diff --git a/sys/net/if_ipsec.c b/sys/net/if_ipsec.c index b9931286a735..b170ac177a64 100644 --- a/sys/net/if_ipsec.c +++ b/sys/net/if_ipsec.c @@ -1,1065 +1,1068 @@ /*- * Copyright (c) 2016-2018 Yandex LLC * Copyright (c) 2016-2018 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #include static MALLOC_DEFINE(M_IPSEC, "ipsec", "IPsec Virtual Tunnel Interface"); static const char ipsecname[] = "ipsec"; #if defined(INET) && defined(INET6) #define IPSEC_SPCOUNT 4 #else #define IPSEC_SPCOUNT 2 #endif struct ipsec_softc { struct ifnet *ifp; struct secpolicy *sp[IPSEC_SPCOUNT]; uint32_t reqid; u_int family; u_int fibnum; CK_LIST_ENTRY(ipsec_softc) idhash; CK_LIST_ENTRY(ipsec_softc) srchash; }; #define IPSEC_RLOCK_TRACKER struct epoch_tracker ipsec_et #define IPSEC_RLOCK() epoch_enter_preempt(net_epoch_preempt, &ipsec_et) #define IPSEC_RUNLOCK() epoch_exit_preempt(net_epoch_preempt, &ipsec_et) #define IPSEC_WAIT() epoch_wait_preempt(net_epoch_preempt) #ifndef IPSEC_HASH_SIZE #define IPSEC_HASH_SIZE (1 << 5) #endif CK_LIST_HEAD(ipsec_iflist, ipsec_softc); VNET_DEFINE_STATIC(struct ipsec_iflist *, ipsec_idhtbl) = NULL; #define V_ipsec_idhtbl VNET(ipsec_idhtbl) #ifdef INET VNET_DEFINE_STATIC(struct ipsec_iflist *, ipsec4_srchtbl) = NULL; #define V_ipsec4_srchtbl VNET(ipsec4_srchtbl) static const struct srcaddrtab *ipsec4_srctab = NULL; #endif #ifdef INET6 VNET_DEFINE_STATIC(struct ipsec_iflist *, ipsec6_srchtbl) = NULL; #define V_ipsec6_srchtbl VNET(ipsec6_srchtbl) static const struct srcaddrtab *ipsec6_srctab = NULL; #endif static struct ipsec_iflist * ipsec_idhash(uint32_t id) { return (&V_ipsec_idhtbl[fnv_32_buf(&id, sizeof(id), FNV1_32_INIT) & (IPSEC_HASH_SIZE - 1)]); } static struct ipsec_iflist * ipsec_srchash(const struct sockaddr *sa) { uint32_t hval; switch (sa->sa_family) { #ifdef INET case AF_INET: hval = fnv_32_buf( &((const struct sockaddr_in *)sa)->sin_addr.s_addr, sizeof(in_addr_t), FNV1_32_INIT); return (&V_ipsec4_srchtbl[hval & (IPSEC_HASH_SIZE - 1)]); #endif #ifdef INET6 case AF_INET6: hval = fnv_32_buf( &((const struct sockaddr_in6 *)sa)->sin6_addr, sizeof(struct in6_addr), FNV1_32_INIT); return (&V_ipsec6_srchtbl[hval & (IPSEC_HASH_SIZE - 1)]); #endif } return (NULL); } /* * ipsec_ioctl_sx protects from concurrent ioctls. */ static struct sx ipsec_ioctl_sx; SX_SYSINIT(ipsec_ioctl_sx, &ipsec_ioctl_sx, "ipsec_ioctl"); static int ipsec_init_reqid(struct ipsec_softc *); static int ipsec_set_tunnel(struct ipsec_softc *, struct sockaddr *, struct sockaddr *, uint32_t); static void ipsec_delete_tunnel(struct ipsec_softc *); static int ipsec_set_addresses(struct ifnet *, struct sockaddr *, struct sockaddr *); static int ipsec_set_reqid(struct ipsec_softc *, uint32_t); static void ipsec_set_running(struct ipsec_softc *); #ifdef VIMAGE static void ipsec_reassign(struct ifnet *, struct vnet *, char *); #endif static void ipsec_srcaddr(void *, const struct sockaddr *, int); static int ipsec_ioctl(struct ifnet *, u_long, caddr_t); static int ipsec_transmit(struct ifnet *, struct mbuf *); static int ipsec_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static void ipsec_qflush(struct ifnet *); static int ipsec_clone_create(struct if_clone *, int, caddr_t); static void ipsec_clone_destroy(struct ifnet *); VNET_DEFINE_STATIC(struct if_clone *, ipsec_cloner); #define V_ipsec_cloner VNET(ipsec_cloner) static int ipsec_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct ipsec_softc *sc; struct ifnet *ifp; sc = malloc(sizeof(*sc), M_IPSEC, M_WAITOK | M_ZERO); sc->fibnum = curthread->td_proc->p_fibnum; sc->ifp = ifp = if_alloc(IFT_TUNNEL); ifp->if_softc = sc; if_initname(ifp, ipsecname, unit); ifp->if_addrlen = 0; ifp->if_mtu = IPSEC_MTU; ifp->if_flags = IFF_POINTOPOINT | IFF_MULTICAST; ifp->if_ioctl = ipsec_ioctl; ifp->if_transmit = ipsec_transmit; ifp->if_qflush = ipsec_qflush; ifp->if_output = ipsec_output; #ifdef VIMAGE ifp->if_reassign = ipsec_reassign; #endif if_attach(ifp); bpfattach(ifp, DLT_NULL, sizeof(uint32_t)); return (0); } #ifdef VIMAGE static void ipsec_reassign(struct ifnet *ifp, struct vnet *new_vnet __unused, char *unused __unused) { struct ipsec_softc *sc; sx_xlock(&ipsec_ioctl_sx); sc = ifp->if_softc; if (sc != NULL) ipsec_delete_tunnel(sc); sx_xunlock(&ipsec_ioctl_sx); } #endif /* VIMAGE */ static void ipsec_clone_destroy(struct ifnet *ifp) { struct ipsec_softc *sc; sx_xlock(&ipsec_ioctl_sx); sc = ifp->if_softc; ipsec_delete_tunnel(sc); /* * Delete softc from idhash on interface destroy, since * ipsec_delete_tunnel() keeps reqid unchanged. */ if (sc->reqid != 0) CK_LIST_REMOVE(sc, idhash); bpfdetach(ifp); if_detach(ifp); ifp->if_softc = NULL; sx_xunlock(&ipsec_ioctl_sx); IPSEC_WAIT(); if_free(ifp); free(sc, M_IPSEC); } static struct ipsec_iflist * ipsec_hashinit(void) { struct ipsec_iflist *hash; int i; hash = malloc(sizeof(struct ipsec_iflist) * IPSEC_HASH_SIZE, M_IPSEC, M_WAITOK); for (i = 0; i < IPSEC_HASH_SIZE; i++) CK_LIST_INIT(&hash[i]); return (hash); } static void vnet_ipsec_init(const void *unused __unused) { V_ipsec_idhtbl = ipsec_hashinit(); #ifdef INET V_ipsec4_srchtbl = ipsec_hashinit(); if (IS_DEFAULT_VNET(curvnet)) ipsec4_srctab = ip_encap_register_srcaddr(ipsec_srcaddr, NULL, M_WAITOK); #endif #ifdef INET6 V_ipsec6_srchtbl = ipsec_hashinit(); if (IS_DEFAULT_VNET(curvnet)) ipsec6_srctab = ip6_encap_register_srcaddr(ipsec_srcaddr, NULL, M_WAITOK); #endif V_ipsec_cloner = if_clone_simple(ipsecname, ipsec_clone_create, ipsec_clone_destroy, 0); } VNET_SYSINIT(vnet_ipsec_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_ipsec_init, NULL); static void vnet_ipsec_uninit(const void *unused __unused) { if_clone_detach(V_ipsec_cloner); free(V_ipsec_idhtbl, M_IPSEC); /* * Use V_ipsec_idhtbl pointer as indicator that VNET is going to be * destroyed, it is used by ipsec_srcaddr() callback. */ V_ipsec_idhtbl = NULL; IPSEC_WAIT(); #ifdef INET if (IS_DEFAULT_VNET(curvnet)) ip_encap_unregister_srcaddr(ipsec4_srctab); free(V_ipsec4_srchtbl, M_IPSEC); #endif #ifdef INET6 if (IS_DEFAULT_VNET(curvnet)) ip6_encap_unregister_srcaddr(ipsec6_srctab); free(V_ipsec6_srchtbl, M_IPSEC); #endif } VNET_SYSUNINIT(vnet_ipsec_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_ipsec_uninit, NULL); static struct secpolicy * ipsec_getpolicy(struct ipsec_softc *sc, int dir, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: return (sc->sp[(dir == IPSEC_DIR_INBOUND ? 0: 1)]); #endif #ifdef INET6 case AF_INET6: return (sc->sp[(dir == IPSEC_DIR_INBOUND ? 0: 1) #ifdef INET + 2 #endif ]); #endif } return (NULL); } static struct secasindex * ipsec_getsaidx(struct ipsec_softc *sc, int dir, sa_family_t af) { struct secpolicy *sp; sp = ipsec_getpolicy(sc, dir, af); if (sp == NULL) return (NULL); return (&sp->req[0]->saidx); } static int ipsec_transmit(struct ifnet *ifp, struct mbuf *m) { IPSEC_RLOCK_TRACKER; struct ipsec_softc *sc; struct secpolicy *sp; struct ip *ip; uint32_t af; int error; IPSEC_RLOCK(); #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) { m_freem(m); goto err; } #endif error = ENETDOWN; sc = ifp->if_softc; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (ifp->if_flags & IFF_MONITOR) != 0 || (ifp->if_flags & IFF_UP) == 0 || sc->family == 0) { m_freem(m); goto err; } /* Determine address family to correctly handle packet in BPF */ ip = mtod(m, struct ip *); switch (ip->ip_v) { #ifdef INET case IPVERSION: af = AF_INET; break; #endif #ifdef INET6 case (IPV6_VERSION >> 4): af = AF_INET6; break; #endif default: error = EAFNOSUPPORT; m_freem(m); goto err; } /* * Loop prevention. * XXX: for now just check presence of IPSEC_OUT_DONE mbuf tag. * We can read full chain and compare destination address, * proto and mode from xform_history with values from softc. */ if (m_tag_find(m, PACKET_TAG_IPSEC_OUT_DONE, NULL) != NULL) { m_freem(m); goto err; } sp = ipsec_getpolicy(sc, IPSEC_DIR_OUTBOUND, af); key_addref(sp); M_SETFIB(m, sc->fibnum); BPF_MTAP2(ifp, &af, sizeof(af), m); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); switch (af) { #ifdef INET case AF_INET: error = ipsec4_process_packet(m, sp, NULL); break; #endif #ifdef INET6 case AF_INET6: error = ipsec6_process_packet(m, sp, NULL); break; #endif default: panic("%s: unknown address family\n", __func__); } err: if (error != 0) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); IPSEC_RUNLOCK(); return (error); } static void ipsec_qflush(struct ifnet *ifp __unused) { } static int ipsec_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { return (ifp->if_transmit(ifp, m)); } int ipsec_if_input(struct mbuf *m, struct secasvar *sav, uint32_t af) { IPSEC_RLOCK_TRACKER; struct secasindex *saidx; struct ipsec_softc *sc; struct ifnet *ifp; if (sav->state != SADB_SASTATE_MATURE && sav->state != SADB_SASTATE_DYING) { m_freem(m); return (ENETDOWN); } if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL || sav->sah->saidx.proto != IPPROTO_ESP) return (0); IPSEC_RLOCK(); CK_LIST_FOREACH(sc, ipsec_idhash(sav->sah->saidx.reqid), idhash) { if (sc->family == 0) continue; saidx = ipsec_getsaidx(sc, IPSEC_DIR_INBOUND, sav->sah->saidx.src.sa.sa_family); /* SA's reqid should match reqid in SP */ if (saidx == NULL || sav->sah->saidx.reqid != saidx->reqid) continue; /* SAH's addresses should match tunnel endpoints. */ if (key_sockaddrcmp(&sav->sah->saidx.dst.sa, &saidx->dst.sa, 0) != 0) continue; if (key_sockaddrcmp(&sav->sah->saidx.src.sa, &saidx->src.sa, 0) == 0) break; } if (sc == NULL) { IPSEC_RUNLOCK(); /* Tunnel was not found. Nothing to do. */ return (0); } ifp = sc->ifp; if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (ifp->if_flags & IFF_UP) == 0) { IPSEC_RUNLOCK(); m_freem(m); return (ENETDOWN); } /* * We found matching and working tunnel. * Set its ifnet as receiving interface. */ m->m_pkthdr.rcvif = ifp; m_clrprotoflags(m); M_SETFIB(m, ifp->if_fib); BPF_MTAP2(ifp, &af, sizeof(af), m); if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); if ((ifp->if_flags & IFF_MONITOR) != 0) { IPSEC_RUNLOCK(); m_freem(m); return (ENETDOWN); } IPSEC_RUNLOCK(); return (0); } static int ipsec_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifreq *ifr = (struct ifreq*)data; struct sockaddr *dst, *src; struct ipsec_softc *sc; struct secasindex *saidx; #ifdef INET struct sockaddr_in *sin = NULL; #endif #ifdef INET6 struct sockaddr_in6 *sin6 = NULL; #endif uint32_t reqid; int error; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; case SIOCADDMULTI: case SIOCDELMULTI: case SIOCGIFMTU: case SIOCSIFFLAGS: return (0); case SIOCSIFMTU: if (ifr->ifr_mtu < IPSEC_MTU_MIN || ifr->ifr_mtu > IPSEC_MTU_MAX) return (EINVAL); else ifp->if_mtu = ifr->ifr_mtu; return (0); } sx_xlock(&ipsec_ioctl_sx); sc = ifp->if_softc; /* Check that softc is still here */ if (sc == NULL) { error = ENXIO; goto bad; } error = 0; switch (cmd) { case SIOCSIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif error = EINVAL; switch (cmd) { #ifdef INET case SIOCSIFPHYADDR: src = (struct sockaddr *) &(((struct in_aliasreq *)data)->ifra_addr); dst = (struct sockaddr *) &(((struct in_aliasreq *)data)->ifra_dstaddr); break; #endif #ifdef INET6 case SIOCSIFPHYADDR_IN6: src = (struct sockaddr *) &(((struct in6_aliasreq *)data)->ifra_addr); dst = (struct sockaddr *) &(((struct in6_aliasreq *)data)->ifra_dstaddr); break; #endif default: goto bad; } /* sa_family must be equal */ if (src->sa_family != dst->sa_family || src->sa_len != dst->sa_len) goto bad; /* validate sa_len */ switch (src->sa_family) { #ifdef INET case AF_INET: if (src->sa_len != sizeof(struct sockaddr_in)) goto bad; break; #endif #ifdef INET6 case AF_INET6: if (src->sa_len != sizeof(struct sockaddr_in6)) goto bad; break; #endif default: error = EAFNOSUPPORT; goto bad; } /* check sa_family looks sane for the cmd */ error = EAFNOSUPPORT; switch (cmd) { #ifdef INET case SIOCSIFPHYADDR: if (src->sa_family == AF_INET) break; goto bad; #endif #ifdef INET6 case SIOCSIFPHYADDR_IN6: if (src->sa_family == AF_INET6) break; goto bad; #endif } error = EADDRNOTAVAIL; switch (src->sa_family) { #ifdef INET case AF_INET: if (satosin(src)->sin_addr.s_addr == INADDR_ANY || satosin(dst)->sin_addr.s_addr == INADDR_ANY) goto bad; break; #endif #ifdef INET6 case AF_INET6: if (IN6_IS_ADDR_UNSPECIFIED( &satosin6(src)->sin6_addr) || IN6_IS_ADDR_UNSPECIFIED( &satosin6(dst)->sin6_addr)) goto bad; /* * Check validity of the scope zone ID of the * addresses, and convert it into the kernel * internal form if necessary. */ error = sa6_embedscope(satosin6(src), 0); if (error != 0) goto bad; error = sa6_embedscope(satosin6(dst), 0); if (error != 0) goto bad; #endif }; error = ipsec_set_addresses(ifp, src, dst); break; case SIOCDIFPHYADDR: ipsec_delete_tunnel(sc); break; case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: #ifdef INET6 case SIOCGIFPSRCADDR_IN6: case SIOCGIFPDSTADDR_IN6: #endif if (sc->family == 0) { error = EADDRNOTAVAIL; break; } saidx = ipsec_getsaidx(sc, IPSEC_DIR_OUTBOUND, sc->family); switch (cmd) { #ifdef INET case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: if (saidx->src.sa.sa_family != AF_INET) { error = EADDRNOTAVAIL; break; } sin = (struct sockaddr_in *)&ifr->ifr_addr; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); break; #endif #ifdef INET6 case SIOCGIFPSRCADDR_IN6: case SIOCGIFPDSTADDR_IN6: if (saidx->src.sa.sa_family != AF_INET6) { error = EADDRNOTAVAIL; break; } sin6 = (struct sockaddr_in6 *) &(((struct in6_ifreq *)data)->ifr_addr); memset(sin6, 0, sizeof(*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); break; #endif default: error = EAFNOSUPPORT; } if (error == 0) { switch (cmd) { #ifdef INET case SIOCGIFPSRCADDR: sin->sin_addr = saidx->src.sin.sin_addr; break; case SIOCGIFPDSTADDR: sin->sin_addr = saidx->dst.sin.sin_addr; break; #endif #ifdef INET6 case SIOCGIFPSRCADDR_IN6: sin6->sin6_addr = saidx->src.sin6.sin6_addr; break; case SIOCGIFPDSTADDR_IN6: sin6->sin6_addr = saidx->dst.sin6.sin6_addr; break; #endif } } if (error != 0) break; switch (cmd) { #ifdef INET case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: error = prison_if(curthread->td_ucred, (struct sockaddr *)sin); if (error != 0) memset(sin, 0, sizeof(*sin)); break; #endif #ifdef INET6 case SIOCGIFPSRCADDR_IN6: case SIOCGIFPDSTADDR_IN6: error = prison_if(curthread->td_ucred, (struct sockaddr *)sin6); if (error == 0) error = sa6_recoverscope(sin6); if (error != 0) memset(sin6, 0, sizeof(*sin6)); #endif } break; case SIOCGTUNFIB: ifr->ifr_fib = sc->fibnum; break; case SIOCSTUNFIB: if ((error = priv_check(curthread, PRIV_NET_SETIFFIB)) != 0) break; if (ifr->ifr_fib >= rt_numfibs) error = EINVAL; else sc->fibnum = ifr->ifr_fib; break; case IPSECGREQID: reqid = sc->reqid; error = copyout(&reqid, ifr_data_get_ptr(ifr), sizeof(reqid)); break; case IPSECSREQID: if ((error = priv_check(curthread, PRIV_NET_SETIFCAP)) != 0) break; error = copyin(ifr_data_get_ptr(ifr), &reqid, sizeof(reqid)); if (error != 0) break; error = ipsec_set_reqid(sc, reqid); break; default: error = EINVAL; break; } bad: sx_xunlock(&ipsec_ioctl_sx); return (error); } /* * Check that ingress address belongs to local host. */ static void ipsec_set_running(struct ipsec_softc *sc) { struct secasindex *saidx; int localip; saidx = ipsec_getsaidx(sc, IPSEC_DIR_OUTBOUND, sc->family); localip = 0; switch (sc->family) { #ifdef INET case AF_INET: localip = in_localip(saidx->src.sin.sin_addr); break; #endif #ifdef INET6 case AF_INET6: localip = in6_localip(&saidx->src.sin6.sin6_addr); break; #endif } if (localip != 0) sc->ifp->if_drv_flags |= IFF_DRV_RUNNING; else sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; } /* * ifaddr_event handler. * Clear IFF_DRV_RUNNING flag when ingress address disappears to prevent * source address spoofing. */ static void ipsec_srcaddr(void *arg __unused, const struct sockaddr *sa, int event __unused) { struct ipsec_softc *sc; struct secasindex *saidx; /* Check that VNET is ready */ if (V_ipsec_idhtbl == NULL) return; NET_EPOCH_ASSERT(); CK_LIST_FOREACH(sc, ipsec_srchash(sa), srchash) { if (sc->family == 0) continue; saidx = ipsec_getsaidx(sc, IPSEC_DIR_OUTBOUND, sa->sa_family); if (saidx == NULL || key_sockaddrcmp(&saidx->src.sa, sa, 0) != 0) continue; ipsec_set_running(sc); } } /* * Allocate new private security policies for tunneling interface. * Each tunneling interface has following security policies for * both AF: * 0.0.0.0/0[any] 0.0.0.0/0[any] -P in \ * ipsec esp/tunnel/RemoteIP-LocalIP/unique:reqid * 0.0.0.0/0[any] 0.0.0.0/0[any] -P out \ * ipsec esp/tunnel/LocalIP-RemoteIP/unique:reqid */ static int ipsec_newpolicies(struct ipsec_softc *sc, struct secpolicy *sp[IPSEC_SPCOUNT], const struct sockaddr *src, const struct sockaddr *dst, uint32_t reqid) { struct ipsecrequest *isr; int i; memset(sp, 0, sizeof(struct secpolicy *) * IPSEC_SPCOUNT); for (i = 0; i < IPSEC_SPCOUNT; i++) { if ((sp[i] = key_newsp()) == NULL) goto fail; if ((isr = ipsec_newisr()) == NULL) goto fail; sp[i]->policy = IPSEC_POLICY_IPSEC; sp[i]->state = IPSEC_SPSTATE_DEAD; sp[i]->req[sp[i]->tcount++] = isr; sp[i]->created = time_second; /* Use priority field to store if_index */ sp[i]->priority = sc->ifp->if_index; isr->level = IPSEC_LEVEL_UNIQUE; isr->saidx.proto = IPPROTO_ESP; isr->saidx.mode = IPSEC_MODE_TUNNEL; isr->saidx.reqid = reqid; if (i % 2 == 0) { sp[i]->spidx.dir = IPSEC_DIR_INBOUND; bcopy(src, &isr->saidx.dst, src->sa_len); bcopy(dst, &isr->saidx.src, dst->sa_len); } else { sp[i]->spidx.dir = IPSEC_DIR_OUTBOUND; bcopy(src, &isr->saidx.src, src->sa_len); bcopy(dst, &isr->saidx.dst, dst->sa_len); } sp[i]->spidx.ul_proto = IPSEC_ULPROTO_ANY; #ifdef INET if (i < 2) { sp[i]->spidx.src.sa.sa_family = sp[i]->spidx.dst.sa.sa_family = AF_INET; sp[i]->spidx.src.sa.sa_len = sp[i]->spidx.dst.sa.sa_len = sizeof(struct sockaddr_in); continue; } #endif #ifdef INET6 sp[i]->spidx.src.sa.sa_family = sp[i]->spidx.dst.sa.sa_family = AF_INET6; sp[i]->spidx.src.sa.sa_len = sp[i]->spidx.dst.sa.sa_len = sizeof(struct sockaddr_in6); #endif } return (0); fail: for (i = 0; i < IPSEC_SPCOUNT; i++) key_freesp(&sp[i]); return (ENOMEM); } static int ipsec_check_reqid(uint32_t reqid) { struct ipsec_softc *sc; sx_assert(&ipsec_ioctl_sx, SA_XLOCKED); CK_LIST_FOREACH(sc, ipsec_idhash(reqid), idhash) { if (sc->reqid == reqid) return (EEXIST); } return (0); } /* * We use key_newreqid() to automatically obtain unique reqid. * Then we check that given id is unique, i.e. it is not used by * another if_ipsec(4) interface. This macro limits the number of * tries to get unique id. */ #define IPSEC_REQID_TRYCNT 64 static int ipsec_init_reqid(struct ipsec_softc *sc) { uint32_t reqid; int trycount; sx_assert(&ipsec_ioctl_sx, SA_XLOCKED); if (sc->reqid != 0) /* already initialized */ return (0); trycount = IPSEC_REQID_TRYCNT; while (--trycount > 0) { reqid = key_newreqid(); if (ipsec_check_reqid(reqid) == 0) break; } if (trycount == 0) return (EEXIST); sc->reqid = reqid; CK_LIST_INSERT_HEAD(ipsec_idhash(reqid), sc, idhash); return (0); } /* * Set or update reqid for given tunneling interface. * When specified reqid is zero, generate new one. * We are protected by ioctl_sx lock from concurrent id generation. * Also softc would not disappear while we hold ioctl_sx lock. */ static int ipsec_set_reqid(struct ipsec_softc *sc, uint32_t reqid) { struct secasindex *saidx; sx_assert(&ipsec_ioctl_sx, SA_XLOCKED); if (sc->reqid == reqid && reqid != 0) return (0); if (reqid != 0) { /* Check that specified reqid doesn't exist */ if (ipsec_check_reqid(reqid) != 0) return (EEXIST); if (sc->reqid != 0) { CK_LIST_REMOVE(sc, idhash); IPSEC_WAIT(); } sc->reqid = reqid; CK_LIST_INSERT_HEAD(ipsec_idhash(reqid), sc, idhash); } else { /* Generate new reqid */ if (ipsec_init_reqid(sc) != 0) return (EEXIST); } /* Tunnel isn't fully configured, just return. */ if (sc->family == 0) return (0); saidx = ipsec_getsaidx(sc, IPSEC_DIR_OUTBOUND, sc->family); KASSERT(saidx != NULL, ("saidx is NULL, but family is %d", sc->family)); return (ipsec_set_tunnel(sc, &saidx->src.sa, &saidx->dst.sa, sc->reqid)); } /* * Set tunnel endpoints addresses. */ static int ipsec_set_addresses(struct ifnet *ifp, struct sockaddr *src, struct sockaddr *dst) { struct ipsec_softc *sc; struct secasindex *saidx; sx_assert(&ipsec_ioctl_sx, SA_XLOCKED); sc = ifp->if_softc; if (sc->family != 0) { saidx = ipsec_getsaidx(sc, IPSEC_DIR_OUTBOUND, src->sa_family); if (saidx != NULL && saidx->reqid == sc->reqid && key_sockaddrcmp(&saidx->src.sa, src, 0) == 0 && key_sockaddrcmp(&saidx->dst.sa, dst, 0) == 0) return (0); /* Nothing has been changed. */ } /* If reqid is not set, generate new one. */ if (ipsec_init_reqid(sc) != 0) return (EEXIST); return (ipsec_set_tunnel(sc, src, dst, sc->reqid)); } static int ipsec_set_tunnel(struct ipsec_softc *sc, struct sockaddr *src, struct sockaddr *dst, uint32_t reqid) { + struct epoch_tracker et; struct secpolicy *sp[IPSEC_SPCOUNT]; int i; sx_assert(&ipsec_ioctl_sx, SA_XLOCKED); /* Allocate SP with new addresses. */ if (ipsec_newpolicies(sc, sp, src, dst, reqid) == 0) { /* Add new policies to SPDB */ if (key_register_ifnet(sp, IPSEC_SPCOUNT) != 0) { for (i = 0; i < IPSEC_SPCOUNT; i++) key_freesp(&sp[i]); return (EAGAIN); } if (sc->family != 0) ipsec_delete_tunnel(sc); for (i = 0; i < IPSEC_SPCOUNT; i++) sc->sp[i] = sp[i]; sc->family = src->sa_family; CK_LIST_INSERT_HEAD(ipsec_srchash(src), sc, srchash); } else { sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; return (ENOMEM); } + NET_EPOCH_ENTER(et); ipsec_set_running(sc); + NET_EPOCH_EXIT(et); return (0); } static void ipsec_delete_tunnel(struct ipsec_softc *sc) { int i; sx_assert(&ipsec_ioctl_sx, SA_XLOCKED); sc->ifp->if_drv_flags &= ~IFF_DRV_RUNNING; if (sc->family != 0) { CK_LIST_REMOVE(sc, srchash); sc->family = 0; /* * Make sure that ipsec_if_input() will not do access * to softc's policies. */ IPSEC_WAIT(); key_unregister_ifnet(sc->sp, IPSEC_SPCOUNT); for (i = 0; i < IPSEC_SPCOUNT; i++) key_freesp(&sc->sp[i]); } } diff --git a/sys/net/if_me.c b/sys/net/if_me.c index 067ab22cd84d..e1b932bdb16c 100644 --- a/sys/net/if_me.c +++ b/sys/net/if_me.c @@ -1,686 +1,689 @@ /*- * Copyright (c) 2014, 2018 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MEMTU (1500 - sizeof(struct mobhdr)) static const char mename[] = "me"; static MALLOC_DEFINE(M_IFME, mename, "Minimal Encapsulation for IP"); /* Minimal forwarding header RFC 2004 */ struct mobhdr { uint8_t mob_proto; /* protocol */ uint8_t mob_flags; /* flags */ #define MOB_FLAGS_SP 0x80 /* source present */ uint16_t mob_csum; /* header checksum */ struct in_addr mob_dst; /* original destination address */ struct in_addr mob_src; /* original source addr (optional) */ } __packed; struct me_softc { struct ifnet *me_ifp; u_int me_fibnum; struct in_addr me_src; struct in_addr me_dst; CK_LIST_ENTRY(me_softc) chain; CK_LIST_ENTRY(me_softc) srchash; }; CK_LIST_HEAD(me_list, me_softc); #define ME2IFP(sc) ((sc)->me_ifp) #define ME_READY(sc) ((sc)->me_src.s_addr != 0) #define ME_RLOCK_TRACKER struct epoch_tracker me_et #define ME_RLOCK() epoch_enter_preempt(net_epoch_preempt, &me_et) #define ME_RUNLOCK() epoch_exit_preempt(net_epoch_preempt, &me_et) #define ME_WAIT() epoch_wait_preempt(net_epoch_preempt) #ifndef ME_HASH_SIZE #define ME_HASH_SIZE (1 << 4) #endif VNET_DEFINE_STATIC(struct me_list *, me_hashtbl) = NULL; VNET_DEFINE_STATIC(struct me_list *, me_srchashtbl) = NULL; #define V_me_hashtbl VNET(me_hashtbl) #define V_me_srchashtbl VNET(me_srchashtbl) #define ME_HASH(src, dst) (V_me_hashtbl[\ me_hashval((src), (dst)) & (ME_HASH_SIZE - 1)]) #define ME_SRCHASH(src) (V_me_srchashtbl[\ fnv_32_buf(&(src), sizeof(src), FNV1_32_INIT) & (ME_HASH_SIZE - 1)]) static struct sx me_ioctl_sx; SX_SYSINIT(me_ioctl_sx, &me_ioctl_sx, "me_ioctl"); static int me_clone_create(struct if_clone *, int, caddr_t); static void me_clone_destroy(struct ifnet *); VNET_DEFINE_STATIC(struct if_clone *, me_cloner); #define V_me_cloner VNET(me_cloner) #ifdef VIMAGE static void me_reassign(struct ifnet *, struct vnet *, char *); #endif static void me_qflush(struct ifnet *); static int me_transmit(struct ifnet *, struct mbuf *); static int me_ioctl(struct ifnet *, u_long, caddr_t); static int me_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static int me_input(struct mbuf *, int, int, void *); static int me_set_tunnel(struct me_softc *, in_addr_t, in_addr_t); static void me_delete_tunnel(struct me_softc *); SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, IFT_TUNNEL, me, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Minimal Encapsulation for IP (RFC 2004)"); #ifndef MAX_ME_NEST #define MAX_ME_NEST 1 #endif VNET_DEFINE_STATIC(int, max_me_nesting) = MAX_ME_NEST; #define V_max_me_nesting VNET(max_me_nesting) SYSCTL_INT(_net_link_me, OID_AUTO, max_nesting, CTLFLAG_RW | CTLFLAG_VNET, &VNET_NAME(max_me_nesting), 0, "Max nested tunnels"); static uint32_t me_hashval(in_addr_t src, in_addr_t dst) { uint32_t ret; ret = fnv_32_buf(&src, sizeof(src), FNV1_32_INIT); return (fnv_32_buf(&dst, sizeof(dst), ret)); } static struct me_list * me_hashinit(void) { struct me_list *hash; int i; hash = malloc(sizeof(struct me_list) * ME_HASH_SIZE, M_IFME, M_WAITOK); for (i = 0; i < ME_HASH_SIZE; i++) CK_LIST_INIT(&hash[i]); return (hash); } static void vnet_me_init(const void *unused __unused) { V_me_cloner = if_clone_simple(mename, me_clone_create, me_clone_destroy, 0); } VNET_SYSINIT(vnet_me_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_me_init, NULL); static void vnet_me_uninit(const void *unused __unused) { if (V_me_hashtbl != NULL) { free(V_me_hashtbl, M_IFME); V_me_hashtbl = NULL; ME_WAIT(); free(V_me_srchashtbl, M_IFME); } if_clone_detach(V_me_cloner); } VNET_SYSUNINIT(vnet_me_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY, vnet_me_uninit, NULL); static int me_clone_create(struct if_clone *ifc, int unit, caddr_t params) { struct me_softc *sc; sc = malloc(sizeof(struct me_softc), M_IFME, M_WAITOK | M_ZERO); sc->me_fibnum = curthread->td_proc->p_fibnum; ME2IFP(sc) = if_alloc(IFT_TUNNEL); ME2IFP(sc)->if_softc = sc; if_initname(ME2IFP(sc), mename, unit); ME2IFP(sc)->if_mtu = MEMTU; ME2IFP(sc)->if_flags = IFF_POINTOPOINT|IFF_MULTICAST; ME2IFP(sc)->if_output = me_output; ME2IFP(sc)->if_ioctl = me_ioctl; ME2IFP(sc)->if_transmit = me_transmit; ME2IFP(sc)->if_qflush = me_qflush; #ifdef VIMAGE ME2IFP(sc)->if_reassign = me_reassign; #endif ME2IFP(sc)->if_capabilities |= IFCAP_LINKSTATE; ME2IFP(sc)->if_capenable |= IFCAP_LINKSTATE; if_attach(ME2IFP(sc)); bpfattach(ME2IFP(sc), DLT_NULL, sizeof(u_int32_t)); return (0); } #ifdef VIMAGE static void me_reassign(struct ifnet *ifp, struct vnet *new_vnet __unused, char *unused __unused) { struct me_softc *sc; sx_xlock(&me_ioctl_sx); sc = ifp->if_softc; if (sc != NULL) me_delete_tunnel(sc); sx_xunlock(&me_ioctl_sx); } #endif /* VIMAGE */ static void me_clone_destroy(struct ifnet *ifp) { struct me_softc *sc; sx_xlock(&me_ioctl_sx); sc = ifp->if_softc; me_delete_tunnel(sc); bpfdetach(ifp); if_detach(ifp); ifp->if_softc = NULL; sx_xunlock(&me_ioctl_sx); ME_WAIT(); if_free(ifp); free(sc, M_IFME); } static int me_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_in *src, *dst; struct me_softc *sc; int error; switch (cmd) { case SIOCSIFMTU: if (ifr->ifr_mtu < 576) return (EINVAL); ifp->if_mtu = ifr->ifr_mtu; return (0); case SIOCSIFADDR: ifp->if_flags |= IFF_UP; case SIOCSIFFLAGS: case SIOCADDMULTI: case SIOCDELMULTI: return (0); } sx_xlock(&me_ioctl_sx); sc = ifp->if_softc; if (sc == NULL) { error = ENXIO; goto end; } error = 0; switch (cmd) { case SIOCSIFPHYADDR: src = &((struct in_aliasreq *)data)->ifra_addr; dst = &((struct in_aliasreq *)data)->ifra_dstaddr; if (src->sin_family != dst->sin_family || src->sin_family != AF_INET || src->sin_len != dst->sin_len || src->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; break; } if (src->sin_addr.s_addr == INADDR_ANY || dst->sin_addr.s_addr == INADDR_ANY) { error = EADDRNOTAVAIL; break; } error = me_set_tunnel(sc, src->sin_addr.s_addr, dst->sin_addr.s_addr); break; case SIOCDIFPHYADDR: me_delete_tunnel(sc); break; case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: if (!ME_READY(sc)) { error = EADDRNOTAVAIL; break; } src = (struct sockaddr_in *)&ifr->ifr_addr; memset(src, 0, sizeof(*src)); src->sin_family = AF_INET; src->sin_len = sizeof(*src); switch (cmd) { case SIOCGIFPSRCADDR: src->sin_addr = sc->me_src; break; case SIOCGIFPDSTADDR: src->sin_addr = sc->me_dst; break; } error = prison_if(curthread->td_ucred, sintosa(src)); if (error != 0) memset(src, 0, sizeof(*src)); break; case SIOCGTUNFIB: ifr->ifr_fib = sc->me_fibnum; break; case SIOCSTUNFIB: if ((error = priv_check(curthread, PRIV_NET_GRE)) != 0) break; if (ifr->ifr_fib >= rt_numfibs) error = EINVAL; else sc->me_fibnum = ifr->ifr_fib; break; default: error = EINVAL; break; } end: sx_xunlock(&me_ioctl_sx); return (error); } static int me_lookup(const struct mbuf *m, int off, int proto, void **arg) { const struct ip *ip; struct me_softc *sc; if (V_me_hashtbl == NULL) return (0); NET_EPOCH_ASSERT(); ip = mtod(m, const struct ip *); CK_LIST_FOREACH(sc, &ME_HASH(ip->ip_dst.s_addr, ip->ip_src.s_addr), chain) { if (sc->me_src.s_addr == ip->ip_dst.s_addr && sc->me_dst.s_addr == ip->ip_src.s_addr) { if ((ME2IFP(sc)->if_flags & IFF_UP) == 0) return (0); *arg = sc; return (ENCAP_DRV_LOOKUP); } } return (0); } /* * Check that ingress address belongs to local host. */ static void me_set_running(struct me_softc *sc) { if (in_localip(sc->me_src)) ME2IFP(sc)->if_drv_flags |= IFF_DRV_RUNNING; else ME2IFP(sc)->if_drv_flags &= ~IFF_DRV_RUNNING; } /* * ifaddr_event handler. * Clear IFF_DRV_RUNNING flag when ingress address disappears to prevent * source address spoofing. */ static void me_srcaddr(void *arg __unused, const struct sockaddr *sa, int event __unused) { const struct sockaddr_in *sin; struct me_softc *sc; /* Check that VNET is ready */ if (V_me_hashtbl == NULL) return; NET_EPOCH_ASSERT(); sin = (const struct sockaddr_in *)sa; CK_LIST_FOREACH(sc, &ME_SRCHASH(sin->sin_addr.s_addr), srchash) { if (sc->me_src.s_addr != sin->sin_addr.s_addr) continue; me_set_running(sc); } } static int me_set_tunnel(struct me_softc *sc, in_addr_t src, in_addr_t dst) { + struct epoch_tracker et; struct me_softc *tmp; sx_assert(&me_ioctl_sx, SA_XLOCKED); if (V_me_hashtbl == NULL) { V_me_hashtbl = me_hashinit(); V_me_srchashtbl = me_hashinit(); } if (sc->me_src.s_addr == src && sc->me_dst.s_addr == dst) return (0); CK_LIST_FOREACH(tmp, &ME_HASH(src, dst), chain) { if (tmp == sc) continue; if (tmp->me_src.s_addr == src && tmp->me_dst.s_addr == dst) return (EADDRNOTAVAIL); } me_delete_tunnel(sc); sc->me_dst.s_addr = dst; sc->me_src.s_addr = src; CK_LIST_INSERT_HEAD(&ME_HASH(src, dst), sc, chain); CK_LIST_INSERT_HEAD(&ME_SRCHASH(src), sc, srchash); + NET_EPOCH_ENTER(et); me_set_running(sc); + NET_EPOCH_EXIT(et); if_link_state_change(ME2IFP(sc), LINK_STATE_UP); return (0); } static void me_delete_tunnel(struct me_softc *sc) { sx_assert(&me_ioctl_sx, SA_XLOCKED); if (ME_READY(sc)) { CK_LIST_REMOVE(sc, chain); CK_LIST_REMOVE(sc, srchash); ME_WAIT(); sc->me_src.s_addr = 0; sc->me_dst.s_addr = 0; ME2IFP(sc)->if_drv_flags &= ~IFF_DRV_RUNNING; if_link_state_change(ME2IFP(sc), LINK_STATE_DOWN); } } static uint16_t me_in_cksum(uint16_t *p, int nwords) { uint32_t sum = 0; while (nwords-- > 0) sum += *p++; sum = (sum >> 16) + (sum & 0xffff); sum += (sum >> 16); return (~sum); } static int me_input(struct mbuf *m, int off, int proto, void *arg) { struct me_softc *sc = arg; struct mobhdr *mh; struct ifnet *ifp; struct ip *ip; int hlen; NET_EPOCH_ASSERT(); ifp = ME2IFP(sc); /* checks for short packets */ hlen = sizeof(struct mobhdr); if (m->m_pkthdr.len < sizeof(struct ip) + hlen) hlen -= sizeof(struct in_addr); if (m->m_len < sizeof(struct ip) + hlen) m = m_pullup(m, sizeof(struct ip) + hlen); if (m == NULL) goto drop; mh = (struct mobhdr *)mtodo(m, sizeof(struct ip)); /* check for wrong flags */ if (mh->mob_flags & (~MOB_FLAGS_SP)) { m_freem(m); goto drop; } if (mh->mob_flags) { if (hlen != sizeof(struct mobhdr)) { m_freem(m); goto drop; } } else hlen = sizeof(struct mobhdr) - sizeof(struct in_addr); /* check mobile header checksum */ if (me_in_cksum((uint16_t *)mh, hlen / sizeof(uint16_t)) != 0) { m_freem(m); goto drop; } #ifdef MAC mac_ifnet_create_mbuf(ifp, m); #endif ip = mtod(m, struct ip *); ip->ip_dst = mh->mob_dst; ip->ip_p = mh->mob_proto; ip->ip_sum = 0; ip->ip_len = htons(m->m_pkthdr.len - hlen); if (mh->mob_flags) ip->ip_src = mh->mob_src; memmove(mtodo(m, hlen), ip, sizeof(struct ip)); m_adj(m, hlen); m_clrprotoflags(m); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED | CSUM_IP_VALID); M_SETFIB(m, ifp->if_fib); hlen = AF_INET; BPF_MTAP2(ifp, &hlen, sizeof(hlen), m); if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); if ((ifp->if_flags & IFF_MONITOR) != 0) m_freem(m); else netisr_dispatch(NETISR_IP, m); return (IPPROTO_DONE); drop: if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); return (IPPROTO_DONE); } static int me_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { uint32_t af; if (dst->sa_family == AF_UNSPEC) bcopy(dst->sa_data, &af, sizeof(af)); else af = RO_GET_FAMILY(ro, dst); m->m_pkthdr.csum_data = af; return (ifp->if_transmit(ifp, m)); } #define MTAG_ME 1414491977 static int me_transmit(struct ifnet *ifp, struct mbuf *m) { ME_RLOCK_TRACKER; struct mobhdr mh; struct me_softc *sc; struct ip *ip; uint32_t af; int error, hlen, plen; ME_RLOCK(); #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error != 0) goto drop; #endif error = ENETDOWN; sc = ifp->if_softc; if (sc == NULL || !ME_READY(sc) || (ifp->if_flags & IFF_MONITOR) != 0 || (ifp->if_flags & IFF_UP) == 0 || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || (error = if_tunnel_check_nesting(ifp, m, MTAG_ME, V_max_me_nesting)) != 0) { m_freem(m); goto drop; } af = m->m_pkthdr.csum_data; if (af != AF_INET) { error = EAFNOSUPPORT; m_freem(m); goto drop; } if (m->m_len < sizeof(struct ip)) m = m_pullup(m, sizeof(struct ip)); if (m == NULL) { error = ENOBUFS; goto drop; } ip = mtod(m, struct ip *); /* Fragmented datagramms shouldn't be encapsulated */ if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { error = EINVAL; m_freem(m); goto drop; } mh.mob_proto = ip->ip_p; mh.mob_src = ip->ip_src; mh.mob_dst = ip->ip_dst; if (in_hosteq(sc->me_src, ip->ip_src)) { hlen = sizeof(struct mobhdr) - sizeof(struct in_addr); mh.mob_flags = 0; } else { hlen = sizeof(struct mobhdr); mh.mob_flags = MOB_FLAGS_SP; } BPF_MTAP2(ifp, &af, sizeof(af), m); plen = m->m_pkthdr.len; ip->ip_src = sc->me_src; ip->ip_dst = sc->me_dst; m->m_flags &= ~(M_BCAST|M_MCAST); M_SETFIB(m, sc->me_fibnum); M_PREPEND(m, hlen, M_NOWAIT); if (m == NULL) { error = ENOBUFS; goto drop; } if (m->m_len < sizeof(struct ip) + hlen) m = m_pullup(m, sizeof(struct ip) + hlen); if (m == NULL) { error = ENOBUFS; goto drop; } memmove(mtod(m, void *), mtodo(m, hlen), sizeof(struct ip)); ip = mtod(m, struct ip *); ip->ip_len = htons(m->m_pkthdr.len); ip->ip_p = IPPROTO_MOBILE; ip->ip_sum = 0; mh.mob_csum = 0; mh.mob_csum = me_in_cksum((uint16_t *)&mh, hlen / sizeof(uint16_t)); bcopy(&mh, mtodo(m, sizeof(struct ip)), hlen); error = ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL); drop: if (error) if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); else { if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_OBYTES, plen); } ME_RUNLOCK(); return (error); } static void me_qflush(struct ifnet *ifp __unused) { } static const struct srcaddrtab *me_srcaddrtab = NULL; static const struct encaptab *ecookie = NULL; static const struct encap_config me_encap_cfg = { .proto = IPPROTO_MOBILE, .min_length = sizeof(struct ip) + sizeof(struct mobhdr) - sizeof(in_addr_t), .exact_match = ENCAP_DRV_LOOKUP, .lookup = me_lookup, .input = me_input }; static int memodevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: me_srcaddrtab = ip_encap_register_srcaddr(me_srcaddr, NULL, M_WAITOK); ecookie = ip_encap_attach(&me_encap_cfg, NULL, M_WAITOK); break; case MOD_UNLOAD: ip_encap_detach(ecookie); ip_encap_unregister_srcaddr(me_srcaddrtab); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t me_mod = { "if_me", memodevent, 0 }; DECLARE_MODULE(if_me, me_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); MODULE_VERSION(if_me, 1); diff --git a/sys/net/if_stf.c b/sys/net/if_stf.c index f7d6758d052c..de442a133fc6 100644 --- a/sys/net/if_stf.c +++ b/sys/net/if_stf.c @@ -1,758 +1,754 @@ /* $FreeBSD$ */ /* $KAME: if_stf.c,v 1.73 2001/12/03 11:08:30 keiichi Exp $ */ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 2000 WIDE Project. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * 6to4 interface, based on RFC3056. * * 6to4 interface is NOT capable of link-layer (I mean, IPv4) multicasting. * There is no address mapping defined from IPv6 multicast address to IPv4 * address. Therefore, we do not have IFF_MULTICAST on the interface. * * Due to the lack of address mapping for link-local addresses, we cannot * throw packets toward link-local addresses (fe80::x). Also, we cannot throw * packets to link-local multicast addresses (ff02::x). * * Here are interesting symptoms due to the lack of link-local address: * * Unicast routing exchange: * - RIPng: Impossible. Uses link-local multicast packet toward ff02::9, * and link-local addresses as nexthop. * - OSPFv6: Impossible. OSPFv6 assumes that there's link-local address * assigned to the link, and makes use of them. Also, HELLO packets use * link-local multicast addresses (ff02::5 and ff02::6). * - BGP4+: Maybe. You can only use global address as nexthop, and global * address as TCP endpoint address. * * Multicast routing protocols: * - PIM: Hello packet cannot be used to discover adjacent PIM routers. * Adjacent PIM routers must be configured manually (is it really spec-wise * correct thing to do?). * * ICMPv6: * - Redirects cannot be used due to the lack of link-local address. * * stf interface does not have, and will not need, a link-local address. * It seems to have no real benefit and does not help the above symptoms much. * Even if we assign link-locals to interface, we cannot really * use link-local unicast/multicast on top of 6to4 cloud (since there's no * encapsulation defined for link-local address), and the above analysis does * not change. RFC3056 does not mandate the assignment of link-local address * either. * * 6to4 interface has security issues. Refer to * http://playground.iijlab.net/i-d/draft-itojun-ipv6-transition-abuse-00.txt * for details. The code tries to filter out some of malicious packets. * Note that there is no way to be 100% secure. */ #include #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include SYSCTL_DECL(_net_link); static SYSCTL_NODE(_net_link, IFT_STF, stf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "6to4 Interface"); static int stf_permit_rfc1918 = 0; SYSCTL_INT(_net_link_stf, OID_AUTO, permit_rfc1918, CTLFLAG_RWTUN, &stf_permit_rfc1918, 0, "Permit the use of private IPv4 addresses"); #define STFUNIT 0 #define IN6_IS_ADDR_6TO4(x) (ntohs((x)->s6_addr16[0]) == 0x2002) /* * XXX: Return a pointer with 16-bit aligned. Don't cast it to * struct in_addr *; use bcopy() instead. */ #define GET_V4(x) (&(x)->s6_addr16[1]) struct stf_softc { struct ifnet *sc_ifp; u_int sc_fibnum; const struct encaptab *encap_cookie; }; #define STF2IFP(sc) ((sc)->sc_ifp) static const char stfname[] = "stf"; static MALLOC_DEFINE(M_STF, stfname, "6to4 Tunnel Interface"); static const int ip_stf_ttl = 40; static int in_stf_input(struct mbuf *, int, int, void *); static char *stfnames[] = {"stf0", "stf", "6to4", NULL}; static int stfmodevent(module_t, int, void *); static int stf_encapcheck(const struct mbuf *, int, int, void *); static int stf_getsrcifa6(struct ifnet *, struct in6_addr *, struct in6_addr *); static int stf_output(struct ifnet *, struct mbuf *, const struct sockaddr *, struct route *); static int isrfc1918addr(struct in_addr *); static int stf_checkaddr4(struct stf_softc *, struct in_addr *, struct ifnet *); static int stf_checkaddr6(struct stf_softc *, struct in6_addr *, struct ifnet *); static int stf_ioctl(struct ifnet *, u_long, caddr_t); static int stf_clone_match(struct if_clone *, const char *); static int stf_clone_create(struct if_clone *, char *, size_t, caddr_t); static int stf_clone_destroy(struct if_clone *, struct ifnet *); static struct if_clone *stf_cloner; static const struct encap_config ipv4_encap_cfg = { .proto = IPPROTO_IPV6, .min_length = sizeof(struct ip), .exact_match = (sizeof(in_addr_t) << 3) + 8, .check = stf_encapcheck, .input = in_stf_input }; static int stf_clone_match(struct if_clone *ifc, const char *name) { int i; for(i = 0; stfnames[i] != NULL; i++) { if (strcmp(stfnames[i], name) == 0) return (1); } return (0); } static int stf_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params) { char *dp; int err, unit, wildcard; struct stf_softc *sc; struct ifnet *ifp; err = ifc_name2unit(name, &unit); if (err != 0) return (err); wildcard = (unit < 0); /* * We can only have one unit, but since unit allocation is * already locked, we use it to keep from allocating extra * interfaces. */ unit = STFUNIT; err = ifc_alloc_unit(ifc, &unit); if (err != 0) return (err); sc = malloc(sizeof(struct stf_softc), M_STF, M_WAITOK | M_ZERO); ifp = STF2IFP(sc) = if_alloc(IFT_STF); if (ifp == NULL) { free(sc, M_STF); ifc_free_unit(ifc, unit); return (ENOSPC); } ifp->if_softc = sc; sc->sc_fibnum = curthread->td_proc->p_fibnum; /* * Set the name manually rather then using if_initname because * we don't conform to the default naming convention for interfaces. * In the wildcard case, we need to update the name. */ if (wildcard) { for (dp = name; *dp != '\0'; dp++); if (snprintf(dp, len - (dp-name), "%d", unit) > len - (dp-name) - 1) { /* * This can only be a programmer error and * there's no straightforward way to recover if * it happens. */ panic("if_clone_create(): interface name too long"); } } strlcpy(ifp->if_xname, name, IFNAMSIZ); ifp->if_dname = stfname; ifp->if_dunit = IF_DUNIT_NONE; sc->encap_cookie = ip_encap_attach(&ipv4_encap_cfg, sc, M_WAITOK); if (sc->encap_cookie == NULL) { if_printf(ifp, "attach failed\n"); free(sc, M_STF); ifc_free_unit(ifc, unit); return (ENOMEM); } ifp->if_mtu = IPV6_MMTU; ifp->if_ioctl = stf_ioctl; ifp->if_output = stf_output; ifp->if_snd.ifq_maxlen = ifqmaxlen; if_attach(ifp); bpfattach(ifp, DLT_NULL, sizeof(u_int32_t)); return (0); } static int stf_clone_destroy(struct if_clone *ifc, struct ifnet *ifp) { struct stf_softc *sc = ifp->if_softc; int err __unused; err = ip_encap_detach(sc->encap_cookie); KASSERT(err == 0, ("Unexpected error detaching encap_cookie")); bpfdetach(ifp); if_detach(ifp); if_free(ifp); free(sc, M_STF); ifc_free_unit(ifc, STFUNIT); return (0); } static int stfmodevent(module_t mod, int type, void *data) { switch (type) { case MOD_LOAD: stf_cloner = if_clone_advanced(stfname, 0, stf_clone_match, stf_clone_create, stf_clone_destroy); break; case MOD_UNLOAD: if_clone_detach(stf_cloner); break; default: return (EOPNOTSUPP); } return (0); } static moduledata_t stf_mod = { "if_stf", stfmodevent, 0 }; DECLARE_MODULE(if_stf, stf_mod, SI_SUB_PSEUDO, SI_ORDER_ANY); static int stf_encapcheck(const struct mbuf *m, int off, int proto, void *arg) { struct ip ip; struct stf_softc *sc; struct in_addr a, b, mask; struct in6_addr addr6, mask6; sc = (struct stf_softc *)arg; if (sc == NULL) return 0; if ((STF2IFP(sc)->if_flags & IFF_UP) == 0) return 0; /* IFF_LINK0 means "no decapsulation" */ if ((STF2IFP(sc)->if_flags & IFF_LINK0) != 0) return 0; if (proto != IPPROTO_IPV6) return 0; m_copydata(m, 0, sizeof(ip), (caddr_t)&ip); if (ip.ip_v != 4) return 0; if (stf_getsrcifa6(STF2IFP(sc), &addr6, &mask6) != 0) return (0); /* * check if IPv4 dst matches the IPv4 address derived from the * local 6to4 address. * success on: dst = 10.1.1.1, ia6->ia_addr = 2002:0a01:0101:... */ if (bcmp(GET_V4(&addr6), &ip.ip_dst, sizeof(ip.ip_dst)) != 0) return 0; /* * check if IPv4 src matches the IPv4 address derived from the * local 6to4 address masked by prefixmask. * success on: src = 10.1.1.1, ia6->ia_addr = 2002:0a00:.../24 * fail on: src = 10.1.1.1, ia6->ia_addr = 2002:0b00:.../24 */ bzero(&a, sizeof(a)); bcopy(GET_V4(&addr6), &a, sizeof(a)); bcopy(GET_V4(&mask6), &mask, sizeof(mask)); a.s_addr &= mask.s_addr; b = ip.ip_src; b.s_addr &= mask.s_addr; if (a.s_addr != b.s_addr) return 0; /* stf interface makes single side match only */ return 32; } static int stf_getsrcifa6(struct ifnet *ifp, struct in6_addr *addr, struct in6_addr *mask) { - struct rm_priotracker in_ifa_tracker; struct ifaddr *ia; struct in_ifaddr *ia4; struct in6_ifaddr *ia6; struct sockaddr_in6 *sin6; struct in_addr in; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) { if (ia->ifa_addr->sa_family != AF_INET6) continue; sin6 = (struct sockaddr_in6 *)ia->ifa_addr; if (!IN6_IS_ADDR_6TO4(&sin6->sin6_addr)) continue; bcopy(GET_V4(&sin6->sin6_addr), &in, sizeof(in)); - IN_IFADDR_RLOCK(&in_ifa_tracker); - LIST_FOREACH(ia4, INADDR_HASH(in.s_addr), ia_hash) + CK_LIST_FOREACH(ia4, INADDR_HASH(in.s_addr), ia_hash) if (ia4->ia_addr.sin_addr.s_addr == in.s_addr) break; - IN_IFADDR_RUNLOCK(&in_ifa_tracker); if (ia4 == NULL) continue; ia6 = (struct in6_ifaddr *)ia; *addr = sin6->sin6_addr; *mask = ia6->ia_prefixmask.sin6_addr; return (0); } return (ENOENT); } static int stf_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro) { struct stf_softc *sc; const struct sockaddr_in6 *dst6; struct in_addr in4; const void *ptr; u_int8_t tos; struct ip *ip; struct ip6_hdr *ip6; struct in6_addr addr6, mask6; int error; #ifdef MAC error = mac_ifnet_check_transmit(ifp, m); if (error) { m_freem(m); return (error); } #endif sc = ifp->if_softc; dst6 = (const struct sockaddr_in6 *)dst; /* just in case */ if ((ifp->if_flags & IFF_UP) == 0) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENETDOWN; } /* * If we don't have an ip4 address that match my inner ip6 address, * we shouldn't generate output. Without this check, we'll end up * using wrong IPv4 source. */ if (stf_getsrcifa6(ifp, &addr6, &mask6) != 0) { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENETDOWN; } if (m->m_len < sizeof(*ip6)) { m = m_pullup(m, sizeof(*ip6)); if (!m) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENOBUFS; } } ip6 = mtod(m, struct ip6_hdr *); tos = IPV6_TRAFFIC_CLASS(ip6); /* * Pickup the right outer dst addr from the list of candidates. * ip6_dst has priority as it may be able to give us shorter IPv4 hops. */ ptr = NULL; if (IN6_IS_ADDR_6TO4(&ip6->ip6_dst)) ptr = GET_V4(&ip6->ip6_dst); else if (IN6_IS_ADDR_6TO4(&dst6->sin6_addr)) ptr = GET_V4(&dst6->sin6_addr); else { m_freem(m); if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENETUNREACH; } bcopy(ptr, &in4, sizeof(in4)); if (bpf_peers_present(ifp->if_bpf)) { /* * We need to prepend the address family as * a four byte field. Cons up a dummy header * to pacify bpf. This is safe because bpf * will only read from the mbuf (i.e., it won't * try to free it or keep a pointer a to it). */ u_int af = AF_INET6; bpf_mtap2(ifp->if_bpf, &af, sizeof(af), m); } M_PREPEND(m, sizeof(struct ip), M_NOWAIT); if (m == NULL) { if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); return ENOBUFS; } ip = mtod(m, struct ip *); bzero(ip, sizeof(*ip)); bcopy(GET_V4(&addr6), &ip->ip_src, sizeof(ip->ip_src)); bcopy(&in4, &ip->ip_dst, sizeof(ip->ip_dst)); ip->ip_p = IPPROTO_IPV6; ip->ip_ttl = ip_stf_ttl; ip->ip_len = htons(m->m_pkthdr.len); if (ifp->if_flags & IFF_LINK1) ip_ecn_ingress(ECN_ALLOWED, &ip->ip_tos, &tos); else ip_ecn_ingress(ECN_NOCARE, &ip->ip_tos, &tos); M_SETFIB(m, sc->sc_fibnum); if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); error = ip_output(m, NULL, NULL, 0, NULL, NULL); return error; } static int isrfc1918addr(struct in_addr *in) { /* * returns 1 if private address range: * 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16 */ if (stf_permit_rfc1918 == 0 && ( (ntohl(in->s_addr) & 0xff000000) >> 24 == 10 || (ntohl(in->s_addr) & 0xfff00000) >> 16 == 172 * 256 + 16 || (ntohl(in->s_addr) & 0xffff0000) >> 16 == 192 * 256 + 168)) return 1; return 0; } static int stf_checkaddr4(struct stf_softc *sc, struct in_addr *in, struct ifnet *inifp) { struct in_ifaddr *ia4; /* * reject packets with the following address: * 224.0.0.0/4 0.0.0.0/8 127.0.0.0/8 255.0.0.0/8 */ if (IN_MULTICAST(ntohl(in->s_addr))) return -1; switch ((ntohl(in->s_addr) & 0xff000000) >> 24) { case 0: case 127: case 255: return -1; } /* * reject packets with private address range. * (requirement from RFC3056 section 2 1st paragraph) */ if (isrfc1918addr(in)) return -1; /* * reject packets with broadcast */ CK_STAILQ_FOREACH(ia4, &V_in_ifaddrhead, ia_link) { if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0) continue; if (in->s_addr == ia4->ia_broadaddr.sin_addr.s_addr) { return -1; } } /* * perform ingress filter */ if (sc && (STF2IFP(sc)->if_flags & IFF_LINK2) == 0 && inifp) { struct nhop_object *nh; NET_EPOCH_ASSERT(); nh = fib4_lookup(sc->sc_fibnum, *in, 0, 0, 0); if (nh == NULL) return (-1); if (nh->nh_ifp != inifp) return (-1); } return 0; } static int stf_checkaddr6(struct stf_softc *sc, struct in6_addr *in6, struct ifnet *inifp) { /* * check 6to4 addresses */ if (IN6_IS_ADDR_6TO4(in6)) { struct in_addr in4; bcopy(GET_V4(in6), &in4, sizeof(in4)); return stf_checkaddr4(sc, &in4, inifp); } /* * reject anything that look suspicious. the test is implemented * in ip6_input too, but we check here as well to * (1) reject bad packets earlier, and * (2) to be safe against future ip6_input change. */ if (IN6_IS_ADDR_V4COMPAT(in6) || IN6_IS_ADDR_V4MAPPED(in6)) return -1; return 0; } static int in_stf_input(struct mbuf *m, int off, int proto, void *arg) { struct stf_softc *sc = arg; struct ip *ip; struct ip6_hdr *ip6; u_int8_t otos, itos; struct ifnet *ifp; NET_EPOCH_ASSERT(); if (proto != IPPROTO_IPV6) { m_freem(m); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); if (sc == NULL || (STF2IFP(sc)->if_flags & IFF_UP) == 0) { m_freem(m); return (IPPROTO_DONE); } ifp = STF2IFP(sc); #ifdef MAC mac_ifnet_create_mbuf(ifp, m); #endif /* * perform sanity check against outer src/dst. * for source, perform ingress filter as well. */ if (stf_checkaddr4(sc, &ip->ip_dst, NULL) < 0 || stf_checkaddr4(sc, &ip->ip_src, m->m_pkthdr.rcvif) < 0) { m_freem(m); return (IPPROTO_DONE); } otos = ip->ip_tos; m_adj(m, off); if (m->m_len < sizeof(*ip6)) { m = m_pullup(m, sizeof(*ip6)); if (!m) return (IPPROTO_DONE); } ip6 = mtod(m, struct ip6_hdr *); /* * perform sanity check against inner src/dst. * for source, perform ingress filter as well. */ if (stf_checkaddr6(sc, &ip6->ip6_dst, NULL) < 0 || stf_checkaddr6(sc, &ip6->ip6_src, m->m_pkthdr.rcvif) < 0) { m_freem(m); return (IPPROTO_DONE); } itos = IPV6_TRAFFIC_CLASS(ip6); if ((ifp->if_flags & IFF_LINK1) != 0) ip_ecn_egress(ECN_ALLOWED, &otos, &itos); else ip_ecn_egress(ECN_NOCARE, &otos, &itos); ip6->ip6_flow &= ~htonl(0xff << 20); ip6->ip6_flow |= htonl((u_int32_t)itos << 20); m->m_pkthdr.rcvif = ifp; if (bpf_peers_present(ifp->if_bpf)) { /* * We need to prepend the address family as * a four byte field. Cons up a dummy header * to pacify bpf. This is safe because bpf * will only read from the mbuf (i.e., it won't * try to free it or keep a pointer a to it). */ u_int32_t af = AF_INET6; bpf_mtap2(ifp->if_bpf, &af, sizeof(af), m); } /* * Put the packet to the network layer input queue according to the * specified address family. * See net/if_gif.c for possible issues with packet processing * reorder due to extra queueing. */ if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len); M_SETFIB(m, ifp->if_fib); netisr_dispatch(NETISR_IPV6, m); return (IPPROTO_DONE); } static int stf_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ifaddr *ifa; struct ifreq *ifr; struct sockaddr_in6 *sin6; struct in_addr addr; int error, mtu; error = 0; switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; if (ifa == NULL || ifa->ifa_addr->sa_family != AF_INET6) { error = EAFNOSUPPORT; break; } sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; if (!IN6_IS_ADDR_6TO4(&sin6->sin6_addr)) { error = EINVAL; break; } bcopy(GET_V4(&sin6->sin6_addr), &addr, sizeof(addr)); if (isrfc1918addr(&addr)) { error = EINVAL; break; } ifp->if_flags |= IFF_UP; ifp->if_drv_flags |= IFF_DRV_RUNNING; break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; if (ifr && ifr->ifr_addr.sa_family == AF_INET6) ; else error = EAFNOSUPPORT; break; case SIOCGIFMTU: break; case SIOCSIFMTU: ifr = (struct ifreq *)data; mtu = ifr->ifr_mtu; /* RFC 4213 3.2 ideal world MTU */ if (mtu < IPV6_MINMTU || mtu > IF_MAXMTU - 20) return (EINVAL); ifp->if_mtu = mtu; break; default: error = EINVAL; break; } return error; } diff --git a/sys/netinet/if_ether.c b/sys/netinet/if_ether.c index 45ce04117948..f54df9937936 100644 --- a/sys/netinet/if_ether.c +++ b/sys/netinet/if_ether.c @@ -1,1538 +1,1531 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if_ether.c 8.1 (Berkeley) 6/10/93 */ /* * Ethernet address resolution protocol. * TODO: * add "inuse/lock" bit (or ref. count) along with valid bit */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #endif #include #define SIN(s) ((const struct sockaddr_in *)(s)) static struct timeval arp_lastlog; static int arp_curpps; static int arp_maxpps = 1; /* Simple ARP state machine */ enum arp_llinfo_state { ARP_LLINFO_INCOMPLETE = 0, /* No LLE data */ ARP_LLINFO_REACHABLE, /* LLE is valid */ ARP_LLINFO_VERIFY, /* LLE is valid, need refresh */ ARP_LLINFO_DELETED, /* LLE is deleted */ }; SYSCTL_DECL(_net_link_ether); static SYSCTL_NODE(_net_link_ether, PF_INET, inet, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); static SYSCTL_NODE(_net_link_ether, PF_ARP, arp, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); /* timer values */ VNET_DEFINE_STATIC(int, arpt_keep) = (20*60); /* once resolved, good for 20 * minutes */ VNET_DEFINE_STATIC(int, arp_maxtries) = 5; VNET_DEFINE_STATIC(int, arp_proxyall) = 0; VNET_DEFINE_STATIC(int, arpt_down) = 20; /* keep incomplete entries for * 20 seconds */ VNET_DEFINE_STATIC(int, arpt_rexmit) = 1; /* retransmit arp entries, sec*/ VNET_PCPUSTAT_DEFINE(struct arpstat, arpstat); /* ARP statistics, see if_arp.h */ VNET_PCPUSTAT_SYSINIT(arpstat); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(arpstat); #endif /* VIMAGE */ VNET_DEFINE_STATIC(int, arp_maxhold) = 16; #define V_arpt_keep VNET(arpt_keep) #define V_arpt_down VNET(arpt_down) #define V_arpt_rexmit VNET(arpt_rexmit) #define V_arp_maxtries VNET(arp_maxtries) #define V_arp_proxyall VNET(arp_proxyall) #define V_arp_maxhold VNET(arp_maxhold) SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_age, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arpt_keep), 0, "ARP entry lifetime in seconds"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxtries, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_maxtries), 0, "ARP resolution attempts before returning error"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, proxyall, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_proxyall), 0, "Enable proxy ARP for all suitable requests"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, wait, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arpt_down), 0, "Incomplete ARP entry lifetime in seconds"); SYSCTL_VNET_PCPUSTAT(_net_link_ether_arp, OID_AUTO, stats, struct arpstat, arpstat, "ARP statistics (struct arpstat, net/if_arp.h)"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, maxhold, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_maxhold), 0, "Number of packets to hold per ARP entry"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, max_log_per_second, CTLFLAG_RW, &arp_maxpps, 0, "Maximum number of remotely triggered ARP messages that can be " "logged per second"); /* * Due to the exponential backoff algorithm used for the interval between GARP * retransmissions, the maximum number of retransmissions is limited for * sanity. This limit corresponds to a maximum interval between retransmissions * of 2^16 seconds ~= 18 hours. * * Making this limit more dynamic is more complicated than worthwhile, * especially since sending out GARPs spaced days apart would be of little * use. A maximum dynamic limit would look something like: * * const int max = fls(INT_MAX / hz) - 1; */ #define MAX_GARP_RETRANSMITS 16 static int sysctl_garp_rexmit(SYSCTL_HANDLER_ARGS); static int garp_rexmit_count = 0; /* GARP retransmission setting. */ SYSCTL_PROC(_net_link_ether_inet, OID_AUTO, garp_rexmit_count, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE, &garp_rexmit_count, 0, sysctl_garp_rexmit, "I", "Number of times to retransmit GARP packets;" " 0 to disable, maximum of 16"); VNET_DEFINE_STATIC(int, arp_log_level) = LOG_INFO; /* Min. log(9) level. */ #define V_arp_log_level VNET(arp_log_level) SYSCTL_INT(_net_link_ether_arp, OID_AUTO, log_level, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(arp_log_level), 0, "Minimum log(9) level for recording rate limited arp log messages. " "The higher will be log more (emerg=0, info=6 (default), debug=7)."); #define ARP_LOG(pri, ...) do { \ if ((pri) <= V_arp_log_level && \ ppsratecheck(&arp_lastlog, &arp_curpps, arp_maxpps)) \ log((pri), "arp: " __VA_ARGS__); \ } while (0) static void arpintr(struct mbuf *); static void arptimer(void *); #ifdef INET static void in_arpinput(struct mbuf *); #endif static void arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr, struct ifnet *ifp, int bridged, struct llentry *la); static void arp_mark_lle_reachable(struct llentry *la); static void arp_iflladdr(void *arg __unused, struct ifnet *ifp); static eventhandler_tag iflladdr_tag; static const struct netisr_handler arp_nh = { .nh_name = "arp", .nh_handler = arpintr, .nh_proto = NETISR_ARP, .nh_policy = NETISR_POLICY_SOURCE, }; /* * Timeout routine. Age arp_tab entries periodically. */ static void arptimer(void *arg) { struct llentry *lle = (struct llentry *)arg; struct ifnet *ifp; if (lle->la_flags & LLE_STATIC) { return; } LLE_WLOCK(lle); if (callout_pending(&lle->lle_timer)) { /* * Here we are a bit odd here in the treatment of * active/pending. If the pending bit is set, it got * rescheduled before I ran. The active * bit we ignore, since if it was stopped * in ll_tablefree() and was currently running * it would have return 0 so the code would * not have deleted it since the callout could * not be stopped so we want to go through * with the delete here now. If the callout * was restarted, the pending bit will be back on and * we just want to bail since the callout_reset would * return 1 and our reference would have been removed * by arpresolve() below. */ LLE_WUNLOCK(lle); return; } ifp = lle->lle_tbl->llt_ifp; CURVNET_SET(ifp->if_vnet); switch (lle->ln_state) { case ARP_LLINFO_REACHABLE: /* * Expiration time is approaching. * Request usage feedback from the