diff --git a/libexec/rtld-elf/rtld.c b/libexec/rtld-elf/rtld.c
index aa5400d29fc2..7828bf413a7a 100644
--- a/libexec/rtld-elf/rtld.c
+++ b/libexec/rtld-elf/rtld.c
@@ -1,6308 +1,6308 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
  *
  * Copyright 1996, 1997, 1998, 1999, 2000 John D. Polstra.
  * Copyright 2003 Alexander Kabaev <kan@FreeBSD.ORG>.
  * Copyright 2009-2013 Konstantin Belousov <kib@FreeBSD.ORG>.
  * Copyright 2012 John Marino <draco@marino.st>.
  * Copyright 2014-2017 The FreeBSD Foundation
  * All rights reserved.
  *
  * Portions of this software were developed by Konstantin Belousov
  * under sponsorship from the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 
 /*
  * Dynamic linker for ELF.
  *
  * John Polstra <jdp@polstra.com>.
  */
 
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include <sys/param.h>
 #include <sys/mount.h>
 #include <sys/mman.h>
 #include <sys/stat.h>
 #include <sys/sysctl.h>
 #include <sys/uio.h>
 #include <sys/utsname.h>
 #include <sys/ktrace.h>
 
 #include <dlfcn.h>
 #include <err.h>
 #include <errno.h>
 #include <fcntl.h>
 #include <stdarg.h>
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
 #include <unistd.h>
 
 #include "debug.h"
 #include "rtld.h"
 #include "libmap.h"
 #include "rtld_paths.h"
 #include "rtld_tls.h"
 #include "rtld_printf.h"
 #include "rtld_malloc.h"
 #include "rtld_utrace.h"
 #include "notes.h"
 #include "rtld_libc.h"
 
 /* Types. */
 typedef void (*func_ptr_type)(void);
 typedef void * (*path_enum_proc) (const char *path, size_t len, void *arg);
 
 
 /* Variables that cannot be static: */
 extern struct r_debug r_debug; /* For GDB */
 extern int _thread_autoinit_dummy_decl;
 extern void (*__cleanup)(void);
 
 struct dlerror_save {
 	int seen;
 	char *msg;
 };
 
