diff --git a/sys/i386/i386/machdep.c b/sys/i386/i386/machdep.c index ce4a264ede01..869ee9958d25 100644 --- a/sys/i386/i386/machdep.c +++ b/sys/i386/i386/machdep.c @@ -1,3260 +1,3260 @@ /*- * SPDX-License-Identifier: BSD-4-Clause * * Copyright (c) 2018 The FreeBSD Foundation * Copyright (c) 1992 Terrence R. Lambert. * Copyright (c) 1982, 1987, 1990 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Portions of this software were developed by A. Joseph Koshy under * sponsorship from the FreeBSD Foundation and Google, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91 */ #include __FBSDID("$FreeBSD$"); #include "opt_apic.h" #include "opt_atpic.h" #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_inet.h" #include "opt_isa.h" #include "opt_kstack_pages.h" #include "opt_maxmem.h" #include "opt_mp_watchdog.h" #include "opt_perfmon.h" #include "opt_platform.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #ifndef KDB #error KDB must be enabled in order for DDB to work! #endif #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef PERFMON #include #endif #ifdef SMP #include #endif #ifdef FDT #include #endif #ifdef DEV_APIC #include #endif #ifdef DEV_ISA #include #endif /* Sanity check for __curthread() */ CTASSERT(offsetof(struct pcpu, pc_curthread) == 0); register_t init386(int first); void dblfault_handler(void); void identify_cpu(void); static void cpu_startup(void *); static void fpstate_drop(struct thread *td); static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len); static int set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate, size_t xfpustate_len); SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL); /* Intel ICH registers */ #define ICH_PMBASE 0x400 #define ICH_SMI_EN ICH_PMBASE + 0x30 int _udatasel, _ucodesel; u_int basemem; static int above4g_allow = 1; static int above24g_allow = 0; int cold = 1; #ifdef COMPAT_43 static void osendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask); #endif #ifdef COMPAT_FREEBSD4 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *, sigset_t *mask); #endif long Maxmem = 0; long realmem = 0; #ifdef PAE FEATURE(pae, "Physical Address Extensions"); #endif struct kva_md_info kmi; static struct trapframe proc0_tf; struct pcpu __pcpu[MAXCPU]; struct mtx icu_lock; struct mem_range_softc mem_range_softc; extern char start_exceptions[], end_exceptions[]; extern struct sysentvec elf32_freebsd_sysvec; /* Default init_ops implementation. */ struct init_ops init_ops = { .early_clock_source_init = i8254_init, .early_delay = i8254_delay, }; static void cpu_startup(dummy) void *dummy; { uintmax_t memsize; char *sysenv; /* * On MacBooks, we need to disallow the legacy USB circuit to * generate an SMI# because this can cause several problems, * namely: incorrect CPU frequency detection and failure to * start the APs. * We do this by disabling a bit in the SMI_EN (SMI Control and * Enable register) of the Intel ICH LPC Interface Bridge. */ sysenv = kern_getenv("smbios.system.product"); if (sysenv != NULL) { if (strncmp(sysenv, "MacBook1,1", 10) == 0 || strncmp(sysenv, "MacBook3,1", 10) == 0 || strncmp(sysenv, "MacBook4,1", 10) == 0 || strncmp(sysenv, "MacBookPro1,1", 13) == 0 || strncmp(sysenv, "MacBookPro1,2", 13) == 0 || strncmp(sysenv, "MacBookPro3,1", 13) == 0 || strncmp(sysenv, "MacBookPro4,1", 13) == 0 || strncmp(sysenv, "Macmini1,1", 10) == 0) { if (bootverbose) printf("Disabling LEGACY_USB_EN bit on " "Intel ICH.\n"); outl(ICH_SMI_EN, inl(ICH_SMI_EN) & ~0x8); } freeenv(sysenv); } /* * Good {morning,afternoon,evening,night}. */ startrtclock(); printcpuinfo(); panicifcpuunsupported(); #ifdef PERFMON perfmon_init(); #endif /* * Display physical memory if SMBIOS reports reasonable amount. */ memsize = 0; sysenv = kern_getenv("smbios.memory.enabled"); if (sysenv != NULL) { memsize = (uintmax_t)strtoul(sysenv, (char **)NULL, 10) << 10; freeenv(sysenv); } if (memsize < ptoa((uintmax_t)vm_free_count())) memsize = ptoa((uintmax_t)Maxmem); printf("real memory = %ju (%ju MB)\n", memsize, memsize >> 20); realmem = atop(memsize); /* * Display any holes after the first chunk of extended memory. */ if (bootverbose) { int indx; printf("Physical memory chunk(s):\n"); for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) { vm_paddr_t size; size = phys_avail[indx + 1] - phys_avail[indx]; printf( "0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n", (uintmax_t)phys_avail[indx], (uintmax_t)phys_avail[indx + 1] - 1, (uintmax_t)size, (uintmax_t)size / PAGE_SIZE); } } vm_ksubmap_init(&kmi); printf("avail memory = %ju (%ju MB)\n", ptoa((uintmax_t)vm_free_count()), ptoa((uintmax_t)vm_free_count()) / 1048576); /* * Set up buffers, so they can be used to read disk labels. */ bufinit(); vm_pager_bufferinit(); cpu_setregs(); } /* * Send an interrupt to process. * * Stack is set up to allow sigcode stored * at top to call routine, followed by call * to sigreturn routine below. After sigreturn * resets the signal mask, the stack, and the * frame pointer, it returns to the user * specified pc, psl. */ #ifdef COMPAT_43 static void osendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct osigframe sf, *fp; struct proc *p; struct thread *td; struct sigacts *psp; struct trapframe *regs; int sig; int oonstack; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_esp); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { fp = (struct osigframe *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct osigframe)); #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else fp = (struct osigframe *)regs->tf_esp - 1; /* Build the argument list for the signal handler. */ sf.sf_signum = sig; sf.sf_scp = (register_t)&fp->sf_siginfo.si_sc; bzero(&sf.sf_siginfo, sizeof(sf.sf_siginfo)); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ sf.sf_arg2 = (register_t)&fp->sf_siginfo; sf.sf_siginfo.si_signo = sig; sf.sf_siginfo.si_code = ksi->ksi_code; sf.sf_ahu.sf_action = (__osiginfohandler_t *)catcher; sf.sf_addr = 0; } else { /* Old FreeBSD-style arguments. */ sf.sf_arg2 = ksi->ksi_code; sf.sf_addr = (register_t)ksi->ksi_addr; sf.sf_ahu.sf_handler = catcher; } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* Save most if not all of trap frame. */ sf.sf_siginfo.si_sc.sc_eax = regs->tf_eax; sf.sf_siginfo.si_sc.sc_ebx = regs->tf_ebx; sf.sf_siginfo.si_sc.sc_ecx = regs->tf_ecx; sf.sf_siginfo.si_sc.sc_edx = regs->tf_edx; sf.sf_siginfo.si_sc.sc_esi = regs->tf_esi; sf.sf_siginfo.si_sc.sc_edi = regs->tf_edi; sf.sf_siginfo.si_sc.sc_cs = regs->tf_cs; sf.sf_siginfo.si_sc.sc_ds = regs->tf_ds; sf.sf_siginfo.si_sc.sc_ss = regs->tf_ss; sf.sf_siginfo.si_sc.sc_es = regs->tf_es; sf.sf_siginfo.si_sc.sc_fs = regs->tf_fs; sf.sf_siginfo.si_sc.sc_gs = rgs(); sf.sf_siginfo.si_sc.sc_isp = regs->tf_isp; /* Build the signal context to be used by osigreturn(). */ sf.sf_siginfo.si_sc.sc_onstack = (oonstack) ? 1 : 0; SIG2OSIG(*mask, sf.sf_siginfo.si_sc.sc_mask); sf.sf_siginfo.si_sc.sc_sp = regs->tf_esp; sf.sf_siginfo.si_sc.sc_fp = regs->tf_ebp; sf.sf_siginfo.si_sc.sc_pc = regs->tf_eip; sf.sf_siginfo.si_sc.sc_ps = regs->tf_eflags; sf.sf_siginfo.si_sc.sc_trapno = regs->tf_trapno; sf.sf_siginfo.si_sc.sc_err = regs->tf_err; /* * If we're a vm86 process, we want to save the segment registers. * We also change eflags to be our emulated eflags, not the actual * eflags. */ if (regs->tf_eflags & PSL_VM) { /* XXX confusing names: `tf' isn't a trapframe; `regs' is. */ struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86; sf.sf_siginfo.si_sc.sc_gs = tf->tf_vm86_gs; sf.sf_siginfo.si_sc.sc_fs = tf->tf_vm86_fs; sf.sf_siginfo.si_sc.sc_es = tf->tf_vm86_es; sf.sf_siginfo.si_sc.sc_ds = tf->tf_vm86_ds; if (vm86->vm86_has_vme == 0) sf.sf_siginfo.si_sc.sc_ps = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); /* See sendsig() for comments. */ tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP); } /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, fp, sizeof(*fp)) != 0) { PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_esp = (int)fp; if (p->p_sysent->sv_sigcode_base != 0) { regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode - szosigcode; } else { /* a.out sysentvec does not use shared page */ regs->tf_eip = p->p_sysent->sv_psstrings - szosigcode; } regs->tf_eflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; load_gs(_udatasel); regs->tf_ss = _udatasel; PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } #endif /* COMPAT_43 */ #ifdef COMPAT_FREEBSD4 static void freebsd4_sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct sigframe4 sf, *sfp; struct proc *p; struct thread *td; struct sigacts *psp; struct trapframe *regs; int sig; int oonstack; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); regs = td->td_frame; oonstack = sigonstack(regs->tf_esp); /* Save user context. */ bzero(&sf, sizeof(sf)); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; sf.sf_uc.uc_mcontext.mc_gs = rgs(); bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs)); bzero(sf.sf_uc.uc_mcontext.mc_fpregs, sizeof(sf.sf_uc.uc_mcontext.mc_fpregs)); bzero(sf.sf_uc.uc_mcontext.__spare__, sizeof(sf.sf_uc.uc_mcontext.__spare__)); bzero(sf.sf_uc.__spare__, sizeof(sf.sf_uc.__spare__)); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sfp = (struct sigframe4 *)((uintptr_t)td->td_sigstk.ss_sp + td->td_sigstk.ss_size - sizeof(struct sigframe4)); #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else sfp = (struct sigframe4 *)regs->tf_esp - 1; /* Build the argument list for the signal handler. */ sf.sf_signum = sig; sf.sf_ucontext = (register_t)&sfp->sf_uc; bzero(&sf.sf_si, sizeof(sf.sf_si)); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ sf.sf_siginfo = (register_t)&sfp->sf_si; sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; /* Fill in POSIX parts */ sf.sf_si.si_signo = sig; sf.sf_si.si_code = ksi->ksi_code; sf.sf_si.si_addr = ksi->ksi_addr; } else { /* Old FreeBSD-style arguments. */ sf.sf_siginfo = ksi->ksi_code; sf.sf_addr = (register_t)ksi->ksi_addr; sf.sf_ahu.sf_handler = catcher; } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* * If we're a vm86 process, we want to save the segment registers. * We also change eflags to be our emulated eflags, not the actual * eflags. */ if (regs->tf_eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86; sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs; sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs; sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es; sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds; if (vm86->vm86_has_vme == 0) sf.sf_uc.uc_mcontext.mc_eflags = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); /* * Clear PSL_NT to inhibit T_TSSFLT faults on return from * syscalls made by the signal handler. This just avoids * wasting time for our lazy fixup of such faults. PSL_NT * does nothing in vm86 mode, but vm86 programs can set it * almost legitimately in probes for old cpu types. */ tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP); } /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(*sfp)) != 0) { PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_esp = (int)sfp; regs->tf_eip = p->p_sysent->sv_sigcode_base + szsigcode - szfreebsd4_sigcode; regs->tf_eflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; regs->tf_ss = _udatasel; PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } #endif /* COMPAT_FREEBSD4 */ void sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask) { struct sigframe sf, *sfp; struct proc *p; struct thread *td; struct sigacts *psp; char *sp; struct trapframe *regs; struct segment_descriptor *sdp; char *xfpusave; size_t xfpusave_len; int sig; int oonstack; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); sig = ksi->ksi_signo; psp = p->p_sigacts; mtx_assert(&psp->ps_mtx, MA_OWNED); #ifdef COMPAT_FREEBSD4 if (SIGISMEMBER(psp->ps_freebsd4, sig)) { freebsd4_sendsig(catcher, ksi, mask); return; } #endif #ifdef COMPAT_43 if (SIGISMEMBER(psp->ps_osigset, sig)) { osendsig(catcher, ksi, mask); return; } #endif regs = td->td_frame; oonstack = sigonstack(regs->tf_esp); if (cpu_max_ext_state_size > sizeof(union savefpu) && use_xsave) { xfpusave_len = cpu_max_ext_state_size - sizeof(union savefpu); xfpusave = __builtin_alloca(xfpusave_len); } else { xfpusave_len = 0; xfpusave = NULL; } /* Save user context. */ bzero(&sf, sizeof(sf)); sf.sf_uc.uc_sigmask = *mask; sf.sf_uc.uc_stack = td->td_sigstk; sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK) ? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE; sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0; sf.sf_uc.uc_mcontext.mc_gs = rgs(); bcopy(regs, &sf.sf_uc.uc_mcontext.mc_fs, sizeof(*regs)); sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext); /* magic */ get_fpcontext(td, &sf.sf_uc.uc_mcontext, xfpusave, xfpusave_len); fpstate_drop(td); /* * Unconditionally fill the fsbase and gsbase into the mcontext. */ sdp = &td->td_pcb->pcb_fsd; sf.sf_uc.uc_mcontext.mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase; sdp = &td->td_pcb->pcb_gsd; sf.sf_uc.uc_mcontext.mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase; bzero(sf.sf_uc.uc_mcontext.mc_spare2, sizeof(sf.sf_uc.uc_mcontext.mc_spare2)); /* Allocate space for the signal handler context. */ if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack && SIGISMEMBER(psp->ps_sigonstack, sig)) { sp = (char *)td->td_sigstk.ss_sp + td->td_sigstk.ss_size; #if defined(COMPAT_43) td->td_sigstk.ss_flags |= SS_ONSTACK; #endif } else sp = (char *)regs->tf_esp - 128; if (xfpusave != NULL) { sp -= xfpusave_len; sp = (char *)((unsigned int)sp & ~0x3F); sf.sf_uc.uc_mcontext.mc_xfpustate = (register_t)sp; } sp -= sizeof(struct sigframe); /* Align to 16 bytes. */ sfp = (struct sigframe *)((unsigned int)sp & ~0xF); /* Build the argument list for the signal handler. */ sf.sf_signum = sig; sf.sf_ucontext = (register_t)&sfp->sf_uc; bzero(&sf.sf_si, sizeof(sf.sf_si)); if (SIGISMEMBER(psp->ps_siginfo, sig)) { /* Signal handler installed with SA_SIGINFO. */ sf.sf_siginfo = (register_t)&sfp->sf_si; sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher; /* Fill in POSIX parts */ sf.sf_si = ksi->ksi_info; sf.sf_si.si_signo = sig; /* maybe a translated signal */ } else { /* Old FreeBSD-style arguments. */ sf.sf_siginfo = ksi->ksi_code; sf.sf_addr = (register_t)ksi->ksi_addr; sf.sf_ahu.sf_handler = catcher; } mtx_unlock(&psp->ps_mtx); PROC_UNLOCK(p); /* * If we're a vm86 process, we want to save the segment registers. * We also change eflags to be our emulated eflags, not the actual * eflags. */ if (regs->tf_eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86 = &td->td_pcb->pcb_ext->ext_vm86; sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs; sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs; sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es; sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds; if (vm86->vm86_has_vme == 0) sf.sf_uc.uc_mcontext.mc_eflags = (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) | (vm86->vm86_eflags & (PSL_VIF | PSL_VIP)); /* * Clear PSL_NT to inhibit T_TSSFLT faults on return from * syscalls made by the signal handler. This just avoids * wasting time for our lazy fixup of such faults. PSL_NT * does nothing in vm86 mode, but vm86 programs can set it * almost legitimately in probes for old cpu types. */ tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP); } /* * Copy the sigframe out to the user's stack. */ if (copyout(&sf, sfp, sizeof(*sfp)) != 0 || (xfpusave != NULL && copyout(xfpusave, (void *)sf.sf_uc.uc_mcontext.mc_xfpustate, xfpusave_len) != 0)) { PROC_LOCK(p); sigexit(td, SIGILL); } regs->tf_esp = (int)sfp; regs->tf_eip = p->p_sysent->sv_sigcode_base; if (regs->tf_eip == 0) regs->tf_eip = p->p_sysent->sv_psstrings - szsigcode; regs->tf_eflags &= ~(PSL_T | PSL_D); regs->tf_cs = _ucodesel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; regs->tf_ss = _udatasel; PROC_LOCK(p); mtx_lock(&psp->ps_mtx); } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above). * Return to previous pc and psl as specified by * context left by sendsig. Check carefully to * make sure that the user has not modified the * state to gain improper privileges. * * MPSAFE */ #ifdef COMPAT_43 int osigreturn(td, uap) struct