diff --git a/sys/kern/kern_descrip.c b/sys/kern/kern_descrip.c
index 585f2124eab1..36092c9acd42 100644
--- a/sys/kern/kern_descrip.c
+++ b/sys/kern/kern_descrip.c
@@ -1,5141 +1,5137 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1989, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)kern_descrip.c	8.6 (Berkeley) 4/19/94
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_capsicum.h"
 #include "opt_ddb.h"
 #include "opt_ktrace.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 
 #include <sys/capsicum.h>
 #include <sys/conf.h>
 #include <sys/fcntl.h>
 #include <sys/file.h>
 #include <sys/filedesc.h>
 #include <sys/filio.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/namei.h>
 #include <sys/selinfo.h>
 #include <sys/poll.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/protosw.h>
 #include <sys/racct.h>
 #include <sys/resourcevar.h>
 #include <sys/sbuf.h>
 #include <sys/signalvar.h>
 #include <sys/kdb.h>
 #include <sys/smr.h>
 #include <sys/stat.h>
 #include <sys/sx.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysctl.h>
 #include <sys/sysproto.h>
 #include <sys/unistd.h>
 #include <sys/user.h>
 #include <sys/vnode.h>
-#ifdef KTRACE
 #include <sys/ktrace.h>
-#endif
 
 #include <net/vnet.h>
 
 #include <security/audit/audit.h>
 
 #include <vm/uma.h>
 #include <vm/vm.h>
 
 #include <ddb/ddb.h>
 
 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
     "file desc to leader structures");
 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
 
 MALLOC_DECLARE(M_FADVISE);
 
 static __read_mostly uma_zone_t file_zone;
 static __read_mostly uma_zone_t filedesc0_zone;
 __read_mostly uma_zone_t pwd_zone;
 VFS_SMR_DECLARE;
 
 static int	closefp(struct filedesc *fdp, int fd, struct file *fp,
 		    struct thread *td, bool holdleaders, bool audit);
 static int	fd_first_free(struct filedesc *fdp, int low, int size);
 static void	fdgrowtable(struct filedesc *fdp, int nfd);
 static void	fdgrowtable_exp(struct filedesc *fdp, int nfd);
 static void	fdunused(struct filedesc *fdp, int fd);
 static void	fdused(struct filedesc *fdp, int fd);
 static int	getmaxfd(struct thread *td);
 static u_long	*filecaps_copy_prep(const struct filecaps *src);
 static void	filecaps_copy_finish(const struct filecaps *src,
 		    struct filecaps *dst, u_long *ioctls);
 static u_long 	*filecaps_free_prep(struct filecaps *fcaps);
 static void	filecaps_free_finish(u_long *ioctls);
 
 static struct pwd *pwd_alloc(void);
 
 /*
  * Each process has:
  *
  * - An array of open file descriptors (fd_ofiles)
  * - An array of file flags (fd_ofileflags)
  * - A bitmap recording which descriptors are in use (fd_map)
  *
  * A process starts out with NDFILE descriptors.  The value of NDFILE has
  * been selected based the historical limit of 20 open files, and an
  * assumption that the majority of processes, especially short-lived
  * processes like shells, will never need more.
  *
  * If this initial allocation is exhausted, a larger descriptor table and
  * map are allocated dynamically, and the pointers in the process's struct
  * filedesc are updated to point to those.  This is repeated every time
  * the process runs out of file descriptors (provided it hasn't hit its
  * resource limit).
  *
  * Since threads may hold references to individual descriptor table
  * entries, the tables are never freed.  Instead, they are placed on a
  * linked list and freed only when the struct filedesc is released.
  */
 #define NDFILE		20
 #define NDSLOTSIZE	sizeof(NDSLOTTYPE)
 #define	NDENTRIES	(NDSLOTSIZE * __CHAR_BIT)
 #define NDSLOT(x)	((x) / NDENTRIES)
 #define NDBIT(x)	((NDSLOTTYPE)1 << ((x) % NDENTRIES))
 #define	NDSLOTS(x)	(((x) + NDENTRIES - 1) / NDENTRIES)
 
 /*
  * SLIST entry used to keep track of ofiles which must be reclaimed when
  * the process exits.
  */
 struct freetable {
 	struct fdescenttbl *ft_table;
 	SLIST_ENTRY(freetable) ft_next;
 };
 
 /*
  * Initial allocation: a filedesc structure + the head of SLIST used to
  * keep track of old ofiles + enough space for NDFILE descriptors.
  */
 
 struct fdescenttbl0 {
 	int	fdt_nfiles;
 	struct	filedescent fdt_ofiles[NDFILE];
 };
 
 struct filedesc0 {
 	struct filedesc fd_fd;
 	SLIST_HEAD(, freetable) fd_free;
 	struct	fdescenttbl0 fd_dfiles;
 	NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
 };
 
 /*
  * Descriptor management.
  */
 static int __exclusive_cache_line openfiles; /* actual number of open files */
 struct mtx sigio_lock;		/* mtx to protect pointers to sigio */
 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
 
 /*
  * If low >= size, just return low. Otherwise find the first zero bit in the
  * given bitmap, starting at low and not exceeding size - 1. Return size if
  * not found.
  */
 static int
 fd_first_free(struct filedesc *fdp, int low, int size)
 {
 	NDSLOTTYPE *map = fdp->fd_map;
 	NDSLOTTYPE mask;
 	int off, maxoff;
 
 	if (low >= size)
 		return (low);
 
 	off = NDSLOT(low);
 	if (low % NDENTRIES) {
 		mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
 		if ((mask &= ~map[off]) != 0UL)
 			return (off * NDENTRIES + ffsl(mask) - 1);
 		++off;
 	}
 	for (maxoff = NDSLOTS(size); off < maxoff; ++off)
 		if (map[off] != ~0UL)
 			return (off * NDENTRIES + ffsl(~map[off]) - 1);
 	return (size);
 }
 
 /*
  * Find the last used fd.
  *
  * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
  * Otherwise use fdlastfile.
  */
 int
 fdlastfile_single(struct filedesc *fdp)
 {
 	NDSLOTTYPE *map = fdp->fd_map;
 	int off, minoff;
 
 	off = NDSLOT(fdp->fd_nfiles - 1);
 	for (minoff = NDSLOT(0); off >= minoff; --off)
 		if (map[off] != 0)
 			return (off * NDENTRIES + flsl(map[off]) - 1);
 	return (-1);
 }
 
 int
 fdlastfile(struct filedesc *fdp)
 {
 
 	FILEDESC_LOCK_ASSERT(fdp);
 	return (fdlastfile_single(fdp));
 }
 
 static int
 fdisused(struct filedesc *fdp, int fd)
 {
 
 	KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
 	    ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
 
 	return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
 }
 
 /*
  * Mark a file descriptor as used.
  */
 static void
 fdused_init(struct filedesc *fdp, int fd)
 {
 
 	KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
 
 	fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
 }
 
 static void
 fdused(struct filedesc *fdp, int fd)
 {
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	fdused_init(fdp, fd);
 	if (fd == fdp->fd_freefile)
 		fdp->fd_freefile++;
 }
 
 /*
  * Mark a file descriptor as unused.
  */
 static void
 fdunused(struct filedesc *fdp, int fd)
 {
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
 	KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
 	    ("fd=%d is still in use", fd));
 
 	fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
 	if (fd < fdp->fd_freefile)
 		fdp->fd_freefile = fd;
 }
 
 /*
  * Free a file descriptor.
  *
  * Avoid some work if fdp is about to be destroyed.
  */
 static inline void
 fdefree_last(struct filedescent *fde)
 {
 
 	filecaps_free(&fde->fde_caps);
 }
 
 static inline void
 fdfree(struct filedesc *fdp, int fd)
 {
 	struct filedescent *fde;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 	fde = &fdp->fd_ofiles[fd];
 #ifdef CAPABILITIES
 	seqc_write_begin(&fde->fde_seqc);
 #endif
 	fde->fde_file = NULL;
 #ifdef CAPABILITIES
 	seqc_write_end(&fde->fde_seqc);
 #endif
 	fdefree_last(fde);
 	fdunused(fdp, fd);
 }
 
 /*
  * System calls on descriptors.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct getdtablesize_args {
 	int	dummy;
 };
 #endif
 /* ARGSUSED */
 int
 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
 {
 #ifdef	RACCT
 	uint64_t lim;
 #endif
 
 	td->td_retval[0] = getmaxfd(td);
 #ifdef	RACCT
 	PROC_LOCK(td->td_proc);
 	lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
 	PROC_UNLOCK(td->td_proc);
 	if (lim < td->td_retval[0])
 		td->td_retval[0] = lim;
 #endif
 	return (0);
 }
 
 /*
  * Duplicate a file descriptor to a particular value.
  *
  * Note: keep in mind that a potential race condition exists when closing
  * descriptors from a shared descriptor table (via rfork).
  */
 #ifndef _SYS_SYSPROTO_H_
 struct dup2_args {
 	u_int	from;
 	u_int	to;
 };
 #endif
 /* ARGSUSED */
 int
 sys_dup2(struct thread *td, struct dup2_args *uap)
 {
 
 	return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
 }
 
 /*
  * Duplicate a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct dup_args {
 	u_int	fd;
 };
 #endif
 /* ARGSUSED */
 int
 sys_dup(struct thread *td, struct dup_args *uap)
 {
 
 	return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
 }
 
 /*
  * The file control system call.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct fcntl_args {
 	int	fd;
 	int	cmd;
 	long	arg;
 };
 #endif
 /* ARGSUSED */
 int
 sys_fcntl(struct thread *td, struct fcntl_args *uap)
 {
 
 	return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
 }
 
 int
 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg)
 {
 	struct flock fl;
 	struct __oflock ofl;
 	intptr_t arg1;
 	int error, newcmd;
 
 	error = 0;
 	newcmd = cmd;
 	switch (cmd) {
 	case F_OGETLK:
 	case F_OSETLK:
 	case F_OSETLKW:
 		/*
 		 * Convert old flock structure to new.
 		 */
 		error = copyin((void *)(intptr_t)arg, &ofl, sizeof(ofl));
 		fl.l_start = ofl.l_start;
 		fl.l_len = ofl.l_len;
 		fl.l_pid = ofl.l_pid;
 		fl.l_type = ofl.l_type;
 		fl.l_whence = ofl.l_whence;
 		fl.l_sysid = 0;
 
 		switch (cmd) {
 		case F_OGETLK:
 			newcmd = F_GETLK;
 			break;
 		case F_OSETLK:
 			newcmd = F_SETLK;
 			break;
 		case F_OSETLKW:
 			newcmd = F_SETLKW;
 			break;
 		}
 		arg1 = (intptr_t)&fl;
 		break;
 	case F_GETLK:
 	case F_SETLK:
 	case F_SETLKW:
 	case F_SETLK_REMOTE:
 		error = copyin((void *)(intptr_t)arg, &fl, sizeof(fl));
 		arg1 = (intptr_t)&fl;
 		break;
 	default:
 		arg1 = arg;
 		break;
 	}
 	if (error)
 		return (error);
 	error = kern_fcntl(td, fd, newcmd, arg1);
 	if (error)
 		return (error);
 	if (cmd == F_OGETLK) {
 		ofl.l_start = fl.l_start;
 		ofl.l_len = fl.l_len;
 		ofl.l_pid = fl.l_pid;
 		ofl.l_type = fl.l_type;
 		ofl.l_whence = fl.l_whence;
 		error = copyout(&ofl, (void *)(intptr_t)arg, sizeof(ofl));
 	} else if (cmd == F_GETLK) {
 		error = copyout(&fl, (void *)(intptr_t)arg, sizeof(fl));
 	}
 	return (error);
 }
 
 int
 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
 {
 	struct filedesc *fdp;
 	struct flock *flp;
 	struct file *fp, *fp2;
 	struct filedescent *fde;
 	struct proc *p;
 	struct vnode *vp;
 	struct mount *mp;
 	int error, flg, seals, tmp;
 	uint64_t bsize;
 	off_t foffset;
 
 	error = 0;
 	flg = F_POSIX;
 	p = td->td_proc;
 	fdp = p->p_fd;
 
 	AUDIT_ARG_FD(cmd);
 	AUDIT_ARG_CMD(cmd);
 	switch (cmd) {
 	case F_DUPFD:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
 		break;
 
 	case F_DUPFD_CLOEXEC:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
 		break;
 
 	case F_DUP2FD:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
 		break;
 
 	case F_DUP2FD_CLOEXEC:
 		tmp = arg;
 		error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
 		break;
 
 	case F_GETFD:
 		error = EBADF;
 		FILEDESC_SLOCK(fdp);
 		fde = fdeget_locked(fdp, fd);
 		if (fde != NULL) {
 			td->td_retval[0] =
 			    (fde->fde_flags & UF_EXCLOSE) ? FD_CLOEXEC : 0;
 			error = 0;
 		}
 		FILEDESC_SUNLOCK(fdp);
 		break;
 
 	case F_SETFD:
 		error = EBADF;
 		FILEDESC_XLOCK(fdp);
 		fde = fdeget_locked(fdp, fd);
 		if (fde != NULL) {
 			fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) |
 			    (arg & FD_CLOEXEC ? UF_EXCLOSE : 0);
 			error = 0;
 		}
 		FILEDESC_XUNLOCK(fdp);
 		break;
 
 	case F_GETFL:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
 		if (error != 0)
 			break;
 		td->td_retval[0] = OFLAGS(fp->f_flag);
 		fdrop(fp, td);
 		break;
 
 	case F_SETFL:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_ops == &path_fileops) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		do {
 			tmp = flg = fp->f_flag;
 			tmp &= ~FCNTLFLAGS;
 			tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
 		} while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
 		tmp = fp->f_flag & FNONBLOCK;
 		error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
 		if (error != 0) {
 			fdrop(fp, td);
 			break;
 		}
 		tmp = fp->f_flag & FASYNC;
 		error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
 		if (error == 0) {
 			fdrop(fp, td);
 			break;
 		}
 		atomic_clear_int(&fp->f_flag, FNONBLOCK);
 		tmp = 0;
 		(void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
 		fdrop(fp, td);
 		break;
 
 	case F_GETOWN:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
 		if (error != 0)
 			break;
 		error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
 		if (error == 0)
 			td->td_retval[0] = tmp;
 		fdrop(fp, td);
 		break;
 
 	case F_SETOWN:
 		error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
 		if (error != 0)
 			break;
 		tmp = arg;
 		error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
 		fdrop(fp, td);
 		break;
 
 	case F_SETLK_REMOTE:
 		error = priv_check(td, PRIV_NFS_LOCKD);
 		if (error != 0)
 			return (error);
 		flg = F_REMOTE;
 		goto do_setlk;
 
 	case F_SETLKW:
 		flg |= F_WAIT;
 		/* FALLTHROUGH F_SETLK */
 
 	case F_SETLK:
 	do_setlk:
 		flp = (struct flock *)arg;
 		if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
 			error = EINVAL;
 			break;
 		}
 
 		error = fget_unlocked(fdp, fd, &cap_flock_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
 			error = EBADF;
 			fdrop(fp, td);
 			break;
 		}
 
 		if (flp->l_whence == SEEK_CUR) {
 			foffset = foffset_get(fp);
 			if (foffset < 0 ||
 			    (flp->l_start > 0 &&
 			     foffset > OFF_MAX - flp->l_start)) {
 				error = EOVERFLOW;
 				fdrop(fp, td);
 				break;
 			}
 			flp->l_start += foffset;
 		}
 
 		vp = fp->f_vnode;
 		switch (flp->l_type) {
 		case F_RDLCK:
 			if ((fp->f_flag & FREAD) == 0) {
 				error = EBADF;
 				break;
 			}
 			if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
 				PROC_LOCK(p->p_leader);
 				p->p_leader->p_flag |= P_ADVLOCK;
 				PROC_UNLOCK(p->p_leader);
 			}
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
 			    flp, flg);
 			break;
 		case F_WRLCK:
 			if ((fp->f_flag & FWRITE) == 0) {
 				error = EBADF;
 				break;
 			}
 			if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
 				PROC_LOCK(p->p_leader);
 				p->p_leader->p_flag |= P_ADVLOCK;
 				PROC_UNLOCK(p->p_leader);
 			}
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
 			    flp, flg);
 			break;
 		case F_UNLCK:
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
 			    flp, flg);
 			break;
 		case F_UNLCKSYS:
 			if (flg != F_REMOTE) {
 				error = EINVAL;
 				break;
 			}
 			error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
 			    F_UNLCKSYS, flp, flg);
 			break;
 		default:
 			error = EINVAL;
 			break;
 		}
 		if (error != 0 || flp->l_type == F_UNLCK ||
 		    flp->l_type == F_UNLCKSYS) {
 			fdrop(fp, td);
 			break;
 		}
 
 		/*
 		 * Check for a race with close.
 		 *
 		 * The vnode is now advisory locked (or unlocked, but this case
 		 * is not really important) as the caller requested.
 		 * We had to drop the filedesc lock, so we need to recheck if
 		 * the descriptor is still valid, because if it was closed
 		 * in the meantime we need to remove advisory lock from the
 		 * vnode - close on any descriptor leading to an advisory
 		 * locked vnode, removes that lock.
 		 * We will return 0 on purpose in that case, as the result of
 		 * successful advisory lock might have been externally visible
 		 * already. This is fine - effectively we pretend to the caller
 		 * that the closing thread was a bit slower and that the
 		 * advisory lock succeeded before the close.
 		 */
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp2);
 		if (error != 0) {
 			fdrop(fp, td);
 			break;
 		}
 		if (fp != fp2) {
 			flp->l_whence = SEEK_SET;
 			flp->l_start = 0;
 			flp->l_len = 0;
 			flp->l_type = F_UNLCK;
 			(void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
 			    F_UNLCK, flp, F_POSIX);
 		}
 		fdrop(fp, td);
 		fdrop(fp2, td);
 		break;
 
 	case F_GETLK:
 		error = fget_unlocked(fdp, fd, &cap_flock_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
 			error = EBADF;
 			fdrop(fp, td);
 			break;
 		}
 		flp = (struct flock *)arg;
 		if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
 		    flp->l_type != F_UNLCK) {
 			error = EINVAL;
 			fdrop(fp, td);
 			break;
 		}
 		if (flp->l_whence == SEEK_CUR) {
 			foffset = foffset_get(fp);
 			if ((flp->l_start > 0 &&
 			    foffset > OFF_MAX - flp->l_start) ||
 			    (flp->l_start < 0 &&
 			    foffset < OFF_MIN - flp->l_start)) {
 				error = EOVERFLOW;
 				fdrop(fp, td);
 				break;
 			}
 			flp->l_start += foffset;
 		}
 		vp = fp->f_vnode;
 		error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
 		    F_POSIX);
 		fdrop(fp, td);
 		break;
 
 	case F_ADD_SEALS:
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		error = fo_add_seals(fp, arg);
 		fdrop(fp, td);
 		break;
 
 	case F_GET_SEALS:
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		if (fo_get_seals(fp, &seals) == 0)
 			td->td_retval[0] = seals;
 		else
 			error = EINVAL;
 		fdrop(fp, td);
 		break;
 
 	case F_RDAHEAD:
 		arg = arg ? 128 * 1024: 0;
 		/* FALLTHROUGH */
 	case F_READAHEAD:
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		vp = fp->f_vnode;
 		if (vp->v_type != VREG) {
 			fdrop(fp, td);
 			error = ENOTTY;
 			break;
 		}
 
 		/*
 		 * Exclusive lock synchronizes against f_seqcount reads and
 		 * writes in sequential_heuristic().
 		 */
 		error = vn_lock(vp, LK_EXCLUSIVE);
 		if (error != 0) {
 			fdrop(fp, td);
 			break;
 		}
 		if (arg >= 0) {
 			bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
 			arg = MIN(arg, INT_MAX - bsize + 1);
 			fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
 			    (arg + bsize - 1) / bsize);
 			atomic_set_int(&fp->f_flag, FRDAHEAD);
 		} else {
 			atomic_clear_int(&fp->f_flag, FRDAHEAD);
 		}
 		VOP_UNLOCK(vp);
 		fdrop(fp, td);
 		break;
 
 	case F_ISUNIONSTACK:
 		/*
 		 * Check if the vnode is part of a union stack (either the
 		 * "union" flag from mount(2) or unionfs).
 		 *
 		 * Prior to introduction of this op libc's readdir would call
 		 * fstatfs(2), in effect unnecessarily copying kilobytes of
 		 * data just to check fs name and a mount flag.
 		 *
 		 * Fixing the code to handle everything in the kernel instead
 		 * is a non-trivial endeavor and has low priority, thus this
 		 * horrible kludge facilitates the current behavior in a much
 		 * cheaper manner until someone(tm) sorts this out.
 		 */
 		error = fget_unlocked(fdp, fd, &cap_no_rights, &fp);
 		if (error != 0)
 			break;
 		if (fp->f_type != DTYPE_VNODE) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		vp = fp->f_vnode;
 		/*
 		 * Since we don't prevent dooming the vnode even non-null mp
 		 * found can become immediately stale. This is tolerable since
 		 * mount points are type-stable (providing safe memory access)
 		 * and any vfs op on this vnode going forward will return an
 		 * error (meaning return value in this case is meaningless).
 		 */
 		mp = atomic_load_ptr(&vp->v_mount);
 		if (__predict_false(mp == NULL)) {
 			fdrop(fp, td);
 			error = EBADF;
 			break;
 		}
 		td->td_retval[0] = 0;
 		if (mp->mnt_kern_flag & MNTK_UNIONFS ||
 		    mp->mnt_flag & MNT_UNION)
 			td->td_retval[0] = 1;
 		fdrop(fp, td);
 		break;
 
 	default:
 		error = EINVAL;
 		break;
 	}
 	return (error);
 }
 
 static int
 getmaxfd(struct thread *td)
 {
 
 	return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
 }
 
 /*
  * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
  */
 int
 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
 {
 	struct filedesc *fdp;
 	struct filedescent *oldfde, *newfde;
 	struct proc *p;
 	struct file *delfp, *oldfp;
 	u_long *oioctls, *nioctls;
 	int error, maxfd;
 
 	p = td->td_proc;
 	fdp = p->p_fd;
 	oioctls = NULL;
 
 	MPASS((flags & ~(FDDUP_FLAG_CLOEXEC)) == 0);
 	MPASS(mode < FDDUP_LASTMODE);
 
 	AUDIT_ARG_FD(old);
 	/* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
 
 	/*
 	 * Verify we have a valid descriptor to dup from and possibly to
 	 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
 	 * return EINVAL when the new descriptor is out of bounds.
 	 */
 	if (old < 0)
 		return (EBADF);
 	if (new < 0)
 		return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
 	maxfd = getmaxfd(td);
 	if (new >= maxfd)
 		return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
 
 	error = EBADF;
 	FILEDESC_XLOCK(fdp);
 	if (fget_locked(fdp, old) == NULL)
 		goto unlock;
 	if ((mode == FDDUP_FIXED || mode == FDDUP_MUSTREPLACE) && old == new) {
 		td->td_retval[0] = new;
 		if (flags & FDDUP_FLAG_CLOEXEC)
 			fdp->fd_ofiles[new].fde_flags |= UF_EXCLOSE;
 		error = 0;
 		goto unlock;
 	}
 
 	oldfde = &fdp->fd_ofiles[old];
 	oldfp = oldfde->fde_file;
 	if (!fhold(oldfp))
 		goto unlock;
 
 	/*
 	 * If the caller specified a file descriptor, make sure the file
 	 * table is large enough to hold it, and grab it.  Otherwise, just
 	 * allocate a new descriptor the usual way.
 	 */
 	switch (mode) {
 	case FDDUP_NORMAL:
 	case FDDUP_FCNTL:
 		if ((error = fdalloc(td, new, &new)) != 0) {
 			fdrop(oldfp, td);
 			goto unlock;
 		}
 		break;
 	case FDDUP_MUSTREPLACE:
 		/* Target file descriptor must exist. */
 		if (fget_locked(fdp, new) == NULL) {
 			fdrop(oldfp, td);
 			goto unlock;
 		}
 		break;
 	case FDDUP_FIXED:
 		if (new >= fdp->fd_nfiles) {
 			/*
 			 * The resource limits are here instead of e.g.
 			 * fdalloc(), because the file descriptor table may be
 			 * shared between processes, so we can't really use
 			 * racct_add()/racct_sub().  Instead of counting the
 			 * number of actually allocated descriptors, just put
 			 * the limit on the size of the file descriptor table.
 			 */
 #ifdef RACCT
 			if (RACCT_ENABLED()) {
 				error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
 				if (error != 0) {
 					error = EMFILE;
 					fdrop(oldfp, td);
 					goto unlock;
 				}
 			}
 #endif
 			fdgrowtable_exp(fdp, new + 1);
 		}
 		if (!fdisused(fdp, new))
 			fdused(fdp, new);
 		break;
 	default:
 		KASSERT(0, ("%s unsupported mode %d", __func__, mode));
 	}
 
 	KASSERT(old != new, ("new fd is same as old"));
 
 	/* Refetch oldfde because the table may have grown and old one freed. */
 	oldfde = &fdp->fd_ofiles[old];
 	KASSERT(oldfp == oldfde->fde_file,
 	    ("fdt_ofiles shift from growth observed at fd %d",
 	    old));
 
 	newfde = &fdp->fd_ofiles[new];
 	delfp = newfde->fde_file;
 
 	nioctls = filecaps_copy_prep(&oldfde->fde_caps);
 
 	/*
 	 * Duplicate the source descriptor.
 	 */
 #ifdef CAPABILITIES
 	seqc_write_begin(&newfde->fde_seqc);
 #endif
 	oioctls = filecaps_free_prep(&newfde->fde_caps);
 	memcpy(newfde, oldfde, fde_change_size);
 	filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
 	    nioctls);
 	if ((flags & FDDUP_FLAG_CLOEXEC) != 0)
 		newfde->fde_flags = oldfde->fde_flags | UF_EXCLOSE;
 	else
 		newfde->fde_flags = oldfde->fde_flags & ~UF_EXCLOSE;
 #ifdef CAPABILITIES
 	seqc_write_end(&newfde->fde_seqc);
 #endif
 	td->td_retval[0] = new;
 
 	error = 0;
 
 	if (delfp != NULL) {
 		(void) closefp(fdp, new, delfp, td, true, false);
 		FILEDESC_UNLOCK_ASSERT(fdp);
 	} else {
 unlock:
 		FILEDESC_XUNLOCK(fdp);
 	}
 
 	filecaps_free_finish(oioctls);
 	return (error);
 }
 
 static void
 sigiofree(struct sigio *sigio)
 {
 	crfree(sigio->sio_ucred);
 	free(sigio, M_SIGIO);
 }
 
 static struct sigio *
 funsetown_locked(struct sigio *sigio)
 {
 	struct proc *p;
 	struct pgrp *pg;
 
 	SIGIO_ASSERT_LOCKED();
 
 	if (sigio == NULL)
 		return (NULL);
 	*(sigio->sio_myref) = NULL;
 	if (sigio->sio_pgid < 0) {
 		pg = sigio->sio_pgrp;
 		PGRP_LOCK(pg);
 		SLIST_REMOVE(&sigio->sio_pgrp->pg_sigiolst, sigio,
 		    sigio, sio_pgsigio);
 		PGRP_UNLOCK(pg);
 	} else {
 		p = sigio->sio_proc;
 		PROC_LOCK(p);
 		SLIST_REMOVE(&sigio->sio_proc->p_sigiolst, sigio,
 		    sigio, sio_pgsigio);
 		PROC_UNLOCK(p);
 	}
 	return (sigio);
 }
 
 /*
  * If sigio is on the list associated with a process or process group,
  * disable signalling from the device, remove sigio from the list and
  * free sigio.
  */
 void
 funsetown(struct sigio **sigiop)
 {
 	struct sigio *sigio;
 
 	/* Racy check, consumers must provide synchronization. */
 	if (*sigiop == NULL)
 		return;
 
 	SIGIO_LOCK();
 	sigio = funsetown_locked(*sigiop);
 	SIGIO_UNLOCK();
 	if (sigio != NULL)
 		sigiofree(sigio);
 }
 
 /*
  * Free a list of sigio structures.  The caller must ensure that new sigio
  * structures cannot be added after this point.  For process groups this is
  * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
  * as an interlock.
  */
 void
 funsetownlst(struct sigiolst *sigiolst)
 {
 	struct proc *p;
 	struct pgrp *pg;
 	struct sigio *sigio, *tmp;
 
 	/* Racy check. */
 	sigio = SLIST_FIRST(sigiolst);
 	if (sigio == NULL)
 		return;
 
 	p = NULL;
 	pg = NULL;
 
 	SIGIO_LOCK();
 	sigio = SLIST_FIRST(sigiolst);
 	if (sigio == NULL) {
 		SIGIO_UNLOCK();
 		return;
 	}
 
 	/*
 	 * Every entry of the list should belong to a single proc or pgrp.
 	 */
 	if (sigio->sio_pgid < 0) {
 		pg = sigio->sio_pgrp;
 		sx_assert(&proctree_lock, SX_XLOCKED);
 		PGRP_LOCK(pg);
 	} else /* if (sigio->sio_pgid > 0) */ {
 		p = sigio->sio_proc;
 		PROC_LOCK(p);
 		KASSERT((p->p_flag & P_WEXIT) != 0,
 		    ("%s: process %p is not exiting", __func__, p));
 	}
 
 	SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
 		*sigio->sio_myref = NULL;
 		if (pg != NULL) {
 			KASSERT(sigio->sio_pgid < 0,
 			    ("Proc sigio in pgrp sigio list"));
 			KASSERT(sigio->sio_pgrp == pg,
 			    ("Bogus pgrp in sigio list"));
 		} else /* if (p != NULL) */ {
 			KASSERT(sigio->sio_pgid > 0,
 			    ("Pgrp sigio in proc sigio list"));
 			KASSERT(sigio->sio_proc == p,
 			    ("Bogus proc in sigio list"));
 		}
 	}
 
 	if (pg != NULL)
 		PGRP_UNLOCK(pg);
 	else
 		PROC_UNLOCK(p);
 	SIGIO_UNLOCK();
 
 	SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
 		sigiofree(sigio);
 }
 
 /*
  * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
  *
  * After permission checking, add a sigio structure to the sigio list for
  * the process or process group.
  */
 int
 fsetown(pid_t pgid, struct sigio **sigiop)
 {
 	struct proc *proc;
 	struct pgrp *pgrp;
 	struct sigio *osigio, *sigio;
 	int ret;
 
 	if (pgid == 0) {
 		funsetown(sigiop);
 		return (0);
 	}
 
 	ret = 0;
 
 	sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
 	sigio->sio_pgid = pgid;
 	sigio->sio_ucred = crhold(curthread->td_ucred);
 	sigio->sio_myref = sigiop;
 
 	sx_slock(&proctree_lock);
 	SIGIO_LOCK();
 	osigio = funsetown_locked(*sigiop);
 	if (pgid > 0) {
 		proc = pfind(pgid);
 		if (proc == NULL) {
 			ret = ESRCH;
 			goto fail;
 		}
 
 		/*
 		 * Policy - Don't allow a process to FSETOWN a process
 		 * in another session.
 		 *
 		 * Remove this test to allow maximum flexibility or
 		 * restrict FSETOWN to the current process or process
 		 * group for maximum safety.
 		 */
 		if (proc->p_session != curthread->td_proc->p_session) {
 			PROC_UNLOCK(proc);
 			ret = EPERM;
 			goto fail;
 		}
 
 		sigio->sio_proc = proc;
 		SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio, sio_pgsigio);
 		PROC_UNLOCK(proc);
 	} else /* if (pgid < 0) */ {
 		pgrp = pgfind(-pgid);
 		if (pgrp == NULL) {
 			ret = ESRCH;
 			goto fail;
 		}
 
 		/*
 		 * Policy - Don't allow a process to FSETOWN a process
 		 * in another session.
 		 *
 		 * Remove this test to allow maximum flexibility or
 		 * restrict FSETOWN to the current process or process
 		 * group for maximum safety.
 		 */
 		if (pgrp->pg_session != curthread->td_proc->p_session) {
 			PGRP_UNLOCK(pgrp);
 			ret = EPERM;
 			goto fail;
 		}
 
 		SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
 		sigio->sio_pgrp = pgrp;
 		PGRP_UNLOCK(pgrp);
 	}
 	sx_sunlock(&proctree_lock);
 	*sigiop = sigio;
 	SIGIO_UNLOCK();
 	if (osigio != NULL)
 		sigiofree(osigio);
 	return (0);
 
 fail:
 	SIGIO_UNLOCK();
 	sx_sunlock(&proctree_lock);
 	sigiofree(sigio);
 	if (osigio != NULL)
 		sigiofree(osigio);
 	return (ret);
 }
 
 /*
  * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
  */
 pid_t
 fgetown(struct sigio **sigiop)
 {
 	pid_t pgid;
 
 	SIGIO_LOCK();
 	pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
 	SIGIO_UNLOCK();
 	return (pgid);
 }
 
 static int
 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
     bool audit)
 {
 	int error;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	/*
 	 * We now hold the fp reference that used to be owned by the
 	 * descriptor array.  We have to unlock the FILEDESC *AFTER*
 	 * knote_fdclose to prevent a race of the fd getting opened, a knote
 	 * added, and deleteing a knote for the new fd.
 	 */
 	if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
 		knote_fdclose(td, fd);
 
 	/*
 	 * We need to notify mqueue if the object is of type mqueue.
 	 */
 	if (__predict_false(fp->f_type == DTYPE_MQUEUE))
 		mq_fdclose(td, fd, fp);
 	FILEDESC_XUNLOCK(fdp);
 
 #ifdef AUDIT
 	if (AUDITING_TD(td) && audit)
 		audit_sysclose(td, fd, fp);
 #endif
 	error = closef(fp, td);
 
 	/*
 	 * All paths leading up to closefp() will have already removed or
 	 * replaced the fd in the filedesc table, so a restart would not
 	 * operate on the same file.
 	 */
 	if (error == ERESTART)
 		error = EINTR;
 
 	return (error);
 }
 
 static int
 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
     bool holdleaders, bool audit)
 {
 	int error;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	if (holdleaders) {
 		if (td->td_proc->p_fdtol != NULL) {
 			/*
 			 * Ask fdfree() to sleep to ensure that all relevant
 			 * process leaders can be traversed in closef().
 			 */
 			fdp->fd_holdleaderscount++;
 		} else {
 			holdleaders = false;
 		}
 	}
 
 	error = closefp_impl(fdp, fd, fp, td, audit);
 	if (holdleaders) {
 		FILEDESC_XLOCK(fdp);
 		fdp->fd_holdleaderscount--;
 		if (fdp->fd_holdleaderscount == 0 &&
 		    fdp->fd_holdleaderswakeup != 0) {
 			fdp->fd_holdleaderswakeup = 0;
 			wakeup(&fdp->fd_holdleaderscount);
 		}
 		FILEDESC_XUNLOCK(fdp);
 	}
 	return (error);
 }
 
 static int
 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
     bool holdleaders, bool audit)
 {
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	if (__predict_false(td->td_proc->p_fdtol != NULL)) {
 		return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
 	} else {
 		return (closefp_impl(fdp, fd, fp, td, audit));
 	}
 }
 
 /*
  * Close a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct close_args {
 	int     fd;
 };
 #endif
 /* ARGSUSED */
 int
 sys_close(struct thread *td, struct close_args *uap)
 {
 
 	return (kern_close(td, uap->fd));
 }
 
 int
 kern_close(struct thread *td, int fd)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 
 	fdp = td->td_proc->p_fd;
 
 	FILEDESC_XLOCK(fdp);
 	if ((fp = fget_locked(fdp, fd)) == NULL) {
 		FILEDESC_XUNLOCK(fdp);
 		return (EBADF);
 	}
 	fdfree(fdp, fd);
 
 	/* closefp() drops the FILEDESC lock for us. */
 	return (closefp(fdp, fd, fp, td, true, true));
 }
 
 int
 kern_close_range(struct thread *td, u_int lowfd, u_int highfd)
 {
 	struct filedesc *fdp;
 	const struct fdescenttbl *fdt;
 	struct file *fp;
 	int fd;
 
 	/*
 	 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
 	 * open should not be a usage error.  From a close_range() perspective,
 	 * close_range(3, ~0U, 0) in the same scenario should also likely not
 	 * be a usage error as all fd above 3 are in-fact already closed.
 	 */
 	if (highfd < lowfd) {
 		return (EINVAL);
 	}
 
 	fdp = td->td_proc->p_fd;
 	FILEDESC_XLOCK(fdp);
 	fdt = atomic_load_ptr(&fdp->fd_files);
 	highfd = MIN(highfd, fdt->fdt_nfiles - 1);
 	fd = lowfd;
 	if (__predict_false(fd > highfd)) {
 		goto out_locked;
 	}
 	for (;;) {
 		fp = fdt->fdt_ofiles[fd].fde_file;
 		if (fp == NULL) {
 			if (fd == highfd)
 				goto out_locked;
 		} else {
 			fdfree(fdp, fd);
 			(void) closefp(fdp, fd, fp, td, true, true);
 			if (fd == highfd)
 				goto out_unlocked;
 			FILEDESC_XLOCK(fdp);
 			fdt = atomic_load_ptr(&fdp->fd_files);
 		}
 		fd++;
 	}
 out_locked:
 	FILEDESC_XUNLOCK(fdp);
 out_unlocked:
 	return (0);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct close_range_args {
 	u_int	lowfd;
 	u_int	highfd;
 	int	flags;
 };
 #endif
 int
 sys_close_range(struct thread *td, struct close_range_args *uap)
 {
 
 	AUDIT_ARG_FD(uap->lowfd);
 	AUDIT_ARG_CMD(uap->highfd);
 	AUDIT_ARG_FFLAGS(uap->flags);
 
 	/* No flags currently defined */
 	if (uap->flags != 0)
 		return (EINVAL);
 	return (kern_close_range(td, uap->lowfd, uap->highfd));
 }
 
 #ifdef COMPAT_FREEBSD12
 /*
  * Close open file descriptors.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct freebsd12_closefrom_args {
 	int	lowfd;
 };
 #endif
 /* ARGSUSED */
 int
 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
 {
 	u_int lowfd;
 
 	AUDIT_ARG_FD(uap->lowfd);
 
 	/*
 	 * Treat negative starting file descriptor values identical to
 	 * closefrom(0) which closes all files.
 	 */
 	lowfd = MAX(0, uap->lowfd);
 	return (kern_close_range(td, lowfd, ~0U));
 }
 #endif	/* COMPAT_FREEBSD12 */
 
 #if defined(COMPAT_43)
 /*
  * Return status information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct ofstat_args {
 	int	fd;
 	struct	ostat *sb;
 };
 #endif
 /* ARGSUSED */
 int
 ofstat(struct thread *td, struct ofstat_args *uap)
 {
 	struct ostat oub;
 	struct stat ub;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &ub);
 	if (error == 0) {
 		cvtstat(&ub, &oub);
 		error = copyout(&oub, uap->sb, sizeof(oub));
 	}
 	return (error);
 }
 #endif /* COMPAT_43 */
 
 #if defined(COMPAT_FREEBSD11)
 int
 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
 {
 	struct stat sb;
 	struct freebsd11_stat osb;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &sb);
 	if (error != 0)
 		return (error);
 	error = freebsd11_cvtstat(&sb, &osb);
 	if (error == 0)
 		error = copyout(&osb, uap->sb, sizeof(osb));
 	return (error);
 }
 #endif	/* COMPAT_FREEBSD11 */
 
 /*
  * Return status information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct fstat_args {
 	int	fd;
 	struct	stat *sb;
 };
 #endif
 /* ARGSUSED */
 int
 sys_fstat(struct thread *td, struct fstat_args *uap)
 {
 	struct stat ub;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &ub);
 	if (error == 0)
 		error = copyout(&ub, uap->sb, sizeof(ub));
 	return (error);
 }
 
 int
 kern_fstat(struct thread *td, int fd, struct stat *sbp)
 {
 	struct file *fp;
 	int error;
 
 	AUDIT_ARG_FD(fd);
 
 	error = fget(td, fd, &cap_fstat_rights, &fp);
 	if (__predict_false(error != 0))
 		return (error);
 
 	AUDIT_ARG_FILE(td->td_proc, fp);
 
 	error = fo_stat(fp, sbp, td->td_ucred, td);
 	fdrop(fp, td);
 #ifdef __STAT_TIME_T_EXT
 	sbp->st_atim_ext = 0;
 	sbp->st_mtim_ext = 0;
 	sbp->st_ctim_ext = 0;
 	sbp->st_btim_ext = 0;
 #endif
 #ifdef KTRACE
 	if (KTRPOINT(td, KTR_STRUCT))
 		ktrstat_error(sbp, error);
 #endif
 	return (error);
 }
 
 #if defined(COMPAT_FREEBSD11)
 /*
  * Return status information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct freebsd11_nfstat_args {
 	int	fd;
 	struct	nstat *sb;
 };
 #endif
 /* ARGSUSED */
 int
 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
 {
 	struct nstat nub;
 	struct stat ub;
 	int error;
 
 	error = kern_fstat(td, uap->fd, &ub);
 	if (error == 0) {
 		freebsd11_cvtnstat(&ub, &nub);
 		error = copyout(&nub, uap->sb, sizeof(nub));
 	}
 	return (error);
 }
 #endif /* COMPAT_FREEBSD11 */
 
 /*
  * Return pathconf information about a file descriptor.
  */
 #ifndef _SYS_SYSPROTO_H_
 struct fpathconf_args {
 	int	fd;
 	int	name;
 };
 #endif
 /* ARGSUSED */
 int
 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
 {
 	long value;
 	int error;
 
 	error = kern_fpathconf(td, uap->fd, uap->name, &value);
 	if (error == 0)
 		td->td_retval[0] = value;
 	return (error);
 }
 
 int
 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
 {
 	struct file *fp;
 	struct vnode *vp;
 	int error;
 
 	error = fget(td, fd, &cap_fpathconf_rights, &fp);
 	if (error != 0)
 		return (error);
 
 	if (name == _PC_ASYNC_IO) {
 		*valuep = _POSIX_ASYNCHRONOUS_IO;
 		goto out;
 	}
 	vp = fp->f_vnode;
 	if (vp != NULL) {
 		vn_lock(vp, LK_SHARED | LK_RETRY);
 		error = VOP_PATHCONF(vp, name, valuep);
 		VOP_UNLOCK(vp);
 	} else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
 		if (name != _PC_PIPE_BUF) {
 			error = EINVAL;
 		} else {
 			*valuep = PIPE_BUF;
 			error = 0;
 		}
 	} else {
 		error = EOPNOTSUPP;
 	}
 out:
 	fdrop(fp, td);
 	return (error);
 }
 
 /*
  * Copy filecaps structure allocating memory for ioctls array if needed.
  *
  * The last parameter indicates whether the fdtable is locked. If it is not and
  * ioctls are encountered, copying fails and the caller must lock the table.
  *
  * Note that if the table was not locked, the caller has to check the relevant
  * sequence counter to determine whether the operation was successful.
  */
 bool
 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
 {
 	size_t size;
 
 	if (src->fc_ioctls != NULL && !locked)
 		return (false);
 	memcpy(dst, src, sizeof(*src));
 	if (src->fc_ioctls == NULL)
 		return (true);
 
 	KASSERT(src->fc_nioctls > 0,
 	    ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
 
 	size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
 	dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
 	memcpy(dst->fc_ioctls, src->fc_ioctls, size);
 	return (true);
 }
 
 static u_long *
 filecaps_copy_prep(const struct filecaps *src)
 {
 	u_long *ioctls;
 	size_t size;
 
 	if (__predict_true(src->fc_ioctls == NULL))
 		return (NULL);
 
 	KASSERT(src->fc_nioctls > 0,
 	    ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
 
 	size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
 	ioctls = malloc(size, M_FILECAPS, M_WAITOK);
 	return (ioctls);
 }
 
 static void
 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
     u_long *ioctls)
 {
 	size_t size;
 
 	*dst = *src;
 	if (__predict_true(src->fc_ioctls == NULL)) {
 		MPASS(ioctls == NULL);
 		return;
 	}
 
 	size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
 	dst->fc_ioctls = ioctls;
 	bcopy(src->fc_ioctls, dst->fc_ioctls, size);
 }
 
 /*
  * Move filecaps structure to the new place and clear the old place.
  */
 void
 filecaps_move(struct filecaps *src, struct filecaps *dst)
 {
 
 	*dst = *src;
 	bzero(src, sizeof(*src));
 }
 
 /*
  * Fill the given filecaps structure with full rights.
  */
 static void
 filecaps_fill(struct filecaps *fcaps)
 {
 
 	CAP_ALL(&fcaps->fc_rights);
 	fcaps->fc_ioctls = NULL;
 	fcaps->fc_nioctls = -1;
 	fcaps->fc_fcntls = CAP_FCNTL_ALL;
 }
 
 /*
  * Free memory allocated within filecaps structure.
  */
 void
 filecaps_free(struct filecaps *fcaps)
 {
 
 	free(fcaps->fc_ioctls, M_FILECAPS);
 	bzero(fcaps, sizeof(*fcaps));
 }
 
 static u_long *
 filecaps_free_prep(struct filecaps *fcaps)
 {
 	u_long *ioctls;
 
 	ioctls = fcaps->fc_ioctls;
 	bzero(fcaps, sizeof(*fcaps));
 	return (ioctls);
 }
 
 static void
 filecaps_free_finish(u_long *ioctls)
 {
 
 	free(ioctls, M_FILECAPS);
 }
 
 /*
  * Validate the given filecaps structure.
  */
 static void
 filecaps_validate(const struct filecaps *fcaps, const char *func)
 {
 
 	KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
 	    ("%s: invalid rights", func));
 	KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
 	    ("%s: invalid fcntls", func));
 	KASSERT(fcaps->fc_fcntls == 0 ||
 	    cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
 	    ("%s: fcntls without CAP_FCNTL", func));
 	KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
 	    (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
 	    ("%s: invalid ioctls", func));
 	KASSERT(fcaps->fc_nioctls == 0 ||
 	    cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
 	    ("%s: ioctls without CAP_IOCTL", func));
 }
 
 static void
 fdgrowtable_exp(struct filedesc *fdp, int nfd)
 {
 	int nfd1;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	nfd1 = fdp->fd_nfiles * 2;
 	if (nfd1 < nfd)
 		nfd1 = nfd;
 	fdgrowtable(fdp, nfd1);
 }
 
 /*
  * Grow the file table to accommodate (at least) nfd descriptors.
  */
 static void
 fdgrowtable(struct filedesc *fdp, int nfd)
 {
 	struct filedesc0 *fdp0;
 	struct freetable *ft;
 	struct fdescenttbl *ntable;
 	struct fdescenttbl *otable;
 	int nnfiles, onfiles;
 	NDSLOTTYPE *nmap, *omap;
 
 	KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
 
 	/* save old values */
 	onfiles = fdp->fd_nfiles;
 	otable = fdp->fd_files;
 	omap = fdp->fd_map;
 
 	/* compute the size of the new table */
 	nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
 	if (nnfiles <= onfiles)
 		/* the table is already large enough */
 		return;
 
 	/*
 	 * Allocate a new table.  We need enough space for the number of
 	 * entries, file entries themselves and the struct freetable we will use
 	 * when we decommission the table and place it on the freelist.
 	 * We place the struct freetable in the middle so we don't have
 	 * to worry about padding.
 	 */
 	ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
 	    nnfiles * sizeof(ntable->fdt_ofiles[0]) +
 	    sizeof(struct freetable),
 	    M_FILEDESC, M_ZERO | M_WAITOK);
 	/* copy the old data */
 	ntable->fdt_nfiles = nnfiles;
 	memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
 	    onfiles * sizeof(ntable->fdt_ofiles[0]));
 
 	/*
 	 * Allocate a new map only if the old is not large enough.  It will
 	 * grow at a slower rate than the table as it can map more
 	 * entries than the table can hold.
 	 */
 	if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
 		nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
 		    M_ZERO | M_WAITOK);
 		/* copy over the old data and update the pointer */
 		memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
 		fdp->fd_map = nmap;
 	}
 
 	/*
 	 * Make sure that ntable is correctly initialized before we replace
 	 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
 	 * data.
 	 */
 	atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
 
 	/*
 	 * Free the old file table when not shared by other threads or processes.
 	 * The old file table is considered to be shared when either are true:
 	 * - The process has more than one thread.
 	 * - The file descriptor table has been shared via fdshare().
 	 *
 	 * When shared, the old file table will be placed on a freelist
 	 * which will be processed when the struct filedesc is released.
 	 *
 	 * Note that if onfiles == NDFILE, we're dealing with the original
 	 * static allocation contained within (struct filedesc0 *)fdp,
 	 * which must not be freed.
 	 */
 	if (onfiles > NDFILE) {
 		/*
 		 * Note we may be called here from fdinit while allocating a
 		 * table for a new process in which case ->p_fd points
 		 * elsewhere.
 		 */
 		if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
 			free(otable, M_FILEDESC);
 		} else {
 			ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
 			fdp0 = (struct filedesc0 *)fdp;
 			ft->ft_table = otable;
 			SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
 		}
 	}
 	/*
 	 * The map does not have the same possibility of threads still
 	 * holding references to it.  So always free it as long as it
 	 * does not reference the original static allocation.
 	 */
 	if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
 		free(omap, M_FILEDESC);
 }
 
 /*
  * Allocate a file descriptor for the process.
  */
 int
 fdalloc(struct thread *td, int minfd, int *result)
 {
 	struct proc *p = td->td_proc;
 	struct filedesc *fdp = p->p_fd;
 	int fd, maxfd, allocfd;
 #ifdef RACCT
 	int error;
 #endif
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	if (fdp->fd_freefile > minfd)
 		minfd = fdp->fd_freefile;
 
 	maxfd = getmaxfd(td);
 
 	/*
 	 * Search the bitmap for a free descriptor starting at minfd.
 	 * If none is found, grow the file table.
 	 */
 	fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
 	if (__predict_false(fd >= maxfd))
 		return (EMFILE);
 	if (__predict_false(fd >= fdp->fd_nfiles)) {
 		allocfd = min(fd * 2, maxfd);
 #ifdef RACCT
 		if (RACCT_ENABLED()) {
 			error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
 			if (error != 0)
 				return (EMFILE);
 		}
 #endif
 		/*
 		 * fd is already equal to first free descriptor >= minfd, so
 		 * we only need to grow the table and we are done.
 		 */
 		fdgrowtable_exp(fdp, allocfd);
 	}
 
 	/*
 	 * Perform some sanity checks, then mark the file descriptor as
 	 * used and return it to the caller.
 	 */
 	KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
 	    ("invalid descriptor %d", fd));
 	KASSERT(!fdisused(fdp, fd),
 	    ("fd_first_free() returned non-free descriptor"));
 	KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
 	    ("file descriptor isn't free"));
 	fdused(fdp, fd);
 	*result = fd;
 	return (0);
 }
 