 /*
  * Function declarations.
  */
 static const char *basename(const char *);
 static void digest_dynamic1(Obj_Entry *, int, const Elf_Dyn **,
     const Elf_Dyn **, const Elf_Dyn **);
 static bool digest_dynamic2(Obj_Entry *, const Elf_Dyn *, const Elf_Dyn *,
     const Elf_Dyn *);
 static bool digest_dynamic(Obj_Entry *, int);
 static Obj_Entry *digest_phdr(const Elf_Phdr *, int, caddr_t, const char *);
 static void distribute_static_tls(Objlist *, RtldLockState *);
 static Obj_Entry *dlcheck(void *);
 static int dlclose_locked(void *, RtldLockState *);
 static Obj_Entry *dlopen_object(const char *name, int fd, Obj_Entry *refobj,
     int lo_flags, int mode, RtldLockState *lockstate);
 static Obj_Entry *do_load_object(int, const char *, char *, struct stat *, int);
 static int do_search_info(const Obj_Entry *obj, int, struct dl_serinfo *);
 static bool donelist_check(DoneList *, const Obj_Entry *);
 static void dump_auxv(Elf_Auxinfo **aux_info);
 static void errmsg_restore(struct dlerror_save *);
 static struct dlerror_save *errmsg_save(void);
 static void *fill_search_info(const char *, size_t, void *);
 static char *find_library(const char *, const Obj_Entry *, int *);
 static const char *gethints(bool);
 static void hold_object(Obj_Entry *);
 static void unhold_object(Obj_Entry *);
 static void init_dag(Obj_Entry *);
 static void init_marker(Obj_Entry *);
 static void init_pagesizes(Elf_Auxinfo **aux_info);
 static void init_rtld(caddr_t, Elf_Auxinfo **);
 static void initlist_add_neededs(Needed_Entry *, Objlist *);
 static void initlist_add_objects(Obj_Entry *, Obj_Entry *, Objlist *);
 static int initlist_objects_ifunc(Objlist *, bool, int, RtldLockState *);
 static void linkmap_add(Obj_Entry *);
 static void linkmap_delete(Obj_Entry *);
 static void load_filtees(Obj_Entry *, int flags, RtldLockState *);
 static void unload_filtees(Obj_Entry *, RtldLockState *);
 static int load_needed_objects(Obj_Entry *, int);
 static int load_preload_objects(const char *, bool);
 static int load_kpreload(const void *addr);
 static Obj_Entry *load_object(const char *, int fd, const Obj_Entry *, int);
 static void map_stacks_exec(RtldLockState *);
 static int obj_disable_relro(Obj_Entry *);
 static int obj_enforce_relro(Obj_Entry *);
 static void objlist_call_fini(Objlist *, Obj_Entry *, RtldLockState *);
 static void objlist_call_init(Objlist *, RtldLockState *);
 static void objlist_clear(Objlist *);
 static Objlist_Entry *objlist_find(Objlist *, const Obj_Entry *);
 static void objlist_init(Objlist *);
 static void objlist_push_head(Objlist *, Obj_Entry *);
 static void objlist_push_tail(Objlist *, Obj_Entry *);
 static void objlist_put_after(Objlist *, Obj_Entry *, Obj_Entry *);
 static void objlist_remove(Objlist *, Obj_Entry *);
 static int open_binary_fd(const char *argv0, bool search_in_path,
     const char **binpath_res);
 static int parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
     const char **argv0, bool *dir_ignore);
 static int parse_integer(const char *);
 static void *path_enumerate(const char *, path_enum_proc, const char *, void *);
 static void print_usage(const char *argv0);
 static void release_object(Obj_Entry *);
 static int relocate_object_dag(Obj_Entry *root, bool bind_now,
     Obj_Entry *rtldobj, int flags, RtldLockState *lockstate);
 static int relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate);
 static int relocate_objects(Obj_Entry *, bool, Obj_Entry *, int,
     RtldLockState *);
 static int resolve_object_ifunc(Obj_Entry *, bool, int, RtldLockState *);
 static int rtld_dirname(const char *, char *);
 static int rtld_dirname_abs(const char *, char *);
 static void *rtld_dlopen(const char *name, int fd, int mode);
 static void rtld_exit(void);
 static void rtld_nop_exit(void);
 static char *search_library_path(const char *, const char *, const char *,
     int *);
 static char *search_library_pathfds(const char *, const char *, int *);
 static const void **get_program_var_addr(const char *, RtldLockState *);
 static void set_program_var(const char *, const void *);
 static int symlook_default(SymLook *, const Obj_Entry *refobj);
 static int symlook_global(SymLook *, DoneList *);
 static void symlook_init_from_req(SymLook *, const SymLook *);
 static int symlook_list(SymLook *, const Objlist *, DoneList *);
 static int symlook_needed(SymLook *, const Needed_Entry *, DoneList *);
 static int symlook_obj1_sysv(SymLook *, const Obj_Entry *);
 static int symlook_obj1_gnu(SymLook *, const Obj_Entry *);
 static void *tls_get_addr_slow(Elf_Addr **, int, size_t, bool) __noinline;
 static void trace_loaded_objects(Obj_Entry *, bool);
 static void unlink_object(Obj_Entry *);
 static void unload_object(Obj_Entry *, RtldLockState *lockstate);
 static void unref_dag(Obj_Entry *);
 static void ref_dag(Obj_Entry *);
 static char *origin_subst_one(Obj_Entry *, char *, const char *,
     const char *, bool);
 static char *origin_subst(Obj_Entry *, const char *);
 static bool obj_resolve_origin(Obj_Entry *obj);
 static void preinit_main(void);
 static int  rtld_verify_versions(const Objlist *);
 static int  rtld_verify_object_versions(Obj_Entry *);
 static void object_add_name(Obj_Entry *, const char *);
 static int  object_match_name(const Obj_Entry *, const char *);
 static void ld_utrace_log(int, void *, void *, size_t, int, const char *);
 static void rtld_fill_dl_phdr_info(const Obj_Entry *obj,
     struct dl_phdr_info *phdr_info);
 static uint32_t gnu_hash(const char *);
 static bool matched_symbol(SymLook *, const Obj_Entry *, Sym_Match_Result *,
     const unsigned long);
 
 void r_debug_state(struct r_debug *, struct link_map *) __noinline __exported;
 void _r_debug_postinit(struct link_map *) __noinline __exported;
 
 int __sys_openat(int, const char *, int, ...);
 
