diff --git a/sys/x86/x86/mp_x86.c b/sys/x86/x86/mp_x86.c index 57cea8c7a07a..55fe86a03089 100644 --- a/sys/x86/x86/mp_x86.c +++ b/sys/x86/x86/mp_x86.c @@ -1,1869 +1,1869 @@ /*- * Copyright (c) 1996, by Steve Passe * Copyright (c) 2003, by Peter Wemm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. The name of the developer may NOT be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #ifdef __i386__ #include "opt_apic.h" #endif #include "opt_cpu.h" #include "opt_kstack_pages.h" #include "opt_pmap.h" #include "opt_sched.h" #include "opt_smp.h" #include #include #include #include /* cngetc() */ #include #ifdef GPROF #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_CPUS, "cpus", "CPU items"); /* lock region used by kernel profiling */ int mcount_lock; int mp_naps; /* # of Applications processors */ int boot_cpu_id = -1; /* designated BSP */ /* AP uses this during bootstrap. Do not staticize. */ char *bootSTK; int bootAP; /* Free these after use */ void *bootstacks[MAXCPU]; void *dpcpu; struct pcb stoppcbs[MAXCPU]; struct susppcb **susppcbs; #ifdef COUNT_IPIS /* Interrupt counts. */ static u_long *ipi_preempt_counts[MAXCPU]; static u_long *ipi_ast_counts[MAXCPU]; u_long *ipi_invltlb_counts[MAXCPU]; u_long *ipi_invlrng_counts[MAXCPU]; u_long *ipi_invlpg_counts[MAXCPU]; u_long *ipi_invlcache_counts[MAXCPU]; u_long *ipi_rendezvous_counts[MAXCPU]; static u_long *ipi_hardclock_counts[MAXCPU]; #endif /* Default cpu_ops implementation. */ struct cpu_ops cpu_ops; /* * Local data and functions. */ static volatile cpuset_t ipi_stop_nmi_pending; volatile cpuset_t resuming_cpus; volatile cpuset_t toresume_cpus; /* used to hold the AP's until we are ready to release them */ struct mtx ap_boot_mtx; /* Set to 1 once we're ready to let the APs out of the pen. */ volatile int aps_ready = 0; /* * Store data from cpu_add() until later in the boot when we actually setup * the APs. */ struct cpu_info *cpu_info; int *apic_cpuids; int cpu_apic_ids[MAXCPU]; _Static_assert(MAXCPU <= MAX_APIC_ID, "MAXCPU cannot be larger that MAX_APIC_ID"); _Static_assert(xAPIC_MAX_APIC_ID <= MAX_APIC_ID, "xAPIC_MAX_APIC_ID cannot be larger that MAX_APIC_ID"); /* Holds pending bitmap based IPIs per CPU */ volatile u_int cpu_ipi_pending[MAXCPU]; static void release_aps(void *dummy); static void cpustop_handler_post(u_int cpu); static int hyperthreading_allowed = 1; SYSCTL_INT(_machdep, OID_AUTO, hyperthreading_allowed, CTLFLAG_RDTUN, &hyperthreading_allowed, 0, "Use Intel HTT logical CPUs"); static struct topo_node topo_root; static int pkg_id_shift; static int node_id_shift; static int core_id_shift; static int disabled_cpus; struct cache_info { int id_shift; int present; } static caches[MAX_CACHE_LEVELS]; unsigned int boot_address; #define MiB(v) (v ## ULL << 20) void mem_range_AP_init(void) { if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP) mem_range_softc.mr_op->initAP(&mem_range_softc); } /* * Round up to the next power of two, if necessary, and then * take log2. * Returns -1 if argument is zero. */ static __inline int mask_width(u_int x) { return (fls(x << (1 - powerof2(x))) - 1); } /* * Add a cache level to the cache topology description. */ static int add_deterministic_cache(int type, int level, int share_count) { if (type == 0) return (0); if (type > 3) { printf("unexpected cache type %d\n", type); return (1); } if (type == 2) /* ignore instruction cache */ return (1); if (level == 0 || level > MAX_CACHE_LEVELS) { - printf("unexpected cache level %d\n", type); + printf("unexpected cache level %d\n", level); return (1); } if (caches[level - 1].present) { printf("WARNING: multiple entries for L%u data cache\n", level); printf("%u => %u\n", caches[level - 1].id_shift, mask_width(share_count)); } caches[level - 1].id_shift = mask_width(share_count); caches[level - 1].present = 1; if (caches[level - 1].id_shift > pkg_id_shift) { printf("WARNING: L%u data cache covers more " "APIC IDs than a package (%u > %u)\n", level, caches[level - 1].id_shift, pkg_id_shift); caches[level - 1].id_shift = pkg_id_shift; } if (caches[level - 1].id_shift < core_id_shift) { printf("WARNING: L%u data cache covers fewer " "APIC IDs than a core (%u < %u)\n", level, caches[level - 1].id_shift, core_id_shift); caches[level - 1].id_shift = core_id_shift; } return (1); } /* * Determine topology of processing units and caches for AMD CPUs. * See: * - AMD CPUID Specification (Publication # 25481) * - BKDG for AMD NPT Family 0Fh Processors (Publication # 32559) * - BKDG For AMD Family 10h Processors (Publication # 31116) * - BKDG For AMD Family 15h Models 00h-0Fh Processors (Publication # 42301) * - BKDG For AMD Family 16h Models 00h-0Fh Processors (Publication # 48751) * - PPR For AMD Family 17h Models 00h-0Fh Processors (Publication # 54945) */ static void topo_probe_amd(void) { u_int p[4]; uint64_t v; int level; int nodes_per_socket; int share_count; int type; int i; /* No multi-core capability. */ if ((amd_feature2 & AMDID2_CMP) == 0) return; /* For families 10h and newer. */ pkg_id_shift = (cpu_procinfo2 & AMDID_COREID_SIZE) >> AMDID_COREID_SIZE_SHIFT; /* For 0Fh family. */ if (pkg_id_shift == 0) pkg_id_shift = mask_width((cpu_procinfo2 & AMDID_CMP_CORES) + 1); /* * Families prior to 16h define the following value