datapath. * Change state and re-schedule ourselves. */ llentry_request_feedback(lle); lle->ln_state = ARP_LLINFO_VERIFY; callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); CURVNET_RESTORE(); return; case ARP_LLINFO_VERIFY: if (llentry_get_hittime(lle) > 0 && lle->la_preempt > 0) { /* Entry was used, issue refresh request */ struct epoch_tracker et; struct in_addr dst; dst = lle->r_l3addr.addr4; lle->la_preempt--; callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); NET_EPOCH_ENTER(et); arprequest(ifp, NULL, &dst, NULL); NET_EPOCH_EXIT(et); CURVNET_RESTORE(); return; } /* Nothing happened. Reschedule if not too late */ if (lle->la_expire > time_uptime) { callout_schedule(&lle->lle_timer, hz * V_arpt_rexmit); LLE_WUNLOCK(lle); CURVNET_RESTORE(); return; } break; case ARP_LLINFO_INCOMPLETE: case ARP_LLINFO_DELETED: break; } if ((lle->la_flags & LLE_DELETED) == 0) { int evt; if (lle->la_flags & LLE_VALID) evt = LLENTRY_EXPIRED; else evt = LLENTRY_TIMEDOUT; EVENTHANDLER_INVOKE(lle_event, lle, evt); } callout_stop(&lle->lle_timer); /* XXX: LOR avoidance. We still have ref on lle. */ LLE_WUNLOCK(lle); IF_AFDATA_LOCK(ifp); LLE_WLOCK(lle); /* Guard against race with other llentry_free(). */ if (lle->la_flags & LLE_LINKED) { LLE_REMREF(lle); lltable_unlink_entry(lle->lle_tbl, lle); } IF_AFDATA_UNLOCK(ifp); size_t pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); ARPSTAT_INC(timeouts); CURVNET_RESTORE(); } /* * Stores link-layer header for @ifp in format suitable for if_output() * into buffer @buf. Resulting header length is stored in @bufsize. * * Returns 0 on success. */ static int arp_fillheader(struct ifnet *ifp, struct arphdr *ah, int bcast, u_char *buf, size_t *bufsize) { struct if_encap_req ereq; int error; bzero(buf, *bufsize); bzero(&ereq, sizeof(ereq)); ereq.buf = buf; ereq.bufsize = *bufsize; ereq.rtype = IFENCAP_LL; ereq.family = AF_ARP; ereq.lladdr = ar_tha(ah); ereq.hdata = (u_char *)ah; if (bcast) ereq.flags = IFENCAP_FLAG_BROADCAST; error = ifp->if_requestencap(ifp, &ereq); if (error == 0) *bufsize = ereq.bufsize; return (error); } /* * Broadcast an ARP request. Caller specifies: * - arp header source ip address * - arp header target ip address * - arp header source ethernet address */ static int arprequest_internal(struct ifnet *ifp, const struct in_addr *sip, const struct in_addr *tip, u_char *enaddr) { struct mbuf *m; struct arphdr *ah; struct sockaddr sa; u_char *carpaddr = NULL; uint8_t linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; struct route ro; int error; NET_EPOCH_ASSERT(); if (sip == NULL) { /* * The caller did not supply a source address, try to find * a compatible one among those assigned to this interface. */ struct ifaddr *ifa; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; if (ifa->ifa_carp) { if ((*carp_iamatch_p)(ifa, &carpaddr) == 0) continue; sip = &IA_SIN(ifa)->sin_addr; } else { carpaddr = NULL; sip = &IA_SIN(ifa)->sin_addr; } if (0 == ((sip->s_addr ^ tip->s_addr) & IA_MASKSIN(ifa)->sin_addr.s_addr)) break; /* found it. */ } if (sip == NULL) { printf("%s: cannot find matching address\n", __func__); return (EADDRNOTAVAIL); } } if (enaddr == NULL) enaddr = carpaddr ? carpaddr : (u_char *)IF_LLADDR(ifp); if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL) return (ENOMEM); m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) + 2 * ifp->if_addrlen; m->m_pkthdr.len = m->m_len; M_ALIGN(m, m->m_len); ah = mtod(m, struct arphdr *); bzero((caddr_t)ah, m->m_len); #ifdef MAC mac_netinet_arp_send(ifp, m); #endif ah->ar_pro = htons(ETHERTYPE_IP); ah->ar_hln = ifp->if_addrlen; /* hardware address length */ ah->ar_pln = sizeof(struct in_addr); /* protocol address length */ ah->ar_op = htons(ARPOP_REQUEST); bcopy(enaddr, ar_sha(ah), ah->ar_hln); bcopy(sip, ar_spa(ah), ah->ar_pln); bcopy(tip, ar_tpa(ah), ah->ar_pln); sa.sa_family = AF_ARP; sa.sa_len = 2; /* Calculate link header for sending frame */ bzero(&ro, sizeof(ro)); linkhdrsize = sizeof(linkhdr); error = arp_fillheader(ifp, ah, 1, linkhdr, &linkhdrsize); if (error != 0 && error != EAFNOSUPPORT) { m_freem(m); ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n", if_name(ifp), error); return (error); } ro.ro_prepend = linkhdr; ro.ro_plen = linkhdrsize; ro.ro_flags = 0; m->m_flags |= M_BCAST; m_clrprotoflags(m); /* Avoid confusing lower layers. */ error = (*ifp->if_output)(ifp, m, &sa, &ro); ARPSTAT_INC(txrequests); if (error) { ARPSTAT_INC(txerrors); ARP_LOG(LOG_DEBUG, "Failed to send ARP packet on %s: %d\n", if_name(ifp), error); } return (error); } void arprequest(struct ifnet *ifp, const struct in_addr *sip, const struct in_addr *tip, u_char *enaddr) { (void) arprequest_internal(ifp, sip, tip, enaddr); } /* * Resolve an IP address into an ethernet address - heavy version. * Used internally by arpresolve(). * We have already checked that we can't use an existing lle without * modification so we have to acquire an LLE_EXCLUSIVE lle lock. * * On success, desten and pflags are filled in and the function returns 0; * If the packet must be held pending resolution, we return EWOULDBLOCK * On other errors, we return the corresponding error code. * Note that m_freem() handles NULL. */ static int arpresolve_full(struct ifnet *ifp, int is_gw, int flags, struct mbuf *m, const struct sockaddr *dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *la = NULL, *la_tmp; struct mbuf *curr = NULL; struct mbuf *next = NULL; int error, renew; char *lladdr; int ll_len; NET_EPOCH_ASSERT(); if (pflags != NULL) *pflags = 0; if (plle != NULL) *plle = NULL; if ((flags & LLE_CREATE) == 0) la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); if (la == NULL && (ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) == 0) { la = lltable_alloc_entry(LLTABLE(ifp), 0, dst); if (la == NULL) { char addrbuf[INET_ADDRSTRLEN]; log(LOG_DEBUG, "arpresolve: can't allocate llinfo for %s on %s\n", inet_ntoa_r(SIN(dst)->sin_addr, addrbuf), if_name(ifp)); m_freem(m); return (EINVAL); } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(la); la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); /* Prefer ANY existing lle over newly-created one */ if (la_tmp == NULL) lltable_link_entry(LLTABLE(ifp), la); IF_AFDATA_WUNLOCK(ifp); if (la_tmp != NULL) { lltable_free_entry(LLTABLE(ifp), la); la = la_tmp; } } if (la == NULL) { m_freem(m); return (EINVAL); } if ((la->la_flags & LLE_VALID) && ((la->la_flags & LLE_STATIC) || la->la_expire > time_uptime)) { if (flags & LLE_ADDRONLY) { lladdr = la->ll_addr; ll_len = ifp->if_addrlen; } else { lladdr = la->r_linkdata; ll_len = la->r_hdrlen; } bcopy(lladdr, desten, ll_len); /* Notify LLE code that the entry was used by datapath */ llentry_provide_feedback(la); if (pflags != NULL) *pflags = la->la_flags & (LLE_VALID|LLE_IFADDR); if (plle) { LLE_ADDREF(la); *plle = la; } LLE_WUNLOCK(la); return (0); } renew = (la->la_asked == 0 || la->la_expire != time_uptime); /* * There is an arptab entry, but no ethernet address * response yet. Add the mbuf to the list, dropping * the oldest packet if we have exceeded the system * setting. */ if (m != NULL) { if (la->la_numheld >= V_arp_maxhold) { if (la->la_hold != NULL) { next = la->la_hold->m_nextpkt; m_freem(la->la_hold); la->la_hold = next; la->la_numheld--; ARPSTAT_INC(dropped); } } if (la->la_hold != NULL) { curr = la->la_hold; while (curr->m_nextpkt != NULL) curr = curr->m_nextpkt; curr->m_nextpkt = m; } else la->la_hold = m; la->la_numheld++; } /* * Return EWOULDBLOCK if we have tried less than arp_maxtries. It * will be masked by ether_output(). Return EHOSTDOWN/EHOSTUNREACH * if we have already sent arp_maxtries ARP requests. Retransmit the * ARP request, but not faster than one request per second. */ if (la->la_asked < V_arp_maxtries) error = EWOULDBLOCK; /* First request. */ else error = is_gw != 0 ? EHOSTUNREACH : EHOSTDOWN; if (renew) { int canceled, e; LLE_ADDREF(la); la->la_expire = time_uptime; canceled = callout_reset(&la->lle_timer, hz * V_arpt_down, arptimer, la); if (canceled) LLE_REMREF(la); la->la_asked++; LLE_WUNLOCK(la); e = arprequest_internal(ifp, NULL, &SIN(dst)->sin_addr, NULL); /* * Only overwrite 'error' in case of error; in case of success * the proper return value was already set above. */ if (e != 0) return (e); return (error); } LLE_WUNLOCK(la); return (error); } /* * Lookups link header based on an IP address. * On input: * ifp is the interface we use * is_gw != 0 if @dst represents gateway to some destination * m is the mbuf. May be NULL if we don't have a packet. * dst is the next hop, * desten is the storage to put LL header. * flags returns subset of lle flags: LLE_VALID | LLE_IFADDR * * On success, full/partial link header and flags are filled in and * the function returns 0. * If the packet must be held pending resolution, we return EWOULDBLOCK * On other errors, we return the corresponding error code. * Note that m_freem() handles NULL. */ int arpresolve(struct ifnet *ifp, int is_gw, struct mbuf *m, const struct sockaddr *dst, u_char *desten, uint32_t *pflags, struct llentry **plle) { struct llentry *la = NULL; NET_EPOCH_ASSERT(); if (pflags != NULL) *pflags = 0; if (plle != NULL) *plle = NULL; if (m != NULL) { if (m->m_flags & M_BCAST) { /* broadcast */ (void)memcpy(desten, ifp->if_broadcastaddr, ifp->if_addrlen); return (0); } if (m->m_flags & M_MCAST) { /* multicast */ ETHER_MAP_IP_MULTICAST(&SIN(dst)->sin_addr, desten); return (0); } } la = lla_lookup(LLTABLE(ifp), plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, dst); if (la != NULL && (la->r_flags & RLLE_VALID) != 0) { /* Entry found, let's copy lle info */ bcopy(la->r_linkdata, desten, la->r_hdrlen); if (pflags != NULL) *pflags = LLE_VALID | (la->r_flags & RLLE_IFADDR); /* Notify the LLE handling code that the entry was used. */ llentry_provide_feedback(la); if (plle) { LLE_ADDREF(la); *plle = la; LLE_WUNLOCK(la); } return (0); } if (plle && la) LLE_WUNLOCK(la); return (arpresolve_full(ifp, is_gw, la == NULL ? LLE_CREATE : 0, m, dst, desten, pflags, plle)); } /* * Common length and type checks are done here, * then the protocol-specific routine is called. */ static void arpintr(struct mbuf *m) { struct arphdr *ar; struct ifnet *ifp; char *layer; int hlen; ifp = m->m_pkthdr.rcvif; if (m->m_len < sizeof(struct arphdr) && ((m = m_pullup(m, sizeof(struct arphdr))) == NULL)) { ARP_LOG(LOG_NOTICE, "packet with short header received on %s\n", if_name(ifp)); return; } ar = mtod(m, struct arphdr *); /* Check if length is sufficient */ if (m->m_len < arphdr_len(ar)) { m = m_pullup(m, arphdr_len(ar)); if (m == NULL) { ARP_LOG(LOG_NOTICE, "short packet received on %s\n", if_name(ifp)); return; } ar = mtod(m, struct arphdr *); } hlen = 0; layer = ""; switch (ntohs(ar->ar_hrd)) { case ARPHRD_ETHER: hlen = ETHER_ADDR_LEN; /* RFC 826 */ layer = "ethernet"; break; case ARPHRD_INFINIBAND: hlen = 20; /* RFC 4391, INFINIBAND_ALEN */ layer = "infiniband"; break; case ARPHRD_IEEE1394: hlen = 0; /* SHALL be 16 */ /* RFC 2734 */ layer = "firewire"; /* * Restrict too long hardware addresses. * Currently we are capable of handling 20-byte * addresses ( sizeof(lle->ll_addr) ) */ if (ar->ar_hln >= 20) hlen = 16; break; default: ARP_LOG(LOG_NOTICE, "packet with unknown hardware format 0x%02d received on " "%s\n", ntohs(ar->ar_hrd), if_name(ifp)); m_freem(m); return; } if (hlen != 0 && hlen != ar->ar_hln) { ARP_LOG(LOG_NOTICE, "packet with invalid %s address length %d received on %s\n", layer, ar->ar_hln, if_name(ifp)); m_freem(m); return; } ARPSTAT_INC(received); switch (ntohs(ar->ar_pro)) { #ifdef INET case ETHERTYPE_IP: in_arpinput(m); return; #endif } m_freem(m); } #ifdef INET /* * ARP for Internet protocols on 10 Mb/s Ethernet. * Algorithm is that given in RFC 826. * In addition, a sanity check is performed on the sender * protocol address, to catch impersonators. * We no longer handle negotiations for use of trailer protocol: * Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent * along with IP replies if we wanted trailers sent to us, * and also sent them in response to IP replies. * This allowed either end to announce the desire to receive * trailer packets. * We no longer reply to requests for ETHERTYPE_TRAIL protocol either, * but formerly didn't normally send requests. */ static int log_arp_wrong_iface = 1; static int log_arp_movements = 1; static int log_arp_permanent_modify = 1; static int allow_multicast = 0; SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_wrong_iface, CTLFLAG_RW, &log_arp_wrong_iface, 0, "log arp packets arriving on the wrong interface"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_movements, CTLFLAG_RW, &log_arp_movements, 0, "log arp replies from MACs different than the one in the cache"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, log_arp_permanent_modify, CTLFLAG_RW, &log_arp_permanent_modify, 0, "log arp replies from MACs different than the one in the permanent arp entry"); SYSCTL_INT(_net_link_ether_inet, OID_AUTO, allow_multicast, CTLFLAG_RW, &allow_multicast, 0, "accept multicast addresses"); static void in_arpinput(struct mbuf *m) { - struct rm_priotracker in_ifa_tracker; struct arphdr *ah; struct ifnet *ifp = m->m_pkthdr.rcvif; struct llentry *la = NULL, *la_tmp; struct ifaddr *ifa; struct in_ifaddr *ia; struct sockaddr sa; struct in_addr isaddr, itaddr, myaddr; u_int8_t *enaddr = NULL; int op; int bridged = 0, is_bridge = 0; int carped; struct sockaddr_in sin; struct sockaddr *dst; struct nhop_object *nh; uint8_t linkhdr[LLE_MAX_LINKHDR]; struct route ro; size_t linkhdrsize; int lladdr_off; int error; char addrbuf[INET_ADDRSTRLEN]; NET_EPOCH_ASSERT(); sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_addr.s_addr = 0; if (ifp->if_bridge) bridged = 1; if (ifp->if_type == IFT_BRIDGE) is_bridge = 1; /* * We already have checked that mbuf contains enough contiguous data * to hold entire arp message according to the arp header. */ ah = mtod(m, struct arphdr *); /* * ARP is only for IPv4 so we can reject packets with * a protocol length not equal to an IPv4 address. */ if (ah->ar_pln != sizeof(struct in_addr)) { ARP_LOG(LOG_NOTICE, "requested protocol length != %zu\n", sizeof(struct in_addr)); goto drop; } if (allow_multicast == 0 && ETHER_IS_MULTICAST(ar_sha(ah))) { ARP_LOG(LOG_NOTICE, "%*D is multicast\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":"); goto drop; } op = ntohs(ah->ar_op); (void)memcpy(&isaddr, ar_spa(ah), sizeof (isaddr)); (void)memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr)); if (op == ARPOP_REPLY) ARPSTAT_INC(rxreplies); /* * For a bridge, we want to check the address irrespective * of the receive interface. (This will change slightly * when we have clusters of interfaces). */ - IN_IFADDR_RLOCK(&in_ifa_tracker); - LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { + CK_LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) || ia->ia_ifp == ifp) && itaddr.s_addr == ia->ia_addr.sin_addr.s_addr && (ia->ia_ifa.ifa_carp == NULL || (*carp_iamatch_p)(&ia->ia_ifa, &enaddr))) { ifa_ref(&ia->ia_ifa); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } } - LIST_FOREACH(ia, INADDR_HASH(isaddr.s_addr), ia_hash) + CK_LIST_FOREACH(ia, INADDR_HASH(isaddr.s_addr), ia_hash) if (((bridged && ia->ia_ifp->if_bridge == ifp->if_bridge) || ia->ia_ifp == ifp) && isaddr.s_addr == ia->ia_addr.sin_addr.s_addr) { ifa_ref(&ia->ia_ifa); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } #define BDG_MEMBER_MATCHES_ARP(addr, ifp, ia) \ (ia->ia_ifp->if_bridge == ifp->if_softc && \ !bcmp(IF_LLADDR(ia->ia_ifp), IF_LLADDR(ifp), ifp->if_addrlen) && \ addr == ia->ia_addr.sin_addr.s_addr) /* * Check the case when bridge shares its MAC address with * some of its children, so packets are claimed by bridge * itself (bridge_input() does it first), but they are really * meant to be destined to the bridge member. */ if (is_bridge) { - LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { + CK_LIST_FOREACH(ia, INADDR_HASH(itaddr.s_addr), ia_hash) { if (BDG_MEMBER_MATCHES_ARP(itaddr.s_addr, ifp, ia)) { ifa_ref(&ia->ia_ifa); ifp = ia->ia_ifp; - IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } } } #undef BDG_MEMBER_MATCHES_ARP - IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * No match, use the first inet address on the receive interface * as a dummy address for the rest of the function. */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && (ifa->ifa_carp == NULL || (*carp_iamatch_p)(ifa, &enaddr))) { ia = ifatoia(ifa); ifa_ref(ifa); goto match; } /* * If bridging, fall back to using any inet address. */ if (!bridged || (ia = CK_STAILQ_FIRST(&V_in_ifaddrhead)) == NULL) goto drop; ifa_ref(&ia->ia_ifa); match: if (!enaddr) enaddr = (u_int8_t *)IF_LLADDR(ifp); carped = (ia->ia_ifa.ifa_carp != NULL); myaddr = ia->ia_addr.sin_addr; ifa_free(&ia->ia_ifa); if (!bcmp(ar_sha(ah), enaddr, ifp->if_addrlen)) goto drop; /* it's from me, ignore it. */ if (!bcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) { ARP_LOG(LOG_NOTICE, "link address is broadcast for IP address " "%s!\n", inet_ntoa_r(isaddr, addrbuf)); goto drop; } if (ifp->if_addrlen != ah->ar_hln) { ARP_LOG(LOG_WARNING, "from %*D: addr len: new %d, " "i/f %d (ignored)\n", ifp->if_addrlen, (u_char *) ar_sha(ah), ":", ah->ar_hln, ifp->if_addrlen); goto drop; } /* * Warn if another host is using the same IP address, but only if the * IP address isn't 0.0.0.0, which is used for DHCP only, in which * case we suppress the warning to avoid false positive complaints of * potential misconfiguration. */ if (!bridged && !carped && isaddr.s_addr == myaddr.s_addr && myaddr.s_addr != 0) { ARP_LOG(LOG_ERR, "%*D is using my IP address %s on %s!\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", inet_ntoa_r(isaddr, addrbuf), ifp->if_xname); itaddr = myaddr; ARPSTAT_INC(dupips); goto reply; } if (ifp->if_flags & IFF_STATICARP) goto reply; bzero(&sin, sizeof(sin)); sin.sin_len = sizeof(struct sockaddr_in); sin.sin_family = AF_INET; sin.sin_addr = isaddr; dst = (struct sockaddr *)&sin; la = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); if (la != NULL) arp_check_update_lle(ah, isaddr, ifp, bridged, la); else if (itaddr.s_addr == myaddr.s_addr) { /* * Request/reply to our address, but no lle exists yet. * Calculate full link prepend to use in lle. */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr, &linkhdrsize, &lladdr_off) != 0) goto reply; /* Allocate new entry */ la = lltable_alloc_entry(LLTABLE(ifp), 0, dst); if (la == NULL) { /* * lle creation may fail if source address belongs * to non-directly connected subnet. However, we * will try to answer the request instead of dropping * frame. */ goto reply; } lltable_set_entry_addr(ifp, la, linkhdr, linkhdrsize, lladdr_off); IF_AFDATA_WLOCK(ifp); LLE_WLOCK(la); la_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); /* * Check if lle still does not exists. * If it does, that means that we either * 1) have configured it explicitly, via * 1a) 'arp -s' static entry or * 1b) interface address static record * or * 2) it was the result of sending first packet to-host * or * 3) it was another arp reply packet we handled in * different thread. * * In all cases except 3) we definitely need to prefer * existing lle. For the sake of simplicity, prefer any * existing lle over newly-create one. */ if (la_tmp == NULL) lltable_link_entry(LLTABLE(ifp), la); IF_AFDATA_WUNLOCK(ifp); if (la_tmp == NULL) { arp_mark_lle_reachable(la); LLE_WUNLOCK(la); } else { /* Free newly-create entry and handle packet */ lltable_free_entry(LLTABLE(ifp), la); la = la_tmp; la_tmp = NULL; arp_check_update_lle(ah, isaddr, ifp, bridged, la); /* arp_check_update_lle() returns @la unlocked */ } la = NULL; } reply: if (op != ARPOP_REQUEST) goto drop; ARPSTAT_INC(rxrequests); if (itaddr.s_addr == myaddr.s_addr) { /* Shortcut.. the receiving interface is the target. */ (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), enaddr, ah->ar_hln); } else { /* * Destination address is not ours. Check if * proxyarp entry exists or proxyarp is turned on globally. */ struct llentry *lle; sin.sin_addr = itaddr; lle = lla_lookup(LLTABLE(ifp), 0, (struct sockaddr *)&sin); if ((lle != NULL) && (lle->la_flags & LLE_PUB)) { (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), lle->ll_addr, ah->ar_hln); LLE_RUNLOCK(lle); } else { if (lle != NULL) LLE_RUNLOCK(lle); if (!V_arp_proxyall) goto drop; NET_EPOCH_ASSERT(); nh = fib4_lookup(ifp->if_fib, itaddr, 0, 0, 0); if (nh == NULL) goto drop; /* * Don't send proxies for nodes on the same interface * as this one came out of, or we'll get into a fight * over who claims what Ether address. */ if (nh->nh_ifp == ifp) goto drop; (void)memcpy(ar_tha(ah), ar_sha(ah), ah->ar_hln); (void)memcpy(ar_sha(ah), enaddr, ah->ar_hln); /* * Also check that the node which sent the ARP packet * is on the interface we expect it to be on. This * avoids ARP chaos if an interface is connected to the * wrong network. */ nh = fib4_lookup(ifp->if_fib, isaddr, 0, 0, 0); if (nh == NULL) goto drop; if (nh->nh_ifp != ifp) { ARP_LOG(LOG_INFO, "proxy: ignoring request" " from %s via %s\n", inet_ntoa_r(isaddr, addrbuf), ifp->if_xname); goto drop; } #ifdef DEBUG_PROXY printf("arp: proxying for %s\n", inet_ntoa_r(itaddr, addrbuf)); #endif } } if (itaddr.s_addr == myaddr.s_addr && IN_LINKLOCAL(ntohl(itaddr.s_addr))) { /* RFC 3927 link-local IPv4; always reply by broadcast. */ #ifdef DEBUG_LINKLOCAL printf("arp: sending reply for link-local addr %s\n", inet_ntoa_r(itaddr, addrbuf)); #endif m->m_flags |= M_BCAST; m->m_flags &= ~M_MCAST; } else { /* default behaviour; never reply by broadcast. */ m->m_flags &= ~(M_BCAST|M_MCAST); } (void)memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln); (void)memcpy(ar_spa(ah), &itaddr, ah->ar_pln); ah->ar_op = htons(ARPOP_REPLY); ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */ m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln); m->m_pkthdr.len = m->m_len; m->m_pkthdr.rcvif = NULL; sa.sa_family = AF_ARP; sa.sa_len = 2; /* Calculate link header for sending frame */ bzero(&ro, sizeof(ro)); linkhdrsize = sizeof(linkhdr); error = arp_fillheader(ifp, ah, 0, linkhdr, &linkhdrsize); /* * arp_fillheader() may fail due to lack of support inside encap request * routing. This is not necessary an error, AF_ARP can/should be handled * by if_output(). */ if (error != 0 && error != EAFNOSUPPORT) { ARP_LOG(LOG_ERR, "Failed to calculate ARP header on %s: %d\n", if_name(ifp), error); goto drop; } ro.ro_prepend = linkhdr; ro.ro_plen = linkhdrsize; ro.ro_flags = 0; m_clrprotoflags(m); /* Avoid confusing lower layers. */ (*ifp->if_output)(ifp, m, &sa, &ro); ARPSTAT_INC(txreplies); return; drop: m_freem(m); } #endif static struct mbuf * arp_grab_holdchain(struct llentry *la) { struct mbuf *chain; LLE_WLOCK_ASSERT(la); chain = la->la_hold; la->la_hold = NULL; la->la_numheld = 0; return (chain); } static void arp_flush_holdchain(struct ifnet *ifp, struct llentry *la, struct mbuf *chain) { struct mbuf *m_hold, *m_hold_next; struct sockaddr_in sin; NET_EPOCH_ASSERT(); struct route ro = { .ro_prepend = la->r_linkdata, .ro_plen = la->r_hdrlen, }; lltable_fill_sa_entry(la, (struct sockaddr *)&sin); for (m_hold = chain; m_hold != NULL; m_hold = m_hold_next) { m_hold_next = m_hold->m_nextpkt; m_hold->m_nextpkt = NULL; /* Avoid confusing lower layers. */ m_clrprotoflags(m_hold); (*ifp->if_output)(ifp, m_hold, (struct sockaddr *)&sin, &ro); } } /* * Checks received arp data against existing @la. * Updates lle state/performs notification if necessary. */ static void arp_check_update_lle(struct arphdr *ah, struct in_addr isaddr, struct ifnet *ifp, int bridged, struct llentry *la) { uint8_t linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; char addrbuf[INET_ADDRSTRLEN]; LLE_WLOCK_ASSERT(la); /* the following is not an error when doing bridging */ if (!bridged && la->lle_tbl->llt_ifp != ifp) { if (log_arp_wrong_iface) ARP_LOG(LOG_WARNING, "%s is on %s " "but got reply from %*D on %s\n", inet_ntoa_r(isaddr, addrbuf), la->lle_tbl->llt_ifp->if_xname, ifp->if_addrlen, (u_char *)ar_sha(ah), ":", ifp->if_xname); LLE_WUNLOCK(la); return; } if ((la->la_flags & LLE_VALID) && bcmp(ar_sha(ah), la->ll_addr, ifp->if_addrlen)) { if (la->la_flags & LLE_STATIC) { LLE_WUNLOCK(la); if (log_arp_permanent_modify) ARP_LOG(LOG_ERR, "%*D attempts to modify " "permanent entry for %s on %s\n", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", inet_ntoa_r(isaddr, addrbuf), ifp->if_xname); return; } if (log_arp_movements) { ARP_LOG(LOG_INFO, "%s moved from %*D " "to %*D on %s\n", inet_ntoa_r(isaddr, addrbuf), ifp->if_addrlen, (u_char *)la->ll_addr, ":", ifp->if_addrlen, (u_char *)ar_sha(ah), ":", ifp->if_xname); } } /* Calculate full link prepend to use in lle */ linkhdrsize = sizeof(linkhdr); if (lltable_calc_llheader(ifp, AF_INET, ar_sha(ah), linkhdr, &linkhdrsize, &lladdr_off) != 0) return; /* Check if something has changed */ if (memcmp(la->r_linkdata, linkhdr, linkhdrsize) != 0 || (la->la_flags & LLE_VALID) == 0) { /* Try to perform LLE update */ if (lltable_try_set_entry_addr(ifp, la, linkhdr, linkhdrsize, lladdr_off) == 0) return; /* Clear fast path feedback request if set */ llentry_mark_used(la); } arp_mark_lle_reachable(la); /* * The packets are all freed within the call to the output * routine. * * NB: The lock MUST be released before the call to the * output routine. */ if (la->la_hold != NULL) { struct mbuf *chain; chain = arp_grab_holdchain(la); LLE_WUNLOCK(la); arp_flush_holdchain(ifp, la, chain); } else LLE_WUNLOCK(la); } static void arp_mark_lle_reachable(struct llentry *la) { int canceled, wtime; LLE_WLOCK_ASSERT(la); la->ln_state = ARP_LLINFO_REACHABLE; EVENTHANDLER_INVOKE(lle_event, la, LLENTRY_RESOLVED); if (!(la->la_flags & LLE_STATIC)) { LLE_ADDREF(la); la->la_expire = time_uptime + V_arpt_keep; wtime = V_arpt_keep - V_arp_maxtries * V_arpt_rexmit; if (wtime < 0) wtime = V_arpt_keep; canceled = callout_reset(&la->lle_timer, hz * wtime, arptimer, la); if (canceled) LLE_REMREF(la); } la->la_asked = 0; la->la_preempt = V_arp_maxtries; } /* * Add permanent link-layer record for given interface address. */ static __noinline void arp_add_ifa_lle(struct ifnet *ifp, const struct sockaddr *dst) { struct llentry *lle, *lle_tmp; /* * Interface address LLE record is considered static * because kernel code relies on LLE_STATIC flag to check * if these entries can be rewriten by arp updates. */ lle = lltable_alloc_entry(LLTABLE(ifp), LLE_IFADDR | LLE_STATIC, dst); if (lle == NULL) { log(LOG_INFO, "arp_ifinit: cannot create arp " "entry for interface address\n"); return; } IF_AFDATA_WLOCK(ifp); LLE_WLOCK(lle); /* Unlink any entry if exists */ lle_tmp = lla_lookup(LLTABLE(ifp), LLE_EXCLUSIVE, dst); if (lle_tmp != NULL) lltable_unlink_entry(LLTABLE(ifp), lle_tmp); lltable_link_entry(LLTABLE(ifp), lle); IF_AFDATA_WUNLOCK(ifp); if (lle_tmp != NULL) EVENTHANDLER_INVOKE(lle_event, lle_tmp, LLENTRY_EXPIRED); EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_RESOLVED); LLE_WUNLOCK(lle); if (lle_tmp != NULL) lltable_free_entry(LLTABLE(ifp), lle_tmp); } /* * Handle the garp_rexmit_count. Like sysctl_handle_int(), but limits the range * of valid values. */ static int sysctl_garp_rexmit(SYSCTL_HANDLER_ARGS) { int error; int rexmit_count = *(int *)arg1; error = sysctl_handle_int(oidp, &rexmit_count, 0, req); /* Enforce limits on any new value that may have been set. */ if (!error && req->newptr) { /* A new value was set. */ if (rexmit_count < 0) { rexmit_count = 0; } else if (rexmit_count > MAX_GARP_RETRANSMITS) { rexmit_count = MAX_GARP_RETRANSMITS; } *(int *)arg1 = rexmit_count; } return (error); } /* * Retransmit a Gratuitous ARP (GARP) and, if necessary, schedule a callout to * retransmit it again. A pending callout owns a reference to the ifa. */ static void garp_rexmit(void *arg) { struct in_ifaddr *ia = arg; if (callout_pending(&ia->ia_garp_timer) || !callout_active(&ia->ia_garp_timer)) { IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); ifa_free(&ia->ia_ifa); return; } CURVNET_SET(ia->ia_ifa.ifa_ifp->if_vnet); /* * Drop lock while the ARP request is generated. */ IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); arprequest(ia->ia_ifa.ifa_ifp, &IA_SIN(ia)->sin_addr, &IA_SIN(ia)->sin_addr, IF_LLADDR(ia->ia_ifa.ifa_ifp)); /* * Increment the count of retransmissions. If the count has reached the * maximum value, stop sending the GARP packets. Otherwise, schedule * the callout to retransmit another GARP packet. */ ++ia->ia_garp_count; if (ia->ia_garp_count >= garp_rexmit_count) { ifa_free(&ia->ia_ifa); } else { int rescheduled; IF_ADDR_WLOCK(ia->ia_ifa.ifa_ifp); rescheduled = callout_reset(&ia->ia_garp_timer, (1 << ia->ia_garp_count) * hz, garp_rexmit, ia); IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); if (rescheduled) { ifa_free(&ia->ia_ifa); } } CURVNET_RESTORE(); } /* * Start the GARP retransmit timer. * * A single GARP is always transmitted when an IPv4 address is added * to an interface and that is usually sufficient. However, in some * circumstances, such as when a shared address is passed between * cluster nodes, this single GARP may occasionally be dropped or * lost. This can lead to neighbors on the network link working with a * stale ARP cache and sending packets destined for that address to * the node that previously owned the address, which may not respond. * * To avoid this situation, GARP retransmits can be enabled by setting * the net.link.ether.inet.garp_rexmit_count sysctl to a value greater * than zero. The setting represents the maximum number of * retransmissions. The interval between retransmissions is calculated * using an exponential backoff algorithm, doubling each time, so the * retransmission intervals are: {1, 2, 4, 8, 16, ...} (seconds). */ static void garp_timer_start(struct ifaddr *ifa) { struct in_ifaddr *ia = (struct in_ifaddr *) ifa; IF_ADDR_WLOCK(ia->ia_ifa.ifa_ifp); ia->ia_garp_count = 0; if (callout_reset(&ia->ia_garp_timer, (1 << ia->ia_garp_count) * hz, garp_rexmit, ia) == 0) { ifa_ref(ifa); } IF_ADDR_WUNLOCK(ia->ia_ifa.ifa_ifp); } void arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa) { struct epoch_tracker et; const struct sockaddr_in *dst_in; const struct sockaddr *dst; if (ifa->ifa_carp != NULL) return; dst = ifa->ifa_addr; dst_in = (const struct sockaddr_in *)dst; if (ntohl(dst_in->sin_addr.s_addr) == INADDR_ANY) return; NET_EPOCH_ENTER(et); arp_announce_ifaddr(ifp, dst_in->sin_addr, IF_LLADDR(ifp)); NET_EPOCH_EXIT(et); if (garp_rexmit_count > 0) { garp_timer_start(ifa); } arp_add_ifa_lle(ifp, dst); } void arp_announce_ifaddr(struct ifnet *ifp, struct in_addr addr, u_char *enaddr) { if (ntohl(addr.s_addr) != INADDR_ANY) arprequest(ifp, &addr, &addr, enaddr); } /* * Sends gratuitous ARPs for each ifaddr to notify other * nodes about the address change. */ static __noinline void arp_handle_ifllchange(struct ifnet *ifp) { struct ifaddr *ifa; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(ifp, ifa); } } /* * A handler for interface link layer address change event. */ static void arp_iflladdr(void *arg __unused, struct ifnet *ifp) { /* if_bridge can update its lladdr during if_vmove(), after we've done * if_detach_internal()/dom_ifdetach(). */ if (ifp->if_afdata[AF_INET] == NULL) return; lltable_update_ifaddr(LLTABLE(ifp)); if ((ifp->if_flags & IFF_UP) != 0) arp_handle_ifllchange(ifp); } static void vnet_arp_init(void) { if (IS_DEFAULT_VNET(curvnet)) { netisr_register(&arp_nh); iflladdr_tag = EVENTHANDLER_REGISTER(iflladdr_event, arp_iflladdr, NULL, EVENTHANDLER_PRI_ANY); } #ifdef VIMAGE else netisr_register_vnet(&arp_nh); #endif } VNET_SYSINIT(vnet_arp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, vnet_arp_init, 0); #ifdef VIMAGE /* * We have to unregister ARP along with IP otherwise we risk doing INADDR_HASH * lookups after destroying the hash. Ideally this would go on SI_ORDER_3.5. */ static void vnet_arp_destroy(__unused void *arg) { netisr_unregister_vnet(&arp_nh); } VNET_SYSUNINIT(vnet_arp_uninit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, vnet_arp_destroy, NULL); #endif diff --git a/sys/netinet/in.c b/sys/netinet/in.c index aa87546be2d4..8eb20f0f2d27 100644 --- a/sys/netinet/in.c +++ b/sys/netinet/in.c @@ -1,1706 +1,1700 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * Copyright (C) 2001 WIDE Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int in_aifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_difaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_gifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static void in_socktrim(struct sockaddr_in *); static void in_purgemaddrs(struct ifnet *); static bool ia_need_loopback_route(const struct in_ifaddr *); VNET_DEFINE_STATIC(int, nosameprefix); #define V_nosameprefix VNET(nosameprefix) SYSCTL_INT(_net_inet_ip, OID_AUTO, no_same_prefix, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nosameprefix), 0, "Refuse to create same prefixes on different interfaces"); VNET_DEFINE_STATIC(bool, broadcast_lowest); #define V_broadcast_lowest VNET(broadcast_lowest) SYSCTL_BOOL(_net_inet_ip, OID_AUTO, broadcast_lowest, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(broadcast_lowest), 0, "Treat lowest address on a subnet (host 0) as broadcast"); VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static struct sx in_control_sx; SX_SYSINIT(in_control_sx, &in_control_sx, "in_control"); /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). */ int in_localaddr(struct in_addr in) { u_long i = ntohl(in.s_addr); struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((i & ia->ia_subnetmask) == ia->ia_subnet) return (1); } return (0); } /* * Return 1 if an internet address is for the local host and configured * on one of its interfaces. */ -int +bool in_localip(struct in_addr in) { - struct rm_priotracker in_ifa_tracker; struct in_ifaddr *ia; - IN_IFADDR_RLOCK(&in_ifa_tracker); - LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) { - if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr) { - IN_IFADDR_RUNLOCK(&in_ifa_tracker); - return (1); - } - } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); - return (0); + NET_EPOCH_ASSERT(); + + CK_LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) + if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr) + return (true); + + return (false); } /* * Return 1 if an internet address is configured on an interface. */ int in_ifhasaddr(struct ifnet *ifp, struct in_addr in) { struct ifaddr *ifa; struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == in.s_addr) return (1); } return (0); } /* * Return a reference to the interface address which is different to * the supplied one but with same IP address value. */ static struct in_ifaddr * in_localip_more(struct in_ifaddr *original_ia) { - struct rm_priotracker in_ifa_tracker; + struct epoch_tracker et; in_addr_t original_addr = IA_SIN(original_ia)->sin_addr.s_addr; uint32_t original_fib = original_ia->ia_ifa.ifa_ifp->if_fib; struct in_ifaddr *ia; - IN_IFADDR_RLOCK(&in_ifa_tracker); - LIST_FOREACH(ia, INADDR_HASH(original_addr), ia_hash) { + NET_EPOCH_ENTER(et); + CK_LIST_FOREACH(ia, INADDR_HASH(original_addr), ia_hash) { in_addr_t addr = IA_SIN(ia)->sin_addr.s_addr; uint32_t fib = ia->ia_ifa.ifa_ifp->if_fib; if (!V_rt_add_addr_allfibs && (original_fib != fib)) continue; if ((original_ia != ia) && (original_addr == addr)) { ifa_ref(&ia->ia_ifa); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + NET_EPOCH_EXIT(et); return (ia); } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + NET_EPOCH_EXIT(et); return (NULL); } /* * Tries to find first IPv4 address in the provided fib. * Prefers non-loopback addresses and return loopback IFF * @loopback_ok is set. * * Returns ifa or NULL. */ struct in_ifaddr * in_findlocal(uint32_t fibnum, bool loopback_ok) { struct in_ifaddr *ia = NULL, *ia_lo = NULL; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { uint32_t ia_fib = ia->ia_ifa.ifa_ifp->if_fib; if (!V_rt_add_addr_allfibs && (fibnum != ia_fib)) continue; if (!IN_LOOPBACK(ntohl(IA_SIN(ia)->sin_addr.s_addr))) break; if (loopback_ok) ia_lo = ia; } if (ia == NULL) ia = ia_lo; return (ia); } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { u_long i = ntohl(in.s_addr); if (IN_EXPERIMENTAL(i) || IN_MULTICAST(i) || IN_LINKLOCAL(i) || IN_ZERONET(i) || IN_LOOPBACK(i)) return (0); return (1); } /* * Trim a mask in a sockaddr */ static void in_socktrim(struct sockaddr_in *ap) { char *cplim = (char *) &ap->sin_addr; char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } /* * Generic internet control operations (ioctl's). */ int in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_in *addr = (struct sockaddr_in *)&ifr->ifr_addr; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; int error; if (ifp == NULL) return (EADDRNOTAVAIL); /* * Filter out 4 ioctls we implement directly. Forward the rest * to specific functions and ifp->if_ioctl(). */ switch (cmd) { case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFDSTADDR: case SIOCGIFNETMASK: break; case SIOCGIFALIAS: sx_xlock(&in_control_sx); error = in_gifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCDIFADDR: sx_xlock(&in_control_sx); error = in_difaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case OSIOCAIFADDR: /* 9.x compat */ case SIOCAIFADDR: sx_xlock(&in_control_sx); error = in_aifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFDSTADDR: case SIOCSIFNETMASK: /* We no longer support that old commands. */ return (EINVAL); default: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); } if (addr->sin_addr.s_addr != INADDR_ANY && prison_check_ip4(td->td_ucred, &addr->sin_addr) != 0) return (EADDRNOTAVAIL); /* * Find address for this interface, if it exists. If an * address was specified, find that one instead of the * first one on the interface, if possible. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr) break; } if (ifa == NULL) CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET) { ia = (struct in_ifaddr *)ifa; if (prison_check_ip4(td->td_ucred, &ia->ia_addr.sin_addr) == 0) break; } if (ifa == NULL) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } error = 0; switch (cmd) { case SIOCGIFADDR: *addr = ia->ia_addr; break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; break; } *addr = ia->ia_broadaddr; break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; break; } *addr = ia->ia_dstaddr; break; case SIOCGIFNETMASK: *addr = ia->ia_sockmask; break; } NET_EPOCH_EXIT(et); return (error); } static int in_aifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; const struct sockaddr_in *broadaddr = &ifra->ifra_broadaddr; const struct sockaddr_in *mask = &ifra->ifra_mask; const struct sockaddr_in *dstaddr = &ifra->ifra_dstaddr; const int vhid = (cmd == SIOCAIFADDR) ? ifra->ifra_vhid : 0; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; bool iaIsFirst; int error = 0; error = priv_check(td, PRIV_NET_ADDIFADDR); if (error) return (error); /* * ifra_addr must be present and be of INET family. * ifra_broadaddr/ifra_dstaddr and ifra_mask are optional. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); if (broadaddr->sin_len != 0 && (broadaddr->sin_len != sizeof(struct sockaddr_in) || broadaddr->sin_family != AF_INET)) return (EINVAL); if (mask->sin_len != 0 && (mask->sin_len != sizeof(struct sockaddr_in) || mask->sin_family != AF_INET)) return (EINVAL); if ((ifp->if_flags & IFF_POINTOPOINT) && (dstaddr->sin_len != sizeof(struct sockaddr_in) || dstaddr->sin_addr.s_addr == INADDR_ANY)) return (EDESTADDRREQ); if (vhid != 0 && carp_attach_p == NULL) return (EPROTONOSUPPORT); /* * See whether address already exist. */ iaIsFirst = true; ia = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) ia = it; else iaIsFirst = false; } NET_EPOCH_EXIT(et); if (ia != NULL) (void )in_difaddr_ioctl(cmd, data, ifp, td); ifa = ifa_alloc(sizeof(struct in_ifaddr), M_WAITOK); ia = (struct in_ifaddr *)ifa; ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask; callout_init_rw(&ia->ia_garp_timer, &ifp->if_addr_lock, CALLOUT_RETURNUNLOCKED); ia->ia_ifp = ifp; ia->ia_addr = *addr; if (mask->sin_len != 0) { ia->ia_sockmask = *mask; ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr); } else { in_addr_t i = ntohl(addr->sin_addr.s_addr); /* * Be compatible with network classes, if netmask isn't * supplied, guess it based on classes. */ if (IN_CLASSA(i)) ia->ia_subnetmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_subnetmask = IN_CLASSB_NET; else ia->ia_subnetmask = IN_CLASSC_NET; ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask); } ia->ia_subnet = ntohl(addr->sin_addr.s_addr) & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); if (ifp->if_flags & IFF_BROADCAST) { if (broadaddr->sin_len != 0) { ia->ia_broadaddr = *broadaddr; } else if (ia->ia_subnetmask == IN_RFC3021_MASK) { ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST; ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } else { ia->ia_broadaddr.sin_addr.s_addr = htonl(ia->ia_subnet | ~ia->ia_subnetmask); ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } } if (ifp->if_flags & IFF_POINTOPOINT) ia->ia_dstaddr = *dstaddr; if (vhid != 0) { error = (*carp_attach_p)(&ia->ia_ifa, vhid); if (error) return (error); } /* if_addrhead is already referenced by ifa_alloc() */ IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_ref(ifa); /* in_ifaddrhead */ - IN_IFADDR_WLOCK(); + sx_assert(&in_control_sx, SA_XLOCKED); CK_STAILQ_INSERT_TAIL(&V_in_ifaddrhead, ia, ia_link); - LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); - IN_IFADDR_WUNLOCK(); + CK_LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, + ia_hash); /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if (ifp->if_ioctl != NULL) { error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); if (error) goto fail1; } /* * Add route for the network. */ if (vhid == 0) { error = in_addprefix(ia); if (error) goto fail1; } /* * Add a loopback route to self. */ if (vhid == 0 && ia_need_loopback_route(ia)) { struct in_ifaddr *eia; eia = in_localip_more(ia); if (eia == NULL) { error = ifa_add_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error) goto fail2; } else ifa_free(&eia->ia_ifa); } if (iaIsFirst && (ifp->if_flags & IFF_MULTICAST)) { struct in_addr allhosts_addr; struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); allhosts_addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP); error = in_joingroup(ifp, &allhosts_addr, NULL, &ii->ii_allhosts); } /* * Note: we don't need extra reference for ifa, since we called * with sx lock held, and ifaddr can not be deleted in concurrent * thread. */ EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, ifa, IFADDR_EVENT_ADD); return (error); fail2: if (vhid == 0) (void )in_scrubprefix(ia, LLE_STATIC); fail1: if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, false); IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ - IN_IFADDR_WLOCK(); + sx_assert(&in_control_sx, SA_XLOCKED); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); - LIST_REMOVE(ia, ia_hash); - IN_IFADDR_WUNLOCK(); + CK_LIST_REMOVE(ia, ia_hash); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (error); } static int in_difaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct ifreq *ifr = (struct ifreq *)data; const struct sockaddr_in *addr = (const struct sockaddr_in *) &ifr->ifr_addr; struct ifaddr *ifa; struct in_ifaddr *ia; bool deleteAny, iaIsLast; int error; if (td != NULL) { error = priv_check(td, PRIV_NET_DELIFADDR); if (error) return (error); } if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) deleteAny = true; else deleteAny = false; iaIsLast = true; ia = NULL; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (deleteAny && ia == NULL && (td == NULL || prison_check_ip4(td->td_ucred, &it->ia_addr.sin_addr) == 0)) ia = it; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && (td == NULL || prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0)) ia = it; if (it != ia) iaIsLast = false; } if (ia == NULL) { IF_ADDR_WUNLOCK(ifp); return (EADDRNOTAVAIL); } CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ - IN_IFADDR_WLOCK(); + sx_assert(&in_control_sx, SA_XLOCKED); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); - LIST_REMOVE(ia, ia_hash); - IN_IFADDR_WUNLOCK(); + CK_LIST_REMOVE(ia, ia_hash); /* * in_scrubprefix() kills the interface route. */ in_scrubprefix(ia, LLE_STATIC); /* * in_ifadown gets rid of all the rest of * the routes. This is not quite the right * thing to do, but at least if we are running * a routing process they will come back. */ in_ifadown(&ia->ia_ifa, 1); if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, cmd == SIOCAIFADDR); /* * If this is the last IPv4 address configured on this * interface, leave the all-hosts group. * No state-change report need be transmitted. */ if (iaIsLast && (ifp->if_flags & IFF_MULTICAST)) { struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); if (ii->ii_allhosts) { (void)in_leavegroup(ii->ii_allhosts, NULL); ii->ii_allhosts = NULL; } } IF_ADDR_WLOCK(ifp); if (callout_stop(&ia->ia_garp_timer) == 1) { ifa_free(&ia->ia_ifa); } IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, IFADDR_EVENT_DEL); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (0); } static int in_gifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; /* * ifra_addr must be present and be of INET family. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); /* * See whether address exist. */ ia = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) { ia = it; break; } } if (ia == NULL) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } ifra->ifra_mask = ia->ia_sockmask; if ((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_family == AF_INET) ifra->ifra_dstaddr = ia->ia_dstaddr; else if ((ifp->if_flags & IFF_BROADCAST) && ia->ia_broadaddr.sin_family == AF_INET) ifra->ifra_broadaddr = ia->ia_broadaddr; else memset(&ifra->ifra_broadaddr, 0, sizeof(ifra->ifra_broadaddr)); NET_EPOCH_EXIT(et); return (0); } static int in_match_ifaddr(const struct rtentry *rt, const struct nhop_object *nh, void *arg) { if (nh->nh_ifa == (struct ifaddr *)arg) return (1); return (0); } static int in_handle_prefix_route(uint32_t fibnum, int cmd, struct sockaddr_in *dst, struct sockaddr_in *netmask, struct ifaddr *ifa, struct ifnet *ifp) { NET_EPOCH_ASSERT(); /* Prepare gateway */ struct sockaddr_dl_short sdl = { .sdl_family = AF_LINK, .sdl_len = sizeof(struct sockaddr_dl_short), .sdl_type = ifa->ifa_ifp->if_type, .sdl_index = ifa->ifa_ifp->if_index, }; struct rt_addrinfo info = { .rti_ifa = ifa, .rti_ifp = ifp, .rti_flags = RTF_PINNED | ((netmask != NULL) ? 0 : RTF_HOST), .rti_info = { [RTAX_DST] = (struct sockaddr *)dst, [RTAX_NETMASK] = (struct sockaddr *)netmask, [RTAX_GATEWAY] = (struct sockaddr *)&sdl, }, /* Ensure we delete the prefix IFF prefix ifa matches */ .rti_filter = in_match_ifaddr, .rti_filterdata = ifa, }; return (rib_handle_ifaddr_info(fibnum, cmd, &info)); } /* * Routing table interaction with interface addresses. * * In general, two types of routes needs to be installed: * a) "interface" or "prefix" route, telling user that the addresses * behind the ifa prefix are reached directly. * b) "loopback" route installed for the ifa address, telling user that * the address belongs to local system. * * Handling for (a) and (b) differs in multi-fib aspects, hence they * are implemented in different functions below. * * The cases above may intersect - /32 interface aliases results in * the same prefix produced by (a) and (b). This blurs the definition * of the "loopback" route and complicate interactions. The interaction * table is defined below. The case numbers are used in the multiple * functions below to refer to the particular test case. * * There can be multiple options: * 1) Adding address with prefix on non-p2p/non-loopback interface. * Example: 192.0.2.1/24. Action: * * add "prefix" route towards 192.0.2.0/24 via @ia interface, * using @ia as an address source. * * add "loopback" route towards 192.0.2.1 via V_loif, saving * @ia ifp in the gateway and using @ia as an address source. * * 2) Adding address with /32 mask to non-p2p/non-loopback interface. * Example: 192.0.2.2/32. Action: * * add "prefix" host route via V_loif, using @ia as an address source. * * 3) Adding address with or without prefix to p2p interface. * Example: 10.0.0.1/24->10.0.0.2. Action: * * add "prefix" host route towards 10.0.0.2 via this interface, using @ia * as an address source. Note: no sense in installing full /24 as the interface * is point-to-point. * * add "loopback" route towards 10.0.9.1 via V_loif, saving * @ia ifp in the gateway and using @ia as an address source. * * 4) Adding address with or without prefix to loopback interface. * Example: 192.0.2.1/24. Action: * * add "prefix" host route via @ia interface, using @ia as an address source. * Note: Skip installing /24 prefix as it would introduce TTL loop * for the traffic destined to these addresses. */ /* * Checks if @ia needs to install loopback route to @ia address via * ifa_maintain_loopback_route(). * * Return true on success. */ static bool ia_need_loopback_route(const struct in_ifaddr *ia) { struct ifnet *ifp = ia->ia_ifp; /* Case 4: Skip loopback interfaces */ if ((ifp->if_flags & IFF_LOOPBACK) || (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)) return (false); /* Clash avoidance: Skip p2p interfaces with both addresses are equal */ if ((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) return (false); /* Case 2: skip /32 prefixes */ if (!(ifp->if_flags & IFF_POINTOPOINT) && (ia->ia_sockmask.sin_addr.s_addr == INADDR_BROADCAST)) return (false); return (true); } /* * Calculate "prefix" route corresponding to @ia. */ static void ia_getrtprefix(const struct in_ifaddr *ia, struct in_addr *prefix, struct in_addr *mask) { if (ia->ia_ifp->if_flags & IFF_POINTOPOINT) { /* Case 3: return host route for dstaddr */ *prefix = ia->ia_dstaddr.sin_addr; mask->s_addr = INADDR_BROADCAST; } else if (ia->ia_ifp->if_flags & IFF_LOOPBACK) { /* Case 4: return host route for ifaddr */ *prefix = ia->ia_addr.sin_addr; mask->s_addr = INADDR_BROADCAST; } else { /* Cases 1,2: return actual ia prefix */ *prefix = ia->ia_addr.sin_addr; *mask = ia->ia_sockmask.sin_addr; prefix->s_addr &= mask->s_addr; } } /* * Adds or delete interface "prefix" route corresponding to @ifa. * Returns 0 on success or errno. */ int in_handle_ifaddr_route(int cmd, struct in_ifaddr *ia) { struct ifaddr *ifa = &ia->ia_ifa; struct in_addr daddr, maddr; struct sockaddr_in *pmask; struct epoch_tracker et; int error; ia_getrtprefix(ia, &daddr, &maddr); struct sockaddr_in mask = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr = maddr, }; pmask = (maddr.s_addr != INADDR_BROADCAST) ? &mask : NULL; struct sockaddr_in dst = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr.s_addr = daddr.s_addr & maddr.s_addr, }; struct ifnet *ifp = ia->ia_ifp; if ((maddr.s_addr == INADDR_BROADCAST) && (!(ia->ia_ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)))) { /* Case 2: host route on broadcast interface */ ifp = V_loif; } uint32_t fibnum = ifa->ifa_ifp->if_fib; NET_EPOCH_ENTER(et); error = in_handle_prefix_route(fibnum, cmd, &dst, pmask, ifa, ifp); NET_EPOCH_EXIT(et); return (error); } /* * Check if we have a route for the given prefix already. */ static bool in_hasrtprefix(struct in_ifaddr *target) { struct epoch_tracker et; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; bool result = false; ia_getrtprefix(target, &prefix, &mask); /* Look for an existing address with the same prefix, mask, and fib */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { ia_getrtprefix(ia, &p, &m); if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; if (target->ia_ifp->if_fib != ia->ia_ifp->if_fib) continue; /* * If we got a matching prefix route inserted by other * interface address, we are done here. */ if (ia->ia_flags & IFA_ROUTE) { result = true; break; } } NET_EPOCH_EXIT(et); return (result); } int in_addprefix(struct in_ifaddr *target) { int error; if (in_hasrtprefix(target)) { if (V_nosameprefix) return (EEXIST); else { rt_addrmsg(RTM_ADD, &target->ia_ifa, target->ia_ifp->if_fib); return (0); } } /* * No-one seem to have this prefix route, so we try to insert it. */ rt_addrmsg(RTM_ADD, &target->ia_ifa, target->ia_ifp->if_fib); error = in_handle_ifaddr_route(RTM_ADD, target); if (!error) target->ia_flags |= IFA_ROUTE; return (error); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ static void in_scrubprefixlle(struct in_ifaddr *ia, int all, u_int flags) { struct sockaddr_in addr, mask; struct sockaddr *saddr, *smask; struct ifnet *ifp; saddr = (struct sockaddr *)&addr; bzero(&addr, sizeof(addr)); addr.sin_len = sizeof(addr); addr.sin_family = AF_INET; smask = (struct sockaddr *)&mask; bzero(&mask, sizeof(mask)); mask.sin_len = sizeof(mask); mask.sin_family = AF_INET; mask.sin_addr.s_addr = ia->ia_subnetmask; ifp = ia->ia_ifp; if (all) { /* * Remove all L2 entries matching given prefix. * Convert address to host representation to avoid * doing this on every callback. ia_subnetmask is already * stored in host representation. */ addr.sin_addr.s_addr = ntohl(ia->ia_addr.sin_addr.s_addr); lltable_prefix_free(AF_INET, saddr, smask, flags); } else { /* Remove interface address only */ addr.sin_addr.s_addr = ia->ia_addr.sin_addr.s_addr; lltable_delete_addr(LLTABLE(ifp), LLE_IFADDR, saddr); } } /* * If there is no other address in the system that can serve a route to the * same prefix, remove the route. Hand over the route to the new address * otherwise. */ int in_scrubprefix(struct in_ifaddr *target, u_int flags) { struct epoch_tracker et; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; int error = 0; /* * Remove the loopback route to the interface address. */ if (ia_need_loopback_route(target) && (flags & LLE_STATIC)) { struct in_ifaddr *eia; eia = in_localip_more(target); if (eia != NULL) { error = ifa_switch_loopback_route((struct ifaddr *)eia, (struct sockaddr *)&target->ia_addr); ifa_free(&eia->ia_ifa); } else { error = ifa_del_loopback_route((struct ifaddr *)target, (struct sockaddr *)&target->ia_addr); } } ia_getrtprefix(target, &prefix, &mask); if ((target->ia_flags & IFA_ROUTE) == 0) { rt_addrmsg(RTM_DELETE, &target->ia_ifa, target->ia_ifp->if_fib); /* * Removing address from !IFF_UP interface or * prefix which exists on other interface (along with route). * No entries should exist here except target addr. * Given that, delete this entry only. */ in_scrubprefixlle(target, 0, flags); return (0); } NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { ia_getrtprefix(ia, &p, &m); if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; if ((ia->ia_ifp->if_flags & IFF_UP) == 0) continue; /* * If we got a matching prefix address, move IFA_ROUTE and * the route itself to it. Make sure that routing daemons * get a heads-up. */ if ((ia->ia_flags & IFA_ROUTE) == 0) { ifa_ref(&ia->ia_ifa); NET_EPOCH_EXIT(et); error = in_handle_ifaddr_route(RTM_DELETE, target); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, old prefix delete failed\n", error); /* Scrub all entries IFF interface is different */ in_scrubprefixlle(target, target->ia_ifp != ia->ia_ifp, flags); error = in_handle_ifaddr_route(RTM_ADD, ia); if (error == 0) ia->ia_flags |= IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, new prefix add failed\n", error); ifa_free(&ia->ia_ifa); return (error); } } NET_EPOCH_EXIT(et); /* * remove all L2 entries on the given prefix */ in_scrubprefixlle(target, 1, flags); /* * As no-one seem to have this prefix, we can remove the route. */ rt_addrmsg(RTM_DELETE, &target->ia_ifa, target->ia_ifp->if_fib); error = in_handle_ifaddr_route(RTM_DELETE, target); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, prefix delete failed\n", error); return (error); } void in_ifscrub_all(void) { struct ifnet *ifp; struct ifaddr *ifa, *nifa; struct ifaliasreq ifr; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { /* Cannot lock here - lock recursion. */ /* NET_EPOCH_ENTER(et); */ CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { if (ifa->ifa_addr->sa_family != AF_INET) continue; /* * This is ugly but the only way for legacy IP to * cleanly remove addresses and everything attached. */ bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; (void)in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL); } /* NET_EPOCH_EXIT(et); */ in_purgemaddrs(ifp); igmp_domifdetach(ifp); } IFNET_RUNLOCK(); } int in_ifaddr_broadcast(struct in_addr in, struct in_ifaddr *ia) { return ((in.s_addr == ia->ia_broadaddr.sin_addr.s_addr || /* * Optionally check for old-style (host 0) broadcast, but * taking into account that RFC 3021 obsoletes it. */ (V_broadcast_lowest && ia->ia_subnetmask != IN_RFC3021_MASK && ntohl(in.s_addr) == ia->ia_subnet)) && /* * Check for an all one subnetmask. These * only exist when an interface gets a secondary * address. */ ia->ia_subnetmask != (u_long)0xffffffff); } /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(struct in_addr in, struct ifnet *ifp) { struct ifaddr *ifa; int found; NET_EPOCH_ASSERT(); if (in.s_addr == INADDR_BROADCAST || in.s_addr == INADDR_ANY) return (1); if ((ifp->if_flags & IFF_BROADCAST) == 0) return (0); found = 0; /* * Look through the list of addresses for a match * with a broadcast address. */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && in_ifaddr_broadcast(in, (struct in_ifaddr *)ifa)) { found = 1; break; } return (found); } /* * On interface removal, clean up IPv4 data structures hung off of the ifnet. */ void in_ifdetach(struct ifnet *ifp) { IN_MULTI_LOCK(); in_pcbpurgeif0(&V_ripcbinfo, ifp); in_pcbpurgeif0(&V_udbinfo, ifp); in_pcbpurgeif0(&V_ulitecbinfo, ifp); in_purgemaddrs(ifp); IN_MULTI_UNLOCK(); /* * Make sure all multicast deletions invoking if_ioctl() are * completed before returning. Else we risk accessing a freed * ifnet structure pointer. */ inm_release_wait(NULL); } /* * Delete all IPv4 multicast address records, and associated link-layer * multicast address records, associated with ifp. * XXX It looks like domifdetach runs AFTER the link layer cleanup. * XXX This should not race with ifma_protospec being set during * a new allocation, if it does, we have bigger problems. */ static void in_purgemaddrs(struct ifnet *ifp) { struct in_multi_head purgeinms; struct in_multi *inm; struct ifmultiaddr *ifma, *next; SLIST_INIT(&purgeinms); IN_MULTI_LIST_LOCK(); /* * Extract list of in_multi associated with the detaching ifp * which the PF_INET layer is about to release. * We need to do this as IF_ADDR_LOCK() may be re-acquired * by code further down. */ IF_ADDR_WLOCK(ifp); restart: CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; inm_rele_locked(&purgeinms, inm); if (__predict_false(ifma_restart)) { ifma_restart = true; goto restart; } } IF_ADDR_WUNLOCK(ifp); inm_release_list_deferred(&purgeinms); igmp_ifdetach(ifp); IN_MULTI_LIST_UNLOCK(); } struct in_llentry { struct llentry base; }; #define IN_LLTBL_DEFAULT_HSIZE 32 #define IN_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. */ static void in_lltable_destroy_lle_unlocked(epoch_context_t ctx) { struct llentry *lle; lle = __containerof(ctx, struct llentry, lle_epoch_ctx); LLE_LOCK_DESTROY(lle); LLE_REQ_DESTROY(lle); free(lle, M_LLTABLE); } /* * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in_lltable_destroy_lle(struct llentry *lle) { LLE_WUNLOCK(lle); NET_EPOCH_CALL(in_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); } static struct llentry * in_lltable_new(struct in_addr addr4, u_int flags) { struct in_llentry *lle; lle = malloc(sizeof(struct in_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); if (lle == NULL) /* NB: caller generates msg */ return NULL; /* * For IPv4 this will trigger "arpresolve" to generate * an ARP request. */ lle->base.la_expire = time_uptime; /* mark expired */ lle->base.r_l3addr.addr4 = addr4; lle->base.lle_refcnt = 1; lle->base.lle_free = in_lltable_destroy_lle; LLE_LOCK_INIT(&lle->base); LLE_REQ_INIT(&lle->base); callout_init(&lle->base.lle_timer, 1); return (&lle->base); } #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ ((((d).s_addr ^ (a).s_addr) & (m).s_addr)) == 0 ) static int in_lltable_match_prefix(const struct sockaddr *saddr, const struct sockaddr *smask, u_int flags, struct llentry *lle) { struct in_addr addr, mask, lle_addr; addr = ((const struct sockaddr_in *)saddr)->sin_addr; mask = ((const struct sockaddr_in *)smask)->sin_addr; lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr); if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) return (0); if (lle->la_flags & LLE_IFADDR) { /* * Delete LLE_IFADDR records IFF address & flag matches. * Note that addr is the interface address within prefix * being matched. * Note also we should handle 'ifdown' cases without removing * ifaddr macs. */ if (addr.s_addr == lle_addr.s_addr && (flags & LLE_STATIC) != 0) return (1); return (0); } /* flags & LLE_STATIC means deleting both dynamic and static entries */ if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) return (1); return (0); } static void in_lltable_free_entry(struct lltable *llt, struct llentry *lle) { size_t pkts_dropped; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL, ("lltable is NULL")); /* Unlink entry from table if not already */ if ((lle->la_flags & LLE_LINKED) != 0) { IF_AFDATA_WLOCK_ASSERT(llt->llt_ifp); lltable_unlink_entry(llt, lle); } /* Drop hold queue */ pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); } static int in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) { struct nhop_object *nh; struct in_addr addr; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); addr = ((const struct sockaddr_in *)l3addr)->sin_addr; nh = fib4_lookup(ifp->if_fib, addr, 0, NHR_NONE, 0); if (nh == NULL) return (EINVAL); /* * If the gateway for an existing host route matches the target L3 * address, which is a special route inserted by some implementation * such as MANET, and the interface is of the correct type, then * allow for ARP to proceed. */ if (nh->nh_flags & NHF_GATEWAY) { if (!