 /*
  * Data declarations.
  */
 struct r_debug r_debug __exported;	/* for GDB; */
 static bool libmap_disable;	/* Disable libmap */
 static bool ld_loadfltr;	/* Immediate filters processing */
 static const char *libmap_override;/* Maps to use in addition to libmap.conf */
 static bool trust;		/* False for setuid and setgid programs */
 static bool dangerous_ld_env;	/* True if environment variables have been
 				   used to affect the libraries loaded */
 bool ld_bind_not;		/* Disable PLT update */
 static const char *ld_bind_now;	/* Environment variable for immediate binding */
 static const char *ld_debug;	/* Environment variable for debugging */
 static bool ld_dynamic_weak = true; /* True if non-weak definition overrides
 				       weak definition */
 static const char *ld_library_path;/* Environment variable for search path */
 static const char *ld_library_dirs;/* Environment variable for library descriptors */
 static const char *ld_preload;	/* Environment variable for libraries to
 				   load first */
 static const char *ld_preload_fds;/* Environment variable for libraries represented by
 				   descriptors */
 static const char *ld_elf_hints_path;	/* Environment variable for alternative hints path */
 static const char *ld_tracing;	/* Called from ldd to print libs */
 static const char *ld_utrace;	/* Use utrace() to log events. */
 static struct obj_entry_q obj_list;	/* Queue of all loaded objects */
 static Obj_Entry *obj_main;	/* The main program shared object */
 static Obj_Entry obj_rtld;	/* The dynamic linker shared object */
 static unsigned int obj_count;	/* Number of objects in obj_list */
 static unsigned int obj_loads;	/* Number of loads of objects (gen count) */
 
 static Objlist list_global =	/* Objects dlopened with RTLD_GLOBAL */
   STAILQ_HEAD_INITIALIZER(list_global);
 static Objlist list_main =	/* Objects loaded at program startup */
   STAILQ_HEAD_INITIALIZER(list_main);
 static Objlist list_fini =	/* Objects needing fini() calls */
   STAILQ_HEAD_INITIALIZER(list_fini);
 
 Elf_Sym sym_zero;		/* For resolving undefined weak refs. */
 
 #define GDB_STATE(s,m)	r_debug.r_state = s; r_debug_state(&r_debug,m);
 
 extern Elf_Dyn _DYNAMIC;
 #pragma weak _DYNAMIC
 
 int dlclose(void *) __exported;
 char *dlerror(void) __exported;
 void *dlopen(const char *, int) __exported;
 void *fdlopen(int, int) __exported;
 void *dlsym(void *, const char *) __exported;
 dlfunc_t dlfunc(void *, const char *) __exported;
 void *dlvsym(void *, const char *, const char *) __exported;
 int dladdr(const void *, Dl_info *) __exported;
 void dllockinit(void *, void *(*)(void *), void (*)(void *), void (*)(void *),
     void (*)(void *), void (*)(void *), void (*)(void *)) __exported;
 int dlinfo(void *, int , void *) __exported;
 int dl_iterate_phdr(__dl_iterate_hdr_callback, void *) __exported;
 int _rtld_addr_phdr(const void *, struct dl_phdr_info *) __exported;
 int _rtld_get_stack_prot(void) __exported;
 int _rtld_is_dlopened(void *) __exported;
 void _rtld_error(const char *, ...) __exported;
 
 /* Only here to fix -Wmissing-prototypes warnings */
 int __getosreldate(void);
 func_ptr_type _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp);
 Elf_Addr _rtld_bind(Obj_Entry *obj, Elf_Size reloff);
 
 
 int npagesizes;
 static int osreldate;
 size_t *pagesizes;
 size_t page_size;
 
 static int stack_prot = PROT_READ | PROT_WRITE | RTLD_DEFAULT_STACK_EXEC;
 static int max_stack_flags;
 
 /*
  * Global declarations normally provided by crt1.  The dynamic linker is
  * not built with crt1, so we have to provide them ourselves.
  */
 char *__progname;
 char **environ;
 
 /*
  * Used to pass argc, argv to init functions.
  */
 int main_argc;
 char **main_argv;
 
