bhnd_core_clkctl_wait(clkctl, avail, avail); BHND_CLKCTL_UNLOCK(clkctl); return (error); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_REQUEST_EXT_RSRC(). */ int bhnd_generic_request_ext_rsrc(device_t dev, device_t child, u_int rsrc) { struct bhnd_softc *sc; struct bhnd_core_clkctl *clkctl; uint32_t req; uint32_t avail; int error; sc = device_get_softc(dev); if (device_get_parent(child) != dev) return (EINVAL); if ((clkctl = bhnd_get_pmu_info(child)) == NULL) panic("no active PMU allocation"); BHND_ASSERT_CLKCTL_AVAIL(clkctl); sc = device_get_softc(dev); if (rsrc > BHND_CCS_ERSRC_MAX) return (EINVAL); req = BHND_CCS_SET_BITS((1< BHND_CCS_ERSRC_MAX) return (EINVAL); mask = BHND_CCS_SET_BITS((1<= bhnd_get_port_count(child, type)) return (false); if (region >= bhnd_get_region_count(child, type, port)) return (false); return (true); } /** * Default bhnd(4) bus driver implementation of BHND_BUS_GET_NVRAM_VAR(). * * This implementation searches @p dev for a registered NVRAM child device. * * If no NVRAM device is registered with @p dev, the request is delegated to * the BHND_BUS_GET_NVRAM_VAR() method on the parent of @p dev. */ int bhnd_generic_get_nvram_var(device_t dev, device_t child, const char *name, void *buf, size_t *size, bhnd_nvram_type type) { struct bhnd_softc *sc; device_t nvram, parent; int error; sc = device_get_softc(dev); /* If a NVRAM device is available, consult it first */ nvram = bhnd_retain_provider(child, BHND_SERVICE_NVRAM); if (nvram != NULL) { error = BHND_NVRAM_GETVAR(nvram, name, buf, size, type); bhnd_release_provider(child, nvram, BHND_SERVICE_NVRAM); return (error); } /* Otherwise, try to delegate to parent */ if ((parent = device_get_parent(dev)) == NULL) return (ENODEV); return (BHND_BUS_GET_NVRAM_VAR(device_get_parent(dev), child, name, buf, size, type)); } /** * Default bhnd(4) bus driver implementation of BUS_PRINT_CHILD(). * * This implementation requests the device's struct resource_list via * BUS_GET_RESOURCE_LIST. */ int bhnd_generic_print_child(device_t dev, device_t child) { struct resource_list *rl; int retval = 0; retval += bus_print_child_header(dev, child); rl = BUS_GET_RESOURCE_LIST(dev, child); if (rl != NULL) { retval += resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%#jd"); } retval += printf(" at core %u", bhnd_get_core_index(child)); retval += bus_print_child_domain(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } /** * Default bhnd(4) bus driver implementation of BUS_PROBE_NOMATCH(). * * This implementation requests the device's struct resource_list via * BUS_GET_RESOURCE_LIST. */ void bhnd_generic_probe_nomatch(device_t dev, device_t child) { struct resource_list *rl; const struct bhnd_nomatch *nm; bool report; /* Fetch reporting configuration for this device */ report = true; for (nm = bhnd_nomatch_table; nm->device != BHND_COREID_INVALID; nm++) { if (nm->vendor != bhnd_get_vendor(child)) continue; if (nm->device != bhnd_get_device(child)) continue; report = false; if (bootverbose && nm->if_verbose) report = true; break; } if (!report) return; /* Print the non-matched device info */ device_printf(dev, "<%s %s, rev %hhu>", bhnd_get_vendor_name(child), bhnd_get_device_name(child), bhnd_get_hwrev(child)); rl = BUS_GET_RESOURCE_LIST(dev, child); if (rl != NULL) { resource_list_print_type(rl, "mem", SYS_RES_MEMORY, "%#jx"); resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%#jd"); } printf(" at core %u (no driver attached)\n", bhnd_get_core_index(child)); } static int bhnd_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) { if (device_get_parent(child) != dev) return (BUS_CHILD_PNPINFO(device_get_parent(dev), child, sb)); sbuf_printf(sb, "vendor=0x%hx device=0x%hx rev=0x%hhx", bhnd_get_vendor(child), bhnd_get_device(child), bhnd_get_hwrev(child)); return (0); } static int bhnd_child_location(device_t dev, device_t child, struct sbuf *sb) { bhnd_addr_t addr; bhnd_size_t size; if (device_get_parent(child) != dev) return (BUS_CHILD_LOCATION(device_get_parent(dev), child, sb)); if (bhnd_get_region_addr(child, BHND_PORT_DEVICE, 0, 0, &addr, &size)) return (0); sbuf_printf(sb, "port0.0=0x%llx", (unsigned long long) addr); return (0); } /** * Default bhnd(4) bus driver implementation of BUS_CHILD_DELETED(). * * This implementation manages internal bhnd(4) state, and must be called * by subclassing drivers. */ void bhnd_generic_child_deleted(device_t dev, device_t child) { struct bhnd_softc *sc; sc = device_get_softc(dev); /* Free device info */ if (bhnd_get_pmu_info(child) != NULL) { /* Releasing PMU requests automatically would be nice, * but we can't reference per-core PMU register * resource after driver detach */ panic("%s leaked device pmu state\n", device_get_nameunit(child)); } } /** * Helper function for implementing BUS_SUSPEND_CHILD(). * * TODO: Power management * * If @p child is not a direct child of @p dev, suspension is delegated to * the @p dev parent. */ int bhnd_generic_suspend_child(device_t dev, device_t child) { if (device_get_parent(child) != dev) BUS_SUSPEND_CHILD(device_get_parent(dev), child); return bus_generic_suspend_child(dev, child); } /** * Helper function for implementing BUS_RESUME_CHILD(). * * TODO: Power management * * If @p child is not a direct child of @p dev, suspension is delegated to * the @p dev parent. */ int bhnd_generic_resume_child(device_t dev, device_t child) { if (device_get_parent(child) != dev) BUS_RESUME_CHILD(device_get_parent(dev), child); return bus_generic_resume_child(dev, child); } /** * Default bhnd(4) bus driver implementation of BUS_SETUP_INTR(). * * This implementation of BUS_SETUP_INTR() will delegate interrupt setup * to the parent of @p dev, if any. */ int bhnd_generic_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) { return (bus_generic_setup_intr(dev, child, irq, flags, filter, intr, arg, cookiep)); } /* * Delegate all indirect I/O to the parent device. When inherited by * non-bridged bus implementations, resources will never be marked as * indirect, and these methods will never be called. */ #define BHND_IO_READ(_type, _name, _method) \ static _type \ bhnd_read_ ## _name (device_t dev, device_t child, \ struct bhnd_resource *r, bus_size_t offset) \ { \ return (BHND_BUS_READ_ ## _method( \ device_get_parent(dev), child, r, offset)); \ } #define BHND_IO_WRITE(_type, _name, _method) \ static void \ bhnd_write_ ## _name (device_t dev, device_t child, \ struct bhnd_resource *r, bus_size_t offset, _type value) \ { \ return (BHND_BUS_WRITE_ ## _method( \ device_get_parent(dev), child, r, offset, \ value)); \ } #define BHND_IO_MISC(_type, _op, _method) \ static void \ bhnd_ ## _op (device_t dev, device_t child, \ struct bhnd_resource *r, bus_size_t offset, _type datap, \ bus_size_t count) \ { \ BHND_BUS_ ## _method(device_get_parent(dev), child, r, \ offset, datap, count); \ } #define BHND_IO_METHODS(_type, _size) \ BHND_IO_READ(_type, _size, _size) \ BHND_IO_WRITE(_type, _size, _size) \ \ BHND_IO_READ(_type, stream_ ## _size, STREAM_ ## _size) \ BHND_IO_WRITE(_type, stream_ ## _size, STREAM_ ## _size) \ \ BHND_IO_MISC(_type*, read_multi_ ## _size, \ READ_MULTI_ ## _size) \ BHND_IO_MISC(_type*, write_multi_ ## _size, \ WRITE_MULTI_ ## _size) \ \ BHND_IO_MISC(_type*, read_multi_stream_ ## _size, \ READ_MULTI_STREAM_ ## _size) \ BHND_IO_MISC(_type*, write_multi_stream_ ## _size, \ WRITE_MULTI_STREAM_ ## _size) \ \ BHND_IO_MISC(_type, set_multi_ ## _size, SET_MULTI_ ## _size) \ BHND_IO_MISC(_type, set_region_ ## _size, SET_REGION_ ## _size) \ \ BHND_IO_MISC(_type*, read_region_ ## _size, \ READ_REGION_ ## _size) \ BHND_IO_MISC(_type*, write_region_ ## _size, \ WRITE_REGION_ ## _size) \ \ BHND_IO_MISC(_type*, read_region_stream_ ## _size, \ READ_REGION_STREAM_ ## _size) \ BHND_IO_MISC(_type*, write_region_stream_ ## _size, \ WRITE_REGION_STREAM_ ## _size) \ BHND_IO_METHODS(uint8_t, 1); BHND_IO_METHODS(uint16_t, 2); BHND_IO_METHODS(uint32_t, 4); static void bhnd_barrier(device_t dev, device_t child, struct bhnd_resource *r, bus_size_t offset, bus_size_t length, int flags) { BHND_BUS_BARRIER(device_get_parent(dev), child, r, offset, length, flags); } static device_method_t bhnd_methods[] = { /* Device interface */ \ DEVMETHOD(device_attach, bhnd_generic_attach), DEVMETHOD(device_detach, bhnd_generic_detach), DEVMETHOD(device_shutdown, bhnd_generic_shutdown), DEVMETHOD(device_suspend, bhnd_generic_suspend), DEVMETHOD(device_resume, bhnd_generic_resume), /* Bus interface */ DEVMETHOD(bus_child_deleted, bhnd_generic_child_deleted), DEVMETHOD(bus_probe_nomatch, bhnd_generic_probe_nomatch), DEVMETHOD(bus_print_child, bhnd_generic_print_child), DEVMETHOD(bus_child_pnpinfo, bhnd_child_pnpinfo), DEVMETHOD(bus_child_location, bhnd_child_location), DEVMETHOD(bus_suspend_child, bhnd_generic_suspend_child), DEVMETHOD(bus_resume_child, bhnd_generic_resume_child), DEVMETHOD(bus_set_resource, bus_generic_rl_set_resource), DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource), DEVMETHOD(bus_delete_resource, bus_generic_rl_delete_resource), DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource), DEVMETHOD(bus_adjust_resource, bus_generic_adjust_resource), DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource), DEVMETHOD(bus_activate_resource, bus_generic_activate_resource), DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource), DEVMETHOD(bus_setup_intr, bhnd_generic_setup_intr), DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr), DEVMETHOD(bus_config_intr, bus_generic_config_intr), DEVMETHOD(bus_bind_intr, bus_generic_bind_intr), DEVMETHOD(bus_describe_intr, bus_generic_describe_intr), DEVMETHOD(bus_get_dma_tag, bus_generic_get_dma_tag), /* BHND interface */ DEVMETHOD(bhnd_bus_get_chipid, bhnd_bus_generic_get_chipid), DEVMETHOD(bhnd_bus_is_hw_disabled, bhnd_bus_generic_is_hw_disabled), DEVMETHOD(bhnd_bus_get_probe_order, bhnd_generic_get_probe_order), DEVMETHOD(bhnd_bus_alloc_pmu, bhnd_generic_alloc_pmu), DEVMETHOD(bhnd_bus_release_pmu, bhnd_generic_release_pmu), DEVMETHOD(bhnd_bus_request_clock, bhnd_generic_request_clock), DEVMETHOD(bhnd_bus_enable_clocks, bhnd_generic_enable_clocks), DEVMETHOD(bhnd_bus_request_ext_rsrc, bhnd_generic_request_ext_rsrc), DEVMETHOD(bhnd_bus_release_ext_rsrc, bhnd_generic_release_ext_rsrc), DEVMETHOD(bhnd_bus_get_clock_latency, bhnd_generic_get_clock_latency), DEVMETHOD(bhnd_bus_get_clock_freq, bhnd_generic_get_clock_freq), DEVMETHOD(bhnd_bus_is_region_valid, bhnd_generic_is_region_valid), DEVMETHOD(bhnd_bus_get_nvram_var, bhnd_generic_get_nvram_var), /* BHND interface (bus I/O) */ DEVMETHOD(bhnd_bus_read_1, bhnd_read_1), DEVMETHOD(bhnd_bus_read_2, bhnd_read_2), DEVMETHOD(bhnd_bus_read_4, bhnd_read_4), DEVMETHOD(bhnd_bus_write_1, bhnd_write_1), DEVMETHOD(bhnd_bus_write_2, bhnd_write_2), DEVMETHOD(bhnd_bus_write_4, bhnd_write_4), DEVMETHOD(bhnd_bus_read_stream_1, bhnd_read_stream_1), DEVMETHOD(bhnd_bus_read_stream_2, bhnd_read_stream_2), DEVMETHOD(bhnd_bus_read_stream_4, bhnd_read_stream_4), DEVMETHOD(bhnd_bus_write_stream_1, bhnd_write_stream_1), DEVMETHOD(bhnd_bus_write_stream_2, bhnd_write_stream_2), DEVMETHOD(bhnd_bus_write_stream_4, bhnd_write_stream_4), DEVMETHOD(bhnd_bus_read_multi_1, bhnd_read_multi_1), DEVMETHOD(bhnd_bus_read_multi_2, bhnd_read_multi_2), DEVMETHOD(bhnd_bus_read_multi_4, bhnd_read_multi_4), DEVMETHOD(bhnd_bus_write_multi_1, bhnd_write_multi_1), DEVMETHOD(bhnd_bus_write_multi_2, bhnd_write_multi_2), DEVMETHOD(bhnd_bus_write_multi_4, bhnd_write_multi_4), DEVMETHOD(bhnd_bus_read_multi_stream_1, bhnd_read_multi_stream_1), DEVMETHOD(bhnd_bus_read_multi_stream_2, bhnd_read_multi_stream_2), DEVMETHOD(bhnd_bus_read_multi_stream_4, bhnd_read_multi_stream_4), DEVMETHOD(bhnd_bus_write_multi_stream_1,bhnd_write_multi_stream_1), DEVMETHOD(bhnd_bus_write_multi_stream_2,bhnd_write_multi_stream_2), DEVMETHOD(bhnd_bus_write_multi_stream_4,bhnd_write_multi_stream_4), DEVMETHOD(bhnd_bus_set_multi_1, bhnd_set_multi_1), DEVMETHOD(bhnd_bus_set_multi_2, bhnd_set_multi_2), DEVMETHOD(bhnd_bus_set_multi_4, bhnd_set_multi_4), DEVMETHOD(bhnd_bus_set_region_1, bhnd_set_region_1), DEVMETHOD(bhnd_bus_set_region_2, bhnd_set_region_2), DEVMETHOD(bhnd_bus_set_region_4, bhnd_set_region_4), DEVMETHOD(bhnd_bus_read_region_1, bhnd_read_region_1), DEVMETHOD(bhnd_bus_read_region_2, bhnd_read_region_2), DEVMETHOD(bhnd_bus_read_region_4, bhnd_read_region_4), DEVMETHOD(bhnd_bus_write_region_1, bhnd_write_region_1), DEVMETHOD(bhnd_bus_write_region_2, bhnd_write_region_2), DEVMETHOD(bhnd_bus_write_region_4, bhnd_write_region_4), DEVMETHOD(bhnd_bus_read_region_stream_1,bhnd_read_region_stream_1), DEVMETHOD(bhnd_bus_read_region_stream_2,bhnd_read_region_stream_2), DEVMETHOD(bhnd_bus_read_region_stream_4,bhnd_read_region_stream_4), DEVMETHOD(bhnd_bus_write_region_stream_1, bhnd_write_region_stream_1), DEVMETHOD(bhnd_bus_write_region_stream_2, bhnd_write_region_stream_2), DEVMETHOD(bhnd_bus_write_region_stream_4, bhnd_write_region_stream_4), DEVMETHOD(bhnd_bus_barrier, bhnd_barrier), DEVMETHOD_END }; devclass_t bhnd_devclass; /**< bhnd bus. */ devclass_t bhnd_hostb_devclass; /**< bhnd bus host bridge. */ devclass_t bhnd_nvram_devclass; /**< bhnd NVRAM device */ DEFINE_CLASS_0(bhnd, bhnd_driver, bhnd_methods, sizeof(struct bhnd_softc)); MODULE_VERSION(bhnd, 1); diff --git a/sys/dev/bhnd/bhnd_subr.c b/sys/dev/bhnd/bhnd_subr.c index 036c3def5817..955e1a197002 100644 --- a/sys/dev/bhnd/bhnd_subr.c +++ b/sys/dev/bhnd/bhnd_subr.c @@ -1,2339 +1,2338 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2015-2016 Landon Fuller * Copyright (c) 2017 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Landon Fuller * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include "nvram/bhnd_nvram.h" #include "bhnd_chipc_if.h" #include "bhnd_nvram_if.h" #include "bhnd_nvram_map.h" #include "bhndreg.h" #include "bhndvar.h" #include "bhnd_private.h" static void bhnd_service_registry_free_entry( struct bhnd_service_entry *entry); static int compare_ascending_probe_order(const void *lhs, const void *rhs); static int compare_descending_probe_order(const void *lhs, const void *rhs); /* BHND core device description table. */ static const struct bhnd_core_desc { uint16_t vendor; uint16_t device; bhnd_devclass_t class; const char *desc; } bhnd_core_descs[] = { #define BHND_CDESC(_mfg, _cid, _cls, _desc) \ { BHND_MFGID_ ## _mfg, BHND_COREID_ ## _cid, \ BHND_DEVCLASS_ ## _cls, _desc } BHND_CDESC(BCM, CC, CC, "ChipCommon I/O Controller"), BHND_CDESC(BCM, ILINE20, OTHER, "iLine20 HPNA"), BHND_CDESC(BCM, SRAM, RAM, "SRAM"), BHND_CDESC(BCM, SDRAM, RAM, "SDRAM"), BHND_CDESC(BCM, PCI, PCI, "PCI Bridge"), BHND_CDESC(BCM, MIPS, CPU, "BMIPS CPU"), BHND_CDESC(BCM, ENET, ENET_MAC, "Fast Ethernet MAC"), BHND_CDESC(BCM, V90_CODEC, SOFTMODEM, "V.90 SoftModem Codec"), BHND_CDESC(BCM, USB, USB_DUAL, "USB 1.1 Device/Host Controller"), BHND_CDESC(BCM, ADSL, OTHER, "ADSL Core"), BHND_CDESC(BCM, ILINE100, OTHER, "iLine100 HPNA"), BHND_CDESC(BCM, IPSEC, OTHER, "IPsec Accelerator"), BHND_CDESC(BCM, UTOPIA, OTHER, "UTOPIA ATM Core"), BHND_CDESC(BCM, PCMCIA, PCCARD, "PCMCIA Bridge"), BHND_CDESC(BCM, SOCRAM, RAM, "Internal Memory"), BHND_CDESC(BCM, MEMC, MEMC, "MEMC SDRAM Controller"), BHND_CDESC(BCM, OFDM, OTHER, "OFDM PHY"), BHND_CDESC(BCM, EXTIF, OTHER, "External Interface"), BHND_CDESC(BCM, D11, WLAN, "802.11 MAC/PHY/Radio"), BHND_CDESC(BCM, APHY, WLAN_PHY, "802.11a PHY"), BHND_CDESC(BCM, BPHY, WLAN_PHY, "802.11b PHY"), BHND_CDESC(BCM, GPHY, WLAN_PHY, "802.11g PHY"), BHND_CDESC(BCM, MIPS33, CPU, "BMIPS33 CPU"), BHND_CDESC(BCM, USB11H, USB_HOST, "USB 1.1 Host Controller"), BHND_CDESC(BCM, USB11D, USB_DEV, "USB 1.1 Device Controller"), BHND_CDESC(BCM, USB20H, USB_HOST, "USB 2.0 Host Controller"), BHND_CDESC(BCM, USB20D, USB_DEV, "USB 2.0 Device Controller"), BHND_CDESC(BCM, SDIOH, OTHER, "SDIO Host Controller"), BHND_CDESC(BCM, ROBO, OTHER, "RoboSwitch"), BHND_CDESC(BCM, ATA100, OTHER, "Parallel ATA Controller"), BHND_CDESC(BCM, SATAXOR, OTHER, "SATA DMA/XOR Controller"), BHND_CDESC(BCM, GIGETH, ENET_MAC, "Gigabit Ethernet MAC"), BHND_CDESC(BCM, PCIE, PCIE, "PCIe Bridge"), BHND_CDESC(BCM, NPHY, WLAN_PHY, "802.11n 2x2 PHY"), BHND_CDESC(BCM, SRAMC, MEMC, "SRAM Controller"), BHND_CDESC(BCM, MINIMAC, OTHER, "MINI MAC/PHY"), BHND_CDESC(BCM, ARM11, CPU, "ARM1176 CPU"), BHND_CDESC(BCM, ARM7S, CPU, "ARM7TDMI-S CPU"), BHND_CDESC(BCM, LPPHY, WLAN_PHY, "802.11a/b/g PHY"), BHND_CDESC(BCM, PMU, PMU, "PMU"), BHND_CDESC(BCM, SSNPHY, WLAN_PHY, "802.11n Single-Stream PHY"), BHND_CDESC(BCM, SDIOD, OTHER, "SDIO Device Core"), BHND_CDESC(BCM, ARMCM3, CPU, "ARM Cortex-M3 CPU"), BHND_CDESC(BCM, HTPHY, WLAN_PHY, "802.11n 4x4 PHY"), BHND_CDESC(MIPS,MIPS74K, CPU, "MIPS74k CPU"), BHND_CDESC(BCM, GMAC, ENET_MAC, "Gigabit MAC core"), BHND_CDESC(BCM, DMEMC, MEMC, "DDR1/DDR2 Memory Controller"), BHND_CDESC(BCM, PCIERC, OTHER, "PCIe Root Complex"), BHND_CDESC(BCM, OCP, SOC_BRIDGE, "OCP to OCP Bridge"), BHND_CDESC(BCM, SC, OTHER, "Shared Common Core"), BHND_CDESC(BCM, AHB, SOC_BRIDGE, "OCP to AHB Bridge"), BHND_CDESC(BCM, SPIH, OTHER, "SPI Host Controller"), BHND_CDESC(BCM, I2S, OTHER, "I2S Digital Audio Interface"), BHND_CDESC(BCM, DMEMS, MEMC, "SDR/DDR1 Memory Controller"), BHND_CDESC(BCM, UBUS_SHIM, OTHER, "BCM6362/UBUS WLAN SHIM"), BHND_CDESC(BCM, PCIE2, PCIE, "PCIe Bridge (Gen2)"), BHND_CDESC(ARM, APB_BRIDGE, SOC_BRIDGE, "BP135 AMBA3 AXI to APB Bridge"), BHND_CDESC(ARM, PL301, SOC_ROUTER, "PL301 AMBA3 Interconnect"), BHND_CDESC(ARM, EROM, EROM, "PL366 Device Enumeration ROM"), BHND_CDESC(ARM, OOB_ROUTER, OTHER, "PL367 OOB Interrupt Router"), BHND_CDESC(ARM, AXI_UNMAPPED, OTHER, "Unmapped Address Ranges"), BHND_CDESC(BCM, 4706_CC, CC, "ChipCommon I/O Controller"), BHND_CDESC(BCM, NS_PCIE2, PCIE, "PCIe Bridge (Gen2)"), BHND_CDESC(BCM, NS_DMA, OTHER, "DMA engine"), BHND_CDESC(BCM, NS_SDIO, OTHER, "SDIO 3.0 Host Controller"), BHND_CDESC(BCM, NS_USB20H, USB_HOST, "USB 2.0 Host Controller"), BHND_CDESC(BCM, NS_USB30H, USB_HOST, "USB 3.0 Host Controller"), BHND_CDESC(BCM, NS_A9JTAG, OTHER, "ARM Cortex A9 JTAG Interface"), BHND_CDESC(BCM, NS_DDR23_MEMC, MEMC, "Denali DDR2/DD3 Memory Controller"), BHND_CDESC(BCM, NS_ROM, NVRAM, "System ROM"), BHND_CDESC(BCM, NS_NAND, NVRAM, "NAND Flash Controller"), BHND_CDESC(BCM, NS_QSPI, NVRAM, "QSPI Flash Controller"), BHND_CDESC(BCM, NS_CC_B, CC_B, "ChipCommon B Auxiliary I/O Controller"), BHND_CDESC(BCM, 4706_SOCRAM, RAM, "Internal Memory"), BHND_CDESC(BCM, IHOST_ARMCA9, CPU, "ARM Cortex A9 CPU"), BHND_CDESC(BCM, 4706_GMAC_CMN, ENET, "Gigabit MAC (Common)"), BHND_CDESC(BCM, 4706_GMAC, ENET_MAC, "Gigabit MAC"), BHND_CDESC(BCM, AMEMC, MEMC, "Denali DDR1/DDR2 Memory Controller"), #undef BHND_CDESC /* Derived from inspection of the BCM4331 cores that provide PrimeCell * IDs. Due to lack of documentation, the surmised device name/purpose * provided here may be incorrect. */ { BHND_MFGID_ARM, BHND_PRIMEID_EROM, BHND_DEVCLASS_OTHER, "PL364 Device Enumeration ROM" }, { BHND_MFGID_ARM, BHND_PRIMEID_SWRAP, BHND_DEVCLASS_OTHER, "PL368 Device Management Interface" }, { BHND_MFGID_ARM, BHND_PRIMEID_MWRAP, BHND_DEVCLASS_OTHER, "PL369 Device Management Interface" }, { 0, 0, 0, NULL } }; static const struct bhnd_device_quirk bhnd_chipc_clkctl_quirks[]; static const struct bhnd_device_quirk bhnd_pcmcia_clkctl_quirks[]; /** * Device table entries for core-specific CLKCTL quirk lookup. */ static const struct bhnd_device bhnd_clkctl_devices[] = { BHND_DEVICE(BCM, CC, NULL, bhnd_chipc_clkctl_quirks), BHND_DEVICE(BCM, PCMCIA, NULL, bhnd_pcmcia_clkctl_quirks), BHND_DEVICE_END, }; /** ChipCommon CLKCTL quirks */ static const struct bhnd_device_quirk bhnd_chipc_clkctl_quirks[] = { /* HTAVAIL/ALPAVAIL are bitswapped in chipc's CLKCTL */ BHND_CHIP_QUIRK(4328, HWREV_ANY, BHND_CLKCTL_QUIRK_CCS0), BHND_CHIP_QUIRK(5354, HWREV_ANY, BHND_CLKCTL_QUIRK_CCS0), BHND_DEVICE_QUIRK_END }; /** PCMCIA CLKCTL quirks */ static const struct bhnd_device_quirk bhnd_pcmcia_clkctl_quirks[] = { /* HTAVAIL/ALPAVAIL are bitswapped in pcmcia's CLKCTL */ BHND_CHIP_QUIRK(4328, HWREV_ANY, BHND_CLKCTL_QUIRK_CCS0), BHND_CHIP_QUIRK(5354, HWREV_ANY, BHND_CLKCTL_QUIRK_CCS0), BHND_DEVICE_QUIRK_END }; /** * Return the name for a given JEP106 manufacturer ID. * * @param vendor A JEP106 Manufacturer ID, including the non-standard ARM 4-bit * JEP106 continuation code. */ const char * bhnd_vendor_name(uint16_t vendor) { switch (vendor) { case BHND_MFGID_ARM: return "ARM"; case BHND_MFGID_BCM: return "Broadcom"; case BHND_MFGID_MIPS: return "MIPS"; default: return "unknown"; } } /** * Return the name of a port type. * * @param port_type The port type to look up. */ const char * bhnd_port_type_name(bhnd_port_type port_type) { switch (port_type) { case BHND_PORT_DEVICE: return ("device"); case BHND_PORT_BRIDGE: return ("bridge"); case BHND_PORT_AGENT: return ("agent"); default: return "unknown"; } } /** * Return the name of an NVRAM source. * * @param nvram_src The NVRAM source type to look up. */ const char * bhnd_nvram_src_name(bhnd_nvram_src nvram_src) { switch (nvram_src) { case BHND_NVRAM_SRC_FLASH: return ("flash"); case BHND_NVRAM_SRC_OTP: return ("OTP"); case BHND_NVRAM_SRC_SPROM: return ("SPROM"); case BHND_NVRAM_SRC_UNKNOWN: return ("none"); default: return ("unknown"); } } static const struct bhnd_core_desc * bhnd_find_core_desc(uint16_t vendor, uint16_t device) { for (u_int i = 0; bhnd_core_descs[i].desc != NULL; i++) { if (bhnd_core_descs[i].vendor != vendor) continue; if (bhnd_core_descs[i].device != device) continue; return (&bhnd_core_descs[i]); } return (NULL); } /** * Return a human-readable name for a BHND core. * * @param vendor The core designer's JEDEC-106 Manufacturer ID. * @param device The core identifier. */ const char * bhnd_find_core_name(uint16_t vendor, uint16_t device) { const struct bhnd_core_desc *desc; if ((desc = bhnd_find_core_desc(vendor, device)) == NULL) return ("unknown"); return desc->desc; } /** * Return the device class for a BHND core. * * @param vendor The core designer's JEDEC-106 Manufacturer ID. * @param device The core identifier. */ bhnd_devclass_t bhnd_find_core_class(uint16_t vendor, uint16_t device) { const struct bhnd_core_desc *desc; if ((desc = bhnd_find_core_desc(vendor, device)) == NULL) return (BHND_DEVCLASS_OTHER); return desc->class; } /** * Return a human-readable name for a BHND core. * * @param ci The core's info record. */ const char * bhnd_core_name(const struct bhnd_core_info *ci) { return bhnd_find_core_name(ci->vendor, ci->device); } /** * Return the device class for a BHND core. * * @param ci The core's info record. */ bhnd_devclass_t bhnd_core_class(const struct bhnd_core_info *ci) { return bhnd_find_core_class(ci->vendor, ci->device); } /** * Write a human readable name representation of the given * BHND_CHIPID_* constant to @p buffer. * * @param buffer Output buffer, or NULL to compute the required size. * @param size Capacity of @p buffer, in bytes. * @param chip_id Chip ID to be formatted. * * @return The required number of bytes on success, or a negative integer on * failure. No more than @p size-1 characters be written, with the @p size'th * set to '\0'. * * @sa BHND_CHIPID_MAX_NAMELEN */ int bhnd_format_chip_id(char *buffer, size_t size, uint16_t chip_id) { /* All hex formatted IDs are within the range of 0x4000-0x9C3F (40000-1) */ if (chip_id >= 0x4000 && chip_id <= 0x9C3F) return (snprintf(buffer, size, "BCM%hX", chip_id)); else return (snprintf(buffer, size, "BCM%hu", chip_id)); } /** * Return a core info record populated from a bhnd-attached @p dev. * * @param dev A bhnd device. * * @return A core info record for @p dev. */ struct bhnd_core_info bhnd_get_core_info(device_t dev) { return (struct bhnd_core_info) { .vendor = bhnd_get_vendor(dev), .device = bhnd_get_device(dev), .hwrev = bhnd_get_hwrev(dev), .core_idx = bhnd_get_core_index(dev), .unit = bhnd_get_core_unit(dev) }; } /** * Find a @p class child device with @p unit on @p bus. * * @param bus The bhnd-compatible bus to be searched. * @param class The device class to match on. * @param unit The core unit number; specify -1 to return the first match * regardless of unit number. * * @retval device_t if a matching child device is found. * @retval NULL if no matching child device is found. */ device_t bhnd_bus_find_child(device_t bus, bhnd_devclass_t class, int unit) { struct bhnd_core_match md = { BHND_MATCH_CORE_CLASS(class), BHND_MATCH_CORE_UNIT(unit) }; if (unit == -1) md.m.match.core_unit = 0; return bhnd_bus_match_child(bus, &md); } /** * Find the first child device on @p bus that matches @p desc. * * @param bus The bhnd-compatible bus to be searched. * @param desc A match descriptor. * * @retval device_t if a matching child device is found. * @retval NULL if no matching child device is found. */ device_t bhnd_bus_match_child(device_t bus, const struct bhnd_core_match *desc) { device_t *devlistp; device_t match; int devcnt; int error; error = device_get_children(bus, &devlistp, &devcnt); if (error != 0) return (NULL); match = NULL; for (int i = 0; i < devcnt; i++) { struct bhnd_core_info ci = bhnd_get_core_info(devlistp[i]); if (bhnd_core_matches(&ci, desc)) { match = devlistp[i]; goto done; } } done: free(devlistp, M_TEMP); return match; } /** * Retrieve an ordered list of all device instances currently connected to * @p bus, returning a pointer to the array in @p devlistp and the count * in @p ndevs. * * The memory allocated for the table must be freed via * bhnd_bus_free_children(). * * @param bus The bhnd-compatible bus to be queried. * @param[out] devlist The array of devices. * @param[out] devcount The number of devices in @p devlistp * @param order The order in which devices will be returned * in @p devlist. * * @retval 0 success * @retval non-zero if an error occurs, a regular unix error code will * be returned. */ int bhnd_bus_get_children(device_t bus, device_t **devlist, int *devcount, bhnd_device_order order) { int error; /* Fetch device array */ if ((error = device_get_children(bus, devlist, devcount))) return (error); /* Perform requested sorting */ if ((error = bhnd_sort_devices(*devlist, *devcount, order))) { bhnd_bus_free_children(*devlist); return (error); } return (0); } /** * Free any memory allocated in a previous call to bhnd_bus_get_children(). * * @param devlist The device array returned by bhnd_bus_get_children(). */ void bhnd_bus_free_children(device_t *devlist) { free(devlist, M_TEMP); } /** * Perform in-place sorting of an array of bhnd device instances. * * @param devlist An array of bhnd devices. * @param devcount The number of devices in @p devs. * @param order The sort order to be used. * * @retval 0 success * @retval EINVAL if the sort order is unknown. */ int bhnd_sort_devices(device_t *devlist, size_t devcount, bhnd_device_order order) { int (*compare)(const void *, const void *); switch (order) { case BHND_DEVICE_ORDER_ATTACH: compare = compare_ascending_probe_order; break; case BHND_DEVICE_ORDER_DETACH: compare = compare_descending_probe_order; break; default: printf("unknown sort order: %d\n", order); return (EINVAL); } qsort(devlist, devcount, sizeof(*devlist), compare); return (0); } /* * Ascending comparison of bhnd device's probe order. */ static int compare_ascending_probe_order(const void *lhs, const void *rhs) { device_t ldev, rdev; int lorder, rorder; ldev = (*(const device_t *) lhs); rdev = (*(const device_t *) rhs); lorder = BHND_BUS_GET_PROBE_ORDER(device_get_parent(ldev), ldev); rorder = BHND_BUS_GET_PROBE_ORDER(device_get_parent(rdev), rdev); if (lorder < rorder) { return (-1); } else if (lorder > rorder) { return (1); } else { return (0); } } /* * Descending comparison of bhnd device's probe order. */ static int compare_descending_probe_order(const void *lhs, const void *rhs) { return (compare_ascending_probe_order(rhs, lhs)); } /** * Call device_probe_and_attach() for each of the bhnd bus device's * children, in bhnd attach order. * * @param bus The bhnd-compatible bus for which all children should be probed * and attached. */ int bhnd_bus_probe_children(device_t bus) { device_t *devs; int ndevs; int error; /* Fetch children in attach order */ error = bhnd_bus_get_children(bus, &devs, &ndevs, BHND_DEVICE_ORDER_ATTACH); if (error) return (error); /* Probe and attach all children */ for (int i = 0; i < ndevs; i++) { device_t child = devs[i]; device_probe_and_attach(child); } bhnd_bus_free_children(devs); return (0); } /** * Walk up the bhnd device hierarchy to locate the root device * to which the bhndb bridge is attached. * * This can be used from within bhnd host bridge drivers to locate the * actual upstream host device. * * @param dev A bhnd device. * @param bus_class The expected bus (e.g. "pci") to which the bridge root * should be attached. * * @retval device_t if a matching parent device is found. * @retval NULL if @p dev is not attached via a bhndb bus. * @retval NULL if no parent device is attached via @p bus_class. */ device_t bhnd_find_bridge_root(device_t dev, devclass_t bus_class) { devclass_t bhndb_class; device_t parent; KASSERT(device_get_devclass(device_get_parent(dev)) == bhnd_devclass, ("%s not a bhnd device", device_get_nameunit(dev))); bhndb_class = devclass_find("bhndb"); /* Walk the device tree until we hit a bridge */ parent = dev; while ((parent = device_get_parent(parent)) != NULL) { if (device_get_devclass(parent) == bhndb_class) break; } /* No bridge? */ if (parent == NULL) return (NULL); /* Search for a parent attached to the expected bus class */ while ((parent = device_get_parent(parent)) != NULL) { device_t bus; bus = device_get_parent(parent); if (bus != NULL && device_get_devclass(bus) == bus_class) return (parent); } /* Not found */ return (NULL); } /** * Find the first core in @p cores that matches @p desc. * * @param cores The table to search. * @param num_cores The length of @p cores. * @param desc A match descriptor. * * @retval bhnd_core_info if a matching core is found. * @retval NULL if no matching core is found. */ const struct bhnd_core_info * bhnd_match_core(const struct bhnd_core_info *cores, u_int num_cores, const struct bhnd_core_match *desc) { for (u_int i = 0; i < num_cores; i++) { if (bhnd_core_matches(&cores[i], desc)) return &cores[i]; } return (NULL); } /** * Find the first core in @p cores with the given @p class. * * @param cores The table to search. * @param num_cores The length of @p cores. * @param class The device class to match on. * * @retval non-NULL if a matching core is found. * @retval NULL if no matching core is found. */ const struct bhnd_core_info * bhnd_find_core(const struct bhnd_core_info *cores, u_int num_cores, bhnd_devclass_t class) { struct bhnd_core_match md = { BHND_MATCH_CORE_CLASS(class) }; return bhnd_match_core(cores, num_cores, &md); } /** * Create an equality match descriptor for @p core. * * @param core The core info to be matched on. * * @return an equality match descriptor for @p core. */ struct bhnd_core_match bhnd_core_get_match_desc(const struct bhnd_core_info *core) { return ((struct bhnd_core_match) { BHND_MATCH_CORE_VENDOR(core->vendor), BHND_MATCH_CORE_ID(core->device), BHND_MATCH_CORE_REV(HWREV_EQ(core->hwrev)), BHND_MATCH_CORE_CLASS(bhnd_core_class(core)), BHND_MATCH_CORE_IDX(core->core_idx), BHND_MATCH_CORE_UNIT(core->unit) }); } /** * Return true if the @p lhs is equal to @p rhs. * * @param lhs The first bhnd core descriptor to compare. * @param rhs The second bhnd core descriptor to compare. * * @retval true if @p lhs is equal to @p rhs * @retval false if @p lhs is not equal to @p rhs */ bool bhnd_cores_equal(const struct bhnd_core_info *lhs, const struct bhnd_core_info *rhs) { struct bhnd_core_match md; /* Use an equality match descriptor to perform the comparison */ md = bhnd_core_get_match_desc(rhs); return (bhnd_core_matches(lhs, &md)); } /** * Return true if the @p core matches @p desc. * * @param core A bhnd core descriptor. * @param desc A match descriptor to compare against @p core. * * @retval true if @p core matches @p match. * @retval false if @p core does not match @p match. */ bool bhnd_core_matches(const struct bhnd_core_info *core, const struct bhnd_core_match *desc) { if (desc->m.match.core_vendor && desc->core_vendor != core->vendor) return (false); if (desc->m.match.core_id && desc->core_id != core->device) return (false); if (desc->m.match.core_unit && desc->core_unit != core->unit) return (false); if (desc->m.match.core_rev && !bhnd_hwrev_matches(core->hwrev, &desc->core_rev)) return (false); if (desc->m.match.core_idx && desc->core_idx != core->core_idx) return (false); if (desc->m.match.core_class && desc->core_class != bhnd_core_class(core)) return (false); return true; } /** * Return true if the @p chip matches @p desc. * * @param chip A bhnd chip identifier. * @param desc A match descriptor to compare against @p chip. * * @retval true if @p chip matches @p match. * @retval false if @p chip does not match @p match. */ bool bhnd_chip_matches(const struct bhnd_chipid *chip, const struct bhnd_chip_match *desc) { if (desc->m.match.chip_id && chip->chip_id != desc->chip_id) return (false); if (desc->m.match.chip_pkg && chip->chip_pkg != desc->chip_pkg) return (false); if (desc->m.match.chip_rev && !bhnd_hwrev_matches(chip->chip_rev, &desc->chip_rev)) return (false); if (desc->m.match.chip_type && chip->chip_type != desc->chip_type) return (false); return (true); } /** * Return true if the @p board matches @p desc. * * @param board The bhnd board info. * @param desc A match descriptor to compare against @p board. * * @retval true if @p chip matches @p match. * @retval false if @p chip does not match @p match. */ bool bhnd_board_matches(const struct bhnd_board_info *board, const struct bhnd_board_match *desc) { if (desc->m.match.board_srom_rev && !bhnd_hwrev_matches(board->board_srom_rev, &desc->board_srom_rev)) return (false); if (desc->m.match.board_vendor && board->board_vendor != desc->board_vendor) return (false); if (desc->m.match.board_type && board->board_type != desc->board_type) return (false); if (desc->m.match.board_devid && board->board_devid != desc->board_devid) return (false); if (desc->m.match.board_rev && !bhnd_hwrev_matches(board->board_rev, &desc->board_rev)) return (false); return (true); } /** * Return true if the @p hwrev matches @p desc. * * @param hwrev A bhnd hardware revision. * @param desc A match descriptor to compare against @p core. * * @retval true if @p hwrev matches @p match. * @retval false if @p hwrev does not match @p match. */ bool bhnd_hwrev_matches(uint16_t hwrev, const struct bhnd_hwrev_match *desc) { if (desc->start != BHND_HWREV_INVALID && desc->start > hwrev) return false; if (desc->end != BHND_HWREV_INVALID && desc->end < hwrev) return false; return true; } /** * Return true if the @p dev matches @p desc. * * @param dev A bhnd device. * @param desc A match descriptor to compare against @p dev. * * @retval true if @p dev matches @p match. * @retval false if @p dev does not match @p match. */ bool bhnd_device_matches(device_t dev, const struct bhnd_device_match *desc) { struct bhnd_core_info core; const struct bhnd_chipid *chip; struct bhnd_board_info board; device_t parent; int error; /* Construct individual match descriptors */ struct bhnd_core_match m_core = { _BHND_CORE_MATCH_COPY(desc) }; struct bhnd_chip_match m_chip = { _BHND_CHIP_MATCH_COPY(desc) }; struct bhnd_board_match m_board = { _BHND_BOARD_MATCH_COPY(desc) }; /* Fetch and match core info */ if (m_core.m.match_flags) { /* Only applicable to bhnd-attached cores */ parent = device_get_parent(dev); if (device_get_devclass(parent) != bhnd_devclass) { device_printf(dev, "attempting to match core " "attributes against non-core device\n"); return (false); } core = bhnd_get_core_info(dev); if (!bhnd_core_matches(&core, &m_core)) return (false); } /* Fetch and match chip info */ if (m_chip.m.match_flags) { chip = bhnd_get_chipid(dev); if (!bhnd_chip_matches(chip, &m_chip)) return (false); } /* Fetch and match board info. * * This is not available until after NVRAM is up; earlier device * matches should not include board requirements */ if (m_board.m.match_flags) { if ((error = bhnd_read_board_info(dev, &board))) { device_printf(dev, "failed to read required board info " "during device matching: %d\n", error); return (false); } if (!bhnd_board_matches(&board, &m_board)) return (false); } /* All matched */ return (true); } /** * Search @p table for an entry matching @p dev. * * @param dev A bhnd device to match against @p table. * @param table The device table to search. * @param entry_size The @p table entry size, in bytes. * * @retval non-NULL the first matching device, if any. * @retval NULL if no matching device is found in @p table. */ const struct bhnd_device * bhnd_device_lookup(device_t dev, const struct bhnd_device *table, size_t entry_size) { const struct bhnd_device *entry; device_t hostb, parent; bhnd_attach_type attach_type; uint32_t dflags; parent = device_get_parent(dev); hostb = bhnd_bus_find_hostb_device(parent); attach_type = bhnd_get_attach_type(dev); for (entry = table; !BHND_DEVICE_IS_END(entry); entry = (const struct bhnd_device *) ((const char *) entry + entry_size)) { /* match core info */ if (!bhnd_device_matches(dev, &entry->core)) continue; /* match