diff --git a/module/zfs/zfs_ioctl.c b/module/zfs/zfs_ioctl.c index 908b9efc1813..b720b4f222b1 100644 --- a/module/zfs/zfs_ioctl.c +++ b/module/zfs/zfs_ioctl.c @@ -1,7955 +1,7992 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Portions Copyright 2011 Martin Matuska * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved. * Copyright (c) 2012 Pawel Jakub Dawidek * Copyright (c) 2014, 2016 Joyent, Inc. All rights reserved. * Copyright 2016 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2014, Joyent, Inc. All rights reserved. * Copyright (c) 2011, 2024 by Delphix. All rights reserved. * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. * Copyright (c) 2013 Steven Hartland. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright 2016 Toomas Soome * Copyright (c) 2016 Actifio, Inc. All rights reserved. * Copyright (c) 2018, loli10K . All rights reserved. * Copyright 2017 RackTop Systems. * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. * Copyright (c) 2019 Datto Inc. * Copyright (c) 2019, 2020 by Christian Schwarz. All rights reserved. - * Copyright (c) 2019, 2021, Klara Inc. + * Copyright (c) 2019, 2021, 2024, Klara Inc. * Copyright (c) 2019, Allan Jude * Copyright 2024 Oxide Computer Company */ /* * ZFS ioctls. * * This file handles the ioctls to /dev/zfs, used for configuring ZFS storage * pools and filesystems, e.g. with /sbin/zfs and /sbin/zpool. * * There are two ways that we handle ioctls: the legacy way where almost * all of the logic is in the ioctl callback, and the new way where most * of the marshalling is handled in the common entry point, zfsdev_ioctl(). * * Non-legacy ioctls should be registered by calling * zfs_ioctl_register() from zfs_ioctl_init(). The ioctl is invoked * from userland by lzc_ioctl(). * * The registration arguments are as follows: * * const char *name * The name of the ioctl. This is used for history logging. If the * ioctl returns successfully (the callback returns 0), and allow_log * is true, then a history log entry will be recorded with the input & * output nvlists. The log entry can be printed with "zpool history -i". * * zfs_ioc_t ioc * The ioctl request number, which userland will pass to ioctl(2). * We want newer versions of libzfs and libzfs_core to run against * existing zfs kernel modules (i.e. a deferred reboot after an update). * Therefore the ioctl numbers cannot change from release to release. * * zfs_secpolicy_func_t *secpolicy * This function will be called before the zfs_ioc_func_t, to * determine if this operation is permitted. It should return EPERM * on failure, and 0 on success. Checks include determining if the * dataset is visible in this zone, and if the user has either all * zfs privileges in the zone (SYS_MOUNT), or has been granted permission * to do this operation on this dataset with "zfs allow". * * zfs_ioc_namecheck_t namecheck * This specifies what to expect in the zfs_cmd_t:zc_name -- a pool * name, a dataset name, or nothing. If the name is not well-formed, * the ioctl will fail and the callback will not be called. * Therefore, the callback can assume that the name is well-formed * (e.g. is null-terminated, doesn't have more than one '@' character, * doesn't have invalid characters). * * zfs_ioc_poolcheck_t pool_check * This specifies requirements on the pool state. If the pool does * not meet them (is suspended or is readonly), the ioctl will fail * and the callback will not be called. If any checks are specified * (i.e. it is not POOL_CHECK_NONE), namecheck must not be NO_NAME. * Multiple checks can be or-ed together (e.g. POOL_CHECK_SUSPENDED | * POOL_CHECK_READONLY). * * zfs_ioc_key_t *nvl_keys * The list of expected/allowable innvl input keys. This list is used * to validate the nvlist input to the ioctl. * * boolean_t smush_outnvlist * If smush_outnvlist is true, then the output is presumed to be a * list of errors, and it will be "smushed" down to fit into the * caller's buffer, by removing some entries and replacing them with a * single "N_MORE_ERRORS" entry indicating how many were removed. See * nvlist_smush() for details. If smush_outnvlist is false, and the * outnvlist does not fit into the userland-provided buffer, then the * ioctl will fail with ENOMEM. * * zfs_ioc_func_t *func * The callback function that will perform the operation. * * The callback should return 0 on success, or an error number on * failure. If the function fails, the userland ioctl will return -1, * and errno will be set to the callback's return value. The callback * will be called with the following arguments: * * const char *name * The name of the pool or dataset to operate on, from * zfs_cmd_t:zc_name. The 'namecheck' argument specifies the * expected type (pool, dataset, or none). * * nvlist_t *innvl * The input nvlist, deserialized from zfs_cmd_t:zc_nvlist_src. Or * NULL if no input nvlist was provided. Changes to this nvlist are * ignored. If the input nvlist could not be deserialized, the * ioctl will fail and the callback will not be called. * * nvlist_t *outnvl * The output nvlist, initially empty. The callback can fill it in, * and it will be returned to userland by serializing it into * zfs_cmd_t:zc_nvlist_dst. If it is non-empty, and serialization * fails (e.g. because the caller didn't supply a large enough * buffer), then the overall ioctl will fail. See the * 'smush_nvlist' argument above for additional behaviors. * * There are two typical uses of the output nvlist: * - To return state, e.g. property values. In this case, * smush_outnvlist should be false. If the buffer was not large * enough, the caller will reallocate a larger buffer and try * the ioctl again. * * - To return multiple errors from an ioctl which makes on-disk * changes. In this case, smush_outnvlist should be true. * Ioctls which make on-disk modifications should generally not * use the outnvl if they succeed, because the caller can not * distinguish between the operation failing, and * deserialization failing. * * IOCTL Interface Errors * * The following ioctl input errors can be returned: * ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel * ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel * ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing * ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" #include "zfs_comutil.h" #include #include #include kmutex_t zfsdev_state_lock; static zfsdev_state_t zfsdev_state_listhead; /* * Limit maximum nvlist size. We don't want users passing in insane values * for zc->zc_nvlist_src_size, since we will need to allocate that much memory. * Defaults to 0=auto which is handled by platform code. */ uint64_t zfs_max_nvlist_src_size = 0; /* * When logging the output nvlist of an ioctl in the on-disk history, limit * the logged size to this many bytes. This must be less than DMU_MAX_ACCESS. * This applies primarily to zfs_ioc_channel_program(). */ static uint64_t zfs_history_output_max = 1024 * 1024; uint_t zfs_allow_log_key; /* DATA_TYPE_ANY is used when zkey_type can vary. */ #define DATA_TYPE_ANY DATA_TYPE_UNKNOWN typedef struct zfs_ioc_vec { zfs_ioc_legacy_func_t *zvec_legacy_func; zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; zfs_ioc_namecheck_t zvec_namecheck; boolean_t zvec_allow_log; zfs_ioc_poolcheck_t zvec_pool_check; boolean_t zvec_smush_outnvlist; const char *zvec_name; const zfs_ioc_key_t *zvec_nvl_keys; size_t zvec_nvl_key_count; } zfs_ioc_vec_t; /* This array is indexed by zfs_userquota_prop_t */ static const char *userquota_perms[] = { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_PERM_GROUPQUOTA, ZFS_DELEG_PERM_USEROBJUSED, ZFS_DELEG_PERM_USEROBJQUOTA, ZFS_DELEG_PERM_GROUPOBJUSED, ZFS_DELEG_PERM_GROUPOBJQUOTA, ZFS_DELEG_PERM_PROJECTUSED, ZFS_DELEG_PERM_PROJECTQUOTA, ZFS_DELEG_PERM_PROJECTOBJUSED, ZFS_DELEG_PERM_PROJECTOBJQUOTA, }; static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc); static int zfs_check_settable(const char *name, nvpair_t *property, cred_t *cr); static int zfs_check_clearable(const char *dataset, nvlist_t *props, nvlist_t **errors); static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, boolean_t *); int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t *); static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp); static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; if (zc->zc_history == 0) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } /* * Return non-zero if the spa version is less than requested version. */ static int zfs_earlier_version(const char *name, int version) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < version) { spa_close(spa, FTAG); return (1); } spa_close(spa, FTAG); } return (0); } /* * Return TRUE if the ZPL version is less than requested version. */ static boolean_t zpl_earlier_version(const char *name, int version) { objset_t *os; boolean_t rc = B_TRUE; if (dmu_objset_hold(name, FTAG, &os) == 0) { uint64_t zplversion; if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (B_TRUE); } /* XXX reading from non-owned objset */ if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) rc = zplversion < version; dmu_objset_rele(os, FTAG); } return (rc); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ static int zfs_secpolicy_none(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ static int zfs_secpolicy_read(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl, (void) cr; if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (SET_ERROR(ENOENT)); } static int zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) { int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (SET_ERROR(ENOENT)); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (SET_ERROR(EPERM)); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (SET_ERROR(EPERM)); /* must be writable by this zone */ if (!writable) return (SET_ERROR(EPERM)); } return (0); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_integer(dataset, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_int_ds(ds, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned)) return (SET_ERROR(ENOENT)); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck_ds(name, ds, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error != 0) error = dsl_deleg_access_impl(ds, perm, cr); } return (error); } static int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; dsl_dataset_t *ds; dsl_pool_t *dp; /* * First do a quick check for root in the global zone, which * is allowed to do all write_perms. This ensures that zfs_ioc_* * will get to handle nonexistent datasets. */ if (INGLOBALZONE(curproc) && secpolicy_zfs(cr) == 0) return (0); error = dsl_pool_hold(name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(name, ds, perm, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * Policy for setting the security label property. * * Returns 0 for success, non-zero for access and other errors. */ static int zfs_set_slabel_policy(const char *name, const char *strval, cred_t *cr) { #ifdef HAVE_MLSLABEL char ds_hexsl[MAXNAMELEN]; bslabel_t ds_sl, new_sl; boolean_t new_default = FALSE; uint64_t zoned; int needed_priv = -1; int error; /* First get the existing dataset label. */ error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error != 0) return (SET_ERROR(EPERM)); if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) new_default = TRUE; /* The label must be translatable */ if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) return (SET_ERROR(EINVAL)); /* * In a non-global zone, disallow attempts to set a label that * doesn't match that of the zone; otherwise no other checks * are needed. */ if (!INGLOBALZONE(curproc)) { if (new_default || !blequal(&new_sl, CR_SL(CRED()))) return (SET_ERROR(EPERM)); return (0); } /* * For global-zone datasets (i.e., those whose zoned property is * "off", verify that the specified new label is valid for the * global zone. */ if (dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(EPERM)); if (!zoned) { if (zfs_check_global_label(name, strval) != 0) return (SET_ERROR(EPERM)); } /* * If the existing dataset label is nondefault, check if the * dataset is mounted (label cannot be changed while mounted). * Get the zfsvfs_t; if there isn't one, then the dataset isn't * mounted (or isn't a dataset, doesn't exist, ...). */ if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { objset_t *os; static const char *setsl_tag = "setsl_tag"; /* * Try to own the dataset; abort if there is any error, * (e.g., already mounted, in use, or other error). */ error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, B_TRUE, setsl_tag, &os); if (error != 0) return (SET_ERROR(EPERM)); dmu_objset_disown(os, B_TRUE, setsl_tag); if (new_default) { needed_priv = PRIV_FILE_DOWNGRADE_SL; goto out_check; } if (hexstr_to_label(strval, &new_sl) != 0) return (SET_ERROR(EPERM)); if (blstrictdom(&ds_sl, &new_sl)) needed_priv = PRIV_FILE_DOWNGRADE_SL; else if (blstrictdom(&new_sl, &ds_sl)) needed_priv = PRIV_FILE_UPGRADE_SL; } else { /* dataset currently has a default label */ if (!new_default) needed_priv = PRIV_FILE_UPGRADE_SL; } out_check: if (needed_priv != -1) return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); return (0); #else return (SET_ERROR(ENOTSUP)); #endif /* HAVE_MLSLABEL */ } static int zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, cred_t *cr) { const char *strval; /* * Check permissions for special properties. */ switch (prop) { default: break; case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (SET_ERROR(EPERM)); break; case ZFS_PROP_QUOTA: case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[ZFS_MAX_DATASET_NAME_LEN]; /* * Unprivileged users are allowed to modify the * limit on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(dsname, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, setpoint)) return (SET_ERROR(EPERM)); if (!zoned || strlen(dsname) <= strlen(setpoint)) return (SET_ERROR(EPERM)); } break; case ZFS_PROP_MLSLABEL: if (!is_system_labeled()) return (SET_ERROR(EPERM)); if (nvpair_value_string(propval, &strval) == 0) { int err; err = zfs_set_slabel_policy(dsname, strval, CRED()); if (err != 0) return (err); } break; } return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); } static int zfs_secpolicy_set_fsacl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ (void) innvl; return (zfs_dozonecheck(zc->zc_name, cr)); } static int zfs_secpolicy_rollback(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr)); } static int zfs_secpolicy_send(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; dsl_pool_t *dp; dsl_dataset_t *ds; const char *cp; int error; /* * Generate the current snapshot name from the given objsetid, then * use that name for the secpolicy/zone checks. */ cp = strchr(zc->zc_name, '@'); if (cp == NULL) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ds, zc->zc_name); error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, ZFS_DELEG_PERM_SEND, cr); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static int zfs_secpolicy_send_new(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_SEND, cr)); } static int zfs_secpolicy_share(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; return (SET_ERROR(ENOTSUP)); } static int zfs_secpolicy_smb_acl(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; return (SET_ERROR(ENOTSUP)); } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strlcpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (SET_ERROR(ENOENT)); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } static int zfs_secpolicy_destroy(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Destroying snapshots with delegated permissions requires * descendant mount and destroy permissions. */ static int zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvlist_t *snaps; nvpair_t *pair, *nextpair; int error = 0; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nextpair) { nextpair = nvlist_next_nvpair(snaps, pair); error = zfs_secpolicy_destroy_perms(nvpair_name(pair), cr); if (error == ENOENT) { /* * Ignore any snapshots that don't exist (we consider * them "already destroyed"). Remove the name from the * nvl here in case the snapshot is created between * now and when we try to destroy it (in which case * we don't want to destroy it since we haven't * checked for permission). */ fnvlist_remove_nvpair(snaps, pair); error = 0; } if (error != 0) break; } return (error); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } static int zfs_secpolicy_rename(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } static int zfs_secpolicy_promote(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; dsl_pool_t *dp; dsl_dataset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error != 0) return (error); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &clone); if (error == 0) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_t *origin = NULL; dsl_dir_t *dd; dd = clone->ds_dir; error = dsl_dataset_hold_obj(dd->dd_pool, dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin); if (error != 0) { dsl_dataset_rele(clone, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = zfs_secpolicy_write_perms_ds(zc->zc_name, clone, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(origin, parentname); if (error == 0) { error = zfs_secpolicy_write_perms_ds(parentname, origin, ZFS_DELEG_PERM_PROMOTE, cr); } dsl_dataset_rele(clone, FTAG); dsl_dataset_rele(origin, FTAG); } dsl_pool_rele(dp, FTAG); return (error); } static int zfs_secpolicy_recv(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)); } /* * Check for permission to create each snapshot in the nvlist. */ static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvlist_t *snaps; int error = 0; nvpair_t *pair; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { char *name = (char *)nvpair_name(pair); char *atp = strchr(name, '@'); if (atp == NULL) { error = SET_ERROR(EINVAL); break; } *atp = '\0'; error = zfs_secpolicy_snapshot_perms(name, cr); *atp = '@'; if (error != 0) break; } return (error); } /* * Check for permission to create each bookmark in the nvlist. */ static int zfs_secpolicy_bookmark(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; int error = 0; for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char *name = (char *)nvpair_name(pair); char *hashp = strchr(name, '#'); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_BOOKMARK, cr); *hashp = '#'; if (error != 0) break; } return (error); } static int zfs_secpolicy_destroy_bookmarks(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvpair_t *pair, *nextpair; int error = 0; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nextpair) { char *name = (char *)nvpair_name(pair); char *hashp = strchr(name, '#'); nextpair = nvlist_next_nvpair(innvl, pair); if (hashp == NULL) { error = SET_ERROR(EINVAL); break; } *hashp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr); *hashp = '#'; if (error == ENOENT) { /* * Ignore any filesystems that don't exist (we consider * their bookmarks "already destroyed"). Remove * the name from the nvl here in case the filesystem * is created between now and when we try to destroy * the bookmark (in which case we don't want to * destroy it since we haven't checked for permission). */ fnvlist_remove_nvpair(innvl, pair); error = 0; } if (error != 0) break; } return (error); } static int zfs_secpolicy_log_history(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl, (void) cr; /* * Even root must have a proper TSD so that we know what pool * to log to. */ if (tsd_get(zfs_allow_log_key) == NULL) return (SET_ERROR(EPERM)); return (0); } static int zfs_secpolicy_create_clone(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { char parentname[ZFS_MAX_DATASET_NAME_LEN]; int error; const char *origin; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (nvlist_lookup_string(innvl, "origin", &origin) == 0 && (error = zfs_secpolicy_write_perms(origin, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ int zfs_secpolicy_config(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl; if (secpolicy_sys_config(cr, B_FALSE) != 0) return (SET_ERROR(EPERM)); return (0); } /* * Policy for object to name lookups. */ static int zfs_secpolicy_diff(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; int error; if (secpolicy_sys_config(cr, B_FALSE) == 0) return (0); error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); return (error); } /* * Policy for fault injection. Requires all privileges. */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc, (void) innvl; return (secpolicy_zinject(cr)); } static int zfs_secpolicy_inherit_prop(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZPROP_USERPROP) { if (!zfs_prop_user(zc->zc_value)) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, cr)); } else { return (zfs_secpolicy_setprop(zc->zc_name, prop, NULL, cr)); } } static int zfs_secpolicy_userspace_one(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); if (zc->zc_value[0] == 0) { /* * They are asking about a posix uid/gid. If it's * themself, allow it. */ if (zc->zc_objset_type == ZFS_PROP_USERUSED || zc->zc_objset_type == ZFS_PROP_USERQUOTA || zc->zc_objset_type == ZFS_PROP_USEROBJUSED || zc->zc_objset_type == ZFS_PROP_USEROBJQUOTA) { if (zc->zc_guid == crgetuid(cr)) return (0); } else if (zc->zc_objset_type == ZFS_PROP_GROUPUSED || zc->zc_objset_type == ZFS_PROP_GROUPQUOTA || zc->zc_objset_type == ZFS_PROP_GROUPOBJUSED || zc->zc_objset_type == ZFS_PROP_GROUPOBJQUOTA) { if (groupmember(zc->zc_guid, cr)) return (0); } /* else is for project quota/used */ } return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_many(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { int err = zfs_secpolicy_read(zc, innvl, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) innvl; return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, NULL, cr)); } static int zfs_secpolicy_hold(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvpair_t *pair; nvlist_t *holds; int error; holds = fnvlist_lookup_nvlist(innvl, "holds"); for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_HOLD, cr); if (error != 0) return (error); } return (0); } static int zfs_secpolicy_release(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { (void) zc; nvpair_t *pair; int error; for (pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { char fsname[ZFS_MAX_DATASET_NAME_LEN]; error = dmu_fsname(nvpair_name(pair), fsname); if (error != 0) return (error); error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_RELEASE, cr); if (error != 0) return (error); } return (0); } /* * Policy for allowing temporary snapshots to be taken or released */ static int zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { /* * A temporary snapshot is the same as a snapshot, * hold, destroy and release all rolled into one. * Delegated diff alone is sufficient that we allow this. */ int error; if (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr) == 0) return (0); error = zfs_secpolicy_snapshot_perms(zc->zc_name, cr); if (innvl != NULL) { if (error == 0) error = zfs_secpolicy_hold(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_release(zc, innvl, cr); if (error == 0) error = zfs_secpolicy_destroy(zc, innvl, cr); } return (error); } static int zfs_secpolicy_load_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_LOAD_KEY, cr)); } static int zfs_secpolicy_change_key(zfs_cmd_t *zc, nvlist_t *innvl, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CHANGE_KEY, cr)); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) { char *packed; int error; nvlist_t *list = NULL; /* * Read in and unpack the user-supplied nvlist. */ if (size == 0) return (SET_ERROR(EINVAL)); packed = vmem_alloc(size, KM_SLEEP); if (ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag) != 0) { vmem_free(packed, size); return (SET_ERROR(EFAULT)); } if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { vmem_free(packed, size); return (error); } vmem_free(packed, size); *nvp = list; return (0); } /* * Reduce the size of this nvlist until it can be serialized in 'max' bytes. * Entries will be removed from the end of the nvlist, and one int32 entry * named "N_MORE_ERRORS" will be added indicating how many entries were * removed. */ static int nvlist_smush(nvlist_t *errors, size_t max) { size_t size; size = fnvlist_size(errors); if (size > max) { nvpair_t *more_errors; int n = 0; if (max < 1024) return (SET_ERROR(ENOMEM)); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, 0); more_errors = nvlist_prev_nvpair(errors, NULL); do { nvpair_t *pair = nvlist_prev_nvpair(errors, more_errors); fnvlist_remove_nvpair(errors, pair); n++; size = fnvlist_size(errors); } while (size > max); fnvlist_remove_nvpair(errors, more_errors); fnvlist_add_int32(errors, ZPROP_N_MORE_ERRORS, n); ASSERT3U(fnvlist_size(errors), <=, max); } return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; int error = 0; size_t size; size = fnvlist_size(nvl); if (size > zc->zc_nvlist_dst_size) { error = SET_ERROR(ENOMEM); } else { packed = fnvlist_pack(nvl, &size); if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size, zc->zc_iflags) != 0) error = SET_ERROR(EFAULT); fnvlist_pack_free(packed, size); } zc->zc_nvlist_dst_size = size; zc->zc_nvlist_dst_filled = B_TRUE; return (error); } int getzfsvfs_impl(objset_t *os, zfsvfs_t **zfvp) { int error = 0; if (dmu_objset_type(os) != DMU_OST_ZFS) { return (SET_ERROR(EINVAL)); } mutex_enter(&os->os_user_ptr_lock); *zfvp = dmu_objset_get_user(os); /* bump s_active only when non-zero to prevent umount race */ error = zfs_vfs_ref(zfvp); mutex_exit(&os->os_user_ptr_lock); return (error); } int getzfsvfs(const char *dsname, zfsvfs_t **zfvp) { objset_t *os; int error; error = dmu_objset_hold(dsname, FTAG, &os); if (error != 0) return (error); error = getzfsvfs_impl(os, zfvp); dmu_objset_rele(os, FTAG); return (error); } /* * Find a zfsvfs_t for a mounted filesystem, or create our own, in which * case its z_sb will be NULL, and it will be opened as the owner. * If 'writer' is set, the z_teardown_lock will be held for RW_WRITER, * which prevents all inode ops from running. */ static int zfsvfs_hold(const char *name, const void *tag, zfsvfs_t **zfvp, boolean_t writer) { int error = 0; if (getzfsvfs(name, zfvp) != 0) error = zfsvfs_create(name, B_FALSE, zfvp); if (error == 0) { if (writer) ZFS_TEARDOWN_ENTER_WRITE(*zfvp, tag); else ZFS_TEARDOWN_ENTER_READ(*zfvp, tag); if ((*zfvp)->z_unmounted) { /* * XXX we could probably try again, since the unmounting * thread should be just about to disassociate the * objset from the zfsvfs. */ ZFS_TEARDOWN_EXIT(*zfvp, tag); return (SET_ERROR(EBUSY)); } } return (error); } static void zfsvfs_rele(zfsvfs_t *zfsvfs, const void *tag) { ZFS_TEARDOWN_EXIT(zfsvfs, tag); if (zfs_vfs_held(zfsvfs)) { zfs_vfs_rele(zfsvfs); } else { dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); zfsvfs_free(zfsvfs); } } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config, *props = NULL; nvlist_t *rootprops = NULL; nvlist_t *zplprops = NULL; dsl_crypto_params_t *dcp = NULL; const char *spa_name = zc->zc_name; boolean_t unload_wkey = B_TRUE; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config))) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (props) { nvlist_t *nvl = NULL; nvlist_t *hidden_args = NULL; uint64_t version = SPA_VERSION; const char *tname; (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); if (!SPA_VERSION_IS_SUPPORTED(version)) { error = SET_ERROR(EINVAL); goto pool_props_bad; } (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); if (nvl) { error = nvlist_dup(nvl, &rootprops, KM_SLEEP); if (error != 0) goto pool_props_bad; (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); } (void) nvlist_lookup_nvlist(props, ZPOOL_HIDDEN_ARGS, &hidden_args); error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, rootprops, hidden_args, &dcp); if (error != 0) goto pool_props_bad; (void) nvlist_remove_all(props, ZPOOL_HIDDEN_ARGS); VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops_root(version, rootprops, zplprops, NULL); if (error != 0) goto pool_props_bad; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_TNAME), &tname) == 0) spa_name = tname; } error = spa_create(zc->zc_name, config, props, zplprops, dcp); /* * Set the remaining root properties */ if (!error && (error = zfs_set_prop_nvlist(spa_name, ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) { (void) spa_destroy(spa_name); unload_wkey = B_FALSE; /* spa_destroy() unloads wrapping keys */ } pool_props_bad: nvlist_free(rootprops); nvlist_free(zplprops); nvlist_free(config); nvlist_free(props); dsl_crypto_params_free(dcp, unload_wkey && !!error); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { nvlist_t *config, *props = NULL; uint64_t guid; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) != 0) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = SET_ERROR(EINVAL); else error = spa_import(zc->zc_name, config, props, zc->zc_cookie); if (zc->zc_nvlist_dst != 0) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; } nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; boolean_t force = (boolean_t)zc->zc_cookie; boolean_t hardforce = (boolean_t)zc->zc_guid; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL, force, hardforce); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; error = spa_all_configs(&zc->zc_cookie, &configs); if (error) return (error); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } /* * inputs: * zc_name name of the pool * * outputs: * zc_cookie real errno * zc_nvlist_dst config nvlist * zc_nvlist_dst_size size of config nvlist */ static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config = NULL; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (SET_ERROR(EINVAL)); error = put_nvlist(zc, config); nvlist_free(config); return (error); } /* * inputs: * zc_name name of the pool * zc_cookie scan func (pool_scan_func_t) * zc_flags scrub pause/resume flag (pool_scrub_cmd_t) */ static int zfs_ioc_pool_scan(zfs_cmd_t *zc) { spa_t *spa; int error; if (zc->zc_flags >= POOL_SCRUB_FLAGS_END) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_flags == POOL_SCRUB_PAUSE) error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); else if (zc->zc_cookie == POOL_SCAN_NONE) error = spa_scan_stop(spa); else error = spa_scan(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } /* * inputs: * poolname name of the pool * scan_type scan func (pool_scan_func_t) * scan_command scrub pause/resume flag (pool_scrub_cmd_t) */ static const zfs_ioc_key_t zfs_keys_pool_scrub[] = { {"scan_type", DATA_TYPE_UINT64, 0}, {"scan_command", DATA_TYPE_UINT64, 0}, }; static int zfs_ioc_pool_scrub(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; uint64_t scan_type, scan_cmd; if (nvlist_lookup_uint64(innvl, "scan_type", &scan_type) != 0) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(innvl, "scan_command", &scan_cmd) != 0) return (SET_ERROR(EINVAL)); if (scan_cmd >= POOL_SCRUB_FLAGS_END) return (SET_ERROR(EINVAL)); if ((error = spa_open(poolname, &spa, FTAG)) != 0) return (error); if (scan_cmd == POOL_SCRUB_PAUSE) { error = spa_scrub_pause_resume(spa, POOL_SCRUB_PAUSE); } else if (scan_type == POOL_SCAN_NONE) { error = spa_scan_stop(spa); } else { error = spa_scan(spa, scan_type); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie < spa_version(spa) || !SPA_VERSION_IS_SUPPORTED(zc->zc_cookie)) { spa_close(spa, FTAG); return (SET_ERROR(EINVAL)); } spa_upgrade(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (SET_ERROR(EINVAL)); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } hist_buf = vmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = ddi_copyout(hist_buf, (void *)(uintptr_t)zc->zc_history, zc->zc_history_len, zc->zc_iflags); } spa_close(spa, FTAG); vmem_free(hist_buf, size); return (error); } static int zfs_ioc_pool_reguid(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { error = spa_change_guid(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { return (dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_value name of object */ static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele_flags(os, B_TRUE, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele_flags(os, B_TRUE, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_stat stats on object * zc_value path to object */ static int zfs_ioc_obj_to_stats(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele_flags(os, B_TRUE, FTAG); return (SET_ERROR(EINVAL)); } error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele_flags(os, B_TRUE, FTAG); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config); if (error == 0) { error = spa_vdev_add(spa, config, zc->zc_flags); nvlist_free(config); } spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of the pool * zc_guid guid of vdev to remove * zc_cookie cancel removal */ static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); if (zc->zc_cookie != 0) { error = spa_vdev_remove_cancel(spa); } else { error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL && zc->zc_obj != VDEV_AUX_EXTERNAL_PERSIST) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_DEGRADED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_REMOVED: error = vdev_remove_wanted(spa, zc->zc_guid); break; default: error = SET_ERROR(EINVAL); } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config; int replacing = zc->zc_cookie; int rebuild = zc->zc_simple; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing, rebuild); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_split(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config, *props = NULL; int error; boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config))) { spa_close(spa, FTAG); return (error); } if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { spa_close(spa, FTAG); nvlist_free(config); return (error); } error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); spa_close(spa, FTAG); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; const char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setfru(zfs_cmd_t *zc) { spa_t *spa; const char *fru = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setfru(spa, guid, fru); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) { int error = 0; nvlist_t *nv; dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (!zc->zc_simple && zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_USER hold, because it could be * inconsistent. So this is a bit of a workaround... * XXX reading without owning */ if (!zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZVOL) { error = zvol_get_stats(os, nv); if (error == EIO) { nvlist_free(nv); return (error); } VERIFY0(error); } if (error == 0) error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error == 0) { error = zfs_ioc_objset_stats_impl(zc, os); dmu_objset_rele(os, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_nvlist_dst received property nvlist * zc_nvlist_dst_size size of received property nvlist * * Gets received properties (distinct from local properties on or after * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from * local property values. */ static int zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) { int error = 0; nvlist_t *nv; /* * Without this check, we would return local property values if the * caller has not already received properties on or after * SPA_VERSION_RECVD_PROPS. */ if (!dsl_prop_get_hasrecvd(zc->zc_name)) return (SET_ERROR(ENOTSUP)); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_received(zc->zc_name, &nv)) == 0) { error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } static int nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) { uint64_t value; int error; /* * zfs_get_zplprop() will either find a value or give us * the default value (if there is one). */ if ((error = zfs_get_zplprop(os, prop, &value)) != 0) return (error); VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); return (0); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for zpl property nvlist * * outputs: * zc_nvlist_dst zpl property nvlist * zc_nvlist_dst_size size of zpl property nvlist */ static int zfs_ioc_objset_zplprops(zfs_cmd_t *zc) { objset_t *os; int err; /* XXX reading without owning */ if ((err = dmu_objset_hold(zc->zc_name, FTAG, &os))) return (err); dmu_objset_fast_stat(os, &zc->zc_objset_stats); /* * NB: nvl_add_zplprop() will read the objset contents, * which we aren't supposed to do with a DS_MODE_USER * hold, because it could be inconsistent. */ if (zc->zc_nvlist_dst != 0 && !zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZFS) { nvlist_t *nv; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) err = put_nvlist(zc, nv); nvlist_free(nv); } else { err = SET_ERROR(ENOENT); } dmu_objset_rele(os, FTAG); return (err); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next filesystem * zc_cookie zap cursor * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; size_t orig_len = strlen(zc->zc_name); top: if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os))) { if (error == ENOENT) error = SET_ERROR(ESRCH); return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = SET_ERROR(ESRCH); } while (error == 0 && zfs_dataset_name_hidden(zc->zc_name)); dmu_objset_rele(os, FTAG); /* * If it's an internal dataset (ie. with a '$' in its name), * don't try to get stats for it, otherwise we'll return ENOENT. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ zc->zc_name[orig_len] = '\0'; goto top; } } return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_src iteration range nvlist * zc_nvlist_src_size size of iteration range nvlist * * outputs: * zc_name name of next snapshot * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { int error; objset_t *os, *ossnap; dsl_dataset_t *ds; uint64_t min_txg = 0, max_txg = 0; if (zc->zc_nvlist_src_size != 0) { nvlist_t *props = NULL; error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props); if (error != 0) return (error); (void) nvlist_lookup_uint64(props, SNAP_ITER_MIN_TXG, &min_txg); (void) nvlist_lookup_uint64(props, SNAP_ITER_MAX_TXG, &max_txg); nvlist_free(props); } error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) { return (error == ENOENT ? SET_ERROR(ESRCH) : error); } /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= ZFS_MAX_DATASET_NAME_LEN) { dmu_objset_rele(os, FTAG); return (SET_ERROR(ESRCH)); } while (error == 0) { if (issig(JUSTLOOKING) && issig(FORREAL)) { error = SET_ERROR(EINTR); break; } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie, NULL); if (error == ENOENT) { error = SET_ERROR(ESRCH); break; } else if (error != 0) { break; } error = dsl_dataset_hold_obj(dmu_objset_pool(os), zc->zc_obj, FTAG, &ds); if (error != 0) break; if ((min_txg != 0 && dsl_get_creationtxg(ds) < min_txg) || (max_txg != 0 && dsl_get_creationtxg(ds) > max_txg)) { dsl_dataset_rele(ds, FTAG); /* undo snapshot name append */ *(strchr(zc->zc_name, '@') + 1) = '\0'; /* skip snapshot */ continue; } if (zc->zc_simple) { dsl_dataset_fast_stat(ds, &zc->zc_objset_stats); dsl_dataset_rele(ds, FTAG); break; } if ((error = dmu_objset_from_ds(ds, &ossnap)) != 0) { dsl_dataset_rele(ds, FTAG); break; } if ((error = zfs_ioc_objset_stats_impl(zc, ossnap)) != 0) { dsl_dataset_rele(ds, FTAG); break; } dsl_dataset_rele(ds, FTAG); break; } dmu_objset_rele(os, FTAG); /* if we failed, undo the @ that we tacked on to zc_name */ if (error != 0) *strchr(zc->zc_name, '@') = '\0'; return (error); } static int zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) { const char *propname = nvpair_name(pair); uint64_t *valary; unsigned int vallen; const char *dash, *domain; zfs_userquota_prop_t type; uint64_t rid; uint64_t quota; zfsvfs_t *zfsvfs; int err; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) != 0) return (SET_ERROR(EINVAL)); } /* * A correctly constructed propname is encoded as * userquota@-. */ if ((dash = strchr(propname, '-')) == NULL || nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || vallen != 3) return (SET_ERROR(EINVAL)); domain = dash + 1; type = valary[0]; rid = valary[1]; quota = valary[2]; err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); if (err == 0) { err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); zfsvfs_rele(zfsvfs, FTAG); } return (err); } /* * If the named property is one that has a special function to set its value, * return 0 on success and a positive error code on failure; otherwise if it is * not one of the special properties handled by this function, return -1. * * XXX: It would be better for callers of the property interface if we handled * these special cases in dsl_prop.c (in the dsl layer). */ static int zfs_prop_set_special(const char *dsname, zprop_source_t source, nvpair_t *pair) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval = 0; const char *strval = NULL; int err = -1; if (prop == ZPROP_USERPROP) { if (zfs_prop_userquota(propname)) return (zfs_prop_set_userquota(dsname, pair)); return (-1); } if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* all special properties are numeric except for keylocation */ if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) { strval = fnvpair_value_string(pair); } else { intval = fnvpair_value_uint64(pair); } switch (prop) { case ZFS_PROP_QUOTA: err = dsl_dir_set_quota(dsname, source, intval); break; case ZFS_PROP_REFQUOTA: err = dsl_dataset_set_refquota(dsname, source, intval); break; case ZFS_PROP_FILESYSTEM_LIMIT: case ZFS_PROP_SNAPSHOT_LIMIT: if (intval == UINT64_MAX) { /* clearing the limit, just do it */ err = 0; } else { err = dsl_dir_activate_fs_ss_limit(dsname); } /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_KEYLOCATION: err = dsl_crypto_can_set_keylocation(dsname, strval); /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_RESERVATION: err = dsl_dir_set_reservation(dsname, source, intval); break; case ZFS_PROP_REFRESERVATION: err = dsl_dataset_set_refreservation(dsname, source, intval); break; case ZFS_PROP_COMPRESSION: err = dsl_dataset_set_compression(dsname, source, intval); /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_VOLSIZE: err = zvol_set_volsize(dsname, intval); break; case ZFS_PROP_VOLTHREADING: err = zvol_set_volthreading(dsname, intval); /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_SNAPDEV: case ZFS_PROP_VOLMODE: err = zvol_set_common(dsname, prop, source, intval); break; case ZFS_PROP_READONLY: err = zvol_set_ro(dsname, intval); /* * Set err to -1 to force the zfs_set_prop_nvlist code down the * default path to set the value in the nvlist. */ if (err == 0) err = -1; break; case ZFS_PROP_VERSION: { zfsvfs_t *zfsvfs; if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) break; err = zfs_set_version(zfsvfs, intval); zfsvfs_rele(zfsvfs, FTAG); if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { zfs_cmd_t *zc; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strlcpy(zc->zc_name, dsname, sizeof (zc->zc_name)); (void) zfs_ioc_userspace_upgrade(zc); (void) zfs_ioc_id_quota_upgrade(zc); kmem_free(zc, sizeof (zfs_cmd_t)); } break; } default: err = -1; } return (err); } static boolean_t zfs_is_namespace_prop(zfs_prop_t prop) { switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_RELATIME: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: case ZFS_PROP_SETUID: case ZFS_PROP_READONLY: case ZFS_PROP_XATTR: case ZFS_PROP_NBMAND: return (B_TRUE); default: return (B_FALSE); } } /* * This function is best effort. If it fails to set any of the given properties, * it continues to set as many as it can and returns the last error * encountered. If the caller provides a non-NULL errlist, it will be filled in * with the list of names of all the properties that failed along with the * corresponding error numbers. * * If every property is set successfully, zero is returned and errlist is not * modified. */ int zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, nvlist_t *errlist) { nvpair_t *pair; nvpair_t *propval; int rv = 0; int err; uint64_t intval; const char *strval; boolean_t should_update_mount_cache = B_FALSE; nvlist_t *genericnvl = fnvlist_alloc(); nvlist_t *retrynvl = fnvlist_alloc(); retry: pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); err = 0; /* decode the property value */ propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) != 0) err = SET_ERROR(EINVAL); } /* Validate value type */ if (err == 0 && source == ZPROP_SRC_INHERITED) { /* inherited properties are expected to be booleans */ if (nvpair_type(propval) != DATA_TYPE_BOOLEAN) err = SET_ERROR(EINVAL); } else if (err == 0 && prop == ZPROP_USERPROP) { if (zfs_prop_user(propname)) { if (nvpair_type(propval) != DATA_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (zfs_prop_userquota(propname)) { if (nvpair_type(propval) != DATA_TYPE_UINT64_ARRAY) err = SET_ERROR(EINVAL); } else { err = SET_ERROR(EINVAL); } } else if (err == 0) { if (nvpair_type(propval) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) err = SET_ERROR(EINVAL); } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { const char *unused; intval = fnvpair_value_uint64(propval); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_STRING: err = SET_ERROR(EINVAL); break; case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) err = SET_ERROR(ZFS_ERR_BADPROP); break; default: cmn_err(CE_PANIC, "unknown property type"); } } else { err = SET_ERROR(EINVAL); } } /* Validate permissions */ if (err == 0) err = zfs_check_settable(dsname, pair, CRED()); if (err == 0) { if (source == ZPROP_SRC_INHERITED) err = -1; /* does not need special handling */ else err = zfs_prop_set_special(dsname, source, pair); if (err == -1) { /* * For better performance we build up a list of * properties to set in a single transaction. */ err = nvlist_add_nvpair(genericnvl, pair); } else if (err != 0 && nvl != retrynvl) { /* * This may be a spurious error caused by * receiving quota and reservation out of order. * Try again in a second pass. */ err = nvlist_add_nvpair(retrynvl, pair); } } if (err != 0) { if (errlist != NULL) fnvlist_add_int32(errlist, propname, err); rv = err; } if (zfs_is_namespace_prop(prop)) should_update_mount_cache = B_TRUE; } if (nvl != retrynvl && !nvlist_empty(retrynvl)) { nvl = retrynvl; goto retry; } if (nvlist_empty(genericnvl)) goto out; /* * Try to set them all in one batch. */ err = dsl_props_set(dsname, source, genericnvl); if (err == 0) goto out; /* * If batching fails, we still want to set as many properties as we * can, so try setting them individually. */ pair = NULL; while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { const char *propname = nvpair_name(pair); propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; attrs = fnvpair_value_nvlist(pair); propval = fnvlist_lookup_nvpair(attrs, ZPROP_VALUE); } if (nvpair_type(propval) == DATA_TYPE_STRING) { strval = fnvpair_value_string(propval); err = dsl_prop_set_string(dsname, propname, source, strval); } else if (nvpair_type(propval) == DATA_TYPE_BOOLEAN) { err = dsl_prop_inherit(dsname, propname, source); } else { intval = fnvpair_value_uint64(propval); err = dsl_prop_set_int(dsname, propname, source, intval); } if (err != 0) { if (errlist != NULL) { fnvlist_add_int32(errlist, propname, err); } rv = err; } } out: if (should_update_mount_cache) zfs_ioctl_update_mount_cache(dsname); nvlist_free(genericnvl); nvlist_free(retrynvl); return (rv); } /* * Check that all the properties are valid user properties. */ static int zfs_check_userprops(nvlist_t *nvl) { nvpair_t *pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); if (!zfs_prop_user(propname) || nvpair_type(pair) != DATA_TYPE_STRING) return (SET_ERROR(EINVAL)); if (strlen(propname) >= ZAP_MAXNAMELEN) return (SET_ERROR(ENAMETOOLONG)); if (strlen(fnvpair_value_string(pair)) >= ZAP_MAXVALUELEN) return (SET_ERROR(E2BIG)); } return (0); } static void props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) { nvpair_t *pair; VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); pair = NULL; while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { if (nvlist_exists(skipped, nvpair_name(pair))) continue; VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); } } static int clear_received_props(const char *dsname, nvlist_t *props, nvlist_t *skipped) { int err = 0; nvlist_t *cleared_props = NULL; props_skip(props, skipped, &cleared_props); if (!nvlist_empty(cleared_props)) { /* * Acts on local properties until the dataset has received * properties at least once on or after SPA_VERSION_RECVD_PROPS. */ zprop_source_t flags = (ZPROP_SRC_NONE | (dsl_prop_get_hasrecvd(dsname) ? ZPROP_SRC_RECEIVED : 0)); err = zfs_set_prop_nvlist(dsname, flags, cleared_props, NULL); } nvlist_free(cleared_props); return (err); } /* * inputs: * zc_name name of filesystem * zc_value name of property to set * zc_nvlist_src{_size} nvlist of properties to apply * zc_cookie received properties flag * * outputs: * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : ZPROP_SRC_LOCAL); nvlist_t *errors; int error; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvl)) != 0) return (error); if (received) { nvlist_t *origprops; if (dsl_prop_get_received(zc->zc_name, &origprops) == 0) { (void) clear_received_props(zc->zc_name, origprops, nvl); nvlist_free(origprops); } error = dsl_prop_set_hasrecvd(zc->zc_name); } errors = fnvlist_alloc(); if (error == 0) error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, errors); if (zc->zc_nvlist_dst != 0 && errors != NULL) { (void) put_nvlist(zc, errors); } nvlist_free(errors); nvlist_free(nvl); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of property to inherit * zc_cookie revert to received value if TRUE * * outputs: none */ static int zfs_ioc_inherit_prop(zfs_cmd_t *zc) { const char *propname = zc->zc_value; zfs_prop_t prop = zfs_name_to_prop(propname); boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_NONE /* revert to received value, if any */ : ZPROP_SRC_INHERITED); /* explicitly inherit */ nvlist_t *dummy; nvpair_t *pair; zprop_type_t type; int err; if (!received) { /* * Only check this in the non-received case. We want to allow * 'inherit -S' to revert non-inheritable properties like quota * and reservation to the received or default values even though * they are not considered inheritable. */ if (prop != ZPROP_USERPROP && !zfs_prop_inheritable(prop)) return (SET_ERROR(EINVAL)); } if (prop == ZPROP_USERPROP) { if (!zfs_prop_user(propname)) return (SET_ERROR(EINVAL)); type = PROP_TYPE_STRING; } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { return (SET_ERROR(EINVAL)); } else { type = zfs_prop_get_type(prop); } /* * zfs_prop_set_special() expects properties in the form of an * nvpair with type info. */ dummy = fnvlist_alloc(); switch (type) { case PROP_TYPE_STRING: VERIFY(0 == nvlist_add_string(dummy, propname, "")); break; case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); break; default: err = SET_ERROR(EINVAL); goto errout; } pair = nvlist_next_nvpair(dummy, NULL); if (pair == NULL) { err = SET_ERROR(EINVAL); } else { err = zfs_prop_set_special(zc->zc_name, source, pair); if (err == -1) /* property is not "special", needs handling */ err = dsl_prop_inherit(zc->zc_name, zc->zc_value, source); } errout: nvlist_free(dummy); return (err); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *props; spa_t *spa; int error; nvpair_t *pair; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) return (error); /* * If the only property is the configfile, then just do a spa_lookup() * to handle the faulted case. */ pair = nvlist_next_nvpair(props, NULL); if (pair != NULL && strcmp(nvpair_name(pair), zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && nvlist_next_nvpair(props, pair) == NULL) { mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE); } mutex_exit(&spa_namespace_lock); if (spa != NULL) { nvlist_free(props); return (0); } } if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(props); return (error); } error = spa_prop_set(spa, props); nvlist_free(props); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { /* * If the pool is faulted, there may be properties we can still * get (such as altroot and cachefile), so attempt to get them * anyway. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) error = spa_prop_get(spa, &nvp); mutex_exit(&spa_namespace_lock); } else { error = spa_prop_get(spa, &nvp); spa_close(spa, FTAG); } if (error == 0 && zc->zc_nvlist_dst != 0) error = put_nvlist(zc, nvp); else error = SET_ERROR(EFAULT); nvlist_free(nvp); return (error); } /* * innvl: { * "vdevprops_set_vdev" -> guid * "vdevprops_set_props" -> { prop -> value } * } * * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_vdev_set_props[] = { {ZPOOL_VDEV_PROPS_SET_VDEV, DATA_TYPE_UINT64, 0}, {ZPOOL_VDEV_PROPS_SET_PROPS, DATA_TYPE_NVLIST, 0} }; static int zfs_ioc_vdev_set_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; vdev_t *vd; uint64_t vdev_guid; /* Early validation */ if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, &vdev_guid) != 0) return (SET_ERROR(EINVAL)); if (outnvl == NULL) return (SET_ERROR(EINVAL)); if ((error = spa_open(poolname, &spa, FTAG)) != 0) return (error); ASSERT(spa_writeable(spa)); if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { spa_close(spa, FTAG); return (SET_ERROR(ENOENT)); } error = vdev_prop_set(vd, innvl, outnvl); spa_close(spa, FTAG); return (error); } /* * innvl: { * "vdevprops_get_vdev" -> guid * (optional) "vdevprops_get_props" -> { propname -> propid } * } * * outnvl: propname -> value */ static const zfs_ioc_key_t zfs_keys_vdev_get_props[] = { {ZPOOL_VDEV_PROPS_GET_VDEV, DATA_TYPE_UINT64, 0}, {ZPOOL_VDEV_PROPS_GET_PROPS, DATA_TYPE_NVLIST, ZK_OPTIONAL} }; static int zfs_ioc_vdev_get_props(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; vdev_t *vd; uint64_t vdev_guid; /* Early validation */ if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, &vdev_guid) != 0) return (SET_ERROR(EINVAL)); if (outnvl == NULL) return (SET_ERROR(EINVAL)); if ((error = spa_open(poolname, &spa, FTAG)) != 0) return (error); if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) { spa_close(spa, FTAG); return (SET_ERROR(ENOENT)); } error = vdev_prop_get(vd, innvl, outnvl); spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_src{_size} nvlist of delegated permissions * zc_perm_action allow/unallow flag * * outputs: none */ static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if (zfs_deleg_verify_nvlist(fsaclnv) != 0) { nvlist_free(fsaclnv); return (SET_ERROR(EINVAL)); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error != 0) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of delegated permissions */ static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; zfs_create_fs(os, cr, zct->zct_zplprops, tx); } #define ZFS_PROP_UNDEFINED ((uint64_t)-1) /* * inputs: * os parent objset pointer (NULL if root fs) * fuids_ok fuids allowed in this version of the spa? * sa_ok SAs allowed in this version of the spa? * createprops list of properties requested by creator * * outputs: * zplprops values for the zplprops we attach to the master node object * is_ci true if requested file system will be purely case-insensitive * * Determine the settings for utf8only, normalization and * casesensitivity. Specific values may have been requested by the * creator and/or we can inherit values from the parent dataset. If * the file system is of too early a vintage, a creator can not * request settings for these properties, even if the requested * setting is the default value. We don't actually want to create dsl * properties for these, so remove them from the source nvlist after * processing. */ static int zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { uint64_t sense = ZFS_PROP_UNDEFINED; uint64_t norm = ZFS_PROP_UNDEFINED; uint64_t u8 = ZFS_PROP_UNDEFINED; int error; ASSERT(zplprops != NULL); /* parent dataset must be a filesystem */ if (os != NULL && os->os_phys->os_type != DMU_OST_ZFS) return (SET_ERROR(ZFS_ERR_WRONG_PARENT)); /* * Pull out creator prop choices, if any. */ if (createprops) { (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_CASE), &sense); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_CASE)); } /* * If the zpl version requested is whacky or the file system * or pool is version is too "young" to support normalization * and the creator tried to set a value for one of the props, * error out. */ if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || (zplver >= ZPL_VERSION_FUID && !fuids_ok) || (zplver >= ZPL_VERSION_SA && !sa_ok) || (zplver < ZPL_VERSION_NORMALIZATION && (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || sense != ZFS_PROP_UNDEFINED))) return (SET_ERROR(ENOTSUP)); /* * Put the version in the zplprops */ VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); if (norm == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); /* * If we're normalizing, names must always be valid UTF-8 strings. */ if (norm) u8 = 1; if (u8 == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); if (sense == ZFS_PROP_UNDEFINED && (error = zfs_get_zplprop(os, ZFS_PROP_CASE, &sense)) != 0) return (error); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); if (is_ci) *is_ci = (sense == ZFS_CASE_INSENSITIVE); return (0); } static int zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok, sa_ok; uint64_t zplver = ZPL_VERSION; objset_t *os = NULL; char parentname[ZFS_MAX_DATASET_NAME_LEN]; spa_t *spa; uint64_t spa_vers; int error; zfs_get_parent(dataset, parentname, sizeof (parentname)); if ((error = spa_open(dataset, &spa, FTAG)) != 0) return (error); spa_vers = spa_version(spa); spa_close(spa, FTAG); zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); /* * Open parent object set so we can inherit zplprop values. */ if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) return (error); error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); dmu_objset_rele(os, FTAG); return (error); } static int zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok; boolean_t sa_ok; uint64_t zplver = ZPL_VERSION; int error; zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); return (error); } /* * innvl: { * "type" -> dmu_objset_type_t (int32) * (optional) "props" -> { prop -> value } * (optional) "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * } * * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_create[] = { {"type", DATA_TYPE_INT32, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_create(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; zfs_creat_t zct = { 0 }; nvlist_t *nvprops = NULL; nvlist_t *hidden_args = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); dmu_objset_type_t type; boolean_t is_insensitive = B_FALSE; dsl_crypto_params_t *dcp = NULL; type = (dmu_objset_type_t)fnvlist_lookup_int32(innvl, "type"); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; break; } if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); zct.zct_props = nvprops; if (cbfunc == NULL) return (SET_ERROR(EINVAL)); if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL) return (SET_ERROR(EINVAL)); if (nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) return (SET_ERROR(EINVAL)); if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) return (SET_ERROR(EINVAL)); if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize(fsname, volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) return (error); } else if (type == DMU_OST_ZFS) { int error; /* * We have to have normalization and * case-folding flags correct when we do the * file system creation, so go figure them out * now. */ VERIFY(nvlist_alloc(&zct.zct_zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops(fsname, nvprops, zct.zct_zplprops, &is_insensitive); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } } error = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, nvprops, hidden_args, &dcp); if (error != 0) { nvlist_free(zct.zct_zplprops); return (error); } error = dmu_objset_create(fsname, type, is_insensitive ? DS_FLAG_CI_DATASET : 0, dcp, cbfunc, &zct); nvlist_free(zct.zct_zplprops); dsl_crypto_params_free(dcp, !!error); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) { spa_t *spa; int error2; /* * Volumes will return EBUSY and cannot be destroyed * until all asynchronous minor handling (e.g. from * setting the volmode property) has completed. Wait for * the spa_zvol_taskq to drain then retry. */ error2 = dsl_destroy_head(fsname); while ((error2 == EBUSY) && (type == DMU_OST_ZVOL)) { error2 = spa_open(fsname, &spa, FTAG); if (error2 == 0) { taskq_wait(spa->spa_zvol_taskq); spa_close(spa, FTAG); } error2 = dsl_destroy_head(fsname); } } } return (error); } /* * innvl: { * "origin" -> name of origin snapshot * (optional) "props" -> { prop -> value } * (optional) "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * } * * outputs: * outnvl: propname -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_clone[] = { {"origin", DATA_TYPE_STRING, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_clone(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { int error = 0; nvlist_t *nvprops = NULL; const char *origin_name; origin_name = fnvlist_lookup_string(innvl, "origin"); (void) nvlist_lookup_nvlist(innvl, "props", &nvprops); if (strchr(fsname, '@') || strchr(fsname, '%')) return (SET_ERROR(EINVAL)); if (dataset_namecheck(origin_name, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); error = dmu_objset_clone(fsname, origin_name); /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(fsname, ZPROP_SRC_LOCAL, nvprops, outnvl); if (error != 0) (void) dsl_destroy_head(fsname); } return (error); } static const zfs_ioc_key_t zfs_keys_remap[] = { /* no nvl keys */ }; static int zfs_ioc_remap(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { /* This IOCTL is no longer supported. */ (void) fsname, (void) innvl, (void) outnvl; return (0); } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional) "props" -> { prop -> value (string) } * } * * outnvl: snapshot -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_snapshot[] = { {"snaps", DATA_TYPE_NVLIST, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_snapshot(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { nvlist_t *snaps; nvlist_t *props = NULL; int error, poollen; nvpair_t *pair; (void) nvlist_lookup_nvlist(innvl, "props", &props); if (!nvlist_empty(props) && zfs_earlier_version(poolname, SPA_VERSION_SNAP_PROPS)) return (SET_ERROR(ENOTSUP)); if ((error = zfs_check_userprops(props)) != 0) return (error); snaps = fnvlist_lookup_nvlist(innvl, "snaps"); poollen = strlen(poolname); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { const char *name = nvpair_name(pair); char *cp = strchr(name, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The snap must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '@')) return (SET_ERROR(EXDEV)); /* * Check for permission to set the properties on the fs. */ if (!nvlist_empty(props)) { *cp = '\0'; error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_USERPROP, CRED()); *cp = '@'; if (error != 0) return (error); } /* This must be the only snap of this fs. */ for (nvpair_t *pair2 = nvlist_next_nvpair(snaps, pair); pair2 != NULL; pair2 = nvlist_next_nvpair(snaps, pair2)) { if (strncmp(name, nvpair_name(pair2), cp - name + 1) == 0) { return (SET_ERROR(EXDEV)); } } } error = dsl_dataset_snapshot(snaps, props, outnvl); return (error); } /* * innvl: "message" -> string */ static const zfs_ioc_key_t zfs_keys_log_history[] = { {"message", DATA_TYPE_STRING, 0}, }; static int zfs_ioc_log_history(const char *unused, nvlist_t *innvl, nvlist_t *outnvl) { (void) unused, (void) outnvl; const char *message; char *poolname; spa_t *spa; int error; /* * The poolname in the ioctl is not set, we get it from the TSD, * which was set at the end of the last successful ioctl that allows * logging. The secpolicy func already checked that it is set. * Only one log ioctl is allowed after each successful ioctl, so * we clear the TSD here. */ poolname = tsd_get(zfs_allow_log_key); if (poolname == NULL) return (SET_ERROR(EINVAL)); (void) tsd_set(zfs_allow_log_key, NULL); error = spa_open(poolname, &spa, FTAG); kmem_strfree(poolname); if (error != 0) return (error); message = fnvlist_lookup_string(innvl, "message"); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } error = spa_history_log(spa, message); spa_close(spa, FTAG); return (error); } /* * This ioctl is used to set the bootenv configuration on the current * pool. This configuration is stored in the second padding area of the label, * and it is used by the bootloader(s) to store the bootloader and/or system * specific data. * The data is stored as nvlist data stream, and is protected by * an embedded checksum. * The version can have two possible values: * VB_RAW: nvlist should have key GRUB_ENVMAP, value DATA_TYPE_STRING. * VB_NVLIST: nvlist with arbitrary pairs. */ static const zfs_ioc_key_t zfs_keys_set_bootenv[] = { {"version", DATA_TYPE_UINT64, 0}, {"", DATA_TYPE_ANY, ZK_OPTIONAL | ZK_WILDCARDLIST}, }; static int zfs_ioc_set_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { int error; spa_t *spa; if ((error = spa_open(name, &spa, FTAG)) != 0) return (error); spa_vdev_state_enter(spa, SCL_ALL); error = vdev_label_write_bootenv(spa->spa_root_vdev, innvl); (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (error); } static const zfs_ioc_key_t zfs_keys_get_bootenv[] = { /* no nvl keys */ }; static int zfs_ioc_get_bootenv(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { spa_t *spa; int error; if ((error = spa_open(name, &spa, FTAG)) != 0) return (error); spa_vdev_state_enter(spa, SCL_ALL); error = vdev_label_read_bootenv(spa->spa_root_vdev, outnvl); (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (error); } /* * The dp_config_rwlock must not be held when calling this, because the * unmount may need to write out data. * * This function is best-effort. Callers must deal gracefully if it * remains mounted (or is remounted after this call). * * Returns 0 if the argument is not a snapshot, or it is not currently a * filesystem, or we were able to unmount it. Returns error code otherwise. */ void zfs_unmount_snap(const char *snapname) { if (strchr(snapname, '@') == NULL) return; (void) zfsctl_snapshot_unmount(snapname, MNT_FORCE); } static int zfs_unmount_snap_cb(const char *snapname, void *arg) { (void) arg; zfs_unmount_snap(snapname); return (0); } /* * When a clone is destroyed, its origin may also need to be destroyed, * in which case it must be unmounted. This routine will do that unmount * if necessary. */ void zfs_destroy_unmount_origin(const char *fsname) { int error; objset_t *os; dsl_dataset_t *ds; error = dmu_objset_hold(fsname, FTAG, &os); if (error != 0) return; ds = dmu_objset_ds(os); if (dsl_dir_is_clone(ds->ds_dir) && DS_IS_DEFER_DESTROY(ds->ds_prev)) { char originname[ZFS_MAX_DATASET_NAME_LEN]; dsl_dataset_name(ds->ds_prev, originname); dmu_objset_rele(os, FTAG); zfs_unmount_snap(originname); } else { dmu_objset_rele(os, FTAG); } } /* * innvl: { * "snaps" -> { snapshot1, snapshot2 } * (optional boolean) "defer" * } * * outnvl: snapshot -> error code (int32) */ static const zfs_ioc_key_t zfs_keys_destroy_snaps[] = { {"snaps", DATA_TYPE_NVLIST, 0}, {"defer", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, }; static int zfs_ioc_destroy_snaps(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { int poollen; nvlist_t *snaps; nvpair_t *pair; boolean_t defer; spa_t *spa; snaps = fnvlist_lookup_nvlist(innvl, "snaps"); defer = nvlist_exists(innvl, "defer"); poollen = strlen(poolname); for (pair = nvlist_next_nvpair(snaps, NULL); pair != NULL; pair = nvlist_next_nvpair(snaps, pair)) { const char *name = nvpair_name(pair); /* * The snap must be in the specified pool to prevent the * invalid removal of zvol minors below. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '@')) return (SET_ERROR(EXDEV)); zfs_unmount_snap(nvpair_name(pair)); if (spa_open(name, &spa, FTAG) == 0) { zvol_remove_minors(spa, name, B_TRUE); spa_close(spa, FTAG); } } return (dsl_destroy_snapshots_nvl(snaps, defer, outnvl)); } /* * Create bookmarks. The bookmark names are of the form #. * All bookmarks and snapshots must be in the same pool. * dsl_bookmark_create_nvl_validate describes the nvlist schema in more detail. * * innvl: { * new_bookmark1 -> existing_snapshot, * new_bookmark2 -> existing_bookmark, * } * * outnvl: bookmark -> error code (int32) * */ static const zfs_ioc_key_t zfs_keys_bookmark[] = { {"...", DATA_TYPE_STRING, ZK_WILDCARDLIST}, }; static int zfs_ioc_bookmark(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { (void) poolname; return (dsl_bookmark_create(innvl, outnvl)); } /* * innvl: { * property 1, property 2, ... * } * * outnvl: { * bookmark name 1 -> { property 1, property 2, ... }, * bookmark name 2 -> { property 1, property 2, ... } * } * */ static const zfs_ioc_key_t zfs_keys_get_bookmarks[] = { {"...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST | ZK_OPTIONAL}, }; static int zfs_ioc_get_bookmarks(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { return (dsl_get_bookmarks(fsname, innvl, outnvl)); } /* * innvl is not used. * * outnvl: { * property 1, property 2, ... * } * */ static const zfs_ioc_key_t zfs_keys_get_bookmark_props[] = { /* no nvl keys */ }; static int zfs_ioc_get_bookmark_props(const char *bookmark, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl; char fsname[ZFS_MAX_DATASET_NAME_LEN]; char *bmname; bmname = strchr(bookmark, '#'); if (bmname == NULL) return (SET_ERROR(EINVAL)); bmname++; (void) strlcpy(fsname, bookmark, sizeof (fsname)); *(strchr(fsname, '#')) = '\0'; return (dsl_get_bookmark_props(fsname, bmname, outnvl)); } /* * innvl: { * bookmark name 1, bookmark name 2 * } * * outnvl: bookmark -> error code (int32) * */ static const zfs_ioc_key_t zfs_keys_destroy_bookmarks[] = { {"...", DATA_TYPE_BOOLEAN, ZK_WILDCARDLIST}, }; static int zfs_ioc_destroy_bookmarks(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { int error, poollen; poollen = strlen(poolname); for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { const char *name = nvpair_name(pair); const char *cp = strchr(name, '#'); /* * The bookmark name must contain an #, and the part after it * must contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); /* * The bookmark must be in the specified pool. */ if (strncmp(name, poolname, poollen) != 0 || (name[poollen] != '/' && name[poollen] != '#')) return (SET_ERROR(EXDEV)); } error = dsl_bookmark_destroy(innvl, outnvl); return (error); } static const zfs_ioc_key_t zfs_keys_channel_program[] = { {"program", DATA_TYPE_STRING, 0}, {"arg", DATA_TYPE_ANY, 0}, {"sync", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, {"instrlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"memlimit", DATA_TYPE_UINT64, ZK_OPTIONAL}, }; static int zfs_ioc_channel_program(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { const char *program; uint64_t instrlimit, memlimit; boolean_t sync_flag; nvpair_t *nvarg = NULL; program = fnvlist_lookup_string(innvl, ZCP_ARG_PROGRAM); if (0 != nvlist_lookup_boolean_value(innvl, ZCP_ARG_SYNC, &sync_flag)) { sync_flag = B_TRUE; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_INSTRLIMIT, &instrlimit)) { instrlimit = ZCP_DEFAULT_INSTRLIMIT; } if (0 != nvlist_lookup_uint64(innvl, ZCP_ARG_MEMLIMIT, &memlimit)) { memlimit = ZCP_DEFAULT_MEMLIMIT; } nvarg = fnvlist_lookup_nvpair(innvl, ZCP_ARG_ARGLIST); if (instrlimit == 0 || instrlimit > zfs_lua_max_instrlimit) return (SET_ERROR(EINVAL)); if (memlimit == 0 || memlimit > zfs_lua_max_memlimit) return (SET_ERROR(EINVAL)); return (zcp_eval(poolname, program, sync_flag, instrlimit, memlimit, nvarg, outnvl)); } /* * innvl: unused * outnvl: empty */ static const zfs_ioc_key_t zfs_keys_pool_checkpoint[] = { /* no nvl keys */ }; static int zfs_ioc_pool_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl, (void) outnvl; return (spa_checkpoint(poolname)); } /* * innvl: unused * outnvl: empty */ static const zfs_ioc_key_t zfs_keys_pool_discard_checkpoint[] = { /* no nvl keys */ }; static int zfs_ioc_pool_discard_checkpoint(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl, (void) outnvl; return (spa_checkpoint_discard(poolname)); } /* * inputs: * zc_name name of dataset to destroy * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; int err; err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); if (ost == DMU_OST_ZFS) zfs_unmount_snap(zc->zc_name); if (strchr(zc->zc_name, '@')) { err = dsl_destroy_snapshot(zc->zc_name, zc->zc_defer_destroy); } else { err = dsl_destroy_head(zc->zc_name); if (err == EEXIST) { /* * It is possible that the given DS may have * hidden child (%recv) datasets - "leftovers" * resulting from the previously interrupted * 'zfs receive'. * * 6 extra bytes for /%recv */ char namebuf[ZFS_MAX_DATASET_NAME_LEN + 6]; if (snprintf(namebuf, sizeof (namebuf), "%s/%s", zc->zc_name, recv_clone_name) >= sizeof (namebuf)) return (SET_ERROR(EINVAL)); /* * Try to remove the hidden child (%recv) and after * that try to remove the target dataset. * If the hidden child (%recv) does not exist * the original error (EEXIST) will be returned */ err = dsl_destroy_head(namebuf); if (err == 0) err = dsl_destroy_head(zc->zc_name); else if (err == ENOENT) err = SET_ERROR(EEXIST); } } return (err); } /* * innvl: { * "initialize_command" -> POOL_INITIALIZE_{CANCEL|START|SUSPEND} (uint64) * "initialize_vdevs": { -> guids to initialize (nvlist) * "vdev_path_1": vdev_guid_1, (uint64), * "vdev_path_2": vdev_guid_2, (uint64), * ... * }, * } * * outnvl: { * "initialize_vdevs": { -> initialization errors (nvlist) * "vdev_path_1": errno, see function body for possible errnos (uint64) * "vdev_path_2": errno, ... (uint64) * ... * } * } * * EINVAL is returned for an unknown commands or if any of the provided vdev * guids have be specified with a type other than uint64. */ static const zfs_ioc_key_t zfs_keys_pool_initialize[] = { {ZPOOL_INITIALIZE_COMMAND, DATA_TYPE_UINT64, 0}, {ZPOOL_INITIALIZE_VDEVS, DATA_TYPE_NVLIST, 0} }; static int zfs_ioc_pool_initialize(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { uint64_t cmd_type; if (nvlist_lookup_uint64(innvl, ZPOOL_INITIALIZE_COMMAND, &cmd_type) != 0) { return (SET_ERROR(EINVAL)); } if (!(cmd_type == POOL_INITIALIZE_CANCEL || cmd_type == POOL_INITIALIZE_START || cmd_type == POOL_INITIALIZE_SUSPEND || cmd_type == POOL_INITIALIZE_UNINIT)) { return (SET_ERROR(EINVAL)); } nvlist_t *vdev_guids; if (nvlist_lookup_nvlist(innvl, ZPOOL_INITIALIZE_VDEVS, &vdev_guids) != 0) { return (SET_ERROR(EINVAL)); } for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { uint64_t vdev_guid; if (nvpair_value_uint64(pair, &vdev_guid) != 0) { return (SET_ERROR(EINVAL)); } } spa_t *spa; int error = spa_open(poolname, &spa, FTAG); if (error != 0) return (error); nvlist_t *vdev_errlist = fnvlist_alloc(); int total_errors = spa_vdev_initialize(spa, vdev_guids, cmd_type, vdev_errlist); if (fnvlist_size(vdev_errlist) > 0) { fnvlist_add_nvlist(outnvl, ZPOOL_INITIALIZE_VDEVS, vdev_errlist); } fnvlist_free(vdev_errlist); spa_close(spa, FTAG); return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); } /* * innvl: { * "trim_command" -> POOL_TRIM_{CANCEL|START|SUSPEND} (uint64) * "trim_vdevs": { -> guids to TRIM (nvlist) * "vdev_path_1": vdev_guid_1, (uint64), * "vdev_path_2": vdev_guid_2, (uint64), * ... * }, * "trim_rate" -> Target TRIM rate in bytes/sec. * "trim_secure" -> Set to request a secure TRIM. * } * * outnvl: { * "trim_vdevs": { -> TRIM errors (nvlist) * "vdev_path_1": errno, see function body for possible errnos (uint64) * "vdev_path_2": errno, ... (uint64) * ... * } * } * * EINVAL is returned for an unknown commands or if any of the provided vdev * guids have be specified with a type other than uint64. */ static const zfs_ioc_key_t zfs_keys_pool_trim[] = { {ZPOOL_TRIM_COMMAND, DATA_TYPE_UINT64, 0}, {ZPOOL_TRIM_VDEVS, DATA_TYPE_NVLIST, 0}, {ZPOOL_TRIM_RATE, DATA_TYPE_UINT64, ZK_OPTIONAL}, {ZPOOL_TRIM_SECURE, DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, }; static int zfs_ioc_pool_trim(const char *poolname, nvlist_t *innvl, nvlist_t *outnvl) { uint64_t cmd_type; if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_COMMAND, &cmd_type) != 0) return (SET_ERROR(EINVAL)); if (!(cmd_type == POOL_TRIM_CANCEL || cmd_type == POOL_TRIM_START || cmd_type == POOL_TRIM_SUSPEND)) { return (SET_ERROR(EINVAL)); } nvlist_t *vdev_guids; if (nvlist_lookup_nvlist(innvl, ZPOOL_TRIM_VDEVS, &vdev_guids) != 0) return (SET_ERROR(EINVAL)); for (nvpair_t *pair = nvlist_next_nvpair(vdev_guids, NULL); pair != NULL; pair = nvlist_next_nvpair(vdev_guids, pair)) { uint64_t vdev_guid; if (nvpair_value_uint64(pair, &vdev_guid) != 0) { return (SET_ERROR(EINVAL)); } } /* Optional, defaults to maximum rate when not provided */ uint64_t rate; if (nvlist_lookup_uint64(innvl, ZPOOL_TRIM_RATE, &rate) != 0) rate = 0; /* Optional, defaults to standard TRIM when not provided */ boolean_t secure; if (nvlist_lookup_boolean_value(innvl, ZPOOL_TRIM_SECURE, &secure) != 0) { secure = B_FALSE; } spa_t *spa; int error = spa_open(poolname, &spa, FTAG); if (error != 0) return (error); nvlist_t *vdev_errlist = fnvlist_alloc(); int total_errors = spa_vdev_trim(spa, vdev_guids, cmd_type, rate, !!zfs_trim_metaslab_skip, secure, vdev_errlist); if (fnvlist_size(vdev_errlist) > 0) fnvlist_add_nvlist(outnvl, ZPOOL_TRIM_VDEVS, vdev_errlist); fnvlist_free(vdev_errlist); spa_close(spa, FTAG); return (total_errors > 0 ? SET_ERROR(EINVAL) : 0); } /* * This ioctl waits for activity of a particular type to complete. If there is * no activity of that type in progress, it returns immediately, and the * returned value "waited" is false. If there is activity in progress, and no * tag is passed in, the ioctl blocks until all activity of that type is * complete, and then returns with "waited" set to true. * * If a tag is provided, it identifies a particular instance of an activity to * wait for. Currently, this is only valid for use with 'initialize', because * that is the only activity for which there can be multiple instances running * concurrently. In the case of 'initialize', the tag corresponds to the guid of * the vdev on which to wait. * * If a thread waiting in the ioctl receives a signal, the call will return * immediately, and the return value will be EINTR. * * innvl: { * "wait_activity" -> int32_t * (optional) "wait_tag" -> uint64_t * } * * outnvl: "waited" -> boolean_t */ static const zfs_ioc_key_t zfs_keys_pool_wait[] = { {ZPOOL_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, {ZPOOL_WAIT_TAG, DATA_TYPE_UINT64, ZK_OPTIONAL}, }; static int zfs_ioc_wait(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { int32_t activity; uint64_t tag; boolean_t waited; int error; if (nvlist_lookup_int32(innvl, ZPOOL_WAIT_ACTIVITY, &activity) != 0) return (EINVAL); if (nvlist_lookup_uint64(innvl, ZPOOL_WAIT_TAG, &tag) == 0) error = spa_wait_tag(name, activity, tag, &waited); else error = spa_wait(name, activity, &waited); if (error == 0) fnvlist_add_boolean_value(outnvl, ZPOOL_WAIT_WAITED, waited); return (error); } /* * This ioctl waits for activity of a particular type to complete. If there is * no activity of that type in progress, it returns immediately, and the * returned value "waited" is false. If there is activity in progress, and no * tag is passed in, the ioctl blocks until all activity of that type is * complete, and then returns with "waited" set to true. * * If a thread waiting in the ioctl receives a signal, the call will return * immediately, and the return value will be EINTR. * * innvl: { * "wait_activity" -> int32_t * } * * outnvl: "waited" -> boolean_t */ static const zfs_ioc_key_t zfs_keys_fs_wait[] = { {ZFS_WAIT_ACTIVITY, DATA_TYPE_INT32, 0}, }; static int zfs_ioc_wait_fs(const char *name, nvlist_t *innvl, nvlist_t *outnvl) { int32_t activity; boolean_t waited = B_FALSE; int error; dsl_pool_t *dp; dsl_dir_t *dd; dsl_dataset_t *ds; if (nvlist_lookup_int32(innvl, ZFS_WAIT_ACTIVITY, &activity) != 0) return (SET_ERROR(EINVAL)); if (activity >= ZFS_WAIT_NUM_ACTIVITIES || activity < 0) return (SET_ERROR(EINVAL)); if ((error = dsl_pool_hold(name, FTAG, &dp)) != 0) return (error); if ((error = dsl_dataset_hold(dp, name, FTAG, &ds)) != 0) { dsl_pool_rele(dp, FTAG); return (error); } dd = ds->ds_dir; mutex_enter(&dd->dd_activity_lock); dd->dd_activity_waiters++; /* * We get a long-hold here so that the dsl_dataset_t and dsl_dir_t * aren't evicted while we're waiting. Normally this is prevented by * holding the pool, but we can't do that while we're waiting since * that would prevent TXGs from syncing out. Some of the functionality * of long-holds (e.g. preventing deletion) is unnecessary for this * case, since we would cancel the waiters before proceeding with a * deletion. An alternative mechanism for keeping the dataset around * could be developed but this is simpler. */ dsl_dataset_long_hold(ds, FTAG); dsl_pool_rele(dp, FTAG); error = dsl_dir_wait(dd, ds, activity, &waited); dsl_dataset_long_rele(ds, FTAG); dd->dd_activity_waiters--; if (dd->dd_activity_waiters == 0) cv_signal(&dd->dd_activity_cv); mutex_exit(&dd->dd_activity_lock); dsl_dataset_rele(ds, FTAG); if (error == 0) fnvlist_add_boolean_value(outnvl, ZFS_WAIT_WAITED, waited); return (error); } /* * fsname is name of dataset to rollback (to most recent snapshot) * * innvl may contain name of expected target snapshot * * outnvl: "target" -> name of most recent snapshot * } */ static const zfs_ioc_key_t zfs_keys_rollback[] = { {"target", DATA_TYPE_STRING, ZK_OPTIONAL}, }; static int zfs_ioc_rollback(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { zfsvfs_t *zfsvfs; zvol_state_handle_t *zv; const char *target = NULL; int error; (void) nvlist_lookup_string(innvl, "target", &target); if (target != NULL) { const char *cp = strchr(target, '@'); /* * The snap name must contain an @, and the part after it must * contain only valid characters. */ if (cp == NULL || zfs_component_namecheck(cp + 1, NULL, NULL) != 0) return (SET_ERROR(EINVAL)); } if (getzfsvfs(fsname, &zfsvfs) == 0) { dsl_dataset_t *ds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { int resume_err; error = dsl_dataset_rollback(fsname, target, zfsvfs, outnvl); resume_err = zfs_resume_fs(zfsvfs, ds); error = error ? error : resume_err; } zfs_vfs_rele(zfsvfs); } else if ((zv = zvol_suspend(fsname)) != NULL) { error = dsl_dataset_rollback(fsname, target, zvol_tag(zv), outnvl); zvol_resume(zv); } else { error = dsl_dataset_rollback(fsname, target, NULL, outnvl); } return (error); } static int recursive_unmount(const char *fsname, void *arg) { const char *snapname = arg; char *fullname; fullname = kmem_asprintf("%s@%s", fsname, snapname); zfs_unmount_snap(fullname); kmem_strfree(fullname); return (0); } /* * * snapname is the snapshot to redact. * innvl: { * "bookname" -> (string) * shortname of the redaction bookmark to generate * "snapnv" -> (nvlist, values ignored) * snapshots to redact snapname with respect to * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_redact[] = { {"bookname", DATA_TYPE_STRING, 0}, {"snapnv", DATA_TYPE_NVLIST, 0}, }; static int zfs_ioc_redact(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; nvlist_t *redactnvl = NULL; const char *redactbook = NULL; if (nvlist_lookup_nvlist(innvl, "snapnv", &redactnvl) != 0) return (SET_ERROR(EINVAL)); if (fnvlist_num_pairs(redactnvl) == 0) return (SET_ERROR(ENXIO)); if (nvlist_lookup_string(innvl, "bookname", &redactbook) != 0) return (SET_ERROR(EINVAL)); return (dmu_redact_snap(snapname, redactnvl, redactbook)); } /* * inputs: * zc_name old name of dataset * zc_value new name of dataset * zc_cookie recursive flag (only valid for snapshots) * * outputs: none */ static int zfs_ioc_rename(zfs_cmd_t *zc) { objset_t *os; dmu_objset_type_t ost; boolean_t recursive = zc->zc_cookie & 1; boolean_t nounmount = !!