thread *td; struct osigreturn_args /* { struct osigcontext *sigcntxp; } */ *uap; { struct osigcontext sc; struct trapframe *regs; struct osigcontext *scp; int eflags, error; ksiginfo_t ksi; regs = td->td_frame; error = copyin(uap->sigcntxp, &sc, sizeof(sc)); if (error != 0) return (error); scp = ≻ eflags = scp->sc_ps; if (eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86; /* * if pcb_ext == 0 or vm86_inited == 0, the user hasn't * set up the vm86 area, and we can't enter vm86 mode. */ if (td->td_pcb->pcb_ext == 0) return (EINVAL); vm86 = &td->td_pcb->pcb_ext->ext_vm86; if (vm86->vm86_inited == 0) return (EINVAL); /* Go back to user mode if both flags are set. */ if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); } if (vm86->vm86_has_vme) { eflags = (tf->tf_eflags & ~VME_USERCHANGE) | (eflags & VME_USERCHANGE) | PSL_VM; } else { vm86->vm86_eflags = eflags; /* save VIF, VIP */ eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM; } tf->tf_vm86_ds = scp->sc_ds; tf->tf_vm86_es = scp->sc_es; tf->tf_vm86_fs = scp->sc_fs; tf->tf_vm86_gs = scp->sc_gs; tf->tf_ds = _udatasel; tf->tf_es = _udatasel; tf->tf_fs = _udatasel; } else { /* * Don't allow users to change privileged or reserved flags. */ if (!EFL_SECURE(eflags, regs->tf_eflags)) { return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ if (!CS_SECURE(scp->sc_cs)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); return (EINVAL); } regs->tf_ds = scp->sc_ds; regs->tf_es = scp->sc_es; regs->tf_fs = scp->sc_fs; } /* Restore remaining registers. */ regs->tf_eax = scp->sc_eax; regs->tf_ebx = scp->sc_ebx; regs->tf_ecx = scp->sc_ecx; regs->tf_edx = scp->sc_edx; regs->tf_esi = scp->sc_esi; regs->tf_edi = scp->sc_edi; regs->tf_cs = scp->sc_cs; regs->tf_ss = scp->sc_ss; regs->tf_isp = scp->sc_isp; regs->tf_ebp = scp->sc_fp; regs->tf_esp = scp->sc_sp; regs->tf_eip = scp->sc_pc; regs->tf_eflags = eflags; #if defined(COMPAT_43) if (scp->sc_onstack & 1) td->td_sigstk.ss_flags |= SS_ONSTACK; else td->td_sigstk.ss_flags &= ~SS_ONSTACK; #endif kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL, SIGPROCMASK_OLD); return (EJUSTRETURN); } #endif /* COMPAT_43 */ #ifdef COMPAT_FREEBSD4 /* * MPSAFE */ int freebsd4_sigreturn(td, uap) struct thread *td; struct freebsd4_sigreturn_args /* { const ucontext4 *sigcntxp; } */ *uap; { struct ucontext4 uc; struct trapframe *regs; struct ucontext4 *ucp; int cs, eflags, error; ksiginfo_t ksi; error = copyin(uap->sigcntxp, &uc, sizeof(uc)); if (error != 0) return (error); ucp = &uc; regs = td->td_frame; eflags = ucp->uc_mcontext.mc_eflags; if (eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86; /* * if pcb_ext == 0 or vm86_inited == 0, the user hasn't * set up the vm86 area, and we can't enter vm86 mode. */ if (td->td_pcb->pcb_ext == 0) return (EINVAL); vm86 = &td->td_pcb->pcb_ext->ext_vm86; if (vm86->vm86_inited == 0) return (EINVAL); /* Go back to user mode if both flags are set. */ if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); } if (vm86->vm86_has_vme) { eflags = (tf->tf_eflags & ~VME_USERCHANGE) | (eflags & VME_USERCHANGE) | PSL_VM; } else { vm86->vm86_eflags = eflags; /* save VIF, VIP */ eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM; } bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe)); tf->tf_eflags = eflags; tf->tf_vm86_ds = tf->tf_ds; tf->tf_vm86_es = tf->tf_es; tf->tf_vm86_fs = tf->tf_fs; tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs; tf->tf_ds = _udatasel; tf->tf_es = _udatasel; tf->tf_fs = _udatasel; } else { /* * Don't allow users to change privileged or reserved flags. */ if (!EFL_SECURE(eflags, regs->tf_eflags)) { uprintf("pid %d (%s): freebsd4_sigreturn eflags = 0x%x\n", td->td_proc->p_pid, td->td_name, eflags); return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ cs = ucp->uc_mcontext.mc_cs; if (!CS_SECURE(cs)) { uprintf("pid %d (%s): freebsd4_sigreturn cs = 0x%x\n", td->td_proc->p_pid, td->td_name, cs); ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); return (EINVAL); } bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs)); } #if defined(COMPAT_43) if (ucp->uc_mcontext.mc_onstack & 1) td->td_sigstk.ss_flags |= SS_ONSTACK; else td->td_sigstk.ss_flags &= ~SS_ONSTACK; #endif kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); return (EJUSTRETURN); } #endif /* COMPAT_FREEBSD4 */ /* * MPSAFE */ int sys_sigreturn(td, uap) struct thread *td; struct sigreturn_args /* { const struct __ucontext *sigcntxp; } */ *uap; { ucontext_t uc; struct proc *p; struct trapframe *regs; ucontext_t *ucp; char *xfpustate; size_t xfpustate_len; int cs, eflags, error, ret; ksiginfo_t ksi; p = td->td_proc; error = copyin(uap->sigcntxp, &uc, sizeof(uc)); if (error != 0) return (error); ucp = &uc; if ((ucp->uc_mcontext.mc_flags & ~_MC_FLAG_MASK) != 0) { uprintf("pid %d (%s): sigreturn mc_flags %x\n", p->p_pid, td->td_name, ucp->uc_mcontext.mc_flags); return (EINVAL); } regs = td->td_frame; eflags = ucp->uc_mcontext.mc_eflags; if (eflags & PSL_VM) { struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs; struct vm86_kernel *vm86; /* * if pcb_ext == 0 or vm86_inited == 0, the user hasn't * set up the vm86 area, and we can't enter vm86 mode. */ if (td->td_pcb->pcb_ext == 0) return (EINVAL); vm86 = &td->td_pcb->pcb_ext->ext_vm86; if (vm86->vm86_inited == 0) return (EINVAL); /* Go back to user mode if both flags are set. */ if ((eflags & PSL_VIP) && (eflags & PSL_VIF)) { ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); } if (vm86->vm86_has_vme) { eflags = (tf->tf_eflags & ~VME_USERCHANGE) | (eflags & VME_USERCHANGE) | PSL_VM; } else { vm86->vm86_eflags = eflags; /* save VIF, VIP */ eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM; } bcopy(&ucp->uc_mcontext.mc_fs, tf, sizeof(struct trapframe)); tf->tf_eflags = eflags; tf->tf_vm86_ds = tf->tf_ds; tf->tf_vm86_es = tf->tf_es; tf->tf_vm86_fs = tf->tf_fs; tf->tf_vm86_gs = ucp->uc_mcontext.mc_gs; tf->tf_ds = _udatasel; tf->tf_es = _udatasel; tf->tf_fs = _udatasel; } else { /* * Don't allow users to change privileged or reserved flags. */ if (!EFL_SECURE(eflags, regs->tf_eflags)) { uprintf("pid %d (%s): sigreturn eflags = 0x%x\n", td->td_proc->p_pid, td->td_name, eflags); return (EINVAL); } /* * Don't allow users to load a valid privileged %cs. Let the * hardware check for invalid selectors, excess privilege in * other selectors, invalid %eip's and invalid %esp's. */ cs = ucp->uc_mcontext.mc_cs; if (!CS_SECURE(cs)) { uprintf("pid %d (%s): sigreturn cs = 0x%x\n", td->td_proc->p_pid, td->td_name, cs); ksiginfo_init_trap(&ksi); ksi.ksi_signo = SIGBUS; ksi.ksi_code = BUS_OBJERR; ksi.ksi_trapno = T_PROTFLT; ksi.ksi_addr = (void *)regs->tf_eip; trapsignal(td, &ksi); return (EINVAL); } if ((uc.uc_mcontext.mc_flags & _MC_HASFPXSTATE) != 0) { xfpustate_len = uc.uc_mcontext.mc_xfpustate_len; if (xfpustate_len > cpu_max_ext_state_size - sizeof(union savefpu)) { uprintf( "pid %d (%s): sigreturn xfpusave_len = 0x%zx\n", p->p_pid, td->td_name, xfpustate_len); return (EINVAL); } xfpustate = __builtin_alloca(xfpustate_len); error = copyin((const void *)uc.uc_mcontext.mc_xfpustate, xfpustate, xfpustate_len); if (error != 0) { uprintf( "pid %d (%s): sigreturn copying xfpustate failed\n", p->p_pid, td->td_name); return (error); } } else { xfpustate = NULL; xfpustate_len = 0; } ret = set_fpcontext(td, &ucp->uc_mcontext, xfpustate, xfpustate_len); if (ret != 0) return (ret); bcopy(&ucp->uc_mcontext.mc_fs, regs, sizeof(*regs)); } #if defined(COMPAT_43) if (ucp->uc_mcontext.mc_onstack & 1) td->td_sigstk.ss_flags |= SS_ONSTACK; else td->td_sigstk.ss_flags &= ~SS_ONSTACK; #endif kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0); return (EJUSTRETURN); } #ifdef COMPAT_43 static void setup_priv_lcall_gate(struct proc *p) { struct i386_ldt_args uap; union descriptor desc; u_int lcall_addr; bzero(&uap, sizeof(uap)); uap.start = 0; uap.num = 1; lcall_addr = p->p_sysent->sv_psstrings - sz_lcall_tramp; bzero(&desc, sizeof(desc)); desc.sd.sd_type = SDT_MEMERA; desc.sd.sd_dpl = SEL_UPL; desc.sd.sd_p = 1; desc.sd.sd_def32 = 1; desc.sd.sd_gran = 1; desc.sd.sd_lolimit = 0xffff; desc.sd.sd_hilimit = 0xf; desc.sd.sd_lobase = lcall_addr; desc.sd.sd_hibase = lcall_addr >> 24; i386_set_ldt(curthread, &uap, &desc); } #endif /* * Reset the hardware debug registers if they were in use. * They won't have any meaning for the newly exec'd process. */ void x86_clear_dbregs(struct pcb *pcb) { if ((pcb->pcb_flags & PCB_DBREGS) == 0) return; pcb->pcb_dr0 = 0; pcb->pcb_dr1 = 0; pcb->pcb_dr2 = 0; pcb->pcb_dr3 = 0; pcb->pcb_dr6 = 0; pcb->pcb_dr7 = 0; if (pcb == curpcb) { /* * Clear the debug registers on the running CPU, * otherwise they will end up affecting the next * process we switch to. */ reset_dbregs(); } pcb->pcb_flags &= ~PCB_DBREGS; } /* * Reset registers to default values on exec. */ void exec_setregs(struct thread *td, struct image_params *imgp, uintptr_t stack) { struct trapframe *regs; struct pcb *pcb; register_t saved_eflags; regs = td->td_frame; pcb = td->td_pcb; /* Reset pc->pcb_gs and %gs before possibly invalidating it. */ pcb->pcb_gs = _udatasel; load_gs(_udatasel); mtx_lock_spin(&dt_lock); if (td->td_proc->p_md.md_ldt != NULL) user_ldt_free(td); else mtx_unlock_spin(&dt_lock); #ifdef COMPAT_43 if (td->td_proc->p_sysent->sv_psstrings != elf32_freebsd_sysvec.sv_psstrings) setup_priv_lcall_gate(td->td_proc); #endif /* * Reset the fs and gs bases. The values from the old address * space do not make sense for the new program. In particular, * gsbase might be the TLS base for the old program but the new * program has no TLS now. */ set_fsbase(td, 0); set_gsbase(td, 0); /* Make sure edx is 0x0 on entry. Linux binaries depend on it. */ saved_eflags = regs->tf_eflags & PSL_T; bzero((char *)regs, sizeof(struct trapframe)); regs->tf_eip = imgp->entry_addr; regs->tf_esp = stack; regs->tf_eflags = PSL_USER | saved_eflags; regs->tf_ss = _udatasel; regs->tf_ds = _udatasel; regs->tf_es = _udatasel; regs->tf_fs = _udatasel; regs->tf_cs = _ucodesel; /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */ regs->tf_ebx = (register_t)imgp->ps_strings; x86_clear_dbregs(pcb); pcb->pcb_initial_npxcw = __INITIAL_NPXCW__; /* * Drop the FP state if we hold it, so that the process gets a * clean FP state if it uses the FPU again. */ fpstate_drop(td); } void cpu_setregs(void) { unsigned int cr0; cr0 = rcr0(); /* * CR0_MP, CR0_NE and CR0_TS are set for NPX (FPU) support: * * Prepare to trap all ESC (i.e., NPX) instructions and all WAIT * instructions. We must set the CR0_MP bit and use the CR0_TS * bit to control the trap, because setting the CR0_EM bit does * not cause WAIT instructions to trap. It's important to trap * WAIT instructions - otherwise the "wait" variants of no-wait * control instructions would degenerate to the "no-wait" variants * after FP context switches but work correctly otherwise. It's * particularly important to trap WAITs when there is no NPX - * otherwise the "wait" variants would always degenerate. * * Try setting CR0_NE to get correct error reporting on 486DX's. * Setting it should fail or do nothing on lesser processors. */ cr0 |= CR0_MP | CR0_NE | CR0_TS | CR0_WP | CR0_AM; load_cr0(cr0); load_gs(_udatasel); } u_long bootdev; /* not a struct cdev *- encoding is different */ SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev, CTLFLAG_RD, &bootdev, 0, "Maybe the Boot device (not in struct cdev *format)"); /* * Initialize 386 and configure to run kernel */ /* * Initialize segments & interrupt table */ int _default_ldt; struct mtx dt_lock; /* lock for GDT and LDT */ union descriptor gdt0[NGDT]; /* initial global descriptor table */ union descriptor *gdt = gdt0; /* global descriptor table */ union descriptor *ldt; /* local descriptor table */ static struct gate_descriptor idt0[NIDT]; struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */ static struct i386tss *dblfault_tss; static char *dblfault_stack; static struct i386tss common_tss0; vm_offset_t proc0kstack; /* * software prototypes -- in more palatable form. * * GCODE_SEL through GUDATA_SEL must be in this order for syscall/sysret * GUFS_SEL and GUGS_SEL must be in this order (swtch.s knows it) */ struct soft_segment_descriptor gdt_segs[] = { /* GNULL_SEL 0 Null Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = SEL_KPL, .ssd_p = 0, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GPRIV_SEL 1 SMP Per-Processor Private Data Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUFS_SEL 2 %fs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUGS_SEL 3 %gs Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GCODE_SEL 4 Code Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GDATA_SEL 5 Data Descriptor for kernel */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUCODE_SEL 6 Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GUDATA_SEL 7 Data Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */ { .ssd_base = 0x400, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_KPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GPROC0_SEL 9 Proc 0 Tss Descriptor */ { .ssd_base = 0x0, .ssd_limit = sizeof(struct i386tss)-1, .ssd_type = SDT_SYS386TSS, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GLDT_SEL 10 LDT Descriptor */ { .ssd_base = 0, .ssd_limit = sizeof(union descriptor) * NLDT - 1, .ssd_type = SDT_SYSLDT, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GUSERLDT_SEL 11 User LDT Descriptor per process */ { .ssd_base = 0, .ssd_limit = (512 * sizeof(union descriptor)-1), .ssd_type = SDT_SYSLDT, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GPANIC_SEL 12 Panic Tss Descriptor */ { .ssd_base = 0, .ssd_limit = sizeof(struct i386tss)-1, .ssd_type = SDT_SYS386TSS, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* GBIOSCODE32_SEL 13 BIOS 32-bit interface (32bit Code) */ { .ssd_base = 0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 1 }, /* GBIOSCODE16_SEL 14 BIOS 32-bit interface (16bit Code) */ { .ssd_base = 0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 1 }, /* GBIOSDATA_SEL 15 BIOS 32-bit interface (Data) */ { .ssd_base = 0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* GBIOSUTIL_SEL 16 BIOS 16-bit interface (Utility) */ { .ssd_base = 0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 1 }, /* GBIOSARGS_SEL 17 BIOS 16-bit interface (Arguments) */ { .ssd_base = 0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = 0, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 1 }, /* GNDIS_SEL 18 NDIS Descriptor */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, }; static struct soft_segment_descriptor ldt_segs[] = { /* Null Descriptor - overwritten by call gate */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* Null Descriptor - overwritten by call gate */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* Null Descriptor - overwritten by call gate */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* Code Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMERA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, /* Null Descriptor - overwritten by call gate */ { .ssd_base = 0x0, .ssd_limit = 0x0, .ssd_type = 0, .ssd_dpl = 0, .ssd_p = 0, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 0, .ssd_gran = 0 }, /* Data Descriptor for user */ { .ssd_base = 0x0, .ssd_limit = 0xfffff, .ssd_type = SDT_MEMRWA, .ssd_dpl = SEL_UPL, .ssd_p = 1, .ssd_xx = 0, .ssd_xx1 = 0, .ssd_def32 = 1, .ssd_gran = 1 }, }; -uintptr_t setidt_disp; +size_t setidt_disp; void setidt(int idx, inthand_t *func, int typ, int dpl, int selec) { uintptr_t off; off = func != NULL ? (uintptr_t)func + setidt_disp : 0; setidt_nodisp(idx, off, typ, dpl, selec); } void setidt_nodisp(int idx, uintptr_t off, int typ, int dpl, int selec) { struct gate_descriptor *ip; ip = idt + idx; ip->gd_looffset = off; ip->gd_selector = selec; ip->gd_stkcpy = 0; ip->gd_xx = 0; ip->gd_type = typ; ip->gd_dpl = dpl; ip->gd_p = 1; ip->gd_hioffset = ((u_int)off) >> 16 ; } extern inthand_t IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl), IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm), IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot), IDTVEC(page), IDTVEC(mchk), IDTVEC(rsvd), IDTVEC(fpu), IDTVEC(align), IDTVEC(xmm), #ifdef KDTRACE_HOOKS