as * cores per compute unit and we don't really care about the AMD * compute units at the moment. Perhaps we should treat them as * cores and cores within the compute units as hardware threads, * but that's up for debate. * Later families define the value as threads per compute unit, * so we are following AMD's nomenclature here. */ if ((amd_feature2 & AMDID2_TOPOLOGY) != 0 && CPUID_TO_FAMILY(cpu_id) >= 0x16) { cpuid_count(0x8000001e, 0, p); share_count = ((p[1] >> 8) & 0xff) + 1; core_id_shift = mask_width(share_count); /* * For Zen (17h), gather Nodes per Processor. Each node is a * Zeppelin die; TR and EPYC CPUs will have multiple dies per * package. Communication latency between dies is higher than * within them. */ nodes_per_socket = ((p[2] >> 8) & 0x7) + 1; node_id_shift = pkg_id_shift - mask_width(nodes_per_socket); } if ((amd_feature2 & AMDID2_TOPOLOGY) != 0) { for (i = 0; ; i++) { cpuid_count(0x8000001d, i, p); type = p[0] & 0x1f; level = (p[0] >> 5) & 0x7; share_count = 1 + ((p[0] >> 14) & 0xfff); if (!add_deterministic_cache(type, level, share_count)) break; } } else { if (cpu_exthigh >= 0x80000005) { cpuid_count(0x80000005, 0, p); if (((p[2] >> 24) & 0xff) != 0) { caches[0].id_shift = 0; caches[0].present = 1; } } if (cpu_exthigh >= 0x80000006) { cpuid_count(0x80000006, 0, p); if (((p[2] >> 16) & 0xffff) != 0) { caches[1].id_shift = 0; caches[1].present = 1; } if (((p[3] >> 18) & 0x3fff) != 0) { nodes_per_socket = 1; if ((amd_feature2 & AMDID2_NODE_ID) != 0) { /* * Handle multi-node processors that * have multiple chips, each with its * own L3 cache, on the same die. */ v = rdmsr(0xc001100c); nodes_per_socket = 1 + ((v >> 3) & 0x7); } caches[2].id_shift = pkg_id_shift - mask_width(nodes_per_socket); caches[2].present = 1; } } } } /* * Determine topology of processing units for Intel CPUs * using CPUID Leaf 1 and Leaf 4, if supported. * See: * - Intel 64 Architecture Processor Topology Enumeration * - Intel 64 and IA-32 ArchitecturesSoftware Developer’s Manual, * Volume 3A: System Programming Guide, PROGRAMMING CONSIDERATIONS * FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORS */ static void topo_probe_intel_0x4(void) { u_int p[4]; int max_cores; int max_logical; /* Both zero and one here mean one logical processor per package. */ max_logical = (cpu_feature & CPUID_HTT) != 0 ? (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1; if (max_logical <= 1) return; if (cpu_high >= 0x4) { cpuid_count(0x04, 0, p); max_cores = ((p[0] >> 26) & 0x3f) + 1; } else max_cores = 1; core_id_shift = mask_width(max_logical/max_cores); KASSERT(core_id_shift >= 0, ("intel topo: max_cores > max_logical\n")); pkg_id_shift = core_id_shift + mask_width(max_cores); } /* * Determine topology of processing units for Intel CPUs * using CPUID Leaf 1Fh or 0Bh, if supported. * See: * - Intel 64 Architecture Processor Topology Enumeration * - Intel 64 and IA-32 ArchitecturesSoftware Developer’s Manual, * Volume 3A: System Programming Guide, PROGRAMMING CONSIDERATIONS * FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORS */ static void topo_probe_intel_0xb(void) { u_int leaf; u_int p[4] = { 0 }; int bits; int type; int i; /* Prefer leaf 1Fh (V2 Extended Topology Enumeration). */ if (cpu_high >= 0x1f) { leaf = 0x1f; cpuid_count(leaf, 0, p); } /* Fall back to leaf 0Bh (Extended Topology Enumeration). */ if (p[1] == 0) { leaf = 0x0b; cpuid_count(leaf, 0, p); } /* Fall back to leaf 04h (Deterministic Cache Parameters). */ if (p[1] == 0) { topo_probe_intel_0x4(); return; } /* We only support three levels for now. */ for (i = 0; ; i++) { cpuid_count(leaf, i, p); bits = p[0] & 0x1f; type = (p[2] >> 8) & 0xff; if (type == 0) break; if (type == CPUID_TYPE_SMT) core_id_shift = bits; else if (type == CPUID_TYPE_CORE) pkg_id_shift = bits; else if (bootverbose) printf("Topology level type %d shift: %d\n", type, bits); } if (pkg_id_shift < core_id_shift) { printf("WARNING: core covers more APIC IDs than a package\n"); core_id_shift = pkg_id_shift; } } /* * Determine topology of caches for Intel CPUs. * See: * - Intel 64 Architecture Processor Topology Enumeration * - Intel 64 and IA-32 Architectures Software Developer’s Manual * Volume 2A: Instruction Set Reference, A-M, * CPUID instruction */ static void topo_probe_intel_caches(void) { u_int p[4]; int level; int share_count; int type; int i; if (cpu_high < 0x4) { /* * Available cache level and sizes can be determined * via CPUID leaf 2, but that requires a huge table of hardcoded * values, so for now just assume L1 and L2 caches potentially * shared only by HTT processing units, if HTT is present. */ caches[0].id_shift = pkg_id_shift; caches[0].present = 1; caches[1].id_shift = pkg_id_shift; caches[1].present = 1; return; } for (i = 0; ; i++) { cpuid_count(0x4, i, p); type = p[0] & 0x1f; level = (p[0] >> 5) & 0x7; share_count = 1 + ((p[0] >> 14) & 0xfff); if (!add_deterministic_cache(type, level, share_count)) break; } } /* * Determine topology of processing units and caches for Intel CPUs. * See: * - Intel 64 Architecture Processor Topology Enumeration */ static void topo_probe_intel(void) { /* * Note that 0x1 <= cpu_high < 4 case should be * compatible with topo_probe_intel_0x4() logic when * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1) * or