diff --git a/sys/ufs/ffs/ffs_inode.c b/sys/ufs/ffs/ffs_inode.c index b78f46ae4ba0..4b2b2989fb81 100644 --- a/sys/ufs/ffs/ffs_inode.c +++ b/sys/ufs/ffs/ffs_inode.c @@ -1,825 +1,823 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_ufs.h" #include "opt_quota.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef UFS_DIRHASH #include #endif #include #include #include static int ffs_indirtrunc(struct inode *, ufs2_daddr_t, ufs2_daddr_t, ufs2_daddr_t, int, ufs2_daddr_t *); static void ffs_inode_bwrite(struct vnode *vp, struct buf *bp, int flags) { if ((flags & IO_SYNC) != 0) bwrite(bp); else if (DOINGASYNC(vp)) bdwrite(bp); else bawrite(bp); } /* * Update the access, modified, and inode change times as specified by the * IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively. Write the inode * to disk if the IN_MODIFIED flag is set (it may be set initially, or by * the timestamp update). The IN_LAZYMOD flag is set to force a write * later if not now. The IN_LAZYACCESS is set instead of IN_MODIFIED if the fs * is currently being suspended (or is suspended) and vnode has been accessed. * If we write now, then clear IN_MODIFIED, IN_LAZYACCESS and IN_LAZYMOD to * reflect the presumably successful write, and if waitfor is set, then wait * for the write to complete. */ int ffs_update(vp, waitfor) struct vnode *vp; int waitfor; { struct fs *fs; struct buf *bp; struct inode *ip; daddr_t bn; int flags, error; ASSERT_VOP_ELOCKED(vp, "ffs_update"); ufs_itimes(vp); ip = VTOI(vp); if ((ip->i_flag & IN_MODIFIED) == 0 && waitfor == 0) return (0); ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); /* * The IN_SIZEMOD and IN_IBLKDATA flags indicate changes to the * file size and block pointer fields in the inode. When these * fields have been changed, the fsync() and fsyncdata() system * calls must write the inode to ensure their semantics that the * file is on stable store. * * The IN_SIZEMOD and IN_IBLKDATA flags cannot be cleared until * a synchronous write of the inode is done. If they are cleared * on an asynchronous write, then the inode may not yet have been * written to the disk when an fsync() or fsyncdata() call is done. * Absent these flags, these calls would not know that they needed * to write the inode. Thus, these flags only can be cleared on * synchronous writes of the inode. Since the inode will be locked * for the duration of the I/O that writes it to disk, no fsync() * or fsyncdata() will be able to run before the on-disk inode * is complete. */ if (waitfor) ip->i_flag &= ~(IN_SIZEMOD | IN_IBLKDATA); fs = ITOFS(ip); if (fs->fs_ronly) return (0); /* * If we are updating a snapshot and another process is currently * writing the buffer containing the inode for this snapshot then * a deadlock can occur when it tries to check the snapshot to see * if that block needs to be copied. Thus when updating a snapshot * we check to see if the buffer is already locked, and if it is * we drop the snapshot lock until the buffer has been written * and is available to us. We have to grab a reference to the * snapshot vnode to prevent it from being removed while we are * waiting for the buffer. */ loop: flags = 0; if (IS_SNAPSHOT(ip)) flags = GB_LOCK_NOWAIT; bn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); error = ffs_breadz(VFSTOUFS(vp->v_mount), ITODEVVP(ip), bn, bn, (int) fs->fs_bsize, NULL, NULL, 0, NOCRED, flags, NULL, &bp); if (error != 0) { /* * If EBUSY was returned without GB_LOCK_NOWAIT (which * requests trylock for buffer lock), it is for some * other reason and we should not handle it specially. */ if (error != EBUSY || (flags & GB_LOCK_NOWAIT) == 0) return (error); /* * Wait for our inode block to become available. * * Hold a reference to the vnode to protect against * ffs_snapgone(). Since we hold a reference, it can only * get reclaimed (VIRF_DOOMED flag) in a forcible downgrade * or unmount. For an unmount, the entire filesystem will be * gone, so we cannot attempt to touch anything associated * with it while the vnode is unlocked; all we can do is * pause briefly and try again. If when we relock the vnode * we discover that it has been reclaimed, updating it is no * longer necessary and we can just return an error. */ vref(vp); VOP_UNLOCK(vp); pause("ffsupd", 1); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); vrele(vp); if (VN_IS_DOOMED(vp)) return (ENOENT); /* * Recalculate flags, because the vnode was relocked and * could no longer be a snapshot. */ goto loop; } if (DOINGSOFTDEP(vp)) softdep_update_inodeblock(ip, bp, waitfor); else if (ip->i_effnlink != ip->i_nlink) panic("ffs_update: bad link cnt"); if (I_IS_UFS1(ip)) { *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; /* * XXX: FIX? The entropy here is desirable, * but the harvesting may be expensive */ random_harvest_queue(&(ip->i_din1), sizeof(ip->i_din1), RANDOM_FS_ATIME); } else { ffs_update_dinode_ckhash(fs, ip->i_din2); *((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; /* * XXX: FIX? The entropy here is desirable, * but the harvesting may be expensive */ random_harvest_queue(&(ip->i_din2), sizeof(ip->i_din2), RANDOM_FS_ATIME); } if (waitfor) { error = bwrite(bp); if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) error = 0; } else if (vm_page_count_severe() || buf_dirty_count_severe()) { bawrite(bp); error = 0; } else { if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; bdwrite(bp); error = 0; } return (error); } #define SINGLE 0 /* index of single indirect block */ #define DOUBLE 1 /* index of double indirect block */ #define TRIPLE 2 /* index of triple indirect block */ /* * Truncate the inode ip to at most length size, freeing the * disk blocks. */ int ffs_truncate(vp, length, flags, cred) struct vnode *vp; off_t length; int flags; struct ucred *cred; { struct inode *ip; ufs2_daddr_t bn, lbn, lastblock, lastiblock[UFS_NIADDR]; ufs2_daddr_t indir_lbn[UFS_NIADDR], oldblks[UFS_NDADDR + UFS_NIADDR]; ufs2_daddr_t newblks[UFS_NDADDR + UFS_NIADDR]; - ufs2_daddr_t count, blocksreleased = 0, datablocks, blkno; - struct bufobj *bo; + ufs2_daddr_t count, blocksreleased = 0, blkno; + struct bufobj *bo __diagused; struct fs *fs; struct buf *bp; struct ufsmount *ump; int softdeptrunc, journaltrunc; int needextclean, extblocks; int offset, size, level, nblocks; int i, error, allerror, indiroff, waitforupdate; u_long key; off_t osize; ip = VTOI(vp); ump = VFSTOUFS(vp->v_mount); fs = ump->um_fs; bo = &vp->v_bufobj; ASSERT_VOP_LOCKED(vp, "ffs_truncate"); if (length < 0) return (EINVAL); if (length > fs->fs_maxfilesize) return (EFBIG); #ifdef QUOTA error = getinoquota(ip); if (error) return (error); #endif /* * Historically clients did not have to specify which data * they were truncating. So, if not specified, we assume * traditional behavior, e.g., just the normal data. */ if ((flags & (IO_EXT | IO_NORMAL)) == 0) flags |= IO_NORMAL; if (!DOINGSOFTDEP(vp) && !DOINGASYNC(vp)) flags |= IO_SYNC; waitforupdate = (flags & IO_SYNC) != 0 || !DOINGASYNC(vp); /* * If we are truncating the extended-attributes, and cannot * do it with soft updates, then do it slowly here. If we are * truncating both the extended attributes and the file contents * (e.g., the file is being unlinked), then pick it off with * soft updates below. */ allerror = 0; needextclean = 0; softdeptrunc = 0; journaltrunc = DOINGSUJ(vp); journaltrunc = 0; /* XXX temp patch until bug found */ if (journaltrunc == 0 && DOINGSOFTDEP(vp) && length == 0) softdeptrunc = !softdep_slowdown(vp); extblocks = 0; - datablocks = DIP(ip, i_blocks); if (fs->fs_magic == FS_UFS2_MAGIC && ip->i_din2->di_extsize > 0) { extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); - datablocks -= extblocks; } if ((flags & IO_EXT) && extblocks > 0) { if (length != 0) panic("ffs_truncate: partial trunc of extdata"); if (softdeptrunc || journaltrunc) { if ((flags & IO_NORMAL) == 0) goto extclean; needextclean = 1; } else { if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); #ifdef QUOTA (void) chkdq(ip, -extblocks, NOCRED, FORCE); #endif vinvalbuf(vp, V_ALT, 0, 0); vn_pages_remove(vp, OFF_TO_IDX(lblktosize(fs, -extblocks)), 0); osize = ip->i_din2->di_extsize; ip->i_din2->di_blocks -= extblocks; ip->i_din2->di_extsize = 0; for (i = 0; i < UFS_NXADDR; i++) { oldblks[i] = ip->i_din2->di_extb[i]; ip->i_din2->di_extb[i] = 0; } UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); if ((error = ffs_update(vp, waitforupdate))) return (error); for (i = 0; i < UFS_NXADDR; i++) { if (oldblks[i] == 0) continue; ffs_blkfree(ump, fs, ITODEVVP(ip), oldblks[i], sblksize(fs, osize, i), ip->i_number, vp->v_type, NULL, SINGLETON_KEY); } } } if ((flags & IO_NORMAL) == 0) return (0); if (vp->v_type == VLNK && ip->i_size < ump->um_maxsymlinklen) { #ifdef INVARIANTS if (length != 0) panic("ffs_truncate: partial truncate of symlink"); #endif bzero(SHORTLINK(ip), (u_int)ip->i_size); ip->i_size = 0; DIP_SET(ip, i_size, 0); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); if (needextclean) goto extclean; return (ffs_update(vp, waitforupdate)); } if (ip->i_size == length) { UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); if (needextclean) goto extclean; return (ffs_update(vp, 0)); } if (fs->fs_ronly) panic("ffs_truncate: read-only filesystem"); if (IS_SNAPSHOT(ip)) ffs_snapremove(vp); vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0; osize = ip->i_size; /* * Lengthen the size of the file. We must ensure that the * last byte of the file is allocated. Since the smallest * value of osize is 0, length will be at least 1. */ if (osize < length) { vnode_pager_setsize(vp, length); flags |= BA_CLRBUF; error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); if (error) { vnode_pager_setsize(vp, osize); return (error); } ip->i_size = length; DIP_SET(ip, i_size, length); if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; ffs_inode_bwrite(vp, bp, flags); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); return (ffs_update(vp, waitforupdate)); } /* * Lookup block number for a given offset. Zero length files * have no blocks, so return a blkno of -1. */ lbn = lblkno(fs, length - 1); if (length == 0) { blkno = -1; } else if (lbn < UFS_NDADDR) { blkno = DIP(ip, i_db[lbn]); } else { error = UFS_BALLOC(vp, lblktosize(fs, (off_t)lbn), fs->fs_bsize, cred, BA_METAONLY, &bp); if (error) return (error); indiroff = (lbn - UFS_NDADDR) % NINDIR(fs); if (I_IS_UFS1(ip)) blkno = ((ufs1_daddr_t *)(bp->b_data))[indiroff]; else blkno = ((ufs2_daddr_t *)(bp->b_data))[indiroff]; /* * If the block number is non-zero, then the indirect block * must have been previously allocated and need not be written. * If the block number is zero, then we may have allocated * the indirect block and hence need to write it out. */ if (blkno != 0) brelse(bp); else if (flags & IO_SYNC) bwrite(bp); else bdwrite(bp); } /* * If the block number at the new end of the file is zero, * then we must allocate it to ensure that the last block of * the file is allocated. Soft updates does not handle this * case, so here we have to clean up the soft updates data * structures describing the allocation past the truncation * point. Finding and deallocating those structures is a lot of * work. Since partial truncation with a hole at the end occurs * rarely, we solve the problem by syncing the file so that it * will have no soft updates data structures left. */ if (blkno == 0 && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); if (blkno != 0 && DOINGSOFTDEP(vp)) { if (softdeptrunc == 0 && journaltrunc == 0) { /* * If soft updates cannot handle this truncation, * clean up soft dependency data structures and * fall through to the synchronous truncation. */ if ((error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); } else { flags = IO_NORMAL | (needextclean ? IO_EXT: 0); if (journaltrunc) softdep_journal_freeblocks(ip, cred, length, flags); else softdep_setup_freeblocks(ip, length, flags); ASSERT_VOP_LOCKED(vp, "ffs_truncate1"); if (journaltrunc == 0) { UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); error = ffs_update(vp, 0); } return (error); } } /* * Shorten the size of the file. If the last block of the * shortened file is unallocated, we must allocate it. * Additionally, if the file is not being truncated to a * block boundary, the contents of the partial block * following the end of the file must be zero'ed in * case it ever becomes accessible again because of * subsequent file growth. Directories however are not * zero'ed as they should grow back initialized to empty. */ offset = blkoff(fs, length); if (blkno != 0 && offset == 0) { ip->i_size = length; DIP_SET(ip, i_size, length); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); #ifdef UFS_DIRHASH if (vp->v_type == VDIR && ip->i_dirhash != NULL) ufsdirhash_dirtrunc(ip, length); #endif } else { lbn = lblkno(fs, length); flags |= BA_CLRBUF; error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); if (error) return (error); ffs_inode_bwrite(vp, bp, flags); /* * When we are doing soft updates and the UFS_BALLOC * above fills in a direct block hole with a full sized * block that will be truncated down to a fragment below, * we must flush out the block dependency with an FSYNC * so that we do not get a soft updates inconsistency * when we create the fragment below. */ if (DOINGSOFTDEP(vp) && lbn < UFS_NDADDR && fragroundup(fs, blkoff(fs, length)) < fs->fs_bsize && (error = ffs_syncvnode(vp, MNT_WAIT, 0)) != 0) return (error); error = UFS_BALLOC(vp, length - 1, 1, cred, flags, &bp); if (error) return (error); ip->i_size = length; DIP_SET(ip, i_size, length); #ifdef UFS_DIRHASH if (vp->v_type == VDIR && ip->i_dirhash != NULL) ufsdirhash_dirtrunc(ip, length); #endif size = blksize(fs, ip, lbn); if (vp->v_type != VDIR && offset != 0) bzero((char *)bp->b_data + offset, (u_int)(size - offset)); /* Kirk's code has reallocbuf(bp, size, 1) here */ allocbuf(bp, size); if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; ffs_inode_bwrite(vp, bp, flags); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); } /* * Calculate index into inode's block list of * last direct and indirect blocks (if any) * which we want to keep. Lastblock is -1 when * the file is truncated to 0. */ lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastiblock[SINGLE] = lastblock - UFS_NDADDR; lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs); lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs); nblocks = btodb(fs->fs_bsize); /* * Update file and block pointers on disk before we start freeing * blocks. If we crash before free'ing blocks below, the blocks * will be returned to the free list. lastiblock values are also * normalized to -1 for calls to ffs_indirtrunc below. */ for (level = TRIPLE; level >= SINGLE; level--) { oldblks[UFS_NDADDR + level] = DIP(ip, i_ib[level]); if (lastiblock[level] < 0) { DIP_SET(ip, i_ib[level], 0); lastiblock[level] = -1; } } for (i = 0; i < UFS_NDADDR; i++) { oldblks[i] = DIP(ip, i_db[i]); if (i > lastblock) DIP_SET(ip, i_db[i], 0); } UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); allerror = ffs_update(vp, waitforupdate); /* * Having written the new inode to disk, save its new configuration * and put back the old block pointers long enough to process them. * Note that we save the new block configuration so we can check it * when we are done. */ for (i = 0; i < UFS_NDADDR; i++) { newblks[i] = DIP(ip, i_db[i]); DIP_SET(ip, i_db[i], oldblks[i]); } for (i = 0; i < UFS_NIADDR; i++) { newblks[UFS_NDADDR + i] = DIP(ip, i_ib[i]); DIP_SET(ip, i_ib[i], oldblks[UFS_NDADDR + i]); } ip->i_size = osize; DIP_SET(ip, i_size, osize); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); error = vtruncbuf(vp, length, fs->fs_bsize); if (error && (allerror == 0)) allerror = error; /* * Indirect blocks first. */ indir_lbn[SINGLE] = -UFS_NDADDR; indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1; indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1; for (level = TRIPLE; level >= SINGLE; level--) { bn = DIP(ip, i_ib[level]); if (bn != 0) { error = ffs_indirtrunc(ip, indir_lbn[level], fsbtodb(fs, bn), lastiblock[level], level, &count); if (error) allerror = error; blocksreleased += count; if (lastiblock[level] < 0) { DIP_SET(ip, i_ib[level], 0); ffs_blkfree(ump, fs, ump->um_devvp, bn, fs->fs_bsize, ip->i_number, vp->v_type, NULL, SINGLETON_KEY); blocksreleased += nblocks; } } if (lastiblock[level] >= 0) goto done; } /* * All whole direct blocks or frags. */ key = ffs_blkrelease_start(ump, ump->um_devvp, ip->i_number); for (i = UFS_NDADDR - 1; i > lastblock; i--) { long bsize; bn = DIP(ip, i_db[i]); if (bn == 0) continue; DIP_SET(ip, i_db[i], 0); bsize = blksize(fs, ip, i); ffs_blkfree(ump, fs, ump->um_devvp, bn, bsize, ip->i_number, vp->v_type, NULL, key); blocksreleased += btodb(bsize); } ffs_blkrelease_finish(ump, key); if (lastblock < 0) goto done; /* * Finally, look for a change in size of the * last direct block; release any frags. */ bn = DIP(ip, i_db[lastblock]); if (bn != 0) { long oldspace, newspace; /* * Calculate amount of space we're giving * back as old block size minus new block size. */ oldspace = blksize(fs, ip, lastblock); ip->i_size = length; DIP_SET(ip, i_size, length); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); newspace = blksize(fs, ip, lastblock); if (newspace == 0) panic("ffs_truncate: newspace"); if (oldspace - newspace > 0) { /* * Block number of space to be free'd is * the old block # plus the number of frags * required for the storage we're keeping. */ bn += numfrags(fs, newspace); ffs_blkfree(ump, fs, ump->um_devvp, bn, oldspace - newspace, ip->i_number, vp->v_type, NULL, SINGLETON_KEY); blocksreleased += btodb(oldspace - newspace); } } done: #ifdef INVARIANTS for (level = SINGLE; level <= TRIPLE; level++) if (newblks[UFS_NDADDR + level] != DIP(ip, i_ib[level])) panic("ffs_truncate1: level %d newblks %jd != i_ib %jd", level, (intmax_t)newblks[UFS_NDADDR + level], (intmax_t)DIP(ip, i_ib[level])); for (i = 0; i < UFS_NDADDR; i++) if (newblks[i] != DIP(ip, i_db[i])) panic("ffs_truncate2: blkno %d newblks %jd != i_db %jd", i, (intmax_t)newblks[UFS_NDADDR + level], (intmax_t)DIP(ip, i_ib[level])); BO_LOCK(bo); if (length == 0 && (fs->fs_magic != FS_UFS2_MAGIC || ip->i_din2->di_extsize == 0) && (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0)) panic("ffs_truncate3: vp = %p, buffers: dirty = %d, clean = %d", vp, bo->bo_dirty.bv_cnt, bo->bo_clean.bv_cnt); BO_UNLOCK(bo); #endif /* INVARIANTS */ /* * Put back the real size. */ ip->i_size = length; DIP_SET(ip, i_size, length); if (DIP(ip, i_blocks) >= blocksreleased) DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - blocksreleased); else /* sanity */ DIP_SET(ip, i_blocks, 0); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); #ifdef QUOTA (void) chkdq(ip, -blocksreleased, NOCRED, FORCE); #endif return (allerror); extclean: if (journaltrunc) softdep_journal_freeblocks(ip, cred, length, IO_EXT); else softdep_setup_freeblocks(ip, length, IO_EXT); return (ffs_update(vp, waitforupdate)); } /* * Release blocks associated with the inode ip and stored in the indirect * block bn. Blocks are free'd in LIFO order up to (but not including) * lastbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. */ static int ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp) struct inode *ip; ufs2_daddr_t lbn, lastbn; ufs2_daddr_t dbn; int level; ufs2_daddr_t *countp; { struct buf *bp; struct fs *fs; struct ufsmount *ump; struct vnode *vp; caddr_t copy = NULL; u_long key; int i, nblocks, error = 0, allerror = 0; ufs2_daddr_t nb, nlbn, last; ufs2_daddr_t blkcount, factor, blocksreleased = 0; ufs1_daddr_t *bap1 = NULL; ufs2_daddr_t *bap2 = NULL; #define BAP(ip, i) (I_IS_UFS1(ip) ? bap1[i] : bap2[i]) fs = ITOFS(ip); ump = ITOUMP(ip); /* * Calculate index in current block of last * block to be kept. -1 indicates the entire * block so we need not calculate the index. */ factor = lbn_offset(fs, level); last = lastbn; if (lastbn > 0) last /= factor; nblocks = btodb(fs->fs_bsize); /* * Get buffer of block pointers, zero those entries corresponding * to blocks to be free'd, and update on disk copy first. Since * double(triple) indirect before single(double) indirect, calls * to VOP_BMAP() on these blocks will fail. However, we already * have the on-disk address, so we just pass it to bread() instead * of having bread() attempt to calculate it using VOP_BMAP(). */ vp = ITOV(ip); error = ffs_breadz(ump, vp, lbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); if (error) { *countp = 0; return (error); } if (I_IS_UFS1(ip)) bap1 = (ufs1_daddr_t *)bp->b_data; else bap2 = (ufs2_daddr_t *)bp->b_data; if (lastbn != -1) { copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK); bcopy((caddr_t)bp->b_data, copy, (u_int)fs->fs_bsize); for (i = last + 1; i < NINDIR(fs); i++) if (I_IS_UFS1(ip)) bap1[i] = 0; else bap2[i] = 0; if (DOINGASYNC(vp)) { bdwrite(bp); } else { error = bwrite(bp); if (error) allerror = error; } if (I_IS_UFS1(ip)) bap1 = (ufs1_daddr_t *)copy; else bap2 = (ufs2_daddr_t *)copy; } /* * Recursively free totally unused blocks. */ key = ffs_blkrelease_start(ump, ITODEVVP(ip), ip->i_number); for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last; i--, nlbn += factor) { nb = BAP(ip, i); if (nb == 0) continue; if (level > SINGLE) { if ((error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), (ufs2_daddr_t)-1, level - 1, &blkcount)) != 0) allerror = error; blocksreleased += blkcount; } ffs_blkfree(ump, fs, ITODEVVP(ip), nb, fs->fs_bsize, ip->i_number, vp->v_type, NULL, key); blocksreleased += nblocks; } ffs_blkrelease_finish(ump, key); /* * Recursively free last partial block. */ if (level > SINGLE && lastbn >= 0) { last = lastbn % factor; nb = BAP(ip, i); if (nb != 0) { error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb), last, level - 1, &blkcount); if (error) allerror = error; blocksreleased += blkcount; } } if (copy != NULL) { free(copy, M_TEMP); } else { bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); } *countp = blocksreleased; return (allerror); } int ffs_rdonly(struct inode *ip) { return (ITOFS(ip)->fs_ronly != 0); } diff --git a/sys/ufs/ffs/ffs_softdep.c b/sys/ufs/ffs/ffs_softdep.c index 27d1cc8b0537..0d2de850bd3e 100644 --- a/sys/ufs/ffs/ffs_softdep.c +++ b/sys/ufs/ffs/ffs_softdep.c @@ -1,15254 +1,15250 @@ /*- * SPDX-License-Identifier: BSD-2-Clause-FreeBSD * * Copyright 1998, 2000 Marshall Kirk McKusick. * Copyright 2009, 2010 Jeffrey W. Roberson * All rights reserved. * * The soft updates code is derived from the appendix of a University * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, * "Soft Updates: A Solution to the Metadata Update Problem in File * Systems", CSE-TR-254-95, August 1995). * * Further information about soft updates can be obtained from: * * Marshall Kirk McKusick http://www.mckusick.com/softdep/ * 1614 Oxford Street mckusick@mckusick.com * Berkeley, CA 94709-1608 +1-510-843-9542 * USA * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 */ #include __FBSDID("$FreeBSD$"); #include "opt_ffs.h" #include "opt_quota.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KTR_SUJ 0 /* Define to KTR_SPARE. */ #ifndef SOFTUPDATES int softdep_flushfiles(oldmnt, flags, td) struct mount *oldmnt; int flags; struct thread *td; { panic("softdep_flushfiles called"); } int softdep_mount(devvp, mp, fs, cred) struct vnode *devvp; struct mount *mp; struct fs *fs; struct ucred *cred; { return (0); } void softdep_initialize() { return; } void softdep_uninitialize() { return; } void softdep_unmount(mp) struct mount *mp; { panic("softdep_unmount called"); } void softdep_setup_sbupdate(ump, fs, bp) struct ufsmount *ump; struct fs *fs; struct buf *bp; { panic("softdep_setup_sbupdate called"); } void softdep_setup_inomapdep(bp, ip, newinum, mode) struct buf *bp; struct inode *ip; ino_t newinum; int mode; { panic("softdep_setup_inomapdep called"); } void softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) struct buf *bp; struct mount *mp; ufs2_daddr_t newblkno; int frags; int oldfrags; { panic("softdep_setup_blkmapdep called"); } void softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) struct inode *ip; ufs_lbn_t lbn; ufs2_daddr_t newblkno; ufs2_daddr_t oldblkno; long newsize; long oldsize; struct buf *bp; { panic("softdep_setup_allocdirect called"); } void softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) struct inode *ip; ufs_lbn_t lbn; ufs2_daddr_t newblkno; ufs2_daddr_t oldblkno; long newsize; long oldsize; struct buf *bp; { panic("softdep_setup_allocext called"); } void softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) struct inode *ip; ufs_lbn_t lbn; struct buf *bp; int ptrno; ufs2_daddr_t newblkno; ufs2_daddr_t oldblkno; struct buf *nbp; { panic("softdep_setup_allocindir_page called"); } void softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) struct buf *nbp; struct inode *ip; struct buf *bp; int ptrno; ufs2_daddr_t newblkno; { panic("softdep_setup_allocindir_meta called"); } void softdep_journal_freeblocks(ip, cred, length, flags) struct inode *ip; struct ucred *cred; off_t length; int flags; { panic("softdep_journal_freeblocks called"); } void softdep_journal_fsync(ip) struct inode *ip; { panic("softdep_journal_fsync called"); } void softdep_setup_freeblocks(ip, length, flags) struct inode *ip; off_t length; int flags; { panic("softdep_setup_freeblocks called"); } void softdep_freefile(pvp, ino, mode) struct vnode *pvp; ino_t ino; int mode; { panic("softdep_freefile called"); } int softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) struct buf *bp; struct inode *dp; off_t diroffset; ino_t newinum; struct buf *newdirbp; int isnewblk; { panic("softdep_setup_directory_add called"); } void softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) struct buf *bp; struct inode *dp; caddr_t base; caddr_t oldloc; caddr_t newloc; int entrysize; { panic("softdep_change_directoryentry_offset called"); } void softdep_setup_remove(bp, dp, ip, isrmdir) struct buf *bp; struct inode *dp; struct inode *ip; int isrmdir; { panic("softdep_setup_remove called"); } void softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) struct buf *bp; struct inode *dp; struct inode *ip; ino_t newinum; int isrmdir; { panic("softdep_setup_directory_change called"); } void softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) struct mount *mp; struct buf *bp; ufs2_daddr_t blkno; int frags; struct workhead *wkhd; { panic("%s called", __FUNCTION__); } void softdep_setup_inofree(mp, bp, ino, wkhd) struct mount *mp; struct buf *bp; ino_t ino; struct workhead *wkhd; { panic("%s called", __FUNCTION__); } void softdep_setup_unlink(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_setup_link(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_revert_link(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_setup_rmdir(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_revert_rmdir(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_setup_create(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_revert_create(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_setup_mkdir(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_revert_mkdir(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } void softdep_setup_dotdot_link(dp, ip) struct inode *dp; struct inode *ip; { panic("%s called", __FUNCTION__); } int softdep_prealloc(vp, waitok) struct vnode *vp; int waitok; { panic("%s called", __FUNCTION__); } int softdep_journal_lookup(mp, vpp) struct mount *mp; struct vnode **vpp; { return (ENOENT); } void softdep_change_linkcnt(ip) struct inode *ip; { panic("softdep_change_linkcnt called"); } void softdep_load_inodeblock(ip) struct inode *ip; { panic("softdep_load_inodeblock called"); } void softdep_update_inodeblock(ip, bp, waitfor) struct inode *ip; struct buf *bp; int waitfor; { panic("softdep_update_inodeblock called"); } int softdep_fsync(vp) struct vnode *vp; /* the "in_core" copy of the inode */ { return (0); } void softdep_fsync_mountdev(vp) struct vnode *vp; { return; } int softdep_flushworklist(oldmnt, countp, td) struct mount *oldmnt; int *countp; struct thread *td; { *countp = 0; return (0); } int softdep_sync_metadata(struct vnode *vp) { panic("softdep_sync_metadata called"); } int softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) { panic("softdep_sync_buf called"); } int softdep_slowdown(vp) struct vnode *vp; { panic("softdep_slowdown called"); } int softdep_request_cleanup(fs, vp, cred, resource) struct fs *fs; struct vnode *vp; struct ucred *cred; int resource; { return (0); } int softdep_check_suspend(struct mount *mp, struct vnode *devvp, int softdep_depcnt, int softdep_accdepcnt, int secondary_writes, int secondary_accwrites) { struct bufobj *bo; int error; (void) softdep_depcnt, (void) softdep_accdepcnt; bo = &devvp->v_bufobj; ASSERT_BO_WLOCKED(bo); MNT_ILOCK(mp); while (mp->mnt_secondary_writes != 0) { BO_UNLOCK(bo); msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), (PUSER - 1) | PDROP, "secwr", 0); BO_LOCK(bo); MNT_ILOCK(mp); } /* * Reasons for needing more work before suspend: * - Dirty buffers on devvp. * - Secondary writes occurred after start of vnode sync loop */ error = 0; if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0 || secondary_writes != 0 || mp->mnt_secondary_writes != 0 || secondary_accwrites != mp->mnt_secondary_accwrites) error = EAGAIN; BO_UNLOCK(bo); return (error); } void softdep_get_depcounts(struct mount *mp, int *softdepactivep, int *softdepactiveaccp) { (void) mp; *softdepactivep = 0; *softdepactiveaccp = 0; } void softdep_buf_append(bp, wkhd) struct buf *bp; struct workhead *wkhd; { panic("softdep_buf_appendwork called"); } void softdep_inode_append(ip, cred, wkhd) struct inode *ip; struct ucred *cred; struct workhead *wkhd; { panic("softdep_inode_appendwork called"); } void softdep_freework(wkhd) struct workhead *wkhd; { panic("softdep_freework called"); } int softdep_prerename(fdvp, fvp, tdvp, tvp) struct vnode *fdvp; struct vnode *fvp; struct vnode *tdvp; struct vnode *tvp; { panic("softdep_prerename called"); } int softdep_prelink(dvp, vp, cnp) struct vnode *dvp; struct vnode *vp; struct componentname *cnp; { panic("softdep_prelink called"); } #else FEATURE(softupdates, "FFS soft-updates support"); static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "soft updates stats"); static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "total dependencies allocated"); static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "high use dependencies allocated"); static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "current dependencies allocated"); static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "current dependencies written"); unsigned long dep_current[D_LAST + 1]; unsigned long dep_highuse[D_LAST + 1]; unsigned long dep_total[D_LAST + 1]; unsigned long dep_write[D_LAST + 1]; #define SOFTDEP_TYPE(type, str, long) \ static MALLOC_DEFINE(M_ ## type, #str, long); \ SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ &dep_total[D_ ## type], 0, ""); \ SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ &dep_current[D_ ## type], 0, ""); \ SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ &dep_highuse[D_ ## type], 0, ""); \ SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ &dep_write[D_ ## type], 0, ""); SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, "Block or frag allocated from cyl group map"); SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); #define M_SOFTDEP_FLAGS (M_WAITOK) /* * translate from workitem type to memory type * MUST match the defines above, such that memtype[D_XXX] == M_XXX */ static struct malloc_type *memtype[] = { NULL, M_PAGEDEP, M_INODEDEP, M_BMSAFEMAP, M_NEWBLK, M_ALLOCDIRECT, M_INDIRDEP, M_ALLOCINDIR, M_FREEFRAG, M_FREEBLKS, M_FREEFILE, M_DIRADD, M_MKDIR, M_DIRREM, M_NEWDIRBLK, M_FREEWORK, M_FREEDEP, M_JADDREF, M_JREMREF, M_JMVREF, M_JNEWBLK, M_JFREEBLK, M_JFREEFRAG, M_JSEG, M_JSEGDEP, M_SBDEP, M_JTRUNC, M_JFSYNC, M_SENTINEL }; #define DtoM(type) (memtype[type]) /* * Names of malloc types. */ #define TYPENAME(type) \ ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ memtype[type]->ks_shortdesc : "???") /* * End system adaptation definitions. */ #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) /* * Internal function prototypes. */ static void check_clear_deps(struct mount *); static void softdep_error(char *, int); static int softdep_prerename_vnode(struct ufsmount *, struct vnode *); static int softdep_process_worklist(struct mount *, int); static int softdep_waitidle(struct mount *, int); static void drain_output(struct vnode *); static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); static int check_inodedep_free(struct inodedep *); static void clear_remove(struct mount *); static void clear_inodedeps(struct mount *); static void unlinked_inodedep(struct mount *, struct inodedep *); static void clear_unlinked_inodedep(struct inodedep *); static struct inodedep *first_unlinked_inodedep(struct ufsmount *); static int flush_pagedep_deps(struct vnode *, struct mount *, struct diraddhd *, struct buf *); static int free_pagedep(struct pagedep *); static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); static int flush_deplist(struct allocdirectlst *, int, int *); static int sync_cgs(struct mount *, int); static int handle_written_filepage(struct pagedep *, struct buf *, int); static int handle_written_sbdep(struct sbdep *, struct buf *); static void initiate_write_sbdep(struct sbdep *); static void diradd_inode_written(struct diradd *, struct inodedep *); static int handle_written_indirdep(struct indirdep *, struct buf *, struct buf**, int); static int handle_written_inodeblock(struct inodedep *, struct buf *, int); static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, uint8_t *); static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); static void handle_written_jaddref(struct jaddref *); static void handle_written_jremref(struct jremref *); static void handle_written_jseg(struct jseg *, struct buf *); static void handle_written_jnewblk(struct jnewblk *); static void handle_written_jblkdep(struct jblkdep *); static void handle_written_jfreefrag(struct jfreefrag *); static void complete_jseg(struct jseg *); static void complete_jsegs(struct jseg *); static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); static void jremref_write(struct jremref *, struct jseg *, uint8_t *); static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); static inline void inoref_write(struct inoref *, struct jseg *, struct jrefrec *); static void handle_allocdirect_partdone(struct allocdirect *, struct workhead *); static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, struct workhead *); static void indirdep_complete(struct indirdep *); static int indirblk_lookup(struct mount *, ufs2_daddr_t); static void indirblk_insert(struct freework *); static void indirblk_remove(struct freework *); static void handle_allocindir_partdone(struct allocindir *); static void initiate_write_filepage(struct pagedep *, struct buf *); static void initiate_write_indirdep(struct indirdep*, struct buf *); static void handle_written_mkdir(struct mkdir *, int); static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, uint8_t *); static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); static void handle_workitem_freefile(struct freefile *); static int handle_workitem_remove(struct dirrem *, int); static struct dirrem *newdirrem(struct buf *, struct inode *, struct inode *, int, struct dirrem **); static struct indirdep *indirdep_lookup(struct mount *, struct inode *, struct buf *); static void cancel_indirdep(struct indirdep *, struct buf *, struct freeblks *); static void free_indirdep(struct indirdep *); static void free_diradd(struct diradd *, struct workhead *); static void merge_diradd(struct inodedep *, struct diradd *); static void complete_diradd(struct diradd *); static struct diradd *diradd_lookup(struct pagedep *, int); static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, struct jremref *); static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, struct jremref *); static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, struct jremref *, struct jremref *); static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, struct jremref *); static void cancel_allocindir(struct allocindir *, struct buf *bp, struct freeblks *, int); static int setup_trunc_indir(struct freeblks *, struct inode *, ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); static void complete_trunc_indir(struct freework *); static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, int); static void complete_mkdir(struct mkdir *); static void free_newdirblk(struct newdirblk *); static void free_jremref(struct jremref *); static void free_jaddref(struct jaddref *); static void free_jsegdep(struct jsegdep *); static void free_jsegs(struct jblocks *); static void rele_jseg(struct jseg *); static void free_jseg(struct jseg *, struct jblocks *); static void free_jnewblk(struct jnewblk *); static void free_jblkdep(struct jblkdep *); static void free_jfreefrag(struct jfreefrag *); static void free_freedep(struct freedep *); static void journal_jremref(struct dirrem *, struct jremref *, struct inodedep *); static void cancel_jnewblk(struct jnewblk *, struct workhead *); static int cancel_jaddref(struct jaddref *, struct inodedep *, struct workhead *); static void cancel_jfreefrag(struct jfreefrag *); static inline void setup_freedirect(struct freeblks *, struct inode *, int, int); static inline void setup_freeext(struct freeblks *, struct inode *, int, int); static inline void setup_freeindir(struct freeblks *, struct inode *, int, ufs_lbn_t, int); static inline struct freeblks *newfreeblks(struct mount *, struct inode *); static void freeblks_free(struct ufsmount *, struct freeblks *, int); static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, int, int); static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); static int cancel_pagedep(struct pagedep *, struct freeblks *, int); static int deallocate_dependencies(struct buf *, struct freeblks *, int); static void newblk_freefrag(struct newblk*); static void free_newblk(struct newblk *); static void cancel_allocdirect(struct allocdirectlst *, struct allocdirect *, struct freeblks *); static int check_inode_unwritten(struct inodedep *); static int free_inodedep(struct inodedep *); static void freework_freeblock(struct freework *, u_long); static void freework_enqueue(struct freework *); static int handle_workitem_freeblocks(struct freeblks *, int); static int handle_complete_freeblocks(struct freeblks *, int); static void handle_workitem_indirblk(struct freework *); static void handle_written_freework(struct freework *); static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, struct workhead *); static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, struct inodedep *, struct allocindir *, ufs_lbn_t); static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, ufs2_daddr_t, ufs_lbn_t); static void handle_workitem_freefrag(struct freefrag *); static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, ufs_lbn_t, u_long); static void allocdirect_merge(struct allocdirectlst *, struct allocdirect *, struct allocdirect *); static struct freefrag *allocindir_merge(struct allocindir *, struct allocindir *); static int bmsafemap_find(struct bmsafemap_hashhead *, int, struct bmsafemap **); static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, int cg, struct bmsafemap *); static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, struct newblk **); static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); static int inodedep_find(struct inodedep_hashhead *, ino_t, struct inodedep **); static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, int, struct pagedep **); static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, struct pagedep **); static void pause_timer(void *); static int request_cleanup(struct mount *, int); static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); static void schedule_cleanup(struct mount *); static void softdep_ast_cleanup_proc(struct thread *); static struct ufsmount *softdep_bp_to_mp(struct buf *bp); static int process_worklist_item(struct mount *, int, int); static void process_removes(struct vnode *); static void process_truncates(struct vnode *); static void jwork_move(struct workhead *, struct workhead *); static void jwork_insert(struct workhead *, struct jsegdep *); static void add_to_worklist(struct worklist *, int); static void wake_worklist(struct worklist *); static void wait_worklist(struct worklist *, char *); static void remove_from_worklist(struct worklist *); static void softdep_flush(void *); static void softdep_flushjournal(struct mount *); static int softdep_speedup(struct ufsmount *); static void worklist_speedup(struct mount *); static int journal_mount(struct mount *, struct fs *, struct ucred *); static void journal_unmount(struct ufsmount *); static int journal_space(struct ufsmount *, int); static void journal_suspend(struct ufsmount *); static int journal_unsuspend(struct ufsmount *ump); static void add_to_journal(struct worklist *); static void remove_from_journal(struct worklist *); static bool softdep_excess_items(struct ufsmount *, int); static void softdep_process_journal(struct mount *, struct worklist *, int); static struct jremref *newjremref(struct dirrem *, struct inode *, struct inode *ip, off_t, nlink_t); static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, uint16_t); static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, uint16_t); static inline struct jsegdep *inoref_jseg(struct inoref *); static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, ufs2_daddr_t, int); static void adjust_newfreework(struct freeblks *, int); static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); static void move_newblock_dep(struct jaddref *, struct inodedep *); static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, ufs2_daddr_t, long, ufs_lbn_t); static struct freework *newfreework(struct ufsmount *, struct freeblks *, struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); static int jwait(struct worklist *, int); static struct inodedep *inodedep_lookup_ip(struct inode *); static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); static void handle_jwork(struct workhead *); static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, struct mkdir **); static struct jblocks *jblocks_create(void); static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); static void jblocks_free(struct jblocks *, struct mount *, int); static void jblocks_destroy(struct jblocks *); static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); /* * Exported softdep operations. */ static void softdep_disk_io_initiation(struct buf *); static void softdep_disk_write_complete(struct buf *); static void softdep_deallocate_dependencies(struct buf *); static int softdep_count_dependencies(struct buf *bp, int); /* * Global lock over all of soft updates. */ static struct mtx lk; MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) #define FREE_GBLLOCK(lk) mtx_unlock(lk) #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) /* * Per-filesystem soft-updates locking. */ #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ RA_WLOCKED) #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) /* * Worklist queue management. * These routines require that the lock be held. */ #ifndef /* NOT */ INVARIANTS #define WORKLIST_INSERT(head, item) do { \ (item)->wk_state |= ONWORKLIST; \ LIST_INSERT_HEAD(head, item, wk_list); \ } while (0) #define WORKLIST_REMOVE(item) do { \ (item)->wk_state &= ~ONWORKLIST; \ LIST_REMOVE(item, wk_list); \ } while (0) #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE #else /* INVARIANTS */ static void worklist_insert(struct workhead *, struct worklist *, int, const char *, int); static void worklist_remove(struct worklist *, int, const char *, int); #define WORKLIST_INSERT(head, item) \ worklist_insert(head, item, 1, __func__, __LINE__) #define WORKLIST_INSERT_UNLOCKED(head, item)\ worklist_insert(head, item, 0, __func__, __LINE__) #define WORKLIST_REMOVE(item)\ worklist_remove(item, 1, __func__, __LINE__) #define WORKLIST_REMOVE_UNLOCKED(item)\ worklist_remove(item, 0, __func__, __LINE__) static void worklist_insert(head, item, locked, func, line) struct workhead *head; struct worklist *item; int locked; const char *func; int line; { if (locked) LOCK_OWNED(VFSTOUFS(item->wk_mp)); if (item->wk_state & ONWORKLIST) panic("worklist_insert: %p %s(0x%X) already on list, " "added in function %s at line %d", item, TYPENAME(item->wk_type), item->wk_state, item->wk_func, item->wk_line); item->wk_state |= ONWORKLIST; item->wk_func = func; item->wk_line = line; LIST_INSERT_HEAD(head, item, wk_list); } static void worklist_remove(item, locked, func, line) struct worklist *item; int locked; const char *func; int line; { if (locked) LOCK_OWNED(VFSTOUFS(item->wk_mp)); if ((item->wk_state & ONWORKLIST) == 0) panic("worklist_remove: %p %s(0x%X) not on list, " "removed in function %s at line %d", item, TYPENAME(item->wk_type), item->wk_state, item->wk_func, item->wk_line); item->wk_state &= ~ONWORKLIST; item->wk_func = func; item->wk_line = line; LIST_REMOVE(item, wk_list); } #endif /* INVARIANTS */ /* * Merge two jsegdeps keeping only the oldest one as newer references * can't be discarded until after older references. */ static inline struct jsegdep * jsegdep_merge(struct jsegdep *one, struct jsegdep *two) { struct jsegdep *swp; if (two == NULL) return (one); if (one->jd_seg->js_seq > two->jd_seg->js_seq) { swp = one; one = two; two = swp; } WORKLIST_REMOVE(&two->jd_list); free_jsegdep(two); return (one); } /* * If two freedeps are compatible free one to reduce list size. */ static inline struct freedep * freedep_merge(struct freedep *one, struct freedep *two) { if (two == NULL) return (one); if (one->fd_freework == two->fd_freework) { WORKLIST_REMOVE(&two->fd_list); free_freedep(two); } return (one); } /* * Move journal work from one list to another. Duplicate freedeps and * jsegdeps are coalesced to keep the lists as small as possible. */ static void jwork_move(dst, src) struct workhead *dst; struct workhead *src; { struct freedep *freedep; struct jsegdep *jsegdep; struct worklist *wkn; struct worklist *wk; KASSERT(dst != src, ("jwork_move: dst == src")); freedep = NULL; jsegdep = NULL; LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { if (wk->wk_type == D_JSEGDEP) jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); else if (wk->wk_type == D_FREEDEP) freedep = freedep_merge(WK_FREEDEP(wk), freedep); } while ((wk = LIST_FIRST(src)) != NULL) { WORKLIST_REMOVE(wk); WORKLIST_INSERT(dst, wk); if (wk->wk_type == D_JSEGDEP) { jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); continue; } if (wk->wk_type == D_FREEDEP) freedep = freedep_merge(WK_FREEDEP(wk), freedep); } } static void jwork_insert(dst, jsegdep) struct workhead *dst; struct jsegdep *jsegdep; { struct jsegdep *jsegdepn; struct worklist *wk; LIST_FOREACH(wk, dst, wk_list) if (wk->wk_type == D_JSEGDEP) break; if (wk == NULL) { WORKLIST_INSERT(dst, &jsegdep->jd_list); return; } jsegdepn = WK_JSEGDEP(wk); if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { WORKLIST_REMOVE(wk); free_jsegdep(jsegdepn); WORKLIST_INSERT(dst, &jsegdep->jd_list); } else free_jsegdep(jsegdep); } /* * Routines for tracking and managing workitems. */ static void workitem_free(struct worklist *, int); static void workitem_alloc(struct worklist *, int, struct mount *); static void workitem_reassign(struct worklist *, int); #define WORKITEM_FREE(item, type) \ workitem_free((struct worklist *)(item), (type)) #define WORKITEM_REASSIGN(item, type) \ workitem_reassign((struct worklist *)(item), (type)) static void workitem_free(item, type) struct worklist *item; int type; { struct ufsmount *ump; #ifdef INVARIANTS if (item->wk_state & ONWORKLIST) panic("workitem_free: %s(0x%X) still on list, " "added in function %s at line %d", TYPENAME(item->wk_type), item->wk_state, item->wk_func, item->wk_line); if (item->wk_type != type && type != D_NEWBLK) panic("workitem_free: type mismatch %s != %s", TYPENAME(item->wk_type), TYPENAME(type)); #endif if (item->wk_state & IOWAITING) wakeup(item); ump = VFSTOUFS(item->wk_mp); LOCK_OWNED(ump); KASSERT(ump->softdep_deps > 0, ("workitem_free: %s: softdep_deps going negative", ump->um_fs->fs_fsmnt)); if (--ump->softdep_deps == 0 && ump->softdep_req) wakeup(&ump->softdep_deps); KASSERT(dep_current[item->wk_type] > 0, ("workitem_free: %s: dep_current[%s] going negative", ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); KASSERT(ump->softdep_curdeps[item->wk_type] > 0, ("workitem_free: %s: softdep_curdeps[%s] going negative", ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); atomic_subtract_long(&dep_current[item->wk_type], 1); ump->softdep_curdeps[item->wk_type] -= 1; LIST_REMOVE(item, wk_all); free(item, DtoM(type)); } static void workitem_alloc(item, type, mp) struct worklist *item; int type; struct mount *mp; { struct ufsmount *ump; item->wk_type = type; item->wk_mp = mp; item->wk_state = 0; ump = VFSTOUFS(mp); ACQUIRE_GBLLOCK(&lk); dep_current[type]++; if (dep_current[type] > dep_highuse[type]) dep_highuse[type] = dep_current[type]; dep_total[type]++; FREE_GBLLOCK(&lk); ACQUIRE_LOCK(ump); ump->softdep_curdeps[type] += 1; ump->softdep_deps++; ump->softdep_accdeps++; LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); FREE_LOCK(ump); } static void workitem_reassign(item, newtype) struct worklist *item; int newtype; { struct ufsmount *ump; ump = VFSTOUFS(item->wk_mp); LOCK_OWNED(ump); KASSERT(ump->softdep_curdeps[item->wk_type] > 0, ("workitem_reassign: %s: softdep_curdeps[%s] going negative", VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); ump->softdep_curdeps[item->wk_type] -= 1; ump->softdep_curdeps[newtype] += 1; KASSERT(dep_current[item->wk_type] > 0, ("workitem_reassign: %s: dep_current[%s] going negative", VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); ACQUIRE_GBLLOCK(&lk); dep_current[newtype]++; dep_current[item->wk_type]--; if (dep_current[newtype] > dep_highuse[newtype]) dep_highuse[newtype] = dep_current[newtype]; dep_total[newtype]++; FREE_GBLLOCK(&lk); item->wk_type = newtype; LIST_REMOVE(item, wk_all); LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all); } /* * Workitem queue management */ static int max_softdeps; /* maximum number of structs before slowdown */ static int tickdelay = 2; /* number of ticks to pause during slowdown */ static int proc_waiting; /* tracks whether we have a timeout posted */ static int *stat_countp; /* statistic to count in proc_waiting timeout */ static struct callout softdep_callout; static int req_clear_inodedeps; /* syncer process flush some inodedeps */ static int req_clear_remove; /* syncer process flush some freeblks */ static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ /* * runtime statistics */ static int stat_flush_threads; /* number of softdep flushing threads */ static int stat_worklist_push; /* number of worklist cleanups */ static int stat_delayed_inact; /* number of delayed inactivation cleanups */ static int stat_blk_limit_push; /* number of times block limit neared */ static int stat_ino_limit_push; /* number of times inode limit neared */ static int stat_blk_limit_hit; /* number of times block slowdown imposed */ static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ static int stat_journal_min; /* Times hit journal min threshold */ static int stat_journal_low; /* Times hit journal low threshold */ static int stat_journal_wait; /* Times blocked in jwait(). */ static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ static int stat_cleanup_failures; /* Number of cleanup requests that failed */ static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, &stat_flush_threads, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD, &stat_delayed_inact, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, &softdep_flushcache, 0, ""); SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, &stat_emptyjblocks, 0, ""); SYSCTL_DECL(_vfs_ffs); /* Whether to recompute the summary at mount time */ static int compute_summary_at_mount = 0; SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, &compute_summary_at_mount, 0, "Recompute summary at mount"); static int print_threads = 0; SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, &print_threads, 0, "Notify flusher thread start/stop"); /* List of all filesystems mounted with soft updates */ static TAILQ_HEAD(, mount_softdeps) softdepmounts; static void get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp, struct diraddhd *diraddhdp, struct diraddhd *unfinishedp) { struct diradd *dap; /* * Requeue unfinished dependencies before * unlocking buffer, which could make * diraddhdp invalid. */ ACQUIRE_LOCK(VFSTOUFS(mp)); while ((dap = LIST_FIRST(unfinishedp)) != NULL) { LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); } FREE_LOCK(VFSTOUFS(mp)); bp->b_vflags &= ~BV_SCANNED; BUF_NOREC(bp); BUF_UNLOCK(bp); } /* * This function fetches inode inum on mount point mp. We already * hold a locked vnode vp, and might have a locked buffer bp belonging * to vp. * We must not block on acquiring the new inode lock as we will get * into a lock-order reversal with the buffer lock and possibly get a * deadlock. Thus if we cannot instantiate the requested vnode * without sleeping on its lock, we must unlock the vnode and the * buffer before doing a blocking on the vnode lock. We return * ERELOOKUP if we have had to unlock either the vnode or the buffer so * that the caller can reassess its state. * * Top-level VFS code (for syscalls and other consumers, e.g. callers * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe * point. * * Since callers expect to operate on fully constructed vnode, we also * recheck v_data after relock, and return ENOENT if NULL. * * If unlocking bp, we must unroll dequeueing its unfinished * dependencies, and clear scan flag, before unlocking. If unlocking * vp while it is under deactivation, we re-queue deactivation. */ static int get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp, struct diraddhd *diraddhdp, struct diraddhd *unfinishedp, struct vnode **rvp) { struct vnode *pvp; int error; bool bplocked; ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); for (bplocked = true, pvp = NULL;;) { error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); if (error == 0) { /* * Since we could have unlocked vp, the inode * number could no longer indicate a * constructed node. In this case, we must * restart the syscall. */ if (VTOI(pvp)->i_mode == 0 || !bplocked) { if (bp != NULL && bplocked) get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); if (VTOI(pvp)->i_mode == 0) vgone(pvp); error = ERELOOKUP; goto out2; } goto out1; } if (bp != NULL && bplocked) { get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); bplocked = false; } /* * Do not drop vnode lock while inactivating during * vunref. This would result in leaks of the VI flags * and reclaiming of non-truncated vnode. Instead, * re-schedule inactivation hoping that we would be * able to sync inode later. */ if ((vp->v_iflag & VI_DOINGINACT) != 0 && (vp->v_vflag & VV_UNREF) != 0) { VI_LOCK(vp); vp->v_iflag |= VI_OWEINACT; VI_UNLOCK(vp); return (ERELOOKUP); } VOP_UNLOCK(vp); error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); if (error != 0) { MPASS(error != ERELOOKUP); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); break; } if (VTOI(pvp)->i_mode == 0) { vgone(pvp); vput(pvp); pvp = NULL; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); error = ERELOOKUP; break; } error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); if (error == 0) break; vput(pvp); pvp = NULL; vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_data == NULL) { error = ENOENT; break; } } if (bp != NULL) { MPASS(!bplocked); error = ERELOOKUP; } out2: if (error != 0 && pvp != NULL) { vput(pvp); pvp = NULL; } out1: *rvp = pvp; ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); return (error); } /* * This function cleans the worklist for a filesystem. * Each filesystem running with soft dependencies gets its own * thread to run in this function. The thread is started up in * softdep_mount and shutdown in softdep_unmount. They show up * as part of the kernel "bufdaemon" process whose process * entry is available in bufdaemonproc. */ static int searchfailed; extern struct proc *bufdaemonproc; static void softdep_flush(addr) void *addr; { struct mount *mp; struct thread *td; struct ufsmount *ump; int cleanups; td = curthread; td->td_pflags |= TDP_NORUNNINGBUF; mp = (struct mount *)addr; ump = VFSTOUFS(mp); atomic_add_int(&stat_flush_threads, 1); ACQUIRE_LOCK(ump); ump->softdep_flags &= ~FLUSH_STARTING; wakeup(&ump->softdep_flushtd); FREE_LOCK(ump); if (print_threads) { if (stat_flush_threads == 1) printf("Running %s at pid %d\n", bufdaemonproc->p_comm, bufdaemonproc->p_pid); printf("Start thread %s\n", td->td_name); } for (;;) { while (softdep_process_worklist(mp, 0) > 0 || (MOUNTEDSUJ(mp) && VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) kthread_suspend_check(); ACQUIRE_LOCK(ump); if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdflush", hz / 2); ump->softdep_flags &= ~FLUSH_CLEANUP; /* * Check to see if we are done and need to exit. */ if ((ump->softdep_flags & FLUSH_EXIT) == 0) { FREE_LOCK(ump); continue; } ump->softdep_flags &= ~FLUSH_EXIT; cleanups = ump->um_softdep->sd_cleanups; FREE_LOCK(ump); wakeup(&ump->softdep_flags); if (print_threads) { printf("Stop thread %s: searchfailed %d, " "did cleanups %d\n", td->td_name, searchfailed, cleanups); } atomic_subtract_int(&stat_flush_threads, 1); kthread_exit(); panic("kthread_exit failed\n"); } } static void worklist_speedup(mp) struct mount *mp; { struct ufsmount *ump; ump = VFSTOUFS(mp); LOCK_OWNED(ump); if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) ump->softdep_flags |= FLUSH_CLEANUP; wakeup(&ump->softdep_flushtd); } static void softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags) { struct buf *bp; if ((ump->um_flags & UM_CANSPEEDUP) == 0) return; bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); bp->b_iocmd = BIO_SPEEDUP; bp->b_ioflags = flags; bp->b_bcount = omin(shortage, LONG_MAX); g_vfs_strategy(ump->um_bo, bp); bufwait(bp); free(bp, M_TRIM); } static int softdep_speedup(ump) struct ufsmount *ump; { struct ufsmount *altump; struct mount_softdeps *sdp; LOCK_OWNED(ump); worklist_speedup(ump->um_mountp); bd_speedup(); /* * If we have global shortages, then we need other * filesystems to help with the cleanup. Here we wakeup a * flusher thread for a filesystem that is over its fair * share of resources. */ if (req_clear_inodedeps || req_clear_remove) { ACQUIRE_GBLLOCK(&lk); TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { if ((altump = sdp->sd_ump) == ump) continue; if (((req_clear_inodedeps && altump->softdep_curdeps[D_INODEDEP] > max_softdeps / stat_flush_threads) || (req_clear_remove && altump->softdep_curdeps[D_DIRREM] > (max_softdeps / 2) / stat_flush_threads)) && TRY_ACQUIRE_LOCK(altump)) break; } if (sdp == NULL) { searchfailed++; FREE_GBLLOCK(&lk); } else { /* * Move to the end of the list so we pick a * different one on out next try. */ TAILQ_REMOVE(&softdepmounts, sdp, sd_next); TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); FREE_GBLLOCK(&lk); if ((altump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) altump->softdep_flags |= FLUSH_CLEANUP; altump->um_softdep->sd_cleanups++; wakeup(&altump->softdep_flushtd); FREE_LOCK(altump); } } return (speedup_syncer()); } /* * Add an item to the end of the work queue. * This routine requires that the lock be held. * This is the only routine that adds items to the list. * The following routine is the only one that removes items * and does so in order from first to last. */ #define WK_HEAD 0x0001 /* Add to HEAD. */ #define WK_NODELAY 0x0002 /* Process immediately. */ static void add_to_worklist(wk, flags) struct worklist *wk; int flags; { struct ufsmount *ump; ump = VFSTOUFS(wk->wk_mp); LOCK_OWNED(ump); if (wk->wk_state & ONWORKLIST) panic("add_to_worklist: %s(0x%X) already on list", TYPENAME(wk->wk_type), wk->wk_state); wk->wk_state |= ONWORKLIST; if (ump->softdep_on_worklist == 0) { LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); ump->softdep_worklist_tail = wk; } else if (flags & WK_HEAD) { LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); } else { LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); ump->softdep_worklist_tail = wk; } ump->softdep_on_worklist += 1; if (flags & WK_NODELAY) worklist_speedup(wk->wk_mp); } /* * Remove the item to be processed. If we are removing the last * item on the list, we need to recalculate the tail pointer. */ static void remove_from_worklist(wk) struct worklist *wk; { struct ufsmount *ump; ump = VFSTOUFS(wk->wk_mp); if (ump->softdep_worklist_tail == wk) ump->softdep_worklist_tail = (struct worklist *)wk->wk_list.le_prev; WORKLIST_REMOVE(wk); ump->softdep_on_worklist -= 1; } static void wake_worklist(wk) struct worklist *wk; { if (wk->wk_state & IOWAITING) { wk->wk_state &= ~IOWAITING; wakeup(wk); } } static void wait_worklist(wk, wmesg) struct worklist *wk; char *wmesg; { struct ufsmount *ump; ump = VFSTOUFS(wk->wk_mp); wk->wk_state |= IOWAITING; msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); } /* * Process that runs once per second to handle items in the background queue. * * Note that we ensure that everything is done in the order in which they * appear in the queue. The code below depends on this property to ensure * that blocks of a file are freed before the inode itself is freed. This * ordering ensures that no new triples will be generated * until all the old ones have been purged from the dependency lists. */ static int softdep_process_worklist(mp, full) struct mount *mp; int full; { int cnt, matchcnt; struct ufsmount *ump; long starttime; KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); ump = VFSTOUFS(mp); if (ump->um_softdep == NULL) return (0); matchcnt = 0; ACQUIRE_LOCK(ump); starttime = time_second; softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); check_clear_deps(mp); while (ump->softdep_on_worklist > 0) { if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) break; else matchcnt += cnt; check_clear_deps(mp); /* * We do not generally want to stop for buffer space, but if * we are really being a buffer hog, we will stop and wait. */ if (should_yield()) { FREE_LOCK(ump); kern_yield(PRI_USER); bwillwrite(); ACQUIRE_LOCK(ump); } /* * Never allow processing to run for more than one * second. This gives the syncer thread the opportunity * to pause if appropriate. */ if (!full && starttime != time_second) break; } if (full == 0) journal_unsuspend(ump); FREE_LOCK(ump); return (matchcnt); } /* * Process all removes associated with a vnode if we are running out of * journal space. Any other process which attempts to flush these will * be unable as we have the vnodes locked. */ static void process_removes(vp) struct vnode *vp; { struct inodedep *inodedep; struct dirrem *dirrem; struct ufsmount *ump; struct mount *mp; ino_t inum; mp = vp->v_mount; ump = VFSTOUFS(mp); LOCK_OWNED(ump); inum = VTOI(vp)->i_number; for (;;) { top: if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) return; LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { /* * If another thread is trying to lock this vnode * it will fail but we must wait for it to do so * before we can proceed. */ if (dirrem->dm_state & INPROGRESS) { wait_worklist(&dirrem->dm_list, "pwrwait"); goto top; } if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == (COMPLETE | ONWORKLIST)) break; } if (dirrem == NULL) return; remove_from_worklist(&dirrem->dm_list); FREE_LOCK(ump); if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) panic("process_removes: suspended filesystem"); handle_workitem_remove(dirrem, 0); vn_finished_secondary_write(mp); ACQUIRE_LOCK(ump); } } /* * Process all truncations associated with a vnode if we are running out * of journal space. This is called when the vnode lock is already held * and no other process can clear the truncation. This function returns * a value greater than zero if it did any work. */ static void process_truncates(vp) struct vnode *vp; { struct inodedep *inodedep; struct freeblks *freeblks; struct ufsmount *ump; struct mount *mp; ino_t inum; int cgwait; mp = vp->v_mount; ump = VFSTOUFS(mp); LOCK_OWNED(ump); inum = VTOI(vp)->i_number; for (;;) { if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) return; cgwait = 0; TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { /* Journal entries not yet written. */ if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { jwait(&LIST_FIRST( &freeblks->fb_jblkdephd)->jb_list, MNT_WAIT); break; } /* Another thread is executing this item. */ if (freeblks->fb_state & INPROGRESS) { wait_worklist(&freeblks->fb_list, "ptrwait"); break; } /* Freeblks is waiting on a inode write. */ if ((freeblks->fb_state & COMPLETE) == 0) { FREE_LOCK(ump); ffs_update(vp, 1); ACQUIRE_LOCK(ump); break; } if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == (ALLCOMPLETE | ONWORKLIST)) { remove_from_worklist(&freeblks->fb_list); freeblks->fb_state |= INPROGRESS; FREE_LOCK(ump); if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) panic("process_truncates: " "suspended filesystem"); handle_workitem_freeblocks(freeblks, 0); vn_finished_secondary_write(mp); ACQUIRE_LOCK(ump); break; } if (freeblks->fb_cgwait) cgwait++; } if (cgwait) { FREE_LOCK(ump); sync_cgs(mp, MNT_WAIT); ffs_sync_snap(mp, MNT_WAIT); ACQUIRE_LOCK(ump); continue; } if (freeblks == NULL) break; } return; } /* * Process one item on the worklist. */ static