(nh->nh_flags & NHF_HOST) || nh->nh_ifp->if_type != IFT_ETHER || (nh->nh_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 || memcmp(nh->gw_sa.sa_data, l3addr->sa_data, sizeof(in_addr_t)) != 0) { return (EINVAL); } } /* * Make sure that at least the destination address is covered * by the route. This is for handling the case where 2 or more * interfaces have the same prefix. An incoming packet arrives * on one interface and the corresponding outgoing packet leaves * another interface. */ if ((nh->nh_ifp != ifp) && (nh->nh_flags & NHF_HOST) == 0) { struct in_ifaddr *ia = (struct in_ifaddr *)ifaof_ifpforaddr(l3addr, ifp); struct in_addr dst_addr, mask_addr; if (ia == NULL) return (EINVAL); /* * ifaof_ifpforaddr() returns _best matching_ IFA. * It is possible that ifa prefix does not cover our address. * Explicitly verify and fail if that's the case. */ dst_addr = IA_SIN(ia)->sin_addr; mask_addr.s_addr = htonl(ia->ia_subnetmask); if (!IN_ARE_MASKED_ADDR_EQUAL(dst_addr, addr, mask_addr)) return (EINVAL); } return (0); } static inline uint32_t in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) { return (IN_LLTBL_HASH(dst.s_addr, hsize)); } static uint32_t in_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); } static void in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sa; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = lle->r_l3addr.addr4; } static inline struct llentry * in_lltable_find_dst(struct lltable *llt, struct in_addr dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; CK_LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (lle->r_l3addr.addr4.s_addr == dst.s_addr) break; } return (lle); } static void in_lltable_delete_entry(struct lltable *llt, struct llentry *lle) { lle->la_flags |= LLE_DELETED; EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); #ifdef DIAGNOSTIC log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); #endif llentry_free(lle); } static struct llentry * in_lltable_alloc(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in_lltable_rtcheck(ifp, flags, l3addr) != 0) return (NULL); lle = in_lltable_new(sin->sin_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if (flags & LLE_STATIC) lle->r_flags |= RLLE_VALID; if ((flags & LLE_IFADDR) == LLE_IFADDR) { linkhdrsize = LLE_MAX_LINKHDR; if (lltable_calc_llheader(ifp, AF_INET, IF_LLADDR(ifp), linkhdr, &linkhdrsize, &lladdr_off) != 0) { NET_EPOCH_CALL(in_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); return (NULL); } lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); lle->la_flags |= LLE_STATIC; lle->r_flags |= (RLLE_VALID | RLLE_IFADDR); } return (lle); } /* * Return NULL if not found or marked for deletion. * If found return lle read locked. */ static struct llentry * in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); KASSERT((flags & (LLE_UNLOCKED | LLE_EXCLUSIVE)) != (LLE_UNLOCKED | LLE_EXCLUSIVE), ("wrong lle request flags: %#x", flags)); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle == NULL) return (NULL); if (flags & LLE_UNLOCKED) return (lle); if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); /* * If the afdata lock is not held, the LLE may have been unlinked while * we were blocked on the LLE lock. Check for this case. */ if (__predict_false((lle->la_flags & LLE_LINKED) == 0)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(lle); else LLE_RUNLOCK(lle); return (NULL); } return (lle); } static int in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct sysctl_req *wr) { struct ifnet *ifp = llt->llt_ifp; /* XXX stack use */ struct { struct rt_msghdr rtm; struct sockaddr_in sin; struct sockaddr_dl sdl; } arpc; struct sockaddr_dl *sdl; int error; bzero(&arpc, sizeof(arpc)); /* skip deleted entries */ if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) return (0); /* Skip if jailed and not a valid IP of the prison. */ lltable_fill_sa_entry(lle,(struct sockaddr *)&arpc.sin); if (prison_if(wr->td->td_ucred, (struct sockaddr *)&arpc.sin) != 0) return (0); /* * produce a msg made of: * struct rt_msghdr; * struct sockaddr_in; (IPv4) * struct sockaddr_dl; */ arpc.rtm.rtm_msglen = sizeof(arpc); arpc.rtm.rtm_version = RTM_VERSION; arpc.rtm.rtm_type = RTM_GET; arpc.rtm.rtm_flags = RTF_UP; arpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; /* publish */ if (lle->la_flags & LLE_PUB) arpc.rtm.rtm_flags |= RTF_ANNOUNCE; sdl = &arpc.sdl; sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(*sdl); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; if ((lle->la_flags & LLE_VALID) == LLE_VALID) { sdl->sdl_alen = ifp->if_addrlen; bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); } else { sdl->sdl_alen = 0; bzero(LLADDR(sdl), ifp->if_addrlen); } arpc.rtm.rtm_rmx.rmx_expire = lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; arpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); if (lle->la_flags & LLE_STATIC) arpc.rtm.rtm_flags |= RTF_STATIC; if (lle->la_flags & LLE_IFADDR) arpc.rtm.rtm_flags |= RTF_PINNED; arpc.rtm.rtm_index = ifp->if_index; error = SYSCTL_OUT(wr, &arpc, sizeof(arpc)); return (error); } static struct lltable * in_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET; llt->llt_ifp = ifp; llt->llt_lookup = in_lltable_lookup; llt->llt_alloc_entry = in_lltable_alloc; llt->llt_delete_entry = in_lltable_delete_entry; llt->llt_dump_entry = in_lltable_dump_entry; llt->llt_hash = in_lltable_hash; llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; llt->llt_free_entry = in_lltable_free_entry; llt->llt_match_prefix = in_lltable_match_prefix; llt->llt_mark_used = llentry_mark_used; lltable_link(llt); return (llt); } void * in_domifattach(struct ifnet *ifp) { struct in_ifinfo *ii; ii = malloc(sizeof(struct in_ifinfo), M_IFADDR, M_WAITOK|M_ZERO); ii->ii_llt = in_lltattach(ifp); ii->ii_igmp = igmp_domifattach(ifp); return (ii); } void in_domifdetach(struct ifnet *ifp, void *aux) { struct in_ifinfo *ii = (struct in_ifinfo *)aux; igmp_domifdetach(ifp); lltable_free(ii->ii_llt); free(ii, M_IFADDR); } diff --git a/sys/netinet/in.h b/sys/netinet/in.h index 0206fd16d2fe..0506f1739e9b 100644 --- a/sys/netinet/in.h +++ b/sys/netinet/in.h @@ -1,677 +1,677 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.h 8.3 (Berkeley) 1/3/94 * $FreeBSD$ */ #ifndef _NETINET_IN_H_ #define _NETINET_IN_H_ #include #include #include /* Protocols common to RFC 1700, POSIX, and X/Open. */ #define IPPROTO_IP 0 /* dummy for IP */ #define IPPROTO_ICMP 1 /* control message protocol */ #define IPPROTO_TCP 6 /* tcp */ #define IPPROTO_UDP 17 /* user datagram protocol */ #define INADDR_ANY ((in_addr_t)0x00000000) #define INADDR_BROADCAST ((in_addr_t)0xffffffff) /* must be masked */ #ifndef _UINT8_T_DECLARED typedef __uint8_t uint8_t; #define _UINT8_T_DECLARED #endif #ifndef _UINT16_T_DECLARED typedef __uint16_t uint16_t; #define _UINT16_T_DECLARED #endif #ifndef _UINT32_T_DECLARED typedef __uint32_t uint32_t; #define _UINT32_T_DECLARED #endif #ifndef _IN_ADDR_T_DECLARED typedef uint32_t in_addr_t; #define _IN_ADDR_T_DECLARED #endif #ifndef _IN_PORT_T_DECLARED typedef uint16_t in_port_t; #define _IN_PORT_T_DECLARED #endif #ifndef _SA_FAMILY_T_DECLARED typedef __sa_family_t sa_family_t; #define _SA_FAMILY_T_DECLARED #endif /* Internet address (a structure for historical reasons). */ #ifndef _STRUCT_IN_ADDR_DECLARED struct in_addr { in_addr_t s_addr; }; #define _STRUCT_IN_ADDR_DECLARED #endif #ifndef _SOCKLEN_T_DECLARED typedef __socklen_t socklen_t; #define _SOCKLEN_T_DECLARED #endif #include /* Socket address, internet style. */ struct sockaddr_in { uint8_t sin_len; sa_family_t sin_family; in_port_t sin_port; struct in_addr sin_addr; char sin_zero[8]; }; #if !defined(_KERNEL) && __POSIX_VISIBLE >= 200112 #ifndef _BYTEORDER_PROTOTYPED #define _BYTEORDER_PROTOTYPED __BEGIN_DECLS uint32_t htonl(uint32_t); uint16_t htons(uint16_t); uint32_t ntohl(uint32_t); uint16_t ntohs(uint16_t); __END_DECLS #endif #ifndef _BYTEORDER_FUNC_DEFINED #define _BYTEORDER_FUNC_DEFINED #define htonl(x) __htonl(x) #define htons(x) __htons(x) #define ntohl(x) __ntohl(x) #define ntohs(x) __ntohs(x) #endif #endif /* !_KERNEL && __POSIX_VISIBLE >= 200112 */ #if __POSIX_VISIBLE >= 200112 #define IPPROTO_IPV6 41 /* IP6 header */ #define IPPROTO_RAW 255 /* raw IP packet */ #define INET_ADDRSTRLEN 16 #endif #if __BSD_VISIBLE /* * Constants and structures defined by the internet system, * Per RFC 790, September 1981, and numerous additions. */ /* * Protocols (RFC 1700) */ #define IPPROTO_HOPOPTS 0 /* IP6 hop-by-hop options */ #define IPPROTO_IGMP 2 /* group mgmt protocol */ #define IPPROTO_GGP 3 /* gateway^2 (deprecated) */ #define IPPROTO_IPV4 4 /* IPv4 encapsulation */ #define IPPROTO_IPIP IPPROTO_IPV4 /* for compatibility */ #define IPPROTO_ST 7 /* Stream protocol II */ #define IPPROTO_EGP 8 /* exterior gateway protocol */ #define IPPROTO_PIGP 9 /* private interior gateway */ #define IPPROTO_RCCMON 10 /* BBN RCC Monitoring */ #define IPPROTO_NVPII 11 /* network voice protocol*/ #define IPPROTO_PUP 12 /* pup */ #define IPPROTO_ARGUS 13 /* Argus */ #define IPPROTO_EMCON 14 /* EMCON */ #define IPPROTO_XNET 15 /* Cross Net Debugger */ #define IPPROTO_CHAOS 16 /* Chaos*/ #define IPPROTO_MUX 18 /* Multiplexing */ #define IPPROTO_MEAS 19 /* DCN Measurement Subsystems */ #define IPPROTO_HMP 20 /* Host Monitoring */ #define IPPROTO_PRM 21 /* Packet Radio Measurement */ #define IPPROTO_IDP 22 /* xns idp */ #define IPPROTO_TRUNK1 23 /* Trunk-1 */ #define IPPROTO_TRUNK2 24 /* Trunk-2 */ #define IPPROTO_LEAF1 25 /* Leaf-1 */ #define IPPROTO_LEAF2 26 /* Leaf-2 */ #define IPPROTO_RDP 27 /* Reliable Data */ #define IPPROTO_IRTP 28 /* Reliable Transaction */ #define IPPROTO_TP 29 /* tp-4 w/ class negotiation */ #define IPPROTO_BLT 30 /* Bulk Data Transfer */ #define IPPROTO_NSP 31 /* Network Services */ #define IPPROTO_INP 32 /* Merit Internodal */ #define IPPROTO_DCCP 33 /* Datagram Congestion Control Protocol */ #define IPPROTO_3PC 34 /* Third Party Connect */ #define IPPROTO_IDPR 35 /* InterDomain Policy Routing */ #define IPPROTO_XTP 36 /* XTP */ #define IPPROTO_DDP 37 /* Datagram Delivery */ #define IPPROTO_CMTP 38 /* Control Message Transport */ #define IPPROTO_TPXX 39 /* TP++ Transport */ #define IPPROTO_IL 40 /* IL transport protocol */ #define IPPROTO_SDRP 42 /* Source Demand Routing */ #define IPPROTO_ROUTING 43 /* IP6 routing header */ #define IPPROTO_FRAGMENT 44 /* IP6 fragmentation header */ #define IPPROTO_IDRP 45 /* InterDomain Routing*/ #define IPPROTO_RSVP 46 /* resource reservation */ #define IPPROTO_GRE 47 /* General Routing Encap. */ #define IPPROTO_MHRP 48 /* Mobile Host Routing */ #define IPPROTO_BHA 49 /* BHA */ #define IPPROTO_ESP 50 /* IP6 Encap Sec. Payload */ #define IPPROTO_AH 51 /* IP6 Auth Header */ #define IPPROTO_INLSP 52 /* Integ. Net Layer Security */ #define IPPROTO_SWIPE 53 /* IP with encryption */ #define IPPROTO_NHRP 54 /* Next Hop Resolution */ #define IPPROTO_MOBILE 55 /* IP Mobility */ #define IPPROTO_TLSP 56 /* Transport Layer Security */ #define IPPROTO_SKIP 57 /* SKIP */ #define IPPROTO_ICMPV6 58 /* ICMP6 */ #define IPPROTO_NONE 59 /* IP6 no next header */ #define IPPROTO_DSTOPTS 60 /* IP6 destination option */ #define IPPROTO_AHIP 61 /* any host internal protocol */ #define IPPROTO_CFTP 62 /* CFTP */ #define IPPROTO_HELLO 63 /* "hello" routing protocol */ #define IPPROTO_SATEXPAK 64 /* SATNET/Backroom EXPAK */ #define IPPROTO_KRYPTOLAN 65 /* Kryptolan */ #define IPPROTO_RVD 66 /* Remote Virtual Disk */ #define IPPROTO_IPPC 67 /* Pluribus Packet Core */ #define IPPROTO_ADFS 68 /* Any distributed FS */ #define IPPROTO_SATMON 69 /* Satnet Monitoring */ #define IPPROTO_VISA 70 /* VISA Protocol */ #define IPPROTO_IPCV 71 /* Packet Core Utility */ #define IPPROTO_CPNX 72 /* Comp. Prot. Net. Executive */ #define IPPROTO_CPHB 73 /* Comp. Prot. HeartBeat */ #define IPPROTO_WSN 74 /* Wang Span Network */ #define IPPROTO_PVP 75 /* Packet Video Protocol */ #define IPPROTO_BRSATMON 76 /* BackRoom SATNET Monitoring */ #define IPPROTO_ND 77 /* Sun net disk proto (temp.) */ #define IPPROTO_WBMON 78 /* WIDEBAND Monitoring */ #define IPPROTO_WBEXPAK 79 /* WIDEBAND EXPAK */ #define IPPROTO_EON 80 /* ISO cnlp */ #define IPPROTO_VMTP 81 /* VMTP */ #define IPPROTO_SVMTP 82 /* Secure VMTP */ #define IPPROTO_VINES 83 /* Banyon VINES */ #define IPPROTO_TTP 84 /* TTP */ #define IPPROTO_IGP 85 /* NSFNET-IGP */ #define IPPROTO_DGP 86 /* dissimilar gateway prot. */ #define IPPROTO_TCF 87 /* TCF */ #define IPPROTO_IGRP 88 /* Cisco/GXS IGRP */ #define IPPROTO_OSPFIGP 89 /* OSPFIGP */ #define IPPROTO_SRPC 90 /* Strite RPC protocol */ #define IPPROTO_LARP 91 /* Locus Address Resoloution */ #define IPPROTO_MTP 92 /* Multicast Transport */ #define IPPROTO_AX25 93 /* AX.25 Frames */ #define IPPROTO_IPEIP 94 /* IP encapsulated in IP */ #define IPPROTO_MICP 95 /* Mobile Int.ing control */ #define IPPROTO_SCCSP 96 /* Semaphore Comm. security */ #define IPPROTO_ETHERIP 97 /* Ethernet IP encapsulation */ #define IPPROTO_ENCAP 98 /* encapsulation header */ #define IPPROTO_APES 99 /* any private encr. scheme */ #define IPPROTO_GMTP 100 /* GMTP*/ #define IPPROTO_IPCOMP 108 /* payload compression (IPComp) */ #define IPPROTO_SCTP 132 /* SCTP */ #define IPPROTO_MH 135 /* IPv6 Mobility Header */ #define IPPROTO_UDPLITE 136 /* UDP-Lite */ #define IPPROTO_HIP 139 /* IP6 Host Identity Protocol */ #define IPPROTO_SHIM6 140 /* IP6 Shim6 Protocol */ /* 101-254: Partly Unassigned */ #define IPPROTO_PIM 103 /* Protocol Independent Mcast */ #define IPPROTO_CARP 112 /* CARP */ #define IPPROTO_PGM 113 /* PGM */ #define IPPROTO_MPLS 137 /* MPLS-in-IP */ #define IPPROTO_PFSYNC 240 /* PFSYNC */ #define IPPROTO_RESERVED_253 253 /* Reserved */ #define IPPROTO_RESERVED_254 254 /* Reserved */ /* 255: Reserved */ /* BSD Private, local use, namespace incursion, no longer used */ #define IPPROTO_OLD_DIVERT 254 /* OLD divert pseudo-proto */ #define IPPROTO_MAX 256 /* last return value of *_input(), meaning "all job for this pkt is done". */ #define IPPROTO_DONE 257 /* Only used internally, so can be outside the range of valid IP protocols. */ #define IPPROTO_DIVERT 258 /* divert pseudo-protocol */ #define IPPROTO_SEND 259 /* SeND pseudo-protocol */ /* * Defined to avoid confusion. The master value is defined by * PROTO_SPACER in sys/protosw.h. */ #define IPPROTO_SPACER 32767 /* spacer for loadable protos */ /* * Local port number conventions: * * When a user does a bind(2) or connect(2) with a port number of zero, * a non-conflicting local port address is chosen. * The default range is IPPORT_HIFIRSTAUTO through * IPPORT_HILASTAUTO, although that is settable by sysctl. * * A user may set the IPPROTO_IP option IP_PORTRANGE to change this * default assignment range. * * The value IP_PORTRANGE_DEFAULT causes the default behavior. * * The value IP_PORTRANGE_HIGH changes the range of candidate port numbers * into the "high" range. These are reserved for client outbound connections * which do not want to be filtered by any firewalls. * * The value IP_PORTRANGE_LOW changes the range to the "low" are * that is (by convention) restricted to privileged processes. This * convention is based on "vouchsafe" principles only. It is only secure * if you trust the remote host to restrict these ports. * * The default range of ports and the high range can be changed by * sysctl(3). (net.inet.ip.portrange.{hi,low,}{first,last}) * * Changing those values has bad security implications if you are * using a stateless firewall that is allowing packets outside of that * range in order to allow transparent outgoing connections. * * Such a firewall configuration will generally depend on the use of these * default values. If you change them, you may find your Security * Administrator looking for you with a heavy object. * * For a slightly more orthodox text view on this: * * ftp://ftp.isi.edu/in-notes/iana/assignments/port-numbers * * port numbers are divided into three ranges: * * 0 - 1023 Well Known Ports * 1024 - 49151 Registered Ports * 49152 - 65535 Dynamic and/or Private Ports * */ /* * Ports < IPPORT_RESERVED are reserved for * privileged processes (e.g. root). (IP_PORTRANGE_LOW) */ #define IPPORT_RESERVED 1024 /* * Default local port range, used by IP_PORTRANGE_DEFAULT */ #define IPPORT_EPHEMERALFIRST 10000 #define IPPORT_EPHEMERALLAST 65535 /* * Dynamic port range, used by IP_PORTRANGE_HIGH. */ #define IPPORT_HIFIRSTAUTO 49152 #define IPPORT_HILASTAUTO 65535 /* * Scanning for a free reserved port return a value below IPPORT_RESERVED, * but higher than IPPORT_RESERVEDSTART. Traditionally the start value was * 512, but that conflicts with some well-known-services that firewalls may * have a fit if we use. */ #define IPPORT_RESERVEDSTART 600 #define IPPORT_MAX 65535 /* * Definitions of bits in internet address integers. * On subnets, the decomposition of addresses to host and net parts * is done according to subnet mask, not the masks here. */ #define IN_CLASSA(i) (((in_addr_t)(i) & 0x80000000) == 0) #define IN_CLASSA_NET 0xff000000 #define IN_CLASSA_NSHIFT 24 #define IN_CLASSA_HOST 0x00ffffff #define IN_CLASSA_MAX 128 #define IN_CLASSB(i) (((in_addr_t)(i) & 0xc0000000) == 0x80000000) #define IN_CLASSB_NET 0xffff0000 #define IN_CLASSB_NSHIFT 16 #define IN_CLASSB_HOST 0x0000ffff #define IN_CLASSB_MAX 65536 #define IN_CLASSC(i) (((in_addr_t)(i) & 0xe0000000) == 0xc0000000) #define IN_CLASSC_NET 0xffffff00 #define IN_CLASSC_NSHIFT 8 #define IN_CLASSC_HOST 0x000000ff #define IN_CLASSD(i) (((in_addr_t)(i) & 0xf0000000) == 0xe0000000) #define IN_CLASSD_NET 0xf0000000 /* These ones aren't really */ #define IN_CLASSD_NSHIFT 28 /* net and host fields, but */ #define IN_CLASSD_HOST 0x0fffffff /* routing needn't know. */ #define IN_MULTICAST(i) IN_CLASSD(i) #define IN_EXPERIMENTAL(i) (((in_addr_t)(i) & 0xf0000000) == 0xf0000000) #define IN_BADCLASS(i) (((in_addr_t)(i) & 0xf0000000) == 0xf0000000) #define IN_LINKLOCAL(i) (((in_addr_t)(i) & 0xffff0000) == 0xa9fe0000) #define IN_LOOPBACK(i) (((in_addr_t)(i) & 0xff000000) == 0x7f000000) #define IN_ZERONET(i) (((in_addr_t)(i) & 0xff000000) == 0) #define IN_PRIVATE(i) ((((in_addr_t)(i) & 0xff000000) == 0x0a000000) || \ (((in_addr_t)(i) & 0xfff00000) == 0xac100000) || \ (((in_addr_t)(i) & 0xffff0000) == 0xc0a80000)) #define IN_LOCAL_GROUP(i) (((in_addr_t)(i) & 0xffffff00) == 0xe0000000) #define IN_ANY_LOCAL(i) (IN_LINKLOCAL(i) || IN_LOCAL_GROUP(i)) #define INADDR_LOOPBACK ((in_addr_t)0x7f000001) #ifndef _KERNEL #define INADDR_NONE ((in_addr_t)0xffffffff) /* -1 return */ #endif #define INADDR_UNSPEC_GROUP ((in_addr_t)0xe0000000) /* 224.0.0.0 */ #define INADDR_ALLHOSTS_GROUP ((in_addr_t)0xe0000001) /* 224.0.0.1 */ #define INADDR_ALLRTRS_GROUP ((in_addr_t)0xe0000002) /* 224.0.0.2 */ #define INADDR_ALLRPTS_GROUP ((in_addr_t)0xe0000016) /* 224.0.0.22, IGMPv3 */ #define INADDR_CARP_GROUP ((in_addr_t)0xe0000012) /* 224.0.0.18 */ #define INADDR_PFSYNC_GROUP ((in_addr_t)0xe00000f0) /* 224.0.0.240 */ #define INADDR_ALLMDNS_GROUP ((in_addr_t)0xe00000fb) /* 224.0.0.251 */ #define INADDR_MAX_LOCAL_GROUP ((in_addr_t)0xe00000ff) /* 224.0.0.255 */ #define IN_LOOPBACKNET 127 /* official! */ #define IN_RFC3021_MASK ((in_addr_t)0xfffffffe) /* * Options for use with [gs]etsockopt at the IP level. * First word of comment is data type; bool is stored in int. */ #define IP_OPTIONS 1 /* buf/ip_opts; set/get IP options */ #define IP_HDRINCL 2 /* int; header is included with data */ #define IP_TOS 3 /* int; IP type of service and preced. */ #define IP_TTL 4 /* int; IP time to live */ #define IP_RECVOPTS 5 /* bool; receive all IP opts w/dgram */ #define IP_RECVRETOPTS 6 /* bool; receive IP opts for response */ #define IP_RECVDSTADDR 7 /* bool; receive IP dst addr w/dgram */ #define IP_SENDSRCADDR IP_RECVDSTADDR /* cmsg_type to set src addr */ #define IP_RETOPTS 8 /* ip_opts; set/get IP options */ #define IP_MULTICAST_IF 9 /* struct in_addr *or* struct ip_mreqn; * set/get IP multicast i/f */ #define IP_MULTICAST_TTL 10 /* u_char; set/get IP multicast ttl */ #define IP_MULTICAST_LOOP 11 /* u_char; set/get IP multicast loopback */ #define IP_ADD_MEMBERSHIP 12 /* ip_mreq; add an IP group membership */ #define IP_DROP_MEMBERSHIP 13 /* ip_mreq; drop an IP group membership */ #define IP_MULTICAST_VIF 14 /* set/get IP mcast virt. iface */ #define IP_RSVP_ON 15 /* enable RSVP in kernel */ #define IP_RSVP_OFF 16 /* disable RSVP in kernel */ #define IP_RSVP_VIF_ON 17 /* set RSVP per-vif socket */ #define IP_RSVP_VIF_OFF 18 /* unset RSVP per-vif socket */ #define IP_PORTRANGE 19 /* int; range to choose for unspec port */ #define IP_RECVIF 20 /* bool; receive reception if w/dgram */ /* for IPSEC */ #define IP_IPSEC_POLICY 21 /* int; set/get security policy */ /* unused; was IP_FAITH */ #define IP_ONESBCAST 23 /* bool: send all-ones broadcast */ #define IP_BINDANY 24 /* bool: allow bind to any address */ #define IP_BINDMULTI 25 /* bool: allow multiple listeners on a tuple */ #define IP_RSS_LISTEN_BUCKET 26 /* int; set RSS listen bucket */ #define IP_ORIGDSTADDR 27 /* bool: receive IP dst addr/port w/dgram */ #define IP_RECVORIGDSTADDR IP_ORIGDSTADDR /* * Options for controlling the firewall and dummynet. * Historical options (from 40 to 64) will eventually be * replaced by only two options, IP_FW3 and IP_DUMMYNET3. */ #define IP_FW_TABLE_ADD 40 /* add entry */ #define IP_FW_TABLE_DEL 41 /* delete entry */ #define IP_FW_TABLE_FLUSH 42 /* flush table */ #define IP_FW_TABLE_GETSIZE 43 /* get table size */ #define IP_FW_TABLE_LIST 44 /* list table contents */ #define IP_FW3 48 /* generic ipfw v.3 sockopts */ #define IP_DUMMYNET3 49 /* generic dummynet v.3 sockopts */ #define IP_FW_ADD 50 /* add a firewall rule to chain */ #define IP_FW_DEL 51 /* delete a firewall rule from chain */ #define IP_FW_FLUSH 52 /* flush firewall rule chain */ #define IP_FW_ZERO 53 /* clear single/all firewall counter(s) */ #define IP_FW_GET 54 /* get entire firewall rule chain */ #define IP_FW_RESETLOG 55 /* reset logging counters */ #define IP_FW_NAT_CFG 56 /* add/config a nat rule */ #define IP_FW_NAT_DEL 57 /* delete a nat rule */ #define IP_FW_NAT_GET_CONFIG 58 /* get configuration of a nat rule */ #define IP_FW_NAT_GET_LOG 59 /* get log of a nat rule */ #define IP_DUMMYNET_CONFIGURE 60 /* add/configure a dummynet pipe */ #define IP_DUMMYNET_DEL 61 /* delete a dummynet pipe from chain */ #define IP_DUMMYNET_FLUSH 62 /* flush dummynet */ #define IP_DUMMYNET_GET 64 /* get entire dummynet pipes */ #define IP_RECVTTL 65 /* bool; receive IP TTL w/dgram */ #define IP_MINTTL 66 /* minimum TTL for packet or drop */ #define IP_DONTFRAG 67 /* don't fragment packet */ #define IP_RECVTOS 68 /* bool; receive IP TOS w/dgram */ /* IPv4 Source Filter Multicast API [RFC3678] */ #define IP_ADD_SOURCE_MEMBERSHIP 70 /* join a source-specific group */ #define IP_DROP_SOURCE_MEMBERSHIP 71 /* drop a single source */ #define IP_BLOCK_SOURCE 72 /* block a source */ #define IP_UNBLOCK_SOURCE 73 /* unblock a source */ /* The following option is private; do not use it from user applications. */ #define IP_MSFILTER 74 /* set/get filter list */ /* The following option deals with the 802.1Q Ethernet Priority Code Point */ #define IP_VLAN_PCP 75 /* int; set/get PCP used for packet, */ /* -1 use interface default */ /* Protocol Independent Multicast API [RFC3678] */ #define MCAST_JOIN_GROUP 80 /* join an any-source group */ #define MCAST_LEAVE_GROUP 81 /* leave all sources for group */ #define MCAST_JOIN_SOURCE_GROUP 82 /* join a source-specific group */ #define MCAST_LEAVE_SOURCE_GROUP 83 /* leave a single source */ #define MCAST_BLOCK_SOURCE 84 /* block a source */ #define MCAST_UNBLOCK_SOURCE 85 /* unblock a source */ /* Flow and RSS definitions */ #define IP_FLOWID 90 /* get flow id for the given socket/inp */ #define IP_FLOWTYPE 91 /* get flow type (M_HASHTYPE) */ #define IP_RSSBUCKETID 92 /* get RSS flowid -> bucket mapping */ #define IP_RECVFLOWID 93 /* bool; receive IP flowid/flowtype w/ datagram */ #define IP_RECVRSSBUCKETID 94 /* bool; receive IP RSS bucket id w/ datagram */ /* * Defaults and limits for options */ #define IP_DEFAULT_MULTICAST_TTL 1 /* normally limit m'casts to 1 hop */ #define IP_DEFAULT_MULTICAST_LOOP 1 /* normally hear sends if a member */ /* * Limit for IPv4 multicast memberships */ #define IP_MAX_MEMBERSHIPS 4095 /* * Default resource limits for IPv4 multicast source filtering. * These may be modified by sysctl. */ #define IP_MAX_GROUP_SRC_FILTER 512 /* sources per group */ #define IP_MAX_SOCK_SRC_FILTER 128 /* sources per socket/group */ #define IP_MAX_SOCK_MUTE_FILTER 128 /* XXX no longer used */ /* * Argument structure for IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP. */ struct ip_mreq { struct in_addr imr_multiaddr; /* IP multicast address of group */ struct in_addr imr_interface; /* local IP address of interface */ }; /* * Modified argument structure for IP_MULTICAST_IF, obtained from Linux. * This is used to specify an interface index for multicast sends, as * the IPv4 legacy APIs do not support this (unless IP_SENDIF is available). */ struct ip_mreqn { struct in_addr imr_multiaddr; /* IP multicast address of group */ struct in_addr imr_address; /* local IP address of interface */ int imr_ifindex; /* Interface index; cast to uint32_t */ }; /* * Argument structure for IPv4 Multicast Source Filter APIs. [RFC3678] */ struct ip_mreq_source { struct in_addr imr_multiaddr; /* IP multicast address of group */ struct in_addr imr_sourceaddr; /* IP address of source */ struct in_addr imr_interface; /* local IP address of interface */ }; /* * Argument structures for Protocol-Independent Multicast Source * Filter APIs. [RFC3678] */ struct group_req { uint32_t gr_interface; /* interface index */ struct sockaddr_storage gr_group; /* group address */ }; struct group_source_req { uint32_t gsr_interface; /* interface index */ struct sockaddr_storage gsr_group; /* group address */ struct sockaddr_storage gsr_source; /* source address */ }; #ifndef __MSFILTERREQ_DEFINED #define __MSFILTERREQ_DEFINED /* * The following structure is private; do not use it from user applications. * It is used to communicate IP_MSFILTER/IPV6_MSFILTER information between * the RFC 3678 libc functions and the kernel. */ struct __msfilterreq { uint32_t msfr_ifindex; /* interface index */ uint32_t msfr_fmode; /* filter mode for group */ uint32_t msfr_nsrcs; /* # of sources in msfr_srcs */ struct sockaddr_storage msfr_group; /* group address */ struct sockaddr_storage *msfr_srcs; /* pointer to the first member * of a contiguous array of * sources to filter in full. */ }; #endif struct sockaddr; /* * Advanced (Full-state) APIs [RFC3678] * The RFC specifies uint_t for the 6th argument to [sg]etsourcefilter(). * We use uint32_t here to be consistent. */ int setipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t, uint32_t, struct in_addr *); int getipv4sourcefilter(int, struct in_addr, struct in_addr, uint32_t *, uint32_t *, struct in_addr *); int setsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t, uint32_t, struct sockaddr_storage *); int getsourcefilter(int, uint32_t, struct sockaddr *, socklen_t, uint32_t *, uint32_t *, struct sockaddr_storage *); /* * Filter modes; also used to represent per-socket filter mode internally. */ #define MCAST_UNDEFINED 0 /* fmode: not yet defined */ #define MCAST_INCLUDE 1 /* fmode: include these source(s) */ #define MCAST_EXCLUDE 2 /* fmode: exclude these source(s) */ /* * Argument for IP_PORTRANGE: * - which range to search when port is unspecified at bind() or connect() */ #define IP_PORTRANGE_DEFAULT 0 /* default range */ #define IP_PORTRANGE_HIGH 1 /* "high" - request firewall bypass */ #define IP_PORTRANGE_LOW 2 /* "low" - vouchsafe security */ /* * Identifiers for IP sysctl nodes */ #define IPCTL_FORWARDING 1 /* act as router */ #define IPCTL_SENDREDIRECTS 2 /* may send redirects when forwarding */ #define IPCTL_DEFTTL 3 /* default TTL */ #ifdef notyet #define IPCTL_DEFMTU 4 /* default MTU */ #endif /* IPCTL_RTEXPIRE 5 deprecated */ /* IPCTL_RTMINEXPIRE 6 deprecated */ /* IPCTL_RTMAXCACHE 7 deprecated */ #define IPCTL_SOURCEROUTE 8 /* may perform source routes */ #define IPCTL_DIRECTEDBROADCAST 9 /* may re-broadcast received packets */ #define IPCTL_INTRQMAXLEN 10 /* max length of netisr queue */ #define IPCTL_INTRQDROPS 11 /* number of netisr q drops */ #define IPCTL_STATS 12 /* ipstat structure */ #define IPCTL_ACCEPTSOURCEROUTE 13 /* may accept source routed packets */ #define IPCTL_FASTFORWARDING 14 /* use fast IP forwarding code */ /* 15, unused, was: IPCTL_KEEPFAITH */ #define IPCTL_GIF_TTL 16 /* default TTL for gif encap packet */ #define IPCTL_INTRDQMAXLEN 17 /* max length of direct netisr queue */ #define IPCTL_INTRDQDROPS 18 /* number of direct netisr q drops */ #endif /* __BSD_VISIBLE */ #ifdef _KERNEL struct ifnet; struct mbuf; /* forward declarations for Standard C */ struct in_ifaddr; int in_broadcast(struct in_addr, struct ifnet *); int in_ifaddr_broadcast(struct in_addr, struct in_ifaddr *); int in_canforward(struct in_addr); int in_localaddr(struct in_addr); -int in_localip(struct in_addr); +bool in_localip(struct in_addr); int in_ifhasaddr(struct ifnet *, struct in_addr); struct in_ifaddr *in_findlocal(uint32_t, bool); int inet_aton(const char *, struct in_addr *); /* in libkern */ char *inet_ntoa_r(struct in_addr ina, char *buf); /* in libkern */ char *inet_ntop(int, const void *, char *, socklen_t); /* in libkern */ int inet_pton(int af, const char *, void *); /* in libkern */ void in_ifdetach(struct ifnet *); #define in_hosteq(s, t) ((s).s_addr == (t).s_addr) #define in_nullhost(x) ((x).s_addr == INADDR_ANY) #define in_allhosts(x) ((x).s_addr == htonl(INADDR_ALLHOSTS_GROUP)) #define satosin(sa) ((struct sockaddr_in *)(sa)) #define sintosa(sin) ((struct sockaddr *)(sin)) #define ifatoia(ifa) ((struct in_ifaddr *)(ifa)) #endif /* _KERNEL */ /* INET6 stuff */ #if __POSIX_VISIBLE >= 200112 #define __KAME_NETINET_IN_H_INCLUDED_ #include #undef __KAME_NETINET_IN_H_INCLUDED_ #endif #endif /* !_NETINET_IN_H_*/ diff --git a/sys/netinet/in_debug.c b/sys/netinet/in_debug.c index d39c528dd9cd..00bc2636b436 100644 --- a/sys/netinet/in_debug.c +++ b/sys/netinet/in_debug.c @@ -1,117 +1,117 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright (c) 2010 Bjoern A. Zeeb * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_ddb.h" #include #include #include #ifdef DDB #include #endif #include #include #include #include #ifdef DDB static void in_show_sockaddr_in(struct sockaddr_in *sin) { #define SIN_DB_RPINTF(f, e) db_printf("\t %s = " f "\n", #e, sin->e); db_printf("\tsockaddr_in = %p\n", sin); SIN_DB_RPINTF("%u", sin_len); SIN_DB_RPINTF("%u", sin_family); SIN_DB_RPINTF("%u", sin_port); SIN_DB_RPINTF("0x%08x", sin_addr.s_addr); db_printf("\t %s = %02x%02x%02x%02x%02x%02x%02x%02x\n", "sin_zero[8]", sin->sin_zero[0], sin->sin_zero[1], sin->sin_zero[2], sin->sin_zero[3], sin->sin_zero[4], sin->sin_zero[5], sin->sin_zero[6], sin->sin_zero[7]); #undef SIN_DB_RPINTF } DB_SHOW_COMMAND(sin, db_show_sin) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)addr; if (sin == NULL) { /* usage: No need to confess if you didn't sin. */ db_printf("usage: show sin \n"); return; } in_show_sockaddr_in(sin); } static void in_show_in_ifaddr(struct in_ifaddr *ia) { #define IA_DB_RPINTF(f, e) db_printf("\t %s = " f "\n", #e, ia->e); #define IA_DB_RPINTF_PTR(f, e) db_printf("\t %s = " f "\n", #e, &ia->e); #define IA_DB_RPINTF_DPTR(f, e) db_printf("\t *%s = " f "\n", #e, *ia->e); db_printf("\tin_ifaddr = %p\n", ia); IA_DB_RPINTF_PTR("%p", ia_ifa); IA_DB_RPINTF("0x%08lx", ia_subnet); IA_DB_RPINTF("0x%08lx", ia_subnetmask); - IA_DB_RPINTF("%p", ia_hash.le_next); - IA_DB_RPINTF("%p", ia_hash.le_prev); - IA_DB_RPINTF_DPTR("%p", ia_hash.le_prev); + IA_DB_RPINTF("%p", ia_hash.cle_next); + IA_DB_RPINTF("%p", ia_hash.cle_prev); + IA_DB_RPINTF_DPTR("%p", ia_hash.cle_prev); IA_DB_RPINTF("%p", ia_link.cstqe_next); IA_DB_RPINTF_PTR("%p", ia_addr); IA_DB_RPINTF_PTR("%p", ia_dstaddr); IA_DB_RPINTF_PTR("%p", ia_sockmask); #undef IA_DB_RPINTF_DPTR #undef IA_DB_RPINTF_PTR #undef IA_DB_RPINTF } DB_SHOW_COMMAND(in_ifaddr, db_show_in_ifaddr) { struct in_ifaddr *ia; ia = (struct in_ifaddr *)addr; if (ia == NULL) { db_printf("usage: show in_ifaddr \n"); return; } in_show_in_ifaddr(ia); } #endif diff --git a/sys/netinet/in_gif.c b/sys/netinet/in_gif.c index a9f3d384fb5a..6290de6cb31e 100644 --- a/sys/netinet/in_gif.c +++ b/sys/netinet/in_gif.c @@ -1,460 +1,463 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. * Copyright (c) 2018 Andrey V. Elsukov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $KAME: in_gif.c,v 1.54 2001/05/14 14:02:16 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #define GIF_TTL 30 VNET_DEFINE_STATIC(int, ip_gif_ttl) = GIF_TTL; #define V_ip_gif_ttl VNET(ip_gif_ttl) SYSCTL_INT(_net_inet_ip, IPCTL_GIF_TTL, gifttl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_gif_ttl), 0, "Default TTL value for encapsulated packets"); /* * We keep interfaces in a hash table using src+dst as key. * Interfaces with GIF_IGNORE_SOURCE flag are linked into plain list. */ VNET_DEFINE_STATIC(struct gif_list *, ipv4_hashtbl) = NULL; VNET_DEFINE_STATIC(struct gif_list *, ipv4_srchashtbl) = NULL; VNET_DEFINE_STATIC(struct gif_list, ipv4_list) = CK_LIST_HEAD_INITIALIZER(); #define V_ipv4_hashtbl VNET(ipv4_hashtbl) #define V_ipv4_srchashtbl VNET(ipv4_srchashtbl) #define V_ipv4_list VNET(ipv4_list) #define GIF_HASH(src, dst) (V_ipv4_hashtbl[\ in_gif_hashval((src), (dst)) & (GIF_HASH_SIZE - 1)]) #define GIF_SRCHASH(src) (V_ipv4_srchashtbl[\ fnv_32_buf(&(src), sizeof(src), FNV1_32_INIT) & (GIF_HASH_SIZE - 1)]) #define GIF_HASH_SC(sc) GIF_HASH((sc)->gif_iphdr->ip_src.s_addr,\ (sc)->gif_iphdr->ip_dst.s_addr) static uint32_t in_gif_hashval(in_addr_t src, in_addr_t dst) { uint32_t ret; ret = fnv_32_buf(&src, sizeof(src), FNV1_32_INIT); return (fnv_32_buf(&dst, sizeof(dst), ret)); } static int in_gif_checkdup(const struct gif_softc *sc, in_addr_t src, in_addr_t dst) { struct gif_softc *tmp; if (sc->gif_family == AF_INET && sc->gif_iphdr->ip_src.s_addr == src && sc->gif_iphdr->ip_dst.s_addr == dst) return (EEXIST); CK_LIST_FOREACH(tmp, &GIF_HASH(src, dst), chain) { if (tmp == sc) continue; if (tmp->gif_iphdr->ip_src.s_addr == src && tmp->gif_iphdr->ip_dst.s_addr == dst) return (EADDRNOTAVAIL); } return (0); } /* * Check that ingress address belongs to local host. */ static void in_gif_set_running(struct gif_softc *sc) { if (in_localip(sc->gif_iphdr->ip_src)) GIF2IFP(sc)->if_drv_flags |= IFF_DRV_RUNNING; else GIF2IFP(sc)->if_drv_flags &= ~IFF_DRV_RUNNING; } /* * ifaddr_event handler. * Clear IFF_DRV_RUNNING flag when ingress address disappears to prevent * source address spoofing. */ static void in_gif_srcaddr(void *arg __unused, const struct sockaddr *sa, int event __unused) { const struct sockaddr_in *sin; struct gif_softc *sc; /* Check that VNET is ready */ if (V_ipv4_hashtbl == NULL) return; NET_EPOCH_ASSERT(); sin = (const struct sockaddr_in *)sa; CK_LIST_FOREACH(sc, &GIF_SRCHASH(sin->sin_addr.s_addr), srchash) { if (sc->gif_iphdr->ip_src.s_addr != sin->sin_addr.s_addr) continue; in_gif_set_running(sc); } } static void in_gif_attach(struct gif_softc *sc) { if (sc->gif_options & GIF_IGNORE_SOURCE) CK_LIST_INSERT_HEAD(&V_ipv4_list, sc, chain); else CK_LIST_INSERT_HEAD(&GIF_HASH_SC(sc), sc, chain); CK_LIST_INSERT_HEAD(&GIF_SRCHASH(sc->gif_iphdr->ip_src.s_addr), sc, srchash); } int in_gif_setopts(struct gif_softc *sc, u_int options) { /* NOTE: we are protected with gif_ioctl_sx lock */ MPASS(sc->gif_family == AF_INET); MPASS(sc->gif_options != options); if ((options & GIF_IGNORE_SOURCE) != (sc->gif_options & GIF_IGNORE_SOURCE)) { CK_LIST_REMOVE(sc, srchash); CK_LIST_REMOVE(sc, chain); sc->gif_options = options; in_gif_attach(sc); } return (0); } int in_gif_ioctl(struct gif_softc *sc, u_long cmd, caddr_t data) { struct ifreq *ifr = (struct ifreq *)data; + struct epoch_tracker et; struct sockaddr_in *dst, *src; struct ip *ip; int error; /* NOTE: we are protected with gif_ioctl_sx lock */ error = EINVAL; switch (cmd) { case SIOCSIFPHYADDR: src = &((struct in_aliasreq *)data)->ifra_addr; dst = &((struct in_aliasreq *)data)->ifra_dstaddr; /* sanity checks */ if (src->sin_family != dst->sin_family || src->sin_family != AF_INET || src->sin_len != dst->sin_len || src->sin_len != sizeof(*src)) break; if (src->sin_addr.s_addr == INADDR_ANY || dst->sin_addr.s_addr == INADDR_ANY) { error = EADDRNOTAVAIL; break; } if (V_ipv4_hashtbl == NULL) { V_ipv4_hashtbl = gif_hashinit(); V_ipv4_srchashtbl = gif_hashinit(); } error = in_gif_checkdup(sc, src->sin_addr.s_addr, dst->sin_addr.s_addr); if (error == EADDRNOTAVAIL) break; if (error == EEXIST) { /* Addresses are the same. Just return. */ error = 0; break; } ip = malloc(sizeof(*ip), M_GIF, M_WAITOK | M_ZERO); ip->ip_src.s_addr = src->sin_addr.s_addr; ip->ip_dst.s_addr = dst->sin_addr.s_addr; if (sc->gif_family != 0) { /* Detach existing tunnel first */ CK_LIST_REMOVE(sc, srchash); CK_LIST_REMOVE(sc, chain); GIF_WAIT(); free(sc->gif_hdr, M_GIF); /* XXX: should we notify about link state change? */ } sc->gif_family = AF_INET; sc->gif_iphdr = ip; in_gif_attach(sc); + NET_EPOCH_ENTER(et); in_gif_set_running(sc); + NET_EPOCH_EXIT(et); break; case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: if (sc->gif_family != AF_INET) { error = EADDRNOTAVAIL; break; } src = (struct sockaddr_in *)&ifr->ifr_addr; memset(src, 0, sizeof(*src)); src->sin_family = AF_INET; src->sin_len = sizeof(*src); src->sin_addr = (cmd == SIOCGIFPSRCADDR) ? sc->gif_iphdr->ip_src: sc->gif_iphdr->ip_dst; error = prison_if(curthread->td_ucred, (struct sockaddr *)src); if (error != 0) memset(src, 0, sizeof(*src)); break; } return (error); } int in_gif_output(struct ifnet *ifp, struct mbuf *m, int proto, uint8_t ecn) { struct gif_softc *sc = ifp->if_softc; struct ip *ip; int len; /* prepend new IP header */ NET_EPOCH_ASSERT(); len = sizeof(struct ip); #ifndef __NO_STRICT_ALIGNMENT if (proto == IPPROTO_ETHERIP) len += ETHERIP_ALIGN; #endif M_PREPEND(m, len, M_NOWAIT); if (m == NULL) return (ENOBUFS); #ifndef __NO_STRICT_ALIGNMENT if (proto == IPPROTO_ETHERIP) { len = mtod(m, vm_offset_t) & 3; KASSERT(len == 0 || len == ETHERIP_ALIGN, ("in_gif_output: unexpected misalignment")); m->m_data += len; m->m_len -= ETHERIP_ALIGN; } #endif ip = mtod(m, struct ip *); MPASS(sc->gif_family == AF_INET); bcopy(sc->gif_iphdr, ip, sizeof(struct ip)); ip->ip_p = proto; /* version will be set in ip_output() */ ip->ip_ttl = V_ip_gif_ttl; ip->ip_len = htons(m->m_pkthdr.len); ip->ip_tos = ecn; return (ip_output(m, NULL, NULL, 0, NULL, NULL)); } static int in_gif_input(struct mbuf *m, int off, int proto, void *arg) { struct gif_softc *sc = arg; struct ifnet *gifp; struct ip *ip; uint8_t ecn; NET_EPOCH_ASSERT(); if (sc == NULL) { m_freem(m); KMOD_IPSTAT_INC(ips_nogif); return (IPPROTO_DONE); } gifp = GIF2IFP(sc); if ((gifp->if_flags & IFF_UP) != 0) { ip = mtod(m, struct ip *); ecn = ip->ip_tos; m_adj(m, off); gif_input(m, gifp, proto, ecn); } else { m_freem(m); KMOD_IPSTAT_INC(ips_nogif); } return (IPPROTO_DONE); } static int in_gif_lookup(const struct mbuf *m, int off, int proto, void **arg) { const struct ip *ip; struct gif_softc *sc; int ret; if (V_ipv4_hashtbl == NULL) return (0); NET_EPOCH_ASSERT(); ip = mtod(m, const struct ip *); /* * NOTE: it is safe to iterate without any locking here, because softc * can be reclaimed only when we are not within net_epoch_preempt * section, but ip_encap lookup+input are executed in epoch section. */ ret = 0; CK_LIST_FOREACH(sc, &GIF_HASH(ip->ip_dst.s_addr, ip->ip_src.s_addr), chain) { /* * This is an inbound packet, its ip_dst is source address * in softc. */ if (sc->gif_iphdr->ip_src.s_addr == ip->ip_dst.s_addr && sc->gif_iphdr->ip_dst.s_addr == ip->ip_src.s_addr) { ret = ENCAP_DRV_LOOKUP; goto done; } } /* * No exact match. * Check the list of interfaces with GIF_IGNORE_SOURCE flag. */ CK_LIST_FOREACH(sc, &V_ipv4_list, chain) { if (sc->gif_iphdr->ip_src.s_addr == ip->ip_dst.s_addr) { ret = 32 + 8; /* src + proto */ goto done; } } return (0); done: if ((GIF2IFP(sc)->if_flags & IFF_UP) == 0) return (0); /* ingress filters on outer source */ if ((GIF2IFP(sc)->if_flags & IFF_LINK2) == 0) { if (fib4_check_urpf(sc->gif_fibnum, ip->ip_src, 0, NHR_NONE, m->m_pkthdr.rcvif) == 0) return (0); } *arg = sc; return (ret); } static const struct srcaddrtab *ipv4_srcaddrtab; static struct { const struct encap_config encap; const struct encaptab *cookie; } ipv4_encap_cfg[] = { { .encap = { .proto = IPPROTO_IPV4, .min_length = 2 * sizeof(struct ip), .exact_match = ENCAP_DRV_LOOKUP, .lookup = in_gif_lookup, .input = in_gif_input }, }, #ifdef INET6 { .encap = { .proto = IPPROTO_IPV6, .min_length = sizeof(struct ip) + sizeof(struct ip6_hdr), .exact_match = ENCAP_DRV_LOOKUP, .lookup = in_gif_lookup, .input = in_gif_input }, }, #endif { .encap = { .proto = IPPROTO_ETHERIP, .min_length = sizeof(struct ip) + sizeof(struct etherip_header) + sizeof(struct ether_header), .exact_match = ENCAP_DRV_LOOKUP, .lookup = in_gif_lookup, .input = in_gif_input }, } }; void in_gif_init(void) { int i; if (!IS_DEFAULT_VNET(curvnet)) return; ipv4_srcaddrtab = ip_encap_register_srcaddr(in_gif_srcaddr, NULL, M_WAITOK); for (i = 0; i < nitems(ipv4_encap_cfg); i++) ipv4_encap_cfg[i].cookie = ip_encap_attach( &ipv4_encap_cfg[i].encap, NULL, M_WAITOK); } void in_gif_uninit(void) { int i; if (IS_DEFAULT_VNET(curvnet)) { for (i = 0; i < nitems(ipv4_encap_cfg); i++) ip_encap_detach(ipv4_encap_cfg[i].cookie); ip_encap_unregister_srcaddr(ipv4_srcaddrtab); } if (V_ipv4_hashtbl != NULL) { gif_hashdestroy(V_ipv4_hashtbl); V_ipv4_hashtbl = NULL; GIF_WAIT(); gif_hashdestroy(V_ipv4_srchashtbl); } } diff --git a/sys/netinet/in_mcast.c b/sys/netinet/in_mcast.c index f307be283e64..6ac81aa98e44 100644 --- a/sys/netinet/in_mcast.c +++ b/sys/netinet/in_mcast.c @@ -1,3043 +1,3045 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2007-2009 Bruce Simpson. * Copyright (c) 2005 Robert N. M. Watson. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * IPv4 multicast socket, group, and socket option processing module. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_IGMPV3 #define KTR_IGMPV3 KTR_INET #endif #ifndef __SOCKUNION_DECLARED union sockunion { struct sockaddr_storage ss; struct sockaddr sa; struct sockaddr_dl sdl; struct sockaddr_in sin; }; typedef union sockunion sockunion_t; #define __SOCKUNION_DECLARED #endif /* __SOCKUNION_DECLARED */ static MALLOC_DEFINE(M_INMFILTER, "in_mfilter", "IPv4 multicast PCB-layer source filter"); static MALLOC_DEFINE(M_IPMADDR, "in_multi", "IPv4 multicast group"); static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "IPv4 multicast options"); static MALLOC_DEFINE(M_IPMSOURCE, "ip_msource", "IPv4 multicast IGMP-layer source filter"); /* * Locking: * * - Lock order is: Giant, IN_MULTI_LOCK, INP_WLOCK, * IN_MULTI_LIST_LOCK, IGMP_LOCK, IF_ADDR_LOCK. * - The IF_ADDR_LOCK is implicitly taken by inm_lookup() earlier, however * it can be taken by code in net/if.c also. * - ip_moptions and in_mfilter are covered by the INP_WLOCK. * * struct in_multi is covered by IN_MULTI_LIST_LOCK. There isn't strictly * any need for in_multi itself to be virtualized -- it is bound to an ifp * anyway no matter what happens. */ struct mtx in_multi_list_mtx; MTX_SYSINIT(in_multi_mtx, &in_multi_list_mtx, "in_multi_list_mtx", MTX_DEF); struct mtx in_multi_free_mtx; MTX_SYSINIT(in_multi_free_mtx, &in_multi_free_mtx, "in_multi_free_mtx", MTX_DEF); struct sx in_multi_sx; SX_SYSINIT(in_multi_sx, &in_multi_sx, "in_multi_sx"); int ifma_restart; /* * Functions with non-static linkage defined in this file should be * declared in in_var.h: * imo_multi_filter() * in_joingroup() * in_joingroup_locked() * in_leavegroup() * in_leavegroup_locked() * and ip_var.h: * inp_freemoptions() * inp_getmoptions() * inp_setmoptions() */ static void imf_commit(struct in_mfilter *); static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **); static struct in_msource * imf_graft(struct in_mfilter *, const uint8_t, const struct sockaddr_in *); static void imf_leave(struct in_mfilter *); static int imf_prune(struct in_mfilter *, const struct sockaddr_in *); static void imf_purge(struct in_mfilter *); static void imf_rollback(struct in_mfilter *); static void imf_reap(struct in_mfilter *); static struct in_mfilter * imo_match_group(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *); static struct in_msource * imo_match_source(struct in_mfilter *, const struct sockaddr *); static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback); static int in_getmulti(struct ifnet *, const struct in_addr *, struct in_multi **); static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims); #ifdef KTR static int inm_is_ifp_detached(const struct in_multi *); #endif static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *); static void inm_purge(struct in_multi *); static void inm_reap(struct in_multi *); static void inm_release(struct in_multi *); static struct ip_moptions * inp_findmoptions(struct inpcb *); static int inp_get_source_filters(struct inpcb *, struct sockopt *); static int inp_join_group(struct inpcb *, struct sockopt *); static int inp_leave_group(struct inpcb *, struct sockopt *); static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *, const struct sockaddr_in *, const struct in_addr); static int inp_block_unblock_source(struct inpcb *, struct sockopt *); static int inp_set_multicast_if(struct inpcb *, struct sockopt *); static int inp_set_source_filters(struct inpcb *, struct sockopt *); static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS); static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "IPv4 multicast"); static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc, CTLFLAG_RWTUN, &in_mcast_maxgrpsrc, 0, "Max source filters per group"); static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER; SYSCTL_ULONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc, CTLFLAG_RWTUN, &in_mcast_maxsocksrc, 0, "Max source filters per socket"); int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP; SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RWTUN, &in_mcast_loop, 0, "Loopback multicast datagrams by default"); static SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_ip_mcast_filters, "Per-interface stack-wide source filters"); #ifdef KTR /* * Inline function which wraps assertions for a valid ifp. * The ifnet layer will set the ifma's ifp pointer to NULL if the ifp * is detached. */ static int __inline inm_is_ifp_detached(const struct in_multi *inm) { struct ifnet *ifp; KASSERT(inm->inm_ifma != NULL, ("%s: no ifma", __func__)); ifp = inm->inm_ifma->ifma_ifp; if (ifp != NULL) { /* * Sanity check that netinet's notion of ifp is the * same as net's. */ KASSERT(inm->inm_ifp == ifp, ("%s: bad ifp", __func__)); } return (ifp == NULL); } #endif /* * Interface detach can happen in a taskqueue thread context, so we must use a * dedicated thread to avoid deadlocks when draining inm_release tasks. */ TASKQUEUE_DEFINE_THREAD(inm_free); static struct in_multi_head inm_free_list = SLIST_HEAD_INITIALIZER(); static void inm_release_task(void *arg __unused, int pending __unused); static struct task inm_free_task = TASK_INITIALIZER(0, inm_release_task, NULL); void inm_release_wait(void *arg __unused) { /* * Make sure all pending multicast addresses are freed before * the VNET or network device is destroyed: */ taskqueue_drain(taskqueue_inm_free, &inm_free_task); } #ifdef VIMAGE /* XXX-BZ FIXME, see D24914. */ VNET_SYSUNINIT(inm_release_wait, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, inm_release_wait, NULL); #endif void inm_release_list_deferred(struct in_multi_head *inmh) { if (SLIST_EMPTY(inmh)) return; mtx_lock(&in_multi_free_mtx); SLIST_CONCAT(&inm_free_list, inmh, in_multi, inm_nrele); mtx_unlock(&in_multi_free_mtx); taskqueue_enqueue(taskqueue_inm_free, &inm_free_task); } void inm_disconnect(struct in_multi *inm) { struct ifnet *ifp; struct ifmultiaddr *ifma, *ll_ifma; ifp = inm->inm_ifp; IF_ADDR_WLOCK_ASSERT(ifp); ifma = inm->inm_ifma; if_ref(ifp); if (ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ifma: %p from %s\n", ifma, ifp->if_xname); if ((ll_ifma = ifma->ifma_llifma) != NULL) { MPASS(ifma != ll_ifma); ifma->ifma_llifma = NULL; MPASS(ll_ifma->ifma_llifma == NULL); MPASS(ll_ifma->ifma_ifp == ifp); if (--ll_ifma->ifma_refcount == 0) { if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } MCDPRINTF("removed ll_ifma: %p from %s\n", ll_ifma, ifp->if_xname); if_freemulti(ll_ifma); ifma_restart = true; } } } void inm_release_deferred(struct in_multi *inm) { struct in_multi_head tmp; IN_MULTI_LIST_LOCK_ASSERT(); MPASS(inm->inm_refcount > 0); if (--inm->inm_refcount == 0) { SLIST_INIT(&tmp); inm_disconnect(inm); inm->inm_ifma->ifma_protospec = NULL; SLIST_INSERT_HEAD(&tmp, inm, inm_nrele); inm_release_list_deferred(&tmp); } } static void inm_release_task(void *arg __unused, int pending __unused) { struct in_multi_head inm_free_tmp; struct in_multi *inm, *tinm; SLIST_INIT(&inm_free_tmp); mtx_lock(&in_multi_free_mtx); SLIST_CONCAT(&inm_free_tmp, &inm_free_list, in_multi, inm_nrele); mtx_unlock(&in_multi_free_mtx); IN_MULTI_LOCK(); SLIST_FOREACH_SAFE(inm, &inm_free_tmp, inm_nrele, tinm) { SLIST_REMOVE_HEAD(&inm_free_tmp, inm_nrele); MPASS(inm); inm_release(inm); } IN_MULTI_UNLOCK(); } /* * Initialize an in_mfilter structure to a known state at t0, t1 * with an empty source filter list. */ static __inline void imf_init(struct in_mfilter *imf, const int st0, const int st1) { memset(imf, 0, sizeof(struct in_mfilter)); RB_INIT(&imf->imf_sources); imf->imf_st[0] = st0; imf->imf_st[1] = st1; } struct in_mfilter * ip_mfilter_alloc(const int mflags, const int st0, const int st1) { struct in_mfilter *imf; imf = malloc(sizeof(*imf), M_INMFILTER, mflags); if (imf != NULL) imf_init(imf, st0, st1); return (imf); } void ip_mfilter_free(struct in_mfilter *imf) { imf_purge(imf); free(imf, M_INMFILTER); } /* * Function for looking up an in_multi record for an IPv4 multicast address * on a given interface. ifp must be valid. If no record found, return NULL. * The IN_MULTI_LIST_LOCK and IF_ADDR_LOCK on ifp must be held. */ struct in_multi * inm_lookup_locked(struct ifnet *ifp, const struct in_addr ina) { struct ifmultiaddr *ifma; struct in_multi *inm; IN_MULTI_LIST_LOCK_ASSERT(); IF_ADDR_LOCK_ASSERT(ifp); inm = NULL; CK_STAILQ_FOREACH(ifma, &((ifp)->if_multiaddrs), ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (inm->inm_addr.s_addr == ina.s_addr) break; inm = NULL; } return (inm); } /* * Wrapper for inm_lookup_locked(). * The IF_ADDR_LOCK will be taken on ifp and released on return. */ struct in_multi * inm_lookup(struct ifnet *ifp, const struct in_addr ina) { struct epoch_tracker et; struct in_multi *inm; IN_MULTI_LIST_LOCK_ASSERT(); NET_EPOCH_ENTER(et); inm = inm_lookup_locked(ifp, ina); NET_EPOCH_EXIT(et); return (inm); } /* * Find an IPv4 multicast group entry for this ip_moptions instance * which matches the specified group, and optionally an interface. * Return its index into the array, or -1 if not found. */ static struct in_mfilter * imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group) { const struct sockaddr_in *gsin; struct in_mfilter *imf; struct in_multi *inm; gsin = (const struct sockaddr_in *)group; IP_MFILTER_FOREACH(imf, &imo->imo_head) { inm = imf->imf_inm; if (inm == NULL) continue; if ((ifp == NULL || (inm->inm_ifp == ifp)) && in_hosteq(inm->inm_addr, gsin->sin_addr)) { break; } } return (imf); } /* * Find an IPv4 multicast source entry for this imo which matches * the given group index for this socket, and source address. * * NOTE: This does not check if the entry is in-mode, merely if * it exists, which may not be the desired behaviour. */ static struct in_msource * imo_match_source(struct in_mfilter *imf, const struct sockaddr *src) { struct ip_msource find; struct ip_msource *ims; const sockunion_t *psa; KASSERT(src->sa_family == AF_INET, ("%s: !AF_INET", __func__)); /* Source trees are keyed in host byte order. */ psa = (const sockunion_t *)src; find.ims_haddr = ntohl(psa->sin.sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); return ((struct in_msource *)ims); } /* * Perform filtering for multicast datagrams on a socket by group and source. * * Returns 0 if a datagram should be allowed through, or various error codes * if the socket was not a member of the group, or the source was muted, etc. */ int imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp, const struct sockaddr *group, const struct sockaddr *src) { struct in_mfilter *imf; struct in_msource *ims; int mode; KASSERT(ifp != NULL, ("%s: null ifp", __func__)); imf = imo_match_group(imo, ifp, group); if (imf == NULL) return (MCAST_NOTGMEMBER); /* * Check if the source was included in an (S,G) join. * Allow reception on exclusive memberships by default, * reject reception on inclusive memberships by default. * Exclude source only if an in-mode exclude filter exists. * Include source only if an in-mode include filter exists. * NOTE: We are comparing group state here at IGMP t1 (now) * with socket-layer t0 (since last downcall). */ mode = imf->imf_st[1]; ims = imo_match_source(imf, src); if ((ims == NULL && mode == MCAST_INCLUDE) || (ims != NULL && ims->imsl_st[0] != mode)) return (MCAST_NOTSMEMBER); return (MCAST_PASS); } /* * Find and return a reference to an in_multi record for (ifp, group), * and bump its reference count. * If one does not exist, try to allocate it, and update link-layer multicast * filters on ifp to listen for group. * Assumes the IN_MULTI lock is held across the call. * Return 0 if successful, otherwise return an appropriate error code. */ static int in_getmulti(struct ifnet *ifp, const struct in_addr *group, struct in_multi **pinm) { struct sockaddr_in gsin; struct ifmultiaddr *ifma; struct in_ifinfo *ii; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); ii = (struct in_ifinfo *)ifp->if_afdata[AF_INET]; IN_MULTI_LIST_LOCK(); inm = inm_lookup(ifp, *group); if (inm != NULL) { /* * If we already joined this group, just bump the * refcount and return it. */ KASSERT(inm->inm_refcount >= 1, ("%s: bad refcount %d", __func__, inm->inm_refcount)); inm_acquire_locked(inm); *pinm = inm; } IN_MULTI_LIST_UNLOCK(); if (inm != NULL) return (0); memset(&gsin, 0, sizeof(gsin)); gsin.sin_family = AF_INET; gsin.sin_len = sizeof(struct sockaddr_in); gsin.sin_addr = *group; /* * Check if a link-layer group is already associated * with this network-layer group on the given ifnet. */ error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma); if (error != 0) return (error); /* XXX ifma_protospec must be covered by IF_ADDR_LOCK */ IN_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); /* * If something other than netinet is occupying the link-layer * group, print a meaningful error message and back out of * the allocation. * Otherwise, bump the refcount on the existing network-layer * group association and return it. */ if (ifma->ifma_protospec != NULL) { inm = (struct in_multi *)ifma->ifma_protospec; #ifdef INVARIANTS KASSERT(ifma->ifma_addr != NULL, ("%s: no ifma_addr", __func__)); KASSERT(ifma->ifma_addr->sa_family == AF_INET, ("%s: ifma not AF_INET", __func__)); KASSERT(inm != NULL, ("%s: no ifma_protospec", __func__)); if (inm->inm_ifma != ifma || inm->inm_ifp != ifp || !in_hosteq(inm->inm_addr, *group)) { char addrbuf[INET_ADDRSTRLEN]; panic("%s: ifma %p is inconsistent with %p (%s)", __func__, ifma, inm, inet_ntoa_r(*group, addrbuf)); } #endif inm_acquire_locked(inm); *pinm = inm; goto