device flags */ dflags = entry->device_flags; /* hostb implies BHND_ATTACH_ADAPTER requirement */ if (dflags & BHND_DF_HOSTB) dflags |= BHND_DF_ADAPTER; if (dflags & BHND_DF_ADAPTER) if (attach_type != BHND_ATTACH_ADAPTER) continue; if (dflags & BHND_DF_HOSTB) if (dev != hostb) continue; if (dflags & BHND_DF_SOC) if (attach_type != BHND_ATTACH_NATIVE) continue; /* device found */ return (entry); } /* not found */ return (NULL); } /** * Scan the device @p table for all quirk flags applicable to @p dev. * * @param dev A bhnd device to match against @p table. * @param table The device table to search. * @param entry_size The @p table entry size, in bytes. * * @return all matching quirk flags. */ uint32_t bhnd_device_quirks(device_t dev, const struct bhnd_device *table, size_t entry_size) { const struct bhnd_device *dent; const struct bhnd_device_quirk *qent, *qtable; uint32_t quirks; /* Locate the device entry */ if ((dent = bhnd_device_lookup(dev, table, entry_size)) == NULL) return (0); /* Quirks table is optional */ qtable = dent->quirks_table; if (qtable == NULL) return (0); /* Collect matching device quirk entries */ quirks = 0; for (qent = qtable; !BHND_DEVICE_QUIRK_IS_END(qent); qent++) { if (bhnd_device_matches(dev, &qent->desc)) quirks |= qent->quirks; } return (quirks); } /** * Allocate bhnd(4) resources defined in @p rs from a parent bus. * * @param dev The device requesting ownership of the resources. * @param rs A standard bus resource specification. This will be updated * with the allocated resource's RIDs. * @param res On success, the allocated bhnd resources. * * @retval 0 success * @retval non-zero if allocation of any non-RF_OPTIONAL resource fails, * all allocated resources will be released and a regular * unix error code will be returned. */ int bhnd_alloc_resources(device_t dev, struct resource_spec *rs, struct bhnd_resource **res) { /* Initialize output array */ for (u_int i = 0; rs[i].type != -1; i++) res[i] = NULL; for (u_int i = 0; rs[i].type != -1; i++) { res[i] = bhnd_alloc_resource_any(dev, rs[i].type, &rs[i].rid, rs[i].flags); /* Clean up all allocations on failure */ if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { bhnd_release_resources(dev, rs, res); return (ENXIO); } } return (0); } /** * Release bhnd(4) resources defined in @p rs from a parent bus. * * @param dev The device that owns the resources. * @param rs A standard bus resource specification previously initialized * by @p bhnd_alloc_resources. * @param res The bhnd resources to be released. */ void bhnd_release_resources(device_t dev, const struct resource_spec *rs, struct bhnd_resource **res) { for (u_int i = 0; rs[i].type != -1; i++) { if (res[i] == NULL) continue; bhnd_release_resource(dev, rs[i].type, rs[i].rid, res[i]); res[i] = NULL; } } /** * Allocate and return a new per-core PMU clock control/status (clkctl) * instance for @p dev. * * @param dev The bhnd(4) core device mapped by @p r. * @param pmu_dev The bhnd(4) PMU device, implmenting the bhnd_pmu_if * interface. The caller is responsible for ensuring that * this reference remains valid for the lifetime of the * returned clkctl instance. * @param r A resource mapping the core's clock control register * (see BHND_CLK_CTL_ST). The caller is responsible for * ensuring that this resource remains valid for the * lifetime of the returned clkctl instance. * @param offset The offset to the clock control register within @p r. * @param max_latency The PMU's maximum state transition latency in * microseconds; this upper bound will be used to busy-wait * on PMU state transitions. * * @retval non-NULL success * @retval NULL if allocation fails. * */ struct bhnd_core_clkctl * bhnd_alloc_core_clkctl(device_t dev, device_t pmu_dev, struct bhnd_resource *r, bus_size_t offset, u_int max_latency) { struct bhnd_core_clkctl *clkctl; clkctl = malloc(sizeof(*clkctl), M_BHND, M_ZERO | M_NOWAIT); if (clkctl == NULL) return (NULL); clkctl->cc_dev = dev; clkctl->cc_pmu_dev = pmu_dev; clkctl->cc_res = r; clkctl->cc_res_offset = offset; clkctl->cc_max_latency = max_latency; clkctl->cc_quirks = bhnd_device_quirks(dev, bhnd_clkctl_devices, sizeof(bhnd_clkctl_devices[0])); BHND_CLKCTL_LOCK_INIT(clkctl); return (clkctl); } /** * Free a clkctl instance previously allocated via bhnd_alloc_core_clkctl(). * * @param clkctl The clkctl instance to be freed. */ void bhnd_free_core_clkctl(struct bhnd_core_clkctl *clkctl) { BHND_CLKCTL_LOCK_DESTROY(clkctl); free(clkctl, M_BHND); } /** * Wait for the per-core clock status to be equal to @p value after * applying @p mask, timing out after the maximum transition latency is reached. * * @param clkctl Per-core clkctl state to be queryied. * @param value Value to wait for. * @param mask Mask to apply prior to value comparison. * * @retval 0 success * @retval ETIMEDOUT if the PMU's maximum transition delay is reached before * the clock status matches @p value and @p mask. */ int bhnd_core_clkctl_wait(struct bhnd_core_clkctl *clkctl, uint32_t value, uint32_t mask) { uint32_t clkst; BHND_CLKCTL_LOCK_ASSERT(clkctl, MA_OWNED); /* Bitswapped HTAVAIL/ALPAVAIL work-around */ if (clkctl->cc_quirks & BHND_CLKCTL_QUIRK_CCS0) { uint32_t fmask, fval; fmask = mask & ~(BHND_CCS_HTAVAIL | BHND_CCS_ALPAVAIL); fval = value & ~(BHND_CCS_HTAVAIL | BHND_CCS_ALPAVAIL); if (mask & BHND_CCS_HTAVAIL) fmask |= BHND_CCS0_HTAVAIL; if (value & BHND_CCS_HTAVAIL) fval |= BHND_CCS0_HTAVAIL; if (mask & BHND_CCS_ALPAVAIL) fmask |= BHND_CCS0_ALPAVAIL; if (value & BHND_CCS_ALPAVAIL) fval |= BHND_CCS0_ALPAVAIL; mask = fmask; value = fval; } for (u_int i = 0; i < clkctl->cc_max_latency; i += 10) { clkst = bhnd_bus_read_4(clkctl->cc_res, clkctl->cc_res_offset); if ((clkst & mask) == (value & mask)) return (0); DELAY(10); } device_printf(clkctl->cc_dev, "clkst wait timeout (value=%#x, " "mask=%#x)\n", value, mask); return (ETIMEDOUT); } /** * Read an NVRAM variable's NUL-terminated string value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] buf A buffer large enough to hold @p len bytes. On * success, the NUL-terminated string value will be * written to this buffer. This argment may be NULL if * the value is not desired. * @param len The maximum capacity of @p buf. * @param[out] rlen On success, will be set to the actual size of * the requested value (including NUL termination). This * argment may be NULL if the size is not desired. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval ENOMEM If @p buf is non-NULL and a buffer of @p len is too * small to hold the requested value. * @retval EFTYPE If the variable data cannot be coerced to a valid * string representation. * @retval ERANGE If value coercion would overflow @p type. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_str(device_t dev, const char *name, char *buf, size_t len, size_t *rlen) { size_t larg; int error; larg = len; error = bhnd_nvram_getvar(dev, name, buf, &larg, BHND_NVRAM_TYPE_STRING); if (rlen != NULL) *rlen = larg; return (error); } /** * Read an NVRAM variable's unsigned integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * @param width The output integer type width (1, 2, or * 4 bytes). * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid unsigned integer representation. * @retval ERANGE If value coercion would overflow (or underflow) an * unsigned representation of the given @p width. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_uint(device_t dev, const char *name, void *value, int width) { bhnd_nvram_type type; size_t len; switch (width) { case 1: type = BHND_NVRAM_TYPE_UINT8; break; case 2: type = BHND_NVRAM_TYPE_UINT16; break; case 4: type = BHND_NVRAM_TYPE_UINT32; break; default: device_printf(dev, "unsupported NVRAM integer width: %d\n", width); return (EINVAL); } len = width; return (bhnd_nvram_getvar(dev, name, value, &len, type)); } /** * Read an NVRAM variable's unsigned 8-bit integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid unsigned integer representation. * @retval ERANGE If value coercion would overflow (or underflow) uint8_t. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_uint8(device_t dev, const char *name, uint8_t *value) { return (bhnd_nvram_getvar_uint(dev, name, value, sizeof(*value))); } /** * Read an NVRAM variable's unsigned 16-bit integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid unsigned integer representation. * @retval ERANGE If value coercion would overflow (or underflow) * uint16_t. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_uint16(device_t dev, const char *name, uint16_t *value) { return (bhnd_nvram_getvar_uint(dev, name, value, sizeof(*value))); } /** * Read an NVRAM variable's unsigned 32-bit integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid unsigned integer representation. * @retval ERANGE If value coercion would overflow (or underflow) * uint32_t. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_uint32(device_t dev, const char *name, uint32_t *value) { return (bhnd_nvram_getvar_uint(dev, name, value, sizeof(*value))); } /** * Read an NVRAM variable's signed integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * @param width The output integer type width (1, 2, or * 4 bytes). * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid integer representation. * @retval ERANGE If value coercion would overflow (or underflow) an * signed representation of the given @p width. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_int(device_t dev, const char *name, void *value, int width) { bhnd_nvram_type type; size_t len; switch (width) { case 1: type = BHND_NVRAM_TYPE_INT8; break; case 2: type = BHND_NVRAM_TYPE_INT16; break; case 4: type = BHND_NVRAM_TYPE_INT32; break; default: device_printf(dev, "unsupported NVRAM integer width: %d\n", width); return (EINVAL); } len = width; return (bhnd_nvram_getvar(dev, name, value, &len, type)); } /** * Read an NVRAM variable's signed 8-bit integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid integer representation. * @retval ERANGE If value coercion would overflow (or underflow) int8_t. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_int8(device_t dev, const char *name, int8_t *value) { return (bhnd_nvram_getvar_int(dev, name, value, sizeof(*value))); } /** * Read an NVRAM variable's signed 16-bit integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid integer representation. * @retval ERANGE If value coercion would overflow (or underflow) * int16_t. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_int16(device_t dev, const char *name, int16_t *value) { return (bhnd_nvram_getvar_int(dev, name, value, sizeof(*value))); } /** * Read an NVRAM variable's signed 32-bit integer value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] value On success, the requested value will be written * to this pointer. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval EFTYPE If the variable data cannot be coerced to a * a valid integer representation. * @retval ERANGE If value coercion would overflow (or underflow) * int32_t. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_int32(device_t dev, const char *name, int32_t *value) { return (bhnd_nvram_getvar_int(dev, name, value, sizeof(*value))); } /** * Read an NVRAM variable's array value. * * @param dev A bhnd bus child device. * @param name The NVRAM variable name. * @param[out] buf A buffer large enough to hold @p size bytes. * On success, the requested value will be written * to this buffer. * @param[in,out] size The required number of bytes to write to * @p buf. * @param type The desired array element data representation. * * @retval 0 success * @retval ENOENT The requested variable was not found. * @retval ENODEV No valid NVRAM source could be found. * @retval ENXIO If less than @p size bytes are available. * @retval ENOMEM If a buffer of @p size is too small to hold the * requested value. * @retval EFTYPE If the variable data cannot be coerced to a * a valid instance of @p type. * @retval ERANGE If value coercion would overflow (or underflow) a * representation of @p type. * @retval non-zero If reading @p name otherwise fails, a regular unix * error code will be returned. */ int bhnd_nvram_getvar_array(device_t dev, const char *name, void *buf, size_t size, bhnd_nvram_type type) { size_t nbytes; int error; /* Attempt read */ nbytes = size; if ((error = bhnd_nvram_getvar(dev, name, buf, &nbytes, type))) return (error); /* Verify that the expected number of bytes were fetched */ if (nbytes < size) return (ENXIO); return (0); } /** * Initialize a service provider registry. * * @param bsr The service registry to initialize. * * @retval 0 success * @retval non-zero if an error occurs initializing the service registry, * a regular unix error code will be returned. */ int bhnd_service_registry_init(struct bhnd_service_registry *bsr) { STAILQ_INIT(&bsr->entries); mtx_init(&bsr->lock, "bhnd_service_registry lock", NULL, MTX_DEF); return (0); } /** * Release all resources held by @p bsr. * * @param bsr A service registry instance previously successfully * initialized via bhnd_service_registry_init(). * * @retval 0 success * @retval EBUSY if active references to service providers registered * with @p bsr exist. */ int bhnd_service_registry_fini(struct bhnd_service_registry *bsr) { struct bhnd_service_entry *entry, *enext; /* Remove everthing we can */ mtx_lock(&bsr->lock); STAILQ_FOREACH_SAFE(entry, &bsr->entries, link, enext) { if (entry->refs > 0) continue; STAILQ_REMOVE(&bsr->entries, entry, bhnd_service_entry, link); free(entry, M_BHND); } if (!STAILQ_EMPTY(&bsr->entries)) { mtx_unlock(&bsr->lock); return (EBUSY); } mtx_unlock(&bsr->lock); mtx_destroy(&bsr->lock); return (0); } /** * Register a @p provider for the given @p service. * * @param bsr Service registry to be modified. * @param provider Service provider to register. * @param service Service for which @p provider will be registered. * @param flags Service provider flags (see BHND_SPF_*). * * @retval 0 success * @retval EEXIST if an entry for @p service already exists. * @retval EINVAL if @p service is BHND_SERVICE_ANY. * @retval non-zero if registering @p provider otherwise fails, a regular * unix error code will be returned. */ int bhnd_service_registry_add(struct bhnd_service_registry *bsr, device_t provider, bhnd_service_t service, uint32_t flags) { struct bhnd_service_entry *entry; if (service == BHND_SERVICE_ANY) return (EINVAL); mtx_lock(&bsr->lock); /* Is a service provider already registered? */ STAILQ_FOREACH(entry, &bsr->entries, link) { if (entry->service == service) { mtx_unlock(&bsr->lock); return (EEXIST); } } /* Initialize and insert our new entry */ entry = malloc(sizeof(*entry), M_BHND, M_NOWAIT); if (entry == NULL) { mtx_unlock(&bsr->lock); return (ENOMEM); } entry->provider = provider; entry->service = service; entry->flags = flags; refcount_init(&entry->refs, 0); STAILQ_INSERT_HEAD(&bsr->entries, entry, link); mtx_unlock(&bsr->lock); return (0); } /** * Free an unreferenced registry entry. * * @param entry The entry to be deallocated. */ static void bhnd_service_registry_free_entry(struct bhnd_service_entry *entry) { KASSERT(entry->refs == 0, ("provider has active references")); free(entry, M_BHND); } /** * Attempt to remove the @p service provider registration for @p provider. * * @param bsr The service registry to be modified. * @param provider The service provider to be deregistered. * @param service The service for which @p provider will be deregistered, * or BHND_SERVICE_ANY to remove all service * registrations for @p provider. * * @retval 0 success * @retval EBUSY if active references to @p provider exist; see * bhnd_service_registry_retain() and * bhnd_service_registry_release(). */ int bhnd_service_registry_remove(struct bhnd_service_registry *bsr, device_t provider, bhnd_service_t service) { struct bhnd_service_entry *entry, *enext; mtx_lock(&bsr->lock); #define BHND_PROV_MATCH(_e) \ ((_e)->provider == provider && \ (service == BHND_SERVICE_ANY || (_e)->service == service)) /* Validate matching provider entries before making any * modifications */ STAILQ_FOREACH(entry, &bsr->entries, link) { /* Skip non-matching entries */ if (!BHND_PROV_MATCH(entry)) continue; /* Entry is in use? */ if (entry->refs > 0) { mtx_unlock(&bsr->lock); return (EBUSY); } } /* We can now safely remove matching entries */ STAILQ_FOREACH_SAFE(entry, &bsr->entries, link, enext) { /* Skip non-matching entries */ if (!BHND_PROV_MATCH(entry)) continue; /* Remove from list */ STAILQ_REMOVE(&bsr->entries, entry, bhnd_service_entry, link); /* Free provider entry */ bhnd_service_registry_free_entry(entry); } #undef BHND_PROV_MATCH mtx_unlock(&bsr->lock); return (0); } /** * Retain and return a reference to a registered @p service provider, if any. * * @param bsr The service registry to be queried. * @param service The service for which a provider should be returned. * * On success, the caller assumes ownership the returned provider, and * is responsible for releasing this reference via * bhnd_service_registry_release(). * * @retval device_t success * @retval NULL if no provider is registered for @p service. */ device_t bhnd_service_registry_retain(struct bhnd_service_registry *bsr, bhnd_service_t service) { struct bhnd_service_entry *entry; mtx_lock(&bsr->lock); STAILQ_FOREACH(entry, &bsr->entries, link) { if (entry->service != service) continue; /* With a live refcount, entry is gauranteed to remain alive * after we release our lock */ refcount_acquire(&entry->refs); mtx_unlock(&bsr->lock); return (entry->provider); } mtx_unlock(&bsr->lock); /* Not found */ return (NULL); } /** * Release a reference to a service provider previously returned by * bhnd_service_registry_retain(). * * If this is the last reference to an inherited service provider registration * (see BHND_SPF_INHERITED), the registration will also be removed, and * true will be returned. * * @param bsr The service registry from which @p provider * was returned. * @param provider The provider to be released. * @param service The service for which @p provider was previously * retained. * @retval true The inherited service provider registration was removed; * the caller should release its own reference to the * provider. * @retval false The service provider was not inherited, or active * references to the provider remain. * * @see BHND_SPF_INHERITED */ bool bhnd_service_registry_release(struct bhnd_service_registry *bsr, device_t provider, bhnd_service_t service) { struct bhnd_service_entry *entry; /* Exclusive lock, as we need to prevent any new references to the * entry from being taken if it's to be removed */ mtx_lock(&bsr->lock); STAILQ_FOREACH(entry, &bsr->entries, link) { bool removed; if (entry->provider != provider) continue; if (entry->service != service) continue; if (refcount_release(&entry->refs) && (entry->flags & BHND_SPF_INHERITED)) { /* If an inherited entry is no longer actively * referenced, remove the local registration and inform * the caller. */ STAILQ_REMOVE(&bsr->entries, entry, bhnd_service_entry, link); bhnd_service_registry_free_entry(entry); removed = true; } else { removed = false; } mtx_unlock(&bsr->lock); return (removed); } /* Caller owns a reference, but no such provider is registered? */ panic("invalid service provider reference"); } /** * Using the bhnd(4) bus-level core information and a custom core name, * populate @p dev's device description. * * @param dev A bhnd-bus attached device. * @param dev_name The core's name (e.g. "SDIO Device Core"). */ void bhnd_set_custom_core_desc(device_t dev, const char *dev_name) { const char *vendor_name; char *desc; vendor_name = bhnd_get_vendor_name(dev); asprintf(&desc, M_BHND, "%s %s, rev %hhu", vendor_name, dev_name, bhnd_get_hwrev(dev)); if (desc != NULL) { device_set_desc_copy(dev, desc); free(desc, M_BHND); } else { device_set_desc(dev, dev_name); } } /** * Using the bhnd(4) bus-level core information, populate @p dev's device * description. * * @param dev A bhnd-bus attached device. */ void bhnd_set_default_core_desc(device_t dev) { bhnd_set_custom_core_desc(dev, bhnd_get_device_name(dev)); } /** * Using the bhnd @p chip_id, populate the bhnd(4) bus @p dev's device * description. * * @param dev A bhnd-bus attached device. * @param chip_id The chip identification. */ void bhnd_set_default_bus_desc(device_t dev, const struct bhnd_chipid *chip_id) { const char *bus_name; char *desc; char chip_name[BHND_CHIPID_MAX_NAMELEN]; /* Determine chip type's bus name */ switch (chip_id->chip_type) { case BHND_CHIPTYPE_SIBA: bus_name = "SIBA bus"; break; case BHND_CHIPTYPE_BCMA: case BHND_CHIPTYPE_BCMA_ALT: bus_name = "BCMA bus"; break; case BHND_CHIPTYPE_UBUS: bus_name = "UBUS bus"; break; default: bus_name = "Unknown Type"; break; } /* Format chip name */ bhnd_format_chip_id(chip_name, sizeof(chip_name), chip_id->chip_id); /* Format and set device description */ asprintf(&desc, M_BHND, "%s %s", chip_name, bus_name); if (desc != NULL) { device_set_desc_copy(dev, desc); free(desc, M_BHND); } else { device_set_desc(dev, bus_name); } } /** * Helper function for implementing BHND_BUS_REGISTER_PROVIDER(). * * This implementation delegates the request to the BHND_BUS_REGISTER_PROVIDER() * method on the parent of @p dev. If no parent exists, the implementation * will return an error. */ int bhnd_bus_generic_register_provider(device_t dev, device_t child, device_t provider, bhnd_service_t service) { device_t parent = device_get_parent(dev); if (parent != NULL) { return (BHND_BUS_REGISTER_PROVIDER(parent, child, provider, service)); } return (ENXIO); } /** * Helper function for implementing BHND_BUS_DEREGISTER_PROVIDER(). * * This implementation delegates the request to the * BHND_BUS_DEREGISTER_PROVIDER() method on the parent of @p dev. If no parent * exists, the implementation will panic. */ int bhnd_bus_generic_deregister_provider(device_t dev, device_t child, device_t provider, bhnd_service_t service) { device_t parent = device_get_parent(dev); if (parent != NULL) { return (BHND_BUS_DEREGISTER_PROVIDER(parent, child, provider, service)); } panic("missing BHND_BUS_DEREGISTER_PROVIDER()"); } /** * Helper function for implementing BHND_BUS_RETAIN_PROVIDER(). * * This implementation delegates the request to the * BHND_BUS_DEREGISTER_PROVIDER() method on the parent of @p dev. If no parent * exists, the implementation will return NULL. */ device_t bhnd_bus_generic_retain_provider(device_t dev, device_t child, bhnd_service_t service) { device_t parent = device_get_parent(dev); if (parent != NULL) { return (BHND_BUS_RETAIN_PROVIDER(parent, child, service)); } return (NULL); } /** * Helper function for implementing BHND_BUS_RELEASE_PROVIDER(). * * This implementation delegates the request to the * BHND_BUS_DEREGISTER_PROVIDER() method on the parent of @p dev. If no parent * exists, the implementation will panic. */ void bhnd_bus_generic_release_provider(device_t dev, device_t child, device_t provider, bhnd_service_t service) { device_t parent = device_get_parent(dev); if (parent != NULL) { return (BHND_BUS_RELEASE_PROVIDER(parent, child, provider, service)); } panic("missing BHND_BUS_RELEASE_PROVIDER()"); } /** * Helper function for implementing BHND_BUS_REGISTER_PROVIDER(). * * This implementation uses the bhnd_service_registry_add() function to * do most of the work. It calls BHND_BUS_GET_SERVICE_REGISTRY() to find * a suitable service registry to edit. */ int bhnd_bus_generic_sr_register_provider(device_t dev, device_t child, device_t provider, bhnd_service_t service) { struct bhnd_service_registry *bsr; bsr = BHND_BUS_GET_SERVICE_REGISTRY(dev, child); KASSERT(bsr != NULL, ("NULL service registry")); return (bhnd_service_registry_add(bsr, provider, service, 0)); } /** * Helper function for implementing BHND_BUS_DEREGISTER_PROVIDER(). * * This implementation uses the bhnd_service_registry_remove() function to * do most of the work. It calls BHND_BUS_GET_SERVICE_REGISTRY() to find * a suitable service registry to edit. */ int bhnd_bus_generic_sr_deregister_provider(device_t dev, device_t child, device_t provider, bhnd_service_t service) { struct bhnd_service_registry *bsr; bsr = BHND_BUS_GET_SERVICE_REGISTRY(dev, child); KASSERT(bsr != NULL, ("NULL service registry")); return (bhnd_service_registry_remove(bsr, provider, service)); } /** * Helper function for implementing BHND_BUS_RETAIN_PROVIDER(). * * This implementation uses the bhnd_service_registry_retain() function to * do most of the work. It calls BHND_BUS_GET_SERVICE_REGISTRY() to find * a suitable service registry. * * If a local provider for the service is not available, and a parent device is * available, this implementation will attempt to fetch and locally register * a service provider reference from the parent of @p dev. */ device_t bhnd_bus_generic_sr_retain_provider(device_t dev, device_t child, bhnd_service_t service) { struct bhnd_service_registry *bsr; device_t parent, provider; int error; bsr = BHND_BUS_GET_SERVICE_REGISTRY(dev, child); KASSERT(bsr != NULL, ("NULL service registry")); /* * Attempt to fetch a service provider reference from either the local * service registry, or if not found, from our parent. * * If we fetch a provider from our parent, we register the provider * with the local service registry to prevent conflicting local * registrations from being added. */ while (1) { /* Check the local service registry first */ provider = bhnd_service_registry_retain(bsr, service); if (provider != NULL) return (provider); /* Otherwise, try to delegate to our parent (if any) */ if ((parent = device_get_parent(dev)) == NULL) return (NULL); provider = BHND_BUS_RETAIN_PROVIDER(parent, dev, service); if (provider == NULL) return (NULL); /* Register the inherited service registration with the local * registry */ error = bhnd_service_registry_add(bsr, provider, service, BHND_SPF_INHERITED); if (error) { BHND_BUS_RELEASE_PROVIDER(parent, dev, provider, service); if (error == EEXIST) { /* A valid service provider was registered * concurrently; retry fetching from the local * registry */ continue; } device_printf(dev, "failed to register service " "provider: %d\n", error); return (NULL); } } } /** * Helper function for implementing BHND_BUS_RELEASE_PROVIDER(). * * This implementation uses the bhnd_service_registry_release() function to * do most of the work. It calls BHND_BUS_GET_SERVICE_REGISTRY() to find * a suitable service registry. */ void bhnd_bus_generic_sr_release_provider(device_t dev, device_t child, device_t provider, bhnd_service_t service) { struct bhnd_service_registry *bsr; bsr = BHND_BUS_GET_SERVICE_REGISTRY(dev, child); KASSERT(bsr != NULL, ("NULL service registry")); /* Release the provider reference; if the refcount hits zero on an * inherited reference, true will be returned, and we need to drop * our own bus reference to the provider */ if (!bhnd_service_registry_release(bsr, provider, service)) return; /* Drop our reference to the borrowed provider */ BHND_BUS_RELEASE_PROVIDER(device_get_parent(dev), dev, provider, service); } /** * Helper function for implementing BHND_BUS_IS_HW_DISABLED(). * * If a parent device is available, this implementation delegates the * request to the BHND_BUS_IS_HW_DISABLED() method on the parent of @p dev. * * If no parent device is available (i.e. on a the bus root), the hardware * is assumed to be usable and false is returned. */ bool bhnd_bus_generic_is_hw_disabled(device_t dev, device_t child) { if (device_get_parent(dev) != NULL) return (BHND_BUS_IS_HW_DISABLED(device_get_parent(dev), child)); return (false); } /** * Helper function for implementing BHND_BUS_GET_CHIPID(). * * This implementation delegates the request to the BHND_BUS_GET_CHIPID() * method on the parent of @p dev. If no parent exists, the implementation * will panic. */ const struct bhnd_chipid * bhnd_bus_generic_get_chipid(device_t dev, device_t child) { if (device_get_parent(dev) != NULL) return (BHND_BUS_GET_CHIPID(device_get_parent(dev), child)); panic("missing BHND_BUS_GET_CHIPID()"); } /** * Helper function for implementing BHND_BUS_GET_DMA_TRANSLATION(). * * If a parent device is available, this implementation delegates the * request to the BHND_BUS_GET_DMA_TRANSLATION() method on the parent of @p dev. * * If no parent device is available, this implementation will panic. */ int bhnd_bus_generic_get_dma_translation(device_t dev, device_t child, u_int width, uint32_t flags, bus_dma_tag_t *dmat, struct bhnd_dma_translation *translation) { if (device_get_parent(dev) != NULL) { return (BHND_BUS_GET_DMA_TRANSLATION(device_get_parent(dev), child, width, flags, dmat, translation)); } panic("missing BHND_BUS_GET_DMA_TRANSLATION()"); } /* nvram board_info population macros for bhnd_bus_generic_read_board_info() */ #define BHND_GV(_dest, _name) \ bhnd_nvram_getvar_uint(child, BHND_NVAR_ ## _name, &_dest, \ sizeof(_dest)) #define REQ_BHND_GV(_dest, _name) do { \ if ((error = BHND_GV(_dest, _name))) { \ device_printf(dev, \ "error reading " __STRING(_name) ": %d\n", error); \ return (error); \ } \ } while(0) #define OPT_BHND_GV(_dest, _name, _default) do { \ if ((error = BHND_GV(_dest, _name))) { \ if (error != ENOENT) { \ device_printf(dev, \ "error reading " \ __STRING(_name) ": %d\n", error); \ return (error); \ } \ _dest = _default; \ } \ } while(0) /** * Helper function for implementing BHND_BUS_READ_BOARDINFO(). * * This implementation populates @p info with information from NVRAM, * defaulting board_vendor and board_type fields to 0 if the * requested variables cannot be found. * * This behavior is correct for most SoCs, but must be overridden on * bridged (PCI, PCMCIA, etc) devices to produce a complete bhnd_board_info * result. */ int bhnd_bus_generic_read_board_info(device_t dev, device_t child, struct bhnd_board_info *info) { int error; OPT_BHND_GV(info->board_vendor, BOARDVENDOR, 0); OPT_BHND_GV(info->board_type, BOARDTYPE, 0); /* srom >= 2 */ OPT_BHND_GV(info->board_devid, DEVID, 0); /* srom >= 8 */ REQ_BHND_GV(info->board_rev, BOARDREV); OPT_BHND_GV(info->board_srom_rev,SROMREV, 0); /* missing in some SoC NVRAM */ REQ_BHND_GV(info->board_flags, BOARDFLAGS); OPT_BHND_GV(info->board_flags2, BOARDFLAGS2, 0); /* srom >= 4 */ OPT_BHND_GV(info->board_flags3, BOARDFLAGS3, 0); /* srom >= 11 */ return (0); } #undef BHND_GV #undef BHND_GV_REQ #undef BHND_GV_OPT /** * Helper function for implementing BHND_BUS_GET_NVRAM_VAR(). * * This implementation searches @p dev for a usable NVRAM child device. * * If no usable child device is found on @p dev, the request is delegated to * the BHND_BUS_GET_NVRAM_VAR() method on the parent of @p dev. */ int bhnd_bus_generic_get_nvram_var(device_t dev, device_t child, const char *name, void *buf, size_t *size, bhnd_nvram_type type) { device_t nvram; device_t parent; - /* Make sure we're holding Giant for newbus */ - GIANT_REQUIRED; + bus_topo_assert(); /* Look for a directly-attached NVRAM child */ if ((nvram = device_find_child(dev, "bhnd_nvram", -1)) != NULL) return BHND_NVRAM_GETVAR(nvram, name, buf, size, type); /* Try to delegate to parent */ if ((parent = device_get_parent(dev)) == NULL) return (ENODEV); return (BHND_BUS_GET_NVRAM_VAR(device_get_parent(dev), child, name, buf, size, type)); } /** * Helper function for implementing BHND_BUS_ALLOC_RESOURCE(). * * This implementation of BHND_BUS_ALLOC_RESOURCE() delegates allocation * of the underlying resource to BUS_ALLOC_RESOURCE(), and activation * to @p dev's BHND_BUS_ACTIVATE_RESOURCE(). */ struct bhnd_resource * bhnd_bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct bhnd_resource *br; struct resource *res; int error; br = NULL; res = NULL; /* Allocate the real bus resource (without activating it) */ res = BUS_ALLOC_RESOURCE(dev, child, type, rid, start, end, count, (flags & ~RF_ACTIVE)); if (res == NULL) return (NULL); /* Allocate our bhnd resource wrapper. */ br = malloc(sizeof(struct bhnd_resource), M_BHND, M_NOWAIT); if (br == NULL) goto failed; br->direct = false; br->res = res; /* Attempt activation */ if (flags & RF_ACTIVE) { error = BHND_BUS_ACTIVATE_RESOURCE(dev, child, type, *rid, br); if (error) goto failed; } return (br); failed: if (res != NULL) BUS_RELEASE_RESOURCE(dev, child, type, *rid, res); free(br, M_BHND); return (NULL); } /** * Helper function for implementing BHND_BUS_RELEASE_RESOURCE(). * * This implementation of BHND_BUS_RELEASE_RESOURCE() delegates release of * the backing resource to BUS_RELEASE_RESOURCE(). */ int bhnd_bus_generic_release_resource(device_t dev, device_t child, int type, int rid, struct bhnd_resource *r) { int error; if ((error = BUS_RELEASE_RESOURCE(dev, child, type, rid, r->res))) return (error); free(r, M_BHND); return (0); } /** * Helper function for implementing BHND_BUS_ACTIVATE_RESOURCE(). * * This implementation of BHND_BUS_ACTIVATE_RESOURCE() first calls the * BHND_BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. * * If this fails, and if @p dev is the direct parent of @p child, standard * resource activation is attempted via bus_activate_resource(). This enables * direct use of the bhnd(4) resource APIs on devices that may not be attached * to a parent bhnd bus or bridge. */ int bhnd_bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, struct bhnd_resource *r) { int error; bool passthrough; passthrough = (device_get_parent(child) != dev); /* Try to delegate to the parent */ if (device_get_parent(dev) != NULL) { error = BHND_BUS_ACTIVATE_RESOURCE(device_get_parent(dev), child, type, rid, r); } else { error = ENODEV; } /* If bhnd(4) activation has failed and we're the child's direct * parent, try falling back on standard resource activation. */ if (error && !passthrough) { error = bus_activate_resource(child, type, rid, r->res); if (!error) r->direct = true; } return (error); } /** * Helper function for implementing BHND_BUS_DEACTIVATE_RESOURCE(). * * This implementation of BHND_BUS_ACTIVATE_RESOURCE() simply calls the * BHND_BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. */ int bhnd_bus_generic_deactivate_resource(device_t dev, device_t child, int type, int rid, struct bhnd_resource *r) { if (device_get_parent(dev) != NULL) return (BHND_BUS_DEACTIVATE_RESOURCE(device_get_parent(dev), child, type, rid, r)); return (EINVAL); } /** * Helper function for implementing BHND_BUS_GET_INTR_DOMAIN(). * * This implementation simply returns the address of nearest bhnd(4) bus, * which may be @p dev; this behavior may be incompatible with FDT/OFW targets. */ uintptr_t bhnd_bus_generic_get_intr_domain(device_t dev, device_t child, bool self) { return ((uintptr_t)dev); } diff --git a/sys/dev/hid/hidbus.c b/sys/dev/hid/hidbus.c index 69f3d3911631..4a3a3e21bf03 100644 --- a/sys/dev/hid/hidbus.c +++ b/sys/dev/hid/hidbus.c @@ -1,928 +1,928 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2019-2020 Vladimir Kondratyev * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HID_DEBUG_VAR hid_debug #include #include #include #include "hid_if.h" #define INPUT_EPOCH global_epoch_preempt #define HID_RSIZE_MAX 1024 static hid_intr_t hidbus_intr; static device_probe_t hidbus_probe; static device_attach_t hidbus_attach; static device_detach_t hidbus_detach; struct hidbus_ivars { int32_t usage; uint8_t index; uint32_t flags; uintptr_t driver_info; /* for internal use */ struct mtx *mtx; /* child intr mtx */ hid_intr_t *intr_handler; /* executed under mtx*/ void *intr_ctx; unsigned int refcnt; /* protected by mtx */ struct epoch_context epoch_ctx; CK_STAILQ_ENTRY(hidbus_ivars) link; }; struct hidbus_softc { device_t dev; struct sx sx; struct mtx mtx; bool nowrite; struct hid_rdesc_info rdesc; bool overloaded; int nest; /* Child attach nesting lvl */ int nauto; /* Number of autochildren */ CK_STAILQ_HEAD(, hidbus_ivars) tlcs; }; static int hidbus_fill_rdesc_info(struct hid_rdesc_info *hri, const void *data, hid_size_t len) { int error = 0; hri->data = __DECONST(void *, data); hri->len = len; /* * If report descriptor is not available yet, set maximal * report sizes high enough to allow hidraw to work. */ hri->isize = len == 0 ? HID_RSIZE_MAX : hid_report_size_max(data, len, hid_input, &hri->iid); hri->osize = len == 0 ? HID_RSIZE_MAX : hid_report_size_max(data, len, hid_output, &hri->oid); hri->fsize = len == 0 ? HID_RSIZE_MAX : hid_report_size_max(data, len, hid_feature, &hri->fid); if (hri->isize > HID_RSIZE_MAX) { DPRINTF("input size is too large, %u bytes (truncating)\n", hri->isize); hri->isize = HID_RSIZE_MAX; error = EOVERFLOW; } if (hri->osize > HID_RSIZE_MAX) { DPRINTF("output size is too large, %u bytes (truncating)\n", hri->osize); hri->osize = HID_RSIZE_MAX; error = EOVERFLOW; } if (hri->fsize > HID_RSIZE_MAX) { DPRINTF("feature size is too large, %u bytes (truncating)\n", hri->fsize); hri->fsize = HID_RSIZE_MAX; error = EOVERFLOW; } return (error); } int hidbus_locate(const void *desc, hid_size_t size, int32_t u, enum hid_kind k, uint8_t tlc_index, uint8_t index, struct hid_location *loc, uint32_t *flags, uint8_t *id, struct hid_absinfo *ai) { struct hid_data *d; struct hid_item h; int i; d = hid_start_parse(desc, size, 1 << k); HIDBUS_FOREACH_ITEM(d, &h, tlc_index) { for (i = 0; i < h.nusages; i++) { if (h.kind == k && h.usages[i] == u) { if (index--) break; if (loc != NULL) *loc = h.loc; if (flags != NULL) *flags = h.flags; if (id != NULL) *id = h.report_ID; if (ai != NULL && (h.flags&HIO_RELATIVE) == 0) *ai = (struct hid_absinfo) { .max = h.logical_maximum, .min = h.logical_minimum, .res = hid_item_resolution(&h), }; hid_end_parse(d); return (1); } } } if (loc != NULL) loc->size = 0; if (flags != NULL) *flags = 0; if (id != NULL) *id = 0; hid_end_parse(d); return (0); } bool hidbus_is_collection(const void *desc, hid_size_t size, int32_t usage, uint8_t tlc_index) { struct hid_data *d; struct hid_item h; bool ret = false; d = hid_start_parse(desc, size, 0); HIDBUS_FOREACH_ITEM(d, &h, tlc_index) { if (h.kind == hid_collection && h.usage == usage) { ret = true; break; } } hid_end_parse(d); return (ret); } static device_t hidbus_add_child(device_t dev, u_int order, const char *name, int unit) { struct hidbus_softc *sc = device_get_softc(dev); struct hidbus_ivars *tlc; device_t child; child = device_add_child_ordered(dev, order, name, unit); if (child == NULL) return (child); tlc = malloc(sizeof(struct hidbus_ivars), M_DEVBUF, M_WAITOK | M_ZERO); tlc->mtx = &sc->mtx; device_set_ivars(child, tlc); sx_xlock(&sc->sx); CK_STAILQ_INSERT_TAIL(&sc->tlcs, tlc, link); sx_unlock(&sc->sx); return (child); } static int hidbus_enumerate_children(device_t dev, const void* data, hid_size_t len) { struct hidbus_softc *sc = device_get_softc(dev); struct hid_data *hd; struct hid_item hi; device_t child; uint8_t index = 0; if (data == NULL || len == 0) return (ENXIO); /* Add a child for each top level collection */ hd = hid_start_parse(data, len, 1 << hid_input); while (hid_get_item(hd, &hi)) { if (hi.kind != hid_collection || hi.collevel != 1) continue; child = BUS_ADD_CHILD(dev, 0, NULL, -1); if (child == NULL) { device_printf(dev, "Could not add HID device\n"); continue; } hidbus_set_index(child, index); hidbus_set_usage(child, hi.usage); hidbus_set_flags(child, HIDBUS_FLAG_AUTOCHILD); index++; DPRINTF("Add child TLC: 0x%04x:0x%04x\n", HID_GET_USAGE_PAGE(hi.usage), HID_GET_USAGE(hi.usage)); } hid_end_parse(hd); if (index == 0) return (ENXIO); sc->nauto = index; return (0); } static int hidbus_attach_children(device_t dev) { struct hidbus_softc *sc = device_get_softc(dev); int error; HID_INTR_SETUP(device_get_parent(dev), hidbus_intr, sc, &sc->rdesc); error = hidbus_enumerate_children(dev, sc->rdesc.data, sc->rdesc.len); if (error != 0) DPRINTF("failed to enumerate children: error %d\n", error); /* * hidbus_attach_children() can recurse through device_identify-> * hid_set_report_descr() call sequence. Do not perform children * attach twice in that case. */ sc->nest++; bus_generic_probe(dev); sc->nest--; if (sc->nest != 0) return (0); if (hid_is_keyboard(sc->rdesc.data, sc->rdesc.len) != 0) error = bus_generic_attach(dev); else error = bus_delayed_attach_children(dev); if (error != 0) device_printf(dev, "failed to attach child: error %d\n", error); return (error); } static int hidbus_detach_children(device_t dev) { device_t *children, bus; bool is_bus; int i, error; error = 0; is_bus = device_get_devclass(dev) == hidbus_devclass; bus = is_bus ? dev : device_get_parent(dev); KASSERT(device_get_devclass(bus) == hidbus_devclass, ("Device is not hidbus or it's child")); if (is_bus) { /* If hidbus is passed, delete all children. */ bus_generic_detach(bus); device_delete_children(bus); } else { /* * If hidbus child is passed, delete all hidbus children * except caller. Deleting the caller may result in deadlock. */ error = device_get_children(bus, &children, &i); if (error != 0) return (error); while (i-- > 0) { if (children[i] == dev) continue; DPRINTF("Delete child. index=%d (%s)\n", hidbus_get_index(children[i]), device_get_nameunit(children[i])); error = device_delete_child(bus, children[i]); if (error) { DPRINTF("Failed deleting %s\n", device_get_nameunit(children[i])); break; } } free(children, M_TEMP); } HID_INTR_UNSETUP(device_get_parent(bus)); return (error); } static int hidbus_probe(device_t dev) { device_set_desc(dev, "HID bus"); /* Allow other subclasses to override this driver. */ return (BUS_PROBE_GENERIC); } static int hidbus_attach(device_t dev) { struct hidbus_softc *sc = device_get_softc(dev); struct hid_device_info *devinfo = device_get_ivars(dev); void *d_ptr = NULL; hid_size_t d_len; int error; sc->dev = dev; CK_STAILQ_INIT(&sc->tlcs); mtx_init(&sc->mtx, "hidbus ivar lock", NULL, MTX_DEF); sx_init(&sc->sx, "hidbus ivar list lock"); /* * Ignore error. It is possible for non-HID device e.g. XBox360 gamepad * to emulate HID through overloading of report descriptor. */ d_len = devinfo->rdescsize; if (d_len != 0) { d_ptr = malloc(d_len, M_DEVBUF, M_ZERO | M_WAITOK); error = hid_get_rdesc(dev, d_ptr, d_len); if (error != 0) { free(d_ptr, M_DEVBUF); d_len = 0; d_ptr = NULL; } } hidbus_fill_rdesc_info(&sc->rdesc, d_ptr, d_len); sc->nowrite = hid_test_quirk(devinfo, HQ_NOWRITE); error = hidbus_attach_children(dev); if (error != 0) { hidbus_detach(dev); return (ENXIO); } return (0); } static int hidbus_detach(device_t dev) { struct hidbus_softc *sc = device_get_softc(dev); hidbus_detach_children(dev); sx_destroy(&sc->sx); mtx_destroy(&sc->mtx); free(sc->rdesc.data, M_DEVBUF); return (0); } static void hidbus_child_detached(device_t bus, device_t child) { struct hidbus_softc *sc = device_get_softc(bus); struct hidbus_ivars *tlc = device_get_ivars(child); KASSERT(tlc->refcnt == 0, ("Child device is running")); tlc->mtx = &sc->mtx; tlc->intr_handler = NULL; tlc->flags &= ~HIDBUS_FLAG_CAN_POLL; } /* * Epoch callback indicating tlc is safe to destroy */ static void hidbus_ivar_dtor(epoch_context_t ctx) { struct hidbus_ivars *tlc; tlc = __containerof(ctx, struct hidbus_ivars, epoch_ctx); free(tlc, M_DEVBUF); } static void hidbus_child_deleted(device_t bus, device_t child) { struct hidbus_softc *sc = device_get_softc(bus); struct hidbus_ivars *tlc = device_get_ivars(child); sx_xlock(&sc->sx); KASSERT(tlc->refcnt == 0, ("Child device is running")); CK_STAILQ_REMOVE(&sc->tlcs, tlc, hidbus_ivars, link); sx_unlock(&sc->sx); epoch_call(INPUT_EPOCH, hidbus_ivar_dtor, &tlc->epoch_ctx); } static int hidbus_read_ivar(device_t bus, device_t child, int which, uintptr_t *result) { struct hidbus_softc *sc = device_get_softc(bus); struct hidbus_ivars *tlc = device_get_ivars(child); switch (which) { case HIDBUS_IVAR_INDEX: *result = tlc->index; break; case HIDBUS_IVAR_USAGE: *result = tlc->usage; break; case HIDBUS_IVAR_FLAGS: *result = tlc->flags; break; case HIDBUS_IVAR_DRIVER_INFO: *result = tlc->driver_info; break; case HIDBUS_IVAR_LOCK: *result = (uintptr_t)(tlc->mtx == &sc->mtx ? NULL : tlc->mtx); break; default: return (EINVAL); } return (0); } static int hidbus_write_ivar(device_t bus, device_t child, int which, uintptr_t value) { struct hidbus_softc *sc = device_get_softc(bus); struct hidbus_ivars *tlc = device_get_ivars(child); switch (which) { case HIDBUS_IVAR_INDEX: tlc->index = value; break; case HIDBUS_IVAR_USAGE: tlc->usage = value; break; case HIDBUS_IVAR_FLAGS: tlc->flags = value; if ((value & HIDBUS_FLAG_CAN_POLL) != 0) HID_INTR_SETUP( device_get_parent(bus), NULL, NULL, NULL); break; case HIDBUS_IVAR_DRIVER_INFO: tlc->driver_info = value; break; case HIDBUS_IVAR_LOCK: tlc->mtx = (struct mtx *)value == NULL ? &sc->mtx : (struct mtx *)value; break; default: return (EINVAL); } return (0); } /* Location hint for devctl(8) */ static int hidbus_child_location(device_t bus, device_t child, struct sbuf *sb) { struct hidbus_ivars *tlc = device_get_ivars(child); sbuf_printf(sb, "index=%hhu", tlc->index); return (0); } /* PnP information for devctl(8) */ static int hidbus_child_pnpinfo(device_t bus, device_t child, struct sbuf *sb) { struct hidbus_ivars *tlc = device_get_ivars(child); struct hid_device_info *devinfo = device_get_ivars(bus); sbuf_printf(sb, "page=0x%04x usage=0x%04x bus=0x%02hx " "vendor=0x%04hx product=0x%04hx version=0x%04hx%s%s", HID_GET_USAGE_PAGE(tlc->usage), HID_GET_USAGE(tlc->usage), devinfo->idBus, devinfo->idVendor, devinfo->idProduct, devinfo->idVersion, devinfo->idPnP[0] == '\0' ? "" : " _HID=", devinfo->idPnP[0] == '\0' ? "" : devinfo->idPnP); return (0); } void hidbus_set_desc(device_t child, const char *suffix) { device_t bus = device_get_parent(child); struct hidbus_softc *sc = device_get_softc(bus); struct hid_device_info *devinfo = device_get_ivars(bus); struct hidbus_ivars *tlc = device_get_ivars(child); char buf[80]; /* Do not add NULL suffix or if device name already contains it. */ if (suffix != NULL && strcasestr(devinfo->name, suffix) == NULL && (sc->nauto > 1 || (tlc->flags & HIDBUS_FLAG_AUTOCHILD) == 0)) { snprintf(buf, sizeof(buf), "%s %s", devinfo->name, suffix); device_set_desc_copy(child, buf); } else device_set_desc(child, devinfo->name); } device_t hidbus_find_child(device_t bus, int32_t usage) { device_t *children, child; int ccount, i; - GIANT_REQUIRED; + bus_topo_assert(); /* Get a list of all hidbus children */ if (device_get_children(bus, &children, &ccount) != 0) return (NULL); /* Scan through to find required TLC */ for (i = 0, child = NULL; i < ccount; i++) { if (hidbus_get_usage(children[i]) == usage) { child = children[i]; break; } } free(children, M_TEMP); return (child); } void hidbus_intr(void *context, void *buf, hid_size_t len) { struct hidbus_softc *sc = context; struct hidbus_ivars *tlc; struct epoch_tracker et; /* * Broadcast input report to all subscribers. * TODO: Add check for input report ID. * * Relock mutex on every TLC item as we can't hold any locks over whole * TLC list here due to LOR with open()/close() handlers. */ if (!HID_IN_POLLING_MODE()) epoch_enter_preempt(INPUT_EPOCH, &et); CK_STAILQ_FOREACH(tlc, &sc->tlcs, link) { if (tlc->refcnt == 0 || tlc->intr_handler == NULL) continue; if (HID_IN_POLLING_MODE()) { if ((tlc->flags & HIDBUS_FLAG_CAN_POLL) != 0) tlc->intr_handler(tlc->intr_ctx, buf, len); } else { mtx_lock(tlc->mtx); tlc->intr_handler(tlc->intr_ctx, buf, len); mtx_unlock(tlc->mtx); } } if (!HID_IN_POLLING_MODE()) epoch_exit_preempt(INPUT_EPOCH, &et); } void hidbus_set_intr(device_t child, hid_intr_t *handler, void *context) { struct hidbus_ivars *tlc = device_get_ivars(child); tlc->intr_handler = handler; tlc->intr_ctx = context; } int hidbus_intr_start(device_t child) { device_t bus = device_get_parent(child); struct hidbus_softc *sc = device_get_softc(bus); struct hidbus_ivars *ivar = device_get_ivars(child); struct hidbus_ivars *tlc; int refcnt = 0; int error; if (sx_xlock_sig(&sc->sx) != 0) return (EINTR); CK_STAILQ_FOREACH(tlc, &sc->tlcs, link) { refcnt += tlc->refcnt; if (tlc == ivar) { mtx_lock(tlc->mtx); ++tlc->refcnt; mtx_unlock(tlc->mtx); } } error = refcnt != 0 ? 0 : HID_INTR_START(device_get_parent(bus)); sx_unlock(&sc->sx); return (error); } int hidbus_intr_stop(device_t child) { device_t bus = device_get_parent(child); struct hidbus_softc *sc = device_get_softc(bus); struct hidbus_ivars *ivar = device_get_ivars(child); struct hidbus_ivars *tlc; bool refcnt = 0; int error; if (sx_xlock_sig(&sc->sx) != 0) return (EINTR); CK_STAILQ_FOREACH(tlc, &sc->tlcs, link) { if (tlc == ivar) { mtx_lock(tlc->mtx); MPASS(tlc->refcnt != 0); --tlc->refcnt; mtx_unlock(tlc->mtx); } refcnt += tlc->refcnt; } error = refcnt != 0 ? 0 : HID_INTR_STOP(device_get_parent(bus)); sx_unlock(&sc->sx); return (error); } void hidbus_intr_poll(device_t child) { device_t bus = device_get_parent(child); HID_INTR_POLL(device_get_parent(bus)); } struct hid_rdesc_info * hidbus_get_rdesc_info(device_t child) { device_t bus = device_get_parent(child); struct hidbus_softc *sc = device_get_softc(bus); return (&sc->rdesc); } /* * HID interface. * * Hidbus as well as any hidbus child can be passed as first arg. */ /* Read cached report descriptor */ int hid_get_report_descr(device_t dev, void **data, hid_size_t *len) { device_t bus; struct hidbus_softc *sc; bus = device_get_devclass(dev) == hidbus_devclass ? dev : device_get_parent(dev); sc = device_get_softc(bus); /* * Do not send request to a transport backend. * Use cached report descriptor instead of it. */ if (sc->rdesc.data == NULL || sc->rdesc.len == 0) return (ENXIO); if (data != NULL) *data = sc->rdesc.data; if (len != NULL) *len = sc->rdesc.len; return (0); } /* * Replace cached report descriptor with top level driver provided one. * * It deletes all hidbus children except caller and enumerates them again after * new descriptor has been registered. Currently it can not be called from * autoenumerated (by report's TLC) child device context as it results in child * duplication. To overcome this limitation hid_set_report_descr() should be * called from device_identify driver's handler with hidbus itself passed as * 'device_t dev' parameter. */ int hid_set_report_descr(device_t dev, const void *data, hid_size_t len) { struct hid_rdesc_info rdesc; device_t bus; struct hidbus_softc *sc; bool is_bus; int error; - GIANT_REQUIRED; + bus_topo_assert(); is_bus = device_get_devclass(dev) == hidbus_devclass; bus = is_bus ? dev : device_get_parent(dev); sc = device_get_softc(bus); /* * Do not overload already overloaded report descriptor in * device_identify handler. It causes infinite recursion loop. */ if (is_bus && sc->overloaded) return(0); DPRINTFN(5, "len=%d\n", len); DPRINTFN(5, "data = %*D\n", len, data, " "); error = hidbus_fill_rdesc_info(&rdesc, data, len); if (error != 0) return (error); error = hidbus_detach_children(dev); if (error != 0) return(error); /* Make private copy to handle a case of dynamicaly allocated data. */ rdesc.data = malloc(len, M_DEVBUF, M_ZERO | M_WAITOK); bcopy(data, rdesc.data, len); sc->overloaded = true; free(sc->rdesc.data, M_DEVBUF); bcopy(&rdesc, &sc->rdesc, sizeof(struct hid_rdesc_info)); error = hidbus_attach_children(bus); return (error); } static int hidbus_write(device_t dev, const void *data, hid_size_t len) { struct hidbus_softc *sc; uint8_t id; sc = device_get_softc(dev); /* * Output interrupt endpoint is often optional. If HID device * does not provide it, send reports via control pipe. */ if (sc->nowrite) { /* try to extract the ID byte */ id = (sc->rdesc.oid & (len > 0)) ? *(const uint8_t*)data : 0; return (hid_set_report(dev, data, len, HID_OUTPUT_REPORT, id)); } return (hid_write(dev, data, len)); } /*------------------------------------------------------------------------* * hidbus_lookup_id * * This functions takes an array of "struct hid_device_id" and tries * to match the entries with the information in "struct hid_device_info". * * Return values: * NULL: No match found. * Else: Pointer to matching entry. *------------------------------------------------------------------------*/ const struct hid_device_id * hidbus_lookup_id(device_t dev, const struct hid_device_id *id, int nitems_id) { const struct hid_device_id *id_end; const struct hid_device_info *info; int32_t usage; bool is_child; if (id == NULL) { goto done; } id_end = id + nitems_id; info = hid_get_device_info(dev); is_child = device_get_devclass(dev) != hidbus_devclass; if (is_child) usage = hidbus_get_usage(dev); /* * Keep on matching array entries until we find a match or * until we reach the end of the matching array: */ for (; id != id_end; id++) { if (is_child && (id->match_flag_page) && (id->page != HID_GET_USAGE_PAGE(usage))) { continue; } if (is_child && (id->match_flag_usage) && (id->usage != HID_GET_USAGE(usage))) { continue; } if ((id->match_flag_bus) && (id->idBus != info->idBus)) { continue; } if ((id->match_flag_vendor) && (id->idVendor != info->idVendor)) { continue; } if ((id->match_flag_product) && (id->idProduct != info->idProduct)) { continue; } if ((id->match_flag_ver_lo) && (id->idVersion_lo > info->idVersion)) { continue; } if ((id->match_flag_ver_hi) && (id->idVersion_hi < info->idVersion)) { continue; } if (id->match_flag_pnp && strncmp(id->idPnP, info->idPnP, HID_PNP_ID_SIZE) != 0) { continue; } /* We found a match! */ return (id); } done: return (NULL); } /*------------------------------------------------------------------------* * hidbus_lookup_driver_info - factored out code * * Return values: * 0: Success * Else: Failure *------------------------------------------------------------------------*/ int hidbus_lookup_driver_info(device_t child, const struct hid_device_id *id, int nitems_id) { id = hidbus_lookup_id(child, id, nitems_id); if (id) { /* copy driver info */ hidbus_set_driver_info(child, id->driver_info); return (0); } return (ENXIO); } const struct hid_device_info * hid_get_device_info(device_t dev) { device_t bus; bus = device_get_devclass(dev) == hidbus_devclass ? dev : device_get_parent(dev); return (device_get_ivars(bus)); } static device_method_t hidbus_methods[] = { /* device interface */ DEVMETHOD(device_probe, hidbus_probe), DEVMETHOD(device_attach, hidbus_attach), DEVMETHOD(device_detach, hidbus_detach), DEVMETHOD(device_suspend, bus_generic_suspend), DEVMETHOD(device_resume, bus_generic_resume), /* bus interface */ DEVMETHOD(bus_add_child, hidbus_add_child), DEVMETHOD(bus_child_detached, hidbus_child_detached), DEVMETHOD(bus_child_deleted, hidbus_child_deleted), DEVMETHOD(bus_read_ivar, hidbus_read_ivar), DEVMETHOD(bus_write_ivar, hidbus_write_ivar), DEVMETHOD(bus_child_pnpinfo, hidbus_child_pnpinfo), DEVMETHOD(bus_child_location, hidbus_child_location), /* hid interface */ DEVMETHOD(hid_get_rdesc, hid_get_rdesc), DEVMETHOD(hid_read, hid_read), DEVMETHOD(hid_write, hidbus_write), DEVMETHOD(hid_get_report, hid_get_report), DEVMETHOD(hid_set_report, hid_set_report), DEVMETHOD(hid_set_idle, hid_set_idle), DEVMETHOD(hid_set_protocol, hid_set_protocol), DEVMETHOD_END }; devclass_t hidbus_devclass; driver_t hidbus_driver = { "hidbus", hidbus_methods, sizeof(struct hidbus_softc), }; MODULE_DEPEND(hidbus, hid, 1, 1, 1); MODULE_VERSION(hidbus, 1); DRIVER_MODULE(hidbus, iichid, hidbus_driver, hidbus_devclass, 0, 0); DRIVER_MODULE(hidbus, usbhid, hidbus_driver, hidbus_devclass, 0, 0); diff --git a/sys/dev/hid/hmt.c b/sys/dev/hid/hmt.c index dcf360bcffba..42dadfe24256 100644 --- a/sys/dev/hid/hmt.c +++ b/sys/dev/hid/hmt.c @@ -1,919 +1,919 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2014-2020 Vladimir Kondratyev * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * MS Windows 7/8/10 compatible HID Multi-touch Device driver. * https://msdn.microsoft.com/en-us/library/windows/hardware/jj151569(v=vs.85).aspx * http://download.microsoft.com/download/7/d/d/7dd44bb7-2a7a-4505-ac1c-7227d3d96d5b/hid-over-i2c-protocol-spec-v1-0.docx * https://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt */ #include "opt_hid.h" #include #include #include #include #include #include #include #include #include #include #include #define HID_DEBUG_VAR hmt_debug #include #include #include #include static SYSCTL_NODE(_hw_hid, OID_AUTO, hmt, CTLFLAG_RW, 0, "MSWindows 7/8/10 compatible HID Multi-touch Device"); #ifdef HID_DEBUG static int hmt_debug = 0; SYSCTL_INT(_hw_hid_hmt, OID_AUTO, debug, CTLFLAG_RWTUN, &hmt_debug, 1, "Debug level"); #endif static bool hmt_timestamps = 0; SYSCTL_BOOL(_hw_hid_hmt, OID_AUTO, timestamps, CTLFLAG_RDTUN, &hmt_timestamps, 1, "Enable hardware timestamp reporting"); #define HMT_BTN_MAX 8 /* Number of buttons supported */ enum hmt_type { HMT_TYPE_UNKNOWN = 0, /* HID report descriptor is not probed */ HMT_TYPE_UNSUPPORTED, /* Repdescr does not belong to MT device */ HMT_TYPE_TOUCHPAD, HMT_TYPE_TOUCHSCREEN, }; enum { HMT_TIP_SWITCH = ABS_MT_INDEX(ABS_MT_TOOL_TYPE), HMT_WIDTH = ABS_MT_INDEX(ABS_MT_TOUCH_MAJOR), HMT_HEIGHT = ABS_MT_INDEX(ABS_MT_TOUCH_MINOR), HMT_ORIENTATION = ABS_MT_INDEX(ABS_MT_ORIENTATION), HMT_X = ABS_MT_INDEX(ABS_MT_POSITION_X), HMT_Y = ABS_MT_INDEX(ABS_MT_POSITION_Y), HMT_CONTACTID = ABS_MT_INDEX(ABS_MT_TRACKING_ID), HMT_PRESSURE = ABS_MT_INDEX(ABS_MT_PRESSURE), HMT_IN_RANGE = ABS_MT_INDEX(ABS_MT_DISTANCE), HMT_CONFIDENCE = ABS_MT_INDEX(ABS_MT_BLOB_ID), HMT_TOOL_X = ABS_MT_INDEX(ABS_MT_TOOL_X), HMT_TOOL_Y = ABS_MT_INDEX(ABS_MT_TOOL_Y), }; #define HMT_N_USAGES MT_CNT #define HMT_NO_USAGE -1 struct hmt_hid_map_item { char name[5]; int32_t usage; /* HID usage */ bool reported; /* Item value is passed to evdev */ bool required; /* Required for MT Digitizers */ }; static const struct hmt_hid_map_item hmt_hid_map[HMT_N_USAGES] = { [HMT_TIP_SWITCH] = { .name = "TIP", .usage = HID_USAGE2(HUP_DIGITIZERS, HUD_TIP_SWITCH), .reported = false, .required = true, }, [HMT_WIDTH] = { .name = "WDTH", .usage = HID_USAGE2(HUP_DIGITIZERS, HUD_WIDTH), .reported = true, .required = false, }, [HMT_HEIGHT] = { .name = "HGHT", .usage = HID_USAGE2(HUP_DIGITIZERS, HUD_HEIGHT), .reported = true, .required = false, }, [HMT_ORIENTATION] = { .name = "ORIE", .usage = HMT_NO_USAGE, .reported = true, .required = false, }, [HMT_X] = { .name = "X", .usage = HID_USAGE2(HUP_GENERIC_DESKTOP, HUG_X), .reported = true, .required = true, }, [HMT_Y] = { .name = "Y", .usage = HID_USAGE2(HUP_GENERIC_DESKTOP, HUG_Y), .reported = true, .required = true, }, [HMT_CONTACTID] = { .name = "C_ID", .usage = HID_USAGE2(HUP_DIGITIZERS, HUD_CONTACTID), .reported = true, .required = true, }, [HMT_PRESSURE] = { .name = "PRES", .usage = HID_USAGE2(HUP_DIGITIZERS, HUD_TIP_PRESSURE), .reported = true, .required = false, }, [HMT_IN_RANGE] = { .name = "RANG", .usage = HID_USAGE2(HUP_DIGITIZERS, HUD_IN_RANGE), .reported = true, .required = false, }, [HMT_CONFIDENCE] = { .name = "CONF", .usage = HID_USAGE2(HUP_DIGITIZERS, HUD_CONFIDENCE), .reported = false, .required = false, }, [HMT_TOOL_X] = { /* Shares HID usage with POS_X */ .name = "TL_X", .usage = HID_USAGE2(HUP_GENERIC_DESKTOP, HUG_X), .reported = true, .required = false, }, [HMT_TOOL_Y] = { /* Shares HID usage with POS_Y */ .name = "TL_Y", .usage = HID_USAGE2(HUP_GENERIC_DESKTOP, HUG_Y), .reported = true, .required = false, }, }; struct hmt_softc { device_t dev; enum hmt_type type; int32_t cont_count_max; struct hid_absinfo ai[HMT_N_USAGES]; struct hid_location locs[MAX_MT_SLOTS][HMT_N_USAGES]; struct hid_location cont_count_loc; struct hid_location btn_loc[HMT_BTN_MAX]; struct hid_location int_btn_loc; struct hid_location scan_time_loc; int32_t scan_time_max; int32_t scan_time; int32_t timestamp; bool touch; bool prev_touch; struct evdev_dev *evdev; union evdev_mt_slot slot_data; uint8_t caps[howmany(HMT_N_USAGES, 8)]; uint8_t buttons[howmany(HMT_BTN_MAX, 8)]; uint32_t nconts_per_report; uint32_t nconts_todo; uint8_t report_id; uint32_t max_button; bool has_int_button; bool has_cont_count; bool has_scan_time; bool is_clickpad; bool do_timestamps; #ifdef IICHID_SAMPLING bool iichid_sampling; #endif struct hid_location cont_max_loc; uint32_t cont_max_rlen; uint8_t cont_max_rid; struct hid_location btn_type_loc; uint32_t btn_type_rlen; uint8_t btn_type_rid; uint32_t thqa_cert_rlen; uint8_t thqa_cert_rid; }; #define HMT_FOREACH_USAGE(caps, usage) \ for ((usage) = 0; (usage) < HMT_N_USAGES; ++(usage)) \ if (isset((caps), (usage))) static enum hmt_type hmt_hid_parse(struct hmt_softc *, const void *, hid_size_t, uint32_t, uint8_t); static int hmt_set_input_mode(struct hmt_softc *, enum hconf_input_mode); static hid_intr_t hmt_intr; static device_probe_t hmt_probe; static device_attach_t hmt_attach; static device_detach_t hmt_detach; static evdev_open_t hmt_ev_open; static evdev_close_t hmt_ev_close; static const struct evdev_methods hmt_evdev_methods = { .ev_open = &hmt_ev_open, .ev_close = &hmt_ev_close, }; static const struct hid_device_id hmt_devs[] = { { HID_TLC(HUP_DIGITIZERS, HUD_TOUCHSCREEN) }, { HID_TLC(HUP_DIGITIZERS, HUD_TOUCHPAD) }, }; static int hmt_ev_close(struct evdev_dev *evdev) { return (hidbus_intr_stop(evdev_get_softc(evdev))); } static int hmt_ev_open(struct evdev_dev *evdev) { return (hidbus_intr_start(evdev_get_softc(evdev))); } static int hmt_probe(device_t dev) { struct hmt_softc *sc = device_get_softc(dev); void *d_ptr; hid_size_t d_len; int err; err = HIDBUS_LOOKUP_DRIVER_INFO(dev, hmt_devs); if (err != 0) return (err); err = hid_get_report_descr(dev, &d_ptr, &d_len); if (err != 0) { device_printf(dev, "could not retrieve report descriptor from " "device: %d\n", err); return (ENXIO); } /* Check if report descriptor belongs to a HID multitouch device */ if (sc->type == HMT_TYPE_UNKNOWN) sc->type = hmt_hid_parse(sc, d_ptr, d_len, hidbus_get_usage(dev), hidbus_get_index(dev)); if (sc->type == HMT_TYPE_UNSUPPORTED) return (ENXIO); hidbus_set_desc(dev, sc->type == HMT_TYPE_TOUCHPAD ? "TouchPad" : "TouchScreen"); return (BUS_PROBE_DEFAULT); } static int hmt_attach(device_t dev) { struct hmt_softc *sc = device_get_softc(dev); const struct hid_device_info *hw = hid_get_device_info(dev); void *d_ptr; uint8_t *fbuf = NULL; hid_size_t d_len, fsize, rsize; uint32_t cont_count_max; int nbuttons, btn; size_t i; int err; err = hid_get_report_descr(dev, &d_ptr, &d_len); if (err != 0) { device_printf(dev, "could not retrieve report descriptor from " "device: %d\n", err); return (ENXIO); } sc->dev = dev; fsize = hid_report_size_max(d_ptr, d_len, hid_feature, NULL); if (fsize != 0) fbuf = malloc(fsize, M_TEMP, M_WAITOK | M_ZERO); /* Fetch and parse "Contact count maximum" feature report */ if (sc->cont_max_rlen > 1) { err = hid_get_report(dev, fbuf, sc->cont_max_rlen, &rsize, HID_FEATURE_REPORT, sc->cont_max_rid); if (err == 0 && (rsize - 1) * 8 >= sc->cont_max_loc.pos + sc->cont_max_loc.size) { cont_count_max = hid_get_udata(fbuf + 1, sc->cont_max_rlen - 1, &sc->cont_max_loc); /* * Feature report is a primary source of * 'Contact Count Maximum' */ if (cont_count_max > 0) sc->cont_count_max = cont_count_max; } else DPRINTF("hid_get_report error=%d\n", err); } if (sc->cont_count_max == 0) sc->cont_count_max = sc->type == HMT_TYPE_TOUCHSCREEN ? 10 : 5; /* Fetch and parse "Button type" feature report */ if (sc->btn_type_rlen > 1 && sc->btn_type_rid != sc->cont_max_rid) { bzero(fbuf, fsize); err = hid_get_report(dev, fbuf, sc->btn_type_rlen, &rsize, HID_FEATURE_REPORT, sc->btn_type_rid); if (err != 0) DPRINTF("hid_get_report error=%d\n", err); } if (sc->btn_type_rlen > 1 && err == 0 && (rsize - 1) * 8 >= sc->btn_type_loc.pos + sc->btn_type_loc.size) sc->is_clickpad = hid_get_udata(fbuf + 1, sc->btn_type_rlen - 1, &sc->btn_type_loc) == 0; else sc->is_clickpad = sc->max_button == 0 && sc->has_int_button; /* Fetch THQA certificate to enable some devices like WaveShare */ if (sc->thqa_cert_rlen > 1 && sc->thqa_cert_rid != sc->cont_max_rid) (void)hid_get_report(dev, fbuf, sc->thqa_cert_rlen, NULL, HID_FEATURE_REPORT, sc->thqa_cert_rid); free(fbuf, M_TEMP); /* Switch touchpad in to absolute multitouch mode */ if (sc->type == HMT_TYPE_TOUCHPAD) { err = hmt_set_input_mode(sc, HCONF_INPUT_MODE_MT_TOUCHPAD); if (err != 0) DPRINTF("Failed to set input mode: %d\n", err); } /* Cap contact count maximum to MAX_MT_SLOTS */ if (sc->cont_count_max > MAX_MT_SLOTS) { DPRINTF("Hardware reported %d contacts while only %d is " "supported\n", sc->cont_count_max, MAX_MT_SLOTS); sc->cont_count_max = MAX_MT_SLOTS; } if (sc->has_scan_time && (hid_test_quirk(hw, HQ_MT_TIMESTAMP) || hmt_timestamps)) sc->do_timestamps = true; #ifdef IICHID_SAMPLING if (hid_test_quirk(hw, HQ_IICHID_SAMPLING)) sc->iichid_sampling = true; #endif hidbus_set_intr(dev, hmt_intr, sc); sc->evdev = evdev_alloc(); evdev_set_name(sc->evdev, device_get_desc(dev)); evdev_set_phys(sc->evdev, device_get_nameunit(dev)); evdev_set_id(sc->evdev, hw->idBus, hw->idVendor, hw->idProduct, hw->idVersion); evdev_set_serial(sc->evdev, hw->serial); evdev_set_methods(sc->evdev, dev, &hmt_evdev_methods); evdev_set_flag(sc->evdev, EVDEV_FLAG_MT_STCOMPAT); evdev_set_flag(sc->evdev, EVDEV_FLAG_EXT_EPOCH); /* hidbus child */ switch (sc->type) { case HMT_TYPE_TOUCHSCREEN: evdev_support_prop(sc->evdev, INPUT_PROP_DIRECT); break; case HMT_TYPE_TOUCHPAD: evdev_support_prop(sc->evdev, INPUT_PROP_POINTER); if (sc->is_clickpad) evdev_support_prop(sc->evdev, INPUT_PROP_BUTTONPAD); break; default: KASSERT(0, ("hmt_attach: unsupported touch device type")); } evdev_support_event(sc->evdev, EV_SYN); evdev_support_event(sc->evdev, EV_ABS); if (sc->do_timestamps) { evdev_support_event(sc->evdev, EV_MSC); evdev_support_msc(sc->evdev, MSC_TIMESTAMP); } #ifdef IICHID_SAMPLING if (sc->iichid_sampling) evdev_set_flag(sc->evdev, EVDEV_FLAG_MT_AUTOREL); #endif nbuttons = 0; if (sc->max_button != 0 || sc->has_int_button) { evdev_support_event(sc->evdev, EV_KEY); if (sc->has_int_button) evdev_support_key(sc->evdev, BTN_LEFT); for (btn = 0; btn < sc->max_button; ++btn) { if (isset(sc->buttons, btn)) { evdev_support_key(sc->evdev, BTN_MOUSE + btn); nbuttons++; } } } evdev_support_abs(sc->evdev, ABS_MT_SLOT, 0, sc->cont_count_max - 1, 0, 0, 0); HMT_FOREACH_USAGE(sc->caps, i) { if (hmt_hid_map[i].reported) evdev_support_abs(sc->evdev, ABS_MT_FIRST + i, sc->ai[i].min, sc->ai[i].max, 0, 0, sc->ai[i].res); } err = evdev_register(sc->evdev); if (err) { hmt_detach(dev); return (ENXIO); } /* Announce information about the touch device */ device_printf(sc->dev, "%s %s with %d external button%s%s\n", sc->cont_count_max > 1 ? "Multitouch" : "Singletouch", sc->type == HMT_TYPE_TOUCHSCREEN ? "touchscreen" : "touchpad", nbuttons, nbuttons != 1 ? "s" : "", sc->is_clickpad ? ", click-pad" : ""); device_printf(sc->dev, "%d contact%s with [%s%s%s%s%s] properties. Report range [%d:%d] - [%d:%d]\n", (int)sc->cont_count_max, sc->cont_count_max != 1 ? "s" : "", isset(sc->caps, HMT_IN_RANGE) ? "R" : "", isset(sc->caps, HMT_CONFIDENCE) ? "C" : "", isset(sc->caps, HMT_WIDTH) ? "W" : "", isset(sc->caps, HMT_HEIGHT) ? "H" : "", isset(sc->caps, HMT_PRESSURE) ? "P" : "", (int)sc->ai[HMT_X].min, (int)sc->ai[HMT_Y].min, (int)sc->ai[HMT_X].max, (int)sc->ai[HMT_Y].max); return (0); } static int hmt_detach(device_t dev) { struct hmt_softc *sc = device_get_softc(dev); evdev_free(sc->evdev); return (0); } static void hmt_intr(void *context, void *buf, hid_size_t len) { struct hmt_softc *sc = context; size_t usage; union evdev_mt_slot *slot_data; uint32_t cont, btn; uint32_t cont_count; uint32_t width; uint32_t height; uint32_t int_btn = 0; uint32_t left_btn = 0; int slot; uint32_t scan_time; int32_t delta; uint8_t id; #ifdef IICHID_SAMPLING /* * Special packet of zero length is generated by iichid driver running * in polling mode at the start of inactivity period to workaround * "stuck touch" problem caused by miss of finger release events. * This snippet is to be removed after GPIO interrupt support is added. */ if (sc->iichid_sampling && len == 0) { sc->prev_touch = false; sc->timestamp = 0; /* EVDEV_FLAG_MT_AUTOREL releases all touches for us */ evdev_sync(sc->evdev); return; } #endif /* Ignore irrelevant reports */ id = sc->report_id != 0 ? *(uint8_t *)buf : 0; if (sc->report_id != id) { DPRINTF("Skip report with unexpected ID: %hhu\n", id); return; } /* Strip leading "report ID" byte */ if (sc->report_id != 0) { len--; buf = (uint8_t *)buf + 1; } /* * "In Serial mode, each packet contains information that describes a * single physical contact point. Multiple contacts are streamed * serially. In this mode, devices report all contact information in a * series of packets. The device sends a separate packet for each * concurrent contact." * * "In Parallel mode, devices report all contact information in a * single packet. Each physical contact is represented by a logical * collection that is embedded in the top-level collection." * * Since additional contacts that were not present will still be in the * report with contactid=0 but contactids are zero-based, find * contactcount first. */ if (sc->has_cont_count) cont_count = hid_get_udata(buf, len, &sc->cont_count_loc); else cont_count = 1; /* * "In Hybrid mode, the number of contacts that can be reported in one * report is less than the maximum number of contacts that the device * supports. For example, a device that supports a maximum of * 4 concurrent physical contacts, can set up its top-level collection * to deliver a maximum of two contacts in one report. If four contact * points are present, the device can break these up into two serial * reports that deliver two contacts each. * * "When a device delivers data in this manner, the Contact Count usage * value in the first report should reflect the total number of * contacts that are being delivered in the hybrid reports. The other * serial reports should have a contact count of zero (0)." */ if (cont_count != 0) sc->nconts_todo = cont_count; #ifdef HID_DEBUG DPRINTFN(6, "cont_count:%2u", (unsigned)cont_count); if (hmt_debug >= 6) { HMT_FOREACH_USAGE(sc->caps, usage) { if (hmt_hid_map[usage].usage != HMT_NO_USAGE) printf(" %-4s", hmt_hid_map[usage].name); } printf("\n"); } #endif /* Find the number of contacts reported in current report */ cont_count = MIN(sc->nconts_todo, sc->nconts_per_report); /* Use protocol Type B for reporting events */ for (cont = 0; cont < cont_count; cont++) { slot_data = &sc->slot_data; bzero(slot_data, sizeof(sc->slot_data)); HMT_FOREACH_USAGE(sc->caps, usage) { if (sc->locs[cont][usage].size > 0) slot_data->val[usage] = hid_get_udata( buf, len, &sc->locs[cont][usage]); } slot = evdev_mt_id_to_slot(sc->evdev, slot_data->id); #ifdef HID_DEBUG DPRINTFN(6, "cont%01x: data = ", cont); if (hmt_debug >= 6) { HMT_FOREACH_USAGE(sc->caps, usage) { if (hmt_hid_map[usage].usage != HMT_NO_USAGE) printf("%04x ", slot_data->val[usage]); } printf("slot = %d\n", slot); } #endif if (slot == -1) { DPRINTF("Slot overflow for contact_id %u\n", (unsigned)slot_data->id); continue; } if (slot_data->val[HMT_TIP_SWITCH] != 0 && !