diff --git a/sys/kern/vfs_bio.c b/sys/kern/vfs_bio.c
index 7bcc61c27109..3ef715baebfa 100644
--- a/sys/kern/vfs_bio.c
+++ b/sys/kern/vfs_bio.c
@@ -1,5662 +1,5659 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2004 Poul-Henning Kamp
  * Copyright (c) 1994,1997 John S. Dyson
  * Copyright (c) 2013 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by Konstantin Belousov
  * under sponsorship from the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 /*
  * this file contains a new buffer I/O scheme implementing a coherent
  * VM object and buffer cache scheme.  Pains have been taken to make
  * sure that the performance degradation associated with schemes such
  * as this is not realized.
  *
  * Author:  John S. Dyson
  * Significant help during the development and debugging phases
  * had been provided by David Greenman, also of the FreeBSD core team.
  *
  * see man buf(9) for more info.
  */
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/asan.h>
 #include <sys/bio.h>
 #include <sys/bitset.h>
 #include <sys/boottrace.h>
 #include <sys/buf.h>
 #include <sys/conf.h>
 #include <sys/counter.h>
 #include <sys/devicestat.h>
 #include <sys/eventhandler.h>
 #include <sys/fail.h>
 #include <sys/ktr.h>
 #include <sys/limits.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/memdesc.h>
 #include <sys/mount.h>
 #include <sys/mutex.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/pctrie.h>
 #include <sys/proc.h>
 #include <sys/racct.h>
 #include <sys/refcount.h>
 #include <sys/resourcevar.h>
 #include <sys/rwlock.h>
 #include <sys/sched.h>
 #include <sys/smp.h>
 #include <sys/sysctl.h>
 #include <sys/syscallsubr.h>
 #include <sys/vmem.h>
 #include <sys/vmmeter.h>
 #include <sys/vnode.h>
 #include <sys/watchdog.h>
 #include <geom/geom.h>
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_object.h>
 #include <vm/vm_page.h>
 #include <vm/vm_pageout.h>
 #include <vm/vm_pager.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_map.h>
 #include <vm/swap_pager.h>
 
 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
 
 struct	bio_ops bioops;		/* I/O operation notification */
 
 struct	buf_ops buf_ops_bio = {
 	.bop_name	=	"buf_ops_bio",
 	.bop_write	=	bufwrite,
 	.bop_strategy	=	bufstrategy,
 	.bop_sync	=	bufsync,
 	.bop_bdflush	=	bufbdflush,
 };
 
 struct bufqueue {
 	struct mtx_padalign	bq_lock;
 	TAILQ_HEAD(, buf)	bq_queue;
 	uint8_t			bq_index;
 	uint16_t		bq_subqueue;
 	int			bq_len;
 } __aligned(CACHE_LINE_SIZE);
 
 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
 
 struct bufdomain {
 	struct bufqueue	*bd_subq;
 	struct bufqueue bd_dirtyq;
 	struct bufqueue	*bd_cleanq;
 	struct mtx_padalign bd_run_lock;
 	/* Constants */
 	long		bd_maxbufspace;
 	long		bd_hibufspace;
 	long 		bd_lobufspace;
 	long 		bd_bufspacethresh;
 	int		bd_hifreebuffers;
 	int		bd_lofreebuffers;
 	int		bd_hidirtybuffers;
 	int		bd_lodirtybuffers;
 	int		bd_dirtybufthresh;
 	int		bd_lim;
 	/* atomics */
 	int		bd_wanted;
 	bool		bd_shutdown;
 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
 	int __aligned(CACHE_LINE_SIZE)	bd_running;
 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
 } __aligned(CACHE_LINE_SIZE);
 
 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
 #define	BD_DOMAIN(bd)		(bd - bdomain)
 
 static char *buf;		/* buffer header pool */
 static struct buf *
 nbufp(unsigned i)
 {
 	return ((struct buf *)(buf + (sizeof(struct buf) +
 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
 }
 
 caddr_t __read_mostly unmapped_buf;
 #ifdef INVARIANTS
 caddr_t	poisoned_buf = (void *)-1;
 #endif
 
 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
 struct proc *bufdaemonproc;
 
 static void vm_hold_free_pages(struct buf *bp, int newbsize);
 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
 		vm_offset_t to);
 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
 		vm_page_t m);
 static void vfs_clean_pages_dirty_buf(struct buf *bp);
 static void vfs_setdirty_range(struct buf *bp);
 static void vfs_vmio_invalidate(struct buf *bp);
 static void vfs_vmio_truncate(struct buf *bp, int npages);
 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
 static int vfs_bio_clcheck(struct vnode *vp, int size,
 		daddr_t lblkno, daddr_t blkno);
 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
 		void (*)(struct buf *));
 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
 static void buf_daemon(void);
 static __inline void bd_wakeup(void);
 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
 static void bufkva_reclaim(vmem_t *, int);
 static void bufkva_free(struct buf *);
 static int buf_import(void *, void **, int, int, int);
 static void buf_release(void *, void **, int);
 static void maxbcachebuf_adjust(void);
 static inline struct bufdomain *bufdomain(struct buf *);
 static void bq_remove(struct bufqueue *bq, struct buf *bp);
 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
 static int buf_recycle(struct bufdomain *, bool kva);
 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
 	    const char *lockname);
 static void bd_init(struct bufdomain *bd);
 static int bd_flushall(struct bufdomain *bd);
 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
 
 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
 int vmiodirenable = TRUE;
 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
     "Use the VM system for directory writes");
 long runningbufspace;
 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
     "Amount of presently outstanding async buffer io");
 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
 static counter_u64_t bufkvaspace;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
     "Kernel virtual memory used for buffers");
 static long maxbufspace;
 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
     "Maximum allowed value of bufspace (including metadata)");
 static long bufmallocspace;
 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
     "Amount of malloced memory for buffers");
 static long maxbufmallocspace;
 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
     0, "Maximum amount of malloced memory for buffers");
 static long lobufspace;
 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
     "Minimum amount of buffers we want to have");
 long hibufspace;
 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
     "Maximum allowed value of bufspace (excluding metadata)");
 long bufspacethresh;
 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
     "Bufspace consumed before waking the daemon to free some");
 static counter_u64_t buffreekvacnt;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
     "Number of times we have freed the KVA space from some buffer");
 static counter_u64_t bufdefragcnt;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
     "Number of times we have had to repeat buffer allocation to defragment");
 static long lorunningspace;
 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
     "Minimum preferred space used for in-progress I/O");
 static long hirunningspace;
 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
     "Maximum amount of space to use for in-progress I/O");
 int dirtybufferflushes;
 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
 int bdwriteskip;
 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
 int altbufferflushes;
 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
 static int recursiveflushes;
 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
     "Number of buffers that are dirty (has unwritten changes) at the moment");
 static int lodirtybuffers;
 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
     "How many buffers we want to have free before bufdaemon can sleep");
 static int hidirtybuffers;
 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
     "When the number of dirty buffers is considered severe");
 int dirtybufthresh;
 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
     "Number of bdwrite to bawrite conversions to clear dirty buffers");
 static int numfreebuffers;
 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
     "Number of free buffers");
 static int lofreebuffers;
 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
    "Target number of free buffers");
 static int hifreebuffers;
 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
    "Threshold for clean buffer recycling");
 static counter_u64_t getnewbufcalls;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
    &getnewbufcalls, "Number of calls to getnewbuf");
 static counter_u64_t getnewbufrestarts;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
     &getnewbufrestarts,
     "Number of times getnewbuf has had to restart a buffer acquisition");
 static counter_u64_t mappingrestarts;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
     &mappingrestarts,
     "Number of times getblk has had to restart a buffer mapping for "
     "unmapped buffer");
 static counter_u64_t numbufallocfails;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
     &numbufallocfails, "Number of times buffer allocations failed");
 static int flushbufqtarget = 100;
 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
     "Amount of work to do in flushbufqueues when helping bufdaemon");
 static counter_u64_t notbufdflushes;
 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
     "Number of dirty buffer flushes done by the bufdaemon helpers");
 static long barrierwrites;
 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
     &barrierwrites, 0, "Number of barrier writes");
 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed,
     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &unmapped_buf_allowed, 0,
     "Permit the use of the unmapped i/o");
 int maxbcachebuf = MAXBCACHEBUF;
 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
     "Maximum size of a buffer cache block");
 
 /*
  * This lock synchronizes access to bd_request.
  */
 static struct mtx_padalign __exclusive_cache_line bdlock;
 
 /*
  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
  * waitrunningbufspace().
  */
 static struct mtx_padalign __exclusive_cache_line rbreqlock;
 
 /*
  * Lock that protects bdirtywait.
  */
 static struct mtx_padalign __exclusive_cache_line bdirtylock;
 
 /*
  * bufdaemon shutdown request and sleep channel.
  */
 static bool bd_shutdown;
 
 /*
  * Wakeup point for bufdaemon, as well as indicator of whether it is already
  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
  * is idling.
  */
 static int bd_request;
 
 /*
  * Request for the buf daemon to write more buffers than is indicated by
  * lodirtybuf.  This may be necessary to push out excess dependencies or
  * defragment the address space where a simple count of the number of dirty
  * buffers is insufficient to characterize the demand for flushing them.
  */
 static int bd_speedupreq;
 
 /*
  * Synchronization (sleep/wakeup) variable for active buffer space requests.
  * Set when wait starts, cleared prior to wakeup().
  * Used in runningbufwakeup() and waitrunningbufspace().
  */
 static int runningbufreq;
 
 /*
  * Synchronization for bwillwrite() waiters.
  */
 static int bdirtywait;
 
 /*
  * Definitions for the buffer free lists.
  */
 #define QUEUE_NONE	0	/* on no queue */
 #define QUEUE_EMPTY	1	/* empty buffer headers */
 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
 
 /* Maximum number of buffer domains. */
 #define	BUF_DOMAINS	8
 
 struct bufdomainset bdlodirty;		/* Domains > lodirty */
 struct bufdomainset bdhidirty;		/* Domains > hidirty */
 
 /* Configured number of clean queues. */
 static int __read_mostly buf_domains;
 
 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
 struct bufqueue __exclusive_cache_line bqempty;
 
 /*
  * per-cpu empty buffer cache.
  */
 uma_zone_t buf_zone;
 
 static int
 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
 {
 	long value;
 	int error;
 
 	value = *(long *)arg1;
 	error = sysctl_handle_long(oidp, &value, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	mtx_lock(&rbreqlock);
 	if (arg1 == &hirunningspace) {
 		if (value < lorunningspace)
 			error = EINVAL;
 		else
 			hirunningspace = value;
 	} else {
 		KASSERT(arg1 == &lorunningspace,
 		    ("%s: unknown arg1", __func__));
 		if (value > hirunningspace)
 			error = EINVAL;
 		else
 			lorunningspace = value;
 	}
 	mtx_unlock(&rbreqlock);
 	return (error);
 }
 
 static int
 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
 {
 	int error;
 	int value;
 	int i;
 
 	value = *(int *)arg1;
 	error = sysctl_handle_int(oidp, &value, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	*(int *)arg1 = value;
 	for (i = 0; i < buf_domains; i++)
 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
 		    value / buf_domains;
 
 	return (error);
 }
 
 static int
 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
 {
 	long value;
 	int error;
 	int i;
 
 	value = *(long *)arg1;
 	error = sysctl_handle_long(oidp, &value, 0, req);
 	if (error != 0 || req->newptr == NULL)
 		return (error);
 	*(long *)arg1 = value;
 	for (i = 0; i < buf_domains; i++)
 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
 		    value / buf_domains;
 
 	return (error);
 }
 
 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
 static int
 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
 {
 	long lvalue;
 	int ivalue;
 	int i;
 
 	lvalue = 0;
 	for (i = 0; i < buf_domains; i++)
 		lvalue += bdomain[i].bd_bufspace;
 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
 	if (lvalue > INT_MAX)
 		/* On overflow, still write out a long to trigger ENOMEM. */
 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
 	ivalue = lvalue;
 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
 }
 #else
 static int
 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
 {
 	long lvalue;
 	int i;
 
 	lvalue = 0;
 	for (i = 0; i < buf_domains; i++)
 		lvalue += bdomain[i].bd_bufspace;
 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
 }
 #endif
 
 static int
 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
 {
 	int value;
 	int i;
 
 	value = 0;
 	for (i = 0; i < buf_domains; i++)
 		value += bdomain[i].bd_numdirtybuffers;
 	return (sysctl_handle_int(oidp, &value, 0, req));
 }
 
 /*
  *	bdirtywakeup:
  *
  *	Wakeup any bwillwrite() waiters.
  */
 static void
 bdirtywakeup(void)
 {
 	mtx_lock(&bdirtylock);
 	if (bdirtywait) {
 		bdirtywait = 0;
 		wakeup(&bdirtywait);
 	}
 	mtx_unlock(&bdirtylock);
 }
 
 /*
  *	bd_clear:
  *
  *	Clear a domain from the appropriate bitsets when dirtybuffers
  *	is decremented.
  */
 static void
 bd_clear(struct bufdomain *bd)
 {
 
 	mtx_lock(&bdirtylock);
 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
 	mtx_unlock(&bdirtylock);
 }
 
 /*
  *	bd_set:
  *
  *	Set a domain in the appropriate bitsets when dirtybuffers
  *	is incremented.
  */
 static void
 bd_set(struct bufdomain *bd)
 {
 
 	mtx_lock(&bdirtylock);
 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
 	mtx_unlock(&bdirtylock);
 }
 
 /*
  *	bdirtysub:
  *
  *	Decrement the numdirtybuffers count by one and wakeup any
  *	threads blocked in bwillwrite().
  */
 static void
 bdirtysub(struct buf *bp)
 {
 	struct bufdomain *bd;
 	int num;
 
 	bd = bufdomain(bp);
 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
 		bdirtywakeup();
 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
 		bd_clear(bd);
 }
 
 /*
  *	bdirtyadd:
  *
  *	Increment the numdirtybuffers count by one and wakeup the buf 
  *	daemon if needed.
  */
 static void
 bdirtyadd(struct buf *bp)
 {
 	struct bufdomain *bd;
 	int num;
 
 	/*
 	 * Only do the wakeup once as we cross the boundary.  The
 	 * buf daemon will keep running until the condition clears.
 	 */
 	bd = bufdomain(bp);
 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
 		bd_wakeup();
 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
 		bd_set(bd);
 }
 
 /*
  *	bufspace_daemon_wakeup:
  *
  *	Wakeup the daemons responsible for freeing clean bufs.
  */
 static void
 bufspace_daemon_wakeup(struct bufdomain *bd)
 {
 
 	/*
 	 * avoid the lock if the daemon is running.
 	 */
 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
 		BD_RUN_LOCK(bd);
 		atomic_store_int(&bd->bd_running, 1);
 		wakeup(&bd->bd_running);
 		BD_RUN_UNLOCK(bd);
 	}
 }
 
 /*
  *	bufspace_adjust:
  *
  *	Adjust the reported bufspace for a KVA managed buffer, possibly
  * 	waking any waiters.
  */
 static void
 bufspace_adjust(struct buf *bp, int bufsize)
 {
 	struct bufdomain *bd;
 	long space;
 	int diff;
 
 	KASSERT((bp->b_flags & B_MALLOC) == 0,
 	    ("bufspace_adjust: malloc buf %p", bp));
 	bd = bufdomain(bp);
 	diff = bufsize - bp->b_bufsize;
 	if (diff < 0) {
 		atomic_subtract_long(&bd->bd_bufspace, -diff);
 	} else if (diff > 0) {
 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
 		/* Wake up the daemon on the transition. */
 		if (space < bd->bd_bufspacethresh &&
 		    space + diff >= bd->bd_bufspacethresh)
 			bufspace_daemon_wakeup(bd);
 	}
 	bp->b_bufsize = bufsize;
 }
 
 /*
  *	bufspace_reserve:
  *
  *	Reserve bufspace before calling allocbuf().  metadata has a
  *	different space limit than data.
  */
 static int
 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
 {
 	long limit, new;
 	long space;
 
 	if (metadata)
 		limit = bd->bd_maxbufspace;
 	else
 		limit = bd->bd_hibufspace;
 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
 	new = space + size;
 	if (new > limit) {
 		atomic_subtract_long(&bd->bd_bufspace, size);
 		return (ENOSPC);
 	}
 
 	/* Wake up the daemon on the transition. */
 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
 		bufspace_daemon_wakeup(bd);
 
 	return (0);
 }
 
 /*
  *	bufspace_release:
  *
  *	Release reserved bufspace after bufspace_adjust() has consumed it.
  */
 static void
 bufspace_release(struct bufdomain *bd, int size)
 {
 
 	atomic_subtract_long(&bd->bd_bufspace, size);
 }
 
 /*
  *	bufspace_wait:
  *
  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
  *	supplied.  bd_wanted must be set prior to polling for space.  The
  *	operation must be re-tried on return.
  */
 static void
 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
     int slpflag, int slptimeo)
 {
 	struct thread *td;
 	int error, fl, norunbuf;
 
 	if ((gbflags & GB_NOWAIT_BD) != 0)
 		return;
 
 	td = curthread;
 	BD_LOCK(bd);
 	while (bd->bd_wanted) {
 		if (vp != NULL && vp->v_type != VCHR &&
 		    (td->td_pflags & TDP_BUFNEED) == 0) {
 			BD_UNLOCK(bd);
 			/*
 			 * getblk() is called with a vnode locked, and
 			 * some majority of the dirty buffers may as
 			 * well belong to the vnode.  Flushing the
 			 * buffers there would make a progress that
 			 * cannot be achieved by the buf_daemon, that
 			 * cannot lock the vnode.
 			 */
 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
 			    (td->td_pflags & TDP_NORUNNINGBUF);
 
 			/*
 			 * Play bufdaemon.  The getnewbuf() function
 			 * may be called while the thread owns lock
 			 * for another dirty buffer for the same
 			 * vnode, which makes it impossible to use
 			 * VOP_FSYNC() there, due to the buffer lock
 			 * recursion.
 			 */
 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
 			fl = buf_flush(vp, bd, flushbufqtarget);
 			td->td_pflags &= norunbuf;
 			BD_LOCK(bd);
 			if (fl != 0)
 				continue;
 			if (bd->bd_wanted == 0)
 				break;
 		}
 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
 		if (error != 0)
 			break;
 	}
 	BD_UNLOCK(bd);
 }
 
 static void
 bufspace_daemon_shutdown(void *arg, int howto __unused)
 {
 	struct bufdomain *bd = arg;
 	int error;
 
 	if (KERNEL_PANICKED())
 		return;
 
 	BD_RUN_LOCK(bd);
 	bd->bd_shutdown = true;
 	wakeup(&bd->bd_running);
 	error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
 	    "bufspace_shutdown", 60 * hz);
 	BD_RUN_UNLOCK(bd);
 	if (error != 0)
 		printf("bufspacedaemon wait error: %d\n", error);
 }
 
 /*
  *	bufspace_daemon:
  *
  *	buffer space management daemon.  Tries to maintain some marginal
  *	amount of free buffer space so that requesting processes neither
  *	block nor work to reclaim buffers.
  */
 static void
 bufspace_daemon(void *arg)
 {
 	struct bufdomain *bd = arg;
 
 	EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
 	    SHUTDOWN_PRI_LAST + 100);
 
 	BD_RUN_LOCK(bd);
 	while (!bd->bd_shutdown) {
 		BD_RUN_UNLOCK(bd);
 
