diff --git a/sys/kern/subr_bus.c b/sys/kern/subr_bus.c
index 8f3e9f90325d..8143d358a0ad 100644
--- a/sys/kern/subr_bus.c
+++ b/sys/kern/subr_bus.c
@@ -1,5998 +1,5998 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 1997,1998,2003 Doug Rabson
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_bus.h"
 #include "opt_ddb.h"
 
 #include <sys/param.h>
 #include <sys/conf.h>
 #include <sys/domainset.h>
 #include <sys/eventhandler.h>
 #include <sys/filio.h>
 #include <sys/lock.h>
 #include <sys/kernel.h>
 #include <sys/kobj.h>
 #include <sys/limits.h>
 #include <sys/malloc.h>
 #include <sys/module.h>
 #include <sys/mutex.h>
 #include <sys/poll.h>
 #include <sys/priv.h>
 #include <sys/proc.h>
 #include <sys/condvar.h>
 #include <sys/queue.h>
 #include <machine/bus.h>
 #include <sys/random.h>
 #include <sys/rman.h>
 #include <sys/sbuf.h>
 #include <sys/selinfo.h>
 #include <sys/signalvar.h>
 #include <sys/smp.h>
 #include <sys/sysctl.h>
 #include <sys/systm.h>
 #include <sys/uio.h>
 #include <sys/bus.h>
 #include <sys/cpuset.h>
 
 #include <net/vnet.h>
 
 #include <machine/cpu.h>
 #include <machine/stdarg.h>
 
 #include <vm/uma.h>
 #include <vm/vm.h>
 
 #include <ddb/ddb.h>
 
 SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
     NULL);
 SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
     NULL);
 
 /*
  * Used to attach drivers to devclasses.
  */
 typedef struct driverlink *driverlink_t;
 struct driverlink {
 	kobj_class_t	driver;
 	TAILQ_ENTRY(driverlink) link;	/* list of drivers in devclass */
 	int		pass;
 	int		flags;
 #define DL_DEFERRED_PROBE	1	/* Probe deferred on this */
 	TAILQ_ENTRY(driverlink) passlink;
 };
 
 /*
  * Forward declarations
  */
 typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
 typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
 typedef TAILQ_HEAD(device_list, device) device_list_t;
 
 struct devclass {
 	TAILQ_ENTRY(devclass) link;
 	devclass_t	parent;		/* parent in devclass hierarchy */
 	driver_list_t	drivers;     /* bus devclasses store drivers for bus */
 	char		*name;
 	device_t	*devices;	/* array of devices indexed by unit */
 	int		maxunit;	/* size of devices array */
 	int		flags;
 #define DC_HAS_CHILDREN		1
 
 	struct sysctl_ctx_list sysctl_ctx;
 	struct sysctl_oid *sysctl_tree;
 };
 
 /**
  * @brief Implementation of device.
  */
 struct device {
 	/*
 	 * A device is a kernel object. The first field must be the
 	 * current ops table for the object.
 	 */
 	KOBJ_FIELDS;
 
 	/*
 	 * Device hierarchy.
 	 */
 	TAILQ_ENTRY(device)	link;	/**< list of devices in parent */
 	TAILQ_ENTRY(device)	devlink; /**< global device list membership */
 	device_t	parent;		/**< parent of this device  */
 	device_list_t	children;	/**< list of child devices */
 
 	/*
 	 * Details of this device.
 	 */
 	driver_t	*driver;	/**< current driver */
 	devclass_t	devclass;	/**< current device class */
 	int		unit;		/**< current unit number */
 	char*		nameunit;	/**< name+unit e.g. foodev0 */
 	char*		desc;		/**< driver specific description */
 	int		busy;		/**< count of calls to device_busy() */
 	device_state_t	state;		/**< current device state  */
 	uint32_t	devflags;	/**< api level flags for device_get_flags() */
 	u_int		flags;		/**< internal device flags  */
 	u_int	order;			/**< order from device_add_child_ordered() */
 	void	*ivars;			/**< instance variables  */
 	void	*softc;			/**< current driver's variables  */
 
 	struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables  */
 	struct sysctl_oid *sysctl_tree;	/**< state for sysctl variables */
 };
 
 static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
 static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
 
 EVENTHANDLER_LIST_DEFINE(device_attach);
 EVENTHANDLER_LIST_DEFINE(device_detach);
 EVENTHANDLER_LIST_DEFINE(dev_lookup);
 
 static void devctl2_init(void);
 static bool device_frozen;
 
 #define DRIVERNAME(d)	((d)? d->name : "no driver")
 #define DEVCLANAME(d)	((d)? d->name : "no devclass")
 
 #ifdef BUS_DEBUG
 
 static int bus_debug = 1;
 SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
     "Bus debug level");
 
 #define PDEBUG(a)	if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
 #define DEVICENAME(d)	((d)? device_get_name(d): "no device")
 
 /**
  * Produce the indenting, indent*2 spaces plus a '.' ahead of that to
  * prevent syslog from deleting initial spaces
  */
 #define indentprintf(p)	do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf("  "); printf p ; } while (0)
 
 static void print_device_short(device_t dev, int indent);
 static void print_device(device_t dev, int indent);
 void print_device_tree_short(device_t dev, int indent);
 void print_device_tree(device_t dev, int indent);
 static void print_driver_short(driver_t *driver, int indent);
 static void print_driver(driver_t *driver, int indent);
 static void print_driver_list(driver_list_t drivers, int indent);
 static void print_devclass_short(devclass_t dc, int indent);
 static void print_devclass(devclass_t dc, int indent);
 void print_devclass_list_short(void);
 void print_devclass_list(void);
 
 #else
 /* Make the compiler ignore the function calls */
 #define PDEBUG(a)			/* nop */
 #define DEVICENAME(d)			/* nop */
 
 #define print_device_short(d,i)		/* nop */
 #define print_device(d,i)		/* nop */
 #define print_device_tree_short(d,i)	/* nop */
 #define print_device_tree(d,i)		/* nop */
 #define print_driver_short(d,i)		/* nop */
 #define print_driver(d,i)		/* nop */
 #define print_driver_list(d,i)		/* nop */
 #define print_devclass_short(d,i)	/* nop */
 #define print_devclass(d,i)		/* nop */
 #define print_devclass_list_short()	/* nop */
 #define print_devclass_list()		/* nop */
 #endif
 
 /*
  * dev sysctl tree
  */
 
 enum {
 	DEVCLASS_SYSCTL_PARENT,
 };
 
 static int
 devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
 {
 	devclass_t dc = (devclass_t)arg1;
 	const char *value;
 
 	switch (arg2) {
 	case DEVCLASS_SYSCTL_PARENT:
 		value = dc->parent ? dc->parent->name : "";
 		break;
 	default:
 		return (EINVAL);
 	}
 	return (SYSCTL_OUT_STR(req, value));
 }
 
 static void
 devclass_sysctl_init(devclass_t dc)
 {
 	if (dc->sysctl_tree != NULL)
 		return;
 	sysctl_ctx_init(&dc->sysctl_ctx);
 	dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
 	    SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 	SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
 	    OID_AUTO, "%parent",
 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 	    dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
 	    "parent class");
 }
 
 enum {
 	DEVICE_SYSCTL_DESC,
 	DEVICE_SYSCTL_DRIVER,
 	DEVICE_SYSCTL_LOCATION,
 	DEVICE_SYSCTL_PNPINFO,
 	DEVICE_SYSCTL_PARENT,
 };
 
 static int
 device_sysctl_handler(SYSCTL_HANDLER_ARGS)
 {
 	device_t dev = (device_t)arg1;
 	const char *value;
 	char *buf;
 	int error;
 
 	buf = NULL;
 	switch (arg2) {
 	case DEVICE_SYSCTL_DESC:
 		value = dev->desc ? dev->desc : "";
 		break;
 	case DEVICE_SYSCTL_DRIVER:
 		value = dev->driver ? dev->driver->name : "";
 		break;
 	case DEVICE_SYSCTL_LOCATION:
 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
 		bus_child_location_str(dev, buf, 1024);
 		break;
 	case DEVICE_SYSCTL_PNPINFO:
 		value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
 		bus_child_pnpinfo_str(dev, buf, 1024);
 		break;
 	case DEVICE_SYSCTL_PARENT:
 		value = dev->parent ? dev->parent->nameunit : "";
 		break;
 	default:
 		return (EINVAL);
 	}
 	error = SYSCTL_OUT_STR(req, value);
 	if (buf != NULL)
 		free(buf, M_BUS);
 	return (error);
 }
 
 static void
 device_sysctl_init(device_t dev)
 {
 	devclass_t dc = dev->devclass;
 	int domain;
 
 	if (dev->sysctl_tree != NULL)
 		return;
 	devclass_sysctl_init(dc);
 	sysctl_ctx_init(&dev->sysctl_ctx);
 	dev->sysctl_tree = SYSCTL_ADD_NODE_WITH_LABEL(&dev->sysctl_ctx,
 	    SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
 	    dev->nameunit + strlen(dc->name),
 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "", "device_index");
 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
 	    OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 	    dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
 	    "device description");
 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
 	    OID_AUTO, "%driver",
 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 	    dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
 	    "device driver name");
 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
 	    OID_AUTO, "%location",
 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 	    dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
 	    "device location relative to parent");
 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
 	    OID_AUTO, "%pnpinfo",
 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 	    dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
 	    "device identification");
 	SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
 	    OID_AUTO, "%parent",
 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
 	    dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
 	    "parent device");
 	if (bus_get_domain(dev, &domain) == 0)
 		SYSCTL_ADD_INT(&dev->sysctl_ctx,
 		    SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
 		    CTLFLAG_RD, NULL, domain, "NUMA domain");
 }
 
 static void
 device_sysctl_update(device_t dev)
 {
 	devclass_t dc = dev->devclass;
 
 	if (dev->sysctl_tree == NULL)
 		return;
 	sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
 }
 
 static void
 device_sysctl_fini(device_t dev)
 {
 	if (dev->sysctl_tree == NULL)
 		return;
 	sysctl_ctx_free(&dev->sysctl_ctx);
 	dev->sysctl_tree = NULL;
 }
 
 /*
  * /dev/devctl implementation
  */
 
 /*
  * This design allows only one reader for /dev/devctl.  This is not desirable
  * in the long run, but will get a lot of hair out of this implementation.
  * Maybe we should make this device a clonable device.
  *
  * Also note: we specifically do not attach a device to the device_t tree
  * to avoid potential chicken and egg problems.  One could argue that all
  * of this belongs to the root node.  One could also further argue that the
  * sysctl interface that we have not might more properly be an ioctl
  * interface, but at this stage of the game, I'm not inclined to rock that
  * boat.
  *
  * I'm also not sure that the SIGIO support is done correctly or not, as
  * I copied it from a driver that had SIGIO support that likely hasn't been
  * tested since 3.4 or 2.2.8!
  */
 
 /* Deprecated way to adjust queue length */
 static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
     "devctl disable -- deprecated");
 
 #define DEVCTL_DEFAULT_QUEUE_LEN 1000
 static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
 static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
 SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
     CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
 
 static d_open_t		devopen;
 static d_close_t	devclose;
 static d_read_t		devread;
 static d_ioctl_t	devioctl;
 static d_poll_t		devpoll;
 static d_kqfilter_t	devkqfilter;
 
 static struct cdevsw dev_cdevsw = {
 	.d_version =	D_VERSION,
 	.d_open =	devopen,
 	.d_close =	devclose,
 	.d_read =	devread,
 	.d_ioctl =	devioctl,
 	.d_poll =	devpoll,
 	.d_kqfilter =	devkqfilter,
 	.d_name =	"devctl",
 };
 
 struct dev_event_info
 {
 	char *dei_data;
 	TAILQ_ENTRY(dev_event_info) dei_link;
 };
 
 TAILQ_HEAD(devq, dev_event_info);
 
 static struct dev_softc
 {
 	int	inuse;
 	int	nonblock;
 	int	queued;
 	int	async;
 	struct mtx mtx;
 	struct cv cv;
 	struct selinfo sel;
 	struct devq devq;
 	struct sigio *sigio;
 } devsoftc;
 
 static void	filt_devctl_detach(struct knote *kn);
 static int	filt_devctl_read(struct knote *kn, long hint);
 
 struct filterops devctl_rfiltops = {
 	.f_isfd = 1,
 	.f_detach = filt_devctl_detach,
 	.f_event = filt_devctl_read,
 };
 
 static struct cdev *devctl_dev;
 
 static void
 devinit(void)
 {
 	devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
 	    UID_ROOT, GID_WHEEL, 0600, "devctl");
 	mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
 	cv_init(&devsoftc.cv, "dev cv");
 	TAILQ_INIT(&devsoftc.devq);
 	knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
 	devctl2_init();
 }
 
 static int
 devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
 {
 	mtx_lock(&devsoftc.mtx);
 	if (devsoftc.inuse) {
 		mtx_unlock(&devsoftc.mtx);
 		return (EBUSY);
 	}
 	/* move to init */
 	devsoftc.inuse = 1;
 	mtx_unlock(&devsoftc.mtx);
 	return (0);
 }
 
 static int
 devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
 {
 	mtx_lock(&devsoftc.mtx);
 	devsoftc.inuse = 0;
 	devsoftc.nonblock = 0;
 	devsoftc.async = 0;
 	cv_broadcast(&devsoftc.cv);
 	funsetown(&devsoftc.sigio);
 	mtx_unlock(&devsoftc.mtx);
 	return (0);
 }
 
 /*
  * The read channel for this device is used to report changes to
  * userland in realtime.  We are required to free the data as well as
  * the n1 object because we allocate them separately.  Also note that
  * we return one record at a time.  If you try to read this device a
  * character at a time, you will lose the rest of the data.  Listening
  * programs are expected to cope.
  */
 static int
 devread(struct cdev *dev, struct uio *uio, int ioflag)
 {
 	struct dev_event_info *n1;
 	int rv;
 
 	mtx_lock(&devsoftc.mtx);
 	while (TAILQ_EMPTY(&devsoftc.devq)) {
 		if (devsoftc.nonblock) {
 			mtx_unlock(&devsoftc.mtx);
 			return (EAGAIN);
 		}
 		rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
 		if (rv) {
 			/*
 			 * Need to translate ERESTART to EINTR here? -- jake
 			 */
 			mtx_unlock(&devsoftc.mtx);
 			return (rv);
 		}
 	}
 	n1 = TAILQ_FIRST(&devsoftc.devq);
 	TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
 	devsoftc.queued--;
 	mtx_unlock(&devsoftc.mtx);
 	rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
 	free(n1->dei_data, M_BUS);
 	free(n1, M_BUS);
 	return (rv);
 }
 
 static	int
 devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
 {
 	switch (cmd) {
 	case FIONBIO:
 		if (*(int*)data)
 			devsoftc.nonblock = 1;
 		else
 			devsoftc.nonblock = 0;
 		return (0);
 	case FIOASYNC:
 		if (*(int*)data)
 			devsoftc.async = 1;
 		else
 			devsoftc.async = 0;
 		return (0);
 	case FIOSETOWN:
 		return fsetown(*(int *)data, &devsoftc.sigio);
 	case FIOGETOWN:
 		*(int *)data = fgetown(&devsoftc.sigio);
 		return (0);
 
 		/* (un)Support for other fcntl() calls. */
 	case FIOCLEX:
 	case FIONCLEX:
 	case FIONREAD:
 	default:
 		break;
 	}
 	return (ENOTTY);
 }
 
 static	int
 devpoll(struct cdev *dev, int events, struct thread *td)
 {
 	int	revents = 0;
 
 	mtx_lock(&devsoftc.mtx);
 	if (events & (POLLIN | POLLRDNORM)) {
 		if (!TAILQ_EMPTY(&devsoftc.devq))
 			revents = events & (POLLIN | POLLRDNORM);
 		else
 			selrecord(td, &devsoftc.sel);
 	}
 	mtx_unlock(&devsoftc.mtx);
 
 	return (revents);
 }
 
 static int
 devkqfilter(struct cdev *dev, struct knote *kn)
 {
 	int error;
 
 	if (kn->kn_filter == EVFILT_READ) {
 		kn->kn_fop = &devctl_rfiltops;
 		knlist_add(&devsoftc.sel.si_note, kn, 0);
 		error = 0;
 	} else
 		error = EINVAL;
 	return (error);
 }
 
 static void
 filt_devctl_detach(struct knote *kn)
 {
 	knlist_remove(&devsoftc.sel.si_note, kn, 0);
 }
 
 static int
 filt_devctl_read(struct knote *kn, long hint)
 {
 	kn->kn_data = devsoftc.queued;
 	return (kn->kn_data != 0);
 }
 
 /**
  * @brief Return whether the userland process is running
  */
 boolean_t
 devctl_process_running(void)
 {
 	return (devsoftc.inuse == 1);
 }
 
 /**
  * @brief Queue data to be read from the devctl device
  *
  * Generic interface to queue data to the devctl device.  It is
  * assumed that @p data is properly formatted.  It is further assumed
  * that @p data is allocated using the M_BUS malloc type.
  */
-void
+static void
 devctl_queue_data_f(char *data, int flags)
 {
 	struct dev_event_info *n1 = NULL, *n2 = NULL;
 
 	if (strlen(data) == 0)
 		goto out;
 	if (devctl_queue_length == 0)
 		goto out;
 	n1 = malloc(sizeof(*n1), M_BUS, flags);
 	if (n1 == NULL)
 		goto out;
 	n1->dei_data = data;
 	mtx_lock(&devsoftc.mtx);
 	if (devctl_queue_length == 0) {
 		mtx_unlock(&devsoftc.mtx);
 		free(n1->dei_data, M_BUS);
 		free(n1, M_BUS);
 		return;
 	}
 	/* Leave at least one spot in the queue... */
 	while (devsoftc.queued > devctl_queue_length - 1) {
 		n2 = TAILQ_FIRST(&devsoftc.devq);
 		TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
 		free(n2->dei_data, M_BUS);
 		free(n2, M_BUS);
 		devsoftc.queued--;
 	}
 	TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
 	devsoftc.queued++;
 	cv_broadcast(&devsoftc.cv);
 	KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
 	mtx_unlock(&devsoftc.mtx);
 	selwakeup(&devsoftc.sel);
 	if (devsoftc.async && devsoftc.sigio != NULL)
 		pgsigio(&devsoftc.sigio, SIGIO, 0);
 	return;
 out:
 	/*
 	 * We have to free data on all error paths since the caller
 	 * assumes it will be free'd when this item is dequeued.
 	 */
 	free(data, M_BUS);
 	return;
 }
 
-void
+static void
 devctl_queue_data(char *data)
 {
 	devctl_queue_data_f(data, M_NOWAIT);
 }
 
 /**
  * @brief Send a 'notification' to userland, using standard ways
  */
 void
 devctl_notify_f(const char *system, const char *subsystem, const char *type,
     const char *data, int flags)
 {
 	int len = 0;
 	char *msg;
 
 	if (system == NULL)
 		return;		/* BOGUS!  Must specify system. */
 	if (subsystem == NULL)
 		return;		/* BOGUS!  Must specify subsystem. */
 	if (type == NULL)
 		return;		/* BOGUS!  Must specify type. */
 	len += strlen(" system=") + strlen(system);
 	len += strlen(" subsystem=") + strlen(subsystem);
 	len += strlen(" type=") + strlen(type);
 	/* add in the data message plus newline. */
 	if (data != NULL)
 		len += strlen(data);
 	len += 3;	/* '!', '\n', and NUL */
 	msg = malloc(len, M_BUS, flags);
 	if (msg == NULL)
 		return;		/* Drop it on the floor */
 	if (data != NULL)
 		snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
 		    system, subsystem, type, data);
 	else
 		snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
 		    system, subsystem, type);
 	devctl_queue_data_f(msg, flags);
 }
 
 void
 devctl_notify(const char *system, const char *subsystem, const char *type,
     const char *data)
 {
 	devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
 }
 
 /*
  * Common routine that tries to make sending messages as easy as possible.
  * We allocate memory for the data, copy strings into that, but do not
  * free it unless there's an error.  The dequeue part of the driver should
  * free the data.  We don't send data when the device is disabled.  We do
  * send data, even when we have no listeners, because we wish to avoid
  * races relating to startup and restart of listening applications.
  *
  * devaddq is designed to string together the type of event, with the
  * object of that event, plus the plug and play info and location info
  * for that event.  This is likely most useful for devices, but less
  * useful for other consumers of this interface.  Those should use
  * the devctl_queue_data() interface instead.
  */
 static void
 devaddq(const char *type, const char *what, device_t dev)
 {
 	char *data = NULL;
 	char *loc = NULL;
 	char *pnp = NULL;
 	const char *parstr;
 
 	if (!devctl_queue_length)/* Rare race, but lost races safely discard */
 		return;
 	data = malloc(1024, M_BUS, M_NOWAIT);
 	if (data == NULL)
 		goto bad;
 
 	/* get the bus specific location of this device */
 	loc = malloc(1024, M_BUS, M_NOWAIT);
 	if (loc == NULL)
 		goto bad;
 	*loc = '\0';
 	bus_child_location_str(dev, loc, 1024);
 
 	/* Get the bus specific pnp info of this device */
 	pnp = malloc(1024, M_BUS, M_NOWAIT);
 	if (pnp == NULL)
 		goto bad;
 	*pnp = '\0';
 	bus_child_pnpinfo_str(dev, pnp, 1024);
 
 	/* Get the parent of this device, or / if high enough in the tree. */
 	if (device_get_parent(dev) == NULL)
 		parstr = ".";	/* Or '/' ? */
 	else
 		parstr = device_get_nameunit(device_get_parent(dev));
 	/* String it all together. */
 	snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
 	  parstr);
 	free(loc, M_BUS);
 	free(pnp, M_BUS);
 	devctl_queue_data(data);
 	return;
 bad:
 	free(pnp, M_BUS);
 	free(loc, M_BUS);
 	free(data, M_BUS);
 	return;
 }
 
 /*
  * A device was added to the tree.  We are called just after it successfully
  * attaches (that is, probe and attach success for this device).  No call
  * is made if a device is merely parented into the tree.  See devnomatch
  * if probe fails.  If attach fails, no notification is sent (but maybe
  * we should have a different message for this).
  */
 static void
 devadded(device_t dev)
 {
 	devaddq("+", device_get_nameunit(dev), dev);
 }
 
 /*
  * A device was removed from the tree.  We are called just before this
  * happens.
  */
 static void
 devremoved(device_t dev)
 {
 	devaddq("-", device_get_nameunit(dev), dev);
 }
 
 /*
  * Called when there's no match for this device.  This is only called
  * the first time that no match happens, so we don't keep getting this
  * message.  Should that prove to be undesirable, we can change it.
  * This is called when all drivers that can attach to a given bus
  * decline to accept this device.  Other errors may not be detected.
  */
 static void
 devnomatch(device_t dev)
 {
 	devaddq("?", "", dev);
 }
 
 static int
 sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
 {
 	struct dev_event_info *n1;
 	int dis, error;
 
 	dis = (devctl_queue_length == 0);
 	error = sysctl_handle_int(oidp, &dis, 0, req);
 	if (error || !req->newptr)
 		return (error);
 	if (mtx_initialized(&devsoftc.mtx))
 		mtx_lock(&devsoftc.mtx);
 	if (dis) {
 		while (!TAILQ_EMPTY(&devsoftc.devq)) {
 			n1 = TAILQ_FIRST(&devsoftc.devq);
 			TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
 			free(n1->dei_data, M_BUS);
 			free(n1, M_BUS);
 		}
 		devsoftc.queued = 0;
 		devctl_queue_length = 0;
 	} else {
 		devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
 	}
 	if (mtx_initialized(&devsoftc.mtx))
 		mtx_unlock(&devsoftc.mtx);
 	return (0);
 }
 
 static int
 sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
 {
 	struct dev_event_info *n1;
 	int q, error;
 
 	q = devctl_queue_length;
 	error = sysctl_handle_int(oidp, &q, 0, req);
 	if (error || !req->newptr)
 		return (error);
 	if (q < 0)
 		return (EINVAL);
 	if (mtx_initialized(&devsoftc.mtx))
 		mtx_lock(&devsoftc.mtx);
 	devctl_queue_length = q;
 	while (devsoftc.queued > devctl_queue_length) {
 		n1 = TAILQ_FIRST(&devsoftc.devq);
 		TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
 		free(n1->dei_data, M_BUS);
 		free(n1, M_BUS);
 		devsoftc.queued--;
 	}
 	if (mtx_initialized(&devsoftc.mtx))
 		mtx_unlock(&devsoftc.mtx);
 	return (0);
 }
 