(isset(sc->caps, HMT_CONFIDENCE) && slot_data->val[HMT_CONFIDENCE] == 0)) { /* This finger is in proximity of the sensor */ sc->touch = true; slot_data->dist = !slot_data->val[HMT_IN_RANGE]; /* Divided by two to match visual scale of touch */ width = slot_data->val[HMT_WIDTH] >> 1; height = slot_data->val[HMT_HEIGHT] >> 1; slot_data->ori = width > height; slot_data->maj = MAX(width, height); slot_data->min = MIN(width, height); } else slot_data = NULL; evdev_mt_push_slot(sc->evdev, slot, slot_data); } sc->nconts_todo -= cont_count; if (sc->do_timestamps && sc->nconts_todo == 0) { /* HUD_SCAN_TIME is measured in 100us, convert to us. */ scan_time = hid_get_udata(buf, len, &sc->scan_time_loc); if (sc->prev_touch) { delta = scan_time - sc->scan_time; if (delta < 0) delta += sc->scan_time_max; } else delta = 0; sc->scan_time = scan_time; sc->timestamp += delta * 100; evdev_push_msc(sc->evdev, MSC_TIMESTAMP, sc->timestamp); sc->prev_touch = sc->touch; sc->touch = false; if (!sc->prev_touch) sc->timestamp = 0; } if (sc->nconts_todo == 0) { /* Report both the click and external left btns as BTN_LEFT */ if (sc->has_int_button) int_btn = hid_get_data(buf, len, &sc->int_btn_loc); if (isset(sc->buttons, 0)) left_btn = hid_get_data(buf, len, &sc->btn_loc[0]); if (sc->has_int_button || isset(sc->buttons, 0)) evdev_push_key(sc->evdev, BTN_LEFT, (int_btn != 0) | (left_btn != 0)); for (btn = 1; btn < sc->max_button; ++btn) { if (isset(sc->buttons, btn)) evdev_push_key(sc->evdev, BTN_MOUSE + btn, hid_get_data(buf, len, &sc->btn_loc[btn]) != 0); } evdev_sync(sc->evdev); } } static enum hmt_type hmt_hid_parse(struct hmt_softc *sc, const void *d_ptr, hid_size_t d_len, uint32_t tlc_usage, uint8_t tlc_index) { struct hid_absinfo ai; struct hid_item hi; struct hid_data *hd; uint32_t flags; size_t i; size_t cont = 0; enum hmt_type type; uint32_t left_btn, btn; int32_t cont_count_max = 0; uint8_t report_id = 0; bool finger_coll = false; bool cont_count_found = false; bool scan_time_found = false; bool has_int_button = false; #define HMT_HI_ABSOLUTE(hi) ((hi).nusages != 0 && \ ((hi).flags & (HIO_VARIABLE | HIO_RELATIVE)) == HIO_VARIABLE) #define HUMS_THQA_CERT 0xC5 /* * Get left button usage taking in account MS Precision Touchpad specs. * For Windows PTP report descriptor assigns buttons in following way: * Button 1 - Indicates Button State for touchpad button integrated * with digitizer. * Button 2 - Indicates Button State for external button for primary * (default left) clicking. * Button 3 - Indicates Button State for external button for secondary * (default right) clicking. * If a device only supports external buttons, it must still use * Button 2 and Button 3 to reference the external buttons. */ switch (tlc_usage) { case HID_USAGE2(HUP_DIGITIZERS, HUD_TOUCHSCREEN): type = HMT_TYPE_TOUCHSCREEN; left_btn = 1; break; case HID_USAGE2(HUP_DIGITIZERS, HUD_TOUCHPAD): type = HMT_TYPE_TOUCHPAD; left_btn = 2; break; default: return (HMT_TYPE_UNSUPPORTED); } /* Parse features for mandatory maximum contact count usage */ if (!hidbus_locate(d_ptr, d_len, HID_USAGE2(HUP_DIGITIZERS, HUD_CONTACT_MAX), hid_feature, tlc_index, 0, &sc->cont_max_loc, &flags, &sc->cont_max_rid, &ai) || (flags & (HIO_VARIABLE | HIO_RELATIVE)) != HIO_VARIABLE) return (HMT_TYPE_UNSUPPORTED); cont_count_max = ai.max; /* Parse features for button type usage */ if (hidbus_locate(d_ptr, d_len, HID_USAGE2(HUP_DIGITIZERS, HUD_BUTTON_TYPE), hid_feature, tlc_index, 0, &sc->btn_type_loc, &flags, &sc->btn_type_rid, NULL) && (flags & (HIO_VARIABLE | HIO_RELATIVE)) != HIO_VARIABLE) sc->btn_type_rid = 0; /* Parse features for THQA certificate report ID */ hidbus_locate(d_ptr, d_len, HID_USAGE2(HUP_MICROSOFT, HUMS_THQA_CERT), hid_feature, tlc_index, 0, NULL, NULL, &sc->thqa_cert_rid, NULL); /* Parse input for other parameters */ hd = hid_start_parse(d_ptr, d_len, 1 << hid_input); HIDBUS_FOREACH_ITEM(hd, &hi, tlc_index) { switch (hi.kind) { case hid_collection: if (hi.collevel == 2 && hi.usage == HID_USAGE2(HUP_DIGITIZERS, HUD_FINGER)) finger_coll = true; break; case hid_endcollection: if (hi.collevel == 1 && finger_coll) { finger_coll = false; cont++; } break; case hid_input: /* * Ensure that all usages belong to the same report */ if (HMT_HI_ABSOLUTE(hi) && (report_id == 0 || report_id == hi.report_ID)) report_id = hi.report_ID; else break; if (hi.collevel == 1 && left_btn == 2 && hi.usage == HID_USAGE2(HUP_BUTTON, 1)) { has_int_button = true; sc->int_btn_loc = hi.loc; break; } if (hi.collevel == 1 && hi.usage >= HID_USAGE2(HUP_BUTTON, left_btn) && hi.usage <= HID_USAGE2(HUP_BUTTON, HMT_BTN_MAX)) { btn = (hi.usage & 0xFFFF) - left_btn; setbit(sc->buttons, btn); sc->btn_loc[btn] = hi.loc; if (btn >= sc->max_button) sc->max_button = btn + 1; break; } if (hi.collevel == 1 && hi.usage == HID_USAGE2(HUP_DIGITIZERS, HUD_CONTACTCOUNT)) { cont_count_found = true; sc->cont_count_loc = hi.loc; break; } if (hi.collevel == 1 && hi.usage == HID_USAGE2(HUP_DIGITIZERS, HUD_SCAN_TIME)) { scan_time_found = true; sc->scan_time_loc = hi.loc; sc->scan_time_max = hi.logical_maximum; break; } if (!finger_coll || hi.collevel != 2) break; if (cont >= MAX_MT_SLOTS) { DPRINTF("Finger %zu ignored\n", cont); break; } for (i = 0; i < HMT_N_USAGES; i++) { if (hi.usage == hmt_hid_map[i].usage) { /* * HUG_X usage is an array mapped to * both ABS_MT_POSITION and ABS_MT_TOOL * events. So don`t stop search if we * already have HUG_X mapping done. */ if (sc->locs[cont][i].size) continue; sc->locs[cont][i] = hi.loc; /* * Hid parser returns valid logical and * physical sizes for first finger only * at least on ElanTS 0x04f3:0x0012. */ if (cont > 0) break; setbit(sc->caps, i); sc->ai[i] = (struct hid_absinfo) { .max = hi.logical_maximum, .min = hi.logical_minimum, .res = hid_item_resolution(&hi), }; break; } } break; default: break; } } hid_end_parse(hd); /* Check for required HID Usages */ if ((!cont_count_found && cont != 1) || cont == 0) return (HMT_TYPE_UNSUPPORTED); for (i = 0; i < HMT_N_USAGES; i++) { if (hmt_hid_map[i].required && isclr(sc->caps, i)) return (HMT_TYPE_UNSUPPORTED); } /* Touchpads must have at least one button */ if (type == HMT_TYPE_TOUCHPAD && !sc->max_button && !has_int_button) return (HMT_TYPE_UNSUPPORTED); /* * According to specifications 'Contact Count Maximum' should be read * from Feature Report rather than from HID descriptor. Set sane * default value now to handle the case of 'Get Report' request failure */ if (cont_count_max < 1) cont_count_max = cont; /* Report touch orientation if both width and height are supported */ if (isset(sc->caps, HMT_WIDTH) && isset(sc->caps, HMT_HEIGHT)) { setbit(sc->caps, HMT_ORIENTATION); sc->ai[HMT_ORIENTATION].max = 1; } sc->cont_max_rlen = hid_report_size(d_ptr, d_len, hid_feature, sc->cont_max_rid); if (sc->btn_type_rid > 0) sc->btn_type_rlen = hid_report_size(d_ptr, d_len, hid_feature, sc->btn_type_rid); if (sc->thqa_cert_rid > 0) sc->thqa_cert_rlen = hid_report_size(d_ptr, d_len, hid_feature, sc->thqa_cert_rid); sc->report_id = report_id; sc->cont_count_max = cont_count_max; sc->nconts_per_report = cont; sc->has_int_button = has_int_button; sc->has_cont_count = cont_count_found; sc->has_scan_time = scan_time_found; return (type); } static int hmt_set_input_mode(struct hmt_softc *sc, enum hconf_input_mode mode) { devclass_t hconf_devclass; device_t hconf; int err; - GIANT_REQUIRED; + bus_topo_assert(); /* Find touchpad's configuration TLC */ hconf = hidbus_find_child(device_get_parent(sc->dev), HID_USAGE2(HUP_DIGITIZERS, HUD_CONFIG)); if (hconf == NULL) return (ENXIO); /* Ensure that hconf driver is attached to configuration TLC */ if (device_is_alive(hconf) == 0) device_probe_and_attach(hconf); if (device_is_attached(hconf) == 0) return (ENXIO); hconf_devclass = devclass_find("hconf"); if (device_get_devclass(hconf) != hconf_devclass) return (ENXIO); - /* hconf_set_input_mode can drop the Giant while sleeping */ + /* hconf_set_input_mode can drop the the topo lock while sleeping */ device_busy(hconf); err = hconf_set_input_mode(hconf, mode); device_unbusy(hconf); return (err); } static devclass_t hmt_devclass; static device_method_t hmt_methods[] = { DEVMETHOD(device_probe, hmt_probe), DEVMETHOD(device_attach, hmt_attach), DEVMETHOD(device_detach, hmt_detach), DEVMETHOD_END }; static driver_t hmt_driver = { .name = "hmt", .methods = hmt_methods, .size = sizeof(struct hmt_softc), }; DRIVER_MODULE(hmt, hidbus, hmt_driver, hmt_devclass, NULL, 0); MODULE_DEPEND(hmt, hidbus, 1, 1, 1); MODULE_DEPEND(hmt, hid, 1, 1, 1); MODULE_DEPEND(hmt, hconf, 1, 1, 1); MODULE_DEPEND(hmt, evdev, 1, 1, 1); MODULE_VERSION(hmt, 1); HID_PNP_INFO(hmt_devs); diff --git a/sys/dev/mii/mii.c b/sys/dev/mii/mii.c index f5f791171a53..5f782b15a151 100644 --- a/sys/dev/mii/mii.c +++ b/sys/dev/mii/mii.c @@ -1,674 +1,676 @@ /* $NetBSD: mii.c,v 1.12 1999/08/03 19:41:49 drochner Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * MII bus layer, glues MII-capable network interface drivers to sharable * PHY drivers. This exports an interface compatible with BSD/OS 3.0's, * plus some NetBSD extensions. */ #include #include #include #include #include #include #include #include #include #include #include #include MODULE_VERSION(miibus, 1); #include "miibus_if.h" static bus_child_detached_t miibus_child_detached; static bus_child_location_t miibus_child_location; static bus_child_pnpinfo_t miibus_child_pnpinfo; static device_detach_t miibus_detach; static bus_hinted_child_t miibus_hinted_child; static bus_print_child_t miibus_print_child; static device_probe_t miibus_probe; static bus_read_ivar_t miibus_read_ivar; static miibus_readreg_t miibus_readreg; static miibus_statchg_t miibus_statchg; static miibus_writereg_t miibus_writereg; static miibus_linkchg_t miibus_linkchg; static miibus_mediainit_t miibus_mediainit; static unsigned char mii_bitreverse(unsigned char x); static device_method_t miibus_methods[] = { /* device interface */ DEVMETHOD(device_probe, miibus_probe), DEVMETHOD(device_attach, miibus_attach), DEVMETHOD(device_detach, miibus_detach), DEVMETHOD(device_shutdown, bus_generic_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, miibus_print_child), DEVMETHOD(bus_read_ivar, miibus_read_ivar), DEVMETHOD(bus_child_detached, miibus_child_detached), DEVMETHOD(bus_child_pnpinfo, miibus_child_pnpinfo), DEVMETHOD(bus_child_location, miibus_child_location), DEVMETHOD(bus_hinted_child, miibus_hinted_child), /* MII interface */ DEVMETHOD(miibus_readreg, miibus_readreg), DEVMETHOD(miibus_writereg, miibus_writereg), DEVMETHOD(miibus_statchg, miibus_statchg), DEVMETHOD(miibus_linkchg, miibus_linkchg), DEVMETHOD(miibus_mediainit, miibus_mediainit), DEVMETHOD_END }; devclass_t miibus_devclass; DEFINE_CLASS_0(miibus, miibus_driver, miibus_methods, sizeof(struct mii_data)); struct miibus_ivars { if_t ifp; ifm_change_cb_t ifmedia_upd; ifm_stat_cb_t ifmedia_sts; u_int mii_flags; u_int mii_offset; }; static int miibus_probe(device_t dev) { device_set_desc(dev, "MII bus"); return (BUS_PROBE_SPECIFIC); } int miibus_attach(device_t dev) { struct miibus_ivars *ivars; struct mii_attach_args *ma; struct mii_data *mii; device_t *children; int i, nchildren; mii = device_get_softc(dev); if (device_get_children(dev, &children, &nchildren) == 0) { for (i = 0; i < nchildren; i++) { ma = device_get_ivars(children[i]); ma->mii_data = mii; } free(children, M_TEMP); } if (nchildren == 0) { device_printf(dev, "cannot get children\n"); return (ENXIO); } ivars = device_get_ivars(dev); ifmedia_init(&mii->mii_media, IFM_IMASK, ivars->ifmedia_upd, ivars->ifmedia_sts); mii->mii_ifp = ivars->ifp; if_setcapabilitiesbit(mii->mii_ifp, IFCAP_LINKSTATE, 0); if_setcapenablebit(mii->mii_ifp, IFCAP_LINKSTATE, 0); LIST_INIT(&mii->mii_phys); return (bus_generic_attach(dev)); } static int miibus_detach(device_t dev) { struct mii_data *mii; struct miibus_ivars *ivars; ivars = device_get_ivars(dev); bus_generic_detach(dev); mii = device_get_softc(dev); ifmedia_removeall(&mii->mii_media); free(ivars, M_DEVBUF); mii->mii_ifp = NULL; return (0); } static void miibus_child_detached(device_t dev, device_t child) { struct mii_attach_args *args; args = device_get_ivars(child); free(args, M_DEVBUF); } static int miibus_print_child(device_t dev, device_t child) { struct mii_attach_args *ma; int retval; ma = device_get_ivars(child); retval = bus_print_child_header(dev, child); retval += printf(" PHY %d", ma->mii_phyno); retval += bus_print_child_footer(dev, child); return (retval); } static int miibus_read_ivar(device_t dev, device_t child __unused, int which, uintptr_t *result) { struct miibus_ivars *ivars; /* * NB: this uses the instance variables of the miibus rather than * its PHY children. */ ivars = device_get_ivars(dev); switch (which) { case MIIBUS_IVAR_FLAGS: *result = ivars->mii_flags; break; default: return (ENOENT); } return (0); } static int miibus_child_pnpinfo(device_t dev __unused, device_t child, struct sbuf *sb) { struct mii_attach_args *ma; ma = device_get_ivars(child); sbuf_printf(sb, "oui=0x%x model=0x%x rev=0x%x", MII_OUI(ma->mii_id1, ma->mii_id2), MII_MODEL(ma->mii_id2), MII_REV(ma->mii_id2)); return (0); } static int miibus_child_location(device_t dev __unused, device_t child, struct sbuf *sb) { struct mii_attach_args *ma; ma = device_get_ivars(child); sbuf_printf(sb, "phyno=%d", ma->mii_phyno); return (0); } static void miibus_hinted_child(device_t dev, const char *name, int unit) { struct miibus_ivars *ivars; struct mii_attach_args *args, *ma; device_t *children, phy; int i, nchildren; u_int val; if (resource_int_value(name, unit, "phyno", &val) != 0) return; if (device_get_children(dev, &children, &nchildren) != 0) return; ma = NULL; for (i = 0; i < nchildren; i++) { args = device_get_ivars(children[i]); if (args->mii_phyno == val) { ma = args; break; } } free(children, M_TEMP); /* * Don't add a PHY that was automatically identified by having media * in its BMSR twice, only allow to alter its attach arguments. */ if (ma == NULL) { ma = malloc(sizeof(struct mii_attach_args), M_DEVBUF, M_NOWAIT); if (ma == NULL) return; phy = device_add_child(dev, name, unit); if (phy == NULL) { free(ma, M_DEVBUF); return; } ivars = device_get_ivars(dev); ma->mii_phyno = val; ma->mii_offset = ivars->mii_offset++; ma->mii_id1 = 0; ma->mii_id2 = 0; ma->mii_capmask = BMSR_DEFCAPMASK; device_set_ivars(phy, ma); } if (resource_int_value(name, unit, "id1", &val) == 0) ma->mii_id1 = val; if (resource_int_value(name, unit, "id2", &val) == 0) ma->mii_id2 = val; if (resource_int_value(name, unit, "capmask", &val) == 0) ma->mii_capmask = val; } static int miibus_readreg(device_t dev, int phy, int reg) { device_t parent; parent = device_get_parent(dev); return (MIIBUS_READREG(parent, phy, reg)); } static int miibus_writereg(device_t dev, int phy, int reg, int data) { device_t parent; parent = device_get_parent(dev); return (MIIBUS_WRITEREG(parent, phy, reg, data)); } static void miibus_statchg(device_t dev) { device_t parent; struct mii_data *mii; parent = device_get_parent(dev); MIIBUS_STATCHG(parent); mii = device_get_softc(dev); if_setbaudrate(mii->mii_ifp, ifmedia_baudrate(mii->mii_media_active)); } static void miibus_linkchg(device_t dev) { struct mii_data *mii; device_t parent; int link_state; parent = device_get_parent(dev); MIIBUS_LINKCHG(parent); mii = device_get_softc(dev); if (mii->mii_media_status & IFM_AVALID) { if (mii->mii_media_status & IFM_ACTIVE) link_state = LINK_STATE_UP; else link_state = LINK_STATE_DOWN; } else link_state = LINK_STATE_UNKNOWN; if_link_state_change(mii->mii_ifp, link_state); } static void miibus_mediainit(device_t dev) { struct mii_data *mii; struct ifmedia_entry *m; int media = 0; /* Poke the parent in case it has any media of its own to add. */ MIIBUS_MEDIAINIT(device_get_parent(dev)); mii = device_get_softc(dev); LIST_FOREACH(m, &mii->mii_media.ifm_list, ifm_list) { media = m->ifm_media; if (media == (IFM_ETHER | IFM_AUTO)) break; } ifmedia_set(&mii->mii_media, media); } /* * Helper function used by network interface drivers, attaches the miibus and * the PHYs to the network interface driver parent. */ int mii_attach(device_t dev, device_t *miibus, if_t ifp, ifm_change_cb_t ifmedia_upd, ifm_stat_cb_t ifmedia_sts, int capmask, int phyloc, int offloc, int flags) { struct miibus_ivars *ivars; struct mii_attach_args *args, ma; device_t *children, phy; int bmsr, first, i, nchildren, phymax, phymin, rv; uint32_t phymask; + bus_topo_assert(); + if (phyloc != MII_PHY_ANY && offloc != MII_OFFSET_ANY) { printf("%s: phyloc and offloc specified\n", __func__); return (EINVAL); } if (offloc != MII_OFFSET_ANY && (offloc < 0 || offloc >= MII_NPHY)) { printf("%s: invalid offloc %d\n", __func__, offloc); return (EINVAL); } if (phyloc == MII_PHY_ANY) { phymin = 0; phymax = MII_NPHY - 1; } else { if (phyloc < 0 || phyloc >= MII_NPHY) { printf("%s: invalid phyloc %d\n", __func__, phyloc); return (EINVAL); } phymin = phymax = phyloc; } first = 0; if (*miibus == NULL) { first = 1; ivars = malloc(sizeof(*ivars), M_DEVBUF, M_NOWAIT); if (ivars == NULL) return (ENOMEM); ivars->ifp = ifp; ivars->ifmedia_upd = ifmedia_upd; ivars->ifmedia_sts = ifmedia_sts; ivars->mii_flags = flags; *miibus = device_add_child(dev, "miibus", -1); if (*miibus == NULL) { rv = ENXIO; goto fail; } device_set_ivars(*miibus, ivars); } else { ivars = device_get_ivars(*miibus); if (ivars->ifp != ifp || ivars->ifmedia_upd != ifmedia_upd || ivars->ifmedia_sts != ifmedia_sts || ivars->mii_flags != flags) { printf("%s: non-matching invariant\n", __func__); return (EINVAL); } /* * Assignment of the attach arguments mii_data for the first * pass is done in miibus_attach(), i.e. once the miibus softc * has been allocated. */ ma.mii_data = device_get_softc(*miibus); } ma.mii_capmask = capmask; if (resource_int_value(device_get_name(*miibus), device_get_unit(*miibus), "phymask", &phymask) != 0) phymask = 0xffffffff; if (device_get_children(*miibus, &children, &nchildren) != 0) { children = NULL; nchildren = 0; } ivars->mii_offset = 0; for (ma.mii_phyno = phymin; ma.mii_phyno <= phymax; ma.mii_phyno++) { /* * Make sure we haven't already configured a PHY at this * address. This allows mii_attach() to be called * multiple times. */ for (i = 0; i < nchildren; i++) { args = device_get_ivars(children[i]); if (args->mii_phyno == ma.mii_phyno) { /* * Yes, there is already something * configured at this address. */ goto skip; } } /* * Check to see if there is a PHY at this address. Note, * many braindead PHYs report 0/0 in their ID registers, * so we test for media in the BMSR. */ bmsr = MIIBUS_READREG(dev, ma.mii_phyno, MII_BMSR); if (bmsr == 0 || bmsr == 0xffff || (bmsr & (BMSR_EXTSTAT | BMSR_MEDIAMASK)) == 0) { /* Assume no PHY at this address. */ continue; } /* * There is a PHY at this address. If we were given an * `offset' locator, skip this PHY if it doesn't match. */ if (offloc != MII_OFFSET_ANY && offloc != ivars->mii_offset) goto skip; /* * Skip this PHY if it's not included in the phymask hint. */ if ((phymask & (1 << ma.mii_phyno)) == 0) goto skip; /* * Extract the IDs. Braindead PHYs will be handled by * the `ukphy' driver, as we have no ID information to * match on. */ ma.mii_id1 = MIIBUS_READREG(dev, ma.mii_phyno, MII_PHYIDR1); ma.mii_id2 = MIIBUS_READREG(dev, ma.mii_phyno, MII_PHYIDR2); ma.mii_offset = ivars->mii_offset; args = malloc(sizeof(struct mii_attach_args), M_DEVBUF, M_NOWAIT); if (args == NULL) goto skip; bcopy((char *)&ma, (char *)args, sizeof(ma)); phy = device_add_child(*miibus, NULL, -1); if (phy == NULL) { free(args, M_DEVBUF); goto skip; } device_set_ivars(phy, args); skip: ivars->mii_offset++; } free(children, M_TEMP); if (first != 0) { rv = device_set_driver(*miibus, &miibus_driver); if (rv != 0) goto fail; bus_enumerate_hinted_children(*miibus); rv = device_get_children(*miibus, &children, &nchildren); if (rv != 0) goto fail; free(children, M_TEMP); if (nchildren == 0) { rv = ENXIO; goto fail; } rv = bus_generic_attach(dev); if (rv != 0) goto fail; /* Attaching of the PHY drivers is done in miibus_attach(). */ return (0); } rv = bus_generic_attach(*miibus); if (rv != 0) goto fail; return (0); fail: if (*miibus != NULL) device_delete_child(dev, *miibus); free(ivars, M_DEVBUF); if (first != 0) *miibus = NULL; return (rv); } /* * Media changed; notify all PHYs. */ int mii_mediachg(struct mii_data *mii) { struct mii_softc *child; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; int rv; mii->mii_media_status = 0; mii->mii_media_active = IFM_NONE; LIST_FOREACH(child, &mii->mii_phys, mii_list) { /* * If the media indicates a different PHY instance, * isolate this one. */ if (IFM_INST(ife->ifm_media) != child->mii_inst) { if ((child->mii_flags & MIIF_NOISOLATE) != 0) { device_printf(child->mii_dev, "%s: " "can't handle non-zero PHY instance %d\n", __func__, child->mii_inst); continue; } PHY_WRITE(child, MII_BMCR, PHY_READ(child, MII_BMCR) | BMCR_ISO); continue; } rv = PHY_SERVICE(child, mii, MII_MEDIACHG); if (rv) return (rv); } return (0); } /* * Call the PHY tick routines, used during autonegotiation. */ void mii_tick(struct mii_data *mii) { struct mii_softc *child; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; LIST_FOREACH(child, &mii->mii_phys, mii_list) { /* * If this PHY instance isn't currently selected, just skip * it. */ if (IFM_INST(ife->ifm_media) != child->mii_inst) continue; (void)PHY_SERVICE(child, mii, MII_TICK); } } /* * Get media status from PHYs. */ void mii_pollstat(struct mii_data *mii) { struct mii_softc *child; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; mii->mii_media_status = 0; mii->mii_media_active = IFM_NONE; LIST_FOREACH(child, &mii->mii_phys, mii_list) { /* * If we're not polling this PHY instance, just skip it. */ if (IFM_INST(ife->ifm_media) != child->mii_inst) continue; (void)PHY_SERVICE(child, mii, MII_POLLSTAT); } } static unsigned char mii_bitreverse(unsigned char x) { static unsigned const char nibbletab[16] = { 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15 }; return ((nibbletab[x & 15] << 4) | nibbletab[x >> 4]); } u_int mii_oui(u_int id1, u_int id2) { u_int h; h = (id1 << 6) | (id2 >> 10); return ((mii_bitreverse(h >> 16) << 16) | (mii_bitreverse((h >> 8) & 0xff) << 8) | mii_bitreverse(h & 0xff)); } int mii_phy_mac_match(struct mii_softc *mii, const char *name) { return (strcmp(device_get_name(device_get_parent(mii->mii_dev)), name) == 0); } int mii_dev_mac_match(device_t parent, const char *name) { return (strcmp(device_get_name(device_get_parent( device_get_parent(parent))), name) == 0); } void * mii_phy_mac_softc(struct mii_softc *mii) { return (device_get_softc(device_get_parent(mii->mii_dev))); } void * mii_dev_mac_softc(device_t parent) { return (device_get_softc(device_get_parent(device_get_parent(parent)))); } diff --git a/sys/kern/subr_bus.c b/sys/kern/subr_bus.c index 2544826e9028..a5d0fc773787 100644 --- a/sys/kern/subr_bus.c +++ b/sys/kern/subr_bus.c @@ -1,6074 +1,6081 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997,1998,2003 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_bus.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, NULL); SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, NULL); /* * Used to attach drivers to devclasses. */ typedef struct driverlink *driverlink_t; struct driverlink { kobj_class_t driver; TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */ int pass; int flags; #define DL_DEFERRED_PROBE 1 /* Probe deferred on this */ TAILQ_ENTRY(driverlink) passlink; }; /* * Forward declarations */ typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t; typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t; typedef TAILQ_HEAD(device_list, _device) device_list_t; struct devclass { TAILQ_ENTRY(devclass) link; devclass_t parent; /* parent in devclass hierarchy */ driver_list_t drivers; /* bus devclasses store drivers for bus */ char *name; device_t *devices; /* array of devices indexed by unit */ int maxunit; /* size of devices array */ int flags; #define DC_HAS_CHILDREN 1 struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; }; /** * @brief Implementation of _device. * * The structure is named "_device" instead of "device" to avoid type confusion * caused by other subsystems defining a (struct device). */ struct _device { /* * A device is a kernel object. The first field must be the * current ops table for the object. */ KOBJ_FIELDS; /* * Device hierarchy. */ TAILQ_ENTRY(_device) link; /**< list of devices in parent */ TAILQ_ENTRY(_device) devlink; /**< global device list membership */ device_t parent; /**< parent of this device */ device_list_t children; /**< list of child devices */ /* * Details of this device. */ driver_t *driver; /**< current driver */ devclass_t devclass; /**< current device class */ int unit; /**< current unit number */ char* nameunit; /**< name+unit e.g. foodev0 */ char* desc; /**< driver specific description */ u_int busy; /**< count of calls to device_busy() */ device_state_t state; /**< current device state */ uint32_t devflags; /**< api level flags for device_get_flags() */ u_int flags; /**< internal device flags */ u_int order; /**< order from device_add_child_ordered() */ void *ivars; /**< instance variables */ void *softc; /**< current driver's variables */ struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */ struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */ }; static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures"); static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc"); EVENTHANDLER_LIST_DEFINE(device_attach); EVENTHANDLER_LIST_DEFINE(device_detach); EVENTHANDLER_LIST_DEFINE(dev_lookup); static void devctl2_init(void); static bool device_frozen; #define DRIVERNAME(d) ((d)? d->name : "no driver") #define DEVCLANAME(d) ((d)? d->name : "no devclass") #ifdef BUS_DEBUG static int bus_debug = 1; SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0, "Bus debug level"); #define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");} #define DEVICENAME(d) ((d)? device_get_name(d): "no device") /** * Produce the indenting, indent*2 spaces plus a '.' ahead of that to * prevent syslog from deleting initial spaces */ #define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJparent ? dc->parent->name : ""; break; default: return (EINVAL); } return (SYSCTL_OUT_STR(req, value)); } static void devclass_sysctl_init(devclass_t dc) { if (dc->sysctl_tree != NULL) return; sysctl_ctx_init(&dc->sysctl_ctx); dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx, SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT, dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A", "parent class"); } enum { DEVICE_SYSCTL_DESC, DEVICE_SYSCTL_DRIVER, DEVICE_SYSCTL_LOCATION, DEVICE_SYSCTL_PNPINFO, DEVICE_SYSCTL_PARENT, }; static int device_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct sbuf sb; device_t dev = (device_t)arg1; int error; sbuf_new_for_sysctl(&sb, NULL, 1024, req); sbuf_clear_flags(&sb, SBUF_INCLUDENUL); bus_topo_lock(); switch (arg2) { case DEVICE_SYSCTL_DESC: sbuf_cat(&sb, dev->desc ? dev->desc : ""); break; case DEVICE_SYSCTL_DRIVER: sbuf_cat(&sb, dev->driver ? dev->driver->name : ""); break; case DEVICE_SYSCTL_LOCATION: bus_child_location(dev, &sb); break; case DEVICE_SYSCTL_PNPINFO: bus_child_pnpinfo(dev, &sb); break; case DEVICE_SYSCTL_PARENT: sbuf_cat(&sb, dev->parent ? dev->parent->nameunit : ""); break; default: error = EINVAL; goto out; } error = sbuf_finish(&sb); out: bus_topo_unlock(); sbuf_delete(&sb); return (error); } static void device_sysctl_init(device_t dev) { devclass_t dc = dev->devclass; int domain; if (dev->sysctl_tree != NULL) return; devclass_sysctl_init(dc); sysctl_ctx_init(&dev->sysctl_ctx); dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO, dev->nameunit + strlen(dc->name), CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A", "device description"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A", "device driver name"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A", "device location relative to parent"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A", "device identification"); SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A", "parent device"); if (bus_get_domain(dev, &domain) == 0) SYSCTL_ADD_INT(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, domain, "NUMA domain"); } static void device_sysctl_update(device_t dev) { devclass_t dc = dev->devclass; if (dev->sysctl_tree == NULL) return; sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name)); } static void device_sysctl_fini(device_t dev) { if (dev->sysctl_tree == NULL) return; sysctl_ctx_free(&dev->sysctl_ctx); dev->sysctl_tree = NULL; } /* * /dev/devctl implementation */ /* * This design allows only one reader for /dev/devctl. This is not desirable * in the long run, but will get a lot of hair out of this implementation. * Maybe we should make this device a clonable device. * * Also note: we specifically do not attach a device to the device_t tree * to avoid potential chicken and egg problems. One could argue that all * of this belongs to the root node. */ #define DEVCTL_DEFAULT_QUEUE_LEN 1000 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS); static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN; SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length"); static d_open_t devopen; static d_close_t devclose; static d_read_t devread; static d_ioctl_t devioctl; static d_poll_t devpoll; static d_kqfilter_t devkqfilter; static struct cdevsw dev_cdevsw = { .d_version = D_VERSION, .d_open = devopen, .d_close = devclose, .d_read = devread, .d_ioctl = devioctl, .d_poll = devpoll, .d_kqfilter = devkqfilter, .d_name = "devctl", }; #define DEVCTL_BUFFER (1024 - sizeof(void *)) struct dev_event_info { STAILQ_ENTRY(dev_event_info) dei_link; char dei_data[DEVCTL_BUFFER]; }; STAILQ_HEAD(devq, dev_event_info); static struct dev_softc { int inuse; int nonblock; int queued; int async; struct mtx mtx; struct cv cv; struct selinfo sel; struct devq devq; struct sigio *sigio; uma_zone_t zone; } devsoftc; static void filt_devctl_detach(struct knote *kn); static int filt_devctl_read(struct knote *kn, long hint); struct filterops devctl_rfiltops = { .f_isfd = 1, .f_detach = filt_devctl_detach, .f_event = filt_devctl_read, }; static struct cdev *devctl_dev; static void devinit(void) { int reserve; uma_zone_t z; devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, "devctl"); mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF); cv_init(&devsoftc.cv, "dev cv"); STAILQ_INIT(&devsoftc.devq); knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx); if (devctl_queue_length > 0) { /* * Allocate a zone for the messages. Preallocate 2% of these for * a reserve. Allow only devctl_queue_length slabs to cap memory * usage. The reserve usually allows coverage of surges of * events during memory shortages. Normally we won't have to * re-use events from the queue, but will in extreme shortages. */ z = devsoftc.zone = uma_zcreate("DEVCTL", sizeof(struct dev_event_info), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); reserve = max(devctl_queue_length / 50, 100); /* 2% reserve */ uma_zone_set_max(z, devctl_queue_length); uma_zone_set_maxcache(z, 0); uma_zone_reserve(z, reserve); uma_prealloc(z, reserve); } devctl2_init(); } static int devopen(struct cdev *dev, int oflags, int devtype, struct thread *td) { mtx_lock(&devsoftc.mtx); if (devsoftc.inuse) { mtx_unlock(&devsoftc.mtx); return (EBUSY); } /* move to init */ devsoftc.inuse = 1; mtx_unlock(&devsoftc.mtx); return (0); } static int devclose(struct cdev *dev, int fflag, int devtype, struct thread *td) { mtx_lock(&devsoftc.mtx); devsoftc.inuse = 0; devsoftc.nonblock = 0; devsoftc.async = 0; cv_broadcast(&devsoftc.cv); funsetown(&devsoftc.sigio); mtx_unlock(&devsoftc.mtx); return (0); } /* * The read channel for this device is used to report changes to * userland in realtime. We are required to free the data as well as * the n1 object because we allocate them separately. Also note that * we return one record at a time. If you try to read this device a * character at a time, you will lose the rest of the data. Listening * programs are expected to cope. */ static int devread(struct cdev *dev, struct uio *uio, int ioflag) { struct dev_event_info *n1; int rv; mtx_lock(&devsoftc.mtx); while (STAILQ_EMPTY(&devsoftc.devq)) { if (devsoftc.nonblock) { mtx_unlock(&devsoftc.mtx); return (EAGAIN); } rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx); if (rv) { /* * Need to translate ERESTART to EINTR here? -- jake */ mtx_unlock(&devsoftc.mtx); return (rv); } } n1 = STAILQ_FIRST(&devsoftc.devq); STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); devsoftc.queued--; mtx_unlock(&devsoftc.mtx); rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio); uma_zfree(devsoftc.zone, n1); return (rv); } static int devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td) { switch (cmd) { case FIONBIO: if (*(int*)data) devsoftc.nonblock = 1; else devsoftc.nonblock = 0; return (0); case FIOASYNC: if (*(int*)data) devsoftc.async = 1; else devsoftc.async = 0; return (0); case FIOSETOWN: return fsetown(*(int *)data, &devsoftc.sigio); case FIOGETOWN: *(int *)data = fgetown(&devsoftc.sigio); return (0); /* (un)Support for other fcntl() calls. */ case FIOCLEX: case FIONCLEX: case FIONREAD: default: break; } return (ENOTTY); } static int devpoll(struct cdev *dev, int events, struct thread *td) { int revents = 0; mtx_lock(&devsoftc.mtx); if (events & (POLLIN | POLLRDNORM)) { if (!STAILQ_EMPTY(&devsoftc.devq)) revents = events & (POLLIN | POLLRDNORM); else selrecord(td, &devsoftc.sel); } mtx_unlock(&devsoftc.mtx); return (revents); } static int devkqfilter(struct cdev *dev, struct knote *kn) { int error; if (kn->kn_filter == EVFILT_READ) { kn->kn_fop = &devctl_rfiltops; knlist_add(&devsoftc.sel.si_note, kn, 0); error = 0; } else error = EINVAL; return (error); } static void filt_devctl_detach(struct knote *kn) { knlist_remove(&devsoftc.sel.si_note, kn, 0); } static int filt_devctl_read(struct knote *kn, long hint) { kn->kn_data = devsoftc.queued; return (kn->kn_data != 0); } /** * @brief Return whether the userland process is running */ bool devctl_process_running(void) { return (devsoftc.inuse == 1); } static struct dev_event_info * devctl_alloc_dei(void) { struct dev_event_info *dei = NULL; mtx_lock(&devsoftc.mtx); if (devctl_queue_length == 0) goto out; dei = uma_zalloc(devsoftc.zone, M_NOWAIT); if (dei == NULL) dei = uma_zalloc(devsoftc.zone, M_NOWAIT | M_USE_RESERVE); if (dei == NULL) { /* * Guard against no items in the queue. Normally, this won't * happen, but if lots of events happen all at once and there's * a chance we're out of allocated space but none have yet been * queued when we get here, leaving nothing to steal. This can * also happen with error injection. Fail safe by returning * NULL in that case.. */ if (devsoftc.queued == 0) goto out; dei = STAILQ_FIRST(&devsoftc.devq); STAILQ_REMOVE_HEAD(&devsoftc.devq, dei_link); devsoftc.queued--; } MPASS(dei != NULL); *dei->dei_data = '\0'; out: mtx_unlock(&devsoftc.mtx); return (dei); } static struct dev_event_info * devctl_alloc_dei_sb(struct sbuf *sb) { struct dev_event_info *dei; dei = devctl_alloc_dei(); if (dei != NULL) sbuf_new(sb, dei->dei_data, sizeof(dei->dei_data), SBUF_FIXEDLEN); return (dei); } static void devctl_free_dei(struct dev_event_info *dei) { uma_zfree(devsoftc.zone, dei); } static void devctl_queue(struct dev_event_info *dei) { mtx_lock(&devsoftc.mtx); STAILQ_INSERT_TAIL(&devsoftc.devq, dei, dei_link); devsoftc.queued++; cv_broadcast(&devsoftc.cv); KNOTE_LOCKED(&devsoftc.sel.si_note, 0); mtx_unlock(&devsoftc.mtx); selwakeup(&devsoftc.sel); if (devsoftc.async && devsoftc.sigio != NULL) pgsigio(&devsoftc.sigio, SIGIO, 0); } /** * @brief Send a 'notification' to userland, using standard ways */ void devctl_notify(const char *system, const char *subsystem, const char *type, const char *data) { struct dev_event_info *dei; struct sbuf sb; if (system == NULL || subsystem == NULL || type == NULL) return; dei = devctl_alloc_dei_sb(&sb); if (dei == NULL) return; sbuf_cpy(&sb, "!system="); sbuf_cat(&sb, system); sbuf_cat(&sb, " subsystem="); sbuf_cat(&sb, subsystem); sbuf_cat(&sb, " type="); sbuf_cat(&sb, type); if (data != NULL) { sbuf_putc(&sb, ' '); sbuf_cat(&sb, data); } sbuf_putc(&sb, '\n'); if (sbuf_finish(&sb) != 0) devctl_free_dei(dei); /* overflow -> drop it */ else devctl_queue(dei); } /* * Common routine that tries to make sending messages as easy as possible. * We allocate memory for the data, copy strings into that, but do not * free it unless there's an error. The dequeue part of the driver should * free the data. We don't send data when the device is disabled. We do * send data, even when we have no listeners, because we wish to avoid * races relating to startup and restart of listening applications. * * devaddq is designed to string together the type of event, with the * object of that event, plus the plug and play info and location info * for that event. This is likely most useful for devices, but less * useful for other consumers of this interface. Those should use * the devctl_notify() interface instead. * * Output: * ${type}${what} at $(location dev) $(pnp-info dev) on $(parent dev) */ static void devaddq(const char *type, const char *what, device_t dev) { struct dev_event_info *dei; const char *parstr; struct sbuf sb; dei = devctl_alloc_dei_sb(&sb); if (dei == NULL) return; sbuf_cpy(&sb, type); sbuf_cat(&sb, what); sbuf_cat(&sb, " at "); /* Add in the location */ bus_child_location(dev, &sb); sbuf_putc(&sb, ' '); /* Add in pnpinfo */ bus_child_pnpinfo(dev, &sb); /* Get the parent of this device, or / if high enough in the tree. */ if (device_get_parent(dev) == NULL) parstr = "."; /* Or '/' ? */ else parstr = device_get_nameunit(device_get_parent(dev)); sbuf_cat(&sb, " on "); sbuf_cat(&sb, parstr); sbuf_putc(&sb, '\n'); if (sbuf_finish(&sb) != 0) goto bad; devctl_queue(dei); return; bad: devctl_free_dei(dei); } /* * A device was added to the tree. We are called just after it successfully * attaches (that is, probe and attach success for this device). No call * is made if a device is merely parented into the tree. See devnomatch * if probe fails. If attach fails, no notification is sent (but maybe * we should have a different message for this). */ static void devadded(device_t dev) { devaddq("+", device_get_nameunit(dev), dev); } /* * A device was removed from the tree. We are called just before this * happens. */ static void devremoved(device_t dev) { devaddq("-", device_get_nameunit(dev), dev); } /* * Called when there's no match for this device. This is only called * the first time that no match happens, so we don't keep getting this * message. Should that prove to be undesirable, we can change it. * This is called when all drivers that can attach to a given bus * decline to accept this device. Other errors may not be detected. */ static void devnomatch(device_t dev) { devaddq("?", "", dev); } static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS) { int q, error; q = devctl_queue_length; error = sysctl_handle_int(oidp, &q, 0, req); if (error || !req->newptr) return (error); if (q < 0) return (EINVAL); /* * When set as a tunable, we've not yet initialized the mutex. * It is safe to just assign to devctl_queue_length and return * as we're racing no one. We'll use whatever value set in * devinit. */ if (!mtx_initialized(&devsoftc.mtx)) { devctl_queue_length = q; return (0); } /* * XXX It's hard to grow or shrink the UMA zone. Only allow * disabling the queue size for the moment until underlying * UMA issues can be sorted out. */ if (q != 0) return (EINVAL); if (q == devctl_queue_length) return (0); mtx_lock(&devsoftc.mtx); devctl_queue_length = 0; uma_zdestroy(devsoftc.zone); devsoftc.zone = 0; mtx_unlock(&devsoftc.mtx); return (0); } /** * @brief safely quotes strings that might have double quotes in them. * * The devctl protocol relies on quoted strings having matching quotes. * This routine quotes any internal quotes so the resulting string * is safe to pass to snprintf to construct, for example pnp info strings. * * @param sb sbuf to place the characters into * @param src Original buffer. */ void devctl_safe_quote_sb(struct sbuf *sb, const char *src) { while (*src != '\0') { if (*src == '"' || *src == '\\') sbuf_putc(sb, '\\'); sbuf_putc(sb, *src++); } } /* End of /dev/devctl code */ static struct device_list bus_data_devices; static int bus_data_generation = 1; static kobj_method_t null_methods[] = { KOBJMETHOD_END }; DEFINE_CLASS(null, null_methods, 0); +void +bus_topo_assert() +{ + + GIANT_REQUIRED; +} + struct mtx * bus_topo_mtx(void) { return (&Giant); } void bus_topo_lock(void) { mtx_lock(bus_topo_mtx()); } void bus_topo_unlock(void) { mtx_unlock(bus_topo_mtx()); } /* * Bus pass implementation */ static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes); int bus_current_pass = BUS_PASS_ROOT; /** * @internal * @brief Register the pass level of a new driver attachment * * Register a new driver attachment's pass level. If no driver * attachment with the same pass level has been added, then @p new * will be added to the global passes list. * * @param new the new driver attachment */ static void driver_register_pass(struct driverlink *new) { struct driverlink *dl; /* We only consider pass numbers during boot. */ if (bus_current_pass == BUS_PASS_DEFAULT) return; /* * Walk the passes list. If we already know about this pass * then there is nothing to do. If we don't, then insert this * driver link into the list. */ TAILQ_FOREACH(dl, &passes, passlink) { if (dl->pass < new->pass) continue; if (dl->pass == new->pass) return; TAILQ_INSERT_BEFORE(dl, new, passlink); return; } TAILQ_INSERT_TAIL(&passes, new, passlink); } /** * @brief Raise the current bus pass * * Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS() * method on the root bus to kick off a new device tree scan for each * new pass level that has at least one driver. */ void bus_set_pass(int pass) { struct driverlink *dl; if (bus_current_pass > pass) panic("Attempt to lower bus pass level"); TAILQ_FOREACH(dl, &passes, passlink) { /* Skip pass values below the current pass level. */ if (dl->pass <= bus_current_pass) continue; /* * Bail once we hit a driver with a pass level that is * too high. */ if (dl->pass > pass) break; /* * Raise the pass level to the next level and rescan * the tree. */ bus_current_pass = dl->pass; BUS_NEW_PASS(root_bus); } /* * If there isn't a driver registered for the requested pass, * then bus_current_pass might still be less than 'pass'. Set * it to 'pass' in that case. */ if (bus_current_pass < pass) bus_current_pass = pass; KASSERT(bus_current_pass == pass, ("Failed to update bus pass level")); } /* * Devclass implementation */ static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses); /** * @internal * @brief Find or create a device class * * If a device class with the name @p classname exists, return it, * otherwise if @p create is non-zero create and return a new device * class. * * If @p parentname is non-NULL, the parent of the devclass is set to * the devclass of that name. * * @param classname the devclass name to find or create * @param parentname the parent devclass name or @c NULL * @param create non-zero to create a devclass */ static devclass_t devclass_find_internal(const char *classname, const char *parentname, int create) { devclass_t dc; PDEBUG(("looking for %s", classname)); if (!classname) return (NULL); TAILQ_FOREACH(dc, &devclasses, link) { if (!strcmp(dc->name, classname)) break; } if (create && !dc) { PDEBUG(("creating %s", classname)); dc = malloc(sizeof(struct devclass) + strlen(classname) + 1, M_BUS, M_NOWAIT | M_ZERO); if (!dc) return (NULL); dc->parent = NULL; dc->name = (char*) (dc + 1); strcpy(dc->name, classname); TAILQ_INIT(&dc->drivers); TAILQ_INSERT_TAIL(&devclasses, dc, link); bus_data_generation_update(); } /* * If a parent class is specified, then set that as our parent so * that this devclass will support drivers for the parent class as * well. If the parent class has the same name don't do this though * as it creates a cycle that can trigger an infinite loop in * device_probe_child() if a device exists for which there is no * suitable driver. */ if (parentname && dc && !dc->parent && strcmp(classname, parentname) != 0) { dc->parent = devclass_find_internal(parentname, NULL, TRUE); dc->parent->flags |= DC_HAS_CHILDREN; } return (dc); } /** * @brief Create a device class * * If a device class with the name @p classname exists, return it, * otherwise create and return a new device class. * * @param classname the devclass name to find or create */ devclass_t devclass_create(const char *classname) { return (devclass_find_internal(classname, NULL, TRUE)); } /** * @brief Find a device class * * If a device class with the name @p classname exists, return it, * otherwise return @c NULL. * * @param classname the devclass name to find */ devclass_t devclass_find(const char *classname) { return (devclass_find_internal(classname, NULL, FALSE)); } /** * @brief Register that a device driver has been added to a devclass * * Register that a device driver has been added to a devclass. This * is called by devclass_add_driver to accomplish the recursive * notification of all the children classes of dc, as well as dc. * Each layer will have BUS_DRIVER_ADDED() called for all instances of * the devclass. * * We do a full search here of the devclass list at each iteration * level to save storing children-lists in the devclass structure. If * we ever move beyond a few dozen devices doing this, we may need to * reevaluate... * * @param dc the devclass to edit * @param driver the driver that was just added */ static void devclass_driver_added(devclass_t dc, driver_t *driver) { devclass_t parent; int i; /* * Call BUS_DRIVER_ADDED for any existing buses in this class. */ for (i = 0; i < dc->maxunit; i++) if (dc->devices[i] && device_is_attached(dc->devices[i])) BUS_DRIVER_ADDED(dc->devices[i], driver); /* * Walk through the children classes. Since we only keep a * single parent pointer around, we walk the entire list of * devclasses looking for children. We set the * DC_HAS_CHILDREN flag when a child devclass is created on * the parent, so we only walk the list for those devclasses * that have children. */ if (!