int process_worklist_item(mp, target, flags) struct mount *mp; int target; int flags; { struct worklist sentinel; struct worklist *wk; struct ufsmount *ump; int matchcnt; int error; KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); /* * If we are being called because of a process doing a * copy-on-write, then it is not safe to write as we may * recurse into the copy-on-write routine. */ if (curthread->td_pflags & TDP_COWINPROGRESS) return (-1); PHOLD(curproc); /* Don't let the stack go away. */ ump = VFSTOUFS(mp); LOCK_OWNED(ump); matchcnt = 0; sentinel.wk_mp = NULL; sentinel.wk_type = D_SENTINEL; LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; wk = LIST_NEXT(&sentinel, wk_list)) { if (wk->wk_type == D_SENTINEL) { LIST_REMOVE(&sentinel, wk_list); LIST_INSERT_AFTER(wk, &sentinel, wk_list); continue; } if (wk->wk_state & INPROGRESS) panic("process_worklist_item: %p already in progress.", wk); wk->wk_state |= INPROGRESS; remove_from_worklist(wk); FREE_LOCK(ump); if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) panic("process_worklist_item: suspended filesystem"); switch (wk->wk_type) { case D_DIRREM: /* removal of a directory entry */ error = handle_workitem_remove(WK_DIRREM(wk), flags); break; case D_FREEBLKS: /* releasing blocks and/or fragments from a file */ error = handle_workitem_freeblocks(WK_FREEBLKS(wk), flags); break; case D_FREEFRAG: /* releasing a fragment when replaced as a file grows */ handle_workitem_freefrag(WK_FREEFRAG(wk)); error = 0; break; case D_FREEFILE: /* releasing an inode when its link count drops to 0 */ handle_workitem_freefile(WK_FREEFILE(wk)); error = 0; break; default: panic("%s_process_worklist: Unknown type %s", "softdep", TYPENAME(wk->wk_type)); /* NOTREACHED */ } vn_finished_secondary_write(mp); ACQUIRE_LOCK(ump); if (error == 0) { if (++matchcnt == target) break; continue; } /* * We have to retry the worklist item later. Wake up any * waiters who may be able to complete it immediately and * add the item back to the head so we don't try to execute * it again. */ wk->wk_state &= ~INPROGRESS; wake_worklist(wk); add_to_worklist(wk, WK_HEAD); } /* Sentinal could've become the tail from remove_from_worklist. */ if (ump->softdep_worklist_tail == &sentinel) ump->softdep_worklist_tail = (struct worklist *)sentinel.wk_list.le_prev; LIST_REMOVE(&sentinel, wk_list); PRELE(curproc); return (matchcnt); } /* * Move dependencies from one buffer to another. */ int softdep_move_dependencies(oldbp, newbp) struct buf *oldbp; struct buf *newbp; { struct worklist *wk, *wktail; struct ufsmount *ump; int dirty; if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) return (0); KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, ("softdep_move_dependencies called on non-softdep filesystem")); dirty = 0; wktail = NULL; ump = VFSTOUFS(wk->wk_mp); ACQUIRE_LOCK(ump); while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { LIST_REMOVE(wk, wk_list); if (wk->wk_type == D_BMSAFEMAP && bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) dirty = 1; if (wktail == NULL) LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); else LIST_INSERT_AFTER(wktail, wk, wk_list); wktail = wk; } FREE_LOCK(ump); return (dirty); } /* * Purge the work list of all items associated with a particular mount point. */ int softdep_flushworklist(oldmnt, countp, td) struct mount *oldmnt; int *countp; struct thread *td; { struct vnode *devvp; struct ufsmount *ump; int count, error; /* * Alternately flush the block device associated with the mount * point and process any dependencies that the flushing * creates. We continue until no more worklist dependencies * are found. */ *countp = 0; error = 0; ump = VFSTOUFS(oldmnt); devvp = ump->um_devvp; while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { *countp += count; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_FSYNC(devvp, MNT_WAIT, td); VOP_UNLOCK(devvp); if (error != 0) break; } return (error); } #define SU_WAITIDLE_RETRIES 20 static int softdep_waitidle(struct mount *mp, int flags __unused) { struct ufsmount *ump; struct vnode *devvp; struct thread *td; int error, i; ump = VFSTOUFS(mp); KASSERT(ump->um_softdep != NULL, ("softdep_waitidle called on non-softdep filesystem")); devvp = ump->um_devvp; td = curthread; error = 0; ACQUIRE_LOCK(ump); for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { ump->softdep_req = 1; KASSERT((flags & FORCECLOSE) == 0 || ump->softdep_on_worklist == 0, ("softdep_waitidle: work added after flush")); msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, "softdeps", 10 * hz); vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_FSYNC(devvp, MNT_WAIT, td); VOP_UNLOCK(devvp); ACQUIRE_LOCK(ump); if (error != 0) break; } ump->softdep_req = 0; if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { error = EBUSY; printf("softdep_waitidle: Failed to flush worklist for %p\n", mp); } FREE_LOCK(ump); return (error); } /* * Flush all vnodes and worklist items associated with a specified mount point. */ int softdep_flushfiles(oldmnt, flags, td) struct mount *oldmnt; int flags; struct thread *td; { struct ufsmount *ump; #ifdef QUOTA int i; #endif int error, early, depcount, loopcnt, retry_flush_count, retry; int morework; ump = VFSTOUFS(oldmnt); KASSERT(ump->um_softdep != NULL, ("softdep_flushfiles called on non-softdep filesystem")); loopcnt = 10; retry_flush_count = 3; retry_flush: error = 0; /* * Alternately flush the vnodes associated with the mount * point and process any dependencies that the flushing * creates. In theory, this loop can happen at most twice, * but we give it a few extra just to be sure. */ for (; loopcnt > 0; loopcnt--) { /* * Do another flush in case any vnodes were brought in * as part of the cleanup operations. */ early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) break; if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || depcount == 0) break; } /* * If we are unmounting then it is an error to fail. If we * are simply trying to downgrade to read-only, then filesystem * activity can keep us busy forever, so we just fail with EBUSY. */ if (loopcnt == 0) { if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) panic("softdep_flushfiles: looping"); error = EBUSY; } if (!error) error = softdep_waitidle(oldmnt, flags); if (!error) { if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { retry = 0; MNT_ILOCK(oldmnt); morework = oldmnt->mnt_nvnodelistsize > 0; #ifdef QUOTA UFS_LOCK(ump); for (i = 0; i < MAXQUOTAS; i++) { if (ump->um_quotas[i] != NULLVP) morework = 1; } UFS_UNLOCK(ump); #endif if (morework) { if (--retry_flush_count > 0) { retry = 1; loopcnt = 3; } else error = EBUSY; } MNT_IUNLOCK(oldmnt); if (retry) goto retry_flush; } } return (error); } /* * Structure hashing. * * There are four types of structures that can be looked up: * 1) pagedep structures identified by mount point, inode number, * and logical block. * 2) inodedep structures identified by mount point and inode number. * 3) newblk structures identified by mount point and * physical block number. * 4) bmsafemap structures identified by mount point and * cylinder group number. * * The "pagedep" and "inodedep" dependency structures are hashed * separately from the file blocks and inodes to which they correspond. * This separation helps when the in-memory copy of an inode or * file block must be replaced. It also obviates the need to access * an inode or file page when simply updating (or de-allocating) * dependency structures. Lookup of newblk structures is needed to * find newly allocated blocks when trying to associate them with * their allocdirect or allocindir structure. * * The lookup routines optionally create and hash a new instance when * an existing entry is not found. The bmsafemap lookup routine always * allocates a new structure if an existing one is not found. */ #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ /* * Structures and routines associated with pagedep caching. */ #define PAGEDEP_HASH(ump, inum, lbn) \ (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) static int pagedep_find(pagedephd, ino, lbn, pagedeppp) struct pagedep_hashhead *pagedephd; ino_t ino; ufs_lbn_t lbn; struct pagedep **pagedeppp; { struct pagedep *pagedep; LIST_FOREACH(pagedep, pagedephd, pd_hash) { if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { *pagedeppp = pagedep; return (1); } } *pagedeppp = NULL; return (0); } /* * Look up a pagedep. Return 1 if found, 0 otherwise. * If not found, allocate if DEPALLOC flag is passed. * Found or allocated entry is returned in pagedeppp. */ static int pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) struct mount *mp; struct buf *bp; ino_t ino; ufs_lbn_t lbn; int flags; struct pagedep **pagedeppp; { struct pagedep *pagedep; struct pagedep_hashhead *pagedephd; struct worklist *wk; struct ufsmount *ump; int ret; int i; ump = VFSTOUFS(mp); LOCK_OWNED(ump); if (bp) { LIST_FOREACH(wk, &bp->b_dep, wk_list) { if (wk->wk_type == D_PAGEDEP) { *pagedeppp = WK_PAGEDEP(wk); return (1); } } } pagedephd = PAGEDEP_HASH(ump, ino, lbn); ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); if (ret) { if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); return (1); } if ((flags & DEPALLOC) == 0) return (0); FREE_LOCK(ump); pagedep = malloc(sizeof(struct pagedep), M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); ACQUIRE_LOCK(ump); ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); if (*pagedeppp) { /* * This should never happen since we only create pagedeps * with the vnode lock held. Could be an assert. */ WORKITEM_FREE(pagedep, D_PAGEDEP); return (ret); } pagedep->pd_ino = ino; pagedep->pd_lbn = lbn; LIST_INIT(&pagedep->pd_dirremhd); LIST_INIT(&pagedep->pd_pendinghd); for (i = 0; i < DAHASHSZ; i++) LIST_INIT(&pagedep->pd_diraddhd[i]); LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); *pagedeppp = pagedep; return (0); } /* * Structures and routines associated with inodedep caching. */ #define INODEDEP_HASH(ump, inum) \ (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) static int inodedep_find(inodedephd, inum, inodedeppp) struct inodedep_hashhead *inodedephd; ino_t inum; struct inodedep **inodedeppp; { struct inodedep *inodedep; LIST_FOREACH(inodedep, inodedephd, id_hash) if (inum == inodedep->id_ino) break; if (inodedep) { *inodedeppp = inodedep; return (1); } *inodedeppp = NULL; return (0); } /* * Look up an inodedep. Return 1 if found, 0 if not found. * If not found, allocate if DEPALLOC flag is passed. * Found or allocated entry is returned in inodedeppp. */ static int inodedep_lookup(mp, inum, flags, inodedeppp) struct mount *mp; ino_t inum; int flags; struct inodedep **inodedeppp; { struct inodedep *inodedep; struct inodedep_hashhead *inodedephd; struct ufsmount *ump; struct fs *fs; ump = VFSTOUFS(mp); LOCK_OWNED(ump); fs = ump->um_fs; inodedephd = INODEDEP_HASH(ump, inum); if (inodedep_find(inodedephd, inum, inodedeppp)) return (1); if ((flags & DEPALLOC) == 0) return (0); /* * If the system is over its limit and our filesystem is * responsible for more than our share of that usage and * we are not in a rush, request some inodedep cleanup. */ if (softdep_excess_items(ump, D_INODEDEP)) schedule_cleanup(mp); else FREE_LOCK(ump); inodedep = malloc(sizeof(struct inodedep), M_INODEDEP, M_SOFTDEP_FLAGS); workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); ACQUIRE_LOCK(ump); if (inodedep_find(inodedephd, inum, inodedeppp)) { WORKITEM_FREE(inodedep, D_INODEDEP); return (1); } inodedep->id_fs = fs; inodedep->id_ino = inum; inodedep->id_state = ALLCOMPLETE; inodedep->id_nlinkdelta = 0; inodedep->id_nlinkwrote = -1; inodedep->id_savedino1 = NULL; inodedep->id_savedsize = -1; inodedep->id_savedextsize = -1; inodedep->id_savednlink = -1; inodedep->id_bmsafemap = NULL; inodedep->id_mkdiradd = NULL; LIST_INIT(&inodedep->id_dirremhd); LIST_INIT(&inodedep->id_pendinghd); LIST_INIT(&inodedep->id_inowait); LIST_INIT(&inodedep->id_bufwait); TAILQ_INIT(&inodedep->id_inoreflst); TAILQ_INIT(&inodedep->id_inoupdt); TAILQ_INIT(&inodedep->id_newinoupdt); TAILQ_INIT(&inodedep->id_extupdt); TAILQ_INIT(&inodedep->id_newextupdt); TAILQ_INIT(&inodedep->id_freeblklst); LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); *inodedeppp = inodedep; return (0); } /* * Structures and routines associated with newblk caching. */ #define NEWBLK_HASH(ump, inum) \ (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) static int newblk_find(newblkhd, newblkno, flags, newblkpp) struct newblk_hashhead *newblkhd; ufs2_daddr_t newblkno; int flags; struct newblk **newblkpp; { struct newblk *newblk; LIST_FOREACH(newblk, newblkhd, nb_hash) { if (newblkno != newblk->nb_newblkno) continue; /* * If we're creating a new dependency don't match those that * have already been converted to allocdirects. This is for * a frag extend. */ if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) continue; break; } if (newblk) { *newblkpp = newblk; return (1); } *newblkpp = NULL; return (0); } /* * Look up a newblk. Return 1 if found, 0 if not found. * If not found, allocate if DEPALLOC flag is passed. * Found or allocated entry is returned in newblkpp. */ static int newblk_lookup(mp, newblkno, flags, newblkpp) struct mount *mp; ufs2_daddr_t newblkno; int flags; struct newblk **newblkpp; { struct newblk *newblk; struct newblk_hashhead *newblkhd; struct ufsmount *ump; ump = VFSTOUFS(mp); LOCK_OWNED(ump); newblkhd = NEWBLK_HASH(ump, newblkno); if (newblk_find(newblkhd, newblkno, flags, newblkpp)) return (1); if ((flags & DEPALLOC) == 0) return (0); if (softdep_excess_items(ump, D_NEWBLK) || softdep_excess_items(ump, D_ALLOCDIRECT) || softdep_excess_items(ump, D_ALLOCINDIR)) schedule_cleanup(mp); else FREE_LOCK(ump); newblk = malloc(sizeof(union allblk), M_NEWBLK, M_SOFTDEP_FLAGS | M_ZERO); workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); ACQUIRE_LOCK(ump); if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { WORKITEM_FREE(newblk, D_NEWBLK); return (1); } newblk->nb_freefrag = NULL; LIST_INIT(&newblk->nb_indirdeps); LIST_INIT(&newblk->nb_newdirblk); LIST_INIT(&newblk->nb_jwork); newblk->nb_state = ATTACHED; newblk->nb_newblkno = newblkno; LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); *newblkpp = newblk; return (0); } /* * Structures and routines associated with freed indirect block caching. */ #define INDIR_HASH(ump, blkno) \ (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) /* * Lookup an indirect block in the indir hash table. The freework is * removed and potentially freed. The caller must do a blocking journal * write before writing to the blkno. */ static int indirblk_lookup(mp, blkno) struct mount *mp; ufs2_daddr_t blkno; { struct freework *freework; struct indir_hashhead *wkhd; struct ufsmount *ump; ump = VFSTOUFS(mp); wkhd = INDIR_HASH(ump, blkno); TAILQ_FOREACH(freework, wkhd, fw_next) { if (freework->fw_blkno != blkno) continue; indirblk_remove(freework); return (1); } return (0); } /* * Insert an indirect block represented by freework into the indirblk * hash table so that it may prevent the block from being re-used prior * to the journal being written. */ static void indirblk_insert(freework) struct freework *freework; { struct jblocks *jblocks; struct jseg *jseg; struct ufsmount *ump; ump = VFSTOUFS(freework->fw_list.wk_mp); jblocks = ump->softdep_jblocks; jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); if (jseg == NULL) return; LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); freework->fw_state &= ~DEPCOMPLETE; } static void indirblk_remove(freework) struct freework *freework; { struct ufsmount *ump; ump = VFSTOUFS(freework->fw_list.wk_mp); LIST_REMOVE(freework, fw_segs); TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); freework->fw_state |= DEPCOMPLETE; if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) WORKITEM_FREE(freework, D_FREEWORK); } /* * Executed during filesystem system initialization before * mounting any filesystems. */ void softdep_initialize() { TAILQ_INIT(&softdepmounts); #ifdef __LP64__ max_softdeps = desiredvnodes * 4; #else max_softdeps = desiredvnodes * 2; #endif /* initialise bioops hack */ bioops.io_start = softdep_disk_io_initiation; bioops.io_complete = softdep_disk_write_complete; bioops.io_deallocate = softdep_deallocate_dependencies; bioops.io_countdeps = softdep_count_dependencies; softdep_ast_cleanup = softdep_ast_cleanup_proc; /* Initialize the callout with an mtx. */ callout_init_mtx(&softdep_callout, &lk, 0); } /* * Executed after all filesystems have been unmounted during * filesystem module unload. */ void softdep_uninitialize() { /* clear bioops hack */ bioops.io_start = NULL; bioops.io_complete = NULL; bioops.io_deallocate = NULL; bioops.io_countdeps = NULL; softdep_ast_cleanup = NULL; callout_drain(&softdep_callout); } /* * Called at mount time to notify the dependency code that a * filesystem wishes to use it. */ int softdep_mount(devvp, mp, fs, cred) struct vnode *devvp; struct mount *mp; struct fs *fs; struct ucred *cred; { struct csum_total cstotal; struct mount_softdeps *sdp; struct ufsmount *ump; struct cg *cgp; struct buf *bp; u_int cyl, i; int error; ump = VFSTOUFS(mp); sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, M_WAITOK | M_ZERO); rw_init(&sdp->sd_fslock, "SUrw"); sdp->sd_ump = ump; LIST_INIT(&sdp->sd_workitem_pending); LIST_INIT(&sdp->sd_journal_pending); TAILQ_INIT(&sdp->sd_unlinked); LIST_INIT(&sdp->sd_dirtycg); sdp->sd_worklist_tail = NULL; sdp->sd_on_worklist = 0; sdp->sd_deps = 0; LIST_INIT(&sdp->sd_mkdirlisthd); sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP, &sdp->sd_pdhashsize); sdp->sd_pdnextclean = 0; sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP, &sdp->sd_idhashsize); sdp->sd_idnextclean = 0; sdp->sd_newblkhash = hashinit(max_softdeps / 2, M_NEWBLK, &sdp->sd_newblkhashsize); sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize); i = 1 << (ffs(desiredvnodes / 10) - 1); sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead), M_FREEWORK, M_WAITOK); sdp->sd_indirhashsize = i - 1; for (i = 0; i <= sdp->sd_indirhashsize; i++) TAILQ_INIT(&sdp->sd_indirhash[i]); for (i = 0; i <= D_LAST; i++) LIST_INIT(&sdp->sd_alldeps[i]); ACQUIRE_GBLLOCK(&lk); TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); FREE_GBLLOCK(&lk); ump->um_softdep = sdp; MNT_ILOCK(mp); mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | MNTK_SOFTDEP | MNTK_NOASYNC; } MNT_IUNLOCK(mp); if ((fs->fs_flags & FS_SUJ) && (error = journal_mount(mp, fs, cred)) != 0) { printf("Failed to start journal: %d\n", error); softdep_unmount(mp); return (error); } /* * Start our flushing thread in the bufdaemon process. */ ACQUIRE_LOCK(ump); ump->softdep_flags |= FLUSH_STARTING; FREE_LOCK(ump); kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", mp->mnt_stat.f_mntonname); ACQUIRE_LOCK(ump); while ((ump->softdep_flags & FLUSH_STARTING) != 0) { msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", hz / 2); } FREE_LOCK(ump); /* * When doing soft updates, the counters in the * superblock may have gotten out of sync. Recomputation * can take a long time and can be deferred for background * fsck. However, the old behavior of scanning the cylinder * groups and recalculating them at mount time is available * by setting vfs.ffs.compute_summary_at_mount to one. */ if (compute_summary_at_mount == 0 || fs->fs_clean != 0) return (0); bzero(&cstotal, sizeof cstotal); for (cyl = 0; cyl < fs->fs_ncg; cyl++) { if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), fs->fs_cgsize, cred, &bp)) != 0) { brelse(bp); softdep_unmount(mp); return (error); } cgp = (struct cg *)bp->b_data; cstotal.cs_nffree += cgp->cg_cs.cs_nffree; cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; cstotal.cs_nifree += cgp->cg_cs.cs_nifree; cstotal.cs_ndir += cgp->cg_cs.cs_ndir; fs->fs_cs(fs, cyl) = cgp->cg_cs; brelse(bp); } #ifdef INVARIANTS if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); #endif bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); return (0); } void softdep_unmount(mp) struct mount *mp; { struct ufsmount *ump; struct mount_softdeps *ums; ump = VFSTOUFS(mp); KASSERT(ump->um_softdep != NULL, ("softdep_unmount called on non-softdep filesystem")); MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_SOFTDEP; if ((mp->mnt_flag & MNT_SUJ) == 0) { MNT_IUNLOCK(mp); } else { mp->mnt_flag &= ~MNT_SUJ; MNT_IUNLOCK(mp); journal_unmount(ump); } /* * Shut down our flushing thread. Check for NULL is if * softdep_mount errors out before the thread has been created. */ if (ump->softdep_flushtd != NULL) { ACQUIRE_LOCK(ump); ump->softdep_flags |= FLUSH_EXIT; wakeup(&ump->softdep_flushtd); while ((ump->softdep_flags & FLUSH_EXIT) != 0) { msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM, "sdwait", 0); } KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, ("Thread shutdown failed")); FREE_LOCK(ump); } /* * We are no longer have softdep structure attached to ump. */ ums = ump->um_softdep; ACQUIRE_GBLLOCK(&lk); TAILQ_REMOVE(&softdepmounts, ums, sd_next); FREE_GBLLOCK(&lk); ump->um_softdep = NULL; KASSERT(ums->sd_on_journal == 0, ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal)); KASSERT(ums->sd_on_worklist == 0, ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist)); KASSERT(ums->sd_deps == 0, ("ump %p ums %p deps %d", ump, ums, ums->sd_deps)); /* * Free up our resources. */ rw_destroy(&ums->sd_fslock); hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize); hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize); hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize); hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize); free(ums->sd_indirhash, M_FREEWORK); #ifdef INVARIANTS for (int i = 0; i <= D_LAST; i++) { KASSERT(ums->sd_curdeps[i] == 0, ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, TYPENAME(i), ums->sd_curdeps[i])); KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]), ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt, TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i]))); } #endif free(ums, M_MOUNTDATA); } static struct jblocks * jblocks_create(void) { struct jblocks *jblocks; jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); TAILQ_INIT(&jblocks->jb_segs); jblocks->jb_avail = 10; jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, M_JBLOCKS, M_WAITOK | M_ZERO); return (jblocks); } static ufs2_daddr_t jblocks_alloc(jblocks, bytes, actual) struct jblocks *jblocks; int bytes; int *actual; { ufs2_daddr_t daddr; struct jextent *jext; int freecnt; int blocks; blocks = bytes / DEV_BSIZE; jext = &jblocks->jb_extent[jblocks->jb_head]; freecnt = jext->je_blocks - jblocks->jb_off; if (freecnt == 0) { jblocks->jb_off = 0; if (++jblocks->jb_head > jblocks->jb_used) jblocks->jb_head = 0; jext = &jblocks->jb_extent[jblocks->jb_head]; freecnt = jext->je_blocks; } if (freecnt > blocks) freecnt = blocks; *actual = freecnt * DEV_BSIZE; daddr = jext->je_daddr + jblocks->jb_off; jblocks->jb_off += freecnt; jblocks->jb_free -= freecnt; return (daddr); } static void jblocks_free(jblocks, mp, bytes) struct jblocks *jblocks; struct mount *mp; int bytes; { LOCK_OWNED(VFSTOUFS(mp)); jblocks->jb_free += bytes / DEV_BSIZE; if (jblocks->jb_suspended) worklist_speedup(mp); wakeup(jblocks); } static void jblocks_destroy(jblocks) struct jblocks *jblocks; { if (jblocks->jb_extent) free(jblocks->jb_extent, M_JBLOCKS); free(jblocks, M_JBLOCKS); } static void jblocks_add(jblocks, daddr, blocks) struct jblocks *jblocks; ufs2_daddr_t daddr; int blocks; { struct jextent *jext; jblocks->jb_blocks += blocks; jblocks->jb_free += blocks; jext = &jblocks->jb_extent[jblocks->jb_used]; /* Adding the first block. */ if (jext->je_daddr == 0) { jext->je_daddr = daddr; jext->je_blocks = blocks; return; } /* Extending the last extent. */ if (jext->je_daddr + jext->je_blocks == daddr) { jext->je_blocks += blocks; return; } /* Adding a new extent. */ if (++jblocks->jb_used == jblocks->jb_avail) { jblocks->jb_avail *= 2; jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, M_JBLOCKS, M_WAITOK | M_ZERO); memcpy(jext, jblocks->jb_extent, sizeof(struct jextent) * jblocks->jb_used); free(jblocks->jb_extent, M_JBLOCKS); jblocks->jb_extent = jext; } jext = &jblocks->jb_extent[jblocks->jb_used]; jext->je_daddr = daddr; jext->je_blocks = blocks; return; } int softdep_journal_lookup(mp, vpp) struct mount *mp; struct vnode **vpp; { struct componentname cnp; struct vnode *dvp; ino_t sujournal; int error; error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); if (error) return (error); bzero(&cnp, sizeof(cnp)); cnp.cn_nameiop = LOOKUP; cnp.cn_flags = ISLASTCN; cnp.cn_thread = curthread; cnp.cn_cred = curthread->td_ucred; cnp.cn_pnbuf = SUJ_FILE; cnp.cn_nameptr = SUJ_FILE; cnp.cn_namelen = strlen(SUJ_FILE); error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); vput(dvp); if (error != 0) return (error); error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); return (error); } /* * Open and verify the journal file. */ static int journal_mount(mp, fs, cred) struct mount *mp; struct fs *fs; struct ucred *cred; { struct jblocks *jblocks; struct ufsmount *ump; struct vnode *vp; struct inode *ip; ufs2_daddr_t blkno; int bcount; int error; int i; ump = VFSTOUFS(mp); ump->softdep_journal_tail = NULL; ump->softdep_on_journal = 0; ump->softdep_accdeps = 0; ump->softdep_req = 0; ump->softdep_jblocks = NULL; error = softdep_journal_lookup(mp, &vp); if (error != 0) { printf("Failed to find journal. Use tunefs to create one\n"); return (error); } ip = VTOI(vp); if (ip->i_size < SUJ_MIN) { error = ENOSPC; goto out; } bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ jblocks = jblocks_create(); for (i = 0; i < bcount; i++) { error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); if (error) break; jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); } if (error) { jblocks_destroy(jblocks); goto out; } jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ ump->softdep_jblocks = jblocks; MNT_ILOCK(mp); mp->mnt_flag |= MNT_SUJ; MNT_IUNLOCK(mp); /* * Only validate the journal contents if the * filesystem is clean, otherwise we write the logs * but they'll never be used. If the filesystem was * still dirty when we mounted it the journal is * invalid and a new journal can only be valid if it * starts from a clean mount. */ if (fs->fs_clean) { DIP_SET(ip, i_modrev, fs->fs_mtime); ip->i_flags |= IN_MODIFIED; ffs_update(vp, 1); } out: vput(vp); return (error); } static void journal_unmount(ump) struct ufsmount *ump; { if (ump->softdep_jblocks) jblocks_destroy(ump->softdep_jblocks); ump->softdep_jblocks = NULL; } /* * Called when a journal record is ready to be written. Space is allocated * and the journal entry is created when the journal is flushed to stable * store. */ static void add_to_journal(wk) struct worklist *wk; { struct ufsmount *ump; ump = VFSTOUFS(wk->wk_mp); LOCK_OWNED(ump); if (wk->wk_state & ONWORKLIST) panic("add_to_journal: %s(0x%X) already on list", TYPENAME(wk->wk_type), wk->wk_state); wk->wk_state |= ONWORKLIST | DEPCOMPLETE; if (LIST_EMPTY(&ump->softdep_journal_pending)) { ump->softdep_jblocks->jb_age = ticks; LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); } else LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); ump->softdep_journal_tail = wk; ump->softdep_on_journal += 1; } /* * Remove an arbitrary item for the journal worklist maintain the tail * pointer. This happens when a new operation obviates the need to * journal an old operation. */ static void remove_from_journal(wk) struct worklist *wk; { struct ufsmount *ump; ump = VFSTOUFS(wk->wk_mp); LOCK_OWNED(ump); #ifdef INVARIANTS { struct worklist *wkn; LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) if (wkn == wk) break; if (wkn == NULL) panic("remove_from_journal: %p is not in journal", wk); } #endif /* * We emulate a TAILQ to save space in most structures which do not * require TAILQ semantics. Here we must update the tail position * when removing the tail which is not the final entry. This works * only if the worklist linkage are at the beginning of the structure. */ if (ump->softdep_journal_tail == wk) ump->softdep_journal_tail = (struct worklist *)wk->wk_list.le_prev; WORKLIST_REMOVE(wk); ump->softdep_on_journal -= 1; } /* * Check for journal space as well as dependency limits so the prelink * code can throttle both journaled and non-journaled filesystems. * Threshold is 0 for low and 1 for min. */ static int journal_space(ump, thresh) struct ufsmount *ump; int thresh; { struct jblocks *jblocks; int limit, avail; jblocks = ump->softdep_jblocks; if (jblocks == NULL) return (1); /* * We use a tighter restriction here to prevent request_cleanup() * running in threads from running into locks we currently hold. * We have to be over the limit and our filesystem has to be * responsible for more than our share of that usage. */ limit = (max_softdeps / 10) * 9; if (dep_current[D_INODEDEP] > limit && ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) return (0); if (thresh) thresh = jblocks->jb_min; else thresh = jblocks->jb_low; avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; avail = jblocks->jb_free - avail; return (avail > thresh); } static void journal_suspend(ump) struct ufsmount *ump; { struct jblocks *jblocks; struct mount *mp; bool set; mp = UFSTOVFS(ump); if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) return; jblocks = ump->softdep_jblocks; vfs_op_enter(mp); set = false; MNT_ILOCK(mp); if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { stat_journal_min++; mp->mnt_kern_flag |= MNTK_SUSPEND; mp->mnt_susp_owner = ump->softdep_flushtd; set = true; } jblocks->jb_suspended = 1; MNT_IUNLOCK(mp); if (!set) vfs_op_exit(mp); } static int journal_unsuspend(struct ufsmount *ump) { struct jblocks *jblocks; struct mount *mp; mp = UFSTOVFS(ump); jblocks = ump->softdep_jblocks; if (jblocks != NULL && jblocks->jb_suspended && journal_space(ump, jblocks->jb_min)) { jblocks->jb_suspended = 0; FREE_LOCK(ump); mp->mnt_susp_owner = curthread; vfs_write_resume(mp, 0); ACQUIRE_LOCK(ump); return (1); } return (0); } static void journal_check_space(ump) struct ufsmount *ump; { struct mount *mp; LOCK_OWNED(ump); if (journal_space(ump, 0) == 0) { softdep_speedup(ump); mp = UFSTOVFS(ump); FREE_LOCK(ump); VFS_SYNC(mp, MNT_NOWAIT); ffs_sbupdate(ump, MNT_WAIT, 0); ACQUIRE_LOCK(ump); if (journal_space(ump, 1) == 0) journal_suspend(ump); } } /* * Called before any allocation function to be certain that there is * sufficient space in the journal prior to creating any new records. * Since in the case of block allocation we may have multiple locked * buffers at the time of the actual allocation we can not block * when the journal records are created. Doing so would create a deadlock * if any of these buffers needed to be flushed to reclaim space. Instead * we require a sufficiently large amount of available space such that * each thread in the system could have passed this allocation check and * still have sufficient free space. With 20% of a minimum journal size * of 1MB we have 6553 records available. */ int softdep_prealloc(vp, waitok) struct vnode *vp; int waitok; { struct ufsmount *ump; KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, ("softdep_prealloc called on non-softdep filesystem")); /* * Nothing to do if we are not running journaled soft updates. * If we currently hold the snapshot lock, we must avoid * handling other resources that could cause deadlock. Do not * touch quotas vnode since it is typically recursed with * other vnode locks held. */ if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || (vp->v_vflag & VV_SYSTEM) != 0) return (0); ump = VFSTOUFS(vp->v_mount); ACQUIRE_LOCK(ump); if (journal_space(ump, 0)) { FREE_LOCK(ump); return (0); } stat_journal_low++; FREE_LOCK(ump); if (waitok == MNT_NOWAIT) return (ENOSPC); /* * Attempt to sync this vnode once to flush any journal * work attached to it. */ if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) ffs_syncvnode(vp, waitok, 0); ACQUIRE_LOCK(ump); process_removes(vp); process_truncates(vp); journal_check_space(ump); FREE_LOCK(ump); return (0); } /* * Try hard to sync all data and metadata for the vnode, and workitems * flushing which might conflict with the vnode lock. This is a * helper for softdep_prerename(). */ static int softdep_prerename_vnode(ump, vp) struct ufsmount *ump; struct vnode *vp; { int error; ASSERT_VOP_ELOCKED(vp, "prehandle"); if (vp->v_data == NULL) return (0); error = VOP_FSYNC(vp, MNT_WAIT, curthread); if (error != 0) return (error); ACQUIRE_LOCK(ump); process_removes(vp); process_truncates(vp); FREE_LOCK(ump); return (0); } /* * Must be called from VOP_RENAME() after all vnodes are locked. * Ensures that there is enough journal space for rename. It is * sufficiently different from softdep_prelink() by having to handle * four vnodes. */ int softdep_prerename(fdvp, fvp, tdvp, tvp) struct vnode *fdvp; struct vnode *fvp; struct vnode *tdvp; struct vnode *tvp; { struct ufsmount *ump; int error; ump = VFSTOUFS(fdvp->v_mount); if (journal_space(ump, 0)) return (0); VOP_UNLOCK(tdvp); VOP_UNLOCK(fvp); if (tvp != NULL && tvp != tdvp) VOP_UNLOCK(tvp); error = softdep_prerename_vnode(ump, fdvp); VOP_UNLOCK(fdvp); if (error != 0) return (error); VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); error = softdep_prerename_vnode(ump, fvp); VOP_UNLOCK(fvp); if (error != 0) return (error); if (tdvp != fdvp) { VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); error = softdep_prerename_vnode(ump, tdvp); VOP_UNLOCK(tdvp); if (error != 0) return (error); } if (tvp != fvp && tvp != NULL) { VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); error = softdep_prerename_vnode(ump, tvp); VOP_UNLOCK(tvp); if (error != 0) return (error); } ACQUIRE_LOCK(ump); softdep_speedup(ump); process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); journal_check_space(ump); FREE_LOCK(ump); return (ERELOOKUP); } /* * Before adjusting a link count on a vnode verify that we have sufficient * journal space. If not, process operations that depend on the currently * locked pair of vnodes to try to flush space as the syncer, buf daemon, * and softdep flush threads can not acquire these locks to reclaim space. * * Returns 0 if all owned locks are still valid and were not dropped * in the process, in other case it returns either an error from sync, * or ERELOOKUP if any of the locks were re-acquired. In the later * case, the state of the vnodes cannot be relied upon and our VFS * syscall must be restarted at top level from the lookup. */ int softdep_prelink(dvp, vp, cnp) struct vnode *dvp; struct vnode *vp; struct componentname *cnp; { struct ufsmount *ump; struct nameidata *ndp; ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); if (vp != NULL) ASSERT_VOP_ELOCKED(vp, "prelink vp"); ump = VFSTOUFS(dvp->v_mount); /* * Nothing to do if we have sufficient journal space. We skip * flushing when vp is a snapshot to avoid deadlock where * another thread is trying to update the inodeblock for dvp * and is waiting on snaplk that vp holds. */ if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) return (0); /* * Check if the journal space consumption can in theory be * accounted on dvp and vp. If the vnodes metadata was not * changed comparing with the previous round-trip into * softdep_prelink(), as indicated by the seqc generation * recorded in the nameidata, then there is no point in * starting the sync. */ ndp = __containerof(cnp, struct nameidata, ni_cnd); if (!seqc_in_modify(ndp->ni_dvp_seqc) && vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) && (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) && vn_seqc_consistent(vp, ndp->ni_vp_seqc)))) return (0); stat_journal_low++; if (vp != NULL) { VOP_UNLOCK(dvp); ffs_syncvnode(vp, MNT_NOWAIT, 0); vn_lock_pair(dvp, false, vp, true); if (dvp->v_data == NULL) goto out; } if (vp != NULL) VOP_UNLOCK(vp); ffs_syncvnode(dvp, MNT_WAIT, 0); /* Process vp before dvp as it may create .. removes. */ if (vp != NULL) { VOP_UNLOCK(dvp); vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); if (vp->v_data == NULL) { vn_lock_pair(dvp, false, vp, true); goto out; } ACQUIRE_LOCK(ump); process_removes(vp); process_truncates(vp); FREE_LOCK(ump); VOP_UNLOCK(vp); vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); if (dvp->v_data == NULL) { vn_lock_pair(dvp, true, vp, false); goto out; } } ACQUIRE_LOCK(ump); process_removes(dvp); process_truncates(dvp); VOP_UNLOCK(dvp); softdep_speedup(ump); process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); journal_check_space(ump); FREE_LOCK(ump); vn_lock_pair(dvp, false, vp, false); out: ndp->ni_dvp_seqc = vn_seqc_read_any(dvp); if (vp != NULL) ndp->ni_vp_seqc = vn_seqc_read_any(vp); return (ERELOOKUP); } static void jseg_write(ump, jseg, data) struct ufsmount *ump; struct jseg *jseg; uint8_t *data; { struct jsegrec *rec; rec = (struct jsegrec *)data; rec->jsr_seq = jseg->js_seq; rec->jsr_oldest = jseg->js_oldseq; rec->jsr_cnt = jseg->js_cnt; rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; rec->jsr_crc = 0; rec->jsr_time = ump->um_fs->fs_mtime; } static inline void inoref_write(inoref, jseg, rec) struct inoref *inoref; struct jseg *jseg; struct jrefrec *rec; { inoref->if_jsegdep->jd_seg = jseg; rec->jr_ino = inoref->if_ino; rec->jr_parent = inoref->if_parent; rec->jr_nlink = inoref->if_nlink; rec->jr_mode = inoref->if_mode; rec->jr_diroff = inoref->if_diroff; } static void jaddref_write(jaddref, jseg, data) struct jaddref *jaddref; struct jseg *jseg; uint8_t *data; { struct jrefrec *rec; rec = (struct jrefrec *)data; rec->jr_op = JOP_ADDREF; inoref_write(&jaddref->ja_ref, jseg, rec); } static void jremref_write(jremref, jseg, data) struct jremref *jremref; struct jseg *jseg; uint8_t *data; { struct jrefrec *rec; rec = (struct jrefrec *)data; rec->jr_op = JOP_REMREF; inoref_write(&jremref->jr_ref, jseg, rec); } static void jmvref_write(jmvref, jseg, data) struct jmvref *jmvref; struct jseg *jseg; uint8_t *data; { struct jmvrec *rec; rec = (struct jmvrec *)data; rec->jm_op = JOP_MVREF; rec->jm_ino = jmvref->jm_ino; rec->jm_parent = jmvref->jm_parent; rec->jm_oldoff = jmvref->jm_oldoff; rec->jm_newoff = jmvref->jm_newoff; } static void jnewblk_write(jnewblk, jseg, data) struct jnewblk *jnewblk; struct jseg *jseg; uint8_t *data; { struct jblkrec *rec; jnewblk->jn_jsegdep->jd_seg = jseg; rec = (struct jblkrec *)data; rec->jb_op = JOP_NEWBLK; rec->jb_ino = jnewblk->jn_ino; rec->jb_blkno = jnewblk->jn_blkno; rec->jb_lbn = jnewblk->jn_lbn; rec->jb_frags = jnewblk->jn_frags; rec->jb_oldfrags = jnewblk->jn_oldfrags; } static void jfreeblk_write(jfreeblk, jseg, data) struct jfreeblk *jfreeblk; struct jseg *jseg; uint8_t *data; { struct jblkrec *rec; jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; rec = (struct jblkrec *)data; rec->jb_op = JOP_FREEBLK; rec->jb_ino = jfreeblk->jf_ino; rec->jb_blkno = jfreeblk->jf_blkno; rec->jb_lbn = jfreeblk->jf_lbn; rec->jb_frags = jfreeblk->jf_frags; rec->jb_oldfrags = 0; } static void jfreefrag_write(jfreefrag, jseg, data) struct jfreefrag *jfreefrag; struct jseg *jseg; uint8_t *data; { struct jblkrec *rec; jfreefrag->fr_jsegdep->jd_seg = jseg; rec = (struct jblkrec *)data; rec->jb_op = JOP_FREEBLK; rec->jb_ino = jfreefrag->fr_ino; rec->jb_blkno = jfreefrag->fr_blkno; rec->jb_lbn = jfreefrag->fr_lbn; rec->jb_frags = jfreefrag->fr_frags; rec->jb_oldfrags = 0; } static void jtrunc_write(jtrunc, jseg, data) struct jtrunc *jtrunc; struct jseg *jseg; uint8_t *data; { struct jtrncrec *rec; jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; rec = (struct jtrncrec *)data; rec->jt_op = JOP_TRUNC; rec->jt_ino = jtrunc->jt_ino; rec->jt_size = jtrunc->jt_size; rec->jt_extsize = jtrunc->jt_extsize; } static void jfsync_write(jfsync, jseg, data) struct jfsync *jfsync; struct jseg *jseg; uint8_t *data; { struct jtrncrec *rec; rec = (struct jtrncrec *)data; rec->jt_op = JOP_SYNC; rec->jt_ino = jfsync->jfs_ino; rec->jt_size = jfsync->jfs_size; rec->jt_extsize = jfsync->jfs_extsize; } static void softdep_flushjournal(mp) struct mount *mp; { struct jblocks *jblocks; struct ufsmount *ump; if (MOUNTEDSUJ(mp) == 0) return; ump = VFSTOUFS(mp); jblocks = ump->softdep_jblocks; ACQUIRE_LOCK(ump); while (ump->softdep_on_journal) { jblocks->jb_needseg = 1; softdep_process_journal(mp, NULL, MNT_WAIT); } FREE_LOCK(ump); } static void softdep_synchronize_completed(struct bio *); static void softdep_synchronize(struct bio *, struct ufsmount *, void *); static void softdep_synchronize_completed(bp) struct bio *bp; { struct jseg *oldest; struct jseg *jseg; struct ufsmount *ump; /* * caller1 marks the last segment written before we issued the * synchronize cache. */ jseg = bp->bio_caller1; if (jseg == NULL) { g_destroy_bio(bp); return; } ump = VFSTOUFS(jseg->js_list.wk_mp); ACQUIRE_LOCK(ump); oldest = NULL; /* * Mark all the journal entries waiting on the synchronize cache * as completed so they may continue on. */ while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { jseg->js_state |= COMPLETE; oldest = jseg; jseg = TAILQ_PREV(jseg, jseglst, js_next); } /* * Restart deferred journal entry processing from the oldest * completed jseg. */ if (oldest) complete_jsegs(oldest); FREE_LOCK(ump); g_destroy_bio(bp); } /* * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering * barriers. The journal must be written prior to any blocks that depend * on it and the journal can not be released until the blocks have be * written. This code handles both barriers simultaneously. */ static void softdep_synchronize(bp, ump, caller1) struct bio *bp; struct ufsmount *ump; void *caller1; { bp->bio_cmd = BIO_FLUSH; bp->bio_flags |= BIO_ORDERED; bp->bio_data = NULL; bp->bio_offset = ump->um_cp->provider->mediasize; bp->bio_length = 0; bp->bio_done = softdep_synchronize_completed; bp->bio_caller1 = caller1; g_io_request(bp, ump->um_cp); } /* * Flush some journal records to disk. */ static void softdep_process_journal(mp, needwk, flags) struct mount *mp; struct worklist *needwk; int flags; { struct jblocks *jblocks; struct ufsmount *ump; struct worklist *wk; struct jseg *jseg; struct buf *bp; struct bio *bio; uint8_t *data; struct fs *fs; int shouldflush; int segwritten; int jrecmin; /* Minimum records per block. */ int jrecmax; /* Maximum records per block. */ int size; int cnt; int off; int devbsize; ump = VFSTOUFS(mp); if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL) return; shouldflush = softdep_flushcache; bio = NULL; jseg = NULL; LOCK_OWNED(ump); fs = ump->um_fs; jblocks = ump->softdep_jblocks; devbsize = ump->um_devvp->v_bufobj.bo_bsize; /* * We write anywhere between a disk block and fs block. The upper * bound is picked to prevent buffer cache fragmentation and limit * processing time per I/O. */ jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ jrecmax = (fs->fs_bsize / devbsize) * jrecmin; segwritten = 0; for (;;) { cnt = ump->softdep_on_journal; /* * Criteria for writing a segment: * 1) We have a full block. * 2) We're called from jwait() and haven't found the * journal item yet. * 3) Always write if needseg is set. * 4) If we are called from process_worklist and have * not yet written anything we write a partial block * to enforce a 1 second maximum latency on journal * entries. */ if (cnt < (jrecmax - 1) && needwk == NULL && jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) break; cnt++; /* * Verify some free journal space. softdep_prealloc() should * guarantee that we don't run out so this is indicative of * a problem with the flow control. Try to recover * gracefully in any event. */ while (jblocks->jb_free == 0) { if (flags != MNT_WAIT) break; printf("softdep: Out of journal space!\n"); softdep_speedup(ump); msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); } FREE_LOCK(ump); jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); workitem_alloc(&jseg->js_list, D_JSEG, mp); LIST_INIT(&jseg->js_entries); LIST_INIT(&jseg->js_indirs); jseg->js_state = ATTACHED; if (shouldflush == 0) jseg->js_state |= COMPLETE; else if (bio == NULL) bio = g_alloc_bio(); jseg->js_jblocks = jblocks; bp = geteblk(fs->fs_bsize, 0); ACQUIRE_LOCK(ump); /* * If there was a race while we were allocating the block * and jseg the entry we care about was likely written. * We bail out in both the WAIT and NOWAIT case and assume * the caller will loop if the entry it cares about is * not written. */ cnt = ump->softdep_on_journal; if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { bp->b_flags |= B_INVAL | B_NOCACHE; WORKITEM_FREE(jseg, D_JSEG); FREE_LOCK(ump); brelse(bp); ACQUIRE_LOCK(ump); break; } /* * Calculate the disk block size required for the available * records rounded to the min size. */ if (cnt == 0) size = devbsize; else if (cnt < jrecmax) size = howmany(cnt, jrecmin) * devbsize; else size = fs->fs_bsize; /* * Allocate a disk block for this journal data and account * for truncation of the requested size if enough contiguous * space was not available. */ bp->b_blkno = jblocks_alloc(jblocks, size, &size); bp->b_lblkno = bp->b_blkno; bp->b_offset = bp->b_blkno * DEV_BSIZE; bp->b_bcount = size; bp->b_flags &= ~B_INVAL; bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; /* * Initialize our jseg with cnt records. Assign the next * sequence number to it and link it in-order. */ cnt = MIN(cnt, (size / devbsize) * jrecmin); jseg->js_buf = bp; jseg->js_cnt = cnt; jseg->js_refs = cnt + 1; /* Self ref. */ jseg->js_size = size; jseg->js_seq = jblocks->jb_nextseq++; if (jblocks->jb_oldestseg == NULL) jblocks->jb_oldestseg = jseg; jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); if (jblocks->jb_writeseg == NULL) jblocks->jb_writeseg = jseg; /* * Start filling in records from the pending list. */ data = bp->b_data; off = 0; /* * Always put a header on the first block. * XXX As with below, there might not be a chance to get * into the loop. Ensure that something valid is written. */ jseg_write(ump, jseg, data); off += JREC_SIZE; data = bp->b_data + off; /* * XXX Something is wrong here. There's no work to do, * but we need to perform and I/O and allow it to complete * anyways. */ if (LIST_EMPTY(&ump->softdep_journal_pending)) stat_emptyjblocks++; while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) != NULL) { if (cnt == 0) break; /* Place a segment header on every device block. */ if ((off % devbsize) == 0) { jseg_write(ump, jseg, data); off += JREC_SIZE; data = bp->b_data + off; } if (wk == needwk) needwk = NULL; remove_from_journal(wk); wk->wk_state |= INPROGRESS; WORKLIST_INSERT(&jseg->js_entries, wk); switch (wk->wk_type) { case D_JADDREF: jaddref_write(WK_JADDREF(wk), jseg, data); break; case D_JREMREF: jremref_write(WK_JREMREF(wk), jseg, data); break; case D_JMVREF: jmvref_write(WK_JMVREF(wk), jseg, data); break; case D_JNEWBLK: jnewblk_write(WK_JNEWBLK(wk), jseg, data); break; case D_JFREEBLK: jfreeblk_write(WK_JFREEBLK(wk), jseg, data); break; case D_JFREEFRAG: jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); break; case D_JTRUNC: jtrunc_write(WK_JTRUNC(wk), jseg, data); break; case D_JFSYNC: jfsync_write(WK_JFSYNC(wk), jseg, data); break; default: panic("process_journal: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } off += JREC_SIZE; data = bp->b_data + off; cnt--; } /* Clear any remaining space so we don't leak kernel data */ if (size > off) bzero(data, size - off); /* * Write this one buffer and continue. */ segwritten = 1; jblocks->jb_needseg = 0; WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); FREE_LOCK(ump); bp->b_xflags |= BX_CVTENXIO; pbgetvp(ump->um_devvp, bp); /* * We only do the blocking wait once we find the journal * entry we're looking for. */ if (needwk == NULL && flags == MNT_WAIT) bwrite(bp); else bawrite(bp); ACQUIRE_LOCK(ump); } /* * If we wrote a segment issue a synchronize cache so the journal * is reflected on disk before the data is written. Since reclaiming * journal space also requires writing a journal record this * process also enforces a barrier before reclamation. */ if (segwritten && shouldflush) { softdep_synchronize(bio, ump, TAILQ_LAST(&jblocks->jb_segs, jseglst)); } else if (bio) g_destroy_bio(bio); /* * If we've suspended the filesystem because we ran out of journal * space either try to sync it here to make some progress or * unsuspend it if we already have. */ if (flags == 0 && jblocks->jb_suspended) { if (journal_unsuspend(ump)) return; FREE_LOCK(ump); VFS_SYNC(mp, MNT_NOWAIT); ffs_sbupdate(ump, MNT_WAIT, 0); ACQUIRE_LOCK(ump); } } /* * Complete a jseg, allowing all dependencies awaiting journal writes * to proceed. Each journal dependency also attaches a jsegdep to dependent * structures so that the journal segment can be freed to reclaim space. */ static void complete_jseg(jseg) struct jseg *jseg; { struct worklist *wk; struct jmvref *jmvref; #ifdef INVARIANTS int i = 0; #endif while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { WORKLIST_REMOVE(wk); wk->wk_state &= ~INPROGRESS; wk->wk_state |= COMPLETE; KASSERT(i++ < jseg->js_cnt, ("handle_written_jseg: overflow %d >= %d", i - 1, jseg->js_cnt)); switch (wk->wk_type) { case D_JADDREF: handle_written_jaddref(WK_JADDREF(wk)); break; case D_JREMREF: handle_written_jremref(WK_JREMREF(wk)); break; case D_JMVREF: rele_jseg(jseg); /* No jsegdep. */ jmvref = WK_JMVREF(wk); LIST_REMOVE(jmvref, jm_deps); if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) free_pagedep(jmvref->jm_pagedep); WORKITEM_FREE(jmvref, D_JMVREF); break; case D_JNEWBLK: handle_written_jnewblk(WK_JNEWBLK(wk)); break; case D_JFREEBLK: handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); break; case D_JTRUNC: handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); break; case D_JFSYNC: rele_jseg(jseg); /* No jsegdep. */ WORKITEM_FREE(wk, D_JFSYNC); break; case D_JFREEFRAG: handle_written_jfreefrag(WK_JFREEFRAG(wk)); break; default: panic("handle_written_jseg: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } /* Release the self reference so the structure may be freed. */ rele_jseg(jseg); } /* * Determine which jsegs are ready for completion processing. Waits for * synchronize cache to complete as well as forcing in-order completion * of journal entries. */ static void complete_jsegs(jseg) struct jseg *jseg; { struct jblocks *jblocks; struct jseg *jsegn; jblocks = jseg->js_jblocks; /* * Don't allow out of order completions. If this isn't the first * block wait for it to write before we're done. */ if (jseg != jblocks->jb_writeseg) return; /* Iterate through available jsegs processing their entries. */ while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { jblocks->jb_oldestwrseq = jseg->js_oldseq; jsegn = TAILQ_NEXT(jseg, js_next); complete_jseg(jseg); jseg = jsegn; } jblocks->jb_writeseg = jseg; /* * Attempt to free jsegs now that oldestwrseq may have advanced. */ free_jsegs(jblocks); } /* * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle * the final completions. */ static void handle_written_jseg(jseg, bp) struct jseg *jseg; struct buf *bp; { if (jseg->js_refs == 0) panic("handle_written_jseg: No self-reference on %p", jseg); jseg->js_state |= DEPCOMPLETE; /* * We'll never need this buffer again, set flags so it will be * discarded. */ bp->b_flags |= B_INVAL | B_NOCACHE; pbrelvp(bp); complete_jsegs(jseg); } static inline struct jsegdep * inoref_jseg(inoref) struct inoref *inoref; { struct jsegdep *jsegdep; jsegdep = inoref->if_jsegdep; inoref->if_jsegdep = NULL; return (jsegdep); } /* * Called once a jremref has made it to stable store. The jremref is marked * complete and we attempt to free it. Any pagedeps writes sleeping waiting * for the jremref to complete will be awoken by free_jremref. */ static void handle_written_jremref(jremref) struct jremref *jremref; { struct inodedep *inodedep; struct jsegdep *jsegdep; struct dirrem *dirrem; /* Grab the jsegdep. */ jsegdep = inoref_jseg(&jremref->jr_ref); /* * Remove us from the inoref list. */ if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, &inodedep) == 0) panic("handle_written_jremref: Lost inodedep"); TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); /* * Complete the dirrem. */ dirrem = jremref->jr_dirrem; jremref->jr_dirrem = NULL; LIST_REMOVE(jremref, jr_deps); jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; jwork_insert(&dirrem->dm_jwork, jsegdep); if (LIST_EMPTY(&dirrem->dm_jremrefhd) && (dirrem->dm_state & COMPLETE) != 0) add_to_worklist(&dirrem->dm_list, 0); free_jremref(jremref); } /* * Called once a jaddref has made it to stable store. The dependency is * marked complete and any dependent structures are added to the inode * bufwait list to be completed as soon as it is written. If a bitmap write * depends on this entry we move the inode into the inodedephd of the * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. */ static void handle_written_jaddref(jaddref) struct jaddref *jaddref; { struct jsegdep *jsegdep; struct inodedep *inodedep; struct diradd *diradd; struct mkdir *mkdir; /* Grab the jsegdep. */ jsegdep = inoref_jseg(&jaddref->ja_ref); mkdir = NULL; diradd = NULL; if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 0, &inodedep) == 0) panic("handle_written_jaddref: Lost inodedep."); if (jaddref->ja_diradd == NULL) panic("handle_written_jaddref: No dependency"); if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { diradd = jaddref->ja_diradd; WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); } else if (jaddref->ja_state & MKDIR_PARENT) { mkdir = jaddref->ja_mkdir; WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); } else if (jaddref->ja_state & MKDIR_BODY) mkdir = jaddref->ja_mkdir; else panic("handle_written_jaddref: Unknown dependency %p", jaddref->ja_diradd); jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ /* * Remove us from the inode list. */ TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); /* * The mkdir may be waiting on the jaddref to clear before freeing. */ if (mkdir) { KASSERT(mkdir->md_list.wk_type == D_MKDIR, ("handle_written_jaddref: Incorrect type for mkdir %s", TYPENAME(mkdir->md_list.wk_type))); mkdir->md_jaddref = NULL; diradd = mkdir->md_diradd; mkdir->md_state |= DEPCOMPLETE; complete_mkdir(mkdir); } jwork_insert(&diradd->da_jwork, jsegdep); if (jaddref->ja_state & NEWBLOCK) { inodedep->id_state |= ONDEPLIST; LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, inodedep, id_deps); } free_jaddref(jaddref); } /* * Called once a jnewblk journal is written. The allocdirect or allocindir * is placed in the bmsafemap to await notification of a written bitmap. If * the operation was canceled we add the segdep to the appropriate * dependency to free the journal space once the canceling operation * completes. */ static void handle_written_jnewblk(jnewblk) struct jnewblk *jnewblk; { struct bmsafemap *bmsafemap; struct freefrag *freefrag; struct freework *freework; struct jsegdep *jsegdep; struct newblk *newblk; /* Grab the jsegdep. */ jsegdep = jnewblk->jn_jsegdep; jnewblk->jn_jsegdep = NULL; if (jnewblk->jn_dep == NULL) panic("handle_written_jnewblk: No dependency for the segdep."); switch (jnewblk->jn_dep->wk_type) { case D_NEWBLK: case D_ALLOCDIRECT: case D_ALLOCINDIR: /* * Add the written block to the bmsafemap so it can * be notified when the bitmap is on disk. */ newblk = WK_NEWBLK(jnewblk->jn_dep); newblk->nb_jnewblk = NULL; if ((newblk->nb_state & GOINGAWAY) == 0) { bmsafemap = newblk->nb_bmsafemap; newblk->nb_state |= ONDEPLIST; LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); } jwork_insert(&newblk->nb_jwork, jsegdep); break; case D_FREEFRAG: /* * A newblock being removed by a freefrag when replaced by * frag extension. */ freefrag = WK_FREEFRAG(jnewblk->jn_dep); freefrag->ff_jdep = NULL; jwork_insert(&freefrag->ff_jwork, jsegdep); break; case D_FREEWORK: /* * A direct block was removed by truncate. */ freework = WK_FREEWORK(jnewblk->jn_dep); freework->fw_jnewblk = NULL; jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); break; default: panic("handle_written_jnewblk: Unknown type %d.", jnewblk->jn_dep->wk_type); } jnewblk->jn_dep = NULL; free_jnewblk(jnewblk); } /* * Cancel a jfreefrag that won't be needed, probably due to colliding with * an in-flight allocation that has not yet been committed. Divorce us * from the freefrag and mark it DEPCOMPLETE so that it may be added * to the worklist. */ static void cancel_jfreefrag(jfreefrag) struct jfreefrag *jfreefrag; { struct freefrag *freefrag; if (jfreefrag->fr_jsegdep) { free_jsegdep(jfreefrag->fr_jsegdep); jfreefrag->fr_jsegdep = NULL; } freefrag = jfreefrag->fr_freefrag; jfreefrag->fr_freefrag = NULL; free_jfreefrag(jfreefrag); freefrag->ff_state |= DEPCOMPLETE; CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); } /* * Free a jfreefrag when the parent freefrag is rendered obsolete. */ static void free_jfreefrag(jfreefrag) struct jfreefrag *jfreefrag; { if (jfreefrag->fr_state & INPROGRESS) WORKLIST_REMOVE(&jfreefrag->fr_list); else if (jfreefrag->fr_state & ONWORKLIST) remove_from_journal(&jfreefrag->fr_list); if (jfreefrag->fr_freefrag != NULL) panic("free_jfreefrag: Still attached to a freefrag."); WORKITEM_FREE(jfreefrag, D_JFREEFRAG); } /* * Called when the journal write for a jfreefrag completes. The parent * freefrag is added to the worklist if this completes its dependencies. */ static void handle_written_jfreefrag(jfreefrag) struct jfreefrag *jfreefrag; { struct jsegdep *jsegdep; struct freefrag *freefrag; /* Grab the jsegdep. */ jsegdep = jfreefrag->fr_jsegdep; jfreefrag->fr_jsegdep = NULL; freefrag = jfreefrag->fr_freefrag; if (freefrag == NULL) panic("handle_written_jfreefrag: No freefrag."); freefrag->ff_state |= DEPCOMPLETE; freefrag->ff_jdep = NULL; jwork_insert(&freefrag->ff_jwork, jsegdep); if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) add_to_worklist(&freefrag->ff_list, 0); jfreefrag->fr_freefrag = NULL; free_jfreefrag(jfreefrag); } /* * Called when the journal write for a jfreeblk completes. The jfreeblk * is removed from the freeblks list of pending journal writes and the * jsegdep is moved to the freeblks jwork to be completed when all blocks * have been reclaimed. */ static void handle_written_jblkdep(jblkdep) struct jblkdep *jblkdep; { struct freeblks *freeblks; struct jsegdep *jsegdep; /* Grab the jsegdep. */ jsegdep = jblkdep->jb_jsegdep; jblkdep->jb_jsegdep = NULL; freeblks = jblkdep->jb_freeblks; LIST_REMOVE(jblkdep, jb_deps); jwork_insert(&freeblks->fb_jwork, jsegdep); /* * If the freeblks is all journaled, we can add it to the worklist. */ if (LIST_EMPTY(&freeblks->fb_jblkdephd) && (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) add_to_worklist(&freeblks->fb_list, WK_NODELAY); free_jblkdep(jblkdep); } static struct jsegdep * newjsegdep(struct worklist *wk) { struct jsegdep *jsegdep; jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); jsegdep->jd_seg = NULL; return (jsegdep); } static struct jmvref * newjmvref(dp, ino, oldoff, newoff) struct inode *dp; ino_t ino; off_t oldoff; off_t newoff; { struct jmvref *jmvref; jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; jmvref->jm_parent = dp->i_number; jmvref->jm_ino = ino; jmvref->jm_oldoff = oldoff; jmvref->jm_newoff = newoff; return (jmvref); } /* * Allocate a new jremref that tracks the removal of ip from dp with the * directory entry offset of diroff. Mark the entry as ATTACHED and * DEPCOMPLETE as we have all the information required for the journal write * and the directory has already been removed from the buffer. The caller * is responsible for linking the jremref into the pagedep and adding it * to the journal to write. The MKDIR_PARENT flag is set if we're doing * a DOTDOT addition so handle_workitem_remove() can properly assign * the jsegdep when we're done. */ static struct jremref * newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, off_t diroff, nlink_t nlink) { struct jremref *jremref; jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); jremref->jr_state = ATTACHED; newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, nlink, ip->i_mode); jremref->jr_dirrem = dirrem; return (jremref); } static inline void newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, nlink_t nlink, uint16_t mode) { inoref->if_jsegdep = newjsegdep(&inoref->if_list); inoref->if_diroff = diroff; inoref->if_ino = ino; inoref->if_parent = parent; inoref->if_nlink = nlink; inoref->if_mode = mode; } /* * Allocate a new jaddref to track the addition of ino to dp at diroff. The * directory offset may not be known until later. The caller is responsible * adding the entry to the journal when this information is available. nlink * should be the link count prior to the addition and mode is only required * to have the correct FMT. */ static struct jaddref * newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, uint16_t mode) { struct jaddref *jaddref; jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); jaddref->ja_state = ATTACHED; jaddref->ja_mkdir = NULL; newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); return (jaddref); } /* * Create a new free dependency for a freework. The caller is responsible * for adjusting the reference count when it has the lock held. The freedep * will track an outstanding bitmap write that will ultimately clear the * freework to continue. */ static struct freedep * newfreedep(struct freework *freework) { struct freedep *freedep; freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); freedep->fd_freework = freework; return (freedep); } /* * Free a freedep structure once the buffer it is linked to is written. If * this is the last reference to the freework schedule it for completion. */ static void free_freedep(freedep) struct freedep *freedep; { struct freework *freework; freework = freedep->fd_freework; freework->fw_freeblks->fb_cgwait--; if (--freework->fw_ref == 0) freework_enqueue(freework); WORKITEM_FREE(freedep, D_FREEDEP); } /* * Allocate a new freework structure that may be a level in an indirect * when parent is not NULL or a top level block when it is. The top level * freework structures are allocated without the per-filesystem lock held * and before the freeblks is visible outside of softdep_setup_freeblocks(). */ static struct freework * newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) struct ufsmount *ump; struct freeblks *freeblks; struct freework *parent; ufs_lbn_t lbn; ufs2_daddr_t nb; int frags; int off; int journal; { struct freework *freework; freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); freework->fw_state = ATTACHED; freework->fw_jnewblk = NULL; freework->fw_freeblks = freeblks; freework->fw_parent = parent; freework->fw_lbn = lbn; freework->fw_blkno = nb; freework->fw_frags = frags; freework->fw_indir = NULL; freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; freework->fw_start = freework->fw_off = off; if (journal) newjfreeblk(freeblks, lbn, nb, frags); if (parent == NULL) { ACQUIRE_LOCK(ump); WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); freeblks->fb_ref++; FREE_LOCK(ump); } return (freework); } /* * Eliminate a jfreeblk for a block that does not need journaling. */ static void cancel_jfreeblk(freeblks, blkno) struct freeblks *freeblks; ufs2_daddr_t blkno; { struct jfreeblk *jfreeblk; struct jblkdep *jblkdep; LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { if (jblkdep->jb_list.wk_type != D_JFREEBLK) continue; jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); if (jfreeblk->jf_blkno == blkno) break; } if (jblkdep == NULL) return; CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); free_jsegdep(jblkdep->jb_jsegdep); LIST_REMOVE(jblkdep, jb_deps); WORKITEM_FREE(jfreeblk, D_JFREEBLK); } /* * Allocate a new jfreeblk to journal top level block pointer when truncating * a file. The caller must add this to the worklist when the per-filesystem * lock is held. */ static struct jfreeblk * newjfreeblk(freeblks, lbn, blkno, frags) struct freeblks *freeblks; ufs_lbn_t lbn; ufs2_daddr_t blkno; int frags; { struct jfreeblk *jfreeblk; jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, freeblks->fb_list.wk_mp); jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); jfreeblk->jf_dep.jb_freeblks = freeblks; jfreeblk->jf_ino = freeblks->fb_inum; jfreeblk->jf_lbn = lbn; jfreeblk->jf_blkno = blkno; jfreeblk->jf_frags = frags; LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); return (jfreeblk); } /* * The journal is only prepared to handle full-size block numbers, so we * have to adjust the record to reflect the change to a full-size block. * For example, suppose we have a block made up of fragments 8-15 and * want to free its last two fragments. We are given a request that says: * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 * where frags are the number of fragments to free and oldfrags are the * number of fragments to keep. To block align it, we have to change it to * have a valid full-size blkno, so it becomes: * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 */ static void adjust_newfreework(freeblks, frag_offset) struct freeblks *freeblks; int frag_offset; { struct jfreeblk *jfreeblk; KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), ("adjust_newfreework: Missing freeblks dependency")); jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); jfreeblk->jf_blkno -= frag_offset; jfreeblk->jf_frags += frag_offset; } /* * Allocate a new jtrunc to track a partial truncation. */ static struct jtrunc * newjtrunc(freeblks, size, extsize) struct freeblks *freeblks; off_t size; int extsize; { struct jtrunc *jtrunc; jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, freeblks->fb_list.wk_mp); jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); jtrunc->jt_dep.jb_freeblks = freeblks; jtrunc->jt_ino = freeblks->fb_inum; jtrunc->jt_size = size; jtrunc->jt_extsize = extsize; LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); return (jtrunc); } /* * If we're canceling a new bitmap we have to search for another ref * to move into the bmsafemap dep. This might be better expressed * with another structure. */ static void move_newblock_dep(jaddref, inodedep) struct jaddref *jaddref; struct inodedep *inodedep; { struct inoref *inoref; struct jaddref *jaddrefn; jaddrefn = NULL; for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; inoref = TAILQ_NEXT(inoref, if_deps)) { if ((jaddref->ja_state & NEWBLOCK) && inoref->if_list.wk_type == D_JADDREF) { jaddrefn = (struct jaddref *)inoref; break; } } if (jaddrefn == NULL) return; jaddrefn->ja_state &= ~(ATTACHED | UNDONE); jaddrefn->ja_state |= jaddref->ja_state & (ATTACHED | UNDONE | NEWBLOCK); jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); jaddref->ja_state |= ATTACHED; LIST_REMOVE(jaddref, ja_bmdeps); LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, ja_bmdeps); } /* * Cancel a jaddref either before it has been written or while it is being * written. This happens when a link is removed before the add reaches * the disk. The jaddref dependency is kept linked into the bmsafemap * and inode to prevent the link count or bitmap from reaching the disk * until handle_workitem_remove() re-adjusts the counts and bitmaps as * required. * * Returns 1 if the canceled addref requires journaling of the remove and * 0 otherwise. */ static int cancel_jaddref(jaddref, inodedep, wkhd) struct jaddref *jaddref; struct inodedep *inodedep; struct workhead *wkhd; { struct inoref *inoref; struct jsegdep *jsegdep; int needsj; KASSERT((jaddref->ja_state & COMPLETE) == 0, ("cancel_jaddref: Canceling complete jaddref")); if (jaddref->ja_state & (INPROGRESS | COMPLETE)) needsj = 1; else needsj = 0; if (inodedep == NULL) if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 0, &inodedep) == 0) panic("cancel_jaddref: Lost inodedep"); /* * We must adjust the nlink of any reference operation that follows * us so that it is consistent with the in-memory reference. This * ensures that inode nlink rollbacks always have the correct link. */ if (needsj == 0) { for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; inoref = TAILQ_NEXT(inoref, if_deps)) { if (inoref->if_state & GOINGAWAY) break; inoref->if_nlink--; } } jsegdep = inoref_jseg(&jaddref->ja_ref); if (jaddref->ja_state & NEWBLOCK) move_newblock_dep(jaddref, inodedep); wake_worklist(&jaddref->ja_list); jaddref->ja_mkdir = NULL; if (jaddref->ja_state & INPROGRESS) { jaddref->ja_state &= ~INPROGRESS; WORKLIST_REMOVE(&jaddref->ja_list); jwork_insert(wkhd, jsegdep); } else { free_jsegdep(jsegdep); if (jaddref->ja_state & DEPCOMPLETE) remove_from_journal(&jaddref->ja_list); } jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); /* * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove * can arrange for them to be freed with the bitmap. Otherwise we * no longer need this addref attached to the inoreflst and it * will incorrectly adjust nlink if we leave it. */ if ((jaddref->ja_state & NEWBLOCK) == 0) { TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); jaddref->ja_state |= COMPLETE; free_jaddref(jaddref); return (needsj); } /* * Leave the head of the list for jsegdeps for fast merging. */ if (LIST_FIRST(wkhd) != NULL) { jaddref->ja_state |= ONWORKLIST; LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); } else WORKLIST_INSERT(wkhd, &jaddref->ja_list); return (needsj); } /* * Attempt to free a jaddref structure when some work completes. This * should only succeed once the entry is written and all dependencies have * been notified. */ static void free_jaddref(jaddref) struct jaddref *jaddref; { if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) return; if (jaddref->ja_ref.if_jsegdep) panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", jaddref, jaddref->ja_state); if (jaddref->ja_state & NEWBLOCK) LIST_REMOVE(jaddref, ja_bmdeps); if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) panic("free_jaddref: Bad state %p(0x%X)", jaddref, jaddref->ja_state); if (jaddref->ja_mkdir != NULL) panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); WORKITEM_FREE(jaddref, D_JADDREF); } /* * Free a jremref structure once it has been written or discarded. */ static void free_jremref(jremref) struct jremref *jremref; { if (jremref->jr_ref.if_jsegdep) free_jsegdep(jremref->jr_ref.if_jsegdep); if (jremref->jr_state & INPROGRESS) panic("free_jremref: IO still pending"); WORKITEM_FREE(jremref, D_JREMREF); } /* * Free a jnewblk structure. */ static void free_jnewblk(jnewblk) struct jnewblk *jnewblk; { if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) return; LIST_REMOVE(jnewblk, jn_deps); if (jnewblk->jn_dep != NULL) panic("free_jnewblk: Dependency still attached."); WORKITEM_FREE(jnewblk, D_JNEWBLK); } /* * Cancel a jnewblk which has been been made redundant by frag extension. */ static void cancel_jnewblk(jnewblk, wkhd) struct jnewblk *jnewblk; struct workhead *wkhd; { struct jsegdep *jsegdep; CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); jsegdep = jnewblk->jn_jsegdep; if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) panic("cancel_jnewblk: Invalid state"); jnewblk->jn_jsegdep = NULL; jnewblk->jn_dep = NULL; jnewblk->jn_state |= GOINGAWAY; if (jnewblk->jn_state & INPROGRESS) { jnewblk->jn_state &= ~INPROGRESS; WORKLIST_REMOVE(&jnewblk->jn_list); jwork_insert(wkhd, jsegdep); } else { free_jsegdep(jsegdep); remove_from_journal(&jnewblk->jn_list); } wake_worklist(&jnewblk->jn_list); WORKLIST_INSERT(wkhd, &jnewblk->jn_list); } static void free_jblkdep(jblkdep) struct jblkdep *jblkdep; { if (jblkdep->jb_list.wk_type == D_JFREEBLK) WORKITEM_FREE(jblkdep, D_JFREEBLK); else if (jblkdep->jb_list.wk_type == D_JTRUNC) WORKITEM_FREE(jblkdep, D_JTRUNC); else panic("free_jblkdep: Unexpected type %s", TYPENAME(jblkdep->jb_list.wk_type)); } /* * Free a single jseg once it is no longer referenced in memory or on * disk. Reclaim journal blocks and dependencies waiting for the segment * to disappear. */ static void free_jseg(jseg, jblocks) struct jseg *jseg; struct jblocks *jblocks; { struct freework *freework; /* * Free freework structures that were lingering to indicate freed * indirect blocks that forced journal write ordering on reallocate. */ while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) indirblk_remove(freework); if (jblocks->jb_oldestseg == jseg) jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); KASSERT(LIST_EMPTY(&jseg->js_entries), ("free_jseg: Freed jseg has valid entries.")); WORKITEM_FREE(jseg, D_JSEG); } /* * Free all jsegs that meet the criteria for being reclaimed and update * oldestseg. */ static void free_jsegs(jblocks) struct jblocks *jblocks; { struct jseg *jseg; /* * Free only those jsegs which have none allocated before them to * preserve the journal space ordering. */ while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { /* * Only reclaim space when nothing depends on this journal * set and another set has written that it is no longer * valid. */ if (jseg->js_refs != 0) { jblocks->jb_oldestseg = jseg; return; } if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) break; if (jseg->js_seq > jblocks->jb_oldestwrseq) break; /* * We can free jsegs that didn't write entries when * oldestwrseq == js_seq. */ if (jseg->js_seq == jblocks->jb_oldestwrseq && jseg->js_cnt != 0) break; free_jseg(jseg, jblocks); } /* * If we exited the loop above we still must discover the * oldest valid segment. */ if (jseg) for (jseg = jblocks->jb_oldestseg; jseg != NULL; jseg = TAILQ_NEXT(jseg, js_next)) if (jseg->js_refs != 0) break; jblocks->jb_oldestseg = jseg; /* * The journal has no valid records but some jsegs may still be * waiting on oldestwrseq to advance. We force a small record * out to permit these lingering records to be reclaimed. */ if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) jblocks->jb_needseg = 1; } /* * Release one reference to a jseg and free it if the count reaches 0. This * should eventually reclaim journal space as well. */ static void rele_jseg(jseg) struct jseg *jseg; { KASSERT(jseg->js_refs > 0, ("free_jseg: Invalid refcnt %d", jseg->js_refs)); if (--jseg->js_refs != 0) return; free_jsegs(jseg->js_jblocks); } /* * Release a jsegdep and decrement the jseg count. */ static void free_jsegdep(jsegdep) struct jsegdep *jsegdep; { if (jsegdep->jd_seg) rele_jseg(jsegdep->jd_seg); WORKITEM_FREE(jsegdep, D_JSEGDEP); } /* * Wait for a journal item to make it to disk. Initiate journal processing * if required. */ static int jwait(wk, waitfor) struct worklist *wk; int waitfor; { LOCK_OWNED(VFSTOUFS(wk->wk_mp)); /* * Blocking journal waits cause slow synchronous behavior. Record * stats on the frequency of these blocking operations. */ if (waitfor == MNT_WAIT) { stat_journal_wait++; switch (wk->wk_type) { case D_JREMREF: case D_JMVREF: stat_jwait_filepage++; break; case D_JTRUNC: case D_JFREEBLK: stat_jwait_freeblks++; break; case D_JNEWBLK: stat_jwait_newblk++; break; case D_JADDREF: stat_jwait_inode++; break; default: break; } } /* * If IO has not started we process the journal. We can't mark the * worklist item as IOWAITING because we drop the lock while * processing the journal and the worklist entry may be freed after * this point. The caller may call back in and re-issue the request. */ if ((wk->wk_state & INPROGRESS) == 0) { softdep_process_journal(wk->wk_mp, wk, waitfor); if (waitfor != MNT_WAIT) return (EBUSY); return (0); } if (waitfor != MNT_WAIT) return (EBUSY); wait_worklist(wk, "jwait"); return (0); } /* * Lookup an inodedep based on an inode pointer and set the nlinkdelta as * appropriate. This is a convenience function to reduce duplicate code * for the setup and revert functions below. */ static struct inodedep * inodedep_lookup_ip(ip) struct inode *ip; { struct inodedep *inodedep; KASSERT(ip->i_nlink >= ip->i_effnlink, ("inodedep_lookup_ip: bad delta")); (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, &inodedep); inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); return (inodedep); } /* * Called prior to creating a new inode and linking it to a directory. The * jaddref structure must already be allocated by softdep_setup_inomapdep * and it is discovered here so we can initialize the mode and update * nlinkdelta. */ void softdep_setup_create(dp, ip) struct inode *dp; struct inode *ip; { struct inodedep *inodedep; - struct jaddref *jaddref; + struct jaddref *jaddref __diagused; struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_setup_create called on non-softdep filesystem")); KASSERT(ip->i_nlink == 1, ("softdep_setup_create: Invalid link count.")); dvp = ITOV(dp); ACQUIRE_LOCK(ITOUMP(dp)); inodedep = inodedep_lookup_ip(ip); if (DOINGSUJ(dvp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, ("softdep_setup_create: No addref structure present.")); } FREE_LOCK(ITOUMP(dp)); } /* * Create a jaddref structure to track the addition of a DOTDOT link when * we are reparenting an inode as part of a rename. This jaddref will be * found by softdep_setup_directory_change. Adjusts nlinkdelta for * non-journaling softdep. */ void softdep_setup_dotdot_link(dp, ip) struct inode *dp; struct inode *ip; { struct inodedep *inodedep; struct jaddref *jaddref; struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_setup_dotdot_link called on non-softdep filesystem")); dvp = ITOV(dp); jaddref = NULL; /* * We don't set MKDIR_PARENT as this is not tied to a mkdir and * is used as a normal link would be. */ if (DOINGSUJ(dvp)) jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, dp->i_effnlink - 1, dp->i_mode); ACQUIRE_LOCK(ITOUMP(dp)); inodedep = inodedep_lookup_ip(dp); if (jaddref) TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); FREE_LOCK(ITOUMP(dp)); } /* * Create a jaddref structure to track a new link to an inode. The directory * offset is not known until softdep_setup_directory_add or * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling * softdep. */ void softdep_setup_link(dp, ip) struct inode *dp; struct inode *ip; { struct inodedep *inodedep; struct jaddref *jaddref; struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_setup_link called on non-softdep filesystem")); dvp = ITOV(dp); jaddref = NULL; if (DOINGSUJ(dvp)) jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, ip->i_mode); ACQUIRE_LOCK(ITOUMP(dp)); inodedep = inodedep_lookup_ip(ip); if (jaddref) TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); FREE_LOCK(ITOUMP(dp)); } /* * Called to create the jaddref structures to track . and .. references as * well as lookup and further initialize the incomplete jaddref created * by softdep_setup_inomapdep when the inode was allocated. Adjusts * nlinkdelta for non-journaling softdep. */ void softdep_setup_mkdir(dp, ip) struct inode *dp; struct inode *ip; { struct inodedep *inodedep; struct jaddref *dotdotaddref; struct jaddref *dotaddref; struct jaddref *jaddref; struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_setup_mkdir called on non-softdep filesystem")); dvp = ITOV(dp); dotaddref = dotdotaddref = NULL; if (DOINGSUJ(dvp)) { dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, ip->i_mode); dotaddref->ja_state |= MKDIR_BODY; dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, dp->i_effnlink - 1, dp->i_mode); dotdotaddref->ja_state |= MKDIR_PARENT; } ACQUIRE_LOCK(ITOUMP(dp)); inodedep = inodedep_lookup_ip(ip); if (DOINGSUJ(dvp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref != NULL, ("softdep_setup_mkdir: No addref structure present.")); KASSERT(jaddref->ja_parent == dp->i_number, ("softdep_setup_mkdir: bad parent %ju", (uintmax_t)jaddref->ja_parent)); TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, if_deps); } inodedep = inodedep_lookup_ip(dp); if (DOINGSUJ(dvp)) TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &dotdotaddref->ja_ref, if_deps); FREE_LOCK(ITOUMP(dp)); } /* * Called to track nlinkdelta of the inode and parent directories prior to * unlinking a directory. */ void softdep_setup_rmdir(dp, ip) struct inode *dp; struct inode *ip; { - struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_setup_rmdir called on non-softdep filesystem")); - dvp = ITOV(dp); ACQUIRE_LOCK(ITOUMP(dp)); (void) inodedep_lookup_ip(ip); (void) inodedep_lookup_ip(dp); FREE_LOCK(ITOUMP(dp)); } /* * Called to track nlinkdelta of the inode and parent directories prior to * unlink. */ void softdep_setup_unlink(dp, ip) struct inode *dp; struct inode *ip; { - struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_setup_unlink called on non-softdep filesystem")); - dvp = ITOV(dp); ACQUIRE_LOCK(ITOUMP(dp)); (void) inodedep_lookup_ip(ip); (void) inodedep_lookup_ip(dp); FREE_LOCK(ITOUMP(dp)); } /* * Called to release the journal structures created by a failed non-directory * creation. Adjusts nlinkdelta for non-journaling softdep. */ void softdep_revert_create(dp, ip) struct inode *dp; struct inode *ip; { struct inodedep *inodedep; struct jaddref *jaddref; struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, ("softdep_revert_create called on non-softdep filesystem")); dvp = ITOV(dp); ACQUIRE_LOCK(ITOUMP(dp)); inodedep = inodedep_lookup_ip(ip); if (DOINGSUJ(dvp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref->ja_parent == dp->i_number, ("softdep_revert_create: addref parent mismatch")); cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); } FREE_LOCK(ITOUMP(dp)); } /* * Called to release the journal structures created by a failed link * addition. Adjusts nlinkdelta for non-journaling softdep. */ void softdep_revert_link(dp, ip) struct inode *dp; struct inode *ip; { struct inodedep *inodedep; struct jaddref *jaddref; struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_revert_link called on non-softdep filesystem")); dvp = ITOV(dp); ACQUIRE_LOCK(ITOUMP(dp)); inodedep = inodedep_lookup_ip(ip); if (DOINGSUJ(dvp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref->ja_parent == dp->i_number, ("softdep_revert_link: addref parent mismatch")); cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); } FREE_LOCK(ITOUMP(dp)); } /* * Called to release the journal structures created by a failed mkdir * attempt. Adjusts nlinkdelta for non-journaling softdep. */ void softdep_revert_mkdir(dp, ip) struct inode *dp; struct inode *ip; { struct inodedep *inodedep; struct jaddref *jaddref; struct jaddref *dotaddref; struct vnode *dvp; KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_revert_mkdir called on non-softdep filesystem")); dvp = ITOV(dp); ACQUIRE_LOCK(ITOUMP(dp)); inodedep = inodedep_lookup_ip(dp); if (DOINGSUJ(dvp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref->ja_parent == ip->i_number, ("softdep_revert_mkdir: dotdot addref parent mismatch")); cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); } inodedep = inodedep_lookup_ip(ip); if (DOINGSUJ(dvp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref->ja_parent == dp->i_number, ("softdep_revert_mkdir: addref parent mismatch")); dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, inoreflst, if_deps); cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); KASSERT(dotaddref->ja_parent == ip->i_number, ("softdep_revert_mkdir: dot addref parent mismatch")); cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); } FREE_LOCK(ITOUMP(dp)); } /* * Called to correct nlinkdelta after a failed rmdir. */ void softdep_revert_rmdir(dp, ip) struct inode *dp; struct inode *ip; { KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, ("softdep_revert_rmdir called on non-softdep filesystem")); ACQUIRE_LOCK(ITOUMP(dp)); (void) inodedep_lookup_ip(ip); (void) inodedep_lookup_ip(dp); FREE_LOCK(ITOUMP(dp)); } /* * Protecting the freemaps (or bitmaps). * * To eliminate the need to execute fsck before mounting a filesystem * after a power failure, one must (conservatively) guarantee that the * on-disk copy of the bitmaps never indicate that a live inode or block is * free. So, when a block or inode is allocated, the bitmap should be * updated (on disk) before any new pointers. When a block or inode is * freed, the bitmap should not be updated until all pointers have been * reset. The latter dependency is handled by the delayed de-allocation * approach described below for block and inode de-allocation. The former * dependency is handled by calling the following procedure when a block or * inode is allocated. When an inode is allocated an "inodedep" is created * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. * Each "inodedep" is also inserted into the hash indexing structure so * that any additional link additions can be made dependent on the inode * allocation. * * The ufs filesystem maintains a number of free block counts (e.g., per * cylinder group, per cylinder and per pair) * in addition to the bitmaps. These counts are used to improve efficiency * during allocation and therefore must be consistent with the bitmaps. * There is no convenient way to guarantee post-crash consistency of these * counts with simple update ordering, for two main reasons: (1) The counts * and bitmaps for a single cylinder group block are not in the same disk * sector. If a disk write is interrupted (e.g., by power failure), one may * be written and the other not. (2) Some of the counts are located in the * superblock rather than the cylinder group block. So, we focus our soft * updates implementation on protecting the bitmaps. When mounting a * filesystem, we recompute the auxiliary counts from the bitmaps. */ /* * Called just after updating the cylinder group block to allocate an inode. */ void softdep_setup_inomapdep(bp, ip, newinum, mode) struct buf *bp; /* buffer for cylgroup block with inode map */ struct inode *ip; /* inode related to allocation */ ino_t newinum; /* new inode number being allocated */ int mode; { struct inodedep *inodedep; struct bmsafemap *bmsafemap; struct jaddref *jaddref; struct mount *mp; struct fs *fs; mp = ITOVFS(ip); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_inomapdep called on non-softdep filesystem")); fs = VFSTOUFS(mp)->um_fs; jaddref = NULL; /* * Allocate the journal reference add structure so that the bitmap * can be dependent on it. */ if (MOUNTEDSUJ(mp)) { jaddref = newjaddref(ip, newinum, 0, 0, mode); jaddref->ja_state |= NEWBLOCK; } /* * Create a dependency for the newly allocated inode. * Panic if it already exists as something is seriously wrong. * Otherwise add it to the dependency list for the buffer holding * the cylinder group map from which it was allocated. * * We have to preallocate a bmsafemap entry in case it is needed * in bmsafemap_lookup since once we allocate the inodedep, we * have to finish initializing it before we can FREE_LOCK(). * By preallocating, we avoid FREE_LOCK() while doing a malloc * in bmsafemap_lookup. We cannot call bmsafemap_lookup before * creating the inodedep as it can be freed during the time * that we FREE_LOCK() while allocating the inodedep. We must * call workitem_alloc() before entering the locked section as * it also acquires the lock and we must avoid trying doing so * recursively. */ bmsafemap = malloc(sizeof(struct bmsafemap), M_BMSAFEMAP, M_SOFTDEP_FLAGS); workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); ACQUIRE_LOCK(ITOUMP(ip)); if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) panic("softdep_setup_inomapdep: dependency %p for new" "inode already exists", inodedep); bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); if (jaddref) { LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); } else { inodedep->id_state |= ONDEPLIST; LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); } inodedep->id_bmsafemap = bmsafemap; inodedep->id_state &= ~DEPCOMPLETE; FREE_LOCK(ITOUMP(ip)); } /* * Called just after updating the cylinder group block to * allocate block or fragment. */ void softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) struct buf *bp; /* buffer for cylgroup block with block map */ struct mount *mp; /* filesystem doing allocation */ ufs2_daddr_t newblkno; /* number of newly allocated block */ int frags; /* Number of fragments. */ int oldfrags; /* Previous number of fragments for extend. */ { struct newblk *newblk; struct bmsafemap *bmsafemap; struct jnewblk *jnewblk; struct ufsmount *ump; struct fs *fs; KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_blkmapdep called on non-softdep filesystem")); ump = VFSTOUFS(mp); fs = ump->um_fs; jnewblk = NULL; /* * Create a dependency for the newly allocated block. * Add it to the dependency list for the buffer holding * the cylinder group map from which it was allocated. */ if (MOUNTEDSUJ(mp)) { jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); jnewblk->jn_state = ATTACHED; jnewblk->jn_blkno = newblkno; jnewblk->jn_frags = frags; jnewblk->jn_oldfrags = oldfrags; #ifdef INVARIANTS { struct cg *cgp; uint8_t *blksfree; long bno; int i; cgp = (struct cg *)bp->b_data; blksfree = cg_blksfree(cgp); bno = dtogd(fs, jnewblk->jn_blkno); for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { if (isset(blksfree, bno + i)) panic("softdep_setup_blkmapdep: " "free fragment %d from %d-%d " "state 0x%X dep %p", i, jnewblk->jn_oldfrags, jnewblk->jn_frags, jnewblk->jn_state, jnewblk->jn_dep); } } #endif } CTR3(KTR_SUJ, "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", newblkno, frags, oldfrags); ACQUIRE_LOCK(ump); if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) panic("softdep_setup_blkmapdep: found block"); newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, newblkno), NULL); if (jnewblk) { jnewblk->jn_dep = (struct worklist *)newblk; LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); } else { newblk->nb_state |= ONDEPLIST; LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); } newblk->nb_bmsafemap = bmsafemap; newblk->nb_jnewblk = jnewblk; FREE_LOCK(ump); } #define BMSAFEMAP_HASH(ump, cg) \ (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) static int bmsafemap_find(bmsafemaphd, cg, bmsafemapp) struct bmsafemap_hashhead *bmsafemaphd; int cg; struct bmsafemap **bmsafemapp; { struct bmsafemap *bmsafemap; LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) if (bmsafemap->sm_cg == cg) break; if (bmsafemap) { *bmsafemapp = bmsafemap; return (1); } *bmsafemapp = NULL; return (0); } /* * Find the bmsafemap associated with a cylinder group buffer. * If none exists, create one. The buffer must be locked when * this routine is called and this routine must be called with * the softdep lock held. To avoid giving up the lock while * allocating a new bmsafemap, a preallocated bmsafemap may be * provided. If it is provided but not needed, it is freed. */ static struct bmsafemap * bmsafemap_lookup(mp, bp, cg, newbmsafemap) struct mount *mp; struct buf *bp; int cg; struct bmsafemap *newbmsafemap; { struct bmsafemap_hashhead *bmsafemaphd; struct bmsafemap *bmsafemap, *collision; struct worklist *wk; struct ufsmount *ump; ump = VFSTOUFS(mp); LOCK_OWNED(ump); KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); LIST_FOREACH(wk, &bp->b_dep, wk_list) { if (wk->wk_type == D_BMSAFEMAP) { if (newbmsafemap) WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); return (WK_BMSAFEMAP(wk)); } } bmsafemaphd = BMSAFEMAP_HASH(ump, cg); if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { if (newbmsafemap) WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); return (bmsafemap); } if (newbmsafemap) { bmsafemap = newbmsafemap; } else { FREE_LOCK(ump); bmsafemap = malloc(sizeof(struct bmsafemap), M_BMSAFEMAP, M_SOFTDEP_FLAGS); workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); ACQUIRE_LOCK(ump); } bmsafemap->sm_buf = bp; LIST_INIT(&bmsafemap->sm_inodedephd); LIST_INIT(&bmsafemap->sm_inodedepwr); LIST_INIT(&bmsafemap->sm_newblkhd); LIST_INIT(&bmsafemap->sm_newblkwr); LIST_INIT(&bmsafemap->sm_jaddrefhd); LIST_INIT(&bmsafemap->sm_jnewblkhd); LIST_INIT(&bmsafemap->sm_freehd); LIST_INIT(&bmsafemap->sm_freewr); if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); return (collision); } bmsafemap->sm_cg = cg; LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); return (bmsafemap); } /* * Direct block allocation dependencies. * * When a new block is allocated, the corresponding disk locations must be * initialized (with zeros or new data) before the on-disk inode points to * them. Also, the freemap from which the block was allocated must be * updated (on disk) before the inode's pointer. These two dependencies are * independent of each other and are needed for all file blocks and indirect * blocks that are pointed to directly by the inode. Just before the * "in-core" version of the inode is updated with a newly allocated block * number, a procedure (below) is called to setup allocation dependency * structures. These structures are removed when the corresponding * dependencies are satisfied or when the block allocation becomes obsolete * (i.e., the file is deleted, the block is de-allocated, or the block is a * fragment that gets upgraded). All of these cases are handled in * procedures described later. * * When a file extension causes a fragment to be upgraded, either to a larger * fragment or to a full block, the on-disk location may change (if the * previous fragment could not simply be extended). In this case, the old * fragment must be de-allocated, but not until after the inode's pointer has * been updated. In most cases, this is handled by later procedures, which * will construct a "freefrag" structure to be added to the workitem queue * when the inode update is complete (or obsolete). The main exception to * this is when an allocation occurs while a pending allocation dependency * (for the same block pointer) remains. This case is handled in the main * allocation dependency setup procedure by immediately freeing the * unreferenced fragments. */ void softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) struct inode *ip; /* inode to which block is being added */ ufs_lbn_t off; /* block pointer within inode */ ufs2_daddr_t newblkno; /* disk block number being added */ ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ long newsize; /* size of new block */ long oldsize; /* size of new block */ struct buf *bp; /* bp for allocated block */ { struct allocdirect *adp, *oldadp; struct allocdirectlst *adphead; struct freefrag *freefrag; struct inodedep *inodedep; struct pagedep *pagedep; struct jnewblk *jnewblk; struct newblk *newblk; struct mount *mp; ufs_lbn_t lbn; lbn = bp->b_lblkno; mp = ITOVFS(ip); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_allocdirect called on non-softdep filesystem")); if (oldblkno && oldblkno != newblkno) /* * The usual case is that a smaller fragment that * was just allocated has been replaced with a bigger * fragment or a full-size block. If it is marked as * B_DELWRI, the current contents have not been written * to disk. It is possible that the block was written * earlier, but very uncommon. If the block has never * been written, there is no need to send a BIO_DELETE * for it when it is freed. The gain from avoiding the * TRIMs for the common case of unwritten blocks far * exceeds the cost of the write amplification for the * uncommon case of failing to send a TRIM for a block * that had been written. */ freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); else freefrag = NULL; CTR6(KTR_SUJ, "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " "off %jd newsize %ld oldsize %d", ip->i_number, newblkno, oldblkno, off, newsize, oldsize); ACQUIRE_LOCK(ITOUMP(ip)); if (off >= UFS_NDADDR) { if (lbn > 0) panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", lbn, off); /* allocating an indirect block */ if (oldblkno != 0) panic("softdep_setup_allocdirect: non-zero indir"); } else { if (off != lbn) panic("softdep_setup_allocdirect: lbn %jd != off %jd", lbn, off); /* * Allocating a direct block. * * If we are allocating a directory block, then we must * allocate an associated pagedep to track additions and * deletions. */ if ((ip->i_mode & IFMT) == IFDIR) pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, &pagedep); } if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) panic("softdep_setup_allocdirect: lost block"); KASSERT(newblk->nb_list.wk_type == D_NEWBLK, ("softdep_setup_allocdirect: newblk already initialized")); /* * Convert the newblk to an allocdirect. */ WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); adp = (struct allocdirect *)newblk; newblk->nb_freefrag = freefrag; adp->ad_offset = off; adp->ad_oldblkno = oldblkno; adp->ad_newsize = newsize; adp->ad_oldsize = oldsize; /* * Finish initializing the journal. */ if ((jnewblk = newblk->nb_jnewblk) != NULL) { jnewblk->jn_ino = ip->i_number; jnewblk->jn_lbn = lbn; add_to_journal(&jnewblk->jn_list); } if (freefrag && freefrag->ff_jdep != NULL && freefrag->ff_jdep->wk_type == D_JFREEFRAG) add_to_journal(freefrag->ff_jdep); inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); adp->ad_inodedep = inodedep; WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); /* * The list of allocdirects must be kept in sorted and ascending * order so that the rollback routines can quickly determine the * first uncommitted block (the size of the file stored on disk * ends at the end of the lowest committed fragment, or if there * are no fragments, at the end of the highest committed block). * Since files generally grow, the typical case is that the new * block is to be added at the end of the list. We speed this * special case by checking against the last allocdirect in the * list before laboriously traversing the list looking for the * insertion point. */ adphead = &inodedep->id_newinoupdt; oldadp = TAILQ_LAST(adphead, allocdirectlst); if (oldadp == NULL || oldadp->ad_offset <= off) { /* insert at end of list */ TAILQ_INSERT_TAIL(adphead, adp, ad_next); if (oldadp != NULL && oldadp->ad_offset == off) allocdirect_merge(adphead, adp, oldadp); FREE_LOCK(ITOUMP(ip)); return; } TAILQ_FOREACH(oldadp, adphead, ad_next) { if (oldadp->ad_offset >= off) break; } if (oldadp == NULL) panic("softdep_setup_allocdirect: lost entry"); /* insert in middle of list */ TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); if (oldadp->ad_offset == off) allocdirect_merge(adphead, adp, oldadp); FREE_LOCK(ITOUMP(ip)); } /* * Merge a newer and older journal record to be stored either in a * newblock or freefrag. This handles aggregating journal records for * fragment allocation into a second record as well as replacing a * journal free with an aborted journal allocation. A segment for the * oldest record will be placed on wkhd if it has been written. If not * the segment for the newer record will suffice. */ static struct worklist * jnewblk_merge(new, old, wkhd) struct worklist *new; struct worklist *old; struct workhead *wkhd; { struct jnewblk *njnewblk; struct jnewblk *jnewblk; /* Handle NULLs to simplify callers. */ if (new == NULL) return (old); if (old == NULL) return (new); /* Replace a jfreefrag with a jnewblk. */ if (new->wk_type == D_JFREEFRAG) { if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) panic("jnewblk_merge: blkno mismatch: %p, %p", old, new); cancel_jfreefrag(WK_JFREEFRAG(new)); return (old); } if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) panic("jnewblk_merge: Bad type: old %d new %d\n", old->wk_type, new->wk_type); /* * Handle merging of two jnewblk records that describe * different sets of fragments in the same block. */ jnewblk = WK_JNEWBLK(old); njnewblk = WK_JNEWBLK(new); if (jnewblk->jn_blkno != njnewblk->jn_blkno) panic("jnewblk_merge: Merging disparate blocks."); /* * The record may be rolled back in the cg. */ if (jnewblk->jn_state & UNDONE) { jnewblk->jn_state &= ~UNDONE; njnewblk->jn_state |= UNDONE; njnewblk->jn_state &= ~ATTACHED; } /* * We modify the newer addref and free the older so that if neither * has been written the most up-to-date copy will be on disk. If * both have been written but rolled back we only temporarily need * one of them to fix the bits when the cg write completes. */ jnewblk->jn_state |= ATTACHED | COMPLETE; njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; cancel_jnewblk(jnewblk, wkhd); WORKLIST_REMOVE(&jnewblk->jn_list); free_jnewblk(jnewblk); return (new); } /* * Replace an old allocdirect dependency with a newer one. */ static void allocdirect_merge(adphead, newadp, oldadp) struct allocdirectlst *adphead; /* head of list holding allocdirects */ struct allocdirect *newadp; /* allocdirect being added */ struct allocdirect *oldadp; /* existing allocdirect being checked */ { struct worklist *wk; struct freefrag *freefrag; freefrag = NULL; LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); if (newadp->ad_oldblkno != oldadp->ad_newblkno || newadp->ad_oldsize != oldadp->ad_newsize || newadp->ad_offset >= UFS_NDADDR) panic("%s %jd != new %jd || old size %ld != new %ld", "allocdirect_merge: old blkno", (intmax_t)newadp->ad_oldblkno, (intmax_t)oldadp->ad_newblkno, newadp->ad_oldsize, oldadp->ad_newsize); newadp->ad_oldblkno = oldadp->ad_oldblkno; newadp->ad_oldsize = oldadp->ad_oldsize; /* * If the old dependency had a fragment to free or had never * previously had a block allocated, then the new dependency * can immediately post its freefrag and adopt the old freefrag. * This action is done by swapping the freefrag dependencies. * The new dependency gains the old one's freefrag, and the * old one gets the new one and then immediately puts it on * the worklist when it is freed by free_newblk. It is * not possible to do this swap when the old dependency had a * non-zero size but no previous fragment to free. This condition * arises when the new block is an extension of the old block. * Here, the first part of the fragment allocated to the new * dependency is part of the block currently claimed on disk by * the old dependency, so cannot legitimately be freed until the * conditions for the new dependency are fulfilled. */ freefrag = newadp->ad_freefrag; if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { newadp->ad_freefrag = oldadp->ad_freefrag; oldadp->ad_freefrag = freefrag; } /* * If we are tracking a new directory-block allocation, * move it from the old allocdirect to the new allocdirect. */ if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { WORKLIST_REMOVE(wk); if (!LIST_EMPTY(&oldadp->ad_newdirblk)) panic("allocdirect_merge: extra newdirblk"); WORKLIST_INSERT(&newadp->ad_newdirblk, wk); } TAILQ_REMOVE(adphead, oldadp, ad_next); /* * We need to move any journal dependencies over to the freefrag * that releases this block if it exists. Otherwise we are * extending an existing block and we'll wait until that is * complete to release the journal space and extend the * new journal to cover this old space as well. */ if (freefrag == NULL) { if (oldadp->ad_newblkno != newadp->ad_newblkno) panic("allocdirect_merge: %jd != %jd", oldadp->ad_newblkno, newadp->ad_newblkno); newadp->ad_block.nb_jnewblk = (struct jnewblk *) jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, &oldadp->ad_block.nb_jnewblk->jn_list, &newadp->ad_block.nb_jwork); oldadp->ad_block.nb_jnewblk = NULL; cancel_newblk(&oldadp->ad_block, NULL, &newadp->ad_block.nb_jwork); } else { wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, &freefrag->ff_list, &freefrag->ff_jwork); freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, &freefrag->ff_jwork); } free_newblk(&oldadp->ad_block); } /* * Allocate a jfreefrag structure to journal a single block free. */ static struct jfreefrag * newjfreefrag(freefrag, ip, blkno, size, lbn) struct freefrag *freefrag; struct inode *ip; ufs2_daddr_t blkno; long size; ufs_lbn_t lbn; { struct jfreefrag *jfreefrag; struct fs *fs; fs = ITOFS(ip); jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, M_SOFTDEP_FLAGS); workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; jfreefrag->fr_ino = ip->i_number; jfreefrag->fr_lbn = lbn; jfreefrag->fr_blkno = blkno; jfreefrag->fr_frags = numfrags(fs, size); jfreefrag->fr_freefrag = freefrag; return (jfreefrag); } /* * Allocate a new freefrag structure. */ static struct freefrag * newfreefrag(ip, blkno, size, lbn, key) struct inode *ip; ufs2_daddr_t blkno; long size; ufs_lbn_t lbn; u_long key; { struct freefrag *freefrag; struct ufsmount *ump; struct fs *fs; CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", ip->i_number, blkno, size, lbn); ump = ITOUMP(ip); fs = ump->um_fs; if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) panic("newfreefrag: frag size"); freefrag = malloc(sizeof(struct freefrag), M_FREEFRAG, M_SOFTDEP_FLAGS); workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); freefrag->ff_state = ATTACHED; LIST_INIT(&freefrag->ff_jwork); freefrag->ff_inum = ip->i_number; freefrag->ff_vtype = ITOV(ip)->v_type; freefrag->ff_blkno = blkno; freefrag->ff_fragsize = size; freefrag->ff_key = key; if (MOUNTEDSUJ(UFSTOVFS(ump))) { freefrag->ff_jdep = (struct worklist *) newjfreefrag(freefrag, ip, blkno, size, lbn); } else { freefrag->ff_state |= DEPCOMPLETE; freefrag->ff_jdep = NULL; } return (freefrag); } /* * This workitem de-allocates fragments that were replaced during * file block allocation. */ static void handle_workitem_freefrag(freefrag) struct freefrag *freefrag; { struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); struct workhead wkhd; CTR3(KTR_SUJ, "handle_workitem_freefrag: ino %d blkno %jd size %ld", freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); /* * It would be illegal to add new completion items to the * freefrag after it was schedule to be done so it must be * safe to modify the list head here. */ LIST_INIT(&wkhd); ACQUIRE_LOCK(ump); LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); /* * If the journal has not been written we must cancel it here. */ if (freefrag->ff_jdep) { if (freefrag->ff_jdep->wk_type != D_JNEWBLK) panic("handle_workitem_freefrag: Unexpected type %d\n", freefrag->ff_jdep->wk_type); cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); } FREE_LOCK(ump); ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, &wkhd, freefrag->ff_key); ACQUIRE_LOCK(ump); WORKITEM_FREE(freefrag, D_FREEFRAG); FREE_LOCK(ump); } /* * Set up a dependency structure for an external attributes data block. * This routine follows much of the structure of softdep_setup_allocdirect. * See the description of softdep_setup_allocdirect above for details. */ void softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) struct inode *ip; ufs_lbn_t off; ufs2_daddr_t newblkno; ufs2_daddr_t oldblkno; long newsize; long oldsize; struct buf *bp; { struct allocdirect *adp, *oldadp; struct allocdirectlst *adphead; struct freefrag *freefrag; struct inodedep *inodedep; struct jnewblk *jnewblk; struct newblk *newblk; struct mount *mp; struct ufsmount *ump; ufs_lbn_t lbn; mp = ITOVFS(ip); ump = VFSTOUFS(mp); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_allocext called on non-softdep filesystem")); KASSERT(off < UFS_NXADDR, ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); lbn = bp->b_lblkno; if (oldblkno && oldblkno != newblkno) /* * The usual case is that a smaller fragment that * was just allocated has been replaced with a bigger * fragment or a full-size block. If it is marked as * B_DELWRI, the current contents have not been written * to disk. It is possible that the block was written * earlier, but very uncommon. If the block has never * been written, there is no need to send a BIO_DELETE * for it when it is freed. The gain from avoiding the * TRIMs for the common case of unwritten blocks far * exceeds the cost of the write amplification for the * uncommon case of failing to send a TRIM for a block * that had been written. */ freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); else freefrag = NULL; ACQUIRE_LOCK(ump); if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) panic("softdep_setup_allocext: lost block"); KASSERT(newblk->nb_list.wk_type == D_NEWBLK, ("softdep_setup_allocext: newblk already initialized")); /* * Convert the newblk to an allocdirect. */ WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); adp = (struct allocdirect *)newblk; newblk->nb_freefrag = freefrag; adp->ad_offset = off; adp->ad_oldblkno = oldblkno; adp->ad_newsize = newsize; adp->ad_oldsize = oldsize; adp->ad_state |= EXTDATA; /* * Finish initializing the journal. */ if ((jnewblk = newblk->nb_jnewblk) != NULL) { jnewblk->jn_ino = ip->i_number; jnewblk->jn_lbn = lbn; add_to_journal(&jnewblk->jn_list); } if (freefrag && freefrag->ff_jdep != NULL && freefrag->ff_jdep->wk_type == D_JFREEFRAG) add_to_journal(freefrag->ff_jdep); inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); adp->ad_inodedep = inodedep; WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); /* * The list of allocdirects must be kept in sorted and ascending * order so that the rollback routines can quickly determine the * first uncommitted block (the size of the file stored on disk * ends at the end of the lowest committed fragment, or if there * are no fragments, at the end of the highest committed block). * Since files generally grow, the typical case is that the new * block is to be added at the end of the list. We speed this * special case by checking against the last allocdirect in the * list before laboriously traversing the list looking for the * insertion point. */ adphead = &inodedep->id_newextupdt; oldadp = TAILQ_LAST(adphead, allocdirectlst); if (oldadp == NULL || oldadp->ad_offset <= off) { /* insert at end of list */ TAILQ_INSERT_TAIL(adphead, adp, ad_next); if (oldadp != NULL && oldadp->ad_offset == off) allocdirect_merge(adphead, adp, oldadp); FREE_LOCK(ump); return; } TAILQ_FOREACH(oldadp, adphead, ad_next) { if (oldadp->ad_offset >= off) break; } if (oldadp == NULL) panic("softdep_setup_allocext: lost entry"); /* insert in middle of list */ TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); if (oldadp->ad_offset == off) allocdirect_merge(adphead, adp, oldadp); FREE_LOCK(ump); } /* * Indirect block allocation dependencies. * * The same dependencies that exist for a direct block also exist when * a new block is allocated and pointed to by an entry in a block of * indirect pointers. The undo/redo states described above are also * used here. Because an indirect block contains many pointers that * may have dependencies, a second copy of the entire in-memory indirect * block is kept. The buffer cache copy is always completely up-to-date. * The second copy, which is used only as a source for disk writes, * contains only the safe pointers (i.e., those that have no remaining * update dependencies). The second copy is freed when all pointers * are safe. The cache is not allowed to replace indirect blocks with * pending update dependencies. If a buffer containing an indirect * block with dependencies is written, these routines will mark it * dirty again. It can only be successfully written once all the * dependencies are removed. The ffs_fsync routine in conjunction with * softdep_sync_metadata work together to get all the dependencies * removed so that a file can be successfully written to disk. Three * procedures are used when setting up indirect block pointer * dependencies. The division is necessary because of the organization * of the "balloc" routine and because of the distinction between file * pages and file metadata blocks. */ /* * Allocate a new allocindir structure. */ static struct allocindir * newallocindir(ip, ptrno, newblkno, oldblkno, lbn) struct inode *ip; /* inode for file being extended */ int ptrno; /* offset of pointer in indirect block */ ufs2_daddr_t newblkno; /* disk block number being added */ ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ ufs_lbn_t lbn; { struct newblk *newblk; struct allocindir *aip; struct freefrag *freefrag; struct jnewblk *jnewblk; if (oldblkno) freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, SINGLETON_KEY); else freefrag = NULL; ACQUIRE_LOCK(ITOUMP(ip)); if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) panic("new_allocindir: lost block"); KASSERT(newblk->nb_list.wk_type == D_NEWBLK, ("newallocindir: newblk already initialized")); WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); newblk->nb_freefrag = freefrag; aip = (struct allocindir *)newblk; aip->ai_offset = ptrno; aip->ai_oldblkno = oldblkno; aip->ai_lbn = lbn; if ((jnewblk = newblk->nb_jnewblk) != NULL) { jnewblk->jn_ino = ip->i_number; jnewblk->jn_lbn = lbn; add_to_journal(&jnewblk->jn_list); } if (freefrag && freefrag->ff_jdep != NULL && freefrag->ff_jdep->wk_type == D_JFREEFRAG) add_to_journal(freefrag->ff_jdep); return (aip); } /* * Called just before setting an indirect block pointer * to a newly allocated file page. */ void softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) struct inode *ip; /* inode for file being extended */ ufs_lbn_t lbn; /* allocated block number within file */ struct buf *bp; /* buffer with indirect blk referencing page */ int ptrno; /* offset of pointer in indirect block */ ufs2_daddr_t newblkno; /* disk block number being added */ ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ struct buf *nbp; /* buffer holding allocated page */ { struct inodedep *inodedep; struct freefrag *freefrag; struct allocindir *aip; struct pagedep *pagedep; struct mount *mp; struct ufsmount *ump; mp = ITOVFS(ip); ump = VFSTOUFS(mp); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_allocindir_page called on non-softdep filesystem")); KASSERT(lbn == nbp->b_lblkno, ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", lbn, bp->b_lblkno)); CTR4(KTR_SUJ, "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); /* * If we are allocating a directory page, then we must * allocate an associated pagedep to track additions and * deletions. */ if ((ip->i_mode & IFMT) == IFDIR) pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); FREE_LOCK(ump); if (freefrag) handle_workitem_freefrag(freefrag); } /* * Called just before setting an indirect block pointer to a * newly allocated indirect block. */ void softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) struct buf *nbp; /* newly allocated indirect block */ struct inode *ip; /* inode for file being extended */ struct buf *bp; /* indirect block referencing allocated block */ int ptrno; /* offset of pointer in indirect block */ ufs2_daddr_t newblkno; /* disk block number being added */ { struct inodedep *inodedep; struct allocindir *aip; struct ufsmount *ump; ufs_lbn_t lbn; ump = ITOUMP(ip); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_setup_allocindir_meta called on non-softdep filesystem")); CTR3(KTR_SUJ, "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", ip->i_number, newblkno, ptrno); lbn = nbp->b_lblkno; ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); aip = newallocindir(ip, ptrno, newblkno, 0, lbn); inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) panic("softdep_setup_allocindir_meta: Block already existed"); FREE_LOCK(ump); } static void indirdep_complete(indirdep) struct indirdep *indirdep; { struct allocindir *aip; LIST_REMOVE(indirdep, ir_next); indirdep->ir_state |= DEPCOMPLETE; while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { LIST_REMOVE(aip, ai_next); free_newblk(&aip->ai_block); } /* * If this indirdep is not attached to a buf it was simply waiting * on completion to clear completehd. free_indirdep() asserts * that nothing is dangling. */ if ((indirdep->ir_state & ONWORKLIST) == 0) free_indirdep(indirdep); } static struct indirdep * indirdep_lookup(mp, ip, bp) struct mount *mp; struct inode *ip; struct buf *bp; { struct indirdep *indirdep, *newindirdep; struct newblk *newblk; struct ufsmount *ump; struct worklist *wk; struct fs *fs; ufs2_daddr_t blkno; ump = VFSTOUFS(mp); LOCK_OWNED(ump); indirdep = NULL; newindirdep = NULL; fs = ump->um_fs; for (;;) { LIST_FOREACH(wk, &bp->b_dep, wk_list) { if (wk->wk_type != D_INDIRDEP) continue; indirdep = WK_INDIRDEP(wk); break; } /* Found on the buffer worklist, no new structure to free. */ if (indirdep != NULL && newindirdep == NULL) return (indirdep); if (indirdep != NULL && newindirdep != NULL) panic("indirdep_lookup: simultaneous create"); /* None found on the buffer and a new structure is ready. */ if (indirdep == NULL && newindirdep != NULL) break; /* None found and no new structure available. */ FREE_LOCK(ump); newindirdep = malloc(sizeof(struct indirdep), M_INDIRDEP, M_SOFTDEP_FLAGS); workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); newindirdep->ir_state = ATTACHED; if (I_IS_UFS1(ip)) newindirdep->ir_state |= UFS1FMT; TAILQ_INIT(&newindirdep->ir_trunc); newindirdep->ir_saveddata = NULL; LIST_INIT(&newindirdep->ir_deplisthd); LIST_INIT(&newindirdep->ir_donehd); LIST_INIT(&newindirdep->ir_writehd); LIST_INIT(&newindirdep->ir_completehd); if (bp->b_blkno == bp->b_lblkno) { ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, NULL, NULL); bp->b_blkno = blkno; } newindirdep->ir_freeblks = NULL; newindirdep->ir_savebp = getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); newindirdep->ir_bp = bp; BUF_KERNPROC(newindirdep->ir_savebp); bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); ACQUIRE_LOCK(ump); } indirdep = newindirdep; WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); /* * If the block is not yet allocated we don't set DEPCOMPLETE so * that we don't free dependencies until the pointers are valid. * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather * than using the hash. */ if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); else indirdep->ir_state |= DEPCOMPLETE; return (indirdep); } /* * Called to finish the allocation of the "aip" allocated * by one of the two routines above. */ static struct freefrag * setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) struct buf *bp; /* in-memory copy of the indirect block */ struct inode *ip; /* inode for file being extended */ struct inodedep *inodedep; /* Inodedep for ip */ struct allocindir *aip; /* allocindir allocated by the above routines */ ufs_lbn_t lbn; /* Logical block number for this block. */ { - struct fs *fs; + struct fs *fs __diagused; struct indirdep *indirdep; struct allocindir *oldaip; struct freefrag *freefrag; struct mount *mp; struct ufsmount *ump; mp = ITOVFS(ip); ump = VFSTOUFS(mp); LOCK_OWNED(ump); fs = ump->um_fs; if (bp->b_lblkno >= 0) panic("setup_allocindir_phase2: not indir blk"); KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); indirdep = indirdep_lookup(mp, ip, bp); KASSERT(indirdep->ir_savebp != NULL, ("setup_allocindir_phase2 NULL ir_savebp")); aip->ai_indirdep = indirdep; /* * Check for an unwritten dependency for this indirect offset. If * there is, merge the old dependency into the new one. This happens * as a result of reallocblk only. */ freefrag = NULL; if (aip->ai_oldblkno != 0) { LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { if (oldaip->ai_offset == aip->ai_offset) { freefrag = allocindir_merge(aip, oldaip); goto done; } } LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { if (oldaip->ai_offset == aip->ai_offset) { freefrag = allocindir_merge(aip, oldaip); goto done; } } } done: LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); return (freefrag); } /* * Merge two allocindirs which refer to the same block. Move newblock * dependencies and setup the freefrags appropriately. */ static struct freefrag * allocindir_merge(aip, oldaip) struct allocindir *aip; struct allocindir *oldaip; { struct freefrag *freefrag; struct worklist *wk; if (oldaip->ai_newblkno != aip->ai_oldblkno) panic("allocindir_merge: blkno"); aip->ai_oldblkno = oldaip->ai_oldblkno; freefrag = aip->ai_freefrag; aip->ai_freefrag = oldaip->ai_freefrag; oldaip->ai_freefrag = NULL; KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); /* * If we are tracking a new directory-block allocation, * move it from the old allocindir to the new allocindir. */ if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { WORKLIST_REMOVE(wk); if (!LIST_EMPTY(&oldaip->ai_newdirblk)) panic("allocindir_merge: extra newdirblk"); WORKLIST_INSERT(&aip->ai_newdirblk, wk); } /* * We can skip journaling for this freefrag and just complete * any pending journal work for the allocindir that is being * removed after the freefrag completes. */ if (freefrag->ff_jdep) cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); LIST_REMOVE(oldaip, ai_next); freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, &freefrag->ff_list, &freefrag->ff_jwork); free_newblk(&oldaip->ai_block); return (freefrag); } static inline void setup_freedirect(freeblks, ip, i, needj) struct freeblks *freeblks; struct inode *ip; int i; int needj; { struct ufsmount *ump; ufs2_daddr_t blkno; int frags; blkno = DIP(ip, i_db[i]); if (blkno == 0) return; DIP_SET(ip, i_db[i], 0); ump = ITOUMP(ip); frags = sblksize(ump->um_fs, ip->i_size, i); frags = numfrags(ump->um_fs, frags); newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); } static inline void setup_freeext(freeblks, ip, i, needj) struct freeblks *freeblks; struct inode *ip; int i; int needj; { struct ufsmount *ump; ufs2_daddr_t blkno; int frags; blkno = ip->i_din2->di_extb[i]; if (blkno == 0) return; ip->i_din2->di_extb[i] = 0; ump = ITOUMP(ip); frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); frags = numfrags(ump->um_fs, frags); newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); } static inline void setup_freeindir(freeblks, ip, i, lbn, needj) struct freeblks *freeblks; struct inode *ip; int i; ufs_lbn_t lbn; int needj; { struct ufsmount *ump; ufs2_daddr_t blkno; blkno = DIP(ip, i_ib[i]); if (blkno == 0) return; DIP_SET(ip, i_ib[i], 0); ump = ITOUMP(ip); newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 0, needj); } static inline struct freeblks * newfreeblks(mp, ip) struct mount *mp; struct inode *ip; { struct freeblks *freeblks; freeblks = malloc(sizeof(struct freeblks), M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); LIST_INIT(&freeblks->fb_jblkdephd); LIST_INIT(&freeblks->fb_jwork); freeblks->fb_ref = 0; freeblks->fb_cgwait = 0; freeblks->fb_state = ATTACHED; freeblks->fb_uid = ip->i_uid; freeblks->fb_inum = ip->i_number; freeblks->fb_vtype = ITOV(ip)->v_type; freeblks->fb_modrev = DIP(ip, i_modrev); freeblks->fb_devvp = ITODEVVP(ip); freeblks->fb_chkcnt = 0; freeblks->fb_len = 0; return (freeblks); } static void trunc_indirdep(indirdep, freeblks, bp, off) struct indirdep *indirdep; struct freeblks *freeblks; struct buf *bp; int off; { struct allocindir *aip, *aipn; /* * The first set of allocindirs won't be in savedbp. */ LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) if (aip->ai_offset > off) cancel_allocindir(aip, bp, freeblks, 1); LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) if (aip->ai_offset > off) cancel_allocindir(aip, bp, freeblks, 1); /* * These will exist in savedbp. */ LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) if (aip->ai_offset > off) cancel_allocindir(aip, NULL, freeblks, 0); LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) if (aip->ai_offset > off) cancel_allocindir(aip, NULL, freeblks, 0); } /* * Follow the chain of indirects down to lastlbn creating a freework * structure for each. This will be used to start indir_trunc() at * the right offset and create the journal records for the parrtial * truncation. A second step will handle the truncated dependencies. */ static int setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) struct freeblks *freeblks; struct inode *ip; ufs_lbn_t lbn; ufs_lbn_t lastlbn; ufs2_daddr_t blkno; { struct indirdep *indirdep; struct indirdep *indirn; struct freework *freework; struct newblk *newblk; struct mount *mp; struct ufsmount *ump; struct buf *bp; uint8_t *start; uint8_t *end; ufs_lbn_t lbnadd; int level; int error; int off; freework = NULL; if (blkno == 0) return (0); mp = freeblks->fb_list.wk_mp; ump = VFSTOUFS(mp); /* * Here, calls to VOP_BMAP() will fail. However, we already have * the on-disk address, so we just pass it to bread() instead of * having bread() attempt to calculate it using VOP_BMAP(). */ error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); if (error) return (error); level = lbn_level(lbn); lbnadd = lbn_offset(ump->um_fs, level); /* * Compute the offset of the last block we want to keep. Store * in the freework the first block we want to completely free. */ off = (lastlbn - -(lbn + level)) / lbnadd; if (off + 1 == NINDIR(ump->um_fs)) goto nowork; freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); /* * Link the freework into the indirdep. This will prevent any new * allocations from proceeding until we are finished with the * truncate and the block is written. */ ACQUIRE_LOCK(ump); indirdep = indirdep_lookup(mp, ip, bp); if (indirdep->ir_freeblks) panic("setup_trunc_indir: indirdep already truncated."); TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); freework->fw_indir = indirdep; /* * Cancel any allocindirs that will not make it to disk. * We have to do this for all copies of the indirdep that * live on this newblk. */ if ((indirdep->ir_state & DEPCOMPLETE) == 0) { if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, &newblk) == 0) panic("setup_trunc_indir: lost block"); LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) trunc_indirdep(indirn, freeblks, bp, off); } else trunc_indirdep(indirdep, freeblks, bp, off); FREE_LOCK(ump); /* * Creation is protected by the buf lock. The saveddata is only * needed if a full truncation follows a partial truncation but it * is difficult to allocate in that case so we fetch it anyway. */ if (indirdep->ir_saveddata == NULL) indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, M_SOFTDEP_FLAGS); nowork: /* Fetch the blkno of the child and the zero start offset. */ if (I_IS_UFS1(ip)) { blkno = ((ufs1_daddr_t *)bp->b_data)[off]; start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; } else { blkno = ((ufs2_daddr_t *)bp->b_data)[off]; start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; } if (freework) { /* Zero the truncated pointers. */ end = bp->b_data + bp->b_bcount; bzero(start, end - start); bdwrite(bp); } else bqrelse(bp); if (level == 0) return (0); lbn++; /* adjust level */ lbn -= (off * lbnadd); return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); } /* * Complete the partial truncation of an indirect block setup by * setup_trunc_indir(). This zeros the truncated pointers in the saved * copy and writes them to disk before the freeblks is allowed to complete. */ static void complete_trunc_indir(freework) struct freework *freework; { struct freework *fwn; struct indirdep *indirdep; struct ufsmount *ump; struct buf *bp; uintptr_t start; int count; ump = VFSTOUFS(freework->fw_list.wk_mp); LOCK_OWNED(ump); indirdep = freework->fw_indir; for (;;) { bp = indirdep->ir_bp; /* See if the block was discarded. */ if (bp == NULL) break; /* Inline part of getdirtybuf(). We dont want bremfree. */ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) break; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, LOCK_PTR(ump)) == 0) BUF_UNLOCK(bp); ACQUIRE_LOCK(ump); } freework->fw_state |= DEPCOMPLETE; TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); /* * Zero the pointers in the saved copy. */ if (indirdep->ir_state & UFS1FMT) start = sizeof(ufs1_daddr_t); else start = sizeof(ufs2_daddr_t); start *= freework->fw_start; count = indirdep->ir_savebp->b_bcount - start; start += (uintptr_t)indirdep->ir_savebp->b_data; bzero((char *)start, count); /* * We need to start the next truncation in the list if it has not * been started yet. */ fwn = TAILQ_FIRST(&indirdep->ir_trunc); if (fwn != NULL) { if (fwn->fw_freeblks == indirdep->ir_freeblks) TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); if ((fwn->fw_state & ONWORKLIST) == 0) freework_enqueue(fwn); } /* * If bp is NULL the block was fully truncated, restore * the saved block list otherwise free it if it is no * longer needed. */ if (TAILQ_EMPTY(&indirdep->ir_trunc)) { if (bp == NULL) bcopy(indirdep->ir_saveddata, indirdep->ir_savebp->b_data, indirdep->ir_savebp->b_bcount); free(indirdep->ir_saveddata, M_INDIRDEP); indirdep->ir_saveddata = NULL; } /* * When bp is NULL there is a full truncation pending. We * must wait for this full truncation to be journaled before * we can release this freework because the disk pointers will * never be written as zero. */ if (bp == NULL) { if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) handle_written_freework(freework); else WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, &freework->fw_list); if (fwn == NULL) { freework->fw_indir = (void *)0x0000deadbeef0000; bp = indirdep->ir_savebp; indirdep->ir_savebp = NULL; free_indirdep(indirdep); FREE_LOCK(ump); brelse(bp); ACQUIRE_LOCK(ump); } } else { /* Complete when the real copy is written. */ WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); BUF_UNLOCK(bp); } } /* * Calculate the number of blocks we are going to release where datablocks * is the current total and length is the new file size. */ static ufs2_daddr_t blkcount(fs, datablocks, length) struct fs *fs; ufs2_daddr_t datablocks; off_t length; { off_t totblks, numblks; totblks = 0; numblks = howmany(length, fs->fs_bsize); if (numblks <= UFS_NDADDR) { totblks = howmany(length, fs->fs_fsize); goto out; } totblks = blkstofrags(fs, numblks); numblks -= UFS_NDADDR; /* * Count all single, then double, then triple indirects required. * Subtracting one indirects worth of blocks for each pass * acknowledges one of each pointed to by the inode. */ for (;;) { totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); numblks -= NINDIR(fs); if (numblks <= 0) break; numblks = howmany(numblks, NINDIR(fs)); } out: totblks = fsbtodb(fs, totblks); /* * Handle sparse files. We can't reclaim more blocks than the inode * references. We will correct it later in handle_complete_freeblks() * when we know the real count. */ if (totblks > datablocks) return (0); return (datablocks - totblks); } /* * Handle freeblocks for journaled softupdate filesystems. * * Contrary to normal softupdates, we must preserve the block pointers in * indirects until their subordinates are free. This is to avoid journaling * every block that is freed which may consume more space than the journal * itself. The recovery program will see the free block journals at the * base of the truncated area and traverse them to reclaim space. The * pointers in the inode may be cleared immediately after the journal * records are written because each direct and indirect pointer in the * inode is recorded in a journal. This permits full truncation to proceed * asynchronously. The write order is journal -> inode -> cgs -> indirects. * * The algorithm is as follows: * 1) Traverse the in-memory state and create journal entries to release * the relevant blocks and full indirect trees. * 2) Traverse the indirect block chain adding partial truncation freework * records to indirects in the path to lastlbn. The freework will * prevent new allocation dependencies from being satisfied in this * indirect until the truncation completes. * 3) Read and lock the inode block, performing an update with the new size * and pointers. This prevents truncated data from becoming valid on * disk through step 4. * 4) Reap unsatisfied dependencies that are beyond the truncated area, * eliminate journal work for those records that do not require it. * 5) Schedule the journal records to be written followed by the inode block. * 6) Allocate any necessary frags for the end of file. * 7) Zero any partially truncated blocks. * * From this truncation proceeds asynchronously using the freework and * indir_trunc machinery. The file will not be extended again into a * partially truncated indirect block until all work is completed but * the normal dependency mechanism ensures that it is rolled back/forward * as appropriate. Further truncation may occur without delay and is * serialized in indir_trunc(). */ void softdep_journal_freeblocks(ip, cred, length, flags) struct inode *ip; /* The inode whose length is to be reduced */ struct ucred *cred; off_t length; /* The new length for the file */ int flags; /* IO_EXT and/or IO_NORMAL */ { struct freeblks *freeblks, *fbn; struct worklist *wk, *wkn; struct inodedep *inodedep; struct jblkdep *jblkdep; struct allocdirect *adp, *adpn; struct ufsmount *ump; struct fs *fs; struct buf *bp; struct vnode *vp; struct mount *mp; daddr_t dbn; ufs2_daddr_t extblocks, datablocks; ufs_lbn_t tmpval, lbn, lastlbn; int frags, lastoff, iboff, allocblock, needj, error, i; ump = ITOUMP(ip); mp = UFSTOVFS(ump); fs = ump->um_fs; KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_journal_freeblocks called on non-softdep filesystem")); vp = ITOV(ip); needj = 1; iboff = -1; allocblock = 0; extblocks = 0; datablocks = 0; frags = 0; freeblks = newfreeblks(mp, ip); ACQUIRE_LOCK(ump); /* * If we're truncating a removed file that will never be written * we don't need to journal the block frees. The canceled journals * for the allocations will suffice. */ inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && length == 0) needj = 0; CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", ip->i_number, length, needj); FREE_LOCK(ump); /* * Calculate the lbn that we are truncating to. This results in -1 * if we're truncating the 0 bytes. So it is the last lbn we want * to keep, not the first lbn we want to truncate. */ lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; lastoff = blkoff(fs, length); /* * Compute frags we are keeping in lastlbn. 