 /*
  * Allocate n file descriptors for the process.
  */
 int
 fdallocn(struct thread *td, int minfd, int *fds, int n)
 {
 	struct proc *p = td->td_proc;
 	struct filedesc *fdp = p->p_fd;
 	int i;
 
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	for (i = 0; i < n; i++)
 		if (fdalloc(td, 0, &fds[i]) != 0)
 			break;
 
 	if (i < n) {
 		for (i--; i >= 0; i--)
 			fdunused(fdp, fds[i]);
 		return (EMFILE);
 	}
 
 	return (0);
 }
 
 /*
  * Create a new open file structure and allocate a file descriptor for the
  * process that refers to it.  We add one reference to the file for the
  * descriptor table and one reference for resultfp. This is to prevent us
  * being preempted and the entry in the descriptor table closed after we
  * release the FILEDESC lock.
  */
 int
 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
     struct filecaps *fcaps)
 {
 	struct file *fp;
 	int error, fd;
 
 	MPASS(resultfp != NULL);
 	MPASS(resultfd != NULL);
 
 	error = _falloc_noinstall(td, &fp, 2);
 	if (__predict_false(error != 0)) {
 		return (error);
 	}
 
 	error = finstall_refed(td, fp, &fd, flags, fcaps);
 	if (__predict_false(error != 0)) {
 		falloc_abort(td, fp);
 		return (error);
 	}
 
 	*resultfp = fp;
 	*resultfd = fd;
 
 	return (0);
 }
 
 /*
  * Create a new open file structure without allocating a file descriptor.
  */
 int
 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
 {
 	struct file *fp;
 	int maxuserfiles = maxfiles - (maxfiles / 20);
 	int openfiles_new;
 	static struct timeval lastfail;
 	static int curfail;
 
 	KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
 	MPASS(n > 0);
 
 	openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
 	if ((openfiles_new >= maxuserfiles &&
 	    priv_check(td, PRIV_MAXFILES) != 0) ||
 	    openfiles_new >= maxfiles) {
 		atomic_subtract_int(&openfiles, 1);
 		if (ppsratecheck(&lastfail, &curfail, 1)) {
 			printf("kern.maxfiles limit exceeded by uid %i, (%s) "
 			    "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
 		}
 		return (ENFILE);
 	}
 	fp = uma_zalloc(file_zone, M_WAITOK);
 	bzero(fp, sizeof(*fp));
 	refcount_init(&fp->f_count, n);
 	fp->f_cred = crhold(td->td_ucred);
 	fp->f_ops = &badfileops;
 	*resultfp = fp;
 	return (0);
 }
 
 void
 falloc_abort(struct thread *td, struct file *fp)
 {
 
 	/*
 	 * For assertion purposes.
 	 */
 	refcount_init(&fp->f_count, 0);
 	_fdrop(fp, td);
 }
 
 /*
  * Install a file in a file descriptor table.
  */
 void
 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
     struct filecaps *fcaps)
 {
 	struct filedescent *fde;
 
 	MPASS(fp != NULL);
 	if (fcaps != NULL)
 		filecaps_validate(fcaps, __func__);
 	FILEDESC_XLOCK_ASSERT(fdp);
 
 	fde = &fdp->fd_ofiles[fd];
 #ifdef CAPABILITIES
 	seqc_write_begin(&fde->fde_seqc);
 #endif
 	fde->fde_file = fp;
 	fde->fde_flags = (flags & O_CLOEXEC) != 0 ? UF_EXCLOSE : 0;
 	if (fcaps != NULL)
 		filecaps_move(fcaps, &fde->fde_caps);
 	else
 		filecaps_fill(&fde->fde_caps);
 #ifdef CAPABILITIES
 	seqc_write_end(&fde->fde_seqc);
 #endif
 }
 
 int
 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
     struct filecaps *fcaps)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 	int error;
 
 	MPASS(fd != NULL);
 
 	FILEDESC_XLOCK(fdp);
 	error = fdalloc(td, 0, fd);
 	if (__predict_true(error == 0)) {
 		_finstall(fdp, fp, *fd, flags, fcaps);
 	}
 	FILEDESC_XUNLOCK(fdp);
 	return (error);
 }
 
 int
 finstall(struct thread *td, struct file *fp, int *fd, int flags,
     struct filecaps *fcaps)
 {
 	int error;
 
 	MPASS(fd != NULL);
 
 	if (!fhold(fp))
 		return (EBADF);
 	error = finstall_refed(td, fp, fd, flags, fcaps);
 	if (__predict_false(error != 0)) {
 		fdrop(fp, td);
 	}
 	return (error);
 }
 
 /*
  * Build a new filedesc structure from another.
  *
  * If fdp is not NULL, return with it shared locked.
  */
 struct filedesc *
 fdinit(struct filedesc *fdp, bool prepfiles, int *lastfile)
 {
 	struct filedesc0 *newfdp0;
 	struct filedesc *newfdp;
 
 	if (prepfiles)
 		MPASS(lastfile != NULL);
 	else
 		MPASS(lastfile == NULL);
 
 	newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
 	newfdp = &newfdp0->fd_fd;
 
 	/* Create the file descriptor table. */
 	FILEDESC_LOCK_INIT(newfdp);
 	refcount_init(&newfdp->fd_refcnt, 1);
 	refcount_init(&newfdp->fd_holdcnt, 1);
 	newfdp->fd_map = newfdp0->fd_dmap;
 	newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
 	newfdp->fd_files->fdt_nfiles = NDFILE;
 
 	if (fdp == NULL)
 		return (newfdp);
 
 	FILEDESC_SLOCK(fdp);
 	if (!prepfiles) {
 		FILEDESC_SUNLOCK(fdp);
 		return (newfdp);
 	}
 
 	for (;;) {
 		*lastfile = fdlastfile(fdp);
 		if (*lastfile < newfdp->fd_nfiles)
 			break;
 		FILEDESC_SUNLOCK(fdp);
 		fdgrowtable(newfdp, *lastfile + 1);
 		FILEDESC_SLOCK(fdp);
 	}
 
 	return (newfdp);
 }
 
 /*
  * Build a pwddesc structure from another.
  * Copy the current, root, and jail root vnode references.
  *
  * If pdp is not NULL, return with it shared locked.
  */
 struct pwddesc *
 pdinit(struct pwddesc *pdp, bool keeplock)
 {
 	struct pwddesc *newpdp;
 	struct pwd *newpwd;
 
 	newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
 
 	PWDDESC_LOCK_INIT(newpdp);
 	refcount_init(&newpdp->pd_refcount, 1);
 	newpdp->pd_cmask = CMASK;
 
 	if (pdp == NULL) {
 		newpwd = pwd_alloc();
 		smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
 		return (newpdp);
 	}
 
 	PWDDESC_XLOCK(pdp);
 	newpwd = pwd_hold_pwddesc(pdp);
 	smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
 	if (!keeplock)
 		PWDDESC_XUNLOCK(pdp);
 	return (newpdp);
 }
 
 /*
  * Hold either filedesc or pwddesc of the passed process.
  *
  * The process lock is used to synchronize against the target exiting and
  * freeing the data.
  *
  * Clearing can be ilustrated in 3 steps:
  * 1. set the pointer to NULL. Either routine can race against it, hence
  *   atomic_load_ptr.
  * 2. observe the process lock as not taken. Until then fdhold/pdhold can
  *   race to either still see the pointer or find NULL. It is still safe to
  *   grab a reference as clearing is stalled.
  * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
  *   guaranteed to see NULL, making it safe to finish clearing
  */
 static struct filedesc *
 fdhold(struct proc *p)
 {
 	struct filedesc *fdp;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	fdp = atomic_load_ptr(&p->p_fd);
 	if (fdp != NULL)
 		refcount_acquire(&fdp->fd_holdcnt);
 	return (fdp);
 }
 
 static struct pwddesc *
 pdhold(struct proc *p)
 {
 	struct pwddesc *pdp;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	pdp = atomic_load_ptr(&p->p_pd);
 	if (pdp != NULL)
 		refcount_acquire(&pdp->pd_refcount);
 	return (pdp);
 }
 
 static void
 fddrop(struct filedesc *fdp)
 {
 
 	if (refcount_load(&fdp->fd_holdcnt) > 1) {
 		if (refcount_release(&fdp->fd_holdcnt) == 0)
 			return;
 	}
 
 	FILEDESC_LOCK_DESTROY(fdp);
 	uma_zfree(filedesc0_zone, fdp);
 }
 
 static void
 pddrop(struct pwddesc *pdp)
 {
 	struct pwd *pwd;
 
 	if (refcount_release_if_not_last(&pdp->pd_refcount))
 		return;
 
 	PWDDESC_XLOCK(pdp);
 	if (refcount_release(&pdp->pd_refcount) == 0) {
 		PWDDESC_XUNLOCK(pdp);
 		return;
 	}
 	pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	pwd_set(pdp, NULL);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(pwd);
 
 	PWDDESC_LOCK_DESTROY(pdp);
 	free(pdp, M_PWDDESC);
 }
 
 /*
  * Share a filedesc structure.
  */
 struct filedesc *
 fdshare(struct filedesc *fdp)
 {
 
 	refcount_acquire(&fdp->fd_refcnt);
 	return (fdp);
 }
 
 /*
  * Share a pwddesc structure.
  */
 struct pwddesc *
 pdshare(struct pwddesc *pdp)
 {
 	refcount_acquire(&pdp->pd_refcount);
 	return (pdp);
 }
 
 /*
  * Unshare a filedesc structure, if necessary by making a copy
  */
 void
 fdunshare(struct thread *td)
 {
 	struct filedesc *tmp;
 	struct proc *p = td->td_proc;
 
 	if (refcount_load(&p->p_fd->fd_refcnt) == 1)
 		return;
 
 	tmp = fdcopy(p->p_fd);
 	fdescfree(td);
 	p->p_fd = tmp;
 }
 
 /*
  * Unshare a pwddesc structure.
  */
 void
 pdunshare(struct thread *td)
 {
 	struct pwddesc *pdp;
 	struct proc *p;
 
 	p = td->td_proc;
 	/* Not shared. */
 	if (p->p_pd->pd_refcount == 1)
 		return;
 
 	pdp = pdcopy(p->p_pd);
 	pdescfree(td);
 	p->p_pd = pdp;
 }
 
 void
 fdinstall_remapped(struct thread *td, struct filedesc *fdp)
 {
 
 	fdescfree(td);
 	td->td_proc->p_fd = fdp;
 }
 
 /*
  * Copy a filedesc structure.  A NULL pointer in returns a NULL reference,
  * this is to ease callers, not catch errors.
  */
 struct filedesc *
 fdcopy(struct filedesc *fdp)
 {
 	struct filedesc *newfdp;
 	struct filedescent *nfde, *ofde;
 	int i, lastfile;
 
 	MPASS(fdp != NULL);
 
 	newfdp = fdinit(fdp, true, &lastfile);
 	/* copy all passable descriptors (i.e. not kqueue) */
 	newfdp->fd_freefile = -1;
 	for (i = 0; i <= lastfile; ++i) {
 		ofde = &fdp->fd_ofiles[i];
 		if (ofde->fde_file == NULL ||
 		    (ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
 		    !fhold(ofde->fde_file)) {
 			if (newfdp->fd_freefile == -1)
 				newfdp->fd_freefile = i;
 			continue;
 		}
 		nfde = &newfdp->fd_ofiles[i];
 		*nfde = *ofde;
 		filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
 		fdused_init(newfdp, i);
 	}
 	if (newfdp->fd_freefile == -1)
 		newfdp->fd_freefile = i;
 	FILEDESC_SUNLOCK(fdp);
 	return (newfdp);
 }
 
 /*
  * Copy a pwddesc structure.
  */
 struct pwddesc *
 pdcopy(struct pwddesc *pdp)
 {
 	struct pwddesc *newpdp;
 
 	MPASS(pdp != NULL);
 
 	newpdp = pdinit(pdp, true);
 	newpdp->pd_cmask = pdp->pd_cmask;
 	PWDDESC_XUNLOCK(pdp);
 	return (newpdp);
 }
 
 /*
  * Copies a filedesc structure, while remapping all file descriptors
  * stored inside using a translation table.
  *
  * File descriptors are copied over to the new file descriptor table,
  * regardless of whether the close-on-exec flag is set.
  */
 int
 fdcopy_remapped(struct filedesc *fdp, const int *fds, size_t nfds,
     struct filedesc **ret)
 {
 	struct filedesc *newfdp;
 	struct filedescent *nfde, *ofde;
 	int error, i, lastfile;
 
 	MPASS(fdp != NULL);
 
 	newfdp = fdinit(fdp, true, &lastfile);
 	if (nfds > lastfile + 1) {
 		/* New table cannot be larger than the old one. */
 		error = E2BIG;
 		goto bad;
 	}
 	/* Copy all passable descriptors (i.e. not kqueue). */
 	newfdp->fd_freefile = nfds;
 	for (i = 0; i < nfds; ++i) {
 		if (fds[i] < 0 || fds[i] > lastfile) {
 			/* File descriptor out of bounds. */
 			error = EBADF;
 			goto bad;
 		}
 		ofde = &fdp->fd_ofiles[fds[i]];
 		if (ofde->fde_file == NULL) {
 			/* Unused file descriptor. */
 			error = EBADF;
 			goto bad;
 		}
 		if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0) {
 			/* File descriptor cannot be passed. */
 			error = EINVAL;
 			goto bad;
 		}
 		if (!fhold(ofde->fde_file)) {
 			error = EBADF;
 			goto bad;
 		}
 		nfde = &newfdp->fd_ofiles[i];
 		*nfde = *ofde;
 		filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
 		fdused_init(newfdp, i);
 	}
 	FILEDESC_SUNLOCK(fdp);
 	*ret = newfdp;
 	return (0);
 bad:
 	FILEDESC_SUNLOCK(fdp);
 	fdescfree_remapped(newfdp);
 	return (error);
 }
 
 /*
  * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
  * one of processes using it exits) and the table used to be shared.
  */
 static void
 fdclearlocks(struct thread *td)
 {
 	struct filedesc *fdp;
 	struct filedesc_to_leader *fdtol;
 	struct flock lf;
 	struct file *fp;
 	struct proc *p;
 	struct vnode *vp;
 	int i, lastfile;
 
 	p = td->td_proc;
 	fdp = p->p_fd;
 	fdtol = p->p_fdtol;
 	MPASS(fdtol != NULL);
 
 	FILEDESC_XLOCK(fdp);
 	KASSERT(fdtol->fdl_refcount > 0,
 	    ("filedesc_to_refcount botch: fdl_refcount=%d",
 	    fdtol->fdl_refcount));
 	if (fdtol->fdl_refcount == 1 &&
 	    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
 		lastfile = fdlastfile(fdp);
 		for (i = 0; i <= lastfile; i++) {
 			fp = fdp->fd_ofiles[i].fde_file;
 			if (fp == NULL || fp->f_type != DTYPE_VNODE ||
 			    !fhold(fp))
 				continue;
 			FILEDESC_XUNLOCK(fdp);
 			lf.l_whence = SEEK_SET;
 			lf.l_start = 0;
 			lf.l_len = 0;
 			lf.l_type = F_UNLCK;
 			vp = fp->f_vnode;
 			(void) VOP_ADVLOCK(vp,
 			    (caddr_t)p->p_leader, F_UNLCK,
 			    &lf, F_POSIX);
 			FILEDESC_XLOCK(fdp);
 			fdrop(fp, td);
 		}
 	}
 retry:
 	if (fdtol->fdl_refcount == 1) {
 		if (fdp->fd_holdleaderscount > 0 &&
 		    (p->p_leader->p_flag & P_ADVLOCK) != 0) {
 			/*
 			 * close() or kern_dup() has cleared a reference
 			 * in a shared file descriptor table.
 			 */
 			fdp->fd_holdleaderswakeup = 1;
 			sx_sleep(&fdp->fd_holdleaderscount,
 			    FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
 			goto retry;
 		}
 		if (fdtol->fdl_holdcount > 0) {
 			/*
 			 * Ensure that fdtol->fdl_leader remains
 			 * valid in closef().
 			 */
 			fdtol->fdl_wakeup = 1;
 			sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
 			    "fdlhold", 0);
 			goto retry;
 		}
 	}
 	fdtol->fdl_refcount--;
 	if (fdtol->fdl_refcount == 0 &&
 	    fdtol->fdl_holdcount == 0) {
 		fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
 		fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
 	} else
 		fdtol = NULL;
 	p->p_fdtol = NULL;
 	FILEDESC_XUNLOCK(fdp);
 	if (fdtol != NULL)
 		free(fdtol, M_FILEDESC_TO_LEADER);
 }
 
 /*
  * Release a filedesc structure.
  */
 static void
 fdescfree_fds(struct thread *td, struct filedesc *fdp, bool needclose)
 {
 	struct filedesc0 *fdp0;
 	struct freetable *ft, *tft;
 	struct filedescent *fde;
 	struct file *fp;
 	int i, lastfile;
 
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
 	    ("%s: fd table %p carries references", __func__, fdp));
 
 	/*
 	 * Serialize with threads iterating over the table, if any.
 	 */
 	if (refcount_load(&fdp->fd_holdcnt) > 1) {
 		FILEDESC_XLOCK(fdp);
 		FILEDESC_XUNLOCK(fdp);
 	}
 
 	lastfile = fdlastfile_single(fdp);
 	for (i = 0; i <= lastfile; i++) {
 		fde = &fdp->fd_ofiles[i];
 		fp = fde->fde_file;
 		if (fp != NULL) {
 			fdefree_last(fde);
 			if (needclose)
 				(void) closef(fp, td);
 			else
 				fdrop(fp, td);
 		}
 	}
 
 	if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
 		free(fdp->fd_map, M_FILEDESC);
 	if (fdp->fd_nfiles > NDFILE)
 		free(fdp->fd_files, M_FILEDESC);
 
 	fdp0 = (struct filedesc0 *)fdp;
 	SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
 		free(ft->ft_table, M_FILEDESC);
 
 	fddrop(fdp);
 }
 
 void
 fdescfree(struct thread *td)
 {
 	struct proc *p;
 	struct filedesc *fdp;
 
 	p = td->td_proc;
 	fdp = p->p_fd;
 	MPASS(fdp != NULL);
 
 #ifdef RACCT
 	if (RACCT_ENABLED())
 		racct_set_unlocked(p, RACCT_NOFILE, 0);
 #endif
 
 	if (p->p_fdtol != NULL)
 		fdclearlocks(td);
 
 	/*
 	 * Check fdhold for an explanation.
 	 */
 	atomic_store_ptr(&p->p_fd, NULL);
 	atomic_thread_fence_seq_cst();
 	PROC_WAIT_UNLOCKED(p);
 
 	if (refcount_release(&fdp->fd_refcnt) == 0)
 		return;
 
 	fdescfree_fds(td, fdp, 1);
 }
 
 void
 pdescfree(struct thread *td)
 {
 	struct proc *p;
 	struct pwddesc *pdp;
 
 	p = td->td_proc;
 	pdp = p->p_pd;
 	MPASS(pdp != NULL);
 
 	/*
 	 * Check pdhold for an explanation.
 	 */
 	atomic_store_ptr(&p->p_pd, NULL);
 	atomic_thread_fence_seq_cst();
 	PROC_WAIT_UNLOCKED(p);
 
 	pddrop(pdp);
 }
 
 void
 fdescfree_remapped(struct filedesc *fdp)
 {
 #ifdef INVARIANTS
 	/* fdescfree_fds() asserts that fd_refcnt == 0. */
 	if (!refcount_release(&fdp->fd_refcnt))
 		panic("%s: fd table %p has extra references", __func__, fdp);
 #endif
 	fdescfree_fds(curthread, fdp, 0);
 }
 
 /*
  * For setugid programs, we don't want to people to use that setugidness
  * to generate error messages which write to a file which otherwise would
  * otherwise be off-limits to the process.  We check for filesystems where
  * the vnode can change out from under us after execve (like [lin]procfs).
  *
  * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
  * sufficient.  We also don't check for setugidness since we know we are.
  */
 static bool
 is_unsafe(struct file *fp)
 {
 	struct vnode *vp;
 
 	if (fp->f_type != DTYPE_VNODE)
 		return (false);
 
 	vp = fp->f_vnode;
 	return ((vp->v_vflag & VV_PROCDEP) != 0);
 }
 
 /*
  * Make this setguid thing safe, if at all possible.
  */
 void
 fdsetugidsafety(struct thread *td)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 	int i;
 
 	fdp = td->td_proc->p_fd;
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
 	    ("the fdtable should not be shared"));
 	MPASS(fdp->fd_nfiles >= 3);
 	for (i = 0; i <= 2; i++) {
 		fp = fdp->fd_ofiles[i].fde_file;
 		if (fp != NULL && is_unsafe(fp)) {
 			FILEDESC_XLOCK(fdp);
 			knote_fdclose(td, i);
 			/*
 			 * NULL-out descriptor prior to close to avoid
 			 * a race while close blocks.
 			 */
 			fdfree(fdp, i);
 			FILEDESC_XUNLOCK(fdp);
 			(void) closef(fp, td);
 		}
 	}
 }
 
 /*
  * If a specific file object occupies a specific file descriptor, close the
  * file descriptor entry and drop a reference on the file object.  This is a
  * convenience function to handle a subsequent error in a function that calls
  * falloc() that handles the race that another thread might have closed the
  * file descriptor out from under the thread creating the file object.
  */
 void
 fdclose(struct thread *td, struct file *fp, int idx)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 
 	FILEDESC_XLOCK(fdp);
 	if (fdp->fd_ofiles[idx].fde_file == fp) {
 		fdfree(fdp, idx);
 		FILEDESC_XUNLOCK(fdp);
 		fdrop(fp, td);
 	} else
 		FILEDESC_XUNLOCK(fdp);
 }
 
 /*
  * Close any files on exec?
  */
 void
 fdcloseexec(struct thread *td)
 {
 	struct filedesc *fdp;
 	struct filedescent *fde;
 	struct file *fp;
 	int i, lastfile;
 
 	fdp = td->td_proc->p_fd;
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
 	    ("the fdtable should not be shared"));
 	lastfile = fdlastfile_single(fdp);
 	for (i = 0; i <= lastfile; i++) {
 		fde = &fdp->fd_ofiles[i];
 		fp = fde->fde_file;
 		if (fp != NULL && (fp->f_type == DTYPE_MQUEUE ||
 		    (fde->fde_flags & UF_EXCLOSE))) {
 			FILEDESC_XLOCK(fdp);
 			fdfree(fdp, i);
 			(void) closefp(fdp, i, fp, td, false, false);
 			FILEDESC_UNLOCK_ASSERT(fdp);
 		}
 	}
 }
 
 /*
  * It is unsafe for set[ug]id processes to be started with file
  * descriptors 0..2 closed, as these descriptors are given implicit
  * significance in the Standard C library.  fdcheckstd() will create a
  * descriptor referencing /dev/null for each of stdin, stdout, and
  * stderr that is not already open.
  */
 int
 fdcheckstd(struct thread *td)
 {
 	struct filedesc *fdp;
 	register_t save;
 	int i, error, devnull;
 
 	fdp = td->td_proc->p_fd;
 	KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
 	    ("the fdtable should not be shared"));
 	MPASS(fdp->fd_nfiles >= 3);
 	devnull = -1;
 	for (i = 0; i <= 2; i++) {
 		if (fdp->fd_ofiles[i].fde_file != NULL)
 			continue;
 
 		save = td->td_retval[0];
 		if (devnull != -1) {
 			error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
 		} else {
 			error = kern_openat(td, AT_FDCWD, "/dev/null",
 			    UIO_SYSSPACE, O_RDWR, 0);
 			if (error == 0) {
 				devnull = td->td_retval[0];
 				KASSERT(devnull == i, ("we didn't get our fd"));
 			}
 		}
 		td->td_retval[0] = save;
 		if (error != 0)
 			return (error);
 	}
 	return (0);
 }
 
 /*
  * Internal form of close.  Decrement reference count on file structure.
  * Note: td may be NULL when closing a file that was being passed in a
  * message.
  */
 int
 closef(struct file *fp, struct thread *td)
 {
 	struct vnode *vp;
 	struct flock lf;
 	struct filedesc_to_leader *fdtol;
 	struct filedesc *fdp;
 
 	MPASS(td != NULL);
 
 	/*
 	 * POSIX record locking dictates that any close releases ALL
 	 * locks owned by this process.  This is handled by setting
 	 * a flag in the unlock to free ONLY locks obeying POSIX
 	 * semantics, and not to free BSD-style file locks.
 	 * If the descriptor was in a message, POSIX-style locks
 	 * aren't passed with the descriptor, and the thread pointer
 	 * will be NULL.  Callers should be careful only to pass a
 	 * NULL thread pointer when there really is no owning
 	 * context that might have locks, or the locks will be
 	 * leaked.
 	 */
 	if (fp->f_type == DTYPE_VNODE) {
 		vp = fp->f_vnode;
 		if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
 			lf.l_whence = SEEK_SET;
 			lf.l_start = 0;
 			lf.l_len = 0;
 			lf.l_type = F_UNLCK;
 			(void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
 			    F_UNLCK, &lf, F_POSIX);
 		}
 		fdtol = td->td_proc->p_fdtol;
 		if (fdtol != NULL) {
 			/*
 			 * Handle special case where file descriptor table is
 			 * shared between multiple process leaders.
 			 */
 			fdp = td->td_proc->p_fd;
 			FILEDESC_XLOCK(fdp);
 			for (fdtol = fdtol->fdl_next;
 			    fdtol != td->td_proc->p_fdtol;
 			    fdtol = fdtol->fdl_next) {
 				if ((fdtol->fdl_leader->p_flag &
 				    P_ADVLOCK) == 0)
 					continue;
 				fdtol->fdl_holdcount++;
 				FILEDESC_XUNLOCK(fdp);
 				lf.l_whence = SEEK_SET;
 				lf.l_start = 0;
 				lf.l_len = 0;
 				lf.l_type = F_UNLCK;
 				vp = fp->f_vnode;
 				(void) VOP_ADVLOCK(vp,
 				    (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
 				    F_POSIX);
 				FILEDESC_XLOCK(fdp);
 				fdtol->fdl_holdcount--;
 				if (fdtol->fdl_holdcount == 0 &&
 				    fdtol->fdl_wakeup != 0) {
 					fdtol->fdl_wakeup = 0;
 					wakeup(fdtol);
 				}
 			}
 			FILEDESC_XUNLOCK(fdp);
 		}
 	}
 	return (fdrop_close(fp, td));
 }
 
 /*
  * Hack for file descriptor passing code.
  */
 void
 closef_nothread(struct file *fp)
 {
 
 	fdrop(fp, NULL);
 }
 
 /*
  * Initialize the file pointer with the specified properties.
  *
  * The ops are set with release semantics to be certain that the flags, type,
  * and data are visible when ops is.  This is to prevent ops methods from being
  * called with bad data.
  */
 void
 finit(struct file *fp, u_int flag, short type, void *data, struct fileops *ops)
 {
 	fp->f_data = data;
 	fp->f_flag = flag;
 	fp->f_type = type;
 	atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
 }
 
 void
 finit_vnode(struct file *fp, u_int flag, void *data, struct fileops *ops)
 {
 	fp->f_seqcount[UIO_READ] = 1;
 	fp->f_seqcount[UIO_WRITE] = 1;
 	finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
 	    data, ops);
 }
 
 int
 fget_cap_locked(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp, struct filecaps *havecapsp)
 {
 	struct filedescent *fde;
 	int error;
 
 	FILEDESC_LOCK_ASSERT(fdp);
 
 	fde = fdeget_locked(fdp, fd);
 	if (fde == NULL) {
 		error = EBADF;
 		goto out;
 	}
 
 #ifdef CAPABILITIES
 	error = cap_check(cap_rights_fde_inline(fde), needrightsp);
 	if (error != 0)
 		goto out;
 #endif
 
 	if (havecapsp != NULL)
 		filecaps_copy(&fde->fde_caps, havecapsp, true);
 
 	*fpp = fde->fde_file;
 
 	error = 0;
 out:
 	return (error);
 }
 
 int
 fget_cap(struct thread *td, int fd, cap_rights_t *needrightsp,
     struct file **fpp, struct filecaps *havecapsp)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 	int error;
 #ifndef CAPABILITIES
 	error = fget_unlocked(fdp, fd, needrightsp, fpp);
 	if (havecapsp != NULL && error == 0)
 		filecaps_fill(havecapsp);
 #else
 	struct file *fp;
 	seqc_t seq;
 
 	*fpp = NULL;
 	for (;;) {
 		error = fget_unlocked_seq(fdp, fd, needrightsp, &fp, &seq);
 		if (error != 0)
 			return (error);
 
 		if (havecapsp != NULL) {
 			if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
 			    havecapsp, false)) {
 				fdrop(fp, td);
 				goto get_locked;
 			}
 		}
 
 		if (!fd_modified(fdp, fd, seq))
 			break;
 		fdrop(fp, td);
 	}
 
 	*fpp = fp;
 	return (0);
 
 get_locked:
 	FILEDESC_SLOCK(fdp);
 	error = fget_cap_locked(fdp, fd, needrightsp, fpp, havecapsp);
 	if (error == 0 && !fhold(*fpp))
 		error = EBADF;
 	FILEDESC_SUNLOCK(fdp);
 #endif
 	return (error);
 }
 
 #ifdef CAPABILITIES
 int
 fgetvp_lookup_smr(int fd, struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
 {
 	const struct filedescent *fde;
 	const struct fdescenttbl *fdt;
 	struct filedesc *fdp;
 	struct file *fp;
 	struct vnode *vp;
 	const cap_rights_t *haverights;
 	cap_rights_t rights;
 	seqc_t seq;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	rights = *ndp->ni_rightsneeded;
 	cap_rights_set_one(&rights, CAP_LOOKUP);
 
 	fdp = curproc->p_fd;
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
 		return (EBADF);
 	seq = seqc_read_notmodify(fd_seqc(fdt, fd));
 	fde = &fdt->fdt_ofiles[fd];
 	haverights = cap_rights_fde_inline(fde);
 	fp = fde->fde_file;
 	if (__predict_false(fp == NULL))
 		return (EAGAIN);
 	if (__predict_false(cap_check_inline_transient(haverights, &rights)))
 		return (EAGAIN);
 	*fsearch = ((fp->f_flag & FSEARCH) != 0);
 	vp = fp->f_vnode;
 	if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
 		return (EAGAIN);
 	}
 	if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
 		return (EAGAIN);
 	}
 	/*
 	 * Use an acquire barrier to force re-reading of fdt so it is
 	 * refreshed for verification.
 	 */
 	atomic_thread_fence_acq();
 	fdt = fdp->fd_files;
 	if (__predict_false(!seqc_consistent_nomb(fd_seqc(fdt, fd), seq)))
 		return (EAGAIN);
 	/*
 	 * If file descriptor doesn't have all rights,
 	 * all lookups relative to it must also be
 	 * strictly relative.
 	 *
 	 * Not yet supported by fast path.
 	 */
 	CAP_ALL(&rights);
 	if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
 	    ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
 	    ndp->ni_filecaps.fc_nioctls != -1) {
 #ifdef notyet
 		ndp->ni_lcf |= NI_LCF_STRICTRELATIVE;
 #else
 		return (EAGAIN);
 #endif
 	}
 	*vpp = vp;
 	return (0);
 }
 #else
 int
 fgetvp_lookup_smr(int fd, struct nameidata *ndp, struct vnode **vpp, bool *fsearch)
 {
 	const struct fdescenttbl *fdt;
 	struct filedesc *fdp;
 	struct file *fp;
 	struct vnode *vp;
 
 	VFS_SMR_ASSERT_ENTERED();
 
 	fdp = curproc->p_fd;
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
 		return (EBADF);
 	fp = fdt->fdt_ofiles[fd].fde_file;
 	if (__predict_false(fp == NULL))
 		return (EAGAIN);
 	*fsearch = ((fp->f_flag & FSEARCH) != 0);
 	vp = fp->f_vnode;
 	if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
 		return (EAGAIN);
 	}
 	/*
 	 * Use an acquire barrier to force re-reading of fdt so it is
 	 * refreshed for verification.
 	 */
 	atomic_thread_fence_acq();
 	fdt = fdp->fd_files;
 	if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
 		return (EAGAIN);
 	filecaps_fill(&ndp->ni_filecaps);
 	*vpp = vp;
 	return (0);
 }
 #endif
 
 int
 fget_unlocked_seq(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp, seqc_t *seqp)
 {
 #ifdef CAPABILITIES
 	const struct filedescent *fde;
 #endif
 	const struct fdescenttbl *fdt;
 	struct file *fp;
 #ifdef CAPABILITIES
 	seqc_t seq;
 	cap_rights_t haverights;
 	int error;
 #endif
 
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
 		return (EBADF);
 	/*
 	 * Fetch the descriptor locklessly.  We avoid fdrop() races by
 	 * never raising a refcount above 0.  To accomplish this we have
 	 * to use a cmpset loop rather than an atomic_add.  The descriptor
 	 * must be re-verified once we acquire a reference to be certain
 	 * that the identity is still correct and we did not lose a race
 	 * due to preemption.
 	 */
 	for (;;) {
 #ifdef CAPABILITIES
 		seq = seqc_read_notmodify(fd_seqc(fdt, fd));
 		fde = &fdt->fdt_ofiles[fd];
 		haverights = *cap_rights_fde_inline(fde);
 		fp = fde->fde_file;
 		if (!seqc_consistent(fd_seqc(fdt, fd), seq))
 			continue;
 #else
 		fp = fdt->fdt_ofiles[fd].fde_file;
 #endif
 		if (fp == NULL)
 			return (EBADF);
 #ifdef CAPABILITIES
 		error = cap_check_inline(&haverights, needrightsp);
 		if (error != 0)
 			return (error);
 #endif
 		if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
 			/*
 			 * Force a reload. Other thread could reallocate the
 			 * table before this fd was closed, so it is possible
 			 * that there is a stale fp pointer in cached version.
 			 */
 			fdt = atomic_load_ptr(&fdp->fd_files);
 			continue;
 		}
 		/*
 		 * Use an acquire barrier to force re-reading of fdt so it is
 		 * refreshed for verification.
 		 */
 		atomic_thread_fence_acq();
 		fdt = fdp->fd_files;
 #ifdef	CAPABILITIES
 		if (seqc_consistent_nomb(fd_seqc(fdt, fd), seq))
 #else
 		if (fp == fdt->fdt_ofiles[fd].fde_file)
 #endif
 			break;
 		fdrop(fp, curthread);
 	}
 	*fpp = fp;
 	if (seqp != NULL) {
 #ifdef CAPABILITIES
 		*seqp = seq;
 #endif
 	}
 	return (0);
 }
 
 /*
  * See the comments in fget_unlocked_seq for an explanation of how this works.
  *
  * This is a simplified variant which bails out to the aforementioned routine
  * if anything goes wrong. In practice this only happens when userspace is
  * racing with itself.
  */
 int
 fget_unlocked(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp)
 {
 #ifdef CAPABILITIES
 	const struct filedescent *fde;
 #endif
 	const struct fdescenttbl *fdt;
 	struct file *fp;
 #ifdef CAPABILITIES
 	seqc_t seq;
 	const cap_rights_t *haverights;
 #endif
 
 	fdt = fdp->fd_files;
 	if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
 		return (EBADF);
 #ifdef CAPABILITIES
 	seq = seqc_read_notmodify(fd_seqc(fdt, fd));
 	fde = &fdt->fdt_ofiles[fd];
 	haverights = cap_rights_fde_inline(fde);
 	fp = fde->fde_file;
 #else
 	fp = fdt->fdt_ofiles[fd].fde_file;
 #endif
 	if (__predict_false(fp == NULL))
 		goto out_fallback;
 #ifdef CAPABILITIES
 	if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
 		goto out_fallback;
 #endif
 	if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
 		goto out_fallback;
 
 	/*
 	 * Use an acquire barrier to force re-reading of fdt so it is
 	 * refreshed for verification.
 	 */
 	atomic_thread_fence_acq();
 	fdt = fdp->fd_files;
 #ifdef	CAPABILITIES
 	if (__predict_false(!seqc_consistent_nomb(fd_seqc(fdt, fd), seq)))
 #else
 	if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
 #endif
 		goto out_fdrop;
 	*fpp = fp;
 	return (0);
 out_fdrop:
 	fdrop(fp, curthread);
 out_fallback:
 	return (fget_unlocked_seq(fdp, fd, needrightsp, fpp, NULL));
 }
 
 /*
  * Translate fd -> file when the caller guarantees the file descriptor table
  * can't be changed by others.
  *
  * Note this does not mean the file object itself is only visible to the caller,
  * merely that it wont disappear without having to be referenced.
  *
  * Must be paired with fput_only_user.
  */
 #ifdef	CAPABILITIES
 int
 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp)
 {
 	const struct filedescent *fde;
 	const struct fdescenttbl *fdt;
 	const cap_rights_t *haverights;
 	struct file *fp;
 	int error;
 
 	MPASS(FILEDESC_IS_ONLY_USER(fdp));
 
 	if (__predict_false(fd >= fdp->fd_nfiles))
 		return (EBADF);
 
 	fdt = fdp->fd_files;
 	fde = &fdt->fdt_ofiles[fd];
 	fp = fde->fde_file;
 	if (__predict_false(fp == NULL))
 		return (EBADF);
 	MPASS(refcount_load(&fp->f_count) > 0);
 	haverights = cap_rights_fde_inline(fde);
 	error = cap_check_inline(haverights, needrightsp);
 	if (__predict_false(error != 0))
 		return (error);
 	*fpp = fp;
 	return (0);
 }
 #else
 int
 fget_only_user(struct filedesc *fdp, int fd, cap_rights_t *needrightsp,
     struct file **fpp)
 {
 	struct file *fp;
 
 	MPASS(FILEDESC_IS_ONLY_USER(fdp));
 
 	if (__predict_false(fd >= fdp->fd_nfiles))
 		return (EBADF);
 
 	fp = fdp->fd_ofiles[fd].fde_file;
 	if (__predict_false(fp == NULL))
 		return (EBADF);
 
 	MPASS(refcount_load(&fp->f_count) > 0);
 	*fpp = fp;
 	return (0);
 }
 #endif
 
 /*
  * Extract the file pointer associated with the specified descriptor for the
  * current user process.
  *
  * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
  * returned.
  *
  * File's rights will be checked against the capability rights mask.
  *
  * If an error occurred the non-zero error is returned and *fpp is set to
  * NULL.  Otherwise *fpp is held and set and zero is returned.  Caller is
  * responsible for fdrop().
  */
 static __inline int
 _fget(struct thread *td, int fd, struct file **fpp, int flags,
     cap_rights_t *needrightsp)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 	int error;
 
 	*fpp = NULL;
 	fdp = td->td_proc->p_fd;
 	error = fget_unlocked(fdp, fd, needrightsp, &fp);
 	if (__predict_false(error != 0))
 		return (error);
 	if (__predict_false(fp->f_ops == &badfileops)) {
 		fdrop(fp, td);
 		return (EBADF);
 	}
 
 	/*
 	 * FREAD and FWRITE failure return EBADF as per POSIX.
 	 */
 	error = 0;
 	switch (flags) {
 	case FREAD:
 	case FWRITE:
 		if ((fp->f_flag & flags) == 0)
 			error = EBADF;
 		break;
 	case FEXEC:
 	    	if ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
 		    ((fp->f_flag & FWRITE) != 0))
 			error = EBADF;
 		break;
 	case 0:
 		break;
 	default:
 		KASSERT(0, ("wrong flags"));
 	}
 
 	if (error != 0) {
 		fdrop(fp, td);
 		return (error);
 	}
 
 	*fpp = fp;
 	return (0);
 }
 
 int
 fget(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
 {
 
 	return (_fget(td, fd, fpp, 0, rightsp));
 }
 
 int
 fget_mmap(struct thread *td, int fd, cap_rights_t *rightsp, vm_prot_t *maxprotp,
     struct file **fpp)
 {
 	int error;
 #ifndef CAPABILITIES
 	error = _fget(td, fd, fpp, 0, rightsp);
 	if (maxprotp != NULL)
 		*maxprotp = VM_PROT_ALL;
 	return (error);
 #else
 	cap_rights_t fdrights;
 	struct filedesc *fdp;
 	struct file *fp;
 	seqc_t seq;
 
 	*fpp = NULL;
 	fdp = td->td_proc->p_fd;
 	MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
 	for (;;) {
 		error = fget_unlocked_seq(fdp, fd, rightsp, &fp, &seq);
 		if (__predict_false(error != 0))
 			return (error);
 		if (__predict_false(fp->f_ops == &badfileops)) {
 			fdrop(fp, td);
 			return (EBADF);
 		}
 		if (maxprotp != NULL)
 			fdrights = *cap_rights(fdp, fd);
 		if (!fd_modified(fdp, fd, seq))
 			break;
 		fdrop(fp, td);
 	}
 
 	/*
 	 * If requested, convert capability rights to access flags.
 	 */
 	if (maxprotp != NULL)
 		*maxprotp = cap_rights_to_vmprot(&fdrights);
 	*fpp = fp;
 	return (0);
 #endif
 }
 
 int
 fget_read(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
 {
 
 	return (_fget(td, fd, fpp, FREAD, rightsp));
 }
 
 int
 fget_write(struct thread *td, int fd, cap_rights_t *rightsp, struct file **fpp)
 {
 
 	return (_fget(td, fd, fpp, FWRITE, rightsp));
 }
 
 int
 fget_fcntl(struct thread *td, int fd, cap_rights_t *rightsp, int needfcntl,
     struct file **fpp)
 {
 	struct filedesc *fdp = td->td_proc->p_fd;
 #ifndef CAPABILITIES
 	return (fget_unlocked(fdp, fd, rightsp, fpp));
 #else
 	struct file *fp;
 	int error;
 	seqc_t seq;
 
 	*fpp = NULL;
 	MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
 	for (;;) {
 		error = fget_unlocked_seq(fdp, fd, rightsp, &fp, &seq);
 		if (error != 0)
 			return (error);
 		error = cap_fcntl_check(fdp, fd, needfcntl);
 		if (!fd_modified(fdp, fd, seq))
 			break;
 		fdrop(fp, td);
 	}
 	if (error != 0) {
 		fdrop(fp, td);
 		return (error);
 	}
 	*fpp = fp;
 	return (0);
 #endif
 }
 
 /*
  * Like fget() but loads the underlying vnode, or returns an error if the
  * descriptor does not represent a vnode.  Note that pipes use vnodes but
  * never have VM objects.  The returned vnode will be vref()'d.
  *
  * XXX: what about the unused flags ?
  */
 static __inline int
 _fgetvp(struct thread *td, int fd, int flags, cap_rights_t *needrightsp,
     struct vnode **vpp)
 {
 	struct file *fp;
 	int error;
 
 	*vpp = NULL;
 	error = _fget(td, fd, &fp, flags, needrightsp);
 	if (error != 0)
 		return (error);
 	if (fp->f_vnode == NULL) {
 		error = EINVAL;
 	} else {
 		*vpp = fp->f_vnode;
 		vref(*vpp);
 	}
 	fdrop(fp, td);
 
 	return (error);
 }
 
 int
 fgetvp(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, 0, rightsp, vpp));
 }
 
 int
 fgetvp_rights(struct thread *td, int fd, cap_rights_t *needrightsp,
     struct filecaps *havecaps, struct vnode **vpp)
 {
 	struct filecaps caps;
 	struct file *fp;
 	int error;
 
 	error = fget_cap(td, fd, needrightsp, &fp, &caps);
 	if (error != 0)
 		return (error);
 	if (fp->f_ops == &badfileops) {
 		error = EBADF;
 		goto out;
 	}
 	if (fp->f_vnode == NULL) {
 		error = EINVAL;
 		goto out;
 	}
 
 	*havecaps = caps;
 	*vpp = fp->f_vnode;
 	vref(*vpp);
 	fdrop(fp, td);
 
 	return (0);
 out:
 	filecaps_free(&caps);
 	fdrop(fp, td);
 	return (error);
 }
 
 int
 fgetvp_read(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, FREAD, rightsp, vpp));
 }
 
 int
 fgetvp_exec(struct thread *td, int fd, cap_rights_t *rightsp, struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
 }
 
 #ifdef notyet
 int
 fgetvp_write(struct thread *td, int fd, cap_rights_t *rightsp,
     struct vnode **vpp)
 {
 
 	return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
 }
 #endif
 
 /*
  * Handle the last reference to a file being closed.
  *
  * Without the noinline attribute clang keeps inlining the func thorough this
  * file when fdrop is used.
  */
 int __noinline
 _fdrop(struct file *fp, struct thread *td)
 {
 	int error;
 #ifdef INVARIANTS
 	int count;
 
 	count = refcount_load(&fp->f_count);
 	if (count != 0)
 		panic("fdrop: fp %p count %d", fp, count);
 #endif
 	error = fo_close(fp, td);
 	atomic_subtract_int(&openfiles, 1);
 	crfree(fp->f_cred);
 	free(fp->f_advice, M_FADVISE);
 	uma_zfree(file_zone, fp);
 
 	return (error);
 }
 
 /*
  * Apply an advisory lock on a file descriptor.
  *
  * Just attempt to get a record lock of the requested type on the entire file
  * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
  */
 #ifndef _SYS_SYSPROTO_H_
 struct flock_args {
 	int	fd;
 	int	how;
 };
 #endif
 /* ARGSUSED */
 int
 sys_flock(struct thread *td, struct flock_args *uap)
 {
 	struct file *fp;
 	struct vnode *vp;
 	struct flock lf;
 	int error;
 
 	error = fget(td, uap->fd, &cap_flock_rights, &fp);
 	if (error != 0)
 		return (error);
 	if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
 		fdrop(fp, td);
 		return (EOPNOTSUPP);
 	}
 
 	vp = fp->f_vnode;
 	lf.l_whence = SEEK_SET;
 	lf.l_start = 0;
 	lf.l_len = 0;
 	if (uap->how & LOCK_UN) {
 		lf.l_type = F_UNLCK;
 		atomic_clear_int(&fp->f_flag, FHASLOCK);
 		error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
 		goto done2;
 	}
 	if (uap->how & LOCK_EX)
 		lf.l_type = F_WRLCK;
 	else if (uap->how & LOCK_SH)
 		lf.l_type = F_RDLCK;
 	else {
 		error = EBADF;
 		goto done2;
 	}
 	atomic_set_int(&fp->f_flag, FHASLOCK);
 	error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
 	    (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
 done2:
 	fdrop(fp, td);
 	return (error);
 }
 /*
  * Duplicate the specified descriptor to a free descriptor.
  */
 int
 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
     int openerror, int *indxp)
 {
 	struct filedescent *newfde, *oldfde;
 	struct file *fp;
 	u_long *ioctls;
 	int error, indx;
 
 	KASSERT(openerror == ENODEV || openerror == ENXIO,
 	    ("unexpected error %d in %s", openerror, __func__));
 
 	/*
 	 * If the to-be-dup'd fd number is greater than the allowed number
 	 * of file descriptors, or the fd to be dup'd has already been
 	 * closed, then reject.
 	 */
 	FILEDESC_XLOCK(fdp);
 	if ((fp = fget_locked(fdp, dfd)) == NULL) {
 		FILEDESC_XUNLOCK(fdp);
 		return (EBADF);
 	}
 
 	error = fdalloc(td, 0, &indx);
 	if (error != 0) {
 		FILEDESC_XUNLOCK(fdp);
 		return (error);
 	}
 
 	/*
 	 * There are two cases of interest here.
 	 *
 	 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
 	 *
 	 * For ENXIO steal away the file structure from (dfd) and store it in
 	 * (indx).  (dfd) is effectively closed by this operation.
 	 */
 	switch (openerror) {
 	case ENODEV:
 		/*
 		 * Check that the mode the file is being opened for is a
 		 * subset of the mode of the existing descriptor.
 		 */
 		if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
 			fdunused(fdp, indx);
 			FILEDESC_XUNLOCK(fdp);
 			return (EACCES);
 		}
 		if (!fhold(fp)) {
 			fdunused(fdp, indx);
 			FILEDESC_XUNLOCK(fdp);
 			return (EBADF);
 		}
 		newfde = &fdp->fd_ofiles[indx];
 		oldfde = &fdp->fd_ofiles[dfd];
 		ioctls = filecaps_copy_prep(&oldfde->fde_caps);
 #ifdef CAPABILITIES
 		seqc_write_begin(&newfde->fde_seqc);
 #endif
 		memcpy(newfde, oldfde, fde_change_size);
 		filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
 		    ioctls);
 #ifdef CAPABILITIES
 		seqc_write_end(&newfde->fde_seqc);
 #endif
 		break;
 	case ENXIO:
 		/*
 		 * Steal away the file pointer from dfd and stuff it into indx.
 		 */
 		newfde = &fdp->fd_ofiles[indx];
 		oldfde = &fdp->fd_ofiles[dfd];
 #ifdef CAPABILITIES
 		seqc_write_begin(&newfde->fde_seqc);
 #endif
 		memcpy(newfde, oldfde, fde_change_size);
 		oldfde->fde_file = NULL;
 		fdunused(fdp, dfd);
 #ifdef CAPABILITIES
 		seqc_write_end(&newfde->fde_seqc);
 #endif
 		break;
 	}
 	FILEDESC_XUNLOCK(fdp);
 	*indxp = indx;
 	return (0);
 }
 
 /*
  * This sysctl determines if we will allow a process to chroot(2) if it
  * has a directory open:
  *	0: disallowed for all processes.
  *	1: allowed for processes that were not already chroot(2)'ed.
  *	2: allowed for all processes.
  */
 
 static int chroot_allow_open_directories = 1;
 
 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
     &chroot_allow_open_directories, 0,
     "Allow a process to chroot(2) if it has a directory open");
 
 /*
  * Helper function for raised chroot(2) security function:  Refuse if
  * any filedescriptors are open directories.
  */
 static int
 chroot_refuse_vdir_fds(struct filedesc *fdp)
 {
 	struct vnode *vp;
 	struct file *fp;
 	int fd, lastfile;
 
 	FILEDESC_LOCK_ASSERT(fdp);
 
 	lastfile = fdlastfile(fdp);
 	for (fd = 0; fd <= lastfile; fd++) {
 		fp = fget_locked(fdp, fd);
 		if (fp == NULL)
 			continue;
 		if (fp->f_type == DTYPE_VNODE) {
 			vp = fp->f_vnode;
 			if (vp->v_type == VDIR)
 				return (EPERM);
 		}
 	}
 	return (0);
 }
 
 static void
 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
 {
 
 	if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
 		vrefact(oldpwd->pwd_cdir);
 		newpwd->pwd_cdir = oldpwd->pwd_cdir;
 	}
 
 	if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
 		vrefact(oldpwd->pwd_rdir);
 		newpwd->pwd_rdir = oldpwd->pwd_rdir;
 	}
 
 	if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
 		vrefact(oldpwd->pwd_jdir);
 		newpwd->pwd_jdir = oldpwd->pwd_jdir;
 	}
 }
 
 struct pwd *
 pwd_hold_pwddesc(struct pwddesc *pdp)
 {
 	struct pwd *pwd;
 