IDTVEC(dtrace_ret), #endif #ifdef XENHVM IDTVEC(xen_intr_upcall), #endif IDTVEC(int0x80_syscall); #ifdef DDB /* * Display the index and function name of any IDT entries that don't use * the default 'rsvd' entry point. */ DB_SHOW_COMMAND(idt, db_show_idt) { struct gate_descriptor *ip; int idx; uintptr_t func, func_trm; bool trm; ip = idt; for (idx = 0; idx < NIDT && !db_pager_quit; idx++) { if (ip->gd_type == SDT_SYSTASKGT) { db_printf("%3d\t\n", idx); } else { func = (ip->gd_hioffset << 16 | ip->gd_looffset); if (func >= PMAP_TRM_MIN_ADDRESS) { func_trm = func; func -= setidt_disp; trm = true; } else trm = false; if (func != (uintptr_t)&IDTVEC(rsvd)) { db_printf("%3d\t", idx); db_printsym(func, DB_STGY_PROC); if (trm) db_printf(" (trampoline %#x)", func_trm); db_printf("\n"); } } ip++; } } /* Show privileged registers. */ DB_SHOW_COMMAND(sysregs, db_show_sysregs) { uint64_t idtr, gdtr; idtr = ridt(); db_printf("idtr\t0x%08x/%04x\n", (u_int)(idtr >> 16), (u_int)idtr & 0xffff); gdtr = rgdt(); db_printf("gdtr\t0x%08x/%04x\n", (u_int)(gdtr >> 16), (u_int)gdtr & 0xffff); db_printf("ldtr\t0x%04x\n", rldt()); db_printf("tr\t0x%04x\n", rtr()); db_printf("cr0\t0x%08x\n", rcr0()); db_printf("cr2\t0x%08x\n", rcr2()); db_printf("cr3\t0x%08x\n", rcr3()); db_printf("cr4\t0x%08x\n", rcr4()); if (rcr4() & CR4_XSAVE) db_printf("xcr0\t0x%016llx\n", rxcr(0)); if (amd_feature & (AMDID_NX | AMDID_LM)) db_printf("EFER\t0x%016llx\n", rdmsr(MSR_EFER)); if (cpu_feature2 & (CPUID2_VMX | CPUID2_SMX)) db_printf("FEATURES_CTL\t0x%016llx\n", rdmsr(MSR_IA32_FEATURE_CONTROL)); if (((cpu_vendor_id == CPU_VENDOR_INTEL || cpu_vendor_id == CPU_VENDOR_AMD) && CPUID_TO_FAMILY(cpu_id) >= 6) || cpu_vendor_id == CPU_VENDOR_HYGON) db_printf("DEBUG_CTL\t0x%016llx\n", rdmsr(MSR_DEBUGCTLMSR)); if (cpu_feature & CPUID_PAT) db_printf("PAT\t0x%016llx\n", rdmsr(MSR_PAT)); } DB_SHOW_COMMAND(dbregs, db_show_dbregs) { db_printf("dr0\t0x%08x\n", rdr0()); db_printf("dr1\t0x%08x\n", rdr1()); db_printf("dr2\t0x%08x\n", rdr2()); db_printf("dr3\t0x%08x\n", rdr3()); db_printf("dr6\t0x%08x\n", rdr6()); db_printf("dr7\t0x%08x\n", rdr7()); } DB_SHOW_COMMAND(frame, db_show_frame) { struct trapframe *frame; frame = have_addr ? (struct trapframe *)addr : curthread->td_frame; printf("ss %#x esp %#x efl %#x cs %#x eip %#x\n", frame->tf_ss, frame->tf_esp, frame->tf_eflags, frame->tf_cs, frame->tf_eip); printf("err %#x trapno %d\n", frame->tf_err, frame->tf_trapno); printf("ds %#x es %#x fs %#x\n", frame->tf_ds, frame->tf_es, frame->tf_fs); printf("eax %#x ecx %#x edx %#x ebx %#x\n", frame->tf_eax, frame->tf_ecx, frame->tf_edx, frame->tf_ebx); printf("ebp %#x esi %#x edi %#x\n", frame->tf_ebp, frame->tf_esi, frame->tf_edi); } #endif void sdtossd(sd, ssd) struct segment_descriptor *sd; struct soft_segment_descriptor *ssd; { ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase; ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit; ssd->ssd_type = sd->sd_type; ssd->ssd_dpl = sd->sd_dpl; ssd->ssd_p = sd->sd_p; ssd->ssd_def32 = sd->sd_def32; ssd->ssd_gran = sd->sd_gran; } static int add_physmap_entry(uint64_t base, uint64_t length, vm_paddr_t *physmap, int *physmap_idxp) { uint64_t lim, ign; int i, insert_idx, physmap_idx; physmap_idx = *physmap_idxp; if (length == 0) return (1); lim = 0x100000000; /* 4G */ if (pae_mode && above4g_allow) lim = above24g_allow ? -1ULL : 0x600000000; /* 24G */ if (base >= lim) { printf("%uK of memory above %uGB ignored, pae %d " "above4g_allow %d above24g_allow %d\n", (u_int)(length / 1024), (u_int)(lim >> 30), pae_mode, above4g_allow, above24g_allow); return (1); } if (base + length >= lim) { ign = base + length - lim; length -= ign; printf("%uK of memory above %uGB ignored, pae %d " "above4g_allow %d above24g_allow %d\n", (u_int)(ign / 1024), (u_int)(lim >> 30), pae_mode, above4g_allow, above24g_allow); } /* * Find insertion point while checking for overlap. Start off by * assuming the new entry will be added to the end. */ insert_idx = physmap_idx + 2; for (i = 0; i <= physmap_idx; i += 2) { if (base < physmap[i + 1]) { if (base + length <= physmap[i]) { insert_idx = i; break; } if (boothowto & RB_VERBOSE) printf( "Overlapping memory regions, ignoring second region\n"); return (1); } } /* See if we can prepend to the next entry. */ if (insert_idx <= physmap_idx && base + length == physmap[insert_idx]) { physmap[insert_idx] = base; return (1); } /* See if we can append to the previous entry. */ if (insert_idx > 0 && base == physmap[insert_idx - 1]) { physmap[insert_idx - 1] += length; return (1); } physmap_idx += 2; *physmap_idxp = physmap_idx; if (physmap_idx == PHYS_AVAIL_ENTRIES) { printf( "Too many segments in the physical address map, giving up\n"); return (0); } /* * Move the last 'N' entries down to make room for the new * entry if needed. */ for (i = physmap_idx; i > insert_idx; i -= 2) { physmap[i] = physmap[i - 2]; physmap[i + 1] = physmap[i - 1]; } /* Insert the new entry. */ physmap[insert_idx] = base; physmap[insert_idx + 1] = base + length; return (1); } static int add_smap_entry(struct bios_smap *smap, vm_paddr_t *physmap, int *physmap_idxp) { if (boothowto & RB_VERBOSE) printf("SMAP type=%02x base=%016llx len=%016llx\n", smap->type, smap->base, smap->length); if (smap->type != SMAP_TYPE_MEMORY) return (1); return (add_physmap_entry(smap->base, smap->length, physmap, physmap_idxp)); } static void add_smap_entries(struct bios_smap *smapbase, vm_paddr_t *physmap, int *physmap_idxp) { struct bios_smap *smap, *smapend; u_int32_t smapsize; /* * Memory map from INT 15:E820. * * subr_module.c says: * "Consumer may safely assume that size value precedes data." * ie: an int32_t immediately precedes SMAP. */ smapsize = *((u_int32_t *)smapbase - 1); smapend = (struct bios_smap *)((uintptr_t)smapbase + smapsize); for (smap = smapbase; smap < smapend; smap++) if (!add_smap_entry(smap, physmap, physmap_idxp)) break; } static void basemem_setup(void) { if (basemem > 640) { printf("Preposterous BIOS basemem of %uK, truncating to 640K\n", basemem); basemem = 640; } pmap_basemem_setup(basemem); } /* * Populate the (physmap) array with base/bound pairs describing the * available physical memory in the system, then test this memory and * build the phys_avail array describing the actually-available memory. * * If we cannot accurately determine the physical memory map, then use * value from the 0xE801 call, and failing that, the RTC. * * Total memory size may be set by the kernel environment variable * hw.physmem or the compile-time define MAXMEM. * * XXX first should be vm_paddr_t. */ static void getmemsize(int first) { int has_smap, off, physmap_idx, pa_indx, da_indx; u_long memtest; vm_paddr_t physmap[PHYS_AVAIL_ENTRIES]; quad_t dcons_addr, dcons_size, physmem_tunable; int hasbrokenint12, i, res; u_int extmem; struct vm86frame vmf; struct vm86context vmc; vm_paddr_t pa; struct bios_smap *smap, *smapbase; caddr_t kmdp; has_smap = 0; bzero(&vmf, sizeof(vmf)); bzero(physmap, sizeof(physmap)); basemem = 0; /* * Tell the physical memory allocator about pages used to store * the kernel and preloaded data. See kmem_bootstrap_free(). */ vm_phys_early_add_seg((vm_paddr_t)KERNLOAD, trunc_page(first)); TUNABLE_INT_FETCH("hw.above4g_allow", &above4g_allow); TUNABLE_INT_FETCH("hw.above24g_allow", &above24g_allow); /* * Check if the loader supplied an SMAP memory map. If so, * use that and do not make any VM86 calls. */ physmap_idx = 0; kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf32 kernel"); smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP); if (smapbase != NULL) { add_smap_entries(smapbase, physmap, &physmap_idx); has_smap = 1; goto have_smap; } /* * Some newer BIOSes have a broken INT 12H implementation * which causes a kernel panic immediately. In this case, we * need use the SMAP to determine the base memory size. */ hasbrokenint12 = 0; TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12); if (hasbrokenint12 == 0) { /* Use INT12 to determine base memory size. */ vm86_intcall(0x12, &vmf); basemem = vmf.vmf_ax; basemem_setup(); } /* * Fetch the memory map with INT 15:E820. Map page 1 R/W into * the kernel page table so we can use it as a buffer. The * kernel will unmap this page later. */ vmc.npages = 0; smap = (void *)vm86_addpage(&vmc, 1, PMAP_MAP_LOW + ptoa(1)); res = vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di); KASSERT(res != 0, ("vm86_getptr() failed: address not found")); vmf.vmf_ebx = 0; do { vmf.vmf_eax = 0xE820; vmf.vmf_edx = SMAP_SIG; vmf.vmf_ecx = sizeof(struct bios_smap); i = vm86_datacall(0x15, &vmf, &vmc); if (i || vmf.vmf_eax != SMAP_SIG) break; has_smap = 1; if (!add_smap_entry(smap, physmap, &physmap_idx)) break; } while (vmf.vmf_ebx != 0); have_smap: /* * If we didn't fetch the "base memory" size from INT12, * figure it out from the SMAP (or just guess). */ if (basemem == 0) { for (i = 0; i <= physmap_idx; i += 2) { if (physmap[i] == 0x00000000) { basemem = physmap[i + 1] / 1024; break; } } /* XXX: If we couldn't find basemem from SMAP, just guess. */ if (basemem == 0) basemem = 640; basemem_setup(); } if (physmap[1] != 0) goto physmap_done; /* * If we failed to find an SMAP, figure out the extended * memory size. We will then build a simple memory map with * two segments, one for "base memory" and the second for * "extended memory". Note that "extended memory" starts at a * physical address of 1MB and that both basemem and extmem * are in units of 1KB. * * First, try to fetch the extended memory size via INT 15:E801. */ vmf.vmf_ax = 0xE801; if (vm86_intcall(0x15, &vmf) == 0) { extmem = vmf.vmf_cx + vmf.vmf_dx * 64; } else { /* * If INT15:E801 fails, this is our last ditch effort * to determine the extended memory size. Currently * we prefer the RTC value over INT15:88. */ #if 0 vmf.vmf_ah = 0x88; vm86_intcall(0x15, &vmf); extmem = vmf.vmf_ax; #else extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8); #endif } /* * Special hack for chipsets that still remap the 384k hole when * there's 16MB of memory - this really confuses people that * are trying to use bus mastering ISA controllers with the * "16MB limit"; they only have 16MB, but the remapping puts * them beyond the limit. * * If extended memory is between 15-16MB (16-17MB phys address range), * chop it to 15MB. */ if ((extmem > 15 * 1024) && (extmem < 16 * 1024)) extmem = 15 * 1024; physmap[0] = 0; physmap[1] = basemem * 1024; physmap_idx = 2; physmap[physmap_idx] = 0x100000; physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024; physmap_done: /* * Now, physmap contains a map of physical memory. */ #ifdef SMP /* make hole for AP bootstrap code */ alloc_ap_trampoline(physmap, &physmap_idx); #endif /* * Maxmem isn't the "maximum memory", it's one larger than the * highest page of the physical address space. It should be * called something like "Maxphyspage". We may adjust this * based on ``hw.physmem'' and the results of the memory test. * * This is especially confusing when it is much larger than the * memory size and is displayed as "realmem". */ Maxmem = atop(physmap[physmap_idx + 1]); #ifdef MAXMEM Maxmem = MAXMEM / 4; #endif if (TUNABLE_QUAD_FETCH("hw.physmem", &physmem_tunable)) Maxmem = atop(physmem_tunable); /* * If we have an SMAP, don't allow MAXMEM or hw.physmem to extend * the amount of memory in the system. */ if (has_smap && Maxmem > atop(physmap[physmap_idx + 1])) Maxmem = atop(physmap[physmap_idx + 1]); /* * The boot memory test is disabled by default, as it takes a * significant amount of time on large-memory systems, and is * unfriendly to virtual machines as it unnecessarily touches all * pages. * * A general name is used as the code may be extended to support * additional tests beyond the current "page present" test. */ memtest = 0; TUNABLE_ULONG_FETCH("hw.memtest.tests", &memtest); if (atop(physmap[physmap_idx + 1]) != Maxmem && (boothowto & RB_VERBOSE)) printf("Physical memory use set to %ldK\n", Maxmem * 4); /* * If Maxmem has been increased beyond what the system has detected, * extend the last memory segment to the new limit. */ if (atop(physmap[physmap_idx + 1]) < Maxmem) physmap[physmap_idx + 1] = ptoa((vm_paddr_t)Maxmem); /* call pmap initialization to make new kernel address space */ pmap_bootstrap(first); /* * Size up each available chunk of physical memory. */ physmap[0] = PAGE_SIZE; /* mask off page 0 */ pa_indx = 0; da_indx = 1; phys_avail[pa_indx++] = physmap[0]; phys_avail[pa_indx] = physmap[0]; dump_avail[da_indx] = physmap[0]; /* * Get dcons buffer address */ if (getenv_quad("dcons.addr", &dcons_addr) == 0 || getenv_quad("dcons.size", &dcons_size) == 0) dcons_addr = 0; /* * physmap is in bytes, so when converting to page boundaries, * round up the start address and round down the end address. */ for (i = 0; i <= physmap_idx; i += 2) { vm_paddr_t end; end = ptoa((vm_paddr_t)Maxmem); if (physmap[i + 1] < end) end = trunc_page(physmap[i + 1]); for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) { int tmp, page_bad, full; int *ptr; full = FALSE; /* * block out kernel memory as not available. */ if (pa >= KERNLOAD && pa < first) goto do_dump_avail; /* * block out dcons buffer */ if (dcons_addr > 0 && pa >= trunc_page(dcons_addr) && pa < dcons_addr + dcons_size) goto do_dump_avail; page_bad = FALSE; if (memtest == 0) goto skip_memtest; /* * map page into kernel: valid, read/write,non-cacheable */ ptr = (int *)pmap_cmap3(pa, PG_V | PG_RW | PG_N); tmp = *(int *)ptr; /* * Test for alternating 1's and 0's */ *(volatile int *)ptr = 0xaaaaaaaa; if (*(volatile int *)ptr != 0xaaaaaaaa) page_bad = TRUE; /* * Test for alternating 0's and 1's */ *(volatile int *)ptr = 0x55555555; if (*(volatile int *)ptr != 0x55555555) page_bad = TRUE; /* * Test for all 1's */ *(volatile int *)ptr = 0xffffffff; if (*(volatile int *)ptr != 0xffffffff) page_bad = TRUE; /* * Test for all 0's */ *(volatile int *)ptr = 0x0; if (*(volatile int *)ptr != 0x0) page_bad = TRUE; /* * Restore original value. */ *(int *)ptr = tmp; skip_memtest: /* * Adjust array of valid/good pages. */ if (page_bad == TRUE) continue; /* * If this good page is a continuation of the * previous set of good pages, then just increase * the end pointer. Otherwise start a new chunk. * Note that "end" points one higher than end, * making the range >= start and < end. * If we're also doing a speculative memory * test and we at or past the end, bump up Maxmem * so that we keep going. The first bad page * will terminate the loop. */ if (phys_avail[pa_indx] == pa) { phys_avail[pa_indx] += PAGE_SIZE; } else { pa_indx++; if (pa_indx == PHYS_AVAIL_ENTRIES) { printf( "Too many holes in the physical address space, giving up\n"); pa_indx--; full = TRUE; goto do_dump_avail; } phys_avail[pa_indx++] = pa; /* start */ phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */ } physmem++; do_dump_avail: if (dump_avail[da_indx] == pa) { dump_avail[da_indx] += PAGE_SIZE; } else { da_indx++; if (da_indx == PHYS_AVAIL_ENTRIES) { da_indx--; goto do_next; } dump_avail[da_indx++] = pa; /* start */ dump_avail[da_indx] = pa + PAGE_SIZE; /* end */ } do_next: if (full) break; } } pmap_cmap3(0, 0); /* * XXX * The last chunk must contain at least one page plus the message * buffer to avoid complicating other code (message buffer address * calculation, etc.). */ while (phys_avail[pa_indx - 1] + PAGE_SIZE + round_page(msgbufsize) >= phys_avail[pa_indx]) { physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]); phys_avail[pa_indx--] = 0; phys_avail[pa_indx--] = 0; } Maxmem = atop(phys_avail[pa_indx]); /* Trim off space for the message buffer. */ phys_avail[pa_indx] -= round_page(msgbufsize); /* Map the message buffer. */ for (off = 0; off < round_page(msgbufsize); off += PAGE_SIZE) pmap_kenter((vm_offset_t)msgbufp + off, phys_avail[pa_indx] + off); } static void i386_kdb_init(void) { #ifdef DDB db_fetch_ksymtab(bootinfo.bi_symtab, bootinfo.bi_esymtab, 0); #endif kdb_init(); #ifdef KDB if (boothowto & RB_KDB) kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger"); #endif } static void fixup_idt(void) { struct gate_descriptor *ip; uintptr_t off; int x; for (x = 0; x < NIDT; x++) { ip = &idt[x]; if (ip->gd_type != SDT_SYS386IGT && ip->gd_type != SDT_SYS386TGT) continue; off = ip->gd_looffset + (((u_int)ip->gd_hioffset) << 16); KASSERT(off >= (uintptr_t)start_exceptions && off < (uintptr_t)end_exceptions, ("IDT[%d] type %d off %#x", x, ip->gd_type, off)); off += setidt_disp; MPASS(off >= PMAP_TRM_MIN_ADDRESS && off < PMAP_TRM_MAX_ADDRESS); ip->gd_looffset = off; ip->gd_hioffset = off >> 16; } } static void i386_setidt1(void) { int x; /* exceptions */ for (x = 0; x < NIDT; x++) setidt(x, &IDTVEC(rsvd), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_DE, &IDTVEC(div), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_DB, &IDTVEC(dbg), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_NMI, &IDTVEC(nmi), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_BP, &IDTVEC(bpt), SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_OF, &IDTVEC(ofl), SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_BR, &IDTVEC(bnd), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_NM, &IDTVEC(dna), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_DF, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL)); setidt(IDT_FPUGP, &IDTVEC(fpusegm), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_TS, &IDTVEC(tss), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_NP, &IDTVEC(missing), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_SS, &IDTVEC(stk), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_PF, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_MF, &IDTVEC(fpu), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_AC, &IDTVEC(align), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_MC, &IDTVEC(mchk), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_XF, &IDTVEC(xmm), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_SYSCALL, &IDTVEC(int0x80_syscall), SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); #ifdef KDTRACE_HOOKS setidt(IDT_DTRACE_RET, &IDTVEC(dtrace_ret), SDT_SYS386IGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL)); #endif #ifdef XENHVM setidt(IDT_EVTCHN, &IDTVEC(xen_intr_upcall), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #endif } static void i386_setidt2(void) { setidt(IDT_UD, &IDTVEC(ill), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_GP, &IDTVEC(prot), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); } #if defined(DEV_ISA) && !defined(DEV_ATPIC) static void i386_setidt3(void) { setidt(IDT_IO_INTS + 7, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); setidt(IDT_IO_INTS + 15, IDTVEC(spuriousint), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); } #endif register_t init386(int first) { struct region_descriptor r_gdt, r_idt; /* table descriptors */ int gsel_tss, metadata_missing, x, pa; struct pcpu *pc; struct xstate_hdr *xhdr; caddr_t kmdp; vm_offset_t addend; size_t ucode_len; int late_console; thread0.td_kstack = proc0kstack; thread0.td_kstack_pages = TD0_KSTACK_PAGES; /* * This may be done better later if it gets more high level * components in it. If so just link td->td_proc here. */ proc_linkup0(&proc0, &thread0); if (bootinfo.bi_modulep) { metadata_missing = 0; addend = (vm_paddr_t)bootinfo.bi_modulep < KERNBASE ? PMAP_MAP_LOW : 0; preload_metadata = (caddr_t)bootinfo.bi_modulep + addend; preload_bootstrap_relocate(addend); } else { metadata_missing = 1; } if (bootinfo.bi_envp != 0) { addend = (vm_paddr_t)bootinfo.bi_envp < KERNBASE ? PMAP_MAP_LOW : 0; init_static_kenv((char *)bootinfo.bi_envp + addend, 0); } else { init_static_kenv(NULL, 0); } /* * Re-evaluate CPU features if we loaded a microcode update. */ ucode_len = ucode_load_bsp(first); if (ucode_len != 0) { identify_cpu(); first = roundup2(first + ucode_len, PAGE_SIZE); } identify_hypervisor(); /* Init basic tunables, hz etc */ init_param1(); /* Set bootmethod to BIOS: it's the only supported on i386. */ strlcpy(bootmethod, "BIOS", sizeof(bootmethod)); /* * Make gdt memory segments. All segments cover the full 4GB * of address space and permissions are enforced at page level. */ gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1); gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1); gdt_segs[GUCODE_SEL].ssd_limit = atop(0 - 1); gdt_segs[GUDATA_SEL].ssd_limit = atop(0 - 1); gdt_segs[GUFS_SEL].ssd_limit = atop(0 - 1); gdt_segs[GUGS_SEL].ssd_limit = atop(0 - 1); pc = &__pcpu[0]; gdt_segs[GPRIV_SEL].ssd_limit = atop(0 - 1); gdt_segs[GPRIV_SEL].ssd_base = (int)pc; gdt_segs[GPROC0_SEL].ssd_base = (int)&common_tss0; for (x = 0; x < NGDT; x++) ssdtosd(&gdt_segs[x], &gdt0[x].sd); r_gdt.rd_limit = NGDT * sizeof(gdt0[0]) - 1; r_gdt.rd_base = (int)gdt0; mtx_init(&dt_lock, "descriptor tables", NULL, MTX_SPIN); lgdt(&r_gdt); pcpu_init(pc, 0, sizeof(struct pcpu)); for (pa = first; pa < first + DPCPU_SIZE; pa += PAGE_SIZE) pmap_kenter(pa, pa); dpcpu_init((void *)first, 0); first += DPCPU_SIZE; PCPU_SET(prvspace, pc); PCPU_SET(curthread, &thread0); /* Non-late cninit() and printf() can be moved up to here. */ /* * Initialize mutexes. * * icu_lock: in order to allow an interrupt to occur in a critical * section, to set pcpu->ipending (etc...) properly, we * must be able to get the icu lock, so it can't be * under witness. */ mutex_init(); mtx_init(&icu_lock, "icu", NULL, MTX_SPIN | MTX_NOWITNESS | MTX_NOPROFILE); i386_setidt1(); r_idt.rd_limit = sizeof(idt0) - 1; r_idt.rd_base = (int) idt; lidt(&r_idt); /* * Initialize the clock before the console so that console * initialization can use DELAY(). */ clock_init(); finishidentcpu(); /* Final stage of CPU initialization */ i386_setidt2(); pmap_set_nx(); initializecpu(); /* Initialize CPU registers */ initializecpucache(); /* pointer to selector slot for %fs/%gs */ PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd); /* Initialize the tss (except for the final esp0) early for vm86. */ common_tss0.tss_esp0 = thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE - VM86_STACK_SPACE; common_tss0.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL); common_tss0.tss_ioopt = sizeof(struct i386tss) << 16; gsel_tss = GSEL(GPROC0_SEL, SEL_KPL); PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd); PCPU_SET(common_tssd, *PCPU_GET(tss_gdt)); ltr(gsel_tss); /* Initialize the PIC early for vm86 calls. */ #ifdef DEV_ISA #ifdef DEV_ATPIC elcr_probe(); atpic_startup(); #else /* Reset and mask the atpics and leave them shut down. */ atpic_reset(); /* * Point the ICU spurious interrupt vectors at the APIC spurious * interrupt handler. */ i386_setidt3(); #endif #endif /* * The console and kdb should be initialized even earlier than here, * but some console drivers don't work until after getmemsize(). * Default to late console initialization to support these drivers. * This loses mainly printf()s in getmemsize() and early debugging. */ late_console = 1; TUNABLE_INT_FETCH("debug.late_console", &late_console); if (!late_console) { cninit(); i386_kdb_init(); } kmdp = preload_search_by_type("elf kernel"); link_elf_ireloc(kmdp); vm86_initialize(); getmemsize(first); init_param2(physmem); /* now running on new page tables, configured,and u/iom is accessible */ if (late_console) cninit(); if (metadata_missing) printf("WARNING: loader(8) metadata is missing!\n"); if (late_console) i386_kdb_init(); msgbufinit(msgbufp, msgbufsize); npxinit(true); /* * Set up thread0 pcb after npxinit calculated pcb + fpu save * area size. Zero out the extended state header in fpu save * area. */ thread0.td_pcb = get_pcb_td(&thread0); thread0.td_pcb->pcb_save = get_pcb_user_save_td(&thread0); bzero(get_pcb_user_save_td(&thread0), cpu_max_ext_state_size); if (use_xsave) { xhdr = (struct xstate_hdr *)(get_pcb_user_save_td(&thread0) + 1); xhdr->xstate_bv = xsave_mask; } PCPU_SET(curpcb, thread0.td_pcb); /* Move esp0 in the tss to its final place. */ /* Note: -16 is so we can grow the trapframe if we came from vm86 */ common_tss0.tss_esp0 = (vm_offset_t)thread0.td_pcb - VM86_STACK_SPACE; PCPU_SET(kesp0, common_tss0.tss_esp0); gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS; /* clear busy bit */ ltr(gsel_tss); /* transfer to user mode */ _ucodesel = GSEL(GUCODE_SEL, SEL_UPL); _udatasel = GSEL(GUDATA_SEL, SEL_UPL); /* setup proc 0's pcb */ thread0.td_pcb->pcb_flags = 0; thread0.td_pcb->pcb_cr3 = pmap_get_kcr3(); thread0.td_pcb->pcb_ext = 0; thread0.td_frame = &proc0_tf; #ifdef FDT x86_init_fdt(); #endif /* Location of kernel stack for locore */ return ((register_t)thread0.td_pcb); } static void machdep_init_trampoline(void) { struct region_descriptor r_gdt, r_idt; struct i386tss *tss; char *copyout_buf, *trampoline, *tramp_stack_base; int x; gdt = pmap_trm_alloc(sizeof(union descriptor) * NGDT * mp_ncpus, M_NOWAIT | M_ZERO); bcopy(gdt0, gdt, sizeof(union descriptor) * NGDT); r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1; r_gdt.rd_base = (int)gdt; lgdt(&r_gdt); tss = pmap_trm_alloc(sizeof(struct i386tss) * mp_ncpus, M_NOWAIT | M_ZERO); bcopy(&common_tss0, tss, sizeof(struct i386tss)); gdt[GPROC0_SEL].sd.sd_lobase = (int)tss; gdt[GPROC0_SEL].sd.sd_hibase = (u_int)tss >> 24; gdt[GPROC0_SEL].sd.sd_type = SDT_SYS386TSS; PCPU_SET(fsgs_gdt, &gdt[GUFS_SEL].sd); PCPU_SET(tss_gdt, &gdt[GPROC0_SEL].sd); PCPU_SET(common_tssd, *PCPU_GET(tss_gdt)); PCPU_SET(common_tssp, tss); ltr(GSEL(GPROC0_SEL, SEL_KPL)); trampoline = pmap_trm_alloc(end_exceptions - start_exceptions, M_NOWAIT); bcopy(start_exceptions, trampoline, end_exceptions - start_exceptions); tramp_stack_base = pmap_trm_alloc(TRAMP_STACK_SZ, M_NOWAIT); PCPU_SET(trampstk, (uintptr_t)tramp_stack_base + TRAMP_STACK_SZ - VM86_STACK_SPACE); tss[0].tss_esp0 = PCPU_GET(trampstk); idt = pmap_trm_alloc(sizeof(idt0), M_NOWAIT | M_ZERO); bcopy(idt0, idt, sizeof(idt0)); /* Re-initialize new IDT since the handlers were relocated */ setidt_disp = trampoline - start_exceptions; fixup_idt(); r_idt.rd_limit = sizeof(struct gate_descriptor) * NIDT - 1; r_idt.rd_base = (int)idt; lidt(&r_idt); /* dblfault TSS */ dblfault_tss = pmap_trm_alloc(sizeof(struct i386tss), M_NOWAIT | M_ZERO); dblfault_stack = pmap_trm_alloc(PAGE_SIZE, M_NOWAIT); dblfault_tss->tss_esp = dblfault_tss->tss_esp0 = dblfault_tss->tss_esp1 = dblfault_tss->tss_esp2 = (int)dblfault_stack + PAGE_SIZE; dblfault_tss->tss_ss = dblfault_tss->tss_ss0 = dblfault_tss->tss_ss1 = dblfault_tss->tss_ss2 = GSEL(GDATA_SEL, SEL_KPL); dblfault_tss->tss_cr3 = pmap_get_kcr3(); dblfault_tss->tss_eip = (int)dblfault_handler; dblfault_tss->tss_eflags = PSL_KERNEL; dblfault_tss->tss_ds = dblfault_tss->tss_es = dblfault_tss->tss_gs = GSEL(GDATA_SEL, SEL_KPL); dblfault_tss->tss_fs = GSEL(GPRIV_SEL, SEL_KPL); dblfault_tss->tss_cs = GSEL(GCODE_SEL, SEL_KPL); dblfault_tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL); gdt[GPANIC_SEL].sd.sd_lobase = (int)dblfault_tss; gdt[GPANIC_SEL].sd.sd_hibase = (u_int)dblfault_tss >> 24; /* make ldt memory segments */ ldt = pmap_trm_alloc(sizeof(union descriptor) * NLDT, M_NOWAIT | M_ZERO); gdt[GLDT_SEL].sd.sd_lobase = (int)ldt; gdt[GLDT_SEL].sd.sd_hibase = (u_int)ldt >> 24; ldt_segs[LUCODE_SEL].ssd_limit = atop(0 - 1); ldt_segs[LUDATA_SEL].ssd_limit = atop(0 - 1); for (x = 0; x < nitems(ldt_segs); x++) ssdtosd(&ldt_segs[x], &ldt[x].sd); _default_ldt = GSEL(GLDT_SEL, SEL_KPL); lldt(_default_ldt); PCPU_SET(currentldt, _default_ldt); copyout_buf = pmap_trm_alloc(TRAMP_COPYOUT_SZ, M_NOWAIT); PCPU_SET(copyout_buf, copyout_buf); copyout_init_tramp(); } SYSINIT(vm_mem, SI_SUB_VM, SI_ORDER_SECOND, machdep_init_trampoline, NULL); #ifdef COMPAT_43 static void i386_setup_lcall_gate(void) { struct sysentvec *sv; struct user_segment_descriptor desc; u_int lcall_addr; sv = &elf32_freebsd_sysvec; lcall_addr = (uintptr_t)sv->sv_psstrings - sz_lcall_tramp; bzero(&desc, sizeof(desc)); desc.sd_type = SDT_MEMERA; desc.sd_dpl = SEL_UPL; desc.sd_p = 1; desc.sd_def32 = 1; desc.sd_gran = 1; desc.sd_lolimit = 0xffff; desc.sd_hilimit = 0xf; desc.sd_lobase = lcall_addr; desc.sd_hibase = lcall_addr >> 24; bcopy(&desc, &ldt[LSYS5CALLS_SEL], sizeof(desc)); } SYSINIT(elf32, SI_SUB_EXEC, SI_ORDER_ANY, i386_setup_lcall_gate, NULL); #endif void cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size) { pcpu->pc_acpi_id = 0xffffffff; } static int smap_sysctl_handler(SYSCTL_HANDLER_ARGS) { struct bios_smap *smapbase; struct bios_smap_xattr smap; caddr_t kmdp; uint32_t *smapattr; int count, error, i; /* Retrieve the system memory map from the loader. */ kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf32 kernel"); smapbase = (struct bios_smap *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP); if (smapbase == NULL) return (0); smapattr = (uint32_t *)preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_SMAP_XATTR); count = *((u_int32_t *)smapbase - 1) / sizeof(*smapbase); error = 0; for (i = 0; i < count; i++) { smap.base = smapbase[i].base; smap.length = smapbase[i].length; smap.type = smapbase[i].type; if (smapattr != NULL) smap.xattr = smapattr[i]; else smap.xattr = 0; error = SYSCTL_OUT(req, &smap, sizeof(smap)); } return (error); } SYSCTL_PROC(_machdep, OID_AUTO, smap, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, smap_sysctl_handler, "S,bios_smap_xattr", "Raw BIOS SMAP data"); void spinlock_enter(void) { struct thread *td; register_t flags; td = curthread; if (td->td_md.md_spinlock_count == 0) { flags = intr_disable(); td->td_md.md_spinlock_count = 1; td->td_md.md_saved_flags = flags; critical_enter(); } else td->td_md.md_spinlock_count++; } void spinlock_exit(void) { struct thread *td; register_t flags; td = curthread; flags = td->td_md.md_saved_flags; td->td_md.md_spinlock_count--; if (td->td_md.md_spinlock_count == 0) { critical_exit(); intr_restore(flags); } } #if defined(I586_CPU) && !defined(NO_F00F_HACK) static void f00f_hack(void *unused); SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL); static void f00f_hack(void *unused) { struct region_descriptor r_idt; struct gate_descriptor *new_idt; vm_offset_t tmp; if (!has_f00f_bug) return; GIANT_REQUIRED; printf("Intel Pentium detected, installing workaround for F00F bug\n"); tmp = (vm_offset_t)pmap_trm_alloc(PAGE_SIZE * 3, M_NOWAIT | M_ZERO); if (tmp == 0) panic("kmem_malloc returned 0"); tmp = round_page(tmp); /* Put the problematic entry (#6) at the end of the lower page. */ new_idt = (struct gate_descriptor *) (tmp + PAGE_SIZE - 7 * sizeof(struct gate_descriptor)); bcopy(idt, new_idt, sizeof(idt0)); r_idt.rd_base = (u_int)new_idt; r_idt.rd_limit = sizeof(idt0) - 1; lidt(&r_idt); /* SMP machines do not need the F00F hack. */ idt = new_idt; pmap_protect(kernel_pmap, tmp, tmp + PAGE_SIZE, VM_PROT_READ); } #endif /* defined(I586_CPU) && !NO_F00F_HACK */ /* * Construct a PCB from a trapframe. This is called from kdb_trap() where * we want to start a backtrace from the function that caused us to enter * the debugger. We have the context in the trapframe, but base the trace * on the PCB. The PCB doesn't have to be perfect, as long as it contains * enough for a backtrace. */ void makectx(struct trapframe *tf, struct pcb *pcb) { pcb->pcb_edi = tf->tf_edi; pcb->pcb_esi = tf->tf_esi; pcb->pcb_ebp = tf->tf_ebp; pcb->pcb_ebx = tf->tf_ebx; pcb->pcb_eip = tf->tf_eip; pcb->pcb_esp = (ISPL(tf->tf_cs)) ? tf->tf_esp : (int)(tf + 1) - 8; pcb->pcb_gs = rgs(); } int ptrace_set_pc(struct thread *td, u_long addr) { td->td_frame->tf_eip = addr; return (0); } int ptrace_single_step(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); if ((td->td_frame->tf_eflags & PSL_T) == 0) { td->td_frame->tf_eflags |= PSL_T; td->td_dbgflags |= TDB_STEP; } return (0); } int ptrace_clear_single_step(struct thread *td) { PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); td->td_frame->tf_eflags &= ~PSL_T; td->td_dbgflags &= ~TDB_STEP; return (0); } int fill_regs(struct thread *td, struct reg *regs) { struct pcb *pcb; struct trapframe *tp; tp = td->td_frame; pcb = td->td_pcb; regs->r_gs = pcb->pcb_gs; return (fill_frame_regs(tp, regs)); } int fill_frame_regs(struct trapframe *tp, struct reg *regs) { regs->r_fs = tp->tf_fs; regs->r_es = tp->tf_es; regs->r_ds = tp->tf_ds; regs->r_edi = tp->tf_edi; regs->r_esi = tp->tf_esi; regs->r_ebp = tp->tf_ebp; regs->r_ebx = tp->tf_ebx; regs->r_edx = tp->tf_edx; regs->r_ecx = tp->tf_ecx; regs->r_eax = tp->tf_eax; regs->r_eip = tp->tf_eip; regs->r_cs = tp->tf_cs; regs->r_eflags = tp->tf_eflags; regs->r_esp = tp->tf_esp; regs->r_ss = tp->tf_ss; regs->r_err = 0; regs->r_trapno = 0; return (0); } int set_regs(struct thread *td, struct reg *regs) { struct pcb *pcb; struct trapframe *tp; tp = td->td_frame; if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) || !CS_SECURE(regs->r_cs)) return (EINVAL); pcb = td->td_pcb; tp->tf_fs = regs->r_fs; tp->tf_es = regs->r_es; tp->tf_ds = regs->r_ds; tp->tf_edi = regs->r_edi; tp->tf_esi = regs->r_esi; tp->tf_ebp = regs->r_ebp; tp->tf_ebx = regs->r_ebx; tp->tf_edx = regs->r_edx; tp->tf_ecx = regs->r_ecx; tp->tf_eax = regs->r_eax; tp->tf_eip = regs->r_eip; tp->tf_cs = regs->r_cs; tp->tf_eflags = regs->r_eflags; tp->tf_esp = regs->r_esp; tp->tf_ss = regs->r_ss; pcb->pcb_gs = regs->r_gs; return (0); } int fill_fpregs(struct thread *td, struct fpreg *fpregs) { KASSERT(td == curthread || TD_IS_SUSPENDED(td) || P_SHOULDSTOP(td->td_proc), ("not suspended thread %p", td)); npxgetregs(td); if (cpu_fxsr) npx_fill_fpregs_xmm(&get_pcb_user_save_td(td)->sv_xmm, (struct save87 *)fpregs); else bcopy(&get_pcb_user_save_td(td)->sv_87, fpregs, sizeof(*fpregs)); return (0); } int set_fpregs(struct thread *td, struct fpreg *fpregs) { critical_enter(); if (cpu_fxsr) npx_set_fpregs_xmm((struct save87 *)fpregs, &get_pcb_user_save_td(td)->sv_xmm); else bcopy(fpregs, &get_pcb_user_save_td(td)->sv_87, sizeof(*fpregs)); npxuserinited(td); critical_exit(); return (0); } /* * Get machine context. */ int get_mcontext(struct thread *td, mcontext_t *mcp, int flags) { struct trapframe *tp; struct segment_descriptor *sdp; tp = td->td_frame; PROC_LOCK(curthread->td_proc); mcp->mc_onstack = sigonstack(tp->tf_esp); PROC_UNLOCK(curthread->td_proc); mcp->mc_gs = td->td_pcb->pcb_gs; mcp->mc_fs = tp->tf_fs; mcp->mc_es = tp->tf_es; mcp->mc_ds = tp->tf_ds; mcp->mc_edi = tp->tf_edi; mcp->mc_esi = tp->tf_esi; mcp->mc_ebp = tp->tf_ebp; mcp->mc_isp = tp->tf_isp; mcp->mc_eflags = tp->tf_eflags; if (flags & GET_MC_CLEAR_RET) { mcp->mc_eax = 0; mcp->mc_edx = 0; mcp->mc_eflags &= ~PSL_C; } else { mcp->mc_eax = tp->tf_eax; mcp->mc_edx = tp->tf_edx; } mcp->mc_ebx = tp->tf_ebx; mcp->mc_ecx = tp->tf_ecx; mcp->mc_eip = tp->tf_eip; mcp->mc_cs = tp->tf_cs; mcp->mc_esp = tp->tf_esp; mcp->mc_ss = tp->tf_ss; mcp->mc_len = sizeof(*mcp); get_fpcontext(td, mcp, NULL, 0); sdp = &td->td_pcb->pcb_fsd; mcp->mc_fsbase = sdp->sd_hibase << 24 | sdp->sd_lobase; sdp = &td->td_pcb->pcb_gsd; mcp->mc_gsbase = sdp->sd_hibase << 24 | sdp->sd_lobase; mcp->mc_flags = 0; mcp->mc_xfpustate = 0; mcp->mc_xfpustate_len = 0; bzero(mcp->mc_spare2, sizeof(mcp->mc_spare2)); return (0); } /* * Set machine context. * * However, we don't set any but the user modifiable flags, and we won't * touch the cs selector. */ int set_mcontext(struct thread *td, mcontext_t *mcp) { struct trapframe *tp; char *xfpustate; int eflags, ret; tp = td->td_frame; if (mcp->mc_len != sizeof(*mcp) || (mcp->mc_flags & ~_MC_FLAG_MASK) != 0) return (EINVAL); eflags = (mcp->mc_eflags & PSL_USERCHANGE) | (tp->tf_eflags & ~PSL_USERCHANGE); if (mcp->mc_flags & _MC_HASFPXSTATE) { if (mcp->mc_xfpustate_len > cpu_max_ext_state_size - sizeof(union savefpu)) return (EINVAL); xfpustate = __builtin_alloca(mcp->mc_xfpustate_len); ret = copyin((void *)mcp->mc_xfpustate, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); } else xfpustate = NULL; ret = set_fpcontext(td, mcp, xfpustate, mcp->mc_xfpustate_len); if (ret != 0) return (ret); tp->tf_fs = mcp->mc_fs; tp->tf_es = mcp->mc_es; tp->tf_ds = mcp->mc_ds; tp->tf_edi = mcp->mc_edi; tp->tf_esi = mcp->mc_esi; tp->tf_ebp = mcp->mc_ebp; tp->tf_ebx = mcp->mc_ebx; tp->tf_edx = mcp->mc_edx; tp->tf_ecx = mcp->mc_ecx; tp->tf_eax = mcp->mc_eax; tp->tf_eip = mcp->mc_eip; tp->tf_eflags = eflags; tp->tf_esp = mcp->mc_esp; tp->tf_ss = mcp->mc_ss; td->td_pcb->pcb_gs = mcp->mc_gs; return (0); } static void get_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpusave, size_t xfpusave_len) { size_t max_len, len; mcp->mc_ownedfp = npxgetregs(td); bcopy(get_pcb_user_save_td(td), &mcp->mc_fpstate[0], sizeof(mcp->mc_fpstate)); mcp->mc_fpformat = npxformat(); if (!use_xsave || xfpusave_len == 0) return; max_len = cpu_max_ext_state_size - sizeof(union savefpu); len = xfpusave_len; if (len > max_len) { len = max_len; bzero(xfpusave + max_len, len - max_len); } mcp->mc_flags |= _MC_HASFPXSTATE; mcp->mc_xfpustate_len = len; bcopy(get_pcb_user_save_td(td) + 1, xfpusave, len); } static int set_fpcontext(struct thread *td, mcontext_t *mcp, char *xfpustate, size_t xfpustate_len) { int error; if (mcp->mc_fpformat == _MC_FPFMT_NODEV) return (0); else if (mcp->mc_fpformat != _MC_FPFMT_387 && mcp->mc_fpformat != _MC_FPFMT_XMM) return (EINVAL); else if (mcp->mc_ownedfp == _MC_FPOWNED_NONE) { /* We don't care what state is left in the FPU or PCB. */ fpstate_drop(td); error = 0; } else if (mcp->mc_ownedfp == _MC_FPOWNED_FPU || mcp->mc_ownedfp == _MC_FPOWNED_PCB) { error = npxsetregs(td, (union savefpu *)&mcp->mc_fpstate, xfpustate, xfpustate_len); } else return (EINVAL); return (error); } static void fpstate_drop(struct thread *td) { KASSERT(PCB_USER_FPU(td->td_pcb), ("fpstate_drop: kernel-owned fpu")); critical_enter(); if (PCPU_GET(fpcurthread) == td) npxdrop(); /* * XXX force a full drop of the npx. The above only drops it if we * owned it. npxgetregs() has the same bug in the !cpu_fxsr case. * * XXX I don't much like npxgetregs()'s semantics of doing a full * drop. Dropping only to the pcb matches fnsave's behaviour. * We only need to drop to !PCB_INITDONE in sendsig(). But * sendsig() is the only caller of npxgetregs()... perhaps we just * have too many layers. */ curthread->td_pcb->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE); critical_exit(); } int fill_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; if (td == NULL) { dbregs->dr[0] = rdr0(); dbregs->dr[1] = rdr1(); dbregs->dr[2] = rdr2(); dbregs->dr[3] = rdr3(); dbregs->dr[6] = rdr6(); dbregs->dr[7] = rdr7(); } else { pcb = td->td_pcb; dbregs->dr[0] = pcb->pcb_dr0; dbregs->dr[1] = pcb->pcb_dr1; dbregs->dr[2] = pcb->pcb_dr2; dbregs->dr[3] = pcb->pcb_dr3; dbregs->dr[6] = pcb->pcb_dr6; dbregs->dr[7] = pcb->pcb_dr7; } dbregs->dr[4] = 0; dbregs->dr[5] = 0; return (0); } int set_dbregs(struct thread *td, struct dbreg *dbregs) { struct pcb *pcb; int i; if (td == NULL) { load_dr0(dbregs->dr[0]); load_dr1(dbregs->dr[1]); load_dr2(dbregs->dr[2]); load_dr3(dbregs->dr[3]); load_dr6(dbregs->dr[6]); load_dr7(dbregs->dr[7]); } else { /* * Don't let an illegal value for dr7 get set. Specifically, * check for undefined settings. Setting these bit patterns * result in undefined behaviour and can lead to an unexpected * TRCTRAP. */ for (i = 0; i < 4; i++) { if (DBREG_DR7_ACCESS(dbregs->dr[7], i) == 0x02) return (EINVAL); if (DBREG_DR7_LEN(dbregs->dr[7], i) == 0x02) return (EINVAL); } pcb = td->td_pcb; /* * Don't let a process set a breakpoint that is not within the * process's address space. If a process could do this, it * could halt the system by setting a breakpoint in the kernel * (if ddb was enabled). Thus, we need to check to make sure * that no breakpoints are being enabled for addresses outside * process's address space. * * XXX - what about when the watched area of the user's * address space is written into from within the kernel * ... wouldn't that still cause a breakpoint to be generated * from within kernel mode? */ if (DBREG_DR7_ENABLED(dbregs->dr[7], 0)) { /* dr0 is enabled */ if (dbregs->dr[0] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 1)) { /* dr1 is enabled */ if (dbregs->dr[1] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 2)) { /* dr2 is enabled */ if (dbregs->dr[2] >= VM_MAXUSER_ADDRESS) return (EINVAL); } if (DBREG_DR7_ENABLED(dbregs->dr[7], 3)) { /* dr3 is enabled */ if (dbregs->dr[3] >= VM_MAXUSER_ADDRESS) return (EINVAL); } pcb->pcb_dr0 = dbregs->dr[0]; pcb->pcb_dr1 = dbregs->dr[1]; pcb->pcb_dr2 = dbregs->dr[2]; pcb->pcb_dr3 = dbregs->dr[3]; pcb->pcb_dr6 = dbregs->dr[6]; pcb->pcb_dr7 = dbregs->dr[7]; pcb->pcb_flags |= PCB_DBREGS; } return (0); } /* * Return > 0 if a hardware breakpoint has been hit, and the * breakpoint was in user space. Return 0, otherwise. */ int user_dbreg_trap(register_t dr6) { u_int32_t dr7; u_int32_t bp; /* breakpoint bits extracted from dr6 */ int nbp; /* number of breakpoints that triggered */ caddr_t addr[4]; /* breakpoint addresses */ int i; bp = dr6 & DBREG_DR6_BMASK; if (bp == 0) { /* * None of the breakpoint bits are set meaning this * trap was not caused by any of the debug registers */ return 0; } dr7 = rdr7(); if ((dr7 & 0x000000ff) == 0) { /* * all GE and LE bits in the dr7 register are zero, * thus the trap couldn't have been caused by the * hardware debug registers */ return 0; } nbp = 0; /* * at least one of the breakpoints were hit, check to see * which ones and if any of them are user space addresses */ if (bp & 0x01) { addr[nbp++] = (caddr_t)rdr0(); } if (bp & 0x02) { addr[nbp++] = (caddr_t)rdr1(); } if (bp & 0x04) { addr[nbp++] = (caddr_t)rdr2(); } if (bp & 0x08) { addr[nbp++] = (caddr_t)rdr3(); } for (i = 0; i < nbp; i++) { if (addr[i] < (caddr_t)VM_MAXUSER_ADDRESS) { /* * addr[i] is in user space */ return nbp; } } /* * None of the breakpoints are in user space. */ return 0; } #ifdef KDB /* * Provide inb() and outb() as functions. They are normally only available as * inline functions, thus cannot be called from the debugger. */ /* silence compiler warnings */ u_char inb_(u_short); void outb_(u_short, u_char); u_char inb_(u_short port) { return inb(port); } void outb_(u_short port, u_char data) { outb(port, data); } #endif /* KDB */ diff --git a/sys/i386/include/md_var.h b/sys/i386/include/md_var.h index c41de85b9bc9..95f4907a61d0 100644 --- a/sys/i386/include/md_var.h +++ b/sys/i386/include/md_var.h @@ -1,84 +1,84 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1995 Bruce D. Evans. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the author nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _MACHINE_MD_VAR_H_ #define _MACHINE_MD_VAR_H_ #include extern u_int cyrix_did; #if defined(I586_CPU) && !defined(NO_F00F_HACK) extern int has_f00f_bug; #endif #ifdef COMPAT_FREEBSD4 extern int szfreebsd4_sigcode; #endif #ifdef COMPAT_43 extern int szosigcode; extern int sz_lcall_tramp; #endif extern vm_offset_t proc0kstack; -extern uintptr_t setidt_disp; +extern size_t setidt_disp; struct segment_descriptor; union savefpu; int cp_slow0(vm_offset_t uva, size_t len, bool write, void (*f)(vm_offset_t, void *), void *arg); void cpu_switch_load_gs(void) __asm(__STRING(cpu_switch_load_gs)); void copyout_init_tramp(void); void doreti_iret(void) __asm(__STRING(doreti_iret)); void doreti_iret_fault(void) __asm(__STRING(doreti_iret_fault)); void doreti_popl_ds(void) __asm(__STRING(doreti_popl_ds)); void doreti_popl_ds_fault(void) __asm(__STRING(doreti_popl_ds_fault)); void doreti_popl_es(void) __asm(__STRING(doreti_popl_es)); void doreti_popl_es_fault(void) __asm(__STRING(doreti_popl_es_fault)); void doreti_popl_fs(void) __asm(__STRING(doreti_popl_fs)); void doreti_popl_fs_fault(void) __asm(__STRING(doreti_popl_fs_fault)); void fill_based_sd(struct segment_descriptor *sdp, uint32_t base); void i686_pagezero(void *addr); void sse2_pagezero(void *addr); int minidumpsys_nopae(struct dumperinfo *); int minidumpsys_pae(struct dumperinfo *); void init_AMD_Elan_sc520(void); vm_paddr_t kvtop(void *addr); void panicifcpuunsupported(void); void ppro_reenable_apic(void); void set_fsbase(struct thread *td, uint32_t base); void set_gsbase(struct thread *td, uint32_t base); void setidt(int idx, alias_for_inthand_t *func, int typ, int dpl, int selec); void setidt_nodisp(int idx, uintptr_t func, int typ, int dpl, int selec); union savefpu *get_pcb_user_save_td(struct thread *td); union savefpu *get_pcb_user_save_pcb(struct pcb *pcb); #endif /* !_MACHINE_MD_VAR_H_ */ diff --git a/sys/x86/x86/local_apic.c b/sys/x86/x86/local_apic.c index bb575d0c601d..9708121e0829 100644 --- a/sys/x86/x86/local_apic.c +++ b/sys/x86/x86/local_apic.c @@ -1,2197 +1,2193 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1996, by Steve Passe * All rights reserved. * Copyright (c) 2003 John Baldwin * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. The name of the developer may NOT be used to endorse or promote products * derived from this software without specific prior written permission. * 3. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Local APIC support on Pentium and later processors. */ #include __FBSDID("$FreeBSD$"); #include "opt_atpic.h" #include "opt_hwpmc_hooks.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #include #endif #ifdef __amd64__ #define SDT_APIC SDT_SYSIGT #define GSEL_APIC 0 #else #define SDT_APIC SDT_SYS386IGT #define GSEL_APIC GSEL(GCODE_SEL, SEL_KPL) #endif static MALLOC_DEFINE(M_LAPIC, "local_apic", "Local APIC items"); /* Sanity checks on IDT vectors. */ CTASSERT(APIC_IO_INTS + APIC_NUM_IOINTS == APIC_TIMER_INT); CTASSERT(APIC_TIMER_INT < APIC_LOCAL_INTS); CTASSERT(APIC_LOCAL_INTS == 240); CTASSERT(IPI_STOP < APIC_SPURIOUS_INT); /* * I/O interrupts use non-negative IRQ values. These values are used * to mark unused IDT entries or IDT entries reserved for a non-I/O * interrupt. */ #define IRQ_FREE -1 #define IRQ_TIMER -2 #define IRQ_SYSCALL -3 #define IRQ_DTRACE_RET -4 #define IRQ_EVTCHN -5 enum lat_timer_mode { LAT_MODE_UNDEF = 0, LAT_MODE_PERIODIC = 1, LAT_MODE_ONESHOT = 2, LAT_MODE_DEADLINE = 3, }; /* * Support for local APICs. Local APICs manage interrupts on each * individual processor as opposed to I/O APICs which receive interrupts * from I/O devices and then forward them on to the local APICs. * * Local APICs can also send interrupts to each other thus providing the * mechanism for IPIs. */ struct lvt { u_int lvt_edgetrigger:1; u_int lvt_activehi:1; u_int lvt_masked:1; u_int lvt_active:1; u_int lvt_mode:16; u_int lvt_vector:8; }; struct lapic { struct lvt la_lvts[APIC_LVT_MAX + 1]; struct lvt la_elvts[APIC_ELVT_MAX + 1]; u_int la_id:8; u_int la_cluster:4; u_int la_cluster_id:2; u_int la_present:1; u_long *la_timer_count; uint64_t la_timer_period; enum lat_timer_mode la_timer_mode; uint32_t lvt_timer_base; uint32_t lvt_timer_last; /* Include IDT_SYSCALL to make indexing easier. */ int la_ioint_irqs[APIC_NUM_IOINTS + 1]; } static *lapics; /* Global defaults for local APIC LVT entries. */ static struct lvt lvts[APIC_LVT_MAX + 1] = { { 1, 1, 1, 1, APIC_LVT_DM_EXTINT, 0 }, /* LINT0: masked ExtINT */ { 1, 1, 0, 1, APIC_LVT_DM_NMI, 0 }, /* LINT1: NMI */ { 1, 1, 1, 1, APIC_LVT_DM_FIXED, APIC_TIMER_INT }, /* Timer */ { 1, 1, 0, 1, APIC_LVT_DM_FIXED, APIC_ERROR_INT }, /* Error */ { 1, 1, 1, 1, APIC_LVT_DM_NMI, 0 }, /* PMC */ { 1, 1, 1, 1, APIC_LVT_DM_FIXED, APIC_THERMAL_INT }, /* Thermal */ { 1, 1, 1, 1, APIC_LVT_DM_FIXED, APIC_CMC_INT }, /* CMCI */ }; /* Global defaults for AMD local APIC ELVT entries. */ static struct lvt elvts[APIC_ELVT_MAX + 1] = { { 1, 1, 1, 0, APIC_LVT_DM_FIXED, 0 }, { 1, 1, 1, 0, APIC_LVT_DM_FIXED, APIC_CMC_INT }, { 1, 1, 1, 0, APIC_LVT_DM_FIXED, 0 }, { 1, 1, 1, 0, APIC_LVT_DM_FIXED, 0 }, }; static inthand_t *ioint_handlers[] = { NULL, /* 0 - 31 */ IDTVEC(apic_isr1), /* 32 - 63 */ IDTVEC(apic_isr2), /* 64 - 95 */ IDTVEC(apic_isr3), /* 96 - 127 */ IDTVEC(apic_isr4), /* 128 - 159 */ IDTVEC(apic_isr5), /* 160 - 191 */ IDTVEC(apic_isr6), /* 192 - 223 */ IDTVEC(apic_isr7), /* 224 - 255 */ }; static inthand_t *ioint_pti_handlers[] = { NULL, /* 0 - 31 */ IDTVEC(apic_isr1_pti), /* 32 - 63 */ IDTVEC(apic_isr2_pti), /* 64 - 95 */ IDTVEC(apic_isr3_pti), /* 96 - 127 */ IDTVEC(apic_isr4_pti), /* 128 - 159 */ IDTVEC(apic_isr5_pti), /* 160 - 191 */ IDTVEC(apic_isr6_pti), /* 192 - 223 */ IDTVEC(apic_isr7_pti), /* 224 - 255 */ }; static u_int32_t lapic_timer_divisors[] = { APIC_TDCR_1, APIC_TDCR_2, APIC_TDCR_4, APIC_TDCR_8, APIC_TDCR_16, APIC_TDCR_32, APIC_TDCR_64, APIC_TDCR_128 }; extern inthand_t IDTVEC(rsvd_pti), IDTVEC(rsvd); volatile char *lapic_map; vm_paddr_t lapic_paddr; int x2apic_mode; int lapic_eoi_suppression; static int lapic_timer_tsc_deadline; static u_long lapic_timer_divisor, count_freq; static struct eventtimer lapic_et; #ifdef SMP static uint64_t lapic_ipi_wait_mult; static int __read_mostly lapic_ds_idle_timeout = 1000000; #endif unsigned int