 /**
  * @brief safely quotes strings that might have double quotes in them.
  *
  * The devctl protocol relies on quoted strings having matching quotes.
  * This routine quotes any internal quotes so the resulting string
  * is safe to pass to snprintf to construct, for example pnp info strings.
  *
  * @param sb	sbuf to place the characters into
  * @param src	Original buffer.
  */
 void
 devctl_safe_quote_sb(struct sbuf *sb, const char *src)
 {
 	while (*src != '\0') {
 		if (*src == '"' || *src == '\\')
 			sbuf_putc(sb, '\\');
 		sbuf_putc(sb, *src++);
 	}
 }
 
 /* End of /dev/devctl code */
 
 static TAILQ_HEAD(,device)	bus_data_devices;
 static int bus_data_generation = 1;
 
 static kobj_method_t null_methods[] = {
 	KOBJMETHOD_END
 };
 
 DEFINE_CLASS(null, null_methods, 0);
 
 /*
  * Bus pass implementation
  */
 
 static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
 int bus_current_pass = BUS_PASS_ROOT;
 
 /**
  * @internal
  * @brief Register the pass level of a new driver attachment
  *
  * Register a new driver attachment's pass level.  If no driver
  * attachment with the same pass level has been added, then @p new
  * will be added to the global passes list.
  *
  * @param new		the new driver attachment
  */
 static void
 driver_register_pass(struct driverlink *new)
 {
 	struct driverlink *dl;
 
 	/* We only consider pass numbers during boot. */
 	if (bus_current_pass == BUS_PASS_DEFAULT)
 		return;
 
 	/*
 	 * Walk the passes list.  If we already know about this pass
 	 * then there is nothing to do.  If we don't, then insert this
 	 * driver link into the list.
 	 */
 	TAILQ_FOREACH(dl, &passes, passlink) {
 		if (dl->pass < new->pass)
 			continue;
 		if (dl->pass == new->pass)
 			return;
 		TAILQ_INSERT_BEFORE(dl, new, passlink);
 		return;
 	}
 	TAILQ_INSERT_TAIL(&passes, new, passlink);
 }
 
 /**
  * @brief Raise the current bus pass
  *
  * Raise the current bus pass level to @p pass.  Call the BUS_NEW_PASS()
  * method on the root bus to kick off a new device tree scan for each
  * new pass level that has at least one driver.
  */
 void
 bus_set_pass(int pass)
 {
 	struct driverlink *dl;
 
 	if (bus_current_pass > pass)
 		panic("Attempt to lower bus pass level");
 
 	TAILQ_FOREACH(dl, &passes, passlink) {
 		/* Skip pass values below the current pass level. */
 		if (dl->pass <= bus_current_pass)
 			continue;
 
 		/*
 		 * Bail once we hit a driver with a pass level that is
 		 * too high.
 		 */
 		if (dl->pass > pass)
 			break;
 
 		/*
 		 * Raise the pass level to the next level and rescan
 		 * the tree.
 		 */
 		bus_current_pass = dl->pass;
 		BUS_NEW_PASS(root_bus);
 	}
 
 	/*
 	 * If there isn't a driver registered for the requested pass,
 	 * then bus_current_pass might still be less than 'pass'.  Set
 	 * it to 'pass' in that case.
 	 */
 	if (bus_current_pass < pass)
 		bus_current_pass = pass;
 	KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
 }
 
 /*
  * Devclass implementation
  */
 
 static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
 
 /**
  * @internal
  * @brief Find or create a device class
  *
  * If a device class with the name @p classname exists, return it,
  * otherwise if @p create is non-zero create and return a new device
  * class.
  *
  * If @p parentname is non-NULL, the parent of the devclass is set to
  * the devclass of that name.
  *
  * @param classname	the devclass name to find or create
  * @param parentname	the parent devclass name or @c NULL
  * @param create	non-zero to create a devclass
  */
 static devclass_t
 devclass_find_internal(const char *classname, const char *parentname,
 		       int create)
 {
 	devclass_t dc;
 
 	PDEBUG(("looking for %s", classname));
 	if (!classname)
 		return (NULL);
 
 	TAILQ_FOREACH(dc, &devclasses, link) {
 		if (!strcmp(dc->name, classname))
 			break;
 	}
 
 	if (create && !dc) {
 		PDEBUG(("creating %s", classname));
 		dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
 		    M_BUS, M_NOWAIT | M_ZERO);
 		if (!dc)
 			return (NULL);
 		dc->parent = NULL;
 		dc->name = (char*) (dc + 1);
 		strcpy(dc->name, classname);
 		TAILQ_INIT(&dc->drivers);
 		TAILQ_INSERT_TAIL(&devclasses, dc, link);
 
 		bus_data_generation_update();
 	}
 
 	/*
 	 * If a parent class is specified, then set that as our parent so
 	 * that this devclass will support drivers for the parent class as
 	 * well.  If the parent class has the same name don't do this though
 	 * as it creates a cycle that can trigger an infinite loop in
 	 * device_probe_child() if a device exists for which there is no
 	 * suitable driver.
 	 */
 	if (parentname && dc && !dc->parent &&
 	    strcmp(classname, parentname) != 0) {
 		dc->parent = devclass_find_internal(parentname, NULL, TRUE);
 		dc->parent->flags |= DC_HAS_CHILDREN;
 	}
 
 	return (dc);
 }
 
 /**
  * @brief Create a device class
  *
  * If a device class with the name @p classname exists, return it,
  * otherwise create and return a new device class.
  *
  * @param classname	the devclass name to find or create
  */
 devclass_t
 devclass_create(const char *classname)
 {
 	return (devclass_find_internal(classname, NULL, TRUE));
 }
 
 /**
  * @brief Find a device class
  *
  * If a device class with the name @p classname exists, return it,
  * otherwise return @c NULL.
  *
  * @param classname	the devclass name to find
  */
 devclass_t
 devclass_find(const char *classname)
 {
 	return (devclass_find_internal(classname, NULL, FALSE));
 }
 
 /**
  * @brief Register that a device driver has been added to a devclass
  *
  * Register that a device driver has been added to a devclass.  This
  * is called by devclass_add_driver to accomplish the recursive
  * notification of all the children classes of dc, as well as dc.
  * Each layer will have BUS_DRIVER_ADDED() called for all instances of
  * the devclass.
  *
  * We do a full search here of the devclass list at each iteration
  * level to save storing children-lists in the devclass structure.  If
  * we ever move beyond a few dozen devices doing this, we may need to
  * reevaluate...
  *
  * @param dc		the devclass to edit
  * @param driver	the driver that was just added
  */
 static void
 devclass_driver_added(devclass_t dc, driver_t *driver)
 {
 	devclass_t parent;
 	int i;
 
 	/*
 	 * Call BUS_DRIVER_ADDED for any existing buses in this class.
 	 */
 	for (i = 0; i < dc->maxunit; i++)
 		if (dc->devices[i] && device_is_attached(dc->devices[i]))
 			BUS_DRIVER_ADDED(dc->devices[i], driver);
 
 	/*
 	 * Walk through the children classes.  Since we only keep a
 	 * single parent pointer around, we walk the entire list of
 	 * devclasses looking for children.  We set the
 	 * DC_HAS_CHILDREN flag when a child devclass is created on
 	 * the parent, so we only walk the list for those devclasses
 	 * that have children.
 	 */
 	if (!(dc->flags & DC_HAS_CHILDREN))
 		return;
 	parent = dc;
 	TAILQ_FOREACH(dc, &devclasses, link) {
 		if (dc->parent == parent)
 			devclass_driver_added(dc, driver);
 	}
 }
 
 /**
  * @brief Add a device driver to a device class
  *
  * Add a device driver to a devclass. This is normally called
  * automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
  * all devices in the devclass will be called to allow them to attempt
  * to re-probe any unmatched children.
  *
  * @param dc		the devclass to edit
  * @param driver	the driver to register
  */
 int
 devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
 {
 	driverlink_t dl;
 	const char *parentname;
 
 	PDEBUG(("%s", DRIVERNAME(driver)));
 
 	/* Don't allow invalid pass values. */
 	if (pass <= BUS_PASS_ROOT)
 		return (EINVAL);
 
 	dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
 	if (!dl)
 		return (ENOMEM);
 
 	/*
 	 * Compile the driver's methods. Also increase the reference count
 	 * so that the class doesn't get freed when the last instance
 	 * goes. This means we can safely use static methods and avoids a
 	 * double-free in devclass_delete_driver.
 	 */
 	kobj_class_compile((kobj_class_t) driver);
 
 	/*
 	 * If the driver has any base classes, make the
 	 * devclass inherit from the devclass of the driver's
 	 * first base class. This will allow the system to
 	 * search for drivers in both devclasses for children
 	 * of a device using this driver.
 	 */
 	if (driver->baseclasses)
 		parentname = driver->baseclasses[0]->name;
 	else
 		parentname = NULL;
 	*dcp = devclass_find_internal(driver->name, parentname, TRUE);
 
 	dl->driver = driver;
 	TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
 	driver->refs++;		/* XXX: kobj_mtx */
 	dl->pass = pass;
 	driver_register_pass(dl);
 
 	if (device_frozen) {
 		dl->flags |= DL_DEFERRED_PROBE;
 	} else {
 		devclass_driver_added(dc, driver);
 	}
 	bus_data_generation_update();
 	return (0);
 }
 
 /**
  * @brief Register that a device driver has been deleted from a devclass
  *
  * Register that a device driver has been removed from a devclass.
  * This is called by devclass_delete_driver to accomplish the
  * recursive notification of all the children classes of busclass, as
  * well as busclass.  Each layer will attempt to detach the driver
  * from any devices that are children of the bus's devclass.  The function
  * will return an error if a device fails to detach.
  *
  * We do a full search here of the devclass list at each iteration
  * level to save storing children-lists in the devclass structure.  If
  * we ever move beyond a few dozen devices doing this, we may need to
  * reevaluate...
  *
  * @param busclass	the devclass of the parent bus
  * @param dc		the devclass of the driver being deleted
  * @param driver	the driver being deleted
  */
 static int
 devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
 {
 	devclass_t parent;
 	device_t dev;
 	int error, i;
 
 	/*
 	 * Disassociate from any devices.  We iterate through all the
 	 * devices in the devclass of the driver and detach any which are
 	 * using the driver and which have a parent in the devclass which
 	 * we are deleting from.
 	 *
 	 * Note that since a driver can be in multiple devclasses, we
 	 * should not detach devices which are not children of devices in
 	 * the affected devclass.
 	 *
 	 * If we're frozen, we don't generate NOMATCH events. Mark to
 	 * generate later.
 	 */
 	for (i = 0; i < dc->maxunit; i++) {
 		if (dc->devices[i]) {
 			dev = dc->devices[i];
 			if (dev->driver == driver && dev->parent &&
 			    dev->parent->devclass == busclass) {
 				if ((error = device_detach(dev)) != 0)
 					return (error);
 				if (device_frozen) {
 					dev->flags &= ~DF_DONENOMATCH;
 					dev->flags |= DF_NEEDNOMATCH;
 				} else {
 					BUS_PROBE_NOMATCH(dev->parent, dev);
 					devnomatch(dev);
 					dev->flags |= DF_DONENOMATCH;
 				}
 			}
 		}
 	}
 
 	/*
 	 * Walk through the children classes.  Since we only keep a
 	 * single parent pointer around, we walk the entire list of
 	 * devclasses looking for children.  We set the
 	 * DC_HAS_CHILDREN flag when a child devclass is created on
 	 * the parent, so we only walk the list for those devclasses
 	 * that have children.
 	 */
 	if (!(busclass->flags & DC_HAS_CHILDREN))
 		return (0);
 	parent = busclass;
 	TAILQ_FOREACH(busclass, &devclasses, link) {
 		if (busclass->parent == parent) {
 			error = devclass_driver_deleted(busclass, dc, driver);
 			if (error)
 				return (error);
 		}
 	}
 	return (0);
 }
 
 /**
  * @brief Delete a device driver from a device class
  *
  * Delete a device driver from a devclass. This is normally called
  * automatically by DRIVER_MODULE().
  *
  * If the driver is currently attached to any devices,
  * devclass_delete_driver() will first attempt to detach from each
  * device. If one of the detach calls fails, the driver will not be
  * deleted.
  *
  * @param dc		the devclass to edit
  * @param driver	the driver to unregister
  */
 int
 devclass_delete_driver(devclass_t busclass, driver_t *driver)
 {
 	devclass_t dc = devclass_find(driver->name);
 	driverlink_t dl;
 	int error;
 
 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 
 	if (!dc)
 		return (0);
 
 	/*
 	 * Find the link structure in the bus' list of drivers.
 	 */
 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
 		if (dl->driver == driver)
 			break;
 	}
 
 	if (!dl) {
 		PDEBUG(("%s not found in %s list", driver->name,
 		    busclass->name));
 		return (ENOENT);
 	}
 
 	error = devclass_driver_deleted(busclass, dc, driver);
 	if (error != 0)
 		return (error);
 
 	TAILQ_REMOVE(&busclass->drivers, dl, link);
 	free(dl, M_BUS);
 
 	/* XXX: kobj_mtx */
 	driver->refs--;
 	if (driver->refs == 0)
 		kobj_class_free((kobj_class_t) driver);
 
 	bus_data_generation_update();
 	return (0);
 }
 
 /**
  * @brief Quiesces a set of device drivers from a device class
  *
  * Quiesce a device driver from a devclass. This is normally called
  * automatically by DRIVER_MODULE().
  *
  * If the driver is currently attached to any devices,
  * devclass_quiesece_driver() will first attempt to quiesce each
  * device.
  *
  * @param dc		the devclass to edit
  * @param driver	the driver to unregister
  */
 static int
 devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
 {
 	devclass_t dc = devclass_find(driver->name);
 	driverlink_t dl;
 	device_t dev;
 	int i;
 	int error;
 
 	PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
 
 	if (!dc)
 		return (0);
 
 	/*
 	 * Find the link structure in the bus' list of drivers.
 	 */
 	TAILQ_FOREACH(dl, &busclass->drivers, link) {
 		if (dl->driver == driver)
 			break;
 	}
 
 	if (!dl) {
 		PDEBUG(("%s not found in %s list", driver->name,
 		    busclass->name));
 		return (ENOENT);
 	}
 
 	/*
 	 * Quiesce all devices.  We iterate through all the devices in
 	 * the devclass of the driver and quiesce any which are using
 	 * the driver and which have a parent in the devclass which we
 	 * are quiescing.
 	 *
 	 * Note that since a driver can be in multiple devclasses, we
 	 * should not quiesce devices which are not children of
 	 * devices in the affected devclass.
 	 */
 	for (i = 0; i < dc->maxunit; i++) {
 		if (dc->devices[i]) {
 			dev = dc->devices[i];
 			if (dev->driver == driver && dev->parent &&
 			    dev->parent->devclass == busclass) {
 				if ((error = device_quiesce(dev)) != 0)
 					return (error);
 			}
 		}
 	}
 
 	return (0);
 }
 
 /**
  * @internal
  */
 static driverlink_t
 devclass_find_driver_internal(devclass_t dc, const char *classname)
 {
 	driverlink_t dl;
 
 	PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
 
 	TAILQ_FOREACH(dl, &dc->drivers, link) {
 		if (!strcmp(dl->driver->name, classname))
 			return (dl);
 	}
 
 	PDEBUG(("not found"));
 	return (NULL);
 }
 
 /**
  * @brief Return the name of the devclass
  */
 const char *
 devclass_get_name(devclass_t dc)
 {
 	return (dc->name);
 }
 
 /**
  * @brief Find a device given a unit number
  *
  * @param dc		the devclass to search
  * @param unit		the unit number to search for
  *
  * @returns		the device with the given unit number or @c
  *			NULL if there is no such device
  */
 device_t
 devclass_get_device(devclass_t dc, int unit)
 {
 	if (dc == NULL || unit < 0 || unit >= dc->maxunit)
 		return (NULL);
 	return (dc->devices[unit]);
 }
 
 /**
  * @brief Find the softc field of a device given a unit number
  *
  * @param dc		the devclass to search
  * @param unit		the unit number to search for
  *
  * @returns		the softc field of the device with the given
  *			unit number or @c NULL if there is no such
  *			device
  */
 void *
 devclass_get_softc(devclass_t dc, int unit)
 {
 	device_t dev;
 
 	dev = devclass_get_device(dc, unit);
 	if (!dev)
 		return (NULL);
 
 	return (device_get_softc(dev));
 }
 
 /**
  * @brief Get a list of devices in the devclass
  *
  * An array containing a list of all the devices in the given devclass
  * is allocated and returned in @p *devlistp. The number of devices
  * in the array is returned in @p *devcountp. The caller should free
  * the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
  *
  * @param dc		the devclass to examine
  * @param devlistp	points at location for array pointer return
  *			value
  * @param devcountp	points at location for array size return value
  *
  * @retval 0		success
  * @retval ENOMEM	the array allocation failed
  */
 int
 devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
 {
 	int count, i;
 	device_t *list;
 
 	count = devclass_get_count(dc);
 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 	if (!list)
 		return (ENOMEM);
 
 	count = 0;
 	for (i = 0; i < dc->maxunit; i++) {
 		if (dc->devices[i]) {
 			list[count] = dc->devices[i];
 			count++;
 		}
 	}
 
 	*devlistp = list;
 	*devcountp = count;
 
 	return (0);
 }
 
 /**
  * @brief Get a list of drivers in the devclass
  *
  * An array containing a list of pointers to all the drivers in the
  * given devclass is allocated and returned in @p *listp.  The number
  * of drivers in the array is returned in @p *countp. The caller should
  * free the array using @c free(p, M_TEMP).
  *
  * @param dc		the devclass to examine
  * @param listp		gives location for array pointer return value
  * @param countp	gives location for number of array elements
  *			return value
  *
  * @retval 0		success
  * @retval ENOMEM	the array allocation failed
  */
 int
 devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
 {
 	driverlink_t dl;
 	driver_t **list;
 	int count;
 
 	count = 0;
 	TAILQ_FOREACH(dl, &dc->drivers, link)
 		count++;
 	list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
 	if (list == NULL)
 		return (ENOMEM);
 
 	count = 0;
 	TAILQ_FOREACH(dl, &dc->drivers, link) {
 		list[count] = dl->driver;
 		count++;
 	}
 	*listp = list;
 	*countp = count;
 
 	return (0);
 }
 
 /**
  * @brief Get the number of devices in a devclass
  *
  * @param dc		the devclass to examine
  */
 int
 devclass_get_count(devclass_t dc)
 {
 	int count, i;
 
 	count = 0;
 	for (i = 0; i < dc->maxunit; i++)
 		if (dc->devices[i])
 			count++;
 	return (count);
 }
 
 /**
  * @brief Get the maximum unit number used in a devclass
  *
  * Note that this is one greater than the highest currently-allocated
  * unit.  If a null devclass_t is passed in, -1 is returned to indicate
  * that not even the devclass has been allocated yet.
  *
  * @param dc		the devclass to examine
  */
 int
 devclass_get_maxunit(devclass_t dc)
 {
 	if (dc == NULL)
 		return (-1);
 	return (dc->maxunit);
 }
 
 /**
  * @brief Find a free unit number in a devclass
  *
  * This function searches for the first unused unit number greater
  * that or equal to @p unit.
  *
  * @param dc		the devclass to examine
  * @param unit		the first unit number to check
  */
 int
 devclass_find_free_unit(devclass_t dc, int unit)
 {
 	if (dc == NULL)
 		return (unit);
 	while (unit < dc->maxunit && dc->devices[unit] != NULL)
 		unit++;
 	return (unit);
 }
 
 /**
  * @brief Set the parent of a devclass
  *
  * The parent class is normally initialised automatically by
  * DRIVER_MODULE().
  *
  * @param dc		the devclass to edit
  * @param pdc		the new parent devclass
  */
 void
 devclass_set_parent(devclass_t dc, devclass_t pdc)
 {
 	dc->parent = pdc;
 }
 
 /**
  * @brief Get the parent of a devclass
  *
  * @param dc		the devclass to examine
  */
 devclass_t
 devclass_get_parent(devclass_t dc)
 {
 	return (dc->parent);
 }
 
 struct sysctl_ctx_list *
 devclass_get_sysctl_ctx(devclass_t dc)
 {
 	return (&dc->sysctl_ctx);
 }
 
 struct sysctl_oid *
 devclass_get_sysctl_tree(devclass_t dc)
 {
 	return (dc->sysctl_tree);
 }
 
 /**
  * @internal
  * @brief Allocate a unit number
  *
  * On entry, @p *unitp is the desired unit number (or @c -1 if any
  * will do). The allocated unit number is returned in @p *unitp.
 
  * @param dc		the devclass to allocate from
  * @param unitp		points at the location for the allocated unit
  *			number
  *
  * @retval 0		success
  * @retval EEXIST	the requested unit number is already allocated
  * @retval ENOMEM	memory allocation failure
  */
 static int
 devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
 {
 	const char *s;
 	int unit = *unitp;
 
 	PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
 
 	/* Ask the parent bus if it wants to wire this device. */
 	if (unit == -1)
 		BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
 		    &unit);
 
 	/* If we were given a wired unit number, check for existing device */
 	/* XXX imp XXX */
 	if (unit != -1) {
 		if (unit >= 0 && unit < dc->maxunit &&
 		    dc->devices[unit] != NULL) {
 			if (bootverbose)
 				printf("%s: %s%d already exists; skipping it\n",
 				    dc->name, dc->name, *unitp);
 			return (EEXIST);
 		}
 	} else {
 		/* Unwired device, find the next available slot for it */
 		unit = 0;
 		for (unit = 0;; unit++) {
 			/* If there is an "at" hint for a unit then skip it. */
 			if (resource_string_value(dc->name, unit, "at", &s) ==
 			    0)
 				continue;
 
 			/* If this device slot is already in use, skip it. */
 			if (unit < dc->maxunit && dc->devices[unit] != NULL)
 				continue;
 
 			break;
 		}
 	}
 
 	/*
 	 * We've selected a unit beyond the length of the table, so let's
 	 * extend the table to make room for all units up to and including
 	 * this one.
 	 */
 	if (unit >= dc->maxunit) {
 		device_t *newlist, *oldlist;
 		int newsize;
 
 		oldlist = dc->devices;
 		newsize = roundup((unit + 1),
 		    MAX(1, MINALLOCSIZE / sizeof(device_t)));
 		newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
 		if (!newlist)
 			return (ENOMEM);
 		if (oldlist != NULL)
 			bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
 		bzero(newlist + dc->maxunit,
 		    sizeof(device_t) * (newsize - dc->maxunit));
 		dc->devices = newlist;
 		dc->maxunit = newsize;
 		if (oldlist != NULL)
 			free(oldlist, M_BUS);
 	}
 	PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
 
 	*unitp = unit;
 	return (0);
 }
 
 /**
  * @internal
  * @brief Add a device to a devclass
  *
  * A unit number is allocated for the device (using the device's
  * preferred unit number if any) and the device is registered in the
  * devclass. This allows the device to be looked up by its unit
  * number, e.g. by decoding a dev_t minor number.
  *
  * @param dc		the devclass to add to
  * @param dev		the device to add
  *
  * @retval 0		success
  * @retval EEXIST	the requested unit number is already allocated
  * @retval ENOMEM	memory allocation failure
  */
 static int
 devclass_add_device(devclass_t dc, device_t dev)
 {
 	int buflen, error;
 
 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 
 	buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
 	if (buflen < 0)
 		return (ENOMEM);
 	dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
 	if (!dev->nameunit)
 		return (ENOMEM);
 
 	if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
 		free(dev->nameunit, M_BUS);
 		dev->nameunit = NULL;
 		return (error);
 	}
 	dc->devices[dev->unit] = dev;
 	dev->devclass = dc;
 	snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
 
 	return (0);
 }
 
 /**
  * @internal
  * @brief Delete a device from a devclass
  *
  * The device is removed from the devclass's device list and its unit
  * number is freed.
 