it should trigger the fallback otherwise. */ if (cpu_high >= 0xb) topo_probe_intel_0xb(); else if (cpu_high >= 0x1) topo_probe_intel_0x4(); topo_probe_intel_caches(); } /* * Topology information is queried only on BSP, on which this * code runs and for which it can query CPUID information. * Then topology is extrapolated on all packages using an * assumption that APIC ID to hardware component ID mapping is * homogenious. * That doesn't necesserily imply that the topology is uniform. */ void topo_probe(void) { static int cpu_topo_probed = 0; struct x86_topo_layer { int type; int subtype; int id_shift; } topo_layers[MAX_CACHE_LEVELS + 4]; struct topo_node *parent; struct topo_node *node; int layer; int nlayers; int node_id; int i; if (cpu_topo_probed) return; CPU_ZERO(&logical_cpus_mask); if (mp_ncpus <= 1) ; /* nothing */ else if (cpu_vendor_id == CPU_VENDOR_AMD || cpu_vendor_id == CPU_VENDOR_HYGON) topo_probe_amd(); else if (cpu_vendor_id == CPU_VENDOR_INTEL) topo_probe_intel(); KASSERT(pkg_id_shift >= core_id_shift, ("bug in APIC topology discovery")); nlayers = 0; bzero(topo_layers, sizeof(topo_layers)); topo_layers[nlayers].type = TOPO_TYPE_PKG; topo_layers[nlayers].id_shift = pkg_id_shift; if (bootverbose) printf("Package ID shift: %u\n", topo_layers[nlayers].id_shift); nlayers++; if (pkg_id_shift > node_id_shift && node_id_shift != 0) { topo_layers[nlayers].type = TOPO_TYPE_GROUP; topo_layers[nlayers].id_shift = node_id_shift; if (bootverbose) printf("Node ID shift: %u\n", topo_layers[nlayers].id_shift); nlayers++; } /* * Consider all caches to be within a package/chip * and "in front" of all sub-components like * cores and hardware threads. */ for (i = MAX_CACHE_LEVELS - 1; i >= 0; --i) { if (caches[i].present) { if (node_id_shift != 0) KASSERT(caches[i].id_shift <= node_id_shift, ("bug in APIC topology discovery")); KASSERT(caches[i].id_shift <= pkg_id_shift, ("bug in APIC topology discovery")); KASSERT(caches[i].id_shift >= core_id_shift, ("bug in APIC topology discovery")); topo_layers[nlayers].type = TOPO_TYPE_CACHE; topo_layers[nlayers].subtype = i + 1; topo_layers[nlayers].id_shift = caches[i].id_shift; if (bootverbose) printf("L%u cache ID shift: %u\n", topo_layers[nlayers].subtype, topo_layers[nlayers].id_shift); nlayers++; } } if (pkg_id_shift > core_id_shift) { topo_layers[nlayers].type = TOPO_TYPE_CORE; topo_layers[nlayers].id_shift = core_id_shift; if (bootverbose) printf("Core ID shift: %u\n", topo_layers[nlayers].id_shift); nlayers++; } topo_layers[nlayers].type = TOPO_TYPE_PU; topo_layers[nlayers].id_shift = 0; nlayers++; topo_init_root(&topo_root); for (i = 0; i <= max_apic_id; ++i) { if (!cpu_info[i].cpu_present) continue; parent = &topo_root; for (layer = 0; layer < nlayers; ++layer) { node_id = i >> topo_layers[layer].id_shift; parent = topo_add_node_by_hwid(parent, node_id, topo_layers[layer].type, topo_layers[layer].subtype); } } parent = &topo_root; for (layer = 0; layer < nlayers; ++layer) { node_id = boot_cpu_id >> topo_layers[layer].id_shift; node = topo_find_node_by_hwid(parent, node_id, topo_layers[layer].type, topo_layers[layer].subtype); topo_promote_child(node); parent = node; } cpu_topo_probed = 1; } /* * Assign logical CPU IDs to local APICs. */ void assign_cpu_ids(void) { struct topo_node *node; u_int smt_mask; int nhyper; smt_mask = (1u << core_id_shift) - 1; /* * Assign CPU IDs to local APIC IDs and disable any CPUs * beyond MAXCPU. CPU 0 is always assigned to the BSP. */ mp_ncpus = 0; nhyper = 0; TOPO_FOREACH(node, &topo_root) { if (node->type != TOPO_TYPE_PU) continue; if ((node->hwid & smt_mask) != (boot_cpu_id & smt_mask)) cpu_info[node->hwid].cpu_hyperthread = 1; if (resource_disabled("lapic", node->hwid)) { if (node->hwid != boot_cpu_id) cpu_info[node->hwid].cpu_disabled = 1; else printf("Cannot disable BSP, APIC ID = %d\n", node->hwid); } if (!hyperthreading_allowed && cpu_info[node->hwid].cpu_hyperthread) cpu_info[node->hwid].cpu_disabled = 1; if (mp_ncpus >= MAXCPU) cpu_info[node->hwid].cpu_disabled = 1; if (cpu_info[node->hwid].cpu_disabled) { disabled_cpus++; continue; } if (cpu_info[node->hwid].cpu_hyperthread) nhyper++; cpu_apic_ids[mp_ncpus] = node->hwid; apic_cpuids[node->hwid] = mp_ncpus; topo_set_pu_id(node, mp_ncpus); mp_ncpus++; } KASSERT(mp_maxid >= mp_ncpus - 1, ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid, mp_ncpus)); mp_ncores = mp_ncpus - nhyper; smp_threads_per_core = mp_ncpus / mp_ncores; } /* * Print various information about the SMP system hardware and setup. */ void cpu_mp_announce(void) { struct topo_node *node; const char *hyperthread; struct topo_analysis topology; printf("FreeBSD/SMP: "); if (topo_analyze(&topo_root, 1, &topology)) { printf("%d package(s)", topology.entities[TOPO_LEVEL_PKG]); if (topology.entities[TOPO_LEVEL_GROUP] > 1) printf(" x %d groups", topology.entities[TOPO_LEVEL_GROUP]); if (topology.entities[TOPO_LEVEL_CACHEGROUP] > 1) printf(" x %d cache groups", topology.entities[TOPO_LEVEL_CACHEGROUP]); if (topology.entities[TOPO_LEVEL_CORE] > 0) printf(" x %d core(s)", topology.entities[TOPO_LEVEL_CORE]); if (topology.entities[TOPO_LEVEL_THREAD] > 1) printf(" x %d hardware threads", topology.entities[TOPO_LEVEL_THREAD]); } else { printf("Non-uniform