(dc->flags & DC_HAS_CHILDREN)) return; parent = dc; TAILQ_FOREACH(dc, &devclasses, link) { if (dc->parent == parent) devclass_driver_added(dc, driver); } } /** * @brief Add a device driver to a device class * * Add a device driver to a devclass. This is normally called * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of * all devices in the devclass will be called to allow them to attempt * to re-probe any unmatched children. * * @param dc the devclass to edit * @param driver the driver to register */ int devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp) { driverlink_t dl; const char *parentname; PDEBUG(("%s", DRIVERNAME(driver))); /* Don't allow invalid pass values. */ if (pass <= BUS_PASS_ROOT) return (EINVAL); dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO); if (!dl) return (ENOMEM); /* * Compile the driver's methods. Also increase the reference count * so that the class doesn't get freed when the last instance * goes. This means we can safely use static methods and avoids a * double-free in devclass_delete_driver. */ kobj_class_compile((kobj_class_t) driver); /* * If the driver has any base classes, make the * devclass inherit from the devclass of the driver's * first base class. This will allow the system to * search for drivers in both devclasses for children * of a device using this driver. */ if (driver->baseclasses) parentname = driver->baseclasses[0]->name; else parentname = NULL; *dcp = devclass_find_internal(driver->name, parentname, TRUE); dl->driver = driver; TAILQ_INSERT_TAIL(&dc->drivers, dl, link); driver->refs++; /* XXX: kobj_mtx */ dl->pass = pass; driver_register_pass(dl); if (device_frozen) { dl->flags |= DL_DEFERRED_PROBE; } else { devclass_driver_added(dc, driver); } bus_data_generation_update(); return (0); } /** * @brief Register that a device driver has been deleted from a devclass * * Register that a device driver has been removed from a devclass. * This is called by devclass_delete_driver to accomplish the * recursive notification of all the children classes of busclass, as * well as busclass. Each layer will attempt to detach the driver * from any devices that are children of the bus's devclass. The function * will return an error if a device fails to detach. * * We do a full search here of the devclass list at each iteration * level to save storing children-lists in the devclass structure. If * we ever move beyond a few dozen devices doing this, we may need to * reevaluate... * * @param busclass the devclass of the parent bus * @param dc the devclass of the driver being deleted * @param driver the driver being deleted */ static int devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver) { devclass_t parent; device_t dev; int error, i; /* * Disassociate from any devices. We iterate through all the * devices in the devclass of the driver and detach any which are * using the driver and which have a parent in the devclass which * we are deleting from. * * Note that since a driver can be in multiple devclasses, we * should not detach devices which are not children of devices in * the affected devclass. * * If we're frozen, we don't generate NOMATCH events. Mark to * generate later. */ for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { dev = dc->devices[i]; if (dev->driver == driver && dev->parent && dev->parent->devclass == busclass) { if ((error = device_detach(dev)) != 0) return (error); if (device_frozen) { dev->flags &= ~DF_DONENOMATCH; dev->flags |= DF_NEEDNOMATCH; } else { BUS_PROBE_NOMATCH(dev->parent, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } } } } /* * Walk through the children classes. Since we only keep a * single parent pointer around, we walk the entire list of * devclasses looking for children. We set the * DC_HAS_CHILDREN flag when a child devclass is created on * the parent, so we only walk the list for those devclasses * that have children. */ if (!(busclass->flags & DC_HAS_CHILDREN)) return (0); parent = busclass; TAILQ_FOREACH(busclass, &devclasses, link) { if (busclass->parent == parent) { error = devclass_driver_deleted(busclass, dc, driver); if (error) return (error); } } return (0); } /** * @brief Delete a device driver from a device class * * Delete a device driver from a devclass. This is normally called * automatically by DRIVER_MODULE(). * * If the driver is currently attached to any devices, * devclass_delete_driver() will first attempt to detach from each * device. If one of the detach calls fails, the driver will not be * deleted. * * @param dc the devclass to edit * @param driver the driver to unregister */ int devclass_delete_driver(devclass_t busclass, driver_t *driver) { devclass_t dc = devclass_find(driver->name); driverlink_t dl; int error; PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); if (!dc) return (0); /* * Find the link structure in the bus' list of drivers. */ TAILQ_FOREACH(dl, &busclass->drivers, link) { if (dl->driver == driver) break; } if (!dl) { PDEBUG(("%s not found in %s list", driver->name, busclass->name)); return (ENOENT); } error = devclass_driver_deleted(busclass, dc, driver); if (error != 0) return (error); TAILQ_REMOVE(&busclass->drivers, dl, link); free(dl, M_BUS); /* XXX: kobj_mtx */ driver->refs--; if (driver->refs == 0) kobj_class_free((kobj_class_t) driver); bus_data_generation_update(); return (0); } /** * @brief Quiesces a set of device drivers from a device class * * Quiesce a device driver from a devclass. This is normally called * automatically by DRIVER_MODULE(). * * If the driver is currently attached to any devices, * devclass_quiesece_driver() will first attempt to quiesce each * device. * * @param dc the devclass to edit * @param driver the driver to unregister */ static int devclass_quiesce_driver(devclass_t busclass, driver_t *driver) { devclass_t dc = devclass_find(driver->name); driverlink_t dl; device_t dev; int i; int error; PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass))); if (!dc) return (0); /* * Find the link structure in the bus' list of drivers. */ TAILQ_FOREACH(dl, &busclass->drivers, link) { if (dl->driver == driver) break; } if (!dl) { PDEBUG(("%s not found in %s list", driver->name, busclass->name)); return (ENOENT); } /* * Quiesce all devices. We iterate through all the devices in * the devclass of the driver and quiesce any which are using * the driver and which have a parent in the devclass which we * are quiescing. * * Note that since a driver can be in multiple devclasses, we * should not quiesce devices which are not children of * devices in the affected devclass. */ for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { dev = dc->devices[i]; if (dev->driver == driver && dev->parent && dev->parent->devclass == busclass) { if ((error = device_quiesce(dev)) != 0) return (error); } } } return (0); } /** * @internal */ static driverlink_t devclass_find_driver_internal(devclass_t dc, const char *classname) { driverlink_t dl; PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc))); TAILQ_FOREACH(dl, &dc->drivers, link) { if (!strcmp(dl->driver->name, classname)) return (dl); } PDEBUG(("not found")); return (NULL); } /** * @brief Return the name of the devclass */ const char * devclass_get_name(devclass_t dc) { return (dc->name); } /** * @brief Find a device given a unit number * * @param dc the devclass to search * @param unit the unit number to search for * * @returns the device with the given unit number or @c * NULL if there is no such device */ device_t devclass_get_device(devclass_t dc, int unit) { if (dc == NULL || unit < 0 || unit >= dc->maxunit) return (NULL); return (dc->devices[unit]); } /** * @brief Find the softc field of a device given a unit number * * @param dc the devclass to search * @param unit the unit number to search for * * @returns the softc field of the device with the given * unit number or @c NULL if there is no such * device */ void * devclass_get_softc(devclass_t dc, int unit) { device_t dev; dev = devclass_get_device(dc, unit); if (!dev) return (NULL); return (device_get_softc(dev)); } /** * @brief Get a list of devices in the devclass * * An array containing a list of all the devices in the given devclass * is allocated and returned in @p *devlistp. The number of devices * in the array is returned in @p *devcountp. The caller should free * the array using @c free(p, M_TEMP), even if @p *devcountp is 0. * * @param dc the devclass to examine * @param devlistp points at location for array pointer return * value * @param devcountp points at location for array size return value * * @retval 0 success * @retval ENOMEM the array allocation failed */ int devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp) { int count, i; device_t *list; count = devclass_get_count(dc); list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); if (!list) return (ENOMEM); count = 0; for (i = 0; i < dc->maxunit; i++) { if (dc->devices[i]) { list[count] = dc->devices[i]; count++; } } *devlistp = list; *devcountp = count; return (0); } /** * @brief Get a list of drivers in the devclass * * An array containing a list of pointers to all the drivers in the * given devclass is allocated and returned in @p *listp. The number * of drivers in the array is returned in @p *countp. The caller should * free the array using @c free(p, M_TEMP). * * @param dc the devclass to examine * @param listp gives location for array pointer return value * @param countp gives location for number of array elements * return value * * @retval 0 success * @retval ENOMEM the array allocation failed */ int devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp) { driverlink_t dl; driver_t **list; int count; count = 0; TAILQ_FOREACH(dl, &dc->drivers, link) count++; list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT); if (list == NULL) return (ENOMEM); count = 0; TAILQ_FOREACH(dl, &dc->drivers, link) { list[count] = dl->driver; count++; } *listp = list; *countp = count; return (0); } /** * @brief Get the number of devices in a devclass * * @param dc the devclass to examine */ int devclass_get_count(devclass_t dc) { int count, i; count = 0; for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) count++; return (count); } /** * @brief Get the maximum unit number used in a devclass * * Note that this is one greater than the highest currently-allocated * unit. If a null devclass_t is passed in, -1 is returned to indicate * that not even the devclass has been allocated yet. * * @param dc the devclass to examine */ int devclass_get_maxunit(devclass_t dc) { if (dc == NULL) return (-1); return (dc->maxunit); } /** * @brief Find a free unit number in a devclass * * This function searches for the first unused unit number greater * that or equal to @p unit. * * @param dc the devclass to examine * @param unit the first unit number to check */ int devclass_find_free_unit(devclass_t dc, int unit) { if (dc == NULL) return (unit); while (unit < dc->maxunit && dc->devices[unit] != NULL) unit++; return (unit); } /** * @brief Set the parent of a devclass * * The parent class is normally initialised automatically by * DRIVER_MODULE(). * * @param dc the devclass to edit * @param pdc the new parent devclass */ void devclass_set_parent(devclass_t dc, devclass_t pdc) { dc->parent = pdc; } /** * @brief Get the parent of a devclass * * @param dc the devclass to examine */ devclass_t devclass_get_parent(devclass_t dc) { return (dc->parent); } struct sysctl_ctx_list * devclass_get_sysctl_ctx(devclass_t dc) { return (&dc->sysctl_ctx); } struct sysctl_oid * devclass_get_sysctl_tree(devclass_t dc) { return (dc->sysctl_tree); } /** * @internal * @brief Allocate a unit number * * On entry, @p *unitp is the desired unit number (or @c -1 if any * will do). The allocated unit number is returned in @p *unitp. * @param dc the devclass to allocate from * @param unitp points at the location for the allocated unit * number * * @retval 0 success * @retval EEXIST the requested unit number is already allocated * @retval ENOMEM memory allocation failure */ static int devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp) { const char *s; int unit = *unitp; PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc))); /* Ask the parent bus if it wants to wire this device. */ if (unit == -1) BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name, &unit); /* If we were given a wired unit number, check for existing device */ /* XXX imp XXX */ if (unit != -1) { if (unit >= 0 && unit < dc->maxunit && dc->devices[unit] != NULL) { if (bootverbose) printf("%s: %s%d already exists; skipping it\n", dc->name, dc->name, *unitp); return (EEXIST); } } else { /* Unwired device, find the next available slot for it */ unit = 0; for (unit = 0;; unit++) { /* If this device slot is already in use, skip it. */ if (unit < dc->maxunit && dc->devices[unit] != NULL) continue; /* If there is an "at" hint for a unit then skip it. */ if (resource_string_value(dc->name, unit, "at", &s) == 0) continue; break; } } /* * We've selected a unit beyond the length of the table, so let's * extend the table to make room for all units up to and including * this one. */ if (unit >= dc->maxunit) { device_t *newlist, *oldlist; int newsize; oldlist = dc->devices; newsize = roundup((unit + 1), MAX(1, MINALLOCSIZE / sizeof(device_t))); newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT); if (!newlist) return (ENOMEM); if (oldlist != NULL) bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit); bzero(newlist + dc->maxunit, sizeof(device_t) * (newsize - dc->maxunit)); dc->devices = newlist; dc->maxunit = newsize; if (oldlist != NULL) free(oldlist, M_BUS); } PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc))); *unitp = unit; return (0); } /** * @internal * @brief Add a device to a devclass * * A unit number is allocated for the device (using the device's * preferred unit number if any) and the device is registered in the * devclass. This allows the device to be looked up by its unit * number, e.g. by decoding a dev_t minor number. * * @param dc the devclass to add to * @param dev the device to add * * @retval 0 success * @retval EEXIST the requested unit number is already allocated * @retval ENOMEM memory allocation failure */ static int devclass_add_device(devclass_t dc, device_t dev) { int buflen, error; PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX); if (buflen < 0) return (ENOMEM); dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO); if (!dev->nameunit) return (ENOMEM); if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) { free(dev->nameunit, M_BUS); dev->nameunit = NULL; return (error); } dc->devices[dev->unit] = dev; dev->devclass = dc; snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit); return (0); } /** * @internal * @brief Delete a device from a devclass * * The device is removed from the devclass's device list and its unit * number is freed. * @param dc the devclass to delete from * @param dev the device to delete * * @retval 0 success */ static int devclass_delete_device(devclass_t dc, device_t dev) { if (!dc || !dev) return (0); PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc))); if (dev->devclass != dc || dc->devices[dev->unit] != dev) panic("devclass_delete_device: inconsistent device class"); dc->devices[dev->unit] = NULL; if (dev->flags & DF_WILDCARD) dev->unit = -1; dev->devclass = NULL; free(dev->nameunit, M_BUS); dev->nameunit = NULL; return (0); } /** * @internal * @brief Make a new device and add it as a child of @p parent * * @param parent the parent of the new device * @param name the devclass name of the new device or @c NULL * to leave the devclass unspecified * @parem unit the unit number of the new device of @c -1 to * leave the unit number unspecified * * @returns the new device */ static device_t make_device(device_t parent, const char *name, int unit) { device_t dev; devclass_t dc; PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit)); if (name) { dc = devclass_find_internal(name, NULL, TRUE); if (!dc) { printf("make_device: can't find device class %s\n", name); return (NULL); } } else { dc = NULL; } dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO); if (!dev) return (NULL); dev->parent = parent; TAILQ_INIT(&dev->children); kobj_init((kobj_t) dev, &null_class); dev->driver = NULL; dev->devclass = NULL; dev->unit = unit; dev->nameunit = NULL; dev->desc = NULL; dev->busy = 0; dev->devflags = 0; dev->flags = DF_ENABLED; dev->order = 0; if (unit == -1) dev->flags |= DF_WILDCARD; if (name) { dev->flags |= DF_FIXEDCLASS; if (devclass_add_device(dc, dev)) { kobj_delete((kobj_t) dev, M_BUS); return (NULL); } } if (parent != NULL && device_has_quiet_children(parent)) dev->flags |= DF_QUIET | DF_QUIET_CHILDREN; dev->ivars = NULL; dev->softc = NULL; dev->state = DS_NOTPRESENT; TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink); bus_data_generation_update(); return (dev); } /** * @internal * @brief Print a description of a device. */ static int device_print_child(device_t dev, device_t child) { int retval = 0; if (device_is_alive(child)) retval += BUS_PRINT_CHILD(dev, child); else retval += device_printf(child, " not found\n"); return (retval); } /** * @brief Create a new device * * This creates a new device and adds it as a child of an existing * parent device. The new device will be added after the last existing * child with order zero. * * @param dev the device which will be the parent of the * new child device * @param name devclass name for new device or @c NULL if not * specified * @param unit unit number for new device or @c -1 if not * specified * * @returns the new device */ device_t device_add_child(device_t dev, const char *name, int unit) { return (device_add_child_ordered(dev, 0, name, unit)); } /** * @brief Create a new device * * This creates a new device and adds it as a child of an existing * parent device. The new device will be added after the last existing * child with the same order. * * @param dev the device which will be the parent of the * new child device * @param order a value which is used to partially sort the * children of @p dev - devices created using * lower values of @p order appear first in @p * dev's list of children * @param name devclass name for new device or @c NULL if not * specified * @param unit unit number for new device or @c -1 if not * specified * * @returns the new device */ device_t device_add_child_ordered(device_t dev, u_int order, const char *name, int unit) { device_t child; device_t place; PDEBUG(("%s at %s with order %u as unit %d", name, DEVICENAME(dev), order, unit)); KASSERT(name != NULL || unit == -1, ("child device with wildcard name and specific unit number")); child = make_device(dev, name, unit); if (child == NULL) return (child); child->order = order; TAILQ_FOREACH(place, &dev->children, link) { if (place->order > order) break; } if (place) { /* * The device 'place' is the first device whose order is * greater than the new child. */ TAILQ_INSERT_BEFORE(place, child, link); } else { /* * The new child's order is greater or equal to the order of * any existing device. Add the child to the tail of the list. */ TAILQ_INSERT_TAIL(&dev->children, child, link); } bus_data_generation_update(); return (child); } /** * @brief Delete a device * * This function deletes a device along with all of its children. If * the device currently has a driver attached to it, the device is * detached first using device_detach(). * * @param dev the parent device * @param child the device to delete * * @retval 0 success * @retval non-zero a unit error code describing the error */ int device_delete_child(device_t dev, device_t child) { int error; device_t grandchild; PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev))); /* detach parent before deleting children, if any */ if ((error = device_detach(child)) != 0) return (error); /* remove children second */ while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) { error = device_delete_child(child, grandchild); if (error) return (error); } if (child->devclass) devclass_delete_device(child->devclass, child); if (child->parent) BUS_CHILD_DELETED(dev, child); TAILQ_REMOVE(&dev->children, child, link); TAILQ_REMOVE(&bus_data_devices, child, devlink); kobj_delete((kobj_t) child, M_BUS); bus_data_generation_update(); return (0); } /** * @brief Delete all children devices of the given device, if any. * * This function deletes all children devices of the given device, if * any, using the device_delete_child() function for each device it * finds. If a child device cannot be deleted, this function will * return an error code. * * @param dev the parent device * * @retval 0 success * @retval non-zero a device would not detach */ int device_delete_children(device_t dev) { device_t child; int error; PDEBUG(("Deleting all children of %s", DEVICENAME(dev))); error = 0; while ((child = TAILQ_FIRST(&dev->children)) != NULL) { error = device_delete_child(dev, child); if (error) { PDEBUG(("Failed deleting %s", DEVICENAME(child))); break; } } return (error); } /** * @brief Find a device given a unit number * * This is similar to devclass_get_devices() but only searches for * devices which have @p dev as a parent. * * @param dev the parent device to search * @param unit the unit number to search for. If the unit is -1, * return the first child of @p dev which has name * @p classname (that is, the one with the lowest unit.) * * @returns the device with the given unit number or @c * NULL if there is no such device */ device_t device_find_child(device_t dev, const char *classname, int unit) { devclass_t dc; device_t child; dc = devclass_find(classname); if (!dc) return (NULL); if (unit != -1) { child = devclass_get_device(dc, unit); if (child && child->parent == dev) return (child); } else { for (unit = 0; unit < devclass_get_maxunit(dc); unit++) { child = devclass_get_device(dc, unit); if (child && child->parent == dev) return (child); } } return (NULL); } /** * @internal */ static driverlink_t first_matching_driver(devclass_t dc, device_t dev) { if (dev->devclass) return (devclass_find_driver_internal(dc, dev->devclass->name)); return (TAILQ_FIRST(&dc->drivers)); } /** * @internal */ static driverlink_t next_matching_driver(devclass_t dc, device_t dev, driverlink_t last) { if (dev->devclass) { driverlink_t dl; for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link)) if (!strcmp(dev->devclass->name, dl->driver->name)) return (dl); return (NULL); } return (TAILQ_NEXT(last, link)); } /** * @internal */ int device_probe_child(device_t dev, device_t child) { devclass_t dc; driverlink_t best = NULL; driverlink_t dl; int result, pri = 0; /* We should preserve the devclass (or lack of) set by the bus. */ int hasclass = (child->devclass != NULL); - GIANT_REQUIRED; + bus_topo_assert(); dc = dev->devclass; if (!dc) panic("device_probe_child: parent device has no devclass"); /* * If the state is already probed, then return. */ if (child->state == DS_ALIVE) return (0); for (; dc; dc = dc->parent) { for (dl = first_matching_driver(dc, child); dl; dl = next_matching_driver(dc, child, dl)) { /* If this driver's pass is too high, then ignore it. */ if (dl->pass > bus_current_pass) continue; PDEBUG(("Trying %s", DRIVERNAME(dl->driver))); result = device_set_driver(child, dl->driver); if (result == ENOMEM) return (result); else if (result != 0) continue; if (!hasclass) { if (device_set_devclass(child, dl->driver->name) != 0) { char const * devname = device_get_name(child); if (devname == NULL) devname = "(unknown)"; printf("driver bug: Unable to set " "devclass (class: %s " "devname: %s)\n", dl->driver->name, devname); (void)device_set_driver(child, NULL); continue; } } /* Fetch any flags for the device before probing. */ resource_int_value(dl->driver->name, child->unit, "flags", &child->devflags); result = DEVICE_PROBE(child); /* * If the driver returns SUCCESS, there can be * no higher match for this device. */ if (result == 0) { best = dl; pri = 0; break; } /* Reset flags and devclass before the next probe. */ child->devflags = 0; if (!hasclass) (void)device_set_devclass(child, NULL); /* * Reset DF_QUIET in case this driver doesn't * end up as the best driver. */ device_verbose(child); /* * Probes that return BUS_PROBE_NOWILDCARD or lower * only match on devices whose driver was explicitly * specified. */ if (result <= BUS_PROBE_NOWILDCARD && !(child->flags & DF_FIXEDCLASS)) { result = ENXIO; } /* * The driver returned an error so it * certainly doesn't match. */ if (result > 0) { (void)device_set_driver(child, NULL); continue; } /* * A priority lower than SUCCESS, remember the * best matching driver. Initialise the value * of pri for the first match. */ if (best == NULL || result > pri) { best = dl; pri = result; continue; } } /* * If we have an unambiguous match in this devclass, * don't look in the parent. */ if (best && pri == 0) break; } if (best == NULL) return (ENXIO); /* * If we found a driver, change state and initialise the devclass. */ if (pri < 0) { /* Set the winning driver, devclass, and flags. */ result = device_set_driver(child, best->driver); if (result != 0) return (result); if (!child->devclass) { result = device_set_devclass(child, best->driver->name); if (result != 0) { (void)device_set_driver(child, NULL); return (result); } } resource_int_value(best->driver->name, child->unit, "flags", &child->devflags); /* * A bit bogus. Call the probe method again to make sure * that we have the right description. */ result = DEVICE_PROBE(child); if (result > 0) { if (!hasclass) (void)device_set_devclass(child, NULL); (void)device_set_driver(child, NULL); return (result); } } child->state = DS_ALIVE; bus_data_generation_update(); return (0); } /** * @brief Return the parent of a device */ device_t device_get_parent(device_t dev) { return (dev->parent); } /** * @brief Get a list of children of a device * * An array containing a list of all the children of the given device * is allocated and returned in @p *devlistp. The number of devices * in the array is returned in @p *devcountp. The caller should free * the array using @c free(p, M_TEMP). * * @param dev the device to examine * @param devlistp points at location for array pointer return * value * @param devcountp points at location for array size return value * * @retval 0 success * @retval ENOMEM the array allocation failed */ int device_get_children(device_t dev, device_t **devlistp, int *devcountp) { int count; device_t child; device_t *list; count = 0; TAILQ_FOREACH(child, &dev->children, link) { count++; } if (count == 0) { *devlistp = NULL; *devcountp = 0; return (0); } list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO); if (!list) return (ENOMEM); count = 0; TAILQ_FOREACH(child, &dev->children, link) { list[count] = child; count++; } *devlistp = list; *devcountp = count; return (0); } /** * @brief Return the current driver for the device or @c NULL if there * is no driver currently attached */ driver_t * device_get_driver(device_t dev) { return (dev->driver); } /** * @brief Return the current devclass for the device or @c NULL if * there is none. */ devclass_t device_get_devclass(device_t dev) { return (dev->devclass); } /** * @brief Return the name of the device's devclass or @c NULL if there * is none. */ const char * device_get_name(device_t dev) { if (dev != NULL && dev->devclass) return (devclass_get_name(dev->devclass)); return (NULL); } /** * @brief Return a string containing the device's devclass name * followed by an ascii representation of the device's unit number * (e.g. @c "foo2"). */ const char * device_get_nameunit(device_t dev) { return (dev->nameunit); } /** * @brief Return the device's unit number. */ int device_get_unit(device_t dev) { return (dev->unit); } /** * @brief Return the device's description string */ const char * device_get_desc(device_t dev) { return (dev->desc); } /** * @brief Return the device's flags */ uint32_t device_get_flags(device_t dev) { return (dev->devflags); } struct sysctl_ctx_list * device_get_sysctl_ctx(device_t dev) { return (&dev->sysctl_ctx); } struct sysctl_oid * device_get_sysctl_tree(device_t dev) { return (dev->sysctl_tree); } /** * @brief Print the name of the device followed by a colon and a space * * @returns the number of characters printed */ int device_print_prettyname(device_t dev) { const char *name = device_get_name(dev); if (name == NULL) return (printf("unknown: ")); return (printf("%s%d: ", name, device_get_unit(dev))); } /** * @brief Print the name of the device followed by a colon, a space * and the result of calling vprintf() with the value of @p fmt and * the following arguments. * * @returns the number of characters printed */ int device_printf(device_t dev, const char * fmt, ...) { char buf[128]; struct sbuf sb; const char *name; va_list ap; size_t retval; retval = 0; sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); sbuf_set_drain(&sb, sbuf_printf_drain, &retval); name = device_get_name(dev); if (name == NULL) sbuf_cat(&sb, "unknown: "); else sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); va_end(ap); sbuf_finish(&sb); sbuf_delete(&sb); return (retval); } /** * @brief Print the name of the device followed by a colon, a space * and the result of calling log() with the value of @p fmt and * the following arguments. * * @returns the number of characters printed */ int device_log(device_t dev, int pri, const char * fmt, ...) { char buf[128]; struct sbuf sb; const char *name; va_list ap; size_t retval; retval = 0; sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); name = device_get_name(dev); if (name == NULL) sbuf_cat(&sb, "unknown: "); else sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev)); va_start(ap, fmt); sbuf_vprintf(&sb, fmt, ap); va_end(ap); sbuf_finish(&sb); log(pri, "%.