diff --git a/lib/libpfctl/libpfctl.c b/lib/libpfctl/libpfctl.c index 6a6ecd8fb136..e207a55a8673 100644 --- a/lib/libpfctl/libpfctl.c +++ b/lib/libpfctl/libpfctl.c @@ -1,860 +1,862 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2021 Rubicon Communications, LLC (Netgate) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libpfctl.h" static int _pfctl_clear_states(int , const struct pfctl_kill *, unsigned int *, uint64_t); static void pf_nvuint_8_array(const nvlist_t *nvl, const char *name, size_t maxelems, u_int8_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); assert(elems <= maxelems); for (size_t i = 0; i < elems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } static void pf_nvuint_16_array(const nvlist_t *nvl, const char *name, size_t maxelems, u_int16_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); assert(elems <= maxelems); for (size_t i = 0; i < elems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } static void pf_nvuint_32_array(const nvlist_t *nvl, const char *name, size_t maxelems, u_int32_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); assert(elems <= maxelems); for (size_t i = 0; i < elems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } static void pf_nvuint_64_array(const nvlist_t *nvl, const char *name, size_t maxelems, u_int64_t *numbers, size_t *nelems) { const uint64_t *tmp; size_t elems; tmp = nvlist_get_number_array(nvl, name, &elems); assert(elems <= maxelems); for (size_t i = 0; i < elems; i++) numbers[i] = tmp[i]; if (nelems) *nelems = elems; } static void pfctl_nv_add_addr(nvlist_t *nvparent, const char *name, const struct pf_addr *addr) { nvlist_t *nvl = nvlist_create(0); nvlist_add_binary(nvl, "addr", addr, sizeof(*addr)); nvlist_add_nvlist(nvparent, name, nvl); } static void pf_nvaddr_to_addr(const nvlist_t *nvl, struct pf_addr *addr) { size_t len; const void *data; data = nvlist_get_binary(nvl, "addr", &len); assert(len == sizeof(struct pf_addr)); memcpy(addr, data, len); } static void pfctl_nv_add_addr_wrap(nvlist_t *nvparent, const char *name, const struct pf_addr_wrap *addr) { nvlist_t *nvl = nvlist_create(0); nvlist_add_number(nvl, "type", addr->type); nvlist_add_number(nvl, "iflags", addr->iflags); if (addr->type == PF_ADDR_DYNIFTL) nvlist_add_string(nvl, "ifname", addr->v.ifname); if (addr->type == PF_ADDR_TABLE) nvlist_add_string(nvl, "tblname", addr->v.tblname); pfctl_nv_add_addr(nvl, "addr", &addr->v.a.addr); pfctl_nv_add_addr(nvl, "mask", &addr->v.a.mask); nvlist_add_nvlist(nvparent, name, nvl); } static void pf_nvaddr_wrap_to_addr_wrap(const nvlist_t *nvl, struct pf_addr_wrap *addr) { addr->type = nvlist_get_number(nvl, "type"); addr->iflags = nvlist_get_number(nvl, "iflags"); if (addr->type == PF_ADDR_DYNIFTL) strlcpy(addr->v.ifname, nvlist_get_string(nvl, "ifname"), IFNAMSIZ); if (addr->type == PF_ADDR_TABLE) strlcpy(addr->v.tblname, nvlist_get_string(nvl, "tblname"), PF_TABLE_NAME_SIZE); pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "addr"), &addr->v.a.addr); pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "mask"), &addr->v.a.mask); } static void pfctl_nv_add_rule_addr(nvlist_t *nvparent, const char *name, const struct pf_rule_addr *addr) { u_int64_t ports[2]; nvlist_t *nvl = nvlist_create(0); pfctl_nv_add_addr_wrap(nvl, "addr", &addr->addr); ports[0] = addr->port[0]; ports[1] = addr->port[1]; nvlist_add_number_array(nvl, "port", ports, 2); nvlist_add_number(nvl, "neg", addr->neg); nvlist_add_number(nvl, "port_op", addr->port_op); nvlist_add_nvlist(nvparent, name, nvl); } static void pf_nvrule_addr_to_rule_addr(const nvlist_t *nvl, struct pf_rule_addr *addr) { pf_nvaddr_wrap_to_addr_wrap(nvlist_get_nvlist(nvl, "addr"), &addr->addr); pf_nvuint_16_array(nvl, "port", 2, addr->port, NULL); addr->neg = nvlist_get_number(nvl, "neg"); addr->port_op = nvlist_get_number(nvl, "port_op"); } static void pfctl_nv_add_mape(nvlist_t *nvparent, const char *name, const struct pf_mape_portset *mape) { nvlist_t *nvl = nvlist_create(0); nvlist_add_number(nvl, "offset", mape->offset); nvlist_add_number(nvl, "psidlen", mape->psidlen); nvlist_add_number(nvl, "psid", mape->psid); nvlist_add_nvlist(nvparent, name, nvl); } static void pfctl_nv_add_pool(nvlist_t *nvparent, const char *name, const struct pfctl_pool *pool) { u_int64_t ports[2]; nvlist_t *nvl = nvlist_create(0); nvlist_add_binary(nvl, "key", &pool->key, sizeof(pool->key)); pfctl_nv_add_addr(nvl, "counter", &pool->counter); nvlist_add_number(nvl, "tblidx", pool->tblidx); ports[0] = pool->proxy_port[0]; ports[1] = pool->proxy_port[1]; nvlist_add_number_array(nvl, "proxy_port", ports, 2); nvlist_add_number(nvl, "opts", pool->opts); pfctl_nv_add_mape(nvl, "mape", &pool->mape); nvlist_add_nvlist(nvparent, name, nvl); } static void pf_nvmape_to_mape(const nvlist_t *nvl, struct pf_mape_portset *mape) { mape->offset = nvlist_get_number(nvl, "offset"); mape->psidlen = nvlist_get_number(nvl, "psidlen"); mape->psid = nvlist_get_number(nvl, "psid"); } static void pf_nvpool_to_pool(const nvlist_t *nvl, struct pfctl_pool *pool) { size_t len; const void *data; data = nvlist_get_binary(nvl, "key", &len); assert(len == sizeof(pool->key)); memcpy(&pool->key, data, len); pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "counter"), &pool->counter); pool->tblidx = nvlist_get_number(nvl, "tblidx"); pf_nvuint_16_array(nvl, "proxy_port", 2, pool->proxy_port, NULL); pool->opts = nvlist_get_number(nvl, "opts"); if (nvlist_exists_nvlist(nvl, "mape")) pf_nvmape_to_mape(nvlist_get_nvlist(nvl, "mape"), &pool->mape); } static void pfctl_nv_add_uid(nvlist_t *nvparent, const char *name, const struct pf_rule_uid *uid) { u_int64_t uids[2]; nvlist_t *nvl = nvlist_create(0); uids[0] = uid->uid[0]; uids[1] = uid->uid[1]; nvlist_add_number_array(nvl, "uid", uids, 2); nvlist_add_number(nvl, "op", uid->op); nvlist_add_nvlist(nvparent, name, nvl); } static void pf_nvrule_uid_to_rule_uid(const nvlist_t *nvl, struct pf_rule_uid *uid) { pf_nvuint_32_array(nvl, "uid", 2, uid->uid, NULL); uid->op = nvlist_get_number(nvl, "op"); } static void pfctl_nv_add_divert(nvlist_t *nvparent, const char *name, const struct pfctl_rule *r) { nvlist_t *nvl = nvlist_create(0); pfctl_nv_add_addr(nvl, "addr", &r->divert.addr); nvlist_add_number(nvl, "port", r->divert.port); nvlist_add_nvlist(nvparent, name, nvl); } static void pf_nvdivert_to_divert(const nvlist_t *nvl, struct pfctl_rule *rule) { pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "addr"), &rule->divert.addr); rule->divert.port = nvlist_get_number(nvl, "port"); } static void pf_nvrule_to_rule(const nvlist_t *nvl, struct pfctl_rule *rule) { const uint64_t *skip; const char *const *labels; size_t skipcount, labelcount; rule->nr = nvlist_get_number(nvl, "nr"); pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"), &rule->src); pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"), &rule->dst); skip = nvlist_get_number_array(nvl, "skip", &skipcount); assert(skip); assert(skipcount == PF_SKIP_COUNT); for (int i = 0; i < PF_SKIP_COUNT; i++) rule->skip[i].nr = skip[i]; labels = nvlist_get_string_array(nvl, "labels", &labelcount); assert(labelcount <= PF_RULE_MAX_LABEL_COUNT); for (size_t i = 0; i < labelcount; i++) strlcpy(rule->label[i], labels[i], PF_RULE_LABEL_SIZE); strlcpy(rule->ifname, nvlist_get_string(nvl, "ifname"), IFNAMSIZ); strlcpy(rule->qname, nvlist_get_string(nvl, "qname"), PF_QNAME_SIZE); strlcpy(rule->pqname, nvlist_get_string(nvl, "pqname"), PF_QNAME_SIZE); strlcpy(rule->tagname, nvlist_get_string(nvl, "tagname"), PF_TAG_NAME_SIZE); strlcpy(rule->match_tagname, nvlist_get_string(nvl, "match_tagname"), PF_TAG_NAME_SIZE); strlcpy(rule->overload_tblname, nvlist_get_string(nvl, "overload_tblname"), PF_TABLE_NAME_SIZE); pf_nvpool_to_pool(nvlist_get_nvlist(nvl, "rpool"), &rule->rpool); rule->evaluations = nvlist_get_number(nvl, "evaluations"); pf_nvuint_64_array(nvl, "packets", 2, rule->packets, NULL); pf_nvuint_64_array(nvl, "bytes", 2, rule->bytes, NULL); rule->os_fingerprint = nvlist_get_number(nvl, "os_fingerprint"); rule->rtableid = nvlist_get_number(nvl, "rtableid"); pf_nvuint_32_array(nvl, "timeout", PFTM_MAX, rule->timeout, NULL); rule->max_states = nvlist_get_number(nvl, "max_states"); rule->max_src_nodes = nvlist_get_number(nvl, "max_src_nodes"); rule->max_src_states = nvlist_get_number(nvl, "max_src_states"); rule->max_src_conn = nvlist_get_number(nvl, "max_src_conn"); rule->max_src_conn_rate.limit = nvlist_get_number(nvl, "max_src_conn_rate.limit"); rule->max_src_conn_rate.seconds = nvlist_get_number(nvl, "max_src_conn_rate.seconds"); rule->qid = nvlist_get_number(nvl, "qid"); rule->pqid = nvlist_get_number(nvl, "pqid"); rule->prob = nvlist_get_number(nvl, "prob"); rule->cuid = nvlist_get_number(nvl, "cuid"); rule->cpid = nvlist_get_number(nvl, "cpid"); rule->return_icmp = nvlist_get_number(nvl, "return_icmp"); rule->return_icmp6 = nvlist_get_number(nvl, "return_icmp6"); rule->max_mss = nvlist_get_number(nvl, "max_mss"); rule->scrub_flags = nvlist_get_number(nvl, "scrub_flags"); pf_nvrule_uid_to_rule_uid(nvlist_get_nvlist(nvl, "uid"), &rule->uid); pf_nvrule_uid_to_rule_uid(nvlist_get_nvlist(nvl, "gid"), (struct pf_rule_uid *)&rule->gid); rule->rule_flag = nvlist_get_number(nvl, "rule_flag"); rule->action = nvlist_get_number(nvl, "action"); rule->direction = nvlist_get_number(nvl, "direction"); rule->log = nvlist_get_number(nvl, "log"); rule->logif = nvlist_get_number(nvl, "logif"); rule->quick = nvlist_get_number(nvl, "quick"); rule->ifnot = nvlist_get_number(nvl, "ifnot"); rule->match_tag_not = nvlist_get_number(nvl, "match_tag_not"); rule->natpass = nvlist_get_number(nvl, "natpass"); rule->keep_state = nvlist_get_number(nvl, "keep_state"); rule->af = nvlist_get_number(nvl, "af"); rule->proto = nvlist_get_number(nvl, "proto"); rule->type = nvlist_get_number(nvl, "type"); rule->code = nvlist_get_number(nvl, "code"); rule->flags = nvlist_get_number(nvl, "flags"); rule->flagset = nvlist_get_number(nvl, "flagset"); rule->min_ttl = nvlist_get_number(nvl, "min_ttl"); rule->allow_opts = nvlist_get_number(nvl, "allow_opts"); rule->rt = nvlist_get_number(nvl, "rt"); rule->return_ttl = nvlist_get_number(nvl, "return_ttl"); rule->tos = nvlist_get_number(nvl, "tos"); rule->set_tos = nvlist_get_number(nvl, "set_tos"); rule->anchor_relative = nvlist_get_number(nvl, "anchor_relative"); rule->anchor_wildcard = nvlist_get_number(nvl, "anchor_wildcard"); rule->flush = nvlist_get_number(nvl, "flush"); rule->prio = nvlist_get_number(nvl, "prio"); pf_nvuint_8_array(nvl, "set_prio", 2, rule->set_prio, NULL); pf_nvdivert_to_divert(nvlist_get_nvlist(nvl, "divert"), rule); rule->states_cur = nvlist_get_number(nvl, "states_cur"); rule->states_tot = nvlist_get_number(nvl, "states_tot"); rule->src_nodes = nvlist_get_number(nvl, "src_nodes"); } int pfctl_add_rule(int dev, const struct pfctl_rule *r, const char *anchor, const char *anchor_call, u_int32_t ticket, u_int32_t pool_ticket) { struct pfioc_nv nv; u_int64_t timeouts[PFTM_MAX]; u_int64_t set_prio[2]; nvlist_t *nvl, *nvlr; size_t labelcount; int ret; nvl = nvlist_create(0); nvlr = nvlist_create(0); nvlist_add_number(nvl, "ticket", ticket); nvlist_add_number(nvl, "pool_ticket", pool_ticket); nvlist_add_string(nvl, "anchor", anchor); nvlist_add_string(nvl, "anchor_call", anchor_call); nvlist_add_number(nvlr, "nr", r->nr); pfctl_nv_add_rule_addr(nvlr, "src", &r->src); pfctl_nv_add_rule_addr(nvlr, "dst", &r->dst); labelcount = 0; while (r->label[labelcount][0] != 0 && labelcount < PF_RULE_MAX_LABEL_COUNT) { nvlist_append_string_array(nvlr, "labels", r->label[labelcount]); labelcount++; } nvlist_add_string(nvlr, "ifname", r->ifname); nvlist_add_string(nvlr, "qname", r->qname); nvlist_add_string(nvlr, "pqname", r->pqname); nvlist_add_string(nvlr, "tagname", r->tagname); nvlist_add_string(nvlr, "match_tagname", r->match_tagname); nvlist_add_string(nvlr, "overload_tblname", r->overload_tblname); pfctl_nv_add_pool(nvlr, "rpool", &r->rpool); nvlist_add_number(nvlr, "os_fingerprint", r->os_fingerprint); nvlist_add_number(nvlr, "rtableid", r->rtableid); for (int i = 0; i < PFTM_MAX; i++) timeouts[i] = r->timeout[i]; nvlist_add_number_array(nvlr, "timeout", timeouts, PFTM_MAX); nvlist_add_number(nvlr, "max_states", r->max_states); nvlist_add_number(nvlr, "max_src_nodes", r->max_src_nodes); nvlist_add_number(nvlr, "max_src_states", r->max_src_states); nvlist_add_number(nvlr, "max_src_conn", r->max_src_conn); nvlist_add_number(nvlr, "max_src_conn_rate.limit", r->max_src_conn_rate.limit); nvlist_add_number(nvlr, "max_src_conn_rate.seconds", r->max_src_conn_rate.seconds); nvlist_add_number(nvlr, "prob", r->prob); nvlist_add_number(nvlr, "cuid", r->cuid); nvlist_add_number(nvlr, "cpid", r->cpid); nvlist_add_number(nvlr, "return_icmp", r->return_icmp); nvlist_add_number(nvlr, "return_icmp6", r->return_icmp6); nvlist_add_number(nvlr, "max_mss", r->max_mss); nvlist_add_number(nvlr, "scrub_flags", r->scrub_flags); pfctl_nv_add_uid(nvlr, "uid", &r->uid); pfctl_nv_add_uid(nvlr, "gid", (const struct pf_rule_uid *)&r->gid); nvlist_add_number(nvlr, "rule_flag", r->rule_flag); nvlist_add_number(nvlr, "action", r->action); nvlist_add_number(nvlr, "direction", r->direction); nvlist_add_number(nvlr, "log", r->log); nvlist_add_number(nvlr, "logif", r->logif); nvlist_add_number(nvlr, "quick", r->quick); nvlist_add_number(nvlr, "ifnot", r->ifnot); nvlist_add_number(nvlr, "match_tag_not", r->match_tag_not); nvlist_add_number(nvlr, "natpass", r->natpass); nvlist_add_number(nvlr, "keep_state", r->keep_state); nvlist_add_number(nvlr, "af", r->af); nvlist_add_number(nvlr, "proto", r->proto); nvlist_add_number(nvlr, "type", r->type); nvlist_add_number(nvlr, "code", r->code); nvlist_add_number(nvlr, "flags", r->flags); nvlist_add_number(nvlr, "flagset", r->flagset); nvlist_add_number(nvlr, "min_ttl", r->min_ttl); nvlist_add_number(nvlr, "allow_opts", r->allow_opts); nvlist_add_number(nvlr, "rt", r->rt); nvlist_add_number(nvlr, "return_ttl", r->return_ttl); nvlist_add_number(nvlr, "tos", r->tos); nvlist_add_number(nvlr, "set_tos", r->set_tos); nvlist_add_number(nvlr, "anchor_relative", r->anchor_relative); nvlist_add_number(nvlr, "anchor_wildcard", r->anchor_wildcard); nvlist_add_number(nvlr, "flush", r->flush); nvlist_add_number(nvlr, "prio", r->prio); set_prio[0] = r->set_prio[0]; set_prio[1] = r->set_prio[1]; nvlist_add_number_array(nvlr, "set_prio", set_prio, 2); pfctl_nv_add_divert(nvlr, "divert", r); nvlist_add_nvlist(nvl, "rule", nvlr); /* Now do the call. */ nv.data = nvlist_pack(nvl, &nv.len); nv.size = nv.len; ret = ioctl(dev, DIOCADDRULENV, &nv); free(nv.data); nvlist_destroy(nvl); return (ret); } int pfctl_get_rule(int dev, u_int32_t nr, u_int32_t ticket, const char *anchor, u_int32_t ruleset, struct pfctl_rule *rule, char *anchor_call) { return (pfctl_get_clear_rule(dev, nr, ticket, anchor, ruleset, rule, anchor_call, false)); } int pfctl_get_clear_rule(int dev, u_int32_t nr, u_int32_t ticket, const char *anchor, u_int32_t ruleset, struct pfctl_rule *rule, char *anchor_call, bool clear) { struct pfioc_nv nv; nvlist_t *nvl; void *nvlpacked; int ret; nvl = nvlist_create(0); if (nvl == 0) return (ENOMEM); nvlist_add_number(nvl, "nr", nr); nvlist_add_number(nvl, "ticket", ticket); nvlist_add_string(nvl, "anchor", anchor); nvlist_add_number(nvl, "ruleset", ruleset); if (clear) nvlist_add_bool(nvl, "clear_counter", true); nvlpacked = nvlist_pack(nvl, &nv.len); if (nvlpacked == NULL) { nvlist_destroy(nvl); return (ENOMEM); } nv.data = malloc(8182); nv.size = 8192; assert(nv.len <= nv.size); memcpy(nv.data, nvlpacked, nv.len); nvlist_destroy(nvl); nvl = NULL; free(nvlpacked); ret = ioctl(dev, DIOCGETRULENV, &nv); if (ret != 0) { free(nv.data); return (ret); } nvl = nvlist_unpack(nv.data, nv.len, 0); if (nvl == NULL) { free(nv.data); return (EIO); } pf_nvrule_to_rule(nvlist_get_nvlist(nvl, "rule"), rule); if (anchor_call) strlcpy(anchor_call, nvlist_get_string(nvl, "anchor_call"), MAXPATHLEN); free(nv.data); nvlist_destroy(nvl); return (0); } int pfctl_set_keepcounters(int dev, bool keep) { struct pfioc_nv nv; nvlist_t *nvl; int ret; nvl = nvlist_create(0); nvlist_add_bool(nvl, "keep_counters", keep); nv.data = nvlist_pack(nvl, &nv.len); nv.size = nv.len; nvlist_destroy(nvl); ret = ioctl(dev, DIOCKEEPCOUNTERS, &nv); free(nv.data); return (ret); } static void pfctl_nv_add_state_cmp(nvlist_t *nvl, const char *name, const struct pfctl_state_cmp *cmp) { nvlist_t *nv; nv = nvlist_create(0); nvlist_add_number(nv, "id", cmp->id); nvlist_add_number(nv, "creatorid", cmp->creatorid); nvlist_add_number(nv, "direction", cmp->direction); nvlist_add_nvlist(nvl, name, nv); } static void pf_nvstate_scrub_to_state_scrub(const nvlist_t *nvl, struct pfctl_state_scrub *scrub) { bzero(scrub, sizeof(*scrub)); scrub->timestamp = nvlist_get_bool(nvl, "timestamp"); scrub->ttl = nvlist_get_number(nvl, "ttl"); scrub->ts_mod = nvlist_get_number(nvl, "ts_mod"); } static void pf_nvstate_peer_to_state_peer(const nvlist_t *nvl, struct pfctl_state_peer *peer) { bzero(peer, sizeof(*peer)); if (nvlist_exists_nvlist(nvl, "scrub")) { peer->scrub = malloc(sizeof(*peer->scrub)); pf_nvstate_scrub_to_state_scrub( nvlist_get_nvlist(nvl, "scrub"), peer->scrub); } peer->seqlo = nvlist_get_number(nvl, "seqlo"); peer->seqhi = nvlist_get_number(nvl, "seqhi"); peer->seqdiff = nvlist_get_number(nvl, "seqdiff"); peer->max_win = nvlist_get_number(nvl, "max_win"); peer->mss = nvlist_get_number(nvl, "mss"); peer->state = nvlist_get_number(nvl, "state"); peer->wscale = nvlist_get_number(nvl, "wscale"); } static void pf_nvstate_key_to_state_key(const nvlist_t *nvl, struct pfctl_state_key *key) { const nvlist_t * const *tmp; size_t count; bzero(key, sizeof(*key)); tmp = nvlist_get_nvlist_array(nvl, "addr", &count); assert(count == 2); for (int i = 0; i < 2; i++) pf_nvaddr_to_addr(tmp[i], &key->addr[i]); pf_nvuint_16_array(nvl, "port", 2, key->port, NULL); key->af = nvlist_get_number(nvl, "af"); key->proto = nvlist_get_number(nvl, "proto"); } static void pf_nvstate_to_state(const nvlist_t *nvl, struct pfctl_state *s) { bzero(s, sizeof(*s)); s->id = nvlist_get_number(nvl, "id"); s->creatorid = nvlist_get_number(nvl, "creatorid"); s->direction = nvlist_get_number(nvl, "direction"); pf_nvstate_peer_to_state_peer(nvlist_get_nvlist(nvl, "src"), &s->src); pf_nvstate_peer_to_state_peer(nvlist_get_nvlist(nvl, "dst"), &s->dst); pf_nvstate_key_to_state_key(nvlist_get_nvlist(nvl, "stack_key"), &s->key[0]); pf_nvstate_key_to_state_key(nvlist_get_nvlist(nvl, "wire_key"), &s->key[1]); strlcpy(s->ifname, nvlist_get_string(nvl, "ifname"), sizeof(s->ifname)); + strlcpy(s->orig_ifname, nvlist_get_string(nvl, "orig_ifname"), + sizeof(s->orig_ifname)); pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "rt_addr"), &s->rt_addr); s->rule = nvlist_get_number(nvl, "rule"); s->anchor = nvlist_get_number(nvl, "anchor"); s->nat_rule = nvlist_get_number(nvl, "nat_rule"); s->creation = nvlist_get_number(nvl, "creation"); s->expire = nvlist_get_number(nvl, "expire"); pf_nvuint_64_array(nvl, "packets", 2, s->packets, NULL); pf_nvuint_64_array(nvl, "bytes", 2, s->bytes, NULL); s->log = nvlist_get_number(nvl, "log"); s->state_flags = nvlist_get_number(nvl, "state_flags"); s->timeout = nvlist_get_number(nvl, "timeout"); s->sync_flags = nvlist_get_number(nvl, "sync_flags"); } int pfctl_get_states(int dev, struct pfctl_states *states) { struct pfioc_nv nv; nvlist_t *nvl; const nvlist_t * const *slist; size_t found_count; bzero(states, sizeof(*states)); TAILQ_INIT(&states->states); /* Just enough to get a number, and we'll grow from there. */ nv.data = malloc(64); nv.len = nv.size = 64; for (;;) { if (ioctl(dev, DIOCGETSTATESNV, &nv)) { free(nv.data); return (errno); } nvl = nvlist_unpack(nv.data, nv.len, 0); if (nvl == NULL) { free(nv.data); return (EIO); } states->count = nvlist_get_number(nvl, "count"); /* Are there any states? */ if (states->count == 0) break; if (nvlist_exists_nvlist_array(nvl, "states")) slist = nvlist_get_nvlist_array(nvl, "states", &found_count); else found_count = 0; if (found_count < states->count) { size_t new_size = nv.size + (nv.size * states->count / (found_count + 1) * 2); /* Our buffer is too small. Estimate what we need based * on how many states fit in the previous allocation * and how many states there are. Doubled for margin. * */ nv.data = realloc(nv.data, new_size); nv.size = new_size; if (nv.data == NULL) return (ENOMEM); continue; } for (size_t i = 0; i < found_count; i++) { struct pfctl_state *s = malloc(sizeof(*s)); if (s == NULL) { pfctl_free_states(states); nvlist_destroy(nvl); free(nv.data); return (ENOMEM); } pf_nvstate_to_state(slist[i], s); TAILQ_INSERT_TAIL(&states->states, s, entry); } break; } return (0); } void pfctl_free_states(struct pfctl_states *states) { struct pfctl_state *s, *tmp; TAILQ_FOREACH_SAFE(s, &states->states, entry, tmp) { free(s); } bzero(states, sizeof(*states)); } static int _pfctl_clear_states(int dev, const struct pfctl_kill *kill, unsigned int *killed, uint64_t ioctlval) { struct pfioc_nv nv; nvlist_t *nvl; int ret; nvl = nvlist_create(0); pfctl_nv_add_state_cmp(nvl, "cmp", &kill->cmp); nvlist_add_number(nvl, "af", kill->af); nvlist_add_number(nvl, "proto", kill->proto); pfctl_nv_add_rule_addr(nvl, "src", &kill->src); pfctl_nv_add_rule_addr(nvl, "dst", &kill->dst); pfctl_nv_add_rule_addr(nvl, "rt_addr", &kill->rt_addr); nvlist_add_string(nvl, "ifname", kill->ifname); nvlist_add_string(nvl, "label", kill->label); nvlist_add_bool(nvl, "kill_match", kill->kill_match); nv.data = nvlist_pack(nvl, &nv.len); nv.size = nv.len; nvlist_destroy(nvl); nvl = NULL; ret = ioctl(dev, ioctlval, &nv); if (ret != 0) { free(nv.data); return (ret); } nvl = nvlist_unpack(nv.data, nv.len, 0); if (nvl == NULL) { free(nv.data); return (EIO); } if (killed) *killed = nvlist_get_number(nvl, "killed"); nvlist_destroy(nvl); free(nv.data); return (ret); } int pfctl_clear_states(int dev, const struct pfctl_kill *kill, unsigned int *killed) { return (_pfctl_clear_states(dev, kill, killed, DIOCCLRSTATESNV)); } int pfctl_kill_states(int dev, const struct pfctl_kill *kill, unsigned int *killed) { return (_pfctl_clear_states(dev, kill, killed, DIOCKILLSTATESNV)); } diff --git a/lib/libpfctl/libpfctl.h b/lib/libpfctl/libpfctl.h index 05447b5d8673..a54ee9db6ec7 100644 --- a/lib/libpfctl/libpfctl.h +++ b/lib/libpfctl/libpfctl.h @@ -1,275 +1,276 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2021 Rubicon Communications, LLC (Netgate) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _PFCTL_IOCTL_H_ #define _PFCTL_IOCTL_H_ #include struct pfctl_anchor; struct pfctl_pool { struct pf_palist list; struct pf_pooladdr *cur; struct pf_poolhashkey key; struct pf_addr counter; struct pf_mape_portset mape; int tblidx; u_int16_t proxy_port[2]; u_int8_t opts; }; struct pfctl_rule { struct pf_rule_addr src; struct pf_rule_addr dst; union pf_rule_ptr skip[PF_SKIP_COUNT]; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; char ifname[IFNAMSIZ]; char qname[PF_QNAME_SIZE]; char pqname[PF_QNAME_SIZE]; char tagname[PF_TAG_NAME_SIZE]; char match_tagname[PF_TAG_NAME_SIZE]; char overload_tblname[PF_TABLE_NAME_SIZE]; TAILQ_ENTRY(pfctl_rule) entries; struct pfctl_pool rpool; u_int64_t evaluations; u_int64_t packets[2]; u_int64_t bytes[2]; struct pfi_kif *kif; struct pfctl_anchor *anchor; struct pfr_ktable *overload_tbl; pf_osfp_t os_fingerprint; int rtableid; u_int32_t timeout[PFTM_MAX]; u_int32_t max_states; u_int32_t max_src_nodes; u_int32_t max_src_states; u_int32_t max_src_conn; struct { u_int32_t limit; u_int32_t seconds; } max_src_conn_rate; u_int32_t qid; u_int32_t pqid; u_int32_t nr; u_int32_t prob; uid_t cuid; pid_t cpid; uint64_t states_cur; uint64_t states_tot; uint64_t src_nodes; u_int16_t return_icmp; u_int16_t return_icmp6; u_int16_t max_mss; u_int16_t tag; u_int16_t match_tag; u_int16_t scrub_flags; struct pf_rule_uid uid; struct pf_rule_gid gid; u_int32_t rule_flag; u_int8_t action; u_int8_t direction; u_int8_t log; u_int8_t logif; u_int8_t quick; u_int8_t ifnot; u_int8_t match_tag_not; u_int8_t natpass; u_int8_t keep_state; sa_family_t af; u_int8_t proto; u_int8_t type; u_int8_t code; u_int8_t flags; u_int8_t flagset; u_int8_t min_ttl; u_int8_t allow_opts; u_int8_t rt; u_int8_t return_ttl; u_int8_t tos; u_int8_t set_tos; u_int8_t anchor_relative; u_int8_t anchor_wildcard; u_int8_t flush; u_int8_t prio; u_int8_t set_prio[2]; struct { struct pf_addr addr; u_int16_t port; } divert; }; TAILQ_HEAD(pfctl_rulequeue, pfctl_rule); struct pfctl_ruleset { struct { struct pfctl_rulequeue queues[2]; struct { struct pfctl_rulequeue *ptr; struct pfctl_rule **ptr_array; u_int32_t rcount; u_int32_t ticket; int open; } active, inactive; } rules[PF_RULESET_MAX]; struct pfctl_anchor *anchor; u_int32_t tticket; int tables; int topen; }; RB_HEAD(pfctl_anchor_global, pfctl_anchor); RB_HEAD(pfctl_anchor_node, pfctl_anchor); struct pfctl_anchor { RB_ENTRY(pfctl_anchor) entry_global; RB_ENTRY(pfctl_anchor) entry_node; struct pfctl_anchor *parent; struct pfctl_anchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pfctl_ruleset ruleset; int refcnt; /* anchor rules */ int match; /* XXX: used for pfctl black magic */ }; RB_PROTOTYPE(pfctl_anchor_global, pfctl_anchor, entry_global, pf_anchor_compare); RB_PROTOTYPE(pfctl_anchor_node, pfctl_anchor, entry_node, pf_anchor_compare); struct pfctl_state_cmp { uint64_t id; uint32_t creatorid; uint8_t direction; }; struct pfctl_kill { struct pfctl_state_cmp cmp; sa_family_t af; int proto; struct pf_rule_addr src; struct pf_rule_addr dst; struct pf_rule_addr rt_addr; char ifname[IFNAMSIZ]; char label[PF_RULE_LABEL_SIZE]; bool kill_match; }; struct pfctl_state_scrub { bool timestamp; uint8_t ttl; uint32_t ts_mod; }; struct pfctl_state_peer { struct pfctl_state_scrub *scrub; uint32_t seqlo; uint32_t seqhi; uint32_t seqdiff; uint16_t max_win; uint16_t mss; uint8_t state; uint8_t wscale; }; struct pfctl_state_key { struct pf_addr addr[2]; uint16_t port[2]; sa_family_t af; uint8_t proto; }; struct pfctl_state { TAILQ_ENTRY(pfctl_state) entry; uint64_t id; uint32_t creatorid; uint8_t direction; struct pfctl_state_peer src; struct pfctl_state_peer dst; uint32_t rule; uint32_t anchor; uint32_t nat_rule; struct pf_addr rt_addr; struct pfctl_state_key key[2]; /* addresses stack and wire */ char ifname[IFNAMSIZ]; + char orig_ifname[IFNAMSIZ]; uint64_t packets[2]; uint64_t bytes[2]; uint32_t creation; uint32_t expire; uint32_t pfsync_time; uint16_t tag; uint8_t log; uint8_t state_flags; uint8_t timeout; uint32_t sync_flags; }; TAILQ_HEAD(pfctl_statelist, pfctl_state); struct pfctl_states { struct pfctl_statelist states; size_t count; }; int pfctl_get_rule(int dev, u_int32_t nr, u_int32_t ticket, const char *anchor, u_int32_t ruleset, struct pfctl_rule *rule, char *anchor_call); int pfctl_get_clear_rule(int dev, u_int32_t nr, u_int32_t ticket, const char *anchor, u_int32_t ruleset, struct pfctl_rule *rule, char *anchor_call, bool clear); int pfctl_add_rule(int dev, const struct pfctl_rule *r, const char *anchor, const char *anchor_call, u_int32_t ticket, u_int32_t pool_ticket); int pfctl_set_keepcounters(int dev, bool keep); int pfctl_get_states(int dev, struct pfctl_states *states); void pfctl_free_states(struct pfctl_states *states); int pfctl_clear_states(int dev, const struct pfctl_kill *kill, unsigned int *killed); int pfctl_kill_states(int dev, const struct pfctl_kill *kill, unsigned int *killed); #endif diff --git a/sbin/pfctl/pf_print_state.c b/sbin/pfctl/pf_print_state.c index 7119308d195b..b1f0079154cf 100644 --- a/sbin/pfctl/pf_print_state.c +++ b/sbin/pfctl/pf_print_state.c @@ -1,377 +1,380 @@ /* $OpenBSD: pf_print_state.c,v 1.52 2008/08/12 16:40:18 david Exp $ */ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include #include "pfctl_parser.h" #include "pfctl.h" void print_name(struct pf_addr *, sa_family_t); void print_addr(struct pf_addr_wrap *addr, sa_family_t af, int verbose) { switch (addr->type) { case PF_ADDR_DYNIFTL: printf("(%s", addr->v.ifname); if (addr->iflags & PFI_AFLAG_NETWORK) printf(":network"); if (addr->iflags & PFI_AFLAG_BROADCAST) printf(":broadcast"); if (addr->iflags & PFI_AFLAG_PEER) printf(":peer"); if (addr->iflags & PFI_AFLAG_NOALIAS) printf(":0"); if (verbose) { if (addr->p.dyncnt <= 0) printf(":*"); else printf(":%d", addr->p.dyncnt); } printf(")"); break; case PF_ADDR_TABLE: if (verbose) if (addr->p.tblcnt == -1) printf("<%s:*>", addr->v.tblname); else printf("<%s:%d>", addr->v.tblname, addr->p.tblcnt); else printf("<%s>", addr->v.tblname); return; case PF_ADDR_RANGE: { char buf[48]; if (inet_ntop(af, &addr->v.a.addr, buf, sizeof(buf)) == NULL) printf("?"); else printf("%s", buf); if (inet_ntop(af, &addr->v.a.mask, buf, sizeof(buf)) == NULL) printf(" - ?"); else printf(" - %s", buf); break; } case PF_ADDR_ADDRMASK: if (PF_AZERO(&addr->v.a.addr, AF_INET6) && PF_AZERO(&addr->v.a.mask, AF_INET6)) printf("any"); else { char buf[48]; if (inet_ntop(af, &addr->v.a.addr, buf, sizeof(buf)) == NULL) printf("?"); else printf("%s", buf); } break; case PF_ADDR_NOROUTE: printf("no-route"); return; case PF_ADDR_URPFFAILED: printf("urpf-failed"); return; default: printf("?"); return; } /* mask if not _both_ address and mask are zero */ if (addr->type != PF_ADDR_RANGE && !(PF_AZERO(&addr->v.a.addr, AF_INET6) && PF_AZERO(&addr->v.a.mask, AF_INET6))) { int bits = unmask(&addr->v.a.mask, af); if (bits != (af == AF_INET ? 32 : 128)) printf("/%d", bits); } } void print_name(struct pf_addr *addr, sa_family_t af) { char host[NI_MAXHOST]; strlcpy(host, "?", sizeof(host)); switch (af) { case AF_INET: { struct sockaddr_in sin; memset(&sin, 0, sizeof(sin)); sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; sin.sin_addr = addr->v4; getnameinfo((struct sockaddr *)&sin, sin.sin_len, host, sizeof(host), NULL, 0, NI_NOFQDN); break; } case AF_INET6: { struct sockaddr_in6 sin6; memset(&sin6, 0, sizeof(sin6)); sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; sin6.sin6_addr = addr->v6; getnameinfo((struct sockaddr *)&sin6, sin6.sin6_len, host, sizeof(host), NULL, 0, NI_NOFQDN); break; } } printf("%s", host); } void print_host(struct pf_addr *addr, u_int16_t port, sa_family_t af, int opts) { if (opts & PF_OPT_USEDNS) print_name(addr, af); else { struct pf_addr_wrap aw; memset(&aw, 0, sizeof(aw)); aw.v.a.addr = *addr; if (af == AF_INET) aw.v.a.mask.addr32[0] = 0xffffffff; else { memset(&aw.v.a.mask, 0xff, sizeof(aw.v.a.mask)); af = AF_INET6; } print_addr(&aw, af, opts & PF_OPT_VERBOSE2); } if (port) { if (af == AF_INET) printf(":%u", ntohs(port)); else printf("[%u]", ntohs(port)); } } void print_seq(struct pfctl_state_peer *p) { if (p->seqdiff) printf("[%u + %u](+%u)", p->seqlo, p->seqhi - p->seqlo, p->seqdiff); else printf("[%u + %u]", p->seqlo, p->seqhi - p->seqlo); } void print_state(struct pfctl_state *s, int opts) { struct pfctl_state_peer *src, *dst; struct pfctl_state_key *key, *sk, *nk; struct protoent *p; int min, sec; sa_family_t af; uint8_t proto; #ifndef __NO_STRICT_ALIGNMENT struct pfctl_state_key aligned_key[2]; bcopy(&s->key, aligned_key, sizeof(aligned_key)); key = aligned_key; #else key = s->key; #endif af = s->key[PF_SK_WIRE].af; proto = s->key[PF_SK_WIRE].proto; if (s->direction == PF_OUT) { src = &s->src; dst = &s->dst; sk = &key[PF_SK_STACK]; nk = &key[PF_SK_WIRE]; if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) sk->port[0] = nk->port[0]; } else { src = &s->dst; dst = &s->src; sk = &key[PF_SK_WIRE]; nk = &key[PF_SK_STACK]; if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) sk->port[1] = nk->port[1]; } printf("%s ", s->ifname); if ((p = getprotobynumber(proto)) != NULL) printf("%s ", p->p_name); else printf("%u ", proto); print_host(&nk->addr[1], nk->port[1], af, opts); if (PF_ANEQ(&nk->addr[1], &sk->addr[1], af) || nk->port[1] != sk->port[1]) { printf(" ("); print_host(&sk->addr[1], sk->port[1], af, opts); printf(")"); } if (s->direction == PF_OUT) printf(" -> "); else printf(" <- "); print_host(&nk->addr[0], nk->port[0], af, opts); if (PF_ANEQ(&nk->addr[0], &sk->addr[0], af) || nk->port[0] != sk->port[0]) { printf(" ("); print_host(&sk->addr[0], sk->port[0], af, opts); printf(")"); } printf(" "); if (proto == IPPROTO_TCP) { if (src->state <= TCPS_TIME_WAIT && dst->state <= TCPS_TIME_WAIT) printf(" %s:%s\n", tcpstates[src->state], tcpstates[dst->state]); else if (src->state == PF_TCPS_PROXY_SRC || dst->state == PF_TCPS_PROXY_SRC) printf(" PROXY:SRC\n"); else if (src->state == PF_TCPS_PROXY_DST || dst->state == PF_TCPS_PROXY_DST) printf(" PROXY:DST\n"); else printf(" \n", src->state, dst->state); if (opts & PF_OPT_VERBOSE) { printf(" "); print_seq(src); if (src->wscale && dst->wscale) printf(" wscale %u", src->wscale & PF_WSCALE_MASK); printf(" "); print_seq(dst); if (src->wscale && dst->wscale) printf(" wscale %u", dst->wscale & PF_WSCALE_MASK); printf("\n"); } } else if (proto == IPPROTO_UDP && src->state < PFUDPS_NSTATES && dst->state < PFUDPS_NSTATES) { const char *states[] = PFUDPS_NAMES; printf(" %s:%s\n", states[src->state], states[dst->state]); #ifndef INET6 } else if (proto != IPPROTO_ICMP && src->state < PFOTHERS_NSTATES && dst->state < PFOTHERS_NSTATES) { #else } else if (proto != IPPROTO_ICMP && proto != IPPROTO_ICMPV6 && src->state < PFOTHERS_NSTATES && dst->state < PFOTHERS_NSTATES) { #endif /* XXX ICMP doesn't really have state levels */ const char *states[] = PFOTHERS_NAMES; printf(" %s:%s\n", states[src->state], states[dst->state]); } else { printf(" %u:%u\n", src->state, dst->state); } if (opts & PF_OPT_VERBOSE) { u_int32_t creation = s->creation; u_int32_t expire = s->expire; sec = creation % 60; creation /= 60; min = creation % 60; creation /= 60; printf(" age %.2u:%.2u:%.2u", creation, min, sec); sec = expire % 60; expire /= 60; min = expire % 60; expire /= 60; printf(", expires in %.2u:%.2u:%.2u", expire, min, sec); printf(", %ju:%ju pkts, %ju:%ju bytes", s->packets[0], s->packets[1], s->bytes[0], s->bytes[1]); if (s->anchor != -1) printf(", anchor %u", s->anchor); if (s->rule != -1) printf(", rule %u", s->rule); if (s->state_flags & PFSTATE_SLOPPY) printf(", sloppy"); if (s->sync_flags & PFSYNC_FLAG_SRCNODE) printf(", source-track"); if (s->sync_flags & PFSYNC_FLAG_NATSRCNODE) printf(", sticky-address"); printf("\n"); } if (opts & PF_OPT_VERBOSE2) { u_int64_t id; bcopy(&s->id, &id, sizeof(u_int64_t)); printf(" id: %016jx creatorid: %08x", id, s->creatorid); - printf(" gateway: "); + printf(" gateway: "); print_host(&s->rt_addr, 0, af, opts); printf("\n"); + + if (strcmp(s->ifname, s->orig_ifname) != 0) + printf(" origif: %s\n", s->orig_ifname); } } int unmask(struct pf_addr *m, sa_family_t af) { int i = 31, j = 0, b = 0; u_int32_t tmp; while (j < 4 && m->addr32[j] == 0xffffffff) { b += 32; j++; } if (j < 4) { tmp = ntohl(m->addr32[j]); for (i = 31; tmp & (1 << i); --i) b++; } return (b); } diff --git a/sys/net/pfvar.h b/sys/net/pfvar.h index d9e35dae753a..2202421086d2 100644 --- a/sys/net/pfvar.h +++ b/sys/net/pfvar.h @@ -1,1717 +1,1719 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $OpenBSD: pfvar.h,v 1.282 2009/01/29 15:12:28 pyr Exp $ * $FreeBSD$ */ #ifndef _NET_PFVAR_H_ #define _NET_PFVAR_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL SYSCTL_DECL(_net_pf); MALLOC_DECLARE(M_PFHASH); struct pfi_dynaddr { TAILQ_ENTRY(pfi_dynaddr) entry; struct pf_addr pfid_addr4; struct pf_addr pfid_mask4; struct pf_addr pfid_addr6; struct pf_addr pfid_mask6; struct pfr_ktable *pfid_kt; struct pfi_kkif *pfid_kif; int pfid_net; /* mask or 128 */ int pfid_acnt4; /* address count IPv4 */ int pfid_acnt6; /* address count IPv6 */ sa_family_t pfid_af; /* rule af */ u_int8_t pfid_iflags; /* PFI_AFLAG_* */ }; /* * Address manipulation macros */ #define HTONL(x) (x) = htonl((__uint32_t)(x)) #define HTONS(x) (x) = htons((__uint16_t)(x)) #define NTOHL(x) (x) = ntohl((__uint32_t)(x)) #define NTOHS(x) (x) = ntohs((__uint16_t)(x)) #define PF_NAME "pf" #define PF_HASHROW_ASSERT(h) mtx_assert(&(h)->lock, MA_OWNED) #define PF_HASHROW_LOCK(h) mtx_lock(&(h)->lock) #define PF_HASHROW_UNLOCK(h) mtx_unlock(&(h)->lock) #define PF_STATE_LOCK(s) \ do { \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(s)]; \ PF_HASHROW_LOCK(_ih); \ } while (0) #define PF_STATE_UNLOCK(s) \ do { \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH((s))]; \ PF_HASHROW_UNLOCK(_ih); \ } while (0) #ifdef INVARIANTS #define PF_STATE_LOCK_ASSERT(s) \ do { \ struct pf_idhash *_ih = &V_pf_idhash[PF_IDHASH(s)]; \ PF_HASHROW_ASSERT(_ih); \ } while (0) #else /* !INVARIANTS */ #define PF_STATE_LOCK_ASSERT(s) do {} while (0) #endif /* INVARIANTS */ extern struct mtx pf_unlnkdrules_mtx; #define PF_UNLNKDRULES_LOCK() mtx_lock(&pf_unlnkdrules_mtx) #define PF_UNLNKDRULES_UNLOCK() mtx_unlock(&pf_unlnkdrules_mtx) extern struct rmlock pf_rules_lock; #define PF_RULES_RLOCK_TRACKER struct rm_priotracker _pf_rules_tracker #define PF_RULES_RLOCK() rm_rlock(&pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_RUNLOCK() rm_runlock(&pf_rules_lock, &_pf_rules_tracker) #define PF_RULES_WLOCK() rm_wlock(&pf_rules_lock) #define PF_RULES_WUNLOCK() rm_wunlock(&pf_rules_lock) #define PF_RULES_ASSERT() rm_assert(&pf_rules_lock, RA_LOCKED) #define PF_RULES_RASSERT() rm_assert(&pf_rules_lock, RA_RLOCKED) #define PF_RULES_WASSERT() rm_assert(&pf_rules_lock, RA_WLOCKED) extern struct sx pf_end_lock; #define PF_MODVER 1 #define PFLOG_MODVER 1 #define PFSYNC_MODVER 1 #define PFLOG_MINVER 1 #define PFLOG_PREFVER PFLOG_MODVER #define PFLOG_MAXVER 1 #define PFSYNC_MINVER 1 #define PFSYNC_PREFVER PFSYNC_MODVER #define PFSYNC_MAXVER 1 #ifdef INET #ifndef INET6 #define PF_INET_ONLY #endif /* ! INET6 */ #endif /* INET */ #ifdef INET6 #ifndef INET #define PF_INET6_ONLY #endif /* ! INET */ #endif /* INET6 */ #ifdef INET #ifdef INET6 #define PF_INET_INET6 #endif /* INET6 */ #endif /* INET */ #else #define PF_INET_INET6 #endif /* _KERNEL */ /* Both IPv4 and IPv6 */ #ifdef PF_INET_INET6 #define PF_AEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] == (b)->addr32[0]) || \ (c == AF_INET6 && (a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0])) \ #define PF_ANEQ(a, b, c) \ ((c == AF_INET && (a)->addr32[0] != (b)->addr32[0]) || \ (c == AF_INET6 && ((a)->addr32[0] != (b)->addr32[0] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[3] != (b)->addr32[3]))) \ #define PF_AZERO(a, c) \ ((c == AF_INET && !(a)->addr32[0]) || \ (c == AF_INET6 && !(a)->addr32[0] && !(a)->addr32[1] && \ !(a)->addr32[2] && !(a)->addr32[3] )) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv6 */ #ifdef PF_INET6_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[3] == (b)->addr32[3] && \ (a)->addr32[2] == (b)->addr32[2] && \ (a)->addr32[1] == (b)->addr32[1] && \ (a)->addr32[0] == (b)->addr32[0]) \ #define PF_ANEQ(a, b, c) \ ((a)->addr32[3] != (b)->addr32[3] || \ (a)->addr32[2] != (b)->addr32[2] || \ (a)->addr32[1] != (b)->addr32[1] || \ (a)->addr32[0] != (b)->addr32[0]) \ #define PF_AZERO(a, c) \ (!(a)->addr32[0] && \ !(a)->addr32[1] && \ !(a)->addr32[2] && \ !(a)->addr32[3] ) \ #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ pf_addrcpy(a, b, f) #define PF_AINC(a, f) \ pf_addr_inc(a, f) #define PF_POOLMASK(a, b, c, d, f) \ pf_poolmask(a, b, c, d, f) #else /* Just IPv4 */ #ifdef PF_INET_ONLY #define PF_AEQ(a, b, c) \ ((a)->addr32[0] == (b)->addr32[0]) #define PF_ANEQ(a, b, c) \ ((a)->addr32[0] != (b)->addr32[0]) #define PF_AZERO(a, c) \ (!(a)->addr32[0]) #define PF_MATCHA(n, a, m, b, f) \ pf_match_addr(n, a, m, b, f) #define PF_ACPY(a, b, f) \ (a)->v4.s_addr = (b)->v4.s_addr #define PF_AINC(a, f) \ do { \ (a)->addr32[0] = htonl(ntohl((a)->addr32[0]) + 1); \ } while (0) #define PF_POOLMASK(a, b, c, d, f) \ do { \ (a)->addr32[0] = ((b)->addr32[0] & (c)->addr32[0]) | \ (((c)->addr32[0] ^ 0xffffffff ) & (d)->addr32[0]); \ } while (0) #endif /* PF_INET_ONLY */ #endif /* PF_INET6_ONLY */ #endif /* PF_INET_INET6 */ /* * XXX callers not FIB-aware in our version of pf yet. * OpenBSD fixed it later it seems, 2010/05/07 13:33:16 claudio. */ #define PF_MISMATCHAW(aw, x, af, neg, ifp, rtid) \ ( \ (((aw)->type == PF_ADDR_NOROUTE && \ pf_routable((x), (af), NULL, (rtid))) || \ (((aw)->type == PF_ADDR_URPFFAILED && (ifp) != NULL && \ pf_routable((x), (af), (ifp), (rtid))) || \ ((aw)->type == PF_ADDR_TABLE && \ !pfr_match_addr((aw)->p.tbl, (x), (af))) || \ ((aw)->type == PF_ADDR_DYNIFTL && \ !pfi_match_addr((aw)->p.dyn, (x), (af))) || \ ((aw)->type == PF_ADDR_RANGE && \ !pf_match_addr_range(&(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))) || \ ((aw)->type == PF_ADDR_ADDRMASK && \ !PF_AZERO(&(aw)->v.a.mask, (af)) && \ !PF_MATCHA(0, &(aw)->v.a.addr, \ &(aw)->v.a.mask, (x), (af))))) != \ (neg) \ ) #define PF_ALGNMNT(off) (((off) % 2) == 0) #ifdef _KERNEL struct pf_kpooladdr { struct pf_addr_wrap addr; TAILQ_ENTRY(pf_kpooladdr) entries; char ifname[IFNAMSIZ]; struct pfi_kkif *kif; }; TAILQ_HEAD(pf_kpalist, pf_kpooladdr); struct pf_kpool { struct pf_kpalist list; struct pf_kpooladdr *cur; struct pf_poolhashkey key; struct pf_addr counter; struct pf_mape_portset mape; int tblidx; u_int16_t proxy_port[2]; u_int8_t opts; }; union pf_krule_ptr { struct pf_krule *ptr; u_int32_t nr; }; struct pf_krule { struct pf_rule_addr src; struct pf_rule_addr dst; union pf_krule_ptr skip[PF_SKIP_COUNT]; char label[PF_RULE_MAX_LABEL_COUNT][PF_RULE_LABEL_SIZE]; char ifname[IFNAMSIZ]; char qname[PF_QNAME_SIZE]; char pqname[PF_QNAME_SIZE]; char tagname[PF_TAG_NAME_SIZE]; char match_tagname[PF_TAG_NAME_SIZE]; char overload_tblname[PF_TABLE_NAME_SIZE]; TAILQ_ENTRY(pf_krule) entries; struct pf_kpool rpool; counter_u64_t evaluations; counter_u64_t packets[2]; counter_u64_t bytes[2]; struct pfi_kkif *kif; struct pf_kanchor *anchor; struct pfr_ktable *overload_tbl; pf_osfp_t os_fingerprint; int rtableid; u_int32_t timeout[PFTM_MAX]; u_int32_t max_states; u_int32_t max_src_nodes; u_int32_t max_src_states; u_int32_t max_src_conn; struct { u_int32_t limit; u_int32_t seconds; } max_src_conn_rate; u_int32_t qid; u_int32_t pqid; u_int32_t nr; u_int32_t prob; uid_t cuid; pid_t cpid; counter_u64_t states_cur; counter_u64_t states_tot; counter_u64_t src_nodes; u_int16_t return_icmp; u_int16_t return_icmp6; u_int16_t max_mss; u_int16_t tag; u_int16_t match_tag; u_int16_t scrub_flags; struct pf_rule_uid uid; struct pf_rule_gid gid; u_int32_t rule_flag; uint32_t rule_ref; u_int8_t action; u_int8_t direction; u_int8_t log; u_int8_t logif; u_int8_t quick; u_int8_t ifnot; u_int8_t match_tag_not; u_int8_t natpass; u_int8_t keep_state; sa_family_t af; u_int8_t proto; u_int8_t type; u_int8_t code; u_int8_t flags; u_int8_t flagset; u_int8_t min_ttl; u_int8_t allow_opts; u_int8_t rt; u_int8_t return_ttl; u_int8_t tos; u_int8_t set_tos; u_int8_t anchor_relative; u_int8_t anchor_wildcard; u_int8_t flush; u_int8_t prio; u_int8_t set_prio[2]; struct { struct pf_addr addr; u_int16_t port; } divert; }; struct pf_ksrc_node { LIST_ENTRY(pf_ksrc_node) entry; struct pf_addr addr; struct pf_addr raddr; union pf_krule_ptr rule; struct pfi_kkif *kif; counter_u64_t bytes[2]; counter_u64_t packets[2]; u_int32_t states; u_int32_t conn; struct pf_threshold conn_rate; u_int32_t creation; u_int32_t expire; sa_family_t af; u_int8_t ruletype; }; #endif struct pf_state_scrub { struct timeval pfss_last; /* time received last packet */ u_int32_t pfss_tsecr; /* last echoed timestamp */ u_int32_t pfss_tsval; /* largest timestamp */ u_int32_t pfss_tsval0; /* original timestamp */ u_int16_t pfss_flags; #define PFSS_TIMESTAMP 0x0001 /* modulate timestamp */ #define PFSS_PAWS 0x0010 /* stricter PAWS checks */ #define PFSS_PAWS_IDLED 0x0020 /* was idle too long. no PAWS */ #define PFSS_DATA_TS 0x0040 /* timestamp on data packets */ #define PFSS_DATA_NOTS 0x0080 /* no timestamp on data packets */ u_int8_t pfss_ttl; /* stashed TTL */ u_int8_t pad; u_int32_t pfss_ts_mod; /* timestamp modulation */ }; struct pf_state_host { struct pf_addr addr; u_int16_t port; u_int16_t pad; }; struct pf_state_peer { struct pf_state_scrub *scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t tcp_est; /* Did we reach TCPS_ESTABLISHED */ u_int8_t pad[1]; }; /* Keep synced with struct pf_state_key. */ struct pf_state_key_cmp { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; }; struct pf_state_key { struct pf_addr addr[2]; u_int16_t port[2]; sa_family_t af; u_int8_t proto; u_int8_t pad[2]; LIST_ENTRY(pf_state_key) entry; TAILQ_HEAD(, pf_state) states[2]; }; /* Keep synced with struct pf_state. */ struct pf_state_cmp { u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; }; #define PFSTATE_ALLOWOPTS 0x01 #define PFSTATE_SLOPPY 0x02 /* was PFSTATE_PFLOW 0x04 */ #define PFSTATE_NOSYNC 0x08 #define PFSTATE_ACK 0x10 #define PFSTATE_SETPRIO 0x0200 #define PFSTATE_SETMASK (PFSTATE_SETPRIO) #ifdef _KERNEL struct pf_state { u_int64_t id; u_int32_t creatorid; u_int8_t direction; u_int8_t pad[3]; u_int refs; TAILQ_ENTRY(pf_state) sync_list; TAILQ_ENTRY(pf_state) key_list[2]; LIST_ENTRY(pf_state) entry; struct pf_state_peer src; struct pf_state_peer dst; union pf_krule_ptr rule; union pf_krule_ptr anchor; union pf_krule_ptr nat_rule; struct pf_addr rt_addr; struct pf_state_key *key[2]; /* addresses stack and wire */ struct pfi_kkif *kif; + struct pfi_kkif *orig_kif; /* The real kif, even if we're a floating state (i.e. if == V_pfi_all). */ struct pfi_kkif *rt_kif; struct pf_ksrc_node *src_node; struct pf_ksrc_node *nat_src_node; counter_u64_t packets[2]; counter_u64_t bytes[2]; u_int32_t creation; u_int32_t expire; u_int32_t pfsync_time; u_int16_t tag; u_int8_t log; u_int8_t state_flags; u_int8_t timeout; u_int8_t sync_state; /* PFSYNC_S_x */ /* XXX */ u_int8_t sync_updates; u_int8_t _tail[3]; }; #endif /* * Unified state structures for pulling states out of the kernel * used by pfsync(4) and the pf(4) ioctl. */ struct pfsync_state_scrub { u_int16_t pfss_flags; u_int8_t pfss_ttl; /* stashed TTL */ #define PFSYNC_SCRUB_FLAG_VALID 0x01 u_int8_t scrub_flag; u_int32_t pfss_ts_mod; /* timestamp modulation */ } __packed; struct pfsync_state_peer { struct pfsync_state_scrub scrub; /* state is scrubbed */ u_int32_t seqlo; /* Max sequence number sent */ u_int32_t seqhi; /* Max the other end ACKd + win */ u_int32_t seqdiff; /* Sequence number modulator */ u_int16_t max_win; /* largest window (pre scaling) */ u_int16_t mss; /* Maximum segment size option */ u_int8_t state; /* active state level */ u_int8_t wscale; /* window scaling factor */ u_int8_t pad[6]; } __packed; struct pfsync_state_key { struct pf_addr addr[2]; u_int16_t port[2]; }; struct pfsync_state { u_int64_t id; char ifname[IFNAMSIZ]; struct pfsync_state_key key[2]; struct pfsync_state_peer src; struct pfsync_state_peer dst; struct pf_addr rt_addr; u_int32_t rule; u_int32_t anchor; u_int32_t nat_rule; u_int32_t creation; u_int32_t expire; u_int32_t packets[2][2]; u_int32_t bytes[2][2]; u_int32_t creatorid; sa_family_t af; u_int8_t proto; u_int8_t direction; u_int8_t __spare[2]; u_int8_t log; u_int8_t state_flags; u_int8_t timeout; u_int8_t sync_flags; u_int8_t updates; } __packed; #ifdef _KERNEL /* pfsync */ typedef int pfsync_state_import_t(struct pfsync_state *, u_int8_t); typedef void pfsync_insert_state_t(struct pf_state *); typedef void pfsync_update_state_t(struct pf_state *); typedef void pfsync_delete_state_t(struct pf_state *); typedef void pfsync_clear_states_t(u_int32_t, const char *); typedef int pfsync_defer_t(struct pf_state *, struct mbuf *); typedef void pfsync_detach_ifnet_t(struct ifnet *); VNET_DECLARE(pfsync_state_import_t *, pfsync_state_import_ptr); #define V_pfsync_state_import_ptr VNET(pfsync_state_import_ptr) VNET_DECLARE(pfsync_insert_state_t *, pfsync_insert_state_ptr); #define V_pfsync_insert_state_ptr VNET(pfsync_insert_state_ptr) VNET_DECLARE(pfsync_update_state_t *, pfsync_update_state_ptr); #define V_pfsync_update_state_ptr VNET(pfsync_update_state_ptr) VNET_DECLARE(pfsync_delete_state_t *, pfsync_delete_state_ptr); #define V_pfsync_delete_state_ptr VNET(pfsync_delete_state_ptr) VNET_DECLARE(pfsync_clear_states_t *, pfsync_clear_states_ptr); #define V_pfsync_clear_states_ptr VNET(pfsync_clear_states_ptr) VNET_DECLARE(pfsync_defer_t *, pfsync_defer_ptr); #define V_pfsync_defer_ptr VNET(pfsync_defer_ptr) extern pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; void pfsync_state_export(struct pfsync_state *, struct pf_state *); /* pflog */ struct pf_kruleset; struct pf_pdesc; typedef int pflog_packet_t(struct pfi_kkif *, struct mbuf *, sa_family_t, u_int8_t, u_int8_t, struct pf_krule *, struct pf_krule *, struct pf_kruleset *, struct pf_pdesc *, int); extern pflog_packet_t *pflog_packet_ptr; #endif /* _KERNEL */ #define PFSYNC_FLAG_SRCNODE 0x04 #define PFSYNC_FLAG_NATSRCNODE 0x08 /* for copies to/from network byte order */ /* ioctl interface also uses network byte order */ #define pf_state_peer_hton(s,d) do { \ (d)->seqlo = htonl((s)->seqlo); \ (d)->seqhi = htonl((s)->seqhi); \ (d)->seqdiff = htonl((s)->seqdiff); \ (d)->max_win = htons((s)->max_win); \ (d)->mss = htons((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub) { \ (d)->scrub.pfss_flags = \ htons((s)->scrub->pfss_flags & PFSS_TIMESTAMP); \ (d)->scrub.pfss_ttl = (s)->scrub->pfss_ttl; \ (d)->scrub.pfss_ts_mod = htonl((s)->scrub->pfss_ts_mod);\ (d)->scrub.scrub_flag = PFSYNC_SCRUB_FLAG_VALID; \ } \ } while (0) #define pf_state_peer_ntoh(s,d) do { \ (d)->seqlo = ntohl((s)->seqlo); \ (d)->seqhi = ntohl((s)->seqhi); \ (d)->seqdiff = ntohl((s)->seqdiff); \ (d)->max_win = ntohs((s)->max_win); \ (d)->mss = ntohs((s)->mss); \ (d)->state = (s)->state; \ (d)->wscale = (s)->wscale; \ if ((s)->scrub.scrub_flag == PFSYNC_SCRUB_FLAG_VALID && \ (d)->scrub != NULL) { \ (d)->scrub->pfss_flags = \ ntohs((s)->scrub.pfss_flags) & PFSS_TIMESTAMP; \ (d)->scrub->pfss_ttl = (s)->scrub.pfss_ttl; \ (d)->scrub->pfss_ts_mod = ntohl((s)->scrub.pfss_ts_mod);\ } \ } while (0) #define pf_state_counter_hton(s,d) do { \ d[0] = htonl((s>>32)&0xffffffff); \ d[1] = htonl(s&0xffffffff); \ } while (0) #define pf_state_counter_from_pfsync(s) \ (((u_int64_t)(s[0])<<32) | (u_int64_t)(s[1])) #define pf_state_counter_ntoh(s,d) do { \ d = ntohl(s[0]); \ d = d<<32; \ d += ntohl(s[1]); \ } while (0) TAILQ_HEAD(pf_krulequeue, pf_krule); struct pf_kanchor; struct pf_kruleset { struct { struct pf_krulequeue queues[2]; struct { struct pf_krulequeue *ptr; struct pf_krule **ptr_array; u_int32_t rcount; u_int32_t ticket; int open; } active, inactive; } rules[PF_RULESET_MAX]; struct pf_kanchor *anchor; u_int32_t tticket; int tables; int topen; }; RB_HEAD(pf_kanchor_global, pf_kanchor); RB_HEAD(pf_kanchor_node, pf_kanchor); struct pf_kanchor { RB_ENTRY(pf_kanchor) entry_global; RB_ENTRY(pf_kanchor) entry_node; struct pf_kanchor *parent; struct pf_kanchor_node children; char name[PF_ANCHOR_NAME_SIZE]; char path[MAXPATHLEN]; struct pf_kruleset ruleset; int refcnt; /* anchor rules */ int match; /* XXX: used for pfctl black magic */ }; RB_PROTOTYPE(pf_kanchor_global, pf_kanchor, entry_global, pf_anchor_compare); RB_PROTOTYPE(pf_kanchor_node, pf_kanchor, entry_node, pf_kanchor_compare); #define PF_RESERVED_ANCHOR "_pf" #define PFR_TFLAG_PERSIST 0x00000001 #define PFR_TFLAG_CONST 0x00000002 #define PFR_TFLAG_ACTIVE 0x00000004 #define PFR_TFLAG_INACTIVE 0x00000008 #define PFR_TFLAG_REFERENCED 0x00000010 #define PFR_TFLAG_REFDANCHOR 0x00000020 #define PFR_TFLAG_COUNTERS 0x00000040 /* Adjust masks below when adding flags. */ #define PFR_TFLAG_USRMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_COUNTERS) #define PFR_TFLAG_SETMASK (PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR) #define PFR_TFLAG_ALLMASK (PFR_TFLAG_PERSIST | \ PFR_TFLAG_CONST | \ PFR_TFLAG_ACTIVE | \ PFR_TFLAG_INACTIVE | \ PFR_TFLAG_REFERENCED | \ PFR_TFLAG_REFDANCHOR | \ PFR_TFLAG_COUNTERS) struct pf_kanchor_stackframe; struct pfr_table { char pfrt_anchor[MAXPATHLEN]; char pfrt_name[PF_TABLE_NAME_SIZE]; u_int32_t pfrt_flags; u_int8_t pfrt_fback; }; enum { PFR_FB_NONE, PFR_FB_MATCH, PFR_FB_ADDED, PFR_FB_DELETED, PFR_FB_CHANGED, PFR_FB_CLEARED, PFR_FB_DUPLICATE, PFR_FB_NOTMATCH, PFR_FB_CONFLICT, PFR_FB_NOCOUNT, PFR_FB_MAX }; struct pfr_addr { union { struct in_addr _pfra_ip4addr; struct in6_addr _pfra_ip6addr; } pfra_u; u_int8_t pfra_af; u_int8_t pfra_net; u_int8_t pfra_not; u_int8_t pfra_fback; }; #define pfra_ip4addr pfra_u._pfra_ip4addr #define pfra_ip6addr pfra_u._pfra_ip6addr enum { PFR_DIR_IN, PFR_DIR_OUT, PFR_DIR_MAX }; enum { PFR_OP_BLOCK, PFR_OP_PASS, PFR_OP_ADDR_MAX, PFR_OP_TABLE_MAX }; enum { PFR_TYPE_PACKETS, PFR_TYPE_BYTES, PFR_TYPE_MAX }; #define PFR_NUM_COUNTERS (PFR_DIR_MAX * PFR_OP_ADDR_MAX * PFR_TYPE_MAX) #define PFR_OP_XPASS PFR_OP_ADDR_MAX struct pfr_astats { struct pfr_addr pfras_a; u_int64_t pfras_packets[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; u_int64_t pfras_bytes[PFR_DIR_MAX][PFR_OP_ADDR_MAX]; long pfras_tzero; }; enum { PFR_REFCNT_RULE, PFR_REFCNT_ANCHOR, PFR_REFCNT_MAX }; struct pfr_tstats { struct pfr_table pfrts_t; u_int64_t pfrts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; u_int64_t pfrts_match; u_int64_t pfrts_nomatch; long pfrts_tzero; int pfrts_cnt; int pfrts_refcnt[PFR_REFCNT_MAX]; }; struct pfr_ktstats { struct pfr_table pfrts_t; counter_u64_t pfrkts_packets[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; counter_u64_t pfrkts_bytes[PFR_DIR_MAX][PFR_OP_TABLE_MAX]; counter_u64_t pfrkts_match; counter_u64_t pfrkts_nomatch; long pfrkts_tzero; int pfrkts_cnt; int pfrkts_refcnt[PFR_REFCNT_MAX]; }; #define pfrts_name pfrts_t.pfrt_name #define pfrts_flags pfrts_t.pfrt_flags #ifndef _SOCKADDR_UNION_DEFINED #define _SOCKADDR_UNION_DEFINED union sockaddr_union { struct sockaddr sa; struct sockaddr_in sin; struct sockaddr_in6 sin6; }; #endif /* _SOCKADDR_UNION_DEFINED */ struct pfr_kcounters { counter_u64_t pfrkc_counters; long pfrkc_tzero; }; #define pfr_kentry_counter(kc, dir, op, t) \ ((kc)->pfrkc_counters + \ (dir) * PFR_OP_ADDR_MAX * PFR_TYPE_MAX + (op) * PFR_TYPE_MAX + (t)) #ifdef _KERNEL SLIST_HEAD(pfr_kentryworkq, pfr_kentry); struct pfr_kentry { struct radix_node pfrke_node[2]; union sockaddr_union pfrke_sa; SLIST_ENTRY(pfr_kentry) pfrke_workq; struct pfr_kcounters pfrke_counters; u_int8_t pfrke_af; u_int8_t pfrke_net; u_int8_t pfrke_not; u_int8_t pfrke_mark; }; SLIST_HEAD(pfr_ktableworkq, pfr_ktable); RB_HEAD(pfr_ktablehead, pfr_ktable); struct pfr_ktable { struct pfr_ktstats pfrkt_kts; RB_ENTRY(pfr_ktable) pfrkt_tree; SLIST_ENTRY(pfr_ktable) pfrkt_workq; struct radix_node_head *pfrkt_ip4; struct radix_node_head *pfrkt_ip6; struct pfr_ktable *pfrkt_shadow; struct pfr_ktable *pfrkt_root; struct pf_kruleset *pfrkt_rs; long pfrkt_larg; int pfrkt_nflags; }; #define pfrkt_t pfrkt_kts.pfrts_t #define pfrkt_name pfrkt_t.pfrt_name #define pfrkt_anchor pfrkt_t.pfrt_anchor #define pfrkt_ruleset pfrkt_t.pfrt_ruleset #define pfrkt_flags pfrkt_t.pfrt_flags #define pfrkt_cnt pfrkt_kts.pfrkts_cnt #define pfrkt_refcnt pfrkt_kts.pfrkts_refcnt #define pfrkt_packets pfrkt_kts.pfrkts_packets #define pfrkt_bytes pfrkt_kts.pfrkts_bytes #define pfrkt_match pfrkt_kts.pfrkts_match #define pfrkt_nomatch pfrkt_kts.pfrkts_nomatch #define pfrkt_tzero pfrkt_kts.pfrkts_tzero #endif #ifdef _KERNEL struct pfi_kkif { char pfik_name[IFNAMSIZ]; union { RB_ENTRY(pfi_kkif) _pfik_tree; LIST_ENTRY(pfi_kkif) _pfik_list; } _pfik_glue; #define pfik_tree _pfik_glue._pfik_tree #define pfik_list _pfik_glue._pfik_list counter_u64_t pfik_packets[2][2][2]; counter_u64_t pfik_bytes[2][2][2]; u_int32_t pfik_tzero; u_int pfik_flags; struct ifnet *pfik_ifp; struct ifg_group *pfik_group; u_int pfik_rulerefs; TAILQ_HEAD(, pfi_dynaddr) pfik_dynaddrs; }; #endif #define PFI_IFLAG_REFS 0x0001 /* has state references */ #define PFI_IFLAG_SKIP 0x0100 /* skip filtering on interface */ #ifdef _KERNEL struct pf_pdesc { struct { int done; uid_t uid; gid_t gid; } lookup; u_int64_t tot_len; /* Make Mickey money */ union { struct tcphdr *tcp; struct udphdr *udp; struct icmp *icmp; #ifdef INET6 struct icmp6_hdr *icmp6; #endif /* INET6 */ void *any; } hdr; struct pf_krule *nat_rule; /* nat/rdr rule applied to packet */ struct pf_addr *src; /* src address */ struct pf_addr *dst; /* dst address */ u_int16_t *sport; u_int16_t *dport; struct pf_mtag *pf_mtag; u_int32_t p_len; /* total length of payload */ u_int16_t *ip_sum; u_int16_t *proto_sum; u_int16_t flags; /* Let SCRUB trigger behavior in * state code. Easier than tags */ #define PFDESC_TCP_NORM 0x0001 /* TCP shall be statefully scrubbed */ #define PFDESC_IP_REAS 0x0002 /* IP frags would've been reassembled */ sa_family_t af; u_int8_t proto; u_int8_t tos; u_int8_t dir; /* direction */ u_int8_t sidx; /* key index for source */ u_int8_t didx; /* key index for destination */ }; #endif /* flags for RDR options */ #define PF_DPORT_RANGE 0x01 /* Dest port uses range */ #define PF_RPORT_RANGE 0x02 /* RDR'ed port uses range */ /* UDP state enumeration */ #define PFUDPS_NO_TRAFFIC 0 #define PFUDPS_SINGLE 1 #define PFUDPS_MULTIPLE 2 #define PFUDPS_NSTATES 3 /* number of state levels */ #define PFUDPS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } /* Other protocol state enumeration */ #define PFOTHERS_NO_TRAFFIC 0 #define PFOTHERS_SINGLE 1 #define PFOTHERS_MULTIPLE 2 #define PFOTHERS_NSTATES 3 /* number of state levels */ #define PFOTHERS_NAMES { \ "NO_TRAFFIC", \ "SINGLE", \ "MULTIPLE", \ NULL \ } #define ACTION_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ } while (0) #define REASON_SET(a, x) \ do { \ if ((a) != NULL) \ *(a) = (x); \ if (x < PFRES_MAX) \ counter_u64_add(V_pf_status.counters[x], 1); \ } while (0) struct pf_kstatus { counter_u64_t counters[PFRES_MAX]; /* reason for passing/dropping */ counter_u64_t lcounters[LCNT_MAX]; /* limit counters */ counter_u64_t fcounters[FCNT_MAX]; /* state operation counters */ counter_u64_t scounters[SCNT_MAX]; /* src_node operation counters */ uint32_t states; uint32_t src_nodes; uint32_t running; uint32_t since; uint32_t debug; uint32_t hostid; char ifname[IFNAMSIZ]; uint8_t pf_chksum[PF_MD5_DIGEST_LENGTH]; bool keep_counters; }; struct pf_divert { union { struct in_addr ipv4; struct in6_addr ipv6; } addr; u_int16_t port; }; #define PFFRAG_FRENT_HIWAT 5000 /* Number of fragment entries */ #define PFR_KENTRY_HIWAT 200000 /* Number of table entries */ /* * Limit the length of the fragment queue traversal. Remember * search entry points based on the fragment offset. */ #define PF_FRAG_ENTRY_POINTS 16 /* * The number of entries in the fragment queue must be limited * to avoid DoS by linear seaching. Instead of a global limit, * use a limit per entry point. For large packets these sum up. */ #define PF_FRAG_ENTRY_LIMIT 64 /* * ioctl parameter structures */ struct pfioc_pooladdr { u_int32_t action; u_int32_t ticket; u_int32_t nr; u_int32_t r_num; u_int8_t r_action; u_int8_t r_last; u_int8_t af; char anchor[MAXPATHLEN]; struct pf_pooladdr addr; }; struct pfioc_rule { u_int32_t action; u_int32_t ticket; u_int32_t pool_ticket; u_int32_t nr; char anchor[MAXPATHLEN]; char anchor_call[MAXPATHLEN]; struct pf_rule rule; }; struct pfioc_natlook { struct pf_addr saddr; struct pf_addr daddr; struct pf_addr rsaddr; struct pf_addr rdaddr; u_int16_t sport; u_int16_t dport; u_int16_t rsport; u_int16_t rdport; sa_family_t af; u_int8_t proto; u_int8_t direction; }; struct pfioc_state { struct pfsync_state state; }; struct pfioc_src_node_kill { sa_family_t psnk_af; struct pf_rule_addr psnk_src; struct pf_rule_addr psnk_dst; u_int psnk_killed; }; #ifdef _KERNEL struct pf_kstate_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; struct pf_rule_addr psk_rt_addr; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; bool psk_kill_match; }; #endif struct pfioc_state_kill { struct pf_state_cmp psk_pfcmp; sa_family_t psk_af; int psk_proto; struct pf_rule_addr psk_src; struct pf_rule_addr psk_dst; char psk_ifname[IFNAMSIZ]; char psk_label[PF_RULE_LABEL_SIZE]; u_int psk_killed; }; struct pfioc_states { int ps_len; union { caddr_t psu_buf; struct pfsync_state *psu_states; } ps_u; #define ps_buf ps_u.psu_buf #define ps_states ps_u.psu_states }; struct pfioc_src_nodes { int psn_len; union { caddr_t psu_buf; struct pf_src_node *psu_src_nodes; } psn_u; #define psn_buf psn_u.psu_buf #define psn_src_nodes psn_u.psu_src_nodes }; struct pfioc_if { char ifname[IFNAMSIZ]; }; struct pfioc_tm { int timeout; int seconds; }; struct pfioc_limit { int index; unsigned limit; }; struct pfioc_altq_v0 { u_int32_t action; u_int32_t ticket; u_int32_t nr; struct pf_altq_v0 altq; }; struct pfioc_altq_v1 { u_int32_t action; u_int32_t ticket; u_int32_t nr; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; struct pf_altq_v1 altq; }; /* * Latest version of struct pfioc_altq_vX. This must move in lock-step with * the latest version of struct pf_altq_vX as it has that struct as a * member. */ #define PFIOC_ALTQ_VERSION PF_ALTQ_VERSION struct pfioc_qstats_v0 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; }; struct pfioc_qstats_v1 { u_int32_t ticket; u_int32_t nr; void *buf; int nbytes; u_int8_t scheduler; /* * Placed here so code that only uses the above parameters can be * written entirely in terms of the v0 or v1 type. */ u_int32_t version; /* Requested version of stats struct */ }; /* Latest version of struct pfioc_qstats_vX */ #define PFIOC_QSTATS_VERSION 1 struct pfioc_ruleset { u_int32_t nr; char path[MAXPATHLEN]; char name[PF_ANCHOR_NAME_SIZE]; }; #define PF_RULESET_ALTQ (PF_RULESET_MAX) #define PF_RULESET_TABLE (PF_RULESET_MAX+1) struct pfioc_trans { int size; /* number of elements */ int esize; /* size of each element in bytes */ struct pfioc_trans_e { int rs_num; char anchor[MAXPATHLEN]; u_int32_t ticket; } *array; }; #define PFR_FLAG_ATOMIC 0x00000001 /* unused */ #define PFR_FLAG_DUMMY 0x00000002 #define PFR_FLAG_FEEDBACK 0x00000004 #define PFR_FLAG_CLSTATS 0x00000008 #define PFR_FLAG_ADDRSTOO 0x00000010 #define PFR_FLAG_REPLACE 0x00000020 #define PFR_FLAG_ALLRSETS 0x00000040 #define PFR_FLAG_ALLMASK 0x0000007F #ifdef _KERNEL #define PFR_FLAG_USERIOCTL 0x10000000 #endif struct pfioc_table { struct pfr_table pfrio_table; void *pfrio_buffer; int pfrio_esize; int pfrio_size; int pfrio_size2; int pfrio_nadd; int pfrio_ndel; int pfrio_nchange; int pfrio_flags; u_int32_t pfrio_ticket; }; #define pfrio_exists pfrio_nadd #define pfrio_nzero pfrio_nadd #define pfrio_nmatch pfrio_nadd #define pfrio_naddr pfrio_size2 #define pfrio_setflag pfrio_size2 #define pfrio_clrflag pfrio_nadd struct pfioc_iface { char pfiio_name[IFNAMSIZ]; void *pfiio_buffer; int pfiio_esize; int pfiio_size; int pfiio_nzero; int pfiio_flags; }; /* * ioctl operations */ #define DIOCSTART _IO ('D', 1) #define DIOCSTOP _IO ('D', 2) #define DIOCADDRULE _IOWR('D', 4, struct pfioc_rule) #define DIOCADDRULENV _IOWR('D', 4, struct pfioc_nv) #define DIOCGETRULES _IOWR('D', 6, struct pfioc_rule) #define DIOCGETRULE _IOWR('D', 7, struct pfioc_rule) #define DIOCGETRULENV _IOWR('D', 7, struct pfioc_nv) /* XXX cut 8 - 17 */ #define DIOCCLRSTATES _IOWR('D', 18, struct pfioc_state_kill) #define DIOCCLRSTATESNV _IOWR('D', 18, struct pfioc_nv) #define DIOCGETSTATE _IOWR('D', 19, struct pfioc_state) #define DIOCGETSTATENV _IOWR('D', 19, struct pfioc_nv) #define DIOCSETSTATUSIF _IOWR('D', 20, struct pfioc_if) #define DIOCGETSTATUS _IOWR('D', 21, struct pf_status) #define DIOCCLRSTATUS _IO ('D', 22) #define DIOCNATLOOK _IOWR('D', 23, struct pfioc_natlook) #define DIOCSETDEBUG _IOWR('D', 24, u_int32_t) #define DIOCGETSTATES _IOWR('D', 25, struct pfioc_states) #define DIOCGETSTATESNV _IOWR('D', 25, struct pfioc_nv) #define DIOCCHANGERULE _IOWR('D', 26, struct pfioc_rule) /* XXX cut 26 - 28 */ #define DIOCSETTIMEOUT _IOWR('D', 29, struct pfioc_tm) #define DIOCGETTIMEOUT _IOWR('D', 30, struct pfioc_tm) #define DIOCADDSTATE _IOWR('D', 37, struct pfioc_state) #define DIOCCLRRULECTRS _IO ('D', 38) #define DIOCGETLIMIT _IOWR('D', 39, struct pfioc_limit) #define DIOCSETLIMIT _IOWR('D', 40, struct pfioc_limit) #define DIOCKILLSTATES _IOWR('D', 41, struct pfioc_state_kill) #define DIOCKILLSTATESNV _IOWR('D', 41, struct pfioc_nv) #define DIOCSTARTALTQ _IO ('D', 42) #define DIOCSTOPALTQ _IO ('D', 43) #define DIOCADDALTQV0 _IOWR('D', 45, struct pfioc_altq_v0) #define DIOCADDALTQV1 _IOWR('D', 45, struct pfioc_altq_v1) #define DIOCGETALTQSV0 _IOWR('D', 47, struct pfioc_altq_v0) #define DIOCGETALTQSV1 _IOWR('D', 47, struct pfioc_altq_v1) #define DIOCGETALTQV0 _IOWR('D', 48, struct pfioc_altq_v0) #define DIOCGETALTQV1 _IOWR('D', 48, struct pfioc_altq_v1) #define DIOCCHANGEALTQV0 _IOWR('D', 49, struct pfioc_altq_v0) #define DIOCCHANGEALTQV1 _IOWR('D', 49, struct pfioc_altq_v1) #define DIOCGETQSTATSV0 _IOWR('D', 50, struct pfioc_qstats_v0) #define DIOCGETQSTATSV1 _IOWR('D', 50, struct pfioc_qstats_v1) #define DIOCBEGINADDRS _IOWR('D', 51, struct pfioc_pooladdr) #define DIOCADDADDR _IOWR('D', 52, struct pfioc_pooladdr) #define DIOCGETADDRS _IOWR('D', 53, struct pfioc_pooladdr) #define DIOCGETADDR _IOWR('D', 54, struct pfioc_pooladdr) #define DIOCCHANGEADDR _IOWR('D', 55, struct pfioc_pooladdr) /* XXX cut 55 - 57 */ #define DIOCGETRULESETS _IOWR('D', 58, struct pfioc_ruleset) #define DIOCGETRULESET _IOWR('D', 59, struct pfioc_ruleset) #define DIOCRCLRTABLES _IOWR('D', 60, struct pfioc_table) #define DIOCRADDTABLES _IOWR('D', 61, struct pfioc_table) #define DIOCRDELTABLES _IOWR('D', 62, struct pfioc_table) #define DIOCRGETTABLES _IOWR('D', 63, struct pfioc_table) #define DIOCRGETTSTATS _IOWR('D', 64, struct pfioc_table) #define DIOCRCLRTSTATS _IOWR('D', 65, struct pfioc_table) #define DIOCRCLRADDRS _IOWR('D', 66, struct pfioc_table) #define DIOCRADDADDRS _IOWR('D', 67, struct pfioc_table) #define DIOCRDELADDRS _IOWR('D', 68, struct pfioc_table) #define DIOCRSETADDRS _IOWR('D', 69, struct pfioc_table) #define DIOCRGETADDRS _IOWR('D', 70, struct pfioc_table) #define DIOCRGETASTATS _IOWR('D', 71, struct pfioc_table) #define DIOCRCLRASTATS _IOWR('D', 72, struct pfioc_table) #define DIOCRTSTADDRS _IOWR('D', 73, struct pfioc_table) #define DIOCRSETTFLAGS _IOWR('D', 74, struct pfioc_table) #define DIOCRINADEFINE _IOWR('D', 77, struct pfioc_table) #define DIOCOSFPFLUSH _IO('D', 78) #define DIOCOSFPADD _IOWR('D', 79, struct pf_osfp_ioctl) #define DIOCOSFPGET _IOWR('D', 80, struct pf_osfp_ioctl) #define DIOCXBEGIN _IOWR('D', 81, struct pfioc_trans) #define DIOCXCOMMIT _IOWR('D', 82, struct pfioc_trans) #define DIOCXROLLBACK _IOWR('D', 83, struct pfioc_trans) #define DIOCGETSRCNODES _IOWR('D', 84, struct pfioc_src_nodes) #define DIOCCLRSRCNODES _IO('D', 85) #define DIOCSETHOSTID _IOWR('D', 86, u_int32_t) #define DIOCIGETIFACES _IOWR('D', 87, struct pfioc_iface) #define DIOCSETIFFLAG _IOWR('D', 89, struct pfioc_iface) #define DIOCCLRIFFLAG _IOWR('D', 90, struct pfioc_iface) #define DIOCKILLSRCNODES _IOWR('D', 91, struct pfioc_src_node_kill) #define DIOCKEEPCOUNTERS _IOWR('D', 92, struct pfioc_nv) struct pf_ifspeed_v0 { char ifname[IFNAMSIZ]; u_int32_t baudrate; }; struct pf_ifspeed_v1 { char ifname[IFNAMSIZ]; u_int32_t baudrate32; /* layout identical to struct pf_ifspeed_v0 up to this point */ u_int64_t baudrate; }; /* Latest version of struct pf_ifspeed_vX */ #define PF_IFSPEED_VERSION 1 #define DIOCGIFSPEEDV0 _IOWR('D', 92, struct pf_ifspeed_v0) #define DIOCGIFSPEEDV1 _IOWR('D', 92, struct pf_ifspeed_v1) /* * Compatibility and convenience macros */ #ifndef _KERNEL #ifdef PFIOC_USE_LATEST /* * Maintaining in-tree consumers of the ioctl interface is easier when that * code can be written in terms old names that refer to the latest interface * version as that reduces the required changes in the consumers to those * that are functionally necessary to accommodate a new interface version. */ #define pfioc_altq __CONCAT(pfioc_altq_v, PFIOC_ALTQ_VERSION) #define pfioc_qstats __CONCAT(pfioc_qstats_v, PFIOC_QSTATS_VERSION) #define pf_ifspeed __CONCAT(pf_ifspeed_v, PF_IFSPEED_VERSION) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, PFIOC_ALTQ_VERSION) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, PFIOC_ALTQ_VERSION) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, PFIOC_ALTQ_VERSION) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, PFIOC_QSTATS_VERSION) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, PF_IFSPEED_VERSION) #else /* * When building out-of-tree code that is written for the old interface, * such as may exist in ports for example, resolve the old struct tags and * ioctl command names to the v0 versions. */ #define pfioc_altq __CONCAT(pfioc_altq_v, 0) #define pfioc_qstats __CONCAT(pfioc_qstats_v, 0) #define pf_ifspeed __CONCAT(pf_ifspeed_v, 0) #define DIOCADDALTQ __CONCAT(DIOCADDALTQV, 0) #define DIOCGETALTQS __CONCAT(DIOCGETALTQSV, 0) #define DIOCGETALTQ __CONCAT(DIOCGETALTQV, 0) #define DIOCCHANGEALTQ __CONCAT(DIOCCHANGEALTQV, 0) #define DIOCGETQSTATS __CONCAT(DIOCGETQSTATSV, 0) #define DIOCGIFSPEED __CONCAT(DIOCGIFSPEEDV, 0) #endif /* PFIOC_USE_LATEST */ #endif /* _KERNEL */ #ifdef _KERNEL LIST_HEAD(pf_ksrc_node_list, pf_ksrc_node); struct pf_srchash { struct pf_ksrc_node_list nodes; struct mtx lock; }; struct pf_keyhash { LIST_HEAD(, pf_state_key) keys; struct mtx lock; }; struct pf_idhash { LIST_HEAD(, pf_state) states; struct mtx lock; }; extern u_long pf_hashmask; extern u_long pf_srchashmask; #define PF_HASHSIZ (131072) #define PF_SRCHASHSIZ (PF_HASHSIZ/4) VNET_DECLARE(struct pf_keyhash *, pf_keyhash); VNET_DECLARE(struct pf_idhash *, pf_idhash); #define V_pf_keyhash VNET(pf_keyhash) #define V_pf_idhash VNET(pf_idhash) VNET_DECLARE(struct pf_srchash *, pf_srchash); #define V_pf_srchash VNET(pf_srchash) #define PF_IDHASH(s) (be64toh((s)->id) % (pf_hashmask + 1)) VNET_DECLARE(void *, pf_swi_cookie); #define V_pf_swi_cookie VNET(pf_swi_cookie) VNET_DECLARE(struct intr_event *, pf_swi_ie); #define V_pf_swi_ie VNET(pf_swi_ie) VNET_DECLARE(uint64_t, pf_stateid[MAXCPU]); #define V_pf_stateid VNET(pf_stateid) TAILQ_HEAD(pf_altqqueue, pf_altq); VNET_DECLARE(struct pf_altqqueue, pf_altqs[4]); #define V_pf_altqs VNET(pf_altqs) VNET_DECLARE(struct pf_kpalist, pf_pabuf); #define V_pf_pabuf VNET(pf_pabuf) VNET_DECLARE(u_int32_t, ticket_altqs_active); #define V_ticket_altqs_active VNET(ticket_altqs_active) VNET_DECLARE(u_int32_t, ticket_altqs_inactive); #define V_ticket_altqs_inactive VNET(ticket_altqs_inactive) VNET_DECLARE(int, altqs_inactive_open); #define V_altqs_inactive_open VNET(altqs_inactive_open) VNET_DECLARE(u_int32_t, ticket_pabuf); #define V_ticket_pabuf VNET(ticket_pabuf) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_active); #define V_pf_altqs_active VNET(pf_altqs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_active); #define V_pf_altq_ifs_active VNET(pf_altq_ifs_active) VNET_DECLARE(struct pf_altqqueue *, pf_altqs_inactive); #define V_pf_altqs_inactive VNET(pf_altqs_inactive) VNET_DECLARE(struct pf_altqqueue *, pf_altq_ifs_inactive); #define V_pf_altq_ifs_inactive VNET(pf_altq_ifs_inactive) VNET_DECLARE(struct pf_krulequeue, pf_unlinked_rules); #define V_pf_unlinked_rules VNET(pf_unlinked_rules) void pf_initialize(void); void pf_mtag_initialize(void); void pf_mtag_cleanup(void); void pf_cleanup(void); struct pf_mtag *pf_get_mtag(struct mbuf *); extern void pf_calc_skip_steps(struct pf_krulequeue *); #ifdef ALTQ extern void pf_altq_ifnet_event(struct ifnet *, int); #endif VNET_DECLARE(uma_zone_t, pf_state_z); #define V_pf_state_z VNET(pf_state_z) VNET_DECLARE(uma_zone_t, pf_state_key_z); #define V_pf_state_key_z VNET(pf_state_key_z) VNET_DECLARE(uma_zone_t, pf_state_scrub_z); #define V_pf_state_scrub_z VNET(pf_state_scrub_z) extern void pf_purge_thread(void *); extern void pf_unload_vnet_purge(void); extern void pf_intr(void *); extern void pf_purge_expired_src_nodes(void); extern int pf_unlink_state(struct pf_state *, u_int); #define PF_ENTER_LOCKED 0x00000001 #define PF_RETURN_LOCKED 0x00000002 extern int pf_state_insert(struct pfi_kkif *, + struct pfi_kkif *, struct pf_state_key *, struct pf_state_key *, struct pf_state *); extern void pf_free_state(struct pf_state *); static __inline void pf_ref_state(struct pf_state *s) { refcount_acquire(&s->refs); } static __inline int pf_release_state(struct pf_state *s) { if (refcount_release(&s->refs)) { pf_free_state(s); return (1); } else return (0); } extern struct pf_state *pf_find_state_byid(uint64_t, uint32_t); extern struct pf_state *pf_find_state_all(struct pf_state_key_cmp *, u_int, int *); extern struct pf_ksrc_node *pf_find_src_node(struct pf_addr *, struct pf_krule *, sa_family_t, int); extern void pf_unlink_src_node(struct pf_ksrc_node *); extern u_int pf_free_src_nodes(struct pf_ksrc_node_list *); extern void pf_print_state(struct pf_state *); extern void pf_print_flags(u_int8_t); extern u_int16_t pf_cksum_fixup(u_int16_t, u_int16_t, u_int16_t, u_int8_t); extern u_int16_t pf_proto_cksum_fixup(struct mbuf *, u_int16_t, u_int16_t, u_int16_t, u_int8_t); VNET_DECLARE(struct ifnet *, sync_ifp); #define V_sync_ifp VNET(sync_ifp); VNET_DECLARE(struct pf_krule, pf_default_rule); #define V_pf_default_rule VNET(pf_default_rule) extern void pf_addrcpy(struct pf_addr *, struct pf_addr *, u_int8_t); void pf_free_rule(struct pf_krule *); #ifdef INET int pf_test(int, int, struct ifnet *, struct mbuf **, struct inpcb *); int pf_normalize_ip(struct mbuf **, int, struct pfi_kkif *, u_short *, struct pf_pdesc *); #endif /* INET */ #ifdef INET6 int pf_test6(int, int, struct ifnet *, struct mbuf **, struct inpcb *); int pf_normalize_ip6(struct mbuf **, int, struct pfi_kkif *, u_short *, struct pf_pdesc *); void pf_poolmask(struct pf_addr *, struct pf_addr*, struct pf_addr *, struct pf_addr *, u_int8_t); void pf_addr_inc(struct pf_addr *, sa_family_t); int pf_refragment6(struct ifnet *, struct mbuf **, struct m_tag *); #endif /* INET6 */ u_int32_t pf_new_isn(struct pf_state *); void *pf_pull_hdr(struct mbuf *, int, void *, int, u_short *, u_short *, sa_family_t); void pf_change_a(void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_proto_a(struct mbuf *, void *, u_int16_t *, u_int32_t, u_int8_t); void pf_change_tcp_a(struct mbuf *, void *, u_int16_t *, u_int32_t); void pf_patch_16_unaligned(struct mbuf *, u_int16_t *, void *, u_int16_t, bool, u_int8_t); void pf_patch_32_unaligned(struct mbuf *, u_int16_t *, void *, u_int32_t, bool, u_int8_t); void pf_send_deferred_syn(struct pf_state *); int pf_match_addr(u_int8_t, struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_addr_range(struct pf_addr *, struct pf_addr *, struct pf_addr *, sa_family_t); int pf_match_port(u_int8_t, u_int16_t, u_int16_t, u_int16_t); void pf_normalize_init(void); void pf_normalize_cleanup(void); int pf_normalize_tcp(int, struct pfi_kkif *, struct mbuf *, int, int, void *, struct pf_pdesc *); void pf_normalize_tcp_cleanup(struct pf_state *); int pf_normalize_tcp_init(struct mbuf *, int, struct pf_pdesc *, struct tcphdr *, struct pf_state_peer *, struct pf_state_peer *); int pf_normalize_tcp_stateful(struct mbuf *, int, struct pf_pdesc *, u_short *, struct tcphdr *, struct pf_state *, struct pf_state_peer *, struct pf_state_peer *, int *); u_int32_t pf_state_expires(const struct pf_state *); void pf_purge_expired_fragments(void); void pf_purge_fragments(uint32_t); int pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *, int); int pf_socket_lookup(int, struct pf_pdesc *, struct mbuf *); struct pf_state_key *pf_alloc_state_key(int); void pfr_initialize(void); void pfr_cleanup(void); int pfr_match_addr(struct pfr_ktable *, struct pf_addr *, sa_family_t); void pfr_update_stats(struct pfr_ktable *, struct pf_addr *, sa_family_t, u_int64_t, int, int, int); int pfr_pool_get(struct pfr_ktable *, int *, struct pf_addr *, sa_family_t); void pfr_dynaddr_update(struct pfr_ktable *, struct pfi_dynaddr *); struct pfr_ktable * pfr_attach_table(struct pf_kruleset *, char *); void pfr_detach_table(struct pfr_ktable *); int pfr_clr_tables(struct pfr_table *, int *, int); int pfr_add_tables(struct pfr_table *, int, int *, int); int pfr_del_tables(struct pfr_table *, int, int *, int); int pfr_table_count(struct pfr_table *, int); int pfr_get_tables(struct pfr_table *, struct pfr_table *, int *, int); int pfr_get_tstats(struct pfr_table *, struct pfr_tstats *, int *, int); int pfr_clr_tstats(struct pfr_table *, int, int *, int); int pfr_set_tflags(struct pfr_table *, int, int, int, int *, int *, int); int pfr_clr_addrs(struct pfr_table *, int *, int); int pfr_insert_kentry(struct pfr_ktable *, struct pfr_addr *, long); int pfr_add_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_del_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_set_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int *, int *, int *, int, u_int32_t); int pfr_get_addrs(struct pfr_table *, struct pfr_addr *, int *, int); int pfr_get_astats(struct pfr_table *, struct pfr_astats *, int *, int); int pfr_clr_astats(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_tst_addrs(struct pfr_table *, struct pfr_addr *, int, int *, int); int pfr_ina_begin(struct pfr_table *, u_int32_t *, int *, int); int pfr_ina_rollback(struct pfr_table *, u_int32_t, int *, int); int pfr_ina_commit(struct pfr_table *, u_int32_t, int *, int *, int); int pfr_ina_define(struct pfr_table *, struct pfr_addr *, int, int *, int *, u_int32_t, int); MALLOC_DECLARE(PFI_MTYPE); VNET_DECLARE(struct pfi_kkif *, pfi_all); #define V_pfi_all VNET(pfi_all) void pfi_initialize(void); void pfi_initialize_vnet(void); void pfi_cleanup(void); void pfi_cleanup_vnet(void); void pfi_kkif_ref(struct pfi_kkif *); void pfi_kkif_unref(struct pfi_kkif *); struct pfi_kkif *pfi_kkif_find(const char *); struct pfi_kkif *pfi_kkif_attach(struct pfi_kkif *, const char *); int pfi_kkif_match(struct pfi_kkif *, struct pfi_kkif *); void pfi_kkif_purge(void); int pfi_match_addr(struct pfi_dynaddr *, struct pf_addr *, sa_family_t); int pfi_dynaddr_setup(struct pf_addr_wrap *, sa_family_t); void pfi_dynaddr_remove(struct pfi_dynaddr *); void pfi_dynaddr_copyout(struct pf_addr_wrap *); void pfi_update_status(const char *, struct pf_status *); void pfi_get_ifaces(const char *, struct pfi_kif *, int *); int pfi_set_flags(const char *, int); int pfi_clear_flags(const char *, int); int pf_match_tag(struct mbuf *, struct pf_krule *, int *, int); int pf_tag_packet(struct mbuf *, struct pf_pdesc *, int); int pf_addr_cmp(struct pf_addr *, struct pf_addr *, sa_family_t); void pf_qid2qname(u_int32_t, char *); VNET_DECLARE(struct pf_kstatus, pf_status); #define V_pf_status VNET(pf_status) struct pf_limit { uma_zone_t zone; u_int limit; }; VNET_DECLARE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); #define V_pf_limits VNET(pf_limits) #endif /* _KERNEL */ #ifdef _KERNEL VNET_DECLARE(struct pf_kanchor_global, pf_anchors); #define V_pf_anchors VNET(pf_anchors) VNET_DECLARE(struct pf_kanchor, pf_main_anchor); #define V_pf_main_anchor VNET(pf_main_anchor) #define pf_main_ruleset V_pf_main_anchor.ruleset void pf_init_kruleset(struct pf_kruleset *); int pf_kanchor_setup(struct pf_krule *, const struct pf_kruleset *, const char *); int pf_kanchor_nvcopyout(const struct pf_kruleset *, const struct pf_krule *, nvlist_t *); int pf_kanchor_copyout(const struct pf_kruleset *, const struct pf_krule *, struct pfioc_rule *); void pf_kanchor_remove(struct pf_krule *); void pf_remove_if_empty_kruleset(struct pf_kruleset *); struct pf_kruleset *pf_find_kruleset(const char *); struct pf_kruleset *pf_find_or_create_kruleset(const char *); void pf_rs_initialize(void); void pf_krule_free(struct pf_krule *); #endif /* The fingerprint functions can be linked into userland programs (tcpdump) */ int pf_osfp_add(struct pf_osfp_ioctl *); #ifdef _KERNEL struct pf_osfp_enlist * pf_osfp_fingerprint(struct pf_pdesc *, struct mbuf *, int, const struct tcphdr *); #endif /* _KERNEL */ void pf_osfp_flush(void); int pf_osfp_get(struct pf_osfp_ioctl *); int pf_osfp_match(struct pf_osfp_enlist *, pf_osfp_t); #ifdef _KERNEL void pf_print_host(struct pf_addr *, u_int16_t, u_int8_t); void pf_step_into_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); int pf_step_out_of_anchor(struct pf_kanchor_stackframe *, int *, struct pf_kruleset **, int, struct pf_krule **, struct pf_krule **, int *); int pf_map_addr(u_int8_t, struct pf_krule *, struct pf_addr *, struct pf_addr *, struct pf_addr *, struct pf_ksrc_node **); struct pf_krule *pf_get_translation(struct pf_pdesc *, struct mbuf *, int, int, struct pfi_kkif *, struct pf_ksrc_node **, struct pf_state_key **, struct pf_state_key **, struct pf_addr *, struct pf_addr *, uint16_t, uint16_t, struct pf_kanchor_stackframe *); struct pf_state_key *pf_state_key_setup(struct pf_pdesc *, struct pf_addr *, struct pf_addr *, u_int16_t, u_int16_t); struct pf_state_key *pf_state_key_clone(struct pf_state_key *); struct pfi_kkif *pf_kkif_create(int); void pf_kkif_free(struct pfi_kkif *); void pf_kkif_zero(struct pfi_kkif *); #endif /* _KERNEL */ #endif /* _NET_PFVAR_H_ */ diff --git a/sys/netpfil/pf/if_pfsync.c b/sys/netpfil/pf/if_pfsync.c index 96813fd11dc3..3514c922c361 100644 --- a/sys/netpfil/pf/if_pfsync.c +++ b/sys/netpfil/pf/if_pfsync.c @@ -1,2568 +1,2568 @@ /*- * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND ISC) * * Copyright (c) 2002 Michael Shalayeff * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2009 David Gwynne * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * $OpenBSD: if_pfsync.c,v 1.110 2009/02/24 05:39:19 dlg Exp $ * * Revisions picked from OpenBSD after revision 1.110 import: * 1.119 - don't m_copydata() beyond the len of mbuf in pfsync_input() * 1.118, 1.124, 1.148, 1.149, 1.151, 1.171 - fixes to bulk updates * 1.120, 1.175 - use monotonic time_uptime * 1.122 - reduce number of updates for non-TCP sessions * 1.125, 1.127 - rewrite merge or stale processing * 1.128 - cleanups * 1.146 - bzero() mbuf before sparsely filling it with data * 1.170 - SIOCSIFMTU checks * 1.126, 1.142 - deferred packets processing * 1.173 - correct expire time processing */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_pf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PFSYNC_MINPKT ( \ sizeof(struct ip) + \ sizeof(struct pfsync_header) + \ sizeof(struct pfsync_subheader) ) struct pfsync_bucket; struct pfsync_pkt { struct ip *ip; struct in_addr src; u_int8_t flags; }; static int pfsync_upd_tcp(struct pf_state *, struct pfsync_state_peer *, struct pfsync_state_peer *); static int pfsync_in_clr(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_ins(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_iack(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_upd(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_upd_c(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_ureq(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_del(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_del_c(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_bus(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_tdb(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_eof(struct pfsync_pkt *, struct mbuf *, int, int); static int pfsync_in_error(struct pfsync_pkt *, struct mbuf *, int, int); static int (*pfsync_acts[])(struct pfsync_pkt *, struct mbuf *, int, int) = { pfsync_in_clr, /* PFSYNC_ACT_CLR */ pfsync_in_ins, /* PFSYNC_ACT_INS */ pfsync_in_iack, /* PFSYNC_ACT_INS_ACK */ pfsync_in_upd, /* PFSYNC_ACT_UPD */ pfsync_in_upd_c, /* PFSYNC_ACT_UPD_C */ pfsync_in_ureq, /* PFSYNC_ACT_UPD_REQ */ pfsync_in_del, /* PFSYNC_ACT_DEL */ pfsync_in_del_c, /* PFSYNC_ACT_DEL_C */ pfsync_in_error, /* PFSYNC_ACT_INS_F */ pfsync_in_error, /* PFSYNC_ACT_DEL_F */ pfsync_in_bus, /* PFSYNC_ACT_BUS */ pfsync_in_tdb, /* PFSYNC_ACT_TDB */ pfsync_in_eof /* PFSYNC_ACT_EOF */ }; struct pfsync_q { void (*write)(struct pf_state *, void *); size_t len; u_int8_t action; }; /* we have one of these for every PFSYNC_S_ */ static void pfsync_out_state(struct pf_state *, void *); static void pfsync_out_iack(struct pf_state *, void *); static void pfsync_out_upd_c(struct pf_state *, void *); static void pfsync_out_del(struct pf_state *, void *); static struct pfsync_q pfsync_qs[] = { { pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_INS }, { pfsync_out_iack, sizeof(struct pfsync_ins_ack), PFSYNC_ACT_INS_ACK }, { pfsync_out_state, sizeof(struct pfsync_state), PFSYNC_ACT_UPD }, { pfsync_out_upd_c, sizeof(struct pfsync_upd_c), PFSYNC_ACT_UPD_C }, { pfsync_out_del, sizeof(struct pfsync_del_c), PFSYNC_ACT_DEL_C } }; static void pfsync_q_ins(struct pf_state *, int, bool); static void pfsync_q_del(struct pf_state *, bool, struct pfsync_bucket *); static void pfsync_update_state(struct pf_state *); struct pfsync_upd_req_item { TAILQ_ENTRY(pfsync_upd_req_item) ur_entry; struct pfsync_upd_req ur_msg; }; struct pfsync_deferral { struct pfsync_softc *pd_sc; TAILQ_ENTRY(pfsync_deferral) pd_entry; u_int pd_refs; struct callout pd_tmo; struct pf_state *pd_st; struct mbuf *pd_m; }; struct pfsync_sofct; struct pfsync_bucket { int b_id; struct pfsync_softc *b_sc; struct mtx b_mtx; struct callout b_tmo; int b_flags; #define PFSYNCF_BUCKET_PUSH 0x00000001 size_t b_len; TAILQ_HEAD(, pf_state) b_qs[PFSYNC_S_COUNT]; TAILQ_HEAD(, pfsync_upd_req_item) b_upd_req_list; TAILQ_HEAD(, pfsync_deferral) b_deferrals; u_int b_deferred; void *b_plus; size_t b_pluslen; struct ifaltq b_snd; }; struct pfsync_softc { /* Configuration */ struct ifnet *sc_ifp; struct ifnet *sc_sync_if; struct ip_moptions sc_imo; struct in_addr sc_sync_peer; uint32_t sc_flags; uint8_t sc_maxupdates; struct ip sc_template; struct mtx sc_mtx; /* Queued data */ struct pfsync_bucket *sc_buckets; /* Bulk update info */ struct mtx sc_bulk_mtx; uint32_t sc_ureq_sent; int sc_bulk_tries; uint32_t sc_ureq_received; int sc_bulk_hashid; uint64_t sc_bulk_stateid; uint32_t sc_bulk_creatorid; struct callout sc_bulk_tmo; struct callout sc_bulkfail_tmo; }; #define PFSYNC_LOCK(sc) mtx_lock(&(sc)->sc_mtx) #define PFSYNC_UNLOCK(sc) mtx_unlock(&(sc)->sc_mtx) #define PFSYNC_LOCK_ASSERT(sc) mtx_assert(&(sc)->sc_mtx, MA_OWNED) #define PFSYNC_BUCKET_LOCK(b) mtx_lock(&(b)->b_mtx) #define PFSYNC_BUCKET_UNLOCK(b) mtx_unlock(&(b)->b_mtx) #define PFSYNC_BUCKET_LOCK_ASSERT(b) mtx_assert(&(b)->b_mtx, MA_OWNED) #define PFSYNC_BLOCK(sc) mtx_lock(&(sc)->sc_bulk_mtx) #define PFSYNC_BUNLOCK(sc) mtx_unlock(&(sc)->sc_bulk_mtx) #define PFSYNC_BLOCK_ASSERT(sc) mtx_assert(&(sc)->sc_bulk_mtx, MA_OWNED) static const char pfsyncname[] = "pfsync"; static MALLOC_DEFINE(M_PFSYNC, pfsyncname, "pfsync(4) data"); VNET_DEFINE_STATIC(struct pfsync_softc *, pfsyncif) = NULL; #define V_pfsyncif VNET(pfsyncif) VNET_DEFINE_STATIC(void *, pfsync_swi_cookie) = NULL; #define V_pfsync_swi_cookie VNET(pfsync_swi_cookie) VNET_DEFINE_STATIC(struct intr_event *, pfsync_swi_ie); #define V_pfsync_swi_ie VNET(pfsync_swi_ie) VNET_DEFINE_STATIC(struct pfsyncstats, pfsyncstats); #define V_pfsyncstats VNET(pfsyncstats) VNET_DEFINE_STATIC(int, pfsync_carp_adj) = CARP_MAXSKEW; #define V_pfsync_carp_adj VNET(pfsync_carp_adj) static void pfsync_timeout(void *); static void pfsync_push(struct pfsync_bucket *); static void pfsync_push_all(struct pfsync_softc *); static void pfsyncintr(void *); static int pfsync_multicast_setup(struct pfsync_softc *, struct ifnet *, struct in_mfilter *imf); static void pfsync_multicast_cleanup(struct pfsync_softc *); static void pfsync_pointers_init(void); static void pfsync_pointers_uninit(void); static int pfsync_init(void); static void pfsync_uninit(void); static unsigned long pfsync_buckets; SYSCTL_NODE(_net, OID_AUTO, pfsync, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "PFSYNC"); SYSCTL_STRUCT(_net_pfsync, OID_AUTO, stats, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(pfsyncstats), pfsyncstats, "PFSYNC statistics (struct pfsyncstats, net/if_pfsync.h)"); SYSCTL_INT(_net_pfsync, OID_AUTO, carp_demotion_factor, CTLFLAG_RW, &VNET_NAME(pfsync_carp_adj), 0, "pfsync's CARP demotion factor adjustment"); SYSCTL_ULONG(_net_pfsync, OID_AUTO, pfsync_buckets, CTLFLAG_RDTUN, &pfsync_buckets, 0, "Number of pfsync hash buckets"); static int pfsync_clone_create(struct if_clone *, int, caddr_t); static void pfsync_clone_destroy(struct ifnet *); static int pfsync_alloc_scrub_memory(struct pfsync_state_peer *, struct pf_state_peer *); static int pfsyncoutput(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static int pfsyncioctl(struct ifnet *, u_long, caddr_t); static int pfsync_defer(struct pf_state *, struct mbuf *); static void pfsync_undefer(struct pfsync_deferral *, int); static void pfsync_undefer_state(struct pf_state *, int); static void pfsync_defer_tmo(void *); static void pfsync_request_update(u_int32_t, u_int64_t); static bool pfsync_update_state_req(struct pf_state *); static void pfsync_drop(struct pfsync_softc *); static void pfsync_sendout(int, int); static void pfsync_send_plus(void *, size_t); static void pfsync_bulk_start(void); static void pfsync_bulk_status(u_int8_t); static void pfsync_bulk_update(void *); static void pfsync_bulk_fail(void *); static void pfsync_detach_ifnet(struct ifnet *); #ifdef IPSEC static void pfsync_update_net_tdb(struct pfsync_tdb *); #endif static struct pfsync_bucket *pfsync_get_bucket(struct pfsync_softc *, struct pf_state *); #define PFSYNC_MAX_BULKTRIES 12 VNET_DEFINE(struct if_clone *, pfsync_cloner); #define V_pfsync_cloner VNET(pfsync_cloner) static int pfsync_clone_create(struct if_clone *ifc, int unit, caddr_t param) { struct pfsync_softc *sc; struct ifnet *ifp; struct pfsync_bucket *b; int c, q; if (unit != 0) return (EINVAL); if (! pfsync_buckets) pfsync_buckets = mp_ncpus * 2; sc = malloc(sizeof(struct pfsync_softc), M_PFSYNC, M_WAITOK | M_ZERO); sc->sc_flags |= PFSYNCF_OK; sc->sc_maxupdates = 128; ifp = sc->sc_ifp = if_alloc(IFT_PFSYNC); if (ifp == NULL) { free(sc, M_PFSYNC); return (ENOSPC); } if_initname(ifp, pfsyncname, unit); ifp->if_softc = sc; ifp->if_ioctl = pfsyncioctl; ifp->if_output = pfsyncoutput; ifp->if_type = IFT_PFSYNC; ifp->if_hdrlen = sizeof(struct pfsync_header); ifp->if_mtu = ETHERMTU; mtx_init(&sc->sc_mtx, pfsyncname, NULL, MTX_DEF); mtx_init(&sc->sc_bulk_mtx, "pfsync bulk", NULL, MTX_DEF); callout_init_mtx(&sc->sc_bulk_tmo, &sc->sc_bulk_mtx, 0); callout_init_mtx(&sc->sc_bulkfail_tmo, &sc->sc_bulk_mtx, 0); if_attach(ifp); bpfattach(ifp, DLT_PFSYNC, PFSYNC_HDRLEN); sc->sc_buckets = mallocarray(pfsync_buckets, sizeof(*sc->sc_buckets), M_PFSYNC, M_ZERO | M_WAITOK); for (c = 0; c < pfsync_buckets; c++) { b = &sc->sc_buckets[c]; mtx_init(&b->b_mtx, "pfsync bucket", NULL, MTX_DEF); b->b_id = c; b->b_sc = sc; b->b_len = PFSYNC_MINPKT; for (q = 0; q < PFSYNC_S_COUNT; q++) TAILQ_INIT(&b->b_qs[q]); TAILQ_INIT(&b->b_upd_req_list); TAILQ_INIT(&b->b_deferrals); callout_init(&b->b_tmo, 1); b->b_snd.ifq_maxlen = ifqmaxlen; } V_pfsyncif = sc; return (0); } static void pfsync_clone_destroy(struct ifnet *ifp) { struct pfsync_softc *sc = ifp->if_softc; struct pfsync_bucket *b; int c; for (c = 0; c < pfsync_buckets; c++) { b = &sc->sc_buckets[c]; /* * At this stage, everything should have already been * cleared by pfsync_uninit(), and we have only to * drain callouts. */ while (b->b_deferred > 0) { struct pfsync_deferral *pd = TAILQ_FIRST(&b->b_deferrals); TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry); b->b_deferred--; if (callout_stop(&pd->pd_tmo) > 0) { pf_release_state(pd->pd_st); m_freem(pd->pd_m); free(pd, M_PFSYNC); } else { pd->pd_refs++; callout_drain(&pd->pd_tmo); free(pd, M_PFSYNC); } } callout_drain(&b->b_tmo); } callout_drain(&sc->sc_bulkfail_tmo); callout_drain(&sc->sc_bulk_tmo); if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync destroy"); bpfdetach(ifp); if_detach(ifp); pfsync_drop(sc); if_free(ifp); pfsync_multicast_cleanup(sc); mtx_destroy(&sc->sc_mtx); mtx_destroy(&sc->sc_bulk_mtx); free(sc->sc_buckets, M_PFSYNC); free(sc, M_PFSYNC); V_pfsyncif = NULL; } static int pfsync_alloc_scrub_memory(struct pfsync_state_peer *s, struct pf_state_peer *d) { if (s->scrub.scrub_flag && d->scrub == NULL) { d->scrub = uma_zalloc(V_pf_state_scrub_z, M_NOWAIT | M_ZERO); if (d->scrub == NULL) return (ENOMEM); } return (0); } static int pfsync_state_import(struct pfsync_state *sp, u_int8_t flags) { struct pfsync_softc *sc = V_pfsyncif; #ifndef __NO_STRICT_ALIGNMENT struct pfsync_state_key key[2]; #endif struct pfsync_state_key *kw, *ks; struct pf_state *st = NULL; struct pf_state_key *skw = NULL, *sks = NULL; struct pf_krule *r = NULL; struct pfi_kkif *kif; int error; PF_RULES_RASSERT(); if (sp->creatorid == 0) { if (V_pf_status.debug >= PF_DEBUG_MISC) printf("%s: invalid creator id: %08x\n", __func__, ntohl(sp->creatorid)); return (EINVAL); } if ((kif = pfi_kkif_find(sp->ifname)) == NULL) { if (V_pf_status.debug >= PF_DEBUG_MISC) printf("%s: unknown interface: %s\n", __func__, sp->ifname); if (flags & PFSYNC_SI_IOCTL) return (EINVAL); return (0); /* skip this state */ } /* * If the ruleset checksums match or the state is coming from the ioctl, * it's safe to associate the state with the rule of that number. */ if (sp->rule != htonl(-1) && sp->anchor == htonl(-1) && (flags & (PFSYNC_SI_IOCTL | PFSYNC_SI_CKSUM)) && ntohl(sp->rule) < pf_main_ruleset.rules[PF_RULESET_FILTER].active.rcount) r = pf_main_ruleset.rules[ PF_RULESET_FILTER].active.ptr_array[ntohl(sp->rule)]; else r = &V_pf_default_rule; if ((r->max_states && counter_u64_fetch(r->states_cur) >= r->max_states)) goto cleanup; /* * XXXGL: consider M_WAITOK in ioctl path after. */ if ((st = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO)) == NULL) goto cleanup; for (int i = 0; i < 2; i++) { st->packets[i] = counter_u64_alloc(M_NOWAIT); st->bytes[i] = counter_u64_alloc(M_NOWAIT); if (st->packets[i] == NULL || st->bytes[i] == NULL) goto cleanup; } if ((skw = uma_zalloc(V_pf_state_key_z, M_NOWAIT)) == NULL) goto cleanup; #ifndef __NO_STRICT_ALIGNMENT bcopy(&sp->key, key, sizeof(struct pfsync_state_key) * 2); kw = &key[PF_SK_WIRE]; ks = &key[PF_SK_STACK]; #else kw = &sp->key[PF_SK_WIRE]; ks = &sp->key[PF_SK_STACK]; #endif if (PF_ANEQ(&kw->addr[0], &ks->addr[0], sp->af) || PF_ANEQ(&kw->addr[1], &ks->addr[1], sp->af) || kw->port[0] != ks->port[0] || kw->port[1] != ks->port[1]) { sks = uma_zalloc(V_pf_state_key_z, M_NOWAIT); if (sks == NULL) goto cleanup; } else sks = skw; /* allocate memory for scrub info */ if (pfsync_alloc_scrub_memory(&sp->src, &st->src) || pfsync_alloc_scrub_memory(&sp->dst, &st->dst)) goto cleanup; /* Copy to state key(s). */ skw->addr[0] = kw->addr[0]; skw->addr[1] = kw->addr[1]; skw->port[0] = kw->port[0]; skw->port[1] = kw->port[1]; skw->proto = sp->proto; skw->af = sp->af; if (sks != skw) { sks->addr[0] = ks->addr[0]; sks->addr[1] = ks->addr[1]; sks->port[0] = ks->port[0]; sks->port[1] = ks->port[1]; sks->proto = sp->proto; sks->af = sp->af; } /* copy to state */ bcopy(&sp->rt_addr, &st->rt_addr, sizeof(st->rt_addr)); st->creation = time_uptime - ntohl(sp->creation); st->expire = time_uptime; if (sp->expire) { uint32_t timeout; timeout = r->timeout[sp->timeout]; if (!timeout) timeout = V_pf_default_rule.timeout[sp->timeout]; /* sp->expire may have been adaptively scaled by export. */ st->expire -= timeout - ntohl(sp->expire); } st->direction = sp->direction; st->log = sp->log; st->timeout = sp->timeout; st->state_flags = sp->state_flags; st->id = sp->id; st->creatorid = sp->creatorid; pf_state_peer_ntoh(&sp->src, &st->src); pf_state_peer_ntoh(&sp->dst, &st->dst); st->rule.ptr = r; st->nat_rule.ptr = NULL; st->anchor.ptr = NULL; st->rt_kif = NULL; st->pfsync_time = time_uptime; st->sync_state = PFSYNC_S_NONE; if (!(flags & PFSYNC_SI_IOCTL)) st->state_flags |= PFSTATE_NOSYNC; - if ((error = pf_state_insert(kif, skw, sks, st)) != 0) + if ((error = pf_state_insert(kif, kif, skw, sks, st)) != 0) goto cleanup_state; /* XXX when we have nat_rule/anchors, use STATE_INC_COUNTERS */ counter_u64_add(r->states_cur, 1); counter_u64_add(r->states_tot, 1); if (!