 		/*
 		 * Free buffers from the clean queue until we meet our
 		 * targets.
 		 *
 		 * Theory of operation:  The buffer cache is most efficient
 		 * when some free buffer headers and space are always
 		 * available to getnewbuf().  This daemon attempts to prevent
 		 * the excessive blocking and synchronization associated
 		 * with shortfall.  It goes through three phases according
 		 * demand:
 		 *
 		 * 1)	The daemon wakes up voluntarily once per-second
 		 *	during idle periods when the counters are below
 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
 		 *
 		 * 2)	The daemon wakes up as we cross the thresholds
 		 *	ahead of any potential blocking.  This may bounce
 		 *	slightly according to the rate of consumption and
 		 *	release.
 		 *
 		 * 3)	The daemon and consumers are starved for working
 		 *	clean buffers.  This is the 'bufspace' sleep below
 		 *	which will inefficiently trade bufs with bqrelse
 		 *	until we return to condition 2.
 		 */
 		while (bd->bd_bufspace > bd->bd_lobufspace ||
 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
 			if (buf_recycle(bd, false) != 0) {
 				if (bd_flushall(bd))
 					continue;
 				/*
 				 * Speedup dirty if we've run out of clean
 				 * buffers.  This is possible in particular
 				 * because softdep may held many bufs locked
 				 * pending writes to other bufs which are
 				 * marked for delayed write, exhausting
 				 * clean space until they are written.
 				 */
 				bd_speedup();
 				BD_LOCK(bd);
 				if (bd->bd_wanted) {
 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
 					    PRIBIO|PDROP, "bufspace", hz/10);
 				} else
 					BD_UNLOCK(bd);
 			}
 			maybe_yield();
 		}
 
 		/*
 		 * Re-check our limits and sleep.  bd_running must be
 		 * cleared prior to checking the limits to avoid missed
 		 * wakeups.  The waker will adjust one of bufspace or
 		 * freebuffers prior to checking bd_running.
 		 */
 		BD_RUN_LOCK(bd);
 		if (bd->bd_shutdown)
 			break;
 		atomic_store_int(&bd->bd_running, 0);
 		if (bd->bd_bufspace < bd->bd_bufspacethresh &&
 		    bd->bd_freebuffers > bd->bd_lofreebuffers) {
 			msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
 			    PRIBIO, "-", hz);
 		} else {
 			/* Avoid spurious wakeups while running. */
 			atomic_store_int(&bd->bd_running, 1);
 		}
 	}
 	wakeup(&bd->bd_shutdown);
 	BD_RUN_UNLOCK(bd);
 	kthread_exit();
 }
 
 /*
  *	bufmallocadjust:
  *
  *	Adjust the reported bufspace for a malloc managed buffer, possibly
  *	waking any waiters.
  */
 static void
 bufmallocadjust(struct buf *bp, int bufsize)
 {
 	int diff;
 
 	KASSERT((bp->b_flags & B_MALLOC) != 0,
 	    ("bufmallocadjust: non-malloc buf %p", bp));
 	diff = bufsize - bp->b_bufsize;
 	if (diff < 0)
 		atomic_subtract_long(&bufmallocspace, -diff);
 	else
 		atomic_add_long(&bufmallocspace, diff);
 	bp->b_bufsize = bufsize;
 }
 
 /*
  *	runningwakeup:
  *
  *	Wake up processes that are waiting on asynchronous writes to fall
  *	below lorunningspace.
  */
 static void
 runningwakeup(void)
 {
 
 	mtx_lock(&rbreqlock);
 	if (runningbufreq) {
 		runningbufreq = 0;
 		wakeup(&runningbufreq);
 	}
 	mtx_unlock(&rbreqlock);
 }
 
 /*
  *	runningbufwakeup:
  *
  *	Decrement the outstanding write count according.
  */
 void
 runningbufwakeup(struct buf *bp)
 {
 	long space, bspace;
 
 	bspace = bp->b_runningbufspace;
 	if (bspace == 0)
 		return;
 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
 	    space, bspace));
 	bp->b_runningbufspace = 0;
 	/*
 	 * Only acquire the lock and wakeup on the transition from exceeding
 	 * the threshold to falling below it.
 	 */
 	if (space < lorunningspace)
 		return;
 	if (space - bspace > lorunningspace)
 		return;
 	runningwakeup();
 }
 
 /*
  *	waitrunningbufspace()
  *
  *	runningbufspace is a measure of the amount of I/O currently
  *	running.  This routine is used in async-write situations to
  *	prevent creating huge backups of pending writes to a device.
  *	Only asynchronous writes are governed by this function.
  *
  *	This does NOT turn an async write into a sync write.  It waits  
  *	for earlier writes to complete and generally returns before the
  *	caller's write has reached the device.
  */
 void
 waitrunningbufspace(void)
 {
 
 	mtx_lock(&rbreqlock);
 	while (runningbufspace > hirunningspace) {
 		runningbufreq = 1;
 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
 	}
 	mtx_unlock(&rbreqlock);
 }
 
 /*
  *	vfs_buf_test_cache:
  *
  *	Called when a buffer is extended.  This function clears the B_CACHE
  *	bit if the newly extended portion of the buffer does not contain
  *	valid data.
  */
 static __inline void
 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
     vm_offset_t size, vm_page_t m)
 {
 
 	/*
 	 * This function and its results are protected by higher level
 	 * synchronization requiring vnode and buf locks to page in and
 	 * validate pages.
 	 */
 	if (bp->b_flags & B_CACHE) {
 		int base = (foff + off) & PAGE_MASK;
 		if (vm_page_is_valid(m, base, size) == 0)
 			bp->b_flags &= ~B_CACHE;
 	}
 }
 
 /* Wake up the buffer daemon if necessary */
 static void
 bd_wakeup(void)
 {
 
 	mtx_lock(&bdlock);
 	if (bd_request == 0) {
 		bd_request = 1;
 		wakeup(&bd_request);
 	}
 	mtx_unlock(&bdlock);
 }
 
 /*
  * Adjust the maxbcachbuf tunable.
  */
 static void
 maxbcachebuf_adjust(void)
 {
 	int i;
 
 	/*
 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
 	 */
 	i = 2;
 	while (i * 2 <= maxbcachebuf)
 		i *= 2;
 	maxbcachebuf = i;
 	if (maxbcachebuf < MAXBSIZE)
 		maxbcachebuf = MAXBSIZE;
 	if (maxbcachebuf > maxphys)
 		maxbcachebuf = maxphys;
 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
 		printf("maxbcachebuf=%d\n", maxbcachebuf);
 }
 
 /*
  * bd_speedup - speedup the buffer cache flushing code
  */
 void
 bd_speedup(void)
 {
 	int needwake;
 
 	mtx_lock(&bdlock);
 	needwake = 0;
 	if (bd_speedupreq == 0 || bd_request == 0)
 		needwake = 1;
 	bd_speedupreq = 1;
 	bd_request = 1;
 	if (needwake)
 		wakeup(&bd_request);
 	mtx_unlock(&bdlock);
 }
 
 #ifdef __i386__
 #define	TRANSIENT_DENOM	5
 #else
 #define	TRANSIENT_DENOM 10
 #endif
 
 /*
  * Calculating buffer cache scaling values and reserve space for buffer
  * headers.  This is called during low level kernel initialization and
  * may be called more then once.  We CANNOT write to the memory area
  * being reserved at this time.
  */
 caddr_t
 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
 {
 	int tuned_nbuf;
 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
 
 	/*
 	 * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
 	 * this when sizing maps based on the amount of physical memory
 	 * available.
 	 */
 #if defined(KASAN)
 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
 	    (KASAN_SHADOW_SCALE + 1);
 #elif defined(KMSAN)
 	physmem_est /= 3;
 
 	/*
 	 * KMSAN cannot reliably determine whether buffer data is initialized
 	 * unless it is updated through a KVA mapping.
 	 */
 	unmapped_buf_allowed = 0;
 #endif
 
 	/*
 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
 	 * PAGE_SIZE is >= 1K)
 	 */
 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
 
 	maxbcachebuf_adjust();
 	/*
 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
 	 * For the first 64MB of ram nominally allocate sufficient buffers to
 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
 	 * the buffer cache we limit the eventual kva reservation to
 	 * maxbcache bytes.
 	 *
 	 * factor represents the 1/4 x ram conversion.
 	 */
 	if (nbuf == 0) {
 		int factor = 4 * BKVASIZE / 1024;
 
 		nbuf = 50;
 		if (physmem_est > 4096)
 			nbuf += min((physmem_est - 4096) / factor,
 			    65536 / factor);
 		if (physmem_est > 65536)
 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
 			    32 * 1024 * 1024 / (factor * 5));
 
 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
 			nbuf = maxbcache / BKVASIZE;
 		tuned_nbuf = 1;
 	} else
 		tuned_nbuf = 0;
 
 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
 	if (nbuf > maxbuf) {
 		if (!tuned_nbuf)
 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
 			    maxbuf);
 		nbuf = maxbuf;
 	}
 
 	/*
 	 * Ideal allocation size for the transient bio submap is 10%
 	 * of the maximal space buffer map.  This roughly corresponds
 	 * to the amount of the buffer mapped for typical UFS load.
 	 *
 	 * Clip the buffer map to reserve space for the transient
 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
 	 * maximum buffer map extent on the platform.
 	 *
 	 * The fall-back to the maxbuf in case of maxbcache unset,
 	 * allows to not trim the buffer KVA for the architectures
 	 * with ample KVA space.
 	 */
 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
 		buf_sz = (long)nbuf * BKVASIZE;
 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
 		    (TRANSIENT_DENOM - 1)) {
 			/*
 			 * There is more KVA than memory.  Do not
 			 * adjust buffer map size, and assign the rest
 			 * of maxbuf to transient map.
 			 */
 			biotmap_sz = maxbuf_sz - buf_sz;
 		} else {
 			/*
 			 * Buffer map spans all KVA we could afford on
 			 * this platform.  Give 10% (20% on i386) of
 			 * the buffer map to the transient bio map.
 			 */
 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
 			buf_sz -= biotmap_sz;
 		}
 		if (biotmap_sz / INT_MAX > maxphys)
 			bio_transient_maxcnt = INT_MAX;
 		else
 			bio_transient_maxcnt = biotmap_sz / maxphys;
 		/*
 		 * Artificially limit to 1024 simultaneous in-flight I/Os
 		 * using the transient mapping.
 		 */
 		if (bio_transient_maxcnt > 1024)
 			bio_transient_maxcnt = 1024;
 		if (tuned_nbuf)
 			nbuf = buf_sz / BKVASIZE;
 	}
 
 	if (nswbuf == 0) {
 		/*
 		 * Pager buffers are allocated for short periods, so scale the
 		 * number of reserved buffers based on the number of CPUs rather
 		 * than amount of memory.
 		 */
 		nswbuf = min(nbuf / 4, 32 * mp_ncpus);
 		if (nswbuf < NSWBUF_MIN)
 			nswbuf = NSWBUF_MIN;
 	}
 
 	/*
 	 * Reserve space for the buffer cache buffers
 	 */
 	buf = (char *)v;
 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
 	    atop(maxbcachebuf)) * nbuf;
 
 	return (v);
 }
 
 /*
  * Single global constant for BUF_WMESG, to avoid getting multiple
  * references.
  */
 static const char buf_wmesg[] = "bufwait";
 
 /* Initialize the buffer subsystem.  Called before use of any buffers. */
 void
 bufinit(void)
 {
 	struct buf *bp;
 	int i;
 
 	TSENTER();
 	KASSERT(maxbcachebuf >= MAXBSIZE,
 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
 	    MAXBSIZE));
 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
 
 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
 #ifdef INVARIANTS
 	poisoned_buf = unmapped_buf;
 #endif
 
 	/* finally, initialize each buffer header and stick on empty q */
 	for (i = 0; i < nbuf; i++) {
 		bp = nbufp(i);
 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
 		bp->b_flags = B_INVAL;
 		bp->b_rcred = NOCRED;
 		bp->b_wcred = NOCRED;
 		bp->b_qindex = QUEUE_NONE;
 		bp->b_domain = -1;
 		bp->b_subqueue = mp_maxid + 1;
 		bp->b_xflags = 0;
 		bp->b_data = bp->b_kvabase = unmapped_buf;
 		LIST_INIT(&bp->b_dep);
 		BUF_LOCKINIT(bp, buf_wmesg);
 		bq_insert(&bqempty, bp, false);
 	}
 
 	/*
 	 * maxbufspace is the absolute maximum amount of buffer space we are 
 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
 	 * is nominally used by metadata.  hibufspace is the nominal maximum
 	 * used by most other requests.  The differential is required to 
 	 * ensure that metadata deadlocks don't occur.
 	 *
 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
 	 * this may result in KVM fragmentation which is not handled optimally
 	 * by the system. XXX This is less true with vmem.  We could use
 	 * PAGE_SIZE.
 	 */
 	maxbufspace = (long)nbuf * BKVASIZE;
 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
 	lobufspace = (hibufspace / 20) * 19; /* 95% */
 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
 
 	/*
 	 * Note: The 16 MiB upper limit for hirunningspace was chosen
 	 * arbitrarily and may need further tuning. It corresponds to
 	 * 128 outstanding write IO requests (if IO size is 128 KiB),
 	 * which fits with many RAID controllers' tagged queuing limits.
 	 * The lower 1 MiB limit is the historical upper limit for
 	 * hirunningspace.
 	 */
 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
 	    16 * 1024 * 1024), 1024 * 1024);
 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
 
 	/*
 	 * Limit the amount of malloc memory since it is wired permanently into
 	 * the kernel space.  Even though this is accounted for in the buffer
 	 * allocation, we don't want the malloced region to grow uncontrolled.
 	 * The malloc scheme improves memory utilization significantly on
 	 * average (small) directories.
 	 */
 	maxbufmallocspace = hibufspace / 20;
 
 	/*
 	 * Reduce the chance of a deadlock occurring by limiting the number
 	 * of delayed-write dirty buffers we allow to stack up.
 	 */
 	hidirtybuffers = nbuf / 4 + 20;
 	dirtybufthresh = hidirtybuffers * 9 / 10;
 	/*
 	 * To support extreme low-memory systems, make sure hidirtybuffers
 	 * cannot eat up all available buffer space.  This occurs when our
 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
 	 * buffer space assuming BKVASIZE'd buffers.
 	 */
 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
 		hidirtybuffers >>= 1;
 	}
 	lodirtybuffers = hidirtybuffers / 2;
 
 	/*
 	 * lofreebuffers should be sufficient to avoid stalling waiting on
 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
 	 * are counted as free but will be unavailable to threads executing
 	 * on other cpus.
 	 *
 	 * hifreebuffers is the free target for the bufspace daemon.  This
 	 * should be set appropriately to limit work per-iteration.
 	 */
 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
 	hifreebuffers = (3 * lofreebuffers) / 2;
 	numfreebuffers = nbuf;
 
 	/* Setup the kva and free list allocators. */
 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
 	buf_zone = uma_zcache_create("buf free cache",
 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
 
 	/*
 	 * Size the clean queue according to the amount of buffer space.
 	 * One queue per-256mb up to the max.  More queues gives better
 	 * concurrency but less accurate LRU.
 	 */
 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
 	for (i = 0 ; i < buf_domains; i++) {
 		struct bufdomain *bd;
 
 		bd = &bdomain[i];
 		bd_init(bd);
 		bd->bd_freebuffers = nbuf / buf_domains;
 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
 		bd->bd_bufspace = 0;
 		bd->bd_maxbufspace = maxbufspace / buf_domains;
 		bd->bd_hibufspace = hibufspace / buf_domains;
 		bd->bd_lobufspace = lobufspace / buf_domains;
 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
 		bd->bd_numdirtybuffers = 0;
 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
 	}
 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
 	mappingrestarts = counter_u64_alloc(M_WAITOK);
 	numbufallocfails = counter_u64_alloc(M_WAITOK);
 	notbufdflushes = counter_u64_alloc(M_WAITOK);
 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
 	bufkvaspace = counter_u64_alloc(M_WAITOK);
 	TSEXIT();
 }
 
 #ifdef INVARIANTS
 static inline void
 vfs_buf_check_mapped(struct buf *bp)
 {
 
 	KASSERT(bp->b_kvabase != unmapped_buf,
 	    ("mapped buf: b_kvabase was not updated %p", bp));
 	KASSERT(bp->b_data != unmapped_buf,
 	    ("mapped buf: b_data was not updated %p", bp));
 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
 	    maxphys, ("b_data + b_offset unmapped %p", bp));
 }
 
 static inline void
 vfs_buf_check_unmapped(struct buf *bp)
 {
 
 	KASSERT(bp->b_data == unmapped_buf,
 	    ("unmapped buf: corrupted b_data %p", bp));
 }
 
 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
 #else
 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
 #endif
 
 static int
 isbufbusy(struct buf *bp)
 {
 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
 		return (1);
 	return (0);
 }
 
 /*
  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
  */
 void
 bufshutdown(int show_busybufs)
 {
 	static int first_buf_printf = 1;
 	struct buf *bp;
 	int i, iter, nbusy, pbusy;
 #ifndef PREEMPTION
 	int subiter;
 #endif
 
 	/*
 	 * Sync filesystems for shutdown
 	 */
 	wdog_kern_pat(WD_LASTVAL);
 	kern_sync(curthread);
 
 	/*
 	 * With soft updates, some buffers that are
 	 * written will be remarked as dirty until other
 	 * buffers are written.
 	 */
 	for (iter = pbusy = 0; iter < 20; iter++) {
 		nbusy = 0;
 		for (i = nbuf - 1; i >= 0; i--) {
 			bp = nbufp(i);
 			if (isbufbusy(bp))
 				nbusy++;
 		}
 		if (nbusy == 0) {
 			if (first_buf_printf)
 				printf("All buffers synced.");
 			break;
 		}
 		if (first_buf_printf) {
 			printf("Syncing disks, buffers remaining... ");
 			first_buf_printf = 0;
 		}
 		printf("%d ", nbusy);
 		if (nbusy < pbusy)
 			iter = 0;
 		pbusy = nbusy;
 
 		wdog_kern_pat(WD_LASTVAL);
 		kern_sync(curthread);
 
 #ifdef PREEMPTION
 		/*
 		 * Spin for a while to allow interrupt threads to run.
 		 */
 		DELAY(50000 * iter);
 #else
 		/*
 		 * Context switch several times to allow interrupt
 		 * threads to run.
 		 */
 		for (subiter = 0; subiter < 50 * iter; subiter++) {
 			sched_relinquish(curthread);
 			DELAY(1000);
 		}
 #endif
 	}
 	printf("\n");
 	/*
 	 * Count only busy local buffers to prevent forcing 
 	 * a fsck if we're just a client of a wedged NFS server
 	 */
 	nbusy = 0;
 	for (i = nbuf - 1; i >= 0; i--) {
 		bp = nbufp(i);
 		if (isbufbusy(bp)) {
 #if 0
 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
 			if (bp->b_dev == NULL) {
 				TAILQ_REMOVE(&mountlist,
 				    bp->b_vp->v_mount, mnt_list);
 				continue;
 			}
 #endif
 			nbusy++;
 			if (show_busybufs > 0) {
 				printf(
 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
 				    nbusy, bp, bp->b_vp, bp->b_flags,
 				    (intmax_t)bp->b_blkno,
 				    (intmax_t)bp->b_lblkno);
 				BUF_LOCKPRINTINFO(bp);
 				if (show_busybufs > 1)
 					vn_printf(bp->b_vp,
 					    "vnode content: ");
 			}
 		}
 	}
 	if (nbusy) {
 		/*
 		 * Failed to sync all blocks. Indicate this and don't
 		 * unmount filesystems (thus forcing an fsck on reboot).
 		 */
 		BOOTTRACE("shutdown failed to sync buffers");
 		printf("Giving up on %d buffers\n", nbusy);
 		DELAY(5000000);	/* 5 seconds */
 		swapoff_all();
 	} else {
 		BOOTTRACE("shutdown sync complete");
 		if (!first_buf_printf)
 			printf("Final sync complete\n");
 