max_apic_id; SYSCTL_NODE(_hw, OID_AUTO, apic, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "APIC options"); SYSCTL_INT(_hw_apic, OID_AUTO, x2apic_mode, CTLFLAG_RD, &x2apic_mode, 0, ""); SYSCTL_INT(_hw_apic, OID_AUTO, eoi_suppression, CTLFLAG_RD, &lapic_eoi_suppression, 0, ""); SYSCTL_INT(_hw_apic, OID_AUTO, timer_tsc_deadline, CTLFLAG_RD, &lapic_timer_tsc_deadline, 0, ""); #ifdef SMP SYSCTL_INT(_hw_apic, OID_AUTO, ds_idle_timeout, CTLFLAG_RWTUN, &lapic_ds_idle_timeout, 0, "timeout (in us) for APIC Delivery Status to become Idle (xAPIC only)"); #endif static void lapic_calibrate_initcount(struct lapic *la); static void lapic_calibrate_deadline(struct lapic *la); /* * Use __nosanitizethread to exempt the LAPIC I/O accessors from KCSan * instrumentation. Otherwise, if x2APIC is not available, use of the global * lapic_map will generate a KCSan false positive. While the mapping is * shared among all CPUs, the physical access will always take place on the * local CPU's APIC, so there isn't in fact a race here. Furthermore, the * KCSan warning printf can cause a panic if issued during LAPIC access, * due to attempted recursive use of event timer resources. */ static uint32_t __nosanitizethread lapic_read32(enum LAPIC_REGISTERS reg) { uint32_t res; if (x2apic_mode) { res = rdmsr32(MSR_APIC_000 + reg); } else { res = *(volatile uint32_t *)(lapic_map + reg * LAPIC_MEM_MUL); } return (res); } static void __nosanitizethread lapic_write32(enum LAPIC_REGISTERS reg, uint32_t val) { if (x2apic_mode) { mfence(); lfence(); wrmsr(MSR_APIC_000 + reg, val); } else { *(volatile uint32_t *)(lapic_map + reg * LAPIC_MEM_MUL) = val; } } static void __nosanitizethread lapic_write32_nofence(enum LAPIC_REGISTERS reg, uint32_t val) { if (x2apic_mode) { wrmsr(MSR_APIC_000 + reg, val); } else { *(volatile uint32_t *)(lapic_map + reg * LAPIC_MEM_MUL) = val; } } #ifdef SMP static uint64_t lapic_read_icr_lo(void) { return (lapic_read32(LAPIC_ICR_LO)); } static void lapic_write_icr(uint32_t vhi, uint32_t vlo) { register_t saveintr; uint64_t v; if (x2apic_mode) { v = ((uint64_t)vhi << 32) | vlo; mfence(); wrmsr(MSR_APIC_000 + LAPIC_ICR_LO, v); } else { saveintr = intr_disable(); lapic_write32(LAPIC_ICR_HI, vhi); lapic_write32(LAPIC_ICR_LO, vlo); intr_restore(saveintr); } } static void lapic_write_icr_lo(uint32_t vlo) { if (x2apic_mode) { mfence(); wrmsr(MSR_APIC_000 + LAPIC_ICR_LO, vlo); } else { lapic_write32(LAPIC_ICR_LO, vlo); } } static void lapic_write_self_ipi(uint32_t vector) { KASSERT(x2apic_mode, ("SELF IPI write in xAPIC mode")); wrmsr(MSR_APIC_000 + LAPIC_SELF_IPI, vector); } #endif /* SMP */ static void native_lapic_enable_x2apic(void) { uint64_t apic_base; apic_base = rdmsr(MSR_APICBASE); apic_base |= APICBASE_X2APIC | APICBASE_ENABLED; wrmsr(MSR_APICBASE, apic_base); } static bool native_lapic_is_x2apic(void) { uint64_t apic_base; apic_base = rdmsr(MSR_APICBASE); return ((apic_base & (APICBASE_X2APIC | APICBASE_ENABLED)) == (APICBASE_X2APIC | APICBASE_ENABLED)); } static void lapic_enable(void); static void lapic_resume(struct pic *pic, bool suspend_cancelled); static void lapic_timer_oneshot(struct lapic *); static void lapic_timer_oneshot_nointr(struct lapic *, uint32_t); static void lapic_timer_periodic(struct lapic *); static void lapic_timer_deadline(struct lapic *); static void lapic_timer_stop(struct lapic *); static void lapic_timer_set_divisor(u_int divisor); static uint32_t lvt_mode(struct lapic *la, u_int pin, uint32_t value); static int lapic_et_start(struct eventtimer *et, sbintime_t first, sbintime_t period); static int lapic_et_stop(struct eventtimer *et); static u_int apic_idt_to_irq(u_int apic_id, u_int vector); static void lapic_set_tpr(u_int vector); struct pic lapic_pic = { .pic_resume = lapic_resume }; /* Forward declarations for apic_ops */ static void native_lapic_create(u_int apic_id, int boot_cpu); static void native_lapic_init(vm_paddr_t addr); static void native_lapic_xapic_mode(void); static void native_lapic_setup(int boot); static void native_lapic_dump(const char *str); static void native_lapic_disable(void); static void native_lapic_eoi(void); static int native_lapic_id(void); static int native_lapic_intr_pending(u_int vector); static u_int native_apic_cpuid(u_int apic_id); static u_int native_apic_alloc_vector(u_int apic_id, u_int irq); static u_int native_apic_alloc_vectors(u_int apic_id, u_int *irqs, u_int count, u_int align); static void native_apic_disable_vector(u_int apic_id, u_int vector); static void native_apic_enable_vector(u_int apic_id, u_int vector); static void native_apic_free_vector(u_int apic_id, u_int vector, u_int irq); static void native_lapic_set_logical_id(u_int apic_id, u_int cluster, u_int cluster_id); static int native_lapic_enable_pmc(void); static void native_lapic_disable_pmc(void); static void native_lapic_reenable_pmc(void); static void native_lapic_enable_cmc(void); static int native_lapic_enable_mca_elvt(void); static int native_lapic_set_lvt_mask(u_int apic_id, u_int lvt, u_char masked); static int native_lapic_set_lvt_mode(u_int apic_id, u_int lvt, uint32_t mode); static int native_lapic_set_lvt_polarity(u_int apic_id, u_int lvt, enum intr_polarity pol); static int native_lapic_set_lvt_triggermode(u_int apic_id, u_int lvt, enum intr_trigger trigger); #ifdef SMP static void native_lapic_ipi_raw(register_t icrlo, u_int dest); static void native_lapic_ipi_vectored(u_int vector, int dest); static int native_lapic_ipi_wait(int delay); #endif /* SMP */ static int native_lapic_ipi_alloc(inthand_t *ipifunc); static void native_lapic_ipi_free(int vector); struct apic_ops apic_ops = { .create = native_lapic_create, .init = native_lapic_init, .xapic_mode = native_lapic_xapic_mode, .is_x2apic = native_lapic_is_x2apic, .setup = native_lapic_setup, .dump = native_lapic_dump, .disable = native_lapic_disable, .eoi = native_lapic_eoi, .id = native_lapic_id, .intr_pending = native_lapic_intr_pending, .set_logical_id = native_lapic_set_logical_id, .cpuid = native_apic_cpuid, .alloc_vector = native_apic_alloc_vector, .alloc_vectors = native_apic_alloc_vectors, .enable_vector = native_apic_enable_vector, .disable_vector = native_apic_disable_vector, .free_vector = native_apic_free_vector, .enable_pmc = native_lapic_enable_pmc, .disable_pmc = native_lapic_disable_pmc, .reenable_pmc = native_lapic_reenable_pmc, .enable_cmc = native_lapic_enable_cmc, .enable_mca_elvt = native_lapic_enable_mca_elvt, #ifdef SMP .ipi_raw = native_lapic_ipi_raw, .ipi_vectored = native_lapic_ipi_vectored, .ipi_wait = native_lapic_ipi_wait, #endif .ipi_alloc = native_lapic_ipi_alloc, .ipi_free = native_lapic_ipi_free, .set_lvt_mask = native_lapic_set_lvt_mask, .set_lvt_mode = native_lapic_set_lvt_mode, .set_lvt_polarity = native_lapic_set_lvt_polarity, .set_lvt_triggermode = native_lapic_set_lvt_triggermode, }; static uint32_t lvt_mode_impl(struct lapic *la, struct lvt *lvt, u_int pin, uint32_t value) { value &= ~(APIC_LVT_M | APIC_LVT_TM | APIC_LVT_IIPP | APIC_LVT_DM | APIC_LVT_VECTOR); if (lvt->lvt_edgetrigger == 0) value |= APIC_LVT_TM; if (lvt->lvt_activehi == 0) value |= APIC_LVT_IIPP_INTALO; if (lvt->lvt_masked) value |= APIC_LVT_M; value |= lvt->lvt_mode; switch (lvt->lvt_mode) { case APIC_LVT_DM_NMI: case APIC_LVT_DM_SMI: case APIC_LVT_DM_INIT: case APIC_LVT_DM_EXTINT: if (!lvt->lvt_edgetrigger && bootverbose) { printf("lapic%u: Forcing LINT%u to edge trigger\n", la->la_id, pin); value &= ~APIC_LVT_TM; } /* Use a vector of 0. */ break; case APIC_LVT_DM_FIXED: value |= lvt->lvt_vector; break; default: panic("bad APIC LVT delivery mode: %#x\n", value); } return (value); } static uint32_t lvt_mode(struct lapic *la, u_int pin, uint32_t value) { struct lvt *lvt; KASSERT(pin <= APIC_LVT_MAX, ("%s: pin %u out of range", __func__, pin)); if (la->la_lvts[pin].lvt_active) lvt = &la->la_lvts[pin]; else lvt = &lvts[pin]; return (lvt_mode_impl(la, lvt, pin, value)); } static uint32_t elvt_mode(struct lapic *la, u_int idx, uint32_t value) { struct lvt *elvt; KASSERT(idx <= APIC_ELVT_MAX, ("%s: idx %u out of range", __func__, idx)); elvt = &la->la_elvts[idx]; KASSERT(elvt->lvt_active, ("%s: ELVT%u is not active", __func__, idx)); KASSERT(elvt->lvt_edgetrigger, ("%s: ELVT%u is not edge triggered", __func__, idx)); KASSERT(elvt->lvt_activehi, ("%s: ELVT%u is not active high", __func__, idx)); return (lvt_mode_impl(la, elvt, idx, value)); } /* * Map the local APIC and setup necessary interrupt vectors. */ static void native_lapic_init(vm_paddr_t addr) { #ifdef SMP uint64_t r, r1, r2, rx; #endif uint32_t ver; int i; bool arat; /* * Enable x2APIC mode if possible. Map the local APIC * registers page. * * Keep the LAPIC registers page mapped uncached for x2APIC * mode too, to have direct map page attribute set to * uncached. This is needed to work around CPU errata present * on all Intel processors. */ KASSERT(trunc_page(addr) == addr, ("local APIC not aligned on a page boundary")); lapic_paddr = addr; lapic_map = pmap_mapdev(addr, PAGE_SIZE); if (x2apic_mode) { native_lapic_enable_x2apic(); lapic_map = NULL; } /* Setup the spurious interrupt handler. */ setidt(APIC_SPURIOUS_INT, IDTVEC(spuriousint), SDT_APIC, SEL_KPL, GSEL_APIC); /* Perform basic initialization of the BSP's local APIC. */ lapic_enable(); /* Set BSP's per-CPU local APIC ID. */ PCPU_SET(apic_id, lapic_id()); /* Local APIC timer interrupt. */ setidt(APIC_TIMER_INT, pti ? IDTVEC(timerint_pti) : IDTVEC(timerint), SDT_APIC, SEL_KPL, GSEL_APIC); /* Local APIC error interrupt. */ setidt(APIC_ERROR_INT, pti ? IDTVEC(errorint_pti) : IDTVEC(errorint), SDT_APIC, SEL_KPL, GSEL_APIC); /* XXX: Thermal interrupt */ /* Local APIC CMCI. */ setidt(APIC_CMC_INT, pti ? IDTVEC(cmcint_pti) : IDTVEC(cmcint), SDT_APIC, SEL_KPL, GSEL_APIC); if ((resource_int_value("apic", 0, "clock", &i) != 0 || i != 0)) { /* Set if APIC timer runs in C3. */ arat = (cpu_power_eax & CPUTPM1_ARAT); bzero(&lapic_et, sizeof(lapic_et)); lapic_et.et_name = "LAPIC"; lapic_et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU; lapic_et.et_quality = 600; if (!arat) { lapic_et.et_flags |= ET_FLAGS_C3STOP; lapic_et.et_quality = 100; } if ((cpu_feature & CPUID_TSC) != 0 && (cpu_feature2 & CPUID2_TSCDLT) != 0 && tsc_is_invariant && tsc_freq != 0) { lapic_timer_tsc_deadline = 1; TUNABLE_INT_FETCH("hw.lapic_tsc_deadline", &lapic_timer_tsc_deadline); } lapic_et.et_frequency = 0; /* We don't know frequency yet, so trying to guess. */ lapic_et.et_min_period = 0x00001000LL; lapic_et.et_max_period = SBT_1S; lapic_et.et_start = lapic_et_start; lapic_et.et_stop = lapic_et_stop; lapic_et.et_priv = NULL; et_register(&lapic_et); } /* * Set lapic_eoi_suppression after lapic_enable(), to not * enable suppression in the hardware prematurely. Note that * we by default enable suppression even when system only has * one IO-APIC, since EOI is broadcasted to all APIC agents, * including CPUs, otherwise. * * It seems that at least some KVM versions report * EOI_SUPPRESSION bit, but auto-EOI does not work. */ ver = lapic_read32(LAPIC_VERSION); if ((ver & APIC_VER_EOI_SUPPRESSION) != 0) { lapic_eoi_suppression = 1; if (vm_guest == VM_GUEST_KVM) { if (bootverbose) printf( "KVM -- disabling lapic eoi suppression\n"); lapic_eoi_suppression = 0; } TUNABLE_INT_FETCH("hw.lapic_eoi_suppression", &lapic_eoi_suppression); } #ifdef SMP #define LOOPS 100000 /* * Calibrate the busy loop waiting for IPI ack in xAPIC mode. * lapic_ipi_wait_mult contains the number of iterations which * approximately delay execution for 1 microsecond (the * argument to native_lapic_ipi_wait() is in microseconds). * * We assume that TSC is present and already measured. * Possible TSC frequency jumps are irrelevant to the * calibration loop below, the CPU clock management code is * not yet started, and we do not enter sleep states. */ KASSERT((cpu_feature & CPUID_TSC) != 0 && tsc_freq != 0, ("TSC not initialized")); if (!x2apic_mode) { r = rdtsc(); for (rx = 0; rx < LOOPS; rx++) { (void)lapic_read_icr_lo(); ia32_pause(); } r = rdtsc() - r; r1 = tsc_freq * LOOPS; r2 = r * 1000000; lapic_ipi_wait_mult = r1 >= r2 ? r1 / r2 : 1; if (bootverbose) { printf("LAPIC: ipi_wait() us multiplier %ju (r %ju " "tsc %ju)\n", (uintmax_t)lapic_ipi_wait_mult, (uintmax_t)r, (uintmax_t)tsc_freq); } } #undef LOOPS #endif /* SMP */ } /* * Create a local APIC instance. */ static void native_lapic_create(u_int apic_id, int boot_cpu) { int i; if (apic_id > max_apic_id) { printf("APIC: Ignoring local APIC with ID %d\n", apic_id); if (boot_cpu) panic("Can't ignore BSP"); return; } KASSERT(!lapics[apic_id].la_present, ("duplicate local APIC %u", apic_id)); /* * Assume no local LVT overrides and a cluster of 0 and * intra-cluster ID of 0. */ lapics[apic_id].la_present = 1; lapics[apic_id].la_id = apic_id; for (i = 0; i <= APIC_LVT_MAX; i++) { lapics[apic_id].la_lvts[i] = lvts[i]; lapics[apic_id].la_lvts[i].lvt_active = 0; } for (i = 0; i <= APIC_ELVT_MAX; i++) { lapics[apic_id].la_elvts[i] = elvts[i]; lapics[apic_id].la_elvts[i].lvt_active = 0; } for (i = 0; i <= APIC_NUM_IOINTS; i++) lapics[apic_id].la_ioint_irqs[i] = IRQ_FREE; lapics[apic_id].la_ioint_irqs[IDT_SYSCALL - APIC_IO_INTS] = IRQ_SYSCALL; lapics[apic_id].la_ioint_irqs[APIC_TIMER_INT - APIC_IO_INTS] = IRQ_TIMER; #ifdef KDTRACE_HOOKS lapics[apic_id].la_ioint_irqs[IDT_DTRACE_RET - APIC_IO_INTS] = IRQ_DTRACE_RET; #endif #ifdef XENHVM lapics[apic_id].la_ioint_irqs[IDT_EVTCHN - APIC_IO_INTS] = IRQ_EVTCHN; #endif #ifdef SMP cpu_add(apic_id, boot_cpu); #endif } static inline uint32_t amd_read_ext_features(void) { uint32_t version; if (cpu_vendor_id != CPU_VENDOR_AMD && cpu_vendor_id != CPU_VENDOR_HYGON) return (0); version = lapic_read32(LAPIC_VERSION); if ((version & APIC_VER_AMD_EXT_SPACE) != 0) return (lapic_read32(LAPIC_EXT_FEATURES)); else return (0); } static inline uint32_t amd_read_elvt_count(void) { uint32_t extf; uint32_t count; extf = amd_read_ext_features(); count = (extf & APIC_EXTF_ELVT_MASK) >> APIC_EXTF_ELVT_SHIFT; count = min(count, APIC_ELVT_MAX + 1); return (count); } /* * Dump contents of local APIC registers */ static void native_lapic_dump(const char* str) { uint32_t version; uint32_t maxlvt; uint32_t extf; int elvt_count; int i; version = lapic_read32(LAPIC_VERSION); maxlvt = (version & APIC_VER_MAXLVT) >> MAXLVTSHIFT; printf("cpu%d %s:\n", PCPU_GET(cpuid), str); printf(" ID: 0x%08x VER: 0x%08x LDR: 0x%08x DFR: 0x%08x", lapic_read32(LAPIC_ID), version, lapic_read32(LAPIC_LDR), x2apic_mode ? 