  * @param dc		the devclass to delete from
  * @param dev		the device to delete
  *
  * @retval 0		success
  */
 static int
 devclass_delete_device(devclass_t dc, device_t dev)
 {
 	if (!dc || !dev)
 		return (0);
 
 	PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
 
 	if (dev->devclass != dc || dc->devices[dev->unit] != dev)
 		panic("devclass_delete_device: inconsistent device class");
 	dc->devices[dev->unit] = NULL;
 	if (dev->flags & DF_WILDCARD)
 		dev->unit = -1;
 	dev->devclass = NULL;
 	free(dev->nameunit, M_BUS);
 	dev->nameunit = NULL;
 
 	return (0);
 }
 
 /**
  * @internal
  * @brief Make a new device and add it as a child of @p parent
  *
  * @param parent	the parent of the new device
  * @param name		the devclass name of the new device or @c NULL
  *			to leave the devclass unspecified
  * @parem unit		the unit number of the new device of @c -1 to
  *			leave the unit number unspecified
  *
  * @returns the new device
  */
 static device_t
 make_device(device_t parent, const char *name, int unit)
 {
 	device_t dev;
 	devclass_t dc;
 
 	PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
 
 	if (name) {
 		dc = devclass_find_internal(name, NULL, TRUE);
 		if (!dc) {
 			printf("make_device: can't find device class %s\n",
 			    name);
 			return (NULL);
 		}
 	} else {
 		dc = NULL;
 	}
 
 	dev = malloc(sizeof(*dev), M_BUS, M_NOWAIT|M_ZERO);
 	if (!dev)
 		return (NULL);
 
 	dev->parent = parent;
 	TAILQ_INIT(&dev->children);
 	kobj_init((kobj_t) dev, &null_class);
 	dev->driver = NULL;
 	dev->devclass = NULL;
 	dev->unit = unit;
 	dev->nameunit = NULL;
 	dev->desc = NULL;
 	dev->busy = 0;
 	dev->devflags = 0;
 	dev->flags = DF_ENABLED;
 	dev->order = 0;
 	if (unit == -1)
 		dev->flags |= DF_WILDCARD;
 	if (name) {
 		dev->flags |= DF_FIXEDCLASS;
 		if (devclass_add_device(dc, dev)) {
 			kobj_delete((kobj_t) dev, M_BUS);
 			return (NULL);
 		}
 	}
 	if (parent != NULL && device_has_quiet_children(parent))
 		dev->flags |= DF_QUIET | DF_QUIET_CHILDREN;
 	dev->ivars = NULL;
 	dev->softc = NULL;
 
 	dev->state = DS_NOTPRESENT;
 
 	TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
 	bus_data_generation_update();
 
 	return (dev);
 }
 
 /**
  * @internal
  * @brief Print a description of a device.
  */
 static int
 device_print_child(device_t dev, device_t child)
 {
 	int retval = 0;
 
 	if (device_is_alive(child))
 		retval += BUS_PRINT_CHILD(dev, child);
 	else
 		retval += device_printf(child, " not found\n");
 
 	return (retval);
 }
 
 /**
  * @brief Create a new device
  *
  * This creates a new device and adds it as a child of an existing
  * parent device. The new device will be added after the last existing
  * child with order zero.
  *
  * @param dev		the device which will be the parent of the
  *			new child device
  * @param name		devclass name for new device or @c NULL if not
  *			specified
  * @param unit		unit number for new device or @c -1 if not
  *			specified
  *
  * @returns		the new device
  */
 device_t
 device_add_child(device_t dev, const char *name, int unit)
 {
 	return (device_add_child_ordered(dev, 0, name, unit));
 }
 
 /**
  * @brief Create a new device
  *
  * This creates a new device and adds it as a child of an existing
  * parent device. The new device will be added after the last existing
  * child with the same order.
  *
  * @param dev		the device which will be the parent of the
  *			new child device
  * @param order		a value which is used to partially sort the
  *			children of @p dev - devices created using
  *			lower values of @p order appear first in @p
  *			dev's list of children
  * @param name		devclass name for new device or @c NULL if not
  *			specified
  * @param unit		unit number for new device or @c -1 if not
  *			specified
  *
  * @returns		the new device
  */
 device_t
 device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
 {
 	device_t child;
 	device_t place;
 
 	PDEBUG(("%s at %s with order %u as unit %d",
 	    name, DEVICENAME(dev), order, unit));
 	KASSERT(name != NULL || unit == -1,
 	    ("child device with wildcard name and specific unit number"));
 
 	child = make_device(dev, name, unit);
 	if (child == NULL)
 		return (child);
 	child->order = order;
 
 	TAILQ_FOREACH(place, &dev->children, link) {
 		if (place->order > order)
 			break;
 	}
 
 	if (place) {
 		/*
 		 * The device 'place' is the first device whose order is
 		 * greater than the new child.
 		 */
 		TAILQ_INSERT_BEFORE(place, child, link);
 	} else {
 		/*
 		 * The new child's order is greater or equal to the order of
 		 * any existing device. Add the child to the tail of the list.
 		 */
 		TAILQ_INSERT_TAIL(&dev->children, child, link);
 	}
 
 	bus_data_generation_update();
 	return (child);
 }
 
 /**
  * @brief Delete a device
  *
  * This function deletes a device along with all of its children. If
  * the device currently has a driver attached to it, the device is
  * detached first using device_detach().
  *
  * @param dev		the parent device
  * @param child		the device to delete
  *
  * @retval 0		success
  * @retval non-zero	a unit error code describing the error
  */
 int
 device_delete_child(device_t dev, device_t child)
 {
 	int error;
 	device_t grandchild;
 
 	PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
 
 	/* detach parent before deleting children, if any */
 	if ((error = device_detach(child)) != 0)
 		return (error);
 	
 	/* remove children second */
 	while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
 		error = device_delete_child(child, grandchild);
 		if (error)
 			return (error);
 	}
 
 	if (child->devclass)
 		devclass_delete_device(child->devclass, child);
 	if (child->parent)
 		BUS_CHILD_DELETED(dev, child);
 	TAILQ_REMOVE(&dev->children, child, link);
 	TAILQ_REMOVE(&bus_data_devices, child, devlink);
 	kobj_delete((kobj_t) child, M_BUS);
 
 	bus_data_generation_update();
 	return (0);
 }
 
 /**
  * @brief Delete all children devices of the given device, if any.
  *
  * This function deletes all children devices of the given device, if
  * any, using the device_delete_child() function for each device it
  * finds. If a child device cannot be deleted, this function will
  * return an error code.
  *
  * @param dev		the parent device
  *
  * @retval 0		success
  * @retval non-zero	a device would not detach
  */
 int
 device_delete_children(device_t dev)
 {
 	device_t child;
 	int error;
 
 	PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
 
 	error = 0;
 
 	while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
 		error = device_delete_child(dev, child);
 		if (error) {
 			PDEBUG(("Failed deleting %s", DEVICENAME(child)));
 			break;
 		}
 	}
 	return (error);
 }
 
 /**
  * @brief Find a device given a unit number
  *
  * This is similar to devclass_get_devices() but only searches for
  * devices which have @p dev as a parent.
  *
  * @param dev		the parent device to search
  * @param unit		the unit number to search for.  If the unit is -1,
  *			return the first child of @p dev which has name
  *			@p classname (that is, the one with the lowest unit.)
  *
  * @returns		the device with the given unit number or @c
  *			NULL if there is no such device
  */
 device_t
 device_find_child(device_t dev, const char *classname, int unit)
 {
 	devclass_t dc;
 	device_t child;
 
 	dc = devclass_find(classname);
 	if (!dc)
 		return (NULL);
 
 	if (unit != -1) {
 		child = devclass_get_device(dc, unit);
 		if (child && child->parent == dev)
 			return (child);
 	} else {
 		for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
 			child = devclass_get_device(dc, unit);
 			if (child && child->parent == dev)
 				return (child);
 		}
 	}
 	return (NULL);
 }
 
 /**
  * @internal
  */
 static driverlink_t
 first_matching_driver(devclass_t dc, device_t dev)
 {
 	if (dev->devclass)
 		return (devclass_find_driver_internal(dc, dev->devclass->name));
 	return (TAILQ_FIRST(&dc->drivers));
 }
 
 /**
  * @internal
  */
 static driverlink_t
 next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
 {
 	if (dev->devclass) {
 		driverlink_t dl;
 		for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
 			if (!strcmp(dev->devclass->name, dl->driver->name))
 				return (dl);
 		return (NULL);
 	}
 	return (TAILQ_NEXT(last, link));
 }
 
 /**
  * @internal
  */
 int
 device_probe_child(device_t dev, device_t child)
 {
 	devclass_t dc;
 	driverlink_t best = NULL;
 	driverlink_t dl;
 	int result, pri = 0;
 	int hasclass = (child->devclass != NULL);
 
 	GIANT_REQUIRED;
 
 	dc = dev->devclass;
 	if (!dc)
 		panic("device_probe_child: parent device has no devclass");
 
 	/*
 	 * If the state is already probed, then return.  However, don't
 	 * return if we can rebid this object.
 	 */
 	if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
 		return (0);
 
 	for (; dc; dc = dc->parent) {
 		for (dl = first_matching_driver(dc, child);
 		     dl;
 		     dl = next_matching_driver(dc, child, dl)) {
 			/* If this driver's pass is too high, then ignore it. */
 			if (dl->pass > bus_current_pass)
 				continue;
 
 			PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
 			result = device_set_driver(child, dl->driver);
 			if (result == ENOMEM)
 				return (result);
 			else if (result != 0)
 				continue;
 			if (!hasclass) {
 				if (device_set_devclass(child,
 				    dl->driver->name) != 0) {
 					char const * devname =
 					    device_get_name(child);
 					if (devname == NULL)
 						devname = "(unknown)";
 					printf("driver bug: Unable to set "
 					    "devclass (class: %s "
 					    "devname: %s)\n",
 					    dl->driver->name,
 					    devname);
 					(void)device_set_driver(child, NULL);
 					continue;
 				}
 			}
 
 			/* Fetch any flags for the device before probing. */
 			resource_int_value(dl->driver->name, child->unit,
 			    "flags", &child->devflags);
 
 			result = DEVICE_PROBE(child);
 
 			/* Reset flags and devclass before the next probe. */
 			child->devflags = 0;
 			if (!hasclass)
 				(void)device_set_devclass(child, NULL);
 
 			/*
 			 * If the driver returns SUCCESS, there can be
 			 * no higher match for this device.
 			 */
 			if (result == 0) {
 				best = dl;
 				pri = 0;
 				break;
 			}
 
 			/*
 			 * Reset DF_QUIET in case this driver doesn't
 			 * end up as the best driver.
 			 */
 			device_verbose(child);
 
 			/*
 			 * Probes that return BUS_PROBE_NOWILDCARD or lower
 			 * only match on devices whose driver was explicitly
 			 * specified.
 			 */
 			if (result <= BUS_PROBE_NOWILDCARD &&
 			    !(child->flags & DF_FIXEDCLASS)) {
 				result = ENXIO;
 			}
 
 			/*
 			 * The driver returned an error so it
 			 * certainly doesn't match.
 			 */
 			if (result > 0) {
 				(void)device_set_driver(child, NULL);
 				continue;
 			}
 
 			/*
 			 * A priority lower than SUCCESS, remember the
 			 * best matching driver. Initialise the value
 			 * of pri for the first match.
 			 */
 			if (best == NULL || result > pri) {
 				best = dl;
 				pri = result;
 				continue;
 			}
 		}
 		/*
 		 * If we have an unambiguous match in this devclass,
 		 * don't look in the parent.
 		 */
 		if (best && pri == 0)
 			break;
 	}
 
 	/*
 	 * If we found a driver, change state and initialise the devclass.
 	 */
 	/* XXX What happens if we rebid and got no best? */
 	if (best) {
 		/*
 		 * If this device was attached, and we were asked to
 		 * rescan, and it is a different driver, then we have
 		 * to detach the old driver and reattach this new one.
 		 * Note, we don't have to check for DF_REBID here
 		 * because if the state is > DS_ALIVE, we know it must
 		 * be.
 		 *
 		 * This assumes that all DF_REBID drivers can have
 		 * their probe routine called at any time and that
 		 * they are idempotent as well as completely benign in
 		 * normal operations.
 		 *
 		 * We also have to make sure that the detach
 		 * succeeded, otherwise we fail the operation (or
 		 * maybe it should just fail silently?  I'm torn).
 		 */
 		if (child->state > DS_ALIVE && best->driver != child->driver)
 			if ((result = device_detach(dev)) != 0)
 				return (result);
 
 		/* Set the winning driver, devclass, and flags. */
 		if (!child->devclass) {
 			result = device_set_devclass(child, best->driver->name);
 			if (result != 0)
 				return (result);
 		}
 		result = device_set_driver(child, best->driver);
 		if (result != 0)
 			return (result);
 		resource_int_value(best->driver->name, child->unit,
 		    "flags", &child->devflags);
 
 		if (pri < 0) {
 			/*
 			 * A bit bogus. Call the probe method again to make
 			 * sure that we have the right description.
 			 */
 			DEVICE_PROBE(child);
 #if 0
 			child->flags |= DF_REBID;
 #endif
 		} else
 			child->flags &= ~DF_REBID;
 		child->state = DS_ALIVE;
 
 		bus_data_generation_update();
 		return (0);
 	}
 
 	return (ENXIO);
 }
 
 /**
  * @brief Return the parent of a device
  */
 device_t
 device_get_parent(device_t dev)
 {
 	return (dev->parent);
 }
 
 /**
  * @brief Get a list of children of a device
  *
  * An array containing a list of all the children of the given device
  * is allocated and returned in @p *devlistp. The number of devices
  * in the array is returned in @p *devcountp. The caller should free
  * the array using @c free(p, M_TEMP).
  *
  * @param dev		the device to examine
  * @param devlistp	points at location for array pointer return
  *			value
  * @param devcountp	points at location for array size return value
  *
  * @retval 0		success
  * @retval ENOMEM	the array allocation failed
  */
 int
 device_get_children(device_t dev, device_t **devlistp, int *devcountp)
 {
 	int count;
 	device_t child;
 	device_t *list;
 
 	count = 0;
 	TAILQ_FOREACH(child, &dev->children, link) {
 		count++;
 	}
 	if (count == 0) {
 		*devlistp = NULL;
 		*devcountp = 0;
 		return (0);
 	}
 
 	list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
 	if (!list)
 		return (ENOMEM);
 
 	count = 0;
 	TAILQ_FOREACH(child, &dev->children, link) {
 		list[count] = child;
 		count++;
 	}
 
 	*devlistp = list;
 	*devcountp = count;
 
 	return (0);
 }
 
 /**
  * @brief Return the current driver for the device or @c NULL if there
  * is no driver currently attached
  */
 driver_t *
 device_get_driver(device_t dev)
 {
 	return (dev->driver);
 }
 
 /**
  * @brief Return the current devclass for the device or @c NULL if
  * there is none.
  */
 devclass_t
 device_get_devclass(device_t dev)
 {
 	return (dev->devclass);
 }
 
 /**
  * @brief Return the name of the device's devclass or @c NULL if there
  * is none.
  */
 const char *
 device_get_name(device_t dev)
 {
 	if (dev != NULL && dev->devclass)
 		return (devclass_get_name(dev->devclass));
 	return (NULL);
 }
 
 /**
  * @brief Return a string containing the device's devclass name
  * followed by an ascii representation of the device's unit number
  * (e.g. @c "foo2").
  */
 const char *
 device_get_nameunit(device_t dev)
 {
 	return (dev->nameunit);
 }
 
 /**
  * @brief Return the device's unit number.
  */
 int
 device_get_unit(device_t dev)
 {
 	return (dev->unit);
 }
 
 /**
  * @brief Return the device's description string
  */
 const char *
 device_get_desc(device_t dev)
 {
 	return (dev->desc);
 }
 
 /**
  * @brief Return the device's flags
  */
 uint32_t
 device_get_flags(device_t dev)
 {
 	return (dev->devflags);
 }
 
 struct sysctl_ctx_list *
 device_get_sysctl_ctx(device_t dev)
 {
 	return (&dev->sysctl_ctx);
 }
 
 struct sysctl_oid *
 device_get_sysctl_tree(device_t dev)
 {
 	return (dev->sysctl_tree);
 }
 
 /**
  * @brief Print the name of the device followed by a colon and a space
  *
  * @returns the number of characters printed
  */
 int
 device_print_prettyname(device_t dev)
 {
 	const char *name = device_get_name(dev);
 
 	if (name == NULL)
 		return (printf("unknown: "));
 	return (printf("%s%d: ", name, device_get_unit(dev)));
 }
 
 /**
  * @brief Print the name of the device followed by a colon, a space
  * and the result of calling vprintf() with the value of @p fmt and
  * the following arguments.
  *
  * @returns the number of characters printed
  */
 int
 device_printf(device_t dev, const char * fmt, ...)
 {
 	char buf[128];
 	struct sbuf sb;
 	const char *name;
 	va_list ap;
 	size_t retval;
 
 	retval = 0;
 
 	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
 	sbuf_set_drain(&sb, sbuf_printf_drain, &retval);
 
 	name = device_get_name(dev);
 
 	if (name == NULL)
 		sbuf_cat(&sb, "unknown: ");
 	else
 		sbuf_printf(&sb, "%s%d: ", name, device_get_unit(dev));
 
 	va_start(ap, fmt);
 	sbuf_vprintf(&sb, fmt, ap);
 	va_end(ap);
 
 	sbuf_finish(&sb);
 	sbuf_delete(&sb);
 
 	return (retval);
 }
 
 /**
  * @internal
  */
 static void
 device_set_desc_internal(device_t dev, const char* desc, int copy)
 {
 	if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
 		free(dev->desc, M_BUS);
 		dev->flags &= ~DF_DESCMALLOCED;
 		dev->desc = NULL;
 	}
 
 	if (copy && desc) {
 		dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
 		if (dev->desc) {
 			strcpy(dev->desc, desc);
 			dev->flags |= DF_DESCMALLOCED;
 		}
 	} else {
 		/* Avoid a -Wcast-qual warning */
 		dev->desc = (char *)(uintptr_t) desc;
 	}
 
 	bus_data_generation_update();
 }
 
 /**
  * @brief Set the device's description
  *
  * The value of @c desc should be a string constant that will not
  * change (at least until the description is changed in a subsequent
  * call to device_set_desc() or device_set_desc_copy()).
  */
 void
 device_set_desc(device_t dev, const char* desc)
 {
 	device_set_desc_internal(dev, desc, FALSE);
 }
 
 /**
  * @brief Set the device's description
  *
  * The string pointed to by @c desc is copied. Use this function if
  * the device description is generated, (e.g. with sprintf()).
  */
 void
 device_set_desc_copy(device_t dev, const char* desc)
 {
 	device_set_desc_internal(dev, desc, TRUE);
 }
 
 /**
  * @brief Set the device's flags
  */
 void
 device_set_flags(device_t dev, uint32_t flags)
 {
 	dev->devflags = flags;
 }
 
 /**
  * @brief Return the device's softc field
  *
  * The softc is allocated and zeroed when a driver is attached, based
  * on the size field of the driver.
  */
 void *
 device_get_softc(device_t dev)
 {
 	return (dev->softc);
 }
 
 /**
  * @brief Set the device's softc field
  *
  * Most drivers do not need to use this since the softc is allocated
  * automatically when the driver is attached.
  */
 void
 device_set_softc(device_t dev, void *softc)
 {
 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
 		free(dev->softc, M_BUS_SC);
 	dev->softc = softc;
 	if (dev->softc)
 		dev->flags |= DF_EXTERNALSOFTC;
 	else
 		dev->flags &= ~DF_EXTERNALSOFTC;
 }
 
 /**
  * @brief Free claimed softc
  *
  * Most drivers do not need to use this since the softc is freed
  * automatically when the driver is detached.
  */
 void
 device_free_softc(void *softc)
 {
 	free(softc, M_BUS_SC);
 }
 
 /**
  * @brief Claim softc
  *
  * This function can be used to let the driver free the automatically
  * allocated softc using "device_free_softc()". This function is
  * useful when the driver is refcounting the softc and the softc
  * cannot be freed when the "device_detach" method is called.
  */
 void
 device_claim_softc(device_t dev)
 {
 	if (dev->softc)
 		dev->flags |= DF_EXTERNALSOFTC;
 	else
 		dev->flags &= ~DF_EXTERNALSOFTC;
 }
 
 /**
  * @brief Get the device's ivars field
  *
  * The ivars field is used by the parent device to store per-device
  * state (e.g. the physical location of the device or a list of
  * resources).
  */
 void *
 device_get_ivars(device_t dev)
 {
 	KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
 	return (dev->ivars);
 }
 
 /**
  * @brief Set the device's ivars field
  */
 void
 device_set_ivars(device_t dev, void * ivars)
 {
 	KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
 	dev->ivars = ivars;
 }
 
 /**
  * @brief Return the device's state
  */
 device_state_t
 device_get_state(device_t dev)
 {
 	return (dev->state);
 }
 
 /**
  * @brief Set the DF_ENABLED flag for the device
  */
 void
 device_enable(device_t dev)
 {
 	dev->flags |= DF_ENABLED;
 }
 
 /**
  * @brief Clear the DF_ENABLED flag for the device
  */
 void
 device_disable(device_t dev)
 {
 	dev->flags &= ~DF_ENABLED;
 }
 
 /**
  * @brief Increment the busy counter for the device
  */
 void
 device_busy(device_t dev)
 {
 	if (dev->state < DS_ATTACHING)
 		panic("device_busy: called for unattached device");
 	if (dev->busy == 0 && dev->parent)
 		device_busy(dev->parent);
 	dev->busy++;
 	if (dev->state == DS_ATTACHED)
 		dev->state = DS_BUSY;
 }
 
 /**
  * @brief Decrement the busy counter for the device
  */
 void
 device_unbusy(device_t dev)
 {
 	if (dev->busy != 0 && dev->state != DS_BUSY &&
 	    dev->state != DS_ATTACHING)
 		panic("device_unbusy: called for non-busy device %s",
 		    device_get_nameunit(dev));
 	dev->busy--;
 	if (dev->busy == 0) {
 		if (dev->parent)
 			device_unbusy(dev->parent);
 		if (dev->state == DS_BUSY)
 			dev->state = DS_ATTACHED;
 	}
 }
 
 /**
  * @brief Set the DF_QUIET flag for the device
  */
 void
 device_quiet(device_t dev)
 {
 	dev->flags |= DF_QUIET;
 }
 
 /**
  * @brief Set the DF_QUIET_CHILDREN flag for the device
  */
 void
 device_quiet_children(device_t dev)
 {
 	dev->flags |= DF_QUIET_CHILDREN;
 }
 
 /**
  * @brief Clear the DF_QUIET flag for the device
  */
 void
 device_verbose(device_t dev)
 {
 	dev->flags &= ~DF_QUIET;
 }
 
 /**
  * @brief Return non-zero if the DF_QUIET_CHIDLREN flag is set on the device
  */
 int
 device_has_quiet_children(device_t dev)
 {
 	return ((dev->flags & DF_QUIET_CHILDREN) != 0);
 }
 
 /**
  * @brief Return non-zero if the DF_QUIET flag is set on the device
  */
 int
 device_is_quiet(device_t dev)
 {
 	return ((dev->flags & DF_QUIET) != 0);
 }
 
 /**
  * @brief Return non-zero if the DF_ENABLED flag is set on the device
  */
 int
 device_is_enabled(device_t dev)
 {
 	return ((dev->flags & DF_ENABLED) != 0);
 }
 
 /**
  * @brief Return non-zero if the device was successfully probed
  */
 int
 device_is_alive(device_t dev)
 {
 	return (dev->state >= DS_ALIVE);
 }
 
 /**
  * @brief Return non-zero if the device currently has a driver
  * attached to it
  */
 int
 device_is_attached(device_t dev)
 {
 	return (dev->state >= DS_ATTACHED);
 }
 
 /**
  * @brief Return non-zero if the device is currently suspended.
  */
 int
 device_is_suspended(device_t dev)
 {
 	return ((dev->flags & DF_SUSPENDED) != 0);
 }
 
 /**
  * @brief Set the devclass of a device
  * @see devclass_add_device().
  */
 int
 device_set_devclass(device_t dev, const char *classname)
 {
 	devclass_t dc;
 	int error;
 
 	if (!classname) {
 		if (dev->devclass)
 			devclass_delete_device(dev->devclass, dev);
 		return (0);
 	}
 
 	if (dev->devclass) {
 		printf("device_set_devclass: device class already set\n");
 		return (EINVAL);
 	}
 
 	dc = devclass_find_internal(classname, NULL, TRUE);
 	if (!dc)
 		return (ENOMEM);
 
 	error = devclass_add_device(dc, dev);
 
 	bus_data_generation_update();
 	return (error);
 }
 
 /**
  * @brief Set the devclass of a device and mark the devclass fixed.
  * @see device_set_devclass()
  */
 int
 device_set_devclass_fixed(device_t dev, const char *classname)
 {
 	int error;
 
 	if (classname == NULL)
 		return (EINVAL);
 
 	error = device_set_devclass(dev, classname);
 	if (error)
 		return (error);
 	dev->flags |= DF_FIXEDCLASS;
 	return (0);
 }
 