 		/*
 		 * Unmount filesystems and perform swapoff, to quiesce
 		 * the system as much as possible.  In particular, no
 		 * I/O should be initiated from top levels since it
 		 * might be abruptly terminated by reset, or otherwise
 		 * erronously handled because other parts of the
 		 * system are disabled.
 		 *
 		 * Swapoff before unmount, because file-backed swap is
 		 * non-operational after unmount of the underlying
 		 * filesystem.
 		 */
 		if (!KERNEL_PANICKED()) {
 			swapoff_all();
 			vfs_unmountall();
 		}
 		BOOTTRACE("shutdown unmounted all filesystems");
 	}
 	DELAY(100000);		/* wait for console output to finish */
 }
 
 static void
 bpmap_qenter(struct buf *bp)
 {
 
 	BUF_CHECK_MAPPED(bp);
 
 	/*
 	 * bp->b_data is relative to bp->b_offset, but
 	 * bp->b_offset may be offset into the first page.
 	 */
 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
 }
 
 static inline struct bufdomain *
 bufdomain(struct buf *bp)
 {
 
 	return (&bdomain[bp->b_domain]);
 }
 
 static struct bufqueue *
 bufqueue(struct buf *bp)
 {
 
 	switch (bp->b_qindex) {
 	case QUEUE_NONE:
 		/* FALLTHROUGH */
 	case QUEUE_SENTINEL:
 		return (NULL);
 	case QUEUE_EMPTY:
 		return (&bqempty);
 	case QUEUE_DIRTY:
 		return (&bufdomain(bp)->bd_dirtyq);
 	case QUEUE_CLEAN:
 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
 	default:
 		break;
 	}
 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
 }
 
 /*
  * Return the locked bufqueue that bp is a member of.
  */
 static struct bufqueue *
 bufqueue_acquire(struct buf *bp)
 {
 	struct bufqueue *bq, *nbq;
 
 	/*
 	 * bp can be pushed from a per-cpu queue to the
 	 * cleanq while we're waiting on the lock.  Retry
 	 * if the queues don't match.
 	 */
 	bq = bufqueue(bp);
 	BQ_LOCK(bq);
 	for (;;) {
 		nbq = bufqueue(bp);
 		if (bq == nbq)
 			break;
 		BQ_UNLOCK(bq);
 		BQ_LOCK(nbq);
 		bq = nbq;
 	}
 	return (bq);
 }
 
 /*
  *	binsfree:
  *
  *	Insert the buffer into the appropriate free list.  Requires a
  *	locked buffer on entry and buffer is unlocked before return.
  */
 static void
 binsfree(struct buf *bp, int qindex)
 {
 	struct bufdomain *bd;
 	struct bufqueue *bq;
 
 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
 	    ("binsfree: Invalid qindex %d", qindex));
 	BUF_ASSERT_XLOCKED(bp);
 
 	/*
 	 * Handle delayed bremfree() processing.
 	 */
 	if (bp->b_flags & B_REMFREE) {
 		if (bp->b_qindex == qindex) {
 			bp->b_flags |= B_REUSE;
 			bp->b_flags &= ~B_REMFREE;
 			BUF_UNLOCK(bp);
 			return;
 		}
 		bq = bufqueue_acquire(bp);
 		bq_remove(bq, bp);
 		BQ_UNLOCK(bq);
 	}
 	bd = bufdomain(bp);
 	if (qindex == QUEUE_CLEAN) {
 		if (bd->bd_lim != 0)
 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
 		else
 			bq = bd->bd_cleanq;
 	} else
 		bq = &bd->bd_dirtyq;
 	bq_insert(bq, bp, true);
 }
 
 /*
  * buf_free:
  *
  *	Free a buffer to the buf zone once it no longer has valid contents.
  */
 static void
 buf_free(struct buf *bp)
 {
 
 	if (bp->b_flags & B_REMFREE)
 		bremfreef(bp);
 	if (bp->b_vflags & BV_BKGRDINPROG)
 		panic("losing buffer 1");
 	if (bp->b_rcred != NOCRED) {
 		crfree(bp->b_rcred);
 		bp->b_rcred = NOCRED;
 	}
 	if (bp->b_wcred != NOCRED) {
 		crfree(bp->b_wcred);
 		bp->b_wcred = NOCRED;
 	}
 	if (!LIST_EMPTY(&bp->b_dep))
 		buf_deallocate(bp);
 	bufkva_free(bp);
 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
 	BUF_UNLOCK(bp);
 	uma_zfree(buf_zone, bp);
 }
 
 /*
  * buf_import:
  *
  *	Import bufs into the uma cache from the buf list.  The system still
  *	expects a static array of bufs and much of the synchronization
  *	around bufs assumes type stable storage.  As a result, UMA is used
  *	only as a per-cpu cache of bufs still maintained on a global list.
  */
 static int
 buf_import(void *arg, void **store, int cnt, int domain, int flags)
 {
 	struct buf *bp;
 	int i;
 
 	BQ_LOCK(&bqempty);
 	for (i = 0; i < cnt; i++) {
 		bp = TAILQ_FIRST(&bqempty.bq_queue);
 		if (bp == NULL)
 			break;
 		bq_remove(&bqempty, bp);
 		store[i] = bp;
 	}
 	BQ_UNLOCK(&bqempty);
 
 	return (i);
 }
 
 /*
  * buf_release:
  *
  *	Release bufs from the uma cache back to the buffer queues.
  */
 static void
 buf_release(void *arg, void **store, int cnt)
 {
 	struct bufqueue *bq;
 	struct buf *bp;
         int i;
 
 	bq = &bqempty;
 	BQ_LOCK(bq);
         for (i = 0; i < cnt; i++) {
 		bp = store[i];
 		/* Inline bq_insert() to batch locking. */
 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 		bp->b_flags &= ~(B_AGE | B_REUSE);
 		bq->bq_len++;
 		bp->b_qindex = bq->bq_index;
 	}
 	BQ_UNLOCK(bq);
 }
 
 /*
  * buf_alloc:
  *
  *	Allocate an empty buffer header.
  */
 static struct buf *
 buf_alloc(struct bufdomain *bd)
 {
 	struct buf *bp;
 	int freebufs, error;
 
 	/*
 	 * We can only run out of bufs in the buf zone if the average buf
 	 * is less than BKVASIZE.  In this case the actual wait/block will
 	 * come from buf_reycle() failing to flush one of these small bufs.
 	 */
 	bp = NULL;
 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
 	if (freebufs > 0)
 		bp = uma_zalloc(buf_zone, M_NOWAIT);
 	if (bp == NULL) {
 		atomic_add_int(&bd->bd_freebuffers, 1);
 		bufspace_daemon_wakeup(bd);
 		counter_u64_add(numbufallocfails, 1);
 		return (NULL);
 	}
 	/*
 	 * Wake-up the bufspace daemon on transition below threshold.
 	 */
 	if (freebufs == bd->bd_lofreebuffers)
 		bufspace_daemon_wakeup(bd);
 
 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
 	    error));
 	(void)error;
 
 	KASSERT(bp->b_vp == NULL,
 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
 	KASSERT(bp->b_npages == 0,
 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
 
 	bp->b_domain = BD_DOMAIN(bd);
 	bp->b_flags = 0;
 	bp->b_ioflags = 0;
 	bp->b_xflags = 0;
 	bp->b_vflags = 0;
 	bp->b_vp = NULL;
 	bp->b_blkno = bp->b_lblkno = 0;
 	bp->b_offset = NOOFFSET;
 	bp->b_iodone = 0;
 	bp->b_error = 0;
 	bp->b_resid = 0;
 	bp->b_bcount = 0;
 	bp->b_npages = 0;
 	bp->b_dirtyoff = bp->b_dirtyend = 0;
 	bp->b_bufobj = NULL;
 	bp->b_data = bp->b_kvabase = unmapped_buf;
 	bp->b_fsprivate1 = NULL;
 	bp->b_fsprivate2 = NULL;
 	bp->b_fsprivate3 = NULL;
 	LIST_INIT(&bp->b_dep);
 
 	return (bp);
 }
 
 /*
  *	buf_recycle:
  *
  *	Free a buffer from the given bufqueue.  kva controls whether the
  *	freed buf must own some kva resources.  This is used for
  *	defragmenting.
  */
 static int
 buf_recycle(struct bufdomain *bd, bool kva)
 {
 	struct bufqueue *bq;
 	struct buf *bp, *nbp;
 
 	if (kva)
 		counter_u64_add(bufdefragcnt, 1);
 	nbp = NULL;
 	bq = bd->bd_cleanq;
 	BQ_LOCK(bq);
 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
 	    ("buf_recycle: Locks don't match"));
 	nbp = TAILQ_FIRST(&bq->bq_queue);
 
 	/*
 	 * Run scan, possibly freeing data and/or kva mappings on the fly
 	 * depending.
 	 */
 	while ((bp = nbp) != NULL) {
 		/*
 		 * Calculate next bp (we can only use it if we do not
 		 * release the bqlock).
 		 */
 		nbp = TAILQ_NEXT(bp, b_freelist);
 
 		/*
 		 * If we are defragging then we need a buffer with 
 		 * some kva to reclaim.
 		 */
 		if (kva && bp->b_kvasize == 0)
 			continue;
 
 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 			continue;
 
 		/*
 		 * Implement a second chance algorithm for frequently
 		 * accessed buffers.
 		 */
 		if ((bp->b_flags & B_REUSE) != 0) {
 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 			bp->b_flags &= ~B_REUSE;
 			BUF_UNLOCK(bp);
 			continue;
 		}
 
 		/*
 		 * Skip buffers with background writes in progress.
 		 */
 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
 			BUF_UNLOCK(bp);
 			continue;
 		}
 
 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
 		    ("buf_recycle: inconsistent queue %d bp %p",
 		    bp->b_qindex, bp));
 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
 		    ("getnewbuf: queue domain %d doesn't match request %d",
 		    bp->b_domain, (int)BD_DOMAIN(bd)));
 		/*
 		 * NOTE:  nbp is now entirely invalid.  We can only restart
 		 * the scan from this point on.
 		 */
 		bq_remove(bq, bp);
 		BQ_UNLOCK(bq);
 
 		/*
 		 * Requeue the background write buffer with error and
 		 * restart the scan.
 		 */
 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
 			bqrelse(bp);
 			BQ_LOCK(bq);
 			nbp = TAILQ_FIRST(&bq->bq_queue);
 			continue;
 		}
 		bp->b_flags |= B_INVAL;
 		brelse(bp);
 		return (0);
 	}
 	bd->bd_wanted = 1;
 	BQ_UNLOCK(bq);
 
 	return (ENOBUFS);
 }
 
 /*
  *	bremfree:
  *
  *	Mark the buffer for removal from the appropriate free list.
  *
  */
 void
 bremfree(struct buf *bp)
 {
 
 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 	KASSERT((bp->b_flags & B_REMFREE) == 0,
 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
 	KASSERT(bp->b_qindex != QUEUE_NONE,
 	    ("bremfree: buffer %p not on a queue.", bp));
 	BUF_ASSERT_XLOCKED(bp);
 
 	bp->b_flags |= B_REMFREE;
 }
 
 /*
  *	bremfreef:
  *
  *	Force an immediate removal from a free list.  Used only in nfs when
  *	it abuses the b_freelist pointer.
  */
 void
 bremfreef(struct buf *bp)
 {
 	struct bufqueue *bq;
 
 	bq = bufqueue_acquire(bp);
 	bq_remove(bq, bp);
 	BQ_UNLOCK(bq);
 }
 
 static void
 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
 {
 
 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
 	TAILQ_INIT(&bq->bq_queue);
 	bq->bq_len = 0;
 	bq->bq_index = qindex;
 	bq->bq_subqueue = subqueue;
 }
 
 static void
 bd_init(struct bufdomain *bd)
 {
 	int i;
 
 	/* Per-CPU clean buf queues, plus one global queue. */
 	bd->bd_subq = mallocarray(mp_maxid + 2, sizeof(struct bufqueue),
 	    M_BIOBUF, M_WAITOK | M_ZERO);
 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
 	for (i = 0; i <= mp_maxid; i++)
 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
 		    "bufq clean subqueue lock");
 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
 }
 
 /*
  *	bq_remove:
  *
  *	Removes a buffer from the free list, must be called with the
  *	correct qlock held.
  */
 static void
 bq_remove(struct bufqueue *bq, struct buf *bp)
 {
 
 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
 	    bp, bp->b_vp, bp->b_flags);
 	KASSERT(bp->b_qindex != QUEUE_NONE,
 	    ("bq_remove: buffer %p not on a queue.", bp));
 	KASSERT(bufqueue(bp) == bq,
 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
 
 	BQ_ASSERT_LOCKED(bq);
 	if (bp->b_qindex != QUEUE_EMPTY) {
 		BUF_ASSERT_XLOCKED(bp);
 	}
 	KASSERT(bq->bq_len >= 1,
 	    ("queue %d underflow", bp->b_qindex));
 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 	bq->bq_len--;
 	bp->b_qindex = QUEUE_NONE;
 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
 }
 
 static void
 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
 {
 	struct buf *bp;
 
 	BQ_ASSERT_LOCKED(bq);
 	if (bq != bd->bd_cleanq) {
 		BD_LOCK(bd);
 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
 			    b_freelist);
 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
 		}
 		bd->bd_cleanq->bq_len += bq->bq_len;
 		bq->bq_len = 0;
 	}
 	if (bd->bd_wanted) {
 		bd->bd_wanted = 0;
 		wakeup(&bd->bd_wanted);
 	}
 	if (bq != bd->bd_cleanq)
 		BD_UNLOCK(bd);
 }
 
 static int
 bd_flushall(struct bufdomain *bd)
 {
 	struct bufqueue *bq;
 	int flushed;
 	int i;
 
 	if (bd->bd_lim == 0)
 		return (0);
 	flushed = 0;
 	for (i = 0; i <= mp_maxid; i++) {
 		bq = &bd->bd_subq[i];
 		if (bq->bq_len == 0)
 			continue;
 		BQ_LOCK(bq);
 		bd_flush(bd, bq);
 		BQ_UNLOCK(bq);
 		flushed++;
 	}
 
 	return (flushed);
 }
 
 static void
 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
 {
 	struct bufdomain *bd;
 
 	if (bp->b_qindex != QUEUE_NONE)
 		panic("bq_insert: free buffer %p onto another queue?", bp);
 
 	bd = bufdomain(bp);
 	if (bp->b_flags & B_AGE) {
 		/* Place this buf directly on the real queue. */
 		if (bq->bq_index == QUEUE_CLEAN)
 			bq = bd->bd_cleanq;
 		BQ_LOCK(bq);
 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
 	} else {
 		BQ_LOCK(bq);
 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
 	}
 	bp->b_flags &= ~(B_AGE | B_REUSE);
 	bq->bq_len++;
 	bp->b_qindex = bq->bq_index;
 	bp->b_subqueue = bq->bq_subqueue;
 
 	/*
 	 * Unlock before we notify so that we don't wakeup a waiter that
 	 * fails a trylock on the buf and sleeps again.
 	 */
 	if (unlock)
 		BUF_UNLOCK(bp);
 
 	if (bp->b_qindex == QUEUE_CLEAN) {
 		/*
 		 * Flush the per-cpu queue and notify any waiters.
 		 */
 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
 		    bq->bq_len >= bd->bd_lim))
 			bd_flush(bd, bq);
 	}
 	BQ_UNLOCK(bq);
 }
 
 /*
  *	bufkva_free:
  *
  *	Free the kva allocation for a buffer.
  *
  */
 static void
 bufkva_free(struct buf *bp)
 {
 
 #ifdef INVARIANTS
 	if (bp->b_kvasize == 0) {
 		KASSERT(bp->b_kvabase == unmapped_buf &&
 		    bp->b_data == unmapped_buf,
 		    ("Leaked KVA space on %p", bp));
 	} else if (buf_mapped(bp))
 		BUF_CHECK_MAPPED(bp);
 	else
 		BUF_CHECK_UNMAPPED(bp);
 #endif
 	if (bp->b_kvasize == 0)
 		return;
 
 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
 	counter_u64_add(buffreekvacnt, 1);
 	bp->b_data = bp->b_kvabase = unmapped_buf;
 	bp->b_kvasize = 0;
 }
 
 /*
  *	bufkva_alloc:
  *
  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
  */
 static int
 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
 {
 	vm_offset_t addr;
 	int error;
 
 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
 	KASSERT(maxsize <= maxbcachebuf,
 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
 
 	bufkva_free(bp);
 
 	addr = 0;
 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
 	if (error != 0) {
 		/*
 		 * Buffer map is too fragmented.  Request the caller
 		 * to defragment the map.
 		 */
 		return (error);
 	}
 	bp->b_kvabase = (caddr_t)addr;
 	bp->b_kvasize = maxsize;
 	counter_u64_add(bufkvaspace, bp->b_kvasize);
 	if ((gbflags & GB_UNMAPPED) != 0) {
 		bp->b_data = unmapped_buf;
 		BUF_CHECK_UNMAPPED(bp);
 	} else {
 		bp->b_data = bp->b_kvabase;
 		BUF_CHECK_MAPPED(bp);
 	}
 	return (0);
 }
 
 /*
  *	bufkva_reclaim:
  *
  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
  *	callback that fires to avoid returning failure.
  */
 static void
 bufkva_reclaim(vmem_t *vmem, int flags)
 {
 	bool done;
 	int q;
 	int i;
 
 	done = false;
 	for (i = 0; i < 5; i++) {
 		for (q = 0; q < buf_domains; q++)
 			if (buf_recycle(&bdomain[q], true) != 0)
 				done = true;
 		if (done)
 			break;
 	}
 	return;
 }
 
 /*
  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
  * the buffer is valid and we do not have to do anything.
  */
 static void
 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
 {
 	struct buf *rabp;
 	struct thread *td;
 	int i;
 
 	td = curthread;
 
 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
 		if (inmem(vp, *rablkno))
 			continue;
 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
 		if ((rabp->b_flags & B_CACHE) != 0) {
 			brelse(rabp);
 			continue;
 		}
 #ifdef RACCT
 		if (racct_enable) {
 			PROC_LOCK(curproc);
 			racct_add_buf(curproc, rabp, 0);
 			PROC_UNLOCK(curproc);
 		}
 #endif /* RACCT */
 		td->td_ru.ru_inblock++;
 		rabp->b_flags |= B_ASYNC;
 		rabp->b_flags &= ~B_INVAL;
 		if ((flags & GB_CKHASH) != 0) {
 			rabp->b_flags |= B_CKHASH;
 			rabp->b_ckhashcalc = ckhashfunc;
 		}
 		rabp->b_ioflags &= ~BIO_ERROR;
 		rabp->b_iocmd = BIO_READ;
 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
 			rabp->b_rcred = crhold(cred);
 		vfs_busy_pages(rabp, 0);
 		BUF_KERNPROC(rabp);
 		rabp->b_iooffset = dbtob(rabp->b_blkno);
 		bstrategy(rabp);
 	}
 }
 
