diff --git a/sys/compat/linuxkpi/common/include/linux/netdevice.h b/sys/compat/linuxkpi/common/include/linux/netdevice.h index 9ec76d9b90ef..07c111cc4fc9 100644 --- a/sys/compat/linuxkpi/common/include/linux/netdevice.h +++ b/sys/compat/linuxkpi/common/include/linux/netdevice.h @@ -1,148 +1,84 @@ /*- * Copyright (c) 2010 Isilon Systems, Inc. * Copyright (c) 2010 iX Systems, Inc. * Copyright (c) 2010 Panasas, Inc. * Copyright (c) 2013-2019 Mellanox Technologies, Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _LINUX_NETDEVICE_H_ #define _LINUX_NETDEVICE_H_ #include #include #include #include #include #include -#include -#include -#include -#include #include #include #ifdef VIMAGE #define init_net *vnet0 #else #define init_net *((struct vnet *)0) #endif #define MAX_ADDR_LEN 20 #define net_device ifnet -static inline struct ifnet * -dev_get_by_index(struct vnet *vnet, int if_index) -{ - struct epoch_tracker et; - struct ifnet *retval; - - NET_EPOCH_ENTER(et); - CURVNET_SET(vnet); - retval = ifnet_byindex_ref(if_index); - CURVNET_RESTORE(); - NET_EPOCH_EXIT(et); - - return (retval); -} - #define dev_hold(d) if_ref(d) #define dev_put(d) if_rele(d) #define dev_net(d) ((d)->if_vnet) #define net_eq(a,b) ((a) == (b)) #define netif_running(dev) !!((dev)->if_drv_flags & IFF_DRV_RUNNING) -#define netif_oper_up(dev) !!((dev)->if_flags & IFF_UP) #define netif_carrier_ok(dev) ((dev)->if_link_state == LINK_STATE_UP) -static inline void * -netdev_priv(const struct net_device *dev) -{ - return (dev->if_softc); -} - #define rtnl_lock() #define rtnl_unlock() -static inline int -dev_mc_delete(struct net_device *dev, void *addr, int alen, int all) -{ - struct sockaddr_dl sdl; - - if (alen > sizeof(sdl.sdl_data)) - return (-EINVAL); - memset(&sdl, 0, sizeof(sdl)); - sdl.sdl_len = sizeof(sdl); - sdl.sdl_family = AF_LINK; - sdl.sdl_alen = alen; - memcpy(&sdl.sdl_data, addr, alen); - - return -if_delmulti(dev, (struct sockaddr *)&sdl); -} - -static inline int -dev_mc_del(struct net_device *dev, void *addr) -{ - return (dev_mc_delete(dev, addr, 6, 0)); -} - -static inline int -dev_mc_add(struct net_device *dev, void *addr, int alen, int newonly) -{ - struct sockaddr_dl sdl; - - if (alen > sizeof(sdl.sdl_data)) - return (-EINVAL); - memset(&sdl, 0, sizeof(sdl)); - sdl.sdl_len = sizeof(sdl); - sdl.sdl_family = AF_LINK; - sdl.sdl_alen = alen; - memcpy(&sdl.sdl_data, addr, alen); - - return -if_addmulti(dev, (struct sockaddr *)&sdl, NULL); -} - /* According to linux::ipoib_main.c. */ struct netdev_notifier_info { struct net_device *dev; }; static inline struct net_device * netdev_notifier_info_to_dev(struct netdev_notifier_info *ni) { return (ni->dev); } int register_netdevice_notifier(struct notifier_block *); int register_inetaddr_notifier(struct notifier_block *); int unregister_netdevice_notifier(struct notifier_block *); int unregister_inetaddr_notifier(struct notifier_block *); #endif /* _LINUX_NETDEVICE_H_ */ diff --git a/sys/dev/mlx4/mlx4_en/en.h b/sys/dev/mlx4/mlx4_en/en.h index e7a02f02c8b7..e63027bc9dc0 100644 --- a/sys/dev/mlx4/mlx4_en/en.h +++ b/sys/dev/mlx4/mlx4_en/en.h @@ -1,952 +1,958 @@ /* * Copyright (c) 2007, 2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #ifndef _MLX4_EN_H_ #define _MLX4_EN_H_ #include #include #include #include #include #include #include #include #ifdef CONFIG_MLX4_EN_DCB #include #endif #include #include #include #include #include #include #include #include #include "en_port.h" #include #define DRV_NAME "mlx4_en" #define MLX4_EN_MSG_LEVEL (NETIF_MSG_LINK | NETIF_MSG_IFDOWN) /* * Device constants */ #define MLX4_EN_PAGE_SHIFT 12 #define MLX4_EN_PAGE_SIZE (1 << MLX4_EN_PAGE_SHIFT) #define MLX4_NET_IP_ALIGN 2 /* bytes */ #define DEF_RX_RINGS 16 #define MAX_RX_RINGS 128 #define MIN_RX_RINGS 4 #define TXBB_SIZE 64 #ifndef MLX4_EN_MAX_RX_SEGS #define MLX4_EN_MAX_RX_SEGS 1 /* or 8 */ #endif #ifndef MLX4_EN_MAX_RX_BYTES #define MLX4_EN_MAX_RX_BYTES MCLBYTES #endif #define HEADROOM (2048 / TXBB_SIZE + 1) #define INIT_OWNER_BIT 0xffffffff #define STAMP_STRIDE 64 #define STAMP_DWORDS (STAMP_STRIDE / 4) #define STAMP_SHIFT 31 #define STAMP_VAL 0x7fffffff #define STATS_DELAY (HZ / 4) #define SERVICE_TASK_DELAY (HZ / 4) #define MAX_NUM_OF_FS_RULES 256 #define MLX4_EN_FILTER_HASH_SHIFT 4 #define MLX4_EN_FILTER_EXPIRY_QUOTA 60 #ifdef CONFIG_NET_RX_BUSY_POLL #define LL_EXTENDED_STATS #endif /* vlan valid range */ #define VLAN_MIN_VALUE 1 #define VLAN_MAX_VALUE 4094 /* * OS related constants and tunables */ #define MLX4_EN_WATCHDOG_TIMEOUT (15 * HZ) #define MLX4_EN_ALLOC_SIZE PAGE_ALIGN(PAGE_SIZE) #define MLX4_EN_ALLOC_ORDER get_order(MLX4_EN_ALLOC_SIZE) enum mlx4_en_alloc_type { MLX4_EN_ALLOC_NEW = 0, MLX4_EN_ALLOC_REPLACEMENT = 1, }; /* Maximum ring sizes */ #define MLX4_EN_DEF_TX_QUEUE_SIZE 4096 /* Minimum packet number till arming the CQ */ #define MLX4_EN_MIN_RX_ARM 2048 #define MLX4_EN_MIN_TX_ARM 2048 /* Maximum ring sizes */ #define MLX4_EN_MAX_TX_SIZE 8192 #define MLX4_EN_MAX_RX_SIZE 8192 /* Minimum ring sizes */ #define MLX4_EN_MIN_RX_SIZE (4096 / TXBB_SIZE) #define MLX4_EN_MIN_TX_SIZE (4096 / TXBB_SIZE) #define MLX4_EN_SMALL_PKT_SIZE 64 #define MLX4_EN_MAX_TX_RING_P_UP 32 #define MLX4_EN_NUM_UP 1 #define MAX_TX_RINGS (MLX4_EN_MAX_TX_RING_P_UP * \ MLX4_EN_NUM_UP) #define MLX4_EN_NO_VLAN 0xffff #define MLX4_EN_DEF_TX_RING_SIZE 1024 #define MLX4_EN_DEF_RX_RING_SIZE 1024 /* Target number of bytes to coalesce with interrupt moderation */ #define MLX4_EN_RX_COAL_TARGET 44 #define MLX4_EN_RX_COAL_TIME 0x10 #define MLX4_EN_TX_COAL_PKTS 64 #define MLX4_EN_TX_COAL_TIME 64 #define MLX4_EN_RX_RATE_LOW 400000 #define MLX4_EN_RX_COAL_TIME_LOW 0 #define MLX4_EN_RX_RATE_HIGH 450000 #define MLX4_EN_RX_COAL_TIME_HIGH 128 #define MLX4_EN_RX_SIZE_THRESH 1024 #define MLX4_EN_RX_RATE_THRESH (1000000 / MLX4_EN_RX_COAL_TIME_HIGH) #define MLX4_EN_SAMPLE_INTERVAL 0 #define MLX4_EN_AVG_PKT_SMALL 256 #define MLX4_EN_AUTO_CONF 0xffff #define MLX4_EN_DEF_RX_PAUSE 1 #define MLX4_EN_DEF_TX_PAUSE 1 /* Interval between successive polls in the Tx routine when polling is used instead of interrupts (in per-core Tx rings) - should be power of 2 */ #define MLX4_EN_TX_POLL_MODER 16 #define MLX4_EN_TX_POLL_TIMEOUT (HZ / 4) #define MLX4_EN_64_ALIGN (64 - NET_SKB_PAD) #define SMALL_PACKET_SIZE (256 - NET_IP_ALIGN) #define HEADER_COPY_SIZE (128) #define MLX4_LOOPBACK_TEST_PAYLOAD (HEADER_COPY_SIZE - ETHER_HDR_LEN) #define MLX4_EN_MIN_MTU 46 #define ETH_BCAST 0xffffffffffffULL #define MLX4_EN_LOOPBACK_RETRIES 5 #define MLX4_EN_LOOPBACK_TIMEOUT 100 #ifdef MLX4_EN_PERF_STAT /* Number of samples to 'average' */ #define AVG_SIZE 128 #define AVG_FACTOR 1024 #define INC_PERF_COUNTER(cnt) (++(cnt)) #define ADD_PERF_COUNTER(cnt, add) ((cnt) += (add)) #define AVG_PERF_COUNTER(cnt, sample) \ ((cnt) = ((cnt) * (AVG_SIZE - 1) + (sample) * AVG_FACTOR) / AVG_SIZE) #define GET_PERF_COUNTER(cnt) (cnt) #define GET_AVG_PERF_COUNTER(cnt) ((cnt) / AVG_FACTOR) #else #define INC_PERF_COUNTER(cnt) do {} while (0) #define ADD_PERF_COUNTER(cnt, add) do {} while (0) #define AVG_PERF_COUNTER(cnt, sample) do {} while (0) #define GET_PERF_COUNTER(cnt) (0) #define GET_AVG_PERF_COUNTER(cnt) (0) #endif /* MLX4_EN_PERF_STAT */ /* Constants for TX flow */ enum { MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */ MAX_BF = 256, MIN_PKT_LEN = 17, }; /* * Configurables */ enum cq_type { RX = 0, TX = 1, }; /* * Useful macros */ #define ROUNDUP_LOG2(x) ilog2(roundup_pow_of_two(x)) #define XNOR(x, y) (!(x) == !(y)) #define ILLEGAL_MAC(addr) (addr == 0xffffffffffffULL || addr == 0x0) struct mlx4_en_tx_info { bus_dmamap_t dma_map; struct mbuf *mb; u32 nr_txbb; u32 nr_bytes; }; #define MLX4_EN_BIT_DESC_OWN 0x80000000 #define CTRL_SIZE sizeof(struct mlx4_wqe_ctrl_seg) #define MLX4_EN_MEMTYPE_PAD 0x100 #define DS_SIZE sizeof(struct mlx4_wqe_data_seg) struct mlx4_en_tx_desc { struct mlx4_wqe_ctrl_seg ctrl; union { struct mlx4_wqe_data_seg data; /* at least one data segment */ struct mlx4_wqe_lso_seg lso; struct mlx4_wqe_inline_seg inl; }; }; #define MLX4_EN_USE_SRQ 0x01000000 #define MLX4_EN_RX_BUDGET 64 #define MLX4_EN_TX_MAX_DESC_SIZE 512 /* bytes */ #define MLX4_EN_TX_MAX_MBUF_SIZE 65536 /* bytes */ #define MLX4_EN_TX_MAX_PAYLOAD_SIZE 65536 /* bytes */ #define MLX4_EN_TX_MAX_MBUF_FRAGS \ ((MLX4_EN_TX_MAX_DESC_SIZE - 128) / DS_SIZE_ALIGNMENT) /* units */ #define MLX4_EN_TX_WQE_MAX_WQEBBS \ (MLX4_EN_TX_MAX_DESC_SIZE / TXBB_SIZE) /* units */ #define MLX4_EN_CX3_LOW_ID 0x1000 #define MLX4_EN_CX3_HIGH_ID 0x1005 struct mlx4_en_tx_ring { spinlock_t tx_lock; bus_dma_tag_t dma_tag; struct mlx4_hwq_resources wqres; u32 size ; /* number of TXBBs */ u32 size_mask; u16 stride; u16 cqn; /* index of port CQ associated with this ring */ u32 prod; u32 cons; u32 buf_size; u32 doorbell_qpn; u8 *buf; u16 poll_cnt; struct mlx4_en_tx_info *tx_info; u8 queue_index; u32 last_nr_txbb; struct mlx4_qp qp; struct mlx4_qp_context context; int qpn; enum mlx4_qp_state qp_state; struct mlx4_srq dummy; u64 bytes; u64 packets; u64 tx_csum; u64 queue_stopped; u64 oversized_packets; u64 wake_queue; u64 tso_packets; u64 defrag_attempts; struct mlx4_bf bf; bool bf_enabled; int hwtstamp_tx_type; spinlock_t comp_lock; int inline_thold; u64 watchdog_time; }; struct mlx4_en_rx_desc { struct mlx4_wqe_data_seg data[MLX4_EN_MAX_RX_SEGS]; }; /* the size of the structure above must be power of two */ CTASSERT(powerof2(sizeof(struct mlx4_en_rx_desc))); struct mlx4_en_rx_mbuf { bus_dmamap_t dma_map; struct mbuf *mbuf; }; struct mlx4_en_rx_spare { bus_dmamap_t dma_map; struct mbuf *mbuf; bus_dma_segment_t segs[MLX4_EN_MAX_RX_SEGS]; }; struct mlx4_en_rx_ring { struct mlx4_hwq_resources wqres; bus_dma_tag_t dma_tag; struct mlx4_en_rx_spare spare; u32 size ; /* number of Rx descs*/ u32 actual_size; u32 size_mask; u16 log_stride; u16 cqn; /* index of port CQ associated with this ring */ u32 prod; u32 cons; u32 buf_size; u8 fcs_del; u32 rx_mb_size; u32 rx_mr_key_be; int qpn; u8 *buf; struct mlx4_en_rx_mbuf *mbuf; u64 errors; u64 bytes; u64 packets; #ifdef LL_EXTENDED_STATS u64 yields; u64 misses; u64 cleaned; #endif u64 csum_ok; u64 csum_none; int hwtstamp_rx_filter; int numa_node; struct lro_ctrl lro; }; static inline int mlx4_en_can_lro(__be16 status) { const __be16 status_all = cpu_to_be16( MLX4_CQE_STATUS_IPV4 | MLX4_CQE_STATUS_IPV4F | MLX4_CQE_STATUS_IPV6 | MLX4_CQE_STATUS_IPV4OPT | MLX4_CQE_STATUS_TCP | MLX4_CQE_STATUS_UDP | MLX4_CQE_STATUS_IPOK); const __be16 status_ipv4_ipok_tcp = cpu_to_be16( MLX4_CQE_STATUS_IPV4 | MLX4_CQE_STATUS_IPOK | MLX4_CQE_STATUS_TCP); const __be16 status_ipv6_ipok_tcp = cpu_to_be16( MLX4_CQE_STATUS_IPV6 | MLX4_CQE_STATUS_IPOK | MLX4_CQE_STATUS_TCP); status &= status_all; return (status == status_ipv4_ipok_tcp || status == status_ipv6_ipok_tcp); } struct mlx4_en_cq { struct mlx4_cq mcq; struct mlx4_hwq_resources wqres; int ring; spinlock_t lock; struct net_device *dev; /* Per-core Tx cq processing support */ struct timer_list timer; int size; int buf_size; unsigned vector; enum cq_type is_tx; u16 moder_time; u16 moder_cnt; struct mlx4_cqe *buf; struct task cq_task; struct taskqueue *tq; #define MLX4_EN_OPCODE_ERROR 0x1e u32 tot_rx; u32 tot_tx; u32 curr_poll_rx_cpu_id; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int state; #define MLX4_EN_CQ_STATE_IDLE 0 #define MLX4_EN_CQ_STATE_NAPI 1 /* NAPI owns this CQ */ #define MLX4_EN_CQ_STATE_POLL 2 /* poll owns this CQ */ #define MLX4_CQ_LOCKED (MLX4_EN_CQ_STATE_NAPI | MLX4_EN_CQ_STATE_POLL) #define MLX4_EN_CQ_STATE_NAPI_YIELD 4 /* NAPI yielded this CQ */ #define MLX4_EN_CQ_STATE_POLL_YIELD 8 /* poll yielded this CQ */ #define CQ_YIELD (MLX4_EN_CQ_STATE_NAPI_YIELD | MLX4_EN_CQ_STATE_POLL_YIELD) #define CQ_USER_PEND (MLX4_EN_CQ_STATE_POLL | MLX4_EN_CQ_STATE_POLL_YIELD) spinlock_t poll_lock; /* protects from LLS/napi conflicts */ #endif /* CONFIG_NET_RX_BUSY_POLL */ }; struct mlx4_en_port_profile { u32 flags; u32 tx_ring_num; u32 rx_ring_num; u32 tx_ring_size; u32 rx_ring_size; u8 rx_pause; u8 rx_ppp; u8 tx_pause; u8 tx_ppp; int rss_rings; int inline_thold; }; struct mlx4_en_profile { int rss_xor; int udp_rss; u8 rss_mask; u32 active_ports; u32 small_pkt_int; u8 no_reset; u8 num_tx_rings_p_up; struct mlx4_en_port_profile prof[MLX4_MAX_PORTS + 1]; }; struct mlx4_en_dev { struct mlx4_dev *dev; struct pci_dev *pdev; struct mutex state_lock; struct net_device *pndev[MLX4_MAX_PORTS + 1]; u32 port_cnt; bool device_up; struct mlx4_en_profile profile; u32 LSO_support; struct workqueue_struct *workqueue; struct device *dma_device; void __iomem *uar_map; struct mlx4_uar priv_uar; struct mlx4_mr mr; u32 priv_pdn; spinlock_t uar_lock; u8 mac_removed[MLX4_MAX_PORTS + 1]; unsigned long last_overflow_check; unsigned long overflow_period; }; struct mlx4_en_rss_map { int base_qpn; struct mlx4_qp qps[MAX_RX_RINGS]; enum mlx4_qp_state state[MAX_RX_RINGS]; struct mlx4_qp indir_qp; enum mlx4_qp_state indir_state; }; enum mlx4_en_port_flag { MLX4_EN_PORT_ANC = 1<<0, /* Auto-negotiation complete */ MLX4_EN_PORT_ANE = 1<<1, /* Auto-negotiation enabled */ }; struct mlx4_en_port_state { int link_state; int link_speed; int transceiver; u32 flags; }; enum mlx4_en_addr_list_act { MLX4_ADDR_LIST_NONE, MLX4_ADDR_LIST_REM, MLX4_ADDR_LIST_ADD, }; struct mlx4_en_addr_list { struct list_head list; enum mlx4_en_addr_list_act action; u8 addr[ETH_ALEN]; u64 reg_id; u64 tunnel_reg_id; }; #ifdef CONFIG_MLX4_EN_DCB /* Minimal TC BW - setting to 0 will block traffic */ #define MLX4_EN_BW_MIN 1 #define MLX4_EN_BW_MAX 100 /* Utilize 100% of the line */ #define MLX4_EN_TC_VENDOR 0 #define MLX4_EN_TC_ETS 7 #endif enum { MLX4_EN_FLAG_PROMISC = (1 << 0), MLX4_EN_FLAG_MC_PROMISC = (1 << 1), /* whether we need to enable hardware loopback by putting dmac * in Tx WQE */ MLX4_EN_FLAG_ENABLE_HW_LOOPBACK = (1 << 2), /* whether we need to drop packets that hardware loopback-ed */ MLX4_EN_FLAG_RX_FILTER_NEEDED = (1 << 3), MLX4_EN_FLAG_FORCE_PROMISC = (1 << 4), #ifdef CONFIG_MLX4_EN_DCB MLX4_EN_FLAG_DCB_ENABLED = (1 << 5) #endif }; #define MLX4_EN_MAC_HASH_SIZE (1 << BITS_PER_BYTE) #define MLX4_EN_MAC_HASH_IDX 5 struct en_port { struct kobject kobj; struct mlx4_dev *dev; u8 port_num; u8 vport_num; }; struct mlx4_en_priv { struct mlx4_en_dev *mdev; struct mlx4_en_port_profile *prof; struct net_device *dev; unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; struct mlx4_en_port_state port_state; spinlock_t stats_lock; /* To allow rules removal while port is going down */ struct list_head ethtool_list; unsigned long last_moder_packets[MAX_RX_RINGS]; unsigned long last_moder_tx_packets; unsigned long last_moder_bytes[MAX_RX_RINGS]; unsigned long last_moder_jiffies; int last_moder_time[MAX_RX_RINGS]; u16 rx_usecs; u16 rx_frames; u16 tx_usecs; u16 tx_frames; u32 pkt_rate_low; u32 rx_usecs_low; u32 pkt_rate_high; u32 rx_usecs_high; u32 sample_interval; u32 adaptive_rx_coal; u32 msg_enable; u32 loopback_ok; u32 validate_loopback; struct mlx4_hwq_resources res; int link_state; int last_link_state; bool port_up; int port; int registered; int gone; int allocated; unsigned char current_mac[ETH_ALEN + 2]; u64 mac; int mac_index; unsigned max_mtu; int base_qpn; int cqe_factor; struct mlx4_en_rss_map rss_map; u32 flags; u8 num_tx_rings_p_up; u32 tx_ring_num; u32 rx_ring_num; u32 rx_mb_size; struct mlx4_en_tx_ring **tx_ring; struct mlx4_en_rx_ring *rx_ring[MAX_RX_RINGS]; struct mlx4_en_cq **tx_cq; struct mlx4_en_cq *rx_cq[MAX_RX_RINGS]; struct mlx4_qp drop_qp; struct work_struct rx_mode_task; struct work_struct watchdog_task; struct work_struct linkstate_task; struct delayed_work stats_task; struct delayed_work service_task; struct mlx4_en_perf_stats pstats; struct mlx4_en_pkt_stats pkstats; struct mlx4_en_pkt_stats pkstats_last; struct mlx4_en_flow_stats_rx rx_priority_flowstats[MLX4_NUM_PRIORITIES]; struct mlx4_en_flow_stats_tx tx_priority_flowstats[MLX4_NUM_PRIORITIES]; struct mlx4_en_flow_stats_rx rx_flowstats; struct mlx4_en_flow_stats_tx tx_flowstats; struct mlx4_en_port_stats port_stats; struct mlx4_en_vport_stats vport_stats; struct mlx4_en_vf_stats vf_stats; struct list_head mc_list; struct list_head uc_list; struct list_head curr_mc_list; struct list_head curr_uc_list; u64 broadcast_id; struct mlx4_en_stat_out_mbox hw_stats; int vids[128]; bool wol; struct device *ddev; struct dentry *dev_root; u32 counter_index; eventhandler_tag vlan_attach; eventhandler_tag vlan_detach; struct callout watchdog_timer; struct ifmedia media; volatile int blocked; struct sysctl_oid *conf_sysctl; struct sysctl_oid *stat_sysctl; struct sysctl_ctx_list conf_ctx; struct sysctl_ctx_list stat_ctx; #ifdef CONFIG_MLX4_EN_DCB struct ieee_ets ets; u16 maxrate[IEEE_8021QAZ_MAX_TCS]; u8 dcbx_cap; #endif #ifdef CONFIG_RFS_ACCEL spinlock_t filters_lock; int last_filter_id; struct list_head filters; struct hlist_head filter_hash[1 << MLX4_EN_FILTER_HASH_SHIFT]; #endif u64 tunnel_reg_id; struct en_port *vf_ports[MLX4_MAX_NUM_VF]; unsigned long last_ifq_jiffies; u64 if_counters_rx_errors; u64 if_counters_rx_no_buffer; }; enum mlx4_en_wol { MLX4_EN_WOL_MAGIC = (1ULL << 61), MLX4_EN_WOL_ENABLED = (1ULL << 62), }; struct mlx4_mac_entry { struct hlist_node hlist; unsigned char mac[ETH_ALEN + 2]; u64 reg_id; }; +static inline void * +netdev_priv(const struct net_device *dev) +{ + return (dev->if_softc); +} + static inline struct mlx4_cqe *mlx4_en_get_cqe(u8 *buf, int idx, int cqe_sz) { return (struct mlx4_cqe *)(buf + idx * cqe_sz); } #ifdef CONFIG_NET_RX_BUSY_POLL static inline void mlx4_en_cq_init_lock(struct mlx4_en_cq *cq) { spin_lock_init(&cq->poll_lock); cq->state = MLX4_EN_CQ_STATE_IDLE; } /* called from the device poll rutine to get ownership of a cq */ static inline bool mlx4_en_cq_lock_napi(struct mlx4_en_cq *cq) { int rc = true; spin_lock(&cq->poll_lock); if (cq->state & MLX4_CQ_LOCKED) { WARN_ON(cq->state & MLX4_EN_CQ_STATE_NAPI); cq->state |= MLX4_EN_CQ_STATE_NAPI_YIELD; rc = false; } else /* we don't care if someone yielded */ cq->state = MLX4_EN_CQ_STATE_NAPI; spin_unlock(&cq->poll_lock); return rc; } /* returns true is someone tried to get the cq while napi had it */ static inline bool mlx4_en_cq_unlock_napi(struct mlx4_en_cq *cq) { int rc = false; spin_lock(&cq->poll_lock); WARN_ON(cq->state & (MLX4_EN_CQ_STATE_POLL | MLX4_EN_CQ_STATE_NAPI_YIELD)); if (cq->state & MLX4_EN_CQ_STATE_POLL_YIELD) rc = true; cq->state = MLX4_EN_CQ_STATE_IDLE; spin_unlock(&cq->poll_lock); return rc; } /* called from mlx4_en_low_latency_poll() */ static inline bool mlx4_en_cq_lock_poll(struct mlx4_en_cq *cq) { int rc = true; spin_lock_bh(&cq->poll_lock); if ((cq->state & MLX4_CQ_LOCKED)) { struct net_device *dev = cq->dev; struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_rx_ring *rx_ring = priv->rx_ring[cq->ring]; cq->state |= MLX4_EN_CQ_STATE_POLL_YIELD; rc = false; #ifdef LL_EXTENDED_STATS rx_ring->yields++; #endif } else /* preserve yield marks */ cq->state |= MLX4_EN_CQ_STATE_POLL; spin_unlock_bh(&cq->poll_lock); return rc; } /* returns true if someone tried to get the cq while it was locked */ static inline bool mlx4_en_cq_unlock_poll(struct mlx4_en_cq *cq) { int rc = false; spin_lock_bh(&cq->poll_lock); WARN_ON(cq->state & (MLX4_EN_CQ_STATE_NAPI)); if (cq->state & MLX4_EN_CQ_STATE_POLL_YIELD) rc = true; cq->state = MLX4_EN_CQ_STATE_IDLE; spin_unlock_bh(&cq->poll_lock); return rc; } /* true if a socket is polling, even if it did not get the lock */ static inline bool mlx4_en_cq_busy_polling(struct mlx4_en_cq *cq) { WARN_ON(!