diff --git a/usr.sbin/bhyve/pci_nvme.c b/usr.sbin/bhyve/pci_nvme.c
index 4084f9b007ba..dd6c9a41d17f 100644
--- a/usr.sbin/bhyve/pci_nvme.c
+++ b/usr.sbin/bhyve/pci_nvme.c
@@ -1,3352 +1,3352 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2017 Shunsuke Mie
  * Copyright (c) 2018 Leon Dang
  * Copyright (c) 2020 Chuck Tuffli
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * bhyve PCIe-NVMe device emulation.
  *
  * options:
  *  -s <n>,nvme,devpath,maxq=#,qsz=#,ioslots=#,sectsz=#,ser=A-Z,eui64=#,dsm=<opt>
  *
  *  accepted devpath:
  *    /dev/blockdev
  *    /path/to/image
  *    ram=size_in_MiB
  *
  *  maxq    = max number of queues
  *  qsz     = max elements in each queue
  *  ioslots = max number of concurrent io requests
  *  sectsz  = sector size (defaults to blockif sector size)
  *  ser     = serial number (20-chars max)
  *  eui64   = IEEE Extended Unique Identifier (8 byte value)
  *  dsm     = DataSet Management support. Option is one of auto, enable,disable
  *
  */
 
 /* TODO:
     - create async event for smart and log
     - intr coalesce
  */
 
 #include <sys/cdefs.h>
 #include <sys/errno.h>
 #include <sys/types.h>
 #include <sys/crc16.h>
 #include <net/ieee_oui.h>
 
 #include <assert.h>
 #include <pthread.h>
 #include <pthread_np.h>
 #include <semaphore.h>
 #include <stdbool.h>
 #include <stddef.h>
 #include <stdint.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 
 #include <machine/atomic.h>
 #include <machine/vmm.h>
 #include <vmmapi.h>
 
 #include <dev/nvme/nvme.h>
 
 #include "bhyverun.h"
 #include "block_if.h"
 #include "config.h"
 #include "debug.h"
 #include "pci_emul.h"
 
 
 static int nvme_debug = 0;
 #define	DPRINTF(fmt, args...) if (nvme_debug) PRINTLN(fmt, ##args)
 #define	WPRINTF(fmt, args...) PRINTLN(fmt, ##args)
 
 /* defaults; can be overridden */
 #define	NVME_MSIX_BAR		4
 
 #define	NVME_IOSLOTS		8
 
 /* The NVMe spec defines bits 13:4 in BAR0 as reserved */
 #define NVME_MMIO_SPACE_MIN	(1 << 14)
 
 #define	NVME_QUEUES		16
 #define	NVME_MAX_QENTRIES	2048
 /* Memory Page size Minimum reported in CAP register */
 #define	NVME_MPSMIN		0
 /* MPSMIN converted to bytes */
 #define	NVME_MPSMIN_BYTES	(1 << (12 + NVME_MPSMIN))
 
 #define	NVME_PRP2_ITEMS		(PAGE_SIZE/sizeof(uint64_t))
 #define	NVME_MDTS		9
 /* Note the + 1 allows for the initial descriptor to not be page aligned */
 #define	NVME_MAX_IOVEC		((1 << NVME_MDTS) + 1)
 #define	NVME_MAX_DATA_SIZE	((1 << NVME_MDTS) * NVME_MPSMIN_BYTES)
 
 /* This is a synthetic status code to indicate there is no status */
 #define NVME_NO_STATUS		0xffff
 #define NVME_COMPLETION_VALID(c)	((c).status != NVME_NO_STATUS)
 
 /* Reported temperature in Kelvin (i.e. room temperature) */
 #define NVME_TEMPERATURE 296
 
 /* helpers */
 
 /* Convert a zero-based value into a one-based value */
 #define ONE_BASED(zero)		((zero) + 1)
 /* Convert a one-based value into a zero-based value */
 #define ZERO_BASED(one)		((one)  - 1)
 
 /* Encode number of SQ's and CQ's for Set/Get Features */
 #define NVME_FEATURE_NUM_QUEUES(sc) \
 	(ZERO_BASED((sc)->num_squeues) & 0xffff) | \
 	(ZERO_BASED((sc)->num_cqueues) & 0xffff) << 16
 
 #define	NVME_DOORBELL_OFFSET	offsetof(struct nvme_registers, doorbell)
 
 enum nvme_controller_register_offsets {
 	NVME_CR_CAP_LOW = 0x00,
 	NVME_CR_CAP_HI  = 0x04,
 	NVME_CR_VS      = 0x08,
 	NVME_CR_INTMS   = 0x0c,
 	NVME_CR_INTMC   = 0x10,
 	NVME_CR_CC      = 0x14,
 	NVME_CR_CSTS    = 0x1c,
 	NVME_CR_NSSR    = 0x20,
 	NVME_CR_AQA     = 0x24,
 	NVME_CR_ASQ_LOW = 0x28,
 	NVME_CR_ASQ_HI  = 0x2c,
 	NVME_CR_ACQ_LOW = 0x30,
 	NVME_CR_ACQ_HI  = 0x34,
 };
 
 enum nvme_cmd_cdw11 {
 	NVME_CMD_CDW11_PC  = 0x0001,
 	NVME_CMD_CDW11_IEN = 0x0002,
 	NVME_CMD_CDW11_IV  = 0xFFFF0000,
 };
 
 enum nvme_copy_dir {
 	NVME_COPY_TO_PRP,
 	NVME_COPY_FROM_PRP,
 };
 
 #define	NVME_CQ_INTEN	0x01
 #define	NVME_CQ_INTCOAL	0x02
 
 struct nvme_completion_queue {
 	struct nvme_completion *qbase;
 	pthread_mutex_t	mtx;
 	uint32_t	size;
 	uint16_t	tail; /* nvme progress */
 	uint16_t	head; /* guest progress */
 	uint16_t	intr_vec;
 	uint32_t	intr_en;
 };
 
 struct nvme_submission_queue {
 	struct nvme_command *qbase;
 	pthread_mutex_t	mtx;
 	uint32_t	size;
 	uint16_t	head; /* nvme progress */
 	uint16_t	tail; /* guest progress */
 	uint16_t	cqid; /* completion queue id */
 	int		qpriority;
 };
 
 enum nvme_storage_type {
 	NVME_STOR_BLOCKIF = 0,
 	NVME_STOR_RAM = 1,
 };
 
 struct pci_nvme_blockstore {
 	enum nvme_storage_type type;
 	void		*ctx;
 	uint64_t	size;
 	uint32_t	sectsz;
 	uint32_t	sectsz_bits;
 	uint64_t	eui64;
 	uint32_t	deallocate:1;
 };
 
 /*
  * Calculate the number of additional page descriptors for guest IO requests
  * based on the advertised Max Data Transfer (MDTS) and given the number of
  * default iovec's in a struct blockif_req.
  */
 #define MDTS_PAD_SIZE \
 	( NVME_MAX_IOVEC > BLOCKIF_IOV_MAX ? \
 	  NVME_MAX_IOVEC - BLOCKIF_IOV_MAX : \
 	  0 )
 
 struct pci_nvme_ioreq {
 	struct pci_nvme_softc *sc;
 	STAILQ_ENTRY(pci_nvme_ioreq) link;
 	struct nvme_submission_queue *nvme_sq;
 	uint16_t	sqid;
 
 	/* command information */
 	uint16_t	opc;
 	uint16_t	cid;
 	uint32_t	nsid;
 
 	uint64_t	prev_gpaddr;
 	size_t		prev_size;
 	size_t		bytes;
 
 	struct blockif_req io_req;
 
 	struct iovec	iovpadding[MDTS_PAD_SIZE];
 };
 
 enum nvme_dsm_type {
 	/* Dataset Management bit in ONCS reflects backing storage capability */
 	NVME_DATASET_MANAGEMENT_AUTO,
 	/* Unconditionally set Dataset Management bit in ONCS */
 	NVME_DATASET_MANAGEMENT_ENABLE,
 	/* Unconditionally clear Dataset Management bit in ONCS */
 	NVME_DATASET_MANAGEMENT_DISABLE,
 };
 
 struct pci_nvme_softc;
 struct nvme_feature_obj;
 
 typedef void (*nvme_feature_cb)(struct pci_nvme_softc *,
     struct nvme_feature_obj *,
     struct nvme_command *,
     struct nvme_completion *);
 
 struct nvme_feature_obj {
 	uint32_t	cdw11;
 	nvme_feature_cb	set;
 	nvme_feature_cb	get;
 	bool namespace_specific;
 };
 
 #define NVME_FID_MAX		(NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION + 1)
 
 typedef enum {
 	PCI_NVME_AE_TYPE_ERROR = 0,
 	PCI_NVME_AE_TYPE_SMART,
 	PCI_NVME_AE_TYPE_NOTICE,
 	PCI_NVME_AE_TYPE_IO_CMD = 6,
 	PCI_NVME_AE_TYPE_VENDOR = 7,
 	PCI_NVME_AE_TYPE_MAX		/* Must be last */
 } pci_nvme_async_type;
 
 /* Asynchronous Event Requests */
 struct pci_nvme_aer {
 	STAILQ_ENTRY(pci_nvme_aer) link;
 	uint16_t	cid;	/* Command ID of the submitted AER */
 };
 
 /** Asynchronous Event Information - Notice */
 typedef enum {
 	PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED = 0,
 	PCI_NVME_AEI_NOTICE_FW_ACTIVATION,
 	PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE,
 	PCI_NVME_AEI_NOTICE_ANA_CHANGE,
 	PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE,
 	PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT,
 	PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE,
 	PCI_NVME_AEI_NOTICE_MAX,
 } pci_nvme_async_event_info_notice;
 
 #define PCI_NVME_AEI_NOTICE_SHIFT		8
 #define PCI_NVME_AEI_NOTICE_MASK(event)	(1 << (event + PCI_NVME_AEI_NOTICE_SHIFT))
 
 /* Asynchronous Event Notifications */
 struct pci_nvme_aen {
 	pci_nvme_async_type atype;
 	uint32_t	event_data;
 	bool		posted;
 };
 
 /*
  * By default, enable all Asynchrnous Event Notifications:
  *     SMART / Health Critical Warnings
  *     Namespace Attribute Notices
  */
 #define PCI_NVME_AEN_DEFAULT_MASK	0x11f
 
 typedef enum {
 	NVME_CNTRLTYPE_IO = 1,
 	NVME_CNTRLTYPE_DISCOVERY = 2,
 	NVME_CNTRLTYPE_ADMIN = 3,
 } pci_nvme_cntrl_type;
 
 struct pci_nvme_softc {
 	struct pci_devinst *nsc_pi;
 
 	pthread_mutex_t	mtx;
 
 	struct nvme_registers regs;
 
 	struct nvme_namespace_data  nsdata;
 	struct nvme_controller_data ctrldata;
 	struct nvme_error_information_entry err_log;
 	struct nvme_health_information_page health_log;
 	struct nvme_firmware_page fw_log;
 	struct nvme_ns_list ns_log;
 
 	struct pci_nvme_blockstore nvstore;
 
 	uint16_t	max_qentries;	/* max entries per queue */
 	uint32_t	max_queues;	/* max number of IO SQ's or CQ's */
 	uint32_t	num_cqueues;
 	uint32_t	num_squeues;
 	bool		num_q_is_set; /* Has host set Number of Queues */
 
 	struct pci_nvme_ioreq *ioreqs;
 	STAILQ_HEAD(, pci_nvme_ioreq) ioreqs_free; /* free list of ioreqs */
 	uint32_t	pending_ios;
 	uint32_t	ioslots;
 	sem_t		iosemlock;
 
 	/*
 	 * Memory mapped Submission and Completion queues
 	 * Each array includes both Admin and IO queues
 	 */
 	struct nvme_completion_queue *compl_queues;
 	struct nvme_submission_queue *submit_queues;
 
 	struct nvme_feature_obj feat[NVME_FID_MAX];
 
 	enum nvme_dsm_type dataset_management;
 
 	/* Accounting for SMART data */
 	__uint128_t	read_data_units;
 	__uint128_t	write_data_units;
 	__uint128_t	read_commands;
 	__uint128_t	write_commands;
 	uint32_t	read_dunits_remainder;
 	uint32_t	write_dunits_remainder;
 
 	STAILQ_HEAD(, pci_nvme_aer) aer_list;
 	pthread_mutex_t	aer_mtx;
 	uint32_t	aer_count;
 	struct pci_nvme_aen aen[PCI_NVME_AE_TYPE_MAX];
 	pthread_t	aen_tid;
 	pthread_mutex_t	aen_mtx;
 	pthread_cond_t	aen_cond;
 };
 
 
 static void pci_nvme_cq_update(struct pci_nvme_softc *sc,
     struct nvme_completion_queue *cq,
     uint32_t cdw0,
     uint16_t cid,
     uint16_t sqid,
     uint16_t status);
 static struct pci_nvme_ioreq *pci_nvme_get_ioreq(struct pci_nvme_softc *);
 static void pci_nvme_release_ioreq(struct pci_nvme_softc *, struct pci_nvme_ioreq *);
 static void pci_nvme_io_done(struct blockif_req *, int);
 
 /* Controller Configuration utils */
 #define	NVME_CC_GET_EN(cc) \
 	NVMEV(NVME_CC_REG_EN, cc)
 #define	NVME_CC_GET_CSS(cc) \
 	NVMEV(NVME_CC_REG_CSS, cc)
 #define	NVME_CC_GET_SHN(cc) \
 	NVMEV(NVME_CC_REG_SHN, cc)
 #define	NVME_CC_GET_IOSQES(cc) \
 	NVMEV(NVME_CC_REG_IOSQES, cc)
 #define	NVME_CC_GET_IOCQES(cc) \
 	NVMEV(NVME_CC_REG_IOCQES, cc)
 
 #define	NVME_CC_WRITE_MASK \
 	((NVME_CC_REG_EN_MASK << NVME_CC_REG_EN_SHIFT) | \
 	 (NVME_CC_REG_IOSQES_MASK << NVME_CC_REG_IOSQES_SHIFT) | \
 	 (NVME_CC_REG_IOCQES_MASK << NVME_CC_REG_IOCQES_SHIFT))
 
 #define	NVME_CC_NEN_WRITE_MASK \
 	((NVME_CC_REG_CSS_MASK << NVME_CC_REG_CSS_SHIFT) | \
 	 (NVME_CC_REG_MPS_MASK << NVME_CC_REG_MPS_SHIFT) | \
 	 (NVME_CC_REG_AMS_MASK << NVME_CC_REG_AMS_SHIFT))
 
 /* Controller Status utils */
 #define	NVME_CSTS_GET_RDY(sts) \
 	NVMEV(NVME_CSTS_REG_RDY, sts)
 
 #define	NVME_CSTS_RDY	(1 << NVME_CSTS_REG_RDY_SHIFT)
 #define	NVME_CSTS_CFS	(1 << NVME_CSTS_REG_CFS_SHIFT)
 
 /* Completion Queue status word utils */
 #define	NVME_STATUS_P	(1 << NVME_STATUS_P_SHIFT)
 #define	NVME_STATUS_MASK \
 	((NVME_STATUS_SCT_MASK << NVME_STATUS_SCT_SHIFT) |\
 	 (NVME_STATUS_SC_MASK << NVME_STATUS_SC_SHIFT))
 
