diff --git a/sys/arm64/arm64/mp_machdep.c b/sys/arm64/arm64/mp_machdep.c index b42f65b9e399..3e47c60088a8 100644 --- a/sys/arm64/arm64/mp_machdep.c +++ b/sys/arm64/arm64/mp_machdep.c @@ -1,944 +1,947 @@ /*- * Copyright (c) 2015-2016 The FreeBSD Foundation * * This software was developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include "opt_acpi.h" #include "opt_ddb.h" #include "opt_kstack_pages.h" #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef VFP #include #endif #ifdef DEV_ACPI #include #include #endif #ifdef FDT #include #include #include #include #endif #include #include "pic_if.h" #define MP_QUIRK_CPULIST 0x01 /* The list of cpus may be wrong, */ /* don't panic if one fails to start */ static uint32_t mp_quirks; #ifdef FDT static struct { const char *compat; uint32_t quirks; } fdt_quirks[] = { { "arm,foundation-aarch64", MP_QUIRK_CPULIST }, { "arm,fvp-base", MP_QUIRK_CPULIST }, /* This is incorrect in some DTS files */ { "arm,vfp-base", MP_QUIRK_CPULIST }, { NULL, 0 }, }; #endif typedef void intr_ipi_send_t(void *, cpuset_t, u_int); typedef void intr_ipi_handler_t(void *); #define INTR_IPI_NAMELEN (MAXCOMLEN + 1) struct intr_ipi { intr_ipi_handler_t * ii_handler; void * ii_handler_arg; intr_ipi_send_t * ii_send; void * ii_send_arg; char ii_name[INTR_IPI_NAMELEN]; u_long * ii_count; }; static struct intr_ipi ipi_sources[INTR_IPI_COUNT]; static struct intr_ipi *intr_ipi_lookup(u_int); static void intr_pic_ipi_setup(u_int, const char *, intr_ipi_handler_t *, void *); static void ipi_ast(void *); static void ipi_hardclock(void *); static void ipi_preempt(void *); static void ipi_rendezvous(void *); static void ipi_stop(void *); struct pcb stoppcbs[MAXCPU]; #ifdef FDT static u_int fdt_cpuid; #endif void mpentry(unsigned long cpuid); void init_secondary(uint64_t); /* Synchronize AP startup. */ static struct mtx ap_boot_mtx; /* Stacks for AP initialization, discarded once idle threads are started. */ void *bootstack; static void *bootstacks[MAXCPU]; /* Count of started APs, used to synchronize access to bootstack. */ static volatile int aps_started; /* Set to 1 once we're ready to let the APs out of the pen. */ static volatile int aps_ready; /* Temporary variables for init_secondary() */ void *dpcpu[MAXCPU - 1]; static bool is_boot_cpu(uint64_t target_cpu) { return (cpuid_to_pcpu[0]->pc_mpidr == (target_cpu & CPU_AFF_MASK)); } static void release_aps(void *dummy __unused) { int i, started; /* Only release CPUs if they exist */ if (mp_ncpus == 1) return; intr_pic_ipi_setup(IPI_AST, "ast", ipi_ast, NULL); intr_pic_ipi_setup(IPI_PREEMPT, "preempt", ipi_preempt, NULL); intr_pic_ipi_setup(IPI_RENDEZVOUS, "rendezvous", ipi_rendezvous, NULL); intr_pic_ipi_setup(IPI_STOP, "stop", ipi_stop, NULL); intr_pic_ipi_setup(IPI_STOP_HARD, "stop hard", ipi_stop, NULL); intr_pic_ipi_setup(IPI_HARDCLOCK, "hardclock", ipi_hardclock, NULL); atomic_store_rel_int(&aps_ready, 1); /* Wake up the other CPUs */ __asm __volatile( "dsb ishst \n" "sev \n" ::: "memory"); printf("Release APs..."); started = 0; for (i = 0; i < 2000; i++) { - if (smp_started) { + if (atomic_load_acq_int(&smp_started) != 0) { printf("done\n"); return; } /* * Don't time out while we are making progress. Some large * systems can take a while to start all CPUs. */ if (smp_cpus > started) { i = 0; started = smp_cpus; } DELAY(1000); } printf("APs not started\n"); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); void init_secondary(uint64_t cpu) { struct pcpu *pcpup; pmap_t pmap0; u_int mpidr; /* * Verify that the value passed in 'cpu' argument (aka context_id) is * valid. Some older U-Boot based PSCI implementations are buggy, * they can pass random value in it. */ mpidr = READ_SPECIALREG(mpidr_el1) & CPU_AFF_MASK; if (cpu >= MAXCPU || cpuid_to_pcpu[cpu] == NULL || cpuid_to_pcpu[cpu]->pc_mpidr != mpidr) { for (cpu = 0; cpu < mp_maxid; cpu++) if (cpuid_to_pcpu[cpu] != NULL && cpuid_to_pcpu[cpu]->pc_mpidr == mpidr) break; if ( cpu >= MAXCPU) panic("MPIDR for this CPU is not in pcpu table"); } pcpup = cpuid_to_pcpu[cpu]; /* * Set the pcpu pointer with a backup in tpidr_el1 to be * loaded when entering the kernel from userland. */ __asm __volatile( "mov x18, %0 \n" "msr tpidr_el1, %0" :: "r"(pcpup)); /* * Identify current CPU. This is necessary to setup * affinity registers and to provide support for * runtime chip identification. * * We need this before signalling the CPU is ready to * let the boot CPU use the results. */ pcpup->pc_midr = get_midr(); identify_cpu(cpu); /* Ensure the stores in identify_cpu have completed */ atomic_thread_fence_acq_rel(); /* Signal the BSP and spin until it has released all APs. */ atomic_add_int(&aps_started, 1); while (!atomic_load_int(&aps_ready)) __asm __volatile("wfe"); /* Initialize curthread */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); pcpup->pc_curthread = pcpup->pc_idlethread; schedinit_ap(); /* Initialize curpmap to match TTBR0's current setting. */ pmap0 = vmspace_pmap(&vmspace0); KASSERT(pmap_to_ttbr0(pmap0) == READ_SPECIALREG(ttbr0_el1), ("pmap0 doesn't match cpu %ld's ttbr0", cpu)); pcpup->pc_curpmap = pmap0; install_cpu_errata(); intr_pic_init_secondary(); /* Start per-CPU event timers. */ cpu_initclocks_ap(); #ifdef VFP vfp_init(); #endif dbg_init(); pan_enable(); mtx_lock_spin(&ap_boot_mtx); atomic_add_rel_32(&smp_cpus, 1); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } mtx_unlock_spin(&ap_boot_mtx); kcsan_cpu_init(cpu); - /* - * Assert that smp_after_idle_runnable condition is reasonable. - */ - MPASS(PCPU_GET(curpcb) == NULL); - /* Enter the scheduler */ sched_throw(NULL); panic("scheduler returned us to init_secondary"); /* NOTREACHED */ } static void smp_after_idle_runnable(void *arg __unused) { - struct pcpu *pc; int cpu; + if (mp_ncpus == 1) + return; + + KASSERT(smp_started != 0, ("%s: SMP not started yet", __func__)); + + /* + * Wait for all APs to handle an interrupt. After that, we know that + * the APs have entered the scheduler at least once, so the boot stacks + * are safe to free. + */ + smp_rendezvous(smp_no_rendezvous_barrier, NULL, + smp_no_rendezvous_barrier, NULL); + for (cpu = 1; cpu < mp_ncpus; cpu++) { - if (bootstacks[cpu] != NULL) { - pc = pcpu_find(cpu); - while (atomic_load_ptr(&pc->pc_curpcb) == NULL) - cpu_spinwait(); + if (bootstacks[cpu] != NULL) kmem_free((vm_offset_t)bootstacks[cpu], PAGE_SIZE); - } } } SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY, smp_after_idle_runnable, NULL); /* * Send IPI thru interrupt controller. */ static void pic_ipi_send(void *arg, cpuset_t cpus, u_int ipi) { KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__)); /* * Ensure that this CPU's stores will be visible to IPI * recipients before starting to send the interrupts. */ dsb(ishst); PIC_IPI_SEND(intr_irq_root_dev, arg, cpus, ipi); } /* * Setup IPI handler on interrupt controller. * * Not SMP coherent. */ static void intr_pic_ipi_setup(u_int ipi, const char *name, intr_ipi_handler_t *hand, void *arg) { struct intr_irqsrc *isrc; struct intr_ipi *ii; int error; KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__)); KASSERT(hand != NULL, ("%s: ipi %u no handler", __func__, ipi)); error = PIC_IPI_SETUP(intr_irq_root_dev, ipi, &isrc); if (error != 0) return; isrc->isrc_handlers++; ii = intr_ipi_lookup(ipi); KASSERT(ii->ii_count == NULL, ("%s: ipi %u reused", __func__, ipi)); ii->ii_handler = hand; ii->ii_handler_arg = arg; ii->ii_send = pic_ipi_send; ii->ii_send_arg = isrc; strlcpy(ii->ii_name, name, INTR_IPI_NAMELEN); ii->ii_count = intr_ipi_setup_counters(name); PIC_ENABLE_INTR(intr_irq_root_dev, isrc); } static void intr_ipi_send(cpuset_t cpus, u_int ipi) { struct intr_ipi *ii; ii = intr_ipi_lookup(ipi); if (ii->ii_count == NULL) panic("%s: not setup IPI %u", __func__, ipi); ii->ii_send(ii->ii_send_arg, cpus, ipi); } static void ipi_ast(void *dummy __unused) { CTR0(KTR_SMP, "IPI_AST"); } static void ipi_hardclock(void *dummy __unused) { CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__); hardclockintr(); } static void ipi_preempt(void *dummy __unused) { CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__); sched_preempt(curthread); } static void ipi_rendezvous(void *dummy __unused) { CTR0(KTR_SMP, "IPI_RENDEZVOUS"); smp_rendezvous_action(); } static void ipi_stop(void *dummy __unused) { u_int cpu; CTR0(KTR_SMP, "IPI_STOP"); cpu = PCPU_GET(cpuid); savectx(&stoppcbs[cpu]); /* Indicate we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) cpu_spinwait(); #ifdef DDB dbg_register_sync(NULL); #endif CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); CTR0(KTR_SMP, "IPI_STOP (restart)"); } struct cpu_group * cpu_topo(void) { struct cpu_group *dom, *root; int i; root = smp_topo_alloc(1); dom = smp_topo_alloc(vm_ndomains); root->cg_parent = NULL; root->cg_child = dom; CPU_COPY(&all_cpus, &root->cg_mask); root->cg_count = mp_ncpus; root->cg_children = vm_ndomains; root->cg_level = CG_SHARE_NONE; root->cg_flags = 0; /* * Redundant layers will be collapsed by the caller so we don't need a * special case for a single domain. */ for (i = 0; i < vm_ndomains; i++, dom++) { dom->cg_parent = root; dom->cg_child = NULL; CPU_COPY(&cpuset_domain[i], &dom->cg_mask); dom->cg_count = CPU_COUNT(&dom->cg_mask); dom->cg_children = 0; dom->cg_level = CG_SHARE_L3; dom->cg_flags = 0; } return (root); } /* Determine if we running MP machine */ int cpu_mp_probe(void) { /* ARM64TODO: Read the u bit of mpidr_el1 to determine this */ return (1); } /* * Starts a given CPU. If the CPU is already running, i.e. it is the boot CPU, * do nothing. Returns true if the CPU is present and running. */ static bool start_cpu(u_int cpuid, uint64_t target_cpu, int domain) { struct pcpu *pcpup; vm_paddr_t pa; int err, naps; /* Check we are able to start this cpu */ if (cpuid > mp_maxid) return (false); /* Skip boot CPU */ if (is_boot_cpu(target_cpu)) return (true); KASSERT(cpuid < MAXCPU, ("Too many CPUs")); pcpup = (void *)kmem_malloc_domainset(DOMAINSET_PREF(domain), sizeof(*pcpup), M_WAITOK | M_ZERO); pcpu_init(pcpup, cpuid, sizeof(struct pcpu)); pcpup->pc_mpidr = target_cpu & CPU_AFF_MASK; dpcpu[cpuid - 1] = (void *)kmem_malloc_domainset( DOMAINSET_PREF(domain), DPCPU_SIZE, M_WAITOK | M_ZERO); dpcpu_init(dpcpu[cpuid - 1], cpuid); bootstacks[cpuid] = (void *)kmem_malloc_domainset( DOMAINSET_PREF(domain), PAGE_SIZE, M_WAITOK | M_ZERO); naps = atomic_load_int(&aps_started); bootstack = (char *)bootstacks[cpuid] + PAGE_SIZE; printf("Starting CPU %u (%lx)\n", cpuid, target_cpu); pa = pmap_extract(kernel_pmap, (vm_offset_t)mpentry); err = psci_cpu_on(target_cpu, pa, cpuid); if (err != PSCI_RETVAL_SUCCESS) { /* * Panic here if INVARIANTS are enabled and PSCI failed to * start the requested CPU. psci_cpu_on() returns PSCI_MISSING * to indicate we are unable to use it to start the given CPU. */ KASSERT(err == PSCI_MISSING || (mp_quirks & MP_QUIRK_CPULIST) == MP_QUIRK_CPULIST, ("Failed to start CPU %u (%lx), error %d\n", cpuid, target_cpu, err)); pcpu_destroy(pcpup); kmem_free((vm_offset_t)dpcpu[cpuid - 1], DPCPU_SIZE); dpcpu[cpuid - 1] = NULL; kmem_free((vm_offset_t)bootstacks[cpuid], PAGE_SIZE); bootstacks[cpuid] = NULL; mp_ncpus--; return (false); } /* Wait for the AP to switch to its boot stack. */ while (atomic_load_int(&aps_started) < naps + 1) cpu_spinwait(); CPU_SET(cpuid, &all_cpus); return (true); } #ifdef DEV_ACPI static void madt_handler(ACPI_SUBTABLE_HEADER *entry, void *arg) { ACPI_MADT_GENERIC_INTERRUPT *intr; u_int *cpuid; u_int id; int domain; switch(entry->Type) { case ACPI_MADT_TYPE_GENERIC_INTERRUPT: intr = (ACPI_MADT_GENERIC_INTERRUPT *)entry; cpuid = arg; if (is_boot_cpu(intr->ArmMpidr)) id = 0; else id = *cpuid; domain = 0; #ifdef NUMA if (vm_ndomains > 1) domain = acpi_pxm_get_cpu_locality(intr->Uid); #endif if (start_cpu(id, intr->ArmMpidr, domain)) { MPASS(cpuid_to_pcpu[id] != NULL); cpuid_to_pcpu[id]->pc_acpi_id = intr->Uid; /* * Don't increment for the boot CPU, its CPU ID is * reserved. */ if (!is_boot_cpu(intr->ArmMpidr)) (*cpuid)++; } break; default: break; } } static void cpu_init_acpi(void) { ACPI_TABLE_MADT *madt; vm_paddr_t physaddr; u_int cpuid; physaddr = acpi_find_table(ACPI_SIG_MADT); if (physaddr == 0) return; madt = acpi_map_table(physaddr, ACPI_SIG_MADT); if (madt == NULL) { printf("Unable to map the MADT, not starting APs\n"); return; } /* Boot CPU is always 0 */ cpuid = 1; acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length, madt_handler, &cpuid); acpi_unmap_table(madt); #if MAXMEMDOM > 1 acpi_pxm_set_cpu_locality(); #endif } #endif #ifdef FDT static boolean_t start_cpu_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg) { uint64_t target_cpu; int domain; int cpuid; target_cpu = reg[0]; if (addr_size == 2) { target_cpu <<= 32; target_cpu |= reg[1]; } if (is_boot_cpu(target_cpu)) cpuid = 0; else cpuid = fdt_cpuid; if (!start_cpu(cpuid, target_cpu, 0)) return (FALSE); /* * Don't increment for the boot CPU, its CPU ID is reserved. */ if (!is_boot_cpu(target_cpu)) fdt_cpuid++; /* Try to read the numa node of this cpu */ if (vm_ndomains == 1 || OF_getencprop(node, "numa-node-id", &domain, sizeof(domain)) <= 0) domain = 0; cpuid_to_pcpu[cpuid]->pc_domain = domain; if (domain < MAXMEMDOM) CPU_SET(cpuid, &cpuset_domain[domain]); return (TRUE); } static void cpu_init_fdt(void) { phandle_t node; int i; node = OF_peer(0); for (i = 0; fdt_quirks[i].compat != NULL; i++) { if (ofw_bus_node_is_compatible(node, fdt_quirks[i].compat) != 0) { mp_quirks = fdt_quirks[i].quirks; } } fdt_cpuid = 1; ofw_cpu_early_foreach(start_cpu_fdt, true); } #endif /* Initialize and fire up non-boot processors */ void cpu_mp_start(void) { mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN); /* CPU 0 is always boot CPU. */ CPU_SET(0, &all_cpus); cpuid_to_pcpu[0]->pc_mpidr = READ_SPECIALREG(mpidr_el1) & CPU_AFF_MASK; switch(arm64_bus_method) { #ifdef DEV_ACPI case ARM64_BUS_ACPI: mp_quirks = MP_QUIRK_CPULIST; cpu_init_acpi(); break; #endif #ifdef FDT case ARM64_BUS_FDT: cpu_init_fdt(); break; #endif default: break; } } /* Introduce rest of cores to the world */ void cpu_mp_announce(void) { } #ifdef DEV_ACPI static void cpu_count_acpi_handler(ACPI_SUBTABLE_HEADER *entry, void *arg) { ACPI_MADT_GENERIC_INTERRUPT *intr; u_int *cores = arg; switch(entry->Type) { case ACPI_MADT_TYPE_GENERIC_INTERRUPT: intr = (ACPI_MADT_GENERIC_INTERRUPT *)entry; (*cores)++; break; default: break; } } static u_int cpu_count_acpi(void) { ACPI_TABLE_MADT *madt; vm_paddr_t physaddr; u_int cores; physaddr = acpi_find_table(ACPI_SIG_MADT); if (physaddr == 0) return (0); madt = acpi_map_table(physaddr, ACPI_SIG_MADT); if (madt == NULL) { printf("Unable to map the MADT, not starting APs\n"); return (0); } cores = 0; acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length, cpu_count_acpi_handler, &cores); acpi_unmap_table(madt); return (cores); } #endif void cpu_mp_setmaxid(void) { int cores; mp_ncpus = 1; mp_maxid = 0; switch(arm64_bus_method) { #ifdef DEV_ACPI case ARM64_BUS_ACPI: cores = cpu_count_acpi(); if (cores > 0) { cores = MIN(cores, MAXCPU); if (bootverbose) printf("Found %d CPUs in the ACPI tables\n", cores); mp_ncpus = cores; mp_maxid = cores - 1; } break; #endif #ifdef FDT case ARM64_BUS_FDT: cores = ofw_cpu_early_foreach(NULL, false); if (cores > 0) { cores = MIN(cores, MAXCPU); if (bootverbose) printf("Found %d CPUs in the device tree\n", cores); mp_ncpus = cores; mp_maxid = cores - 1; } break; #endif default: if (bootverbose) printf("No CPU data, limiting to 1 core\n"); break; } if (TUNABLE_INT_FETCH("hw.ncpu", &cores)) { if (cores > 0 && cores < mp_ncpus) { mp_ncpus = cores; mp_maxid = cores - 1; } } } /* * Lookup IPI source. */ static struct intr_ipi * intr_ipi_lookup(u_int ipi) { if (ipi >= INTR_IPI_COUNT) panic("%s: no such IPI %u", __func__, ipi); return (&ipi_sources[ipi]); } /* * interrupt controller dispatch function for IPIs. It should * be called straight from the interrupt controller, when associated * interrupt source is learned. Or from anybody who has an interrupt * source mapped. */ void intr_ipi_dispatch(u_int ipi, struct trapframe *tf) { void *arg; struct intr_ipi *ii; ii = intr_ipi_lookup(ipi); if (ii->ii_count == NULL) panic("%s: not setup IPI %u", __func__, ipi); intr_ipi_increment_count(ii->ii_count, PCPU_GET(cpuid)); /* * Supply ipi filter with trapframe argument * if none is registered. */ arg = ii->ii_handler_arg != NULL ? ii->ii_handler_arg : tf; ii->ii_handler(arg); } #ifdef notyet /* * Map IPI into interrupt controller. * * Not SMP coherent. */ static int ipi_map(struct intr_irqsrc *isrc, u_int ipi) { boolean_t is_percpu; int error; if (ipi >= INTR_IPI_COUNT) panic("%s: no such IPI %u", __func__, ipi); KASSERT(intr_irq_root_dev != NULL, ("%s: no root attached", __func__)); isrc->isrc_type = INTR_ISRCT_NAMESPACE; isrc->isrc_nspc_type = INTR_IRQ_NSPC_IPI; isrc->isrc_nspc_num = ipi_next_num; error = PIC_REGISTER(intr_irq_root_dev, isrc, &is_percpu); if (error == 0) { isrc->isrc_dev = intr_irq_root_dev; ipi_next_num++; } return (error); } /* * Setup IPI handler to interrupt source. * * Note that there could be more ways how to send and receive IPIs * on a platform