(cq->state & MLX4_CQ_LOCKED)); return cq->state & CQ_USER_PEND; } #else static inline void mlx4_en_cq_init_lock(struct mlx4_en_cq *cq) { } static inline bool mlx4_en_cq_lock_napi(struct mlx4_en_cq *cq) { return true; } static inline bool mlx4_en_cq_unlock_napi(struct mlx4_en_cq *cq) { return false; } static inline bool mlx4_en_cq_lock_poll(struct mlx4_en_cq *cq) { return false; } static inline bool mlx4_en_cq_unlock_poll(struct mlx4_en_cq *cq) { return false; } static inline bool mlx4_en_cq_busy_polling(struct mlx4_en_cq *cq) { return false; } #endif /* CONFIG_NET_RX_BUSY_POLL */ #define MLX4_EN_WOL_DO_MODIFY (1ULL << 63) void mlx4_en_destroy_netdev(struct net_device *dev); int mlx4_en_init_netdev(struct mlx4_en_dev *mdev, int port, struct mlx4_en_port_profile *prof); int mlx4_en_start_port(struct net_device *dev); void mlx4_en_stop_port(struct net_device *dev); void mlx4_en_free_resources(struct mlx4_en_priv *priv); int mlx4_en_alloc_resources(struct mlx4_en_priv *priv); int mlx4_en_pre_config(struct mlx4_en_priv *priv); int mlx4_en_create_cq(struct mlx4_en_priv *priv, struct mlx4_en_cq **pcq, int entries, int ring, enum cq_type mode, int node); void mlx4_en_destroy_cq(struct mlx4_en_priv *priv, struct mlx4_en_cq **pcq); int mlx4_en_activate_cq(struct mlx4_en_priv *priv, struct mlx4_en_cq *cq, int cq_idx); void mlx4_en_deactivate_cq(struct mlx4_en_priv *priv, struct mlx4_en_cq *cq); int mlx4_en_set_cq_moder(struct mlx4_en_priv *priv, struct mlx4_en_cq *cq); int mlx4_en_arm_cq(struct mlx4_en_priv *priv, struct mlx4_en_cq *cq); void mlx4_en_tx_irq(struct mlx4_cq *mcq); u16 mlx4_en_select_queue(struct net_device *dev, struct mbuf *mb); int mlx4_en_xmit(struct mlx4_en_priv *priv, int tx_ind, struct mbuf **mbp); int mlx4_en_transmit(struct ifnet *dev, struct mbuf *m); int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring **pring, u32 size, u16 stride, int node, int queue_idx); void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring **pring); int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int cq, int user_prio); void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring); void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev); void mlx4_en_qflush(struct ifnet *dev); int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring **pring, u32 size, int node); void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring **pring, u32 size); void mlx4_en_rx_que(void *context, int pending); int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv); void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring); int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget); void mlx4_en_poll_tx_cq(unsigned long data); void mlx4_en_fill_qp_context(struct mlx4_en_priv *priv, int size, int stride, int is_tx, int rss, int qpn, int cqn, int user_prio, struct mlx4_qp_context *context); void mlx4_en_sqp_event(struct mlx4_qp *qp, enum mlx4_event event); int mlx4_en_map_buffer(struct mlx4_buf *buf); void mlx4_en_unmap_buffer(struct mlx4_buf *buf); void mlx4_en_calc_rx_buf(struct net_device *dev); const u32 *mlx4_en_get_rss_key(struct mlx4_en_priv *priv, u16 *keylen); u8 mlx4_en_get_rss_mask(struct mlx4_en_priv *priv); int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv); void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv); int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv); void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv); int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring); void mlx4_en_rx_irq(struct mlx4_cq *mcq); int mlx4_SET_VLAN_FLTR(struct mlx4_dev *dev, struct mlx4_en_priv *priv); int mlx4_en_DUMP_ETH_STATS(struct mlx4_en_dev *mdev, u8 port, u8 reset); int mlx4_en_QUERY_PORT(struct mlx4_en_dev *mdev, u8 port); int mlx4_en_get_vport_stats(struct mlx4_en_dev *mdev, u8 port); void mlx4_en_create_debug_files(struct mlx4_en_priv *priv); void mlx4_en_delete_debug_files(struct mlx4_en_priv *priv); int mlx4_en_register_debugfs(void); void mlx4_en_unregister_debugfs(void); #ifdef CONFIG_MLX4_EN_DCB extern const struct dcbnl_rtnl_ops mlx4_en_dcbnl_ops; extern const struct dcbnl_rtnl_ops mlx4_en_dcbnl_pfc_ops; #endif int mlx4_en_setup_tc(struct net_device *dev, u8 up); #ifdef CONFIG_RFS_ACCEL void mlx4_en_cleanup_filters(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *rx_ring); #endif #define MLX4_EN_NUM_SELF_TEST 5 void mlx4_en_ex_selftest(struct net_device *dev, u32 *flags, u64 *buf); void mlx4_en_ptp_overflow_check(struct mlx4_en_dev *mdev); /* * Functions for time stamping */ #define SKBTX_HW_TSTAMP (1 << 0) #define SKBTX_IN_PROGRESS (1 << 2) u64 mlx4_en_get_cqe_ts(struct mlx4_cqe *cqe); /* Functions for caching and restoring statistics */ int mlx4_en_get_sset_count(struct net_device *dev, int sset); void mlx4_en_restore_ethtool_stats(struct mlx4_en_priv *priv, u64 *data); /* * Globals */ extern const struct ethtool_ops mlx4_en_ethtool_ops; /* * Defines for link speed - needed by selftest */ #define MLX4_EN_LINK_SPEED_1G 1000 #define MLX4_EN_LINK_SPEED_10G 10000 #define MLX4_EN_LINK_SPEED_40G 40000 enum { NETIF_MSG_DRV = 0x0001, NETIF_MSG_PROBE = 0x0002, NETIF_MSG_LINK = 0x0004, NETIF_MSG_TIMER = 0x0008, NETIF_MSG_IFDOWN = 0x0010, NETIF_MSG_IFUP = 0x0020, NETIF_MSG_RX_ERR = 0x0040, NETIF_MSG_TX_ERR = 0x0080, NETIF_MSG_TX_QUEUED = 0x0100, NETIF_MSG_INTR = 0x0200, NETIF_MSG_TX_DONE = 0x0400, NETIF_MSG_RX_STATUS = 0x0800, NETIF_MSG_PKTDATA = 0x1000, NETIF_MSG_HW = 0x2000, NETIF_MSG_WOL = 0x4000, }; /* * printk / logging functions */ #define en_print(level, priv, format, arg...) \ { \ if ((priv)->registered) \ printk(level "%s: %s: " format, DRV_NAME, \ (priv)->dev->if_xname, ## arg); \ else \ printk(level "%s: %s: Port %d: " format, \ DRV_NAME, dev_name(&(priv)->mdev->pdev->dev), \ (priv)->port, ## arg); \ } #define en_dbg(mlevel, priv, format, arg...) \ do { \ if (NETIF_MSG_##mlevel & priv->msg_enable) \ en_print(KERN_DEBUG, priv, format, ##arg); \ } while (0) #define en_warn(priv, format, arg...) \ en_print(KERN_WARNING, priv, format, ##arg) #define en_err(priv, format, arg...) \ en_print(KERN_ERR, priv, format, ##arg) #define en_info(priv, format, arg...) \ en_print(KERN_INFO, priv, format, ## arg) #define mlx4_err(mdev, format, arg...) \ pr_err("%s %s: " format, DRV_NAME, \ dev_name(&(mdev)->pdev->dev), ##arg) #define mlx4_info(mdev, format, arg...) \ pr_info("%s %s: " format, DRV_NAME, \ dev_name(&(mdev)->pdev->dev), ##arg) #define mlx4_warn(mdev, format, arg...) \ pr_warning("%s %s: " format, DRV_NAME, \ dev_name(&(mdev)->pdev->dev), ##arg) #endif diff --git a/sys/ofed/drivers/infiniband/core/ib_addr.c b/sys/ofed/drivers/infiniband/core/ib_addr.c index f8c1cb180af8..ef5e264577e0 100644 --- a/sys/ofed/drivers/infiniband/core/ib_addr.c +++ b/sys/ofed/drivers/infiniband/core/ib_addr.c @@ -1,908 +1,907 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include #include #include "core_priv.h" struct addr_req { struct list_head list; struct sockaddr_storage src_addr; struct sockaddr_storage dst_addr; struct rdma_dev_addr *addr; struct rdma_addr_client *client; void *context; void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context); int timeout; int status; }; static void process_req(struct work_struct *work); static DEFINE_MUTEX(lock); static LIST_HEAD(req_list); static DECLARE_DELAYED_WORK(work, process_req); static struct workqueue_struct *addr_wq; int rdma_addr_size(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return sizeof(struct sockaddr_in); case AF_INET6: return sizeof(struct sockaddr_in6); case AF_IB: return sizeof(struct sockaddr_ib); default: return 0; } } EXPORT_SYMBOL(rdma_addr_size); int rdma_addr_size_in6(struct sockaddr_in6 *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_in6); int rdma_addr_size_kss(struct sockaddr_storage *addr) { int ret = rdma_addr_size((struct sockaddr *) addr); return ret <= sizeof(*addr) ? ret : 0; } EXPORT_SYMBOL(rdma_addr_size_kss); static struct rdma_addr_client self; void rdma_addr_register_client(struct rdma_addr_client *client) { atomic_set(&client->refcount, 1); init_completion(&client->comp); } EXPORT_SYMBOL(rdma_addr_register_client); static inline void put_client(struct rdma_addr_client *client) { if (atomic_dec_and_test(&client->refcount)) complete(&client->comp); } void rdma_addr_unregister_client(struct rdma_addr_client *client) { put_client(client); wait_for_completion(&client->comp); } EXPORT_SYMBOL(rdma_addr_unregister_client); static inline void rdma_copy_addr_sub(u8 *dst, const u8 *src, unsigned min, unsigned max) { if (min > max) min = max; memcpy(dst, src, min); memset(dst + min, 0, max - min); } int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev, const unsigned char *dst_dev_addr) { /* check for loopback device */ if (dev->if_flags & IFF_LOOPBACK) { dev_addr->dev_type = ARPHRD_ETHER; memset(dev_addr->src_dev_addr, 0, MAX_ADDR_LEN); memset(dev_addr->broadcast, 0, MAX_ADDR_LEN); memset(dev_addr->dst_dev_addr, 0, MAX_ADDR_LEN); dev_addr->bound_dev_if = dev->if_index; return (0); } else if (dev->if_type == IFT_INFINIBAND) dev_addr->dev_type = ARPHRD_INFINIBAND; else if (dev->if_type == IFT_ETHER) dev_addr->dev_type = ARPHRD_ETHER; else dev_addr->dev_type = 0; rdma_copy_addr_sub(dev_addr->src_dev_addr, IF_LLADDR(dev), dev->if_addrlen, MAX_ADDR_LEN); rdma_copy_addr_sub(dev_addr->broadcast, dev->if_broadcastaddr, dev->if_addrlen, MAX_ADDR_LEN); if (dst_dev_addr != NULL) { rdma_copy_addr_sub(dev_addr->dst_dev_addr, dst_dev_addr, dev->if_addrlen, MAX_ADDR_LEN); } dev_addr->bound_dev_if = dev->if_index; return 0; } EXPORT_SYMBOL(rdma_copy_addr); int rdma_translate_ip(const struct sockaddr *addr, struct rdma_dev_addr *dev_addr) { struct net_device *dev; int ret; if (dev_addr->bound_dev_if) { dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); } else switch (addr->sa_family) { #ifdef INET case AF_INET: dev = ip_ifp_find(dev_addr->net, ((const struct sockaddr_in *)addr)->sin_addr.s_addr); break; #endif #ifdef INET6 case AF_INET6: dev = ip6_ifp_find(dev_addr->net, ((const struct sockaddr_in6 *)addr)->sin6_addr, 0); break; #endif default: dev = NULL; break; } if (dev != NULL) { /* disallow connections through 127.0.0.1 itself */ if (dev->if_flags & IFF_LOOPBACK) ret = -EINVAL; else ret = rdma_copy_addr(dev_addr, dev, NULL); dev_put(dev); } else { ret = -ENODEV; } return ret; } EXPORT_SYMBOL(rdma_translate_ip); static void set_timeout(int time) { int delay; /* under FreeBSD ticks are 32-bit */ delay = time - jiffies; if (delay <= 0) delay = 1; else if (delay > hz) delay = hz; mod_delayed_work(addr_wq, &work, delay); } static void queue_req(struct addr_req *req) { struct addr_req *temp_req; mutex_lock(&lock); list_for_each_entry_reverse(temp_req, &req_list, list) { if (time_after_eq(req->timeout, temp_req->timeout)) break; } list_add(&req->list, &temp_req->list); if (req_list.next == &req->list) set_timeout(req->timeout); mutex_unlock(&lock); } #if defined(INET) || defined(INET6) static int addr_resolve_multi(u8 *edst, struct ifnet *ifp, struct sockaddr *dst_in) { struct sockaddr *llsa; struct sockaddr_dl sdl; int error; sdl.sdl_len = sizeof(sdl); llsa = (struct sockaddr *)&sdl; if (ifp->if_resolvemulti == NULL) { error = EOPNOTSUPP; } else { error = ifp->if_resolvemulti(ifp, &llsa, dst_in); if (error == 0) { rdma_copy_addr_sub(edst, LLADDR((struct sockaddr_dl *)llsa), ifp->if_addrlen, MAX_ADDR_LEN); } } return (error); } #endif #ifdef INET static int addr4_resolve(struct sockaddr_in *src_in, const struct sockaddr_in *dst_in, struct rdma_dev_addr *addr, u8 *edst, struct ifnet **ifpp) { enum { ADDR_VALID = 0, ADDR_SRC_ANY = 1, ADDR_DST_ANY = 2, }; struct sockaddr_in dst_tmp = *dst_in; in_port_t src_port; struct sockaddr *saddr = NULL; struct nhop_object *nh; struct ifnet *ifp; int error; int type; NET_EPOCH_ASSERT(); /* set VNET, if any */ CURVNET_SET(addr->net); /* set default TTL limit */ addr->hoplimit = V_ip_defttl; type = ADDR_VALID; if (src_in->sin_addr.s_addr == INADDR_ANY) type |= ADDR_SRC_ANY; if (dst_tmp.sin_addr.s_addr == INADDR_ANY) type |= ADDR_DST_ANY; /* * Make sure the socket address length field is set. */ dst_tmp.sin_len = sizeof(dst_tmp); /* Step 1 - lookup destination route if any */ switch (type) { case ADDR_VALID: case ADDR_SRC_ANY: /* regular destination route lookup */ nh = fib4_lookup(RT_DEFAULT_FIB, dst_tmp.sin_addr,0,NHR_NONE,0); if (nh == NULL) { error = EHOSTUNREACH; goto done; } break; default: error = ENETUNREACH; goto done; } /* Step 2 - find outgoing network interface */ switch (type) { case ADDR_VALID: /* get source interface */ if (addr->bound_dev_if != 0) { ifp = dev_get_by_index(addr->net, addr->bound_dev_if); } else { ifp = ip_ifp_find(addr->net, src_in->sin_addr.s_addr); } /* check source interface */ if (ifp == NULL) { error = ENETUNREACH; goto done; } else if (ifp->if_flags & IFF_LOOPBACK) { /* * Source address cannot be a loopback device. */ error = EHOSTUNREACH; goto error_put_ifp; } else if (nh->nh_ifp->if_flags & IFF_LOOPBACK) { if (memcmp(&src_in->sin_addr, &dst_in->sin_addr, sizeof(src_in->sin_addr))) { /* * Destination is loopback, but source * and destination address is not the * same. */ error = EHOSTUNREACH; goto error_put_ifp; } /* get destination network interface from route */ dev_put(ifp); ifp = nh->nh_ifp; dev_hold(ifp); } else if (ifp != nh->nh_ifp) { /* * Source and destination interfaces are * different. */ error = ENETUNREACH; goto error_put_ifp; } break; case ADDR_SRC_ANY: /* check for loopback device */ if (nh->nh_ifp->if_flags & IFF_LOOPBACK) saddr = (struct sockaddr *)&dst_tmp; else saddr = nh->nh_ifa->ifa_addr; /* get destination network interface from route */ ifp = nh->nh_ifp; dev_hold(ifp); break; default: break; } /* * Step 3 - resolve destination MAC address */ if (dst_tmp.sin_addr.s_addr == INADDR_BROADCAST) { rdma_copy_addr_sub(edst, ifp->if_broadcastaddr, ifp->if_addrlen, MAX_ADDR_LEN); error = 0; } else if (IN_MULTICAST(ntohl(dst_tmp.sin_addr.s_addr))) { bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0; error = addr_resolve_multi(edst, ifp, (struct sockaddr *)&dst_tmp); if (error != 0) goto error_put_ifp; else if (is_gw) addr->network = RDMA_NETWORK_IPV4; } else if (ifp->if_flags & IFF_LOOPBACK) { memset(edst, 0, MAX_ADDR_LEN); error = 0; } else { bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0; memset(edst, 0, MAX_ADDR_LEN); error = arpresolve(ifp, is_gw, NULL, is_gw ? &nh->gw_sa : (const struct sockaddr *)&dst_tmp, edst, NULL, NULL); if (error != 0) goto error_put_ifp; else if (is_gw) addr->network = RDMA_NETWORK_IPV4; } /* * Step 4 - update source address, if any */ if (saddr != NULL) { src_port = src_in->sin_port; memcpy(src_in, saddr, rdma_addr_size(saddr)); src_in->sin_port = src_port; /* preserve port number */ } *ifpp = ifp; goto done; error_put_ifp: dev_put(ifp); done: CURVNET_RESTORE(); if (error == EWOULDBLOCK || error == EAGAIN) error = ENODATA; return (-error); } #else static int addr4_resolve(struct sockaddr_in *src_in, const struct sockaddr_in *dst_in, struct rdma_dev_addr *addr, u8 *edst, struct ifnet **ifpp) { return -EADDRNOTAVAIL; } #endif #ifdef INET6 static int addr6_resolve(struct sockaddr_in6 *src_in, const struct sockaddr_in6 *dst_in, struct rdma_dev_addr *addr, u8 *edst, struct ifnet **ifpp) { enum { ADDR_VALID = 0, ADDR_SRC_ANY = 1, ADDR_DST_ANY = 2, }; struct sockaddr_in6 dst_tmp = *dst_in; in_port_t src_port; struct sockaddr *saddr = NULL; struct nhop_object *nh; struct ifnet *ifp; int error; int type; NET_EPOCH_ASSERT(); /* set VNET, if any */ CURVNET_SET(addr->net); /* set default TTL limit */ addr->hoplimit = V_ip_defttl; type = ADDR_VALID; if (ipv6_addr_any(&src_in->sin6_addr)) type |= ADDR_SRC_ANY; if (ipv6_addr_any(&dst_tmp.sin6_addr)) type |= ADDR_DST_ANY; /* * Make sure the socket address length field is set. */ dst_tmp.sin6_len = sizeof(dst_tmp); /* * Make sure the scope ID gets embedded, else nd6_resolve() will * not find the record. */ dst_tmp.sin6_scope_id = addr->bound_dev_if; sa6_embedscope(&dst_tmp, 0); /* Step 1 - lookup destination route if any */ switch (type) { case ADDR_VALID: /* sanity check for IPv4 addresses */ if (ipv6_addr_v4mapped(&src_in->sin6_addr) != ipv6_addr_v4mapped(&dst_tmp.sin6_addr)) { error = EAFNOSUPPORT; goto done; } /* FALLTHROUGH */ case ADDR_SRC_ANY: /* regular destination route lookup */ nh = fib6_lookup(RT_DEFAULT_FIB, &dst_in->sin6_addr, addr->bound_dev_if, NHR_NONE, 0); if (nh == NULL) { error = EHOSTUNREACH; goto done; } break; default: error = ENETUNREACH; goto done; } /* Step 2 - find outgoing network interface */ switch (type) { case ADDR_VALID: /* get source interface */ if (addr->bound_dev_if != 0) { ifp = dev_get_by_index(addr->net, addr->bound_dev_if); } else { ifp = ip6_ifp_find(addr->net, src_in->sin6_addr, 0); } /* check source interface */ if (ifp == NULL) { error = ENETUNREACH; goto done; } else if (ifp->if_flags & IFF_LOOPBACK) { /* * Source address cannot be a loopback device. */ error = EHOSTUNREACH; goto error_put_ifp; } else if (nh->nh_ifp->if_flags & IFF_LOOPBACK) { if (memcmp(&src_in->sin6_addr, &dst_in->sin6_addr, sizeof(src_in->sin6_addr))) { /* * Destination is loopback, but source * and destination address is not the * same. */ error = EHOSTUNREACH; goto error_put_ifp; } /* get destination network interface from route */ dev_put(ifp); ifp = nh->nh_ifp; dev_hold(ifp); } else if (ifp != nh->nh_ifp) { /* * Source and destination interfaces are * different. */ error = ENETUNREACH; goto error_put_ifp; } break; case ADDR_SRC_ANY: /* check for loopback device */ if (nh->nh_ifp->if_flags & IFF_LOOPBACK) saddr = (struct sockaddr *)&dst_tmp; else saddr = nh->nh_ifa->ifa_addr; /* get destination network interface from route */ ifp = nh->nh_ifp; dev_hold(ifp); break; default: break; } /* * Step 3 - resolve destination MAC address */ if (IN6_IS_ADDR_MULTICAST(&dst_tmp.sin6_addr)) { bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0; error = addr_resolve_multi(edst, ifp, (struct sockaddr *)&dst_tmp); if (error != 0) goto error_put_ifp; else if (is_gw) addr->network = RDMA_NETWORK_IPV6; } else if (nh->nh_ifp->if_flags & IFF_LOOPBACK) { memset(edst, 0, MAX_ADDR_LEN); error = 0; } else { bool is_gw = (nh->nh_flags & NHF_GATEWAY) != 0; memset(edst, 0, MAX_ADDR_LEN); error = nd6_resolve(ifp, is_gw, NULL, is_gw ? &nh->gw_sa : (const struct sockaddr *)&dst_tmp, edst, NULL, NULL); if (error != 0) goto error_put_ifp; else if (is_gw) addr->network = RDMA_NETWORK_IPV6; } /* * Step 4 - update source address, if any */ if (saddr != NULL) { src_port = src_in->sin6_port; memcpy(src_in, saddr, rdma_addr_size(saddr)); src_in->sin6_port = src_port; /* preserve port number */ } *ifpp = ifp; goto done; error_put_ifp: dev_put(ifp); done: CURVNET_RESTORE(); if (error == EWOULDBLOCK || error == EAGAIN) error = ENODATA; return (-error); } #else static int addr6_resolve(struct sockaddr_in6 *src_in, const struct sockaddr_in6 *dst_in, struct rdma_dev_addr *addr, u8 *edst, struct ifnet **ifpp) { return -EADDRNOTAVAIL; } #endif static int addr_resolve_neigh(struct ifnet *dev, const struct sockaddr *dst_in, u8 *edst, struct rdma_dev_addr *addr) { if (dev->if_flags & IFF_LOOPBACK) { int ret; /* * Binding to a loopback device is not allowed. Make * sure the destination device address is global by * clearing the bound device interface: */ if (addr->bound_dev_if == dev->if_index) addr->bound_dev_if = 0; ret = rdma_translate_ip(dst_in, addr); if (ret == 0) { memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN); } return ret; } /* If the device doesn't do ARP internally */ if (!