 #define NVME_ONCS_DSM	(NVME_CTRLR_DATA_ONCS_DSM_MASK << \
 	NVME_CTRLR_DATA_ONCS_DSM_SHIFT)
 
 static void nvme_feature_invalid_cb(struct pci_nvme_softc *,
     struct nvme_feature_obj *,
     struct nvme_command *,
     struct nvme_completion *);
 static void nvme_feature_temperature(struct pci_nvme_softc *,
     struct nvme_feature_obj *,
     struct nvme_command *,
     struct nvme_completion *);
 static void nvme_feature_num_queues(struct pci_nvme_softc *,
     struct nvme_feature_obj *,
     struct nvme_command *,
     struct nvme_completion *);
 static void nvme_feature_iv_config(struct pci_nvme_softc *,
     struct nvme_feature_obj *,
     struct nvme_command *,
     struct nvme_completion *);
 static void nvme_feature_async_event(struct pci_nvme_softc *,
     struct nvme_feature_obj *,
     struct nvme_command *,
     struct nvme_completion *);
 
 static void *aen_thr(void *arg);
 
 static __inline void
 cpywithpad(char *dst, size_t dst_size, const char *src, char pad)
 {
 	size_t len;
 
 	len = strnlen(src, dst_size);
 	memset(dst, pad, dst_size);
 	memcpy(dst, src, len);
 }
 
 static __inline void
 pci_nvme_status_tc(uint16_t *status, uint16_t type, uint16_t code)
 {
 
 	*status &= ~NVME_STATUS_MASK;
 	*status |= (type & NVME_STATUS_SCT_MASK) << NVME_STATUS_SCT_SHIFT |
 		(code & NVME_STATUS_SC_MASK) << NVME_STATUS_SC_SHIFT;
 }
 
 static __inline void
 pci_nvme_status_genc(uint16_t *status, uint16_t code)
 {
 
 	pci_nvme_status_tc(status, NVME_SCT_GENERIC, code);
 }
 
 /*
  * Initialize the requested number or IO Submission and Completion Queues.
  * Admin queues are allocated implicitly.
  */
 static void
 pci_nvme_init_queues(struct pci_nvme_softc *sc, uint32_t nsq, uint32_t ncq)
 {
 	uint32_t i;
 
 	/*
 	 * Allocate and initialize the Submission Queues
 	 */
 	if (nsq > NVME_QUEUES) {
 		WPRINTF("%s: clamping number of SQ from %u to %u",
 					__func__, nsq, NVME_QUEUES);
 		nsq = NVME_QUEUES;
 	}
 
 	sc->num_squeues = nsq;
 
 	sc->submit_queues = calloc(sc->num_squeues + 1,
 				sizeof(struct nvme_submission_queue));
 	if (sc->submit_queues == NULL) {
 		WPRINTF("%s: SQ allocation failed", __func__);
 		sc->num_squeues = 0;
 	} else {
 		struct nvme_submission_queue *sq = sc->submit_queues;
 
 		for (i = 0; i < sc->num_squeues + 1; i++)
 			pthread_mutex_init(&sq[i].mtx, NULL);
 	}
 
 	/*
 	 * Allocate and initialize the Completion Queues
 	 */
 	if (ncq > NVME_QUEUES) {
 		WPRINTF("%s: clamping number of CQ from %u to %u",
 					__func__, ncq, NVME_QUEUES);
 		ncq = NVME_QUEUES;
 	}
 
 	sc->num_cqueues = ncq;
 
 	sc->compl_queues = calloc(sc->num_cqueues + 1,
 				sizeof(struct nvme_completion_queue));
 	if (sc->compl_queues == NULL) {
 		WPRINTF("%s: CQ allocation failed", __func__);
 		sc->num_cqueues = 0;
 	} else {
 		struct nvme_completion_queue *cq = sc->compl_queues;
 
 		for (i = 0; i < sc->num_cqueues + 1; i++)
 			pthread_mutex_init(&cq[i].mtx, NULL);
 	}
 }
 
 static void
 pci_nvme_init_ctrldata(struct pci_nvme_softc *sc)
 {
 	struct nvme_controller_data *cd = &sc->ctrldata;
 	int ret;
 
 	cd->vid = 0xFB5D;
 	cd->ssvid = 0x0000;
 
 	cpywithpad((char *)cd->mn, sizeof(cd->mn), "bhyve-NVMe", ' ');
 	cpywithpad((char *)cd->fr, sizeof(cd->fr), "1.0", ' ');
 
 	/* Num of submission commands that we can handle at a time (2^rab) */
 	cd->rab   = 4;
 
 	/* FreeBSD OUI */
 	cd->ieee[0] = 0xfc;
 	cd->ieee[1] = 0x9c;
 	cd->ieee[2] = 0x58;
 
 	cd->mic = 0;
 
 	cd->mdts = NVME_MDTS;	/* max data transfer size (2^mdts * CAP.MPSMIN) */
 
 	cd->ver = NVME_REV(1,4);
 
 	cd->cntrltype = NVME_CNTRLTYPE_IO;
 	cd->oacs = 1 << NVME_CTRLR_DATA_OACS_FORMAT_SHIFT;
 	cd->oaes = NVMEB(NVME_CTRLR_DATA_OAES_NS_ATTR);
 	cd->acl = 2;
 	cd->aerl = 4;
 
 	/* Advertise 1, Read-only firmware slot */
 	cd->frmw = NVMEB(NVME_CTRLR_DATA_FRMW_SLOT1_RO) |
 	    (1 << NVME_CTRLR_DATA_FRMW_NUM_SLOTS_SHIFT);
 	cd->lpa = 0;	/* TODO: support some simple things like SMART */
 	cd->elpe = 0;	/* max error log page entries */
 	/*
 	 * Report a single power state (zero-based value)
 	 * power_state[] values are left as zero to indicate "Not reported"
 	 */
 	cd->npss = 0;
 
 	/* Warning Composite Temperature Threshold */
 	cd->wctemp = 0x0157;
 	cd->cctemp = 0x0157;
 
 	/* SANICAP must not be 0 for Revision 1.4 and later NVMe Controllers */
 	cd->sanicap = (NVME_CTRLR_DATA_SANICAP_NODMMAS_NO <<
 			NVME_CTRLR_DATA_SANICAP_NODMMAS_SHIFT);
 
 	cd->sqes = (6 << NVME_CTRLR_DATA_SQES_MAX_SHIFT) |
 	    (6 << NVME_CTRLR_DATA_SQES_MIN_SHIFT);
 	cd->cqes = (4 << NVME_CTRLR_DATA_CQES_MAX_SHIFT) |
 	    (4 << NVME_CTRLR_DATA_CQES_MIN_SHIFT);
 	cd->nn = 1;	/* number of namespaces */
 
 	cd->oncs = 0;
 	switch (sc->dataset_management) {
 	case NVME_DATASET_MANAGEMENT_AUTO:
 		if (sc->nvstore.deallocate)
 			cd->oncs |= NVME_ONCS_DSM;
 		break;
 	case NVME_DATASET_MANAGEMENT_ENABLE:
 		cd->oncs |= NVME_ONCS_DSM;
 		break;
 	default:
 		break;
 	}
 
 	cd->fna = NVME_CTRLR_DATA_FNA_FORMAT_ALL_MASK <<
 	    NVME_CTRLR_DATA_FNA_FORMAT_ALL_SHIFT;
 
 	cd->vwc = NVME_CTRLR_DATA_VWC_ALL_NO << NVME_CTRLR_DATA_VWC_ALL_SHIFT;
 
 	ret = snprintf(cd->subnqn, sizeof(cd->subnqn),
 	    "nqn.2013-12.org.freebsd:bhyve-%s-%u-%u-%u",
 	    get_config_value("name"), sc->nsc_pi->pi_bus,
 	    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
 	if ((ret < 0) || ((unsigned)ret > sizeof(cd->subnqn)))
 		EPRINTLN("%s: error setting subnqn (%d)", __func__, ret);
 }
 
 static void
 pci_nvme_init_nsdata_size(struct pci_nvme_blockstore *nvstore,
     struct nvme_namespace_data *nd)
 {
 
 	/* Get capacity and block size information from backing store */
 	nd->nsze = nvstore->size / nvstore->sectsz;
 	nd->ncap = nd->nsze;
 	nd->nuse = nd->nsze;
 }
 
 static void
 pci_nvme_init_nsdata(struct pci_nvme_softc *sc,
     struct nvme_namespace_data *nd, uint32_t nsid,
     struct pci_nvme_blockstore *nvstore)
 {
 
 	pci_nvme_init_nsdata_size(nvstore, nd);
 
 	if (nvstore->type == NVME_STOR_BLOCKIF)
 		nvstore->deallocate = blockif_candelete(nvstore->ctx);
 
 	nd->nlbaf = 0; /* NLBAF is a 0's based value (i.e. 1 LBA Format) */
 	nd->flbas = 0;
 
 	/* Create an EUI-64 if user did not provide one */
 	if (nvstore->eui64 == 0) {
 		char *data = NULL;
 		uint64_t eui64 = nvstore->eui64;
 
 		asprintf(&data, "%s%u%u%u", get_config_value("name"),
 		    sc->nsc_pi->pi_bus, sc->nsc_pi->pi_slot,
 		    sc->nsc_pi->pi_func);
 
 		if (data != NULL) {
 			eui64 = OUI_FREEBSD_NVME_LOW | crc16(0, data, strlen(data));
 			free(data);
 		}
 		nvstore->eui64 = (eui64 << 16) | (nsid & 0xffff);
 	}
 	be64enc(nd->eui64, nvstore->eui64);
 
 	/* LBA data-sz = 2^lbads */
 	nd->lbaf[0] = nvstore->sectsz_bits << NVME_NS_DATA_LBAF_LBADS_SHIFT;
 }
 
 static void
 pci_nvme_init_logpages(struct pci_nvme_softc *sc)
 {
 	__uint128_t power_cycles = 1;
 
 	memset(&sc->err_log, 0, sizeof(sc->err_log));
 	memset(&sc->health_log, 0, sizeof(sc->health_log));
 	memset(&sc->fw_log, 0, sizeof(sc->fw_log));
 	memset(&sc->ns_log, 0, sizeof(sc->ns_log));
 
 	/* Set read/write remainder to round up according to spec */
 	sc->read_dunits_remainder = 999;
 	sc->write_dunits_remainder = 999;
 
 	/* Set nominal Health values checked by implementations */
 	sc->health_log.temperature = NVME_TEMPERATURE;
 	sc->health_log.available_spare = 100;
 	sc->health_log.available_spare_threshold = 10;
 
 	/* Set Active Firmware Info to slot 1 */
 	sc->fw_log.afi = (1 << NVME_FIRMWARE_PAGE_AFI_SLOT_SHIFT);
 	memcpy(&sc->fw_log.revision[0], sc->ctrldata.fr,
 	    sizeof(sc->fw_log.revision[0]));
 
 	memcpy(&sc->health_log.power_cycles, &power_cycles,
 	    sizeof(sc->health_log.power_cycles));
 }
 
 static void
 pci_nvme_init_features(struct pci_nvme_softc *sc)
 {
 	enum nvme_feature	fid;
 
 	for (fid = 0; fid < NVME_FID_MAX; fid++) {
 		switch (fid) {
 		case NVME_FEAT_ARBITRATION:
 		case NVME_FEAT_POWER_MANAGEMENT:
 		case NVME_FEAT_INTERRUPT_COALESCING: //XXX
 		case NVME_FEAT_WRITE_ATOMICITY:
 			/* Mandatory but no special handling required */
 		//XXX hang - case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
 		//XXX hang - case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
 		//		  this returns a data buffer
 			break;
 		case NVME_FEAT_TEMPERATURE_THRESHOLD:
 			sc->feat[fid].set = nvme_feature_temperature;
 			break;
 		case NVME_FEAT_ERROR_RECOVERY:
 			sc->feat[fid].namespace_specific = true;
 			break;
 		case NVME_FEAT_NUMBER_OF_QUEUES:
 			sc->feat[fid].set = nvme_feature_num_queues;
 			break;
 		case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
 			sc->feat[fid].set = nvme_feature_iv_config;
 			break;
 		case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
 			sc->feat[fid].set = nvme_feature_async_event;
 			/* Enable all AENs by default */
 			sc->feat[fid].cdw11 = PCI_NVME_AEN_DEFAULT_MASK;
 			break;
 		default:
 			sc->feat[fid].set = nvme_feature_invalid_cb;
 			sc->feat[fid].get = nvme_feature_invalid_cb;
 		}
 	}
 }
 
 static void
 pci_nvme_aer_reset(struct pci_nvme_softc *sc)
 {
 
 	STAILQ_INIT(&sc->aer_list);
 	sc->aer_count = 0;
 }
 
 static void
 pci_nvme_aer_init(struct pci_nvme_softc *sc)
 {
 
 	pthread_mutex_init(&sc->aer_mtx, NULL);
 	pci_nvme_aer_reset(sc);
 }
 
 static void
 pci_nvme_aer_destroy(struct pci_nvme_softc *sc)
 {
 	struct pci_nvme_aer *aer = NULL;
 
 	pthread_mutex_lock(&sc->aer_mtx);
 	while (!STAILQ_EMPTY(&sc->aer_list)) {
 		aer = STAILQ_FIRST(&sc->aer_list);
 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
 		free(aer);
 	}
 	pthread_mutex_unlock(&sc->aer_mtx);
 
 	pci_nvme_aer_reset(sc);
 }
 
 static bool
 pci_nvme_aer_available(struct pci_nvme_softc *sc)
 {
 
 	return (sc->aer_count != 0);
 }
 
 static bool
 pci_nvme_aer_limit_reached(struct pci_nvme_softc *sc)
 {
 	struct nvme_controller_data *cd = &sc->ctrldata;
 
 	/* AERL is a zero based value while aer_count is one's based */
 	return (sc->aer_count == (cd->aerl + 1U));
 }
 
 /*
  * Add an Async Event Request
  *
  * Stores an AER to be returned later if the Controller needs to notify the
  * host of an event.
  * Note that while the NVMe spec doesn't require Controllers to return AER's
  * in order, this implementation does preserve the order.
  */
 static int
 pci_nvme_aer_add(struct pci_nvme_softc *sc, uint16_t cid)
 {
 	struct pci_nvme_aer *aer = NULL;
 
 	aer = calloc(1, sizeof(struct pci_nvme_aer));
 	if (aer == NULL)
 		return (-1);
 
 	/* Save the Command ID for use in the completion message */
 	aer->cid = cid;
 
 	pthread_mutex_lock(&sc->aer_mtx);
 	sc->aer_count++;
 	STAILQ_INSERT_TAIL(&sc->aer_list, aer, link);
 	pthread_mutex_unlock(&sc->aer_mtx);
 
 	return (0);
 }
 
 /*
  * Get an Async Event Request structure
  *
  * Returns a pointer to an AER previously submitted by the host or NULL if
  * no AER's exist. Caller is responsible for freeing the returned struct.
  */
 static struct pci_nvme_aer *
 pci_nvme_aer_get(struct pci_nvme_softc *sc)
 {
 	struct pci_nvme_aer *aer = NULL;
 
 	pthread_mutex_lock(&sc->aer_mtx);
 	aer = STAILQ_FIRST(&sc->aer_list);
 	if (aer != NULL) {
 		STAILQ_REMOVE_HEAD(&sc->aer_list, link);
 		sc->aer_count--;
 	}
 	pthread_mutex_unlock(&sc->aer_mtx);
 
 	return (aer);
 }
 
 static void
 pci_nvme_aen_reset(struct pci_nvme_softc *sc)
 {
 	uint32_t	atype;
 
 	memset(sc->aen, 0, PCI_NVME_AE_TYPE_MAX * sizeof(struct pci_nvme_aen));
 