*s", (int) sbuf_len(&sb), sbuf_data(&sb)); retval = sbuf_len(&sb); sbuf_delete(&sb); return (retval); } /** * @internal */ static void device_set_desc_internal(device_t dev, const char* desc, int copy) { if (dev->desc && (dev->flags & DF_DESCMALLOCED)) { free(dev->desc, M_BUS); dev->flags &= ~DF_DESCMALLOCED; dev->desc = NULL; } if (copy && desc) { dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT); if (dev->desc) { strcpy(dev->desc, desc); dev->flags |= DF_DESCMALLOCED; } } else { /* Avoid a -Wcast-qual warning */ dev->desc = (char *)(uintptr_t) desc; } bus_data_generation_update(); } /** * @brief Set the device's description * * The value of @c desc should be a string constant that will not * change (at least until the description is changed in a subsequent * call to device_set_desc() or device_set_desc_copy()). */ void device_set_desc(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, FALSE); } /** * @brief Set the device's description * * The string pointed to by @c desc is copied. Use this function if * the device description is generated, (e.g. with sprintf()). */ void device_set_desc_copy(device_t dev, const char* desc) { device_set_desc_internal(dev, desc, TRUE); } /** * @brief Set the device's flags */ void device_set_flags(device_t dev, uint32_t flags) { dev->devflags = flags; } /** * @brief Return the device's softc field * * The softc is allocated and zeroed when a driver is attached, based * on the size field of the driver. */ void * device_get_softc(device_t dev) { return (dev->softc); } /** * @brief Set the device's softc field * * Most drivers do not need to use this since the softc is allocated * automatically when the driver is attached. */ void device_set_softc(device_t dev, void *softc) { if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) free(dev->softc, M_BUS_SC); dev->softc = softc; if (dev->softc) dev->flags |= DF_EXTERNALSOFTC; else dev->flags &= ~DF_EXTERNALSOFTC; } /** * @brief Free claimed softc * * Most drivers do not need to use this since the softc is freed * automatically when the driver is detached. */ void device_free_softc(void *softc) { free(softc, M_BUS_SC); } /** * @brief Claim softc * * This function can be used to let the driver free the automatically * allocated softc using "device_free_softc()". This function is * useful when the driver is refcounting the softc and the softc * cannot be freed when the "device_detach" method is called. */ void device_claim_softc(device_t dev) { if (dev->softc) dev->flags |= DF_EXTERNALSOFTC; else dev->flags &= ~DF_EXTERNALSOFTC; } /** * @brief Get the device's ivars field * * The ivars field is used by the parent device to store per-device * state (e.g. the physical location of the device or a list of * resources). */ void * device_get_ivars(device_t dev) { KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)")); return (dev->ivars); } /** * @brief Set the device's ivars field */ void device_set_ivars(device_t dev, void * ivars) { KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)")); dev->ivars = ivars; } /** * @brief Return the device's state */ device_state_t device_get_state(device_t dev) { return (dev->state); } /** * @brief Set the DF_ENABLED flag for the device */ void device_enable(device_t dev) { dev->flags |= DF_ENABLED; } /** * @brief Clear the DF_ENABLED flag for the device */ void device_disable(device_t dev) { dev->flags &= ~DF_ENABLED; } /** * @brief Increment the busy counter for the device */ void device_busy(device_t dev) { /* * Mark the device as busy, recursively up the tree if this busy count * goes 0->1. */ if (refcount_acquire(&dev->busy) == 0 && dev->parent != NULL) device_busy(dev->parent); } /** * @brief Decrement the busy counter for the device */ void device_unbusy(device_t dev) { /* * Mark the device as unbsy, recursively if this is the last busy count. */ if (refcount_release(&dev->busy) && dev->parent != NULL) device_unbusy(dev->parent); } /** * @brief Set the DF_QUIET flag for the device */ void device_quiet(device_t dev) { dev->flags |= DF_QUIET; } /** * @brief Set the DF_QUIET_CHILDREN flag for the device */ void device_quiet_children(device_t dev) { dev->flags |= DF_QUIET_CHILDREN; } /** * @brief Clear the DF_QUIET flag for the device */ void device_verbose(device_t dev) { dev->flags &= ~DF_QUIET; } ssize_t device_get_property(device_t dev, const char *prop, void *val, size_t sz) { device_t bus = device_get_parent(dev); return (BUS_GET_PROPERTY(bus, dev, prop, val, sz)); } bool device_has_property(device_t dev, const char *prop) { return (device_get_property(dev, prop, NULL, 0) >= 0); } /** * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device */ int device_has_quiet_children(device_t dev) { return ((dev->flags & DF_QUIET_CHILDREN) != 0); } /** * @brief Return non-zero if the DF_QUIET flag is set on the device */ int device_is_quiet(device_t dev) { return ((dev->flags & DF_QUIET) != 0); } /** * @brief Return non-zero if the DF_ENABLED flag is set on the device */ int device_is_enabled(device_t dev) { return ((dev->flags & DF_ENABLED) != 0); } /** * @brief Return non-zero if the device was successfully probed */ int device_is_alive(device_t dev) { return (dev->state >= DS_ALIVE); } /** * @brief Return non-zero if the device currently has a driver * attached to it */ int device_is_attached(device_t dev) { return (dev->state >= DS_ATTACHED); } /** * @brief Return non-zero if the device is currently suspended. */ int device_is_suspended(device_t dev) { return ((dev->flags & DF_SUSPENDED) != 0); } /** * @brief Set the devclass of a device * @see devclass_add_device(). */ int device_set_devclass(device_t dev, const char *classname) { devclass_t dc; int error; if (!classname) { if (dev->devclass) devclass_delete_device(dev->devclass, dev); return (0); } if (dev->devclass) { printf("device_set_devclass: device class already set\n"); return (EINVAL); } dc = devclass_find_internal(classname, NULL, TRUE); if (!dc) return (ENOMEM); error = devclass_add_device(dc, dev); bus_data_generation_update(); return (error); } /** * @brief Set the devclass of a device and mark the devclass fixed. * @see device_set_devclass() */ int device_set_devclass_fixed(device_t dev, const char *classname) { int error; if (classname == NULL) return (EINVAL); error = device_set_devclass(dev, classname); if (error) return (error); dev->flags |= DF_FIXEDCLASS; return (0); } /** * @brief Query the device to determine if it's of a fixed devclass * @see device_set_devclass_fixed() */ bool device_is_devclass_fixed(device_t dev) { return ((dev->flags & DF_FIXEDCLASS) != 0); } /** * @brief Set the driver of a device * * @retval 0 success * @retval EBUSY the device already has a driver attached * @retval ENOMEM a memory allocation failure occurred */ int device_set_driver(device_t dev, driver_t *driver) { int domain; struct domainset *policy; if (dev->state >= DS_ATTACHED) return (EBUSY); if (dev->driver == driver) return (0); if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) { free(dev->softc, M_BUS_SC); dev->softc = NULL; } device_set_desc(dev, NULL); kobj_delete((kobj_t) dev, NULL); dev->driver = driver; if (driver) { kobj_init((kobj_t) dev, (kobj_class_t) driver); if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) { if (bus_get_domain(dev, &domain) == 0) policy = DOMAINSET_PREF(domain); else policy = DOMAINSET_RR(); dev->softc = malloc_domainset(driver->size, M_BUS_SC, policy, M_NOWAIT | M_ZERO); if (!dev->softc) { kobj_delete((kobj_t) dev, NULL); kobj_init((kobj_t) dev, &null_class); dev->driver = NULL; return (ENOMEM); } } } else { kobj_init((kobj_t) dev, &null_class); } bus_data_generation_update(); return (0); } /** * @brief Probe a device, and return this status. * * This function is the core of the device autoconfiguration * system. Its purpose is to select a suitable driver for a device and * then call that driver to initialise the hardware appropriately. The * driver is selected by calling the DEVICE_PROBE() method of a set of * candidate drivers and then choosing the driver which returned the * best value. This driver is then attached to the device using * device_attach(). * * The set of suitable drivers is taken from the list of drivers in * the parent device's devclass. If the device was originally created * with a specific class name (see device_add_child()), only drivers * with that name are probed, otherwise all drivers in the devclass * are probed. If no drivers return successful probe values in the * parent devclass, the search continues in the parent of that * devclass (see devclass_get_parent()) if any. * * @param dev the device to initialise * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code * @retval -1 Device already attached */ int device_probe(device_t dev) { int error; - GIANT_REQUIRED; + bus_topo_assert(); if (dev->state >= DS_ALIVE) return (-1); if (!(dev->flags & DF_ENABLED)) { if (bootverbose && device_get_name(dev) != NULL) { device_print_prettyname(dev); printf("not probed (disabled)\n"); } return (-1); } if ((error = device_probe_child(dev->parent, dev)) != 0) { if (bus_current_pass == BUS_PASS_DEFAULT && !(dev->flags & DF_DONENOMATCH)) { BUS_PROBE_NOMATCH(dev->parent, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } return (error); } return (0); } /** * @brief Probe a device and attach a driver if possible * * calls device_probe() and attaches if that was successful. */ int device_probe_and_attach(device_t dev) { int error; - GIANT_REQUIRED; + bus_topo_assert(); error = device_probe(dev); if (error == -1) return (0); else if (error != 0) return (error); CURVNET_SET_QUIET(vnet0); error = device_attach(dev); CURVNET_RESTORE(); return error; } /** * @brief Attach a device driver to a device * * This function is a wrapper around the DEVICE_ATTACH() driver * method. In addition to calling DEVICE_ATTACH(), it initialises the * device's sysctl tree, optionally prints a description of the device * and queues a notification event for user-based device management * services. * * Normally this function is only called internally from * device_probe_and_attach(). * * @param dev the device to initialise * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code */ int device_attach(device_t dev) { uint64_t attachtime; uint16_t attachentropy; int error; if (resource_disabled(dev->driver->name, dev->unit)) { device_disable(dev); if (bootverbose) device_printf(dev, "disabled via hints entry\n"); return (ENXIO); } device_sysctl_init(dev); if (!device_is_quiet(dev)) device_print_child(dev->parent, dev); attachtime = get_cyclecount(); dev->state = DS_ATTACHING; if ((error = DEVICE_ATTACH(dev)) != 0) { printf("device_attach: %s%d attach returned %d\n", dev->driver->name, dev->unit, error); if (!(dev->flags & DF_FIXEDCLASS)) devclass_delete_device(dev->devclass, dev); (void)device_set_driver(dev, NULL); device_sysctl_fini(dev); KASSERT(dev->busy == 0, ("attach failed but busy")); dev->state = DS_NOTPRESENT; return (error); } dev->flags |= DF_ATTACHED_ONCE; /* We only need the low bits of this time, but ranges from tens to thousands * have been seen, so keep 2 bytes' worth. */ attachentropy = (uint16_t)(get_cyclecount() - attachtime); random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH); device_sysctl_update(dev); dev->state = DS_ATTACHED; dev->flags &= ~DF_DONENOMATCH; EVENTHANDLER_DIRECT_INVOKE(device_attach, dev); devadded(dev); return (0); } /** * @brief Detach a driver from a device * * This function is a wrapper around the DEVICE_DETACH() driver * method. If the call to DEVICE_DETACH() succeeds, it calls * BUS_CHILD_DETACHED() for the parent of @p dev, queues a * notification event for user-based device management services and * cleans up the device's sysctl tree. * * @param dev the device to un-initialise * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code */ int device_detach(device_t dev) { int error; - GIANT_REQUIRED; + bus_topo_assert(); PDEBUG(("%s", DEVICENAME(dev))); if (dev->busy > 0) return (EBUSY); if (dev->state == DS_ATTACHING) { device_printf(dev, "device in attaching state! Deferring detach.\n"); return (EBUSY); } if (dev->state != DS_ATTACHED) return (0); EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN); if ((error = DEVICE_DETACH(dev)) != 0) { EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_FAILED); return (error); } else { EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_COMPLETE); } devremoved(dev); if (!device_is_quiet(dev)) device_printf(dev, "detached\n"); if (dev->parent) BUS_CHILD_DETACHED(dev->parent, dev); if (!(dev->flags & DF_FIXEDCLASS)) devclass_delete_device(dev->devclass, dev); device_verbose(dev); dev->state = DS_NOTPRESENT; (void)device_set_driver(dev, NULL); device_sysctl_fini(dev); return (0); } /** * @brief Tells a driver to quiesce itself. * * This function is a wrapper around the DEVICE_QUIESCE() driver * method. If the call to DEVICE_QUIESCE() succeeds. * * @param dev the device to quiesce * * @retval 0 success * @retval ENXIO no driver was found * @retval ENOMEM memory allocation failure * @retval non-zero some other unix error code */ int device_quiesce(device_t dev) { PDEBUG(("%s", DEVICENAME(dev))); if (dev->busy > 0) return (EBUSY); if (dev->state != DS_ATTACHED) return (0); return (DEVICE_QUIESCE(dev)); } /** * @brief Notify a device of system shutdown * * This function calls the DEVICE_SHUTDOWN() driver method if the * device currently has an attached driver. * * @returns the value returned by DEVICE_SHUTDOWN() */ int device_shutdown(device_t dev) { if (dev->state < DS_ATTACHED) return (0); return (DEVICE_SHUTDOWN(dev)); } /** * @brief Set the unit number of a device * * This function can be used to override the unit number used for a * device (e.g. to wire a device to a pre-configured unit number). */ int device_set_unit(device_t dev, int unit) { devclass_t dc; int err; if (unit == dev->unit) return (0); dc = device_get_devclass(dev); if (unit < dc->maxunit && dc->devices[unit]) return (EBUSY); err = devclass_delete_device(dc, dev); if (err) return (err); dev->unit = unit; err = devclass_add_device(dc, dev); if (err) return (err); bus_data_generation_update(); return (0); } /*======================================*/ /* * Some useful method implementations to make life easier for bus drivers. */ void resource_init_map_request_impl(struct resource_map_request *args, size_t sz) { bzero(args, sz); args->size = sz; args->memattr = VM_MEMATTR_DEVICE; } /** * @brief Initialise a resource list. * * @param rl the resource list to initialise */ void resource_list_init(struct resource_list *rl) { STAILQ_INIT(rl); } /** * @brief Reclaim memory used by a resource list. * * This function frees the memory for all resource entries on the list * (if any). * * @param rl the resource list to free */ void resource_list_free(struct resource_list *rl) { struct resource_list_entry *rle; while ((rle = STAILQ_FIRST(rl)) != NULL) { if (rle->res) panic("resource_list_free: resource entry is busy"); STAILQ_REMOVE_HEAD(rl, link); free(rle, M_BUS); } } /** * @brief Add a resource entry. * * This function adds a resource entry using the given @p type, @p * start, @p end and @p count values. A rid value is chosen by * searching sequentially for the first unused rid starting at zero. * * @param rl the resource list to edit * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param start the start address of the resource * @param end the end address of the resource * @param count XXX end-start+1 */ int resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, rman_res_t end, rman_res_t count) { int rid; rid = 0; while (resource_list_find(rl, type, rid) != NULL) rid++; resource_list_add(rl, type, rid, start, end, count); return (rid); } /** * @brief Add or modify a resource entry. * * If an existing entry exists with the same type and rid, it will be * modified using the given values of @p start, @p end and @p * count. If no entry exists, a new one will be created using the * given values. The resource list entry that matches is then returned. * * @param rl the resource list to edit * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * @param start the start address of the resource * @param end the end address of the resource * @param count XXX end-start+1 */ struct resource_list_entry * resource_list_add(struct resource_list *rl, int type, int rid, rman_res_t start, rman_res_t end, rman_res_t count) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (!rle) { rle = malloc(sizeof(struct resource_list_entry), M_BUS, M_NOWAIT); if (!rle) panic("resource_list_add: can't record entry"); STAILQ_INSERT_TAIL(rl, rle, link); rle->type = type; rle->rid = rid; rle->res = NULL; rle->flags = 0; } if (rle->res) panic("resource_list_add: resource entry is busy"); rle->start = start; rle->end = end; rle->count = count; return (rle); } /** * @brief Determine if a resource entry is busy. * * Returns true if a resource entry is busy meaning that it has an * associated resource that is not an unallocated "reserved" resource. * * @param rl the resource list to search * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * * @returns Non-zero if the entry is busy, zero otherwise. */ int resource_list_busy(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (rle == NULL || rle->res == NULL) return (0); if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) { KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE), ("reserved resource is active")); return (0); } return (1); } /** * @brief Determine if a resource entry is reserved. * * Returns true if a resource entry is reserved meaning that it has an * associated "reserved" resource. The resource can either be * allocated or unallocated. * * @param rl the resource list to search * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * * @returns Non-zero if the entry is reserved, zero otherwise. */ int resource_list_reserved(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; rle = resource_list_find(rl, type, rid); if (rle != NULL && rle->flags & RLE_RESERVED) return (1); return (0); } /** * @brief Find a resource entry by type and rid. * * @param rl the resource list to search * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier * * @returns the resource entry pointer or NULL if there is no such * entry. */ struct resource_list_entry * resource_list_find(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle; STAILQ_FOREACH(rle, rl, link) { if (rle->type == type && rle->rid == rid) return (rle); } return (NULL); } /** * @brief Delete a resource entry. * * @param rl the resource list to edit * @param type the resource entry type (e.g. SYS_RES_MEMORY) * @param rid the resource identifier */ void resource_list_delete(struct resource_list *rl, int type, int rid) { struct resource_list_entry *rle = resource_list_find(rl, type, rid); if (rle) { if (rle->res != NULL) panic("resource_list_delete: resource has not been released"); STAILQ_REMOVE(rl, rle, resource_list_entry, link); free(rle, M_BUS); } } /** * @brief Allocate a reserved resource * * This can be used by buses to force the allocation of resources * that are always active in the system even if they are not allocated * by a driver (e.g. PCI BARs). This function is usually called when * adding a new child to the bus. The resource is allocated from the * parent bus when it is reserved. The resource list entry is marked * with RLE_RESERVED to note that it is a reserved resource. * * Subsequent attempts to allocate the resource with * resource_list_alloc() will succeed the first time and will set * RLE_ALLOCATED to note that it has been allocated. When a reserved * resource that has been allocated is released with * resource_list_release() the resource RLE_ALLOCATED is cleared, but * the actual resource remains allocated. The resource can be released to * the parent bus by calling resource_list_unreserve(). * * @param rl the resource list to allocate from * @param bus the parent device of @p child * @param child the device for which the resource is being reserved * @param type the type of resource to allocate * @param rid a pointer to the resource identifier * @param start hint at the start of the resource range - pass * @c 0 for any start address * @param end hint at the end of the resource range - pass * @c ~0 for any end address * @param count hint at the size of range required - pass @c 1 * for any size * @param flags any extra flags to control the resource * allocation - see @c RF_XXX flags in * for details * * @returns the resource which was allocated or @c NULL if no * resource could be allocated */ struct resource * resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); struct resource *r; if (passthrough) panic( "resource_list_reserve() should only be called for direct children"); if (flags & RF_ACTIVE) panic( "resource_list_reserve() should only reserve inactive resources"); r = resource_list_alloc(rl, bus, child, type, rid, start, end, count, flags); if (r != NULL) { rle = resource_list_find(rl, type, *rid); rle->flags |= RLE_RESERVED; } return (r); } /** * @brief Helper function for implementing BUS_ALLOC_RESOURCE() * * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list * and passing the allocation up to the parent of @p bus. This assumes * that the first entry of @c device_get_ivars(child) is a struct * resource_list. This also handles 'passthrough' allocations where a * child is a remote descendant of bus by passing the allocation up to * the parent of bus. * * Typically, a bus driver would store a list of child resources * somewhere in the child device's ivars (see device_get_ivars()) and * its implementation of BUS_ALLOC_RESOURCE() would find that list and * then call resource_list_alloc() to perform the allocation. * * @param rl the resource list to allocate from * @param bus the parent device of @p child * @param child the device which is requesting an allocation * @param type the type of resource to allocate * @param rid a pointer to the resource identifier * @param start hint at the start of the resource range - pass * @c 0 for any start address * @param end hint at the end of the resource range - pass * @c ~0 for any end address * @param count hint at the size of range required - pass @c 1 * for any size * @param flags any extra flags to control the resource * allocation - see @c RF_XXX flags in * for details * * @returns the resource which was allocated or @c NULL if no * resource could be allocated */ struct resource * resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); int isdefault = RMAN_IS_DEFAULT_RANGE(start, end); if (passthrough) { return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags)); } rle = resource_list_find(rl, type, *rid); if (!rle) return (NULL); /* no resource of that type/rid */ if (rle->res) { if (rle->flags & RLE_RESERVED) { if (rle->flags & RLE_ALLOCATED) return (NULL); if ((flags & RF_ACTIVE) && bus_activate_resource(child, type, *rid, rle->res) != 0) return (NULL); rle->flags |= RLE_ALLOCATED; return (rle->res); } device_printf(bus, "resource entry %#x type %d for child %s is busy\n", *rid, type, device_get_nameunit(child)); return (NULL); } if (isdefault) { start = rle->start; count = ulmax(count, rle->count); end = ulmax(rle->end, start + count - 1); } rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child, type, rid, start, end, count, flags); /* * Record the new range. */ if (rle->res) { rle->start = rman_get_start(rle->res); rle->end = rman_get_end(rle->res); rle->count = count; } return (rle->res); } /** * @brief Helper function for implementing BUS_RELEASE_RESOURCE() * * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally * used with resource_list_alloc(). * * @param rl the resource list which was allocated from * @param bus the parent device of @p child * @param child the device which is requesting a release * @param type the type of resource to release * @param rid the resource identifier * @param res the resource to release * * @retval 0 success * @retval non-zero a standard unix error code indicating what * error condition prevented the operation */ int resource_list_release(struct resource_list *rl, device_t bus, device_t child, int type, int rid, struct resource *res) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); int error; if (passthrough) { return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res)); } rle = resource_list_find(rl, type, rid); if (!rle) panic("resource_list_release: can't find resource"); if (!rle->res) panic("resource_list_release: resource entry is not busy"); if (rle->flags & RLE_RESERVED) { if (rle->flags & RLE_ALLOCATED) { if (rman_get_flags(res) & RF_ACTIVE) { error = bus_deactivate_resource(child, type, rid, res); if (error) return (error); } rle->flags &= ~RLE_ALLOCATED; return (0); } return (EINVAL); } error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child, type, rid, res); if (error) return (error); rle->res = NULL; return (0); } /** * @brief Release all active resources of a given type * * Release all active resources of a specified type. This is intended * to be used to cleanup resources leaked by a driver after detach or * a failed attach. * * @param rl the resource list which was allocated from * @param bus the parent device of @p child * @param child the device whose active resources are being released * @param type the type of resources to release * * @retval 0 success * @retval EBUSY at least one resource was active */ int resource_list_release_active(struct resource_list *rl, device_t bus, device_t child, int type) { struct resource_list_entry *rle; int error, retval; retval = 0; STAILQ_FOREACH(rle, rl, link) { if (rle->type != type) continue; if (rle->res == NULL) continue; if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) continue; retval = EBUSY; error = resource_list_release(rl, bus, child, type, rman_get_rid(rle->res), rle->res); if (error != 0) device_printf(bus, "Failed to release active resource: %d\n", error); } return (retval); } /** * @brief Fully release a reserved resource * * Fully releases a resource reserved via resource_list_reserve(). * * @param rl the resource list which was allocated from * @param bus the parent device of @p child * @param child the device whose reserved resource is being released * @param type the type of resource to release * @param rid the resource identifier * @param res the resource to release * * @retval 0 success * @retval non-zero a standard unix error code indicating what * error condition prevented the operation */ int resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, int type, int rid) { struct resource_list_entry *rle = NULL; int passthrough = (device_get_parent(child) != bus); if (passthrough) panic( "resource_list_unreserve() should only be called for direct children"); rle = resource_list_find(rl, type, rid); if (!rle) panic("resource_list_unreserve: can't find resource"); if (!(rle->flags & RLE_RESERVED)) return (EINVAL); if (rle->flags & RLE_ALLOCATED) return (EBUSY); rle->flags &= ~RLE_RESERVED; return (resource_list_release(rl, bus, child, type, rid, rle->res)); } /** * @brief Print a description of resources in a resource list * * Print all resources of a specified type, for use in BUS_PRINT_CHILD(). * The name is printed if at least one resource of the given type is available. * The format is used to print resource start and end. * * @param rl the resource list to print * @param name the name of @p type, e.g. @c "memory" * @param type type type of resource entry to print * @param format printf(9) format string to print resource * start and end values * * @returns the number of characters printed */ int resource_list_print_type(struct resource_list *rl, const char *name, int type, const char *format) { struct resource_list_entry *rle; int printed, retval; printed = 0; retval = 0; /* Yes, this is kinda cheating */ STAILQ_FOREACH(rle, rl, link) { if (rle->type == type) { if (printed == 0) retval += printf(" %s ", name); else retval += printf(","); printed++; retval += printf(format, rle->start); if (rle->count > 1) { retval += printf("-"); retval += printf(format, rle->start + rle->count - 1); } } } return (retval); } /** * @brief Releases all the resources in a list. * * @param rl The resource list to purge. * * @returns nothing */ void resource_list_purge(struct resource_list *rl) { struct resource_list_entry *rle; while ((rle = STAILQ_FIRST(rl)) != NULL) { if (rle->res) bus_release_resource(rman_get_device(rle->res), rle->type, rle->rid, rle->res); STAILQ_REMOVE_HEAD(rl, link); free(rle, M_BUS); } } device_t bus_generic_add_child(device_t dev, u_int order, const char *name, int unit) { return (device_add_child_ordered(dev, order, name, unit)); } /** * @brief Helper function for implementing DEVICE_PROBE() * * This function can be used to help implement the DEVICE_PROBE() for * a bus (i.e. a device which has other devices attached to it). It * calls the DEVICE_IDENTIFY() method of each driver in the device's * devclass. */ int bus_generic_probe(device_t dev) { devclass_t dc = dev->devclass; driverlink_t dl; TAILQ_FOREACH(dl, &dc->drivers, link) { /* * If this driver's pass is too high, then ignore it. * For most drivers in the default pass, this will * never be true. For early-pass drivers they will * only call the identify routines of eligible drivers * when this routine is called. Drivers for later * passes should have their identify routines called * on early-pass buses during BUS_NEW_PASS(). */ if (dl->pass > bus_current_pass) continue; DEVICE_IDENTIFY(dl->driver, dev); } return (0); } /** * @brief Helper function for implementing DEVICE_ATTACH() * * This function can be used to help implement the DEVICE_ATTACH() for * a bus. It calls device_probe_and_attach() for each of the device's * children. */ int bus_generic_attach(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { device_probe_and_attach(child); } return (0); } /** * @brief Helper function for delaying attaching children * * Many buses can't run transactions on the bus which children need to probe and * attach until after interrupts and/or timers are running. This function * delays their attach until interrupts and timers are enabled. */ int bus_delayed_attach_children(device_t dev) { /* Probe and attach the bus children when interrupts are available */ config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev); return (0); } /** * @brief Helper function for implementing DEVICE_DETACH() * * This function can be used to help implement the DEVICE_DETACH() for * a bus. It calls device_detach() for each of the device's * children. */ int bus_generic_detach(device_t dev) { device_t child; int error; if (dev->state != DS_ATTACHED) return (EBUSY); /* * Detach children in the reverse order. * See bus_generic_suspend for details. */ TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { if ((error = device_detach(child)) != 0) return (error); } return (0); } /** * @brief Helper function for implementing DEVICE_SHUTDOWN() * * This function can be used to help implement the DEVICE_SHUTDOWN() * for a bus. It calls device_shutdown() for each of the device's * children. */ int bus_generic_shutdown(device_t dev) { device_t child; /* * Shut down children in the reverse order. * See bus_generic_suspend for details. */ TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { device_shutdown(child); } return (0); } /** * @brief Default function for suspending a child device. * * This function is to be used by a bus's DEVICE_SUSPEND_CHILD(). */ int bus_generic_suspend_child(device_t dev, device_t child) { int error; error = DEVICE_SUSPEND(child); if (error == 0) child->flags |= DF_SUSPENDED; return (error); } /** * @brief Default function for resuming a child device. * * This function is to be used by a bus's DEVICE_RESUME_CHILD(). */ int bus_generic_resume_child(device_t dev, device_t child) { DEVICE_RESUME(child); child->flags &= ~DF_SUSPENDED; return (0); } /** * @brief Helper function for implementing DEVICE_SUSPEND() * * This function can be used to help implement the DEVICE_SUSPEND() * for a bus. It calls DEVICE_SUSPEND() for each of the device's * children. If any call to DEVICE_SUSPEND() fails, the suspend * operation is aborted and any devices which were suspended are * resumed immediately by calling their DEVICE_RESUME() methods. */ int bus_generic_suspend(device_t dev) { int error; device_t child; /* * Suspend children in the reverse order. * For most buses all children are equal, so the order does not matter. * Other buses, such as acpi, carefully order their child devices to * express implicit dependencies between them. For such buses it is * safer to bring down devices in the reverse order. */ TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { error = BUS_SUSPEND_CHILD(dev, child); if (error != 0) { child = TAILQ_NEXT(child, link); if (child != NULL) { TAILQ_FOREACH_FROM(child, &dev->children, link) BUS_RESUME_CHILD(dev, child); } return (error); } } return (0); } /** * @brief Helper function for implementing DEVICE_RESUME() * * This function can be used to help implement the DEVICE_RESUME() for * a bus. It calls DEVICE_RESUME() on each of the device's children. */ int bus_generic_resume(device_t dev) { device_t child; TAILQ_FOREACH(child, &dev->children, link) { BUS_RESUME_CHILD(dev, child); /* if resume fails, there's nothing we can usefully do... */ } return (0); } /** * @brief Helper function for implementing BUS_RESET_POST * * Bus can use this function to implement common operations of * re-attaching or resuming the children after the bus itself was * reset, and after restoring bus-unique state of children. * * @param dev The bus * #param flags DEVF_RESET_* */ int bus_helper_reset_post(device_t dev, int flags) { device_t child; int error, error1; error = 0; TAILQ_FOREACH(child, &dev->children,link) { BUS_RESET_POST(dev, child); error1 = (flags & DEVF_RESET_DETACH) != 0 ? device_probe_and_attach(child) : BUS_RESUME_CHILD(dev, child); if (error == 0 && error1 != 0) error = error1; } return (error); } static void bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags) { child = TAILQ_NEXT(child, link); if (child == NULL) return; TAILQ_FOREACH_FROM(child, &dev->children,link) { BUS_RESET_POST(dev, child); if ((flags & DEVF_RESET_DETACH) != 0) device_probe_and_attach(child); else BUS_RESUME_CHILD(dev, child); } } /** * @brief Helper function for implementing BUS_RESET_PREPARE * * Bus can use this function to implement common operations of * detaching or suspending the children before the bus itself is * reset, and then save bus-unique state of children that must * persists around reset. * * @param dev The bus * #param flags DEVF_RESET_* */ int bus_helper_reset_prepare(device_t dev, int flags) { device_t child; int error; if (dev->state != DS_ATTACHED) return (EBUSY); TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) { if ((flags & DEVF_RESET_DETACH) != 0) { error = device_get_state(child) == DS_ATTACHED ? device_detach(child) : 0; } else { error = BUS_SUSPEND_CHILD(dev, child); } if (error == 0) { error = BUS_RESET_PREPARE(dev, child); if (error != 0) { if ((flags & DEVF_RESET_DETACH) != 0) device_probe_and_attach(child); else BUS_RESUME_CHILD(dev, child); } } if (error != 0) { bus_helper_reset_prepare_rollback(dev, child, flags); return (error); } } return (0); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function prints the first part of the ascii representation of * @p child, including its name, unit and description (if any - see * device_set_desc()). * * @returns the number of characters printed */ int bus_print_child_header(device_t dev, device_t child) { int retval = 0; if (device_get_desc(child)) { retval += device_printf(child, "<%s>", device_get_desc(child)); } else { retval += printf("%s", device_get_nameunit(child)); } return (retval); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function prints the last part of the ascii representation of * @p child, which consists of the string @c " on " followed by the * name and unit of the @p dev. * * @returns the number of characters printed */ int bus_print_child_footer(device_t dev, device_t child) { return (printf(" on %s\n", device_get_nameunit(dev))); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function prints out the VM domain for the given device. * * @returns the number of characters printed */ int bus_print_child_domain(device_t dev, device_t child) { int domain; /* No domain? Don't print anything */ if (BUS_GET_DOMAIN(dev, child, &domain) != 0) return (0); return (printf(" numa-domain %d", domain)); } /** * @brief Helper function for implementing BUS_PRINT_CHILD(). * * This function simply calls bus_print_child_header() followed by * bus_print_child_footer(). * * @returns the number of characters printed */ int bus_generic_print_child(device_t dev, device_t child) { int retval = 0; retval += bus_print_child_header(dev, child); retval += bus_print_child_domain(dev, child); retval += bus_print_child_footer(dev, child); return (retval); } /** * @brief Stub function for implementing BUS_READ_IVAR(). * * @returns ENOENT */ int bus_generic_read_ivar(device_t dev, device_t child, int index, uintptr_t * result) { return (ENOENT); } /** * @brief Stub function for implementing BUS_WRITE_IVAR(). * * @returns ENOENT */ int bus_generic_write_ivar(device_t dev, device_t child, int index, uintptr_t value) { return (ENOENT); } /** * @brief Stub function for implementing BUS_GET_RESOURCE_LIST(). * * @returns NULL */ struct resource_list * bus_generic_get_resource_list(device_t dev, device_t child) { return (NULL); } /** * @brief Helper function for implementing BUS_DRIVER_ADDED(). * * This implementation of BUS_DRIVER_ADDED() simply calls the driver's * DEVICE_IDENTIFY() method to allow it to add new children to the bus * and then calls device_probe_and_attach() for each unattached child. */ void bus_generic_driver_added(device_t dev, driver_t *driver) { device_t child; DEVICE_IDENTIFY(driver, dev); TAILQ_FOREACH(child, &dev->children, link) { if (child->state == DS_NOTPRESENT) device_probe_and_attach(child); } } /** * @brief Helper function for implementing BUS_NEW_PASS(). * * This implementing of BUS_NEW_PASS() first calls the identify * routines for any drivers that probe at the current pass. Then it * walks the list of devices for this bus. If a device is already * attached, then it calls BUS_NEW_PASS() on that device. If the * device is not already attached, it attempts to attach a driver to * it. */ void bus_generic_new_pass(device_t dev) { driverlink_t dl; devclass_t dc; device_t child; dc = dev->devclass; TAILQ_FOREACH(dl, &dc->drivers, link) { if (dl->pass == bus_current_pass) DEVICE_IDENTIFY(dl->driver, dev); } TAILQ_FOREACH(child, &dev->children, link) { if (child->state >= DS_ATTACHED) BUS_NEW_PASS(child); else if (child->state == DS_NOTPRESENT) device_probe_and_attach(child); } } /** * @brief Helper function for implementing BUS_SETUP_INTR(). * * This simple implementation of BUS_SETUP_INTR() simply calls the * BUS_SETUP_INTR() method of the parent of @p dev. */ int bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_SETUP_INTR(dev->parent, child, irq, flags, filter, intr, arg, cookiep)); return (EINVAL); } /** * @brief Helper function for implementing BUS_TEARDOWN_INTR(). * * This simple implementation of BUS_TEARDOWN_INTR() simply calls the * BUS_TEARDOWN_INTR() method of the parent of @p dev. */ int bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie)); return (EINVAL); } /** * @brief Helper function for implementing BUS_SUSPEND_INTR(). * * This simple implementation of BUS_SUSPEND_INTR() simply calls the * BUS_SUSPEND_INTR() method of the parent of @p dev. */ int bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_SUSPEND_INTR(dev->parent, child, irq)); return (EINVAL); } /** * @brief Helper function for implementing BUS_RESUME_INTR(). * * This simple implementation of BUS_RESUME_INTR() simply calls the * BUS_RESUME_INTR() method of the parent of @p dev. */ int bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_RESUME_INTR(dev->parent, child, irq)); return (EINVAL); } /** * @brief Helper function for implementing BUS_ADJUST_RESOURCE(). * * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the * BUS_ADJUST_RESOURCE() method of the parent of @p dev. */ int bus_generic_adjust_resource(device_t dev, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start, end)); return (EINVAL); } /* * @brief Helper function for implementing BUS_TRANSLATE_RESOURCE(). * * This simple implementation of BUS_TRANSLATE_RESOURCE() simply calls the * BUS_TRANSLATE_RESOURCE() method of the parent of @p dev. If there is no * parent, no translation happens. */ int bus_generic_translate_resource(device_t dev, int type, rman_res_t start, rman_res_t *newstart) { if (dev->parent) return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); *newstart = start; return (0); } /** * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). * * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the * BUS_ALLOC_RESOURCE() method of the parent of @p dev. */ struct resource * bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid, start, end, count, flags)); return (NULL); } /** * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). * * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the * BUS_RELEASE_RESOURCE() method of the parent of @p dev. */ int bus_generic_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } /** * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE(). * * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev. */ int bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } /** * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE(). * * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev. */ int bus_generic_deactivate_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid, r)); return (EINVAL); } /** * @brief Helper function for implementing BUS_MAP_RESOURCE(). * * This simple implementation of BUS_MAP_RESOURCE() simply calls the * BUS_MAP_RESOURCE() method of the parent of @p dev. */ int bus_generic_map_resource(device_t dev, device_t child, int type, struct resource *r, struct resource_map_request *args, struct resource_map *map) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args, map)); return (EINVAL); } /** * @brief Helper function for implementing BUS_UNMAP_RESOURCE(). * * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the * BUS_UNMAP_RESOURCE() method of the parent of @p dev. */ int bus_generic_unmap_resource(device_t dev, device_t child, int type, struct resource *r, struct resource_map *map) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map)); return (EINVAL); } /** * @brief Helper function for implementing BUS_BIND_INTR(). * * This simple implementation of BUS_BIND_INTR() simply calls the * BUS_BIND_INTR() method of the parent of @p dev. */ int bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, int cpu) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_BIND_INTR(dev->parent, child, irq, cpu)); return (EINVAL); } /** * @brief Helper function for implementing BUS_CONFIG_INTR(). * * This simple implementation of BUS_CONFIG_INTR() simply calls the * BUS_CONFIG_INTR() method of the parent of @p dev. */ int bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig, enum intr_polarity pol) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol)); return (EINVAL); } /** * @brief Helper function for implementing BUS_DESCRIBE_INTR(). * * This simple implementation of BUS_DESCRIBE_INTR() simply calls the * BUS_DESCRIBE_INTR() method of the parent of @p dev. */ int bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, void *cookie, const char *descr) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent) return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie, descr)); return (EINVAL); } /** * @brief Helper function for implementing BUS_GET_CPUS(). * * This simple implementation of BUS_GET_CPUS() simply calls the * BUS_GET_CPUS() method of the parent of @p dev. */ int bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent != NULL) return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset)); return (EINVAL); } /** * @brief Helper function for implementing BUS_GET_DMA_TAG(). * * This simple implementation of BUS_GET_DMA_TAG() simply calls the * BUS_GET_DMA_TAG() method of the parent of @p dev. */ bus_dma_tag_t bus_generic_get_dma_tag(device_t dev, device_t child) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent != NULL) return (BUS_GET_DMA_TAG(dev->parent, child)); return (NULL); } /** * @brief Helper function for implementing BUS_GET_BUS_TAG(). * * This simple implementation of BUS_GET_BUS_TAG() simply calls the * BUS_GET_BUS_TAG() method of the parent of @p dev. */ bus_space_tag_t bus_generic_get_bus_tag(device_t dev, device_t child) { /* Propagate up the bus hierarchy until someone handles it. */ if (dev->parent != NULL) return (BUS_GET_BUS_TAG(dev->parent, child)); return ((bus_space_tag_t)0); } /** * @brief Helper function for implementing BUS_GET_RESOURCE(). * * This implementation of BUS_GET_RESOURCE() uses the * resource_list_find() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list to * search. */ int bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid, rman_res_t *startp, rman_res_t *countp) { struct resource_list * rl = NULL; struct resource_list_entry * rle = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); rle = resource_list_find(rl, type, rid); if (!rle) return (ENOENT); if (startp) *startp = rle->start; if (countp) *countp = rle->count; return (0); } /** * @brief Helper function for implementing BUS_SET_RESOURCE(). * * This implementation of BUS_SET_RESOURCE() uses the * resource_list_add() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list to * edit. */ int bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid, rman_res_t start, rman_res_t count) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); resource_list_add(rl, type, rid, start, (start + count - 1), count); return (0); } /** * @brief Helper function for implementing BUS_DELETE_RESOURCE(). * * This implementation of BUS_DELETE_RESOURCE() uses the * resource_list_delete() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list to * edit. */ void bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid) { struct resource_list * rl = NULL; rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return; resource_list_delete(rl, type, rid); return; } /** * @brief Helper function for implementing BUS_RELEASE_RESOURCE(). * * This implementation of BUS_RELEASE_RESOURCE() uses the * resource_list_release() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list. */ int bus_generic_rl_release_resource(device_t dev, device_t child, int type, int rid, struct resource *r) { struct resource_list * rl = NULL; if (device_get_parent(child) != dev) return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child, type, rid, r)); rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (EINVAL); return (resource_list_release(rl, dev, child, type, rid, r)); } /** * @brief Helper function for implementing BUS_ALLOC_RESOURCE(). * * This implementation of BUS_ALLOC_RESOURCE() uses the * resource_list_alloc() function to do most of the work. It calls * BUS_GET_RESOURCE_LIST() to find a suitable resource list. */ struct resource * bus_generic_rl_alloc_resource(device_t dev, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource_list * rl = NULL; if (device_get_parent(child) != dev) return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child, type, rid, start, end, count, flags)); rl = BUS_GET_RESOURCE_LIST(dev, child); if (!rl) return (NULL); return (resource_list_alloc(rl, dev, child, type, rid, start, end, count, flags)); } /** * @brief Helper function for implementing BUS_CHILD_PRESENT(). * * This simple implementation of BUS_CHILD_PRESENT() simply calls the * BUS_CHILD_PRESENT() method of the parent of @p dev. */ int bus_generic_child_present(device_t dev, device_t child) { return (BUS_CHILD_PRESENT(device_get_parent(dev), dev)); } int bus_generic_get_domain(device_t dev, device_t child, int *domain) { if (dev->parent) return (BUS_GET_DOMAIN(dev->parent, dev, domain)); return (ENOENT); } /** * @brief Helper function for implementing BUS_RESCAN(). * * This null implementation of BUS_RESCAN() always fails to indicate * the bus does not support rescanning. */ int bus_null_rescan(device_t dev) { return (ENXIO); } /* * Some convenience functions to make it easier for drivers to use the * resource-management functions. All these really do is hide the * indirection through the parent's method table, making for slightly * less-wordy code. In the future, it might make sense for this code * to maintain some sort of a list of resources allocated by each device. */ int bus_alloc_resources(device_t dev, struct resource_spec *rs, struct resource **res) { int i; for (i = 0; rs[i].type != -1; i++) res[i] = NULL; for (i = 0; rs[i].type != -1; i++) { res[i] = bus_alloc_resource_any(dev, rs[i].type, &rs[i].rid, rs[i].flags); if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) { bus_release_resources(dev, rs, res); return (ENXIO); } } return (0); } void bus_release_resources(device_t dev, const struct resource_spec *rs, struct resource **res) { int i; for (i = 0; rs[i].type != -1; i++) if (res[i] != NULL) { bus_release_resource( dev, rs[i].type, rs[i].rid, res[i]); res[i] = NULL; } } /** * @brief Wrapper function for BUS_ALLOC_RESOURCE(). * * This function simply calls the BUS_ALLOC_RESOURCE() method of the * parent of @p dev. */ struct resource * bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags) { struct resource *res; if (dev->parent == NULL) return (NULL); res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end, count, flags); return (res); } /** * @brief Wrapper function for BUS_ADJUST_RESOURCE(). * * This function simply calls the BUS_ADJUST_RESOURCE() method of the * parent of @p dev. */ int bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start, rman_res_t end) { if (dev->parent == NULL) return (EINVAL); return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end)); } /** * @brief Wrapper function for BUS_TRANSLATE_RESOURCE(). * * This function simply calls the BUS_TRANSLATE_RESOURCE() method of the * parent of @p dev. */ int bus_translate_resource(device_t dev, int type, rman_res_t start, rman_res_t *newstart) { if (dev->parent == NULL) return (EINVAL); return (BUS_TRANSLATE_RESOURCE(dev->parent, type, start, newstart)); } /** * @brief Wrapper function for BUS_ACTIVATE_RESOURCE(). * * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the * parent of @p dev. */ int bus_activate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } /** * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE(). * * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the * parent of @p dev. */ int bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r)); } /** * @brief Wrapper function for BUS_MAP_RESOURCE(). * * This function simply calls the BUS_MAP_RESOURCE() method of the * parent of @p dev. */ int bus_map_resource(device_t dev, int type, struct resource *r, struct resource_map_request *args, struct resource_map *map) { if (dev->parent == NULL) return (EINVAL); return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map)); } /** * @brief Wrapper function for BUS_UNMAP_RESOURCE(). * * This function simply calls the BUS_UNMAP_RESOURCE() method of the * parent of @p dev. */ int bus_unmap_resource(device_t dev, int type, struct resource *r, struct resource_map *map) { if (dev->parent == NULL) return (EINVAL); return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map)); } /** * @brief Wrapper function for BUS_RELEASE_RESOURCE(). * * This function simply calls the BUS_RELEASE_RESOURCE() method of the * parent of @p dev. */ int bus_release_resource(device_t dev, int type, int rid, struct resource *r) { int rv; if (dev->parent == NULL) return (EINVAL); rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r); return (rv); } /** * @brief Wrapper function for BUS_SETUP_INTR(). * * This function simply calls the BUS_SETUP_INTR() method of the * parent of @p dev. */ int bus_setup_intr(device_t dev, struct resource *r, int flags, driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep) { int error; if (dev->parent == NULL) return (EINVAL); error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler, arg, cookiep); if (error != 0) return (error); if (handler != NULL && !(flags & INTR_MPSAFE)) device_printf(dev, "[GIANT-LOCKED]\n"); return (0); } /** * @brief Wrapper function for BUS_TEARDOWN_INTR(). * * This function simply calls the BUS_TEARDOWN_INTR() method of the * parent of @p dev. */ int bus_teardown_intr(device_t dev, struct resource *r, void *cookie) { if (dev->parent == NULL) return (EINVAL); return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie)); } /** * @brief Wrapper function for BUS_SUSPEND_INTR(). * * This function simply calls the BUS_SUSPEND_INTR() method of the * parent of @p dev. */ int bus_suspend_intr(device_t dev, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_SUSPEND_INTR(dev->parent, dev, r)); } /** * @brief Wrapper function for BUS_RESUME_INTR(). * * This function simply calls the BUS_RESUME_INTR() method of the * parent of @p dev. */ int bus_resume_intr(device_t dev, struct resource *r) { if (dev->parent == NULL) return (EINVAL); return (BUS_RESUME_INTR(dev->parent, dev, r)); } /** * @brief Wrapper function for BUS_BIND_INTR(). * * This function simply calls the BUS_BIND_INTR() method of the * parent of @p dev. */ int bus_bind_intr(device_t dev, struct resource *r, int cpu) { if (dev->parent == NULL) return (EINVAL); return (BUS_BIND_INTR(dev->parent, dev, r, cpu)); } /** * @brief Wrapper function for BUS_DESCRIBE_INTR(). * * This function first formats the requested description into a * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of * the parent of @p dev. */ int bus_describe_intr(device_t dev, struct resource *irq, void *cookie, const char *fmt, ...) { va_list ap; char descr[MAXCOMLEN + 1]; if (dev->parent == NULL) return (EINVAL); va_start(ap, fmt); vsnprintf(descr, sizeof(descr), fmt, ap); va_end(ap); return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr)); } /** * @brief Wrapper function for BUS_SET_RESOURCE(). * * This function simply calls the BUS_SET_RESOURCE() method of the * parent of @p dev. */ int bus_set_resource(device_t dev, int type, int rid, rman_res_t start, rman_res_t count) { return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid, start, count)); } /** * @brief Wrapper function for BUS_GET_RESOURCE(). * * This function simply calls the BUS_GET_RESOURCE() method of the * parent of @p dev. */ int bus_get_resource(device_t dev, int type, int rid, rman_res_t *startp, rman_res_t *countp) { return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, startp, countp)); } /** * @brief Wrapper function for BUS_GET_RESOURCE(). * * This function simply calls the BUS_GET_RESOURCE() method of the * parent of @p dev and returns the start value. */ rman_res_t bus_get_resource_start(device_t dev, int type, int rid) { rman_res_t start; rman_res_t count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return (0); return (start); } /** * @brief Wrapper function for BUS_GET_RESOURCE(). * * This function simply calls the BUS_GET_RESOURCE() method of the * parent of @p dev and returns the count value. */ rman_res_t bus_get_resource_count(device_t dev, int type, int rid) { rman_res_t start; rman_res_t count; int error; error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid, &start, &count); if (error) return (0); return (count); } /** * @brief Wrapper function for BUS_DELETE_RESOURCE(). * * This function simply calls the BUS_DELETE_RESOURCE() method of the * parent of @p dev. */ void bus_delete_resource(device_t dev, int type, int rid) { BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid); } /** * @brief Wrapper function for BUS_CHILD_PRESENT(). * * This function simply calls the BUS_CHILD_PRESENT() method of the * parent of @p dev. */ int bus_child_present(device_t child) { return (BUS_CHILD_PRESENT(device_get_parent(child), child)); } /** * @brief Wrapper function for BUS_CHILD_PNPINFO(). * * This function simply calls the BUS_CHILD_PNPINFO() method of the parent of @p * dev. */ int bus_child_pnpinfo(device_t child, struct sbuf *sb) { device_t parent; parent = device_get_parent(child); if (parent == NULL) return (0); return (BUS_CHILD_PNPINFO(parent, child, sb)); } /** * @brief Generic implementation that does nothing for bus_child_pnpinfo * * This function has the right signature and returns 0 since the sbuf is passed * to us to append to. */ int bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb) { return (0); } /** * @brief Wrapper function for BUS_CHILD_LOCATION(). * * This function simply calls the BUS_CHILD_LOCATION() method of the parent of * @p dev. */ int bus_child_location(device_t child, struct sbuf *sb) { device_t parent; parent = device_get_parent(child); if (parent == NULL) return (0); return (BUS_CHILD_LOCATION(parent, child, sb)); } /** * @brief Generic implementation that does nothing for bus_child_location * * This function has the right signature and returns 0 since the sbuf is passed * to us to append to. */ int bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb) { return (0); } /** * @brief Wrapper function for BUS_GET_CPUS(). * * This function simply calls the BUS_GET_CPUS() method of the * parent of @p dev. */ int bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { device_t parent; parent = device_get_parent(dev); if (parent == NULL) return (EINVAL); return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset)); } /** * @brief Wrapper function for BUS_GET_DMA_TAG(). * * This function simply calls the BUS_GET_DMA_TAG() method of the * parent of @p dev. */ bus_dma_tag_t bus_get_dma_tag(device_t dev) { device_t parent; parent = device_get_parent(dev); if (parent == NULL) return (NULL); return (BUS_GET_DMA_TAG(parent, dev)); } /** * @brief Wrapper function for BUS_GET_BUS_TAG(). * * This function simply calls the BUS_GET_BUS_TAG() method of the * parent of @p dev. */ bus_space_tag_t bus_get_bus_tag(device_t dev) { device_t parent; parent = device_get_parent(dev); if (parent == NULL) return ((bus_space_tag_t)0); return (BUS_GET_BUS_TAG(parent, dev)); } /** * @brief Wrapper function for BUS_GET_DOMAIN(). * * This function simply calls the BUS_GET_DOMAIN() method of the * parent of @p dev. */ int bus_get_domain(device_t dev, int *domain) { return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain)); } /* Resume all devices and then notify userland that we're up again. */ static int root_resume(device_t dev) { int error; error = bus_generic_resume(dev); if (error == 0) { devctl_notify("kern", "power", "resume", NULL); /* Deprecated gone in 14 */ devctl_notify("kernel", "power", "resume", NULL); } return (error); } static int root_print_child(device_t dev, device_t child) { int retval = 0; retval += bus_print_child_header(dev, child); retval += printf("\n"); return (retval); } static int root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep) { /* * If an interrupt mapping gets to here something bad has happened. */ panic("root_setup_intr"); } /* * If we get here, assume that the device is permanent and really is * present in the system. Removable bus drivers are expected to intercept * this call long before it gets here. We return -1 so that drivers that * really care can check vs -1 or some ERRNO returned higher in the food * chain. */ static int root_child_present(device_t dev, device_t child) { return (-1); } static int root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, cpuset_t *cpuset) { switch (op) { case INTR_CPUS: /* Default to returning the set of all CPUs. */ if (setsize != sizeof(cpuset_t)) return (EINVAL); *cpuset = all_cpus; return (0); default: return (EINVAL); } } static kobj_method_t root_methods[] = { /* Device interface */ KOBJMETHOD(device_shutdown, bus_generic_shutdown), KOBJMETHOD(device_suspend, bus_generic_suspend), KOBJMETHOD(device_resume, root_resume), /* Bus interface */ KOBJMETHOD(bus_print_child, root_print_child), KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar), KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar), KOBJMETHOD(bus_setup_intr, root_setup_intr), KOBJMETHOD(bus_child_present, root_child_present), KOBJMETHOD(bus_get_cpus, root_get_cpus), KOBJMETHOD_END }; static driver_t root_driver = { "root", root_methods, 1, /* no softc */ }; device_t root_bus; devclass_t root_devclass; static int root_bus_module_handler(module_t mod, int what, void* arg) { switch (what) { case MOD_LOAD: TAILQ_INIT(&bus_data_devices); kobj_class_compile((kobj_class_t) &root_driver); root_bus = make_device(NULL, "root", 0); root_bus->desc = "System root bus"; kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver); root_bus->driver = &root_driver; root_bus->state = DS_ATTACHED; root_devclass = devclass_find_internal("root", NULL, FALSE); devinit(); return (0); case MOD_SHUTDOWN: device_shutdown(root_bus); return (0); default: return (EOPNOTSUPP); } return (0); } static moduledata_t root_bus_mod = { "rootbus", root_bus_module_handler, NULL }; DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST); /** * @brief Automatically configure devices * * This function begins the autoconfiguration process by calling * device_probe_and_attach() for each child of the @c root0 device. */ void root_bus_configure(void) { PDEBUG((".")); /* Eventually this will be split up, but this is sufficient for now. */ bus_set_pass(BUS_PASS_DEFAULT); } /** * @brief Module handler for registering device drivers * * This module handler is used to automatically register device * drivers when modules are loaded. If @p what is MOD_LOAD, it calls * devclass_add_driver() for the driver described by the * driver_module_data structure pointed to by @p arg */ int driver_module_handler(module_t mod, int what, void *arg) { struct driver_module_data *dmd; devclass_t bus_devclass; kobj_class_t driver; int error, pass; dmd = (struct driver_module_data *)arg; bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE); error = 0; switch (what) { case MOD_LOAD: if (dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); pass = dmd->dmd_pass; driver = dmd->dmd_driver; PDEBUG(("Loading module: driver %s on bus %s (pass %d)", DRIVERNAME(driver), dmd->dmd_busname, pass)); error = devclass_add_driver(bus_devclass, driver, pass, dmd->dmd_devclass); break; case MOD_UNLOAD: PDEBUG(("Unloading module: driver %s from bus %s", DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); error = devclass_delete_driver(bus_devclass, dmd->dmd_driver); if (!error && dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); break; case MOD_QUIESCE: PDEBUG(("Quiesce module: driver %s from bus %s", DRIVERNAME(dmd->dmd_driver), dmd->dmd_busname)); error = devclass_quiesce_driver(bus_devclass, dmd->dmd_driver); if (!error && dmd->dmd_chainevh) error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg); break; default: error = EOPNOTSUPP; break; } return (error); } /** * @brief Enumerate all hinted devices for this bus. * * Walks through the hints for this bus and calls the bus_hinted_child * routine for each one it fines. It searches first for the specific * bus that's being probed for hinted children (eg isa0), and then for * generic children (eg isa). * * @param dev bus device to enumerate */ void bus_enumerate_hinted_children(device_t bus) { int i; const char *dname, *busname; int dunit; /* * enumerate all devices on the specific bus */ busname = device_get_nameunit(bus); i = 0; while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) BUS_HINTED_CHILD(bus, dname, dunit); /* * and all the generic ones. */ busname = device_get_name(bus); i = 0; while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0) BUS_HINTED_CHILD(bus, dname, dunit); } #ifdef BUS_DEBUG /* the _short versions avoid iteration by not calling anything that prints * more than oneliners. I love oneliners. */ static void print_device_short(device_t dev, int indent) { if (!dev) return; indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n", dev->unit, dev->desc, (dev->parent? "":"no "), (TAILQ_EMPTY(&dev->children)? "no ":""), (dev->flags&DF_ENABLED? "enabled,":"disabled,"), (dev->flags&DF_FIXEDCLASS? "fixed,":""), (dev->flags&DF_WILDCARD? "wildcard,":""), (dev->flags&DF_DESCMALLOCED? "descmalloced,":""), (dev->flags&DF_SUSPENDED? "suspended,":""), (dev->ivars? "":"no "), (dev->softc? "":"no "), dev->busy)); } static void print_device(device_t dev, int indent) { if (!dev) return; print_device_short(dev, indent); indentprintf(("Parent:\n")); print_device_short(dev->parent, indent+1); indentprintf(("Driver:\n")); print_driver_short(dev->driver, indent+1); indentprintf(("Devclass:\n")); print_devclass_short(dev->devclass, indent+1); } void print_device_tree_short(device_t dev, int indent) /* print the device and all its children (indented) */ { device_t child; if (!dev) return; print_device_short(dev, indent); TAILQ_FOREACH(child, &dev->children, link) { print_device_tree_short(child, indent+1); } } void print_device_tree(device_t dev, int indent) /* print the device and all its children (indented) */ { device_t child; if (!dev) return; print_device(dev, indent); TAILQ_FOREACH(child, &dev->children, link) { print_device_tree(child, indent+1); } } static void print_driver_short(driver_t *driver, int indent) { if (!driver) return; indentprintf(("driver %s: softc size = %zd\n", driver->name, driver->size)); } static void print_driver(driver_t *driver, int indent) { if (!driver) return; print_driver_short(driver, indent); } static void print_driver_list(driver_list_t drivers, int indent) { driverlink_t driver; TAILQ_FOREACH(driver, &drivers, link) { print_driver(driver->driver, indent); } } static void print_devclass_short(devclass_t dc, int indent) { if ( !dc ) return; indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit)); } static void print_devclass(devclass_t dc, int indent) { int i; if ( !dc ) return; print_devclass_short(dc, indent); indentprintf(("Drivers:\n")); print_driver_list(dc->drivers, indent+1); indentprintf(("Devices:\n")); for (i = 0; i < dc->maxunit; i++) if (dc->devices[i]) print_device(dc->devices[i], indent+1); } void print_devclass_list_short(void) { devclass_t dc; printf("Short listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass_short(dc, 0); } } void print_devclass_list(void) { devclass_t dc; printf("Full listing of devclasses, drivers & devices:\n"); TAILQ_FOREACH(dc, &devclasses, link) { print_devclass(dc, 0); } } #endif /* * User-space access to the device tree. * * We implement a small set of nodes: * * hw.bus Single integer read method to obtain the * current generation count. * hw.bus.devices Reads the entire device tree in flat space. * hw.bus.rman Resource manager interface * * We might like to add the ability to scan devclasses and/or drivers to * determine what else is currently loaded/available. */ static int sysctl_bus_info(SYSCTL_HANDLER_ARGS) { struct u_businfo ubus; ubus.ub_version = BUS_USER_VERSION; ubus.ub_generation = bus_data_generation; return (SYSCTL_OUT(req, &ubus, sizeof(ubus))); } SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo", "bus-related data"); static int sysctl_devices(SYSCTL_HANDLER_ARGS) { struct sbuf sb; int *name = (int *)arg1; u_int namelen = arg2; int index; device_t dev; struct u_device *udev; int error; if (namelen != 2) return (EINVAL); if (bus_data_generation_check(name[0])) return (EINVAL); index = name[1]; /* * Scan the list of devices, looking for the requested index. */ TAILQ_FOREACH(dev, &bus_data_devices, devlink) { if (index-- == 0) break; } if (dev == NULL) return (ENOENT); /* * Populate the return item, careful not to overflow the buffer. */ udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO); if (udev == NULL) return (ENOMEM); udev->dv_handle = (uintptr_t)dev; udev->dv_parent = (uintptr_t)dev->parent; udev->dv_devflags = dev->devflags; udev->dv_flags = dev->flags; udev->dv_state = dev->state; sbuf_new(&sb, udev->dv_fields, sizeof(udev->dv_fields), SBUF_FIXEDLEN); if (dev->nameunit != NULL) sbuf_cat(&sb, dev->nameunit); sbuf_putc(&sb, '\0'); if (dev->desc != NULL) sbuf_cat(&sb, dev->desc); sbuf_putc(&sb, '\0'); if (dev->driver != NULL) sbuf_cat(&sb, dev->driver->name); sbuf_putc(&sb, '\0'); bus_child_pnpinfo(dev, &sb); sbuf_putc(&sb, '\0'); bus_child_location(dev, &sb); sbuf_putc(&sb, '\0'); error = sbuf_finish(&sb); if (error == 0) error = SYSCTL_OUT(req, udev, sizeof(*udev)); sbuf_delete(&sb); free(udev, M_BUS); return (error); } SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices, "system device tree"); int bus_data_generation_check(int generation) { if (generation != bus_data_generation) return (1); /* XXX generate optimised lists here? */ return (0); } void bus_data_generation_update(void) { atomic_add_int(&bus_data_generation, 1); } int bus_free_resource(device_t dev, int type, struct resource *r) { if (r == NULL) return (0); return (bus_release_resource(dev, type, rman_get_rid(r), r)); } device_t device_lookup_by_name(const char *name) { device_t dev; TAILQ_FOREACH(dev, &bus_data_devices, devlink) { if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0) return (dev); } return (NULL); } /* * /dev/devctl2 implementation. The existing /dev/devctl device has * implicit semantics on open, so it could not be reused for this. * Another option would be to call this /dev/bus? */ static int find_device(struct devreq *req, device_t *devp) { device_t dev; /* * First, ensure that the name is nul terminated. */ if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL) return (EINVAL); /* * Second, try to find an attached device whose name matches * 'name'. */ dev = device_lookup_by_name(req->dr_name); if (dev != NULL) { *devp = dev; return (0); } /* Finally, give device enumerators a chance. */ dev = NULL; EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev); if (dev == NULL) return (ENOENT); *devp = dev; return (0); } static bool driver_exists(device_t bus, const char *driver) { devclass_t dc; for (dc = bus->devclass; dc != NULL; dc = dc->parent) { if (devclass_find_driver_internal(dc, driver) != NULL) return (true); } return (false); } static void device_gen_nomatch(device_t dev) { device_t child; if (dev->flags & DF_NEEDNOMATCH && dev->state == DS_NOTPRESENT) { BUS_PROBE_NOMATCH(dev->parent, dev); devnomatch(dev); dev->flags |= DF_DONENOMATCH; } dev->flags &= ~DF_NEEDNOMATCH; TAILQ_FOREACH(child, &dev->children, link) { device_gen_nomatch(child); } } static void device_do_deferred_actions(void) { devclass_t dc; driverlink_t dl; /* * Walk through the devclasses to find all the drivers we've tagged as * deferred during the freeze and call the driver added routines. They * have already been added to the lists in the background, so the driver * added routines that trigger a probe will have all the right bidders * for the probe auction. */ TAILQ_FOREACH(dc, &devclasses, link) { TAILQ_FOREACH(dl, &dc->drivers, link) { if (dl->flags & DL_DEFERRED_PROBE) { devclass_driver_added(dc, dl->driver); dl->flags &= ~DL_DEFERRED_PROBE; } } } /* * We also defer no-match events during a freeze. Walk the tree and * generate all the pent-up events that are still relevant. */ device_gen_nomatch(root_bus); bus_data_generation_update(); } static int devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag, struct thread *td) { struct devreq *req; device_t dev; int error, old; /* Locate the device to control. */ bus_topo_lock(); req = (struct devreq *)data; switch (cmd) { case DEV_ATTACH: case DEV_DETACH: case DEV_ENABLE: case DEV_DISABLE: case DEV_SUSPEND: case DEV_RESUME: case DEV_SET_DRIVER: case DEV_CLEAR_DRIVER: case DEV_RESCAN: case DEV_DELETE: case DEV_RESET: error = priv_check(td, PRIV_DRIVER); if (error == 0) error = find_device(req, &dev); break; case DEV_FREEZE: case DEV_THAW: error = priv_check(td, PRIV_DRIVER); break; default: error = ENOTTY; break; } if (error) { bus_topo_unlock(); return (error); } /* Perform the requested operation. */ switch (cmd) { case DEV_ATTACH: if (device_is_attached(dev)) error = EBUSY; else if (!device_is_enabled(dev)) error = ENXIO; else error = device_probe_and_attach(dev); break; case DEV_DETACH: if (!device_is_attached(dev)) { error = ENXIO; break; } if (!(req->dr_flags & DEVF_FORCE_DETACH)) { error = device_quiesce(dev); if (error) break; } error = device_detach(dev); break; case DEV_ENABLE: if (device_is_enabled(dev)) { error = EBUSY; break; } /* * If the device has been probed but not attached (e.g. * when it has been disabled by a loader hint), just * attach the device rather than doing a full probe. */ device_enable(dev); if (device_is_alive(dev)) { /* * If the device was disabled via a hint, clear * the hint. */ if (resource_disabled(dev->driver->name, dev->unit)) resource_unset_value(dev->driver->name, dev->unit, "disabled"); error = device_attach(dev); } else error = device_probe_and_attach(dev); break; case DEV_DISABLE: if (!device_is_enabled(dev)) { error = ENXIO; break; } if (!(req->dr_flags & DEVF_FORCE_DETACH)) { error = device_quiesce(dev); if (error) break; } /* * Force DF_FIXEDCLASS on around detach to preserve * the existing name. */ old = dev->flags; dev->flags |= DF_FIXEDCLASS; error = device_detach(dev); if (!(old & DF_FIXEDCLASS)) dev->flags &= ~DF_FIXEDCLASS; if (error == 0) device_disable(dev); break; case DEV_SUSPEND: if (device_is_suspended(dev)) { error = EBUSY; break; } if (device_get_parent(dev) == NULL) { error = EINVAL; break; } error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev); break; case DEV_RESUME: if (!device_is_suspended(dev)) { error = EINVAL; break; } if (device_get_parent(dev) == NULL) { error = EINVAL; break; } error = BUS_RESUME_CHILD(device_get_parent(dev), dev); break; case DEV_SET_DRIVER: { devclass_t dc; char driver[128]; error = copyinstr(req->dr_data, driver, sizeof(driver), NULL); if (error) break; if (driver[0] == '\0') { error = EINVAL; break; } if (dev->devclass != NULL && strcmp(driver, dev->devclass->name) == 0) /* XXX: Could possibly force DF_FIXEDCLASS on? */ break; /* * Scan drivers for this device's bus looking for at * least one matching driver. */ if (dev->parent == NULL) { error = EINVAL; break; } if (!driver_exists(dev->parent, driver)) { error = ENOENT; break; } dc = devclass_create(driver); if (dc == NULL) { error = ENOMEM; break; } /* Detach device if necessary. */ if (device_is_attached(dev)) { if (req->dr_flags & DEVF_SET_DRIVER_DETACH) error = device_detach(dev); else error = EBUSY; if (error) break; } /* Clear any previously-fixed device class and unit. */ if (dev->flags & DF_FIXEDCLASS) devclass_delete_device(dev->devclass, dev); dev->flags |= DF_WILDCARD; dev->unit = -1; /* Force the new device class. */ error = devclass_add_device(dc, dev); if (error) break; dev->flags |= DF_FIXEDCLASS; error = device_probe_and_attach(dev); break; } case DEV_CLEAR_DRIVER: if (!(dev->flags & DF_FIXEDCLASS)) { error = 0; break; } if (device_is_attached(dev)) { if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH) error = device_detach(dev); else error = EBUSY; if (error) break; } dev->flags &= ~DF_FIXEDCLASS; dev->flags |= DF_WILDCARD; devclass_delete_device(dev->devclass, dev); error = device_probe_and_attach(dev); break; case DEV_RESCAN: if (!device_is_attached(dev)) { error = ENXIO; break; } error = BUS_RESCAN(dev); break; case DEV_DELETE: { device_t parent; parent = device_get_parent(dev); if (parent == NULL) { error = EINVAL; break; } if (!