 /*
  * Entry point for bread() and breadn() via #defines in sys/buf.h.
  *
  * Get a buffer with the specified data.  Look in the cache first.  We
  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
  * is set, the buffer is valid and we do not have to do anything, see
  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
  *
  * Always return a NULL buffer pointer (in bpp) when returning an error.
  *
  * The blkno parameter is the logical block being requested. Normally
  * the mapping of logical block number to disk block address is done
  * by calling VOP_BMAP(). However, if the mapping is already known, the
  * disk block address can be passed using the dblkno parameter. If the
  * disk block address is not known, then the same value should be passed
  * for blkno and dblkno.
  */
 int
 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
     void (*ckhashfunc)(struct buf *), struct buf **bpp)
 {
 	struct buf *bp;
 	struct thread *td;
 	int error, readwait, rv;
 
 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
 	td = curthread;
 	/*
 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
 	 * are specified.
 	 */
 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
 	if (error != 0) {
 		*bpp = NULL;
 		return (error);
 	}
 	KASSERT(blkno == bp->b_lblkno,
 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
 	flags &= ~GB_NOSPARSE;
 	*bpp = bp;
 
 	/*
 	 * If not found in cache, do some I/O
 	 */
 	readwait = 0;
 	if ((bp->b_flags & B_CACHE) == 0) {
 #ifdef RACCT
 		if (racct_enable) {
 			PROC_LOCK(td->td_proc);
 			racct_add_buf(td->td_proc, bp, 0);
 			PROC_UNLOCK(td->td_proc);
 		}
 #endif /* RACCT */
 		td->td_ru.ru_inblock++;
 		bp->b_iocmd = BIO_READ;
 		bp->b_flags &= ~B_INVAL;
 		if ((flags & GB_CKHASH) != 0) {
 			bp->b_flags |= B_CKHASH;
 			bp->b_ckhashcalc = ckhashfunc;
 		}
 		if ((flags & GB_CVTENXIO) != 0)
 			bp->b_xflags |= BX_CVTENXIO;
 		bp->b_ioflags &= ~BIO_ERROR;
 		if (bp->b_rcred == NOCRED && cred != NOCRED)
 			bp->b_rcred = crhold(cred);
 		vfs_busy_pages(bp, 0);
 		bp->b_iooffset = dbtob(bp->b_blkno);
 		bstrategy(bp);
 		++readwait;
 	}
 
 	/*
 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
 	 */
 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
 
 	rv = 0;
 	if (readwait) {
 		rv = bufwait(bp);
 		if (rv != 0) {
 			brelse(bp);
 			*bpp = NULL;
 		}
 	}
 	return (rv);
 }
 
 /*
  * Write, release buffer on completion.  (Done by iodone
  * if async).  Do not bother writing anything if the buffer
  * is invalid.
  *
  * Note that we set B_CACHE here, indicating that buffer is
  * fully valid and thus cacheable.  This is true even of NFS
  * now so we set it generally.  This could be set either here 
  * or in biodone() since the I/O is synchronous.  We put it
  * here.
  */
 int
 bufwrite(struct buf *bp)
 {
-	int oldflags;
 	struct vnode *vp;
 	long space;
-	int vp_md;
+	int oldflags, retval;
+	bool vp_md;
 
 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
 		bp->b_flags |= B_INVAL | B_RELBUF;
 		bp->b_flags &= ~B_CACHE;
 		brelse(bp);
 		return (ENXIO);
 	}
-	if (bp->b_flags & B_INVAL) {
+	if ((bp->b_flags & B_INVAL) != 0) {
 		brelse(bp);
 		return (0);
 	}
 
-	if (bp->b_flags & B_BARRIER)
+	if ((bp->b_flags & B_BARRIER) != 0)
 		atomic_add_long(&barrierwrites, 1);
 
 	oldflags = bp->b_flags;
 
-	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
+	KASSERT((bp->b_vflags & BV_BKGRDINPROG) == 0,
 	    ("FFS background buffer should not get here %p", bp));
 
 	vp = bp->b_vp;
-	if (vp)
-		vp_md = vp->v_vflag & VV_MD;
-	else
-		vp_md = 0;
+	vp_md = vp != NULL && (vp->v_vflag & VV_MD) != 0;
 
 	/*
 	 * Mark the buffer clean.  Increment the bufobj write count
 	 * before bundirty() call, to prevent other thread from seeing
 	 * empty dirty list and zero counter for writes in progress,
 	 * falsely indicating that the bufobj is clean.
 	 */
 	bufobj_wref(bp->b_bufobj);
 	bundirty(bp);
 
 	bp->b_flags &= ~B_DONE;
 	bp->b_ioflags &= ~BIO_ERROR;
 	bp->b_flags |= B_CACHE;
 	bp->b_iocmd = BIO_WRITE;
 
 	vfs_busy_pages(bp, 1);
 
 	/*
 	 * Normal bwrites pipeline writes
 	 */
 	bp->b_runningbufspace = bp->b_bufsize;
 	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
 
 #ifdef RACCT
 	if (racct_enable) {
 		PROC_LOCK(curproc);
 		racct_add_buf(curproc, bp, 1);
 		PROC_UNLOCK(curproc);
 	}
 #endif /* RACCT */
 	curthread->td_ru.ru_oublock++;
-	if (oldflags & B_ASYNC)
+	if ((oldflags & B_ASYNC) != 0)
 		BUF_KERNPROC(bp);
 	bp->b_iooffset = dbtob(bp->b_blkno);
 	buf_track(bp, __func__);
 	bstrategy(bp);
 
 	if ((oldflags & B_ASYNC) == 0) {
-		int rtval = bufwait(bp);
+		retval = bufwait(bp);
 		brelse(bp);
-		return (rtval);
+		return (retval);
 	} else if (space > hirunningspace) {
 		/*
-		 * don't allow the async write to saturate the I/O
+		 * Don't allow the async write to saturate the I/O
 		 * system.  We will not deadlock here because
 		 * we are blocking waiting for I/O that is already in-progress
 		 * to complete. We do not block here if it is the update
 		 * or syncer daemon trying to clean up as that can lead
 		 * to deadlock.
 		 */
 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
 			waitrunningbufspace();
 	}
 
 	return (0);
 }
 
 void
 bufbdflush(struct bufobj *bo, struct buf *bp)
 {
 	struct buf *nbp;
 	struct bufdomain *bd;
 
 	bd = &bdomain[bo->bo_domain];
 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
 		altbufferflushes++;
 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
 		BO_LOCK(bo);
 		/*
 		 * Try to find a buffer to flush.
 		 */
 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
 			    BUF_LOCK(nbp,
 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
 				continue;
 			if (bp == nbp)
 				panic("bdwrite: found ourselves");
 			BO_UNLOCK(bo);
 			/* Don't countdeps with the bo lock held. */
 			if (buf_countdeps(nbp, 0)) {
 				BO_LOCK(bo);
 				BUF_UNLOCK(nbp);
 				continue;
 			}
 			if (nbp->b_flags & B_CLUSTEROK) {
 				vfs_bio_awrite(nbp);
 			} else {
 				bremfree(nbp);
 				bawrite(nbp);
 			}
 			dirtybufferflushes++;
 			break;
 		}
 		if (nbp == NULL)
 			BO_UNLOCK(bo);
 	}
 }
 
 /*
  * Delayed write. (Buffer is marked dirty).  Do not bother writing
  * anything if the buffer is marked invalid.
  *
  * Note that since the buffer must be completely valid, we can safely
  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
  * biodone() in order to prevent getblk from writing the buffer
  * out synchronously.
  */
 void
 bdwrite(struct buf *bp)
 {
 	struct thread *td = curthread;
 	struct vnode *vp;
 	struct bufobj *bo;
 
 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 	KASSERT((bp->b_flags & B_BARRIER) == 0,
 	    ("Barrier request in delayed write %p", bp));
 
 	if (bp->b_flags & B_INVAL) {
 		brelse(bp);
 		return;
 	}
 
 	/*
 	 * If we have too many dirty buffers, don't create any more.
 	 * If we are wildly over our limit, then force a complete
 	 * cleanup. Otherwise, just keep the situation from getting
 	 * out of control. Note that we have to avoid a recursive
 	 * disaster and not try to clean up after our own cleanup!
 	 */
 	vp = bp->b_vp;
 	bo = bp->b_bufobj;
 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
 		td->td_pflags |= TDP_INBDFLUSH;
 		BO_BDFLUSH(bo, bp);
 		td->td_pflags &= ~TDP_INBDFLUSH;
 	} else
 		recursiveflushes++;
 
 	bdirty(bp);
 	/*
 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
 	 * true even of NFS now.
 	 */
 	bp->b_flags |= B_CACHE;
 
 	/*
 	 * This bmap keeps the system from needing to do the bmap later,
 	 * perhaps when the system is attempting to do a sync.  Since it
 	 * is likely that the indirect block -- or whatever other datastructure
 	 * that the filesystem needs is still in memory now, it is a good
 	 * thing to do this.  Note also, that if the pageout daemon is
 	 * requesting a sync -- there might not be enough memory to do
 	 * the bmap then...  So, this is important to do.
 	 */
 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
 	}
 
 	buf_track(bp, __func__);
 
 	/*
 	 * Set the *dirty* buffer range based upon the VM system dirty
 	 * pages.
 	 *
 	 * Mark the buffer pages as clean.  We need to do this here to
 	 * satisfy the vnode_pager and the pageout daemon, so that it
 	 * thinks that the pages have been "cleaned".  Note that since
 	 * the pages are in a delayed write buffer -- the VFS layer
 	 * "will" see that the pages get written out on the next sync,
 	 * or perhaps the cluster will be completed.
 	 */
 	vfs_clean_pages_dirty_buf(bp);
 	bqrelse(bp);
 
 	/*
 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
 	 * due to the softdep code.
 	 */
 }
 
 /*
  *	bdirty:
  *
  *	Turn buffer into delayed write request.  We must clear BIO_READ and
  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to 
  *	itself to properly update it in the dirty/clean lists.  We mark it
  *	B_DONE to ensure that any asynchronization of the buffer properly
  *	clears B_DONE ( else a panic will occur later ).  
  *
  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
  *	should only be called if the buffer is known-good.
  *
  *	Since the buffer is not on a queue, we do not update the numfreebuffers
  *	count.
  *
  *	The buffer must be on QUEUE_NONE.
  */
 void
 bdirty(struct buf *bp)
 {
 
 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
 	    bp, bp->b_vp, bp->b_flags);
 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
 	bp->b_flags &= ~(B_RELBUF);
 	bp->b_iocmd = BIO_WRITE;
 
 	if ((bp->b_flags & B_DELWRI) == 0) {
 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
 		reassignbuf(bp);
 		bdirtyadd(bp);
 	}
 }
 
 /*
  *	bundirty:
  *
  *	Clear B_DELWRI for buffer.
  *
  *	Since the buffer is not on a queue, we do not update the numfreebuffers
  *	count.
  *
  *	The buffer must be on QUEUE_NONE.
  */
 
 void
 bundirty(struct buf *bp)
 {
 
 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
 
 	if (bp->b_flags & B_DELWRI) {
 		bp->b_flags &= ~B_DELWRI;
 		reassignbuf(bp);
 		bdirtysub(bp);
 	}
 	/*
 	 * Since it is now being written, we can clear its deferred write flag.
 	 */
 	bp->b_flags &= ~B_DEFERRED;
 }
 
 /*
  *	bawrite:
  *
  *	Asynchronous write.  Start output on a buffer, but do not wait for
  *	it to complete.  The buffer is released when the output completes.
  *
  *	bwrite() ( or the VOP routine anyway ) is responsible for handling 
  *	B_INVAL buffers.  Not us.
  */
 void
 bawrite(struct buf *bp)
 {
 
 	bp->b_flags |= B_ASYNC;
 	(void) bwrite(bp);
 }
 
 /*
  *	babarrierwrite:
  *
  *	Asynchronous barrier write.  Start output on a buffer, but do not
  *	wait for it to complete.  Place a write barrier after this write so
  *	that this buffer and all buffers written before it are committed to
  *	the disk before any buffers written after this write are committed
  *	to the disk.  The buffer is released when the output completes.
  */
 void
 babarrierwrite(struct buf *bp)
 {
 
 	bp->b_flags |= B_ASYNC | B_BARRIER;
 	(void) bwrite(bp);
 }
 
 /*
  *	bbarrierwrite:
  *
  *	Synchronous barrier write.  Start output on a buffer and wait for
  *	it to complete.  Place a write barrier after this write so that
  *	this buffer and all buffers written before it are committed to 
  *	the disk before any buffers written after this write are committed
  *	to the disk.  The buffer is released when the output completes.
  */
 int
 bbarrierwrite(struct buf *bp)
 {
 
 	bp->b_flags |= B_BARRIER;
 	return (bwrite(bp));
 }
 
 /*
  *	bwillwrite:
  *
  *	Called prior to the locking of any vnodes when we are expecting to
  *	write.  We do not want to starve the buffer cache with too many
  *	dirty buffers so we block here.  By blocking prior to the locking
  *	of any vnodes we attempt to avoid the situation where a locked vnode
  *	prevents the various system daemons from flushing related buffers.
  */
 void
 bwillwrite(void)
 {
 
 	if (buf_dirty_count_severe()) {
 		mtx_lock(&bdirtylock);
 		while (buf_dirty_count_severe()) {
 			bdirtywait = 1;
 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
 			    "flswai", 0);
 		}
 		mtx_unlock(&bdirtylock);
 	}
 }
 
 /*
  * Return true if we have too many dirty buffers.
  */
 int
 buf_dirty_count_severe(void)
 {
 
 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
 }
 
 /*
  *	brelse:
  *
  *	Release a busy buffer and, if requested, free its resources.  The
  *	buffer will be stashed in the appropriate bufqueue[] allowing it
  *	to be accessed later as a cache entity or reused for other purposes.
  */
 void
 brelse(struct buf *bp)
 {
 	struct mount *v_mnt;
 	int qindex;
 
 	/*
 	 * Many functions erroneously call brelse with a NULL bp under rare
 	 * error conditions. Simply return when called with a NULL bp.
 	 */
 	if (bp == NULL)
 		return;
 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
 	    bp, bp->b_vp, bp->b_flags);
 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
 	    ("brelse: non-VMIO buffer marked NOREUSE"));
 
 	if (BUF_LOCKRECURSED(bp)) {
 		/*
 		 * Do not process, in particular, do not handle the
 		 * B_INVAL/B_RELBUF and do not release to free list.
 		 */
 		BUF_UNLOCK(bp);
 		return;
 	}
 
 	if (bp->b_flags & B_MANAGED) {
 		bqrelse(bp);
 		return;
 	}
 
 	if (LIST_EMPTY(&bp->b_dep)) {
 		bp->b_flags &= ~B_IOSTARTED;
 	} else {
 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
 		    ("brelse: SU io not finished bp %p", bp));
 	}
 
 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
 		BO_LOCK(bp->b_bufobj);
 		bp->b_vflags &= ~BV_BKGRDERR;
 		BO_UNLOCK(bp->b_bufobj);
 		bdirty(bp);
 	}
 
 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 	    (bp->b_flags & B_INVALONERR)) {
 		/*
 		 * Forced invalidation of dirty buffer contents, to be used
 		 * after a failed write in the rare case that the loss of the
 		 * contents is acceptable.  The buffer is invalidated and
 		 * freed.
 		 */
 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
 	}
 
 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
 	    !(bp->b_flags & B_INVAL)) {
 		/*
 		 * Failed write, redirty.  All errors except ENXIO (which
 		 * means the device is gone) are treated as being
 		 * transient.
 		 *
 		 * XXX Treating EIO as transient is not correct; the
 		 * contract with the local storage device drivers is that
 		 * they will only return EIO once the I/O is no longer
 		 * retriable.  Network I/O also respects this through the
 		 * guarantees of TCP and/or the internal retries of NFS.
 		 * ENOMEM might be transient, but we also have no way of
 		 * knowing when its ok to retry/reschedule.  In general,
 		 * this entire case should be made obsolete through better
 		 * error handling/recovery and resource scheduling.
 		 *
 		 * Do this also for buffers that failed with ENXIO, but have
 		 * non-empty dependencies - the soft updates code might need
 		 * to access the buffer to untangle them.
 		 *
 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
 		 */
 		bp->b_ioflags &= ~BIO_ERROR;
 		bdirty(bp);
 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
 		/*
 		 * Either a failed read I/O, or we were asked to free or not
 		 * cache the buffer, or we failed to write to a device that's
 		 * no longer present.
 		 */
 		bp->b_flags |= B_INVAL;
 		if (!LIST_EMPTY(&bp->b_dep))
 			buf_deallocate(bp);
 		if (bp->b_flags & B_DELWRI)
 			bdirtysub(bp);
 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
 		if ((bp->b_flags & B_VMIO) == 0) {
 			allocbuf(bp, 0);
 			if (bp->b_vp)
 				brelvp(bp);
 		}
 	}
 
 	/*
 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate() 
 	 * is called with B_DELWRI set, the underlying pages may wind up
 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
 	 * because pages associated with a B_DELWRI bp are marked clean.
 	 * 
 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
 	 * if B_DELWRI is set.
 	 */
 	if (bp->b_flags & B_DELWRI)
 		bp->b_flags &= ~B_RELBUF;
 
 	/*
 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
 	 *
 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
 	 *
 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
 	 * the commit state and we cannot afford to lose the buffer. If the
 	 * buffer has a background write in progress, we need to keep it
 	 * around to prevent it from being reconstituted and starting a second
 	 * background write.
 	 */
 
 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
 
 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
 		vfs_vmio_invalidate(bp);
 		allocbuf(bp, 0);
 	}
 
 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
 		allocbuf(bp, 0);
 		bp->b_flags &= ~B_NOREUSE;
 		if (bp->b_vp != NULL)
 			brelvp(bp);
 	}
 
 	/*
 	 * If the buffer has junk contents signal it and eventually
 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
 	 * doesn't find it.
 	 */
 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
 		bp->b_flags |= B_INVAL;
 	if (bp->b_flags & B_INVAL) {
 		if (bp->b_flags & B_DELWRI)
 			bundirty(bp);
 		if (bp->b_vp)
 			brelvp(bp);
 	}
 
 	buf_track(bp, __func__);
 
 	/* buffers with no memory */
 	if (bp->b_bufsize == 0) {
 		buf_free(bp);
 		return;
 	}
 	/* buffers with junk contents */
 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
 	    (bp->b_ioflags & BIO_ERROR)) {
 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
 		if (bp->b_vflags & BV_BKGRDINPROG)
 			panic("losing buffer 2");
 		qindex = QUEUE_CLEAN;
 		bp->b_flags |= B_AGE;
 	/* remaining buffers */
 	} else if (bp->b_flags & B_DELWRI)
 		qindex = QUEUE_DIRTY;
 	else
 		qindex = QUEUE_CLEAN;
 
 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
 		panic("brelse: not dirty");
 
 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
 	bp->b_xflags &= ~(BX_CVTENXIO);
 	/* binsfree unlocks bp. */
 	binsfree(bp, qindex);
 }
 
 /*
  * Release a buffer back to the appropriate queue but do not try to free
  * it.  The buffer is expected to be used again soon.
  *
  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
  * biodone() to requeue an async I/O on completion.  It is also used when
  * known good buffers need to be requeued but we think we may need the data
  * again soon.
  *
  * XXX we should be able to leave the B_RELBUF hint set on completion.
  */
 void
 bqrelse(struct buf *bp)
 {
 	int qindex;
 