topology"); } printf("\n"); if (disabled_cpus) { printf("FreeBSD/SMP Online: "); if (topo_analyze(&topo_root, 0, &topology)) { printf("%d package(s)", topology.entities[TOPO_LEVEL_PKG]); if (topology.entities[TOPO_LEVEL_GROUP] > 1) printf(" x %d groups", topology.entities[TOPO_LEVEL_GROUP]); if (topology.entities[TOPO_LEVEL_CACHEGROUP] > 1) printf(" x %d cache groups", topology.entities[TOPO_LEVEL_CACHEGROUP]); if (topology.entities[TOPO_LEVEL_CORE] > 0) printf(" x %d core(s)", topology.entities[TOPO_LEVEL_CORE]); if (topology.entities[TOPO_LEVEL_THREAD] > 1) printf(" x %d hardware threads", topology.entities[TOPO_LEVEL_THREAD]); } else { printf("Non-uniform topology"); } printf("\n"); } if (!bootverbose) return; TOPO_FOREACH(node, &topo_root) { switch (node->type) { case TOPO_TYPE_PKG: printf("Package HW ID = %u\n", node->hwid); break; case TOPO_TYPE_CORE: printf("\tCore HW ID = %u\n", node->hwid); break; case TOPO_TYPE_PU: if (cpu_info[node->hwid].cpu_hyperthread) hyperthread = "/HT"; else hyperthread = ""; if (node->subtype == 0) printf("\t\tCPU (AP%s): APIC ID: %u" "(disabled)\n", hyperthread, node->hwid); else if (node->id == 0) printf("\t\tCPU0 (BSP): APIC ID: %u\n", node->hwid); else printf("\t\tCPU%u (AP%s): APIC ID: %u\n", node->id, hyperthread, node->hwid); break; default: /* ignored */ break; } } } /* * Add a scheduling group, a group of logical processors sharing * a particular cache (and, thus having an affinity), to the scheduling * topology. * This function recursively works on lower level caches. */ static void x86topo_add_sched_group(struct topo_node *root, struct cpu_group *cg_root) { struct topo_node *node; int nchildren; int ncores; int i; KASSERT(root->type == TOPO_TYPE_SYSTEM || root->type == TOPO_TYPE_CACHE || root->type == TOPO_TYPE_GROUP, ("x86topo_add_sched_group: bad type: %u", root->type)); CPU_COPY(&root->cpuset, &cg_root->cg_mask); cg_root->cg_count = root->cpu_count; if (root->type == TOPO_TYPE_SYSTEM) cg_root->cg_level = CG_SHARE_NONE; else cg_root->cg_level = root->subtype; /* * Check how many core nodes we have under the given root node. * If we have multiple logical processors, but not multiple * cores, then those processors must be hardware threads. */ ncores = 0; node = root; while (node != NULL) { if (node->type != TOPO_TYPE_CORE) { node = topo_next_node(root, node); continue; } ncores++; node = topo_next_nonchild_node(root, node); } if (cg_root->cg_level != CG_SHARE_NONE && root->cpu_count > 1 && ncores < 2) cg_root->cg_flags = CG_FLAG_SMT; /* * Find out how many cache nodes we have under the given root node. * We ignore cache nodes that cover all the same processors as the * root node. Also, we do not descend below found cache nodes. * That is, we count top-level "non-redundant" caches under the root * node. */ nchildren = 0; node = root; while (node != NULL) { if ((node->type != TOPO_TYPE_GROUP && node->type != TOPO_TYPE_CACHE) || (root->type != TOPO_TYPE_SYSTEM && CPU_CMP(&node->cpuset, &root->cpuset) == 0)) { node = topo_next_node(root, node); continue; } nchildren++; node = topo_next_nonchild_node(root, node); } /* * We are not interested in nodes including only one CPU each. */ if (nchildren == root->cpu_count) return; cg_root->cg_child = smp_topo_alloc(nchildren); cg_root->cg_children = nchildren; /* * Now find again the same cache nodes as above and recursively * build scheduling topologies for them. */ node = root; i = 0; while (node != NULL) { if ((node->type != TOPO_TYPE_GROUP && node->type != TOPO_TYPE_CACHE) || (root->type != TOPO_TYPE_SYSTEM && CPU_CMP(&node->cpuset, &root->cpuset) == 0)) { node = topo_next_node(root, node); continue; } cg_root->cg_child[i].cg_parent = cg_root; x86topo_add_sched_group(node, &cg_root->cg_child[i]); i++; node = topo_next_nonchild_node(root, node); } } /* * Build the MI scheduling topology from the discovered hardware topology. */ struct cpu_group * cpu_topo(void) { struct cpu_group *cg_root; if (mp_ncpus <= 1) return (smp_topo_none()); cg_root = smp_topo_alloc(1); x86topo_add_sched_group(&topo_root, cg_root); return (cg_root); } static void cpu_alloc(void *dummy __unused) { /* * Dynamically allocate the arrays that depend on the * maximum APIC ID. */ cpu_info = malloc(sizeof(*cpu_info) * (max_apic_id + 1), M_CPUS, M_WAITOK | M_ZERO); apic_cpuids = malloc(sizeof(*apic_cpuids) * (max_apic_id + 1), M_CPUS, M_WAITOK | M_ZERO); } SYSINIT(cpu_alloc, SI_SUB_CPU, SI_ORDER_FIRST, cpu_alloc, NULL); /* * Add a logical CPU to the topology. */ void cpu_add(u_int apic_id, char boot_cpu) { if (apic_id > max_apic_id) { panic("SMP: APIC ID %d too high", apic_id); return; } KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %u added twice", apic_id)); cpu_info[apic_id].cpu_present = 1; if (boot_cpu) { KASSERT(boot_cpu_id == -1, ("CPU %u claims to be BSP, but CPU %u already is", apic_id, boot_cpu_id)); boot_cpu_id = apic_id; cpu_info[apic_id].cpu_bsp = 1; } if (bootverbose) printf("SMP: Added CPU %u (%s)\n", apic_id, boot_cpu ? "BSP" : "AP"); } void cpu_mp_setmaxid(void) { /* * mp_ncpus and mp_maxid should be already set by calls to cpu_add(). * If there were no calls to cpu_add() assume this is a UP system. */ if (mp_ncpus == 0) mp_ncpus = 1; } int cpu_mp_probe(void) { /* * Always record BSP in CPU map