 /*
  * Globals to control TLS allocation.
  */
 size_t tls_last_offset;		/* Static TLS offset of last module */
 size_t tls_last_size;		/* Static TLS size of last module */
 size_t tls_static_space;	/* Static TLS space allocated */
 static size_t tls_static_max_align;
 Elf_Addr tls_dtv_generation = 1;	/* Used to detect when dtv size changes */
 int tls_max_index = 1;		/* Largest module index allocated */
 
 static bool ld_library_path_rpath = false;
 bool ld_fast_sigblock = false;
 
 /*
  * Globals for path names, and such
  */
 const char *ld_elf_hints_default = _PATH_ELF_HINTS;
 const char *ld_path_libmap_conf = _PATH_LIBMAP_CONF;
 const char *ld_path_rtld = _PATH_RTLD;
 const char *ld_standard_library_path = STANDARD_LIBRARY_PATH;
 const char *ld_env_prefix = LD_;
 
 static void (*rtld_exit_ptr)(void);
 
 /*
  * Fill in a DoneList with an allocation large enough to hold all of
  * the currently-loaded objects.  Keep this as a macro since it calls
  * alloca and we want that to occur within the scope of the caller.
  */
 #define donelist_init(dlp)					\
     ((dlp)->objs = alloca(obj_count * sizeof (dlp)->objs[0]),	\
     assert((dlp)->objs != NULL),				\
     (dlp)->num_alloc = obj_count,				\
     (dlp)->num_used = 0)
 
 #define	LD_UTRACE(e, h, mb, ms, r, n) do {			\
 	if (ld_utrace != NULL)					\
 		ld_utrace_log(e, h, mb, ms, r, n);		\
 } while (0)
 
 static void
 ld_utrace_log(int event, void *handle, void *mapbase, size_t mapsize,
     int refcnt, const char *name)
 {
 	struct utrace_rtld ut;
 	static const char rtld_utrace_sig[RTLD_UTRACE_SIG_SZ] = RTLD_UTRACE_SIG;
 
 	memcpy(ut.sig, rtld_utrace_sig, sizeof(ut.sig));
 	ut.event = event;
 	ut.handle = handle;
 	ut.mapbase = mapbase;
 	ut.mapsize = mapsize;
 	ut.refcnt = refcnt;
 	bzero(ut.name, sizeof(ut.name));
 	if (name)
 		strlcpy(ut.name, name, sizeof(ut.name));
 	utrace(&ut, sizeof(ut));
 }
 
 enum {
 	LD_BIND_NOW = 0,
 	LD_PRELOAD,
 	LD_LIBMAP,
 	LD_LIBRARY_PATH,
 	LD_LIBRARY_PATH_FDS,
 	LD_LIBMAP_DISABLE,
 	LD_BIND_NOT,
 	LD_DEBUG,
 	LD_ELF_HINTS_PATH,
 	LD_LOADFLTR,
 	LD_LIBRARY_PATH_RPATH,
 	LD_PRELOAD_FDS,
 	LD_DYNAMIC_WEAK,
 	LD_TRACE_LOADED_OBJECTS,
 	LD_UTRACE,
 	LD_DUMP_REL_PRE,
 	LD_DUMP_REL_POST,
 	LD_TRACE_LOADED_OBJECTS_PROGNAME,
 	LD_TRACE_LOADED_OBJECTS_FMT1,
 	LD_TRACE_LOADED_OBJECTS_FMT2,
 	LD_TRACE_LOADED_OBJECTS_ALL,
 	LD_SHOW_AUXV,
 };
 
 struct ld_env_var_desc {
 	const char * const n;
 	const char *val;
 	const bool unsecure;
 };
 #define LD_ENV_DESC(var, unsec) \
     [LD_##var] = { .n = #var, .unsecure = unsec }
 