out_locked; } IF_ADDR_WLOCK_ASSERT(ifp); /* * A new in_multi record is needed; allocate and initialize it. * We DO NOT perform an IGMP join as the in_ layer may need to * push an initial source list down to IGMP to support SSM. * * The initial source filter state is INCLUDE, {} as per the RFC. */ inm = malloc(sizeof(*inm), M_IPMADDR, M_NOWAIT | M_ZERO); if (inm == NULL) { IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); if_delmulti_ifma(ifma); return (ENOMEM); } inm->inm_addr = *group; inm->inm_ifp = ifp; inm->inm_igi = ii->ii_igmp; inm->inm_ifma = ifma; inm->inm_refcount = 1; inm->inm_state = IGMP_NOT_MEMBER; mbufq_init(&inm->inm_scq, IGMP_MAX_STATE_CHANGES); inm->inm_st[0].iss_fmode = MCAST_UNDEFINED; inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; RB_INIT(&inm->inm_srcs); ifma->ifma_protospec = inm; *pinm = inm; out_locked: IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); return (0); } /* * Drop a reference to an in_multi record. * * If the refcount drops to 0, free the in_multi record and * delete the underlying link-layer membership. */ static void inm_release(struct in_multi *inm) { struct ifmultiaddr *ifma; struct ifnet *ifp; CTR2(KTR_IGMPV3, "%s: refcount is %d", __func__, inm->inm_refcount); MPASS(inm->inm_refcount == 0); CTR2(KTR_IGMPV3, "%s: freeing inm %p", __func__, inm); ifma = inm->inm_ifma; ifp = inm->inm_ifp; /* XXX this access is not covered by IF_ADDR_LOCK */ CTR2(KTR_IGMPV3, "%s: purging ifma %p", __func__, ifma); if (ifp != NULL) { CURVNET_SET(ifp->if_vnet); inm_purge(inm); free(inm, M_IPMADDR); if_delmulti_ifma_flags(ifma, 1); CURVNET_RESTORE(); if_rele(ifp); } else { inm_purge(inm); free(inm, M_IPMADDR); if_delmulti_ifma_flags(ifma, 1); } } /* * Clear recorded source entries for a group. * Used by the IGMP code. Caller must hold the IN_MULTI lock. * FIXME: Should reap. */ void inm_clear_recorded(struct in_multi *inm) { struct ip_msource *ims; IN_MULTI_LIST_LOCK_ASSERT(); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { if (ims->ims_stp) { ims->ims_stp = 0; --inm->inm_st[1].iss_rec; } } KASSERT(inm->inm_st[1].iss_rec == 0, ("%s: iss_rec %d not 0", __func__, inm->inm_st[1].iss_rec)); } /* * Record a source as pending for a Source-Group IGMPv3 query. * This lives here as it modifies the shared tree. * * inm is the group descriptor. * naddr is the address of the source to record in network-byte order. * * If the net.inet.igmp.sgalloc sysctl is non-zero, we will * lazy-allocate a source node in response to an SG query. * Otherwise, no allocation is performed. This saves some memory * with the trade-off that the source will not be reported to the * router if joined in the window between the query response and * the group actually being joined on the local host. * * VIMAGE: XXX: Currently the igmp_sgalloc feature has been removed. * This turns off the allocation of a recorded source entry if * the group has not been joined. * * Return 0 if the source didn't exist or was already marked as recorded. * Return 1 if the source was marked as recorded by this function. * Return <0 if any error occurred (negated errno code). */ int inm_record_source(struct in_multi *inm, const in_addr_t naddr) { struct ip_msource find; struct ip_msource *ims, *nims; IN_MULTI_LIST_LOCK_ASSERT(); find.ims_haddr = ntohl(naddr); ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims && ims->ims_stp) return (0); if (ims == NULL) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (-ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (-ENOMEM); nims->ims_haddr = find.ims_haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; } /* * Mark the source as recorded and update the recorded * source count. */ ++ims->ims_stp; ++inm->inm_st[1].iss_rec; return (1); } /* * Return a pointer to an in_msource owned by an in_mfilter, * given its source address. * Lazy-allocate if needed. If this is a new entry its filter state is * undefined at t0. * * imf is the filter set being modified. * haddr is the source address in *host* byte-order. * * SMPng: May be called with locks held; malloc must not block. */ static int imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin, struct in_msource **plims) { struct ip_msource find; struct ip_msource *ims, *nims; struct in_msource *lims; int error; error = 0; ims = NULL; lims = NULL; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); lims = (struct in_msource *)ims; if (lims == NULL) { if (imf->imf_nsrc == in_mcast_maxsocksrc) return (ENOSPC); nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); lims = (struct in_msource *)nims; lims->ims_haddr = find.ims_haddr; lims->imsl_st[0] = MCAST_UNDEFINED; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; } *plims = lims; return (error); } /* * Graft a source entry into an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being in the new filter mode at t1. * * Return the pointer to the new node, otherwise return NULL. */ static struct in_msource * imf_graft(struct in_mfilter *imf, const uint8_t st1, const struct sockaddr_in *psin) { struct ip_msource *nims; struct in_msource *lims; nims = malloc(sizeof(struct in_msource), M_INMFILTER, M_NOWAIT | M_ZERO); if (nims == NULL) return (NULL); lims = (struct in_msource *)nims; lims->ims_haddr = ntohl(psin->sin_addr.s_addr); lims->imsl_st[0] = MCAST_UNDEFINED; lims->imsl_st[1] = st1; RB_INSERT(ip_msource_tree, &imf->imf_sources, nims); ++imf->imf_nsrc; return (lims); } /* * Prune a source entry from an existing socket-layer filter set, * maintaining any required invariants and checking allocations. * * The source is marked as being left at t1, it is not freed. * * Return 0 if no error occurred, otherwise return an errno value. */ static int imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin) { struct ip_msource find; struct ip_msource *ims; struct in_msource *lims; /* key is host byte order */ find.ims_haddr = ntohl(psin->sin_addr.s_addr); ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find); if (ims == NULL) return (ENOENT); lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; return (0); } /* * Revert socket-layer filter set deltas at t1 to t0 state. */ static void imf_rollback(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) { /* no change at t1 */ continue; } else if (lims->imsl_st[0] != MCAST_UNDEFINED) { /* revert change to existing source at t1 */ lims->imsl_st[1] = lims->imsl_st[0]; } else { /* revert source added t1 */ CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } imf->imf_st[1] = imf->imf_st[0]; } /* * Mark socket-layer filter set as INCLUDE {} at t1. */ static void imf_leave(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[1] = MCAST_UNDEFINED; } imf->imf_st[1] = MCAST_INCLUDE; } /* * Mark socket-layer filter set deltas as committed. */ static void imf_commit(struct in_mfilter *imf) { struct ip_msource *ims; struct in_msource *lims; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; lims->imsl_st[0] = lims->imsl_st[1]; } imf->imf_st[0] = imf->imf_st[1]; } /* * Reap unreferenced sources from socket-layer filter set. */ static void imf_reap(struct in_mfilter *imf) { struct ip_msource *ims, *tims; struct in_msource *lims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { lims = (struct in_msource *)ims; if ((lims->imsl_st[0] == MCAST_UNDEFINED) && (lims->imsl_st[1] == MCAST_UNDEFINED)) { CTR2(KTR_IGMPV3, "%s: free lims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } } } /* * Purge socket-layer filter set. */ static void imf_purge(struct in_mfilter *imf) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims); free(ims, M_INMFILTER); imf->imf_nsrc--; } imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED; KASSERT(RB_EMPTY(&imf->imf_sources), ("%s: imf_sources not empty", __func__)); } /* * Look up a source filter entry for a multicast group. * * inm is the group descriptor to work with. * haddr is the host-byte-order IPv4 address to look up. * noalloc may be non-zero to suppress allocation of sources. * *pims will be set to the address of the retrieved or allocated source. * * SMPng: NOTE: may be called with locks held. * Return 0 if successful, otherwise return a non-zero error code. */ static int inm_get_source(struct in_multi *inm, const in_addr_t haddr, const int noalloc, struct ip_msource **pims) { struct ip_msource find; struct ip_msource *ims, *nims; find.ims_haddr = haddr; ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find); if (ims == NULL && !noalloc) { if (inm->inm_nsrc == in_mcast_maxgrpsrc) return (ENOSPC); nims = malloc(sizeof(struct ip_msource), M_IPMSOURCE, M_NOWAIT | M_ZERO); if (nims == NULL) return (ENOMEM); nims->ims_haddr = haddr; RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims); ++inm->inm_nsrc; ims = nims; #ifdef KTR CTR3(KTR_IGMPV3, "%s: allocated 0x%08x as %p", __func__, haddr, ims); #endif } *pims = ims; return (0); } /* * Merge socket-layer source into IGMP-layer source. * If rollback is non-zero, perform the inverse of the merge. */ static void ims_merge(struct ip_msource *ims, const struct in_msource *lims, const int rollback) { int n = rollback ? -1 : 1; if (lims->imsl_st[0] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex -= %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].ex -= n; } else if (lims->imsl_st[0] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in -= %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].in -= n; } if (lims->imsl_st[1] == MCAST_EXCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 ex += %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].ex += n; } else if (lims->imsl_st[1] == MCAST_INCLUDE) { CTR3(KTR_IGMPV3, "%s: t1 in += %d on 0x%08x", __func__, n, ims->ims_haddr); ims->ims_st[1].in += n; } } /* * Atomically update the global in_multi state, when a membership's * filter list is being updated in any way. * * imf is the per-inpcb-membership group filter pointer. * A fake imf may be passed for in-kernel consumers. * * XXX This is a candidate for a set-symmetric-difference style loop * which would eliminate the repeated lookup from root of ims nodes, * as they share the same key space. * * If any error occurred this function will back out of refcounts * and return a non-zero value. */ static int inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct ip_msource *ims, *nims; struct in_msource *lims; int schanged, error; int nsrc0, nsrc1; schanged = 0; error = 0; nsrc1 = nsrc0 = 0; IN_MULTI_LIST_LOCK_ASSERT(); /* * Update the source filters first, as this may fail. * Maintain count of in-mode filters at t0, t1. These are * used to work out if we transition into ASM mode or not. * Maintain a count of source filters whose state was * actually modified by this operation. */ RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++; if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; error = inm_get_source(inm, lims->ims_haddr, 0, &nims); ++schanged; if (error) break; ims_merge(nims, lims, 0); } if (error) { struct ip_msource *bims; RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == lims->imsl_st[1]) continue; (void)inm_get_source(inm, lims->ims_haddr, 1, &bims); if (bims == NULL) continue; ims_merge(bims, lims, 1); } goto out_reap; } CTR3(KTR_IGMPV3, "%s: imf filters in-mode: %d at t0, %d at t1", __func__, nsrc0, nsrc1); /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */ if (imf->imf_st[0] == imf->imf_st[1] && imf->imf_st[1] == MCAST_INCLUDE) { if (nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } } /* Handle filter mode transition on socket. */ if (imf->imf_st[0] != imf->imf_st[1]) { CTR3(KTR_IGMPV3, "%s: imf transition %d to %d", __func__, imf->imf_st[0], imf->imf_st[1]); if (imf->imf_st[0] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: --ex on inm at t1", __func__); --inm->inm_st[1].iss_ex; } else if (imf->imf_st[0] == MCAST_INCLUDE) { CTR1(KTR_IGMPV3, "%s: --in on inm at t1", __func__); --inm->inm_st[1].iss_in; } if (imf->imf_st[1] == MCAST_EXCLUDE) { CTR1(KTR_IGMPV3, "%s: ex++ on inm at t1", __func__); inm->inm_st[1].iss_ex++; } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) { CTR1(KTR_IGMPV3, "%s: in++ on inm at t1", __func__); inm->inm_st[1].iss_in++; } } /* * Track inm filter state in terms of listener counts. * If there are any exclusive listeners, stack-wide * membership is exclusive. * Otherwise, if only inclusive listeners, stack-wide is inclusive. * If no listeners remain, state is undefined at t1, * and the IGMP lifecycle for this group should finish. */ if (inm->inm_st[1].iss_ex > 0) { CTR1(KTR_IGMPV3, "%s: transition to EX", __func__); inm->inm_st[1].iss_fmode = MCAST_EXCLUDE; } else if (inm->inm_st[1].iss_in > 0) { CTR1(KTR_IGMPV3, "%s: transition to IN", __func__); inm->inm_st[1].iss_fmode = MCAST_INCLUDE; } else { CTR1(KTR_IGMPV3, "%s: transition to UNDEF", __func__); inm->inm_st[1].iss_fmode = MCAST_UNDEFINED; } /* Decrement ASM listener count on transition out of ASM mode. */ if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) { if ((imf->imf_st[1] != MCAST_EXCLUDE) || (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) { CTR1(KTR_IGMPV3, "%s: --asm on inm at t1", __func__); --inm->inm_st[1].iss_asm; } } /* Increment ASM listener count on transition to ASM mode. */ if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) { CTR1(KTR_IGMPV3, "%s: asm++ on inm at t1", __func__); inm->inm_st[1].iss_asm++; } CTR3(KTR_IGMPV3, "%s: merged imf %p to inm %p", __func__, imf, inm); inm_print(inm); out_reap: if (schanged > 0) { CTR1(KTR_IGMPV3, "%s: sources changed; reaping", __func__); inm_reap(inm); } return (error); } /* * Mark an in_multi's filter set deltas as committed. * Called by IGMP after a state change has been enqueued. */ void inm_commit(struct in_multi *inm) { struct ip_msource *ims; CTR2(KTR_IGMPV3, "%s: commit inm %p", __func__, inm); CTR1(KTR_IGMPV3, "%s: pre commit:", __func__); inm_print(inm); RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { ims->ims_st[0] = ims->ims_st[1]; } inm->inm_st[0] = inm->inm_st[1]; } /* * Reap unreferenced nodes from an in_multi's filter set. */ static void inm_reap(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 || ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 || ims->ims_stp != 0) continue; CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Purge all source nodes from an in_multi's filter set. */ static void inm_purge(struct in_multi *inm) { struct ip_msource *ims, *tims; RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) { CTR2(KTR_IGMPV3, "%s: free ims %p", __func__, ims); RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims); free(ims, M_IPMSOURCE); inm->inm_nsrc--; } } /* * Join a multicast group; unlocked entry point. * * SMPng: XXX: in_joingroup() is called from in_control() when Giant * is not held. Fortunately, ifp is unlikely to have been detached * at this point, so we assume it's OK to recurse. */ int in_joingroup(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { int error; IN_MULTI_LOCK(); error = in_joingroup_locked(ifp, gina, imf, pinm); IN_MULTI_UNLOCK(); return (error); } /* * Join a multicast group; real entry point. * * Only preserves atomicity at inm level. * NOTE: imf argument cannot be const due to sys/tree.h limitations. * * If the IGMP downcall fails, the group is not joined, and an error * code is returned. */ int in_joingroup_locked(struct ifnet *ifp, const struct in_addr *gina, /*const*/ struct in_mfilter *imf, struct in_multi **pinm) { struct in_mfilter timf; struct in_multi *inm; int error; IN_MULTI_LOCK_ASSERT(); IN_MULTI_LIST_UNLOCK_ASSERT(); CTR4(KTR_IGMPV3, "%s: join 0x%08x on %p(%s))", __func__, ntohl(gina->s_addr), ifp, ifp->if_xname); error = 0; inm = NULL; /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE); imf = &timf; } error = in_getmulti(ifp, gina, &inm); if (error) { CTR1(KTR_IGMPV3, "%s: in_getmulti() failure", __func__); return (error); } IN_MULTI_LIST_LOCK(); CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); goto out_inm_release; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); if (error) { CTR1(KTR_IGMPV3, "%s: failed to update source", __func__); goto out_inm_release; } out_inm_release: if (error) { CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); IF_ADDR_WLOCK(ifp); inm_release_deferred(inm); IF_ADDR_WUNLOCK(ifp); } else { *pinm = inm; } IN_MULTI_LIST_UNLOCK(); return (error); } /* * Leave a multicast group; unlocked entry point. */ int in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { int error; IN_MULTI_LOCK(); error = in_leavegroup_locked(inm, imf); IN_MULTI_UNLOCK(); return (error); } /* * Leave a multicast group; real entry point. * All source filters will be expunged. * * Only preserves atomicity at inm level. * * Holding the write lock for the INP which contains imf * is highly advisable. We can't assert for it as imf does not * contain a back-pointer to the owning inp. * * Note: This is not the same as inm_release(*) as this function also * makes a state change downcall into IGMP. */ int in_leavegroup_locked(struct in_multi *inm, /*const*/ struct in_mfilter *imf) { struct in_mfilter timf; int error; IN_MULTI_LOCK_ASSERT(); IN_MULTI_LIST_UNLOCK_ASSERT(); error = 0; CTR5(KTR_IGMPV3, "%s: leave inm %p, 0x%08x/%s, imf %p", __func__, inm, ntohl(inm->inm_addr.s_addr), (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_xname), imf); /* * If no imf was specified (i.e. kernel consumer), * fake one up and assume it is an ASM join. */ if (imf == NULL) { imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED); imf = &timf; } /* * Begin state merge transaction at IGMP layer. * * As this particular invocation should not cause any memory * to be allocated, and there is no opportunity to roll back * the transaction, it MUST NOT fail. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); KASSERT(error == 0, ("%s: failed to merge inm state", __func__)); CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); CURVNET_SET(inm->inm_ifp->if_vnet); error = igmp_change_state(inm); IF_ADDR_WLOCK(inm->inm_ifp); inm_release_deferred(inm); IF_ADDR_WUNLOCK(inm->inm_ifp); IN_MULTI_LIST_UNLOCK(); CURVNET_RESTORE(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); CTR2(KTR_IGMPV3, "%s: dropping ref on %p", __func__, inm); return (error); } /*#ifndef BURN_BRIDGES*/ /* * Block or unblock an ASM multicast source on an inpcb. * This implements the delta-based API described in RFC 3678. * * The delta-based API applies only to exclusive-mode memberships. * An IGMP downcall will be performed. * * SMPng: NOTE: Must take Giant as a join may create a new ifma. * * Return 0 if successful, otherwise return an appropriate error code. */ static int inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; - struct rm_priotracker in_ifa_tracker; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; uint16_t fmode; int error, doblock; ifp = NULL; error = 0; doblock = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; ssa = (sockunion_t *)&gsr.gsr_source; switch (sopt->sopt_name) { case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; if (!in_nullhost(mreqs.imr_interface)) { - IN_IFADDR_RLOCK(&in_ifa_tracker); + struct epoch_tracker et; + + NET_EPOCH_ENTER(et); INADDR_TO_IFP(mreqs.imr_interface, ifp); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + /* XXXGL: ifref? */ + NET_EPOCH_EXIT(et); } if (sopt->sopt_name == IP_BLOCK_SOURCE) doblock = 1; CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; } case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (sopt->sopt_name == MCAST_BLOCK_SOURCE) doblock = 1; break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); IN_MULTI_LOCK(); /* * Check if we are actually a member of this group. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; /* * Attempting to use the delta-based API on an * non exclusive-mode membership is an error. */ fmode = imf->imf_st[0]; if (fmode != MCAST_EXCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Deal with error cases up-front: * Asked to block, but already blocked; or * Asked to unblock, but nothing to unblock. * If adding a new block entry, allocate it. */ ims = imo_match_source(imf, &ssa->sa); if ((ims != NULL && doblock) || (ims == NULL && !doblock)) { CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, ntohl(ssa->sin.sin_addr.s_addr), doblock ? "" : "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at socket layer. */ if (doblock) { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); ims = imf_graft(imf, fmode, &ssa->sin); if (ims == NULL) error = ENOMEM; } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); error = imf_prune(imf, &ssa->sin); } if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_imf_rollback; } /* * Begin state merge transaction at IGMP layer. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); goto out_imf_rollback; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); IN_MULTI_UNLOCK(); return (error); } /* * Given an inpcb, return its multicast options structure pointer. Accepts * an unlocked inpcb pointer, but will return it locked. May sleep. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. * SMPng: NOTE: Returns with the INP write lock held. */ static struct ip_moptions * inp_findmoptions(struct inpcb *inp) { struct ip_moptions *imo; INP_WLOCK(inp); if (inp->inp_moptions != NULL) return (inp->inp_moptions); INP_WUNLOCK(inp); imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK); imo->imo_multicast_ifp = NULL; imo->imo_multicast_addr.s_addr = INADDR_ANY; imo->imo_multicast_vif = -1; imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; imo->imo_multicast_loop = in_mcast_loop; STAILQ_INIT(&imo->imo_head); INP_WLOCK(inp); if (inp->inp_moptions != NULL) { free(imo, M_IPMOPTS); return (inp->inp_moptions); } inp->inp_moptions = imo; return (imo); } void inp_freemoptions(struct ip_moptions *imo) { struct in_mfilter *imf; struct in_multi *inm; struct ifnet *ifp; if (imo == NULL) return; while ((imf = ip_mfilter_first(&imo->imo_head)) != NULL) { ip_mfilter_remove(&imo->imo_head, imf); imf_leave(imf); if ((inm = imf->imf_inm) != NULL) { if ((ifp = inm->inm_ifp) != NULL) { CURVNET_SET(ifp->if_vnet); (void)in_leavegroup(inm, imf); CURVNET_RESTORE(); } else { (void)in_leavegroup(inm, imf); } } ip_mfilter_free(imf); } free(imo, M_IPMOPTS); } /* * Atomically get source filters on a socket for an IPv4 multicast group. * Called with INP lock held; returns with lock released. */ static int inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct ip_moptions *imo; struct in_mfilter *imf; struct ip_msource *ims; struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *ptss; struct sockaddr_storage *tss; int error; size_t nsrcs, ncsrcs; INP_WLOCK_ASSERT(inp); imo = inp->inp_moptions; KASSERT(imo != NULL, ("%s: null ip_moptions", __func__)); INP_WUNLOCK(inp); error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EINVAL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EINVAL); INP_WLOCK(inp); /* * Lookup group on the socket. */ gsa = (sockunion_t *)&msfr.msfr_group; imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { INP_WUNLOCK(inp); return (EADDRNOTAVAIL); } /* * Ignore memberships which are in limbo. */ if (imf->imf_st[1] == MCAST_UNDEFINED) { INP_WUNLOCK(inp); return (EAGAIN); } msfr.msfr_fmode = imf->imf_st[1]; /* * If the user specified a buffer, copy out the source filter * entries to userland gracefully. * We only copy out the number of entries which userland * has asked for, but we always tell userland how big the * buffer really needs to be. */ if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) msfr.msfr_nsrcs = in_mcast_maxsocksrc; tss = NULL; if (msfr.msfr_srcs != NULL && msfr.msfr_nsrcs > 0) { tss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_NOWAIT | M_ZERO); if (tss == NULL) { INP_WUNLOCK(inp); return (ENOBUFS); } } /* * Count number of sources in-mode at t0. * If buffer space exists and remains, copy out source entries. */ nsrcs = msfr.msfr_nsrcs; ncsrcs = 0; ptss = tss; RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) { lims = (struct in_msource *)ims; if (lims->imsl_st[0] == MCAST_UNDEFINED || lims->imsl_st[0] != imf->imf_st[0]) continue; ++ncsrcs; if (tss != NULL && nsrcs > 0) { psin = (struct sockaddr_in *)ptss; psin->sin_family = AF_INET; psin->sin_len = sizeof(struct sockaddr_in); psin->sin_addr.s_addr = htonl(lims->ims_haddr); psin->sin_port = 0; ++ptss; --nsrcs; } } INP_WUNLOCK(inp); if (tss != NULL) { error = copyout(tss, msfr.msfr_srcs, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); free(tss, M_TEMP); if (error) return (error); } msfr.msfr_nsrcs = ncsrcs; error = sooptcopyout(sopt, &msfr, sizeof(struct __msfilterreq)); return (error); } /* * Return the IP multicast options in response to user getsockopt(). */ int inp_getmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip_mreqn mreqn; struct ip_moptions *imo; struct ifnet *ifp; struct in_ifaddr *ia; int error, optval; u_char coptval; INP_WLOCK(inp); imo = inp->inp_moptions; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) { INP_WUNLOCK(inp); return (EOPNOTSUPP); } error = 0; switch (sopt->sopt_name) { case IP_MULTICAST_VIF: if (imo != NULL) optval = imo->imo_multicast_vif; else optval = -1; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_IF: memset(&mreqn, 0, sizeof(struct ip_mreqn)); if (imo != NULL) { ifp = imo->imo_multicast_ifp; if (!in_nullhost(imo->imo_multicast_addr)) { mreqn.imr_address = imo->imo_multicast_addr; } else if (ifp != NULL) { struct epoch_tracker et; mreqn.imr_ifindex = ifp->if_index; NET_EPOCH_ENTER(et); IFP_TO_IA(ifp, ia); if (ia != NULL) mreqn.imr_address = IA_SIN(ia)->sin_addr; NET_EPOCH_EXIT(et); } } INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { error = sooptcopyout(sopt, &mreqn, sizeof(struct ip_mreqn)); } else { error = sooptcopyout(sopt, &mreqn.imr_address, sizeof(struct in_addr)); } break; case IP_MULTICAST_TTL: if (imo == NULL) optval = coptval = IP_DEFAULT_MULTICAST_TTL; else optval = coptval = imo->imo_multicast_ttl; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MULTICAST_LOOP: if (imo == NULL) optval = coptval = IP_DEFAULT_MULTICAST_LOOP; else optval = coptval = imo->imo_multicast_loop; INP_WUNLOCK(inp); if (sopt->sopt_valsize == sizeof(u_char)) error = sooptcopyout(sopt, &coptval, sizeof(u_char)); else error = sooptcopyout(sopt, &optval, sizeof(int)); break; case IP_MSFILTER: if (imo == NULL) { error = EADDRNOTAVAIL; INP_WUNLOCK(inp); } else { error = inp_get_source_filters(inp, sopt); } break; default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Look up the ifnet to use for a multicast group membership, * given the IPv4 address of an interface, and the IPv4 group address. * * This routine exists to support legacy multicast applications * which do not understand that multicast memberships are scoped to * specific physical links in the networking stack, or which need * to join link-scope groups before IPv4 addresses are configured. * * Use this socket's current FIB number for any required FIB lookup. * If ina is INADDR_ANY, look up the group address in the unicast FIB, * and use its ifp; usually, this points to the default next-hop. * * If the FIB lookup fails, attempt to use the first non-loopback * interface with multicast capability in the system as a * last resort. The legacy IPv4 ASM API requires that we do * this in order to allow groups to be joined when the routing * table has not yet been populated during boot. * * Returns NULL if no ifp could be found, otherwise return referenced ifp. * * FUTURE: Implement IPv4 source-address selection. */ static struct ifnet * inp_lookup_mcast_ifp(const struct inpcb *inp, const struct sockaddr_in *gsin, const struct in_addr ina) { - struct rm_priotracker in_ifa_tracker; struct ifnet *ifp; struct nhop_object *nh; NET_EPOCH_ASSERT(); KASSERT(inp != NULL, ("%s: inp must not be NULL", __func__)); KASSERT(gsin->sin_family == AF_INET, ("%s: not AF_INET", __func__)); KASSERT(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)), ("%s: not multicast", __func__)); ifp = NULL; if (!in_nullhost(ina)) { - IN_IFADDR_RLOCK(&in_ifa_tracker); INADDR_TO_IFP(ina, ifp); if (ifp != NULL) if_ref(ifp); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); } else { nh = fib4_lookup(inp->inp_inc.inc_fibnum, gsin->sin_addr, 0, NHR_NONE, 0); if (nh != NULL) { ifp = nh->nh_ifp; if_ref(ifp); } else { struct in_ifaddr *ia; struct ifnet *mifp; mifp = NULL; CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { mifp = ia->ia_ifp; if (!(mifp->if_flags & IFF_LOOPBACK) && (mifp->if_flags & IFF_MULTICAST)) { ifp = mifp; if_ref(ifp); break; } } } } return (ifp); } /* * Join an IPv4 multicast group, possibly with a source. */ static int inp_join_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; struct in_msource *lims; struct epoch_tracker et; int error, is_new; ifp = NULL; lims = NULL; error = 0; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_ADD_MEMBERSHIP: { struct ip_mreqn mreqn; if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); else error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqn.imr_multiaddr; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); NET_EPOCH_ENTER(et); if (sopt->sopt_valsize == sizeof(struct ip_mreqn) && mreqn.imr_ifindex != 0) ifp = ifnet_byindex_ref(mreqn.imr_ifindex); else ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, mreqn.imr_address); NET_EPOCH_EXIT(et); break; } case IP_ADD_SOURCE_MEMBERSHIP: { struct ip_mreq_source mreqs; error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); if (error) return (error); gsa->sin.sin_family = ssa->sin.sin_family = AF_INET; gsa->sin.sin_len = ssa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); ssa->sin.sin_addr = mreqs.imr_sourceaddr; NET_EPOCH_ENTER(et); ifp = inp_lookup_mcast_ifp(inp, &gsa->sin, mreqs.imr_interface); NET_EPOCH_EXIT(et); CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; } case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: if (sopt->sopt_name == MCAST_JOIN_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); /* * Overwrite the port field if present, as the sockaddr * being copied in may be matched with a binary comparison. */ gsa->sin.sin_port = 0; if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); ssa->sin.sin_port = 0; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); NET_EPOCH_ENTER(et); ifp = ifnet_byindex_ref(gsr.gsr_interface); NET_EPOCH_EXIT(et); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) { if (ifp != NULL) if_rele(ifp); return (EADDRNOTAVAIL); } IN_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { is_new = 1; inm = NULL; if (ip_mfilter_count(&imo->imo_head) >= IP_MAX_MEMBERSHIPS) { error = ENOMEM; goto out_inp_locked; } } else { is_new = 0; inm = imf->imf_inm; if (ssa->ss.ss_family != AF_UNSPEC) { /* * MCAST_JOIN_SOURCE_GROUP on an exclusive membership * is an error. On an existing inclusive membership, * it just adds the source to the filter list. */ if (imf->imf_st[1] != MCAST_INCLUDE) { error = EINVAL; goto out_inp_locked; } /* * Throw out duplicates. * * XXX FIXME: This makes a naive assumption that * even if entries exist for *ssa in this imf, * they will be rejected as dupes, even if they * are not valid in the current mode (in-mode). * * in_msource is transactioned just as for anything * else in SSM -- but note naive use of inm_graft() * below for allocating new filter entries. * * This is only an issue if someone mixes the * full-state SSM API with the delta-based API, * which is discouraged in the relevant RFCs. */ lims = imo_match_source(imf, &ssa->sa); if (lims != NULL /*&& lims->imsl_st[1] == MCAST_INCLUDE*/) { error = EADDRNOTAVAIL; goto out_inp_locked; } } else { /* * MCAST_JOIN_GROUP on an existing exclusive * membership is an error; return EADDRINUSE * to preserve 4.4BSD API idempotence, and * avoid tedious detour to code below. * NOTE: This is bending RFC 3678 a bit. * * On an existing inclusive membership, this is also * an error; if you want to change filter mode, * you must use the userland API setsourcefilter(). * XXX We don't reject this for imf in UNDEFINED * state at t1, because allocation of a filter * is atomic with allocation of a membership. */ error = EINVAL; if (imf->imf_st[1] == MCAST_EXCLUDE) error = EADDRINUSE; goto out_inp_locked; } } /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * Graft new source into filter list for this inpcb's * membership of the group. The in_multi may not have * been allocated yet if this is a new membership, however, * the in_mfilter slot will be allocated and must be initialized. * * Note: Grafting of exclusive mode filters doesn't happen * in this path. * XXX: Should check for non-NULL lims (node exists but may * not be in-mode) for interop with full-state API. */ if (ssa->ss.ss_family != AF_UNSPEC) { /* Membership starts in IN mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/source", __func__); imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_INCLUDE); if (imf == NULL) { error = ENOMEM; goto out_inp_locked; } } else { CTR2(KTR_IGMPV3, "%s: %s source", __func__, "allow"); } lims = imf_graft(imf, MCAST_INCLUDE, &ssa->sin); if (lims == NULL) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); error = ENOMEM; goto out_inp_locked; } } else { /* No address specified; Membership starts in EX mode */ if (is_new) { CTR1(KTR_IGMPV3, "%s: new join w/o source", __func__); imf = ip_mfilter_alloc(M_NOWAIT, MCAST_UNDEFINED, MCAST_EXCLUDE); if (imf == NULL) { error = ENOMEM; goto out_inp_locked; } } } /* * Begin state merge transaction at IGMP layer. */ if (is_new) { in_pcbref(inp); INP_WUNLOCK(inp); error = in_joingroup_locked(ifp, &gsa->sin.sin_addr, imf, &imf->imf_inm); INP_WLOCK(inp); if (in_pcbrele_wlocked(inp)) { error = ENXIO; goto out_inp_unlocked; } if (error) { CTR1(KTR_IGMPV3, "%s: in_joingroup_locked failed", __func__); goto out_inp_locked; } /* * NOTE: Refcount from in_joingroup_locked() * is protecting membership. */ ip_mfilter_insert(&imo->imo_head, imf); } else { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } } imf_commit(imf); imf = NULL; out_inp_locked: INP_WUNLOCK(inp); out_inp_unlocked: IN_MULTI_UNLOCK(); if (is_new && imf) { if (imf->imf_inm != NULL) { IN_MULTI_LIST_LOCK(); IF_ADDR_WLOCK(ifp); inm_release_deferred(imf->imf_inm); IF_ADDR_WUNLOCK(ifp); IN_MULTI_LIST_UNLOCK(); } ip_mfilter_free(imf); } if_rele(ifp); return (error); } /* * Leave an IPv4 multicast group on an inpcb, possibly with a source. */ static int inp_leave_group(struct inpcb *inp, struct sockopt *sopt) { struct group_source_req gsr; struct ip_mreq_source mreqs; - struct rm_priotracker in_ifa_tracker; sockunion_t *gsa, *ssa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_msource *ims; struct in_multi *inm; int error; bool is_final; ifp = NULL; error = 0; is_final = true; memset(&gsr, 0, sizeof(struct group_source_req)); gsa = (sockunion_t *)&gsr.gsr_group; gsa->ss.ss_family = AF_UNSPEC; ssa = (sockunion_t *)&gsr.gsr_source; ssa->ss.ss_family = AF_UNSPEC; switch (sopt->sopt_name) { case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: if (sopt->sopt_name == IP_DROP_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq), sizeof(struct ip_mreq)); /* * Swap interface and sourceaddr arguments, * as ip_mreq and ip_mreq_source are laid * out differently. */ mreqs.imr_interface = mreqs.imr_sourceaddr; mreqs.imr_sourceaddr.s_addr = INADDR_ANY; } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { error = sooptcopyin(sopt, &mreqs, sizeof(struct ip_mreq_source), sizeof(struct ip_mreq_source)); } if (error) return (error); gsa->sin.sin_family = AF_INET; gsa->sin.sin_len = sizeof(struct sockaddr_in); gsa->sin.sin_addr = mreqs.imr_multiaddr; if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) { ssa->sin.sin_family = AF_INET; ssa->sin.sin_len = sizeof(struct sockaddr_in); ssa->sin.sin_addr = mreqs.imr_sourceaddr; } /* * Attempt to look up hinted ifp from interface address. * Fallthrough with null ifp iff lookup fails, to * preserve 4.4BSD mcast API idempotence. * XXX NOTE WELL: The RFC 3678 API is preferred because * using an IPv4 address as a key is racy. */ if (!in_nullhost(mreqs.imr_interface)) { - IN_IFADDR_RLOCK(&in_ifa_tracker); + struct epoch_tracker et; + + NET_EPOCH_ENTER(et); INADDR_TO_IFP(mreqs.imr_interface, ifp); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + /* XXXGL ifref? */ + NET_EPOCH_EXIT(et); } CTR3(KTR_IGMPV3, "%s: imr_interface = 0x%08x, ifp = %p", __func__, ntohl(mreqs.imr_interface.s_addr), ifp); break; case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: if (sopt->sopt_name == MCAST_LEAVE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_req), sizeof(struct group_req)); } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { error = sooptcopyin(sopt, &gsr, sizeof(struct group_source_req), sizeof(struct group_source_req)); } if (error) return (error); if (gsa->sin.sin_family != AF_INET || gsa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) { if (ssa->sin.sin_family != AF_INET || ssa->sin.sin_len != sizeof(struct sockaddr_in)) return (EINVAL); } if (gsr.gsr_interface == 0 || V_if_index < gsr.gsr_interface) return (EADDRNOTAVAIL); ifp = ifnet_byindex(gsr.gsr_interface); if (ifp == NULL) return (EADDRNOTAVAIL); break; default: CTR2(KTR_IGMPV3, "%s: unknown sopt_name %d", __func__, sopt->sopt_name); return (EOPNOTSUPP); break; } if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); IN_MULTI_LOCK(); /* * Find the membership in the membership list. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; if (ssa->ss.ss_family != AF_UNSPEC) is_final = false; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); /* * If we were instructed only to leave a given source, do so. * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships. */ if (is_final) { ip_mfilter_remove(&imo->imo_head, imf); imf_leave(imf); /* * Give up the multicast address record to which * the membership points. */ (void) in_leavegroup_locked(imf->imf_inm, imf); } else { if (imf->imf_st[0] == MCAST_EXCLUDE) { error = EADDRNOTAVAIL; goto out_inp_locked; } ims = imo_match_source(imf, &ssa->sa); if (ims == NULL) { CTR3(KTR_IGMPV3, "%s: source 0x%08x %spresent", __func__, ntohl(ssa->sin.sin_addr.s_addr), "not "); error = EADDRNOTAVAIL; goto out_inp_locked; } CTR2(KTR_IGMPV3, "%s: %s source", __func__, "block"); error = imf_prune(imf, &ssa->sin); if (error) { CTR1(KTR_IGMPV3, "%s: merge imf state failed", __func__); goto out_inp_locked; } } /* * Begin state merge transaction at IGMP layer. */ if (!is_final) { CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) { CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); imf_rollback(imf); imf_reap(imf); goto out_inp_locked; } } imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); if (is_final && imf) ip_mfilter_free(imf); IN_MULTI_UNLOCK(); return (error); } /* * Select the interface for transmitting IPv4 multicast datagrams. * * Either an instance of struct in_addr or an instance of struct ip_mreqn * may be passed to this socket option. An address of INADDR_ANY or an * interface index of 0 is used to remove a previous selection. * When no interface is selected, one is chosen for every send. */ static int inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt) { - struct rm_priotracker in_ifa_tracker; struct in_addr addr; struct ip_mreqn mreqn; struct ifnet *ifp; struct ip_moptions *imo; int error; if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) { /* * An interface index was specified using the * Linux-derived ip_mreqn structure. */ error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn), sizeof(struct ip_mreqn)); if (error) return (error); if (mreqn.imr_ifindex < 0 || V_if_index < mreqn.imr_ifindex) return (EINVAL); if (mreqn.imr_ifindex == 0) { ifp = NULL; } else { ifp = ifnet_byindex(mreqn.imr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); } } else { /* * An interface was specified by IPv4 address. * This is the traditional BSD usage. */ error = sooptcopyin(sopt, &addr, sizeof(struct in_addr), sizeof(struct in_addr)); if (error) return (error); if (in_nullhost(addr)) { ifp = NULL; } else { - IN_IFADDR_RLOCK(&in_ifa_tracker); + struct epoch_tracker et; + + NET_EPOCH_ENTER(et); INADDR_TO_IFP(addr, ifp); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); + /* XXXGL ifref? */ + NET_EPOCH_EXIT(et); if (ifp == NULL) return (EADDRNOTAVAIL); } CTR3(KTR_IGMPV3, "%s: ifp = %p, addr = 0x%08x", __func__, ifp, ntohl(addr.s_addr)); } /* Reject interfaces which do not support multicast. */ if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); imo = inp_findmoptions(inp); imo->imo_multicast_ifp = ifp; imo->imo_multicast_addr.s_addr = INADDR_ANY; INP_WUNLOCK(inp); return (0); } /* * Atomically set source filters on a socket for an IPv4 multicast group. * * SMPng: NOTE: Potentially calls malloc(M_WAITOK) with Giant held. */ static int inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt) { struct __msfilterreq msfr; sockunion_t *gsa; struct ifnet *ifp; struct in_mfilter *imf; struct ip_moptions *imo; struct in_multi *inm; int error; error = sooptcopyin(sopt, &msfr, sizeof(struct __msfilterreq), sizeof(struct __msfilterreq)); if (error) return (error); if (msfr.msfr_nsrcs > in_mcast_maxsocksrc) return (ENOBUFS); if ((msfr.msfr_fmode != MCAST_EXCLUDE && msfr.msfr_fmode != MCAST_INCLUDE)) return (EINVAL); if (msfr.msfr_group.ss_family != AF_INET || msfr.msfr_group.ss_len != sizeof(struct sockaddr_in)) return (EINVAL); gsa = (sockunion_t *)&msfr.msfr_group; if (!IN_MULTICAST(ntohl(gsa->sin.sin_addr.s_addr))) return (EINVAL); gsa->sin.sin_port = 0; /* ignore port */ if (msfr.msfr_ifindex == 0 || V_if_index < msfr.msfr_ifindex) return (EADDRNOTAVAIL); ifp = ifnet_byindex(msfr.msfr_ifindex); if (ifp == NULL) return (EADDRNOTAVAIL); IN_MULTI_LOCK(); /* * Take the INP write lock. * Check if this socket is a member of this group. */ imo = inp_findmoptions(inp); imf = imo_match_group(imo, ifp, &gsa->sa); if (imf == NULL) { error = EADDRNOTAVAIL; goto out_inp_locked; } inm = imf->imf_inm; /* * Begin state merge transaction at socket layer. */ INP_WLOCK_ASSERT(inp); imf->imf_st[1] = msfr.msfr_fmode; /* * Apply any new source filters, if present. * Make a copy of the user-space source vector so * that we may copy them with a single copyin. This * allows us to deal with page faults up-front. */ if (msfr.msfr_nsrcs > 0) { struct in_msource *lims; struct sockaddr_in *psin; struct sockaddr_storage *kss, *pkss; int i; INP_WUNLOCK(inp); CTR2(KTR_IGMPV3, "%s: loading %lu source list entries", __func__, (unsigned long)msfr.msfr_nsrcs); kss = malloc(sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs, M_TEMP, M_WAITOK); error = copyin(msfr.msfr_srcs, kss, sizeof(struct sockaddr_storage) * msfr.msfr_nsrcs); if (error) { free(kss, M_TEMP); return (error); } INP_WLOCK(inp); /* * Mark all source filters as UNDEFINED at t1. * Restore new group filter mode, as imf_leave() * will set it to INCLUDE. */ imf_leave(imf); imf->imf_st[1] = msfr.msfr_fmode; /* * Update socket layer filters at t1, lazy-allocating * new entries. This saves a bunch of memory at the * cost of one RB_FIND() per source entry; duplicate * entries in the msfr_nsrcs vector are ignored. * If we encounter an error, rollback transaction. * * XXX This too could be replaced with a set-symmetric * difference like loop to avoid walking from root * every time, as the key space is common. */ for (i = 0, pkss = kss; i < msfr.msfr_nsrcs; i++, pkss++) { psin = (struct sockaddr_in *)pkss; if (psin->sin_family != AF_INET) { error = EAFNOSUPPORT; break; } if (psin->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; break; } error = imf_get_source(imf, psin, &lims); if (error) break; lims->imsl_st[1] = imf->imf_st[1]; } free(kss, M_TEMP); } if (error) goto out_imf_rollback; INP_WLOCK_ASSERT(inp); /* * Begin state merge transaction at IGMP layer. */ CTR1(KTR_IGMPV3, "%s: merge inm state", __func__); IN_MULTI_LIST_LOCK(); error = inm_merge(inm, imf); if (error) { CTR1(KTR_IGMPV3, "%s: failed to merge inm state", __func__); IN_MULTI_LIST_UNLOCK(); goto out_imf_rollback; } CTR1(KTR_IGMPV3, "%s: doing igmp downcall", __func__); error = igmp_change_state(inm); IN_MULTI_LIST_UNLOCK(); if (error) CTR1(KTR_IGMPV3, "%s: failed igmp downcall", __func__); out_imf_rollback: if (error) imf_rollback(imf); else imf_commit(imf); imf_reap(imf); out_inp_locked: INP_WUNLOCK(inp); IN_MULTI_UNLOCK(); return (error); } /* * Set the IP multicast options in response to user setsockopt(). * * Many of the socket options handled in this function duplicate the * functionality of socket options in the regular unicast API. However, * it is not possible to merge the duplicate code, because the idempotence * of the IPv4 multicast part of the BSD Sockets API must be preserved; * the effects of these options must be treated as separate and distinct. * * SMPng: XXX: Unlocked read of inp_socket believed OK. * FUTURE: The IP_MULTICAST_VIF option may be eliminated if MROUTING * is refactored to no longer use vifs. */ int inp_setmoptions(struct inpcb *inp, struct sockopt *sopt) { struct ip_moptions *imo; int error; error = 0; /* * If socket is neither of type SOCK_RAW or SOCK_DGRAM, * or is a divert socket, reject it. */ if (inp->inp_socket->so_proto->pr_protocol == IPPROTO_DIVERT || (inp->inp_socket->so_proto->pr_type != SOCK_RAW && inp->inp_socket->so_proto->pr_type != SOCK_DGRAM)) return (EOPNOTSUPP); switch (sopt->sopt_name) { case IP_MULTICAST_VIF: { int vifi; /* * Select a multicast VIF for transmission. * Only useful if multicast forwarding is active. */ if (legal_vif_num == NULL) { error = EOPNOTSUPP; break; } error = sooptcopyin(sopt, &vifi, sizeof(int), sizeof(int)); if (error) break; if (!legal_vif_num(vifi) && (vifi != -1)) { error = EINVAL; break; } imo = inp_findmoptions(inp); imo->imo_multicast_vif = vifi; INP_WUNLOCK(inp); break; } case IP_MULTICAST_IF: error = inp_set_multicast_if(inp, sopt); break; case IP_MULTICAST_TTL: { u_char ttl; /* * Set the IP time-to-live for outgoing multicast packets. * The original multicast API required a char argument, * which is inconsistent with the rest of the socket API. * We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &ttl, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int ittl; error = sooptcopyin(sopt, &ittl, sizeof(u_int), sizeof(u_int)); if (error) break; if (ittl > 255) { error = EINVAL; break; } ttl = (u_char)ittl; } imo = inp_findmoptions(inp); imo->imo_multicast_ttl = ttl; INP_WUNLOCK(inp); break; } case IP_MULTICAST_LOOP: { u_char loop; /* * Set the loopback flag for outgoing multicast packets. * Must be zero or one. The original multicast API required a * char argument, which is inconsistent with the rest * of the socket API. We allow either a char or an int. */ if (sopt->sopt_valsize == sizeof(u_char)) { error = sooptcopyin(sopt, &loop, sizeof(u_char), sizeof(u_char)); if (error) break; } else { u_int iloop; error = sooptcopyin(sopt, &iloop, sizeof(u_int), sizeof(u_int)); if (error) break; loop = (u_char)iloop; } imo = inp_findmoptions(inp); imo->imo_multicast_loop = !!loop; INP_WUNLOCK(inp); break; } case IP_ADD_MEMBERSHIP: case IP_ADD_SOURCE_MEMBERSHIP: case MCAST_JOIN_GROUP: case MCAST_JOIN_SOURCE_GROUP: error = inp_join_group(inp, sopt); break; case IP_DROP_MEMBERSHIP: case IP_DROP_SOURCE_MEMBERSHIP: case MCAST_LEAVE_GROUP: case MCAST_LEAVE_SOURCE_GROUP: error = inp_leave_group(inp, sopt); break; case IP_BLOCK_SOURCE: case IP_UNBLOCK_SOURCE: case MCAST_BLOCK_SOURCE: case MCAST_UNBLOCK_SOURCE: error = inp_block_unblock_source(inp, sopt); break; case IP_MSFILTER: error = inp_set_source_filters(inp, sopt); break; default: error = EOPNOTSUPP; break; } INP_UNLOCK_ASSERT(inp); return (error); } /* * Expose IGMP's multicast filter mode and source list(s) to userland, * keyed by (ifindex, group). * The filter mode is written out as a uint32_t, followed by * 0..n of struct in_addr. * For use by ifmcstat(8). * SMPng: NOTE: unlocked read of ifindex space. */ static int sysctl_ip_mcast_filters(SYSCTL_HANDLER_ARGS) { struct in_addr src, group; struct epoch_tracker et; struct ifnet *ifp; struct ifmultiaddr *ifma; struct in_multi *inm; struct ip_msource *ims; int *name; int retval; u_int namelen; uint32_t fmode, ifindex; name = (int *)arg1; namelen = arg2; if (req->newptr != NULL) return (EPERM); if (namelen != 2) return (EINVAL); ifindex = name[0]; if (ifindex <= 0 || ifindex > V_if_index) { CTR2(KTR_IGMPV3, "%s: ifindex %u out of range", __func__, ifindex); return (ENOENT); } group.s_addr = name[1]; if (!IN_MULTICAST(ntohl(group.s_addr))) { CTR2(KTR_IGMPV3, "%s: group 0x%08x is not multicast", __func__, ntohl(group.s_addr)); return (EINVAL); } NET_EPOCH_ENTER(et); ifp = ifnet_byindex(ifindex); if (ifp == NULL) { NET_EPOCH_EXIT(et); CTR2(KTR_IGMPV3, "%s: no ifp for ifindex %u", __func__, ifindex); return (ENOENT); } retval = sysctl_wire_old_buffer(req, sizeof(uint32_t) + (in_mcast_maxgrpsrc * sizeof(struct in_addr))); if (retval) { NET_EPOCH_EXIT(et); return (retval); } IN_MULTI_LIST_LOCK(); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; if (!in_hosteq(inm->inm_addr, group)) continue; fmode = inm->inm_st[1].iss_fmode; retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t)); if (retval != 0) break; RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) { CTR2(KTR_IGMPV3, "%s: visit node 0x%08x", __func__, ims->ims_haddr); /* * Only copy-out sources which are in-mode. */ if (fmode != ims_get_mode(inm, ims, 1)) { CTR1(KTR_IGMPV3, "%s: skip non-in-mode", __func__); continue; } src.s_addr = htonl(ims->ims_haddr); retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr)); if (retval != 0) break; } } IN_MULTI_LIST_UNLOCK(); NET_EPOCH_EXIT(et); return (retval); } #if defined(KTR) && (KTR_COMPILE & KTR_IGMPV3) static const char *inm_modestrs[] = { [MCAST_UNDEFINED] = "un", [MCAST_INCLUDE] = "in", [MCAST_EXCLUDE] = "ex", }; _Static_assert(MCAST_UNDEFINED == 0 && MCAST_EXCLUDE + 1 == nitems(inm_modestrs), "inm_modestrs: no longer matches #defines"); static const char * inm_mode_str(const int mode) { if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE) return (inm_modestrs[mode]); return ("??"); } static const char *inm_statestrs[] = { [IGMP_NOT_MEMBER] = "not-member", [IGMP_SILENT_MEMBER] = "silent", [IGMP_REPORTING_MEMBER] = "reporting", [IGMP_IDLE_MEMBER] = "idle", [IGMP_LAZY_MEMBER] = "lazy", [IGMP_SLEEPING_MEMBER] = "sleeping", [IGMP_AWAKENING_MEMBER] = "awakening", [IGMP_G_QUERY_PENDING_MEMBER] = "query-pending", [IGMP_SG_QUERY_PENDING_MEMBER] = "sg-query-pending", [IGMP_LEAVING_MEMBER] = "leaving", }; _Static_assert(IGMP_NOT_MEMBER == 0 && IGMP_LEAVING_MEMBER + 1 == nitems(inm_statestrs), "inm_statetrs: no longer matches #defines"); static const char * inm_state_str(const int state) { if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER) return (inm_statestrs[state]); return ("??"); } /* * Dump an in_multi structure to the console. */ void inm_print(const struct in_multi *inm) { int t; char addrbuf[INET_ADDRSTRLEN]; if ((ktr_mask & KTR_IGMPV3) == 0) return; printf("%s: --- begin inm %p ---\n", __func__, inm); printf("addr %s ifp %p(%s) ifma %p\n", inet_ntoa_r(inm->inm_addr, addrbuf), inm->inm_ifp, inm->inm_ifp->if_xname, inm->inm_ifma); printf("timer %u state %s refcount %u scq.len %u\n", inm->inm_timer, inm_state_str(inm->inm_state), inm->inm_refcount, inm->inm_scq.mq_len); printf("igi %p nsrc %lu sctimer %u scrv %u\n", inm->inm_igi, inm->inm_nsrc, inm->inm_sctimer, inm->inm_scrv); for (t = 0; t < 2; t++) { printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t, inm_mode_str(inm->inm_st[t].iss_fmode), inm->inm_st[t].iss_asm, inm->inm_st[t].iss_ex, inm->inm_st[t].iss_in, inm->inm_st[t].iss_rec); } printf("%s: --- end inm %p ---\n", __func__, inm); } #else /* !KTR || !(KTR_COMPILE & KTR_IGMPV3) */ void inm_print(const struct in_multi *inm) { } #endif /* KTR && (KTR_COMPILE & KTR_IGMPV3) */ RB_GENERATE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); diff --git a/sys/netinet/in_var.h b/sys/netinet/in_var.h index c33098e2c79c..a6902159e739 100644 --- a/sys/netinet/in_var.h +++ b/sys/netinet/in_var.h @@ -1,479 +1,469 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.2 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NETINET_IN_VAR_H_ #define _NETINET_IN_VAR_H_ /* * Argument structure for SIOCAIFADDR. */ struct in_aliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr_in ifra_addr; struct sockaddr_in ifra_broadaddr; #define ifra_dstaddr ifra_broadaddr struct sockaddr_in ifra_mask; int ifra_vhid; }; #ifdef _KERNEL #include #include #include struct igmp_ifsoftc; struct in_multi; struct lltable; SLIST_HEAD(in_multi_head, in_multi); /* * IPv4 per-interface state. */ struct in_ifinfo { struct lltable *ii_llt; /* ARP state */ struct igmp_ifsoftc *ii_igmp; /* IGMP state */ struct in_multi *ii_allhosts; /* 224.0.0.1 membership */ }; /* * Interface address, Internet version. One of these structures * is allocated for each Internet address on an interface. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ struct in_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags /* ia_subnet{,mask} in host order */ u_long ia_subnet; /* subnet address */ u_long ia_subnetmask; /* mask of subnet */ - LIST_ENTRY(in_ifaddr) ia_hash; /* entry in bucket of inet addresses */ + CK_LIST_ENTRY(in_ifaddr) ia_hash; /* hash of internet addresses */ CK_STAILQ_ENTRY(in_ifaddr) ia_link; /* list of internet addresses */ struct sockaddr_in ia_addr; /* reserve space for interface name */ struct sockaddr_in ia_dstaddr; /* reserve space for broadcast addr */ #define ia_broadaddr ia_dstaddr struct sockaddr_in ia_sockmask; /* reserve space for general netmask */ struct callout ia_garp_timer; /* timer for retransmitting GARPs */ int ia_garp_count; /* count of retransmitted GARPs */ }; /* * Given a pointer to an in_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in. */ #define IA_SIN(ia) (&(((struct in_ifaddr *)(ia))->ia_addr)) #define IA_DSTSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_dstaddr)) #define IA_MASKSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_sockmask)) #define IN_LNAOF(in, ifa) \ ((ntohl((in).s_addr) & ~((struct in_ifaddr *)(ifa)->ia_subnetmask)) extern u_char inetctlerrmap[]; #define LLTABLE(ifp) \ ((struct in_ifinfo *)(ifp)->if_afdata[AF_INET])->ii_llt /* * Hash table for IP addresses. */ CK_STAILQ_HEAD(in_ifaddrhead, in_ifaddr); -LIST_HEAD(in_ifaddrhashhead, in_ifaddr); +CK_LIST_HEAD(in_ifaddrhashhead, in_ifaddr); VNET_DECLARE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); VNET_DECLARE(struct in_ifaddrhead, in_ifaddrhead); VNET_DECLARE(u_long, in_ifaddrhmask); /* mask for hash table */ #define V_in_ifaddrhashtbl VNET(in_ifaddrhashtbl) #define V_in_ifaddrhead VNET(in_ifaddrhead) #define V_in_ifaddrhmask VNET(in_ifaddrhmask) #define INADDR_NHASH_LOG2 9 #define INADDR_NHASH (1 << INADDR_NHASH_LOG2) #define INADDR_HASHVAL(x) fnv_32_buf((&(x)), sizeof(x), FNV1_32_INIT) #define INADDR_HASH(x) \ (&V_in_ifaddrhashtbl[INADDR_HASHVAL(x) & V_in_ifaddrhmask]) -extern struct rmlock in_ifaddr_lock; - -#define IN_IFADDR_LOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_LOCKED) -#define IN_IFADDR_RLOCK(t) rm_rlock(&in_ifaddr_lock, (t)) -#define IN_IFADDR_RLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_RLOCKED) -#define IN_IFADDR_RUNLOCK(t) rm_runlock(&in_ifaddr_lock, (t)) -#define IN_IFADDR_WLOCK() rm_wlock(&in_ifaddr_lock) -#define IN_IFADDR_WLOCK_ASSERT() rm_assert(&in_ifaddr_lock, RA_WLOCKED) -#define IN_IFADDR_WUNLOCK() rm_wunlock(&in_ifaddr_lock) - /* * Macro for finding the internet address structure (in_ifaddr) * corresponding to one of our IP addresses (in_addr). */ #define INADDR_TO_IFADDR(addr, ia) \ /* struct in_addr addr; */ \ /* struct in_ifaddr *ia; */ \ -do { \ -\ - LIST_FOREACH(ia, INADDR_HASH((addr).s_addr), ia_hash) \ - if (IA_SIN(ia)->sin_addr.s_addr == (addr).s_addr) \ - break; \ +do { \ + NET_EPOCH_ASSERT(); \ + CK_LIST_FOREACH(ia, INADDR_HASH((addr).s_addr), ia_hash) \ + if (IA_SIN(ia)->sin_addr.s_addr == (addr).s_addr) \ + break; \ } while (0) /* * Macro for finding the interface (ifnet structure) corresponding to one * of our IP addresses. */ #define INADDR_TO_IFP(addr, ifp) \ /* struct in_addr addr; */ \ /* struct ifnet *ifp; */ \ { \ struct in_ifaddr *ia; \ \ INADDR_TO_IFADDR(addr, ia); \ (ifp) = (ia == NULL) ? NULL : ia->ia_ifp; \ } /* * Macro for finding the internet address structure (in_ifaddr) corresponding * to a given interface (ifnet structure). */ #define IFP_TO_IA(ifp, ia) \ /* struct ifnet *ifp; */ \ /* struct in_ifaddr *ia; */ \ do { \ NET_EPOCH_ASSERT(); \ for ((ia) = CK_STAILQ_FIRST(&V_in_ifaddrhead); \ (ia) != NULL && (ia)->ia_ifp != (ifp); \ (ia) = CK_STAILQ_NEXT((ia), ia_link)) \ continue; \ } while (0) /* * Legacy IPv4 IGMP per-link structure. */ struct router_info { struct ifnet *rti_ifp; int rti_type; /* type of router which is querier on this interface */ int rti_time; /* # of slow timeouts since last old query */ SLIST_ENTRY(router_info) rti_list; }; /* * IPv4 multicast IGMP-layer source entry. */ struct ip_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ struct ims_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } ims_st[2]; /* state at t0, t1 */ uint8_t ims_stp; /* pending query */ }; /* * IPv4 multicast PCB-layer source entry. */ struct in_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ uint8_t imsl_st[2]; /* state before/at commit */ }; RB_HEAD(ip_msource_tree, ip_msource); /* define struct ip_msource_tree */ static __inline int ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b) { if (a->ims_haddr < b->ims_haddr) return (-1); if (a->ims_haddr == b->ims_haddr) return (0); return (1); } RB_PROTOTYPE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); /* * IPv4 multicast PCB-layer group filter descriptor. */ struct in_mfilter { struct ip_msource_tree imf_sources; /* source list for (S,G) */ u_long imf_nsrc; /* # of source entries */ uint8_t imf_st[2]; /* state before/at commit */ struct in_multi *imf_inm; /* associated multicast address */ STAILQ_ENTRY(in_mfilter) imf_entry; /* list entry */ }; /* * Helper types and functions for IPv4 multicast filters. */ STAILQ_HEAD(ip_mfilter_head, in_mfilter); struct in_mfilter *ip_mfilter_alloc(int mflags, int st0, int st1); void ip_mfilter_free(struct in_mfilter *); static inline void ip_mfilter_init(struct ip_mfilter_head *head) { STAILQ_INIT(head); } static inline struct in_mfilter * ip_mfilter_first(const struct ip_mfilter_head *head) { return (STAILQ_FIRST(head)); } static inline void ip_mfilter_insert(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_INSERT_TAIL(head, imf, imf_entry); } static inline void ip_mfilter_remove(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_REMOVE(head, imf, in_mfilter, imf_entry); } #define IP_MFILTER_FOREACH(imf, head) \ STAILQ_FOREACH(imf, head, imf_entry) static inline size_t ip_mfilter_count(struct ip_mfilter_head *head) { struct in_mfilter *imf; size_t num = 0; STAILQ_FOREACH(imf, head, imf_entry) num++; return (num); } /* * IPv4 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When IGMPv3 is active, inm_timer is the response to group query timer. * The state-change timer inm_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: inm_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in_multi { LIST_ENTRY(in_multi) inm_link; /* to-be-released by in_ifdetach */ struct in_addr inm_addr; /* IP multicast address, convenience */ struct ifnet *inm_ifp; /* back pointer to ifnet */ struct ifmultiaddr *inm_ifma; /* back pointer to ifmultiaddr */ u_int inm_timer; /* IGMPv1/v2 group / v3 query timer */ u_int inm_state; /* state of the membership */ void *inm_rti; /* unused, legacy field */ u_int inm_refcount; /* reference count */ /* New fields for IGMPv3 follow. */ struct igmp_ifsoftc *inm_igi; /* IGMP info */ SLIST_ENTRY(in_multi) inm_nrele; /* to-be-released by IGMP */ struct ip_msource_tree inm_srcs; /* tree of sources */ u_long inm_nsrc; /* # of tree entries */ struct mbufq inm_scq; /* queue of pending * state-change packets */ struct timeval inm_lastgsrtv; /* Time of last G-S-R query */ uint16_t inm_sctimer; /* state-change timer */ uint16_t inm_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing IGMPv3 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct inm_st { uint16_t iss_fmode; /* IGMP filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } inm_st[2]; /* state at t0, t1 */ }; /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims, uint8_t t) { t = !!t; if (inm->inm_st[t].iss_ex > 0 && inm->inm_st[t].iss_ex == ims->ims_st[t].ex) return (MCAST_EXCLUDE); else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_DECL(_net_inet_raw); #endif /* * Lock macros for IPv4 layer multicast address lists. IPv4 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in_multi_list_mtx; extern struct sx in_multi_sx; #define IN_MULTI_LIST_LOCK() mtx_lock(&in_multi_list_mtx) #define IN_MULTI_LIST_UNLOCK() mtx_unlock(&in_multi_list_mtx) #define IN_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_OWNED) #define IN_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_NOTOWNED) #define IN_MULTI_LOCK() sx_xlock(&in_multi_sx) #define IN_MULTI_UNLOCK() sx_xunlock(&in_multi_sx) #define IN_MULTI_LOCK_ASSERT() sx_assert(&in_multi_sx, SA_XLOCKED) #define IN_MULTI_UNLOCK_ASSERT() sx_assert(&in_multi_sx, SA_XUNLOCKED) void inm_disconnect(struct in_multi *inm); extern int ifma_restart; /* Acquire an in_multi record. */ static __inline void inm_acquire_locked(struct in_multi *inm) { IN_MULTI_LIST_LOCK_ASSERT(); ++inm->inm_refcount; } static __inline void inm_acquire(struct in_multi *inm) { IN_MULTI_LIST_LOCK(); inm_acquire_locked(inm); IN_MULTI_LIST_UNLOCK(); } static __inline void inm_rele_locked(struct in_multi_head *inmh, struct in_multi *inm) { MPASS(inm->inm_refcount > 0); IN_MULTI_LIST_LOCK_ASSERT(); if (--inm->inm_refcount == 0) { MPASS(inmh != NULL); inm_disconnect(inm); inm->inm_ifma->ifma_protospec = NULL; SLIST_INSERT_HEAD(inmh, inm, inm_nrele); } } /* * Return values for imo_multi_filter(). */ #define MCAST_PASS 0 /* Pass */ #define MCAST_NOTGMEMBER 1 /* This host not a member of group */ #define MCAST_NOTSMEMBER 2 /* This host excluded source */ #define MCAST_MUTED 3 /* [deprecated] */ struct rib_head; struct ip_moptions; struct in_multi *inm_lookup_locked(struct ifnet *, const struct in_addr); struct in_multi *inm_lookup(struct ifnet *, const struct in_addr); int imo_multi_filter(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); void inm_commit(struct in_multi *); void inm_clear_recorded(struct in_multi *); void inm_print(const struct in_multi *); int inm_record_source(struct in_multi *inm, const in_addr_t); void inm_release_deferred(struct in_multi *); void inm_release_list_deferred(struct in_multi_head *); void inm_release_wait(void *); int in_joingroup(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_joingroup_locked(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_leavegroup(struct in_multi *, /*const*/ struct in_mfilter *); int in_leavegroup_locked(struct in_multi *, /*const*/ struct in_mfilter *); int in_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in_addprefix(struct in_ifaddr *); int in_scrubprefix(struct in_ifaddr *, u_int); void in_ifscrub_all(void); int in_handle_ifaddr_route(int, struct in_ifaddr *); void ip_input(struct mbuf *); void ip_direct_input(struct mbuf *); void in_ifadown(struct ifaddr *ifa, int); struct mbuf *ip_tryforward(struct mbuf *); void *in_domifattach(struct ifnet *); void in_domifdetach(struct ifnet *, void *); struct rib_head *in_inithead(uint32_t fibnum); #ifdef VIMAGE void in_detachhead(struct rib_head *rh); #endif #endif /* _KERNEL */ /* INET6 stuff */ #include #endif /* _NETINET_IN_VAR_H_ */ diff --git a/sys/netinet/ip_gre.c b/sys/netinet/ip_gre.c index 0afd490944a4..6a2135fa32cd 100644 --- a/sys/netinet/ip_gre.c +++ b/sys/netinet/ip_gre.c @@ -1,594 +1,597 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-NetBSD * * Copyright (c) 1998 The NetBSD Foundation, Inc. * Copyright (c) 2014, 2018 Andrey V. Elsukov * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Heiko W.Rupp * * IPv6-over-GRE contributed by Gert Doering * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $NetBSD: ip_gre.c,v 1.29 2003/09/05 23:02:43 itojun Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif #include #include #define GRE_TTL 30 VNET_DEFINE(int, ip_gre_ttl) = GRE_TTL; #define V_ip_gre_ttl VNET(ip_gre_ttl) SYSCTL_INT(_net_inet_ip, OID_AUTO, grettl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_gre_ttl), 0, "Default TTL value for encapsulated packets"); struct in_gre_socket { struct gre_socket base; in_addr_t addr; }; VNET_DEFINE_STATIC(struct gre_sockets *, ipv4_sockets) = NULL; VNET_DEFINE_STATIC(struct gre_list *, ipv4_hashtbl) = NULL; VNET_DEFINE_STATIC(struct gre_list *, ipv4_srchashtbl) = NULL; #define V_ipv4_sockets VNET(ipv4_sockets) #define V_ipv4_hashtbl VNET(ipv4_hashtbl) #define V_ipv4_srchashtbl VNET(ipv4_srchashtbl) #define GRE_HASH(src, dst) (V_ipv4_hashtbl[\ in_gre_hashval((src), (dst)) & (GRE_HASH_SIZE - 1)]) #define GRE_SRCHASH(src) (V_ipv4_srchashtbl[\ fnv_32_buf(&(src), sizeof(src), FNV1_32_INIT) & (GRE_HASH_SIZE - 1)]) #define GRE_SOCKHASH(src) (V_ipv4_sockets[\ fnv_32_buf(&(src), sizeof(src), FNV1_32_INIT) & (GRE_HASH_SIZE - 1)]) #define GRE_HASH_SC(sc) GRE_HASH((sc)->gre_oip.ip_src.s_addr,\ (sc)->gre_oip.ip_dst.s_addr) static uint32_t in_gre_hashval(in_addr_t src, in_addr_t dst) { uint32_t ret; ret = fnv_32_buf(&src, sizeof(src), FNV1_32_INIT); return (fnv_32_buf(&dst, sizeof(dst), ret)); } static struct gre_socket* in_gre_lookup_socket(in_addr_t addr) { struct gre_socket *gs; struct in_gre_socket *s; CK_LIST_FOREACH(gs, &GRE_SOCKHASH(addr), chain) { s = __containerof(gs, struct in_gre_socket, base); if (s->addr == addr) break; } return (gs); } static int in_gre_checkdup(const struct gre_softc *sc, in_addr_t src, in_addr_t dst, uint32_t opts) { struct gre_list *head; struct gre_softc *tmp; struct gre_socket *gs; if (sc->gre_family == AF_INET && sc->gre_oip.ip_src.s_addr == src && sc->gre_oip.ip_dst.s_addr == dst && (sc->gre_options & GRE_UDPENCAP) == (opts & GRE_UDPENCAP)) return (EEXIST); if (opts & GRE_UDPENCAP) { gs = in_gre_lookup_socket(src); if (gs == NULL) return (0); head = &gs->list; } else head = &GRE_HASH(src, dst); CK_LIST_FOREACH(tmp, head, chain) { if (tmp == sc) continue; if (tmp->gre_oip.ip_src.s_addr == src && tmp->gre_oip.ip_dst.s_addr == dst) return (EADDRNOTAVAIL); } return (0); } static int in_gre_lookup(const struct mbuf *m, int off, int proto, void **arg) { const struct ip *ip; struct gre_softc *sc; if (V_ipv4_hashtbl == NULL) return (0); NET_EPOCH_ASSERT(); ip = mtod(m, const struct ip *); CK_LIST_FOREACH(sc, &GRE_HASH(ip->ip_dst.s_addr, ip->ip_src.s_addr), chain) { /* * This is an inbound packet, its ip_dst is source address * in softc. */ if (sc->gre_oip.ip_src.s_addr == ip->ip_dst.s_addr && sc->gre_oip.ip_dst.s_addr == ip->ip_src.s_addr) { if ((GRE2IFP(sc)->if_flags & IFF_UP) == 0) return (0); *arg = sc; return (ENCAP_DRV_LOOKUP); } } return (0); } /* * Check that ingress address belongs to local host. */ static void in_gre_set_running(struct gre_softc *sc) { if (in_localip(sc->gre_oip.ip_src)) GRE2IFP(sc)->if_drv_flags |= IFF_DRV_RUNNING; else GRE2IFP(sc)->if_drv_flags &= ~IFF_DRV_RUNNING; } /* * ifaddr_event handler. * Clear IFF_DRV_RUNNING flag when ingress address disappears to prevent * source address spoofing. */ static void in_gre_srcaddr(void *arg __unused, const struct sockaddr *sa, int event __unused) { const struct sockaddr_in *sin; struct gre_softc *sc; /* Check that VNET is ready */ if (V_ipv4_hashtbl == NULL) return; NET_EPOCH_ASSERT(); sin = (const struct sockaddr_in *)sa; CK_LIST_FOREACH(sc, &GRE_SRCHASH(sin->sin_addr.s_addr), srchash) { if (sc->gre_oip.ip_src.s_addr != sin->sin_addr.s_addr) continue; in_gre_set_running(sc); } } static void in_gre_udp_input(struct mbuf *m, int off, struct inpcb *inp, const struct sockaddr *sa, void *ctx) { struct epoch_tracker et; struct gre_socket *gs; struct gre_softc *sc; in_addr_t dst; NET_EPOCH_ENTER(et); /* * udp_append() holds reference to inp, it is safe to check * inp_flags2 without INP_RLOCK(). * If socket was closed before we have entered NET_EPOCH section, * INP_FREED flag should be set. Otherwise it should be safe to * make access to ctx data, because gre_so will be freed by * gre_sofree() via NET_EPOCH_CALL(). */ if (__predict_false(inp->inp_flags2 & INP_FREED)) { NET_EPOCH_EXIT(et); m_freem(m); return; } gs = (struct gre_socket *)ctx; dst = ((const struct sockaddr_in *)sa)->sin_addr.s_addr; CK_LIST_FOREACH(sc, &gs->list, chain) { if (sc->gre_oip.ip_dst.s_addr == dst) break; } if (sc != NULL && (GRE2IFP(sc)->if_flags & IFF_UP) != 0){ gre_input(m, off + sizeof(struct udphdr), IPPROTO_UDP, sc); NET_EPOCH_EXIT(et); return; } m_freem(m); NET_EPOCH_EXIT(et); } static int in_gre_setup_socket(struct gre_softc *sc) { struct sockopt sopt; struct sockaddr_in sin; struct in_gre_socket *s; struct gre_socket *gs; in_addr_t addr; int error, value; /* * NOTE: we are protected with gre_ioctl_sx lock. * * First check that socket is already configured. * If so, check that source addres was not changed. * If address is different, check that there are no other tunnels * and close socket. */ addr = sc->gre_oip.ip_src.s_addr; gs = sc->gre_so; if (gs != NULL) { s = __containerof(gs, struct in_gre_socket, base); if (s->addr != addr) { if (CK_LIST_EMPTY(&gs->list)) { CK_LIST_REMOVE(gs, chain); soclose(gs->so); NET_EPOCH_CALL(gre_sofree, &gs->epoch_ctx); } gs = sc->gre_so = NULL; } } if (gs == NULL) { /* * Check that socket for given address is already * configured. */ gs = in_gre_lookup_socket(addr); if (gs == NULL) { s = malloc(sizeof(*s), M_GRE, M_WAITOK | M_ZERO); s->addr = addr; gs = &s->base; error = socreate(sc->gre_family, &gs->so, SOCK_DGRAM, IPPROTO_UDP, curthread->td_ucred, curthread); if (error != 0) { if_printf(GRE2IFP(sc), "cannot create socket: %d\n", error); free(s, M_GRE); return (error); } error = udp_set_kernel_tunneling(gs->so, in_gre_udp_input, NULL, gs); if (error != 0) { if_printf(GRE2IFP(sc), "cannot set UDP tunneling: %d\n", error); goto fail; } memset(&sopt, 0, sizeof(sopt)); sopt.sopt_dir = SOPT_SET; sopt.sopt_level = IPPROTO_IP; sopt.sopt_name = IP_BINDANY; sopt.sopt_val = &value; sopt.sopt_valsize = sizeof(value); value = 1; error = sosetopt(gs->so, &sopt); if (error != 0) { if_printf(GRE2IFP(sc), "cannot set IP_BINDANY opt: %d\n", error); goto fail; } memset(&sin, 0, sizeof(sin)); sin.sin_family = AF_INET; sin.sin_len = sizeof(sin); sin.sin_addr.s_addr = addr; sin.sin_port = htons(GRE_UDPPORT); error = sobind(gs->so, (struct sockaddr *)&sin, curthread); if (error != 0) { if_printf(GRE2IFP(sc), "cannot bind socket: %d\n", error); goto fail; } /* Add socket to the chain */ CK_LIST_INSERT_HEAD(&GRE_SOCKHASH(addr), gs, chain); } } /* Add softc to the socket's list */ CK_LIST_INSERT_HEAD(&gs->list, sc, chain); sc->gre_so = gs; return (0); fail: soclose(gs->so); free(s, M_GRE); return (error); } static int in_gre_attach(struct gre_softc *sc) { + struct epoch_tracker et; struct grehdr *gh; int error; if (sc->gre_options & GRE_UDPENCAP) { sc->gre_csumflags = CSUM_UDP; sc->gre_hlen = sizeof(struct greudp); sc->gre_oip.ip_p = IPPROTO_UDP; gh = &sc->gre_udphdr->gi_gre; gre_update_udphdr(sc, &sc->gre_udp, in_pseudo(sc->gre_oip.ip_src.s_addr, sc->gre_oip.ip_dst.s_addr, 0)); } else { sc->gre_hlen = sizeof(struct greip); sc->gre_oip.ip_p = IPPROTO_GRE; gh = &sc->gre_iphdr->gi_gre; } sc->gre_oip.ip_v = IPVERSION; sc->gre_oip.ip_hl = sizeof(struct ip) >> 2; gre_update_hdr(sc, gh); /* * If we return error, this means that sc is not linked, * and caller should reset gre_family and free(sc->gre_hdr). */ if (sc->gre_options & GRE_UDPENCAP) { error = in_gre_setup_socket(sc); if (error != 0) return (error); } else CK_LIST_INSERT_HEAD(&GRE_HASH_SC(sc), sc, chain); CK_LIST_INSERT_HEAD(&GRE_SRCHASH(sc->gre_oip.ip_src.s_addr), sc, srchash); /* Set IFF_DRV_RUNNING if interface is ready */ + NET_EPOCH_ENTER(et); in_gre_set_running(sc); + NET_EPOCH_EXIT(et); return (0); } int in_gre_setopts(struct gre_softc *sc, u_long cmd, uint32_t value) { int error; /* NOTE: we are protected with gre_ioctl_sx lock */ MPASS(cmd == GRESKEY || cmd == GRESOPTS || cmd == GRESPORT); MPASS(sc->gre_family == AF_INET); /* * If we are going to change encapsulation protocol, do check * for duplicate tunnels. Return EEXIST here to do not confuse * user. */ if (cmd == GRESOPTS && (sc->gre_options & GRE_UDPENCAP) != (value & GRE_UDPENCAP) && in_gre_checkdup(sc, sc->gre_oip.ip_src.s_addr, sc->gre_oip.ip_dst.s_addr, value) == EADDRNOTAVAIL) return (EEXIST); CK_LIST_REMOVE(sc, chain); CK_LIST_REMOVE(sc, srchash); GRE_WAIT(); switch (cmd) { case GRESKEY: sc->gre_key = value; break; case GRESOPTS: sc->gre_options = value; break; case GRESPORT: sc->gre_port = value; break; } error = in_gre_attach(sc); if (error != 0) { sc->gre_family = 0; free(sc->gre_hdr, M_GRE); } return (error); } int in_gre_ioctl(struct gre_softc *sc, u_long cmd, caddr_t data) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_in *dst, *src; struct ip *ip; int error; /* NOTE: we are protected with gre_ioctl_sx lock */ error = EINVAL; switch (cmd) { case SIOCSIFPHYADDR: src = &((struct in_aliasreq *)data)->ifra_addr; dst = &((struct in_aliasreq *)data)->ifra_dstaddr; /* sanity checks */ if (src->sin_family != dst->sin_family || src->sin_family != AF_INET || src->sin_len != dst->sin_len || src->sin_len != sizeof(*src)) break; if (src->sin_addr.s_addr == INADDR_ANY || dst->sin_addr.s_addr == INADDR_ANY) { error = EADDRNOTAVAIL; break; } if (V_ipv4_hashtbl == NULL) { V_ipv4_hashtbl = gre_hashinit(); V_ipv4_srchashtbl = gre_hashinit(); V_ipv4_sockets = (struct gre_sockets *)gre_hashinit(); } error = in_gre_checkdup(sc, src->sin_addr.s_addr, dst->sin_addr.s_addr, sc->gre_options); if (error == EADDRNOTAVAIL) break; if (error == EEXIST) { /* Addresses are the same. Just return. */ error = 0; break; } ip = malloc(sizeof(struct greudp) + 3 * sizeof(uint32_t), M_GRE, M_WAITOK | M_ZERO); ip->ip_src.s_addr = src->sin_addr.s_addr; ip->ip_dst.s_addr = dst->sin_addr.s_addr; if (sc->gre_family != 0) { /* Detach existing tunnel first */ CK_LIST_REMOVE(sc, chain); CK_LIST_REMOVE(sc, srchash); GRE_WAIT(); free(sc->gre_hdr, M_GRE); /* XXX: should we notify about link state change? */ } sc->gre_family = AF_INET; sc->gre_hdr = ip; sc->gre_oseq = 0; sc->gre_iseq = UINT32_MAX; error = in_gre_attach(sc); if (error != 0) { sc->gre_family = 0; free(sc->gre_hdr, M_GRE); } break; case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: if (sc->gre_family != AF_INET) { error = EADDRNOTAVAIL; break; } src = (struct sockaddr_in *)&ifr->ifr_addr; memset(src, 0, sizeof(*src)); src->sin_family = AF_INET; src->sin_len = sizeof(*src); src->sin_addr = (cmd == SIOCGIFPSRCADDR) ? sc->gre_oip.ip_src: sc->gre_oip.ip_dst; error = prison_if(curthread->td_ucred, (struct sockaddr *)src); if (error != 0) memset(src, 0, sizeof(*src)); break; } return (error); } int in_gre_output(struct mbuf *m, int af, int hlen) { struct greip *gi; gi = mtod(m, struct greip *); switch (af) { case AF_INET: /* * gre_transmit() has used M_PREPEND() that doesn't guarantee * m_data is contiguous more than hlen bytes. Use m_copydata() * here to avoid m_pullup(). */ m_copydata(m, hlen + offsetof(struct ip, ip_tos), sizeof(u_char), &gi->gi_ip.ip_tos); m_copydata(m, hlen + offsetof(struct ip, ip_id), sizeof(u_short), (caddr_t)&gi->gi_ip.ip_id); break; #ifdef INET6 case AF_INET6: gi->gi_ip.ip_tos = 0; /* XXX */ ip_fillid(&gi->gi_ip); break; #endif } gi->gi_ip.ip_ttl = V_ip_gre_ttl; gi->gi_ip.ip_len = htons(m->m_pkthdr.len); return (ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL)); } static const struct srcaddrtab *ipv4_srcaddrtab = NULL; static const struct encaptab *ecookie = NULL; static const struct encap_config ipv4_encap_cfg = { .proto = IPPROTO_GRE, .min_length = sizeof(struct greip) + sizeof(struct ip), .exact_match = ENCAP_DRV_LOOKUP, .lookup = in_gre_lookup, .input = gre_input }; void in_gre_init(void) { if (!IS_DEFAULT_VNET(curvnet)) return; ipv4_srcaddrtab = ip_encap_register_srcaddr(in_gre_srcaddr, NULL, M_WAITOK); ecookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); } void in_gre_uninit(void) { if (IS_DEFAULT_VNET(curvnet)) { ip_encap_detach(ecookie); ip_encap_unregister_srcaddr(ipv4_srcaddrtab); } if (V_ipv4_hashtbl != NULL) { gre_hashdestroy(V_ipv4_hashtbl); V_ipv4_hashtbl = NULL; GRE_WAIT(); gre_hashdestroy(V_ipv4_srchashtbl); gre_hashdestroy((struct gre_list *)V_ipv4_sockets); } } diff --git a/sys/netinet/ip_icmp.c b/sys/netinet/ip_icmp.c index f8dfc21df8f3..463ac8c8e04d 100644 --- a/sys/netinet/ip_icmp.c +++ b/sys/netinet/ip_icmp.c @@ -1,1137 +1,1132 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_icmp.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif /* INET */ /* * ICMP routines: error generation, receive packet processing, and * routines to turnaround packets back to the originator, and * host table maintenance routines. */ VNET_DEFINE_STATIC(int, icmplim) = 200; #define V_icmplim VNET(icmplim) SYSCTL_INT(_net_inet_icmp, ICMPCTL_ICMPLIM, icmplim, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmplim), 0, "Maximum number of ICMP responses per second"); VNET_DEFINE_STATIC(int, icmplim_output) = 1; #define V_icmplim_output VNET(icmplim_output) SYSCTL_INT(_net_inet_icmp, OID_AUTO, icmplim_output, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmplim_output), 0, "Enable logging of ICMP response rate limiting"); #ifdef INET VNET_PCPUSTAT_DEFINE(struct icmpstat, icmpstat); VNET_PCPUSTAT_SYSINIT(icmpstat); SYSCTL_VNET_PCPUSTAT(_net_inet_icmp, ICMPCTL_STATS, stats, struct icmpstat, icmpstat, "ICMP statistics (struct icmpstat, netinet/icmp_var.h)"); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(icmpstat); #endif /* VIMAGE */ VNET_DEFINE_STATIC(int, icmpmaskrepl) = 0; #define V_icmpmaskrepl VNET(icmpmaskrepl) SYSCTL_INT(_net_inet_icmp, ICMPCTL_MASKREPL, maskrepl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmpmaskrepl), 0, "Reply to ICMP Address Mask Request packets"); VNET_DEFINE_STATIC(u_int, icmpmaskfake) = 0; #define V_icmpmaskfake VNET(icmpmaskfake) SYSCTL_UINT(_net_inet_icmp, OID_AUTO, maskfake, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmpmaskfake), 0, "Fake reply to ICMP Address Mask Request packets"); VNET_DEFINE(int, drop_redirect) = 0; #define V_drop_redirect VNET(drop_redirect) SYSCTL_INT(_net_inet_icmp, OID_AUTO, drop_redirect, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(drop_redirect), 0, "Ignore ICMP redirects"); VNET_DEFINE_STATIC(int, log_redirect) = 0; #define V_log_redirect VNET(log_redirect) SYSCTL_INT(_net_inet_icmp, OID_AUTO, log_redirect, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(log_redirect), 0, "Log ICMP redirects to the console"); VNET_DEFINE_STATIC(int, redirtimeout) = 60 * 10; /* 10 minutes */ #define V_redirtimeout VNET(redirtimeout) SYSCTL_INT(_net_inet_icmp, OID_AUTO, redirtimeout, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(redirtimeout), 0, "Delay in seconds before expiring redirect route"); VNET_DEFINE_STATIC(char, reply_src[IFNAMSIZ]); #define V_reply_src VNET(reply_src) SYSCTL_STRING(_net_inet_icmp, OID_AUTO, reply_src, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(reply_src), IFNAMSIZ, "ICMP reply source for non-local packets"); VNET_DEFINE_STATIC(int, icmp_rfi) = 0; #define V_icmp_rfi VNET(icmp_rfi) SYSCTL_INT(_net_inet_icmp, OID_AUTO, reply_from_interface, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmp_rfi), 0, "ICMP reply from incoming interface for non-local packets"); /* Router requirements RFC 1812 section 4.3.2.3 requires 576 - 28. */ VNET_DEFINE_STATIC(int, icmp_quotelen) = 548; #define V_icmp_quotelen VNET(icmp_quotelen) SYSCTL_INT(_net_inet_icmp, OID_AUTO, quotelen, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmp_quotelen), 0, "Number of bytes from original packet to quote in ICMP reply"); VNET_DEFINE_STATIC(int, icmpbmcastecho) = 0; #define V_icmpbmcastecho VNET(icmpbmcastecho) SYSCTL_INT(_net_inet_icmp, OID_AUTO, bmcastecho, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmpbmcastecho), 0, "Reply to multicast ICMP Echo Request and Timestamp packets"); VNET_DEFINE_STATIC(int, icmptstamprepl) = 1; #define V_icmptstamprepl VNET(icmptstamprepl) SYSCTL_INT(_net_inet_icmp, OID_AUTO, tstamprepl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(icmptstamprepl), 0, "Respond to ICMP Timestamp packets"); VNET_DEFINE_STATIC(int, error_keeptags) = 0; #define V_error_keeptags VNET(error_keeptags) SYSCTL_INT(_net_inet_icmp, OID_AUTO, error_keeptags, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(error_keeptags), 0, "ICMP error response keeps copy of mbuf_tags of original packet"); #ifdef ICMPPRINTFS int icmpprintfs = 0; #endif static void icmp_reflect(struct mbuf *); static void icmp_send(struct mbuf *, struct mbuf *); static int icmp_verify_redirect_gateway(struct sockaddr_in *, struct sockaddr_in *, struct sockaddr_in *, u_int); extern struct protosw inetsw[]; /* * Kernel module interface for updating icmpstat. The argument is an index * into icmpstat treated as an array of u_long. While this encodes the * general layout of icmpstat into the caller, it doesn't encode its * location, so that future changes to add, for example, per-CPU stats * support won't cause binary compatibility problems for kernel modules. */ void kmod_icmpstat_inc(int statnum) { counter_u64_add(VNET(icmpstat)[statnum], 1); } /* * Generate an error packet of type error * in response to bad packet ip. */ void icmp_error(struct mbuf *n, int type, int code, uint32_t dest, int mtu) { struct ip *oip, *nip; struct icmp *icp; struct mbuf *m; unsigned icmplen, icmpelen, nlen, oiphlen; KASSERT((u_int)type <= ICMP_MAXTYPE, ("%s: illegal ICMP type", __func__)); if (type != ICMP_REDIRECT) ICMPSTAT_INC(icps_error); /* * Don't send error: * if the original packet was encrypted. * if not the first fragment of message. * in response to a multicast or broadcast packet. * if the old packet protocol was an ICMP error message. */ if (n->m_flags & M_DECRYPTED) goto freeit; if (n->m_flags & (M_BCAST|M_MCAST)) goto freeit; /* Drop if IP header plus 8 bytes is not contiguous in first mbuf. */ if (n->m_len < sizeof(struct ip) + ICMP_MINLEN) goto freeit; oip = mtod(n, struct ip *); oiphlen = oip->ip_hl << 2; if (n->m_len < oiphlen + ICMP_MINLEN) goto freeit; #ifdef ICMPPRINTFS if (icmpprintfs) printf("icmp_error(%p, %x, %d)\n", oip, type, code); #endif if (oip->ip_off & htons(~(IP_MF|IP_DF))) goto freeit; if (oip->ip_p == IPPROTO_ICMP && type != ICMP_REDIRECT && !ICMP_INFOTYPE(((struct icmp *)((caddr_t)oip + oiphlen))->icmp_type)) { ICMPSTAT_INC(icps_oldicmp); goto freeit; } /* * Calculate length to quote from original packet and * prevent the ICMP mbuf from overflowing. * Unfortunately this is non-trivial since ip_forward() * sends us truncated packets. */ nlen = m_length(n, NULL); if (oip->ip_p == IPPROTO_TCP) { struct tcphdr *th; int tcphlen; if (oiphlen + sizeof(struct tcphdr) > n->m_len && n->m_next == NULL) goto stdreply; if (n->m_len < oiphlen + sizeof(struct tcphdr) && (n = m_pullup(n, oiphlen + sizeof(struct tcphdr))) == NULL) goto freeit; oip = mtod(n, struct ip *); th = mtodo(n, oiphlen); tcphlen = th->th_off << 2; if (tcphlen < sizeof(struct tcphdr)) goto freeit; if (ntohs(oip->ip_len) < oiphlen + tcphlen) goto freeit; if (oiphlen + tcphlen > n->m_len && n->m_next == NULL) goto stdreply; if (n->m_len < oiphlen + tcphlen && (n = m_pullup(n, oiphlen + tcphlen)) == NULL) goto freeit; oip = mtod(n, struct ip *); icmpelen = max(tcphlen, min(V_icmp_quotelen, ntohs(oip->ip_len) - oiphlen)); } else if (oip->ip_p == IPPROTO_SCTP) { struct sctphdr *sh; struct sctp_chunkhdr *ch; if (ntohs(oip->ip_len) < oiphlen + sizeof(struct sctphdr)) goto stdreply; if (oiphlen + sizeof(struct sctphdr) > n->m_len && n->m_next == NULL) goto stdreply; if (n->m_len < oiphlen + sizeof(struct sctphdr) && (n = m_pullup(n, oiphlen + sizeof(struct sctphdr))) == NULL) goto freeit; oip = mtod(n, struct ip *); icmpelen = max(sizeof(struct sctphdr), min(V_icmp_quotelen, ntohs(oip->ip_len) - oiphlen)); sh = mtodo(n, oiphlen); if (ntohl(sh->v_tag) == 0 && ntohs(oip->ip_len) >= oiphlen + sizeof(struct sctphdr) + 8 && (n->m_len >= oiphlen + sizeof(struct sctphdr) + 8 || n->m_next != NULL)) { if (n->m_len < oiphlen + sizeof(struct sctphdr) + 8 && (n = m_pullup(n, oiphlen + sizeof(struct sctphdr) + 8)) == NULL) goto freeit; oip = mtod(n, struct ip *); sh = mtodo(n, oiphlen); ch = (struct sctp_chunkhdr *)(sh + 1); if (ch->chunk_type == SCTP_INITIATION) { icmpelen = max(sizeof(struct sctphdr) + 8, min(V_icmp_quotelen, ntohs(oip->ip_len) - oiphlen)); } } } else stdreply: icmpelen = max(8, min(V_icmp_quotelen, ntohs(oip->ip_len) - oiphlen)); icmplen = min(oiphlen + icmpelen, nlen); if (icmplen < sizeof(struct ip)) goto freeit; if (MHLEN > sizeof(struct ip) + ICMP_MINLEN + icmplen) m = m_gethdr(M_NOWAIT, MT_DATA); else m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (m == NULL) goto freeit; #ifdef MAC mac_netinet_icmp_reply(n, m); #endif icmplen = min(icmplen, M_TRAILINGSPACE(m) - sizeof(struct ip) - ICMP_MINLEN); m_align(m, sizeof(struct ip) + ICMP_MINLEN + icmplen); m->m_data += sizeof(struct ip); m->m_len = ICMP_MINLEN + icmplen; /* XXX MRT make the outgoing packet use the same FIB * that was associated with the incoming packet */ M_SETFIB(m, M_GETFIB(n)); icp = mtod(m, struct icmp *); ICMPSTAT_INC(icps_outhist[type]); icp->icmp_type = type; if (type == ICMP_REDIRECT) icp->icmp_gwaddr.s_addr = dest; else { icp->icmp_void = 0; /* * The following assignments assume an overlay with the * just zeroed icmp_void field. */ if (type == ICMP_PARAMPROB) { icp->icmp_pptr = code; code = 0; } else if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG && mtu) { icp->icmp_nextmtu = htons(mtu); } } icp->icmp_code = code; /* * Copy the quotation into ICMP message and * convert quoted IP header back to network representation. */ m_copydata(n, 0, icmplen, (caddr_t)&icp->icmp_ip); nip = &icp->icmp_ip; /* * Set up ICMP message mbuf and copy old IP header (without options * in front of ICMP message. * If the original mbuf was meant to bypass the firewall, the error * reply should bypass as well. */ m->m_flags |= n->m_flags & M_SKIP_FIREWALL; KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ip), ("insufficient space for ip header")); m->m_data -= sizeof(struct ip); m->m_len += sizeof(struct ip); m->m_pkthdr.len = m->m_len; m->m_pkthdr.rcvif = n->m_pkthdr.rcvif; nip = mtod(m, struct ip *); bcopy((caddr_t)oip, (caddr_t)nip, sizeof(struct ip)); nip->ip_len = htons(m->m_len); nip->ip_v = IPVERSION; nip->ip_hl = 5; nip->ip_p = IPPROTO_ICMP; nip->ip_tos = 0; nip->ip_off = 0; if (V_error_keeptags) m_tag_copy_chain(m, n, M_NOWAIT); icmp_reflect(m); freeit: m_freem(n); } /* * Process a received ICMP message. */ int icmp_input(struct mbuf **mp, int *offp, int proto) { struct icmp *icp; struct in_ifaddr *ia; struct mbuf *m = *mp; struct ip *ip = mtod(m, struct ip *); struct sockaddr_in icmpsrc, icmpdst, icmpgw; int hlen = *offp; int icmplen = ntohs(ip->ip_len) - *offp; int i, code; void (*ctlfunc)(int, struct sockaddr *, void *); int fibnum; NET_EPOCH_ASSERT(); *mp = NULL; /* * Locate icmp structure in mbuf, and check * that not corrupted and of at least minimum length. */ #ifdef ICMPPRINTFS if (icmpprintfs) { char srcbuf[INET_ADDRSTRLEN]; char dstbuf[INET_ADDRSTRLEN]; printf("icmp_input from %s to %s, len %d\n", inet_ntoa_r(ip->ip_src, srcbuf), inet_ntoa_r(ip->ip_dst, dstbuf), icmplen); } #endif if (icmplen < ICMP_MINLEN) { ICMPSTAT_INC(icps_tooshort); goto freeit; } i = hlen + min(icmplen, ICMP_ADVLENMIN); if (m->m_len < i && (m = m_pullup(m, i)) == NULL) { ICMPSTAT_INC(icps_tooshort); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); m->m_len -= hlen; m->m_data += hlen; icp = mtod(m, struct icmp *); if (in_cksum(m, icmplen)) { ICMPSTAT_INC(icps_checksum); goto freeit; } m->m_len += hlen; m->m_data -= hlen; #ifdef ICMPPRINTFS if (icmpprintfs) printf("icmp_input, type %d code %d\n", icp->icmp_type, icp->icmp_code); #endif /* * Message type specific processing. */ if (icp->icmp_type > ICMP_MAXTYPE) goto raw; /* Initialize */ bzero(&icmpsrc, sizeof(icmpsrc)); icmpsrc.sin_len = sizeof(struct sockaddr_in); icmpsrc.sin_family = AF_INET; bzero(&icmpdst, sizeof(icmpdst)); icmpdst.sin_len = sizeof(struct sockaddr_in); icmpdst.sin_family = AF_INET; bzero(&icmpgw, sizeof(icmpgw)); icmpgw.sin_len = sizeof(struct sockaddr_in); icmpgw.sin_family = AF_INET; ICMPSTAT_INC(icps_inhist[icp->icmp_type]); code = icp->icmp_code; switch (icp->icmp_type) { case ICMP_UNREACH: switch (code) { case ICMP_UNREACH_NET: case ICMP_UNREACH_HOST: case ICMP_UNREACH_SRCFAIL: case ICMP_UNREACH_NET_UNKNOWN: case ICMP_UNREACH_HOST_UNKNOWN: case ICMP_UNREACH_ISOLATED: case ICMP_UNREACH_TOSNET: case ICMP_UNREACH_TOSHOST: case ICMP_UNREACH_HOST_PRECEDENCE: case ICMP_UNREACH_PRECEDENCE_CUTOFF: code = PRC_UNREACH_NET; break; case ICMP_UNREACH_NEEDFRAG: code = PRC_MSGSIZE; break; /* * RFC 1122, Sections 3.2.2.1 and 4.2.3.9. * Treat subcodes 2,3 as immediate RST */ case ICMP_UNREACH_PROTOCOL: code = PRC_UNREACH_PROTOCOL; break; case ICMP_UNREACH_PORT: code = PRC_UNREACH_PORT; break; case ICMP_UNREACH_NET_PROHIB: case ICMP_UNREACH_HOST_PROHIB: case ICMP_UNREACH_FILTER_PROHIB: code = PRC_UNREACH_ADMIN_PROHIB; break; default: goto badcode; } goto deliver; case ICMP_TIMXCEED: if (code > 1) goto badcode; code += PRC_TIMXCEED_INTRANS; goto deliver; case ICMP_PARAMPROB: if (code > 1) goto badcode; code = PRC_PARAMPROB; deliver: /* * Problem with datagram; advise higher level routines. */ if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) || icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) { ICMPSTAT_INC(icps_badlen); goto freeit; } /* Discard ICMP's in response to multicast packets */ if (IN_MULTICAST(ntohl(icp->icmp_ip.ip_dst.s_addr))) goto badcode; #ifdef ICMPPRINTFS if (icmpprintfs) printf("deliver to protocol %d\n", icp->icmp_ip.ip_p); #endif icmpsrc.sin_addr = icp->icmp_ip.ip_dst; /* * XXX if the packet contains [IPv4 AH TCP], we can't make a * notification to TCP layer. */ i = sizeof(struct ip) + min(icmplen, ICMP_ADVLENPREF(icp)); ip_stripoptions(m); if (m->m_len < i && (m = m_pullup(m, i)) == NULL) { /* This should actually not happen */ ICMPSTAT_INC(icps_tooshort); return (IPPROTO_DONE); } ip = mtod(m, struct ip *); icp = (struct icmp *)(ip + 1); /* * The upper layer handler can rely on: * - The outer IP header has no options. * - The outer IP header, the ICMP header, the inner IP header, * and the first n bytes of the inner payload are contiguous. * n is at least 8, but might be larger based on * ICMP_ADVLENPREF. See its definition in ip_icmp.h. */ ctlfunc = inetsw[ip_protox[icp->icmp_ip.ip_p]].pr_ctlinput; if (ctlfunc) (*ctlfunc)(code, (struct sockaddr *)&icmpsrc, (void *)&icp->icmp_ip); break; badcode: ICMPSTAT_INC(icps_badcode); break; case ICMP_ECHO: if (!V_icmpbmcastecho && (m->m_flags & (M_MCAST | M_BCAST)) != 0) { ICMPSTAT_INC(icps_bmcastecho); break; } if (badport_bandlim(BANDLIM_ICMP_ECHO) < 0) goto freeit; icp->icmp_type = ICMP_ECHOREPLY; goto reflect; case ICMP_TSTAMP: if (V_icmptstamprepl == 0) break; if (!V_icmpbmcastecho && (m->m_flags & (M_MCAST | M_BCAST)) != 0) { ICMPSTAT_INC(icps_bmcasttstamp); break; } if (icmplen < ICMP_TSLEN) { ICMPSTAT_INC(icps_badlen); break; } if (badport_bandlim(BANDLIM_ICMP_TSTAMP) < 0) goto freeit; icp->icmp_type = ICMP_TSTAMPREPLY; icp->icmp_rtime = iptime(); icp->icmp_ttime = icp->icmp_rtime; /* bogus, do later! */ goto reflect; case ICMP_MASKREQ: if (V_icmpmaskrepl == 0) break; /* * We are not able to respond with all ones broadcast * unless we receive it over a point-to-point interface. */ if (icmplen < ICMP_MASKLEN) break; switch (ip->ip_dst.s_addr) { case INADDR_BROADCAST: case INADDR_ANY: icmpdst.sin_addr = ip->ip_src; break; default: icmpdst.sin_addr = ip->ip_dst; } ia = (struct in_ifaddr *)ifaof_ifpforaddr( (struct sockaddr *)&icmpdst, m->m_pkthdr.rcvif); if (ia == NULL) break; if (ia->ia_ifp == NULL) break; icp->icmp_type = ICMP_MASKREPLY; if (V_icmpmaskfake == 0) icp->icmp_mask = ia->ia_sockmask.sin_addr.s_addr; else icp->icmp_mask = V_icmpmaskfake; if (ip->ip_src.s_addr == 0) { if (ia->ia_ifp->if_flags & IFF_BROADCAST) ip->ip_src = satosin(&ia->ia_broadaddr)->sin_addr; else if (ia->ia_ifp->if_flags & IFF_POINTOPOINT) ip->ip_src = satosin(&ia->ia_dstaddr)->sin_addr; } reflect: ICMPSTAT_INC(icps_reflect); ICMPSTAT_INC(icps_outhist[icp->icmp_type]); icmp_reflect(m); return (IPPROTO_DONE); case ICMP_REDIRECT: if (V_log_redirect) { u_long src, dst, gw; src = ntohl(ip->ip_src.s_addr); dst = ntohl(icp->icmp_ip.ip_dst.s_addr); gw = ntohl(icp->icmp_gwaddr.s_addr); printf("icmp redirect from %d.%d.%d.%d: " "%d.%d.%d.%d => %d.%d.%d.%d\n", (int)(src >> 24), (int)((src >> 16) & 0xff), (int)((src >> 8) & 0xff), (int)(src & 0xff), (int)(dst >> 24), (int)((dst >> 16) & 0xff), (int)((dst >> 8) & 0xff), (int)(dst & 0xff), (int)(gw >> 24), (int)((gw >> 16) & 0xff), (int)((gw >> 8) & 0xff), (int)(gw & 0xff)); } /* * RFC1812 says we must ignore ICMP redirects if we * are acting as router. */ if (V_drop_redirect || V_ipforwarding) break; if (code > 3) goto badcode; if (icmplen < ICMP_ADVLENMIN || icmplen < ICMP_ADVLEN(icp) || icp->icmp_ip.ip_hl < (sizeof(struct ip) >> 2)) { ICMPSTAT_INC(icps_badlen); break; } /* * Short circuit routing redirects to force * immediate change in the kernel's routing * tables. The message is also handed to anyone * listening on a raw socket (e.g. the routing * daemon for use in updating its tables). */ icmpgw.sin_addr = ip->ip_src; icmpdst.sin_addr = icp->icmp_gwaddr; #ifdef ICMPPRINTFS if (icmpprintfs) { char dstbuf[INET_ADDRSTRLEN]; char gwbuf[INET_ADDRSTRLEN]; printf("redirect dst %s to %s\n", inet_ntoa_r(icp->icmp_ip.ip_dst, dstbuf), inet_ntoa_r(icp->icmp_gwaddr, gwbuf)); } #endif icmpsrc.sin_addr = icp->icmp_ip.ip_dst; /* * RFC 1122 says network (code 0,2) redirects SHOULD * be treated identically to the host redirects. * Given that, ignore network masks. */ /* * Variable values: * icmpsrc: route destination * icmpdst: route gateway * icmpgw: message source */ if (icmp_verify_redirect_gateway(&icmpgw, &icmpsrc, &icmpdst, M_GETFIB(m)) != 0) { /* TODO: increment bad redirects here */ break; } for ( fibnum = 0; fibnum < rt_numfibs; fibnum++) { rib_add_redirect(fibnum, (struct sockaddr *)&icmpsrc, (struct sockaddr *)&icmpdst, (struct sockaddr *)&icmpgw, m->m_pkthdr.rcvif, RTF_GATEWAY, V_redirtimeout); } pfctlinput(PRC_REDIRECT_HOST, (struct sockaddr *)&icmpsrc); break; /* * No kernel processing for the following; * just fall through to send to raw listener. */ case ICMP_ECHOREPLY: case ICMP_ROUTERADVERT: case ICMP_ROUTERSOLICIT: case ICMP_TSTAMPREPLY: case ICMP_IREQREPLY: case ICMP_MASKREPLY: case ICMP_SOURCEQUENCH: default: break; } raw: *mp = m; rip_input(mp, offp, proto); return (IPPROTO_DONE); freeit: m_freem(m); return (IPPROTO_DONE); } /* * Reflect the ip packet back to the source */ static void icmp_reflect(struct mbuf *m) { - struct rm_priotracker in_ifa_tracker; struct ip *ip = mtod(m, struct ip *); struct ifaddr *ifa; struct ifnet *ifp; struct in_ifaddr *ia; struct in_addr t; struct nhop_object *nh; struct mbuf *opts = NULL; int optlen = (ip->ip_hl << 2) - sizeof(struct ip); NET_EPOCH_ASSERT(); if (IN_MULTICAST(ntohl(ip->ip_src.s_addr)) || IN_EXPERIMENTAL(ntohl(ip->ip_src.s_addr)) || IN_ZERONET(ntohl(ip->ip_src.s_addr)) ) { m_freem(m); /* Bad return address */ ICMPSTAT_INC(icps_badaddr); goto done; /* Ip_output() will check for broadcast */ } t = ip->ip_dst; ip->ip_dst = ip->ip_src; /* * Source selection for ICMP replies: * * If the incoming packet was addressed directly to one of our * own addresses, use dst as the src for the reply. */ - IN_IFADDR_RLOCK(&in_ifa_tracker); - LIST_FOREACH(ia, INADDR_HASH(t.s_addr), ia_hash) { + CK_LIST_FOREACH(ia, INADDR_HASH(t.s_addr), ia_hash) { if (t.s_addr == IA_SIN(ia)->sin_addr.s_addr) { t = IA_SIN(ia)->sin_addr; - IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto match; } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * If the incoming packet was addressed to one of our broadcast * addresses, use the first non-broadcast address which corresponds * to the incoming interface. */ ifp = m->m_pkthdr.rcvif; if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == t.s_addr) { t = IA_SIN(ia)->sin_addr; goto match; } } } /* * If the packet was transiting through us, use the address of * the interface the packet came through in. If that interface * doesn't have a suitable IP address, the normal selection * criteria apply. */ if (V_icmp_rfi && ifp != NULL) { CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); t = IA_SIN(ia)->sin_addr; goto match; } } /* * If the incoming packet was not addressed directly to us, use * designated interface for icmp replies specified by sysctl * net.inet.icmp.reply_src (default not set). Otherwise continue * with normal source selection. */ if (V_reply_src[0] != '\0' && (ifp = ifunit(V_reply_src))) { CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); t = IA_SIN(ia)->sin_addr; goto match; } } /* * If the packet was transiting through us, use the address of * the interface that is the closest to the packet source. * When we don't have a route back to the packet source, stop here * and drop the packet. */ nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_NONE, 0); if (nh == NULL) { m_freem(m); ICMPSTAT_INC(icps_noroute); goto done; } t = IA_SIN(ifatoia(nh->nh_ifa))->sin_addr; match: #ifdef MAC mac_netinet_icmp_replyinplace(m); #endif ip->ip_src = t; ip->ip_ttl = V_ip_defttl; if (optlen > 0) { u_char *cp; int opt, cnt; u_int len; /* * Retrieve any source routing from the incoming packet; * add on any record-route or timestamp options. */ cp = (u_char *) (ip + 1); if ((opts = ip_srcroute(m)) == NULL && (opts = m_gethdr(M_NOWAIT, MT_DATA))) { opts->m_len = sizeof(struct in_addr); mtod(opts, struct in_addr *)->s_addr = 0; } if (opts) { #ifdef ICMPPRINTFS if (icmpprintfs) printf("icmp_reflect optlen %d rt %d => ", optlen, opts->m_len); #endif for (cnt = optlen; cnt > 0; cnt -= len, cp += len) { opt = cp[IPOPT_OPTVAL]; if (opt == IPOPT_EOL) break; if (opt == IPOPT_NOP) len = 1; else { if (cnt < IPOPT_OLEN + sizeof(*cp)) break; len = cp[IPOPT_OLEN]; if (len < IPOPT_OLEN + sizeof(*cp) || len > cnt) break; } /* * Should check for overflow, but it "can't happen" */ if (opt == IPOPT_RR || opt == IPOPT_TS || opt == IPOPT_SECURITY) { bcopy((caddr_t)cp, mtod(opts, caddr_t) + opts->m_len, len); opts->m_len += len; } } /* Terminate & pad, if necessary */ cnt = opts->m_len % 4; if (cnt) { for (; cnt < 4; cnt++) { *(mtod(opts, caddr_t) + opts->m_len) = IPOPT_EOL; opts->m_len++; } } #ifdef ICMPPRINTFS if (icmpprintfs) printf("%d\n", opts->m_len); #endif } ip_stripoptions(m); } m_tag_delete_nonpersistent(m); m->m_flags &= ~(M_BCAST|M_MCAST); icmp_send(m, opts); done: if (opts) (void)m_free(opts); } /* * Verifies if redirect message is valid, according to RFC 1122 * * @src: sockaddr with address of redirect originator * @dst: sockaddr with destination in question * @gateway: new proposed gateway * * Returns 0 on success. */ static int icmp_verify_redirect_gateway(struct sockaddr_in *src, struct sockaddr_in *dst, struct sockaddr_in *gateway, u_int fibnum) { struct nhop_object *nh; struct ifaddr *ifa; NET_EPOCH_ASSERT(); /* Verify the gateway is directly reachable. */ if ((ifa = ifa_ifwithnet((struct sockaddr *)gateway, 0, fibnum))==NULL) return (ENETUNREACH); /* TODO: fib-aware. */ if (ifa_ifwithaddr_check((struct sockaddr *)gateway)) return (EHOSTUNREACH); nh = fib4_lookup(fibnum, dst->sin_addr, 0, NHR_NONE, 0); if (nh == NULL) return (EINVAL); /* * If the redirect isn't from our current router for this dst, * it's either old or wrong. If it redirects us to ourselves, * we have a routing loop, perhaps as a result of an interface * going down recently. */ if (!sa_equal((struct sockaddr *)src, &nh->gw_sa)) return (EINVAL); if (nh->nh_ifa != ifa && ifa->ifa_addr->sa_family != AF_LINK) return (EINVAL); /* If host route already exists, ignore redirect. */ if (nh->nh_flags & NHF_HOST) return (EEXIST); /* If the prefix is directly reachable, ignore redirect. */ if (!(nh->nh_flags & NHF_GATEWAY)) return (EEXIST); return (0); } /* * Send an icmp packet back to the ip level, * after supplying a checksum. */ static void icmp_send(struct mbuf *m, struct mbuf *opts) { struct ip *ip = mtod(m, struct ip *); int hlen; struct icmp *icp; hlen = ip->ip_hl << 2; m->m_data += hlen; m->m_len -= hlen; icp = mtod(m, struct icmp *); icp->icmp_cksum = 0; icp->icmp_cksum = in_cksum(m, ntohs(ip->ip_len) - hlen); m->m_data -= hlen; m->m_len += hlen; m->m_pkthdr.rcvif = (struct ifnet *)0; #ifdef ICMPPRINTFS if (icmpprintfs) { char dstbuf[INET_ADDRSTRLEN]; char srcbuf[INET_ADDRSTRLEN]; printf("icmp_send dst %s src %s\n", inet_ntoa_r(ip->ip_dst, dstbuf), inet_ntoa_r(ip->ip_src, srcbuf)); } #endif (void) ip_output(m, opts, NULL, 0, NULL, NULL); } /* * Return milliseconds since 00:00 UTC in network format. */ uint32_t iptime(void) { struct timeval atv; u_long t; getmicrotime(&atv); t = (atv.tv_sec % (24*60*60)) * 1000 + atv.tv_usec / 1000; return (htonl(t)); } /* * Return the next larger or smaller MTU plateau (table from RFC 1191) * given current value MTU. If DIR is less than zero, a larger plateau * is returned; otherwise, a smaller value is returned. */ int ip_next_mtu(int mtu, int dir) { static int mtutab[] = { 65535, 32000, 17914, 8166, 4352, 2002, 1492, 1280, 1006, 508, 296, 68, 0 }; int i, size; size = (sizeof mtutab) / (sizeof mtutab[0]); if (dir >= 0) { for (i = 0; i < size; i++) if (mtu > mtutab[i]) return mtutab[i]; } else { for (i = size - 1; i >= 0; i--) if (mtu < mtutab[i]) return mtutab[i]; if (mtu == mtutab[0]) return mtutab[0]; } return 0; } #endif /* INET */ /* * badport_bandlim() - check for ICMP bandwidth limit * * Return 0 if it is ok to send an ICMP error response, -1 if we have * hit our bandwidth limit and it is not ok. * * If icmplim is <= 0, the feature is disabled and 0 is returned. * * For now we separate the TCP and UDP subsystems w/ different 'which' * values. We may eventually remove this separation (and simplify the * code further). * * Note that the printing of the error message is delayed so we can * properly print the icmp error rate that the system was trying to do * (i.e. 22000/100 pps, etc...). This can cause long delays in printing * the 'final' error, but it doesn't make sense to solve the printing * delay with more complex code. */ struct icmp_rate { const char *descr; struct counter_rate cr; }; VNET_DEFINE_STATIC(struct icmp_rate, icmp_rates[BANDLIM_MAX]) = { { "icmp unreach response" }, { "icmp ping response" }, { "icmp tstamp response" }, { "closed port RST response" }, { "open port RST response" }, { "icmp6 unreach response" }, { "sctp ootb response" } }; #define V_icmp_rates VNET(icmp_rates) static void icmp_bandlimit_init(void) { for (int i = 0; i < BANDLIM_MAX; i++) { V_icmp_rates[i].cr.cr_rate = counter_u64_alloc(M_WAITOK); V_icmp_rates[i].cr.cr_ticks = ticks; } } VNET_SYSINIT(icmp_bandlimit, SI_SUB_PROTO_DOMAIN, SI_ORDER_ANY, icmp_bandlimit_init, NULL); static void icmp_bandlimit_uninit(void) { for (int i = 0; i < BANDLIM_MAX; i++) counter_u64_free(V_icmp_rates[i].cr.cr_rate); } VNET_SYSUNINIT(icmp_bandlimit, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, icmp_bandlimit_uninit, NULL); int badport_bandlim(int which) { int64_t pps; if (V_icmplim == 0 || which == BANDLIM_UNLIMITED) return (0); KASSERT(which >= 0 && which < BANDLIM_MAX, ("%s: which %d", __func__, which)); pps = counter_ratecheck(&V_icmp_rates[which].cr, V_icmplim); if (pps == -1) return (-1); if (pps > 0 && V_icmplim_output) log(LOG_NOTICE, "Limiting %s from %jd to %d packets/sec\n", V_icmp_rates[which].descr, (intmax_t )pps, V_icmplim); return (0); } diff --git a/sys/netinet/ip_input.c b/sys/netinet/ip_input.c index 465c00e4dac7..dc122dd62e99 100644 --- a/sys/netinet/ip_input.c +++ b/sys/netinet/ip_input.c @@ -1,1439 +1,1435 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_input.c 8.2 (Berkeley) 1/4/94 */ #include __FBSDID("$FreeBSD$"); #include "opt_bootp.h" #include "opt_ipstealth.h" #include "opt_ipsec.h" #include "opt_route.h" #include "opt_rss.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CTASSERT CTASSERT(sizeof(struct ip) == 20); #endif /* IP reassembly functions are defined in ip_reass.c. */ extern void ipreass_init(void); extern void ipreass_drain(void); extern void ipreass_slowtimo(void); #ifdef VIMAGE extern void ipreass_destroy(void); #endif -struct rmlock in_ifaddr_lock; -RM_SYSINIT(in_ifaddr_lock, &in_ifaddr_lock, "in_ifaddr_lock"); - VNET_DEFINE(int, rsvp_on); VNET_DEFINE(int, ipforwarding); SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipforwarding), 0, "Enable IP forwarding between interfaces"); /* * Respond with an ICMP host redirect when we forward a packet out of * the same interface on which it was received. See RFC 792. */ VNET_DEFINE(int, ipsendredirects) = 1; SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsendredirects), 0, "Enable sending IP redirects"); /* * XXX - Setting ip_checkinterface mostly implements the receive side of * the Strong ES model described in RFC 1122, but since the routing table * and transmit implementation do not implement the Strong ES model, * setting this to 1 results in an odd hybrid. * * XXX - ip_checkinterface currently must be disabled if you use ipnat * to translate the destination address to another local interface. * * XXX - ip_checkinterface must be disabled if you add IP aliases * to the loopback interface instead of the interface where the * packets for those addresses are received. */ VNET_DEFINE_STATIC(int, ip_checkinterface); #define V_ip_checkinterface VNET(ip_checkinterface) SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_checkinterface), 0, "Verify packet arrives on correct interface"); VNET_DEFINE(pfil_head_t, inet_pfil_head); /* Packet filter hooks */ static struct netisr_handler ip_nh = { .nh_name = "ip", .nh_handler = ip_input, .nh_proto = NETISR_IP, #ifdef RSS .nh_m2cpuid = rss_soft_m2cpuid_v4, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, #else .nh_policy = NETISR_POLICY_FLOW, #endif }; #ifdef RSS /* * Directly dispatched frames are currently assumed * to have a flowid already calculated. * * It should likely have something that assert it * actually has valid flow details. */ static struct netisr_handler ip_direct_nh = { .nh_name = "ip_direct", .nh_handler = ip_direct_input, .nh_proto = NETISR_IP_DIRECT, .nh_m2cpuid = rss_soft_m2cpuid_v4, .nh_policy = NETISR_POLICY_CPU, .nh_dispatch = NETISR_DISPATCH_HYBRID, }; #endif extern struct domain inetdomain; extern struct protosw inetsw[]; u_char ip_protox[IPPROTO_MAX]; VNET_DEFINE(struct in_ifaddrhead, in_ifaddrhead); /* first inet address */ VNET_DEFINE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); /* inet addr hash table */ VNET_DEFINE(u_long, in_ifaddrhmask); /* mask for hash table */ +/* Make sure it is safe to use hashinit(9) on CK_LIST. */ +CTASSERT(sizeof(struct in_ifaddrhashhead) == sizeof(LIST_HEAD(, in_addr))); + #ifdef IPCTL_DEFMTU SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW, &ip_mtu, 0, "Default MTU"); #endif #ifdef IPSTEALTH VNET_DEFINE(int, ipstealth); SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipstealth), 0, "IP stealth mode, no TTL decrementation on forwarding"); #endif /* * IP statistics are stored in the "array" of counter(9)s. */ VNET_PCPUSTAT_DEFINE(struct ipstat, ipstat); VNET_PCPUSTAT_SYSINIT(ipstat); SYSCTL_VNET_PCPUSTAT(_net_inet_ip, IPCTL_STATS, stats, struct ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)"); #ifdef VIMAGE VNET_PCPUSTAT_SYSUNINIT(ipstat); #endif /* VIMAGE */ /* * Kernel module interface for updating ipstat. The argument is an index * into ipstat treated as an array. */ void kmod_ipstat_inc(int statnum) { counter_u64_add(VNET(ipstat)[statnum], 1); } void kmod_ipstat_dec(int statnum) { counter_u64_add(VNET(ipstat)[statnum], -1); } static int sysctl_netinet_intr_queue_maxlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&ip_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&ip_nh, qlimit)); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_netinet_intr_queue_maxlen, "I", "Maximum size of the IP input queue"); static int sysctl_netinet_intr_queue_drops(SYSCTL_HANDLER_ARGS) { u_int64_t qdrops_long; int error, qdrops; netisr_getqdrops(&ip_nh, &qdrops_long); qdrops = qdrops_long; error = sysctl_handle_int(oidp, &qdrops, 0, req); if (error || !req->newptr) return (error); if (qdrops != 0) return (EINVAL); netisr_clearqdrops(&ip_nh); return (0); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, sysctl_netinet_intr_queue_drops, "I", "Number of packets dropped from the IP input queue"); #ifdef RSS static int sysctl_netinet_intr_direct_queue_maxlen(SYSCTL_HANDLER_ARGS) { int error, qlimit; netisr_getqlimit(&ip_direct_nh, &qlimit); error = sysctl_handle_int(oidp, &qlimit, 0, req); if (error || !req->newptr) return (error); if (qlimit < 1) return (EINVAL); return (netisr_setqlimit(&ip_direct_nh, qlimit)); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQMAXLEN, intr_direct_queue_maxlen, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, sysctl_netinet_intr_direct_queue_maxlen, "I", "Maximum size of the IP direct input queue"); static int sysctl_netinet_intr_direct_queue_drops(SYSCTL_HANDLER_ARGS) { u_int64_t qdrops_long; int error, qdrops; netisr_getqdrops(&ip_direct_nh, &qdrops_long); qdrops = qdrops_long; error = sysctl_handle_int(oidp, &qdrops, 0, req); if (error || !req->newptr) return (error); if (qdrops != 0) return (EINVAL); netisr_clearqdrops(&ip_direct_nh); return (0); } SYSCTL_PROC(_net_inet_ip, IPCTL_INTRDQDROPS, intr_direct_queue_drops, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0, sysctl_netinet_intr_direct_queue_drops, "I", "Number of packets dropped from the IP direct input queue"); #endif /* RSS */ /* * IP initialization: fill in IP protocol switch table. * All protocols not implemented in kernel go to raw IP protocol handler. */ void ip_init(void) { struct pfil_head_args args; struct protosw *pr; int i; CK_STAILQ_INIT(&V_in_ifaddrhead); V_in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &V_in_ifaddrhmask); /* Initialize IP reassembly queue. */ ipreass_init(); /* Initialize packet filter hooks. */ args.pa_version = PFIL_VERSION; args.pa_flags = PFIL_IN | PFIL_OUT; args.pa_type = PFIL_TYPE_IP4; args.pa_headname = PFIL_INET_NAME; V_inet_pfil_head = pfil_head_register(&args); if (hhook_head_register(HHOOK_TYPE_IPSEC_IN, AF_INET, &V_ipsec_hhh_in[HHOOK_IPSEC_INET], HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register input helper hook\n", __func__); if (hhook_head_register(HHOOK_TYPE_IPSEC_OUT, AF_INET, &V_ipsec_hhh_out[HHOOK_IPSEC_INET], HHOOK_WAITOK | HHOOK_HEADISINVNET) != 0) printf("%s: WARNING: unable to register output helper hook\n", __func__); /* Skip initialization of globals for non-default instances. */ #ifdef VIMAGE if (!IS_DEFAULT_VNET(curvnet)) { netisr_register_vnet(&ip_nh); #ifdef RSS netisr_register_vnet(&ip_direct_nh); #endif return; } #endif pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) panic("ip_init: PF_INET not found"); /* Initialize the entire ip_protox[] array to IPPROTO_RAW. */ for (i = 0; i < IPPROTO_MAX; i++) ip_protox[i] = pr - inetsw; /* * Cycle through IP protocols and put them into the appropriate place * in ip_protox[]. */ for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) { /* Be careful to only index valid IP protocols. */ if (pr->pr_protocol < IPPROTO_MAX) ip_protox[pr->pr_protocol] = pr - inetsw; } netisr_register(&ip_nh); #ifdef RSS netisr_register(&ip_direct_nh); #endif } #ifdef VIMAGE static void ip_destroy(void *unused __unused) { int error; #ifdef RSS netisr_unregister_vnet(&ip_direct_nh); #endif netisr_unregister_vnet(&ip_nh); pfil_head_unregister(V_inet_pfil_head); error = hhook_head_deregister(V_ipsec_hhh_in[HHOOK_IPSEC_INET]); if (error != 0) { printf("%s: WARNING: unable to deregister input helper hook " "type HHOOK_TYPE_IPSEC_IN, id HHOOK_IPSEC_INET: " "error %d returned\n", __func__, error); } error = hhook_head_deregister(V_ipsec_hhh_out[HHOOK_IPSEC_INET]); if (error != 0) { printf("%s: WARNING: unable to deregister output helper hook " "type HHOOK_TYPE_IPSEC_OUT, id HHOOK_IPSEC_INET: " "error %d returned\n", __func__, error); } /* Remove the IPv4 addresses from all interfaces. */ in_ifscrub_all(); /* Make sure the IPv4 routes are gone as well. */ rib_flush_routes_family(AF_INET); /* Destroy IP reassembly queue. */ ipreass_destroy(); /* Cleanup in_ifaddr hash table; should be empty. */ hashdestroy(V_in_ifaddrhashtbl, M_IFADDR, V_in_ifaddrhmask); } VNET_SYSUNINIT(ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, ip_destroy, NULL); #endif #ifdef RSS /* * IP direct input routine. * * This is called when reinjecting completed fragments where * all of the previous checking and book-keeping has been done. */ void ip_direct_input(struct mbuf *m) { struct ip *ip; int hlen; ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (IPSEC_ENABLED(ipv4)) { if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) return; } #endif /* IPSEC */ IPSTAT_INC(ips_delivered); (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); return; } #endif /* * Ip input routine. Checksum and byte swap header. If fragmented * try to reassemble. Process options. Pass to next level. */ void ip_input(struct mbuf *m) { MROUTER_RLOCK_TRACKER; - struct rm_priotracker in_ifa_tracker; struct ip *ip = NULL; struct in_ifaddr *ia = NULL; struct ifaddr *ifa; struct ifnet *ifp; int checkif, hlen = 0; uint16_t sum, ip_len; int dchg = 0; /* dest changed after fw */ struct in_addr odst; /* original dst address */ M_ASSERTPKTHDR(m); NET_EPOCH_ASSERT(); if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; /* Set up some basics that will be used later. */ ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; ip_len = ntohs(ip->ip_len); goto ours; } IPSTAT_INC(ips_total); if (m->m_pkthdr.len < sizeof(struct ip)) goto tooshort; if (m->m_len < sizeof (struct ip) && (m = m_pullup(m, sizeof (struct ip))) == NULL) { IPSTAT_INC(ips_toosmall); return; } ip = mtod(m, struct ip *); if (ip->ip_v != IPVERSION) { IPSTAT_INC(ips_badvers); goto bad; } hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) { /* minimum header length */ IPSTAT_INC(ips_badhlen); goto bad; } if (hlen > m->m_len) { if ((m = m_pullup(m, hlen)) == NULL) { IPSTAT_INC(ips_badhlen); return; } ip = mtod(m, struct ip *); } IP_PROBE(receive, NULL, NULL, ip, m->m_pkthdr.rcvif, ip, NULL); /* IN_LOOPBACK must not appear on the wire - RFC1122 */ ifp = m->m_pkthdr.rcvif; if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) || IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) { if ((ifp->if_flags & IFF_LOOPBACK) == 0) { IPSTAT_INC(ips_badaddr); goto bad; } } if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID); } else { if (hlen == sizeof(struct ip)) { sum = in_cksum_hdr(ip); } else { sum = in_cksum(m, hlen); } } if (sum) { IPSTAT_INC(ips_badsum); goto bad; } #ifdef ALTQ if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) /* packet is dropped by traffic conditioner */ return; #endif ip_len = ntohs(ip->ip_len); if (ip_len < hlen) { IPSTAT_INC(ips_badlen); goto bad; } /* * Check that the amount of data in the buffers * is as at least much as the IP header would have us expect. * Trim mbufs if longer than we expect. * Drop packet if shorter than we expect. */ if (m->m_pkthdr.len < ip_len) { tooshort: IPSTAT_INC(ips_tooshort); goto bad; } if (m->m_pkthdr.len > ip_len) { if (m->m_len == m->m_pkthdr.len) { m->m_len = ip_len; m->m_pkthdr.len = ip_len; } else m_adj(m, ip_len - m->m_pkthdr.len); } /* * Try to forward the packet, but if we fail continue. * ip_tryforward() does not generate redirects, so fall * through to normal processing if redirects are required. * ip_tryforward() does inbound and outbound packet firewall * processing. If firewall has decided that destination becomes * our local address, it sets M_FASTFWD_OURS flag. In this * case skip another inbound firewall processing and update * ip pointer. */ if (V_ipforwarding != 0 #if defined(IPSEC) || defined(IPSEC_SUPPORT) && (!IPSEC_ENABLED(ipv4) || IPSEC_CAPS(ipv4, m, IPSEC_CAP_OPERABLE) == 0) #endif ) { if ((m = ip_tryforward(m)) == NULL) return; if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; ip = mtod(m, struct ip *); goto ours; } } #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* * Bypass packet filtering for packets previously handled by IPsec. */ if (IPSEC_ENABLED(ipv4) && IPSEC_CAPS(ipv4, m, IPSEC_CAP_BYPASS_FILTER) != 0) goto passin; #endif /* * Run through list of hooks for input packets. * * NB: Beware of the destination address changing (e.g. * by NAT rewriting). When this happens, tell * ip_forward to do the right thing. */ /* Jump over all PFIL processing if hooks are not active. */ if (!PFIL_HOOKED_IN(V_inet_pfil_head)) goto passin; odst = ip->ip_dst; if (pfil_run_hooks(V_inet_pfil_head, &m, ifp, PFIL_IN, NULL) != PFIL_PASS) return; if (m == NULL) /* consumed by filter */ return; ip = mtod(m, struct ip *); dchg = (odst.s_addr != ip->ip_dst.s_addr); ifp = m->m_pkthdr.rcvif; if (m->m_flags & M_FASTFWD_OURS) { m->m_flags &= ~M_FASTFWD_OURS; goto ours; } if (m->m_flags & M_IP_NEXTHOP) { if (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL) { /* * Directly ship the packet on. This allows * forwarding packets originally