 /**
  * @brief Query the device to determine if it's of a fixed devclass
  * @see device_set_devclass_fixed()
  */
 bool
 device_is_devclass_fixed(device_t dev)
 {
 	return ((dev->flags & DF_FIXEDCLASS) != 0);
 }
 
 /**
  * @brief Set the driver of a device
  *
  * @retval 0		success
  * @retval EBUSY	the device already has a driver attached
  * @retval ENOMEM	a memory allocation failure occurred
  */
 int
 device_set_driver(device_t dev, driver_t *driver)
 {
 	int domain;
 	struct domainset *policy;
 
 	if (dev->state >= DS_ATTACHED)
 		return (EBUSY);
 
 	if (dev->driver == driver)
 		return (0);
 
 	if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
 		free(dev->softc, M_BUS_SC);
 		dev->softc = NULL;
 	}
 	device_set_desc(dev, NULL);
 	kobj_delete((kobj_t) dev, NULL);
 	dev->driver = driver;
 	if (driver) {
 		kobj_init((kobj_t) dev, (kobj_class_t) driver);
 		if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
 			if (bus_get_domain(dev, &domain) == 0)
 				policy = DOMAINSET_PREF(domain);
 			else
 				policy = DOMAINSET_RR();
 			dev->softc = malloc_domainset(driver->size, M_BUS_SC,
 			    policy, M_NOWAIT | M_ZERO);
 			if (!dev->softc) {
 				kobj_delete((kobj_t) dev, NULL);
 				kobj_init((kobj_t) dev, &null_class);
 				dev->driver = NULL;
 				return (ENOMEM);
 			}
 		}
 	} else {
 		kobj_init((kobj_t) dev, &null_class);
 	}
 
 	bus_data_generation_update();
 	return (0);
 }
 
 /**
  * @brief Probe a device, and return this status.
  *
  * This function is the core of the device autoconfiguration
  * system. Its purpose is to select a suitable driver for a device and
  * then call that driver to initialise the hardware appropriately. The
  * driver is selected by calling the DEVICE_PROBE() method of a set of
  * candidate drivers and then choosing the driver which returned the
  * best value. This driver is then attached to the device using
  * device_attach().
  *
  * The set of suitable drivers is taken from the list of drivers in
  * the parent device's devclass. If the device was originally created
  * with a specific class name (see device_add_child()), only drivers
  * with that name are probed, otherwise all drivers in the devclass
  * are probed. If no drivers return successful probe values in the
  * parent devclass, the search continues in the parent of that
  * devclass (see devclass_get_parent()) if any.
  *
  * @param dev		the device to initialise
  *
  * @retval 0		success
  * @retval ENXIO	no driver was found
  * @retval ENOMEM	memory allocation failure
  * @retval non-zero	some other unix error code
  * @retval -1		Device already attached
  */
 int
 device_probe(device_t dev)
 {
 	int error;
 
 	GIANT_REQUIRED;
 
 	if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
 		return (-1);
 
 	if (!(dev->flags & DF_ENABLED)) {
 		if (bootverbose && device_get_name(dev) != NULL) {
 			device_print_prettyname(dev);
 			printf("not probed (disabled)\n");
 		}
 		return (-1);
 	}
 	if ((error = device_probe_child(dev->parent, dev)) != 0) {
 		if (bus_current_pass == BUS_PASS_DEFAULT &&
 		    !(dev->flags & DF_DONENOMATCH)) {
 			BUS_PROBE_NOMATCH(dev->parent, dev);
 			devnomatch(dev);
 			dev->flags |= DF_DONENOMATCH;
 		}
 		return (error);
 	}
 	return (0);
 }
 
 /**
  * @brief Probe a device and attach a driver if possible
  *
  * calls device_probe() and attaches if that was successful.
  */
 int
 device_probe_and_attach(device_t dev)
 {
 	int error;
 
 	GIANT_REQUIRED;
 
 	error = device_probe(dev);
 	if (error == -1)
 		return (0);
 	else if (error != 0)
 		return (error);
 
 	CURVNET_SET_QUIET(vnet0);
 	error = device_attach(dev);
 	CURVNET_RESTORE();
 	return error;
 }
 
 /**
  * @brief Attach a device driver to a device
  *
  * This function is a wrapper around the DEVICE_ATTACH() driver
  * method. In addition to calling DEVICE_ATTACH(), it initialises the
  * device's sysctl tree, optionally prints a description of the device
  * and queues a notification event for user-based device management
  * services.
  *
  * Normally this function is only called internally from
  * device_probe_and_attach().
  *
  * @param dev		the device to initialise
  *
  * @retval 0		success
  * @retval ENXIO	no driver was found
  * @retval ENOMEM	memory allocation failure
  * @retval non-zero	some other unix error code
  */
 int
 device_attach(device_t dev)
 {
 	uint64_t attachtime;
 	uint16_t attachentropy;
 	int error;
 
 	if (resource_disabled(dev->driver->name, dev->unit)) {
 		device_disable(dev);
 		if (bootverbose)
 			 device_printf(dev, "disabled via hints entry\n");
 		return (ENXIO);
 	}
 
 	device_sysctl_init(dev);
 	if (!device_is_quiet(dev))
 		device_print_child(dev->parent, dev);
 	attachtime = get_cyclecount();
 	dev->state = DS_ATTACHING;
 	if ((error = DEVICE_ATTACH(dev)) != 0) {
 		printf("device_attach: %s%d attach returned %d\n",
 		    dev->driver->name, dev->unit, error);
 		if (!(dev->flags & DF_FIXEDCLASS))
 			devclass_delete_device(dev->devclass, dev);
 		(void)device_set_driver(dev, NULL);
 		device_sysctl_fini(dev);
 		KASSERT(dev->busy == 0, ("attach failed but busy"));
 		dev->state = DS_NOTPRESENT;
 		return (error);
 	}
 	dev->flags |= DF_ATTACHED_ONCE;
 	/* We only need the low bits of this time, but ranges from tens to thousands
 	 * have been seen, so keep 2 bytes' worth.
 	 */
 	attachentropy = (uint16_t)(get_cyclecount() - attachtime);
 	random_harvest_direct(&attachentropy, sizeof(attachentropy), RANDOM_ATTACH);
 	device_sysctl_update(dev);
 	if (dev->busy)
 		dev->state = DS_BUSY;
 	else
 		dev->state = DS_ATTACHED;
 	dev->flags &= ~DF_DONENOMATCH;
 	EVENTHANDLER_DIRECT_INVOKE(device_attach, dev);
 	devadded(dev);
 	return (0);
 }
 
 /**
  * @brief Detach a driver from a device
  *
  * This function is a wrapper around the DEVICE_DETACH() driver
  * method. If the call to DEVICE_DETACH() succeeds, it calls
  * BUS_CHILD_DETACHED() for the parent of @p dev, queues a
  * notification event for user-based device management services and
  * cleans up the device's sysctl tree.
  *
  * @param dev		the device to un-initialise
  *
  * @retval 0		success
  * @retval ENXIO	no driver was found
  * @retval ENOMEM	memory allocation failure
  * @retval non-zero	some other unix error code
  */
 int
 device_detach(device_t dev)
 {
 	int error;
 
 	GIANT_REQUIRED;
 
 	PDEBUG(("%s", DEVICENAME(dev)));
 	if (dev->state == DS_BUSY)
 		return (EBUSY);
 	if (dev->state == DS_ATTACHING) {
 		device_printf(dev, "device in attaching state! Deferring detach.\n");
 		return (EBUSY);
 	}
 	if (dev->state != DS_ATTACHED)
 		return (0);
 
 	EVENTHANDLER_DIRECT_INVOKE(device_detach, dev, EVHDEV_DETACH_BEGIN);
 	if ((error = DEVICE_DETACH(dev)) != 0) {
 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
 		    EVHDEV_DETACH_FAILED);
 		return (error);
 	} else {
 		EVENTHANDLER_DIRECT_INVOKE(device_detach, dev,
 		    EVHDEV_DETACH_COMPLETE);
 	}
 	devremoved(dev);
 	if (!device_is_quiet(dev))
 		device_printf(dev, "detached\n");
 	if (dev->parent)
 		BUS_CHILD_DETACHED(dev->parent, dev);
 
 	if (!(dev->flags & DF_FIXEDCLASS))
 		devclass_delete_device(dev->devclass, dev);
 
 	device_verbose(dev);
 	dev->state = DS_NOTPRESENT;
 	(void)device_set_driver(dev, NULL);
 	device_sysctl_fini(dev);
 
 	return (0);
 }
 
 /**
  * @brief Tells a driver to quiesce itself.
  *
  * This function is a wrapper around the DEVICE_QUIESCE() driver
  * method. If the call to DEVICE_QUIESCE() succeeds.
  *
  * @param dev		the device to quiesce
  *
  * @retval 0		success
  * @retval ENXIO	no driver was found
  * @retval ENOMEM	memory allocation failure
  * @retval non-zero	some other unix error code
  */
 int
 device_quiesce(device_t dev)
 {
 	PDEBUG(("%s", DEVICENAME(dev)));
 	if (dev->state == DS_BUSY)
 		return (EBUSY);
 	if (dev->state != DS_ATTACHED)
 		return (0);
 
 	return (DEVICE_QUIESCE(dev));
 }
 
 /**
  * @brief Notify a device of system shutdown
  *
  * This function calls the DEVICE_SHUTDOWN() driver method if the
  * device currently has an attached driver.
  *
  * @returns the value returned by DEVICE_SHUTDOWN()
  */
 int
 device_shutdown(device_t dev)
 {
 	if (dev->state < DS_ATTACHED)
 		return (0);
 	return (DEVICE_SHUTDOWN(dev));
 }
 
 /**
  * @brief Set the unit number of a device
  *
  * This function can be used to override the unit number used for a
  * device (e.g. to wire a device to a pre-configured unit number).
  */
 int
 device_set_unit(device_t dev, int unit)
 {
 	devclass_t dc;
 	int err;
 
 	dc = device_get_devclass(dev);
 	if (unit < dc->maxunit && dc->devices[unit])
 		return (EBUSY);
 	err = devclass_delete_device(dc, dev);
 	if (err)
 		return (err);
 	dev->unit = unit;
 	err = devclass_add_device(dc, dev);
 	if (err)
 		return (err);
 
 	bus_data_generation_update();
 	return (0);
 }
 
 /*======================================*/
 /*
  * Some useful method implementations to make life easier for bus drivers.
  */
 
 void
 resource_init_map_request_impl(struct resource_map_request *args, size_t sz)
 {
 	bzero(args, sz);
 	args->size = sz;
 	args->memattr = VM_MEMATTR_UNCACHEABLE;
 }
 
 /**
  * @brief Initialise a resource list.
  *
  * @param rl		the resource list to initialise
  */
 void
 resource_list_init(struct resource_list *rl)
 {
 	STAILQ_INIT(rl);
 }
 
 /**
  * @brief Reclaim memory used by a resource list.
  *
  * This function frees the memory for all resource entries on the list
  * (if any).
  *
  * @param rl		the resource list to free
  */
 void
 resource_list_free(struct resource_list *rl)
 {
 	struct resource_list_entry *rle;
 
 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
 		if (rle->res)
 			panic("resource_list_free: resource entry is busy");
 		STAILQ_REMOVE_HEAD(rl, link);
 		free(rle, M_BUS);
 	}
 }
 
 /**
  * @brief Add a resource entry.
  *
  * This function adds a resource entry using the given @p type, @p
  * start, @p end and @p count values. A rid value is chosen by
  * searching sequentially for the first unused rid starting at zero.
  *
  * @param rl		the resource list to edit
  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
  * @param start		the start address of the resource
  * @param end		the end address of the resource
  * @param count		XXX end-start+1
  */
 int
 resource_list_add_next(struct resource_list *rl, int type, rman_res_t start,
     rman_res_t end, rman_res_t count)
 {
 	int rid;
 
 	rid = 0;
 	while (resource_list_find(rl, type, rid) != NULL)
 		rid++;
 	resource_list_add(rl, type, rid, start, end, count);
 	return (rid);
 }
 
 /**
  * @brief Add or modify a resource entry.
  *
  * If an existing entry exists with the same type and rid, it will be
  * modified using the given values of @p start, @p end and @p
  * count. If no entry exists, a new one will be created using the
  * given values.  The resource list entry that matches is then returned.
  *
  * @param rl		the resource list to edit
  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
  * @param rid		the resource identifier
  * @param start		the start address of the resource
  * @param end		the end address of the resource
  * @param count		XXX end-start+1
  */
 struct resource_list_entry *
 resource_list_add(struct resource_list *rl, int type, int rid,
     rman_res_t start, rman_res_t end, rman_res_t count)
 {
 	struct resource_list_entry *rle;
 
 	rle = resource_list_find(rl, type, rid);
 	if (!rle) {
 		rle = malloc(sizeof(struct resource_list_entry), M_BUS,
 		    M_NOWAIT);
 		if (!rle)
 			panic("resource_list_add: can't record entry");
 		STAILQ_INSERT_TAIL(rl, rle, link);
 		rle->type = type;
 		rle->rid = rid;
 		rle->res = NULL;
 		rle->flags = 0;
 	}
 
 	if (rle->res)
 		panic("resource_list_add: resource entry is busy");
 
 	rle->start = start;
 	rle->end = end;
 	rle->count = count;
 	return (rle);
 }
 
 /**
  * @brief Determine if a resource entry is busy.
  *
  * Returns true if a resource entry is busy meaning that it has an
  * associated resource that is not an unallocated "reserved" resource.
  *
  * @param rl		the resource list to search
  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
  * @param rid		the resource identifier
  *
  * @returns Non-zero if the entry is busy, zero otherwise.
  */
 int
 resource_list_busy(struct resource_list *rl, int type, int rid)
 {
 	struct resource_list_entry *rle;
 
 	rle = resource_list_find(rl, type, rid);
 	if (rle == NULL || rle->res == NULL)
 		return (0);
 	if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
 		KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
 		    ("reserved resource is active"));
 		return (0);
 	}
 	return (1);
 }
 
 /**
  * @brief Determine if a resource entry is reserved.
  *
  * Returns true if a resource entry is reserved meaning that it has an
  * associated "reserved" resource.  The resource can either be
  * allocated or unallocated.
  *
  * @param rl		the resource list to search
  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
  * @param rid		the resource identifier
  *
  * @returns Non-zero if the entry is reserved, zero otherwise.
  */
 int
 resource_list_reserved(struct resource_list *rl, int type, int rid)
 {
 	struct resource_list_entry *rle;
 
 	rle = resource_list_find(rl, type, rid);
 	if (rle != NULL && rle->flags & RLE_RESERVED)
 		return (1);
 	return (0);
 }
 
 /**
  * @brief Find a resource entry by type and rid.
  *
  * @param rl		the resource list to search
  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
  * @param rid		the resource identifier
  *
  * @returns the resource entry pointer or NULL if there is no such
  * entry.
  */
 struct resource_list_entry *
 resource_list_find(struct resource_list *rl, int type, int rid)
 {
 	struct resource_list_entry *rle;
 
 	STAILQ_FOREACH(rle, rl, link) {
 		if (rle->type == type && rle->rid == rid)
 			return (rle);
 	}
 	return (NULL);
 }
 
 /**
  * @brief Delete a resource entry.
  *
  * @param rl		the resource list to edit
  * @param type		the resource entry type (e.g. SYS_RES_MEMORY)
  * @param rid		the resource identifier
  */
 void
 resource_list_delete(struct resource_list *rl, int type, int rid)
 {
 	struct resource_list_entry *rle = resource_list_find(rl, type, rid);
 
 	if (rle) {
 		if (rle->res != NULL)
 			panic("resource_list_delete: resource has not been released");
 		STAILQ_REMOVE(rl, rle, resource_list_entry, link);
 		free(rle, M_BUS);
 	}
 }
 
 /**
  * @brief Allocate a reserved resource
  *
  * This can be used by buses to force the allocation of resources
  * that are always active in the system even if they are not allocated
  * by a driver (e.g. PCI BARs).  This function is usually called when
  * adding a new child to the bus.  The resource is allocated from the
  * parent bus when it is reserved.  The resource list entry is marked
  * with RLE_RESERVED to note that it is a reserved resource.
  *
  * Subsequent attempts to allocate the resource with
  * resource_list_alloc() will succeed the first time and will set
  * RLE_ALLOCATED to note that it has been allocated.  When a reserved
  * resource that has been allocated is released with
  * resource_list_release() the resource RLE_ALLOCATED is cleared, but
  * the actual resource remains allocated.  The resource can be released to
  * the parent bus by calling resource_list_unreserve().
  *
  * @param rl		the resource list to allocate from
  * @param bus		the parent device of @p child
  * @param child		the device for which the resource is being reserved
  * @param type		the type of resource to allocate
  * @param rid		a pointer to the resource identifier
  * @param start		hint at the start of the resource range - pass
  *			@c 0 for any start address
  * @param end		hint at the end of the resource range - pass
  *			@c ~0 for any end address
  * @param count		hint at the size of range required - pass @c 1
  *			for any size
  * @param flags		any extra flags to control the resource
  *			allocation - see @c RF_XXX flags in
  *			<sys/rman.h> for details
  *
  * @returns		the resource which was allocated or @c NULL if no
  *			resource could be allocated
  */
 struct resource *
 resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 {
 	struct resource_list_entry *rle = NULL;
 	int passthrough = (device_get_parent(child) != bus);
 	struct resource *r;
 
 	if (passthrough)
 		panic(
     "resource_list_reserve() should only be called for direct children");
 	if (flags & RF_ACTIVE)
 		panic(
     "resource_list_reserve() should only reserve inactive resources");
 
 	r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
 	    flags);
 	if (r != NULL) {
 		rle = resource_list_find(rl, type, *rid);
 		rle->flags |= RLE_RESERVED;
 	}
 	return (r);
 }
 
 /**
  * @brief Helper function for implementing BUS_ALLOC_RESOURCE()
  *
  * Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
  * and passing the allocation up to the parent of @p bus. This assumes
  * that the first entry of @c device_get_ivars(child) is a struct
  * resource_list. This also handles 'passthrough' allocations where a
  * child is a remote descendant of bus by passing the allocation up to
  * the parent of bus.
  *
  * Typically, a bus driver would store a list of child resources
  * somewhere in the child device's ivars (see device_get_ivars()) and
  * its implementation of BUS_ALLOC_RESOURCE() would find that list and
  * then call resource_list_alloc() to perform the allocation.
  *
  * @param rl		the resource list to allocate from
  * @param bus		the parent device of @p child
  * @param child		the device which is requesting an allocation
  * @param type		the type of resource to allocate
  * @param rid		a pointer to the resource identifier
  * @param start		hint at the start of the resource range - pass
  *			@c 0 for any start address
  * @param end		hint at the end of the resource range - pass
  *			@c ~0 for any end address
  * @param count		hint at the size of range required - pass @c 1
  *			for any size
  * @param flags		any extra flags to control the resource
  *			allocation - see @c RF_XXX flags in
  *			<sys/rman.h> for details
  *
  * @returns		the resource which was allocated or @c NULL if no
  *			resource could be allocated
  */
 struct resource *
 resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
     int type, int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 {
 	struct resource_list_entry *rle = NULL;
 	int passthrough = (device_get_parent(child) != bus);
 	int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
 
 	if (passthrough) {
 		return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 		    type, rid, start, end, count, flags));
 	}
 
 	rle = resource_list_find(rl, type, *rid);
 
 	if (!rle)
 		return (NULL);		/* no resource of that type/rid */
 
 	if (rle->res) {
 		if (rle->flags & RLE_RESERVED) {
 			if (rle->flags & RLE_ALLOCATED)
 				return (NULL);
 			if ((flags & RF_ACTIVE) &&
 			    bus_activate_resource(child, type, *rid,
 			    rle->res) != 0)
 				return (NULL);
 			rle->flags |= RLE_ALLOCATED;
 			return (rle->res);
 		}
 		device_printf(bus,
 		    "resource entry %#x type %d for child %s is busy\n", *rid,
 		    type, device_get_nameunit(child));
 		return (NULL);
 	}
 
 	if (isdefault) {
 		start = rle->start;
 		count = ulmax(count, rle->count);
 		end = ulmax(rle->end, start + count - 1);
 	}
 
 	rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
 	    type, rid, start, end, count, flags);
 
 	/*
 	 * Record the new range.
 	 */
 	if (rle->res) {
 		rle->start = rman_get_start(rle->res);
 		rle->end = rman_get_end(rle->res);
 		rle->count = count;
 	}
 
 	return (rle->res);
 }
 
 /**
  * @brief Helper function for implementing BUS_RELEASE_RESOURCE()
  *
  * Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
  * used with resource_list_alloc().
  *
  * @param rl		the resource list which was allocated from
  * @param bus		the parent device of @p child
  * @param child		the device which is requesting a release
  * @param type		the type of resource to release
  * @param rid		the resource identifier
  * @param res		the resource to release
  *
  * @retval 0		success
  * @retval non-zero	a standard unix error code indicating what
  *			error condition prevented the operation
  */
 int
 resource_list_release(struct resource_list *rl, device_t bus, device_t child,
     int type, int rid, struct resource *res)
 {
 	struct resource_list_entry *rle = NULL;
 	int passthrough = (device_get_parent(child) != bus);
 	int error;
 
 	if (passthrough) {
 		return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 		    type, rid, res));
 	}
 
 	rle = resource_list_find(rl, type, rid);
 
 	if (!rle)
 		panic("resource_list_release: can't find resource");
 	if (!rle->res)
 		panic("resource_list_release: resource entry is not busy");
 	if (rle->flags & RLE_RESERVED) {
 		if (rle->flags & RLE_ALLOCATED) {
 			if (rman_get_flags(res) & RF_ACTIVE) {
 				error = bus_deactivate_resource(child, type,
 				    rid, res);
 				if (error)
 					return (error);
 			}
 			rle->flags &= ~RLE_ALLOCATED;
 			return (0);
 		}
 		return (EINVAL);
 	}
 
 	error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
 	    type, rid, res);
 	if (error)
 		return (error);
 
 	rle->res = NULL;
 	return (0);
 }
 
 /**
  * @brief Release all active resources of a given type
  *
  * Release all active resources of a specified type.  This is intended
  * to be used to cleanup resources leaked by a driver after detach or
  * a failed attach.
  *
  * @param rl		the resource list which was allocated from
  * @param bus		the parent device of @p child
  * @param child		the device whose active resources are being released
  * @param type		the type of resources to release
  *
  * @retval 0		success
  * @retval EBUSY	at least one resource was active
  */
 int
 resource_list_release_active(struct resource_list *rl, device_t bus,
     device_t child, int type)
 {
 	struct resource_list_entry *rle;
 	int error, retval;
 
 	retval = 0;
 	STAILQ_FOREACH(rle, rl, link) {
 		if (rle->type != type)
 			continue;
 		if (rle->res == NULL)
 			continue;
 		if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
 		    RLE_RESERVED)
 			continue;
 		retval = EBUSY;
 		error = resource_list_release(rl, bus, child, type,
 		    rman_get_rid(rle->res), rle->res);
 		if (error != 0)
 			device_printf(bus,
 			    "Failed to release active resource: %d\n", error);
 	}
 	return (retval);
 }
 
 /**
  * @brief Fully release a reserved resource
  *
  * Fully releases a resource reserved via resource_list_reserve().
  *
  * @param rl		the resource list which was allocated from
  * @param bus		the parent device of @p child
  * @param child		the device whose reserved resource is being released
  * @param type		the type of resource to release
  * @param rid		the resource identifier
  * @param res		the resource to release
  *
  * @retval 0		success
  * @retval non-zero	a standard unix error code indicating what
  *			error condition prevented the operation
  */
 int
 resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
     int type, int rid)
 {
 	struct resource_list_entry *rle = NULL;
 	int passthrough = (device_get_parent(child) != bus);
 
 	if (passthrough)
 		panic(
     "resource_list_unreserve() should only be called for direct children");
 
 	rle = resource_list_find(rl, type, rid);
 
 	if (!rle)
 		panic("resource_list_unreserve: can't find resource");
 	if (!(rle->flags & RLE_RESERVED))
 		return (EINVAL);
 	if (rle->flags & RLE_ALLOCATED)
 		return (EBUSY);
 	rle->flags &= ~RLE_RESERVED;
 	return (resource_list_release(rl, bus, child, type, rid, rle->res));
 }
 