(flags & PFSYNC_SI_IOCTL)) { st->state_flags &= ~PFSTATE_NOSYNC; if (st->state_flags & PFSTATE_ACK) { pfsync_q_ins(st, PFSYNC_S_IACK, true); pfsync_push_all(sc); } } st->state_flags &= ~PFSTATE_ACK; PF_STATE_UNLOCK(st); return (0); cleanup: error = ENOMEM; if (skw == sks) sks = NULL; if (skw != NULL) uma_zfree(V_pf_state_key_z, skw); if (sks != NULL) uma_zfree(V_pf_state_key_z, sks); cleanup_state: /* pf_state_insert() frees the state keys. */ if (st) { for (int i = 0; i < 2; i++) { counter_u64_free(st->packets[i]); counter_u64_free(st->bytes[i]); } if (st->dst.scrub) uma_zfree(V_pf_state_scrub_z, st->dst.scrub); if (st->src.scrub) uma_zfree(V_pf_state_scrub_z, st->src.scrub); uma_zfree(V_pf_state_z, st); } return (error); } static int pfsync_input(struct mbuf **mp, int *offp __unused, int proto __unused) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_pkt pkt; struct mbuf *m = *mp; struct ip *ip = mtod(m, struct ip *); struct pfsync_header *ph; struct pfsync_subheader subh; int offset, len; int rv; uint16_t count; PF_RULES_RLOCK_TRACKER; *mp = NULL; V_pfsyncstats.pfsyncs_ipackets++; /* Verify that we have a sync interface configured. */ if (!sc || !sc->sc_sync_if || !V_pf_status.running || (sc->sc_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) goto done; /* verify that the packet came in on the right interface */ if (sc->sc_sync_if != m->m_pkthdr.rcvif) { V_pfsyncstats.pfsyncs_badif++; goto done; } if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); /* verify that the IP TTL is 255. */ if (ip->ip_ttl != PFSYNC_DFLTTL) { V_pfsyncstats.pfsyncs_badttl++; goto done; } offset = ip->ip_hl << 2; if (m->m_pkthdr.len < offset + sizeof(*ph)) { V_pfsyncstats.pfsyncs_hdrops++; goto done; } if (offset + sizeof(*ph) > m->m_len) { if (m_pullup(m, offset + sizeof(*ph)) == NULL) { V_pfsyncstats.pfsyncs_hdrops++; return (IPPROTO_DONE); } ip = mtod(m, struct ip *); } ph = (struct pfsync_header *)((char *)ip + offset); /* verify the version */ if (ph->version != PFSYNC_VERSION) { V_pfsyncstats.pfsyncs_badver++; goto done; } len = ntohs(ph->len) + offset; if (m->m_pkthdr.len < len) { V_pfsyncstats.pfsyncs_badlen++; goto done; } /* Cheaper to grab this now than having to mess with mbufs later */ pkt.ip = ip; pkt.src = ip->ip_src; pkt.flags = 0; /* * Trusting pf_chksum during packet processing, as well as seeking * in interface name tree, require holding PF_RULES_RLOCK(). */ PF_RULES_RLOCK(); if (!bcmp(&ph->pfcksum, &V_pf_status.pf_chksum, PF_MD5_DIGEST_LENGTH)) pkt.flags |= PFSYNC_SI_CKSUM; offset += sizeof(*ph); while (offset <= len - sizeof(subh)) { m_copydata(m, offset, sizeof(subh), (caddr_t)&subh); offset += sizeof(subh); if (subh.action >= PFSYNC_ACT_MAX) { V_pfsyncstats.pfsyncs_badact++; PF_RULES_RUNLOCK(); goto done; } count = ntohs(subh.count); V_pfsyncstats.pfsyncs_iacts[subh.action] += count; rv = (*pfsync_acts[subh.action])(&pkt, m, offset, count); if (rv == -1) { PF_RULES_RUNLOCK(); return (IPPROTO_DONE); } offset += rv; } PF_RULES_RUNLOCK(); done: m_freem(m); return (IPPROTO_DONE); } static int pfsync_in_clr(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_clr *clr; struct mbuf *mp; int len = sizeof(*clr) * count; int i, offp; u_int32_t creatorid; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } clr = (struct pfsync_clr *)(mp->m_data + offp); for (i = 0; i < count; i++) { creatorid = clr[i].creatorid; if (clr[i].ifname[0] != '\0' && pfi_kkif_find(clr[i].ifname) == NULL) continue; for (int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_state *s; relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->creatorid == creatorid) { s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); goto relock; } } PF_HASHROW_UNLOCK(ih); } } return (len); } static int pfsync_in_ins(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct mbuf *mp; struct pfsync_state *sa, *sp; int len = sizeof(*sp) * count; int i, offp; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_state *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; /* Check for invalid values. */ if (sp->timeout >= PFTM_MAX || sp->src.state > PF_TCPS_PROXY_DST || sp->dst.state > PF_TCPS_PROXY_DST || sp->direction > PF_OUT || (sp->af != AF_INET && sp->af != AF_INET6)) { if (V_pf_status.debug >= PF_DEBUG_MISC) printf("%s: invalid value\n", __func__); V_pfsyncstats.pfsyncs_badval++; continue; } if (pfsync_state_import(sp, pkt->flags) == ENOMEM) /* Drop out, but process the rest of the actions. */ break; } return (len); } static int pfsync_in_iack(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_ins_ack *ia, *iaa; struct pf_state *st; struct mbuf *mp; int len = count * sizeof(*ia); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } iaa = (struct pfsync_ins_ack *)(mp->m_data + offp); for (i = 0; i < count; i++) { ia = &iaa[i]; st = pf_find_state_byid(ia->id, ia->creatorid); if (st == NULL) continue; if (st->state_flags & PFSTATE_ACK) { pfsync_undefer_state(st, 0); } PF_STATE_UNLOCK(st); } /* * XXX this is not yet implemented, but we know the size of the * message so we can skip it. */ return (count * sizeof(struct pfsync_ins_ack)); } static int pfsync_upd_tcp(struct pf_state *st, struct pfsync_state_peer *src, struct pfsync_state_peer *dst) { int sync = 0; PF_STATE_LOCK_ASSERT(st); /* * The state should never go backwards except * for syn-proxy states. Neither should the * sequence window slide backwards. */ if ((st->src.state > src->state && (st->src.state < PF_TCPS_PROXY_SRC || src->state >= PF_TCPS_PROXY_SRC)) || (st->src.state == src->state && SEQ_GT(st->src.seqlo, ntohl(src->seqlo)))) sync++; else pf_state_peer_ntoh(src, &st->src); if ((st->dst.state > dst->state) || (st->dst.state >= TCPS_SYN_SENT && SEQ_GT(st->dst.seqlo, ntohl(dst->seqlo)))) sync++; else pf_state_peer_ntoh(dst, &st->dst); return (sync); } static int pfsync_in_upd(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_state *sa, *sp; struct pf_state *st; int sync; struct mbuf *mp; int len = count * sizeof(*sp); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_state *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; /* check for invalid values */ if (sp->timeout >= PFTM_MAX || sp->src.state > PF_TCPS_PROXY_DST || sp->dst.state > PF_TCPS_PROXY_DST) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pfsync_input: PFSYNC_ACT_UPD: " "invalid value\n"); } V_pfsyncstats.pfsyncs_badval++; continue; } st = pf_find_state_byid(sp->id, sp->creatorid); if (st == NULL) { /* insert the update */ if (pfsync_state_import(sp, pkt->flags)) V_pfsyncstats.pfsyncs_badstate++; continue; } if (st->state_flags & PFSTATE_ACK) { pfsync_undefer_state(st, 1); } if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) sync = pfsync_upd_tcp(st, &sp->src, &sp->dst); else { sync = 0; /* * Non-TCP protocol state machine always go * forwards */ if (st->src.state > sp->src.state) sync++; else pf_state_peer_ntoh(&sp->src, &st->src); if (st->dst.state > sp->dst.state) sync++; else pf_state_peer_ntoh(&sp->dst, &st->dst); } if (sync < 2) { pfsync_alloc_scrub_memory(&sp->dst, &st->dst); pf_state_peer_ntoh(&sp->dst, &st->dst); st->expire = time_uptime; st->timeout = sp->timeout; } st->pfsync_time = time_uptime; if (sync) { V_pfsyncstats.pfsyncs_stale++; pfsync_update_state(st); PF_STATE_UNLOCK(st); pfsync_push_all(sc); continue; } PF_STATE_UNLOCK(st); } return (len); } static int pfsync_in_upd_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_upd_c *ua, *up; struct pf_state *st; int len = count * sizeof(*up); int sync; struct mbuf *mp; int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } ua = (struct pfsync_upd_c *)(mp->m_data + offp); for (i = 0; i < count; i++) { up = &ua[i]; /* check for invalid values */ if (up->timeout >= PFTM_MAX || up->src.state > PF_TCPS_PROXY_DST || up->dst.state > PF_TCPS_PROXY_DST) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pfsync_input: " "PFSYNC_ACT_UPD_C: " "invalid value\n"); } V_pfsyncstats.pfsyncs_badval++; continue; } st = pf_find_state_byid(up->id, up->creatorid); if (st == NULL) { /* We don't have this state. Ask for it. */ PFSYNC_BUCKET_LOCK(&sc->sc_buckets[0]); pfsync_request_update(up->creatorid, up->id); PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[0]); continue; } if (st->state_flags & PFSTATE_ACK) { pfsync_undefer_state(st, 1); } if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) sync = pfsync_upd_tcp(st, &up->src, &up->dst); else { sync = 0; /* * Non-TCP protocol state machine always go * forwards */ if (st->src.state > up->src.state) sync++; else pf_state_peer_ntoh(&up->src, &st->src); if (st->dst.state > up->dst.state) sync++; else pf_state_peer_ntoh(&up->dst, &st->dst); } if (sync < 2) { pfsync_alloc_scrub_memory(&up->dst, &st->dst); pf_state_peer_ntoh(&up->dst, &st->dst); st->expire = time_uptime; st->timeout = up->timeout; } st->pfsync_time = time_uptime; if (sync) { V_pfsyncstats.pfsyncs_stale++; pfsync_update_state(st); PF_STATE_UNLOCK(st); pfsync_push_all(sc); continue; } PF_STATE_UNLOCK(st); } return (len); } static int pfsync_in_ureq(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_upd_req *ur, *ura; struct mbuf *mp; int len = count * sizeof(*ur); int i, offp; struct pf_state *st; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } ura = (struct pfsync_upd_req *)(mp->m_data + offp); for (i = 0; i < count; i++) { ur = &ura[i]; if (ur->id == 0 && ur->creatorid == 0) pfsync_bulk_start(); else { st = pf_find_state_byid(ur->id, ur->creatorid); if (st == NULL) { V_pfsyncstats.pfsyncs_badstate++; continue; } if (st->state_flags & PFSTATE_NOSYNC) { PF_STATE_UNLOCK(st); continue; } pfsync_update_state_req(st); PF_STATE_UNLOCK(st); } } return (len); } static int pfsync_in_del(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct mbuf *mp; struct pfsync_state *sa, *sp; struct pf_state *st; int len = count * sizeof(*sp); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_state *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; st = pf_find_state_byid(sp->id, sp->creatorid); if (st == NULL) { V_pfsyncstats.pfsyncs_badstate++; continue; } st->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(st, PF_ENTER_LOCKED); } return (len); } static int pfsync_in_del_c(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct mbuf *mp; struct pfsync_del_c *sa, *sp; struct pf_state *st; int len = count * sizeof(*sp); int offp, i; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } sa = (struct pfsync_del_c *)(mp->m_data + offp); for (i = 0; i < count; i++) { sp = &sa[i]; st = pf_find_state_byid(sp->id, sp->creatorid); if (st == NULL) { V_pfsyncstats.pfsyncs_badstate++; continue; } st->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(st, PF_ENTER_LOCKED); } return (len); } static int pfsync_in_bus(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_bus *bus; struct mbuf *mp; int len = count * sizeof(*bus); int offp; PFSYNC_BLOCK(sc); /* If we're not waiting for a bulk update, who cares. */ if (sc->sc_ureq_sent == 0) { PFSYNC_BUNLOCK(sc); return (len); } mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { PFSYNC_BUNLOCK(sc); V_pfsyncstats.pfsyncs_badlen++; return (-1); } bus = (struct pfsync_bus *)(mp->m_data + offp); switch (bus->status) { case PFSYNC_BUS_START: callout_reset(&sc->sc_bulkfail_tmo, 4 * hz + V_pf_limits[PF_LIMIT_STATES].limit / ((sc->sc_ifp->if_mtu - PFSYNC_MINPKT) / sizeof(struct pfsync_state)), pfsync_bulk_fail, sc); if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received bulk update start\n"); break; case PFSYNC_BUS_END: if (time_uptime - ntohl(bus->endtime) >= sc->sc_ureq_sent) { /* that's it, we're happy */ sc->sc_ureq_sent = 0; sc->sc_bulk_tries = 0; callout_stop(&sc->sc_bulkfail_tmo); if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync bulk done"); sc->sc_flags |= PFSYNCF_OK; if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received valid " "bulk update end\n"); } else { if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received invalid " "bulk update end: bad timestamp\n"); } break; } PFSYNC_BUNLOCK(sc); return (len); } static int pfsync_in_tdb(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { int len = count * sizeof(struct pfsync_tdb); #if defined(IPSEC) struct pfsync_tdb *tp; struct mbuf *mp; int offp; int i; int s; mp = m_pulldown(m, offset, len, &offp); if (mp == NULL) { V_pfsyncstats.pfsyncs_badlen++; return (-1); } tp = (struct pfsync_tdb *)(mp->m_data + offp); for (i = 0; i < count; i++) pfsync_update_net_tdb(&tp[i]); #endif return (len); } #if defined(IPSEC) /* Update an in-kernel tdb. Silently fail if no tdb is found. */ static void pfsync_update_net_tdb(struct pfsync_tdb *pt) { struct tdb *tdb; int s; /* check for invalid values */ if (ntohl(pt->spi) <= SPI_RESERVED_MAX || (pt->dst.sa.sa_family != AF_INET && pt->dst.sa.sa_family != AF_INET6)) goto bad; tdb = gettdb(pt->spi, &pt->dst, pt->sproto); if (tdb) { pt->rpl = ntohl(pt->rpl); pt->cur_bytes = (unsigned long long)be64toh(pt->cur_bytes); /* Neither replay nor byte counter should ever decrease. */ if (pt->rpl < tdb->tdb_rpl || pt->cur_bytes < tdb->tdb_cur_bytes) { goto bad; } tdb->tdb_rpl = pt->rpl; tdb->tdb_cur_bytes = pt->cur_bytes; } return; bad: if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync_insert: PFSYNC_ACT_TDB_UPD: " "invalid value\n"); V_pfsyncstats.pfsyncs_badstate++; return; } #endif static int pfsync_in_eof(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { /* check if we are at the right place in the packet */ if (offset != m->m_pkthdr.len) V_pfsyncstats.pfsyncs_badlen++; /* we're done. free and let the caller return */ m_freem(m); return (-1); } static int pfsync_in_error(struct pfsync_pkt *pkt, struct mbuf *m, int offset, int count) { V_pfsyncstats.pfsyncs_badact++; m_freem(m); return (-1); } static int pfsyncoutput(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *rt) { m_freem(m); return (0); } /* ARGSUSED */ static int pfsyncioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct pfsync_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct pfsyncreq pfsyncr; int error; int c; switch (cmd) { case SIOCSIFFLAGS: PFSYNC_LOCK(sc); if (ifp->if_flags & IFF_UP) { ifp->if_drv_flags |= IFF_DRV_RUNNING; PFSYNC_UNLOCK(sc); pfsync_pointers_init(); } else { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; PFSYNC_UNLOCK(sc); pfsync_pointers_uninit(); } break; case SIOCSIFMTU: if (!sc->sc_sync_if || ifr->ifr_mtu <= PFSYNC_MINPKT || ifr->ifr_mtu > sc->sc_sync_if->if_mtu) return (EINVAL); if (ifr->ifr_mtu < ifp->if_mtu) { for (c = 0; c < pfsync_buckets; c++) { PFSYNC_BUCKET_LOCK(&sc->sc_buckets[c]); if (sc->sc_buckets[c].b_len > PFSYNC_MINPKT) pfsync_sendout(1, c); PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[c]); } } ifp->if_mtu = ifr->ifr_mtu; break; case SIOCGETPFSYNC: bzero(&pfsyncr, sizeof(pfsyncr)); PFSYNC_LOCK(sc); if (sc->sc_sync_if) { strlcpy(pfsyncr.pfsyncr_syncdev, sc->sc_sync_if->if_xname, IFNAMSIZ); } pfsyncr.pfsyncr_syncpeer = sc->sc_sync_peer; pfsyncr.pfsyncr_maxupdates = sc->sc_maxupdates; pfsyncr.pfsyncr_defer = sc->sc_flags; PFSYNC_UNLOCK(sc); return (copyout(&pfsyncr, ifr_data_get_ptr(ifr), sizeof(pfsyncr))); case SIOCSETPFSYNC: { struct in_mfilter *imf = NULL; struct ifnet *sifp; struct ip *ip; if ((error = priv_check(curthread, PRIV_NETINET_PF)) != 0) return (error); if ((error = copyin(ifr_data_get_ptr(ifr), &pfsyncr, sizeof(pfsyncr)))) return (error); if (pfsyncr.pfsyncr_maxupdates > 255) return (EINVAL); if (pfsyncr.pfsyncr_syncdev[0] == 0) sifp = NULL; else if ((sifp = ifunit_ref(pfsyncr.pfsyncr_syncdev)) == NULL) return (EINVAL); if (sifp != NULL && ( pfsyncr.pfsyncr_syncpeer.s_addr == 0 || pfsyncr.pfsyncr_syncpeer.s_addr == htonl(INADDR_PFSYNC_GROUP))) imf = ip_mfilter_alloc(M_WAITOK, 0, 0); PFSYNC_LOCK(sc); if (pfsyncr.pfsyncr_syncpeer.s_addr == 0) sc->sc_sync_peer.s_addr = htonl(INADDR_PFSYNC_GROUP); else sc->sc_sync_peer.s_addr = pfsyncr.pfsyncr_syncpeer.s_addr; sc->sc_maxupdates = pfsyncr.pfsyncr_maxupdates; if (pfsyncr.pfsyncr_defer) { sc->sc_flags |= PFSYNCF_DEFER; V_pfsync_defer_ptr = pfsync_defer; } else { sc->sc_flags &= ~PFSYNCF_DEFER; V_pfsync_defer_ptr = NULL; } if (sifp == NULL) { if (sc->sc_sync_if) if_rele(sc->sc_sync_if); sc->sc_sync_if = NULL; pfsync_multicast_cleanup(sc); PFSYNC_UNLOCK(sc); break; } for (c = 0; c < pfsync_buckets; c++) { PFSYNC_BUCKET_LOCK(&sc->sc_buckets[c]); if (sc->sc_buckets[c].b_len > PFSYNC_MINPKT && (sifp->if_mtu < sc->sc_ifp->if_mtu || (sc->sc_sync_if != NULL && sifp->if_mtu < sc->sc_sync_if->if_mtu) || sifp->if_mtu < MCLBYTES - sizeof(struct ip))) pfsync_sendout(1, c); PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[c]); } pfsync_multicast_cleanup(sc); if (sc->sc_sync_peer.s_addr == htonl(INADDR_PFSYNC_GROUP)) { error = pfsync_multicast_setup(sc, sifp, imf); if (error) { if_rele(sifp); ip_mfilter_free(imf); PFSYNC_UNLOCK(sc); return (error); } } if (sc->sc_sync_if) if_rele(sc->sc_sync_if); sc->sc_sync_if = sifp; ip = &sc->sc_template; bzero(ip, sizeof(*ip)); ip->ip_v = IPVERSION; ip->ip_hl = sizeof(sc->sc_template) >> 2; ip->ip_tos = IPTOS_LOWDELAY; /* len and id are set later. */ ip->ip_off = htons(IP_DF); ip->ip_ttl = PFSYNC_DFLTTL; ip->ip_p = IPPROTO_PFSYNC; ip->ip_src.s_addr = INADDR_ANY; ip->ip_dst.s_addr = sc->sc_sync_peer.s_addr; /* Request a full state table update. */ if ((sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(V_pfsync_carp_adj, "pfsync bulk start"); sc->sc_flags &= ~PFSYNCF_OK; if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: requesting bulk update\n"); PFSYNC_UNLOCK(sc); PFSYNC_BUCKET_LOCK(&sc->sc_buckets[0]); pfsync_request_update(0, 0); PFSYNC_BUCKET_UNLOCK(&sc->sc_buckets[0]); PFSYNC_BLOCK(sc); sc->sc_ureq_sent = time_uptime; callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, pfsync_bulk_fail, sc); PFSYNC_BUNLOCK(sc); break; } default: return (ENOTTY); } return (0); } static void pfsync_out_state(struct pf_state *st, void *buf) { struct pfsync_state *sp = buf; pfsync_state_export(sp, st); } static void pfsync_out_iack(struct pf_state *st, void *buf) { struct pfsync_ins_ack *iack = buf; iack->id = st->id; iack->creatorid = st->creatorid; } static void pfsync_out_upd_c(struct pf_state *st, void *buf) { struct pfsync_upd_c *up = buf; bzero(up, sizeof(*up)); up->id = st->id; pf_state_peer_hton(&st->src, &up->src); pf_state_peer_hton(&st->dst, &up->dst); up->creatorid = st->creatorid; up->timeout = st->timeout; } static void pfsync_out_del(struct pf_state *st, void *buf) { struct pfsync_del_c *dp = buf; dp->id = st->id; dp->creatorid = st->creatorid; st->state_flags |= PFSTATE_NOSYNC; } static void pfsync_drop(struct pfsync_softc *sc) { struct pf_state *st, *next; struct pfsync_upd_req_item *ur; struct pfsync_bucket *b; int c, q; for (c = 0; c < pfsync_buckets; c++) { b = &sc->sc_buckets[c]; for (q = 0; q < PFSYNC_S_COUNT; q++) { if (TAILQ_EMPTY(&b->b_qs[q])) continue; TAILQ_FOREACH_SAFE(st, &b->b_qs[q], sync_list, next) { KASSERT(st->sync_state == q, ("%s: st->sync_state == q", __func__)); st->sync_state = PFSYNC_S_NONE; pf_release_state(st); } TAILQ_INIT(&b->b_qs[q]); } while ((ur = TAILQ_FIRST(&b->b_upd_req_list)) != NULL) { TAILQ_REMOVE(&b->b_upd_req_list, ur, ur_entry); free(ur, M_PFSYNC); } b->b_len = PFSYNC_MINPKT; b->b_plus = NULL; } } static void pfsync_sendout(int schedswi, int c) { struct pfsync_softc *sc = V_pfsyncif; struct ifnet *ifp = sc->sc_ifp; struct mbuf *m; struct ip *ip; struct pfsync_header *ph; struct pfsync_subheader *subh; struct pf_state *st, *st_next; struct pfsync_upd_req_item *ur; struct pfsync_bucket *b = &sc->sc_buckets[c]; int offset; int q, count = 0; KASSERT(sc != NULL, ("%s: null sc", __func__)); KASSERT(b->b_len > PFSYNC_MINPKT, ("%s: sc_len %zu", __func__, b->b_len)); PFSYNC_BUCKET_LOCK_ASSERT(b); if (ifp->if_bpf == NULL && sc->sc_sync_if == NULL) { pfsync_drop(sc); return; } m = m_get2(max_linkhdr + b->b_len, M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) { if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1); V_pfsyncstats.pfsyncs_onomem++; return; } m->m_data += max_linkhdr; m->m_len = m->m_pkthdr.len = b->b_len; /* build the ip header */ ip = (struct ip *)m->m_data; bcopy(&sc->sc_template, ip, sizeof(*ip)); offset = sizeof(*ip); ip->ip_len = htons(m->m_pkthdr.len); ip_fillid(ip); /* build the pfsync header */ ph = (struct pfsync_header *)(m->m_data + offset); bzero(ph, sizeof(*ph)); offset += sizeof(*ph); ph->version = PFSYNC_VERSION; ph->len = htons(b->b_len - sizeof(*ip)); bcopy(V_pf_status.pf_chksum, ph->pfcksum, PF_MD5_DIGEST_LENGTH); /* walk the queues */ for (q = 0; q < PFSYNC_S_COUNT; q++) { if (TAILQ_EMPTY(&b->b_qs[q])) continue; subh = (struct pfsync_subheader *)(m->m_data + offset); offset += sizeof(*subh); count = 0; TAILQ_FOREACH_SAFE(st, &b->b_qs[q], sync_list, st_next) { KASSERT(st->sync_state == q, ("%s: st->sync_state == q", __func__)); /* * XXXGL: some of write methods do unlocked reads * of state data :( */ pfsync_qs[q].write(st, m->m_data + offset); offset += pfsync_qs[q].len; st->sync_state = PFSYNC_S_NONE; pf_release_state(st); count++; } TAILQ_INIT(&b->b_qs[q]); bzero(subh, sizeof(*subh)); subh->action = pfsync_qs[q].action; subh->count = htons(count); V_pfsyncstats.pfsyncs_oacts[pfsync_qs[q].action] += count; } if (!TAILQ_EMPTY(&b->b_upd_req_list)) { subh = (struct pfsync_subheader *)(m->m_data + offset); offset += sizeof(*subh); count = 0; while ((ur = TAILQ_FIRST(&b->b_upd_req_list)) != NULL) { TAILQ_REMOVE(&b->b_upd_req_list, ur, ur_entry); bcopy(&ur->ur_msg, m->m_data + offset, sizeof(ur->ur_msg)); offset += sizeof(ur->ur_msg); free(ur, M_PFSYNC); count++; } bzero(subh, sizeof(*subh)); subh->action = PFSYNC_ACT_UPD_REQ; subh->count = htons(count); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_UPD_REQ] += count; } /* has someone built a custom region for us to add? */ if (b->b_plus != NULL) { bcopy(b->b_plus, m->m_data + offset, b->b_pluslen); offset += b->b_pluslen; b->b_plus = NULL; } subh = (struct pfsync_subheader *)(m->m_data + offset); offset += sizeof(*subh); bzero(subh, sizeof(*subh)); subh->action = PFSYNC_ACT_EOF; subh->count = htons(1); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_EOF]++; /* we're done, let's put it on the wire */ if (ifp->if_bpf) { m->m_data += sizeof(*ip); m->m_len = m->m_pkthdr.len = b->b_len - sizeof(*ip); BPF_MTAP(ifp, m); m->m_data -= sizeof(*ip); m->m_len = m->m_pkthdr.len = b->b_len; } if (sc->sc_sync_if == NULL) { b->b_len = PFSYNC_MINPKT; m_freem(m); return; } if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); b->b_len = PFSYNC_MINPKT; if (!_IF_QFULL(&b->b_snd)) _IF_ENQUEUE(&b->b_snd, m); else { m_freem(m); if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1); } if (schedswi) swi_sched(V_pfsync_swi_cookie, 0); } static void pfsync_insert_state(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); if (st->state_flags & PFSTATE_NOSYNC) return; if ((st->rule.ptr->rule_flag & PFRULE_NOSYNC) || st->key[PF_SK_WIRE]->proto == IPPROTO_PFSYNC) { st->state_flags |= PFSTATE_NOSYNC; return; } KASSERT(st->sync_state == PFSYNC_S_NONE, ("%s: st->sync_state %u", __func__, st->sync_state)); PFSYNC_BUCKET_LOCK(b); if (b->b_len == PFSYNC_MINPKT) callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b); pfsync_q_ins(st, PFSYNC_S_INS, true); PFSYNC_BUCKET_UNLOCK(b); st->sync_updates = 0; } static int pfsync_defer(struct pf_state *st, struct mbuf *m) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_deferral *pd; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); if (m->m_flags & (M_BCAST|M_MCAST)) return (0); PFSYNC_LOCK(sc); if (sc == NULL || !(sc->sc_ifp->if_flags & IFF_DRV_RUNNING) || !(sc->sc_flags & PFSYNCF_DEFER)) { PFSYNC_UNLOCK(sc); return (0); } if (b->b_deferred >= 128) pfsync_undefer(TAILQ_FIRST(&b->b_deferrals), 0); pd = malloc(sizeof(*pd), M_PFSYNC, M_NOWAIT); if (pd == NULL) return (0); b->b_deferred++; m->m_flags |= M_SKIP_FIREWALL; st->state_flags |= PFSTATE_ACK; pd->pd_sc = sc; pd->pd_refs = 0; pd->pd_st = st; pf_ref_state(st); pd->pd_m = m; TAILQ_INSERT_TAIL(&b->b_deferrals, pd, pd_entry); callout_init_mtx(&pd->pd_tmo, &b->b_mtx, CALLOUT_RETURNUNLOCKED); callout_reset(&pd->pd_tmo, 10, pfsync_defer_tmo, pd); pfsync_push(b); return (1); } static void pfsync_undefer(struct pfsync_deferral *pd, int drop) { struct pfsync_softc *sc = pd->pd_sc; struct mbuf *m = pd->pd_m; struct pf_state *st = pd->pd_st; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); PFSYNC_BUCKET_LOCK_ASSERT(b); TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry); b->b_deferred--; pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */ free(pd, M_PFSYNC); pf_release_state(st); if (drop) m_freem(m); else { _IF_ENQUEUE(&b->b_snd, m); pfsync_push(b); } } static void pfsync_defer_tmo(void *arg) { struct epoch_tracker et; struct pfsync_deferral *pd = arg; struct pfsync_softc *sc = pd->pd_sc; struct mbuf *m = pd->pd_m; struct pf_state *st = pd->pd_st; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); PFSYNC_BUCKET_LOCK_ASSERT(b); NET_EPOCH_ENTER(et); CURVNET_SET(m->m_pkthdr.rcvif->if_vnet); TAILQ_REMOVE(&b->b_deferrals, pd, pd_entry); b->b_deferred--; pd->pd_st->state_flags &= ~PFSTATE_ACK; /* XXX: locking! */ if (pd->pd_refs == 0) free(pd, M_PFSYNC); PFSYNC_UNLOCK(sc); ip_output(m, NULL, NULL, 0, NULL, NULL); pf_release_state(st); CURVNET_RESTORE(); NET_EPOCH_EXIT(et); } static void pfsync_undefer_state(struct pf_state *st, int drop) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_deferral *pd; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); PFSYNC_BUCKET_LOCK(b); TAILQ_FOREACH(pd, &b->b_deferrals, pd_entry) { if (pd->pd_st == st) { if (callout_stop(&pd->pd_tmo) > 0) pfsync_undefer(pd, drop); PFSYNC_BUCKET_UNLOCK(b); return; } } PFSYNC_BUCKET_UNLOCK(b); panic("%s: unable to find deferred state", __func__); } static struct pfsync_bucket* pfsync_get_bucket(struct pfsync_softc *sc, struct pf_state *st) { int c = PF_IDHASH(st) % pfsync_buckets; return &sc->sc_buckets[c]; } static void pfsync_update_state(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; bool sync = false, ref = true; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); PF_STATE_LOCK_ASSERT(st); PFSYNC_BUCKET_LOCK(b); if (st->state_flags & PFSTATE_ACK) pfsync_undefer_state(st, 0); if (st->state_flags & PFSTATE_NOSYNC) { if (st->sync_state != PFSYNC_S_NONE) pfsync_q_del(st, true, b); PFSYNC_BUCKET_UNLOCK(b); return; } if (b->b_len == PFSYNC_MINPKT) callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b); switch (st->sync_state) { case PFSYNC_S_UPD_C: case PFSYNC_S_UPD: case PFSYNC_S_INS: /* we're already handling it */ if (st->key[PF_SK_WIRE]->proto == IPPROTO_TCP) { st->sync_updates++; if (st->sync_updates >= sc->sc_maxupdates) sync = true; } break; case PFSYNC_S_IACK: pfsync_q_del(st, false, b); ref = false; /* FALLTHROUGH */ case PFSYNC_S_NONE: pfsync_q_ins(st, PFSYNC_S_UPD_C, ref); st->sync_updates = 0; break; default: panic("%s: unexpected sync state %d", __func__, st->sync_state); } if (sync || (time_uptime - st->pfsync_time) < 2) pfsync_push(b); PFSYNC_BUCKET_UNLOCK(b); } static void pfsync_request_update(u_int32_t creatorid, u_int64_t id) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_bucket *b = &sc->sc_buckets[0]; struct pfsync_upd_req_item *item; size_t nlen = sizeof(struct pfsync_upd_req); PFSYNC_BUCKET_LOCK_ASSERT(b); /* * This code does a bit to prevent multiple update requests for the * same state being generated. It searches current subheader queue, * but it doesn't lookup into queue of already packed datagrams. */ TAILQ_FOREACH(item, &b->b_upd_req_list, ur_entry) if (item->ur_msg.id == id && item->ur_msg.creatorid == creatorid) return; item = malloc(sizeof(*item), M_PFSYNC, M_NOWAIT); if (item == NULL) return; /* XXX stats */ item->ur_msg.id = id; item->ur_msg.creatorid = creatorid; if (TAILQ_EMPTY(&b->b_upd_req_list)) nlen += sizeof(struct pfsync_subheader); if (b->b_len + nlen > sc->sc_ifp->if_mtu) { pfsync_sendout(0, 0); nlen = sizeof(struct pfsync_subheader) + sizeof(struct pfsync_upd_req); } TAILQ_INSERT_TAIL(&b->b_upd_req_list, item, ur_entry); b->b_len += nlen; pfsync_push(b); } static bool pfsync_update_state_req(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; bool ref = true, full = false; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); PF_STATE_LOCK_ASSERT(st); PFSYNC_BUCKET_LOCK(b); if (st->state_flags & PFSTATE_NOSYNC) { if (st->sync_state != PFSYNC_S_NONE) pfsync_q_del(st, true, b); PFSYNC_BUCKET_UNLOCK(b); return (full); } switch (st->sync_state) { case PFSYNC_S_UPD_C: case PFSYNC_S_IACK: pfsync_q_del(st, false, b); ref = false; /* FALLTHROUGH */ case PFSYNC_S_NONE: pfsync_q_ins(st, PFSYNC_S_UPD, ref); pfsync_push(b); break; case PFSYNC_S_INS: case PFSYNC_S_UPD: case PFSYNC_S_DEL: /* we're already handling it */ break; default: panic("%s: unexpected sync state %d", __func__, st->sync_state); } if ((sc->sc_ifp->if_mtu - b->b_len) < sizeof(struct pfsync_state)) full = true; PFSYNC_BUCKET_UNLOCK(b); return (full); } static void pfsync_delete_state(struct pf_state *st) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); bool ref = true; PFSYNC_BUCKET_LOCK(b); if (st->state_flags & PFSTATE_ACK) pfsync_undefer_state(st, 1); if (st->state_flags & PFSTATE_NOSYNC) { if (st->sync_state != PFSYNC_S_NONE) pfsync_q_del(st, true, b); PFSYNC_BUCKET_UNLOCK(b); return; } if (b->b_len == PFSYNC_MINPKT) callout_reset(&b->b_tmo, 1 * hz, pfsync_timeout, b); switch (st->sync_state) { case PFSYNC_S_INS: /* We never got to tell the world so just forget about it. */ pfsync_q_del(st, true, b); break; case PFSYNC_S_UPD_C: case PFSYNC_S_UPD: case PFSYNC_S_IACK: pfsync_q_del(st, false, b); ref = false; /* FALLTHROUGH */ case PFSYNC_S_NONE: pfsync_q_ins(st, PFSYNC_S_DEL, ref); break; default: panic("%s: unexpected sync state %d", __func__, st->sync_state); } PFSYNC_BUCKET_UNLOCK(b); } static void pfsync_clear_states(u_int32_t creatorid, const char *ifname) { struct { struct pfsync_subheader subh; struct pfsync_clr clr; } __packed r; bzero(&r, sizeof(r)); r.subh.action = PFSYNC_ACT_CLR; r.subh.count = htons(1); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_CLR]++; strlcpy(r.clr.ifname, ifname, sizeof(r.clr.ifname)); r.clr.creatorid = creatorid; pfsync_send_plus(&r, sizeof(r)); } static void pfsync_q_ins(struct pf_state *st, int q, bool ref) { struct pfsync_softc *sc = V_pfsyncif; size_t nlen = pfsync_qs[q].len; struct pfsync_bucket *b = pfsync_get_bucket(sc, st); PFSYNC_BUCKET_LOCK_ASSERT(b); KASSERT(st->sync_state == PFSYNC_S_NONE, ("%s: st->sync_state %u", __func__, st->sync_state)); KASSERT(b->b_len >= PFSYNC_MINPKT, ("pfsync pkt len is too low %zu", b->b_len)); if (TAILQ_EMPTY(&b->b_qs[q])) nlen += sizeof(struct pfsync_subheader); if (b->b_len + nlen > sc->sc_ifp->if_mtu) { pfsync_sendout(1, b->b_id); nlen = sizeof(struct pfsync_subheader) + pfsync_qs[q].len; } b->b_len += nlen; TAILQ_INSERT_TAIL(&b->b_qs[q], st, sync_list); st->sync_state = q; if (ref) pf_ref_state(st); } static void pfsync_q_del(struct pf_state *st, bool unref, struct pfsync_bucket *b) { int q = st->sync_state; PFSYNC_BUCKET_LOCK_ASSERT(b); KASSERT(st->sync_state != PFSYNC_S_NONE, ("%s: st->sync_state != PFSYNC_S_NONE", __func__)); b->b_len -= pfsync_qs[q].len; TAILQ_REMOVE(&b->b_qs[q], st, sync_list); st->sync_state = PFSYNC_S_NONE; if (unref) pf_release_state(st); if (TAILQ_EMPTY(&b->b_qs[q])) b->b_len -= sizeof(struct pfsync_subheader); } static void pfsync_bulk_start(void) { struct pfsync_softc *sc = V_pfsyncif; if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: received bulk update request\n"); PFSYNC_BLOCK(sc); sc->sc_ureq_received = time_uptime; sc->sc_bulk_hashid = 0; sc->sc_bulk_stateid = 0; pfsync_bulk_status(PFSYNC_BUS_START); callout_reset(&sc->sc_bulk_tmo, 1, pfsync_bulk_update, sc); PFSYNC_BUNLOCK(sc); } static void pfsync_bulk_update(void *arg) { struct pfsync_softc *sc = arg; struct pf_state *s; int i, sent = 0; PFSYNC_BLOCK_ASSERT(sc); CURVNET_SET(sc->sc_ifp->if_vnet); /* * Start with last state from previous invocation. * It may had gone, in this case start from the * hash slot. */ s = pf_find_state_byid(sc->sc_bulk_stateid, sc->sc_bulk_creatorid); if (s != NULL) i = PF_IDHASH(s); else i = sc->sc_bulk_hashid; for (; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; if (s != NULL) PF_HASHROW_ASSERT(ih); else { PF_HASHROW_LOCK(ih); s = LIST_FIRST(&ih->states); } for (; s; s = LIST_NEXT(s, entry)) { if (s->sync_state == PFSYNC_S_NONE && s->timeout < PFTM_MAX && s->pfsync_time <= sc->sc_ureq_received) { if (pfsync_update_state_req(s)) { /* We've filled a packet. */ sc->sc_bulk_hashid = i; sc->sc_bulk_stateid = s->id; sc->sc_bulk_creatorid = s->creatorid; PF_HASHROW_UNLOCK(ih); callout_reset(&sc->sc_bulk_tmo, 1, pfsync_bulk_update, sc); goto full; } sent++; } } PF_HASHROW_UNLOCK(ih); } /* We're done. */ pfsync_bulk_status(PFSYNC_BUS_END); full: CURVNET_RESTORE(); } static void pfsync_bulk_status(u_int8_t status) { struct { struct pfsync_subheader subh; struct pfsync_bus bus; } __packed r; struct pfsync_softc *sc = V_pfsyncif; bzero(&r, sizeof(r)); r.subh.action = PFSYNC_ACT_BUS; r.subh.count = htons(1); V_pfsyncstats.pfsyncs_oacts[PFSYNC_ACT_BUS]++; r.bus.creatorid = V_pf_status.hostid; r.bus.endtime = htonl(time_uptime - sc->sc_ureq_received); r.bus.status = status; pfsync_send_plus(&r, sizeof(r)); } static void pfsync_bulk_fail(void *arg) { struct pfsync_softc *sc = arg; struct pfsync_bucket *b = &sc->sc_buckets[0]; CURVNET_SET(sc->sc_ifp->if_vnet); PFSYNC_BLOCK_ASSERT(sc); if (sc->sc_bulk_tries++ < PFSYNC_MAX_BULKTRIES) { /* Try again */ callout_reset(&sc->sc_bulkfail_tmo, 5 * hz, pfsync_bulk_fail, V_pfsyncif); PFSYNC_BUCKET_LOCK(b); pfsync_request_update(0, 0); PFSYNC_BUCKET_UNLOCK(b); } else { /* Pretend like the transfer was ok. */ sc->sc_ureq_sent = 0; sc->sc_bulk_tries = 0; PFSYNC_LOCK(sc); if (!(sc->sc_flags & PFSYNCF_OK) && carp_demote_adj_p) (*carp_demote_adj_p)(-V_pfsync_carp_adj, "pfsync bulk fail"); sc->sc_flags |= PFSYNCF_OK; PFSYNC_UNLOCK(sc); if (V_pf_status.debug >= PF_DEBUG_MISC) printf("pfsync: failed to receive bulk update\n"); } CURVNET_RESTORE(); } static void pfsync_send_plus(void *plus, size_t pluslen) { struct pfsync_softc *sc = V_pfsyncif; struct pfsync_bucket *b = &sc->sc_buckets[0]; PFSYNC_BUCKET_LOCK(b); if (b->b_len + pluslen > sc->sc_ifp->if_mtu) pfsync_sendout(1, b->b_id); b->b_plus = plus; b->b_len += (b->b_pluslen = pluslen); pfsync_sendout(1, b->b_id); PFSYNC_BUCKET_UNLOCK(b); } static void pfsync_timeout(void *arg) { struct pfsync_bucket *b = arg; CURVNET_SET(b->b_sc->sc_ifp->if_vnet); PFSYNC_BUCKET_LOCK(b); pfsync_push(b); PFSYNC_BUCKET_UNLOCK(b); CURVNET_RESTORE(); } static void pfsync_push(struct pfsync_bucket *b) { PFSYNC_BUCKET_LOCK_ASSERT(b); b->b_flags |= PFSYNCF_BUCKET_PUSH; swi_sched(V_pfsync_swi_cookie, 0); } static void pfsync_push_all(struct pfsync_softc *sc) { int c; struct pfsync_bucket *b; for (c = 0; c < pfsync_buckets; c++) { b = &sc->sc_buckets[c]; PFSYNC_BUCKET_LOCK(b); pfsync_push(b); PFSYNC_BUCKET_UNLOCK(b); } } static void pfsyncintr(void *arg) { struct epoch_tracker et; struct pfsync_softc *sc = arg; struct pfsync_bucket *b; struct mbuf *m, *n; int c; NET_EPOCH_ENTER(et); CURVNET_SET(sc->sc_ifp->if_vnet); for (c = 0; c < pfsync_buckets; c++) { b = &sc->sc_buckets[c]; PFSYNC_BUCKET_LOCK(b); if ((b->b_flags & PFSYNCF_BUCKET_PUSH) && b->b_len > PFSYNC_MINPKT) { pfsync_sendout(0, b->b_id); b->b_flags &= ~PFSYNCF_BUCKET_PUSH; } _IF_DEQUEUE_ALL(&b->b_snd, m); PFSYNC_BUCKET_UNLOCK(b); for (; m != NULL; m = n) { n = m->m_nextpkt; m->m_nextpkt = NULL; /* * We distinguish between a deferral packet and our * own pfsync packet based on M_SKIP_FIREWALL * flag. This is XXX. */ if (m->m_flags & M_SKIP_FIREWALL) ip_output(m, NULL, NULL, 0, NULL, NULL); else if (ip_output(m, NULL, NULL, IP_RAWOUTPUT, &sc->sc_imo, NULL) == 0) V_pfsyncstats.pfsyncs_opackets++; else V_pfsyncstats.pfsyncs_oerrors++; } } CURVNET_RESTORE(); NET_EPOCH_EXIT(et); } static int pfsync_multicast_setup(struct pfsync_softc *sc, struct ifnet *ifp, struct in_mfilter *imf) { struct ip_moptions *imo = &sc->sc_imo; int error; if (!(ifp->if_flags & IFF_MULTICAST)) return (EADDRNOTAVAIL); imo->imo_multicast_vif = -1; if ((error = in_joingroup(ifp, &sc->sc_sync_peer, NULL, &imf->imf_inm)) != 0) return (error); ip_mfilter_init(&imo->imo_head); ip_mfilter_insert(&imo->imo_head, imf); imo->imo_multicast_ifp = ifp; imo->imo_multicast_ttl = PFSYNC_DFLTTL; imo->imo_multicast_loop = 0; return (0); } static void pfsync_multicast_cleanup(struct pfsync_softc *sc) { struct ip_moptions *imo = &sc->sc_imo; struct in_mfilter *imf; while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { ip_mfilter_remove(&imo->imo_head, imf); in_leavegroup(imf->imf_inm, NULL); ip_mfilter_free(imf); } imo->imo_multicast_ifp = NULL; } void pfsync_detach_ifnet(struct ifnet *ifp) { struct pfsync_softc *sc = V_pfsyncif; if (sc == NULL) return; PFSYNC_LOCK(sc); if (sc->sc_sync_if == ifp) { /* We don't need mutlicast cleanup here, because the interface * is going away. We do need to ensure we don't try to do * cleanup later. */ ip_mfilter_init(&sc->sc_imo.imo_head); sc->sc_imo.imo_multicast_ifp = NULL; sc->sc_sync_if = NULL; } PFSYNC_UNLOCK(sc); } #ifdef INET extern struct domain inetdomain; static struct protosw in_pfsync_protosw = { .pr_type = SOCK_RAW, .pr_domain = &inetdomain, .pr_protocol = IPPROTO_PFSYNC, .pr_flags = PR_ATOMIC|PR_ADDR, .pr_input = pfsync_input, .pr_output = rip_output, .pr_ctloutput = rip_ctloutput, .pr_usrreqs = &rip_usrreqs }; #endif static void pfsync_pointers_init() { PF_RULES_WLOCK(); V_pfsync_state_import_ptr = pfsync_state_import; V_pfsync_insert_state_ptr = pfsync_insert_state; V_pfsync_update_state_ptr = pfsync_update_state; V_pfsync_delete_state_ptr = pfsync_delete_state; V_pfsync_clear_states_ptr = pfsync_clear_states; V_pfsync_defer_ptr = pfsync_defer; PF_RULES_WUNLOCK(); } static void pfsync_pointers_uninit() { PF_RULES_WLOCK(); V_pfsync_state_import_ptr = NULL; V_pfsync_insert_state_ptr = NULL; V_pfsync_update_state_ptr = NULL; V_pfsync_delete_state_ptr = NULL; V_pfsync_clear_states_ptr = NULL; V_pfsync_defer_ptr = NULL; PF_RULES_WUNLOCK(); } static void vnet_pfsync_init(const void *unused __unused) { int error; V_pfsync_cloner = if_clone_simple(pfsyncname, pfsync_clone_create, pfsync_clone_destroy, 1); error = swi_add(&V_pfsync_swi_ie, pfsyncname, pfsyncintr, V_pfsyncif, SWI_NET, INTR_MPSAFE, &V_pfsync_swi_cookie); if (error) { if_clone_detach(V_pfsync_cloner); log(LOG_INFO, "swi_add() failed in %s\n", __func__); } pfsync_pointers_init(); } VNET_SYSINIT(vnet_pfsync_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY, vnet_pfsync_init, NULL); static void vnet_pfsync_uninit(const void *unused __unused) { int ret; pfsync_pointers_uninit(); if_clone_detach(V_pfsync_cloner); ret = swi_remove(V_pfsync_swi_cookie); MPASS(ret == 0); ret = intr_event_destroy(V_pfsync_swi_ie); MPASS(ret == 0); } VNET_SYSUNINIT(vnet_pfsync_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_FOURTH, vnet_pfsync_uninit, NULL); static int pfsync_init() { #ifdef INET int error; pfsync_detach_ifnet_ptr = pfsync_detach_ifnet; error = pf_proto_register(PF_INET, &in_pfsync_protosw); if (error) return (error); error = ipproto_register(IPPROTO_PFSYNC); if (error) { pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW); return (error); } #endif return (0); } static void pfsync_uninit() { pfsync_detach_ifnet_ptr = NULL; #ifdef INET ipproto_unregister(IPPROTO_PFSYNC); pf_proto_unregister(PF_INET, IPPROTO_PFSYNC, SOCK_RAW); #endif } static int pfsync_modevent(module_t mod, int type, void *data) { int error = 0; switch (type) { case MOD_LOAD: error = pfsync_init(); break; case MOD_UNLOAD: pfsync_uninit(); break; default: error = EINVAL; break; } return (error); } static moduledata_t pfsync_mod = { pfsyncname, pfsync_modevent, 0 }; #define PFSYNC_MODVER 1 /* Stay on FIREWALL as we depend on pf being initialized and on inetdomain. */ DECLARE_MODULE(pfsync, pfsync_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_ANY); MODULE_VERSION(pfsync, PFSYNC_MODVER); MODULE_DEPEND(pfsync, pf, PF_MODVER, PF_MODVER, PF_MODVER); diff --git a/sys/netpfil/pf/pf.c b/sys/netpfil/pf/pf.c index a5c4ef6bfbb4..985b55af5263 100644 --- a/sys/netpfil/pf/pf.c +++ b/sys/netpfil/pf/pf.c @@ -1,6744 +1,6745 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002 - 2008 Henning Brauer * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_bpf.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_pf.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #include #include #endif /* INET6 */ #if defined(SCTP) || defined(SCTP_SUPPORT) #include #endif #include #include #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x SDT_PROVIDER_DEFINE(pf); SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", "struct pf_state *"); SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", "struct pf_state *"); SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", "struct pf_state *"); /* * Global variables */ /* state tables */ VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); VNET_DEFINE(struct pf_kpalist, pf_pabuf); VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); VNET_DEFINE(struct pf_kstatus, pf_status); VNET_DEFINE(u_int32_t, ticket_altqs_active); VNET_DEFINE(u_int32_t, ticket_altqs_inactive); VNET_DEFINE(int, altqs_inactive_open); VNET_DEFINE(u_int32_t, ticket_pabuf); VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) VNET_DEFINE(u_char, pf_tcp_secret[16]); #define V_pf_tcp_secret VNET(pf_tcp_secret) VNET_DEFINE(int, pf_tcp_secret_init); #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) VNET_DEFINE(int, pf_tcp_iss_off); #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) VNET_DECLARE(int, pf_vnet_active); #define V_pf_vnet_active VNET(pf_vnet_active) VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); #define V_pf_purge_idx VNET(pf_purge_idx) /* * Queue for pf_intr() sends. */ static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); struct pf_send_entry { STAILQ_ENTRY(pf_send_entry) pfse_next; struct mbuf *pfse_m; enum { PFSE_IP, PFSE_IP6, PFSE_ICMP, PFSE_ICMP6, } pfse_type; struct { int type; int code; int mtu; } icmpopts; }; STAILQ_HEAD(pf_send_head, pf_send_entry); VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); #define V_pf_sendqueue VNET(pf_sendqueue) static struct mtx pf_sendqueue_mtx; MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) /* * Queue for pf_overload_task() tasks. */ struct pf_overload_entry { SLIST_ENTRY(pf_overload_entry) next; struct pf_addr addr; sa_family_t af; uint8_t dir; struct pf_krule *rule; }; SLIST_HEAD(pf_overload_head, pf_overload_entry); VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); #define V_pf_overloadqueue VNET(pf_overloadqueue) VNET_DEFINE_STATIC(struct task, pf_overloadtask); #define V_pf_overloadtask VNET(pf_overloadtask) static struct mtx pf_overloadqueue_mtx; MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, "pf overload/flush queue", MTX_DEF); #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); struct mtx pf_unlnkdrules_mtx; MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", MTX_DEF); VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); #define V_pf_sources_z VNET(pf_sources_z) uma_zone_t pf_mtag_z; VNET_DEFINE(uma_zone_t, pf_state_z); VNET_DEFINE(uma_zone_t, pf_state_key_z); VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); #define PFID_CPUBITS 8 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) #define PFID_MAXID (~PFID_CPUMASK) CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); static void pf_src_tree_remove_state(struct pf_state *); static void pf_init_threshold(struct pf_threshold *, u_int32_t, u_int32_t); static void pf_add_threshold(struct pf_threshold *); static int pf_check_threshold(struct pf_threshold *); static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, u_int16_t *, u_int16_t *, struct pf_addr *, u_int16_t, u_int8_t, sa_family_t); static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, struct tcphdr *, struct pf_state_peer *); static void pf_change_icmp(struct pf_addr *, u_int16_t *, struct pf_addr *, struct pf_addr *, u_int16_t, u_int16_t *, u_int16_t *, u_int16_t *, u_int16_t *, u_int8_t, sa_family_t); static void pf_send_tcp(struct mbuf *, const struct pf_krule *, sa_family_t, const struct pf_addr *, const struct pf_addr *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, u_int16_t, struct ifnet *); static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, sa_family_t, struct pf_krule *); static void pf_detach_state(struct pf_state *); static int pf_state_key_attach(struct pf_state_key *, struct pf_state_key *, struct pf_state *); static void pf_state_key_detach(struct pf_state *, int); static int pf_state_key_ctor(void *, int, void *, int); static u_int32_t pf_tcp_iss(struct pf_pdesc *); static int pf_test_rule(struct pf_krule **, struct pf_state **, int, struct pfi_kkif *, struct mbuf *, int, struct pf_pdesc *, struct pf_krule **, struct pf_kruleset **, struct inpcb *); static int pf_create_state(struct pf_krule *, struct pf_krule *, struct pf_krule *, struct pf_pdesc *, struct pf_ksrc_node *, struct pf_state_key *, struct pf_state_key *, struct mbuf *, int, u_int16_t, u_int16_t, int *, struct pfi_kkif *, struct pf_state **, int, u_int16_t, u_int16_t, int); static int pf_test_fragment(struct pf_krule **, int, struct pfi_kkif *, struct mbuf *, void *, struct pf_pdesc *, struct pf_krule **, struct pf_kruleset **); static int pf_tcp_track_full(struct pf_state_peer *, struct pf_state_peer *, struct pf_state **, struct pfi_kkif *, struct mbuf *, int, struct pf_pdesc *, u_short *, int *); static int pf_tcp_track_sloppy(struct pf_state_peer *, struct pf_state_peer *, struct pf_state **, struct pf_pdesc *, u_short *); static int pf_test_state_tcp(struct pf_state **, int, struct pfi_kkif *, struct mbuf *, int, void *, struct pf_pdesc *, u_short *); static int pf_test_state_udp(struct pf_state **, int, struct pfi_kkif *, struct mbuf *, int, void *, struct pf_pdesc *); static int pf_test_state_icmp(struct pf_state **, int, struct pfi_kkif *, struct mbuf *, int, void *, struct pf_pdesc *, u_short *); static int pf_test_state_other(struct pf_state **, int, struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, sa_family_t); static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, sa_family_t); static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, int, u_int16_t); static int pf_check_proto_cksum(struct mbuf *, int, int, u_int8_t, sa_family_t); static void pf_print_state_parts(struct pf_state *, struct pf_state_key *, struct pf_state_key *); static int pf_addr_wrap_neq(struct pf_addr_wrap *, struct pf_addr_wrap *); static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, bool, u_int8_t); static struct pf_state *pf_find_state(struct pfi_kkif *, struct pf_state_key_cmp *, u_int); static int pf_src_connlimit(struct pf_state **); static void pf_overload_task(void *v, int pending); static int pf_insert_src_node(struct pf_ksrc_node **, struct pf_krule *, struct pf_addr *, sa_family_t); static u_int pf_purge_expired_states(u_int, int); static void pf_purge_unlinked_rules(void); static int pf_mtag_uminit(void *, int, int); static void pf_mtag_free(struct m_tag *); #ifdef INET static void pf_route(struct mbuf **, struct pf_krule *, int, struct ifnet *, struct pf_state *, struct pf_pdesc *, struct inpcb *); #endif /* INET */ #ifdef INET6 static void pf_change_a6(struct pf_addr *, u_int16_t *, struct pf_addr *, u_int8_t); static void pf_route6(struct mbuf **, struct pf_krule *, int, struct ifnet *, struct pf_state *, struct pf_pdesc *, struct inpcb *); #endif /* INET6 */ int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); extern int pf_end_threads; extern struct proc *pf_purge_proc; VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ (pd)->pf_mtag->flags & PF_PACKET_LOOPED) #define STATE_LOOKUP(i, k, d, s, pd) \ do { \ (s) = pf_find_state((i), (k), (d)); \ SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ if ((s) == NULL) \ return (PF_DROP); \ if (PACKET_LOOPED(pd)) \ return (PF_PASS); \ if ((d) == PF_OUT && \ (s)->rule.ptr->rt == PF_ROUTETO && \ (s)->rule.ptr->direction == PF_OUT && \ (s)->rt_kif != NULL && \ (s)->rt_kif != (i)) \ return (PF_PASS); \ } while (0) #define BOUND_IFACE(r, k) \ ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all #define STATE_INC_COUNTERS(s) \ do { \ counter_u64_add(s->rule.ptr->states_cur, 1); \ counter_u64_add(s->rule.ptr->states_tot, 1); \ if (s->anchor.ptr != NULL) { \ counter_u64_add(s->anchor.ptr->states_cur, 1); \ counter_u64_add(s->anchor.ptr->states_tot, 1); \ } \ if (s->nat_rule.ptr != NULL) { \ counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ } \ } while (0) #define STATE_DEC_COUNTERS(s) \ do { \ if (s->nat_rule.ptr != NULL) \ counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ if (s->anchor.ptr != NULL) \ counter_u64_add(s->anchor.ptr->states_cur, -1); \ counter_u64_add(s->rule.ptr->states_cur, -1); \ } while (0) MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); VNET_DEFINE(struct pf_keyhash *, pf_keyhash); VNET_DEFINE(struct pf_idhash *, pf_idhash); VNET_DEFINE(struct pf_srchash *, pf_srchash); SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "pf(4)"); u_long pf_hashmask; u_long pf_srchashmask; static u_long pf_hashsize; static u_long pf_srchashsize; u_long pf_ioctl_maxcount = 65535; SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, &pf_hashsize, 0, "Size of pf(4) states hashtable"); SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); VNET_DEFINE(void *, pf_swi_cookie); VNET_DEFINE(struct intr_event *, pf_swi_ie); VNET_DEFINE(uint32_t, pf_hashseed); #define V_pf_hashseed VNET(pf_hashseed) int pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: if (a->addr32[0] > b->addr32[0]) return (1); if (a->addr32[0] < b->addr32[0]) return (-1); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (a->addr32[3] > b->addr32[3]) return (1); if (a->addr32[3] < b->addr32[3]) return (-1); if (a->addr32[2] > b->addr32[2]) return (1); if (a->addr32[2] < b->addr32[2]) return (-1); if (a->addr32[1] > b->addr32[1]) return (1); if (a->addr32[1] < b->addr32[1]) return (-1); if (a->addr32[0] > b->addr32[0]) return (1); if (a->addr32[0] < b->addr32[0]) return (-1); break; #endif /* INET6 */ default: panic("%s: unknown address family %u", __func__, af); } return (0); } static __inline uint32_t pf_hashkey(struct pf_state_key *sk) { uint32_t h; h = murmur3_32_hash32((uint32_t *)sk, sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), V_pf_hashseed); return (h & pf_hashmask); } static __inline uint32_t pf_hashsrc(struct pf_addr *addr, sa_family_t af) { uint32_t h; switch (af) { case AF_INET: h = murmur3_32_hash32((uint32_t *)&addr->v4, sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); break; case AF_INET6: h = murmur3_32_hash32((uint32_t *)&addr->v6, sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); break; default: panic("%s: unknown address family %u", __func__, af); } return (h & pf_srchashmask); } #ifdef ALTQ static int pf_state_hash(struct pf_state *s) { u_int32_t hv = (intptr_t)s / sizeof(*s); hv ^= crc32(&s->src, sizeof(s->src)); hv ^= crc32(&s->dst, sizeof(s->dst)); if (hv == 0) hv = 1; return (hv); } #endif #ifdef INET6 void pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: dst->addr32[0] = src->addr32[0]; break; #endif /* INET */ case AF_INET6: dst->addr32[0] = src->addr32[0]; dst->addr32[1] = src->addr32[1]; dst->addr32[2] = src->addr32[2]; dst->addr32[3] = src->addr32[3]; break; } } #endif /* INET6 */ static void pf_init_threshold(struct pf_threshold *threshold, u_int32_t limit, u_int32_t seconds) { threshold->limit = limit * PF_THRESHOLD_MULT; threshold->seconds = seconds; threshold->count = 0; threshold->last = time_uptime; } static void pf_add_threshold(struct pf_threshold *threshold) { u_int32_t t = time_uptime, diff = t - threshold->last; if (diff >= threshold->seconds) threshold->count = 0; else threshold->count -= threshold->count * diff / threshold->seconds; threshold->count += PF_THRESHOLD_MULT; threshold->last = t; } static int pf_check_threshold(struct pf_threshold *threshold) { return (threshold->count > threshold->limit); } static int pf_src_connlimit(struct pf_state **state) { struct pf_overload_entry *pfoe; int bad = 0; PF_STATE_LOCK_ASSERT(*state); (*state)->src_node->conn++; (*state)->src.tcp_est = 1; pf_add_threshold(&(*state)->src_node->conn_rate); if ((*state)->rule.ptr->max_src_conn && (*state)->rule.ptr->max_src_conn < (*state)->src_node->conn) { counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); bad++; } if ((*state)->rule.ptr->max_src_conn_rate.limit && pf_check_threshold(&(*state)->src_node->conn_rate)) { counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); bad++; } if (!bad) return (0); /* Kill this state. */ (*state)->timeout = PFTM_PURGE; (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; if ((*state)->rule.ptr->overload_tbl == NULL) return (1); /* Schedule overloading and flushing task. */ pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); if (pfoe == NULL) return (1); /* too bad :( */ bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); pfoe->af = (*state)->key[PF_SK_WIRE]->af; pfoe->rule = (*state)->rule.ptr; pfoe->dir = (*state)->direction; PF_OVERLOADQ_LOCK(); SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); PF_OVERLOADQ_UNLOCK(); taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); return (1); } static void pf_overload_task(void *v, int pending) { struct pf_overload_head queue; struct pfr_addr p; struct pf_overload_entry *pfoe, *pfoe1; uint32_t killed = 0; CURVNET_SET((struct vnet *)v); PF_OVERLOADQ_LOCK(); queue = V_pf_overloadqueue; SLIST_INIT(&V_pf_overloadqueue); PF_OVERLOADQ_UNLOCK(); bzero(&p, sizeof(p)); SLIST_FOREACH(pfoe, &queue, next) { counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("%s: blocking address ", __func__); pf_print_host(&pfoe->addr, 0, pfoe->af); printf("\n"); } p.pfra_af = pfoe->af; switch (pfoe->af) { #ifdef INET case AF_INET: p.pfra_net = 32; p.pfra_ip4addr = pfoe->addr.v4; break; #endif #ifdef INET6 case AF_INET6: p.pfra_net = 128; p.pfra_ip6addr = pfoe->addr.v6; break; #endif } PF_RULES_WLOCK(); pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); PF_RULES_WUNLOCK(); } /* * Remove those entries, that don't need flushing. */ SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) if (pfoe->rule->flush == 0) { SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); free(pfoe, M_PFTEMP); } else counter_u64_add( V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); /* If nothing to flush, return. */ if (SLIST_EMPTY(&queue)) { CURVNET_RESTORE(); return; } for (int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_state_key *sk; struct pf_state *s; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { sk = s->key[PF_SK_WIRE]; SLIST_FOREACH(pfoe, &queue, next) if (sk->af == pfoe->af && ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || pfoe->rule == s->rule.ptr) && ((pfoe->dir == PF_OUT && PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || (pfoe->dir == PF_IN && PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { s->timeout = PFTM_PURGE; s->src.state = s->dst.state = TCPS_CLOSED; killed++; } } PF_HASHROW_UNLOCK(ih); } SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) free(pfoe, M_PFTEMP); if (V_pf_status.debug >= PF_DEBUG_MISC) printf("%s: %u states killed", __func__, killed); CURVNET_RESTORE(); } /* * Can return locked on failure, so that we can consistently * allocate and insert a new one. */ struct pf_ksrc_node * pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, int returnlocked) { struct pf_srchash *sh; struct pf_ksrc_node *n; counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); sh = &V_pf_srchash[pf_hashsrc(src, af)]; PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) if (n->rule.ptr == rule && n->af == af && ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) break; if (n != NULL) { n->states++; PF_HASHROW_UNLOCK(sh); } else if (returnlocked == 0) PF_HASHROW_UNLOCK(sh); return (n); } static void pf_free_src_node(struct pf_ksrc_node *sn) { for (int i = 0; i < 2; i++) { counter_u64_free(sn->bytes[i]); counter_u64_free(sn->packets[i]); } uma_zfree(V_pf_sources_z, sn); } static int pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, struct pf_addr *src, sa_family_t af) { KASSERT((rule->rule_flag & PFRULE_SRCTRACK || rule->rpool.opts & PF_POOL_STICKYADDR), ("%s for non-tracking rule %p", __func__, rule)); if (*sn == NULL) *sn = pf_find_src_node(src, rule, af, 1); if (*sn == NULL) { struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; PF_HASHROW_ASSERT(sh); if (!rule->max_src_nodes || counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); else counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); if ((*sn) == NULL) { PF_HASHROW_UNLOCK(sh); return (-1); } for (int i = 0; i < 2; i++) { (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { pf_free_src_node(*sn); PF_HASHROW_UNLOCK(sh); return (-1); } } pf_init_threshold(&(*sn)->conn_rate, rule->max_src_conn_rate.limit, rule->max_src_conn_rate.seconds); (*sn)->af = af; (*sn)->rule.ptr = rule; PF_ACPY(&(*sn)->addr, src, af); LIST_INSERT_HEAD(&sh->nodes, *sn, entry); (*sn)->creation = time_uptime; (*sn)->ruletype = rule->action; (*sn)->states = 1; if ((*sn)->rule.ptr != NULL) counter_u64_add((*sn)->rule.ptr->src_nodes, 1); PF_HASHROW_UNLOCK(sh); counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); } else { if (rule->max_src_states && (*sn)->states >= rule->max_src_states) { counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1); return (-1); } } return (0); } void pf_unlink_src_node(struct pf_ksrc_node *src) { PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); LIST_REMOVE(src, entry); if (src->rule.ptr) counter_u64_add(src->rule.ptr->src_nodes, -1); } u_int pf_free_src_nodes(struct pf_ksrc_node_list *head) { struct pf_ksrc_node *sn, *tmp; u_int count = 0; LIST_FOREACH_SAFE(sn, head, entry, tmp) { pf_free_src_node(sn); count++; } counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); return (count); } void pf_mtag_initialize() { pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, UMA_ALIGN_PTR, 0); } /* Per-vnet data storage structures initialization. */ void pf_initialize() { struct pf_keyhash *kh; struct pf_idhash *ih; struct pf_srchash *sh; u_int i; if (pf_hashsize == 0 || !powerof2(pf_hashsize)) pf_hashsize = PF_HASHSIZ; if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) pf_srchashsize = PF_SRCHASHSIZ; V_pf_hashseed = arc4random(); /* States and state keys storage. */ V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); V_pf_state_key_z = uma_zcreate("pf state keys", sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), M_PFHASH, M_NOWAIT | M_ZERO); V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), M_PFHASH, M_NOWAIT | M_ZERO); if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { printf("pf: Unable to allocate memory for " "state_hashsize %lu.