(zc->zc_cookie & 2); char *at; int err; /* "zfs rename" from and to ...%recv datasets should both fail */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_name, '%') || strchr(zc->zc_value, '%')) return (SET_ERROR(EINVAL)); err = dmu_objset_hold(zc->zc_name, FTAG, &os); if (err != 0) return (err); ost = dmu_objset_type(os); dmu_objset_rele(os, FTAG); at = strchr(zc->zc_name, '@'); if (at != NULL) { /* snaps must be in same fs */ int error; if (strncmp(zc->zc_name, zc->zc_value, at - zc->zc_name + 1)) return (SET_ERROR(EXDEV)); *at = '\0'; if (ost == DMU_OST_ZFS && !nounmount) { error = dmu_objset_find(zc->zc_name, recursive_unmount, at + 1, recursive ? DS_FIND_CHILDREN : 0); if (error != 0) { *at = '@'; return (error); } } error = dsl_dataset_rename_snapshot(zc->zc_name, at + 1, strchr(zc->zc_value, '@') + 1, recursive); *at = '@'; return (error); } else { return (dsl_dir_rename(zc->zc_name, zc->zc_value)); } } static int zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) { const char *propname = nvpair_name(pair); boolean_t issnap = (strchr(dsname, '@') != NULL); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval, compval; int err; if (prop == ZPROP_USERPROP) { if (zfs_prop_user(propname)) { if ((err = zfs_secpolicy_write_perms(dsname, ZFS_DELEG_PERM_USERPROP, cr))) return (err); return (0); } if (!issnap && zfs_prop_userquota(propname)) { const char *perm = NULL; const char *uq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; const char *gq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; const char *uiq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA]; const char *giq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA]; const char *pq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA]; const char *piq_prefix = zfs_userquota_prop_prefixes[\ ZFS_PROP_PROJECTOBJQUOTA]; if (strncmp(propname, uq_prefix, strlen(uq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USERQUOTA; } else if (strncmp(propname, uiq_prefix, strlen(uiq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USEROBJQUOTA; } else if (strncmp(propname, gq_prefix, strlen(gq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPQUOTA; } else if (strncmp(propname, giq_prefix, strlen(giq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPOBJQUOTA; } else if (strncmp(propname, pq_prefix, strlen(pq_prefix)) == 0) { perm = ZFS_DELEG_PERM_PROJECTQUOTA; } else if (strncmp(propname, piq_prefix, strlen(piq_prefix)) == 0) { perm = ZFS_DELEG_PERM_PROJECTOBJQUOTA; } else { /* {USER|GROUP|PROJECT}USED are read-only */ return (SET_ERROR(EINVAL)); } if ((err = zfs_secpolicy_write_perms(dsname, perm, cr))) return (err); return (0); } return (SET_ERROR(EINVAL)); } if (issnap) return (SET_ERROR(EINVAL)); if (nvpair_type(pair) == DATA_TYPE_NVLIST) { /* * dsl_prop_get_all_impl() returns properties in this * format. */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_value_uint64(pair, &intval) == 0) { compval = ZIO_COMPRESS_ALGO(intval); if (compval >= ZIO_COMPRESS_GZIP_1 && compval <= ZIO_COMPRESS_GZIP_9 && zfs_earlier_version(dsname, SPA_VERSION_GZIP_COMPRESSION)) { return (SET_ERROR(ENOTSUP)); } if (compval == ZIO_COMPRESS_ZLE && zfs_earlier_version(dsname, SPA_VERSION_ZLE_COMPRESSION)) return (SET_ERROR(ENOTSUP)); if (compval == ZIO_COMPRESS_LZ4) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } if (compval == ZIO_COMPRESS_ZSTD) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } } break; case ZFS_PROP_COPIES: if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_VOLBLOCKSIZE: case ZFS_PROP_RECORDSIZE: /* Record sizes above 128k need the feature to be enabled */ if (nvpair_value_uint64(pair, &intval) == 0 && intval > SPA_OLD_MAXBLOCKSIZE) { spa_t *spa; /* * We don't allow setting the property above 1MB, * unless the tunable has been changed. */ if (intval > zfs_max_recordsize || intval > SPA_MAXBLOCKSIZE) return (SET_ERROR(ERANGE)); if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; case ZFS_PROP_DNODESIZE: /* Dnode sizes above 512 need the feature to be enabled */ if (nvpair_value_uint64(pair, &intval) == 0 && intval != ZFS_DNSIZE_LEGACY) { spa_t *spa; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; case ZFS_PROP_SPECIAL_SMALL_BLOCKS: /* * This property could require the allocation classes * feature to be active for setting, however we allow * it so that tests of settable properties succeed. * The CLI will issue a warning in this case. */ break; case ZFS_PROP_SHARESMB: if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) return (SET_ERROR(ENOTSUP)); break; case ZFS_PROP_ACLINHERIT: if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval == ZFS_ACL_PASSTHROUGH_X && zfs_earlier_version(dsname, SPA_VERSION_PASSTHROUGH_X)) return (SET_ERROR(ENOTSUP)); } break; case ZFS_PROP_CHECKSUM: case ZFS_PROP_DEDUP: { spa_feature_t feature; spa_t *spa; int err; /* dedup feature version checks */ if (prop == ZFS_PROP_DEDUP && zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) return (SET_ERROR(ENOTSUP)); if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { /* check prop value is enabled in features */ feature = zio_checksum_to_feature( intval & ZIO_CHECKSUM_MASK); if (feature == SPA_FEATURE_NONE) break; if ((err = spa_open(dsname, &spa, FTAG)) != 0) return (err); if (!spa_feature_is_enabled(spa, feature)) { spa_close(spa, FTAG); return (SET_ERROR(ENOTSUP)); } spa_close(spa, FTAG); } break; } default: break; } return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); } /* * Removes properties from the given props list that fail permission checks * needed to clear them and to restore them in case of a receive error. For each * property, make sure we have both set and inherit permissions. * * Returns the first error encountered if any permission checks fail. If the * caller provides a non-NULL errlist, it also gives the complete list of names * of all the properties that failed a permission check along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property checks out successfully, zero is returned and the list * pointed at by errlist is NULL. */ static int zfs_check_clearable(const char *dataset, nvlist_t *props, nvlist_t **errlist) { zfs_cmd_t *zc; nvpair_t *pair, *next_pair; nvlist_t *errors; int err, rv = 0; if (props == NULL) return (0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strlcpy(zc->zc_name, dataset, sizeof (zc->zc_name)); pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { next_pair = nvlist_next_nvpair(props, pair); (void) strlcpy(zc->zc_value, nvpair_name(pair), sizeof (zc->zc_value)); if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || (err = zfs_secpolicy_inherit_prop(zc, NULL, CRED())) != 0) { VERIFY(nvlist_remove_nvpair(props, pair) == 0); VERIFY(nvlist_add_int32(errors, zc->zc_value, err) == 0); } pair = next_pair; } kmem_free(zc, sizeof (zfs_cmd_t)); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } static boolean_t propval_equals(nvpair_t *p1, nvpair_t *p2) { if (nvpair_type(p1) == DATA_TYPE_NVLIST) { /* dsl_prop_get_all_impl() format */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p1) == 0); } if (nvpair_type(p2) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p2) == 0); } if (nvpair_type(p1) != nvpair_type(p2)) return (B_FALSE); if (nvpair_type(p1) == DATA_TYPE_STRING) { const char *valstr1, *valstr2; VERIFY(nvpair_value_string(p1, &valstr1) == 0); VERIFY(nvpair_value_string(p2, &valstr2) == 0); return (strcmp(valstr1, valstr2) == 0); } else { uint64_t intval1, intval2; VERIFY(nvpair_value_uint64(p1, &intval1) == 0); VERIFY(nvpair_value_uint64(p2, &intval2) == 0); return (intval1 == intval2); } } /* * Remove properties from props if they are not going to change (as determined * by comparison with origprops). Remove them from origprops as well, since we * do not need to clear or restore properties that won't change. */ static void props_reduce(nvlist_t *props, nvlist_t *origprops) { nvpair_t *pair, *next_pair; if (origprops == NULL) return; /* all props need to be received */ pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { const char *propname = nvpair_name(pair); nvpair_t *match; next_pair = nvlist_next_nvpair(props, pair); if ((nvlist_lookup_nvpair(origprops, propname, &match) != 0) || !propval_equals(pair, match)) goto next; /* need to set received value */ /* don't clear the existing received value */ (void) nvlist_remove_nvpair(origprops, match); /* don't bother receiving the property */ (void) nvlist_remove_nvpair(props, pair); next: pair = next_pair; } } /* * Extract properties that cannot be set PRIOR to the receipt of a dataset. * For example, refquota cannot be set until after the receipt of a dataset, * because in replication streams, an older/earlier snapshot may exceed the * refquota. We want to receive the older/earlier snapshot, but setting * refquota pre-receipt will set the dsl's ACTUAL quota, which will prevent * the older/earlier snapshot from being received (with EDQUOT). * * The ZFS test "zfs_receive_011_pos" demonstrates such a scenario. * * libzfs will need to be judicious handling errors encountered by props * extracted by this function. */ static nvlist_t * extract_delay_props(nvlist_t *props) { nvlist_t *delayprops; nvpair_t *nvp, *tmp; static const zfs_prop_t delayable[] = { ZFS_PROP_REFQUOTA, ZFS_PROP_KEYLOCATION, /* * Setting ZFS_PROP_SHARESMB requires the objset type to be * known, which is not possible prior to receipt of raw sends. */ ZFS_PROP_SHARESMB, 0 }; int i; VERIFY(nvlist_alloc(&delayprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); for (nvp = nvlist_next_nvpair(props, NULL); nvp != NULL; nvp = nvlist_next_nvpair(props, nvp)) { /* * strcmp() is safe because zfs_prop_to_name() always returns * a bounded string. */ for (i = 0; delayable[i] != 0; i++) { if (strcmp(zfs_prop_to_name(delayable[i]), nvpair_name(nvp)) == 0) { break; } } if (delayable[i] != 0) { tmp = nvlist_prev_nvpair(props, nvp); VERIFY(nvlist_add_nvpair(delayprops, nvp) == 0); VERIFY(nvlist_remove_nvpair(props, nvp) == 0); nvp = tmp; } } if (nvlist_empty(delayprops)) { nvlist_free(delayprops); delayprops = NULL; } return (delayprops); } static void zfs_allow_log_destroy(void *arg) { char *poolname = arg; if (poolname != NULL) kmem_strfree(poolname); } #ifdef ZFS_DEBUG static boolean_t zfs_ioc_recv_inject_err; #endif /* * nvlist 'errors' is always allocated. It will contain descriptions of * encountered errors, if any. It's the callers responsibility to free. */ static int zfs_ioc_recv_impl(char *tofs, char *tosnap, const char *origin, nvlist_t *recvprops, nvlist_t *localprops, nvlist_t *hidden_args, boolean_t force, boolean_t heal, boolean_t resumable, int input_fd, dmu_replay_record_t *begin_record, uint64_t *read_bytes, uint64_t *errflags, nvlist_t **errors) { dmu_recv_cookie_t drc; int error = 0; int props_error = 0; offset_t off, noff; nvlist_t *local_delayprops = NULL; nvlist_t *recv_delayprops = NULL; nvlist_t *inherited_delayprops = NULL; nvlist_t *origprops = NULL; /* existing properties */ nvlist_t *origrecvd = NULL; /* existing received properties */ boolean_t first_recvd_props = B_FALSE; boolean_t tofs_was_redacted; zfs_file_t *input_fp; *read_bytes = 0; *errflags = 0; *errors = fnvlist_alloc(); off = 0; if ((input_fp = zfs_file_get(input_fd)) == NULL) return (SET_ERROR(EBADF)); noff = off = zfs_file_off(input_fp); error = dmu_recv_begin(tofs, tosnap, begin_record, force, heal, resumable, localprops, hidden_args, origin, &drc, input_fp, &off); if (error != 0) goto out; tofs_was_redacted = dsl_get_redacted(drc.drc_ds); /* * Set properties before we receive the stream so that they are applied * to the new data. Note that we must call dmu_recv_stream() if * dmu_recv_begin() succeeds. */ if (recvprops != NULL && !drc.drc_newfs) { if (spa_version(dsl_dataset_get_spa(drc.drc_ds)) >= SPA_VERSION_RECVD_PROPS && !dsl_prop_get_hasrecvd(tofs)) first_recvd_props = B_TRUE; /* * If new received properties are supplied, they are to * completely replace the existing received properties, * so stash away the existing ones. */ if (dsl_prop_get_received(tofs, &origrecvd) == 0) { nvlist_t *errlist = NULL; /* * Don't bother writing a property if its value won't * change (and avoid the unnecessary security checks). * * The first receive after SPA_VERSION_RECVD_PROPS is a * special case where we blow away all local properties * regardless. */ if (!first_recvd_props) props_reduce(recvprops, origrecvd); if (zfs_check_clearable(tofs, origrecvd, &errlist) != 0) (void) nvlist_merge(*errors, errlist, 0); nvlist_free(errlist); if (clear_received_props(tofs, origrecvd, first_recvd_props ? NULL : recvprops) != 0) *errflags |= ZPROP_ERR_NOCLEAR; } else { *errflags |= ZPROP_ERR_NOCLEAR; } } /* * Stash away existing properties so we can restore them on error unless * we're doing the first receive after SPA_VERSION_RECVD_PROPS, in which * case "origrecvd" will take care of that. */ if (localprops != NULL && !drc.drc_newfs && !first_recvd_props) { objset_t *os; if (dmu_objset_hold(tofs, FTAG, &os) == 0) { if (dsl_prop_get_all(os, &origprops) != 0) { *errflags |= ZPROP_ERR_NOCLEAR; } dmu_objset_rele(os, FTAG); } else { *errflags |= ZPROP_ERR_NOCLEAR; } } if (recvprops != NULL) { props_error = dsl_prop_set_hasrecvd(tofs); if (props_error == 0) { recv_delayprops = extract_delay_props(recvprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, recvprops, *errors); } } if (localprops != NULL) { nvlist_t *oprops = fnvlist_alloc(); nvlist_t *xprops = fnvlist_alloc(); nvpair_t *nvp = NULL; while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { if (nvpair_type(nvp) == DATA_TYPE_BOOLEAN) { /* -x property */ const char *name = nvpair_name(nvp); zfs_prop_t prop = zfs_name_to_prop(name); if (prop != ZPROP_USERPROP) { if (!zfs_prop_inheritable(prop)) continue; } else if (!zfs_prop_user(name)) continue; fnvlist_add_boolean(xprops, name); } else { /* -o property=value */ fnvlist_add_nvpair(oprops, nvp); } } local_delayprops = extract_delay_props(oprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, oprops, *errors); inherited_delayprops = extract_delay_props(xprops); (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, xprops, *errors); nvlist_free(oprops); nvlist_free(xprops); } error = dmu_recv_stream(&drc, &off); if (error == 0) { zfsvfs_t *zfsvfs = NULL; zvol_state_handle_t *zv = NULL; if (getzfsvfs(tofs, &zfsvfs) == 0) { /* online recv */ dsl_dataset_t *ds; int end_err; boolean_t stream_is_redacted = DMU_GET_FEATUREFLAGS( begin_record->drr_u.drr_begin. drr_versioninfo) & DMU_BACKUP_FEATURE_REDACTED; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); /* * If the suspend fails, then the recv_end will * likely also fail, and clean up after itself. */ end_err = dmu_recv_end(&drc, zfsvfs); /* * If the dataset was not redacted, but we received a * redacted stream onto it, we need to unmount the * dataset. Otherwise, resume the filesystem. */ if (error == 0 && !drc.drc_newfs && stream_is_redacted && !tofs_was_redacted) { error = zfs_end_fs(zfsvfs, ds); } else if (error == 0) { error = zfs_resume_fs(zfsvfs, ds); } error = error ? error : end_err; zfs_vfs_rele(zfsvfs); } else if ((zv = zvol_suspend(tofs)) != NULL) { error = dmu_recv_end(&drc, zvol_tag(zv)); zvol_resume(zv); } else { error = dmu_recv_end(&drc, NULL); } /* Set delayed properties now, after we're done receiving. */ if (recv_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, recv_delayprops, *errors); } if (local_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, local_delayprops, *errors); } if (inherited_delayprops != NULL && error == 0) { (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inherited_delayprops, *errors); } } /* * Merge delayed props back in with initial props, in case * we're DEBUG and zfs_ioc_recv_inject_err is set (which means * we have to make sure clear_received_props() includes * the delayed properties). * * Since zfs_ioc_recv_inject_err is only in DEBUG kernels, * using ASSERT() will be just like a VERIFY. */ if (recv_delayprops != NULL) { ASSERT(nvlist_merge(recvprops, recv_delayprops, 0) == 0); nvlist_free(recv_delayprops); } if (local_delayprops != NULL) { ASSERT(nvlist_merge(localprops, local_delayprops, 0) == 0); nvlist_free(local_delayprops); } if (inherited_delayprops != NULL) { ASSERT(nvlist_merge(localprops, inherited_delayprops, 0) == 0); nvlist_free(inherited_delayprops); } *read_bytes = off - noff; #ifdef ZFS_DEBUG if (zfs_ioc_recv_inject_err) { zfs_ioc_recv_inject_err = B_FALSE; error = 1; } #endif /* * On error, restore the original props. */ if (error != 0 && recvprops != NULL && !drc.drc_newfs) { if (clear_received_props(tofs, recvprops, NULL) != 0) { /* * We failed to clear the received properties. * Since we may have left a $recvd value on the * system, we can't clear the $hasrecvd flag. */ *errflags |= ZPROP_ERR_NORESTORE; } else if (first_recvd_props) { dsl_prop_unset_hasrecvd(tofs); } if (origrecvd == NULL && !drc.drc_newfs) { /* We failed to stash the original properties. */ *errflags |= ZPROP_ERR_NORESTORE; } /* * dsl_props_set() will not convert RECEIVED to LOCAL on or * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL * explicitly if we're restoring local properties cleared in the * first new-style receive. */ if (origrecvd != NULL && zfs_set_prop_nvlist(tofs, (first_recvd_props ? ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), origrecvd, NULL) != 0) { /* * We stashed the original properties but failed to * restore them. */ *errflags |= ZPROP_ERR_NORESTORE; } } if (error != 0 && localprops != NULL && !drc.drc_newfs && !first_recvd_props) { nvlist_t *setprops; nvlist_t *inheritprops; nvpair_t *nvp; if (origprops == NULL) { /* We failed to stash the original properties. */ *errflags |= ZPROP_ERR_NORESTORE; goto out; } /* Restore original props */ setprops = fnvlist_alloc(); inheritprops = fnvlist_alloc(); nvp = NULL; while ((nvp = nvlist_next_nvpair(localprops, nvp)) != NULL) { const char *name = nvpair_name(nvp); const char *source; nvlist_t *attrs; if (!nvlist_exists(origprops, name)) { /* * Property was not present or was explicitly * inherited before the receive, restore this. */ fnvlist_add_boolean(inheritprops, name); continue; } attrs = fnvlist_lookup_nvlist(origprops, name); source = fnvlist_lookup_string(attrs, ZPROP_SOURCE); /* Skip received properties */ if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) continue; if (strcmp(source, tofs) == 0) { /* Property was locally set */ fnvlist_add_nvlist(setprops, name, attrs); } else { /* Property was implicitly inherited */ fnvlist_add_boolean(inheritprops, name); } } if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_LOCAL, setprops, NULL) != 0) *errflags |= ZPROP_ERR_NORESTORE; if (zfs_set_prop_nvlist(tofs, ZPROP_SRC_INHERITED, inheritprops, NULL) != 0) *errflags |= ZPROP_ERR_NORESTORE; nvlist_free(setprops); nvlist_free(inheritprops); } out: zfs_file_put(input_fp); nvlist_free(origrecvd); nvlist_free(origprops); if (error == 0) error = props_error; return (error); } /* * inputs: * zc_name name of containing filesystem (unused) * zc_nvlist_src{_size} nvlist of properties to apply * zc_nvlist_conf{_size} nvlist of properties to exclude * (DATA_TYPE_BOOLEAN) and override (everything else) * zc_value name of snapshot to create * zc_string name of clone origin (if DRR_FLAG_CLONE) * zc_cookie file descriptor to recv from * zc_begin_record the BEGIN record of the stream (not byteswapped) * zc_guid force flag * * outputs: * zc_cookie number of bytes read * zc_obj zprop_errflags_t * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_recv(zfs_cmd_t *zc) { dmu_replay_record_t begin_record; nvlist_t *errors = NULL; nvlist_t *recvdprops = NULL; nvlist_t *localprops = NULL; const char *origin = NULL; char *tosnap; char tofs[ZFS_MAX_DATASET_NAME_LEN]; int error = 0; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL || strchr(zc->zc_value, '%') != NULL) { return (SET_ERROR(EINVAL)); } (void) strlcpy(tofs, zc->zc_value, sizeof (tofs)); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; if (zc->zc_nvlist_src != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &recvdprops)) != 0) { goto out; } if (zc->zc_nvlist_conf != 0 && (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &localprops)) != 0) { goto out; } if (zc->zc_string[0]) origin = zc->zc_string; begin_record.drr_type = DRR_BEGIN; begin_record.drr_payloadlen = 0; begin_record.drr_u.drr_begin = zc->zc_begin_record; error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvdprops, localprops, NULL, zc->zc_guid, B_FALSE, B_FALSE, zc->zc_cookie, &begin_record, &zc->zc_cookie, &zc->zc_obj, &errors); /* * Now that all props, initial and delayed, are set, report the prop * errors to the caller. */ if (zc->zc_nvlist_dst_size != 0 && errors != NULL && (nvlist_smush(errors, zc->zc_nvlist_dst_size) != 0 || put_nvlist(zc, errors) != 0)) { /* * Caller made zc->zc_nvlist_dst less than the minimum expected * size or supplied an invalid address. */ error = SET_ERROR(EINVAL); } out: nvlist_free(errors); nvlist_free(recvdprops); nvlist_free(localprops); return (error); } /* * innvl: { * "snapname" -> full name of the snapshot to create * (optional) "props" -> received properties to set (nvlist) * (optional) "localprops" -> override and exclude properties (nvlist) * (optional) "origin" -> name of clone origin (DRR_FLAG_CLONE) * "begin_record" -> non-byteswapped dmu_replay_record_t * "input_fd" -> file descriptor to read stream from (int32) * (optional) "force" -> force flag (value ignored) * (optional) "heal" -> use send stream to heal data corruption * (optional) "resumable" -> resumable flag (value ignored) * (optional) "cleanup_fd" -> unused * (optional) "action_handle" -> unused * (optional) "hidden_args" -> { "wkeydata" -> value } * } * * outnvl: { * "read_bytes" -> number of bytes read * "error_flags" -> zprop_errflags_t * "errors" -> error for each unapplied received property (nvlist) * } */ static const zfs_ioc_key_t zfs_keys_recv_new[] = { {"snapname", DATA_TYPE_STRING, 0}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"localprops", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"origin", DATA_TYPE_STRING, ZK_OPTIONAL}, {"begin_record", DATA_TYPE_BYTE_ARRAY, 0}, {"input_fd", DATA_TYPE_INT32, 0}, {"force", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"heal", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"resumable", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, {"action_handle", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_recv_new(const char *fsname, nvlist_t *innvl, nvlist_t *outnvl) { dmu_replay_record_t *begin_record; uint_t begin_record_size; nvlist_t *errors = NULL; nvlist_t *recvprops = NULL; nvlist_t *localprops = NULL; nvlist_t *hidden_args = NULL; const char *snapname; const char *origin = NULL; char *tosnap; char tofs[ZFS_MAX_DATASET_NAME_LEN]; boolean_t force; boolean_t heal; boolean_t resumable; uint64_t read_bytes = 0; uint64_t errflags = 0; int input_fd = -1; int error; snapname = fnvlist_lookup_string(innvl, "snapname"); if (dataset_namecheck(snapname, NULL, NULL) != 0 || strchr(snapname, '@') == NULL || strchr(snapname, '%') != NULL) { return (SET_ERROR(EINVAL)); } (void) strlcpy(tofs, snapname, sizeof (tofs)); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; error = nvlist_lookup_string(innvl, "origin", &origin); if (error && error != ENOENT) return (error); error = nvlist_lookup_byte_array(innvl, "begin_record", (uchar_t **)&begin_record, &begin_record_size); if (error != 0 || begin_record_size != sizeof (*begin_record)) return (SET_ERROR(EINVAL)); input_fd = fnvlist_lookup_int32(innvl, "input_fd"); force = nvlist_exists(innvl, "force"); heal = nvlist_exists(innvl, "heal"); resumable = nvlist_exists(innvl, "resumable"); /* we still use "props" here for backwards compatibility */ error = nvlist_lookup_nvlist(innvl, "props", &recvprops); if (error && error != ENOENT) goto out; error = nvlist_lookup_nvlist(innvl, "localprops", &localprops); if (error && error != ENOENT) goto out; error = nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); if (error && error != ENOENT) goto out; error = zfs_ioc_recv_impl(tofs, tosnap, origin, recvprops, localprops, hidden_args, force, heal, resumable, input_fd, begin_record, &read_bytes, &errflags, &errors); fnvlist_add_uint64(outnvl, "read_bytes", read_bytes); fnvlist_add_uint64(outnvl, "error_flags", errflags); fnvlist_add_nvlist(outnvl, "errors", errors); out: nvlist_free(errors); nvlist_free(recvprops); nvlist_free(localprops); nvlist_free(hidden_args); return (error); } +/* + * When stack space is limited, we write replication stream data to the target + * on a separate taskq thread, to make sure there's enough stack space. + */ +#ifndef HAVE_LARGE_STACKS +#define USE_SEND_TASKQ 1 +#endif + typedef struct dump_bytes_io { zfs_file_t *dbi_fp; caddr_t dbi_buf; int dbi_len; int dbi_err; } dump_bytes_io_t; static void dump_bytes_cb(void *arg) { dump_bytes_io_t *dbi = (dump_bytes_io_t *)arg; zfs_file_t *fp; caddr_t buf; fp = dbi->dbi_fp; buf = dbi->dbi_buf; dbi->dbi_err = zfs_file_write(fp, buf, dbi->dbi_len, NULL); } +typedef struct dump_bytes_arg { + zfs_file_t *dba_fp; +#ifdef USE_SEND_TASKQ + taskq_t *dba_tq; + taskq_ent_t dba_tqent; +#endif +} dump_bytes_arg_t; + static int dump_bytes(objset_t *os, void *buf, int len, void *arg) { + dump_bytes_arg_t *dba = (dump_bytes_arg_t *)arg; dump_bytes_io_t dbi; - dbi.dbi_fp = arg; + dbi.dbi_fp = dba->dba_fp; dbi.dbi_buf = buf; dbi.dbi_len = len; -#if defined(HAVE_LARGE_STACKS) - dump_bytes_cb(&dbi); +#ifdef USE_SEND_TASKQ + taskq_dispatch_ent(dba->dba_tq, dump_bytes_cb, &dbi, TQ_SLEEP, + &dba->dba_tqent); + taskq_wait(dba->dba_tq); #else - /* - * The vn_rdwr() call is performed in a taskq to ensure that there is - * always enough stack space to write safely to the target filesystem. - * The ZIO_TYPE_FREE threads are used because there can be a lot of - * them and they are used in vdev_file.c for a similar purpose. - */ - spa_taskq_dispatch_sync(dmu_objset_spa(os), ZIO_TYPE_FREE, - ZIO_TASKQ_ISSUE, dump_bytes_cb, &dbi, TQ_SLEEP); -#endif /* HAVE_LARGE_STACKS */ + dump_bytes_cb(&dbi); +#endif return (dbi.dbi_err); } +static int +dump_bytes_init(dump_bytes_arg_t *dba, int fd, dmu_send_outparams_t *out) +{ + zfs_file_t *fp = zfs_file_get(fd); + if (fp == NULL) + return (SET_ERROR(EBADF)); + + dba->dba_fp = fp; +#ifdef USE_SEND_TASKQ + dba->dba_tq = taskq_create("z_send", 1, defclsyspri, 0, 0, 0); + taskq_init_ent(&dba->dba_tqent); +#endif + + memset(out, 0, sizeof (dmu_send_outparams_t)); + out->dso_outfunc = dump_bytes; + out->dso_arg = dba; + out->dso_dryrun = B_FALSE; + + return (0); +} + +static void +dump_bytes_fini(dump_bytes_arg_t *dba) +{ + zfs_file_put(dba->dba_fp); +#ifdef USE_SEND_TASKQ + taskq_destroy(dba->dba_tq); +#endif +} + /* * inputs: * zc_name name of snapshot to send * zc_cookie file descriptor to send stream to * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) * zc_sendobj objsetid of snapshot to send * zc_fromobj objsetid of incremental fromsnap (may be zero) * zc_guid if set, estimate size of stream only. zc_cookie is ignored. * output size in zc_objset_type. * zc_flags lzc_send_flags * * outputs: * zc_objset_type estimated size, if zc_guid is set * * NOTE: This is no longer the preferred interface, any new functionality * should be added to zfs_ioc_send_new() instead. */ static int zfs_ioc_send(zfs_cmd_t *zc) { int error; offset_t off; boolean_t estimate = (zc->zc_guid != 0); boolean_t embedok = (zc->zc_flags & 0x1); boolean_t large_block_ok = (zc->zc_flags & 0x2); boolean_t compressok = (zc->zc_flags & 0x4); boolean_t rawok = (zc->zc_flags & 0x8); boolean_t savedok = (zc->zc_flags & 0x10); if (zc->zc_obj != 0) { dsl_pool_t *dp; dsl_dataset_t *tosnap; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (dsl_dir_is_clone(tosnap->ds_dir)) zc->zc_fromobj = dsl_dir_phys(tosnap->ds_dir)->dd_origin_obj; dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } if (estimate) { dsl_pool_t *dp; dsl_dataset_t *tosnap; dsl_dataset_t *fromsnap = NULL; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (zc->zc_fromobj != 0) { error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } } error = dmu_send_estimate_fast(tosnap, fromsnap, NULL, compressok || rawok, savedok, &zc->zc_objset_type); if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } else { - zfs_file_t *fp; - dmu_send_outparams_t out = {0}; - - if ((fp = zfs_file_get(zc->zc_cookie)) == NULL) - return (SET_ERROR(EBADF)); + dump_bytes_arg_t dba; + dmu_send_outparams_t out; + error = dump_bytes_init(&dba, zc->zc_cookie, &out); + if (error) + return (error); - off = zfs_file_off(fp); - out.dso_outfunc = dump_bytes; - out.dso_arg = fp; - out.dso_dryrun = B_FALSE; + off = zfs_file_off(dba.dba_fp); error = dmu_send_obj(zc->zc_name, zc->zc_sendobj, zc->zc_fromobj, embedok, large_block_ok, compressok, rawok, savedok, zc->zc_cookie, &off, &out); - zfs_file_put(fp); + dump_bytes_fini(&dba); } return (error); } /* * inputs: * zc_name name of snapshot on which to report progress * zc_cookie file descriptor of send stream * * outputs: * zc_cookie number of bytes written in send stream thus far * zc_objset_type logical size of data traversed by send thus far */ static int zfs_ioc_send_progress(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds; dmu_sendstatus_t *dsp = NULL; int error; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } mutex_enter(&ds->ds_sendstream_lock); /* * Iterate over all the send streams currently active on this dataset. * If there's one which matches the specified file descriptor _and_ the * stream was started by the current process, return the progress of * that stream. */ for (dsp = list_head(&ds->ds_sendstreams); dsp != NULL; dsp = list_next(&ds->ds_sendstreams, dsp)) { if (dsp->dss_outfd == zc->zc_cookie && zfs_proc_is_caller(dsp->dss_proc)) break; } if (dsp != NULL) { zc->zc_cookie = atomic_cas_64((volatile uint64_t *)dsp->dss_off, 0, 0); /* This is the closest thing we have to atomic_read_64. */ zc->zc_objset_type = atomic_cas_64(&dsp->dss_blocks, 0, 0); } else { error = SET_ERROR(ENOENT); } mutex_exit(&ds->ds_sendstream_lock); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &zc->zc_nvlist_dst_size); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; /* * On zpool clear we also fix up missing slogs */ mutex_enter(&spa_namespace_lock); spa = spa_lookup(zc->zc_name); if (spa == NULL) { mutex_exit(&spa_namespace_lock); return (SET_ERROR(EIO)); } if (spa_get_log_state(spa) == SPA_LOG_MISSING) { /* we need to let spa_open/spa_load clear the chains */ spa_set_log_state(spa, SPA_LOG_CLEAR); } spa->spa_last_open_failed = 0; mutex_exit(&spa_namespace_lock); if (zc->zc_cookie & ZPOOL_NO_REWIND) { error = spa_open(zc->zc_name, &spa, FTAG); } else { nvlist_t *policy; nvlist_t *config = NULL; if (zc->zc_nvlist_src == 0) return (SET_ERROR(EINVAL)); if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { error = spa_open_rewind(zc->zc_name, &spa, FTAG, policy, &config); if (config != NULL) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; nvlist_free(config); } nvlist_free(policy); } } if (error != 0) return (error); /* * If multihost is enabled, resuming I/O is unsafe as another * host may have imported the pool. Check for remote activity. */ if (spa_multihost(spa) && spa_suspended(spa) && spa_mmp_remote_host_activity(spa)) { spa_close(spa, FTAG); return (SET_ERROR(EREMOTEIO)); } spa_vdev_state_enter(spa, SCL_NONE); if (zc->zc_guid == 0) { vd = NULL; } else { vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); if (vd == NULL) { error = SET_ERROR(ENODEV); (void) spa_vdev_state_exit(spa, NULL, error); spa_close(spa, FTAG); return (error); } } vdev_clear(spa, vd); (void) spa_vdev_state_exit(spa, spa_suspended(spa) ? NULL : spa->spa_root_vdev, 0); /* * Resume any suspended I/Os. */ if (zio_resume(spa) != 0) error = SET_ERROR(EIO); spa_close(spa, FTAG); return (error); } /* * Reopen all the vdevs associated with the pool. * * innvl: { * "scrub_restart" -> when true and scrub is running, allow to restart * scrub as the side effect of the reopen (boolean). * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_pool_reopen[] = { {"scrub_restart", DATA_TYPE_BOOLEAN_VALUE, ZK_OPTIONAL}, }; static int zfs_ioc_pool_reopen(const char *pool, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; spa_t *spa; int error; boolean_t rc, scrub_restart = B_TRUE; if (innvl) { error = nvlist_lookup_boolean_value(innvl, "scrub_restart", &rc); if (error == 0) scrub_restart = rc; } error = spa_open(pool, &spa, FTAG); if (error != 0) return (error); spa_vdev_state_enter(spa, SCL_NONE); /* * If the scrub_restart flag is B_FALSE and a scrub is already * in progress then set spa_scrub_reopen flag to B_TRUE so that * we don't restart the scrub as a side effect of the reopen. * Otherwise, let vdev_open() decided if a resilver is required. */ spa->spa_scrub_reopen = (!scrub_restart && dsl_scan_scrubbing(spa->spa_dsl_pool)); vdev_reopen(spa->spa_root_vdev); spa->spa_scrub_reopen = B_FALSE; (void) spa_vdev_state_exit(spa, NULL, 0); spa_close(spa, FTAG); return (0); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_string name of conflicting snapshot, if there is one */ static int zfs_ioc_promote(zfs_cmd_t *zc) { dsl_pool_t *dp; dsl_dataset_t *ds, *ods; char origin[ZFS_MAX_DATASET_NAME_LEN]; char *cp; int error; zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0 || strchr(zc->zc_name, '%')) return (SET_ERROR(EINVAL)); error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &ds); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (!dsl_dir_is_clone(ds->ds_dir)) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (SET_ERROR(EINVAL)); } error = dsl_dataset_hold_obj(dp, dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &ods); if (error != 0) { dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); return (error); } dsl_dataset_name(ods, origin); dsl_dataset_rele(ods, FTAG); dsl_dataset_rele(ds, FTAG); dsl_pool_rele(dp, FTAG); /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(origin, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(origin, zfs_unmount_snap_cb, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); } /* * Retrieve a single {user|group|project}{used|quota}@... property. * * inputs: * zc_name name of filesystem * zc_objset_type zfs_userquota_prop_t * zc_value domain name (eg. "S-1-234-567-89") * zc_guid RID/UID/GID * * outputs: * zc_cookie property value */ static int zfs_ioc_userspace_one(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (SET_ERROR(EINVAL)); error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); error = zfs_userspace_one(zfsvfs, zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_objset_type zfs_userquota_prop_t * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) * * outputs: * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) * zc_cookie zap cursor */ static int zfs_ioc_userspace_many(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int bufsize = zc->zc_nvlist_dst_size; if (bufsize <= 0) return (SET_ERROR(ENOMEM)); int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error != 0) return (error); void *buf = vmem_alloc(bufsize, KM_SLEEP); error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, buf, &zc->zc_nvlist_dst_size); if (error == 0) { error = xcopyout(buf, (void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size); } vmem_free(buf, bufsize); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) { int error = 0; zfsvfs_t *zfsvfs; if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { /* * If userused is not enabled, it may be because the * objset needs to be closed & reopened (to grow the * objset_phys_t). Suspend/resume the fs will do that. */ dsl_dataset_t *ds, *newds; ds = dmu_objset_ds(zfsvfs->z_os); error = zfs_suspend_fs(zfsvfs); if (error == 0) { dmu_objset_refresh_ownership(ds, &newds, B_TRUE, zfsvfs); error = zfs_resume_fs(zfsvfs, newds); } } if (error == 0) { mutex_enter(&zfsvfs->z_os->os_upgrade_lock); if (zfsvfs->z_os->os_upgrade_id == 0) { /* clear potential error code and retry */ zfsvfs->z_os->os_upgrade_status = 0; mutex_exit(&zfsvfs->z_os->os_upgrade_lock); dsl_pool_config_enter( dmu_objset_pool(zfsvfs->z_os), FTAG); dmu_objset_userspace_upgrade(zfsvfs->z_os); dsl_pool_config_exit( dmu_objset_pool(zfsvfs->z_os), FTAG); } else { mutex_exit(&zfsvfs->z_os->os_upgrade_lock); } taskq_wait_id(zfsvfs->z_os->os_spa->spa_upgrade_taskq, zfsvfs->z_os->os_upgrade_id); error = zfsvfs->z_os->os_upgrade_status; } zfs_vfs_rele(zfsvfs); } else { objset_t *os; /* XXX kind of reading contents without owning */ error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); if (error != 0) return (error); mutex_enter(&os->os_upgrade_lock); if (os->os_upgrade_id == 0) { /* clear potential error code and retry */ os->os_upgrade_status = 0; mutex_exit(&os->os_upgrade_lock); dmu_objset_userspace_upgrade(os); } else { mutex_exit(&os->os_upgrade_lock); } dsl_pool_rele(dmu_objset_pool(os), FTAG); taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); error = os->os_upgrade_status; dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG); } return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_id_quota_upgrade(zfs_cmd_t *zc) { objset_t *os; int error; error = dmu_objset_hold_flags(zc->zc_name, B_TRUE, FTAG, &os); if (error != 0) return (error); if (dmu_objset_userobjspace_upgradable(os) || dmu_objset_projectquota_upgradable(os)) { mutex_enter(&os->os_upgrade_lock); if (os->os_upgrade_id == 0) { /* clear potential error code and retry */ os->os_upgrade_status = 0; mutex_exit(&os->os_upgrade_lock); dmu_objset_id_quota_upgrade(os); } else { mutex_exit(&os->os_upgrade_lock); } dsl_pool_rele(dmu_objset_pool(os), FTAG); taskq_wait_id(os->os_spa->spa_upgrade_taskq, os->os_upgrade_id); error = os->os_upgrade_status; } else { dsl_pool_rele(dmu_objset_pool(os), FTAG); } dsl_dataset_rele_flags(dmu_objset_ds(os), DS_HOLD_FLAG_DECRYPT, FTAG); return (error); } static int zfs_ioc_share(zfs_cmd_t *zc) { return (SET_ERROR(ENOSYS)); } /* * inputs: * zc_name name of containing filesystem * zc_obj object # beyond which we want next in-use object # * * outputs: * zc_obj next in-use object # */ static int zfs_ioc_next_obj(zfs_cmd_t *zc) { objset_t *os = NULL; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error != 0) return (error); error = dmu_object_next(os, &zc->zc_obj, B_FALSE, 0); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value prefix name for snapshot * zc_cleanup_fd cleanup-on-exit file descriptor for calling process * * outputs: * zc_value short name of new snapshot */ static int zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) { char *snap_name; char *hold_name; minor_t minor; zfs_file_t *fp = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); if (fp == NULL) return (SET_ERROR(EBADF)); snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, (u_longlong_t)ddi_get_lbolt64()); hold_name = kmem_asprintf("%%%s", zc->zc_value); int error = dsl_dataset_snapshot_tmp(zc->zc_name, snap_name, minor, hold_name); if (error == 0) (void) strlcpy(zc->zc_value, snap_name, sizeof (zc->zc_value)); kmem_strfree(snap_name); kmem_strfree(hold_name); zfs_onexit_fd_rele(fp); return (error); } /* * inputs: * zc_name name of "to" snapshot * zc_value name of "from" snapshot * zc_cookie file descriptor to write diff data on * * outputs: * dmu_diff_record_t's to the file descriptor */ static int zfs_ioc_diff(zfs_cmd_t *zc) { zfs_file_t *fp; offset_t off; int error; if ((fp = zfs_file_get(zc->zc_cookie)) == NULL) return (SET_ERROR(EBADF)); off = zfs_file_off(fp); error = dmu_diff(zc->zc_name, zc->zc_value, fp, &off); zfs_file_put(fp); return (error); } static int zfs_ioc_smb_acl(zfs_cmd_t *zc) { return (SET_ERROR(ENOTSUP)); } /* * innvl: { * "holds" -> { snapname -> holdname (string), ... } * (optional) "cleanup_fd" -> fd (int32) * } * * outnvl: { * snapname -> error value (int32) * ... * } */ static const zfs_ioc_key_t zfs_keys_hold[] = { {"holds", DATA_TYPE_NVLIST, 0}, {"cleanup_fd", DATA_TYPE_INT32, ZK_OPTIONAL}, }; static int zfs_ioc_hold(const char *pool, nvlist_t *args, nvlist_t *errlist) { (void) pool; nvpair_t *pair; nvlist_t *holds; int cleanup_fd = -1; int error; minor_t minor = 0; zfs_file_t *fp = NULL; holds = fnvlist_lookup_nvlist(args, "holds"); /* make sure the user didn't pass us any invalid (empty) tags */ for (pair = nvlist_next_nvpair(holds, NULL); pair != NULL; pair = nvlist_next_nvpair(holds, pair)) { const char *htag; error = nvpair_value_string(pair, &htag); if (error != 0) return (SET_ERROR(error)); if (strlen(htag) == 0) return (SET_ERROR(EINVAL)); } if (nvlist_lookup_int32(args, "cleanup_fd", &cleanup_fd) == 0) { fp = zfs_onexit_fd_hold(cleanup_fd, &minor); if (fp == NULL) return (SET_ERROR(EBADF)); } error = dsl_dataset_user_hold(holds, minor, errlist); if (fp != NULL) { ASSERT3U(minor, !