 /**
  * @brief Print a description of resources in a resource list
  *
  * Print all resources of a specified type, for use in BUS_PRINT_CHILD().
  * The name is printed if at least one resource of the given type is available.
  * The format is used to print resource start and end.
  *
  * @param rl		the resource list to print
  * @param name		the name of @p type, e.g. @c "memory"
  * @param type		type type of resource entry to print
  * @param format	printf(9) format string to print resource
  *			start and end values
  *
  * @returns		the number of characters printed
  */
 int
 resource_list_print_type(struct resource_list *rl, const char *name, int type,
     const char *format)
 {
 	struct resource_list_entry *rle;
 	int printed, retval;
 
 	printed = 0;
 	retval = 0;
 	/* Yes, this is kinda cheating */
 	STAILQ_FOREACH(rle, rl, link) {
 		if (rle->type == type) {
 			if (printed == 0)
 				retval += printf(" %s ", name);
 			else
 				retval += printf(",");
 			printed++;
 			retval += printf(format, rle->start);
 			if (rle->count > 1) {
 				retval += printf("-");
 				retval += printf(format, rle->start +
 						 rle->count - 1);
 			}
 		}
 	}
 	return (retval);
 }
 
 /**
  * @brief Releases all the resources in a list.
  *
  * @param rl		The resource list to purge.
  *
  * @returns		nothing
  */
 void
 resource_list_purge(struct resource_list *rl)
 {
 	struct resource_list_entry *rle;
 
 	while ((rle = STAILQ_FIRST(rl)) != NULL) {
 		if (rle->res)
 			bus_release_resource(rman_get_device(rle->res),
 			    rle->type, rle->rid, rle->res);
 		STAILQ_REMOVE_HEAD(rl, link);
 		free(rle, M_BUS);
 	}
 }
 
 device_t
 bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
 {
 	return (device_add_child_ordered(dev, order, name, unit));
 }
 
 /**
  * @brief Helper function for implementing DEVICE_PROBE()
  *
  * This function can be used to help implement the DEVICE_PROBE() for
  * a bus (i.e. a device which has other devices attached to it). It
  * calls the DEVICE_IDENTIFY() method of each driver in the device's
  * devclass.
  */
 int
 bus_generic_probe(device_t dev)
 {
 	devclass_t dc = dev->devclass;
 	driverlink_t dl;
 
 	TAILQ_FOREACH(dl, &dc->drivers, link) {
 		/*
 		 * If this driver's pass is too high, then ignore it.
 		 * For most drivers in the default pass, this will
 		 * never be true.  For early-pass drivers they will
 		 * only call the identify routines of eligible drivers
 		 * when this routine is called.  Drivers for later
 		 * passes should have their identify routines called
 		 * on early-pass buses during BUS_NEW_PASS().
 		 */
 		if (dl->pass > bus_current_pass)
 			continue;
 		DEVICE_IDENTIFY(dl->driver, dev);
 	}
 
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing DEVICE_ATTACH()
  *
  * This function can be used to help implement the DEVICE_ATTACH() for
  * a bus. It calls device_probe_and_attach() for each of the device's
  * children.
  */
 int
 bus_generic_attach(device_t dev)
 {
 	device_t child;
 
 	TAILQ_FOREACH(child, &dev->children, link) {
 		device_probe_and_attach(child);
 	}
 
 	return (0);
 }
 
 /**
  * @brief Helper function for delaying attaching children
  *
  * Many buses can't run transactions on the bus which children need to probe and
  * attach until after interrupts and/or timers are running.  This function
  * delays their attach until interrupts and timers are enabled.
  */
 int
 bus_delayed_attach_children(device_t dev)
 {
 	/* Probe and attach the bus children when interrupts are available */
 	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
 
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing DEVICE_DETACH()
  *
  * This function can be used to help implement the DEVICE_DETACH() for
  * a bus. It calls device_detach() for each of the device's
  * children.
  */
 int
 bus_generic_detach(device_t dev)
 {
 	device_t child;
 	int error;
 
 	if (dev->state != DS_ATTACHED)
 		return (EBUSY);
 
 	/*
 	 * Detach children in the reverse order.
 	 * See bus_generic_suspend for details.
 	 */
 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
 		if ((error = device_detach(child)) != 0)
 			return (error);
 	}
 
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing DEVICE_SHUTDOWN()
  *
  * This function can be used to help implement the DEVICE_SHUTDOWN()
  * for a bus. It calls device_shutdown() for each of the device's
  * children.
  */
 int
 bus_generic_shutdown(device_t dev)
 {
 	device_t child;
 
 	/*
 	 * Shut down children in the reverse order.
 	 * See bus_generic_suspend for details.
 	 */
 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
 		device_shutdown(child);
 	}
 
 	return (0);
 }
 
 /**
  * @brief Default function for suspending a child device.
  *
  * This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
  */
 int
 bus_generic_suspend_child(device_t dev, device_t child)
 {
 	int	error;
 
 	error = DEVICE_SUSPEND(child);
 
 	if (error == 0)
 		child->flags |= DF_SUSPENDED;
 
 	return (error);
 }
 
 /**
  * @brief Default function for resuming a child device.
  *
  * This function is to be used by a bus's DEVICE_RESUME_CHILD().
  */
 int
 bus_generic_resume_child(device_t dev, device_t child)
 {
 	DEVICE_RESUME(child);
 	child->flags &= ~DF_SUSPENDED;
 
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing DEVICE_SUSPEND()
  *
  * This function can be used to help implement the DEVICE_SUSPEND()
  * for a bus. It calls DEVICE_SUSPEND() for each of the device's
  * children. If any call to DEVICE_SUSPEND() fails, the suspend
  * operation is aborted and any devices which were suspended are
  * resumed immediately by calling their DEVICE_RESUME() methods.
  */
 int
 bus_generic_suspend(device_t dev)
 {
 	int		error;
 	device_t	child;
 
 	/*
 	 * Suspend children in the reverse order.
 	 * For most buses all children are equal, so the order does not matter.
 	 * Other buses, such as acpi, carefully order their child devices to
 	 * express implicit dependencies between them.  For such buses it is
 	 * safer to bring down devices in the reverse order.
 	 */
 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
 		error = BUS_SUSPEND_CHILD(dev, child);
 		if (error != 0) {
 			child = TAILQ_NEXT(child, link);
 			if (child != NULL) {
 				TAILQ_FOREACH_FROM(child, &dev->children, link)
 					BUS_RESUME_CHILD(dev, child);
 			}
 			return (error);
 		}
 	}
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing DEVICE_RESUME()
  *
  * This function can be used to help implement the DEVICE_RESUME() for
  * a bus. It calls DEVICE_RESUME() on each of the device's children.
  */
 int
 bus_generic_resume(device_t dev)
 {
 	device_t	child;
 
 	TAILQ_FOREACH(child, &dev->children, link) {
 		BUS_RESUME_CHILD(dev, child);
 		/* if resume fails, there's nothing we can usefully do... */
 	}
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing BUS_RESET_POST
  *
  * Bus can use this function to implement common operations of
  * re-attaching or resuming the children after the bus itself was
  * reset, and after restoring bus-unique state of children.
  *
  * @param dev	The bus
  * #param flags	DEVF_RESET_*
  */
 int
 bus_helper_reset_post(device_t dev, int flags)
 {
 	device_t child;
 	int error, error1;
 
 	error = 0;
 	TAILQ_FOREACH(child, &dev->children,link) {
 		BUS_RESET_POST(dev, child);
 		error1 = (flags & DEVF_RESET_DETACH) != 0 ?
 		    device_probe_and_attach(child) :
 		    BUS_RESUME_CHILD(dev, child);
 		if (error == 0 && error1 != 0)
 			error = error1;
 	}
 	return (error);
 }
 
 static void
 bus_helper_reset_prepare_rollback(device_t dev, device_t child, int flags)
 {
 	child = TAILQ_NEXT(child, link);
 	if (child == NULL)
 		return;
 	TAILQ_FOREACH_FROM(child, &dev->children,link) {
 		BUS_RESET_POST(dev, child);
 		if ((flags & DEVF_RESET_DETACH) != 0)
 			device_probe_and_attach(child);
 		else
 			BUS_RESUME_CHILD(dev, child);
 	}
 }
 
 /**
  * @brief Helper function for implementing BUS_RESET_PREPARE
  *
  * Bus can use this function to implement common operations of
  * detaching or suspending the children before the bus itself is
  * reset, and then save bus-unique state of children that must
  * persists around reset.
  *
  * @param dev	The bus
  * #param flags	DEVF_RESET_*
  */
 int
 bus_helper_reset_prepare(device_t dev, int flags)
 {
 	device_t child;
 	int error;
 
 	if (dev->state != DS_ATTACHED)
 		return (EBUSY);
 
 	TAILQ_FOREACH_REVERSE(child, &dev->children, device_list, link) {
 		if ((flags & DEVF_RESET_DETACH) != 0) {
 			error = device_get_state(child) == DS_ATTACHED ?
 			    device_detach(child) : 0;
 		} else {
 			error = BUS_SUSPEND_CHILD(dev, child);
 		}
 		if (error == 0) {
 			error = BUS_RESET_PREPARE(dev, child);
 			if (error != 0) {
 				if ((flags & DEVF_RESET_DETACH) != 0)
 					device_probe_and_attach(child);
 				else
 					BUS_RESUME_CHILD(dev, child);
 			}
 		}
 		if (error != 0) {
 			bus_helper_reset_prepare_rollback(dev, child, flags);
 			return (error);
 		}
 	}
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing BUS_PRINT_CHILD().
  *
  * This function prints the first part of the ascii representation of
  * @p child, including its name, unit and description (if any - see
  * device_set_desc()).
  *
  * @returns the number of characters printed
  */
 int
 bus_print_child_header(device_t dev, device_t child)
 {
 	int	retval = 0;
 
 	if (device_get_desc(child)) {
 		retval += device_printf(child, "<%s>", device_get_desc(child));
 	} else {
 		retval += printf("%s", device_get_nameunit(child));
 	}
 
 	return (retval);
 }
 
 /**
  * @brief Helper function for implementing BUS_PRINT_CHILD().
  *
  * This function prints the last part of the ascii representation of
  * @p child, which consists of the string @c " on " followed by the
  * name and unit of the @p dev.
  *
  * @returns the number of characters printed
  */
 int
 bus_print_child_footer(device_t dev, device_t child)
 {
 	return (printf(" on %s\n", device_get_nameunit(dev)));
 }
 
 /**
  * @brief Helper function for implementing BUS_PRINT_CHILD().
  *
  * This function prints out the VM domain for the given device.
  *
  * @returns the number of characters printed
  */
 int
 bus_print_child_domain(device_t dev, device_t child)
 {
 	int domain;
 
 	/* No domain? Don't print anything */
 	if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
 		return (0);
 
 	return (printf(" numa-domain %d", domain));
 }
 
 /**
  * @brief Helper function for implementing BUS_PRINT_CHILD().
  *
  * This function simply calls bus_print_child_header() followed by
  * bus_print_child_footer().
  *
  * @returns the number of characters printed
  */
 int
 bus_generic_print_child(device_t dev, device_t child)
 {
 	int	retval = 0;
 
 	retval += bus_print_child_header(dev, child);
 	retval += bus_print_child_domain(dev, child);
 	retval += bus_print_child_footer(dev, child);
 
 	return (retval);
 }
 
 /**
  * @brief Stub function for implementing BUS_READ_IVAR().
  *
  * @returns ENOENT
  */
 int
 bus_generic_read_ivar(device_t dev, device_t child, int index,
     uintptr_t * result)
 {
 	return (ENOENT);
 }
 
 /**
  * @brief Stub function for implementing BUS_WRITE_IVAR().
  *
  * @returns ENOENT
  */
 int
 bus_generic_write_ivar(device_t dev, device_t child, int index,
     uintptr_t value)
 {
 	return (ENOENT);
 }
 
 /**
  * @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
  *
  * @returns NULL
  */
 struct resource_list *
 bus_generic_get_resource_list(device_t dev, device_t child)
 {
 	return (NULL);
 }
 
 /**
  * @brief Helper function for implementing BUS_DRIVER_ADDED().
  *
  * This implementation of BUS_DRIVER_ADDED() simply calls the driver's
  * DEVICE_IDENTIFY() method to allow it to add new children to the bus
  * and then calls device_probe_and_attach() for each unattached child.
  */
 void
 bus_generic_driver_added(device_t dev, driver_t *driver)
 {
 	device_t child;
 
 	DEVICE_IDENTIFY(driver, dev);
 	TAILQ_FOREACH(child, &dev->children, link) {
 		if (child->state == DS_NOTPRESENT ||
 		    (child->flags & DF_REBID))
 			device_probe_and_attach(child);
 	}
 }
 
 /**
  * @brief Helper function for implementing BUS_NEW_PASS().
  *
  * This implementing of BUS_NEW_PASS() first calls the identify
  * routines for any drivers that probe at the current pass.  Then it
  * walks the list of devices for this bus.  If a device is already
  * attached, then it calls BUS_NEW_PASS() on that device.  If the
  * device is not already attached, it attempts to attach a driver to
  * it.
  */
 void
 bus_generic_new_pass(device_t dev)
 {
 	driverlink_t dl;
 	devclass_t dc;
 	device_t child;
 
 	dc = dev->devclass;
 	TAILQ_FOREACH(dl, &dc->drivers, link) {
 		if (dl->pass == bus_current_pass)
 			DEVICE_IDENTIFY(dl->driver, dev);
 	}
 	TAILQ_FOREACH(child, &dev->children, link) {
 		if (child->state >= DS_ATTACHED)
 			BUS_NEW_PASS(child);
 		else if (child->state == DS_NOTPRESENT)
 			device_probe_and_attach(child);
 	}
 }
 
 /**
  * @brief Helper function for implementing BUS_SETUP_INTR().
  *
  * This simple implementation of BUS_SETUP_INTR() simply calls the
  * BUS_SETUP_INTR() method of the parent of @p dev.
  */
 int
 bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
     int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
     void **cookiep)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
 		    filter, intr, arg, cookiep));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_TEARDOWN_INTR().
  *
  * This simple implementation of BUS_TEARDOWN_INTR() simply calls the
  * BUS_TEARDOWN_INTR() method of the parent of @p dev.
  */
 int
 bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
     void *cookie)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_SUSPEND_INTR().
  *
  * This simple implementation of BUS_SUSPEND_INTR() simply calls the
  * BUS_SUSPEND_INTR() method of the parent of @p dev.
  */
 int
 bus_generic_suspend_intr(device_t dev, device_t child, struct resource *irq)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_SUSPEND_INTR(dev->parent, child, irq));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_RESUME_INTR().
  *
  * This simple implementation of BUS_RESUME_INTR() simply calls the
  * BUS_RESUME_INTR() method of the parent of @p dev.
  */
 int
 bus_generic_resume_intr(device_t dev, device_t child, struct resource *irq)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_RESUME_INTR(dev->parent, child, irq));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_ADJUST_RESOURCE().
  *
  * This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
  * BUS_ADJUST_RESOURCE() method of the parent of @p dev.
  */
 int
 bus_generic_adjust_resource(device_t dev, device_t child, int type,
     struct resource *r, rman_res_t start, rman_res_t end)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
 		    end));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
  *
  * This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
  * BUS_ALLOC_RESOURCE() method of the parent of @p dev.
  */
 struct resource *
 bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
     rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
 		    start, end, count, flags));
 	return (NULL);
 }
 
 /**
  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
  *
  * This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
  * BUS_RELEASE_RESOURCE() method of the parent of @p dev.
  */
 int
 bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
     struct resource *r)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
 		    r));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
  *
  * This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
  * BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
  */
 int
 bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
     struct resource *r)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
 		    r));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
  *
  * This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
  * BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
  */
 int
 bus_generic_deactivate_resource(device_t dev, device_t child, int type,
     int rid, struct resource *r)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
 		    r));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_MAP_RESOURCE().
  *
  * This simple implementation of BUS_MAP_RESOURCE() simply calls the
  * BUS_MAP_RESOURCE() method of the parent of @p dev.
  */
 int
 bus_generic_map_resource(device_t dev, device_t child, int type,
     struct resource *r, struct resource_map_request *args,
     struct resource_map *map)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_MAP_RESOURCE(dev->parent, child, type, r, args,
 		    map));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_UNMAP_RESOURCE().
  *
  * This simple implementation of BUS_UNMAP_RESOURCE() simply calls the
  * BUS_UNMAP_RESOURCE() method of the parent of @p dev.
  */
 int
 bus_generic_unmap_resource(device_t dev, device_t child, int type,
     struct resource *r, struct resource_map *map)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_UNMAP_RESOURCE(dev->parent, child, type, r, map));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_BIND_INTR().
  *
  * This simple implementation of BUS_BIND_INTR() simply calls the
  * BUS_BIND_INTR() method of the parent of @p dev.
  */
 int
 bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
     int cpu)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_CONFIG_INTR().
  *
  * This simple implementation of BUS_CONFIG_INTR() simply calls the
  * BUS_CONFIG_INTR() method of the parent of @p dev.
  */
 int
 bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
     enum intr_polarity pol)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_DESCRIBE_INTR().
  *
  * This simple implementation of BUS_DESCRIBE_INTR() simply calls the
  * BUS_DESCRIBE_INTR() method of the parent of @p dev.
  */
 int
 bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
     void *cookie, const char *descr)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent)
 		return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
 		    descr));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_GET_CPUS().
  *
  * This simple implementation of BUS_GET_CPUS() simply calls the
  * BUS_GET_CPUS() method of the parent of @p dev.
  */
 int
 bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
     size_t setsize, cpuset_t *cpuset)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent != NULL)
 		return (BUS_GET_CPUS(dev->parent, child, op, setsize, cpuset));
 	return (EINVAL);
 }
 
 /**
  * @brief Helper function for implementing BUS_GET_DMA_TAG().
  *
  * This simple implementation of BUS_GET_DMA_TAG() simply calls the
  * BUS_GET_DMA_TAG() method of the parent of @p dev.
  */
 bus_dma_tag_t
 bus_generic_get_dma_tag(device_t dev, device_t child)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent != NULL)
 		return (BUS_GET_DMA_TAG(dev->parent, child));
 	return (NULL);
 }
 
 /**
  * @brief Helper function for implementing BUS_GET_BUS_TAG().
  *
  * This simple implementation of BUS_GET_BUS_TAG() simply calls the
  * BUS_GET_BUS_TAG() method of the parent of @p dev.
  */
 bus_space_tag_t
 bus_generic_get_bus_tag(device_t dev, device_t child)
 {
 	/* Propagate up the bus hierarchy until someone handles it. */
 	if (dev->parent != NULL)
 		return (BUS_GET_BUS_TAG(dev->parent, child));
 	return ((bus_space_tag_t)0);
 }
 
 /**
  * @brief Helper function for implementing BUS_GET_RESOURCE().
  *
  * This implementation of BUS_GET_RESOURCE() uses the
  * resource_list_find() function to do most of the work. It calls
  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
  * search.
  */
 int
 bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
     rman_res_t *startp, rman_res_t *countp)
 {
 	struct resource_list *		rl = NULL;
 	struct resource_list_entry *	rle = NULL;
 
 	rl = BUS_GET_RESOURCE_LIST(dev, child);
 	if (!rl)
 		return (EINVAL);
 
 	rle = resource_list_find(rl, type, rid);
 	if (!rle)
 		return (ENOENT);
 
 	if (startp)
 		*startp = rle->start;
 	if (countp)
 		*countp = rle->count;
 
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing BUS_SET_RESOURCE().
  *
  * This implementation of BUS_SET_RESOURCE() uses the
  * resource_list_add() function to do most of the work. It calls
  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
  * edit.
  */
 int
 bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
     rman_res_t start, rman_res_t count)
 {
 	struct resource_list *		rl = NULL;
 
 	rl = BUS_GET_RESOURCE_LIST(dev, child);
 	if (!rl)
 		return (EINVAL);
 
 	resource_list_add(rl, type, rid, start, (start + count - 1), count);
 
 	return (0);
 }
 
 /**
  * @brief Helper function for implementing BUS_DELETE_RESOURCE().
  *
  * This implementation of BUS_DELETE_RESOURCE() uses the
  * resource_list_delete() function to do most of the work. It calls
  * BUS_GET_RESOURCE_LIST() to find a suitable resource list to
  * edit.
  */
 void
 bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
 {
 	struct resource_list *		rl = NULL;
 
 	rl = BUS_GET_RESOURCE_LIST(dev, child);
 	if (!rl)
 		return;
 
 	resource_list_delete(rl, type, rid);
 
 	return;
 }
 
 /**
  * @brief Helper function for implementing BUS_RELEASE_RESOURCE().
  *
  * This implementation of BUS_RELEASE_RESOURCE() uses the
  * resource_list_release() function to do most of the work. It calls
  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
  */
 int
 bus_generic_rl_release_resource(device_t dev, device_t child, int type,
     int rid, struct resource *r)
 {
 	struct resource_list *		rl = NULL;
 
 	if (device_get_parent(child) != dev)
 		return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
 		    type, rid, r));
 
 	rl = BUS_GET_RESOURCE_LIST(dev, child);
 	if (!rl)
 		return (EINVAL);
 
 	return (resource_list_release(rl, dev, child, type, rid, r));
 }
 
 /**
  * @brief Helper function for implementing BUS_ALLOC_RESOURCE().
  *
  * This implementation of BUS_ALLOC_RESOURCE() uses the
  * resource_list_alloc() function to do most of the work. It calls
  * BUS_GET_RESOURCE_LIST() to find a suitable resource list.
  */
 struct resource *
 bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
     int *rid, rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
 {
 	struct resource_list *		rl = NULL;
 
 	if (device_get_parent(child) != dev)
 		return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
 		    type, rid, start, end, count, flags));
 
 	rl = BUS_GET_RESOURCE_LIST(dev, child);
 	if (!rl)
 		return (NULL);
 
 	return (resource_list_alloc(rl, dev, child, type, rid,
 	    start, end, count, flags));
 }
 
 /**
  * @brief Helper function for implementing BUS_CHILD_PRESENT().
  *
  * This simple implementation of BUS_CHILD_PRESENT() simply calls the
  * BUS_CHILD_PRESENT() method of the parent of @p dev.
  */
 int
 bus_generic_child_present(device_t dev, device_t child)
 {
 	return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
 }
 
 int
 bus_generic_get_domain(device_t dev, device_t child, int *domain)
 {
 	if (dev->parent)
 		return (BUS_GET_DOMAIN(dev->parent, dev, domain));
 
 	return (ENOENT);
 }
 
 /**
  * @brief Helper function for implementing BUS_RESCAN().
  *
  * This null implementation of BUS_RESCAN() always fails to indicate
  * the bus does not support rescanning.
  */
 int
 bus_null_rescan(device_t dev)
 {
 	return (ENXIO);
 }
 
 /*
  * Some convenience functions to make it easier for drivers to use the
  * resource-management functions.  All these really do is hide the
  * indirection through the parent's method table, making for slightly
  * less-wordy code.  In the future, it might make sense for this code
  * to maintain some sort of a list of resources allocated by each device.
  */
 
 int
 bus_alloc_resources(device_t dev, struct resource_spec *rs,
     struct resource **res)
 {
 	int i;
 
 	for (i = 0; rs[i].type != -1; i++)
 		res[i] = NULL;
 	for (i = 0; rs[i].type != -1; i++) {
 		res[i] = bus_alloc_resource_any(dev,
 		    rs[i].type, &rs[i].rid, rs[i].flags);
 		if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
 			bus_release_resources(dev, rs, res);
 			return (ENXIO);
 		}
 	}
 	return (0);
 }
 
 void
 bus_release_resources(device_t dev, const struct resource_spec *rs,
     struct resource **res)
 {
 	int i;
 
 	for (i = 0; rs[i].type != -1; i++)
 		if (res[i] != NULL) {
 			bus_release_resource(
 			    dev, rs[i].type, rs[i].rid, res[i]);
 			res[i] = NULL;
 		}
 }
 
 /**
  * @brief Wrapper function for BUS_ALLOC_RESOURCE().
  *
  * This function simply calls the BUS_ALLOC_RESOURCE() method of the
  * parent of @p dev.
  */
 struct resource *
 bus_alloc_resource(device_t dev, int type, int *rid, rman_res_t start,
     rman_res_t end, rman_res_t count, u_int flags)
 {
 	struct resource *res;
 
 	if (dev->parent == NULL)
 		return (NULL);
 	res = BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
 	    count, flags);
 	return (res);
 }
 
 /**
  * @brief Wrapper function for BUS_ADJUST_RESOURCE().
  *
  * This function simply calls the BUS_ADJUST_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_adjust_resource(device_t dev, int type, struct resource *r, rman_res_t start,
     rman_res_t end)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
 }
 
 /**
  * @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
  *
  * This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 }
 