 	PWDDESC_ASSERT_XLOCKED(pdp);
 	pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	if (pwd != NULL)
 		refcount_acquire(&pwd->pwd_refcount);
 	return (pwd);
 }
 
 bool
 pwd_hold_smr(struct pwd *pwd)
 {
 
 	MPASS(pwd != NULL);
 	if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
 		return (true);
 	}
 	return (false);
 }
 
 struct pwd *
 pwd_hold(struct thread *td)
 {
 	struct pwddesc *pdp;
 	struct pwd *pwd;
 
 	pdp = td->td_proc->p_pd;
 
 	vfs_smr_enter();
 	pwd = vfs_smr_entered_load(&pdp->pd_pwd);
 	if (pwd_hold_smr(pwd)) {
 		vfs_smr_exit();
 		return (pwd);
 	}
 	vfs_smr_exit();
 	PWDDESC_XLOCK(pdp);
 	pwd = pwd_hold_pwddesc(pdp);
 	MPASS(pwd != NULL);
 	PWDDESC_XUNLOCK(pdp);
 	return (pwd);
 }
 
 static struct pwd *
 pwd_alloc(void)
 {
 	struct pwd *pwd;
 
 	pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
 	bzero(pwd, sizeof(*pwd));
 	refcount_init(&pwd->pwd_refcount, 1);
 	return (pwd);
 }
 
 void
 pwd_drop(struct pwd *pwd)
 {
 
 	if (!refcount_release(&pwd->pwd_refcount))
 		return;
 
 	if (pwd->pwd_cdir != NULL)
 		vrele(pwd->pwd_cdir);
 	if (pwd->pwd_rdir != NULL)
 		vrele(pwd->pwd_rdir);
 	if (pwd->pwd_jdir != NULL)
 		vrele(pwd->pwd_jdir);
 	uma_zfree_smr(pwd_zone, pwd);
 }
 
 /*
 * The caller is responsible for invoking priv_check() and
 * mac_vnode_check_chroot() to authorize this operation.
 */
 int
 pwd_chroot(struct thread *td, struct vnode *vp)
 {
 	struct pwddesc *pdp;
 	struct filedesc *fdp;
 	struct pwd *newpwd, *oldpwd;
 	int error;
 
 	fdp = td->td_proc->p_fd;
 	pdp = td->td_proc->p_pd;
 	newpwd = pwd_alloc();
 	FILEDESC_SLOCK(fdp);
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	if (chroot_allow_open_directories == 0 ||
 	    (chroot_allow_open_directories == 1 &&
 	    oldpwd->pwd_rdir != rootvnode)) {
 		error = chroot_refuse_vdir_fds(fdp);
 		FILEDESC_SUNLOCK(fdp);
 		if (error != 0) {
 			PWDDESC_XUNLOCK(pdp);
 			pwd_drop(newpwd);
 			return (error);
 		}
 	} else {
 		FILEDESC_SUNLOCK(fdp);
 	}
 
 	vrefact(vp);
 	newpwd->pwd_rdir = vp;
 	if (oldpwd->pwd_jdir == NULL) {
 		vrefact(vp);
 		newpwd->pwd_jdir = vp;
 	}
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 	return (0);
 }
 
 void
 pwd_chdir(struct thread *td, struct vnode *vp)
 {
 	struct pwddesc *pdp;
 	struct pwd *newpwd, *oldpwd;
 
 	VNPASS(vp->v_usecount > 0, vp);
 
 	newpwd = pwd_alloc();
 	pdp = td->td_proc->p_pd;
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	newpwd->pwd_cdir = vp;
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 }
 
 /*
  * jail_attach(2) changes both root and working directories.
  */
 int
 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
 {
 	struct pwddesc *pdp;
 	struct filedesc *fdp;
 	struct pwd *newpwd, *oldpwd;
 	int error;
 
 	fdp = td->td_proc->p_fd;
 	pdp = td->td_proc->p_pd;
 	newpwd = pwd_alloc();
 	FILEDESC_SLOCK(fdp);
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	error = chroot_refuse_vdir_fds(fdp);
 	FILEDESC_SUNLOCK(fdp);
 	if (error != 0) {
 		PWDDESC_XUNLOCK(pdp);
 		pwd_drop(newpwd);
 		return (error);
 	}
 
 	vrefact(vp);
 	newpwd->pwd_rdir = vp;
 	vrefact(vp);
 	newpwd->pwd_cdir = vp;
 	if (oldpwd->pwd_jdir == NULL) {
 		vrefact(vp);
 		newpwd->pwd_jdir = vp;
 	}
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 	return (0);
 }
 
 void
 pwd_ensure_dirs(void)
 {
 	struct pwddesc *pdp;
 	struct pwd *oldpwd, *newpwd;
 
 	pdp = curproc->p_pd;
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL) {
 		PWDDESC_XUNLOCK(pdp);
 		return;
 	}
 	PWDDESC_XUNLOCK(pdp);
 
 	newpwd = pwd_alloc();
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	pwd_fill(oldpwd, newpwd);
 	if (newpwd->pwd_cdir == NULL) {
 		vrefact(rootvnode);
 		newpwd->pwd_cdir = rootvnode;
 	}
 	if (newpwd->pwd_rdir == NULL) {
 		vrefact(rootvnode);
 		newpwd->pwd_rdir = rootvnode;
 	}
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 }
 
 void
 pwd_set_rootvnode(void)
 {
 	struct pwddesc *pdp;
 	struct pwd *oldpwd, *newpwd;
 
 	pdp = curproc->p_pd;
 
 	newpwd = pwd_alloc();
 	PWDDESC_XLOCK(pdp);
 	oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	vrefact(rootvnode);
 	newpwd->pwd_cdir = rootvnode;
 	vrefact(rootvnode);
 	newpwd->pwd_rdir = rootvnode;
 	pwd_fill(oldpwd, newpwd);
 	pwd_set(pdp, newpwd);
 	PWDDESC_XUNLOCK(pdp);
 	pwd_drop(oldpwd);
 }
 
 /*
  * Scan all active processes and prisons to see if any of them have a current
  * or root directory of `olddp'. If so, replace them with the new mount point.
  */
 void
 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
 {
 	struct pwddesc *pdp;
 	struct pwd *newpwd, *oldpwd;
 	struct prison *pr;
 	struct proc *p;
 	int nrele;
 
 	if (vrefcnt(olddp) == 1)
 		return;
 	nrele = 0;
 	newpwd = pwd_alloc();
 	sx_slock(&allproc_lock);
 	FOREACH_PROC_IN_SYSTEM(p) {
 		PROC_LOCK(p);
 		pdp = pdhold(p);
 		PROC_UNLOCK(p);
 		if (pdp == NULL)
 			continue;
 		PWDDESC_XLOCK(pdp);
 		oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 		if (oldpwd == NULL ||
 		    (oldpwd->pwd_cdir != olddp &&
 		    oldpwd->pwd_rdir != olddp &&
 		    oldpwd->pwd_jdir != olddp)) {
 			PWDDESC_XUNLOCK(pdp);
 			pddrop(pdp);
 			continue;
 		}
 		if (oldpwd->pwd_cdir == olddp) {
 			vrefact(newdp);
 			newpwd->pwd_cdir = newdp;
 		}
 		if (oldpwd->pwd_rdir == olddp) {
 			vrefact(newdp);
 			newpwd->pwd_rdir = newdp;
 		}
 		if (oldpwd->pwd_jdir == olddp) {
 			vrefact(newdp);
 			newpwd->pwd_jdir = newdp;
 		}
 		pwd_fill(oldpwd, newpwd);
 		pwd_set(pdp, newpwd);
 		PWDDESC_XUNLOCK(pdp);
 		pwd_drop(oldpwd);
 		pddrop(pdp);
 		newpwd = pwd_alloc();
 	}
 	sx_sunlock(&allproc_lock);
 	pwd_drop(newpwd);
 	if (rootvnode == olddp) {
 		vrefact(newdp);
 		rootvnode = newdp;
 		nrele++;
 	}
 	mtx_lock(&prison0.pr_mtx);
 	if (prison0.pr_root == olddp) {
 		vrefact(newdp);
 		prison0.pr_root = newdp;
 		nrele++;
 	}
 	mtx_unlock(&prison0.pr_mtx);
 	sx_slock(&allprison_lock);
 	TAILQ_FOREACH(pr, &allprison, pr_list) {
 		mtx_lock(&pr->pr_mtx);
 		if (pr->pr_root == olddp) {
 			vrefact(newdp);
 			pr->pr_root = newdp;
 			nrele++;
 		}
 		mtx_unlock(&pr->pr_mtx);
 	}
 	sx_sunlock(&allprison_lock);
 	while (nrele--)
 		vrele(olddp);
 }
 
 struct filedesc_to_leader *
 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp, struct proc *leader)
 {
 	struct filedesc_to_leader *fdtol;
 
 	fdtol = malloc(sizeof(struct filedesc_to_leader),
 	    M_FILEDESC_TO_LEADER, M_WAITOK);
 	fdtol->fdl_refcount = 1;
 	fdtol->fdl_holdcount = 0;
 	fdtol->fdl_wakeup = 0;
 	fdtol->fdl_leader = leader;
 	if (old != NULL) {
 		FILEDESC_XLOCK(fdp);
 		fdtol->fdl_next = old->fdl_next;
 		fdtol->fdl_prev = old;
 		old->fdl_next = fdtol;
 		fdtol->fdl_next->fdl_prev = fdtol;
 		FILEDESC_XUNLOCK(fdp);
 	} else {
 		fdtol->fdl_next = fdtol;
 		fdtol->fdl_prev = fdtol;
 	}
 	return (fdtol);
 }
 
 static int
 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
 {
 	NDSLOTTYPE *map;
 	struct filedesc *fdp;
 	int count, off, minoff;
 
 	if (*(int *)arg1 != 0)
 		return (EINVAL);
 
 	fdp = curproc->p_fd;
 	count = 0;
 	FILEDESC_SLOCK(fdp);
 	map = fdp->fd_map;
 	off = NDSLOT(fdp->fd_nfiles - 1);
 	for (minoff = NDSLOT(0); off >= minoff; --off)
 		count += bitcountl(map[off]);
 	FILEDESC_SUNLOCK(fdp);
 
 	return (SYSCTL_OUT(req, &count, sizeof(count)));
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
     CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
     "Number of open file descriptors");
 
 /*
  * Get file structures globally.
  */
 static int
 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
 {
 	struct xfile xf;
 	struct filedesc *fdp;
 	struct file *fp;
 	struct proc *p;
 	int error, n, lastfile;
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error != 0)
 		return (error);
 	if (req->oldptr == NULL) {
 		n = 0;
 		sx_slock(&allproc_lock);
 		FOREACH_PROC_IN_SYSTEM(p) {
 			PROC_LOCK(p);
 			if (p->p_state == PRS_NEW) {
 				PROC_UNLOCK(p);
 				continue;
 			}
 			fdp = fdhold(p);
 			PROC_UNLOCK(p);
 			if (fdp == NULL)
 				continue;
 			/* overestimates sparse tables. */
 			n += fdp->fd_nfiles;
 			fddrop(fdp);
 		}
 		sx_sunlock(&allproc_lock);
 		return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
 	}
 	error = 0;
 	bzero(&xf, sizeof(xf));
 	xf.xf_size = sizeof(xf);
 	sx_slock(&allproc_lock);
 	FOREACH_PROC_IN_SYSTEM(p) {
 		PROC_LOCK(p);
 		if (p->p_state == PRS_NEW) {
 			PROC_UNLOCK(p);
 			continue;
 		}
 		if (p_cansee(req->td, p) != 0) {
 			PROC_UNLOCK(p);
 			continue;
 		}
 		xf.xf_pid = p->p_pid;
 		xf.xf_uid = p->p_ucred->cr_uid;
 		fdp = fdhold(p);
 		PROC_UNLOCK(p);
 		if (fdp == NULL)
 			continue;
 		FILEDESC_SLOCK(fdp);
 		lastfile = fdlastfile(fdp);
 		for (n = 0; refcount_load(&fdp->fd_refcnt) > 0 && n <= lastfile;
 		    n++) {
 			if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
 				continue;
 			xf.xf_fd = n;
 			xf.xf_file = (uintptr_t)fp;
 			xf.xf_data = (uintptr_t)fp->f_data;
 			xf.xf_vnode = (uintptr_t)fp->f_vnode;
 			xf.xf_type = (uintptr_t)fp->f_type;
 			xf.xf_count = refcount_load(&fp->f_count);
 			xf.xf_msgcount = 0;
 			xf.xf_offset = foffset_get(fp);
 			xf.xf_flag = fp->f_flag;
 			error = SYSCTL_OUT(req, &xf, sizeof(xf));
 			if (error)
 				break;
 		}
 		FILEDESC_SUNLOCK(fdp);
 		fddrop(fdp);
 		if (error)
 			break;
 	}
 	sx_sunlock(&allproc_lock);
 	return (error);
 }
 
 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
     0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
 
 #ifdef KINFO_FILE_SIZE
 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
 #endif
 
 static int
 xlate_fflags(int fflags)
 {
 	static const struct {
 		int	fflag;
 		int	kf_fflag;
 	} fflags_table[] = {
 		{ FAPPEND, KF_FLAG_APPEND },
 		{ FASYNC, KF_FLAG_ASYNC },
 		{ FFSYNC, KF_FLAG_FSYNC },
 		{ FHASLOCK, KF_FLAG_HASLOCK },
 		{ FNONBLOCK, KF_FLAG_NONBLOCK },
 		{ FREAD, KF_FLAG_READ },
 		{ FWRITE, KF_FLAG_WRITE },
 		{ O_CREAT, KF_FLAG_CREAT },
 		{ O_DIRECT, KF_FLAG_DIRECT },
 		{ O_EXCL, KF_FLAG_EXCL },
 		{ O_EXEC, KF_FLAG_EXEC },
 		{ O_EXLOCK, KF_FLAG_EXLOCK },
 		{ O_NOFOLLOW, KF_FLAG_NOFOLLOW },
 		{ O_SHLOCK, KF_FLAG_SHLOCK },
 		{ O_TRUNC, KF_FLAG_TRUNC }
 	};
 	unsigned int i;
 	int kflags;
 
 	kflags = 0;
 	for (i = 0; i < nitems(fflags_table); i++)
 		if (fflags & fflags_table[i].fflag)
 			kflags |=  fflags_table[i].kf_fflag;
 	return (kflags);
 }
 
 /* Trim unused data from kf_path by truncating the structure size. */
 void
 pack_kinfo(struct kinfo_file *kif)
 {
 
 	kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
 	    strlen(kif->kf_path) + 1;
 	kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
 }
 
 static void
 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
     struct kinfo_file *kif, struct filedesc *fdp, int flags)
 {
 	int error;
 
 	bzero(kif, sizeof(*kif));
 
 	/* Set a default type to allow for empty fill_kinfo() methods. */
 	kif->kf_type = KF_TYPE_UNKNOWN;
 	kif->kf_flags = xlate_fflags(fp->f_flag);
 	if (rightsp != NULL)
 		kif->kf_cap_rights = *rightsp;
 	else
 		cap_rights_init_zero(&kif->kf_cap_rights);
 	kif->kf_fd = fd;
 	kif->kf_ref_count = refcount_load(&fp->f_count);
 	kif->kf_offset = foffset_get(fp);
 
 	/*
 	 * This may drop the filedesc lock, so the 'fp' cannot be
 	 * accessed after this call.
 	 */
 	error = fo_fill_kinfo(fp, kif, fdp);
 	if (error == 0)
 		kif->kf_status |= KF_ATTR_VALID;
 	if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
 		pack_kinfo(kif);
 	else
 		kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
 }
 
 static void
 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
     struct kinfo_file *kif, int flags)
 {
 	int error;
 
 	bzero(kif, sizeof(*kif));
 
 	kif->kf_type = KF_TYPE_VNODE;
 	error = vn_fill_kinfo_vnode(vp, kif);
 	if (error == 0)
 		kif->kf_status |= KF_ATTR_VALID;
 	kif->kf_flags = xlate_fflags(fflags);
 	cap_rights_init_zero(&kif->kf_cap_rights);
 	kif->kf_fd = fd;
 	kif->kf_ref_count = -1;
 	kif->kf_offset = -1;
 	if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
 		pack_kinfo(kif);
 	else
 		kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
 	vrele(vp);
 }
 
 struct export_fd_buf {
 	struct filedesc		*fdp;
 	struct pwddesc	*pdp;
 	struct sbuf 		*sb;
 	ssize_t			remainder;
 	struct kinfo_file	kif;
 	int			flags;
 };
 
 static int
 export_kinfo_to_sb(struct export_fd_buf *efbuf)
 {
 	struct kinfo_file *kif;
 
 	kif = &efbuf->kif;
 	if (efbuf->remainder != -1) {
 		if (efbuf->remainder < kif->kf_structsize) {
 			/* Terminate export. */
 			efbuf->remainder = 0;
 			return (0);
 		}
 		efbuf->remainder -= kif->kf_structsize;
 	}
 	return (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) == 0 ? 0 : ENOMEM);
 }
 
 static int
 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
     struct export_fd_buf *efbuf)
 {
 	int error;
 
 	if (efbuf->remainder == 0)
 		return (0);
 	export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
 	    efbuf->flags);
 	FILEDESC_SUNLOCK(efbuf->fdp);
 	error = export_kinfo_to_sb(efbuf);
 	FILEDESC_SLOCK(efbuf->fdp);
 	return (error);
 }
 
 static int
 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
     struct export_fd_buf *efbuf)
 {
 	int error;
 
 	if (efbuf->remainder == 0)
 		return (0);
 	if (efbuf->pdp != NULL)
 		PWDDESC_XUNLOCK(efbuf->pdp);
 	export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
 	error = export_kinfo_to_sb(efbuf);
 	if (efbuf->pdp != NULL)
 		PWDDESC_XLOCK(efbuf->pdp);
 	return (error);
 }
 
 /*
  * Store a process file descriptor information to sbuf.
  *
  * Takes a locked proc as argument, and returns with the proc unlocked.
  */
 int
 kern_proc_filedesc_out(struct proc *p,  struct sbuf *sb, ssize_t maxlen,
     int flags)
 {
 	struct file *fp;
 	struct filedesc *fdp;
 	struct pwddesc *pdp;
 	struct export_fd_buf *efbuf;
 	struct vnode *cttyvp, *textvp, *tracevp;
 	struct pwd *pwd;
 	int error, i, lastfile;
 	cap_rights_t rights;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	/* ktrace vnode */
-	tracevp = p->p_tracevp;
-	if (tracevp != NULL)
-		vrefact(tracevp);
+	tracevp = ktr_get_tracevp(p, true);
 	/* text vnode */
 	textvp = p->p_textvp;
 	if (textvp != NULL)
 		vrefact(textvp);
 	/* Controlling tty. */
 	cttyvp = NULL;
 	if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
 		cttyvp = p->p_pgrp->pg_session->s_ttyvp;
 		if (cttyvp != NULL)
 			vrefact(cttyvp);
 	}
 	fdp = fdhold(p);
 	pdp = pdhold(p);
 	PROC_UNLOCK(p);
 	efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
 	efbuf->fdp = NULL;
 	efbuf->pdp = NULL;
 	efbuf->sb = sb;
 	efbuf->remainder = maxlen;
 	efbuf->flags = flags;
 	if (tracevp != NULL)
 		export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE, FREAD | FWRITE,
 		    efbuf);
 	if (textvp != NULL)
 		export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD, efbuf);
 	if (cttyvp != NULL)
 		export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY, FREAD | FWRITE,
 		    efbuf);
 	error = 0;
 	if (pdp == NULL || fdp == NULL)
 		goto fail;
 	efbuf->fdp = fdp;
 	efbuf->pdp = pdp;
 	PWDDESC_XLOCK(pdp);
 	pwd = pwd_hold_pwddesc(pdp);
 	if (pwd != NULL) {
 		/* working directory */
 		if (pwd->pwd_cdir != NULL) {
 			vrefact(pwd->pwd_cdir);
 			export_vnode_to_sb(pwd->pwd_cdir, KF_FD_TYPE_CWD,
 			    FREAD, efbuf);
 		}
 		/* root directory */
 		if (pwd->pwd_rdir != NULL) {
 			vrefact(pwd->pwd_rdir);
 			export_vnode_to_sb(pwd->pwd_rdir, KF_FD_TYPE_ROOT,
 			    FREAD, efbuf);
 		}
 		/* jail directory */
 		if (pwd->pwd_jdir != NULL) {
 			vrefact(pwd->pwd_jdir);
 			export_vnode_to_sb(pwd->pwd_jdir, KF_FD_TYPE_JAIL,
 			    FREAD, efbuf);
 		}
 	}
 	PWDDESC_XUNLOCK(pdp);
 	if (pwd != NULL)
 		pwd_drop(pwd);
 	FILEDESC_SLOCK(fdp);
 	lastfile = fdlastfile(fdp);
 	for (i = 0; refcount_load(&fdp->fd_refcnt) > 0 && i <= lastfile; i++) {
 		if ((fp = fdp->fd_ofiles[i].fde_file) == NULL)
 			continue;
 #ifdef CAPABILITIES
 		rights = *cap_rights(fdp, i);
 #else /* !CAPABILITIES */
 		rights = cap_no_rights;
 #endif
 		/*
 		 * Create sysctl entry.  It is OK to drop the filedesc
 		 * lock inside of export_file_to_sb() as we will
 		 * re-validate and re-evaluate its properties when the
 		 * loop continues.
 		 */
 		error = export_file_to_sb(fp, i, &rights, efbuf);
 		if (error != 0 || efbuf->remainder == 0)
 			break;
 	}
 	FILEDESC_SUNLOCK(fdp);
 fail:
 	if (fdp != NULL)
 		fddrop(fdp);
 	if (pdp != NULL)
 		pddrop(pdp);
 	free(efbuf, M_TEMP);
 	return (error);
 }
 
 #define FILEDESC_SBUF_SIZE	(sizeof(struct kinfo_file) * 5)
 
 /*
  * Get per-process file descriptors for use by procstat(1), et al.
  */
 static int
 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
 {
 	struct sbuf sb;
 	struct proc *p;
 	ssize_t maxlen;
 	int error, error2, *name;
 
 	name = (int *)arg1;
 
 	sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0) {
 		sbuf_delete(&sb);
 		return (error);
 	}
 	maxlen = req->oldptr != NULL ? req->oldlen : -1;
 	error = kern_proc_filedesc_out(p, &sb, maxlen,
 	    KERN_FILEDESC_PACK_KINFO);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 #ifdef COMPAT_FREEBSD7
 #ifdef KINFO_OFILE_SIZE
 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
 #endif
 
 static void
 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
 {
 
 	okif->kf_structsize = sizeof(*okif);
 	okif->kf_type = kif->kf_type;
 	okif->kf_fd = kif->kf_fd;
 	okif->kf_ref_count = kif->kf_ref_count;
 	okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
 	    KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
 	    KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
 	okif->kf_offset = kif->kf_offset;
 	if (kif->kf_type == KF_TYPE_VNODE)
 		okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
 	else
 		okif->kf_vnode_type = KF_VTYPE_VNON;
 	strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
 	if (kif->kf_type == KF_TYPE_SOCKET) {
 		okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
 		okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
 		okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
 		okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
 		okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
 	} else {
 		okif->kf_sa_local.ss_family = AF_UNSPEC;
 		okif->kf_sa_peer.ss_family = AF_UNSPEC;
 	}
 }
 
 static int
 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
     struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
 {
 	int error;
 
 	vrefact(vp);
 	PWDDESC_XUNLOCK(pdp);
 	export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
 	kinfo_to_okinfo(kif, okif);
 	error = SYSCTL_OUT(req, okif, sizeof(*okif));
 	PWDDESC_XLOCK(pdp);
 	return (error);
 }
 
 /*
  * Get per-process file descriptors for use by procstat(1), et al.
  */
 static int
 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
 {
 	struct kinfo_ofile *okif;
 	struct kinfo_file *kif;
 	struct filedesc *fdp;
 	struct pwddesc *pdp;
 	struct pwd *pwd;
 	int error, i, lastfile, *name;
 	struct file *fp;
 	struct proc *p;
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0)
 		return (error);
 	fdp = fdhold(p);
 	if (fdp != NULL)
 		pdp = pdhold(p);
 	PROC_UNLOCK(p);
 	if (fdp == NULL || pdp == NULL) {
 		if (fdp != NULL)
 			fddrop(fdp);
 		return (ENOENT);
 	}
 	kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
 	okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
 	PWDDESC_XLOCK(pdp);
 	pwd = pwd_hold_pwddesc(pdp);
 	if (pwd != NULL) {
 		if (pwd->pwd_cdir != NULL)
 			export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
 			    okif, pdp, req);
 		if (pwd->pwd_rdir != NULL)
 			export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
 			    okif, pdp, req);
 		if (pwd->pwd_jdir != NULL)
 			export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
 			    okif, pdp, req);
 	}
 	PWDDESC_XUNLOCK(pdp);
 	if (pwd != NULL)
 		pwd_drop(pwd);
 	FILEDESC_SLOCK(fdp);
 	lastfile = fdlastfile(fdp);
 	for (i = 0; refcount_load(&fdp->fd_refcnt) > 0 && i <= lastfile; i++) {
 		if ((fp = fdp->fd_ofiles[i].fde_file) == NULL)
 			continue;
 		export_file_to_kinfo(fp, i, NULL, kif, fdp,
 		    KERN_FILEDESC_PACK_KINFO);
 		FILEDESC_SUNLOCK(fdp);
 		kinfo_to_okinfo(kif, okif);
 		error = SYSCTL_OUT(req, okif, sizeof(*okif));
 		FILEDESC_SLOCK(fdp);
 		if (error)
 			break;
 	}
 	FILEDESC_SUNLOCK(fdp);
 	fddrop(fdp);
 	pddrop(pdp);
 	free(kif, M_TEMP);
 	free(okif, M_TEMP);
 	return (0);
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
     CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
     "Process ofiledesc entries");
 #endif	/* COMPAT_FREEBSD7 */
 
 int
 vntype_to_kinfo(int vtype)
 {
 	struct {
 		int	vtype;
 		int	kf_vtype;
 	} vtypes_table[] = {
 		{ VBAD, KF_VTYPE_VBAD },
 		{ VBLK, KF_VTYPE_VBLK },
 		{ VCHR, KF_VTYPE_VCHR },
 		{ VDIR, KF_VTYPE_VDIR },
 		{ VFIFO, KF_VTYPE_VFIFO },
 		{ VLNK, KF_VTYPE_VLNK },
 		{ VNON, KF_VTYPE_VNON },
 		{ VREG, KF_VTYPE_VREG },
 		{ VSOCK, KF_VTYPE_VSOCK }
 	};
 	unsigned int i;
 
 	/*
 	 * Perform vtype translation.
 	 */
 	for (i = 0; i < nitems(vtypes_table); i++)
 		if (vtypes_table[i].vtype == vtype)
 			return (vtypes_table[i].kf_vtype);
 
 	return (KF_VTYPE_UNKNOWN);
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
     CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
     "Process filedesc entries");
 
 /*
  * Store a process current working directory information to sbuf.
  *
  * Takes a locked proc as argument, and returns with the proc unlocked.
  */
 int
 kern_proc_cwd_out(struct proc *p,  struct sbuf *sb, ssize_t maxlen)
 {
 	struct pwddesc *pdp;
 	struct pwd *pwd;
 	struct export_fd_buf *efbuf;
 	struct vnode *cdir;
 	int error;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	pdp = pdhold(p);
 	PROC_UNLOCK(p);
 	if (pdp == NULL)
 		return (EINVAL);
 
 	efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
 	efbuf->pdp = pdp;
 	efbuf->sb = sb;
 	efbuf->remainder = maxlen;
 
 	PWDDESC_XLOCK(pdp);
 	pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
 	cdir = pwd->pwd_cdir;
 	if (cdir == NULL) {
 		error = EINVAL;
 	} else {
 		vrefact(cdir);
 		error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
 	}
 	PWDDESC_XUNLOCK(pdp);
 	pddrop(pdp);
 	free(efbuf, M_TEMP);
 	return (error);
 }
 
 /*
  * Get per-process current working directory.
  */
 static int
 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
 {
 	struct sbuf sb;
 	struct proc *p;
 	ssize_t maxlen;
 	int error, error2, *name;
 
 	name = (int *)arg1;
 
 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0) {
 		sbuf_delete(&sb);
 		return (error);
 	}
 	maxlen = req->oldptr != NULL ? req->oldlen : -1;
 	error = kern_proc_cwd_out(p, &sb, maxlen);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
     sysctl_kern_proc_cwd, "Process current working directory");
 
 #ifdef DDB
 /*
  * For the purposes of debugging, generate a human-readable string for the
  * file type.
  */
 static const char *
 file_type_to_name(short type)
 {
 
 	switch (type) {
 	case 0:
 		return ("zero");
 	case DTYPE_VNODE:
 		return ("vnode");
 	case DTYPE_SOCKET:
 		return ("socket");
 	case DTYPE_PIPE:
 		return ("pipe");
 	case DTYPE_FIFO:
 		return ("fifo");
 	case DTYPE_KQUEUE:
 		return ("kqueue");
 	case DTYPE_CRYPTO:
 		return ("crypto");
 	case DTYPE_MQUEUE:
 		return ("mqueue");
 	case DTYPE_SHM:
 		return ("shm");
 	case DTYPE_SEM:
 		return ("ksem");
 	case DTYPE_PTS:
 		return ("pts");
 	case DTYPE_DEV:
 		return ("dev");
 	case DTYPE_PROCDESC:
 		return ("proc");
 	case DTYPE_EVENTFD:
 		return ("eventfd");
 	case DTYPE_LINUXTFD:
 		return ("ltimer");
 	default:
 		return ("unkn");
 	}
 }
 
 /*
  * For the purposes of debugging, identify a process (if any, perhaps one of
  * many) that references the passed file in its file descriptor array. Return
  * NULL if none.
  */
 static struct proc *
 file_to_first_proc(struct file *fp)
 {
 	struct filedesc *fdp;
 	struct proc *p;
 	int n;
 
 	FOREACH_PROC_IN_SYSTEM(p) {
 		if (p->p_state == PRS_NEW)
 			continue;
 		fdp = p->p_fd;
 		if (fdp == NULL)
 			continue;
 		for (n = 0; n < fdp->fd_nfiles; n++) {
 			if (fp == fdp->fd_ofiles[n].fde_file)
 				return (p);
 		}
 	}
 	return (NULL);
 }
 
 static void
 db_print_file(struct file *fp, int header)
 {
 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
 	struct proc *p;
 
 	if (header)
 		db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
 		    XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
 		    "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
 		    "FCmd");
 	p = file_to_first_proc(fp);
 	db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
 	    fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
 	    fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
 	    p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
 
 #undef XPTRWIDTH
 }
 
 DB_SHOW_COMMAND(file, db_show_file)
 {
 	struct file *fp;
 
 	if (!have_addr) {
 		db_printf("usage: show file <addr>\n");
 		return;
 	}
 	fp = (struct file *)addr;
 	db_print_file(fp, 1);
 }
 
 DB_SHOW_COMMAND(files, db_show_files)
 {
 	struct filedesc *fdp;
 	struct file *fp;
 	struct proc *p;
 	int header;
 	int n;
 
 	header = 1;
 	FOREACH_PROC_IN_SYSTEM(p) {
 		if (p->p_state == PRS_NEW)
 			continue;
 		if ((fdp = p->p_fd) == NULL)
 			continue;
 		for (n = 0; n < fdp->fd_nfiles; ++n) {
 			if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
 				continue;
 			db_print_file(fp, header);
 			header = 0;
 		}
 	}
 }
 #endif
 
 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc, CTLFLAG_RW,
     &maxfilesperproc, 0, "Maximum files allowed open per process");
 
 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RW,
     &maxfiles, 0, "Maximum number of files");
 
 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
     &openfiles, 0, "System-wide number of open files");
 
 /* ARGSUSED*/
 static void
 filelistinit(void *dummy)
 {
 
 	file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
 	pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
 	/*
 	 * XXXMJG this is a temporary hack due to boot ordering issues against
 	 * the vnode zone.
 	 */
 	vfs_smr = uma_zone_get_smr(pwd_zone);
 	mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
 }
 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
 
 /*-------------------------------------------------------------------*/
 
 static int
 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
     int flags, struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 static int
 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (0);
 }
 
 static int
 badfo_kqfilter(struct file *fp, struct knote *kn)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_close(struct file *fp, struct thread *td)
 {
 
 	return (0);
 }
 
 static int
 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
     struct thread *td)
 {
 
 	return (EBADF);
 }
 
 static int
 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
 {
 
 	return (0);
 }
 
 struct fileops badfileops = {
 	.fo_read = badfo_readwrite,
 	.fo_write = badfo_readwrite,
 	.fo_truncate = badfo_truncate,
 	.fo_ioctl = badfo_ioctl,
 	.fo_poll = badfo_poll,
 	.fo_kqfilter = badfo_kqfilter,
 	.fo_stat = badfo_stat,
 	.fo_close = badfo_close,
 	.fo_chmod = badfo_chmod,
 	.fo_chown = badfo_chown,
 	.fo_sendfile = badfo_sendfile,
 	.fo_fill_kinfo = badfo_fill_kinfo,
 };
 
 static int
 path_poll(struct file *fp, int events, struct ucred *active_cred,
     struct thread *td)
 {
 	return (POLLNVAL);
 }
 
 static int
 path_close(struct file *fp, struct thread *td)
 {
 	MPASS(fp->f_type == DTYPE_VNODE);
 	fp->f_ops = &badfileops;
 	vdrop(fp->f_vnode);
 	return (0);
 }
 
 struct fileops path_fileops = {
 	.fo_read = badfo_readwrite,
 	.fo_write = badfo_readwrite,
 	.fo_truncate = badfo_truncate,
 	.fo_ioctl = badfo_ioctl,
 	.fo_poll = path_poll,
 	.fo_kqfilter = vn_kqfilter_opath,
 	.fo_stat = vn_statfile,
 	.fo_close = path_close,
 	.fo_chmod = badfo_chmod,
 	.fo_chown = badfo_chown,
 	.fo_sendfile = badfo_sendfile,
 	.fo_fill_kinfo = vn_fill_kinfo,
 	.fo_flags = DFLAG_PASSABLE,
 };
 
 int
 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
     int flags, struct thread *td)
 {
 
 	return (EOPNOTSUPP);
 }
 
 int
 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_ioctl(struct file *fp, u_long com, void *data,
     struct ucred *active_cred, struct thread *td)
 {
 
 	return (ENOTTY);
 }
 
 int
 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (poll_no_poll(events));
 }
 
 int
 invfo_kqfilter(struct file *fp, struct knote *kn)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 int
 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
     struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
     struct thread *td)
 {
 
 	return (EINVAL);
 }
 
 /*-------------------------------------------------------------------*/
 
 /*
  * File Descriptor pseudo-device driver (/dev/fd/).
  *
  * Opening minor device N dup()s the file (if any) connected to file
  * descriptor N belonging to the calling process.  Note that this driver
  * consists of only the ``open()'' routine, because all subsequent
  * references to this file will be direct to the other driver.
  *
  * XXX: we could give this one a cloning event handler if necessary.
  */
 
 /* ARGSUSED */
 static int
 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
 {
 
 	/*
 	 * XXX Kludge: set curthread->td_dupfd to contain the value of the
 	 * the file descriptor being sought for duplication. The error
 	 * return ensures that the vnode for this device will be released
 	 * by vn_open. Open will detect this special error and take the
 	 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
 	 * will simply report the error.
 	 */
 	td->td_dupfd = dev2unit(dev);
 	return (ENODEV);
 }
 
 static struct cdevsw fildesc_cdevsw = {
 	.d_version =	D_VERSION,
 	.d_open =	fdopen,
 	.d_name =	"FD",
 };
 
 static void
 fildesc_drvinit(void *unused)
 {
 	struct cdev *dev;
 
 	dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
 	    UID_ROOT, GID_WHEEL, 0666, "fd/0");
 	make_dev_alias(dev, "stdin");
 	dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
 	    UID_ROOT, GID_WHEEL, 0666, "fd/1");
 	make_dev_alias(dev, "stdout");
 	dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
 	    UID_ROOT, GID_WHEEL, 0666, "fd/2");
 	make_dev_alias(dev, "stderr");
 }
 
 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
diff --git a/sys/kern/kern_exec.c b/sys/kern/kern_exec.c
index 3413a5d024d4..2936e246f706 100644
--- a/sys/kern/kern_exec.c
+++ b/sys/kern/kern_exec.c
@@ -1,1874 +1,1868 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 1993, David Greenman
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_capsicum.h"
 #include "opt_hwpmc_hooks.h"
 #include "opt_ktrace.h"
 #include "opt_vm.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/acct.h>
 #include <sys/capsicum.h>
 #include <sys/eventhandler.h>
 #include <sys/exec.h>
 #include <sys/fcntl.h>
 #include <sys/filedesc.h>
 #include <sys/imgact.h>
 #include <sys/imgact_elf.h>
 #include <sys/kernel.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mman.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/namei.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/ptrace.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sched.h>
 #include <sys/sdt.h>
 #include <sys/sf_buf.h>
 #include <sys/shm.h>
 #include <sys/signalvar.h>
 #include <sys/smp.h>
 #include <sys/stat.h>
 #include <sys/syscallsubr.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/sysproto.h>
 #include <sys/timers.h>
 #include <sys/umtx.h>
 #include <sys/vnode.h>
 #include <sys/wait.h>
 #ifdef KTRACE
 #include <sys/ktrace.h>
 #endif
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/pmap.h>
 #include <vm/vm_page.h>
 #include <vm/vm_map.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_object.h>
 #include <vm/vm_pager.h>
 
 #ifdef	HWPMC_HOOKS
 #include <sys/pmckern.h>
 #endif
 
 #include <machine/reg.h>
 
 #include <security/audit/audit.h>
 #include <security/mac/mac_framework.h>
 
 #ifdef KDTRACE_HOOKS
 #include <sys/dtrace_bsd.h>
 dtrace_execexit_func_t	dtrace_fasttrap_exec;
 #endif
 
 SDT_PROVIDER_DECLARE(proc);
 SDT_PROBE_DEFINE1(proc, , , exec, "char *");
 SDT_PROBE_DEFINE1(proc, , , exec__failure, "int");
 SDT_PROBE_DEFINE1(proc, , , exec__success, "char *");
 
 MALLOC_DEFINE(M_PARGS, "proc-args", "Process arguments");
 
 int coredump_pack_fileinfo = 1;
 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_fileinfo, CTLFLAG_RWTUN,
     &coredump_pack_fileinfo, 0,
     "Enable file path packing in 'procstat -f' coredump notes");
 
 int coredump_pack_vmmapinfo = 1;
 SYSCTL_INT(_kern, OID_AUTO, coredump_pack_vmmapinfo, CTLFLAG_RWTUN,
     &coredump_pack_vmmapinfo, 0,
     "Enable file path packing in 'procstat -v' coredump notes");
 
 static int sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS);
 static int sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS);
 static int sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS);
 static int do_execve(struct thread *td, struct image_args *args,
     struct mac *mac_p, struct vmspace *oldvmspace);
 
 /* XXX This should be vm_size_t. */
 SYSCTL_PROC(_kern, KERN_PS_STRINGS, ps_strings, CTLTYPE_ULONG|CTLFLAG_RD|
     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_ps_strings, "LU",
     "Location of process' ps_strings structure");
 
 /* XXX This should be vm_size_t. */
 SYSCTL_PROC(_kern, KERN_USRSTACK, usrstack, CTLTYPE_ULONG|CTLFLAG_RD|
     CTLFLAG_CAPRD|CTLFLAG_MPSAFE, NULL, 0, sysctl_kern_usrstack, "LU",
     "Top of process stack");
 
 SYSCTL_PROC(_kern, OID_AUTO, stackprot, CTLTYPE_INT|CTLFLAG_RD|CTLFLAG_MPSAFE,
     NULL, 0, sysctl_kern_stackprot, "I",
     "Stack memory permissions");
 
 u_long ps_arg_cache_limit = PAGE_SIZE / 16;
 SYSCTL_ULONG(_kern, OID_AUTO, ps_arg_cache_limit, CTLFLAG_RW, 
     &ps_arg_cache_limit, 0,
     "Process' command line characters cache limit");
 
 static int disallow_high_osrel;
 SYSCTL_INT(_kern, OID_AUTO, disallow_high_osrel, CTLFLAG_RW,
     &disallow_high_osrel, 0,
     "Disallow execution of binaries built for higher version of the world");
 
 static int map_at_zero = 0;
 SYSCTL_INT(_security_bsd, OID_AUTO, map_at_zero, CTLFLAG_RWTUN, &map_at_zero, 0,
     "Permit processes to map an object at virtual address 0.");
 
 static int
 sysctl_kern_ps_strings(SYSCTL_HANDLER_ARGS)
 {
 	struct proc *p;
 	int error;
 
 	p = curproc;
 #ifdef SCTL_MASK32
 	if (req->flags & SCTL_MASK32) {
 		unsigned int val;
 		val = (unsigned int)p->p_sysent->sv_psstrings;
 		error = SYSCTL_OUT(req, &val, sizeof(val));
 	} else
 #endif
 		error = SYSCTL_OUT(req, &p->p_sysent->sv_psstrings,
 		   sizeof(p->p_sysent->sv_psstrings));
 	return error;
 }
 
 static int
 sysctl_kern_usrstack(SYSCTL_HANDLER_ARGS)
 {
 	struct proc *p;
 	int error;
 
 	p = curproc;
 #ifdef SCTL_MASK32
 	if (req->flags & SCTL_MASK32) {
 		unsigned int val;
 		val = (unsigned int)p->p_sysent->sv_usrstack;
 		error = SYSCTL_OUT(req, &val, sizeof(val));
 	} else
 #endif
 		error = SYSCTL_OUT(req, &p->p_sysent->sv_usrstack,
 		    sizeof(p->p_sysent->sv_usrstack));
 	return error;
 }
 
 static int
 sysctl_kern_stackprot(SYSCTL_HANDLER_ARGS)
 {
 	struct proc *p;
 
 	p = curproc;
 	return (SYSCTL_OUT(req, &p->p_sysent->sv_stackprot,
 	    sizeof(p->p_sysent->sv_stackprot)));
 }
 
 /*
  * Each of the items is a pointer to a `const struct execsw', hence the
  * double pointer here.
  */
 static const struct execsw **execsw;
 
 #ifndef _SYS_SYSPROTO_H_
 struct execve_args {
 	char    *fname; 
 	char    **argv;
 	char    **envv; 
 };
 #endif
 
 int
 sys_execve(struct thread *td, struct execve_args *uap)
 {
 	struct image_args args;
 	struct vmspace *oldvmspace;
 	int error;
 
 	error = pre_execve(td, &oldvmspace);
 	if (error != 0)
 		return (error);
 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
 	    uap->argv, uap->envv);
 	if (error == 0)
 		error = kern_execve(td, &args, NULL, oldvmspace);
 	post_execve(td, error, oldvmspace);
 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct fexecve_args {
 	int	fd;
 	char	**argv;
 	char	**envv;
 };
 #endif
 int
 sys_fexecve(struct thread *td, struct fexecve_args *uap)
 {
 	struct image_args args;
 	struct vmspace *oldvmspace;
 	int error;
 
 	error = pre_execve(td, &oldvmspace);
 	if (error != 0)
 		return (error);
 	error = exec_copyin_args(&args, NULL, UIO_SYSSPACE,
 	    uap->argv, uap->envv);
 	if (error == 0) {
 		args.fd = uap->fd;
 		error = kern_execve(td, &args, NULL, oldvmspace);
 	}
 	post_execve(td, error, oldvmspace);
 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
 	return (error);
 }
 
 #ifndef _SYS_SYSPROTO_H_
 struct __mac_execve_args {
 	char	*fname;
 	char	**argv;
 	char	**envv;
 	struct mac	*mac_p;
 };
 #endif
 
 int
 sys___mac_execve(struct thread *td, struct __mac_execve_args *uap)
 {
 #ifdef MAC
 	struct image_args args;
 	struct vmspace *oldvmspace;
 	int error;
 
 	error = pre_execve(td, &oldvmspace);
 	if (error != 0)
 		return (error);
 	error = exec_copyin_args(&args, uap->fname, UIO_USERSPACE,
 	    uap->argv, uap->envv);
 	if (error == 0)
 		error = kern_execve(td, &args, uap->mac_p, oldvmspace);
 	post_execve(td, error, oldvmspace);
 	AUDIT_SYSCALL_EXIT(error == EJUSTRETURN ? 0 : error, td);
 	return (error);
 #else
 	return (ENOSYS);
 #endif
 }
 
 int
 pre_execve(struct thread *td, struct vmspace **oldvmspace)
 {
 	struct proc *p;
 	int error;
 
 	KASSERT(td == curthread, ("non-current thread %p", td));
 	error = 0;
 	p = td->td_proc;
 	if ((p->p_flag & P_HADTHREADS) != 0) {
 		PROC_LOCK(p);
 		if (thread_single(p, SINGLE_BOUNDARY) != 0)
 			error = ERESTART;
 		PROC_UNLOCK(p);
 	}
 	KASSERT(error != 0 || (td->td_pflags & TDP_EXECVMSPC) == 0,
 	    ("nested execve"));
 	*oldvmspace = p->p_vmspace;
 	return (error);
 }
 
 void
 post_execve(struct thread *td, int error, struct vmspace *oldvmspace)
 {
 	struct proc *p;
 
 	KASSERT(td == curthread, ("non-current thread %p", td));
 	p = td->td_proc;
 	if ((p->p_flag & P_HADTHREADS) != 0) {
 		PROC_LOCK(p);
 		/*
 		 * If success, we upgrade to SINGLE_EXIT state to
 		 * force other threads to suicide.
 		 */
 		if (error == EJUSTRETURN)
 			thread_single(p, SINGLE_EXIT);
 		else
 			thread_single_end(p, SINGLE_BOUNDARY);
 		PROC_UNLOCK(p);
 	}
 	exec_cleanup(td, oldvmspace);
 }
 
 /*
  * kern_execve() has the astonishing property of not always returning to
  * the caller.  If sufficiently bad things happen during the call to
  * do_execve(), it can end up calling exit1(); as a result, callers must
  * avoid doing anything which they might need to undo (e.g., allocating
  * memory).
  */
 int
 kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
     struct vmspace *oldvmspace)
 {
 
 	AUDIT_ARG_ARGV(args->begin_argv, args->argc,
 	    exec_args_get_begin_envv(args) - args->begin_argv);
 	AUDIT_ARG_ENVV(exec_args_get_begin_envv(args), args->envc,
 	    args->endp - exec_args_get_begin_envv(args));
 	return (do_execve(td, args, mac_p, oldvmspace));
 }
 
 static void
 execve_nosetid(struct image_params *imgp)
 {
 	imgp->credential_setid = false;
 	if (imgp->newcred != NULL) {
 		crfree(imgp->newcred);
 		imgp->newcred = NULL;
 	}
 }
 
 /*
  * In-kernel implementation of execve().  All arguments are assumed to be
  * userspace pointers from the passed thread.
  */
 static int
 do_execve(struct thread *td, struct image_args *args, struct mac *mac_p,
     struct vmspace *oldvmspace)
 {
 	struct proc *p = td->td_proc;
 	struct nameidata nd;
 	struct ucred *oldcred;
 	struct uidinfo *euip = NULL;
 	uintptr_t stack_base;
 	struct image_params image_params, *imgp;
 	struct vattr attr;
 	int (*img_first)(struct image_params *);
 	struct pargs *oldargs = NULL, *newargs = NULL;
 	struct sigacts *oldsigacts = NULL, *newsigacts = NULL;
 #ifdef KTRACE
-	struct vnode *tracevp = NULL;
-	struct ucred *tracecred = NULL;
+	struct ktr_io_params *kiop;
 #endif
 	struct vnode *oldtextvp = NULL, *newtextvp;
 	int credential_changing;
 #ifdef MAC
 	struct label *interpvplabel = NULL;
 	int will_transition;
 #endif
 #ifdef HWPMC_HOOKS
 	struct pmckern_procexec pe;
 #endif
 	int error, i, orig_osrel;
 	uint32_t orig_fctl0;
 	static const char fexecv_proc_title[] = "(fexecv)";
 
 	imgp = &image_params;
+	kiop = NULL;
 
 	/*
 	 * Lock the process and set the P_INEXEC flag to indicate that
 	 * it should be left alone until we're done here.  This is
 	 * necessary to avoid race conditions - e.g. in ptrace() -
 	 * that might allow a local user to illicitly obtain elevated
 	 * privileges.
 	 */
 	PROC_LOCK(p);
 	KASSERT((p->p_flag & P_INEXEC) == 0,
 	    ("%s(): process already has P_INEXEC flag", __func__));
 	p->p_flag |= P_INEXEC;
 	PROC_UNLOCK(p);
 
 	/*
 	 * Initialize part of the common data
 	 */
 	bzero(imgp, sizeof(*imgp));
 	imgp->proc = p;
 	imgp->attr = &attr;
 	imgp->args = args;
 	oldcred = p->p_ucred;
 	orig_osrel = p->p_osrel;
 	orig_fctl0 = p->p_fctl0;
 
 #ifdef MAC
 	error = mac_execve_enter(imgp, mac_p);
 	if (error)
 		goto exec_fail;
 #endif
 
 	/*
 	 * Translate the file name. namei() returns a vnode pointer
 	 *	in ni_vp among other things.
 	 *
 	 * XXXAUDIT: It would be desirable to also audit the name of the
 	 * interpreter if this is an interpreted binary.
 	 */
 	if (args->fname != NULL) {
 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
 		    SAVENAME | AUDITVNODE1, UIO_SYSSPACE, args->fname, td);
 	}
 
 	SDT_PROBE1(proc, , , exec, args->fname);
 
 interpret:
 	if (args->fname != NULL) {
 #ifdef CAPABILITY_MODE
 		/*
 		 * While capability mode can't reach this point via direct
 		 * path arguments to execve(), we also don't allow
 		 * interpreters to be used in capability mode (for now).
 		 * Catch indirect lookups and return a permissions error.
 		 */
 		if (IN_CAPABILITY_MODE(td)) {
 			error = ECAPMODE;
 			goto exec_fail;
 		}
 #endif
 		error = namei(&nd);
 		if (error)
 			goto exec_fail;
 
 		newtextvp = nd.ni_vp;
 		imgp->vp = newtextvp;
 	} else {
 		AUDIT_ARG_FD(args->fd);
 		/*
 		 * Descriptors opened only with O_EXEC or O_RDONLY are allowed.
 		 */
 		error = fgetvp_exec(td, args->fd, &cap_fexecve_rights, &newtextvp);
 		if (error)
 			goto exec_fail;
 		vn_lock(newtextvp, LK_SHARED | LK_RETRY);
 		AUDIT_ARG_VNODE1(newtextvp);
 		imgp->vp = newtextvp;
 	}
 