\n", pf_hashsize); free(V_pf_keyhash, M_PFHASH); free(V_pf_idhash, M_PFHASH); pf_hashsize = PF_HASHSIZ; V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); } pf_hashmask = pf_hashsize - 1; for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; i++, kh++, ih++) { mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); } /* Source nodes. */ V_pf_sources_z = uma_zcreate("pf source nodes", sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); V_pf_srchash = mallocarray(pf_srchashsize, sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); if (V_pf_srchash == NULL) { printf("pf: Unable to allocate memory for " "source_hashsize %lu.\n", pf_srchashsize); pf_srchashsize = PF_SRCHASHSIZ; V_pf_srchash = mallocarray(pf_srchashsize, sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); } pf_srchashmask = pf_srchashsize - 1; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); /* ALTQ */ TAILQ_INIT(&V_pf_altqs[0]); TAILQ_INIT(&V_pf_altqs[1]); TAILQ_INIT(&V_pf_altqs[2]); TAILQ_INIT(&V_pf_altqs[3]); TAILQ_INIT(&V_pf_pabuf); V_pf_altqs_active = &V_pf_altqs[0]; V_pf_altq_ifs_active = &V_pf_altqs[1]; V_pf_altqs_inactive = &V_pf_altqs[2]; V_pf_altq_ifs_inactive = &V_pf_altqs[3]; /* Send & overload+flush queues. */ STAILQ_INIT(&V_pf_sendqueue); SLIST_INIT(&V_pf_overloadqueue); TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); /* Unlinked, but may be referenced rules. */ TAILQ_INIT(&V_pf_unlinked_rules); } void pf_mtag_cleanup() { uma_zdestroy(pf_mtag_z); } void pf_cleanup() { struct pf_keyhash *kh; struct pf_idhash *ih; struct pf_srchash *sh; struct pf_send_entry *pfse, *next; u_int i; for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; i++, kh++, ih++) { KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", __func__)); KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", __func__)); mtx_destroy(&kh->lock); mtx_destroy(&ih->lock); } free(V_pf_keyhash, M_PFHASH); free(V_pf_idhash, M_PFHASH); for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { KASSERT(LIST_EMPTY(&sh->nodes), ("%s: source node hash not empty", __func__)); mtx_destroy(&sh->lock); } free(V_pf_srchash, M_PFHASH); STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { m_freem(pfse->pfse_m); free(pfse, M_PFTEMP); } uma_zdestroy(V_pf_sources_z); uma_zdestroy(V_pf_state_z); uma_zdestroy(V_pf_state_key_z); } static int pf_mtag_uminit(void *mem, int size, int how) { struct m_tag *t; t = (struct m_tag *)mem; t->m_tag_cookie = MTAG_ABI_COMPAT; t->m_tag_id = PACKET_TAG_PF; t->m_tag_len = sizeof(struct pf_mtag); t->m_tag_free = pf_mtag_free; return (0); } static void pf_mtag_free(struct m_tag *t) { uma_zfree(pf_mtag_z, t); } struct pf_mtag * pf_get_mtag(struct mbuf *m) { struct m_tag *mtag; if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) return ((struct pf_mtag *)(mtag + 1)); mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); if (mtag == NULL) return (NULL); bzero(mtag + 1, sizeof(struct pf_mtag)); m_tag_prepend(m, mtag); return ((struct pf_mtag *)(mtag + 1)); } static int pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, struct pf_state *s) { struct pf_keyhash *khs, *khw, *kh; struct pf_state_key *sk, *cur; struct pf_state *si, *olds = NULL; int idx; KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); /* * We need to lock hash slots of both keys. To avoid deadlock * we always lock the slot with lower address first. Unlock order * isn't important. * * We also need to lock ID hash slot before dropping key * locks. On success we return with ID hash slot locked. */ if (skw == sks) { khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; PF_HASHROW_LOCK(khs); } else { khs = &V_pf_keyhash[pf_hashkey(sks)]; khw = &V_pf_keyhash[pf_hashkey(skw)]; if (khs == khw) { PF_HASHROW_LOCK(khs); } else if (khs < khw) { PF_HASHROW_LOCK(khs); PF_HASHROW_LOCK(khw); } else { PF_HASHROW_LOCK(khw); PF_HASHROW_LOCK(khs); } } #define KEYS_UNLOCK() do { \ if (khs != khw) { \ PF_HASHROW_UNLOCK(khs); \ PF_HASHROW_UNLOCK(khw); \ } else \ PF_HASHROW_UNLOCK(khs); \ } while (0) /* * First run: start with wire key. */ sk = skw; kh = khw; idx = PF_SK_WIRE; keyattach: LIST_FOREACH(cur, &kh->keys, entry) if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) break; if (cur != NULL) { /* Key exists. Check for same kif, if none, add to key. */ TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; PF_HASHROW_LOCK(ih); if (si->kif == s->kif && si->direction == s->direction) { if (sk->proto == IPPROTO_TCP && si->src.state >= TCPS_FIN_WAIT_2 && si->dst.state >= TCPS_FIN_WAIT_2) { /* * New state matches an old >FIN_WAIT_2 * state. We can't drop key hash locks, * thus we can't unlink it properly. * * As a workaround we drop it into * TCPS_CLOSED state, schedule purge * ASAP and push it into the very end * of the slot TAILQ, so that it won't * conflict with our new state. */ si->src.state = si->dst.state = TCPS_CLOSED; si->timeout = PFTM_PURGE; olds = si; } else { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: %s key attach " "failed on %s: ", (idx == PF_SK_WIRE) ? "wire" : "stack", s->kif->pfik_name); pf_print_state_parts(s, (idx == PF_SK_WIRE) ? sk : NULL, (idx == PF_SK_STACK) ? sk : NULL); printf(", existing: "); pf_print_state_parts(si, (idx == PF_SK_WIRE) ? sk : NULL, (idx == PF_SK_STACK) ? sk : NULL); printf("\n"); } PF_HASHROW_UNLOCK(ih); KEYS_UNLOCK(); uma_zfree(V_pf_state_key_z, sk); if (idx == PF_SK_STACK) pf_detach_state(s); return (EEXIST); /* collision! */ } } PF_HASHROW_UNLOCK(ih); } uma_zfree(V_pf_state_key_z, sk); s->key[idx] = cur; } else { LIST_INSERT_HEAD(&kh->keys, sk, entry); s->key[idx] = sk; } stateattach: /* List is sorted, if-bound states before floating. */ if (s->kif == V_pfi_all) TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); else TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); if (olds) { TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, key_list[idx]); olds = NULL; } /* * Attach done. See how should we (or should not?) * attach a second key. */ if (sks == skw) { s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; idx = PF_SK_STACK; sks = NULL; goto stateattach; } else if (sks != NULL) { /* * Continue attaching with stack key. */ sk = sks; kh = khs; idx = PF_SK_STACK; sks = NULL; goto keyattach; } PF_STATE_LOCK(s); KEYS_UNLOCK(); KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, ("%s failure", __func__)); return (0); #undef KEYS_UNLOCK } static void pf_detach_state(struct pf_state *s) { struct pf_state_key *sks = s->key[PF_SK_STACK]; struct pf_keyhash *kh; if (sks != NULL) { kh = &V_pf_keyhash[pf_hashkey(sks)]; PF_HASHROW_LOCK(kh); if (s->key[PF_SK_STACK] != NULL) pf_state_key_detach(s, PF_SK_STACK); /* * If both point to same key, then we are done. */ if (sks == s->key[PF_SK_WIRE]) { pf_state_key_detach(s, PF_SK_WIRE); PF_HASHROW_UNLOCK(kh); return; } PF_HASHROW_UNLOCK(kh); } if (s->key[PF_SK_WIRE] != NULL) { kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; PF_HASHROW_LOCK(kh); if (s->key[PF_SK_WIRE] != NULL) pf_state_key_detach(s, PF_SK_WIRE); PF_HASHROW_UNLOCK(kh); } } static void pf_state_key_detach(struct pf_state *s, int idx) { struct pf_state_key *sk = s->key[idx]; #ifdef INVARIANTS struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; PF_HASHROW_ASSERT(kh); #endif TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); s->key[idx] = NULL; if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { LIST_REMOVE(sk, entry); uma_zfree(V_pf_state_key_z, sk); } } static int pf_state_key_ctor(void *mem, int size, void *arg, int flags) { struct pf_state_key *sk = mem; bzero(sk, sizeof(struct pf_state_key_cmp)); TAILQ_INIT(&sk->states[PF_SK_WIRE]); TAILQ_INIT(&sk->states[PF_SK_STACK]); return (0); } struct pf_state_key * pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) { struct pf_state_key *sk; sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); if (sk == NULL) return (NULL); PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); sk->port[pd->sidx] = sport; sk->port[pd->didx] = dport; sk->proto = pd->proto; sk->af = pd->af; return (sk); } struct pf_state_key * pf_state_key_clone(struct pf_state_key *orig) { struct pf_state_key *sk; sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); if (sk == NULL) return (NULL); bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); return (sk); } int -pf_state_insert(struct pfi_kkif *kif, struct pf_state_key *skw, - struct pf_state_key *sks, struct pf_state *s) +pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, + struct pf_state_key *skw, struct pf_state_key *sks, struct pf_state *s) { struct pf_idhash *ih; struct pf_state *cur; int error; KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), ("%s: sks not pristine", __func__)); KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), ("%s: skw not pristine", __func__)); KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); s->kif = kif; + s->orig_kif = orig_kif; if (s->id == 0 && s->creatorid == 0) { /* XXX: should be atomic, but probability of collision low */ if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) V_pf_stateid[curcpu] = 1; s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; s->id = htobe64(s->id); s->creatorid = V_pf_status.hostid; } /* Returns with ID locked on success. */ if ((error = pf_state_key_attach(skw, sks, s)) != 0) return (error); ih = &V_pf_idhash[PF_IDHASH(s)]; PF_HASHROW_ASSERT(ih); LIST_FOREACH(cur, &ih->states, entry) if (cur->id == s->id && cur->creatorid == s->creatorid) break; if (cur != NULL) { PF_HASHROW_UNLOCK(ih); if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: state ID collision: " "id: %016llx creatorid: %08x\n", (unsigned long long)be64toh(s->id), ntohl(s->creatorid)); } pf_detach_state(s); return (EEXIST); } LIST_INSERT_HEAD(&ih->states, s, entry); /* One for keys, one for ID hash. */ refcount_init(&s->refs, 2); counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); if (V_pfsync_insert_state_ptr != NULL) V_pfsync_insert_state_ptr(s); /* Returns locked. */ return (0); } /* * Find state by ID: returns with locked row on success. */ struct pf_state * pf_find_state_byid(uint64_t id, uint32_t creatorid) { struct pf_idhash *ih; struct pf_state *s; counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) if (s->id == id && s->creatorid == creatorid) break; if (s == NULL) PF_HASHROW_UNLOCK(ih); return (s); } /* * Find state by key. * Returns with ID hash slot locked on success. */ static struct pf_state * pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) { struct pf_keyhash *kh; struct pf_state_key *sk; struct pf_state *s; int idx; counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; PF_HASHROW_LOCK(kh); LIST_FOREACH(sk, &kh->keys, entry) if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) break; if (sk == NULL) { PF_HASHROW_UNLOCK(kh); return (NULL); } idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); /* List is sorted, if-bound states before floating ones. */ TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) if (s->kif == V_pfi_all || s->kif == kif) { PF_STATE_LOCK(s); PF_HASHROW_UNLOCK(kh); if (s->timeout >= PFTM_MAX) { /* * State is either being processed by * pf_unlink_state() in an other thread, or * is scheduled for immediate expiry. */ PF_STATE_UNLOCK(s); return (NULL); } return (s); } PF_HASHROW_UNLOCK(kh); return (NULL); } struct pf_state * pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) { struct pf_keyhash *kh; struct pf_state_key *sk; struct pf_state *s, *ret = NULL; int idx, inout = 0; counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; PF_HASHROW_LOCK(kh); LIST_FOREACH(sk, &kh->keys, entry) if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) break; if (sk == NULL) { PF_HASHROW_UNLOCK(kh); return (NULL); } switch (dir) { case PF_IN: idx = PF_SK_WIRE; break; case PF_OUT: idx = PF_SK_STACK; break; case PF_INOUT: idx = PF_SK_WIRE; inout = 1; break; default: panic("%s: dir %u", __func__, dir); } second_run: TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { if (more == NULL) { PF_HASHROW_UNLOCK(kh); return (s); } if (ret) (*more)++; else ret = s; } if (inout == 1) { inout = 0; idx = PF_SK_STACK; goto second_run; } PF_HASHROW_UNLOCK(kh); return (ret); } /* END state table stuff */ static void pf_send(struct pf_send_entry *pfse) { PF_SENDQ_LOCK(); STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); PF_SENDQ_UNLOCK(); swi_sched(V_pf_swi_cookie, 0); } void pf_intr(void *v) { struct epoch_tracker et; struct pf_send_head queue; struct pf_send_entry *pfse, *next; CURVNET_SET((struct vnet *)v); PF_SENDQ_LOCK(); queue = V_pf_sendqueue; STAILQ_INIT(&V_pf_sendqueue); PF_SENDQ_UNLOCK(); NET_EPOCH_ENTER(et); STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { switch (pfse->pfse_type) { #ifdef INET case PFSE_IP: ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); break; case PFSE_ICMP: icmp_error(pfse->pfse_m, pfse->icmpopts.type, pfse->icmpopts.code, 0, pfse->icmpopts.mtu); break; #endif /* INET */ #ifdef INET6 case PFSE_IP6: ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, NULL); break; case PFSE_ICMP6: icmp6_error(pfse->pfse_m, pfse->icmpopts.type, pfse->icmpopts.code, pfse->icmpopts.mtu); break; #endif /* INET6 */ default: panic("%s: unknown type", __func__); } free(pfse, M_PFTEMP); } NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } void pf_purge_thread(void *unused __unused) { VNET_ITERATOR_DECL(vnet_iter); sx_xlock(&pf_end_lock); while (pf_end_threads == 0) { sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* Wait until V_pf_default_rule is initialized. */ if (V_pf_vnet_active == 0) { CURVNET_RESTORE(); continue; } /* * Process 1/interval fraction of the state * table every run. */ V_pf_purge_idx = pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); /* * Purge other expired types every * PFTM_INTERVAL seconds. */ if (V_pf_purge_idx == 0) { /* * Order is important: * - states and src nodes reference rules * - states and rules reference kifs */ pf_purge_expired_fragments(); pf_purge_expired_src_nodes(); pf_purge_unlinked_rules(); pfi_kkif_purge(); } CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); } pf_end_threads++; sx_xunlock(&pf_end_lock); kproc_exit(0); } void pf_unload_vnet_purge(void) { /* * To cleanse up all kifs and rules we need * two runs: first one clears reference flags, * then pf_purge_expired_states() doesn't * raise them, and then second run frees. */ pf_purge_unlinked_rules(); pfi_kkif_purge(); /* * Now purge everything. */ pf_purge_expired_states(0, pf_hashmask); pf_purge_fragments(UINT_MAX); pf_purge_expired_src_nodes(); /* * Now all kifs & rules should be unreferenced, * thus should be successfully freed. */ pf_purge_unlinked_rules(); pfi_kkif_purge(); } u_int32_t pf_state_expires(const struct pf_state *state) { u_int32_t timeout; u_int32_t start; u_int32_t end; u_int32_t states; /* handle all PFTM_* > PFTM_MAX here */ if (state->timeout == PFTM_PURGE) return (time_uptime); KASSERT(state->timeout != PFTM_UNLINKED, ("pf_state_expires: timeout == PFTM_UNLINKED")); KASSERT((state->timeout < PFTM_MAX), ("pf_state_expires: timeout > PFTM_MAX")); timeout = state->rule.ptr->timeout[state->timeout]; if (!timeout) timeout = V_pf_default_rule.timeout[state->timeout]; start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; if (start && state->rule.ptr != &V_pf_default_rule) { end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; states = counter_u64_fetch(state->rule.ptr->states_cur); } else { start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; states = V_pf_status.states; } if (end && states > start && start < end) { if (states < end) { timeout = (u_int64_t)timeout * (end - states) / (end - start); return (state->expire + timeout); } else return (time_uptime); } return (state->expire + timeout); } void pf_purge_expired_src_nodes() { struct pf_ksrc_node_list freelist; struct pf_srchash *sh; struct pf_ksrc_node *cur, *next; int i; LIST_INIT(&freelist); for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) if (cur->states == 0 && cur->expire <= time_uptime) { pf_unlink_src_node(cur); LIST_INSERT_HEAD(&freelist, cur, entry); } else if (cur->rule.ptr != NULL) cur->rule.ptr->rule_ref |= PFRULE_REFS; PF_HASHROW_UNLOCK(sh); } pf_free_src_nodes(&freelist); V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); } static void pf_src_tree_remove_state(struct pf_state *s) { struct pf_ksrc_node *sn; struct pf_srchash *sh; uint32_t timeout; timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? s->rule.ptr->timeout[PFTM_SRC_NODE] : V_pf_default_rule.timeout[PFTM_SRC_NODE]; if (s->src_node != NULL) { sn = s->src_node; sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; PF_HASHROW_LOCK(sh); if (s->src.tcp_est) --sn->conn; if (--sn->states == 0) sn->expire = time_uptime + timeout; PF_HASHROW_UNLOCK(sh); } if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { sn = s->nat_src_node; sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; PF_HASHROW_LOCK(sh); if (--sn->states == 0) sn->expire = time_uptime + timeout; PF_HASHROW_UNLOCK(sh); } s->src_node = s->nat_src_node = NULL; } /* * Unlink and potentilly free a state. Function may be * called with ID hash row locked, but always returns * unlocked, since it needs to go through key hash locking. */ int pf_unlink_state(struct pf_state *s, u_int flags) { struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; if ((flags & PF_ENTER_LOCKED) == 0) PF_HASHROW_LOCK(ih); else PF_HASHROW_ASSERT(ih); if (s->timeout == PFTM_UNLINKED) { /* * State is being processed * by pf_unlink_state() in * an other thread. */ PF_HASHROW_UNLOCK(ih); return (0); /* XXXGL: undefined actually */ } if (s->src.state == PF_TCPS_PROXY_DST) { /* XXX wire key the right one? */ pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, &s->key[PF_SK_WIRE]->addr[1], &s->key[PF_SK_WIRE]->addr[0], s->key[PF_SK_WIRE]->port[1], s->key[PF_SK_WIRE]->port[0], s->src.seqhi, s->src.seqlo + 1, TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); } LIST_REMOVE(s, entry); pf_src_tree_remove_state(s); if (V_pfsync_delete_state_ptr != NULL) V_pfsync_delete_state_ptr(s); STATE_DEC_COUNTERS(s); s->timeout = PFTM_UNLINKED; PF_HASHROW_UNLOCK(ih); pf_detach_state(s); /* pf_state_insert() initialises refs to 2, so we can never release the * last reference here, only in pf_release_state(). */ (void)refcount_release(&s->refs); return (pf_release_state(s)); } void pf_free_state(struct pf_state *cur) { KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, cur->timeout)); for (int i = 0; i < 2; i++) { counter_u64_free(cur->bytes[i]); counter_u64_free(cur->packets[i]); } pf_normalize_tcp_cleanup(cur); uma_zfree(V_pf_state_z, cur); counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); } /* * Called only from pf_purge_thread(), thus serialized. */ static u_int pf_purge_expired_states(u_int i, int maxcheck) { struct pf_idhash *ih; struct pf_state *s; V_pf_status.states = uma_zone_get_cur(V_pf_state_z); /* * Go through hash and unlink states that expire now. */ while (maxcheck > 0) { ih = &V_pf_idhash[i]; /* only take the lock if we expect to do work */ if (!LIST_EMPTY(&ih->states)) { relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (pf_state_expires(s) <= time_uptime) { V_pf_status.states -= pf_unlink_state(s, PF_ENTER_LOCKED); goto relock; } s->rule.ptr->rule_ref |= PFRULE_REFS; if (s->nat_rule.ptr != NULL) s->nat_rule.ptr->rule_ref |= PFRULE_REFS; if (s->anchor.ptr != NULL) s->anchor.ptr->rule_ref |= PFRULE_REFS; s->kif->pfik_flags |= PFI_IFLAG_REFS; if (s->rt_kif) s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; } PF_HASHROW_UNLOCK(ih); } /* Return when we hit end of hash. */ if (++i > pf_hashmask) { V_pf_status.states = uma_zone_get_cur(V_pf_state_z); return (0); } maxcheck--; } V_pf_status.states = uma_zone_get_cur(V_pf_state_z); return (i); } static void pf_purge_unlinked_rules() { struct pf_krulequeue tmpq; struct pf_krule *r, *r1; /* * If we have overloading task pending, then we'd * better skip purging this time. There is a tiny * probability that overloading task references * an already unlinked rule. */ PF_OVERLOADQ_LOCK(); if (!SLIST_EMPTY(&V_pf_overloadqueue)) { PF_OVERLOADQ_UNLOCK(); return; } PF_OVERLOADQ_UNLOCK(); /* * Do naive mark-and-sweep garbage collecting of old rules. * Reference flag is raised by pf_purge_expired_states() * and pf_purge_expired_src_nodes(). * * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, * use a temporary queue. */ TAILQ_INIT(&tmpq); PF_UNLNKDRULES_LOCK(); TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { if (!(r->rule_ref & PFRULE_REFS)) { TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); TAILQ_INSERT_TAIL(&tmpq, r, entries); } else r->rule_ref &= ~PFRULE_REFS; } PF_UNLNKDRULES_UNLOCK(); if (!TAILQ_EMPTY(&tmpq)) { PF_RULES_WLOCK(); TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { TAILQ_REMOVE(&tmpq, r, entries); pf_free_rule(r); } PF_RULES_WUNLOCK(); } } void pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: { u_int32_t a = ntohl(addr->addr32[0]); printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, (a>>8)&255, a&255); if (p) { p = ntohs(p); printf(":%u", p); } break; } #endif /* INET */ #ifdef INET6 case AF_INET6: { u_int16_t b; u_int8_t i, curstart, curend, maxstart, maxend; curstart = curend = maxstart = maxend = 255; for (i = 0; i < 8; i++) { if (!addr->addr16[i]) { if (curstart == 255) curstart = i; curend = i; } else { if ((curend - curstart) > (maxend - maxstart)) { maxstart = curstart; maxend = curend; } curstart = curend = 255; } } if ((curend - curstart) > (maxend - maxstart)) { maxstart = curstart; maxend = curend; } for (i = 0; i < 8; i++) { if (i >= maxstart && i <= maxend) { if (i == 0) printf(":"); if (i == maxend) printf(":"); } else { b = ntohs(addr->addr16[i]); printf("%x", b); if (i < 7) printf(":"); } } if (p) { p = ntohs(p); printf("[%u]", p); } break; } #endif /* INET6 */ } } void pf_print_state(struct pf_state *s) { pf_print_state_parts(s, NULL, NULL); } static void pf_print_state_parts(struct pf_state *s, struct pf_state_key *skwp, struct pf_state_key *sksp) { struct pf_state_key *skw, *sks; u_int8_t proto, dir; /* Do our best to fill these, but they're skipped if NULL */ skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); proto = skw ? skw->proto : (sks ? sks->proto : 0); dir = s ? s->direction : 0; switch (proto) { case IPPROTO_IPV4: printf("IPv4"); break; case IPPROTO_IPV6: printf("IPv6"); break; case IPPROTO_TCP: printf("TCP"); break; case IPPROTO_UDP: printf("UDP"); break; case IPPROTO_ICMP: printf("ICMP"); break; case IPPROTO_ICMPV6: printf("ICMPv6"); break; default: printf("%u", proto); break; } switch (dir) { case PF_IN: printf(" in"); break; case PF_OUT: printf(" out"); break; } if (skw) { printf(" wire: "); pf_print_host(&skw->addr[0], skw->port[0], skw->af); printf(" "); pf_print_host(&skw->addr[1], skw->port[1], skw->af); } if (sks) { printf(" stack: "); if (sks != skw) { pf_print_host(&sks->addr[0], sks->port[0], sks->af); printf(" "); pf_print_host(&sks->addr[1], sks->port[1], sks->af); } else printf("-"); } if (s) { if (proto == IPPROTO_TCP) { printf(" [lo=%u high=%u win=%u modulator=%u", s->src.seqlo, s->src.seqhi, s->src.max_win, s->src.seqdiff); if (s->src.wscale && s->dst.wscale) printf(" wscale=%u", s->src.wscale & PF_WSCALE_MASK); printf("]"); printf(" [lo=%u high=%u win=%u modulator=%u", s->dst.seqlo, s->dst.seqhi, s->dst.max_win, s->dst.seqdiff); if (s->src.wscale && s->dst.wscale) printf(" wscale=%u", s->dst.wscale & PF_WSCALE_MASK); printf("]"); } printf(" %u:%u", s->src.state, s->dst.state); } } void pf_print_flags(u_int8_t f) { if (f) printf(" "); if (f & TH_FIN) printf("F"); if (f & TH_SYN) printf("S"); if (f & TH_RST) printf("R"); if (f & TH_PUSH) printf("P"); if (f & TH_ACK) printf("A"); if (f & TH_URG) printf("U"); if (f & TH_ECE) printf("E"); if (f & TH_CWR) printf("W"); } #define PF_SET_SKIP_STEPS(i) \ do { \ while (head[i] != cur) { \ head[i]->skip[i].ptr = cur; \ head[i] = TAILQ_NEXT(head[i], entries); \ } \ } while (0) void pf_calc_skip_steps(struct pf_krulequeue *rules) { struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; int i; cur = TAILQ_FIRST(rules); prev = cur; for (i = 0; i < PF_SKIP_COUNT; ++i) head[i] = cur; while (cur != NULL) { if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) PF_SET_SKIP_STEPS(PF_SKIP_IFP); if (cur->direction != prev->direction) PF_SET_SKIP_STEPS(PF_SKIP_DIR); if (cur->af != prev->af) PF_SET_SKIP_STEPS(PF_SKIP_AF); if (cur->proto != prev->proto) PF_SET_SKIP_STEPS(PF_SKIP_PROTO); if (cur->src.neg != prev->src.neg || pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); if (cur->src.port[0] != prev->src.port[0] || cur->src.port[1] != prev->src.port[1] || cur->src.port_op != prev->src.port_op) PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); if (cur->dst.neg != prev->dst.neg || pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); if (cur->dst.port[0] != prev->dst.port[0] || cur->dst.port[1] != prev->dst.port[1] || cur->dst.port_op != prev->dst.port_op) PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); prev = cur; cur = TAILQ_NEXT(cur, entries); } for (i = 0; i < PF_SKIP_COUNT; ++i) PF_SET_SKIP_STEPS(i); } static int pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) { if (aw1->type != aw2->type) return (1); switch (aw1->type) { case PF_ADDR_ADDRMASK: case PF_ADDR_RANGE: if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) return (1); if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) return (1); return (0); case PF_ADDR_DYNIFTL: return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); case PF_ADDR_NOROUTE: case PF_ADDR_URPFFAILED: return (0); case PF_ADDR_TABLE: return (aw1->p.tbl != aw2->p.tbl); default: printf("invalid address type: %d\n", aw1->type); return (1); } } /** * Checksum updates are a little complicated because the checksum in the TCP/UDP * header isn't always a full checksum. In some cases (i.e. output) it's a * pseudo-header checksum, which is a partial checksum over src/dst IP * addresses, protocol number and length. * * That means we have the following cases: * * Input or forwarding: we don't have TSO, the checksum fields are full * checksums, we need to update the checksum whenever we change anything. * * Output (i.e. the checksum is a pseudo-header checksum): * x The field being updated is src/dst address or affects the length of * the packet. We need to update the pseudo-header checksum (note that this * checksum is not ones' complement). * x Some other field is being modified (e.g. src/dst port numbers): We * don't have to update anything. **/ u_int16_t pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) { u_int32_t x; x = cksum + old - new; x = (x + (x >> 16)) & 0xffff; /* optimise: eliminate a branch when not udp */ if (udp && cksum == 0x0000) return cksum; if (udp && x == 0x0000) x = 0xffff; return (u_int16_t)(x); } static void pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, u_int8_t udp) { u_int16_t old = htons(hi ? (*f << 8) : *f); u_int16_t new = htons(hi ? ( v << 8) : v); if (*f == v) return; *f = v; if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) return; *cksum = pf_cksum_fixup(*cksum, old, new, udp); } void pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, bool hi, u_int8_t udp) { u_int8_t *fb = (u_int8_t *)f; u_int8_t *vb = (u_int8_t *)&v; pf_patch_8(m, cksum, fb++, *vb++, hi, udp); pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); } void pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, bool hi, u_int8_t udp) { u_int8_t *fb = (u_int8_t *)f; u_int8_t *vb = (u_int8_t *)&v; pf_patch_8(m, cksum, fb++, *vb++, hi, udp); pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); pf_patch_8(m, cksum, fb++, *vb++, hi, udp); pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); } u_int16_t pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) { if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) return (cksum); return (pf_cksum_fixup(cksum, old, new, udp)); } static void pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) { struct pf_addr ao; u_int16_t po = *p; PF_ACPY(&ao, a, af); PF_ACPY(a, an, af); if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) *pc = ~*pc; *p = pn; switch (af) { #ifdef INET case AF_INET: *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, ao.addr16[0], an->addr16[0], 0), ao.addr16[1], an->addr16[1], 0); *p = pn; *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u); *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); break; #endif /* INET */ #ifdef INET6 case AF_INET6: *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], an->addr16[2], u), ao.addr16[3], an->addr16[3], u), ao.addr16[4], an->addr16[4], u), ao.addr16[5], an->addr16[5], u), ao.addr16[6], an->addr16[6], u), ao.addr16[7], an->addr16[7], u); *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); break; #endif /* INET6 */ } if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) { *pc = ~*pc; if (! *pc) *pc = 0xffff; } } /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ void pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) { u_int32_t ao; memcpy(&ao, a, sizeof(ao)); memcpy(a, &an, sizeof(u_int32_t)); *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), ao % 65536, an % 65536, u); } void pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) { u_int32_t ao; memcpy(&ao, a, sizeof(ao)); memcpy(a, &an, sizeof(u_int32_t)); *c = pf_proto_cksum_fixup(m, pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), ao % 65536, an % 65536, udp); } #ifdef INET6 static void pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) { struct pf_addr ao; PF_ACPY(&ao, a, AF_INET6); PF_ACPY(a, an, AF_INET6); *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*c, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], an->addr16[2], u), ao.addr16[3], an->addr16[3], u), ao.addr16[4], an->addr16[4], u), ao.addr16[5], an->addr16[5], u), ao.addr16[6], an->addr16[6], u), ao.addr16[7], an->addr16[7], u); } #endif /* INET6 */ static void pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) { struct pf_addr oia, ooa; PF_ACPY(&oia, ia, af); if (oa) PF_ACPY(&ooa, oa, af); /* Change inner protocol port, fix inner protocol checksum. */ if (ip != NULL) { u_int16_t oip = *ip; u_int32_t opc; if (pc != NULL) opc = *pc; *ip = np; if (pc != NULL) *pc = pf_cksum_fixup(*pc, oip, *ip, u); *ic = pf_cksum_fixup(*ic, oip, *ip, 0); if (pc != NULL) *ic = pf_cksum_fixup(*ic, opc, *pc, 0); } /* Change inner ip address, fix inner ip and icmp checksums. */ PF_ACPY(ia, na, af); switch (af) { #ifdef INET case AF_INET: { u_int32_t oh2c = *h2c; *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, oia.addr16[0], ia->addr16[0], 0), oia.addr16[1], ia->addr16[1], 0); *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, oia.addr16[0], ia->addr16[0], 0), oia.addr16[1], ia->addr16[1], 0); *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); break; } #endif /* INET */ #ifdef INET6 case AF_INET6: *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*ic, oia.addr16[0], ia->addr16[0], u), oia.addr16[1], ia->addr16[1], u), oia.addr16[2], ia->addr16[2], u), oia.addr16[3], ia->addr16[3], u), oia.addr16[4], ia->addr16[4], u), oia.addr16[5], ia->addr16[5], u), oia.addr16[6], ia->addr16[6], u), oia.addr16[7], ia->addr16[7], u); break; #endif /* INET6 */ } /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ if (oa) { PF_ACPY(oa, na, af); switch (af) { #ifdef INET case AF_INET: *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, ooa.addr16[0], oa->addr16[0], 0), ooa.addr16[1], oa->addr16[1], 0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*ic, ooa.addr16[0], oa->addr16[0], u), ooa.addr16[1], oa->addr16[1], u), ooa.addr16[2], oa->addr16[2], u), ooa.addr16[3], oa->addr16[3], u), ooa.addr16[4], oa->addr16[4], u), ooa.addr16[5], oa->addr16[5], u), ooa.addr16[6], oa->addr16[6], u), ooa.addr16[7], oa->addr16[7], u); break; #endif /* INET6 */ } } } /* * Need to modulate the sequence numbers in the TCP SACK option * (credits to Krzysztof Pfaff for report and patch) */ static int pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, struct tcphdr *th, struct pf_state_peer *dst) { int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; u_int8_t opts[TCP_MAXOLEN], *opt = opts; int copyback = 0, i, olen; struct sackblk sack; #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) if (hlen < TCPOLEN_SACKLEN || !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) return 0; while (hlen >= TCPOLEN_SACKLEN) { size_t startoff = opt - opts; olen = opt[1]; switch (*opt) { case TCPOPT_EOL: /* FALLTHROUGH */ case TCPOPT_NOP: opt++; hlen--; break; case TCPOPT_SACK: if (olen > hlen) olen = hlen; if (olen >= TCPOLEN_SACKLEN) { for (i = 2; i + TCPOLEN_SACK <= olen; i += TCPOLEN_SACK) { memcpy(&sack, &opt[i], sizeof(sack)); pf_patch_32_unaligned(m, &th->th_sum, &sack.start, htonl(ntohl(sack.start) - dst->seqdiff), PF_ALGNMNT(startoff), 0); pf_patch_32_unaligned(m, &th->th_sum, &sack.end, htonl(ntohl(sack.end) - dst->seqdiff), PF_ALGNMNT(startoff), 0); memcpy(&opt[i], &sack, sizeof(sack)); } copyback = 1; } /* FALLTHROUGH */ default: if (olen < 2) olen = 2; hlen -= olen; opt += olen; } } if (copyback) m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); return (copyback); } static void pf_send_tcp(struct mbuf *replyto, const struct pf_krule *r, sa_family_t af, const struct pf_addr *saddr, const struct pf_addr *daddr, u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, u_int16_t rtag, struct ifnet *ifp) { struct pf_send_entry *pfse; struct mbuf *m; int len, tlen; #ifdef INET struct ip *h = NULL; #endif /* INET */ #ifdef INET6 struct ip6_hdr *h6 = NULL; #endif /* INET6 */ struct tcphdr *th; char *opt; struct pf_mtag *pf_mtag; len = 0; th = NULL; /* maximum segment size tcp option */ tlen = sizeof(struct tcphdr); if (mss) tlen += 4; switch (af) { #ifdef INET case AF_INET: len = sizeof(struct ip) + tlen; break; #endif /* INET */ #ifdef INET6 case AF_INET6: len = sizeof(struct ip6_hdr) + tlen; break; #endif /* INET6 */ default: panic("%s: unsupported af %d", __func__, af); } /* Allocate outgoing queue entry, mbuf and mbuf tag. */ pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); if (pfse == NULL) return; m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { free(pfse, M_PFTEMP); return; } #ifdef MAC mac_netinet_firewall_send(m); #endif if ((pf_mtag = pf_get_mtag(m)) == NULL) { free(pfse, M_PFTEMP); m_freem(m); return; } if (tag) m->m_flags |= M_SKIP_FIREWALL; pf_mtag->tag = rtag; if (r != NULL && r->rtableid >= 0) M_SETFIB(m, r->rtableid); #ifdef ALTQ if (r != NULL && r->qid) { pf_mtag->qid = r->qid; /* add hints for ecn */ pf_mtag->hdr = mtod(m, struct ip *); } #endif /* ALTQ */ m->m_data += max_linkhdr; m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = NULL; bzero(m->m_data, len); switch (af) { #ifdef INET case AF_INET: h = mtod(m, struct ip *); /* IP header fields included in the TCP checksum */ h->ip_p = IPPROTO_TCP; h->ip_len = htons(tlen); h->ip_src.s_addr = saddr->v4.s_addr; h->ip_dst.s_addr = daddr->v4.s_addr; th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); break; #endif /* INET */ #ifdef INET6 case AF_INET6: h6 = mtod(m, struct ip6_hdr *); /* IP header fields included in the TCP checksum */ h6->ip6_nxt = IPPROTO_TCP; h6->ip6_plen = htons(tlen); memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); break; #endif /* INET6 */ } /* TCP header */ th->th_sport = sport; th->th_dport = dport; th->th_seq = htonl(seq); th->th_ack = htonl(ack); th->th_off = tlen >> 2; th->th_flags = flags; th->th_win = htons(win); if (mss) { opt = (char *)(th + 1); opt[0] = TCPOPT_MAXSEG; opt[1] = 4; HTONS(mss); bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); } switch (af) { #ifdef INET case AF_INET: /* TCP checksum */ th->th_sum = in_cksum(m, len); /* Finish the IP header */ h->ip_v = 4; h->ip_hl = sizeof(*h) >> 2; h->ip_tos = IPTOS_LOWDELAY; h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); h->ip_len = htons(len); h->ip_ttl = ttl ? ttl : V_ip_defttl; h->ip_sum = 0; pfse->pfse_type = PFSE_IP; break; #endif /* INET */ #ifdef INET6 case AF_INET6: /* TCP checksum */ th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen); h6->ip6_vfc |= IPV6_VERSION; h6->ip6_hlim = IPV6_DEFHLIM; pfse->pfse_type = PFSE_IP6; break; #endif /* INET6 */ } pfse->pfse_m = m; pf_send(pfse); } static void pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, u_short *reason) { struct pf_addr * const saddr = pd->src; struct pf_addr * const daddr = pd->dst; sa_family_t af = pd->af; /* undo NAT changes, if they have taken place */ if (nr != NULL) { PF_ACPY(saddr, &sk->addr[pd->sidx], af); PF_ACPY(daddr, &sk->addr[pd->didx], af); if (pd->sport) *pd->sport = sk->port[pd->sidx]; if (pd->dport) *pd->dport = sk->port[pd->didx]; if (pd->proto_sum) *pd->proto_sum = bproto_sum; if (pd->ip_sum) *pd->ip_sum = bip_sum; m_copyback(m, off, hdrlen, pd->hdr.any); } if (pd->proto == IPPROTO_TCP && ((r->rule_flag & PFRULE_RETURNRST) || (r->rule_flag & PFRULE_RETURN)) && !(th->th_flags & TH_RST)) { u_int32_t ack = ntohl(th->th_seq) + pd->p_len; int len = 0; #ifdef INET struct ip *h4; #endif #ifdef INET6 struct ip6_hdr *h6; #endif switch (af) { #ifdef INET case AF_INET: h4 = mtod(m, struct ip *); len = ntohs(h4->ip_len) - off; break; #endif #ifdef INET6 case AF_INET6: h6 = mtod(m, struct ip6_hdr *); len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); break; #endif } if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) REASON_SET(reason, PFRES_PROTCKSUM); else { if (th->th_flags & TH_SYN) ack++; if (th->th_flags & TH_FIN) ack++; pf_send_tcp(m, r, af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, r->return_ttl, 1, 0, kif->pfik_ifp); } } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && r->return_icmp) pf_send_icmp(m, r->return_icmp >> 8, r->return_icmp & 255, af, r); else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && r->return_icmp6) pf_send_icmp(m, r->return_icmp6 >> 8, r->return_icmp6 & 255, af, r); } static int pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) { struct m_tag *mtag; KASSERT(prio <= PF_PRIO_MAX, ("%s with invalid pcp", __func__)); mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); if (mtag == NULL) { mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, sizeof(uint8_t), M_NOWAIT); if (mtag == NULL) return (ENOMEM); m_tag_prepend(m, mtag); } *(uint8_t *)(mtag + 1) = prio; return (0); } static int pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) { struct m_tag *mtag; u_int8_t mpcp; mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); if (mtag == NULL) return (0); if (prio == PF_PRIO_ZERO) prio = 0; mpcp = *(uint8_t *)(mtag + 1); return (mpcp == prio); } static void pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, struct pf_krule *r) { struct pf_send_entry *pfse; struct mbuf *m0; struct pf_mtag *pf_mtag; /* Allocate outgoing queue entry, mbuf and mbuf tag. */ pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); if (pfse == NULL) return; if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { free(pfse, M_PFTEMP); return; } if ((pf_mtag = pf_get_mtag(m0)) == NULL) { free(pfse, M_PFTEMP); return; } /* XXX: revisit */ m0->m_flags |= M_SKIP_FIREWALL; if (r->rtableid >= 0) M_SETFIB(m0, r->rtableid); #ifdef ALTQ if (r->qid) { pf_mtag->qid = r->qid; /* add hints for ecn */ pf_mtag->hdr = mtod(m0, struct ip *); } #endif /* ALTQ */ switch (af) { #ifdef INET case AF_INET: pfse->pfse_type = PFSE_ICMP; break; #endif /* INET */ #ifdef INET6 case AF_INET6: pfse->pfse_type = PFSE_ICMP6; break; #endif /* INET6 */ } pfse->pfse_m = m0; pfse->icmpopts.type = type; pfse->icmpopts.code = code; pf_send(pfse); } /* * Return 1 if the addresses a and b match (with mask m), otherwise return 0. * If n is 0, they match if they are equal. If n is != 0, they match if they * are different. */ int pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, struct pf_addr *b, sa_family_t af) { int match = 0; switch (af) { #ifdef INET case AF_INET: if ((a->addr32[0] & m->addr32[0]) == (b->addr32[0] & m->addr32[0])) match++; break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (((a->addr32[0] & m->addr32[0]) == (b->addr32[0] & m->addr32[0])) && ((a->addr32[1] & m->addr32[1]) == (b->addr32[1] & m->addr32[1])) && ((a->addr32[2] & m->addr32[2]) == (b->addr32[2] & m->addr32[2])) && ((a->addr32[3] & m->addr32[3]) == (b->addr32[3] & m->addr32[3]))) match++; break; #endif /* INET6 */ } if (match) { if (n) return (0); else return (1); } else { if (n) return (1); else return (0); } } /* * Return 1 if b <= a <= e, otherwise return 0. */ int pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, struct pf_addr *a, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) return (0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: { int i; /* check a >= b */ for (i = 0; i < 4; ++i) if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) break; else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) return (0); /* check a <= e */ for (i = 0; i < 4; ++i) if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) break; else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) return (0); break; } #endif /* INET6 */ } return (1); } static int pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) { switch (op) { case PF_OP_IRG: return ((p > a1) && (p < a2)); case PF_OP_XRG: return ((p < a1) || (p > a2)); case PF_OP_RRG: return ((p >= a1) && (p <= a2)); case PF_OP_EQ: return (p == a1); case PF_OP_NE: return (p != a1); case PF_OP_LT: return (p < a1); case PF_OP_LE: return (p <= a1); case PF_OP_GT: return (p > a1); case PF_OP_GE: return (p >= a1); } return (0); /* never reached */ } int pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) { NTOHS(a1); NTOHS(a2); NTOHS(p); return (pf_match(op, a1, a2, p)); } static int pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) { if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) return (0); return (pf_match(op, a1, a2, u)); } static int pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) { if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) return (0); return (pf_match(op, a1, a2, g)); } int pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) { if (*tag == -1) *tag = mtag; return ((!r->match_tag_not && r->match_tag == *tag) || (r->match_tag_not && r->match_tag != *tag)); } int pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) { KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) return (ENOMEM); pd->pf_mtag->tag = tag; return (0); } #define PF_ANCHOR_STACKSIZE 32 struct pf_kanchor_stackframe { struct pf_kruleset *rs; struct pf_krule *r; /* XXX: + match bit */ struct pf_kanchor *child; }; /* * XXX: We rely on malloc(9) returning pointer aligned addresses. */ #define PF_ANCHORSTACK_MATCH 0x00000001 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ } while (0) void pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, int *match) { struct pf_kanchor_stackframe *f; PF_RULES_RASSERT(); if (match) *match = 0; if (*depth >= PF_ANCHOR_STACKSIZE) { printf("%s: anchor stack overflow on %s\n", __func__, (*r)->anchor->name); *r = TAILQ_NEXT(*r, entries); return; } else if (*depth == 0 && a != NULL) *a = *r; f = stack + (*depth)++; f->rs = *rs; f->r = *r; if ((*r)->anchor_wildcard) { struct pf_kanchor_node *parent = &(*r)->anchor->children; if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { *r = NULL; return; } *rs = &f->child->ruleset; } else { f->child = NULL; *rs = &(*r)->anchor->ruleset; } *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); } int pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, int *match) { struct pf_kanchor_stackframe *f; struct pf_krule *fr; int quick = 0; PF_RULES_RASSERT(); do { if (*depth <= 0) break; f = stack + *depth - 1; fr = PF_ANCHOR_RULE(f); if (f->child != NULL) { struct pf_kanchor_node *parent; /* * This block traverses through * a wildcard anchor. */ parent = &fr->anchor->children; if (match != NULL && *match) { /* * If any of "*" matched, then * "foo/ *" matched, mark frame * appropriately. */ PF_ANCHOR_SET_MATCH(f); *match = 0; } f->child = RB_NEXT(pf_kanchor_node, parent, f->child); if (f->child != NULL) { *rs = &f->child->ruleset; *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); if (*r == NULL) continue; else break; } } (*depth)--; if (*depth == 0 && a != NULL) *a = NULL; *rs = f->rs; if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) quick = fr->quick; *r = TAILQ_NEXT(fr, entries); } while (*r == NULL); return (quick); } #ifdef INET6 void pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); break; #endif /* INET */ case AF_INET6: naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); break; } } void pf_addr_inc(struct pf_addr *addr, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); break; #endif /* INET */ case AF_INET6: if (addr->addr32[3] == 0xffffffff) { addr->addr32[3] = 0; if (addr->addr32[2] == 0xffffffff) { addr->addr32[2] = 0; if (addr->addr32[1] == 0xffffffff) { addr->addr32[1] = 0; addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); } else addr->addr32[1] = htonl(ntohl(addr->addr32[1]) + 1); } else addr->addr32[2] = htonl(ntohl(addr->addr32[2]) + 1); } else addr->addr32[3] = htonl(ntohl(addr->addr32[3]) + 1); break; } } #endif /* INET6 */ int pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) { struct pf_addr *saddr, *daddr; u_int16_t sport, dport; struct inpcbinfo *pi; struct inpcb *inp; pd->lookup.uid = UID_MAX; pd->lookup.gid = GID_MAX; switch (pd->proto) { case IPPROTO_TCP: if (pd->hdr.tcp == NULL) return (-1); sport = pd->hdr.tcp->th_sport; dport = pd->hdr.tcp->th_dport; pi = &V_tcbinfo; break; case IPPROTO_UDP: if (pd->hdr.udp == NULL) return (-1); sport = pd->hdr.udp->uh_sport; dport = pd->hdr.udp->uh_dport; pi = &V_udbinfo; break; default: return (-1); } if (direction == PF_IN) { saddr = pd->src; daddr = pd->dst; } else { u_int16_t p; p = sport; sport = dport; dport = p; saddr = pd->dst; daddr = pd->src; } switch (pd->af) { #ifdef INET case AF_INET: inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, dport, INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) { inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) return (-1); } break; #endif /* INET */ #ifdef INET6 case AF_INET6: inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, dport, INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) { inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) return (-1); } break; #endif /* INET6 */ default: return (-1); } INP_RLOCK_ASSERT(inp); pd->lookup.uid = inp->inp_cred->cr_uid; pd->lookup.gid = inp->inp_cred->cr_groups[0]; INP_RUNLOCK(inp); return (1); } static u_int8_t pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) { int hlen; u_int8_t hdr[60]; u_int8_t *opt, optlen; u_int8_t wscale = 0; hlen = th_off << 2; /* hlen <= sizeof(hdr) */ if (hlen <= sizeof(struct tcphdr)) return (0); if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) return (0); opt = hdr + sizeof(struct tcphdr); hlen -= sizeof(struct tcphdr); while (hlen >= 3) { switch (*opt) { case TCPOPT_EOL: case TCPOPT_NOP: ++opt; --hlen; break; case TCPOPT_WINDOW: wscale = opt[2]; if (wscale > TCP_MAX_WINSHIFT) wscale = TCP_MAX_WINSHIFT; wscale |= PF_WSCALE_FLAG; /* FALLTHROUGH */ default: optlen = opt[1]; if (optlen < 2) optlen = 2; hlen -= optlen; opt += optlen; break; } } return (wscale); } static u_int16_t pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) { int hlen; u_int8_t hdr[60]; u_int8_t *opt, optlen; u_int16_t mss = V_tcp_mssdflt; hlen = th_off << 2; /* hlen <= sizeof(hdr) */ if (hlen <= sizeof(struct tcphdr)) return (0); if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) return (0); opt = hdr + sizeof(struct tcphdr); hlen -= sizeof(struct tcphdr); while (hlen >= TCPOLEN_MAXSEG) { switch (*opt) { case TCPOPT_EOL: case TCPOPT_NOP: ++opt; --hlen; break; case TCPOPT_MAXSEG: bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); NTOHS(mss); /* FALLTHROUGH */ default: optlen = opt[1]; if (optlen < 2) optlen = 2; hlen -= optlen; opt += optlen; break; } } return (mss); } static u_int16_t pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) { struct nhop_object *nh; #ifdef INET6 struct in6_addr dst6; uint32_t scopeid; #endif /* INET6 */ int hlen = 0; uint16_t mss = 0; NET_EPOCH_ASSERT(); switch (af) { #ifdef INET case AF_INET: hlen = sizeof(struct ip); nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); if (nh != NULL) mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); break; #endif /* INET */ #ifdef INET6 case AF_INET6: hlen = sizeof(struct ip6_hdr); in6_splitscope(&addr->v6, &dst6, &scopeid); nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); if (nh != NULL) mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); break; #endif /* INET6 */ } mss = max(V_tcp_mssdflt, mss); mss = min(mss, offer); mss = max(mss, 64); /* sanity - at least max opt space */ return (mss); } static u_int32_t pf_tcp_iss(struct pf_pdesc *pd) { MD5_CTX ctx; u_int32_t digest[4]; if (V_pf_tcp_secret_init == 0) { arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); MD5Init(&V_pf_tcp_secret_ctx); MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); V_pf_tcp_secret_init = 1; } ctx = V_pf_tcp_secret_ctx; MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); if (pd->af == AF_INET6) { MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); } else { MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); } MD5Final((u_char *)digest, &ctx); V_pf_tcp_iss_off += 4096; #define ISN_RANDOM_INCREMENT (4096 - 1) return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + V_pf_tcp_iss_off); #undef ISN_RANDOM_INCREMENT } static int pf_test_rule(struct pf_krule **rm, struct pf_state **sm, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) { struct pf_krule *nr = NULL; struct pf_addr * const saddr = pd->src; struct pf_addr * const daddr = pd->dst; sa_family_t af = pd->af; struct pf_krule *r, *a = NULL; struct pf_kruleset *ruleset = NULL; struct pf_ksrc_node *nsn = NULL; struct tcphdr *th = pd->hdr.tcp; struct pf_state_key *sk = NULL, *nk = NULL; u_short reason; int rewrite = 0, hdrlen = 0; int tag = -1, rtableid = -1; int asd = 0; int match = 0; int state_icmp = 0; u_int16_t sport = 0, dport = 0; u_int16_t bproto_sum = 0, bip_sum = 0; u_int8_t icmptype = 0, icmpcode = 0; struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; PF_RULES_RASSERT(); if (inp != NULL) { INP_LOCK_ASSERT(inp); pd->lookup.uid = inp->inp_cred->cr_uid; pd->lookup.gid = inp->inp_cred->cr_groups[0]; pd->lookup.done = 1; } switch (pd->proto) { case IPPROTO_TCP: sport = th->th_sport; dport = th->th_dport; hdrlen = sizeof(*th); break; case IPPROTO_UDP: sport = pd->hdr.udp->uh_sport; dport = pd->hdr.udp->uh_dport; hdrlen = sizeof(*pd->hdr.udp); break; #ifdef INET case IPPROTO_ICMP: if (pd->af != AF_INET) break; sport = dport = pd->hdr.icmp->icmp_id; hdrlen = sizeof(*pd->hdr.icmp); icmptype = pd->hdr.icmp->icmp_type; icmpcode = pd->hdr.icmp->icmp_code; if (icmptype == ICMP_UNREACH || icmptype == ICMP_SOURCEQUENCH || icmptype == ICMP_REDIRECT || icmptype == ICMP_TIMXCEED || icmptype == ICMP_PARAMPROB) state_icmp++; break; #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: if (af != AF_INET6) break; sport = dport = pd->hdr.icmp6->icmp6_id; hdrlen = sizeof(*pd->hdr.icmp6); icmptype = pd->hdr.icmp6->icmp6_type; icmpcode = pd->hdr.icmp6->icmp6_code; if (icmptype == ICMP6_DST_UNREACH || icmptype == ICMP6_PACKET_TOO_BIG || icmptype == ICMP6_TIME_EXCEEDED || icmptype == ICMP6_PARAM_PROB) state_icmp++; break; #endif /* INET6 */ default: sport = dport = hdrlen = 0; break; } r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); /* check packet for BINAT/NAT/RDR */ if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { KASSERT(sk != NULL, ("%s: null sk", __func__)); KASSERT(nk != NULL, ("%s: null nk", __func__)); if (pd->ip_sum) bip_sum = *pd->ip_sum; switch (pd->proto) { case IPPROTO_TCP: bproto_sum = th->th_sum; pd->proto_sum = &th->th_sum; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || nk->port[pd->sidx] != sport) { pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 0, af); pd->sport = &th->th_sport; sport = th->th_sport; } if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || nk->port[pd->didx] != dport) { pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], nk->port[pd->didx], 0, af); dport = th->th_dport; pd->dport = &th->th_dport; } rewrite++; break; case IPPROTO_UDP: bproto_sum = pd->hdr.udp->uh_sum; pd->proto_sum = &pd->hdr.udp->uh_sum; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || nk->port[pd->sidx] != sport) { pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, pd->ip_sum, &pd->hdr.udp->uh_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 1, af); sport = pd->hdr.udp->uh_sport; pd->sport = &pd->hdr.udp->uh_sport; } if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || nk->port[pd->didx] != dport) { pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, pd->ip_sum, &pd->hdr.udp->uh_sum, &nk->addr[pd->didx], nk->port[pd->didx], 1, af); dport = pd->hdr.udp->uh_dport; pd->dport = &pd->hdr.udp->uh_dport; } rewrite++; break; #ifdef INET case IPPROTO_ICMP: nk->port[0] = nk->port[1]; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&saddr->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) pf_change_a(&daddr->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); if (nk->port[1] != pd->hdr.icmp->icmp_id) { pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( pd->hdr.icmp->icmp_cksum, sport, nk->port[1], 0); pd->hdr.icmp->icmp_id = nk->port[1]; pd->sport = &pd->hdr.icmp->icmp_id; } m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); break; #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: nk->port[0] = nk->port[1]; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, &nk->addr[pd->sidx], 0); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, &nk->addr[pd->didx], 0); rewrite++; break; #endif /* INET */ default: switch (af) { #ifdef INET case AF_INET: if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&saddr->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) pf_change_a(&daddr->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) PF_ACPY(saddr, &nk->addr[pd->sidx], af); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) PF_ACPY(daddr, &nk->addr[pd->didx], af); break; #endif /* INET */ } break; } if (nr->natpass) r = NULL; pd->nat_rule = nr; } while (r != NULL) { counter_u64_add(r->evaluations, 1); if (pfi_kkif_match(r->kif, kif) == r->ifnot) r = r->skip[PF_SKIP_IFP].ptr; else if (r->direction && r->direction != direction) r = r->skip[PF_SKIP_DIR].ptr; else if (r->af && r->af != af) r = r->skip[PF_SKIP_AF].ptr; else if (r->proto && r->proto != pd->proto) r = r->skip[PF_SKIP_PROTO].ptr; else if (PF_MISMATCHAW(&r->src.addr, saddr, af, r->src.neg, kif, M_GETFIB(m))) r = r->skip[PF_SKIP_SRC_ADDR].ptr; /* tcp/udp only. port_op always 0 in other cases */ else if (r->src.port_op && !pf_match_port(r->src.port_op, r->src.port[0], r->src.port[1], sport)) r = r->skip[PF_SKIP_SRC_PORT].ptr; else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, r->dst.neg, NULL, M_GETFIB(m))) r = r->skip[PF_SKIP_DST_ADDR].ptr; /* tcp/udp only. port_op always 0 in other cases */ else if (r->dst.port_op && !pf_match_port(r->dst.port_op, r->dst.port[0], r->dst.port[1], dport)) r = r->skip[PF_SKIP_DST_PORT].ptr; /* icmp only. type always 0 in other cases */ else if (r->type && r->type != icmptype + 1) r = TAILQ_NEXT(r, entries); /* icmp only. type always 0 in other cases */ else if (r->code && r->code != icmpcode + 1) r = TAILQ_NEXT(r, entries); else if (r->tos && !(r->tos == pd->tos)) r = TAILQ_NEXT(r, entries); else if (r->rule_flag & PFRULE_FRAGMENT) r = TAILQ_NEXT(r, entries); else if (pd->proto == IPPROTO_TCP && (r->flagset & th->th_flags) != r->flags) r = TAILQ_NEXT(r, entries); /* tcp/udp only. uid.op always 0 in other cases */ else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = pf_socket_lookup(direction, pd, m), 1)) && !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], pd->lookup.uid)) r = TAILQ_NEXT(r, entries); /* tcp/udp only. gid.op always 0 in other cases */ else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = pf_socket_lookup(direction, pd, m), 1)) && !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], pd->lookup.gid)) r = TAILQ_NEXT(r, entries); else if (r->prio && !pf_match_ieee8021q_pcp(r->prio, m)) r = TAILQ_NEXT(r, entries); else if (r->prob && r->prob <= arc4random()) r = TAILQ_NEXT(r, entries); else if (r->match_tag && !pf_match_tag(m, r, &tag, pd->pf_mtag ? pd->pf_mtag->tag : 0)) r = TAILQ_NEXT(r, entries); else if (r->os_fingerprint != PF_OSFP_ANY && (pd->proto != IPPROTO_TCP || !pf_osfp_match( pf_osfp_fingerprint(pd, m, off, th), r->os_fingerprint))) r = TAILQ_NEXT(r, entries); else { if (r->tag) tag = r->tag; if (r->rtableid >= 0) rtableid = r->rtableid; if (r->anchor == NULL) { match = 1; *rm = r; *am = a; *rsm = ruleset; if ((*rm)->quick) break; r = TAILQ_NEXT(r, entries); } else pf_step_into_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match); } if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match)) break; } r = *rm; a = *am; ruleset = *rsm; REASON_SET(&reason, PFRES_MATCH); if (r->log || (nr != NULL && nr->log)) { if (rewrite) m_copyback(m, off, hdrlen, pd->hdr.any); PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, ruleset, pd, 1); } if ((r->action == PF_DROP) && ((r->rule_flag & PFRULE_RETURNRST) || (r->rule_flag & PFRULE_RETURNICMP) || (r->rule_flag & PFRULE_RETURN))) { pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, bip_sum, hdrlen, &reason); } if (r->action == PF_DROP) goto cleanup; if (tag > 0 && pf_tag_packet(m, pd, tag)) { REASON_SET(&reason, PFRES_MEMORY); goto cleanup; } if (rtableid >= 0) M_SETFIB(m, rtableid); if (!state_icmp && (r->keep_state || nr != NULL || (pd->flags & PFDESC_TCP_NORM))) { int action; action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, hdrlen); if (action != PF_PASS) { if (action == PF_DROP && (r->rule_flag & PFRULE_RETURN)) pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, bip_sum, hdrlen, &reason); return (action); } } else { if (sk != NULL) uma_zfree(V_pf_state_key_z, sk); if (nk != NULL) uma_zfree(V_pf_state_key_z, nk); } /* copy back packet headers if we performed NAT operations */ if (rewrite) m_copyback(m, off, hdrlen, pd->hdr.any); if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && direction == PF_OUT && V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) /* * We want the state created, but we dont * want to send this in case a partner * firewall has to know about it to allow * replies through it. */ return (PF_DEFER); return (PF_PASS); cleanup: if (sk != NULL) uma_zfree(V_pf_state_key_z, sk); if (nk != NULL) uma_zfree(V_pf_state_key_z, nk); return (PF_DROP); } static int pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_state **sm, int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) { struct pf_state *s = NULL; struct pf_ksrc_node *sn = NULL; struct tcphdr *th = pd->hdr.tcp; u_int16_t mss = V_tcp_mssdflt; u_short reason; /* check maximums */ if (r->max_states && (counter_u64_fetch(r->states_cur) >= r->max_states)) { counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); REASON_SET(&reason, PFRES_MAXSTATES); goto csfailed; } /* src node for filter rule */ if ((r->rule_flag & PFRULE_SRCTRACK || r->rpool.opts & PF_POOL_STICKYADDR) && pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { REASON_SET(&reason, PFRES_SRCLIMIT); goto csfailed; } /* src node for translation rule */ if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { REASON_SET(&reason, PFRES_SRCLIMIT); goto csfailed; } s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); if (s == NULL) { REASON_SET(&reason, PFRES_MEMORY); goto csfailed; } for (int i = 0; i < 2; i++) { s->bytes[i] = counter_u64_alloc(M_NOWAIT); s->packets[i] = counter_u64_alloc(M_NOWAIT); if (s->bytes[i] == NULL || s->packets[i] == NULL) { pf_free_state(s); REASON_SET(&reason, PFRES_MEMORY); goto csfailed; } } s->rule.ptr = r; s->nat_rule.ptr = nr; s->anchor.ptr = a; STATE_INC_COUNTERS(s); if (r->allow_opts) s->state_flags |= PFSTATE_ALLOWOPTS; if (r->rule_flag & PFRULE_STATESLOPPY) s->state_flags |= PFSTATE_SLOPPY; s->log = r->log & PF_LOG_ALL; s->sync_state = PFSYNC_S_NONE; if (nr != NULL) s->log |= nr->log & PF_LOG_ALL; switch (pd->proto) { case IPPROTO_TCP: s->src.seqlo = ntohl(th->th_seq); s->src.seqhi = s->src.seqlo + pd->p_len + 1; if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && r->keep_state == PF_STATE_MODULATE) { /* Generate sequence number modulator */ if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 0) s->src.seqdiff = 1; pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(s->src.seqlo + s->src.seqdiff), 0); *rewrite = 1; } else s->src.seqdiff = 0; if (th->th_flags & TH_SYN) { s->src.seqhi++; s->src.wscale = pf_get_wscale(m, off, th->th_off, pd->af); } s->src.max_win = MAX(ntohs(th->th_win), 1); if (s->src.wscale & PF_WSCALE_MASK) { /* Remove scale factor from initial window */ int win = s->src.max_win; win += 1 << (s->src.wscale & PF_WSCALE_MASK); s->src.max_win = (win - 1) >> (s->src.wscale & PF_WSCALE_MASK); } if (th->th_flags & TH_FIN) s->src.seqhi++; s->dst.seqhi = 1; s->dst.max_win = 1; s->src.state = TCPS_SYN_SENT; s->dst.state = TCPS_CLOSED; s->timeout = PFTM_TCP_FIRST_PACKET; break; case IPPROTO_UDP: s->src.state = PFUDPS_SINGLE; s->dst.state = PFUDPS_NO_TRAFFIC; s->timeout = PFTM_UDP_FIRST_PACKET; break; case IPPROTO_ICMP: #ifdef INET6 case IPPROTO_ICMPV6: #endif s->timeout = PFTM_ICMP_FIRST_PACKET; break; default: s->src.state = PFOTHERS_SINGLE; s->dst.state = PFOTHERS_NO_TRAFFIC; s->timeout = PFTM_OTHER_FIRST_PACKET; } if (r->rt) { if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { REASON_SET(&reason, PFRES_MAPFAILED); pf_src_tree_remove_state(s); STATE_DEC_COUNTERS(s); uma_zfree(V_pf_state_z, s); goto csfailed; } s->rt_kif = r->rpool.cur->kif; } s->creation = time_uptime; s->expire = time_uptime; if (sn != NULL) s->src_node = sn; if (nsn != NULL) { /* XXX We only modify one side for now. */ PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); s->nat_src_node = nsn; } if (pd->proto == IPPROTO_TCP) { if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { REASON_SET(&reason, PFRES_MEMORY); pf_src_tree_remove_state(s); STATE_DEC_COUNTERS(s); uma_zfree(V_pf_state_z, s); return (PF_DROP); } if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, &s->src, &s->dst, rewrite)) { /* This really shouldn't happen!!! */ DPFPRINTF(PF_DEBUG_URGENT, ("pf_normalize_tcp_stateful failed on first " "pkt\n")); pf_normalize_tcp_cleanup(s); pf_src_tree_remove_state(s); STATE_DEC_COUNTERS(s); uma_zfree(V_pf_state_z, s); return (PF_DROP); } } s->direction = pd->dir; /* * sk/nk could already been setup by pf_get_translation(). */ if (nr == NULL) { KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", __func__, nr, sk, nk)); sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); if (sk == NULL) goto csfailed; nk = sk; } else KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", __func__, nr, sk, nk)); /* Swap sk/nk for PF_OUT. */ - if (pf_state_insert(BOUND_IFACE(r, kif), + if (pf_state_insert(BOUND_IFACE(r, kif), kif, (pd->dir == PF_IN) ? sk : nk, (pd->dir == PF_IN) ? nk : sk, s)) { if (pd->proto == IPPROTO_TCP) pf_normalize_tcp_cleanup(s); REASON_SET(&reason, PFRES_STATEINS); pf_src_tree_remove_state(s); STATE_DEC_COUNTERS(s); uma_zfree(V_pf_state_z, s); return (PF_DROP); } else *sm = s; if (tag > 0) s->tag = tag; if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { s->src.state = PF_TCPS_PROXY_SRC; /* undo NAT changes, if they have taken place */ if (nr != NULL) { struct pf_state_key *skt = s->key[PF_SK_WIRE]; if (pd->dir == PF_OUT) skt = s->key[PF_SK_STACK]; PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); if (pd->sport) *pd->sport = skt->port[pd->sidx]; if (pd->dport) *pd->dport = skt->port[pd->didx]; if (pd->proto_sum) *pd->proto_sum = bproto_sum; if (pd->ip_sum) *pd->ip_sum = bip_sum; m_copyback(m, off, hdrlen, pd->hdr.any); } s->src.seqhi = htonl(arc4random()); /* Find mss option */ int rtid = M_GETFIB(m); mss = pf_get_mss(m, off, th->th_off, pd->af); mss = pf_calc_mss(pd->src, pd->af, rtid, mss); mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); s->src.mss = mss; pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); REASON_SET(&reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } return (PF_PASS); csfailed: if (sk != NULL) uma_zfree(V_pf_state_key_z, sk); if (nk != NULL) uma_zfree(V_pf_state_key_z, nk); if (sn != NULL) { struct pf_srchash *sh; sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; PF_HASHROW_LOCK(sh); if (--sn->states == 0 && sn->expire == 0) { pf_unlink_src_node(sn); uma_zfree(V_pf_sources_z, sn); counter_u64_add( V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); } PF_HASHROW_UNLOCK(sh); } if (nsn != sn && nsn != NULL) { struct pf_srchash *sh; sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; PF_HASHROW_LOCK(sh); if (--nsn->states == 0 && nsn->expire == 0) { pf_unlink_src_node(nsn); uma_zfree(V_pf_sources_z, nsn); counter_u64_add( V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); } PF_HASHROW_UNLOCK(sh); } return (PF_DROP); } static int pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, struct pf_kruleset **rsm) { struct pf_krule *r, *a = NULL; struct pf_kruleset *ruleset = NULL; sa_family_t af = pd->af; u_short reason; int tag = -1; int asd = 0; int match = 0; struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; PF_RULES_RASSERT(); r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); while (r != NULL) { counter_u64_add(r->evaluations, 1); if (pfi_kkif_match(r->kif, kif) == r->ifnot) r = r->skip[PF_SKIP_IFP].ptr; else if (r->direction && r->direction != direction) r = r->skip[PF_SKIP_DIR].ptr; else if (r->af && r->af != af) r = r->skip[PF_SKIP_AF].ptr; else if (r->proto && r->proto != pd->proto) r = r->skip[PF_SKIP_PROTO].ptr; else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, r->src.neg, kif, M_GETFIB(m))) r = r->skip[PF_SKIP_SRC_ADDR].ptr; else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, r->dst.neg, NULL, M_GETFIB(m))) r = r->skip[PF_SKIP_DST_ADDR].ptr; else if (r->tos && !(r->tos == pd->tos)) r = TAILQ_NEXT(r, entries); else if (r->os_fingerprint != PF_OSFP_ANY) r = TAILQ_NEXT(r, entries); else if (pd->proto == IPPROTO_UDP && (r->src.port_op || r->dst.port_op)) r = TAILQ_NEXT(r, entries); else if (pd->proto == IPPROTO_TCP && (r->src.port_op || r->dst.port_op || r->flagset)) r = TAILQ_NEXT(r, entries); else if ((pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) && (r->type || r->code)) r = TAILQ_NEXT(r, entries); else if (r->prio && !pf_match_ieee8021q_pcp(r->prio, m)) r = TAILQ_NEXT(r, entries); else if (r->prob && r->prob <= (arc4random() % (UINT_MAX - 1) + 1)) r = TAILQ_NEXT(r, entries); else if (r->match_tag && !pf_match_tag(m, r, &tag, pd->pf_mtag ? pd->pf_mtag->tag : 0)) r = TAILQ_NEXT(r, entries); else { if (r->anchor == NULL) { match = 1; *rm = r; *am = a; *rsm = ruleset; if ((*rm)->quick) break; r = TAILQ_NEXT(r, entries); } else pf_step_into_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match); } if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match)) break; } r = *rm; a = *am; ruleset = *rsm; REASON_SET(&reason, PFRES_MATCH); if (r->log) PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 1); if (r->action != PF_PASS) return (PF_DROP); if (tag > 0 && pf_tag_packet(m, pd, tag)) { REASON_SET(&reason, PFRES_MEMORY); return (PF_DROP); } return (PF_PASS); } static int pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, struct pf_state **state, struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, int *copyback) { struct tcphdr *th = pd->hdr.tcp; u_int16_t win = ntohs(th->th_win); u_int32_t ack, end, seq, orig_seq; u_int8_t sws, dws; int ackskew; if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { sws = src->wscale & PF_WSCALE_MASK; dws = dst->wscale & PF_WSCALE_MASK; } else sws = dws = 0; /* * Sequence tracking algorithm from Guido van Rooij's paper: * http://www.madison-gurkha.com/publications/tcp_filtering/ * tcp_filtering.ps */ orig_seq = seq = ntohl(th->th_seq); if (src->seqlo == 0) { /* First packet from this end. Set its state */ if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && src->scrub == NULL) { if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { REASON_SET(reason, PFRES_MEMORY); return (PF_DROP); } } /* Deferred generation of sequence number modulator */ if (dst->seqdiff && !src->seqdiff) { /* use random iss for the TCP server */ while ((src->seqdiff = arc4random() - seq) == 0) ; ack = ntohl(th->th_ack) - dst->seqdiff; pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + src->seqdiff), 0); pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); *copyback = 1; } else { ack = ntohl(th->th_ack); } end = seq + pd->p_len; if (th->th_flags & TH_SYN) { end++; if (dst->wscale & PF_WSCALE_FLAG) { src->wscale = pf_get_wscale(m, off, th->th_off, pd->af); if (src->wscale & PF_WSCALE_FLAG) { /* Remove scale factor from initial * window */ sws = src->wscale & PF_WSCALE_MASK; win = ((u_int32_t)win + (1 << sws) - 1) >> sws; dws = dst->wscale & PF_WSCALE_MASK; } else { /* fixup other window */ dst->max_win <<= dst->wscale & PF_WSCALE_MASK; /* in case of a retrans SYN|ACK */ dst->wscale = 0; } } } if (th->th_flags & TH_FIN) end++; src->seqlo = seq; if (src->state < TCPS_SYN_SENT) src->state = TCPS_SYN_SENT; /* * May need to slide the window (seqhi may have been set by * the crappy stack check or if we picked up the connection * after establishment) */ if (src->seqhi == 1 || SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) src->seqhi = end + MAX(1, dst->max_win << dws); if (win > src->max_win) src->max_win = win; } else { ack = ntohl(th->th_ack) - dst->seqdiff; if (src->seqdiff) { /* Modulate sequence numbers */ pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + src->seqdiff), 0); pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); *copyback = 1; } end = seq + pd->p_len; if (th->th_flags & TH_SYN) end++; if (th->th_flags & TH_FIN) end++; } if ((th->th_flags & TH_ACK) == 0) { /* Let it pass through the ack skew check */ ack = dst->seqlo; } else if ((ack == 0 && (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || /* broken tcp stacks do not set ack */ (dst->state < TCPS_SYN_SENT)) { /* * Many stacks (ours included) will set the ACK number in an * FIN|ACK if the SYN times out -- no sequence to ACK. */ ack = dst->seqlo; } if (seq == end) { /* Ease sequencing restrictions on no data packets */ seq = src->seqlo; end = seq; } ackskew = dst->seqlo - ack; /* * Need to demodulate the sequence numbers in any TCP SACK options * (Selective ACK). We could optionally validate the SACK values * against the current ACK window, either forwards or backwards, but * I'm not confident that SACK has been implemented properly * everywhere. It wouldn't surprise me if several stacks accidentally * SACK too far backwards of previously ACKed data. There really aren't * any security implications of bad SACKing unless the target stack * doesn't validate the option length correctly. Someone trying to * spoof into a TCP connection won't bother blindly sending SACK * options anyway. */ if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { if (pf_modulate_sack(m, off, pd, th, dst)) *copyback = 1; } #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ if (SEQ_GEQ(src->seqhi, end) && /* Last octet inside other's window space */ SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && /* Retrans: not more than one window back */ (ackskew >= -MAXACKWINDOW) && /* Acking not more than one reassembled fragment backwards */ (ackskew <= (MAXACKWINDOW << sws)) && /* Acking not more than one window forward */ ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || (pd->flags & PFDESC_IP_REAS) == 0)) { /* Require an exact/+1 sequence match on resets when possible */ if (dst->scrub || src->scrub) { if (pf_normalize_tcp_stateful(m, off, pd, reason, th, *state, src, dst, copyback)) return (PF_DROP); } /* update max window */ if (src->max_win < win) src->max_win = win; /* synchronize sequencing */ if (SEQ_GT(end, src->seqlo)) src->seqlo = end; /* slide the window of what the other end can send */ if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) dst->seqhi = ack + MAX((win << sws), 1); /* update states */ if (th->th_flags & TH_SYN) if (src->state < TCPS_SYN_SENT) src->state = TCPS_SYN_SENT; if (th->th_flags & TH_FIN) if (src->state < TCPS_CLOSING) src->state = TCPS_CLOSING; if (th->th_flags & TH_ACK) { if (dst->state == TCPS_SYN_SENT) { dst->state = TCPS_ESTABLISHED; if (src->state == TCPS_ESTABLISHED && (*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } } else if (dst->state == TCPS_CLOSING) dst->state = TCPS_FIN_WAIT_2; } if (th->th_flags & TH_RST) src->state = dst->state = TCPS_TIME_WAIT; /* update expire time */ (*state)->expire = time_uptime; if (src->state >= TCPS_FIN_WAIT_2 && dst->state >= TCPS_FIN_WAIT_2) (*state)->timeout = PFTM_TCP_CLOSED; else if (src->state >= TCPS_CLOSING && dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_FIN_WAIT; else if (src->state < TCPS_ESTABLISHED || dst->state < TCPS_ESTABLISHED) (*state)->timeout = PFTM_TCP_OPENING; else if (src->state >= TCPS_CLOSING || dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_CLOSING; else (*state)->timeout = PFTM_TCP_ESTABLISHED; /* Fall through to PASS packet */ } else if ((dst->state < TCPS_SYN_SENT || dst->state >= TCPS_FIN_WAIT_2 || src->state >= TCPS_FIN_WAIT_2) && SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && /* Within a window forward of the originating packet */ SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { /* Within a window backward of the originating packet */ /* * This currently handles three situations: * 1) Stupid stacks will shotgun SYNs before their peer * replies. * 2) When PF catches an already established stream (the * firewall rebooted, the state table was flushed, routes * changed...) * 3) Packets get funky immediately after the connection * closes (this should catch Solaris spurious ACK|FINs * that web servers like to spew after a close) * * This must be a little more careful than the above code * since packet floods will also be caught here. We don't * update the TTL here to mitigate the damage of a packet * flood and so the same code can handle awkward establishment * and a loosened connection close. * In the establishment case, a correct peer response will * validate the connection, go through the normal state code * and keep updating the state TTL. */ if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: loose state match: "); pf_print_state(*state); pf_print_flags(th->th_flags); printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, pd->p_len, ackskew, (unsigned long long)counter_u64_fetch((*state)->packets[0]), (unsigned long long)counter_u64_fetch((*state)->packets[1]), pd->dir == PF_IN ? "in" : "out", pd->dir == (*state)->direction ? "fwd" : "rev"); } if (dst->scrub || src->scrub) { if (pf_normalize_tcp_stateful(m, off, pd, reason, th, *state, src, dst, copyback)) return (PF_DROP); } /* update max window */ if (src->max_win < win) src->max_win = win; /* synchronize sequencing */ if (SEQ_GT(end, src->seqlo)) src->seqlo = end; /* slide the window of what the other end can send */ if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) dst->seqhi = ack + MAX((win << sws), 1); /* * Cannot set dst->seqhi here since this could be a shotgunned * SYN and not an already established connection. */ if (th->th_flags & TH_FIN) if (src->state < TCPS_CLOSING) src->state = TCPS_CLOSING; if (th->th_flags & TH_RST) src->state = dst->state = TCPS_TIME_WAIT; /* Fall through to PASS packet */ } else { if ((*state)->dst.state == TCPS_SYN_SENT && (*state)->src.state == TCPS_SYN_SENT) { /* Send RST for state mismatches during handshake */ if (!(th->th_flags & TH_RST)) pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), 0, TH_RST, 0, 0, (*state)->rule.ptr->return_ttl, 1, 0, kif->pfik_ifp); src->seqlo = 0; src->seqhi = 1; src->max_win = 1; } else if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD state: "); pf_print_state(*state); pf_print_flags(th->th_flags); printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, pd->p_len, ackskew, (unsigned long long)counter_u64_fetch((*state)->packets[0]), (unsigned long long)counter_u64_fetch((*state)->packets[1]), pd->dir == PF_IN ? "in" : "out", pd->dir == (*state)->direction ? "fwd" : "rev"); printf("pf: State failure on: %c %c %c %c | %c %c\n", SEQ_GEQ(src->seqhi, end) ? ' ' : '1', SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? ' ': '2', (ackskew >= -MAXACKWINDOW) ? ' ' : '3', (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); } REASON_SET(reason, PFRES_BADSTATE); return (PF_DROP); } return (PF_PASS); } static int pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, struct pf_state **state, struct pf_pdesc *pd, u_short *reason) { struct tcphdr *th = pd->hdr.tcp; if (th->th_flags & TH_SYN) if (src->state < TCPS_SYN_SENT) src->state = TCPS_SYN_SENT; if (th->th_flags & TH_FIN) if (src->state < TCPS_CLOSING) src->state = TCPS_CLOSING; if (th->th_flags & TH_ACK) { if (dst->state == TCPS_SYN_SENT) { dst->state = TCPS_ESTABLISHED; if (src->state == TCPS_ESTABLISHED && (*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } } else if (dst->state == TCPS_CLOSING) { dst->state = TCPS_FIN_WAIT_2; } else if (src->state == TCPS_SYN_SENT && dst->state < TCPS_SYN_SENT) { /* * Handle a special sloppy case where we only see one * half of the connection. If there is a ACK after * the initial SYN without ever seeing a packet from * the destination, set the connection to established. */ dst->state = src->state = TCPS_ESTABLISHED; if ((*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } } else if (src->state == TCPS_CLOSING && dst->state == TCPS_ESTABLISHED && dst->seqlo == 0) { /* * Handle the closing of half connections where we * don't see the full bidirectional FIN/ACK+ACK * handshake. */ dst->state = TCPS_CLOSING; } } if (th->th_flags & TH_RST) src->state = dst->state = TCPS_TIME_WAIT; /* update expire time */ (*state)->expire = time_uptime; if (src->state >= TCPS_FIN_WAIT_2 && dst->state >= TCPS_FIN_WAIT_2) (*state)->timeout = PFTM_TCP_CLOSED; else if (src->state >= TCPS_CLOSING && dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_FIN_WAIT; else if (src->state < TCPS_ESTABLISHED || dst->state < TCPS_ESTABLISHED) (*state)->timeout = PFTM_TCP_OPENING; else if (src->state >= TCPS_CLOSING || dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_CLOSING; else (*state)->timeout = PFTM_TCP_ESTABLISHED; return (PF_PASS); } static int pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) { struct pf_state_key_cmp key; struct tcphdr *th = pd->hdr.tcp; int copyback = 0; struct pf_state_peer *src, *dst; struct pf_state_key *sk; bzero(&key, sizeof(key)); key.af = pd->af; key.proto = IPPROTO_TCP; if (direction == PF_IN) { /* wire side, straight */ PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); key.port[0] = th->th_sport; key.port[1] = th->th_dport; } else { /* stack side, reverse */ PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); key.port[1] = th->th_sport; key.port[0] = th->th_dport; } STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } sk = (*state)->key[pd->didx]; if ((*state)->src.state == PF_TCPS_PROXY_SRC) { if (direction != (*state)->direction) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } if (th->th_flags & TH_SYN) { if (ntohl(th->th_seq) != (*state)->src.seqlo) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, (*state)->src.seqhi, ntohl(th->th_seq) + 1, TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } else if ((*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } else (*state)->src.state = PF_TCPS_PROXY_DST; } if ((*state)->src.state == PF_TCPS_PROXY_DST) { if (direction == (*state)->direction) { if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } (*state)->src.max_win = MAX(ntohs(th->th_win), 1); if ((*state)->dst.seqhi == 1) (*state)->dst.seqhi = htonl(arc4random()); pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, &sk->addr[pd->sidx], &sk->addr[pd->didx], sk->port[pd->sidx], sk->port[pd->didx], (*state)->dst.seqhi, 0, TH_SYN, 0, (*state)->src.mss, 0, 0, (*state)->tag, NULL); REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } else if (((th->th_flags & (TH_SYN|TH_ACK)) != (TH_SYN|TH_ACK)) || (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } else { (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); (*state)->dst.seqlo = ntohl(th->th_seq); pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), ntohl(th->th_seq) + 1, TH_ACK, (*state)->src.max_win, 0, 0, 0, (*state)->tag, NULL); pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, &sk->addr[pd->sidx], &sk->addr[pd->didx], sk->port[pd->sidx], sk->port[pd->didx], (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); (*state)->src.seqdiff = (*state)->dst.seqhi - (*state)->src.seqlo; (*state)->dst.seqdiff = (*state)->src.seqhi - (*state)->dst.seqlo; (*state)->src.seqhi = (*state)->src.seqlo + (*state)->dst.max_win; (*state)->dst.seqhi = (*state)->dst.seqlo + (*state)->src.max_win; (*state)->src.wscale = (*state)->dst.wscale = 0; (*state)->src.state = (*state)->dst.state = TCPS_ESTABLISHED; REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } } if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && dst->state >= TCPS_FIN_WAIT_2 && src->state >= TCPS_FIN_WAIT_2) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: state reuse "); pf_print_state(*state); pf_print_flags(th->th_flags); printf("\n"); } /* XXX make sure it's the same direction ?? */ (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; pf_unlink_state(*state, PF_ENTER_LOCKED); *state = NULL; return (PF_DROP); } if ((*state)->state_flags & PFSTATE_SLOPPY) { if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) return (PF_DROP); } else { if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, ©back) == PF_DROP) return (PF_DROP); } /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || nk->port[pd->sidx] != th->th_sport) pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 0, pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || nk->port[pd->didx] != th->th_dport) pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], nk->port[pd->didx], 0, pd->af); copyback = 1; } /* Copyback sequence modulation or stateful scrub changes if needed */ if (copyback) m_copyback(m, off, sizeof(*th), (caddr_t)th); return (PF_PASS); } static int pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, void *h, struct pf_pdesc *pd) { struct pf_state_peer *src, *dst; struct pf_state_key_cmp key; struct udphdr *uh = pd->hdr.udp; bzero(&key, sizeof(key)); key.af = pd->af; key.proto = IPPROTO_UDP; if (direction == PF_IN) { /* wire side, straight */ PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); key.port[0] = uh->uh_sport; key.port[1] = uh->uh_dport; } else { /* stack side, reverse */ PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); key.port[1] = uh->uh_sport; key.port[0] = uh->uh_dport; } STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } /* update states */ if (src->state < PFUDPS_SINGLE) src->state = PFUDPS_SINGLE; if (dst->state == PFUDPS_SINGLE) dst->state = PFUDPS_MULTIPLE; /* update expire time */ (*state)->expire = time_uptime; if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) (*state)->timeout = PFTM_UDP_MULTIPLE; else (*state)->timeout = PFTM_UDP_SINGLE; /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || nk->port[pd->sidx] != uh->uh_sport) pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, &uh->uh_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 1, pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || nk->port[pd->didx] != uh->uh_dport) pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, &uh->uh_sum, &nk->addr[pd->didx], nk->port[pd->didx], 1, pd->af); m_copyback(m, off, sizeof(*uh), (caddr_t)uh); } return (PF_PASS); } static int pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) { struct pf_addr *saddr = pd->src, *daddr = pd->dst; u_int16_t icmpid = 0, *icmpsum; u_int8_t icmptype, icmpcode; int state_icmp = 0; struct pf_state_key_cmp key; bzero(&key, sizeof(key)); switch (pd->proto) { #ifdef INET case IPPROTO_ICMP: icmptype = pd->hdr.icmp->icmp_type; icmpcode = pd->hdr.icmp->icmp_code; icmpid = pd->hdr.icmp->icmp_id; icmpsum = &pd->hdr.icmp->icmp_cksum; if (icmptype == ICMP_UNREACH || icmptype == ICMP_SOURCEQUENCH || icmptype == ICMP_REDIRECT || icmptype == ICMP_TIMXCEED || icmptype == ICMP_PARAMPROB) state_icmp++; break; #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: icmptype = pd->hdr.icmp6->icmp6_type; icmpcode = pd->hdr.icmp6->icmp6_code; icmpid = pd->hdr.icmp6->icmp6_id; icmpsum = &pd->hdr.icmp6->icmp6_cksum; if (icmptype == ICMP6_DST_UNREACH || icmptype == ICMP6_PACKET_TOO_BIG || icmptype == ICMP6_TIME_EXCEEDED || icmptype == ICMP6_PARAM_PROB) state_icmp++; break; #endif /* INET6 */ } if (!state_icmp) { /* * ICMP query/reply message not related to a TCP/UDP packet. * Search for an ICMP state. */ key.af = pd->af; key.proto = pd->proto; key.port[0] = key.port[1] = icmpid; if (direction == PF_IN) { /* wire side, straight */ PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); } else { /* stack side, reverse */ PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); } STATE_LOOKUP(kif, &key, direction, *state, pd); (*state)->expire = time_uptime; (*state)->timeout = PFTM_ICMP_ERROR_REPLY; /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; switch (pd->af) { #ifdef INET case AF_INET: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&saddr->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) pf_change_a(&daddr->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); if (nk->port[0] != pd->hdr.icmp->icmp_id) { pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( pd->hdr.icmp->icmp_cksum, icmpid, nk->port[pd->sidx], 0); pd->hdr.icmp->icmp_id = nk->port[pd->sidx]; } m_copyback(m, off, ICMP_MINLEN, (caddr_t )pd->hdr.icmp); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, &nk->addr[pd->sidx], 0); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, &nk->addr[pd->didx], 0); m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )pd->hdr.icmp6); break; #endif /* INET6 */ } } return (PF_PASS); } else { /* * ICMP error message in response to a TCP/UDP packet. * Extract the inner TCP/UDP header and search for that state. */ struct pf_pdesc pd2; bzero(&pd2, sizeof pd2); #ifdef INET struct ip h2; #endif /* INET */ #ifdef INET6 struct ip6_hdr h2_6; int terminal = 0; #endif /* INET6 */ int ipoff2 = 0; int off2 = 0; pd2.af = pd->af; /* Payload packet is from the opposite direction. */ pd2.sidx = (direction == PF_IN) ? 1 : 0; pd2.didx = (direction == PF_IN) ? 0 : 1; switch (pd->af) { #ifdef INET case AF_INET: /* offset of h2 in mbuf chain */ ipoff2 = off + ICMP_MINLEN; if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(ip)\n")); return (PF_DROP); } /* * ICMP error messages don't refer to non-first * fragments */ if (h2.ip_off & htons(IP_OFFMASK)) { REASON_SET(reason, PFRES_FRAG); return (PF_DROP); } /* offset of protocol header that follows h2 */ off2 = ipoff2 + (h2.ip_hl << 2); pd2.proto = h2.ip_p; pd2.src = (struct pf_addr *)&h2.ip_src; pd2.dst = (struct pf_addr *)&h2.ip_dst; pd2.ip_sum = &h2.ip_sum; break; #endif /* INET */ #ifdef INET6 case AF_INET6: ipoff2 = off + sizeof(struct icmp6_hdr); if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(ip6)\n")); return (PF_DROP); } pd2.proto = h2_6.ip6_nxt; pd2.src = (struct pf_addr *)&h2_6.ip6_src; pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; pd2.ip_sum = NULL; off2 = ipoff2 + sizeof(h2_6); do { switch (pd2.proto) { case IPPROTO_FRAGMENT: /* * ICMPv6 error messages for * non-first fragments */ REASON_SET(reason, PFRES_FRAG); return (PF_DROP); case IPPROTO_AH: case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: { /* get next header and header length */ struct ip6_ext opt6; if (!pf_pull_hdr(m, off2, &opt6, sizeof(opt6), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMPv6 short opt\n")); return (PF_DROP); } if (pd2.proto == IPPROTO_AH) off2 += (opt6.ip6e_len + 2) * 4; else off2 += (opt6.ip6e_len + 1) * 8; pd2.proto = opt6.ip6e_nxt; /* goto the next header */ break; } default: terminal++; break; } } while (!terminal); break; #endif /* INET6 */ } if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD ICMP %d:%d outer dst: ", icmptype, icmpcode); pf_print_host(pd->src, 0, pd->af); printf(" -> "); pf_print_host(pd->dst, 0, pd->af); printf(" inner src: "); pf_print_host(pd2.src, 0, pd2.af); printf(" -> "); pf_print_host(pd2.dst, 0, pd2.af); printf("\n"); } REASON_SET(reason, PFRES_BADSTATE); return (PF_DROP); } switch (pd2.proto) { case IPPROTO_TCP: { struct tcphdr th; u_int32_t seq; struct pf_state_peer *src, *dst; u_int8_t dws; int copyback = 0; /* * Only the first 8 bytes of the TCP header can be * expected. Don't access any TCP header fields after * th_seq, an ackskew test is not possible. */ if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(tcp)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_TCP; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[pd2.sidx] = th.th_sport; key.port[pd2.didx] = th.th_dport; STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->dst; dst = &(*state)->src; } else { src = &(*state)->src; dst = &(*state)->dst; } if (src->wscale && dst->wscale) dws = dst->wscale & PF_WSCALE_MASK; else dws = 0; /* Demodulate sequence number */ seq = ntohl(th.th_seq) - src->seqdiff; if (src->seqdiff) { pf_change_a(&th.th_seq, icmpsum, htonl(seq), 0); copyback = 1; } if (!((*state)->state_flags & PFSTATE_SLOPPY) && (!SEQ_GEQ(src->seqhi, seq) || !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD ICMP %d:%d ", icmptype, icmpcode); pf_print_host(pd->src, 0, pd->af); printf(" -> "); pf_print_host(pd->dst, 0, pd->af); printf(" state: "); pf_print_state(*state); printf(" seq=%u\n", seq); } REASON_SET(reason, PFRES_BADSTATE); return (PF_DROP); } else { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: OK ICMP %d:%d ", icmptype, icmpcode); pf_print_host(pd->src, 0, pd->af); printf(" -> "); pf_print_host(pd->dst, 0, pd->af); printf(" state: "); pf_print_state(*state); printf(" seq=%u\n", seq); } } /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != th.th_sport) pf_change_icmp(pd2.src, &th.th_sport, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != th.th_dport) pf_change_icmp(pd2.dst, &th.th_dport, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); copyback = 1; } if (copyback) { switch (pd2.af) { #ifdef INET case AF_INET: m_copyback(m, off, ICMP_MINLEN, (caddr_t )pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t )&h2); break; #endif /* INET */ #ifdef INET6 case AF_INET6: m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t )&h2_6); break; #endif /* INET6 */ } m_copyback(m, off2, 8, (caddr_t)&th); } return (PF_PASS); break; } case IPPROTO_UDP: { struct udphdr uh; if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(udp)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_UDP; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[pd2.sidx] = uh.uh_sport; key.port[pd2.didx] = uh.uh_dport; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != uh.uh_sport) pf_change_icmp(pd2.src, &uh.uh_sport, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], &uh.uh_sum, pd2.ip_sum, icmpsum, pd->ip_sum, 1, pd2.af); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != uh.uh_dport) pf_change_icmp(pd2.dst, &uh.uh_dport, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], &uh.uh_sum, pd2.ip_sum, icmpsum, pd->ip_sum, 1, pd2.af); switch (pd2.af) { #ifdef INET case AF_INET: m_copyback(m, off, ICMP_MINLEN, (caddr_t )pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); break; #endif /* INET */ #ifdef INET6 case AF_INET6: m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t )&h2_6); break; #endif /* INET6 */ } m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); } return (PF_PASS); break; } #ifdef INET case IPPROTO_ICMP: { struct icmp iih; if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short i" "(icmp)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_ICMP; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[0] = key.port[1] = iih.icmp_id; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != iih.icmp_id) pf_change_icmp(pd2.src, &iih.icmp_id, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != iih.icmp_id) pf_change_icmp(pd2.dst, &iih.icmp_id, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET); m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); } return (PF_PASS); break; } #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: { struct icmp6_hdr iih; if (!pf_pull_hdr(m, off2, &iih, sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(icmp6)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_ICMPV6; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[0] = key.port[1] = iih.icmp6_id; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != iih.icmp6_id) pf_change_icmp(pd2.src, &iih.icmp6_id, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET6); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != iih.icmp6_id) pf_change_icmp(pd2.dst, &iih.icmp6_id, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET6); m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t)pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); m_copyback(m, off2, sizeof(struct icmp6_hdr), (caddr_t)&iih); } return (PF_PASS); break; } #endif /* INET6 */ default: { key.af = pd2.af; key.proto = pd2.proto; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[0] = key.port[1] = 0; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af)) pf_change_icmp(pd2.src, NULL, daddr, &nk->addr[pd2.sidx], 0, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af)) pf_change_icmp(pd2.dst, NULL, saddr, &nk->addr[pd2.didx], 0, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); switch (pd2.af) { #ifdef INET case AF_INET: m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); break; #endif /* INET */ #ifdef INET6 case AF_INET6: m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t )&h2_6); break; #endif /* INET6 */ } } return (PF_PASS); break; } } } } static int pf_test_state_other(struct pf_state **state, int direction, struct pfi_kkif *kif, struct mbuf *m, struct pf_pdesc *pd) { struct pf_state_peer *src, *dst; struct pf_state_key_cmp key; bzero(&key, sizeof(key)); key.af = pd->af; key.proto = pd->proto; if (direction == PF_IN) { PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); key.port[0] = key.port[1] = 0; } else { PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); key.port[1] = key.port[0] = 0; } STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } /* update states */ if (src->state < PFOTHERS_SINGLE) src->state = PFOTHERS_SINGLE; if (dst->state == PFOTHERS_SINGLE) dst->state = PFOTHERS_MULTIPLE; /* update expire time */ (*state)->expire = time_uptime; if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) (*state)->timeout = PFTM_OTHER_MULTIPLE; else (*state)->timeout = PFTM_OTHER_SINGLE; /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; KASSERT(nk, ("%s: nk is null", __func__)); KASSERT(pd, ("%s: pd is null", __func__)); KASSERT(pd->src, ("%s: pd->src is null", __func__)); KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); switch (pd->af) { #ifdef INET case AF_INET: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); #endif /* INET6 */ } } return (PF_PASS); } /* * ipoff and off are measured from the start of the mbuf chain. * h must be at "ipoff" on the mbuf chain. */ void * pf_pull_hdr(struct mbuf *m, int off, void *p, int len, u_short *actionp, u_short *reasonp, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: { struct ip *h = mtod(m, struct ip *); u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; if (fragoff) { if (fragoff >= len) ACTION_SET(actionp, PF_PASS); else { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_FRAG); } return (NULL); } if (m->m_pkthdr.len < off + len || ntohs(h->ip_len) < off + len) { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_SHORT); return (NULL); } break; } #endif /* INET */ #ifdef INET6 case AF_INET6: { struct ip6_hdr *h = mtod(m, struct ip6_hdr *); if (m->m_pkthdr.len < off + len || (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < (unsigned)(off + len)) { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_SHORT); return (NULL); } break; } #endif /* INET6 */ } m_copydata(m, off, len, p); return (p); } int pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, int rtableid) { struct ifnet *ifp; /* * Skip check for addresses with embedded interface scope, * as they would always match anyway. */ if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) return (1); if (af != AF_INET && af != AF_INET6) return (0); /* Skip checks for ipsec interfaces */ if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) return (1); ifp = (kif != NULL) ? kif->pfik_ifp : NULL; switch (af) { #ifdef INET6 case AF_INET6: return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, ifp)); #endif #ifdef INET case AF_INET: return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, ifp)); #endif } return (0); } #ifdef INET static void pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) { struct mbuf *m0, *m1; struct sockaddr_in dst; struct ip *ip; struct ifnet *ifp = NULL; struct pf_addr naddr; struct pf_ksrc_node *sn = NULL; int error = 0; uint16_t ip_len, ip_off; KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", __func__)); if ((pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || pd->pf_mtag->routed++ > 3) { m0 = *m; *m = NULL; goto bad_locked; } if (r->rt == PF_DUPTO) { if ((pd->pf_mtag->flags & PF_DUPLICATED)) { if (s == NULL) { ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; PF_STATE_UNLOCK(s); } if (ifp == oifp) { /* When the 2nd interface is not skipped */ return; } else { m0 = *m; *m = NULL; goto bad; } } else { pd->pf_mtag->flags |= PF_DUPLICATED; if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { if (s) PF_STATE_UNLOCK(s); return; } } } else { if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { if (s) PF_STATE_UNLOCK(s); return; } m0 = *m; } ip = mtod(m0, struct ip *); bzero(&dst, sizeof(dst)); dst.sin_family = AF_INET; dst.sin_len = sizeof(dst); dst.sin_addr = ip->ip_dst; bzero(&naddr, sizeof(naddr)); if (TAILQ_EMPTY(&r->rpool.list)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); goto bad_locked; } if (s == NULL) { pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, &naddr, NULL, &sn); if (!PF_AZERO(&naddr, AF_INET)) dst.sin_addr.s_addr = naddr.v4.s_addr; ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { if (!PF_AZERO(&s->rt_addr, AF_INET)) dst.sin_addr.s_addr = s->rt_addr.v4.s_addr; ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; PF_STATE_UNLOCK(s); } if (ifp == NULL) goto bad; if (dir == PF_IN) { if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) goto bad; else if (m0 == NULL) goto done; if (m0->m_len < sizeof(struct ip)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); goto bad; } ip = mtod(m0, struct ip *); } if (ifp->if_flags & IFF_LOOPBACK) m0->m_flags |= M_SKIP_FIREWALL; ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); /* Copied from FreeBSD 10.0-CURRENT ip_output. */ m0->m_pkthdr.csum_flags |= CSUM_IP; if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) goto done; in_delayed_cksum(m0); m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #if defined(SCTP) || defined(SCTP_SUPPORT) if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) goto done; sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif /* * If small enough for interface, or the interface will take * care of the fragmentation for us, we can just send directly. */ if (ip_len <= ifp->if_mtu || (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { ip->ip_sum = 0; if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); m0->m_pkthdr.csum_flags &= ~CSUM_IP; } m_clrprotoflags(m0); /* Avoid confusing lower layers. */ error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); goto done; } /* Balk when DF bit is set or the interface didn't support TSO. */ if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { error = EMSGSIZE; KMOD_IPSTAT_INC(ips_cantfrag); if (r->rt != PF_DUPTO) { icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, ifp->if_mtu); goto done; } else goto bad; } error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); if (error) goto bad; for (; m0; m0 = m1) { m1 = m0->m_nextpkt; m0->m_nextpkt = NULL; if (error == 0) { m_clrprotoflags(m0); error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); } else m_freem(m0); } if (error == 0) KMOD_IPSTAT_INC(ips_fragmented); done: if (r->rt != PF_DUPTO) *m = NULL; return; bad_locked: if (s) PF_STATE_UNLOCK(s); bad: m_freem(m0); goto done; } #endif /* INET */ #ifdef INET6 static void pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) { struct mbuf *m0; struct sockaddr_in6 dst; struct ip6_hdr *ip6; struct ifnet *ifp = NULL; struct pf_addr naddr; struct pf_ksrc_node *sn = NULL; KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", __func__)); if ((pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || pd->pf_mtag->routed++ > 3) { m0 = *m; *m = NULL; goto bad_locked; } if (r->rt == PF_DUPTO) { if ((pd->pf_mtag->flags & PF_DUPLICATED)) { if (s == NULL) { ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; PF_STATE_UNLOCK(s); } if (ifp == oifp) { /* When the 2nd interface is not skipped */ return; } else { m0 = *m; *m = NULL; goto bad; } } else { pd->pf_mtag->flags |= PF_DUPLICATED; if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { if (s) PF_STATE_UNLOCK(s); return; } } } else { if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { if (s) PF_STATE_UNLOCK(s); return; } m0 = *m; } ip6 = mtod(m0, struct ip6_hdr *); bzero(&dst, sizeof(dst)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(dst); dst.sin6_addr = ip6->ip6_dst; bzero(&naddr, sizeof(naddr)); if (TAILQ_EMPTY(&r->rpool.list)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); goto bad_locked; } if (s == NULL) { pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, &naddr, NULL, &sn); if (!PF_AZERO(&naddr, AF_INET6)) PF_ACPY((struct pf_addr *)&dst.sin6_addr, &naddr, AF_INET6); ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { if (!PF_AZERO(&s->rt_addr, AF_INET6)) PF_ACPY((struct pf_addr *)&dst.sin6_addr, &s->rt_addr, AF_INET6); ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; } if (s) PF_STATE_UNLOCK(s); if (ifp == NULL) goto bad; if (dir == PF_IN) { if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) goto bad; else if (m0 == NULL) goto done; if (m0->m_len < sizeof(struct ip6_hdr)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", __func__)); goto bad; } ip6 = mtod(m0, struct ip6_hdr *); } if (ifp->if_flags & IFF_LOOPBACK) m0->m_flags |= M_SKIP_FIREWALL; if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & ~ifp->if_hwassist) { uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) goto done; in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; } /* * If the packet is too large for the outgoing interface, * send back an icmp6 error. */ if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) nd6_output_ifp(ifp, ifp, m0, &dst, NULL); else { in6_ifstat_inc(ifp, ifs6_in_toobig); if (r->rt != PF_DUPTO) icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); else goto bad; } done: if (r->rt != PF_DUPTO) *m = NULL; return; bad_locked: if (s) PF_STATE_UNLOCK(s); bad: m_freem(m0); goto done; } #endif /* INET6 */ /* * FreeBSD supports cksum offloads for the following drivers. * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) * * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : * network driver performed cksum including pseudo header, need to verify * csum_data * CSUM_DATA_VALID : * network driver performed cksum, needs to additional pseudo header * cksum computation with partial csum_data(i.e. lack of H/W support for * pseudo header, for instance sk(4) and possibly gem(4)) * * After validating the cksum of packet, set both flag CSUM_DATA_VALID and * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper * TCP/UDP layer. * Also, set csum_data to 0xffff to force cksum validation. */ static int pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) { u_int16_t sum = 0; int hw_assist = 0; struct ip *ip; if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) return (1); if (m->m_pkthdr.len < off + len) return (1); switch (p) { case IPPROTO_TCP: if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { sum = m->m_pkthdr.csum_data; } else { ip = mtod(m, struct ip *); sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + IPPROTO_TCP)); } sum ^= 0xffff; ++hw_assist; } break; case IPPROTO_UDP: if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { sum = m->m_pkthdr.csum_data; } else { ip = mtod(m, struct ip *); sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + IPPROTO_UDP)); } sum ^= 0xffff; ++hw_assist; } break; case IPPROTO_ICMP: #ifdef INET6 case IPPROTO_ICMPV6: #endif /* INET6 */ break; default: return (1); } if (!hw_assist) { switch (af) { case AF_INET: if (p == IPPROTO_ICMP) { if (m->m_len < off) return (1); m->m_data += off; m->m_len -= off; sum = in_cksum(m, len); m->m_data -= off; m->m_len += off; } else { if (m->m_len < sizeof(struct ip)) return (1); sum = in4_cksum(m, p, off, len); } break; #ifdef INET6 case AF_INET6: if (m->m_len < sizeof(struct ip6_hdr)) return (1); sum = in6_cksum(m, p, off, len); break; #endif /* INET6 */ default: return (1); } } if (sum) { switch (p) { case IPPROTO_TCP: { KMOD_TCPSTAT_INC(tcps_rcvbadsum); break; } case IPPROTO_UDP: { KMOD_UDPSTAT_INC(udps_badsum); break; } #ifdef INET case IPPROTO_ICMP: { KMOD_ICMPSTAT_INC(icps_checksum); break; } #endif #ifdef INET6 case IPPROTO_ICMPV6: { KMOD_ICMP6STAT_INC(icp6s_checksum); break; } #endif /* INET6 */ } return (1); } else { if (p == IPPROTO_TCP || p == IPPROTO_UDP) { m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m->m_pkthdr.csum_data = 0xffff; } } return (0); } #ifdef INET int pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) { struct pfi_kkif *kif; u_short action, reason = 0, log = 0; struct mbuf *m = *m0; struct ip *h = NULL; struct m_tag *ipfwtag; struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; struct pf_state *s = NULL; struct pf_kruleset *ruleset = NULL; struct pf_pdesc pd; int off, dirndx, pqid = 0; PF_RULES_RLOCK_TRACKER; M_ASSERTPKTHDR(m); if (!V_pf_status.running) return (PF_PASS); memset(&pd, 0, sizeof(pd)); kif = (struct pfi_kkif *)ifp->if_pf_kif; if (kif == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); return (PF_DROP); } if (kif->pfik_flags & PFI_IFLAG_SKIP) return (PF_PASS); if (m->m_flags & M_SKIP_FIREWALL) return (PF_PASS); pd.pf_mtag = pf_find_mtag(m); PF_RULES_RLOCK(); if (ip_divert_ptr != NULL && ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; goto done; } pd.pf_mtag->flags |= PF_PACKET_LOOPED; m_tag_delete(m, ipfwtag); } if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { m->m_flags |= M_FASTFWD_OURS; pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; } } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { /* We do IP header normalization and packet reassembly here */ action = PF_DROP; goto done; } m = *m0; /* pf_normalize messes with m0 */ h = mtod(m, struct ip *); off = h->ip_hl << 2; if (off < (int)sizeof(struct ip)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); log = 1; goto done; } pd.src = (struct pf_addr *)&h->ip_src; pd.dst = (struct pf_addr *)&h->ip_dst; pd.sport = pd.dport = NULL; pd.ip_sum = &h->ip_sum; pd.proto_sum = NULL; pd.proto = h->ip_p; pd.dir = dir; pd.sidx = (dir == PF_IN) ? 0 : 1; pd.didx = (dir == PF_IN) ? 1 : 0; pd.af = AF_INET; pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; pd.tot_len = ntohs(h->ip_len); /* handle fragments that didn't get reassembled by normalization */ if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { action = pf_test_fragment(&r, dir, kif, m, h, &pd, &a, &ruleset); goto done; } switch (h->ip_p) { case IPPROTO_TCP: { struct tcphdr th; pd.hdr.tcp = &th; if (!pf_pull_hdr(m, off, &th, sizeof(th), &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } pd.p_len = pd.tot_len - off - (th.th_off << 2); if ((th.th_flags & TH_ACK) && pd.p_len == 0) pqid = 1; action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); if (action == PF_DROP) goto done; action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } case IPPROTO_UDP: { struct udphdr uh; pd.hdr.udp = &uh; if (!pf_pull_hdr(m, off, &uh, sizeof(uh), &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } if (uh.uh_dport == 0 || ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } case IPPROTO_ICMP: { struct icmp ih; pd.hdr.icmp = &ih; if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } #ifdef INET6 case IPPROTO_ICMPV6: { action = PF_DROP; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping IPv4 packet with ICMPv6 payload\n")); goto done; } #endif default: action = pf_test_state_other(&s, dir, kif, m, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } done: PF_RULES_RUNLOCK(); if (action == PF_PASS && h->ip_hl > 5 && !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = r->log; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping packet with ip options\n")); } if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } if (r->rtableid >= 0) M_SETFIB(m, r->rtableid); if (r->scrub_flags & PFSTATE_SETPRIO) { if (pd.tos & IPTOS_LOWDELAY) pqid = 1; if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate 802.1q mtag\n")); } } #ifdef ALTQ if (action == PF_PASS && r->qid) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } else { if (s != NULL) pd.pf_mtag->qid_hash = pf_state_hash(s); if (pqid || (pd.tos & IPTOS_LOWDELAY)) pd.pf_mtag->qid = r->pqid; else pd.pf_mtag->qid = r->qid; /* Add hints for ecn. */ pd.pf_mtag->hdr = h; } } #endif /* ALTQ */ /* * connections redirected to loopback should not match sockets * bound specifically to loopback due to security implications, * see tcp_input() and in_pcblookup_listen(). */ if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && (s->nat_rule.ptr->action == PF_RDR || s->nat_rule.ptr->action == PF_BINAT) && IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) m->m_flags |= M_SKIP_FIREWALL; if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && !PACKET_LOOPED(&pd)) { ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); if (ipfwtag != NULL) { ((struct ipfw_rule_ref *)(ipfwtag+1))->info = ntohs(r->divert.port); ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; if (s) PF_STATE_UNLOCK(s); m_tag_prepend(m, ipfwtag); if (m->m_flags & M_FASTFWD_OURS) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate tag\n")); } else { pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; m->m_flags &= ~M_FASTFWD_OURS; } } ip_divert_ptr(*m0, dir == PF_IN); *m0 = NULL; return (action); } else { /* XXX: ipfw has the same behaviour! */ action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate divert tag\n")); } } if (log) { struct pf_krule *lr; if (s != NULL && s->nat_rule.ptr != NULL && s->nat_rule.ptr->log & PF_LOG_ALL) lr = s->nat_rule.ptr; else lr = r; PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, (s == NULL)); } counter_u64_add(kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], pd.tot_len); counter_u64_add(kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 1); if (action == PF_PASS || r->action == PF_DROP) { dirndx = (dir == PF_OUT); counter_u64_add(r->packets[dirndx], 1); counter_u64_add(r->bytes[dirndx], pd.tot_len); if (a != NULL) { counter_u64_add(a->packets[dirndx], 1); counter_u64_add(a->bytes[dirndx], pd.tot_len); } if (s != NULL) { if (s->nat_rule.ptr != NULL) { counter_u64_add(s->nat_rule.ptr->packets[dirndx], 1); counter_u64_add(s->nat_rule.ptr->bytes[dirndx], pd.tot_len); } if (s->src_node != NULL) { counter_u64_add(s->src_node->packets[dirndx], 1); counter_u64_add(s->src_node->bytes[dirndx], pd.tot_len); } if (s->nat_src_node != NULL) { counter_u64_add(s->nat_src_node->packets[dirndx], 1); counter_u64_add(s->nat_src_node->bytes[dirndx], pd.tot_len); } dirndx = (dir == s->direction) ? 0 : 1; counter_u64_add(s->packets[dirndx], 1); counter_u64_add(s->bytes[dirndx], pd.tot_len); } tr = r; nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; if (nr != NULL && r == &V_pf_default_rule) tr = nr; if (tr->src.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->src.addr.p.tbl, (s == NULL) ? pd.src : &s->key[(s->direction == PF_IN)]-> addr[(s->direction == PF_OUT)], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->src.neg); if (tr->dst.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->dst.addr.p.tbl, (s == NULL) ? pd.dst : &s->key[(s->direction == PF_IN)]-> addr[(s->direction == PF_IN)], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->dst.neg); } switch (action) { case PF_SYNPROXY_DROP: m_freem(*m0); case PF_DEFER: *m0 = NULL; action = PF_PASS; break; case PF_DROP: m_freem(*m0); *m0 = NULL; break; default: /* pf_route() returns unlocked. */ if (r->rt) { pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); return (action); } break; } if (s) PF_STATE_UNLOCK(s); SDT_PROBE4(pf, ip, test, done, action, reason, r, s); return (action); } #endif /* INET */ #ifdef INET6 int pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) { struct pfi_kkif *kif; u_short action, reason = 0, log = 0; struct mbuf *m = *m0, *n = NULL; struct m_tag *mtag; struct ip6_hdr *h = NULL; struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; struct pf_state *s = NULL; struct pf_kruleset *ruleset = NULL; struct pf_pdesc pd; int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; PF_RULES_RLOCK_TRACKER; M_ASSERTPKTHDR(m); if (!V_pf_status.running) return (PF_PASS); memset(&pd, 0, sizeof(pd)); pd.pf_mtag = pf_find_mtag(m); if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) return (PF_PASS); kif = (struct pfi_kkif *)ifp->if_pf_kif; if (kif == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); return (PF_DROP); } if (kif->pfik_flags & PFI_IFLAG_SKIP) return (PF_PASS); if (m->m_flags & M_SKIP_FIREWALL) return (PF_PASS); PF_RULES_RLOCK(); /* We do IP header normalization and packet reassembly here */ if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { action = PF_DROP; goto done; } m = *m0; /* pf_normalize messes with m0 */ h = mtod(m, struct ip6_hdr *); /* * we do not support jumbogram. if we keep going, zero ip6_plen * will do something bad, so drop the packet for now. */ if (htons(h->ip6_plen) == 0) { action = PF_DROP; REASON_SET(&reason, PFRES_NORM); /*XXX*/ goto done; } pd.src = (struct pf_addr *)&h->ip6_src; pd.dst = (struct pf_addr *)&h->ip6_dst; pd.sport = pd.dport = NULL; pd.ip_sum = NULL; pd.proto_sum = NULL; pd.dir = dir; pd.sidx = (dir == PF_IN) ? 0 : 1; pd.didx = (dir == PF_IN) ? 1 : 0; pd.af = AF_INET6; pd.tos = IPV6_DSCP(h); pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); pd.proto = h->ip6_nxt; do { switch (pd.proto) { case IPPROTO_FRAGMENT: action = pf_test_fragment(&r, dir, kif, m, h, &pd, &a, &ruleset); if (action == PF_DROP) REASON_SET(&reason, PFRES_FRAG); goto done; case IPPROTO_ROUTING: { struct ip6_rthdr rthdr; if (rh_cnt++) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 more than one rthdr\n")); action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = 1; goto done; } if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, &reason, pd.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 short rthdr\n")); action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); log = 1; goto done; } if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 rthdr0\n")); action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = 1; goto done; } /* FALLTHROUGH */ } case IPPROTO_AH: case IPPROTO_HOPOPTS: case IPPROTO_DSTOPTS: { /* get next header and header length */ struct ip6_ext opt6; if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), NULL, &reason, pd.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 short opt\n")); action = PF_DROP; log = 1; goto done; } if (pd.proto == IPPROTO_AH) off += (opt6.ip6e_len + 2) * 4; else off += (opt6.ip6e_len + 1) * 8; pd.proto = opt6.ip6e_nxt; /* goto the next header */ break; } default: terminal++; break; } } while (!terminal); /* if there's no routing header, use unmodified mbuf for checksumming */ if (!n) n = m; switch (pd.proto) { case IPPROTO_TCP: { struct tcphdr th; pd.hdr.tcp = &th; if (!pf_pull_hdr(m, off, &th, sizeof(th), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } pd.p_len = pd.tot_len - off - (th.th_off << 2); action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); if (action == PF_DROP) goto done; action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } case IPPROTO_UDP: { struct udphdr uh; pd.hdr.udp = &uh; if (!pf_pull_hdr(m, off, &uh, sizeof(uh), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } if (uh.uh_dport == 0 || ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } case IPPROTO_ICMP: { action = PF_DROP; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping IPv6 packet with ICMPv4 payload\n")); goto done; } case IPPROTO_ICMPV6: { struct icmp6_hdr ih; pd.hdr.icmp6 = &ih; if (!pf_pull_hdr(m, off, &ih, sizeof(ih), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } default: action = pf_test_state_other(&s, dir, kif, m, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } done: PF_RULES_RUNLOCK(); if (n != m) { m_freem(n); n = NULL; } /* handle dangerous IPv6 extension headers. */ if (action == PF_PASS && rh_cnt && !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = r->log; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping packet with dangerous v6 headers\n")); } if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } if (r->rtableid >= 0) M_SETFIB(m, r->rtableid); if (r->scrub_flags & PFSTATE_SETPRIO) { if (pd.tos & IPTOS_LOWDELAY) pqid = 1; if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate 802.1q mtag\n")); } } #ifdef ALTQ if (action == PF_PASS && r->qid) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } else { if (s != NULL) pd.pf_mtag->qid_hash = pf_state_hash(s); if (pd.tos & IPTOS_LOWDELAY) pd.pf_mtag->qid = r->pqid; else pd.pf_mtag->qid = r->qid; /* Add hints for ecn. */ pd.pf_mtag->hdr = h; } } #endif /* ALTQ */ if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && (s->nat_rule.ptr->action == PF_RDR || s->nat_rule.ptr->action == PF_BINAT) && IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) m->m_flags |= M_SKIP_FIREWALL; /* XXX: Anybody working on it?! */ if (r->divert.port) printf("pf: divert(9) is not supported for IPv6\n"); if (log) { struct pf_krule *lr; if (s != NULL && s->nat_rule.ptr != NULL && s->nat_rule.ptr->log & PF_LOG_ALL) lr = s->nat_rule.ptr; else lr = r; PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, &pd, (s == NULL)); } counter_u64_add(kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], pd.tot_len); counter_u64_add(kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 1); if (action == PF_PASS || r->action == PF_DROP) { dirndx = (dir == PF_OUT); counter_u64_add(r->packets[dirndx], 1); counter_u64_add(r->bytes[dirndx], pd.tot_len); if (a != NULL) { counter_u64_add(a->packets[dirndx], 1); counter_u64_add(a->bytes[dirndx], pd.tot_len); } if (s != NULL) { if (s->nat_rule.ptr != NULL) { counter_u64_add(s->nat_rule.ptr->packets[dirndx], 1); counter_u64_add(s->nat_rule.ptr->bytes[dirndx], pd.tot_len); } if (s->src_node != NULL) { counter_u64_add(s->src_node->packets[dirndx], 1); counter_u64_add(s->src_node->bytes[dirndx], pd.tot_len); } if (s->nat_src_node != NULL) { counter_u64_add(s->nat_src_node->packets[dirndx], 1); counter_u64_add(s->nat_src_node->bytes[dirndx], pd.tot_len); } dirndx = (dir == s->direction) ? 0 : 1; counter_u64_add(s->packets[dirndx], 1); counter_u64_add(s->bytes[dirndx], pd.tot_len); } tr = r; nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; if (nr != NULL && r == &V_pf_default_rule) tr = nr; if (tr->src.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->src.addr.p.tbl, (s == NULL) ? pd.src : &s->key[(s->direction == PF_IN)]->addr[0], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->src.neg); if (tr->dst.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->dst.addr.p.tbl, (s == NULL) ? pd.dst : &s->key[(s->direction == PF_IN)]->addr[1], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->dst.neg); } switch (action) { case PF_SYNPROXY_DROP: m_freem(*m0); case PF_DEFER: *m0 = NULL; action = PF_PASS; break; case PF_DROP: m_freem(*m0); *m0 = NULL; break; default: /* pf_route6() returns unlocked. */ if (r->rt) { pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); return (action); } break; } if (s) PF_STATE_UNLOCK(s); /* If reassembled packet passed, create new fragments. */ if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) action = pf_refragment6(ifp, m0, mtag); SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); return (action); } #endif /* INET6 */ diff --git a/sys/netpfil/pf/pf_ioctl.c b/sys/netpfil/pf/pf_ioctl.c index 8424e0ce5689..62c1f35c3c3f 100644 --- a/sys/netpfil/pf/pf_ioctl.c +++ b/sys/netpfil/pf/pf_ioctl.c @@ -1,6403 +1,6404 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002,2003 Henning Brauer * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * * $OpenBSD: pf_ioctl.c,v 1.213 2009/02/15 21:46:12 mbalmer Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_bpf.h" #include "opt_pf.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif /* INET6 */ #ifdef ALTQ #include #endif SDT_PROVIDER_DECLARE(pf); SDT_PROBE_DEFINE3(pf, ioctl, ioctl, error, "int", "int", "int"); SDT_PROBE_DEFINE3(pf, ioctl, function, error, "char *", "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, addrule, error, "int", "int"); SDT_PROBE_DEFINE2(pf, ioctl, nvchk, error, "int", "int"); static struct pf_kpool *pf_get_kpool(char *, u_int32_t, u_int8_t, u_int32_t, u_int8_t, u_int8_t, u_int8_t); static void pf_mv_kpool(struct pf_kpalist *, struct pf_kpalist *); static void pf_empty_kpool(struct pf_kpalist *); static int pfioctl(struct cdev *, u_long, caddr_t, int, struct thread *); #ifdef ALTQ static int pf_begin_altq(u_int32_t *); static int pf_rollback_altq(u_int32_t); static int pf_commit_altq(u_int32_t); static int pf_enable_altq(struct pf_altq *); static int pf_disable_altq(struct pf_altq *); static u_int32_t pf_qname2qid(char *); static void pf_qid_unref(u_int32_t); #endif /* ALTQ */ static int pf_begin_rules(u_int32_t *, int, const char *); static int pf_rollback_rules(u_int32_t, int, char *); static int pf_setup_pfsync_matching(struct pf_kruleset *); static void pf_hash_rule(MD5_CTX *, struct pf_krule *); static void pf_hash_rule_addr(MD5_CTX *, struct pf_rule_addr *); static int pf_commit_rules(u_int32_t, int, char *); static int pf_addr_setup(struct pf_kruleset *, struct pf_addr_wrap *, sa_family_t); static void pf_addr_copyout(struct pf_addr_wrap *); static void pf_src_node_copy(const struct pf_ksrc_node *, struct pf_src_node *); #ifdef ALTQ static int pf_export_kaltq(struct pf_altq *, struct pfioc_altq_v1 *, size_t); static int pf_import_kaltq(struct pfioc_altq_v1 *, struct pf_altq *, size_t); #endif /* ALTQ */ VNET_DEFINE(struct pf_krule, pf_default_rule); #ifdef ALTQ VNET_DEFINE_STATIC(int, pf_altq_running); #define V_pf_altq_running VNET(pf_altq_running) #endif #define TAGID_MAX 50000 struct pf_tagname { TAILQ_ENTRY(pf_tagname) namehash_entries; TAILQ_ENTRY(pf_tagname) taghash_entries; char name[PF_TAG_NAME_SIZE]; uint16_t tag; int ref; }; struct pf_tagset { TAILQ_HEAD(, pf_tagname) *namehash; TAILQ_HEAD(, pf_tagname) *taghash; unsigned int mask; uint32_t seed; BITSET_DEFINE(, TAGID_MAX) avail; }; VNET_DEFINE(struct pf_tagset, pf_tags); #define V_pf_tags VNET(pf_tags) static unsigned int pf_rule_tag_hashsize; #define PF_RULE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, rule_tag_hashsize, CTLFLAG_RDTUN, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) rule tag hashtable"); #ifdef ALTQ VNET_DEFINE(struct pf_tagset, pf_qids); #define V_pf_qids VNET(pf_qids) static unsigned int pf_queue_tag_hashsize; #define PF_QUEUE_TAG_HASH_SIZE_DEFAULT 128 SYSCTL_UINT(_net_pf, OID_AUTO, queue_tag_hashsize, CTLFLAG_RDTUN, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT, "Size of pf(4) queue tag hashtable"); #endif VNET_DEFINE(uma_zone_t, pf_tag_z); #define V_pf_tag_z VNET(pf_tag_z) static MALLOC_DEFINE(M_PFALTQ, "pf_altq", "pf(4) altq configuration db"); static MALLOC_DEFINE(M_PFRULE, "pf_rule", "pf(4) rules"); #if (PF_QNAME_SIZE != PF_TAG_NAME_SIZE) #error PF_QNAME_SIZE must be equal to PF_TAG_NAME_SIZE #endif static void pf_init_tagset(struct pf_tagset *, unsigned int *, unsigned int); static void pf_cleanup_tagset(struct pf_tagset *); static uint16_t tagname2hashindex(const struct pf_tagset *, const char *); static uint16_t tag2hashindex(const struct pf_tagset *, uint16_t); static u_int16_t tagname2tag(struct pf_tagset *, char *); static u_int16_t pf_tagname2tag(char *); static void tag_unref(struct pf_tagset *, u_int16_t); #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x struct cdev *pf_dev; /* * XXX - These are new and need to be checked when moveing to a new version */ static void pf_clear_all_states(void); static unsigned int pf_clear_states(const struct pf_kstate_kill *); static int pf_killstates(struct pf_kstate_kill *, unsigned int *); static int pf_killstates_row(struct pf_kstate_kill *, struct pf_idhash *); static int pf_killstates_nv(struct pfioc_nv *); static int pf_clearstates_nv(struct pfioc_nv *); static int pf_getstate(struct pfioc_nv *); static int pf_getstates(struct pfioc_nv *); static int pf_clear_tables(void); static void pf_clear_srcnodes(struct pf_ksrc_node *); static void pf_kill_srcnodes(struct pfioc_src_node_kill *); static int pf_keepcounters(struct pfioc_nv *); static void pf_tbladdr_copyout(struct pf_addr_wrap *); /* * Wrapper functions for pfil(9) hooks */ #ifdef INET static pfil_return_t pf_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); static pfil_return_t pf_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); #endif #ifdef INET6 static pfil_return_t pf_check6_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); static pfil_return_t pf_check6_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp); #endif static void hook_pf(void); static void dehook_pf(void); static int shutdown_pf(void); static int pf_load(void); static void pf_unload(void); static struct cdevsw pf_cdevsw = { .d_ioctl = pfioctl, .d_name = PF_NAME, .d_version = D_VERSION, }; volatile VNET_DEFINE_STATIC(int, pf_pfil_hooked); #define V_pf_pfil_hooked VNET(pf_pfil_hooked) /* * We need a flag that is neither hooked nor running to know when * the VNET is "valid". We primarily need this to control (global) * external event, e.g., eventhandlers. */ VNET_DEFINE(int, pf_vnet_active); #define V_pf_vnet_active VNET(pf_vnet_active) int pf_end_threads; struct proc *pf_purge_proc; struct rmlock pf_rules_lock; struct sx pf_ioctl_lock; struct sx pf_end_lock; /* pfsync */ VNET_DEFINE(pfsync_state_import_t *, pfsync_state_import_ptr); VNET_DEFINE(pfsync_insert_state_t *, pfsync_insert_state_ptr); VNET_DEFINE(pfsync_update_state_t *, pfsync_update_state_ptr); VNET_DEFINE(pfsync_delete_state_t *, pfsync_delete_state_ptr); VNET_DEFINE(pfsync_clear_states_t *, pfsync_clear_states_ptr); VNET_DEFINE(pfsync_defer_t *, pfsync_defer_ptr); pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr; /* pflog */ pflog_packet_t *pflog_packet_ptr = NULL; extern u_long pf_ioctl_maxcount; #define ERROUT_FUNCTION(target, x) \ do { \ error = (x); \ SDT_PROBE3(pf, ioctl, function, error, __func__, error, \ __LINE__); \ goto target; \ } while (0) static void pfattach_vnet(void) { u_int32_t *my_timeout = V_pf_default_rule.timeout; pf_initialize(); pfr_initialize(); pfi_initialize_vnet(); pf_normalize_init(); V_pf_limits[PF_LIMIT_STATES].limit = PFSTATE_HIWAT; V_pf_limits[PF_LIMIT_SRC_NODES].limit = PFSNODE_HIWAT; RB_INIT(&V_pf_anchors); pf_init_kruleset(&pf_main_ruleset); /* default rule should never be garbage collected */ V_pf_default_rule.entries.tqe_prev = &V_pf_default_rule.entries.tqe_next; #ifdef PF_DEFAULT_TO_DROP V_pf_default_rule.action = PF_DROP; #else V_pf_default_rule.action = PF_PASS; #endif V_pf_default_rule.nr = -1; V_pf_default_rule.rtableid = -1; V_pf_default_rule.evaluations = counter_u64_alloc(M_WAITOK); for (int i = 0; i < 2; i++) { V_pf_default_rule.packets[i] = counter_u64_alloc(M_WAITOK); V_pf_default_rule.bytes[i] = counter_u64_alloc(M_WAITOK); } V_pf_default_rule.states_cur = counter_u64_alloc(M_WAITOK); V_pf_default_rule.states_tot = counter_u64_alloc(M_WAITOK); V_pf_default_rule.src_nodes = counter_u64_alloc(M_WAITOK); /* initialize default timeouts */ my_timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL; my_timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL; my_timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL; my_timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL; my_timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL; my_timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL; my_timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL; my_timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL; my_timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL; my_timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL; my_timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL; my_timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL; my_timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL; my_timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL; my_timeout[PFTM_FRAG] = PFTM_FRAG_VAL; my_timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL; my_timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL; my_timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL; my_timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START; my_timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END; bzero(&V_pf_status, sizeof(V_pf_status)); V_pf_status.debug = PF_DEBUG_URGENT; V_pf_pfil_hooked = 0; /* XXX do our best to avoid a conflict */ V_pf_status.hostid = arc4random(); for (int i = 0; i < PFRES_MAX; i++) V_pf_status.counters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < LCNT_MAX; i++) V_pf_status.lcounters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < FCNT_MAX; i++) V_pf_status.fcounters[i] = counter_u64_alloc(M_WAITOK); for (int i = 0; i < SCNT_MAX; i++) V_pf_status.scounters[i] = counter_u64_alloc(M_WAITOK); if (swi_add(&V_pf_swi_ie, "pf send", pf_intr, curvnet, SWI_NET, INTR_MPSAFE, &V_pf_swi_cookie) != 0) /* XXXGL: leaked all above. */ return; } static struct pf_kpool * pf_get_kpool(char *anchor, u_int32_t ticket, u_int8_t rule_action, u_int32_t rule_number, u_int8_t r_last, u_int8_t active, u_int8_t check_ticket) { struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) return (NULL); rs_num = pf_get_ruleset_number(rule_action); if (rs_num >= PF_RULESET_MAX) return (NULL); if (active) { if (check_ticket && ticket != ruleset->rules[rs_num].active.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); } else { if (check_ticket && ticket != ruleset->rules[rs_num].inactive.ticket) return (NULL); if (r_last) rule = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); else rule = TAILQ_FIRST(ruleset->rules[rs_num].inactive.ptr); } if (!r_last) { while ((rule != NULL) && (rule->nr != rule_number)) rule = TAILQ_NEXT(rule, entries); } if (rule == NULL) return (NULL); return (&rule->rpool); } static void pf_mv_kpool(struct pf_kpalist *poola, struct pf_kpalist *poolb) { struct pf_kpooladdr *mv_pool_pa; while ((mv_pool_pa = TAILQ_FIRST(poola)) != NULL) { TAILQ_REMOVE(poola, mv_pool_pa, entries); TAILQ_INSERT_TAIL(poolb, mv_pool_pa, entries); } } static void pf_empty_kpool(struct pf_kpalist *poola) { struct pf_kpooladdr *pa; while ((pa = TAILQ_FIRST(poola)) != NULL) { switch (pa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(pa->addr.p.dyn); break; case PF_ADDR_TABLE: /* XXX: this could be unfinished pooladdr on pabuf */ if (pa->addr.p.tbl != NULL) pfr_detach_table(pa->addr.p.tbl); break; } if (pa->kif) pfi_kkif_unref(pa->kif); TAILQ_REMOVE(poola, pa, entries); free(pa, M_PFRULE); } } static void pf_unlink_rule(struct pf_krulequeue *rulequeue, struct pf_krule *rule) { PF_RULES_WASSERT(); TAILQ_REMOVE(rulequeue, rule, entries); PF_UNLNKDRULES_LOCK(); rule->rule_ref |= PFRULE_REFS; TAILQ_INSERT_TAIL(&V_pf_unlinked_rules, rule, entries); PF_UNLNKDRULES_UNLOCK(); } void pf_free_rule(struct pf_krule *rule) { PF_RULES_WASSERT(); if (rule->tag) tag_unref(&V_pf_tags, rule->tag); if (rule->match_tag) tag_unref(&V_pf_tags, rule->match_tag); #ifdef ALTQ if (rule->pqid != rule->qid) pf_qid_unref(rule->pqid); pf_qid_unref(rule->qid); #endif switch (rule->src.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->src.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->src.addr.p.tbl); break; } switch (rule->dst.addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(rule->dst.addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(rule->dst.addr.p.tbl); break; } if (rule->overload_tbl) pfr_detach_table(rule->overload_tbl); if (rule->kif) pfi_kkif_unref(rule->kif); pf_kanchor_remove(rule); pf_empty_kpool(&rule->rpool.list); pf_krule_free(rule); } static void pf_init_tagset(struct pf_tagset *ts, unsigned int *tunable_size, unsigned int default_size) { unsigned int i; unsigned int hashsize; if (*tunable_size == 0 || !powerof2(*tunable_size)) *tunable_size = default_size; hashsize = *tunable_size; ts->namehash = mallocarray(hashsize, sizeof(*ts->namehash), M_PFHASH, M_WAITOK); ts->taghash = mallocarray(hashsize, sizeof(*ts->taghash), M_PFHASH, M_WAITOK); ts->mask = hashsize - 1; ts->seed = arc4random(); for (i = 0; i < hashsize; i++) { TAILQ_INIT(&ts->namehash[i]); TAILQ_INIT(&ts->taghash[i]); } BIT_FILL(TAGID_MAX, &ts->avail); } static void pf_cleanup_tagset(struct pf_tagset *ts) { unsigned int i; unsigned int hashsize; struct pf_tagname *t, *tmp; /* * Only need to clean up one of the hashes as each tag is hashed * into each table. */ hashsize = ts->mask + 1; for (i = 0; i < hashsize; i++) TAILQ_FOREACH_SAFE(t, &ts->namehash[i], namehash_entries, tmp) uma_zfree(V_pf_tag_z, t); free(ts->namehash, M_PFHASH); free(ts->taghash, M_PFHASH); } static uint16_t tagname2hashindex(const struct pf_tagset *ts, const char *tagname) { size_t len; len = strnlen(tagname, PF_TAG_NAME_SIZE - 1); return (murmur3_32_hash(tagname, len, ts->seed) & ts->mask); } static uint16_t tag2hashindex(const struct pf_tagset *ts, uint16_t tag) { return (tag & ts->mask); } static u_int16_t tagname2tag(struct pf_tagset *ts, char *tagname) { struct pf_tagname *tag; u_int32_t index; u_int16_t new_tagid; PF_RULES_WASSERT(); index = tagname2hashindex(ts, tagname); TAILQ_FOREACH(tag, &ts->namehash[index], namehash_entries) if (strcmp(tagname, tag->name) == 0) { tag->ref++; return (tag->tag); } /* * new entry * * to avoid fragmentation, we do a linear search from the beginning * and take the first free slot we find. */ new_tagid = BIT_FFS(TAGID_MAX, &ts->avail); /* * Tags are 1-based, with valid tags in the range [1..TAGID_MAX]. * BIT_FFS() returns a 1-based bit number, with 0 indicating no bits * set. It may also return a bit number greater than TAGID_MAX due * to rounding of the number of bits in the vector up to a multiple * of the vector word size at declaration/allocation time. */ if ((new_tagid == 0) || (new_tagid > TAGID_MAX)) return (0); /* Mark the tag as in use. Bits are 0-based for BIT_CLR() */ BIT_CLR(TAGID_MAX, new_tagid - 1, &ts->avail); /* allocate and fill new struct pf_tagname */ tag = uma_zalloc(V_pf_tag_z, M_NOWAIT); if (tag == NULL) return (0); strlcpy(tag->name, tagname, sizeof(tag->name)); tag->tag = new_tagid; tag->ref = 1; /* Insert into namehash */ TAILQ_INSERT_TAIL(&ts->namehash[index], tag, namehash_entries); /* Insert into taghash */ index = tag2hashindex(ts, new_tagid); TAILQ_INSERT_TAIL(&ts->taghash[index], tag, taghash_entries); return (tag->tag); } static void tag_unref(struct pf_tagset *ts, u_int16_t tag) { struct pf_tagname *t; uint16_t index; PF_RULES_WASSERT(); index = tag2hashindex(ts, tag); TAILQ_FOREACH(t, &ts->taghash[index], taghash_entries) if (tag == t->tag) { if (--t->ref == 0) { TAILQ_REMOVE(&ts->taghash[index], t, taghash_entries); index = tagname2hashindex(ts, t->name); TAILQ_REMOVE(&ts->namehash[index], t, namehash_entries); /* Bits are 0-based for BIT_SET() */ BIT_SET(TAGID_MAX, tag - 1, &ts->avail); uma_zfree(V_pf_tag_z, t); } break; } } static u_int16_t pf_tagname2tag(char *tagname) { return (tagname2tag(&V_pf_tags, tagname)); } #ifdef ALTQ static u_int32_t pf_qname2qid(char *qname) { return ((u_int32_t)tagname2tag(&V_pf_qids, qname)); } static void pf_qid_unref(u_int32_t qid) { tag_unref(&V_pf_qids, (u_int16_t)qid); } static int pf_begin_altq(u_int32_t *ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); if (error) return (error); *ticket = ++V_ticket_altqs_inactive; V_altqs_inactive_open = 1; return (0); } static int pf_rollback_altq(u_int32_t ticket) { struct pf_altq *altq, *tmp; int error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (0); /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ error = altq_remove(altq); } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_commit_altq(u_int32_t ticket) { struct pf_altqqueue *old_altqs, *old_altq_ifs; struct pf_altq *altq, *tmp; int err, error = 0; PF_RULES_WASSERT(); if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive) return (EBUSY); /* swap altqs, keep the old. */ old_altqs = V_pf_altqs_active; old_altq_ifs = V_pf_altq_ifs_active; V_pf_altqs_active = V_pf_altqs_inactive; V_pf_altq_ifs_active = V_pf_altq_ifs_inactive; V_pf_altqs_inactive = old_altqs; V_pf_altq_ifs_inactive = old_altq_ifs; V_ticket_altqs_active = V_ticket_altqs_inactive; /* Attach new disciplines */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* attach the discipline */ error = altq_pfattach(altq); if (error == 0 && V_pf_altq_running) error = pf_enable_altq(altq); if (error != 0) return (error); } } /* Purge the old altq lists */ TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { /* detach and destroy the discipline */ if (V_pf_altq_running) error = pf_disable_altq(altq); err = altq_pfdetach(altq); if (err != 0 && error == 0) error = err; err = altq_remove(altq); if (err != 0 && error == 0) error = err; } free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altq_ifs_inactive); TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) { pf_qid_unref(altq->qid); free(altq, M_PFALTQ); } TAILQ_INIT(V_pf_altqs_inactive); V_altqs_inactive_open = 0; return (error); } static int pf_enable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error = 0; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); if (ifp->if_snd.altq_type != ALTQT_NONE) error = altq_enable(&ifp->if_snd); /* set tokenbucket regulator */ if (error == 0 && ifp != NULL && ALTQ_IS_ENABLED(&ifp->if_snd)) { tb.rate = altq->ifbandwidth; tb.depth = altq->tbrsize; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_disable_altq(struct pf_altq *altq) { struct ifnet *ifp; struct tb_profile tb; int error; if ((ifp = ifunit(altq->ifname)) == NULL) return (EINVAL); /* * when the discipline is no longer referenced, it was overridden * by a new one. if so, just return. */ if (altq->altq_disc != ifp->if_snd.altq_disc) return (0); error = altq_disable(&ifp->if_snd); if (error == 0) { /* clear tokenbucket regulator */ tb.rate = 0; error = tbr_set(&ifp->if_snd, &tb); } return (error); } static int pf_altq_ifnet_event_add(struct ifnet *ifp, int remove, u_int32_t ticket, struct pf_altq *altq) { struct ifnet *ifp1; int error = 0; /* Deactivate the interface in question */ altq->local_flags &= ~PFALTQ_FLAG_IF_REMOVED; if ((ifp1 = ifunit(altq->ifname)) == NULL || (remove && ifp1 == ifp)) { altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; } else { error = altq_add(ifp1, altq); if (ticket != V_ticket_altqs_inactive) error = EBUSY; if (error) free(altq, M_PFALTQ); } return (error); } void pf_altq_ifnet_event(struct ifnet *ifp, int remove) { struct pf_altq *a1, *a2, *a3; u_int32_t ticket; int error = 0; /* * No need to re-evaluate the configuration for events on interfaces * that do not support ALTQ, as it's not possible for such * interfaces to be part of the configuration. */ if (!ALTQ_IS_READY(&ifp->if_snd)) return; /* Interrupt userland queue modifications */ if (V_altqs_inactive_open) pf_rollback_altq(V_ticket_altqs_inactive); /* Start new altq ruleset */ if (pf_begin_altq(&ticket)) return; /* Copy the current active set */ TAILQ_FOREACH(a1, V_pf_altq_ifs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, a2, entries); } if (error) goto out; TAILQ_FOREACH(a1, V_pf_altqs_active, entries) { a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT); if (a2 == NULL) { error = ENOMEM; break; } bcopy(a1, a2, sizeof(struct pf_altq)); if ((a2->qid = pf_qname2qid(a2->qname)) == 0) { error = EBUSY; free(a2, M_PFALTQ); break; } a2->altq_disc = NULL; TAILQ_FOREACH(a3, V_pf_altq_ifs_inactive, entries) { if (strncmp(a3->ifname, a2->ifname, IFNAMSIZ) == 0) { a2->altq_disc = a3->altq_disc; break; } } error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2); if (error) break; TAILQ_INSERT_TAIL(V_pf_altqs_inactive, a2, entries); } out: if (error != 0) pf_rollback_altq(ticket); else pf_commit_altq(ticket); } #endif /* ALTQ */ static int pf_begin_rules(u_int32_t *ticket, int rs_num, const char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_or_create_kruleset(anchor); if (rs == NULL) return (EINVAL); while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } *ticket = ++rs->rules[rs_num].inactive.ticket; rs->rules[rs_num].inactive.open = 1; return (0); } static int pf_rollback_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || rs->rules[rs_num].inactive.ticket != ticket) return (0); while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) { pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule); rs->rules[rs_num].inactive.rcount--; } rs->rules[rs_num].inactive.open = 0; return (0); } #define PF_MD5_UPD(st, elm) \ MD5Update(ctx, (u_int8_t *) &(st)->elm, sizeof((st)->elm)) #define PF_MD5_UPD_STR(st, elm) \ MD5Update(ctx, (u_int8_t *) (st)->elm, strlen((st)->elm)) #define PF_MD5_UPD_HTONL(st, elm, stor) do { \ (stor) = htonl((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int32_t));\ } while (0) #define PF_MD5_UPD_HTONS(st, elm, stor) do { \ (stor) = htons((st)->elm); \ MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int16_t));\ } while (0) static void pf_hash_rule_addr(MD5_CTX *ctx, struct pf_rule_addr *pfr) { PF_MD5_UPD(pfr, addr.type); switch (pfr->addr.type) { case PF_ADDR_DYNIFTL: PF_MD5_UPD(pfr, addr.v.ifname); PF_MD5_UPD(pfr, addr.iflags); break; case PF_ADDR_TABLE: PF_MD5_UPD(pfr, addr.v.tblname); break; case PF_ADDR_ADDRMASK: /* XXX ignore af? */ PF_MD5_UPD(pfr, addr.v.a.addr.addr32); PF_MD5_UPD(pfr, addr.v.a.mask.addr32); break; } PF_MD5_UPD(pfr, port[0]); PF_MD5_UPD(pfr, port[1]); PF_MD5_UPD(pfr, neg); PF_MD5_UPD(pfr, port_op); } static void pf_hash_rule(MD5_CTX *ctx, struct pf_krule *rule) { u_int16_t x; u_int32_t y; pf_hash_rule_addr(ctx, &rule->src); pf_hash_rule_addr(ctx, &rule->dst); for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) PF_MD5_UPD_STR(rule, label[i]); PF_MD5_UPD_STR(rule, ifname); PF_MD5_UPD_STR(rule, match_tagname); PF_MD5_UPD_HTONS(rule, match_tag, x); /* dup? */ PF_MD5_UPD_HTONL(rule, os_fingerprint, y); PF_MD5_UPD_HTONL(rule, prob, y); PF_MD5_UPD_HTONL(rule, uid.uid[0], y); PF_MD5_UPD_HTONL(rule, uid.uid[1], y); PF_MD5_UPD(rule, uid.op); PF_MD5_UPD_HTONL(rule, gid.gid[0], y); PF_MD5_UPD_HTONL(rule, gid.gid[1], y); PF_MD5_UPD(rule, gid.op); PF_MD5_UPD_HTONL(rule, rule_flag, y); PF_MD5_UPD(rule, action); PF_MD5_UPD(rule, direction); PF_MD5_UPD(rule, af); PF_MD5_UPD(rule, quick); PF_MD5_UPD(rule, ifnot); PF_MD5_UPD(rule, match_tag_not); PF_MD5_UPD(rule, natpass); PF_MD5_UPD(rule, keep_state); PF_MD5_UPD(rule, proto); PF_MD5_UPD(rule, type); PF_MD5_UPD(rule, code); PF_MD5_UPD(rule, flags); PF_MD5_UPD(rule, flagset); PF_MD5_UPD(rule, allow_opts); PF_MD5_UPD(rule, rt); PF_MD5_UPD(rule, tos); } static bool pf_krule_compare(struct pf_krule *a, struct pf_krule *b) { MD5_CTX ctx[2]; u_int8_t digest[2][PF_MD5_DIGEST_LENGTH]; MD5Init(&ctx[0]); MD5Init(&ctx[1]); pf_hash_rule(&ctx[0], a); pf_hash_rule(&ctx[1], b); MD5Final(digest[0], &ctx[0]); MD5Final(digest[1], &ctx[1]); return (memcmp(digest[0], digest[1], PF_MD5_DIGEST_LENGTH) == 0); } static int pf_commit_rules(u_int32_t ticket, int rs_num, char *anchor) { struct pf_kruleset *rs; struct pf_krule *rule, **old_array, *tail; struct pf_krulequeue *old_rules; int error; u_int32_t old_rcount; PF_RULES_WASSERT(); if (rs_num < 0 || rs_num >= PF_RULESET_MAX) return (EINVAL); rs = pf_find_kruleset(anchor); if (rs == NULL || !rs->rules[rs_num].inactive.open || ticket != rs->rules[rs_num].inactive.ticket) return (EBUSY); /* Calculate checksum for the main ruleset */ if (rs == &pf_main_ruleset) { error = pf_setup_pfsync_matching(rs); if (error != 0) return (error); } /* Swap rules, keep the old. */ old_rules = rs->rules[rs_num].active.ptr; old_rcount = rs->rules[rs_num].active.rcount; old_array = rs->rules[rs_num].active.ptr_array; rs->rules[rs_num].active.ptr = rs->rules[rs_num].inactive.ptr; rs->rules[rs_num].active.ptr_array = rs->rules[rs_num].inactive.ptr_array; rs->rules[rs_num].active.rcount = rs->rules[rs_num].inactive.rcount; /* Attempt to preserve counter information. */ if (V_pf_status.keep_counters) { TAILQ_FOREACH(rule, rs->rules[rs_num].active.ptr, entries) { tail = TAILQ_FIRST(old_rules); while ((tail != NULL) && ! pf_krule_compare(tail, rule)) tail = TAILQ_NEXT(tail, entries); if (tail != NULL) { counter_u64_add(rule->evaluations, counter_u64_fetch(tail->evaluations)); counter_u64_add(rule->packets[0], counter_u64_fetch(tail->packets[0])); counter_u64_add(rule->packets[1], counter_u64_fetch(tail->packets[1])); counter_u64_add(rule->bytes[0], counter_u64_fetch(tail->bytes[0])); counter_u64_add(rule->bytes[1], counter_u64_fetch(tail->bytes[1])); } } } rs->rules[rs_num].inactive.ptr = old_rules; rs->rules[rs_num].inactive.ptr_array = old_array; rs->rules[rs_num].inactive.rcount = old_rcount; rs->rules[rs_num].active.ticket = rs->rules[rs_num].inactive.ticket; pf_calc_skip_steps(rs->rules[rs_num].active.ptr); /* Purge the old rule list. */ while ((rule = TAILQ_FIRST(old_rules)) != NULL) pf_unlink_rule(old_rules, rule); if (rs->rules[rs_num].inactive.ptr_array) free(rs->rules[rs_num].inactive.ptr_array, M_TEMP); rs->rules[rs_num].inactive.ptr_array = NULL; rs->rules[rs_num].inactive.rcount = 0; rs->rules[rs_num].inactive.open = 0; pf_remove_if_empty_kruleset(rs); return (0); } static int pf_setup_pfsync_matching(struct pf_kruleset *rs) { MD5_CTX ctx; struct pf_krule *rule; int rs_cnt; u_int8_t digest[PF_MD5_DIGEST_LENGTH]; MD5Init(&ctx); for (rs_cnt = 0; rs_cnt < PF_RULESET_MAX; rs_cnt++) { /* XXX PF_RULESET_SCRUB as well? */ if (rs_cnt == PF_RULESET_SCRUB) continue; if (rs->rules[rs_cnt].inactive.ptr_array) free(rs->rules[rs_cnt].inactive.ptr_array, M_TEMP); rs->rules[rs_cnt].inactive.ptr_array = NULL; if (rs->rules[rs_cnt].inactive.rcount) { rs->rules[rs_cnt].inactive.ptr_array = malloc(sizeof(caddr_t) * rs->rules[rs_cnt].inactive.rcount, M_TEMP, M_NOWAIT); if (!rs->rules[rs_cnt].inactive.ptr_array) return (ENOMEM); } TAILQ_FOREACH(rule, rs->rules[rs_cnt].inactive.ptr, entries) { pf_hash_rule(&ctx, rule); (rs->rules[rs_cnt].inactive.ptr_array)[rule->nr] = rule; } } MD5Final(digest, &ctx); memcpy(V_pf_status.pf_chksum, digest, sizeof(V_pf_status.pf_chksum)); return (0); } static int pf_addr_setup(struct pf_kruleset *ruleset, struct pf_addr_wrap *addr, sa_family_t af) { int error = 0; switch (addr->type) { case PF_ADDR_TABLE: addr->p.tbl = pfr_attach_table(ruleset, addr->v.tblname); if (addr->p.tbl == NULL) error = ENOMEM; break; case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(addr, af); break; } return (error); } static void pf_addr_copyout(struct pf_addr_wrap *addr) { switch (addr->type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_copyout(addr); break; case PF_ADDR_TABLE: pf_tbladdr_copyout(addr); break; } } static void pf_src_node_copy(const struct pf_ksrc_node *in, struct pf_src_node *out) { int secs = time_uptime, diff; bzero(out, sizeof(struct pf_src_node)); bcopy(&in->addr, &out->addr, sizeof(struct pf_addr)); bcopy(&in->raddr, &out->raddr, sizeof(struct pf_addr)); if (in->rule.ptr != NULL) out->rule.nr = in->rule.ptr->nr; for (int i = 0; i < 2; i++) { out->bytes[i] = counter_u64_fetch(in->bytes[i]); out->packets[i] = counter_u64_fetch(in->packets[i]); } out->states = in->states; out->conn = in->conn; out->af = in->af; out->ruletype = in->ruletype; out->creation = secs - in->creation; if (out->expire > secs) out->expire -= secs; else out->expire = 0; /* Adjust the connection rate estimate. */ diff = secs - in->conn_rate.last; if (diff >= in->conn_rate.seconds) out->conn_rate.count = 0; else out->conn_rate.count -= in->conn_rate.count * diff / in->conn_rate.seconds; } #ifdef ALTQ /* * Handle export of struct pf_kaltq to user binaries that may be using any * version of struct pf_altq. */ static int pf_export_kaltq(struct pf_altq *q, struct pfioc_altq_v1 *pa, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) exported_q->x = q->x #define COPY(x) \ bcopy(&q->x, &exported_q->x, min(sizeof(q->x), sizeof(exported_q->x))) #define SATU16(x) (u_int32_t)uqmin((x), USHRT_MAX) #define SATU32(x) (u_int32_t)uqmin((x), UINT_MAX) switch (version) { case 0: { struct pf_altq_v0 *exported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); exported_q->tbrsize = SATU16(q->tbrsize); exported_q->ifbandwidth = SATU32(q->ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); exported_q->bandwidth = SATU32(q->bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) exported_q->pq_u.hfsc_opts.x = q->pq_u.hfsc_opts.x #define ASSIGN_OPT_SATU32(x) exported_q->pq_u.hfsc_opts.x = \ SATU32(q->pq_u.hfsc_opts.x) ASSIGN_OPT_SATU32(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT_SATU32(rtsc_m2); ASSIGN_OPT_SATU32(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT_SATU32(lssc_m2); ASSIGN_OPT_SATU32(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT_SATU32(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT #undef ASSIGN_OPT_SATU32 } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *exported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY #undef SATU16 #undef SATU32 return (0); } /* * Handle import to struct pf_kaltq of struct pf_altq from user binaries * that may be using any version of it. */ static int pf_import_kaltq(struct pfioc_altq_v1 *pa, struct pf_altq *q, size_t ioc_size) { u_int32_t version; if (ioc_size == sizeof(struct pfioc_altq_v0)) version = 0; else version = pa->version; if (version > PFIOC_ALTQ_VERSION) return (EINVAL); #define ASSIGN(x) q->x = imported_q->x #define COPY(x) \ bcopy(&imported_q->x, &q->x, min(sizeof(imported_q->x), sizeof(q->x))) switch (version) { case 0: { struct pf_altq_v0 *imported_q = &((struct pfioc_altq_v0 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); /* 16-bit -> 32-bit */ ASSIGN(ifbandwidth); /* 32-bit -> 64-bit */ COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); /* 32-bit -> 64-bit */ ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); if (imported_q->scheduler == ALTQT_HFSC) { #define ASSIGN_OPT(x) q->pq_u.hfsc_opts.x = imported_q->pq_u.hfsc_opts.x /* * The m1 and m2 parameters are being copied from * 32-bit to 64-bit. */ ASSIGN_OPT(rtsc_m1); ASSIGN_OPT(rtsc_d); ASSIGN_OPT(rtsc_m2); ASSIGN_OPT(lssc_m1); ASSIGN_OPT(lssc_d); ASSIGN_OPT(lssc_m2); ASSIGN_OPT(ulsc_m1); ASSIGN_OPT(ulsc_d); ASSIGN_OPT(ulsc_m2); ASSIGN_OPT(flags); #undef ASSIGN_OPT } else COPY(pq_u); ASSIGN(qid); break; } case 1: { struct pf_altq_v1 *imported_q = &((struct pfioc_altq_v1 *)pa)->altq; COPY(ifname); ASSIGN(scheduler); ASSIGN(tbrsize); ASSIGN(ifbandwidth); COPY(qname); COPY(parent); ASSIGN(parent_qid); ASSIGN(bandwidth); ASSIGN(priority); ASSIGN(local_flags); ASSIGN(qlimit); ASSIGN(flags); COPY(pq_u); ASSIGN(qid); break; } default: panic("%s: unhandled struct pfioc_altq version", __func__); break; } #undef ASSIGN #undef COPY return (0); } static struct pf_altq * pf_altq_get_nth_active(u_int32_t n) { struct pf_altq *altq; u_int32_t nr; nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if (nr == n) return (altq); nr++; } TAILQ_FOREACH(altq, V_pf_altqs_active, entries) { if (nr == n) return (altq); nr++; } return (NULL); } #endif /* ALTQ */ void pf_krule_free(struct pf_krule *rule) { if (rule == NULL) return; counter_u64_free(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_free(rule->packets[i]); counter_u64_free(rule->bytes[i]); } counter_u64_free(rule->states_cur); counter_u64_free(rule->states_tot); counter_u64_free(rule->src_nodes); free(rule, M_PFRULE); } static void pf_kpooladdr_to_pooladdr(const struct pf_kpooladdr *kpool, struct pf_pooladdr *pool) { bzero(pool, sizeof(*pool)); bcopy(&kpool->addr, &pool->addr, sizeof(pool->addr)); strlcpy(pool->ifname, kpool->ifname, sizeof(pool->ifname)); } static void pf_pooladdr_to_kpooladdr(const struct pf_pooladdr *pool, struct pf_kpooladdr *kpool) { bzero(kpool, sizeof(*kpool)); bcopy(&pool->addr, &kpool->addr, sizeof(kpool->addr)); strlcpy(kpool->ifname, pool->ifname, sizeof(kpool->ifname)); } static void pf_kpool_to_pool(const struct pf_kpool *kpool, struct pf_pool *pool) { bzero(pool, sizeof(*pool)); bcopy(&kpool->key, &pool->key, sizeof(pool->key)); bcopy(&kpool->counter, &pool->counter, sizeof(pool->counter)); pool->tblidx = kpool->tblidx; pool->proxy_port[0] = kpool->proxy_port[0]; pool->proxy_port[1] = kpool->proxy_port[1]; pool->opts = kpool->opts; } static int pf_pool_to_kpool(const struct pf_pool *pool, struct pf_kpool *kpool) { _Static_assert(sizeof(pool->key) == sizeof(kpool->key), ""); _Static_assert(sizeof(pool->counter) == sizeof(kpool->counter), ""); bzero(kpool, sizeof(*kpool)); bcopy(&pool->key, &kpool->key, sizeof(kpool->key)); bcopy(&pool->counter, &kpool->counter, sizeof(kpool->counter)); kpool->tblidx = pool->tblidx; kpool->proxy_port[0] = pool->proxy_port[0]; kpool->proxy_port[1] = pool->proxy_port[1]; kpool->opts = pool->opts; return (0); } static void pf_krule_to_rule(const struct pf_krule *krule, struct pf_rule *rule) { bzero(rule, sizeof(*rule)); bcopy(&krule->src, &rule->src, sizeof(rule->src)); bcopy(&krule->dst, &rule->dst, sizeof(rule->dst)); for (int i = 0; i < PF_SKIP_COUNT; ++i) { if (rule->skip[i].ptr == NULL) rule->skip[i].nr = -1; else rule->skip[i].nr = krule->skip[i].ptr->nr; } strlcpy(rule->label, krule->label[0], sizeof(rule->label)); strlcpy(rule->ifname, krule->ifname, sizeof(rule->ifname)); strlcpy(rule->qname, krule->qname, sizeof(rule->qname)); strlcpy(rule->pqname, krule->pqname, sizeof(rule->pqname)); strlcpy(rule->tagname, krule->tagname, sizeof(rule->tagname)); strlcpy(rule->match_tagname, krule->match_tagname, sizeof(rule->match_tagname)); strlcpy(rule->overload_tblname, krule->overload_tblname, sizeof(rule->overload_tblname)); pf_kpool_to_pool(&krule->rpool, &rule->rpool); rule->evaluations = counter_u64_fetch(krule->evaluations); for (int i = 0; i < 2; i++) { rule->packets[i] = counter_u64_fetch(krule->packets[i]); rule->bytes[i] = counter_u64_fetch(krule->bytes[i]); } /* kif, anchor, overload_tbl are not copied over. */ rule->os_fingerprint = krule->os_fingerprint; rule->rtableid = krule->rtableid; bcopy(krule->timeout, rule->timeout, sizeof(krule->timeout)); rule->max_states = krule->max_states; rule->max_src_nodes = krule->max_src_nodes; rule->max_src_states = krule->max_src_states; rule->max_src_conn = krule->max_src_conn; rule->max_src_conn_rate.limit = krule->max_src_conn_rate.limit; rule->max_src_conn_rate.seconds = krule->max_src_conn_rate.seconds; rule->qid = krule->qid; rule->pqid = krule->pqid; rule->nr = krule->nr; rule->prob = krule->prob; rule->cuid = krule->cuid; rule->cpid = krule->cpid; rule->return_icmp = krule->return_icmp; rule->return_icmp6 = krule->return_icmp6; rule->max_mss = krule->max_mss; rule->tag = krule->tag; rule->match_tag = krule->match_tag; rule->scrub_flags = krule->scrub_flags; bcopy(&krule->uid, &rule->uid, sizeof(krule->uid)); bcopy(&krule->gid, &rule->gid, sizeof(krule->gid)); rule->rule_flag = krule->rule_flag; rule->action = krule->action; rule->direction = krule->direction; rule->log = krule->log; rule->logif = krule->logif; rule->quick = krule->quick; rule->ifnot = krule->ifnot; rule->match_tag_not = krule->match_tag_not; rule->natpass = krule->natpass; rule->keep_state = krule->keep_state; rule->af = krule->af; rule->proto = krule->proto; rule->type = krule->type; rule->code = krule->code; rule->flags = krule->flags; rule->flagset = krule->flagset; rule->min_ttl = krule->min_ttl; rule->allow_opts = krule->allow_opts; rule->rt = krule->rt; rule->return_ttl = krule->return_ttl; rule->tos = krule->tos; rule->set_tos = krule->set_tos; rule->anchor_relative = krule->anchor_relative; rule->anchor_wildcard = krule->anchor_wildcard; rule->flush = krule->flush; rule->prio = krule->prio; rule->set_prio[0] = krule->set_prio[0]; rule->set_prio[1] = krule->set_prio[1]; bcopy(&krule->divert, &rule->divert, sizeof(krule->divert)); rule->u_states_cur = counter_u64_fetch(krule->states_cur); rule->u_states_tot = counter_u64_fetch(krule->states_tot); rule->u_src_nodes = counter_u64_fetch(krule->src_nodes); } static int pf_check_rule_addr(const struct pf_rule_addr *addr) { switch (addr->addr.type) { case PF_ADDR_ADDRMASK: case PF_ADDR_NOROUTE: case PF_ADDR_DYNIFTL: case PF_ADDR_TABLE: case PF_ADDR_URPFFAILED: case PF_ADDR_RANGE: break; default: return (EINVAL); } if (addr->addr.p.dyn != NULL) { return (EINVAL); } return (0); } static int pf_nvaddr_to_addr(const nvlist_t *nvl, struct pf_addr *paddr) { return (pf_nvbinary(nvl, "addr", paddr, sizeof(*paddr))); } static nvlist_t * pf_addr_to_nvaddr(const struct pf_addr *paddr) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_binary(nvl, "addr", paddr, sizeof(*paddr)); return (nvl); } static int pf_nvmape_to_mape(const nvlist_t *nvl, struct pf_mape_portset *mape) { int error = 0; bzero(mape, sizeof(*mape)); PFNV_CHK(pf_nvuint8(nvl, "offset", &mape->offset)); PFNV_CHK(pf_nvuint8(nvl, "psidlen", &mape->psidlen)); PFNV_CHK(pf_nvuint16(nvl, "psid", &mape->psid)); errout: return (error); } static nvlist_t * pf_mape_to_nvmape(const struct pf_mape_portset *mape) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_number(nvl, "offset", mape->offset); nvlist_add_number(nvl, "psidlen", mape->psidlen); nvlist_add_number(nvl, "psid", mape->psid); return (nvl); } static int pf_nvpool_to_pool(const nvlist_t *nvl, struct pf_kpool *kpool) { int error = 0; bzero(kpool, sizeof(*kpool)); PFNV_CHK(pf_nvbinary(nvl, "key", &kpool->key, sizeof(kpool->key))); if (nvlist_exists_nvlist(nvl, "counter")) { PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "counter"), &kpool->counter)); } PFNV_CHK(pf_nvint(nvl, "tblidx", &kpool->tblidx)); PFNV_CHK(pf_nvuint16_array(nvl, "proxy_port", kpool->proxy_port, 2, NULL)); PFNV_CHK(pf_nvuint8(nvl, "opts", &kpool->opts)); if (nvlist_exists_nvlist(nvl, "mape")) { PFNV_CHK(pf_nvmape_to_mape(nvlist_get_nvlist(nvl, "mape"), &kpool->mape)); } errout: return (error); } static nvlist_t * pf_pool_to_nvpool(const struct pf_kpool *pool) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_binary(nvl, "key", &pool->key, sizeof(pool->key)); tmp = pf_addr_to_nvaddr(&pool->counter); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "counter", tmp); nvlist_add_number(nvl, "tblidx", pool->tblidx); pf_uint16_array_nv(nvl, "proxy_port", pool->proxy_port, 2); nvlist_add_number(nvl, "opts", pool->opts); tmp = pf_mape_to_nvmape(&pool->mape); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "mape", tmp); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_nvaddr_wrap_to_addr_wrap(const nvlist_t *nvl, struct pf_addr_wrap *addr) { int error = 0; bzero(addr, sizeof(*addr)); PFNV_CHK(pf_nvuint8(nvl, "type", &addr->type)); PFNV_CHK(pf_nvuint8(nvl, "iflags", &addr->iflags)); if (addr->type == PF_ADDR_DYNIFTL) PFNV_CHK(pf_nvstring(nvl, "ifname", addr->v.ifname, sizeof(addr->v.ifname))); if (addr->type == PF_ADDR_TABLE) PFNV_CHK(pf_nvstring(nvl, "tblname", addr->v.tblname, sizeof(addr->v.tblname))); if (! nvlist_exists_nvlist(nvl, "addr")) return (EINVAL); PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "addr"), &addr->v.a.addr)); if (! nvlist_exists_nvlist(nvl, "mask")) return (EINVAL); PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "mask"), &addr->v.a.mask)); switch (addr->type) { case PF_ADDR_DYNIFTL: case PF_ADDR_TABLE: case PF_ADDR_RANGE: case PF_ADDR_ADDRMASK: case PF_ADDR_NOROUTE: case PF_ADDR_URPFFAILED: break; default: return (EINVAL); } errout: return (error); } static nvlist_t * pf_addr_wrap_to_nvaddr_wrap(const struct pf_addr_wrap *addr) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_number(nvl, "type", addr->type); nvlist_add_number(nvl, "iflags", addr->iflags); if (addr->type == PF_ADDR_DYNIFTL) nvlist_add_string(nvl, "ifname", addr->v.ifname); if (addr->type == PF_ADDR_TABLE) nvlist_add_string(nvl, "tblname", addr->v.tblname); tmp = pf_addr_to_nvaddr(&addr->v.a.addr); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "addr", tmp); tmp = pf_addr_to_nvaddr(&addr->v.a.mask); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "mask", tmp); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_validate_op(uint8_t op) { switch (op) { case PF_OP_NONE: case PF_OP_IRG: case PF_OP_EQ: case PF_OP_NE: case PF_OP_LT: case PF_OP_LE: case PF_OP_GT: case PF_OP_GE: case PF_OP_XRG: case PF_OP_RRG: break; default: return (EINVAL); } return (0); } static int pf_nvrule_addr_to_rule_addr(const nvlist_t *nvl, struct pf_rule_addr *addr) { int error = 0; if (! nvlist_exists_nvlist(nvl, "addr")) return (EINVAL); PFNV_CHK(pf_nvaddr_wrap_to_addr_wrap(nvlist_get_nvlist(nvl, "addr"), &addr->addr)); PFNV_CHK(pf_nvuint16_array(nvl, "port", addr->port, 2, NULL)); PFNV_CHK(pf_nvuint8(nvl, "neg", &addr->neg)); PFNV_CHK(pf_nvuint8(nvl, "port_op", &addr->port_op)); PFNV_CHK(pf_validate_op(addr->port_op)); errout: return (error); } static nvlist_t * pf_rule_addr_to_nvrule_addr(const struct pf_rule_addr *addr) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); tmp = pf_addr_wrap_to_nvaddr_wrap(&addr->addr); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "addr", tmp); pf_uint16_array_nv(nvl, "port", addr->port, 2); nvlist_add_number(nvl, "neg", addr->neg); nvlist_add_number(nvl, "port_op", addr->port_op); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_nvrule_uid_to_rule_uid(const nvlist_t *nvl, struct pf_rule_uid *uid) { int error = 0; bzero(uid, sizeof(*uid)); PFNV_CHK(pf_nvuint32_array(nvl, "uid", uid->uid, 2, NULL)); PFNV_CHK(pf_nvuint8(nvl, "op", &uid->op)); PFNV_CHK(pf_validate_op(uid->op)); errout: return (error); } static nvlist_t * pf_rule_uid_to_nvrule_uid(const struct pf_rule_uid *uid) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); pf_uint32_array_nv(nvl, "uid", uid->uid, 2); nvlist_add_number(nvl, "op", uid->op); return (nvl); } static int pf_nvrule_gid_to_rule_gid(const nvlist_t *nvl, struct pf_rule_gid *gid) { /* Cheat a little. These stucts are the same, other than the name of * the first field. */ return (pf_nvrule_uid_to_rule_uid(nvl, (struct pf_rule_uid *)gid)); } static int pf_nvrule_to_krule(const nvlist_t *nvl, struct pf_krule **prule) { struct pf_krule *rule; int error = 0; #define ERROUT(x) ERROUT_FUNCTION(errout, x) rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK | M_ZERO); PFNV_CHK(pf_nvuint32(nvl, "nr", &rule->nr)); if (! nvlist_exists_nvlist(nvl, "src")) ERROUT(EINVAL); error = pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"), &rule->src); if (error != 0) ERROUT(error); if (! nvlist_exists_nvlist(nvl, "dst")) ERROUT(EINVAL); PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"), &rule->dst)); if (nvlist_exists_string(nvl, "label")) { PFNV_CHK(pf_nvstring(nvl, "label", rule->label[0], sizeof(rule->label[0]))); } else if (nvlist_exists_string_array(nvl, "labels")) { const char *const *strs; size_t items; int ret; strs = nvlist_get_string_array(nvl, "labels", &items); if (items > PF_RULE_MAX_LABEL_COUNT) ERROUT(E2BIG); for (size_t i = 0; i < items; i++) { ret = strlcpy(rule->label[i], strs[i], sizeof(rule->label[0])); if (ret >= sizeof(rule->label[0])) ERROUT(E2BIG); } } PFNV_CHK(pf_nvstring(nvl, "ifname", rule->ifname, sizeof(rule->ifname))); PFNV_CHK(pf_nvstring(nvl, "qname", rule->qname, sizeof(rule->qname))); PFNV_CHK(pf_nvstring(nvl, "pqname", rule->pqname, sizeof(rule->pqname))); PFNV_CHK(pf_nvstring(nvl, "tagname", rule->tagname, sizeof(rule->tagname))); PFNV_CHK(pf_nvstring(nvl, "match_tagname", rule->match_tagname, sizeof(rule->match_tagname))); PFNV_CHK(pf_nvstring(nvl, "overload_tblname", rule->overload_tblname, sizeof(rule->overload_tblname))); if (! nvlist_exists_nvlist(nvl, "rpool")) ERROUT(EINVAL); PFNV_CHK(pf_nvpool_to_pool(nvlist_get_nvlist(nvl, "rpool"), &rule->rpool)); PFNV_CHK(pf_nvuint32(nvl, "os_fingerprint", &rule->os_fingerprint)); PFNV_CHK(pf_nvint(nvl, "rtableid", &rule->rtableid)); PFNV_CHK(pf_nvuint32_array(nvl, "timeout", rule->timeout, PFTM_MAX, NULL)); PFNV_CHK(pf_nvuint32(nvl, "max_states", &rule->max_states)); PFNV_CHK(pf_nvuint32(nvl, "max_src_nodes", &rule->max_src_nodes)); PFNV_CHK(pf_nvuint32(nvl, "max_src_states", &rule->max_src_states)); PFNV_CHK(pf_nvuint32(nvl, "max_src_conn", &rule->max_src_conn)); PFNV_CHK(pf_nvuint32(nvl, "max_src_conn_rate.limit", &rule->max_src_conn_rate.limit)); PFNV_CHK(pf_nvuint32(nvl, "max_src_conn_rate.seconds", &rule->max_src_conn_rate.seconds)); PFNV_CHK(pf_nvuint32(nvl, "prob", &rule->prob)); PFNV_CHK(pf_nvuint32(nvl, "cuid", &rule->cuid)); PFNV_CHK(pf_nvuint32(nvl, "cpid", &rule->cpid)); PFNV_CHK(pf_nvuint16(nvl, "return_icmp", &rule->return_icmp)); PFNV_CHK(pf_nvuint16(nvl, "return_icmp6", &rule->return_icmp6)); PFNV_CHK(pf_nvuint16(nvl, "max_mss", &rule->max_mss)); PFNV_CHK(pf_nvuint16(nvl, "scrub_flags", &rule->scrub_flags)); if (! nvlist_exists_nvlist(nvl, "uid")) ERROUT(EINVAL); PFNV_CHK(pf_nvrule_uid_to_rule_uid(nvlist_get_nvlist(nvl, "uid"), &rule->uid)); if (! nvlist_exists_nvlist(nvl, "gid")) ERROUT(EINVAL); PFNV_CHK(pf_nvrule_gid_to_rule_gid(nvlist_get_nvlist(nvl, "gid"), &rule->gid)); PFNV_CHK(pf_nvuint32(nvl, "rule_flag", &rule->rule_flag)); PFNV_CHK(pf_nvuint8(nvl, "action", &rule->action)); PFNV_CHK(pf_nvuint8(nvl, "direction", &rule->direction)); PFNV_CHK(pf_nvuint8(nvl, "log", &rule->log)); PFNV_CHK(pf_nvuint8(nvl, "logif", &rule->logif)); PFNV_CHK(pf_nvuint8(nvl, "quick", &rule->quick)); PFNV_CHK(pf_nvuint8(nvl, "ifnot", &rule->ifnot)); PFNV_CHK(pf_nvuint8(nvl, "match_tag_not", &rule->match_tag_not)); PFNV_CHK(pf_nvuint8(nvl, "natpass", &rule->natpass)); PFNV_CHK(pf_nvuint8(nvl, "keep_state", &rule->keep_state)); PFNV_CHK(pf_nvuint8(nvl, "af", &rule->af)); PFNV_CHK(pf_nvuint8(nvl, "proto", &rule->proto)); PFNV_CHK(pf_nvuint8(nvl, "type", &rule->type)); PFNV_CHK(pf_nvuint8(nvl, "code", &rule->code)); PFNV_CHK(pf_nvuint8(nvl, "flags", &rule->flags)); PFNV_CHK(pf_nvuint8(nvl, "flagset", &rule->flagset)); PFNV_CHK(pf_nvuint8(nvl, "min_ttl", &rule->min_ttl)); PFNV_CHK(pf_nvuint8(nvl, "allow_opts", &rule->allow_opts)); PFNV_CHK(pf_nvuint8(nvl, "rt", &rule->rt)); PFNV_CHK(pf_nvuint8(nvl, "return_ttl", &rule->return_ttl)); PFNV_CHK(pf_nvuint8(nvl, "tos", &rule->tos)); PFNV_CHK(pf_nvuint8(nvl, "set_tos", &rule->set_tos)); PFNV_CHK(pf_nvuint8(nvl, "anchor_relative", &rule->anchor_relative)); PFNV_CHK(pf_nvuint8(nvl, "anchor_wildcard", &rule->anchor_wildcard)); PFNV_CHK(pf_nvuint8(nvl, "flush", &rule->flush)); PFNV_CHK(pf_nvuint8(nvl, "prio", &rule->prio)); PFNV_CHK(pf_nvuint8_array(nvl, "set_prio", &rule->prio, 2, NULL)); if (nvlist_exists_nvlist(nvl, "divert")) { const nvlist_t *nvldivert = nvlist_get_nvlist(nvl, "divert"); if (! nvlist_exists_nvlist(nvldivert, "addr")) ERROUT(EINVAL); PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvldivert, "addr"), &rule->divert.addr)); PFNV_CHK(pf_nvuint16(nvldivert, "port", &rule->divert.port)); } /* Validation */ #ifndef INET if (rule->af == AF_INET) ERROUT(EAFNOSUPPORT); #endif /* INET */ #ifndef INET6 if (rule->af == AF_INET6) ERROUT(EAFNOSUPPORT); #endif /* INET6 */ PFNV_CHK(pf_check_rule_addr(&rule->src)); PFNV_CHK(pf_check_rule_addr(&rule->dst)); *prule = rule; return (0); #undef ERROUT errout: pf_krule_free(rule); *prule = NULL; return (error); } static nvlist_t * pf_divert_to_nvdivert(const struct pf_krule *rule) { nvlist_t *nvl; nvlist_t *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); tmp = pf_addr_to_nvaddr(&rule->divert.addr); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "addr", tmp); nvlist_add_number(nvl, "port", rule->divert.port); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static nvlist_t * pf_krule_to_nvrule(const struct pf_krule *rule) { nvlist_t *nvl, *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (nvl); nvlist_add_number(nvl, "nr", rule->nr); tmp = pf_rule_addr_to_nvrule_addr(&rule->src); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "src", tmp); tmp = pf_rule_addr_to_nvrule_addr(&rule->dst); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "dst", tmp); for (int i = 0; i < PF_SKIP_COUNT; i++) { nvlist_append_number_array(nvl, "skip", rule->skip[i].ptr ? rule->skip[i].ptr->nr : -1); } for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) { nvlist_append_string_array(nvl, "labels", rule->label[i]); } nvlist_add_string(nvl, "label", rule->label[0]); nvlist_add_string(nvl, "ifname", rule->ifname); nvlist_add_string(nvl, "qname", rule->qname); nvlist_add_string(nvl, "pqname", rule->pqname); nvlist_add_string(nvl, "tagname", rule->tagname); nvlist_add_string(nvl, "match_tagname", rule->match_tagname); nvlist_add_string(nvl, "overload_tblname", rule->overload_tblname); tmp = pf_pool_to_nvpool(&rule->rpool); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "rpool", tmp); nvlist_add_number(nvl, "evaluations", counter_u64_fetch(rule->evaluations)); for (int i = 0; i < 2; i++) { nvlist_append_number_array(nvl, "packets", counter_u64_fetch(rule->packets[i])); nvlist_append_number_array(nvl, "bytes", counter_u64_fetch(rule->bytes[i])); } nvlist_add_number(nvl, "os_fingerprint", rule->os_fingerprint); nvlist_add_number(nvl, "rtableid", rule->rtableid); pf_uint32_array_nv(nvl, "timeout", rule->timeout, PFTM_MAX); nvlist_add_number(nvl, "max_states", rule->max_states); nvlist_add_number(nvl, "max_src_nodes", rule->max_src_nodes); nvlist_add_number(nvl, "max_src_states", rule->max_src_states); nvlist_add_number(nvl, "max_src_conn", rule->max_src_conn); nvlist_add_number(nvl, "max_src_conn_rate.limit", rule->max_src_conn_rate.limit); nvlist_add_number(nvl, "max_src_conn_rate.seconds", rule->max_src_conn_rate.seconds); nvlist_add_number(nvl, "qid", rule->qid); nvlist_add_number(nvl, "pqid", rule->pqid); nvlist_add_number(nvl, "prob", rule->prob); nvlist_add_number(nvl, "cuid", rule->cuid); nvlist_add_number(nvl, "cpid", rule->cpid); nvlist_add_number(nvl, "states_cur", counter_u64_fetch(rule->states_cur)); nvlist_add_number(nvl, "states_tot", counter_u64_fetch(rule->states_tot)); nvlist_add_number(nvl, "src_nodes", counter_u64_fetch(rule->src_nodes)); nvlist_add_number(nvl, "return_icmp", rule->return_icmp); nvlist_add_number(nvl, "return_icmp6", rule->return_icmp6); nvlist_add_number(nvl, "max_mss", rule->max_mss); nvlist_add_number(nvl, "scrub_flags", rule->scrub_flags); tmp = pf_rule_uid_to_nvrule_uid(&rule->uid); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "uid", tmp); tmp = pf_rule_uid_to_nvrule_uid((const struct pf_rule_uid *)&rule->gid); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "gid", tmp); nvlist_add_number(nvl, "rule_flag", rule->rule_flag); nvlist_add_number(nvl, "action", rule->action); nvlist_add_number(nvl, "direction", rule->direction); nvlist_add_number(nvl, "log", rule->log); nvlist_add_number(nvl, "logif", rule->logif); nvlist_add_number(nvl, "quick", rule->quick); nvlist_add_number(nvl, "ifnot", rule->ifnot); nvlist_add_number(nvl, "match_tag_not", rule->match_tag_not); nvlist_add_number(nvl, "natpass", rule->natpass); nvlist_add_number(nvl, "keep_state", rule->keep_state); nvlist_add_number(nvl, "af", rule->af); nvlist_add_number(nvl, "proto", rule->proto); nvlist_add_number(nvl, "type", rule->type); nvlist_add_number(nvl, "code", rule->code); nvlist_add_number(nvl, "flags", rule->flags); nvlist_add_number(nvl, "flagset", rule->flagset); nvlist_add_number(nvl, "min_ttl", rule->min_ttl); nvlist_add_number(nvl, "allow_opts", rule->allow_opts); nvlist_add_number(nvl, "rt", rule->rt); nvlist_add_number(nvl, "return_ttl", rule->return_ttl); nvlist_add_number(nvl, "tos", rule->tos); nvlist_add_number(nvl, "set_tos", rule->set_tos); nvlist_add_number(nvl, "anchor_relative", rule->anchor_relative); nvlist_add_number(nvl, "anchor_wildcard", rule->anchor_wildcard); nvlist_add_number(nvl, "flush", rule->flush); nvlist_add_number(nvl, "prio", rule->prio); pf_uint8_array_nv(nvl, "set_prio", &rule->prio, 2); tmp = pf_divert_to_nvdivert(rule); if (tmp == NULL) goto error; nvlist_add_nvlist(nvl, "divert", tmp); return (nvl); error: nvlist_destroy(nvl); return (NULL); } static int pf_rule_to_krule(const struct pf_rule *rule, struct pf_krule *krule) { int ret; #ifndef INET if (rule->af == AF_INET) { return (EAFNOSUPPORT); } #endif /* INET */ #ifndef INET6 if (rule->af == AF_INET6) { return (EAFNOSUPPORT); } #endif /* INET6 */ ret = pf_check_rule_addr(&rule->src); if (ret != 0) return (ret); ret = pf_check_rule_addr(&rule->dst); if (ret != 0) return (ret); bzero(krule, sizeof(*krule)); bcopy(&rule->src, &krule->src, sizeof(rule->src)); bcopy(&rule->dst, &krule->dst, sizeof(rule->dst)); strlcpy(krule->label[0], rule->label, sizeof(rule->label)); strlcpy(krule->ifname, rule->ifname, sizeof(rule->ifname)); strlcpy(krule->qname, rule->qname, sizeof(rule->qname)); strlcpy(krule->pqname, rule->pqname, sizeof(rule->pqname)); strlcpy(krule->tagname, rule->tagname, sizeof(rule->tagname)); strlcpy(krule->match_tagname, rule->match_tagname, sizeof(rule->match_tagname)); strlcpy(krule->overload_tblname, rule->overload_tblname, sizeof(rule->overload_tblname)); ret = pf_pool_to_kpool(&rule->rpool, &krule->rpool); if (ret != 0) return (ret); /* Don't allow userspace to set evaulations, packets or bytes. */ /* kif, anchor, overload_tbl are not copied over. */ krule->os_fingerprint = rule->os_fingerprint; krule->rtableid = rule->rtableid; bcopy(rule->timeout, krule->timeout, sizeof(krule->timeout)); krule->max_states = rule->max_states; krule->max_src_nodes = rule->max_src_nodes; krule->max_src_states = rule->max_src_states; krule->max_src_conn = rule->max_src_conn; krule->max_src_conn_rate.limit = rule->max_src_conn_rate.limit; krule->max_src_conn_rate.seconds = rule->max_src_conn_rate.seconds; krule->qid = rule->qid; krule->pqid = rule->pqid; krule->nr = rule->nr; krule->prob = rule->prob; krule->cuid = rule->cuid; krule->cpid = rule->cpid; krule->return_icmp = rule->return_icmp; krule->return_icmp6 = rule->return_icmp6; krule->max_mss = rule->max_mss; krule->tag = rule->tag; krule->match_tag = rule->match_tag; krule->scrub_flags = rule->scrub_flags; bcopy(&rule->uid, &krule->uid, sizeof(krule->uid)); bcopy(&rule->gid, &krule->gid, sizeof(krule->gid)); krule->rule_flag = rule->rule_flag; krule->action = rule->action; krule->direction = rule->direction; krule->log = rule->log; krule->logif = rule->logif; krule->quick = rule->quick; krule->ifnot = rule->ifnot; krule->match_tag_not = rule->match_tag_not; krule->natpass = rule->natpass; krule->keep_state = rule->keep_state; krule->af = rule->af; krule->proto = rule->proto; krule->type = rule->type; krule->code = rule->code; krule->flags = rule->flags; krule->flagset = rule->flagset; krule->min_ttl = rule->min_ttl; krule->allow_opts = rule->allow_opts; krule->rt = rule->rt; krule->return_ttl = rule->return_ttl; krule->tos = rule->tos; krule->set_tos = rule->set_tos; krule->anchor_relative = rule->anchor_relative; krule->anchor_wildcard = rule->anchor_wildcard; krule->flush = rule->flush; krule->prio = rule->prio; krule->set_prio[0] = rule->set_prio[0]; krule->set_prio[1] = rule->set_prio[1]; bcopy(&rule->divert, &krule->divert, sizeof(krule->divert)); return (0); } static int pf_state_kill_to_kstate_kill(const struct pfioc_state_kill *psk, struct pf_kstate_kill *kill) { bzero(kill, sizeof(*kill)); bcopy(&psk->psk_pfcmp, &kill->psk_pfcmp, sizeof(kill->psk_pfcmp)); kill->psk_af = psk->psk_af; kill->psk_proto = psk->psk_proto; bcopy(&psk->psk_src, &kill->psk_src, sizeof(kill->psk_src)); bcopy(&psk->psk_dst, &kill->psk_dst, sizeof(kill->psk_dst)); strlcpy(kill->psk_ifname, psk->psk_ifname, sizeof(kill->psk_ifname)); strlcpy(kill->psk_label, psk->psk_label, sizeof(kill->psk_label)); return (0); } static int pf_nvstate_cmp_to_state_cmp(const nvlist_t *nvl, struct pf_state_cmp *cmp) { int error = 0; bzero(cmp, sizeof(*cmp)); PFNV_CHK(pf_nvuint64(nvl, "id", &cmp->id)); PFNV_CHK(pf_nvuint32(nvl, "creatorid", &cmp->creatorid)); PFNV_CHK(pf_nvuint8(nvl, "direction", &cmp->direction)); errout: return (error); } static int pf_nvstate_kill_to_kstate_kill(const nvlist_t *nvl, struct pf_kstate_kill *kill) { int error = 0; bzero(kill, sizeof(*kill)); if (! nvlist_exists_nvlist(nvl, "cmp")) return (EINVAL); PFNV_CHK(pf_nvstate_cmp_to_state_cmp(nvlist_get_nvlist(nvl, "cmp"), &kill->psk_pfcmp)); PFNV_CHK(pf_nvuint8(nvl, "af", &kill->psk_af)); PFNV_CHK(pf_nvint(nvl, "proto", &kill->psk_proto)); if (! nvlist_exists_nvlist(nvl, "src")) return (EINVAL); PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"), &kill->psk_src)); if (! nvlist_exists_nvlist(nvl, "dst")) return (EINVAL); PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"), &kill->psk_dst)); if (nvlist_exists_nvlist(nvl, "rt_addr")) { PFNV_CHK(pf_nvrule_addr_to_rule_addr( nvlist_get_nvlist(nvl, "rt_addr"), &kill->psk_rt_addr)); } PFNV_CHK(pf_nvstring(nvl, "ifname", kill->psk_ifname, sizeof(kill->psk_ifname))); PFNV_CHK(pf_nvstring(nvl, "label", kill->psk_label, sizeof(kill->psk_label))); if (nvlist_exists_bool(nvl, "kill_match")) kill->psk_kill_match = nvlist_get_bool(nvl, "kill_match"); errout: return (error); } static nvlist_t * pf_state_key_to_nvstate_key(const struct pf_state_key *key) { nvlist_t *nvl, *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); for (int i = 0; i < 2; i++) { tmp = pf_addr_to_nvaddr(&key->addr[i]); if (tmp == NULL) goto errout; nvlist_append_nvlist_array(nvl, "addr", tmp); nvlist_append_number_array(nvl, "port", key->port[i]); } nvlist_add_number(nvl, "af", key->af); nvlist_add_number(nvl, "proto", key->proto); return (nvl); errout: nvlist_destroy(nvl); return (NULL); } static nvlist_t * pf_state_scrub_to_nvstate_scrub(const struct pf_state_scrub *scrub) { nvlist_t *nvl; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_bool(nvl, "timestamp", scrub->pfss_flags & PFSS_TIMESTAMP); nvlist_add_number(nvl, "ttl", scrub->pfss_ttl); nvlist_add_number(nvl, "ts_mod", scrub->pfss_ts_mod); return (nvl); } static nvlist_t * pf_state_peer_to_nvstate_peer(const struct pf_state_peer *peer) { nvlist_t *nvl, *tmp; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); if (peer->scrub) { tmp = pf_state_scrub_to_nvstate_scrub(peer->scrub); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "scrub", tmp); } nvlist_add_number(nvl, "seqlo", peer->seqlo); nvlist_add_number(nvl, "seqhi", peer->seqhi); nvlist_add_number(nvl, "seqdiff", peer->seqdiff); nvlist_add_number(nvl, "max_win", peer->max_win); nvlist_add_number(nvl, "mss", peer->mss); nvlist_add_number(nvl, "state", peer->state); nvlist_add_number(nvl, "wscale", peer->wscale); return (nvl); errout: nvlist_destroy(nvl); return (NULL); } static nvlist_t * pf_state_to_nvstate(const struct pf_state *s) { nvlist_t *nvl, *tmp; uint32_t expire, flags = 0; nvl = nvlist_create(0); if (nvl == NULL) return (NULL); nvlist_add_number(nvl, "id", s->id); nvlist_add_string(nvl, "ifname", s->kif->pfik_name); + nvlist_add_string(nvl, "orig_ifname", s->orig_kif->pfik_name); tmp = pf_state_key_to_nvstate_key(s->key[PF_SK_STACK]); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "stack_key", tmp); tmp = pf_state_key_to_nvstate_key(s->key[PF_SK_WIRE]); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "wire_key", tmp); tmp = pf_state_peer_to_nvstate_peer(&s->src); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "src", tmp); tmp = pf_state_peer_to_nvstate_peer(&s->dst); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "dst", tmp); tmp = pf_addr_to_nvaddr(&s->rt_addr); if (tmp == NULL) goto errout; nvlist_add_nvlist(nvl, "rt_addr", tmp); nvlist_add_number(nvl, "rule", s->rule.ptr ? s->rule.ptr->nr : -1); nvlist_add_number(nvl, "anchor", s->anchor.ptr ? s->anchor.ptr->nr : -1); nvlist_add_number(nvl, "nat_rule", s->nat_rule.ptr ? s->nat_rule.ptr->nr : -1); nvlist_add_number(nvl, "creation", s->creation); expire = pf_state_expires(s); if (expire <= time_uptime) expire = 0; else expire = expire - time_uptime; nvlist_add_number(nvl, "expire", expire); for (int i = 0; i < 2; i++) { nvlist_append_number_array(nvl, "packets", counter_u64_fetch(s->packets[i])); nvlist_append_number_array(nvl, "bytes", counter_u64_fetch(s->bytes[i])); } nvlist_add_number(nvl, "creatorid", s->creatorid); nvlist_add_number(nvl, "direction", s->direction); nvlist_add_number(nvl, "log", s->log); nvlist_add_number(nvl, "state_flags", s->state_flags); nvlist_add_number(nvl, "timeout", s->timeout); if (s->src_node) flags |= PFSYNC_FLAG_SRCNODE; if (s->nat_src_node) flags |= PFSYNC_FLAG_NATSRCNODE; nvlist_add_number(nvl, "sync_flags", flags); return (nvl); errout: nvlist_destroy(nvl); return (NULL); } static int pf_ioctl_addrule(struct pf_krule *rule, uint32_t ticket, uint32_t pool_ticket, const char *anchor, const char *anchor_call, struct thread *td) { struct pf_kruleset *ruleset; struct pf_krule *tail; struct pf_kpooladdr *pa; struct pfi_kkif *kif = NULL; int rs_num; int error = 0; if ((rule->return_icmp >> 8) > ICMP_MAXTYPE) { error = EINVAL; goto errout_unlocked; } #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (rule->ifname[0]) kif = pf_kkif_create(M_WAITOK); rule->evaluations = counter_u64_alloc(M_WAITOK); for (int i = 0; i < 2; i++) { rule->packets[i] = counter_u64_alloc(M_WAITOK); rule->bytes[i] = counter_u64_alloc(M_WAITOK); } rule->states_cur = counter_u64_alloc(M_WAITOK); rule->states_tot = counter_u64_alloc(M_WAITOK); rule->src_nodes = counter_u64_alloc(M_WAITOK); rule->cuid = td->td_ucred->cr_ruid; rule->cpid = td->td_proc ? td->td_proc->p_pid : 0; TAILQ_INIT(&rule->rpool.list); PF_RULES_WLOCK(); ruleset = pf_find_kruleset(anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(rule->action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); if (ticket != ruleset->rules[rs_num].inactive.ticket) { DPFPRINTF(PF_DEBUG_MISC, ("ticket: %d != [%d]%d\n", ticket, rs_num, ruleset->rules[rs_num].inactive.ticket)); ERROUT(EBUSY); } if (pool_ticket != V_ticket_pabuf) { DPFPRINTF(PF_DEBUG_MISC, ("pool_ticket: %d != %d\n", pool_ticket, V_ticket_pabuf)); ERROUT(EBUSY); } tail = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr, pf_krulequeue); if (tail) rule->nr = tail->nr + 1; else rule->nr = 0; if (rule->ifname[0]) { rule->kif = pfi_kkif_attach(kif, rule->ifname); kif = NULL; pfi_kkif_ref(rule->kif); } else rule->kif = NULL; if (rule->rtableid > 0 && rule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (rule->qname[0] != 0) { if ((rule->qid = pf_qname2qid(rule->qname)) == 0) error = EBUSY; else if (rule->pqname[0] != 0) { if ((rule->pqid = pf_qname2qid(rule->pqname)) == 0) error = EBUSY; } else rule->pqid = rule->qid; } #endif if (rule->tagname[0]) if ((rule->tag = pf_tagname2tag(rule->tagname)) == 0) error = EBUSY; if (rule->match_tagname[0]) if ((rule->match_tag = pf_tagname2tag(rule->match_tagname)) == 0) error = EBUSY; if (rule->rt && !rule->direction) error = EINVAL; if (!rule->log) rule->logif = 0; if (rule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &rule->src.addr, rule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &rule->dst.addr, rule->af)) error = ENOMEM; if (pf_kanchor_setup(rule, ruleset, anchor_call)) error = EINVAL; if (rule->scrub_flags & PFSTATE_SETPRIO && (rule->set_prio[0] > PF_PRIO_MAX || rule->set_prio[1] > PF_PRIO_MAX)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } rule->overload_tbl = NULL; if (rule->overload_tblname[0]) { if ((rule->overload_tbl = pfr_attach_table(ruleset, rule->overload_tblname)) == NULL) error = EINVAL; else rule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &rule->rpool.list); if (((((rule->action == PF_NAT) || (rule->action == PF_RDR) || (rule->action == PF_BINAT)) && rule->anchor == NULL) || (rule->rt > PF_NOPFROUTE)) && (TAILQ_FIRST(&rule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(rule); rule = NULL; ERROUT(error); } rule->rpool.cur = TAILQ_FIRST(&rule->rpool.list); counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } TAILQ_INSERT_TAIL(ruleset->rules[rs_num].inactive.ptr, rule, entries); ruleset->rules[rs_num].inactive.rcount++; PF_RULES_WUNLOCK(); return (0); #undef ERROUT errout: PF_RULES_WUNLOCK(); errout_unlocked: pf_kkif_free(kif); pf_krule_free(rule); return (error); } static bool pf_label_match(const struct pf_krule *rule, const char *label) { int i = 0; while (*rule->label[i]) { if (strcmp(rule->label[i], label) == 0) return (true); i++; } return (false); } static unsigned int pf_kill_matching_state(struct pf_state_key_cmp *key, int dir) { struct pf_state *match; int more = 0; unsigned int killed = 0; /* Call with unlocked hashrow */ match = pf_find_state_all(key, dir, &more); if (match && !more) { pf_unlink_state(match, 0); killed++; } return (killed); } static int pf_killstates_row(struct pf_kstate_kill *psk, struct pf_idhash *ih) { struct pf_state *s; struct pf_state_key *sk; struct pf_addr *srcaddr, *dstaddr; struct pf_state_key_cmp match_key; int idx, killed = 0; unsigned int dir; u_int16_t srcport, dstport; relock_DIOCKILLSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { sk = s->key[PF_SK_WIRE]; if (s->direction == PF_OUT) { srcaddr = &sk->addr[1]; dstaddr = &sk->addr[0]; srcport = sk->port[1]; dstport = sk->port[0]; } else { srcaddr = &sk->addr[0]; dstaddr = &sk->addr[1]; srcport = sk->port[0]; dstport = sk->port[1]; } if (psk->psk_af && sk->af != psk->psk_af) continue; if (psk->psk_proto && psk->psk_proto != sk->proto) continue; if (! PF_MATCHA(psk->psk_src.neg, &psk->psk_src.addr.v.a.addr, &psk->psk_src.addr.v.a.mask, srcaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_dst.neg, &psk->psk_dst.addr.v.a.addr, &psk->psk_dst.addr.v.a.mask, dstaddr, sk->af)) continue; if (! PF_MATCHA(psk->psk_rt_addr.neg, &psk->psk_rt_addr.addr.v.a.addr, &psk->psk_rt_addr.addr.v.a.mask, &s->rt_addr, sk->af)) continue; if (psk->psk_src.port_op != 0 && ! pf_match_port(psk->psk_src.port_op, psk->psk_src.port[0], psk->psk_src.port[1], srcport)) continue; if (psk->psk_dst.port_op != 0 && ! pf_match_port(psk->psk_dst.port_op, psk->psk_dst.port[0], psk->psk_dst.port[1], dstport)) continue; if (psk->psk_label[0] && ! pf_label_match(s->rule.ptr, psk->psk_label)) continue; if (psk->psk_ifname[0] && strcmp(psk->psk_ifname, s->kif->pfik_name)) continue; if (psk->psk_kill_match) { /* Create the key to find matching states, with lock * held. */ bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = PF_SK_STACK; } else { dir = PF_OUT; idx = PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } pf_unlink_state(s, PF_ENTER_LOCKED); killed++; if (psk->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCKILLSTATES; } PF_HASHROW_UNLOCK(ih); return (killed); } static int pfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td) { int error = 0; PF_RULES_RLOCK_TRACKER; #define ERROUT_IOCTL(target, x) \ do { \ error = (x); \ SDT_PROBE3(pf, ioctl, ioctl, error, cmd, error, __LINE__); \ goto target; \ } while (0) /* XXX keep in sync with switch() below */ if (securelevel_gt(td->td_ucred, 2)) switch (cmd) { case DIOCGETRULES: case DIOCGETRULE: case DIOCGETRULENV: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCSETSTATUSIF: case DIOCGETSTATUS: case DIOCCLRSTATUS: case DIOCNATLOOK: case DIOCSETDEBUG: case DIOCGETSTATES: case DIOCGETSTATESNV: case DIOCGETTIMEOUT: case DIOCCLRRULECTRS: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRCLRASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCCLRSRCNODES: case DIOCIGETIFACES: case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: case DIOCSETIFFLAG: case DIOCCLRIFFLAG: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) break; /* dummy operation ok */ return (EPERM); default: return (EPERM); } if (!(flags & FWRITE)) switch (cmd) { case DIOCGETRULES: case DIOCGETADDRS: case DIOCGETADDR: case DIOCGETSTATE: case DIOCGETSTATENV: case DIOCGETSTATUS: case DIOCGETSTATES: case DIOCGETSTATESNV: case DIOCGETTIMEOUT: case DIOCGETLIMIT: case DIOCGETALTQSV0: case DIOCGETALTQSV1: case DIOCGETALTQV0: case DIOCGETALTQV1: case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: case DIOCGETRULESETS: case DIOCGETRULESET: case DIOCNATLOOK: case DIOCRGETTABLES: case DIOCRGETTSTATS: case DIOCRGETADDRS: case DIOCRGETASTATS: case DIOCRTSTADDRS: case DIOCOSFPGET: case DIOCGETSRCNODES: case DIOCIGETIFACES: case DIOCGIFSPEEDV1: case DIOCGIFSPEEDV0: case DIOCGETRULENV: break; case DIOCRCLRTABLES: case DIOCRADDTABLES: case DIOCRDELTABLES: case DIOCRCLRTSTATS: case DIOCRCLRADDRS: case DIOCRADDADDRS: case DIOCRDELADDRS: case DIOCRSETADDRS: case DIOCRSETTFLAGS: if (((struct pfioc_table *)addr)->pfrio_flags & PFR_FLAG_DUMMY) { flags |= FWRITE; /* need write lock for dummy */ break; /* dummy operation ok */ } return (EACCES); case DIOCGETRULE: if (((struct pfioc_rule *)addr)->action == PF_GET_CLR_CNTR) return (EACCES); break; default: return (EACCES); } CURVNET_SET(TD_TO_VNET(td)); switch (cmd) { case DIOCSTART: sx_xlock(&pf_ioctl_lock); if (V_pf_status.running) error = EEXIST; else { int cpu; hook_pf(); V_pf_status.running = 1; V_pf_status.since = time_second; CPU_FOREACH(cpu) V_pf_stateid[cpu] = time_second; DPFPRINTF(PF_DEBUG_MISC, ("pf: started\n")); } break; case DIOCSTOP: sx_xlock(&pf_ioctl_lock); if (!V_pf_status.running) error = ENOENT; else { V_pf_status.running = 0; dehook_pf(); V_pf_status.since = time_second; DPFPRINTF(PF_DEBUG_MISC, ("pf: stopped\n")); } break; case DIOCADDRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvl = NULL; void *nvlpacked = NULL; struct pf_krule *rule = NULL; const char *anchor = "", *anchor_call = ""; uint32_t ticket = 0, pool_ticket = 0; #define ERROUT(x) ERROUT_IOCTL(DIOCADDRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EINVAL); ticket = nvlist_get_number(nvl, "ticket"); if (! nvlist_exists_number(nvl, "pool_ticket")) ERROUT(EINVAL); pool_ticket = nvlist_get_number(nvl, "pool_ticket"); if (! nvlist_exists_nvlist(nvl, "rule")) ERROUT(EINVAL); error = pf_nvrule_to_krule(nvlist_get_nvlist(nvl, "rule"), &rule); if (error) ERROUT(error); if (nvlist_exists_string(nvl, "anchor")) anchor = nvlist_get_string(nvl, "anchor"); if (nvlist_exists_string(nvl, "anchor_call")) anchor_call = nvlist_get_string(nvl, "anchor_call"); if ((error = nvlist_error(nvl))) ERROUT(error); /* Frees rule on error */ error = pf_ioctl_addrule(rule, ticket, pool_ticket, anchor, anchor_call, td); nvlist_destroy(nvl); free(nvlpacked, M_TEMP); break; #undef ERROUT DIOCADDRULENV_error: pf_krule_free(rule); nvlist_destroy(nvl); free(nvlpacked, M_TEMP); break; } case DIOCADDRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_krule *rule; rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK); error = pf_rule_to_krule(&pr->rule, rule); if (error != 0) { free(rule, M_PFRULE); break; } pr->anchor[sizeof(pr->anchor) - 1] = 0; /* Frees rule on error */ error = pf_ioctl_addrule(rule, pr->ticket, pr->pool_ticket, pr->anchor, pr->anchor_call, td); break; } case DIOCGETRULES: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *tail; int rs_num; PF_RULES_WLOCK(); pr->anchor[sizeof(pr->anchor) - 1] = 0; ruleset = pf_find_kruleset(pr->anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } rs_num = pf_get_ruleset_number(pr->rule.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); error = EINVAL; break; } tail = TAILQ_LAST(ruleset->rules[rs_num].active.ptr, pf_krulequeue); if (tail) pr->nr = tail->nr + 1; else pr->nr = 0; pr->ticket = ruleset->rules[rs_num].active.ticket; PF_RULES_WUNLOCK(); break; } case DIOCGETRULE: { struct pfioc_rule *pr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *rule; int rs_num; PF_RULES_WLOCK(); pr->anchor[sizeof(pr->anchor) - 1] = 0; ruleset = pf_find_kruleset(pr->anchor); if (ruleset == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } rs_num = pf_get_ruleset_number(pr->rule.action); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); error = EINVAL; break; } if (pr->ticket != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); error = EBUSY; break; } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != pr->nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); error = EBUSY; break; } pf_krule_to_rule(rule, &pr->rule); if (pf_kanchor_copyout(ruleset, rule, pr)) { PF_RULES_WUNLOCK(); error = EBUSY; break; } pf_addr_copyout(&pr->rule.src.addr); pf_addr_copyout(&pr->rule.dst.addr); if (pr->action == PF_GET_CLR_CNTR) { counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } counter_u64_zero(rule->states_tot); } PF_RULES_WUNLOCK(); break; } case DIOCGETRULENV: { struct pfioc_nv *nv = (struct pfioc_nv *)addr; nvlist_t *nvrule = NULL; nvlist_t *nvl = NULL; struct pf_kruleset *ruleset; struct pf_krule *rule; void *nvlpacked = NULL; int rs_num, nr; bool clear_counter = false; #define ERROUT(x) ERROUT_IOCTL(DIOCGETRULENV_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); /* Copy the request in */ nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_string(nvl, "anchor")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ruleset")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "ticket")) ERROUT(EBADMSG); if (! nvlist_exists_number(nvl, "nr")) ERROUT(EBADMSG); if (nvlist_exists_bool(nvl, "clear_counter")) clear_counter = nvlist_get_bool(nvl, "clear_counter"); if (clear_counter && !(flags & FWRITE)) ERROUT(EACCES); nr = nvlist_get_number(nvl, "nr"); PF_RULES_WLOCK(); ruleset = pf_find_kruleset(nvlist_get_string(nvl, "anchor")); if (ruleset == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOENT); } rs_num = pf_get_ruleset_number(nvlist_get_number(nvl, "ruleset")); if (rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); ERROUT(EINVAL); } if (nvlist_get_number(nvl, "ticket") != ruleset->rules[rs_num].active.ticket) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); break; } if ((error = nvlist_error(nvl))) { PF_RULES_WUNLOCK(); ERROUT(error); } rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr); while ((rule != NULL) && (rule->nr != nr)) rule = TAILQ_NEXT(rule, entries); if (rule == NULL) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); break; } nvrule = pf_krule_to_nvrule(rule); nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } nvlist_add_number(nvl, "nr", nr); nvlist_add_nvlist(nvl, "rule", nvrule); nvrule = NULL; if (pf_kanchor_nvcopyout(ruleset, rule, nvl)) { PF_RULES_WUNLOCK(); ERROUT(EBUSY); } free(nvlpacked, M_TEMP); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) { PF_RULES_WUNLOCK(); ERROUT(ENOMEM); } if (nv->size == 0) { PF_RULES_WUNLOCK(); ERROUT(0); } else if (nv->size < nv->len) { PF_RULES_WUNLOCK(); ERROUT(ENOSPC); } error = copyout(nvlpacked, nv->data, nv->len); if (clear_counter) { counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } counter_u64_zero(rule->states_tot); } PF_RULES_WUNLOCK(); #undef ERROUT DIOCGETRULENV_error: free(nvlpacked, M_TEMP); nvlist_destroy(nvrule); nvlist_destroy(nvl); break; } case DIOCCHANGERULE: { struct pfioc_rule *pcr = (struct pfioc_rule *)addr; struct pf_kruleset *ruleset; struct pf_krule *oldrule = NULL, *newrule = NULL; struct pfi_kkif *kif = NULL; struct pf_kpooladdr *pa; u_int32_t nr = 0; int rs_num; if (pcr->action < PF_CHANGE_ADD_HEAD || pcr->action > PF_CHANGE_GET_TICKET) { error = EINVAL; break; } if (pcr->rule.return_icmp >> 8 > ICMP_MAXTYPE) { error = EINVAL; break; } if (pcr->action != PF_CHANGE_REMOVE) { newrule = malloc(sizeof(*newrule), M_PFRULE, M_WAITOK); error = pf_rule_to_krule(&pcr->rule, newrule); if (error != 0) { free(newrule, M_PFRULE); break; } if (newrule->ifname[0]) kif = pf_kkif_create(M_WAITOK); newrule->evaluations = counter_u64_alloc(M_WAITOK); for (int i = 0; i < 2; i++) { newrule->packets[i] = counter_u64_alloc(M_WAITOK); newrule->bytes[i] = counter_u64_alloc(M_WAITOK); } newrule->states_cur = counter_u64_alloc(M_WAITOK); newrule->states_tot = counter_u64_alloc(M_WAITOK); newrule->src_nodes = counter_u64_alloc(M_WAITOK); newrule->cuid = td->td_ucred->cr_ruid; newrule->cpid = td->td_proc ? td->td_proc->p_pid : 0; TAILQ_INIT(&newrule->rpool.list); } #define ERROUT(x) { error = (x); goto DIOCCHANGERULE_error; } PF_RULES_WLOCK(); if (!