 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
 		sc->aen[atype].atype = atype;
 	}
 }
 
 static void
 pci_nvme_aen_init(struct pci_nvme_softc *sc)
 {
 	char nstr[80];
 
 	pci_nvme_aen_reset(sc);
 
 	pthread_mutex_init(&sc->aen_mtx, NULL);
 	pthread_create(&sc->aen_tid, NULL, aen_thr, sc);
 	snprintf(nstr, sizeof(nstr), "nvme-aen-%d:%d", sc->nsc_pi->pi_slot,
 	    sc->nsc_pi->pi_func);
 	pthread_set_name_np(sc->aen_tid, nstr);
 }
 
 static void
 pci_nvme_aen_destroy(struct pci_nvme_softc *sc)
 {
 
 	pci_nvme_aen_reset(sc);
 }
 
 /* Notify the AEN thread of pending work */
 static void
 pci_nvme_aen_notify(struct pci_nvme_softc *sc)
 {
 
 	pthread_cond_signal(&sc->aen_cond);
 }
 
 /*
  * Post an Asynchronous Event Notification
  */
 static int32_t
 pci_nvme_aen_post(struct pci_nvme_softc *sc, pci_nvme_async_type atype,
 		uint32_t event_data)
 {
 	struct pci_nvme_aen *aen;
 
 	if (atype >= PCI_NVME_AE_TYPE_MAX) {
 		return(EINVAL);
 	}
 
 	pthread_mutex_lock(&sc->aen_mtx);
 	aen = &sc->aen[atype];
 
 	/* Has the controller already posted an event of this type? */
 	if (aen->posted) {
 		pthread_mutex_unlock(&sc->aen_mtx);
 		return(EALREADY);
 	}
 
 	aen->event_data = event_data;
 	aen->posted = true;
 	pthread_mutex_unlock(&sc->aen_mtx);
 
 	pci_nvme_aen_notify(sc);
 
 	return(0);
 }
 
 static void
 pci_nvme_aen_process(struct pci_nvme_softc *sc)
 {
 	struct pci_nvme_aer *aer;
 	struct pci_nvme_aen *aen;
 	pci_nvme_async_type atype;
 	uint32_t mask;
 	uint16_t status;
 	uint8_t lid;
 
 	assert(pthread_mutex_isowned_np(&sc->aen_mtx));
 	for (atype = 0; atype < PCI_NVME_AE_TYPE_MAX; atype++) {
 		aen = &sc->aen[atype];
 		/* Previous iterations may have depleted the available AER's */
 		if (!pci_nvme_aer_available(sc)) {
 			DPRINTF("%s: no AER", __func__);
 			break;
 		}
 
 		if (!aen->posted) {
 			DPRINTF("%s: no AEN posted for atype=%#x", __func__, atype);
 			continue;
 		}
 
 		status = NVME_SC_SUCCESS;
 
 		/* Is the event masked? */
 		mask =
 		    sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11;
 
 		DPRINTF("%s: atype=%#x mask=%#x event_data=%#x", __func__, atype, mask, aen->event_data);
 		switch (atype) {
 		case PCI_NVME_AE_TYPE_ERROR:
 			lid = NVME_LOG_ERROR;
 			break;
 		case PCI_NVME_AE_TYPE_SMART:
 			mask &= 0xff;
 			if ((mask & aen->event_data) == 0)
 				continue;
 			lid = NVME_LOG_HEALTH_INFORMATION;
 			break;
 		case PCI_NVME_AE_TYPE_NOTICE:
 			if (aen->event_data >= PCI_NVME_AEI_NOTICE_MAX) {
 				EPRINTLN("%s unknown AEN notice type %u",
 				    __func__, aen->event_data);
 				status = NVME_SC_INTERNAL_DEVICE_ERROR;
 				lid = 0;
 				break;
 			}
 			if ((PCI_NVME_AEI_NOTICE_MASK(aen->event_data) & mask) == 0)
 				continue;
 			switch (aen->event_data) {
 			case PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED:
 				lid = NVME_LOG_CHANGED_NAMESPACE;
 				break;
 			case PCI_NVME_AEI_NOTICE_FW_ACTIVATION:
 				lid = NVME_LOG_FIRMWARE_SLOT;
 				break;
 			case PCI_NVME_AEI_NOTICE_TELEMETRY_CHANGE:
 				lid = NVME_LOG_TELEMETRY_CONTROLLER_INITIATED;
 				break;
 			case PCI_NVME_AEI_NOTICE_ANA_CHANGE:
 				lid = NVME_LOG_ASYMMETRIC_NAMESPACE_ACCESS;
 				break;
 			case PCI_NVME_AEI_NOTICE_PREDICT_LATENCY_CHANGE:
 				lid = NVME_LOG_PREDICTABLE_LATENCY_EVENT_AGGREGATE;
 				break;
 			case PCI_NVME_AEI_NOTICE_LBA_STATUS_ALERT:
 				lid = NVME_LOG_LBA_STATUS_INFORMATION;
 				break;
 			case PCI_NVME_AEI_NOTICE_ENDURANCE_GROUP_CHANGE:
 				lid = NVME_LOG_ENDURANCE_GROUP_EVENT_AGGREGATE;
 				break;
 			default:
 				lid = 0;
 			}
 			break;
 		default:
 			/* bad type?!? */
 			EPRINTLN("%s unknown AEN type %u", __func__, atype);
 			status = NVME_SC_INTERNAL_DEVICE_ERROR;
 			lid = 0;
 			break;
 		}
 
 		aer = pci_nvme_aer_get(sc);
 		assert(aer != NULL);
 
 		DPRINTF("%s: CID=%#x CDW0=%#x", __func__, aer->cid, (lid << 16) | (aen->event_data << 8) | atype);
 		pci_nvme_cq_update(sc, &sc->compl_queues[0],
 		    (lid << 16) | (aen->event_data << 8) | atype, /* cdw0 */
 		    aer->cid,
 		    0,		/* SQID */
 		    status);
 
 		aen->event_data = 0;
 		aen->posted = false;
 
 		pci_generate_msix(sc->nsc_pi, 0);
 	}
 }
 
 static void *
 aen_thr(void *arg)
 {
 	struct pci_nvme_softc *sc;
 
 	sc = arg;
 
 	pthread_mutex_lock(&sc->aen_mtx);
 	for (;;) {
 		pci_nvme_aen_process(sc);
 		pthread_cond_wait(&sc->aen_cond, &sc->aen_mtx);
 	}
 	pthread_mutex_unlock(&sc->aen_mtx);
 
 	pthread_exit(NULL);
 	return (NULL);
 }
 
 static void
 pci_nvme_reset_locked(struct pci_nvme_softc *sc)
 {
 	uint32_t i;
 
 	DPRINTF("%s", __func__);
 
 	sc->regs.cap_lo = (ZERO_BASED(sc->max_qentries) & NVME_CAP_LO_REG_MQES_MASK) |
 	    (1 << NVME_CAP_LO_REG_CQR_SHIFT) |
 	    (60 << NVME_CAP_LO_REG_TO_SHIFT);
 
 	sc->regs.cap_hi = 1 << NVME_CAP_HI_REG_CSS_NVM_SHIFT;
 
 	sc->regs.vs = NVME_REV(1,4);	/* NVMe v1.4 */
 
 	sc->regs.cc = 0;
 
 	assert(sc->submit_queues != NULL);
 
 	for (i = 0; i < sc->num_squeues + 1; i++) {
 		sc->submit_queues[i].qbase = NULL;
 		sc->submit_queues[i].size = 0;
 		sc->submit_queues[i].cqid = 0;
 		sc->submit_queues[i].tail = 0;
 		sc->submit_queues[i].head = 0;
 	}
 
 	assert(sc->compl_queues != NULL);
 
 	for (i = 0; i < sc->num_cqueues + 1; i++) {
 		sc->compl_queues[i].qbase = NULL;
 		sc->compl_queues[i].size = 0;
 		sc->compl_queues[i].tail = 0;
 		sc->compl_queues[i].head = 0;
 	}
 
 	sc->num_q_is_set = false;
 
 	pci_nvme_aer_destroy(sc);
 	pci_nvme_aen_destroy(sc);
 
 	/*
 	 * Clear CSTS.RDY last to prevent the host from enabling Controller
 	 * before cleanup completes
 	 */
 	sc->regs.csts = 0;
 }
 
 static void
 pci_nvme_reset(struct pci_nvme_softc *sc)
 {
 	pthread_mutex_lock(&sc->mtx);
 	pci_nvme_reset_locked(sc);
 	pthread_mutex_unlock(&sc->mtx);
 }
 
 static int
 pci_nvme_init_controller(struct pci_nvme_softc *sc)
 {
 	uint16_t acqs, asqs;
 
 	DPRINTF("%s", __func__);
 
 	/*
 	 * NVMe 2.0 states that "enabling a controller while this field is
 	 * cleared to 0h produces undefined results" for both ACQS and
 	 * ASQS. If zero, set CFS and do not become ready.
 	 */
-	asqs = ONE_BASED(sc->regs.aqa & NVME_AQA_REG_ASQS_MASK);
+	asqs = ONE_BASED(NVMEV(NVME_AQA_REG_ASQS, sc->regs.aqa));
 	if (asqs < 2) {
 		EPRINTLN("%s: illegal ASQS value %#x (aqa=%#x)", __func__,
 		    asqs - 1, sc->regs.aqa);
 		sc->regs.csts |= NVME_CSTS_CFS;
 		return (-1);
 	}
 	sc->submit_queues[0].size = asqs;
 	sc->submit_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
 	    sc->regs.asq, sizeof(struct nvme_command) * asqs);
 	if (sc->submit_queues[0].qbase == NULL) {
 		EPRINTLN("%s: ASQ vm_map_gpa(%lx) failed", __func__,
 		    sc->regs.asq);
 		sc->regs.csts |= NVME_CSTS_CFS;
 		return (-1);
 	}
 
 	DPRINTF("%s mapping Admin-SQ guest 0x%lx, host: %p",
 	        __func__, sc->regs.asq, sc->submit_queues[0].qbase);
 
 	acqs = ONE_BASED(NVMEV(NVME_AQA_REG_ACQS, sc->regs.aqa));
 	if (acqs < 2) {
 		EPRINTLN("%s: illegal ACQS value %#x (aqa=%#x)", __func__,
 		    acqs - 1, sc->regs.aqa);
 		sc->regs.csts |= NVME_CSTS_CFS;
 		return (-1);
 	}
 	sc->compl_queues[0].size = acqs;
 	sc->compl_queues[0].qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
 	    sc->regs.acq, sizeof(struct nvme_completion) * acqs);
 	if (sc->compl_queues[0].qbase == NULL) {
 		EPRINTLN("%s: ACQ vm_map_gpa(%lx) failed", __func__,
 		    sc->regs.acq);
 		sc->regs.csts |= NVME_CSTS_CFS;
 		return (-1);
 	}
 	sc->compl_queues[0].intr_en = NVME_CQ_INTEN;
 
 	DPRINTF("%s mapping Admin-CQ guest 0x%lx, host: %p",
 	        __func__, sc->regs.acq, sc->compl_queues[0].qbase);
 
 	return (0);
 }
 
 static int
 nvme_prp_memcpy(struct vmctx *ctx, uint64_t prp1, uint64_t prp2, uint8_t *b,
 	size_t len, enum nvme_copy_dir dir)
 {
 	uint8_t *p;
 	size_t bytes;
 
 	if (len > (8 * 1024)) {
 		return (-1);
 	}
 
 	/* Copy from the start of prp1 to the end of the physical page */
 	bytes = PAGE_SIZE - (prp1 & PAGE_MASK);
 	bytes = MIN(bytes, len);
 
 	p = vm_map_gpa(ctx, prp1, bytes);
 	if (p == NULL) {
 		return (-1);
 	}
 
 	if (dir == NVME_COPY_TO_PRP)
 		memcpy(p, b, bytes);
 	else
 		memcpy(b, p, bytes);
 
 	b += bytes;
 
 	len -= bytes;
 	if (len == 0) {
 		return (0);
 	}
 
 	len = MIN(len, PAGE_SIZE);
 
 	p = vm_map_gpa(ctx, prp2, len);
 	if (p == NULL) {
 		return (-1);
 	}
 
 	if (dir == NVME_COPY_TO_PRP)
 		memcpy(p, b, len);
 	else
 		memcpy(b, p, len);
 
 	return (0);
 }
 
 /*
  * Write a Completion Queue Entry update
  *
  * Write the completion and update the doorbell value
  */
 static void
 pci_nvme_cq_update(struct pci_nvme_softc *sc,
 		struct nvme_completion_queue *cq,
 		uint32_t cdw0,
 		uint16_t cid,
 		uint16_t sqid,
 		uint16_t status)
 {
 	struct nvme_submission_queue *sq = &sc->submit_queues[sqid];
 	struct nvme_completion *cqe;
 
 	assert(cq->qbase != NULL);
 
 	pthread_mutex_lock(&cq->mtx);
 
 	cqe = &cq->qbase[cq->tail];
 
 	/* Flip the phase bit */
 	status |= (cqe->status ^ NVME_STATUS_P) & NVME_STATUS_P_MASK;
 
 	cqe->cdw0 = cdw0;
 	cqe->sqhd = sq->head;
 	cqe->sqid = sqid;
 	cqe->cid = cid;
 	cqe->status = status;
 
 	cq->tail++;
 	if (cq->tail >= cq->size) {
 		cq->tail = 0;
 	}
 
 	pthread_mutex_unlock(&cq->mtx);
 }
 
 static int
 nvme_opc_delete_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	uint16_t qid = command->cdw10 & 0xffff;
 