 	/*
 	 * Check file permissions.  Also 'opens' file and sets its vnode to
 	 * text mode.
 	 */
 	error = exec_check_permissions(imgp);
 	if (error)
 		goto exec_fail_dealloc;
 
 	imgp->object = imgp->vp->v_object;
 	if (imgp->object != NULL)
 		vm_object_reference(imgp->object);
 
 	error = exec_map_first_page(imgp);
 	if (error)
 		goto exec_fail_dealloc;
 
 	imgp->proc->p_osrel = 0;
 	imgp->proc->p_fctl0 = 0;
 
 	/*
 	 * Implement image setuid/setgid.
 	 *
 	 * Determine new credentials before attempting image activators
 	 * so that it can be used by process_exec handlers to determine
 	 * credential/setid changes.
 	 *
 	 * Don't honor setuid/setgid if the filesystem prohibits it or if
 	 * the process is being traced.
 	 *
 	 * We disable setuid/setgid/etc in capability mode on the basis
 	 * that most setugid applications are not written with that
 	 * environment in mind, and will therefore almost certainly operate
 	 * incorrectly. In principle there's no reason that setugid
 	 * applications might not be useful in capability mode, so we may want
 	 * to reconsider this conservative design choice in the future.
 	 *
 	 * XXXMAC: For the time being, use NOSUID to also prohibit
 	 * transitions on the file system.
 	 */
 	credential_changing = 0;
 	credential_changing |= (attr.va_mode & S_ISUID) &&
 	    oldcred->cr_uid != attr.va_uid;
 	credential_changing |= (attr.va_mode & S_ISGID) &&
 	    oldcred->cr_gid != attr.va_gid;
 #ifdef MAC
 	will_transition = mac_vnode_execve_will_transition(oldcred, imgp->vp,
 	    interpvplabel, imgp);
 	credential_changing |= will_transition;
 #endif
 
 	/* Don't inherit PROC_PDEATHSIG_CTL value if setuid/setgid. */
 	if (credential_changing)
 		imgp->proc->p_pdeathsig = 0;
 
 	if (credential_changing &&
 #ifdef CAPABILITY_MODE
 	    ((oldcred->cr_flags & CRED_FLAG_CAPMODE) == 0) &&
 #endif
 	    (imgp->vp->v_mount->mnt_flag & MNT_NOSUID) == 0 &&
 	    (p->p_flag & P_TRACED) == 0) {
 		imgp->credential_setid = true;
 		VOP_UNLOCK(imgp->vp);
 		imgp->newcred = crdup(oldcred);
 		if (attr.va_mode & S_ISUID) {
 			euip = uifind(attr.va_uid);
 			change_euid(imgp->newcred, euip);
 		}
 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 		if (attr.va_mode & S_ISGID)
 			change_egid(imgp->newcred, attr.va_gid);
 		/*
 		 * Implement correct POSIX saved-id behavior.
 		 *
 		 * XXXMAC: Note that the current logic will save the
 		 * uid and gid if a MAC domain transition occurs, even
 		 * though maybe it shouldn't.
 		 */
 		change_svuid(imgp->newcred, imgp->newcred->cr_uid);
 		change_svgid(imgp->newcred, imgp->newcred->cr_gid);
 	} else {
 		/*
 		 * Implement correct POSIX saved-id behavior.
 		 *
 		 * XXX: It's not clear that the existing behavior is
 		 * POSIX-compliant.  A number of sources indicate that the
 		 * saved uid/gid should only be updated if the new ruid is
 		 * not equal to the old ruid, or the new euid is not equal
 		 * to the old euid and the new euid is not equal to the old
 		 * ruid.  The FreeBSD code always updates the saved uid/gid.
 		 * Also, this code uses the new (replaced) euid and egid as
 		 * the source, which may or may not be the right ones to use.
 		 */
 		if (oldcred->cr_svuid != oldcred->cr_uid ||
 		    oldcred->cr_svgid != oldcred->cr_gid) {
 			VOP_UNLOCK(imgp->vp);
 			imgp->newcred = crdup(oldcred);
 			vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 			change_svuid(imgp->newcred, imgp->newcred->cr_uid);
 			change_svgid(imgp->newcred, imgp->newcred->cr_gid);
 		}
 	}
 	/* The new credentials are installed into the process later. */
 
 	/*
 	 * Do the best to calculate the full path to the image file.
 	 */
 	if (args->fname != NULL && args->fname[0] == '/')
 		imgp->execpath = args->fname;
 	else {
 		VOP_UNLOCK(imgp->vp);
 		if (vn_fullpath(imgp->vp, &imgp->execpath, &imgp->freepath) != 0)
 			imgp->execpath = args->fname;
 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 	}
 
 	/*
 	 *	If the current process has a special image activator it
 	 *	wants to try first, call it.   For example, emulating shell
 	 *	scripts differently.
 	 */
 	error = -1;
 	if ((img_first = imgp->proc->p_sysent->sv_imgact_try) != NULL)
 		error = img_first(imgp);
 
 	/*
 	 *	Loop through the list of image activators, calling each one.
 	 *	An activator returns -1 if there is no match, 0 on success,
 	 *	and an error otherwise.
 	 */
 	for (i = 0; error == -1 && execsw[i]; ++i) {
 		if (execsw[i]->ex_imgact == NULL ||
 		    execsw[i]->ex_imgact == img_first) {
 			continue;
 		}
 		error = (*execsw[i]->ex_imgact)(imgp);
 	}
 
 	if (error) {
 		if (error == -1)
 			error = ENOEXEC;
 		goto exec_fail_dealloc;
 	}
 
 	/*
 	 * Special interpreter operation, cleanup and loop up to try to
 	 * activate the interpreter.
 	 */
 	if (imgp->interpreted) {
 		exec_unmap_first_page(imgp);
 		/*
 		 * The text reference needs to be removed for scripts.
 		 * There is a short period before we determine that
 		 * something is a script where text reference is active.
 		 * The vnode lock is held over this entire period
 		 * so nothing should illegitimately be blocked.
 		 */
 		MPASS(imgp->textset);
 		VOP_UNSET_TEXT_CHECKED(newtextvp);
 		imgp->textset = false;
 		/* free name buffer and old vnode */
 		if (args->fname != NULL)
 			NDFREE(&nd, NDF_ONLY_PNBUF);
 #ifdef MAC
 		mac_execve_interpreter_enter(newtextvp, &interpvplabel);
 #endif
 		if (imgp->opened) {
 			VOP_CLOSE(newtextvp, FREAD, td->td_ucred, td);
 			imgp->opened = 0;
 		}
 		vput(newtextvp);
 		vm_object_deallocate(imgp->object);
 		imgp->object = NULL;
 		execve_nosetid(imgp);
 		imgp->execpath = NULL;
 		free(imgp->freepath, M_TEMP);
 		imgp->freepath = NULL;
 		/* set new name to that of the interpreter */
 		NDINIT(&nd, LOOKUP, ISOPEN | LOCKLEAF | LOCKSHARED | FOLLOW |
 		    SAVENAME, UIO_SYSSPACE, imgp->interpreter_name, td);
 		args->fname = imgp->interpreter_name;
 		goto interpret;
 	}
 
 	/*
 	 * NB: We unlock the vnode here because it is believed that none
 	 * of the sv_copyout_strings/sv_fixup operations require the vnode.
 	 */
 	VOP_UNLOCK(imgp->vp);
 
 	if (disallow_high_osrel &&
 	    P_OSREL_MAJOR(p->p_osrel) > P_OSREL_MAJOR(__FreeBSD_version)) {
 		error = ENOEXEC;
 		uprintf("Osrel %d for image %s too high\n", p->p_osrel,
 		    imgp->execpath != NULL ? imgp->execpath : "<unresolved>");
 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 		goto exec_fail_dealloc;
 	}
 
 	/* ABI enforces the use of Capsicum. Switch into capabilities mode. */
 	if (SV_PROC_FLAG(p, SV_CAPSICUM))
 		sys_cap_enter(td, NULL);
 
 	/*
 	 * Copy out strings (args and env) and initialize stack base.
 	 */
 	error = (*p->p_sysent->sv_copyout_strings)(imgp, &stack_base);
 	if (error != 0) {
 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 		goto exec_fail_dealloc;
 	}
 
 	/*
 	 * Stack setup.
 	 */
 	error = (*p->p_sysent->sv_fixup)(&stack_base, imgp);
 	if (error != 0) {
 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 		goto exec_fail_dealloc;
 	}
 
 	if (args->fdp != NULL) {
 		/* Install a brand new file descriptor table. */
 		fdinstall_remapped(td, args->fdp);
 		args->fdp = NULL;
 	} else {
 		/*
 		 * Keep on using the existing file descriptor table. For
 		 * security and other reasons, the file descriptor table
 		 * cannot be shared after an exec.
 		 */
 		fdunshare(td);
 		pdunshare(td);
 		/* close files on exec */
 		fdcloseexec(td);
 	}
 
 	/*
 	 * Malloc things before we need locks.
 	 */
 	i = exec_args_get_begin_envv(imgp->args) - imgp->args->begin_argv;
 	/* Cache arguments if they fit inside our allowance */
 	if (ps_arg_cache_limit >= i + sizeof(struct pargs)) {
 		newargs = pargs_alloc(i);
 		bcopy(imgp->args->begin_argv, newargs->ar_args, i);
 	}
 
 	/*
 	 * For security and other reasons, signal handlers cannot
 	 * be shared after an exec. The new process gets a copy of the old
 	 * handlers. In execsigs(), the new process will have its signals
 	 * reset.
 	 */
 	if (sigacts_shared(p->p_sigacts)) {
 		oldsigacts = p->p_sigacts;
 		newsigacts = sigacts_alloc();
 		sigacts_copy(newsigacts, oldsigacts);
 	}
 
 	vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 
 	PROC_LOCK(p);
 	if (oldsigacts)
 		p->p_sigacts = newsigacts;
 	/* Stop profiling */
 	stopprofclock(p);
 
 	/* reset caught signals */
 	execsigs(p);
 
 	/* name this process - nameiexec(p, ndp) */
 	bzero(p->p_comm, sizeof(p->p_comm));
 	if (args->fname)
 		bcopy(nd.ni_cnd.cn_nameptr, p->p_comm,
 		    min(nd.ni_cnd.cn_namelen, MAXCOMLEN));
 	else if (vn_commname(newtextvp, p->p_comm, sizeof(p->p_comm)) != 0)
 		bcopy(fexecv_proc_title, p->p_comm, sizeof(fexecv_proc_title));
 	bcopy(p->p_comm, td->td_name, sizeof(td->td_name));
 #ifdef KTR
 	sched_clear_tdname(td);
 #endif
 
 	/*
 	 * mark as execed, wakeup the process that vforked (if any) and tell
 	 * it that it now has its own resources back
 	 */
 	p->p_flag |= P_EXEC;
 	if ((p->p_flag2 & P2_NOTRACE_EXEC) == 0)
 		p->p_flag2 &= ~P2_NOTRACE;
 	if ((p->p_flag2 & P2_STKGAP_DISABLE_EXEC) == 0)
 		p->p_flag2 &= ~P2_STKGAP_DISABLE;
 	if (p->p_flag & P_PPWAIT) {
 		p->p_flag &= ~(P_PPWAIT | P_PPTRACE);
 		cv_broadcast(&p->p_pwait);
 		/* STOPs are no longer ignored, arrange for AST */
 		signotify(td);
 	}
 
 	if (imgp->sysent->sv_setid_allowed != NULL &&
 	    !(*imgp->sysent->sv_setid_allowed)(td, imgp))
 		execve_nosetid(imgp);
 
 	/*
 	 * Implement image setuid/setgid installation.
 	 */
 	if (imgp->credential_setid) {
 		/*
 		 * Turn off syscall tracing for set-id programs, except for
 		 * root.  Record any set-id flags first to make sure that
 		 * we do not regain any tracing during a possible block.
 		 */
 		setsugid(p);
+		kiop = NULL;
 
 #ifdef KTRACE
-		if (p->p_tracecred != NULL &&
-		    priv_check_cred(p->p_tracecred, PRIV_DEBUG_DIFFCRED))
-			ktrprocexec(p, &tracecred, &tracevp);
+		kiop = ktrprocexec(p);
 #endif
 		/*
 		 * Close any file descriptors 0..2 that reference procfs,
 		 * then make sure file descriptors 0..2 are in use.
 		 *
 		 * Both fdsetugidsafety() and fdcheckstd() may call functions
 		 * taking sleepable locks, so temporarily drop our locks.
 		 */
 		PROC_UNLOCK(p);
 		VOP_UNLOCK(imgp->vp);
 		fdsetugidsafety(td);
 		error = fdcheckstd(td);
 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 		if (error != 0)
 			goto exec_fail_dealloc;
 		PROC_LOCK(p);
 #ifdef MAC
 		if (will_transition) {
 			mac_vnode_execve_transition(oldcred, imgp->newcred,
 			    imgp->vp, interpvplabel, imgp);
 		}
 #endif
 	} else {
 		if (oldcred->cr_uid == oldcred->cr_ruid &&
 		    oldcred->cr_gid == oldcred->cr_rgid)
 			p->p_flag &= ~P_SUGID;
 	}
 	/*
 	 * Set the new credentials.
 	 */
 	if (imgp->newcred != NULL) {
 		proc_set_cred(p, imgp->newcred);
 		crfree(oldcred);
 		oldcred = NULL;
 	}
 
 	/*
 	 * Store the vp for use in procfs.  This vnode was referenced by namei
 	 * or fgetvp_exec.
 	 */
 	oldtextvp = p->p_textvp;
 	p->p_textvp = newtextvp;
 
 #ifdef KDTRACE_HOOKS
 	/*
 	 * Tell the DTrace fasttrap provider about the exec if it
 	 * has declared an interest.
 	 */
 	if (dtrace_fasttrap_exec)
 		dtrace_fasttrap_exec(p);
 #endif
 
 	/*
 	 * Notify others that we exec'd, and clear the P_INEXEC flag
 	 * as we're now a bona fide freshly-execed process.
 	 */
 	KNOTE_LOCKED(p->p_klist, NOTE_EXEC);
 	p->p_flag &= ~P_INEXEC;
 
 	/* clear "fork but no exec" flag, as we _are_ execing */
 	p->p_acflag &= ~AFORK;
 
 	/*
 	 * Free any previous argument cache and replace it with
 	 * the new argument cache, if any.
 	 */
 	oldargs = p->p_args;
 	p->p_args = newargs;
 	newargs = NULL;
 
 	PROC_UNLOCK(p);
 
 #ifdef	HWPMC_HOOKS
 	/*
 	 * Check if system-wide sampling is in effect or if the
 	 * current process is using PMCs.  If so, do exec() time
 	 * processing.  This processing needs to happen AFTER the
 	 * P_INEXEC flag is cleared.
 	 */
 	if (PMC_SYSTEM_SAMPLING_ACTIVE() || PMC_PROC_IS_USING_PMCS(p)) {
 		VOP_UNLOCK(imgp->vp);
 		pe.pm_credentialschanged = credential_changing;
 		pe.pm_entryaddr = imgp->entry_addr;
 
 		PMC_CALL_HOOK_X(td, PMC_FN_PROCESS_EXEC, (void *) &pe);
 		vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
 	}
 #endif
 
 	/* Set values passed into the program in registers. */
 	(*p->p_sysent->sv_setregs)(td, imgp, stack_base);
 
 	VOP_MMAPPED(imgp->vp);
 
 	SDT_PROBE1(proc, , , exec__success, args->fname);
 
 exec_fail_dealloc:
 	if (error != 0) {
 		p->p_osrel = orig_osrel;
 		p->p_fctl0 = orig_fctl0;
 	}
 
 	if (imgp->firstpage != NULL)
 		exec_unmap_first_page(imgp);
 
 	if (imgp->vp != NULL) {
 		if (args->fname)
 			NDFREE(&nd, NDF_ONLY_PNBUF);
 		if (imgp->opened)
 			VOP_CLOSE(imgp->vp, FREAD, td->td_ucred, td);
 		if (imgp->textset)
 			VOP_UNSET_TEXT_CHECKED(imgp->vp);
 		if (error != 0)
 			vput(imgp->vp);
 		else
 			VOP_UNLOCK(imgp->vp);
 	}
 
 	if (imgp->object != NULL)
 		vm_object_deallocate(imgp->object);
 
 	free(imgp->freepath, M_TEMP);
 
 	if (error == 0) {
 		if (p->p_ptevents & PTRACE_EXEC) {
 			PROC_LOCK(p);
 			if (p->p_ptevents & PTRACE_EXEC)
 				td->td_dbgflags |= TDB_EXEC;
 			PROC_UNLOCK(p);
 		}
 	} else {
 exec_fail:
 		/* we're done here, clear P_INEXEC */
 		PROC_LOCK(p);
 		p->p_flag &= ~P_INEXEC;
 		PROC_UNLOCK(p);
 
 		SDT_PROBE1(proc, , , exec__failure, error);
 	}
 
 	if (imgp->newcred != NULL && oldcred != NULL)
 		crfree(imgp->newcred);
 
 #ifdef MAC
 	mac_execve_exit(imgp);
 	mac_execve_interpreter_exit(interpvplabel);
 #endif
 	exec_free_args(args);
 
 	/*
 	 * Handle deferred decrement of ref counts.
 	 */
 	if (oldtextvp != NULL)
 		vrele(oldtextvp);
-#ifdef KTRACE
-	if (tracevp != NULL)
-		vrele(tracevp);
-	if (tracecred != NULL)
-		crfree(tracecred);
-#endif
+	ktr_io_params_free(kiop);
 	pargs_drop(oldargs);
 	pargs_drop(newargs);
 	if (oldsigacts != NULL)
 		sigacts_free(oldsigacts);
 	if (euip != NULL)
 		uifree(euip);
 
 	if (error && imgp->vmspace_destroyed) {
 		/* sorry, no more process anymore. exit gracefully */
 		exec_cleanup(td, oldvmspace);
 		exit1(td, 0, SIGABRT);
 		/* NOT REACHED */
 	}
 
 #ifdef KTRACE
 	if (error == 0)
 		ktrprocctor(p);
 #endif
 
 	/*
 	 * We don't want cpu_set_syscall_retval() to overwrite any of
 	 * the register values put in place by exec_setregs().
 	 * Implementations of cpu_set_syscall_retval() will leave
 	 * registers unmodified when returning EJUSTRETURN.
 	 */
 	return (error == 0 ? EJUSTRETURN : error);
 }
 
 void
 exec_cleanup(struct thread *td, struct vmspace *oldvmspace)
 {
 	if ((td->td_pflags & TDP_EXECVMSPC) != 0) {
 		KASSERT(td->td_proc->p_vmspace != oldvmspace,
 		    ("oldvmspace still used"));
 		vmspace_free(oldvmspace);
 		td->td_pflags &= ~TDP_EXECVMSPC;
 	}
 }
 
 int
 exec_map_first_page(struct image_params *imgp)
 {
 	vm_object_t object;
 	vm_page_t m;
 	int error;
 
 	if (imgp->firstpage != NULL)
 		exec_unmap_first_page(imgp);
 
 	object = imgp->vp->v_object;
 	if (object == NULL)
 		return (EACCES);
 #if VM_NRESERVLEVEL > 0
 	if ((object->flags & OBJ_COLORED) == 0) {
 		VM_OBJECT_WLOCK(object);
 		vm_object_color(object, 0);
 		VM_OBJECT_WUNLOCK(object);
 	}
 #endif
 	error = vm_page_grab_valid_unlocked(&m, object, 0,
 	    VM_ALLOC_COUNT(VM_INITIAL_PAGEIN) |
             VM_ALLOC_NORMAL | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED);
 
 	if (error != VM_PAGER_OK)
 		return (EIO);
 	imgp->firstpage = sf_buf_alloc(m, 0);
 	imgp->image_header = (char *)sf_buf_kva(imgp->firstpage);
 
 	return (0);
 }
 
 void
 exec_unmap_first_page(struct image_params *imgp)
 {
 	vm_page_t m;
 
 	if (imgp->firstpage != NULL) {
 		m = sf_buf_page(imgp->firstpage);
 		sf_buf_free(imgp->firstpage);
 		imgp->firstpage = NULL;
 		vm_page_unwire(m, PQ_ACTIVE);
 	}
 }
 
 /*
  * Destroy old address space, and allocate a new stack.
  *	The new stack is only sgrowsiz large because it is grown
  *	automatically on a page fault.
  */
 int
 exec_new_vmspace(struct image_params *imgp, struct sysentvec *sv)
 {
 	int error;
 	struct proc *p = imgp->proc;
 	struct vmspace *vmspace = p->p_vmspace;
 	struct thread *td = curthread;
 	vm_object_t obj;
 	struct rlimit rlim_stack;
 	vm_offset_t sv_minuser, stack_addr;
 	vm_map_t map;
 	vm_prot_t stack_prot;
 	u_long ssiz;
 
 	imgp->vmspace_destroyed = 1;
 	imgp->sysent = sv;
 
 	sigfastblock_clear(td);
 	umtx_exec(p);
 	itimers_exec(p);
 	if (sv->sv_onexec != NULL)
 		sv->sv_onexec(p, imgp);
 
 	EVENTHANDLER_DIRECT_INVOKE(process_exec, p, imgp);
 
 	/*
 	 * Blow away entire process VM, if address space not shared,
 	 * otherwise, create a new VM space so that other threads are
 	 * not disrupted
 	 */
 	map = &vmspace->vm_map;
 	if (map_at_zero)
 		sv_minuser = sv->sv_minuser;
 	else
 		sv_minuser = MAX(sv->sv_minuser, PAGE_SIZE);
 	if (refcount_load(&vmspace->vm_refcnt) == 1 &&
 	    vm_map_min(map) == sv_minuser &&
 	    vm_map_max(map) == sv->sv_maxuser &&
 	    cpu_exec_vmspace_reuse(p, map)) {
 		shmexit(vmspace);
 		pmap_remove_pages(vmspace_pmap(vmspace));
 		vm_map_remove(map, vm_map_min(map), vm_map_max(map));
 		/*
 		 * An exec terminates mlockall(MCL_FUTURE).
 		 * ASLR and W^X states must be re-evaluated.
 		 */
 		vm_map_lock(map);
 		vm_map_modflags(map, 0, MAP_WIREFUTURE | MAP_ASLR |
 		    MAP_ASLR_IGNSTART | MAP_WXORX);
 		vm_map_unlock(map);
 	} else {
 		error = vmspace_exec(p, sv_minuser, sv->sv_maxuser);
 		if (error)
 			return (error);
 		vmspace = p->p_vmspace;
 		map = &vmspace->vm_map;
 	}
 	map->flags |= imgp->map_flags;
 
 	/* Map a shared page */
 	obj = sv->sv_shared_page_obj;
 	if (obj != NULL) {
 		vm_object_reference(obj);
 		error = vm_map_fixed(map, obj, 0,
 		    sv->sv_shared_page_base, sv->sv_shared_page_len,
 		    VM_PROT_READ | VM_PROT_EXECUTE,
 		    VM_PROT_READ | VM_PROT_EXECUTE,
 		    MAP_INHERIT_SHARE | MAP_ACC_NO_CHARGE);
 		if (error != KERN_SUCCESS) {
 			vm_object_deallocate(obj);
 			return (vm_mmap_to_errno(error));
 		}
 	}
 
 	/* Allocate a new stack */
 	if (imgp->stack_sz != 0) {
 		ssiz = trunc_page(imgp->stack_sz);
 		PROC_LOCK(p);
 		lim_rlimit_proc(p, RLIMIT_STACK, &rlim_stack);
 		PROC_UNLOCK(p);
 		if (ssiz > rlim_stack.rlim_max)
 			ssiz = rlim_stack.rlim_max;
 		if (ssiz > rlim_stack.rlim_cur) {
 			rlim_stack.rlim_cur = ssiz;
 			kern_setrlimit(curthread, RLIMIT_STACK, &rlim_stack);
 		}
 	} else if (sv->sv_maxssiz != NULL) {
 		ssiz = *sv->sv_maxssiz;
 	} else {
 		ssiz = maxssiz;
 	}
 	imgp->eff_stack_sz = lim_cur(curthread, RLIMIT_STACK);
 	if (ssiz < imgp->eff_stack_sz)
 		imgp->eff_stack_sz = ssiz;
 	stack_addr = sv->sv_usrstack - ssiz;
 	stack_prot = obj != NULL && imgp->stack_prot != 0 ?
 	    imgp->stack_prot : sv->sv_stackprot;
 	error = vm_map_stack(map, stack_addr, (vm_size_t)ssiz, stack_prot,
 	    VM_PROT_ALL, MAP_STACK_GROWS_DOWN);
 	if (error != KERN_SUCCESS) {
 		uprintf("exec_new_vmspace: mapping stack size %#jx prot %#x "
 		    "failed mach error %d errno %d\n", (uintmax_t)ssiz,
 		    stack_prot, error, vm_mmap_to_errno(error));
 		return (vm_mmap_to_errno(error));
 	}
 
 	/*
 	 * vm_ssize and vm_maxsaddr are somewhat antiquated concepts, but they
 	 * are still used to enforce the stack rlimit on the process stack.
 	 */
 	vmspace->vm_ssize = sgrowsiz >> PAGE_SHIFT;
 	vmspace->vm_maxsaddr = (char *)stack_addr;
 
 	return (0);
 }
 
 /*
  * Copy out argument and environment strings from the old process address
  * space into the temporary string buffer.
  */
 int
 exec_copyin_args(struct image_args *args, const char *fname,
     enum uio_seg segflg, char **argv, char **envv)
 {
 	u_long arg, env;
 	int error;
 
 	bzero(args, sizeof(*args));
 	if (argv == NULL)
 		return (EFAULT);
 
 	/*
 	 * Allocate demand-paged memory for the file name, argument, and
 	 * environment strings.
 	 */
 	error = exec_alloc_args(args);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Copy the file name.
 	 */
 	error = exec_args_add_fname(args, fname, segflg);
 	if (error != 0)
 		goto err_exit;
 
 	/*
 	 * extract arguments first
 	 */
 	for (;;) {
 		error = fueword(argv++, &arg);
 		if (error == -1) {
 			error = EFAULT;
 			goto err_exit;
 		}
 		if (arg == 0)
 			break;
 		error = exec_args_add_arg(args, (char *)(uintptr_t)arg,
 		    UIO_USERSPACE);
 		if (error != 0)
 			goto err_exit;
 	}
 
 	/*
 	 * extract environment strings
 	 */
 	if (envv) {
 		for (;;) {
 			error = fueword(envv++, &env);
 			if (error == -1) {
 				error = EFAULT;
 				goto err_exit;
 			}
 			if (env == 0)
 				break;
 			error = exec_args_add_env(args,
 			    (char *)(uintptr_t)env, UIO_USERSPACE);
 			if (error != 0)
 				goto err_exit;
 		}
 	}
 
 	return (0);
 
 err_exit:
 	exec_free_args(args);
 	return (error);
 }
 
 int
 exec_copyin_data_fds(struct thread *td, struct image_args *args,
     const void *data, size_t datalen, const int *fds, size_t fdslen)
 {
 	struct filedesc *ofdp;
 	const char *p;
 	int *kfds;
 	int error;
 
 	memset(args, '\0', sizeof(*args));
 	ofdp = td->td_proc->p_fd;
 	if (datalen >= ARG_MAX || fdslen >= ofdp->fd_nfiles)
 		return (E2BIG);
 	error = exec_alloc_args(args);
 	if (error != 0)
 		return (error);
 
 	args->begin_argv = args->buf;
 	args->stringspace = ARG_MAX;
 
 	if (datalen > 0) {
 		/*
 		 * Argument buffer has been provided. Copy it into the
 		 * kernel as a single string and add a terminating null
 		 * byte.
 		 */
 		error = copyin(data, args->begin_argv, datalen);
 		if (error != 0)
 			goto err_exit;
 		args->begin_argv[datalen] = '\0';
 		args->endp = args->begin_argv + datalen + 1;
 		args->stringspace -= datalen + 1;
 
 		/*
 		 * Traditional argument counting. Count the number of
 		 * null bytes.
 		 */
 		for (p = args->begin_argv; p < args->endp; ++p)
 			if (*p == '\0')
 				++args->argc;
 	} else {
 		/* No argument buffer provided. */
 		args->endp = args->begin_argv;
 	}
 
 	/* Create new file descriptor table. */
 	kfds = malloc(fdslen * sizeof(int), M_TEMP, M_WAITOK);
 	error = copyin(fds, kfds, fdslen * sizeof(int));
 	if (error != 0) {
 		free(kfds, M_TEMP);
 		goto err_exit;
 	}
 	error = fdcopy_remapped(ofdp, kfds, fdslen, &args->fdp);
 	free(kfds, M_TEMP);
 	if (error != 0)
 		goto err_exit;
 
 	return (0);
 err_exit:
 	exec_free_args(args);
 	return (error);
 }
 
 struct exec_args_kva {
 	vm_offset_t addr;
 	u_int gen;
 	SLIST_ENTRY(exec_args_kva) next;
 };
 
 DPCPU_DEFINE_STATIC(struct exec_args_kva *, exec_args_kva);
 
 static SLIST_HEAD(, exec_args_kva) exec_args_kva_freelist;
 static struct mtx exec_args_kva_mtx;
 static u_int exec_args_gen;
 
 static void
 exec_prealloc_args_kva(void *arg __unused)
 {
 	struct exec_args_kva *argkva;
 	u_int i;
 
 	SLIST_INIT(&exec_args_kva_freelist);
 	mtx_init(&exec_args_kva_mtx, "exec args kva", NULL, MTX_DEF);
 	for (i = 0; i < exec_map_entries; i++) {
 		argkva = malloc(sizeof(*argkva), M_PARGS, M_WAITOK);
 		argkva->addr = kmap_alloc_wait(exec_map, exec_map_entry_size);
 		argkva->gen = exec_args_gen;
 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
 	}
 }
 SYSINIT(exec_args_kva, SI_SUB_EXEC, SI_ORDER_ANY, exec_prealloc_args_kva, NULL);
 
 static vm_offset_t
 exec_alloc_args_kva(void **cookie)
 {
 	struct exec_args_kva *argkva;
 
 	argkva = (void *)atomic_readandclear_ptr(
 	    (uintptr_t *)DPCPU_PTR(exec_args_kva));
 	if (argkva == NULL) {
 		mtx_lock(&exec_args_kva_mtx);
 		while ((argkva = SLIST_FIRST(&exec_args_kva_freelist)) == NULL)
 			(void)mtx_sleep(&exec_args_kva_freelist,
 			    &exec_args_kva_mtx, 0, "execkva", 0);
 		SLIST_REMOVE_HEAD(&exec_args_kva_freelist, next);
 		mtx_unlock(&exec_args_kva_mtx);
 	}
 	*(struct exec_args_kva **)cookie = argkva;
 	return (argkva->addr);
 }
 
 static void
 exec_release_args_kva(struct exec_args_kva *argkva, u_int gen)
 {
 	vm_offset_t base;
 
 	base = argkva->addr;
 	if (argkva->gen != gen) {
 		(void)vm_map_madvise(exec_map, base, base + exec_map_entry_size,
 		    MADV_FREE);
 		argkva->gen = gen;
 	}
 	if (!atomic_cmpset_ptr((uintptr_t *)DPCPU_PTR(exec_args_kva),
 	    (uintptr_t)NULL, (uintptr_t)argkva)) {
 		mtx_lock(&exec_args_kva_mtx);
 		SLIST_INSERT_HEAD(&exec_args_kva_freelist, argkva, next);
 		wakeup_one(&exec_args_kva_freelist);
 		mtx_unlock(&exec_args_kva_mtx);
 	}
 }
 
 static void
 exec_free_args_kva(void *cookie)
 {
 
 	exec_release_args_kva(cookie, exec_args_gen);
 }
 
 static void
 exec_args_kva_lowmem(void *arg __unused)
 {
 	SLIST_HEAD(, exec_args_kva) head;
 	struct exec_args_kva *argkva;
 	u_int gen;
 	int i;
 
 	gen = atomic_fetchadd_int(&exec_args_gen, 1) + 1;
 
 	/*
 	 * Force an madvise of each KVA range. Any currently allocated ranges
 	 * will have MADV_FREE applied once they are freed.
 	 */
 	SLIST_INIT(&head);
 	mtx_lock(&exec_args_kva_mtx);
 	SLIST_SWAP(&head, &exec_args_kva_freelist, exec_args_kva);
 	mtx_unlock(&exec_args_kva_mtx);
 	while ((argkva = SLIST_FIRST(&head)) != NULL) {
 		SLIST_REMOVE_HEAD(&head, next);
 		exec_release_args_kva(argkva, gen);
 	}
 
 	CPU_FOREACH(i) {
 		argkva = (void *)atomic_readandclear_ptr(
 		    (uintptr_t *)DPCPU_ID_PTR(i, exec_args_kva));
 		if (argkva != NULL)
 			exec_release_args_kva(argkva, gen);
 	}
 }
 EVENTHANDLER_DEFINE(vm_lowmem, exec_args_kva_lowmem, NULL,
     EVENTHANDLER_PRI_ANY);
 
 /*
  * Allocate temporary demand-paged, zero-filled memory for the file name,
  * argument, and environment strings.
  */
 int
 exec_alloc_args(struct image_args *args)
 {
 
 	args->buf = (char *)exec_alloc_args_kva(&args->bufkva);
 	return (0);
 }
 
 void
 exec_free_args(struct image_args *args)
 {
 
 	if (args->buf != NULL) {
 		exec_free_args_kva(args->bufkva);
 		args->buf = NULL;
 	}
 	if (args->fname_buf != NULL) {
 		free(args->fname_buf, M_TEMP);
 		args->fname_buf = NULL;
 	}
 	if (args->fdp != NULL)
 		fdescfree_remapped(args->fdp);
 }
 
 /*
  * A set to functions to fill struct image args.
  *
  * NOTE: exec_args_add_fname() must be called (possibly with a NULL
  * fname) before the other functions.  All exec_args_add_arg() calls must
  * be made before any exec_args_add_env() calls.  exec_args_adjust_args()
  * may be called any time after exec_args_add_fname().
  *
  * exec_args_add_fname() - install path to be executed
  * exec_args_add_arg() - append an argument string
  * exec_args_add_env() - append an env string
  * exec_args_adjust_args() - adjust location of the argument list to
  *                           allow new arguments to be prepended
  */
 int
 exec_args_add_fname(struct image_args *args, const char *fname,
     enum uio_seg segflg)
 {
 	int error;
 	size_t length;
 
 	KASSERT(args->fname == NULL, ("fname already appended"));
 	KASSERT(args->endp == NULL, ("already appending to args"));
 
 	if (fname != NULL) {
 		args->fname = args->buf;
 		error = segflg == UIO_SYSSPACE ?
 		    copystr(fname, args->fname, PATH_MAX, &length) :
 		    copyinstr(fname, args->fname, PATH_MAX, &length);
 		if (error != 0)
 			return (error == ENAMETOOLONG ? E2BIG : error);
 	} else
 		length = 0;
 
 	/* Set up for _arg_*()/_env_*() */
 	args->endp = args->buf + length;
 	/* begin_argv must be set and kept updated */
 	args->begin_argv = args->endp;
 	KASSERT(exec_map_entry_size - length >= ARG_MAX,
 	    ("too little space remaining for arguments %zu < %zu",
 	    exec_map_entry_size - length, (size_t)ARG_MAX));
 	args->stringspace = ARG_MAX;
 
 	return (0);
 }
 
 static int
 exec_args_add_str(struct image_args *args, const char *str,
     enum uio_seg segflg, int *countp)
 {
 	int error;
 	size_t length;
 
 	KASSERT(args->endp != NULL, ("endp not initialized"));
 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
 
 	error = (segflg == UIO_SYSSPACE) ?
 	    copystr(str, args->endp, args->stringspace, &length) :
 	    copyinstr(str, args->endp, args->stringspace, &length);
 	if (error != 0)
 		return (error == ENAMETOOLONG ? E2BIG : error);
 	args->stringspace -= length;
 	args->endp += length;
 	(*countp)++;
 
 	return (0);
 }
 
 int
 exec_args_add_arg(struct image_args *args, const char *argp,
     enum uio_seg segflg)
 {
 
 	KASSERT(args->envc == 0, ("appending args after env"));
 
 	return (exec_args_add_str(args, argp, segflg, &args->argc));
 }
 
 int
 exec_args_add_env(struct image_args *args, const char *envp,
     enum uio_seg segflg)
 {
 
 	if (args->envc == 0)
 		args->begin_envv = args->endp;
 
 	return (exec_args_add_str(args, envp, segflg, &args->envc));
 }
 
 int
 exec_args_adjust_args(struct image_args *args, size_t consume, ssize_t extend)
 {
 	ssize_t offset;
 
 	KASSERT(args->endp != NULL, ("endp not initialized"));
 	KASSERT(args->begin_argv != NULL, ("begin_argp not initialized"));
 
 	offset = extend - consume;
 	if (args->stringspace < offset)
 		return (E2BIG);
 	memmove(args->begin_argv + extend, args->begin_argv + consume,
 	    args->endp - args->begin_argv + consume);
 	if (args->envc > 0)
 		args->begin_envv += offset;
 	args->endp += offset;
 	args->stringspace -= offset;
 	return (0);
 }
 
 char *
 exec_args_get_begin_envv(struct image_args *args)
 {
 
 	KASSERT(args->endp != NULL, ("endp not initialized"));
 
 	if (args->envc > 0)
 		return (args->begin_envv);
 	return (args->endp);
 }
 
 void
 exec_stackgap(struct image_params *imgp, uintptr_t *dp)
 {
 	if (imgp->sysent->sv_stackgap == NULL ||
 	    (imgp->proc->p_fctl0 & (NT_FREEBSD_FCTL_ASLR_DISABLE |
 	    NT_FREEBSD_FCTL_ASG_DISABLE)) != 0 ||
 	    (imgp->map_flags & MAP_ASLR) == 0)
 		return;
 	imgp->sysent->sv_stackgap(imgp, dp);
 }
 
 /*
  * Copy strings out to the new process address space, constructing new arg
  * and env vector tables. Return a pointer to the base so that it can be used
  * as the initial stack pointer.
  */
 int
 exec_copyout_strings(struct image_params *imgp, uintptr_t *stack_base)
 {
 	int argc, envc;
 	char **vectp;
 	char *stringp;
 	uintptr_t destp, ustringp;
 	struct ps_strings *arginfo;
 	struct proc *p;
 	size_t execpath_len;
 	int error, szsigcode, szps;
 	char canary[sizeof(long) * 8];
 
 	szps = sizeof(pagesizes[0]) * MAXPAGESIZES;
 	/*
 	 * Calculate string base and vector table pointers.
 	 * Also deal with signal trampoline code for this exec type.
 	 */
 	if (imgp->execpath != NULL && imgp->auxargs != NULL)
 		execpath_len = strlen(imgp->execpath) + 1;
 	else
 		execpath_len = 0;
 	p = imgp->proc;
 	szsigcode = 0;
 	arginfo = (struct ps_strings *)p->p_sysent->sv_psstrings;
 	imgp->ps_strings = arginfo;
 	if (p->p_sysent->sv_sigcode_base == 0) {
 		if (p->p_sysent->sv_szsigcode != NULL)
 			szsigcode = *(p->p_sysent->sv_szsigcode);
 	}
 	destp =	(uintptr_t)arginfo;
 
 	/*
 	 * install sigcode
 	 */
 	if (szsigcode != 0) {
 		destp -= szsigcode;
 		destp = rounddown2(destp, sizeof(void *));
 		error = copyout(p->p_sysent->sv_sigcode, (void *)destp,
 		    szsigcode);
 		if (error != 0)
 			return (error);
 	}
 
 	/*
 	 * Copy the image path for the rtld.
 	 */
 	if (execpath_len != 0) {
 		destp -= execpath_len;
 		destp = rounddown2(destp, sizeof(void *));
 		imgp->execpathp = (void *)destp;
 		error = copyout(imgp->execpath, imgp->execpathp, execpath_len);
 		if (error != 0)
 			return (error);
 	}
 
 	/*
 	 * Prepare the canary for SSP.
 	 */
 	arc4rand(canary, sizeof(canary), 0);
 	destp -= sizeof(canary);
 	imgp->canary = (void *)destp;
 	error = copyout(canary, imgp->canary, sizeof(canary));
 	if (error != 0)
 		return (error);
 	imgp->canarylen = sizeof(canary);
 
 	/*
 	 * Prepare the pagesizes array.
 	 */
 	destp -= szps;
 	destp = rounddown2(destp, sizeof(void *));
 	imgp->pagesizes = (void *)destp;
 	error = copyout(pagesizes, imgp->pagesizes, szps);
 	if (error != 0)
 		return (error);
 	imgp->pagesizeslen = szps;
 
 	/*
 	 * Allocate room for the argument and environment strings.
 	 */
 	destp -= ARG_MAX - imgp->args->stringspace;
 	destp = rounddown2(destp, sizeof(void *));
 	ustringp = destp;
 
 	exec_stackgap(imgp, &destp);
 
 	if (imgp->auxargs) {
 		/*
 		 * Allocate room on the stack for the ELF auxargs
 		 * array.  It has up to AT_COUNT entries.
 		 */
 		destp -= AT_COUNT * sizeof(Elf_Auxinfo);
 		destp = rounddown2(destp, sizeof(void *));
 	}
 
 	vectp = (char **)destp;
 
 	/*
 	 * Allocate room for the argv[] and env vectors including the
 	 * terminating NULL pointers.
 	 */
 	vectp -= imgp->args->argc + 1 + imgp->args->envc + 1;
 
 	/*
 	 * vectp also becomes our initial stack base
 	 */
 	*stack_base = (uintptr_t)vectp;
 
 	stringp = imgp->args->begin_argv;
 	argc = imgp->args->argc;
 	envc = imgp->args->envc;
 
 	/*
 	 * Copy out strings - arguments and environment.
 	 */
 	error = copyout(stringp, (void *)ustringp,
 	    ARG_MAX - imgp->args->stringspace);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Fill in "ps_strings" struct for ps, w, etc.
 	 */
 	imgp->argv = vectp;
 	if (suword(&arginfo->ps_argvstr, (long)(intptr_t)vectp) != 0 ||
 	    suword32(&arginfo->ps_nargvstr, argc) != 0)
 		return (EFAULT);
 
 	/*
 	 * Fill in argument portion of vector table.
 	 */
 	for (; argc > 0; --argc) {
 		if (suword(vectp++, ustringp) != 0)
 			return (EFAULT);
 		while (*stringp++ != 0)
 			ustringp++;
 		ustringp++;
 	}
 
 	/* a null vector table pointer separates the argp's from the envp's */
 	if (suword(vectp++, 0) != 0)
 		return (EFAULT);
 
 	imgp->envv = vectp;
 	if (suword(&arginfo->ps_envstr, (long)(intptr_t)vectp) != 0 ||
 	    suword32(&arginfo->ps_nenvstr, envc) != 0)
 		return (EFAULT);
 
 	/*
 	 * Fill in environment portion of vector table.
 	 */
 	for (; envc > 0; --envc) {
 		if (suword(vectp++, ustringp) != 0)
 			return (EFAULT);
 		while (*stringp++ != 0)
 			ustringp++;
 		ustringp++;
 	}
 
 	/* end of vector table is a null pointer */
 	if (suword(vectp, 0) != 0)
 		return (EFAULT);
 
 	if (imgp->auxargs) {
 		vectp++;
 		error = imgp->sysent->sv_copyout_auxargs(imgp,
 		    (uintptr_t)vectp);
 		if (error != 0)
 			return (error);
 	}
 
 	return (0);
 }
 
 /*
  * Check permissions of file to execute.
  *	Called with imgp->vp locked.
  *	Return 0 for success or error code on failure.
  */
 int
 exec_check_permissions(struct image_params *imgp)
 {
 	struct vnode *vp = imgp->vp;
 	struct vattr *attr = imgp->attr;
 	struct thread *td;
 	int error;
 
 	td = curthread;
 
 	/* Get file attributes */
 	error = VOP_GETATTR(vp, attr, td->td_ucred);
 	if (error)
 		return (error);
 
 #ifdef MAC
 	error = mac_vnode_check_exec(td->td_ucred, imgp->vp, imgp);
 	if (error)
 		return (error);
 #endif
 
 	/*
 	 * 1) Check if file execution is disabled for the filesystem that
 	 *    this file resides on.
 	 * 2) Ensure that at least one execute bit is on. Otherwise, a
 	 *    privileged user will always succeed, and we don't want this
 	 *    to happen unless the file really is executable.
 	 * 3) Ensure that the file is a regular file.
 	 */
 	if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
 	    (attr->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0 ||
 	    (attr->va_type != VREG))
 		return (EACCES);
 
 	/*
 	 * Zero length files can't be exec'd
 	 */
 	if (attr->va_size == 0)
 		return (ENOEXEC);
 
 	/*
 	 *  Check for execute permission to file based on current credentials.
 	 */
 	error = VOP_ACCESS(vp, VEXEC, td->td_ucred, td);
 	if (error)
 		return (error);
 
 	/*
 	 * Check number of open-for-writes on the file and deny execution
 	 * if there are any.
 	 *
 	 * Add a text reference now so no one can write to the
 	 * executable while we're activating it.
 	 *
 	 * Remember if this was set before and unset it in case this is not
 	 * actually an executable image.
 	 */
 	error = VOP_SET_TEXT(vp);
 	if (error != 0)
 		return (error);
 	imgp->textset = true;
 
 	/*
 	 * Call filesystem specific open routine (which does nothing in the
 	 * general case).
 	 */
 	error = VOP_OPEN(vp, FREAD, td->td_ucred, td, NULL);
 	if (error == 0)
 		imgp->opened = 1;
 	return (error);
 }
 
 /*
  * Exec handler registration
  */
 int
 exec_register(const struct execsw *execsw_arg)
 {
 	const struct execsw **es, **xs, **newexecsw;
 	u_int count = 2;	/* New slot and trailing NULL */
 
 	if (execsw)
 		for (es = execsw; *es; es++)
 			count++;
 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
 	xs = newexecsw;
 	if (execsw)
 		for (es = execsw; *es; es++)
 			*xs++ = *es;
 	*xs++ = execsw_arg;
 	*xs = NULL;
 	if (execsw)
 		free(execsw, M_TEMP);
 	execsw = newexecsw;
 	return (0);
 }
 
 int
 exec_unregister(const struct execsw *execsw_arg)
 {
 	const struct execsw **es, **xs, **newexecsw;
 	int count = 1;
 
 	if (execsw == NULL)
 		panic("unregister with no handlers left?\n");
 
 	for (es = execsw; *es; es++) {
 		if (*es == execsw_arg)
 			break;
 	}
 	if (*es == NULL)
 		return (ENOENT);
 	for (es = execsw; *es; es++)
 		if (*es != execsw_arg)
 			count++;
 	newexecsw = malloc(count * sizeof(*es), M_TEMP, M_WAITOK);
 	xs = newexecsw;
 	for (es = execsw; *es; es++)
 		if (*es != execsw_arg)
 			*xs++ = *es;
 	*xs = NULL;
 	if (execsw)
 		free(execsw, M_TEMP);
 	execsw = newexecsw;
 	return (0);
 }
diff --git a/sys/kern/kern_ktrace.c b/sys/kern/kern_ktrace.c
index 26fba786e1e9..c923149ed129 100644
--- a/sys/kern/kern_ktrace.c
+++ b/sys/kern/kern_ktrace.c
@@ -1,1316 +1,1378 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1989, 1993
  *	The Regents of the University of California.
  * Copyright (c) 2005 Robert N. M. Watson
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_ktrace.h"
 
 #include <sys/param.h>
 #include <sys/capsicum.h>
 #include <sys/systm.h>
 #include <sys/fcntl.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/lock.h>
 #include <sys/mutex.h>
 #include <sys/malloc.h>
 #include <sys/mount.h>
 #include <sys/namei.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/unistd.h>
 #include <sys/vnode.h>
 #include <sys/socket.h>
 #include <sys/stat.h>
 #include <sys/ktrace.h>
 #include <sys/sx.h>
 #include <sys/sysctl.h>
 #include <sys/sysent.h>
 #include <sys/syslog.h>
 #include <sys/sysproto.h>
 
 #include <security/mac/mac_framework.h>
 
 /*
  * The ktrace facility allows the tracing of certain key events in user space
  * processes, such as system calls, signal delivery, context switches, and
  * user generated events using utrace(2).  It works by streaming event
  * records and data to a vnode associated with the process using the
  * ktrace(2) system call.  In general, records can be written directly from
  * the context that generates the event.  One important exception to this is
  * during a context switch, where sleeping is not permitted.  To handle this
  * case, trace events are generated using in-kernel ktr_request records, and
  * then delivered to disk at a convenient moment -- either immediately, the
  * next traceable event, at system call return, or at process exit.
  *
  * When dealing with multiple threads or processes writing to the same event
  * log, ordering guarantees are weak: specifically, if an event has multiple
  * records (i.e., system call enter and return), they may be interlaced with
  * records from another event.  Process and thread ID information is provided
  * in the record, and user applications can de-interlace events if required.
  */
 
 static MALLOC_DEFINE(M_KTRACE, "KTRACE", "KTRACE");
 
 #ifdef KTRACE
 
 FEATURE(ktrace, "Kernel support for system-call tracing");
 