 /**
  * @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
  *
  * This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
 }
 
 /**
  * @brief Wrapper function for BUS_MAP_RESOURCE().
  *
  * This function simply calls the BUS_MAP_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_map_resource(device_t dev, int type, struct resource *r,
     struct resource_map_request *args, struct resource_map *map)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_MAP_RESOURCE(dev->parent, dev, type, r, args, map));
 }
 
 /**
  * @brief Wrapper function for BUS_UNMAP_RESOURCE().
  *
  * This function simply calls the BUS_UNMAP_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_unmap_resource(device_t dev, int type, struct resource *r,
     struct resource_map *map)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_UNMAP_RESOURCE(dev->parent, dev, type, r, map));
 }
 
 /**
  * @brief Wrapper function for BUS_RELEASE_RESOURCE().
  *
  * This function simply calls the BUS_RELEASE_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_release_resource(device_t dev, int type, int rid, struct resource *r)
 {
 	int rv;
 
 	if (dev->parent == NULL)
 		return (EINVAL);
 	rv = BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r);
 	return (rv);
 }
 
 /**
  * @brief Wrapper function for BUS_SETUP_INTR().
  *
  * This function simply calls the BUS_SETUP_INTR() method of the
  * parent of @p dev.
  */
 int
 bus_setup_intr(device_t dev, struct resource *r, int flags,
     driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
 {
 	int error;
 
 	if (dev->parent == NULL)
 		return (EINVAL);
 	error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
 	    arg, cookiep);
 	if (error != 0)
 		return (error);
 	if (handler != NULL && !(flags & INTR_MPSAFE))
 		device_printf(dev, "[GIANT-LOCKED]\n");
 	return (0);
 }
 
 /**
  * @brief Wrapper function for BUS_TEARDOWN_INTR().
  *
  * This function simply calls the BUS_TEARDOWN_INTR() method of the
  * parent of @p dev.
  */
 int
 bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
 }
 
 /**
  * @brief Wrapper function for BUS_SUSPEND_INTR().
  *
  * This function simply calls the BUS_SUSPEND_INTR() method of the
  * parent of @p dev.
  */
 int
 bus_suspend_intr(device_t dev, struct resource *r)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_SUSPEND_INTR(dev->parent, dev, r));
 }
 
 /**
  * @brief Wrapper function for BUS_RESUME_INTR().
  *
  * This function simply calls the BUS_RESUME_INTR() method of the
  * parent of @p dev.
  */
 int
 bus_resume_intr(device_t dev, struct resource *r)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_RESUME_INTR(dev->parent, dev, r));
 }
 
 /**
  * @brief Wrapper function for BUS_BIND_INTR().
  *
  * This function simply calls the BUS_BIND_INTR() method of the
  * parent of @p dev.
  */
 int
 bus_bind_intr(device_t dev, struct resource *r, int cpu)
 {
 	if (dev->parent == NULL)
 		return (EINVAL);
 	return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
 }
 
 /**
  * @brief Wrapper function for BUS_DESCRIBE_INTR().
  *
  * This function first formats the requested description into a
  * temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
  * the parent of @p dev.
  */
 int
 bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
     const char *fmt, ...)
 {
 	va_list ap;
 	char descr[MAXCOMLEN + 1];
 
 	if (dev->parent == NULL)
 		return (EINVAL);
 	va_start(ap, fmt);
 	vsnprintf(descr, sizeof(descr), fmt, ap);
 	va_end(ap);
 	return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
 }
 
 /**
  * @brief Wrapper function for BUS_SET_RESOURCE().
  *
  * This function simply calls the BUS_SET_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_set_resource(device_t dev, int type, int rid,
     rman_res_t start, rman_res_t count)
 {
 	return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
 	    start, count));
 }
 
 /**
  * @brief Wrapper function for BUS_GET_RESOURCE().
  *
  * This function simply calls the BUS_GET_RESOURCE() method of the
  * parent of @p dev.
  */
 int
 bus_get_resource(device_t dev, int type, int rid,
     rman_res_t *startp, rman_res_t *countp)
 {
 	return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 	    startp, countp));
 }
 
 /**
  * @brief Wrapper function for BUS_GET_RESOURCE().
  *
  * This function simply calls the BUS_GET_RESOURCE() method of the
  * parent of @p dev and returns the start value.
  */
 rman_res_t
 bus_get_resource_start(device_t dev, int type, int rid)
 {
 	rman_res_t start;
 	rman_res_t count;
 	int error;
 
 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 	    &start, &count);
 	if (error)
 		return (0);
 	return (start);
 }
 
 /**
  * @brief Wrapper function for BUS_GET_RESOURCE().
  *
  * This function simply calls the BUS_GET_RESOURCE() method of the
  * parent of @p dev and returns the count value.
  */
 rman_res_t
 bus_get_resource_count(device_t dev, int type, int rid)
 {
 	rman_res_t start;
 	rman_res_t count;
 	int error;
 
 	error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
 	    &start, &count);
 	if (error)
 		return (0);
 	return (count);
 }
 
 /**
  * @brief Wrapper function for BUS_DELETE_RESOURCE().
  *
  * This function simply calls the BUS_DELETE_RESOURCE() method of the
  * parent of @p dev.
  */
 void
 bus_delete_resource(device_t dev, int type, int rid)
 {
 	BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
 }
 
 /**
  * @brief Wrapper function for BUS_CHILD_PRESENT().
  *
  * This function simply calls the BUS_CHILD_PRESENT() method of the
  * parent of @p dev.
  */
 int
 bus_child_present(device_t child)
 {
 	return (BUS_CHILD_PRESENT(device_get_parent(child), child));
 }
 
 /**
  * @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
  *
  * This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
  * parent of @p dev.
  */
 int
 bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
 {
 	device_t parent;
 
 	parent = device_get_parent(child);
 	if (parent == NULL) {
 		*buf = '\0';
 		return (0);
 	}
 	return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
 }
 
 /**
  * @brief Wrapper function for BUS_CHILD_LOCATION_STR().
  *
  * This function simply calls the BUS_CHILD_LOCATION_STR() method of the
  * parent of @p dev.
  */
 int
 bus_child_location_str(device_t child, char *buf, size_t buflen)
 {
 	device_t parent;
 
 	parent = device_get_parent(child);
 	if (parent == NULL) {
 		*buf = '\0';
 		return (0);
 	}
 	return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
 }
 
 /**
  * @brief Wrapper function for BUS_GET_CPUS().
  *
  * This function simply calls the BUS_GET_CPUS() method of the
  * parent of @p dev.
  */
 int
 bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize, cpuset_t *cpuset)
 {
 	device_t parent;
 
 	parent = device_get_parent(dev);
 	if (parent == NULL)
 		return (EINVAL);
 	return (BUS_GET_CPUS(parent, dev, op, setsize, cpuset));
 }
 
 /**
  * @brief Wrapper function for BUS_GET_DMA_TAG().
  *
  * This function simply calls the BUS_GET_DMA_TAG() method of the
  * parent of @p dev.
  */
 bus_dma_tag_t
 bus_get_dma_tag(device_t dev)
 {
 	device_t parent;
 
 	parent = device_get_parent(dev);
 	if (parent == NULL)
 		return (NULL);
 	return (BUS_GET_DMA_TAG(parent, dev));
 }
 
 /**
  * @brief Wrapper function for BUS_GET_BUS_TAG().
  *
  * This function simply calls the BUS_GET_BUS_TAG() method of the
  * parent of @p dev.
  */
 bus_space_tag_t
 bus_get_bus_tag(device_t dev)
 {
 	device_t parent;
 
 	parent = device_get_parent(dev);
 	if (parent == NULL)
 		return ((bus_space_tag_t)0);
 	return (BUS_GET_BUS_TAG(parent, dev));
 }
 
 /**
  * @brief Wrapper function for BUS_GET_DOMAIN().
  *
  * This function simply calls the BUS_GET_DOMAIN() method of the
  * parent of @p dev.
  */
 int
 bus_get_domain(device_t dev, int *domain)
 {
 	return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
 }
 
 /* Resume all devices and then notify userland that we're up again. */
 static int
 root_resume(device_t dev)
 {
 	int error;
 
 	error = bus_generic_resume(dev);
 	if (error == 0)
 		devctl_notify("kern", "power", "resume", NULL);
 	return (error);
 }
 
 static int
 root_print_child(device_t dev, device_t child)
 {
 	int	retval = 0;
 
 	retval += bus_print_child_header(dev, child);
 	retval += printf("\n");
 
 	return (retval);
 }
 
 static int
 root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
     driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
 {
 	/*
 	 * If an interrupt mapping gets to here something bad has happened.
 	 */
 	panic("root_setup_intr");
 }
 
 /*
  * If we get here, assume that the device is permanent and really is
  * present in the system.  Removable bus drivers are expected to intercept
  * this call long before it gets here.  We return -1 so that drivers that
  * really care can check vs -1 or some ERRNO returned higher in the food
  * chain.
  */
 static int
 root_child_present(device_t dev, device_t child)
 {
 	return (-1);
 }
 
 static int
 root_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
     cpuset_t *cpuset)
 {
 	switch (op) {
 	case INTR_CPUS:
 		/* Default to returning the set of all CPUs. */
 		if (setsize != sizeof(cpuset_t))
 			return (EINVAL);
 		*cpuset = all_cpus;
 		return (0);
 	default:
 		return (EINVAL);
 	}
 }
 
 static kobj_method_t root_methods[] = {
 	/* Device interface */
 	KOBJMETHOD(device_shutdown,	bus_generic_shutdown),
 	KOBJMETHOD(device_suspend,	bus_generic_suspend),
 	KOBJMETHOD(device_resume,	root_resume),
 
 	/* Bus interface */
 	KOBJMETHOD(bus_print_child,	root_print_child),
 	KOBJMETHOD(bus_read_ivar,	bus_generic_read_ivar),
 	KOBJMETHOD(bus_write_ivar,	bus_generic_write_ivar),
 	KOBJMETHOD(bus_setup_intr,	root_setup_intr),
 	KOBJMETHOD(bus_child_present,	root_child_present),
 	KOBJMETHOD(bus_get_cpus,	root_get_cpus),
 
 	KOBJMETHOD_END
 };
 
 static driver_t root_driver = {
 	"root",
 	root_methods,
 	1,			/* no softc */
 };
 
 device_t	root_bus;
 devclass_t	root_devclass;
 
 static int
 root_bus_module_handler(module_t mod, int what, void* arg)
 {
 	switch (what) {
 	case MOD_LOAD:
 		TAILQ_INIT(&bus_data_devices);
 		kobj_class_compile((kobj_class_t) &root_driver);
 		root_bus = make_device(NULL, "root", 0);
 		root_bus->desc = "System root bus";
 		kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
 		root_bus->driver = &root_driver;
 		root_bus->state = DS_ATTACHED;
 		root_devclass = devclass_find_internal("root", NULL, FALSE);
 		devinit();
 		return (0);
 
 	case MOD_SHUTDOWN:
 		device_shutdown(root_bus);
 		return (0);
 	default:
 		return (EOPNOTSUPP);
 	}
 
 	return (0);
 }
 
 static moduledata_t root_bus_mod = {
 	"rootbus",
 	root_bus_module_handler,
 	NULL
 };
 DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
 
 /**
  * @brief Automatically configure devices
  *
  * This function begins the autoconfiguration process by calling
  * device_probe_and_attach() for each child of the @c root0 device.
  */
 void
 root_bus_configure(void)
 {
 	PDEBUG(("."));
 
 	/* Eventually this will be split up, but this is sufficient for now. */
 	bus_set_pass(BUS_PASS_DEFAULT);
 }
 
 /**
  * @brief Module handler for registering device drivers
  *
  * This module handler is used to automatically register device
  * drivers when modules are loaded. If @p what is MOD_LOAD, it calls
  * devclass_add_driver() for the driver described by the
  * driver_module_data structure pointed to by @p arg
  */
 int
 driver_module_handler(module_t mod, int what, void *arg)
 {
 	struct driver_module_data *dmd;
 	devclass_t bus_devclass;
 	kobj_class_t driver;
 	int error, pass;
 
 	dmd = (struct driver_module_data *)arg;
 	bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
 	error = 0;
 
 	switch (what) {
 	case MOD_LOAD:
 		if (dmd->dmd_chainevh)
 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 
 		pass = dmd->dmd_pass;
 		driver = dmd->dmd_driver;
 		PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
 		    DRIVERNAME(driver), dmd->dmd_busname, pass));
 		error = devclass_add_driver(bus_devclass, driver, pass,
 		    dmd->dmd_devclass);
 		break;
 
 	case MOD_UNLOAD:
 		PDEBUG(("Unloading module: driver %s from bus %s",
 		    DRIVERNAME(dmd->dmd_driver),
 		    dmd->dmd_busname));
 		error = devclass_delete_driver(bus_devclass,
 		    dmd->dmd_driver);
 
 		if (!error && dmd->dmd_chainevh)
 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 		break;
 	case MOD_QUIESCE:
 		PDEBUG(("Quiesce module: driver %s from bus %s",
 		    DRIVERNAME(dmd->dmd_driver),
 		    dmd->dmd_busname));
 		error = devclass_quiesce_driver(bus_devclass,
 		    dmd->dmd_driver);
 
 		if (!error && dmd->dmd_chainevh)
 			error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
 		break;
 	default:
 		error = EOPNOTSUPP;
 		break;
 	}
 
 	return (error);
 }
 
 /**
  * @brief Enumerate all hinted devices for this bus.
  *
  * Walks through the hints for this bus and calls the bus_hinted_child
  * routine for each one it fines.  It searches first for the specific
  * bus that's being probed for hinted children (eg isa0), and then for
  * generic children (eg isa).
  *
  * @param	dev	bus device to enumerate
  */
 void
 bus_enumerate_hinted_children(device_t bus)
 {
 	int i;
 	const char *dname, *busname;
 	int dunit;
 
 	/*
 	 * enumerate all devices on the specific bus
 	 */
 	busname = device_get_nameunit(bus);
 	i = 0;
 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 		BUS_HINTED_CHILD(bus, dname, dunit);
 
 	/*
 	 * and all the generic ones.
 	 */
 	busname = device_get_name(bus);
 	i = 0;
 	while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
 		BUS_HINTED_CHILD(bus, dname, dunit);
 }
 
 #ifdef BUS_DEBUG
 
 /* the _short versions avoid iteration by not calling anything that prints
  * more than oneliners. I love oneliners.
  */
 
 static void
 print_device_short(device_t dev, int indent)
 {
 	if (!dev)
 		return;
 
 	indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
 	    dev->unit, dev->desc,
 	    (dev->parent? "":"no "),
 	    (TAILQ_EMPTY(&dev->children)? "no ":""),
 	    (dev->flags&DF_ENABLED? "enabled,":"disabled,"),
 	    (dev->flags&DF_FIXEDCLASS? "fixed,":""),
 	    (dev->flags&DF_WILDCARD? "wildcard,":""),
 	    (dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
 	    (dev->flags&DF_REBID? "rebiddable,":""),
 	    (dev->flags&DF_SUSPENDED? "suspended,":""),
 	    (dev->ivars? "":"no "),
 	    (dev->softc? "":"no "),
 	    dev->busy));
 }
 
 static void
 print_device(device_t dev, int indent)
 {
 	if (!dev)
 		return;
 
 	print_device_short(dev, indent);
 
 	indentprintf(("Parent:\n"));
 	print_device_short(dev->parent, indent+1);
 	indentprintf(("Driver:\n"));
 	print_driver_short(dev->driver, indent+1);
 	indentprintf(("Devclass:\n"));
 	print_devclass_short(dev->devclass, indent+1);
 }
 
 void
 print_device_tree_short(device_t dev, int indent)
 /* print the device and all its children (indented) */
 {
 	device_t child;
 
 	if (!dev)
 		return;
 
 	print_device_short(dev, indent);
 
 	TAILQ_FOREACH(child, &dev->children, link) {
 		print_device_tree_short(child, indent+1);
 	}
 }
 
 void
 print_device_tree(device_t dev, int indent)
 /* print the device and all its children (indented) */
 {
 	device_t child;
 
 	if (!dev)
 		return;
 
 	print_device(dev, indent);
 
 	TAILQ_FOREACH(child, &dev->children, link) {
 		print_device_tree(child, indent+1);
 	}
 }
 
 static void
 print_driver_short(driver_t *driver, int indent)
 {
 	if (!driver)
 		return;
 
 	indentprintf(("driver %s: softc size = %zd\n",
 	    driver->name, driver->size));
 }
 
 static void
 print_driver(driver_t *driver, int indent)
 {
 	if (!driver)
 		return;
 
 	print_driver_short(driver, indent);
 }
 
 static void
 print_driver_list(driver_list_t drivers, int indent)
 {
 	driverlink_t driver;
 
 	TAILQ_FOREACH(driver, &drivers, link) {
 		print_driver(driver->driver, indent);
 	}
 }
 
 static void
 print_devclass_short(devclass_t dc, int indent)
 {
 	if ( !dc )
 		return;
 
 	indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
 }
 
 static void
 print_devclass(devclass_t dc, int indent)
 {
 	int i;
 
 	if ( !dc )
 		return;
 
 	print_devclass_short(dc, indent);
 	indentprintf(("Drivers:\n"));
 	print_driver_list(dc->drivers, indent+1);
 
 	indentprintf(("Devices:\n"));
 	for (i = 0; i < dc->maxunit; i++)
 		if (dc->devices[i])
 			print_device(dc->devices[i], indent+1);
 }
 
 void
 print_devclass_list_short(void)
 {
 	devclass_t dc;
 
 	printf("Short listing of devclasses, drivers & devices:\n");
 	TAILQ_FOREACH(dc, &devclasses, link) {
 		print_devclass_short(dc, 0);
 	}
 }
 
 void
 print_devclass_list(void)
 {
 	devclass_t dc;
 
 	printf("Full listing of devclasses, drivers & devices:\n");
 	TAILQ_FOREACH(dc, &devclasses, link) {
 		print_devclass(dc, 0);
 	}
 }
 
 #endif
 
 /*
  * User-space access to the device tree.
  *
  * We implement a small set of nodes:
  *
  * hw.bus			Single integer read method to obtain the
  *				current generation count.
  * hw.bus.devices		Reads the entire device tree in flat space.
  * hw.bus.rman			Resource manager interface
  *
  * We might like to add the ability to scan devclasses and/or drivers to
  * determine what else is currently loaded/available.
  */
 
 static int
 sysctl_bus_info(SYSCTL_HANDLER_ARGS)
 {
 	struct u_businfo	ubus;
 
 	ubus.ub_version = BUS_USER_VERSION;
 	ubus.ub_generation = bus_data_generation;
 
 	return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
 }
 SYSCTL_PROC(_hw_bus, OID_AUTO, info, CTLTYPE_STRUCT | CTLFLAG_RD |
     CTLFLAG_MPSAFE, NULL, 0, sysctl_bus_info, "S,u_businfo",
     "bus-related data");
 
 static int
 sysctl_devices(SYSCTL_HANDLER_ARGS)
 {
 	int			*name = (int *)arg1;
 	u_int			namelen = arg2;
 	int			index;
 	device_t		dev;
 	struct u_device		*udev;
 	int			error;
 	char			*walker, *ep;
 
 	if (namelen != 2)
 		return (EINVAL);
 
 	if (bus_data_generation_check(name[0]))
 		return (EINVAL);
 
 	index = name[1];
 
 	/*
 	 * Scan the list of devices, looking for the requested index.
 	 */
 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 		if (index-- == 0)
 			break;
 	}
 	if (dev == NULL)
 		return (ENOENT);
 
 	/*
 	 * Populate the return item, careful not to overflow the buffer.
 	 */
 	udev = malloc(sizeof(*udev), M_BUS, M_WAITOK | M_ZERO);
 	if (udev == NULL)
 		return (ENOMEM);
 	udev->dv_handle = (uintptr_t)dev;
 	udev->dv_parent = (uintptr_t)dev->parent;
 	udev->dv_devflags = dev->devflags;
 	udev->dv_flags = dev->flags;
 	udev->dv_state = dev->state;
 	walker = udev->dv_fields;
 	ep = walker + sizeof(udev->dv_fields);
 #define CP(src)						\
 	if ((src) == NULL)				\
 		*walker++ = '\0';			\
 	else {						\
 		strlcpy(walker, (src), ep - walker);	\
 		walker += strlen(walker) + 1;		\
 	}						\
 	if (walker >= ep)				\
 		break;
 
 	do {
 		CP(dev->nameunit);
 		CP(dev->desc);
 		CP(dev->driver != NULL ? dev->driver->name : NULL);
 		bus_child_pnpinfo_str(dev, walker, ep - walker);
 		walker += strlen(walker) + 1;
 		if (walker >= ep)
 			break;
 		bus_child_location_str(dev, walker, ep - walker);
 		walker += strlen(walker) + 1;
 		if (walker >= ep)
 			break;
 		*walker++ = '\0';
 	} while (0);
 #undef CP
 	error = SYSCTL_OUT(req, udev, sizeof(*udev));
 	free(udev, M_BUS);
 	return (error);
 }
 
 SYSCTL_NODE(_hw_bus, OID_AUTO, devices,
     CTLFLAG_RD | CTLFLAG_NEEDGIANT, sysctl_devices,
     "system device tree");
 
 int
 bus_data_generation_check(int generation)
 {
 	if (generation != bus_data_generation)
 		return (1);
 
 	/* XXX generate optimised lists here? */
 	return (0);
 }
 
 void
 bus_data_generation_update(void)
 {
 	atomic_add_int(&bus_data_generation, 1);
 }
 
 int
 bus_free_resource(device_t dev, int type, struct resource *r)
 {
 	if (r == NULL)
 		return (0);
 	return (bus_release_resource(dev, type, rman_get_rid(r), r));
 }
 
 device_t
 device_lookup_by_name(const char *name)
 {
 	device_t dev;
 
 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 		if (dev->nameunit != NULL && strcmp(dev->nameunit, name) == 0)
 			return (dev);
 	}
 	return (NULL);
 }
 
 /*
  * /dev/devctl2 implementation.  The existing /dev/devctl device has
  * implicit semantics on open, so it could not be reused for this.
  * Another option would be to call this /dev/bus?
  */
 static int
 find_device(struct devreq *req, device_t *devp)
 {
 	device_t dev;
 
 	/*
 	 * First, ensure that the name is nul terminated.
 	 */
 	if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
 		return (EINVAL);
 
 	/*
 	 * Second, try to find an attached device whose name matches
 	 * 'name'.
 	 */
 	dev = device_lookup_by_name(req->dr_name);
 	if (dev != NULL) {
 		*devp = dev;
 		return (0);
 	}
 
 	/* Finally, give device enumerators a chance. */
 	dev = NULL;
 	EVENTHANDLER_DIRECT_INVOKE(dev_lookup, req->dr_name, &dev);
 	if (dev == NULL)
 		return (ENOENT);
 	*devp = dev;
 	return (0);
 }
 
 static bool
 driver_exists(device_t bus, const char *driver)
 {
 	devclass_t dc;
 
 	for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
 		if (devclass_find_driver_internal(dc, driver) != NULL)
 			return (true);
 	}
 	return (false);
 }
 
 static void
 device_gen_nomatch(device_t dev)
 {
 	device_t child;
 
 	if (dev->flags & DF_NEEDNOMATCH &&
 	    dev->state == DS_NOTPRESENT) {
 		BUS_PROBE_NOMATCH(dev->parent, dev);
 		devnomatch(dev);
 		dev->flags |= DF_DONENOMATCH;
 	}
 	dev->flags &= ~DF_NEEDNOMATCH;
 	TAILQ_FOREACH(child, &dev->children, link) {
 		device_gen_nomatch(child);
 	}
 }
 
 static void
 device_do_deferred_actions(void)
 {
 	devclass_t dc;
 	driverlink_t dl;
 
 	/*
 	 * Walk through the devclasses to find all the drivers we've tagged as
 	 * deferred during the freeze and call the driver added routines. They
 	 * have already been added to the lists in the background, so the driver
 	 * added routines that trigger a probe will have all the right bidders
 	 * for the probe auction.
 	 */
 	TAILQ_FOREACH(dc, &devclasses, link) {
 		TAILQ_FOREACH(dl, &dc->drivers, link) {
 			if (dl->flags & DL_DEFERRED_PROBE) {
 				devclass_driver_added(dc, dl->driver);
 				dl->flags &= ~DL_DEFERRED_PROBE;
 			}
 		}
 	}
 