(dev->if_flags & IFF_NOARP)) return rdma_copy_addr(addr, dev, edst); return rdma_copy_addr(addr, dev, NULL); } static int addr_resolve(struct sockaddr *src_in, const struct sockaddr *dst_in, struct rdma_dev_addr *addr) { struct epoch_tracker et; struct net_device *ndev = NULL; u8 edst[MAX_ADDR_LEN]; int ret; if (dst_in->sa_family != src_in->sa_family) return -EINVAL; NET_EPOCH_ENTER(et); switch (src_in->sa_family) { case AF_INET: ret = addr4_resolve((struct sockaddr_in *)src_in, (const struct sockaddr_in *)dst_in, addr, edst, &ndev); break; case AF_INET6: ret = addr6_resolve((struct sockaddr_in6 *)src_in, (const struct sockaddr_in6 *)dst_in, addr, edst, &ndev); break; default: ret = -EADDRNOTAVAIL; break; } NET_EPOCH_EXIT(et); /* check for error */ if (ret != 0) return ret; /* store MAC addresses and check for loopback */ ret = addr_resolve_neigh(ndev, dst_in, edst, addr); /* set belonging VNET, if any */ addr->net = dev_net(ndev); dev_put(ndev); return ret; } static void process_req(struct work_struct *work) { struct addr_req *req, *temp_req; struct sockaddr *src_in, *dst_in; struct list_head done_list; INIT_LIST_HEAD(&done_list); mutex_lock(&lock); list_for_each_entry_safe(req, temp_req, &req_list, list) { if (req->status == -ENODATA) { src_in = (struct sockaddr *) &req->src_addr; dst_in = (struct sockaddr *) &req->dst_addr; req->status = addr_resolve(src_in, dst_in, req->addr); if (req->status && time_after_eq(jiffies, req->timeout)) req->status = -ETIMEDOUT; else if (req->status == -ENODATA) continue; } list_move_tail(&req->list, &done_list); } if (!list_empty(&req_list)) { req = list_entry(req_list.next, struct addr_req, list); set_timeout(req->timeout); } mutex_unlock(&lock); list_for_each_entry_safe(req, temp_req, &done_list, list) { list_del(&req->list); req->callback(req->status, (struct sockaddr *) &req->src_addr, req->addr, req->context); put_client(req->client); kfree(req); } } int rdma_resolve_ip(struct rdma_addr_client *client, struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_dev_addr *addr, int timeout_ms, void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context), void *context) { struct sockaddr *src_in, *dst_in; struct addr_req *req; int ret = 0; req = kzalloc(sizeof *req, GFP_KERNEL); if (!req) return -ENOMEM; src_in = (struct sockaddr *) &req->src_addr; dst_in = (struct sockaddr *) &req->dst_addr; if (src_addr) { if (src_addr->sa_family != dst_addr->sa_family) { ret = -EINVAL; goto err; } memcpy(src_in, src_addr, rdma_addr_size(src_addr)); } else { src_in->sa_family = dst_addr->sa_family; } memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr)); req->addr = addr; req->callback = callback; req->context = context; req->client = client; atomic_inc(&client->refcount); req->status = addr_resolve(src_in, dst_in, addr); switch (req->status) { case 0: req->timeout = jiffies; queue_req(req); break; case -ENODATA: req->timeout = msecs_to_jiffies(timeout_ms) + jiffies; queue_req(req); break; default: ret = req->status; atomic_dec(&client->refcount); goto err; } return ret; err: kfree(req); return ret; } EXPORT_SYMBOL(rdma_resolve_ip); int rdma_resolve_ip_route(struct sockaddr *src_addr, const struct sockaddr *dst_addr, struct rdma_dev_addr *addr) { struct sockaddr_storage ssrc_addr = {}; struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr; if (src_addr) { if (src_addr->sa_family != dst_addr->sa_family) return -EINVAL; memcpy(src_in, src_addr, rdma_addr_size(src_addr)); } else { src_in->sa_family = dst_addr->sa_family; } return addr_resolve(src_in, dst_addr, addr); } EXPORT_SYMBOL(rdma_resolve_ip_route); void rdma_addr_cancel(struct rdma_dev_addr *addr) { struct addr_req *req, *temp_req; mutex_lock(&lock); list_for_each_entry_safe(req, temp_req, &req_list, list) { if (req->addr == addr) { req->status = -ECANCELED; req->timeout = jiffies; list_move(&req->list, &req_list); set_timeout(req->timeout); break; } } mutex_unlock(&lock); } EXPORT_SYMBOL(rdma_addr_cancel); struct resolve_cb_context { struct rdma_dev_addr *addr; struct completion comp; int status; }; static void resolve_cb(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context) { if (!status) memcpy(((struct resolve_cb_context *)context)->addr, addr, sizeof(struct rdma_dev_addr)); ((struct resolve_cb_context *)context)->status = status; complete(&((struct resolve_cb_context *)context)->comp); } int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, const union ib_gid *dgid, u8 *dmac, struct net_device *dev, int *hoplimit) { int ret = 0; struct rdma_dev_addr dev_addr; struct resolve_cb_context ctx; union rdma_sockaddr sgid_addr, dgid_addr; rdma_gid2ip(&sgid_addr._sockaddr, sgid); rdma_gid2ip(&dgid_addr._sockaddr, dgid); memset(&dev_addr, 0, sizeof(dev_addr)); dev_addr.bound_dev_if = dev->if_index; dev_addr.net = dev_net(dev); ctx.addr = &dev_addr; init_completion(&ctx.comp); ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr, &dev_addr, 1000, resolve_cb, &ctx); if (ret) return ret; wait_for_completion(&ctx.comp); ret = ctx.status; if (ret) return ret; memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN); if (hoplimit) *hoplimit = dev_addr.hoplimit; return ret; } EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh); int addr_init(void) { addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0); if (!addr_wq) return -ENOMEM; rdma_addr_register_client(&self); return 0; } void addr_cleanup(void) { rdma_addr_unregister_client(&self); destroy_workqueue(addr_wq); } diff --git a/sys/ofed/drivers/infiniband/core/ib_cma.c b/sys/ofed/drivers/infiniband/core/ib_cma.c index 717d7c70e9de..7c03841d51d7 100644 --- a/sys/ofed/drivers/infiniband/core/ib_cma.c +++ b/sys/ofed/drivers/infiniband/core/ib_cma.c @@ -1,4620 +1,4619 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include __FBSDID("$FreeBSD$"); #define LINUXKPI_PARAM_PREFIX ibcore_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include -#include #include #include #include #include #include #include "core_priv.h" MODULE_AUTHOR("Sean Hefty"); MODULE_DESCRIPTION("Generic RDMA CM Agent"); MODULE_LICENSE("Dual BSD/GPL"); #define CMA_CM_RESPONSE_TIMEOUT 20 #define CMA_QUERY_CLASSPORT_INFO_TIMEOUT 3000 #define CMA_MAX_CM_RETRIES 15 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) #define CMA_IBOE_PACKET_LIFETIME 18 static const char * const cma_events[] = { [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", [RDMA_CM_EVENT_ADDR_ERROR] = "address error", [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", [RDMA_CM_EVENT_REJECTED] = "rejected", [RDMA_CM_EVENT_ESTABLISHED] = "established", [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", }; const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) { size_t index = event; return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? cma_events[index] : "unrecognized event"; } EXPORT_SYMBOL(rdma_event_msg); static int cma_check_linklocal(struct rdma_dev_addr *, struct sockaddr *); static void cma_add_one(struct ib_device *device); static void cma_remove_one(struct ib_device *device, void *client_data); static enum rdma_port_space rdma_ps_from_service_id(__be64 service_id); static struct ib_client cma_client = { .name = "cma", .add = cma_add_one, .remove = cma_remove_one }; static struct ib_sa_client sa_client; static struct rdma_addr_client addr_client; static LIST_HEAD(dev_list); static LIST_HEAD(listen_any_list); static DEFINE_MUTEX(lock); static struct workqueue_struct *cma_wq; struct cma_pernet { struct idr tcp_ps; struct idr udp_ps; struct idr ipoib_ps; struct idr ib_ps; struct idr sdp_ps; }; VNET_DEFINE(struct cma_pernet, cma_pernet); static struct cma_pernet *cma_pernet_ptr(struct vnet *vnet) { struct cma_pernet *retval; CURVNET_SET_QUIET(vnet); retval = &VNET(cma_pernet); CURVNET_RESTORE(); return (retval); } static struct idr *cma_pernet_idr(struct vnet *net, enum rdma_port_space ps) { struct cma_pernet *pernet = cma_pernet_ptr(net); switch (ps) { case RDMA_PS_TCP: return &pernet->tcp_ps; case RDMA_PS_UDP: return &pernet->udp_ps; case RDMA_PS_IPOIB: return &pernet->ipoib_ps; case RDMA_PS_IB: return &pernet->ib_ps; case RDMA_PS_SDP: return &pernet->sdp_ps; default: return NULL; } } struct cma_device { struct list_head list; struct ib_device *device; struct completion comp; atomic_t refcount; struct list_head id_list; struct sysctl_ctx_list sysctl_ctx; enum ib_gid_type *default_gid_type; }; struct rdma_bind_list { enum rdma_port_space ps; struct hlist_head owners; unsigned short port; }; struct class_port_info_context { struct ib_class_port_info *class_port_info; struct ib_device *device; struct completion done; struct ib_sa_query *sa_query; u8 port_num; }; static int cma_ps_alloc(struct vnet *vnet, enum rdma_port_space ps, struct rdma_bind_list *bind_list, int snum) { struct idr *idr = cma_pernet_idr(vnet, ps); return idr_alloc(idr, bind_list, snum, snum + 1, GFP_KERNEL); } static struct rdma_bind_list *cma_ps_find(struct vnet *net, enum rdma_port_space ps, int snum) { struct idr *idr = cma_pernet_idr(net, ps); return idr_find(idr, snum); } static void cma_ps_remove(struct vnet *net, enum rdma_port_space ps, int snum) { struct idr *idr = cma_pernet_idr(net, ps); idr_remove(idr, snum); } enum { CMA_OPTION_AFONLY, }; void cma_ref_dev(struct cma_device *cma_dev) { atomic_inc(&cma_dev->refcount); } struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, void *cookie) { struct cma_device *cma_dev; struct cma_device *found_cma_dev = NULL; mutex_lock(&lock); list_for_each_entry(cma_dev, &dev_list, list) if (filter(cma_dev->device, cookie)) { found_cma_dev = cma_dev; break; } if (found_cma_dev) cma_ref_dev(found_cma_dev); mutex_unlock(&lock); return found_cma_dev; } int cma_get_default_gid_type(struct cma_device *cma_dev, unsigned int port) { if (port < rdma_start_port(cma_dev->device) || port > rdma_end_port(cma_dev->device)) return -EINVAL; return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; } int cma_set_default_gid_type(struct cma_device *cma_dev, unsigned int port, enum ib_gid_type default_gid_type) { unsigned long supported_gids; if (port < rdma_start_port(cma_dev->device) || port > rdma_end_port(cma_dev->device)) return -EINVAL; supported_gids = roce_gid_type_mask_support(cma_dev->device, port); if (!(supported_gids & 1 << default_gid_type)) return -EINVAL; cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = default_gid_type; return 0; } struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) { return cma_dev->device; } /* * Device removal can occur at anytime, so we need extra handling to * serialize notifying the user of device removal with other callbacks. * We do this by disabling removal notification while a callback is in process, * and reporting it after the callback completes. */ struct rdma_id_private { struct rdma_cm_id id; struct rdma_bind_list *bind_list; struct hlist_node node; struct list_head list; /* listen_any_list or cma_device.list */ struct list_head listen_list; /* per device listens */ struct cma_device *cma_dev; struct list_head mc_list; int internal_id; enum rdma_cm_state state; spinlock_t lock; struct mutex qp_mutex; struct completion comp; atomic_t refcount; struct mutex handler_mutex; int backlog; int timeout_ms; struct ib_sa_query *query; int query_id; union { struct ib_cm_id *ib; struct iw_cm_id *iw; } cm_id; u32 seq_num; u32 qkey; u32 qp_num; pid_t owner; u32 options; u8 srq; u8 tos; u8 reuseaddr; u8 afonly; enum ib_gid_type gid_type; }; struct cma_multicast { struct rdma_id_private *id_priv; union { struct ib_sa_multicast *ib; } multicast; struct list_head list; void *context; struct sockaddr_storage addr; struct kref mcref; bool igmp_joined; u8 join_state; }; struct cma_work { struct work_struct work; struct rdma_id_private *id; enum rdma_cm_state old_state; enum rdma_cm_state new_state; struct rdma_cm_event event; }; struct cma_ndev_work { struct work_struct work; struct rdma_id_private *id; struct rdma_cm_event event; }; struct iboe_mcast_work { struct work_struct work; struct rdma_id_private *id; struct cma_multicast *mc; }; struct cma_hdr { u8 cma_version; u8 ip_version; /* IP version: 7:4 */ __be16 port; union cma_ip_addr src_addr; union cma_ip_addr dst_addr; }; #define CMA_VERSION 0x00 #define SDP_MAJ_VERSION 0x2 struct cma_req_info { struct ib_device *device; int port; union ib_gid local_gid; __be64 service_id; u16 pkey; bool has_gid:1; }; static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); ret = (id_priv->state == comp); spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static int cma_comp_exch(struct rdma_id_private *id_priv, enum rdma_cm_state comp, enum rdma_cm_state exch) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); if ((ret = (id_priv->state == comp))) id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static enum rdma_cm_state cma_exch(struct rdma_id_private *id_priv, enum rdma_cm_state exch) { unsigned long flags; enum rdma_cm_state old; spin_lock_irqsave(&id_priv->lock, flags); old = id_priv->state; id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return old; } static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) { return hdr->ip_version >> 4; } static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) { hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); } static inline u8 sdp_get_majv(u8 sdp_version) { return sdp_version >> 4; } static inline u8 sdp_get_ip_ver(const struct sdp_hh *hh) { return hh->ipv_cap >> 4; } static inline void sdp_set_ip_ver(struct sdp_hh *hh, u8 ip_ver) { hh->ipv_cap = (ip_ver << 4) | (hh->ipv_cap & 0xF); } static int cma_igmp_send(struct net_device *ndev, const union ib_gid *mgid, bool join) { int retval; if (ndev) { union rdma_sockaddr addr; rdma_gid2ip(&addr._sockaddr, mgid); CURVNET_SET_QUIET(ndev->if_vnet); if (join) retval = -if_addmulti(ndev, &addr._sockaddr, NULL); else retval = -if_delmulti(ndev, &addr._sockaddr); CURVNET_RESTORE(); } else { retval = -ENODEV; } return retval; } static void _cma_attach_to_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { cma_ref_dev(cma_dev); id_priv->cma_dev = cma_dev; id_priv->gid_type = 0; id_priv->id.device = cma_dev->device; id_priv->id.route.addr.dev_addr.transport = rdma_node_get_transport(cma_dev->device->node_type); list_add_tail(&id_priv->list, &cma_dev->id_list); } static void cma_attach_to_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { _cma_attach_to_dev(id_priv, cma_dev); id_priv->gid_type = cma_dev->default_gid_type[id_priv->id.port_num - rdma_start_port(cma_dev->device)]; } void cma_deref_dev(struct cma_device *cma_dev) { if (atomic_dec_and_test(&cma_dev->refcount)) complete(&cma_dev->comp); } static inline void release_mc(struct kref *kref) { struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref); kfree(mc->multicast.ib); kfree(mc); } static void cma_release_dev(struct rdma_id_private *id_priv) { mutex_lock(&lock); list_del(&id_priv->list); cma_deref_dev(id_priv->cma_dev); id_priv->cma_dev = NULL; mutex_unlock(&lock); } static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) { return (struct sockaddr *) &id_priv->id.route.addr.src_addr; } static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) { return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; } static inline unsigned short cma_family(struct rdma_id_private *id_priv) { return id_priv->id.route.addr.src_addr.ss_family; } static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) { struct ib_sa_mcmember_rec rec; int ret = 0; if (id_priv->qkey) { if (qkey && id_priv->qkey != qkey) return -EINVAL; return 0; } if (qkey) { id_priv->qkey = qkey; return 0; } switch (id_priv->id.ps) { case RDMA_PS_UDP: case RDMA_PS_IB: id_priv->qkey = RDMA_UDP_QKEY; break; case RDMA_PS_IPOIB: ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (!ret) id_priv->qkey = be32_to_cpu(rec.qkey); break; default: break; } return ret; } static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) { dev_addr->dev_type = ARPHRD_INFINIBAND; rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); } static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) { int ret; if (addr->sa_family != AF_IB) { ret = rdma_translate_ip(addr, dev_addr); } else { cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); ret = 0; } return ret; } static inline int cma_validate_port(struct ib_device *device, u8 port, enum ib_gid_type gid_type, union ib_gid *gid, const struct rdma_dev_addr *dev_addr) { const int dev_type = dev_addr->dev_type; struct net_device *ndev; int ret = -ENODEV; if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) return ret; if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) return ret; if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); } else { ndev = NULL; gid_type = IB_GID_TYPE_IB; } ret = ib_find_cached_gid_by_port(device, gid, gid_type, port, ndev, NULL); if (ndev) dev_put(ndev); return ret; } static int cma_acquire_dev(struct rdma_id_private *id_priv, struct rdma_id_private *listen_id_priv) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct cma_device *cma_dev; union ib_gid gid, iboe_gid, *gidp; int ret = -ENODEV; u8 port; if (dev_addr->dev_type != ARPHRD_INFINIBAND && id_priv->id.ps == RDMA_PS_IPOIB) return -EINVAL; mutex_lock(&lock); rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, &iboe_gid); memcpy(&gid, dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof gid); if (listen_id_priv) { cma_dev = listen_id_priv->cma_dev; port = listen_id_priv->id.port_num; if (rdma_is_port_valid(cma_dev->device, port)) { gidp = rdma_protocol_roce(cma_dev->device, port) ? &iboe_gid : &gid; ret = cma_validate_port(cma_dev->device, port, rdma_protocol_ib(cma_dev->device, port) ? IB_GID_TYPE_IB : listen_id_priv->gid_type, gidp, dev_addr); if (!ret) { id_priv->id.port_num = port; goto out; } } } list_for_each_entry(cma_dev, &dev_list, list) { for (port = 1; port <= cma_dev->device->phys_port_cnt; ++port) { if (listen_id_priv && listen_id_priv->cma_dev == cma_dev && listen_id_priv->id.port_num == port) continue; gidp = rdma_protocol_roce(cma_dev->device, port) ? &iboe_gid : &gid; ret = cma_validate_port(cma_dev->device, port, rdma_protocol_ib(cma_dev->device, port) ? IB_GID_TYPE_IB : cma_dev->default_gid_type[port - 1], gidp, dev_addr); if (!ret) { id_priv->id.port_num = port; goto out; } } } out: if (!ret) cma_attach_to_dev(id_priv, cma_dev); mutex_unlock(&lock); return ret; } /* * Select the source IB device and address to reach the destination IB address. */ static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) { struct cma_device *cma_dev, *cur_dev; struct sockaddr_ib *addr; union ib_gid gid, sgid, *dgid; u16 pkey, index; u8 p; int i; cma_dev = NULL; addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); dgid = (union ib_gid *) &addr->sib_addr; pkey = ntohs(addr->sib_pkey); list_for_each_entry(cur_dev, &dev_list, list) { for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) { if (!rdma_cap_af_ib(cur_dev->device, p)) continue; if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) continue; for (i = 0; !ib_get_cached_gid(cur_dev->device, p, i, &gid, NULL); i++) { if (!memcmp(&gid, dgid, sizeof(gid))) { cma_dev = cur_dev; sgid = gid; id_priv->id.port_num = p; goto found; } if (!cma_dev && (gid.global.subnet_prefix == dgid->global.subnet_prefix)) { cma_dev = cur_dev; sgid = gid; id_priv->id.port_num = p; } } } } if (!cma_dev) return -ENODEV; found: cma_attach_to_dev(id_priv, cma_dev); addr = (struct sockaddr_ib *) cma_src_addr(id_priv); memcpy(&addr->sib_addr, &sgid, sizeof sgid); cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); return 0; } static void cma_deref_id(struct rdma_id_private *id_priv) { if (atomic_dec_and_test(&id_priv->refcount)) complete(&id_priv->comp); } struct rdma_cm_id *rdma_create_id(struct vnet *net, rdma_cm_event_handler event_handler, void *context, enum rdma_port_space ps, enum ib_qp_type qp_type) { struct rdma_id_private *id_priv; #ifdef VIMAGE if (net == NULL) return ERR_PTR(-EINVAL); #endif id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); if (!id_priv) return ERR_PTR(-ENOMEM); id_priv->owner = task_pid_nr(current); id_priv->state = RDMA_CM_IDLE; id_priv->id.context = context; id_priv->id.event_handler = event_handler; id_priv->id.ps = ps; id_priv->id.qp_type = qp_type; spin_lock_init(&id_priv->lock); mutex_init(&id_priv->qp_mutex); init_completion(&id_priv->comp); atomic_set(&id_priv->refcount, 1); mutex_init(&id_priv->handler_mutex); INIT_LIST_HEAD(&id_priv->listen_list); INIT_LIST_HEAD(&id_priv->mc_list); get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); id_priv->id.route.addr.dev_addr.net = net; return &id_priv->id; } EXPORT_SYMBOL(rdma_create_id); static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTR; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTS; qp_attr.sq_psn = 0; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); return ret; } static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; return ib_modify_qp(qp, &qp_attr, qp_attr_mask); } int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr) { struct rdma_id_private *id_priv; struct ib_qp *qp; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id->device != pd->device) return -EINVAL; qp_init_attr->port_num = id->port_num; qp = ib_create_qp(pd, qp_init_attr); if (IS_ERR(qp)) return PTR_ERR(qp); if (id->qp_type == IB_QPT_UD) ret = cma_init_ud_qp(id_priv, qp); else ret = cma_init_conn_qp(id_priv, qp); if (ret) goto err; id->qp = qp; id_priv->qp_num = qp->qp_num; id_priv->srq = (qp->srq != NULL); return 0; err: ib_destroy_qp(qp); return ret; } EXPORT_SYMBOL(rdma_create_qp); void rdma_destroy_qp(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); mutex_lock(&id_priv->qp_mutex); ib_destroy_qp(id_priv->id.qp); id_priv->id.qp = NULL; mutex_unlock(&id_priv->qp_mutex); } EXPORT_SYMBOL(rdma_destroy_qp); static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; union ib_gid sgid; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } /* Need to update QP attributes from default values. */ qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); if (ret) goto out; qp_attr.qp_state = IB_QPS_RTR; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; ret = ib_query_gid(id_priv->id.device, id_priv->id.port_num, qp_attr.ah_attr.grh.sgid_index, &sgid, NULL); if (ret) goto out; BUG_ON(id_priv->cma_dev->device != id_priv->id.device); if (conn_param) qp_attr.max_dest_rd_atomic = conn_param->responder_resources; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_rts(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_RTS; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; if (conn_param) qp_attr.max_rd_atomic = conn_param->initiator_depth; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_err(struct rdma_id_private *id_priv) { struct ib_qp_attr qp_attr; int ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_ERR; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int ret; u16 pkey; if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) pkey = 0xffff; else pkey = ib_addr_get_pkey(dev_addr); ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, pkey, &qp_attr->pkey_index); if (ret) return ret; qp_attr->port_num = id_priv->id.port_num; *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; if (id_priv->id.qp_type == IB_QPT_UD) { ret = cma_set_qkey(id_priv, 0); if (ret) return ret; qp_attr->qkey = id_priv->qkey; *qp_attr_mask |= IB_QP_QKEY; } else { qp_attr->qp_access_flags = 0; *qp_attr_mask |= IB_QP_ACCESS_FLAGS; } return 0; } int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_id_private *id_priv; int ret = 0; id_priv = container_of(id, struct rdma_id_private, id); if (rdma_cap_ib_cm(id->device, id->port_num)) { if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); else ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, qp_attr_mask); if (qp_attr->qp_state == IB_QPS_RTR) qp_attr->rq_psn = id_priv->seq_num; } else if (rdma_cap_iw_cm(id->device, id->port_num)) { if (!id_priv->cm_id.iw) { qp_attr->qp_access_flags = 0; *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; } else ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, qp_attr_mask); qp_attr->port_num = id_priv->id.port_num; *qp_attr_mask |= IB_QP_PORT; } else ret = -ENOSYS; return ret; } EXPORT_SYMBOL(rdma_init_qp_attr); static inline int cma_zero_addr(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); case AF_INET6: return ipv6_addr_any(&((struct sockaddr_in6 *) addr)->sin6_addr); case AF_IB: return ib_addr_any(&((struct sockaddr_ib *) addr)->sib_addr); default: return 0; } } static inline int cma_loopback_addr(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return ipv4_is_loopback(((struct sockaddr_in *) addr)->sin_addr.s_addr); case AF_INET6: return ipv6_addr_loopback(&((struct sockaddr_in6 *) addr)->sin6_addr); case AF_IB: return ib_addr_loopback(&((struct sockaddr_ib *) addr)->sib_addr); default: return 0; } } static inline int cma_any_addr(struct sockaddr *addr) { return cma_zero_addr(addr) || cma_loopback_addr(addr); } static int cma_addr_cmp(struct sockaddr *src, struct sockaddr *dst) { if (src->sa_family != dst->sa_family) return -1; switch (src->sa_family) { case AF_INET: return ((struct sockaddr_in *) src)->sin_addr.s_addr != ((struct sockaddr_in *) dst)->sin_addr.s_addr; case AF_INET6: return ipv6_addr_cmp(&((struct sockaddr_in6 *) src)->sin6_addr, &((struct sockaddr_in6 *) dst)->sin6_addr); default: return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, &((struct sockaddr_ib *) dst)->sib_addr); } } static __be16 cma_port(struct sockaddr *addr) { struct sockaddr_ib *sib; switch (addr->sa_family) { case AF_INET: return ((struct sockaddr_in *) addr)->sin_port; case AF_INET6: return ((struct sockaddr_in6 *) addr)->sin6_port; case AF_IB: sib = (struct sockaddr_ib *) addr; return htons((u16) (be64_to_cpu(sib->sib_sid) & be64_to_cpu(sib->sib_sid_mask))); default: return 0; } } static inline int cma_any_port(struct sockaddr *addr) { return !cma_port(addr); } static void cma_save_ib_info(struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_cm_id *listen_id, struct ib_sa_path_rec *path) { struct sockaddr_ib *listen_ib, *ib; listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; if (src_addr) { ib = (struct sockaddr_ib *)src_addr; ib->sib_family = AF_IB; if (path) { ib->sib_pkey = path->pkey; ib->sib_flowinfo = path->flow_label; memcpy(&ib->sib_addr, &path->sgid, 16); ib->sib_sid = path->service_id; ib->sib_scope_id = 0; } else { ib->sib_pkey = listen_ib->sib_pkey; ib->sib_flowinfo = listen_ib->sib_flowinfo; ib->sib_addr = listen_ib->sib_addr; ib->sib_sid = listen_ib->sib_sid; ib->sib_scope_id = listen_ib->sib_scope_id; } ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); } if (dst_addr) { ib = (struct sockaddr_ib *)dst_addr; ib->sib_family = AF_IB; if (path) { ib->sib_pkey = path->pkey; ib->sib_flowinfo = path->flow_label; memcpy(&ib->sib_addr, &path->dgid, 16); } } } static void cma_save_ip4_info(struct sockaddr_in *src_addr, struct sockaddr_in *dst_addr, struct cma_hdr *hdr, __be16 local_port) { if (src_addr) { *src_addr = (struct sockaddr_in) { .sin_len = sizeof(struct sockaddr_in), .sin_family = AF_INET, .sin_addr.s_addr = hdr->dst_addr.ip4.addr, .sin_port = local_port, }; } if (dst_addr) { *dst_addr = (struct sockaddr_in) { .sin_len = sizeof(struct sockaddr_in), .sin_family = AF_INET, .sin_addr.s_addr = hdr->src_addr.ip4.addr, .sin_port = hdr->port, }; } } static void cma_ip6_clear_scope_id(struct in6_addr *addr) { /* make sure link local scope ID gets zeroed */ if (IN6_IS_SCOPE_LINKLOCAL(addr) || IN6_IS_ADDR_MC_INTFACELOCAL(addr)) { /* use byte-access to be alignment safe */ addr->s6_addr[2] = 0; addr->s6_addr[3] = 0; } } static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, struct sockaddr_in6 *dst_addr, struct cma_hdr *hdr, __be16 local_port) { if (src_addr) { *src_addr = (struct sockaddr_in6) { .sin6_len = sizeof(struct sockaddr_in6), .sin6_family = AF_INET6, .sin6_addr = hdr->dst_addr.ip6, .sin6_port = local_port, }; cma_ip6_clear_scope_id(&src_addr->sin6_addr); } if (dst_addr) { *dst_addr = (struct sockaddr_in6) { .sin6_len = sizeof(struct sockaddr_in6), .sin6_family = AF_INET6, .sin6_addr = hdr->src_addr.ip6, .sin6_port = hdr->port, }; cma_ip6_clear_scope_id(&dst_addr->sin6_addr); } } static u16 cma_port_from_service_id(__be64 service_id) { return (u16)be64_to_cpu(service_id); } static int sdp_save_ip_info(struct sockaddr *src_addr, struct sockaddr *dst_addr, const struct sdp_hh *hdr, __be64 service_id) { __be16 local_port; BUG_ON(src_addr == NULL || dst_addr == NULL); if (sdp_get_majv(hdr->majv_minv) != SDP_MAJ_VERSION) return -EINVAL; local_port = htons(cma_port_from_service_id(service_id)); switch (sdp_get_ip_ver(hdr)) { case 4: { struct sockaddr_in *s4, *d4; s4 = (void *)src_addr; d4 = (void *)dst_addr; *s4 = (struct sockaddr_in) { .sin_len = sizeof(*s4), .sin_family = AF_INET, .sin_addr.s_addr = hdr->dst_addr.ip4.addr, .sin_port = local_port, }; *d4 = (struct sockaddr_in) { .sin_len = sizeof(*d4), .sin_family = AF_INET, .sin_addr.s_addr = hdr->src_addr.ip4.addr, .sin_port = hdr->port, }; break; } case 6: { struct sockaddr_in6 *s6, *d6; s6 = (void *)src_addr; d6 = (void *)dst_addr; *s6 = (struct sockaddr_in6) { .sin6_len = sizeof(*s6), .sin6_family = AF_INET6, .sin6_addr = hdr->dst_addr.ip6, .sin6_port = local_port, }; *d6 = (struct sockaddr_in6) { .sin6_len = sizeof(*d6), .sin6_family = AF_INET6, .sin6_addr = hdr->src_addr.ip6, .sin6_port = hdr->port, }; cma_ip6_clear_scope_id(&s6->sin6_addr); cma_ip6_clear_scope_id(&d6->sin6_addr); break; } default: return -EAFNOSUPPORT; } return 0; } static int cma_save_ip_info(struct sockaddr *src_addr, struct sockaddr *dst_addr, struct ib_cm_event *ib_event, __be64 service_id) { struct cma_hdr *hdr; __be16 port; if (rdma_ps_from_service_id(service_id) == RDMA_PS_SDP) return sdp_save_ip_info(src_addr, dst_addr, ib_event->private_data, service_id); hdr = ib_event->private_data; if (hdr->cma_version != CMA_VERSION) return -EINVAL; port = htons(cma_port_from_service_id(service_id)); switch (cma_get_ip_ver(hdr)) { case 4: cma_save_ip4_info((struct sockaddr_in *)src_addr, (struct sockaddr_in *)dst_addr, hdr, port); break; case 6: cma_save_ip6_info((struct sockaddr_in6 *)src_addr, (struct sockaddr_in6 *)dst_addr, hdr, port); break; default: return -EAFNOSUPPORT; } return 0; } static int cma_save_net_info(struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event, sa_family_t sa_family, __be64 service_id) { if (sa_family == AF_IB) { if (ib_event->event == IB_CM_REQ_RECEIVED) cma_save_ib_info(src_addr, dst_addr, listen_id, ib_event->param.req_rcvd.primary_path); else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); return 0; } return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); } static int cma_save_req_info(const struct ib_cm_event *ib_event, struct cma_req_info *req) { const struct ib_cm_req_event_param *req_param = &ib_event->param.req_rcvd; const struct ib_cm_sidr_req_event_param *sidr_param = &ib_event->param.sidr_req_rcvd; switch (ib_event->event) { case IB_CM_REQ_RECEIVED: req->device = req_param->listen_id->device; req->port = req_param->port; memcpy(&req->local_gid, &req_param->primary_path->sgid, sizeof(req->local_gid)); req->has_gid = true; req->service_id = req_param->primary_path->service_id; req->pkey = be16_to_cpu(req_param->primary_path->pkey); if (req->pkey != req_param->bth_pkey) pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" "RDMA CMA: in the future this may cause the request to be dropped\n", req_param->bth_pkey, req->pkey); break; case IB_CM_SIDR_REQ_RECEIVED: req->device = sidr_param->listen_id->device; req->port = sidr_param->port; req->has_gid = false; req->service_id = sidr_param->service_id; req->pkey = sidr_param->pkey; if (req->pkey != sidr_param->bth_pkey) pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" "RDMA CMA: in the future this may cause the request to be dropped\n", sidr_param->bth_pkey, req->pkey); break; default: return -EINVAL; } return 0; } static bool validate_ipv4_net_dev(struct net_device *net_dev, const struct sockaddr_in *dst_addr, const struct sockaddr_in *src_addr) { #ifdef INET __be32 daddr = dst_addr->sin_addr.s_addr, saddr = src_addr->sin_addr.s_addr; struct net_device *dst_dev; struct nhop_object *nh; bool ret; if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || ipv4_is_loopback(saddr)) return false; dst_dev = ip_ifp_find(net_dev->if_vnet, daddr); if (dst_dev != net_dev) { if (dst_dev != NULL) dev_put(dst_dev); return false; } dev_put(dst_dev); /* * Check for loopback. */ if (saddr == daddr) return true; CURVNET_SET(net_dev->if_vnet); nh = fib4_lookup(RT_DEFAULT_FIB, src_addr->sin_addr, 0, NHR_NONE, 0); if (nh != NULL) ret = (nh->nh_ifp == net_dev); else ret = false; CURVNET_RESTORE(); return ret; #else return false; #endif } static bool validate_ipv6_net_dev(struct net_device *net_dev, const struct sockaddr_in6 *dst_addr, const struct sockaddr_in6 *src_addr) { #ifdef INET6 struct sockaddr_in6 src_tmp = *src_addr; struct sockaddr_in6 dst_tmp = *dst_addr; struct net_device *dst_dev; struct nhop_object *nh; bool ret; dst_dev = ip6_ifp_find(net_dev->if_vnet, dst_tmp.sin6_addr, net_dev->if_index); if (dst_dev != net_dev) { if (dst_dev != NULL) dev_put(dst_dev); return false; } dev_put(dst_dev); CURVNET_SET(net_dev->if_vnet); /* * Make sure the scope ID gets embedded. */ src_tmp.sin6_scope_id = net_dev->if_index; sa6_embedscope(&src_tmp, 0); dst_tmp.sin6_scope_id = net_dev->if_index; sa6_embedscope(&dst_tmp, 0); /* * Check for loopback after scope ID * has been embedded: */ if (memcmp(&src_tmp.sin6_addr, &dst_tmp.sin6_addr, sizeof(dst_tmp.sin6_addr)) == 0) { ret = true; } else { /* non-loopback case */ nh = fib6_lookup(RT_DEFAULT_FIB, &src_addr->sin6_addr, net_dev->if_index, NHR_NONE, 0); if (nh != NULL) ret = (nh->nh_ifp == net_dev); else ret = false; } CURVNET_RESTORE(); return ret; #else return false; #endif } static bool validate_net_dev(struct net_device *net_dev, const struct sockaddr *daddr, const struct sockaddr *saddr) { const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; switch (daddr->sa_family) { case AF_INET: return saddr->sa_family == AF_INET && validate_ipv4_net_dev(net_dev, daddr4, saddr4); case AF_INET6: return saddr->sa_family == AF_INET6 && validate_ipv6_net_dev(net_dev, daddr6, saddr6); default: return false; } } static struct net_device * roce_get_net_dev_by_cm_event(struct ib_device *device, u8 port_num, const struct ib_cm_event *ib_event) { struct ib_gid_attr sgid_attr; union ib_gid sgid; int err = -EINVAL; if (ib_event->event == IB_CM_REQ_RECEIVED) { err = ib_get_cached_gid(device, port_num, ib_event->param.req_rcvd.ppath_sgid_index, &sgid, &sgid_attr); } else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { err = ib_get_cached_gid(device, port_num, ib_event->param.sidr_req_rcvd.sgid_index, &sgid, &sgid_attr); } if (err) return (NULL); return (sgid_attr.ndev); } static struct net_device *cma_get_net_dev(struct ib_cm_event *ib_event, const struct cma_req_info *req) { struct sockaddr_storage listen_addr_storage, src_addr_storage; struct sockaddr *listen_addr = (struct sockaddr *)&listen_addr_storage, *src_addr = (struct sockaddr *)&src_addr_storage; struct net_device *net_dev; const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; struct epoch_tracker et; int err; err = cma_save_ip_info(listen_addr, src_addr, ib_event, req->service_id); if (err) return ERR_PTR(err); if (rdma_protocol_roce(req->device, req->port)) { net_dev = roce_get_net_dev_by_cm_event(req->device, req->port, ib_event); } else { net_dev = ib_get_net_dev_by_params(req->device, req->port, req->pkey, gid, listen_addr); } if (!net_dev) return ERR_PTR(-ENODEV); NET_EPOCH_ENTER(et); if (!validate_net_dev(net_dev, listen_addr, src_addr)) { NET_EPOCH_EXIT(et); dev_put(net_dev); return ERR_PTR(-EHOSTUNREACH); } NET_EPOCH_EXIT(et); return net_dev; } static enum rdma_port_space rdma_ps_from_service_id(__be64 service_id) { return (be64_to_cpu(service_id) >> 16) & 0xffff; } static bool sdp_match_private_data(struct rdma_id_private *id_priv, const struct sdp_hh *hdr, struct sockaddr *addr) { __be32 ip4_addr; struct in6_addr ip6_addr; switch (addr->sa_family) { case AF_INET: ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (sdp_get_ip_ver(hdr) != 4) return false; if (!cma_any_addr(addr) && hdr->dst_addr.ip4.addr != ip4_addr) return false; break; case AF_INET6: ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; if (sdp_get_ip_ver(hdr) != 6) return false; cma_ip6_clear_scope_id(&ip6_addr); if (!cma_any_addr(addr) && memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) return false; break; case AF_IB: return true; default: return false; } return true; } static bool cma_match_private_data(struct rdma_id_private *id_priv, const void *vhdr) { const struct cma_hdr *hdr = vhdr; struct sockaddr *addr = cma_src_addr(id_priv); __be32 ip4_addr; struct in6_addr ip6_addr; if (cma_any_addr(addr) && !id_priv->afonly) return true; if (id_priv->id.ps == RDMA_PS_SDP) return sdp_match_private_data(id_priv, vhdr, addr); switch (addr->sa_family) { case AF_INET: ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; if (cma_get_ip_ver(hdr) != 4) return false; if (!cma_any_addr(addr) && hdr->dst_addr.ip4.addr != ip4_addr) return false; break; case AF_INET6: ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; if (cma_get_ip_ver(hdr) != 6) return false; cma_ip6_clear_scope_id(&ip6_addr); if (!cma_any_addr(addr) && memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) return false; break; case AF_IB: return true; default: return false; } return true; } static bool cma_protocol_roce_dev_port(struct ib_device *device, int port_num) { enum rdma_link_layer ll = rdma_port_get_link_layer(device, port_num); enum rdma_transport_type transport = rdma_node_get_transport(device->node_type); return ll == IB_LINK_LAYER_ETHERNET && transport == RDMA_TRANSPORT_IB; } static bool cma_protocol_roce(const struct rdma_cm_id *id) { struct ib_device *device = id->device; const int port_num = id->port_num ?: rdma_start_port(device); return cma_protocol_roce_dev_port(device, port_num); } static bool cma_match_net_dev(const struct rdma_cm_id *id, const struct net_device *net_dev, u8 port_num) { const struct rdma_addr *addr = &id->route.addr; if (!net_dev) { if (id->port_num && id->port_num != port_num) return false; if (id->ps == RDMA_PS_SDP) { if (addr->src_addr.ss_family == AF_INET || addr->src_addr.ss_family == AF_INET6) return true; return false; } /* This request is an AF_IB request or a RoCE request */ return addr->src_addr.ss_family == AF_IB || cma_protocol_roce_dev_port(id->device, port_num); } return !addr->dev_addr.bound_dev_if || (net_eq(dev_net(net_dev), addr->dev_addr.net) && addr->dev_addr.bound_dev_if == net_dev->if_index); } static struct rdma_id_private *cma_find_listener( const struct rdma_bind_list *bind_list, const struct ib_cm_id *cm_id, const struct ib_cm_event *ib_event, const struct cma_req_info *req, const struct net_device *net_dev) { struct rdma_id_private *id_priv, *id_priv_dev; if (!bind_list) return ERR_PTR(-EINVAL); hlist_for_each_entry(id_priv, &bind_list->owners, node) { if (cma_match_private_data(id_priv, ib_event->private_data)) { if (id_priv->id.device == cm_id->device && cma_match_net_dev(&id_priv->id, net_dev, req->port)) return id_priv; list_for_each_entry(id_priv_dev, &id_priv->listen_list, listen_list) { if (id_priv_dev->id.device == cm_id->device && cma_match_net_dev(&id_priv_dev->id, net_dev, req->port)) return id_priv_dev; } } } return ERR_PTR(-EINVAL); } static struct rdma_id_private *cma_id_from_event(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event, struct net_device **net_dev) { struct cma_req_info req; struct rdma_bind_list *bind_list; struct rdma_id_private *id_priv; int err; err = cma_save_req_info(ib_event, &req); if (err) return ERR_PTR(err); if (rdma_ps_from_service_id(cm_id->service_id) == RDMA_PS_SDP) { *net_dev = NULL; goto there_is_no_net_dev; } *net_dev = cma_get_net_dev(ib_event, &req); if (IS_ERR(*net_dev)) { if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { /* Assuming the protocol is AF_IB */ *net_dev = NULL; } else { return ERR_CAST(*net_dev); } } there_is_no_net_dev: bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, rdma_ps_from_service_id(req.service_id), cma_port_from_service_id(req.service_id)); id_priv = cma_find_listener(bind_list, cm_id, ib_event, &req, *net_dev); if (IS_ERR(id_priv) && *net_dev) { dev_put(*net_dev); *net_dev = NULL; } return id_priv; } static inline int cma_user_data_offset(struct rdma_id_private *id_priv) { if (cma_family(id_priv) == AF_IB) return 0; if (id_priv->id.ps == RDMA_PS_SDP) return 0; return sizeof(struct cma_hdr); } static void cma_cancel_route(struct rdma_id_private *id_priv) { if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { if (id_priv->query) ib_sa_cancel_query(id_priv->query_id, id_priv->query); } } static void cma_cancel_listens(struct rdma_id_private *id_priv) { struct rdma_id_private *dev_id_priv; /* * Remove from listen_any_list to prevent added devices from spawning * additional listen requests. */ mutex_lock(&lock); list_del(&id_priv->list); while (!list_empty(&id_priv->listen_list)) { dev_id_priv = list_entry(id_priv->listen_list.next, struct rdma_id_private, listen_list); /* sync with device removal to avoid duplicate destruction */ list_del_init(&dev_id_priv->list); list_del(&dev_id_priv->listen_list); mutex_unlock(&lock); rdma_destroy_id(&dev_id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); } static void cma_cancel_operation(struct rdma_id_private *id_priv, enum rdma_cm_state state) { switch (state) { case RDMA_CM_ADDR_QUERY: rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); break; case RDMA_CM_ROUTE_QUERY: cma_cancel_route(id_priv); break; case RDMA_CM_LISTEN: if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) cma_cancel_listens(id_priv); break; default: break; } } static void cma_release_port(struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list = id_priv->bind_list; struct vnet *net = id_priv->id.route.addr.dev_addr.net; if (!bind_list) return; mutex_lock(&lock); hlist_del(&id_priv->node); if (hlist_empty(&bind_list->owners)) { cma_ps_remove(net, bind_list->ps, bind_list->port); kfree(bind_list); } mutex_unlock(&lock); } static void cma_leave_mc_groups(struct rdma_id_private *id_priv) { struct cma_multicast *mc; while (!list_empty(&id_priv->mc_list)) { mc = container_of(id_priv->mc_list.next, struct cma_multicast, list); list_del(&mc->list); if (rdma_cap_ib_mcast(id_priv->cma_dev->device, id_priv->id.port_num)) { ib_sa_free_multicast(mc->multicast.ib); kfree(mc); } else { if (mc->igmp_joined) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct net_device *ndev = NULL; if (dev_addr->bound_dev_if) ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (ndev) { cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, false); dev_put(ndev); } } kref_put(&mc->mcref, release_mc); } } } void rdma_destroy_id(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; enum rdma_cm_state state; id_priv = container_of(id, struct rdma_id_private, id); state = cma_exch(id_priv, RDMA_CM_DESTROYING); cma_cancel_operation(id_priv, state); /* * Wait for any active callback to finish. New callbacks will find * the id_priv state set to destroying and abort. */ mutex_lock(&id_priv->handler_mutex); mutex_unlock(&id_priv->handler_mutex); if (id_priv->cma_dev) { if (rdma_cap_ib_cm(id_priv->id.device, 1)) { if (id_priv->cm_id.ib) ib_destroy_cm_id(id_priv->cm_id.ib); } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { if (id_priv->cm_id.iw) iw_destroy_cm_id(id_priv->cm_id.iw); } cma_leave_mc_groups(id_priv); cma_release_dev(id_priv); } cma_release_port(id_priv); cma_deref_id(id_priv); wait_for_completion(&id_priv->comp); if (id_priv->internal_id) cma_deref_id(id_priv->id.context); kfree(id_priv->id.route.path_rec); kfree(id_priv); } EXPORT_SYMBOL(rdma_destroy_id); static int cma_rep_recv(struct rdma_id_private *id_priv) { int ret; ret = cma_modify_qp_rtr(id_priv, NULL); if (ret) goto reject; ret = cma_modify_qp_rts(id_priv, NULL); if (ret) goto reject; ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, NULL, 0); return ret; } static int sdp_verify_rep(const struct sdp_hah *data) { if (sdp_get_majv(data->majv_minv) != SDP_MAJ_VERSION) return -EINVAL; return 0; } static void cma_set_rep_event_data(struct rdma_cm_event *event, struct ib_cm_rep_event_param *rep_data, void *private_data) { event->param.conn.private_data = private_data; event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; event->param.conn.responder_resources = rep_data->responder_resources; event->param.conn.initiator_depth = rep_data->initiator_depth; event->param.conn.flow_control = rep_data->flow_control; event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; event->param.conn.srq = rep_data->srq; event->param.conn.qp_num = rep_data->remote_qpn; } static int cma_ib_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; int ret = 0; mutex_lock(&id_priv->handler_mutex); if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && id_priv->state != RDMA_CM_CONNECT) || (ib_event->event == IB_CM_TIMEWAIT_EXIT && id_priv->state != RDMA_CM_DISCONNECT)) goto out; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_REQ_ERROR: case IB_CM_REP_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_REP_RECEIVED: if (id_priv->id.ps == RDMA_PS_SDP) { event.status = sdp_verify_rep(ib_event->private_data); if (event.status) event.event = RDMA_CM_EVENT_CONNECT_ERROR; else event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; } else { if (id_priv->id.qp) { event.status = cma_rep_recv(id_priv); event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : RDMA_CM_EVENT_ESTABLISHED; } else { event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; } } cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, ib_event->private_data); break; case IB_CM_RTU_RECEIVED: case IB_CM_USER_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; break; case IB_CM_DREQ_ERROR: event.status = -ETIMEDOUT; /* fall through */ case IB_CM_DREQ_RECEIVED: case IB_CM_DREP_RECEIVED: if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_DISCONNECT)) goto out; event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IB_CM_TIMEWAIT_EXIT: event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; break; case IB_CM_MRA_RECEIVED: /* ignore event */ goto out; case IB_CM_REJ_RECEIVED: cma_modify_qp_err(id_priv); event.status = ib_event->param.rej_rcvd.reason; event.event = RDMA_CM_EVENT_REJECTED; event.param.conn.private_data = ib_event->private_data; event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; break; default: pr_err("RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static struct rdma_id_private *cma_new_conn_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event, struct net_device *net_dev) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; struct rdma_route *rt; const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; const __be64 service_id = ib_event->param.req_rcvd.primary_path->service_id; int ret; id = rdma_create_id(listen_id->route.addr.dev_addr.net, listen_id->event_handler, listen_id->context, listen_id->ps, ib_event->param.req_rcvd.qp_type); if (IS_ERR(id)) return NULL; id_priv = container_of(id, struct rdma_id_private, id); if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, (struct sockaddr *)&id->route.addr.dst_addr, listen_id, ib_event, ss_family, service_id)) goto err; rt = &id->route; rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; rt->path_rec = kmalloc(sizeof *rt->path_rec * rt->num_paths, GFP_KERNEL); if (!rt->path_rec) goto err; rt->path_rec[0] = *ib_event->param.req_rcvd.primary_path; if (rt->num_paths == 2) rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; if (net_dev) { ret = rdma_copy_addr(&rt->addr.dev_addr, net_dev, NULL); if (ret) goto err; } else { if (!cma_protocol_roce(listen_id) && cma_any_addr(cma_src_addr(id_priv))) { rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); } else if (!cma_any_addr(cma_src_addr(id_priv))) { ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); if (ret) goto err; } } rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); id_priv->state = RDMA_CM_CONNECT; return id_priv; err: rdma_destroy_id(id); return NULL; } static struct rdma_id_private *cma_new_udp_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event, struct net_device *net_dev) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; struct vnet *net = listen_id->route.addr.dev_addr.net; int ret; id = rdma_create_id(net, listen_id->event_handler, listen_id->context, listen_id->ps, IB_QPT_UD); if (IS_ERR(id)) return NULL; id_priv = container_of(id, struct rdma_id_private, id); if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, (struct sockaddr *)&id->route.addr.dst_addr, listen_id, ib_event, ss_family, ib_event->param.sidr_req_rcvd.service_id)) goto err; if (net_dev) { ret = rdma_copy_addr(&id->route.addr.dev_addr, net_dev, NULL); if (ret) goto err; } else { if (!cma_any_addr(cma_src_addr(id_priv))) { ret = cma_translate_addr(cma_src_addr(id_priv), &id->route.addr.dev_addr); if (ret) goto err; } } id_priv->state = RDMA_CM_CONNECT; return id_priv; err: rdma_destroy_id(id); return NULL; } static void cma_set_req_event_data(struct rdma_cm_event *event, struct ib_cm_req_event_param *req_data, void *private_data, int offset) { event->param.conn.private_data = (char *)private_data + offset; event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; event->param.conn.responder_resources = req_data->responder_resources; event->param.conn.initiator_depth = req_data->initiator_depth; event->param.conn.flow_control = req_data->flow_control; event->param.conn.retry_count = req_data->retry_count; event->param.conn.rnr_retry_count = req_data->rnr_retry_count; event->param.conn.srq = req_data->srq; event->param.conn.qp_num = req_data->remote_qpn; } static int cma_check_req_qp_type(struct rdma_cm_id *id, struct ib_cm_event *ib_event) { return (((ib_event->event == IB_CM_REQ_RECEIVED) && (ib_event->param.req_rcvd.qp_type == id->qp_type)) || ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && (id->qp_type == IB_QPT_UD)) || (!id->qp_type)); } static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *listen_id, *conn_id = NULL; struct rdma_cm_event event; struct net_device *net_dev; int offset, ret; listen_id = cma_id_from_event(cm_id, ib_event, &net_dev); if (IS_ERR(listen_id)) return PTR_ERR(listen_id); if (!cma_check_req_qp_type(&listen_id->id, ib_event)) { ret = -EINVAL; goto net_dev_put; } mutex_lock(&listen_id->handler_mutex); if (listen_id->state != RDMA_CM_LISTEN) { ret = -ECONNABORTED; goto err1; } memset(&event, 0, sizeof event); offset = cma_user_data_offset(listen_id); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { conn_id = cma_new_udp_id(&listen_id->id, ib_event, net_dev); event.param.ud.private_data = (char *)ib_event->private_data + offset; event.param.ud.private_data_len = IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; } else { conn_id = cma_new_conn_id(&listen_id->id, ib_event, net_dev); cma_set_req_event_data(&event, &ib_event->param.req_rcvd, ib_event->private_data, offset); } if (!conn_id) { ret = -ENOMEM; goto err1; } mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); ret = cma_acquire_dev(conn_id, listen_id); if (ret) goto err2; conn_id->cm_id.ib = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_ib_handler; /* * Protect against the user destroying conn_id from another thread * until we're done accessing it. */ atomic_inc(&conn_id->refcount); ret = conn_id->id.event_handler(&conn_id->id, &event); if (ret) goto err3; /* * Acquire mutex to prevent user executing rdma_destroy_id() * while we're accessing the cm_id. */ mutex_lock(&lock); if (cma_comp(conn_id, RDMA_CM_CONNECT) && (conn_id->id.qp_type != IB_QPT_UD)) ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); mutex_unlock(&lock); mutex_unlock(&conn_id->handler_mutex); mutex_unlock(&listen_id->handler_mutex); cma_deref_id(conn_id); if (net_dev) dev_put(net_dev); return 0; err3: cma_deref_id(conn_id); /* Destroy the CM ID by returning a non-zero value. */ conn_id->cm_id.ib = NULL; err2: cma_exch(conn_id, RDMA_CM_DESTROYING); mutex_unlock(&conn_id->handler_mutex); err1: mutex_unlock(&listen_id->handler_mutex); if (conn_id) rdma_destroy_id(&conn_id->id); net_dev_put: if (net_dev) dev_put(net_dev); return ret; } __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) { if (addr->sa_family == AF_IB) return ((struct sockaddr_ib *) addr)->sib_sid; return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); } EXPORT_SYMBOL(rdma_get_service_id); static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) { struct rdma_id_private *id_priv = iw_id->context; struct rdma_cm_event event; int ret = 0; struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; mutex_lock(&id_priv->handler_mutex); if (id_priv->state != RDMA_CM_CONNECT) goto out; memset(&event, 0, sizeof event); switch (iw_event->event) { case IW_CM_EVENT_CLOSE: event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IW_CM_EVENT_CONNECT_REPLY: memcpy(cma_src_addr(id_priv), laddr, rdma_addr_size(laddr)); memcpy(cma_dst_addr(id_priv), raddr, rdma_addr_size(raddr)); switch (iw_event->status) { case 0: event.event = RDMA_CM_EVENT_ESTABLISHED; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; break; case -ECONNRESET: case -ECONNREFUSED: event.event = RDMA_CM_EVENT_REJECTED; break; case -ETIMEDOUT: event.event = RDMA_CM_EVENT_UNREACHABLE; break; default: event.event = RDMA_CM_EVENT_CONNECT_ERROR; break; } break; case IW_CM_EVENT_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; break; default: BUG_ON(1); } event.status = iw_event->status; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.iw = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static int iw_conn_req_handler(struct iw_cm_id *cm_id, struct iw_cm_event *iw_event) { struct rdma_cm_id *new_cm_id; struct rdma_id_private *listen_id, *conn_id; struct rdma_cm_event event; int ret = -ECONNABORTED; struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; listen_id = cm_id->context; mutex_lock(&listen_id->handler_mutex); if (listen_id->state != RDMA_CM_LISTEN) goto out; /* Create a new RDMA id for the new IW CM ID */ new_cm_id = rdma_create_id(listen_id->id.route.addr.dev_addr.net, listen_id->id.event_handler, listen_id->id.context, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(new_cm_id)) { ret = -ENOMEM; goto out; } conn_id = container_of(new_cm_id, struct rdma_id_private, id); mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); conn_id->state = RDMA_CM_CONNECT; ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } ret = cma_acquire_dev(conn_id, listen_id); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } conn_id->cm_id.iw = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_iw_handler; memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; /* * Protect against the user destroying conn_id from another thread * until we're done accessing it. */ atomic_inc(&conn_id->refcount); ret = conn_id->id.event_handler(&conn_id->id, &event); if (ret) { /* User wants to destroy the CM ID */ conn_id->cm_id.iw = NULL; cma_exch(conn_id, RDMA_CM_DESTROYING); mutex_unlock(&conn_id->handler_mutex); cma_deref_id(conn_id); rdma_destroy_id(&conn_id->id); goto out; } mutex_unlock(&conn_id->handler_mutex); cma_deref_id(conn_id); out: mutex_unlock(&listen_id->handler_mutex); return ret; } static int cma_ib_listen(struct rdma_id_private *id_priv) { struct sockaddr *addr; struct ib_cm_id *id; __be64 svc_id; addr = cma_src_addr(id_priv); svc_id = rdma_get_service_id(&id_priv->id, addr); id = ib_cm_insert_listen(id_priv->id.device, cma_req_handler, svc_id); if (IS_ERR(id)) return PTR_ERR(id); id_priv->cm_id.ib = id; return 0; } static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) { int ret; struct iw_cm_id *id; id = iw_create_cm_id(id_priv->id.device, iw_conn_req_handler, id_priv); if (IS_ERR(id)) return PTR_ERR(id); id->tos = id_priv->tos; id_priv->cm_id.iw = id; memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); ret = iw_cm_listen(id_priv->cm_id.iw, backlog); if (ret) { iw_destroy_cm_id(id_priv->cm_id.iw); id_priv->cm_id.iw = NULL; } return ret; } static int cma_listen_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) { struct rdma_id_private *id_priv = id->context; id->context = id_priv->id.context; id->event_handler = id_priv->id.event_handler; return id_priv->id.event_handler(id, event); } static void cma_listen_on_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { struct rdma_id_private *dev_id_priv; struct rdma_cm_id *id; struct vnet *net = id_priv->id.route.addr.dev_addr.net; int ret; if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) return; id = rdma_create_id(net, cma_listen_handler, id_priv, id_priv->id.ps, id_priv->id.qp_type); if (IS_ERR(id)) return; dev_id_priv = container_of(id, struct rdma_id_private, id); dev_id_priv->state = RDMA_CM_ADDR_BOUND; memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); _cma_attach_to_dev(dev_id_priv, cma_dev); list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); atomic_inc(&id_priv->refcount); dev_id_priv->internal_id = 1; dev_id_priv->afonly = id_priv->afonly; ret = rdma_listen(id, id_priv->backlog); if (ret) pr_warn("RDMA CMA: cma_listen_on_dev, error %d, listening on device %s\n", ret, cma_dev->device->name); } static void cma_listen_on_all(struct rdma_id_private *id_priv) { struct cma_device *cma_dev; mutex_lock(&lock); list_add_tail(&id_priv->list, &listen_any_list); list_for_each_entry(cma_dev, &dev_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); } void rdma_set_service_type(struct rdma_cm_id *id, int tos) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); id_priv->tos = (u8) tos; } EXPORT_SYMBOL(rdma_set_service_type); static void cma_query_handler(int status, struct ib_sa_path_rec *path_rec, void *context) { struct cma_work *work = context; struct rdma_route *route; route = &work->id->id.route; if (!status) { route->num_paths = 1; *route->path_rec = *path_rec; } else { work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; work->event.status = status; } queue_work(cma_wq, &work->work); } static int cma_query_ib_route(struct rdma_id_private *id_priv, int timeout_ms, struct cma_work *work) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct ib_sa_path_rec path_rec; ib_sa_comp_mask comp_mask; struct sockaddr_in6 *sin6; struct sockaddr_ib *sib; memset(&path_rec, 0, sizeof path_rec); rdma_addr_get_sgid(dev_addr, &path_rec.sgid); rdma_addr_get_dgid(dev_addr, &path_rec.dgid); path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); path_rec.numb_path = 1; path_rec.reversible = 1; path_rec.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; switch (cma_family(id_priv)) { case AF_INET: path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); comp_mask |= IB_SA_PATH_REC_QOS_CLASS; break; case AF_INET6: sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; break; case AF_IB: sib = (struct sockaddr_ib *) cma_src_addr(id_priv); path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; break; } id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, id_priv->id.port_num, &path_rec, comp_mask, timeout_ms, GFP_KERNEL, cma_query_handler, work, &id_priv->query); return (id_priv->query_id < 0) ? id_priv->query_id : 0; } static void cma_work_handler(struct work_struct *_work) { struct cma_work *work = container_of(_work, struct cma_work, work); struct rdma_id_private *id_priv = work->id; int destroy = 0; mutex_lock(&id_priv->handler_mutex); if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) goto out; if (id_priv->id.event_handler(&id_priv->id, &work->event)) { cma_exch(id_priv, RDMA_CM_DESTROYING); destroy = 1; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); if (destroy) rdma_destroy_id(&id_priv->id); kfree(work); } static int cma_resolve_ib_route(struct rdma_id_private *id_priv, int timeout_ms) { struct rdma_route *route = &id_priv->id.route; struct cma_work *work; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } ret = cma_query_ib_route(id_priv, timeout_ms, work); if (ret) goto err2; return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_set_ib_paths(struct rdma_cm_id *id, struct ib_sa_path_rec *path_rec, int num_paths) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_RESOLVED)) return -EINVAL; id->route.path_rec = kmemdup(path_rec, sizeof *path_rec * num_paths, GFP_KERNEL); if (!id->route.path_rec) { ret = -ENOMEM; goto err; } id->route.num_paths = num_paths; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_set_ib_paths); static int cma_resolve_iw_route(struct rdma_id_private *id_priv, int timeout_ms) { struct cma_work *work; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; queue_work(cma_wq, &work->work); return 0; } static int iboe_tos_to_sl(struct net_device *ndev, int tos) { /* get service level, SL, from IPv4 type of service, TOS */ int sl = (tos >> 5) & 0x7; /* final mappings are done by the vendor specific drivers */ return sl; } static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, unsigned long supported_gids, enum ib_gid_type default_gid) { if ((network_type == RDMA_NETWORK_IPV4 || network_type == RDMA_NETWORK_IPV6) && test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) return IB_GID_TYPE_ROCE_UDP_ENCAP; return default_gid; } static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) { struct rdma_route *route = &id_priv->id.route; struct rdma_addr *addr = &route->addr; struct cma_work *work; int ret; struct net_device *ndev = NULL; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } route->num_paths = 1; if (addr->dev_addr.bound_dev_if) { unsigned long supported_gids; ndev = dev_get_by_index(addr->dev_addr.net, addr->dev_addr.bound_dev_if); if (!ndev) { ret = -ENODEV; goto err2; } route->path_rec->net = ndev->if_vnet; route->path_rec->ifindex = ndev->if_index; supported_gids = roce_gid_type_mask_support(id_priv->id.device, id_priv->id.port_num); route->path_rec->gid_type = cma_route_gid_type(addr->dev_addr.network, supported_gids, id_priv->gid_type); } if (!ndev) { ret = -ENODEV; goto err2; } memcpy(route->path_rec->dmac, addr->dev_addr.dst_dev_addr, ETH_ALEN); rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, &route->path_rec->sgid); rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, &route->path_rec->dgid); /* Use the hint from IP Stack to select GID Type */ if (route->path_rec->gid_type < ib_network_to_gid_type(addr->dev_addr.network)) route->path_rec->gid_type = ib_network_to_gid_type(addr->dev_addr.network); if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) /* TODO: get the hoplimit from the inet/inet6 device */ route->path_rec->hop_limit = addr->dev_addr.hoplimit; else route->path_rec->hop_limit = 1; route->path_rec->reversible = 1; route->path_rec->pkey = cpu_to_be16(0xffff); route->path_rec->mtu_selector = IB_SA_EQ; route->path_rec->sl = iboe_tos_to_sl(ndev, id_priv->tos); route->path_rec->traffic_class = id_priv->tos; route->path_rec->mtu = iboe_get_mtu(ndev->if_mtu); route->path_rec->rate_selector = IB_SA_EQ; route->path_rec->rate = iboe_get_rate(ndev); dev_put(ndev); route->path_rec->packet_life_time_selector = IB_SA_EQ; route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; if (!route->path_rec->mtu) { ret = -EINVAL; goto err2; } work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; work->event.status = 0; queue_work(cma_wq, &work->work); return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); if (rdma_cap_ib_sa(id->device, id->port_num)) ret = cma_resolve_ib_route(id_priv, timeout_ms); else if (rdma_protocol_roce(id->device, id->port_num)) ret = cma_resolve_iboe_route(id_priv); else if (rdma_protocol_iwarp(id->device, id->port_num)) ret = cma_resolve_iw_route(id_priv, timeout_ms); else ret = -ENOSYS; if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_route); static void cma_set_loopback(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); break; case AF_INET6: ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 0, 0, 0, htonl(1)); break; default: ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 0, 0, 0, htonl(1)); break; } } static int cma_bind_loopback(struct rdma_id_private *id_priv) { struct cma_device *cma_dev, *cur_dev; struct ib_port_attr port_attr; union ib_gid gid; u16 pkey; int ret; u8 p; cma_dev = NULL; mutex_lock(&lock); list_for_each_entry(cur_dev, &dev_list, list) { if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cur_dev->device, 1)) continue; if (!cma_dev) cma_dev = cur_dev; for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) { if (!ib_query_port(cur_dev->device, p, &port_attr) && port_attr.state == IB_PORT_ACTIVE) { cma_dev = cur_dev; goto port_found; } } } if (!cma_dev) { ret = -ENODEV; goto out; } p = 1; port_found: ret = ib_get_cached_gid(cma_dev->device, p, 0, &gid, NULL); if (ret) goto out; ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); if (ret) goto out; id_priv->id.route.addr.dev_addr.dev_type = (rdma_protocol_ib(cma_dev->device, p)) ? ARPHRD_INFINIBAND : ARPHRD_ETHER; rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); id_priv->id.port_num = p; cma_attach_to_dev(id_priv, cma_dev); cma_set_loopback(cma_src_addr(id_priv)); out: mutex_unlock(&lock); return ret; } static void addr_handler(int status, struct sockaddr *src_addr, struct rdma_dev_addr *dev_addr, void *context) { struct rdma_id_private *id_priv = context; struct rdma_cm_event event; memset(&event, 0, sizeof event); mutex_lock(&id_priv->handler_mutex); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_RESOLVED)) goto out; memcpy(cma_src_addr(id_priv), src_addr, rdma_addr_size(src_addr)); if (!status && !id_priv->cma_dev) status = cma_acquire_dev(id_priv, NULL); if (status) { if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ADDR_BOUND)) goto