 #ifndef KTRACE_REQUEST_POOL
 #define	KTRACE_REQUEST_POOL	100
 #endif
 
 struct ktr_request {
 	struct	ktr_header ktr_header;
 	void	*ktr_buffer;
 	union {
 		struct	ktr_proc_ctor ktr_proc_ctor;
 		struct	ktr_cap_fail ktr_cap_fail;
 		struct	ktr_syscall ktr_syscall;
 		struct	ktr_sysret ktr_sysret;
 		struct	ktr_genio ktr_genio;
 		struct	ktr_psig ktr_psig;
 		struct	ktr_csw ktr_csw;
 		struct	ktr_fault ktr_fault;
 		struct	ktr_faultend ktr_faultend;
 		struct  ktr_struct_array ktr_struct_array;
 	} ktr_data;
 	STAILQ_ENTRY(ktr_request) ktr_list;
 };
 
 static int data_lengths[] = {
 	[KTR_SYSCALL] = offsetof(struct ktr_syscall, ktr_args),
 	[KTR_SYSRET] = sizeof(struct ktr_sysret),
 	[KTR_NAMEI] = 0,
 	[KTR_GENIO] = sizeof(struct ktr_genio),
 	[KTR_PSIG] = sizeof(struct ktr_psig),
 	[KTR_CSW] = sizeof(struct ktr_csw),
 	[KTR_USER] = 0,
 	[KTR_STRUCT] = 0,
 	[KTR_SYSCTL] = 0,
 	[KTR_PROCCTOR] = sizeof(struct ktr_proc_ctor),
 	[KTR_PROCDTOR] = 0,
 	[KTR_CAPFAIL] = sizeof(struct ktr_cap_fail),
 	[KTR_FAULT] = sizeof(struct ktr_fault),
 	[KTR_FAULTEND] = sizeof(struct ktr_faultend),
 	[KTR_STRUCT_ARRAY] = sizeof(struct ktr_struct_array),
 };
 
 static STAILQ_HEAD(, ktr_request) ktr_free;
 
 static SYSCTL_NODE(_kern, OID_AUTO, ktrace, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "KTRACE options");
 
 static u_int ktr_requestpool = KTRACE_REQUEST_POOL;
 TUNABLE_INT("kern.ktrace.request_pool", &ktr_requestpool);
 
 u_int ktr_geniosize = PAGE_SIZE;
 SYSCTL_UINT(_kern_ktrace, OID_AUTO, genio_size, CTLFLAG_RWTUN, &ktr_geniosize,
     0, "Maximum size of genio event payload");
 
 static int print_message = 1;
 static struct mtx ktrace_mtx;
 static struct sx ktrace_sx;
 
+struct ktr_io_params {
+	struct vnode	*vp;
+	struct ucred	*cr;
+	u_int		refs;
+};
+
 static void ktrace_init(void *dummy);
 static int sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS);
 static u_int ktrace_resize_pool(u_int oldsize, u_int newsize);
 static struct ktr_request *ktr_getrequest_entered(struct thread *td, int type);
 static struct ktr_request *ktr_getrequest(int type);
 static void ktr_submitrequest(struct thread *td, struct ktr_request *req);
-static void ktr_freeproc(struct proc *p, struct ucred **uc,
-    struct vnode **vp);
+static struct ktr_io_params *ktr_freeproc(struct proc *p);
 static void ktr_freerequest(struct ktr_request *req);
 static void ktr_freerequest_locked(struct ktr_request *req);
 static void ktr_writerequest(struct thread *td, struct ktr_request *req);
 static int ktrcanset(struct thread *,struct proc *);
-static int ktrsetchildren(struct thread *,struct proc *,int,int,struct vnode *);
-static int ktrops(struct thread *,struct proc *,int,int,struct vnode *);
+static int ktrsetchildren(struct thread *, struct proc *, int, int,
+    struct ktr_io_params *);
+static int ktrops(struct thread *, struct proc *, int, int,
+    struct ktr_io_params *);
 static void ktrprocctor_entered(struct thread *, struct proc *);
 
 /*
  * ktrace itself generates events, such as context switches, which we do not
  * wish to trace.  Maintain a flag, TDP_INKTRACE, on each thread to determine
  * whether or not it is in a region where tracing of events should be
  * suppressed.
  */
 static void
 ktrace_enter(struct thread *td)
 {
 
 	KASSERT(!(td->td_pflags & TDP_INKTRACE), ("ktrace_enter: flag set"));
 	td->td_pflags |= TDP_INKTRACE;
 }
 
 static void
 ktrace_exit(struct thread *td)
 {
 
 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_exit: flag not set"));
 	td->td_pflags &= ~TDP_INKTRACE;
 }
 
 static void
 ktrace_assert(struct thread *td)
 {
 
 	KASSERT(td->td_pflags & TDP_INKTRACE, ("ktrace_assert: flag not set"));
 }
 
 static void
 ktrace_init(void *dummy)
 {
 	struct ktr_request *req;
 	int i;
 
 	mtx_init(&ktrace_mtx, "ktrace", NULL, MTX_DEF | MTX_QUIET);
 	sx_init(&ktrace_sx, "ktrace_sx");
 	STAILQ_INIT(&ktr_free);
 	for (i = 0; i < ktr_requestpool; i++) {
 		req = malloc(sizeof(struct ktr_request), M_KTRACE, M_WAITOK);
 		STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
 	}
 }
 SYSINIT(ktrace_init, SI_SUB_KTRACE, SI_ORDER_ANY, ktrace_init, NULL);
 
 static int
 sysctl_kern_ktrace_request_pool(SYSCTL_HANDLER_ARGS)
 {
 	struct thread *td;
 	u_int newsize, oldsize, wantsize;
 	int error;
 
 	/* Handle easy read-only case first to avoid warnings from GCC. */
 	if (!req->newptr) {
 		oldsize = ktr_requestpool;
 		return (SYSCTL_OUT(req, &oldsize, sizeof(u_int)));
 	}
 
 	error = SYSCTL_IN(req, &wantsize, sizeof(u_int));
 	if (error)
 		return (error);
 	td = curthread;
 	ktrace_enter(td);
 	oldsize = ktr_requestpool;
 	newsize = ktrace_resize_pool(oldsize, wantsize);
 	ktrace_exit(td);
 	error = SYSCTL_OUT(req, &oldsize, sizeof(u_int));
 	if (error)
 		return (error);
 	if (wantsize > oldsize && newsize < wantsize)
 		return (ENOSPC);
 	return (0);
 }
 SYSCTL_PROC(_kern_ktrace, OID_AUTO, request_pool,
     CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, &ktr_requestpool, 0,
     sysctl_kern_ktrace_request_pool, "IU",
     "Pool buffer size for ktrace(1)");
 
 static u_int
 ktrace_resize_pool(u_int oldsize, u_int newsize)
 {
 	STAILQ_HEAD(, ktr_request) ktr_new;
 	struct ktr_request *req;
 	int bound;
 
 	print_message = 1;
 	bound = newsize - oldsize;
 	if (bound == 0)
 		return (ktr_requestpool);
 	if (bound < 0) {
 		mtx_lock(&ktrace_mtx);
 		/* Shrink pool down to newsize if possible. */
 		while (bound++ < 0) {
 			req = STAILQ_FIRST(&ktr_free);
 			if (req == NULL)
 				break;
 			STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
 			ktr_requestpool--;
 			free(req, M_KTRACE);
 		}
 	} else {
 		/* Grow pool up to newsize. */
 		STAILQ_INIT(&ktr_new);
 		while (bound-- > 0) {
 			req = malloc(sizeof(struct ktr_request), M_KTRACE,
 			    M_WAITOK);
 			STAILQ_INSERT_HEAD(&ktr_new, req, ktr_list);
 		}
 		mtx_lock(&ktrace_mtx);
 		STAILQ_CONCAT(&ktr_free, &ktr_new);
 		ktr_requestpool += (newsize - oldsize);
 	}
 	mtx_unlock(&ktrace_mtx);
 	return (ktr_requestpool);
 }
 
 /* ktr_getrequest() assumes that ktr_comm[] is the same size as td_name[]. */
 CTASSERT(sizeof(((struct ktr_header *)NULL)->ktr_comm) ==
     (sizeof((struct thread *)NULL)->td_name));
 
 static struct ktr_request *
 ktr_getrequest_entered(struct thread *td, int type)
 {
 	struct ktr_request *req;
 	struct proc *p = td->td_proc;
 	int pm;
 
 	mtx_lock(&ktrace_mtx);
 	if (!KTRCHECK(td, type)) {
 		mtx_unlock(&ktrace_mtx);
 		return (NULL);
 	}
 	req = STAILQ_FIRST(&ktr_free);
 	if (req != NULL) {
 		STAILQ_REMOVE_HEAD(&ktr_free, ktr_list);
 		req->ktr_header.ktr_type = type;
 		if (p->p_traceflag & KTRFAC_DROP) {
 			req->ktr_header.ktr_type |= KTR_DROP;
 			p->p_traceflag &= ~KTRFAC_DROP;
 		}
 		mtx_unlock(&ktrace_mtx);
 		microtime(&req->ktr_header.ktr_time);
 		req->ktr_header.ktr_pid = p->p_pid;
 		req->ktr_header.ktr_tid = td->td_tid;
 		bcopy(td->td_name, req->ktr_header.ktr_comm,
 		    sizeof(req->ktr_header.ktr_comm));
 		req->ktr_buffer = NULL;
 		req->ktr_header.ktr_len = 0;
 	} else {
 		p->p_traceflag |= KTRFAC_DROP;
 		pm = print_message;
 		print_message = 0;
 		mtx_unlock(&ktrace_mtx);
 		if (pm)
 			printf("Out of ktrace request objects.\n");
 	}
 	return (req);
 }
 
 static struct ktr_request *
 ktr_getrequest(int type)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 
 	ktrace_enter(td);
 	req = ktr_getrequest_entered(td, type);
 	if (req == NULL)
 		ktrace_exit(td);
 
 	return (req);
 }
 
 /*
  * Some trace generation environments don't permit direct access to VFS,
  * such as during a context switch where sleeping is not allowed.  Under these
  * circumstances, queue a request to the thread to be written asynchronously
  * later.
  */
 static void
 ktr_enqueuerequest(struct thread *td, struct ktr_request *req)
 {
 
 	mtx_lock(&ktrace_mtx);
 	STAILQ_INSERT_TAIL(&td->td_proc->p_ktr, req, ktr_list);
 	mtx_unlock(&ktrace_mtx);
 	thread_lock(td);
 	td->td_flags |= TDF_ASTPENDING;
 	thread_unlock(td);
 }
 
 /*
  * Drain any pending ktrace records from the per-thread queue to disk.  This
  * is used both internally before committing other records, and also on
  * system call return.  We drain all the ones we can find at the time when
  * drain is requested, but don't keep draining after that as those events
  * may be approximately "after" the current event.
  */
 static void
 ktr_drain(struct thread *td)
 {
 	struct ktr_request *queued_req;
 	STAILQ_HEAD(, ktr_request) local_queue;
 
 	ktrace_assert(td);
 	sx_assert(&ktrace_sx, SX_XLOCKED);
 
 	STAILQ_INIT(&local_queue);
 
 	if (!STAILQ_EMPTY(&td->td_proc->p_ktr)) {
 		mtx_lock(&ktrace_mtx);
 		STAILQ_CONCAT(&local_queue, &td->td_proc->p_ktr);
 		mtx_unlock(&ktrace_mtx);
 
 		while ((queued_req = STAILQ_FIRST(&local_queue))) {
 			STAILQ_REMOVE_HEAD(&local_queue, ktr_list);
 			ktr_writerequest(td, queued_req);
 			ktr_freerequest(queued_req);
 		}
 	}
 }
 
 /*
  * Submit a trace record for immediate commit to disk -- to be used only
  * where entering VFS is OK.  First drain any pending records that may have
  * been cached in the thread.
  */
 static void
 ktr_submitrequest(struct thread *td, struct ktr_request *req)
 {
 
 	ktrace_assert(td);
 
 	sx_xlock(&ktrace_sx);
 	ktr_drain(td);
 	ktr_writerequest(td, req);
 	ktr_freerequest(req);
 	sx_xunlock(&ktrace_sx);
 	ktrace_exit(td);
 }
 
 static void
 ktr_freerequest(struct ktr_request *req)
 {
 
 	mtx_lock(&ktrace_mtx);
 	ktr_freerequest_locked(req);
 	mtx_unlock(&ktrace_mtx);
 }
 
 static void
 ktr_freerequest_locked(struct ktr_request *req)
 {
 
 	mtx_assert(&ktrace_mtx, MA_OWNED);
 	if (req->ktr_buffer != NULL)
 		free(req->ktr_buffer, M_KTRACE);
 	STAILQ_INSERT_HEAD(&ktr_free, req, ktr_list);
 }
 
+static void
+ktr_io_params_ref(struct ktr_io_params *kiop)
+{
+	mtx_assert(&ktrace_mtx, MA_OWNED);
+	kiop->refs++;
+}
+
+static struct ktr_io_params *
+ktr_io_params_rele(struct ktr_io_params *kiop)
+{
+	mtx_assert(&ktrace_mtx, MA_OWNED);
+	if (kiop == NULL)
+		return (NULL);
+	KASSERT(kiop->refs > 0, ("kiop ref == 0 %p", kiop));
+	return (--(kiop->refs) == 0 ? kiop : NULL);
+}
+
+void
+ktr_io_params_free(struct ktr_io_params *kiop)
+{
+	if (kiop == NULL)
+		return;
+
+	MPASS(kiop->refs == 0);
+	vn_close(kiop->vp, FWRITE, kiop->cr, curthread);
+	crfree(kiop->cr);
+	free(kiop, M_KTRACE);
+}
+
+static struct ktr_io_params *
+ktr_io_params_alloc(struct thread *td, struct vnode *vp)
+{
+	struct ktr_io_params *res;
+
+	res = malloc(sizeof(struct ktr_io_params), M_KTRACE, M_WAITOK);
+	res->vp = vp;
+	res->cr = crhold(td->td_ucred);
+	res->refs = 1;
+	return (res);
+}
+
 /*
  * Disable tracing for a process and release all associated resources.
  * The caller is responsible for releasing a reference on the returned
  * vnode and credentials.
  */
-static void
-ktr_freeproc(struct proc *p, struct ucred **uc, struct vnode **vp)
+static struct ktr_io_params *
+ktr_freeproc(struct proc *p)
 {
+	struct ktr_io_params *kiop;
 	struct ktr_request *req;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	mtx_assert(&ktrace_mtx, MA_OWNED);
-	*uc = p->p_tracecred;
-	p->p_tracecred = NULL;
-	if (vp != NULL)
-		*vp = p->p_tracevp;
-	p->p_tracevp = NULL;
+	kiop = ktr_io_params_rele(p->p_ktrioparms);
+	p->p_ktrioparms = NULL;
 	p->p_traceflag = 0;
 	while ((req = STAILQ_FIRST(&p->p_ktr)) != NULL) {
 		STAILQ_REMOVE_HEAD(&p->p_ktr, ktr_list);
 		ktr_freerequest_locked(req);
 	}
+	return (kiop);
+}
+
+struct vnode *
+ktr_get_tracevp(struct proc *p, bool ref)
+{
+	struct vnode *vp;
+
+	PROC_LOCK_ASSERT(p, MA_OWNED);
+
+	if (p->p_ktrioparms != NULL) {
+		vp = p->p_ktrioparms->vp;
+		if (ref)
+			vrefact(vp);
+	} else {
+		vp = NULL;
+	}
+	return (vp);
 }
 
 void
 ktrsyscall(int code, int narg, register_t args[])
 {
 	struct ktr_request *req;
 	struct ktr_syscall *ktp;
 	size_t buflen;
 	char *buf = NULL;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	buflen = sizeof(register_t) * narg;
 	if (buflen > 0) {
 		buf = malloc(buflen, M_KTRACE, M_WAITOK);
 		bcopy(args, buf, buflen);
 	}
 	req = ktr_getrequest(KTR_SYSCALL);
 	if (req == NULL) {
 		if (buf != NULL)
 			free(buf, M_KTRACE);
 		return;
 	}
 	ktp = &req->ktr_data.ktr_syscall;
 	ktp->ktr_code = code;
 	ktp->ktr_narg = narg;
 	if (buflen > 0) {
 		req->ktr_header.ktr_len = buflen;
 		req->ktr_buffer = buf;
 	}
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrsysret(int code, int error, register_t retval)
 {
 	struct ktr_request *req;
 	struct ktr_sysret *ktp;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_SYSRET);
 	if (req == NULL)
 		return;
 	ktp = &req->ktr_data.ktr_sysret;
 	ktp->ktr_code = code;
 	ktp->ktr_error = error;
 	ktp->ktr_retval = ((error == 0) ? retval: 0);		/* what about val2 ? */
 	ktr_submitrequest(curthread, req);
 }
 
 /*
  * When a setuid process execs, disable tracing.
  *
  * XXX: We toss any pending asynchronous records.
  */
-void
-ktrprocexec(struct proc *p, struct ucred **uc, struct vnode **vp)
+struct ktr_io_params *
+ktrprocexec(struct proc *p)
 {
+	struct ktr_io_params *kiop;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
+
+	kiop = p->p_ktrioparms;
+	if (kiop == NULL || priv_check_cred(kiop->cr, PRIV_DEBUG_DIFFCRED))
+		return (NULL);
+
 	mtx_lock(&ktrace_mtx);
-	ktr_freeproc(p, uc, vp);
+	kiop = ktr_freeproc(p);
 	mtx_unlock(&ktrace_mtx);
+	return (kiop);
 }
 
 /*
  * When a process exits, drain per-process asynchronous trace records
  * and disable tracing.
  */
 void
 ktrprocexit(struct thread *td)
 {
 	struct ktr_request *req;
 	struct proc *p;
-	struct ucred *cred;
-	struct vnode *vp;
+	struct ktr_io_params *kiop;
 
 	p = td->td_proc;
 	if (p->p_traceflag == 0)
 		return;
 
 	ktrace_enter(td);
 	req = ktr_getrequest_entered(td, KTR_PROCDTOR);
 	if (req != NULL)
 		ktr_enqueuerequest(td, req);
 	sx_xlock(&ktrace_sx);
 	ktr_drain(td);
 	sx_xunlock(&ktrace_sx);
 	PROC_LOCK(p);
 	mtx_lock(&ktrace_mtx);
-	ktr_freeproc(p, &cred, &vp);
+	kiop = ktr_freeproc(p);
 	mtx_unlock(&ktrace_mtx);
 	PROC_UNLOCK(p);
-	if (vp != NULL)
-		vrele(vp);
-	if (cred != NULL)
-		crfree(cred);
+	ktr_io_params_free(kiop);
 	ktrace_exit(td);
 }
 
 static void
 ktrprocctor_entered(struct thread *td, struct proc *p)
 {
 	struct ktr_proc_ctor *ktp;
 	struct ktr_request *req;
 	struct thread *td2;
 
 	ktrace_assert(td);
 	td2 = FIRST_THREAD_IN_PROC(p);
 	req = ktr_getrequest_entered(td2, KTR_PROCCTOR);
 	if (req == NULL)
 		return;
 	ktp = &req->ktr_data.ktr_proc_ctor;
 	ktp->sv_flags = p->p_sysent->sv_flags;
 	ktr_enqueuerequest(td2, req);
 }
 
 void
 ktrprocctor(struct proc *p)
 {
 	struct thread *td = curthread;
 
 	if ((p->p_traceflag & KTRFAC_MASK) == 0)
 		return;
 
 	ktrace_enter(td);
 	ktrprocctor_entered(td, p);
 	ktrace_exit(td);
 }
 
 /*
  * When a process forks, enable tracing in the new process if needed.
  */
 void
 ktrprocfork(struct proc *p1, struct proc *p2)
 {
 
-	MPASS(p2->p_tracevp == NULL);
+	MPASS(p2->p_ktrioparms == NULL);
 	MPASS(p2->p_traceflag == 0);
 
 	if (p1->p_traceflag == 0)
 		return;
 
 	PROC_LOCK(p1);
 	mtx_lock(&ktrace_mtx);
 	if (p1->p_traceflag & KTRFAC_INHERIT) {
 		p2->p_traceflag = p1->p_traceflag;
-		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
-			VREF(p2->p_tracevp);
-			KASSERT(p1->p_tracecred != NULL,
-			    ("ktrace vnode with no cred"));
-			p2->p_tracecred = crhold(p1->p_tracecred);
-		}
+		if ((p2->p_ktrioparms = p1->p_ktrioparms) != NULL)
+			p1->p_ktrioparms->refs++;
 	}
 	mtx_unlock(&ktrace_mtx);
 	PROC_UNLOCK(p1);
 
 	ktrprocctor(p2);
 }
 
 /*
  * When a thread returns, drain any asynchronous records generated by the
  * system call.
  */
 void
 ktruserret(struct thread *td)
 {
 
 	ktrace_enter(td);
 	sx_xlock(&ktrace_sx);
 	ktr_drain(td);
 	sx_xunlock(&ktrace_sx);
 	ktrace_exit(td);
 }
 
 void
 ktrnamei(path)
 	char *path;
 {
 	struct ktr_request *req;
 	int namelen;
 	char *buf = NULL;
 
 	namelen = strlen(path);
 	if (namelen > 0) {
 		buf = malloc(namelen, M_KTRACE, M_WAITOK);
 		bcopy(path, buf, namelen);
 	}
 	req = ktr_getrequest(KTR_NAMEI);
 	if (req == NULL) {
 		if (buf != NULL)
 			free(buf, M_KTRACE);
 		return;
 	}
 	if (namelen > 0) {
 		req->ktr_header.ktr_len = namelen;
 		req->ktr_buffer = buf;
 	}
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrsysctl(int *name, u_int namelen)
 {
 	struct ktr_request *req;
 	u_int mib[CTL_MAXNAME + 2];
 	char *mibname;
 	size_t mibnamelen;
 	int error;
 
 	/* Lookup name of mib. */    
 	KASSERT(namelen <= CTL_MAXNAME, ("sysctl MIB too long"));
 	mib[0] = 0;
 	mib[1] = 1;
 	bcopy(name, mib + 2, namelen * sizeof(*name));
 	mibnamelen = 128;
 	mibname = malloc(mibnamelen, M_KTRACE, M_WAITOK);
 	error = kernel_sysctl(curthread, mib, namelen + 2, mibname, &mibnamelen,
 	    NULL, 0, &mibnamelen, 0);
 	if (error) {
 		free(mibname, M_KTRACE);
 		return;
 	}
 	req = ktr_getrequest(KTR_SYSCTL);
 	if (req == NULL) {
 		free(mibname, M_KTRACE);
 		return;
 	}
 	req->ktr_header.ktr_len = mibnamelen;
 	req->ktr_buffer = mibname;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrgenio(int fd, enum uio_rw rw, struct uio *uio, int error)
 {
 	struct ktr_request *req;
 	struct ktr_genio *ktg;
 	int datalen;
 	char *buf;
 
 	if (error) {
 		free(uio, M_IOV);
 		return;
 	}
 	uio->uio_offset = 0;
 	uio->uio_rw = UIO_WRITE;
 	datalen = MIN(uio->uio_resid, ktr_geniosize);
 	buf = malloc(datalen, M_KTRACE, M_WAITOK);
 	error = uiomove(buf, datalen, uio);
 	free(uio, M_IOV);
 	if (error) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	req = ktr_getrequest(KTR_GENIO);
 	if (req == NULL) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	ktg = &req->ktr_data.ktr_genio;
 	ktg->ktr_fd = fd;
 	ktg->ktr_rw = rw;
 	req->ktr_header.ktr_len = datalen;
 	req->ktr_buffer = buf;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrpsig(int sig, sig_t action, sigset_t *mask, int code)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_psig	*kp;
 
 	req = ktr_getrequest(KTR_PSIG);
 	if (req == NULL)
 		return;
 	kp = &req->ktr_data.ktr_psig;
 	kp->signo = (char)sig;
 	kp->action = action;
 	kp->mask = *mask;
 	kp->code = code;
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrcsw(int out, int user, const char *wmesg)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_csw *kc;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_CSW);
 	if (req == NULL)
 		return;
 	kc = &req->ktr_data.ktr_csw;
 	kc->out = out;
 	kc->user = user;
 	if (wmesg != NULL)
 		strlcpy(kc->wmesg, wmesg, sizeof(kc->wmesg));
 	else
 		bzero(kc->wmesg, sizeof(kc->wmesg));
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrstruct(const char *name, const void *data, size_t datalen)
 {
 	struct ktr_request *req;
 	char *buf;
 	size_t buflen, namelen;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	if (data == NULL)
 		datalen = 0;
 	namelen = strlen(name) + 1;
 	buflen = namelen + datalen;
 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
 	strcpy(buf, name);
 	bcopy(data, buf + namelen, datalen);
 	if ((req = ktr_getrequest(KTR_STRUCT)) == NULL) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	req->ktr_buffer = buf;
 	req->ktr_header.ktr_len = buflen;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrstruct_error(const char *name, const void *data, size_t datalen, int error)
 {
 
 	if (error == 0)
 		ktrstruct(name, data, datalen);
 }
 
 void
 ktrstructarray(const char *name, enum uio_seg seg, const void *data,
     int num_items, size_t struct_size)
 {
 	struct ktr_request *req;
 	struct ktr_struct_array *ksa;
 	char *buf;
 	size_t buflen, datalen, namelen;
 	int max_items;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 	if (num_items < 0)
 		return;
 
 	/* Trim array length to genio size. */
 	max_items = ktr_geniosize / struct_size;
 	if (num_items > max_items) {
 		if (max_items == 0)
 			num_items = 1;
 		else
 			num_items = max_items;
 	}
 	datalen = num_items * struct_size;
 
 	if (data == NULL)
 		datalen = 0;
 
 	namelen = strlen(name) + 1;
 	buflen = namelen + datalen;
 	buf = malloc(buflen, M_KTRACE, M_WAITOK);
 	strcpy(buf, name);
 	if (seg == UIO_SYSSPACE)
 		bcopy(data, buf + namelen, datalen);
 	else {
 		if (copyin(data, buf + namelen, datalen) != 0) {
 			free(buf, M_KTRACE);
 			return;
 		}
 	}
 	if ((req = ktr_getrequest(KTR_STRUCT_ARRAY)) == NULL) {
 		free(buf, M_KTRACE);
 		return;
 	}
 	ksa = &req->ktr_data.ktr_struct_array;
 	ksa->struct_size = struct_size;
 	req->ktr_buffer = buf;
 	req->ktr_header.ktr_len = buflen;
 	ktr_submitrequest(curthread, req);
 }
 
 void
 ktrcapfail(enum ktr_cap_fail_type type, const cap_rights_t *needed,
     const cap_rights_t *held)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_cap_fail *kcf;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_CAPFAIL);
 	if (req == NULL)
 		return;
 	kcf = &req->ktr_data.ktr_cap_fail;
 	kcf->cap_type = type;
 	if (needed != NULL)
 		kcf->cap_needed = *needed;
 	else
 		cap_rights_init(&kcf->cap_needed);
 	if (held != NULL)
 		kcf->cap_held = *held;
 	else
 		cap_rights_init(&kcf->cap_held);
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrfault(vm_offset_t vaddr, int type)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_fault *kf;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_FAULT);
 	if (req == NULL)
 		return;
 	kf = &req->ktr_data.ktr_fault;
 	kf->vaddr = vaddr;
 	kf->type = type;
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 
 void
 ktrfaultend(int result)
 {
 	struct thread *td = curthread;
 	struct ktr_request *req;
 	struct ktr_faultend *kf;
 
 	if (__predict_false(curthread->td_pflags & TDP_INKTRACE))
 		return;
 
 	req = ktr_getrequest(KTR_FAULTEND);
 	if (req == NULL)
 		return;
 	kf = &req->ktr_data.ktr_faultend;
 	kf->result = result;
 	ktr_enqueuerequest(td, req);
 	ktrace_exit(td);
 }
 #endif /* KTRACE */
 
 /* Interface and common routines */
 
 #ifndef _SYS_SYSPROTO_H_
 struct ktrace_args {
 	char	*fname;
 	int	ops;
 	int	facs;
 	int	pid;
 };
 #endif
 /* ARGSUSED */
 int
 sys_ktrace(struct thread *td, struct ktrace_args *uap)
 {
 #ifdef KTRACE
 	struct vnode *vp = NULL;
 	struct proc *p;
 	struct pgrp *pg;
 	int facs = uap->facs & ~KTRFAC_ROOT;
 	int ops = KTROP(uap->ops);
 	int descend = uap->ops & KTRFLAG_DESCEND;
 	int nfound, ret = 0;
 	int flags, error = 0;
 	struct nameidata nd;
-	struct ucred *cred;
+	struct ktr_io_params *kiop, *old_kiop;
 
 	/*
 	 * Need something to (un)trace.
 	 */
 	if (ops != KTROP_CLEARFILE && facs == 0)
 		return (EINVAL);
 
+	kiop = NULL;
 	ktrace_enter(td);
 	if (ops != KTROP_CLEAR) {
 		/*
 		 * an operation which requires a file argument.
 		 */
 		NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_USERSPACE, uap->fname, td);
 		flags = FREAD | FWRITE | O_NOFOLLOW;
 		error = vn_open(&nd, &flags, 0, NULL);
 		if (error) {
 			ktrace_exit(td);
 			return (error);
 		}
 		NDFREE(&nd, NDF_ONLY_PNBUF);
 		vp = nd.ni_vp;
 		VOP_UNLOCK(vp);
 		if (vp->v_type != VREG) {
 			(void) vn_close(vp, FREAD|FWRITE, td->td_ucred, td);
 			ktrace_exit(td);
 			return (EACCES);
 		}
+		kiop = ktr_io_params_alloc(td, vp);
 	}
 	/*
 	 * Clear all uses of the tracefile.
 	 */
 	if (ops == KTROP_CLEARFILE) {
-		int vrele_count;
-
-		vrele_count = 0;
+restart:
 		sx_slock(&allproc_lock);
 		FOREACH_PROC_IN_SYSTEM(p) {
+			old_kiop = NULL;
 			PROC_LOCK(p);
-			if (p->p_tracevp == vp) {
+			if (p->p_ktrioparms != NULL &&
+			    p->p_ktrioparms->vp == vp) {
 				if (ktrcanset(td, p)) {
 					mtx_lock(&ktrace_mtx);
-					ktr_freeproc(p, &cred, NULL);
+					old_kiop = ktr_freeproc(p);
 					mtx_unlock(&ktrace_mtx);
-					vrele_count++;
-					crfree(cred);
 				} else
 					error = EPERM;
 			}
 			PROC_UNLOCK(p);
+			if (old_kiop != NULL) {
+				sx_sunlock(&allproc_lock);
+				ktr_io_params_free(old_kiop);
+				goto restart;
+			}
 		}
 		sx_sunlock(&allproc_lock);
-		if (vrele_count > 0) {
-			while (vrele_count-- > 0)
-				vrele(vp);
-		}
 		goto done;
 	}
 	/*
 	 * do it
 	 */
 	sx_slock(&proctree_lock);
 	if (uap->pid < 0) {
 		/*
 		 * by process group
 		 */
 		pg = pgfind(-uap->pid);
 		if (pg == NULL) {
 			sx_sunlock(&proctree_lock);
 			error = ESRCH;
 			goto done;
 		}
 		/*
 		 * ktrops() may call vrele(). Lock pg_members
 		 * by the proctree_lock rather than pg_mtx.
 		 */
 		PGRP_UNLOCK(pg);
 		nfound = 0;
 		LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 			PROC_LOCK(p);
 			if (p->p_state == PRS_NEW ||
 			    p_cansee(td, p) != 0) {
 				PROC_UNLOCK(p); 
 				continue;
 			}
 			nfound++;
 			if (descend)
-				ret |= ktrsetchildren(td, p, ops, facs, vp);
+				ret |= ktrsetchildren(td, p, ops, facs, kiop);
 			else
-				ret |= ktrops(td, p, ops, facs, vp);
+				ret |= ktrops(td, p, ops, facs, kiop);
 		}
 		if (nfound == 0) {
 			sx_sunlock(&proctree_lock);
 			error = ESRCH;
 			goto done;
 		}
 	} else {
 		/*
 		 * by pid
 		 */
 		p = pfind(uap->pid);
 		if (p == NULL)
 			error = ESRCH;
 		else
 			error = p_cansee(td, p);
 		if (error) {
 			if (p != NULL)
 				PROC_UNLOCK(p);
 			sx_sunlock(&proctree_lock);
 			goto done;
 		}
 		if (descend)
-			ret |= ktrsetchildren(td, p, ops, facs, vp);
+			ret |= ktrsetchildren(td, p, ops, facs, kiop);
 		else
-			ret |= ktrops(td, p, ops, facs, vp);
+			ret |= ktrops(td, p, ops, facs, kiop);
 	}
 	sx_sunlock(&proctree_lock);
 	if (!ret)
 		error = EPERM;
 done:
-	if (vp != NULL)
-		(void) vn_close(vp, FWRITE, td->td_ucred, td);
+	if (kiop != NULL) {
+		mtx_lock(&ktrace_mtx);
+		kiop = ktr_io_params_rele(kiop);
+		mtx_unlock(&ktrace_mtx);
+		ktr_io_params_free(kiop);
+	}
 	ktrace_exit(td);
 	return (error);
 #else /* !KTRACE */
 	return (ENOSYS);
 #endif /* KTRACE */
 }
 
 /* ARGSUSED */
 int
 sys_utrace(struct thread *td, struct utrace_args *uap)
 {
 
 #ifdef KTRACE
 	struct ktr_request *req;
 	void *cp;
 	int error;
 
 	if (!KTRPOINT(td, KTR_USER))
 		return (0);
 	if (uap->len > KTR_USER_MAXLEN)
 		return (EINVAL);
 	cp = malloc(uap->len, M_KTRACE, M_WAITOK);
 	error = copyin(uap->addr, cp, uap->len);
 	if (error) {
 		free(cp, M_KTRACE);
 		return (error);
 	}
 	req = ktr_getrequest(KTR_USER);
 	if (req == NULL) {
 		free(cp, M_KTRACE);
 		return (ENOMEM);
 	}
 	req->ktr_buffer = cp;
 	req->ktr_header.ktr_len = uap->len;
 	ktr_submitrequest(td, req);
 	return (0);
 #else /* !KTRACE */
 	return (ENOSYS);
 #endif /* KTRACE */
 }
 
 #ifdef KTRACE
 static int
-ktrops(struct thread *td, struct proc *p, int ops, int facs, struct vnode *vp)
+ktrops(struct thread *td, struct proc *p, int ops, int facs,
+    struct ktr_io_params *new_kiop)
 {
-	struct vnode *tracevp = NULL;
-	struct ucred *tracecred = NULL;
+	struct ktr_io_params *old_kiop;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	if (!ktrcanset(td, p)) {
 		PROC_UNLOCK(p);
 		return (0);
 	}
 	if (p->p_flag & P_WEXIT) {
 		/* If the process is exiting, just ignore it. */
 		PROC_UNLOCK(p);
 		return (1);
 	}
+	old_kiop = NULL;
 	mtx_lock(&ktrace_mtx);
 	if (ops == KTROP_SET) {
-		if (p->p_tracevp != vp) {
-			/*
-			 * if trace file already in use, relinquish below
-			 */
-			tracevp = p->p_tracevp;
-			VREF(vp);
-			p->p_tracevp = vp;
+		if (p->p_ktrioparms != NULL &&
+		    p->p_ktrioparms->vp != new_kiop->vp) {
+			/* if trace file already in use, relinquish below */
+			old_kiop = ktr_io_params_rele(p->p_ktrioparms);
+			p->p_ktrioparms = NULL;
 		}
-		if (p->p_tracecred != td->td_ucred) {
-			tracecred = p->p_tracecred;
-			p->p_tracecred = crhold(td->td_ucred);
+		if (p->p_ktrioparms == NULL) {
+			p->p_ktrioparms = new_kiop;
+			ktr_io_params_ref(new_kiop);
 		}
 		p->p_traceflag |= facs;
 		if (priv_check(td, PRIV_KTRACE) == 0)
 			p->p_traceflag |= KTRFAC_ROOT;
 	} else {
 		/* KTROP_CLEAR */
 		if (((p->p_traceflag &= ~facs) & KTRFAC_MASK) == 0)
 			/* no more tracing */
-			ktr_freeproc(p, &tracecred, &tracevp);
+			old_kiop = ktr_freeproc(p);
 	}
 	mtx_unlock(&ktrace_mtx);
 	if ((p->p_traceflag & KTRFAC_MASK) != 0)
 		ktrprocctor_entered(td, p);
 	PROC_UNLOCK(p);
-	if (tracevp != NULL)
-		vrele(tracevp);
-	if (tracecred != NULL)
-		crfree(tracecred);
+	ktr_io_params_free(old_kiop);
 
 	return (1);
 }
 
 static int
 ktrsetchildren(struct thread *td, struct proc *top, int ops, int facs,
-    struct vnode *vp)
+    struct ktr_io_params *new_kiop)
 {
 	struct proc *p;
 	int ret = 0;
 
 	p = top;
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	sx_assert(&proctree_lock, SX_LOCKED);
 	for (;;) {
-		ret |= ktrops(td, p, ops, facs, vp);
+		ret |= ktrops(td, p, ops, facs, new_kiop);
 		/*
 		 * If this process has children, descend to them next,
 		 * otherwise do any siblings, and if done with this level,
 		 * follow back up the tree (but not past top).
 		 */
 		if (!LIST_EMPTY(&p->p_children))
 			p = LIST_FIRST(&p->p_children);
 		else for (;;) {
 			if (p == top)
 				return (ret);
 			if (LIST_NEXT(p, p_sibling)) {
 				p = LIST_NEXT(p, p_sibling);
 				break;
 			}
 			p = p->p_pptr;
 		}
 		PROC_LOCK(p);
 	}
 	/*NOTREACHED*/
 }
 
 static void
 ktr_writerequest(struct thread *td, struct ktr_request *req)
 {
+	struct ktr_io_params *kiop;
 	struct ktr_header *kth;
 	struct vnode *vp;
 	struct proc *p;
 	struct ucred *cred;
 	struct uio auio;
 	struct iovec aiov[3];
 	struct mount *mp;
 	int datalen, buflen;
 	int error;
 
+	p = td->td_proc;
+
 	/*
 	 * We hold the vnode and credential for use in I/O in case ktrace is
 	 * disabled on the process as we write out the request.
 	 *
 	 * XXXRW: This is not ideal: we could end up performing a write after
 	 * the vnode has been closed.
 	 */
 	mtx_lock(&ktrace_mtx);
-	vp = td->td_proc->p_tracevp;
-	cred = td->td_proc->p_tracecred;
+
+	kiop = p->p_ktrioparms;
 
 	/*
-	 * If vp is NULL, the vp has been cleared out from under this
-	 * request, so just drop it.  Make sure the credential and vnode are
-	 * in sync: we should have both or neither.
+	 * If kiop is NULL, it has been cleared out from under this
+	 * request, so just drop it.
 	 */
-	if (vp == NULL) {
-		KASSERT(cred == NULL, ("ktr_writerequest: cred != NULL"));
+	if (kiop == NULL) {
 		mtx_unlock(&ktrace_mtx);
 		return;
 	}
-	VREF(vp);
+
+	vp = kiop->vp;
+	cred = kiop->cr;
+
+	vrefact(vp);
 	KASSERT(cred != NULL, ("ktr_writerequest: cred == NULL"));
 	crhold(cred);
 	mtx_unlock(&ktrace_mtx);
 
 	kth = &req->ktr_header;
 	KASSERT(((u_short)kth->ktr_type & ~KTR_DROP) < nitems(data_lengths),
 	    ("data_lengths array overflow"));
 	datalen = data_lengths[(u_short)kth->ktr_type & ~KTR_DROP];
 	buflen = kth->ktr_len;
 	auio.uio_iov = &aiov[0];
 	auio.uio_offset = 0;
 	auio.uio_segflg = UIO_SYSSPACE;
 	auio.uio_rw = UIO_WRITE;
 	aiov[0].iov_base = (caddr_t)kth;
 	aiov[0].iov_len = sizeof(struct ktr_header);
 	auio.uio_resid = sizeof(struct ktr_header);
 	auio.uio_iovcnt = 1;
 	auio.uio_td = td;
 	if (datalen != 0) {
 		aiov[1].iov_base = (caddr_t)&req->ktr_data;
 		aiov[1].iov_len = datalen;
 		auio.uio_resid += datalen;
 		auio.uio_iovcnt++;
 		kth->ktr_len += datalen;
 	}
 	if (buflen != 0) {
 		KASSERT(req->ktr_buffer != NULL, ("ktrace: nothing to write"));
 		aiov[auio.uio_iovcnt].iov_base = req->ktr_buffer;
 		aiov[auio.uio_iovcnt].iov_len = buflen;
 		auio.uio_resid += buflen;
 		auio.uio_iovcnt++;
 	}
 
 	vn_start_write(vp, &mp, V_WAIT);
 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
 #ifdef MAC
 	error = mac_vnode_check_write(cred, NOCRED, vp);
 	if (error == 0)
 #endif
 		error = VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, cred);
 	VOP_UNLOCK(vp);
 	vn_finished_write(mp);
 	crfree(cred);
-	if (!error) {
+	if (error == 0) {
 		vrele(vp);
 		return;
 	}
 
 	/*
 	 * If error encountered, give up tracing on this vnode on this
 	 * process.  Other processes might still be suitable for
 	 * writes to this vnode.
 	 */
-	p = td->td_proc;
 	log(LOG_NOTICE,
 	    "ktrace write failed, errno %d, tracing stopped for pid %d\n",
 	    error, p->p_pid);
-	cred = NULL;
-	sx_slock(&allproc_lock);
+
 	PROC_LOCK(p);
 	mtx_lock(&ktrace_mtx);
-	if (p->p_tracevp == vp)
-		ktr_freeproc(p, &cred, NULL);
+	if (p->p_ktrioparms != NULL && p->p_ktrioparms->vp == vp)
+		kiop = ktr_freeproc(p);
 	mtx_unlock(&ktrace_mtx);
 	PROC_UNLOCK(p);
-	if (cred != NULL) {
-		crfree(cred);
-		cred = NULL;
-	}
-	sx_sunlock(&allproc_lock);
-	vrele(vp);
+	ktr_io_params_free(kiop);
 	vrele(vp);
 }
 
 /*
  * Return true if caller has permission to set the ktracing state
  * of target.  Essentially, the target can't possess any
  * more permissions than the caller.  KTRFAC_ROOT signifies that
  * root previously set the tracing status on the target process, and
  * so, only root may further change it.
  */
 static int
 ktrcanset(struct thread *td, struct proc *targetp)
 {
 
 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
 	if (targetp->p_traceflag & KTRFAC_ROOT &&
 	    priv_check(td, PRIV_KTRACE))
 		return (0);
 
 	if (p_candebug(td, targetp) != 0)
 		return (0);
 
 	return (1);
 }
 
 #endif /* KTRACE */
diff --git a/sys/kern/kern_proc.c b/sys/kern/kern_proc.c
index 33f168836370..ec732e8db060 100644
--- a/sys/kern/kern_proc.c
+++ b/sys/kern/kern_proc.c
@@ -1,3374 +1,3377 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1989, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_ddb.h"
 #include "opt_ktrace.h"
 #include "opt_kstack_pages.h"
 #include "opt_stack.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/bitstring.h>
 #include <sys/elf.h>
 #include <sys/eventhandler.h>
 #include <sys/exec.h>
 #include <sys/jail.h>
 #include <sys/kernel.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/loginclass.h>
 #include <sys/malloc.h>
 #include <sys/mman.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/proc.h>
 #include <sys/ptrace.h>
 #include <sys/refcount.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sbuf.h>
 #include <sys/sysent.h>
 #include <sys/sched.h>
 #include <sys/smp.h>
 #include <sys/stack.h>
 #include <sys/stat.h>
 #include <sys/dtrace_bsd.h>
 #include <sys/sysctl.h>
 #include <sys/filedesc.h>
 #include <sys/tty.h>
 #include <sys/signalvar.h>
 #include <sys/sdt.h>
 #include <sys/sx.h>
 #include <sys/user.h>
 #include <sys/vnode.h>
 #include <sys/wait.h>
+#ifdef KTRACE
+#include <sys/ktrace.h>
+#endif
 
 #ifdef DDB
 #include <ddb/ddb.h>
 #endif
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_extern.h>
 #include <vm/pmap.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 #include <vm/vm_page.h>
 #include <vm/uma.h>
 
 #include <fs/devfs/devfs.h>
 
 #ifdef COMPAT_FREEBSD32
 #include <compat/freebsd32/freebsd32.h>
 #include <compat/freebsd32/freebsd32_util.h>
 #endif
 
 SDT_PROVIDER_DEFINE(proc);
 
 MALLOC_DEFINE(M_SESSION, "session", "session header");
 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
 
 static void doenterpgrp(struct proc *, struct pgrp *);
 static void orphanpg(struct pgrp *pg);
 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
     int preferthread);
 static void pgdelete(struct pgrp *);
 static int pgrp_init(void *mem, int size, int flags);
 static int proc_ctor(void *mem, int size, void *arg, int flags);
 static void proc_dtor(void *mem, int size, void *arg);
 static int proc_init(void *mem, int size, int flags);
 static void proc_fini(void *mem, int size);
 static void pargs_free(struct pargs *pa);
 
 /*
  * Other process lists
  */
 struct pidhashhead *pidhashtbl;
 struct sx *pidhashtbl_lock;
 u_long pidhash;
 u_long pidhashlock;
 struct pgrphashhead *pgrphashtbl;
 u_long pgrphash;
 struct proclist allproc;
 struct sx __exclusive_cache_line allproc_lock;
 struct sx __exclusive_cache_line proctree_lock;
 struct mtx __exclusive_cache_line ppeers_lock;
 struct mtx __exclusive_cache_line procid_lock;
 uma_zone_t proc_zone;
 uma_zone_t pgrp_zone;
 
 /*
  * The offset of various fields in struct proc and struct thread.
  * These are used by kernel debuggers to enumerate kernel threads and
  * processes.
  */
 const int proc_off_p_pid = offsetof(struct proc, p_pid);
 const int proc_off_p_comm = offsetof(struct proc, p_comm);
 const int proc_off_p_list = offsetof(struct proc, p_list);
 const int proc_off_p_hash = offsetof(struct proc, p_hash);
 const int proc_off_p_threads = offsetof(struct proc, p_threads);
 const int thread_off_td_tid = offsetof(struct thread, td_tid);
 const int thread_off_td_name = offsetof(struct thread, td_name);
 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
 const int thread_off_td_plist = offsetof(struct thread, td_plist);
 
 EVENTHANDLER_LIST_DEFINE(process_ctor);
 EVENTHANDLER_LIST_DEFINE(process_dtor);
 EVENTHANDLER_LIST_DEFINE(process_init);
 EVENTHANDLER_LIST_DEFINE(process_fini);
 EVENTHANDLER_LIST_DEFINE(process_exit);
 EVENTHANDLER_LIST_DEFINE(process_fork);
 EVENTHANDLER_LIST_DEFINE(process_exec);
 
 int kstack_pages = KSTACK_PAGES;
 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
     "Kernel stack size in pages");
 static int vmmap_skip_res_cnt = 0;
 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
     &vmmap_skip_res_cnt, 0,
     "Skip calculation of the pages resident count in kern.proc.vmmap");
 
 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
 #ifdef COMPAT_FREEBSD32
 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
 #endif
 
 /*
  * Initialize global process hashing structures.
  */
 void
 procinit(void)
 {
 	u_long i;
 
 	sx_init(&allproc_lock, "allproc");
 	sx_init(&proctree_lock, "proctree");
 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
 	LIST_INIT(&allproc);
 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
 	pidhashlock = (pidhash + 1) / 64;
 	if (pidhashlock > 0)
 		pidhashlock--;
 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
 	    M_PROC, M_WAITOK | M_ZERO);
 	for (i = 0; i < pidhashlock + 1; i++)
 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
 	    proc_ctor, proc_dtor, proc_init, proc_fini,
 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
 	    pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
 	uihashinit();
 }
 
 /*
  * Prepare a proc for use.
  */
 static int
 proc_ctor(void *mem, int size, void *arg, int flags)
 {
 	struct proc *p;
 	struct thread *td;
 
 	p = (struct proc *)mem;
 #ifdef KDTRACE_HOOKS
 	kdtrace_proc_ctor(p);
 #endif
 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
 	td = FIRST_THREAD_IN_PROC(p);
 	if (td != NULL) {
 		/* Make sure all thread constructors are executed */
 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
 	}
 	return (0);
 }
 
 /*
  * Reclaim a proc after use.
  */
 static void
 proc_dtor(void *mem, int size, void *arg)
 {
 	struct proc *p;
 	struct thread *td;
 
 	/* INVARIANTS checks go here */
 	p = (struct proc *)mem;
 	td = FIRST_THREAD_IN_PROC(p);
 	if (td != NULL) {
 #ifdef INVARIANTS
 		KASSERT((p->p_numthreads == 1),
 		    ("bad number of threads in exiting process"));
 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
 #endif
 		/* Free all OSD associated to this thread. */
 		osd_thread_exit(td);
 		td_softdep_cleanup(td);
 		MPASS(td->td_su == NULL);
 
 		/* Make sure all thread destructors are executed */
 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
 	}
 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
 #ifdef KDTRACE_HOOKS
 	kdtrace_proc_dtor(p);
 #endif
 	if (p->p_ksi != NULL)
 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
 }
 
 /*
  * Initialize type-stable parts of a proc (when newly created).
  */
 static int
 proc_init(void *mem, int size, int flags)
 {
 	struct proc *p;
 
 	p = (struct proc *)mem;
 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
 	cv_init(&p->p_pwait, "ppwait");
 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
 	p->p_stats = pstats_alloc();
 	p->p_pgrp = NULL;
 	return (0);
 }
 
 /*
  * UMA should ensure that this function is never called.
  * Freeing a proc structure would violate type stability.
  */
 static void
 proc_fini(void *mem, int size)
 {
 #ifdef notnow
 	struct proc *p;
 
 	p = (struct proc *)mem;
 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
 	pstats_free(p->p_stats);
 	thread_free(FIRST_THREAD_IN_PROC(p));
 	mtx_destroy(&p->p_mtx);
 	if (p->p_ksi != NULL)
 		ksiginfo_free(p->p_ksi);
 #else
 	panic("proc reclaimed");
 #endif
 }
 
 static int
 pgrp_init(void *mem, int size, int flags)
 {
 	struct pgrp *pg;
 
 	pg = mem;
 	mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
 	return (0);
 }
 
 /*
  * PID space management.
  *
  * These bitmaps are used by fork_findpid.
  */
 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
 
 static bitstr_t *proc_id_array[] = {
 	proc_id_pidmap,
 	proc_id_grpidmap,
 	proc_id_sessidmap,
 	proc_id_reapmap,
 };
 
 void
 proc_id_set(int type, pid_t id)
 {
 
 	KASSERT(type >= 0 && type < nitems(proc_id_array),
 	    ("invalid type %d\n", type));
 	mtx_lock(&procid_lock);
 	KASSERT(bit_test(proc_id_array[type], id) == 0,
 	    ("bit %d already set in %d\n", id, type));
 	bit_set(proc_id_array[type], id);
 	mtx_unlock(&procid_lock);
 }
 
 void
 proc_id_set_cond(int type, pid_t id)
 {
 
 	KASSERT(type >= 0 && type < nitems(proc_id_array),
 	    ("invalid type %d\n", type));
 	if (bit_test(proc_id_array[type], id))
 		return;
 	mtx_lock(&procid_lock);
 	bit_set(proc_id_array[type], id);
 	mtx_unlock(&procid_lock);
 }
 
 void
 proc_id_clear(int type, pid_t id)
 {
 
 	KASSERT(type >= 0 && type < nitems(proc_id_array),
 	    ("invalid type %d\n", type));
 	mtx_lock(&procid_lock);
 	KASSERT(bit_test(proc_id_array[type], id) != 0,
 	    ("bit %d not set in %d\n", id, type));
 	bit_clear(proc_id_array[type], id);
 	mtx_unlock(&procid_lock);
 }
 