 	DPRINTF("%s DELETE_IO_SQ %u", __func__, qid);
 	if (qid == 0 || qid > sc->num_squeues ||
 	    (sc->submit_queues[qid].qbase == NULL)) {
 		WPRINTF("%s NOT PERMITTED queue id %u / num_squeues %u",
 		        __func__, qid, sc->num_squeues);
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
 		return (1);
 	}
 
 	sc->submit_queues[qid].qbase = NULL;
 	sc->submit_queues[qid].cqid = 0;
 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 	return (1);
 }
 
 static int
 nvme_opc_create_io_sq(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	if (command->cdw11 & NVME_CMD_CDW11_PC) {
 		uint16_t qid = command->cdw10 & 0xffff;
 		struct nvme_submission_queue *nsq;
 
 		if ((qid == 0) || (qid > sc->num_squeues) ||
 		    (sc->submit_queues[qid].qbase != NULL)) {
 			WPRINTF("%s queue index %u > num_squeues %u",
 			        __func__, qid, sc->num_squeues);
 			pci_nvme_status_tc(&compl->status,
 			    NVME_SCT_COMMAND_SPECIFIC,
 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
 			return (1);
 		}
 
 		nsq = &sc->submit_queues[qid];
 		nsq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
 		DPRINTF("%s size=%u (max=%u)", __func__, nsq->size, sc->max_qentries);
 		if ((nsq->size < 2) || (nsq->size > sc->max_qentries)) {
 			/*
 			 * Queues must specify at least two entries
 			 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
 			 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
 			 */
 			pci_nvme_status_tc(&compl->status,
 			    NVME_SCT_COMMAND_SPECIFIC,
 			    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
 			return (1);
 		}
 		nsq->head = nsq->tail = 0;
 
 		nsq->cqid = (command->cdw11 >> 16) & 0xffff;
 		if ((nsq->cqid == 0) || (nsq->cqid > sc->num_cqueues)) {
 			pci_nvme_status_tc(&compl->status,
 			    NVME_SCT_COMMAND_SPECIFIC,
 			    NVME_SC_INVALID_QUEUE_IDENTIFIER);
 			return (1);
 		}
 
 		if (sc->compl_queues[nsq->cqid].qbase == NULL) {
 			pci_nvme_status_tc(&compl->status,
 			    NVME_SCT_COMMAND_SPECIFIC,
 			    NVME_SC_COMPLETION_QUEUE_INVALID);
 			return (1);
 		}
 
 		nsq->qpriority = (command->cdw11 >> 1) & 0x03;
 
 		nsq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
 		              sizeof(struct nvme_command) * (size_t)nsq->size);
 
 		DPRINTF("%s sq %u size %u gaddr %p cqid %u", __func__,
 		        qid, nsq->size, nsq->qbase, nsq->cqid);
 
 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 
 		DPRINTF("%s completed creating IOSQ qid %u",
 		         __func__, qid);
 	} else {
 		/*
 		 * Guest sent non-cont submission queue request.
 		 * This setting is unsupported by this emulation.
 		 */
 		WPRINTF("%s unsupported non-contig (list-based) "
 		         "create i/o submission queue", __func__);
 
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 	}
 	return (1);
 }
 
 static int
 nvme_opc_delete_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	uint16_t qid = command->cdw10 & 0xffff;
 	uint16_t sqid;
 
 	DPRINTF("%s DELETE_IO_CQ %u", __func__, qid);
 	if (qid == 0 || qid > sc->num_cqueues ||
 	    (sc->compl_queues[qid].qbase == NULL)) {
 		WPRINTF("%s queue index %u / num_cqueues %u",
 		        __func__, qid, sc->num_cqueues);
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
 		return (1);
 	}
 
 	/* Deleting an Active CQ is an error */
 	for (sqid = 1; sqid < sc->num_squeues + 1; sqid++)
 		if (sc->submit_queues[sqid].cqid == qid) {
 			pci_nvme_status_tc(&compl->status,
 			    NVME_SCT_COMMAND_SPECIFIC,
 			    NVME_SC_INVALID_QUEUE_DELETION);
 			return (1);
 		}
 
 	sc->compl_queues[qid].qbase = NULL;
 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 	return (1);
 }
 
 static int
 nvme_opc_create_io_cq(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	struct nvme_completion_queue *ncq;
 	uint16_t qid = command->cdw10 & 0xffff;
 
 	/* Only support Physically Contiguous queues */
 	if ((command->cdw11 & NVME_CMD_CDW11_PC) == 0) {
 		WPRINTF("%s unsupported non-contig (list-based) "
 		         "create i/o completion queue",
 		         __func__);
 
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return (1);
 	}
 
 	if ((qid == 0) || (qid > sc->num_cqueues) ||
 	    (sc->compl_queues[qid].qbase != NULL)) {
 		WPRINTF("%s queue index %u > num_cqueues %u",
 			__func__, qid, sc->num_cqueues);
 		pci_nvme_status_tc(&compl->status,
 		    NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_INVALID_QUEUE_IDENTIFIER);
 		return (1);
  	}
 
 	ncq = &sc->compl_queues[qid];
 	ncq->intr_en = (command->cdw11 & NVME_CMD_CDW11_IEN) >> 1;
 	ncq->intr_vec = (command->cdw11 >> 16) & 0xffff;
 	if (ncq->intr_vec > (sc->max_queues + 1)) {
 		pci_nvme_status_tc(&compl->status,
 		    NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_INVALID_INTERRUPT_VECTOR);
 		return (1);
 	}
 
 	ncq->size = ONE_BASED((command->cdw10 >> 16) & 0xffff);
 	if ((ncq->size < 2) || (ncq->size > sc->max_qentries))  {
 		/*
 		 * Queues must specify at least two entries
 		 * NOTE: "MAXIMUM QUEUE SIZE EXCEEDED" was renamed to
 		 * "INVALID QUEUE SIZE" in the NVM Express 1.3 Spec
 		 */
 		pci_nvme_status_tc(&compl->status,
 		    NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED);
 		return (1);
 	}
 	ncq->head = ncq->tail = 0;
 	ncq->qbase = vm_map_gpa(sc->nsc_pi->pi_vmctx,
 		     command->prp1,
 		     sizeof(struct nvme_command) * (size_t)ncq->size);
 
 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 
 
 	return (1);
 }
 
 static int
 nvme_opc_get_log_page(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	uint64_t logoff;
 	uint32_t logsize;
 	uint8_t logpage;
 
 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 
 	/*
 	 * Command specifies the number of dwords to return in fields NUMDU
 	 * and NUMDL. This is a zero-based value.
 	 */
 	logpage = command->cdw10 & 0xFF;
 	logsize = ((command->cdw11 << 16) | (command->cdw10 >> 16)) + 1;
 	logsize *= sizeof(uint32_t);
 	logoff  = ((uint64_t)(command->cdw13) << 32) | command->cdw12;
 
 	DPRINTF("%s log page %u len %u", __func__, logpage, logsize);
 
 	switch (logpage) {
 	case NVME_LOG_ERROR:
 		if (logoff >= sizeof(sc->err_log)) {
 			pci_nvme_status_genc(&compl->status,
 			    NVME_SC_INVALID_FIELD);
 			break;
 		}
 
 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
 		    command->prp2, (uint8_t *)&sc->err_log + logoff,
 		    MIN(logsize - logoff, sizeof(sc->err_log)),
 		    NVME_COPY_TO_PRP);
 		break;
 	case NVME_LOG_HEALTH_INFORMATION:
 		if (logoff >= sizeof(sc->health_log)) {
 			pci_nvme_status_genc(&compl->status,
 			    NVME_SC_INVALID_FIELD);
 			break;
 		}
 
 		pthread_mutex_lock(&sc->mtx);
 		memcpy(&sc->health_log.data_units_read, &sc->read_data_units,
 		    sizeof(sc->health_log.data_units_read));
 		memcpy(&sc->health_log.data_units_written, &sc->write_data_units,
 		    sizeof(sc->health_log.data_units_written));
 		memcpy(&sc->health_log.host_read_commands, &sc->read_commands,
 		    sizeof(sc->health_log.host_read_commands));
 		memcpy(&sc->health_log.host_write_commands, &sc->write_commands,
 		    sizeof(sc->health_log.host_write_commands));
 		pthread_mutex_unlock(&sc->mtx);
 
 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
 		    command->prp2, (uint8_t *)&sc->health_log + logoff,
 		    MIN(logsize - logoff, sizeof(sc->health_log)),
 		    NVME_COPY_TO_PRP);
 		break;
 	case NVME_LOG_FIRMWARE_SLOT:
 		if (logoff >= sizeof(sc->fw_log)) {
 			pci_nvme_status_genc(&compl->status,
 			    NVME_SC_INVALID_FIELD);
 			break;
 		}
 
 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
 		    command->prp2, (uint8_t *)&sc->fw_log + logoff,
 		    MIN(logsize - logoff, sizeof(sc->fw_log)),
 		    NVME_COPY_TO_PRP);
 		break;
 	case NVME_LOG_CHANGED_NAMESPACE:
 		if (logoff >= sizeof(sc->ns_log)) {
 			pci_nvme_status_genc(&compl->status,
 			    NVME_SC_INVALID_FIELD);
 			break;
 		}
 
 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
 		    command->prp2, (uint8_t *)&sc->ns_log + logoff,
 		    MIN(logsize - logoff, sizeof(sc->ns_log)),
 		    NVME_COPY_TO_PRP);
 		memset(&sc->ns_log, 0, sizeof(sc->ns_log));
 		break;
 	default:
 		DPRINTF("%s get log page %x command not supported",
 		        __func__, logpage);
 
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_INVALID_LOG_PAGE);
 	}
 
 	return (1);
 }
 
 static int
 nvme_opc_identify(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	void *dest;
 	uint16_t status;
 
 	DPRINTF("%s identify 0x%x nsid 0x%x", __func__,
 	        command->cdw10 & 0xFF, command->nsid);
 
 	status = 0;
 	pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
 
 	switch (command->cdw10 & 0xFF) {
 	case 0x00: /* return Identify Namespace data structure */
 		/* Global NS only valid with NS Management */
 		if (command->nsid == NVME_GLOBAL_NAMESPACE_TAG) {
 			pci_nvme_status_genc(&status,
 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
 			break;
 		}
 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
 		    command->prp2, (uint8_t *)&sc->nsdata, sizeof(sc->nsdata),
 		    NVME_COPY_TO_PRP);
 		break;
 	case 0x01: /* return Identify Controller data structure */
 		nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, command->prp1,
 		    command->prp2, (uint8_t *)&sc->ctrldata,
 		    sizeof(sc->ctrldata),
 		    NVME_COPY_TO_PRP);
 		break;
 	case 0x02: /* list of 1024 active NSIDs > CDW1.NSID */
 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
 		                  sizeof(uint32_t) * 1024);
 		/* All unused entries shall be zero */
 		memset(dest, 0, sizeof(uint32_t) * 1024);
 		((uint32_t *)dest)[0] = 1;
 		break;
 	case 0x03: /* list of NSID structures in CDW1.NSID, 4096 bytes */
 		if (command->nsid != 1) {
 			pci_nvme_status_genc(&status,
 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
 			break;
 		}
 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
 		                  sizeof(uint32_t) * 1024);
 		/* All bytes after the descriptor shall be zero */
 		memset(dest, 0, sizeof(uint32_t) * 1024);
 
 		/* Return NIDT=1 (i.e. EUI64) descriptor */
 		((uint8_t *)dest)[0] = 1;
 		((uint8_t *)dest)[1] = sizeof(uint64_t);
 		memcpy(((uint8_t *)dest) + 4, sc->nsdata.eui64, sizeof(uint64_t));
 		break;
 	case 0x13:
 		/*
 		 * Controller list is optional but used by UNH tests. Return
 		 * a valid but empty list.
 		 */
 		dest = vm_map_gpa(sc->nsc_pi->pi_vmctx, command->prp1,
 		                  sizeof(uint16_t) * 2048);
 		memset(dest, 0, sizeof(uint16_t) * 2048);
 		break;
 	default:
 		DPRINTF("%s unsupported identify command requested 0x%x",
 		         __func__, command->cdw10 & 0xFF);
 		pci_nvme_status_genc(&status, NVME_SC_INVALID_FIELD);
 		break;
 	}
 
 	compl->status = status;
 	return (1);
 }
 
 static const char *
 nvme_fid_to_name(uint8_t fid)
 {
 	const char *name;
 
 	switch (fid) {
 	case NVME_FEAT_ARBITRATION:
 		name = "Arbitration";
 		break;
 	case NVME_FEAT_POWER_MANAGEMENT:
 		name = "Power Management";
 		break;
 	case NVME_FEAT_LBA_RANGE_TYPE:
 		name = "LBA Range Type";
 		break;
 	case NVME_FEAT_TEMPERATURE_THRESHOLD:
 		name = "Temperature Threshold";
 		break;
 	case NVME_FEAT_ERROR_RECOVERY:
 		name = "Error Recovery";
 		break;
 	case NVME_FEAT_VOLATILE_WRITE_CACHE:
 		name = "Volatile Write Cache";
 		break;
 	case NVME_FEAT_NUMBER_OF_QUEUES:
 		name = "Number of Queues";
 		break;
 	case NVME_FEAT_INTERRUPT_COALESCING:
 		name = "Interrupt Coalescing";
 		break;
 	case NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION:
 		name = "Interrupt Vector Configuration";
 		break;
 	case NVME_FEAT_WRITE_ATOMICITY:
 		name = "Write Atomicity Normal";
 		break;
 	case NVME_FEAT_ASYNC_EVENT_CONFIGURATION:
 		name = "Asynchronous Event Configuration";
 		break;
 	case NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION:
 		name = "Autonomous Power State Transition";
 		break;
 	case NVME_FEAT_HOST_MEMORY_BUFFER:
 		name = "Host Memory Buffer";
 		break;
 	case NVME_FEAT_TIMESTAMP:
 		name = "Timestamp";
 		break;
 	case NVME_FEAT_KEEP_ALIVE_TIMER:
 		name = "Keep Alive Timer";
 		break;
 	case NVME_FEAT_HOST_CONTROLLED_THERMAL_MGMT:
 		name = "Host Controlled Thermal Management";
 		break;
 	case NVME_FEAT_NON_OP_POWER_STATE_CONFIG:
 		name = "Non-Operation Power State Config";
 		break;
 	case NVME_FEAT_READ_RECOVERY_LEVEL_CONFIG:
 		name = "Read Recovery Level Config";
 		break;
 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_CONFIG:
 		name = "Predictable Latency Mode Config";
 		break;
 	case NVME_FEAT_PREDICTABLE_LATENCY_MODE_WINDOW:
 		name = "Predictable Latency Mode Window";
 		break;
 	case NVME_FEAT_LBA_STATUS_INFORMATION_ATTRIBUTES:
 		name = "LBA Status Information Report Interval";
 		break;
 	case NVME_FEAT_HOST_BEHAVIOR_SUPPORT:
 		name = "Host Behavior Support";
 		break;
 	case NVME_FEAT_SANITIZE_CONFIG:
 		name = "Sanitize Config";
 		break;
 	case NVME_FEAT_ENDURANCE_GROUP_EVENT_CONFIGURATION:
 		name = "Endurance Group Event Configuration";
 		break;
 	case NVME_FEAT_SOFTWARE_PROGRESS_MARKER:
 		name = "Software Progress Marker";
 		break;
 	case NVME_FEAT_HOST_IDENTIFIER:
 		name = "Host Identifier";
 		break;
 	case NVME_FEAT_RESERVATION_NOTIFICATION_MASK:
 		name = "Reservation Notification Mask";
 		break;
 	case NVME_FEAT_RESERVATION_PERSISTENCE:
 		name = "Reservation Persistence";
 		break;
 	case NVME_FEAT_NAMESPACE_WRITE_PROTECTION_CONFIG:
 		name = "Namespace Write Protection Config";
 		break;
 	default:
 		name = "Unknown";
 		break;
 	}
 
 	return (name);
 }
 
 static void
 nvme_feature_invalid_cb(struct pci_nvme_softc *sc __unused,
     struct nvme_feature_obj *feat __unused,
     struct nvme_command *command __unused,
     struct nvme_completion *compl)
 {
 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 }
 
 static void
 nvme_feature_iv_config(struct pci_nvme_softc *sc,
     struct nvme_feature_obj *feat __unused,
     struct nvme_command *command,
     struct nvme_completion *compl)
 {
 	uint32_t i;
 	uint32_t cdw11 = command->cdw11;
 	uint16_t iv;
 	bool cd;
 
 	pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 
 	iv = cdw11 & 0xffff;
 	cd = cdw11 & (1 << 16);
 
 	if (iv > (sc->max_queues + 1)) {
 		return;
 	}
 
 	/* No Interrupt Coalescing (i.e. not Coalescing Disable) for Admin Q */
 	if ((iv == 0) && !cd)
 		return;
 