0 means all. */ if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { frags = fragroundup(fs, lastoff); /* adp offset of last valid allocdirect. */ iboff = lastlbn; } else if (lastlbn > 0) iboff = UFS_NDADDR; if (fs->fs_magic == FS_UFS2_MAGIC) extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); /* * Handle normal data blocks and indirects. This section saves * values used after the inode update to complete frag and indirect * truncation. */ if ((flags & IO_NORMAL) != 0) { /* * Handle truncation of whole direct and indirect blocks. */ for (i = iboff + 1; i < UFS_NDADDR; i++) setup_freedirect(freeblks, ip, i, needj); for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, lbn += tmpval, tmpval *= NINDIR(fs)) { /* Release a whole indirect tree. */ if (lbn > lastlbn) { setup_freeindir(freeblks, ip, i, -lbn -i, needj); continue; } iboff = i + UFS_NDADDR; /* * Traverse partially truncated indirect tree. */ if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) setup_trunc_indir(freeblks, ip, -lbn - i, lastlbn, DIP(ip, i_ib[i])); } /* * Handle partial truncation to a frag boundary. */ if (frags) { ufs2_daddr_t blkno; long oldfrags; oldfrags = blksize(fs, ip, lastlbn); blkno = DIP(ip, i_db[lastlbn]); if (blkno && oldfrags != frags) { oldfrags -= frags; oldfrags = numfrags(fs, oldfrags); blkno += numfrags(fs, frags); newfreework(ump, freeblks, NULL, lastlbn, blkno, oldfrags, 0, needj); if (needj) adjust_newfreework(freeblks, numfrags(fs, frags)); } else if (blkno == 0) allocblock = 1; } /* * Add a journal record for partial truncate if we are * handling indirect blocks. Non-indirects need no extra * journaling. */ if (length != 0 && lastlbn >= UFS_NDADDR) { UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); newjtrunc(freeblks, length, 0); } ip->i_size = length; DIP_SET(ip, i_size, ip->i_size); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); datablocks = DIP(ip, i_blocks) - extblocks; if (length != 0) datablocks = blkcount(fs, datablocks, length); freeblks->fb_len = length; } if ((flags & IO_EXT) != 0) { for (i = 0; i < UFS_NXADDR; i++) setup_freeext(freeblks, ip, i, needj); ip->i_din2->di_extsize = 0; datablocks += extblocks; UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); } #ifdef QUOTA /* Reference the quotas in case the block count is wrong in the end. */ quotaref(vp, freeblks->fb_quota); (void) chkdq(ip, -datablocks, NOCRED, FORCE); #endif freeblks->fb_chkcnt = -datablocks; UFS_LOCK(ump); fs->fs_pendingblocks += datablocks; UFS_UNLOCK(ump); DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); /* * Handle truncation of incomplete alloc direct dependencies. We * hold the inode block locked to prevent incomplete dependencies * from reaching the disk while we are eliminating those that * have been truncated. This is a partially inlined ffs_update(). */ ufs_itimes(vp); ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, cred, 0, NULL, &bp); if (error) { softdep_error("softdep_journal_freeblocks", error); return; } if (bp->b_bufsize == fs->fs_bsize) bp->b_flags |= B_CLUSTEROK; softdep_update_inodeblock(ip, bp, 0); if (ump->um_fstype == UFS1) { *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; } else { ffs_update_dinode_ckhash(fs, ip->i_din2); *((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; } ACQUIRE_LOCK(ump); (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); if ((inodedep->id_state & IOSTARTED) != 0) panic("softdep_setup_freeblocks: inode busy"); /* * Add the freeblks structure to the list of operations that * must await the zero'ed inode being written to disk. If we * still have a bitmap dependency (needj), then the inode * has never been written to disk, so we can process the * freeblks below once we have deleted the dependencies. */ if (needj) WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); else freeblks->fb_state |= COMPLETE; if ((flags & IO_NORMAL) != 0) { TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { if (adp->ad_offset > iboff) cancel_allocdirect(&inodedep->id_inoupdt, adp, freeblks); /* * Truncate the allocdirect. We could eliminate * or modify journal records as well. */ else if (adp->ad_offset == iboff && frags) adp->ad_newsize = frags; } } if ((flags & IO_EXT) != 0) while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) cancel_allocdirect(&inodedep->id_extupdt, adp, freeblks); /* * Scan the bufwait list for newblock dependencies that will never * make it to disk. */ LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { if (wk->wk_type != D_ALLOCDIRECT) continue; adp = WK_ALLOCDIRECT(wk); if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { cancel_jfreeblk(freeblks, adp->ad_newblkno); cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); } } /* * Add journal work. */ LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) add_to_journal(&jblkdep->jb_list); FREE_LOCK(ump); bdwrite(bp); /* * Truncate dependency structures beyond length. */ trunc_dependencies(ip, freeblks, lastlbn, frags, flags); /* * This is only set when we need to allocate a fragment because * none existed at the end of a frag-sized file. It handles only * allocating a new, zero filled block. */ if (allocblock) { ip->i_size = length - lastoff; DIP_SET(ip, i_size, ip->i_size); error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); if (error != 0) { softdep_error("softdep_journal_freeblks", error); return; } ip->i_size = length; DIP_SET(ip, i_size, length); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); allocbuf(bp, frags); ffs_update(vp, 0); bawrite(bp); } else if (lastoff != 0 && vp->v_type != VDIR) { int size; /* * Zero the end of a truncated frag or block. */ size = sblksize(fs, length, lastlbn); error = bread(vp, lastlbn, size, cred, &bp); if (error == 0) { bzero((char *)bp->b_data + lastoff, size - lastoff); bawrite(bp); } else if (!ffs_fsfail_cleanup(ump, error)) { softdep_error("softdep_journal_freeblks", error); return; } } ACQUIRE_LOCK(ump); inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; /* * We zero earlier truncations so they don't erroneously * update i_blocks. */ if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) fbn->fb_len = 0; if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) freeblks->fb_state |= INPROGRESS; else freeblks = NULL; FREE_LOCK(ump); if (freeblks) handle_workitem_freeblocks(freeblks, 0); trunc_pages(ip, length, extblocks, flags); } /* * Flush a JOP_SYNC to the journal. */ void softdep_journal_fsync(ip) struct inode *ip; { struct jfsync *jfsync; struct ufsmount *ump; ump = ITOUMP(ip); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_journal_fsync called on non-softdep filesystem")); if ((ip->i_flag & IN_TRUNCATED) == 0) return; ip->i_flag &= ~IN_TRUNCATED; jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); jfsync->jfs_size = ip->i_size; jfsync->jfs_ino = ip->i_number; ACQUIRE_LOCK(ump); add_to_journal(&jfsync->jfs_list); jwait(&jfsync->jfs_list, MNT_WAIT); FREE_LOCK(ump); } /* * Block de-allocation dependencies. * * When blocks are de-allocated, the on-disk pointers must be nullified before * the blocks are made available for use by other files. (The true * requirement is that old pointers must be nullified before new on-disk * pointers are set. We chose this slightly more stringent requirement to * reduce complexity.) Our implementation handles this dependency by updating * the inode (or indirect block) appropriately but delaying the actual block * de-allocation (i.e., freemap and free space count manipulation) until * after the updated versions reach stable storage. After the disk is * updated, the blocks can be safely de-allocated whenever it is convenient. * This implementation handles only the common case of reducing a file's * length to zero. Other cases are handled by the conventional synchronous * write approach. * * The ffs implementation with which we worked double-checks * the state of the block pointers and file size as it reduces * a file's length. Some of this code is replicated here in our * soft updates implementation. The freeblks->fb_chkcnt field is * used to transfer a part of this information to the procedure * that eventually de-allocates the blocks. * * This routine should be called from the routine that shortens * a file's length, before the inode's size or block pointers * are modified. It will save the block pointer information for * later release and zero the inode so that the calling routine * can release it. */ void softdep_setup_freeblocks(ip, length, flags) struct inode *ip; /* The inode whose length is to be reduced */ off_t length; /* The new length for the file */ int flags; /* IO_EXT and/or IO_NORMAL */ { struct ufs1_dinode *dp1; struct ufs2_dinode *dp2; struct freeblks *freeblks; struct inodedep *inodedep; struct allocdirect *adp; struct ufsmount *ump; struct buf *bp; struct fs *fs; ufs2_daddr_t extblocks, datablocks; struct mount *mp; int i, delay, error; ufs_lbn_t tmpval; ufs_lbn_t lbn; ump = ITOUMP(ip); mp = UFSTOVFS(ump); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_freeblocks called on non-softdep filesystem")); CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", ip->i_number, length); KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); fs = ump->um_fs; if ((error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp)) != 0) { if (!ffs_fsfail_cleanup(ump, error)) softdep_error("softdep_setup_freeblocks", error); return; } freeblks = newfreeblks(mp, ip); extblocks = 0; datablocks = 0; if (fs->fs_magic == FS_UFS2_MAGIC) extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); if ((flags & IO_NORMAL) != 0) { for (i = 0; i < UFS_NDADDR; i++) setup_freedirect(freeblks, ip, i, 0); for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; i < UFS_NIADDR; i++, lbn += tmpval, tmpval *= NINDIR(fs)) setup_freeindir(freeblks, ip, i, -lbn -i, 0); ip->i_size = 0; DIP_SET(ip, i_size, 0); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); datablocks = DIP(ip, i_blocks) - extblocks; } if ((flags & IO_EXT) != 0) { for (i = 0; i < UFS_NXADDR; i++) setup_freeext(freeblks, ip, i, 0); ip->i_din2->di_extsize = 0; datablocks += extblocks; UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); } #ifdef QUOTA /* Reference the quotas in case the block count is wrong in the end. */ quotaref(ITOV(ip), freeblks->fb_quota); (void) chkdq(ip, -datablocks, NOCRED, FORCE); #endif freeblks->fb_chkcnt = -datablocks; UFS_LOCK(ump); fs->fs_pendingblocks += datablocks; UFS_UNLOCK(ump); DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); /* * Push the zero'ed inode to its disk buffer so that we are free * to delete its dependencies below. Once the dependencies are gone * the buffer can be safely released. */ if (ump->um_fstype == UFS1) { dp1 = ((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)); ip->i_din1->di_freelink = dp1->di_freelink; *dp1 = *ip->i_din1; } else { dp2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)); ip->i_din2->di_freelink = dp2->di_freelink; ffs_update_dinode_ckhash(fs, ip->i_din2); *dp2 = *ip->i_din2; } /* * Find and eliminate any inode dependencies. */ ACQUIRE_LOCK(ump); (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); if ((inodedep->id_state & IOSTARTED) != 0) panic("softdep_setup_freeblocks: inode busy"); /* * Add the freeblks structure to the list of operations that * must await the zero'ed inode being written to disk. If we * still have a bitmap dependency (delay == 0), then the inode * has never been written to disk, so we can process the * freeblks below once we have deleted the dependencies. */ delay = (inodedep->id_state & DEPCOMPLETE); if (delay) WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); else freeblks->fb_state |= COMPLETE; /* * Because the file length has been truncated to zero, any * pending block allocation dependency structures associated * with this inode are obsolete and can simply be de-allocated. * We must first merge the two dependency lists to get rid of * any duplicate freefrag structures, then purge the merged list. * If we still have a bitmap dependency, then the inode has never * been written to disk, so we can free any fragments without delay. */ if (flags & IO_NORMAL) { merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) cancel_allocdirect(&inodedep->id_inoupdt, adp, freeblks); } if (flags & IO_EXT) { merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) cancel_allocdirect(&inodedep->id_extupdt, adp, freeblks); } FREE_LOCK(ump); bdwrite(bp); trunc_dependencies(ip, freeblks, -1, 0, flags); ACQUIRE_LOCK(ump); if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) (void) free_inodedep(inodedep); freeblks->fb_state |= DEPCOMPLETE; /* * If the inode with zeroed block pointers is now on disk * we can start freeing blocks. */ if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) freeblks->fb_state |= INPROGRESS; else freeblks = NULL; FREE_LOCK(ump); if (freeblks) handle_workitem_freeblocks(freeblks, 0); trunc_pages(ip, length, extblocks, flags); } /* * Eliminate pages from the page cache that back parts of this inode and * adjust the vnode pager's idea of our size. This prevents stale data * from hanging around in the page cache. */ static void trunc_pages(ip, length, extblocks, flags) struct inode *ip; off_t length; ufs2_daddr_t extblocks; int flags; { struct vnode *vp; struct fs *fs; ufs_lbn_t lbn; off_t end, extend; vp = ITOV(ip); fs = ITOFS(ip); extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); if ((flags & IO_EXT) != 0) vn_pages_remove(vp, extend, 0); if ((flags & IO_NORMAL) == 0) return; BO_LOCK(&vp->v_bufobj); drain_output(vp); BO_UNLOCK(&vp->v_bufobj); /* * The vnode pager eliminates file pages we eliminate indirects * below. */ vnode_pager_setsize(vp, length); /* * Calculate the end based on the last indirect we want to keep. If * the block extends into indirects we can just use the negative of * its lbn. Doubles and triples exist at lower numbers so we must * be careful not to remove those, if they exist. double and triple * indirect lbns do not overlap with others so it is not important * to verify how many levels are required. */ lbn = lblkno(fs, length); if (lbn >= UFS_NDADDR) { /* Calculate the virtual lbn of the triple indirect. */ lbn = -lbn - (UFS_NIADDR - 1); end = OFF_TO_IDX(lblktosize(fs, lbn)); } else end = extend; vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); } /* * See if the buf bp is in the range eliminated by truncation. */ static int trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) struct buf *bp; int *blkoffp; ufs_lbn_t lastlbn; int lastoff; int flags; { ufs_lbn_t lbn; *blkoffp = 0; /* Only match ext/normal blocks as appropriate. */ if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) return (0); /* ALTDATA is always a full truncation. */ if ((bp->b_xflags & BX_ALTDATA) != 0) return (1); /* -1 is full truncation. */ if (lastlbn == -1) return (1); /* * If this is a partial truncate we only want those * blocks and indirect blocks that cover the range * we're after. */ lbn = bp->b_lblkno; if (lbn < 0) lbn = -(lbn + lbn_level(lbn)); if (lbn < lastlbn) return (0); /* Here we only truncate lblkno if it's partial. */ if (lbn == lastlbn) { if (lastoff == 0) return (0); *blkoffp = lastoff; } return (1); } /* * Eliminate any dependencies that exist in memory beyond lblkno:off */ static void trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) struct inode *ip; struct freeblks *freeblks; ufs_lbn_t lastlbn; int lastoff; int flags; { struct bufobj *bo; struct vnode *vp; struct buf *bp; int blkoff; /* * We must wait for any I/O in progress to finish so that * all potential buffers on the dirty list will be visible. * Once they are all there, walk the list and get rid of * any dependencies. */ vp = ITOV(ip); bo = &vp->v_bufobj; BO_LOCK(bo); drain_output(vp); TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) bp->b_vflags &= ~BV_SCANNED; restart: TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { if (bp->b_vflags & BV_SCANNED) continue; if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { bp->b_vflags |= BV_SCANNED; continue; } KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) goto restart; BO_UNLOCK(bo); if (deallocate_dependencies(bp, freeblks, blkoff)) bqrelse(bp); else brelse(bp); BO_LOCK(bo); goto restart; } /* * Now do the work of vtruncbuf while also matching indirect blocks. */ TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) bp->b_vflags &= ~BV_SCANNED; cleanrestart: TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { if (bp->b_vflags & BV_SCANNED) continue; if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { bp->b_vflags |= BV_SCANNED; continue; } if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)) == ENOLCK) { BO_LOCK(bo); goto cleanrestart; } BO_LOCK(bo); bp->b_vflags |= BV_SCANNED; BO_UNLOCK(bo); bremfree(bp); if (blkoff != 0) { allocbuf(bp, blkoff); bqrelse(bp); } else { bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; brelse(bp); } BO_LOCK(bo); goto cleanrestart; } drain_output(vp); BO_UNLOCK(bo); } static int cancel_pagedep(pagedep, freeblks, blkoff) struct pagedep *pagedep; struct freeblks *freeblks; int blkoff; { struct jremref *jremref; struct jmvref *jmvref; struct dirrem *dirrem, *tmp; int i; /* * Copy any directory remove dependencies to the list * to be processed after the freeblks proceeds. If * directory entry never made it to disk they * can be dumped directly onto the work list. */ LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { /* Skip this directory removal if it is intended to remain. */ if (dirrem->dm_offset < blkoff) continue; /* * If there are any dirrems we wait for the journal write * to complete and then restart the buf scan as the lock * has been dropped. */ while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { jwait(&jremref->jr_list, MNT_WAIT); return (ERESTART); } LIST_REMOVE(dirrem, dm_next); dirrem->dm_dirinum = pagedep->pd_ino; WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); } while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { jwait(&jmvref->jm_list, MNT_WAIT); return (ERESTART); } /* * When we're partially truncating a pagedep we just want to flush * journal entries and return. There can not be any adds in the * truncated portion of the directory and newblk must remain if * part of the block remains. */ if (blkoff != 0) { struct diradd *dap; LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) if (dap->da_offset > blkoff) panic("cancel_pagedep: diradd %p off %d > %d", dap, dap->da_offset, blkoff); for (i = 0; i < DAHASHSZ; i++) LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) if (dap->da_offset > blkoff) panic("cancel_pagedep: diradd %p off %d > %d", dap, dap->da_offset, blkoff); return (0); } /* * There should be no directory add dependencies present * as the directory could not be truncated until all * children were removed. */ KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, ("deallocate_dependencies: pendinghd != NULL")); for (i = 0; i < DAHASHSZ; i++) KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, ("deallocate_dependencies: diraddhd != NULL")); if ((pagedep->pd_state & NEWBLOCK) != 0) free_newdirblk(pagedep->pd_newdirblk); if (free_pagedep(pagedep) == 0) panic("Failed to free pagedep %p", pagedep); return (0); } /* * Reclaim any dependency structures from a buffer that is about to * be reallocated to a new vnode. The buffer must be locked, thus, * no I/O completion operations can occur while we are manipulating * its associated dependencies. The mutex is held so that other I/O's * associated with related dependencies do not occur. */ static int deallocate_dependencies(bp, freeblks, off) struct buf *bp; struct freeblks *freeblks; int off; { struct indirdep *indirdep; struct pagedep *pagedep; struct worklist *wk, *wkn; struct ufsmount *ump; ump = softdep_bp_to_mp(bp); if (ump == NULL) goto done; ACQUIRE_LOCK(ump); LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { switch (wk->wk_type) { case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); if (bp->b_lblkno >= 0 || bp->b_blkno != indirdep->ir_savebp->b_lblkno) panic("deallocate_dependencies: not indir"); cancel_indirdep(indirdep, bp, freeblks); continue; case D_PAGEDEP: pagedep = WK_PAGEDEP(wk); if (cancel_pagedep(pagedep, freeblks, off)) { FREE_LOCK(ump); return (ERESTART); } continue; case D_ALLOCINDIR: /* * Simply remove the allocindir, we'll find it via * the indirdep where we can clear pointers if * needed. */ WORKLIST_REMOVE(wk); continue; case D_FREEWORK: /* * A truncation is waiting for the zero'd pointers * to be written. It can be freed when the freeblks * is journaled. */ WORKLIST_REMOVE(wk); wk->wk_state |= ONDEPLIST; WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); break; case D_ALLOCDIRECT: if (off != 0) continue; /* FALLTHROUGH */ default: panic("deallocate_dependencies: Unexpected type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } FREE_LOCK(ump); done: /* * Don't throw away this buf, we were partially truncating and * some deps may always remain. */ if (off) { allocbuf(bp, off); bp->b_vflags |= BV_SCANNED; return (EBUSY); } bp->b_flags |= B_INVAL | B_NOCACHE; return (0); } /* * An allocdirect is being canceled due to a truncate. We must make sure * the journal entry is released in concert with the blkfree that releases * the storage. Completed journal entries must not be released until the * space is no longer pointed to by the inode or in the bitmap. */ static void cancel_allocdirect(adphead, adp, freeblks) struct allocdirectlst *adphead; struct allocdirect *adp; struct freeblks *freeblks; { struct freework *freework; struct newblk *newblk; struct worklist *wk; TAILQ_REMOVE(adphead, adp, ad_next); newblk = (struct newblk *)adp; freework = NULL; /* * Find the correct freework structure. */ LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { if (wk->wk_type != D_FREEWORK) continue; freework = WK_FREEWORK(wk); if (freework->fw_blkno == newblk->nb_newblkno) break; } if (freework == NULL) panic("cancel_allocdirect: Freework not found"); /* * If a newblk exists at all we still have the journal entry that * initiated the allocation so we do not need to journal the free. */ cancel_jfreeblk(freeblks, freework->fw_blkno); /* * If the journal hasn't been written the jnewblk must be passed * to the call to ffs_blkfree that reclaims the space. We accomplish * this by linking the journal dependency into the freework to be * freed when freework_freeblock() is called. If the journal has * been written we can simply reclaim the journal space when the * freeblks work is complete. */ freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, &freeblks->fb_jwork); WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); } /* * Cancel a new block allocation. May be an indirect or direct block. We * remove it from various lists and return any journal record that needs to * be resolved by the caller. * * A special consideration is made for indirects which were never pointed * at on disk and will never be found once this block is released. */ static struct jnewblk * cancel_newblk(newblk, wk, wkhd) struct newblk *newblk; struct worklist *wk; struct workhead *wkhd; { struct jnewblk *jnewblk; CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); newblk->nb_state |= GOINGAWAY; /* * Previously we traversed the completedhd on each indirdep * attached to this newblk to cancel them and gather journal * work. Since we need only the oldest journal segment and * the lowest point on the tree will always have the oldest * journal segment we are free to release the segments * of any subordinates and may leave the indirdep list to * indirdep_complete() when this newblk is freed. */ if (newblk->nb_state & ONDEPLIST) { newblk->nb_state &= ~ONDEPLIST; LIST_REMOVE(newblk, nb_deps); } if (newblk->nb_state & ONWORKLIST) WORKLIST_REMOVE(&newblk->nb_list); /* * If the journal entry hasn't been written we save a pointer to * the dependency that frees it until it is written or the * superseding operation completes. */ jnewblk = newblk->nb_jnewblk; if (jnewblk != NULL && wk != NULL) { newblk->nb_jnewblk = NULL; jnewblk->jn_dep = wk; } if (!LIST_EMPTY(&newblk->nb_jwork)) jwork_move(wkhd, &newblk->nb_jwork); /* * When truncating we must free the newdirblk early to remove * the pagedep from the hash before returning. */ if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) free_newdirblk(WK_NEWDIRBLK(wk)); if (!LIST_EMPTY(&newblk->nb_newdirblk)) panic("cancel_newblk: extra newdirblk"); return (jnewblk); } /* * Schedule the freefrag associated with a newblk to be released once * the pointers are written and the previous block is no longer needed. */ static void newblk_freefrag(newblk) struct newblk *newblk; { struct freefrag *freefrag; if (newblk->nb_freefrag == NULL) return; freefrag = newblk->nb_freefrag; newblk->nb_freefrag = NULL; freefrag->ff_state |= COMPLETE; if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) add_to_worklist(&freefrag->ff_list, 0); } /* * Free a newblk. Generate a new freefrag work request if appropriate. * This must be called after the inode pointer and any direct block pointers * are valid or fully removed via truncate or frag extension. */ static void free_newblk(newblk) struct newblk *newblk; { struct indirdep *indirdep; struct worklist *wk; KASSERT(newblk->nb_jnewblk == NULL, ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); KASSERT(newblk->nb_list.wk_type != D_NEWBLK, ("free_newblk: unclaimed newblk")); LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); newblk_freefrag(newblk); if (newblk->nb_state & ONDEPLIST) LIST_REMOVE(newblk, nb_deps); if (newblk->nb_state & ONWORKLIST) WORKLIST_REMOVE(&newblk->nb_list); LIST_REMOVE(newblk, nb_hash); if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) free_newdirblk(WK_NEWDIRBLK(wk)); if (!LIST_EMPTY(&newblk->nb_newdirblk)) panic("free_newblk: extra newdirblk"); while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) indirdep_complete(indirdep); handle_jwork(&newblk->nb_jwork); WORKITEM_FREE(newblk, D_NEWBLK); } /* * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. */ static void free_newdirblk(newdirblk) struct newdirblk *newdirblk; { struct pagedep *pagedep; struct diradd *dap; struct worklist *wk; LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); WORKLIST_REMOVE(&newdirblk->db_list); /* * If the pagedep is still linked onto the directory buffer * dependency chain, then some of the entries on the * pd_pendinghd list may not be committed to disk yet. In * this case, we will simply clear the NEWBLOCK flag and * let the pd_pendinghd list be processed when the pagedep * is next written. If the pagedep is no longer on the buffer * dependency chain, then all the entries on the pd_pending * list are committed to disk and we can free them here. */ pagedep = newdirblk->db_pagedep; pagedep->pd_state &= ~NEWBLOCK; if ((pagedep->pd_state & ONWORKLIST) == 0) { while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) free_diradd(dap, NULL); /* * If no dependencies remain, the pagedep will be freed. */ free_pagedep(pagedep); } /* Should only ever be one item in the list. */ while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { WORKLIST_REMOVE(wk); handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); } WORKITEM_FREE(newdirblk, D_NEWDIRBLK); } /* * Prepare an inode to be freed. The actual free operation is not * done until the zero'ed inode has been written to disk. */ void softdep_freefile(pvp, ino, mode) struct vnode *pvp; ino_t ino; int mode; { struct inode *ip = VTOI(pvp); struct inodedep *inodedep; struct freefile *freefile; struct freeblks *freeblks; struct ufsmount *ump; ump = ITOUMP(ip); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_freefile called on non-softdep filesystem")); /* * This sets up the inode de-allocation dependency. */ freefile = malloc(sizeof(struct freefile), M_FREEFILE, M_SOFTDEP_FLAGS); workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); freefile->fx_mode = mode; freefile->fx_oldinum = ino; freefile->fx_devvp = ump->um_devvp; LIST_INIT(&freefile->fx_jwork); UFS_LOCK(ump); ump->um_fs->fs_pendinginodes += 1; UFS_UNLOCK(ump); /* * If the inodedep does not exist, then the zero'ed inode has * been written to disk. If the allocated inode has never been * written to disk, then the on-disk inode is zero'ed. In either * case we can free the file immediately. If the journal was * canceled before being written the inode will never make it to * disk and we must send the canceled journal entrys to * ffs_freefile() to be cleared in conjunction with the bitmap. * Any blocks waiting on the inode to write can be safely freed * here as it will never been written. */ ACQUIRE_LOCK(ump); inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); if (inodedep) { /* * Clear out freeblks that no longer need to reference * this inode. */ while ((freeblks = TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); freeblks->fb_state &= ~ONDEPLIST; } /* * Remove this inode from the unlinked list. */ if (inodedep->id_state & UNLINKED) { /* * Save the journal work to be freed with the bitmap * before we clear UNLINKED. Otherwise it can be lost * if the inode block is written. */ handle_bufwait(inodedep, &freefile->fx_jwork); clear_unlinked_inodedep(inodedep); /* * Re-acquire inodedep as we've dropped the * per-filesystem lock in clear_unlinked_inodedep(). */ inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); } } if (inodedep == NULL || check_inode_unwritten(inodedep)) { FREE_LOCK(ump); handle_workitem_freefile(freefile); return; } if ((inodedep->id_state & DEPCOMPLETE) == 0) inodedep->id_state |= GOINGAWAY; WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); FREE_LOCK(ump); if (ip->i_number == ino) UFS_INODE_SET_FLAG(ip, IN_MODIFIED); } /* * Check to see if an inode has never been written to disk. If * so free the inodedep and return success, otherwise return failure. * * If we still have a bitmap dependency, then the inode has never * been written to disk. Drop the dependency as it is no longer * necessary since the inode is being deallocated. We set the * ALLCOMPLETE flags since the bitmap now properly shows that the * inode is not allocated. Even if the inode is actively being * written, it has been rolled back to its zero'ed state, so we * are ensured that a zero inode is what is on the disk. For short * lived files, this change will usually result in removing all the * dependencies from the inode so that it can be freed immediately. */ static int check_inode_unwritten(inodedep) struct inodedep *inodedep; { LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || !LIST_EMPTY(&inodedep->id_dirremhd) || !LIST_EMPTY(&inodedep->id_pendinghd) || !LIST_EMPTY(&inodedep->id_bufwait) || !LIST_EMPTY(&inodedep->id_inowait) || !TAILQ_EMPTY(&inodedep->id_inoreflst) || !TAILQ_EMPTY(&inodedep->id_inoupdt) || !TAILQ_EMPTY(&inodedep->id_newinoupdt) || !TAILQ_EMPTY(&inodedep->id_extupdt) || !TAILQ_EMPTY(&inodedep->id_newextupdt) || !TAILQ_EMPTY(&inodedep->id_freeblklst) || inodedep->id_mkdiradd != NULL || inodedep->id_nlinkdelta != 0) return (0); /* * Another process might be in initiate_write_inodeblock_ufs[12] * trying to allocate memory without holding "Softdep Lock". */ if ((inodedep->id_state & IOSTARTED) != 0 && inodedep->id_savedino1 == NULL) return (0); if (inodedep->id_state & ONDEPLIST) LIST_REMOVE(inodedep, id_deps); inodedep->id_state &= ~ONDEPLIST; inodedep->id_state |= ALLCOMPLETE; inodedep->id_bmsafemap = NULL; if (inodedep->id_state & ONWORKLIST) WORKLIST_REMOVE(&inodedep->id_list); if (inodedep->id_savedino1 != NULL) { free(inodedep->id_savedino1, M_SAVEDINO); inodedep->id_savedino1 = NULL; } if (free_inodedep(inodedep) == 0) panic("check_inode_unwritten: busy inode"); return (1); } static int check_inodedep_free(inodedep) struct inodedep *inodedep; { LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || !LIST_EMPTY(&inodedep->id_dirremhd) || !LIST_EMPTY(&inodedep->id_pendinghd) || !LIST_EMPTY(&inodedep->id_bufwait) || !LIST_EMPTY(&inodedep->id_inowait) || !TAILQ_EMPTY(&inodedep->id_inoreflst) || !TAILQ_EMPTY(&inodedep->id_inoupdt) || !TAILQ_EMPTY(&inodedep->id_newinoupdt) || !TAILQ_EMPTY(&inodedep->id_extupdt) || !TAILQ_EMPTY(&inodedep->id_newextupdt) || !TAILQ_EMPTY(&inodedep->id_freeblklst) || inodedep->id_mkdiradd != NULL || inodedep->id_nlinkdelta != 0 || inodedep->id_savedino1 != NULL) return (0); return (1); } /* * Try to free an inodedep structure. Return 1 if it could be freed. */ static int free_inodedep(inodedep) struct inodedep *inodedep; { LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || !check_inodedep_free(inodedep)) return (0); if (inodedep->id_state & ONDEPLIST) LIST_REMOVE(inodedep, id_deps); LIST_REMOVE(inodedep, id_hash); WORKITEM_FREE(inodedep, D_INODEDEP); return (1); } /* * Free the block referenced by a freework structure. The parent freeblks * structure is released and completed when the final cg bitmap reaches * the disk. This routine may be freeing a jnewblk which never made it to * disk in which case we do not have to wait as the operation is undone * in memory immediately. */ static void freework_freeblock(freework, key) struct freework *freework; u_long key; { struct freeblks *freeblks; struct jnewblk *jnewblk; struct ufsmount *ump; struct workhead wkhd; struct fs *fs; int bsize; int needj; ump = VFSTOUFS(freework->fw_list.wk_mp); LOCK_OWNED(ump); /* * Handle partial truncate separately. */ if (freework->fw_indir) { complete_trunc_indir(freework); return; } freeblks = freework->fw_freeblks; fs = ump->um_fs; needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; bsize = lfragtosize(fs, freework->fw_frags); LIST_INIT(&wkhd); /* * DEPCOMPLETE is cleared in indirblk_insert() if the block lives * on the indirblk hashtable and prevents premature freeing. */ freework->fw_state |= DEPCOMPLETE; /* * SUJ needs to wait for the segment referencing freed indirect * blocks to expire so that we know the checker will not confuse * a re-allocated indirect block with its old contents. */ if (needj && freework->fw_lbn <= -UFS_NDADDR) indirblk_insert(freework); /* * If we are canceling an existing jnewblk pass it to the free * routine, otherwise pass the freeblk which will ultimately * release the freeblks. If we're not journaling, we can just * free the freeblks immediately. */ jnewblk = freework->fw_jnewblk; if (jnewblk != NULL) { cancel_jnewblk(jnewblk, &wkhd); needj = 0; } else if (needj) { freework->fw_state |= DELAYEDFREE; freeblks->fb_cgwait++; WORKLIST_INSERT(&wkhd, &freework->fw_list); } FREE_LOCK(ump); freeblks_free(ump, freeblks, btodb(bsize)); CTR4(KTR_SUJ, "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); ACQUIRE_LOCK(ump); /* * The jnewblk will be discarded and the bits in the map never * made it to disk. We can immediately free the freeblk. */ if (needj == 0) handle_written_freework(freework); } /* * We enqueue freework items that need processing back on the freeblks and * add the freeblks to the worklist. This makes it easier to find all work * required to flush a truncation in process_truncates(). */ static void freework_enqueue(freework) struct freework *freework; { struct freeblks *freeblks; freeblks = freework->fw_freeblks; if ((freework->fw_state & INPROGRESS) == 0) WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); if ((freeblks->fb_state & (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) add_to_worklist(&freeblks->fb_list, WK_NODELAY); } /* * Start, continue, or finish the process of freeing an indirect block tree. * The free operation may be paused at any point with fw_off containing the * offset to restart from. This enables us to implement some flow control * for large truncates which may fan out and generate a huge number of * dependencies. */ static void handle_workitem_indirblk(freework) struct freework *freework; { struct freeblks *freeblks; struct ufsmount *ump; struct fs *fs; freeblks = freework->fw_freeblks; ump = VFSTOUFS(freeblks->fb_list.wk_mp); fs = ump->um_fs; if (freework->fw_state & DEPCOMPLETE) { handle_written_freework(freework); return; } if (freework->fw_off == NINDIR(fs)) { freework_freeblock(freework, SINGLETON_KEY); return; } freework->fw_state |= INPROGRESS; FREE_LOCK(ump); indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), freework->fw_lbn); ACQUIRE_LOCK(ump); } /* * Called when a freework structure attached to a cg buf is written. The * ref on either the parent or the freeblks structure is released and * the freeblks is added back to the worklist if there is more work to do. */ static void handle_written_freework(freework) struct freework *freework; { struct freeblks *freeblks; struct freework *parent; freeblks = freework->fw_freeblks; parent = freework->fw_parent; if (freework->fw_state & DELAYEDFREE) freeblks->fb_cgwait--; freework->fw_state |= COMPLETE; if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) WORKITEM_FREE(freework, D_FREEWORK); if (parent) { if (--parent->fw_ref == 0) freework_enqueue(parent); return; } if (--freeblks->fb_ref != 0) return; if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) add_to_worklist(&freeblks->fb_list, WK_NODELAY); } /* * This workitem routine performs the block de-allocation. * The workitem is added to the pending list after the updated * inode block has been written to disk. As mentioned above, * checks regarding the number of blocks de-allocated (compared * to the number of blocks allocated for the file) are also * performed in this function. */ static int handle_workitem_freeblocks(freeblks, flags) struct freeblks *freeblks; int flags; { struct freework *freework; struct newblk *newblk; struct allocindir *aip; struct ufsmount *ump; struct worklist *wk; u_long key; KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), ("handle_workitem_freeblocks: Journal entries not written.")); ump = VFSTOUFS(freeblks->fb_list.wk_mp); key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); ACQUIRE_LOCK(ump); while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { WORKLIST_REMOVE(wk); switch (wk->wk_type) { case D_DIRREM: wk->wk_state |= COMPLETE; add_to_worklist(wk, 0); continue; case D_ALLOCDIRECT: free_newblk(WK_NEWBLK(wk)); continue; case D_ALLOCINDIR: aip = WK_ALLOCINDIR(wk); freework = NULL; if (aip->ai_state & DELAYEDFREE) { FREE_LOCK(ump); freework = newfreework(ump, freeblks, NULL, aip->ai_lbn, aip->ai_newblkno, ump->um_fs->fs_frag, 0, 0); ACQUIRE_LOCK(ump); } newblk = WK_NEWBLK(wk); if (newblk->nb_jnewblk) { freework->fw_jnewblk = newblk->nb_jnewblk; newblk->nb_jnewblk->jn_dep = &freework->fw_list; newblk->nb_jnewblk = NULL; } free_newblk(newblk); continue; case D_FREEWORK: freework = WK_FREEWORK(wk); if (freework->fw_lbn <= -UFS_NDADDR) handle_workitem_indirblk(freework); else freework_freeblock(freework, key); continue; default: panic("handle_workitem_freeblocks: Unknown type %s", TYPENAME(wk->wk_type)); } } if (freeblks->fb_ref != 0) { freeblks->fb_state &= ~INPROGRESS; wake_worklist(&freeblks->fb_list); freeblks = NULL; } FREE_LOCK(ump); ffs_blkrelease_finish(ump, key); if (freeblks) return handle_complete_freeblocks(freeblks, flags); return (0); } /* * Handle completion of block free via truncate. This allows fs_pending * to track the actual free block count more closely than if we only updated * it at the end. We must be careful to handle cases where the block count * on free was incorrect. */ static void freeblks_free(ump, freeblks, blocks) struct ufsmount *ump; struct freeblks *freeblks; int blocks; { struct fs *fs; ufs2_daddr_t remain; UFS_LOCK(ump); remain = -freeblks->fb_chkcnt; freeblks->fb_chkcnt += blocks; if (remain > 0) { if (remain < blocks) blocks = remain; fs = ump->um_fs; fs->fs_pendingblocks -= blocks; } UFS_UNLOCK(ump); } /* * Once all of the freework workitems are complete we can retire the * freeblocks dependency and any journal work awaiting completion. This * can not be called until all other dependencies are stable on disk. */ static int handle_complete_freeblocks(freeblks, flags) struct freeblks *freeblks; int flags; { struct inodedep *inodedep; struct inode *ip; struct vnode *vp; struct fs *fs; struct ufsmount *ump; ufs2_daddr_t spare; ump = VFSTOUFS(freeblks->fb_list.wk_mp); fs = ump->um_fs; flags = LK_EXCLUSIVE | flags; spare = freeblks->fb_chkcnt; /* * If we did not release the expected number of blocks we may have * to adjust the inode block count here. Only do so if it wasn't * a truncation to zero and the modrev still matches. */ if (spare && freeblks->fb_len != 0) { if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0) return (EBUSY); ip = VTOI(vp); if (ip->i_mode == 0) { vgone(vp); } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); UFS_INODE_SET_FLAG(ip, IN_CHANGE); /* * We must wait so this happens before the * journal is reclaimed. */ ffs_update(vp, 1); } vput(vp); } if (spare < 0) { UFS_LOCK(ump); fs->fs_pendingblocks += spare; UFS_UNLOCK(ump); } #ifdef QUOTA /* Handle spare. */ if (spare) quotaadj(freeblks->fb_quota, ump, -spare); quotarele(freeblks->fb_quota); #endif ACQUIRE_LOCK(ump); if (freeblks->fb_state & ONDEPLIST) { inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 0, &inodedep); TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); freeblks->fb_state &= ~ONDEPLIST; if (TAILQ_EMPTY(&inodedep->id_freeblklst)) free_inodedep(inodedep); } /* * All of the freeblock deps must be complete prior to this call * so it's now safe to complete earlier outstanding journal entries. */ handle_jwork(&freeblks->fb_jwork); WORKITEM_FREE(freeblks, D_FREEBLKS); FREE_LOCK(ump); return (0); } /* * Release blocks associated with the freeblks and stored in the indirect * block dbn. If level is greater than SINGLE, the block is an indirect block * and recursive calls to indirtrunc must be used to cleanse other indirect * blocks. * * This handles partial and complete truncation of blocks. Partial is noted * with goingaway == 0. In this case the freework is completed after the * zero'd indirects are written to disk. For full truncation the freework * is completed after the block is freed. */ static void indir_trunc(freework, dbn, lbn) struct freework *freework; ufs2_daddr_t dbn; ufs_lbn_t lbn; { struct freework *nfreework; struct workhead wkhd; struct freeblks *freeblks; struct buf *bp; struct fs *fs; struct indirdep *indirdep; struct mount *mp; struct ufsmount *ump; ufs1_daddr_t *bap1; ufs2_daddr_t nb, nnb, *bap2; ufs_lbn_t lbnadd, nlbn; u_long key; int nblocks, ufs1fmt, freedblocks; int goingaway, freedeps, needj, level, cnt, i, error; freeblks = freework->fw_freeblks; mp = freeblks->fb_list.wk_mp; ump = VFSTOUFS(mp); fs = ump->um_fs; /* * Get buffer of block pointers to be freed. There are three cases: * * 1) Partial truncate caches the indirdep pointer in the freework * which provides us a back copy to the save bp which holds the * pointers we want to clear. When this completes the zero * pointers are written to the real copy. * 2) The indirect is being completely truncated, cancel_indirdep() * eliminated the real copy and placed the indirdep on the saved * copy. The indirdep and buf are discarded when this completes. * 3) The indirect was not in memory, we read a copy off of the disk * using the devvp and drop and invalidate the buffer when we're * done. */ goingaway = 1; indirdep = NULL; if (freework->fw_indir != NULL) { goingaway = 0; indirdep = freework->fw_indir; bp = indirdep->ir_savebp; if (bp == NULL || bp->b_blkno != dbn) panic("indir_trunc: Bad saved buf %p blkno %jd", bp, (intmax_t)dbn); } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { /* * The lock prevents the buf dep list from changing and * indirects on devvp should only ever have one dependency. */ indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) panic("indir_trunc: Bad indirdep %p from buf %p", indirdep, bp); } else { error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); if (error) return; } ACQUIRE_LOCK(ump); /* Protects against a race with complete_trunc_indir(). */ freework->fw_state &= ~INPROGRESS; /* * If we have an indirdep we need to enforce the truncation order * and discard it when it is complete. */ if (indirdep) { if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && !TAILQ_EMPTY(&indirdep->ir_trunc)) { /* * Add the complete truncate to the list on the * indirdep to enforce in-order processing. */ if (freework->fw_indir == NULL) TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); FREE_LOCK(ump); return; } /* * If we're goingaway, free the indirdep. Otherwise it will * linger until the write completes. */ if (goingaway) { KASSERT(indirdep->ir_savebp == bp, ("indir_trunc: losing ir_savebp %p", indirdep->ir_savebp)); indirdep->ir_savebp = NULL; free_indirdep(indirdep); } } FREE_LOCK(ump); /* Initialize pointers depending on block size. */ if (ump->um_fstype == UFS1) { bap1 = (ufs1_daddr_t *)bp->b_data; nb = bap1[freework->fw_off]; ufs1fmt = 1; bap2 = NULL; } else { bap2 = (ufs2_daddr_t *)bp->b_data; nb = bap2[freework->fw_off]; ufs1fmt = 0; bap1 = NULL; } level = lbn_level(lbn); needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; lbnadd = lbn_offset(fs, level); nblocks = btodb(fs->fs_bsize); nfreework = freework; freedeps = 0; cnt = 0; /* * Reclaim blocks. Traverses into nested indirect levels and * arranges for the current level to be freed when subordinates * are free when journaling. */ key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, fs->fs_bsize) != 0) nb = 0; if (i != NINDIR(fs) - 1) { if (ufs1fmt) nnb = bap1[i+1]; else nnb = bap2[i+1]; } else nnb = 0; if (nb == 0) continue; cnt++; if (level != 0) { nlbn = (lbn + 1) - (i * lbnadd); if (needj != 0) { nfreework = newfreework(ump, freeblks, freework, nlbn, nb, fs->fs_frag, 0, 0); freedeps++; } indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); } else { struct freedep *freedep; /* * Attempt to aggregate freedep dependencies for * all blocks being released to the same CG. */ LIST_INIT(&wkhd); if (needj != 0 && (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { freedep = newfreedep(freework); WORKLIST_INSERT_UNLOCKED(&wkhd, &freedep->fd_list); freedeps++; } CTR3(KTR_SUJ, "indir_trunc: ino %jd blkno %jd size %d", freeblks->fb_inum, nb, fs->fs_bsize); ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, fs->fs_bsize, freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); } } ffs_blkrelease_finish(ump, key); if (goingaway) { bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); } freedblocks = 0; if (level == 0) freedblocks = (nblocks * cnt); if (needj == 0) freedblocks += nblocks; freeblks_free(ump, freeblks, freedblocks); /* * If we are journaling set up the ref counts and offset so this * indirect can be completed when its children are free. */ if (needj) { ACQUIRE_LOCK(ump); freework->fw_off = i; freework->fw_ref += freedeps; freework->fw_ref -= NINDIR(fs) + 1; if (level == 0) freeblks->fb_cgwait += freedeps; if (freework->fw_ref == 0) freework_freeblock(freework, SINGLETON_KEY); FREE_LOCK(ump); return; } /* * If we're not journaling we can free the indirect now. */ dbn = dbtofsb(fs, dbn); CTR3(KTR_SUJ, "indir_trunc 2: ino %jd blkno %jd size %d", freeblks->fb_inum, dbn, fs->fs_bsize); ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); /* Non SUJ softdep does single-threaded truncations. */ if (freework->fw_blkno == dbn) { freework->fw_state |= ALLCOMPLETE; ACQUIRE_LOCK(ump); handle_written_freework(freework); FREE_LOCK(ump); } return; } /* * Cancel an allocindir when it is removed via truncation. When bp is not * NULL the indirect never appeared on disk and is scheduled to be freed * independently of the indir so we can more easily track journal work. */ static void cancel_allocindir(aip, bp, freeblks, trunc) struct allocindir *aip; struct buf *bp; struct freeblks *freeblks; int trunc; { struct indirdep *indirdep; struct freefrag *freefrag; struct newblk *newblk; newblk = (struct newblk *)aip; LIST_REMOVE(aip, ai_next); /* * We must eliminate the pointer in bp if it must be freed on its * own due to partial truncate or pending journal work. */ if (bp && (trunc || newblk->nb_jnewblk)) { /* * Clear the pointer and mark the aip to be freed * directly if it never existed on disk. */ aip->ai_state |= DELAYEDFREE; indirdep = aip->ai_indirdep; if (indirdep->ir_state & UFS1FMT) ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; else ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; } /* * When truncating the previous pointer will be freed via * savedbp. Eliminate the freefrag which would dup free. */ if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { newblk->nb_freefrag = NULL; if (freefrag->ff_jdep) cancel_jfreefrag( WK_JFREEFRAG(freefrag->ff_jdep)); jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); WORKITEM_FREE(freefrag, D_FREEFRAG); } /* * If the journal hasn't been written the jnewblk must be passed * to the call to ffs_blkfree that reclaims the space. We accomplish * this by leaving the journal dependency on the newblk to be freed * when a freework is created in handle_workitem_freeblocks(). */ cancel_newblk(newblk, NULL, &freeblks->fb_jwork); WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); } /* * Create the mkdir dependencies for . and .. in a new directory. Link them * in to a newdirblk so any subsequent additions are tracked properly. The * caller is responsible for adding the mkdir1 dependency to the journal * and updating id_mkdiradd. This function returns with the per-filesystem * lock held. */ static struct mkdir * setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) struct diradd *dap; ino_t newinum; ino_t dinum; struct buf *newdirbp; struct mkdir **mkdirp; { struct newblk *newblk; struct pagedep *pagedep; struct inodedep *inodedep; struct newdirblk *newdirblk; struct mkdir *mkdir1, *mkdir2; struct worklist *wk; struct jaddref *jaddref; struct ufsmount *ump; struct mount *mp; mp = dap->da_list.wk_mp; ump = VFSTOUFS(mp); newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, M_SOFTDEP_FLAGS); workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); LIST_INIT(&newdirblk->db_mkdir); mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); mkdir1->md_state = ATTACHED | MKDIR_BODY; mkdir1->md_diradd = dap; mkdir1->md_jaddref = NULL; mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); mkdir2->md_state = ATTACHED | MKDIR_PARENT; mkdir2->md_diradd = dap; mkdir2->md_jaddref = NULL; if (MOUNTEDSUJ(mp) == 0) { mkdir1->md_state |= DEPCOMPLETE; mkdir2->md_state |= DEPCOMPLETE; } /* * Dependency on "." and ".." being written to disk. */ mkdir1->md_buf = newdirbp; ACQUIRE_LOCK(VFSTOUFS(mp)); LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); /* * We must link the pagedep, allocdirect, and newdirblk for * the initial file page so the pointer to the new directory * is not written until the directory contents are live and * any subsequent additions are not marked live until the * block is reachable via the inode. */ if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) panic("setup_newdir: lost pagedep"); LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) if (wk->wk_type == D_ALLOCDIRECT) break; if (wk == NULL) panic("setup_newdir: lost allocdirect"); if (pagedep->pd_state & NEWBLOCK) panic("setup_newdir: NEWBLOCK already set"); newblk = WK_NEWBLK(wk); pagedep->pd_state |= NEWBLOCK; pagedep->pd_newdirblk = newdirblk; newdirblk->db_pagedep = pagedep; WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); /* * Look up the inodedep for the parent directory so that we * can link mkdir2 into the pending dotdot jaddref or * the inode write if there is none. If the inode is * ALLCOMPLETE and no jaddref is present all dependencies have * been satisfied and mkdir2 can be freed. */ inodedep_lookup(mp, dinum, 0, &inodedep); if (MOUNTEDSUJ(mp)) { if (inodedep == NULL) panic("setup_newdir: Lost parent."); jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && (jaddref->ja_state & MKDIR_PARENT), ("setup_newdir: bad dotdot jaddref %p", jaddref)); LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); mkdir2->md_jaddref = jaddref; jaddref->ja_mkdir = mkdir2; } else if (inodedep == NULL || (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { dap->da_state &= ~MKDIR_PARENT; WORKITEM_FREE(mkdir2, D_MKDIR); mkdir2 = NULL; } else { LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); } *mkdirp = mkdir2; return (mkdir1); } /* * Directory entry addition dependencies. * * When adding a new directory entry, the inode (with its incremented link * count) must be written to disk before the directory entry's pointer to it. * Also, if the inode is newly allocated, the corresponding freemap must be * updated (on disk) before the directory entry's pointer. These requirements * are met via undo/redo on the directory entry's pointer, which consists * simply of the inode number. * * As directory entries are added and deleted, the free space within a * directory block can become fragmented. The ufs filesystem will compact * a fragmented directory block to make space for a new entry. When this * occurs, the offsets of previously added entries change. Any "diradd" * dependency structures corresponding to these entries must be updated with * the new offsets. */ /* * This routine is called after the in-memory inode's link * count has been incremented, but before the directory entry's * pointer to the inode has been set. */ int softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) struct buf *bp; /* buffer containing directory block */ struct inode *dp; /* inode for directory */ off_t diroffset; /* offset of new entry in directory */ ino_t newinum; /* inode referenced by new directory entry */ struct buf *newdirbp; /* non-NULL => contents of new mkdir */ int isnewblk; /* entry is in a newly allocated block */ { int offset; /* offset of new entry within directory block */ ufs_lbn_t lbn; /* block in directory containing new entry */ struct fs *fs; struct diradd *dap; struct newblk *newblk; struct pagedep *pagedep; struct inodedep *inodedep; struct newdirblk *newdirblk; struct mkdir *mkdir1, *mkdir2; struct jaddref *jaddref; struct ufsmount *ump; struct mount *mp; int isindir; mp = ITOVFS(dp); ump = VFSTOUFS(mp); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_directory_add called on non-softdep filesystem")); /* * Whiteouts have no dependencies. */ if (newinum == UFS_WINO) { if (newdirbp != NULL) bdwrite(newdirbp); return (0); } jaddref = NULL; mkdir1 = mkdir2 = NULL; fs = ump->um_fs; lbn = lblkno(fs, diroffset); offset = blkoff(fs, diroffset); dap = malloc(sizeof(struct diradd), M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); workitem_alloc(&dap->da_list, D_DIRADD, mp); dap->da_offset = offset; dap->da_newinum = newinum; dap->da_state = ATTACHED; LIST_INIT(&dap->da_jwork); isindir = bp->b_lblkno >= UFS_NDADDR; newdirblk = NULL; if (isnewblk && (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, M_SOFTDEP_FLAGS); workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); LIST_INIT(&newdirblk->db_mkdir); } /* * If we're creating a new directory setup the dependencies and set * the dap state to wait for them. Otherwise it's COMPLETE and * we can move on. */ if (newdirbp == NULL) { dap->da_state |= DEPCOMPLETE; ACQUIRE_LOCK(ump); } else { dap->da_state |= MKDIR_BODY | MKDIR_PARENT; mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, &mkdir2); } /* * Link into parent directory pagedep to await its being written. */ pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); #ifdef INVARIANTS if (diradd_lookup(pagedep, offset) != NULL) panic("softdep_setup_directory_add: %p already at off %d\n", diradd_lookup(pagedep, offset), offset); #endif dap->da_pagedep = pagedep; LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, da_pdlist); inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); /* * If we're journaling, link the diradd into the jaddref so it * may be completed after the journal entry is written. Otherwise, * link the diradd into its inodedep. If the inode is not yet * written place it on the bufwait list, otherwise do the post-inode * write processing to put it on the id_pendinghd list. */ if (MOUNTEDSUJ(mp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, ("softdep_setup_directory_add: bad jaddref %p", jaddref)); jaddref->ja_diroff = diroffset; jaddref->ja_diradd = dap; add_to_journal(&jaddref->ja_list); } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) diradd_inode_written(dap, inodedep); else WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); /* * Add the journal entries for . and .. links now that the primary * link is written. */ if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, inoreflst, if_deps); KASSERT(jaddref != NULL && jaddref->ja_ino == jaddref->ja_parent && (jaddref->ja_state & MKDIR_BODY), ("softdep_setup_directory_add: bad dot jaddref %p", jaddref)); mkdir1->md_jaddref = jaddref; jaddref->ja_mkdir = mkdir1; /* * It is important that the dotdot journal entry * is added prior to the dot entry since dot writes * both the dot and dotdot links. These both must * be added after the primary link for the journal * to remain consistent. */ add_to_journal(&mkdir2->md_jaddref->ja_list); add_to_journal(&jaddref->ja_list); } /* * If we are adding a new directory remember this diradd so that if * we rename it we can keep the dot and dotdot dependencies. If * we are adding a new name for an inode that has a mkdiradd we * must be in rename and we have to move the dot and dotdot * dependencies to this new name. The old name is being orphaned * soon. */ if (mkdir1 != NULL) { if (inodedep->id_mkdiradd != NULL) panic("softdep_setup_directory_add: Existing mkdir"); inodedep->id_mkdiradd = dap; } else if (inodedep->id_mkdiradd) merge_diradd(inodedep, dap); if (newdirblk != NULL) { /* * There is nothing to do if we are already tracking * this block. */ if ((pagedep->pd_state & NEWBLOCK) != 0) { WORKITEM_FREE(newdirblk, D_NEWDIRBLK); FREE_LOCK(ump); return (0); } if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) == 0) panic("softdep_setup_directory_add: lost entry"); WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); pagedep->pd_state |= NEWBLOCK; pagedep->pd_newdirblk = newdirblk; newdirblk->db_pagedep = pagedep; FREE_LOCK(ump); /* * If we extended into an indirect signal direnter to sync. */ if (isindir) return (1); return (0); } FREE_LOCK(ump); return (0); } /* * This procedure is called to change the offset of a directory * entry when compacting a directory block which must be owned * exclusively by the caller. Note that the actual entry movement * must be done in this procedure to ensure that no I/O completions * occur while the move is in progress. */ void softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) struct buf *bp; /* Buffer holding directory block. */ struct inode *dp; /* inode for directory */ caddr_t base; /* address of dp->i_offset */ caddr_t oldloc; /* address of old directory location */ caddr_t newloc; /* address of new directory location */ int entrysize; /* size of directory entry */ { int offset, oldoffset, newoffset; struct pagedep *pagedep; struct jmvref *jmvref; struct diradd *dap; struct direct *de; struct mount *mp; struct ufsmount *ump; ufs_lbn_t lbn; int flags; mp = ITOVFS(dp); ump = VFSTOUFS(mp); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_change_directoryentry_offset called on " "non-softdep filesystem")); de = (struct direct *)oldloc; jmvref = NULL; flags = 0; /* * Moves are always journaled as it would be too complex to * determine if any affected adds or removes are present in the * journal. */ if (MOUNTEDSUJ(mp)) { flags = DEPALLOC; jmvref = newjmvref(dp, de->d_ino, I_OFFSET(dp) + (oldloc - base), I_OFFSET(dp) + (newloc - base)); } lbn = lblkno(ump->um_fs, I_OFFSET(dp)); offset = blkoff(ump->um_fs, I_OFFSET(dp)); oldoffset = offset + (oldloc - base); newoffset = offset + (newloc - base); ACQUIRE_LOCK(ump); if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) goto done; dap = diradd_lookup(pagedep, oldoffset); if (dap) { dap->da_offset = newoffset; newoffset = DIRADDHASH(newoffset); oldoffset = DIRADDHASH(oldoffset); if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && newoffset != oldoffset) { LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], dap, da_pdlist); } } done: if (jmvref) { jmvref->jm_pagedep = pagedep; LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); add_to_journal(&jmvref->jm_list); } bcopy(oldloc, newloc, entrysize); FREE_LOCK(ump); } /* * Move the mkdir dependencies and journal work from one diradd to another * when renaming a directory. The new name must depend on the mkdir deps * completing as the old name did. Directories can only have one valid link * at a time so one must be canonical. */ static void merge_diradd(inodedep, newdap) struct inodedep *inodedep; struct diradd *newdap; { struct diradd *olddap; struct mkdir *mkdir, *nextmd; struct ufsmount *ump; short state; olddap = inodedep->id_mkdiradd; inodedep->id_mkdiradd = newdap; if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { newdap->da_state &= ~DEPCOMPLETE; ump = VFSTOUFS(inodedep->id_list.wk_mp); for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; mkdir = nextmd) { nextmd = LIST_NEXT(mkdir, md_mkdirs); if (mkdir->md_diradd != olddap) continue; mkdir->md_diradd = newdap; state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); newdap->da_state |= state; olddap->da_state &= ~state; if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) break; } if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) panic("merge_diradd: unfound ref"); } /* * Any mkdir related journal items are not safe to be freed until * the new name is stable. */ jwork_move(&newdap->da_jwork, &olddap->da_jwork); olddap->da_state |= DEPCOMPLETE; complete_diradd(olddap); } /* * Move the diradd to the pending list when all diradd dependencies are * complete. */ static void complete_diradd(dap) struct diradd *dap; { struct pagedep *pagedep; if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { if (dap->da_state & DIRCHG) pagedep = dap->da_previous->dm_pagedep; else pagedep = dap->da_pagedep; LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); } } /* * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal * add entries and conditonally journal the remove. */ static void cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) struct diradd *dap; struct dirrem *dirrem; struct jremref *jremref; struct jremref *dotremref; struct jremref *dotdotremref; { struct inodedep *inodedep; struct jaddref *jaddref; struct inoref *inoref; struct ufsmount *ump; struct mkdir *mkdir; /* * If no remove references were allocated we're on a non-journaled * filesystem and can skip the cancel step. */ if (jremref == NULL) { free_diradd(dap, NULL); return; } /* * Cancel the primary name an free it if it does not require * journaling. */ if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 0, &inodedep) != 0) { /* Abort the addref that reference this diradd. */ TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { if (inoref->if_list.wk_type != D_JADDREF) continue; jaddref = (struct jaddref *)inoref; if (jaddref->ja_diradd != dap) continue; if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork) == 0) { free_jremref(jremref); jremref = NULL; } break; } } /* * Cancel subordinate names and free them if they do not require * journaling. */ if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { ump = VFSTOUFS(dap->da_list.wk_mp); LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { if (mkdir->md_diradd != dap) continue; if ((jaddref = mkdir->md_jaddref) == NULL) continue; mkdir->md_jaddref = NULL; if (mkdir->md_state & MKDIR_PARENT) { if (cancel_jaddref(jaddref, NULL, &dirrem->dm_jwork) == 0) { free_jremref(dotdotremref); dotdotremref = NULL; } } else { if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork) == 0) { free_jremref(dotremref); dotremref = NULL; } } } } if (jremref) journal_jremref(dirrem, jremref, inodedep); if (dotremref) journal_jremref(dirrem, dotremref, inodedep); if (dotdotremref) journal_jremref(dirrem, dotdotremref, NULL); jwork_move(&dirrem->dm_jwork, &dap->da_jwork); free_diradd(dap, &dirrem->dm_jwork); } /* * Free a diradd dependency structure. */ static void free_diradd(dap, wkhd) struct diradd *dap; struct workhead *wkhd; { struct dirrem *dirrem; struct pagedep *pagedep; struct inodedep *inodedep; struct mkdir *mkdir, *nextmd; struct ufsmount *ump; ump = VFSTOUFS(dap->da_list.wk_mp); LOCK_OWNED(ump); LIST_REMOVE(dap, da_pdlist); if (dap->da_state & ONWORKLIST) WORKLIST_REMOVE(&dap->da_list); if ((dap->da_state & DIRCHG) == 0) { pagedep = dap->da_pagedep; } else { dirrem = dap->da_previous; pagedep = dirrem->dm_pagedep; dirrem->dm_dirinum = pagedep->pd_ino; dirrem->dm_state |= COMPLETE; if (LIST_EMPTY(&dirrem->dm_jremrefhd)) add_to_worklist(&dirrem->dm_list, 0); } if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 0, &inodedep) != 0) if (inodedep->id_mkdiradd == dap) inodedep->id_mkdiradd = NULL; if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; mkdir = nextmd) { nextmd = LIST_NEXT(mkdir, md_mkdirs); if (mkdir->md_diradd != dap) continue; dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); LIST_REMOVE(mkdir, md_mkdirs); if (mkdir->md_state & ONWORKLIST) WORKLIST_REMOVE(&mkdir->md_list); if (mkdir->md_jaddref != NULL) panic("free_diradd: Unexpected jaddref"); WORKITEM_FREE(mkdir, D_MKDIR); if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) break; } if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) panic("free_diradd: unfound ref"); } if (inodedep) free_inodedep(inodedep); /* * Free any journal segments waiting for the directory write. */ handle_jwork(&dap->da_jwork); WORKITEM_FREE(dap, D_DIRADD); } /* * Directory entry removal dependencies. * * When removing a directory entry, the entry's inode pointer must be * zero'ed on disk before the corresponding inode's link count is decremented * (possibly freeing the inode for re-use). This dependency is handled by * updating the directory entry but delaying the inode count reduction until * after the directory block has been written to disk. After this point, the * inode count can be decremented whenever it is convenient. */ /* * This routine should be called immediately after removing * a directory entry. The inode's link count should not be * decremented by the calling procedure -- the soft updates * code will do this task when it is safe. */ void softdep_setup_remove(bp, dp, ip, isrmdir) struct buf *bp; /* buffer containing directory block */ struct inode *dp; /* inode for the directory being modified */ struct inode *ip; /* inode for directory entry being removed */ int isrmdir; /* indicates if doing RMDIR */ { struct dirrem *dirrem, *prevdirrem; struct inodedep *inodedep; struct ufsmount *ump; int direct; ump = ITOUMP(ip); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_setup_remove called on non-softdep filesystem")); /* * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want * newdirrem() to setup the full directory remove which requires * isrmdir > 1. */ dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); /* * Add the dirrem to the inodedep's pending remove list for quick * discovery later. */ if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) panic("softdep_setup_remove: Lost inodedep."); KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); dirrem->dm_state |= ONDEPLIST; LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); /* * If the COMPLETE flag is clear, then there were no active * entries and we want to roll back to a zeroed entry until * the new inode is committed to disk. If the COMPLETE flag is * set then we have deleted an entry that never made it to * disk. If the entry we deleted resulted from a name change, * then the old name still resides on disk. We cannot delete * its inode (returned to us in prevdirrem) until the zeroed * directory entry gets to disk. The new inode has never been * referenced on the disk, so can be deleted immediately. */ if ((dirrem->dm_state & COMPLETE) == 0) { LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, dm_next); FREE_LOCK(ump); } else { if (prevdirrem != NULL) LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, prevdirrem, dm_next); dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; direct = LIST_EMPTY(&dirrem->dm_jremrefhd); FREE_LOCK(ump); if (direct) handle_workitem_remove(dirrem, 0); } } /* * Check for an entry matching 'offset' on both the pd_dirraddhd list and the * pd_pendinghd list of a pagedep. */ static struct diradd * diradd_lookup(pagedep, offset) struct pagedep *pagedep; int offset; { struct diradd *dap; LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) if (dap->da_offset == offset) return (dap); LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) if (dap->da_offset == offset) return (dap); return (NULL); } /* * Search for a .. diradd dependency in a directory that is being removed. * If the directory was renamed to a new parent we have a diradd rather * than a mkdir for the .. entry. We need to cancel it now before * it is found in truncate(). */ static struct jremref * cancel_diradd_dotdot(ip, dirrem, jremref) struct inode *ip; struct dirrem *dirrem; struct jremref *jremref; { struct pagedep *pagedep; struct diradd *dap; struct worklist *wk; if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) return (jremref); dap = diradd_lookup(pagedep, DOTDOT_OFFSET); if (dap == NULL) return (jremref); cancel_diradd(dap, dirrem, jremref, NULL, NULL); /* * Mark any journal work as belonging to the parent so it is freed * with the .. reference. */ LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) wk->wk_state |= MKDIR_PARENT; return (NULL); } /* * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to * replace it with a dirrem/diradd pair as a result of re-parenting a * directory. This ensures that we don't simultaneously have a mkdir and * a diradd for the same .. entry. */ static struct jremref * cancel_mkdir_dotdot(ip, dirrem, jremref) struct inode *ip; struct dirrem *dirrem; struct jremref *jremref; { struct inodedep *inodedep; struct jaddref *jaddref; struct ufsmount *ump; struct mkdir *mkdir; struct diradd *dap; struct mount *mp; mp = ITOVFS(ip); if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) return (jremref); dap = inodedep->id_mkdiradd; if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) return (jremref); ump = VFSTOUFS(inodedep->id_list.wk_mp); for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; mkdir = LIST_NEXT(mkdir, md_mkdirs)) if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) break; if (mkdir == NULL) panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); if ((jaddref = mkdir->md_jaddref) != NULL) { mkdir->md_jaddref = NULL; jaddref->ja_state &= ~MKDIR_PARENT; if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) panic("cancel_mkdir_dotdot: Lost parent inodedep"); if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { journal_jremref(dirrem, jremref, inodedep); jremref = NULL; } } if (mkdir->md_state & ONWORKLIST) WORKLIST_REMOVE(&mkdir->md_list); mkdir->md_state |= ALLCOMPLETE; complete_mkdir(mkdir); return (jremref); } static void journal_jremref(dirrem, jremref, inodedep) struct dirrem *dirrem; struct jremref *jremref; struct inodedep *inodedep; { if (inodedep == NULL) if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, &inodedep) == 0) panic("journal_jremref: Lost inodedep"); LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); add_to_journal(&jremref->jr_list); } static void dirrem_journal(dirrem, jremref, dotremref, dotdotremref) struct dirrem *dirrem; struct jremref *jremref; struct jremref *dotremref; struct jremref *dotdotremref; { struct inodedep *inodedep; if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, &inodedep) == 0) panic("dirrem_journal: Lost inodedep"); journal_jremref(dirrem, jremref, inodedep); if (dotremref) journal_jremref(dirrem, dotremref, inodedep); if (dotdotremref) journal_jremref(dirrem, dotdotremref, NULL); } /* * Allocate a new dirrem if appropriate and return it along with * its associated pagedep. Called without a lock, returns with lock. */ static struct dirrem * newdirrem(bp, dp, ip, isrmdir, prevdirremp) struct buf *bp; /* buffer containing directory block */ struct inode *dp; /* inode for the directory being modified */ struct inode *ip; /* inode for directory entry being removed */ int isrmdir; /* indicates if doing RMDIR */ struct dirrem **prevdirremp; /* previously referenced inode, if any */ { int offset; ufs_lbn_t lbn; struct diradd *dap; struct dirrem *dirrem; struct pagedep *pagedep; struct jremref *jremref; struct jremref *dotremref; struct jremref *dotdotremref; struct vnode *dvp; struct ufsmount *ump; /* * Whiteouts have no deletion dependencies. */ if (ip == NULL) panic("newdirrem: whiteout"); dvp = ITOV(dp); ump = ITOUMP(dp); /* * If the system is over its limit and our filesystem is * responsible for more than our share of that usage and * we are not a snapshot, request some inodedep cleanup. * Limiting the number of dirrem structures will also limit * the number of freefile and freeblks structures. */ ACQUIRE_LOCK(ump); if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) schedule_cleanup(UFSTOVFS(ump)); else FREE_LOCK(ump); dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | M_ZERO); workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); LIST_INIT(&dirrem->dm_jremrefhd); LIST_INIT(&dirrem->dm_jwork); dirrem->dm_state = isrmdir ? RMDIR : 0; dirrem->dm_oldinum = ip->i_number; *prevdirremp = NULL; /* * Allocate remove reference structures to track journal write * dependencies. We will always have one for the link and * when doing directories we will always have one more for dot. * When renaming a directory we skip the dotdot link change so * this is not needed. */ jremref = dotremref = dotdotremref = NULL; if (DOINGSUJ(dvp)) { if (isrmdir) { jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), ip->i_effnlink + 2); dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, ip->i_effnlink + 1); dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, dp->i_effnlink + 1); dotdotremref->jr_state |= MKDIR_PARENT; } else jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), ip->i_effnlink + 1); } ACQUIRE_LOCK(ump); lbn = lblkno(ump->um_fs, I_OFFSET(dp)); offset = blkoff(ump->um_fs, I_OFFSET(dp)); pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, &pagedep); dirrem->dm_pagedep = pagedep; dirrem->dm_offset = offset; /* * If we're renaming a .. link to a new directory, cancel any * existing MKDIR_PARENT mkdir. If it has already been canceled * the jremref is preserved for any potential diradd in this * location. This can not coincide with a rmdir. */ if (I_OFFSET(dp) == DOTDOT_OFFSET) { if (isrmdir) panic("newdirrem: .. directory change during remove?"); jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); } /* * If we're removing a directory search for the .. dependency now and * cancel it. Any pending journal work will be added to the dirrem * to be completed when the workitem remove completes. */ if (isrmdir) dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); /* * Check for a diradd dependency for the same directory entry. * If present, then both dependencies become obsolete and can * be de-allocated. */ dap = diradd_lookup(pagedep, offset); if (dap == NULL) { /* * Link the jremref structures into the dirrem so they are * written prior to the pagedep. */ if (jremref) dirrem_journal(dirrem, jremref, dotremref, dotdotremref); return (dirrem); } /* * Must be ATTACHED at this point. */ if ((dap->da_state & ATTACHED) == 0) panic("newdirrem: not ATTACHED"); if (dap->da_newinum != ip->i_number) panic("newdirrem: inum %ju should be %ju", (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); /* * If we are deleting a changed name that never made it to disk, * then return the dirrem describing the previous inode (which * represents the inode currently referenced from this entry on disk). */ if ((dap->da_state & DIRCHG) != 0) { *prevdirremp = dap->da_previous; dap->da_state &= ~DIRCHG; dap->da_pagedep = pagedep; } /* * We are deleting an entry that never made it to disk. * Mark it COMPLETE so we can delete its inode immediately. */ dirrem->dm_state |= COMPLETE; cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); #ifdef INVARIANTS if (isrmdir == 0) { struct worklist *wk; LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) panic("bad wk %p (0x%X)\n", wk, wk->wk_state); } #endif return (dirrem); } /* * Directory entry change dependencies. * * Changing an existing directory entry requires that an add operation * be completed first followed by a deletion. The semantics for the addition * are identical to the description of adding a new entry above except * that the rollback is to the old inode number rather than zero. Once * the addition dependency is completed, the removal is done as described * in the removal routine above. */ /* * This routine should be called immediately after changing * a directory entry. The inode's link count should not be * decremented by the calling procedure -- the soft updates * code will perform this task when it is safe. */ void softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) struct buf *bp; /* buffer containing directory block */ struct inode *dp; /* inode for the directory being modified */ struct inode *ip; /* inode for directory entry being removed */ ino_t newinum; /* new inode number for changed entry */ int isrmdir; /* indicates if doing RMDIR */ { int offset; struct diradd *dap = NULL; struct dirrem *dirrem, *prevdirrem; struct pagedep *pagedep; struct inodedep *inodedep; struct jaddref *jaddref; struct mount *mp; struct ufsmount *ump; mp = ITOVFS(dp); ump = VFSTOUFS(mp); offset = blkoff(ump->um_fs, I_OFFSET(dp)); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_directory_change called on non-softdep filesystem")); /* * Whiteouts do not need diradd dependencies. */ if (newinum != UFS_WINO) { dap = malloc(sizeof(struct diradd), M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); workitem_alloc(&dap->da_list, D_DIRADD, mp); dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; dap->da_offset = offset; dap->da_newinum = newinum; LIST_INIT(&dap->da_jwork); } /* * Allocate a new dirrem and ACQUIRE_LOCK. */ dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); pagedep = dirrem->dm_pagedep; /* * The possible values for isrmdir: * 0 - non-directory file rename * 1 - directory rename within same directory * inum - directory rename to new directory of given inode number * When renaming to a new directory, we are both deleting and * creating a new directory entry, so the link count on the new * directory should not change. Thus we do not need the followup * dirrem which is usually done in handle_workitem_remove. We set * the DIRCHG flag to tell handle_workitem_remove to skip the * followup dirrem. */ if (isrmdir > 1) dirrem->dm_state |= DIRCHG; /* * Whiteouts have no additional dependencies, * so just put the dirrem on the correct list. */ if (newinum == UFS_WINO) { if ((dirrem->dm_state & COMPLETE) == 0) { LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, dm_next); } else { dirrem->dm_dirinum = pagedep->pd_ino; if (LIST_EMPTY(&dirrem->dm_jremrefhd)) add_to_worklist(&dirrem->dm_list, 0); } FREE_LOCK(ump); return; } /* * Add the dirrem to the inodedep's pending remove list for quick * discovery later. A valid nlinkdelta ensures that this lookup * will not fail. */ if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) panic("softdep_setup_directory_change: Lost inodedep."); dirrem->dm_state |= ONDEPLIST; LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); /* * If the COMPLETE flag is clear, then there were no active * entries and we want to roll back to the previous inode until * the new inode is committed to disk. If the COMPLETE flag is * set, then we have deleted an entry that never made it to disk. * If the entry we deleted resulted from a name change, then the old * inode reference still resides on disk. Any rollback that we do * needs to be to that old inode (returned to us in prevdirrem). If * the entry we deleted resulted from a create, then there is * no entry on the disk, so we want to roll back to zero rather * than the uncommitted inode. In either of the COMPLETE cases we * want to immediately free the unwritten and unreferenced inode. */ if ((dirrem->dm_state & COMPLETE) == 0) { dap->da_previous = dirrem; } else { if (prevdirrem != NULL) { dap->da_previous = prevdirrem; } else { dap->da_state &= ~DIRCHG; dap->da_pagedep = pagedep; } dirrem->dm_dirinum = pagedep->pd_ino; if (LIST_EMPTY(&dirrem->dm_jremrefhd)) add_to_worklist(&dirrem->dm_list, 0); } /* * Lookup the jaddref for this journal entry. We must finish * initializing it and make the diradd write dependent on it. * If we're not journaling, put it on the id_bufwait list if the * inode is not yet written. If it is written, do the post-inode * write processing to put it on the id_pendinghd list. */ inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); if (MOUNTEDSUJ(mp)) { jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, inoreflst); KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, ("softdep_setup_directory_change: bad jaddref %p", jaddref)); jaddref->ja_diroff = I_OFFSET(dp); jaddref->ja_diradd = dap; LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, da_pdlist); add_to_journal(&jaddref->ja_list); } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { dap->da_state |= COMPLETE; LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); } else { LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, da_pdlist); WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); } /* * If we're making a new name for a directory that has not been * committed when need to move the dot and dotdot references to * this new name. */ if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) merge_diradd(inodedep, dap); FREE_LOCK(ump); } /* * Called whenever the link count on an inode is changed. * It creates an inode dependency so that the new reference(s) * to the inode cannot be committed to disk until the updated * inode has been written. */ void softdep_change_linkcnt(ip) struct inode *ip; /* the inode with the increased link count */ { struct inodedep *inodedep; struct ufsmount *ump; ump = ITOUMP(ip); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_change_linkcnt called on non-softdep filesystem")); ACQUIRE_LOCK(ump); inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); if (ip->i_nlink < ip->i_effnlink) panic("softdep_change_linkcnt: bad delta"); inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; FREE_LOCK(ump); } /* * Attach a sbdep dependency to the superblock buf so that we can keep * track of the head of the linked list of referenced but unlinked inodes. */ void softdep_setup_sbupdate(ump, fs, bp) struct ufsmount *ump; struct fs *fs; struct buf *bp; { struct sbdep *sbdep; struct worklist *wk; KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_setup_sbupdate called on non-softdep filesystem")); LIST_FOREACH(wk, &bp->b_dep, wk_list) if (wk->wk_type == D_SBDEP) break; if (wk != NULL) return; sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); sbdep->sb_fs = fs; sbdep->sb_ump = ump; ACQUIRE_LOCK(ump); WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); FREE_LOCK(ump); } /* * Return the first unlinked inodedep which is ready to be the head of the * list. The inodedep and all those after it must have valid next pointers. */ static struct inodedep * first_unlinked_inodedep(ump) struct ufsmount *ump; { struct inodedep *inodedep; struct inodedep *idp; LOCK_OWNED(ump); for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); inodedep; inodedep = idp) { if ((inodedep->id_state & UNLINKNEXT) == 0) return (NULL); idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) break; if ((inodedep->id_state & UNLINKPREV) == 0) break; } return (inodedep); } /* * Set the sujfree unlinked head pointer prior to writing a superblock. */ static void initiate_write_sbdep(sbdep) struct sbdep *sbdep; { struct inodedep *inodedep; struct fs *bpfs; struct fs *fs; bpfs = sbdep->sb_fs; fs = sbdep->sb_ump->um_fs; inodedep = first_unlinked_inodedep(sbdep->sb_ump); if (inodedep) { fs->fs_sujfree = inodedep->id_ino; inodedep->id_state |= UNLINKPREV; } else fs->fs_sujfree = 0; bpfs->fs_sujfree = fs->fs_sujfree; /* * Because we have made changes to the superblock, we need to * recompute its check-hash. */ bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); } /* * After a superblock is written determine whether it must be written again * due to a changing unlinked list head. */ static int handle_written_sbdep(sbdep, bp) struct sbdep *sbdep; struct buf *bp; { struct inodedep *inodedep; struct fs *fs; LOCK_OWNED(sbdep->sb_ump); fs = sbdep->sb_fs; /* * If the superblock doesn't match the in-memory list start over. */ inodedep = first_unlinked_inodedep(sbdep->sb_ump); if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || (inodedep == NULL && fs->fs_sujfree != 0)) { bdirty(bp); return (1); } WORKITEM_FREE(sbdep, D_SBDEP); if (fs->fs_sujfree == 0) return (0); /* * Now that we have a record of this inode in stable store allow it * to be written to free up pending work. Inodes may see a lot of * write activity after they are unlinked which we must not hold up. */ for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) panic("handle_written_sbdep: Bad inodedep %p (0x%X)", inodedep, inodedep->id_state); if (inodedep->id_state & UNLINKONLIST) break; inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; } return (0); } /* * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. */ static void unlinked_inodedep(mp, inodedep) struct mount *mp; struct inodedep *inodedep; { struct ufsmount *ump; ump = VFSTOUFS(mp); LOCK_OWNED(ump); if (MOUNTEDSUJ(mp) == 0) return; ump->um_fs->fs_fmod = 1; if (inodedep->id_state & UNLINKED) panic("unlinked_inodedep: %p already unlinked\n", inodedep); inodedep->id_state |= UNLINKED; TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); } /* * Remove an inodedep from the unlinked inodedep list. This may require * disk writes if the inode has made it that far. */ static void clear_unlinked_inodedep(inodedep) struct inodedep *inodedep; { struct ufs2_dinode *dip; struct ufsmount *ump; struct inodedep *idp; struct inodedep *idn; struct fs *fs, *bpfs; struct buf *bp; daddr_t dbn; ino_t ino; ino_t nino; ino_t pino; int error; ump = VFSTOUFS(inodedep->id_list.wk_mp); fs = ump->um_fs; ino = inodedep->id_ino; error = 0; for (;;) { LOCK_OWNED(ump); KASSERT((inodedep->id_state & UNLINKED) != 0, ("clear_unlinked_inodedep: inodedep %p not unlinked", inodedep)); /* * If nothing has yet been written simply remove us from * the in memory list and return. This is the most common * case where handle_workitem_remove() loses the final * reference. */ if ((inodedep->id_state & UNLINKLINKS) == 0) break; /* * If we have a NEXT pointer and no PREV pointer we can simply * clear NEXT's PREV and remove ourselves from the list. Be * careful not to clear PREV if the superblock points at * next as well. */ idn = TAILQ_NEXT(inodedep, id_unlinked); if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { if (idn && fs->fs_sujfree != idn->id_ino) idn->id_state &= ~UNLINKPREV; break; } /* * Here we have an inodedep which is actually linked into * the list. We must remove it by forcing a write to the * link before us, whether it be the superblock or an inode. * Unfortunately the list may change while we're waiting * on the buf lock for either resource so we must loop until * we lock the right one. If both the superblock and an * inode point to this inode we must clear the inode first * followed by the superblock. */ idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); pino = 0; if (idp && (idp->id_state & UNLINKNEXT)) pino = idp->id_ino; FREE_LOCK(ump); if (pino == 0) { bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), (int)fs->fs_sbsize, 0, 0, 0); } else { dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); } ACQUIRE_LOCK(ump); if (error) break; /* If the list has changed restart the loop. */ idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); nino = 0; if (idp && (idp->id_state & UNLINKNEXT)) nino = idp->id_ino; if (nino != pino || (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { FREE_LOCK(ump); brelse(bp); ACQUIRE_LOCK(ump); continue; } nino = 0; idn = TAILQ_NEXT(inodedep, id_unlinked); if (idn) nino = idn->id_ino; /* * Remove us from the in memory list. After this we cannot * access the inodedep. */ KASSERT((inodedep->id_state & UNLINKED) != 0, ("clear_unlinked_inodedep: inodedep %p not unlinked", inodedep)); inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); FREE_LOCK(ump); /* * The predecessor's next pointer is manually updated here * so that the NEXT flag is never cleared for an element * that is in the list. */ if (pino == 0) { bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); bpfs = (struct fs *)bp->b_data; ffs_oldfscompat_write(bpfs, ump); softdep_setup_sbupdate(ump, bpfs, bp); /* * Because we may have made changes to the superblock, * we need to recompute its check-hash. */ bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); } else if (fs->fs_magic == FS_UFS1_MAGIC) { ((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, pino))->di_freelink = nino; } else { dip = (struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, pino); dip->di_freelink = nino; ffs_update_dinode_ckhash(fs, dip); } /* * If the bwrite fails we have no recourse to recover. The * filesystem is corrupted already. */ bwrite(bp); ACQUIRE_LOCK(ump); /* * If the superblock pointer still needs to be cleared force * a write here. */ if (fs->fs_sujfree == ino) { FREE_LOCK(ump); bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), (int)fs->fs_sbsize, 0, 0, 0); bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); bpfs = (struct fs *)bp->b_data; ffs_oldfscompat_write(bpfs, ump); softdep_setup_sbupdate(ump, bpfs, bp); /* * Because we may have made changes to the superblock, * we need to recompute its check-hash. */ bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); bwrite(bp); ACQUIRE_LOCK(ump); } if (fs->fs_sujfree != ino) return; panic("clear_unlinked_inodedep: Failed to clear free head"); } if (inodedep->id_ino == fs->fs_sujfree) panic("clear_unlinked_inodedep: Freeing head of free list"); inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); return; } /* * This workitem decrements the inode's link count. * If the link count reaches zero, the file is removed. */ static int handle_workitem_remove(dirrem, flags) struct dirrem *dirrem; int flags; { struct inodedep *inodedep; struct workhead dotdotwk; struct worklist *wk; struct ufsmount *ump; struct mount *mp; struct vnode *vp; struct inode *ip; ino_t oldinum; if (dirrem->dm_state & ONWORKLIST) panic("handle_workitem_remove: dirrem %p still on worklist", dirrem); oldinum = dirrem->dm_oldinum; mp = dirrem->dm_list.wk_mp; ump = VFSTOUFS(mp); flags |= LK_EXCLUSIVE; if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0) return (EBUSY); ip = VTOI(vp); MPASS(ip->i_mode != 0); ACQUIRE_LOCK(ump); if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) panic("handle_workitem_remove: lost inodedep"); if (dirrem->dm_state & ONDEPLIST) LIST_REMOVE(dirrem, dm_inonext); KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), ("handle_workitem_remove: Journal entries not written.")); /* * Move all dependencies waiting on the remove to complete * from the dirrem to the inode inowait list to be completed * after the inode has been updated and written to disk. * * Any marked MKDIR_PARENT are saved to be completed when the * dotdot ref is removed unless DIRCHG is specified. For * directory change operations there will be no further * directory writes and the jsegdeps need to be moved along * with the rest to be completed when the inode is free or * stable in the inode free list. */ LIST_INIT(&dotdotwk); while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { WORKLIST_REMOVE(wk); if ((dirrem->dm_state & DIRCHG) == 0 && wk->wk_state & MKDIR_PARENT) { wk->wk_state &= ~MKDIR_PARENT; WORKLIST_INSERT(&dotdotwk, wk); continue; } WORKLIST_INSERT(&inodedep->id_inowait, wk); } LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); /* * Normal file deletion. */ if ((dirrem->dm_state & RMDIR) == 0) { ip->i_nlink--; KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); DIP_SET(ip, i_nlink, ip->i_nlink); UFS_INODE_SET_FLAG(ip, IN_CHANGE); if (ip->i_nlink < ip->i_effnlink) panic("handle_workitem_remove: bad file delta"); if (ip->i_nlink == 0) unlinked_inodedep(mp, inodedep); inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; KASSERT(LIST_EMPTY(&dirrem->dm_jwork), ("handle_workitem_remove: worklist not empty. %s", TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); WORKITEM_FREE(dirrem, D_DIRREM); FREE_LOCK(ump); goto out; } /* * Directory deletion. Decrement reference count for both the * just deleted parent directory entry and the reference for ".". * Arrange to have the reference count on the parent decremented * to account for the loss of "..". */ ip->i_nlink -= 2; KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); DIP_SET(ip, i_nlink, ip->i_nlink); UFS_INODE_SET_FLAG(ip, IN_CHANGE); if (ip->i_nlink < ip->i_effnlink) panic("handle_workitem_remove: bad dir delta"); if (ip->i_nlink == 0) unlinked_inodedep(mp, inodedep); inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; /* * Rename a directory to a new parent. Since, we are both deleting * and creating a new directory entry, the link count on the new * directory should not change. Thus we skip the followup dirrem. */ if (dirrem->dm_state & DIRCHG) { KASSERT(LIST_EMPTY(&dirrem->dm_jwork), ("handle_workitem_remove: DIRCHG and worklist not empty.")); WORKITEM_FREE(dirrem, D_DIRREM); FREE_LOCK(ump); goto out; } dirrem->dm_state = ONDEPLIST; dirrem->dm_oldinum = dirrem->dm_dirinum; /* * Place the dirrem on the parent's diremhd list. */ if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) panic("handle_workitem_remove: lost dir inodedep"); LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); /* * If the allocated inode has never been written to disk, then * the on-disk inode is zero'ed and we can remove the file * immediately. When journaling if the inode has been marked * unlinked and not DEPCOMPLETE we know it can never be written. */ inodedep_lookup(mp, oldinum, 0, &inodedep); if (inodedep == NULL || (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || check_inode_unwritten(inodedep)) { FREE_LOCK(ump); vput(vp); return handle_workitem_remove(dirrem, flags); } WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); FREE_LOCK(ump); UFS_INODE_SET_FLAG(ip, IN_CHANGE); out: ffs_update(vp, 0); vput(vp); return (0); } /* * Inode de-allocation dependencies. * * When an inode's link count is reduced to zero, it can be de-allocated. We * found it convenient to postpone de-allocation until after the inode is * written to disk with its new link count (zero). At this point, all of the * on-disk inode's block pointers are nullified and, with careful dependency * list ordering, all dependencies related to the inode will be satisfied and * the corresponding dependency structures de-allocated. So, if/when the * inode is reused, there will be no mixing of old dependencies with new * ones. This artificial dependency is set up by the block de-allocation * procedure above (softdep_setup_freeblocks) and completed by the * following procedure. */ static void handle_workitem_freefile(freefile) struct freefile *freefile; { struct workhead wkhd; struct fs *fs; struct ufsmount *ump; int error; #ifdef INVARIANTS struct inodedep *idp; #endif ump = VFSTOUFS(freefile->fx_list.wk_mp); fs = ump->um_fs; #ifdef INVARIANTS ACQUIRE_LOCK(ump); error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); FREE_LOCK(ump); if (error) panic("handle_workitem_freefile: inodedep %p survived", idp); #endif UFS_LOCK(ump); fs->fs_pendinginodes -= 1; UFS_UNLOCK(ump); LIST_INIT(&wkhd); LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) softdep_error("handle_workitem_freefile", error); ACQUIRE_LOCK(ump); WORKITEM_FREE(freefile, D_FREEFILE); FREE_LOCK(ump); } /* * Helper function which unlinks marker element from work list and returns * the next element on the list. */ static __inline struct worklist * markernext(struct worklist *marker) { struct worklist *next; next = LIST_NEXT(marker, wk_list); LIST_REMOVE(marker, wk_list); return next; } /* * Disk writes. * * The dependency structures constructed above are most actively used when file * system blocks are written to disk. No constraints are placed on when a * block can be written, but unsatisfied update dependencies are made safe by * modifying (or replacing) the source memory for the duration of the disk * write. When the disk write completes, the memory block is again brought * up-to-date. * * In-core inode structure reclamation. * * Because there are a finite number of "in-core" inode structures, they are * reused regularly. By transferring all inode-related dependencies to the * in-memory inode block and indexing them separately (via "inodedep"s), we * can allow "in-core" inode structures to be reused at any time and avoid * any increase in contention. * * Called just before entering the device driver to initiate a new disk I/O. * The buffer must be locked, thus, no I/O completion operations can occur * while we are manipulating its associated dependencies. */ static void softdep_disk_io_initiation(bp) struct buf *bp; /* structure describing disk write to occur */ { struct worklist *wk; struct worklist marker; struct inodedep *inodedep; struct freeblks *freeblks; struct jblkdep *jblkdep; struct newblk *newblk; struct ufsmount *ump; /* * We only care about write operations. There should never * be dependencies for reads. */ if (bp->b_iocmd != BIO_WRITE) panic("softdep_disk_io_initiation: not write"); if (bp->b_vflags & BV_BKGRDINPROG) panic("softdep_disk_io_initiation: Writing buffer with " "background write in progress: %p", bp); ump = softdep_bp_to_mp(bp); if (ump == NULL) return; marker.wk_type = D_LAST + 1; /* Not a normal workitem */ PHOLD(curproc); /* Don't swap out kernel stack */ ACQUIRE_LOCK(ump); /* * Do any necessary pre-I/O processing. */ for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; wk = markernext(&marker)) { LIST_INSERT_AFTER(wk, &marker, wk_list); switch (wk->wk_type) { case D_PAGEDEP: initiate_write_filepage(WK_PAGEDEP(wk), bp); continue; case D_INODEDEP: inodedep = WK_INODEDEP(wk); if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) initiate_write_inodeblock_ufs1(inodedep, bp); else initiate_write_inodeblock_ufs2(inodedep, bp); continue; case D_INDIRDEP: initiate_write_indirdep(WK_INDIRDEP(wk), bp); continue; case D_BMSAFEMAP: initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); continue; case D_JSEG: WK_JSEG(wk)->js_buf = NULL; continue; case D_FREEBLKS: freeblks = WK_FREEBLKS(wk); jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); /* * We have to wait for the freeblks to be journaled * before we can write an inodeblock with updated * pointers. Be careful to arrange the marker so * we revisit the freeblks if it's not removed by * the first jwait(). */ if (jblkdep != NULL) { LIST_REMOVE(&marker, wk_list); LIST_INSERT_BEFORE(wk, &marker, wk_list); jwait(&jblkdep->jb_list, MNT_WAIT); } continue; case D_ALLOCDIRECT: case D_ALLOCINDIR: /* * We have to wait for the jnewblk to be journaled * before we can write to a block if the contents * may be confused with an earlier file's indirect * at recovery time. Handle the marker as described * above. */ newblk = WK_NEWBLK(wk); if (newblk->nb_jnewblk != NULL && indirblk_lookup(newblk->nb_list.wk_mp, newblk->nb_newblkno)) { LIST_REMOVE(&marker, wk_list); LIST_INSERT_BEFORE(wk, &marker, wk_list); jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); } continue; case D_SBDEP: initiate_write_sbdep(WK_SBDEP(wk)); continue; case D_MKDIR: case D_FREEWORK: case D_FREEDEP: case D_JSEGDEP: continue; default: panic("handle_disk_io_initiation: Unexpected type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } FREE_LOCK(ump); PRELE(curproc); /* Allow swapout of kernel stack */ } /* * Called from within the procedure above to deal with unsatisfied * allocation dependencies in a directory. The buffer must be locked, * thus, no I/O completion operations can occur while we are * manipulating its associated dependencies. */ static void initiate_write_filepage(pagedep, bp) struct pagedep *pagedep; struct buf *bp; { struct jremref *jremref; struct jmvref *jmvref; struct dirrem *dirrem; struct diradd *dap; struct direct *ep; int i; if (pagedep->pd_state & IOSTARTED) { /* * This can only happen if there is a driver that does not * understand chaining. Here biodone will reissue the call * to strategy for the incomplete buffers. */ printf("initiate_write_filepage: already started\n"); return; } pagedep->pd_state |= IOSTARTED; /* * Wait for all journal remove dependencies to hit the disk. * We can not allow any potentially conflicting directory adds * to be visible before removes and rollback is too difficult. * The per-filesystem lock may be dropped and re-acquired, however * we hold the buf locked so the dependency can not go away. */ LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) jwait(&jremref->jr_list, MNT_WAIT); while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) jwait(&jmvref->jm_list, MNT_WAIT); for (i = 0; i < DAHASHSZ; i++) { LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { ep = (struct direct *) ((char *)bp->b_data + dap->da_offset); if (ep->d_ino != dap->da_newinum) panic("%s: dir inum %ju != new %ju", "initiate_write_filepage", (uintmax_t)ep->d_ino, (uintmax_t)dap->da_newinum); if (dap->da_state & DIRCHG) ep->d_ino = dap->da_previous->dm_oldinum; else ep->d_ino = 0; dap->da_state &= ~ATTACHED; dap->da_state |= UNDONE; } } } /* * Version of initiate_write_inodeblock that handles UFS1 dinodes. * Note that any bug fixes made to this routine must be done in the * version found below. * * Called from within the procedure above to deal with unsatisfied * allocation dependencies in an inodeblock. The buffer must be * locked, thus, no I/O completion operations can occur while we * are manipulating its associated dependencies. */ static void initiate_write_inodeblock_ufs1(inodedep, bp) struct inodedep *inodedep; struct buf *bp; /* The inode block */ { struct allocdirect *adp, *lastadp; struct ufs1_dinode *dp; struct ufs1_dinode *sip; struct inoref *inoref; struct ufsmount *ump; struct fs *fs; ufs_lbn_t i; #ifdef INVARIANTS ufs_lbn_t prevlbn = 0; #endif - int deplist; + int deplist __diagused; if (inodedep->id_state & IOSTARTED) panic("initiate_write_inodeblock_ufs1: already started"); inodedep->id_state |= IOSTARTED; fs = inodedep->id_fs; ump = VFSTOUFS(inodedep->id_list.wk_mp); LOCK_OWNED(ump); dp = (struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, inodedep->id_ino); /* * If we're on the unlinked list but have not yet written our * next pointer initialize it here. */ if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { struct inodedep *inon; inon = TAILQ_NEXT(inodedep, id_unlinked); dp->di_freelink = inon ? inon->id_ino : 0; } /* * If the bitmap is not yet written, then the allocated * inode cannot be written to disk. */ if ((inodedep->id_state & DEPCOMPLETE) == 0) { if (inodedep->id_savedino1 != NULL) panic("initiate_write_inodeblock_ufs1: I/O underway"); FREE_LOCK(ump); sip = malloc(sizeof(struct ufs1_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); ACQUIRE_LOCK(ump); inodedep->id_savedino1 = sip; *inodedep->id_savedino1 = *dp; bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); dp->di_gen = inodedep->id_savedino1->di_gen; dp->di_freelink = inodedep->id_savedino1->di_freelink; return; } /* * If no dependencies, then there is nothing to roll back. */ inodedep->id_savedsize = dp->di_size; inodedep->id_savedextsize = 0; inodedep->id_savednlink = dp->di_nlink; if (TAILQ_EMPTY(&inodedep->id_inoupdt) && TAILQ_EMPTY(&inodedep->id_inoreflst)) return; /* * Revert the link count to that of the first unwritten journal entry. */ inoref = TAILQ_FIRST(&inodedep->id_inoreflst); if (inoref) dp->di_nlink = inoref->if_nlink; /* * Set the dependencies to busy. */ for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = TAILQ_NEXT(adp, ad_next)) { #ifdef INVARIANTS if (deplist != 0 && prevlbn >= adp->ad_offset) panic("softdep_write_inodeblock: lbn order"); prevlbn = adp->ad_offset; if (adp->ad_offset < UFS_NDADDR && dp->di_db[adp->ad_offset] != adp->ad_newblkno) panic("initiate_write_inodeblock_ufs1: " "direct pointer #%jd mismatch %d != %jd", (intmax_t)adp->ad_offset, dp->di_db[adp->ad_offset], (intmax_t)adp->ad_newblkno); if (adp->ad_offset >= UFS_NDADDR && dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) panic("initiate_write_inodeblock_ufs1: " "indirect pointer #%jd mismatch %d != %jd", (intmax_t)adp->ad_offset - UFS_NDADDR, dp->di_ib[adp->ad_offset - UFS_NDADDR], (intmax_t)adp->ad_newblkno); deplist |= 1 << adp->ad_offset; if ((adp->ad_state & ATTACHED) == 0) panic("initiate_write_inodeblock_ufs1: " "Unknown state 0x%x", adp->ad_state); #endif /* INVARIANTS */ adp->ad_state &= ~ATTACHED; adp->ad_state |= UNDONE; } /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the file * which would corrupt the filesystem. */ for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { if (adp->ad_offset >= UFS_NDADDR) break; dp->di_db[adp->ad_offset] = adp->ad_oldblkno; /* keep going until hitting a rollback to a frag */ if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) continue; dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { #ifdef INVARIANTS if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) panic("initiate_write_inodeblock_ufs1: " "lost dep1"); #endif /* INVARIANTS */ dp->di_db[i] = 0; } for (i = 0; i < UFS_NIADDR; i++) { #ifdef INVARIANTS if (dp->di_ib[i] != 0 && (deplist & ((1 << UFS_NDADDR) << i)) == 0) panic("initiate_write_inodeblock_ufs1: " "lost dep2"); #endif /* INVARIANTS */ dp->di_ib[i] = 0; } return; } /* * If we have zero'ed out the last allocated block of the file, * roll back the size to the last currently allocated block. * We know that this last allocated block is a full-sized as * we already checked for fragments in the loop above. */ if (lastadp != NULL && dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { for (i = lastadp->ad_offset; i >= 0; i--) if (dp->di_db[i] != 0) break; dp->di_size = (i + 1) * fs->fs_bsize; } /* * The only dependencies are for indirect blocks. * * The file size for indirect block additions is not guaranteed. * Such a guarantee would be non-trivial to achieve. The conventional * synchronous write implementation also does not make this guarantee. * Fsck should catch and fix discrepancies. Arguably, the file size * can be over-estimated without destroying integrity when the file * moves into the indirect blocks (i.e., is large). If we want to * postpone fsck, we are stuck with this argument. */ for (; adp; adp = TAILQ_NEXT(adp, ad_next)) dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; } /* * Version of initiate_write_inodeblock that handles UFS2 dinodes. * Note that any bug fixes made to this routine must be done in the * version found above. * * Called from within the procedure above to deal with unsatisfied * allocation dependencies in an inodeblock. The buffer must be * locked, thus, no I/O completion operations can occur while we * are manipulating its associated dependencies. */ static void initiate_write_inodeblock_ufs2(inodedep, bp) struct inodedep *inodedep; struct buf *bp; /* The inode block */ { struct allocdirect *adp, *lastadp; struct ufs2_dinode *dp; struct ufs2_dinode *sip; struct inoref *inoref; struct ufsmount *ump; struct fs *fs; ufs_lbn_t i; #ifdef INVARIANTS ufs_lbn_t prevlbn = 0; #endif - int deplist; + int deplist __diagused; if (inodedep->id_state & IOSTARTED) panic("initiate_write_inodeblock_ufs2: already started"); inodedep->id_state |= IOSTARTED; fs = inodedep->id_fs; ump = VFSTOUFS(inodedep->id_list.wk_mp); LOCK_OWNED(ump); dp = (struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, inodedep->id_ino); /* * If we're on the unlinked list but have not yet written our * next pointer initialize it here. */ if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { struct inodedep *inon; inon = TAILQ_NEXT(inodedep, id_unlinked); dp->di_freelink = inon ? inon->id_ino : 0; ffs_update_dinode_ckhash(fs, dp); } /* * If the bitmap is not yet written, then the allocated * inode cannot be written to disk. */ if ((inodedep->id_state & DEPCOMPLETE) == 0) { if (inodedep->id_savedino2 != NULL) panic("initiate_write_inodeblock_ufs2: I/O underway"); FREE_LOCK(ump); sip = malloc(sizeof(struct ufs2_dinode), M_SAVEDINO, M_SOFTDEP_FLAGS); ACQUIRE_LOCK(ump); inodedep->id_savedino2 = sip; *inodedep->id_savedino2 = *dp; bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); dp->di_gen = inodedep->id_savedino2->di_gen; dp->di_freelink = inodedep->id_savedino2->di_freelink; return; } /* * If no dependencies, then there is nothing to roll back. */ inodedep->id_savedsize = dp->di_size; inodedep->id_savedextsize = dp->di_extsize; inodedep->id_savednlink = dp->di_nlink; if (TAILQ_EMPTY(&inodedep->id_inoupdt) && TAILQ_EMPTY(&inodedep->id_extupdt) && TAILQ_EMPTY(&inodedep->id_inoreflst)) return; /* * Revert the link count to that of the first unwritten journal entry. */ inoref = TAILQ_FIRST(&inodedep->id_inoreflst); if (inoref) dp->di_nlink = inoref->if_nlink; /* * Set the ext data dependencies to busy. */ for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = TAILQ_NEXT(adp, ad_next)) { #ifdef INVARIANTS if (deplist != 0 && prevlbn >= adp->ad_offset) panic("initiate_write_inodeblock_ufs2: lbn order"); prevlbn = adp->ad_offset; if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) panic("initiate_write_inodeblock_ufs2: " "ext pointer #%jd mismatch %jd != %jd", (intmax_t)adp->ad_offset, (intmax_t)dp->di_extb[adp->ad_offset], (intmax_t)adp->ad_newblkno); deplist |= 1 << adp->ad_offset; if ((adp->ad_state & ATTACHED) == 0) panic("initiate_write_inodeblock_ufs2: Unknown " "state 0x%x", adp->ad_state); #endif /* INVARIANTS */ adp->ad_state &= ~ATTACHED; adp->ad_state |= UNDONE; } /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the ext * data which would corrupt the filesystem. */ for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; /* keep going until hitting a rollback to a frag */ if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) continue; dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { #ifdef INVARIANTS if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) panic("initiate_write_inodeblock_ufs2: " "lost dep1"); #endif /* INVARIANTS */ dp->di_extb[i] = 0; } lastadp = NULL; break; } /* * If we have zero'ed out the last allocated block of the ext * data, roll back the size to the last currently allocated block. * We know that this last allocated block is a full-sized as * we already checked for fragments in the loop above. */ if (lastadp != NULL && dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { for (i = lastadp->ad_offset; i >= 0; i--) if (dp->di_extb[i] != 0) break; dp->di_extsize = (i + 1) * fs->fs_bsize; } /* * Set the file data dependencies to busy. */ for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = TAILQ_NEXT(adp, ad_next)) { #ifdef INVARIANTS if (deplist != 0 && prevlbn >= adp->ad_offset) panic("softdep_write_inodeblock: lbn order"); if ((adp->ad_state & ATTACHED) == 0) panic("inodedep %p and adp %p not attached", inodedep, adp); prevlbn = adp->ad_offset; if (!ffs_fsfail_cleanup(ump, 0) && adp->ad_offset < UFS_NDADDR && dp->di_db[adp->ad_offset] != adp->ad_newblkno) panic("initiate_write_inodeblock_ufs2: " "direct pointer #%jd mismatch %jd != %jd", (intmax_t)adp->ad_offset, (intmax_t)dp->di_db[adp->ad_offset], (intmax_t)adp->ad_newblkno); if (!ffs_fsfail_cleanup(ump, 0) && adp->ad_offset >= UFS_NDADDR && dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) panic("initiate_write_inodeblock_ufs2: " "indirect pointer #%jd mismatch %jd != %jd", (intmax_t)adp->ad_offset - UFS_NDADDR, (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], (intmax_t)adp->ad_newblkno); deplist |= 1 << adp->ad_offset; if ((adp->ad_state & ATTACHED) == 0) panic("initiate_write_inodeblock_ufs2: Unknown " "state 0x%x", adp->ad_state); #endif /* INVARIANTS */ adp->ad_state &= ~ATTACHED; adp->ad_state |= UNDONE; } /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the file * which would corrupt the filesystem. */ for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { if (adp->ad_offset >= UFS_NDADDR) break; dp->di_db[adp->ad_offset] = adp->ad_oldblkno; /* keep going until hitting a rollback to a frag */ if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) continue; dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { #ifdef INVARIANTS if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) panic("initiate_write_inodeblock_ufs2: " "lost dep2"); #endif /* INVARIANTS */ dp->di_db[i] = 0; } for (i = 0; i < UFS_NIADDR; i++) { #ifdef INVARIANTS if (dp->di_ib[i] != 0 && (deplist & ((1 << UFS_NDADDR) << i)) == 0) panic("initiate_write_inodeblock_ufs2: " "lost dep3"); #endif /* INVARIANTS */ dp->di_ib[i] = 0; } ffs_update_dinode_ckhash(fs, dp); return; } /* * If we have zero'ed out the last allocated block of the file, * roll back the size to the last currently allocated block. * We know that this last allocated block is a full-sized as * we already checked for fragments in the loop above. */ if (lastadp != NULL && dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { for (i = lastadp->ad_offset; i >= 0; i--) if (dp->di_db[i] != 0) break; dp->di_size = (i + 1) * fs->fs_bsize; } /* * The only dependencies are for indirect blocks. * * The file size for indirect block additions is not guaranteed. * Such a guarantee would be non-trivial to achieve. The conventional * synchronous write implementation also does not make this guarantee. * Fsck should catch and fix discrepancies. Arguably, the file size * can be over-estimated without destroying integrity when the file * moves into the indirect blocks (i.e., is large). If we want to * postpone fsck, we are stuck with this argument. */ for (; adp; adp = TAILQ_NEXT(adp, ad_next)) dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; ffs_update_dinode_ckhash(fs, dp); } /* * Cancel an indirdep as a result of truncation. Release all of the * children allocindirs and place their journal work on the appropriate * list. */ static void cancel_indirdep(indirdep, bp, freeblks) struct indirdep *indirdep; struct buf *bp; struct freeblks *freeblks; { struct allocindir *aip; /* * None of the indirect pointers will ever be visible, * so they can simply be tossed. GOINGAWAY ensures * that allocated pointers will be saved in the buffer * cache until they are freed. Note that they will * only be able to be found by their physical address * since the inode mapping the logical address will * be gone. The save buffer used for the safe copy * was allocated in setup_allocindir_phase2 using * the physical address so it could be used for this * purpose. Hence we swap the safe copy with the real * copy, allowing the safe copy to be freed and holding * on to the real copy for later use in indir_trunc. */ if (indirdep->ir_state & GOINGAWAY) panic("cancel_indirdep: already gone"); if ((indirdep->ir_state & DEPCOMPLETE) == 0) { indirdep->ir_state |= DEPCOMPLETE; LIST_REMOVE(indirdep, ir_next); } indirdep->ir_state |= GOINGAWAY; /* * Pass in bp for blocks still have journal writes * pending so we can cancel them on their own. */ while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) cancel_allocindir(aip, bp, freeblks, 0); while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) cancel_allocindir(aip, NULL, freeblks, 0); while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) cancel_allocindir(aip, NULL, freeblks, 0); while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) cancel_allocindir(aip, NULL, freeblks, 0); /* * If there are pending partial truncations we need to keep the * old block copy around until they complete. This is because * the current b_data is not a perfect superset of the available * blocks. */ if (TAILQ_EMPTY(&indirdep->ir_trunc)) bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); else bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); WORKLIST_REMOVE(&indirdep->ir_list); WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); indirdep->ir_bp = NULL; indirdep->ir_freeblks = freeblks; } /* * Free an indirdep once it no longer has new pointers to track. */ static void free_indirdep(indirdep) struct indirdep *indirdep; { KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), ("free_indirdep: Indir trunc list not empty.")); KASSERT(LIST_EMPTY(&indirdep->ir_completehd), ("free_indirdep: Complete head not empty.")); KASSERT(LIST_EMPTY(&indirdep->ir_writehd), ("free_indirdep: write head not empty.")); KASSERT(LIST_EMPTY(&indirdep->ir_donehd), ("free_indirdep: done head not empty.")); KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), ("free_indirdep: deplist head not empty.")); KASSERT((indirdep->ir_state & DEPCOMPLETE), ("free_indirdep: %p still on newblk list.", indirdep)); KASSERT(indirdep->ir_saveddata == NULL, ("free_indirdep: %p still has saved data.", indirdep)); KASSERT(indirdep->ir_savebp == NULL, ("free_indirdep: %p still has savebp buffer.", indirdep)); if (indirdep->ir_state & ONWORKLIST) WORKLIST_REMOVE(&indirdep->ir_list); WORKITEM_FREE(indirdep, D_INDIRDEP); } /* * Called before a write to an indirdep. This routine is responsible for * rolling back pointers to a safe state which includes only those * allocindirs which have been completed. */ static void initiate_write_indirdep(indirdep, bp) struct indirdep *indirdep; struct buf *bp; { struct ufsmount *ump; indirdep->ir_state |= IOSTARTED; if (indirdep->ir_state & GOINGAWAY) panic("disk_io_initiation: indirdep gone"); /* * If there are no remaining dependencies, this will be writing * the real pointers. */ if (LIST_EMPTY(&indirdep->ir_deplisthd) && TAILQ_EMPTY(&indirdep->ir_trunc)) return; /* * Replace up-to-date version with safe version. */ if (indirdep->ir_saveddata == NULL) { ump = VFSTOUFS(indirdep->ir_list.wk_mp); LOCK_OWNED(ump); FREE_LOCK(ump); indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, M_SOFTDEP_FLAGS); ACQUIRE_LOCK(ump); } indirdep->ir_state &= ~ATTACHED; indirdep->ir_state |= UNDONE; bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); bcopy(indirdep->ir_savebp->b_data, bp->b_data, bp->b_bcount); } /* * Called when an inode has been cleared in a cg bitmap. This finally * eliminates any canceled jaddrefs */ void softdep_setup_inofree(mp, bp, ino, wkhd) struct mount *mp; struct buf *bp; ino_t ino; struct workhead *wkhd; { struct worklist *wk, *wkn; struct inodedep *inodedep; struct ufsmount *ump; uint8_t *inosused; struct cg *cgp; struct fs *fs; KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_setup_inofree called on non-softdep filesystem")); ump = VFSTOUFS(mp); ACQUIRE_LOCK(ump); if (!ffs_fsfail_cleanup(ump, 0)) { fs = ump->um_fs; cgp = (struct cg *)bp->b_data; inosused = cg_inosused(cgp); if (isset(inosused, ino % fs->fs_ipg)) panic("softdep_setup_inofree: inode %ju not freed.", (uintmax_t)ino); } if (inodedep_lookup(mp, ino, 0, &inodedep)) panic("softdep_setup_inofree: ino %ju has existing inodedep %p", (uintmax_t)ino, inodedep); if (wkhd) { LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { if (wk->wk_type != D_JADDREF) continue; WORKLIST_REMOVE(wk); /* * We can free immediately even if the jaddref * isn't attached in a background write as now * the bitmaps are reconciled. */ wk->wk_state |= COMPLETE | ATTACHED; free_jaddref(WK_JADDREF(wk)); } jwork_move(&bp->b_dep, wkhd); } FREE_LOCK(ump); } /* * Called via ffs_blkfree() after a set of frags has been cleared from a cg * map. Any dependencies waiting for the write to clear are added to the * buf's list and any jnewblks that are being canceled are discarded * immediately. */ void softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) struct mount *mp; struct buf *bp; ufs2_daddr_t blkno; int frags; struct workhead *wkhd; { struct bmsafemap *bmsafemap; struct jnewblk *jnewblk; struct ufsmount *ump; struct worklist *wk; struct fs *fs; #ifdef INVARIANTS uint8_t *blksfree; struct cg *cgp; ufs2_daddr_t jstart; ufs2_daddr_t jend; ufs2_daddr_t end; long bno; int i; #endif CTR3(KTR_SUJ, "softdep_setup_blkfree: blkno %jd frags %d wk head %p", blkno, frags, wkhd); ump = VFSTOUFS(mp); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_setup_blkfree called on non-softdep filesystem")); ACQUIRE_LOCK(ump); /* Lookup the bmsafemap so we track when it is dirty. */ fs = ump->um_fs; bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); /* * Detach any jnewblks which have been canceled. They must linger * until the bitmap is cleared again by ffs_blkfree() to prevent * an unjournaled allocation from hitting the disk. */ if (wkhd) { while ((wk = LIST_FIRST(wkhd)) != NULL) { CTR2(KTR_SUJ, "softdep_setup_blkfree: blkno %jd wk type %d", blkno, wk->wk_type); WORKLIST_REMOVE(wk); if (wk->wk_type != D_JNEWBLK) { WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); continue; } jnewblk = WK_JNEWBLK(wk); KASSERT(jnewblk->jn_state & GOINGAWAY, ("softdep_setup_blkfree: jnewblk not canceled.")); #ifdef INVARIANTS /* * Assert that this block is free in the bitmap * before we discard the jnewblk. */ cgp = (struct cg *)bp->b_data; blksfree = cg_blksfree(cgp); bno = dtogd(fs, jnewblk->jn_blkno); for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { if (isset(blksfree, bno + i)) continue; panic("softdep_setup_blkfree: not free"); } #endif /* * Even if it's not attached we can free immediately * as the new bitmap is correct. */ wk->wk_state |= COMPLETE | ATTACHED; free_jnewblk(jnewblk); } } #ifdef INVARIANTS /* * Assert that we are not freeing a block which has an outstanding * allocation dependency. */ fs = VFSTOUFS(mp)->um_fs; bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); end = blkno + frags; LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { /* * Don't match against blocks that will be freed when the * background write is done. */ if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == (COMPLETE | DEPCOMPLETE)) continue; jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; jend = jnewblk->jn_blkno + jnewblk->jn_frags; if ((blkno >= jstart && blkno < jend) || (end > jstart && end <= jend)) { printf("state 0x%X %jd - %d %d dep %p\n", jnewblk->jn_state, jnewblk->jn_blkno, jnewblk->jn_oldfrags, jnewblk->jn_frags, jnewblk->jn_dep); panic("softdep_setup_blkfree: " "%jd-%jd(%d) overlaps with %jd-%jd", blkno, end, frags, jstart, jend); } } #endif FREE_LOCK(ump); } /* * Revert a block allocation when the journal record that describes it * is not yet written. */ static int jnewblk_rollback(jnewblk, fs, cgp, blksfree) struct jnewblk *jnewblk; struct fs *fs; struct cg *cgp; uint8_t *blksfree; { ufs1_daddr_t fragno; long cgbno, bbase; int frags, blk; int i; frags = 0; cgbno = dtogd(fs, jnewblk->jn_blkno); /* * We have to test which frags need to be rolled back. We may * be operating on a stale copy when doing background writes. */ for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) if (isclr(blksfree, cgbno + i)) frags++; if (frags == 0) return (0); /* * This is mostly ffs_blkfree() sans some validation and * superblock updates. */ if (frags == fs->fs_frag) { fragno = fragstoblks(fs, cgbno); ffs_setblock(fs, blksfree, fragno); ffs_clusteracct(fs, cgp, fragno, 1); cgp->cg_cs.cs_nbfree++; } else { cgbno += jnewblk->jn_oldfrags; bbase = cgbno - fragnum(fs, cgbno); /* Decrement the old frags. */ blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, -1); /* Deallocate the fragment */ for (i = 0; i < frags; i++) setbit(blksfree, cgbno + i); cgp->cg_cs.cs_nffree += frags; /* Add back in counts associated with the new frags */ blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, 1); /* If a complete block has been reassembled, account for it. */ fragno = fragstoblks(fs, bbase); if (ffs_isblock(fs, blksfree, fragno)) { cgp->cg_cs.cs_nffree -= fs->fs_frag; ffs_clusteracct(fs, cgp, fragno, 1); cgp->cg_cs.cs_nbfree++; } } stat_jnewblk++; jnewblk->jn_state &= ~ATTACHED; jnewblk->jn_state |= UNDONE; return (frags); } static void initiate_write_bmsafemap(bmsafemap, bp) struct bmsafemap *bmsafemap; struct buf *bp; /* The cg block. */ { struct jaddref *jaddref; struct jnewblk *jnewblk; uint8_t *inosused; uint8_t *blksfree; struct cg *cgp; struct fs *fs; ino_t ino; /* * If this is a background write, we did this at the time that * the copy was made, so do not need to do it again. */ if (bmsafemap->sm_state & IOSTARTED) return; bmsafemap->sm_state |= IOSTARTED; /* * Clear any inode allocations which are pending journal writes. */ if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { cgp = (struct cg *)bp->b_data; fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; inosused = cg_inosused(cgp); LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { ino = jaddref->ja_ino % fs->fs_ipg; if (isset(inosused, ino)) { if ((jaddref->ja_mode & IFMT) == IFDIR) cgp->cg_cs.cs_ndir--; cgp->cg_cs.cs_nifree++; clrbit(inosused, ino); jaddref->ja_state &= ~ATTACHED; jaddref->ja_state |= UNDONE; stat_jaddref++; } else panic("initiate_write_bmsafemap: inode %ju " "marked free", (uintmax_t)jaddref->ja_ino); } } /* * Clear any block allocations which are pending journal writes. */ if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { cgp = (struct cg *)bp->b_data; fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; blksfree = cg_blksfree(cgp); LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) continue; panic("initiate_write_bmsafemap: block %jd " "marked free", jnewblk->jn_blkno); } } /* * Move allocation lists to the written lists so they can be * cleared once the block write is complete. */ LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, inodedep, id_deps); LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, newblk, nb_deps); LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, wk_list); } void softdep_handle_error(struct buf *bp) { struct ufsmount *ump; ump = softdep_bp_to_mp(bp); if (ump == NULL) return; if (ffs_fsfail_cleanup(ump, bp->b_error)) { /* * No future writes will succeed, so the on-disk image is safe. * Pretend that this write succeeded so that the softdep state * will be cleaned up naturally. */ bp->b_ioflags &= ~BIO_ERROR; bp->b_error = 0; } } /* * This routine is called during the completion interrupt * service routine for a disk write (from the procedure called * by the device driver to inform the filesystem caches of * a request completion). It should be called early in this * procedure, before the block is made available to other * processes or other routines are called. * */ static void softdep_disk_write_complete(bp) struct buf *bp; /* describes the completed disk write */ { struct worklist *wk; struct worklist *owk; struct ufsmount *ump; struct workhead reattach; struct freeblks *freeblks; struct buf *sbp; ump = softdep_bp_to_mp(bp); KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " "with outstanding dependencies for buffer %p", bp)); if (ump == NULL) return; if ((bp->b_ioflags & BIO_ERROR) != 0) softdep_handle_error(bp); /* * If an error occurred while doing the write, then the data * has not hit the disk and the dependencies cannot be processed. * But we do have to go through and roll forward any dependencies * that were rolled back before the disk write. */ sbp = NULL; ACQUIRE_LOCK(ump); if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { LIST_FOREACH(wk, &bp->b_dep, wk_list) { switch (wk->wk_type) { case D_PAGEDEP: handle_written_filepage(WK_PAGEDEP(wk), bp, 0); continue; case D_INODEDEP: handle_written_inodeblock(WK_INODEDEP(wk), bp, 0); continue; case D_BMSAFEMAP: handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 0); continue; case D_INDIRDEP: handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 0); continue; default: /* nothing to roll forward */ continue; } } FREE_LOCK(ump); if (sbp) brelse(sbp); return; } LIST_INIT(&reattach); /* * Ump SU lock must not be released anywhere in this code segment. */ owk = NULL; while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { WORKLIST_REMOVE(wk); atomic_add_long(&dep_write[wk->wk_type], 1); if (wk == owk) panic("duplicate worklist: %p\n", wk); owk = wk; switch (wk->wk_type) { case D_PAGEDEP: if (handle_written_filepage(WK_PAGEDEP(wk), bp, WRITESUCCEEDED)) WORKLIST_INSERT(&reattach, wk); continue; case D_INODEDEP: if (handle_written_inodeblock(WK_INODEDEP(wk), bp, WRITESUCCEEDED)) WORKLIST_INSERT(&reattach, wk); continue; case D_BMSAFEMAP: if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, WRITESUCCEEDED)) WORKLIST_INSERT(&reattach, wk); continue; case D_MKDIR: handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); continue; case D_ALLOCDIRECT: wk->wk_state |= COMPLETE; handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); continue; case D_ALLOCINDIR: wk->wk_state |= COMPLETE; handle_allocindir_partdone(WK_ALLOCINDIR(wk)); continue; case D_INDIRDEP: if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, WRITESUCCEEDED)) WORKLIST_INSERT(&reattach, wk); continue; case D_FREEBLKS: wk->wk_state |= COMPLETE; freeblks = WK_FREEBLKS(wk); if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) add_to_worklist(wk, WK_NODELAY); continue; case D_FREEWORK: handle_written_freework(WK_FREEWORK(wk)); break; case D_JSEGDEP: free_jsegdep(WK_JSEGDEP(wk)); continue; case D_JSEG: handle_written_jseg(WK_JSEG(wk), bp); continue; case D_SBDEP: if (handle_written_sbdep(WK_SBDEP(wk), bp)) WORKLIST_INSERT(&reattach, wk); continue; case D_FREEDEP: free_freedep(WK_FREEDEP(wk)); continue; default: panic("handle_disk_write_complete: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } /* * Reattach any requests that must be redone. */ while ((wk = LIST_FIRST(&reattach)) != NULL) { WORKLIST_REMOVE(wk); WORKLIST_INSERT(&bp->b_dep, wk); } FREE_LOCK(ump); if (sbp) brelse(sbp); } /* * Called from within softdep_disk_write_complete above. */ static void handle_allocdirect_partdone(adp, wkhd) struct allocdirect *adp; /* the completed allocdirect */ struct workhead *wkhd; /* Work to do when inode is writtne. */ { struct allocdirectlst *listhead; struct allocdirect *listadp; struct inodedep *inodedep; long bsize; LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) return; /* * The on-disk inode cannot claim to be any larger than the last * fragment that has been written. Otherwise, the on-disk inode * might have fragments that were not the last block in the file * which would corrupt the filesystem. Thus, we cannot free any * allocdirects after one whose ad_oldblkno claims a fragment as * these blocks must be rolled back to zero before writing the inode. * We check the currently active set of allocdirects in id_inoupdt * or id_extupdt as appropriate. */ inodedep = adp->ad_inodedep; bsize = inodedep->id_fs->fs_bsize; if (adp->ad_state & EXTDATA) listhead = &inodedep->id_extupdt; else listhead = &inodedep->id_inoupdt; TAILQ_FOREACH(listadp, listhead, ad_next) { /* found our block */ if (listadp == adp) break; /* continue if ad_oldlbn is not a fragment */ if (listadp->ad_oldsize == 0 || listadp->ad_oldsize == bsize) continue; /* hit a fragment */ return; } /* * If we have reached the end of the current list without * finding the just finished dependency, then it must be * on the future dependency list. Future dependencies cannot * be freed until they are moved to the current list. */ if (listadp == NULL) { #ifdef INVARIANTS if (adp->ad_state & EXTDATA) listhead = &inodedep->id_newextupdt; else listhead = &inodedep->id_newinoupdt; TAILQ_FOREACH(listadp, listhead, ad_next) /* found our block */ if (listadp == adp) break; if (listadp == NULL) panic("handle_allocdirect_partdone: lost dep"); #endif /* INVARIANTS */ return; } /* * If we have found the just finished dependency, then queue * it along with anything that follows it that is complete. * Since the pointer has not yet been written in the inode * as the dependency prevents it, place the allocdirect on the * bufwait list where it will be freed once the pointer is * valid. */ if (wkhd == NULL) wkhd = &inodedep->id_bufwait; for (; adp; adp = listadp) { listadp = TAILQ_NEXT(adp, ad_next); if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) return; TAILQ_REMOVE(listhead, adp, ad_next); WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); } } /* * Called from within softdep_disk_write_complete above. This routine * completes successfully written allocindirs. */ static void handle_allocindir_partdone(aip) struct allocindir *aip; /* the completed allocindir */ { struct indirdep *indirdep; if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) return; indirdep = aip->ai_indirdep; LIST_REMOVE(aip, ai_next); /* * Don't set a pointer while the buffer is undergoing IO or while * we have active truncations. */ if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); return; } if (indirdep->ir_state & UFS1FMT) ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = aip->ai_newblkno; else ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = aip->ai_newblkno; /* * Await the pointer write before freeing the allocindir. */ LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); } /* * Release segments held on a jwork list. */ static void handle_jwork(wkhd) struct workhead *wkhd; { struct worklist *wk; while ((wk = LIST_FIRST(wkhd)) != NULL) { WORKLIST_REMOVE(wk); switch (wk->wk_type) { case D_JSEGDEP: free_jsegdep(WK_JSEGDEP(wk)); continue; case D_FREEDEP: free_freedep(WK_FREEDEP(wk)); continue; case D_FREEFRAG: rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); WORKITEM_FREE(wk, D_FREEFRAG); continue; case D_FREEWORK: handle_written_freework(WK_FREEWORK(wk)); continue; default: panic("handle_jwork: Unknown type %s\n", TYPENAME(wk->wk_type)); } } } /* * Handle the bufwait list on an inode when it is safe to release items * held there. This normally happens after an inode block is written but * may be delayed and handled later if there are pending journal items that * are not yet safe to be released. */ static struct freefile * handle_bufwait(inodedep, refhd) struct inodedep *inodedep; struct workhead *refhd; { struct jaddref *jaddref; struct freefile *freefile; struct worklist *wk; freefile = NULL; while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { WORKLIST_REMOVE(wk); switch (wk->wk_type) { case D_FREEFILE: /* * We defer adding freefile to the worklist * until all other additions have been made to * ensure that it will be done after all the * old blocks have been freed. */ if (freefile != NULL) panic("handle_bufwait: freefile"); freefile = WK_FREEFILE(wk); continue; case D_MKDIR: handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); continue; case D_DIRADD: diradd_inode_written(WK_DIRADD(wk), inodedep); continue; case D_FREEFRAG: wk->wk_state |= COMPLETE; if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) add_to_worklist(wk, 0); continue; case D_DIRREM: wk->wk_state |= COMPLETE; add_to_worklist(wk, 0); continue; case D_ALLOCDIRECT: case D_ALLOCINDIR: free_newblk(WK_NEWBLK(wk)); continue; case D_JNEWBLK: wk->wk_state |= COMPLETE; free_jnewblk(WK_JNEWBLK(wk)); continue; /* * Save freed journal segments and add references on * the supplied list which will delay their release * until the cg bitmap is cleared on disk. */ case D_JSEGDEP: if (refhd == NULL) free_jsegdep(WK_JSEGDEP(wk)); else WORKLIST_INSERT(refhd, wk); continue; case D_JADDREF: jaddref = WK_JADDREF(wk); TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); /* * Transfer any jaddrefs to the list to be freed with * the bitmap if we're handling a removed file. */ if (refhd == NULL) { wk->wk_state |= COMPLETE; free_jaddref(jaddref); } else WORKLIST_INSERT(refhd, wk); continue; default: panic("handle_bufwait: Unknown type %p(%s)", wk, TYPENAME(wk->wk_type)); /* NOTREACHED */ } } return (freefile); } /* * Called from within softdep_disk_write_complete above to restore * in-memory inode block contents to their most up-to-date state. Note * that this routine is always called from interrupt level with further * interrupts from this device blocked. * * If the write did not succeed, we will do all the roll-forward * operations, but we will not take the actions that will allow its * dependencies to be processed. */ static int handle_written_inodeblock(inodedep, bp, flags) struct inodedep *inodedep; struct buf *bp; /* buffer containing the inode block */ int flags; { struct freefile *freefile; struct allocdirect *adp, *nextadp; struct ufs1_dinode *dp1 = NULL; struct ufs2_dinode *dp2 = NULL; struct workhead wkhd; int hadchanges, fstype; ino_t freelink; LIST_INIT(&wkhd); hadchanges = 0; freefile = NULL; if ((inodedep->id_state & IOSTARTED) == 0) panic("handle_written_inodeblock: not started"); inodedep->id_state &= ~IOSTARTED; if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { fstype = UFS1; dp1 = (struct ufs1_dinode *)bp->b_data + ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); freelink = dp1->di_freelink; } else { fstype = UFS2; dp2 = (struct ufs2_dinode *)bp->b_data + ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); freelink = dp2->di_freelink; } /* * Leave this inodeblock dirty until it's in the list. */ if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && (flags & WRITESUCCEEDED)) { struct inodedep *inon; inon = TAILQ_NEXT(inodedep, id_unlinked); if ((inon == NULL && freelink == 0) || (inon && inon->id_ino == freelink)) { if (inon) inon->id_state |= UNLINKPREV; inodedep->id_state |= UNLINKNEXT; } hadchanges = 1; } /* * If we had to rollback the inode allocation because of * bitmaps being incomplete, then simply restore it. * Keep the block dirty so that it will not be reclaimed until * all associated dependencies have been cleared and the * corresponding updates written to disk. */ if (inodedep->id_savedino1 != NULL) { hadchanges = 1; if (fstype == UFS1) *dp1 = *inodedep->id_savedino1; else *dp2 = *inodedep->id_savedino2; free(inodedep->id_savedino1, M_SAVEDINO); inodedep->id_savedino1 = NULL; if ((bp->b_flags & B_DELWRI) == 0) stat_inode_bitmap++; bdirty(bp); /* * If the inode is clear here and GOINGAWAY it will never * be written. Process the bufwait and clear any pending * work which may include the freefile. */ if (inodedep->id_state & GOINGAWAY) goto bufwait; return (1); } if (flags & WRITESUCCEEDED) inodedep->id_state |= COMPLETE; /* * Roll forward anything that had to be rolled back before * the inode could be updated. */ for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { nextadp = TAILQ_NEXT(adp, ad_next); if (adp->ad_state & ATTACHED) panic("handle_written_inodeblock: new entry"); if (fstype == UFS1) { if (adp->ad_offset < UFS_NDADDR) { if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) panic("%s %s #%jd mismatch %d != %jd", "handle_written_inodeblock:", "direct pointer", (intmax_t)adp->ad_offset, dp1->di_db[adp->ad_offset], (intmax_t)adp->ad_oldblkno); dp1->di_db[adp->ad_offset] = adp->ad_newblkno; } else { if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 0) panic("%s: %s #%jd allocated as %d", "handle_written_inodeblock", "indirect pointer", (intmax_t)adp->ad_offset - UFS_NDADDR, dp1->di_ib[adp->ad_offset - UFS_NDADDR]); dp1->di_ib[adp->ad_offset - UFS_NDADDR] = adp->ad_newblkno; } } else { if (adp->ad_offset < UFS_NDADDR) { if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) panic("%s: %s #%jd %s %jd != %jd", "handle_written_inodeblock", "direct pointer", (intmax_t)adp->ad_offset, "mismatch", (intmax_t)dp2->di_db[adp->ad_offset], (intmax_t)adp->ad_oldblkno); dp2->di_db[adp->ad_offset] = adp->ad_newblkno; } else { if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 0) panic("%s: %s #%jd allocated as %jd", "handle_written_inodeblock", "indirect pointer", (intmax_t)adp->ad_offset - UFS_NDADDR, (intmax_t) dp2->di_ib[adp->ad_offset - UFS_NDADDR]); dp2->di_ib[adp->ad_offset - UFS_NDADDR] = adp->ad_newblkno; } } adp->ad_state &= ~UNDONE; adp->ad_state |= ATTACHED; hadchanges = 1; } for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { nextadp = TAILQ_NEXT(adp, ad_next); if (adp->ad_state & ATTACHED) panic("handle_written_inodeblock: new entry"); if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) panic("%s: direct pointers #%jd %s %jd != %jd", "handle_written_inodeblock", (intmax_t)adp->ad_offset, "mismatch", (intmax_t)dp2->di_extb[adp->ad_offset], (intmax_t)adp->ad_oldblkno); dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; adp->ad_state &= ~UNDONE; adp->ad_state |= ATTACHED; hadchanges = 1; } if (hadchanges && (bp->b_flags & B_DELWRI) == 0) stat_direct_blk_ptrs++; /* * Reset the file size to its most up-to-date value. */ if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) panic("handle_written_inodeblock: bad size"); if (inodedep->id_savednlink > UFS_LINK_MAX) panic("handle_written_inodeblock: Invalid link count " "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, inodedep); if (fstype == UFS1) { if (dp1->di_nlink != inodedep->id_savednlink) { dp1->di_nlink = inodedep->id_savednlink; hadchanges = 1; } if (dp1->di_size != inodedep->id_savedsize) { dp1->di_size = inodedep->id_savedsize; hadchanges = 1; } } else { if (dp2->di_nlink != inodedep->id_savednlink) { dp2->di_nlink = inodedep->id_savednlink; hadchanges = 1; } if (dp2->di_size != inodedep->id_savedsize) { dp2->di_size = inodedep->id_savedsize; hadchanges = 1; } if (dp2->di_extsize != inodedep->id_savedextsize) { dp2->di_extsize = inodedep->id_savedextsize; hadchanges = 1; } } inodedep->id_savedsize = -1; inodedep->id_savedextsize = -1; inodedep->id_savednlink = -1; /* * If there were any rollbacks in the inode block, then it must be * marked dirty so that its will eventually get written back in * its correct form. */ if (hadchanges) { if (fstype == UFS2) ffs_update_dinode_ckhash(inodedep->id_fs, dp2); bdirty(bp); } bufwait: /* * If the write did not succeed, we have done all the roll-forward * operations, but we cannot take the actions that will allow its * dependencies to be processed. */ if ((flags & WRITESUCCEEDED) == 0) return (hadchanges); /* * Process any allocdirects that completed during the update. */ if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) handle_allocdirect_partdone(adp, &wkhd); if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) handle_allocdirect_partdone(adp, &wkhd); /* * Process deallocations that were held pending until the * inode had been written to disk. Freeing of the inode * is delayed until after all blocks have been freed to * avoid creation of new triples * before the old ones have been deleted. Completely * unlinked inodes are not processed until the unlinked * inode list is written or the last reference is removed. */ if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { freefile = handle_bufwait(inodedep, NULL); if (freefile && !LIST_EMPTY(&wkhd)) { WORKLIST_INSERT(&wkhd, &freefile->fx_list); freefile = NULL; } } /* * Move rolled forward dependency completions to the bufwait list * now that those that were already written have been processed. */ if (!LIST_EMPTY(&wkhd) && hadchanges == 0) panic("handle_written_inodeblock: bufwait but no changes"); jwork_move(&inodedep->id_bufwait, &wkhd); if (freefile != NULL) { /* * If the inode is goingaway it was never written. Fake up * the state here so free_inodedep() can succeed. */ if (inodedep->id_state & GOINGAWAY) inodedep->id_state |= COMPLETE | DEPCOMPLETE; if (free_inodedep(inodedep) == 0) panic("handle_written_inodeblock: live inodedep %p", inodedep); add_to_worklist(&freefile->fx_list, 0); return (0); } /* * If no outstanding dependencies, free it. */ if (free_inodedep(inodedep) || (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && TAILQ_FIRST(&inodedep->id_extupdt) == 0 && LIST_FIRST(&inodedep->id_bufwait) == 0)) return (0); return (hadchanges); } /* * Perform needed roll-forwards and kick off any dependencies that * can now be processed. * * If the write did not succeed, we will do all the roll-forward * operations, but we will not take the actions that will allow its * dependencies to be processed. */ static int handle_written_indirdep(indirdep, bp, bpp, flags) struct indirdep *indirdep; struct buf *bp; struct buf **bpp; int flags; { struct allocindir *aip; struct buf *sbp; int chgs; if (indirdep->ir_state & GOINGAWAY) panic("handle_written_indirdep: indirdep gone"); if ((indirdep->ir_state & IOSTARTED) == 0) panic("handle_written_indirdep: IO not started"); chgs = 0; /* * If there were rollbacks revert them here. */ if (indirdep->ir_saveddata) { bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); if (TAILQ_EMPTY(&indirdep->ir_trunc)) { free(indirdep->ir_saveddata, M_INDIRDEP); indirdep->ir_saveddata = NULL; } chgs = 1; } indirdep->ir_state &= ~(UNDONE | IOSTARTED); indirdep->ir_state |= ATTACHED; /* * If the write did not succeed, we have done all the roll-forward * operations, but we cannot take the actions that will allow its * dependencies to be processed. */ if ((flags & WRITESUCCEEDED) == 0) { stat_indir_blk_ptrs++; bdirty(bp); return (1); } /* * Move allocindirs with written pointers to the completehd if * the indirdep's pointer is not yet written. Otherwise * free them here. */ while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { LIST_REMOVE(aip, ai_next); if ((indirdep->ir_state & DEPCOMPLETE) == 0) { LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, ai_next); newblk_freefrag(&aip->ai_block); continue; } free_newblk(&aip->ai_block); } /* * Move allocindirs that have finished dependency processing from * the done list to the write list after updating the pointers. */ if (TAILQ_EMPTY(&indirdep->ir_trunc)) { while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { handle_allocindir_partdone(aip); if (aip == LIST_FIRST(&indirdep->ir_donehd)) panic("disk_write_complete: not gone"); chgs = 1; } } /* * Preserve the indirdep if there were any changes or if it is not * yet valid on disk. */ if (chgs) { stat_indir_blk_ptrs++; bdirty(bp); return (1); } /* * If there were no changes we can discard the savedbp and detach * ourselves from the buf. We are only carrying completed pointers * in this case. */ sbp = indirdep->ir_savebp; sbp->b_flags |= B_INVAL | B_NOCACHE; indirdep->ir_savebp = NULL; indirdep->ir_bp = NULL; if (*bpp != NULL) panic("handle_written_indirdep: bp already exists."); *bpp = sbp; /* * The indirdep may not be freed until its parent points at it. */ if (indirdep->ir_state & DEPCOMPLETE) free_indirdep(indirdep); return (0); } /* * Process a diradd entry after its dependent inode has been written. */ static void diradd_inode_written(dap, inodedep) struct diradd *dap; struct inodedep *inodedep; { LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); dap->da_state |= COMPLETE; complete_diradd(dap); WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); } /* * Returns true if the bmsafemap will have rollbacks when written. Must only * be called with the per-filesystem lock and the buf lock on the cg held. */ static int bmsafemap_backgroundwrite(bmsafemap, bp) struct bmsafemap *bmsafemap; struct buf *bp; { int dirty; LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); /* * If we're initiating a background write we need to process the * rollbacks as they exist now, not as they exist when IO starts. * No other consumers will look at the contents of the shadowed * buf so this is safe to do here. */ if (bp->b_xflags & BX_BKGRDMARKER) initiate_write_bmsafemap(bmsafemap, bp); return (dirty); } /* * Re-apply an allocation when a cg write is complete. */ static int jnewblk_rollforward(jnewblk, fs, cgp, blksfree) struct jnewblk *jnewblk; struct fs *fs; struct cg *cgp; uint8_t *blksfree; { ufs1_daddr_t fragno; ufs2_daddr_t blkno; long cgbno, bbase; int frags, blk; int i; frags = 0; cgbno = dtogd(fs, jnewblk->jn_blkno); for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { if (isclr(blksfree, cgbno + i)) panic("jnewblk_rollforward: re-allocated fragment"); frags++; } if (frags == fs->fs_frag) { blkno = fragstoblks(fs, cgbno); ffs_clrblock(fs, blksfree, (long)blkno); ffs_clusteracct(fs, cgp, blkno, -1); cgp->cg_cs.cs_nbfree--; } else { bbase = cgbno - fragnum(fs, cgbno); cgbno += jnewblk->jn_oldfrags; /* If a complete block had been reassembled, account for it. */ fragno = fragstoblks(fs, bbase); if (ffs_isblock(fs, blksfree, fragno)) { cgp->cg_cs.cs_nffree += fs->fs_frag; ffs_clusteracct(fs, cgp, fragno, -1); cgp->cg_cs.cs_nbfree--; } /* Decrement the old frags. */ blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, -1); /* Allocate the fragment */ for (i = 0; i < frags; i++) clrbit(blksfree, cgbno + i); cgp->cg_cs.cs_nffree -= frags; /* Add back in counts associated with the new frags */ blk = blkmap(fs, blksfree, bbase); ffs_fragacct(fs, blk, cgp->cg_frsum, 1); } return (frags); } /* * Complete a write to a bmsafemap structure. Roll forward any bitmap * changes if it's not a background write. Set all written dependencies * to DEPCOMPLETE and free the structure if possible. * * If the write did not succeed, we will do all the roll-forward * operations, but we will not take the actions that will allow its * dependencies to be processed. */ static int handle_written_bmsafemap(bmsafemap, bp, flags) struct bmsafemap *bmsafemap; struct buf *bp; int flags; { struct newblk *newblk; struct inodedep *inodedep; struct jaddref *jaddref, *jatmp; struct jnewblk *jnewblk, *jntmp; struct ufsmount *ump; uint8_t *inosused; uint8_t *blksfree; struct cg *cgp; struct fs *fs; ino_t ino; int foreground; int chgs; if ((bmsafemap->sm_state & IOSTARTED) == 0) panic("handle_written_bmsafemap: Not started\n"); ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); chgs = 0; bmsafemap->sm_state &= ~IOSTARTED; foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; /* * If write was successful, release journal work that was waiting * on the write. Otherwise move the work back. */ if (flags & WRITESUCCEEDED) handle_jwork(&bmsafemap->sm_freewr); else LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, wk_list); /* * Restore unwritten inode allocation pending jaddref writes. */ if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { cgp = (struct cg *)bp->b_data; fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; inosused = cg_inosused(cgp); LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps, jatmp) { if ((jaddref->ja_state & UNDONE) == 0) continue; ino = jaddref->ja_ino % fs->fs_ipg; if (isset(inosused, ino)) panic("handle_written_bmsafemap: " "re-allocated inode"); /* Do the roll-forward only if it's a real copy. */ if (foreground) { if ((jaddref->ja_mode & IFMT) == IFDIR) cgp->cg_cs.cs_ndir++; cgp->cg_cs.cs_nifree--; setbit(inosused, ino); chgs = 1; } jaddref->ja_state &= ~UNDONE; jaddref->ja_state |= ATTACHED; free_jaddref(jaddref); } } /* * Restore any block allocations which are pending journal writes. */ if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { cgp = (struct cg *)bp->b_data; fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; blksfree = cg_blksfree(cgp); LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, jntmp) { if ((jnewblk->jn_state & UNDONE) == 0) continue; /* Do the roll-forward only if it's a real copy. */ if (foreground && jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) chgs = 1; jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); jnewblk->jn_state |= ATTACHED; free_jnewblk(jnewblk); } } /* * If the write did not succeed, we have done all the roll-forward * operations, but we cannot take the actions that will allow its * dependencies to be processed. */ if ((flags & WRITESUCCEEDED) == 0) { LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, newblk, nb_deps); LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, wk_list); if (foreground) bdirty(bp); return (1); } while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { newblk->nb_state |= DEPCOMPLETE; newblk->nb_state &= ~ONDEPLIST; newblk->nb_bmsafemap = NULL; LIST_REMOVE(newblk, nb_deps); if (newblk->nb_list.wk_type == D_ALLOCDIRECT) handle_allocdirect_partdone( WK_ALLOCDIRECT(&newblk->nb_list), NULL); else if (newblk->nb_list.wk_type == D_ALLOCINDIR) handle_allocindir_partdone( WK_ALLOCINDIR(&newblk->nb_list)); else if (newblk->nb_list.wk_type != D_NEWBLK) panic("handle_written_bmsafemap: Unexpected type: %s", TYPENAME(newblk->nb_list.wk_type)); } while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { inodedep->id_state |= DEPCOMPLETE; inodedep->id_state &= ~ONDEPLIST; LIST_REMOVE(inodedep, id_deps); inodedep->id_bmsafemap = NULL; } LIST_REMOVE(bmsafemap, sm_next); if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && LIST_EMPTY(&bmsafemap->sm_newblkhd) && LIST_EMPTY(&bmsafemap->sm_inodedephd) && LIST_EMPTY(&bmsafemap->sm_freehd)) { LIST_REMOVE(bmsafemap, sm_hash); WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); return (0); } LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); if (foreground) bdirty(bp); return (1); } /* * Try to free a mkdir dependency. */ static void complete_mkdir(mkdir) struct mkdir *mkdir; { struct diradd *dap; if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) return; LIST_REMOVE(mkdir, md_mkdirs); dap = mkdir->md_diradd; dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { dap->da_state |= DEPCOMPLETE; complete_diradd(dap); } WORKITEM_FREE(mkdir, D_MKDIR); } /* * Handle the completion of a mkdir dependency. */ static void handle_written_mkdir(mkdir, type) struct mkdir *mkdir; int type; { if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) panic("handle_written_mkdir: bad type"); mkdir->md_state |= COMPLETE; complete_mkdir(mkdir); } static int free_pagedep(pagedep) struct pagedep *pagedep; { int i; if (pagedep->pd_state & NEWBLOCK) return (0); if (!LIST_EMPTY(&pagedep->pd_dirremhd)) return (0); for (i = 0; i < DAHASHSZ; i++) if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) return (0); if (!LIST_EMPTY(&pagedep->pd_pendinghd)) return (0); if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) return (0); if (pagedep->pd_state & ONWORKLIST) WORKLIST_REMOVE(&pagedep->pd_list); LIST_REMOVE(pagedep, pd_hash); WORKITEM_FREE(pagedep, D_PAGEDEP); return (1); } /* * Called from within softdep_disk_write_complete above. * A write operation was just completed. Removed inodes can * now be freed and associated block pointers may be committed. * Note that this routine is always called from interrupt level * with further interrupts from this device blocked. * * If the write did not succeed, we will do all the roll-forward * operations, but we will not take the actions that will allow its * dependencies to be processed. */ static int handle_written_filepage(pagedep, bp, flags) struct pagedep *pagedep; struct buf *bp; /* buffer containing the written page */ int flags; { struct dirrem *dirrem; struct diradd *dap, *nextdap; struct direct *ep; int i, chgs; if ((pagedep->pd_state & IOSTARTED) == 0) panic("handle_written_filepage: not started"); pagedep->pd_state &= ~IOSTARTED; if ((flags & WRITESUCCEEDED) == 0) goto rollforward; /* * Process any directory removals that have been committed. */ while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { LIST_REMOVE(dirrem, dm_next); dirrem->dm_state |= COMPLETE; dirrem->dm_dirinum = pagedep->pd_ino; KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), ("handle_written_filepage: Journal entries not written.")); add_to_worklist(&dirrem->dm_list, 0); } /* * Free any directory additions that have been committed. * If it is a newly allocated block, we have to wait until * the on-disk directory inode claims the new block. */ if ((pagedep->pd_state & NEWBLOCK) == 0) while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) free_diradd(dap, NULL); rollforward: /* * Uncommitted directory entries must be restored. */ for (chgs = 0, i = 0; i < DAHASHSZ; i++) { for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; dap = nextdap) { nextdap = LIST_NEXT(dap, da_pdlist); if (dap->da_state & ATTACHED) panic("handle_written_filepage: attached"); ep = (struct direct *) ((char *)bp->b_data + dap->da_offset); ep->d_ino = dap->da_newinum; dap->da_state &= ~UNDONE; dap->da_state |= ATTACHED; chgs = 1; /* * If the inode referenced by the directory has * been written out, then the dependency can be * moved to the pending list. */ if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); } } } /* * If there were any rollbacks in the directory, then it must be * marked dirty so that its will eventually get written back in * its correct form. */ if (chgs || (flags & WRITESUCCEEDED) == 0) { if ((bp->b_flags & B_DELWRI) == 0) stat_dir_entry++; bdirty(bp); return (1); } /* * If we are not waiting for a new directory block to be * claimed by its inode, then the pagedep will be freed. * Otherwise it will remain to track any new entries on * the page in case they are fsync'ed. */ free_pagedep(pagedep); return (0); } /* * Writing back in-core inode structures. * * The filesystem only accesses an inode's contents when it occupies an * "in-core" inode structure. These "in-core" structures are separate from * the page frames used to cache inode blocks. Only the latter are * transferred to/from the disk. So, when the updated contents of the * "in-core" inode structure are copied to the corresponding in-memory inode * block, the dependencies are also transferred. The following procedure is * called when copying a dirty "in-core" inode to a cached inode block. */ /* * Called when an inode is loaded from disk. If the effective link count * differed from the actual link count when it was last flushed, then we * need to ensure that the correct effective link count is put back. */ void softdep_load_inodeblock(ip) struct inode *ip; /* the "in_core" copy of the inode */ { struct inodedep *inodedep; struct ufsmount *ump; ump = ITOUMP(ip); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_load_inodeblock called on non-softdep filesystem")); /* * Check for alternate nlink count. */ ip->i_effnlink = ip->i_nlink; ACQUIRE_LOCK(ump); if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { FREE_LOCK(ump); return; } if (ip->i_nlink != inodedep->id_nlinkwrote && inodedep->id_nlinkwrote != -1) { KASSERT(ip->i_nlink == 0 && (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, ("read bad i_nlink value")); ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; } ip->i_effnlink -= inodedep->id_nlinkdelta; KASSERT(ip->i_effnlink >= 0, ("softdep_load_inodeblock: negative i_effnlink")); FREE_LOCK(ump); } /* * This routine is called just before the "in-core" inode * information is to be copied to the in-memory inode block. * Recall that an inode block contains several inodes. If * the force flag is set, then the dependencies will be * cleared so that the update can always be made. Note that * the buffer is locked when this routine is called, so we * will never be in the middle of writing the inode block * to disk. */ void softdep_update_inodeblock(ip, bp, waitfor) struct inode *ip; /* the "in_core" copy of the inode */ struct buf *bp; /* the buffer containing the inode block */ int waitfor; /* nonzero => update must be allowed */ { struct inodedep *inodedep; struct inoref *inoref; struct ufsmount *ump; struct worklist *wk; struct mount *mp; struct buf *ibp; struct fs *fs; int error; ump = ITOUMP(ip); mp = UFSTOVFS(ump); KASSERT(MOUNTEDSOFTDEP(mp) != 0, ("softdep_update_inodeblock called on non-softdep filesystem")); fs = ump->um_fs; /* * Preserve the freelink that is on disk. clear_unlinked_inodedep() * does not have access to the in-core ip so must write directly into * the inode block buffer when setting freelink. */ if (fs->fs_magic == FS_UFS1_MAGIC) DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number))->di_freelink); else DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number))->di_freelink); /* * If the effective link count is not equal to the actual link * count, then we must track the difference in an inodedep while * the inode is (potentially) tossed out of the cache. Otherwise, * if there is no existing inodedep, then there are no dependencies * to track. */ ACQUIRE_LOCK(ump); again: if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { FREE_LOCK(ump); if (ip->i_effnlink != ip->i_nlink) panic("softdep_update_inodeblock: bad link count"); return; } KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " "inodedep %p id_nlinkdelta %jd", ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); inodedep->id_nlinkwrote = ip->i_nlink; if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) panic("softdep_update_inodeblock: bad delta"); /* * If we're flushing all dependencies we must also move any waiting * for journal writes onto the bufwait list prior to I/O. */ if (waitfor) { TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) == DEPCOMPLETE) { jwait(&inoref->if_list, MNT_WAIT); goto again; } } } /* * Changes have been initiated. Anything depending on these * changes cannot occur until this inode has been written. */ inodedep->id_state &= ~COMPLETE; if ((inodedep->id_state & ONWORKLIST) == 0) WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); /* * Any new dependencies associated with the incore inode must * now be moved to the list associated with the buffer holding * the in-memory copy of the inode. Once merged process any * allocdirects that are completed by the merger. */ merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), NULL); merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); if (!TAILQ_EMPTY(&inodedep->id_extupdt)) handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), NULL); /* * Now that the inode has been pushed into the buffer, the * operations dependent on the inode being written to disk * can be moved to the id_bufwait so that they will be * processed when the buffer I/O completes. */ while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { WORKLIST_REMOVE(wk); WORKLIST_INSERT(&inodedep->id_bufwait, wk); } /* * Newly allocated inodes cannot be written until the bitmap * that allocates them have been written (indicated by * DEPCOMPLETE being set in id_state). If we are doing a * forced sync (e.g., an fsync on a file), we force the bitmap * to be written so that the update can be done. */ if (waitfor == 0) { FREE_LOCK(ump); return; } retry: if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { FREE_LOCK(ump); return; } ibp = inodedep->id_bmsafemap->sm_buf; ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); if (ibp == NULL) { /* * If ibp came back as NULL, the dependency could have been * freed while we slept. Look it up again, and check to see * that it has completed. */ if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) goto retry; FREE_LOCK(ump); return; } FREE_LOCK(ump); if ((error = bwrite(ibp)) != 0) softdep_error("softdep_update_inodeblock: bwrite", error); } /* * Merge the a new inode dependency list (such as id_newinoupdt) into an * old inode dependency list (such as id_inoupdt). */ static void merge_inode_lists(newlisthead, oldlisthead) struct allocdirectlst *newlisthead; struct allocdirectlst *oldlisthead; { struct allocdirect *listadp, *newadp; newadp = TAILQ_FIRST(newlisthead); if (newadp != NULL) LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { if (listadp->ad_offset < newadp->ad_offset) { listadp = TAILQ_NEXT(listadp, ad_next); continue; } TAILQ_REMOVE(newlisthead, newadp, ad_next); TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); if (listadp->ad_offset == newadp->ad_offset) { allocdirect_merge(oldlisthead, newadp, listadp); listadp = newadp; } newadp = TAILQ_FIRST(newlisthead); } while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { TAILQ_REMOVE(newlisthead, newadp, ad_next); TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); } } /* * If we are doing an fsync, then we must ensure that any directory * entries for the inode have been written after the inode gets to disk. */ int softdep_fsync(vp) struct vnode *vp; /* the "in_core" copy of the inode */ { struct inodedep *inodedep; struct pagedep *pagedep; struct inoref *inoref; struct ufsmount *ump; struct worklist *wk; struct diradd *dap; struct mount *mp; struct vnode *pvp; struct inode *ip; struct buf *bp; struct fs *fs; struct thread *td = curthread; int error, flushparent, pagedep_new_block; ino_t parentino; ufs_lbn_t lbn; ip = VTOI(vp); mp = vp->v_mount; ump = VFSTOUFS(mp); fs = ump->um_fs; if (MOUNTEDSOFTDEP(mp) == 0) return (0); ACQUIRE_LOCK(ump); restart: if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { FREE_LOCK(ump); return (0); } TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) == DEPCOMPLETE) { jwait(&inoref->if_list, MNT_WAIT); goto restart; } } if (!LIST_EMPTY(&inodedep->id_inowait) || !TAILQ_EMPTY(&inodedep->id_extupdt) || !TAILQ_EMPTY(&inodedep->id_newextupdt) || !TAILQ_EMPTY(&inodedep->id_inoupdt) || !TAILQ_EMPTY(&inodedep->id_newinoupdt)) panic("softdep_fsync: pending ops %p", inodedep); for (error = 0, flushparent = 0; ; ) { if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) break; if (wk->wk_type != D_DIRADD) panic("softdep_fsync: Unexpected type %s", TYPENAME(wk->wk_type)); dap = WK_DIRADD(wk); /* * Flush our parent if this directory entry has a MKDIR_PARENT * dependency or is contained in a newly allocated block. */ if (dap->da_state & DIRCHG) pagedep = dap->da_previous->dm_pagedep; else pagedep = dap->da_pagedep; parentino = pagedep->pd_ino; lbn = pagedep->pd_lbn; if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) panic("softdep_fsync: dirty"); if ((dap->da_state & MKDIR_PARENT) || (pagedep->pd_state & NEWBLOCK)) flushparent = 1; else flushparent = 0; /* * If we are being fsync'ed as part of vgone'ing this vnode, * then we will not be able to release and recover the * vnode below, so we just have to give up on writing its * directory entry out. It will eventually be written, just * not now, but then the user was not asking to have it * written, so we are not breaking any promises. */ if (VN_IS_DOOMED(vp)) break; /* * We prevent deadlock by always fetching inodes from the * root, moving down the directory tree. Thus, when fetching * our parent directory, we first try to get the lock. If * that fails, we must unlock ourselves before requesting * the lock on our parent. See the comment in ufs_lookup * for details on possible races. */ FREE_LOCK(ump); error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, &pvp); if (error == ERELOOKUP) error = 0; if (error != 0) return (error); /* * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps * that are contained in direct blocks will be resolved by * doing a ffs_update. Pagedeps contained in indirect blocks * may require a complete sync'ing of the directory. So, we * try the cheap and fast ffs_update first, and if that fails, * then we do the slower ffs_syncvnode of the directory. */ if (flushparent) { int locked; if ((error = ffs_update(pvp, 1)) != 0) { vput(pvp); return (error); } ACQUIRE_LOCK(ump); locked = 1; if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { if (wk->wk_type != D_DIRADD) panic("softdep_fsync: Unexpected type %s", TYPENAME(wk->wk_type)); dap = WK_DIRADD(wk); if (dap->da_state & DIRCHG) pagedep = dap->da_previous->dm_pagedep; else pagedep = dap->da_pagedep; pagedep_new_block = pagedep->pd_state & NEWBLOCK; FREE_LOCK(ump); locked = 0; if (pagedep_new_block && (error = ffs_syncvnode(pvp, MNT_WAIT, 0))) { vput(pvp); return (error); } } } if (locked) FREE_LOCK(ump); } /* * Flush directory page containing the inode's name. */ error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, &bp); if (error == 0) error = bwrite(bp); else brelse(bp); vput(pvp); if (!ffs_fsfail_cleanup(ump, error)) return (error); ACQUIRE_LOCK(ump); if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) break; } FREE_LOCK(ump); return (0); } /* * Flush all the dirty bitmaps associated with the block device * before flushing the rest of the dirty blocks so as to reduce * the number of dependencies that will have to be rolled back. * * XXX Unused? */ void softdep_fsync_mountdev(vp) struct vnode *vp; { struct buf *bp, *nbp; struct worklist *wk; struct bufobj *bo; if (!vn_isdisk(vp)) panic("softdep_fsync_mountdev: vnode not a disk"); bo = &vp->v_bufobj; restart: BO_LOCK(bo); TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { /* * If it is already scheduled, skip to the next buffer. */ if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) continue; if ((bp->b_flags & B_DELWRI) == 0) panic("softdep_fsync_mountdev: not dirty"); /* * We are only interested in bitmaps with outstanding * dependencies. */ if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || wk->wk_type != D_BMSAFEMAP || (bp->b_vflags & BV_BKGRDINPROG)) { BUF_UNLOCK(bp); continue; } BO_UNLOCK(bo); bremfree(bp); (void) bawrite(bp); goto restart; } drain_output(vp); BO_UNLOCK(bo); } /* * Sync all cylinder groups that were dirty at the time this function is * called. Newly dirtied cgs will be inserted before the sentinel. This * is used to flush freedep activity that may be holding up writes to a * indirect block. */ static int sync_cgs(mp, waitfor) struct mount *mp; int waitfor; { struct bmsafemap *bmsafemap; struct bmsafemap *sentinel; struct ufsmount *ump; struct buf *bp; int error; sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); sentinel->sm_cg = -1; ump = VFSTOUFS(mp); error = 0; ACQUIRE_LOCK(ump); LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; bmsafemap = LIST_NEXT(sentinel, sm_next)) { /* Skip sentinels and cgs with no work to release. */ if (bmsafemap->sm_cg == -1 || (LIST_EMPTY(&bmsafemap->sm_freehd) && LIST_EMPTY(&bmsafemap->sm_freewr))) { LIST_REMOVE(sentinel, sm_next); LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); continue; } /* * If we don't get the lock and we're waiting try again, if * not move on to the next buf and try to sync it. */ bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); if (bp == NULL && waitfor == MNT_WAIT) continue; LIST_REMOVE(sentinel, sm_next); LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); if (bp == NULL) continue; FREE_LOCK(ump); if (waitfor == MNT_NOWAIT) bawrite(bp); else error = bwrite(bp); ACQUIRE_LOCK(ump); if (error) break; } LIST_REMOVE(sentinel, sm_next); FREE_LOCK(ump); free(sentinel, M_BMSAFEMAP); return (error); } /* * This routine is called when we are trying to synchronously flush a * file. This routine must eliminate any filesystem metadata dependencies * so that the syncing routine can succeed. */ int softdep_sync_metadata(struct vnode *vp) { struct inode *ip; int error; ip = VTOI(vp); KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, ("softdep_sync_metadata called on non-softdep filesystem")); /* * Ensure that any direct block dependencies have been cleared, * truncations are started, and inode references are journaled. */ ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); /* * Write all journal records to prevent rollbacks on devvp. */ if (vp->v_type == VCHR) softdep_flushjournal(vp->v_mount); error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); /* * Ensure that all truncates are written so we won't find deps on * indirect blocks. */ process_truncates(vp); FREE_LOCK(VFSTOUFS(vp->v_mount)); return (error); } /* * This routine is called when we are attempting to sync a buf with * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any * other IO it can but returns EBUSY if the buffer is not yet able to * be written. Dependencies which will not cause rollbacks will always * return 0. */ int softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) { struct indirdep *indirdep; struct pagedep *pagedep; struct allocindir *aip; struct newblk *newblk; struct ufsmount *ump; struct buf *nbp; struct worklist *wk; int i, error; KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, ("softdep_sync_buf called on non-softdep filesystem")); /* * For VCHR we just don't want to force flush any dependencies that * will cause rollbacks. */ if (vp->v_type == VCHR) { if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) return (EBUSY); return (0); } ump = VFSTOUFS(vp->v_mount); ACQUIRE_LOCK(ump); /* * As we hold the buffer locked, none of its dependencies * will disappear. */ error = 0; top: LIST_FOREACH(wk, &bp->b_dep, wk_list) { switch (wk->wk_type) { case D_ALLOCDIRECT: case D_ALLOCINDIR: newblk = WK_NEWBLK(wk); if (newblk->nb_jnewblk != NULL) { if (waitfor == MNT_NOWAIT) { error = EBUSY; goto out_unlock; } jwait(&newblk->nb_jnewblk->jn_list, waitfor); goto top; } if (newblk->nb_state & DEPCOMPLETE || waitfor == MNT_NOWAIT) continue; nbp = newblk->nb_bmsafemap->sm_buf; nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); if (nbp == NULL) goto top; FREE_LOCK(ump); if ((error = bwrite(nbp)) != 0) goto out; ACQUIRE_LOCK(ump); continue; case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); if (waitfor == MNT_NOWAIT) { if (!TAILQ_EMPTY(&indirdep->ir_trunc) || !LIST_EMPTY(&indirdep->ir_deplisthd)) { error = EBUSY; goto out_unlock; } } if (!TAILQ_EMPTY(&indirdep->ir_trunc)) panic("softdep_sync_buf: truncation pending."); restart: LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { newblk = (struct newblk *)aip; if (newblk->nb_jnewblk != NULL) { jwait(&newblk->nb_jnewblk->jn_list, waitfor); goto restart; } if (newblk->nb_state & DEPCOMPLETE) continue; nbp = newblk->nb_bmsafemap->sm_buf; nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); if (nbp == NULL) goto restart; FREE_LOCK(ump); if ((error = bwrite(nbp)) != 0) goto out; ACQUIRE_LOCK(ump); goto restart; } continue; case D_PAGEDEP: /* * Only flush directory entries in synchronous passes. */ if (waitfor != MNT_WAIT) { error = EBUSY; goto out_unlock; } /* * While syncing snapshots, we must allow recursive * lookups. */ BUF_AREC(bp); /* * We are trying to sync a directory that may * have dependencies on both its own metadata * and/or dependencies on the inodes of any * recently allocated files. We walk its diradd * lists pushing out the associated inode. */ pagedep = WK_PAGEDEP(wk); for (i = 0; i < DAHASHSZ; i++) { if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) continue; error = flush_pagedep_deps(vp, wk->wk_mp, &pagedep->pd_diraddhd[i], bp); if (error != 0) { if (error != ERELOOKUP) BUF_NOREC(bp); goto out_unlock; } } BUF_NOREC(bp); continue; case D_FREEWORK: case D_FREEDEP: case D_JSEGDEP: case D_JNEWBLK: continue; default: panic("softdep_sync_buf: Unknown type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } out_unlock: FREE_LOCK(ump); out: return (error); } /* * Flush the dependencies associated with an inodedep. */ static int flush_inodedep_deps(vp, mp, ino) struct vnode *vp; struct mount *mp; ino_t ino; { struct inodedep *inodedep; struct inoref *inoref; struct ufsmount *ump; int error, waitfor; /* * This work is done in two passes. The first pass grabs most * of the buffers and begins asynchronously writing them. The * only way to wait for these asynchronous writes is to sleep * on the filesystem vnode which may stay busy for a long time * if the filesystem is active. So, instead, we make a second * pass over the dependencies blocking on each write. In the * usual case we will be blocking against a write that we * initiated, so when it is done the dependency will have been * resolved. Thus the second pass is expected to end quickly. * We give a brief window at the top of the loop to allow * any pending I/O to complete. */ ump = VFSTOUFS(mp); LOCK_OWNED(ump); for (error = 0, waitfor = MNT_NOWAIT; ; ) { if (error) return (error); FREE_LOCK(ump); ACQUIRE_LOCK(ump); restart: if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) return (0); TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) == DEPCOMPLETE) { jwait(&inoref->if_list, MNT_WAIT); goto restart; } } if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || flush_deplist(&inodedep->id_extupdt, waitfor, &error) || flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) continue; /* * If pass2, we are done, otherwise do pass 2. */ if (waitfor == MNT_WAIT) break; waitfor = MNT_WAIT; } /* * Try freeing inodedep in case all dependencies have been removed. */ if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) (void) free_inodedep(inodedep); return (0); } /* * Flush an inode dependency list. */ static int flush_deplist(listhead, waitfor, errorp) struct allocdirectlst *listhead; int waitfor; int *errorp; { struct allocdirect *adp; struct newblk *newblk; struct ufsmount *ump; struct buf *bp; if ((adp = TAILQ_FIRST(listhead)) == NULL) return (0); ump = VFSTOUFS(adp->ad_list.wk_mp); LOCK_OWNED(ump); TAILQ_FOREACH(adp, listhead, ad_next) { newblk = (struct newblk *)adp; if (newblk->nb_jnewblk != NULL) { jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); return (1); } if (newblk->nb_state & DEPCOMPLETE) continue; bp = newblk->nb_bmsafemap->sm_buf; bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); if (bp == NULL) { if (waitfor == MNT_NOWAIT) continue; return (1); } FREE_LOCK(ump); if (waitfor == MNT_NOWAIT) bawrite(bp); else *errorp = bwrite(bp); ACQUIRE_LOCK(ump); return (1); } return (0); } /* * Flush dependencies associated with an allocdirect block. */ static int flush_newblk_dep(vp, mp, lbn) struct vnode *vp; struct mount *mp; ufs_lbn_t lbn; { struct newblk *newblk; struct ufsmount *ump; struct bufobj *bo; struct inode *ip; struct buf *bp; ufs2_daddr_t blkno; int error; error = 0; bo = &vp->v_bufobj; ip = VTOI(vp); blkno = DIP(ip, i_db[lbn]); if (blkno == 0) panic("flush_newblk_dep: Missing block"); ump = VFSTOUFS(mp); ACQUIRE_LOCK(ump); /* * Loop until all dependencies related to this block are satisfied. * We must be careful to restart after each sleep in case a write * completes some part of this process for us. */ for (;;) { if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { FREE_LOCK(ump); break; } if (newblk->nb_list.wk_type != D_ALLOCDIRECT) panic("flush_newblk_dep: Bad newblk %p", newblk); /* * Flush the journal. */ if (newblk->nb_jnewblk != NULL) { jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); continue; } /* * Write the bitmap dependency. */ if ((newblk->nb_state & DEPCOMPLETE) == 0) { bp = newblk->nb_bmsafemap->sm_buf; bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); if (bp == NULL) continue; FREE_LOCK(ump); error = bwrite(bp); if (error) break; ACQUIRE_LOCK(ump); continue; } /* * Write the buffer. */ FREE_LOCK(ump); BO_LOCK(bo); bp = gbincore(bo, lbn); if (bp != NULL) { error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)); if (error == ENOLCK) { ACQUIRE_LOCK(ump); error = 0; continue; /* Slept, retry */ } if (error != 0) break; /* Failed */ if (bp->b_flags & B_DELWRI) { bremfree(bp); error = bwrite(bp); if (error) break; } else BUF_UNLOCK(bp); } else BO_UNLOCK(bo); /* * We have to wait for the direct pointers to * point at the newdirblk before the dependency * will go away. */ error = ffs_update(vp, 1); if (error) break; ACQUIRE_LOCK(ump); } return (error); } /* * Eliminate a pagedep dependency by flushing out all its diradd dependencies. */ static int flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp) struct vnode *pvp; struct mount *mp; struct diraddhd *diraddhdp; struct buf *locked_bp; { struct inodedep *inodedep; struct inoref *inoref; struct ufsmount *ump; struct diradd *dap; struct vnode *vp; int error = 0; struct buf *bp; ino_t inum; struct diraddhd unfinished; LIST_INIT(&unfinished); ump = VFSTOUFS(mp); LOCK_OWNED(ump); restart: while ((dap = LIST_FIRST(diraddhdp)) != NULL) { /* * Flush ourselves if this directory entry * has a MKDIR_PARENT dependency. */ if (dap->da_state & MKDIR_PARENT) { FREE_LOCK(ump); if ((error = ffs_update(pvp, 1)) != 0) break; ACQUIRE_LOCK(ump); /* * If that cleared dependencies, go on to next. */ if (dap != LIST_FIRST(diraddhdp)) continue; /* * All MKDIR_PARENT dependencies and all the * NEWBLOCK pagedeps that are contained in direct * blocks were resolved by doing above ffs_update. * Pagedeps contained in indirect blocks may * require a complete sync'ing of the directory. * We are in the midst of doing a complete sync, * so if they are not resolved in this pass we * defer them for now as they will be sync'ed by * our caller shortly. */ LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); continue; } /* * A newly allocated directory must have its "." and * ".." entries written out before its name can be * committed in its parent. */ inum = dap->da_newinum; if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) panic("flush_pagedep_deps: lost inode1"); /* * Wait for any pending journal adds to complete so we don't * cause rollbacks while syncing. */ TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) == DEPCOMPLETE) { jwait(&inoref->if_list, MNT_WAIT); goto restart; } } if (dap->da_state & MKDIR_BODY) { FREE_LOCK(ump); error = get_parent_vp(pvp, mp, inum, locked_bp, diraddhdp, &unfinished, &vp); if (error != 0) break; error = flush_newblk_dep(vp, mp, 0); /* * If we still have the dependency we might need to * update the vnode to sync the new link count to * disk. */ if (error == 0 && dap == LIST_FIRST(diraddhdp)) error = ffs_update(vp, 1); vput(vp); if (error != 0) break; ACQUIRE_LOCK(ump); /* * If that cleared dependencies, go on to next. */ if (dap != LIST_FIRST(diraddhdp)) continue; if (dap->da_state & MKDIR_BODY) { inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); panic("flush_pagedep_deps: MKDIR_BODY " "inodedep %p dap %p vp %p", inodedep, dap, vp); } } /* * Flush the inode on which the directory entry depends. * Having accounted for MKDIR_PARENT and MKDIR_BODY above, * the only remaining dependency is that the updated inode * count must get pushed to disk. The inode has already * been pushed into its inode buffer (via VOP_UPDATE) at * the time of the reference count change. So we need only * locate that buffer, ensure that there will be no rollback * caused by a bitmap dependency, then write the inode buffer. */ retry: if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) panic("flush_pagedep_deps: lost inode"); /* * If the inode still has bitmap dependencies, * push them to disk. */ if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { bp = inodedep->id_bmsafemap->sm_buf; bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); if (bp == NULL) goto retry; FREE_LOCK(ump); if ((error = bwrite(bp)) != 0) break; ACQUIRE_LOCK(ump); if (dap != LIST_FIRST(diraddhdp)) continue; } /* * If the inode is still sitting in a buffer waiting * to be written or waiting for the link count to be * adjusted update it here to flush it to disk. */ if (dap == LIST_FIRST(diraddhdp)) { FREE_LOCK(ump); error = get_parent_vp(pvp, mp, inum, locked_bp, diraddhdp, &unfinished, &vp); if (error != 0) break; error = ffs_update(vp, 1); vput(vp); if (error) break; ACQUIRE_LOCK(ump); } /* * If we have failed to get rid of all the dependencies * then something is seriously wrong. */ if (dap == LIST_FIRST(diraddhdp)) { inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); panic("flush_pagedep_deps: failed to flush " "inodedep %p ino %ju dap %p", inodedep, (uintmax_t)inum, dap); } } if (error) ACQUIRE_LOCK(ump); while ((dap = LIST_FIRST(&unfinished)) != NULL) { LIST_REMOVE(dap, da_pdlist); LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); } return (error); } /* * A large burst of file addition or deletion activity can drive the * memory load excessively high. First attempt to slow things down * using the techniques below. If that fails, this routine requests * the offending operations to fall back to running synchronously * until the memory load returns to a reasonable level. */ int softdep_slowdown(vp) struct vnode *vp; { struct ufsmount *ump; int jlow; int max_softdeps_hard; KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, ("softdep_slowdown called on non-softdep filesystem")); ump = VFSTOUFS(vp->v_mount); ACQUIRE_LOCK(ump); jlow = 0; /* * Check for journal space if needed. */ if (DOINGSUJ(vp)) { if (journal_space(ump, 0) == 0) jlow = 1; } /* * If the system is under its limits and our filesystem is * not responsible for more than our share of the usage and * we are not low on journal space, then no need to slow down. */ max_softdeps_hard = max_softdeps * 11 / 10; if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && dep_current[D_INODEDEP] < max_softdeps_hard && dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && ump->softdep_curdeps[D_DIRREM] < (max_softdeps_hard / 2) / stat_flush_threads && ump->softdep_curdeps[D_INODEDEP] < max_softdeps_hard / stat_flush_threads && ump->softdep_curdeps[D_INDIRDEP] < (max_softdeps_hard / 1000) / stat_flush_threads && ump->softdep_curdeps[D_FREEBLKS] < max_softdeps_hard / stat_flush_threads) { FREE_LOCK(ump); return (0); } /* * If the journal is low or our filesystem is over its limit * then speedup the cleanup. */ if (ump->softdep_curdeps[D_INDIRDEP] < (max_softdeps_hard / 1000) / stat_flush_threads || jlow) softdep_speedup(ump); stat_sync_limit_hit += 1; FREE_LOCK(ump); /* * We only slow down the rate at which new dependencies are * generated if we are not using journaling. With journaling, * the cleanup should always be sufficient to keep things * under control. */ if (DOINGSUJ(vp)) return (0); return (1); } static int softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused) { return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 && ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0)); } static void softdep_request_cleanup_inactivate(struct mount *mp) { struct vnode *vp, *mvp; int error; MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter, NULL) { vholdl(vp); vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); VI_LOCK(vp); if (vp->v_data != NULL && vp->v_usecount == 0) { while ((vp->v_iflag & VI_OWEINACT) != 0) { error = vinactive(vp); if (error != 0 && error != ERELOOKUP) break; } atomic_add_int(&stat_delayed_inact, 1); } VOP_UNLOCK(vp); vdropl(vp); } } /* * Called by the allocation routines when they are about to fail * in the hope that we can free up the requested resource (inodes * or disk space). * * First check to see if the work list has anything on it. If it has, * clean up entries until we successfully free the requested resource. * Because this process holds inodes locked, we cannot handle any remove * requests that might block on a locked inode as that could lead to * deadlock. If the worklist yields none of the requested resource, * start syncing out vnodes to free up the needed space. */ int softdep_request_cleanup(fs, vp, cred, resource) struct fs *fs; struct vnode *vp; struct ucred *cred; int resource; { struct ufsmount *ump; struct mount *mp; long starttime; ufs2_daddr_t needed; int error, failed_vnode; /* * If we are being called because of a process doing a * copy-on-write, then it is not safe to process any * worklist items as we will recurse into the copyonwrite * routine. This will result in an incoherent snapshot. * If the vnode that we hold is a snapshot, we must avoid * handling other resources that could cause deadlock. */ if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) return (0); if (resource == FLUSH_BLOCKS_WAIT) stat_cleanup_blkrequests += 1; else stat_cleanup_inorequests += 1; mp = vp->v_mount; ump = VFSTOUFS(mp); mtx_assert(UFS_MTX(ump), MA_OWNED); UFS_UNLOCK(ump); error = ffs_update(vp, 1); if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { UFS_LOCK(ump); return (0); } /* * If we are in need of resources, start by cleaning up * any block removals associated with our inode. */ ACQUIRE_LOCK(ump); process_removes(vp); process_truncates(vp); FREE_LOCK(ump); /* * Now clean up at least as many resources as we will need. * * When requested to clean up inodes, the number that are needed * is set by the number of simultaneous writers (mnt_writeopcount) * plus a bit of slop (2) in case some more writers show up while * we are cleaning. * * When requested to free up space, the amount of space that * we need is enough blocks to allocate a full-sized segment * (fs_contigsumsize). The number of such segments that will * be needed is set by the number of simultaneous writers * (mnt_writeopcount) plus a bit of slop (2) in case some more * writers show up while we are cleaning. * * Additionally, if we are unpriviledged and allocating space, * we need to ensure that we clean up enough blocks to get the * needed number of blocks over the threshold of the minimum * number of blocks required to be kept free by the filesystem * (fs_minfree). */ if (resource == FLUSH_INODES_WAIT) { needed = vfs_mount_fetch_counter(vp->v_mount, MNT_COUNT_WRITEOPCOUNT) + 2; } else if (resource == FLUSH_BLOCKS_WAIT) { needed = (vfs_mount_fetch_counter(vp->v_mount, MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) needed += fragstoblks(fs, roundup((fs->fs_dsize * fs->fs_minfree / 100) - fs->fs_cstotal.cs_nffree, fs->fs_frag)); } else { printf("softdep_request_cleanup: Unknown resource type %d\n", resource); UFS_LOCK(ump); return (0); } starttime = time_second; retry: if (resource == FLUSH_BLOCKS_WAIT && fs->fs_cstotal.cs_nbfree <= needed) softdep_send_speedup(ump, needed * fs->fs_bsize, BIO_SPEEDUP_TRIM); if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && fs->fs_cstotal.cs_nbfree <= needed) || (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && fs->fs_cstotal.cs_nifree <= needed)) { ACQUIRE_LOCK(ump); if (ump->softdep_on_worklist > 0 && process_worklist_item(UFSTOVFS(ump), ump->softdep_on_worklist, LK_NOWAIT) != 0) stat_worklist_push += 1; FREE_LOCK(ump); } /* * Check that there are vnodes pending inactivation. As they * have been unlinked, inactivating them will free up their * inodes. */ ACQUIRE_LOCK(ump); if (resource == FLUSH_INODES_WAIT && fs->fs_cstotal.cs_nifree <= needed && fs->fs_pendinginodes <= needed) { if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) { ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE; FREE_LOCK(ump); softdep_request_cleanup_inactivate(mp); ACQUIRE_LOCK(ump); ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE; wakeup(&ump->um_softdep->sd_flags); } else { while ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) != 0) { msleep(&ump->um_softdep->sd_flags, LOCK_PTR(ump), PVM, "ffsvina", hz); } } } FREE_LOCK(ump); /* * If we still need resources and there are no more worklist * entries to process to obtain them, we have to start flushing * the dirty vnodes to force the release of additional requests * to the worklist that we can then process to reap addition * resources. We walk the vnodes associated with the mount point * until we get the needed worklist requests that we can reap. * * If there are several threads all needing to clean the same * mount point, only one is allowed to walk the mount list. * When several threads all try to walk the same mount list, * they end up competing with each other and often end up in * livelock. This approach ensures that forward progress is * made at the cost of occational ENOSPC errors being returned * that might otherwise have been avoided. */ error = 1; if ((resource == FLUSH_BLOCKS_WAIT && fs->fs_cstotal.cs_nbfree <= needed) || (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && fs->fs_cstotal.cs_nifree <= needed)) { ACQUIRE_LOCK(ump); if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; FREE_LOCK(ump); failed_vnode = softdep_request_cleanup_flush(mp, ump); ACQUIRE_LOCK(ump); ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; wakeup(&ump->um_softdep->sd_flags); FREE_LOCK(ump); if (ump->softdep_on_worklist > 0) { stat_cleanup_retries += 1; if (!failed_vnode) goto retry; } } else { while ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) != 0) { msleep(&ump->um_softdep->sd_flags, LOCK_PTR(ump), PVM, "ffsrca", hz); } FREE_LOCK(ump); error = 0; } stat_cleanup_failures += 1; } if (time_second - starttime > stat_cleanup_high_delay) stat_cleanup_high_delay = time_second - starttime; UFS_LOCK(ump); return (error); } /* * Scan the vnodes for the specified mount point flushing out any * vnodes that can be locked without waiting. Finally, try to flush * the device associated with the mount point if it can be locked * without waiting. * * We return 0 if we were able to lock every vnode in our scan. * If we had to skip one or more vnodes, we return 1. */ static int softdep_request_cleanup_flush(mp, ump) struct mount *mp; struct ufsmount *ump; { struct thread *td; struct vnode *lvp, *mvp; int failed_vnode; failed_vnode = 0; td = curthread; MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { VI_UNLOCK(lvp); continue; } if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { failed_vnode = 1; continue; } if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ vput(lvp); continue; } (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); vput(lvp); } lvp = ump->um_devvp; if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { VOP_FSYNC(lvp, MNT_NOWAIT, td); VOP_UNLOCK(lvp); } return (failed_vnode); } static bool softdep_excess_items(struct ufsmount *ump, int item) { KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); return (dep_current[item] > max_softdeps && ump->softdep_curdeps[item] > max_softdeps / stat_flush_threads); } static void schedule_cleanup(struct mount *mp) { struct ufsmount *ump; struct thread *td; ump = VFSTOUFS(mp); LOCK_OWNED(ump); FREE_LOCK(ump); td = curthread; if ((td->td_pflags & TDP_KTHREAD) != 0 && (td->td_proc->p_flag2 & P2_AST_SU) == 0) { /* * No ast is delivered to kernel threads, so nobody * would deref the mp. Some kernel threads * explicitely check for AST, e.g. NFS daemon does * this in the serving loop. */ return; } if (td->td_su != NULL) vfs_rel(td->td_su); vfs_ref(mp); td->td_su = mp; thread_lock(td); td->td_flags |= TDF_ASTPENDING; thread_unlock(td); } static void softdep_ast_cleanup_proc(struct thread *td) { struct mount *mp; struct ufsmount *ump; int error; bool req; while ((mp = td->td_su) != NULL) { td->td_su = NULL; error = vfs_busy(mp, MBF_NOWAIT); vfs_rel(mp); if (error != 0) return; if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { ump = VFSTOUFS(mp); for (;;) { req = false; ACQUIRE_LOCK(ump); if (softdep_excess_items(ump, D_INODEDEP)) { req = true; request_cleanup(mp, FLUSH_INODES); } if (softdep_excess_items(ump, D_DIRREM)) { req = true; request_cleanup(mp, FLUSH_BLOCKS); } FREE_LOCK(ump); if (softdep_excess_items(ump, D_NEWBLK) || softdep_excess_items(ump, D_ALLOCDIRECT) || softdep_excess_items(ump, D_ALLOCINDIR)) { error = vn_start_write(NULL, &mp, V_WAIT); if (error == 0) { req = true; VFS_SYNC(mp, MNT_WAIT); vn_finished_write(mp); } } if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) break; } } vfs_unbusy(mp); } if ((mp = td->td_su) != NULL) { td->td_su = NULL; vfs_rel(mp); } } /* * If memory utilization has gotten too high, deliberately slow things * down and speed up the I/O processing. */ static int request_cleanup(mp, resource) struct mount *mp; int resource; { struct thread *td = curthread; struct ufsmount *ump; ump = VFSTOUFS(mp); LOCK_OWNED(ump); /* * We never hold up the filesystem syncer or buf daemon. */ if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) return (0); /* * First check to see if the work list has gotten backlogged. * If it has, co-opt this process to help clean up two entries. * Because this process may hold inodes locked, we cannot * handle any remove requests that might block on a locked * inode as that could lead to deadlock. We set TDP_SOFTDEP * to avoid recursively processing the worklist. */ if (ump->softdep_on_worklist > max_softdeps / 10) { td->td_pflags |= TDP_SOFTDEP; process_worklist_item(mp, 2, LK_NOWAIT); td->td_pflags &= ~TDP_SOFTDEP; stat_worklist_push += 2; return(1); } /* * Next, we attempt to speed up the syncer process. If that * is successful, then we allow the process to continue. */ if (softdep_speedup(ump) && resource != FLUSH_BLOCKS_WAIT && resource != FLUSH_INODES_WAIT) return(0); /* * If we are resource constrained on inode dependencies, try * flushing some dirty inodes. Otherwise, we are constrained * by file deletions, so try accelerating flushes of directories * with removal dependencies. We would like to do the cleanup * here, but we probably hold an inode locked at this point and * that might deadlock against