0 : lapic_read32(LAPIC_DFR)); if ((cpu_feature2 & CPUID2_X2APIC) != 0) printf(" x2APIC: %d", x2apic_mode); printf("\n lint0: 0x%08x lint1: 0x%08x TPR: 0x%08x SVR: 0x%08x\n", lapic_read32(LAPIC_LVT_LINT0), lapic_read32(LAPIC_LVT_LINT1), lapic_read32(LAPIC_TPR), lapic_read32(LAPIC_SVR)); printf(" timer: 0x%08x therm: 0x%08x err: 0x%08x", lapic_read32(LAPIC_LVT_TIMER), lapic_read32(LAPIC_LVT_THERMAL), lapic_read32(LAPIC_LVT_ERROR)); if (maxlvt >= APIC_LVT_PMC) printf(" pmc: 0x%08x", lapic_read32(LAPIC_LVT_PCINT)); printf("\n"); if (maxlvt >= APIC_LVT_CMCI) printf(" cmci: 0x%08x\n", lapic_read32(LAPIC_LVT_CMCI)); extf = amd_read_ext_features(); if (extf != 0) { printf(" AMD ext features: 0x%08x\n", extf); elvt_count = amd_read_elvt_count(); for (i = 0; i < elvt_count; i++) printf(" AMD elvt%d: 0x%08x\n", i, lapic_read32(LAPIC_EXT_LVT0 + i)); } } static void native_lapic_xapic_mode(void) { register_t saveintr; saveintr = intr_disable(); if (x2apic_mode) native_lapic_enable_x2apic(); intr_restore(saveintr); } static void native_lapic_setup(int boot) { struct lapic *la; uint32_t version; uint32_t maxlvt; register_t saveintr; int elvt_count; int i; saveintr = intr_disable(); la = &lapics[lapic_id()]; KASSERT(la->la_present, ("missing APIC structure")); version = lapic_read32(LAPIC_VERSION); maxlvt = (version & APIC_VER_MAXLVT) >> MAXLVTSHIFT; /* Initialize the TPR to allow all interrupts. */ lapic_set_tpr(0); /* Setup spurious vector and enable the local APIC. */ lapic_enable(); /* Program LINT[01] LVT entries. */ lapic_write32(LAPIC_LVT_LINT0, lvt_mode(la, APIC_LVT_LINT0, lapic_read32(LAPIC_LVT_LINT0))); lapic_write32(LAPIC_LVT_LINT1, lvt_mode(la, APIC_LVT_LINT1, lapic_read32(LAPIC_LVT_LINT1))); /* Program the PMC LVT entry if present. */ if (maxlvt >= APIC_LVT_PMC) { lapic_write32(LAPIC_LVT_PCINT, lvt_mode(la, APIC_LVT_PMC, LAPIC_LVT_PCINT)); } /* Program timer LVT. */ la->lvt_timer_base = lvt_mode(la, APIC_LVT_TIMER, lapic_read32(LAPIC_LVT_TIMER)); la->lvt_timer_last = la->lvt_timer_base; lapic_write32(LAPIC_LVT_TIMER, la->lvt_timer_base); /* Calibrate the timer parameters using BSP. */ if (boot && IS_BSP()) { lapic_calibrate_initcount(la); if (lapic_timer_tsc_deadline) lapic_calibrate_deadline(la); } /* Setup the timer if configured. */ if (la->la_timer_mode != LAT_MODE_UNDEF) { KASSERT(la->la_timer_period != 0, ("lapic%u: zero divisor", lapic_id())); switch (la->la_timer_mode) { case LAT_MODE_PERIODIC: lapic_timer_set_divisor(lapic_timer_divisor); lapic_timer_periodic(la); break; case LAT_MODE_ONESHOT: lapic_timer_set_divisor(lapic_timer_divisor); lapic_timer_oneshot(la); break; case LAT_MODE_DEADLINE: lapic_timer_deadline(la); break; default: panic("corrupted la_timer_mode %p %d", la, la->la_timer_mode); } } /* Program error LVT and clear any existing errors. */ lapic_write32(LAPIC_LVT_ERROR, lvt_mode(la, APIC_LVT_ERROR, lapic_read32(LAPIC_LVT_ERROR))); lapic_write32(LAPIC_ESR, 0); /* XXX: Thermal LVT */ /* Program the CMCI LVT entry if present. */ if (maxlvt >= APIC_LVT_CMCI) { lapic_write32(LAPIC_LVT_CMCI, lvt_mode(la, APIC_LVT_CMCI, lapic_read32(LAPIC_LVT_CMCI))); } elvt_count = amd_read_elvt_count(); for (i = 0; i < elvt_count; i++) { if (la->la_elvts[i].lvt_active) lapic_write32(LAPIC_EXT_LVT0 + i, elvt_mode(la, i, lapic_read32(LAPIC_EXT_LVT0 + i))); } intr_restore(saveintr); } static void native_lapic_intrcnt(void *dummy __unused) { struct pcpu *pc; struct lapic *la; char buf[MAXCOMLEN + 1]; /* If there are no APICs, skip this function. */ if (lapics == NULL) return; STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) { la = &lapics[pc->pc_apic_id]; if (!la->la_present) continue; snprintf(buf, sizeof(buf), "cpu%d:timer", pc->pc_cpuid); intrcnt_add(buf, &la->la_timer_count); } } SYSINIT(native_lapic_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, native_lapic_intrcnt, NULL); static void native_lapic_reenable_pmc(void) { #ifdef HWPMC_HOOKS uint32_t value; value = lapic_read32(LAPIC_LVT_PCINT); value &= ~APIC_LVT_M; lapic_write32(LAPIC_LVT_PCINT, value); #endif } #ifdef HWPMC_HOOKS static void lapic_update_pmc(void *dummy) { struct lapic *la; la = &lapics[lapic_id()]; lapic_write32(LAPIC_LVT_PCINT, lvt_mode(la, APIC_LVT_PMC, lapic_read32(LAPIC_LVT_PCINT))); } #endif static int native_lapic_enable_pmc(void) { #ifdef HWPMC_HOOKS u_int32_t maxlvt; /* Fail if the local APIC is not present. */ if (!x2apic_mode && lapic_map == NULL) return (0); /* Fail if the PMC LVT is not present. */ maxlvt = (lapic_read32(LAPIC_VERSION) & APIC_VER_MAXLVT) >> MAXLVTSHIFT; if (maxlvt < APIC_LVT_PMC) return (0); lvts[APIC_LVT_PMC].lvt_masked = 0; #ifdef EARLY_AP_STARTUP MPASS(mp_ncpus == 1 || smp_started); smp_rendezvous(NULL, lapic_update_pmc, NULL, NULL); #else #ifdef SMP /* * If hwpmc was loaded at boot time then the APs may not be * started yet. In that case, don't forward the request to * them as they will program the lvt when they start. */ if (smp_started) smp_rendezvous(NULL, lapic_update_pmc, NULL, NULL); else #endif lapic_update_pmc(NULL); #endif return (1); #else return (0); #endif } static void native_lapic_disable_pmc(void) { #ifdef HWPMC_HOOKS u_int32_t maxlvt; /* Fail if the local APIC is not present. */ if (!x2apic_mode && lapic_map == NULL) return; /* Fail if the PMC LVT is not present. */ maxlvt = (lapic_read32(LAPIC_VERSION) & APIC_VER_MAXLVT) >> MAXLVTSHIFT; if (maxlvt < APIC_LVT_PMC) return; lvts[APIC_LVT_PMC].lvt_masked = 1; #ifdef SMP /* The APs should always be started when hwpmc is unloaded. */ KASSERT(mp_ncpus == 1 || smp_started, ("hwpmc unloaded too early")); #endif smp_rendezvous(NULL, lapic_update_pmc, NULL, NULL); #endif } static void lapic_calibrate_initcount(struct lapic *la) { u_long value; /* Start off with a divisor of 2 (power on reset default). */ lapic_timer_divisor = 2; /* Try to calibrate the local APIC timer. */ do { lapic_timer_set_divisor(lapic_timer_divisor); lapic_timer_oneshot_nointr(la, APIC_TIMER_MAX_COUNT); DELAY(1000000); value = APIC_TIMER_MAX_COUNT - lapic_read32(LAPIC_CCR_TIMER); if (value != APIC_TIMER_MAX_COUNT) break; lapic_timer_divisor <<= 1; } while (lapic_timer_divisor <= 128); if (lapic_timer_divisor > 128) panic("lapic: Divisor too big"); if (bootverbose) { printf("lapic: Divisor %lu, Frequency %lu Hz\n", lapic_timer_divisor, value); } count_freq = value; } static void lapic_calibrate_deadline(struct lapic *la __unused) { if (bootverbose) { printf("lapic: deadline tsc mode, Frequency %ju Hz\n", (uintmax_t)tsc_freq); } } static void lapic_change_mode(struct eventtimer *et, struct lapic *la, enum lat_timer_mode newmode) { if (la->la_timer_mode == newmode) return; switch (newmode) { case LAT_MODE_PERIODIC: lapic_timer_set_divisor(lapic_timer_divisor); et->et_frequency = count_freq; break; case LAT_MODE_DEADLINE: et->et_frequency = tsc_freq; break; case LAT_MODE_ONESHOT: lapic_timer_set_divisor(lapic_timer_divisor); et->et_frequency = count_freq; break; default: panic("lapic_change_mode %d", newmode); } la->la_timer_mode = newmode; et->et_min_period = (0x00000002LLU << 32) / et->et_frequency; et->et_max_period = (0xfffffffeLLU << 32) / et->et_frequency; } static int lapic_et_start(struct eventtimer *et, sbintime_t first, sbintime_t period) { struct lapic *la; la = &lapics[PCPU_GET(apic_id)]; if (period != 0) { lapic_change_mode(et, la, LAT_MODE_PERIODIC); la->la_timer_period = ((uint32_t)et->et_frequency * period) >> 32; lapic_timer_periodic(la); } else if (lapic_timer_tsc_deadline) { lapic_change_mode(et, la, LAT_MODE_DEADLINE); la->la_timer_period = (et->et_frequency * first) >> 32; lapic_timer_deadline(la); } else { lapic_change_mode(et, la, LAT_MODE_ONESHOT); la->la_timer_period = ((uint32_t)et->et_frequency * first) >> 32; lapic_timer_oneshot(la); } return (0); } static int lapic_et_stop(struct eventtimer *et) { struct lapic *la; la = &lapics[PCPU_GET(apic_id)]; lapic_timer_stop(la); la->la_timer_mode = LAT_MODE_UNDEF; return (0); } static void native_lapic_disable(void) { uint32_t value; /* Software disable the local APIC. */ value = lapic_read32(LAPIC_SVR); value &= ~APIC_SVR_SWEN; lapic_write32(LAPIC_SVR, value); } static void lapic_enable(void) { uint32_t value; /* Program the spurious vector to enable the local APIC. */ value = lapic_read32(LAPIC_SVR); value &= ~(APIC_SVR_VECTOR | APIC_SVR_FOCUS); value |= APIC_SVR_FEN | APIC_SVR_SWEN | APIC_SPURIOUS_INT; if (lapic_eoi_suppression) value |= APIC_SVR_EOI_SUPPRESSION; lapic_write32(LAPIC_SVR, value); } /* Reset the local APIC on the BSP during resume. */ static void lapic_resume(struct pic *pic, bool suspend_cancelled) { lapic_setup(0); } static int native_lapic_id(void) { uint32_t v; KASSERT(x2apic_mode || lapic_map != NULL, ("local APIC is not mapped")); v = lapic_read32(LAPIC_ID); if (!x2apic_mode) v >>= APIC_ID_SHIFT; return (v); } static int native_lapic_intr_pending(u_int vector) { uint32_t irr; /* * The IRR registers are an array of registers each of which * only describes 32 interrupts in the low 32 bits. Thus, we * divide the vector by 32 to get the register index. * Finally, we modulus the vector by 32 to determine the * individual bit to test. */ irr = lapic_read32(LAPIC_IRR0 + vector / 32); return (irr & 1 << (vector % 32)); } static void native_lapic_set_logical_id(u_int apic_id, u_int cluster, u_int cluster_id) { struct lapic *la; KASSERT(lapics[apic_id].la_present, ("%s: APIC %u doesn't exist", __func__, apic_id)); KASSERT(cluster <= APIC_MAX_CLUSTER, ("%s: cluster %u too big", __func__, cluster)); KASSERT(cluster_id <= APIC_MAX_INTRACLUSTER_ID, ("%s: intra cluster id %u too big", __func__, cluster_id)); la = &lapics[apic_id]; la->la_cluster = cluster; la->la_cluster_id = cluster_id; } static int native_lapic_set_lvt_mask(u_int apic_id, u_int pin, u_char masked) { if (pin > APIC_LVT_MAX) return (EINVAL); if (apic_id == APIC_ID_ALL) { lvts[pin].lvt_masked = masked; if (bootverbose) printf("lapic:"); } else { KASSERT(lapics[apic_id].la_present, ("%s: missing APIC %u", __func__, apic_id)); lapics[apic_id].la_lvts[pin].lvt_masked = masked; lapics[apic_id].la_lvts[pin].lvt_active = 1; if (bootverbose) printf("lapic%u:", apic_id); } if (bootverbose) printf(" LINT%u %s\n", pin, masked ? "masked" : "unmasked"); return (0); } static int native_lapic_set_lvt_mode(u_int apic_id, u_int pin, u_int32_t mode) { struct lvt *lvt; if (pin > APIC_LVT_MAX) return (EINVAL); if (apic_id == APIC_ID_ALL) { lvt = &lvts[pin]; if (bootverbose) printf("lapic:"); } else { KASSERT(lapics[apic_id].la_present, ("%s: missing APIC %u", __func__, apic_id)); lvt = &lapics[apic_id].la_lvts[pin]; lvt->lvt_active = 1; if (bootverbose) printf("lapic%u:", apic_id); } lvt->lvt_mode = mode; switch (mode) { case APIC_LVT_DM_NMI: case APIC_LVT_DM_SMI: case APIC_LVT_DM_INIT: case APIC_LVT_DM_EXTINT: lvt->lvt_edgetrigger = 1; lvt->lvt_activehi = 1; if (mode == APIC_LVT_DM_EXTINT) lvt->lvt_masked = 1; else lvt->lvt_masked = 0; break; default: panic("Unsupported delivery mode: 0x%x\n", mode); } if (bootverbose) { printf(" Routing "); switch (mode) { case APIC_LVT_DM_NMI: printf("NMI"); break; case APIC_LVT_DM_SMI: printf("SMI"); break; case APIC_LVT_DM_INIT: printf("INIT"); break; case APIC_LVT_DM_EXTINT: printf("ExtINT"); break; } printf(" -> LINT%u\n", pin); } return (0); } static int native_lapic_set_lvt_polarity(u_int apic_id, u_int pin, enum intr_polarity pol) { if (pin > APIC_LVT_MAX || pol == INTR_POLARITY_CONFORM) return (EINVAL); if (apic_id == APIC_ID_ALL) { lvts[pin].lvt_activehi = (pol == INTR_POLARITY_HIGH); if (bootverbose) printf("lapic:"); } else { KASSERT(lapics[apic_id].la_present, ("%s: missing APIC %u", __func__, apic_id)); lapics[apic_id].la_lvts[pin].lvt_active = 1; lapics[apic_id].la_lvts[pin].lvt_activehi = (pol == INTR_POLARITY_HIGH); if (bootverbose) printf("lapic%u:", apic_id); } if (bootverbose) printf(" LINT%u polarity: %s\n", pin, pol == INTR_POLARITY_HIGH ? "high" : "low"); return (0); } static int native_lapic_set_lvt_triggermode(u_int apic_id, u_int pin, enum intr_trigger trigger) { if (pin > APIC_LVT_MAX || trigger == INTR_TRIGGER_CONFORM) return (EINVAL); if (apic_id == APIC_ID_ALL) { lvts[pin].lvt_edgetrigger = (trigger == INTR_TRIGGER_EDGE); if (bootverbose) printf("lapic:"); } else { KASSERT(lapics[apic_id].la_present, ("%s: missing APIC %u", __func__, apic_id)); lapics[apic_id].la_lvts[pin].lvt_edgetrigger = (trigger == INTR_TRIGGER_EDGE); lapics[apic_id].la_lvts[pin].lvt_active = 1; if (bootverbose) printf("lapic%u:", apic_id); } if (bootverbose) printf(" LINT%u trigger: %s\n", pin, trigger == INTR_TRIGGER_EDGE ? "edge" : "level"); return (0); } /* * Adjust the TPR of the current CPU so that it blocks all interrupts below * the passed in vector. */ static void lapic_set_tpr(u_int vector) { #ifdef CHEAP_TPR lapic_write32(LAPIC_TPR, vector); #else uint32_t tpr; tpr = lapic_read32(LAPIC_TPR) & ~APIC_TPR_PRIO; tpr |= vector; lapic_write32(LAPIC_TPR, tpr); #endif } static void native_lapic_eoi(void) { lapic_write32_nofence(LAPIC_EOI, 0); } void lapic_handle_intr(int vector, struct trapframe *frame) { struct intsrc *isrc; /* The frame may have been written into a poisoned region. */ kasan_mark(frame, sizeof(*frame), sizeof(*frame), 0); isrc = intr_lookup_source(apic_idt_to_irq(PCPU_GET(apic_id), vector)); intr_execute_handlers(isrc, frame); } void lapic_handle_timer(struct trapframe *frame) { struct lapic *la; struct trapframe *oldframe; struct thread *td; /* Send EOI first thing. */ lapic_eoi(); /* The frame may have been written into a poisoned region. */ kasan_mark(frame, sizeof(*frame), sizeof(*frame), 0); #if defined(SMP) && !defined(SCHED_ULE) /* * Don't do any accounting for the disabled HTT cores, since it * will provide misleading numbers for the userland. * * No locking is necessary here, since even if we lose the race * when hlt_cpus_mask changes it is not a big deal, really. * * Don't do that for ULE, since ULE doesn't consider hlt_cpus_mask * and unlike other schedulers it actually schedules threads to * those CPUs. */ if (CPU_ISSET(PCPU_GET(cpuid), &hlt_cpus_mask)) return; #endif /* Look up our local APIC structure for the tick counters. */ la = &lapics[PCPU_GET(apic_id)]; (*la->la_timer_count)++; critical_enter(); if (lapic_et.et_active) { td = curthread; td->td_intr_nesting_level++; oldframe = td->td_intr_frame; td->td_intr_frame = frame; lapic_et.et_event_cb(&lapic_et, lapic_et.et_arg); td->td_intr_frame = oldframe; td->td_intr_nesting_level--; } critical_exit(); } static void lapic_timer_set_divisor(u_int divisor) { KASSERT(powerof2(divisor), ("lapic: invalid divisor %u", divisor)); KASSERT(ffs(divisor) <= nitems(lapic_timer_divisors), ("lapic: invalid divisor %u", divisor)); lapic_write32(LAPIC_DCR_TIMER, lapic_timer_divisors[ffs(divisor) - 1]); } static void lapic_timer_oneshot(struct lapic *la) { uint32_t value; value = la->lvt_timer_base; value &= ~(APIC_LVTT_TM | APIC_LVT_M); value |= APIC_LVTT_TM_ONE_SHOT; la->lvt_timer_last = value; lapic_write32(LAPIC_LVT_TIMER, value); lapic_write32(LAPIC_ICR_TIMER, la->la_timer_period); } static void lapic_timer_oneshot_nointr(struct lapic *la, uint32_t count) { uint32_t value; value = la->lvt_timer_base; value &= ~APIC_LVTT_TM; value |= APIC_LVTT_TM_ONE_SHOT | APIC_LVT_M; la->lvt_timer_last = value; lapic_write32(LAPIC_LVT_TIMER, value); lapic_write32(LAPIC_ICR_TIMER, count); } static void lapic_timer_periodic(struct lapic *la) { uint32_t value; value = la->lvt_timer_base; value &= ~(APIC_LVTT_TM | APIC_LVT_M); value |= APIC_LVTT_TM_PERIODIC; la->lvt_timer_last = value; lapic_write32(LAPIC_LVT_TIMER, value); lapic_write32(LAPIC_ICR_TIMER, la->la_timer_period); } static void lapic_timer_deadline(struct lapic *la) { uint32_t value; value = la->lvt_timer_base; value &= ~(APIC_LVTT_TM | APIC_LVT_M); value |= APIC_LVTT_TM_TSCDLT; if (value != la->lvt_timer_last) { la->lvt_timer_last = value; lapic_write32_nofence(LAPIC_LVT_TIMER, value); if (!x2apic_mode) mfence(); } wrmsr(MSR_TSC_DEADLINE, la->la_timer_period + rdtsc()); } static void lapic_timer_stop(struct lapic *la) { uint32_t value; if (la->la_timer_mode == LAT_MODE_DEADLINE) { wrmsr(MSR_TSC_DEADLINE, 0); mfence(); } else { value = la->lvt_timer_base; value &= ~APIC_LVTT_TM; value |= APIC_LVT_M; la->lvt_timer_last = value; lapic_write32(LAPIC_LVT_TIMER, value); } } void lapic_handle_cmc(void) { lapic_eoi(); cmc_intr(); } /* * Called from the mca_init() to activate the CMC interrupt if this CPU is * responsible for monitoring any MC banks for CMC events. Since mca_init() * is called prior to lapic_setup() during boot, this just needs to unmask * this CPU's LVT_CMCI entry. */ static void native_lapic_enable_cmc(void) { u_int apic_id; #ifdef DEV_ATPIC if (!x2apic_mode && lapic_map == NULL) return; #endif apic_id = PCPU_GET(apic_id); KASSERT(lapics[apic_id].la_present, ("%s: missing APIC %u", __func__, apic_id)); lapics[apic_id].la_lvts[APIC_LVT_CMCI].lvt_masked = 0; lapics[apic_id].la_lvts[APIC_LVT_CMCI].lvt_active = 1; if (bootverbose) printf("lapic%u: CMCI unmasked\n", apic_id); } static int native_lapic_enable_mca_elvt(void) { u_int apic_id; uint32_t value; int elvt_count; #ifdef DEV_ATPIC if (lapic_map == NULL) return (-1); #endif apic_id = PCPU_GET(apic_id); KASSERT(lapics[apic_id].la_present, ("%s: missing APIC %u", __func__, apic_id)); elvt_count = amd_read_elvt_count(); if (elvt_count <= APIC_ELVT_MCA) return (-1); value = lapic_read32(LAPIC_EXT_LVT0 + APIC_ELVT_MCA); if ((value & APIC_LVT_M) == 0) { if (bootverbose) printf("AMD MCE Thresholding Extended LVT is already active\n"); return (APIC_ELVT_MCA); } lapics[apic_id].la_elvts[APIC_ELVT_MCA].lvt_masked = 0; lapics[apic_id].la_elvts[APIC_ELVT_MCA].lvt_active = 1; if (bootverbose) printf("lapic%u: MCE Thresholding ELVT unmasked\n", apic_id); return (APIC_ELVT_MCA); } void lapic_handle_error(void) { uint32_t esr; /* * Read the contents of the error status register. Write to * the register first before reading from it to force the APIC * to update its value to indicate any errors that have * occurred since the previous write to the register. */ lapic_write32(LAPIC_ESR, 0); esr = lapic_read32(LAPIC_ESR); printf("CPU%d: local APIC error 0x%x\n", PCPU_GET(cpuid), esr); lapic_eoi(); } static u_int native_apic_cpuid(u_int apic_id) { #ifdef SMP return apic_cpuids[apic_id]; #else return 0; #endif } /* Request a free IDT vector to be used by the specified IRQ. */ static u_int native_apic_alloc_vector(u_int apic_id, u_int irq) { u_int vector; KASSERT(irq < num_io_irqs, ("Invalid IRQ %u", irq)); /* * Search for a free vector. Currently we just use a very simple * algorithm to find the first free vector. */ mtx_lock_spin(&icu_lock); for (vector = 0; vector < APIC_NUM_IOINTS; vector++) { if (lapics[apic_id].la_ioint_irqs[vector] != IRQ_FREE) continue; lapics[apic_id].la_ioint_irqs[vector] = irq; mtx_unlock_spin(&icu_lock); return (vector + APIC_IO_INTS); } mtx_unlock_spin(&icu_lock); return (0); } /* * Request 'count' free contiguous IDT vectors to be used by 'count' * IRQs. 