destined to us * to some other directly connected host. */ ip_forward(m, 1); return; } } passin: /* * Process options and, if not destined for us, * ship it on. ip_dooptions returns 1 when an * error was detected (causing an icmp message * to be sent and the original packet to be freed). */ if (hlen > sizeof (struct ip) && ip_dooptions(m, 0)) return; /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no * matter if it is destined to another node, or whether it is * a multicast one, RSVP wants it! and prevents it from being forwarded * anywhere else. Also checks if the rsvp daemon is running before * grabbing the packet. */ if (V_rsvp_on && ip->ip_p==IPPROTO_RSVP) goto ours; /* * Check our list of addresses, to see if the packet is for us. * If we don't have any addresses, assume any unicast packet * we receive might be for us (and let the upper layers deal * with it). */ if (CK_STAILQ_EMPTY(&V_in_ifaddrhead) && (m->m_flags & (M_MCAST|M_BCAST)) == 0) goto ours; /* * Enable a consistency check between the destination address * and the arrival interface for a unicast packet (the RFC 1122 * strong ES model) if IP forwarding is disabled and the packet * is not locally generated and the packet is not subject to * 'ipfw fwd'. * * XXX - Checking also should be disabled if the destination * address is ipnat'ed to a different interface. * * XXX - Checking is incompatible with IP aliases added * to the loopback interface instead of the interface where * the packets are received. * * XXX - This is the case for carp vhost IPs as well so we * insert a workaround. If the packet got here, we already * checked with carp_iamatch() and carp_forus(). */ checkif = V_ip_checkinterface && (V_ipforwarding == 0) && ifp != NULL && ((ifp->if_flags & IFF_LOOPBACK) == 0) && ifp->if_carp == NULL && (dchg == 0); /* * Check for exact addresses in the hash bucket. */ - IN_IFADDR_RLOCK(&in_ifa_tracker); - LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { + CK_LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { /* * If the address matches, verify that the packet * arrived via the correct interface if checking is * enabled. */ if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr && (!checkif || ia->ia_ifp == ifp)) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); - IN_IFADDR_RUNLOCK(&in_ifa_tracker); goto ours; } } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); /* * Check for broadcast addresses. * * Only accept broadcast packets that arrive via the matching * interface. Reception of forwarded directed broadcasts would * be handled via ip_forward() and ether_output() with the loopback * into the stack for SIMPLEX interfaces handled by ether_output(). */ if (ifp != NULL && ifp->if_flags & IFF_BROADCAST) { CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = ifatoia(ifa); if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr == ip->ip_dst.s_addr) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); goto ours; } #ifdef BOOTP_COMPAT if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY) { counter_u64_add(ia->ia_ifa.ifa_ipackets, 1); counter_u64_add(ia->ia_ifa.ifa_ibytes, m->m_pkthdr.len); goto ours; } #endif } ia = NULL; } if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { MROUTER_RLOCK(); /* * RFC 3927 2.7: Do not forward multicast packets from * IN_LINKLOCAL. */ if (V_ip_mrouter && !IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { /* * If we are acting as a multicast router, all * incoming multicast packets are passed to the * kernel-level multicast forwarding function. * The packet is returned (relatively) intact; if * ip_mforward() returns a non-zero value, the packet * must be discarded, else it may be accepted below. */ if (ip_mforward && ip_mforward(ip, ifp, m, 0) != 0) { MROUTER_RUNLOCK(); IPSTAT_INC(ips_cantforward); m_freem(m); return; } /* * The process-level routing daemon needs to receive * all multicast IGMP packets, whether or not this * host belongs to their destination groups. */ if (ip->ip_p == IPPROTO_IGMP) { MROUTER_RUNLOCK(); goto ours; } IPSTAT_INC(ips_forward); } MROUTER_RUNLOCK(); /* * Assume the packet is for us, to avoid prematurely taking * a lock on the in_multi hash. Protocols must perform * their own filtering and update statistics accordingly. */ goto ours; } if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST) goto ours; if (ip->ip_dst.s_addr == INADDR_ANY) goto ours; /* RFC 3927 2.7: Do not forward packets to or from IN_LINKLOCAL. */ if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr)) || IN_LINKLOCAL(ntohl(ip->ip_src.s_addr))) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } /* * Not for us; forward if possible and desirable. */ if (V_ipforwarding == 0) { IPSTAT_INC(ips_cantforward); m_freem(m); } else { ip_forward(m, dchg); } return; ours: #ifdef IPSTEALTH /* * IPSTEALTH: Process non-routing options only * if the packet is destined for us. */ if (V_ipstealth && hlen > sizeof (struct ip) && ip_dooptions(m, 1)) return; #endif /* IPSTEALTH */ /* * Attempt reassembly; if it succeeds, proceed. * ip_reass() will return a different mbuf. */ if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) { /* XXXGL: shouldn't we save & set m_flags? */ m = ip_reass(m); if (m == NULL) return; ip = mtod(m, struct ip *); /* Get the header length of the reassembled packet */ hlen = ip->ip_hl << 2; } #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (IPSEC_ENABLED(ipv4)) { if (IPSEC_INPUT(ipv4, m, hlen, ip->ip_p) != 0) return; } #endif /* IPSEC */ /* * Switch out to protocol's input routine. */ IPSTAT_INC(ips_delivered); (*inetsw[ip_protox[ip->ip_p]].pr_input)(&m, &hlen, ip->ip_p); return; bad: m_freem(m); } /* * IP timer processing; * if a timer expires on a reassembly * queue, discard it. */ void ip_slowtimo(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); ipreass_slowtimo(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } void ip_drain(void) { VNET_ITERATOR_DECL(vnet_iter); VNET_LIST_RLOCK_NOSLEEP(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); ipreass_drain(); CURVNET_RESTORE(); } VNET_LIST_RUNLOCK_NOSLEEP(); } /* * The protocol to be inserted into ip_protox[] must be already registered * in inetsw[], either statically or through pf_proto_register(). */ int ipproto_register(short ipproto) { struct protosw *pr; /* Sanity checks. */ if (ipproto <= 0 || ipproto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* * The protocol slot must not be occupied by another protocol * already. An index pointing to IPPROTO_RAW is unused. */ pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */ return (EEXIST); /* Find the protocol position in inetsw[] and set the index. */ for (pr = inetdomain.dom_protosw; pr < inetdomain.dom_protoswNPROTOSW; pr++) { if (pr->pr_domain->dom_family == PF_INET && pr->pr_protocol && pr->pr_protocol == ipproto) { ip_protox[pr->pr_protocol] = pr - inetsw; return (0); } } return (EPROTONOSUPPORT); } int ipproto_unregister(short ipproto) { struct protosw *pr; /* Sanity checks. */ if (ipproto <= 0 || ipproto >= IPPROTO_MAX) return (EPROTONOSUPPORT); /* Check if the protocol was indeed registered. */ pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW); if (pr == NULL) return (EPFNOSUPPORT); if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */ return (ENOENT); /* Reset the protocol slot to IPPROTO_RAW. */ ip_protox[ipproto] = pr - inetsw; return (0); } u_char inetctlerrmap[PRC_NCMDS] = { 0, 0, 0, 0, 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH, EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED, EMSGSIZE, EHOSTUNREACH, 0, 0, 0, 0, EHOSTUNREACH, 0, ENOPROTOOPT, ECONNREFUSED }; /* * Forward a packet. If some error occurs return the sender * an icmp packet. Note we can't always generate a meaningful * icmp message because icmp doesn't have a large enough repertoire * of codes and types. * * If not forwarding, just drop the packet. This could be confusing * if ipforwarding was zero but some routing protocol was advancing * us as a gateway to somewhere. However, we must let the routing * protocol deal with that. * * The srcrt parameter indicates whether the packet is being forwarded * via a source route. */ void ip_forward(struct mbuf *m, int srcrt) { struct ip *ip = mtod(m, struct ip *); struct in_ifaddr *ia; struct mbuf *mcopy; struct sockaddr_in *sin; struct in_addr dest; struct route ro; uint32_t flowid; int error, type = 0, code = 0, mtu = 0; NET_EPOCH_ASSERT(); if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) { IPSTAT_INC(ips_cantforward); m_freem(m); return; } if ( #ifdef IPSTEALTH V_ipstealth == 0 && #endif ip->ip_ttl <= IPTTLDEC) { icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, 0, 0); return; } bzero(&ro, sizeof(ro)); sin = (struct sockaddr_in *)&ro.ro_dst; sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = ip->ip_dst; flowid = m->m_pkthdr.flowid; ro.ro_nh = fib4_lookup(M_GETFIB(m), ip->ip_dst, 0, NHR_REF, flowid); if (ro.ro_nh != NULL) { ia = ifatoia(ro.ro_nh->nh_ifa); } else ia = NULL; /* * Save the IP header and at most 8 bytes of the payload, * in case we need to generate an ICMP message to the src. * * XXX this can be optimized a lot by saving the data in a local * buffer on the stack (72 bytes at most), and only allocating the * mbuf if really necessary. The vast majority of the packets * are forwarded without having to send an ICMP back (either * because unnecessary, or because rate limited), so we are * really we are wasting a lot of work here. * * We don't use m_copym() because it might return a reference * to a shared cluster. Both this function and ip_output() * assume exclusive access to the IP header in `m', so any * data in a cluster may change before we reach icmp_error(). */ mcopy = m_gethdr(M_NOWAIT, m->m_type); if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_NOWAIT)) { /* * It's probably ok if the pkthdr dup fails (because * the deep copy of the tag chain failed), but for now * be conservative and just discard the copy since * code below may some day want the tags. */ m_free(mcopy); mcopy = NULL; } if (mcopy != NULL) { mcopy->m_len = min(ntohs(ip->ip_len), M_TRAILINGSPACE(mcopy)); mcopy->m_pkthdr.len = mcopy->m_len; m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t)); } #ifdef IPSTEALTH if (V_ipstealth == 0) #endif ip->ip_ttl -= IPTTLDEC; #if defined(IPSEC) || defined(IPSEC_SUPPORT) if (IPSEC_ENABLED(ipv4)) { if ((error = IPSEC_FORWARD(ipv4, m)) != 0) { /* mbuf consumed by IPsec */ RO_NHFREE(&ro); m_freem(mcopy); if (error != EINPROGRESS) IPSTAT_INC(ips_cantforward); return; } /* No IPsec processing required */ } #endif /* IPSEC */ /* * If forwarding packet using same interface that it came in on, * perhaps should send a redirect to sender to shortcut a hop. * Only send redirect if source is sending directly to us, * and if packet was not source routed (or has any options). * Also, don't send redirect if forwarding using a default route * or a route modified by a redirect. */ dest.s_addr = 0; if (!srcrt && V_ipsendredirects && ia != NULL && ia->ia_ifp == m->m_pkthdr.rcvif) { struct nhop_object *nh; nh = ro.ro_nh; if (nh != NULL && ((nh->nh_flags & (NHF_REDIRECT|NHF_DEFAULT)) == 0)) { struct in_ifaddr *nh_ia = (struct in_ifaddr *)(nh->nh_ifa); u_long src = ntohl(ip->ip_src.s_addr); if (nh_ia != NULL && (src & nh_ia->ia_subnetmask) == nh_ia->ia_subnet) { /* Router requirements says to only send host redirects */ type = ICMP_REDIRECT; code = ICMP_REDIRECT_HOST; if (nh->nh_flags & NHF_GATEWAY) { if (nh->gw_sa.sa_family == AF_INET) dest.s_addr = nh->gw4_sa.sin_addr.s_addr; else /* Do not redirect in case gw is AF_INET6 */ type = 0; } else dest.s_addr = ip->ip_dst.s_addr; } } } error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL); if (error == EMSGSIZE && ro.ro_nh) mtu = ro.ro_nh->nh_mtu; RO_NHFREE(&ro); if (error) IPSTAT_INC(ips_cantforward); else { IPSTAT_INC(ips_forward); if (type) IPSTAT_INC(ips_redirectsent); else { if (mcopy) m_freem(mcopy); return; } } if (mcopy == NULL) return; switch (error) { case 0: /* forwarded, but need redirect */ /* type, code set above */ break; case ENETUNREACH: case EHOSTUNREACH: case ENETDOWN: case EHOSTDOWN: default: type = ICMP_UNREACH; code = ICMP_UNREACH_HOST; break; case EMSGSIZE: type = ICMP_UNREACH; code = ICMP_UNREACH_NEEDFRAG; /* * If the MTU was set before make sure we are below the * interface MTU. * If the MTU wasn't set before use the interface mtu or * fall back to the next smaller mtu step compared to the * current packet size. */ if (mtu != 0) { if (ia != NULL) mtu = min(mtu, ia->ia_ifp->if_mtu); } else { if (ia != NULL) mtu = ia->ia_ifp->if_mtu; else mtu = ip_next_mtu(ntohs(ip->ip_len), 0); } IPSTAT_INC(ips_cantfrag); break; case ENOBUFS: case EACCES: /* ipfw denied packet */ m_freem(mcopy); return; } icmp_error(mcopy, type, code, dest.s_addr, mtu); } #define CHECK_SO_CT(sp, ct) \ (((sp->so_options & SO_TIMESTAMP) && (sp->so_ts_clock == ct)) ? 1 : 0) void ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip, struct mbuf *m) { bool stamped; stamped = false; if ((inp->inp_socket->so_options & SO_BINTIME) || CHECK_SO_CT(inp->inp_socket, SO_TS_BINTIME)) { struct bintime boottimebin, bt; struct timespec ts1; if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) { mbuf_tstmp2timespec(m, &ts1); timespec2bintime(&ts1, &bt); getboottimebin(&boottimebin); bintime_add(&bt, &boottimebin); } else { bintime(&bt); } *mp = sbcreatecontrol((caddr_t)&bt, sizeof(bt), SCM_BINTIME, SOL_SOCKET); if (*mp != NULL) { mp = &(*mp)->m_next; stamped = true; } } if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME_MICRO)) { struct bintime boottimebin, bt1; struct timespec ts1; struct timeval tv; if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) { mbuf_tstmp2timespec(m, &ts1); timespec2bintime(&ts1, &bt1); getboottimebin(&boottimebin); bintime_add(&bt1, &boottimebin); bintime2timeval(&bt1, &tv); } else { microtime(&tv); } *mp = sbcreatecontrol((caddr_t)&tv, sizeof(tv), SCM_TIMESTAMP, SOL_SOCKET); if (*mp != NULL) { mp = &(*mp)->m_next; stamped = true; } } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_REALTIME)) { struct bintime boottimebin; struct timespec ts, ts1; if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) { mbuf_tstmp2timespec(m, &ts); getboottimebin(&boottimebin); bintime2timespec(&boottimebin, &ts1); timespecadd(&ts, &ts1, &ts); } else { nanotime(&ts); } *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), SCM_REALTIME, SOL_SOCKET); if (*mp != NULL) { mp = &(*mp)->m_next; stamped = true; } } else if (CHECK_SO_CT(inp->inp_socket, SO_TS_MONOTONIC)) { struct timespec ts; if ((m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) mbuf_tstmp2timespec(m, &ts); else nanouptime(&ts); *mp = sbcreatecontrol((caddr_t)&ts, sizeof(ts), SCM_MONOTONIC, SOL_SOCKET); if (*mp != NULL) { mp = &(*mp)->m_next; stamped = true; } } if (stamped && (m->m_flags & (M_PKTHDR | M_TSTMP)) == (M_PKTHDR | M_TSTMP)) { struct sock_timestamp_info sti; bzero(&sti, sizeof(sti)); sti.st_info_flags = ST_INFO_HW; if ((m->m_flags & M_TSTMP_HPREC) != 0) sti.st_info_flags |= ST_INFO_HW_HPREC; *mp = sbcreatecontrol((caddr_t)&sti, sizeof(sti), SCM_TIME_INFO, SOL_SOCKET); if (*mp != NULL) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVDSTADDR) { *mp = sbcreatecontrol((caddr_t)&ip->ip_dst, sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVTTL) { *mp = sbcreatecontrol((caddr_t)&ip->ip_ttl, sizeof(u_char), IP_RECVTTL, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef notyet /* XXX * Moving these out of udp_input() made them even more broken * than they already were. */ /* options were tossed already */ if (inp->inp_flags & INP_RECVOPTS) { *mp = sbcreatecontrol((caddr_t)opts_deleted_above, sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } /* ip_srcroute doesn't do what we want here, need to fix */ if (inp->inp_flags & INP_RECVRETOPTS) { *mp = sbcreatecontrol((caddr_t)ip_srcroute(m), sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #endif if (inp->inp_flags & INP_RECVIF) { struct ifnet *ifp; struct sdlbuf { struct sockaddr_dl sdl; u_char pad[32]; } sdlbuf; struct sockaddr_dl *sdp; struct sockaddr_dl *sdl2 = &sdlbuf.sdl; if ((ifp = m->m_pkthdr.rcvif) && ifp->if_index && ifp->if_index <= V_if_index) { sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr; /* * Change our mind and don't try copy. */ if (sdp->sdl_family != AF_LINK || sdp->sdl_len > sizeof(sdlbuf)) { goto makedummy; } bcopy(sdp, sdl2, sdp->sdl_len); } else { makedummy: sdl2->sdl_len = offsetof(struct sockaddr_dl, sdl_data[0]); sdl2->sdl_family = AF_LINK; sdl2->sdl_index = 0; sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0; } *mp = sbcreatecontrol((caddr_t)sdl2, sdl2->sdl_len, IP_RECVIF, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags & INP_RECVTOS) { *mp = sbcreatecontrol((caddr_t)&ip->ip_tos, sizeof(u_char), IP_RECVTOS, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } if (inp->inp_flags2 & INP_RECVFLOWID) { uint32_t flowid, flow_type; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); /* * XXX should handle the failure of one or the * other - don't populate both? */ *mp = sbcreatecontrol((caddr_t) &flowid, sizeof(uint32_t), IP_FLOWID, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; *mp = sbcreatecontrol((caddr_t) &flow_type, sizeof(uint32_t), IP_FLOWTYPE, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } #ifdef RSS if (inp->inp_flags2 & INP_RECVRSSBUCKETID) { uint32_t flowid, flow_type; uint32_t rss_bucketid; flowid = m->m_pkthdr.flowid; flow_type = M_HASHTYPE_GET(m); if (rss_hash2bucket(flowid, flow_type, &rss_bucketid) == 0) { *mp = sbcreatecontrol((caddr_t) &rss_bucketid, sizeof(uint32_t), IP_RSSBUCKETID, IPPROTO_IP); if (*mp) mp = &(*mp)->m_next; } } #endif } /* * XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the * ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on * locking. This code remains in ip_input.c as ip_mroute.c is optionally * compiled. */ VNET_DEFINE_STATIC(int, ip_rsvp_on); VNET_DEFINE(struct socket *, ip_rsvpd); #define V_ip_rsvp_on VNET(ip_rsvp_on) int ip_rsvp_init(struct socket *so) { if (so->so_type != SOCK_RAW || so->so_proto->pr_protocol != IPPROTO_RSVP) return EOPNOTSUPP; if (V_ip_rsvpd != NULL) return EADDRINUSE; V_ip_rsvpd = so; /* * This may seem silly, but we need to be sure we don't over-increment * the RSVP counter, in case something slips up. */ if (!V_ip_rsvp_on) { V_ip_rsvp_on = 1; V_rsvp_on++; } return 0; } int ip_rsvp_done(void) { V_ip_rsvpd = NULL; /* * This may seem silly, but we need to be sure we don't over-decrement * the RSVP counter, in case something slips up. */ if (V_ip_rsvp_on) { V_ip_rsvp_on = 0; V_rsvp_on--; } return 0; } int rsvp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m; m = *mp; *mp = NULL; if (rsvp_input_p) { /* call the real one if loaded */ *mp = m; rsvp_input_p(mp, offp, proto); return (IPPROTO_DONE); } /* Can still get packets with rsvp_on = 0 if there is a local member * of the group to which the RSVP packet is addressed. But in this * case we want to throw the packet away. */ if (!V_rsvp_on) { m_freem(m); return (IPPROTO_DONE); } if (V_ip_rsvpd != NULL) { *mp = m; rip_input(mp, offp, proto); return (IPPROTO_DONE); } /* Drop the packet */ m_freem(m); return (IPPROTO_DONE); } diff --git a/sys/netpfil/pf/pf.c b/sys/netpfil/pf/pf.c index 17253373628c..bb7667a3e270 100644 --- a/sys/netpfil/pf/pf.c +++ b/sys/netpfil/pf/pf.c @@ -1,7378 +1,7367 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2001 Daniel Hartmeier * Copyright (c) 2002 - 2008 Henning Brauer * Copyright (c) 2012 Gleb Smirnoff * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Effort sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F30602-01-2-0537. * * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ */ #include __FBSDID("$FreeBSD$"); #include "opt_bpf.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_pf.h" #include "opt_sctp.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* dummynet */ #include #include #include #include #include #ifdef INET6 #include #include #include #include #include #include #include #endif /* INET6 */ #if defined(SCTP) || defined(SCTP_SUPPORT) #include #endif #include #include #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x SDT_PROVIDER_DEFINE(pf); SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", "struct pf_kstate *"); SDT_PROBE_DEFINE4(pf, ip, test6, done, "int", "int", "struct pf_krule *", "struct pf_kstate *"); SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", "struct pf_kstate *"); /* * Global variables */ /* state tables */ VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); VNET_DEFINE(struct pf_kpalist, pf_pabuf); VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); VNET_DEFINE(struct pf_kstatus, pf_status); VNET_DEFINE(u_int32_t, ticket_altqs_active); VNET_DEFINE(u_int32_t, ticket_altqs_inactive); VNET_DEFINE(int, altqs_inactive_open); VNET_DEFINE(u_int32_t, ticket_pabuf); VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) VNET_DEFINE(u_char, pf_tcp_secret[16]); #define V_pf_tcp_secret VNET(pf_tcp_secret) VNET_DEFINE(int, pf_tcp_secret_init); #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) VNET_DEFINE(int, pf_tcp_iss_off); #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) VNET_DECLARE(int, pf_vnet_active); #define V_pf_vnet_active VNET(pf_vnet_active) VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); #define V_pf_purge_idx VNET(pf_purge_idx) #ifdef PF_WANT_32_TO_64_COUNTER VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) VNET_DEFINE(struct allrulelist_head, pf_allrulelist); VNET_DEFINE(size_t, pf_allrulecount); VNET_DEFINE(struct pf_krule *, pf_rulemarker); #endif /* * Queue for pf_intr() sends. */ static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); struct pf_send_entry { STAILQ_ENTRY(pf_send_entry) pfse_next; struct mbuf *pfse_m; enum { PFSE_IP, PFSE_IP6, PFSE_ICMP, PFSE_ICMP6, } pfse_type; struct { int type; int code; int mtu; } icmpopts; }; STAILQ_HEAD(pf_send_head, pf_send_entry); VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); #define V_pf_sendqueue VNET(pf_sendqueue) static struct mtx_padalign pf_sendqueue_mtx; MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) /* * Queue for pf_overload_task() tasks. */ struct pf_overload_entry { SLIST_ENTRY(pf_overload_entry) next; struct pf_addr addr; sa_family_t af; uint8_t dir; struct pf_krule *rule; }; SLIST_HEAD(pf_overload_head, pf_overload_entry); VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); #define V_pf_overloadqueue VNET(pf_overloadqueue) VNET_DEFINE_STATIC(struct task, pf_overloadtask); #define V_pf_overloadtask VNET(pf_overloadtask) static struct mtx_padalign pf_overloadqueue_mtx; MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, "pf overload/flush queue", MTX_DEF); #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); struct mtx_padalign pf_unlnkdrules_mtx; MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", MTX_DEF); struct mtx_padalign pf_table_stats_lock; MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", MTX_DEF); VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); #define V_pf_sources_z VNET(pf_sources_z) uma_zone_t pf_mtag_z; VNET_DEFINE(uma_zone_t, pf_state_z); VNET_DEFINE(uma_zone_t, pf_state_key_z); VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); #define PFID_CPUBITS 8 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) #define PFID_MAXID (~PFID_CPUMASK) CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); static void pf_src_tree_remove_state(struct pf_kstate *); static void pf_init_threshold(struct pf_threshold *, u_int32_t, u_int32_t); static void pf_add_threshold(struct pf_threshold *); static int pf_check_threshold(struct pf_threshold *); static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, u_int16_t *, u_int16_t *, struct pf_addr *, u_int16_t, u_int8_t, sa_family_t); static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, struct tcphdr *, struct pf_state_peer *); static void pf_change_icmp(struct pf_addr *, u_int16_t *, struct pf_addr *, struct pf_addr *, u_int16_t, u_int16_t *, u_int16_t *, u_int16_t *, u_int16_t *, u_int8_t, sa_family_t); static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, sa_family_t, struct pf_krule *); static void pf_detach_state(struct pf_kstate *); static int pf_state_key_attach(struct pf_state_key *, struct pf_state_key *, struct pf_kstate *); static void pf_state_key_detach(struct pf_kstate *, int); static int pf_state_key_ctor(void *, int, void *, int); static u_int32_t pf_tcp_iss(struct pf_pdesc *); void pf_rule_to_actions(struct pf_krule *, struct pf_rule_actions *); static int pf_test_rule(struct pf_krule **, struct pf_kstate **, int, struct pfi_kkif *, struct mbuf *, int, struct pf_pdesc *, struct pf_krule **, struct pf_kruleset **, struct inpcb *); static int pf_create_state(struct pf_krule *, struct pf_krule *, struct pf_krule *, struct pf_pdesc *, struct pf_ksrc_node *, struct pf_state_key *, struct pf_state_key *, struct mbuf *, int, u_int16_t, u_int16_t, int *, struct pfi_kkif *, struct pf_kstate **, int, u_int16_t, u_int16_t, int); static int pf_test_fragment(struct pf_krule **, int, struct pfi_kkif *, struct mbuf *, void *, struct pf_pdesc *, struct pf_krule **, struct pf_kruleset **); static int pf_tcp_track_full(struct pf_kstate **, struct pfi_kkif *, struct mbuf *, int, struct pf_pdesc *, u_short *, int *); static int pf_tcp_track_sloppy(struct pf_kstate **, struct pf_pdesc *, u_short *); static int pf_test_state_tcp(struct pf_kstate **, int, struct pfi_kkif *, struct mbuf *, int, void *, struct pf_pdesc *, u_short *); static int pf_test_state_udp(struct pf_kstate **, int, struct pfi_kkif *, struct mbuf *, int, void *, struct pf_pdesc *); static int pf_test_state_icmp(struct pf_kstate **, int, struct pfi_kkif *, struct mbuf *, int, void *, struct pf_pdesc *, u_short *); static int pf_test_state_other(struct pf_kstate **, int, struct pfi_kkif *, struct mbuf *, struct pf_pdesc *); static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, int, u_int16_t); static int pf_check_proto_cksum(struct mbuf *, int, int, u_int8_t, sa_family_t); static void pf_print_state_parts(struct pf_kstate *, struct pf_state_key *, struct pf_state_key *); static int pf_addr_wrap_neq(struct pf_addr_wrap *, struct pf_addr_wrap *); static void pf_patch_8(struct mbuf *, u_int16_t *, u_int8_t *, u_int8_t, bool, u_int8_t); static struct pf_kstate *pf_find_state(struct pfi_kkif *, struct pf_state_key_cmp *, u_int); static int pf_src_connlimit(struct pf_kstate **); static void pf_overload_task(void *v, int pending); static int pf_insert_src_node(struct pf_ksrc_node **, struct pf_krule *, struct pf_addr *, sa_family_t); static u_int pf_purge_expired_states(u_int, int); static void pf_purge_unlinked_rules(void); static int pf_mtag_uminit(void *, int, int); static void pf_mtag_free(struct m_tag *); static void pf_packet_rework_nat(struct mbuf *, struct pf_pdesc *, int, struct pf_state_key *); #ifdef INET static void pf_route(struct mbuf **, struct pf_krule *, int, struct ifnet *, struct pf_kstate *, struct pf_pdesc *, struct inpcb *); #endif /* INET */ #ifdef INET6 static void pf_change_a6(struct pf_addr *, u_int16_t *, struct pf_addr *, u_int8_t); static void pf_route6(struct mbuf **, struct pf_krule *, int, struct ifnet *, struct pf_kstate *, struct pf_pdesc *, struct inpcb *); #endif /* INET6 */ static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); extern int pf_end_threads; extern struct proc *pf_purge_proc; VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); #define PACKET_UNDO_NAT(_m, _pd, _off, _s, _dir) \ do { \ struct pf_state_key *nk; \ if ((_dir) == PF_OUT) \ nk = (_s)->key[PF_SK_STACK]; \ else \ nk = (_s)->key[PF_SK_WIRE]; \ pf_packet_rework_nat(_m, _pd, _off, nk); \ } while (0) #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ (pd)->pf_mtag->flags & PF_PACKET_LOOPED) #define STATE_LOOKUP(i, k, d, s, pd) \ do { \ (s) = pf_find_state((i), (k), (d)); \ SDT_PROBE5(pf, ip, state, lookup, i, k, d, pd, (s)); \ if ((s) == NULL) \ return (PF_DROP); \ if (PACKET_LOOPED(pd)) \ return (PF_PASS); \ } while (0) #define BOUND_IFACE(r, k) \ ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all #define STATE_INC_COUNTERS(s) \ do { \ counter_u64_add(s->rule.ptr->states_cur, 1); \ counter_u64_add(s->rule.ptr->states_tot, 1); \ if (s->anchor.ptr != NULL) { \ counter_u64_add(s->anchor.ptr->states_cur, 1); \ counter_u64_add(s->anchor.ptr->states_tot, 1); \ } \ if (s->nat_rule.ptr != NULL) { \ counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ } \ } while (0) #define STATE_DEC_COUNTERS(s) \ do { \ if (s->nat_rule.ptr != NULL) \ counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ if (s->anchor.ptr != NULL) \ counter_u64_add(s->anchor.ptr->states_cur, -1); \ counter_u64_add(s->rule.ptr->states_cur, -1); \ } while (0) MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); VNET_DEFINE(struct pf_keyhash *, pf_keyhash); VNET_DEFINE(struct pf_idhash *, pf_idhash); VNET_DEFINE(struct pf_srchash *, pf_srchash); SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "pf(4)"); u_long pf_hashmask; u_long pf_srchashmask; static u_long pf_hashsize; static u_long pf_srchashsize; u_long pf_ioctl_maxcount = 65535; SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, &pf_hashsize, 0, "Size of pf(4) states hashtable"); SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); VNET_DEFINE(void *, pf_swi_cookie); VNET_DEFINE(struct intr_event *, pf_swi_ie); VNET_DEFINE(uint32_t, pf_hashseed); #define V_pf_hashseed VNET(pf_hashseed) int pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: if (a->addr32[0] > b->addr32[0]) return (1); if (a->addr32[0] < b->addr32[0]) return (-1); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (a->addr32[3] > b->addr32[3]) return (1); if (a->addr32[3] < b->addr32[3]) return (-1); if (a->addr32[2] > b->addr32[2]) return (1); if (a->addr32[2] < b->addr32[2]) return (-1); if (a->addr32[1] > b->addr32[1]) return (1); if (a->addr32[1] < b->addr32[1]) return (-1); if (a->addr32[0] > b->addr32[0]) return (1); if (a->addr32[0] < b->addr32[0]) return (-1); break; #endif /* INET6 */ default: panic("%s: unknown address family %u", __func__, af); } return (0); } static void pf_packet_rework_nat(struct mbuf *m, struct pf_pdesc *pd, int off, struct pf_state_key *nk) { switch (pd->proto) { case IPPROTO_TCP: { struct tcphdr *th = &pd->hdr.tcp; if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 0, pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], nk->port[pd->didx], 0, pd->af); m_copyback(m, off, sizeof(*th), (caddr_t)th); break; } case IPPROTO_UDP: { struct udphdr *uh = &pd->hdr.udp; if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, &uh->uh_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 1, pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, &uh->uh_sum, &nk->addr[pd->didx], nk->port[pd->didx], 1, pd->af); m_copyback(m, off, sizeof(*uh), (caddr_t)uh); break; } case IPPROTO_ICMP: { struct icmp *ih = &pd->hdr.icmp; if (nk->port[pd->sidx] != ih->icmp_id) { pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( ih->icmp_cksum, ih->icmp_id, nk->port[pd->sidx], 0); ih->icmp_id = nk->port[pd->sidx]; pd->sport = &ih->icmp_id; m_copyback(m, off, ICMP_MINLEN, (caddr_t)ih); } /* FALLTHROUGH */ } default: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { switch (pd->af) { case AF_INET: pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); break; case AF_INET6: PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); break; } } if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { switch (pd->af) { case AF_INET: pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); break; case AF_INET6: PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); break; } } break; } } static __inline uint32_t pf_hashkey(struct pf_state_key *sk) { uint32_t h; h = murmur3_32_hash32((uint32_t *)sk, sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), V_pf_hashseed); return (h & pf_hashmask); } static __inline uint32_t pf_hashsrc(struct pf_addr *addr, sa_family_t af) { uint32_t h; switch (af) { case AF_INET: h = murmur3_32_hash32((uint32_t *)&addr->v4, sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); break; case AF_INET6: h = murmur3_32_hash32((uint32_t *)&addr->v6, sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); break; default: panic("%s: unknown address family %u", __func__, af); } return (h & pf_srchashmask); } #ifdef ALTQ static int pf_state_hash(struct pf_kstate *s) { u_int32_t hv = (intptr_t)s / sizeof(*s); hv ^= crc32(&s->src, sizeof(s->src)); hv ^= crc32(&s->dst, sizeof(s->dst)); if (hv == 0) hv = 1; return (hv); } #endif static __inline void pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) { if (which == PF_PEER_DST || which == PF_PEER_BOTH) s->dst.state = newstate; if (which == PF_PEER_DST) return; if (s->src.state == newstate) return; if (s->creatorid == V_pf_status.hostid && s->key[PF_SK_STACK] != NULL && s->key[PF_SK_STACK]->proto == IPPROTO_TCP && !(TCPS_HAVEESTABLISHED(s->src.state) || s->src.state == TCPS_CLOSED) && (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) atomic_add_32(&V_pf_status.states_halfopen, -1); s->src.state = newstate; } #ifdef INET6 void pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: dst->addr32[0] = src->addr32[0]; break; #endif /* INET */ case AF_INET6: dst->addr32[0] = src->addr32[0]; dst->addr32[1] = src->addr32[1]; dst->addr32[2] = src->addr32[2]; dst->addr32[3] = src->addr32[3]; break; } } #endif /* INET6 */ static void pf_init_threshold(struct pf_threshold *threshold, u_int32_t limit, u_int32_t seconds) { threshold->limit = limit * PF_THRESHOLD_MULT; threshold->seconds = seconds; threshold->count = 0; threshold->last = time_uptime; } static void pf_add_threshold(struct pf_threshold *threshold) { u_int32_t t = time_uptime, diff = t - threshold->last; if (diff >= threshold->seconds) threshold->count = 0; else threshold->count -= threshold->count * diff / threshold->seconds; threshold->count += PF_THRESHOLD_MULT; threshold->last = t; } static int pf_check_threshold(struct pf_threshold *threshold) { return (threshold->count > threshold->limit); } static int pf_src_connlimit(struct pf_kstate **state) { struct pf_overload_entry *pfoe; int bad = 0; PF_STATE_LOCK_ASSERT(*state); (*state)->src_node->conn++; (*state)->src.tcp_est = 1; pf_add_threshold(&(*state)->src_node->conn_rate); if ((*state)->rule.ptr->max_src_conn && (*state)->rule.ptr->max_src_conn < (*state)->src_node->conn) { counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); bad++; } if ((*state)->rule.ptr->max_src_conn_rate.limit && pf_check_threshold(&(*state)->src_node->conn_rate)) { counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); bad++; } if (!bad) return (0); /* Kill this state. */ (*state)->timeout = PFTM_PURGE; pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); if ((*state)->rule.ptr->overload_tbl == NULL) return (1); /* Schedule overloading and flushing task. */ pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); if (pfoe == NULL) return (1); /* too bad :( */ bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); pfoe->af = (*state)->key[PF_SK_WIRE]->af; pfoe->rule = (*state)->rule.ptr; pfoe->dir = (*state)->direction; PF_OVERLOADQ_LOCK(); SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); PF_OVERLOADQ_UNLOCK(); taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); return (1); } static void pf_overload_task(void *v, int pending) { struct pf_overload_head queue; struct pfr_addr p; struct pf_overload_entry *pfoe, *pfoe1; uint32_t killed = 0; CURVNET_SET((struct vnet *)v); PF_OVERLOADQ_LOCK(); queue = V_pf_overloadqueue; SLIST_INIT(&V_pf_overloadqueue); PF_OVERLOADQ_UNLOCK(); bzero(&p, sizeof(p)); SLIST_FOREACH(pfoe, &queue, next) { counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("%s: blocking address ", __func__); pf_print_host(&pfoe->addr, 0, pfoe->af); printf("\n"); } p.pfra_af = pfoe->af; switch (pfoe->af) { #ifdef INET case AF_INET: p.pfra_net = 32; p.pfra_ip4addr = pfoe->addr.v4; break; #endif #ifdef INET6 case AF_INET6: p.pfra_net = 128; p.pfra_ip6addr = pfoe->addr.v6; break; #endif } PF_RULES_WLOCK(); pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); PF_RULES_WUNLOCK(); } /* * Remove those entries, that don't need flushing. */ SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) if (pfoe->rule->flush == 0) { SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); free(pfoe, M_PFTEMP); } else counter_u64_add( V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); /* If nothing to flush, return. */ if (SLIST_EMPTY(&queue)) { CURVNET_RESTORE(); return; } for (int i = 0; i <= pf_hashmask; i++) { struct pf_idhash *ih = &V_pf_idhash[i]; struct pf_state_key *sk; struct pf_kstate *s; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { sk = s->key[PF_SK_WIRE]; SLIST_FOREACH(pfoe, &queue, next) if (sk->af == pfoe->af && ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || pfoe->rule == s->rule.ptr) && ((pfoe->dir == PF_OUT && PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || (pfoe->dir == PF_IN && PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { s->timeout = PFTM_PURGE; pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); killed++; } } PF_HASHROW_UNLOCK(ih); } SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) free(pfoe, M_PFTEMP); if (V_pf_status.debug >= PF_DEBUG_MISC) printf("%s: %u states killed", __func__, killed); CURVNET_RESTORE(); } /* * Can return locked on failure, so that we can consistently * allocate and insert a new one. */ struct pf_ksrc_node * pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, int returnlocked) { struct pf_srchash *sh; struct pf_ksrc_node *n; counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); sh = &V_pf_srchash[pf_hashsrc(src, af)]; PF_HASHROW_LOCK(sh); LIST_FOREACH(n, &sh->nodes, entry) if (n->rule.ptr == rule && n->af == af && ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) break; if (n != NULL) { n->states++; PF_HASHROW_UNLOCK(sh); } else if (returnlocked == 0) PF_HASHROW_UNLOCK(sh); return (n); } static void pf_free_src_node(struct pf_ksrc_node *sn) { for (int i = 0; i < 2; i++) { counter_u64_free(sn->bytes[i]); counter_u64_free(sn->packets[i]); } uma_zfree(V_pf_sources_z, sn); } static int pf_insert_src_node(struct pf_ksrc_node **sn, struct pf_krule *rule, struct pf_addr *src, sa_family_t af) { KASSERT((rule->rule_flag & PFRULE_SRCTRACK || rule->rpool.opts & PF_POOL_STICKYADDR), ("%s for non-tracking rule %p", __func__, rule)); if (*sn == NULL) *sn = pf_find_src_node(src, rule, af, 1); if (*sn == NULL) { struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; PF_HASHROW_ASSERT(sh); if (!rule->max_src_nodes || counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); else counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); if ((*sn) == NULL) { PF_HASHROW_UNLOCK(sh); return (-1); } for (int i = 0; i < 2; i++) { (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { pf_free_src_node(*sn); PF_HASHROW_UNLOCK(sh); return (-1); } } pf_init_threshold(&(*sn)->conn_rate, rule->max_src_conn_rate.limit, rule->max_src_conn_rate.seconds); (*sn)->af = af; (*sn)->rule.ptr = rule; PF_ACPY(&(*sn)->addr, src, af); LIST_INSERT_HEAD(&sh->nodes, *sn, entry); (*sn)->creation = time_uptime; (*sn)->ruletype = rule->action; (*sn)->states = 1; if ((*sn)->rule.ptr != NULL) counter_u64_add((*sn)->rule.ptr->src_nodes, 1); PF_HASHROW_UNLOCK(sh); counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); } else { if (rule->max_src_states && (*sn)->states >= rule->max_src_states) { counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1); return (-1); } } return (0); } void pf_unlink_src_node(struct pf_ksrc_node *src) { PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); LIST_REMOVE(src, entry); if (src->rule.ptr) counter_u64_add(src->rule.ptr->src_nodes, -1); } u_int pf_free_src_nodes(struct pf_ksrc_node_list *head) { struct pf_ksrc_node *sn, *tmp; u_int count = 0; LIST_FOREACH_SAFE(sn, head, entry, tmp) { pf_free_src_node(sn); count++; } counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); return (count); } void pf_mtag_initialize() { pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, UMA_ALIGN_PTR, 0); } /* Per-vnet data storage structures initialization. */ void pf_initialize() { struct pf_keyhash *kh; struct pf_idhash *ih; struct pf_srchash *sh; u_int i; if (pf_hashsize == 0 || !powerof2(pf_hashsize)) pf_hashsize = PF_HASHSIZ; if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) pf_srchashsize = PF_SRCHASHSIZ; V_pf_hashseed = arc4random(); /* States and state keys storage. */ V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); V_pf_state_key_z = uma_zcreate("pf state keys", sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), M_PFHASH, M_NOWAIT | M_ZERO); V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), M_PFHASH, M_NOWAIT | M_ZERO); if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { printf("pf: Unable to allocate memory for " "state_hashsize %lu.\n", pf_hashsize); free(V_pf_keyhash, M_PFHASH); free(V_pf_idhash, M_PFHASH); pf_hashsize = PF_HASHSIZ; V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); } pf_hashmask = pf_hashsize - 1; for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; i++, kh++, ih++) { mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); } /* Source nodes. */ V_pf_sources_z = uma_zcreate("pf source nodes", sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); V_pf_srchash = mallocarray(pf_srchashsize, sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); if (V_pf_srchash == NULL) { printf("pf: Unable to allocate memory for " "source_hashsize %lu.\n", pf_srchashsize); pf_srchashsize = PF_SRCHASHSIZ; V_pf_srchash = mallocarray(pf_srchashsize, sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); } pf_srchashmask = pf_srchashsize - 1; for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); /* ALTQ */ TAILQ_INIT(&V_pf_altqs[0]); TAILQ_INIT(&V_pf_altqs[1]); TAILQ_INIT(&V_pf_altqs[2]); TAILQ_INIT(&V_pf_altqs[3]); TAILQ_INIT(&V_pf_pabuf); V_pf_altqs_active = &V_pf_altqs[0]; V_pf_altq_ifs_active = &V_pf_altqs[1]; V_pf_altqs_inactive = &V_pf_altqs[2]; V_pf_altq_ifs_inactive = &V_pf_altqs[3]; /* Send & overload+flush queues. */ STAILQ_INIT(&V_pf_sendqueue); SLIST_INIT(&V_pf_overloadqueue); TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); /* Unlinked, but may be referenced rules. */ TAILQ_INIT(&V_pf_unlinked_rules); } void pf_mtag_cleanup() { uma_zdestroy(pf_mtag_z); } void pf_cleanup() { struct pf_keyhash *kh; struct pf_idhash *ih; struct pf_srchash *sh; struct pf_send_entry *pfse, *next; u_int i; for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; i++, kh++, ih++) { KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", __func__)); KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", __func__)); mtx_destroy(&kh->lock); mtx_destroy(&ih->lock); } free(V_pf_keyhash, M_PFHASH); free(V_pf_idhash, M_PFHASH); for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { KASSERT(LIST_EMPTY(&sh->nodes), ("%s: source node hash not empty", __func__)); mtx_destroy(&sh->lock); } free(V_pf_srchash, M_PFHASH); STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { m_freem(pfse->pfse_m); free(pfse, M_PFTEMP); } uma_zdestroy(V_pf_sources_z); uma_zdestroy(V_pf_state_z); uma_zdestroy(V_pf_state_key_z); } static int pf_mtag_uminit(void *mem, int size, int how) { struct m_tag *t; t = (struct m_tag *)mem; t->m_tag_cookie = MTAG_ABI_COMPAT; t->m_tag_id = PACKET_TAG_PF; t->m_tag_len = sizeof(struct pf_mtag); t->m_tag_free = pf_mtag_free; return (0); } static void pf_mtag_free(struct m_tag *t) { uma_zfree(pf_mtag_z, t); } struct pf_mtag * pf_get_mtag(struct mbuf *m) { struct m_tag *mtag; if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) return ((struct pf_mtag *)(mtag + 1)); mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); if (mtag == NULL) return (NULL); bzero(mtag + 1, sizeof(struct pf_mtag)); m_tag_prepend(m, mtag); return ((struct pf_mtag *)(mtag + 1)); } static int pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) { struct pf_keyhash *khs, *khw, *kh; struct pf_state_key *sk, *cur; struct pf_kstate *si, *olds = NULL; int idx; KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); /* * We need to lock hash slots of both keys. To avoid deadlock * we always lock the slot with lower address first. Unlock order * isn't important. * * We also need to lock ID hash slot before dropping key * locks. On success we return with ID hash slot locked. */ if (skw == sks) { khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; PF_HASHROW_LOCK(khs); } else { khs = &V_pf_keyhash[pf_hashkey(sks)]; khw = &V_pf_keyhash[pf_hashkey(skw)]; if (khs == khw) { PF_HASHROW_LOCK(khs); } else if (khs < khw) { PF_HASHROW_LOCK(khs); PF_HASHROW_LOCK(khw); } else { PF_HASHROW_LOCK(khw); PF_HASHROW_LOCK(khs); } } #define KEYS_UNLOCK() do { \ if (khs != khw) { \ PF_HASHROW_UNLOCK(khs); \ PF_HASHROW_UNLOCK(khw); \ } else \ PF_HASHROW_UNLOCK(khs); \ } while (0) /* * First run: start with wire key. */ sk = skw; kh = khw; idx = PF_SK_WIRE; MPASS(s->lock == NULL); s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; keyattach: LIST_FOREACH(cur, &kh->keys, entry) if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) break; if (cur != NULL) { /* Key exists. Check for same kif, if none, add to key. */ TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; PF_HASHROW_LOCK(ih); if (si->kif == s->kif && si->direction == s->direction) { if (sk->proto == IPPROTO_TCP && si->src.state >= TCPS_FIN_WAIT_2 && si->dst.state >= TCPS_FIN_WAIT_2) { /* * New state matches an old >FIN_WAIT_2 * state. We can't drop key hash locks, * thus we can't unlink it properly. * * As a workaround we drop it into * TCPS_CLOSED state, schedule purge * ASAP and push it into the very end * of the slot TAILQ, so that it won't * conflict with our new state. */ pf_set_protostate(si, PF_PEER_BOTH, TCPS_CLOSED); si->timeout = PFTM_PURGE; olds = si; } else { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: %s key attach " "failed on %s: ", (idx == PF_SK_WIRE) ? "wire" : "stack", s->kif->pfik_name); pf_print_state_parts(s, (idx == PF_SK_WIRE) ? sk : NULL, (idx == PF_SK_STACK) ? sk : NULL); printf(", existing: "); pf_print_state_parts(si, (idx == PF_SK_WIRE) ? sk : NULL, (idx == PF_SK_STACK) ? sk : NULL); printf("\n"); } PF_HASHROW_UNLOCK(ih); KEYS_UNLOCK(); uma_zfree(V_pf_state_key_z, sk); if (idx == PF_SK_STACK) pf_detach_state(s); return (EEXIST); /* collision! */ } } PF_HASHROW_UNLOCK(ih); } uma_zfree(V_pf_state_key_z, sk); s->key[idx] = cur; } else { LIST_INSERT_HEAD(&kh->keys, sk, entry); s->key[idx] = sk; } stateattach: /* List is sorted, if-bound states before floating. */ if (s->kif == V_pfi_all) TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); else TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); if (olds) { TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, key_list[idx]); olds = NULL; } /* * Attach done. See how should we (or should not?) * attach a second key. */ if (sks == skw) { s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; idx = PF_SK_STACK; sks = NULL; goto stateattach; } else if (sks != NULL) { /* * Continue attaching with stack key. */ sk = sks; kh = khs; idx = PF_SK_STACK; sks = NULL; goto keyattach; } PF_STATE_LOCK(s); KEYS_UNLOCK(); KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, ("%s failure", __func__)); return (0); #undef KEYS_UNLOCK } static void pf_detach_state(struct pf_kstate *s) { struct pf_state_key *sks = s->key[PF_SK_STACK]; struct pf_keyhash *kh; if (sks != NULL) { kh = &V_pf_keyhash[pf_hashkey(sks)]; PF_HASHROW_LOCK(kh); if (s->key[PF_SK_STACK] != NULL) pf_state_key_detach(s, PF_SK_STACK); /* * If both point to same key, then we are done. */ if (sks == s->key[PF_SK_WIRE]) { pf_state_key_detach(s, PF_SK_WIRE); PF_HASHROW_UNLOCK(kh); return; } PF_HASHROW_UNLOCK(kh); } if (s->key[PF_SK_WIRE] != NULL) { kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; PF_HASHROW_LOCK(kh); if (s->key[PF_SK_WIRE] != NULL) pf_state_key_detach(s, PF_SK_WIRE); PF_HASHROW_UNLOCK(kh); } } static void pf_state_key_detach(struct pf_kstate *s, int idx) { struct pf_state_key *sk = s->key[idx]; #ifdef INVARIANTS struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; PF_HASHROW_ASSERT(kh); #endif TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); s->key[idx] = NULL; if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { LIST_REMOVE(sk, entry); uma_zfree(V_pf_state_key_z, sk); } } static int pf_state_key_ctor(void *mem, int size, void *arg, int flags) { struct pf_state_key *sk = mem; bzero(sk, sizeof(struct pf_state_key_cmp)); TAILQ_INIT(&sk->states[PF_SK_WIRE]); TAILQ_INIT(&sk->states[PF_SK_STACK]); return (0); } struct pf_state_key * pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) { struct pf_state_key *sk; sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); if (sk == NULL) return (NULL); PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); sk->port[pd->sidx] = sport; sk->port[pd->didx] = dport; sk->proto = pd->proto; sk->af = pd->af; return (sk); } struct pf_state_key * pf_state_key_clone(struct pf_state_key *orig) { struct pf_state_key *sk; sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); if (sk == NULL) return (NULL); bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); return (sk); } int pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) { struct pf_idhash *ih; struct pf_kstate *cur; int error; KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), ("%s: sks not pristine", __func__)); KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), ("%s: skw not pristine", __func__)); KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); s->kif = kif; s->orig_kif = orig_kif; if (s->id == 0 && s->creatorid == 0) { /* XXX: should be atomic, but probability of collision low */ if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) V_pf_stateid[curcpu] = 1; s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; s->id = htobe64(s->id); s->creatorid = V_pf_status.hostid; } /* Returns with ID locked on success. */ if ((error = pf_state_key_attach(skw, sks, s)) != 0) return (error); ih = &V_pf_idhash[PF_IDHASH(s)]; PF_HASHROW_ASSERT(ih); LIST_FOREACH(cur, &ih->states, entry) if (cur->id == s->id && cur->creatorid == s->creatorid) break; if (cur != NULL) { PF_HASHROW_UNLOCK(ih); if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: state ID collision: " "id: %016llx creatorid: %08x\n", (unsigned long long)be64toh(s->id), ntohl(s->creatorid)); } pf_detach_state(s); return (EEXIST); } LIST_INSERT_HEAD(&ih->states, s, entry); /* One for keys, one for ID hash. */ refcount_init(&s->refs, 2); pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); if (V_pfsync_insert_state_ptr != NULL) V_pfsync_insert_state_ptr(s); /* Returns locked. */ return (0); } /* * Find state by ID: returns with locked row on success. */ struct pf_kstate * pf_find_state_byid(uint64_t id, uint32_t creatorid) { struct pf_idhash *ih; struct pf_kstate *s; pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) if (s->id == id && s->creatorid == creatorid) break; if (s == NULL) PF_HASHROW_UNLOCK(ih); return (s); } /* * Find state by key. * Returns with ID hash slot locked on success. */ static struct pf_kstate * pf_find_state(struct pfi_kkif *kif, struct pf_state_key_cmp *key, u_int dir) { struct pf_keyhash *kh; struct pf_state_key *sk; struct pf_kstate *s; int idx; pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; PF_HASHROW_LOCK(kh); LIST_FOREACH(sk, &kh->keys, entry) if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) break; if (sk == NULL) { PF_HASHROW_UNLOCK(kh); return (NULL); } idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); /* List is sorted, if-bound states before floating ones. */ TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) if (s->kif == V_pfi_all || s->kif == kif) { PF_STATE_LOCK(s); PF_HASHROW_UNLOCK(kh); if (__predict_false(s->timeout >= PFTM_MAX)) { /* * State is either being processed by * pf_unlink_state() in an other thread, or * is scheduled for immediate expiry. */ PF_STATE_UNLOCK(s); return (NULL); } return (s); } PF_HASHROW_UNLOCK(kh); return (NULL); } struct pf_kstate * pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) { struct pf_keyhash *kh; struct pf_state_key *sk; struct pf_kstate *s, *ret = NULL; int idx, inout = 0; pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; PF_HASHROW_LOCK(kh); LIST_FOREACH(sk, &kh->keys, entry) if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) break; if (sk == NULL) { PF_HASHROW_UNLOCK(kh); return (NULL); } switch (dir) { case PF_IN: idx = PF_SK_WIRE; break; case PF_OUT: idx = PF_SK_STACK; break; case PF_INOUT: idx = PF_SK_WIRE; inout = 1; break; default: panic("%s: dir %u", __func__, dir); } second_run: TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { if (more == NULL) { PF_HASHROW_UNLOCK(kh); return (s); } if (ret) (*more)++; else ret = s; } if (inout == 1) { inout = 0; idx = PF_SK_STACK; goto second_run; } PF_HASHROW_UNLOCK(kh); return (ret); } bool pf_find_state_all_exists(struct pf_state_key_cmp *key, u_int dir) { struct pf_kstate *s; s = pf_find_state_all(key, dir, NULL); return (s != NULL); } /* END state table stuff */ static void pf_send(struct pf_send_entry *pfse) { PF_SENDQ_LOCK(); STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); PF_SENDQ_UNLOCK(); swi_sched(V_pf_swi_cookie, 0); } static bool pf_isforlocal(struct mbuf *m, int af) { switch (af) { #ifdef INET case AF_INET: { - struct rm_priotracker in_ifa_tracker; - struct ip *ip; - struct in_ifaddr *ia = NULL; - - ip = mtod(m, struct ip *); - IN_IFADDR_RLOCK(&in_ifa_tracker); - LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) { - if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr) { - IN_IFADDR_RUNLOCK(&in_ifa_tracker); - return (true); - } - } - IN_IFADDR_RUNLOCK(&in_ifa_tracker); - break; + struct ip *ip = mtod(m, struct ip *); + + return (in_localip(ip->ip_dst)); } #endif #ifdef INET6 case AF_INET6: { struct ip6_hdr *ip6; struct in6_ifaddr *ia; ip6 = mtod(m, struct ip6_hdr *); ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); if (ia == NULL) return (false); return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); } #endif default: panic("Unsupported af %d", af); } return (false); } void pf_intr(void *v) { struct epoch_tracker et; struct pf_send_head queue; struct pf_send_entry *pfse, *next; CURVNET_SET((struct vnet *)v); PF_SENDQ_LOCK(); queue = V_pf_sendqueue; STAILQ_INIT(&V_pf_sendqueue); PF_SENDQ_UNLOCK(); NET_EPOCH_ENTER(et); STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { switch (pfse->pfse_type) { #ifdef INET case PFSE_IP: { if (pf_isforlocal(pfse->pfse_m, AF_INET)) { pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; pfse->pfse_m->m_pkthdr.csum_flags |= CSUM_IP_VALID | CSUM_IP_CHECKED; ip_input(pfse->pfse_m); } else { ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); } break; } case PFSE_ICMP: icmp_error(pfse->pfse_m, pfse->icmpopts.type, pfse->icmpopts.code, 0, pfse->icmpopts.mtu); break; #endif /* INET */ #ifdef INET6 case PFSE_IP6: if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; ip6_input(pfse->pfse_m); } else { ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, NULL); } break; case PFSE_ICMP6: icmp6_error(pfse->pfse_m, pfse->icmpopts.type, pfse->icmpopts.code, pfse->icmpopts.mtu); break; #endif /* INET6 */ default: panic("%s: unknown type", __func__); } free(pfse, M_PFTEMP); } NET_EPOCH_EXIT(et); CURVNET_RESTORE(); } #define pf_purge_thread_period (hz / 10) #ifdef PF_WANT_32_TO_64_COUNTER static void pf_status_counter_u64_periodic(void) { PF_RULES_RASSERT(); if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { return; } for (int i = 0; i < FCNT_MAX; i++) { pf_counter_u64_periodic(&V_pf_status.fcounters[i]); } } static void pf_kif_counter_u64_periodic(void) { struct pfi_kkif *kif; size_t r, run; PF_RULES_RASSERT(); if (__predict_false(V_pf_allkifcount == 0)) { return; } if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { return; } run = V_pf_allkifcount / 10; if (run < 5) run = 5; for (r = 0; r < run; r++) { kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); if (kif == NULL) { LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); break; } LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); for (int i = 0; i < 2; i++) { for (int j = 0; j < 2; j++) { for (int k = 0; k < 2; k++) { pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); } } } } } static void pf_rule_counter_u64_periodic(void) { struct pf_krule *rule; size_t r, run; PF_RULES_RASSERT(); if (__predict_false(V_pf_allrulecount == 0)) { return; } if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { return; } run = V_pf_allrulecount / 10; if (run < 5) run = 5; for (r = 0; r < run; r++) { rule = LIST_NEXT(V_pf_rulemarker, allrulelist); if (rule == NULL) { LIST_REMOVE(V_pf_rulemarker, allrulelist); LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); break; } LIST_REMOVE(V_pf_rulemarker, allrulelist); LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); pf_counter_u64_periodic(&rule->evaluations); for (int i = 0; i < 2; i++) { pf_counter_u64_periodic(&rule->packets[i]); pf_counter_u64_periodic(&rule->bytes[i]); } } } static void pf_counter_u64_periodic_main(void) { PF_RULES_RLOCK_TRACKER; V_pf_counter_periodic_iter++; PF_RULES_RLOCK(); pf_counter_u64_critical_enter(); pf_status_counter_u64_periodic(); pf_kif_counter_u64_periodic(); pf_rule_counter_u64_periodic(); pf_counter_u64_critical_exit(); PF_RULES_RUNLOCK(); } #else #define pf_counter_u64_periodic_main() do { } while (0) #endif void pf_purge_thread(void *unused __unused) { VNET_ITERATOR_DECL(vnet_iter); sx_xlock(&pf_end_lock); while (pf_end_threads == 0) { sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); VNET_LIST_RLOCK(); VNET_FOREACH(vnet_iter) { CURVNET_SET(vnet_iter); /* Wait until V_pf_default_rule is initialized. */ if (V_pf_vnet_active == 0) { CURVNET_RESTORE(); continue; } pf_counter_u64_periodic_main(); /* * Process 1/interval fraction of the state * table every run. */ V_pf_purge_idx = pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); /* * Purge other expired types every * PFTM_INTERVAL seconds. */ if (V_pf_purge_idx == 0) { /* * Order is important: * - states and src nodes reference rules * - states and rules reference kifs */ pf_purge_expired_fragments(); pf_purge_expired_src_nodes(); pf_purge_unlinked_rules(); pfi_kkif_purge(); } CURVNET_RESTORE(); } VNET_LIST_RUNLOCK(); } pf_end_threads++; sx_xunlock(&pf_end_lock); kproc_exit(0); } void pf_unload_vnet_purge(void) { /* * To cleanse up all kifs and rules we need * two runs: first one clears reference flags, * then pf_purge_expired_states() doesn't * raise them, and then second run frees. */ pf_purge_unlinked_rules(); pfi_kkif_purge(); /* * Now purge everything. */ pf_purge_expired_states(0, pf_hashmask); pf_purge_fragments(UINT_MAX); pf_purge_expired_src_nodes(); /* * Now all kifs & rules should be unreferenced, * thus should be successfully freed. */ pf_purge_unlinked_rules(); pfi_kkif_purge(); } u_int32_t pf_state_expires(const struct pf_kstate *state) { u_int32_t timeout; u_int32_t start; u_int32_t end; u_int32_t states; /* handle all PFTM_* > PFTM_MAX here */ if (state->timeout == PFTM_PURGE) return (time_uptime); KASSERT(state->timeout != PFTM_UNLINKED, ("pf_state_expires: timeout == PFTM_UNLINKED")); KASSERT((state->timeout < PFTM_MAX), ("pf_state_expires: timeout > PFTM_MAX")); timeout = state->rule.ptr->timeout[state->timeout]; if (!timeout) timeout = V_pf_default_rule.timeout[state->timeout]; start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; if (start && state->rule.ptr != &V_pf_default_rule) { end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; states = counter_u64_fetch(state->rule.ptr->states_cur); } else { start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; states = V_pf_status.states; } if (end && states > start && start < end) { if (states < end) { timeout = (u_int64_t)timeout * (end - states) / (end - start); return (state->expire + timeout); } else return (time_uptime); } return (state->expire + timeout); } void pf_purge_expired_src_nodes() { struct pf_ksrc_node_list freelist; struct pf_srchash *sh; struct pf_ksrc_node *cur, *next; int i; LIST_INIT(&freelist); for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { PF_HASHROW_LOCK(sh); LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) if (cur->states == 0 && cur->expire <= time_uptime) { pf_unlink_src_node(cur); LIST_INSERT_HEAD(&freelist, cur, entry); } else if (cur->rule.ptr != NULL) cur->rule.ptr->rule_ref |= PFRULE_REFS; PF_HASHROW_UNLOCK(sh); } pf_free_src_nodes(&freelist); V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); } static void pf_src_tree_remove_state(struct pf_kstate *s) { struct pf_ksrc_node *sn; struct pf_srchash *sh; uint32_t timeout; timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? s->rule.ptr->timeout[PFTM_SRC_NODE] : V_pf_default_rule.timeout[PFTM_SRC_NODE]; if (s->src_node != NULL) { sn = s->src_node; sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; PF_HASHROW_LOCK(sh); if (s->src.tcp_est) --sn->conn; if (--sn->states == 0) sn->expire = time_uptime + timeout; PF_HASHROW_UNLOCK(sh); } if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { sn = s->nat_src_node; sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; PF_HASHROW_LOCK(sh); if (--sn->states == 0) sn->expire = time_uptime + timeout; PF_HASHROW_UNLOCK(sh); } s->src_node = s->nat_src_node = NULL; } /* * Unlink and potentilly free a state. Function may be * called with ID hash row locked, but always returns * unlocked, since it needs to go through key hash locking. */ int pf_unlink_state(struct pf_kstate *s, u_int flags) { struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; if ((flags & PF_ENTER_LOCKED) == 0) PF_HASHROW_LOCK(ih); else PF_HASHROW_ASSERT(ih); if (s->timeout == PFTM_UNLINKED) { /* * State is being processed * by pf_unlink_state() in * an other thread. */ PF_HASHROW_UNLOCK(ih); return (0); /* XXXGL: undefined actually */ } if (s->src.state == PF_TCPS_PROXY_DST) { /* XXX wire key the right one? */ pf_send_tcp(s->rule.ptr, s->key[PF_SK_WIRE]->af, &s->key[PF_SK_WIRE]->addr[1], &s->key[PF_SK_WIRE]->addr[0], s->key[PF_SK_WIRE]->port[1], s->key[PF_SK_WIRE]->port[0], s->src.seqhi, s->src.seqlo + 1, TH_RST|TH_ACK, 0, 0, 0, 1, s->tag); } LIST_REMOVE(s, entry); pf_src_tree_remove_state(s); if (V_pfsync_delete_state_ptr != NULL) V_pfsync_delete_state_ptr(s); STATE_DEC_COUNTERS(s); s->timeout = PFTM_UNLINKED; /* Ensure we remove it from the list of halfopen states, if needed. */ if (s->key[PF_SK_STACK] != NULL && s->key[PF_SK_STACK]->proto == IPPROTO_TCP) pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); PF_HASHROW_UNLOCK(ih); pf_detach_state(s); /* pf_state_insert() initialises refs to 2 */ return (pf_release_staten(s, 2)); } struct pf_kstate * pf_alloc_state(int flags) { return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); } void pf_free_state(struct pf_kstate *cur) { KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, cur->timeout)); pf_normalize_tcp_cleanup(cur); uma_zfree(V_pf_state_z, cur); pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); } /* * Called only from pf_purge_thread(), thus serialized. */ static u_int pf_purge_expired_states(u_int i, int maxcheck) { struct pf_idhash *ih; struct pf_kstate *s; V_pf_status.states = uma_zone_get_cur(V_pf_state_z); /* * Go through hash and unlink states that expire now. */ while (maxcheck > 0) { ih = &V_pf_idhash[i]; /* only take the lock if we expect to do work */ if (!LIST_EMPTY(&ih->states)) { relock: PF_HASHROW_LOCK(ih); LIST_FOREACH(s, &ih->states, entry) { if (pf_state_expires(s) <= time_uptime) { V_pf_status.states -= pf_unlink_state(s, PF_ENTER_LOCKED); goto relock; } s->rule.ptr->rule_ref |= PFRULE_REFS; if (s->nat_rule.ptr != NULL) s->nat_rule.ptr->rule_ref |= PFRULE_REFS; if (s->anchor.ptr != NULL) s->anchor.ptr->rule_ref |= PFRULE_REFS; s->kif->pfik_flags |= PFI_IFLAG_REFS; if (s->rt_kif) s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; } PF_HASHROW_UNLOCK(ih); } /* Return when we hit end of hash. */ if (++i > pf_hashmask) { V_pf_status.states = uma_zone_get_cur(V_pf_state_z); return (0); } maxcheck--; } V_pf_status.states = uma_zone_get_cur(V_pf_state_z); return (i); } static void pf_purge_unlinked_rules() { struct pf_krulequeue tmpq; struct pf_krule *r, *r1; /* * If we have overloading task pending, then we'd * better skip purging this time. There is a tiny * probability that overloading task references * an already unlinked rule. */ PF_OVERLOADQ_LOCK(); if (!SLIST_EMPTY(&V_pf_overloadqueue)) { PF_OVERLOADQ_UNLOCK(); return; } PF_OVERLOADQ_UNLOCK(); /* * Do naive mark-and-sweep garbage collecting of old rules. * Reference flag is raised by pf_purge_expired_states() * and pf_purge_expired_src_nodes(). * * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, * use a temporary queue. */ TAILQ_INIT(&tmpq); PF_UNLNKDRULES_LOCK(); TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { if (!