so that the mbuf init code works * correctly. */ CPU_SETOF(0, &all_cpus); return (mp_ncpus > 1); } /* Allocate memory for the AP trampoline. */ void alloc_ap_trampoline(vm_paddr_t *physmap, unsigned int *physmap_idx) { unsigned int i; bool allocated; allocated = false; for (i = *physmap_idx; i <= *physmap_idx; i -= 2) { /* * Find a memory region big enough and below the 1MB boundary * for the trampoline code. * NB: needs to be page aligned. */ if (physmap[i] >= MiB(1) || (trunc_page(physmap[i + 1]) - round_page(physmap[i])) < round_page(bootMP_size)) continue; allocated = true; /* * Try to steal from the end of the region to mimic previous * behaviour, else fallback to steal from the start. */ if (physmap[i + 1] < MiB(1)) { boot_address = trunc_page(physmap[i + 1]); if ((physmap[i + 1] - boot_address) < bootMP_size) boot_address -= round_page(bootMP_size); physmap[i + 1] = boot_address; } else { boot_address = round_page(physmap[i]); physmap[i] = boot_address + round_page(bootMP_size); } if (physmap[i] == physmap[i + 1] && *physmap_idx != 0) { memmove(&physmap[i], &physmap[i + 2], sizeof(*physmap) * (*physmap_idx - i + 2)); *physmap_idx -= 2; } break; } if (!allocated) { boot_address = basemem * 1024 - bootMP_size; if (bootverbose) printf( "Cannot find enough space for the boot trampoline, placing it at %#x", boot_address); } } /* * AP CPU's call this to initialize themselves. */ void init_secondary_tail(void) { u_int cpuid; pmap_activate_boot(vmspace_pmap(proc0.p_vmspace)); /* * On real hardware, switch to x2apic mode if possible. Do it * after aps_ready was signalled, to avoid manipulating the * mode while BSP might still want to send some IPI to us * (second startup IPI is ignored on modern hardware etc). */ lapic_xapic_mode(); /* Initialize the PAT MSR. */ pmap_init_pat(); /* set up CPU registers and state */ cpu_setregs(); /* set up SSE/NX */ initializecpu(); /* set up FPU state on the AP */ #ifdef __amd64__ fpuinit(); #else npxinit(false); #endif if (cpu_ops.cpu_init) cpu_ops.cpu_init(); /* A quick check from sanity claus */ cpuid = PCPU_GET(cpuid); if (PCPU_GET(apic_id) != lapic_id()) { printf("SMP: cpuid = %d\n", cpuid); printf("SMP: actual apic_id = %d\n", lapic_id()); printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id)); panic("cpuid mismatch! boom!!"); } /* Initialize curthread. */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); PCPU_SET(curthread, PCPU_GET(idlethread)); mtx_lock_spin(&ap_boot_mtx); mca_init(); /* Init local apic for irq's */ lapic_setup(1); /* Set memory range attributes for this CPU to match the BSP */ mem_range_AP_init(); smp_cpus++; CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid); if (bootverbose) printf("SMP: AP CPU #%d Launched!\n", cpuid); else printf("%s%d%s", smp_cpus == 2 ? "Launching APs: " : "", cpuid, smp_cpus == mp_ncpus ? "\n" : " "); /* Determine if we are a logical CPU. */ if (cpu_info[PCPU_GET(apic_id)].cpu_hyperthread) CPU_SET(cpuid, &logical_cpus_mask); if (bootverbose) lapic_dump("AP"); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } #ifdef __amd64__ /* * Enable global pages TLB extension * This also implicitly flushes the TLB */ load_cr4(rcr4() | CR4_PGE); if (pmap_pcid_enabled) load_cr4(rcr4() | CR4_PCIDE); load_ds(_udatasel); load_es(_udatasel); load_fs(_ufssel); #endif mtx_unlock_spin(&ap_boot_mtx); /* Wait until all the AP's are up. */ while (atomic_load_acq_int(&smp_started) == 0) ia32_pause(); #ifndef EARLY_AP_STARTUP /* Start per-CPU event timers. */ cpu_initclocks_ap(); #endif /* * Assert that smp_after_idle_runnable condition is reasonable. */ MPASS(PCPU_GET(curpcb) == NULL); sched_throw(NULL); panic("scheduler returned us to %s", __func__); /* NOTREACHED */ } static void smp_after_idle_runnable(void *arg __unused) { struct pcpu *pc; int cpu; for (cpu = 1; cpu < mp_ncpus; cpu++) { pc = pcpu_find(cpu); while (atomic_load_ptr(&pc->pc_curpcb) == NULL) cpu_spinwait(); kmem_free((vm_offset_t)bootstacks[cpu], kstack_pages * PAGE_SIZE); } } SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY, smp_after_idle_runnable, NULL); /* * We tell the I/O APIC code about all the CPUs we want to receive * interrupts. If we don't want certain CPUs to receive IRQs we * can simply not tell the I/O APIC code about them in this function. * We also do not tell it about the BSP since it tells itself about * the BSP internally to work with UP kernels and on UP machines. */ void set_interrupt_apic_ids(void) { u_int i, apic_id; for (i = 0; i < MAXCPU; i++) { apic_id = cpu_apic_ids[i]; if (apic_id == -1) continue; if (cpu_info[apic_id].cpu_bsp) continue; if (cpu_info[apic_id].cpu_disabled) continue; /* Don't let hyperthreads service interrupts. */ if (cpu_info[apic_id].cpu_hyperthread) continue; intr_add_cpu(i); } } #ifdef COUNT_XINVLTLB_HITS u_int xhits_gbl[MAXCPU]; u_int xhits_pg[MAXCPU]; u_int xhits_rng[MAXCPU]; static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW, 0, ""); SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl, sizeof(xhits_gbl), "IU", ""); SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg, sizeof(xhits_pg), "IU", ""); SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng, sizeof(xhits_rng), "IU", ""); u_int ipi_global; u_int ipi_page; u_int ipi_range; u_int ipi_range_size; SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, ""); SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, ""); SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, ""); SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size, 0, ""); #endif /* COUNT_XINVLTLB_HITS */ /* * Init and startup IPI. */ void ipi_startup(int apic_id, int vector) { /* * This attempts to follow the algorithm described in the * Intel Multiprocessor Specification v1.4 in section B.4. * For each IPI, we allow the local APIC ~20us to deliver the * IPI. If that times out, we panic. */ /* * first we do an INIT IPI: this INIT IPI might be run, resetting * and running the target CPU. OR this INIT IPI might be latched (P5 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be * ignored. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL | APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id); lapic_ipi_wait(100); /* Explicitly deassert the INIT IPI. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL | APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id); DELAY(10000); /* wait ~10mS */ /* * next we do a STARTUP IPI: the previous INIT IPI might still be * latched, (P5 bug) this 1st STARTUP would then terminate * immediately, and the previously started INIT IPI would continue. OR * the previous INIT IPI has already run. and this STARTUP IPI will * run. OR the previous INIT IPI was ignored. and this STARTUP IPI * will run. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE | APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP | vector, apic_id); if (!lapic_ipi_wait(100)) panic("Failed to deliver first STARTUP IPI to APIC %d", apic_id); DELAY(200); /* wait ~200uS */ /* * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is * recognized after hardware RESET or INIT IPI. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE | APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP | vector, apic_id); if (!lapic_ipi_wait(100)) panic("Failed to deliver second STARTUP IPI to APIC %d", apic_id); DELAY(200); /* wait ~200uS */ } /* * Send an IPI to specified CPU handling the bitmap logic. */ void ipi_send_cpu(int cpu, u_int ipi) { u_int bitmap, old_pending, new_pending; KASSERT(cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu)); if (IPI_IS_BITMAPED(ipi)) { bitmap = 1 << ipi; ipi = IPI_BITMAP_VECTOR; do { old_pending = cpu_ipi_pending[cpu]; new_pending = old_pending | bitmap; } while (!atomic_cmpset_int(&cpu_ipi_pending[cpu], old_pending, new_pending)); if (old_pending) return; } lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]); } void ipi_bitmap_handler(struct trapframe frame) { struct trapframe *oldframe; struct thread *td; int cpu = PCPU_GET(cpuid); u_int ipi_bitmap; critical_enter(); td = curthread; td->td_intr_nesting_level++; oldframe = td->td_intr_frame; td->td_intr_frame = &frame; ipi_bitmap = atomic_readandclear_int(&cpu_ipi_pending[cpu]); if (ipi_bitmap & (1 << IPI_PREEMPT)) { #ifdef COUNT_IPIS (*ipi_preempt_counts[cpu])++; #endif sched_preempt(td); } if (ipi_bitmap & (1 << IPI_AST)) { #ifdef COUNT_IPIS (*ipi_ast_counts[cpu])++; #endif /* Nothing to do for AST */ } if (ipi_bitmap & (1 << IPI_HARDCLOCK)) { #ifdef COUNT_IPIS (*ipi_hardclock_counts[cpu])++; #endif hardclockintr(); } td->td_intr_frame = oldframe; td->td_intr_nesting_level--; critical_exit(); } /* * send an IPI to a set of cpus. */ void ipi_selected(cpuset_t cpus, u_int ipi) { int cpu; /* * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit * of help in order to understand what is the source. * Set the mask of receiving CPUs for this purpose. */ if (ipi == IPI_STOP_HARD) CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &cpus); while ((cpu = CPU_FFS(&cpus)) != 0) { cpu--; CPU_CLR(cpu, &cpus); CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi); ipi_send_cpu(cpu, ipi); } } /* * send an IPI to a specific CPU. */ void ipi_cpu(int cpu, u_int ipi) { /* * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit * of help in order to understand what is the source. * Set the mask of receiving CPUs for this purpose. */ if (ipi == IPI_STOP_HARD) CPU_SET_ATOMIC(cpu, &ipi_stop_nmi_pending); CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi); ipi_send_cpu(cpu, ipi); } /* * send an IPI to all CPUs EXCEPT myself */ void ipi_all_but_self(u_int ipi) { cpuset_t other_cpus; other_cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &other_cpus); if (IPI_IS_BITMAPED(ipi)) { ipi_selected(other_cpus, ipi); return; } /* * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit * of help in order to understand what is the source. * Set the mask of receiving CPUs for this purpose. */ if (ipi == IPI_STOP_HARD) CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &other_cpus); CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi); lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS); } void ipi_self_from_nmi(u_int vector) { lapic_ipi_vectored(vector, APIC_IPI_DEST_SELF); /* Wait for IPI to finish. */ if (!lapic_ipi_wait(50000)) { if (panicstr != NULL) return; else panic("APIC: IPI is stuck"); } } int ipi_nmi_handler(void) { u_int cpuid; /* * As long as there is not a simple way to know about a NMI's * source, if the bitmask for the current CPU is present in * the global pending