=, 0); zfs_onexit_fd_rele(fp); } return (SET_ERROR(error)); } /* * innvl is not used. * * outnvl: { * holdname -> time added (uint64 seconds since epoch) * ... * } */ static const zfs_ioc_key_t zfs_keys_get_holds[] = { /* no nvl keys */ }; static int zfs_ioc_get_holds(const char *snapname, nvlist_t *args, nvlist_t *outnvl) { (void) args; return (dsl_dataset_get_holds(snapname, outnvl)); } /* * innvl: { * snapname -> { holdname, ... } * ... * } * * outnvl: { * snapname -> error value (int32) * ... * } */ static const zfs_ioc_key_t zfs_keys_release[] = { {"...", DATA_TYPE_NVLIST, ZK_WILDCARDLIST}, }; static int zfs_ioc_release(const char *pool, nvlist_t *holds, nvlist_t *errlist) { (void) pool; return (dsl_dataset_user_release(holds, errlist)); } /* * inputs: * zc_guid flags (ZEVENT_NONBLOCK) * zc_cleanup_fd zevent file descriptor * * outputs: * zc_nvlist_dst next nvlist event * zc_cookie dropped events since last get */ static int zfs_ioc_events_next(zfs_cmd_t *zc) { zfs_zevent_t *ze; nvlist_t *event = NULL; minor_t minor; uint64_t dropped = 0; int error; zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); if (fp == NULL) return (SET_ERROR(EBADF)); do { error = zfs_zevent_next(ze, &event, &zc->zc_nvlist_dst_size, &dropped); if (event != NULL) { zc->zc_cookie = dropped; error = put_nvlist(zc, event); nvlist_free(event); } if (zc->zc_guid & ZEVENT_NONBLOCK) break; if ((error == 0) || (error != ENOENT)) break; error = zfs_zevent_wait(ze); if (error != 0) break; } while (1); zfs_zevent_fd_rele(fp); return (error); } /* * outputs: * zc_cookie cleared events count */ static int zfs_ioc_events_clear(zfs_cmd_t *zc) { uint_t count; zfs_zevent_drain_all(&count); zc->zc_cookie = count; return (0); } /* * inputs: * zc_guid eid | ZEVENT_SEEK_START | ZEVENT_SEEK_END * zc_cleanup zevent file descriptor */ static int zfs_ioc_events_seek(zfs_cmd_t *zc) { zfs_zevent_t *ze; minor_t minor; int error; zfs_file_t *fp = zfs_zevent_fd_hold(zc->zc_cleanup_fd, &minor, &ze); if (fp == NULL) return (SET_ERROR(EBADF)); error = zfs_zevent_seek(ze, zc->zc_guid); zfs_zevent_fd_rele(fp); return (error); } /* * inputs: * zc_name name of later filesystem or snapshot * zc_value full name of old snapshot or bookmark * * outputs: * zc_cookie space in bytes * zc_objset_type compressed space in bytes * zc_perm_action uncompressed space in bytes */ static int zfs_ioc_space_written(zfs_cmd_t *zc) { int error; dsl_pool_t *dp; dsl_dataset_t *new; error = dsl_pool_hold(zc->zc_name, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, zc->zc_name, FTAG, &new); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } if (strchr(zc->zc_value, '#') != NULL) { zfs_bookmark_phys_t bmp; error = dsl_bookmark_lookup(dp, zc->zc_value, new, &bmp); if (error == 0) { error = dsl_dataset_space_written_bookmark(&bmp, new, &zc->zc_cookie, &zc->zc_objset_type, &zc->zc_perm_action); } } else { dsl_dataset_t *old; error = dsl_dataset_hold(dp, zc->zc_value, FTAG, &old); if (error == 0) { error = dsl_dataset_space_written(old, new, &zc->zc_cookie, &zc->zc_objset_type, &zc->zc_perm_action); dsl_dataset_rele(old, FTAG); } } dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } /* * innvl: { * "firstsnap" -> snapshot name * } * * outnvl: { * "used" -> space in bytes * "compressed" -> compressed space in bytes * "uncompressed" -> uncompressed space in bytes * } */ static const zfs_ioc_key_t zfs_keys_space_snaps[] = { {"firstsnap", DATA_TYPE_STRING, 0}, }; static int zfs_ioc_space_snaps(const char *lastsnap, nvlist_t *innvl, nvlist_t *outnvl) { int error; dsl_pool_t *dp; dsl_dataset_t *new, *old; const char *firstsnap; uint64_t used, comp, uncomp; firstsnap = fnvlist_lookup_string(innvl, "firstsnap"); error = dsl_pool_hold(lastsnap, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, lastsnap, FTAG, &new); if (error == 0 && !new->ds_is_snapshot) { dsl_dataset_rele(new, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_hold(dp, firstsnap, FTAG, &old); if (error == 0 && !old->ds_is_snapshot) { dsl_dataset_rele(old, FTAG); error = SET_ERROR(EINVAL); } if (error != 0) { dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); return (error); } error = dsl_dataset_space_wouldfree(old, new, &used, &comp, &uncomp); dsl_dataset_rele(old, FTAG); dsl_dataset_rele(new, FTAG); dsl_pool_rele(dp, FTAG); fnvlist_add_uint64(outnvl, "used", used); fnvlist_add_uint64(outnvl, "compressed", comp); fnvlist_add_uint64(outnvl, "uncompressed", uncomp); return (error); } /* * innvl: { * "fd" -> file descriptor to write stream to (int32) * (optional) "fromsnap" -> full snap name to send an incremental from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * (optional) "rawok" -> (value ignored) * presence indicates raw encrypted records should be used. * (optional) "savedok" -> (value ignored) * presence indicates we should send a partially received snapshot * (optional) "resume_object" and "resume_offset" -> (uint64) * if present, resume send stream from specified object and offset. * (optional) "redactbook" -> (string) * if present, use this bookmark's redaction list to generate a redacted * send stream * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_send_new[] = { {"fd", DATA_TYPE_INT32, 0}, {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"savedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, }; static int zfs_ioc_send_new(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; int error; offset_t off; const char *fromname = NULL; int fd; - zfs_file_t *fp; boolean_t largeblockok; boolean_t embedok; boolean_t compressok; boolean_t rawok; boolean_t savedok; uint64_t resumeobj = 0; uint64_t resumeoff = 0; const char *redactbook = NULL; fd = fnvlist_lookup_int32(innvl, "fd"); (void) nvlist_lookup_string(innvl, "fromsnap", &fromname); largeblockok = nvlist_exists(innvl, "largeblockok"); embedok = nvlist_exists(innvl, "embedok"); compressok = nvlist_exists(innvl, "compressok"); rawok = nvlist_exists(innvl, "rawok"); savedok = nvlist_exists(innvl, "savedok"); (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); (void) nvlist_lookup_string(innvl, "redactbook", &redactbook); - if ((fp = zfs_file_get(fd)) == NULL) - return (SET_ERROR(EBADF)); - - off = zfs_file_off(fp); + dump_bytes_arg_t dba; + dmu_send_outparams_t out; + error = dump_bytes_init(&dba, fd, &out); + if (error) + return (error); - dmu_send_outparams_t out = {0}; - out.dso_outfunc = dump_bytes; - out.dso_arg = fp; - out.dso_dryrun = B_FALSE; + off = zfs_file_off(dba.dba_fp); error = dmu_send(snapname, fromname, embedok, largeblockok, compressok, rawok, savedok, resumeobj, resumeoff, redactbook, fd, &off, &out); - zfs_file_put(fp); + dump_bytes_fini(&dba); + return (error); } static int send_space_sum(objset_t *os, void *buf, int len, void *arg) { (void) os, (void) buf; uint64_t *size = arg; *size += len; return (0); } /* * Determine approximately how large a zfs send stream will be -- the number * of bytes that will be written to the fd supplied to zfs_ioc_send_new(). * * innvl: { * (optional) "from" -> full snap or bookmark name to send an incremental * from * (optional) "largeblockok" -> (value ignored) * indicates that blocks > 128KB are permitted * (optional) "embedok" -> (value ignored) * presence indicates DRR_WRITE_EMBEDDED records are permitted * (optional) "compressok" -> (value ignored) * presence indicates compressed DRR_WRITE records are permitted * (optional) "rawok" -> (value ignored) * presence indicates raw encrypted records should be used. * (optional) "resume_object" and "resume_offset" -> (uint64) * if present, resume send stream from specified object and offset. * (optional) "fd" -> file descriptor to use as a cookie for progress * tracking (int32) * } * * outnvl: { * "space" -> bytes of space (uint64) * } */ static const zfs_ioc_key_t zfs_keys_send_space[] = { {"from", DATA_TYPE_STRING, ZK_OPTIONAL}, {"fromsnap", DATA_TYPE_STRING, ZK_OPTIONAL}, {"largeblockok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"embedok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"compressok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"rawok", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, {"fd", DATA_TYPE_INT32, ZK_OPTIONAL}, {"redactbook", DATA_TYPE_STRING, ZK_OPTIONAL}, {"resume_object", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"resume_offset", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"bytes", DATA_TYPE_UINT64, ZK_OPTIONAL}, }; static int zfs_ioc_send_space(const char *snapname, nvlist_t *innvl, nvlist_t *outnvl) { dsl_pool_t *dp; dsl_dataset_t *tosnap; dsl_dataset_t *fromsnap = NULL; int error; const char *fromname = NULL; const char *redactlist_book = NULL; boolean_t largeblockok; boolean_t embedok; boolean_t compressok; boolean_t rawok; boolean_t savedok; uint64_t space = 0; boolean_t full_estimate = B_FALSE; uint64_t resumeobj = 0; uint64_t resumeoff = 0; uint64_t resume_bytes = 0; int32_t fd = -1; zfs_bookmark_phys_t zbm = {0}; error = dsl_pool_hold(snapname, FTAG, &dp); if (error != 0) return (error); error = dsl_dataset_hold(dp, snapname, FTAG, &tosnap); if (error != 0) { dsl_pool_rele(dp, FTAG); return (error); } (void) nvlist_lookup_int32(innvl, "fd", &fd); largeblockok = nvlist_exists(innvl, "largeblockok"); embedok = nvlist_exists(innvl, "embedok"); compressok = nvlist_exists(innvl, "compressok"); rawok = nvlist_exists(innvl, "rawok"); savedok = nvlist_exists(innvl, "savedok"); boolean_t from = (nvlist_lookup_string(innvl, "from", &fromname) == 0); boolean_t altbook = (nvlist_lookup_string(innvl, "redactbook", &redactlist_book) == 0); (void) nvlist_lookup_uint64(innvl, "resume_object", &resumeobj); (void) nvlist_lookup_uint64(innvl, "resume_offset", &resumeoff); (void) nvlist_lookup_uint64(innvl, "bytes", &resume_bytes); if (altbook) { full_estimate = B_TRUE; } else if (from) { if (strchr(fromname, '#')) { error = dsl_bookmark_lookup(dp, fromname, tosnap, &zbm); /* * dsl_bookmark_lookup() will fail with EXDEV if * the from-bookmark and tosnap are at the same txg. * However, it's valid to do a send (and therefore, * a send estimate) from and to the same time point, * if the bookmark is redacted (the incremental send * can change what's redacted on the target). In * this case, dsl_bookmark_lookup() fills in zbm * but returns EXDEV. Ignore this error. */ if (error == EXDEV && zbm.zbm_redaction_obj != 0 && zbm.zbm_guid == dsl_dataset_phys(tosnap)->ds_guid) error = 0; if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } if (zbm.zbm_redaction_obj != 0 || !(zbm.zbm_flags & ZBM_FLAG_HAS_FBN)) { full_estimate = B_TRUE; } } else if (strchr(fromname, '@')) { error = dsl_dataset_hold(dp, fromname, FTAG, &fromsnap); if (error != 0) { dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (error); } if (!dsl_dataset_is_before(tosnap, fromsnap, 0)) { full_estimate = B_TRUE; dsl_dataset_rele(fromsnap, FTAG); } } else { /* * from is not properly formatted as a snapshot or * bookmark */ dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); return (SET_ERROR(EINVAL)); } } if (full_estimate) { dmu_send_outparams_t out = {0}; offset_t off = 0; out.dso_outfunc = send_space_sum; out.dso_arg = &space; out.dso_dryrun = B_TRUE; /* * We have to release these holds so dmu_send can take them. It * will do all the error checking we need. */ dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); error = dmu_send(snapname, fromname, embedok, largeblockok, compressok, rawok, savedok, resumeobj, resumeoff, redactlist_book, fd, &off, &out); } else { error = dmu_send_estimate_fast(tosnap, fromsnap, (from && strchr(fromname, '#') != NULL ? &zbm : NULL), compressok || rawok, savedok, &space); space -= resume_bytes; if (fromsnap != NULL) dsl_dataset_rele(fromsnap, FTAG); dsl_dataset_rele(tosnap, FTAG); dsl_pool_rele(dp, FTAG); } fnvlist_add_uint64(outnvl, "space", space); return (error); } /* * Sync the currently open TXG to disk for the specified pool. * This is somewhat similar to 'zfs_sync()'. * For cases that do not result in error this ioctl will wait for * the currently open TXG to commit before returning back to the caller. * * innvl: { * "force" -> when true, force uberblock update even if there is no dirty data. * In addition this will cause the vdev configuration to be written * out including updating the zpool cache file. (boolean_t) * } * * onvl is unused */ static const zfs_ioc_key_t zfs_keys_pool_sync[] = { {"force", DATA_TYPE_BOOLEAN_VALUE, 0}, }; static int zfs_ioc_pool_sync(const char *pool, nvlist_t *innvl, nvlist_t *onvl) { (void) onvl; int err; boolean_t rc, force = B_FALSE; spa_t *spa; if ((err = spa_open(pool, &spa, FTAG)) != 0) return (err); if (innvl) { err = nvlist_lookup_boolean_value(innvl, "force", &rc); if (err == 0) force = rc; } if (force) { spa_config_enter(spa, SCL_CONFIG, FTAG, RW_WRITER); vdev_config_dirty(spa->spa_root_vdev); spa_config_exit(spa, SCL_CONFIG, FTAG); } txg_wait_synced(spa_get_dsl(spa), 0); spa_close(spa, FTAG); return (0); } /* * Load a user's wrapping key into the kernel. * innvl: { * "hidden_args" -> { "wkeydata" -> value } * raw uint8_t array of encryption wrapping key data (32 bytes) * (optional) "noop" -> (value ignored) * presence indicated key should only be verified, not loaded * } */ static const zfs_ioc_key_t zfs_keys_load_key[] = { {"hidden_args", DATA_TYPE_NVLIST, 0}, {"noop", DATA_TYPE_BOOLEAN, ZK_OPTIONAL}, }; static int zfs_ioc_load_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; int ret; dsl_crypto_params_t *dcp = NULL; nvlist_t *hidden_args; boolean_t noop = nvlist_exists(innvl, "noop"); if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = SET_ERROR(EINVAL); goto error; } hidden_args = fnvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS); ret = dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL, hidden_args, &dcp); if (ret != 0) goto error; ret = spa_keystore_load_wkey(dsname, dcp, noop); if (ret != 0) goto error; dsl_crypto_params_free(dcp, noop); return (0); error: dsl_crypto_params_free(dcp, B_TRUE); return (ret); } /* * Unload a user's wrapping key from the kernel. * Both innvl and outnvl are unused. */ static const zfs_ioc_key_t zfs_keys_unload_key[] = { /* no nvl keys */ }; static int zfs_ioc_unload_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { (void) innvl, (void) outnvl; int ret = 0; if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = (SET_ERROR(EINVAL)); goto out; } ret = spa_keystore_unload_wkey(dsname); if (ret != 0) goto out; out: return (ret); } /* * Changes a user's wrapping key used to decrypt a dataset. The keyformat, * keylocation, pbkdf2salt, and pbkdf2iters properties can also be specified * here to change how the key is derived in userspace. * * innvl: { * "hidden_args" (optional) -> { "wkeydata" -> value } * raw uint8_t array of new encryption wrapping key data (32 bytes) * "props" (optional) -> { prop -> value } * } * * outnvl is unused */ static const zfs_ioc_key_t zfs_keys_change_key[] = { {"crypt_cmd", DATA_TYPE_UINT64, ZK_OPTIONAL}, {"hidden_args", DATA_TYPE_NVLIST, ZK_OPTIONAL}, {"props", DATA_TYPE_NVLIST, ZK_OPTIONAL}, }; static int zfs_ioc_change_key(const char *dsname, nvlist_t *innvl, nvlist_t *outnvl) { (void) outnvl; int ret; uint64_t cmd = DCP_CMD_NONE; dsl_crypto_params_t *dcp = NULL; nvlist_t *args = NULL, *hidden_args = NULL; if (strchr(dsname, '@') != NULL || strchr(dsname, '%') != NULL) { ret = (SET_ERROR(EINVAL)); goto error; } (void) nvlist_lookup_uint64(innvl, "crypt_cmd", &cmd); (void) nvlist_lookup_nvlist(innvl, "props", &args); (void) nvlist_lookup_nvlist(innvl, ZPOOL_HIDDEN_ARGS, &hidden_args); ret = dsl_crypto_params_create_nvlist(cmd, args, hidden_args, &dcp); if (ret != 0) goto error; ret = spa_keystore_change_key(dsname, dcp); if (ret != 0) goto error; dsl_crypto_params_free(dcp, B_FALSE); return (0); error: dsl_crypto_params_free(dcp, B_TRUE); return (ret); } static zfs_ioc_vec_t zfs_ioc_vec[ZFS_IOC_LAST - ZFS_IOC_FIRST]; static void zfs_ioctl_register_legacy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); vec->zvec_legacy_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_allow_log = log_history; vec->zvec_pool_check = pool_check; } /* * See the block comment at the beginning of this file for details on * each argument to this function. */ void zfs_ioctl_register(const char *name, zfs_ioc_t ioc, zfs_ioc_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_namecheck_t namecheck, zfs_ioc_poolcheck_t pool_check, boolean_t smush_outnvlist, boolean_t allow_log, const zfs_ioc_key_t *nvl_keys, size_t num_keys) { zfs_ioc_vec_t *vec = &zfs_ioc_vec[ioc - ZFS_IOC_FIRST]; ASSERT3U(ioc, >=, ZFS_IOC_FIRST); ASSERT3U(ioc, <, ZFS_IOC_LAST); ASSERT3P(vec->zvec_legacy_func, ==, NULL); ASSERT3P(vec->zvec_func, ==, NULL); /* if we are logging, the name must be valid */ ASSERT(!allow_log || namecheck != NO_NAME); vec->zvec_name = name; vec->zvec_func = func; vec->zvec_secpolicy = secpolicy; vec->zvec_namecheck = namecheck; vec->zvec_pool_check = pool_check; vec->zvec_smush_outnvlist = smush_outnvlist; vec->zvec_allow_log = allow_log; vec->zvec_nvl_keys = nvl_keys; vec->zvec_nvl_key_count = num_keys; } static void zfs_ioctl_register_pool(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, boolean_t log_history, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, POOL_NAME, log_history, pool_check); } void zfs_ioctl_register_dataset_nolog(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy, zfs_ioc_poolcheck_t pool_check) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, pool_check); } static void zfs_ioctl_register_pool_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_legacy(ioc, func, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_register_pool_meta(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, NO_NAME, B_FALSE, POOL_CHECK_NONE); } static void zfs_ioctl_register_dataset_read_secpolicy(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED); } static void zfs_ioctl_register_dataset_read(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func) { zfs_ioctl_register_dataset_read_secpolicy(ioc, func, zfs_secpolicy_read); } static void zfs_ioctl_register_dataset_modify(zfs_ioc_t ioc, zfs_ioc_legacy_func_t *func, zfs_secpolicy_func_t *secpolicy) { zfs_ioctl_register_legacy(ioc, func, secpolicy, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); } static void