like fast interrupts for example. In that case, * one can call this function with ASIF_NOALLOC flag set and then * call intr_ipi_dispatch() when appropriate. * * Not SMP coherent. */ int intr_ipi_set_handler(u_int ipi, const char *name, intr_ipi_filter_t *filter, void *arg, u_int flags) { struct intr_irqsrc *isrc; int error; if (filter == NULL) return(EINVAL); isrc = intr_ipi_lookup(ipi); if (isrc->isrc_ipifilter != NULL) return (EEXIST); if ((flags & AISHF_NOALLOC) == 0) { error = ipi_map(isrc, ipi); if (error != 0) return (error); } isrc->isrc_ipifilter = filter; isrc->isrc_arg = arg; isrc->isrc_handlers = 1; isrc->isrc_count = intr_ipi_setup_counters(name); isrc->isrc_index = 0; /* it should not be used in IPI case */ if (isrc->isrc_dev != NULL) { PIC_ENABLE_INTR(isrc->isrc_dev, isrc); PIC_ENABLE_SOURCE(isrc->isrc_dev, isrc); } return (0); } #endif /* Sending IPI */ void ipi_all_but_self(u_int ipi) { cpuset_t cpus; cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &cpus); CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi); intr_ipi_send(cpus, ipi); } void ipi_cpu(int cpu, u_int ipi) { cpuset_t cpus; CPU_ZERO(&cpus); CPU_SET(cpu, &cpus); CTR3(KTR_SMP, "%s: cpu: %d, ipi: %x", __func__, cpu, ipi); intr_ipi_send(cpus, ipi); } void ipi_selected(cpuset_t cpus, u_int ipi) { CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi); intr_ipi_send(cpus, ipi); } diff --git a/sys/riscv/riscv/mp_machdep.c b/sys/riscv/riscv/mp_machdep.c index 6a66b7eb80f7..e038b65d9aba 100644 --- a/sys/riscv/riscv/mp_machdep.c +++ b/sys/riscv/riscv/mp_machdep.c @@ -1,555 +1,558 @@ /*- * Copyright (c) 2015 The FreeBSD Foundation * Copyright (c) 2016 Ruslan Bukin * All rights reserved. * * Portions of this software were developed by Andrew Turner under * sponsorship from the FreeBSD Foundation. * * Portions of this software were developed by SRI International and the * University of Cambridge Computer Laboratory under DARPA/AFRL contract * FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme. * * Portions of this software were developed by the University of Cambridge * Computer Laboratory as part of the CTSRD Project, with support from the * UK Higher Education Innovation Fund (HEIF). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_kstack_pages.h" #include "opt_platform.h" #include __FBSDID("$FreeBSD$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef FDT #include #include #endif boolean_t ofw_cpu_reg(phandle_t node, u_int, cell_t *); uint32_t __riscv_boot_ap[MAXCPU]; static enum { CPUS_UNKNOWN, #ifdef FDT CPUS_FDT, #endif } cpu_enum_method; static device_identify_t riscv64_cpu_identify; static device_probe_t riscv64_cpu_probe; static device_attach_t riscv64_cpu_attach; static int ipi_handler(void *); struct pcb stoppcbs[MAXCPU]; extern uint32_t boot_hart; extern cpuset_t all_harts; #ifdef INVARIANTS static uint32_t cpu_reg[MAXCPU][2]; #endif static device_t cpu_list[MAXCPU]; void mpentry(u_long hartid); void init_secondary(uint64_t); static struct mtx ap_boot_mtx; /* Stacks for AP initialization, discarded once idle threads are started. */ void *bootstack; static void *bootstacks[MAXCPU]; /* Count of started APs, used to synchronize access to bootstack. */ static volatile int aps_started; /* Set to 1 once we're ready to let the APs out of the pen. */ static volatile int aps_ready; /* Temporary variables for init_secondary() */ void *dpcpu[MAXCPU - 1]; static device_method_t riscv64_cpu_methods[] = { /* Device interface */ DEVMETHOD(device_identify, riscv64_cpu_identify), DEVMETHOD(device_probe, riscv64_cpu_probe), DEVMETHOD(device_attach, riscv64_cpu_attach), DEVMETHOD_END }; static devclass_t riscv64_cpu_devclass; static driver_t riscv64_cpu_driver = { "riscv64_cpu", riscv64_cpu_methods, 0 }; DRIVER_MODULE(riscv64_cpu, cpu, riscv64_cpu_driver, riscv64_cpu_devclass, 0, 0); static void riscv64_cpu_identify(driver_t *driver, device_t parent) { if (device_find_child(parent, "riscv64_cpu", -1) != NULL) return; if (BUS_ADD_CHILD(parent, 0, "riscv64_cpu", -1) == NULL) device_printf(parent, "add child failed\n"); } static int riscv64_cpu_probe(device_t dev) { u_int cpuid; cpuid = device_get_unit(dev); if (cpuid >= MAXCPU || cpuid > mp_maxid) return (EINVAL); device_quiet(dev); return (0); } static int riscv64_cpu_attach(device_t dev) { const uint32_t *reg; size_t reg_size; u_int cpuid; int i; cpuid = device_get_unit(dev); if (cpuid >= MAXCPU || cpuid > mp_maxid) return (EINVAL); KASSERT(cpu_list[cpuid] == NULL, ("Already have cpu %u", cpuid)); reg = cpu_get_cpuid(dev, ®_size); if (reg == NULL) return (EINVAL); if (bootverbose) { device_printf(dev, "register <"); for (i = 0; i < reg_size; i++) printf("%s%x", (i == 0) ? "" : " ", reg[i]); printf(">\n"); } /* Set the device to start it later */ cpu_list[cpuid] = dev; return (0); } static void release_aps(void *dummy __unused) { cpuset_t mask; int i; if (mp_ncpus == 1) return; /* Setup the IPI handler */ riscv_setup_ipihandler(ipi_handler); atomic_store_rel_int(&aps_ready, 1); /* Wake up the other CPUs */ mask = all_harts; CPU_CLR(boot_hart, &mask); printf("Release APs\n"); sbi_send_ipi(mask.__bits); for (i = 0; i < 2000; i++) { - if (smp_started) + if (atomic_load_acq_int(&smp_started)) return; DELAY(1000); } printf("APs not started\n"); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); void init_secondary(uint64_t hart) { struct pcpu *pcpup; u_int cpuid; /* Renumber this cpu */ cpuid = hart; if (cpuid < boot_hart) cpuid += mp_maxid + 1; cpuid -= boot_hart; /* Setup the pcpu pointer */ pcpup = &__pcpu[cpuid]; __asm __volatile("mv tp, %0" :: "r"(pcpup)); /* Workaround: make sure wfi doesn't halt the hart */ csr_set(sie, SIE_SSIE); csr_set(sip, SIE_SSIE); /* Signal the BSP and spin until it has released all APs. */ atomic_add_int(&aps_started, 1); while (!atomic_load_int(&aps_ready)) __asm __volatile("wfi"); /* Initialize curthread */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); pcpup->pc_curthread = pcpup->pc_idlethread; schedinit_ap(); /* * Identify current CPU. This is necessary to setup * affinity registers and to provide support for * runtime chip identification. */ identify_cpu(); /* Enable software interrupts */ riscv_unmask_ipi(); #ifndef EARLY_AP_STARTUP /* Start per-CPU event timers. */ cpu_initclocks_ap(); #endif /* Enable external (PLIC) interrupts */ csr_set(sie, SIE_SEIE); /* Activate this hart in the kernel pmap. */ CPU_SET_ATOMIC(hart, &kernel_pmap->pm_active); /* Activate process 0's pmap. */ pmap_activate_boot(vmspace_pmap(proc0.p_vmspace)); mtx_lock_spin(&ap_boot_mtx); atomic_add_rel_32(&smp_cpus, 1); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } mtx_unlock_spin(&ap_boot_mtx); - /* - * Assert that smp_after_idle_runnable condition is reasonable. - */ - MPASS(PCPU_GET(curpcb) == NULL); - /* Enter the scheduler */ sched_throw(NULL); panic("scheduler returned us to init_secondary"); /* NOTREACHED */ } static void smp_after_idle_runnable(void *arg __unused) { - struct pcpu *pc; int cpu; + if (mp_ncpus == 1) + return; + + KASSERT(smp_started != 0, ("%s: SMP not started yet", __func__)); + + /* + * Wait for all APs to handle an interrupt. After that, we know that + * the APs have entered the scheduler at least once, so the boot stacks + * are safe to free. + */ + smp_rendezvous(smp_no_rendezvous_barrier, NULL, + smp_no_rendezvous_barrier, NULL); + for (cpu = 1; cpu <= mp_maxid; cpu++) { - if (bootstacks[cpu] != NULL) { - pc = pcpu_find(cpu); - while (atomic_load_ptr(&pc->pc_curpcb) == NULL) - cpu_spinwait(); + if (bootstacks[cpu] != NULL) kmem_free((vm_offset_t)bootstacks[cpu], PAGE_SIZE); - } } } SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY, smp_after_idle_runnable, NULL); static int ipi_handler(void *arg) { u_int ipi_bitmap; u_int cpu, ipi; int bit; csr_clear(sip, SIP_SSIP); cpu = PCPU_GET(cpuid); mb(); ipi_bitmap = atomic_readandclear_int(PCPU_PTR(pending_ipis)); if (ipi_bitmap == 0) return (FILTER_HANDLED); while ((bit = ffs(ipi_bitmap))) { bit = (bit - 1); ipi = (1 << bit); ipi_bitmap &= ~ipi; mb(); switch (ipi) { case IPI_AST: CTR0(KTR_SMP, "IPI_AST"); break; case IPI_PREEMPT: CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__); sched_preempt(curthread); break; case IPI_RENDEZVOUS: CTR0(KTR_SMP, "IPI_RENDEZVOUS"); smp_rendezvous_action(); break; case IPI_STOP: case IPI_STOP_HARD: CTR0(KTR_SMP, (ipi == IPI_STOP) ? "IPI_STOP" : "IPI_STOP_HARD"); savectx(&stoppcbs[cpu]); /* Indicate we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) cpu_spinwait(); CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); CTR0(KTR_SMP, "IPI_STOP (restart)"); /* * The kernel debugger might have set a breakpoint, * so flush the instruction cache. */ fence_i(); break; case IPI_HARDCLOCK: CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__); hardclockintr(); break; default: panic("Unknown IPI %#0x on cpu %d", ipi, curcpu); } } return (FILTER_HANDLED); } struct cpu_group * cpu_topo(void) { return (smp_topo_none()); } /* Determine if we running MP machine */ int cpu_mp_probe(void) { return (mp_ncpus > 1); } #ifdef FDT static boolean_t cpu_init_fdt(u_int id, phandle_t node, u_int addr_size, pcell_t *reg) { struct pcpu *pcpup; vm_paddr_t start_addr; uint64_t hart; u_int cpuid; int naps; int error; /* Check if this hart supports MMU. */ if (OF_getproplen(node, "mmu-type") < 0) return (0); KASSERT(id < MAXCPU, ("Too many CPUs")); KASSERT(addr_size == 1 || addr_size == 2, ("Invalid register size")); #ifdef INVARIANTS cpu_reg[id][0] = reg[0]; if (addr_size == 2) cpu_reg[id][1] = reg[1]; #endif hart = reg[0]; if (addr_size == 2) { hart <<= 32; hart |= reg[1]; } KASSERT(hart < MAXCPU, ("Too many harts.")); /* We are already running on this cpu */ if (hart == boot_hart) return (1); /* * Rotate the CPU IDs to put the boot CPU as CPU 0. * We keep the other CPUs ordered. */ cpuid = hart; if (cpuid < boot_hart) cpuid += mp_maxid + 1; cpuid -= boot_hart; /* Check if we are able to start this cpu */ if (cpuid > mp_maxid) return (0); /* * Depending on the SBI implementation, APs are waiting either in * locore.S or to be activated explicitly, via SBI call. */ if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0) { start_addr = pmap_kextract((vm_offset_t)mpentry); error = sbi_hsm_hart_start(hart, start_addr, 0); if (error != 0) { mp_ncpus--; /* Send a warning to the user and continue. */ printf("AP %u (hart %lu) failed to start, error %d\n", cpuid, hart, error); return (0); } } pcpup = &__pcpu[cpuid]; pcpu_init(pcpup, cpuid, sizeof(struct pcpu)); pcpup->pc_hart = hart; dpcpu[cpuid - 1] = (void *)kmem_malloc(DPCPU_SIZE, M_WAITOK | M_ZERO); dpcpu_init(dpcpu[cpuid - 1], cpuid); bootstacks[cpuid] = (void *)kmem_malloc(PAGE_SIZE, M_WAITOK | M_ZERO); naps = atomic_load_int(&aps_started); bootstack = (char *)bootstacks[cpuid] + PAGE_SIZE; printf("Starting CPU %u (hart %lx)\n", cpuid, hart); atomic_store_32(&__riscv_boot_ap[hart], 1); /* Wait for the AP to switch to its boot stack. */ while (atomic_load_int(&aps_started) < naps + 1) cpu_spinwait(); CPU_SET(cpuid, &all_cpus); CPU_SET(hart, &all_harts); return (1); } #endif /* Initialize and fire up non-boot processors */ void cpu_mp_start(void) { mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN); CPU_SET(0, &all_cpus); CPU_SET(boot_hart, &all_harts); switch(cpu_enum_method) { #ifdef FDT case CPUS_FDT: ofw_cpu_early_foreach(cpu_init_fdt, true); break; #endif case CPUS_UNKNOWN: break; } } /* Introduce rest of cores to the world */ void cpu_mp_announce(void) { } static boolean_t cpu_check_mmu(u_int id, phandle_t node, u_int addr_size, pcell_t *reg) { /* Check if this hart supports MMU. */ if (OF_getproplen(node, "mmu-type") < 0) return (0); return (1); } void cpu_mp_setmaxid(void) { #ifdef FDT int cores; cores = ofw_cpu_early_foreach(cpu_check_mmu, true); if (cores > 0) { cores = MIN(cores, MAXCPU); if (bootverbose) printf("Found %d CPUs in the device tree\n", cores); mp_ncpus = cores; mp_maxid = cores - 1; cpu_enum_method = CPUS_FDT; return; } #endif if (bootverbose) printf("No CPU data, limiting to 1 core\n"); mp_ncpus = 1; mp_maxid = 0; } diff --git a/sys/x86/x86/mp_x86.c b/sys/x86/x86/mp_x86.c index 4854331af17c..289885fa6213 100644 --- a/sys/x86/x86/mp_x86.c +++ b/sys/x86/x86/mp_x86.c @@ -1,1694 +1,1698 @@ /*- * Copyright (c) 1996, by Steve Passe * Copyright (c) 2003, by Peter Wemm * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. The name of the developer may NOT be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); #include "opt_acpi.h" #ifdef __i386__ #include "opt_apic.h" #endif #include "opt_cpu.h" #include "opt_ddb.h" #include "opt_gdb.h" #include "opt_kstack_pages.h" #include "opt_pmap.h" #include "opt_sched.h" #include "opt_smp.h" #include "opt_stack.h" #include #include #include #include #include /* cngetc() */ #include #include #ifdef GPROF #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEV_ACPI #include #include #endif static MALLOC_DEFINE(M_CPUS, "cpus", "CPU items"); /* lock region used by kernel profiling */ int mcount_lock; int mp_naps; /* # of Applications processors */ int boot_cpu_id = -1; /* designated BSP */ /* AP uses this during bootstrap. Do not staticize. */ char *bootSTK; int bootAP; /* Free these after use */ void *bootstacks[MAXCPU]; void *dpcpu; struct pcb stoppcbs[MAXCPU]; struct susppcb **susppcbs; #ifdef COUNT_IPIS /* Interrupt counts. */ static u_long *ipi_preempt_counts[MAXCPU]; static u_long *ipi_ast_counts[MAXCPU]; u_long *ipi_invltlb_counts[MAXCPU]; u_long *ipi_invlrng_counts[MAXCPU]; u_long *ipi_invlpg_counts[MAXCPU]; u_long *ipi_invlcache_counts[MAXCPU]; u_long *ipi_rendezvous_counts[MAXCPU]; static u_long *ipi_hardclock_counts[MAXCPU]; #endif /* Default cpu_ops implementation. */ struct cpu_ops cpu_ops; /* * Local data and functions. */ static volatile cpuset_t ipi_stop_nmi_pending; volatile cpuset_t resuming_cpus; volatile cpuset_t toresume_cpus; /* used to hold the AP's until we are ready to release them */ struct mtx ap_boot_mtx; /* Set to 1 once we're ready to let the APs out of the pen. */ volatile int aps_ready = 0; /* * Store data from cpu_add() until later in the boot when we actually setup * the APs. */ struct cpu_info *cpu_info; int *apic_cpuids; int cpu_apic_ids[MAXCPU]; _Static_assert(MAXCPU <= MAX_APIC_ID, "MAXCPU cannot be larger that MAX_APIC_ID"); _Static_assert(xAPIC_MAX_APIC_ID <= MAX_APIC_ID, "xAPIC_MAX_APIC_ID cannot be larger that MAX_APIC_ID"); static void release_aps(void *dummy); static void cpustop_handler_post(u_int cpu); static int hyperthreading_allowed = 1; SYSCTL_INT(_machdep, OID_AUTO, hyperthreading_allowed, CTLFLAG_RDTUN, &hyperthreading_allowed, 0, "Use Intel HTT logical CPUs"); static int hyperthreading_intr_allowed = 0; SYSCTL_INT(_machdep, OID_AUTO, hyperthreading_intr_allowed, CTLFLAG_RDTUN, &hyperthreading_intr_allowed, 0, "Allow interrupts on HTT logical CPUs"); static struct topo_node topo_root; static int pkg_id_shift; static int node_id_shift; static int core_id_shift; static int disabled_cpus; struct cache_info { int id_shift; int present; } static caches[MAX_CACHE_LEVELS]; static bool stop_mwait = false; SYSCTL_BOOL(_machdep, OID_AUTO, stop_mwait, CTLFLAG_RWTUN, &stop_mwait, 0, "Use MONITOR/MWAIT when stopping CPU, if available"); void mem_range_AP_init(void) { if (mem_range_softc.mr_op && mem_range_softc.mr_op->initAP) mem_range_softc.mr_op->initAP(&mem_range_softc); } /* * Round up to the next power of two, if necessary, and then * take log2. * Returns -1 if argument is zero. */ static __inline int mask_width(u_int x) { return (fls(x << (1 - powerof2(x))) - 1); } /* * Add a cache level to the cache topology description. */ static int add_deterministic_cache(int type, int level, int share_count) { if (type == 0) return (0); if (type > 3) { printf("unexpected cache type %d\n", type); return (1); } if (type == 2) /* ignore instruction cache */ return (1); if (level == 0 || level > MAX_CACHE_LEVELS) { printf("unexpected cache level %d\n", level); return (1); } if (caches[level - 1].present) { printf("WARNING: multiple entries for L%u data cache\n", level); printf("%u => %u\n", caches[level - 1].id_shift, mask_width(share_count)); } caches[level - 1].id_shift = mask_width(share_count); caches[level - 1].present = 1; if (caches[level - 1].id_shift > pkg_id_shift) { printf("WARNING: L%u data cache covers more " "APIC IDs than a package (%u > %u)\n", level, caches[level - 1].id_shift, pkg_id_shift); caches[level - 1].id_shift = pkg_id_shift; } if (caches[level - 1].id_shift < core_id_shift) { printf("WARNING: L%u data cache covers fewer " "APIC IDs than a core (%u < %u)\n", level, caches[level - 1].id_shift, core_id_shift); caches[level - 1].id_shift = core_id_shift; } return (1); } /* * Determine topology of processing units and caches for AMD CPUs. * See: * - AMD CPUID Specification (Publication # 25481) * - BKDG for AMD NPT Family 0Fh Processors (Publication # 32559) * - BKDG For AMD Family 10h Processors (Publication # 31116) * - BKDG For AMD Family 15h Models 00h-0Fh Processors (Publication # 42301) * - BKDG For AMD Family 16h Models 00h-0Fh Processors (Publication # 48751) * - PPR For AMD Family 17h Models 00h-0Fh