 static struct ld_env_var_desc ld_env_vars[] = {
 	LD_ENV_DESC(BIND_NOW, false),
 	LD_ENV_DESC(PRELOAD, true),
 	LD_ENV_DESC(LIBMAP, true),
 	LD_ENV_DESC(LIBRARY_PATH, true),
 	LD_ENV_DESC(LIBRARY_PATH_FDS, true),
 	LD_ENV_DESC(LIBMAP_DISABLE, true),
 	LD_ENV_DESC(BIND_NOT, true),
 	LD_ENV_DESC(DEBUG, true),
 	LD_ENV_DESC(ELF_HINTS_PATH, true),
 	LD_ENV_DESC(LOADFLTR, true),
 	LD_ENV_DESC(LIBRARY_PATH_RPATH, true),
 	LD_ENV_DESC(PRELOAD_FDS, true),
 	LD_ENV_DESC(DYNAMIC_WEAK, true),
 	LD_ENV_DESC(TRACE_LOADED_OBJECTS, false),
 	LD_ENV_DESC(UTRACE, false),
 	LD_ENV_DESC(DUMP_REL_PRE, false),
 	LD_ENV_DESC(DUMP_REL_POST, false),
 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_PROGNAME, false),
 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT1, false),
 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_FMT2, false),
 	LD_ENV_DESC(TRACE_LOADED_OBJECTS_ALL, false),
 	LD_ENV_DESC(SHOW_AUXV, false),
 };
 
 static const char *
 ld_get_env_var(int idx)
 {
 	return (ld_env_vars[idx].val);
 }
 
 static const char *
 rtld_get_env_val(char **env, const char *name, size_t name_len)
 {
 	char **m, *n, *v;
 
 	for (m = env; *m != NULL; m++) {
 		n = *m;
 		v = strchr(n, '=');
 		if (v == NULL) {
 			/* corrupt environment? */
 			continue;
 		}
 		if (v - n == (ptrdiff_t)name_len &&
 		    strncmp(name, n, name_len) == 0)
 			return (v + 1);
 	}
 	return (NULL);
 }
 
 static void
 rtld_init_env_vars_for_prefix(char **env, const char *env_prefix)
 {
 	struct ld_env_var_desc *lvd;
 	size_t prefix_len, nlen;
 	char **m, *n, *v;
 	int i;
 
 	prefix_len = strlen(env_prefix);
 	for (m = env; *m != NULL; m++) {
 		n = *m;
 		if (strncmp(env_prefix, n, prefix_len) != 0) {
 			/* Not a rtld environment variable. */
 			continue;
 		}
 		n += prefix_len;
 		v = strchr(n, '=');
 		if (v == NULL) {
 			/* corrupt environment? */
 			continue;
 		}
 		for (i = 0; i < (int)nitems(ld_env_vars); i++) {
 			lvd = &ld_env_vars[i];
 			if (lvd->val != NULL) {
 				/* Saw higher-priority variable name already. */
 				continue;
 			}
 			nlen = strlen(lvd->n);
 			if (v - n == (ptrdiff_t)nlen &&
 			    strncmp(lvd->n, n, nlen) == 0) {
 				lvd->val = v + 1;
 				break;
 			}
 		}
 	}
 }
 
 static void
 rtld_init_env_vars(char **env)
 {
 	rtld_init_env_vars_for_prefix(env, ld_env_prefix);
 }
 
 static void
 set_ld_elf_hints_path(void)
 {
 	if (ld_elf_hints_path == NULL || strlen(ld_elf_hints_path) == 0)
 		ld_elf_hints_path = ld_elf_hints_default;
 }
 
 uintptr_t
 rtld_round_page(uintptr_t x)
 {
 	return (roundup2(x, page_size));
 }
 
 uintptr_t
 rtld_trunc_page(uintptr_t x)
 {
 	return (rounddown2(x, page_size));
 }
 
 /*
  * Main entry point for dynamic linking.  The first argument is the
  * stack pointer.  The stack is expected to be laid out as described
  * in the SVR4 ABI specification, Intel 386 Processor Supplement.
  * Specifically, the stack pointer points to a word containing
  * ARGC.  Following that in the stack is a null-terminated sequence
  * of pointers to argument strings.  Then comes a null-terminated
  * sequence of pointers to environment strings.  Finally, there is a
  * sequence of "auxiliary vector" entries.
  *
  * The second argument points to a place to store the dynamic linker's
  * exit procedure pointer and the third to a place to store the main
  * program's object.
  *
  * The return value is the main program's entry point.
  */
 func_ptr_type
 _rtld(Elf_Addr *sp, func_ptr_type *exit_proc, Obj_Entry **objp)
 {
     Elf_Auxinfo *aux, *auxp, *auxpf, *aux_info[AT_COUNT];
     Objlist_Entry *entry;
     Obj_Entry *last_interposer, *obj, *preload_tail;
     const Elf_Phdr *phdr;
     Objlist initlist;
     RtldLockState lockstate;
     struct stat st;
     Elf_Addr *argcp;
     char **argv, **env, **envp, *kexecpath;
     const char *argv0, *binpath, *library_path_rpath;
     struct ld_env_var_desc *lvd;
     caddr_t imgentry;
     char buf[MAXPATHLEN];
     int argc, fd, i, mib[4], old_osrel, osrel, phnum, rtld_argc;
     size_t sz;
 #ifdef __powerpc__
     int old_auxv_format = 1;
 #endif
     bool dir_enable, dir_ignore, direct_exec, explicit_fd, search_in_path;
 