zfs_ioctl_init(void) { zfs_ioctl_register("snapshot", ZFS_IOC_SNAPSHOT, zfs_ioc_snapshot, zfs_secpolicy_snapshot, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_snapshot, ARRAY_SIZE(zfs_keys_snapshot)); zfs_ioctl_register("log_history", ZFS_IOC_LOG_HISTORY, zfs_ioc_log_history, zfs_secpolicy_log_history, NO_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_log_history, ARRAY_SIZE(zfs_keys_log_history)); zfs_ioctl_register("space_snaps", ZFS_IOC_SPACE_SNAPS, zfs_ioc_space_snaps, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_space_snaps, ARRAY_SIZE(zfs_keys_space_snaps)); zfs_ioctl_register("send", ZFS_IOC_SEND_NEW, zfs_ioc_send_new, zfs_secpolicy_send_new, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_send_new, ARRAY_SIZE(zfs_keys_send_new)); zfs_ioctl_register("send_space", ZFS_IOC_SEND_SPACE, zfs_ioc_send_space, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_send_space, ARRAY_SIZE(zfs_keys_send_space)); zfs_ioctl_register("create", ZFS_IOC_CREATE, zfs_ioc_create, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_create, ARRAY_SIZE(zfs_keys_create)); zfs_ioctl_register("clone", ZFS_IOC_CLONE, zfs_ioc_clone, zfs_secpolicy_create_clone, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_clone, ARRAY_SIZE(zfs_keys_clone)); zfs_ioctl_register("remap", ZFS_IOC_REMAP, zfs_ioc_remap, zfs_secpolicy_none, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_remap, ARRAY_SIZE(zfs_keys_remap)); zfs_ioctl_register("destroy_snaps", ZFS_IOC_DESTROY_SNAPS, zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_destroy_snaps, ARRAY_SIZE(zfs_keys_destroy_snaps)); zfs_ioctl_register("hold", ZFS_IOC_HOLD, zfs_ioc_hold, zfs_secpolicy_hold, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_hold, ARRAY_SIZE(zfs_keys_hold)); zfs_ioctl_register("release", ZFS_IOC_RELEASE, zfs_ioc_release, zfs_secpolicy_release, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_release, ARRAY_SIZE(zfs_keys_release)); zfs_ioctl_register("get_holds", ZFS_IOC_GET_HOLDS, zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_holds, ARRAY_SIZE(zfs_keys_get_holds)); zfs_ioctl_register("rollback", ZFS_IOC_ROLLBACK, zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_rollback, ARRAY_SIZE(zfs_keys_rollback)); zfs_ioctl_register("bookmark", ZFS_IOC_BOOKMARK, zfs_ioc_bookmark, zfs_secpolicy_bookmark, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_bookmark, ARRAY_SIZE(zfs_keys_bookmark)); zfs_ioctl_register("get_bookmarks", ZFS_IOC_GET_BOOKMARKS, zfs_ioc_get_bookmarks, zfs_secpolicy_read, DATASET_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmarks, ARRAY_SIZE(zfs_keys_get_bookmarks)); zfs_ioctl_register("get_bookmark_props", ZFS_IOC_GET_BOOKMARK_PROPS, zfs_ioc_get_bookmark_props, zfs_secpolicy_read, ENTITY_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_FALSE, zfs_keys_get_bookmark_props, ARRAY_SIZE(zfs_keys_get_bookmark_props)); zfs_ioctl_register("destroy_bookmarks", ZFS_IOC_DESTROY_BOOKMARKS, zfs_ioc_destroy_bookmarks, zfs_secpolicy_destroy_bookmarks, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_destroy_bookmarks, ARRAY_SIZE(zfs_keys_destroy_bookmarks)); zfs_ioctl_register("receive", ZFS_IOC_RECV_NEW, zfs_ioc_recv_new, zfs_secpolicy_recv, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_recv_new, ARRAY_SIZE(zfs_keys_recv_new)); zfs_ioctl_register("load-key", ZFS_IOC_LOAD_KEY, zfs_ioc_load_key, zfs_secpolicy_load_key, DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_load_key, ARRAY_SIZE(zfs_keys_load_key)); zfs_ioctl_register("unload-key", ZFS_IOC_UNLOAD_KEY, zfs_ioc_unload_key, zfs_secpolicy_load_key, DATASET_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_unload_key, ARRAY_SIZE(zfs_keys_unload_key)); zfs_ioctl_register("change-key", ZFS_IOC_CHANGE_KEY, zfs_ioc_change_key, zfs_secpolicy_change_key, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_change_key, ARRAY_SIZE(zfs_keys_change_key)); zfs_ioctl_register("sync", ZFS_IOC_POOL_SYNC, zfs_ioc_pool_sync, zfs_secpolicy_none, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_pool_sync, ARRAY_SIZE(zfs_keys_pool_sync)); zfs_ioctl_register("reopen", ZFS_IOC_POOL_REOPEN, zfs_ioc_pool_reopen, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED, B_TRUE, B_TRUE, zfs_keys_pool_reopen, ARRAY_SIZE(zfs_keys_pool_reopen)); zfs_ioctl_register("channel_program", ZFS_IOC_CHANNEL_PROGRAM, zfs_ioc_channel_program, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_channel_program, ARRAY_SIZE(zfs_keys_channel_program)); zfs_ioctl_register("redact", ZFS_IOC_REDACT, zfs_ioc_redact, zfs_secpolicy_config, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_redact, ARRAY_SIZE(zfs_keys_redact)); zfs_ioctl_register("zpool_checkpoint", ZFS_IOC_POOL_CHECKPOINT, zfs_ioc_pool_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_checkpoint, ARRAY_SIZE(zfs_keys_pool_checkpoint)); zfs_ioctl_register("zpool_discard_checkpoint", ZFS_IOC_POOL_DISCARD_CHECKPOINT, zfs_ioc_pool_discard_checkpoint, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_discard_checkpoint, ARRAY_SIZE(zfs_keys_pool_discard_checkpoint)); zfs_ioctl_register("initialize", ZFS_IOC_POOL_INITIALIZE, zfs_ioc_pool_initialize, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_initialize, ARRAY_SIZE(zfs_keys_pool_initialize)); zfs_ioctl_register("trim", ZFS_IOC_POOL_TRIM, zfs_ioc_pool_trim, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_TRUE, B_TRUE, zfs_keys_pool_trim, ARRAY_SIZE(zfs_keys_pool_trim)); zfs_ioctl_register("wait", ZFS_IOC_WAIT, zfs_ioc_wait, zfs_secpolicy_none, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_pool_wait, ARRAY_SIZE(zfs_keys_pool_wait)); zfs_ioctl_register("wait_fs", ZFS_IOC_WAIT_FS, zfs_ioc_wait_fs, zfs_secpolicy_none, DATASET_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_fs_wait, ARRAY_SIZE(zfs_keys_fs_wait)); zfs_ioctl_register("set_bootenv", ZFS_IOC_SET_BOOTENV, zfs_ioc_set_bootenv, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_TRUE, zfs_keys_set_bootenv, ARRAY_SIZE(zfs_keys_set_bootenv)); zfs_ioctl_register("get_bootenv", ZFS_IOC_GET_BOOTENV, zfs_ioc_get_bootenv, zfs_secpolicy_none, POOL_NAME, POOL_CHECK_SUSPENDED, B_FALSE, B_TRUE, zfs_keys_get_bootenv, ARRAY_SIZE(zfs_keys_get_bootenv)); zfs_ioctl_register("zpool_vdev_get_props", ZFS_IOC_VDEV_GET_PROPS, zfs_ioc_vdev_get_props, zfs_secpolicy_read, POOL_NAME, POOL_CHECK_NONE, B_FALSE, B_FALSE, zfs_keys_vdev_get_props, ARRAY_SIZE(zfs_keys_vdev_get_props)); zfs_ioctl_register("zpool_vdev_set_props", ZFS_IOC_VDEV_SET_PROPS, zfs_ioc_vdev_set_props, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY, B_FALSE, B_FALSE, zfs_keys_vdev_set_props, ARRAY_SIZE(zfs_keys_vdev_set_props)); zfs_ioctl_register("scrub", ZFS_IOC_POOL_SCRUB, zfs_ioc_pool_scrub, zfs_secpolicy_config, POOL_NAME, POOL_CHECK_NONE, B_TRUE, B_TRUE, zfs_keys_pool_scrub, ARRAY_SIZE(zfs_keys_pool_scrub)); /* IOCTLS that use the legacy function signature */ zfs_ioctl_register_legacy(ZFS_IOC_POOL_FREEZE, zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY); zfs_ioctl_register_pool(ZFS_IOC_POOL_CREATE, zfs_ioc_pool_create, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SCAN, zfs_ioc_pool_scan); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_UPGRADE, zfs_ioc_pool_upgrade); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ADD, zfs_ioc_vdev_add); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_REMOVE, zfs_ioc_vdev_remove); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SET_STATE, zfs_ioc_vdev_set_state); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_ATTACH, zfs_ioc_vdev_attach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_DETACH, zfs_ioc_vdev_detach); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETPATH, zfs_ioc_vdev_setpath); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SETFRU, zfs_ioc_vdev_setfru); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_SET_PROPS, zfs_ioc_pool_set_props); zfs_ioctl_register_pool_modify(ZFS_IOC_VDEV_SPLIT, zfs_ioc_vdev_split); zfs_ioctl_register_pool_modify(ZFS_IOC_POOL_REGUID, zfs_ioc_pool_reguid); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_CONFIGS, zfs_ioc_pool_configs, zfs_secpolicy_none); zfs_ioctl_register_pool_meta(ZFS_IOC_POOL_TRYIMPORT, zfs_ioc_pool_tryimport, zfs_secpolicy_config); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_FAULT, zfs_ioc_inject_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_CLEAR_FAULT, zfs_ioc_clear_fault, zfs_secpolicy_inject); zfs_ioctl_register_pool_meta(ZFS_IOC_INJECT_LIST_NEXT, zfs_ioc_inject_list_next, zfs_secpolicy_inject); /* * pool destroy, and export don't log the history as part of * zfsdev_ioctl, but rather zfs_ioc_pool_export * does the logging of those commands. */ zfs_ioctl_register_pool(ZFS_IOC_POOL_DESTROY, zfs_ioc_pool_destroy, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_EXPORT, zfs_ioc_pool_export, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_STATS, zfs_ioc_pool_stats, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_PROPS, zfs_ioc_pool_get_props, zfs_secpolicy_read, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_ERROR_LOG, zfs_ioc_error_log, zfs_secpolicy_inject, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_DSOBJ_TO_DSNAME, zfs_ioc_dsobj_to_dsname, zfs_secpolicy_diff, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_GET_HISTORY, zfs_ioc_pool_get_history, zfs_secpolicy_config, B_FALSE, POOL_CHECK_SUSPENDED); zfs_ioctl_register_pool(ZFS_IOC_POOL_IMPORT, zfs_ioc_pool_import, zfs_secpolicy_config, B_TRUE, POOL_CHECK_NONE); zfs_ioctl_register_pool(ZFS_IOC_CLEAR, zfs_ioc_clear, zfs_secpolicy_config, B_TRUE, POOL_CHECK_READONLY); zfs_ioctl_register_dataset_read(ZFS_IOC_SPACE_WRITTEN, zfs_ioc_space_written); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_RECVD_PROPS, zfs_ioc_objset_recvd_props); zfs_ioctl_register_dataset_read(ZFS_IOC_NEXT_OBJ, zfs_ioc_next_obj); zfs_ioctl_register_dataset_read(ZFS_IOC_GET_FSACL, zfs_ioc_get_fsacl); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_STATS, zfs_ioc_objset_stats); zfs_ioctl_register_dataset_read(ZFS_IOC_OBJSET_ZPLPROPS, zfs_ioc_objset_zplprops); zfs_ioctl_register_dataset_read(ZFS_IOC_DATASET_LIST_NEXT, zfs_ioc_dataset_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SNAPSHOT_LIST_NEXT, zfs_ioc_snapshot_list_next); zfs_ioctl_register_dataset_read(ZFS_IOC_SEND_PROGRESS, zfs_ioc_send_progress); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_DIFF, zfs_ioc_diff, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_STATS, zfs_ioc_obj_to_stats, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_OBJ_TO_PATH, zfs_ioc_obj_to_path, zfs_secpolicy_diff); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_ONE, zfs_ioc_userspace_one, zfs_secpolicy_userspace_one); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_USERSPACE_MANY, zfs_ioc_userspace_many, zfs_secpolicy_userspace_many); zfs_ioctl_register_dataset_read_secpolicy(ZFS_IOC_SEND, zfs_ioc_send, zfs_secpolicy_send); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_PROP, zfs_ioc_set_prop, zfs_secpolicy_none); zfs_ioctl_register_dataset_modify(ZFS_IOC_DESTROY, zfs_ioc_destroy, zfs_secpolicy_destroy); zfs_ioctl_register_dataset_modify(ZFS_IOC_RENAME, zfs_ioc_rename, zfs_secpolicy_rename); zfs_ioctl_register_dataset_modify(ZFS_IOC_RECV, zfs_ioc_recv, zfs_secpolicy_recv); zfs_ioctl_register_dataset_modify(ZFS_IOC_PROMOTE, zfs_ioc_promote, zfs_secpolicy_promote); zfs_ioctl_register_dataset_modify(ZFS_IOC_INHERIT_PROP, zfs_ioc_inherit_prop, zfs_secpolicy_inherit_prop); zfs_ioctl_register_dataset_modify(ZFS_IOC_SET_FSACL, zfs_ioc_set_fsacl, zfs_secpolicy_set_fsacl); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SHARE, zfs_ioc_share, zfs_secpolicy_share, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_SMB_ACL, zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, POOL_CHECK_NONE); zfs_ioctl_register_dataset_nolog(ZFS_IOC_USERSPACE_UPGRADE, zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); zfs_ioctl_register_dataset_nolog(ZFS_IOC_TMP_SNAPSHOT, zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_NEXT, zfs_ioc_events_next, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_CLEAR, zfs_ioc_events_clear, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_register_legacy(ZFS_IOC_EVENTS_SEEK, zfs_ioc_events_seek, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE); zfs_ioctl_init_os(); } /* * Verify that for non-legacy ioctls the input nvlist * pairs match against the expected input. * * Possible errors are: * ZFS_ERR_IOC_ARG_UNAVAIL An unrecognized nvpair was encountered * ZFS_ERR_IOC_ARG_REQUIRED A required nvpair is missing * ZFS_ERR_IOC_ARG_BADTYPE Invalid type for nvpair */ static int zfs_check_input_nvpairs(nvlist_t *innvl, const zfs_ioc_vec_t *vec) { const zfs_ioc_key_t *nvl_keys = vec->zvec_nvl_keys; boolean_t required_keys_found = B_FALSE; /* * examine each input pair */ for (nvpair_t *pair = nvlist_next_nvpair(innvl, NULL); pair != NULL; pair = nvlist_next_nvpair(innvl, pair)) { const char *name = nvpair_name(pair); data_type_t type = nvpair_type(pair); boolean_t identified = B_FALSE; /* * check pair against the documented names and type */ for (int k = 0; k < vec->zvec_nvl_key_count; k++) { /* if not a wild card name, check for an exact match */ if ((nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) == 0 && strcmp(nvl_keys[k].zkey_name, name) != 0) continue; identified = B_TRUE; if (nvl_keys[k].zkey_type != DATA_TYPE_ANY && nvl_keys[k].zkey_type != type) { return (SET_ERROR(ZFS_ERR_IOC_ARG_BADTYPE)); } if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) continue; required_keys_found = B_TRUE; break; } /* allow an 'optional' key, everything else is invalid */ if (!identified && (strcmp(name, "optional") != 0 || type != DATA_TYPE_NVLIST)) { return (SET_ERROR(ZFS_ERR_IOC_ARG_UNAVAIL)); } } /* verify that all required keys were found */ for (int k = 0; k < vec->zvec_nvl_key_count; k++) { if (nvl_keys[k].zkey_flags & ZK_OPTIONAL) continue; if (nvl_keys[k].zkey_flags & ZK_WILDCARDLIST) { /* at least one non-optional key is expected here */ if (!required_keys_found) return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); continue; } if (!nvlist_exists(innvl, nvl_keys[k].zkey_name)) return (SET_ERROR(ZFS_ERR_IOC_ARG_REQUIRED)); } return (0); } static int pool_status_check(const char *name, zfs_ioc_namecheck_t type, zfs_ioc_poolcheck_t check) { spa_t *spa; int error; ASSERT(type == POOL_NAME || type == DATASET_NAME || type == ENTITY_NAME); if (check & POOL_CHECK_NONE) return (0); error = spa_open(name, &spa, FTAG); if (error == 0) { if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) error = SET_ERROR(EAGAIN); else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) error = SET_ERROR(EROFS); spa_close(spa, FTAG); } return (error); } int zfsdev_getminor(zfs_file_t *fp, minor_t *minorp) { zfsdev_state_t *zs, *fpd; ASSERT(!MUTEX_HELD(&zfsdev_state_lock)); fpd = zfs_file_private(fp); if (fpd == NULL) return (SET_ERROR(EBADF)); mutex_enter(&zfsdev_state_lock); for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == -1) continue; if (fpd == zs) { *minorp = fpd->zs_minor; mutex_exit(&zfsdev_state_lock); return (0); } } mutex_exit(&zfsdev_state_lock); return (SET_ERROR(EBADF)); } void * zfsdev_get_state(minor_t minor, enum zfsdev_state_type which) { zfsdev_state_t *zs; for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == minor) { membar_consumer(); switch (which) { case ZST_ONEXIT: return (zs->zs_onexit); case ZST_ZEVENT: return (zs->zs_zevent); case ZST_ALL: return (zs); } } } return (NULL); } /* * Find a free minor number. The zfsdev_state_list is expected to * be short since it is only a list of currently open file handles. */ static minor_t zfsdev_minor_alloc(void) { static minor_t last_minor = 0; minor_t m; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); for (m = last_minor + 1; m != last_minor; m++) { if (m > ZFSDEV_MAX_MINOR) m = 1; if (zfsdev_get_state(m, ZST_ALL) == NULL) { last_minor = m; return (m); } } return (0); } int zfsdev_state_init(void *priv) { zfsdev_state_t *zs, *zsprev = NULL; minor_t minor; boolean_t newzs = B_FALSE; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); minor = zfsdev_minor_alloc(); if (minor == 0) return (SET_ERROR(ENXIO)); for (zs = &zfsdev_state_listhead; zs != NULL; zs = zs->zs_next) { if (zs->zs_minor == -1) break; zsprev = zs; } if (!zs) { zs = kmem_zalloc(sizeof (zfsdev_state_t), KM_SLEEP); newzs = B_TRUE; } zfsdev_private_set_state(priv, zs); zfs_onexit_init((zfs_onexit_t **)&zs->zs_onexit); zfs_zevent_init((zfs_zevent_t **)&zs->zs_zevent); /* * In order to provide for lock-free concurrent read access * to the minor list in zfsdev_get_state(), new entries * must be completely written before linking them into the * list whereas existing entries are already linked; the last * operation must be updating zs_minor (from -1 to the new * value). */ if (newzs) { zs->zs_minor = minor; membar_producer(); zsprev->zs_next = zs; } else { membar_producer(); zs->zs_minor = minor; } return (0); } void zfsdev_state_destroy(void *priv) { zfsdev_state_t *zs = zfsdev_private_get_state(priv); ASSERT(zs != NULL); ASSERT3S(zs->zs_minor, >, 0); /* * The last reference to this zfsdev file descriptor is being dropped. * We don't have to worry about lookup grabbing this state object, and * zfsdev_state_init() will not try to reuse this object until it is * invalidated by setting zs_minor to -1. Invalidation must be done * last, with a memory barrier to ensure ordering. This lets us avoid * taking the global zfsdev state lock around destruction. */ zfs_onexit_destroy(zs->zs_onexit); zfs_zevent_destroy(zs->zs_zevent); zs->zs_onexit = NULL; zs->zs_zevent = NULL; membar_producer(); zs->zs_minor = -1; } long zfsdev_ioctl_common(uint_t vecnum, zfs_cmd_t *zc, int flag) { int error, cmd; const zfs_ioc_vec_t *vec; char *saved_poolname = NULL; uint64_t max_nvlist_src_size; size_t saved_poolname_len = 0; nvlist_t *innvl = NULL; fstrans_cookie_t cookie; hrtime_t start_time = gethrtime(); cmd = vecnum; error = 0; if (vecnum >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); vec = &zfs_ioc_vec[vecnum]; /* * The registered ioctl list may be sparse, verify that either * a normal or legacy handler are registered. */ if (vec->zvec_func == NULL && vec->zvec_legacy_func == NULL) return (SET_ERROR(ZFS_ERR_IOC_CMD_UNAVAIL)); zc->zc_iflags = flag & FKIOCTL; max_nvlist_src_size = zfs_max_nvlist_src_size_os(); if (zc->zc_nvlist_src_size > max_nvlist_src_size) { /* * Make sure the user doesn't pass in an insane value for * zc_nvlist_src_size. We have to check, since we will end * up allocating that much memory inside of get_nvlist(). This * prevents a nefarious user from allocating tons of kernel * memory. * * Also, we return EINVAL instead of ENOMEM here. The reason * being that returning ENOMEM from an ioctl() has a special * connotation; that the user's size value is too small and * needs to be expanded to hold the nvlist. See * zcmd_expand_dst_nvlist() for details. */ error = SET_ERROR(EINVAL); /* User's size too big */ } else if (zc->zc_nvlist_src_size != 0) { error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &innvl); if (error != 0) goto out; } /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; switch (vec->zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = SET_ERROR(EINVAL); else error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); break; case ENTITY_NAME: if (entity_namecheck(zc->zc_name, NULL, NULL) != 0) { error = SET_ERROR(EINVAL); } else { error = pool_status_check(zc->zc_name, vec->zvec_namecheck, vec->zvec_pool_check); } break; case NO_NAME: break; } /* * Ensure that all input pairs are valid before we pass them down * to the lower layers. * * The vectored functions can use fnvlist_lookup_{type} for any * required pairs since zfs_check_input_nvpairs() confirmed that * they exist and are of the correct type. */ if (error == 0 && vec->zvec_func != NULL) { error = zfs_check_input_nvpairs(innvl, vec); if (error != 0) goto out; } if (error == 0) { cookie = spl_fstrans_mark(); error = vec->zvec_secpolicy(zc, innvl, CRED()); spl_fstrans_unmark(cookie); } if (error != 0) goto out; /* legacy ioctls can modify zc_name */ /* * Can't use kmem_strdup() as we might truncate the string and * kmem_strfree() would then free with incorrect size. */ saved_poolname_len = strlen(zc->zc_name) + 1; saved_poolname = kmem_alloc(saved_poolname_len, KM_SLEEP); strlcpy(saved_poolname, zc->zc_name, saved_poolname_len); saved_poolname[strcspn(saved_poolname, "/@#")] = '\0'; if (vec->zvec_func != NULL) { nvlist_t *outnvl; int puterror = 0; spa_t *spa; nvlist_t *lognv = NULL; ASSERT(vec->zvec_legacy_func == NULL); /* * Add the innvl to the lognv before calling the func, * in case the func changes the innvl. */ if (vec->zvec_allow_log) { lognv = fnvlist_alloc(); fnvlist_add_string(lognv, ZPOOL_HIST_IOCTL, vec->zvec_name); if (!nvlist_empty(innvl)) { fnvlist_add_nvlist(lognv, ZPOOL_HIST_INPUT_NVL, innvl); } } outnvl = fnvlist_alloc(); cookie = spl_fstrans_mark(); error = vec->zvec_func(zc->zc_name, innvl, outnvl); spl_fstrans_unmark(cookie); /* * Some commands can partially execute, modify state, and still * return an error. In these cases, attempt to record what * was modified. */ if ((error == 0 || (cmd == ZFS_IOC_CHANNEL_PROGRAM && error != EINVAL)) && vec->zvec_allow_log && spa_open(zc->zc_name, &spa, FTAG) == 0) { if (!nvlist_empty(outnvl)) { size_t out_size = fnvlist_size(outnvl); if (out_size > zfs_history_output_max) { fnvlist_add_int64(lognv, ZPOOL_HIST_OUTPUT_SIZE, out_size); } else { fnvlist_add_nvlist(lognv, ZPOOL_HIST_OUTPUT_NVL, outnvl); } } if (error != 0) { fnvlist_add_int64(lognv, ZPOOL_HIST_ERRNO, error); } fnvlist_add_int64(lognv, ZPOOL_HIST_ELAPSED_NS, gethrtime() - start_time); (void) spa_history_log_nvl(spa, lognv); spa_close(spa, FTAG); } fnvlist_free(lognv); if (!nvlist_empty(outnvl) || zc->zc_nvlist_dst_size != 0) { int smusherror = 0; if (vec->zvec_smush_outnvlist) { smusherror = nvlist_smush(outnvl, zc->zc_nvlist_dst_size); } if (smusherror == 0) puterror = put_nvlist(zc, outnvl); } if (puterror != 0) error = puterror; nvlist_free(outnvl); } else { cookie = spl_fstrans_mark(); error = vec->zvec_legacy_func(zc); spl_fstrans_unmark(cookie); } out: nvlist_free(innvl); if (error == 0 && vec->zvec_allow_log) { char *s = tsd_get(zfs_allow_log_key); if (s != NULL) kmem_strfree(s); (void) tsd_set(zfs_allow_log_key, kmem_strdup(saved_poolname)); } if (saved_poolname != NULL) kmem_free(saved_poolname, saved_poolname_len); return (error); } int zfs_kmod_init(void) { int error; if ((error = zvol_init()) != 0) return (error); spa_init(SPA_MODE_READ | SPA_MODE_WRITE); zfs_init(); zfs_ioctl_init(); mutex_init(&zfsdev_state_lock, NULL, MUTEX_DEFAULT, NULL); zfsdev_state_listhead.zs_minor = -1; if ((error = zfsdev_attach()) != 0) goto out; tsd_create(&rrw_tsd_key, rrw_tsd_destroy); tsd_create(&zfs_allow_log_key, zfs_allow_log_destroy); return (0); out: zfs_fini(); spa_fini(); zvol_fini(); return (error); } void zfs_kmod_fini(void) { zfsdev_state_t *zs, *zsnext = NULL; zfsdev_detach(); mutex_destroy(&zfsdev_state_lock); for (zs = &zfsdev_state_listhead; zs != NULL; zs = zsnext) { zsnext = zs->zs_next; if (zs->zs_onexit) zfs_onexit_destroy(zs->zs_onexit); if (zs->zs_zevent) zfs_zevent_destroy(zs->zs_zevent); if (zs != &zfsdev_state_listhead) kmem_free(zs, sizeof (zfsdev_state_t)); } zfs_ereport_taskq_fini(); /* run before zfs_fini() on Linux */ zfs_fini(); spa_fini(); zvol_fini(); tsd_destroy(&rrw_tsd_key); tsd_destroy(&zfs_allow_log_key); } ZFS_MODULE_PARAM(zfs, zfs_, max_nvlist_src_size, U64, ZMOD_RW, "Maximum size in bytes allowed for src nvlist passed with ZFS ioctls"); ZFS_MODULE_PARAM(zfs, zfs_, history_output_max, U64, ZMOD_RW, "Maximum size in bytes of ZFS ioctl output that will be logged");