one that we try to clean. So, * the best that we can do is request the syncer daemon to do * the cleanup for us. */ switch (resource) { case FLUSH_INODES: case FLUSH_INODES_WAIT: ACQUIRE_GBLLOCK(&lk); stat_ino_limit_push += 1; req_clear_inodedeps += 1; FREE_GBLLOCK(&lk); stat_countp = &stat_ino_limit_hit; break; case FLUSH_BLOCKS: case FLUSH_BLOCKS_WAIT: ACQUIRE_GBLLOCK(&lk); stat_blk_limit_push += 1; req_clear_remove += 1; FREE_GBLLOCK(&lk); stat_countp = &stat_blk_limit_hit; break; default: panic("request_cleanup: unknown type"); } /* * Hopefully the syncer daemon will catch up and awaken us. * We wait at most tickdelay before proceeding in any case. */ ACQUIRE_GBLLOCK(&lk); FREE_LOCK(ump); proc_waiting += 1; if (callout_pending(&softdep_callout) == FALSE) callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, pause_timer, 0); if ((td->td_pflags & TDP_KTHREAD) == 0) msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); proc_waiting -= 1; FREE_GBLLOCK(&lk); ACQUIRE_LOCK(ump); return (1); } /* * Awaken processes pausing in request_cleanup and clear proc_waiting * to indicate that there is no longer a timer running. Pause_timer * will be called with the global softdep mutex (&lk) locked. */ static void pause_timer(arg) void *arg; { GBLLOCK_OWNED(&lk); /* * The callout_ API has acquired mtx and will hold it around this * function call. */ *stat_countp += proc_waiting; wakeup(&proc_waiting); } /* * If requested, try removing inode or removal dependencies. */ static void check_clear_deps(mp) struct mount *mp; { struct ufsmount *ump; bool suj_susp; /* * Tell the lower layers that any TRIM or WRITE transactions that have * been delayed for performance reasons should proceed to help alleviate * the shortage faster. The race between checking req_* and the softdep * mutex (lk) is fine since this is an advisory operation that at most * causes deferred work to be done sooner. */ ump = VFSTOUFS(mp); suj_susp = ump->um_softdep->sd_jblocks != NULL && ump->softdep_jblocks->jb_suspended; if (req_clear_remove || req_clear_inodedeps || suj_susp) { FREE_LOCK(ump); softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); ACQUIRE_LOCK(ump); } /* * If we are suspended, it may be because of our using * too many inodedeps, so help clear them out. */ if (suj_susp) clear_inodedeps(mp); /* * General requests for cleanup of backed up dependencies */ ACQUIRE_GBLLOCK(&lk); if (req_clear_inodedeps) { req_clear_inodedeps -= 1; FREE_GBLLOCK(&lk); clear_inodedeps(mp); ACQUIRE_GBLLOCK(&lk); wakeup(&proc_waiting); } if (req_clear_remove) { req_clear_remove -= 1; FREE_GBLLOCK(&lk); clear_remove(mp); ACQUIRE_GBLLOCK(&lk); wakeup(&proc_waiting); } FREE_GBLLOCK(&lk); } /* * Flush out a directory with at least one removal dependency in an effort to * reduce the number of dirrem, freefile, and freeblks dependency structures. */ static void clear_remove(mp) struct mount *mp; { struct pagedep_hashhead *pagedephd; struct pagedep *pagedep; struct ufsmount *ump; struct vnode *vp; struct bufobj *bo; int error, cnt; ino_t ino; ump = VFSTOUFS(mp); LOCK_OWNED(ump); for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; if (ump->pagedep_nextclean > ump->pagedep_hash_size) ump->pagedep_nextclean = 0; LIST_FOREACH(pagedep, pagedephd, pd_hash) { if (LIST_EMPTY(&pagedep->pd_dirremhd)) continue; ino = pagedep->pd_ino; if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) continue; FREE_LOCK(ump); /* * Let unmount clear deps */ error = vfs_busy(mp, MBF_NOWAIT); if (error != 0) goto finish_write; error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); vfs_unbusy(mp); if (error != 0) { softdep_error("clear_remove: vget", error); goto finish_write; } MPASS(VTOI(vp)->i_mode != 0); if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) softdep_error("clear_remove: fsync", error); bo = &vp->v_bufobj; BO_LOCK(bo); drain_output(vp); BO_UNLOCK(bo); vput(vp); finish_write: vn_finished_write(mp); ACQUIRE_LOCK(ump); return; } } } /* * Clear out a block of dirty inodes in an effort to reduce * the number of inodedep dependency structures. */ static void clear_inodedeps(mp) struct mount *mp; { struct inodedep_hashhead *inodedephd; struct inodedep *inodedep; struct ufsmount *ump; struct vnode *vp; struct fs *fs; int error, cnt; ino_t firstino, lastino, ino; ump = VFSTOUFS(mp); fs = ump->um_fs; LOCK_OWNED(ump); /* * Pick a random inode dependency to be cleared. * We will then gather up all the inodes in its block * that have dependencies and flush them out. */ for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; if (ump->inodedep_nextclean > ump->inodedep_hash_size) ump->inodedep_nextclean = 0; if ((inodedep = LIST_FIRST(inodedephd)) != NULL) break; } if (inodedep == NULL) return; /* * Find the last inode in the block with dependencies. */ firstino = rounddown2(inodedep->id_ino, INOPB(fs)); for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) break; /* * Asynchronously push all but the last inode with dependencies. * Synchronously push the last inode with dependencies to ensure * that the inode block gets written to free up the inodedeps. */ for (ino = firstino; ino <= lastino; ino++) { if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) continue; if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) continue; FREE_LOCK(ump); error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ if (error != 0) { vn_finished_write(mp); ACQUIRE_LOCK(ump); return; } if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) { softdep_error("clear_inodedeps: vget", error); vfs_unbusy(mp); vn_finished_write(mp); ACQUIRE_LOCK(ump); return; } vfs_unbusy(mp); if (VTOI(vp)->i_mode == 0) { vgone(vp); } else if (ino == lastino) { do { error = ffs_syncvnode(vp, MNT_WAIT, 0); } while (error == ERELOOKUP); if (error != 0) softdep_error("clear_inodedeps: fsync1", error); } else { if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) softdep_error("clear_inodedeps: fsync2", error); BO_LOCK(&vp->v_bufobj); drain_output(vp); BO_UNLOCK(&vp->v_bufobj); } vput(vp); vn_finished_write(mp); ACQUIRE_LOCK(ump); } } void softdep_buf_append(bp, wkhd) struct buf *bp; struct workhead *wkhd; { struct worklist *wk; struct ufsmount *ump; if ((wk = LIST_FIRST(wkhd)) == NULL) return; KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, ("softdep_buf_append called on non-softdep filesystem")); ump = VFSTOUFS(wk->wk_mp); ACQUIRE_LOCK(ump); while ((wk = LIST_FIRST(wkhd)) != NULL) { WORKLIST_REMOVE(wk); WORKLIST_INSERT(&bp->b_dep, wk); } FREE_LOCK(ump); } void softdep_inode_append(ip, cred, wkhd) struct inode *ip; struct ucred *cred; struct workhead *wkhd; { struct buf *bp; struct fs *fs; struct ufsmount *ump; int error; ump = ITOUMP(ip); KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, ("softdep_inode_append called on non-softdep filesystem")); fs = ump->um_fs; error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, cred, &bp); if (error) { bqrelse(bp); softdep_freework(wkhd); return; } softdep_buf_append(bp, wkhd); bqrelse(bp); } void softdep_freework(wkhd) struct workhead *wkhd; { struct worklist *wk; struct ufsmount *ump; if ((wk = LIST_FIRST(wkhd)) == NULL) return; KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, ("softdep_freework called on non-softdep filesystem")); ump = VFSTOUFS(wk->wk_mp); ACQUIRE_LOCK(ump); handle_jwork(wkhd); FREE_LOCK(ump); } static struct ufsmount * softdep_bp_to_mp(bp) struct buf *bp; { struct mount *mp; struct vnode *vp; if (LIST_EMPTY(&bp->b_dep)) return (NULL); vp = bp->b_vp; KASSERT(vp != NULL, ("%s, buffer with dependencies lacks vnode", __func__)); /* * The ump mount point is stable after we get a correct * pointer, since bp is locked and this prevents unmount from * proceeding. But to get to it, we cannot dereference bp->b_dep * head wk_mp, because we do not yet own SU ump lock and * workitem might be freed while dereferenced. */ retry: switch (vp->v_type) { case VCHR: VI_LOCK(vp); mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; VI_UNLOCK(vp); if (mp == NULL) goto retry; break; case VREG: case VDIR: case VLNK: case VFIFO: case VSOCK: mp = vp->v_mount; break; case VBLK: vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); /* FALLTHROUGH */ case VNON: case VBAD: case VMARKER: mp = NULL; break; default: vn_printf(vp, "unknown vnode type"); mp = NULL; break; } return (VFSTOUFS(mp)); } /* * Function to determine if the buffer has outstanding dependencies * that will cause a roll-back if the buffer is written. If wantcount * is set, return number of dependencies, otherwise just yes or no. */ static int softdep_count_dependencies(bp, wantcount) struct buf *bp; int wantcount; { struct worklist *wk; struct ufsmount *ump; struct bmsafemap *bmsafemap; struct freework *freework; struct inodedep *inodedep; struct indirdep *indirdep; struct freeblks *freeblks; struct allocindir *aip; struct pagedep *pagedep; struct dirrem *dirrem; struct newblk *newblk; struct mkdir *mkdir; struct diradd *dap; int i, retval; ump = softdep_bp_to_mp(bp); if (ump == NULL) return (0); retval = 0; ACQUIRE_LOCK(ump); LIST_FOREACH(wk, &bp->b_dep, wk_list) { switch (wk->wk_type) { case D_INODEDEP: inodedep = WK_INODEDEP(wk); if ((inodedep->id_state & DEPCOMPLETE) == 0) { /* bitmap allocation dependency */ retval += 1; if (!wantcount) goto out; } if (TAILQ_FIRST(&inodedep->id_inoupdt)) { /* direct block pointer dependency */ retval += 1; if (!wantcount) goto out; } if (TAILQ_FIRST(&inodedep->id_extupdt)) { /* direct block pointer dependency */ retval += 1; if (!wantcount) goto out; } if (TAILQ_FIRST(&inodedep->id_inoreflst)) { /* Add reference dependency. */ retval += 1; if (!wantcount) goto out; } continue; case D_INDIRDEP: indirdep = WK_INDIRDEP(wk); TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { /* indirect truncation dependency */ retval += 1; if (!wantcount) goto out; } LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { /* indirect block pointer dependency */ retval += 1; if (!wantcount) goto out; } continue; case D_PAGEDEP: pagedep = WK_PAGEDEP(wk); LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { if (LIST_FIRST(&dirrem->dm_jremrefhd)) { /* Journal remove ref dependency. */ retval += 1; if (!wantcount) goto out; } } for (i = 0; i < DAHASHSZ; i++) { LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { /* directory entry dependency */ retval += 1; if (!wantcount) goto out; } } continue; case D_BMSAFEMAP: bmsafemap = WK_BMSAFEMAP(wk); if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { /* Add reference dependency. */ retval += 1; if (!wantcount) goto out; } if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { /* Allocate block dependency. */ retval += 1; if (!wantcount) goto out; } continue; case D_FREEBLKS: freeblks = WK_FREEBLKS(wk); if (LIST_FIRST(&freeblks->fb_jblkdephd)) { /* Freeblk journal dependency. */ retval += 1; if (!wantcount) goto out; } continue; case D_ALLOCDIRECT: case D_ALLOCINDIR: newblk = WK_NEWBLK(wk); if (newblk->nb_jnewblk) { /* Journal allocate dependency. */ retval += 1; if (!wantcount) goto out; } continue; case D_MKDIR: mkdir = WK_MKDIR(wk); if (mkdir->md_jaddref) { /* Journal reference dependency. */ retval += 1; if (!wantcount) goto out; } continue; case D_FREEWORK: case D_FREEDEP: case D_JSEGDEP: case D_JSEG: case D_SBDEP: /* never a dependency on these blocks */ continue; default: panic("softdep_count_dependencies: Unexpected type %s", TYPENAME(wk->wk_type)); /* NOTREACHED */ } } out: FREE_LOCK(ump); return (retval); } /* * Acquire exclusive access to a buffer. * Must be called with a locked mtx parameter. * Return acquired buffer or NULL on failure. */ static struct buf * getdirtybuf(bp, lock, waitfor) struct buf *bp; struct rwlock *lock; int waitfor; { int error; if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { if (waitfor != MNT_WAIT) return (NULL); error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); /* * Even if we successfully acquire bp here, we have dropped * lock, which may violates our guarantee. */ if (error == 0) BUF_UNLOCK(bp); else if (error != ENOLCK) panic("getdirtybuf: inconsistent lock: %d", error); rw_wlock(lock); return (NULL); } if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { rw_wunlock(lock); BO_LOCK(bp->b_bufobj); BUF_UNLOCK(bp); if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { bp->b_vflags |= BV_BKGRDWAIT; msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO | PDROP, "getbuf", 0); } else BO_UNLOCK(bp->b_bufobj); rw_wlock(lock); return (NULL); } BUF_UNLOCK(bp); if (waitfor != MNT_WAIT) return (NULL); #ifdef DEBUG_VFS_LOCKS if (bp->b_vp->v_type != VCHR) ASSERT_BO_WLOCKED(bp->b_bufobj); #endif bp->b_vflags |= BV_BKGRDWAIT; rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); return (NULL); } if ((bp->b_flags & B_DELWRI) == 0) { BUF_UNLOCK(bp); return (NULL); } bremfree(bp); return (bp); } /* * Check if it is safe to suspend the file system now. On entry, * the vnode interlock for devvp should be held. Return 0 with * the mount interlock held if the file system can be suspended now, * otherwise return EAGAIN with the mount interlock held. */ int softdep_check_suspend(struct mount *mp, struct vnode *devvp, int softdep_depcnt, int softdep_accdepcnt, int secondary_writes, int secondary_accwrites) { struct buf *bp; struct bufobj *bo; struct ufsmount *ump; struct inodedep *inodedep; struct indirdep *indirdep; struct worklist *wk, *nextwk; int error, unlinked; bo = &devvp->v_bufobj; ASSERT_BO_WLOCKED(bo); /* * If we are not running with soft updates, then we need only * deal with secondary writes as we try to suspend. */ if (MOUNTEDSOFTDEP(mp) == 0) { MNT_ILOCK(mp); while (mp->mnt_secondary_writes != 0) { BO_UNLOCK(bo); msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), (PUSER - 1) | PDROP, "secwr", 0); BO_LOCK(bo); MNT_ILOCK(mp); } /* * Reasons for needing more work before suspend: * - Dirty buffers on devvp. * - Secondary writes occurred after start of vnode sync loop */ error = 0; if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0 || secondary_writes != 0 || mp->mnt_secondary_writes != 0 || secondary_accwrites != mp->mnt_secondary_accwrites) error = EAGAIN; BO_UNLOCK(bo); return (error); } /* * If we are running with soft updates, then we need to coordinate * with them as we try to suspend. */ ump = VFSTOUFS(mp); for (;;) { if (!TRY_ACQUIRE_LOCK(ump)) { BO_UNLOCK(bo); ACQUIRE_LOCK(ump); FREE_LOCK(ump); BO_LOCK(bo); continue; } MNT_ILOCK(mp); if (mp->mnt_secondary_writes != 0) { FREE_LOCK(ump); BO_UNLOCK(bo); msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), (PUSER - 1) | PDROP, "secwr", 0); BO_LOCK(bo); continue; } break; } unlinked = 0; if (MOUNTEDSUJ(mp)) { for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | UNLINKONLIST) || !check_inodedep_free(inodedep)) continue; unlinked++; } } /* * XXX Check for orphaned indirdep dependency structures. * * During forcible unmount after a disk failure there is a * bug that causes one or more indirdep dependency structures * to fail to be deallocated. We check for them here and clean * them up so that the unmount can succeed. */ if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 && ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) { LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP], wk_all, nextwk) { indirdep = WK_INDIRDEP(wk); if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) != (GOINGAWAY | DEPCOMPLETE) || !TAILQ_EMPTY(&indirdep->ir_trunc) || !LIST_EMPTY(&indirdep->ir_completehd) || !LIST_EMPTY(&indirdep->ir_writehd) || !LIST_EMPTY(&indirdep->ir_donehd) || !LIST_EMPTY(&indirdep->ir_deplisthd) || indirdep->ir_saveddata != NULL || indirdep->ir_savebp == NULL) { printf("%s: skipping orphaned indirdep %p\n", __FUNCTION__, indirdep); continue; } printf("%s: freeing orphaned indirdep %p\n", __FUNCTION__, indirdep); bp = indirdep->ir_savebp; indirdep->ir_savebp = NULL; free_indirdep(indirdep); FREE_LOCK(ump); brelse(bp); while (!TRY_ACQUIRE_LOCK(ump)) { BO_UNLOCK(bo); ACQUIRE_LOCK(ump); FREE_LOCK(ump); BO_LOCK(bo); } } } /* * Reasons for needing more work before suspend: * - Dirty buffers on devvp. * - Dependency structures still exist * - Softdep activity occurred after start of vnode sync loop * - Secondary writes occurred after start of vnode sync loop */ error = 0; if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0 || softdep_depcnt != unlinked || ump->softdep_deps != unlinked || softdep_accdepcnt != ump->softdep_accdeps || secondary_writes != 0 || mp->mnt_secondary_writes != 0 || secondary_accwrites != mp->mnt_secondary_accwrites) error = EAGAIN; FREE_LOCK(ump); BO_UNLOCK(bo); return (error); } /* * Get the number of dependency structures for the file system, both * the current number and the total number allocated. These will * later be used to detect that softdep processing has occurred. */ void softdep_get_depcounts(struct mount *mp, int *softdep_depsp, int *softdep_accdepsp) { struct ufsmount *ump; if (MOUNTEDSOFTDEP(mp) == 0) { *softdep_depsp = 0; *softdep_accdepsp = 0; return; } ump = VFSTOUFS(mp); ACQUIRE_LOCK(ump); *softdep_depsp = ump->softdep_deps; *softdep_accdepsp = ump->softdep_accdeps; FREE_LOCK(ump); } /* * Wait for pending output on a vnode to complete. */ static void drain_output(vp) struct vnode *vp; { ASSERT_VOP_LOCKED(vp, "drain_output"); (void)bufobj_wwait(&vp->v_bufobj, 0, 0); } /* * Called whenever a buffer that is being invalidated or reallocated * contains dependencies. This should only happen if an I/O error has * occurred. The routine is called with the buffer locked. */ static void softdep_deallocate_dependencies(bp) struct buf *bp; { if ((bp->b_ioflags & BIO_ERROR) == 0) panic("softdep_deallocate_dependencies: dangling deps"); if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); else printf("softdep_deallocate_dependencies: " "got error %d while accessing filesystem\n", bp->b_error); if (bp->b_error != ENXIO) panic("softdep_deallocate_dependencies: unrecovered I/O error"); } /* * Function to handle asynchronous write errors in the filesystem. */ static void softdep_error(func, error) char *func; int error; { /* XXX should do something better! */ printf("%s: got error %d while accessing filesystem\n", func, error); } #ifdef DDB /* exported to ffs_vfsops.c */ extern void db_print_ffs(struct ufsmount *ump); void db_print_ffs(struct ufsmount *ump) { db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", ump->um_fs, ump->softdep_on_worklist, ump->softdep_deps, ump->softdep_req); } static void worklist_print(struct worklist *wk, int verbose) { if (!verbose) { db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); return; } db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, LIST_NEXT(wk, wk_list)); db_print_ffs(VFSTOUFS(wk->wk_mp)); } static void inodedep_print(struct inodedep *inodedep, int verbose) { worklist_print(&inodedep->id_list, 0); db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", inodedep->id_fs, (intmax_t)inodedep->id_ino, (intmax_t)fsbtodb(inodedep->id_fs, ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), (intmax_t)inodedep->id_nlinkdelta, (intmax_t)inodedep->id_savednlink); if (verbose == 0) return; db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", inodedep->id_bmsafemap, inodedep->id_mkdiradd, TAILQ_FIRST(&inodedep->id_inoreflst)); db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", LIST_FIRST(&inodedep->id_dirremhd), LIST_FIRST(&inodedep->id_pendinghd), LIST_FIRST(&inodedep->id_bufwait)); db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", LIST_FIRST(&inodedep->id_inowait), TAILQ_FIRST(&inodedep->id_inoupdt), TAILQ_FIRST(&inodedep->id_newinoupdt)); db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", TAILQ_FIRST(&inodedep->id_extupdt), TAILQ_FIRST(&inodedep->id_newextupdt), TAILQ_FIRST(&inodedep->id_freeblklst)); db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", inodedep->id_savedino1, (intmax_t)inodedep->id_savedsize, (intmax_t)inodedep->id_savedextsize); } static void newblk_print(struct newblk *nbp) { worklist_print(&nbp->nb_list, 0); db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", &nbp->nb_jnewblk, &nbp->nb_bmsafemap, &nbp->nb_freefrag); db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", LIST_FIRST(&nbp->nb_indirdeps), LIST_FIRST(&nbp->nb_newdirblk), LIST_FIRST(&nbp->nb_jwork)); } static void allocdirect_print(struct allocdirect *adp) { newblk_print(&adp->ad_block); db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); db_printf(" offset %d, inodedep %p\n", adp->ad_offset, adp->ad_inodedep); } static void allocindir_print(struct allocindir *aip) { newblk_print(&aip->ai_block); db_printf(" oldblkno %jd, lbn %jd\n", (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); db_printf(" offset %d, indirdep %p\n", aip->ai_offset, aip->ai_indirdep); } static void mkdir_print(struct mkdir *mkdir) { worklist_print(&mkdir->md_list, 0); db_printf(" diradd %p, jaddref %p, buf %p\n", mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); } DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) { if (have_addr == 0) { db_printf("inodedep address required\n"); return; } inodedep_print((struct inodedep*)addr, 1); } DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) { struct inodedep_hashhead *inodedephd; struct inodedep *inodedep; struct ufsmount *ump; int cnt; if (have_addr == 0) { db_printf("ufsmount address required\n"); return; } ump = (struct ufsmount *)addr; for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { inodedephd = &ump->inodedep_hashtbl[cnt]; LIST_FOREACH(inodedep, inodedephd, id_hash) { inodedep_print(inodedep, 0); } } } DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) { if (have_addr == 0) { db_printf("worklist address required\n"); return; } worklist_print((struct worklist *)addr, 1); } DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) { struct worklist *wk; struct workhead *wkhd; if (have_addr == 0) { db_printf("worklist address required " "(for example value in bp->b_dep)\n"); return; } /* * We often do not have the address of the worklist head but * instead a pointer to its first entry (e.g., we have the * contents of bp->b_dep rather than &bp->b_dep). But the back * pointer of bp->b_dep will point at the head of the list, so * we cheat and use that instead. If we are in the middle of * a list we will still get the same result, so nothing * unexpected will result. */ wk = (struct worklist *)addr; if (wk == NULL) return; wkhd = (struct workhead *)wk->wk_list.le_prev; LIST_FOREACH(wk, wkhd, wk_list) { switch(wk->wk_type) { case D_INODEDEP: inodedep_print(WK_INODEDEP(wk), 0); continue; case D_ALLOCDIRECT: allocdirect_print(WK_ALLOCDIRECT(wk)); continue; case D_ALLOCINDIR: allocindir_print(WK_ALLOCINDIR(wk)); continue; case D_MKDIR: mkdir_print(WK_MKDIR(wk)); continue; default: worklist_print(wk, 0); continue; } } } DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) { if (have_addr == 0) { db_printf("mkdir address required\n"); return; } mkdir_print((struct mkdir *)addr); } DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) { struct mkdirlist *mkdirlisthd; struct mkdir *mkdir; if (have_addr == 0) { db_printf("mkdir listhead address required\n"); return; } mkdirlisthd = (struct mkdirlist *)addr; LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { mkdir_print(mkdir); if (mkdir->md_diradd != NULL) { db_printf(" "); worklist_print(&mkdir->md_diradd->da_list, 0); } if (mkdir->md_jaddref != NULL) { db_printf(" "); worklist_print(&mkdir->md_jaddref->ja_list, 0); } } } DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) { if (have_addr == 0) { db_printf("allocdirect address required\n"); return; } allocdirect_print((struct allocdirect *)addr); } DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) { if (have_addr == 0) { db_printf("allocindir address required\n"); return; } allocindir_print((struct allocindir *)addr); } #endif /* DDB */ #endif /* SOFTUPDATES */ diff --git a/sys/ufs/ffs/ffs_vfsops.c b/sys/ufs/ffs/ffs_vfsops.c index fb00218f5d3a..0b96edff12ff 100644 --- a/sys/ufs/ffs/ffs_vfsops.c +++ b/sys/ufs/ffs/ffs_vfsops.c @@ -1,2645 +1,2644 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1991, 1993, 1994 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_quota.h" #include "opt_ufs.h" #include "opt_ffs.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static uma_zone_t uma_inode, uma_ufs1, uma_ufs2; VFS_SMR_DECLARE; static int ffs_mountfs(struct vnode *, struct mount *, struct thread *); static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, ufs2_daddr_t); static void ffs_ifree(struct ufsmount *ump, struct inode *ip); static int ffs_sync_lazy(struct mount *mp); static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size); static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size); static vfs_init_t ffs_init; static vfs_uninit_t ffs_uninit; static vfs_extattrctl_t ffs_extattrctl; static vfs_cmount_t ffs_cmount; static vfs_unmount_t ffs_unmount; static vfs_mount_t ffs_mount; static vfs_statfs_t ffs_statfs; static vfs_fhtovp_t ffs_fhtovp; static vfs_sync_t ffs_sync; static struct vfsops ufs_vfsops = { .vfs_extattrctl = ffs_extattrctl, .vfs_fhtovp = ffs_fhtovp, .vfs_init = ffs_init, .vfs_mount = ffs_mount, .vfs_cmount = ffs_cmount, .vfs_quotactl = ufs_quotactl, .vfs_root = vfs_cache_root, .vfs_cachedroot = ufs_root, .vfs_statfs = ffs_statfs, .vfs_sync = ffs_sync, .vfs_uninit = ffs_uninit, .vfs_unmount = ffs_unmount, .vfs_vget = ffs_vget, .vfs_susp_clean = process_deferred_inactive, }; VFS_SET(ufs_vfsops, ufs, 0); MODULE_VERSION(ufs, 1); static b_strategy_t ffs_geom_strategy; static b_write_t ffs_bufwrite; static struct buf_ops ffs_ops = { .bop_name = "FFS", .bop_write = ffs_bufwrite, .bop_strategy = ffs_geom_strategy, .bop_sync = bufsync, #ifdef NO_FFS_SNAPSHOT .bop_bdflush = bufbdflush, #else .bop_bdflush = ffs_bdflush, #endif }; /* * Note that userquota and groupquota options are not currently used * by UFS/FFS code and generally mount(8) does not pass those options * from userland, but they can be passed by loader(8) via * vfs.root.mountfrom.options. */ static const char *ffs_opts[] = { "acls", "async", "noatime", "noclusterr", "noclusterw", "noexec", "export", "force", "from", "groupquota", "multilabel", "nfsv4acls", "snapshot", "nosuid", "suiddir", "nosymfollow", "sync", "union", "userquota", "untrusted", NULL }; static int ffs_enxio_enable = 1; SYSCTL_DECL(_vfs_ffs); SYSCTL_INT(_vfs_ffs, OID_AUTO, enxio_enable, CTLFLAG_RWTUN, &ffs_enxio_enable, 0, "enable mapping of other disk I/O errors to ENXIO"); /* * Return buffer with the contents of block "offset" from the beginning of * directory "ip". If "res" is non-zero, fill it in with a pointer to the * remaining space in the directory. */ static int ffs_blkatoff(struct vnode *vp, off_t offset, char **res, struct buf **bpp) { struct inode *ip; struct fs *fs; struct buf *bp; ufs_lbn_t lbn; int bsize, error; ip = VTOI(vp); fs = ITOFS(ip); lbn = lblkno(fs, offset); bsize = blksize(fs, ip, lbn); *bpp = NULL; error = bread(vp, lbn, bsize, NOCRED, &bp); if (error) { return (error); } if (res) *res = (char *)bp->b_data + blkoff(fs, offset); *bpp = bp; return (0); } /* * Load up the contents of an inode and copy the appropriate pieces * to the incore copy. */ static int ffs_load_inode(struct buf *bp, struct inode *ip, struct fs *fs, ino_t ino) { struct ufs1_dinode *dip1; struct ufs2_dinode *dip2; int error; if (I_IS_UFS1(ip)) { dip1 = ip->i_din1; *dip1 = *((struct ufs1_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); ip->i_mode = dip1->di_mode; ip->i_nlink = dip1->di_nlink; ip->i_effnlink = dip1->di_nlink; ip->i_size = dip1->di_size; ip->i_flags = dip1->di_flags; ip->i_gen = dip1->di_gen; ip->i_uid = dip1->di_uid; ip->i_gid = dip1->di_gid; return (0); } dip2 = ((struct ufs2_dinode *)bp->b_data + ino_to_fsbo(fs, ino)); if ((error = ffs_verify_dinode_ckhash(fs, dip2)) != 0 && !ffs_fsfail_cleanup(ITOUMP(ip), error)) { printf("%s: inode %jd: check-hash failed\n", fs->fs_fsmnt, (intmax_t)ino); return (error); } *ip->i_din2 = *dip2; dip2 = ip->i_din2; ip->i_mode = dip2->di_mode; ip->i_nlink = dip2->di_nlink; ip->i_effnlink = dip2->di_nlink; ip->i_size = dip2->di_size; ip->i_flags = dip2->di_flags; ip->i_gen = dip2->di_gen; ip->i_uid = dip2->di_uid; ip->i_gid = dip2->di_gid; return (0); } /* * Verify that a filesystem block number is a valid data block. * This routine is only called on untrusted filesystems. */ static int ffs_check_blkno(struct mount *mp, ino_t inum, ufs2_daddr_t daddr, int blksize) { struct fs *fs; struct ufsmount *ump; ufs2_daddr_t end_daddr; int cg, havemtx; KASSERT((mp->mnt_flag & MNT_UNTRUSTED) != 0, ("ffs_check_blkno called on a trusted file system")); ump = VFSTOUFS(mp); fs = ump->um_fs; cg = dtog(fs, daddr); end_daddr = daddr + numfrags(fs, blksize); /* * Verify that the block number is a valid data block. Also check * that it does not point to an inode block or a superblock. Accept * blocks that are unalloacted (0) or part of snapshot metadata * (BLK_NOCOPY or BLK_SNAP). * * Thus, the block must be in a valid range for the filesystem and * either in the space before a backup superblock (except the first * cylinder group where that space is used by the bootstrap code) or * after the inode blocks and before the end of the cylinder group. */ if ((uint64_t)daddr <= BLK_SNAP || ((uint64_t)end_daddr <= fs->fs_size && ((cg > 0 && end_daddr <= cgsblock(fs, cg)) || (daddr >= cgdmin(fs, cg) && end_daddr <= cgbase(fs, cg) + fs->fs_fpg)))) return (0); if ((havemtx = mtx_owned(UFS_MTX(ump))) == 0) UFS_LOCK(ump); if (ppsratecheck(&ump->um_last_integritymsg, &ump->um_secs_integritymsg, 1)) { UFS_UNLOCK(ump); uprintf("\n%s: inode %jd, out-of-range indirect block " "number %jd\n", mp->mnt_stat.f_mntonname, inum, daddr); if (havemtx) UFS_LOCK(ump); } else if (!havemtx) UFS_UNLOCK(ump); return (EINTEGRITY); } /* * Initiate a forcible unmount. * Used to unmount filesystems whose underlying media has gone away. */ static void ffs_fsfail_unmount(void *v, int pending) { struct fsfail_task *etp; struct mount *mp; etp = v; /* * Find our mount and get a ref on it, then try to unmount. */ mp = vfs_getvfs(&etp->fsid); if (mp != NULL) dounmount(mp, MNT_FORCE, curthread); free(etp, M_UFSMNT); } /* * On first ENXIO error, start a task that forcibly unmounts the filesystem. * * Return true if a cleanup is in progress. */ int ffs_fsfail_cleanup(struct ufsmount *ump, int error) { int retval; UFS_LOCK(ump); retval = ffs_fsfail_cleanup_locked(ump, error); UFS_UNLOCK(ump); return (retval); } int ffs_fsfail_cleanup_locked(struct ufsmount *ump, int error) { struct fsfail_task *etp; struct task *tp; mtx_assert(UFS_MTX(ump), MA_OWNED); if (error == ENXIO && (ump->um_flags & UM_FSFAIL_CLEANUP) == 0) { ump->um_flags |= UM_FSFAIL_CLEANUP; /* * Queue an async forced unmount. */ etp = ump->um_fsfail_task; ump->um_fsfail_task = NULL; if (etp != NULL) { tp = &etp->task; TASK_INIT(tp, 0, ffs_fsfail_unmount, etp); taskqueue_enqueue(taskqueue_thread, tp); printf("UFS: forcibly unmounting %s from %s\n", ump->um_mountp->mnt_stat.f_mntfromname, ump->um_mountp->mnt_stat.f_mntonname); } } return ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0); } /* * Wrapper used during ENXIO cleanup to allocate empty buffers when * the kernel is unable to read the real one. They are needed so that * the soft updates code can use them to unwind its dependencies. */ int ffs_breadz(struct ufsmount *ump, struct vnode *vp, daddr_t lblkno, daddr_t dblkno, int size, daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags, void (*ckhashfunc)(struct buf *), struct buf **bpp) { int error; flags |= GB_CVTENXIO; error = breadn_flags(vp, lblkno, dblkno, size, rablkno, rabsize, cnt, cred, flags, ckhashfunc, bpp); if (error != 0 && ffs_fsfail_cleanup(ump, error)) { error = getblkx(vp, lblkno, dblkno, size, 0, 0, flags, bpp); KASSERT(error == 0, ("getblkx failed")); vfs_bio_bzero_buf(*bpp, 0, size); } return (error); } static int ffs_mount(struct mount *mp) { struct vnode *devvp, *odevvp; struct thread *td; struct ufsmount *ump = NULL; struct fs *fs; - int error, error1, flags; + int error, flags; + int error1 __diagused; uint64_t mntorflags, saved_mnt_flag; accmode_t accmode; struct nameidata ndp; char *fspec; bool mounted_softdep; td = curthread; if (vfs_filteropt(mp->mnt_optnew, ffs_opts)) return (EINVAL); if (uma_inode == NULL) { uma_inode = uma_zcreate("FFS inode", sizeof(struct inode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_ufs1 = uma_zcreate("FFS1 dinode", sizeof(struct ufs1_dinode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); uma_ufs2 = uma_zcreate("FFS2 dinode", sizeof(struct ufs2_dinode), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); VFS_SMR_ZONE_SET(uma_inode); } vfs_deleteopt(mp->mnt_optnew, "groupquota"); vfs_deleteopt(mp->mnt_optnew, "userquota"); fspec = vfs_getopts(mp->mnt_optnew, "from", &error); if (error) return (error); mntorflags = 0; if (vfs_getopt(mp->mnt_optnew, "untrusted", NULL, NULL) == 0) mntorflags |= MNT_UNTRUSTED; if (vfs_getopt(mp->mnt_optnew, "acls", NULL, NULL) == 0) mntorflags |= MNT_ACLS; if (vfs_getopt(mp->mnt_optnew, "snapshot", NULL, NULL) == 0) { mntorflags |= MNT_SNAPSHOT; /* * Once we have set the MNT_SNAPSHOT flag, do not * persist "snapshot" in the options list. */ vfs_deleteopt(mp->mnt_optnew, "snapshot"); vfs_deleteopt(mp->mnt_opt, "snapshot"); } if (vfs_getopt(mp->mnt_optnew, "nfsv4acls", NULL, NULL) == 0) { if (mntorflags & MNT_ACLS) { vfs_mount_error(mp, "\"acls\" and \"nfsv4acls\" options " "are mutually exclusive"); return (EINVAL); } mntorflags |= MNT_NFS4ACLS; } MNT_ILOCK(mp); mp->mnt_kern_flag &= ~MNTK_FPLOOKUP; mp->mnt_flag |= mntorflags; MNT_IUNLOCK(mp); /* * If updating, check whether changing from read-only to * read/write; if there is no device name, that's all we do. */ if (mp->mnt_flag & MNT_UPDATE) { ump = VFSTOUFS(mp); fs = ump->um_fs; odevvp = ump->um_odevvp; devvp = ump->um_devvp; if (fs->fs_ronly == 0 && vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { /* * Flush any dirty data and suspend filesystem. */ if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) return (error); error = vfs_write_suspend_umnt(mp); if (error != 0) return (error); fs->fs_ronly = 1; if (MOUNTEDSOFTDEP(mp)) { MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_SOFTDEP; MNT_IUNLOCK(mp); mounted_softdep = true; } else mounted_softdep = false; /* * Check for and optionally get rid of files open * for writing. */ flags = WRITECLOSE; if (mp->mnt_flag & MNT_FORCE) flags |= FORCECLOSE; if (mounted_softdep) { error = softdep_flushfiles(mp, flags, td); } else { error = ffs_flushfiles(mp, flags, td); } if (error) { fs->fs_ronly = 0; if (mounted_softdep) { MNT_ILOCK(mp); mp->mnt_flag |= MNT_SOFTDEP; MNT_IUNLOCK(mp); } vfs_write_resume(mp, 0); return (error); } if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: %s Update error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } if ((fs->fs_flags & (FS_UNCLEAN | FS_NEEDSFSCK)) == 0) fs->fs_clean = 1; if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { fs->fs_ronly = 0; fs->fs_clean = 0; if (mounted_softdep) { MNT_ILOCK(mp); mp->mnt_flag |= MNT_SOFTDEP; MNT_IUNLOCK(mp); } vfs_write_resume(mp, 0); return (error); } if (mounted_softdep) softdep_unmount(mp); g_topology_lock(); /* * Drop our write and exclusive access. */ g_access(ump->um_cp, 0, -1, -1); g_topology_unlock(); MNT_ILOCK(mp); mp->mnt_flag |= MNT_RDONLY; MNT_IUNLOCK(mp); /* * Allow the writers to note that filesystem * is ro now. */ vfs_write_resume(mp, 0); } if ((mp->mnt_flag & MNT_RELOAD) && (error = ffs_reload(mp, 0)) != 0) return (error); if (fs->fs_ronly && !vfs_flagopt(mp->mnt_optnew, "ro", NULL, 0)) { /* * If upgrade to read-write by non-root, then verify * that user has necessary permissions on the device. */ vn_lock(odevvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_ACCESS(odevvp, VREAD | VWRITE, td->td_ucred, td); if (error) error = priv_check(td, PRIV_VFS_MOUNT_PERM); VOP_UNLOCK(odevvp); if (error) { return (error); } fs->fs_flags &= ~FS_UNCLEAN; if (fs->fs_clean == 0) { fs->fs_flags |= FS_UNCLEAN; if ((mp->mnt_flag & MNT_FORCE) || ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && (fs->fs_flags & FS_DOSOFTDEP))) { printf("WARNING: %s was not properly " "dismounted\n", fs->fs_fsmnt); } else { vfs_mount_error(mp, "R/W mount of %s denied. %s.%s", fs->fs_fsmnt, "Filesystem is not clean - run fsck", (fs->fs_flags & FS_SUJ) == 0 ? "" : " Forced mount will invalidate" " journal contents"); return (EPERM); } } g_topology_lock(); /* * Request exclusive write access. */ error = g_access(ump->um_cp, 0, 1, 1); g_topology_unlock(); if (error) return (error); if ((error = vn_start_write(NULL, &mp, V_WAIT)) != 0) return (error); error = vfs_write_suspend_umnt(mp); if (error != 0) return (error); fs->fs_ronly = 0; MNT_ILOCK(mp); saved_mnt_flag = MNT_RDONLY; if (MOUNTEDSOFTDEP(mp) && (mp->mnt_flag & MNT_ASYNC) != 0) saved_mnt_flag |= MNT_ASYNC; mp->mnt_flag &= ~saved_mnt_flag; MNT_IUNLOCK(mp); fs->fs_mtime = time_second; /* check to see if we need to start softdep */ if ((fs->fs_flags & FS_DOSOFTDEP) && (error = softdep_mount(devvp, mp, fs, td->td_ucred))){ fs->fs_ronly = 1; MNT_ILOCK(mp); mp->mnt_flag |= saved_mnt_flag; MNT_IUNLOCK(mp); vfs_write_resume(mp, 0); return (error); } fs->fs_clean = 0; if ((error = ffs_sbupdate(ump, MNT_WAIT, 0)) != 0) { fs->fs_ronly = 1; if ((fs->fs_flags & FS_DOSOFTDEP) != 0) softdep_unmount(mp); MNT_ILOCK(mp); mp->mnt_flag |= saved_mnt_flag; MNT_IUNLOCK(mp); vfs_write_resume(mp, 0); return (error); } if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); vfs_write_resume(mp, 0); } /* * Soft updates is incompatible with "async", * so if we are doing softupdates stop the user * from setting the async flag in an update. * Softdep_mount() clears it in an initial mount * or ro->rw remount. */ if (MOUNTEDSOFTDEP(mp)) { /* XXX: Reset too late ? */ MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_ASYNC; MNT_IUNLOCK(mp); } /* * Keep MNT_ACLS flag if it is stored in superblock. */ if ((fs->fs_flags & FS_ACLS) != 0) { /* XXX: Set too late ? */ MNT_ILOCK(mp); mp->mnt_flag |= MNT_ACLS; MNT_IUNLOCK(mp); } if ((fs->fs_flags & FS_NFS4ACLS) != 0) { /* XXX: Set too late ? */ MNT_ILOCK(mp); mp->mnt_flag |= MNT_NFS4ACLS; MNT_IUNLOCK(mp); } /* * If this is a snapshot request, take the snapshot. */ if (mp->mnt_flag & MNT_SNAPSHOT) return (ffs_snapshot(mp, fspec)); /* * Must not call namei() while owning busy ref. */ vfs_unbusy(mp); } /* * Not an update, or updating the name: look up the name * and verify that it refers to a sensible disk device. */ NDINIT(&ndp, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, fspec, td); error = namei(&ndp); if ((mp->mnt_flag & MNT_UPDATE) != 0) { /* * Unmount does not start if MNT_UPDATE is set. Mount * update busies mp before setting MNT_UPDATE. We * must be able to retain our busy ref succesfully, * without sleep. */ error1 = vfs_busy(mp, MBF_NOWAIT); MPASS(error1 == 0); } if (error != 0) return (error); NDFREE(&ndp, NDF_ONLY_PNBUF); devvp = ndp.ni_vp; if (!vn_isdisk_error(devvp, &error)) { vput(devvp); return (error); } /* * If mount by non-root, then verify that user has necessary * permissions on the device. */ accmode = VREAD; if ((mp->mnt_flag & MNT_RDONLY) == 0) accmode |= VWRITE; error = VOP_ACCESS(devvp, accmode, td->td_ucred, td); if (error) error = priv_check(td, PRIV_VFS_MOUNT_PERM); if (error) { vput(devvp); return (error); } if (mp->mnt_flag & MNT_UPDATE) { /* * Update only * * If it's not the same vnode, or at least the same device * then it's not correct. */ if (devvp->v_rdev != ump->um_devvp->v_rdev) error = EINVAL; /* needs translation */ vput(devvp); if (error) return (error); } else { /* * New mount * * We need the name for the mount point (also used for * "last mounted on") copied in. If an error occurs, * the mount point is discarded by the upper level code. * Note that vfs_mount_alloc() populates f_mntonname for us. */ if ((error = ffs_mountfs(devvp, mp, td)) != 0) { vrele(devvp); return (error); } } MNT_ILOCK(mp); /* * This is racy versus lookup, see ufs_fplookup_vexec for details. */ if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) != 0) panic("MNTK_FPLOOKUP set on mount %p when it should not be", mp); if ((mp->mnt_flag & (MNT_ACLS | MNT_NFS4ACLS | MNT_UNION)) == 0) mp->mnt_kern_flag |= MNTK_FPLOOKUP; MNT_IUNLOCK(mp); vfs_mountedfrom(mp, fspec); return (0); } /* * Compatibility with old mount system call. */ static int ffs_cmount(struct mntarg *ma, void *data, uint64_t flags) { struct ufs_args args; int error; if (data == NULL) return (EINVAL); error = copyin(data, &args, sizeof args); if (error) return (error); ma = mount_argsu(ma, "from", args.fspec, MAXPATHLEN); ma = mount_arg(ma, "export", &args.export, sizeof(args.export)); error = kernel_mount(ma, flags); return (error); } /* * Reload all incore data for a filesystem (used after running fsck on * the root filesystem and finding things to fix). If the 'force' flag * is 0, the filesystem must be mounted read-only. * * Things to do to update the mount: * 1) invalidate all cached meta-data. * 2) re-read superblock from disk. * 3) re-read summary information from disk. * 4) invalidate all inactive vnodes. * 5) clear MNTK_SUSPEND2 and MNTK_SUSPENDED flags, allowing secondary * writers, if requested. * 6) invalidate all cached file data. * 7) re-read inode data for all active vnodes. */ int ffs_reload(struct mount *mp, int flags) { struct vnode *vp, *mvp, *devvp; struct inode *ip; void *space; struct buf *bp; struct fs *fs, *newfs; struct ufsmount *ump; ufs2_daddr_t sblockloc; int i, blks, error; u_long size; int32_t *lp; ump = VFSTOUFS(mp); MNT_ILOCK(mp); if ((mp->mnt_flag & MNT_RDONLY) == 0 && (flags & FFSR_FORCE) == 0) { MNT_IUNLOCK(mp); return (EINVAL); } MNT_IUNLOCK(mp); /* * Step 1: invalidate all cached meta-data. */ devvp = VFSTOUFS(mp)->um_devvp; vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); if (vinvalbuf(devvp, 0, 0, 0) != 0) panic("ffs_reload: dirty1"); VOP_UNLOCK(devvp); /* * Step 2: re-read superblock from disk. */ fs = VFSTOUFS(mp)->um_fs; if ((error = bread(devvp, btodb(fs->fs_sblockloc), fs->fs_sbsize, NOCRED, &bp)) != 0) return (error); newfs = (struct fs *)bp->b_data; if ((newfs->fs_magic != FS_UFS1_MAGIC && newfs->fs_magic != FS_UFS2_MAGIC) || newfs->fs_bsize > MAXBSIZE || newfs->fs_bsize < sizeof(struct fs)) { brelse(bp); return (EIO); /* XXX needs translation */ } /* * Preserve the summary information, read-only status, and * superblock location by copying these fields into our new * superblock before using it to update the existing superblock. */ newfs->fs_si = fs->fs_si; newfs->fs_ronly = fs->fs_ronly; sblockloc = fs->fs_sblockloc; bcopy(newfs, fs, (u_int)fs->fs_sbsize); brelse(bp); ump->um_maxsymlinklen = fs->fs_maxsymlinklen; ffs_oldfscompat_read(fs, VFSTOUFS(mp), sblockloc); UFS_LOCK(ump); if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: %s: reload pending error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } UFS_UNLOCK(ump); /* * Step 3: re-read summary information from disk. */ size = fs->fs_cssize; blks = howmany(size, fs->fs_fsize); if (fs->fs_contigsumsize > 0) size += fs->fs_ncg * sizeof(int32_t); size += fs->fs_ncg * sizeof(u_int8_t); free(fs->fs_csp, M_UFSMNT); space = malloc(size, M_UFSMNT, M_WAITOK); fs->fs_csp = space; for (i = 0; i < blks; i += fs->fs_frag) { size = fs->fs_bsize; if (i + fs->fs_frag > blks) size = (blks - i) * fs->fs_fsize; error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), size, NOCRED, &bp); if (error) return (error); bcopy(bp->b_data, space, (u_int)size); space = (char *)space + size; brelse(bp); } /* * We no longer know anything about clusters per cylinder group. */ if (fs->fs_contigsumsize > 0) { fs->fs_maxcluster = lp = space; for (i = 0; i < fs->fs_ncg; i++) *lp++ = fs->fs_contigsumsize; space = lp; } size = fs->fs_ncg * sizeof(u_int8_t); fs->fs_contigdirs = (u_int8_t *)space; bzero(fs->fs_contigdirs, size); if ((flags & FFSR_UNSUSPEND) != 0) { MNT_ILOCK(mp); mp->mnt_kern_flag &= ~(MNTK_SUSPENDED | MNTK_SUSPEND2); wakeup(&mp->mnt_flag); MNT_IUNLOCK(mp); } loop: MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { /* * Skip syncer vnode. */ if (vp->v_type == VNON) { VI_UNLOCK(vp); continue; } /* * Step 4: invalidate all cached file data. */ if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } if (vinvalbuf(vp, 0, 0, 0)) panic("ffs_reload: dirty2"); /* * Step 5: re-read inode data for all active vnodes. */ ip = VTOI(vp); error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), (int)fs->fs_bsize, NOCRED, &bp); if (error) { vput(vp); MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); return (error); } if ((error = ffs_load_inode(bp, ip, fs, ip->i_number)) != 0) { brelse(bp); vput(vp); MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); return (error); } ip->i_effnlink = ip->i_nlink; brelse(bp); vput(vp); } return (0); } /* * Common code for mount and mountroot */ static int ffs_mountfs(odevvp, mp, td) struct vnode *odevvp; struct mount *mp; struct thread *td; { struct ufsmount *ump; struct fs *fs; struct cdev *dev; int error, i, len, ronly; struct ucred *cred; struct g_consumer *cp; struct mount *nmp; struct vnode *devvp; struct fsfail_task *etp; int candelete, canspeedup; off_t loc; fs = NULL; ump = NULL; cred = td ? td->td_ucred : NOCRED; ronly = (mp->mnt_flag & MNT_RDONLY) != 0; devvp = mntfs_allocvp(mp, odevvp); VOP_UNLOCK(odevvp); KASSERT(devvp->v_type == VCHR, ("reclaimed devvp")); dev = devvp->v_rdev; KASSERT(dev->si_snapdata == NULL, ("non-NULL snapshot data")); if (atomic_cmpset_acq_ptr((uintptr_t *)&dev->si_mountpt, 0, (uintptr_t)mp) == 0) { mntfs_freevp(devvp); return (EBUSY); } g_topology_lock(); error = g_vfs_open(devvp, &cp, "ffs", ronly ? 0 : 1); g_topology_unlock(); if (error != 0) { atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); mntfs_freevp(devvp); return (error); } dev_ref(dev); devvp->v_bufobj.bo_ops = &ffs_ops; BO_LOCK(&odevvp->v_bufobj); odevvp->v_bufobj.bo_flag |= BO_NOBUFS; BO_UNLOCK(&odevvp->v_bufobj); if (dev->si_iosize_max != 0) mp->mnt_iosize_max = dev->si_iosize_max; if (mp->mnt_iosize_max > maxphys) mp->mnt_iosize_max = maxphys; if ((SBLOCKSIZE % cp->provider->sectorsize) != 0) { error = EINVAL; vfs_mount_error(mp, "Invalid sectorsize %d for superblock size %d", cp->provider->sectorsize, SBLOCKSIZE); goto out; } /* fetch the superblock and summary information */ loc = STDSB; if ((mp->mnt_flag & MNT_ROOTFS) != 0) loc = STDSB_NOHASHFAIL; if ((error = ffs_sbget(devvp, &fs, loc, M_UFSMNT, ffs_use_bread)) != 0) goto out; fs->fs_flags &= ~FS_UNCLEAN; if (fs->fs_clean == 0) { fs->fs_flags |= FS_UNCLEAN; if (ronly || (mp->mnt_flag & MNT_FORCE) || ((fs->fs_flags & (FS_SUJ | FS_NEEDSFSCK)) == 0 && (fs->fs_flags & FS_DOSOFTDEP))) { printf("WARNING: %s was not properly dismounted\n", fs->fs_fsmnt); } else { vfs_mount_error(mp, "R/W mount of %s denied. %s%s", fs->fs_fsmnt, "Filesystem is not clean - run fsck.", (fs->fs_flags & FS_SUJ) == 0 ? "" : " Forced mount will invalidate journal contents"); error = EPERM; goto out; } if ((fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) && (mp->mnt_flag & MNT_FORCE)) { printf("WARNING: %s: lost blocks %jd files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } } if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: %s: mount pending error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } if ((fs->fs_flags & FS_GJOURNAL) != 0) { #ifdef UFS_GJOURNAL /* * Get journal provider name. */ len = 1024; mp->mnt_gjprovider = malloc((u_long)len, M_UFSMNT, M_WAITOK); if (g_io_getattr("GJOURNAL::provider", cp, &len, mp->mnt_gjprovider) == 0) { mp->mnt_gjprovider = realloc(mp->mnt_gjprovider, len, M_UFSMNT, M_WAITOK); MNT_ILOCK(mp); mp->mnt_flag |= MNT_GJOURNAL; MNT_IUNLOCK(mp); } else { printf("WARNING: %s: GJOURNAL flag on fs " "but no gjournal provider below\n", mp->mnt_stat.f_mntonname); free(mp->mnt_gjprovider, M_UFSMNT); mp->mnt_gjprovider = NULL; } #else printf("WARNING: %s: GJOURNAL flag on fs but no " "UFS_GJOURNAL support\n", mp->mnt_stat.f_mntonname); #endif } else { mp->mnt_gjprovider = NULL; } ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO); ump->um_cp = cp; ump->um_bo = &devvp->v_bufobj; ump->um_fs = fs; if (fs->fs_magic == FS_UFS1_MAGIC) { ump->um_fstype = UFS1; ump->um_balloc = ffs_balloc_ufs1; } else { ump->um_fstype = UFS2; ump->um_balloc = ffs_balloc_ufs2; } ump->um_blkatoff = ffs_blkatoff; ump->um_truncate = ffs_truncate; ump->um_update = ffs_update; ump->um_valloc = ffs_valloc; ump->um_vfree = ffs_vfree; ump->um_ifree = ffs_ifree; ump->um_rdonly = ffs_rdonly; ump->um_snapgone = ffs_snapgone; if ((mp->mnt_flag & MNT_UNTRUSTED) != 0) ump->um_check_blkno = ffs_check_blkno; else ump->um_check_blkno = NULL; mtx_init(UFS_MTX(ump), "FFS", "FFS Lock", MTX_DEF); sx_init(&ump->um_checkpath_lock, "uchpth"); ffs_oldfscompat_read(fs, ump, fs->fs_sblockloc); fs->fs_ronly = ronly; fs->fs_active = NULL; mp->mnt_data = ump; mp->mnt_stat.f_fsid.val[0] = fs->fs_id[0]; mp->mnt_stat.f_fsid.val[1] = fs->fs_id[1]; nmp = NULL; if (fs->fs_id[0] == 0 || fs->fs_id[1] == 0 || (nmp = vfs_getvfs(&mp->mnt_stat.f_fsid))) { if (nmp) vfs_rel(nmp); vfs_getnewfsid(mp); } ump->um_maxsymlinklen = fs->fs_maxsymlinklen; MNT_ILOCK(mp); mp->mnt_flag |= MNT_LOCAL; MNT_IUNLOCK(mp); if ((fs->fs_flags & FS_MULTILABEL) != 0) { #ifdef MAC MNT_ILOCK(mp); mp->mnt_flag |= MNT_MULTILABEL; MNT_IUNLOCK(mp); #else printf("WARNING: %s: multilabel flag on fs but " "no MAC support\n", mp->mnt_stat.f_mntonname); #endif } if ((fs->fs_flags & FS_ACLS) != 0) { #ifdef UFS_ACL MNT_ILOCK(mp); if (mp->mnt_flag & MNT_NFS4ACLS) printf("WARNING: %s: ACLs flag on fs conflicts with " "\"nfsv4acls\" mount option; option ignored\n", mp->mnt_stat.f_mntonname); mp->mnt_flag &= ~MNT_NFS4ACLS; mp->mnt_flag |= MNT_ACLS; MNT_IUNLOCK(mp); #else printf("WARNING: %s: ACLs flag on fs but no ACLs support\n", mp->mnt_stat.f_mntonname); #endif } if ((fs->fs_flags & FS_NFS4ACLS) != 0) { #ifdef UFS_ACL MNT_ILOCK(mp); if (mp->mnt_flag & MNT_ACLS) printf("WARNING: %s: NFSv4 ACLs flag on fs conflicts " "with \"acls\" mount option; option ignored\n", mp->mnt_stat.f_mntonname); mp->mnt_flag &= ~MNT_ACLS; mp->mnt_flag |= MNT_NFS4ACLS; MNT_IUNLOCK(mp); #else printf("WARNING: %s: NFSv4 ACLs flag on fs but no " "ACLs support\n", mp->mnt_stat.f_mntonname); #endif } if ((fs->fs_flags & FS_TRIM) != 0) { len = sizeof(int); if (g_io_getattr("GEOM::candelete", cp, &len, &candelete) == 0) { if (candelete) ump->um_flags |= UM_CANDELETE; else printf("WARNING: %s: TRIM flag on fs but disk " "does not support TRIM\n", mp->mnt_stat.f_mntonname); } else { printf("WARNING: %s: TRIM flag on fs but disk does " "not confirm that it supports TRIM\n", mp->mnt_stat.f_mntonname); } if (((ump->um_flags) & UM_CANDELETE) != 0) { ump->um_trim_tq = taskqueue_create("trim", M_WAITOK, taskqueue_thread_enqueue, &ump->um_trim_tq); taskqueue_start_threads(&ump->um_trim_tq, 1, PVFS, "%s trim", mp->mnt_stat.f_mntonname); ump->um_trimhash = hashinit(MAXTRIMIO, M_TRIM, &ump->um_trimlisthashsize); } } len = sizeof(int); if (g_io_getattr("GEOM::canspeedup", cp, &len, &canspeedup) == 0) { if (canspeedup) ump->um_flags |= UM_CANSPEEDUP; } ump->um_mountp = mp; ump->um_dev = dev; ump->um_devvp = devvp; ump->um_odevvp = odevvp; ump->um_nindir = fs->fs_nindir; ump->um_bptrtodb = fs->fs_fsbtodb; ump->um_seqinc = fs->fs_frag; for (i = 0; i < MAXQUOTAS; i++) ump->um_quotas[i] = NULLVP; #ifdef UFS_EXTATTR ufs_extattr_uepm_init(&ump->um_extattr); #endif /* * Set FS local "last mounted on" information (NULL pad) */ bzero(fs->fs_fsmnt, MAXMNTLEN); strlcpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname, MAXMNTLEN); mp->mnt_stat.f_iosize = fs->fs_bsize; if (mp->mnt_flag & MNT_ROOTFS) { /* * Root mount; update timestamp in mount structure. * this will be used by the common root mount code * to update the system clock. */ mp->mnt_time = fs->fs_time; } if (ronly == 0) { fs->fs_mtime = time_second; if ((fs->fs_flags & FS_DOSOFTDEP) && (error = softdep_mount(devvp, mp, fs, cred)) != 0) { ffs_flushfiles(mp, FORCECLOSE, td); goto out; } if (fs->fs_snapinum[0] != 0) ffs_snapshot_mount(mp); fs->fs_fmod = 1; fs->fs_clean = 0; (void) ffs_sbupdate(ump, MNT_WAIT, 0); } /* * Initialize filesystem state information in mount struct. */ MNT_ILOCK(mp); mp->mnt_kern_flag |= MNTK_LOOKUP_SHARED | MNTK_EXTENDED_SHARED | MNTK_NO_IOPF | MNTK_UNMAPPED_BUFS | MNTK_USES_BCACHE; MNT_IUNLOCK(mp); #ifdef UFS_EXTATTR #ifdef UFS_EXTATTR_AUTOSTART /* * * Auto-starting does the following: * - check for /.attribute in the fs, and extattr_start if so * - for each file in .attribute, enable that file with * an attribute of the same name. * Not clear how to report errors -- probably eat them. * This would all happen while the filesystem was busy/not * available, so would effectively be "atomic". */ (void) ufs_extattr_autostart(mp, td); #endif /* !UFS_EXTATTR_AUTOSTART */ #endif /* !UFS_EXTATTR */ etp = malloc(sizeof *ump->um_fsfail_task, M_UFSMNT, M_WAITOK | M_ZERO); etp->fsid = mp->mnt_stat.f_fsid; ump->um_fsfail_task = etp; return (0); out: if (fs != NULL) { free(fs->fs_csp, M_UFSMNT); free(fs->fs_si, M_UFSMNT); free(fs, M_UFSMNT); } if (cp != NULL) { g_topology_lock(); g_vfs_close(cp); g_topology_unlock(); } if (ump != NULL) { mtx_destroy(UFS_MTX(ump)); sx_destroy(&ump->um_checkpath_lock); if (mp->mnt_gjprovider != NULL) { free(mp->mnt_gjprovider, M_UFSMNT); mp->mnt_gjprovider = NULL; } MPASS(ump->um_softdep == NULL); free(ump, M_UFSMNT); mp->mnt_data = NULL; } BO_LOCK(&odevvp->v_bufobj); odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; BO_UNLOCK(&odevvp->v_bufobj); atomic_store_rel_ptr((uintptr_t *)&dev->si_mountpt, 0); mntfs_freevp(devvp); dev_rel(dev); return (error); } /* * A read function for use by filesystem-layer routines. */ static int ffs_use_bread(void *devfd, off_t loc, void **bufp, int size) { struct buf *bp; int error; KASSERT(*bufp == NULL, ("ffs_use_bread: non-NULL *bufp %p\n", *bufp)); *bufp = malloc(size, M_UFSMNT, M_WAITOK); if ((error = bread((struct vnode *)devfd, btodb(loc), size, NOCRED, &bp)) != 0) return (error); bcopy(bp->b_data, *bufp, size); bp->b_flags |= B_INVAL | B_NOCACHE; brelse(bp); return (0); } static int bigcgs = 0; SYSCTL_INT(_debug, OID_AUTO, bigcgs, CTLFLAG_RW, &bigcgs, 0, ""); /* * Sanity checks for loading old filesystem superblocks. * See ffs_oldfscompat_write below for unwound actions. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ static void ffs_oldfscompat_read(fs, ump, sblockloc) struct fs *fs; struct ufsmount *ump; ufs2_daddr_t sblockloc; { off_t maxfilesize; /* * If not yet done, update fs_flags location and value of fs_sblockloc. */ if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { fs->fs_flags = fs->fs_old_flags; fs->fs_old_flags |= FS_FLAGS_UPDATED; fs->fs_sblockloc = sblockloc; } /* * If not yet done, update UFS1 superblock with new wider fields. */ if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) { fs->fs_maxbsize = fs->fs_bsize; fs->fs_time = fs->fs_old_time; fs->fs_size = fs->fs_old_size; fs->fs_dsize = fs->fs_old_dsize; fs->fs_csaddr = fs->fs_old_csaddr; fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir; fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree; fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree; fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree; } if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_old_inodefmt < FS_44INODEFMT) { fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1; fs->fs_qbmask = ~fs->fs_bmask; fs->fs_qfmask = ~fs->fs_fmask; } if (fs->fs_magic == FS_UFS1_MAGIC) { ump->um_savedmaxfilesize = fs->fs_maxfilesize; maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1; if (fs->fs_maxfilesize > maxfilesize) fs->fs_maxfilesize = maxfilesize; } /* Compatibility for old filesystems */ if (fs->fs_avgfilesize <= 0) fs->fs_avgfilesize = AVFILESIZ; if (fs->fs_avgfpdir <= 0) fs->fs_avgfpdir = AFPDIR; if (bigcgs) { fs->fs_save_cgsize = fs->fs_cgsize; fs->fs_cgsize = fs->fs_bsize; } } /* * Unwinding superblock updates for old filesystems. * See ffs_oldfscompat_read above for details. * * XXX - Parts get retired eventually. * Unfortunately new bits get added. */ void ffs_oldfscompat_write(fs, ump) struct fs *fs; struct ufsmount *ump; { /* * Copy back UFS2 updated fields that UFS1 inspects. */ if (fs->fs_magic == FS_UFS1_MAGIC) { fs->fs_old_time = fs->fs_time; fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir; fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree; fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree; fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree; fs->fs_maxfilesize = ump->um_savedmaxfilesize; } if (bigcgs) { fs->fs_cgsize = fs->fs_save_cgsize; fs->fs_save_cgsize = 0; } } /* * unmount system call */ static int ffs_unmount(mp, mntflags) struct mount *mp; int mntflags; { struct thread *td; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs; int error, flags, susp; #ifdef UFS_EXTATTR int e_restart; #endif flags = 0; td = curthread; fs = ump->um_fs; if (mntflags & MNT_FORCE) flags |= FORCECLOSE; susp = fs->fs_ronly == 0; #ifdef UFS_EXTATTR if ((error = ufs_extattr_stop(mp, td))) { if (error != EOPNOTSUPP) printf("WARNING: unmount %s: ufs_extattr_stop " "returned errno %d\n", mp->mnt_stat.f_mntonname, error); e_restart = 0; } else { ufs_extattr_uepm_destroy(&ump->um_extattr); e_restart = 1; } #endif if (susp) { error = vfs_write_suspend_umnt(mp); if (error != 0) goto fail1; } if (MOUNTEDSOFTDEP(mp)) error = softdep_flushfiles(mp, flags, td); else error = ffs_flushfiles(mp, flags, td); if (error != 0 && !ffs_fsfail_cleanup(ump, error)) goto fail; UFS_LOCK(ump); if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) { printf("WARNING: unmount %s: pending error: blocks %jd " "files %d\n", fs->fs_fsmnt, (intmax_t)fs->fs_pendingblocks, fs->fs_pendinginodes); fs->fs_pendingblocks = 0; fs->fs_pendinginodes = 0; } UFS_UNLOCK(ump); if (MOUNTEDSOFTDEP(mp)) softdep_unmount(mp); MPASS(ump->um_softdep == NULL); if (fs->fs_ronly == 0) { fs->fs_clean = fs->fs_flags & (FS_UNCLEAN|FS_NEEDSFSCK) ? 0 : 1; error = ffs_sbupdate(ump, MNT_WAIT, 0); if (ffs_fsfail_cleanup(ump, error)) error = 0; if (error != 0 && !ffs_fsfail_cleanup(ump, error)) { fs->fs_clean = 0; goto fail; } } if (susp) vfs_write_resume(mp, VR_START_WRITE); if (ump->um_trim_tq != NULL) { while (ump->um_trim_inflight != 0) pause("ufsutr", hz); taskqueue_drain_all(ump->um_trim_tq); taskqueue_free(ump->um_trim_tq); free (ump->um_trimhash, M_TRIM); } g_topology_lock(); g_vfs_close(ump->um_cp); g_topology_unlock(); BO_LOCK(&ump->um_odevvp->v_bufobj); ump->um_odevvp->v_bufobj.bo_flag &= ~BO_NOBUFS; BO_UNLOCK(&ump->um_odevvp->v_bufobj); atomic_store_rel_ptr((uintptr_t *)&ump->um_dev->si_mountpt, 0); mntfs_freevp(ump->um_devvp); vrele(ump->um_odevvp); dev_rel(ump->um_dev); mtx_destroy(UFS_MTX(ump)); sx_destroy(&ump->um_checkpath_lock); if (mp->mnt_gjprovider != NULL) { free(mp->mnt_gjprovider, M_UFSMNT); mp->mnt_gjprovider = NULL; } free(fs->fs_csp, M_UFSMNT); free(fs->fs_si, M_UFSMNT); free(fs, M_UFSMNT); if (ump->um_fsfail_task != NULL) free(ump->um_fsfail_task, M_UFSMNT); free(ump, M_UFSMNT); mp->mnt_data = NULL; MNT_ILOCK(mp); mp->mnt_flag &= ~MNT_LOCAL; MNT_IUNLOCK(mp); if (td->td_su == mp) { td->td_su = NULL; vfs_rel(mp); } return (error); fail: if (susp) vfs_write_resume(mp, VR_START_WRITE); fail1: #ifdef UFS_EXTATTR if (e_restart) { ufs_extattr_uepm_init(&ump->um_extattr); #ifdef UFS_EXTATTR_AUTOSTART (void) ufs_extattr_autostart(mp, td); #endif } #endif return (error); } /* * Flush out all the files in a filesystem. */ int ffs_flushfiles(mp, flags, td) struct mount *mp; int flags; struct thread *td; { struct ufsmount *ump; int qerror, error; ump = VFSTOUFS(mp); qerror = 0; #ifdef QUOTA if (mp->mnt_flag & MNT_QUOTA) { int i; error = vflush(mp, 0, SKIPSYSTEM|flags, td); if (error) return (error); for (i = 0; i < MAXQUOTAS; i++) { error = quotaoff(td, mp, i); if (error != 0) { if ((flags & EARLYFLUSH) == 0) return (error); else qerror = error; } } /* * Here we fall through to vflush again to ensure that * we have gotten rid of all the system vnodes, unless * quotas must not be closed. */ } #endif ASSERT_VOP_LOCKED(ump->um_devvp, "ffs_flushfiles"); if (ump->um_devvp->v_vflag & VV_COPYONWRITE) { if ((error = vflush(mp, 0, SKIPSYSTEM | flags, td)) != 0) return (error); ffs_snapshot_unmount(mp); flags |= FORCECLOSE; /* * Here we fall through to vflush again to ensure * that we have gotten rid of all the system vnodes. */ } /* * Do not close system files if quotas were not closed, to be * able to sync the remaining dquots. The freeblks softupdate * workitems might hold a reference on a dquot, preventing * quotaoff() from completing. Next round of * softdep_flushworklist() iteration should process the * blockers, allowing the next run of quotaoff() to finally * flush held dquots. * * Otherwise, flush all the files. */ if (qerror == 0 && (error = vflush(mp, 0, flags, td)) != 0) return (error); /* * Flush filesystem metadata. */ vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_FSYNC(ump->um_devvp, MNT_WAIT, td); VOP_UNLOCK(ump->um_devvp); return (error); } /* * Get filesystem statistics. */ static int ffs_statfs(mp, sbp) struct mount *mp; struct statfs *sbp; { struct ufsmount *ump; struct fs *fs; ump = VFSTOUFS(mp); fs = ump->um_fs; if (fs->fs_magic != FS_UFS1_MAGIC && fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_statfs"); sbp->f_version = STATFS_VERSION; sbp->f_bsize = fs->fs_fsize; sbp->f_iosize = fs->fs_bsize; sbp->f_blocks = fs->fs_dsize; UFS_LOCK(ump); sbp->f_bfree = fs->fs_cstotal.cs_nbfree * fs->fs_frag + fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks); sbp->f_bavail = freespace(fs, fs->fs_minfree) + dbtofsb(fs, fs->fs_pendingblocks); sbp->f_files = fs->fs_ncg * fs->fs_ipg - UFS_ROOTINO; sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes; UFS_UNLOCK(ump); sbp->f_namemax = UFS_MAXNAMLEN; return (0); } static bool sync_doupdate(struct inode *ip) { return ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) != 0); } static int ffs_sync_lazy_filter(struct vnode *vp, void *arg __unused) { struct inode *ip; /* * Flags are safe to access because ->v_data invalidation * is held off by listmtx. */ if (vp->v_type == VNON) return (false); ip = VTOI(vp); if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) return (false); return (true); } /* * For a lazy sync, we only care about access times, quotas and the * superblock. Other filesystem changes are already converted to * cylinder group blocks or inode blocks updates and are written to * disk by syncer. */ static int ffs_sync_lazy(mp) struct mount *mp; { struct vnode *mvp, *vp; struct inode *ip; - struct thread *td; int allerror, error; allerror = 0; - td = curthread; if ((mp->mnt_flag & MNT_NOATIME) != 0) { #ifdef QUOTA qsync(mp); #endif goto sbupdate; } MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, ffs_sync_lazy_filter, NULL) { if (vp->v_type == VNON) { VI_UNLOCK(vp); continue; } ip = VTOI(vp); /* * The IN_ACCESS flag is converted to IN_MODIFIED by * ufs_close() and ufs_getattr() by the calls to * ufs_itimes_locked(), without subsequent UFS_UPDATE(). * Test also all the other timestamp flags too, to pick up * any other cases that could be missed. */ if (!sync_doupdate(ip) && (vp->v_iflag & VI_OWEINACT) == 0) { VI_UNLOCK(vp); continue; } if ((error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK)) != 0) continue; #ifdef QUOTA qsyncvp(vp); #endif if (sync_doupdate(ip)) error = ffs_update(vp, 0); if (error != 0) allerror = error; vput(vp); } sbupdate: if (VFSTOUFS(mp)->um_fs->fs_fmod != 0 && (error = ffs_sbupdate(VFSTOUFS(mp), MNT_LAZY, 0)) != 0) allerror = error; return (allerror); } /* * Go through the disk queues to initiate sandbagged IO; * go through the inodes to write those that have been modified; * initiate the writing of the super block if it has been modified. * * Note: we are always called with the filesystem marked busy using * vfs_busy(). */ static int ffs_sync(mp, waitfor) struct mount *mp; int waitfor; { struct vnode *mvp, *vp, *devvp; struct thread *td; struct inode *ip; struct ufsmount *ump = VFSTOUFS(mp); struct fs *fs; int error, count, lockreq, allerror = 0; int suspend; int suspended; int secondary_writes; int secondary_accwrites; int softdep_deps; int softdep_accdeps; struct bufobj *bo; suspend = 0; suspended = 0; td = curthread; fs = ump->um_fs; if (fs->fs_fmod != 0 && fs->fs_ronly != 0) panic("%s: ffs_sync: modification on read-only filesystem", fs->fs_fsmnt); if (waitfor == MNT_LAZY) { if (!rebooting) return (ffs_sync_lazy(mp)); waitfor = MNT_NOWAIT; } /* * Write back each (modified) inode. */ lockreq = LK_EXCLUSIVE | LK_NOWAIT; if (waitfor == MNT_SUSPEND) { suspend = 1; waitfor = MNT_WAIT; } if (waitfor == MNT_WAIT) lockreq = LK_EXCLUSIVE; lockreq |= LK_INTERLOCK | LK_SLEEPFAIL; loop: /* Grab snapshot of secondary write counts */ MNT_ILOCK(mp); secondary_writes = mp->mnt_secondary_writes; secondary_accwrites = mp->mnt_secondary_accwrites; MNT_IUNLOCK(mp); /* Grab snapshot of softdep dependency counts */ softdep_get_depcounts(mp, &softdep_deps, &softdep_accdeps); MNT_VNODE_FOREACH_ALL(vp, mp, mvp) { /* * Depend on the vnode interlock to keep things stable enough * for a quick test. Since there might be hundreds of * thousands of vnodes, we cannot afford even a subroutine * call unless there's a good chance that we have work to do. */ if (vp->v_type == VNON) { VI_UNLOCK(vp); continue; } ip = VTOI(vp); if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_MODIFIED | IN_UPDATE)) == 0 && vp->v_bufobj.bo_dirty.bv_cnt == 0) { VI_UNLOCK(vp); continue; } if ((error = vget(vp, lockreq)) != 0) { if (error == ENOENT || error == ENOLCK) { MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp); goto loop; } continue; } #ifdef QUOTA qsyncvp(vp); #endif for (;;) { error = ffs_syncvnode(vp, waitfor, 0); if (error == ERELOOKUP) continue; if (error != 0) allerror = error; break; } vput(vp); } /* * Force stale filesystem control information to be flushed. */ if (waitfor == MNT_WAIT || rebooting) { if ((error = softdep_flushworklist(ump->um_mountp, &count, td))) allerror = error; if (ffs_fsfail_cleanup(ump, allerror)) allerror = 0; /* Flushed work items may create new vnodes to clean */ if (allerror == 0 && count) goto loop; } devvp = ump->um_devvp; bo = &devvp->v_bufobj; BO_LOCK(bo); if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) { BO_UNLOCK(bo); vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); error = VOP_FSYNC(devvp, waitfor, td); VOP_UNLOCK(devvp); if (MOUNTEDSOFTDEP(mp) && (error == 0 || error == EAGAIN)) error = ffs_sbupdate(ump, waitfor, 0); if (error != 0) allerror = error; if (ffs_fsfail_cleanup(ump, allerror)) allerror = 0; if (allerror == 0 && waitfor == MNT_WAIT) goto loop; } else if (suspend != 0) { if (softdep_check_suspend(mp, devvp, softdep_deps, softdep_accdeps, secondary_writes, secondary_accwrites) != 0) { MNT_IUNLOCK(mp); goto loop; /* More work needed */ } mtx_assert(MNT_MTX(mp), MA_OWNED); mp->mnt_kern_flag |= MNTK_SUSPEND2 | MNTK_SUSPENDED; MNT_IUNLOCK(mp); suspended = 1; } else BO_UNLOCK(bo); /* * Write back modified superblock. */ if (fs->fs_fmod != 0 && (error = ffs_sbupdate(ump, waitfor, suspended)) != 0) allerror = error; if (ffs_fsfail_cleanup(ump, allerror)) allerror = 0; return (allerror); } int ffs_vget(mp, ino, flags, vpp) struct mount *mp; ino_t ino; int flags; struct vnode **vpp; { return (ffs_vgetf(mp, ino, flags, vpp, 0)); } int ffs_vgetf(mp, ino, flags, vpp, ffs_flags) struct mount *mp; ino_t ino; int flags; struct vnode **vpp; int ffs_flags; { struct fs *fs; struct inode *ip; struct ufsmount *ump; struct buf *bp; struct vnode *vp; daddr_t dbn; int error; MPASS((ffs_flags & (FFSV_REPLACE | FFSV_REPLACE_DOOMED)) == 0 || (flags & LK_EXCLUSIVE) != 0); error = vfs_hash_get(mp, ino, flags, curthread, vpp, NULL, NULL); if (error != 0) return (error); if (*vpp != NULL) { if ((ffs_flags & FFSV_REPLACE) == 0 || ((ffs_flags & FFSV_REPLACE_DOOMED) == 0 || !VN_IS_DOOMED(*vpp))) return (0); vgone(*vpp); vput(*vpp); } /* * We must promote to an exclusive lock for vnode creation. This * can happen if lookup is passed LOCKSHARED. */ if ((flags & LK_TYPE_MASK) == LK_SHARED) { flags &= ~LK_TYPE_MASK; flags |= LK_EXCLUSIVE; } /* * We do not lock vnode creation as it is believed to be too * expensive for such rare case as simultaneous creation of vnode * for same ino by different processes. We just allow them to race * and check later to decide who wins. Let the race begin! */ ump = VFSTOUFS(mp); fs = ump->um_fs; ip = uma_zalloc_smr(uma_inode, M_WAITOK | M_ZERO); /* Allocate a new vnode/inode. */ error = getnewvnode("ufs", mp, fs->fs_magic == FS_UFS1_MAGIC ? &ffs_vnodeops1 : &ffs_vnodeops2, &vp); if (error) { *vpp = NULL; uma_zfree_smr(uma_inode, ip); return (error); } /* * FFS supports recursive locking. */ lockmgr(vp->v_vnlock, LK_EXCLUSIVE, NULL); VN_LOCK_AREC(vp); vp->v_data = ip; vp->v_bufobj.bo_bsize = fs->fs_bsize; ip->i_vnode = vp; ip->i_ump = ump; ip->i_number = ino; ip->i_ea_refs = 0; ip->i_nextclustercg = -1; ip->i_flag = fs->fs_magic == FS_UFS1_MAGIC ? 