(pcr->action == PF_CHANGE_REMOVE || pcr->action == PF_CHANGE_GET_TICKET) && pcr->pool_ticket != V_ticket_pabuf) ERROUT(EBUSY); ruleset = pf_find_kruleset(pcr->anchor); if (ruleset == NULL) ERROUT(EINVAL); rs_num = pf_get_ruleset_number(pcr->rule.action); if (rs_num >= PF_RULESET_MAX) ERROUT(EINVAL); if (pcr->action == PF_CHANGE_GET_TICKET) { pcr->ticket = ++ruleset->rules[rs_num].active.ticket; ERROUT(0); } else if (pcr->ticket != ruleset->rules[rs_num].active.ticket) ERROUT(EINVAL); if (pcr->action != PF_CHANGE_REMOVE) { if (newrule->ifname[0]) { newrule->kif = pfi_kkif_attach(kif, newrule->ifname); kif = NULL; pfi_kkif_ref(newrule->kif); } else newrule->kif = NULL; if (newrule->rtableid > 0 && newrule->rtableid >= rt_numfibs) error = EBUSY; #ifdef ALTQ /* set queue IDs */ if (newrule->qname[0] != 0) { if ((newrule->qid = pf_qname2qid(newrule->qname)) == 0) error = EBUSY; else if (newrule->pqname[0] != 0) { if ((newrule->pqid = pf_qname2qid(newrule->pqname)) == 0) error = EBUSY; } else newrule->pqid = newrule->qid; } #endif /* ALTQ */ if (newrule->tagname[0]) if ((newrule->tag = pf_tagname2tag(newrule->tagname)) == 0) error = EBUSY; if (newrule->match_tagname[0]) if ((newrule->match_tag = pf_tagname2tag( newrule->match_tagname)) == 0) error = EBUSY; if (newrule->rt && !newrule->direction) error = EINVAL; if (!newrule->log) newrule->logif = 0; if (newrule->logif >= PFLOGIFS_MAX) error = EINVAL; if (pf_addr_setup(ruleset, &newrule->src.addr, newrule->af)) error = ENOMEM; if (pf_addr_setup(ruleset, &newrule->dst.addr, newrule->af)) error = ENOMEM; if (pf_kanchor_setup(newrule, ruleset, pcr->anchor_call)) error = EINVAL; TAILQ_FOREACH(pa, &V_pf_pabuf, entries) if (pa->addr.type == PF_ADDR_TABLE) { pa->addr.p.tbl = pfr_attach_table(ruleset, pa->addr.v.tblname); if (pa->addr.p.tbl == NULL) error = ENOMEM; } newrule->overload_tbl = NULL; if (newrule->overload_tblname[0]) { if ((newrule->overload_tbl = pfr_attach_table( ruleset, newrule->overload_tblname)) == NULL) error = EINVAL; else newrule->overload_tbl->pfrkt_flags |= PFR_TFLAG_ACTIVE; } pf_mv_kpool(&V_pf_pabuf, &newrule->rpool.list); if (((((newrule->action == PF_NAT) || (newrule->action == PF_RDR) || (newrule->action == PF_BINAT) || (newrule->rt > PF_NOPFROUTE)) && !newrule->anchor)) && (TAILQ_FIRST(&newrule->rpool.list) == NULL)) error = EINVAL; if (error) { pf_free_rule(newrule); PF_RULES_WUNLOCK(); break; } newrule->rpool.cur = TAILQ_FIRST(&newrule->rpool.list); } pf_empty_kpool(&V_pf_pabuf); if (pcr->action == PF_CHANGE_ADD_HEAD) oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); else if (pcr->action == PF_CHANGE_ADD_TAIL) oldrule = TAILQ_LAST( ruleset->rules[rs_num].active.ptr, pf_krulequeue); else { oldrule = TAILQ_FIRST( ruleset->rules[rs_num].active.ptr); while ((oldrule != NULL) && (oldrule->nr != pcr->nr)) oldrule = TAILQ_NEXT(oldrule, entries); if (oldrule == NULL) { if (newrule != NULL) pf_free_rule(newrule); PF_RULES_WUNLOCK(); error = EINVAL; break; } } if (pcr->action == PF_CHANGE_REMOVE) { pf_unlink_rule(ruleset->rules[rs_num].active.ptr, oldrule); ruleset->rules[rs_num].active.rcount--; } else { if (oldrule == NULL) TAILQ_INSERT_TAIL( ruleset->rules[rs_num].active.ptr, newrule, entries); else if (pcr->action == PF_CHANGE_ADD_HEAD || pcr->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldrule, newrule, entries); else TAILQ_INSERT_AFTER( ruleset->rules[rs_num].active.ptr, oldrule, newrule, entries); ruleset->rules[rs_num].active.rcount++; } nr = 0; TAILQ_FOREACH(oldrule, ruleset->rules[rs_num].active.ptr, entries) oldrule->nr = nr++; ruleset->rules[rs_num].active.ticket++; pf_calc_skip_steps(ruleset->rules[rs_num].active.ptr); pf_remove_if_empty_kruleset(ruleset); PF_RULES_WUNLOCK(); break; #undef ERROUT DIOCCHANGERULE_error: PF_RULES_WUNLOCK(); pf_krule_free(newrule); pf_kkif_free(kif); break; } case DIOCCLRSTATES: { struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr; struct pf_kstate_kill kill; error = pf_state_kill_to_kstate_kill(psk, &kill); if (error) break; psk->psk_killed = pf_clear_states(&kill); break; } case DIOCCLRSTATESNV: { error = pf_clearstates_nv((struct pfioc_nv *)addr); break; } case DIOCKILLSTATES: { struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr; struct pf_kstate_kill kill; error = pf_state_kill_to_kstate_kill(psk, &kill); if (error) break; psk->psk_killed = 0; error = pf_killstates(&kill, &psk->psk_killed); break; } case DIOCKILLSTATESNV: { error = pf_killstates_nv((struct pfioc_nv *)addr); break; } case DIOCADDSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pfsync_state *sp = &ps->state; if (sp->timeout >= PFTM_MAX) { error = EINVAL; break; } if (V_pfsync_state_import_ptr != NULL) { PF_RULES_RLOCK(); error = V_pfsync_state_import_ptr(sp, PFSYNC_SI_IOCTL); PF_RULES_RUNLOCK(); } else error = EOPNOTSUPP; break; } case DIOCGETSTATE: { struct pfioc_state *ps = (struct pfioc_state *)addr; struct pf_state *s; s = pf_find_state_byid(ps->state.id, ps->state.creatorid); if (s == NULL) { error = ENOENT; break; } pfsync_state_export(&ps->state, s); PF_STATE_UNLOCK(s); break; } case DIOCGETSTATENV: { error = pf_getstate((struct pfioc_nv *)addr); break; } case DIOCGETSTATES: { struct pfioc_states *ps = (struct pfioc_states *)addr; struct pf_state *s; struct pfsync_state *pstore, *p; int i, nr; if (ps->ps_len <= 0) { nr = uma_zone_get_cur(V_pf_state_z); ps->ps_len = sizeof(struct pfsync_state) * nr; break; } p = pstore = malloc(ps->ps_len, M_TEMP, M_WAITOK | M_ZERO); nr = 0; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; if ((nr+1) * sizeof(*p) > ps->ps_len) { PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATES_full; } pfsync_state_export(p, s); p++; nr++; } PF_HASHROW_UNLOCK(ih); } DIOCGETSTATES_full: error = copyout(pstore, ps->ps_states, sizeof(struct pfsync_state) * nr); if (error) { free(pstore, M_TEMP); break; } ps->ps_len = sizeof(struct pfsync_state) * nr; free(pstore, M_TEMP); break; } case DIOCGETSTATESNV: { error = pf_getstates((struct pfioc_nv *)addr); break; } case DIOCGETSTATUS: { struct pf_status *s = (struct pf_status *)addr; PF_RULES_RLOCK(); s->running = V_pf_status.running; s->since = V_pf_status.since; s->debug = V_pf_status.debug; s->hostid = V_pf_status.hostid; s->states = V_pf_status.states; s->src_nodes = V_pf_status.src_nodes; for (int i = 0; i < PFRES_MAX; i++) s->counters[i] = counter_u64_fetch(V_pf_status.counters[i]); for (int i = 0; i < LCNT_MAX; i++) s->lcounters[i] = counter_u64_fetch(V_pf_status.lcounters[i]); for (int i = 0; i < FCNT_MAX; i++) s->fcounters[i] = counter_u64_fetch(V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) s->scounters[i] = counter_u64_fetch(V_pf_status.scounters[i]); bcopy(V_pf_status.ifname, s->ifname, IFNAMSIZ); bcopy(V_pf_status.pf_chksum, s->pf_chksum, PF_MD5_DIGEST_LENGTH); pfi_update_status(s->ifname, s); PF_RULES_RUNLOCK(); break; } case DIOCSETSTATUSIF: { struct pfioc_if *pi = (struct pfioc_if *)addr; if (pi->ifname[0] == 0) { bzero(V_pf_status.ifname, IFNAMSIZ); break; } PF_RULES_WLOCK(); strlcpy(V_pf_status.ifname, pi->ifname, IFNAMSIZ); PF_RULES_WUNLOCK(); break; } case DIOCCLRSTATUS: { PF_RULES_WLOCK(); for (int i = 0; i < PFRES_MAX; i++) counter_u64_zero(V_pf_status.counters[i]); for (int i = 0; i < FCNT_MAX; i++) counter_u64_zero(V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_zero(V_pf_status.scounters[i]); for (int i = 0; i < LCNT_MAX; i++) counter_u64_zero(V_pf_status.lcounters[i]); V_pf_status.since = time_second; if (*V_pf_status.ifname) pfi_update_status(V_pf_status.ifname, NULL); PF_RULES_WUNLOCK(); break; } case DIOCNATLOOK: { struct pfioc_natlook *pnl = (struct pfioc_natlook *)addr; struct pf_state_key *sk; struct pf_state *state; struct pf_state_key_cmp key; int m = 0, direction = pnl->direction; int sidx, didx; /* NATLOOK src and dst are reversed, so reverse sidx/didx */ sidx = (direction == PF_IN) ? 1 : 0; didx = (direction == PF_IN) ? 0 : 1; if (!pnl->proto || PF_AZERO(&pnl->saddr, pnl->af) || PF_AZERO(&pnl->daddr, pnl->af) || ((pnl->proto == IPPROTO_TCP || pnl->proto == IPPROTO_UDP) && (!pnl->dport || !pnl->sport))) error = EINVAL; else { bzero(&key, sizeof(key)); key.af = pnl->af; key.proto = pnl->proto; PF_ACPY(&key.addr[sidx], &pnl->saddr, pnl->af); key.port[sidx] = pnl->sport; PF_ACPY(&key.addr[didx], &pnl->daddr, pnl->af); key.port[didx] = pnl->dport; state = pf_find_state_all(&key, direction, &m); if (m > 1) error = E2BIG; /* more than one state */ else if (state != NULL) { /* XXXGL: not locked read */ sk = state->key[sidx]; PF_ACPY(&pnl->rsaddr, &sk->addr[sidx], sk->af); pnl->rsport = sk->port[sidx]; PF_ACPY(&pnl->rdaddr, &sk->addr[didx], sk->af); pnl->rdport = sk->port[didx]; } else error = ENOENT; } break; } case DIOCSETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; int old; if (pt->timeout < 0 || pt->timeout >= PFTM_MAX || pt->seconds < 0) { error = EINVAL; break; } PF_RULES_WLOCK(); old = V_pf_default_rule.timeout[pt->timeout]; if (pt->timeout == PFTM_INTERVAL && pt->seconds == 0) pt->seconds = 1; V_pf_default_rule.timeout[pt->timeout] = pt->seconds; if (pt->timeout == PFTM_INTERVAL && pt->seconds < old) wakeup(pf_purge_thread); pt->seconds = old; PF_RULES_WUNLOCK(); break; } case DIOCGETTIMEOUT: { struct pfioc_tm *pt = (struct pfioc_tm *)addr; if (pt->timeout < 0 || pt->timeout >= PFTM_MAX) { error = EINVAL; break; } PF_RULES_RLOCK(); pt->seconds = V_pf_default_rule.timeout[pt->timeout]; PF_RULES_RUNLOCK(); break; } case DIOCGETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; if (pl->index < 0 || pl->index >= PF_LIMIT_MAX) { error = EINVAL; break; } PF_RULES_RLOCK(); pl->limit = V_pf_limits[pl->index].limit; PF_RULES_RUNLOCK(); break; } case DIOCSETLIMIT: { struct pfioc_limit *pl = (struct pfioc_limit *)addr; int old_limit; PF_RULES_WLOCK(); if (pl->index < 0 || pl->index >= PF_LIMIT_MAX || V_pf_limits[pl->index].zone == NULL) { PF_RULES_WUNLOCK(); error = EINVAL; break; } uma_zone_set_max(V_pf_limits[pl->index].zone, pl->limit); old_limit = V_pf_limits[pl->index].limit; V_pf_limits[pl->index].limit = pl->limit; pl->limit = old_limit; PF_RULES_WUNLOCK(); break; } case DIOCSETDEBUG: { u_int32_t *level = (u_int32_t *)addr; PF_RULES_WLOCK(); V_pf_status.debug = *level; PF_RULES_WUNLOCK(); break; } case DIOCCLRRULECTRS: { /* obsoleted by DIOCGETRULE with action=PF_GET_CLR_CNTR */ struct pf_kruleset *ruleset = &pf_main_ruleset; struct pf_krule *rule; PF_RULES_WLOCK(); TAILQ_FOREACH(rule, ruleset->rules[PF_RULESET_FILTER].active.ptr, entries) { counter_u64_zero(rule->evaluations); for (int i = 0; i < 2; i++) { counter_u64_zero(rule->packets[i]); counter_u64_zero(rule->bytes[i]); } } PF_RULES_WUNLOCK(); break; } case DIOCGIFSPEEDV0: case DIOCGIFSPEEDV1: { struct pf_ifspeed_v1 *psp = (struct pf_ifspeed_v1 *)addr; struct pf_ifspeed_v1 ps; struct ifnet *ifp; if (psp->ifname[0] != 0) { /* Can we completely trust user-land? */ strlcpy(ps.ifname, psp->ifname, IFNAMSIZ); ifp = ifunit(ps.ifname); if (ifp != NULL) { psp->baudrate32 = (u_int32_t)uqmin(ifp->if_baudrate, UINT_MAX); if (cmd == DIOCGIFSPEEDV1) psp->baudrate = ifp->if_baudrate; } else error = EINVAL; } else error = EINVAL; break; } #ifdef ALTQ case DIOCSTARTALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* enable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_enable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 1; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: started\n")); break; } case DIOCSTOPALTQ: { struct pf_altq *altq; PF_RULES_WLOCK(); /* disable all altq interfaces on active list */ TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) { if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) { error = pf_disable_altq(altq); if (error != 0) break; } } if (error == 0) V_pf_altq_running = 0; PF_RULES_WUNLOCK(); DPFPRINTF(PF_DEBUG_MISC, ("altq: stopped\n")); break; } case DIOCADDALTQV0: case DIOCADDALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq, *a; struct ifnet *ifp; altq = malloc(sizeof(*altq), M_PFALTQ, M_WAITOK | M_ZERO); error = pf_import_kaltq(pa, altq, IOCPARM_LEN(cmd)); if (error) break; altq->local_flags = 0; PF_RULES_WLOCK(); if (pa->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); error = EBUSY; break; } /* * if this is for a queue, find the discipline and * copy the necessary fields */ if (altq->qname[0] != 0) { if ((altq->qid = pf_qname2qid(altq->qname)) == 0) { PF_RULES_WUNLOCK(); error = EBUSY; free(altq, M_PFALTQ); break; } altq->altq_disc = NULL; TAILQ_FOREACH(a, V_pf_altq_ifs_inactive, entries) { if (strncmp(a->ifname, altq->ifname, IFNAMSIZ) == 0) { altq->altq_disc = a->altq_disc; break; } } } if ((ifp = ifunit(altq->ifname)) == NULL) altq->local_flags |= PFALTQ_FLAG_IF_REMOVED; else error = altq_add(ifp, altq); if (error) { PF_RULES_WUNLOCK(); free(altq, M_PFALTQ); break; } if (altq->qname[0] != 0) TAILQ_INSERT_TAIL(V_pf_altqs_inactive, altq, entries); else TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, altq, entries); /* version error check done on import above */ pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_WUNLOCK(); break; } case DIOCGETALTQSV0: case DIOCGETALTQSV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); pa->nr = 0; TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) pa->nr++; TAILQ_FOREACH(altq, V_pf_altqs_active, entries) pa->nr++; pa->ticket = V_ticket_altqs_active; PF_RULES_RUNLOCK(); break; } case DIOCGETALTQV0: case DIOCGETALTQV1: { struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr; struct pf_altq *altq; PF_RULES_RLOCK(); if (pa->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } altq = pf_altq_get_nth_active(pa->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd)); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEALTQV0: case DIOCCHANGEALTQV1: /* CHANGEALTQ not supported yet! */ error = ENODEV; break; case DIOCGETQSTATSV0: case DIOCGETQSTATSV1: { struct pfioc_qstats_v1 *pq = (struct pfioc_qstats_v1 *)addr; struct pf_altq *altq; int nbytes; u_int32_t version; PF_RULES_RLOCK(); if (pq->ticket != V_ticket_altqs_active) { PF_RULES_RUNLOCK(); error = EBUSY; break; } nbytes = pq->nbytes; altq = pf_altq_get_nth_active(pq->nr); if (altq == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) != 0) { PF_RULES_RUNLOCK(); error = ENXIO; break; } PF_RULES_RUNLOCK(); if (cmd == DIOCGETQSTATSV0) version = 0; /* DIOCGETQSTATSV0 means stats struct v0 */ else version = pq->version; error = altq_getqstats(altq, pq->buf, &nbytes, version); if (error == 0) { pq->scheduler = altq->scheduler; pq->nbytes = nbytes; } break; } #endif /* ALTQ */ case DIOCBEGINADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; PF_RULES_WLOCK(); pf_empty_kpool(&V_pf_pabuf); pp->ticket = ++V_ticket_pabuf; PF_RULES_WUNLOCK(); break; } case DIOCADDADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpooladdr *pa; struct pfi_kkif *kif = NULL; #ifndef INET if (pp->af == AF_INET) { error = EAFNOSUPPORT; break; } #endif /* INET */ #ifndef INET6 if (pp->af == AF_INET6) { error = EAFNOSUPPORT; break; } #endif /* INET6 */ if (pp->addr.addr.type != PF_ADDR_ADDRMASK && pp->addr.addr.type != PF_ADDR_DYNIFTL && pp->addr.addr.type != PF_ADDR_TABLE) { error = EINVAL; break; } if (pp->addr.addr.p.dyn != NULL) { error = EINVAL; break; } pa = malloc(sizeof(*pa), M_PFRULE, M_WAITOK); pf_pooladdr_to_kpooladdr(&pp->addr, pa); if (pa->ifname[0]) kif = pf_kkif_create(M_WAITOK); PF_RULES_WLOCK(); if (pp->ticket != V_ticket_pabuf) { PF_RULES_WUNLOCK(); if (pa->ifname[0]) pf_kkif_free(kif); free(pa, M_PFRULE); error = EBUSY; break; } if (pa->ifname[0]) { pa->kif = pfi_kkif_attach(kif, pa->ifname); kif = NULL; pfi_kkif_ref(pa->kif); } else pa->kif = NULL; if (pa->addr.type == PF_ADDR_DYNIFTL && ((error = pfi_dynaddr_setup(&pa->addr, pp->af)) != 0)) { if (pa->ifname[0]) pfi_kkif_unref(pa->kif); PF_RULES_WUNLOCK(); free(pa, M_PFRULE); break; } TAILQ_INSERT_TAIL(&V_pf_pabuf, pa, entries); PF_RULES_WUNLOCK(); break; } case DIOCGETADDRS: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *pa; PF_RULES_RLOCK(); pp->nr = 0; pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, pp->r_num, 0, 1, 0); if (pool == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } TAILQ_FOREACH(pa, &pool->list, entries) pp->nr++; PF_RULES_RUNLOCK(); break; } case DIOCGETADDR: { struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *pa; u_int32_t nr = 0; PF_RULES_RLOCK(); pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action, pp->r_num, 0, 1, 1); if (pool == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pa = TAILQ_FIRST(&pool->list); while ((pa != NULL) && (nr < pp->nr)) { pa = TAILQ_NEXT(pa, entries); nr++; } if (pa == NULL) { PF_RULES_RUNLOCK(); error = EBUSY; break; } pf_kpooladdr_to_pooladdr(pa, &pp->addr); pf_addr_copyout(&pp->addr.addr); PF_RULES_RUNLOCK(); break; } case DIOCCHANGEADDR: { struct pfioc_pooladdr *pca = (struct pfioc_pooladdr *)addr; struct pf_kpool *pool; struct pf_kpooladdr *oldpa = NULL, *newpa = NULL; struct pf_kruleset *ruleset; struct pfi_kkif *kif = NULL; if (pca->action < PF_CHANGE_ADD_HEAD || pca->action > PF_CHANGE_REMOVE) { error = EINVAL; break; } if (pca->addr.addr.type != PF_ADDR_ADDRMASK && pca->addr.addr.type != PF_ADDR_DYNIFTL && pca->addr.addr.type != PF_ADDR_TABLE) { error = EINVAL; break; } if (pca->addr.addr.p.dyn != NULL) { error = EINVAL; break; } if (pca->action != PF_CHANGE_REMOVE) { #ifndef INET if (pca->af == AF_INET) { error = EAFNOSUPPORT; break; } #endif /* INET */ #ifndef INET6 if (pca->af == AF_INET6) { error = EAFNOSUPPORT; break; } #endif /* INET6 */ newpa = malloc(sizeof(*newpa), M_PFRULE, M_WAITOK); bcopy(&pca->addr, newpa, sizeof(struct pf_pooladdr)); if (newpa->ifname[0]) kif = pf_kkif_create(M_WAITOK); newpa->kif = NULL; } #define ERROUT(x) ERROUT_IOCTL(DIOCCHANGEADDR_error, x) PF_RULES_WLOCK(); ruleset = pf_find_kruleset(pca->anchor); if (ruleset == NULL) ERROUT(EBUSY); pool = pf_get_kpool(pca->anchor, pca->ticket, pca->r_action, pca->r_num, pca->r_last, 1, 1); if (pool == NULL) ERROUT(EBUSY); if (pca->action != PF_CHANGE_REMOVE) { if (newpa->ifname[0]) { newpa->kif = pfi_kkif_attach(kif, newpa->ifname); pfi_kkif_ref(newpa->kif); kif = NULL; } switch (newpa->addr.type) { case PF_ADDR_DYNIFTL: error = pfi_dynaddr_setup(&newpa->addr, pca->af); break; case PF_ADDR_TABLE: newpa->addr.p.tbl = pfr_attach_table(ruleset, newpa->addr.v.tblname); if (newpa->addr.p.tbl == NULL) error = ENOMEM; break; } if (error) goto DIOCCHANGEADDR_error; } switch (pca->action) { case PF_CHANGE_ADD_HEAD: oldpa = TAILQ_FIRST(&pool->list); break; case PF_CHANGE_ADD_TAIL: oldpa = TAILQ_LAST(&pool->list, pf_kpalist); break; default: oldpa = TAILQ_FIRST(&pool->list); for (int i = 0; oldpa && i < pca->nr; i++) oldpa = TAILQ_NEXT(oldpa, entries); if (oldpa == NULL) ERROUT(EINVAL); } if (pca->action == PF_CHANGE_REMOVE) { TAILQ_REMOVE(&pool->list, oldpa, entries); switch (oldpa->addr.type) { case PF_ADDR_DYNIFTL: pfi_dynaddr_remove(oldpa->addr.p.dyn); break; case PF_ADDR_TABLE: pfr_detach_table(oldpa->addr.p.tbl); break; } if (oldpa->kif) pfi_kkif_unref(oldpa->kif); free(oldpa, M_PFRULE); } else { if (oldpa == NULL) TAILQ_INSERT_TAIL(&pool->list, newpa, entries); else if (pca->action == PF_CHANGE_ADD_HEAD || pca->action == PF_CHANGE_ADD_BEFORE) TAILQ_INSERT_BEFORE(oldpa, newpa, entries); else TAILQ_INSERT_AFTER(&pool->list, oldpa, newpa, entries); } pool->cur = TAILQ_FIRST(&pool->list); PF_ACPY(&pool->counter, &pool->cur->addr.v.a.addr, pca->af); PF_RULES_WUNLOCK(); break; #undef ERROUT DIOCCHANGEADDR_error: if (newpa != NULL) { if (newpa->kif) pfi_kkif_unref(newpa->kif); free(newpa, M_PFRULE); } PF_RULES_WUNLOCK(); pf_kkif_free(kif); break; } case DIOCGETRULESETS: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; PF_RULES_RLOCK(); pr->path[sizeof(pr->path) - 1] = 0; if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->nr = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL) pr->nr++; } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) pr->nr++; } PF_RULES_RUNLOCK(); break; } case DIOCGETRULESET: { struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr; struct pf_kruleset *ruleset; struct pf_kanchor *anchor; u_int32_t nr = 0; PF_RULES_RLOCK(); pr->path[sizeof(pr->path) - 1] = 0; if ((ruleset = pf_find_kruleset(pr->path)) == NULL) { PF_RULES_RUNLOCK(); error = ENOENT; break; } pr->name[0] = 0; if (ruleset->anchor == NULL) { /* XXX kludge for pf_main_ruleset */ RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors) if (anchor->parent == NULL && nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } else { RB_FOREACH(anchor, pf_kanchor_node, &ruleset->anchor->children) if (nr++ == pr->nr) { strlcpy(pr->name, anchor->name, sizeof(pr->name)); break; } } if (!pr->name[0]) error = EBUSY; PF_RULES_RUNLOCK(); break; } case DIOCRCLRTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_tables(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_tables(pfrts, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRDELTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { error = ENOMEM; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_tables(pfrts, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRGETTABLES: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_NOWAIT); if (pfrts == NULL) { error = ENOMEM; PF_RULES_RUNLOCK(); break; } error = pfr_get_tables(&io->pfrio_table, pfrts, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrts, io->pfrio_buffer, totlen); free(pfrts, M_TEMP); break; } case DIOCRGETTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_tstats *pfrtstats; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_tstats)) { error = ENODEV; break; } PF_RULES_WLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_WUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); totlen = io->pfrio_size * sizeof(struct pfr_tstats); pfrtstats = mallocarray(io->pfrio_size, sizeof(struct pfr_tstats), M_TEMP, M_NOWAIT); if (pfrtstats == NULL) { error = ENOMEM; PF_RULES_WUNLOCK(); break; } error = pfr_get_tstats(&io->pfrio_table, pfrtstats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0) error = copyout(pfrtstats, io->pfrio_buffer, totlen); free(pfrtstats, M_TEMP); break; } case DIOCRCLRTSTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) { /* We used to count tables and use the minimum required * size, so we didn't fail on overly large requests. * Keep doing so. */ io->pfrio_size = pf_ioctl_maxcount; break; } totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_NOWAIT); if (pfrts == NULL) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_clr_tstats(pfrts, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRSETTFLAGS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_table *pfrts; size_t totlen; int n; if (io->pfrio_esize != sizeof(struct pfr_table)) { error = ENODEV; break; } PF_RULES_RLOCK(); n = pfr_table_count(&io->pfrio_table, io->pfrio_flags); if (n < 0) { PF_RULES_RUNLOCK(); error = EINVAL; break; } io->pfrio_size = min(io->pfrio_size, n); PF_RULES_RUNLOCK(); totlen = io->pfrio_size * sizeof(struct pfr_table); pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table), M_TEMP, M_WAITOK); error = copyin(io->pfrio_buffer, pfrts, totlen); if (error) { free(pfrts, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_tflags(pfrts, io->pfrio_size, io->pfrio_setflag, io->pfrio_clrflag, &io->pfrio_nchange, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfrts, M_TEMP); break; } case DIOCRCLRADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; if (io->pfrio_esize != 0) { error = ENODEV; break; } PF_RULES_WLOCK(); error = pfr_clr_addrs(&io->pfrio_table, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); break; } case DIOCRADDADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_add_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRDELADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_del_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRSETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen, count; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size2 < 0) { error = EINVAL; break; } count = max(io->pfrio_size, io->pfrio_size2); if (count > pf_ioctl_maxcount || WOULD_OVERFLOW(count, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = count * sizeof(struct pfr_addr); pfras = mallocarray(count, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_set_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_size2, &io->pfrio_nadd, &io->pfrio_ndel, &io->pfrio_nchange, io->pfrio_flags | PFR_FLAG_USERIOCTL, 0); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } PF_RULES_RLOCK(); error = pfr_get_addrs(&io->pfrio_table, pfras, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRGETASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_astats *pfrastats; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_astats)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_astats))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_astats); pfrastats = mallocarray(io->pfrio_size, sizeof(struct pfr_astats), M_TEMP, M_NOWAIT); if (! pfrastats) { error = ENOMEM; break; } PF_RULES_RLOCK(); error = pfr_get_astats(&io->pfrio_table, pfrastats, &io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfrastats, io->pfrio_buffer, totlen); free(pfrastats, M_TEMP); break; } case DIOCRCLRASTATS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_clr_astats(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRTSTADDRS: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_RLOCK(); error = pfr_tst_addrs(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nmatch, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_RUNLOCK(); if (error == 0) error = copyout(pfras, io->pfrio_buffer, totlen); free(pfras, M_TEMP); break; } case DIOCRINADEFINE: { struct pfioc_table *io = (struct pfioc_table *)addr; struct pfr_addr *pfras; size_t totlen; if (io->pfrio_esize != sizeof(struct pfr_addr)) { error = ENODEV; break; } if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) { error = EINVAL; break; } totlen = io->pfrio_size * sizeof(struct pfr_addr); pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr), M_TEMP, M_NOWAIT); if (! pfras) { error = ENOMEM; break; } error = copyin(io->pfrio_buffer, pfras, totlen); if (error) { free(pfras, M_TEMP); break; } PF_RULES_WLOCK(); error = pfr_ina_define(&io->pfrio_table, pfras, io->pfrio_size, &io->pfrio_nadd, &io->pfrio_naddr, io->pfrio_ticket, io->pfrio_flags | PFR_FLAG_USERIOCTL); PF_RULES_WUNLOCK(); free(pfras, M_TEMP); break; } case DIOCOSFPADD: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_WLOCK(); error = pf_osfp_add(io); PF_RULES_WUNLOCK(); break; } case DIOCOSFPGET: { struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr; PF_RULES_RLOCK(); error = pf_osfp_get(io); PF_RULES_RUNLOCK(); break; } case DIOCXBEGIN: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioes, *ioe; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_NOWAIT); if (! ioes) { error = ENOMEM; break; } error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_begin_altq(&ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_begin(&table, &ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } default: if ((error = pf_begin_rules(&ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; } break; } } PF_RULES_WUNLOCK(); error = copyout(ioes, io->array, totlen); free(ioes, M_TEMP); break; } case DIOCXROLLBACK: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_NOWAIT); if (! ioes) { error = ENOMEM; break; } error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if ((error = pf_rollback_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_rollback(&table, ioe->ticket, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_rollback_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); free(ioes, M_TEMP); break; } case DIOCXCOMMIT: { struct pfioc_trans *io = (struct pfioc_trans *)addr; struct pfioc_trans_e *ioe, *ioes; struct pf_kruleset *rs; size_t totlen; int i; if (io->esize != sizeof(*ioe)) { error = ENODEV; break; } if (io->size < 0 || io->size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) { error = EINVAL; break; } totlen = sizeof(struct pfioc_trans_e) * io->size; ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e), M_TEMP, M_NOWAIT); if (ioes == NULL) { error = ENOMEM; break; } error = copyin(io->array, ioes, totlen); if (error) { free(ioes, M_TEMP); break; } PF_RULES_WLOCK(); /* First makes sure everything will succeed. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if (ioe->anchor[0]) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } if (!V_altqs_inactive_open || ioe->ticket != V_ticket_altqs_inactive) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; #endif /* ALTQ */ case PF_RULESET_TABLE: rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->topen || ioe->ticket != rs->tticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; default: if (ioe->rs_num < 0 || ioe->rs_num >= PF_RULESET_MAX) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EINVAL; goto fail; } rs = pf_find_kruleset(ioe->anchor); if (rs == NULL || !rs->rules[ioe->rs_num].inactive.open || rs->rules[ioe->rs_num].inactive.ticket != ioe->ticket) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); error = EBUSY; goto fail; } break; } } /* Now do the commit - no errors should happen here. */ for (i = 0, ioe = ioes; i < io->size; i++, ioe++) { switch (ioe->rs_num) { #ifdef ALTQ case PF_RULESET_ALTQ: if ((error = pf_commit_altq(ioe->ticket))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; #endif /* ALTQ */ case PF_RULESET_TABLE: { struct pfr_table table; bzero(&table, sizeof(table)); strlcpy(table.pfrt_anchor, ioe->anchor, sizeof(table.pfrt_anchor)); if ((error = pfr_ina_commit(&table, ioe->ticket, NULL, NULL, 0))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } default: if ((error = pf_commit_rules(ioe->ticket, ioe->rs_num, ioe->anchor))) { PF_RULES_WUNLOCK(); free(ioes, M_TEMP); goto fail; /* really bad */ } break; } } PF_RULES_WUNLOCK(); free(ioes, M_TEMP); break; } case DIOCGETSRCNODES: { struct pfioc_src_nodes *psn = (struct pfioc_src_nodes *)addr; struct pf_srchash *sh; struct pf_ksrc_node *n; struct pf_src_node *p, *pstore; uint32_t i, nr = 0; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) nr++; PF_HASHROW_UNLOCK(sh); } psn->psn_len = min(psn->psn_len, sizeof(struct pf_src_node) * nr); if (psn->psn_len == 0) { psn->psn_len = sizeof(struct pf_src_node) * nr; break; } nr = 0; p = pstore = malloc(psn->psn_len, M_TEMP, M_WAITOK | M_ZERO); for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { if ((nr + 1) * sizeof(*p) > (unsigned)psn->psn_len) break; pf_src_node_copy(n, p); p++; nr++; } PF_HASHROW_UNLOCK(sh); } error = copyout(pstore, psn->psn_src_nodes, sizeof(struct pf_src_node) * nr); if (error) { free(pstore, M_TEMP); break; } psn->psn_len = sizeof(struct pf_src_node) * nr; free(pstore, M_TEMP); break; } case DIOCCLRSRCNODES: { pf_clear_srcnodes(NULL); pf_purge_expired_src_nodes(); break; } case DIOCKILLSRCNODES: pf_kill_srcnodes((struct pfioc_src_node_kill *)addr); break; case DIOCKEEPCOUNTERS: error = pf_keepcounters((struct pfioc_nv *)addr); break; case DIOCSETHOSTID: { u_int32_t *hostid = (u_int32_t *)addr; PF_RULES_WLOCK(); if (*hostid == 0) V_pf_status.hostid = arc4random(); else V_pf_status.hostid = *hostid; PF_RULES_WUNLOCK(); break; } case DIOCOSFPFLUSH: PF_RULES_WLOCK(); pf_osfp_flush(); PF_RULES_WUNLOCK(); break; case DIOCIGETIFACES: { struct pfioc_iface *io = (struct pfioc_iface *)addr; struct pfi_kif *ifstore; size_t bufsiz; if (io->pfiio_esize != sizeof(struct pfi_kif)) { error = ENODEV; break; } if (io->pfiio_size < 0 || io->pfiio_size > pf_ioctl_maxcount || WOULD_OVERFLOW(io->pfiio_size, sizeof(struct pfi_kif))) { error = EINVAL; break; } bufsiz = io->pfiio_size * sizeof(struct pfi_kif); ifstore = mallocarray(io->pfiio_size, sizeof(struct pfi_kif), M_TEMP, M_NOWAIT); if (ifstore == NULL) { error = ENOMEM; break; } PF_RULES_RLOCK(); pfi_get_ifaces(io->pfiio_name, ifstore, &io->pfiio_size); PF_RULES_RUNLOCK(); error = copyout(ifstore, io->pfiio_buffer, bufsiz); free(ifstore, M_TEMP); break; } case DIOCSETIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; PF_RULES_WLOCK(); error = pfi_set_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } case DIOCCLRIFFLAG: { struct pfioc_iface *io = (struct pfioc_iface *)addr; PF_RULES_WLOCK(); error = pfi_clear_flags(io->pfiio_name, io->pfiio_flags); PF_RULES_WUNLOCK(); break; } default: error = ENODEV; break; } fail: if (sx_xlocked(&pf_ioctl_lock)) sx_xunlock(&pf_ioctl_lock); CURVNET_RESTORE(); #undef ERROUT_IOCTL return (error); } void pfsync_state_export(struct pfsync_state *sp, struct pf_state *st) { bzero(sp, sizeof(struct pfsync_state)); /* copy from state key */ sp->key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0]; sp->key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1]; sp->key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0]; sp->key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1]; sp->key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0]; sp->key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1]; sp->key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0]; sp->key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1]; sp->proto = st->key[PF_SK_WIRE]->proto; sp->af = st->key[PF_SK_WIRE]->af; /* copy from state */ strlcpy(sp->ifname, st->kif->pfik_name, sizeof(sp->ifname)); bcopy(&st->rt_addr, &sp->rt_addr, sizeof(sp->rt_addr)); sp->creation = htonl(time_uptime - st->creation); sp->expire = pf_state_expires(st); if (sp->expire <= time_uptime) sp->expire = htonl(0); else sp->expire = htonl(sp->expire - time_uptime); sp->direction = st->direction; sp->log = st->log; sp->timeout = st->timeout; sp->state_flags = st->state_flags; if (st->src_node) sp->sync_flags |= PFSYNC_FLAG_SRCNODE; if (st->nat_src_node) sp->sync_flags |= PFSYNC_FLAG_NATSRCNODE; sp->id = st->id; sp->creatorid = st->creatorid; pf_state_peer_hton(&st->src, &sp->src); pf_state_peer_hton(&st->dst, &sp->dst); if (st->rule.ptr == NULL) sp->rule = htonl(-1); else sp->rule = htonl(st->rule.ptr->nr); if (st->anchor.ptr == NULL) sp->anchor = htonl(-1); else sp->anchor = htonl(st->anchor.ptr->nr); if (st->nat_rule.ptr == NULL) sp->nat_rule = htonl(-1); else sp->nat_rule = htonl(st->nat_rule.ptr->nr); pf_state_counter_hton(counter_u64_fetch(st->packets[0]), sp->packets[0]); pf_state_counter_hton(counter_u64_fetch(st->packets[1]), sp->packets[1]); pf_state_counter_hton(counter_u64_fetch(st->bytes[0]), sp->bytes[0]); pf_state_counter_hton(counter_u64_fetch(st->bytes[1]), sp->bytes[1]); } static void pf_tbladdr_copyout(struct pf_addr_wrap *aw) { struct pfr_ktable *kt; KASSERT(aw->type == PF_ADDR_TABLE, ("%s: type %u", __func__, aw->type)); kt = aw->p.tbl; if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL) kt = kt->pfrkt_root; aw->p.tbl = NULL; aw->p.tblcnt = (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) ? kt->pfrkt_cnt : -1; } /* * XXX - Check for version missmatch!!! */ static void pf_clear_all_states(void) { struct pf_state *s; u_int i; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { s->timeout = PFTM_PURGE; /* Don't send out individual delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); goto relock; } PF_HASHROW_UNLOCK(ih); } } static int pf_clear_tables(void) { struct pfioc_table io; int error; bzero(&io, sizeof(io)); error = pfr_clr_tables(&io.pfrio_table, &io.pfrio_ndel, io.pfrio_flags); return (error); } static void pf_clear_srcnodes(struct pf_ksrc_node *n) { struct pf_state *s; int i; for (i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (n == NULL || n == s->src_node) s->src_node = NULL; if (n == NULL || n == s->nat_src_node) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } if (n == NULL) { struct pf_srchash *sh; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) { n->expire = 1; n->states = 0; } PF_HASHROW_UNLOCK(sh); } } else { /* XXX: hash slot should already be locked here. */ n->expire = 1; n->states = 0; } } static void pf_kill_srcnodes(struct pfioc_src_node_kill *psnk) { struct pf_ksrc_node_list kill; LIST_INIT(&kill); for (int i = 0; i <= pf_srchashmask; i++) { struct pf_srchash *sh = &V_pf_srchash[i]; struct pf_ksrc_node *sn, *tmp; PF_HASHROW_LOCK(sh); LIST_FOREACH_SAFE(sn, &sh->nodes, entry, tmp) if (PF_MATCHA(psnk->psnk_src.neg, &psnk->psnk_src.addr.v.a.addr, &psnk->psnk_src.addr.v.a.mask, &sn->addr, sn->af) && PF_MATCHA(psnk->psnk_dst.neg, &psnk->psnk_dst.addr.v.a.addr, &psnk->psnk_dst.addr.v.a.mask, &sn->raddr, sn->af)) { pf_unlink_src_node(sn); LIST_INSERT_HEAD(&kill, sn, entry); sn->expire = 1; } PF_HASHROW_UNLOCK(sh); } for (int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_state *s; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->src_node && s->src_node->expire == 1) s->src_node = NULL; if (s->nat_src_node && s->nat_src_node->expire == 1) s->nat_src_node = NULL; } PF_HASHROW_UNLOCK(ih); } psnk->psnk_killed = pf_free_src_nodes(&kill); } static int pf_keepcounters(struct pfioc_nv *nv) { nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); if (! nvlist_exists_bool(nvl, "keep_counters")) ERROUT(EBADMSG); V_pf_status.keep_counters = nvlist_get_bool(nvl, "keep_counters"); on_error: nvlist_destroy(nvl); free(nvlpacked, M_TEMP); return (error); } static unsigned int pf_clear_states(const struct pf_kstate_kill *kill) { struct pf_state_key_cmp match_key; struct pf_state *s; int idx; unsigned int killed = 0, dir; for (unsigned int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; relock_DIOCCLRSTATES: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (kill->psk_ifname[0] && strcmp(kill->psk_ifname, s->kif->pfik_name)) continue; if (kill->psk_kill_match) { bzero(&match_key, sizeof(match_key)); if (s->direction == PF_OUT) { dir = PF_IN; idx = PF_SK_STACK; } else { dir = PF_OUT; idx = PF_SK_WIRE; } match_key.af = s->key[idx]->af; match_key.proto = s->key[idx]->proto; PF_ACPY(&match_key.addr[0], &s->key[idx]->addr[1], match_key.af); match_key.port[0] = s->key[idx]->port[1]; PF_ACPY(&match_key.addr[1], &s->key[idx]->addr[0], match_key.af); match_key.port[1] = s->key[idx]->port[0]; } /* * Don't send out individual * delete messages. */ s->state_flags |= PFSTATE_NOSYNC; pf_unlink_state(s, PF_ENTER_LOCKED); killed++; if (kill->psk_kill_match) killed += pf_kill_matching_state(&match_key, dir); goto relock_DIOCCLRSTATES; } PF_HASHROW_UNLOCK(ih); } if (V_pfsync_clear_states_ptr != NULL) V_pfsync_clear_states_ptr(V_pf_status.hostid, kill->psk_ifname); return (killed); } static int pf_killstates(struct pf_kstate_kill *kill, unsigned int *killed) { struct pf_state *s; if (kill->psk_pfcmp.id) { if (kill->psk_pfcmp.creatorid == 0) kill->psk_pfcmp.creatorid = V_pf_status.hostid; if ((s = pf_find_state_byid(kill->psk_pfcmp.id, kill->psk_pfcmp.creatorid))) { pf_unlink_state(s, PF_ENTER_LOCKED); *killed = 1; } return (0); } for (unsigned int i = 0; i <= pf_hashmask; i++) *killed += pf_killstates_row(kill, &V_pf_idhash[i]); return (0); } static int pf_killstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed = 0; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); error = pf_killstates(&kill, &killed); free(nvlpacked, M_TEMP); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); on_error: nvlist_destroy(nvl); free(nvlpacked, M_TEMP); return (error); } static int pf_clearstates_nv(struct pfioc_nv *nv) { struct pf_kstate_kill kill; nvlist_t *nvl = NULL; void *nvlpacked = NULL; int error = 0; unsigned int killed; #define ERROUT(x) ERROUT_FUNCTION(on_error, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); error = pf_nvstate_kill_to_kstate_kill(nvl, &kill); if (error) ERROUT(error); killed = pf_clear_states(&kill); free(nvlpacked, M_TEMP); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "killed", killed); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT on_error: nvlist_destroy(nvl); free(nvlpacked, M_TEMP); return (error); } static int pf_getstate(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvls; void *nvlpacked = NULL; struct pf_state *s = NULL; int error = 0; uint64_t id, creatorid; #define ERROUT(x) ERROUT_FUNCTION(errout, x) if (nv->len > pf_ioctl_maxcount) ERROUT(ENOMEM); nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK); if (nvlpacked == NULL) ERROUT(ENOMEM); error = copyin(nv->data, nvlpacked, nv->len); if (error) ERROUT(error); nvl = nvlist_unpack(nvlpacked, nv->len, 0); if (nvl == NULL) ERROUT(EBADMSG); PFNV_CHK(pf_nvuint64(nvl, "id", &id)); PFNV_CHK(pf_nvuint64(nvl, "creatorid", &creatorid)); s = pf_find_state_byid(id, creatorid); if (s == NULL) ERROUT(ENOENT); free(nvlpacked, M_TEMP); nvlpacked = NULL; nvlist_destroy(nvl); nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvls = pf_state_to_nvstate(s); if (nvls == NULL) ERROUT(ENOMEM); nvlist_add_nvlist(nvl, "state", nvls); nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT errout: if (s != NULL) PF_STATE_UNLOCK(s); free(nvlpacked, M_TEMP); nvlist_destroy(nvl); return (error); } static int pf_getstates(struct pfioc_nv *nv) { nvlist_t *nvl = NULL, *nvls; void *nvlpacked = NULL; struct pf_state *s = NULL; int error = 0; uint64_t count = 0; #define ERROUT(x) ERROUT_FUNCTION(errout, x) nvl = nvlist_create(0); if (nvl == NULL) ERROUT(ENOMEM); nvlist_add_number(nvl, "count", uma_zone_get_cur(V_pf_state_z)); for (int i = 0; i < pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (s->timeout == PFTM_UNLINKED) continue; nvls = pf_state_to_nvstate(s); if (nvls == NULL) { PF_HASHROW_UNLOCK(ih); ERROUT(ENOMEM); } if ((nvlist_size(nvl) + nvlist_size(nvls)) > nv->size) { /* We've run out of room for more states. */ nvlist_destroy(nvls); PF_HASHROW_UNLOCK(ih); goto DIOCGETSTATESNV_full; } nvlist_append_nvlist_array(nvl, "states", nvls); count++; } PF_HASHROW_UNLOCK(ih); } /* We've managed to put them all the available space. Let's make sure * 'count' matches our array (that's racy, because we don't hold a lock * over all states, only over each row individually. */ (void)nvlist_take_number(nvl, "count"); nvlist_add_number(nvl, "count", count); DIOCGETSTATESNV_full: nvlpacked = nvlist_pack(nvl, &nv->len); if (nvlpacked == NULL) ERROUT(ENOMEM); if (nv->size == 0) ERROUT(0); else if (nv->size < nv->len) ERROUT(ENOSPC); error = copyout(nvlpacked, nv->data, nv->len); #undef ERROUT errout: free(nvlpacked, M_TEMP); nvlist_destroy(nvl); return (error); } /* * XXX - Check for version missmatch!!! */ /* * Duplicate pfctl -Fa operation to get rid of as much as we can. */ static int shutdown_pf(void) { int error = 0; u_int32_t t[5]; char nn = '\0'; do { if ((error = pf_begin_rules(&t[0], PF_RULESET_SCRUB, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: SCRUB\n")); break; } if ((error = pf_begin_rules(&t[1], PF_RULESET_FILTER, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: FILTER\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[2], PF_RULESET_NAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: NAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[3], PF_RULESET_BINAT, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: BINAT\n")); break; /* XXX: rollback? */ } if ((error = pf_begin_rules(&t[4], PF_RULESET_RDR, &nn)) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: RDR\n")); break; /* XXX: rollback? */ } /* XXX: these should always succeed here */ pf_commit_rules(t[0], PF_RULESET_SCRUB, &nn); pf_commit_rules(t[1], PF_RULESET_FILTER, &nn); pf_commit_rules(t[2], PF_RULESET_NAT, &nn); pf_commit_rules(t[3], PF_RULESET_BINAT, &nn); pf_commit_rules(t[4], PF_RULESET_RDR, &nn); if ((error = pf_clear_tables()) != 0) break; #ifdef ALTQ if ((error = pf_begin_altq(&t[0])) != 0) { DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: ALTQ\n")); break; } pf_commit_altq(t[0]); #endif pf_clear_all_states(); pf_clear_srcnodes(NULL); /* status does not use malloced mem so no need to cleanup */ /* fingerprints and interfaces have their own cleanup code */ } while(0); return (error); } static pfil_return_t pf_check_return(int chk, struct mbuf **m) { switch (chk) { case PF_PASS: if (*m == NULL) return (PFIL_CONSUMED); else return (PFIL_PASS); break; default: if (*m != NULL) { m_freem(*m); *m = NULL; } return (PFIL_DROPPED); } } #ifdef INET static pfil_return_t pf_check_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test(PF_IN, flags, ifp, m, inp); return (pf_check_return(chk, m)); } static pfil_return_t pf_check_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; chk = pf_test(PF_OUT, flags, ifp, m, inp); return (pf_check_return(chk, m)); } #endif #ifdef INET6 static pfil_return_t pf_check6_in(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; /* * In case of loopback traffic IPv6 uses the real interface in * order to support scoped addresses. In order to support stateful * filtering we have change this to lo0 as it is the case in IPv4. */ CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_IN, flags, (*m)->m_flags & M_LOOP ? V_loif : ifp, m, inp); CURVNET_RESTORE(); return (pf_check_return(chk, m)); } static pfil_return_t pf_check6_out(struct mbuf **m, struct ifnet *ifp, int flags, void *ruleset __unused, struct inpcb *inp) { int chk; CURVNET_SET(ifp->if_vnet); chk = pf_test6(PF_OUT, flags, ifp, m, inp); CURVNET_RESTORE(); return (pf_check_return(chk, m)); } #endif /* INET6 */ #ifdef INET VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_in_hook); VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_out_hook); #define V_pf_ip4_in_hook VNET(pf_ip4_in_hook) #define V_pf_ip4_out_hook VNET(pf_ip4_out_hook) #endif #ifdef INET6 VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_in_hook); VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_out_hook); #define V_pf_ip6_in_hook VNET(pf_ip6_in_hook) #define V_pf_ip6_out_hook VNET(pf_ip6_out_hook) #endif static void hook_pf(void) { struct pfil_hook_args pha; struct pfil_link_args pla; int ret; if (V_pf_pfil_hooked) return; pha.pa_version = PFIL_VERSION; pha.pa_modname = "pf"; pha.pa_ruleset = NULL; pla.pa_version = PFIL_VERSION; #ifdef INET pha.pa_type = PFIL_TYPE_IP4; pha.pa_func = pf_check_in; pha.pa_flags = PFIL_IN; pha.pa_rulname = "default-in"; V_pf_ip4_in_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet_pfil_head; pla.pa_hook = V_pf_ip4_in_hook; ret = pfil_link(&pla); MPASS(ret == 0); pha.pa_func = pf_check_out; pha.pa_flags = PFIL_OUT; pha.pa_rulname = "default-out"; V_pf_ip4_out_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet_pfil_head; pla.pa_hook = V_pf_ip4_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); #endif #ifdef INET6 pha.pa_type = PFIL_TYPE_IP6; pha.pa_func = pf_check6_in; pha.pa_flags = PFIL_IN; pha.pa_rulname = "default-in6"; V_pf_ip6_in_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet6_pfil_head; pla.pa_hook = V_pf_ip6_in_hook; ret = pfil_link(&pla); MPASS(ret == 0); pha.pa_func = pf_check6_out; pha.pa_rulname = "default-out6"; pha.pa_flags = PFIL_OUT; V_pf_ip6_out_hook = pfil_add_hook(&pha); pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR; pla.pa_head = V_inet6_pfil_head; pla.pa_hook = V_pf_ip6_out_hook; ret = pfil_link(&pla); MPASS(ret == 0); #endif V_pf_pfil_hooked = 1; } static void dehook_pf(void) { if (V_pf_pfil_hooked == 0) return; #ifdef INET pfil_remove_hook(V_pf_ip4_in_hook); pfil_remove_hook(V_pf_ip4_out_hook); #endif #ifdef INET6 pfil_remove_hook(V_pf_ip6_in_hook); pfil_remove_hook(V_pf_ip6_out_hook); #endif V_pf_pfil_hooked = 0; } static void pf_load_vnet(void) { V_pf_tag_z = uma_zcreate("pf tags", sizeof(struct pf_tagname), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); pf_init_tagset(&V_pf_tags, &pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT); #ifdef ALTQ pf_init_tagset(&V_pf_qids, &pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT); #endif pfattach_vnet(); V_pf_vnet_active = 1; } static int pf_load(void) { int error; rm_init(&pf_rules_lock, "pf rulesets"); sx_init(&pf_ioctl_lock, "pf ioctl"); sx_init(&pf_end_lock, "pf end thread"); pf_mtag_initialize(); pf_dev = make_dev(&pf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, PF_NAME); if (pf_dev == NULL) return (ENOMEM); pf_end_threads = 0; error = kproc_create(pf_purge_thread, NULL, &pf_purge_proc, 0, 0, "pf purge"); if (error != 0) return (error); pfi_initialize(); return (0); } static void pf_unload_vnet(void) { int ret; V_pf_vnet_active = 0; V_pf_status.running = 0; dehook_pf(); PF_RULES_WLOCK(); shutdown_pf(); PF_RULES_WUNLOCK(); ret = swi_remove(V_pf_swi_cookie); MPASS(ret == 0); ret = intr_event_destroy(V_pf_swi_ie); MPASS(ret == 0); pf_unload_vnet_purge(); pf_normalize_cleanup(); PF_RULES_WLOCK(); pfi_cleanup_vnet(); PF_RULES_WUNLOCK(); pfr_cleanup(); pf_osfp_flush(); pf_cleanup(); if (IS_DEFAULT_VNET(curvnet)) pf_mtag_cleanup(); pf_cleanup_tagset(&V_pf_tags); #ifdef ALTQ pf_cleanup_tagset(&V_pf_qids); #endif uma_zdestroy(V_pf_tag_z); /* Free counters last as we updated them during shutdown. */ counter_u64_free(V_pf_default_rule.evaluations); for (int i = 0; i < 2; i++) { counter_u64_free(V_pf_default_rule.packets[i]); counter_u64_free(V_pf_default_rule.bytes[i]); } counter_u64_free(V_pf_default_rule.states_cur); counter_u64_free(V_pf_default_rule.states_tot); counter_u64_free(V_pf_default_rule.src_nodes); for (int i = 0; i < PFRES_MAX; i++) counter_u64_free(V_pf_status.counters[i]); for (int i = 0; i < LCNT_MAX; i++) counter_u64_free(V_pf_status.lcounters[i]); for (int i = 0; i < FCNT_MAX; i++) counter_u64_free(V_pf_status.fcounters[i]); for (int i = 0; i < SCNT_MAX; i++) counter_u64_free(V_pf_status.scounters[i]); } static void pf_unload(void) { sx_xlock(&pf_end_lock); pf_end_threads = 1; while (pf_end_threads < 2) { wakeup_one(pf_purge_thread); sx_sleep(pf_purge_proc, &pf_end_lock, 0, "pftmo", 0); } sx_xunlock(&pf_end_lock); if (pf_dev != NULL) destroy_dev(pf_dev); pfi_cleanup(); rm_destroy(&pf_rules_lock); sx_destroy(&pf_ioctl_lock); sx_destroy(&pf_end_lock); } static void vnet_pf_init(void *unused __unused) { pf_load_vnet(); } VNET_SYSINIT(vnet_pf_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_init, NULL); static void vnet_pf_uninit(const void *unused __unused) { pf_unload_vnet(); } SYSUNINIT(pf_unload, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND, pf_unload, NULL); VNET_SYSUNINIT(vnet_pf_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD, vnet_pf_uninit, NULL); static int pf_modevent(module_t mod, int type, void *data) { int error = 0; switch(type) { case MOD_LOAD: error = pf_load(); break; case MOD_UNLOAD: /* Handled in SYSUNINIT(pf_unload) to ensure it's done after * the vnet_pf_uninit()s */ break; default: error = EINVAL; break; } return (error); } static moduledata_t pf_mod = { "pf", pf_modevent, 0 }; DECLARE_MODULE(pf, pf_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND); MODULE_VERSION(pf, PF_MODVER);