 	/* Requested Interrupt Vector must be used by a CQ */
 	for (i = 0; i < sc->num_cqueues + 1; i++) {
 		if (sc->compl_queues[i].intr_vec == iv) {
 			pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 		}
 	}
 }
 
 #define NVME_ASYNC_EVENT_ENDURANCE_GROUP		(0x4000)
 static void
 nvme_feature_async_event(struct pci_nvme_softc *sc __unused,
     struct nvme_feature_obj *feat __unused,
     struct nvme_command *command,
     struct nvme_completion *compl)
 {
 	if (command->cdw11 & NVME_ASYNC_EVENT_ENDURANCE_GROUP)
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 }
 
 #define NVME_TEMP_THRESH_OVER	0
 #define NVME_TEMP_THRESH_UNDER	1
 static void
 nvme_feature_temperature(struct pci_nvme_softc *sc,
     struct nvme_feature_obj *feat __unused,
     struct nvme_command *command,
     struct nvme_completion *compl)
 {
 	uint16_t	tmpth;	/* Temperature Threshold */
 	uint8_t		tmpsel; /* Threshold Temperature Select */
 	uint8_t		thsel;  /* Threshold Type Select */
 	bool		set_crit = false;
 	bool		report_crit;
 
 	tmpth  = command->cdw11 & 0xffff;
 	tmpsel = (command->cdw11 >> 16) & 0xf;
 	thsel  = (command->cdw11 >> 20) & 0x3;
 
 	DPRINTF("%s: tmpth=%#x tmpsel=%#x thsel=%#x", __func__, tmpth, tmpsel, thsel);
 
 	/* Check for unsupported values */
 	if (((tmpsel != 0) && (tmpsel != 0xf)) ||
 	    (thsel > NVME_TEMP_THRESH_UNDER)) {
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return;
 	}
 
 	if (((thsel == NVME_TEMP_THRESH_OVER)  && (NVME_TEMPERATURE >= tmpth)) ||
 	    ((thsel == NVME_TEMP_THRESH_UNDER) && (NVME_TEMPERATURE <= tmpth)))
 		set_crit = true;
 
 	pthread_mutex_lock(&sc->mtx);
 	if (set_crit)
 		sc->health_log.critical_warning |=
 		    NVME_CRIT_WARN_ST_TEMPERATURE;
 	else
 		sc->health_log.critical_warning &=
 		    ~NVME_CRIT_WARN_ST_TEMPERATURE;
 	pthread_mutex_unlock(&sc->mtx);
 
 	report_crit = sc->feat[NVME_FEAT_ASYNC_EVENT_CONFIGURATION].cdw11 &
 	    NVME_CRIT_WARN_ST_TEMPERATURE;
 
 	if (set_crit && report_crit)
 		pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_SMART,
 		    sc->health_log.critical_warning);
 
 	DPRINTF("%s: set_crit=%c critical_warning=%#x status=%#x", __func__, set_crit ? 'T':'F', sc->health_log.critical_warning, compl->status);
 }
 
 static void
 nvme_feature_num_queues(struct pci_nvme_softc *sc,
     struct nvme_feature_obj *feat __unused,
     struct nvme_command *command,
     struct nvme_completion *compl)
 {
 	uint16_t nqr;	/* Number of Queues Requested */
 
 	if (sc->num_q_is_set) {
 		WPRINTF("%s: Number of Queues already set", __func__);
 		pci_nvme_status_genc(&compl->status,
 		    NVME_SC_COMMAND_SEQUENCE_ERROR);
 		return;
 	}
 
 	nqr = command->cdw11 & 0xFFFF;
 	if (nqr == 0xffff) {
 		WPRINTF("%s: Illegal NSQR value %#x", __func__, nqr);
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return;
 	}
 
 	sc->num_squeues = ONE_BASED(nqr);
 	if (sc->num_squeues > sc->max_queues) {
 		DPRINTF("NSQR=%u is greater than max %u", sc->num_squeues,
 					sc->max_queues);
 		sc->num_squeues = sc->max_queues;
 	}
 
 	nqr = (command->cdw11 >> 16) & 0xFFFF;
 	if (nqr == 0xffff) {
 		WPRINTF("%s: Illegal NCQR value %#x", __func__, nqr);
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return;
 	}
 
 	sc->num_cqueues = ONE_BASED(nqr);
 	if (sc->num_cqueues > sc->max_queues) {
 		DPRINTF("NCQR=%u is greater than max %u", sc->num_cqueues,
 					sc->max_queues);
 		sc->num_cqueues = sc->max_queues;
 	}
 
 	/* Patch the command value which will be saved on callback's return */
 	command->cdw11 = NVME_FEATURE_NUM_QUEUES(sc);
 	compl->cdw0 = NVME_FEATURE_NUM_QUEUES(sc);
 
 	sc->num_q_is_set = true;
 }
 
 static int
 nvme_opc_set_features(struct pci_nvme_softc *sc, struct nvme_command *command,
 	struct nvme_completion *compl)
 {
 	struct nvme_feature_obj *feat;
 	uint32_t nsid = command->nsid;
 	uint8_t fid = NVMEV(NVME_FEAT_SET_FID, command->cdw10);
 	bool sv = NVMEV(NVME_FEAT_SET_SV, command->cdw10);
 
 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
 
 	if (fid >= NVME_FID_MAX) {
 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return (1);
 	}
 
 	if (sv) {
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_FEATURE_NOT_SAVEABLE);
 		return (1);
 	}
 
 	feat = &sc->feat[fid];
 
 	if (feat->namespace_specific && (nsid == NVME_GLOBAL_NAMESPACE_TAG)) {
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return (1);
 	}
 
 	if (!feat->namespace_specific &&
 	    !((nsid == 0) || (nsid == NVME_GLOBAL_NAMESPACE_TAG))) {
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_FEATURE_NOT_NS_SPECIFIC);
 		return (1);
 	}
 
 	compl->cdw0 = 0;
 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 
 	if (feat->set)
 		feat->set(sc, feat, command, compl);
 	else {
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_FEATURE_NOT_CHANGEABLE);
 		return (1);
 	}
 
 	DPRINTF("%s: status=%#x cdw11=%#x", __func__, compl->status, command->cdw11);
 	if (compl->status == NVME_SC_SUCCESS) {
 		feat->cdw11 = command->cdw11;
 		if ((fid == NVME_FEAT_ASYNC_EVENT_CONFIGURATION) &&
 		    (command->cdw11 != 0))
 			pci_nvme_aen_notify(sc);
 	}
 
 	return (0);
 }
 
 #define NVME_FEATURES_SEL_SUPPORTED	0x3
 #define NVME_FEATURES_NS_SPECIFIC	(1 << 1)
 
 static int
 nvme_opc_get_features(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	struct nvme_feature_obj *feat;
 	uint8_t fid = command->cdw10 & 0xFF;
 	uint8_t sel = (command->cdw10 >> 8) & 0x7;
 
 	DPRINTF("%s: Feature ID 0x%x (%s)", __func__, fid, nvme_fid_to_name(fid));
 
 	if (fid >= NVME_FID_MAX) {
 		DPRINTF("%s invalid feature 0x%x", __func__, fid);
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return (1);
 	}
 
 	compl->cdw0 = 0;
 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 
 	feat = &sc->feat[fid];
 	if (feat->get) {
 		feat->get(sc, feat, command, compl);
 	}
 
 	if (compl->status == NVME_SC_SUCCESS) {
 		if ((sel == NVME_FEATURES_SEL_SUPPORTED) && feat->namespace_specific)
 			compl->cdw0 = NVME_FEATURES_NS_SPECIFIC;
 		else
 			compl->cdw0 = feat->cdw11;
 	}
 
 	return (0);
 }
 
 static int
 nvme_opc_format_nvm(struct pci_nvme_softc* sc, struct nvme_command* command,
 	struct nvme_completion* compl)
 {
 	uint8_t	ses, lbaf, pi;
 
 	/* Only supports Secure Erase Setting - User Data Erase */
 	ses = (command->cdw10 >> 9) & 0x7;
 	if (ses > 0x1) {
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return (1);
 	}
 
 	/* Only supports a single LBA Format */
 	lbaf = command->cdw10 & 0xf;
 	if (lbaf != 0) {
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 		    NVME_SC_INVALID_FORMAT);
 		return (1);
 	}
 
 	/* Doesn't support Protection Information */
 	pi = (command->cdw10 >> 5) & 0x7;
 	if (pi != 0) {
 		pci_nvme_status_genc(&compl->status, NVME_SC_INVALID_FIELD);
 		return (1);
 	}
 
 	if (sc->nvstore.type == NVME_STOR_RAM) {
 		if (sc->nvstore.ctx)
 			free(sc->nvstore.ctx);
 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
 		pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 	} else {
 		struct pci_nvme_ioreq *req;
 		int err;
 
 		req = pci_nvme_get_ioreq(sc);
 		if (req == NULL) {
 			pci_nvme_status_genc(&compl->status,
 			    NVME_SC_INTERNAL_DEVICE_ERROR);
 			WPRINTF("%s: unable to allocate IO req", __func__);
 			return (1);
 		}
 		req->nvme_sq = &sc->submit_queues[0];
 		req->sqid = 0;
 		req->opc = command->opc;
 		req->cid = command->cid;
 		req->nsid = command->nsid;
 
 		req->io_req.br_offset = 0;
 		req->io_req.br_resid = sc->nvstore.size;
 		req->io_req.br_callback = pci_nvme_io_done;
 
 		err = blockif_delete(sc->nvstore.ctx, &req->io_req);
 		if (err) {
 			pci_nvme_status_genc(&compl->status,
 			    NVME_SC_INTERNAL_DEVICE_ERROR);
 			pci_nvme_release_ioreq(sc, req);
 		} else
 			compl->status = NVME_NO_STATUS;
 	}
 
 	return (1);
 }
 
 static int
 nvme_opc_abort(struct pci_nvme_softc *sc __unused, struct nvme_command *command,
     struct nvme_completion *compl)
 {
 	DPRINTF("%s submission queue %u, command ID 0x%x", __func__,
 	        command->cdw10 & 0xFFFF, (command->cdw10 >> 16) & 0xFFFF);
 
 	/* TODO: search for the command ID and abort it */
 
 	compl->cdw0 = 1;
 	pci_nvme_status_genc(&compl->status, NVME_SC_SUCCESS);
 	return (1);
 }
 
 static int
 nvme_opc_async_event_req(struct pci_nvme_softc* sc,
 	struct nvme_command* command, struct nvme_completion* compl)
 {
 	DPRINTF("%s async event request count=%u aerl=%u cid=%#x", __func__,
 	    sc->aer_count, sc->ctrldata.aerl, command->cid);
 
 	/* Don't exceed the Async Event Request Limit (AERL). */
 	if (pci_nvme_aer_limit_reached(sc)) {
 		pci_nvme_status_tc(&compl->status, NVME_SCT_COMMAND_SPECIFIC,
 				NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED);
 		return (1);
 	}
 
 	if (pci_nvme_aer_add(sc, command->cid)) {
 		pci_nvme_status_tc(&compl->status, NVME_SCT_GENERIC,
 				NVME_SC_INTERNAL_DEVICE_ERROR);
 		return (1);
 	}
 
 	/*
 	 * Raise events when they happen based on the Set Features cmd.
 	 * These events happen async, so only set completion successful if
 	 * there is an event reflective of the request to get event.
 	 */
 	compl->status = NVME_NO_STATUS;
 	pci_nvme_aen_notify(sc);
 
 	return (0);
 }
 
 static void
 pci_nvme_handle_admin_cmd(struct pci_nvme_softc* sc, uint64_t value)
 {
 	struct nvme_completion compl;
 	struct nvme_command *cmd;
 	struct nvme_submission_queue *sq;
 	struct nvme_completion_queue *cq;
 	uint16_t sqhead;
 
 	DPRINTF("%s index %u", __func__, (uint32_t)value);
 
 	sq = &sc->submit_queues[0];
 	cq = &sc->compl_queues[0];
 
 	pthread_mutex_lock(&sq->mtx);
 
 	sqhead = sq->head;
 	DPRINTF("sqhead %u, tail %u", sqhead, sq->tail);
 
 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
 		cmd = &(sq->qbase)[sqhead];
 		compl.cdw0 = 0;
 		compl.status = 0;
 
 		switch (cmd->opc) {
 		case NVME_OPC_DELETE_IO_SQ:
 			DPRINTF("%s command DELETE_IO_SQ", __func__);
 			nvme_opc_delete_io_sq(sc, cmd, &compl);
 			break;
 		case NVME_OPC_CREATE_IO_SQ:
 			DPRINTF("%s command CREATE_IO_SQ", __func__);
 			nvme_opc_create_io_sq(sc, cmd, &compl);
 			break;
 		case NVME_OPC_DELETE_IO_CQ:
 			DPRINTF("%s command DELETE_IO_CQ", __func__);
 			nvme_opc_delete_io_cq(sc, cmd, &compl);
 			break;
 		case NVME_OPC_CREATE_IO_CQ:
 			DPRINTF("%s command CREATE_IO_CQ", __func__);
 			nvme_opc_create_io_cq(sc, cmd, &compl);
 			break;
 		case NVME_OPC_GET_LOG_PAGE:
 			DPRINTF("%s command GET_LOG_PAGE", __func__);
 			nvme_opc_get_log_page(sc, cmd, &compl);
 			break;
 		case NVME_OPC_IDENTIFY:
 			DPRINTF("%s command IDENTIFY", __func__);
 			nvme_opc_identify(sc, cmd, &compl);
 			break;
 		case NVME_OPC_ABORT:
 			DPRINTF("%s command ABORT", __func__);
 			nvme_opc_abort(sc, cmd, &compl);
 			break;
 		case NVME_OPC_SET_FEATURES:
 			DPRINTF("%s command SET_FEATURES", __func__);
 			nvme_opc_set_features(sc, cmd, &compl);
 			break;
 		case NVME_OPC_GET_FEATURES:
 			DPRINTF("%s command GET_FEATURES", __func__);
 			nvme_opc_get_features(sc, cmd, &compl);
 			break;
 		case NVME_OPC_FIRMWARE_ACTIVATE:
 			DPRINTF("%s command FIRMWARE_ACTIVATE", __func__);
 			pci_nvme_status_tc(&compl.status,
 			    NVME_SCT_COMMAND_SPECIFIC,
 			    NVME_SC_INVALID_FIRMWARE_SLOT);
 			break;
 		case NVME_OPC_ASYNC_EVENT_REQUEST:
 			DPRINTF("%s command ASYNC_EVENT_REQ", __func__);
 			nvme_opc_async_event_req(sc, cmd, &compl);
 			break;
 		case NVME_OPC_FORMAT_NVM:
 			DPRINTF("%s command FORMAT_NVM", __func__);
 			if (NVMEV(NVME_CTRLR_DATA_OACS_FORMAT,
 			    sc->ctrldata.oacs) == 0) {
 				pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
 				break;
 			}
 			nvme_opc_format_nvm(sc, cmd, &compl);
 			break;
 		case NVME_OPC_SECURITY_SEND:
 		case NVME_OPC_SECURITY_RECEIVE:
 		case NVME_OPC_SANITIZE:
 		case NVME_OPC_GET_LBA_STATUS:
 			DPRINTF("%s command OPC=%#x (unsupported)", __func__,
 			    cmd->opc);
 			/* Valid but unsupported opcodes */
 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_FIELD);
 			break;
 		default:
 			DPRINTF("%s command OPC=%#X (not implemented)",
 			    __func__,
 			    cmd->opc);
 			pci_nvme_status_genc(&compl.status, NVME_SC_INVALID_OPCODE);
 		}
 		sqhead = (sqhead + 1) % sq->size;
 
 		if (NVME_COMPLETION_VALID(compl)) {
 			pci_nvme_cq_update(sc, &sc->compl_queues[0],
 			    compl.cdw0,
 			    cmd->cid,
 			    0,		/* SQID */
 			    compl.status);
 		}
 	}
 