(req->dr_flags & DEVF_FORCE_DELETE)) { if (bus_child_present(dev) != 0) { error = EBUSY; break; } } error = device_delete_child(parent, dev); break; } case DEV_FREEZE: if (device_frozen) error = EBUSY; else device_frozen = true; break; case DEV_THAW: if (!device_frozen) error = EBUSY; else { device_do_deferred_actions(); device_frozen = false; } break; case DEV_RESET: if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) { error = EINVAL; break; } error = BUS_RESET_CHILD(device_get_parent(dev), dev, req->dr_flags); break; } bus_topo_unlock(); return (error); } static struct cdevsw devctl2_cdevsw = { .d_version = D_VERSION, .d_ioctl = devctl2_ioctl, .d_name = "devctl2", }; static void devctl2_init(void) { make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, "devctl2"); } /* * APIs to manage deprecation and obsolescence. */ static int obsolete_panic = 0; SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0, "Panic when obsolete features are used (0 = never, 1 = if obsolete, " "2 = if deprecated)"); static void gone_panic(int major, int running, const char *msg) { switch (obsolete_panic) { case 0: return; case 1: if (running < major) return; /* FALLTHROUGH */ default: panic("%s", msg); } } void _gone_in(int major, const char *msg) { gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); if (P_OSREL_MAJOR(__FreeBSD_version) >= major) printf("Obsolete code will be removed soon: %s\n", msg); else printf("Deprecated code (to be removed in FreeBSD %d): %s\n", major, msg); } void _gone_in_dev(device_t dev, int major, const char *msg) { gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg); if (P_OSREL_MAJOR(__FreeBSD_version) >= major) device_printf(dev, "Obsolete code will be removed soon: %s\n", msg); else device_printf(dev, "Deprecated code (to be removed in FreeBSD %d): %s\n", major, msg); } #ifdef DDB DB_SHOW_COMMAND(device, db_show_device) { device_t dev; if (!have_addr) return; dev = (device_t)addr; db_printf("name: %s\n", device_get_nameunit(dev)); db_printf(" driver: %s\n", DRIVERNAME(dev->driver)); db_printf(" class: %s\n", DEVCLANAME(dev->devclass)); db_printf(" addr: %p\n", dev); db_printf(" parent: %p\n", dev->parent); db_printf(" softc: %p\n", dev->softc); db_printf(" ivars: %p\n", dev->ivars); } DB_SHOW_ALL_COMMAND(devices, db_show_all_devices) { device_t dev; TAILQ_FOREACH(dev, &bus_data_devices, devlink) { db_show_device((db_expr_t)dev, true, count, modif); } } #endif diff --git a/sys/sys/bus.h b/sys/sys/bus.h index f5e31e5a6d00..9996ceeb07f3 100644 --- a/sys/sys/bus.h +++ b/sys/sys/bus.h @@ -1,990 +1,991 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 1997,1998,2003 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _SYS_BUS_H_ #define _SYS_BUS_H_ #include #include #include #include /** * @defgroup NEWBUS newbus - a generic framework for managing devices * @{ */ /** * @brief Interface information structure. */ struct u_businfo { int ub_version; /**< @brief interface version */ #define BUS_USER_VERSION 2 int ub_generation; /**< @brief generation count */ }; /** * @brief State of the device. */ typedef enum device_state { DS_NOTPRESENT = 10, /**< @brief not probed or probe failed */ DS_ALIVE = 20, /**< @brief probe succeeded */ DS_ATTACHING = 25, /**< @brief currently attaching */ DS_ATTACHED = 30, /**< @brief attach method called */ } device_state_t; /** * @brief Device information exported to userspace. * The strings are placed one after the other, separated by NUL characters. * Fields should be added after the last one and order maintained for compatibility */ #define BUS_USER_BUFFER (3*1024) struct u_device { uintptr_t dv_handle; uintptr_t dv_parent; uint32_t dv_devflags; /**< @brief API Flags for device */ uint16_t dv_flags; /**< @brief flags for dev state */ device_state_t dv_state; /**< @brief State of attachment */ char dv_fields[BUS_USER_BUFFER]; /**< @brief NUL terminated fields */ /* name (name of the device in tree) */ /* desc (driver description) */ /* drivername (Name of driver without unit number) */ /* pnpinfo (Plug and play information from bus) */ /* location (Location of device on parent */ /* NUL */ }; /* Flags exported via dv_flags. */ #define DF_ENABLED 0x01 /* device should be probed/attached */ #define DF_FIXEDCLASS 0x02 /* devclass specified at create time */ #define DF_WILDCARD 0x04 /* unit was originally wildcard */ #define DF_DESCMALLOCED 0x08 /* description was malloced */ #define DF_QUIET 0x10 /* don't print verbose attach message */ #define DF_DONENOMATCH 0x20 /* don't execute DEVICE_NOMATCH again */ #define DF_EXTERNALSOFTC 0x40 /* softc not allocated by us */ #define DF_SUSPENDED 0x100 /* Device is suspended. */ #define DF_QUIET_CHILDREN 0x200 /* Default to quiet for all my children */ #define DF_ATTACHED_ONCE 0x400 /* Has been attached at least once */ #define DF_NEEDNOMATCH 0x800 /* Has a pending NOMATCH event */ /** * @brief Device request structure used for ioctl's. * * Used for ioctl's on /dev/devctl2. All device ioctl's * must have parameter definitions which begin with dr_name. */ struct devreq_buffer { void *buffer; size_t length; }; struct devreq { char dr_name[128]; int dr_flags; /* request-specific flags */ union { struct devreq_buffer dru_buffer; void *dru_data; } dr_dru; #define dr_buffer dr_dru.dru_buffer /* variable-sized buffer */ #define dr_data dr_dru.dru_data /* fixed-size buffer */ }; #define DEV_ATTACH _IOW('D', 1, struct devreq) #define DEV_DETACH _IOW('D', 2, struct devreq) #define DEV_ENABLE _IOW('D', 3, struct devreq) #define DEV_DISABLE _IOW('D', 4, struct devreq) #define DEV_SUSPEND _IOW('D', 5, struct devreq) #define DEV_RESUME _IOW('D', 6, struct devreq) #define DEV_SET_DRIVER _IOW('D', 7, struct devreq) #define DEV_CLEAR_DRIVER _IOW('D', 8, struct devreq) #define DEV_RESCAN _IOW('D', 9, struct devreq) #define DEV_DELETE _IOW('D', 10, struct devreq) #define DEV_FREEZE _IOW('D', 11, struct devreq) #define DEV_THAW _IOW('D', 12, struct devreq) #define DEV_RESET _IOW('D', 13, struct devreq) /* Flags for DEV_DETACH and DEV_DISABLE. */ #define DEVF_FORCE_DETACH 0x0000001 /* Flags for DEV_SET_DRIVER. */ #define DEVF_SET_DRIVER_DETACH 0x0000001 /* Detach existing driver. */ /* Flags for DEV_CLEAR_DRIVER. */ #define DEVF_CLEAR_DRIVER_DETACH 0x0000001 /* Detach existing driver. */ /* Flags for DEV_DELETE. */ #define DEVF_FORCE_DELETE 0x0000001 /* Flags for DEV_RESET */ #define DEVF_RESET_DETACH 0x0000001 /* Detach drivers vs suspend device */ #ifdef _KERNEL #include #include #include #include /** * Device name parsers. Hook to allow device enumerators to map * scheme-specific names to a device. */ typedef void (*dev_lookup_fn)(void *arg, const char *name, device_t *result); EVENTHANDLER_DECLARE(dev_lookup, dev_lookup_fn); /** * @brief A device driver. * * Provides an abstraction layer for driver dispatch. */ typedef struct kobj_class driver_t; /** * @brief A device class * * The devclass object has two main functions in the system. The first * is to manage the allocation of unit numbers for device instances * and the second is to hold the list of device drivers for a * particular bus type. Each devclass has a name and there cannot be * two devclasses with the same name. This ensures that unique unit * numbers are allocated to device instances. * * Drivers that support several different bus attachments (e.g. isa, * pci, pccard) should all use the same devclass to ensure that unit * numbers do not conflict. * * Each devclass may also have a parent devclass. This is used when * searching for device drivers to allow a form of inheritance. When * matching drivers with devices, first the driver list of the parent * device's devclass is searched. If no driver is found in that list, * the search continues in the parent devclass (if any). */ typedef struct devclass *devclass_t; /** * @brief A device method */ #define device_method_t kobj_method_t /** * @brief Driver interrupt filter return values * * If a driver provides an interrupt filter routine it must return an * integer consisting of oring together zero or more of the following * flags: * * FILTER_STRAY - this device did not trigger the interrupt * FILTER_HANDLED - the interrupt has been fully handled and can be EOId * FILTER_SCHEDULE_THREAD - the threaded interrupt handler should be * scheduled to execute * * If the driver does not provide a filter, then the interrupt code will * act is if the filter had returned FILTER_SCHEDULE_THREAD. Note that it * is illegal to specify any other flag with FILTER_STRAY and that it is * illegal to not specify either of FILTER_HANDLED or FILTER_SCHEDULE_THREAD * if FILTER_STRAY is not specified. */ #define FILTER_STRAY 0x01 #define FILTER_HANDLED 0x02 #define FILTER_SCHEDULE_THREAD 0x04 /** * @brief Driver interrupt service routines * * The filter routine is run in primary interrupt context and may not * block or use regular mutexes. It may only use spin mutexes for * synchronization. The filter may either completely handle the * interrupt or it may perform some of the work and defer more * expensive work to the regular interrupt handler. If a filter * routine is not registered by the driver, then the regular interrupt * handler is always used to handle interrupts from this device. * * The regular interrupt handler executes in its own thread context * and may use regular mutexes. However, it is prohibited from * sleeping on a sleep queue. */ typedef int driver_filter_t(void*); typedef void driver_intr_t(void*); /** * @brief Interrupt type bits. * * These flags are used both by newbus interrupt * registration (nexus.c) and also in struct intrec, which defines * interrupt properties. * * XXX We should probably revisit this and remove the vestiges of the * spls implicit in names like INTR_TYPE_TTY. In the meantime, don't * confuse things by renaming them (Grog, 18 July 2000). * * Buses which do interrupt remapping will want to change their type * to reflect what sort of devices are underneath. */ enum intr_type { INTR_TYPE_TTY = 1, INTR_TYPE_BIO = 2, INTR_TYPE_NET = 4, INTR_TYPE_CAM = 8, INTR_TYPE_MISC = 16, INTR_TYPE_CLK = 32, INTR_TYPE_AV = 64, INTR_EXCL = 256, /* exclusive interrupt */ INTR_MPSAFE = 512, /* this interrupt is SMP safe */ INTR_ENTROPY = 1024, /* this interrupt provides entropy */ INTR_MD1 = 4096, /* flag reserved for MD use */ INTR_MD2 = 8192, /* flag reserved for MD use */ INTR_MD3 = 16384, /* flag reserved for MD use */ INTR_MD4 = 32768 /* flag reserved for MD use */ }; enum intr_trigger { INTR_TRIGGER_INVALID = -1, INTR_TRIGGER_CONFORM = 0, INTR_TRIGGER_EDGE = 1, INTR_TRIGGER_LEVEL = 2 }; enum intr_polarity { INTR_POLARITY_CONFORM = 0, INTR_POLARITY_HIGH = 1, INTR_POLARITY_LOW = 2 }; /** * CPU sets supported by bus_get_cpus(). Note that not all sets may be * supported for a given device. If a request is not supported by a * device (or its parents), then bus_get_cpus() will fail with EINVAL. */ enum cpu_sets { LOCAL_CPUS = 0, INTR_CPUS }; typedef int (*devop_t)(void); /** * @brief This structure is deprecated. * * Use the kobj(9) macro DEFINE_CLASS to * declare classes which implement device drivers. */ struct driver { KOBJ_CLASS_FIELDS; }; /** * @brief A resource mapping. */ struct resource_map { bus_space_tag_t r_bustag; bus_space_handle_t r_bushandle; bus_size_t r_size; void *r_vaddr; }; /** * @brief Optional properties of a resource mapping request. */ struct resource_map_request { size_t size; rman_res_t offset; rman_res_t length; vm_memattr_t memattr; }; void resource_init_map_request_impl(struct resource_map_request *_args, size_t _sz); #define resource_init_map_request(rmr) \ resource_init_map_request_impl((rmr), sizeof(*(rmr))) /* * Definitions for drivers which need to keep simple lists of resources * for their child devices. */ struct resource; /** * @brief An entry for a single resource in a resource list. */ struct resource_list_entry { STAILQ_ENTRY(resource_list_entry) link; int type; /**< @brief type argument to alloc_resource */ int rid; /**< @brief resource identifier */ int flags; /**< @brief resource flags */ struct resource *res; /**< @brief the real resource when allocated */ rman_res_t start; /**< @brief start of resource range */ rman_res_t end; /**< @brief end of resource range */ rman_res_t count; /**< @brief count within range */ }; STAILQ_HEAD(resource_list, resource_list_entry); #define RLE_RESERVED 0x0001 /* Reserved by the parent bus. */ #define RLE_ALLOCATED 0x0002 /* Reserved resource is allocated. */ #define RLE_PREFETCH 0x0004 /* Resource is a prefetch range. */ void resource_list_init(struct resource_list *rl); void resource_list_free(struct resource_list *rl); struct resource_list_entry * resource_list_add(struct resource_list *rl, int type, int rid, rman_res_t start, rman_res_t end, rman_res_t count); int resource_list_add_next(struct resource_list *rl, int type, rman_res_t start, rman_res_t end, rman_res_t count); int resource_list_busy(struct resource_list *rl, int type, int rid); int resource_list_reserved(struct resource_list *rl, int type, int rid); struct resource_list_entry* resource_list_find(struct resource_list *rl, int type, int rid); void resource_list_delete(struct resource_list *rl, int type, int rid); struct resource * resource_list_alloc(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags); int resource_list_release(struct resource_list *rl, device_t bus, device_t child, int type, int rid, struct resource *res); int resource_list_release_active(struct resource_list *rl, device_t bus, device_t child, int type); struct resource * resource_list_reserve(struct resource_list *rl, device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags); int resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child, int type, int rid); void resource_list_purge(struct resource_list *rl); int resource_list_print_type(struct resource_list *rl, const char *name, int type, const char *format); /* * The root bus, to which all top-level buses are attached. */ extern device_t root_bus; extern devclass_t root_devclass; void root_bus_configure(void); /* * Useful functions for implementing buses. */ struct _cpuset; int bus_generic_activate_resource(device_t dev, device_t child, int type, int rid, struct resource *r); device_t bus_generic_add_child(device_t dev, u_int order, const char *name, int unit); int bus_generic_adjust_resource(device_t bus, device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end); struct resource * bus_generic_alloc_resource(device_t bus, device_t child, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags); int bus_generic_translate_resource(device_t dev, int type, rman_res_t start, rman_res_t *newstart); int bus_generic_attach(device_t dev); int bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq, int cpu); int bus_generic_child_location(device_t dev, device_t child, struct sbuf *sb); int bus_generic_child_pnpinfo(device_t dev, device_t child, struct sbuf *sb); int bus_generic_child_present(device_t dev, device_t child); int bus_generic_config_intr(device_t, int, enum intr_trigger, enum intr_polarity); int bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq, void *cookie, const char *descr); int bus_generic_deactivate_resource(device_t dev, device_t child, int type, int rid, struct resource *r); int bus_generic_detach(device_t dev); void bus_generic_driver_added(device_t dev, driver_t *driver); int bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize, struct _cpuset *cpuset); bus_dma_tag_t bus_generic_get_dma_tag(device_t dev, device_t child); bus_space_tag_t bus_generic_get_bus_tag(device_t dev, device_t child); int bus_generic_get_domain(device_t dev, device_t child, int *domain); struct resource_list * bus_generic_get_resource_list(device_t, device_t); int bus_generic_map_resource(device_t dev, device_t child, int type, struct resource *r, struct resource_map_request *args, struct resource_map *map); void bus_generic_new_pass(device_t dev); int bus_print_child_header(device_t dev, device_t child); int bus_print_child_domain(device_t dev, device_t child); int bus_print_child_footer(device_t dev, device_t child); int bus_generic_print_child(device_t dev, device_t child); int bus_generic_probe(device_t dev); int bus_generic_read_ivar(device_t dev, device_t child, int which, uintptr_t *result); int bus_generic_release_resource(device_t bus, device_t child, int type, int rid, struct resource *r); int bus_generic_resume(device_t dev); int bus_generic_resume_child(device_t dev, device_t child); int bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq, int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep); struct resource * bus_generic_rl_alloc_resource (device_t, device_t, int, int *, rman_res_t, rman_res_t, rman_res_t, u_int); void bus_generic_rl_delete_resource (device_t, device_t, int, int); int bus_generic_rl_get_resource (device_t, device_t, int, int, rman_res_t *, rman_res_t *); int bus_generic_rl_set_resource (device_t, device_t, int, int, rman_res_t, rman_res_t); int bus_generic_rl_release_resource (device_t, device_t, int, int, struct resource *); int bus_generic_shutdown(device_t dev); int bus_generic_suspend(device_t dev); int bus_generic_suspend_child(device_t dev, device_t child); int bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq, void *cookie); int bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq); int bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq); int bus_generic_unmap_resource(device_t dev, device_t child, int type, struct resource *r, struct resource_map *map); int bus_generic_write_ivar(device_t dev, device_t child, int which, uintptr_t value); int bus_helper_reset_post(device_t dev, int flags); int bus_helper_reset_prepare(device_t dev, int flags); int bus_null_rescan(device_t dev); /* * Wrapper functions for the BUS_*_RESOURCE methods to make client code * a little simpler. */ struct resource_spec { int type; int rid; int flags; }; #define RESOURCE_SPEC_END {-1, 0, 0} int bus_alloc_resources(device_t dev, struct resource_spec *rs, struct resource **res); void bus_release_resources(device_t dev, const struct resource_spec *rs, struct resource **res); int bus_adjust_resource(device_t child, int type, struct resource *r, rman_res_t start, rman_res_t end); int bus_translate_resource(device_t child, int type, rman_res_t start, rman_res_t *newstart); struct resource *bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags); int bus_activate_resource(device_t dev, int type, int rid, struct resource *r); int bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r); int bus_map_resource(device_t dev, int type, struct resource *r, struct resource_map_request *args, struct resource_map *map); int bus_unmap_resource(device_t dev, int type, struct resource *r, struct resource_map *map); int bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, struct _cpuset *cpuset); bus_dma_tag_t bus_get_dma_tag(device_t dev); bus_space_tag_t bus_get_bus_tag(device_t dev); int bus_get_domain(device_t dev, int *domain); int bus_release_resource(device_t dev, int type, int rid, struct resource *r); int bus_free_resource(device_t dev, int type, struct resource *r); int bus_setup_intr(device_t dev, struct resource *r, int flags, driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep); int bus_teardown_intr(device_t dev, struct resource *r, void *cookie); int bus_suspend_intr(device_t dev, struct resource *r); int bus_resume_intr(device_t dev, struct resource *r); int bus_bind_intr(device_t dev, struct resource *r, int cpu); int bus_describe_intr(device_t dev, struct resource *irq, void *cookie, const char *fmt, ...) __printflike(4, 5); int bus_set_resource(device_t dev, int type, int rid, rman_res_t start, rman_res_t count); int bus_get_resource(device_t dev, int type, int rid, rman_res_t *startp, rman_res_t *countp); rman_res_t bus_get_resource_start(device_t dev, int type, int rid); rman_res_t bus_get_resource_count(device_t dev, int type, int rid); void bus_delete_resource(device_t dev, int type, int rid); int bus_child_present(device_t child); int bus_child_pnpinfo(device_t child, struct sbuf *sb); int bus_child_location(device_t child, struct sbuf *sb); void bus_enumerate_hinted_children(device_t bus); int bus_delayed_attach_children(device_t bus); static __inline struct resource * bus_alloc_resource_any(device_t dev, int type, int *rid, u_int flags) { return (bus_alloc_resource(dev, type, rid, 0, ~0, 1, flags)); } static __inline struct resource * bus_alloc_resource_anywhere(device_t dev, int type, int *rid, rman_res_t count, u_int flags) { return (bus_alloc_resource(dev, type, rid, 0, ~0, count, flags)); } /* * Access functions for device. */ device_t device_add_child(device_t dev, const char *name, int unit); device_t device_add_child_ordered(device_t dev, u_int order, const char *name, int unit); void device_busy(device_t dev); int device_delete_child(device_t dev, device_t child); int device_delete_children(device_t dev); int device_attach(device_t dev); int device_detach(device_t dev); void device_disable(device_t dev); void device_enable(device_t dev); device_t device_find_child(device_t dev, const char *classname, int unit); const char *device_get_desc(device_t dev); devclass_t device_get_devclass(device_t dev); driver_t *device_get_driver(device_t dev); u_int32_t device_get_flags(device_t dev); device_t device_get_parent(device_t dev); int device_get_children(device_t dev, device_t **listp, int *countp); void *device_get_ivars(device_t dev); void device_set_ivars(device_t dev, void *ivars); const char *device_get_name(device_t dev); const char *device_get_nameunit(device_t dev); void *device_get_softc(device_t dev); device_state_t device_get_state(device_t dev); int device_get_unit(device_t dev); struct sysctl_ctx_list *device_get_sysctl_ctx(device_t dev); struct sysctl_oid *device_get_sysctl_tree(device_t dev); int device_has_quiet_children(device_t dev); int device_is_alive(device_t dev); /* did probe succeed? */ int device_is_attached(device_t dev); /* did attach succeed? */ int device_is_enabled(device_t dev); int device_is_suspended(device_t dev); int device_is_quiet(device_t dev); device_t device_lookup_by_name(const char *name); int device_print_prettyname(device_t dev); int device_printf(device_t dev, const char *, ...) __printflike(2, 3); int device_log(device_t dev, int pri, const char *, ...) __printflike(3, 4); int device_probe(device_t dev); int device_probe_and_attach(device_t dev); int device_probe_child(device_t bus, device_t dev); int device_quiesce(device_t dev); void device_quiet(device_t dev); void device_quiet_children(device_t dev); void device_set_desc(device_t dev, const char* desc); void device_set_desc_copy(device_t dev, const char* desc); int device_set_devclass(device_t dev, const char *classname); int device_set_devclass_fixed(device_t dev, const char *classname); bool device_is_devclass_fixed(device_t dev); int device_set_driver(device_t dev, driver_t *driver); void device_set_flags(device_t dev, u_int32_t flags); void device_set_softc(device_t dev, void *softc); void device_free_softc(void *softc); void device_claim_softc(device_t dev); int device_set_unit(device_t dev, int unit); /* XXX DONT USE XXX */ int device_shutdown(device_t dev); void device_unbusy(device_t dev); void device_verbose(device_t dev); ssize_t device_get_property(device_t dev, const char *prop, void *val, size_t sz); bool device_has_property(device_t dev, const char *prop); /* * Access functions for devclass. */ int devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp); devclass_t devclass_create(const char *classname); int devclass_delete_driver(devclass_t busclass, driver_t *driver); devclass_t devclass_find(const char *classname); const char *devclass_get_name(devclass_t dc); device_t devclass_get_device(devclass_t dc, int unit); void *devclass_get_softc(devclass_t dc, int unit); int devclass_get_devices(devclass_t dc, device_t **listp, int *countp); int devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp); int devclass_get_count(devclass_t dc); int devclass_get_maxunit(devclass_t dc); int devclass_find_free_unit(devclass_t dc, int unit); void devclass_set_parent(devclass_t dc, devclass_t pdc); devclass_t devclass_get_parent(devclass_t dc); struct sysctl_ctx_list *devclass_get_sysctl_ctx(devclass_t dc); struct sysctl_oid *devclass_get_sysctl_tree(devclass_t dc); /* * Access functions for device resources. */ int resource_int_value(const char *name, int unit, const char *resname, int *result); int resource_long_value(const char *name, int unit, const char *resname, long *result); int resource_string_value(const char *name, int unit, const char *resname, const char **result); int resource_disabled(const char *name, int unit); int resource_find_match(int *anchor, const char **name, int *unit, const char *resname, const char *value); int resource_find_dev(int *anchor, const char *name, int *unit, const char *resname, const char *value); int resource_unset_value(const char *name, int unit, const char *resname); /* * Functions for maintaining and checking consistency of * bus information exported to userspace. */ int bus_data_generation_check(int generation); void bus_data_generation_update(void); /** * Some convenience defines for probe routines to return. These are just * suggested values, and there's nothing magical about them. * BUS_PROBE_SPECIFIC is for devices that cannot be reprobed, and that no * possible other driver may exist (typically legacy drivers who don't follow * all the rules, or special needs drivers). BUS_PROBE_VENDOR is the * suggested value that vendor supplied drivers use. This is for source or * binary drivers that are not yet integrated into the FreeBSD tree. Its use * in the base OS is prohibited. BUS_PROBE_DEFAULT is the normal return value * for drivers to use. It is intended that nearly all of the drivers in the * tree should return this value. BUS_PROBE_LOW_PRIORITY are for drivers that * have special requirements like when there are two drivers that support * overlapping series of hardware devices. In this case the one that supports * the older part of the line would return this value, while the one that * supports the newer ones would return BUS_PROBE_DEFAULT. BUS_PROBE_GENERIC * is for drivers that wish to have a generic form and a specialized form, * like is done with the pci bus and the acpi pci bus. BUS_PROBE_HOOVER is * for those buses that implement a generic device placeholder for devices on * the bus that have no more specific driver for them (aka ugen). * BUS_PROBE_NOWILDCARD or lower means that the device isn't really bidding * for a device node, but accepts only devices that its parent has told it * use this driver. */ #define BUS_PROBE_SPECIFIC 0 /* Only I can use this device */ #define BUS_PROBE_VENDOR (-10) /* Vendor supplied driver */ #define BUS_PROBE_DEFAULT (-20) /* Base OS default driver */ #define BUS_PROBE_LOW_PRIORITY (-40) /* Older, less desirable drivers */ #define BUS_PROBE_GENERIC (-100) /* generic driver for dev */ #define BUS_PROBE_HOOVER (-1000000) /* Driver for any dev on bus */ #define BUS_PROBE_NOWILDCARD (-2000000000) /* No wildcard device matches */ /** * During boot, the device tree is scanned multiple times. Each scan, * or pass, drivers may be attached to devices. Each driver * attachment is assigned a pass number. Drivers may only probe and * attach to devices if their pass number is less than or equal to the * current system-wide pass number. The default pass is the last pass * and is used by most drivers. Drivers needed by the scheduler are * probed in earlier passes. */ #define BUS_PASS_ROOT 0 /* Used to attach root0. */ #define BUS_PASS_BUS 10 /* Buses and bridges. */ #define BUS_PASS_CPU 20 /* CPU devices. */ #define BUS_PASS_RESOURCE 30 /* Resource discovery. */ #define BUS_PASS_INTERRUPT 40 /* Interrupt controllers. */ #define BUS_PASS_TIMER 50 /* Timers and clocks. */ #define BUS_PASS_SCHEDULER 60 /* Start scheduler. */ #define BUS_PASS_SUPPORTDEV 100000 /* Drivers which support DEFAULT drivers. */ #define BUS_PASS_DEFAULT __INT_MAX /* Everything else. */ #define BUS_PASS_ORDER_FIRST 0 #define BUS_PASS_ORDER_EARLY 2 #define BUS_PASS_ORDER_MIDDLE 5 #define BUS_PASS_ORDER_LATE 7 #define BUS_PASS_ORDER_LAST 9 extern int bus_current_pass; void bus_set_pass(int pass); /** * Routines to lock / unlock the newbus lock. * Must be taken out to interact with newbus. */ void bus_topo_lock(void); void bus_topo_unlock(void); struct mtx * bus_topo_mtx(void); +void bus_topo_assert(void); /** * Shorthands for constructing method tables. */ #define DEVMETHOD KOBJMETHOD #define DEVMETHOD_END KOBJMETHOD_END /* * Some common device interfaces. */ #include "device_if.h" #include "bus_if.h" struct module; int driver_module_handler(struct module *, int, void *); /** * Module support for automatically adding drivers to buses. */ struct driver_module_data { int (*dmd_chainevh)(struct module *, int, void *); void *dmd_chainarg; const char *dmd_busname; kobj_class_t dmd_driver; devclass_t *dmd_devclass; int dmd_pass; }; #define EARLY_DRIVER_MODULE_ORDERED(name, busname, driver, devclass, \ evh, arg, order, pass) \ \ static struct driver_module_data name##_##busname##_driver_mod = { \ evh, arg, \ #busname, \ (kobj_class_t) &driver, \ &devclass, \ pass \ }; \ \ static moduledata_t name##_##busname##_mod = { \ #busname "/" #name, \ driver_module_handler, \ &name##_##busname##_driver_mod \ }; \ DECLARE_MODULE(name##_##busname, name##_##busname##_mod, \ SI_SUB_DRIVERS, order) #define EARLY_DRIVER_MODULE(name, busname, driver, devclass, evh, arg, pass) \ EARLY_DRIVER_MODULE_ORDERED(name, busname, driver, devclass, \ evh, arg, SI_ORDER_MIDDLE, pass) #define DRIVER_MODULE_ORDERED(name, busname, driver, devclass, evh, arg,\ order) \ EARLY_DRIVER_MODULE_ORDERED(name, busname, driver, devclass, \ evh, arg, order, BUS_PASS_DEFAULT) #define DRIVER_MODULE(name, busname, driver, devclass, evh, arg) \ EARLY_DRIVER_MODULE(name, busname, driver, devclass, evh, arg, \ BUS_PASS_DEFAULT) /** * Generic ivar accessor generation macros for bus drivers */ #define __BUS_ACCESSOR(varp, var, ivarp, ivar, type) \ \ static __inline type varp ## _get_ ## var(device_t dev) \ { \ uintptr_t v; \ int e __diagused; \ e = BUS_READ_IVAR(device_get_parent(dev), dev, \ ivarp ## _IVAR_ ## ivar, &v); \ KASSERT(e == 0, ("%s failed for %s on bus %s, error = %d", \ __func__, device_get_nameunit(dev), \ device_get_nameunit(device_get_parent(dev)), e)); \ return ((type) v); \ } \ \ static __inline void varp ## _set_ ## var(device_t dev, type t) \ { \ uintptr_t v = (uintptr_t) t; \ int e __diagused; \ e = BUS_WRITE_IVAR(device_get_parent(dev), dev, \ ivarp ## _IVAR_ ## ivar, v); \ KASSERT(e == 0, ("%s failed for %s on bus %s, error = %d", \ __func__, device_get_nameunit(dev), \ device_get_nameunit(device_get_parent(dev)), e)); \ } /** * Shorthand macros, taking resource argument * Generated with sys/tools/bus_macro.sh */ #define bus_barrier(r, o, l, f) \ bus_space_barrier((r)->r_bustag, (r)->r_bushandle, (o), (l), (f)) #define bus_poke_1(r, o, v) \ bus_space_poke_1((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_peek_1(r, o, vp) \ bus_space_peek_1((r)->r_bustag, (r)->r_bushandle, (o), (vp)) #define bus_read_1(r, o) \ bus_space_read_1((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_1(r, o, d, c) \ bus_space_read_multi_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_1(r, o, d, c) \ bus_space_read_region_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_1(r, o, v, c) \ bus_space_set_multi_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_1(r, o, v, c) \ bus_space_set_region_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_1(r, o, v) \ bus_space_write_1((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_1(r, o, d, c) \ bus_space_write_multi_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_1(r, o, d, c) \ bus_space_write_region_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_stream_1(r, o) \ bus_space_read_stream_1((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_stream_1(r, o, d, c) \ bus_space_read_multi_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_stream_1(r, o, d, c) \ bus_space_read_region_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_stream_1(r, o, v, c) \ bus_space_set_multi_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_stream_1(r, o, v, c) \ bus_space_set_region_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_stream_1(r, o, v) \ bus_space_write_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_stream_1(r, o, d, c) \ bus_space_write_multi_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_stream_1(r, o, d, c) \ bus_space_write_region_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_poke_2(r, o, v) \ bus_space_poke_2((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_peek_2(r, o, vp) \ bus_space_peek_2((r)->r_bustag, (r)->r_bushandle, (o), (vp)) #define bus_read_2(r, o) \ bus_space_read_2((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_2(r, o, d, c) \ bus_space_read_multi_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_2(r, o, d, c) \ bus_space_read_region_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_2(r, o, v, c) \ bus_space_set_multi_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_2(r, o, v, c) \ bus_space_set_region_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_2(r, o, v) \ bus_space_write_2((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_2(r, o, d, c) \ bus_space_write_multi_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_2(r, o, d, c) \ bus_space_write_region_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_stream_2(r, o) \ bus_space_read_stream_2((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_stream_2(r, o, d, c) \ bus_space_read_multi_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_stream_2(r, o, d, c) \ bus_space_read_region_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_stream_2(r, o, v, c) \ bus_space_set_multi_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_stream_2(r, o, v, c) \ bus_space_set_region_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_stream_2(r, o, v) \ bus_space_write_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_stream_2(r, o, d, c) \ bus_space_write_multi_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_stream_2(r, o, d, c) \ bus_space_write_region_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_poke_4(r, o, v) \ bus_space_poke_4((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_peek_4(r, o, vp) \ bus_space_peek_4((r)->r_bustag, (r)->r_bushandle, (o), (vp)) #define bus_read_4(r, o) \ bus_space_read_4((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_4(r, o, d, c) \ bus_space_read_multi_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_4(r, o, d, c) \ bus_space_read_region_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_4(r, o, v, c) \ bus_space_set_multi_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_4(r, o, v, c) \ bus_space_set_region_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_4(r, o, v) \ bus_space_write_4((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_4(r, o, d, c) \ bus_space_write_multi_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_4(r, o, d, c) \ bus_space_write_region_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_stream_4(r, o) \ bus_space_read_stream_4((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_stream_4(r, o, d, c) \ bus_space_read_multi_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_stream_4(r, o, d, c) \ bus_space_read_region_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_stream_4(r, o, v, c) \ bus_space_set_multi_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_stream_4(r, o, v, c) \ bus_space_set_region_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_stream_4(r, o, v) \ bus_space_write_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_stream_4(r, o, d, c) \ bus_space_write_multi_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_stream_4(r, o, d, c) \ bus_space_write_region_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_poke_8(r, o, v) \ bus_space_poke_8((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_peek_8(r, o, vp) \ bus_space_peek_8((r)->r_bustag, (r)->r_bushandle, (o), (vp)) #define bus_read_8(r, o) \ bus_space_read_8((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_8(r, o, d, c) \ bus_space_read_multi_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_8(r, o, d, c) \ bus_space_read_region_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_8(r, o, v, c) \ bus_space_set_multi_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_8(r, o, v, c) \ bus_space_set_region_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_8(r, o, v) \ bus_space_write_8((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_8(r, o, d, c) \ bus_space_write_multi_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_8(r, o, d, c) \ bus_space_write_region_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_stream_8(r, o) \ bus_space_read_stream_8((r)->r_bustag, (r)->r_bushandle, (o)) #define bus_read_multi_stream_8(r, o, d, c) \ bus_space_read_multi_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_read_region_stream_8(r, o, d, c) \ bus_space_read_region_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_set_multi_stream_8(r, o, v, c) \ bus_space_set_multi_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_set_region_stream_8(r, o, v, c) \ bus_space_set_region_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c)) #define bus_write_stream_8(r, o, v) \ bus_space_write_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (v)) #define bus_write_multi_stream_8(r, o, d, c) \ bus_space_write_multi_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #define bus_write_region_stream_8(r, o, d, c) \ bus_space_write_region_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c)) #endif /* _KERNEL */ #endif /* !_SYS_BUS_H_ */