bitword an IPI_STOP_HARD has been issued * and should be handled. */ cpuid = PCPU_GET(cpuid); if (!CPU_ISSET(cpuid, &ipi_stop_nmi_pending)) return (1); CPU_CLR_ATOMIC(cpuid, &ipi_stop_nmi_pending); cpustop_handler(); return (0); } int nmi_kdb_lock; void nmi_call_kdb_smp(u_int type, struct trapframe *frame) { int cpu; bool call_post; cpu = PCPU_GET(cpuid); if (atomic_cmpset_acq_int(&nmi_kdb_lock, 0, 1)) { nmi_call_kdb(cpu, type, frame); call_post = false; } else { savectx(&stoppcbs[cpu]); CPU_SET_ATOMIC(cpu, &stopped_cpus); while (!atomic_cmpset_acq_int(&nmi_kdb_lock, 0, 1)) ia32_pause(); call_post = true; } atomic_store_rel_int(&nmi_kdb_lock, 0); if (call_post) cpustop_handler_post(cpu); } /* * Handle an IPI_STOP by saving our current context and spinning until we * are resumed. */ void cpustop_handler(void) { u_int cpu; cpu = PCPU_GET(cpuid); savectx(&stoppcbs[cpu]); /* Indicate that we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) ia32_pause(); cpustop_handler_post(cpu); } static void cpustop_handler_post(u_int cpu) { CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); /* * We don't broadcast TLB invalidations to other CPUs when they are * stopped. Hence, we clear the TLB before resuming. */ invltlb_glob(); #if defined(__amd64__) && defined(DDB) amd64_db_resume_dbreg(); #endif if (cpu == 0 && cpustop_restartfunc != NULL) { cpustop_restartfunc(); cpustop_restartfunc = NULL; } } /* * Handle an IPI_SUSPEND by saving our current context and spinning until we * are resumed. */ void cpususpend_handler(void) { u_int cpu; mtx_assert(&smp_ipi_mtx, MA_NOTOWNED); cpu = PCPU_GET(cpuid); if (savectx(&susppcbs[cpu]->sp_pcb)) { #ifdef __amd64__ fpususpend(susppcbs[cpu]->sp_fpususpend); #else npxsuspend(susppcbs[cpu]->sp_fpususpend); #endif /* * suspended_cpus is cleared shortly after each AP is restarted * by a Startup IPI, so that the BSP can proceed to restarting * the next AP. * * resuming_cpus gets cleared when the AP completes * initialization after having been released by the BSP. * resuming_cpus is probably not the best name for the * variable, because it is actually a set of processors that * haven't resumed yet and haven't necessarily started resuming. * * Note that suspended_cpus is meaningful only for ACPI suspend * as it's not really used for Xen suspend since the APs are * automatically restored to the running state and the correct * context. For the same reason resumectx is never called in * that case. */ CPU_SET_ATOMIC(cpu, &suspended_cpus); CPU_SET_ATOMIC(cpu, &resuming_cpus); /* * Invalidate the cache after setting the global status bits. * The last AP to set its bit may end up being an Owner of the * corresponding cache line in MOESI protocol. The AP may be * stopped before the cache line is written to the main memory. */ wbinvd(); } else { #ifdef __amd64__ fpuresume(susppcbs[cpu]->sp_fpususpend); #else npxresume(susppcbs[cpu]->sp_fpususpend); #endif pmap_init_pat(); initializecpu(); PCPU_SET(switchtime, 0); PCPU_SET(switchticks, ticks); /* Indicate that we have restarted and restored the context. */ CPU_CLR_ATOMIC(cpu, &suspended_cpus); } /* Wait for resume directive */ while (!CPU_ISSET(cpu, &toresume_cpus)) ia32_pause(); /* Re-apply microcode updates. */ ucode_reload(); #ifdef __i386__ /* Finish removing the identity mapping of low memory for this AP. */ invltlb_glob(); #endif if (cpu_ops.cpu_resume) cpu_ops.cpu_resume(); #ifdef __amd64__ if (vmm_resume_p) vmm_resume_p(); #endif /* Resume MCA and local APIC */ lapic_xapic_mode(); mca_resume(); lapic_setup(0); /* Indicate that we are resumed */ CPU_CLR_ATOMIC(cpu, &resuming_cpus); CPU_CLR_ATOMIC(cpu, &suspended_cpus); CPU_CLR_ATOMIC(cpu, &toresume_cpus); } void invlcache_handler(void) { uint32_t generation; #ifdef COUNT_IPIS (*ipi_invlcache_counts[PCPU_GET(cpuid)])++; #endif /* COUNT_IPIS */ /* * Reading the generation here allows greater parallelism * since wbinvd is a serializing instruction. Without the * temporary, we'd wait for wbinvd to complete, then the read * would execute, then the dependent write, which must then * complete before return from interrupt. */ generation = smp_tlb_generation; wbinvd(); PCPU_SET(smp_tlb_done, generation); } /* * Handle an IPI_SWI by waking delayed SWI thread. */ void ipi_swi_handler(struct trapframe frame) { intr_event_handle(clk_intr_event, &frame); } /* * This is called once the rest of the system is up and running and we're * ready to let the AP's out of the pen. */ static void release_aps(void *dummy __unused) { if (mp_ncpus == 1) return; atomic_store_rel_int(&aps_ready, 1); while (smp_started == 0) ia32_pause(); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); #ifdef COUNT_IPIS /* * Setup interrupt counters for IPI handlers. */ static void mp_ipi_intrcnt(void *dummy) { char buf[64]; int i; CPU_FOREACH(i) { snprintf(buf, sizeof(buf), "cpu%d:invltlb", i); intrcnt_add(buf, &ipi_invltlb_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:invlrng", i); intrcnt_add(buf, &ipi_invlrng_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:invlpg", i); intrcnt_add(buf, &ipi_invlpg_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:invlcache", i); intrcnt_add(buf, &ipi_invlcache_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:preempt", i); intrcnt_add(buf, &ipi_preempt_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:ast", i); intrcnt_add(buf, &ipi_ast_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i); intrcnt_add(buf, &ipi_rendezvous_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:hardclock", i); intrcnt_add(buf, &ipi_hardclock_counts[i]); } } SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL); #endif /* * Flush the TLB on other CPU's */ /* Variables needed for SMP tlb shootdown. */ vm_offset_t smp_tlb_addr1, smp_tlb_addr2; pmap_t smp_tlb_pmap; volatile uint32_t smp_tlb_generation; #ifdef __amd64__ #define read_eflags() read_rflags() #endif /* * Used by pmap to request invalidation of TLB or cache on local and * remote processors. Mask provides the set of remote CPUs which are * to be signalled with the IPI specified by vector. The curcpu_cb * callback is invoked on the calling CPU in a critical section while * waiting for remote CPUs to complete the operation. * * The callback function is called unconditionally on the caller's * underlying processor, even when this processor is not set in the * mask. So, the callback function must be prepared to handle such * spurious invocations. * * This function must be called with the thread pinned, and it unpins on * completion. */ static void smp_targeted_tlb_shootdown(cpuset_t mask, u_int vector, pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2, smp_invl_cb_t curcpu_cb) { cpuset_t other_cpus; volatile uint32_t *p_cpudone; uint32_t generation; int cpu; #ifdef __i386__ sched_pin(); #endif /* * It is not necessary to signal other CPUs while booting or * when in the debugger. */ if (kdb_active || panicstr != NULL || !smp_started) goto local_cb; KASSERT(curthread->td_pinned > 0, ("curthread not pinned")); /* * Check for other cpus. Return if none. */ if (CPU_ISFULLSET(&mask)) { if (mp_ncpus <= 1) goto local_cb; } else { CPU_CLR(PCPU_GET(cpuid), &mask); if (CPU_EMPTY(&mask)) goto local_cb; } if (!(read_eflags() & PSL_I)) panic("%s: interrupts disabled", __func__); mtx_lock_spin(&smp_ipi_mtx); smp_tlb_addr1 = addr1; smp_tlb_addr2 = addr2; smp_tlb_pmap = pmap; generation = ++smp_tlb_generation; if (CPU_ISFULLSET(&mask)) { ipi_all_but_self(vector); other_cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &other_cpus); } else { other_cpus = mask; while ((cpu = CPU_FFS(&mask)) != 0) { cpu--; CPU_CLR(cpu, &mask); CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, vector); ipi_send_cpu(cpu, vector); } } curcpu_cb(pmap, addr1, addr2); while ((cpu = CPU_FFS(&other_cpus)) != 0) { cpu--; CPU_CLR(cpu, &other_cpus); p_cpudone = &cpuid_to_pcpu[cpu]->pc_smp_tlb_done; while (*p_cpudone != generation) ia32_pause(); } /* * Unpin before unlocking smp_ipi_mtx. If the thread owes * preemption, this allows scheduler to select thread on any * CPU from its cpuset. */ sched_unpin(); mtx_unlock_spin(&smp_ipi_mtx); return; local_cb: critical_enter(); curcpu_cb(pmap, addr1, addr2); sched_unpin(); critical_exit(); } void smp_masked_invltlb(cpuset_t mask, pmap_t pmap, smp_invl_cb_t curcpu_cb) { smp_targeted_tlb_shootdown(mask, IPI_INVLTLB, pmap, 0, 0, curcpu_cb); #ifdef COUNT_XINVLTLB_HITS ipi_global++; #endif } void smp_masked_invlpg(cpuset_t mask, vm_offset_t addr, pmap_t pmap, smp_invl_cb_t curcpu_cb) { smp_targeted_tlb_shootdown(mask, IPI_INVLPG, pmap, addr, 0, curcpu_cb); #ifdef COUNT_XINVLTLB_HITS ipi_page++; #endif } void smp_masked_invlpg_range(cpuset_t mask, vm_offset_t addr1, vm_offset_t addr2, pmap_t pmap, smp_invl_cb_t curcpu_cb) { smp_targeted_tlb_shootdown(mask, IPI_INVLRNG, pmap, addr1, addr2, curcpu_cb); #ifdef COUNT_XINVLTLB_HITS ipi_range++; ipi_range_size += (addr2 - addr1) / PAGE_SIZE; #endif } void smp_cache_flush(smp_invl_cb_t curcpu_cb) { smp_targeted_tlb_shootdown(all_cpus, IPI_INVLCACHE, NULL, 0, 0, curcpu_cb); } /* * Handlers for TLB related IPIs */ void invltlb_handler(void) { uint32_t generation; #ifdef COUNT_XINVLTLB_HITS xhits_gbl[PCPU_GET(cpuid)]++; #endif /* COUNT_XINVLTLB_HITS */ #ifdef COUNT_IPIS (*ipi_invltlb_counts[PCPU_GET(cpuid)])++; #endif /* COUNT_IPIS */ /* * Reading the generation here allows greater parallelism * since invalidating the TLB is a serializing operation. */ generation = smp_tlb_generation; if (smp_tlb_pmap == kernel_pmap) invltlb_glob(); #ifdef __amd64__ else invltlb(); #endif PCPU_SET(smp_tlb_done, generation); } void invlpg_handler(void) { uint32_t generation; #ifdef COUNT_XINVLTLB_HITS xhits_pg[PCPU_GET(cpuid)]++; #endif /* COUNT_XINVLTLB_HITS */ #ifdef COUNT_IPIS (*ipi_invlpg_counts[PCPU_GET(cpuid)])++; #endif /* COUNT_IPIS */ generation = smp_tlb_generation; /* Overlap with serialization */ #ifdef __i386__ if (smp_tlb_pmap == kernel_pmap) #endif invlpg(smp_tlb_addr1); PCPU_SET(smp_tlb_done, generation); } void invlrng_handler(void) { vm_offset_t addr, addr2; uint32_t generation; #ifdef COUNT_XINVLTLB_HITS xhits_rng[PCPU_GET(cpuid)]++; #endif /* COUNT_XINVLTLB_HITS */ #ifdef COUNT_IPIS (*ipi_invlrng_counts[PCPU_GET(cpuid)])++; #endif /* COUNT_IPIS */ addr = smp_tlb_addr1; addr2 = smp_tlb_addr2; generation = smp_tlb_generation; /* Overlap with serialization */ #ifdef __i386__ if (smp_tlb_pmap == kernel_pmap) #endif do { invlpg(addr); addr += PAGE_SIZE; } while (addr < addr2); PCPU_SET(smp_tlb_done, generation); }