     /*
      * On entry, the dynamic linker itself has not been relocated yet.
      * Be very careful not to reference any global data until after
      * init_rtld has returned.  It is OK to reference file-scope statics
      * and string constants, and to call static and global functions.
      */
 
     /* Find the auxiliary vector on the stack. */
     argcp = sp;
     argc = *sp++;
     argv = (char **) sp;
     sp += argc + 1;	/* Skip over arguments and NULL terminator */
     env = (char **) sp;
     while (*sp++ != 0)	/* Skip over environment, and NULL terminator */
 	;
     aux = (Elf_Auxinfo *) sp;
 
     /* Digest the auxiliary vector. */
     for (i = 0;  i < AT_COUNT;  i++)
 	aux_info[i] = NULL;
     for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
 	if (auxp->a_type < AT_COUNT)
 	    aux_info[auxp->a_type] = auxp;
 #ifdef __powerpc__
 	if (auxp->a_type == 23) /* AT_STACKPROT */
 	    old_auxv_format = 0;
 #endif
     }
 
 #ifdef __powerpc__
     if (old_auxv_format) {
 	/* Remap from old-style auxv numbers. */
 	aux_info[23] = aux_info[21];	/* AT_STACKPROT */
 	aux_info[21] = aux_info[19];	/* AT_PAGESIZESLEN */
 	aux_info[19] = aux_info[17];	/* AT_NCPUS */
 	aux_info[17] = aux_info[15];	/* AT_CANARYLEN */
 	aux_info[15] = aux_info[13];	/* AT_EXECPATH */
 	aux_info[13] = NULL;		/* AT_GID */
 
 	aux_info[20] = aux_info[18];	/* AT_PAGESIZES */
 	aux_info[18] = aux_info[16];	/* AT_OSRELDATE */
 	aux_info[16] = aux_info[14];	/* AT_CANARY */
 	aux_info[14] = NULL;		/* AT_EGID */
     }
 #endif
 
     /* Initialize and relocate ourselves. */
     assert(aux_info[AT_BASE] != NULL);
     init_rtld((caddr_t) aux_info[AT_BASE]->a_un.a_ptr, aux_info);
 
     dlerror_dflt_init();
 
     __progname = obj_rtld.path;
     argv0 = argv[0] != NULL ? argv[0] : "(null)";
     environ = env;
     main_argc = argc;
     main_argv = argv;
 
     if (aux_info[AT_BSDFLAGS] != NULL &&
 	(aux_info[AT_BSDFLAGS]->a_un.a_val & ELF_BSDF_SIGFASTBLK) != 0)
 	    ld_fast_sigblock = true;
 
     trust = !issetugid();
     direct_exec = false;
 
     md_abi_variant_hook(aux_info);
     rtld_init_env_vars(env);
 
     fd = -1;
     if (aux_info[AT_EXECFD] != NULL) {
 	fd = aux_info[AT_EXECFD]->a_un.a_val;
     } else {
 	assert(aux_info[AT_PHDR] != NULL);
 	phdr = (const Elf_Phdr *)aux_info[AT_PHDR]->a_un.a_ptr;
 	if (phdr == obj_rtld.phdr) {
 	    if (!trust) {
 		_rtld_error("Tainted process refusing to run binary %s",
 		    argv0);
 		rtld_die();
 	    }
 	    direct_exec = true;
 
 	    dbg("opening main program in direct exec mode");
 	    if (argc >= 2) {
 		rtld_argc = parse_args(argv, argc, &search_in_path, &fd,
 		  &argv0, &dir_ignore);
 		explicit_fd = (fd != -1);
 		binpath = NULL;
 		if (!explicit_fd)
 		    fd = open_binary_fd(argv0, search_in_path, &binpath);
 		if (fstat(fd, &st) == -1) {
 		    _rtld_error("Failed to fstat FD %d (%s): %s", fd,
 		      explicit_fd ? "user-provided descriptor" : argv0,
 		      rtld_strerror(errno));
 		    rtld_die();
 		}
 