Processors (Publication # 54945) */ static void topo_probe_amd(void) { u_int p[4]; uint64_t v; int level; int nodes_per_socket; int share_count; int type; int i; /* No multi-core capability. */ if ((amd_feature2 & AMDID2_CMP) == 0) return; /* For families 10h and newer. */ pkg_id_shift = (cpu_procinfo2 & AMDID_COREID_SIZE) >> AMDID_COREID_SIZE_SHIFT; /* For 0Fh family. */ if (pkg_id_shift == 0) pkg_id_shift = mask_width((cpu_procinfo2 & AMDID_CMP_CORES) + 1); /* * Families prior to 16h define the following value as * cores per compute unit and we don't really care about the AMD * compute units at the moment. Perhaps we should treat them as * cores and cores within the compute units as hardware threads, * but that's up for debate. * Later families define the value as threads per compute unit, * so we are following AMD's nomenclature here. */ if ((amd_feature2 & AMDID2_TOPOLOGY) != 0 && CPUID_TO_FAMILY(cpu_id) >= 0x16) { cpuid_count(0x8000001e, 0, p); share_count = ((p[1] >> 8) & 0xff) + 1; core_id_shift = mask_width(share_count); /* * For Zen (17h), gather Nodes per Processor. Each node is a * Zeppelin die; TR and EPYC CPUs will have multiple dies per * package. Communication latency between dies is higher than * within them. */ nodes_per_socket = ((p[2] >> 8) & 0x7) + 1; node_id_shift = pkg_id_shift - mask_width(nodes_per_socket); } if ((amd_feature2 & AMDID2_TOPOLOGY) != 0) { for (i = 0; ; i++) { cpuid_count(0x8000001d, i, p); type = p[0] & 0x1f; level = (p[0] >> 5) & 0x7; share_count = 1 + ((p[0] >> 14) & 0xfff); if (!add_deterministic_cache(type, level, share_count)) break; } } else { if (cpu_exthigh >= 0x80000005) { cpuid_count(0x80000005, 0, p); if (((p[2] >> 24) & 0xff) != 0) { caches[0].id_shift = 0; caches[0].present = 1; } } if (cpu_exthigh >= 0x80000006) { cpuid_count(0x80000006, 0, p); if (((p[2] >> 16) & 0xffff) != 0) { caches[1].id_shift = 0; caches[1].present = 1; } if (((p[3] >> 18) & 0x3fff) != 0) { nodes_per_socket = 1; if ((amd_feature2 & AMDID2_NODE_ID) != 0) { /* * Handle multi-node processors that * have multiple chips, each with its * own L3 cache, on the same die. */ v = rdmsr(0xc001100c); nodes_per_socket = 1 + ((v >> 3) & 0x7); } caches[2].id_shift = pkg_id_shift - mask_width(nodes_per_socket); caches[2].present = 1; } } } } /* * Determine topology of processing units for Intel CPUs * using CPUID Leaf 1 and Leaf 4, if supported. * See: * - Intel 64 Architecture Processor Topology Enumeration * - Intel 64 and IA-32 ArchitecturesSoftware Developer’s Manual, * Volume 3A: System Programming Guide, PROGRAMMING CONSIDERATIONS * FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORS */ static void topo_probe_intel_0x4(void) { u_int p[4]; int max_cores; int max_logical; /* Both zero and one here mean one logical processor per package. */ max_logical = (cpu_feature & CPUID_HTT) != 0 ? (cpu_procinfo & CPUID_HTT_CORES) >> 16 : 1; if (max_logical <= 1) return; if (cpu_high >= 0x4) { cpuid_count(0x04, 0, p); max_cores = ((p[0] >> 26) & 0x3f) + 1; } else max_cores = 1; core_id_shift = mask_width(max_logical/max_cores); KASSERT(core_id_shift >= 0, ("intel topo: max_cores > max_logical\n")); pkg_id_shift = core_id_shift + mask_width(max_cores); } /* * Determine topology of processing units for Intel CPUs * using CPUID Leaf 1Fh or 0Bh, if supported. * See: * - Intel 64 Architecture Processor Topology Enumeration * - Intel 64 and IA-32 ArchitecturesSoftware Developer’s Manual, * Volume 3A: System Programming Guide, PROGRAMMING CONSIDERATIONS * FOR HARDWARE MULTI-THREADING CAPABLE PROCESSORS */ static void topo_probe_intel_0xb(void) { u_int leaf; u_int p[4] = { 0 }; int bits; int type; int i; /* Prefer leaf 1Fh (V2 Extended Topology Enumeration). */ if (cpu_high >= 0x1f) { leaf = 0x1f; cpuid_count(leaf, 0, p); } /* Fall back to leaf 0Bh (Extended Topology Enumeration). */ if (p[1] == 0) { leaf = 0x0b; cpuid_count(leaf, 0, p); } /* Fall back to leaf 04h (Deterministic Cache Parameters). */ if (p[1] == 0) { topo_probe_intel_0x4(); return; } /* We only support three levels for now. */ for (i = 0; ; i++) { cpuid_count(leaf, i, p); bits = p[0] & 0x1f; type = (p[2] >> 8) & 0xff; if (type == 0) break; if (type == CPUID_TYPE_SMT) core_id_shift = bits; else if (type == CPUID_TYPE_CORE) pkg_id_shift = bits; else if (bootverbose) printf("Topology level type %d shift: %d\n", type, bits); } if (pkg_id_shift < core_id_shift) { printf("WARNING: core covers more APIC IDs than a package\n"); core_id_shift = pkg_id_shift; } } /* * Determine topology of caches for Intel CPUs. * See: * - Intel 64 Architecture Processor Topology Enumeration * - Intel 64 and IA-32 Architectures Software Developer’s Manual * Volume 2A: Instruction Set Reference, A-M, * CPUID instruction */ static void topo_probe_intel_caches(void) { u_int p[4]; int level; int share_count; int type; int i; if (cpu_high < 0x4) { /* * Available cache level and sizes can be determined * via CPUID leaf 2, but that requires a huge table of hardcoded * values, so for now just assume L1 and L2 caches potentially * shared only by HTT processing units, if HTT is present. */ caches[0].id_shift = pkg_id_shift; caches[0].present = 1; caches[1].id_shift = pkg_id_shift; caches[1].present = 1; return; } for (i = 0; ; i++) { cpuid_count(0x4, i, p); type = p[0] & 0x1f; level = (p[0] >> 5) & 0x7; share_count = 1 + ((p[0] >> 14) & 0xfff); if (!add_deterministic_cache(type, level, share_count)) break; } } /* * Determine topology of processing units and caches for Intel CPUs. * See: * - Intel 64 Architecture Processor Topology Enumeration */ static void topo_probe_intel(void) { /* * Note that 0x1 <= cpu_high < 4 case should be * compatible with topo_probe_intel_0x4() logic when * CPUID.1:EBX[23:16] > 0 (cpu_cores will be 1) * or it should trigger the fallback otherwise. */ if (cpu_high >= 0xb) topo_probe_intel_0xb(); else if (cpu_high >= 0x1) topo_probe_intel_0x4(); topo_probe_intel_caches(); } /* * Topology information is queried only on BSP, on which this * code runs and for which it can query CPUID information. * Then topology is extrapolated on all packages using an * assumption that APIC ID to hardware component ID mapping is * homogenious. * That doesn't necesserily imply that the topology is uniform. */ void topo_probe(void) { static int cpu_topo_probed = 0; struct x86_topo_layer { int type; int subtype; int id_shift; } topo_layers[MAX_CACHE_LEVELS + 5]; struct topo_node *parent; struct topo_node *node; int layer; int nlayers; int node_id; int i; #if defined(DEV_ACPI) && MAXMEMDOM > 1 int d, domain; #endif if (cpu_topo_probed) return; CPU_ZERO(&logical_cpus_mask); if (mp_ncpus <= 1) ; /* nothing */ else if (cpu_vendor_id == CPU_VENDOR_AMD || cpu_vendor_id == CPU_VENDOR_HYGON) topo_probe_amd(); else if (cpu_vendor_id == CPU_VENDOR_INTEL) topo_probe_intel(); KASSERT(pkg_id_shift >= core_id_shift, ("bug in APIC topology discovery")); nlayers = 0; bzero(topo_layers, sizeof(topo_layers)); topo_layers[nlayers].type = TOPO_TYPE_PKG; topo_layers[nlayers].id_shift = pkg_id_shift; if (bootverbose) printf("Package ID shift: %u\n", topo_layers[nlayers].id_shift); nlayers++; if (pkg_id_shift > node_id_shift && node_id_shift != 0) { topo_layers[nlayers].type = TOPO_TYPE_GROUP; topo_layers[nlayers].id_shift = node_id_shift; if (bootverbose) printf("Node ID shift: %u\n", topo_layers[nlayers].id_shift); nlayers++; } /* * Consider all caches to be within a package/chip * and "in front" of all sub-components like * cores and hardware threads. */ for (i = MAX_CACHE_LEVELS - 1; i >= 0; --i) { if (caches[i].present) { if (node_id_shift != 0) KASSERT(caches[i].id_shift <= node_id_shift, ("bug in APIC topology discovery")); KASSERT(caches[i].id_shift <= pkg_id_shift, ("bug in APIC topology discovery")); KASSERT(caches[i].id_shift >= core_id_shift, ("bug in APIC topology discovery")); topo_layers[nlayers].type = TOPO_TYPE_CACHE; topo_layers[nlayers].subtype = i + 1; topo_layers[nlayers].id_shift = caches[i].id_shift; if (bootverbose) printf("L%u cache ID shift: %u\n", topo_layers[nlayers].subtype, topo_layers[nlayers].id_shift); nlayers++; } } if (pkg_id_shift > core_id_shift) { topo_layers[nlayers].type = TOPO_TYPE_CORE; topo_layers[nlayers].id_shift = core_id_shift; if (bootverbose) printf("Core ID shift: %u\n", topo_layers[nlayers].id_shift); nlayers++; } topo_layers[nlayers].type = TOPO_TYPE_PU; topo_layers[nlayers].id_shift = 0; nlayers++; #if defined(DEV_ACPI) && MAXMEMDOM > 1 if (vm_ndomains > 1) { for (layer = 0; layer < nlayers; ++layer) { for (i = 0; i <= max_apic_id; ++i) { if ((i & ((1 << topo_layers[layer].id_shift) - 1)) == 0) domain = -1; if (!cpu_info[i].cpu_present) continue; d = acpi_pxm_get_cpu_locality(i); if (domain >= 0 && domain != d) break; domain = d; } if (i > max_apic_id) break; } KASSERT(layer < nlayers, ("NUMA domain smaller than PU")); memmove(&topo_layers[layer+1], &topo_layers[layer], sizeof(*topo_layers) * (nlayers - layer)); topo_layers[layer].type = TOPO_TYPE_NODE; topo_layers[layer].subtype = CG_SHARE_NONE; nlayers++; } #endif topo_init_root(&topo_root); for (i = 0; i <= max_apic_id; ++i) { if (!cpu_info[i].cpu_present) continue; parent = &topo_root; for (layer = 0; layer < nlayers; ++layer) { #if defined(DEV_ACPI) && MAXMEMDOM > 1 if (topo_layers[layer].type == TOPO_TYPE_NODE) { node_id = acpi_pxm_get_cpu_locality(i); } else #endif node_id = i >> topo_layers[layer].id_shift; parent = topo_add_node_by_hwid(parent, node_id, topo_layers[layer].type, topo_layers[layer].subtype); } } parent = &topo_root; for (layer = 0; layer < nlayers; ++layer) { #if defined(DEV_ACPI) && MAXMEMDOM > 1 if (topo_layers[layer].type == TOPO_TYPE_NODE) node_id = acpi_pxm_get_cpu_locality(boot_cpu_id); else #endif node_id = boot_cpu_id >> topo_layers[layer].id_shift; node = topo_find_node_by_hwid(parent, node_id, topo_layers[layer].type, topo_layers[layer].subtype); topo_promote_child(node); parent = node; } cpu_topo_probed = 1; } /* * Assign logical CPU IDs to local APICs. */ void assign_cpu_ids(void) { struct topo_node *node; u_int smt_mask; int nhyper; smt_mask = (1u << core_id_shift) - 1; /* * Assign CPU IDs to local APIC IDs and disable any CPUs * beyond MAXCPU. CPU 0 is always assigned to the BSP. */ mp_ncpus = 0; nhyper = 0; TOPO_FOREACH(node, &topo_root) { if (node->type != TOPO_TYPE_PU) continue; if ((node->hwid & smt_mask) != (boot_cpu_id & smt_mask)) cpu_info[node->hwid].cpu_hyperthread = 1; if (resource_disabled("lapic", node->hwid)) { if (node->hwid != boot_cpu_id) cpu_info[node->hwid].cpu_disabled = 1; else printf("Cannot disable BSP, APIC ID = %d\n", node->hwid); } if (!hyperthreading_allowed && cpu_info[node->hwid].cpu_hyperthread) cpu_info[node->hwid].cpu_disabled = 1; if (mp_ncpus >= MAXCPU) cpu_info[node->hwid].cpu_disabled = 1; if (cpu_info[node->hwid].cpu_disabled) { disabled_cpus++; continue; } if (cpu_info[node->hwid].cpu_hyperthread) nhyper++; cpu_apic_ids[mp_ncpus] = node->hwid; apic_cpuids[node->hwid] = mp_ncpus; topo_set_pu_id(node, mp_ncpus); mp_ncpus++; } KASSERT(mp_maxid >= mp_ncpus - 1, ("%s: counters out of sync: max %d, count %d", __func__, mp_maxid, mp_ncpus)); mp_ncores = mp_ncpus - nhyper; smp_threads_per_core = mp_ncpus / mp_ncores; } /* * Print various information about the SMP system hardware and setup. */ void cpu_mp_announce(void) { struct topo_node *node; const char *hyperthread; struct topo_analysis topology; printf("FreeBSD/SMP: "); if (topo_analyze(&topo_root, 1, &topology)) { printf("%d package(s)", topology.entities[TOPO_LEVEL_PKG]); if (topology.entities[TOPO_LEVEL_GROUP] > 1) printf(" x %d groups", topology.entities[TOPO_LEVEL_GROUP]); if (topology.entities[TOPO_LEVEL_CACHEGROUP] > 1) printf(" x %d cache groups", topology.entities[TOPO_LEVEL_CACHEGROUP]); if (topology.entities[TOPO_LEVEL_CORE] > 0) printf(" x %d core(s)", topology.entities[TOPO_LEVEL_CORE]); if (topology.entities[TOPO_LEVEL_THREAD] > 1) printf(" x %d hardware threads", topology.entities[TOPO_LEVEL_THREAD]); } else { printf("Non-uniform topology"); } printf("\n"); if (disabled_cpus) { printf("FreeBSD/SMP Online: "); if (topo_analyze(&topo_root, 0, &topology)) { printf("%d package(s)", topology.entities[TOPO_LEVEL_PKG]); if (topology.entities[TOPO_LEVEL_GROUP] > 1) printf(" x %d groups", topology.entities[TOPO_LEVEL_GROUP]); if (topology.entities[TOPO_LEVEL_CACHEGROUP] > 1) printf(" x %d cache groups", topology.entities[TOPO_LEVEL_CACHEGROUP]); if (topology.entities[TOPO_LEVEL_CORE] > 0) printf(" x %d core(s)", topology.entities[TOPO_LEVEL_CORE]); if (topology.entities[TOPO_LEVEL_THREAD] > 1) printf(" x %d hardware threads", topology.entities[TOPO_LEVEL_THREAD]); } else { printf("Non-uniform topology"); } printf("\n"); } if (!bootverbose) return; TOPO_FOREACH(node, &topo_root) { switch (node->type) { case TOPO_TYPE_PKG: printf("Package HW ID = %u\n", node->hwid); break; case TOPO_TYPE_CORE: printf("\tCore HW ID = %u\n", node->hwid); break; case TOPO_TYPE_PU: if (cpu_info[node->hwid].cpu_hyperthread) hyperthread = "/HT"; else hyperthread = ""; if (node->subtype == 0) printf("\t\tCPU (AP%s): APIC ID: %u" "(disabled)\n", hyperthread, node->hwid); else if (node->id == 0) printf("\t\tCPU0 (BSP): APIC ID: %u\n", node->hwid); else printf("\t\tCPU%u (AP%s): APIC ID: %u\n", node->id, hyperthread, node->hwid); break; default: /* ignored */ break; } } } /* * Add a scheduling group, a group of logical processors sharing * a particular cache (and, thus having an affinity), to the scheduling * topology. * This function recursively works on lower level caches. */ static void x86topo_add_sched_group(struct topo_node *root, struct cpu_group *cg_root) { struct topo_node *node; int nchildren; int ncores; int i; KASSERT(root->type == TOPO_TYPE_SYSTEM || root->type == TOPO_TYPE_CACHE || root->type == TOPO_TYPE_NODE || root->type == TOPO_TYPE_GROUP, ("x86topo_add_sched_group: bad type: %u", root->type)); CPU_COPY(&root->cpuset, &cg_root->cg_mask); cg_root->cg_count = root->cpu_count; if (root->type == TOPO_TYPE_CACHE) cg_root->cg_level = root->subtype; else cg_root->cg_level = CG_SHARE_NONE; if (root->type == TOPO_TYPE_NODE) cg_root->cg_flags = CG_FLAG_NODE; else cg_root->cg_flags = 0; /* * Check how many core nodes we have under the given root node. * If we have multiple logical processors, but not multiple * cores, then those processors must be hardware threads. */ ncores = 0; node = root; while (node != NULL) { if (node->type != TOPO_TYPE_CORE) { node = topo_next_node(root, node); continue; } ncores++; node = topo_next_nonchild_node(root, node); } if (cg_root->cg_level != CG_SHARE_NONE && root->cpu_count > 1 && ncores < 2) cg_root->cg_flags |= CG_FLAG_SMT; /* * Find out how many cache nodes we have under the given root node. * We ignore cache nodes that cover all the same processors as the * root node. Also, we do not descend below found cache nodes. * That is, we count top-level "non-redundant" caches under the root * node. */ nchildren = 0; node = root; while (node != NULL) { if (CPU_CMP(&node->cpuset, &root->cpuset) == 0) { if (node->type == TOPO_TYPE_CACHE && cg_root->cg_level < node->subtype) cg_root->cg_level = node->subtype; if (node->type == TOPO_TYPE_NODE) cg_root->cg_flags |= CG_FLAG_NODE; node = topo_next_node(root, node); continue; } if (node->type != TOPO_TYPE_GROUP && node->type != TOPO_TYPE_NODE && node->type != TOPO_TYPE_CACHE) { node = topo_next_node(root, node); continue; } nchildren++; node = topo_next_nonchild_node(root, node); } /* * We are not interested in nodes including only one CPU each. */ if (nchildren == root->cpu_count) return; cg_root->cg_child = smp_topo_alloc(nchildren); cg_root->cg_children = nchildren; /* * Now find again the same cache nodes as above and recursively * build scheduling topologies for them. */ node = root; i = 0; while (node != NULL) { if ((node->type != TOPO_TYPE_GROUP && node->type != TOPO_TYPE_NODE && node->type != TOPO_TYPE_CACHE) || CPU_CMP(&node->cpuset, &root->cpuset) == 0) { node = topo_next_node(root, node); continue; } cg_root->cg_child[i].cg_parent = cg_root; x86topo_add_sched_group(node, &cg_root->cg_child[i]); i++; node = topo_next_nonchild_node(root, node); } } /* * Build the MI scheduling topology from the discovered hardware topology. */ struct cpu_group * cpu_topo(void) { struct cpu_group *cg_root; if (mp_ncpus <= 1) return (smp_topo_none()); cg_root = smp_topo_alloc(1); x86topo_add_sched_group(&topo_root, cg_root); return (cg_root); } static void cpu_alloc(void *dummy __unused) { /* * Dynamically allocate the arrays that depend on the * maximum APIC ID. */ cpu_info = malloc(sizeof(*cpu_info) * (max_apic_id + 1), M_CPUS, M_WAITOK | M_ZERO); apic_cpuids = malloc(sizeof(*apic_cpuids) * (max_apic_id + 1), M_CPUS, M_WAITOK | M_ZERO); } SYSINIT(cpu_alloc, SI_SUB_CPU, SI_ORDER_FIRST, cpu_alloc, NULL); /* * Add a logical CPU to the topology. */ void cpu_add(u_int apic_id, char boot_cpu) { if (apic_id > max_apic_id) { panic("SMP: APIC ID %d too high", apic_id); return; } KASSERT(cpu_info[apic_id].cpu_present == 0, ("CPU %u added twice", apic_id)); cpu_info[apic_id].cpu_present = 1; if (boot_cpu) { KASSERT(boot_cpu_id == -1, ("CPU %u claims to