 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
 
 	qindex = QUEUE_NONE;
 	if (BUF_LOCKRECURSED(bp)) {
 		/* do not release to free list */
 		BUF_UNLOCK(bp);
 		return;
 	}
 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
 	bp->b_xflags &= ~(BX_CVTENXIO);
 
 	if (LIST_EMPTY(&bp->b_dep)) {
 		bp->b_flags &= ~B_IOSTARTED;
 	} else {
 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
 		    ("bqrelse: SU io not finished bp %p", bp));
 	}
 
 	if (bp->b_flags & B_MANAGED) {
 		if (bp->b_flags & B_REMFREE)
 			bremfreef(bp);
 		goto out;
 	}
 
 	/* buffers with stale but valid contents */
 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
 	    BV_BKGRDERR)) == BV_BKGRDERR) {
 		BO_LOCK(bp->b_bufobj);
 		bp->b_vflags &= ~BV_BKGRDERR;
 		BO_UNLOCK(bp->b_bufobj);
 		qindex = QUEUE_DIRTY;
 	} else {
 		if ((bp->b_flags & B_DELWRI) == 0 &&
 		    (bp->b_xflags & BX_VNDIRTY))
 			panic("bqrelse: not dirty");
 		if ((bp->b_flags & B_NOREUSE) != 0) {
 			brelse(bp);
 			return;
 		}
 		qindex = QUEUE_CLEAN;
 	}
 	buf_track(bp, __func__);
 	/* binsfree unlocks bp. */
 	binsfree(bp, qindex);
 	return;
 
 out:
 	buf_track(bp, __func__);
 	/* unlock */
 	BUF_UNLOCK(bp);
 }
 
 /*
  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
  * restore bogus pages.
  */
 static void
 vfs_vmio_iodone(struct buf *bp)
 {
 	vm_ooffset_t foff;
 	vm_page_t m;
 	vm_object_t obj;
 	struct vnode *vp __unused;
 	int i, iosize, resid;
 	bool bogus;
 
 	obj = bp->b_bufobj->bo_object;
 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
 
 	vp = bp->b_vp;
 	VNPASS(vp->v_holdcnt > 0, vp);
 	VNPASS(vp->v_object != NULL, vp);
 
 	foff = bp->b_offset;
 	KASSERT(bp->b_offset != NOOFFSET,
 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
 
 	bogus = false;
 	iosize = bp->b_bcount - bp->b_resid;
 	for (i = 0; i < bp->b_npages; i++) {
 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
 		if (resid > iosize)
 			resid = iosize;
 
 		/*
 		 * cleanup bogus pages, restoring the originals
 		 */
 		m = bp->b_pages[i];
 		if (m == bogus_page) {
 			bogus = true;
 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
 			if (m == NULL)
 				panic("biodone: page disappeared!");
 			bp->b_pages[i] = m;
 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
 			/*
 			 * In the write case, the valid and clean bits are
 			 * already changed correctly ( see bdwrite() ), so we 
 			 * only need to do this here in the read case.
 			 */
 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
 			    "has unexpected dirty bits", m));
 			vfs_page_set_valid(bp, foff, m);
 		}
 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
 		    (intmax_t)foff, (uintmax_t)m->pindex));
 
 		vm_page_sunbusy(m);
 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 		iosize -= resid;
 	}
 	vm_object_pip_wakeupn(obj, bp->b_npages);
 	if (bogus && buf_mapped(bp)) {
 		BUF_CHECK_MAPPED(bp);
 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 		    bp->b_pages, bp->b_npages);
 	}
 }
 
 /*
  * Perform page invalidation when a buffer is released.  The fully invalid
  * pages will be reclaimed later in vfs_vmio_truncate().
  */
 static void
 vfs_vmio_invalidate(struct buf *bp)
 {
 	vm_object_t obj;
 	vm_page_t m;
 	int flags, i, resid, poffset, presid;
 
 	if (buf_mapped(bp)) {
 		BUF_CHECK_MAPPED(bp);
 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
 	} else
 		BUF_CHECK_UNMAPPED(bp);
 	/*
 	 * Get the base offset and length of the buffer.  Note that 
 	 * in the VMIO case if the buffer block size is not
 	 * page-aligned then b_data pointer may not be page-aligned.
 	 * But our b_pages[] array *IS* page aligned.
 	 *
 	 * block sizes less then DEV_BSIZE (usually 512) are not 
 	 * supported due to the page granularity bits (m->valid,
 	 * m->dirty, etc...). 
 	 *
 	 * See man buf(9) for more information
 	 */
 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
 	obj = bp->b_bufobj->bo_object;
 	resid = bp->b_bufsize;
 	poffset = bp->b_offset & PAGE_MASK;
 	VM_OBJECT_WLOCK(obj);
 	for (i = 0; i < bp->b_npages; i++) {
 		m = bp->b_pages[i];
 		if (m == bogus_page)
 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
 		bp->b_pages[i] = NULL;
 
 		presid = resid > (PAGE_SIZE - poffset) ?
 		    (PAGE_SIZE - poffset) : resid;
 		KASSERT(presid >= 0, ("brelse: extra page"));
 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
 		if (pmap_page_wired_mappings(m) == 0)
 			vm_page_set_invalid(m, poffset, presid);
 		vm_page_sunbusy(m);
 		vm_page_release_locked(m, flags);
 		resid -= presid;
 		poffset = 0;
 	}
 	VM_OBJECT_WUNLOCK(obj);
 	bp->b_npages = 0;
 }
 
 /*
  * Page-granular truncation of an existing VMIO buffer.
  */
 static void
 vfs_vmio_truncate(struct buf *bp, int desiredpages)
 {
 	vm_object_t obj;
 	vm_page_t m;
 	int flags, i;
 
 	if (bp->b_npages == desiredpages)
 		return;
 
 	if (buf_mapped(bp)) {
 		BUF_CHECK_MAPPED(bp);
 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
 	} else
 		BUF_CHECK_UNMAPPED(bp);
 
 	/*
 	 * The object lock is needed only if we will attempt to free pages.
 	 */
 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
 	if ((bp->b_flags & B_DIRECT) != 0) {
 		flags |= VPR_TRYFREE;
 		obj = bp->b_bufobj->bo_object;
 		VM_OBJECT_WLOCK(obj);
 	} else {
 		obj = NULL;
 	}
 	for (i = desiredpages; i < bp->b_npages; i++) {
 		m = bp->b_pages[i];
 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
 		bp->b_pages[i] = NULL;
 		if (obj != NULL)
 			vm_page_release_locked(m, flags);
 		else
 			vm_page_release(m, flags);
 	}
 	if (obj != NULL)
 		VM_OBJECT_WUNLOCK(obj);
 	bp->b_npages = desiredpages;
 }
 
 /*
  * Byte granular extension of VMIO buffers.
  */
 static void
 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
 {
 	/*
 	 * We are growing the buffer, possibly in a 
 	 * byte-granular fashion.
 	 */
 	vm_object_t obj;
 	vm_offset_t toff;
 	vm_offset_t tinc;
 	vm_page_t m;
 
 	/*
 	 * Step 1, bring in the VM pages from the object, allocating
 	 * them if necessary.  We must clear B_CACHE if these pages
 	 * are not valid for the range covered by the buffer.
 	 */
 	obj = bp->b_bufobj->bo_object;
 	if (bp->b_npages < desiredpages) {
 		KASSERT(desiredpages <= atop(maxbcachebuf),
 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
 		    bp, desiredpages, maxbcachebuf));
 
 		/*
 		 * We must allocate system pages since blocking
 		 * here could interfere with paging I/O, no
 		 * matter which process we are.
 		 *
 		 * Only exclusive busy can be tested here.
 		 * Blocking on shared busy might lead to
 		 * deadlocks once allocbuf() is called after
 		 * pages are vfs_busy_pages().
 		 */
 		(void)vm_page_grab_pages_unlocked(obj,
 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
 		bp->b_npages = desiredpages;
 	}
 
 	/*
 	 * Step 2.  We've loaded the pages into the buffer,
 	 * we have to figure out if we can still have B_CACHE
 	 * set.  Note that B_CACHE is set according to the
 	 * byte-granular range ( bcount and size ), not the
 	 * aligned range ( newbsize ).
 	 *
 	 * The VM test is against m->valid, which is DEV_BSIZE
 	 * aligned.  Needless to say, the validity of the data
 	 * needs to also be DEV_BSIZE aligned.  Note that this
 	 * fails with NFS if the server or some other client
 	 * extends the file's EOF.  If our buffer is resized, 
 	 * B_CACHE may remain set! XXX
 	 */
 	toff = bp->b_bcount;
 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
 	while ((bp->b_flags & B_CACHE) && toff < size) {
 		vm_pindex_t pi;
 
 		if (tinc > (size - toff))
 			tinc = size - toff;
 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
 		m = bp->b_pages[pi];
 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
 		toff += tinc;
 		tinc = PAGE_SIZE;
 	}
 
 	/*
 	 * Step 3, fixup the KVA pmap.
 	 */
 	if (buf_mapped(bp))
 		bpmap_qenter(bp);
 	else
 		BUF_CHECK_UNMAPPED(bp);
 }
 
 /*
  * Check to see if a block at a particular lbn is available for a clustered
  * write.
  */
 static int
 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
 {
 	struct buf *bpa;
 	int match;
 
 	match = 0;
 
 	/* If the buf isn't in core skip it */
 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
 		return (0);
 
 	/* If the buf is busy we don't want to wait for it */
 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
 		return (0);
 
 	/* Only cluster with valid clusterable delayed write buffers */
 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
 	    (B_DELWRI | B_CLUSTEROK))
 		goto done;
 
 	if (bpa->b_bufsize != size)
 		goto done;
 
 	/*
 	 * Check to see if it is in the expected place on disk and that the
 	 * block has been mapped.
 	 */
 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
 		match = 1;
 done:
 	BUF_UNLOCK(bpa);
 	return (match);
 }
 
 /*
  *	vfs_bio_awrite:
  *
  *	Implement clustered async writes for clearing out B_DELWRI buffers.
  *	This is much better then the old way of writing only one buffer at
  *	a time.  Note that we may not be presented with the buffers in the 
  *	correct order, so we search for the cluster in both directions.
  */
 int
 vfs_bio_awrite(struct buf *bp)
 {
 	struct bufobj *bo;
 	int i;
 	int j;
 	daddr_t lblkno = bp->b_lblkno;
 	struct vnode *vp = bp->b_vp;
 	int ncl;
 	int nwritten;
 	int size;
 	int maxcl;
 	int gbflags;
 
 	bo = &vp->v_bufobj;
 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
 	/*
 	 * right now we support clustered writing only to regular files.  If
 	 * we find a clusterable block we could be in the middle of a cluster
 	 * rather then at the beginning.
 	 */
 	if ((vp->v_type == VREG) && 
 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
 		size = vp->v_mount->mnt_stat.f_iosize;
 		maxcl = maxphys / size;
 
 		BO_RLOCK(bo);
 		for (i = 1; i < maxcl; i++)
 			if (vfs_bio_clcheck(vp, size, lblkno + i,
 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
 				break;
 
 		for (j = 1; i + j <= maxcl && j <= lblkno; j++) 
 			if (vfs_bio_clcheck(vp, size, lblkno - j,
 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
 				break;
 		BO_RUNLOCK(bo);
 		--j;
 		ncl = i + j;
 		/*
 		 * this is a possible cluster write
 		 */
 		if (ncl != 1) {
 			BUF_UNLOCK(bp);
 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
 			    gbflags);
 			return (nwritten);
 		}
 	}
 	bremfree(bp);
 	bp->b_flags |= B_ASYNC;
 	/*
 	 * default (old) behavior, writing out only one block
 	 *
 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
 	 */
 	nwritten = bp->b_bufsize;
 	(void) bwrite(bp);
 
 	return (nwritten);
 }
 
 /*
  *	getnewbuf_kva:
  *
  *	Allocate KVA for an empty buf header according to gbflags.
  */
 static int
 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
 {
 
 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
 		/*
 		 * In order to keep fragmentation sane we only allocate kva
 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
 		 */
 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
 
 		if (maxsize != bp->b_kvasize &&
 		    bufkva_alloc(bp, maxsize, gbflags))
 			return (ENOSPC);
 	}
 	return (0);
 }
 
 /*
  *	getnewbuf:
  *
  *	Find and initialize a new buffer header, freeing up existing buffers
  *	in the bufqueues as necessary.  The new buffer is returned locked.
  *
  *	We block if:
  *		We have insufficient buffer headers
  *		We have insufficient buffer space
  *		buffer_arena is too fragmented ( space reservation fails )
  *		If we have to flush dirty buffers ( but we try to avoid this )
  *
  *	The caller is responsible for releasing the reserved bufspace after
  *	allocbuf() is called.
  */
 static struct buf *
 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
 {
 	struct bufdomain *bd;
 	struct buf *bp;
 	bool metadata, reserved;
 
 	bp = NULL;
 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 	if (!unmapped_buf_allowed)
 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 
 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
 	    vp->v_type == VCHR)
 		metadata = true;
 	else
 		metadata = false;
 	if (vp == NULL)
 		bd = &bdomain[0];
 	else
 		bd = &bdomain[vp->v_bufobj.bo_domain];
 
 	counter_u64_add(getnewbufcalls, 1);
 	reserved = false;
 	do {
 		if (reserved == false &&
 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
 			counter_u64_add(getnewbufrestarts, 1);
 			continue;
 		}
 		reserved = true;
 		if ((bp = buf_alloc(bd)) == NULL) {
 			counter_u64_add(getnewbufrestarts, 1);
 			continue;
 		}
 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
 			return (bp);
 		break;
 	} while (buf_recycle(bd, false) == 0);
 
 	if (reserved)
 		bufspace_release(bd, maxsize);
 	if (bp != NULL) {
 		bp->b_flags |= B_INVAL;
 		brelse(bp);
 	}
 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
 
 	return (NULL);
 }
 
 /*
  *	buf_daemon:
  *
  *	buffer flushing daemon.  Buffers are normally flushed by the
  *	update daemon but if it cannot keep up this process starts to
  *	take the load in an attempt to prevent getnewbuf() from blocking.
  */
 static struct kproc_desc buf_kp = {
 	"bufdaemon",
 	buf_daemon,
 	&bufdaemonproc
 };
 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
 
 static int
 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
 {
 	int flushed;
 
 	flushed = flushbufqueues(vp, bd, target, 0);
 	if (flushed == 0) {
 		/*
 		 * Could not find any buffers without rollback
 		 * dependencies, so just write the first one
 		 * in the hopes of eventually making progress.
 		 */
 		if (vp != NULL && target > 2)
 			target /= 2;
 		flushbufqueues(vp, bd, target, 1);
 	}
 	return (flushed);
 }
 
 static void
 buf_daemon_shutdown(void *arg __unused, int howto __unused)
 {
 	int error;
 
 	if (KERNEL_PANICKED())
 		return;
 
 	mtx_lock(&bdlock);
 	bd_shutdown = true;
 	wakeup(&bd_request);
 	error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
 	    60 * hz);
 	mtx_unlock(&bdlock);
 	if (error != 0)
 		printf("bufdaemon wait error: %d\n", error);
 }
 
 static void
 buf_daemon(void)
 {
 	struct bufdomain *bd;
 	int speedupreq;
 	int lodirty;
 	int i;
 
 	/*
 	 * This process needs to be suspended prior to shutdown sync.
 	 */
 	EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
 	    SHUTDOWN_PRI_LAST + 100);
 
 	/*
 	 * Start the buf clean daemons as children threads.
 	 */
 	for (i = 0 ; i < buf_domains; i++) {
 		int error;
 
 		error = kthread_add((void (*)(void *))bufspace_daemon,
 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
 		if (error)
 			panic("error %d spawning bufspace daemon", error);
 	}
 
 	/*
 	 * This process is allowed to take the buffer cache to the limit
 	 */
 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
 	mtx_lock(&bdlock);
 	while (!bd_shutdown) {
 		bd_request = 0;
 		mtx_unlock(&bdlock);
 
 		/*
 		 * Save speedupreq for this pass and reset to capture new
 		 * requests.
 		 */
 		speedupreq = bd_speedupreq;
 		bd_speedupreq = 0;
 
 		/*
 		 * Flush each domain sequentially according to its level and
 		 * the speedup request.
 		 */
 		for (i = 0; i < buf_domains; i++) {
 			bd = &bdomain[i];
 			if (speedupreq)
 				lodirty = bd->bd_numdirtybuffers / 2;
 			else
 				lodirty = bd->bd_lodirtybuffers;
 			while (bd->bd_numdirtybuffers > lodirty) {
 				if (buf_flush(NULL, bd,
 				    bd->bd_numdirtybuffers - lodirty) == 0)
 					break;
 				kern_yield(PRI_USER);
 			}
 		}
 
 		/*
 		 * Only clear bd_request if we have reached our low water
 		 * mark.  The buf_daemon normally waits 1 second and
 		 * then incrementally flushes any dirty buffers that have
 		 * built up, within reason.
 		 *
 		 * If we were unable to hit our low water mark and couldn't
 		 * find any flushable buffers, we sleep for a short period
 		 * to avoid endless loops on unlockable buffers.
 		 */
 		mtx_lock(&bdlock);
 		if (bd_shutdown)
 			break;
 		if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
 			/*
 			 * We reached our low water mark, reset the
 			 * request and sleep until we are needed again.
 			 * The sleep is just so the suspend code works.
 			 */
 			bd_request = 0;
 			/*
 			 * Do an extra wakeup in case dirty threshold
 			 * changed via sysctl and the explicit transition
 			 * out of shortfall was missed.
 			 */
 			bdirtywakeup();
 			if (runningbufspace <= lorunningspace)
 				runningwakeup();
 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
 		} else {
 			/*
 			 * We couldn't find any flushable dirty buffers but
 			 * still have too many dirty buffers, we
 			 * have to sleep and try again.  (rare)
 			 */
 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
 		}
 	}
 	wakeup(&bd_shutdown);
 	mtx_unlock(&bdlock);
 	kthread_exit();
 }
 
 /*
  *	flushbufqueues:
  *
  *	Try to flush a buffer in the dirty queue.  We must be careful to
  *	free up B_INVAL buffers instead of write them, which NFS is 
  *	particularly sensitive to.
  */
 static int flushwithdeps = 0;
 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
     &flushwithdeps, 0,
     "Number of buffers flushed with dependencies that require rollbacks");
 
 static int
 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
     int flushdeps)
 {
 	struct bufqueue *bq;
 	struct buf *sentinel;
 	struct vnode *vp;
 	struct mount *mp;
 	struct buf *bp;
 	int hasdeps;
 	int flushed;
 	int error;
 	bool unlock;
 
 	flushed = 0;
 	bq = &bd->bd_dirtyq;
 	bp = NULL;
 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
 	sentinel->b_qindex = QUEUE_SENTINEL;
 	BQ_LOCK(bq);
 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
 	BQ_UNLOCK(bq);
 	while (flushed != target) {
 		maybe_yield();
 		BQ_LOCK(bq);
 		bp = TAILQ_NEXT(sentinel, b_freelist);
 		if (bp != NULL) {
 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
 			    b_freelist);
 		} else {
 			BQ_UNLOCK(bq);
 			break;
 		}
 		/*
 		 * Skip sentinels inserted by other invocations of the
 		 * flushbufqueues(), taking care to not reorder them.
 		 *
 		 * Only flush the buffers that belong to the
 		 * vnode locked by the curthread.
 		 */
 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
 		    bp->b_vp != lvp)) {
 			BQ_UNLOCK(bq);
 			continue;
 		}
 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
 		BQ_UNLOCK(bq);
 		if (error != 0)
 			continue;
 