 /*
  * Is p an inferior of the current process?
  */
 int
 inferior(struct proc *p)
 {
 
 	sx_assert(&proctree_lock, SX_LOCKED);
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	for (; p != curproc; p = proc_realparent(p)) {
 		if (p->p_pid == 0)
 			return (0);
 	}
 	return (1);
 }
 
 /*
  * Shared lock all the pid hash lists.
  */
 void
 pidhash_slockall(void)
 {
 	u_long i;
 
 	for (i = 0; i < pidhashlock + 1; i++)
 		sx_slock(&pidhashtbl_lock[i]);
 }
 
 /*
  * Shared unlock all the pid hash lists.
  */
 void
 pidhash_sunlockall(void)
 {
 	u_long i;
 
 	for (i = 0; i < pidhashlock + 1; i++)
 		sx_sunlock(&pidhashtbl_lock[i]);
 }
 
 /*
  * Similar to pfind_any(), this function finds zombies.
  */
 struct proc *
 pfind_any_locked(pid_t pid)
 {
 	struct proc *p;
 
 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
 		if (p->p_pid == pid) {
 			PROC_LOCK(p);
 			if (p->p_state == PRS_NEW) {
 				PROC_UNLOCK(p);
 				p = NULL;
 			}
 			break;
 		}
 	}
 	return (p);
 }
 
 /*
  * Locate a process by number.
  *
  * By not returning processes in the PRS_NEW state, we allow callers to avoid
  * testing for that condition to avoid dereferencing p_ucred, et al.
  */
 static __always_inline struct proc *
 _pfind(pid_t pid, bool zombie)
 {
 	struct proc *p;
 
 	p = curproc;
 	if (p->p_pid == pid) {
 		PROC_LOCK(p);
 		return (p);
 	}
 	sx_slock(PIDHASHLOCK(pid));
 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
 		if (p->p_pid == pid) {
 			PROC_LOCK(p);
 			if (p->p_state == PRS_NEW ||
 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
 				PROC_UNLOCK(p);
 				p = NULL;
 			}
 			break;
 		}
 	}
 	sx_sunlock(PIDHASHLOCK(pid));
 	return (p);
 }
 
 struct proc *
 pfind(pid_t pid)
 {
 
 	return (_pfind(pid, false));
 }
 
 /*
  * Same as pfind but allow zombies.
  */
 struct proc *
 pfind_any(pid_t pid)
 {
 
 	return (_pfind(pid, true));
 }
 
 /*
  * Locate a process group by number.
  * The caller must hold proctree_lock.
  */
 struct pgrp *
 pgfind(pid_t pgid)
 {
 	struct pgrp *pgrp;
 
 	sx_assert(&proctree_lock, SX_LOCKED);
 
 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
 		if (pgrp->pg_id == pgid) {
 			PGRP_LOCK(pgrp);
 			return (pgrp);
 		}
 	}
 	return (NULL);
 }
 
 /*
  * Locate process and do additional manipulations, depending on flags.
  */
 int
 pget(pid_t pid, int flags, struct proc **pp)
 {
 	struct proc *p;
 	struct thread *td1;
 	int error;
 
 	p = curproc;
 	if (p->p_pid == pid) {
 		PROC_LOCK(p);
 	} else {
 		p = NULL;
 		if (pid <= PID_MAX) {
 			if ((flags & PGET_NOTWEXIT) == 0)
 				p = pfind_any(pid);
 			else
 				p = pfind(pid);
 		} else if ((flags & PGET_NOTID) == 0) {
 			td1 = tdfind(pid, -1);
 			if (td1 != NULL)
 				p = td1->td_proc;
 		}
 		if (p == NULL)
 			return (ESRCH);
 		if ((flags & PGET_CANSEE) != 0) {
 			error = p_cansee(curthread, p);
 			if (error != 0)
 				goto errout;
 		}
 	}
 	if ((flags & PGET_CANDEBUG) != 0) {
 		error = p_candebug(curthread, p);
 		if (error != 0)
 			goto errout;
 	}
 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
 		error = EPERM;
 		goto errout;
 	}
 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
 		error = ESRCH;
 		goto errout;
 	}
 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
 		/*
 		 * XXXRW: Not clear ESRCH is the right error during proc
 		 * execve().
 		 */
 		error = ESRCH;
 		goto errout;
 	}
 	if ((flags & PGET_HOLD) != 0) {
 		_PHOLD(p);
 		PROC_UNLOCK(p);
 	}
 	*pp = p;
 	return (0);
 errout:
 	PROC_UNLOCK(p);
 	return (error);
 }
 
 /*
  * Create a new process group.
  * pgid must be equal to the pid of p.
  * Begin a new session if required.
  */
 int
 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
 {
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 
 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
 	KASSERT(p->p_pid == pgid,
 	    ("enterpgrp: new pgrp and pid != pgid"));
 	KASSERT(pgfind(pgid) == NULL,
 	    ("enterpgrp: pgrp with pgid exists"));
 	KASSERT(!SESS_LEADER(p),
 	    ("enterpgrp: session leader attempted setpgrp"));
 
 	if (sess != NULL) {
 		/*
 		 * new session
 		 */
 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
 		PROC_LOCK(p);
 		p->p_flag &= ~P_CONTROLT;
 		PROC_UNLOCK(p);
 		PGRP_LOCK(pgrp);
 		sess->s_leader = p;
 		sess->s_sid = p->p_pid;
 		proc_id_set(PROC_ID_SESSION, p->p_pid);
 		refcount_init(&sess->s_count, 1);
 		sess->s_ttyvp = NULL;
 		sess->s_ttydp = NULL;
 		sess->s_ttyp = NULL;
 		bcopy(p->p_session->s_login, sess->s_login,
 			    sizeof(sess->s_login));
 		pgrp->pg_session = sess;
 		KASSERT(p == curproc,
 		    ("enterpgrp: mksession and p != curproc"));
 	} else {
 		pgrp->pg_session = p->p_session;
 		sess_hold(pgrp->pg_session);
 		PGRP_LOCK(pgrp);
 	}
 	pgrp->pg_id = pgid;
 	proc_id_set(PROC_ID_GROUP, p->p_pid);
 	LIST_INIT(&pgrp->pg_members);
 	pgrp->pg_flags = 0;
 
 	/*
 	 * As we have an exclusive lock of proctree_lock,
 	 * this should not deadlock.
 	 */
 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
 	SLIST_INIT(&pgrp->pg_sigiolst);
 	PGRP_UNLOCK(pgrp);
 
 	doenterpgrp(p, pgrp);
 
 	return (0);
 }
 
 /*
  * Move p to an existing process group
  */
 int
 enterthispgrp(struct proc *p, struct pgrp *pgrp)
 {
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
 	KASSERT(pgrp->pg_session == p->p_session,
 	    ("%s: pgrp's session %p, p->p_session %p proc %p\n",
 	    __func__, pgrp->pg_session, p->p_session, p));
 	KASSERT(pgrp != p->p_pgrp,
 	    ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
 
 	doenterpgrp(p, pgrp);
 
 	return (0);
 }
 
 /*
  * If true, any child of q which belongs to group pgrp, qualifies the
  * process group pgrp as not orphaned.
  */
 static bool
 isjobproc(struct proc *q, struct pgrp *pgrp)
 {
 	sx_assert(&proctree_lock, SX_LOCKED);
 
 	return (q->p_pgrp != pgrp &&
 	    q->p_pgrp->pg_session == pgrp->pg_session);
 }
 
 static struct proc *
 jobc_reaper(struct proc *p)
 {
 	struct proc *pp;
 
 	sx_assert(&proctree_lock, SA_LOCKED);
 
 	for (pp = p;;) {
 		pp = pp->p_reaper;
 		if (pp->p_reaper == pp ||
 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
 			return (pp);
 	}
 }
 
 static struct proc *
 jobc_parent(struct proc *p, struct proc *p_exiting)
 {
 	struct proc *pp;
 
 	sx_assert(&proctree_lock, SA_LOCKED);
 
 	pp = proc_realparent(p);
 	if (pp->p_pptr == NULL || pp == p_exiting ||
 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
 		return (pp);
 	return (jobc_reaper(pp));
 }
 
 static int
 pgrp_calc_jobc(struct pgrp *pgrp)
 {
 	struct proc *q;
 	int cnt;
 
 #ifdef INVARIANTS
 	if (!mtx_owned(&pgrp->pg_mtx))
 		sx_assert(&proctree_lock, SA_LOCKED);
 #endif
 
 	cnt = 0;
 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
 		    q->p_pptr == NULL)
 			continue;
 		if (isjobproc(jobc_parent(q, NULL), pgrp))
 			cnt++;
 	}
 	return (cnt);
 }
 
 /*
  * Move p to a process group
  */
 static void
 doenterpgrp(struct proc *p, struct pgrp *pgrp)
 {
 	struct pgrp *savepgrp;
 	struct proc *pp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
 
 	savepgrp = p->p_pgrp;
 	pp = jobc_parent(p, NULL);
 
 	PGRP_LOCK(pgrp);
 	PGRP_LOCK(savepgrp);
 	if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
 		orphanpg(savepgrp);
 	PROC_LOCK(p);
 	LIST_REMOVE(p, p_pglist);
 	p->p_pgrp = pgrp;
 	PROC_UNLOCK(p);
 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
 	if (isjobproc(pp, pgrp))
 		pgrp->pg_flags &= ~PGRP_ORPHANED;
 	PGRP_UNLOCK(savepgrp);
 	PGRP_UNLOCK(pgrp);
 	if (LIST_EMPTY(&savepgrp->pg_members))
 		pgdelete(savepgrp);
 }
 
 /*
  * remove process from process group
  */
 int
 leavepgrp(struct proc *p)
 {
 	struct pgrp *savepgrp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	savepgrp = p->p_pgrp;
 	PGRP_LOCK(savepgrp);
 	PROC_LOCK(p);
 	LIST_REMOVE(p, p_pglist);
 	p->p_pgrp = NULL;
 	PROC_UNLOCK(p);
 	PGRP_UNLOCK(savepgrp);
 	if (LIST_EMPTY(&savepgrp->pg_members))
 		pgdelete(savepgrp);
 	return (0);
 }
 
 /*
  * delete a process group
  */
 static void
 pgdelete(struct pgrp *pgrp)
 {
 	struct session *savesess;
 	struct tty *tp;
 
 	sx_assert(&proctree_lock, SX_XLOCKED);
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
 
 	/*
 	 * Reset any sigio structures pointing to us as a result of
 	 * F_SETOWN with our pgid.  The proctree lock ensures that
 	 * new sigio structures will not be added after this point.
 	 */
 	funsetownlst(&pgrp->pg_sigiolst);
 
 	PGRP_LOCK(pgrp);
 	tp = pgrp->pg_session->s_ttyp;
 	LIST_REMOVE(pgrp, pg_hash);
 	savesess = pgrp->pg_session;
 	PGRP_UNLOCK(pgrp);
 
 	/* Remove the reference to the pgrp before deallocating it. */
 	if (tp != NULL) {
 		tty_lock(tp);
 		tty_rel_pgrp(tp, pgrp);
 	}
 
 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
 	uma_zfree(pgrp_zone, pgrp);
 	sess_release(savesess);
 }
 
 
 static void
 fixjobc_kill(struct proc *p)
 {
 	struct proc *q;
 	struct pgrp *pgrp;
 
 	sx_assert(&proctree_lock, SX_LOCKED);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	pgrp = p->p_pgrp;
 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
 
 	/*
 	 * p no longer affects process group orphanage for children.
 	 * It is marked by the flag because p is only physically
 	 * removed from its process group on wait(2).
 	 */
 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
 	p->p_treeflag |= P_TREE_GRPEXITED;
 
 	/*
 	 * Check if exiting p orphans its own group.
 	 */
 	pgrp = p->p_pgrp;
 	if (isjobproc(jobc_parent(p, NULL), pgrp)) {
 		PGRP_LOCK(pgrp);
 		if (pgrp_calc_jobc(pgrp) == 0)
 			orphanpg(pgrp);
 		PGRP_UNLOCK(pgrp);
 	}
 
 	/*
 	 * Check this process' children to see whether they qualify
 	 * their process groups after reparenting to reaper.
 	 */
 	LIST_FOREACH(q, &p->p_children, p_sibling) {
 		pgrp = q->p_pgrp;
 		PGRP_LOCK(pgrp);
 		if (pgrp_calc_jobc(pgrp) == 0) {
 			/*
 			 * We want to handle exactly the children that
 			 * has p as realparent.  Then, when calculating
 			 * jobc_parent for children, we should ignore
 			 * P_TREE_GRPEXITED flag already set on p.
 			 */
 			if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
 				orphanpg(pgrp);
 		} else
 			pgrp->pg_flags &= ~PGRP_ORPHANED;
 		PGRP_UNLOCK(pgrp);
 	}
 	LIST_FOREACH(q, &p->p_orphans, p_orphan) {
 		pgrp = q->p_pgrp;
 		PGRP_LOCK(pgrp);
 		if (pgrp_calc_jobc(pgrp) == 0) {
 			if (isjobproc(p, pgrp))
 				orphanpg(pgrp);
 		} else
 			pgrp->pg_flags &= ~PGRP_ORPHANED;
 		PGRP_UNLOCK(pgrp);
 	}
 }
 
 void
 killjobc(void)
 {
 	struct session *sp;
 	struct tty *tp;
 	struct proc *p;
 	struct vnode *ttyvp;
 
 	p = curproc;
 	MPASS(p->p_flag & P_WEXIT);
 	sx_assert(&proctree_lock, SX_LOCKED);
 
 	if (SESS_LEADER(p)) {
 		sp = p->p_session;
 
 		/*
 		 * s_ttyp is not zero'd; we use this to indicate that
 		 * the session once had a controlling terminal. (for
 		 * logging and informational purposes)
 		 */
 		SESS_LOCK(sp);
 		ttyvp = sp->s_ttyvp;
 		tp = sp->s_ttyp;
 		sp->s_ttyvp = NULL;
 		sp->s_ttydp = NULL;
 		sp->s_leader = NULL;
 		SESS_UNLOCK(sp);
 
 		/*
 		 * Signal foreground pgrp and revoke access to
 		 * controlling terminal if it has not been revoked
 		 * already.
 		 *
 		 * Because the TTY may have been revoked in the mean
 		 * time and could already have a new session associated
 		 * with it, make sure we don't send a SIGHUP to a
 		 * foreground process group that does not belong to this
 		 * session.
 		 */
 
 		if (tp != NULL) {
 			tty_lock(tp);
 			if (tp->t_session == sp)
 				tty_signal_pgrp(tp, SIGHUP);
 			tty_unlock(tp);
 		}
 
 		if (ttyvp != NULL) {
 			sx_xunlock(&proctree_lock);
 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
 				VOP_REVOKE(ttyvp, REVOKEALL);
 				VOP_UNLOCK(ttyvp);
 			}
 			devfs_ctty_unref(ttyvp);
 			sx_xlock(&proctree_lock);
 		}
 	}
 	fixjobc_kill(p);
 }
 
 /*
  * A process group has become orphaned, mark it as such for signal
  * delivery code.  If there are any stopped processes in the group,
  * hang-up all process in that group.
  */
 static void
 orphanpg(struct pgrp *pg)
 {
 	struct proc *p;
 
 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
 
 	pg->pg_flags |= PGRP_ORPHANED;
 
 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 		PROC_LOCK(p);
 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
 			PROC_UNLOCK(p);
 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
 				PROC_LOCK(p);
 				kern_psignal(p, SIGHUP);
 				kern_psignal(p, SIGCONT);
 				PROC_UNLOCK(p);
 			}
 			return;
 		}
 		PROC_UNLOCK(p);
 	}
 }
 
 void
 sess_hold(struct session *s)
 {
 
 	refcount_acquire(&s->s_count);
 }
 
 void
 sess_release(struct session *s)
 {
 
 	if (refcount_release(&s->s_count)) {
 		if (s->s_ttyp != NULL) {
 			tty_lock(s->s_ttyp);
 			tty_rel_sess(s->s_ttyp, s);
 		}
 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
 		mtx_destroy(&s->s_mtx);
 		free(s, M_SESSION);
 	}
 }
 
 #ifdef DDB
 
 static void
 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
 {
 	db_printf(
 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
 }
 
 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
 {
 	struct pgrp *pgrp;
 	struct proc *p;
 	int i;
 
 	for (i = 0; i <= pgrphash; i++) {
 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
 			db_printf("indx %d\n", i);
 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
 				db_printf(
 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
 				    pgrp->pg_session->s_count,
 				    LIST_FIRST(&pgrp->pg_members));
 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
 					db_print_pgrp_one(pgrp, p);
 			}
 		}
 	}
 }
 #endif /* DDB */
 
 /*
  * Calculate the kinfo_proc members which contain process-wide
  * informations.
  * Must be called with the target process locked.
  */
 static void
 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
 {
 	struct thread *td;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	kp->ki_estcpu = 0;
 	kp->ki_pctcpu = 0;
 	FOREACH_THREAD_IN_PROC(p, td) {
 		thread_lock(td);
 		kp->ki_pctcpu += sched_pctcpu(td);
 		kp->ki_estcpu += sched_estcpu(td);
 		thread_unlock(td);
 	}
 }
 
 /*
  * Fill in any information that is common to all threads in the process.
  * Must be called with the target process locked.
  */
 static void
 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
 {
 	struct thread *td0;
 	struct ucred *cred;
 	struct sigacts *ps;
 	struct timeval boottime;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	kp->ki_structsize = sizeof(*kp);
 	kp->ki_paddr = p;
 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
 	kp->ki_args = p->p_args;
 	kp->ki_textvp = p->p_textvp;
 #ifdef KTRACE
-	kp->ki_tracep = p->p_tracevp;
+	kp->ki_tracep = ktr_get_tracevp(p, false);
 	kp->ki_traceflag = p->p_traceflag;
 #endif
 	kp->ki_fd = p->p_fd;
 	kp->ki_pd = p->p_pd;
 	kp->ki_vmspace = p->p_vmspace;
 	kp->ki_flag = p->p_flag;
 	kp->ki_flag2 = p->p_flag2;
 	cred = p->p_ucred;
 	if (cred) {
 		kp->ki_uid = cred->cr_uid;
 		kp->ki_ruid = cred->cr_ruid;
 		kp->ki_svuid = cred->cr_svuid;
 		kp->ki_cr_flags = 0;
 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
 		/* XXX bde doesn't like KI_NGROUPS */
 		if (cred->cr_ngroups > KI_NGROUPS) {
 			kp->ki_ngroups = KI_NGROUPS;
 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
 		} else
 			kp->ki_ngroups = cred->cr_ngroups;
 		bcopy(cred->cr_groups, kp->ki_groups,
 		    kp->ki_ngroups * sizeof(gid_t));
 		kp->ki_rgid = cred->cr_rgid;
 		kp->ki_svgid = cred->cr_svgid;
 		/* If jailed(cred), emulate the old P_JAILED flag. */
 		if (jailed(cred)) {
 			kp->ki_flag |= P_JAILED;
 			/* If inside the jail, use 0 as a jail ID. */
 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
 				kp->ki_jid = cred->cr_prison->pr_id;
 		}
 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
 		    sizeof(kp->ki_loginclass));
 	}
 	ps = p->p_sigacts;
 	if (ps) {
 		mtx_lock(&ps->ps_mtx);
 		kp->ki_sigignore = ps->ps_sigignore;
 		kp->ki_sigcatch = ps->ps_sigcatch;
 		mtx_unlock(&ps->ps_mtx);
 	}
 	if (p->p_state != PRS_NEW &&
 	    p->p_state != PRS_ZOMBIE &&
 	    p->p_vmspace != NULL) {
 		struct vmspace *vm = p->p_vmspace;
 
 		kp->ki_size = vm->vm_map.size;
 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
 		FOREACH_THREAD_IN_PROC(p, td0) {
 			if (!TD_IS_SWAPPED(td0))
 				kp->ki_rssize += td0->td_kstack_pages;
 		}
 		kp->ki_swrss = vm->vm_swrss;
 		kp->ki_tsize = vm->vm_tsize;
 		kp->ki_dsize = vm->vm_dsize;
 		kp->ki_ssize = vm->vm_ssize;
 	} else if (p->p_state == PRS_ZOMBIE)
 		kp->ki_stat = SZOMB;
 	if (kp->ki_flag & P_INMEM)
 		kp->ki_sflag = PS_INMEM;
 	else
 		kp->ki_sflag = 0;
 	/* Calculate legacy swtime as seconds since 'swtick'. */
 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
 	kp->ki_pid = p->p_pid;
 	kp->ki_nice = p->p_nice;
 	kp->ki_fibnum = p->p_fibnum;
 	kp->ki_start = p->p_stats->p_start;
 	getboottime(&boottime);
 	timevaladd(&kp->ki_start, &boottime);
 	PROC_STATLOCK(p);
 	rufetch(p, &kp->ki_rusage);
 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
 	PROC_STATUNLOCK(p);
 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
 	/* Some callers want child times in a single value. */
 	kp->ki_childtime = kp->ki_childstime;
 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
 
 	FOREACH_THREAD_IN_PROC(p, td0)
 		kp->ki_cow += td0->td_cow;
 
 	if (p->p_comm[0] != '\0')
 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
 	    p->p_sysent->sv_name[0] != '\0')
 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
 	kp->ki_siglist = p->p_siglist;
 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
 	kp->ki_acflag = p->p_acflag;
 	kp->ki_lock = p->p_lock;
 	if (p->p_pptr) {
 		kp->ki_ppid = p->p_oppid;
 		if (p->p_flag & P_TRACED)
 			kp->ki_tracer = p->p_pptr->p_pid;
 	}
 }
 
 /*
  * Fill job-related process information.
  */
 static void
 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
 {
 	struct tty *tp;
 	struct session *sp;
 	struct pgrp *pgrp;
 
 	sx_assert(&proctree_lock, SA_LOCKED);
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	pgrp = p->p_pgrp;
 	if (pgrp == NULL)
 		return;
 
 	kp->ki_pgid = pgrp->pg_id;
 	kp->ki_jobc = pgrp_calc_jobc(pgrp);
 
 	sp = pgrp->pg_session;
 	tp = NULL;
 
 	if (sp != NULL) {
 		kp->ki_sid = sp->s_sid;
 		SESS_LOCK(sp);
 		strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
 		if (sp->s_ttyvp)
 			kp->ki_kiflag |= KI_CTTY;
 		if (SESS_LEADER(p))
 			kp->ki_kiflag |= KI_SLEADER;
 		tp = sp->s_ttyp;
 		SESS_UNLOCK(sp);
 	}
 
 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
 		kp->ki_tdev = tty_udev(tp);
 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
 		if (tp->t_session)
 			kp->ki_tsid = tp->t_session->s_sid;
 	} else {
 		kp->ki_tdev = NODEV;
 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
 	}
 }
 
 /*
  * Fill in information that is thread specific.  Must be called with
  * target process locked.  If 'preferthread' is set, overwrite certain
  * process-related fields that are maintained for both threads and
  * processes.
  */
 static void
 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
 {
 	struct proc *p;
 
 	p = td->td_proc;
 	kp->ki_tdaddr = td;
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	if (preferthread)
 		PROC_STATLOCK(p);
 	thread_lock(td);
 	if (td->td_wmesg != NULL)
 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
 	else
 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
 	    sizeof(kp->ki_tdname)) {
 		strlcpy(kp->ki_moretdname,
 		    td->td_name + sizeof(kp->ki_tdname) - 1,
 		    sizeof(kp->ki_moretdname));
 	} else {
 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
 	}
 	if (TD_ON_LOCK(td)) {
 		kp->ki_kiflag |= KI_LOCKBLOCK;
 		strlcpy(kp->ki_lockname, td->td_lockname,
 		    sizeof(kp->ki_lockname));
 	} else {
 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
 	}
 
 	if (p->p_state == PRS_NORMAL) { /* approximate. */
 		if (TD_ON_RUNQ(td) ||
 		    TD_CAN_RUN(td) ||
 		    TD_IS_RUNNING(td)) {
 			kp->ki_stat = SRUN;
 		} else if (P_SHOULDSTOP(p)) {
 			kp->ki_stat = SSTOP;
 		} else if (TD_IS_SLEEPING(td)) {
 			kp->ki_stat = SSLEEP;
 		} else if (TD_ON_LOCK(td)) {
 			kp->ki_stat = SLOCK;
 		} else {
 			kp->ki_stat = SWAIT;
 		}
 	} else if (p->p_state == PRS_ZOMBIE) {
 		kp->ki_stat = SZOMB;
 	} else {
 		kp->ki_stat = SIDL;
 	}
 
 	/* Things in the thread */
 	kp->ki_wchan = td->td_wchan;
 	kp->ki_pri.pri_level = td->td_priority;
 	kp->ki_pri.pri_native = td->td_base_pri;
 
 	/*
 	 * Note: legacy fields; clamp at the old NOCPU value and/or
 	 * the maximum u_char CPU value.
 	 */
 	if (td->td_lastcpu == NOCPU)
 		kp->ki_lastcpu_old = NOCPU_OLD;
 	else if (td->td_lastcpu > MAXCPU_OLD)
 		kp->ki_lastcpu_old = MAXCPU_OLD;
 	else
 		kp->ki_lastcpu_old = td->td_lastcpu;
 
 	if (td->td_oncpu == NOCPU)
 		kp->ki_oncpu_old = NOCPU_OLD;
 	else if (td->td_oncpu > MAXCPU_OLD)
 		kp->ki_oncpu_old = MAXCPU_OLD;
 	else
 		kp->ki_oncpu_old = td->td_oncpu;
 
 	kp->ki_lastcpu = td->td_lastcpu;
 	kp->ki_oncpu = td->td_oncpu;
 	kp->ki_tdflags = td->td_flags;
 	kp->ki_tid = td->td_tid;
 	kp->ki_numthreads = p->p_numthreads;
 	kp->ki_pcb = td->td_pcb;
 	kp->ki_kstack = (void *)td->td_kstack;
 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
 	kp->ki_pri.pri_class = td->td_pri_class;
 	kp->ki_pri.pri_user = td->td_user_pri;
 
 	if (preferthread) {
 		rufetchtd(td, &kp->ki_rusage);
 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
 		kp->ki_pctcpu = sched_pctcpu(td);
 		kp->ki_estcpu = sched_estcpu(td);
 		kp->ki_cow = td->td_cow;
 	}
 
 	/* We can't get this anymore but ps etc never used it anyway. */
 	kp->ki_rqindex = 0;
 
 	if (preferthread)
 		kp->ki_siglist = td->td_siglist;
 	kp->ki_sigmask = td->td_sigmask;
 	thread_unlock(td);
 	if (preferthread)
 		PROC_STATUNLOCK(p);
 }
 
 /*
  * Fill in a kinfo_proc structure for the specified process.
  * Must be called with the target process locked.
  */
 void
 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
 {
 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 
 	bzero(kp, sizeof(*kp));
 
 	fill_kinfo_proc_pgrp(p,kp);
 	fill_kinfo_proc_only(p, kp);
 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
 	fill_kinfo_aggregate(p, kp);
 }
 
 struct pstats *
 pstats_alloc(void)
 {
 
 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
 }
 
 /*
  * Copy parts of p_stats; zero the rest of p_stats (statistics).
  */
 void
 pstats_fork(struct pstats *src, struct pstats *dst)
 {
 
 	bzero(&dst->pstat_startzero,
 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
 }
 
 void
 pstats_free(struct pstats *ps)
 {
 
 	free(ps, M_SUBPROC);
 }
 
 #ifdef COMPAT_FREEBSD32
 
 /*
  * This function is typically used to copy out the kernel address, so
  * it can be replaced by assignment of zero.
  */
 static inline uint32_t
 ptr32_trim(const void *ptr)
 {
 	uintptr_t uptr;
 
 	uptr = (uintptr_t)ptr;
 	return ((uptr > UINT_MAX) ? 0 : uptr);
 }
 
 #define PTRTRIM_CP(src,dst,fld) \
 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
 
 static void
 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
 {
 	int i;
 
 	bzero(ki32, sizeof(struct kinfo_proc32));
 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
 	CP(*ki, *ki32, ki_layout);
 	PTRTRIM_CP(*ki, *ki32, ki_args);
 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
 	PTRTRIM_CP(*ki, *ki32, ki_addr);
 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
 	PTRTRIM_CP(*ki, *ki32, ki_fd);
 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
 	CP(*ki, *ki32, ki_pid);
 	CP(*ki, *ki32, ki_ppid);
 	CP(*ki, *ki32, ki_pgid);
 	CP(*ki, *ki32, ki_tpgid);
 	CP(*ki, *ki32, ki_sid);
 	CP(*ki, *ki32, ki_tsid);
 	CP(*ki, *ki32, ki_jobc);
 	CP(*ki, *ki32, ki_tdev);
 	CP(*ki, *ki32, ki_tdev_freebsd11);
 	CP(*ki, *ki32, ki_siglist);
 	CP(*ki, *ki32, ki_sigmask);
 	CP(*ki, *ki32, ki_sigignore);
 	CP(*ki, *ki32, ki_sigcatch);
 	CP(*ki, *ki32, ki_uid);
 	CP(*ki, *ki32, ki_ruid);
 	CP(*ki, *ki32, ki_svuid);
 	CP(*ki, *ki32, ki_rgid);
 	CP(*ki, *ki32, ki_svgid);
 	CP(*ki, *ki32, ki_ngroups);
 	for (i = 0; i < KI_NGROUPS; i++)
 		CP(*ki, *ki32, ki_groups[i]);
 	CP(*ki, *ki32, ki_size);
 	CP(*ki, *ki32, ki_rssize);
 	CP(*ki, *ki32, ki_swrss);
 	CP(*ki, *ki32, ki_tsize);
 	CP(*ki, *ki32, ki_dsize);
 	CP(*ki, *ki32, ki_ssize);
 	CP(*ki, *ki32, ki_xstat);
 	CP(*ki, *ki32, ki_acflag);
 	CP(*ki, *ki32, ki_pctcpu);
 	CP(*ki, *ki32, ki_estcpu);
 	CP(*ki, *ki32, ki_slptime);
 	CP(*ki, *ki32, ki_swtime);
 	CP(*ki, *ki32, ki_cow);
 	CP(*ki, *ki32, ki_runtime);
 	TV_CP(*ki, *ki32, ki_start);
 	TV_CP(*ki, *ki32, ki_childtime);
 	CP(*ki, *ki32, ki_flag);
 	CP(*ki, *ki32, ki_kiflag);
 	CP(*ki, *ki32, ki_traceflag);
 	CP(*ki, *ki32, ki_stat);
 	CP(*ki, *ki32, ki_nice);
 	CP(*ki, *ki32, ki_lock);
 	CP(*ki, *ki32, ki_rqindex);
 	CP(*ki, *ki32, ki_oncpu);
 	CP(*ki, *ki32, ki_lastcpu);
 
 	/* XXX TODO: wrap cpu value as appropriate */
 	CP(*ki, *ki32, ki_oncpu_old);
 	CP(*ki, *ki32, ki_lastcpu_old);
 
 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
 	CP(*ki, *ki32, ki_tracer);
 	CP(*ki, *ki32, ki_flag2);
 	CP(*ki, *ki32, ki_fibnum);
 	CP(*ki, *ki32, ki_cr_flags);
 	CP(*ki, *ki32, ki_jid);
 	CP(*ki, *ki32, ki_numthreads);
 	CP(*ki, *ki32, ki_tid);
 	CP(*ki, *ki32, ki_pri);
 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
 	PTRTRIM_CP(*ki, *ki32, ki_udata);
 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
 	CP(*ki, *ki32, ki_sflag);
 	CP(*ki, *ki32, ki_tdflags);
 }
 #endif
 
 static ssize_t
 kern_proc_out_size(struct proc *p, int flags)
 {
 	ssize_t size = 0;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
 #ifdef COMPAT_FREEBSD32
 		if ((flags & KERN_PROC_MASK32) != 0) {
 			size += sizeof(struct kinfo_proc32);
 		} else
 #endif
 			size += sizeof(struct kinfo_proc);
 	} else {
 #ifdef COMPAT_FREEBSD32
 		if ((flags & KERN_PROC_MASK32) != 0)
 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
 		else
 #endif
 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
 	}
 	PROC_UNLOCK(p);
 	return (size);
 }
 
 int
 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
 {
 	struct thread *td;
 	struct kinfo_proc ki;
 #ifdef COMPAT_FREEBSD32
 	struct kinfo_proc32 ki32;
 #endif
 	int error;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
 
 	error = 0;
 	fill_kinfo_proc(p, &ki);
 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
 #ifdef COMPAT_FREEBSD32
 		if ((flags & KERN_PROC_MASK32) != 0) {
 			freebsd32_kinfo_proc_out(&ki, &ki32);
 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 				error = ENOMEM;
 		} else
 #endif
 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 				error = ENOMEM;
 	} else {
 		FOREACH_THREAD_IN_PROC(p, td) {
 			fill_kinfo_thread(td, &ki, 1);
 #ifdef COMPAT_FREEBSD32
 			if ((flags & KERN_PROC_MASK32) != 0) {
 				freebsd32_kinfo_proc_out(&ki, &ki32);
 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
 					error = ENOMEM;
 			} else
 #endif
 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
 					error = ENOMEM;
 			if (error != 0)
 				break;
 		}
 	}
 	PROC_UNLOCK(p);
 	return (error);
 }
 
 static int
 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
 {
 	struct sbuf sb;
 	struct kinfo_proc ki;
 	int error, error2;
 
 	if (req->oldptr == NULL)
 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
 
 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = kern_proc_out(p, &sb, flags);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	if (error != 0)
 		return (error);
 	else if (error2 != 0)
 		return (error2);
 	return (0);
 }
 
 int
 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
 {
 	struct proc *p;
 	int error, i, j;
 
 	for (i = 0; i < pidhashlock + 1; i++) {
 		sx_slock(&proctree_lock);
 		sx_slock(&pidhashtbl_lock[i]);
 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
 				if (p->p_state == PRS_NEW)
 					continue;
 				error = cb(p, cbarg);
 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 				if (error != 0) {
 					sx_sunlock(&pidhashtbl_lock[i]);
 					sx_sunlock(&proctree_lock);
 					return (error);
 				}
 			}
 		}
 		sx_sunlock(&pidhashtbl_lock[i]);
 		sx_sunlock(&proctree_lock);
 	}
 	return (0);
 }
 
 struct kern_proc_out_args {
 	struct sysctl_req *req;
 	int flags;
 	int oid_number;
 	int *name;
 };
 
 static int
 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
 {
 	struct kern_proc_out_args *arg = origarg;
 	int *name = arg->name;
 	int oid_number = arg->oid_number;
 	int flags = arg->flags;
 	struct sysctl_req *req = arg->req;
 	int error = 0;
 
 	PROC_LOCK(p);
 
 	KASSERT(p->p_ucred != NULL,
 	    ("process credential is NULL for non-NEW proc"));
 	/*
 	 * Show a user only appropriate processes.
 	 */
 	if (p_cansee(curthread, p))
 		goto skip;
 	/*
 	 * TODO - make more efficient (see notes below).
 	 * do by session.
 	 */
 	switch (oid_number) {
 	case KERN_PROC_GID:
 		if (p->p_ucred->cr_gid != (gid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_PGRP:
 		/* could do this by traversing pgrp */
 		if (p->p_pgrp == NULL ||
 		    p->p_pgrp->pg_id != (pid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_RGID:
 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_SESSION:
 		if (p->p_session == NULL ||
 		    p->p_session->s_sid != (pid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_TTY:
 		if ((p->p_flag & P_CONTROLT) == 0 ||
 		    p->p_session == NULL)
 			goto skip;
 		/* XXX proctree_lock */
 		SESS_LOCK(p->p_session);
 		if (p->p_session->s_ttyp == NULL ||
 		    tty_udev(p->p_session->s_ttyp) !=
 		    (dev_t)name[0]) {
 			SESS_UNLOCK(p->p_session);
 			goto skip;
 		}
 		SESS_UNLOCK(p->p_session);
 		break;
 
 	case KERN_PROC_UID:
 		if (p->p_ucred->cr_uid != (uid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_RUID:
 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
 			goto skip;
 		break;
 
 	case KERN_PROC_PROC:
 		break;
 
 	default:
 		break;
 	}
 	error = sysctl_out_proc(p, req, flags);
 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
 	return (error);
 skip:
 	PROC_UNLOCK(p);
 	return (0);
 }
 
 static int
 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
 {
 	struct kern_proc_out_args iterarg;
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	int flags, oid_number;
 	int error = 0;
 
 	oid_number = oidp->oid_number;
 	if (oid_number != KERN_PROC_ALL &&
 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
 		flags = KERN_PROC_NOTHREADS;
 	else {
 		flags = 0;
 		oid_number &= ~KERN_PROC_INC_THREAD;
 	}
 #ifdef COMPAT_FREEBSD32
 	if (req->flags & SCTL_MASK32)
 		flags |= KERN_PROC_MASK32;
 #endif
 	if (oid_number == KERN_PROC_PID) {
 		if (namelen != 1)
 			return (EINVAL);
 		error = sysctl_wire_old_buffer(req, 0);
 		if (error)
 			return (error);
 		sx_slock(&proctree_lock);
 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
 		if (error == 0)
 			error = sysctl_out_proc(p, req, flags);
 		sx_sunlock(&proctree_lock);
 		return (error);
 	}
 
 	switch (oid_number) {
 	case KERN_PROC_ALL:
 		if (namelen != 0)
 			return (EINVAL);
 		break;
 	case KERN_PROC_PROC:
 		if (namelen != 0 && namelen != 1)
 			return (EINVAL);
 		break;
 	default:
 		if (namelen != 1)
 			return (EINVAL);
 		break;
 	}
 
 	if (req->oldptr == NULL) {
 		/* overestimate by 5 procs */
 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
 		if (error)
 			return (error);
 	} else {
 		error = sysctl_wire_old_buffer(req, 0);
 		if (error != 0)
 			return (error);
 	}
 	iterarg.flags = flags;
 	iterarg.oid_number = oid_number;
 	iterarg.req = req;
 	iterarg.name = name;
 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
 	return (error);
 }
 
 struct pargs *
 pargs_alloc(int len)
 {
 	struct pargs *pa;
 
 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
 		M_WAITOK);
 	refcount_init(&pa->ar_ref, 1);
 	pa->ar_length = len;
 	return (pa);
 }
 
 static void
 pargs_free(struct pargs *pa)
 {
 
 	free(pa, M_PARGS);
 }
 
 void
 pargs_hold(struct pargs *pa)
 {
 
 	if (pa == NULL)
 		return;
 	refcount_acquire(&pa->ar_ref);
 }
 
 void
 pargs_drop(struct pargs *pa)
 {
 
 	if (pa == NULL)
 		return;
 	if (refcount_release(&pa->ar_ref))
 		pargs_free(pa);
 }
 
 static int
 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
     size_t len)
 {
 	ssize_t n;
 
 	/*
 	 * This may return a short read if the string is shorter than the chunk
 	 * and is aligned at the end of the page, and the following page is not
 	 * mapped.
 	 */
 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
 	if (n <= 0)
 		return (ENOMEM);
 	return (0);
 }
 
 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
 
 enum proc_vector_type {
 	PROC_ARG,
 	PROC_ENV,
 	PROC_AUX,
 };
 
 #ifdef COMPAT_FREEBSD32
 static int
 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
     size_t *vsizep, enum proc_vector_type type)
 {
 	struct freebsd32_ps_strings pss;
 	Elf32_Auxinfo aux;
 	vm_offset_t vptr, ptr;
 	uint32_t *proc_vector32;
 	char **proc_vector;
 	size_t vsize, size;
 	int i, error;
 
 	error = 0;
 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
 	    sizeof(pss)) != sizeof(pss))
 		return (ENOMEM);
 	switch (type) {
 	case PROC_ARG:
 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
 		vsize = pss.ps_nargvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(int32_t);
 		break;
 	case PROC_ENV:
 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
 		vsize = pss.ps_nenvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(int32_t);
 		break;
 	case PROC_AUX:
 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
 		if (vptr % 4 != 0)
 			return (ENOEXEC);
 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 			    sizeof(aux))
 				return (ENOMEM);
 			if (aux.a_type == AT_NULL)
 				break;
 			ptr += sizeof(aux);
 		}
 		if (aux.a_type != AT_NULL)
 			return (ENOEXEC);
 		vsize = i + 1;
 		size = vsize * sizeof(aux);
 		break;
 	default:
 		KASSERT(0, ("Wrong proc vector type: %d", type));
 		return (EINVAL);
 	}
 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
 		error = ENOMEM;
 		goto done;
 	}
 	if (type == PROC_AUX) {
 		*proc_vectorp = (char **)proc_vector32;
 		*vsizep = vsize;
 		return (0);
 	}
 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
 	for (i = 0; i < (int)vsize; i++)
 		proc_vector[i] = PTRIN(proc_vector32[i]);
 	*proc_vectorp = proc_vector;
 	*vsizep = vsize;
 done:
 	free(proc_vector32, M_TEMP);
 	return (error);
 }
 #endif
 
 static int
 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
     size_t *vsizep, enum proc_vector_type type)
 {
 	struct ps_strings pss;
 	Elf_Auxinfo aux;
 	vm_offset_t vptr, ptr;
 	char **proc_vector;
 	size_t vsize, size;
 	int i;
 
 #ifdef COMPAT_FREEBSD32
 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
 #endif
 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
 	    sizeof(pss)) != sizeof(pss))
 		return (ENOMEM);
 	switch (type) {
 	case PROC_ARG:
 		vptr = (vm_offset_t)pss.ps_argvstr;
 		vsize = pss.ps_nargvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(char *);
 		break;
 	case PROC_ENV:
 		vptr = (vm_offset_t)pss.ps_envstr;
 		vsize = pss.ps_nenvstr;
 		if (vsize > ARG_MAX)
 			return (ENOEXEC);
 		size = vsize * sizeof(char *);
 		break;
 	case PROC_AUX:
 		/*
 		 * The aux array is just above env array on the stack. Check
 		 * that the address is naturally aligned.
 		 */
 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
 		    * sizeof(char *);
 #if __ELF_WORD_SIZE == 64
 		if (vptr % sizeof(uint64_t) != 0)
 #else
 		if (vptr % sizeof(uint32_t) != 0)
 #endif
 			return (ENOEXEC);
 		/*
 		 * We count the array size reading the aux vectors from the
 		 * stack until AT_NULL vector is returned.  So (to keep the code
 		 * simple) we read the process stack twice: the first time here
 		 * to find the size and the second time when copying the vectors
 		 * to the allocated proc_vector.
 		 */
 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
 			    sizeof(aux))
 				return (ENOMEM);
 			if (aux.a_type == AT_NULL)
 				break;
 			ptr += sizeof(aux);
 		}
 		/*
 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
 		 * not reached AT_NULL, it is most likely we are reading wrong
 		 * data: either the process doesn't have auxv array or data has
 		 * been modified. Return the error in this case.
 		 */
 		if (aux.a_type != AT_NULL)
 			return (ENOEXEC);
 		vsize = i + 1;
 		size = vsize * sizeof(aux);
 		break;
 	default:
 		KASSERT(0, ("Wrong proc vector type: %d", type));
 		return (EINVAL); /* In case we are built without INVARIANTS. */
 	}
 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
 		free(proc_vector, M_TEMP);
 		return (ENOMEM);
 	}
 	*proc_vectorp = proc_vector;
 	*vsizep = vsize;
 
 	return (0);
 }
 
 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
 
 static int
 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
     enum proc_vector_type type)
 {
 	size_t done, len, nchr, vsize;
 	int error, i;
 	char **proc_vector, *sptr;
 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
 
 	PROC_ASSERT_HELD(p);
 
 	/*
 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
 	 */
 	nchr = 2 * (PATH_MAX + ARG_MAX);
 
 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
 	if (error != 0)
 		return (error);
 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
 		/*
 		 * The program may have scribbled into its argv array, e.g. to
 		 * remove some arguments.  If that has happened, break out
 		 * before trying to read from NULL.
 		 */
 		if (proc_vector[i] == NULL)
 			break;
 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
 			error = proc_read_string(td, p, sptr, pss_string,
 			    sizeof(pss_string));
 			if (error != 0)
 				goto done;
 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
 			if (done + len >= nchr)
 				len = nchr - done - 1;
 			sbuf_bcat(sb, pss_string, len);
 			if (len != GET_PS_STRINGS_CHUNK_SZ)
 				break;
 			done += GET_PS_STRINGS_CHUNK_SZ;
 		}
 		sbuf_bcat(sb, "", 1);
 		done += len + 1;
 	}
 done:
 	free(proc_vector, M_TEMP);
 	return (error);
 }
 
 int
 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
 {
 
 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
 }
 
 int
 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
 {
 
 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
 }
 
 int
 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
 {
 	size_t vsize, size;
 	char **auxv;
 	int error;
 
 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
 	if (error == 0) {
 #ifdef COMPAT_FREEBSD32
 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
 			size = vsize * sizeof(Elf32_Auxinfo);
 		else
 #endif
 			size = vsize * sizeof(Elf_Auxinfo);
 		if (sbuf_bcat(sb, auxv, size) != 0)
 			error = ENOMEM;
 		free(auxv, M_TEMP);
 	}
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve the argument list or process
  * title for another process without groping around in the address space
  * of the other process.  It also allow a process to set its own "process 
  * title to a string of its own choice.
  */
 static int
 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct pargs *newpa, *pa;
 	struct proc *p;
 	struct sbuf sb;
 	int flags, error = 0, error2;
 	pid_t pid;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	p = curproc;
 	pid = (pid_t)name[0];
 	if (pid == -1) {
 		pid = p->p_pid;
 	}
 
 	/*
 	 * If the query is for this process and it is single-threaded, there
 	 * is nobody to modify pargs, thus we can just read.
 	 */
 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
 	    (pa = p->p_args) != NULL)
 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
 
 	flags = PGET_CANSEE;
 	if (req->newptr != NULL)
 		flags |= PGET_ISCURRENT;
 	error = pget(pid, flags, &p);
 	if (error)
 		return (error);
 
 	pa = p->p_args;
 	if (pa != NULL) {
 		pargs_hold(pa);
 		PROC_UNLOCK(p);
 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
 		pargs_drop(pa);
 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
 		_PHOLD(p);
 		PROC_UNLOCK(p);
 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 		error = proc_getargv(curthread, p, &sb);
 		error2 = sbuf_finish(&sb);
 		PRELE(p);
 		sbuf_delete(&sb);
 		if (error == 0 && error2 != 0)
 			error = error2;
 	} else {
 		PROC_UNLOCK(p);
 	}
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 
 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
 		return (ENOMEM);
 
 	if (req->newlen == 0) {
 		/*
 		 * Clear the argument pointer, so that we'll fetch arguments
 		 * with proc_getargv() until further notice.
 		 */
 		newpa = NULL;
 	} else {
 		newpa = pargs_alloc(req->newlen);
 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
 		if (error != 0) {
 			pargs_free(newpa);
 			return (error);
 		}
 	}
 	PROC_LOCK(p);
 	pa = p->p_args;
 	p->p_args = newpa;
 	PROC_UNLOCK(p);
 	pargs_drop(pa);
 	return (0);
 }
 
 /*
  * This sysctl allows a process to retrieve environment of another process.
  */
 static int
 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	struct sbuf sb;
 	int error, error2;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 	if ((p->p_flag & P_SYSTEM) != 0) {
 		PRELE(p);
 		return (0);
 	}
 
 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = proc_getenvv(curthread, p, &sb);
 	error2 = sbuf_finish(&sb);
 	PRELE(p);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 /*
  * This sysctl allows a process to retrieve ELF auxiliary vector of
  * another process.
  */
 static int
 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	struct sbuf sb;
 	int error, error2;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 	if ((p->p_flag & P_SYSTEM) != 0) {
 		PRELE(p);
 		return (0);
 	}
 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = proc_getauxv(curthread, p, &sb);
 	error2 = sbuf_finish(&sb);
 	PRELE(p);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 /*
  * This sysctl allows a process to retrieve the path of the executable for
  * itself or another process.
  */
 static int
 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
 {
 	pid_t *pidp = (pid_t *)arg1;
 	unsigned int arglen = arg2;
 	struct proc *p;
 	struct vnode *vp;
 	char *retbuf, *freebuf;
 	int error;
 
 	if (arglen != 1)
 		return (EINVAL);
 	if (*pidp == -1) {	/* -1 means this process */
 		p = req->td->td_proc;
 	} else {
 		error = pget(*pidp, PGET_CANSEE, &p);
 		if (error != 0)
 			return (error);
 	}
 
 	vp = p->p_textvp;
 	if (vp == NULL) {
 		if (*pidp != -1)
 			PROC_UNLOCK(p);
 		return (0);
 	}
 	vref(vp);
 	if (*pidp != -1)
 		PROC_UNLOCK(p);
 	error = vn_fullpath(vp, &retbuf, &freebuf);
 	vrele(vp);
 	if (error)
 		return (error);
 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
 	free(freebuf, M_TEMP);
 	return (error);
 }
 
 static int
 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
 {
 	struct proc *p;
 	char *sv_name;
 	int *name;
 	int namelen;
 	int error;
 
 	namelen = arg2;
 	if (namelen != 1)
 		return (EINVAL);
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
 	if (error != 0)
 		return (error);
 	sv_name = p->p_sysent->sv_name;
 	PROC_UNLOCK(p);
 	return (sysctl_handle_string(oidp, sv_name, 0, req));
 }
 
 #ifdef KINFO_OVMENTRY_SIZE
 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
 #endif
 
 #ifdef COMPAT_FREEBSD7
 static int
 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
 {
 	vm_map_entry_t entry, tmp_entry;
 	unsigned int last_timestamp;
 	char *fullpath, *freepath;
 	struct kinfo_ovmentry *kve;
 	struct vattr va;
 	struct ucred *cred;
 	int error, *name;
 	struct vnode *vp;
 	struct proc *p;
 	vm_map_t map;
 	struct vmspace *vm;
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 	vm = vmspace_acquire_ref(p);
 	if (vm == NULL) {
 		PRELE(p);
 		return (ESRCH);
 	}
 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
 
 	map = &vm->vm_map;
 	vm_map_lock_read(map);
 	VM_MAP_ENTRY_FOREACH(entry, map) {
 		vm_object_t obj, tobj, lobj;
 		vm_offset_t addr;
 
 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 			continue;
 
 		bzero(kve, sizeof(*kve));
 		kve->kve_structsize = sizeof(*kve);
 
 		kve->kve_private_resident = 0;
 		obj = entry->object.vm_object;
 		if (obj != NULL) {
 			VM_OBJECT_RLOCK(obj);
 			if (obj->shadow_count == 1)
 				kve->kve_private_resident =
 				    obj->resident_page_count;
 		}
 		kve->kve_resident = 0;
 		addr = entry->start;
 		while (addr < entry->end) {
 			if (pmap_extract(map->pmap, addr))
 				kve->kve_resident++;
 			addr += PAGE_SIZE;
 		}
 