be BSP, but CPU %u already is", apic_id, boot_cpu_id)); boot_cpu_id = apic_id; cpu_info[apic_id].cpu_bsp = 1; } if (bootverbose) printf("SMP: Added CPU %u (%s)\n", apic_id, boot_cpu ? "BSP" : "AP"); } void cpu_mp_setmaxid(void) { /* * mp_ncpus and mp_maxid should be already set by calls to cpu_add(). * If there were no calls to cpu_add() assume this is a UP system. */ if (mp_ncpus == 0) mp_ncpus = 1; } int cpu_mp_probe(void) { /* * Always record BSP in CPU map so that the mbuf init code works * correctly. */ CPU_SETOF(0, &all_cpus); return (mp_ncpus > 1); } /* * AP CPU's call this to initialize themselves. */ void init_secondary_tail(void) { u_int cpuid; pmap_activate_boot(vmspace_pmap(proc0.p_vmspace)); /* * On real hardware, switch to x2apic mode if possible. Do it * after aps_ready was signalled, to avoid manipulating the * mode while BSP might still want to send some IPI to us * (second startup IPI is ignored on modern hardware etc). */ lapic_xapic_mode(); /* Initialize the PAT MSR. */ pmap_init_pat(); /* set up CPU registers and state */ cpu_setregs(); /* set up SSE/NX */ initializecpu(); /* set up FPU state on the AP */ #ifdef __amd64__ fpuinit(); #else npxinit(false); #endif if (cpu_ops.cpu_init) cpu_ops.cpu_init(); /* A quick check from sanity claus */ cpuid = PCPU_GET(cpuid); if (PCPU_GET(apic_id) != lapic_id()) { printf("SMP: cpuid = %d\n", cpuid); printf("SMP: actual apic_id = %d\n", lapic_id()); printf("SMP: correct apic_id = %d\n", PCPU_GET(apic_id)); panic("cpuid mismatch! boom!!"); } /* Initialize curthread. */ KASSERT(PCPU_GET(idlethread) != NULL, ("no idle thread")); PCPU_SET(curthread, PCPU_GET(idlethread)); schedinit_ap(); mtx_lock_spin(&ap_boot_mtx); mca_init(); /* Init local apic for irq's */ lapic_setup(1); /* Set memory range attributes for this CPU to match the BSP */ mem_range_AP_init(); smp_cpus++; CTR1(KTR_SMP, "SMP: AP CPU #%d Launched", cpuid); if (bootverbose) printf("SMP: AP CPU #%d Launched!\n", cpuid); else printf("%s%d%s", smp_cpus == 2 ? "Launching APs: " : "", cpuid, smp_cpus == mp_ncpus ? "\n" : " "); /* Determine if we are a logical CPU. */ if (cpu_info[PCPU_GET(apic_id)].cpu_hyperthread) CPU_SET(cpuid, &logical_cpus_mask); if (bootverbose) lapic_dump("AP"); if (smp_cpus == mp_ncpus) { /* enable IPI's, tlb shootdown, freezes etc */ atomic_store_rel_int(&smp_started, 1); } #ifdef __amd64__ if (pmap_pcid_enabled) load_cr4(rcr4() | CR4_PCIDE); load_ds(_udatasel); load_es(_udatasel); load_fs(_ufssel); #endif mtx_unlock_spin(&ap_boot_mtx); /* Wait until all the AP's are up. */ while (atomic_load_acq_int(&smp_started) == 0) ia32_pause(); #ifndef EARLY_AP_STARTUP /* Start per-CPU event timers. */ cpu_initclocks_ap(); #endif kcsan_cpu_init(cpuid); - /* - * Assert that smp_after_idle_runnable condition is reasonable. - */ - MPASS(PCPU_GET(curpcb) == NULL); - sched_throw(NULL); panic("scheduler returned us to %s", __func__); /* NOTREACHED */ } static void smp_after_idle_runnable(void *arg __unused) { - struct pcpu *pc; int cpu; + if (mp_ncpus == 1) + return; + + KASSERT(smp_started != 0, ("%s: SMP not started yet", __func__)); + + /* + * Wait for all APs to handle an interrupt. After that, we know that + * the APs have entered the scheduler at least once, so the boot stacks + * are safe to free. + */ + smp_rendezvous(smp_no_rendezvous_barrier, NULL, + smp_no_rendezvous_barrier, NULL); + for (cpu = 1; cpu < mp_ncpus; cpu++) { - pc = pcpu_find(cpu); - while (atomic_load_ptr(&pc->pc_curpcb) == NULL) - cpu_spinwait(); kmem_free((vm_offset_t)bootstacks[cpu], kstack_pages * PAGE_SIZE); } } SYSINIT(smp_after_idle_runnable, SI_SUB_SMP, SI_ORDER_ANY, smp_after_idle_runnable, NULL); /* * We tell the I/O APIC code about all the CPUs we want to receive * interrupts. If we don't want certain CPUs to receive IRQs we * can simply not tell the I/O APIC code about them in this function. * We also do not tell it about the BSP since it tells itself about * the BSP internally to work with UP kernels and on UP machines. */ void set_interrupt_apic_ids(void) { u_int i, apic_id; for (i = 0; i < MAXCPU; i++) { apic_id = cpu_apic_ids[i]; if (apic_id == -1) continue; if (cpu_info[apic_id].cpu_bsp) continue; if (cpu_info[apic_id].cpu_disabled) continue; /* Don't let hyperthreads service interrupts. */ if (cpu_info[apic_id].cpu_hyperthread && !hyperthreading_intr_allowed) continue; intr_add_cpu(i); } } #ifdef COUNT_XINVLTLB_HITS u_int xhits_gbl[MAXCPU]; u_int xhits_pg[MAXCPU]; u_int xhits_rng[MAXCPU]; static SYSCTL_NODE(_debug, OID_AUTO, xhits, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, ""); SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, global, CTLFLAG_RW, &xhits_gbl, sizeof(xhits_gbl), "IU", ""); SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, page, CTLFLAG_RW, &xhits_pg, sizeof(xhits_pg), "IU", ""); SYSCTL_OPAQUE(_debug_xhits, OID_AUTO, range, CTLFLAG_RW, &xhits_rng, sizeof(xhits_rng), "IU", ""); u_int ipi_global; u_int ipi_page; u_int ipi_range; u_int ipi_range_size; SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_global, CTLFLAG_RW, &ipi_global, 0, ""); SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_page, CTLFLAG_RW, &ipi_page, 0, ""); SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range, CTLFLAG_RW, &ipi_range, 0, ""); SYSCTL_INT(_debug_xhits, OID_AUTO, ipi_range_size, CTLFLAG_RW, &ipi_range_size, 0, ""); #endif /* COUNT_XINVLTLB_HITS */ /* * Init and startup IPI. */ void ipi_startup(int apic_id, int vector) { /* * This attempts to follow the algorithm described in the * Intel Multiprocessor Specification v1.4 in section B.4. * For each IPI, we allow the local APIC ~20us to deliver the * IPI. If that times out, we panic. */ /* * first we do an INIT IPI: this INIT IPI might be run, resetting * and running the target CPU. OR this INIT IPI might be latched (P5 * bug), CPU waiting for STARTUP IPI. OR this INIT IPI might be * ignored. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL | APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id); lapic_ipi_wait(100); /* Explicitly deassert the INIT IPI. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_LEVEL | APIC_LEVEL_DEASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_INIT, apic_id); DELAY(10000); /* wait ~10mS */ /* * next we do a STARTUP IPI: the previous INIT IPI might still be * latched, (P5 bug) this 1st STARTUP would then terminate * immediately, and the previously started INIT IPI would continue. OR * the previous INIT IPI has already run. and this STARTUP IPI will * run. OR the previous INIT IPI was ignored. and this STARTUP IPI * will run. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE | APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP | vector, apic_id); if (!lapic_ipi_wait(100)) panic("Failed to deliver first STARTUP IPI to APIC %d", apic_id); DELAY(200); /* wait ~200uS */ /* * finally we do a 2nd STARTUP IPI: this 2nd STARTUP IPI should run IF * the previous STARTUP IPI was cancelled by a latched INIT IPI. OR * this STARTUP IPI will be ignored, as only ONE STARTUP IPI is * recognized after hardware RESET or INIT IPI. */ lapic_ipi_raw(APIC_DEST_DESTFLD | APIC_TRIGMOD_EDGE | APIC_LEVEL_ASSERT | APIC_DESTMODE_PHY | APIC_DELMODE_STARTUP | vector, apic_id); if (!lapic_ipi_wait(100)) panic("Failed to deliver second STARTUP IPI to APIC %d", apic_id); DELAY(200); /* wait ~200uS */ } static bool ipi_bitmap_set(int cpu, u_int ipi) { u_int bitmap, old, new; u_int *cpu_bitmap; bitmap = 1 << ipi; cpu_bitmap = &cpuid_to_pcpu[cpu]->pc_ipi_bitmap; old = *cpu_bitmap; for (;;) { if ((old & bitmap) != 0) break; new = old | bitmap; if (atomic_fcmpset_int(cpu_bitmap, &old, new)) break; } return (old != 0); } /* * Send an IPI to specified CPU handling the bitmap logic. */ static void ipi_send_cpu(int cpu, u_int ipi) { KASSERT((u_int)cpu < MAXCPU && cpu_apic_ids[cpu] != -1, ("IPI to non-existent CPU %d", cpu)); if (IPI_IS_BITMAPED(ipi)) { if (ipi_bitmap_set(cpu, ipi)) return; ipi = IPI_BITMAP_VECTOR; } lapic_ipi_vectored(ipi, cpu_apic_ids[cpu]); } void ipi_bitmap_handler(struct trapframe frame) { struct trapframe *oldframe; struct thread *td; int cpu = PCPU_GET(cpuid); u_int ipi_bitmap; kasan_mark(&frame, sizeof(frame), sizeof(frame), 0); td = curthread; ipi_bitmap = atomic_readandclear_int(&cpuid_to_pcpu[cpu]-> pc_ipi_bitmap); /* * sched_preempt() must be called to clear the pending preempt * IPI to enable delivery of further preempts. However, the * critical section will cause extra scheduler lock thrashing * when used unconditionally. Only critical_enter() if * hardclock must also run, which