 		/*
 		 * BKGRDINPROG can only be set with the buf and bufobj
 		 * locks both held.  We tolerate a race to clear it here.
 		 */
 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
 		    (bp->b_flags & B_DELWRI) == 0) {
 			BUF_UNLOCK(bp);
 			continue;
 		}
 		if (bp->b_flags & B_INVAL) {
 			bremfreef(bp);
 			brelse(bp);
 			flushed++;
 			continue;
 		}
 
 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
 			if (flushdeps == 0) {
 				BUF_UNLOCK(bp);
 				continue;
 			}
 			hasdeps = 1;
 		} else
 			hasdeps = 0;
 		/*
 		 * We must hold the lock on a vnode before writing
 		 * one of its buffers. Otherwise we may confuse, or
 		 * in the case of a snapshot vnode, deadlock the
 		 * system.
 		 *
 		 * The lock order here is the reverse of the normal
 		 * of vnode followed by buf lock.  This is ok because
 		 * the NOWAIT will prevent deadlock.
 		 */
 		vp = bp->b_vp;
 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
 			BUF_UNLOCK(bp);
 			continue;
 		}
 		if (lvp == NULL) {
 			unlock = true;
 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
 		} else {
 			ASSERT_VOP_LOCKED(vp, "getbuf");
 			unlock = false;
 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
 			    vn_lock(vp, LK_TRYUPGRADE);
 		}
 		if (error == 0) {
 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
 			    bp, bp->b_vp, bp->b_flags);
 			if (curproc == bufdaemonproc) {
 				vfs_bio_awrite(bp);
 			} else {
 				bremfree(bp);
 				bwrite(bp);
 				counter_u64_add(notbufdflushes, 1);
 			}
 			vn_finished_write(mp);
 			if (unlock)
 				VOP_UNLOCK(vp);
 			flushwithdeps += hasdeps;
 			flushed++;
 
 			/*
 			 * Sleeping on runningbufspace while holding
 			 * vnode lock leads to deadlock.
 			 */
 			if (curproc == bufdaemonproc &&
 			    runningbufspace > hirunningspace)
 				waitrunningbufspace();
 			continue;
 		}
 		vn_finished_write(mp);
 		BUF_UNLOCK(bp);
 	}
 	BQ_LOCK(bq);
 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
 	BQ_UNLOCK(bq);
 	free(sentinel, M_TEMP);
 	return (flushed);
 }
 
 /*
  * Check to see if a block is currently memory resident.
  */
 struct buf *
 incore(struct bufobj *bo, daddr_t blkno)
 {
 	return (gbincore_unlocked(bo, blkno));
 }
 
 /*
  * Returns true if no I/O is needed to access the
  * associated VM object.  This is like incore except
  * it also hunts around in the VM system for the data.
  */
 bool
 inmem(struct vnode * vp, daddr_t blkno)
 {
 	vm_object_t obj;
 	vm_offset_t toff, tinc, size;
 	vm_page_t m, n;
 	vm_ooffset_t off;
 	int valid;
 
 	ASSERT_VOP_LOCKED(vp, "inmem");
 
 	if (incore(&vp->v_bufobj, blkno))
 		return (true);
 	if (vp->v_mount == NULL)
 		return (false);
 	obj = vp->v_object;
 	if (obj == NULL)
 		return (false);
 
 	size = PAGE_SIZE;
 	if (size > vp->v_mount->mnt_stat.f_iosize)
 		size = vp->v_mount->mnt_stat.f_iosize;
 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
 
 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
 recheck:
 		if (m == NULL)
 			return (false);
 
 		tinc = size;
 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
 		/*
 		 * Consider page validity only if page mapping didn't change
 		 * during the check.
 		 */
 		valid = vm_page_is_valid(m,
 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
 		if (m != n) {
 			m = n;
 			goto recheck;
 		}
 		if (!valid)
 			return (false);
 	}
 	return (true);
 }
 
 /*
  * Set the dirty range for a buffer based on the status of the dirty
  * bits in the pages comprising the buffer.  The range is limited
  * to the size of the buffer.
  *
  * Tell the VM system that the pages associated with this buffer
  * are clean.  This is used for delayed writes where the data is
  * going to go to disk eventually without additional VM intevention.
  *
  * Note that while we only really need to clean through to b_bcount, we
  * just go ahead and clean through to b_bufsize.
  */
 static void
 vfs_clean_pages_dirty_buf(struct buf *bp)
 {
 	vm_ooffset_t foff, noff, eoff;
 	vm_page_t m;
 	int i;
 
 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
 		return;
 
 	foff = bp->b_offset;
 	KASSERT(bp->b_offset != NOOFFSET,
 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
 
 	vfs_busy_pages_acquire(bp);
 	vfs_setdirty_range(bp);
 	for (i = 0; i < bp->b_npages; i++) {
 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 		eoff = noff;
 		if (eoff > bp->b_offset + bp->b_bufsize)
 			eoff = bp->b_offset + bp->b_bufsize;
 		m = bp->b_pages[i];
 		vfs_page_set_validclean(bp, foff, m);
 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
 		foff = noff;
 	}
 	vfs_busy_pages_release(bp);
 }
 
 static void
 vfs_setdirty_range(struct buf *bp)
 {
 	vm_offset_t boffset;
 	vm_offset_t eoffset;
 	int i;
 
 	/*
 	 * test the pages to see if they have been modified directly
 	 * by users through the VM system.
 	 */
 	for (i = 0; i < bp->b_npages; i++)
 		vm_page_test_dirty(bp->b_pages[i]);
 
 	/*
 	 * Calculate the encompassing dirty range, boffset and eoffset,
 	 * (eoffset - boffset) bytes.
 	 */
 
 	for (i = 0; i < bp->b_npages; i++) {
 		if (bp->b_pages[i]->dirty)
 			break;
 	}
 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 
 	for (i = bp->b_npages - 1; i >= 0; --i) {
 		if (bp->b_pages[i]->dirty) {
 			break;
 		}
 	}
 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
 
 	/*
 	 * Fit it to the buffer.
 	 */
 
 	if (eoffset > bp->b_bcount)
 		eoffset = bp->b_bcount;
 
 	/*
 	 * If we have a good dirty range, merge with the existing
 	 * dirty range.
 	 */
 
 	if (boffset < eoffset) {
 		if (bp->b_dirtyoff > boffset)
 			bp->b_dirtyoff = boffset;
 		if (bp->b_dirtyend < eoffset)
 			bp->b_dirtyend = eoffset;
 	}
 }
 
 /*
  * Allocate the KVA mapping for an existing buffer.
  * If an unmapped buffer is provided but a mapped buffer is requested, take
  * also care to properly setup mappings between pages and KVA.
  */
 static void
 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
 {
 	int bsize, maxsize, need_mapping, need_kva;
 	off_t offset;
 
 	need_mapping = bp->b_data == unmapped_buf &&
 	    (gbflags & GB_UNMAPPED) == 0;
 	need_kva = bp->b_kvabase == unmapped_buf &&
 	    bp->b_data == unmapped_buf &&
 	    (gbflags & GB_KVAALLOC) != 0;
 	if (!need_mapping && !need_kva)
 		return;
 
 	BUF_CHECK_UNMAPPED(bp);
 
 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
 		/*
 		 * Buffer is not mapped, but the KVA was already
 		 * reserved at the time of the instantiation.  Use the
 		 * allocated space.
 		 */
 		goto has_addr;
 	}
 
 	/*
 	 * Calculate the amount of the address space we would reserve
 	 * if the buffer was mapped.
 	 */
 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 	offset = blkno * bsize;
 	maxsize = size + (offset & PAGE_MASK);
 	maxsize = imax(maxsize, bsize);
 
 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
 		if ((gbflags & GB_NOWAIT_BD) != 0) {
 			/*
 			 * XXXKIB: defragmentation cannot
 			 * succeed, not sure what else to do.
 			 */
 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
 		}
 		counter_u64_add(mappingrestarts, 1);
 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
 	}
 has_addr:
 	if (need_mapping) {
 		/* b_offset is handled by bpmap_qenter. */
 		bp->b_data = bp->b_kvabase;
 		BUF_CHECK_MAPPED(bp);
 		bpmap_qenter(bp);
 	}
 }
 
 struct buf *
 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
     int flags)
 {
 	struct buf *bp;
 	int error;
 
 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
 	if (error != 0)
 		return (NULL);
 	return (bp);
 }
 
 /*
  *	getblkx:
  *
  *	Get a block given a specified block and offset into a file/device.
  *	The buffers B_DONE bit will be cleared on return, making it almost
  * 	ready for an I/O initiation.  B_INVAL may or may not be set on 
  *	return.  The caller should clear B_INVAL prior to initiating a
  *	READ.
  *
  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
  *	an existing buffer.
  *
  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
  *	and then cleared based on the backing VM.  If the previous buffer is
  *	non-0-sized but invalid, B_CACHE will be cleared.
  *
  *	If getblk() must create a new buffer, the new buffer is returned with
  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
  *	case it is returned with B_INVAL clear and B_CACHE set based on the
  *	backing VM.
  *
  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
  *	B_CACHE bit is clear.
  *
  *	What this means, basically, is that the caller should use B_CACHE to
  *	determine whether the buffer is fully valid or not and should clear
  *	B_INVAL prior to issuing a read.  If the caller intends to validate
  *	the buffer by loading its data area with something, the caller needs
  *	to clear B_INVAL.  If the caller does this without issuing an I/O, 
  *	the caller should set B_CACHE ( as an optimization ), else the caller
  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
  *	a write attempt or if it was a successful read.  If the caller 
  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
  *
  *	The blkno parameter is the logical block being requested. Normally
  *	the mapping of logical block number to disk block address is done
  *	by calling VOP_BMAP(). However, if the mapping is already known, the
  *	disk block address can be passed using the dblkno parameter. If the
  *	disk block address is not known, then the same value should be passed
  *	for blkno and dblkno.
  */
 int
 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
     int slptimeo, int flags, struct buf **bpp)
 {
 	struct buf *bp;
 	struct bufobj *bo;
 	daddr_t d_blkno;
 	int bsize, error, maxsize, vmio;
 	off_t offset;
 
 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
 	if (vp->v_type != VCHR)
 		ASSERT_VOP_LOCKED(vp, "getblk");
 	if (size > maxbcachebuf) {
 		printf("getblkx: size(%d) > maxbcachebuf(%d)\n", size,
 		    maxbcachebuf);
 		return (EIO);
 	}
 	if (!unmapped_buf_allowed)
 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 
 	bo = &vp->v_bufobj;
 	d_blkno = dblkno;
 
 	/* Attempt lockless lookup first. */
 	bp = gbincore_unlocked(bo, blkno);
 	if (bp == NULL) {
 		/*
 		 * With GB_NOCREAT we must be sure about not finding the buffer
 		 * as it may have been reassigned during unlocked lookup.
 		 * If BO_NONSTERILE is still unset, no reassign has occurred.
 		 */
 		if ((flags & GB_NOCREAT) != 0) {
 			/* Ensure bo_flag is loaded after gbincore_unlocked. */
 			atomic_thread_fence_acq();
 			if ((bo->bo_flag & BO_NONSTERILE) == 0)
 				return (EEXIST);
 			goto loop;
 		}
 		goto newbuf_unlocked;
 	}
 
 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
 	    0);
 	if (error != 0) {
 		KASSERT(error == EBUSY,
 		    ("getblk: unexpected error %d from buf try-lock", error));
 		/*
 		 * We failed a buf try-lock.
 		 *
 		 * With GB_LOCK_NOWAIT, just return, rather than taking the
 		 * bufobj interlock and trying again, since we would probably
 		 * fail again anyway.  This is okay even if the buf's identity
 		 * changed and we contended on the wrong lock, as changing
 		 * identity itself requires the buf lock, and we could have
 		 * contended on the right lock.
 		 */
 		if ((flags & GB_LOCK_NOWAIT) != 0)
 			return (error);
 		goto loop;
 	}
 
 	/* Verify buf identify has not changed since lookup. */
 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
 		goto foundbuf_fastpath;
 
 	/* It changed, fallback to locked lookup. */
 	BUF_UNLOCK_RAW(bp);
 
 	/* As above, with GB_LOCK_NOWAIT, just return. */
 	if ((flags & GB_LOCK_NOWAIT) != 0)
 		return (EBUSY);
 
 loop:
 	BO_RLOCK(bo);
 	bp = gbincore(bo, blkno);
 	if (bp != NULL) {
 		int lockflags;
 
 		/*
 		 * Buffer is in-core.  If the buffer is not busy nor managed,
 		 * it must be on a queue.
 		 */
 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
 		    ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
 #ifdef WITNESS
 		lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
 #endif
 
 		error = BUF_TIMELOCK(bp, lockflags,
 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
 
 		/*
 		 * If we slept and got the lock we have to restart in case
 		 * the buffer changed identities.
 		 */
 		if (error == ENOLCK)
 			goto loop;
 		/* We timed out or were interrupted. */
 		else if (error != 0)
 			return (error);
 
 foundbuf_fastpath:
 		/* If recursed, assume caller knows the rules. */
 		if (BUF_LOCKRECURSED(bp))
 			goto end;
 
 		/*
 		 * The buffer is locked.  B_CACHE is cleared if the buffer is 
 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
 		 * and for a VMIO buffer B_CACHE is adjusted according to the
 		 * backing VM cache.
 		 */
 		if (bp->b_flags & B_INVAL)
 			bp->b_flags &= ~B_CACHE;
 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
 			bp->b_flags |= B_CACHE;
 		if (bp->b_flags & B_MANAGED)
 			MPASS(bp->b_qindex == QUEUE_NONE);
 		else
 			bremfree(bp);
 
 		/*
 		 * check for size inconsistencies for non-VMIO case.
 		 */
 		if (bp->b_bcount != size) {
 			if ((bp->b_flags & B_VMIO) == 0 ||
 			    (size > bp->b_kvasize)) {
 				if (bp->b_flags & B_DELWRI) {
 					bp->b_flags |= B_NOCACHE;
 					bwrite(bp);
 				} else {
 					if (LIST_EMPTY(&bp->b_dep)) {
 						bp->b_flags |= B_RELBUF;
 						brelse(bp);
 					} else {
 						bp->b_flags |= B_NOCACHE;
 						bwrite(bp);
 					}
 				}
 				goto loop;
 			}
 		}
 
 		/*
 		 * Handle the case of unmapped buffer which should
 		 * become mapped, or the buffer for which KVA
 		 * reservation is requested.
 		 */
 		bp_unmapped_get_kva(bp, blkno, size, flags);
 
 		/*
 		 * If the size is inconsistent in the VMIO case, we can resize
 		 * the buffer.  This might lead to B_CACHE getting set or
 		 * cleared.  If the size has not changed, B_CACHE remains
 		 * unchanged from its previous state.
 		 */
 		allocbuf(bp, size);
 
 		KASSERT(bp->b_offset != NOOFFSET, 
 		    ("getblk: no buffer offset"));
 
 		/*
 		 * A buffer with B_DELWRI set and B_CACHE clear must
 		 * be committed before we can return the buffer in
 		 * order to prevent the caller from issuing a read
 		 * ( due to B_CACHE not being set ) and overwriting
 		 * it.
 		 *
 		 * Most callers, including NFS and FFS, need this to
 		 * operate properly either because they assume they
 		 * can issue a read if B_CACHE is not set, or because
 		 * ( for example ) an uncached B_DELWRI might loop due 
 		 * to softupdates re-dirtying the buffer.  In the latter
 		 * case, B_CACHE is set after the first write completes,
 		 * preventing further loops.
 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
 		 * above while extending the buffer, we cannot allow the
 		 * buffer to remain with B_CACHE set after the write
 		 * completes or it will represent a corrupt state.  To
 		 * deal with this we set B_NOCACHE to scrap the buffer
 		 * after the write.
 		 *
 		 * We might be able to do something fancy, like setting
 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
 		 * so the below call doesn't set B_CACHE, but that gets real
 		 * confusing.  This is much easier.
 		 */
 
 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
 			bp->b_flags |= B_NOCACHE;
 			bwrite(bp);
 			goto loop;
 		}
 		bp->b_flags &= ~B_DONE;
 	} else {
 		/*
 		 * Buffer is not in-core, create new buffer.  The buffer
 		 * returned by getnewbuf() is locked.  Note that the returned
 		 * buffer is also considered valid (not marked B_INVAL).
 		 */
 		BO_RUNLOCK(bo);
 newbuf_unlocked:
 		/*
 		 * If the user does not want us to create the buffer, bail out
 		 * here.
 		 */
 		if (flags & GB_NOCREAT)
 			return (EEXIST);
 
 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
 		offset = blkno * bsize;
 		vmio = vp->v_object != NULL;
 		if (vmio) {
 			maxsize = size + (offset & PAGE_MASK);
 			if (maxsize > maxbcachebuf) {
 				printf(
 			    "getblkx: maxsize(%d) > maxbcachebuf(%d)\n",
 				    maxsize, maxbcachebuf);
 				return (EIO);
 			}
 		} else {
 			maxsize = size;
 			/* Do not allow non-VMIO notmapped buffers. */
 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
 		}
 		maxsize = imax(maxsize, bsize);
 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
 		    !vn_isdisk(vp)) {
 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
 			KASSERT(error != EOPNOTSUPP,
 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
 			    vp));
 			if (error != 0)
 				return (error);
 			if (d_blkno == -1)
 				return (EJUSTRETURN);
 		}
 
 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
 		if (bp == NULL) {
 			if (slpflag || slptimeo)
 				return (ETIMEDOUT);
 			/*
 			 * XXX This is here until the sleep path is diagnosed
 			 * enough to work under very low memory conditions.
 			 *
 			 * There's an issue on low memory, 4BSD+non-preempt
 			 * systems (eg MIPS routers with 32MB RAM) where buffer
 			 * exhaustion occurs without sleeping for buffer
 			 * reclaimation.  This just sticks in a loop and
 			 * constantly attempts to allocate a buffer, which
 			 * hits exhaustion and tries to wakeup bufdaemon.
 			 * This never happens because we never yield.
 			 *
 			 * The real solution is to identify and fix these cases
 			 * so we aren't effectively busy-waiting in a loop
 			 * until the reclaimation path has cycles to run.
 			 */
 			kern_yield(PRI_USER);
 			goto loop;
 		}
 
 		/*
 		 *
 		 * Insert the buffer into the hash, so that it can
 		 * be found by incore.
 		 *
 		 * We don't hold the bufobj interlock while allocating the new
 		 * buffer.  Consequently, we can race on buffer creation.  This
 		 * can be a problem whether the vnode is locked or not.  If the
 		 * buffer is created out from under us, we have to throw away
 		 * the one we just created.
 		 */
 		bp->b_lblkno = blkno;
 		bp->b_blkno = d_blkno;
 		bp->b_offset = offset;
 		error = bgetvp(vp, bp);
 		if (error != 0) {
 			KASSERT(error == EEXIST,
 			    ("getblk: unexpected error %d from bgetvp",
 			    error));
 			bp->b_flags |= B_INVAL;
 			bufspace_release(bufdomain(bp), maxsize);
 			brelse(bp);
 			goto loop;
 		}
 
 		/*
 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
 		 * buffer size starts out as 0, B_CACHE will be set by
 		 * allocbuf() for the VMIO case prior to it testing the
 		 * backing store for validity.
 		 */
 
 		if (vmio) {
 			bp->b_flags |= B_VMIO;
 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
 			    bp, vp->v_object, bp->b_bufobj->bo_object));
 		} else {
 			bp->b_flags &= ~B_VMIO;
 			KASSERT(bp->b_bufobj->bo_object == NULL,
 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
 			    bp, bp->b_bufobj->bo_object));
 			BUF_CHECK_MAPPED(bp);
 		}
 
 		allocbuf(bp, size);
 		bufspace_release(bufdomain(bp), maxsize);
 		bp->b_flags &= ~B_DONE;
 	}
 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
 end:
 	buf_track(bp, __func__);
 	KASSERT(bp->b_bufobj == bo,
 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
 	*bpp = bp;
 	return (0);
 }
 