 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
 			if (tobj != obj) {
 				VM_OBJECT_RLOCK(tobj);
 				kve->kve_offset += tobj->backing_object_offset;
 			}
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 			lobj = tobj;
 		}
 
 		kve->kve_start = (void*)entry->start;
 		kve->kve_end = (void*)entry->end;
 		kve->kve_offset += (off_t)entry->offset;
 
 		if (entry->protection & VM_PROT_READ)
 			kve->kve_protection |= KVME_PROT_READ;
 		if (entry->protection & VM_PROT_WRITE)
 			kve->kve_protection |= KVME_PROT_WRITE;
 		if (entry->protection & VM_PROT_EXECUTE)
 			kve->kve_protection |= KVME_PROT_EXEC;
 
 		if (entry->eflags & MAP_ENTRY_COW)
 			kve->kve_flags |= KVME_FLAG_COW;
 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 
 		last_timestamp = map->timestamp;
 		vm_map_unlock_read(map);
 
 		kve->kve_fileid = 0;
 		kve->kve_fsid = 0;
 		freepath = NULL;
 		fullpath = "";
 		if (lobj) {
 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
 				kve->kve_type = KVME_TYPE_UNKNOWN;
 			if (vp != NULL)
 				vref(vp);
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 
 			kve->kve_ref_count = obj->ref_count;
 			kve->kve_shadow_count = obj->shadow_count;
 			VM_OBJECT_RUNLOCK(obj);
 			if (vp != NULL) {
 				vn_fullpath(vp, &fullpath, &freepath);
 				cred = curthread->td_ucred;
 				vn_lock(vp, LK_SHARED | LK_RETRY);
 				if (VOP_GETATTR(vp, &va, cred) == 0) {
 					kve->kve_fileid = va.va_fileid;
 					/* truncate */
 					kve->kve_fsid = va.va_fsid;
 				}
 				vput(vp);
 			}
 		} else {
 			kve->kve_type = KVME_TYPE_NONE;
 			kve->kve_ref_count = 0;
 			kve->kve_shadow_count = 0;
 		}
 
 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 		if (freepath != NULL)
 			free(freepath, M_TEMP);
 
 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
 		vm_map_lock_read(map);
 		if (error)
 			break;
 		if (last_timestamp != map->timestamp) {
 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 			entry = tmp_entry;
 		}
 	}
 	vm_map_unlock_read(map);
 	vmspace_free(vm);
 	PRELE(p);
 	free(kve, M_TEMP);
 	return (error);
 }
 #endif	/* COMPAT_FREEBSD7 */
 
 #ifdef KINFO_VMENTRY_SIZE
 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
 #endif
 
 void
 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
     int *resident_count, bool *super)
 {
 	vm_object_t obj, tobj;
 	vm_page_t m, m_adv;
 	vm_offset_t addr;
 	vm_paddr_t pa;
 	vm_pindex_t pi, pi_adv, pindex;
 
 	*super = false;
 	*resident_count = 0;
 	if (vmmap_skip_res_cnt)
 		return;
 
 	pa = 0;
 	obj = entry->object.vm_object;
 	addr = entry->start;
 	m_adv = NULL;
 	pi = OFF_TO_IDX(entry->offset);
 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
 		if (m_adv != NULL) {
 			m = m_adv;
 		} else {
 			pi_adv = atop(entry->end - addr);
 			pindex = pi;
 			for (tobj = obj;; tobj = tobj->backing_object) {
 				m = vm_page_find_least(tobj, pindex);
 				if (m != NULL) {
 					if (m->pindex == pindex)
 						break;
 					if (pi_adv > m->pindex - pindex) {
 						pi_adv = m->pindex - pindex;
 						m_adv = m;
 					}
 				}
 				if (tobj->backing_object == NULL)
 					goto next;
 				pindex += OFF_TO_IDX(tobj->
 				    backing_object_offset);
 			}
 		}
 		m_adv = NULL;
 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
 		    (addr & (pagesizes[1] - 1)) == 0 &&
 		    (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
 			*super = true;
 			pi_adv = atop(pagesizes[1]);
 		} else {
 			/*
 			 * We do not test the found page on validity.
 			 * Either the page is busy and being paged in,
 			 * or it was invalidated.  The first case
 			 * should be counted as resident, the second
 			 * is not so clear; we do account both.
 			 */
 			pi_adv = 1;
 		}
 		*resident_count += pi_adv;
 next:;
 	}
 }
 
 /*
  * Must be called with the process locked and will return unlocked.
  */
 int
 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
 {
 	vm_map_entry_t entry, tmp_entry;
 	struct vattr va;
 	vm_map_t map;
 	vm_object_t lobj, nobj, obj, tobj;
 	char *fullpath, *freepath;
 	struct kinfo_vmentry *kve;
 	struct ucred *cred;
 	struct vnode *vp;
 	struct vmspace *vm;
 	vm_offset_t addr;
 	unsigned int last_timestamp;
 	int error;
 	bool guard, super;
 
 	PROC_LOCK_ASSERT(p, MA_OWNED);
 
 	_PHOLD(p);
 	PROC_UNLOCK(p);
 	vm = vmspace_acquire_ref(p);
 	if (vm == NULL) {
 		PRELE(p);
 		return (ESRCH);
 	}
 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
 
 	error = 0;
 	map = &vm->vm_map;
 	vm_map_lock_read(map);
 	VM_MAP_ENTRY_FOREACH(entry, map) {
 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
 			continue;
 
 		addr = entry->end;
 		bzero(kve, sizeof(*kve));
 		obj = entry->object.vm_object;
 		if (obj != NULL) {
 			if ((obj->flags & OBJ_ANON) != 0)
 				kve->kve_obj = (uintptr_t)obj;
 
 			for (tobj = obj; tobj != NULL;
 			    tobj = tobj->backing_object) {
 				VM_OBJECT_RLOCK(tobj);
 				kve->kve_offset += tobj->backing_object_offset;
 				lobj = tobj;
 			}
 			if (obj->backing_object == NULL)
 				kve->kve_private_resident =
 				    obj->resident_page_count;
 			kern_proc_vmmap_resident(map, entry,
 			    &kve->kve_resident, &super);
 			if (super)
 				kve->kve_flags |= KVME_FLAG_SUPER;
 			for (tobj = obj; tobj != NULL; tobj = nobj) {
 				nobj = tobj->backing_object;
 				if (tobj != obj && tobj != lobj)
 					VM_OBJECT_RUNLOCK(tobj);
 			}
 		} else {
 			lobj = NULL;
 		}
 
 		kve->kve_start = entry->start;
 		kve->kve_end = entry->end;
 		kve->kve_offset += entry->offset;
 
 		if (entry->protection & VM_PROT_READ)
 			kve->kve_protection |= KVME_PROT_READ;
 		if (entry->protection & VM_PROT_WRITE)
 			kve->kve_protection |= KVME_PROT_WRITE;
 		if (entry->protection & VM_PROT_EXECUTE)
 			kve->kve_protection |= KVME_PROT_EXEC;
 
 		if (entry->eflags & MAP_ENTRY_COW)
 			kve->kve_flags |= KVME_FLAG_COW;
 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
 
 		guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
 
 		last_timestamp = map->timestamp;
 		vm_map_unlock_read(map);
 
 		freepath = NULL;
 		fullpath = "";
 		if (lobj != NULL) {
 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
 			if (vp != NULL)
 				vref(vp);
 			if (lobj != obj)
 				VM_OBJECT_RUNLOCK(lobj);
 
 			kve->kve_ref_count = obj->ref_count;
 			kve->kve_shadow_count = obj->shadow_count;
 			VM_OBJECT_RUNLOCK(obj);
 			if (vp != NULL) {
 				vn_fullpath(vp, &fullpath, &freepath);
 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
 				cred = curthread->td_ucred;
 				vn_lock(vp, LK_SHARED | LK_RETRY);
 				if (VOP_GETATTR(vp, &va, cred) == 0) {
 					kve->kve_vn_fileid = va.va_fileid;
 					kve->kve_vn_fsid = va.va_fsid;
 					kve->kve_vn_fsid_freebsd11 =
 					    kve->kve_vn_fsid; /* truncate */
 					kve->kve_vn_mode =
 					    MAKEIMODE(va.va_type, va.va_mode);
 					kve->kve_vn_size = va.va_size;
 					kve->kve_vn_rdev = va.va_rdev;
 					kve->kve_vn_rdev_freebsd11 =
 					    kve->kve_vn_rdev; /* truncate */
 					kve->kve_status = KF_ATTR_VALID;
 				}
 				vput(vp);
 			}
 		} else {
 			kve->kve_type = guard ? KVME_TYPE_GUARD :
 			    KVME_TYPE_NONE;
 			kve->kve_ref_count = 0;
 			kve->kve_shadow_count = 0;
 		}
 
 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
 		if (freepath != NULL)
 			free(freepath, M_TEMP);
 
 		/* Pack record size down */
 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
 			kve->kve_structsize =
 			    offsetof(struct kinfo_vmentry, kve_path) +
 			    strlen(kve->kve_path) + 1;
 		else
 			kve->kve_structsize = sizeof(*kve);
 		kve->kve_structsize = roundup(kve->kve_structsize,
 		    sizeof(uint64_t));
 
 		/* Halt filling and truncate rather than exceeding maxlen */
 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
 			error = 0;
 			vm_map_lock_read(map);
 			break;
 		} else if (maxlen != -1)
 			maxlen -= kve->kve_structsize;
 
 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
 			error = ENOMEM;
 		vm_map_lock_read(map);
 		if (error != 0)
 			break;
 		if (last_timestamp != map->timestamp) {
 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
 			entry = tmp_entry;
 		}
 	}
 	vm_map_unlock_read(map);
 	vmspace_free(vm);
 	PRELE(p);
 	free(kve, M_TEMP);
 	return (error);
 }
 
 static int
 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
 {
 	struct proc *p;
 	struct sbuf sb;
 	int error, error2, *name;
 
 	name = (int *)arg1;
 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
 	if (error != 0) {
 		sbuf_delete(&sb);
 		return (error);
 	}
 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
 	error2 = sbuf_finish(&sb);
 	sbuf_delete(&sb);
 	return (error != 0 ? error : error2);
 }
 
 #if defined(STACK) || defined(DDB)
 static int
 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
 {
 	struct kinfo_kstack *kkstp;
 	int error, i, *name, numthreads;
 	lwpid_t *lwpidarray;
 	struct thread *td;
 	struct stack *st;
 	struct sbuf sb;
 	struct proc *p;
 
 	name = (int *)arg1;
 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 
 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
 	st = stack_create(M_WAITOK);
 
 	lwpidarray = NULL;
 	PROC_LOCK(p);
 	do {
 		if (lwpidarray != NULL) {
 			free(lwpidarray, M_TEMP);
 			lwpidarray = NULL;
 		}
 		numthreads = p->p_numthreads;
 		PROC_UNLOCK(p);
 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
 		    M_WAITOK | M_ZERO);
 		PROC_LOCK(p);
 	} while (numthreads < p->p_numthreads);
 
 	/*
 	 * XXXRW: During the below loop, execve(2) and countless other sorts
 	 * of changes could have taken place.  Should we check to see if the
 	 * vmspace has been replaced, or the like, in order to prevent
 	 * giving a snapshot that spans, say, execve(2), with some threads
 	 * before and some after?  Among other things, the credentials could
 	 * have changed, in which case the right to extract debug info might
 	 * no longer be assured.
 	 */
 	i = 0;
 	FOREACH_THREAD_IN_PROC(p, td) {
 		KASSERT(i < numthreads,
 		    ("sysctl_kern_proc_kstack: numthreads"));
 		lwpidarray[i] = td->td_tid;
 		i++;
 	}
 	PROC_UNLOCK(p);
 	numthreads = i;
 	for (i = 0; i < numthreads; i++) {
 		td = tdfind(lwpidarray[i], p->p_pid);
 		if (td == NULL) {
 			continue;
 		}
 		bzero(kkstp, sizeof(*kkstp));
 		(void)sbuf_new(&sb, kkstp->kkst_trace,
 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
 		thread_lock(td);
 		kkstp->kkst_tid = td->td_tid;
 		if (TD_IS_SWAPPED(td))
 			kkstp->kkst_state = KKST_STATE_SWAPPED;
 		else if (stack_save_td(st, td) == 0)
 			kkstp->kkst_state = KKST_STATE_STACKOK;
 		else
 			kkstp->kkst_state = KKST_STATE_RUNNING;
 		thread_unlock(td);
 		PROC_UNLOCK(p);
 		stack_sbuf_print(&sb, st);
 		sbuf_finish(&sb);
 		sbuf_delete(&sb);
 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
 		if (error)
 			break;
 	}
 	PRELE(p);
 	if (lwpidarray != NULL)
 		free(lwpidarray, M_TEMP);
 	stack_destroy(st);
 	free(kkstp, M_TEMP);
 	return (error);
 }
 #endif
 
 /*
  * This sysctl allows a process to retrieve the full list of groups from
  * itself or another process.
  */
 static int
 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
 {
 	pid_t *pidp = (pid_t *)arg1;
 	unsigned int arglen = arg2;
 	struct proc *p;
 	struct ucred *cred;
 	int error;
 
 	if (arglen != 1)
 		return (EINVAL);
 	if (*pidp == -1) {	/* -1 means this process */
 		p = req->td->td_proc;
 		PROC_LOCK(p);
 	} else {
 		error = pget(*pidp, PGET_CANSEE, &p);
 		if (error != 0)
 			return (error);
 	}
 
 	cred = crhold(p->p_ucred);
 	PROC_UNLOCK(p);
 
 	error = SYSCTL_OUT(req, cred->cr_groups,
 	    cred->cr_ngroups * sizeof(gid_t));
 	crfree(cred);
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve or/and set the resource limit for
  * another process.
  */
 static int
 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct rlimit rlim;
 	struct proc *p;
 	u_int which;
 	int flags, error;
 
 	if (namelen != 2)
 		return (EINVAL);
 
 	which = (u_int)name[1];
 	if (which >= RLIM_NLIMITS)
 		return (EINVAL);
 
 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
 		return (EINVAL);
 
 	flags = PGET_HOLD | PGET_NOTWEXIT;
 	if (req->newptr != NULL)
 		flags |= PGET_CANDEBUG;
 	else
 		flags |= PGET_CANSEE;
 	error = pget((pid_t)name[0], flags, &p);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Retrieve limit.
 	 */
 	if (req->oldptr != NULL) {
 		PROC_LOCK(p);
 		lim_rlimit_proc(p, which, &rlim);
 		PROC_UNLOCK(p);
 	}
 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
 	if (error != 0)
 		goto errout;
 
 	/*
 	 * Set limit.
 	 */
 	if (req->newptr != NULL) {
 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
 		if (error == 0)
 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
 	}
 
 errout:
 	PRELE(p);
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve ps_strings structure location of
  * another process.
  */
 static int
 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	vm_offset_t ps_strings;
 	int error;
 #ifdef COMPAT_FREEBSD32
 	uint32_t ps_strings32;
 #endif
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 	if (error != 0)
 		return (error);
 #ifdef COMPAT_FREEBSD32
 	if ((req->flags & SCTL_MASK32) != 0) {
 		/*
 		 * We return 0 if the 32 bit emulation request is for a 64 bit
 		 * process.
 		 */
 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
 		PROC_UNLOCK(p);
 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
 		return (error);
 	}
 #endif
 	ps_strings = p->p_sysent->sv_psstrings;
 	PROC_UNLOCK(p);
 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
 	return (error);
 }
 
 /*
  * This sysctl allows a process to retrieve umask of another process.
  */
 static int
 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	int error;
 	u_short cmask;
 	pid_t pid;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	pid = (pid_t)name[0];
 	p = curproc;
 	if (pid == p->p_pid || pid == 0) {
 		cmask = p->p_pd->pd_cmask;
 		goto out;
 	}
 
 	error = pget(pid, PGET_WANTREAD, &p);
 	if (error != 0)
 		return (error);
 
 	cmask = p->p_pd->pd_cmask;
 	PRELE(p);
 out:
 	error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
 	return (error);
 }
 
 /*
  * This sysctl allows a process to set and retrieve binary osreldate of
  * another process.
  */
 static int
 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	int flags, error, osrel;
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
 		return (EINVAL);
 
 	flags = PGET_HOLD | PGET_NOTWEXIT;
 	if (req->newptr != NULL)
 		flags |= PGET_CANDEBUG;
 	else
 		flags |= PGET_CANSEE;
 	error = pget((pid_t)name[0], flags, &p);
 	if (error != 0)
 		return (error);
 
 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
 	if (error != 0)
 		goto errout;
 
 	if (req->newptr != NULL) {
 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
 		if (error != 0)
 			goto errout;
 		if (osrel < 0) {
 			error = EINVAL;
 			goto errout;
 		}
 		p->p_osrel = osrel;
 	}
 errout:
 	PRELE(p);
 	return (error);
 }
 
 static int
 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	struct proc *p;
 	struct kinfo_sigtramp kst;
 	const struct sysentvec *sv;
 	int error;
 #ifdef COMPAT_FREEBSD32
 	struct kinfo_sigtramp32 kst32;
 #endif
 
 	if (namelen != 1)
 		return (EINVAL);
 
 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
 	if (error != 0)
 		return (error);
 	sv = p->p_sysent;
 #ifdef COMPAT_FREEBSD32
 	if ((req->flags & SCTL_MASK32) != 0) {
 		bzero(&kst32, sizeof(kst32));
 		if (SV_PROC_FLAG(p, SV_ILP32)) {
 			if (sv->sv_sigcode_base != 0) {
 				kst32.ksigtramp_start = sv->sv_sigcode_base;
 				kst32.ksigtramp_end = sv->sv_sigcode_base +
 				    *sv->sv_szsigcode;
 			} else {
 				kst32.ksigtramp_start = sv->sv_psstrings -
 				    *sv->sv_szsigcode;
 				kst32.ksigtramp_end = sv->sv_psstrings;
 			}
 		}
 		PROC_UNLOCK(p);
 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
 		return (error);
 	}
 #endif
 	bzero(&kst, sizeof(kst));
 	if (sv->sv_sigcode_base != 0) {
 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
 		    *sv->sv_szsigcode;
 	} else {
 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
 		    *sv->sv_szsigcode;
 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
 	}
 	PROC_UNLOCK(p);
 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
 	return (error);
 }
 
 static int
 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
 {
 	int *name = (int *)arg1;
 	u_int namelen = arg2;
 	pid_t pid;
 	struct proc *p;
 	struct thread *td1;
 	uintptr_t addr;
 #ifdef COMPAT_FREEBSD32
 	uint32_t addr32;
 #endif
 	int error;
 
 	if (namelen != 1 || req->newptr != NULL)
 		return (EINVAL);
 
 	pid = (pid_t)name[0];
 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
 	if (error != 0)
 		return (error);
 
 	PROC_LOCK(p);
 #ifdef COMPAT_FREEBSD32
 	if (SV_CURPROC_FLAG(SV_ILP32)) {
 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
 			error = EINVAL;
 			goto errlocked;
 		}
 	}
 #endif
 	if (pid <= PID_MAX) {
 		td1 = FIRST_THREAD_IN_PROC(p);
 	} else {
 		FOREACH_THREAD_IN_PROC(p, td1) {
 			if (td1->td_tid == pid)
 				break;
 		}
 	}
 	if (td1 == NULL) {
 		error = ESRCH;
 		goto errlocked;
 	}
 	/*
 	 * The access to the private thread flags.  It is fine as far
 	 * as no out-of-thin-air values are read from td_pflags, and
 	 * usermode read of the td_sigblock_ptr is racy inherently,
 	 * since target process might have already changed it
 	 * meantime.
 	 */
 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
 		addr = (uintptr_t)td1->td_sigblock_ptr;
 	else
 		error = ENOTTY;
 
 errlocked:
 	_PRELE(p);
 	PROC_UNLOCK(p);
 	if (error != 0)
 		return (error);
 
 #ifdef COMPAT_FREEBSD32
 	if (SV_CURPROC_FLAG(SV_ILP32)) {
 		addr32 = addr;
 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
 	} else
 #endif
 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
 	return (error);
 }
 
 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
     "Process table");
 
 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
 	"Return entire process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc, "Return process table, no threads");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
 	sysctl_kern_proc_args, "Process argument list");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
 	sysctl_kern_proc_env, "Process environment");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
 	"Process syscall vector name (ABI type)");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
 
 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
 	"Return process table, including threads");
 
 #ifdef COMPAT_FREEBSD7
 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
 #endif
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
 
 #if defined(STACK) || defined(DDB)
 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
 #endif
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
 	"Process resource limits");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
 	"Process ps_strings location");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
 	"Process binary osreldate");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
 	"Process signal trampoline location");
 
 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
 	"Thread sigfastblock address");
 
 int allproc_gen;
 
 /*
  * stop_all_proc() purpose is to stop all process which have usermode,
  * except current process for obvious reasons.  This makes it somewhat
  * unreliable when invoked from multithreaded process.  The service
  * must not be user-callable anyway.
  */
 void
 stop_all_proc(void)
 {
 	struct proc *cp, *p;
 	int r, gen;
 	bool restart, seen_stopped, seen_exiting, stopped_some;
 
 	cp = curproc;
 allproc_loop:
 	sx_xlock(&allproc_lock);
 	gen = allproc_gen;
 	seen_exiting = seen_stopped = stopped_some = restart = false;
 	LIST_REMOVE(cp, p_list);
 	LIST_INSERT_HEAD(&allproc, cp, p_list);
 	for (;;) {
 		p = LIST_NEXT(cp, p_list);
 		if (p == NULL)
 			break;
 		LIST_REMOVE(cp, p_list);
 		LIST_INSERT_AFTER(p, cp, p_list);
 		PROC_LOCK(p);
 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
 			PROC_UNLOCK(p);
 			continue;
 		}
 		if ((p->p_flag & P_WEXIT) != 0) {
 			seen_exiting = true;
 			PROC_UNLOCK(p);
 			continue;
 		}
 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
 			/*
 			 * Stopped processes are tolerated when there
 			 * are no other processes which might continue
 			 * them.  P_STOPPED_SINGLE but not
 			 * P_TOTAL_STOP process still has at least one
 			 * thread running.
 			 */
 			seen_stopped = true;
 			PROC_UNLOCK(p);
 			continue;
 		}
 		sx_xunlock(&allproc_lock);
 		_PHOLD(p);
 		r = thread_single(p, SINGLE_ALLPROC);
 		if (r != 0)
 			restart = true;
 		else
 			stopped_some = true;
 		_PRELE(p);
 		PROC_UNLOCK(p);
 		sx_xlock(&allproc_lock);
 	}
 	/* Catch forked children we did not see in iteration. */
 	if (gen != allproc_gen)
 		restart = true;
 	sx_xunlock(&allproc_lock);
 	if (restart || stopped_some || seen_exiting || seen_stopped) {
 		kern_yield(PRI_USER);
 		goto allproc_loop;
 	}
 }
 
 void
 resume_all_proc(void)
 {
 	struct proc *cp, *p;
 
 	cp = curproc;
 	sx_xlock(&allproc_lock);
 again:
 	LIST_REMOVE(cp, p_list);
 	LIST_INSERT_HEAD(&allproc, cp, p_list);
 	for (;;) {
 		p = LIST_NEXT(cp, p_list);
 		if (p == NULL)
 			break;
 		LIST_REMOVE(cp, p_list);
 		LIST_INSERT_AFTER(p, cp, p_list);
 		PROC_LOCK(p);
 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
 			sx_xunlock(&allproc_lock);
 			_PHOLD(p);
 			thread_single_end(p, SINGLE_ALLPROC);
 			_PRELE(p);
 			PROC_UNLOCK(p);
 			sx_xlock(&allproc_lock);
 		} else {
 			PROC_UNLOCK(p);
 		}
 	}
 	/*  Did the loop above missed any stopped process ? */
 	FOREACH_PROC_IN_SYSTEM(p) {
 		/* No need for proc lock. */
 		if ((p->p_flag & P_TOTAL_STOP) != 0)
 			goto again;
 	}
 	sx_xunlock(&allproc_lock);
 }
 
 /* #define	TOTAL_STOP_DEBUG	1 */
 #ifdef TOTAL_STOP_DEBUG
 volatile static int ap_resume;
 #include <sys/mount.h>
 
 static int
 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
 {
 	int error, val;
 
 	val = 0;
 	ap_resume = 0;
 	error = sysctl_handle_int(oidp, &val, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	if (val != 0) {
 		stop_all_proc();
 		syncer_suspend();
 		while (ap_resume == 0)
 			;
 		syncer_resume();
 		resume_all_proc();
 	}
 	return (0);
 }
 
 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
     sysctl_debug_stop_all_proc, "I",
     "");
 #endif
diff --git a/sys/sys/ktrace.h b/sys/sys/ktrace.h
index a0b02f7d3ac5..c4ab985722c0 100644
--- a/sys/sys/ktrace.h
+++ b/sys/sys/ktrace.h
@@ -1,309 +1,313 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1988, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)ktrace.h	8.1 (Berkeley) 6/2/93
  * $FreeBSD$
  */
 
 #ifndef _SYS_KTRACE_H_
 #define _SYS_KTRACE_H_
 
 #include <sys/caprights.h>
 
 /*
  * operations to ktrace system call  (KTROP(op))
  */
 #define KTROP_SET		0	/* set trace points */
 #define KTROP_CLEAR		1	/* clear trace points */
 #define KTROP_CLEARFILE		2	/* stop all tracing to file */
 #define	KTROP(o)		((o)&3)	/* macro to extract operation */
 /*
  * flags (ORed in with operation)
  */
 #define KTRFLAG_DESCEND		4	/* perform op on all children too */
 
 /*
  * ktrace record header
  */
 struct ktr_header {
 	int	ktr_len;		/* length of buf */
 	short	ktr_type;		/* trace record type */
 	pid_t	ktr_pid;		/* process id */
 	char	ktr_comm[MAXCOMLEN + 1];/* command name */
 	struct	timeval ktr_time;	/* timestamp */
 	intptr_t	ktr_tid;	/* was ktr_buffer */
 };
 
 /*
  * Test for kernel trace point (MP SAFE).
  *
  * KTRCHECK() just checks that the type is enabled and is only for
  * internal use in the ktrace subsystem.  KTRPOINT() checks against
  * ktrace recursion as well as checking that the type is enabled and
  * is the public interface.
  */
 #define	KTRCHECK(td, type)	((td)->td_proc->p_traceflag & (1 << type))
 #define KTRPOINT(td, type)  (__predict_false(KTRCHECK((td), (type))))
 #define	KTRCHECKDRAIN(td)	(!(STAILQ_EMPTY(&(td)->td_proc->p_ktr)))
 #define	KTRUSERRET(td) do {						\
 	if (__predict_false(KTRCHECKDRAIN(td)))				\
 		ktruserret(td);						\
 } while (0)
 
 /*
  * ktrace record types
  */
 
 /*
  * KTR_SYSCALL - system call record
  */
 #define KTR_SYSCALL	1
 struct ktr_syscall {
 	short	ktr_code;		/* syscall number */
 	short	ktr_narg;		/* number of arguments */
 	/*
 	 * followed by ktr_narg register_t
 	 */
 	register_t	ktr_args[1];
 };
 
 /*
  * KTR_SYSRET - return from system call record
  */
 #define KTR_SYSRET	2
 struct ktr_sysret {
 	short	ktr_code;
 	short	ktr_eosys;
 	int	ktr_error;
 	register_t	ktr_retval;
 };
 
 /*
  * KTR_NAMEI - namei record
  */
 #define KTR_NAMEI	3
 	/* record contains pathname */
 
 /*
  * KTR_GENIO - trace generic process i/o
  */
 #define KTR_GENIO	4
 struct ktr_genio {
 	int	ktr_fd;
 	enum	uio_rw ktr_rw;
 	/*
 	 * followed by data successfully read/written
 	 */
 };
 
 /*
  * KTR_PSIG - trace processed signal
  */
 #define	KTR_PSIG	5
 struct ktr_psig {
 	int	signo;
 	sig_t	action;
 	int	code;
 	sigset_t mask;
 };
 
 /*
  * KTR_CSW - trace context switches
  */
 #define KTR_CSW		6
 struct ktr_csw_old {
 	int	out;	/* 1 if switch out, 0 if switch in */
 	int	user;	/* 1 if usermode (ivcsw), 0 if kernel (vcsw) */
 };
 
 struct ktr_csw {
 	int	out;	/* 1 if switch out, 0 if switch in */
 	int	user;	/* 1 if usermode (ivcsw), 0 if kernel (vcsw) */
 	char	wmesg[8];
 };
 
 /*
  * KTR_USER - data coming from userland
  */
 #define KTR_USER_MAXLEN	2048	/* maximum length of passed data */
 #define KTR_USER	7
 
 /*
  * KTR_STRUCT - misc. structs
  */
 #define KTR_STRUCT	8
 	/*
 	 * record contains null-terminated struct name followed by
 	 * struct contents
 	 */
 struct sockaddr;
 struct stat;
 struct sysentvec;
 
 /*
  * KTR_SYSCTL - name of a sysctl MIB
  */
 #define	KTR_SYSCTL	9
 	/* record contains null-terminated MIB name */
 
 /*
  * KTR_PROCCTOR - trace process creation (multiple ABI support)
  */
 #define KTR_PROCCTOR	10
 struct ktr_proc_ctor {
 	u_int	sv_flags;	/* struct sysentvec sv_flags copy */
 };
 
 /*
  * KTR_PROCDTOR - trace process destruction (multiple ABI support)
  */
 #define KTR_PROCDTOR	11
 
 /*
  * KTR_CAPFAIL - trace capability check failures
  */
 #define KTR_CAPFAIL	12
 enum ktr_cap_fail_type {
 	CAPFAIL_NOTCAPABLE,	/* insufficient capabilities in cap_check() */
 	CAPFAIL_INCREASE,	/* attempt to increase capabilities */
 	CAPFAIL_SYSCALL,	/* disallowed system call */
 	CAPFAIL_LOOKUP,		/* disallowed VFS lookup */
 };
 struct ktr_cap_fail {
 	enum ktr_cap_fail_type cap_type;
 	cap_rights_t	cap_needed;
 	cap_rights_t	cap_held;
 };
 
 /*
  * KTR_FAULT - page fault record
  */
 #define KTR_FAULT	13
 struct ktr_fault {
 	vm_offset_t vaddr;
 	int type;
 };
 
 /*
  * KTR_FAULTEND - end of page fault record
  */
 #define KTR_FAULTEND	14
 struct ktr_faultend {
 	int result;
 };
 
 /*
  * KTR_STRUCT_ARRAY - array of misc. structs
  */
 #define	KTR_STRUCT_ARRAY 15
 struct ktr_struct_array {
 	size_t struct_size;
 	/*
 	 * Followed by null-terminated structure name and then payload
 	 * contents.
 	 */
 };
 
 /*
  * KTR_DROP - If this bit is set in ktr_type, then at least one event
  * between the previous record and this record was dropped.
  */
 #define	KTR_DROP	0x8000
 
 /*
  * kernel trace points (in p_traceflag)
  */
 #define KTRFAC_MASK	0x00ffffff
 #define KTRFAC_SYSCALL	(1<<KTR_SYSCALL)
 #define KTRFAC_SYSRET	(1<<KTR_SYSRET)
 #define KTRFAC_NAMEI	(1<<KTR_NAMEI)
 #define KTRFAC_GENIO	(1<<KTR_GENIO)
 #define	KTRFAC_PSIG	(1<<KTR_PSIG)
 #define KTRFAC_CSW	(1<<KTR_CSW)
 #define KTRFAC_USER	(1<<KTR_USER)
 #define KTRFAC_STRUCT	(1<<KTR_STRUCT)
 #define KTRFAC_SYSCTL	(1<<KTR_SYSCTL)
 #define KTRFAC_PROCCTOR	(1<<KTR_PROCCTOR)
 #define KTRFAC_PROCDTOR	(1<<KTR_PROCDTOR)
 #define KTRFAC_CAPFAIL	(1<<KTR_CAPFAIL)
 #define KTRFAC_FAULT	(1<<KTR_FAULT)
 #define KTRFAC_FAULTEND	(1<<KTR_FAULTEND)
 #define	KTRFAC_STRUCT_ARRAY (1<<KTR_STRUCT_ARRAY)
 
 /*
  * trace flags (also in p_traceflags)
  */
 #define KTRFAC_ROOT	0x80000000	/* root set this trace */
 #define KTRFAC_INHERIT	0x40000000	/* pass trace flags to children */
 #define	KTRFAC_DROP	0x20000000	/* last event was dropped */
 
 #ifdef	_KERNEL
+struct ktr_io_params;
+
+struct vnode *ktr_get_tracevp(struct proc *, bool);
+void	ktr_io_params_free(struct ktr_io_params *);
 void	ktrnamei(char *);
 void	ktrcsw(int, int, const char *);
 void	ktrpsig(int, sig_t, sigset_t *, int);
 void	ktrfault(vm_offset_t, int);
 void	ktrfaultend(int);
 void	ktrgenio(int, enum uio_rw, struct uio *, int);
 void	ktrsyscall(int, int narg, register_t args[]);
 void	ktrsysctl(int *name, u_int namelen);
 void	ktrsysret(int, int, register_t);
 void	ktrprocctor(struct proc *);
-void	ktrprocexec(struct proc *, struct ucred **, struct vnode **);
+struct ktr_io_params *ktrprocexec(struct proc *);
 void	ktrprocexit(struct thread *);
 void	ktrprocfork(struct proc *, struct proc *);
 void	ktruserret(struct thread *);
 void	ktrstruct(const char *, const void *, size_t);
 void	ktrstruct_error(const char *, const void *, size_t, int);
 void	ktrstructarray(const char *, enum uio_seg, const void *, int, size_t);
 void	ktrcapfail(enum ktr_cap_fail_type, const cap_rights_t *,
 	    const cap_rights_t *);
 #define ktrcaprights(s) \
 	ktrstruct("caprights", (s), sizeof(cap_rights_t))
 #define	ktritimerval(s) \
 	ktrstruct("itimerval", (s), sizeof(struct itimerval))
 #define ktrsockaddr(s) \
 	ktrstruct("sockaddr", (s), ((struct sockaddr *)(s))->sa_len)
 #define ktrstat(s) \
 	ktrstruct("stat", (s), sizeof(struct stat))
 #define ktrstat_error(s, error) \
 	ktrstruct_error("stat", (s), sizeof(struct stat), error)
 extern u_int ktr_geniosize;
 #else
 
 #include <sys/cdefs.h>
 
 __BEGIN_DECLS
 int	ktrace(const char *, int, int, pid_t);
 int	utrace(const void *, size_t);
 __END_DECLS
 
 #endif
 
 #endif
diff --git a/sys/sys/proc.h b/sys/sys/proc.h
index b47af58c34be..fb5714818163 100644
--- a/sys/sys/proc.h
+++ b/sys/sys/proc.h
@@ -1,1285 +1,1285 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1986, 1989, 1991, 1993
  *	The Regents of the University of California.  All rights reserved.
  * (c) UNIX System Laboratories, Inc.
  * All or some portions of this file are derived from material licensed
  * to the University of California by American Telephone and Telegraph
  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
  * the permission of UNIX System Laboratories, Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)proc.h	8.15 (Berkeley) 5/19/95
  * $FreeBSD$
  */
 
 #ifndef _SYS_PROC_H_
 #define	_SYS_PROC_H_
 
 #include <sys/callout.h>		/* For struct callout. */
 #include <sys/event.h>			/* For struct klist. */
 #ifdef _KERNEL
 #include <sys/_eventhandler.h>
 #endif
 #include <sys/condvar.h>
 #ifndef _KERNEL
 #include <sys/filedesc.h>
 #endif
 #include <sys/queue.h>
 #include <sys/_lock.h>
 #include <sys/lock_profile.h>
 #include <sys/_mutex.h>
 #include <sys/osd.h>
 #include <sys/priority.h>
 #include <sys/rtprio.h>			/* XXX. */
 #include <sys/runq.h>
 #include <sys/resource.h>
 #include <sys/sigio.h>
 #include <sys/signal.h>
 #include <sys/signalvar.h>
 #ifndef _KERNEL
 #include <sys/time.h>			/* For structs itimerval, timeval. */
 #else
 #include <sys/pcpu.h>
 #include <sys/systm.h>
 #endif
 #include <sys/ucontext.h>
 #include <sys/ucred.h>
 #include <sys/types.h>
 #include <sys/_domainset.h>
 
 #include <machine/proc.h>		/* Machine-dependent proc substruct. */
 #ifdef _KERNEL
 #include <machine/cpu.h>
 #endif
 
 /*
  * One structure allocated per session.
  *
  * List of locks
  * (m)		locked by s_mtx mtx
  * (e)		locked by proctree_lock sx
  * (c)		const until freeing
  */
 struct session {
 	u_int		s_count;	/* Ref cnt; pgrps in session - atomic. */
 	struct proc	*s_leader;	/* (m + e) Session leader. */
 	struct vnode	*s_ttyvp;	/* (m) Vnode of controlling tty. */
 	struct cdev_priv *s_ttydp;	/* (m) Device of controlling tty.  */
 	struct tty	*s_ttyp;	/* (e) Controlling tty. */
 	pid_t		s_sid;		/* (c) Session ID. */
 					/* (m) Setlogin() name: */
 	char		s_login[roundup(MAXLOGNAME, sizeof(long))];
 	struct mtx	s_mtx;		/* Mutex to protect members. */
 };
 
 /*
  * One structure allocated per process group.
  *
  * List of locks
  * (m)		locked by pg_mtx mtx
  * (e)		locked by proctree_lock sx
  * (c)		const until freeing
  */
 struct pgrp {
 	LIST_ENTRY(pgrp) pg_hash;	/* (e) Hash chain. */
 	LIST_HEAD(, proc) pg_members;	/* (m + e) Pointer to pgrp members. */
 	struct session	*pg_session;	/* (c) Pointer to session. */
 	struct sigiolst	pg_sigiolst;	/* (m) List of sigio sources. */
 	pid_t		pg_id;		/* (c) Process group id. */
 	struct mtx	pg_mtx;		/* Mutex to protect members */
 	int		pg_flags;	/* (m) PGRP_ flags */
 };
 
 #define	PGRP_ORPHANED	0x00000001	/* Group is orphaned */
 
 /*
  * pargs, used to hold a copy of the command line, if it had a sane length.
  */
 struct pargs {
 	u_int	ar_ref;		/* Reference count. */
 	u_int	ar_length;	/* Length. */
 	u_char	ar_args[1];	/* Arguments. */
 };
 
 /*-
  * Description of a process.
  *
  * This structure contains the information needed to manage a thread of
  * control, known in UN*X as a process; it has references to substructures
  * containing descriptions of things that the process uses, but may share
  * with related processes.  The process structure and the substructures
  * are always addressable except for those marked "(CPU)" below,
  * which might be addressable only on a processor on which the process
  * is running.
  *
  * Below is a key of locks used to protect each member of struct proc.  The
  * lock is indicated by a reference to a specific character in parens in the
  * associated comment.
  *      * - not yet protected
  *      a - only touched by curproc or parent during fork/wait
  *      b - created at fork, never changes
  *		(exception aiods switch vmspaces, but they are also
  *		marked 'P_SYSTEM' so hopefully it will be left alone)
  *      c - locked by proc mtx
  *      d - locked by allproc_lock lock
  *      e - locked by proctree_lock lock
  *      f - session mtx
  *      g - process group mtx
  *      h - callout_lock mtx
  *      i - by curproc or the master session mtx
  *      j - locked by proc slock
  *      k - only accessed by curthread
  *	k*- only accessed by curthread and from an interrupt
  *	kx- only accessed by curthread and by debugger
  *      l - the attaching proc or attaching proc parent
  *      m - Giant
  *      n - not locked, lazy
  *      o - ktrace lock
  *      q - td_contested lock
  *      r - p_peers lock
  *      s - see sleepq_switch(), sleeping_on_old_rtc(), and sleep(9)
  *      t - thread lock
  *	u - process stat lock
  *	w - process timer lock
  *      x - created at fork, only changes during single threading in exec
  *      y - created at first aio, doesn't change until exit or exec at which
  *          point we are single-threaded and only curthread changes it
  *      z - zombie threads lock
  *
  * If the locking key specifies two identifiers (for example, p_pptr) then
  * either lock is sufficient for read access, but both locks must be held
  * for write access.
  */
 struct cpuset;
 struct filecaps;
 struct filemon;
 struct kaioinfo;
 struct kaudit_record;
 struct kcov_info;
 struct kdtrace_proc;
 struct kdtrace_thread;
 struct kq_timer_cb_data;
 struct mqueue_notifier;
 struct p_sched;
 struct proc;
 struct procdesc;
 struct racct;
 struct sbuf;
 struct sleepqueue;
 struct socket;
 struct syscall_args;
 struct td_sched;
 struct thread;
 struct trapframe;
 struct turnstile;
 struct vm_map;
 struct vm_map_entry;
 struct epoch_tracker;
 
 /*
  * XXX: Does this belong in resource.h or resourcevar.h instead?
  * Resource usage extension.  The times in rusage structs in the kernel are
  * never up to date.  The actual times are kept as runtimes and tick counts
  * (with control info in the "previous" times), and are converted when
  * userland asks for rusage info.  Backwards compatibility prevents putting
  * this directly in the user-visible rusage struct.
  *
  * Locking for p_rux: (cu) means (u) for p_rux and (c) for p_crux.
  * Locking for td_rux: (t) for all fields.
  */
 struct rusage_ext {
 	uint64_t	rux_runtime;    /* (cu) Real time. */
 	uint64_t	rux_uticks;     /* (cu) Statclock hits in user mode. */
 	uint64_t	rux_sticks;     /* (cu) Statclock hits in sys mode. */
 	uint64_t	rux_iticks;     /* (cu) Statclock hits in intr mode. */
 	uint64_t	rux_uu;         /* (c) Previous user time in usec. */
 	uint64_t	rux_su;         /* (c) Previous sys time in usec. */
 	uint64_t	rux_tu;         /* (c) Previous total time in usec. */
 };
 
 /*
  * Kernel runnable context (thread).
  * This is what is put to sleep and reactivated.
  * Thread context.  Processes may have multiple threads.
  */
 struct thread {
 	struct mtx	*volatile td_lock; /* replaces sched lock */
 	struct proc	*td_proc;	/* (*) Associated process. */
 	TAILQ_ENTRY(thread) td_plist;	/* (*) All threads in this proc. */
 	TAILQ_ENTRY(thread) td_runq;	/* (t) Run queue. */
 	union	{
 		TAILQ_ENTRY(thread) td_slpq;	/* (t) Sleep queue. */
 		struct thread *td_zombie; /* Zombie list linkage */
 	};
 	TAILQ_ENTRY(thread) td_lockq;	/* (t) Lock queue. */
 	LIST_ENTRY(thread) td_hash;	/* (d) Hash chain. */
 	struct cpuset	*td_cpuset;	/* (t) CPU affinity mask. */
 	struct domainset_ref td_domain;	/* (a) NUMA policy */
 	struct seltd	*td_sel;	/* Select queue/channel. */
 	struct sleepqueue *td_sleepqueue; /* (k) Associated sleep queue. */
 	struct turnstile *td_turnstile;	/* (k) Associated turnstile. */
 	struct rl_q_entry *td_rlqe;	/* (k) Associated range lock entry. */
 	struct umtx_q   *td_umtxq;	/* (c?) Link for when we're blocked. */
 	lwpid_t		td_tid;		/* (b) Thread ID. */
 	sigqueue_t	td_sigqueue;	/* (c) Sigs arrived, not delivered. */
 #define	td_siglist	td_sigqueue.sq_signals
 	u_char		td_lend_user_pri; /* (t) Lend user pri. */
 	u_char		td_allocdomain;	/* (b) NUMA domain backing this struct thread. */
 
 /* Cleared during fork1() */
 #define	td_startzero td_flags
 	int		td_flags;	/* (t) TDF_* flags. */
 	int		td_inhibitors;	/* (t) Why can not run. */
 	int		td_pflags;	/* (k) Private thread (TDP_*) flags. */
 	int		td_pflags2;	/* (k) Private thread (TDP2_*) flags. */
 	int		td_dupfd;	/* (k) Ret value from fdopen. XXX */
 	int		td_sqqueue;	/* (t) Sleepqueue queue blocked on. */
 	const void	*td_wchan;	/* (t) Sleep address. */
 	const char	*td_wmesg;	/* (t) Reason for sleep. */
 	volatile u_char td_owepreempt;  /* (k*) Preempt on last critical_exit */
 	u_char		td_tsqueue;	/* (t) Turnstile queue blocked on. */
 	short		td_locks;	/* (k) Debug: count of non-spin locks */
 	short		td_rw_rlocks;	/* (k) Count of rwlock read locks. */
 	short		td_sx_slocks;	/* (k) Count of sx shared locks. */
 	short		td_lk_slocks;	/* (k) Count of lockmgr shared locks. */
 	short		td_stopsched;	/* (k) Scheduler stopped. */
 	struct turnstile *td_blocked;	/* (t) Lock thread is blocked on. */
 	const char	*td_lockname;	/* (t) Name of lock blocked on. */
 	LIST_HEAD(, turnstile) td_contested;	/* (q) Contested locks. */
 	struct lock_list_entry *td_sleeplocks; /* (k) Held sleep locks. */
 	int		td_intr_nesting_level; /* (k) Interrupt recursion. */
 	int		td_pinned;	/* (k) Temporary cpu pin count. */
 	struct ucred	*td_realucred;	/* (k) Reference to credentials. */
 	struct ucred	*td_ucred;	/* (k) Used credentials, temporarily switchable. */
 	struct plimit	*td_limit;	/* (k) Resource limits. */
 	int		td_slptick;	/* (t) Time at sleep. */
 	int		td_blktick;	/* (t) Time spent blocked. */
 	int		td_swvoltick;	/* (t) Time at last SW_VOL switch. */
 	int		td_swinvoltick;	/* (t) Time at last SW_INVOL switch. */
 	u_int		td_cow;		/* (*) Number of copy-on-write faults */
 	struct rusage	td_ru;		/* (t) rusage information. */
 	struct rusage_ext td_rux;	/* (t) Internal rusage information. */
 	uint64_t	td_incruntime;	/* (t) Cpu ticks to transfer to proc. */
 	uint64_t	td_runtime;	/* (t) How many cpu ticks we've run. */
 	u_int 		td_pticks;	/* (t) Statclock hits for profiling */
 	u_int		td_sticks;	/* (t) Statclock hits in system mode. */
 	u_int		td_iticks;	/* (t) Statclock hits in intr mode. */
 	u_int		td_uticks;	/* (t) Statclock hits in user mode. */
 	int		td_intrval;	/* (t) Return value for sleepq. */
 	sigset_t	td_oldsigmask;	/* (k) Saved mask from pre sigpause. */
 	volatile u_int	td_generation;	/* (k) For detection of preemption */
 	stack_t		td_sigstk;	/* (k) Stack ptr and on-stack flag. */
 	int		td_xsig;	/* (c) Signal for ptrace */
 	u_long		td_profil_addr;	/* (k) Temporary addr until AST. */
 	u_int		td_profil_ticks; /* (k) Temporary ticks until AST. */
 	char		td_name[MAXCOMLEN + 1];	/* (*) Thread name. */
 	struct file	*td_fpop;	/* (k) file referencing cdev under op */
 	int		td_dbgflags;	/* (c) Userland debugger flags */
 	siginfo_t	td_si;		/* (c) For debugger or core file */
 	int		td_ng_outbound;	/* (k) Thread entered ng from above. */
 	struct osd	td_osd;		/* (k) Object specific data. */
 	struct vm_map_entry *td_map_def_user; /* (k) Deferred entries. */
 	pid_t		td_dbg_forked;	/* (c) Child pid for debugger. */
 	struct vnode	*td_vp_reserved;/* (k) Prealloated vnode. */
 	u_int		td_no_sleeping;	/* (k) Sleeping disabled count. */
 	void		*td_su;		/* (k) FFS SU private */
 	sbintime_t	td_sleeptimo;	/* (t) Sleep timeout. */
 	int		td_rtcgen;	/* (s) rtc_generation of abs. sleep */
 	int		td_errno;	/* (k) Error from last syscall. */
 	size_t		td_vslock_sz;	/* (k) amount of vslock-ed space */
 	struct kcov_info *td_kcov_info;	/* (*) Kernel code coverage data */
 	u_int		td_ucredref;	/* (k) references on td_realucred */
 #define	td_endzero td_sigmask
 
 /* Copied during fork1() or create_thread(). */
 #define	td_startcopy td_endzero
 	sigset_t	td_sigmask;	/* (c) Current signal mask. */
 	u_char		td_rqindex;	/* (t) Run queue index. */
 	u_char		td_base_pri;	/* (t) Thread base kernel priority. */
 	u_char		td_priority;	/* (t) Thread active priority. */
 	u_char		td_pri_class;	/* (t) Scheduling class. */
 	u_char		td_user_pri;	/* (t) User pri from estcpu and nice. */
 	u_char		td_base_user_pri; /* (t) Base user pri */
 	u_char		td_unused_0;	/* no longer used field */
 	uintptr_t	td_rb_list;	/* (k) Robust list head. */
 	uintptr_t	td_rbp_list;	/* (k) Robust priv list head. */
 	uintptr_t	td_rb_inact;	/* (k) Current in-action mutex loc. */
 	struct syscall_args td_sa;	/* (kx) Syscall parameters. Copied on
 					   fork for child tracing. */
 	void		*td_sigblock_ptr; /* (k) uptr for fast sigblock. */
 	uint32_t	td_sigblock_val;  /* (k) fast sigblock value read at
 					     td_sigblock_ptr on kern entry */
 #define	td_endcopy td_pcb
 