'count' must be a power of two and the vectors will be * aligned on a boundary of 'align'. If the request cannot be * satisfied, 0 is returned. */ static u_int native_apic_alloc_vectors(u_int apic_id, u_int *irqs, u_int count, u_int align) { u_int first, run, vector; KASSERT(powerof2(count), ("bad count")); KASSERT(powerof2(align), ("bad align")); KASSERT(align >= count, ("align < count")); #ifdef INVARIANTS for (run = 0; run < count; run++) KASSERT(irqs[run] < num_io_irqs, ("Invalid IRQ %u at index %u", irqs[run], run)); #endif /* * Search for 'count' free vectors. As with apic_alloc_vector(), * this just uses a simple first fit algorithm. */ run = 0; first = 0; mtx_lock_spin(&icu_lock); for (vector = 0; vector < APIC_NUM_IOINTS; vector++) { /* Vector is in use, end run. */ if (lapics[apic_id].la_ioint_irqs[vector] != IRQ_FREE) { run = 0; first = 0; continue; } /* Start a new run if run == 0 and vector is aligned. */ if (run == 0) { if ((vector & (align - 1)) != 0) continue; first = vector; } run++; /* Keep looping if the run isn't long enough yet. */ if (run < count) continue; /* Found a run, assign IRQs and return the first vector. */ for (vector = 0; vector < count; vector++) lapics[apic_id].la_ioint_irqs[first + vector] = irqs[vector]; mtx_unlock_spin(&icu_lock); return (first + APIC_IO_INTS); } mtx_unlock_spin(&icu_lock); printf("APIC: Couldn't find APIC vectors for %u IRQs\n", count); return (0); } /* * Enable a vector for a particular apic_id. Since all lapics share idt * entries and ioint_handlers this enables the vector on all lapics. lapics * which do not have the vector configured would report spurious interrupts * should it fire. */ static void native_apic_enable_vector(u_int apic_id, u_int vector) { KASSERT(vector != IDT_SYSCALL, ("Attempt to overwrite syscall entry")); KASSERT(ioint_handlers[vector / 32] != NULL, ("No ISR handler for vector %u", vector)); #ifdef KDTRACE_HOOKS KASSERT(vector != IDT_DTRACE_RET, ("Attempt to overwrite DTrace entry")); #endif setidt(vector, (pti ? ioint_pti_handlers : ioint_handlers)[vector / 32], SDT_APIC, SEL_KPL, GSEL_APIC); } static void native_apic_disable_vector(u_int apic_id, u_int vector) { KASSERT(vector != IDT_SYSCALL, ("Attempt to overwrite syscall entry")); #ifdef KDTRACE_HOOKS KASSERT(vector != IDT_DTRACE_RET, ("Attempt to overwrite DTrace entry")); #endif KASSERT(ioint_handlers[vector / 32] != NULL, ("No ISR handler for vector %u", vector)); #ifdef notyet /* * We can not currently clear the idt entry because other cpus * may have a valid vector at this offset. */ setidt(vector, pti ? &IDTVEC(rsvd_pti) : &IDTVEC(rsvd), SDT_APIC, SEL_KPL, GSEL_APIC); #endif } /* Release an APIC vector when it's no longer in use. */ static void native_apic_free_vector(u_int apic_id, u_int vector, u_int irq) { struct thread *td; KASSERT(vector >= APIC_IO_INTS && vector != IDT_SYSCALL && vector <= APIC_IO_INTS + APIC_NUM_IOINTS, ("Vector %u does not map to an IRQ line", vector)); KASSERT(irq < num_io_irqs, ("Invalid IRQ %u", irq)); KASSERT(lapics[apic_id].la_ioint_irqs[vector - APIC_IO_INTS] == irq, ("IRQ mismatch")); #ifdef KDTRACE_HOOKS KASSERT(vector != IDT_DTRACE_RET, ("Attempt to overwrite DTrace entry")); #endif /* * Bind us to the cpu that owned the vector before freeing it so * we don't lose an interrupt delivery race. */ td = curthread; if (!rebooting) { thread_lock(td); if (sched_is_bound(td)) panic("apic_free_vector: Thread already bound.\n"); sched_bind(td, apic_cpuid(apic_id)); thread_unlock(td); } mtx_lock_spin(&icu_lock); lapics[apic_id].la_ioint_irqs[vector - APIC_IO_INTS] = IRQ_FREE; mtx_unlock_spin(&icu_lock); if (!rebooting) { thread_lock(td); sched_unbind(td); thread_unlock(td); } } /* Map an IDT vector (APIC) to an IRQ (interrupt source). */ static u_int apic_idt_to_irq(u_int apic_id, u_int vector) { int irq; KASSERT(vector >= APIC_IO_INTS && vector != IDT_SYSCALL && vector <= APIC_IO_INTS + APIC_NUM_IOINTS, ("Vector %u does not map to an IRQ line", vector)); #ifdef KDTRACE_HOOKS KASSERT(vector != IDT_DTRACE_RET, ("Attempt to overwrite DTrace entry")); #endif irq = lapics[apic_id].la_ioint_irqs[vector - APIC_IO_INTS]; if (irq < 0) irq = 0; return (irq); } #ifdef DDB /* * Dump data about APIC IDT vector mappings. */ DB_SHOW_COMMAND(apic, db_show_apic) { struct intsrc *isrc; int i, verbose; u_int apic_id; u_int irq; if (strcmp(modif, "vv") == 0) verbose = 2; else if (strcmp(modif, "v") == 0) verbose = 1; else verbose = 0; for (apic_id = 0; apic_id <= max_apic_id; apic_id++) { if (lapics[apic_id].la_present == 0) continue; db_printf("Interrupts bound to lapic %u\n", apic_id); for (i = 0; i < APIC_NUM_IOINTS + 1 && !db_pager_quit; i++) { irq = lapics[apic_id].la_ioint_irqs[i]; if (irq == IRQ_FREE || irq == IRQ_SYSCALL) continue; #ifdef KDTRACE_HOOKS if (irq == IRQ_DTRACE_RET) continue; #endif #ifdef XENHVM if (irq == IRQ_EVTCHN) continue; #endif db_printf("vec 0x%2x -> ", i + APIC_IO_INTS); if (irq == IRQ_TIMER) db_printf("lapic timer\n"); else if (irq < num_io_irqs) { isrc = intr_lookup_source(irq); if (isrc == NULL || verbose == 0) db_printf("IRQ %u\n", irq); else db_dump_intr_event(isrc->is_event, verbose == 2); } else db_printf("IRQ %u ???\n", irq); } } } static void dump_mask(const char *prefix, uint32_t v, int base) { int i, first; first = 1; for (i = 0; i < 32; i++) if (v & (1 << i)) { if (first) { db_printf("%s:", prefix); first = 0; } db_printf(" %02x", base + i); } if (!first) db_printf("\n"); } /* Show info from the lapic regs for this CPU. */ DB_SHOW_COMMAND(lapic, db_show_lapic) { uint32_t v; db_printf("lapic ID = %d\n", lapic_id()); v = lapic_read32(LAPIC_VERSION); db_printf("version = %d.%d\n", (v & APIC_VER_VERSION) >> 4, v & 0xf); db_printf("max LVT = %d\n", (v & APIC_VER_MAXLVT) >> MAXLVTSHIFT); v = lapic_read32(LAPIC_SVR); db_printf("SVR = %02x (%s)\n", v & APIC_SVR_VECTOR, v & APIC_SVR_ENABLE ? "enabled" : "disabled"); db_printf("TPR = %02x\n", lapic_read32(LAPIC_TPR)); #define dump_field(prefix, regn, index) \ dump_mask(__XSTRING(prefix ## index), \ lapic_read32(LAPIC_ ## regn ## index), \ index * 32) db_printf("In-service Interrupts:\n"); dump_field(isr, ISR, 0); dump_field(isr, ISR, 1); dump_field(isr, ISR, 2); dump_field(isr, ISR, 3); dump_field(isr, ISR, 4); dump_field(isr, ISR, 5); dump_field(isr, ISR, 6); dump_field(isr, ISR, 7); db_printf("TMR Interrupts:\n"); dump_field(tmr, TMR, 0); dump_field(tmr, TMR, 1); dump_field(tmr, TMR, 2); dump_field(tmr, TMR, 3); dump_field(tmr, TMR, 4); dump_field(tmr, TMR, 5); dump_field(tmr, TMR, 6); dump_field(tmr, TMR, 7); db_printf("IRR Interrupts:\n"); dump_field(irr, IRR, 0); dump_field(irr, IRR, 1); dump_field(irr, IRR, 2); dump_field(irr, IRR, 3); dump_field(irr, IRR, 4); dump_field(irr, IRR, 5); dump_field(irr, IRR, 6); dump_field(irr, IRR, 7); #undef dump_field } #endif /* * APIC probing support code. This includes code to manage enumerators. */ static SLIST_HEAD(, apic_enumerator) enumerators = SLIST_HEAD_INITIALIZER(enumerators); static struct apic_enumerator *best_enum; void apic_register_enumerator(struct apic_enumerator *enumerator) { #ifdef INVARIANTS struct apic_enumerator *apic_enum; SLIST_FOREACH(apic_enum, &enumerators, apic_next) { if (apic_enum == enumerator) panic("%s: Duplicate register of %s", __func__, enumerator->apic_name); } #endif SLIST_INSERT_HEAD(&enumerators, enumerator, apic_next); } /* * We have to look for CPU's very, very early because certain subsystems * want to know how many CPU's we have extremely early on in the boot * process. */ static void apic_init(void *dummy __unused) { struct apic_enumerator *enumerator; int retval, best; /* We only support built in local APICs. */ if (!(cpu_feature & CPUID_APIC)) return; /* Don't probe if APIC mode is disabled. */ if (resource_disabled("apic", 0)) return; /* Probe all the enumerators to find the best match. */ best_enum = NULL; best = 0; SLIST_FOREACH(enumerator, &enumerators, apic_next) { retval = enumerator->apic_probe(); if (retval > 0) continue; if (best_enum == NULL || best < retval) { best_enum = enumerator; best = retval; } } if (best_enum == NULL) { if (bootverbose) printf("APIC: Could not find any APICs.\n"); #ifndef DEV_ATPIC panic("running without device atpic requires a local APIC"); #endif return; } if (bootverbose) printf("APIC: Using the %s enumerator.\n", best_enum->apic_name); #ifdef I686_CPU /* * To work around an errata, we disable the local APIC on some * CPUs during early startup. We need to turn the local APIC back * on on such CPUs now. */ ppro_reenable_apic(); #endif /* Probe the CPU's in the system. */ retval = best_enum->apic_probe_cpus(); if (retval != 0) printf("%s: Failed to probe CPUs: returned %d\n", best_enum->apic_name, retval); } SYSINIT(apic_init, SI_SUB_TUNABLES - 1, SI_ORDER_SECOND, apic_init, NULL); /* * Setup the local APIC. We have to do this prior to starting up the APs * in the SMP case. */ static void apic_setup_local(void *dummy __unused) { int retval; if (best_enum == NULL) return; lapics = malloc(sizeof(*lapics) * (max_apic_id + 1), M_LAPIC, M_WAITOK | M_ZERO); /* Initialize the local APIC. */ retval = best_enum->apic_setup_local(); if (retval != 0) printf("%s: Failed to setup the local APIC: returned %d\n", best_enum->apic_name, retval); } SYSINIT(apic_setup_local, SI_SUB_CPU, SI_ORDER_SECOND, apic_setup_local, NULL); /* * Setup the I/O APICs. */ static void apic_setup_io(void *dummy __unused) { int retval; if (best_enum == NULL) return; /* * Local APIC must be registered before other PICs and pseudo PICs * for proper suspend/resume order. */ intr_register_pic(&lapic_pic); retval = best_enum->apic_setup_io(); if (retval != 0) printf("%s: Failed to setup I/O APICs: returned %d\n", best_enum->apic_name, retval); /* * Finish setting up the local APIC on the BSP once we know * how to properly program the LINT pins. In particular, this * enables the EOI suppression mode, if LAPIC supports it and * user did not disable the mode. */ lapic_setup(1); if (bootverbose) lapic_dump("BSP"); /* Enable the MSI "pic". */ msi_init(); #ifdef XENHVM xen_intr_alloc_irqs(); #endif } SYSINIT(apic_setup_io, SI_SUB_INTR, SI_ORDER_THIRD, apic_setup_io, NULL); #ifdef SMP /* * Inter Processor Interrupt functions. The lapic_ipi_*() functions are * private to the MD code. The public interface for the rest of the * kernel is defined in mp_machdep.c. */ /* * Wait delay microseconds for IPI to be sent. If delay is -1, we * wait forever. */ static int native_lapic_ipi_wait(int delay) { uint64_t rx; /* LAPIC_ICR.APIC_DELSTAT_MASK is undefined in x2APIC mode */ if (x2apic_mode) return (1); for (rx = 0; delay == -1 || rx < lapic_ipi_wait_mult * delay; rx++) { if ((lapic_read_icr_lo() & APIC_DELSTAT_MASK) == APIC_DELSTAT_IDLE) return (1); ia32_pause(); } return (0); } static void native_lapic_ipi_raw(register_t icrlo, u_int dest) { uint32_t icrhi; /* XXX: Need more sanity checking of icrlo? */ KASSERT(x2apic_mode || lapic_map != NULL, ("%s called too early", __func__)); KASSERT(x2apic_mode || (dest & ~(APIC_ID_MASK >> APIC_ID_SHIFT)) == 0, ("%s: invalid dest field", __func__)); KASSERT((icrlo & APIC_ICRLO_RESV_MASK) == 0, ("%s: reserved bits set in ICR LO register", __func__)); if ((icrlo & APIC_DEST_MASK) == APIC_DEST_DESTFLD) { if (x2apic_mode) icrhi = dest; else icrhi = dest << APIC_ID_SHIFT; lapic_write_icr(icrhi, icrlo); } else { lapic_write_icr_lo(icrlo); } } #ifdef DETECT_DEADLOCK #define AFTER_SPIN 50 #endif static void native_lapic_ipi_vectored(u_int vector, int dest) { register_t icrlo, destfield; KASSERT((vector & ~APIC_VECTOR_MASK) == 0, ("%s: invalid vector %d", __func__, vector)); destfield = 0; switch (dest) { case APIC_IPI_DEST_SELF: if (x2apic_mode && vector < IPI_NMI_FIRST) { lapic_write_self_ipi(vector); return; } icrlo = APIC_DEST_SELF; break; case APIC_IPI_DEST_ALL: icrlo = APIC_DEST_ALLISELF; break; case APIC_IPI_DEST_OTHERS: icrlo = APIC_DEST_ALLESELF; break; default: icrlo = 0; KASSERT(x2apic_mode || (dest & ~(APIC_ID_MASK >> APIC_ID_SHIFT)) == 0, ("%s: invalid destination 0x%x", __func__, dest)); destfield = dest; } /* * NMI IPIs are just fake vectors used to send a NMI. Use special rules * regarding NMIs if passed, otherwise specify the vector. */ if (vector >= IPI_NMI_FIRST) icrlo |= APIC_DELMODE_NMI; else icrlo |= vector | APIC_DELMODE_FIXED; icrlo |= APIC_DESTMODE_PHY | APIC_TRIGMOD_EDGE | APIC_LEVEL_ASSERT; /* Wait for an earlier IPI to finish. */ if (!lapic_ipi_wait(lapic_ds_idle_timeout)) { if (KERNEL_PANICKED()) return; else panic("APIC: Previous IPI is stuck"); } lapic_ipi_raw(icrlo, destfield); #ifdef DETECT_DEADLOCK /* Wait for IPI to be delivered. */ if (!lapic_ipi_wait(AFTER_SPIN)) { #ifdef needsattention /* * XXX FIXME: * * The above function waits for the message to actually be * delivered. It breaks out after an arbitrary timeout * since the message should eventually be delivered (at * least in theory) and that if it wasn't we would catch * the failure with the check above when the next IPI is * sent. * * We could skip this wait entirely, EXCEPT it probably * protects us from other routines that assume that the * message was delivered and acted upon when this function * returns. */ printf("APIC: IPI might be stuck\n"); #else /* !needsattention */ /* Wait until mesage is sent without a timeout. */ while (lapic_read_icr_lo() & APIC_DELSTAT_PEND) ia32_pause(); #endif /* needsattention */ } #endif /* DETECT_DEADLOCK */ } #endif /* SMP */ -#ifdef __i386__ -extern uintptr_t setidt_disp; -#endif - /* * Since the IDT is shared by all CPUs the IPI slot update needs to be globally * visible. * * Consider the case where an IPI is generated immediately after allocation: * vector = lapic_ipi_alloc(ipifunc); * ipi_selected(other_cpus, vector); * * In xAPIC mode a write to ICR_LO has serializing semantics because the * APIC page is mapped as an uncached region. In x2APIC mode there is an * explicit 'mfence' before the ICR MSR is written. Therefore in both cases * the IDT slot update is globally visible before the IPI is delivered. */ static int native_lapic_ipi_alloc(inthand_t *ipifunc) { struct gate_descriptor *ip; long func; int idx, vector; KASSERT(ipifunc != &IDTVEC(rsvd) && ipifunc != &IDTVEC(rsvd_pti), ("invalid ipifunc %p", ipifunc)); vector = -1; mtx_lock_spin(&icu_lock); for (idx = IPI_DYN_FIRST; idx <= IPI_DYN_LAST; idx++) { ip = &idt[idx]; func = (ip->gd_hioffset << 16) | ip->gd_looffset; #ifdef __i386__ func -= setidt_disp; #endif if ((!pti && func == (uintptr_t)&IDTVEC(rsvd)) || (pti && func == (uintptr_t)&IDTVEC(rsvd_pti))) { vector = idx; setidt(vector, ipifunc, SDT_APIC, SEL_KPL, GSEL_APIC); break; } } mtx_unlock_spin(&icu_lock); return (vector); } static void native_lapic_ipi_free(int vector) { struct gate_descriptor *ip; long func; KASSERT(vector >= IPI_DYN_FIRST && vector <= IPI_DYN_LAST, ("%s: invalid vector %d", __func__, vector)); mtx_lock_spin(&icu_lock); ip = &idt[vector]; func = (ip->gd_hioffset << 16) | ip->gd_looffset; #ifdef __i386__ func -= setidt_disp; #endif KASSERT(func != (uintptr_t)&IDTVEC(rsvd) && func != (uintptr_t)&IDTVEC(rsvd_pti), ("invalid idtfunc %#lx", func)); setidt(vector, pti ? &IDTVEC(rsvd_pti) : &IDTVEC(rsvd), SDT_APIC, SEL_KPL, GSEL_APIC); mtx_unlock_spin(&icu_lock); }