 	DPRINTF("setting sqhead %u", sqhead);
 	sq->head = sqhead;
 
 	if (cq->head != cq->tail)
 		pci_generate_msix(sc->nsc_pi, 0);
 
 	pthread_mutex_unlock(&sq->mtx);
 }
 
 /*
  * Update the Write and Read statistics reported in SMART data
  *
  * NVMe defines "data unit" as thousand's of 512 byte blocks and is rounded up.
  * E.g. 1 data unit is 1 - 1,000 512 byte blocks. 3 data units are 2,001 - 3,000
  * 512 byte blocks. Rounding up is achieved by initializing the remainder to 999.
  */
 static void
 pci_nvme_stats_write_read_update(struct pci_nvme_softc *sc, uint8_t opc,
     size_t bytes, uint16_t status)
 {
 
 	pthread_mutex_lock(&sc->mtx);
 	switch (opc) {
 	case NVME_OPC_WRITE:
 		sc->write_commands++;
 		if (status != NVME_SC_SUCCESS)
 			break;
 		sc->write_dunits_remainder += (bytes / 512);
 		while (sc->write_dunits_remainder >= 1000) {
 			sc->write_data_units++;
 			sc->write_dunits_remainder -= 1000;
 		}
 		break;
 	case NVME_OPC_READ:
 		sc->read_commands++;
 		if (status != NVME_SC_SUCCESS)
 			break;
 		sc->read_dunits_remainder += (bytes / 512);
 		while (sc->read_dunits_remainder >= 1000) {
 			sc->read_data_units++;
 			sc->read_dunits_remainder -= 1000;
 		}
 		break;
 	default:
 		DPRINTF("%s: Invalid OPC 0x%02x for stats", __func__, opc);
 		break;
 	}
 	pthread_mutex_unlock(&sc->mtx);
 }
 
 /*
  * Check if the combination of Starting LBA (slba) and number of blocks
  * exceeds the range of the underlying storage.
  *
  * Because NVMe specifies the SLBA in blocks as a uint64_t and blockif stores
  * the capacity in bytes as a uint64_t, care must be taken to avoid integer
  * overflow.
  */
 static bool
 pci_nvme_out_of_range(struct pci_nvme_blockstore *nvstore, uint64_t slba,
     uint32_t nblocks)
 {
 	size_t	offset, bytes;
 
 	/* Overflow check of multiplying Starting LBA by the sector size */
 	if (slba >> (64 - nvstore->sectsz_bits))
 		return (true);
 
 	offset = slba << nvstore->sectsz_bits;
 	bytes = nblocks << nvstore->sectsz_bits;
 
 	/* Overflow check of Number of Logical Blocks */
 	if ((nvstore->size <= offset) || ((nvstore->size - offset) < bytes))
 		return (true);
 
 	return (false);
 }
 
 static int
 pci_nvme_append_iov_req(struct pci_nvme_softc *sc __unused,
     struct pci_nvme_ioreq *req, uint64_t gpaddr, size_t size, uint64_t offset)
 {
 	int iovidx;
 	bool range_is_contiguous;
 
 	if (req == NULL)
 		return (-1);
 
 	if (req->io_req.br_iovcnt == NVME_MAX_IOVEC) {
 		return (-1);
 	}
 
 	/*
 	 * Minimize the number of IOVs by concatenating contiguous address
 	 * ranges. If the IOV count is zero, there is no previous range to
 	 * concatenate.
 	 */
 	if (req->io_req.br_iovcnt == 0)
 		range_is_contiguous = false;
 	else
 		range_is_contiguous = (req->prev_gpaddr + req->prev_size) == gpaddr;
 
 	if (range_is_contiguous) {
 		iovidx = req->io_req.br_iovcnt - 1;
 
 		req->io_req.br_iov[iovidx].iov_base =
 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
 				     req->prev_gpaddr, size);
 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
 			return (-1);
 
 		req->prev_size += size;
 		req->io_req.br_resid += size;
 
 		req->io_req.br_iov[iovidx].iov_len = req->prev_size;
 	} else {
 		iovidx = req->io_req.br_iovcnt;
 		if (iovidx == 0) {
 			req->io_req.br_offset = offset;
 			req->io_req.br_resid = 0;
 			req->io_req.br_param = req;
 		}
 
 		req->io_req.br_iov[iovidx].iov_base =
 		    paddr_guest2host(req->sc->nsc_pi->pi_vmctx,
 				     gpaddr, size);
 		if (req->io_req.br_iov[iovidx].iov_base == NULL)
 			return (-1);
 
 		req->io_req.br_iov[iovidx].iov_len = size;
 
 		req->prev_gpaddr = gpaddr;
 		req->prev_size = size;
 		req->io_req.br_resid += size;
 
 		req->io_req.br_iovcnt++;
 	}
 
 	return (0);
 }
 
 static void
 pci_nvme_set_completion(struct pci_nvme_softc *sc,
     struct nvme_submission_queue *sq, int sqid, uint16_t cid, uint16_t status)
 {
 	struct nvme_completion_queue *cq = &sc->compl_queues[sq->cqid];
 
 	DPRINTF("%s sqid %d cqid %u cid %u status: 0x%x 0x%x",
 		 __func__, sqid, sq->cqid, cid, NVME_STATUS_GET_SCT(status),
 		 NVME_STATUS_GET_SC(status));
 
 	pci_nvme_cq_update(sc, cq, 0, cid, sqid, status);
 
 	if (cq->head != cq->tail) {
 		if (cq->intr_en & NVME_CQ_INTEN) {
 			pci_generate_msix(sc->nsc_pi, cq->intr_vec);
 		} else {
 			DPRINTF("%s: CQ%u interrupt disabled",
 						__func__, sq->cqid);
 		}
 	}
 }
 
 static void
 pci_nvme_release_ioreq(struct pci_nvme_softc *sc, struct pci_nvme_ioreq *req)
 {
 	req->sc = NULL;
 	req->nvme_sq = NULL;
 	req->sqid = 0;
 
 	pthread_mutex_lock(&sc->mtx);
 
 	STAILQ_INSERT_TAIL(&sc->ioreqs_free, req, link);
 	sc->pending_ios--;
 
 	/* when no more IO pending, can set to ready if device reset/enabled */
 	if (sc->pending_ios == 0 &&
 	    NVME_CC_GET_EN(sc->regs.cc) && !(NVME_CSTS_GET_RDY(sc->regs.csts)))
 		sc->regs.csts |= NVME_CSTS_RDY;
 
 	pthread_mutex_unlock(&sc->mtx);
 
 	sem_post(&sc->iosemlock);
 }
 
 static struct pci_nvme_ioreq *
 pci_nvme_get_ioreq(struct pci_nvme_softc *sc)
 {
 	struct pci_nvme_ioreq *req = NULL;
 
 	sem_wait(&sc->iosemlock);
 	pthread_mutex_lock(&sc->mtx);
 
 	req = STAILQ_FIRST(&sc->ioreqs_free);
 	assert(req != NULL);
 	STAILQ_REMOVE_HEAD(&sc->ioreqs_free, link);
 
 	req->sc = sc;
 
 	sc->pending_ios++;
 
 	pthread_mutex_unlock(&sc->mtx);
 
 	req->io_req.br_iovcnt = 0;
 	req->io_req.br_offset = 0;
 	req->io_req.br_resid = 0;
 	req->io_req.br_param = req;
 	req->prev_gpaddr = 0;
 	req->prev_size = 0;
 
 	return req;
 }
 
 static void
 pci_nvme_io_done(struct blockif_req *br, int err)
 {
 	struct pci_nvme_ioreq *req = br->br_param;
 	struct nvme_submission_queue *sq = req->nvme_sq;
 	uint16_t code, status;
 
 	DPRINTF("%s error %d %s", __func__, err, strerror(err));
 
 	/* TODO return correct error */
 	code = err ? NVME_SC_DATA_TRANSFER_ERROR : NVME_SC_SUCCESS;
 	status = 0;
 	pci_nvme_status_genc(&status, code);
 
 	pci_nvme_set_completion(req->sc, sq, req->sqid, req->cid, status);
 	pci_nvme_stats_write_read_update(req->sc, req->opc,
 	    req->bytes, status);
 	pci_nvme_release_ioreq(req->sc, req);
 }
 
 /*
  * Implements the Flush command. The specification states:
  *    If a volatile write cache is not present, Flush commands complete
  *    successfully and have no effect
  * in the description of the Volatile Write Cache (VWC) field of the Identify
  * Controller data. Therefore, set status to Success if the command is
  * not supported (i.e. RAM or as indicated by the blockif).
  */
 static bool
 nvme_opc_flush(struct pci_nvme_softc *sc __unused,
     struct nvme_command *cmd __unused,
     struct pci_nvme_blockstore *nvstore,
     struct pci_nvme_ioreq *req,
     uint16_t *status)
 {
 	bool pending = false;
 
 	if (nvstore->type == NVME_STOR_RAM) {
 		pci_nvme_status_genc(status, NVME_SC_SUCCESS);
 	} else {
 		int err;
 
 		req->io_req.br_callback = pci_nvme_io_done;
 
 		err = blockif_flush(nvstore->ctx, &req->io_req);
 		switch (err) {
 		case 0:
 			pending = true;
 			break;
 		case EOPNOTSUPP:
 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
 			break;
 		default:
 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
 		}
 	}
 
 	return (pending);
 }
 
 static uint16_t
 nvme_write_read_ram(struct pci_nvme_softc *sc,
     struct pci_nvme_blockstore *nvstore,
     uint64_t prp1, uint64_t prp2,
     size_t offset, uint64_t bytes,
     bool is_write)
 {
 	uint8_t *buf = nvstore->ctx;
 	enum nvme_copy_dir dir;
 	uint16_t status;
 
 	if (is_write)
 		dir = NVME_COPY_TO_PRP;
 	else
 		dir = NVME_COPY_FROM_PRP;
 
 	status = 0;
 	if (nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, prp1, prp2,
 	    buf + offset, bytes, dir))
 		pci_nvme_status_genc(&status,
 		    NVME_SC_DATA_TRANSFER_ERROR);
 	else
 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
 
 	return (status);
 }
 
 static uint16_t
 nvme_write_read_blockif(struct pci_nvme_softc *sc,
     struct pci_nvme_blockstore *nvstore,
     struct pci_nvme_ioreq *req,
     uint64_t prp1, uint64_t prp2,
     size_t offset, uint64_t bytes,
     bool is_write)
 {
 	uint64_t size;
 	int err;
 	uint16_t status = NVME_NO_STATUS;
 
 	size = MIN(PAGE_SIZE - (prp1 % PAGE_SIZE), bytes);
 	if (pci_nvme_append_iov_req(sc, req, prp1, size, offset)) {
 		err = -1;
 		goto out;
 	}
 
 	offset += size;
 	bytes  -= size;
 
 	if (bytes == 0) {
 		;
 	} else if (bytes <= PAGE_SIZE) {
 		size = bytes;
 		if (pci_nvme_append_iov_req(sc, req, prp2, size, offset)) {
 			err = -1;
 			goto out;
 		}
 	} else {
 		void *vmctx = sc->nsc_pi->pi_vmctx;
 		uint64_t *prp_list = &prp2;
 		uint64_t *last = prp_list;
 
 		/* PRP2 is pointer to a physical region page list */
 		while (bytes) {
 			/* Last entry in list points to the next list */
 			if ((prp_list == last) && (bytes > PAGE_SIZE)) {
 				uint64_t prp = *prp_list;
 
 				prp_list = paddr_guest2host(vmctx, prp,
 				    PAGE_SIZE - (prp % PAGE_SIZE));
 				if (prp_list == NULL) {
 					err = -1;
 					goto out;
 				}
 				last = prp_list + (NVME_PRP2_ITEMS - 1);
 			}
 
 			size = MIN(bytes, PAGE_SIZE);
 
 			if (pci_nvme_append_iov_req(sc, req, *prp_list, size,
 			    offset)) {
 				err = -1;
 				goto out;
 			}
 
 			offset += size;
 			bytes  -= size;
 
 			prp_list++;
 		}
 	}
 	req->io_req.br_callback = pci_nvme_io_done;
 	if (is_write)
 		err = blockif_write(nvstore->ctx, &req->io_req);
 	else
 		err = blockif_read(nvstore->ctx, &req->io_req);
 out:
 	if (err)
 		pci_nvme_status_genc(&status, NVME_SC_DATA_TRANSFER_ERROR);
 
 	return (status);
 }
 
 static bool
 nvme_opc_write_read(struct pci_nvme_softc *sc,
     struct nvme_command *cmd,
     struct pci_nvme_blockstore *nvstore,
     struct pci_nvme_ioreq *req,
     uint16_t *status)
 {
 	uint64_t lba, nblocks, bytes;
 	size_t offset;
 	bool is_write = cmd->opc == NVME_OPC_WRITE;
 	bool pending = false;
 
 	lba = ((uint64_t)cmd->cdw11 << 32) | cmd->cdw10;
 	nblocks = (cmd->cdw12 & 0xFFFF) + 1;
 	bytes = nblocks << nvstore->sectsz_bits;
 	if (bytes > NVME_MAX_DATA_SIZE) {
 		WPRINTF("%s command would exceed MDTS", __func__);
 		pci_nvme_status_genc(status, NVME_SC_INVALID_FIELD);
 		goto out;
 	}
 
 	if (pci_nvme_out_of_range(nvstore, lba, nblocks)) {
 		WPRINTF("%s command would exceed LBA range(slba=%#lx nblocks=%#lx)",
 		    __func__, lba, nblocks);
 		pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
 		goto out;
 	}
 
 	offset = lba << nvstore->sectsz_bits;
 
 	req->bytes = bytes;
 	req->io_req.br_offset = lba;
 