 /*
  * Fields that must be manually set in fork1() or create_thread()
  * or already have been set in the allocator, constructor, etc.
  */
 	struct pcb	*td_pcb;	/* (k) Kernel VA of pcb and kstack. */
 	enum td_states {
 		TDS_INACTIVE = 0x0,
 		TDS_INHIBITED,
 		TDS_CAN_RUN,
 		TDS_RUNQ,
 		TDS_RUNNING
 	} td_state;			/* (t) thread state */
 	union {
 		register_t	tdu_retval[2];
 		off_t		tdu_off;
 	} td_uretoff;			/* (k) Syscall aux returns. */
 #define td_retval	td_uretoff.tdu_retval
 	u_int		td_cowgen;	/* (k) Generation of COW pointers. */
 	/* LP64 hole */
 	struct callout	td_slpcallout;	/* (h) Callout for sleep. */
 	struct trapframe *td_frame;	/* (k) */
 	vm_offset_t	td_kstack;	/* (a) Kernel VA of kstack. */
 	int		td_kstack_pages; /* (a) Size of the kstack. */
 	volatile u_int	td_critnest;	/* (k*) Critical section nest level. */
 	struct mdthread td_md;		/* (k) Any machine-dependent fields. */
 	struct kaudit_record	*td_ar;	/* (k) Active audit record, if any. */
 	struct lpohead	td_lprof[2];	/* (a) lock profiling objects. */
 	struct kdtrace_thread	*td_dtrace; /* (*) DTrace-specific data. */
 	struct vnet	*td_vnet;	/* (k) Effective vnet. */
 	const char	*td_vnet_lpush;	/* (k) Debugging vnet push / pop. */
 	struct trapframe *td_intr_frame;/* (k) Frame of the current irq */
 	struct proc	*td_rfppwait_p;	/* (k) The vforked child */
 	struct vm_page	**td_ma;	/* (k) uio pages held */
 	int		td_ma_cnt;	/* (k) size of *td_ma */
 	/* LP64 hole */
 	void		*td_emuldata;	/* Emulator state data */
 	int		td_lastcpu;	/* (t) Last cpu we were on. */
 	int		td_oncpu;	/* (t) Which cpu we are on. */
 	void		*td_lkpi_task;	/* LinuxKPI task struct pointer */
 	int		td_pmcpend;
 	void		*td_coredump;	/* (c) coredump request. */
 #ifdef EPOCH_TRACE
 	SLIST_HEAD(, epoch_tracker) td_epochs;
 #endif
 };
 
 struct thread0_storage {
 	struct thread t0st_thread;
 	uint64_t t0st_sched[10];
 };
 
 struct mtx *thread_lock_block(struct thread *);
 void thread_lock_block_wait(struct thread *);
 void thread_lock_set(struct thread *, struct mtx *);
 void thread_lock_unblock(struct thread *, struct mtx *);
 #define	THREAD_LOCK_ASSERT(td, type)					\
 	mtx_assert((td)->td_lock, (type))
 
 #define	THREAD_LOCK_BLOCKED_ASSERT(td, type)				\
 do {									\
 	struct mtx *__m = (td)->td_lock;				\
 	if (__m != &blocked_lock)					\
 		mtx_assert(__m, (type));				\
 } while (0)
 
 #ifdef INVARIANTS
 #define	THREAD_LOCKPTR_ASSERT(td, lock)					\
 do {									\
 	struct mtx *__m;						\
 	__m = (td)->td_lock;						\
 	KASSERT(__m == (lock),						\
 	    ("Thread %p lock %p does not match %p", td, __m, (lock)));	\
 } while (0)
 
 #define	THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock)				\
 do {									\
 	struct mtx *__m;						\
 	__m = (td)->td_lock;						\
 	KASSERT(__m == (lock) || __m == &blocked_lock,			\
 	    ("Thread %p lock %p does not match %p", td, __m, (lock)));	\
 } while (0)
 
 #define	TD_LOCKS_INC(td)	((td)->td_locks++)
 #define	TD_LOCKS_DEC(td) do {						\
 	KASSERT(SCHEDULER_STOPPED_TD(td) || (td)->td_locks > 0,		\
 	    ("thread %p owns no locks", (td)));				\
 	(td)->td_locks--;						\
 } while (0)
 #else
 #define	THREAD_LOCKPTR_ASSERT(td, lock)
 #define	THREAD_LOCKPTR_BLOCKED_ASSERT(td, lock)
 
 #define	TD_LOCKS_INC(td)
 #define	TD_LOCKS_DEC(td)
 #endif
 
 /*
  * Flags kept in td_flags:
  * To change these you MUST have the scheduler lock.
  */
 #define	TDF_BORROWING	0x00000001 /* Thread is borrowing pri from another. */
 #define	TDF_INPANIC	0x00000002 /* Caused a panic, let it drive crashdump. */
 #define	TDF_INMEM	0x00000004 /* Thread's stack is in memory. */
 #define	TDF_SINTR	0x00000008 /* Sleep is interruptible. */
 #define	TDF_TIMEOUT	0x00000010 /* Timing out during sleep. */
 #define	TDF_IDLETD	0x00000020 /* This is a per-CPU idle thread. */
 #define	TDF_CANSWAP	0x00000040 /* Thread can be swapped. */
 #define	TDF_UNUSED80	0x00000080 /* unused. */
 #define	TDF_KTH_SUSP	0x00000100 /* kthread is suspended */
 #define	TDF_ALLPROCSUSP	0x00000200 /* suspended by SINGLE_ALLPROC */
 #define	TDF_BOUNDARY	0x00000400 /* Thread suspended at user boundary */
 #define	TDF_ASTPENDING	0x00000800 /* Thread has some asynchronous events. */
 #define	TDF_UNUSED12	0x00001000 /* --available-- */
 #define	TDF_SBDRY	0x00002000 /* Stop only on usermode boundary. */
 #define	TDF_UPIBLOCKED	0x00004000 /* Thread blocked on user PI mutex. */
 #define	TDF_NEEDSUSPCHK	0x00008000 /* Thread may need to suspend. */
 #define	TDF_NEEDRESCHED	0x00010000 /* Thread needs to yield. */
 #define	TDF_NEEDSIGCHK	0x00020000 /* Thread may need signal delivery. */
 #define	TDF_NOLOAD	0x00040000 /* Ignore during load avg calculations. */
 #define	TDF_SERESTART	0x00080000 /* ERESTART on stop attempts. */
 #define	TDF_THRWAKEUP	0x00100000 /* Libthr thread must not suspend itself. */
 #define	TDF_SEINTR	0x00200000 /* EINTR on stop attempts. */
 #define	TDF_SWAPINREQ	0x00400000 /* Swapin request due to wakeup. */
 #define	TDF_UNUSED23	0x00800000 /* --available-- */
 #define	TDF_SCHED0	0x01000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED1	0x02000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED2	0x04000000 /* Reserved for scheduler private use */
 #define	TDF_SCHED3	0x08000000 /* Reserved for scheduler private use */
 #define	TDF_ALRMPEND	0x10000000 /* Pending SIGVTALRM needs to be posted. */
 #define	TDF_PROFPEND	0x20000000 /* Pending SIGPROF needs to be posted. */
 #define	TDF_MACPEND	0x40000000 /* AST-based MAC event pending. */
 
 /* Userland debug flags */
 #define	TDB_SUSPEND	0x00000001 /* Thread is suspended by debugger */
 #define	TDB_XSIG	0x00000002 /* Thread is exchanging signal under trace */
 #define	TDB_USERWR	0x00000004 /* Debugger modified memory or registers */
 #define	TDB_SCE		0x00000008 /* Thread performs syscall enter */
 #define	TDB_SCX		0x00000010 /* Thread performs syscall exit */
 #define	TDB_EXEC	0x00000020 /* TDB_SCX from exec(2) family */
 #define	TDB_FORK	0x00000040 /* TDB_SCX from fork(2) that created new
 				      process */
 #define	TDB_STOPATFORK	0x00000080 /* Stop at the return from fork (child
 				      only) */
 #define	TDB_CHILD	0x00000100 /* New child indicator for ptrace() */
 #define	TDB_BORN	0x00000200 /* New LWP indicator for ptrace() */
 #define	TDB_EXIT	0x00000400 /* Exiting LWP indicator for ptrace() */
 #define	TDB_VFORK	0x00000800 /* vfork indicator for ptrace() */
 #define	TDB_FSTP	0x00001000 /* The thread is PT_ATTACH leader */
 #define	TDB_STEP	0x00002000 /* (x86) PSL_T set for PT_STEP */
 #define	TDB_SSWITCH	0x00004000 /* Suspended in ptracestop */
 #define	TDB_COREDUMPRQ	0x00008000 /* Coredump request */
 
 /*
  * "Private" flags kept in td_pflags:
  * These are only written by curthread and thus need no locking.
  */
 #define	TDP_OLDMASK	0x00000001 /* Need to restore mask after suspend. */
 #define	TDP_INKTR	0x00000002 /* Thread is currently in KTR code. */
 #define	TDP_INKTRACE	0x00000004 /* Thread is currently in KTRACE code. */
 #define	TDP_BUFNEED	0x00000008 /* Do not recurse into the buf flush */
 #define	TDP_COWINPROGRESS 0x00000010 /* Snapshot copy-on-write in progress. */
 #define	TDP_ALTSTACK	0x00000020 /* Have alternate signal stack. */
 #define	TDP_DEADLKTREAT	0x00000040 /* Lock acquisition - deadlock treatment. */
 #define	TDP_NOFAULTING	0x00000080 /* Do not handle page faults. */
 #define	TDP_SIGFASTBLOCK 0x00000100 /* Fast sigblock active */
 #define	TDP_OWEUPC	0x00000200 /* Call addupc() at next AST. */
 #define	TDP_ITHREAD	0x00000400 /* Thread is an interrupt thread. */
 #define	TDP_SYNCIO	0x00000800 /* Local override, disable async i/o. */
 #define	TDP_SCHED1	0x00001000 /* Reserved for scheduler private use */
 #define	TDP_SCHED2	0x00002000 /* Reserved for scheduler private use */
 #define	TDP_SCHED3	0x00004000 /* Reserved for scheduler private use */
 #define	TDP_SCHED4	0x00008000 /* Reserved for scheduler private use */
 #define	TDP_GEOM	0x00010000 /* Settle GEOM before finishing syscall */
 #define	TDP_SOFTDEP	0x00020000 /* Stuck processing softdep worklist */
 #define	TDP_NORUNNINGBUF 0x00040000 /* Ignore runningbufspace check */
 #define	TDP_WAKEUP	0x00080000 /* Don't sleep in umtx cond_wait */
 #define	TDP_INBDFLUSH	0x00100000 /* Already in BO_BDFLUSH, do not recurse */
 #define	TDP_KTHREAD	0x00200000 /* This is an official kernel thread */
 #define	TDP_CALLCHAIN	0x00400000 /* Capture thread's callchain */
 #define	TDP_IGNSUSP	0x00800000 /* Permission to ignore the MNTK_SUSPEND* */
 #define	TDP_AUDITREC	0x01000000 /* Audit record pending on thread */
 #define	TDP_RFPPWAIT	0x02000000 /* Handle RFPPWAIT on syscall exit */
 #define	TDP_RESETSPUR	0x04000000 /* Reset spurious page fault history. */
 #define	TDP_NERRNO	0x08000000 /* Last errno is already in td_errno */
 #define	TDP_UIOHELD	0x10000000 /* Current uio has pages held in td_ma */
 #define	TDP_FORKING	0x20000000 /* Thread is being created through fork() */
 #define	TDP_EXECVMSPC	0x40000000 /* Execve destroyed old vmspace */
 #define	TDP_SIGFASTPENDING 0x80000000 /* Pending signal due to sigfastblock */
 
 #define	TDP2_SBPAGES	0x00000001 /* Owns sbusy on some pages */
 #define	TDP2_COMPAT32RB	0x00000002 /* compat32 ABI for robust lists */
 #define	TDP2_ACCT	0x00000004 /* Doing accounting */
 
 /*
  * Reasons that the current thread can not be run yet.
  * More than one may apply.
  */
 #define	TDI_SUSPENDED	0x0001	/* On suspension queue. */
 #define	TDI_SLEEPING	0x0002	/* Actually asleep! (tricky). */
 #define	TDI_SWAPPED	0x0004	/* Stack not in mem.  Bad juju if run. */
 #define	TDI_LOCK	0x0008	/* Stopped on a lock. */
 #define	TDI_IWAIT	0x0010	/* Awaiting interrupt. */
 
 #define	TD_IS_SLEEPING(td)	((td)->td_inhibitors & TDI_SLEEPING)
 #define	TD_ON_SLEEPQ(td)	((td)->td_wchan != NULL)
 #define	TD_IS_SUSPENDED(td)	((td)->td_inhibitors & TDI_SUSPENDED)
 #define	TD_IS_SWAPPED(td)	((td)->td_inhibitors & TDI_SWAPPED)
 #define	TD_ON_LOCK(td)		((td)->td_inhibitors & TDI_LOCK)
 #define	TD_AWAITING_INTR(td)	((td)->td_inhibitors & TDI_IWAIT)
 #define	TD_IS_RUNNING(td)	((td)->td_state == TDS_RUNNING)
 #define	TD_ON_RUNQ(td)		((td)->td_state == TDS_RUNQ)
 #define	TD_CAN_RUN(td)		((td)->td_state == TDS_CAN_RUN)
 #define	TD_IS_INHIBITED(td)	((td)->td_state == TDS_INHIBITED)
 #define	TD_ON_UPILOCK(td)	((td)->td_flags & TDF_UPIBLOCKED)
 #define TD_IS_IDLETHREAD(td)	((td)->td_flags & TDF_IDLETD)
 
 #define	TD_CAN_ABORT(td)	(TD_ON_SLEEPQ((td)) &&			\
 				    ((td)->td_flags & TDF_SINTR) != 0)
 
 #define	KTDSTATE(td)							\
 	(((td)->td_inhibitors & TDI_SLEEPING) != 0 ? "sleep"  :		\
 	((td)->td_inhibitors & TDI_SUSPENDED) != 0 ? "suspended" :	\
 	((td)->td_inhibitors & TDI_SWAPPED) != 0 ? "swapped" :		\
 	((td)->td_inhibitors & TDI_LOCK) != 0 ? "blocked" :		\
 	((td)->td_inhibitors & TDI_IWAIT) != 0 ? "iwait" : "yielding")
 
 #define	TD_SET_INHIB(td, inhib) do {			\
 	(td)->td_state = TDS_INHIBITED;			\
 	(td)->td_inhibitors |= (inhib);			\
 } while (0)
 
 #define	TD_CLR_INHIB(td, inhib) do {			\
 	if (((td)->td_inhibitors & (inhib)) &&		\
 	    (((td)->td_inhibitors &= ~(inhib)) == 0))	\
 		(td)->td_state = TDS_CAN_RUN;		\
 } while (0)
 
 #define	TD_SET_SLEEPING(td)	TD_SET_INHIB((td), TDI_SLEEPING)
 #define	TD_SET_SWAPPED(td)	TD_SET_INHIB((td), TDI_SWAPPED)
 #define	TD_SET_LOCK(td)		TD_SET_INHIB((td), TDI_LOCK)
 #define	TD_SET_SUSPENDED(td)	TD_SET_INHIB((td), TDI_SUSPENDED)
 #define	TD_SET_IWAIT(td)	TD_SET_INHIB((td), TDI_IWAIT)
 #define	TD_SET_EXITING(td)	TD_SET_INHIB((td), TDI_EXITING)
 
 #define	TD_CLR_SLEEPING(td)	TD_CLR_INHIB((td), TDI_SLEEPING)
 #define	TD_CLR_SWAPPED(td)	TD_CLR_INHIB((td), TDI_SWAPPED)
 #define	TD_CLR_LOCK(td)		TD_CLR_INHIB((td), TDI_LOCK)
 #define	TD_CLR_SUSPENDED(td)	TD_CLR_INHIB((td), TDI_SUSPENDED)
 #define	TD_CLR_IWAIT(td)	TD_CLR_INHIB((td), TDI_IWAIT)
 
 #define	TD_SET_RUNNING(td)	(td)->td_state = TDS_RUNNING
 #define	TD_SET_RUNQ(td)		(td)->td_state = TDS_RUNQ
 #define	TD_SET_CAN_RUN(td)	(td)->td_state = TDS_CAN_RUN
 
 #define	TD_SBDRY_INTR(td) \
     (((td)->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 0)
 #define	TD_SBDRY_ERRNO(td) \
     (((td)->td_flags & TDF_SEINTR) != 0 ? EINTR : ERESTART)
 
 /*
  * Process structure.
  */
 struct proc {
 	LIST_ENTRY(proc) p_list;	/* (d) List of all processes. */
 	TAILQ_HEAD(, thread) p_threads;	/* (c) all threads. */
 	struct mtx	p_slock;	/* process spin lock */
 	struct ucred	*p_ucred;	/* (c) Process owner's identity. */
 	struct filedesc	*p_fd;		/* (b) Open files. */
 	struct filedesc_to_leader *p_fdtol; /* (b) Tracking node */
 	struct pwddesc	*p_pd;		/* (b) Cwd, chroot, jail, umask */
 	struct pstats	*p_stats;	/* (b) Accounting/statistics (CPU). */
 	struct plimit	*p_limit;	/* (c) Resource limits. */
 	struct callout	p_limco;	/* (c) Limit callout handle */
 	struct sigacts	*p_sigacts;	/* (x) Signal actions, state (CPU). */
 
 	int		p_flag;		/* (c) P_* flags. */
 	int		p_flag2;	/* (c) P2_* flags. */
 	enum p_states {
 		PRS_NEW = 0,		/* In creation */
 		PRS_NORMAL,		/* threads can be run. */
 		PRS_ZOMBIE
 	} p_state;			/* (j/c) Process status. */
 	pid_t		p_pid;		/* (b) Process identifier. */
 	LIST_ENTRY(proc) p_hash;	/* (d) Hash chain. */
 	LIST_ENTRY(proc) p_pglist;	/* (g + e) List of processes in pgrp. */
 	struct proc	*p_pptr;	/* (c + e) Pointer to parent process. */
 	LIST_ENTRY(proc) p_sibling;	/* (e) List of sibling processes. */
 	LIST_HEAD(, proc) p_children;	/* (e) Pointer to list of children. */
 	struct proc	*p_reaper;	/* (e) My reaper. */
 	LIST_HEAD(, proc) p_reaplist;	/* (e) List of my descendants
 					       (if I am reaper). */
 	LIST_ENTRY(proc) p_reapsibling;	/* (e) List of siblings - descendants of
 					       the same reaper. */
 	struct mtx	p_mtx;		/* (n) Lock for this struct. */
 	struct mtx	p_statmtx;	/* Lock for the stats */
 	struct mtx	p_itimmtx;	/* Lock for the virt/prof timers */
 	struct mtx	p_profmtx;	/* Lock for the profiling */
 	struct ksiginfo *p_ksi;	/* Locked by parent proc lock */
 	sigqueue_t	p_sigqueue;	/* (c) Sigs not delivered to a td. */
 #define p_siglist	p_sigqueue.sq_signals
 	pid_t		p_oppid;	/* (c + e) Real parent pid. */
 
 /* The following fields are all zeroed upon creation in fork. */
 #define	p_startzero	p_vmspace
 	struct vmspace	*p_vmspace;	/* (b) Address space. */
 	u_int		p_swtick;	/* (c) Tick when swapped in or out. */
 	u_int		p_cowgen;	/* (c) Generation of COW pointers. */
 	struct itimerval p_realtimer;	/* (c) Alarm timer. */
 	struct rusage	p_ru;		/* (a) Exit information. */
 	struct rusage_ext p_rux;	/* (cu) Internal resource usage. */
 	struct rusage_ext p_crux;	/* (c) Internal child resource usage. */
 	int		p_profthreads;	/* (c) Num threads in addupc_task. */
 	volatile int	p_exitthreads;	/* (j) Number of threads exiting */
 	int		p_traceflag;	/* (o) Kernel trace points. */
-	struct vnode	*p_tracevp;	/* (c + o) Trace to vnode. */
-	struct ucred	*p_tracecred;	/* (o) Credentials to trace with. */
+	struct ktr_io_params	*p_ktrioparms;	/* (c + o) Params for ktrace. */
+	void		*p_pad0;
 	struct vnode	*p_textvp;	/* (b) Vnode of executable. */
 	u_int		p_lock;		/* (c) Proclock (prevent swap) count. */
 	struct sigiolst	p_sigiolst;	/* (c) List of sigio sources. */
 	int		p_sigparent;	/* (c) Signal to parent on exit. */
 	int		p_sig;		/* (n) For core dump/debugger XXX. */
 	u_int		p_ptevents;	/* (c + e) ptrace() event mask. */
 	struct kaioinfo	*p_aioinfo;	/* (y) ASYNC I/O info. */
 	struct thread	*p_singlethread;/* (c + j) If single threading this is it */
 	int		p_suspcount;	/* (j) Num threads in suspended mode. */
 	struct thread	*p_xthread;	/* (c) Trap thread */
 	int		p_boundary_count;/* (j) Num threads at user boundary */
 	int		p_pendingcnt;	/* how many signals are pending */
 	struct itimers	*p_itimers;	/* (c) POSIX interval timers. */
 	struct procdesc	*p_procdesc;	/* (e) Process descriptor, if any. */
 	u_int		p_treeflag;	/* (e) P_TREE flags */
 	int		p_pendingexits; /* (c) Count of pending thread exits. */
 	struct filemon	*p_filemon;	/* (c) filemon-specific data. */
 	int		p_pdeathsig;	/* (c) Signal from parent on exit. */
 /* End area that is zeroed on creation. */
 #define	p_endzero	p_magic
 
 /* The following fields are all copied upon creation in fork. */
 #define	p_startcopy	p_endzero
 	u_int		p_magic;	/* (b) Magic number. */
 	int		p_osrel;	/* (x) osreldate for the
 					       binary (from ELF note, if any) */
 	uint32_t	p_fctl0;	/* (x) ABI feature control, ELF note */
 	char		p_comm[MAXCOMLEN + 1];	/* (x) Process name. */
 	struct sysentvec *p_sysent;	/* (b) Syscall dispatch info. */
 	struct pargs	*p_args;	/* (c) Process arguments. */
 	rlim_t		p_cpulimit;	/* (c) Current CPU limit in seconds. */
 	signed char	p_nice;		/* (c) Process "nice" value. */
 	int		p_fibnum;	/* in this routing domain XXX MRT */
 	pid_t		p_reapsubtree;	/* (e) Pid of the direct child of the
 					       reaper which spawned
 					       our subtree. */
 	uint16_t	p_elf_machine;	/* (x) ELF machine type */
 	uint64_t	p_elf_flags;	/* (x) ELF flags */
 /* End area that is copied on creation. */
 #define	p_endcopy	p_xexit
 
 	u_int		p_xexit;	/* (c) Exit code. */
 	u_int		p_xsig;		/* (c) Stop/kill sig. */
 	struct pgrp	*p_pgrp;	/* (c + e) Pointer to process group. */
 	struct knlist	*p_klist;	/* (c) Knotes attached to this proc. */
 	int		p_numthreads;	/* (c) Number of threads. */
 	struct mdproc	p_md;		/* Any machine-dependent fields. */
 	struct callout	p_itcallout;	/* (h + c) Interval timer callout. */
 	u_short		p_acflag;	/* (c) Accounting flags. */
 	struct proc	*p_peers;	/* (r) */
 	struct proc	*p_leader;	/* (b) */
 	void		*p_emuldata;	/* (c) Emulator state data. */
 	struct label	*p_label;	/* (*) Proc (not subject) MAC label. */
 	STAILQ_HEAD(, ktr_request)	p_ktr;	/* (o) KTR event queue. */
 	LIST_HEAD(, mqueue_notifier)	p_mqnotifier; /* (c) mqueue notifiers.*/
 	struct kdtrace_proc	*p_dtrace; /* (*) DTrace-specific data. */
 	struct cv	p_pwait;	/* (*) wait cv for exit/exec. */
 	uint64_t	p_prev_runtime;	/* (c) Resource usage accounting. */
 	struct racct	*p_racct;	/* (b) Resource accounting. */
 	int		p_throttled;	/* (c) Flag for racct pcpu throttling */
 	/*
 	 * An orphan is the child that has been re-parented to the
 	 * debugger as a result of attaching to it.  Need to keep
 	 * track of them for parent to be able to collect the exit
 	 * status of what used to be children.
 	 */
 	LIST_ENTRY(proc) p_orphan;	/* (e) List of orphan processes. */
 	LIST_HEAD(, proc) p_orphans;	/* (e) Pointer to list of orphans. */
 
 	TAILQ_HEAD(, kq_timer_cb_data)	p_kqtim_stop;	/* (c) */
 };
 
 #define	p_session	p_pgrp->pg_session
 #define	p_pgid		p_pgrp->pg_id
 
 #define	NOCPU		(-1)	/* For when we aren't on a CPU. */
 #define	NOCPU_OLD	(255)
 #define	MAXCPU_OLD	(254)
 
 #define	PROC_SLOCK(p)	mtx_lock_spin(&(p)->p_slock)
 #define	PROC_SUNLOCK(p)	mtx_unlock_spin(&(p)->p_slock)
 #define	PROC_SLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_slock, (type))
 
 #define	PROC_STATLOCK(p)	mtx_lock_spin(&(p)->p_statmtx)
 #define	PROC_STATUNLOCK(p)	mtx_unlock_spin(&(p)->p_statmtx)
 #define	PROC_STATLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_statmtx, (type))
 
 #define	PROC_ITIMLOCK(p)	mtx_lock_spin(&(p)->p_itimmtx)
 #define	PROC_ITIMUNLOCK(p)	mtx_unlock_spin(&(p)->p_itimmtx)
 #define	PROC_ITIMLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_itimmtx, (type))
 
 #define	PROC_PROFLOCK(p)	mtx_lock_spin(&(p)->p_profmtx)
 #define	PROC_PROFUNLOCK(p)	mtx_unlock_spin(&(p)->p_profmtx)
 #define	PROC_PROFLOCK_ASSERT(p, type)	mtx_assert(&(p)->p_profmtx, (type))
 
 /* These flags are kept in p_flag. */
 #define	P_ADVLOCK	0x00000001	/* Process may hold a POSIX advisory
 					   lock. */
 #define	P_CONTROLT	0x00000002	/* Has a controlling terminal. */
 #define	P_KPROC		0x00000004	/* Kernel process. */
 #define	P_UNUSED3	0x00000008	/* --available-- */
 #define	P_PPWAIT	0x00000010	/* Parent is waiting for child to
 					   exec/exit. */
 #define	P_PROFIL	0x00000020	/* Has started profiling. */
 #define	P_STOPPROF	0x00000040	/* Has thread requesting to stop
 					   profiling. */
 #define	P_HADTHREADS	0x00000080	/* Has had threads (no cleanup
 					   shortcuts) */
 #define	P_SUGID		0x00000100	/* Had set id privileges since last
 					   exec. */
 #define	P_SYSTEM	0x00000200	/* System proc: no sigs, stats or
 					   swapping. */
 #define	P_SINGLE_EXIT	0x00000400	/* Threads suspending should exit,
 					   not wait. */
 #define	P_TRACED	0x00000800	/* Debugged process being traced. */
 #define	P_WAITED	0x00001000	/* Someone is waiting for us. */
 #define	P_WEXIT		0x00002000	/* Working on exiting. */
 #define	P_EXEC		0x00004000	/* Process called exec. */
 #define	P_WKILLED	0x00008000	/* Killed, go to kernel/user boundary
 					   ASAP. */
 #define	P_CONTINUED	0x00010000	/* Proc has continued from a stopped
 					   state. */
 #define	P_STOPPED_SIG	0x00020000	/* Stopped due to SIGSTOP/SIGTSTP. */
 #define	P_STOPPED_TRACE	0x00040000	/* Stopped because of tracing. */
 #define	P_STOPPED_SINGLE 0x00080000	/* Only 1 thread can continue (not to
 					   user). */
 #define	P_PROTECTED	0x00100000	/* Do not kill on memory overcommit. */
 #define	P_SIGEVENT	0x00200000	/* Process pending signals changed. */
 #define	P_SINGLE_BOUNDARY 0x00400000	/* Threads should suspend at user
 					   boundary. */
 #define	P_HWPMC		0x00800000	/* Process is using HWPMCs */
 #define	P_JAILED	0x01000000	/* Process is in jail. */
 #define	P_TOTAL_STOP	0x02000000	/* Stopped in stop_all_proc. */
 #define	P_INEXEC	0x04000000	/* Process is in execve(). */
 #define	P_STATCHILD	0x08000000	/* Child process stopped or exited. */
 #define	P_INMEM		0x10000000	/* Loaded into memory. */
 #define	P_SWAPPINGOUT	0x20000000	/* Process is being swapped out. */
 #define	P_SWAPPINGIN	0x40000000	/* Process is being swapped in. */
 #define	P_PPTRACE	0x80000000	/* PT_TRACEME by vforked child. */
 
 #define	P_STOPPED	(P_STOPPED_SIG|P_STOPPED_SINGLE|P_STOPPED_TRACE)
 #define	P_SHOULDSTOP(p)	((p)->p_flag & P_STOPPED)
 #define	P_KILLED(p)	((p)->p_flag & P_WKILLED)
 
 /* These flags are kept in p_flag2. */
 #define	P2_INHERIT_PROTECTED	0x00000001	/* New children get
 						   P_PROTECTED. */
 #define	P2_NOTRACE		0x00000002	/* No ptrace(2) attach or
 						   coredumps. */
 #define	P2_NOTRACE_EXEC		0x00000004	/* Keep P2_NOPTRACE on
 						   exec(2). */
 #define	P2_AST_SU		0x00000008	/* Handles SU ast for
 						   kthreads. */
 #define	P2_PTRACE_FSTP		0x00000010	/* SIGSTOP from PT_ATTACH not
 						   yet handled. */
 #define	P2_TRAPCAP		0x00000020	/* SIGTRAP on ENOTCAPABLE */
 #define	P2_ASLR_ENABLE		0x00000040	/* Force enable ASLR. */
 #define	P2_ASLR_DISABLE		0x00000080	/* Force disable ASLR. */
 #define	P2_ASLR_IGNSTART	0x00000100	/* Enable ASLR to consume sbrk
 						   area. */
 #define	P2_PROTMAX_ENABLE	0x00000200	/* Force enable implied
 						   PROT_MAX. */
 #define	P2_PROTMAX_DISABLE	0x00000400	/* Force disable implied
 						   PROT_MAX. */
 #define	P2_STKGAP_DISABLE	0x00000800	/* Disable stack gap for
 						   MAP_STACK */
 #define	P2_STKGAP_DISABLE_EXEC	0x00001000	/* Stack gap disabled
 						   after exec */
 #define	P2_ITSTOPPED		0x00002000
 #define	P2_PTRACEREQ		0x00004000	/* Active ptrace req */
 
 /* Flags protected by proctree_lock, kept in p_treeflags. */
 #define	P_TREE_ORPHANED		0x00000001	/* Reparented, on orphan list */
 #define	P_TREE_FIRST_ORPHAN	0x00000002	/* First element of orphan
 						   list */
 #define	P_TREE_REAPER		0x00000004	/* Reaper of subtree */
 #define	P_TREE_GRPEXITED	0x00000008	/* exit1() done with job ctl */
 
 /*
  * These were process status values (p_stat), now they are only used in
  * legacy conversion code.
  */
 #define	SIDL	1		/* Process being created by fork. */
 #define	SRUN	2		/* Currently runnable. */
 #define	SSLEEP	3		/* Sleeping on an address. */
 #define	SSTOP	4		/* Process debugging or suspension. */
 #define	SZOMB	5		/* Awaiting collection by parent. */
 #define	SWAIT	6		/* Waiting for interrupt. */
 #define	SLOCK	7		/* Blocked on a lock. */
 
 #define	P_MAGIC		0xbeefface
 
 #ifdef _KERNEL
 
 /* Types and flags for mi_switch(). */
 #define	SW_TYPE_MASK		0xff	/* First 8 bits are switch type */
 #define	SWT_NONE		0	/* Unspecified switch. */
 #define	SWT_PREEMPT		1	/* Switching due to preemption. */
 #define	SWT_OWEPREEMPT		2	/* Switching due to owepreempt. */
 #define	SWT_TURNSTILE		3	/* Turnstile contention. */
 #define	SWT_SLEEPQ		4	/* Sleepq wait. */
 #define	SWT_SLEEPQTIMO		5	/* Sleepq timeout wait. */
 #define	SWT_RELINQUISH		6	/* yield call. */
 #define	SWT_NEEDRESCHED		7	/* NEEDRESCHED was set. */
 #define	SWT_IDLE		8	/* Switching from the idle thread. */
 #define	SWT_IWAIT		9	/* Waiting for interrupts. */
 #define	SWT_SUSPEND		10	/* Thread suspended. */
 #define	SWT_REMOTEPREEMPT	11	/* Remote processor preempted. */
 #define	SWT_REMOTEWAKEIDLE	12	/* Remote processor preempted idle. */
 #define	SWT_COUNT		13	/* Number of switch types. */
 /* Flags */
 #define	SW_VOL		0x0100		/* Voluntary switch. */
 #define	SW_INVOL	0x0200		/* Involuntary switch. */
 #define SW_PREEMPT	0x0400		/* The invol switch is a preemption */
 
 /* How values for thread_single(). */
 #define	SINGLE_NO_EXIT	0
 #define	SINGLE_EXIT	1
 #define	SINGLE_BOUNDARY	2
 #define	SINGLE_ALLPROC	3
 
 #ifdef MALLOC_DECLARE
 MALLOC_DECLARE(M_PARGS);
 MALLOC_DECLARE(M_SESSION);
 MALLOC_DECLARE(M_SUBPROC);
 #endif
 
 #define	FOREACH_PROC_IN_SYSTEM(p)					\
 	LIST_FOREACH((p), &allproc, p_list)
 #define	FOREACH_THREAD_IN_PROC(p, td)					\
 	TAILQ_FOREACH((td), &(p)->p_threads, td_plist)
 
 #define	FIRST_THREAD_IN_PROC(p)	TAILQ_FIRST(&(p)->p_threads)
 
 /*
  * We use process IDs <= pid_max <= PID_MAX; PID_MAX + 1 must also fit
  * in a pid_t, as it is used to represent "no process group".
  */
 #define	PID_MAX		99999
 #define	NO_PID		100000
 #define	THREAD0_TID	NO_PID
 extern pid_t pid_max;
 
 #define	SESS_LEADER(p)	((p)->p_session->s_leader == (p))
 
 /* Lock and unlock a process. */
 #define	PROC_LOCK(p)	mtx_lock(&(p)->p_mtx)
 #define	PROC_TRYLOCK(p)	mtx_trylock(&(p)->p_mtx)
 #define	PROC_UNLOCK(p)	mtx_unlock(&(p)->p_mtx)
 #define	PROC_LOCKED(p)	mtx_owned(&(p)->p_mtx)
 #define	PROC_WAIT_UNLOCKED(p)	mtx_wait_unlocked(&(p)->p_mtx)
 #define	PROC_LOCK_ASSERT(p, type)	mtx_assert(&(p)->p_mtx, (type))
 
 /* Lock and unlock a process group. */
 #define	PGRP_LOCK(pg)	mtx_lock(&(pg)->pg_mtx)
 #define	PGRP_UNLOCK(pg)	mtx_unlock(&(pg)->pg_mtx)
 #define	PGRP_LOCKED(pg)	mtx_owned(&(pg)->pg_mtx)
 #define	PGRP_LOCK_ASSERT(pg, type)	mtx_assert(&(pg)->pg_mtx, (type))
 
 #define	PGRP_LOCK_PGSIGNAL(pg) do {					\
 	if ((pg) != NULL)						\
 		PGRP_LOCK(pg);						\
 } while (0)
 #define	PGRP_UNLOCK_PGSIGNAL(pg) do {					\
 	if ((pg) != NULL)						\
 		PGRP_UNLOCK(pg);					\
 } while (0)
 
 /* Lock and unlock a session. */
 #define	SESS_LOCK(s)	mtx_lock(&(s)->s_mtx)
 #define	SESS_UNLOCK(s)	mtx_unlock(&(s)->s_mtx)
 #define	SESS_LOCKED(s)	mtx_owned(&(s)->s_mtx)
 #define	SESS_LOCK_ASSERT(s, type)	mtx_assert(&(s)->s_mtx, (type))
 
 /*
  * Non-zero p_lock ensures that:
  * - exit1() is not performed until p_lock reaches zero;
  * - the process' threads stack are not swapped out if they are currently
  *   not (P_INMEM).
  *
  * PHOLD() asserts that the process (except the current process) is
  * not exiting, increments p_lock and swaps threads stacks into memory,
  * if needed.
  * _PHOLD() is same as PHOLD(), it takes the process locked.
  * _PHOLD_LITE() also takes the process locked, but comparing with
  * _PHOLD(), it only guarantees that exit1() is not executed,
  * faultin() is not called.
  */
 #define	PHOLD(p) do {							\
 	PROC_LOCK(p);							\
 	_PHOLD(p);							\
 	PROC_UNLOCK(p);							\
 } while (0)
 #define	_PHOLD(p) do {							\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc,		\
 	    ("PHOLD of exiting process %p", p));			\
 	(p)->p_lock++;							\
 	if (((p)->p_flag & P_INMEM) == 0)				\
 		faultin((p));						\
 } while (0)
 #define	_PHOLD_LITE(p) do {						\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	KASSERT(!((p)->p_flag & P_WEXIT) || (p) == curproc,		\
 	    ("PHOLD of exiting process %p", p));			\
 	(p)->p_lock++;							\
 } while (0)
 #define	PROC_ASSERT_HELD(p) do {					\
 	KASSERT((p)->p_lock > 0, ("process %p not held", p));		\
 } while (0)
 
 #define	PRELE(p) do {							\
 	PROC_LOCK((p));							\
 	_PRELE((p));							\
 	PROC_UNLOCK((p));						\
 } while (0)
 #define	_PRELE(p) do {							\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	PROC_ASSERT_HELD(p);						\
 	(--(p)->p_lock);						\
 	if (((p)->p_flag & P_WEXIT) && (p)->p_lock == 0)		\
 		wakeup(&(p)->p_lock);					\
 } while (0)
 #define	PROC_ASSERT_NOT_HELD(p) do {					\
 	KASSERT((p)->p_lock == 0, ("process %p held", p));		\
 } while (0)
 
 #define	PROC_UPDATE_COW(p) do {						\
 	PROC_LOCK_ASSERT((p), MA_OWNED);				\
 	(p)->p_cowgen++;						\
 } while (0)
 
 /* Check whether a thread is safe to be swapped out. */
 #define	thread_safetoswapout(td)	((td)->td_flags & TDF_CANSWAP)
 
 /* Control whether or not it is safe for curthread to sleep. */
 #define	THREAD_NO_SLEEPING()		do {				\
 	curthread->td_no_sleeping++;					\
 	MPASS(curthread->td_no_sleeping > 0);				\
 } while (0)
 
 #define	THREAD_SLEEPING_OK()		do {				\
 	MPASS(curthread->td_no_sleeping > 0);				\
 	curthread->td_no_sleeping--;					\
 } while (0)
 
 #define	THREAD_CAN_SLEEP()		((curthread)->td_no_sleeping == 0)
 
 #define	PIDHASH(pid)	(&pidhashtbl[(pid) & pidhash])
 #define	PIDHASHLOCK(pid) (&pidhashtbl_lock[((pid) & pidhashlock)])
 extern LIST_HEAD(pidhashhead, proc) *pidhashtbl;
 extern struct sx *pidhashtbl_lock;
 extern u_long pidhash;
 extern u_long pidhashlock;
 
 #define	PGRPHASH(pgid)	(&pgrphashtbl[(pgid) & pgrphash])
 extern LIST_HEAD(pgrphashhead, pgrp) *pgrphashtbl;
 extern u_long pgrphash;
 
 extern struct sx allproc_lock;
 extern int allproc_gen;
 extern struct sx proctree_lock;
 extern struct mtx ppeers_lock;
 extern struct mtx procid_lock;
 extern struct proc proc0;		/* Process slot for swapper. */
 extern struct thread0_storage thread0_st;	/* Primary thread in proc0. */
 #define	thread0 (thread0_st.t0st_thread)
 extern struct vmspace vmspace0;		/* VM space for proc0. */
 extern int hogticks;			/* Limit on kernel cpu hogs. */
 extern int lastpid;
 extern int nprocs, maxproc;		/* Current and max number of procs. */
 extern int maxprocperuid;		/* Max procs per uid. */
 extern u_long ps_arg_cache_limit;
 
 LIST_HEAD(proclist, proc);
 TAILQ_HEAD(procqueue, proc);
 TAILQ_HEAD(threadqueue, thread);
 extern struct proclist allproc;		/* List of all processes. */
 extern struct proc *initproc, *pageproc; /* Process slots for init, pager. */
 
 extern struct uma_zone *proc_zone;
 extern struct uma_zone *pgrp_zone;
 
 struct	proc *pfind(pid_t);		/* Find process by id. */
 struct	proc *pfind_any(pid_t);		/* Find (zombie) process by id. */
 struct	proc *pfind_any_locked(pid_t pid); /* Find process by id, locked. */
 struct	pgrp *pgfind(pid_t);		/* Find process group by id. */
 void	pidhash_slockall(void);		/* Shared lock all pid hash lists. */
 void	pidhash_sunlockall(void);	/* Shared unlock all pid hash lists. */
 
 struct	fork_req {
 	int		fr_flags;
 	int		fr_pages;
 	int 		*fr_pidp;
 	struct proc 	**fr_procp;
 	int 		*fr_pd_fd;
 	int 		fr_pd_flags;
 	struct filecaps	*fr_pd_fcaps;
 	int 		fr_flags2;
 #define	FR2_DROPSIG_CAUGHT	0x00000001 /* Drop caught non-DFL signals */
 #define	FR2_SHARE_PATHS		0x00000002 /* Invert sense of RFFDG for paths */
 #define	FR2_KPROC		0x00000004 /* Create a kernel process */
 };
 
 /*
  * pget() flags.
  */
 #define	PGET_HOLD	0x00001	/* Hold the process. */
 #define	PGET_CANSEE	0x00002	/* Check against p_cansee(). */
 #define	PGET_CANDEBUG	0x00004	/* Check against p_candebug(). */
 #define	PGET_ISCURRENT	0x00008	/* Check that the found process is current. */
 #define	PGET_NOTWEXIT	0x00010	/* Check that the process is not in P_WEXIT. */
 #define	PGET_NOTINEXEC	0x00020	/* Check that the process is not in P_INEXEC. */
 #define	PGET_NOTID	0x00040	/* Do not assume tid if pid > PID_MAX. */
 
 #define	PGET_WANTREAD	(PGET_HOLD | PGET_CANDEBUG | PGET_NOTWEXIT)
 
 int	pget(pid_t pid, int flags, struct proc **pp);
 
 void	ast(struct trapframe *framep);
 struct	thread *choosethread(void);
 int	cr_cansee(struct ucred *u1, struct ucred *u2);
 int	cr_canseesocket(struct ucred *cred, struct socket *so);
 int	cr_canseeothergids(struct ucred *u1, struct ucred *u2);
 int	cr_canseeotheruids(struct ucred *u1, struct ucred *u2);
 int	cr_canseejailproc(struct ucred *u1, struct ucred *u2);
 int	cr_cansignal(struct ucred *cred, struct proc *proc, int signum);
 int	enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp,
 	    struct session *sess);
 int	enterthispgrp(struct proc *p, struct pgrp *pgrp);
 void	faultin(struct proc *p);
 int	fork1(struct thread *, struct fork_req *);
 void	fork_rfppwait(struct thread *);
 void	fork_exit(void (*)(void *, struct trapframe *), void *,
 	    struct trapframe *);
 void	fork_return(struct thread *, struct trapframe *);
 int	inferior(struct proc *p);
 void	itimer_proc_continue(struct proc *p);
 void	kqtimer_proc_continue(struct proc *p);
 void	kern_proc_vmmap_resident(struct vm_map *map, struct vm_map_entry *entry,
 	    int *resident_count, bool *super);
 void	kern_yield(int);
 void 	kick_proc0(void);
 void	killjobc(void);
 int	leavepgrp(struct proc *p);
 int	maybe_preempt(struct thread *td);
 void	maybe_yield(void);
 void	mi_switch(int flags);
 int	p_candebug(struct thread *td, struct proc *p);
 int	p_cansee(struct thread *td, struct proc *p);
 int	p_cansched(struct thread *td, struct proc *p);
 int	p_cansignal(struct thread *td, struct proc *p, int signum);
 int	p_canwait(struct thread *td, struct proc *p);
 struct	pargs *pargs_alloc(int len);
 void	pargs_drop(struct pargs *pa);
 void	pargs_hold(struct pargs *pa);
 int	proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb);
 int	proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb);
 int	proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb);
 void	procinit(void);
 int	proc_iterate(int (*cb)(struct proc *, void *), void *cbarg);
 void	proc_linkup0(struct proc *p, struct thread *td);
 void	proc_linkup(struct proc *p, struct thread *td);
 struct proc *proc_realparent(struct proc *child);
 void	proc_reap(struct thread *td, struct proc *p, int *status, int options);
 void	proc_reparent(struct proc *child, struct proc *newparent, bool set_oppid);
 void	proc_add_orphan(struct proc *child, struct proc *parent);
 void	proc_set_traced(struct proc *p, bool stop);
 void	proc_wkilled(struct proc *p);
 struct	pstats *pstats_alloc(void);
 void	pstats_fork(struct pstats *src, struct pstats *dst);
 void	pstats_free(struct pstats *ps);
 void	proc_clear_orphan(struct proc *p);
 void	reaper_abandon_children(struct proc *p, bool exiting);
 int	securelevel_ge(struct ucred *cr, int level);
 int	securelevel_gt(struct ucred *cr, int level);
 void	sess_hold(struct session *);
 void	sess_release(struct session *);
 int	setrunnable(struct thread *, int);
 void	setsugid(struct proc *p);
 int	should_yield(void);
 int	sigonstack(size_t sp);
 void	stopevent(struct proc *, u_int, u_int);
 struct	thread *tdfind(lwpid_t, pid_t);
 void	threadinit(void);
 void	tidhash_add(struct thread *);
 void	tidhash_remove(struct thread *);
 void	cpu_idle(int);
 int	cpu_idle_wakeup(int);
 extern	void (*cpu_idle_hook)(sbintime_t);	/* Hook to machdep CPU idler. */
 void	cpu_switch(struct thread *, struct thread *, struct mtx *);
 void	cpu_throw(struct thread *, struct thread *) __dead2;
 void	unsleep(struct thread *);
 void	userret(struct thread *, struct trapframe *);
 
 void	cpu_exit(struct thread *);
 void	exit1(struct thread *, int, int) __dead2;
 void	cpu_copy_thread(struct thread *td, struct thread *td0);
 bool	cpu_exec_vmspace_reuse(struct proc *p, struct vm_map *map);
 int	cpu_fetch_syscall_args(struct thread *td);
 void	cpu_fork(struct thread *, struct proc *, struct thread *, int);
 void	cpu_fork_kthread_handler(struct thread *, void (*)(void *), void *);
 int	cpu_procctl(struct thread *td, int idtype, id_t id, int com,
 	    void *data);
 void	cpu_set_syscall_retval(struct thread *, int);
 void	cpu_set_upcall(struct thread *, void (*)(void *), void *,
 	    stack_t *);
 int	cpu_set_user_tls(struct thread *, void *tls_base);
 void	cpu_thread_alloc(struct thread *);
 void	cpu_thread_clean(struct thread *);
 void	cpu_thread_exit(struct thread *);
 void	cpu_thread_free(struct thread *);
 void	cpu_thread_swapin(struct thread *);
 void	cpu_thread_swapout(struct thread *);
 struct	thread *thread_alloc(int pages);
 int	thread_alloc_stack(struct thread *, int pages);
 int	thread_check_susp(struct thread *td, bool sleep);
 void	thread_cow_get_proc(struct thread *newtd, struct proc *p);
 void	thread_cow_get(struct thread *newtd, struct thread *td);
 void	thread_cow_free(struct thread *td);
 void	thread_cow_update(struct thread *td);
 int	thread_create(struct thread *td, struct rtprio *rtp,
 	    int (*initialize_thread)(struct thread *, void *), void *thunk);
 void	thread_exit(void) __dead2;
 void	thread_free(struct thread *td);
 void	thread_link(struct thread *td, struct proc *p);
 void	thread_reap_barrier(void);
 int	thread_single(struct proc *p, int how);
 void	thread_single_end(struct proc *p, int how);
 void	thread_stash(struct thread *td);
 void	thread_stopped(struct proc *p);
 void	childproc_stopped(struct proc *child, int reason);
 void	childproc_continued(struct proc *child);
 void	childproc_exited(struct proc *child);
 void	thread_run_flash(struct thread *td);
 int	thread_suspend_check(int how);
 bool	thread_suspend_check_needed(void);
 void	thread_suspend_switch(struct thread *, struct proc *p);
 void	thread_suspend_one(struct thread *td);
 void	thread_unlink(struct thread *td);
 void	thread_unsuspend(struct proc *p);
 void	thread_wait(struct proc *p);
 
 void	stop_all_proc(void);
 void	resume_all_proc(void);
 
 static __inline int
 curthread_pflags_set(int flags)
 {
 	struct thread *td;
 	int save;
 
 	td = curthread;
 	save = ~flags | (td->td_pflags & flags);
 	td->td_pflags |= flags;
 	return (save);
 }
 
 static __inline void
 curthread_pflags_restore(int save)
 {
 
 	curthread->td_pflags &= save;
 }
 
 static __inline int
 curthread_pflags2_set(int flags)
 {
 	struct thread *td;
 	int save;
 
 	td = curthread;
 	save = ~flags | (td->td_pflags2 & flags);
 	td->td_pflags2 |= flags;
 	return (save);
 }
 
 static __inline void
 curthread_pflags2_restore(int save)
 {
 
 	curthread->td_pflags2 &= save;
 }
 
 static __inline bool
 kstack_contains(struct thread *td, vm_offset_t va, size_t len)
 {
 	return (va >= td->td_kstack && va + len >= va &&
 	    va + len <= td->td_kstack + td->td_kstack_pages * PAGE_SIZE);
 }
 
 static __inline __pure2 struct td_sched *
 td_get_sched(struct thread *td)
 {
 
 	return ((struct td_sched *)&td[1]);
 }
 
 extern void (*softdep_ast_cleanup)(struct thread *);
 static __inline void
 td_softdep_cleanup(struct thread *td)
 {
 
 	if (td->td_su != NULL && softdep_ast_cleanup != NULL)
 		softdep_ast_cleanup(td);
 }
 
 #define	PROC_ID_PID	0
 #define	PROC_ID_GROUP	1
 #define	PROC_ID_SESSION	2
 #define	PROC_ID_REAP	3
 
 void	proc_id_set(int type, pid_t id);
 void	proc_id_set_cond(int type, pid_t id);
 void	proc_id_clear(int type, pid_t id);
 
 EVENTHANDLER_LIST_DECLARE(process_ctor);
 EVENTHANDLER_LIST_DECLARE(process_dtor);
 EVENTHANDLER_LIST_DECLARE(process_init);
 EVENTHANDLER_LIST_DECLARE(process_fini);
 EVENTHANDLER_LIST_DECLARE(process_exit);
 EVENTHANDLER_LIST_DECLARE(process_fork);
 EVENTHANDLER_LIST_DECLARE(process_exec);
 
 EVENTHANDLER_LIST_DECLARE(thread_ctor);
 EVENTHANDLER_LIST_DECLARE(thread_dtor);
 EVENTHANDLER_LIST_DECLARE(thread_init);
 
 #endif	/* _KERNEL */
 
 #endif	/* !_SYS_PROC_H_ */