out; event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = status; } else event.event = RDMA_CM_EVENT_ADDR_RESOLVED; if (id_priv->id.event_handler(&id_priv->id, &event)) { cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); rdma_destroy_id(&id_priv->id); return; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); } static int cma_resolve_loopback(struct rdma_id_private *id_priv) { struct cma_work *work; union ib_gid gid; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; if (!id_priv->cma_dev) { ret = cma_bind_loopback(id_priv); if (ret) goto err; } rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ADDR_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; queue_work(cma_wq, &work->work); return 0; err: kfree(work); return ret; } static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) { struct cma_work *work; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; if (!id_priv->cma_dev) { ret = cma_resolve_ib_dev(id_priv); if (ret) goto err; } rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ADDR_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; queue_work(cma_wq, &work->work); return 0; err: kfree(work); return ret; } static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr) { if (!src_addr || !src_addr->sa_family) { src_addr = (struct sockaddr *) &id->route.addr.src_addr; src_addr->sa_family = dst_addr->sa_family; if (dst_addr->sa_family == AF_INET6) { struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; if (IN6_IS_SCOPE_LINKLOCAL(&dst_addr6->sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&dst_addr6->sin6_addr)) id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; } else if (dst_addr->sa_family == AF_IB) { ((struct sockaddr_ib *) src_addr)->sib_pkey = ((struct sockaddr_ib *) dst_addr)->sib_pkey; } } return rdma_bind_addr(id, src_addr); } int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == RDMA_CM_IDLE) { ret = cma_bind_addr(id, src_addr, dst_addr); if (ret) return ret; } if (cma_family(id_priv) != dst_addr->sa_family) return -EINVAL; if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); if (cma_any_addr(dst_addr)) { ret = cma_resolve_loopback(id_priv); } else { if (dst_addr->sa_family == AF_IB) { ret = cma_resolve_ib_addr(id_priv); } else { ret = cma_check_linklocal(&id->route.addr.dev_addr, dst_addr); if (ret) goto err; ret = rdma_resolve_ip(&addr_client, cma_src_addr(id_priv), dst_addr, &id->route.addr.dev_addr, timeout_ms, addr_handler, id_priv); } } if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_addr); int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) { struct rdma_id_private *id_priv; unsigned long flags; int ret; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irqsave(&id_priv->lock, flags); if (reuse || id_priv->state == RDMA_CM_IDLE) { id_priv->reuseaddr = reuse; ret = 0; } else { ret = -EINVAL; } spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } EXPORT_SYMBOL(rdma_set_reuseaddr); int rdma_set_afonly(struct rdma_cm_id *id, int afonly) { struct rdma_id_private *id_priv; unsigned long flags; int ret; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irqsave(&id_priv->lock, flags); if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { id_priv->options |= (1 << CMA_OPTION_AFONLY); id_priv->afonly = afonly; ret = 0; } else { ret = -EINVAL; } spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } EXPORT_SYMBOL(rdma_set_afonly); static void cma_bind_port(struct rdma_bind_list *bind_list, struct rdma_id_private *id_priv) { struct sockaddr *addr; struct sockaddr_ib *sib; u64 sid, mask; __be16 port; addr = cma_src_addr(id_priv); port = htons(bind_list->port); switch (addr->sa_family) { case AF_INET: ((struct sockaddr_in *) addr)->sin_port = port; break; case AF_INET6: ((struct sockaddr_in6 *) addr)->sin6_port = port; break; case AF_IB: sib = (struct sockaddr_ib *) addr; sid = be64_to_cpu(sib->sib_sid); mask = be64_to_cpu(sib->sib_sid_mask); sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); sib->sib_sid_mask = cpu_to_be64(~0ULL); break; } id_priv->bind_list = bind_list; hlist_add_head(&id_priv->node, &bind_list->owners); } static int cma_alloc_port(enum rdma_port_space ps, struct rdma_id_private *id_priv, unsigned short snum) { struct rdma_bind_list *bind_list; int ret; bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); if (!bind_list) return -ENOMEM; ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, snum); if (ret < 0) goto err; bind_list->ps = ps; bind_list->port = (unsigned short)ret; cma_bind_port(bind_list, id_priv); return 0; err: kfree(bind_list); return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; } static int cma_alloc_any_port(enum rdma_port_space ps, struct rdma_id_private *id_priv) { static unsigned int last_used_port; int low, high, remaining; unsigned int rover; struct vnet *net = id_priv->id.route.addr.dev_addr.net; u32 rand; inet_get_local_port_range(net, &low, &high); remaining = (high - low) + 1; get_random_bytes(&rand, sizeof(rand)); rover = rand % remaining + low; retry: if (last_used_port != rover && !cma_ps_find(net, ps, (unsigned short)rover)) { int ret = cma_alloc_port(ps, id_priv, rover); /* * Remember previously used port number in order to avoid * re-using same port immediately after it is closed. */ if (!ret) last_used_port = rover; if (ret != -EADDRNOTAVAIL) return ret; } if (--remaining) { rover++; if ((rover < low) || (rover > high)) rover = low; goto retry; } return -EADDRNOTAVAIL; } /* * Check that the requested port is available. This is called when trying to * bind to a specific port, or when trying to listen on a bound port. In * the latter case, the provided id_priv may already be on the bind_list, but * we still need to check that it's okay to start listening. */ static int cma_check_port(struct rdma_bind_list *bind_list, struct rdma_id_private *id_priv, uint8_t reuseaddr) { struct rdma_id_private *cur_id; struct sockaddr *addr, *cur_addr; addr = cma_src_addr(id_priv); hlist_for_each_entry(cur_id, &bind_list->owners, node) { if (id_priv == cur_id) continue; if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr && cur_id->reuseaddr) continue; cur_addr = cma_src_addr(cur_id); if (id_priv->afonly && cur_id->afonly && (addr->sa_family != cur_addr->sa_family)) continue; if (cma_any_addr(addr) || cma_any_addr(cur_addr)) return -EADDRNOTAVAIL; if (!cma_addr_cmp(addr, cur_addr)) return -EADDRINUSE; } return 0; } static int cma_use_port(enum rdma_port_space ps, struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list; unsigned short snum; int ret; snum = ntohs(cma_port(cma_src_addr(id_priv))); if (snum < IPPORT_RESERVED && priv_check(curthread, PRIV_NETINET_BINDANY) != 0) return -EACCES; bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); if (!bind_list) { ret = cma_alloc_port(ps, id_priv, snum); } else { ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); if (!ret) cma_bind_port(bind_list, id_priv); } return ret; } static int cma_bind_listen(struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list = id_priv->bind_list; int ret = 0; mutex_lock(&lock); if (bind_list->owners.first->next) ret = cma_check_port(bind_list, id_priv, 0); mutex_unlock(&lock); return ret; } static enum rdma_port_space cma_select_inet_ps( struct rdma_id_private *id_priv) { switch (id_priv->id.ps) { case RDMA_PS_TCP: case RDMA_PS_UDP: case RDMA_PS_IPOIB: case RDMA_PS_IB: case RDMA_PS_SDP: return id_priv->id.ps; default: return 0; } } static enum rdma_port_space cma_select_ib_ps(struct rdma_id_private *id_priv) { enum rdma_port_space ps = 0; struct sockaddr_ib *sib; u64 sid_ps, mask, sid; sib = (struct sockaddr_ib *) cma_src_addr(id_priv); mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; sid = be64_to_cpu(sib->sib_sid) & mask; if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { sid_ps = RDMA_IB_IP_PS_IB; ps = RDMA_PS_IB; } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && (sid == (RDMA_IB_IP_PS_TCP & mask))) { sid_ps = RDMA_IB_IP_PS_TCP; ps = RDMA_PS_TCP; } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && (sid == (RDMA_IB_IP_PS_UDP & mask))) { sid_ps = RDMA_IB_IP_PS_UDP; ps = RDMA_PS_UDP; } if (ps) { sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | be64_to_cpu(sib->sib_sid_mask)); } return ps; } static int cma_get_port(struct rdma_id_private *id_priv) { enum rdma_port_space ps; int ret; if (cma_family(id_priv) != AF_IB) ps = cma_select_inet_ps(id_priv); else ps = cma_select_ib_ps(id_priv); if (!ps) return -EPROTONOSUPPORT; mutex_lock(&lock); if (cma_any_port(cma_src_addr(id_priv))) ret = cma_alloc_any_port(ps, id_priv); else ret = cma_use_port(ps, id_priv); mutex_unlock(&lock); return ret; } static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, struct sockaddr *addr) { #ifdef INET6 struct sockaddr_in6 sin6; if (addr->sa_family != AF_INET6) return 0; sin6 = *(struct sockaddr_in6 *)addr; if (IN6_IS_SCOPE_LINKLOCAL(&sin6.sin6_addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&sin6.sin6_addr)) { bool failure; CURVNET_SET_QUIET(dev_addr->net); failure = sa6_recoverscope(&sin6) || sin6.sin6_scope_id == 0; CURVNET_RESTORE(); /* check if IPv6 scope ID is not set */ if (failure) return -EINVAL; dev_addr->bound_dev_if = sin6.sin6_scope_id; } #endif return 0; } int rdma_listen(struct rdma_cm_id *id, int backlog) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == RDMA_CM_IDLE) { id->route.addr.src_addr.ss_family = AF_INET; ret = rdma_bind_addr(id, cma_src_addr(id_priv)); if (ret) return ret; } if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) return -EINVAL; if (id_priv->reuseaddr) { ret = cma_bind_listen(id_priv); if (ret) goto err; } id_priv->backlog = backlog; if (id->device) { if (rdma_cap_ib_cm(id->device, 1)) { ret = cma_ib_listen(id_priv); if (ret) goto err; } else if (rdma_cap_iw_cm(id->device, 1)) { ret = cma_iw_listen(id_priv, backlog); if (ret) goto err; } else { ret = -ENOSYS; goto err; } } else cma_listen_on_all(id_priv); return 0; err: id_priv->backlog = 0; cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); return ret; } EXPORT_SYMBOL(rdma_listen); int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; int ret; if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && addr->sa_family != AF_IB) return -EAFNOSUPPORT; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) return -EINVAL; ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); if (ret) goto err1; memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); if (!cma_any_addr(addr)) { ret = cma_translate_addr(addr, &id->route.addr.dev_addr); if (ret) goto err1; ret = cma_acquire_dev(id_priv, NULL); if (ret) goto err1; } if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { if (addr->sa_family == AF_INET) id_priv->afonly = 1; #ifdef INET6 else if (addr->sa_family == AF_INET6) { CURVNET_SET_QUIET(id_priv->id.route.addr.dev_addr.net); id_priv->afonly = V_ip6_v6only; CURVNET_RESTORE(); } #endif } ret = cma_get_port(id_priv); if (ret) goto err2; return 0; err2: if (id_priv->cma_dev) cma_release_dev(id_priv); err1: cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); return ret; } EXPORT_SYMBOL(rdma_bind_addr); static int sdp_format_hdr(struct sdp_hh *sdp_hdr, struct rdma_id_private *id_priv) { /* * XXXCEM: CMA just sets the version itself rather than relying on * passed in packet to have the major version set. Should we? */ if (sdp_get_majv(sdp_hdr->majv_minv) != SDP_MAJ_VERSION) return -EINVAL; if (cma_family(id_priv) == AF_INET) { struct sockaddr_in *src4, *dst4; src4 = (struct sockaddr_in *) cma_src_addr(id_priv); dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); sdp_set_ip_ver(sdp_hdr, 4); sdp_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; sdp_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; sdp_hdr->port = src4->sin_port; } else if (cma_family(id_priv) == AF_INET6) { struct sockaddr_in6 *src6, *dst6; src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); sdp_set_ip_ver(sdp_hdr, 6); sdp_hdr->src_addr.ip6 = src6->sin6_addr; sdp_hdr->dst_addr.ip6 = dst6->sin6_addr; sdp_hdr->port = src6->sin6_port; cma_ip6_clear_scope_id(&sdp_hdr->src_addr.ip6); cma_ip6_clear_scope_id(&sdp_hdr->dst_addr.ip6); } else return -EAFNOSUPPORT; return 0; } static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) { struct cma_hdr *cma_hdr; if (id_priv->id.ps == RDMA_PS_SDP) return sdp_format_hdr(hdr, id_priv); cma_hdr = hdr; cma_hdr->cma_version = CMA_VERSION; if (cma_family(id_priv) == AF_INET) { struct sockaddr_in *src4, *dst4; src4 = (struct sockaddr_in *) cma_src_addr(id_priv); dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); cma_set_ip_ver(cma_hdr, 4); cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; cma_hdr->port = src4->sin_port; } else if (cma_family(id_priv) == AF_INET6) { struct sockaddr_in6 *src6, *dst6; src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); cma_set_ip_ver(cma_hdr, 6); cma_hdr->src_addr.ip6 = src6->sin6_addr; cma_hdr->dst_addr.ip6 = dst6->sin6_addr; cma_hdr->port = src6->sin6_port; cma_ip6_clear_scope_id(&cma_hdr->src_addr.ip6); cma_ip6_clear_scope_id(&cma_hdr->dst_addr.ip6); } return 0; } static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd; int ret = 0; mutex_lock(&id_priv->handler_mutex); if (id_priv->state != RDMA_CM_CONNECT) goto out; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_SIDR_REQ_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_SIDR_REP_RECEIVED: event.param.ud.private_data = ib_event->private_data; event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; if (rep->status != IB_SIDR_SUCCESS) { event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = ib_event->param.sidr_rep_rcvd.status; break; } ret = cma_set_qkey(id_priv, rep->qkey); if (ret) { event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = ret; break; } ret = ib_init_ah_from_path(id_priv->id.device, id_priv->id.port_num, id_priv->id.route.path_rec, &event.param.ud.ah_attr); if (ret) { event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = ret; break; } event.param.ud.qp_num = rep->qpn; event.param.ud.qkey = rep->qkey; event.event = RDMA_CM_EVENT_ESTABLISHED; event.status = 0; break; default: pr_err("RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_sidr_req_param req; struct ib_cm_id *id; void *private_data; int offset, ret; memset(&req, 0, sizeof req); offset = cma_user_data_offset(id_priv); req.private_data_len = offset + conn_param->private_data_len; if (req.private_data_len < conn_param->private_data_len) return -EINVAL; if (req.private_data_len) { private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!private_data) return -ENOMEM; } else { private_data = NULL; } if (conn_param->private_data && conn_param->private_data_len) memcpy((char *)private_data + offset, conn_param->private_data, conn_param->private_data_len); if (private_data) { ret = cma_format_hdr(private_data, id_priv); if (ret) goto out; req.private_data = private_data; } id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, id_priv); if (IS_ERR(id)) { ret = PTR_ERR(id); goto out; } id_priv->cm_id.ib = id; req.path = id_priv->id.route.path_rec; req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); req.max_cm_retries = CMA_MAX_CM_RETRIES; ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); if (ret) { ib_destroy_cm_id(id_priv->cm_id.ib); id_priv->cm_id.ib = NULL; } out: kfree(private_data); return ret; } static int cma_connect_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_req_param req; struct rdma_route *route; void *private_data; struct ib_cm_id *id; int offset, ret; memset(&req, 0, sizeof req); offset = cma_user_data_offset(id_priv); req.private_data_len = offset + conn_param->private_data_len; if (req.private_data_len < conn_param->private_data_len) return -EINVAL; if (req.private_data_len) { private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!private_data) return -ENOMEM; } else { private_data = NULL; } if (conn_param->private_data && conn_param->private_data_len) memcpy((char *)private_data + offset, conn_param->private_data, conn_param->private_data_len); id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); if (IS_ERR(id)) { ret = PTR_ERR(id); goto out; } id_priv->cm_id.ib = id; route = &id_priv->id.route; if (private_data) { ret = cma_format_hdr(private_data, id_priv); if (ret) goto out; req.private_data = private_data; } req.primary_path = &route->path_rec[0]; if (route->num_paths == 2) req.alternate_path = &route->path_rec[1]; req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); req.qp_num = id_priv->qp_num; req.qp_type = id_priv->id.qp_type; req.starting_psn = id_priv->seq_num; req.responder_resources = conn_param->responder_resources; req.initiator_depth = conn_param->initiator_depth; req.flow_control = conn_param->flow_control; req.retry_count = min_t(u8, 7, conn_param->retry_count); req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; req.max_cm_retries = CMA_MAX_CM_RETRIES; req.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_req(id_priv->cm_id.ib, &req); out: if (ret && !IS_ERR(id)) { ib_destroy_cm_id(id); id_priv->cm_id.ib = NULL; } kfree(private_data); return ret; } static int cma_connect_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_id *cm_id; int ret; struct iw_cm_conn_param iw_param; cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); if (IS_ERR(cm_id)) return PTR_ERR(cm_id); cm_id->tos = id_priv->tos; id_priv->cm_id.iw = cm_id; memcpy(&cm_id->local_addr, cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), rdma_addr_size(cma_dst_addr(id_priv))); ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; if (conn_param) { iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; } else { memset(&iw_param, 0, sizeof iw_param); iw_param.qpn = id_priv->qp_num; } ret = iw_cm_connect(cm_id, &iw_param); out: if (ret) { iw_destroy_cm_id(cm_id); id_priv->cm_id.iw = NULL; } return ret; } int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) return -EINVAL; if (!id->qp) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } if (rdma_cap_ib_cm(id->device, id->port_num)) { if (id->qp_type == IB_QPT_UD) ret = cma_resolve_ib_udp(id_priv, conn_param); else ret = cma_connect_ib(id_priv, conn_param); } else if (rdma_cap_iw_cm(id->device, id->port_num)) ret = cma_connect_iw(id_priv, conn_param); else ret = -ENOSYS; if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_connect); static int cma_accept_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_rep_param rep; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; ret = cma_modify_qp_rts(id_priv, conn_param); if (ret) goto out; memset(&rep, 0, sizeof rep); rep.qp_num = id_priv->qp_num; rep.starting_psn = id_priv->seq_num; rep.private_data = conn_param->private_data; rep.private_data_len = conn_param->private_data_len; rep.responder_resources = conn_param->responder_resources; rep.initiator_depth = conn_param->initiator_depth; rep.failover_accepted = 0; rep.flow_control = conn_param->flow_control; rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); rep.