(r->rule_ref & PFRULE_REFS)) { TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); TAILQ_INSERT_TAIL(&tmpq, r, entries); } else r->rule_ref &= ~PFRULE_REFS; } PF_UNLNKDRULES_UNLOCK(); if (!TAILQ_EMPTY(&tmpq)) { PF_RULES_WLOCK(); TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { TAILQ_REMOVE(&tmpq, r, entries); pf_free_rule(r); } PF_RULES_WUNLOCK(); } } void pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: { u_int32_t a = ntohl(addr->addr32[0]); printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, (a>>8)&255, a&255); if (p) { p = ntohs(p); printf(":%u", p); } break; } #endif /* INET */ #ifdef INET6 case AF_INET6: { u_int16_t b; u_int8_t i, curstart, curend, maxstart, maxend; curstart = curend = maxstart = maxend = 255; for (i = 0; i < 8; i++) { if (!addr->addr16[i]) { if (curstart == 255) curstart = i; curend = i; } else { if ((curend - curstart) > (maxend - maxstart)) { maxstart = curstart; maxend = curend; } curstart = curend = 255; } } if ((curend - curstart) > (maxend - maxstart)) { maxstart = curstart; maxend = curend; } for (i = 0; i < 8; i++) { if (i >= maxstart && i <= maxend) { if (i == 0) printf(":"); if (i == maxend) printf(":"); } else { b = ntohs(addr->addr16[i]); printf("%x", b); if (i < 7) printf(":"); } } if (p) { p = ntohs(p); printf("[%u]", p); } break; } #endif /* INET6 */ } } void pf_print_state(struct pf_kstate *s) { pf_print_state_parts(s, NULL, NULL); } static void pf_print_state_parts(struct pf_kstate *s, struct pf_state_key *skwp, struct pf_state_key *sksp) { struct pf_state_key *skw, *sks; u_int8_t proto, dir; /* Do our best to fill these, but they're skipped if NULL */ skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); proto = skw ? skw->proto : (sks ? sks->proto : 0); dir = s ? s->direction : 0; switch (proto) { case IPPROTO_IPV4: printf("IPv4"); break; case IPPROTO_IPV6: printf("IPv6"); break; case IPPROTO_TCP: printf("TCP"); break; case IPPROTO_UDP: printf("UDP"); break; case IPPROTO_ICMP: printf("ICMP"); break; case IPPROTO_ICMPV6: printf("ICMPv6"); break; default: printf("%u", proto); break; } switch (dir) { case PF_IN: printf(" in"); break; case PF_OUT: printf(" out"); break; } if (skw) { printf(" wire: "); pf_print_host(&skw->addr[0], skw->port[0], skw->af); printf(" "); pf_print_host(&skw->addr[1], skw->port[1], skw->af); } if (sks) { printf(" stack: "); if (sks != skw) { pf_print_host(&sks->addr[0], sks->port[0], sks->af); printf(" "); pf_print_host(&sks->addr[1], sks->port[1], sks->af); } else printf("-"); } if (s) { if (proto == IPPROTO_TCP) { printf(" [lo=%u high=%u win=%u modulator=%u", s->src.seqlo, s->src.seqhi, s->src.max_win, s->src.seqdiff); if (s->src.wscale && s->dst.wscale) printf(" wscale=%u", s->src.wscale & PF_WSCALE_MASK); printf("]"); printf(" [lo=%u high=%u win=%u modulator=%u", s->dst.seqlo, s->dst.seqhi, s->dst.max_win, s->dst.seqdiff); if (s->src.wscale && s->dst.wscale) printf(" wscale=%u", s->dst.wscale & PF_WSCALE_MASK); printf("]"); } printf(" %u:%u", s->src.state, s->dst.state); } } void pf_print_flags(u_int8_t f) { if (f) printf(" "); if (f & TH_FIN) printf("F"); if (f & TH_SYN) printf("S"); if (f & TH_RST) printf("R"); if (f & TH_PUSH) printf("P"); if (f & TH_ACK) printf("A"); if (f & TH_URG) printf("U"); if (f & TH_ECE) printf("E"); if (f & TH_CWR) printf("W"); } #define PF_SET_SKIP_STEPS(i) \ do { \ while (head[i] != cur) { \ head[i]->skip[i].ptr = cur; \ head[i] = TAILQ_NEXT(head[i], entries); \ } \ } while (0) void pf_calc_skip_steps(struct pf_krulequeue *rules) { struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; int i; cur = TAILQ_FIRST(rules); prev = cur; for (i = 0; i < PF_SKIP_COUNT; ++i) head[i] = cur; while (cur != NULL) { if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) PF_SET_SKIP_STEPS(PF_SKIP_IFP); if (cur->direction != prev->direction) PF_SET_SKIP_STEPS(PF_SKIP_DIR); if (cur->af != prev->af) PF_SET_SKIP_STEPS(PF_SKIP_AF); if (cur->proto != prev->proto) PF_SET_SKIP_STEPS(PF_SKIP_PROTO); if (cur->src.neg != prev->src.neg || pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); if (cur->src.port[0] != prev->src.port[0] || cur->src.port[1] != prev->src.port[1] || cur->src.port_op != prev->src.port_op) PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); if (cur->dst.neg != prev->dst.neg || pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); if (cur->dst.port[0] != prev->dst.port[0] || cur->dst.port[1] != prev->dst.port[1] || cur->dst.port_op != prev->dst.port_op) PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); prev = cur; cur = TAILQ_NEXT(cur, entries); } for (i = 0; i < PF_SKIP_COUNT; ++i) PF_SET_SKIP_STEPS(i); } static int pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) { if (aw1->type != aw2->type) return (1); switch (aw1->type) { case PF_ADDR_ADDRMASK: case PF_ADDR_RANGE: if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) return (1); if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) return (1); return (0); case PF_ADDR_DYNIFTL: return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); case PF_ADDR_NOROUTE: case PF_ADDR_URPFFAILED: return (0); case PF_ADDR_TABLE: return (aw1->p.tbl != aw2->p.tbl); default: printf("invalid address type: %d\n", aw1->type); return (1); } } /** * Checksum updates are a little complicated because the checksum in the TCP/UDP * header isn't always a full checksum. In some cases (i.e. output) it's a * pseudo-header checksum, which is a partial checksum over src/dst IP * addresses, protocol number and length. * * That means we have the following cases: * * Input or forwarding: we don't have TSO, the checksum fields are full * checksums, we need to update the checksum whenever we change anything. * * Output (i.e. the checksum is a pseudo-header checksum): * x The field being updated is src/dst address or affects the length of * the packet. We need to update the pseudo-header checksum (note that this * checksum is not ones' complement). * x Some other field is being modified (e.g. src/dst port numbers): We * don't have to update anything. **/ u_int16_t pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) { u_int32_t x; x = cksum + old - new; x = (x + (x >> 16)) & 0xffff; /* optimise: eliminate a branch when not udp */ if (udp && cksum == 0x0000) return cksum; if (udp && x == 0x0000) x = 0xffff; return (u_int16_t)(x); } static void pf_patch_8(struct mbuf *m, u_int16_t *cksum, u_int8_t *f, u_int8_t v, bool hi, u_int8_t udp) { u_int16_t old = htons(hi ? (*f << 8) : *f); u_int16_t new = htons(hi ? ( v << 8) : v); if (*f == v) return; *f = v; if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) return; *cksum = pf_cksum_fixup(*cksum, old, new, udp); } void pf_patch_16_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int16_t v, bool hi, u_int8_t udp) { u_int8_t *fb = (u_int8_t *)f; u_int8_t *vb = (u_int8_t *)&v; pf_patch_8(m, cksum, fb++, *vb++, hi, udp); pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); } void pf_patch_32_unaligned(struct mbuf *m, u_int16_t *cksum, void *f, u_int32_t v, bool hi, u_int8_t udp) { u_int8_t *fb = (u_int8_t *)f; u_int8_t *vb = (u_int8_t *)&v; pf_patch_8(m, cksum, fb++, *vb++, hi, udp); pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); pf_patch_8(m, cksum, fb++, *vb++, hi, udp); pf_patch_8(m, cksum, fb++, *vb++, !hi, udp); } u_int16_t pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) { if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) return (cksum); return (pf_cksum_fixup(cksum, old, new, udp)); } static void pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, sa_family_t af) { struct pf_addr ao; u_int16_t po = *p; PF_ACPY(&ao, a, af); PF_ACPY(a, an, af); if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) *pc = ~*pc; *p = pn; switch (af) { #ifdef INET case AF_INET: *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, ao.addr16[0], an->addr16[0], 0), ao.addr16[1], an->addr16[1], 0); *p = pn; *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u); *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); break; #endif /* INET */ #ifdef INET6 case AF_INET6: *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*pc, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], an->addr16[2], u), ao.addr16[3], an->addr16[3], u), ao.addr16[4], an->addr16[4], u), ao.addr16[5], an->addr16[5], u), ao.addr16[6], an->addr16[6], u), ao.addr16[7], an->addr16[7], u); *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); break; #endif /* INET6 */ } if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) { *pc = ~*pc; if (! *pc) *pc = 0xffff; } } /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ void pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) { u_int32_t ao; memcpy(&ao, a, sizeof(ao)); memcpy(a, &an, sizeof(u_int32_t)); *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), ao % 65536, an % 65536, u); } void pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) { u_int32_t ao; memcpy(&ao, a, sizeof(ao)); memcpy(a, &an, sizeof(u_int32_t)); *c = pf_proto_cksum_fixup(m, pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), ao % 65536, an % 65536, udp); } #ifdef INET6 static void pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) { struct pf_addr ao; PF_ACPY(&ao, a, AF_INET6); PF_ACPY(a, an, AF_INET6); *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*c, ao.addr16[0], an->addr16[0], u), ao.addr16[1], an->addr16[1], u), ao.addr16[2], an->addr16[2], u), ao.addr16[3], an->addr16[3], u), ao.addr16[4], an->addr16[4], u), ao.addr16[5], an->addr16[5], u), ao.addr16[6], an->addr16[6], u), ao.addr16[7], an->addr16[7], u); } #endif /* INET6 */ static void pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) { struct pf_addr oia, ooa; PF_ACPY(&oia, ia, af); if (oa) PF_ACPY(&ooa, oa, af); /* Change inner protocol port, fix inner protocol checksum. */ if (ip != NULL) { u_int16_t oip = *ip; u_int32_t opc; if (pc != NULL) opc = *pc; *ip = np; if (pc != NULL) *pc = pf_cksum_fixup(*pc, oip, *ip, u); *ic = pf_cksum_fixup(*ic, oip, *ip, 0); if (pc != NULL) *ic = pf_cksum_fixup(*ic, opc, *pc, 0); } /* Change inner ip address, fix inner ip and icmp checksums. */ PF_ACPY(ia, na, af); switch (af) { #ifdef INET case AF_INET: { u_int32_t oh2c = *h2c; *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, oia.addr16[0], ia->addr16[0], 0), oia.addr16[1], ia->addr16[1], 0); *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, oia.addr16[0], ia->addr16[0], 0), oia.addr16[1], ia->addr16[1], 0); *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); break; } #endif /* INET */ #ifdef INET6 case AF_INET6: *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*ic, oia.addr16[0], ia->addr16[0], u), oia.addr16[1], ia->addr16[1], u), oia.addr16[2], ia->addr16[2], u), oia.addr16[3], ia->addr16[3], u), oia.addr16[4], ia->addr16[4], u), oia.addr16[5], ia->addr16[5], u), oia.addr16[6], ia->addr16[6], u), oia.addr16[7], ia->addr16[7], u); break; #endif /* INET6 */ } /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ if (oa) { PF_ACPY(oa, na, af); switch (af) { #ifdef INET case AF_INET: *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, ooa.addr16[0], oa->addr16[0], 0), ooa.addr16[1], oa->addr16[1], 0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( pf_cksum_fixup(pf_cksum_fixup(*ic, ooa.addr16[0], oa->addr16[0], u), ooa.addr16[1], oa->addr16[1], u), ooa.addr16[2], oa->addr16[2], u), ooa.addr16[3], oa->addr16[3], u), ooa.addr16[4], oa->addr16[4], u), ooa.addr16[5], oa->addr16[5], u), ooa.addr16[6], oa->addr16[6], u), ooa.addr16[7], oa->addr16[7], u); break; #endif /* INET6 */ } } } /* * Need to modulate the sequence numbers in the TCP SACK option * (credits to Krzysztof Pfaff for report and patch) */ static int pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, struct tcphdr *th, struct pf_state_peer *dst) { int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; u_int8_t opts[TCP_MAXOLEN], *opt = opts; int copyback = 0, i, olen; struct sackblk sack; #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) if (hlen < TCPOLEN_SACKLEN || !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) return 0; while (hlen >= TCPOLEN_SACKLEN) { size_t startoff = opt - opts; olen = opt[1]; switch (*opt) { case TCPOPT_EOL: /* FALLTHROUGH */ case TCPOPT_NOP: opt++; hlen--; break; case TCPOPT_SACK: if (olen > hlen) olen = hlen; if (olen >= TCPOLEN_SACKLEN) { for (i = 2; i + TCPOLEN_SACK <= olen; i += TCPOLEN_SACK) { memcpy(&sack, &opt[i], sizeof(sack)); pf_patch_32_unaligned(m, &th->th_sum, &sack.start, htonl(ntohl(sack.start) - dst->seqdiff), PF_ALGNMNT(startoff), 0); pf_patch_32_unaligned(m, &th->th_sum, &sack.end, htonl(ntohl(sack.end) - dst->seqdiff), PF_ALGNMNT(startoff), 0); memcpy(&opt[i], &sack, sizeof(sack)); } copyback = 1; } /* FALLTHROUGH */ default: if (olen < 2) olen = 2; hlen -= olen; opt += olen; } } if (copyback) m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); return (copyback); } struct mbuf * pf_build_tcp(const struct pf_krule *r, sa_family_t af, const struct pf_addr *saddr, const struct pf_addr *daddr, u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, u_int16_t rtag) { struct mbuf *m; int len, tlen; #ifdef INET struct ip *h = NULL; #endif /* INET */ #ifdef INET6 struct ip6_hdr *h6 = NULL; #endif /* INET6 */ struct tcphdr *th; char *opt; struct pf_mtag *pf_mtag; len = 0; th = NULL; /* maximum segment size tcp option */ tlen = sizeof(struct tcphdr); if (mss) tlen += 4; switch (af) { #ifdef INET case AF_INET: len = sizeof(struct ip) + tlen; break; #endif /* INET */ #ifdef INET6 case AF_INET6: len = sizeof(struct ip6_hdr) + tlen; break; #endif /* INET6 */ default: panic("%s: unsupported af %d", __func__, af); } m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) return (NULL); #ifdef MAC mac_netinet_firewall_send(m); #endif if ((pf_mtag = pf_get_mtag(m)) == NULL) { m_freem(m); return (NULL); } if (tag) m->m_flags |= M_SKIP_FIREWALL; pf_mtag->tag = rtag; if (r != NULL && r->rtableid >= 0) M_SETFIB(m, r->rtableid); #ifdef ALTQ if (r != NULL && r->qid) { pf_mtag->qid = r->qid; /* add hints for ecn */ pf_mtag->hdr = mtod(m, struct ip *); } #endif /* ALTQ */ m->m_data += max_linkhdr; m->m_pkthdr.len = m->m_len = len; /* The rest of the stack assumes a rcvif, so provide one. * This is a locally generated packet, so .. close enough. */ m->m_pkthdr.rcvif = V_loif; bzero(m->m_data, len); switch (af) { #ifdef INET case AF_INET: h = mtod(m, struct ip *); /* IP header fields included in the TCP checksum */ h->ip_p = IPPROTO_TCP; h->ip_len = htons(tlen); h->ip_src.s_addr = saddr->v4.s_addr; h->ip_dst.s_addr = daddr->v4.s_addr; th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); break; #endif /* INET */ #ifdef INET6 case AF_INET6: h6 = mtod(m, struct ip6_hdr *); /* IP header fields included in the TCP checksum */ h6->ip6_nxt = IPPROTO_TCP; h6->ip6_plen = htons(tlen); memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); break; #endif /* INET6 */ } /* TCP header */ th->th_sport = sport; th->th_dport = dport; th->th_seq = htonl(seq); th->th_ack = htonl(ack); th->th_off = tlen >> 2; th->th_flags = flags; th->th_win = htons(win); if (mss) { opt = (char *)(th + 1); opt[0] = TCPOPT_MAXSEG; opt[1] = 4; HTONS(mss); bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); } switch (af) { #ifdef INET case AF_INET: /* TCP checksum */ th->th_sum = in_cksum(m, len); /* Finish the IP header */ h->ip_v = 4; h->ip_hl = sizeof(*h) >> 2; h->ip_tos = IPTOS_LOWDELAY; h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); h->ip_len = htons(len); h->ip_ttl = ttl ? ttl : V_ip_defttl; h->ip_sum = 0; break; #endif /* INET */ #ifdef INET6 case AF_INET6: /* TCP checksum */ th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr), tlen); h6->ip6_vfc |= IPV6_VERSION; h6->ip6_hlim = IPV6_DEFHLIM; break; #endif /* INET6 */ } return (m); } void pf_send_tcp(const struct pf_krule *r, sa_family_t af, const struct pf_addr *saddr, const struct pf_addr *daddr, u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, u_int16_t rtag) { struct pf_send_entry *pfse; struct mbuf *m; m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, flags, win, mss, ttl, tag, rtag); if (m == NULL) return; /* Allocate outgoing queue entry, mbuf and mbuf tag. */ pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); if (pfse == NULL) { m_freem(m); return; } switch (af) { #ifdef INET case AF_INET: pfse->pfse_type = PFSE_IP; break; #endif /* INET */ #ifdef INET6 case AF_INET6: pfse->pfse_type = PFSE_IP6; break; #endif /* INET6 */ } pfse->pfse_m = m; pf_send(pfse); } static void pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, struct pfi_kkif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, u_short *reason) { struct pf_addr * const saddr = pd->src; struct pf_addr * const daddr = pd->dst; sa_family_t af = pd->af; /* undo NAT changes, if they have taken place */ if (nr != NULL) { PF_ACPY(saddr, &sk->addr[pd->sidx], af); PF_ACPY(daddr, &sk->addr[pd->didx], af); if (pd->sport) *pd->sport = sk->port[pd->sidx]; if (pd->dport) *pd->dport = sk->port[pd->didx]; if (pd->proto_sum) *pd->proto_sum = bproto_sum; if (pd->ip_sum) *pd->ip_sum = bip_sum; m_copyback(m, off, hdrlen, pd->hdr.any); } if (pd->proto == IPPROTO_TCP && ((r->rule_flag & PFRULE_RETURNRST) || (r->rule_flag & PFRULE_RETURN)) && !(th->th_flags & TH_RST)) { u_int32_t ack = ntohl(th->th_seq) + pd->p_len; int len = 0; #ifdef INET struct ip *h4; #endif #ifdef INET6 struct ip6_hdr *h6; #endif switch (af) { #ifdef INET case AF_INET: h4 = mtod(m, struct ip *); len = ntohs(h4->ip_len) - off; break; #endif #ifdef INET6 case AF_INET6: h6 = mtod(m, struct ip6_hdr *); len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); break; #endif } if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) REASON_SET(reason, PFRES_PROTCKSUM); else { if (th->th_flags & TH_SYN) ack++; if (th->th_flags & TH_FIN) ack++; pf_send_tcp(r, af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, r->return_ttl, 1, 0); } } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && r->return_icmp) pf_send_icmp(m, r->return_icmp >> 8, r->return_icmp & 255, af, r); else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && r->return_icmp6) pf_send_icmp(m, r->return_icmp6 >> 8, r->return_icmp6 & 255, af, r); } static int pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) { struct m_tag *mtag; u_int8_t mpcp; mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); if (mtag == NULL) return (0); if (prio == PF_PRIO_ZERO) prio = 0; mpcp = *(uint8_t *)(mtag + 1); return (mpcp == prio); } static void pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, struct pf_krule *r) { struct pf_send_entry *pfse; struct mbuf *m0; struct pf_mtag *pf_mtag; /* Allocate outgoing queue entry, mbuf and mbuf tag. */ pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); if (pfse == NULL) return; if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { free(pfse, M_PFTEMP); return; } if ((pf_mtag = pf_get_mtag(m0)) == NULL) { free(pfse, M_PFTEMP); return; } /* XXX: revisit */ m0->m_flags |= M_SKIP_FIREWALL; if (r->rtableid >= 0) M_SETFIB(m0, r->rtableid); #ifdef ALTQ if (r->qid) { pf_mtag->qid = r->qid; /* add hints for ecn */ pf_mtag->hdr = mtod(m0, struct ip *); } #endif /* ALTQ */ switch (af) { #ifdef INET case AF_INET: pfse->pfse_type = PFSE_ICMP; break; #endif /* INET */ #ifdef INET6 case AF_INET6: pfse->pfse_type = PFSE_ICMP6; break; #endif /* INET6 */ } pfse->pfse_m = m0; pfse->icmpopts.type = type; pfse->icmpopts.code = code; pf_send(pfse); } /* * Return 1 if the addresses a and b match (with mask m), otherwise return 0. * If n is 0, they match if they are equal. If n is != 0, they match if they * are different. */ int pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, struct pf_addr *b, sa_family_t af) { int match = 0; switch (af) { #ifdef INET case AF_INET: if ((a->addr32[0] & m->addr32[0]) == (b->addr32[0] & m->addr32[0])) match++; break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (((a->addr32[0] & m->addr32[0]) == (b->addr32[0] & m->addr32[0])) && ((a->addr32[1] & m->addr32[1]) == (b->addr32[1] & m->addr32[1])) && ((a->addr32[2] & m->addr32[2]) == (b->addr32[2] & m->addr32[2])) && ((a->addr32[3] & m->addr32[3]) == (b->addr32[3] & m->addr32[3]))) match++; break; #endif /* INET6 */ } if (match) { if (n) return (0); else return (1); } else { if (n) return (1); else return (0); } } /* * Return 1 if b <= a <= e, otherwise return 0. */ int pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, struct pf_addr *a, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) return (0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: { int i; /* check a >= b */ for (i = 0; i < 4; ++i) if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) break; else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) return (0); /* check a <= e */ for (i = 0; i < 4; ++i) if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) break; else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) return (0); break; } #endif /* INET6 */ } return (1); } static int pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) { switch (op) { case PF_OP_IRG: return ((p > a1) && (p < a2)); case PF_OP_XRG: return ((p < a1) || (p > a2)); case PF_OP_RRG: return ((p >= a1) && (p <= a2)); case PF_OP_EQ: return (p == a1); case PF_OP_NE: return (p != a1); case PF_OP_LT: return (p < a1); case PF_OP_LE: return (p <= a1); case PF_OP_GT: return (p > a1); case PF_OP_GE: return (p >= a1); } return (0); /* never reached */ } int pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) { NTOHS(a1); NTOHS(a2); NTOHS(p); return (pf_match(op, a1, a2, p)); } static int pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) { if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) return (0); return (pf_match(op, a1, a2, u)); } static int pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) { if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) return (0); return (pf_match(op, a1, a2, g)); } int pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) { if (*tag == -1) *tag = mtag; return ((!r->match_tag_not && r->match_tag == *tag) || (r->match_tag_not && r->match_tag != *tag)); } int pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) { KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) return (ENOMEM); pd->pf_mtag->tag = tag; return (0); } #define PF_ANCHOR_STACKSIZE 32 struct pf_kanchor_stackframe { struct pf_kruleset *rs; struct pf_krule *r; /* XXX: + match bit */ struct pf_kanchor *child; }; /* * XXX: We rely on malloc(9) returning pointer aligned addresses. */ #define PF_ANCHORSTACK_MATCH 0x00000001 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ } while (0) void pf_step_into_anchor(struct pf_kanchor_stackframe *stack, int *depth, struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, int *match) { struct pf_kanchor_stackframe *f; PF_RULES_RASSERT(); if (match) *match = 0; if (*depth >= PF_ANCHOR_STACKSIZE) { printf("%s: anchor stack overflow on %s\n", __func__, (*r)->anchor->name); *r = TAILQ_NEXT(*r, entries); return; } else if (*depth == 0 && a != NULL) *a = *r; f = stack + (*depth)++; f->rs = *rs; f->r = *r; if ((*r)->anchor_wildcard) { struct pf_kanchor_node *parent = &(*r)->anchor->children; if ((f->child = RB_MIN(pf_kanchor_node, parent)) == NULL) { *r = NULL; return; } *rs = &f->child->ruleset; } else { f->child = NULL; *rs = &(*r)->anchor->ruleset; } *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); } int pf_step_out_of_anchor(struct pf_kanchor_stackframe *stack, int *depth, struct pf_kruleset **rs, int n, struct pf_krule **r, struct pf_krule **a, int *match) { struct pf_kanchor_stackframe *f; struct pf_krule *fr; int quick = 0; PF_RULES_RASSERT(); do { if (*depth <= 0) break; f = stack + *depth - 1; fr = PF_ANCHOR_RULE(f); if (f->child != NULL) { struct pf_kanchor_node *parent; /* * This block traverses through * a wildcard anchor. */ parent = &fr->anchor->children; if (match != NULL && *match) { /* * If any of "*" matched, then * "foo/ *" matched, mark frame * appropriately. */ PF_ANCHOR_SET_MATCH(f); *match = 0; } f->child = RB_NEXT(pf_kanchor_node, parent, f->child); if (f->child != NULL) { *rs = &f->child->ruleset; *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); if (*r == NULL) continue; else break; } } (*depth)--; if (*depth == 0 && a != NULL) *a = NULL; *rs = f->rs; if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) quick = fr->quick; *r = TAILQ_NEXT(fr, entries); } while (*r == NULL); return (quick); } #ifdef INET6 void pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); break; #endif /* INET */ case AF_INET6: naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); break; } } void pf_addr_inc(struct pf_addr *addr, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); break; #endif /* INET */ case AF_INET6: if (addr->addr32[3] == 0xffffffff) { addr->addr32[3] = 0; if (addr->addr32[2] == 0xffffffff) { addr->addr32[2] = 0; if (addr->addr32[1] == 0xffffffff) { addr->addr32[1] = 0; addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); } else addr->addr32[1] = htonl(ntohl(addr->addr32[1]) + 1); } else addr->addr32[2] = htonl(ntohl(addr->addr32[2]) + 1); } else addr->addr32[3] = htonl(ntohl(addr->addr32[3]) + 1); break; } } #endif /* INET6 */ void pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) { if (r->qid) a->qid = r->qid; if (r->pqid) a->pqid = r->pqid; if (r->dnpipe) a->dnpipe = r->dnpipe; if (r->dnrpipe) a->dnpipe = r->dnrpipe; if (r->free_flags & PFRULE_DN_IS_PIPE) a->flags |= PFRULE_DN_IS_PIPE; } int pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) { struct pf_addr *saddr, *daddr; u_int16_t sport, dport; struct inpcbinfo *pi; struct inpcb *inp; pd->lookup.uid = UID_MAX; pd->lookup.gid = GID_MAX; switch (pd->proto) { case IPPROTO_TCP: sport = pd->hdr.tcp.th_sport; dport = pd->hdr.tcp.th_dport; pi = &V_tcbinfo; break; case IPPROTO_UDP: sport = pd->hdr.udp.uh_sport; dport = pd->hdr.udp.uh_dport; pi = &V_udbinfo; break; default: return (-1); } if (direction == PF_IN) { saddr = pd->src; daddr = pd->dst; } else { u_int16_t p; p = sport; sport = dport; dport = p; saddr = pd->dst; daddr = pd->src; } switch (pd->af) { #ifdef INET case AF_INET: inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, dport, INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) { inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) return (-1); } break; #endif /* INET */ #ifdef INET6 case AF_INET6: inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, dport, INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) { inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, dport, INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL, m); if (inp == NULL) return (-1); } break; #endif /* INET6 */ default: return (-1); } INP_RLOCK_ASSERT(inp); pd->lookup.uid = inp->inp_cred->cr_uid; pd->lookup.gid = inp->inp_cred->cr_groups[0]; INP_RUNLOCK(inp); return (1); } u_int8_t pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) { int hlen; u_int8_t hdr[60]; u_int8_t *opt, optlen; u_int8_t wscale = 0; hlen = th_off << 2; /* hlen <= sizeof(hdr) */ if (hlen <= sizeof(struct tcphdr)) return (0); if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) return (0); opt = hdr + sizeof(struct tcphdr); hlen -= sizeof(struct tcphdr); while (hlen >= 3) { switch (*opt) { case TCPOPT_EOL: case TCPOPT_NOP: ++opt; --hlen; break; case TCPOPT_WINDOW: wscale = opt[2]; if (wscale > TCP_MAX_WINSHIFT) wscale = TCP_MAX_WINSHIFT; wscale |= PF_WSCALE_FLAG; /* FALLTHROUGH */ default: optlen = opt[1]; if (optlen < 2) optlen = 2; hlen -= optlen; opt += optlen; break; } } return (wscale); } u_int16_t pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) { int hlen; u_int8_t hdr[60]; u_int8_t *opt, optlen; u_int16_t mss = V_tcp_mssdflt; hlen = th_off << 2; /* hlen <= sizeof(hdr) */ if (hlen <= sizeof(struct tcphdr)) return (0); if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) return (0); opt = hdr + sizeof(struct tcphdr); hlen -= sizeof(struct tcphdr); while (hlen >= TCPOLEN_MAXSEG) { switch (*opt) { case TCPOPT_EOL: case TCPOPT_NOP: ++opt; --hlen; break; case TCPOPT_MAXSEG: bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); NTOHS(mss); /* FALLTHROUGH */ default: optlen = opt[1]; if (optlen < 2) optlen = 2; hlen -= optlen; opt += optlen; break; } } return (mss); } static u_int16_t pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) { struct nhop_object *nh; #ifdef INET6 struct in6_addr dst6; uint32_t scopeid; #endif /* INET6 */ int hlen = 0; uint16_t mss = 0; NET_EPOCH_ASSERT(); switch (af) { #ifdef INET case AF_INET: hlen = sizeof(struct ip); nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); if (nh != NULL) mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); break; #endif /* INET */ #ifdef INET6 case AF_INET6: hlen = sizeof(struct ip6_hdr); in6_splitscope(&addr->v6, &dst6, &scopeid); nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); if (nh != NULL) mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); break; #endif /* INET6 */ } mss = max(V_tcp_mssdflt, mss); mss = min(mss, offer); mss = max(mss, 64); /* sanity - at least max opt space */ return (mss); } static u_int32_t pf_tcp_iss(struct pf_pdesc *pd) { MD5_CTX ctx; u_int32_t digest[4]; if (V_pf_tcp_secret_init == 0) { arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); MD5Init(&V_pf_tcp_secret_ctx); MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); V_pf_tcp_secret_init = 1; } ctx = V_pf_tcp_secret_ctx; MD5Update(&ctx, (char *)&pd->hdr.tcp.th_sport, sizeof(u_short)); MD5Update(&ctx, (char *)&pd->hdr.tcp.th_dport, sizeof(u_short)); if (pd->af == AF_INET6) { MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); } else { MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); } MD5Final((u_char *)digest, &ctx); V_pf_tcp_iss_off += 4096; #define ISN_RANDOM_INCREMENT (4096 - 1) return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + V_pf_tcp_iss_off); #undef ISN_RANDOM_INCREMENT } static int pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, struct pf_krule **am, struct pf_kruleset **rsm, struct inpcb *inp) { struct pf_krule *nr = NULL; struct pf_addr * const saddr = pd->src; struct pf_addr * const daddr = pd->dst; sa_family_t af = pd->af; struct pf_krule *r, *a = NULL; struct pf_kruleset *ruleset = NULL; struct pf_ksrc_node *nsn = NULL; struct tcphdr *th = &pd->hdr.tcp; struct pf_state_key *sk = NULL, *nk = NULL; u_short reason; int rewrite = 0, hdrlen = 0; int tag = -1, rtableid = -1; int asd = 0; int match = 0; int state_icmp = 0; u_int16_t sport = 0, dport = 0; u_int16_t bproto_sum = 0, bip_sum = 0; u_int8_t icmptype = 0, icmpcode = 0; struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; PF_RULES_RASSERT(); if (inp != NULL) { INP_LOCK_ASSERT(inp); pd->lookup.uid = inp->inp_cred->cr_uid; pd->lookup.gid = inp->inp_cred->cr_groups[0]; pd->lookup.done = 1; } switch (pd->proto) { case IPPROTO_TCP: sport = th->th_sport; dport = th->th_dport; hdrlen = sizeof(*th); break; case IPPROTO_UDP: sport = pd->hdr.udp.uh_sport; dport = pd->hdr.udp.uh_dport; hdrlen = sizeof(pd->hdr.udp); break; #ifdef INET case IPPROTO_ICMP: if (pd->af != AF_INET) break; sport = dport = pd->hdr.icmp.icmp_id; hdrlen = sizeof(pd->hdr.icmp); icmptype = pd->hdr.icmp.icmp_type; icmpcode = pd->hdr.icmp.icmp_code; if (icmptype == ICMP_UNREACH || icmptype == ICMP_SOURCEQUENCH || icmptype == ICMP_REDIRECT || icmptype == ICMP_TIMXCEED || icmptype == ICMP_PARAMPROB) state_icmp++; break; #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: if (af != AF_INET6) break; sport = dport = pd->hdr.icmp6.icmp6_id; hdrlen = sizeof(pd->hdr.icmp6); icmptype = pd->hdr.icmp6.icmp6_type; icmpcode = pd->hdr.icmp6.icmp6_code; if (icmptype == ICMP6_DST_UNREACH || icmptype == ICMP6_PACKET_TOO_BIG || icmptype == ICMP6_TIME_EXCEEDED || icmptype == ICMP6_PARAM_PROB) state_icmp++; break; #endif /* INET6 */ default: sport = dport = hdrlen = 0; break; } r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); /* check packet for BINAT/NAT/RDR */ if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { KASSERT(sk != NULL, ("%s: null sk", __func__)); KASSERT(nk != NULL, ("%s: null nk", __func__)); if (nr->log) { PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, nr, a, ruleset, pd, 1); } if (pd->ip_sum) bip_sum = *pd->ip_sum; switch (pd->proto) { case IPPROTO_TCP: bproto_sum = th->th_sum; pd->proto_sum = &th->th_sum; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || nk->port[pd->sidx] != sport) { pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 0, af); pd->sport = &th->th_sport; sport = th->th_sport; } if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || nk->port[pd->didx] != dport) { pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], nk->port[pd->didx], 0, af); dport = th->th_dport; pd->dport = &th->th_dport; } rewrite++; break; case IPPROTO_UDP: bproto_sum = pd->hdr.udp.uh_sum; pd->proto_sum = &pd->hdr.udp.uh_sum; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || nk->port[pd->sidx] != sport) { pf_change_ap(m, saddr, &pd->hdr.udp.uh_sport, pd->ip_sum, &pd->hdr.udp.uh_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 1, af); sport = pd->hdr.udp.uh_sport; pd->sport = &pd->hdr.udp.uh_sport; } if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || nk->port[pd->didx] != dport) { pf_change_ap(m, daddr, &pd->hdr.udp.uh_dport, pd->ip_sum, &pd->hdr.udp.uh_sum, &nk->addr[pd->didx], nk->port[pd->didx], 1, af); dport = pd->hdr.udp.uh_dport; pd->dport = &pd->hdr.udp.uh_dport; } rewrite++; break; #ifdef INET case IPPROTO_ICMP: nk->port[0] = nk->port[1]; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&saddr->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) pf_change_a(&daddr->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); if (nk->port[1] != pd->hdr.icmp.icmp_id) { pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( pd->hdr.icmp.icmp_cksum, sport, nk->port[1], 0); pd->hdr.icmp.icmp_id = nk->port[1]; pd->sport = &pd->hdr.icmp.icmp_id; } m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); break; #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: nk->port[0] = nk->port[1]; if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, &nk->addr[pd->sidx], 0); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, &nk->addr[pd->didx], 0); rewrite++; break; #endif /* INET */ default: switch (af) { #ifdef INET case AF_INET: if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&saddr->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) pf_change_a(&daddr->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) PF_ACPY(saddr, &nk->addr[pd->sidx], af); if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) PF_ACPY(daddr, &nk->addr[pd->didx], af); break; #endif /* INET */ } break; } if (nr->natpass) r = NULL; pd->nat_rule = nr; } while (r != NULL) { pf_counter_u64_add(&r->evaluations, 1); if (pfi_kkif_match(r->kif, kif) == r->ifnot) r = r->skip[PF_SKIP_IFP].ptr; else if (r->direction && r->direction != direction) r = r->skip[PF_SKIP_DIR].ptr; else if (r->af && r->af != af) r = r->skip[PF_SKIP_AF].ptr; else if (r->proto && r->proto != pd->proto) r = r->skip[PF_SKIP_PROTO].ptr; else if (PF_MISMATCHAW(&r->src.addr, saddr, af, r->src.neg, kif, M_GETFIB(m))) r = r->skip[PF_SKIP_SRC_ADDR].ptr; /* tcp/udp only. port_op always 0 in other cases */ else if (r->src.port_op && !pf_match_port(r->src.port_op, r->src.port[0], r->src.port[1], sport)) r = r->skip[PF_SKIP_SRC_PORT].ptr; else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, r->dst.neg, NULL, M_GETFIB(m))) r = r->skip[PF_SKIP_DST_ADDR].ptr; /* tcp/udp only. port_op always 0 in other cases */ else if (r->dst.port_op && !pf_match_port(r->dst.port_op, r->dst.port[0], r->dst.port[1], dport)) r = r->skip[PF_SKIP_DST_PORT].ptr; /* icmp only. type always 0 in other cases */ else if (r->type && r->type != icmptype + 1) r = TAILQ_NEXT(r, entries); /* icmp only. type always 0 in other cases */ else if (r->code && r->code != icmpcode + 1) r = TAILQ_NEXT(r, entries); else if (r->tos && !(r->tos == pd->tos)) r = TAILQ_NEXT(r, entries); else if (r->rule_flag & PFRULE_FRAGMENT) r = TAILQ_NEXT(r, entries); else if (pd->proto == IPPROTO_TCP && (r->flagset & th->th_flags) != r->flags) r = TAILQ_NEXT(r, entries); /* tcp/udp only. uid.op always 0 in other cases */ else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = pf_socket_lookup(direction, pd, m), 1)) && !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], pd->lookup.uid)) r = TAILQ_NEXT(r, entries); /* tcp/udp only. gid.op always 0 in other cases */ else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = pf_socket_lookup(direction, pd, m), 1)) && !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], pd->lookup.gid)) r = TAILQ_NEXT(r, entries); else if (r->prio && !pf_match_ieee8021q_pcp(r->prio, m)) r = TAILQ_NEXT(r, entries); else if (r->prob && r->prob <= arc4random()) r = TAILQ_NEXT(r, entries); else if (r->match_tag && !pf_match_tag(m, r, &tag, pd->pf_mtag ? pd->pf_mtag->tag : 0)) r = TAILQ_NEXT(r, entries); else if (r->os_fingerprint != PF_OSFP_ANY && (pd->proto != IPPROTO_TCP || !pf_osfp_match( pf_osfp_fingerprint(pd, m, off, th), r->os_fingerprint))) r = TAILQ_NEXT(r, entries); else { if (r->tag) tag = r->tag; if (r->rtableid >= 0) rtableid = r->rtableid; if (r->anchor == NULL) { if (r->action == PF_MATCH) { pf_counter_u64_critical_enter(); pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); pf_counter_u64_critical_exit(); pf_rule_to_actions(r, &pd->act); if (r->log) PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, r, a, ruleset, pd, 1); } else { match = 1; *rm = r; *am = a; *rsm = ruleset; } if ((*rm)->quick) break; r = TAILQ_NEXT(r, entries); } else pf_step_into_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match); } if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match)) break; } r = *rm; a = *am; ruleset = *rsm; REASON_SET(&reason, PFRES_MATCH); /* apply actions for last matching pass/block rule */ pf_rule_to_actions(r, &pd->act); if (r->log) { if (rewrite) m_copyback(m, off, hdrlen, pd->hdr.any); PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 1); } if ((r->action == PF_DROP) && ((r->rule_flag & PFRULE_RETURNRST) || (r->rule_flag & PFRULE_RETURNICMP) || (r->rule_flag & PFRULE_RETURN))) { pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, bip_sum, hdrlen, &reason); } if (r->action == PF_DROP) goto cleanup; if (tag > 0 && pf_tag_packet(m, pd, tag)) { REASON_SET(&reason, PFRES_MEMORY); goto cleanup; } if (rtableid >= 0) M_SETFIB(m, rtableid); if (!state_icmp && (r->keep_state || nr != NULL || (pd->flags & PFDESC_TCP_NORM))) { int action; action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, hdrlen); if (action != PF_PASS) { if (action == PF_DROP && (r->rule_flag & PFRULE_RETURN)) pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, bip_sum, hdrlen, &reason); return (action); } } else { if (sk != NULL) uma_zfree(V_pf_state_key_z, sk); if (nk != NULL) uma_zfree(V_pf_state_key_z, nk); } /* copy back packet headers if we performed NAT operations */ if (rewrite) m_copyback(m, off, hdrlen, pd->hdr.any); if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && direction == PF_OUT && V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) /* * We want the state created, but we dont * want to send this in case a partner * firewall has to know about it to allow * replies through it. */ return (PF_DEFER); return (PF_PASS); cleanup: if (sk != NULL) uma_zfree(V_pf_state_key_z, sk); if (nk != NULL) uma_zfree(V_pf_state_key_z, nk); return (PF_DROP); } static int pf_create_state(struct pf_krule *r, struct pf_krule *nr, struct pf_krule *a, struct pf_pdesc *pd, struct pf_ksrc_node *nsn, struct pf_state_key *nk, struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, u_int16_t dport, int *rewrite, struct pfi_kkif *kif, struct pf_kstate **sm, int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) { struct pf_kstate *s = NULL; struct pf_ksrc_node *sn = NULL; struct tcphdr *th = &pd->hdr.tcp; u_int16_t mss = V_tcp_mssdflt; u_short reason; /* check maximums */ if (r->max_states && (counter_u64_fetch(r->states_cur) >= r->max_states)) { counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); REASON_SET(&reason, PFRES_MAXSTATES); goto csfailed; } /* src node for filter rule */ if ((r->rule_flag & PFRULE_SRCTRACK || r->rpool.opts & PF_POOL_STICKYADDR) && pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { REASON_SET(&reason, PFRES_SRCLIMIT); goto csfailed; } /* src node for translation rule */ if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { REASON_SET(&reason, PFRES_SRCLIMIT); goto csfailed; } s = pf_alloc_state(M_NOWAIT); if (s == NULL) { REASON_SET(&reason, PFRES_MEMORY); goto csfailed; } s->rule.ptr = r; s->nat_rule.ptr = nr; s->anchor.ptr = a; STATE_INC_COUNTERS(s); if (r->allow_opts) s->state_flags |= PFSTATE_ALLOWOPTS; if (r->rule_flag & PFRULE_STATESLOPPY) s->state_flags |= PFSTATE_SLOPPY; s->log = r->log & PF_LOG_ALL; s->sync_state = PFSYNC_S_NONE; s->qid = pd->act.qid; s->pqid = pd->act.pqid; s->dnpipe = pd->act.dnpipe; s->dnrpipe = pd->act.dnrpipe; s->state_flags |= pd->act.flags; if (nr != NULL) s->log |= nr->log & PF_LOG_ALL; switch (pd->proto) { case IPPROTO_TCP: s->src.seqlo = ntohl(th->th_seq); s->src.seqhi = s->src.seqlo + pd->p_len + 1; if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && r->keep_state == PF_STATE_MODULATE) { /* Generate sequence number modulator */ if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 0) s->src.seqdiff = 1; pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(s->src.seqlo + s->src.seqdiff), 0); *rewrite = 1; } else s->src.seqdiff = 0; if (th->th_flags & TH_SYN) { s->src.seqhi++; s->src.wscale = pf_get_wscale(m, off, th->th_off, pd->af); } s->src.max_win = MAX(ntohs(th->th_win), 1); if (s->src.wscale & PF_WSCALE_MASK) { /* Remove scale factor from initial window */ int win = s->src.max_win; win += 1 << (s->src.wscale & PF_WSCALE_MASK); s->src.max_win = (win - 1) >> (s->src.wscale & PF_WSCALE_MASK); } if (th->th_flags & TH_FIN) s->src.seqhi++; s->dst.seqhi = 1; s->dst.max_win = 1; pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); s->timeout = PFTM_TCP_FIRST_PACKET; atomic_add_32(&V_pf_status.states_halfopen, 1); break; case IPPROTO_UDP: pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); s->timeout = PFTM_UDP_FIRST_PACKET; break; case IPPROTO_ICMP: #ifdef INET6 case IPPROTO_ICMPV6: #endif s->timeout = PFTM_ICMP_FIRST_PACKET; break; default: pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); s->timeout = PFTM_OTHER_FIRST_PACKET; } if (r->rt) { if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { REASON_SET(&reason, PFRES_MAPFAILED); pf_src_tree_remove_state(s); s->timeout = PFTM_UNLINKED; STATE_DEC_COUNTERS(s); pf_free_state(s); goto csfailed; } s->rt_kif = r->rpool.cur->kif; } s->creation = time_uptime; s->expire = time_uptime; if (sn != NULL) s->src_node = sn; if (nsn != NULL) { /* XXX We only modify one side for now. */ PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); s->nat_src_node = nsn; } if (pd->proto == IPPROTO_TCP) { if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, off, pd, th, &s->src, &s->dst)) { REASON_SET(&reason, PFRES_MEMORY); pf_src_tree_remove_state(s); s->timeout = PFTM_UNLINKED; STATE_DEC_COUNTERS(s); pf_free_state(s); return (PF_DROP); } if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, &s->src, &s->dst, rewrite)) { /* This really shouldn't happen!!! */ DPFPRINTF(PF_DEBUG_URGENT, ("pf_normalize_tcp_stateful failed on first " "pkt\n")); pf_src_tree_remove_state(s); s->timeout = PFTM_UNLINKED; STATE_DEC_COUNTERS(s); pf_free_state(s); return (PF_DROP); } } s->direction = pd->dir; /* * sk/nk could already been setup by pf_get_translation(). */ if (nr == NULL) { KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", __func__, nr, sk, nk)); sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); if (sk == NULL) goto csfailed; nk = sk; } else KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", __func__, nr, sk, nk)); /* Swap sk/nk for PF_OUT. */ if (pf_state_insert(BOUND_IFACE(r, kif), kif, (pd->dir == PF_IN) ? sk : nk, (pd->dir == PF_IN) ? nk : sk, s)) { REASON_SET(&reason, PFRES_STATEINS); pf_src_tree_remove_state(s); s->timeout = PFTM_UNLINKED; STATE_DEC_COUNTERS(s); pf_free_state(s); return (PF_DROP); } else *sm = s; if (tag > 0) s->tag = tag; if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); /* undo NAT changes, if they have taken place */ if (nr != NULL) { struct pf_state_key *skt = s->key[PF_SK_WIRE]; if (pd->dir == PF_OUT) skt = s->key[PF_SK_STACK]; PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); if (pd->sport) *pd->sport = skt->port[pd->sidx]; if (pd->dport) *pd->dport = skt->port[pd->didx]; if (pd->proto_sum) *pd->proto_sum = bproto_sum; if (pd->ip_sum) *pd->ip_sum = bip_sum; m_copyback(m, off, hdrlen, pd->hdr.any); } s->src.seqhi = htonl(arc4random()); /* Find mss option */ int rtid = M_GETFIB(m); mss = pf_get_mss(m, off, th->th_off, pd->af); mss = pf_calc_mss(pd->src, pd->af, rtid, mss); mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); s->src.mss = mss; pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0); REASON_SET(&reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } return (PF_PASS); csfailed: if (sk != NULL) uma_zfree(V_pf_state_key_z, sk); if (nk != NULL) uma_zfree(V_pf_state_key_z, nk); if (sn != NULL) { struct pf_srchash *sh; sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; PF_HASHROW_LOCK(sh); if (--sn->states == 0 && sn->expire == 0) { pf_unlink_src_node(sn); uma_zfree(V_pf_sources_z, sn); counter_u64_add( V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); } PF_HASHROW_UNLOCK(sh); } if (nsn != sn && nsn != NULL) { struct pf_srchash *sh; sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; PF_HASHROW_LOCK(sh); if (--nsn->states == 0 && nsn->expire == 0) { pf_unlink_src_node(nsn); uma_zfree(V_pf_sources_z, nsn); counter_u64_add( V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); } PF_HASHROW_UNLOCK(sh); } return (PF_DROP); } static int pf_test_fragment(struct pf_krule **rm, int direction, struct pfi_kkif *kif, struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_krule **am, struct pf_kruleset **rsm) { struct pf_krule *r, *a = NULL; struct pf_kruleset *ruleset = NULL; sa_family_t af = pd->af; u_short reason; int tag = -1; int asd = 0; int match = 0; struct pf_kanchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; PF_RULES_RASSERT(); r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); while (r != NULL) { pf_counter_u64_add(&r->evaluations, 1); if (pfi_kkif_match(r->kif, kif) == r->ifnot) r = r->skip[PF_SKIP_IFP].ptr; else if (r->direction && r->direction != direction) r = r->skip[PF_SKIP_DIR].ptr; else if (r->af && r->af != af) r = r->skip[PF_SKIP_AF].ptr; else if (r->proto && r->proto != pd->proto) r = r->skip[PF_SKIP_PROTO].ptr; else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, r->src.neg, kif, M_GETFIB(m))) r = r->skip[PF_SKIP_SRC_ADDR].ptr; else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, r->dst.neg, NULL, M_GETFIB(m))) r = r->skip[PF_SKIP_DST_ADDR].ptr; else if (r->tos && !(r->tos == pd->tos)) r = TAILQ_NEXT(r, entries); else if (r->os_fingerprint != PF_OSFP_ANY) r = TAILQ_NEXT(r, entries); else if (pd->proto == IPPROTO_UDP && (r->src.port_op || r->dst.port_op)) r = TAILQ_NEXT(r, entries); else if (pd->proto == IPPROTO_TCP && (r->src.port_op || r->dst.port_op || r->flagset)) r = TAILQ_NEXT(r, entries); else if ((pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) && (r->type || r->code)) r = TAILQ_NEXT(r, entries); else if (r->prio && !pf_match_ieee8021q_pcp(r->prio, m)) r = TAILQ_NEXT(r, entries); else if (r->prob && r->prob <= (arc4random() % (UINT_MAX - 1) + 1)) r = TAILQ_NEXT(r, entries); else if (r->match_tag && !pf_match_tag(m, r, &tag, pd->pf_mtag ? pd->pf_mtag->tag : 0)) r = TAILQ_NEXT(r, entries); else { if (r->anchor == NULL) { if (r->action == PF_MATCH) { pf_counter_u64_critical_enter(); pf_counter_u64_add_protected(&r->packets[direction == PF_OUT], 1); pf_counter_u64_add_protected(&r->bytes[direction == PF_OUT], pd->tot_len); pf_counter_u64_critical_exit(); pf_rule_to_actions(r, &pd->act); if (r->log) PFLOG_PACKET(kif, m, af, direction, PFRES_MATCH, r, a, ruleset, pd, 1); } else { match = 1; *rm = r; *am = a; *rsm = ruleset; } if ((*rm)->quick) break; r = TAILQ_NEXT(r, entries); } else pf_step_into_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match); } if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, &ruleset, PF_RULESET_FILTER, &r, &a, &match)) break; } r = *rm; a = *am; ruleset = *rsm; REASON_SET(&reason, PFRES_MATCH); /* apply actions for last matching pass/block rule */ pf_rule_to_actions(r, &pd->act); if (r->log) PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 1); if (r->action != PF_PASS) return (PF_DROP); if (tag > 0 && pf_tag_packet(m, pd, tag)) { REASON_SET(&reason, PFRES_MEMORY); return (PF_DROP); } return (PF_PASS); } static int pf_tcp_track_full(struct pf_kstate **state, struct pfi_kkif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, u_short *reason, int *copyback) { struct tcphdr *th = &pd->hdr.tcp; struct pf_state_peer *src, *dst; u_int16_t win = ntohs(th->th_win); u_int32_t ack, end, seq, orig_seq; u_int8_t sws, dws, psrc, pdst; int ackskew; if (pd->dir == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; psrc = PF_PEER_SRC; pdst = PF_PEER_DST; } else { src = &(*state)->dst; dst = &(*state)->src; psrc = PF_PEER_DST; pdst = PF_PEER_SRC; } if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { sws = src->wscale & PF_WSCALE_MASK; dws = dst->wscale & PF_WSCALE_MASK; } else sws = dws = 0; /* * Sequence tracking algorithm from Guido van Rooij's paper: * http://www.madison-gurkha.com/publications/tcp_filtering/ * tcp_filtering.ps */ orig_seq = seq = ntohl(th->th_seq); if (src->seqlo == 0) { /* First packet from this end. Set its state */ if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && src->scrub == NULL) { if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { REASON_SET(reason, PFRES_MEMORY); return (PF_DROP); } } /* Deferred generation of sequence number modulator */ if (dst->seqdiff && !src->seqdiff) { /* use random iss for the TCP server */ while ((src->seqdiff = arc4random() - seq) == 0) ; ack = ntohl(th->th_ack) - dst->seqdiff; pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + src->seqdiff), 0); pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); *copyback = 1; } else { ack = ntohl(th->th_ack); } end = seq + pd->p_len; if (th->th_flags & TH_SYN) { end++; if (dst->wscale & PF_WSCALE_FLAG) { src->wscale = pf_get_wscale(m, off, th->th_off, pd->af); if (src->wscale & PF_WSCALE_FLAG) { /* Remove scale factor from initial * window */ sws = src->wscale & PF_WSCALE_MASK; win = ((u_int32_t)win + (1 << sws) - 1) >> sws; dws = dst->wscale & PF_WSCALE_MASK; } else { /* fixup other window */ dst->max_win <<= dst->wscale & PF_WSCALE_MASK; /* in case of a retrans SYN|ACK */ dst->wscale = 0; } } } if (th->th_flags & TH_FIN) end++; src->seqlo = seq; if (src->state < TCPS_SYN_SENT) pf_set_protostate(*state, psrc, TCPS_SYN_SENT); /* * May need to slide the window (seqhi may have been set by * the crappy stack check or if we picked up the connection * after establishment) */ if (src->seqhi == 1 || SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) src->seqhi = end + MAX(1, dst->max_win << dws); if (win > src->max_win) src->max_win = win; } else { ack = ntohl(th->th_ack) - dst->seqdiff; if (src->seqdiff) { /* Modulate sequence numbers */ pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + src->seqdiff), 0); pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); *copyback = 1; } end = seq + pd->p_len; if (th->th_flags & TH_SYN) end++; if (th->th_flags & TH_FIN) end++; } if ((th->th_flags & TH_ACK) == 0) { /* Let it pass through the ack skew check */ ack = dst->seqlo; } else if ((ack == 0 && (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || /* broken tcp stacks do not set ack */ (dst->state < TCPS_SYN_SENT)) { /* * Many stacks (ours included) will set the ACK number in an * FIN|ACK if the SYN times out -- no sequence to ACK. */ ack = dst->seqlo; } if (seq == end) { /* Ease sequencing restrictions on no data packets */ seq = src->seqlo; end = seq; } ackskew = dst->seqlo - ack; /* * Need to demodulate the sequence numbers in any TCP SACK options * (Selective ACK). We could optionally validate the SACK values * against the current ACK window, either forwards or backwards, but * I'm not confident that SACK has been implemented properly * everywhere. It wouldn't surprise me if several stacks accidentally * SACK too far backwards of previously ACKed data. There really aren't * any security implications of bad SACKing unless the target stack * doesn't validate the option length correctly. Someone trying to * spoof into a TCP connection won't bother blindly sending SACK * options anyway. */ if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { if (pf_modulate_sack(m, off, pd, th, dst)) *copyback = 1; } #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ if (SEQ_GEQ(src->seqhi, end) && /* Last octet inside other's window space */ SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && /* Retrans: not more than one window back */ (ackskew >= -MAXACKWINDOW) && /* Acking not more than one reassembled fragment backwards */ (ackskew <= (MAXACKWINDOW << sws)) && /* Acking not more than one window forward */ ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || (pd->flags & PFDESC_IP_REAS) == 0)) { /* Require an exact/+1 sequence match on resets when possible */ if (dst->scrub || src->scrub) { if (pf_normalize_tcp_stateful(m, off, pd, reason, th, *state, src, dst, copyback)) return (PF_DROP); } /* update max window */ if (src->max_win < win) src->max_win = win; /* synchronize sequencing */ if (SEQ_GT(end, src->seqlo)) src->seqlo = end; /* slide the window of what the other end can send */ if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) dst->seqhi = ack + MAX((win << sws), 1); /* update states */ if (th->th_flags & TH_SYN) if (src->state < TCPS_SYN_SENT) pf_set_protostate(*state, psrc, TCPS_SYN_SENT); if (th->th_flags & TH_FIN) if (src->state < TCPS_CLOSING) pf_set_protostate(*state, psrc, TCPS_CLOSING); if (th->th_flags & TH_ACK) { if (dst->state == TCPS_SYN_SENT) { pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); if (src->state == TCPS_ESTABLISHED && (*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } } else if (dst->state == TCPS_CLOSING) pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); } if (th->th_flags & TH_RST) pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); /* update expire time */ (*state)->expire = time_uptime; if (src->state >= TCPS_FIN_WAIT_2 && dst->state >= TCPS_FIN_WAIT_2) (*state)->timeout = PFTM_TCP_CLOSED; else if (src->state >= TCPS_CLOSING && dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_FIN_WAIT; else if (src->state < TCPS_ESTABLISHED || dst->state < TCPS_ESTABLISHED) (*state)->timeout = PFTM_TCP_OPENING; else if (src->state >= TCPS_CLOSING || dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_CLOSING; else (*state)->timeout = PFTM_TCP_ESTABLISHED; /* Fall through to PASS packet */ } else if ((dst->state < TCPS_SYN_SENT || dst->state >= TCPS_FIN_WAIT_2 || src->state >= TCPS_FIN_WAIT_2) && SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && /* Within a window forward of the originating packet */ SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { /* Within a window backward of the originating packet */ /* * This currently handles three situations: * 1) Stupid stacks will shotgun SYNs before their peer * replies. * 2) When PF catches an already established stream (the * firewall rebooted, the state table was flushed, routes * changed...) * 3) Packets get funky immediately after the connection * closes (this should catch Solaris spurious ACK|FINs * that web servers like to spew after a close) * * This must be a little more careful than the above code * since packet floods will also be caught here. We don't * update the TTL here to mitigate the damage of a packet * flood and so the same code can handle awkward establishment * and a loosened connection close. * In the establishment case, a correct peer response will * validate the connection, go through the normal state code * and keep updating the state TTL. */ if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: loose state match: "); pf_print_state(*state); pf_print_flags(th->th_flags); printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], (unsigned long long)(*state)->packets[1], pd->dir == PF_IN ? "in" : "out", pd->dir == (*state)->direction ? "fwd" : "rev"); } if (dst->scrub || src->scrub) { if (pf_normalize_tcp_stateful(m, off, pd, reason, th, *state, src, dst, copyback)) return (PF_DROP); } /* update max window */ if (src->max_win < win) src->max_win = win; /* synchronize sequencing */ if (SEQ_GT(end, src->seqlo)) src->seqlo = end; /* slide the window of what the other end can send */ if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) dst->seqhi = ack + MAX((win << sws), 1); /* * Cannot set dst->seqhi here since this could be a shotgunned * SYN and not an already established connection. */ if (th->th_flags & TH_FIN) if (src->state < TCPS_CLOSING) pf_set_protostate(*state, psrc, TCPS_CLOSING); if (th->th_flags & TH_RST) pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); /* Fall through to PASS packet */ } else { if ((*state)->dst.state == TCPS_SYN_SENT && (*state)->src.state == TCPS_SYN_SENT) { /* Send RST for state mismatches during handshake */ if (!