 	/*
 	 * We also defer no-match events during a freeze. Walk the tree and
 	 * generate all the pent-up events that are still relevant.
 	 */
 	device_gen_nomatch(root_bus);
 	bus_data_generation_update();
 }
 
 static int
 devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
     struct thread *td)
 {
 	struct devreq *req;
 	device_t dev;
 	int error, old;
 
 	/* Locate the device to control. */
 	mtx_lock(&Giant);
 	req = (struct devreq *)data;
 	switch (cmd) {
 	case DEV_ATTACH:
 	case DEV_DETACH:
 	case DEV_ENABLE:
 	case DEV_DISABLE:
 	case DEV_SUSPEND:
 	case DEV_RESUME:
 	case DEV_SET_DRIVER:
 	case DEV_CLEAR_DRIVER:
 	case DEV_RESCAN:
 	case DEV_DELETE:
 	case DEV_RESET:
 		error = priv_check(td, PRIV_DRIVER);
 		if (error == 0)
 			error = find_device(req, &dev);
 		break;
 	case DEV_FREEZE:
 	case DEV_THAW:
 		error = priv_check(td, PRIV_DRIVER);
 		break;
 	default:
 		error = ENOTTY;
 		break;
 	}
 	if (error) {
 		mtx_unlock(&Giant);
 		return (error);
 	}
 
 	/* Perform the requested operation. */
 	switch (cmd) {
 	case DEV_ATTACH:
 		if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
 			error = EBUSY;
 		else if (!device_is_enabled(dev))
 			error = ENXIO;
 		else
 			error = device_probe_and_attach(dev);
 		break;
 	case DEV_DETACH:
 		if (!device_is_attached(dev)) {
 			error = ENXIO;
 			break;
 		}
 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
 			error = device_quiesce(dev);
 			if (error)
 				break;
 		}
 		error = device_detach(dev);
 		break;
 	case DEV_ENABLE:
 		if (device_is_enabled(dev)) {
 			error = EBUSY;
 			break;
 		}
 
 		/*
 		 * If the device has been probed but not attached (e.g.
 		 * when it has been disabled by a loader hint), just
 		 * attach the device rather than doing a full probe.
 		 */
 		device_enable(dev);
 		if (device_is_alive(dev)) {
 			/*
 			 * If the device was disabled via a hint, clear
 			 * the hint.
 			 */
 			if (resource_disabled(dev->driver->name, dev->unit))
 				resource_unset_value(dev->driver->name,
 				    dev->unit, "disabled");
 			error = device_attach(dev);
 		} else
 			error = device_probe_and_attach(dev);
 		break;
 	case DEV_DISABLE:
 		if (!device_is_enabled(dev)) {
 			error = ENXIO;
 			break;
 		}
 
 		if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
 			error = device_quiesce(dev);
 			if (error)
 				break;
 		}
 
 		/*
 		 * Force DF_FIXEDCLASS on around detach to preserve
 		 * the existing name.
 		 */
 		old = dev->flags;
 		dev->flags |= DF_FIXEDCLASS;
 		error = device_detach(dev);
 		if (!(old & DF_FIXEDCLASS))
 			dev->flags &= ~DF_FIXEDCLASS;
 		if (error == 0)
 			device_disable(dev);
 		break;
 	case DEV_SUSPEND:
 		if (device_is_suspended(dev)) {
 			error = EBUSY;
 			break;
 		}
 		if (device_get_parent(dev) == NULL) {
 			error = EINVAL;
 			break;
 		}
 		error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
 		break;
 	case DEV_RESUME:
 		if (!device_is_suspended(dev)) {
 			error = EINVAL;
 			break;
 		}
 		if (device_get_parent(dev) == NULL) {
 			error = EINVAL;
 			break;
 		}
 		error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
 		break;
 	case DEV_SET_DRIVER: {
 		devclass_t dc;
 		char driver[128];
 
 		error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
 		if (error)
 			break;
 		if (driver[0] == '\0') {
 			error = EINVAL;
 			break;
 		}
 		if (dev->devclass != NULL &&
 		    strcmp(driver, dev->devclass->name) == 0)
 			/* XXX: Could possibly force DF_FIXEDCLASS on? */
 			break;
 
 		/*
 		 * Scan drivers for this device's bus looking for at
 		 * least one matching driver.
 		 */
 		if (dev->parent == NULL) {
 			error = EINVAL;
 			break;
 		}
 		if (!driver_exists(dev->parent, driver)) {
 			error = ENOENT;
 			break;
 		}
 		dc = devclass_create(driver);
 		if (dc == NULL) {
 			error = ENOMEM;
 			break;
 		}
 
 		/* Detach device if necessary. */
 		if (device_is_attached(dev)) {
 			if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
 				error = device_detach(dev);
 			else
 				error = EBUSY;
 			if (error)
 				break;
 		}
 
 		/* Clear any previously-fixed device class and unit. */
 		if (dev->flags & DF_FIXEDCLASS)
 			devclass_delete_device(dev->devclass, dev);
 		dev->flags |= DF_WILDCARD;
 		dev->unit = -1;
 
 		/* Force the new device class. */
 		error = devclass_add_device(dc, dev);
 		if (error)
 			break;
 		dev->flags |= DF_FIXEDCLASS;
 		error = device_probe_and_attach(dev);
 		break;
 	}
 	case DEV_CLEAR_DRIVER:
 		if (!(dev->flags & DF_FIXEDCLASS)) {
 			error = 0;
 			break;
 		}
 		if (device_is_attached(dev)) {
 			if (req->dr_flags & DEVF_CLEAR_DRIVER_DETACH)
 				error = device_detach(dev);
 			else
 				error = EBUSY;
 			if (error)
 				break;
 		}
 
 		dev->flags &= ~DF_FIXEDCLASS;
 		dev->flags |= DF_WILDCARD;
 		devclass_delete_device(dev->devclass, dev);
 		error = device_probe_and_attach(dev);
 		break;
 	case DEV_RESCAN:
 		if (!device_is_attached(dev)) {
 			error = ENXIO;
 			break;
 		}
 		error = BUS_RESCAN(dev);
 		break;
 	case DEV_DELETE: {
 		device_t parent;
 
 		parent = device_get_parent(dev);
 		if (parent == NULL) {
 			error = EINVAL;
 			break;
 		}
 		if (!(req->dr_flags & DEVF_FORCE_DELETE)) {
 			if (bus_child_present(dev) != 0) {
 				error = EBUSY;
 				break;
 			}
 		}
 		
 		error = device_delete_child(parent, dev);
 		break;
 	}
 	case DEV_FREEZE:
 		if (device_frozen)
 			error = EBUSY;
 		else
 			device_frozen = true;
 		break;
 	case DEV_THAW:
 		if (!device_frozen)
 			error = EBUSY;
 		else {
 			device_do_deferred_actions();
 			device_frozen = false;
 		}
 		break;
 	case DEV_RESET:
 		if ((req->dr_flags & ~(DEVF_RESET_DETACH)) != 0) {
 			error = EINVAL;
 			break;
 		}
 		error = BUS_RESET_CHILD(device_get_parent(dev), dev,
 		    req->dr_flags);
 		break;
 	}
 	mtx_unlock(&Giant);
 	return (error);
 }
 
 static struct cdevsw devctl2_cdevsw = {
 	.d_version =	D_VERSION,
 	.d_ioctl =	devctl2_ioctl,
 	.d_name =	"devctl2",
 };
 
 static void
 devctl2_init(void)
 {
 	make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
 	    UID_ROOT, GID_WHEEL, 0600, "devctl2");
 }
 
 /*
  * APIs to manage deprecation and obsolescence.
  */
 static int obsolete_panic = 0;
 SYSCTL_INT(_debug, OID_AUTO, obsolete_panic, CTLFLAG_RWTUN, &obsolete_panic, 0,
     "Panic when obsolete features are used (0 = never, 1 = if osbolete, "
     "2 = if deprecated)");
 
 static void
 gone_panic(int major, int running, const char *msg)
 {
 	switch (obsolete_panic)
 	{
 	case 0:
 		return;
 	case 1:
 		if (running < major)
 			return;
 		/* FALLTHROUGH */
 	default:
 		panic("%s", msg);
 	}
 }
 
 void
 _gone_in(int major, const char *msg)
 {
 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
 		printf("Obsolete code will be removed soon: %s\n", msg);
 	else
 		printf("Deprecated code (to be removed in FreeBSD %d): %s\n",
 		    major, msg);
 }
 
 void
 _gone_in_dev(device_t dev, int major, const char *msg)
 {
 	gone_panic(major, P_OSREL_MAJOR(__FreeBSD_version), msg);
 	if (P_OSREL_MAJOR(__FreeBSD_version) >= major)
 		device_printf(dev,
 		    "Obsolete code will be removed soon: %s\n", msg);
 	else
 		device_printf(dev,
 		    "Deprecated code (to be removed in FreeBSD %d): %s\n",
 		    major, msg);
 }
 
 #ifdef DDB
 DB_SHOW_COMMAND(device, db_show_device)
 {
 	device_t dev;
 
 	if (!have_addr)
 		return;
 
 	dev = (device_t)addr;
 
 	db_printf("name:    %s\n", device_get_nameunit(dev));
 	db_printf("  driver:  %s\n", DRIVERNAME(dev->driver));
 	db_printf("  class:   %s\n", DEVCLANAME(dev->devclass));
 	db_printf("  addr:    %p\n", dev);
 	db_printf("  parent:  %p\n", dev->parent);
 	db_printf("  softc:   %p\n", dev->softc);
 	db_printf("  ivars:   %p\n", dev->ivars);
 }
 
 DB_SHOW_ALL_COMMAND(devices, db_show_all_devices)
 {
 	device_t dev;
 
 	TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
 		db_show_device((db_expr_t)dev, true, count, modif);
 	}
 }
 #endif
diff --git a/sys/sys/bus.h b/sys/sys/bus.h
index a2d22af77277..32f500cb5526 100644
--- a/sys/sys/bus.h
+++ b/sys/sys/bus.h
@@ -1,974 +1,971 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright (c) 1997,1998,2003 Doug Rabson
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  * $FreeBSD$
  */
 
 #ifndef _SYS_BUS_H_
 #define _SYS_BUS_H_
 
 #include <machine/_limits.h>
 #include <machine/_bus.h>
 #include <sys/_bus_dma.h>
 #include <sys/ioccom.h>
 
 /**
  * @defgroup NEWBUS newbus - a generic framework for managing devices
  * @{
  */
 
 /**
  * @brief Interface information structure.
  */
 struct u_businfo {
 	int	ub_version;		/**< @brief interface version */
 #define BUS_USER_VERSION	2
 	int	ub_generation;		/**< @brief generation count */
 };
 
 /**
  * @brief State of the device.
  */
 typedef enum device_state {
 	DS_NOTPRESENT = 10,		/**< @brief not probed or probe failed */
 	DS_ALIVE = 20,			/**< @brief probe succeeded */
 	DS_ATTACHING = 25,		/**< @brief currently attaching */
 	DS_ATTACHED = 30,		/**< @brief attach method called */
 	DS_BUSY = 40			/**< @brief device is open */
 } device_state_t;
 
 /**
  * @brief Device information exported to userspace.
  * The strings are placed one after the other, separated by NUL characters.
  * Fields should be added after the last one and order maintained for compatibility
  */
 #define BUS_USER_BUFFER		(3*1024)
 struct u_device {
 	uintptr_t	dv_handle;
 	uintptr_t	dv_parent;
 	uint32_t	dv_devflags;		/**< @brief API Flags for device */
 	uint16_t	dv_flags;		/**< @brief flags for dev state */
 	device_state_t	dv_state;		/**< @brief State of attachment */
 	char		dv_fields[BUS_USER_BUFFER]; /**< @brief NUL terminated fields */
 	/* name (name of the device in tree) */
 	/* desc (driver description) */
 	/* drivername (Name of driver without unit number) */
 	/* pnpinfo (Plug and play information from bus) */
 	/* location (Location of device on parent */
 	/* NUL */
 };
 
 /* Flags exported via dv_flags. */
 #define	DF_ENABLED	0x01		/* device should be probed/attached */
 #define	DF_FIXEDCLASS	0x02		/* devclass specified at create time */
 #define	DF_WILDCARD	0x04		/* unit was originally wildcard */
 #define	DF_DESCMALLOCED	0x08		/* description was malloced */
 #define	DF_QUIET	0x10		/* don't print verbose attach message */
 #define	DF_DONENOMATCH	0x20		/* don't execute DEVICE_NOMATCH again */
 #define	DF_EXTERNALSOFTC 0x40		/* softc not allocated by us */
 #define	DF_REBID	0x80		/* Can rebid after attach */
 #define	DF_SUSPENDED	0x100		/* Device is suspended. */
 #define	DF_QUIET_CHILDREN 0x200		/* Default to quiet for all my children */
 #define	DF_ATTACHED_ONCE 0x400		/* Has been attached at least once */
 #define	DF_NEEDNOMATCH	0x800		/* Has a pending NOMATCH event */
 
 /**
  * @brief Device request structure used for ioctl's.
  *
  * Used for ioctl's on /dev/devctl2.  All device ioctl's
  * must have parameter definitions which begin with dr_name.
  */
 struct devreq_buffer {
 	void	*buffer;
 	size_t	length;
 };
 
 struct devreq {
 	char		dr_name[128];
 	int		dr_flags;		/* request-specific flags */
 	union {
 		struct devreq_buffer dru_buffer;
 		void	*dru_data;
 	} dr_dru;
 #define	dr_buffer	dr_dru.dru_buffer	/* variable-sized buffer */
 #define	dr_data		dr_dru.dru_data		/* fixed-size buffer */
 };
 
 #define	DEV_ATTACH	_IOW('D', 1, struct devreq)
 #define	DEV_DETACH	_IOW('D', 2, struct devreq)
 #define	DEV_ENABLE	_IOW('D', 3, struct devreq)
 #define	DEV_DISABLE	_IOW('D', 4, struct devreq)
 #define	DEV_SUSPEND	_IOW('D', 5, struct devreq)
 #define	DEV_RESUME	_IOW('D', 6, struct devreq)
 #define	DEV_SET_DRIVER	_IOW('D', 7, struct devreq)
 #define	DEV_CLEAR_DRIVER _IOW('D', 8, struct devreq)
 #define	DEV_RESCAN	_IOW('D', 9, struct devreq)
 #define	DEV_DELETE	_IOW('D', 10, struct devreq)
 #define	DEV_FREEZE	_IOW('D', 11, struct devreq)
 #define	DEV_THAW	_IOW('D', 12, struct devreq)
 #define	DEV_RESET	_IOW('D', 13, struct devreq)
 
 /* Flags for DEV_DETACH and DEV_DISABLE. */
 #define	DEVF_FORCE_DETACH	0x0000001
 
 /* Flags for DEV_SET_DRIVER. */
 #define	DEVF_SET_DRIVER_DETACH	0x0000001	/* Detach existing driver. */
 
 /* Flags for DEV_CLEAR_DRIVER. */
 #define	DEVF_CLEAR_DRIVER_DETACH 0x0000001	/* Detach existing driver. */
 
 /* Flags for DEV_DELETE. */
 #define	DEVF_FORCE_DELETE	0x0000001
 
 /* Flags for DEV_RESET */
 #define	DEVF_RESET_DETACH	0x0000001	/* Detach drivers vs suspend
 						   device */
 
 #ifdef _KERNEL
 
 #include <sys/_eventhandler.h>
 #include <sys/kobj.h>
 #include <sys/systm.h>
 
 /**
  * devctl hooks.  Typically one should use the devctl_notify
- * hook to send the message.  However, devctl_queue_data is also
- * included in case devctl_notify isn't sufficiently general.
+ * hook to send the message.
  */
 boolean_t devctl_process_running(void);
 void devctl_notify_f(const char *__system, const char *__subsystem,
     const char *__type, const char *__data, int __flags);
 void devctl_notify(const char *__system, const char *__subsystem,
     const char *__type, const char *__data);
-void devctl_queue_data_f(char *__data, int __flags);
-void devctl_queue_data(char *__data);
 struct sbuf;
 void devctl_safe_quote_sb(struct sbuf *__sb, const char *__src);
 
 /**
  * Device name parsers.  Hook to allow device enumerators to map
  * scheme-specific names to a device.
  */
 typedef void (*dev_lookup_fn)(void *arg, const char *name,
     device_t *result);
 EVENTHANDLER_DECLARE(dev_lookup, dev_lookup_fn);
 
 /**
  * @brief A device driver (included mainly for compatibility with
  * FreeBSD 4.x).
  */
 typedef struct kobj_class	driver_t;
 
 /**
  * @brief A device class
  *
  * The devclass object has two main functions in the system. The first
  * is to manage the allocation of unit numbers for device instances
  * and the second is to hold the list of device drivers for a
  * particular bus type. Each devclass has a name and there cannot be
  * two devclasses with the same name. This ensures that unique unit
  * numbers are allocated to device instances.
  *
  * Drivers that support several different bus attachments (e.g. isa,
  * pci, pccard) should all use the same devclass to ensure that unit
  * numbers do not conflict.
  *
  * Each devclass may also have a parent devclass. This is used when
  * searching for device drivers to allow a form of inheritance. When
  * matching drivers with devices, first the driver list of the parent
  * device's devclass is searched. If no driver is found in that list,
  * the search continues in the parent devclass (if any).
  */
 typedef struct devclass		*devclass_t;
 
 /**
  * @brief A device method
  */
 #define device_method_t		kobj_method_t
 
 /**
  * @brief Driver interrupt filter return values
  *
  * If a driver provides an interrupt filter routine it must return an
  * integer consisting of oring together zero or more of the following
  * flags:
  *
  *	FILTER_STRAY	- this device did not trigger the interrupt
  *	FILTER_HANDLED	- the interrupt has been fully handled and can be EOId
  *	FILTER_SCHEDULE_THREAD - the threaded interrupt handler should be
  *			  scheduled to execute
  *
  * If the driver does not provide a filter, then the interrupt code will
  * act is if the filter had returned FILTER_SCHEDULE_THREAD.  Note that it
  * is illegal to specify any other flag with FILTER_STRAY and that it is
  * illegal to not specify either of FILTER_HANDLED or FILTER_SCHEDULE_THREAD
  * if FILTER_STRAY is not specified.
  */
 #define	FILTER_STRAY		0x01
 #define	FILTER_HANDLED		0x02
 #define	FILTER_SCHEDULE_THREAD	0x04
 
 /**
  * @brief Driver interrupt service routines
  *
  * The filter routine is run in primary interrupt context and may not
  * block or use regular mutexes.  It may only use spin mutexes for
  * synchronization.  The filter may either completely handle the
  * interrupt or it may perform some of the work and defer more
  * expensive work to the regular interrupt handler.  If a filter
  * routine is not registered by the driver, then the regular interrupt
  * handler is always used to handle interrupts from this device.
  *
  * The regular interrupt handler executes in its own thread context
  * and may use regular mutexes.  However, it is prohibited from
  * sleeping on a sleep queue.
  */
 typedef int driver_filter_t(void*);
 typedef void driver_intr_t(void*);
 
 /**
  * @brief Interrupt type bits.
  * 
  * These flags are used both by newbus interrupt
  * registration (nexus.c) and also in struct intrec, which defines
  * interrupt properties.
  *
  * XXX We should probably revisit this and remove the vestiges of the
  * spls implicit in names like INTR_TYPE_TTY. In the meantime, don't
  * confuse things by renaming them (Grog, 18 July 2000).
  *
  * Buses which do interrupt remapping will want to change their type
  * to reflect what sort of devices are underneath.
  */
 enum intr_type {
 	INTR_TYPE_TTY = 1,
 	INTR_TYPE_BIO = 2,
 	INTR_TYPE_NET = 4,
 	INTR_TYPE_CAM = 8,
 	INTR_TYPE_MISC = 16,
 	INTR_TYPE_CLK = 32,
 	INTR_TYPE_AV = 64,
 	INTR_EXCL = 256,		/* exclusive interrupt */
 	INTR_MPSAFE = 512,		/* this interrupt is SMP safe */
 	INTR_ENTROPY = 1024,		/* this interrupt provides entropy */
 	INTR_MD1 = 4096,		/* flag reserved for MD use */
 	INTR_MD2 = 8192,		/* flag reserved for MD use */
 	INTR_MD3 = 16384,		/* flag reserved for MD use */
 	INTR_MD4 = 32768		/* flag reserved for MD use */
 };
 
 enum intr_trigger {
 	INTR_TRIGGER_INVALID = -1,
 	INTR_TRIGGER_CONFORM = 0,
 	INTR_TRIGGER_EDGE = 1,
 	INTR_TRIGGER_LEVEL = 2
 };
 
 enum intr_polarity {
 	INTR_POLARITY_CONFORM = 0,
 	INTR_POLARITY_HIGH = 1,
 	INTR_POLARITY_LOW = 2
 };
 
 /**
  * CPU sets supported by bus_get_cpus().  Note that not all sets may be
  * supported for a given device.  If a request is not supported by a
  * device (or its parents), then bus_get_cpus() will fail with EINVAL.
  */
 enum cpu_sets {
 	LOCAL_CPUS = 0,
 	INTR_CPUS
 };
 
 typedef int (*devop_t)(void);
 
 /**
  * @brief This structure is deprecated.
  *
  * Use the kobj(9) macro DEFINE_CLASS to
  * declare classes which implement device drivers.
  */
 struct driver {
 	KOBJ_CLASS_FIELDS;
 };
 
 /**
  * @brief A resource mapping.
  */
 struct resource_map {
 	bus_space_tag_t r_bustag;
 	bus_space_handle_t r_bushandle;
 	bus_size_t r_size;
 	void	*r_vaddr;
 };
 	
 /**
  * @brief Optional properties of a resource mapping request.
  */
 struct resource_map_request {
 	size_t	size;
 	rman_res_t offset;
 	rman_res_t length;
 	vm_memattr_t memattr;
 };
 
 void	resource_init_map_request_impl(struct resource_map_request *_args,
 	    size_t _sz);
 #define	resource_init_map_request(rmr) 					\
 	resource_init_map_request_impl((rmr), sizeof(*(rmr)))
 
 /*
  * Definitions for drivers which need to keep simple lists of resources
  * for their child devices.
  */
 struct	resource;
 
 /**
  * @brief An entry for a single resource in a resource list.
  */
 struct resource_list_entry {
 	STAILQ_ENTRY(resource_list_entry) link;
 	int	type;			/**< @brief type argument to alloc_resource */
 	int	rid;			/**< @brief resource identifier */
 	int	flags;			/**< @brief resource flags */
 	struct	resource *res;		/**< @brief the real resource when allocated */
 	rman_res_t	start;		/**< @brief start of resource range */
 	rman_res_t	end;		/**< @brief end of resource range */
 	rman_res_t	count;			/**< @brief count within range */
 };
 STAILQ_HEAD(resource_list, resource_list_entry);
 
 #define	RLE_RESERVED		0x0001	/* Reserved by the parent bus. */
 #define	RLE_ALLOCATED		0x0002	/* Reserved resource is allocated. */
 #define	RLE_PREFETCH		0x0004	/* Resource is a prefetch range. */
 
 void	resource_list_init(struct resource_list *rl);
 void	resource_list_free(struct resource_list *rl);
 struct resource_list_entry *
 	resource_list_add(struct resource_list *rl,
 			  int type, int rid,
 			  rman_res_t start, rman_res_t end, rman_res_t count);
 int	resource_list_add_next(struct resource_list *rl,
 			  int type,
 			  rman_res_t start, rman_res_t end, rman_res_t count);
 int	resource_list_busy(struct resource_list *rl,
 			   int type, int rid);
 int	resource_list_reserved(struct resource_list *rl, int type, int rid);
 struct resource_list_entry*
 	resource_list_find(struct resource_list *rl,
 			   int type, int rid);
 void	resource_list_delete(struct resource_list *rl,
 			     int type, int rid);
 struct resource *
 	resource_list_alloc(struct resource_list *rl,
 			    device_t bus, device_t child,
 			    int type, int *rid,
 			    rman_res_t start, rman_res_t end,
 			    rman_res_t count, u_int flags);
 int	resource_list_release(struct resource_list *rl,
 			      device_t bus, device_t child,
 			      int type, int rid, struct resource *res);
 int	resource_list_release_active(struct resource_list *rl,
 				     device_t bus, device_t child,
 				     int type);
 struct resource *
 	resource_list_reserve(struct resource_list *rl,
 			      device_t bus, device_t child,
 			      int type, int *rid,
 			      rman_res_t start, rman_res_t end,
 			      rman_res_t count, u_int flags);
 int	resource_list_unreserve(struct resource_list *rl,
 				device_t bus, device_t child,
 				int type, int rid);
 void	resource_list_purge(struct resource_list *rl);
 int	resource_list_print_type(struct resource_list *rl,
 				 const char *name, int type,
 				 const char *format);
 