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); out: return ret; } static int cma_accept_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_conn_param iw_param; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) return ret; iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; if (id_priv->id.qp) { iw_param.qpn = id_priv->qp_num; } else iw_param.qpn = conn_param->qp_num; return iw_cm_accept(id_priv->cm_id.iw, &iw_param); } static int cma_send_sidr_rep(struct rdma_id_private *id_priv, enum ib_cm_sidr_status status, u32 qkey, const void *private_data, int private_data_len) { struct ib_cm_sidr_rep_param rep; int ret; memset(&rep, 0, sizeof rep); rep.status = status; if (status == IB_SIDR_SUCCESS) { ret = cma_set_qkey(id_priv, qkey); if (ret) return ret; rep.qp_num = id_priv->qp_num; rep.qkey = id_priv->qkey; } rep.private_data = private_data; rep.private_data_len = private_data_len; return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); } int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); id_priv->owner = task_pid_nr(current); if (!cma_comp(id_priv, RDMA_CM_CONNECT)) return -EINVAL; if (!id->qp && conn_param) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } if (rdma_cap_ib_cm(id->device, id->port_num)) { if (id->qp_type == IB_QPT_UD) { if (conn_param) ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, conn_param->qkey, conn_param->private_data, conn_param->private_data_len); else ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 0, NULL, 0); } else { if (conn_param) ret = cma_accept_ib(id_priv, conn_param); else ret = cma_rep_recv(id_priv); } } else if (rdma_cap_iw_cm(id->device, id->port_num)) ret = cma_accept_iw(id_priv, conn_param); else ret = -ENOSYS; if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); rdma_reject(id, NULL, 0); return ret; } EXPORT_SYMBOL(rdma_accept); int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; switch (id->device->node_type) { case RDMA_NODE_IB_CA: ret = ib_cm_notify(id_priv->cm_id.ib, event); break; default: ret = 0; break; } return ret; } EXPORT_SYMBOL(rdma_notify); int rdma_reject(struct rdma_cm_id *id, const void *private_data, u8 private_data_len) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; if (rdma_cap_ib_cm(id->device, id->port_num)) { if (id->qp_type == IB_QPT_UD) ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, private_data, private_data_len); else ret = ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, private_data, private_data_len); } else if (rdma_cap_iw_cm(id->device, id->port_num)) { ret = iw_cm_reject(id_priv->cm_id.iw, private_data, private_data_len); } else ret = -ENOSYS; return ret; } EXPORT_SYMBOL(rdma_reject); int rdma_disconnect(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; if (rdma_cap_ib_cm(id->device, id->port_num)) { ret = cma_modify_qp_err(id_priv); if (ret) goto out; /* Initiate or respond to a disconnect. */ if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0); } else if (rdma_cap_iw_cm(id->device, id->port_num)) { ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); } else ret = -EINVAL; out: return ret; } EXPORT_SYMBOL(rdma_disconnect); static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) { struct rdma_id_private *id_priv; struct cma_multicast *mc = multicast->context; struct rdma_cm_event event; int ret = 0; id_priv = mc->id_priv; mutex_lock(&id_priv->handler_mutex); if (id_priv->state != RDMA_CM_ADDR_BOUND && id_priv->state != RDMA_CM_ADDR_RESOLVED) goto out; if (!status) status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); mutex_lock(&id_priv->qp_mutex); if (!status && id_priv->id.qp) status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid, be16_to_cpu(multicast->rec.mlid)); mutex_unlock(&id_priv->qp_mutex); memset(&event, 0, sizeof event); event.status = status; event.param.ud.private_data = mc->context; if (!status) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct net_device *ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); enum ib_gid_type gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - rdma_start_port(id_priv->cma_dev->device)]; event.event = RDMA_CM_EVENT_MULTICAST_JOIN; ret = ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, &multicast->rec, ndev, gid_type, &event.param.ud.ah_attr); if (ret) event.event = RDMA_CM_EVENT_MULTICAST_ERROR; event.param.ud.qp_num = 0xFFFFFF; event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey); if (ndev) dev_put(ndev); } else event.event = RDMA_CM_EVENT_MULTICAST_ERROR; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return 0; } out: mutex_unlock(&id_priv->handler_mutex); return 0; } static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, union ib_gid *mgid) { unsigned char mc_map[MAX_ADDR_LEN]; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct sockaddr_in *sin = (struct sockaddr_in *) addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if ((addr->sa_family == AF_INET6) && ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 0xFF10A01B)) { /* IPv6 address is an SA assigned MGID. */ memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); } else if (addr->sa_family == AF_IB) { memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); } else if (addr->sa_family == AF_INET6) { ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } else { ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } } static void cma_query_sa_classport_info_cb(int status, struct ib_class_port_info *rec, void *context) { struct class_port_info_context *cb_ctx = context; WARN_ON(!context); if (status || !rec) { pr_debug("RDMA CM: %s port %u failed query ClassPortInfo status: %d\n", cb_ctx->device->name, cb_ctx->port_num, status); goto out; } memcpy(cb_ctx->class_port_info, rec, sizeof(struct ib_class_port_info)); out: complete(&cb_ctx->done); } static int cma_query_sa_classport_info(struct ib_device *device, u8 port_num, struct ib_class_port_info *class_port_info) { struct class_port_info_context *cb_ctx; int ret; cb_ctx = kmalloc(sizeof(*cb_ctx), GFP_KERNEL); if (!cb_ctx) return -ENOMEM; cb_ctx->device = device; cb_ctx->class_port_info = class_port_info; cb_ctx->port_num = port_num; init_completion(&cb_ctx->done); ret = ib_sa_classport_info_rec_query(&sa_client, device, port_num, CMA_QUERY_CLASSPORT_INFO_TIMEOUT, GFP_KERNEL, cma_query_sa_classport_info_cb, cb_ctx, &cb_ctx->sa_query); if (ret < 0) { pr_err("RDMA CM: %s port %u failed to send ClassPortInfo query, ret: %d\n", device->name, port_num, ret); goto out; } wait_for_completion(&cb_ctx->done); out: kfree(cb_ctx); return ret; } static int cma_join_ib_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct ib_sa_mcmember_rec rec; struct ib_class_port_info class_port_info; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; ib_sa_comp_mask comp_mask; int ret; ib_addr_get_mgid(dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (ret) return ret; ret = cma_set_qkey(id_priv, 0); if (ret) return ret; cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); rec.qkey = cpu_to_be32(id_priv->qkey); rdma_addr_get_sgid(dev_addr, &rec.port_gid); rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); rec.join_state = mc->join_state; if (rec.join_state == BIT(SENDONLY_FULLMEMBER_JOIN)) { ret = cma_query_sa_classport_info(id_priv->id.device, id_priv->id.port_num, &class_port_info); if (ret) return ret; if (!(ib_get_cpi_capmask2(&class_port_info) & IB_SA_CAP_MASK2_SENDONLY_FULL_MEM_SUPPORT)) { pr_warn("RDMA CM: %s port %u Unable to multicast join\n" "RDMA CM: SM doesn't support Send Only Full Member option\n", id_priv->id.device->name, id_priv->id.port_num); return -EOPNOTSUPP; } } comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | IB_SA_MCMEMBER_REC_FLOW_LABEL | IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; if (id_priv->id.ps == RDMA_PS_IPOIB) comp_mask |= IB_SA_MCMEMBER_REC_RATE | IB_SA_MCMEMBER_REC_RATE_SELECTOR | IB_SA_MCMEMBER_REC_MTU_SELECTOR | IB_SA_MCMEMBER_REC_MTU | IB_SA_MCMEMBER_REC_HOP_LIMIT; mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device, id_priv->id.port_num, &rec, comp_mask, GFP_KERNEL, cma_ib_mc_handler, mc); return PTR_ERR_OR_ZERO(mc->multicast.ib); } static void iboe_mcast_work_handler(struct work_struct *work) { struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work); struct cma_multicast *mc = mw->mc; struct ib_sa_multicast *m = mc->multicast.ib; mc->multicast.ib->context = mc; cma_ib_mc_handler(0, m); kref_put(&mc->mcref, release_mc); kfree(mw); } static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, enum ib_gid_type gid_type) { struct sockaddr_in *sin = (struct sockaddr_in *)addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if (addr->sa_family == AF_INET6) { memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); } else { mgid->raw[0] = (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; mgid->raw[1] = (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; mgid->raw[2] = 0; mgid->raw[3] = 0; mgid->raw[4] = 0; mgid->raw[5] = 0; mgid->raw[6] = 0; mgid->raw[7] = 0; mgid->raw[8] = 0; mgid->raw[9] = 0; mgid->raw[10] = 0xff; mgid->raw[11] = 0xff; *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; } } static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct iboe_mcast_work *work; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int err = 0; struct sockaddr *addr = (struct sockaddr *)&mc->addr; struct net_device *ndev = NULL; enum ib_gid_type gid_type; bool send_only; send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); if (cma_zero_addr((struct sockaddr *)&mc->addr)) return -EINVAL; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL); if (!mc->multicast.ib) { err = -ENOMEM; goto out1; } gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - rdma_start_port(id_priv->cma_dev->device)]; cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid, gid_type); mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff); if (id_priv->id.ps == RDMA_PS_UDP) mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); if (dev_addr->bound_dev_if) ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (!ndev) { err = -ENODEV; goto out2; } mc->multicast.ib->rec.rate = iboe_get_rate(ndev); mc->multicast.ib->rec.hop_limit = 1; mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->if_mtu); if (addr->sa_family == AF_INET || addr->sa_family == AF_INET6) { if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { mc->multicast.ib->rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; if (!send_only) { err = cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, true); if (!err) mc->igmp_joined = true; } } } else { if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) err = -ENOTSUPP; } dev_put(ndev); if (err || !mc->multicast.ib->rec.mtu) { if (!err) err = -EINVAL; goto out2; } rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, &mc->multicast.ib->rec.port_gid); work->id = id_priv; work->mc = mc; INIT_WORK(&work->work, iboe_mcast_work_handler); kref_get(&mc->mcref); queue_work(cma_wq, &work->work); return 0; out2: kfree(mc->multicast.ib); out1: kfree(work); return err; } int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, u8 join_state, void *context) { struct rdma_id_private *id_priv; struct cma_multicast *mc; int ret; if (!id->device) return -EINVAL; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) && !cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED)) return -EINVAL; mc = kmalloc(sizeof *mc, GFP_KERNEL); if (!mc) return -ENOMEM; memcpy(&mc->addr, addr, rdma_addr_size(addr)); mc->context = context; mc->id_priv = id_priv; mc->igmp_joined = false; mc->join_state = join_state; spin_lock(&id_priv->lock); list_add(&mc->list, &id_priv->mc_list); spin_unlock(&id_priv->lock); if (rdma_protocol_roce(id->device, id->port_num)) { kref_init(&mc->mcref); ret = cma_iboe_join_multicast(id_priv, mc); } else if (rdma_cap_ib_mcast(id->device, id->port_num)) ret = cma_join_ib_multicast(id_priv, mc); else ret = -ENOSYS; if (ret) { spin_lock_irq(&id_priv->lock); list_del(&mc->list); spin_unlock_irq(&id_priv->lock); kfree(mc); } return ret; } EXPORT_SYMBOL(rdma_join_multicast); void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; struct cma_multicast *mc; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irq(&id_priv->lock); list_for_each_entry(mc, &id_priv->mc_list, list) { if (!memcmp(&mc->addr, addr, rdma_addr_size(addr))) { list_del(&mc->list); spin_unlock_irq(&id_priv->lock); if (id->qp) ib_detach_mcast(id->qp, &mc->multicast.ib->rec.mgid, be16_to_cpu(mc->multicast.ib->rec.mlid)); BUG_ON(id_priv->cma_dev->device != id->device); if (rdma_cap_ib_mcast(id->device, id->port_num)) { ib_sa_free_multicast(mc->multicast.ib); kfree(mc); } else if (rdma_protocol_roce(id->device, id->port_num)) { if (mc->igmp_joined) { struct rdma_dev_addr *dev_addr = &id->route.addr.dev_addr; struct net_device *ndev = NULL; if (dev_addr->bound_dev_if) ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (ndev) { cma_igmp_send(ndev, &mc->multicast.ib->rec.mgid, false); dev_put(ndev); } mc->igmp_joined = false; } kref_put(&mc->mcref, release_mc); } return; } } spin_unlock_irq(&id_priv->lock); } EXPORT_SYMBOL(rdma_leave_multicast); static int sysctl_cma_default_roce_mode(SYSCTL_HANDLER_ARGS) { struct cma_device *cma_dev = arg1; const int port = arg2; char buf[64]; int error; strlcpy(buf, ib_cache_gid_type_str( cma_get_default_gid_type(cma_dev, port)), sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) goto done; error = ib_cache_gid_parse_type_str(buf); if (error < 0) { error = EINVAL; goto done; } cma_set_default_gid_type(cma_dev, port, error); error = 0; done: return (error); } static void cma_add_one(struct ib_device *device) { struct cma_device *cma_dev; struct rdma_id_private *id_priv; unsigned int i; cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL); if (!cma_dev) return; sysctl_ctx_init(&cma_dev->sysctl_ctx); cma_dev->device = device; cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, sizeof(*cma_dev->default_gid_type), GFP_KERNEL); if (!cma_dev->default_gid_type) { kfree(cma_dev); return; } for (i = rdma_start_port(device); i <= rdma_end_port(device); i++) { unsigned long supported_gids; unsigned int default_gid_type; supported_gids = roce_gid_type_mask_support(device, i); if (WARN_ON(!supported_gids)) { /* set something valid */ default_gid_type = 0; } else if (test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) { /* prefer RoCEv2, if supported */ default_gid_type = IB_GID_TYPE_ROCE_UDP_ENCAP; } else { default_gid_type = find_first_bit(&supported_gids, BITS_PER_LONG); } cma_dev->default_gid_type[i - rdma_start_port(device)] = default_gid_type; } init_completion(&cma_dev->comp); atomic_set(&cma_dev->refcount, 1); INIT_LIST_HEAD(&cma_dev->id_list); ib_set_client_data(device, &cma_client, cma_dev); mutex_lock(&lock); list_add_tail(&cma_dev->list, &dev_list); list_for_each_entry(id_priv, &listen_any_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); for (i = rdma_start_port(device); i <= rdma_end_port(device); i++) { char buf[64]; snprintf(buf, sizeof(buf), "default_roce_mode_port%d", i); (void) SYSCTL_ADD_PROC(&cma_dev->sysctl_ctx, SYSCTL_CHILDREN(device->ports_parent->parent->oidp), OID_AUTO, buf, CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, cma_dev, i, &sysctl_cma_default_roce_mode, "A", "Default RoCE mode. Valid values: IB/RoCE v1 and RoCE v2"); } } static int cma_remove_id_dev(struct rdma_id_private *id_priv) { struct rdma_cm_event event; enum rdma_cm_state state; int ret = 0; /* Record that we want to remove the device */ state = cma_exch(id_priv, RDMA_CM_DEVICE_REMOVAL); if (state == RDMA_CM_DESTROYING) return 0; cma_cancel_operation(id_priv, state); mutex_lock(&id_priv->handler_mutex); /* Check for destruction from another callback. */ if (!cma_comp(id_priv, RDMA_CM_DEVICE_REMOVAL)) goto out; memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_DEVICE_REMOVAL; ret = id_priv->id.event_handler(&id_priv->id, &event); out: mutex_unlock(&id_priv->handler_mutex); return ret; } static void cma_process_remove(struct cma_device *cma_dev) { struct rdma_id_private *id_priv; int ret; mutex_lock(&lock); while (!list_empty(&cma_dev->id_list)) { id_priv = list_entry(cma_dev->id_list.next, struct rdma_id_private, list); list_del(&id_priv->listen_list); list_del_init(&id_priv->list); atomic_inc(&id_priv->refcount); mutex_unlock(&lock); ret = id_priv->internal_id ? 1 : cma_remove_id_dev(id_priv); cma_deref_id(id_priv); if (ret) rdma_destroy_id(&id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); cma_deref_dev(cma_dev); wait_for_completion(&cma_dev->comp); } static void cma_remove_one(struct ib_device *device, void *client_data) { struct cma_device *cma_dev = client_data; if (!cma_dev) return; mutex_lock(&lock); list_del(&cma_dev->list); mutex_unlock(&lock); cma_process_remove(cma_dev); sysctl_ctx_free(&cma_dev->sysctl_ctx); kfree(cma_dev->default_gid_type); kfree(cma_dev); } static void cma_init_vnet(void *arg) { struct cma_pernet *pernet = &VNET(cma_pernet); idr_init(&pernet->tcp_ps); idr_init(&pernet->udp_ps); idr_init(&pernet->ipoib_ps); idr_init(&pernet->ib_ps); idr_init(&pernet->sdp_ps); } VNET_SYSINIT(cma_init_vnet, SI_SUB_OFED_MODINIT - 1, SI_ORDER_FIRST, cma_init_vnet, NULL); static void cma_destroy_vnet(void *arg) { struct cma_pernet *pernet = &VNET(cma_pernet); idr_destroy(&pernet->tcp_ps); idr_destroy(&pernet->udp_ps); idr_destroy(&pernet->ipoib_ps); idr_destroy(&pernet->ib_ps); idr_destroy(&pernet->sdp_ps); } VNET_SYSUNINIT(cma_destroy_vnet, SI_SUB_OFED_MODINIT - 1, SI_ORDER_SECOND, cma_destroy_vnet, NULL); static int __init cma_init(void) { int ret; cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); if (!cma_wq) return -ENOMEM; ib_sa_register_client(&sa_client); rdma_addr_register_client(&addr_client); ret = ib_register_client(&cma_client); if (ret) goto err; cma_configfs_init(); return 0; err: rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); return ret; } static void __exit cma_cleanup(void) { cma_configfs_exit(); ib_unregister_client(&cma_client); rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); } module_init_order(cma_init, SI_ORDER_FOURTH); module_exit_order(cma_cleanup, SI_ORDER_FOURTH); diff --git a/sys/ofed/include/rdma/ib_addr.h b/sys/ofed/include/rdma/ib_addr.h index 052fc636f617..535e6c2b3b14 100644 --- a/sys/ofed/include/rdma/ib_addr.h +++ b/sys/ofed/include/rdma/ib_addr.h @@ -1,372 +1,372 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2005 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * $FreeBSD$ */ #if !defined(IB_ADDR_H) #define IB_ADDR_H #include #include #include #include #include #include #include #include #include #include #include -#include +#include struct rdma_addr_client { atomic_t refcount; struct completion comp; }; union rdma_sockaddr { struct sockaddr _sockaddr; struct sockaddr_in _sockaddr_in; struct sockaddr_in6 _sockaddr_in6; struct sockaddr_storage _sockaddr_ss; }; /** * rdma_addr_register_client - Register an address client. */ void rdma_addr_register_client(struct rdma_addr_client *client); /** * rdma_addr_unregister_client - Deregister an address client. * @client: Client object to deregister. */ void rdma_addr_unregister_client(struct rdma_addr_client *client); /** * struct rdma_dev_addr - Contains resolved RDMA hardware addresses * @src_dev_addr: Source MAC address. * @dst_dev_addr: Destination MAC address. * @broadcast: Broadcast address of the device. * @dev_type: The interface hardware type of the device. * @bound_dev_if: An optional device interface index. * @transport: The transport type used. * @net: Network namespace containing the bound_dev_if net_dev. */ struct vnet; struct rdma_dev_addr { unsigned char src_dev_addr[MAX_ADDR_LEN]; unsigned char dst_dev_addr[MAX_ADDR_LEN]; unsigned char broadcast[MAX_ADDR_LEN]; unsigned short dev_type; int bound_dev_if; enum rdma_transport_type transport; struct vnet *net; enum rdma_network_type network; int hoplimit; }; /** * rdma_translate_ip - Translate a local IP address to an RDMA hardware * address. * * The dev_addr->net and dev_addr->bound_dev_if fields must be initialized. */ int rdma_translate_ip(const struct sockaddr *addr, struct rdma_dev_addr *dev_addr); /** * rdma_resolve_ip - Resolve source and destination IP addresses to * RDMA hardware addresses. * @client: Address client associated with request. * @src_addr: An optional source address to use in the resolution. If a * source address is not provided, a usable address will be returned via * the callback. * @dst_addr: The destination address to resolve. * @addr: A reference to a data location that will receive the resolved * addresses. The data location must remain valid until the callback has * been invoked. The net field of the addr struct must be valid. * @timeout_ms: Amount of time to wait for the address resolution to complete. * @callback: Call invoked once address resolution has completed, timed out, * or been canceled. A status of 0 indicates success. * @context: User-specified context associated with the call. */ int rdma_resolve_ip(struct rdma_addr_client *client, struct sockaddr *src_addr, struct sockaddr *dst_addr, struct rdma_dev_addr *addr, int timeout_ms, void (*callback)(int status, struct sockaddr *src_addr, struct rdma_dev_addr *addr, void *context), void *context); int rdma_resolve_ip_route(struct sockaddr *src_addr, const struct sockaddr *dst_addr, struct rdma_dev_addr *addr); void rdma_addr_cancel(struct rdma_dev_addr *addr); int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev, const unsigned char *dst_dev_addr); int rdma_addr_size(struct sockaddr *addr); int rdma_addr_size_in6(struct sockaddr_in6 *addr); int rdma_addr_size_kss(struct sockaddr_storage *addr); int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid, const union ib_gid *dgid, u8 *smac, struct net_device *dev, int *hoplimit); static inline u16 ib_addr_get_pkey(struct rdma_dev_addr *dev_addr) { return ((u16)dev_addr->broadcast[8] << 8) | (u16)dev_addr->broadcast[9]; } static inline void ib_addr_set_pkey(struct rdma_dev_addr *dev_addr, u16 pkey) { dev_addr->broadcast[8] = pkey >> 8; dev_addr->broadcast[9] = (unsigned char) pkey; } static inline void ib_addr_get_mgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(gid, dev_addr->broadcast + 4, sizeof *gid); } static inline int rdma_addr_gid_offset(struct rdma_dev_addr *dev_addr) { return dev_addr->dev_type == ARPHRD_INFINIBAND ? 