requires the section entry. */ if (ipi_bitmap & (1 << IPI_HARDCLOCK)) critical_enter(); td->td_intr_nesting_level++; oldframe = td->td_intr_frame; td->td_intr_frame = &frame; #if defined(STACK) || defined(DDB) if (ipi_bitmap & (1 << IPI_TRACE)) stack_capture_intr(); #endif if (ipi_bitmap & (1 << IPI_PREEMPT)) { #ifdef COUNT_IPIS (*ipi_preempt_counts[cpu])++; #endif sched_preempt(td); } if (ipi_bitmap & (1 << IPI_AST)) { #ifdef COUNT_IPIS (*ipi_ast_counts[cpu])++; #endif /* Nothing to do for AST */ } if (ipi_bitmap & (1 << IPI_HARDCLOCK)) { #ifdef COUNT_IPIS (*ipi_hardclock_counts[cpu])++; #endif hardclockintr(); } td->td_intr_frame = oldframe; td->td_intr_nesting_level--; if (ipi_bitmap & (1 << IPI_HARDCLOCK)) critical_exit(); } /* * send an IPI to a set of cpus. */ void ipi_selected(cpuset_t cpus, u_int ipi) { int cpu; /* * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit * of help in order to understand what is the source. * Set the mask of receiving CPUs for this purpose. */ if (ipi == IPI_STOP_HARD) CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &cpus); CPU_FOREACH_ISSET(cpu, &cpus) { CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi); ipi_send_cpu(cpu, ipi); } } /* * send an IPI to a specific CPU. */ void ipi_cpu(int cpu, u_int ipi) { /* * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit * of help in order to understand what is the source. * Set the mask of receiving CPUs for this purpose. */ if (ipi == IPI_STOP_HARD) CPU_SET_ATOMIC(cpu, &ipi_stop_nmi_pending); CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi); ipi_send_cpu(cpu, ipi); } /* * send an IPI to all CPUs EXCEPT myself */ void ipi_all_but_self(u_int ipi) { cpuset_t other_cpus; int cpu, c; /* * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit * of help in order to understand what is the source. * Set the mask of receiving CPUs for this purpose. */ if (ipi == IPI_STOP_HARD) { other_cpus = all_cpus; CPU_CLR(PCPU_GET(cpuid), &other_cpus); CPU_OR_ATOMIC(&ipi_stop_nmi_pending, &other_cpus); } CTR2(KTR_SMP, "%s: ipi: %x", __func__, ipi); if (IPI_IS_BITMAPED(ipi)) { cpu = PCPU_GET(cpuid); CPU_FOREACH(c) { if (c != cpu) ipi_bitmap_set(c, ipi); } ipi = IPI_BITMAP_VECTOR; } lapic_ipi_vectored(ipi, APIC_IPI_DEST_OTHERS); } void ipi_self_from_nmi(u_int vector) { lapic_ipi_vectored(vector, APIC_IPI_DEST_SELF); /* Wait for IPI to finish. */ if (!lapic_ipi_wait(50000)) { if (KERNEL_PANICKED()) return; else panic("APIC: IPI is stuck"); } } int ipi_nmi_handler(void) { u_int cpuid; /* * As long as there is not a simple way to know about a NMI's * source, if the bitmask for the current CPU is present in * the global pending bitword an IPI_STOP_HARD has been issued * and should be handled. */ cpuid = PCPU_GET(cpuid); if (!CPU_ISSET(cpuid, &ipi_stop_nmi_pending)) return (1); CPU_CLR_ATOMIC(cpuid, &ipi_stop_nmi_pending); cpustop_handler(); return (0); } int nmi_kdb_lock; void nmi_call_kdb_smp(u_int type, struct trapframe *frame) { int cpu; bool call_post; cpu = PCPU_GET(cpuid); if (atomic_cmpset_acq_int(&nmi_kdb_lock, 0, 1)) { nmi_call_kdb(cpu, type, frame); call_post = false; } else { savectx(&stoppcbs[cpu]); CPU_SET_ATOMIC(cpu, &stopped_cpus); while (!atomic_cmpset_acq_int(&nmi_kdb_lock, 0, 1)) ia32_pause(); call_post = true; } atomic_store_rel_int(&nmi_kdb_lock, 0); if (call_post) cpustop_handler_post(cpu); } /* * Handle an IPI_STOP by saving our current context and spinning (or mwaiting, * if available) until we are resumed. */ void cpustop_handler(void) { struct monitorbuf *mb; u_int cpu; bool use_mwait; cpu = PCPU_GET(cpuid); savectx(&stoppcbs[cpu]); use_mwait = (stop_mwait && (cpu_feature2 & CPUID2_MON) != 0 && !mwait_cpustop_broken); if (use_mwait) { mb = PCPU_PTR(monitorbuf); atomic_store_int(&mb->stop_state, MONITOR_STOPSTATE_STOPPED); } /* Indicate that we are stopped */ CPU_SET_ATOMIC(cpu, &stopped_cpus); /* Wait for restart */ while (!CPU_ISSET(cpu, &started_cpus)) { if (use_mwait) { cpu_monitor(mb, 0, 0); if (atomic_load_int(&mb->stop_state) == MONITOR_STOPSTATE_STOPPED) cpu_mwait(0, MWAIT_C1); continue; } ia32_pause(); /* * Halt non-BSP CPUs on panic -- we're never going to need them * again, and might as well save power / release resources * (e.g., overprovisioned VM infrastructure). */ while (__predict_false(!IS_BSP() && KERNEL_PANICKED())) halt(); } cpustop_handler_post(cpu); } static void cpustop_handler_post(u_int cpu) { CPU_CLR_ATOMIC(cpu, &started_cpus); CPU_CLR_ATOMIC(cpu, &stopped_cpus); /* * We don't broadcast TLB invalidations to other CPUs when they are * stopped. Hence, we clear the TLB before resuming. */ invltlb_glob(); #if defined(__amd64__) && (defined(DDB) || defined(GDB)) amd64_db_resume_dbreg(); #endif if (cpu == 0 && cpustop_restartfunc != NULL) { cpustop_restartfunc(); cpustop_restartfunc = NULL; } } /* * Handle an IPI_SUSPEND by saving our current context and spinning until we * are resumed. */ void cpususpend_handler(void) { u_int cpu; mtx_assert(&smp_ipi_mtx, MA_NOTOWNED); cpu = PCPU_GET(cpuid); if (savectx(&susppcbs[cpu]->sp_pcb)) { #ifdef __amd64__ fpususpend(susppcbs[cpu]->sp_fpususpend); #else npxsuspend(susppcbs[cpu]->sp_fpususpend); #endif /* * suspended_cpus is cleared shortly after each AP is restarted * by a Startup IPI, so that the BSP can proceed to restarting * the next AP. * * resuming_cpus gets cleared when the AP completes * initialization after having been released by the BSP. * resuming_cpus is probably not the best name for the * variable, because it is actually a set of processors that * haven't resumed yet and haven't necessarily started resuming. * * Note that suspended_cpus is meaningful only for ACPI suspend * as it's not really used for Xen suspend since the APs are * automatically restored to the running state and the correct * context. For the same reason resumectx is never called in * that case. */ CPU_SET_ATOMIC(cpu, &suspended_cpus); CPU_SET_ATOMIC(cpu, &resuming_cpus); /* * Invalidate the cache after setting the global status bits. * The last AP to set its bit may end up being an Owner of the * corresponding cache line in MOESI protocol. The AP may be * stopped before the cache line is written to the main memory. */ wbinvd(); } else { #ifdef __amd64__ fpuresume(susppcbs[cpu]->sp_fpususpend); #else npxresume(susppcbs[cpu]->sp_fpususpend); #endif pmap_init_pat(); initializecpu(); PCPU_SET(switchtime, 0); PCPU_SET(switchticks, ticks); /* Indicate that we have restarted and restored the context. */ CPU_CLR_ATOMIC(cpu, &suspended_cpus); } /* Wait for resume directive */ while (!CPU_ISSET(cpu, &toresume_cpus)) ia32_pause(); /* Re-apply microcode updates. */ ucode_reload(); #ifdef __i386__ /* Finish removing the identity mapping of low memory for this AP. */ invltlb_glob(); #endif if (cpu_ops.cpu_resume) cpu_ops.cpu_resume(); #ifdef __amd64__ if (vmm_resume_p) vmm_resume_p(); #endif /* Resume MCA and local APIC */ lapic_xapic_mode(); mca_resume(); lapic_setup(0); /* Indicate that we are resumed */ CPU_CLR_ATOMIC(cpu, &resuming_cpus); CPU_CLR_ATOMIC(cpu, &suspended_cpus); CPU_CLR_ATOMIC(cpu, &toresume_cpus); } /* * Handle an IPI_SWI by waking delayed SWI thread. */ void ipi_swi_handler(struct trapframe frame) { intr_event_handle(clk_intr_event, &frame); } /* * This is called once the rest of the system is up and running and we're * ready to let the AP's out of the pen. */ static void release_aps(void *dummy __unused) { if (mp_ncpus == 1) return; atomic_store_rel_int(&aps_ready, 1); while (smp_started == 0) ia32_pause(); } SYSINIT(start_aps, SI_SUB_SMP, SI_ORDER_FIRST, release_aps, NULL); #ifdef COUNT_IPIS /* * Setup interrupt counters for IPI handlers. */ static void mp_ipi_intrcnt(void *dummy) { char buf[64]; int i; CPU_FOREACH(i) { snprintf(buf, sizeof(buf), "cpu%d:invltlb", i); intrcnt_add(buf, &ipi_invltlb_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:invlrng", i); intrcnt_add(buf, &ipi_invlrng_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:invlpg", i); intrcnt_add(buf, &ipi_invlpg_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:invlcache", i); intrcnt_add(buf, &ipi_invlcache_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:preempt", i); intrcnt_add(buf, &ipi_preempt_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:ast", i); intrcnt_add(buf, &ipi_ast_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:rendezvous", i); intrcnt_add(buf, &ipi_rendezvous_counts[i]); snprintf(buf, sizeof(buf), "cpu%d:hardclock", i); intrcnt_add(buf, &ipi_hardclock_counts[i]); } } SYSINIT(mp_ipi_intrcnt, SI_SUB_INTR, SI_ORDER_MIDDLE, mp_ipi_intrcnt, NULL); #endif