 /*
  * Get an empty, disassociated buffer of given size.  The buffer is initially
  * set to B_INVAL.
  */
 struct buf *
 geteblk(int size, int flags)
 {
 	struct buf *bp;
 	int maxsize;
 
 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
 		if ((flags & GB_NOWAIT_BD) &&
 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
 			return (NULL);
 	}
 	allocbuf(bp, size);
 	bufspace_release(bufdomain(bp), maxsize);
 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
 	return (bp);
 }
 
 /*
  * Truncate the backing store for a non-vmio buffer.
  */
 static void
 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
 {
 
 	if (bp->b_flags & B_MALLOC) {
 		/*
 		 * malloced buffers are not shrunk
 		 */
 		if (newbsize == 0) {
 			bufmallocadjust(bp, 0);
 			free(bp->b_data, M_BIOBUF);
 			bp->b_data = bp->b_kvabase;
 			bp->b_flags &= ~B_MALLOC;
 		}
 		return;
 	}
 	vm_hold_free_pages(bp, newbsize);
 	bufspace_adjust(bp, newbsize);
 }
 
 /*
  * Extend the backing for a non-VMIO buffer.
  */
 static void
 vfs_nonvmio_extend(struct buf *bp, int newbsize)
 {
 	caddr_t origbuf;
 	int origbufsize;
 
 	/*
 	 * We only use malloced memory on the first allocation.
 	 * and revert to page-allocated memory when the buffer
 	 * grows.
 	 *
 	 * There is a potential smp race here that could lead
 	 * to bufmallocspace slightly passing the max.  It
 	 * is probably extremely rare and not worth worrying
 	 * over.
 	 */
 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
 	    bufmallocspace < maxbufmallocspace) {
 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
 		bp->b_flags |= B_MALLOC;
 		bufmallocadjust(bp, newbsize);
 		return;
 	}
 
 	/*
 	 * If the buffer is growing on its other-than-first
 	 * allocation then we revert to the page-allocation
 	 * scheme.
 	 */
 	origbuf = NULL;
 	origbufsize = 0;
 	if (bp->b_flags & B_MALLOC) {
 		origbuf = bp->b_data;
 		origbufsize = bp->b_bufsize;
 		bp->b_data = bp->b_kvabase;
 		bufmallocadjust(bp, 0);
 		bp->b_flags &= ~B_MALLOC;
 		newbsize = round_page(newbsize);
 	}
 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
 	    (vm_offset_t) bp->b_data + newbsize);
 	if (origbuf != NULL) {
 		bcopy(origbuf, bp->b_data, origbufsize);
 		free(origbuf, M_BIOBUF);
 	}
 	bufspace_adjust(bp, newbsize);
 }
 
 /*
  * This code constitutes the buffer memory from either anonymous system
  * memory (in the case of non-VMIO operations) or from an associated
  * VM object (in the case of VMIO operations).  This code is able to
  * resize a buffer up or down.
  *
  * Note that this code is tricky, and has many complications to resolve
  * deadlock or inconsistent data situations.  Tread lightly!!! 
  * There are B_CACHE and B_DELWRI interactions that must be dealt with by 
  * the caller.  Calling this code willy nilly can result in the loss of data.
  *
  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
  * B_CACHE for the non-VMIO case.
  */
 int
 allocbuf(struct buf *bp, int size)
 {
 	int newbsize;
 
 	if (bp->b_bcount == size)
 		return (1);
 
 	KASSERT(bp->b_kvasize == 0 || bp->b_kvasize >= size,
 	    ("allocbuf: buffer too small %p %#x %#x",
 	    bp, bp->b_kvasize, size));
 
 	newbsize = roundup2(size, DEV_BSIZE);
 	if ((bp->b_flags & B_VMIO) == 0) {
 		if ((bp->b_flags & B_MALLOC) == 0)
 			newbsize = round_page(newbsize);
 		/*
 		 * Just get anonymous memory from the kernel.  Don't
 		 * mess with B_CACHE.
 		 */
 		if (newbsize < bp->b_bufsize)
 			vfs_nonvmio_truncate(bp, newbsize);
 		else if (newbsize > bp->b_bufsize)
 			vfs_nonvmio_extend(bp, newbsize);
 	} else {
 		int desiredpages;
 
 		desiredpages = size == 0 ? 0 :
 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
 
 		KASSERT((bp->b_flags & B_MALLOC) == 0,
 		    ("allocbuf: VMIO buffer can't be malloced %p", bp));
 
 		/*
 		 * Set B_CACHE initially if buffer is 0 length or will become
 		 * 0-length.
 		 */
 		if (size == 0 || bp->b_bufsize == 0)
 			bp->b_flags |= B_CACHE;
 
 		if (newbsize < bp->b_bufsize)
 			vfs_vmio_truncate(bp, desiredpages);
 		/* XXX This looks as if it should be newbsize > b_bufsize */
 		else if (size > bp->b_bcount)
 			vfs_vmio_extend(bp, desiredpages, size);
 		bufspace_adjust(bp, newbsize);
 	}
 	bp->b_bcount = size;		/* requested buffer size. */
 	return (1);
 }
 
 extern int inflight_transient_maps;
 
 static struct bio_queue nondump_bios;
 
 void
 biodone(struct bio *bp)
 {
 	struct mtx *mtxp;
 	void (*done)(struct bio *);
 	vm_offset_t start, end;
 
 	biotrack(bp, __func__);
 
 	/*
 	 * Avoid completing I/O when dumping after a panic since that may
 	 * result in a deadlock in the filesystem or pager code.  Note that
 	 * this doesn't affect dumps that were started manually since we aim
 	 * to keep the system usable after it has been resumed.
 	 */
 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
 		return;
 	}
 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
 		bp->bio_flags |= BIO_UNMAPPED;
 		start = trunc_page((vm_offset_t)bp->bio_data);
 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
 		bp->bio_data = unmapped_buf;
 		pmap_qremove(start, atop(end - start));
 		vmem_free(transient_arena, start, end - start);
 		atomic_add_int(&inflight_transient_maps, -1);
 	}
 	done = bp->bio_done;
 	/*
 	 * The check for done == biodone is to allow biodone to be
 	 * used as a bio_done routine.
 	 */
 	if (done == NULL || done == biodone) {
 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
 		mtx_lock(mtxp);
 		bp->bio_flags |= BIO_DONE;
 		wakeup(bp);
 		mtx_unlock(mtxp);
 	} else
 		done(bp);
 }
 
 /*
  * Wait for a BIO to finish.
  */
 int
 biowait(struct bio *bp, const char *wmesg)
 {
 	struct mtx *mtxp;
 
 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
 	mtx_lock(mtxp);
 	while ((bp->bio_flags & BIO_DONE) == 0)
 		msleep(bp, mtxp, PRIBIO, wmesg, 0);
 	mtx_unlock(mtxp);
 	if (bp->bio_error != 0)
 		return (bp->bio_error);
 	if (!(bp->bio_flags & BIO_ERROR))
 		return (0);
 	return (EIO);
 }
 
 void
 biofinish(struct bio *bp, struct devstat *stat, int error)
 {
 
 	if (error) {
 		bp->bio_error = error;
 		bp->bio_flags |= BIO_ERROR;
 	}
 	if (stat != NULL)
 		devstat_end_transaction_bio(stat, bp);
 	biodone(bp);
 }
 
 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
 void
 biotrack_buf(struct bio *bp, const char *location)
 {
 
 	buf_track(bp->bio_track_bp, location);
 }
 #endif
 
 /*
  *	bufwait:
  *
  *	Wait for buffer I/O completion, returning error status.  The buffer
  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
  *	error and cleared.
  */
 int
 bufwait(struct buf *bp)
 {
 	if (bp->b_iocmd == BIO_READ)
 		bwait(bp, PRIBIO, "biord");
 	else
 		bwait(bp, PRIBIO, "biowr");
 	if (bp->b_flags & B_EINTR) {
 		bp->b_flags &= ~B_EINTR;
 		return (EINTR);
 	}
 	if (bp->b_ioflags & BIO_ERROR) {
 		return (bp->b_error ? bp->b_error : EIO);
 	} else {
 		return (0);
 	}
 }
 
 /*
  *	bufdone:
  *
  *	Finish I/O on a buffer, optionally calling a completion function.
  *	This is usually called from an interrupt so process blocking is
  *	not allowed.
  *
  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
  *	In a non-VMIO bp, B_CACHE will be set on the next getblk() 
  *	assuming B_INVAL is clear.
  *
  *	For the VMIO case, we set B_CACHE if the op was a read and no
  *	read error occurred, or if the op was a write.  B_CACHE is never
  *	set if the buffer is invalid or otherwise uncacheable.
  *
  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
  *	initiator to leave B_INVAL set to brelse the buffer out of existence
  *	in the biodone routine.
  */
 void
 bufdone(struct buf *bp)
 {
 	struct bufobj *dropobj;
 	void    (*biodone)(struct buf *);
 
 	buf_track(bp, __func__);
 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
 	dropobj = NULL;
 
 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
 
 	runningbufwakeup(bp);
 	if (bp->b_iocmd == BIO_WRITE)
 		dropobj = bp->b_bufobj;
 	/* call optional completion function if requested */
 	if (bp->b_iodone != NULL) {
 		biodone = bp->b_iodone;
 		bp->b_iodone = NULL;
 		(*biodone) (bp);
 		if (dropobj)
 			bufobj_wdrop(dropobj);
 		return;
 	}
 	if (bp->b_flags & B_VMIO) {
 		/*
 		 * Set B_CACHE if the op was a normal read and no error
 		 * occurred.  B_CACHE is set for writes in the b*write()
 		 * routines.
 		 */
 		if (bp->b_iocmd == BIO_READ &&
 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
 		    !(bp->b_ioflags & BIO_ERROR))
 			bp->b_flags |= B_CACHE;
 		vfs_vmio_iodone(bp);
 	}
 	if (!LIST_EMPTY(&bp->b_dep))
 		buf_complete(bp);
 	if ((bp->b_flags & B_CKHASH) != 0) {
 		KASSERT(bp->b_iocmd == BIO_READ,
 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
 		(*bp->b_ckhashcalc)(bp);
 	}
 	/*
 	 * For asynchronous completions, release the buffer now. The brelse
 	 * will do a wakeup there if necessary - so no need to do a wakeup
 	 * here in the async case. The sync case always needs to do a wakeup.
 	 */
 	if (bp->b_flags & B_ASYNC) {
 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
 		    (bp->b_ioflags & BIO_ERROR))
 			brelse(bp);
 		else
 			bqrelse(bp);
 	} else
 		bdone(bp);
 	if (dropobj)
 		bufobj_wdrop(dropobj);
 }
 
 /*
  * This routine is called in lieu of iodone in the case of
  * incomplete I/O.  This keeps the busy status for pages
  * consistent.
  */
 void
 vfs_unbusy_pages(struct buf *bp)
 {
 	int i;
 	vm_object_t obj;
 	vm_page_t m;
 
 	runningbufwakeup(bp);
 	if (!(bp->b_flags & B_VMIO))
 		return;
 
 	obj = bp->b_bufobj->bo_object;
 	for (i = 0; i < bp->b_npages; i++) {
 		m = bp->b_pages[i];
 		if (m == bogus_page) {
 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
 			if (!m)
 				panic("vfs_unbusy_pages: page missing\n");
 			bp->b_pages[i] = m;
 			if (buf_mapped(bp)) {
 				BUF_CHECK_MAPPED(bp);
 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 				    bp->b_pages, bp->b_npages);
 			} else
 				BUF_CHECK_UNMAPPED(bp);
 		}
 		vm_page_sunbusy(m);
 	}
 	vm_object_pip_wakeupn(obj, bp->b_npages);
 }
 
 /*
  * vfs_page_set_valid:
  *
  *	Set the valid bits in a page based on the supplied offset.   The
  *	range is restricted to the buffer's size.
  *
  *	This routine is typically called after a read completes.
  */
 static void
 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 {
 	vm_ooffset_t eoff;
 
 	/*
 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
 	 * page boundary and eoff is not greater than the end of the buffer.
 	 * The end of the buffer, in this case, is our file EOF, not the
 	 * allocation size of the buffer.
 	 */
 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
 	if (eoff > bp->b_offset + bp->b_bcount)
 		eoff = bp->b_offset + bp->b_bcount;
 
 	/*
 	 * Set valid range.  This is typically the entire buffer and thus the
 	 * entire page.
 	 */
 	if (eoff > off)
 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
 }
 
 /*
  * vfs_page_set_validclean:
  *
  *	Set the valid bits and clear the dirty bits in a page based on the
  *	supplied offset.   The range is restricted to the buffer's size.
  */
 static void
 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
 {
 	vm_ooffset_t soff, eoff;
 
 	/*
 	 * Start and end offsets in buffer.  eoff - soff may not cross a
 	 * page boundary or cross the end of the buffer.  The end of the
 	 * buffer, in this case, is our file EOF, not the allocation size
 	 * of the buffer.
 	 */
 	soff = off;
 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 	if (eoff > bp->b_offset + bp->b_bcount)
 		eoff = bp->b_offset + bp->b_bcount;
 
 	/*
 	 * Set valid range.  This is typically the entire buffer and thus the
 	 * entire page.
 	 */
 	if (eoff > soff) {
 		vm_page_set_validclean(
 		    m,
 		   (vm_offset_t) (soff & PAGE_MASK),
 		   (vm_offset_t) (eoff - soff)
 		);
 	}
 }
 
 /*
  * Acquire a shared busy on all pages in the buf.
  */
 void
 vfs_busy_pages_acquire(struct buf *bp)
 {
 	int i;
 
 	for (i = 0; i < bp->b_npages; i++)
 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
 }
 
 void
 vfs_busy_pages_release(struct buf *bp)
 {
 	int i;
 
 	for (i = 0; i < bp->b_npages; i++)
 		vm_page_sunbusy(bp->b_pages[i]);
 }
 
 /*
  * This routine is called before a device strategy routine.
  * It is used to tell the VM system that paging I/O is in
  * progress, and treat the pages associated with the buffer
  * almost as being exclusive busy.  Also the object paging_in_progress
  * flag is handled to make sure that the object doesn't become
  * inconsistent.
  *
  * Since I/O has not been initiated yet, certain buffer flags
  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
  * and should be ignored.
  */
 void
 vfs_busy_pages(struct buf *bp, int clear_modify)
 {
 	vm_object_t obj;
 	vm_ooffset_t foff;
 	vm_page_t m;
 	int i;
 	bool bogus;
 
 	if (!(bp->b_flags & B_VMIO))
 		return;
 
 	obj = bp->b_bufobj->bo_object;
 	foff = bp->b_offset;
 	KASSERT(bp->b_offset != NOOFFSET,
 	    ("vfs_busy_pages: no buffer offset"));
 	if ((bp->b_flags & B_CLUSTER) == 0) {
 		vm_object_pip_add(obj, bp->b_npages);
 		vfs_busy_pages_acquire(bp);
 	}
 	if (bp->b_bufsize != 0)
 		vfs_setdirty_range(bp);
 	bogus = false;
 	for (i = 0; i < bp->b_npages; i++) {
 		m = bp->b_pages[i];
 		vm_page_assert_sbusied(m);
 
 		/*
 		 * When readying a buffer for a read ( i.e
 		 * clear_modify == 0 ), it is important to do
 		 * bogus_page replacement for valid pages in 
 		 * partially instantiated buffers.  Partially 
 		 * instantiated buffers can, in turn, occur when
 		 * reconstituting a buffer from its VM backing store
 		 * base.  We only have to do this if B_CACHE is
 		 * clear ( which causes the I/O to occur in the
 		 * first place ).  The replacement prevents the read
 		 * I/O from overwriting potentially dirty VM-backed
 		 * pages.  XXX bogus page replacement is, uh, bogus.
 		 * It may not work properly with small-block devices.
 		 * We need to find a better way.
 		 */
 		if (clear_modify) {
 			pmap_remove_write(m);
 			vfs_page_set_validclean(bp, foff, m);
 		} else if (vm_page_all_valid(m) &&
 		    (bp->b_flags & B_CACHE) == 0) {
 			bp->b_pages[i] = bogus_page;
 			bogus = true;
 		}
 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
 	}
 	if (bogus && buf_mapped(bp)) {
 		BUF_CHECK_MAPPED(bp);
 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
 		    bp->b_pages, bp->b_npages);
 	}
 }
 
 /*
  *	vfs_bio_set_valid:
  *
  *	Set the range within the buffer to valid.  The range is
  *	relative to the beginning of the buffer, b_offset.  Note that
  *	b_offset itself may be offset from the beginning of the first
  *	page.
  */
 void
 vfs_bio_set_valid(struct buf *bp, int base, int size)
 {
 	int i, n;
 	vm_page_t m;
 
 	if (!(bp->b_flags & B_VMIO))
 		return;
 
 	/*
 	 * Fixup base to be relative to beginning of first page.
 	 * Set initial n to be the maximum number of bytes in the
 	 * first page that can be validated.
 	 */
 	base += (bp->b_offset & PAGE_MASK);
 	n = PAGE_SIZE - (base & PAGE_MASK);
 
 	/*
 	 * Busy may not be strictly necessary here because the pages are
 	 * unlikely to be fully valid and the vnode lock will synchronize
 	 * their access via getpages.  It is grabbed for consistency with
 	 * other page validation.
 	 */
 	vfs_busy_pages_acquire(bp);
 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 		m = bp->b_pages[i];
 		if (n > size)
 			n = size;
 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
 		base += n;
 		size -= n;
 		n = PAGE_SIZE;
 	}
 	vfs_busy_pages_release(bp);
 }
 
 /*
  *	vfs_bio_clrbuf:
  *
  *	If the specified buffer is a non-VMIO buffer, clear the entire
  *	buffer.  If the specified buffer is a VMIO buffer, clear and
  *	validate only the previously invalid portions of the buffer.
  *	This routine essentially fakes an I/O, so we need to clear
  *	BIO_ERROR and B_INVAL.
  *
  *	Note that while we only theoretically need to clear through b_bcount,
  *	we go ahead and clear through b_bufsize.
  */
 void
 vfs_bio_clrbuf(struct buf *bp) 
 {
 	int i, j, sa, ea, slide, zbits;
 	vm_page_bits_t mask;
 