(th->th_flags & TH_RST)) pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), 0, TH_RST, 0, 0, (*state)->rule.ptr->return_ttl, 1, 0); src->seqlo = 0; src->seqhi = 1; src->max_win = 1; } else if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD state: "); pf_print_state(*state); pf_print_flags(th->th_flags); printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], (unsigned long long)(*state)->packets[1], pd->dir == PF_IN ? "in" : "out", pd->dir == (*state)->direction ? "fwd" : "rev"); printf("pf: State failure on: %c %c %c %c | %c %c\n", SEQ_GEQ(src->seqhi, end) ? ' ' : '1', SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? ' ': '2', (ackskew >= -MAXACKWINDOW) ? ' ' : '3', (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); } REASON_SET(reason, PFRES_BADSTATE); return (PF_DROP); } return (PF_PASS); } static int pf_tcp_track_sloppy(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) { struct tcphdr *th = &pd->hdr.tcp; struct pf_state_peer *src, *dst; u_int8_t psrc, pdst; if (pd->dir == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; psrc = PF_PEER_SRC; pdst = PF_PEER_DST; } else { src = &(*state)->dst; dst = &(*state)->src; psrc = PF_PEER_DST; pdst = PF_PEER_SRC; } if (th->th_flags & TH_SYN) if (src->state < TCPS_SYN_SENT) pf_set_protostate(*state, psrc, TCPS_SYN_SENT); if (th->th_flags & TH_FIN) if (src->state < TCPS_CLOSING) pf_set_protostate(*state, psrc, TCPS_CLOSING); if (th->th_flags & TH_ACK) { if (dst->state == TCPS_SYN_SENT) { pf_set_protostate(*state, pdst, TCPS_ESTABLISHED); if (src->state == TCPS_ESTABLISHED && (*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } } else if (dst->state == TCPS_CLOSING) { pf_set_protostate(*state, pdst, TCPS_FIN_WAIT_2); } else if (src->state == TCPS_SYN_SENT && dst->state < TCPS_SYN_SENT) { /* * Handle a special sloppy case where we only see one * half of the connection. If there is a ACK after * the initial SYN without ever seeing a packet from * the destination, set the connection to established. */ pf_set_protostate(*state, PF_PEER_BOTH, TCPS_ESTABLISHED); dst->state = src->state = TCPS_ESTABLISHED; if ((*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } } else if (src->state == TCPS_CLOSING && dst->state == TCPS_ESTABLISHED && dst->seqlo == 0) { /* * Handle the closing of half connections where we * don't see the full bidirectional FIN/ACK+ACK * handshake. */ pf_set_protostate(*state, pdst, TCPS_CLOSING); } } if (th->th_flags & TH_RST) pf_set_protostate(*state, PF_PEER_BOTH, TCPS_TIME_WAIT); /* update expire time */ (*state)->expire = time_uptime; if (src->state >= TCPS_FIN_WAIT_2 && dst->state >= TCPS_FIN_WAIT_2) (*state)->timeout = PFTM_TCP_CLOSED; else if (src->state >= TCPS_CLOSING && dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_FIN_WAIT; else if (src->state < TCPS_ESTABLISHED || dst->state < TCPS_ESTABLISHED) (*state)->timeout = PFTM_TCP_OPENING; else if (src->state >= TCPS_CLOSING || dst->state >= TCPS_CLOSING) (*state)->timeout = PFTM_TCP_CLOSING; else (*state)->timeout = PFTM_TCP_ESTABLISHED; return (PF_PASS); } static int pf_synproxy(struct pf_pdesc *pd, struct pf_kstate **state, u_short *reason) { struct pf_state_key *sk = (*state)->key[pd->didx]; struct tcphdr *th = &pd->hdr.tcp; if ((*state)->src.state == PF_TCPS_PROXY_SRC) { if (pd->dir != (*state)->direction) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } if (th->th_flags & TH_SYN) { if (ntohl(th->th_seq) != (*state)->src.seqlo) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, (*state)->src.seqhi, ntohl(th->th_seq) + 1, TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0); REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } else if ((*state)->src_node != NULL && pf_src_connlimit(state)) { REASON_SET(reason, PFRES_SRCLIMIT); return (PF_DROP); } else pf_set_protostate(*state, PF_PEER_SRC, PF_TCPS_PROXY_DST); } if ((*state)->src.state == PF_TCPS_PROXY_DST) { if (pd->dir == (*state)->direction) { if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } (*state)->src.max_win = MAX(ntohs(th->th_win), 1); if ((*state)->dst.seqhi == 1) (*state)->dst.seqhi = htonl(arc4random()); pf_send_tcp((*state)->rule.ptr, pd->af, &sk->addr[pd->sidx], &sk->addr[pd->didx], sk->port[pd->sidx], sk->port[pd->didx], (*state)->dst.seqhi, 0, TH_SYN, 0, (*state)->src.mss, 0, 0, (*state)->tag); REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } else if (((th->th_flags & (TH_SYN|TH_ACK)) != (TH_SYN|TH_ACK)) || (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { REASON_SET(reason, PFRES_SYNPROXY); return (PF_DROP); } else { (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); (*state)->dst.seqlo = ntohl(th->th_seq); pf_send_tcp((*state)->rule.ptr, pd->af, pd->dst, pd->src, th->th_dport, th->th_sport, ntohl(th->th_ack), ntohl(th->th_seq) + 1, TH_ACK, (*state)->src.max_win, 0, 0, 0, (*state)->tag); pf_send_tcp((*state)->rule.ptr, pd->af, &sk->addr[pd->sidx], &sk->addr[pd->didx], sk->port[pd->sidx], sk->port[pd->didx], (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0); (*state)->src.seqdiff = (*state)->dst.seqhi - (*state)->src.seqlo; (*state)->dst.seqdiff = (*state)->src.seqhi - (*state)->dst.seqlo; (*state)->src.seqhi = (*state)->src.seqlo + (*state)->dst.max_win; (*state)->dst.seqhi = (*state)->dst.seqlo + (*state)->src.max_win; (*state)->src.wscale = (*state)->dst.wscale = 0; pf_set_protostate(*state, PF_PEER_BOTH, TCPS_ESTABLISHED); REASON_SET(reason, PFRES_SYNPROXY); return (PF_SYNPROXY_DROP); } } return (PF_PASS); } static int pf_test_state_tcp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) { struct pf_state_key_cmp key; struct tcphdr *th = &pd->hdr.tcp; int copyback = 0; int action; struct pf_state_peer *src, *dst; struct pf_state_key *sk; bzero(&key, sizeof(key)); key.af = pd->af; key.proto = IPPROTO_TCP; if (direction == PF_IN) { /* wire side, straight */ PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); key.port[0] = th->th_sport; key.port[1] = th->th_dport; } else { /* stack side, reverse */ PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); key.port[1] = th->th_sport; key.port[0] = th->th_dport; } STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; } else { src = &(*state)->dst; dst = &(*state)->src; } sk = (*state)->key[pd->didx]; if ((action = pf_synproxy(pd, state, reason)) != PF_PASS) return (action); if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && dst->state >= TCPS_FIN_WAIT_2 && src->state >= TCPS_FIN_WAIT_2) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: state reuse "); pf_print_state(*state); pf_print_flags(th->th_flags); printf("\n"); } /* XXX make sure it's the same direction ?? */ pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); pf_unlink_state(*state, PF_ENTER_LOCKED); *state = NULL; return (PF_DROP); } if ((*state)->state_flags & PFSTATE_SLOPPY) { if (pf_tcp_track_sloppy(state, pd, reason) == PF_DROP) return (PF_DROP); } else { if (pf_tcp_track_full(state, kif, m, off, pd, reason, ©back) == PF_DROP) return (PF_DROP); } /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || nk->port[pd->sidx] != th->th_sport) pf_change_ap(m, pd->src, &th->th_sport, pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 0, pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || nk->port[pd->didx] != th->th_dport) pf_change_ap(m, pd->dst, &th->th_dport, pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], nk->port[pd->didx], 0, pd->af); copyback = 1; } /* Copyback sequence modulation or stateful scrub changes if needed */ if (copyback) m_copyback(m, off, sizeof(*th), (caddr_t)th); return (PF_PASS); } static int pf_test_state_udp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, void *h, struct pf_pdesc *pd) { struct pf_state_peer *src, *dst; struct pf_state_key_cmp key; struct udphdr *uh = &pd->hdr.udp; uint8_t psrc, pdst; bzero(&key, sizeof(key)); key.af = pd->af; key.proto = IPPROTO_UDP; if (direction == PF_IN) { /* wire side, straight */ PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); key.port[0] = uh->uh_sport; key.port[1] = uh->uh_dport; } else { /* stack side, reverse */ PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); key.port[1] = uh->uh_sport; key.port[0] = uh->uh_dport; } STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; psrc = PF_PEER_SRC; pdst = PF_PEER_DST; } else { src = &(*state)->dst; dst = &(*state)->src; psrc = PF_PEER_DST; pdst = PF_PEER_SRC; } /* update states */ if (src->state < PFUDPS_SINGLE) pf_set_protostate(*state, psrc, PFUDPS_SINGLE); if (dst->state == PFUDPS_SINGLE) pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); /* update expire time */ (*state)->expire = time_uptime; if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) (*state)->timeout = PFTM_UDP_MULTIPLE; else (*state)->timeout = PFTM_UDP_SINGLE; /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || nk->port[pd->sidx] != uh->uh_sport) pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, &uh->uh_sum, &nk->addr[pd->sidx], nk->port[pd->sidx], 1, pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || nk->port[pd->didx] != uh->uh_dport) pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, &uh->uh_sum, &nk->addr[pd->didx], nk->port[pd->didx], 1, pd->af); m_copyback(m, off, sizeof(*uh), (caddr_t)uh); } return (PF_PASS); } static int pf_test_state_icmp(struct pf_kstate **state, int direction, struct pfi_kkif *kif, struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) { struct pf_addr *saddr = pd->src, *daddr = pd->dst; u_int16_t icmpid = 0, *icmpsum; u_int8_t icmptype, icmpcode; int state_icmp = 0; struct pf_state_key_cmp key; bzero(&key, sizeof(key)); switch (pd->proto) { #ifdef INET case IPPROTO_ICMP: icmptype = pd->hdr.icmp.icmp_type; icmpcode = pd->hdr.icmp.icmp_code; icmpid = pd->hdr.icmp.icmp_id; icmpsum = &pd->hdr.icmp.icmp_cksum; if (icmptype == ICMP_UNREACH || icmptype == ICMP_SOURCEQUENCH || icmptype == ICMP_REDIRECT || icmptype == ICMP_TIMXCEED || icmptype == ICMP_PARAMPROB) state_icmp++; break; #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: icmptype = pd->hdr.icmp6.icmp6_type; icmpcode = pd->hdr.icmp6.icmp6_code; icmpid = pd->hdr.icmp6.icmp6_id; icmpsum = &pd->hdr.icmp6.icmp6_cksum; if (icmptype == ICMP6_DST_UNREACH || icmptype == ICMP6_PACKET_TOO_BIG || icmptype == ICMP6_TIME_EXCEEDED || icmptype == ICMP6_PARAM_PROB) state_icmp++; break; #endif /* INET6 */ } if (!state_icmp) { /* * ICMP query/reply message not related to a TCP/UDP packet. * Search for an ICMP state. */ key.af = pd->af; key.proto = pd->proto; key.port[0] = key.port[1] = icmpid; if (direction == PF_IN) { /* wire side, straight */ PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); } else { /* stack side, reverse */ PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); } STATE_LOOKUP(kif, &key, direction, *state, pd); (*state)->expire = time_uptime; (*state)->timeout = PFTM_ICMP_ERROR_REPLY; /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; switch (pd->af) { #ifdef INET case AF_INET: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&saddr->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) pf_change_a(&daddr->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); if (nk->port[0] != pd->hdr.icmp.icmp_id) { pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( pd->hdr.icmp.icmp_cksum, icmpid, nk->port[pd->sidx], 0); pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; } m_copyback(m, off, ICMP_MINLEN, (caddr_t )&pd->hdr.icmp); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET6)) pf_change_a6(saddr, &pd->hdr.icmp6.icmp6_cksum, &nk->addr[pd->sidx], 0); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET6)) pf_change_a6(daddr, &pd->hdr.icmp6.icmp6_cksum, &nk->addr[pd->didx], 0); m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )&pd->hdr.icmp6); break; #endif /* INET6 */ } } return (PF_PASS); } else { /* * ICMP error message in response to a TCP/UDP packet. * Extract the inner TCP/UDP header and search for that state. */ struct pf_pdesc pd2; bzero(&pd2, sizeof pd2); #ifdef INET struct ip h2; #endif /* INET */ #ifdef INET6 struct ip6_hdr h2_6; int terminal = 0; #endif /* INET6 */ int ipoff2 = 0; int off2 = 0; pd2.af = pd->af; /* Payload packet is from the opposite direction. */ pd2.sidx = (direction == PF_IN) ? 1 : 0; pd2.didx = (direction == PF_IN) ? 0 : 1; switch (pd->af) { #ifdef INET case AF_INET: /* offset of h2 in mbuf chain */ ipoff2 = off + ICMP_MINLEN; if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(ip)\n")); return (PF_DROP); } /* * ICMP error messages don't refer to non-first * fragments */ if (h2.ip_off & htons(IP_OFFMASK)) { REASON_SET(reason, PFRES_FRAG); return (PF_DROP); } /* offset of protocol header that follows h2 */ off2 = ipoff2 + (h2.ip_hl << 2); pd2.proto = h2.ip_p; pd2.src = (struct pf_addr *)&h2.ip_src; pd2.dst = (struct pf_addr *)&h2.ip_dst; pd2.ip_sum = &h2.ip_sum; break; #endif /* INET */ #ifdef INET6 case AF_INET6: ipoff2 = off + sizeof(struct icmp6_hdr); if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(ip6)\n")); return (PF_DROP); } pd2.proto = h2_6.ip6_nxt; pd2.src = (struct pf_addr *)&h2_6.ip6_src; pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; pd2.ip_sum = NULL; off2 = ipoff2 + sizeof(h2_6); do { switch (pd2.proto) { case IPPROTO_FRAGMENT: /* * ICMPv6 error messages for * non-first fragments */ REASON_SET(reason, PFRES_FRAG); return (PF_DROP); case IPPROTO_AH: case IPPROTO_HOPOPTS: case IPPROTO_ROUTING: case IPPROTO_DSTOPTS: { /* get next header and header length */ struct ip6_ext opt6; if (!pf_pull_hdr(m, off2, &opt6, sizeof(opt6), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMPv6 short opt\n")); return (PF_DROP); } if (pd2.proto == IPPROTO_AH) off2 += (opt6.ip6e_len + 2) * 4; else off2 += (opt6.ip6e_len + 1) * 8; pd2.proto = opt6.ip6e_nxt; /* goto the next header */ break; } default: terminal++; break; } } while (!terminal); break; #endif /* INET6 */ } if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD ICMP %d:%d outer dst: ", icmptype, icmpcode); pf_print_host(pd->src, 0, pd->af); printf(" -> "); pf_print_host(pd->dst, 0, pd->af); printf(" inner src: "); pf_print_host(pd2.src, 0, pd2.af); printf(" -> "); pf_print_host(pd2.dst, 0, pd2.af); printf("\n"); } REASON_SET(reason, PFRES_BADSTATE); return (PF_DROP); } switch (pd2.proto) { case IPPROTO_TCP: { struct tcphdr th; u_int32_t seq; struct pf_state_peer *src, *dst; u_int8_t dws; int copyback = 0; /* * Only the first 8 bytes of the TCP header can be * expected. Don't access any TCP header fields after * th_seq, an ackskew test is not possible. */ if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(tcp)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_TCP; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[pd2.sidx] = th.th_sport; key.port[pd2.didx] = th.th_dport; STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->dst; dst = &(*state)->src; } else { src = &(*state)->src; dst = &(*state)->dst; } if (src->wscale && dst->wscale) dws = dst->wscale & PF_WSCALE_MASK; else dws = 0; /* Demodulate sequence number */ seq = ntohl(th.th_seq) - src->seqdiff; if (src->seqdiff) { pf_change_a(&th.th_seq, icmpsum, htonl(seq), 0); copyback = 1; } if (!((*state)->state_flags & PFSTATE_SLOPPY) && (!SEQ_GEQ(src->seqhi, seq) || !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: BAD ICMP %d:%d ", icmptype, icmpcode); pf_print_host(pd->src, 0, pd->af); printf(" -> "); pf_print_host(pd->dst, 0, pd->af); printf(" state: "); pf_print_state(*state); printf(" seq=%u\n", seq); } REASON_SET(reason, PFRES_BADSTATE); return (PF_DROP); } else { if (V_pf_status.debug >= PF_DEBUG_MISC) { printf("pf: OK ICMP %d:%d ", icmptype, icmpcode); pf_print_host(pd->src, 0, pd->af); printf(" -> "); pf_print_host(pd->dst, 0, pd->af); printf(" state: "); pf_print_state(*state); printf(" seq=%u\n", seq); } } /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != th.th_sport) pf_change_icmp(pd2.src, &th.th_sport, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != th.th_dport) pf_change_icmp(pd2.dst, &th.th_dport, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); copyback = 1; } if (copyback) { switch (pd2.af) { #ifdef INET case AF_INET: m_copyback(m, off, ICMP_MINLEN, (caddr_t )&pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t )&h2); break; #endif /* INET */ #ifdef INET6 case AF_INET6: m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )&pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t )&h2_6); break; #endif /* INET6 */ } m_copyback(m, off2, 8, (caddr_t)&th); } return (PF_PASS); break; } case IPPROTO_UDP: { struct udphdr uh; if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(udp)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_UDP; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[pd2.sidx] = uh.uh_sport; key.port[pd2.didx] = uh.uh_dport; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != uh.uh_sport) pf_change_icmp(pd2.src, &uh.uh_sport, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], &uh.uh_sum, pd2.ip_sum, icmpsum, pd->ip_sum, 1, pd2.af); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != uh.uh_dport) pf_change_icmp(pd2.dst, &uh.uh_dport, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], &uh.uh_sum, pd2.ip_sum, icmpsum, pd->ip_sum, 1, pd2.af); switch (pd2.af) { #ifdef INET case AF_INET: m_copyback(m, off, ICMP_MINLEN, (caddr_t )&pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); break; #endif /* INET */ #ifdef INET6 case AF_INET6: m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )&pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t )&h2_6); break; #endif /* INET6 */ } m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); } return (PF_PASS); break; } #ifdef INET case IPPROTO_ICMP: { struct icmp iih; if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short i" "(icmp)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_ICMP; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[0] = key.port[1] = iih.icmp_id; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != iih.icmp_id) pf_change_icmp(pd2.src, &iih.icmp_id, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != iih.icmp_id) pf_change_icmp(pd2.dst, &iih.icmp_id, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET); m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); } return (PF_PASS); break; } #endif /* INET */ #ifdef INET6 case IPPROTO_ICMPV6: { struct icmp6_hdr iih; if (!pf_pull_hdr(m, off2, &iih, sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: ICMP error message too short " "(icmp6)\n")); return (PF_DROP); } key.af = pd2.af; key.proto = IPPROTO_ICMPV6; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[0] = key.port[1] = iih.icmp6_id; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af) || nk->port[pd2.sidx] != iih.icmp6_id) pf_change_icmp(pd2.src, &iih.icmp6_id, daddr, &nk->addr[pd2.sidx], nk->port[pd2.sidx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET6); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af) || nk->port[pd2.didx] != iih.icmp6_id) pf_change_icmp(pd2.dst, &iih.icmp6_id, saddr, &nk->addr[pd2.didx], nk->port[pd2.didx], NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, AF_INET6); m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t)&pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); m_copyback(m, off2, sizeof(struct icmp6_hdr), (caddr_t)&iih); } return (PF_PASS); break; } #endif /* INET6 */ default: { key.af = pd2.af; key.proto = pd2.proto; PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); key.port[0] = key.port[1] = 0; STATE_LOOKUP(kif, &key, direction, *state, pd); /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; if (PF_ANEQ(pd2.src, &nk->addr[pd2.sidx], pd2.af)) pf_change_icmp(pd2.src, NULL, daddr, &nk->addr[pd2.sidx], 0, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); if (PF_ANEQ(pd2.dst, &nk->addr[pd2.didx], pd2.af)) pf_change_icmp(pd2.dst, NULL, saddr, &nk->addr[pd2.didx], 0, NULL, pd2.ip_sum, icmpsum, pd->ip_sum, 0, pd2.af); switch (pd2.af) { #ifdef INET case AF_INET: m_copyback(m, off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); break; #endif /* INET */ #ifdef INET6 case AF_INET6: m_copyback(m, off, sizeof(struct icmp6_hdr), (caddr_t )&pd->hdr.icmp6); m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t )&h2_6); break; #endif /* INET6 */ } } return (PF_PASS); break; } } } } static int pf_test_state_other(struct pf_kstate **state, int direction, struct pfi_kkif *kif, struct mbuf *m, struct pf_pdesc *pd) { struct pf_state_peer *src, *dst; struct pf_state_key_cmp key; uint8_t psrc, pdst; bzero(&key, sizeof(key)); key.af = pd->af; key.proto = pd->proto; if (direction == PF_IN) { PF_ACPY(&key.addr[0], pd->src, key.af); PF_ACPY(&key.addr[1], pd->dst, key.af); key.port[0] = key.port[1] = 0; } else { PF_ACPY(&key.addr[1], pd->src, key.af); PF_ACPY(&key.addr[0], pd->dst, key.af); key.port[1] = key.port[0] = 0; } STATE_LOOKUP(kif, &key, direction, *state, pd); if (direction == (*state)->direction) { src = &(*state)->src; dst = &(*state)->dst; psrc = PF_PEER_SRC; pdst = PF_PEER_DST; } else { src = &(*state)->dst; dst = &(*state)->src; psrc = PF_PEER_DST; pdst = PF_PEER_SRC; } /* update states */ if (src->state < PFOTHERS_SINGLE) pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); if (dst->state == PFOTHERS_SINGLE) pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); /* update expire time */ (*state)->expire = time_uptime; if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) (*state)->timeout = PFTM_OTHER_MULTIPLE; else (*state)->timeout = PFTM_OTHER_SINGLE; /* translate source/destination address, if necessary */ if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { struct pf_state_key *nk = (*state)->key[pd->didx]; KASSERT(nk, ("%s: nk is null", __func__)); KASSERT(pd, ("%s: pd is null", __func__)); KASSERT(pd->src, ("%s: pd->src is null", __func__)); KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); switch (pd->af) { #ifdef INET case AF_INET: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 0); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 0); break; #endif /* INET */ #ifdef INET6 case AF_INET6: if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); #endif /* INET6 */ } } return (PF_PASS); } /* * ipoff and off are measured from the start of the mbuf chain. * h must be at "ipoff" on the mbuf chain. */ void * pf_pull_hdr(struct mbuf *m, int off, void *p, int len, u_short *actionp, u_short *reasonp, sa_family_t af) { switch (af) { #ifdef INET case AF_INET: { struct ip *h = mtod(m, struct ip *); u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; if (fragoff) { if (fragoff >= len) ACTION_SET(actionp, PF_PASS); else { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_FRAG); } return (NULL); } if (m->m_pkthdr.len < off + len || ntohs(h->ip_len) < off + len) { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_SHORT); return (NULL); } break; } #endif /* INET */ #ifdef INET6 case AF_INET6: { struct ip6_hdr *h = mtod(m, struct ip6_hdr *); if (m->m_pkthdr.len < off + len || (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < (unsigned)(off + len)) { ACTION_SET(actionp, PF_DROP); REASON_SET(reasonp, PFRES_SHORT); return (NULL); } break; } #endif /* INET6 */ } m_copydata(m, off, len, p); return (p); } int pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, int rtableid) { struct ifnet *ifp; /* * Skip check for addresses with embedded interface scope, * as they would always match anyway. */ if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) return (1); if (af != AF_INET && af != AF_INET6) return (0); /* Skip checks for ipsec interfaces */ if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) return (1); ifp = (kif != NULL) ? kif->pfik_ifp : NULL; switch (af) { #ifdef INET6 case AF_INET6: return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, ifp)); #endif #ifdef INET case AF_INET: return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, ifp)); #endif } return (0); } #ifdef INET static void pf_route(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) { struct mbuf *m0, *m1; struct sockaddr_in dst; struct ip *ip; struct ifnet *ifp = NULL; struct pf_addr naddr; struct pf_ksrc_node *sn = NULL; int error = 0; uint16_t ip_len, ip_off; KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", __func__)); if ((pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || pd->pf_mtag->routed++ > 3) { m0 = *m; *m = NULL; goto bad_locked; } if (r->rt == PF_DUPTO) { if ((pd->pf_mtag->flags & PF_DUPLICATED)) { if (s == NULL) { ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; PF_STATE_UNLOCK(s); } if (ifp == oifp) { /* When the 2nd interface is not skipped */ return; } else { m0 = *m; *m = NULL; goto bad; } } else { pd->pf_mtag->flags |= PF_DUPLICATED; if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { if (s) PF_STATE_UNLOCK(s); return; } } } else { if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { if (s) PF_STATE_UNLOCK(s); return; } m0 = *m; } ip = mtod(m0, struct ip *); bzero(&dst, sizeof(dst)); dst.sin_family = AF_INET; dst.sin_len = sizeof(dst); dst.sin_addr = ip->ip_dst; bzero(&naddr, sizeof(naddr)); if (s == NULL) { if (TAILQ_EMPTY(&r->rpool.list)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); goto bad_locked; } pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, &naddr, NULL, &sn); if (!PF_AZERO(&naddr, AF_INET)) dst.sin_addr.s_addr = naddr.v4.s_addr; ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { if (!PF_AZERO(&s->rt_addr, AF_INET)) dst.sin_addr.s_addr = s->rt_addr.v4.s_addr; ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; PF_STATE_UNLOCK(s); } if (ifp == NULL) goto bad; if (dir == PF_IN) { if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) goto bad; else if (m0 == NULL) goto done; if (m0->m_len < sizeof(struct ip)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); goto bad; } ip = mtod(m0, struct ip *); } if (ifp->if_flags & IFF_LOOPBACK) m0->m_flags |= M_SKIP_FIREWALL; ip_len = ntohs(ip->ip_len); ip_off = ntohs(ip->ip_off); /* Copied from FreeBSD 10.0-CURRENT ip_output. */ m0->m_pkthdr.csum_flags |= CSUM_IP; if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) goto done; in_delayed_cksum(m0); m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } #if defined(SCTP) || defined(SCTP_SUPPORT) if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) goto done; sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; } #endif /* * If small enough for interface, or the interface will take * care of the fragmentation for us, we can just send directly. */ if (ip_len <= ifp->if_mtu || (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { ip->ip_sum = 0; if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); m0->m_pkthdr.csum_flags &= ~CSUM_IP; } m_clrprotoflags(m0); /* Avoid confusing lower layers. */ error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); goto done; } /* Balk when DF bit is set or the interface didn't support TSO. */ if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { error = EMSGSIZE; KMOD_IPSTAT_INC(ips_cantfrag); if (r->rt != PF_DUPTO) { if (s && pd->nat_rule != NULL) PACKET_UNDO_NAT(m0, pd, (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), s, dir); icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, ifp->if_mtu); goto done; } else goto bad; } error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); if (error) goto bad; for (; m0; m0 = m1) { m1 = m0->m_nextpkt; m0->m_nextpkt = NULL; if (error == 0) { m_clrprotoflags(m0); error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); } else m_freem(m0); } if (error == 0) KMOD_IPSTAT_INC(ips_fragmented); done: if (r->rt != PF_DUPTO) *m = NULL; return; bad_locked: if (s) PF_STATE_UNLOCK(s); bad: m_freem(m0); goto done; } #endif /* INET */ #ifdef INET6 static void pf_route6(struct mbuf **m, struct pf_krule *r, int dir, struct ifnet *oifp, struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) { struct mbuf *m0; struct sockaddr_in6 dst; struct ip6_hdr *ip6; struct ifnet *ifp = NULL; struct pf_addr naddr; struct pf_ksrc_node *sn = NULL; KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", __func__)); if ((pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || pd->pf_mtag->routed++ > 3) { m0 = *m; *m = NULL; goto bad_locked; } if (r->rt == PF_DUPTO) { if ((pd->pf_mtag->flags & PF_DUPLICATED)) { if (s == NULL) { ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; PF_STATE_UNLOCK(s); } if (ifp == oifp) { /* When the 2nd interface is not skipped */ return; } else { m0 = *m; *m = NULL; goto bad; } } else { pd->pf_mtag->flags |= PF_DUPLICATED; if (((m0 = m_dup(*m, M_NOWAIT)) == NULL)) { if (s) PF_STATE_UNLOCK(s); return; } } } else { if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { if (s) PF_STATE_UNLOCK(s); return; } m0 = *m; } ip6 = mtod(m0, struct ip6_hdr *); bzero(&dst, sizeof(dst)); dst.sin6_family = AF_INET6; dst.sin6_len = sizeof(dst); dst.sin6_addr = ip6->ip6_dst; bzero(&naddr, sizeof(naddr)); if (s == NULL) { if (TAILQ_EMPTY(&r->rpool.list)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); goto bad_locked; } pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, &naddr, NULL, &sn); if (!PF_AZERO(&naddr, AF_INET6)) PF_ACPY((struct pf_addr *)&dst.sin6_addr, &naddr, AF_INET6); ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; } else { if (!PF_AZERO(&s->rt_addr, AF_INET6)) PF_ACPY((struct pf_addr *)&dst.sin6_addr, &s->rt_addr, AF_INET6); ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; } if (s) PF_STATE_UNLOCK(s); if (ifp == NULL) goto bad; if (dir == PF_IN) { if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) goto bad; else if (m0 == NULL) goto done; if (m0->m_len < sizeof(struct ip6_hdr)) { DPFPRINTF(PF_DEBUG_URGENT, ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", __func__)); goto bad; } ip6 = mtod(m0, struct ip6_hdr *); } if (ifp->if_flags & IFF_LOOPBACK) m0->m_flags |= M_SKIP_FIREWALL; if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & ~ifp->if_hwassist) { uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); m0 = mb_unmapped_to_ext(m0); if (m0 == NULL) goto done; in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; } /* * If the packet is too large for the outgoing interface, * send back an icmp6 error. */ if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) nd6_output_ifp(ifp, ifp, m0, &dst, NULL); else { in6_ifstat_inc(ifp, ifs6_in_toobig); if (r->rt != PF_DUPTO) { if (s && pd->nat_rule != NULL) PACKET_UNDO_NAT(m0, pd, ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr), s, dir); icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); } else goto bad; } done: if (r->rt != PF_DUPTO) *m = NULL; return; bad_locked: if (s) PF_STATE_UNLOCK(s); bad: m_freem(m0); goto done; } #endif /* INET6 */ /* * FreeBSD supports cksum offloads for the following drivers. * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) * * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : * network driver performed cksum including pseudo header, need to verify * csum_data * CSUM_DATA_VALID : * network driver performed cksum, needs to additional pseudo header * cksum computation with partial csum_data(i.e. lack of H/W support for * pseudo header, for instance sk(4) and possibly gem(4)) * * After validating the cksum of packet, set both flag CSUM_DATA_VALID and * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper * TCP/UDP layer. * Also, set csum_data to 0xffff to force cksum validation. */ static int pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) { u_int16_t sum = 0; int hw_assist = 0; struct ip *ip; if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) return (1); if (m->m_pkthdr.len < off + len) return (1); switch (p) { case IPPROTO_TCP: if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { sum = m->m_pkthdr.csum_data; } else { ip = mtod(m, struct ip *); sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + IPPROTO_TCP)); } sum ^= 0xffff; ++hw_assist; } break; case IPPROTO_UDP: if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { sum = m->m_pkthdr.csum_data; } else { ip = mtod(m, struct ip *); sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl((u_short)len + m->m_pkthdr.csum_data + IPPROTO_UDP)); } sum ^= 0xffff; ++hw_assist; } break; case IPPROTO_ICMP: #ifdef INET6 case IPPROTO_ICMPV6: #endif /* INET6 */ break; default: return (1); } if (!hw_assist) { switch (af) { case AF_INET: if (p == IPPROTO_ICMP) { if (m->m_len < off) return (1); m->m_data += off; m->m_len -= off; sum = in_cksum(m, len); m->m_data -= off; m->m_len += off; } else { if (m->m_len < sizeof(struct ip)) return (1); sum = in4_cksum(m, p, off, len); } break; #ifdef INET6 case AF_INET6: if (m->m_len < sizeof(struct ip6_hdr)) return (1); sum = in6_cksum(m, p, off, len); break; #endif /* INET6 */ default: return (1); } } if (sum) { switch (p) { case IPPROTO_TCP: { KMOD_TCPSTAT_INC(tcps_rcvbadsum); break; } case IPPROTO_UDP: { KMOD_UDPSTAT_INC(udps_badsum); break; } #ifdef INET case IPPROTO_ICMP: { KMOD_ICMPSTAT_INC(icps_checksum); break; } #endif #ifdef INET6 case IPPROTO_ICMPV6: { KMOD_ICMP6STAT_INC(icp6s_checksum); break; } #endif /* INET6 */ } return (1); } else { if (p == IPPROTO_TCP || p == IPPROTO_UDP) { m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); m->m_pkthdr.csum_data = 0xffff; } } return (0); } static bool pf_pdesc_to_dnflow(int dir, const struct pf_pdesc *pd, const struct pf_krule *r, const struct pf_kstate *s, struct ip_fw_args *dnflow) { int dndir = r->direction; if (s && dndir == PF_INOUT) dndir = s->direction; memset(dnflow, 0, sizeof(*dnflow)); if (pd->dport != NULL) dnflow->f_id.dst_port = ntohs(*pd->dport); if (pd->sport != NULL) dnflow->f_id.src_port = ntohs(*pd->sport); if (dir == PF_IN) dnflow->flags |= IPFW_ARGS_IN; else dnflow->flags |= IPFW_ARGS_OUT; if (dir != dndir && pd->act.dnrpipe) { dnflow->rule.info = pd->act.dnrpipe; } else if (dir == dndir) { dnflow->rule.info = pd->act.dnpipe; } else { return (false); } dnflow->rule.info |= IPFW_IS_DUMMYNET; if (r->free_flags & PFRULE_DN_IS_PIPE) dnflow->rule.info |= IPFW_IS_PIPE; dnflow->f_id.proto = pd->proto; dnflow->f_id.extra = dnflow->rule.info; switch (pd->af) { case AF_INET: dnflow->f_id.addr_type = 4; dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); break; case AF_INET6: dnflow->flags |= IPFW_ARGS_IP6; dnflow->f_id.addr_type = 6; dnflow->f_id.src_ip6 = pd->src->v6; dnflow->f_id.dst_ip6 = pd->dst->v6; break; default: panic("Invalid AF"); break; } return (true); } #ifdef INET int pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) { struct pfi_kkif *kif; u_short action, reason = 0, log = 0; struct mbuf *m = *m0; struct ip *h = NULL; struct m_tag *ipfwtag; struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; struct pf_kstate *s = NULL; struct pf_kruleset *ruleset = NULL; struct pf_pdesc pd; int off, dirndx, pqid = 0; PF_RULES_RLOCK_TRACKER; KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); M_ASSERTPKTHDR(m); if (!V_pf_status.running) return (PF_PASS); memset(&pd, 0, sizeof(pd)); kif = (struct pfi_kkif *)ifp->if_pf_kif; if (kif == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); return (PF_DROP); } if (kif->pfik_flags & PFI_IFLAG_SKIP) return (PF_PASS); if (m->m_flags & M_SKIP_FIREWALL) return (PF_PASS); pd.pf_mtag = pf_find_mtag(m); PF_RULES_RLOCK(); if ((__predict_false(ip_divert_ptr != NULL) || ip_dn_io_ptr != NULL) && ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); if ((rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) || (rr->info & IPFW_IS_DUMMYNET)) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; goto done; } pd.pf_mtag->flags |= PF_PACKET_LOOPED; m_tag_delete(m, ipfwtag); } if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { m->m_flags |= M_FASTFWD_OURS; pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; } } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { /* We do IP header normalization and packet reassembly here */ action = PF_DROP; goto done; } m = *m0; /* pf_normalize messes with m0 */ h = mtod(m, struct ip *); off = h->ip_hl << 2; if (off < (int)sizeof(struct ip)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); log = 1; goto done; } pd.src = (struct pf_addr *)&h->ip_src; pd.dst = (struct pf_addr *)&h->ip_dst; pd.sport = pd.dport = NULL; pd.ip_sum = &h->ip_sum; pd.proto_sum = NULL; pd.proto = h->ip_p; pd.dir = dir; pd.sidx = (dir == PF_IN) ? 0 : 1; pd.didx = (dir == PF_IN) ? 1 : 0; pd.af = AF_INET; pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; pd.tot_len = ntohs(h->ip_len); /* handle fragments that didn't get reassembled by normalization */ if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { action = pf_test_fragment(&r, dir, kif, m, h, &pd, &a, &ruleset); goto done; } switch (h->ip_p) { case IPPROTO_TCP: { if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); pd.sport = &pd.hdr.tcp.th_sport; pd.dport = &pd.hdr.tcp.th_dport; /* Respond to SYN with a syncookie. */ if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && pd.dir == PF_IN && pf_synflood_check(&pd)) { pf_syncookie_send(m, off, &pd); action = PF_DROP; break; } if ((pd.hdr.tcp.th_flags & TH_ACK) && pd.p_len == 0) pqid = 1; action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); if (action == PF_DROP) goto done; action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) { /* Validate remote SYN|ACK, re-create original SYN if * valid. */ if ((pd.hdr.tcp.th_flags & (TH_SYN|TH_ACK|TH_RST)) == TH_ACK && pf_syncookie_validate(&pd) && pd.dir == PF_IN) { struct mbuf *msyn; msyn = pf_syncookie_recreate_syn(h->ip_ttl, off,&pd); if (msyn == NULL) { action = PF_DROP; break; } action = pf_test(dir, pflags, ifp, &msyn, inp); m_freem(msyn); if (action == PF_PASS) { action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, &reason); if (action != PF_PASS || s == NULL) { action = PF_DROP; break; } s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); action = pf_synproxy(&pd, &s, &reason); if (action != PF_PASS) break; } break; } else { action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); } } break; } case IPPROTO_UDP: { if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } pd.sport = &pd.hdr.udp.uh_sport; pd.dport = &pd.hdr.udp.uh_dport; if (pd.hdr.udp.uh_dport == 0 || ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } case IPPROTO_ICMP: { if (!pf_pull_hdr(m, off, &pd.hdr.icmp, ICMP_MINLEN, &action, &reason, AF_INET)) { log = action != PF_PASS; goto done; } action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } #ifdef INET6 case IPPROTO_ICMPV6: { action = PF_DROP; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping IPv4 packet with ICMPv6 payload\n")); goto done; } #endif default: action = pf_test_state_other(&s, dir, kif, m, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } done: PF_RULES_RUNLOCK(); if (action == PF_PASS && h->ip_hl > 5 && !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = r->log; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping packet with ip options\n")); } if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } if (r->rtableid >= 0) M_SETFIB(m, r->rtableid); if (r->scrub_flags & PFSTATE_SETPRIO) { if (pd.tos & IPTOS_LOWDELAY) pqid = 1; if (vlan_set_pcp(m, r->set_prio[pqid])) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate 802.1q mtag\n")); } } #ifdef ALTQ if (s && s->qid) { pd.act.pqid = s->pqid; pd.act.qid = s->qid; } else if (r->qid) { pd.act.pqid = r->pqid; pd.act.qid = r->qid; } if (action == PF_PASS && pd.act.qid) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } else { if (s != NULL) pd.pf_mtag->qid_hash = pf_state_hash(s); if (pqid || (pd.tos & IPTOS_LOWDELAY)) pd.pf_mtag->qid = pd.act.pqid; else pd.pf_mtag->qid = pd.act.qid; /* Add hints for ecn. */ pd.pf_mtag->hdr = h; } } #endif /* ALTQ */ if (s && (s->dnpipe || s->dnrpipe)) { pd.act.dnpipe = s->dnpipe; pd.act.dnrpipe = s->dnrpipe; pd.act.flags = s->state_flags; } else if (r->dnpipe || r->dnrpipe) { pd.act.dnpipe = r->dnpipe; pd.act.dnrpipe = r->dnrpipe; pd.act.flags = r->free_flags; } if ((pd.act.dnpipe || pd.act.dnrpipe) && !PACKET_LOOPED(&pd)) { if (ip_dn_io_ptr == NULL) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } else { struct ip_fw_args dnflow; if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); if (s) PF_STATE_UNLOCK(s); return (action); } if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { ip_dn_io_ptr(m0, &dnflow); if (*m0 == NULL) { if (s) PF_STATE_UNLOCK(s); return (action); } else { /* This is dummynet fast io processing */ m_tag_delete(*m0, m_tag_first(*m0)); pd.pf_mtag->flags &= ~PF_PACKET_LOOPED; } } } } /* * connections redirected to loopback should not match sockets * bound specifically to loopback due to security implications, * see tcp_input() and in_pcblookup_listen(). */ if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && (s->nat_rule.ptr->action == PF_RDR || s->nat_rule.ptr->action == PF_BINAT) && IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) m->m_flags |= M_SKIP_FIREWALL; if (__predict_false(ip_divert_ptr != NULL) && action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); if (ipfwtag != NULL) { ((struct ipfw_rule_ref *)(ipfwtag+1))->info = ntohs(r->divert.port); ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; if (s) PF_STATE_UNLOCK(s); m_tag_prepend(m, ipfwtag); if (m->m_flags & M_FASTFWD_OURS) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate tag\n")); } else { pd.pf_mtag->flags |= PF_FASTFWD_OURS_PRESENT; m->m_flags &= ~M_FASTFWD_OURS; } } ip_divert_ptr(*m0, dir == PF_IN); *m0 = NULL; return (action); } else { /* XXX: ipfw has the same behaviour! */ action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate divert tag\n")); } } if (log) { struct pf_krule *lr; if (s != NULL && s->nat_rule.ptr != NULL && s->nat_rule.ptr->log & PF_LOG_ALL) lr = s->nat_rule.ptr; else lr = r; PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, (s == NULL)); } pf_counter_u64_critical_enter(); pf_counter_u64_add_protected(&kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS], pd.tot_len); pf_counter_u64_add_protected(&kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS], 1); if (action == PF_PASS || r->action == PF_DROP) { dirndx = (dir == PF_OUT); pf_counter_u64_add_protected(&r->packets[dirndx], 1); pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); if (a != NULL) { pf_counter_u64_add_protected(&a->packets[dirndx], 1); pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); } if (s != NULL) { if (s->nat_rule.ptr != NULL) { pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 1); pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], pd.tot_len); } if (s->src_node != NULL) { counter_u64_add(s->src_node->packets[dirndx], 1); counter_u64_add(s->src_node->bytes[dirndx], pd.tot_len); } if (s->nat_src_node != NULL) { counter_u64_add(s->nat_src_node->packets[dirndx], 1); counter_u64_add(s->nat_src_node->bytes[dirndx], pd.tot_len); } dirndx = (dir == s->direction) ? 0 : 1; s->packets[dirndx]++; s->bytes[dirndx] += pd.tot_len; } tr = r; nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; if (nr != NULL && r == &V_pf_default_rule) tr = nr; if (tr->src.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->src.addr.p.tbl, (s == NULL) ? pd.src : &s->key[(s->direction == PF_IN)]-> addr[(s->direction == PF_OUT)], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->src.neg); if (tr->dst.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->dst.addr.p.tbl, (s == NULL) ? pd.dst : &s->key[(s->direction == PF_IN)]-> addr[(s->direction == PF_IN)], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->dst.neg); } pf_counter_u64_critical_exit(); switch (action) { case PF_SYNPROXY_DROP: m_freem(*m0); case PF_DEFER: *m0 = NULL; action = PF_PASS; break; case PF_DROP: m_freem(*m0); *m0 = NULL; break; default: /* pf_route() returns unlocked. */ if (r->rt) { pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); return (action); } break; } SDT_PROBE4(pf, ip, test, done, action, reason, r, s); if (s) PF_STATE_UNLOCK(s); return (action); } #endif /* INET */ #ifdef INET6 int pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) { struct pfi_kkif *kif; u_short action, reason = 0, log = 0; struct mbuf *m = *m0, *n = NULL; struct m_tag *mtag; struct m_tag *ipfwtag; struct ip6_hdr *h = NULL; struct pf_krule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; struct pf_kstate *s = NULL; struct pf_kruleset *ruleset = NULL; struct pf_pdesc pd; int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; PF_RULES_RLOCK_TRACKER; KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); M_ASSERTPKTHDR(m); if (!V_pf_status.running) return (PF_PASS); memset(&pd, 0, sizeof(pd)); pd.pf_mtag = pf_find_mtag(m); if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) return (PF_PASS); kif = (struct pfi_kkif *)ifp->if_pf_kif; if (kif == NULL) { DPFPRINTF(PF_DEBUG_URGENT, ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); return (PF_DROP); } if (kif->pfik_flags & PFI_IFLAG_SKIP) return (PF_PASS); if (m->m_flags & M_SKIP_FIREWALL) return (PF_PASS); PF_RULES_RLOCK(); /* We do IP header normalization and packet reassembly here */ if (ip_dn_io_ptr != NULL && ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); if (rr->info & IPFW_IS_DUMMYNET) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; goto done; } pd.pf_mtag->flags |= PF_PACKET_LOOPED; m_tag_delete(m, ipfwtag); } } else if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { action = PF_DROP; goto done; } m = *m0; /* pf_normalize messes with m0 */ h = mtod(m, struct ip6_hdr *); /* * we do not support jumbogram. if we keep going, zero ip6_plen * will do something bad, so drop the packet for now. */ if (htons(h->ip6_plen) == 0) { action = PF_DROP; REASON_SET(&reason, PFRES_NORM); /*XXX*/ goto done; } pd.src = (struct pf_addr *)&h->ip6_src; pd.dst = (struct pf_addr *)&h->ip6_dst; pd.sport = pd.dport = NULL; pd.ip_sum = NULL; pd.proto_sum = NULL; pd.dir = dir; pd.sidx = (dir == PF_IN) ? 0 : 1; pd.didx = (dir == PF_IN) ? 1 : 0; pd.af = AF_INET6; pd.tos = IPV6_DSCP(h); pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); pd.proto = h->ip6_nxt; do { switch (pd.proto) { case IPPROTO_FRAGMENT: action = pf_test_fragment(&r, dir, kif, m, h, &pd, &a, &ruleset); if (action == PF_DROP) REASON_SET(&reason, PFRES_FRAG); goto done; case IPPROTO_ROUTING: { struct ip6_rthdr rthdr; if (rh_cnt++) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 more than one rthdr\n")); action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = 1; goto done; } if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, &reason, pd.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 short rthdr\n")); action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); log = 1; goto done; } if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 rthdr0\n")); action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = 1; goto done; } /* FALLTHROUGH */ } case IPPROTO_AH: case IPPROTO_HOPOPTS: case IPPROTO_DSTOPTS: { /* get next header and header length */ struct ip6_ext opt6; if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), NULL, &reason, pd.af)) { DPFPRINTF(PF_DEBUG_MISC, ("pf: IPv6 short opt\n")); action = PF_DROP; log = 1; goto done; } if (pd.proto == IPPROTO_AH) off += (opt6.ip6e_len + 2) * 4; else off += (opt6.ip6e_len + 1) * 8; pd.proto = opt6.ip6e_nxt; /* goto the next header */ break; } default: terminal++; break; } } while (!terminal); /* if there's no routing header, use unmodified mbuf for checksumming */ if (!n) n = m; switch (pd.proto) { case IPPROTO_TCP: { if (!pf_pull_hdr(m, off, &pd.hdr.tcp, sizeof(pd.hdr.tcp), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } pd.p_len = pd.tot_len - off - (pd.hdr.tcp.th_off << 2); pd.sport = &pd.hdr.tcp.th_sport; pd.dport = &pd.hdr.tcp.th_dport; action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); if (action == PF_DROP) goto done; action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } case IPPROTO_UDP: { if (!pf_pull_hdr(m, off, &pd.hdr.udp, sizeof(pd.hdr.udp), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } pd.sport = &pd.hdr.udp.uh_sport; pd.dport = &pd.hdr.udp.uh_dport; if (pd.hdr.udp.uh_dport == 0 || ntohs(pd.hdr.udp.uh_ulen) > m->m_pkthdr.len - off || ntohs(pd.hdr.udp.uh_ulen) < sizeof(struct udphdr)) { action = PF_DROP; REASON_SET(&reason, PFRES_SHORT); goto done; } action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } case IPPROTO_ICMP: { action = PF_DROP; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping IPv6 packet with ICMPv4 payload\n")); goto done; } case IPPROTO_ICMPV6: { if (!pf_pull_hdr(m, off, &pd.hdr.icmp6, sizeof(pd.hdr.icmp6), &action, &reason, AF_INET6)) { log = action != PF_PASS; goto done; } action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, &reason); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } default: action = pf_test_state_other(&s, dir, kif, m, &pd); if (action == PF_PASS) { if (V_pfsync_update_state_ptr != NULL) V_pfsync_update_state_ptr(s); r = s->rule.ptr; a = s->anchor.ptr; log = s->log; } else if (s == NULL) action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, &a, &ruleset, inp); break; } done: PF_RULES_RUNLOCK(); if (n != m) { m_freem(n); n = NULL; } /* handle dangerous IPv6 extension headers. */ if (action == PF_PASS && rh_cnt && !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { action = PF_DROP; REASON_SET(&reason, PFRES_IPOPTIONS); log = r->log; DPFPRINTF(PF_DEBUG_MISC, ("pf: dropping packet with dangerous v6 headers\n")); } if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } if (r->rtableid >= 0) M_SETFIB(m, r->rtableid); if (r->scrub_flags & PFSTATE_SETPRIO) { if (pd.tos & IPTOS_LOWDELAY) pqid = 1; if (vlan_set_pcp(m, r->set_prio[pqid])) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); log = 1; DPFPRINTF(PF_DEBUG_MISC, ("pf: failed to allocate 802.1q mtag\n")); } } #ifdef ALTQ if (s && s->qid) { pd.act.pqid = s->pqid; pd.act.qid = s->qid; } else if (r->qid) { pd.act.pqid = r->pqid; pd.act.qid = r->qid; } if (action == PF_PASS && pd.act.qid) { if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } else { if (s != NULL) pd.pf_mtag->qid_hash = pf_state_hash(s); if (pd.tos & IPTOS_LOWDELAY) pd.pf_mtag->qid = pd.act.pqid; else pd.pf_mtag->qid = pd.act.qid; /* Add hints for ecn. */ pd.pf_mtag->hdr = h; } } #endif /* ALTQ */ if (s && (s->dnpipe || s->dnrpipe)) { pd.act.dnpipe = s->dnpipe; pd.act.dnrpipe = s->dnrpipe; pd.act.flags = s->state_flags; } else { pd.act.dnpipe = r->dnpipe; pd.act.dnrpipe = r->dnrpipe; pd.act.flags = r->free_flags; } if ((pd.act.dnpipe || pd.act.dnrpipe) && !PACKET_LOOPED(&pd)) { if (ip_dn_io_ptr == NULL) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); } else { struct ip_fw_args dnflow; if (pd.pf_mtag == NULL && ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { action = PF_DROP; REASON_SET(&reason, PFRES_MEMORY); if (s) PF_STATE_UNLOCK(s); return (action); } if (pf_pdesc_to_dnflow(dir, &pd, r, s, &dnflow)) { ip_dn_io_ptr(m0, &dnflow); if (*m0 == NULL) { if (s) PF_STATE_UNLOCK(s); return (action); } else { /* This is dummynet fast io processing */ m_tag_delete(*m0, m_tag_first(*m0)); pd.pf_mtag->flags &= ~PF_PACKET_LOOPED; } } } } if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && (s->nat_rule.ptr->action == PF_RDR || s->nat_rule.ptr->action == PF_BINAT) && IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) m->m_flags |= M_SKIP_FIREWALL; /* XXX: Anybody working on it?! */ if (r->divert.port) printf("pf: divert(9) is not supported for IPv6\n"); if (log) { struct pf_krule *lr; if (s != NULL && s->nat_rule.ptr != NULL && s->nat_rule.ptr->log & PF_LOG_ALL) lr = s->nat_rule.ptr; else lr = r; PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, &pd, (s == NULL)); } pf_counter_u64_critical_enter(); pf_counter_u64_add_protected(&kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS], pd.tot_len); pf_counter_u64_add_protected(&kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS], 1); if (action == PF_PASS || r->action == PF_DROP) { dirndx = (dir == PF_OUT); pf_counter_u64_add_protected(&r->packets[dirndx], 1); pf_counter_u64_add_protected(&r->bytes[dirndx], pd.tot_len); if (a != NULL) { pf_counter_u64_add_protected(&a->packets[dirndx], 1); pf_counter_u64_add_protected(&a->bytes[dirndx], pd.tot_len); } if (s != NULL) { if (s->nat_rule.ptr != NULL) { pf_counter_u64_add_protected(&s->nat_rule.ptr->packets[dirndx], 1); pf_counter_u64_add_protected(&s->nat_rule.ptr->bytes[dirndx], pd.tot_len); } if (s->src_node != NULL) { counter_u64_add(s->src_node->packets[dirndx], 1); counter_u64_add(s->src_node->bytes[dirndx], pd.tot_len); } if (s->nat_src_node != NULL) { counter_u64_add(s->nat_src_node->packets[dirndx], 1); counter_u64_add(s->nat_src_node->bytes[dirndx], pd.tot_len); } dirndx = (dir == s->direction) ? 0 : 1; s->packets[dirndx]++; s->bytes[dirndx] += pd.tot_len; } tr = r; nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; if (nr != NULL && r == &V_pf_default_rule) tr = nr; if (tr->src.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->src.addr.p.tbl, (s == NULL) ? pd.src : &s->key[(s->direction == PF_IN)]->addr[0], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->src.neg); if (tr->dst.addr.type == PF_ADDR_TABLE) pfr_update_stats(tr->dst.addr.p.tbl, (s == NULL) ? pd.dst : &s->key[(s->direction == PF_IN)]->addr[1], pd.af, pd.tot_len, dir == PF_OUT, r->action == PF_PASS, tr->dst.neg); } pf_counter_u64_critical_exit(); switch (action) { case PF_SYNPROXY_DROP: m_freem(*m0); case PF_DEFER: *m0 = NULL; action = PF_PASS; break; case PF_DROP: m_freem(*m0); *m0 = NULL; break; default: /* pf_route6() returns unlocked. */ if (r->rt) { pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); return (action); } break; } if (s) PF_STATE_UNLOCK(s); /* If reassembled packet passed, create new fragments. */ if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) action = pf_refragment6(ifp, m0, mtag); SDT_PROBE4(pf, ip, test6, done, action, reason, r, s); return (action); } #endif /* INET6 */