4 : 0; } static inline u16 rdma_vlan_dev_vlan_id(const struct net_device *dev) { uint16_t tag; if (dev->if_type == IFT_ETHER && dev->if_pcp != IFNET_PCP_NONE) return 0x0000; /* prio-tagged traffic */ if (VLAN_TAG(__DECONST(struct ifnet *, dev), &tag) != 0) return 0xffff; return tag; } static inline int rdma_ip2gid(const struct sockaddr *addr, union ib_gid *gid) { switch (addr->sa_family) { case AF_INET: ipv6_addr_set_v4mapped(((const struct sockaddr_in *) addr)->sin_addr.s_addr, (struct in6_addr *)gid); break; case AF_INET6: memcpy(gid->raw, &((const struct sockaddr_in6 *)addr)->sin6_addr, 16); /* make sure scope ID gets zeroed inside GID */ if (IN6_IS_SCOPE_LINKLOCAL((struct in6_addr *)gid->raw) || IN6_IS_ADDR_MC_INTFACELOCAL((struct in6_addr *)gid->raw)) { gid->raw[2] = 0; gid->raw[3] = 0; } break; default: return -EINVAL; } return 0; } /* Important - sockaddr should be a union of sockaddr_in and sockaddr_in6 */ static inline void rdma_gid2ip(struct sockaddr *out, const union ib_gid *gid) { if (ipv6_addr_v4mapped((const struct in6_addr *)gid)) { struct sockaddr_in *out_in = (struct sockaddr_in *)out; memset(out_in, 0, sizeof(*out_in)); out_in->sin_len = sizeof(*out_in); out_in->sin_family = AF_INET; memcpy(&out_in->sin_addr.s_addr, gid->raw + 12, 4); } else { struct sockaddr_in6 *out_in = (struct sockaddr_in6 *)out; memset(out_in, 0, sizeof(*out_in)); out_in->sin6_len = sizeof(*out_in); out_in->sin6_family = AF_INET6; memcpy(&out_in->sin6_addr.s6_addr, gid->raw, 16); } } static inline void iboe_addr_get_sgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { struct net_device *dev; struct ifaddr *ifa; #ifdef VIMAGE if (dev_addr->net == NULL) return; #endif dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); if (dev) { CK_STAILQ_FOREACH(ifa, &dev->if_addrhead, ifa_link) { if (ifa->ifa_addr == NULL || ifa->ifa_addr->sa_family != AF_INET) continue; ipv6_addr_set_v4mapped(((struct sockaddr_in *) ifa->ifa_addr)->sin_addr.s_addr, (struct in6_addr *)gid); break; } dev_put(dev); } } static inline void rdma_addr_get_sgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { if (dev_addr->transport == RDMA_TRANSPORT_IB && dev_addr->dev_type != ARPHRD_INFINIBAND) iboe_addr_get_sgid(dev_addr, gid); else memcpy(gid, dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof *gid); } static inline void rdma_addr_set_sgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), gid, sizeof *gid); } static inline void rdma_addr_get_dgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(gid, dev_addr->dst_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof *gid); } static inline void rdma_addr_set_dgid(struct rdma_dev_addr *dev_addr, union ib_gid *gid) { memcpy(dev_addr->dst_dev_addr + rdma_addr_gid_offset(dev_addr), gid, sizeof *gid); } static inline enum ib_mtu iboe_get_mtu(int mtu) { /* * reduce IB headers from effective IBoE MTU. 28 stands for * atomic header which is the biggest possible header after BTH */ mtu = mtu - IB_GRH_BYTES - IB_BTH_BYTES - 28; if (mtu >= ib_mtu_enum_to_int(IB_MTU_4096)) return IB_MTU_4096; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_2048)) return IB_MTU_2048; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_1024)) return IB_MTU_1024; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_512)) return IB_MTU_512; else if (mtu >= ib_mtu_enum_to_int(IB_MTU_256)) return IB_MTU_256; else return 0; } static inline int iboe_get_rate(struct net_device *dev) { uint64_t baudrate = dev->if_baudrate; #ifdef if_baudrate_pf int exp; for (exp = dev->if_baudrate_pf; exp > 0; exp--) baudrate *= 10; #endif if (baudrate >= IF_Gbps(40)) return IB_RATE_40_GBPS; else if (baudrate >= IF_Gbps(30)) return IB_RATE_30_GBPS; else if (baudrate >= IF_Gbps(20)) return IB_RATE_20_GBPS; else if (baudrate >= IF_Gbps(10)) return IB_RATE_10_GBPS; else return IB_RATE_PORT_CURRENT; } static inline int rdma_link_local_addr(struct in6_addr *addr) { if (addr->s6_addr32[0] == htonl(0xfe800000) && addr->s6_addr32[1] == 0) return 1; return 0; } static inline void rdma_get_ll_mac(struct in6_addr *addr, u8 *mac) { memcpy(mac, &addr->s6_addr[8], 3); memcpy(mac + 3, &addr->s6_addr[13], 3); mac[0] ^= 2; } static inline int rdma_is_multicast_addr(struct in6_addr *addr) { __be32 ipv4_addr; if (addr->s6_addr[0] == 0xff) return 1; ipv4_addr = addr->s6_addr32[3]; return (ipv6_addr_v4mapped(addr) && ipv4_is_multicast(ipv4_addr)); } static inline void rdma_get_mcast_mac(struct in6_addr *addr, u8 *mac) { int i; mac[0] = 0x33; mac[1] = 0x33; for (i = 2; i < 6; ++i) mac[i] = addr->s6_addr[i + 10]; } static inline u16 rdma_get_vlan_id(union ib_gid *dgid) { u16 vid; vid = dgid->raw[11] << 8 | dgid->raw[12]; return vid < 0x1000 ? vid : 0xffff; } static inline struct net_device *rdma_vlan_dev_real_dev(struct net_device *dev) { struct epoch_tracker et; NET_EPOCH_ENTER(et); if (dev->if_type != IFT_ETHER || dev->if_pcp == IFNET_PCP_NONE) dev = VLAN_TRUNKDEV(dev); /* non prio-tagged traffic */ NET_EPOCH_EXIT(et); return (dev); } #endif /* IB_ADDR_H */ diff --git a/sys/ofed/include/rdma/ib_addr_freebsd.h b/sys/ofed/include/rdma/ib_addr_freebsd.h index 5ce5f2f8a5ed..79b7231875ec 100644 --- a/sys/ofed/include/rdma/ib_addr_freebsd.h +++ b/sys/ofed/include/rdma/ib_addr_freebsd.h @@ -1,95 +1,110 @@ /*- * Copyright (c) 2010 Isilon Systems, Inc. * Copyright (c) 2010 iX Systems, Inc. * Copyright (c) 2010 Panasas, Inc. * Copyright (c) 2013-2017 Mellanox Technologies, Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD$ */ #ifndef _RDMA_IB_ADDR_FREEBSD_H #define _RDMA_IB_ADDR_FREEBSD_H #ifdef INET static inline struct ifnet * ip_ifp_find(struct vnet *vnet, uint32_t addr) { struct sockaddr_in sin; struct epoch_tracker et; struct ifaddr *ifa; struct ifnet *ifp; memset(&sin, 0, sizeof(sin)); sin.sin_addr.s_addr = addr; sin.sin_len = sizeof(sin); sin.sin_family = AF_INET; NET_EPOCH_ENTER(et); CURVNET_SET_QUIET(vnet); ifa = ifa_ifwithaddr((struct sockaddr *)&sin); CURVNET_RESTORE(); if (ifa) { ifp = ifa->ifa_ifp; if_ref(ifp); } else { ifp = NULL; } NET_EPOCH_EXIT(et); return (ifp); } #endif #ifdef INET6 static inline struct ifnet * ip6_ifp_find(struct vnet *vnet, struct in6_addr addr, uint16_t scope_id) { struct sockaddr_in6 sin6; struct epoch_tracker et; struct ifaddr *ifa; struct ifnet *ifp; memset(&sin6, 0, sizeof(sin6)); sin6.sin6_addr = addr; sin6.sin6_len = sizeof(sin6); sin6.sin6_family = AF_INET6; if (IN6_IS_SCOPE_LINKLOCAL(&addr) || IN6_IS_ADDR_MC_INTFACELOCAL(&addr)) { /* embed the IPv6 scope ID */ sin6.sin6_addr.s6_addr16[1] = htons(scope_id); } NET_EPOCH_ENTER(et); CURVNET_SET_QUIET(vnet); ifa = ifa_ifwithaddr((struct sockaddr *)&sin6); CURVNET_RESTORE(); if (ifa != NULL) { ifp = ifa->ifa_ifp; if_ref(ifp); } else { ifp = NULL; } NET_EPOCH_EXIT(et); return (ifp); } #endif +static inline struct ifnet * +dev_get_by_index(struct vnet *vnet, int if_index) +{ + struct epoch_tracker et; + struct ifnet *retval; + + NET_EPOCH_ENTER(et); + CURVNET_SET(vnet); + retval = ifnet_byindex_ref(if_index); + CURVNET_RESTORE(); + NET_EPOCH_EXIT(et); + + return (retval); +} + #endif /* _RDMA_IB_ADDR_FREEBSD_H */ diff --git a/sys/ofed/include/rdma/ib_sa.h b/sys/ofed/include/rdma/ib_sa.h index 28e9a7887cab..beea96a02e1a 100644 --- a/sys/ofed/include/rdma/ib_sa.h +++ b/sys/ofed/include/rdma/ib_sa.h @@ -1,473 +1,474 @@ /*- * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 * * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Voltaire, Inc. All rights reserved. * Copyright (c) 2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * $FreeBSD$ */ #ifndef IB_SA_H #define IB_SA_H #include #include #include +#include #include #include enum { IB_SA_CLASS_VERSION = 2, /* IB spec version 1.1/1.2 */ IB_SA_METHOD_GET_TABLE = 0x12, IB_SA_METHOD_GET_TABLE_RESP = 0x92, IB_SA_METHOD_DELETE = 0x15, IB_SA_METHOD_DELETE_RESP = 0x95, IB_SA_METHOD_GET_MULTI = 0x14, IB_SA_METHOD_GET_MULTI_RESP = 0x94, IB_SA_METHOD_GET_TRACE_TBL = 0x13 }; enum { IB_SA_ATTR_CLASS_PORTINFO = 0x01, IB_SA_ATTR_NOTICE = 0x02, IB_SA_ATTR_INFORM_INFO = 0x03, IB_SA_ATTR_NODE_REC = 0x11, IB_SA_ATTR_PORT_INFO_REC = 0x12, IB_SA_ATTR_SL2VL_REC = 0x13, IB_SA_ATTR_SWITCH_REC = 0x14, IB_SA_ATTR_LINEAR_FDB_REC = 0x15, IB_SA_ATTR_RANDOM_FDB_REC = 0x16, IB_SA_ATTR_MCAST_FDB_REC = 0x17, IB_SA_ATTR_SM_INFO_REC = 0x18, IB_SA_ATTR_LINK_REC = 0x20, IB_SA_ATTR_GUID_INFO_REC = 0x30, IB_SA_ATTR_SERVICE_REC = 0x31, IB_SA_ATTR_PARTITION_REC = 0x33, IB_SA_ATTR_PATH_REC = 0x35, IB_SA_ATTR_VL_ARB_REC = 0x36, IB_SA_ATTR_MC_MEMBER_REC = 0x38, IB_SA_ATTR_TRACE_REC = 0x39, IB_SA_ATTR_MULTI_PATH_REC = 0x3a, IB_SA_ATTR_SERVICE_ASSOC_REC = 0x3b, IB_SA_ATTR_INFORM_INFO_REC = 0xf3 }; enum ib_sa_selector { IB_SA_GT = 0, IB_SA_LT = 1, IB_SA_EQ = 2, /* * The meaning of "best" depends on the attribute: for * example, for MTU best will return the largest available * MTU, while for packet life time, best will return the * smallest available life time. */ IB_SA_BEST = 3 }; /* * There are 4 types of join states: * FullMember, NonMember, SendOnlyNonMember, SendOnlyFullMember. * The order corresponds to JoinState bits in MCMemberRecord. */ enum ib_sa_mc_join_states { FULLMEMBER_JOIN, NONMEMBER_JOIN, SENDONLY_NONMEBER_JOIN, SENDONLY_FULLMEMBER_JOIN, NUM_JOIN_MEMBERSHIP_TYPES, }; #define IB_SA_CAP_MASK2_SENDONLY_FULL_MEM_SUPPORT BIT(12) /* * Structures for SA records are named "struct ib_sa_xxx_rec." No * attempt is made to pack structures to match the physical layout of * SA records in SA MADs; all packing and unpacking is handled by the * SA query code. * * For a record with structure ib_sa_xxx_rec, the naming convention * for the component mask value for field yyy is IB_SA_XXX_REC_YYY (we * never use different abbreviations or otherwise change the spelling * of xxx/yyy between ib_sa_xxx_rec.yyy and IB_SA_XXX_REC_YYY). * * Reserved rows are indicated with comments to help maintainability. */ #define IB_SA_PATH_REC_SERVICE_ID (IB_SA_COMP_MASK( 0) |\ IB_SA_COMP_MASK( 1)) #define IB_SA_PATH_REC_DGID IB_SA_COMP_MASK( 2) #define IB_SA_PATH_REC_SGID IB_SA_COMP_MASK( 3) #define IB_SA_PATH_REC_DLID IB_SA_COMP_MASK( 4) #define IB_SA_PATH_REC_SLID IB_SA_COMP_MASK( 5) #define IB_SA_PATH_REC_RAW_TRAFFIC IB_SA_COMP_MASK( 6) /* reserved: 7 */ #define IB_SA_PATH_REC_FLOW_LABEL IB_SA_COMP_MASK( 8) #define IB_SA_PATH_REC_HOP_LIMIT IB_SA_COMP_MASK( 9) #define IB_SA_PATH_REC_TRAFFIC_CLASS IB_SA_COMP_MASK(10) #define IB_SA_PATH_REC_REVERSIBLE IB_SA_COMP_MASK(11) #define IB_SA_PATH_REC_NUMB_PATH IB_SA_COMP_MASK(12) #define IB_SA_PATH_REC_PKEY IB_SA_COMP_MASK(13) #define IB_SA_PATH_REC_QOS_CLASS IB_SA_COMP_MASK(14) #define IB_SA_PATH_REC_SL IB_SA_COMP_MASK(15) #define IB_SA_PATH_REC_MTU_SELECTOR IB_SA_COMP_MASK(16) #define IB_SA_PATH_REC_MTU IB_SA_COMP_MASK(17) #define IB_SA_PATH_REC_RATE_SELECTOR IB_SA_COMP_MASK(18) #define IB_SA_PATH_REC_RATE IB_SA_COMP_MASK(19) #define IB_SA_PATH_REC_PACKET_LIFE_TIME_SELECTOR IB_SA_COMP_MASK(20) #define IB_SA_PATH_REC_PACKET_LIFE_TIME IB_SA_COMP_MASK(21) #define IB_SA_PATH_REC_PREFERENCE IB_SA_COMP_MASK(22) struct ib_sa_path_rec { __be64 service_id; union ib_gid dgid; union ib_gid sgid; __be16 dlid; __be16 slid; int raw_traffic; /* reserved */ __be32 flow_label; u8 hop_limit; u8 traffic_class; int reversible; u8 numb_path; __be16 pkey; __be16 qos_class; u8 sl; u8 mtu_selector; u8 mtu; u8 rate_selector; u8 rate; u8 packet_life_time_selector; u8 packet_life_time; u8 preference; u8 dmac[ETH_ALEN]; /* ignored in IB */ int ifindex; /* ignored in IB */ struct vnet *net; enum ib_gid_type gid_type; }; static inline struct net_device *ib_get_ndev_from_path(struct ib_sa_path_rec *rec) { #ifdef VIMAGE if (rec->net == NULL) return NULL; #endif return dev_get_by_index(rec->net, rec->ifindex); } #define IB_SA_MCMEMBER_REC_MGID IB_SA_COMP_MASK( 0) #define IB_SA_MCMEMBER_REC_PORT_GID IB_SA_COMP_MASK( 1) #define IB_SA_MCMEMBER_REC_QKEY IB_SA_COMP_MASK( 2) #define IB_SA_MCMEMBER_REC_MLID IB_SA_COMP_MASK( 3) #define IB_SA_MCMEMBER_REC_MTU_SELECTOR IB_SA_COMP_MASK( 4) #define IB_SA_MCMEMBER_REC_MTU IB_SA_COMP_MASK( 5) #define IB_SA_MCMEMBER_REC_TRAFFIC_CLASS IB_SA_COMP_MASK( 6) #define IB_SA_MCMEMBER_REC_PKEY IB_SA_COMP_MASK( 7) #define IB_SA_MCMEMBER_REC_RATE_SELECTOR IB_SA_COMP_MASK( 8) #define IB_SA_MCMEMBER_REC_RATE IB_SA_COMP_MASK( 9) #define IB_SA_MCMEMBER_REC_PACKET_LIFE_TIME_SELECTOR IB_SA_COMP_MASK(10) #define IB_SA_MCMEMBER_REC_PACKET_LIFE_TIME IB_SA_COMP_MASK(11) #define IB_SA_MCMEMBER_REC_SL IB_SA_COMP_MASK(12) #define IB_SA_MCMEMBER_REC_FLOW_LABEL IB_SA_COMP_MASK(13) #define IB_SA_MCMEMBER_REC_HOP_LIMIT IB_SA_COMP_MASK(14) #define IB_SA_MCMEMBER_REC_SCOPE IB_SA_COMP_MASK(15) #define IB_SA_MCMEMBER_REC_JOIN_STATE IB_SA_COMP_MASK(16) #define IB_SA_MCMEMBER_REC_PROXY_JOIN IB_SA_COMP_MASK(17) struct ib_sa_mcmember_rec { union ib_gid mgid; union ib_gid port_gid; __be32 qkey; __be16 mlid; u8 mtu_selector; u8 mtu; u8 traffic_class; __be16 pkey; u8 rate_selector; u8 rate; u8 packet_life_time_selector; u8 packet_life_time; u8 sl; __be32 flow_label; u8 hop_limit; u8 scope; u8 join_state; int proxy_join; }; /* Service Record Component Mask Sec 15.2.5.14 Ver 1.1 */ #define IB_SA_SERVICE_REC_SERVICE_ID IB_SA_COMP_MASK( 0) #define IB_SA_SERVICE_REC_SERVICE_GID IB_SA_COMP_MASK( 1) #define IB_SA_SERVICE_REC_SERVICE_PKEY IB_SA_COMP_MASK( 2) /* reserved: 3 */ #define IB_SA_SERVICE_REC_SERVICE_LEASE IB_SA_COMP_MASK( 4) #define IB_SA_SERVICE_REC_SERVICE_KEY IB_SA_COMP_MASK( 5) #define IB_SA_SERVICE_REC_SERVICE_NAME IB_SA_COMP_MASK( 6) #define IB_SA_SERVICE_REC_SERVICE_DATA8_0 IB_SA_COMP_MASK( 7) #define IB_SA_SERVICE_REC_SERVICE_DATA8_1 IB_SA_COMP_MASK( 8) #define IB_SA_SERVICE_REC_SERVICE_DATA8_2 IB_SA_COMP_MASK( 9) #define IB_SA_SERVICE_REC_SERVICE_DATA8_3 IB_SA_COMP_MASK(10) #define IB_SA_SERVICE_REC_SERVICE_DATA8_4 IB_SA_COMP_MASK(11) #define IB_SA_SERVICE_REC_SERVICE_DATA8_5 IB_SA_COMP_MASK(12) #define IB_SA_SERVICE_REC_SERVICE_DATA8_6 IB_SA_COMP_MASK(13) #define IB_SA_SERVICE_REC_SERVICE_DATA8_7 IB_SA_COMP_MASK(14) #define IB_SA_SERVICE_REC_SERVICE_DATA8_8 IB_SA_COMP_MASK(15) #define IB_SA_SERVICE_REC_SERVICE_DATA8_9 IB_SA_COMP_MASK(16) #define IB_SA_SERVICE_REC_SERVICE_DATA8_10 IB_SA_COMP_MASK(17) #define IB_SA_SERVICE_REC_SERVICE_DATA8_11 IB_SA_COMP_MASK(18) #define IB_SA_SERVICE_REC_SERVICE_DATA8_12 IB_SA_COMP_MASK(19) #define IB_SA_SERVICE_REC_SERVICE_DATA8_13 IB_SA_COMP_MASK(20) #define IB_SA_SERVICE_REC_SERVICE_DATA8_14 IB_SA_COMP_MASK(21) #define IB_SA_SERVICE_REC_SERVICE_DATA8_15 IB_SA_COMP_MASK(22) #define IB_SA_SERVICE_REC_SERVICE_DATA16_0 IB_SA_COMP_MASK(23) #define IB_SA_SERVICE_REC_SERVICE_DATA16_1 IB_SA_COMP_MASK(24) #define IB_SA_SERVICE_REC_SERVICE_DATA16_2 IB_SA_COMP_MASK(25) #define IB_SA_SERVICE_REC_SERVICE_DATA16_3 IB_SA_COMP_MASK(26) #define IB_SA_SERVICE_REC_SERVICE_DATA16_4 IB_SA_COMP_MASK(27) #define IB_SA_SERVICE_REC_SERVICE_DATA16_5 IB_SA_COMP_MASK(28) #define IB_SA_SERVICE_REC_SERVICE_DATA16_6 IB_SA_COMP_MASK(29) #define IB_SA_SERVICE_REC_SERVICE_DATA16_7 IB_SA_COMP_MASK(30) #define IB_SA_SERVICE_REC_SERVICE_DATA32_0 IB_SA_COMP_MASK(31) #define IB_SA_SERVICE_REC_SERVICE_DATA32_1 IB_SA_COMP_MASK(32) #define IB_SA_SERVICE_REC_SERVICE_DATA32_2 IB_SA_COMP_MASK(33) #define IB_SA_SERVICE_REC_SERVICE_DATA32_3 IB_SA_COMP_MASK(34) #define IB_SA_SERVICE_REC_SERVICE_DATA64_0 IB_SA_COMP_MASK(35) #define IB_SA_SERVICE_REC_SERVICE_DATA64_1 IB_SA_COMP_MASK(36) #define IB_DEFAULT_SERVICE_LEASE 0xFFFFFFFF struct ib_sa_service_rec { u64 id; union ib_gid gid; __be16 pkey; /* reserved */ u32 lease; u8 key[16]; u8 name[64]; u8 data8[16]; u16 data16[8]; u32 data32[4]; u64 data64[2]; }; #define IB_SA_GUIDINFO_REC_LID IB_SA_COMP_MASK(0) #define IB_SA_GUIDINFO_REC_BLOCK_NUM IB_SA_COMP_MASK(1) #define IB_SA_GUIDINFO_REC_RES1 IB_SA_COMP_MASK(2) #define IB_SA_GUIDINFO_REC_RES2 IB_SA_COMP_MASK(3) #define IB_SA_GUIDINFO_REC_GID0 IB_SA_COMP_MASK(4) #define IB_SA_GUIDINFO_REC_GID1 IB_SA_COMP_MASK(5) #define IB_SA_GUIDINFO_REC_GID2 IB_SA_COMP_MASK(6) #define IB_SA_GUIDINFO_REC_GID3 IB_SA_COMP_MASK(7) #define IB_SA_GUIDINFO_REC_GID4 IB_SA_COMP_MASK(8) #define IB_SA_GUIDINFO_REC_GID5 IB_SA_COMP_MASK(9) #define IB_SA_GUIDINFO_REC_GID6 IB_SA_COMP_MASK(10) #define IB_SA_GUIDINFO_REC_GID7 IB_SA_COMP_MASK(11) struct ib_sa_guidinfo_rec { __be16 lid; u8 block_num; /* reserved */ u8 res1; __be32 res2; u8 guid_info_list[64]; }; struct ib_sa_client { atomic_t users; struct completion comp; }; /** * ib_sa_register_client - Register an SA client. */ void ib_sa_register_client(struct ib_sa_client *client); /** * ib_sa_unregister_client - Deregister an SA client. * @client: Client object to deregister. */ void ib_sa_unregister_client(struct ib_sa_client *client); struct ib_sa_query; void ib_sa_cancel_query(int id, struct ib_sa_query *query); int ib_sa_path_rec_get(struct ib_sa_client *client, struct ib_device *device, u8 port_num, struct ib_sa_path_rec *rec, ib_sa_comp_mask comp_mask, int timeout_ms, gfp_t gfp_mask, void (*callback)(int status, struct ib_sa_path_rec *resp, void *context), void *context, struct ib_sa_query **query); int ib_sa_service_rec_query(struct ib_sa_client *client, struct ib_device *device, u8 port_num, u8 method, struct ib_sa_service_rec *rec, ib_sa_comp_mask comp_mask, int timeout_ms, gfp_t gfp_mask, void (*callback)(int status, struct ib_sa_service_rec *resp, void *context), void *context, struct ib_sa_query **sa_query); struct ib_sa_multicast { struct ib_sa_mcmember_rec rec; ib_sa_comp_mask comp_mask; int (*callback)(int status, struct ib_sa_multicast *multicast); void *context; }; /** * ib_sa_join_multicast - Initiates a join request to the specified multicast * group. * @client: SA client * @device: Device associated with the multicast group. * @port_num: Port on the specified device to associate with the multicast * group. * @rec: SA multicast member record specifying group attributes. * @comp_mask: Component mask indicating which group attributes of %rec are * valid. * @gfp_mask: GFP mask for memory allocations. * @callback: User callback invoked once the join operation completes. * @context: User specified context stored with the ib_sa_multicast structure. * * This call initiates a multicast join request with the SA for the specified * multicast group. If the join operation is started successfully, it returns * an ib_sa_multicast structure that is used to track the multicast operation. * Users must free this structure by calling ib_free_multicast, even if the * join operation later fails. (The callback status is non-zero.) * * If the join operation fails; status will be non-zero, with the following * failures possible: * -ETIMEDOUT: The request timed out. * -EIO: An error occurred sending the query. * -EINVAL: The MCMemberRecord values differed from the existing group's. * -ENETRESET: Indicates that an fatal error has occurred on the multicast * group, and the user must rejoin the group to continue using it. */ struct ib_sa_multicast *ib_sa_join_multicast(struct ib_sa_client *client, struct ib_device *device, u8 port_num, struct ib_sa_mcmember_rec *rec, ib_sa_comp_mask comp_mask, gfp_t gfp_mask, int (*callback)(int status, struct ib_sa_multicast *multicast), void *context); /** * ib_free_multicast - Frees the multicast tracking structure, and releases * any reference on the multicast group. * @multicast: Multicast tracking structure allocated by ib_join_multicast. * * This call blocks until the multicast identifier is destroyed. It may * not be called from within the multicast callback; however, returning a non- * zero value from the callback will result in destroying the multicast * tracking structure. */ void ib_sa_free_multicast(struct ib_sa_multicast *multicast); /** * ib_get_mcmember_rec - Looks up a multicast member record by its MGID and * returns it if found. * @device: Device associated with the multicast group. * @port_num: Port on the specified device to associate with the multicast * group. * @mgid: MGID of multicast group. * @rec: Location to copy SA multicast member record. */ int ib_sa_get_mcmember_rec(struct ib_device *device, u8 port_num, union ib_gid *mgid, struct ib_sa_mcmember_rec *rec); /** * ib_init_ah_from_mcmember - Initialize address handle attributes based on * an SA multicast member record. */ int ib_init_ah_from_mcmember(struct ib_device *device, u8 port_num, struct ib_sa_mcmember_rec *rec, struct net_device *ndev, enum ib_gid_type gid_type, struct ib_ah_attr *ah_attr); /** * ib_init_ah_from_path - Initialize address handle attributes based on an SA * path record. */ int ib_init_ah_from_path(struct ib_device *device, u8 port_num, struct ib_sa_path_rec *rec, struct ib_ah_attr *ah_attr); /** * ib_sa_pack_path - Conert a path record from struct ib_sa_path_rec * to IB MAD wire format. */ void ib_sa_pack_path(struct ib_sa_path_rec *rec, void *attribute); /** * ib_sa_unpack_path - Convert a path record from MAD format to struct * ib_sa_path_rec. */ void ib_sa_unpack_path(void *attribute, struct ib_sa_path_rec *rec); /* Support GuidInfoRecord */ int ib_sa_guid_info_rec_query(struct ib_sa_client *client, struct ib_device *device, u8 port_num, struct ib_sa_guidinfo_rec *rec, ib_sa_comp_mask comp_mask, u8 method, int timeout_ms, gfp_t gfp_mask, void (*callback)(int status, struct ib_sa_guidinfo_rec *resp, void *context), void *context, struct ib_sa_query **sa_query); /* Support get SA ClassPortInfo */ int ib_sa_classport_info_rec_query(struct ib_sa_client *client, struct ib_device *device, u8 port_num, int timeout_ms, gfp_t gfp_mask, void (*callback)(int status, struct ib_class_port_info *resp, void *context), void *context, struct ib_sa_query **sa_query); #endif /* IB_SA_H */