 /*
  * The root bus, to which all top-level buses are attached.
  */
 extern device_t root_bus;
 extern devclass_t root_devclass;
 void	root_bus_configure(void);
 
 /*
  * Useful functions for implementing buses.
  */
 
 struct _cpuset;
 
 int	bus_generic_activate_resource(device_t dev, device_t child, int type,
 				      int rid, struct resource *r);
 device_t
 	bus_generic_add_child(device_t dev, u_int order, const char *name,
 			      int unit);
 int	bus_generic_adjust_resource(device_t bus, device_t child, int type,
 				    struct resource *r, rman_res_t start,
 				    rman_res_t end);
 struct resource *
 	bus_generic_alloc_resource(device_t bus, device_t child, int type,
 				   int *rid, rman_res_t start, rman_res_t end,
 				   rman_res_t count, u_int flags);
 int	bus_generic_translate_resource(device_t dev, int type, rman_res_t start,
 			      rman_res_t *newstart);
 int	bus_generic_attach(device_t dev);
 int	bus_generic_bind_intr(device_t dev, device_t child,
 			      struct resource *irq, int cpu);
 int	bus_generic_child_present(device_t dev, device_t child);
 int	bus_generic_config_intr(device_t, int, enum intr_trigger,
 				enum intr_polarity);
 int	bus_generic_describe_intr(device_t dev, device_t child,
 				  struct resource *irq, void *cookie,
 				  const char *descr);
 int	bus_generic_deactivate_resource(device_t dev, device_t child, int type,
 					int rid, struct resource *r);
 int	bus_generic_detach(device_t dev);
 void	bus_generic_driver_added(device_t dev, driver_t *driver);
 int	bus_generic_get_cpus(device_t dev, device_t child, enum cpu_sets op,
 			     size_t setsize, struct _cpuset *cpuset);
 bus_dma_tag_t
 	bus_generic_get_dma_tag(device_t dev, device_t child);
 bus_space_tag_t
 	bus_generic_get_bus_tag(device_t dev, device_t child);
 int	bus_generic_get_domain(device_t dev, device_t child, int *domain);
 struct resource_list *
 	bus_generic_get_resource_list (device_t, device_t);
 int	bus_generic_map_resource(device_t dev, device_t child, int type,
 				 struct resource *r,
 				 struct resource_map_request *args,
 				 struct resource_map *map);
 void	bus_generic_new_pass(device_t dev);
 int	bus_print_child_header(device_t dev, device_t child);
 int	bus_print_child_domain(device_t dev, device_t child);
 int	bus_print_child_footer(device_t dev, device_t child);
 int	bus_generic_print_child(device_t dev, device_t child);
 int	bus_generic_probe(device_t dev);
 int	bus_generic_read_ivar(device_t dev, device_t child, int which,
 			      uintptr_t *result);
 int	bus_generic_release_resource(device_t bus, device_t child,
 				     int type, int rid, struct resource *r);
 int	bus_generic_resume(device_t dev);
 int	bus_generic_resume_child(device_t dev, device_t child);
 int	bus_generic_setup_intr(device_t dev, device_t child,
 			       struct resource *irq, int flags,
 			       driver_filter_t *filter, driver_intr_t *intr, 
 			       void *arg, void **cookiep);
 
 struct resource *
 	bus_generic_rl_alloc_resource (device_t, device_t, int, int *,
 				       rman_res_t, rman_res_t, rman_res_t, u_int);
 void	bus_generic_rl_delete_resource (device_t, device_t, int, int);
 int	bus_generic_rl_get_resource (device_t, device_t, int, int, rman_res_t *,
 				     rman_res_t *);
 int	bus_generic_rl_set_resource (device_t, device_t, int, int, rman_res_t,
 				     rman_res_t);
 int	bus_generic_rl_release_resource (device_t, device_t, int, int,
 					 struct resource *);
 
 int	bus_generic_shutdown(device_t dev);
 int	bus_generic_suspend(device_t dev);
 int	bus_generic_suspend_child(device_t dev, device_t child);
 int	bus_generic_teardown_intr(device_t dev, device_t child,
 				  struct resource *irq, void *cookie);
 int	bus_generic_suspend_intr(device_t dev, device_t child,
 				  struct resource *irq);
 int	bus_generic_resume_intr(device_t dev, device_t child,
 				  struct resource *irq);
 int	bus_generic_unmap_resource(device_t dev, device_t child, int type,
 				   struct resource *r,
 				   struct resource_map *map);
 int	bus_generic_write_ivar(device_t dev, device_t child, int which,
 			       uintptr_t value);
 int	bus_helper_reset_post(device_t dev, int flags);
 int	bus_helper_reset_prepare(device_t dev, int flags);
 int	bus_null_rescan(device_t dev);
 
 /*
  * Wrapper functions for the BUS_*_RESOURCE methods to make client code
  * a little simpler.
  */
 
 struct resource_spec {
 	int	type;
 	int	rid;
 	int	flags;
 };
 #define	RESOURCE_SPEC_END	{-1, 0, 0}
 
 int	bus_alloc_resources(device_t dev, struct resource_spec *rs,
 			    struct resource **res);
 void	bus_release_resources(device_t dev, const struct resource_spec *rs,
 			      struct resource **res);
 
 int	bus_adjust_resource(device_t child, int type, struct resource *r,
 			    rman_res_t start, rman_res_t end);
 struct	resource *bus_alloc_resource(device_t dev, int type, int *rid,
 				     rman_res_t start, rman_res_t end,
 				     rman_res_t count, u_int flags);
 int	bus_activate_resource(device_t dev, int type, int rid,
 			      struct resource *r);
 int	bus_deactivate_resource(device_t dev, int type, int rid,
 				struct resource *r);
 int	bus_map_resource(device_t dev, int type, struct resource *r,
 			 struct resource_map_request *args,
 			 struct resource_map *map);
 int	bus_unmap_resource(device_t dev, int type, struct resource *r,
 			   struct resource_map *map);
 int	bus_get_cpus(device_t dev, enum cpu_sets op, size_t setsize,
 		     struct _cpuset *cpuset);
 bus_dma_tag_t bus_get_dma_tag(device_t dev);
 bus_space_tag_t bus_get_bus_tag(device_t dev);
 int	bus_get_domain(device_t dev, int *domain);
 int	bus_release_resource(device_t dev, int type, int rid,
 			     struct resource *r);
 int	bus_free_resource(device_t dev, int type, struct resource *r);
 int	bus_setup_intr(device_t dev, struct resource *r, int flags,
 		       driver_filter_t filter, driver_intr_t handler, 
 		       void *arg, void **cookiep);
 int	bus_teardown_intr(device_t dev, struct resource *r, void *cookie);
 int	bus_suspend_intr(device_t dev, struct resource *r);
 int	bus_resume_intr(device_t dev, struct resource *r);
 int	bus_bind_intr(device_t dev, struct resource *r, int cpu);
 int	bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
 			  const char *fmt, ...) __printflike(4, 5);
 int	bus_set_resource(device_t dev, int type, int rid,
 			 rman_res_t start, rman_res_t count);
 int	bus_get_resource(device_t dev, int type, int rid,
 			 rman_res_t *startp, rman_res_t *countp);
 rman_res_t	bus_get_resource_start(device_t dev, int type, int rid);
 rman_res_t	bus_get_resource_count(device_t dev, int type, int rid);
 void	bus_delete_resource(device_t dev, int type, int rid);
 int	bus_child_present(device_t child);
 int	bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen);
 int	bus_child_location_str(device_t child, char *buf, size_t buflen);
 void	bus_enumerate_hinted_children(device_t bus);
 int	bus_delayed_attach_children(device_t bus);
 
 static __inline struct resource *
 bus_alloc_resource_any(device_t dev, int type, int *rid, u_int flags)
 {
 	return (bus_alloc_resource(dev, type, rid, 0, ~0, 1, flags));
 }
 
 static __inline struct resource *
 bus_alloc_resource_anywhere(device_t dev, int type, int *rid,
     rman_res_t count, u_int flags)
 {
 	return (bus_alloc_resource(dev, type, rid, 0, ~0, count, flags));
 }
 
 /*
  * Access functions for device.
  */
 device_t	device_add_child(device_t dev, const char *name, int unit);
 device_t	device_add_child_ordered(device_t dev, u_int order,
 					 const char *name, int unit);
 void	device_busy(device_t dev);
 int	device_delete_child(device_t dev, device_t child);
 int	device_delete_children(device_t dev);
 int	device_attach(device_t dev);
 int	device_detach(device_t dev);
 void	device_disable(device_t dev);
 void	device_enable(device_t dev);
 device_t	device_find_child(device_t dev, const char *classname,
 				  int unit);
 const char	*device_get_desc(device_t dev);
 devclass_t	device_get_devclass(device_t dev);
 driver_t	*device_get_driver(device_t dev);
 u_int32_t	device_get_flags(device_t dev);
 device_t	device_get_parent(device_t dev);
 int	device_get_children(device_t dev, device_t **listp, int *countp);
 void	*device_get_ivars(device_t dev);
 void	device_set_ivars(device_t dev, void *ivars);
 const	char *device_get_name(device_t dev);
 const	char *device_get_nameunit(device_t dev);
 void	*device_get_softc(device_t dev);
 device_state_t	device_get_state(device_t dev);
 int	device_get_unit(device_t dev);
 struct sysctl_ctx_list *device_get_sysctl_ctx(device_t dev);
 struct sysctl_oid *device_get_sysctl_tree(device_t dev);
 int	device_has_quiet_children(device_t dev);
 int	device_is_alive(device_t dev);	/* did probe succeed? */
 int	device_is_attached(device_t dev);	/* did attach succeed? */
 int	device_is_enabled(device_t dev);
 int	device_is_suspended(device_t dev);
 int	device_is_quiet(device_t dev);
 device_t device_lookup_by_name(const char *name);
 int	device_print_prettyname(device_t dev);
 int	device_printf(device_t dev, const char *, ...) __printflike(2, 3);
 int	device_probe(device_t dev);
 int	device_probe_and_attach(device_t dev);
 int	device_probe_child(device_t bus, device_t dev);
 int	device_quiesce(device_t dev);
 void	device_quiet(device_t dev);
 void	device_quiet_children(device_t dev);
 void	device_set_desc(device_t dev, const char* desc);
 void	device_set_desc_copy(device_t dev, const char* desc);
 int	device_set_devclass(device_t dev, const char *classname);
 int	device_set_devclass_fixed(device_t dev, const char *classname);
 bool	device_is_devclass_fixed(device_t dev);
 int	device_set_driver(device_t dev, driver_t *driver);
 void	device_set_flags(device_t dev, u_int32_t flags);
 void	device_set_softc(device_t dev, void *softc);
 void	device_free_softc(void *softc);
 void	device_claim_softc(device_t dev);
 int	device_set_unit(device_t dev, int unit);	/* XXX DONT USE XXX */
 int	device_shutdown(device_t dev);
 void	device_unbusy(device_t dev);
 void	device_verbose(device_t dev);
 
 /*
  * Access functions for devclass.
  */
 int		devclass_add_driver(devclass_t dc, driver_t *driver,
 				    int pass, devclass_t *dcp);
 devclass_t	devclass_create(const char *classname);
 int		devclass_delete_driver(devclass_t busclass, driver_t *driver);
 devclass_t	devclass_find(const char *classname);
 const char	*devclass_get_name(devclass_t dc);
 device_t	devclass_get_device(devclass_t dc, int unit);
 void	*devclass_get_softc(devclass_t dc, int unit);
 int	devclass_get_devices(devclass_t dc, device_t **listp, int *countp);
 int	devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp);
 int	devclass_get_count(devclass_t dc);
 int	devclass_get_maxunit(devclass_t dc);
 int	devclass_find_free_unit(devclass_t dc, int unit);
 void	devclass_set_parent(devclass_t dc, devclass_t pdc);
 devclass_t	devclass_get_parent(devclass_t dc);
 struct sysctl_ctx_list *devclass_get_sysctl_ctx(devclass_t dc);
 struct sysctl_oid *devclass_get_sysctl_tree(devclass_t dc);
 
 /*
  * Access functions for device resources.
  */
 int	resource_int_value(const char *name, int unit, const char *resname,
 			   int *result);
 int	resource_long_value(const char *name, int unit, const char *resname,
 			    long *result);
 int	resource_string_value(const char *name, int unit, const char *resname,
 			      const char **result);
 int	resource_disabled(const char *name, int unit);
 int	resource_find_match(int *anchor, const char **name, int *unit,
 			    const char *resname, const char *value);
 int	resource_find_dev(int *anchor, const char *name, int *unit,
 			  const char *resname, const char *value);
 int	resource_unset_value(const char *name, int unit, const char *resname);
 
 /*
  * Functions for maintaining and checking consistency of
  * bus information exported to userspace.
  */
 int	bus_data_generation_check(int generation);
 void	bus_data_generation_update(void);
 
 /**
  * Some convenience defines for probe routines to return.  These are just
  * suggested values, and there's nothing magical about them.
  * BUS_PROBE_SPECIFIC is for devices that cannot be reprobed, and that no
  * possible other driver may exist (typically legacy drivers who don't follow
  * all the rules, or special needs drivers).  BUS_PROBE_VENDOR is the
  * suggested value that vendor supplied drivers use.  This is for source or
  * binary drivers that are not yet integrated into the FreeBSD tree.  Its use
  * in the base OS is prohibited.  BUS_PROBE_DEFAULT is the normal return value
  * for drivers to use.  It is intended that nearly all of the drivers in the
  * tree should return this value.  BUS_PROBE_LOW_PRIORITY are for drivers that
  * have special requirements like when there are two drivers that support
  * overlapping series of hardware devices.  In this case the one that supports
  * the older part of the line would return this value, while the one that
  * supports the newer ones would return BUS_PROBE_DEFAULT.  BUS_PROBE_GENERIC
  * is for drivers that wish to have a generic form and a specialized form,
  * like is done with the pci bus and the acpi pci bus.  BUS_PROBE_HOOVER is
  * for those buses that implement a generic device placeholder for devices on
  * the bus that have no more specific driver for them (aka ugen).
  * BUS_PROBE_NOWILDCARD or lower means that the device isn't really bidding
  * for a device node, but accepts only devices that its parent has told it
  * use this driver.
  */
 #define BUS_PROBE_SPECIFIC	0	/* Only I can use this device */
 #define BUS_PROBE_VENDOR	(-10)	/* Vendor supplied driver */
 #define BUS_PROBE_DEFAULT	(-20)	/* Base OS default driver */
 #define BUS_PROBE_LOW_PRIORITY	(-40)	/* Older, less desirable drivers */
 #define BUS_PROBE_GENERIC	(-100)	/* generic driver for dev */
 #define BUS_PROBE_HOOVER	(-1000000) /* Driver for any dev on bus */
 #define BUS_PROBE_NOWILDCARD	(-2000000000) /* No wildcard device matches */
 
 /**
  * During boot, the device tree is scanned multiple times.  Each scan,
  * or pass, drivers may be attached to devices.  Each driver
  * attachment is assigned a pass number.  Drivers may only probe and
  * attach to devices if their pass number is less than or equal to the
  * current system-wide pass number.  The default pass is the last pass
  * and is used by most drivers.  Drivers needed by the scheduler are
  * probed in earlier passes.
  */
 #define	BUS_PASS_ROOT		0	/* Used to attach root0. */
 #define	BUS_PASS_BUS		10	/* Buses and bridges. */
 #define	BUS_PASS_CPU		20	/* CPU devices. */
 #define	BUS_PASS_RESOURCE	30	/* Resource discovery. */
 #define	BUS_PASS_INTERRUPT	40	/* Interrupt controllers. */
 #define	BUS_PASS_TIMER		50	/* Timers and clocks. */
 #define	BUS_PASS_SCHEDULER	60	/* Start scheduler. */
 #define	BUS_PASS_SUPPORTDEV	100000	/* Drivers which support DEFAULT drivers. */
 #define	BUS_PASS_DEFAULT	__INT_MAX /* Everything else. */
 
 #define	BUS_PASS_ORDER_FIRST	0
 #define	BUS_PASS_ORDER_EARLY	2
 #define	BUS_PASS_ORDER_MIDDLE	5
 #define	BUS_PASS_ORDER_LATE	7
 #define	BUS_PASS_ORDER_LAST	9
 
 extern int bus_current_pass;
 
 void	bus_set_pass(int pass);
 
 /**
  * Shorthands for constructing method tables.
  */
 #define	DEVMETHOD	KOBJMETHOD
 #define	DEVMETHOD_END	KOBJMETHOD_END
 
 /*
  * Some common device interfaces.
  */
 #include "device_if.h"
 #include "bus_if.h"
 
 struct	module;
 
 int	driver_module_handler(struct module *, int, void *);
 
 /**
  * Module support for automatically adding drivers to buses.
  */
 struct driver_module_data {
 	int		(*dmd_chainevh)(struct module *, int, void *);
 	void		*dmd_chainarg;
 	const char	*dmd_busname;
 	kobj_class_t	dmd_driver;
 	devclass_t	*dmd_devclass;
 	int		dmd_pass;
 };
 
 #define	EARLY_DRIVER_MODULE_ORDERED(name, busname, driver, devclass,	\
     evh, arg, order, pass)						\
 									\
 static struct driver_module_data name##_##busname##_driver_mod = {	\
 	evh, arg,							\
 	#busname,							\
 	(kobj_class_t) &driver,						\
 	&devclass,							\
 	pass								\
 };									\
 									\
 static moduledata_t name##_##busname##_mod = {				\
 	#busname "/" #name,						\
 	driver_module_handler,						\
 	&name##_##busname##_driver_mod					\
 };									\
 DECLARE_MODULE(name##_##busname, name##_##busname##_mod,		\
 	       SI_SUB_DRIVERS, order)
 
 #define	EARLY_DRIVER_MODULE(name, busname, driver, devclass, evh, arg, pass) \
 	EARLY_DRIVER_MODULE_ORDERED(name, busname, driver, devclass,	\
 	    evh, arg, SI_ORDER_MIDDLE, pass)
 
 #define	DRIVER_MODULE_ORDERED(name, busname, driver, devclass, evh, arg,\
     order)								\
 	EARLY_DRIVER_MODULE_ORDERED(name, busname, driver, devclass,	\
 	    evh, arg, order, BUS_PASS_DEFAULT)
 
 #define	DRIVER_MODULE(name, busname, driver, devclass, evh, arg)	\
 	EARLY_DRIVER_MODULE(name, busname, driver, devclass, evh, arg,	\
 	    BUS_PASS_DEFAULT)
 
 /**
  * Generic ivar accessor generation macros for bus drivers
  */
 #define __BUS_ACCESSOR(varp, var, ivarp, ivar, type)			\
 									\
 static __inline type varp ## _get_ ## var(device_t dev)			\
 {									\
 	uintptr_t v;							\
 	int e;								\
 	e = BUS_READ_IVAR(device_get_parent(dev), dev,			\
 	    ivarp ## _IVAR_ ## ivar, &v);				\
 	KASSERT(e == 0, ("%s failed for %s on bus %s, error = %d",	\
 	    __func__, device_get_nameunit(dev),				\
 	    device_get_nameunit(device_get_parent(dev)), e));		\
 	return ((type) v);						\
 }									\
 									\
 static __inline void varp ## _set_ ## var(device_t dev, type t)		\
 {									\
 	uintptr_t v = (uintptr_t) t;					\
 	int e;								\
 	e = BUS_WRITE_IVAR(device_get_parent(dev), dev,			\
 	    ivarp ## _IVAR_ ## ivar, v);				\
 	KASSERT(e == 0, ("%s failed for %s on bus %s, error = %d",	\
 	    __func__, device_get_nameunit(dev),				\
 	    device_get_nameunit(device_get_parent(dev)), e));		\
 }
 
 /**
  * Shorthand macros, taking resource argument
  * Generated with sys/tools/bus_macro.sh
  */
 
 #define bus_barrier(r, o, l, f) \
 	bus_space_barrier((r)->r_bustag, (r)->r_bushandle, (o), (l), (f))
 #define bus_read_1(r, o) \
 	bus_space_read_1((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_1(r, o, d, c) \
 	bus_space_read_multi_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_1(r, o, d, c) \
 	bus_space_read_region_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_1(r, o, v, c) \
 	bus_space_set_multi_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_1(r, o, v, c) \
 	bus_space_set_region_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_1(r, o, v) \
 	bus_space_write_1((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_1(r, o, d, c) \
 	bus_space_write_multi_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_1(r, o, d, c) \
 	bus_space_write_region_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_stream_1(r, o) \
 	bus_space_read_stream_1((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_stream_1(r, o, d, c) \
 	bus_space_read_multi_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_stream_1(r, o, d, c) \
 	bus_space_read_region_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_stream_1(r, o, v, c) \
 	bus_space_set_multi_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_stream_1(r, o, v, c) \
 	bus_space_set_region_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_stream_1(r, o, v) \
 	bus_space_write_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_stream_1(r, o, d, c) \
 	bus_space_write_multi_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_stream_1(r, o, d, c) \
 	bus_space_write_region_stream_1((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_2(r, o) \
 	bus_space_read_2((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_2(r, o, d, c) \
 	bus_space_read_multi_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_2(r, o, d, c) \
 	bus_space_read_region_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_2(r, o, v, c) \
 	bus_space_set_multi_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_2(r, o, v, c) \
 	bus_space_set_region_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_2(r, o, v) \
 	bus_space_write_2((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_2(r, o, d, c) \
 	bus_space_write_multi_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_2(r, o, d, c) \
 	bus_space_write_region_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_stream_2(r, o) \
 	bus_space_read_stream_2((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_stream_2(r, o, d, c) \
 	bus_space_read_multi_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_stream_2(r, o, d, c) \
 	bus_space_read_region_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_stream_2(r, o, v, c) \
 	bus_space_set_multi_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_stream_2(r, o, v, c) \
 	bus_space_set_region_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_stream_2(r, o, v) \
 	bus_space_write_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_stream_2(r, o, d, c) \
 	bus_space_write_multi_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_stream_2(r, o, d, c) \
 	bus_space_write_region_stream_2((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_4(r, o) \
 	bus_space_read_4((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_4(r, o, d, c) \
 	bus_space_read_multi_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_4(r, o, d, c) \
 	bus_space_read_region_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_4(r, o, v, c) \
 	bus_space_set_multi_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_4(r, o, v, c) \
 	bus_space_set_region_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_4(r, o, v) \
 	bus_space_write_4((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_4(r, o, d, c) \
 	bus_space_write_multi_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_4(r, o, d, c) \
 	bus_space_write_region_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_stream_4(r, o) \
 	bus_space_read_stream_4((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_stream_4(r, o, d, c) \
 	bus_space_read_multi_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_stream_4(r, o, d, c) \
 	bus_space_read_region_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_stream_4(r, o, v, c) \
 	bus_space_set_multi_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_stream_4(r, o, v, c) \
 	bus_space_set_region_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_stream_4(r, o, v) \
 	bus_space_write_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_stream_4(r, o, d, c) \
 	bus_space_write_multi_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_stream_4(r, o, d, c) \
 	bus_space_write_region_stream_4((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_8(r, o) \
 	bus_space_read_8((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_8(r, o, d, c) \
 	bus_space_read_multi_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_8(r, o, d, c) \
 	bus_space_read_region_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_8(r, o, v, c) \
 	bus_space_set_multi_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_8(r, o, v, c) \
 	bus_space_set_region_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_8(r, o, v) \
 	bus_space_write_8((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_8(r, o, d, c) \
 	bus_space_write_multi_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_8(r, o, d, c) \
 	bus_space_write_region_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_stream_8(r, o) \
 	bus_space_read_stream_8((r)->r_bustag, (r)->r_bushandle, (o))
 #define bus_read_multi_stream_8(r, o, d, c) \
 	bus_space_read_multi_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_read_region_stream_8(r, o, d, c) \
 	bus_space_read_region_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_set_multi_stream_8(r, o, v, c) \
 	bus_space_set_multi_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_set_region_stream_8(r, o, v, c) \
 	bus_space_set_region_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (v), (c))
 #define bus_write_stream_8(r, o, v) \
 	bus_space_write_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (v))
 #define bus_write_multi_stream_8(r, o, d, c) \
 	bus_space_write_multi_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #define bus_write_region_stream_8(r, o, d, c) \
 	bus_space_write_region_stream_8((r)->r_bustag, (r)->r_bushandle, (o), (d), (c))
 #endif /* _KERNEL */
 
 #endif /* !_SYS_BUS_H_ */