 	/* PRP bits 1:0 must be zero */
 	cmd->prp1 &= ~0x3UL;
 	cmd->prp2 &= ~0x3UL;
 
 	if (nvstore->type == NVME_STOR_RAM) {
 		*status = nvme_write_read_ram(sc, nvstore, cmd->prp1,
 		    cmd->prp2, offset, bytes, is_write);
 	} else {
 		*status = nvme_write_read_blockif(sc, nvstore, req,
 		    cmd->prp1, cmd->prp2, offset, bytes, is_write);
 
 		if (*status == NVME_NO_STATUS)
 			pending = true;
 	}
 out:
 	if (!pending)
 		pci_nvme_stats_write_read_update(sc, cmd->opc, bytes, *status);
 
 	return (pending);
 }
 
 static void
 pci_nvme_dealloc_sm(struct blockif_req *br, int err)
 {
 	struct pci_nvme_ioreq *req = br->br_param;
 	struct pci_nvme_softc *sc = req->sc;
 	bool done = true;
 	uint16_t status;
 
 	status = 0;
 	if (err) {
 		pci_nvme_status_genc(&status, NVME_SC_INTERNAL_DEVICE_ERROR);
 	} else if ((req->prev_gpaddr + 1) == (req->prev_size)) {
 		pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
 	} else {
 		struct iovec *iov = req->io_req.br_iov;
 
 		req->prev_gpaddr++;
 		iov += req->prev_gpaddr;
 
 		/* The iov_* values already include the sector size */
 		req->io_req.br_offset = (off_t)iov->iov_base;
 		req->io_req.br_resid = iov->iov_len;
 		if (blockif_delete(sc->nvstore.ctx, &req->io_req)) {
 			pci_nvme_status_genc(&status,
 			    NVME_SC_INTERNAL_DEVICE_ERROR);
 		} else
 			done = false;
 	}
 
 	if (done) {
 		pci_nvme_set_completion(sc, req->nvme_sq, req->sqid, req->cid,
 		    status);
 		pci_nvme_release_ioreq(sc, req);
 	}
 }
 
 static bool
 nvme_opc_dataset_mgmt(struct pci_nvme_softc *sc,
     struct nvme_command *cmd,
     struct pci_nvme_blockstore *nvstore,
     struct pci_nvme_ioreq *req,
     uint16_t *status)
 {
 	struct nvme_dsm_range *range = NULL;
 	uint32_t nr, r, non_zero, dr;
 	int err;
 	bool pending = false;
 
 	if ((sc->ctrldata.oncs & NVME_ONCS_DSM) == 0) {
 		pci_nvme_status_genc(status, NVME_SC_INVALID_OPCODE);
 		goto out;
 	}
 
 	nr = cmd->cdw10 & 0xff;
 
 	/* copy locally because a range entry could straddle PRPs */
 	range = calloc(1, NVME_MAX_DSM_TRIM);
 	if (range == NULL) {
 		pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
 		goto out;
 	}
 	nvme_prp_memcpy(sc->nsc_pi->pi_vmctx, cmd->prp1, cmd->prp2,
 	    (uint8_t *)range, NVME_MAX_DSM_TRIM, NVME_COPY_FROM_PRP);
 
 	/* Check for invalid ranges and the number of non-zero lengths */
 	non_zero = 0;
 	for (r = 0; r <= nr; r++) {
 		if (pci_nvme_out_of_range(nvstore,
 		    range[r].starting_lba, range[r].length)) {
 			pci_nvme_status_genc(status, NVME_SC_LBA_OUT_OF_RANGE);
 			goto out;
 		}
 		if (range[r].length != 0)
 			non_zero++;
 	}
 
 	if (cmd->cdw11 & NVME_DSM_ATTR_DEALLOCATE) {
 		size_t offset, bytes;
 		int sectsz_bits = sc->nvstore.sectsz_bits;
 
 		/*
 		 * DSM calls are advisory only, and compliant controllers
 		 * may choose to take no actions (i.e. return Success).
 		 */
 		if (!nvstore->deallocate) {
 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
 			goto out;
 		}
 
 		/* If all ranges have a zero length, return Success */
 		if (non_zero == 0) {
 			pci_nvme_status_genc(status, NVME_SC_SUCCESS);
 			goto out;
 		}
 
 		if (req == NULL) {
 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
 			goto out;
 		}
 
 		offset = range[0].starting_lba << sectsz_bits;
 		bytes = range[0].length << sectsz_bits;
 
 		/*
 		 * If the request is for more than a single range, store
 		 * the ranges in the br_iov. Optimize for the common case
 		 * of a single range.
 		 *
 		 * Note that NVMe Number of Ranges is a zero based value
 		 */
 		req->io_req.br_iovcnt = 0;
 		req->io_req.br_offset = offset;
 		req->io_req.br_resid = bytes;
 
 		if (nr == 0) {
 			req->io_req.br_callback = pci_nvme_io_done;
 		} else {
 			struct iovec *iov = req->io_req.br_iov;
 
 			for (r = 0, dr = 0; r <= nr; r++) {
 				offset = range[r].starting_lba << sectsz_bits;
 				bytes = range[r].length << sectsz_bits;
 				if (bytes == 0)
 					continue;
 
 				if ((nvstore->size - offset) < bytes) {
 					pci_nvme_status_genc(status,
 					    NVME_SC_LBA_OUT_OF_RANGE);
 					goto out;
 				}
 				iov[dr].iov_base = (void *)offset;
 				iov[dr].iov_len = bytes;
 				dr++;
 			}
 			req->io_req.br_callback = pci_nvme_dealloc_sm;
 
 			/*
 			 * Use prev_gpaddr to track the current entry and
 			 * prev_size to track the number of entries
 			 */
 			req->prev_gpaddr = 0;
 			req->prev_size = dr;
 		}
 
 		err = blockif_delete(nvstore->ctx, &req->io_req);
 		if (err)
 			pci_nvme_status_genc(status, NVME_SC_INTERNAL_DEVICE_ERROR);
 		else
 			pending = true;
 	}
 out:
 	free(range);
 	return (pending);
 }
 
 static void
 pci_nvme_handle_io_cmd(struct pci_nvme_softc* sc, uint16_t idx)
 {
 	struct nvme_submission_queue *sq;
 	uint16_t status;
 	uint16_t sqhead;
 
 	/* handle all submissions up to sq->tail index */
 	sq = &sc->submit_queues[idx];
 
 	pthread_mutex_lock(&sq->mtx);
 
 	sqhead = sq->head;
 	DPRINTF("nvme_handle_io qid %u head %u tail %u cmdlist %p",
 	         idx, sqhead, sq->tail, sq->qbase);
 
 	while (sqhead != atomic_load_acq_short(&sq->tail)) {
 		struct nvme_command *cmd;
 		struct pci_nvme_ioreq *req;
 		uint32_t nsid;
 		bool pending;
 
 		pending = false;
 		req = NULL;
 		status = 0;
 
 		cmd = &sq->qbase[sqhead];
 		sqhead = (sqhead + 1) % sq->size;
 
 		nsid = le32toh(cmd->nsid);
 		if ((nsid == 0) || (nsid > sc->ctrldata.nn)) {
 			pci_nvme_status_genc(&status,
 			    NVME_SC_INVALID_NAMESPACE_OR_FORMAT);
 			status |=
 			    NVME_STATUS_DNR_MASK << NVME_STATUS_DNR_SHIFT;
 			goto complete;
  		}
 
 		req = pci_nvme_get_ioreq(sc);
 		if (req == NULL) {
 			pci_nvme_status_genc(&status,
 			    NVME_SC_INTERNAL_DEVICE_ERROR);
 			WPRINTF("%s: unable to allocate IO req", __func__);
 			goto complete;
 		}
 		req->nvme_sq = sq;
 		req->sqid = idx;
 		req->opc = cmd->opc;
 		req->cid = cmd->cid;
 		req->nsid = cmd->nsid;
 
 		switch (cmd->opc) {
 		case NVME_OPC_FLUSH:
 			pending = nvme_opc_flush(sc, cmd, &sc->nvstore,
 			    req, &status);
  			break;
 		case NVME_OPC_WRITE:
 		case NVME_OPC_READ:
 			pending = nvme_opc_write_read(sc, cmd, &sc->nvstore,
 			    req, &status);
 			break;
 		case NVME_OPC_WRITE_ZEROES:
 			/* TODO: write zeroes
 			WPRINTF("%s write zeroes lba 0x%lx blocks %u",
 			        __func__, lba, cmd->cdw12 & 0xFFFF); */
 			pci_nvme_status_genc(&status, NVME_SC_SUCCESS);
 			break;
 		case NVME_OPC_DATASET_MANAGEMENT:
  			pending = nvme_opc_dataset_mgmt(sc, cmd, &sc->nvstore,
 			    req, &status);
 			break;
  		default:
  			WPRINTF("%s unhandled io command 0x%x",
 			    __func__, cmd->opc);
 			pci_nvme_status_genc(&status, NVME_SC_INVALID_OPCODE);
 		}
 complete:
 		if (!pending) {
 			pci_nvme_set_completion(sc, sq, idx, cmd->cid, status);
 			if (req != NULL)
 				pci_nvme_release_ioreq(sc, req);
 		}
 	}
 
 	sq->head = sqhead;
 
 	pthread_mutex_unlock(&sq->mtx);
 }
 
 static void
 pci_nvme_handle_doorbell(struct pci_nvme_softc* sc,
 	uint64_t idx, int is_sq, uint64_t value)
 {
 	DPRINTF("nvme doorbell %lu, %s, val 0x%lx",
 	        idx, is_sq ? "SQ" : "CQ", value & 0xFFFF);
 
 	if (is_sq) {
 		if (idx > sc->num_squeues) {
 			WPRINTF("%s queue index %lu overflow from "
 			         "guest (max %u)",
 			         __func__, idx, sc->num_squeues);
 			return;
 		}
 
 		atomic_store_short(&sc->submit_queues[idx].tail,
 		                   (uint16_t)value);
 
 		if (idx == 0) {
 			pci_nvme_handle_admin_cmd(sc, value);
 		} else {
 			/* submission queue; handle new entries in SQ */
 			if (idx > sc->num_squeues) {
 				WPRINTF("%s SQ index %lu overflow from "
 				         "guest (max %u)",
 				         __func__, idx, sc->num_squeues);
 				return;
 			}
 			pci_nvme_handle_io_cmd(sc, (uint16_t)idx);
 		}
 	} else {
 		if (idx > sc->num_cqueues) {
 			WPRINTF("%s queue index %lu overflow from "
 			         "guest (max %u)",
 			         __func__, idx, sc->num_cqueues);
 			return;
 		}
 
 		atomic_store_short(&sc->compl_queues[idx].head,
 				(uint16_t)value);
 	}
 }
 
 static void
 pci_nvme_bar0_reg_dumps(const char *func, uint64_t offset, int iswrite)
 {
 	const char *s = iswrite ? "WRITE" : "READ";
 
 	switch (offset) {
 	case NVME_CR_CAP_LOW:
 		DPRINTF("%s %s NVME_CR_CAP_LOW", func, s);
 		break;
 	case NVME_CR_CAP_HI:
 		DPRINTF("%s %s NVME_CR_CAP_HI", func, s);
 		break;
 	case NVME_CR_VS:
 		DPRINTF("%s %s NVME_CR_VS", func, s);
 		break;
 	case NVME_CR_INTMS:
 		DPRINTF("%s %s NVME_CR_INTMS", func, s);
 		break;
 	case NVME_CR_INTMC:
 		DPRINTF("%s %s NVME_CR_INTMC", func, s);
 		break;
 	case NVME_CR_CC:
 		DPRINTF("%s %s NVME_CR_CC", func, s);
 		break;
 	case NVME_CR_CSTS:
 		DPRINTF("%s %s NVME_CR_CSTS", func, s);
 		break;
 	case NVME_CR_NSSR:
 		DPRINTF("%s %s NVME_CR_NSSR", func, s);
 		break;
 	case NVME_CR_AQA:
 		DPRINTF("%s %s NVME_CR_AQA", func, s);
 		break;
 	case NVME_CR_ASQ_LOW:
 		DPRINTF("%s %s NVME_CR_ASQ_LOW", func, s);
 		break;
 	case NVME_CR_ASQ_HI:
 		DPRINTF("%s %s NVME_CR_ASQ_HI", func, s);
 		break;
 	case NVME_CR_ACQ_LOW:
 		DPRINTF("%s %s NVME_CR_ACQ_LOW", func, s);
 		break;
 	case NVME_CR_ACQ_HI:
 		DPRINTF("%s %s NVME_CR_ACQ_HI", func, s);
 		break;
 	default:
 		DPRINTF("unknown nvme bar-0 offset 0x%lx", offset);
 	}
 
 }
 
 static void
 pci_nvme_write_bar_0(struct pci_nvme_softc *sc, uint64_t offset, int size,
     uint64_t value)
 {
 	uint32_t ccreg;
 
 	if (offset >= NVME_DOORBELL_OFFSET) {
 		uint64_t belloffset = offset - NVME_DOORBELL_OFFSET;
 		uint64_t idx = belloffset / 8; /* door bell size = 2*int */
 		int is_sq = (belloffset % 8) < 4;
 
 		if ((sc->regs.csts & NVME_CSTS_RDY) == 0) {
 			WPRINTF("doorbell write prior to RDY (offset=%#lx)\n",
 			    offset);
 			return;
 		}
 
 		if (belloffset > ((sc->max_queues+1) * 8 - 4)) {
 			WPRINTF("guest attempted an overflow write offset "
 			         "0x%lx, val 0x%lx in %s",
 			         offset, value, __func__);
 			return;
 		}
 
 		if (is_sq) {
 			if (sc->submit_queues[idx].qbase == NULL)
 				return;
 		} else if (sc->compl_queues[idx].qbase == NULL)
 			return;
 
 		pci_nvme_handle_doorbell(sc, idx, is_sq, value);
 		return;
 	}
 
 	DPRINTF("nvme-write offset 0x%lx, size %d, value 0x%lx",
 	        offset, size, value);
 
 	if (size != 4) {
 		WPRINTF("guest wrote invalid size %d (offset 0x%lx, "
 		         "val 0x%lx) to bar0 in %s",
 		         size, offset, value, __func__);
 		/* TODO: shutdown device */
 		return;
 	}
 
 	pci_nvme_bar0_reg_dumps(__func__, offset, 1);
 
 	pthread_mutex_lock(&sc->mtx);
 
 	switch (offset) {
 	case NVME_CR_CAP_LOW:
 	case NVME_CR_CAP_HI:
 		/* readonly */
 		break;
 	case NVME_CR_VS:
 		/* readonly */
 		break;
 	case NVME_CR_INTMS:
 		/* MSI-X, so ignore */
 		break;
 	case NVME_CR_INTMC:
 		/* MSI-X, so ignore */
 		break;
 	case NVME_CR_CC:
 		ccreg = (uint32_t)value;
 
 		DPRINTF("%s NVME_CR_CC en %x css %x shn %x iosqes %u "
 		         "iocqes %u",
 		        __func__,
 			 NVME_CC_GET_EN(ccreg), NVME_CC_GET_CSS(ccreg),
 			 NVME_CC_GET_SHN(ccreg), NVME_CC_GET_IOSQES(ccreg),
 			 NVME_CC_GET_IOCQES(ccreg));
 
 		if (NVME_CC_GET_SHN(ccreg)) {
 			/* perform shutdown - flush out data to backend */
 			sc->regs.csts &= ~(NVME_CSTS_REG_SHST_MASK <<
 			    NVME_CSTS_REG_SHST_SHIFT);
 			sc->regs.csts |= NVME_SHST_COMPLETE <<
 			    NVME_CSTS_REG_SHST_SHIFT;
 		}
 		if (NVME_CC_GET_EN(ccreg) != NVME_CC_GET_EN(sc->regs.cc)) {
 			if (NVME_CC_GET_EN(ccreg) == 0)
 				/* transition 1-> causes controller reset */
 				pci_nvme_reset_locked(sc);
 			else
 				pci_nvme_init_controller(sc);
 		}
 