0 : IN_UFS2; ip->i_mode = 0; /* ensure error cases below throw away vnode */ #ifdef DIAGNOSTIC ufs_init_trackers(ip); #endif #ifdef QUOTA { int i; for (i = 0; i < MAXQUOTAS; i++) ip->i_dquot[i] = NODQUOT; } #endif if (ffs_flags & FFSV_FORCEINSMQ) vp->v_vflag |= VV_FORCEINSMQ; error = insmntque(vp, mp); if (error != 0) { uma_zfree_smr(uma_inode, ip); *vpp = NULL; return (error); } vp->v_vflag &= ~VV_FORCEINSMQ; error = vfs_hash_insert(vp, ino, flags, curthread, vpp, NULL, NULL); if (error != 0) return (error); if (*vpp != NULL) { /* * Calls from ffs_valloc() (i.e. FFSV_REPLACE set) * operate on empty inode, which must not be found by * other threads until fully filled. Vnode for empty * inode must be not re-inserted on the hash by other * thread, after removal by us at the beginning. */ MPASS((ffs_flags & FFSV_REPLACE) == 0); return (0); } /* Read in the disk contents for the inode, copy into the inode. */ dbn = fsbtodb(fs, ino_to_fsba(fs, ino)); error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); if (error != 0) { /* * The inode does not contain anything useful, so it would * be misleading to leave it on its hash chain. With mode * still zero, it will be unlinked and returned to the free * list by vput(). */ vgone(vp); vput(vp); *vpp = NULL; return (error); } if (I_IS_UFS1(ip)) ip->i_din1 = uma_zalloc(uma_ufs1, M_WAITOK); else ip->i_din2 = uma_zalloc(uma_ufs2, M_WAITOK); if ((error = ffs_load_inode(bp, ip, fs, ino)) != 0) { bqrelse(bp); vgone(vp); vput(vp); *vpp = NULL; return (error); } if (DOINGSOFTDEP(vp) && (!fs->fs_ronly || (ffs_flags & FFSV_FORCEINODEDEP) != 0)) softdep_load_inodeblock(ip); else ip->i_effnlink = ip->i_nlink; bqrelse(bp); /* * Initialize the vnode from the inode, check for aliases. * Note that the underlying vnode may have changed. */ error = ufs_vinit(mp, I_IS_UFS1(ip) ? &ffs_fifoops1 : &ffs_fifoops2, &vp); if (error) { vgone(vp); vput(vp); *vpp = NULL; return (error); } /* * Finish inode initialization. */ if (vp->v_type != VFIFO) { /* FFS supports shared locking for all files except fifos. */ VN_LOCK_ASHARE(vp); } /* * Set up a generation number for this inode if it does not * already have one. This should only happen on old filesystems. */ if (ip->i_gen == 0) { while (ip->i_gen == 0) ip->i_gen = arc4random(); if ((vp->v_mount->mnt_flag & MNT_RDONLY) == 0) { UFS_INODE_SET_FLAG(ip, IN_MODIFIED); DIP_SET(ip, i_gen, ip->i_gen); } } #ifdef MAC if ((mp->mnt_flag & MNT_MULTILABEL) && ip->i_mode) { /* * If this vnode is already allocated, and we're running * multi-label, attempt to perform a label association * from the extended attributes on the inode. */ error = mac_vnode_associate_extattr(mp, vp); if (error) { /* ufs_inactive will release ip->i_devvp ref. */ vgone(vp); vput(vp); *vpp = NULL; return (error); } } #endif *vpp = vp; return (0); } /* * File handle to vnode * * Have to be really careful about stale file handles: * - check that the inode number is valid * - for UFS2 check that the inode number is initialized * - call ffs_vget() to get the locked inode * - check for an unallocated inode (i_mode == 0) * - check that the given client host has export rights and return * those rights via. exflagsp and credanonp */ static int ffs_fhtovp(mp, fhp, flags, vpp) struct mount *mp; struct fid *fhp; int flags; struct vnode **vpp; { struct ufid *ufhp; ufhp = (struct ufid *)fhp; return (ffs_inotovp(mp, ufhp->ufid_ino, ufhp->ufid_gen, flags, vpp, 0)); } int ffs_inotovp(mp, ino, gen, lflags, vpp, ffs_flags) struct mount *mp; ino_t ino; u_int64_t gen; int lflags; struct vnode **vpp; int ffs_flags; { struct ufsmount *ump; struct vnode *nvp; struct inode *ip; struct fs *fs; struct cg *cgp; struct buf *bp; u_int cg; int error; ump = VFSTOUFS(mp); fs = ump->um_fs; *vpp = NULL; if (ino < UFS_ROOTINO || ino >= fs->fs_ncg * fs->fs_ipg) return (ESTALE); /* * Need to check if inode is initialized because UFS2 does lazy * initialization and nfs_fhtovp can offer arbitrary inode numbers. */ if (fs->fs_magic == FS_UFS2_MAGIC) { cg = ino_to_cg(fs, ino); error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); if (error != 0) return (error); if (ino >= cg * fs->fs_ipg + cgp->cg_initediblk) { brelse(bp); return (ESTALE); } brelse(bp); } error = ffs_vgetf(mp, ino, lflags, &nvp, ffs_flags); if (error != 0) return (error); ip = VTOI(nvp); if (ip->i_mode == 0 || ip->i_gen != gen || ip->i_effnlink <= 0) { if (ip->i_mode == 0) vgone(nvp); vput(nvp); return (ESTALE); } vnode_create_vobject(nvp, DIP(ip, i_size), curthread); *vpp = nvp; return (0); } /* * Initialize the filesystem. */ static int ffs_init(vfsp) struct vfsconf *vfsp; { ffs_susp_initialize(); softdep_initialize(); return (ufs_init(vfsp)); } /* * Undo the work of ffs_init(). */ static int ffs_uninit(vfsp) struct vfsconf *vfsp; { int ret; ret = ufs_uninit(vfsp); softdep_uninitialize(); ffs_susp_uninitialize(); taskqueue_drain_all(taskqueue_thread); return (ret); } /* * Structure used to pass information from ffs_sbupdate to its * helper routine ffs_use_bwrite. */ struct devfd { struct ufsmount *ump; struct buf *sbbp; int waitfor; int suspended; int error; }; /* * Write a superblock and associated information back to disk. */ int ffs_sbupdate(ump, waitfor, suspended) struct ufsmount *ump; int waitfor; int suspended; { struct fs *fs; struct buf *sbbp; struct devfd devfd; fs = ump->um_fs; if (fs->fs_ronly == 1 && (ump->um_mountp->mnt_flag & (MNT_RDONLY | MNT_UPDATE)) != (MNT_RDONLY | MNT_UPDATE)) panic("ffs_sbupdate: write read-only filesystem"); /* * We use the superblock's buf to serialize calls to ffs_sbupdate(). */ sbbp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), (int)fs->fs_sbsize, 0, 0, 0); /* * Initialize info needed for write function. */ devfd.ump = ump; devfd.sbbp = sbbp; devfd.waitfor = waitfor; devfd.suspended = suspended; devfd.error = 0; return (ffs_sbput(&devfd, fs, fs->fs_sblockloc, ffs_use_bwrite)); } /* * Write function for use by filesystem-layer routines. */ static int ffs_use_bwrite(void *devfd, off_t loc, void *buf, int size) { struct devfd *devfdp; struct ufsmount *ump; struct buf *bp; struct fs *fs; int error; devfdp = devfd; ump = devfdp->ump; fs = ump->um_fs; /* * Writing the superblock summary information. */ if (loc != fs->fs_sblockloc) { bp = getblk(ump->um_devvp, btodb(loc), size, 0, 0, 0); bcopy(buf, bp->b_data, (u_int)size); if (devfdp->suspended) bp->b_flags |= B_VALIDSUSPWRT; if (devfdp->waitfor != MNT_WAIT) bawrite(bp); else if ((error = bwrite(bp)) != 0) devfdp->error = error; return (0); } /* * Writing the superblock itself. We need to do special checks for it. */ bp = devfdp->sbbp; if (ffs_fsfail_cleanup(ump, devfdp->error)) devfdp->error = 0; if (devfdp->error != 0) { brelse(bp); return (devfdp->error); } if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_sblockloc != SBLOCK_UFS1 && (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS1); fs->fs_sblockloc = SBLOCK_UFS1; } if (fs->fs_magic == FS_UFS2_MAGIC && fs->fs_sblockloc != SBLOCK_UFS2 && (fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) { printf("WARNING: %s: correcting fs_sblockloc from %jd to %d\n", fs->fs_fsmnt, fs->fs_sblockloc, SBLOCK_UFS2); fs->fs_sblockloc = SBLOCK_UFS2; } if (MOUNTEDSOFTDEP(ump->um_mountp)) softdep_setup_sbupdate(ump, (struct fs *)bp->b_data, bp); bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); fs = (struct fs *)bp->b_data; ffs_oldfscompat_write(fs, ump); fs->fs_si = NULL; /* Recalculate the superblock hash */ fs->fs_ckhash = ffs_calc_sbhash(fs); if (devfdp->suspended) bp->b_flags |= B_VALIDSUSPWRT; if (devfdp->waitfor != MNT_WAIT) bawrite(bp); else if ((error = bwrite(bp)) != 0) devfdp->error = error; return (devfdp->error); } static int ffs_extattrctl(struct mount *mp, int cmd, struct vnode *filename_vp, int attrnamespace, const char *attrname) { #ifdef UFS_EXTATTR return (ufs_extattrctl(mp, cmd, filename_vp, attrnamespace, attrname)); #else return (vfs_stdextattrctl(mp, cmd, filename_vp, attrnamespace, attrname)); #endif } static void ffs_ifree(struct ufsmount *ump, struct inode *ip) { if (ump->um_fstype == UFS1 && ip->i_din1 != NULL) uma_zfree(uma_ufs1, ip->i_din1); else if (ip->i_din2 != NULL) uma_zfree(uma_ufs2, ip->i_din2); uma_zfree_smr(uma_inode, ip); } static int dobkgrdwrite = 1; SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0, "Do background writes (honoring the BV_BKGRDWRITE flag)?"); /* * Complete a background write started from bwrite. */ static void ffs_backgroundwritedone(struct buf *bp) { struct bufobj *bufobj; struct buf *origbp; #ifdef SOFTUPDATES if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) != 0) softdep_handle_error(bp); #endif /* * Find the original buffer that we are writing. */ bufobj = bp->b_bufobj; BO_LOCK(bufobj); if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL) panic("backgroundwritedone: lost buffer"); /* * We should mark the cylinder group buffer origbp as * dirty, to not lose the failed write. */ if ((bp->b_ioflags & BIO_ERROR) != 0) origbp->b_vflags |= BV_BKGRDERR; BO_UNLOCK(bufobj); /* * Process dependencies then return any unfinished ones. */ if (!LIST_EMPTY(&bp->b_dep) && (bp->b_ioflags & BIO_ERROR) == 0) buf_complete(bp); #ifdef SOFTUPDATES if (!LIST_EMPTY(&bp->b_dep)) softdep_move_dependencies(bp, origbp); #endif /* * This buffer is marked B_NOCACHE so when it is released * by biodone it will be tossed. Clear B_IOSTARTED in case of error. */ bp->b_flags |= B_NOCACHE; bp->b_flags &= ~(B_CACHE | B_IOSTARTED); pbrelvp(bp); /* * Prevent brelse() from trying to keep and re-dirtying bp on * errors. It causes b_bufobj dereference in * bdirty()/reassignbuf(), and b_bufobj was cleared in * pbrelvp() above. */ if ((bp->b_ioflags & BIO_ERROR) != 0) bp->b_flags |= B_INVAL; bufdone(bp); BO_LOCK(bufobj); /* * Clear the BV_BKGRDINPROG flag in the original buffer * and awaken it if it is waiting for the write to complete. * If BV_BKGRDINPROG is not set in the original buffer it must * have been released and re-instantiated - which is not legal. */ KASSERT((origbp->b_vflags & BV_BKGRDINPROG), ("backgroundwritedone: lost buffer2")); origbp->b_vflags &= ~BV_BKGRDINPROG; if (origbp->b_vflags & BV_BKGRDWAIT) { origbp->b_vflags &= ~BV_BKGRDWAIT; wakeup(&origbp->b_xflags); } BO_UNLOCK(bufobj); } /* * Write, release buffer on completion. (Done by iodone * if async). Do not bother writing anything if the buffer * is invalid. * * Note that we set B_CACHE here, indicating that buffer is * fully valid and thus cacheable. This is true even of NFS * now so we set it generally. This could be set either here * or in biodone() since the I/O is synchronous. We put it * here. */ static int ffs_bufwrite(struct buf *bp) { struct buf *newbp; struct cg *cgp; CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags); if (bp->b_flags & B_INVAL) { brelse(bp); return (0); } if (!BUF_ISLOCKED(bp)) panic("bufwrite: buffer is not busy???"); /* * If a background write is already in progress, delay * writing this block if it is asynchronous. Otherwise * wait for the background write to complete. */ BO_LOCK(bp->b_bufobj); if (bp->b_vflags & BV_BKGRDINPROG) { if (bp->b_flags & B_ASYNC) { BO_UNLOCK(bp->b_bufobj); bdwrite(bp); return (0); } bp->b_vflags |= BV_BKGRDWAIT; msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), PRIBIO, "bwrbg", 0); if (bp->b_vflags & BV_BKGRDINPROG) panic("bufwrite: still writing"); } bp->b_vflags &= ~BV_BKGRDERR; BO_UNLOCK(bp->b_bufobj); /* * If this buffer is marked for background writing and we * do not have to wait for it, make a copy and write the * copy so as to leave this buffer ready for further use. * * This optimization eats a lot of memory. If we have a page * or buffer shortfall we can't do it. */ if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) && (bp->b_flags & B_ASYNC) && !vm_page_count_severe() && !buf_dirty_count_severe()) { KASSERT(bp->b_iodone == NULL, ("bufwrite: needs chained iodone (%p)", bp->b_iodone)); /* get a new block */ newbp = geteblk(bp->b_bufsize, GB_NOWAIT_BD); if (newbp == NULL) goto normal_write; KASSERT(buf_mapped(bp), ("Unmapped cg")); memcpy(newbp->b_data, bp->b_data, bp->b_bufsize); BO_LOCK(bp->b_bufobj); bp->b_vflags |= BV_BKGRDINPROG; BO_UNLOCK(bp->b_bufobj); newbp->b_xflags |= (bp->b_xflags & BX_FSPRIV) | BX_BKGRDMARKER; newbp->b_lblkno = bp->b_lblkno; newbp->b_blkno = bp->b_blkno; newbp->b_offset = bp->b_offset; newbp->b_iodone = ffs_backgroundwritedone; newbp->b_flags |= B_ASYNC; newbp->b_flags &= ~B_INVAL; pbgetvp(bp->b_vp, newbp); #ifdef SOFTUPDATES /* * Move over the dependencies. If there are rollbacks, * leave the parent buffer dirtied as it will need to * be written again. */ if (LIST_EMPTY(&bp->b_dep) || softdep_move_dependencies(bp, newbp) == 0) bundirty(bp); #else bundirty(bp); #endif /* * Initiate write on the copy, release the original. The * BKGRDINPROG flag prevents it from going away until * the background write completes. We have to recalculate * its check hash in case the buffer gets freed and then * reconstituted from the buffer cache during a later read. */ if ((bp->b_xflags & BX_CYLGRP) != 0) { cgp = (struct cg *)bp->b_data; cgp->cg_ckhash = 0; cgp->cg_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); } bqrelse(bp); bp = newbp; } else /* Mark the buffer clean */ bundirty(bp); /* Let the normal bufwrite do the rest for us */ normal_write: /* * If we are writing a cylinder group, update its time. */ if ((bp->b_xflags & BX_CYLGRP) != 0) { cgp = (struct cg *)bp->b_data; cgp->cg_old_time = cgp->cg_time = time_second; } return (bufwrite(bp)); } static void ffs_geom_strategy(struct bufobj *bo, struct buf *bp) { struct vnode *vp; struct buf *tbp; int error, nocopy; /* * This is the bufobj strategy for the private VCHR vnodes * used by FFS to access the underlying storage device. * We override the default bufobj strategy and thus bypass * VOP_STRATEGY() for these vnodes. */ vp = bo2vnode(bo); KASSERT(bp->b_vp == NULL || bp->b_vp->v_type != VCHR || bp->b_vp->v_rdev == NULL || bp->b_vp->v_rdev->si_mountpt == NULL || VFSTOUFS(bp->b_vp->v_rdev->si_mountpt) == NULL || vp == VFSTOUFS(bp->b_vp->v_rdev->si_mountpt)->um_devvp, ("ffs_geom_strategy() with wrong vp")); if (bp->b_iocmd == BIO_WRITE) { if ((bp->b_flags & B_VALIDSUSPWRT) == 0 && bp->b_vp != NULL && bp->b_vp->v_mount != NULL && (bp->b_vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) != 0) panic("ffs_geom_strategy: bad I/O"); nocopy = bp->b_flags & B_NOCOPY; bp->b_flags &= ~(B_VALIDSUSPWRT | B_NOCOPY); if ((vp->v_vflag & VV_COPYONWRITE) && nocopy == 0 && vp->v_rdev->si_snapdata != NULL) { if ((bp->b_flags & B_CLUSTER) != 0) { runningbufwakeup(bp); TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, b_cluster.cluster_entry) { error = ffs_copyonwrite(vp, tbp); if (error != 0 && error != EOPNOTSUPP) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; bp->b_flags &= ~B_BARRIER; bufdone(bp); return; } } bp->b_runningbufspace = bp->b_bufsize; atomic_add_long(&runningbufspace, bp->b_runningbufspace); } else { error = ffs_copyonwrite(vp, bp); if (error != 0 && error != EOPNOTSUPP) { bp->b_error = error; bp->b_ioflags |= BIO_ERROR; bp->b_flags &= ~B_BARRIER; bufdone(bp); return; } } } #ifdef SOFTUPDATES if ((bp->b_flags & B_CLUSTER) != 0) { TAILQ_FOREACH(tbp, &bp->b_cluster.cluster_head, b_cluster.cluster_entry) { if (!LIST_EMPTY(&tbp->b_dep)) buf_start(tbp); } } else { if (!LIST_EMPTY(&bp->b_dep)) buf_start(bp); } #endif /* * Check for metadata that needs check-hashes and update them. */ switch (bp->b_xflags & BX_FSPRIV) { case BX_CYLGRP: ((struct cg *)bp->b_data)->cg_ckhash = 0; ((struct cg *)bp->b_data)->cg_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); break; case BX_SUPERBLOCK: case BX_INODE: case BX_INDIR: case BX_DIR: printf("Check-hash write is unimplemented!!!\n"); break; case 0: break; default: printf("multiple buffer types 0x%b\n", (u_int)(bp->b_xflags & BX_FSPRIV), PRINT_UFS_BUF_XFLAGS); break; } } if (bp->b_iocmd != BIO_READ && ffs_enxio_enable) bp->b_xflags |= BX_CVTENXIO; g_vfs_strategy(bo, bp); } int ffs_own_mount(const struct mount *mp) { if (mp->mnt_op == &ufs_vfsops) return (1); return (0); } #ifdef DDB #ifdef SOFTUPDATES /* defined in ffs_softdep.c */ extern void db_print_ffs(struct ufsmount *ump); DB_SHOW_COMMAND(ffs, db_show_ffs) { struct mount *mp; struct ufsmount *ump; if (have_addr) { ump = VFSTOUFS((struct mount *)addr); db_print_ffs(ump); return; } TAILQ_FOREACH(mp, &mountlist, mnt_list) { if (!strcmp(mp->mnt_stat.f_fstypename, ufs_vfsconf.vfc_name)) db_print_ffs(VFSTOUFS(mp)); } } #endif /* SOFTUPDATES */ #endif /* DDB */ diff --git a/sys/ufs/ffs/ffs_vnops.c b/sys/ufs/ffs/ffs_vnops.c index 7b2c70af54c9..ceea2237c94e 100644 --- a/sys/ufs/ffs/ffs_vnops.c +++ b/sys/ufs/ffs/ffs_vnops.c @@ -1,2098 +1,2094 @@ /*- * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) * * Copyright (c) 2002, 2003 Networks Associates Technology, Inc. * All rights reserved. * * This software was developed for the FreeBSD Project by Marshall * Kirk McKusick and Network Associates Laboratories, the Security * Research Division of Network Associates, Inc. under DARPA/SPAWAR * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS * research program * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1982, 1986, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95 * from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ... * @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_directio.h" #include "opt_ffs.h" #include "opt_ufs.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef UFS_DIRHASH #include #endif #include #include #define ALIGNED_TO(ptr, s) \ (((uintptr_t)(ptr) & (_Alignof(s) - 1)) == 0) #ifdef DIRECTIO extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone); #endif static vop_fdatasync_t ffs_fdatasync; static vop_fsync_t ffs_fsync; static vop_getpages_t ffs_getpages; static vop_getpages_async_t ffs_getpages_async; static vop_lock1_t ffs_lock; #ifdef INVARIANTS static vop_unlock_t ffs_unlock_debug; #endif static vop_read_t ffs_read; static vop_write_t ffs_write; static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag); static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred); static vop_strategy_t ffsext_strategy; static vop_closeextattr_t ffs_closeextattr; static vop_deleteextattr_t ffs_deleteextattr; static vop_getextattr_t ffs_getextattr; static vop_listextattr_t ffs_listextattr; static vop_openextattr_t ffs_openextattr; static vop_setextattr_t ffs_setextattr; static vop_vptofh_t ffs_vptofh; static vop_vput_pair_t ffs_vput_pair; /* Global vfs data structures for ufs. */ struct vop_vector ffs_vnodeops1 = { .vop_default = &ufs_vnodeops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_getpages = ffs_getpages, .vop_getpages_async = ffs_getpages_async, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_read = ffs_read, .vop_reallocblks = ffs_reallocblks, .vop_write = ffs_write, .vop_vptofh = ffs_vptofh, .vop_vput_pair = ffs_vput_pair, }; VFS_VOP_VECTOR_REGISTER(ffs_vnodeops1); struct vop_vector ffs_fifoops1 = { .vop_default = &ufs_fifoops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_vptofh = ffs_vptofh, }; VFS_VOP_VECTOR_REGISTER(ffs_fifoops1); /* Global vfs data structures for ufs. */ struct vop_vector ffs_vnodeops2 = { .vop_default = &ufs_vnodeops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_getpages = ffs_getpages, .vop_getpages_async = ffs_getpages_async, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_read = ffs_read, .vop_reallocblks = ffs_reallocblks, .vop_write = ffs_write, .vop_closeextattr = ffs_closeextattr, .vop_deleteextattr = ffs_deleteextattr, .vop_getextattr = ffs_getextattr, .vop_listextattr = ffs_listextattr, .vop_openextattr = ffs_openextattr, .vop_setextattr = ffs_setextattr, .vop_vptofh = ffs_vptofh, .vop_vput_pair = ffs_vput_pair, }; VFS_VOP_VECTOR_REGISTER(ffs_vnodeops2); struct vop_vector ffs_fifoops2 = { .vop_default = &ufs_fifoops, .vop_fsync = ffs_fsync, .vop_fdatasync = ffs_fdatasync, .vop_lock1 = ffs_lock, #ifdef INVARIANTS .vop_unlock = ffs_unlock_debug, #endif .vop_reallocblks = ffs_reallocblks, .vop_strategy = ffsext_strategy, .vop_closeextattr = ffs_closeextattr, .vop_deleteextattr = ffs_deleteextattr, .vop_getextattr = ffs_getextattr, .vop_listextattr = ffs_listextattr, .vop_openextattr = ffs_openextattr, .vop_setextattr = ffs_setextattr, .vop_vptofh = ffs_vptofh, }; VFS_VOP_VECTOR_REGISTER(ffs_fifoops2); /* * Synch an open file. */ /* ARGSUSED */ static int ffs_fsync(struct vop_fsync_args *ap) { struct vnode *vp; struct bufobj *bo; int error; vp = ap->a_vp; bo = &vp->v_bufobj; retry: error = ffs_syncvnode(vp, ap->a_waitfor, 0); if (error) return (error); if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) { error = softdep_fsync(vp); if (error) return (error); /* * The softdep_fsync() function may drop vp lock, * allowing for dirty buffers to reappear on the * bo_dirty list. Recheck and resync as needed. */ BO_LOCK(bo); if ((vp->v_type == VREG || vp->v_type == VDIR) && (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) { BO_UNLOCK(bo); goto retry; } BO_UNLOCK(bo); } if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), 0)) return (ENXIO); return (0); } int ffs_syncvnode(struct vnode *vp, int waitfor, int flags) { struct inode *ip; struct bufobj *bo; struct ufsmount *ump; struct buf *bp, *nbp; ufs_lbn_t lbn; int error, passes; bool still_dirty, unlocked, wait; ip = VTOI(vp); bo = &vp->v_bufobj; ump = VFSTOUFS(vp->v_mount); /* * When doing MNT_WAIT we must first flush all dependencies * on the inode. */ if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && (error = softdep_sync_metadata(vp)) != 0) { if (ffs_fsfail_cleanup(ump, error)) error = 0; return (error); } /* * Flush all dirty buffers associated with a vnode. */ error = 0; passes = 0; wait = false; /* Always do an async pass first. */ unlocked = false; lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); BO_LOCK(bo); loop: TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) bp->b_vflags &= ~BV_SCANNED; TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { /* * Reasons to skip this buffer: it has already been considered * on this pass, the buffer has dependencies that will cause * it to be redirtied and it has not already been deferred, * or it is already being written. */ if ((bp->b_vflags & BV_SCANNED) != 0) continue; bp->b_vflags |= BV_SCANNED; /* * Flush indirects in order, if requested. * * Note that if only datasync is requested, we can * skip indirect blocks when softupdates are not * active. Otherwise we must flush them with data, * since dependencies prevent data block writes. */ if (waitfor == MNT_WAIT && bp->b_lblkno <= -UFS_NDADDR && (lbn_level(bp->b_lblkno) >= passes || ((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp)))) continue; if (bp->b_lblkno > lbn) panic("ffs_syncvnode: syncing truncated data."); if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) { BO_UNLOCK(bo); } else if (wait) { if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo)) != 0) { BO_LOCK(bo); bp->b_vflags &= ~BV_SCANNED; goto next_locked; } } else continue; if ((bp->b_flags & B_DELWRI) == 0) panic("ffs_fsync: not dirty"); /* * Check for dependencies and potentially complete them. */ if (!LIST_EMPTY(&bp->b_dep) && (error = softdep_sync_buf(vp, bp, wait ? MNT_WAIT : MNT_NOWAIT)) != 0) { /* * Lock order conflict, buffer was already unlocked, * and vnode possibly unlocked. */ if (error == ERELOOKUP) { if (vp->v_data == NULL) return (EBADF); unlocked = true; if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT && (error = softdep_sync_metadata(vp)) != 0) { if (ffs_fsfail_cleanup(ump, error)) error = 0; return (unlocked && error == 0 ? ERELOOKUP : error); } /* Re-evaluate inode size */ lbn = lblkno(ITOFS(ip), (ip->i_size + ITOFS(ip)->fs_bsize - 1)); goto next; } /* I/O error. */ if (error != EBUSY) { BUF_UNLOCK(bp); return (error); } /* If we deferred once, don't defer again. */ if ((bp->b_flags & B_DEFERRED) == 0) { bp->b_flags |= B_DEFERRED; BUF_UNLOCK(bp); goto next; } } if (wait) { bremfree(bp); error = bwrite(bp); if (ffs_fsfail_cleanup(ump, error)) error = 0; if (error != 0) return (error); } else if ((bp->b_flags & B_CLUSTEROK)) { (void) vfs_bio_awrite(bp); } else { bremfree(bp); (void) bawrite(bp); } next: /* * Since we may have slept during the I/O, we need * to start from a known point. */ BO_LOCK(bo); next_locked: nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd); } if (waitfor != MNT_WAIT) { BO_UNLOCK(bo); if ((flags & NO_INO_UPDT) != 0) return (unlocked ? ERELOOKUP : 0); error = ffs_update(vp, 0); if (error == 0 && unlocked) error = ERELOOKUP; return (error); } /* Drain IO to see if we're done. */ bufobj_wwait(bo, 0, 0); /* * Block devices associated with filesystems may have new I/O * requests posted for them even if the vnode is locked, so no * amount of trying will get them clean. We make several passes * as a best effort. * * Regular files may need multiple passes to flush all dependency * work as it is possible that we must write once per indirect * level, once for the leaf, and once for the inode and each of * these will be done with one sync and one async pass. */ if (bo->bo_dirty.bv_cnt > 0) { if ((flags & DATA_ONLY) == 0) { still_dirty = true; } else { /* * For data-only sync, dirty indirect buffers * are ignored. */ still_dirty = false; TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { if (bp->b_lblkno > -UFS_NDADDR) { still_dirty = true; break; } } } if (still_dirty) { /* Write the inode after sync passes to flush deps. */ if (wait && DOINGSOFTDEP(vp) && (flags & NO_INO_UPDT) == 0) { BO_UNLOCK(bo); ffs_update(vp, 1); BO_LOCK(bo); } /* switch between sync/async. */ wait = !wait; if (wait || ++passes < UFS_NIADDR + 2) goto loop; } } BO_UNLOCK(bo); error = 0; if ((flags & DATA_ONLY) == 0) { if ((flags & NO_INO_UPDT) == 0) error = ffs_update(vp, 1); if (DOINGSUJ(vp)) softdep_journal_fsync(VTOI(vp)); } else if ((ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA)) != 0) { error = ffs_update(vp, 1); } if (error == 0 && unlocked) error = ERELOOKUP; if (error == 0) ip->i_flag &= ~IN_NEEDSYNC; return (error); } static int ffs_fdatasync(struct vop_fdatasync_args *ap) { return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY)); } static int ffs_lock(ap) struct vop_lock1_args /* { struct vnode *a_vp; int a_flags; char *file; int line; } */ *ap; { #if !defined(NO_FFS_SNAPSHOT) || defined(DIAGNOSTIC) struct vnode *vp = ap->a_vp; #endif /* !NO_FFS_SNAPSHOT || DIAGNOSTIC */ #ifdef DIAGNOSTIC struct inode *ip; #endif /* DIAGNOSTIC */ int result; #ifndef NO_FFS_SNAPSHOT int flags; struct lock *lkp; /* * Adaptive spinning mixed with SU leads to trouble. use a giant hammer * and only use it when LK_NODDLKTREAT is set. Currently this means it * is only used during path lookup. */ if ((ap->a_flags & LK_NODDLKTREAT) != 0) ap->a_flags |= LK_ADAPTIVE; switch (ap->a_flags & LK_TYPE_MASK) { case LK_SHARED: case LK_UPGRADE: case LK_EXCLUSIVE: flags = ap->a_flags; for (;;) { #ifdef DEBUG_VFS_LOCKS VNPASS(vp->v_holdcnt != 0, vp); #endif /* DEBUG_VFS_LOCKS */ lkp = vp->v_vnlock; result = lockmgr_lock_flags(lkp, flags, &VI_MTX(vp)->lock_object, ap->a_file, ap->a_line); if (lkp == vp->v_vnlock || result != 0) break; /* * Apparent success, except that the vnode * mutated between snapshot file vnode and * regular file vnode while this process * slept. The lock currently held is not the * right lock. Release it, and try to get the * new lock. */ lockmgr_unlock(lkp); if ((flags & (LK_INTERLOCK | LK_NOWAIT)) == (LK_INTERLOCK | LK_NOWAIT)) return (EBUSY); if ((flags & LK_TYPE_MASK) == LK_UPGRADE) flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE; flags &= ~LK_INTERLOCK; } #ifdef DIAGNOSTIC switch (ap->a_flags & LK_TYPE_MASK) { case LK_UPGRADE: case LK_EXCLUSIVE: if (result == 0 && vp->v_vnlock->lk_recurse == 0) { ip = VTOI(vp); if (ip != NULL) ip->i_lock_gen++; } } #endif /* DIAGNOSTIC */ break; default: #ifdef DIAGNOSTIC if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { ip = VTOI(vp); if (ip != NULL) ufs_unlock_tracker(ip); } #endif /* DIAGNOSTIC */ result = VOP_LOCK1_APV(&ufs_vnodeops, ap); break; } #else /* NO_FFS_SNAPSHOT */ /* * See above for an explanation. */ if ((ap->a_flags & LK_NODDLKTREAT) != 0) ap->a_flags |= LK_ADAPTIVE; #ifdef DIAGNOSTIC if ((ap->a_flags & LK_TYPE_MASK) == LK_DOWNGRADE) { ip = VTOI(vp); if (ip != NULL) ufs_unlock_tracker(ip); } #endif /* DIAGNOSTIC */ result = VOP_LOCK1_APV(&ufs_vnodeops, ap); #endif /* NO_FFS_SNAPSHOT */ #ifdef DIAGNOSTIC switch (ap->a_flags & LK_TYPE_MASK) { case LK_UPGRADE: case LK_EXCLUSIVE: if (result == 0 && vp->v_vnlock->lk_recurse == 0) { ip = VTOI(vp); if (ip != NULL) ip->i_lock_gen++; } } #endif /* DIAGNOSTIC */ return (result); } #ifdef INVARIANTS static int ffs_unlock_debug(struct vop_unlock_args *ap) { struct vnode *vp; struct inode *ip; vp = ap->a_vp; ip = VTOI(vp); if (ip->i_flag & UFS_INODE_FLAG_LAZY_MASK_ASSERTABLE) { if ((vp->v_mflag & VMP_LAZYLIST) == 0) { VI_LOCK(vp); VNASSERT((vp->v_mflag & VMP_LAZYLIST), vp, ("%s: modified vnode (%x) not on lazy list", __func__, ip->i_flag)); VI_UNLOCK(vp); } } KASSERT(vp->v_type != VDIR || vp->v_vnlock->lk_recurse != 0 || (ip->i_flag & IN_ENDOFF) == 0, ("ufs dir vp %p ip %p flags %#x", vp, ip, ip->i_flag)); #ifdef DIAGNOSTIC if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE && ip != NULL && vp->v_vnlock->lk_recurse == 0) ufs_unlock_tracker(ip); #endif return (VOP_UNLOCK_APV(&ufs_vnodeops, ap)); } #endif static int ffs_read_hole(struct uio *uio, long xfersize, long *size) { ssize_t saved_resid, tlen; int error; while (xfersize > 0) { tlen = min(xfersize, ZERO_REGION_SIZE); saved_resid = uio->uio_resid; error = vn_io_fault_uiomove(__DECONST(void *, zero_region), tlen, uio); if (error != 0) return (error); tlen = saved_resid - uio->uio_resid; xfersize -= tlen; *size -= tlen; } return (0); } /* * Vnode op for reading. */ static int ffs_read(ap) struct vop_read_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap; { struct vnode *vp; struct inode *ip; struct uio *uio; struct fs *fs; struct buf *bp; ufs_lbn_t lbn, nextlbn; off_t bytesinfile; long size, xfersize, blkoffset; ssize_t orig_resid; int bflag, error, ioflag, seqcount; vp = ap->a_vp; uio = ap->a_uio; ioflag = ap->a_ioflag; if (ap->a_ioflag & IO_EXT) #ifdef notyet return (ffs_extread(vp, uio, ioflag)); #else panic("ffs_read+IO_EXT"); #endif #ifdef DIRECTIO if ((ioflag & IO_DIRECT) != 0) { int workdone; error = ffs_rawread(vp, uio, &workdone); if (error != 0 || workdone != 0) return error; } #endif seqcount = ap->a_ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_READ) panic("ffs_read: mode"); if (vp->v_type == VLNK) { if ((int)ip->i_size < VFSTOUFS(vp->v_mount)->um_maxsymlinklen) panic("ffs_read: short symlink"); } else if (vp->v_type != VREG && vp->v_type != VDIR) panic("ffs_read: type %d", vp->v_type); #endif orig_resid = uio->uio_resid; KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0")); if (orig_resid == 0) return (0); KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0")); fs = ITOFS(ip); if (uio->uio_offset < ip->i_size && uio->uio_offset >= fs->fs_maxfilesize) return (EOVERFLOW); bflag = GB_UNMAPPED | (uio->uio_segflg == UIO_NOCOPY ? 0 : GB_NOSPARSE); for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0) break; lbn = lblkno(fs, uio->uio_offset); nextlbn = lbn + 1; /* * size of buffer. The buffer representing the * end of the file is rounded up to the size of * the block type ( fragment or full block, * depending ). */ size = blksize(fs, ip, lbn); blkoffset = blkoff(fs, uio->uio_offset); /* * The amount we want to transfer in this iteration is * one FS block less the amount of the data before * our startpoint (duh!) */ xfersize = fs->fs_bsize - blkoffset; /* * But if we actually want less than the block, * or the file doesn't have a whole block more of data, * then use the lesser number. */ if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (bytesinfile < xfersize) xfersize = bytesinfile; if (lblktosize(fs, nextlbn) >= ip->i_size) { /* * Don't do readahead if this is the end of the file. */ error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); } else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) { /* * Otherwise if we are allowed to cluster, * grab as much as we can. * * XXX This may not be a win if we are not * doing sequential access. */ error = cluster_read(vp, ip->i_size, lbn, size, NOCRED, blkoffset + uio->uio_resid, seqcount, bflag, &bp); } else if (seqcount > 1) { /* * If we are NOT allowed to cluster, then * if we appear to be acting sequentially, * fire off a request for a readahead * as well as a read. Note that the 4th and 5th * arguments point to arrays of the size specified in * the 6th argument. */ u_int nextsize = blksize(fs, ip, nextlbn); error = breadn_flags(vp, lbn, lbn, size, &nextlbn, &nextsize, 1, NOCRED, bflag, NULL, &bp); } else { /* * Failing all of the above, just read what the * user asked for. Interestingly, the same as * the first option above. */ error = bread_gb(vp, lbn, size, NOCRED, bflag, &bp); } if (error == EJUSTRETURN) { error = ffs_read_hole(uio, xfersize, &size); if (error == 0) continue; } if (error != 0) { brelse(bp); bp = NULL; break; } /* * We should only get non-zero b_resid when an I/O error * has occurred, which should cause us to break above. * However, if the short read did not cause an error, * then we want to ensure that we do not uiomove bad * or uninitialized data. */ size -= bp->b_resid; if (size < xfersize) { if (size == 0) break; xfersize = size; } if (buf_mapped(bp)) { error = vn_io_fault_uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); } else { error = vn_io_fault_pgmove(bp->b_pages, blkoffset, (int)xfersize, uio); } if (error) break; vfs_bio_brelse(bp, ioflag); } /* * This can only happen in the case of an error * because the loop above resets bp to NULL on each iteration * and on normal completion has not set a new value into it. * so it must have come from a 'break' statement */ if (bp != NULL) vfs_bio_brelse(bp, ioflag); if ((error == 0 || uio->uio_resid != orig_resid) && (vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) UFS_INODE_SET_FLAG_SHARED(ip, IN_ACCESS); return (error); } /* * Vnode op for writing. */ static int ffs_write(ap) struct vop_write_args /* { struct vnode *a_vp; struct uio *a_uio; int a_ioflag; struct ucred *a_cred; } */ *ap; { struct vnode *vp; struct uio *uio; struct inode *ip; struct fs *fs; struct buf *bp; ufs_lbn_t lbn; off_t osize; ssize_t resid; int seqcount; int blkoffset, error, flags, ioflag, size, xfersize; vp = ap->a_vp; if (DOINGSUJ(vp)) softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); uio = ap->a_uio; ioflag = ap->a_ioflag; if (ap->a_ioflag & IO_EXT) #ifdef notyet return (ffs_extwrite(vp, uio, ioflag, ap->a_cred)); #else panic("ffs_write+IO_EXT"); #endif seqcount = ap->a_ioflag >> IO_SEQSHIFT; ip = VTOI(vp); #ifdef INVARIANTS if (uio->uio_rw != UIO_WRITE) panic("ffs_write: mode"); #endif switch (vp->v_type) { case VREG: if (ioflag & IO_APPEND) uio->uio_offset = ip->i_size; if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size) return (EPERM); /* FALLTHROUGH */ case VLNK: break; case VDIR: panic("ffs_write: dir write"); break; default: panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type, (int)uio->uio_offset, (int)uio->uio_resid ); } KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0")); KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0")); fs = ITOFS(ip); if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize) return (EFBIG); /* * Maybe this should be above the vnode op call, but so long as * file servers have no limits, I don't think it matters. */ if (vn_rlimit_fsize(vp, uio, uio->uio_td)) return (EFBIG); resid = uio->uio_resid; osize = ip->i_size; if (seqcount > BA_SEQMAX) flags = BA_SEQMAX << BA_SEQSHIFT; else flags = seqcount << BA_SEQSHIFT; if (ioflag & IO_SYNC) flags |= IO_SYNC; flags |= BA_UNMAPPED; for (error = 0; uio->uio_resid > 0;) { lbn = lblkno(fs, uio->uio_offset); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->fs_bsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (uio->uio_offset + xfersize > ip->i_size) vnode_pager_setsize(vp, uio->uio_offset + xfersize); /* * We must perform a read-before-write if the transfer size * does not cover the entire buffer. */ if (fs->fs_bsize > xfersize) flags |= BA_CLRBUF; else flags &= ~BA_CLRBUF; /* XXX is uio->uio_offset the right thing here? */ error = UFS_BALLOC(vp, uio->uio_offset, xfersize, ap->a_cred, flags, &bp); if (error != 0) { vnode_pager_setsize(vp, ip->i_size); break; } if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL)) bp->b_flags |= B_NOCACHE; if (uio->uio_offset + xfersize > ip->i_size) { ip->i_size = uio->uio_offset + xfersize; DIP_SET(ip, i_size, ip->i_size); UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); } size = blksize(fs, ip, lbn) - bp->b_resid; if (size < xfersize) xfersize = size; if (buf_mapped(bp)) { error = vn_io_fault_uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); } else { error = vn_io_fault_pgmove(bp->b_pages, blkoffset, (int)xfersize, uio); } /* * If the buffer is not already filled and we encounter an * error while trying to fill it, we have to clear out any * garbage data from the pages instantiated for the buffer. * If we do not, a failed uiomove() during a write can leave * the prior contents of the pages exposed to a userland mmap. * * Note that we need only clear buffers with a transfer size * equal to the block size because buffers with a shorter * transfer size were cleared above by the call to UFS_BALLOC() * with the BA_CLRBUF flag set. * * If the source region for uiomove identically mmaps the * buffer, uiomove() performed the NOP copy, and the buffer * content remains valid because the page fault handler * validated the pages. */ if (error != 0 && (bp->b_flags & B_CACHE) == 0 && fs->fs_bsize == xfersize) vfs_bio_clrbuf(bp); vfs_bio_set_flags(bp, ioflag); /* * If IO_SYNC each buffer is written synchronously. Otherwise * if we have a severe page deficiency write the buffer * asynchronously. Otherwise try to cluster, and if that * doesn't do it then either do an async write (if O_DIRECT), * or a delayed write (if not). */ if (ioflag & IO_SYNC) { (void)bwrite(bp); } else if (vm_page_count_severe() || buf_dirty_count_severe() || (ioflag & IO_ASYNC)) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else if (xfersize + blkoffset == fs->fs_bsize) { if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) { bp->b_flags |= B_CLUSTEROK; cluster_write(vp, bp, ip->i_size, seqcount, GB_UNMAPPED); } else { bawrite(bp); } } else if (ioflag & IO_DIRECT) { bp->b_flags |= B_CLUSTEROK; bawrite(bp); } else { bp->b_flags |= B_CLUSTEROK; bdwrite(bp); } if (error || xfersize == 0) break; UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); } /* * If we successfully wrote any data, and we are not the superuser * we clear the setuid and setgid bits as a precaution against * tampering. */ if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ap->a_cred) { if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID)) { vn_seqc_write_begin(vp); UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); DIP_SET(ip, i_mode, ip->i_mode); vn_seqc_write_end(vp); } } if (error) { if (ioflag & IO_UNIT) { (void)ffs_truncate(vp, osize, IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred); uio->uio_offset -= resid - uio->uio_resid; uio->uio_resid = resid; } } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) { if (!(ioflag & IO_DATASYNC) || (ip->i_flags & (IN_SIZEMOD | IN_IBLKDATA))) error = ffs_update(vp, 1); if (ffs_fsfail_cleanup(VFSTOUFS(vp->v_mount), error)) error = ENXIO; } return (error); } /* * Extended attribute area reading. */ static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag) { struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct buf *bp; ufs_lbn_t lbn, nextlbn; off_t bytesinfile; long size, xfersize, blkoffset; ssize_t orig_resid; int error; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; #ifdef INVARIANTS if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_extread: mode"); #endif orig_resid = uio->uio_resid; KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0")); if (orig_resid == 0) return (0); KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0")); for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) { if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0) break; lbn = lblkno(fs, uio->uio_offset); nextlbn = lbn + 1; /* * size of buffer. The buffer representing the * end of the file is rounded up to the size of * the block type ( fragment or full block, * depending ). */ size = sblksize(fs, dp->di_extsize, lbn); blkoffset = blkoff(fs, uio->uio_offset); /* * The amount we want to transfer in this iteration is * one FS block less the amount of the data before * our startpoint (duh!) */ xfersize = fs->fs_bsize - blkoffset; /* * But if we actually want less than the block, * or the file doesn't have a whole block more of data, * then use the lesser number. */ if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; if (bytesinfile < xfersize) xfersize = bytesinfile; if (lblktosize(fs, nextlbn) >= dp->di_extsize) { /* * Don't do readahead if this is the end of the info. */ error = bread(vp, -1 - lbn, size, NOCRED, &bp); } else { /* * If we have a second block, then * fire off a request for a readahead * as well as a read. Note that the 4th and 5th * arguments point to arrays of the size specified in * the 6th argument. */ u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn); nextlbn = -1 - nextlbn; error = breadn(vp, -1 - lbn, size, &nextlbn, &nextsize, 1, NOCRED, &bp); } if (error) { brelse(bp); bp = NULL; break; } /* * We should only get non-zero b_resid when an I/O error * has occurred, which should cause us to break above. * However, if the short read did not cause an error, * then we want to ensure that we do not uiomove bad * or uninitialized data. */ size -= bp->b_resid; if (size < xfersize) { if (size == 0) break; xfersize = size; } error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); if (error) break; vfs_bio_brelse(bp, ioflag); } /* * This can only happen in the case of an error * because the loop above resets bp to NULL on each iteration * and on normal completion has not set a new value into it. * so it must have come from a 'break' statement */ if (bp != NULL) vfs_bio_brelse(bp, ioflag); return (error); } /* * Extended attribute area writing. */ static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred) { struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct buf *bp; ufs_lbn_t lbn; off_t osize; ssize_t resid; int blkoffset, error, flags, size, xfersize; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; #ifdef INVARIANTS if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC) panic("ffs_extwrite: mode"); #endif if (ioflag & IO_APPEND) uio->uio_offset = dp->di_extsize; KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0")); KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0")); if ((uoff_t)uio->uio_offset + uio->uio_resid > UFS_NXADDR * fs->fs_bsize) return (EFBIG); resid = uio->uio_resid; osize = dp->di_extsize; flags = IO_EXT; if (ioflag & IO_SYNC) flags |= IO_SYNC; for (error = 0; uio->uio_resid > 0;) { lbn = lblkno(fs, uio->uio_offset); blkoffset = blkoff(fs, uio->uio_offset); xfersize = fs->fs_bsize - blkoffset; if (uio->uio_resid < xfersize) xfersize = uio->uio_resid; /* * We must perform a read-before-write if the transfer size * does not cover the entire buffer. */ if (fs->fs_bsize > xfersize) flags |= BA_CLRBUF; else flags &= ~BA_CLRBUF; error = UFS_BALLOC(vp, uio->uio_offset, xfersize, ucred, flags, &bp); if (error != 0) break; /* * If the buffer is not valid we have to clear out any * garbage data from the pages instantiated for the buffer. * If we do not, a failed uiomove() during a write can leave * the prior contents of the pages exposed to a userland * mmap(). XXX deal with uiomove() errors a better way. */ if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize) vfs_bio_clrbuf(bp); if (uio->uio_offset + xfersize > dp->di_extsize) { dp->di_extsize = uio->uio_offset + xfersize; UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); } size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid; if (size < xfersize) xfersize = size; error = uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio); vfs_bio_set_flags(bp, ioflag); /* * If IO_SYNC each buffer is written synchronously. Otherwise * if we have a severe page deficiency write the buffer * asynchronously. Otherwise try to cluster, and if that * doesn't do it then either do an async write (if O_DIRECT), * or a delayed write (if not). */ if (ioflag & IO_SYNC) { (void)bwrite(bp); } else if (vm_page_count_severe() || buf_dirty_count_severe() || xfersize + blkoffset == fs->fs_bsize || (ioflag & (IO_ASYNC | IO_DIRECT))) bawrite(bp); else bdwrite(bp); if (error || xfersize == 0) break; UFS_INODE_SET_FLAG(ip, IN_CHANGE); } /* * If we successfully wrote any data, and we are not the superuser * we clear the setuid and setgid bits as a precaution against * tampering. */ if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) { if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID)) { vn_seqc_write_begin(vp); UFS_INODE_SET_MODE(ip, ip->i_mode & ~(ISUID | ISGID)); dp->di_mode = ip->i_mode; vn_seqc_write_end(vp); } } if (error) { if (ioflag & IO_UNIT) { (void)ffs_truncate(vp, osize, IO_EXT | (ioflag&IO_SYNC), ucred); uio->uio_offset -= resid - uio->uio_resid; uio->uio_resid = resid; } } else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) error = ffs_update(vp, 1); return (error); } /* * Vnode operating to retrieve a named extended attribute. * * Locate a particular EA (nspace:name) in the area (ptr:length), and return * the length of the EA, and possibly the pointer to the entry and to the data. */ static int ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, struct extattr **eapp, u_char **eac) { struct extattr *eap, *eaend; size_t nlen; nlen = strlen(name); KASSERT(ALIGNED_TO(ptr, struct extattr), ("unaligned")); eap = (struct extattr *)ptr; eaend = (struct extattr *)(ptr + length); for (; eap < eaend; eap = EXTATTR_NEXT(eap)) { KASSERT(EXTATTR_NEXT(eap) <= eaend, ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); if (eap->ea_namespace != nspace || eap->ea_namelength != nlen || memcmp(eap->ea_name, name, nlen) != 0) continue; if (eapp != NULL) *eapp = eap; if (eac != NULL) *eac = EXTATTR_CONTENT(eap); return (EXTATTR_CONTENT_SIZE(eap)); } return (-1); } static int ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td) { const struct extattr *eap, *eaend, *eapnext; struct inode *ip; struct ufs2_dinode *dp; struct fs *fs; struct uio luio; struct iovec liovec; u_int easize; int error; u_char *eae; ip = VTOI(vp); fs = ITOFS(ip); dp = ip->i_din2; easize = dp->di_extsize; if ((uoff_t)easize > UFS_NXADDR * fs->fs_bsize) return (EFBIG); eae = malloc(easize, M_TEMP, M_WAITOK); liovec.iov_base = eae; liovec.iov_len = easize; luio.uio_iov = &liovec; luio.uio_iovcnt = 1; luio.uio_offset = 0; luio.uio_resid = easize; luio.uio_segflg = UIO_SYSSPACE; luio.uio_rw = UIO_READ; luio.uio_td = td; error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC); if (error) { free(eae, M_TEMP); return (error); } /* Validate disk xattrfile contents. */ for (eap = (void *)eae, eaend = (void *)(eae + easize); eap < eaend; eap = eapnext) { /* Detect zeroed out tail */ if (eap->ea_length < sizeof(*eap) || eap->ea_length == 0) { easize = (const u_char *)eap - eae; break; } eapnext = EXTATTR_NEXT(eap); /* Bogusly long entry. */ if (eapnext > eaend) { free(eae, M_TEMP); return (EINTEGRITY); } } ip->i_ea_len = easize; *p = eae; return (0); } static void ffs_lock_ea(struct vnode *vp) { struct inode *ip; ip = VTOI(vp); VI_LOCK(vp); while (ip->i_flag & IN_EA_LOCKED) { UFS_INODE_SET_FLAG(ip, IN_EA_LOCKWAIT); msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea", 0); } UFS_INODE_SET_FLAG(ip, IN_EA_LOCKED); VI_UNLOCK(vp); } static void ffs_unlock_ea(struct vnode *vp) { struct inode *ip; ip = VTOI(vp); VI_LOCK(vp); if (ip->i_flag & IN_EA_LOCKWAIT) wakeup(&ip->i_ea_refs); ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT); VI_UNLOCK(vp); } static int ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td) { struct inode *ip; - struct ufs2_dinode *dp; int error; ip = VTOI(vp); ffs_lock_ea(vp); if (ip->i_ea_area != NULL) { ip->i_ea_refs++; ffs_unlock_ea(vp); return (0); } - dp = ip->i_din2; error = ffs_rdextattr(&ip->i_ea_area, vp, td); if (error) { ffs_unlock_ea(vp); return (error); } ip->i_ea_error = 0; ip->i_ea_refs++; ffs_unlock_ea(vp); return (0); } /* * Vnode extattr transaction commit/abort */ static int ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td) { struct inode *ip; struct uio luio; struct iovec *liovec; struct ufs2_dinode *dp; size_t ea_len, tlen; int error, i, lcnt; bool truncate; ip = VTOI(vp); ffs_lock_ea(vp); if (ip->i_ea_area == NULL) { ffs_unlock_ea(vp); return (EINVAL); } dp = ip->i_din2; error = ip->i_ea_error; truncate = false; if (commit && error == 0) { ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit"); if (cred == NOCRED) cred = vp->v_mount->mnt_cred; ea_len = MAX(ip->i_ea_len, dp->di_extsize); for (lcnt = 1, tlen = ea_len - ip->i_ea_len; tlen > 0;) { tlen -= MIN(ZERO_REGION_SIZE, tlen); lcnt++; } liovec = __builtin_alloca(lcnt * sizeof(struct iovec)); luio.uio_iovcnt = lcnt; liovec[0].iov_base = ip->i_ea_area; liovec[0].iov_len = ip->i_ea_len; for (i = 1, tlen = ea_len - ip->i_ea_len; i < lcnt; i++) { liovec[i].iov_base = __DECONST(void *, zero_region); liovec[i].iov_len = MIN(ZERO_REGION_SIZE, tlen); tlen -= liovec[i].iov_len; } MPASS(tlen == 0); luio.uio_iov = liovec; luio.uio_offset = 0; luio.uio_resid = ea_len; luio.uio_segflg = UIO_SYSSPACE; luio.uio_rw = UIO_WRITE; luio.uio_td = td; error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred); if (error == 0 && ip->i_ea_len == 0) truncate = true; } if (--ip->i_ea_refs == 0) { free(ip->i_ea_area, M_TEMP); ip->i_ea_area = NULL; ip->i_ea_len = 0; ip->i_ea_error = 0; } ffs_unlock_ea(vp); if (truncate) ffs_truncate(vp, 0, IO_EXT, cred); return (error); } /* * Vnode extattr strategy routine for fifos. * * We need to check for a read or write of the external attributes. * Otherwise we just fall through and do the usual thing. */ static int ffsext_strategy(struct vop_strategy_args *ap) /* struct vop_strategy_args { struct vnodeop_desc *a_desc; struct vnode *a_vp; struct buf *a_bp; }; */ { struct vnode *vp; daddr_t lbn; vp = ap->a_vp; lbn = ap->a_bp->b_lblkno; if (I_IS_UFS2(VTOI(vp)) && lbn < 0 && lbn >= -UFS_NXADDR) return (VOP_STRATEGY_APV(&ufs_vnodeops, ap)); if (vp->v_type == VFIFO) return (VOP_STRATEGY_APV(&ufs_fifoops, ap)); panic("spec nodes went here"); } /* * Vnode extattr transaction commit/abort */ static int ffs_openextattr(struct vop_openextattr_args *ap) /* struct vop_openextattr_args { struct vnodeop_desc *a_desc; struct vnode *a_vp; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td)); } /* * Vnode extattr transaction commit/abort */ static int ffs_closeextattr(struct vop_closeextattr_args *ap) /* struct vop_closeextattr_args { struct vnodeop_desc *a_desc; struct vnode *a_vp; int a_commit; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct vnode *vp; vp = ap->a_vp; if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); if (ap->a_commit && (vp->v_mount->mnt_flag & MNT_RDONLY) != 0) return (EROFS); if (ap->a_commit && DOINGSUJ(vp)) { ASSERT_VOP_ELOCKED(vp, "ffs_closeextattr commit"); softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); } return (ffs_close_ea(vp, ap->a_commit, ap->a_cred, ap->a_td)); } /* * Vnode operation to remove a named attribute. */ static int ffs_deleteextattr(struct vop_deleteextattr_args *ap) /* vop_deleteextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct vnode *vp; struct inode *ip; struct extattr *eap; uint32_t ul; int olen, error, i, easize; u_char *eae; void *tmp; vp = ap->a_vp; ip = VTOI(vp); if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); if (strlen(ap->a_name) == 0) return (EINVAL); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); error = extattr_check_cred(vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) { /* * ffs_lock_ea is not needed there, because the vnode * must be exclusively locked. */ if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } if (DOINGSUJ(vp)) { ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); } error = ffs_open_ea(vp, ap->a_cred, ap->a_td); if (error) return (error); /* CEM: delete could be done in-place instead */ eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK); bcopy(ip->i_ea_area, eae, ip->i_ea_len); easize = ip->i_ea_len; olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, &eap, NULL); if (olen == -1) { /* delete but nonexistent */ free(eae, M_TEMP); ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); return (ENOATTR); } ul = eap->ea_length; i = (u_char *)EXTATTR_NEXT(eap) - eae; bcopy(EXTATTR_NEXT(eap), eap, easize - i); easize -= ul; tmp = ip->i_ea_area; ip->i_ea_area = eae; ip->i_ea_len = easize; free(tmp, M_TEMP); error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to retrieve a named extended attribute. */ static int ffs_getextattr(struct vop_getextattr_args *ap) /* vop_getextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct inode *ip; u_char *eae, *p; unsigned easize; int error, ealen; ip = VTOI(ap->a_vp); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); eae = ip->i_ea_area; easize = ip->i_ea_len; ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, NULL, &p); if (ealen >= 0) { error = 0; if (ap->a_size != NULL) *ap->a_size = ealen; else if (ap->a_uio != NULL) error = uiomove(p, ealen, ap->a_uio); } else error = ENOATTR; ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to retrieve extended attributes on a vnode. */ static int ffs_listextattr(struct vop_listextattr_args *ap) /* vop_listextattr { IN struct vnode *a_vp; IN int a_attrnamespace; INOUT struct uio *a_uio; OUT size_t *a_size; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct inode *ip; struct extattr *eap, *eaend; int error, ealen; ip = VTOI(ap->a_vp); if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK) return (EOPNOTSUPP); error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VREAD); if (error) return (error); error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td); if (error) return (error); error = 0; if (ap->a_size != NULL) *ap->a_size = 0; KASSERT(ALIGNED_TO(ip->i_ea_area, struct extattr), ("unaligned")); eap = (struct extattr *)ip->i_ea_area; eaend = (struct extattr *)(ip->i_ea_area + ip->i_ea_len); for (; error == 0 && eap < eaend; eap = EXTATTR_NEXT(eap)) { KASSERT(EXTATTR_NEXT(eap) <= eaend, ("extattr next %p beyond %p", EXTATTR_NEXT(eap), eaend)); if (eap->ea_namespace != ap->a_attrnamespace) continue; ealen = eap->ea_namelength; if (ap->a_size != NULL) *ap->a_size += ealen + 1; else if (ap->a_uio != NULL) error = uiomove(&eap->ea_namelength, ealen + 1, ap->a_uio); } ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td); return (error); } /* * Vnode operation to set a named attribute. */ static int ffs_setextattr(struct vop_setextattr_args *ap) /* vop_setextattr { IN struct vnode *a_vp; IN int a_attrnamespace; IN const char *a_name; INOUT struct uio *a_uio; IN struct ucred *a_cred; IN struct thread *a_td; }; */ { struct vnode *vp; struct inode *ip; struct fs *fs; struct extattr *eap; uint32_t ealength, ul; ssize_t ealen; int olen, eapad1, eapad2, error, i, easize; u_char *eae; void *tmp; vp = ap->a_vp; ip = VTOI(vp); fs = ITOFS(ip); if (vp->v_type == VCHR || vp->v_type == VBLK) return (EOPNOTSUPP); if (strlen(ap->a_name) == 0) return (EINVAL); /* XXX Now unsupported API to delete EAs using NULL uio. */ if (ap->a_uio == NULL) return (EOPNOTSUPP); if (vp->v_mount->mnt_flag & MNT_RDONLY) return (EROFS); ealen = ap->a_uio->uio_resid; if (ealen < 0 || ealen > lblktosize(fs, UFS_NXADDR)) return (EINVAL); error = extattr_check_cred(vp, ap->a_attrnamespace, ap->a_cred, ap->a_td, VWRITE); if (error) { /* * ffs_lock_ea is not needed there, because the vnode * must be exclusively locked. */ if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } if (DOINGSUJ(vp)) { ASSERT_VOP_ELOCKED(vp, "ffs_deleteextattr"); softdep_prealloc(vp, MNT_WAIT); if (vp->v_data == NULL) return (EBADF); } error = ffs_open_ea(vp, ap->a_cred, ap->a_td); if (error) return (error); ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name); eapad1 = roundup2(ealength, 8) - ealength; eapad2 = roundup2(ealen, 8) - ealen; ealength += eapad1 + ealen + eapad2; /* * CEM: rewrites of the same size or smaller could be done in-place * instead. (We don't acquire any fine-grained locks in here either, * so we could also do bigger writes in-place.) */ eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK); bcopy(ip->i_ea_area, eae, ip->i_ea_len); easize = ip->i_ea_len; olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name, &eap, NULL); if (olen == -1) { /* new, append at end */ KASSERT(ALIGNED_TO(eae + easize, struct extattr), ("unaligned")); eap = (struct extattr *)(eae + easize); easize += ealength; } else { ul = eap->ea_length; i = (u_char *)EXTATTR_NEXT(eap) - eae; if (ul != ealength) { bcopy(EXTATTR_NEXT(eap), (u_char *)eap + ealength, easize - i); easize += (ealength - ul); } } if (easize > lblktosize(fs, UFS_NXADDR)) { free(eae, M_TEMP); ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = ENOSPC; return (ENOSPC); } eap->ea_length = ealength; eap->ea_namespace = ap->a_attrnamespace; eap->ea_contentpadlen = eapad2; eap->ea_namelength = strlen(ap->a_name); memcpy(eap->ea_name, ap->a_name, strlen(ap->a_name)); bzero(&eap->ea_name[strlen(ap->a_name)], eapad1); error = uiomove(EXTATTR_CONTENT(eap), ealen, ap->a_uio); if (error) { free(eae, M_TEMP); ffs_close_ea(vp, 0, ap->a_cred, ap->a_td); if (ip->i_ea_area != NULL && ip->i_ea_error == 0) ip->i_ea_error = error; return (error); } bzero((u_char *)EXTATTR_CONTENT(eap) + ealen, eapad2); tmp = ip->i_ea_area; ip->i_ea_area = eae; ip->i_ea_len = easize; free(tmp, M_TEMP); error = ffs_close_ea(vp, 1, ap->a_cred, ap->a_td); return (error); } /* * Vnode pointer to File handle */ static int ffs_vptofh(struct vop_vptofh_args *ap) /* vop_vptofh { IN struct vnode *a_vp; IN struct fid *a_fhp; }; */ { struct inode *ip; struct ufid *ufhp; ip = VTOI(ap->a_vp); ufhp = (struct ufid *)ap->a_fhp; ufhp->ufid_len = sizeof(struct ufid); ufhp->ufid_ino = ip->i_number; ufhp->ufid_gen = ip->i_gen; return (0); } SYSCTL_DECL(_vfs_ffs); static int use_buf_pager = 1; SYSCTL_INT(_vfs_ffs, OID_AUTO, use_buf_pager, CTLFLAG_RWTUN, &use_buf_pager, 0, "Always use buffer pager instead of bmap"); static daddr_t ffs_gbp_getblkno(struct vnode *vp, vm_ooffset_t off) { return (lblkno(VFSTOUFS(vp->v_mount)->um_fs, off)); } static int ffs_gbp_getblksz(struct vnode *vp, daddr_t lbn, long *sz) { *sz = blksize(VFSTOUFS(vp->v_mount)->um_fs, VTOI(vp), lbn); return (0); } static int ffs_getpages(struct vop_getpages_args *ap) { struct vnode *vp; struct ufsmount *um; vp = ap->a_vp; um = VFSTOUFS(vp->v_mount); if (!use_buf_pager && um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) return (vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, NULL, NULL)); return (vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz)); } static int ffs_getpages_async(struct vop_getpages_async_args *ap) { struct vnode *vp; struct ufsmount *um; bool do_iodone; int error; vp = ap->a_vp; um = VFSTOUFS(vp->v_mount); do_iodone = true; if (um->um_devvp->v_bufobj.bo_bsize <= PAGE_SIZE) { error = vnode_pager_generic_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ap->a_iodone, ap->a_arg); if (error == 0) do_iodone = false; } else { error = vfs_bio_getpages(vp, ap->a_m, ap->a_count, ap->a_rbehind, ap->a_rahead, ffs_gbp_getblkno, ffs_gbp_getblksz); } if (do_iodone && ap->a_iodone != NULL) ap->a_iodone(ap->a_arg, ap->a_m, ap->a_count, error); return (error); } static int ffs_vput_pair(struct vop_vput_pair_args *ap) { struct mount *mp; struct vnode *dvp, *vp, *vp1, **vpp; struct inode *dp, *ip; ino_t ip_ino; u_int64_t ip_gen; - off_t old_size; int error, vp_locked; dvp = ap->a_dvp; dp = VTOI(dvp); vpp = ap->a_vpp; vp = vpp != NULL ? *vpp : NULL; if ((dp->i_flag & (IN_NEEDSYNC | IN_ENDOFF)) == 0) { vput(dvp); if (vp != NULL && ap->a_unlock_vp) vput(vp); return (0); } mp = dvp->v_mount; if (vp != NULL) { if (ap->a_unlock_vp) { vput(vp); } else { MPASS(vp->v_type != VNON); vp_locked = VOP_ISLOCKED(vp); ip = VTOI(vp); ip_ino = ip->i_number; ip_gen = ip->i_gen; VOP_UNLOCK(vp); } } /* * If compaction or fsync was requested do it in ffs_vput_pair() * now that other locks are no longer held. */ if ((dp->i_flag & IN_ENDOFF) != 0) { VNASSERT(I_ENDOFF(dp) != 0 && I_ENDOFF(dp) < dp->i_size, dvp, ("IN_ENDOFF set but I_ENDOFF() is not")); dp->i_flag &= ~IN_ENDOFF; - old_size = dp->i_size; error = UFS_TRUNCATE(dvp, (off_t)I_ENDOFF(dp), IO_NORMAL | (DOINGASYNC(dvp) ? 0 : IO_SYNC), curthread->td_ucred); if (error != 0 && error != ERELOOKUP) { if (!ffs_fsfail_cleanup(VFSTOUFS(mp), error)) { vn_printf(dvp, "IN_ENDOFF: failed to truncate, " "error %d\n", error); } #ifdef UFS_DIRHASH ufsdirhash_free(dp); #endif } SET_I_ENDOFF(dp, 0); } if ((dp->i_flag & IN_NEEDSYNC) != 0) { do { error = ffs_syncvnode(dvp, MNT_WAIT, 0); } while (error == ERELOOKUP); } vput(dvp); if (vp == NULL || ap->a_unlock_vp) return (0); MPASS(mp != NULL); /* * It is possible that vp is reclaimed at this point. Only * routines that call us with a_unlock_vp == false can find * that their vp has been reclaimed. There are three areas * that are affected: * 1) vn_open_cred() - later VOPs could fail, but * dead_open() returns 0 to simulate successful open. * 2) ffs_snapshot() - creation of snapshot fails with EBADF. * 3) NFS server (several places) - code is prepared to detect * and respond to dead vnodes by returning ESTALE. */ VOP_LOCK(vp, vp_locked | LK_RETRY); if (!VN_IS_DOOMED(vp)) return (0); /* * Try harder to recover from reclaimed vp if reclaim was not * because underlying inode was cleared. We saved inode * number and inode generation, so we can try to reinstantiate * exactly same version of inode. If this fails, return * original doomed vnode and let caller to handle * consequences. * * Note that callers must keep write started around * VOP_VPUT_PAIR() calls, so it is safe to use mp without * busying it. */ VOP_UNLOCK(vp); error = ffs_inotovp(mp, ip_ino, ip_gen, LK_EXCLUSIVE, &vp1, FFSV_REPLACE_DOOMED); if (error != 0) { VOP_LOCK(vp, vp_locked | LK_RETRY); } else { vrele(vp); *vpp = vp1; } return (error); }