 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
 		clrbuf(bp);
 		return;
 	}
 	bp->b_flags &= ~B_INVAL;
 	bp->b_ioflags &= ~BIO_ERROR;
 	vfs_busy_pages_acquire(bp);
 	sa = bp->b_offset & PAGE_MASK;
 	slide = 0;
 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
 		ea = slide & PAGE_MASK;
 		if (ea == 0)
 			ea = PAGE_SIZE;
 		if (bp->b_pages[i] == bogus_page)
 			continue;
 		j = sa / DEV_BSIZE;
 		zbits = (sizeof(vm_page_bits_t) * NBBY) -
 		    (ea - sa) / DEV_BSIZE;
 		mask = (VM_PAGE_BITS_ALL >> zbits) << j;
 		if ((bp->b_pages[i]->valid & mask) == mask)
 			continue;
 		if ((bp->b_pages[i]->valid & mask) == 0)
 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
 		else {
 			for (; sa < ea; sa += DEV_BSIZE, j++) {
 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
 					pmap_zero_page_area(bp->b_pages[i],
 					    sa, DEV_BSIZE);
 				}
 			}
 		}
 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
 		    roundup2(ea - sa, DEV_BSIZE));
 	}
 	vfs_busy_pages_release(bp);
 	bp->b_resid = 0;
 }
 
 void
 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
 {
 	vm_page_t m;
 	int i, n;
 
 	if (buf_mapped(bp)) {
 		BUF_CHECK_MAPPED(bp);
 		bzero(bp->b_data + base, size);
 	} else {
 		BUF_CHECK_UNMAPPED(bp);
 		n = PAGE_SIZE - (base & PAGE_MASK);
 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
 			m = bp->b_pages[i];
 			if (n > size)
 				n = size;
 			pmap_zero_page_area(m, base & PAGE_MASK, n);
 			base += n;
 			size -= n;
 			n = PAGE_SIZE;
 		}
 	}
 }
 
 /*
  * Update buffer flags based on I/O request parameters, optionally releasing the
  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
  * where they may be placed on a page queue (VMIO) or freed immediately (direct
  * I/O).  Otherwise the buffer is released to the cache.
  */
 static void
 b_io_dismiss(struct buf *bp, int ioflag, bool release)
 {
 
 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
 	    ("buf %p non-VMIO noreuse", bp));
 
 	if ((ioflag & IO_DIRECT) != 0)
 		bp->b_flags |= B_DIRECT;
 	if ((ioflag & IO_EXT) != 0)
 		bp->b_xflags |= BX_ALTDATA;
 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
 		bp->b_flags |= B_RELBUF;
 		if ((ioflag & IO_NOREUSE) != 0)
 			bp->b_flags |= B_NOREUSE;
 		if (release)
 			brelse(bp);
 	} else if (release)
 		bqrelse(bp);
 }
 
 void
 vfs_bio_brelse(struct buf *bp, int ioflag)
 {
 
 	b_io_dismiss(bp, ioflag, true);
 }
 
 void
 vfs_bio_set_flags(struct buf *bp, int ioflag)
 {
 
 	b_io_dismiss(bp, ioflag, false);
 }
 
 /*
  * vm_hold_load_pages and vm_hold_free_pages get pages into
  * a buffers address space.  The pages are anonymous and are
  * not associated with a file object.
  */
 static void
 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
 {
 	vm_offset_t pg;
 	vm_page_t p;
 	int index;
 
 	BUF_CHECK_MAPPED(bp);
 
 	to = round_page(to);
 	from = round_page(from);
 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
 	KASSERT(to - from <= maxbcachebuf,
 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
 
 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
 		/*
 		 * note: must allocate system pages since blocking here
 		 * could interfere with paging I/O, no matter which
 		 * process we are.
 		 */
 		p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
 		pmap_qenter(pg, &p, 1);
 		bp->b_pages[index] = p;
 	}
 	bp->b_npages = index;
 }
 
 /* Return pages associated with this buf to the vm system */
 static void
 vm_hold_free_pages(struct buf *bp, int newbsize)
 {
 	vm_offset_t from;
 	vm_page_t p;
 	int index, newnpages;
 
 	BUF_CHECK_MAPPED(bp);
 
 	from = round_page((vm_offset_t)bp->b_data + newbsize);
 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
 	if (bp->b_npages > newnpages)
 		pmap_qremove(from, bp->b_npages - newnpages);
 	for (index = newnpages; index < bp->b_npages; index++) {
 		p = bp->b_pages[index];
 		bp->b_pages[index] = NULL;
 		vm_page_unwire_noq(p);
 		vm_page_free(p);
 	}
 	bp->b_npages = newnpages;
 }
 
 /*
  * Map an IO request into kernel virtual address space.
  *
  * All requests are (re)mapped into kernel VA space.
  * Notice that we use b_bufsize for the size of the buffer
  * to be mapped.  b_bcount might be modified by the driver.
  *
  * Note that even if the caller determines that the address space should
  * be valid, a race or a smaller-file mapped into a larger space may
  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
  * check the return value.
  *
  * This function only works with pager buffers.
  */
 int
 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
 {
 	vm_prot_t prot;
 	int pidx;
 
 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
 	prot = VM_PROT_READ;
 	if (bp->b_iocmd == BIO_READ)
 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
 	if (pidx < 0)
 		return (-1);
 	bp->b_bufsize = len;
 	bp->b_npages = pidx;
 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
 	if (mapbuf || !unmapped_buf_allowed) {
 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
 		bp->b_data = bp->b_kvabase + bp->b_offset;
 	} else
 		bp->b_data = unmapped_buf;
 	return (0);
 }
 
 /*
  * Free the io map PTEs associated with this IO operation.
  * We also invalidate the TLB entries and restore the original b_addr.
  *
  * This function only works with pager buffers.
  */
 void
 vunmapbuf(struct buf *bp)
 {
 	int npages;
 
 	npages = bp->b_npages;
 	if (buf_mapped(bp))
 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
 	vm_page_unhold_pages(bp->b_pages, npages);
 
 	bp->b_data = unmapped_buf;
 }
 
 void
 bdone(struct buf *bp)
 {
 	struct mtx *mtxp;
 
 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
 	mtx_lock(mtxp);
 	bp->b_flags |= B_DONE;
 	wakeup(bp);
 	mtx_unlock(mtxp);
 }
 
 void
 bwait(struct buf *bp, u_char pri, const char *wchan)
 {
 	struct mtx *mtxp;
 
 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
 	mtx_lock(mtxp);
 	while ((bp->b_flags & B_DONE) == 0)
 		msleep(bp, mtxp, pri, wchan, 0);
 	mtx_unlock(mtxp);
 }
 
 int
 bufsync(struct bufobj *bo, int waitfor)
 {
 
 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
 }
 
 void
 bufstrategy(struct bufobj *bo, struct buf *bp)
 {
 	int i __unused;
 	struct vnode *vp;
 
 	vp = bp->b_vp;
 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
 	i = VOP_STRATEGY(vp, bp);
 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
 }
 
 /*
  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
  */
 void
 bufobj_init(struct bufobj *bo, void *private)
 {
 	static volatile int bufobj_cleanq;
 
         bo->bo_domain =
             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
         bo->bo_private = private;
         TAILQ_INIT(&bo->bo_clean.bv_hd);
 	pctrie_init(&bo->bo_clean.bv_root);
         TAILQ_INIT(&bo->bo_dirty.bv_hd);
 	pctrie_init(&bo->bo_dirty.bv_root);
 }
 
 void
 bufobj_wrefl(struct bufobj *bo)
 {
 
 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 	ASSERT_BO_WLOCKED(bo);
 	bo->bo_numoutput++;
 }
 
 void
 bufobj_wref(struct bufobj *bo)
 {
 
 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
 	BO_LOCK(bo);
 	bo->bo_numoutput++;
 	BO_UNLOCK(bo);
 }
 
 void
 bufobj_wdrop(struct bufobj *bo)
 {
 
 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
 	BO_LOCK(bo);
 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
 		bo->bo_flag &= ~BO_WWAIT;
 		wakeup(&bo->bo_numoutput);
 	}
 	BO_UNLOCK(bo);
 }
 
 int
 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
 {
 	int error;
 
 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
 	ASSERT_BO_WLOCKED(bo);
 	error = 0;
 	while (bo->bo_numoutput) {
 		bo->bo_flag |= BO_WWAIT;
 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
 		if (error)
 			break;
 	}
 	return (error);
 }
 
 /*
  * Set bio_data or bio_ma for struct bio from the struct buf.
  */
 void
 bdata2bio(struct buf *bp, struct bio *bip)
 {
 
 	if (!buf_mapped(bp)) {
 		KASSERT(unmapped_buf_allowed, ("unmapped"));
 		bip->bio_ma = bp->b_pages;
 		bip->bio_ma_n = bp->b_npages;
 		bip->bio_data = unmapped_buf;
 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
 		bip->bio_flags |= BIO_UNMAPPED;
 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
 		    PAGE_SIZE == bp->b_npages,
 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
 		    (long long)bip->bio_length, bip->bio_ma_n));
 	} else {
 		bip->bio_data = bp->b_data;
 		bip->bio_ma = NULL;
 	}
 }
 
 struct memdesc
 memdesc_bio(struct bio *bio)
 {
 	if ((bio->bio_flags & BIO_VLIST) != 0)
 		return (memdesc_vlist((struct bus_dma_segment *)bio->bio_data,
 		    bio->bio_ma_n));
 
 	if ((bio->bio_flags & BIO_UNMAPPED) != 0)
 		return (memdesc_vmpages(bio->bio_ma, bio->bio_bcount,
 		    bio->bio_ma_offset));
 
 	return (memdesc_vaddr(bio->bio_data, bio->bio_bcount));
 }
 
 static int buf_pager_relbuf;
 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
     &buf_pager_relbuf, 0,
     "Make buffer pager release buffers after reading");
 
 /*
  * The buffer pager.  It uses buffer reads to validate pages.
  *
  * In contrast to the generic local pager from vm/vnode_pager.c, this
  * pager correctly and easily handles volumes where the underlying
  * device block size is greater than the machine page size.  The
  * buffer cache transparently extends the requested page run to be
  * aligned at the block boundary, and does the necessary bogus page
  * replacements in the addends to avoid obliterating already valid
  * pages.
  *
  * The only non-trivial issue is that the exclusive busy state for
  * pages, which is assumed by the vm_pager_getpages() interface, is
  * incompatible with the VMIO buffer cache's desire to share-busy the
  * pages.  This function performs a trivial downgrade of the pages'
  * state before reading buffers, and a less trivial upgrade from the
  * shared-busy to excl-busy state after the read.
  */
 int
 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
     vbg_get_blksize_t get_blksize)
 {
 	vm_page_t m;
 	vm_object_t object;
 	struct buf *bp;
 	struct mount *mp;
 	daddr_t lbn, lbnp;
 	vm_ooffset_t la, lb, poff, poffe;
 	long bo_bs, bsize;
 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
 	bool redo, lpart;
 
 	object = vp->v_object;
 	mp = vp->v_mount;
 	error = 0;
 	la = IDX_TO_OFF(ma[count - 1]->pindex);
 	if (la >= object->un_pager.vnp.vnp_size)
 		return (VM_PAGER_BAD);
 
 	/*
 	 * Change the meaning of la from where the last requested page starts
 	 * to where it ends, because that's the end of the requested region
 	 * and the start of the potential read-ahead region.
 	 */
 	la += PAGE_SIZE;
 	lpart = la > object->un_pager.vnp.vnp_size;
 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
 	    &bo_bs);
 	if (error != 0)
 		return (VM_PAGER_ERROR);
 
 	/*
 	 * Calculate read-ahead, behind and total pages.
 	 */
 	pgsin = count;
 	lb = IDX_TO_OFF(ma[0]->pindex);
 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
 	pgsin += pgsin_b;
 	if (rbehind != NULL)
 		*rbehind = pgsin_b;
 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
 		    PAGE_SIZE) - la);
 	pgsin += pgsin_a;
 	if (rahead != NULL)
 		*rahead = pgsin_a;
 	VM_CNT_INC(v_vnodein);
 	VM_CNT_ADD(v_vnodepgsin, pgsin);
 
 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
 	    != 0) ? GB_UNMAPPED : 0;
 again:
 	for (i = 0; i < count; i++) {
 		if (ma[i] != bogus_page)
 			vm_page_busy_downgrade(ma[i]);
 	}
 
 	lbnp = -1;
 	for (i = 0; i < count; i++) {
 		m = ma[i];
 		if (m == bogus_page)
 			continue;
 
 		/*
 		 * Pages are shared busy and the object lock is not
 		 * owned, which together allow for the pages'
 		 * invalidation.  The racy test for validity avoids
 		 * useless creation of the buffer for the most typical
 		 * case when invalidation is not used in redo or for
 		 * parallel read.  The shared->excl upgrade loop at
 		 * the end of the function catches the race in a
 		 * reliable way (protected by the object lock).
 		 */
 		if (vm_page_all_valid(m))
 			continue;
 
 		poff = IDX_TO_OFF(m->pindex);
 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
 		for (; poff < poffe; poff += bsize) {
 			lbn = get_lblkno(vp, poff);
 			if (lbn == lbnp)
 				goto next_page;
 			lbnp = lbn;
 
 			error = get_blksize(vp, lbn, &bsize);
 			if (error == 0)
 				error = bread_gb(vp, lbn, bsize,
 				    curthread->td_ucred, br_flags, &bp);
 			if (error != 0)
 				goto end_pages;
 			if (bp->b_rcred == curthread->td_ucred) {
 				crfree(bp->b_rcred);
 				bp->b_rcred = NOCRED;
 			}
 			if (LIST_EMPTY(&bp->b_dep)) {
 				/*
 				 * Invalidation clears m->valid, but
 				 * may leave B_CACHE flag if the
 				 * buffer existed at the invalidation
 				 * time.  In this case, recycle the
 				 * buffer to do real read on next
 				 * bread() after redo.
 				 *
 				 * Otherwise B_RELBUF is not strictly
 				 * necessary, enable to reduce buf
 				 * cache pressure.
 				 */
 				if (buf_pager_relbuf ||
 				    !vm_page_all_valid(m))
 					bp->b_flags |= B_RELBUF;
 
 				bp->b_flags &= ~B_NOCACHE;
 				brelse(bp);
 			} else {
 				bqrelse(bp);
 			}
 		}
 		KASSERT(1 /* racy, enable for debugging */ ||
 		    vm_page_all_valid(m) || i == count - 1,
 		    ("buf %d %p invalid", i, m));
 		if (i == count - 1 && lpart) {
 			if (!vm_page_none_valid(m) &&
 			    !vm_page_all_valid(m))
 				vm_page_zero_invalid(m, TRUE);
 		}
 next_page:;
 	}
 end_pages:
 
 	redo = false;
 	for (i = 0; i < count; i++) {
 		if (ma[i] == bogus_page)
 			continue;
 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
 			vm_page_sunbusy(ma[i]);
 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
 			    VM_ALLOC_NORMAL);
 		}
 
 		/*
 		 * Since the pages were only sbusy while neither the
 		 * buffer nor the object lock was held by us, or
 		 * reallocated while vm_page_grab() slept for busy
 		 * relinguish, they could have been invalidated.
 		 * Recheck the valid bits and re-read as needed.
 		 *
 		 * Note that the last page is made fully valid in the
 		 * read loop, and partial validity for the page at
 		 * index count - 1 could mean that the page was
 		 * invalidated or removed, so we must restart for
 		 * safety as well.
 		 */
 		if (!vm_page_all_valid(ma[i]))
 			redo = true;
 	}
 	if (redo && error == 0)
 		goto again;
 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
 }
 
 #include "opt_ddb.h"
 #ifdef DDB
 #include <ddb/ddb.h>
 
 /* DDB command to show buffer data */
 DB_SHOW_COMMAND(buffer, db_show_buffer)
 {
 	/* get args */
 	struct buf *bp = (struct buf *)addr;
 #ifdef FULL_BUF_TRACKING
 	uint32_t i, j;
 #endif
 
 	if (!have_addr) {
 		db_printf("usage: show buffer <addr>\n");
 		return;
 	}
 
 	db_printf("buf at %p\n", bp);
 	db_printf("b_flags = 0x%b, b_xflags = 0x%b\n",
 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
 	db_printf("b_vflags = 0x%b, b_ioflags = 0x%b\n",
 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
 	db_printf(
 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
 	    "b_bufobj = %p, b_data = %p\n"
 	    "b_blkno = %jd, b_lblkno = %jd, b_vp = %p, b_dep = %p\n",
 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
 	    bp->b_kvabase, bp->b_kvasize);
 	if (bp->b_npages) {
 		int i;
 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
 		for (i = 0; i < bp->b_npages; i++) {
 			vm_page_t m;
 			m = bp->b_pages[i];
 			if (m != NULL)
 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
 				    (u_long)m->pindex,
 				    (u_long)VM_PAGE_TO_PHYS(m));
 			else
 				db_printf("( ??? )");
 			if ((i + 1) < bp->b_npages)
 				db_printf(",");
 		}
 		db_printf("\n");
 	}
 	BUF_LOCKPRINTINFO(bp);
 #if defined(FULL_BUF_TRACKING)
 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
 
 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
 			continue;
 		db_printf(" %2u: %s\n", j,
 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
 	}
 #elif defined(BUF_TRACKING)
 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
 #endif
 }
 
 DB_SHOW_COMMAND_FLAGS(bufqueues, bufqueues, DB_CMD_MEMSAFE)
 {
 	struct bufdomain *bd;
 	struct buf *bp;
 	long total;
 	int i, j, cnt;
 
 	db_printf("bqempty: %d\n", bqempty.bq_len);
 
 	for (i = 0; i < buf_domains; i++) {
 		bd = &bdomain[i];
 		db_printf("Buf domain %d\n", i);
 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
 		db_printf("\n");
 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
 		db_printf("\n");
 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
 		db_printf("\n");
 		total = 0;
 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
 			total += bp->b_bufsize;
 		db_printf("\tcleanq count\t%d (%ld)\n",
 		    bd->bd_cleanq->bq_len, total);
 		total = 0;
 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
 			total += bp->b_bufsize;
 		db_printf("\tdirtyq count\t%d (%ld)\n",
 		    bd->bd_dirtyq.bq_len, total);
 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
 		db_printf("\tCPU ");
 		for (j = 0; j <= mp_maxid; j++)
 			db_printf("%d, ", bd->bd_subq[j].bq_len);
 		db_printf("\n");
 		cnt = 0;
 		total = 0;
 		for (j = 0; j < nbuf; j++) {
 			bp = nbufp(j);
 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
 				cnt++;
 				total += bp->b_bufsize;
 			}
 		}
 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
 		cnt = 0;
 		total = 0;
 		for (j = 0; j < nbuf; j++) {
 			bp = nbufp(j);
 			if (bp->b_domain == i) {
 				cnt++;
 				total += bp->b_bufsize;
 			}
 		}
 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
 	}
 }
 
 DB_SHOW_COMMAND_FLAGS(lockedbufs, lockedbufs, DB_CMD_MEMSAFE)
 {
 	struct buf *bp;
 	int i;
 
 	for (i = 0; i < nbuf; i++) {
 		bp = nbufp(i);
 		if (BUF_ISLOCKED(bp)) {
 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 			db_printf("\n");
 			if (db_pager_quit)
 				break;
 		}
 	}
 }
 
 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
 {
 	struct vnode *vp;
 	struct buf *bp;
 
 	if (!have_addr) {
 		db_printf("usage: show vnodebufs <addr>\n");
 		return;
 	}
 	vp = (struct vnode *)addr;
 	db_printf("Clean buffers:\n");
 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 		db_printf("\n");
 	}
 	db_printf("Dirty buffers:\n");
 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
 		db_printf("\n");
 	}
 }
 
 DB_COMMAND_FLAGS(countfreebufs, db_coundfreebufs, DB_CMD_MEMSAFE)
 {
 	struct buf *bp;
 	int i, used = 0, nfree = 0;
 
 	if (have_addr) {
 		db_printf("usage: countfreebufs\n");
 		return;
 	}
 
 	for (i = 0; i < nbuf; i++) {
 		bp = nbufp(i);
 		if (bp->b_qindex == QUEUE_EMPTY)
 			nfree++;
 		else
 			used++;
 	}
 
 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
 	    nfree + used);
 	db_printf("numfreebuffers is %d\n", numfreebuffers);
 }
 #endif /* DDB */