 		/* Insert the iocqes, iosqes and en bits from the write */
 		sc->regs.cc &= ~NVME_CC_WRITE_MASK;
 		sc->regs.cc |= ccreg & NVME_CC_WRITE_MASK;
 		if (NVME_CC_GET_EN(ccreg) == 0) {
 			/* Insert the ams, mps and css bit fields */
 			sc->regs.cc &= ~NVME_CC_NEN_WRITE_MASK;
 			sc->regs.cc |= ccreg & NVME_CC_NEN_WRITE_MASK;
 			sc->regs.csts &= ~NVME_CSTS_RDY;
 		} else if ((sc->pending_ios == 0) &&
 		    !(sc->regs.csts & NVME_CSTS_CFS)) {
 			sc->regs.csts |= NVME_CSTS_RDY;
 		}
 		break;
 	case NVME_CR_CSTS:
 		break;
 	case NVME_CR_NSSR:
 		/* ignore writes; don't support subsystem reset */
 		break;
 	case NVME_CR_AQA:
 		sc->regs.aqa = (uint32_t)value;
 		break;
 	case NVME_CR_ASQ_LOW:
 		sc->regs.asq = (sc->regs.asq & (0xFFFFFFFF00000000)) |
 		               (0xFFFFF000 & value);
 		break;
 	case NVME_CR_ASQ_HI:
 		sc->regs.asq = (sc->regs.asq & (0x00000000FFFFFFFF)) |
 		               (value << 32);
 		break;
 	case NVME_CR_ACQ_LOW:
 		sc->regs.acq = (sc->regs.acq & (0xFFFFFFFF00000000)) |
 		               (0xFFFFF000 & value);
 		break;
 	case NVME_CR_ACQ_HI:
 		sc->regs.acq = (sc->regs.acq & (0x00000000FFFFFFFF)) |
 		               (value << 32);
 		break;
 	default:
 		DPRINTF("%s unknown offset 0x%lx, value 0x%lx size %d",
 		         __func__, offset, value, size);
 	}
 	pthread_mutex_unlock(&sc->mtx);
 }
 
 static void
 pci_nvme_write(struct pci_devinst *pi, int baridx, uint64_t offset, int size,
     uint64_t value)
 {
 	struct pci_nvme_softc* sc = pi->pi_arg;
 
 	if (baridx == pci_msix_table_bar(pi) ||
 	    baridx == pci_msix_pba_bar(pi)) {
 		DPRINTF("nvme-write baridx %d, msix: off 0x%lx, size %d, "
 		         " value 0x%lx", baridx, offset, size, value);
 
 		pci_emul_msix_twrite(pi, offset, size, value);
 		return;
 	}
 
 	switch (baridx) {
 	case 0:
 		pci_nvme_write_bar_0(sc, offset, size, value);
 		break;
 
 	default:
 		DPRINTF("%s unknown baridx %d, val 0x%lx",
 		         __func__, baridx, value);
 	}
 }
 
 static uint64_t pci_nvme_read_bar_0(struct pci_nvme_softc* sc,
 	uint64_t offset, int size)
 {
 	uint64_t value;
 
 	pci_nvme_bar0_reg_dumps(__func__, offset, 0);
 
 	if (offset < NVME_DOORBELL_OFFSET) {
 		void *p = &(sc->regs);
 		pthread_mutex_lock(&sc->mtx);
 		memcpy(&value, (void *)((uintptr_t)p + offset), size);
 		pthread_mutex_unlock(&sc->mtx);
 	} else {
 		value = 0;
                 WPRINTF("pci_nvme: read invalid offset %ld", offset);
 	}
 
 	switch (size) {
 	case 1:
 		value &= 0xFF;
 		break;
 	case 2:
 		value &= 0xFFFF;
 		break;
 	case 4:
 		value &= 0xFFFFFFFF;
 		break;
 	}
 
 	DPRINTF("   nvme-read offset 0x%lx, size %d -> value 0x%x",
 	         offset, size, (uint32_t)value);
 
 	return (value);
 }
 
 
 
 static uint64_t
 pci_nvme_read(struct pci_devinst *pi, int baridx, uint64_t offset, int size)
 {
 	struct pci_nvme_softc* sc = pi->pi_arg;
 
 	if (baridx == pci_msix_table_bar(pi) ||
 	    baridx == pci_msix_pba_bar(pi)) {
 		DPRINTF("nvme-read bar: %d, msix: regoff 0x%lx, size %d",
 		        baridx, offset, size);
 
 		return pci_emul_msix_tread(pi, offset, size);
 	}
 
 	switch (baridx) {
 	case 0:
        		return pci_nvme_read_bar_0(sc, offset, size);
 
 	default:
 		DPRINTF("unknown bar %d, 0x%lx", baridx, offset);
 	}
 
 	return (0);
 }
 
 static int
 pci_nvme_parse_config(struct pci_nvme_softc *sc, nvlist_t *nvl)
 {
 	char bident[sizeof("XXX:XXX")];
 	const char *value;
 	uint32_t sectsz;
 
 	sc->max_queues = NVME_QUEUES;
 	sc->max_qentries = NVME_MAX_QENTRIES;
 	sc->ioslots = NVME_IOSLOTS;
 	sc->num_squeues = sc->max_queues;
 	sc->num_cqueues = sc->max_queues;
 	sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
 	sectsz = 0;
 	snprintf(sc->ctrldata.sn, sizeof(sc->ctrldata.sn),
 	         "NVME-%d-%d", sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
 
 	value = get_config_value_node(nvl, "maxq");
 	if (value != NULL)
 		sc->max_queues = atoi(value);
 	value = get_config_value_node(nvl, "qsz");
 	if (value != NULL) {
 		sc->max_qentries = atoi(value);
 		if (sc->max_qentries <= 0) {
 			EPRINTLN("nvme: Invalid qsz option %d",
 			    sc->max_qentries);
 			return (-1);
 		}
 	}
 	value = get_config_value_node(nvl, "ioslots");
 	if (value != NULL) {
 		sc->ioslots = atoi(value);
 		if (sc->ioslots <= 0) {
 			EPRINTLN("Invalid ioslots option %d", sc->ioslots);
 			return (-1);
 		}
 	}
 	value = get_config_value_node(nvl, "sectsz");
 	if (value != NULL)
 		sectsz = atoi(value);
 	value = get_config_value_node(nvl, "ser");
 	if (value != NULL) {
 		/*
 		 * This field indicates the Product Serial Number in
 		 * 7-bit ASCII, unused bytes should be space characters.
 		 * Ref: NVMe v1.3c.
 		 */
 		cpywithpad((char *)sc->ctrldata.sn,
 		    sizeof(sc->ctrldata.sn), value, ' ');
 	}
 	value = get_config_value_node(nvl, "eui64");
 	if (value != NULL)
 		sc->nvstore.eui64 = htobe64(strtoull(value, NULL, 0));
 	value = get_config_value_node(nvl, "dsm");
 	if (value != NULL) {
 		if (strcmp(value, "auto") == 0)
 			sc->dataset_management = NVME_DATASET_MANAGEMENT_AUTO;
 		else if (strcmp(value, "enable") == 0)
 			sc->dataset_management = NVME_DATASET_MANAGEMENT_ENABLE;
 		else if (strcmp(value, "disable") == 0)
 			sc->dataset_management = NVME_DATASET_MANAGEMENT_DISABLE;
 	}
 
 	value = get_config_value_node(nvl, "bootindex");
 	if (value != NULL) {
 		if (pci_emul_add_boot_device(sc->nsc_pi, atoi(value))) {
 			EPRINTLN("Invalid bootindex %d", atoi(value));
 			return (-1);
 		}
 	}
 
 	value = get_config_value_node(nvl, "ram");
 	if (value != NULL) {
 		uint64_t sz = strtoull(value, NULL, 10);
 
 		sc->nvstore.type = NVME_STOR_RAM;
 		sc->nvstore.size = sz * 1024 * 1024;
 		sc->nvstore.ctx = calloc(1, sc->nvstore.size);
 		sc->nvstore.sectsz = 4096;
 		sc->nvstore.sectsz_bits = 12;
 		if (sc->nvstore.ctx == NULL) {
 			EPRINTLN("nvme: Unable to allocate RAM");
 			return (-1);
 		}
 	} else {
 		snprintf(bident, sizeof(bident), "%u:%u",
 		    sc->nsc_pi->pi_slot, sc->nsc_pi->pi_func);
 		sc->nvstore.ctx = blockif_open(nvl, bident);
 		if (sc->nvstore.ctx == NULL) {
 			EPRINTLN("nvme: Could not open backing file: %s",
 			    strerror(errno));
 			return (-1);
 		}
 		sc->nvstore.type = NVME_STOR_BLOCKIF;
 		sc->nvstore.size = blockif_size(sc->nvstore.ctx);
 	}
 
 	if (sectsz == 512 || sectsz == 4096 || sectsz == 8192)
 		sc->nvstore.sectsz = sectsz;
 	else if (sc->nvstore.type != NVME_STOR_RAM)
 		sc->nvstore.sectsz = blockif_sectsz(sc->nvstore.ctx);
 	for (sc->nvstore.sectsz_bits = 9;
 	     (1U << sc->nvstore.sectsz_bits) < sc->nvstore.sectsz;
 	     sc->nvstore.sectsz_bits++);
 
 	if (sc->max_queues <= 0 || sc->max_queues > NVME_QUEUES)
 		sc->max_queues = NVME_QUEUES;
 
 	return (0);
 }
 
 static void
 pci_nvme_resized(struct blockif_ctxt *bctxt __unused, void *arg,
     size_t new_size)
 {
 	struct pci_nvme_softc *sc;
 	struct pci_nvme_blockstore *nvstore;
 	struct nvme_namespace_data *nd;
 
 	sc = arg;
 	nvstore = &sc->nvstore;
 	nd = &sc->nsdata;
 
 	nvstore->size = new_size;
 	pci_nvme_init_nsdata_size(nvstore, nd);
 
 	/* Add changed NSID to list */
 	sc->ns_log.ns[0] = 1;
 	sc->ns_log.ns[1] = 0;
 
 	pci_nvme_aen_post(sc, PCI_NVME_AE_TYPE_NOTICE,
 	    PCI_NVME_AEI_NOTICE_NS_ATTR_CHANGED);
 }
 
 static int
 pci_nvme_init(struct pci_devinst *pi, nvlist_t *nvl)
 {
 	struct pci_nvme_softc *sc;
 	uint32_t pci_membar_sz;
 	int	error;
 
 	error = 0;
 
 	sc = calloc(1, sizeof(struct pci_nvme_softc));
 	pi->pi_arg = sc;
 	sc->nsc_pi = pi;
 
 	error = pci_nvme_parse_config(sc, nvl);
 	if (error < 0)
 		goto done;
 	else
 		error = 0;
 
 	STAILQ_INIT(&sc->ioreqs_free);
 	sc->ioreqs = calloc(sc->ioslots, sizeof(struct pci_nvme_ioreq));
 	for (uint32_t i = 0; i < sc->ioslots; i++) {
 		STAILQ_INSERT_TAIL(&sc->ioreqs_free, &sc->ioreqs[i], link);
 	}
 
 	pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0A0A);
 	pci_set_cfgdata16(pi, PCIR_VENDOR, 0xFB5D);
 	pci_set_cfgdata8(pi, PCIR_CLASS, PCIC_STORAGE);
 	pci_set_cfgdata8(pi, PCIR_SUBCLASS, PCIS_STORAGE_NVM);
 	pci_set_cfgdata8(pi, PCIR_PROGIF,
 	                 PCIP_STORAGE_NVM_ENTERPRISE_NVMHCI_1_0);
 
 	/*
 	 * Allocate size of NVMe registers + doorbell space for all queues.
 	 *
 	 * The specification requires a minimum memory I/O window size of 16K.
 	 * The Windows driver will refuse to start a device with a smaller
 	 * window.
 	 */
 	pci_membar_sz = sizeof(struct nvme_registers) +
 	    2 * sizeof(uint32_t) * (sc->max_queues + 1);
 	pci_membar_sz = MAX(pci_membar_sz, NVME_MMIO_SPACE_MIN);
 
 	DPRINTF("nvme membar size: %u", pci_membar_sz);
 
 	error = pci_emul_alloc_bar(pi, 0, PCIBAR_MEM64, pci_membar_sz);
 	if (error) {
 		WPRINTF("%s pci alloc mem bar failed", __func__);
 		goto done;
 	}
 
 	error = pci_emul_add_msixcap(pi, sc->max_queues + 1, NVME_MSIX_BAR);
 	if (error) {
 		WPRINTF("%s pci add msixcap failed", __func__);
 		goto done;
 	}
 
 	error = pci_emul_add_pciecap(pi, PCIEM_TYPE_ROOT_INT_EP);
 	if (error) {
 		WPRINTF("%s pci add Express capability failed", __func__);
 		goto done;
 	}
 
 	pthread_mutex_init(&sc->mtx, NULL);
 	sem_init(&sc->iosemlock, 0, sc->ioslots);
 	blockif_register_resize_callback(sc->nvstore.ctx, pci_nvme_resized, sc);
 
 	pci_nvme_init_queues(sc, sc->max_queues, sc->max_queues);
 	/*
 	 * Controller data depends on Namespace data so initialize Namespace
 	 * data first.
 	 */
 	pci_nvme_init_nsdata(sc, &sc->nsdata, 1, &sc->nvstore);
 	pci_nvme_init_ctrldata(sc);
 	pci_nvme_init_logpages(sc);
 	pci_nvme_init_features(sc);
 
 	pci_nvme_aer_init(sc);
 	pci_nvme_aen_init(sc);
 
 	pci_nvme_reset(sc);
 done:
 	return (error);
 }
 
 static int
 pci_nvme_legacy_config(nvlist_t *nvl, const char *opts)
 {
 	char *cp, *ram;
 
 	if (opts == NULL)
 		return (0);
 
 	if (strncmp(opts, "ram=", 4) == 0) {
 		cp = strchr(opts, ',');
 		if (cp == NULL) {
 			set_config_value_node(nvl, "ram", opts + 4);
 			return (0);
 		}
 		ram = strndup(opts + 4, cp - opts - 4);
 		set_config_value_node(nvl, "ram", ram);
 		free(ram);
 		return (pci_parse_legacy_config(nvl, cp + 1));
 	} else
 		return (blockif_legacy_config(nvl, opts));
 }
 
 static const struct pci_devemu pci_de_nvme = {
 	.pe_emu =	"nvme",
 	.pe_init =	pci_nvme_init,
 	.pe_legacy_config = pci_nvme_legacy_config,
 	.pe_barwrite =	pci_nvme_write,
 	.pe_barread =	pci_nvme_read
 };
 PCI_EMUL_SET(pci_de_nvme);