 		/*
 		 * Rough emulation of the permission checks done by
 		 * execve(2), only Unix DACs are checked, ACLs are
 		 * ignored.  Preserve the semantic of disabling owner
 		 * to execute if owner x bit is cleared, even if
 		 * others x bit is enabled.
 		 * mmap(2) does not allow to mmap with PROT_EXEC if
 		 * binary' file comes from noexec mount.  We cannot
 		 * set a text reference on the binary.
 		 */
 		dir_enable = false;
 		if (st.st_uid == geteuid()) {
 		    if ((st.st_mode & S_IXUSR) != 0)
 			dir_enable = true;
 		} else if (st.st_gid == getegid()) {
 		    if ((st.st_mode & S_IXGRP) != 0)
 			dir_enable = true;
 		} else if ((st.st_mode & S_IXOTH) != 0) {
 		    dir_enable = true;
 		}
 		if (!dir_enable && !dir_ignore) {
 		    _rtld_error("No execute permission for binary %s",
 		        argv0);
 		    rtld_die();
 		}
 
 		/*
 		 * For direct exec mode, argv[0] is the interpreter
 		 * name, we must remove it and shift arguments left
 		 * before invoking binary main.  Since stack layout
 		 * places environment pointers and aux vectors right
 		 * after the terminating NULL, we must shift
 		 * environment and aux as well.
 		 */
 		main_argc = argc - rtld_argc;
 		for (i = 0; i <= main_argc; i++)
 		    argv[i] = argv[i + rtld_argc];
 		*argcp -= rtld_argc;
 		environ = env = envp = argv + main_argc + 1;
 		dbg("move env from %p to %p", envp + rtld_argc, envp);
 		do {
 		    *envp = *(envp + rtld_argc);
 		}  while (*envp++ != NULL);
 		aux = auxp = (Elf_Auxinfo *)envp;
 		auxpf = (Elf_Auxinfo *)(envp + rtld_argc);
 		dbg("move aux from %p to %p", auxpf, aux);
 		/* XXXKIB insert place for AT_EXECPATH if not present */
 		for (;; auxp++, auxpf++) {
 		    *auxp = *auxpf;
 		    if (auxp->a_type == AT_NULL)
 			    break;
 		}
 		/* Since the auxiliary vector has moved, redigest it. */
 		for (i = 0;  i < AT_COUNT;  i++)
 		    aux_info[i] = NULL;
 		for (auxp = aux;  auxp->a_type != AT_NULL;  auxp++) {
 		    if (auxp->a_type < AT_COUNT)
 			aux_info[auxp->a_type] = auxp;
 		}
 
 		/* Point AT_EXECPATH auxv and aux_info to the binary path. */
 		if (binpath == NULL) {
 		    aux_info[AT_EXECPATH] = NULL;
 		} else {
 		    if (aux_info[AT_EXECPATH] == NULL) {
 			aux_info[AT_EXECPATH] = xmalloc(sizeof(Elf_Auxinfo));
 			aux_info[AT_EXECPATH]->a_type = AT_EXECPATH;
 		    }
 		    aux_info[AT_EXECPATH]->a_un.a_ptr = __DECONST(void *,
 		      binpath);
 		}
 	    } else {
 		_rtld_error("No binary");
 		rtld_die();
 	    }
 	}
     }
 
     ld_bind_now = ld_get_env_var(LD_BIND_NOW);
 
     /*
      * If the process is tainted, then we un-set the dangerous environment
      * variables.  The process will be marked as tainted until setuid(2)
      * is called.  If any child process calls setuid(2) we do not want any
      * future processes to honor the potentially un-safe variables.
      */
     if (!trust) {
 	    for (i = 0; i < (int)nitems(ld_env_vars); i++) {
 		    lvd = &ld_env_vars[i];
 		    if (lvd->unsecure)
 			    lvd->val = NULL;
 	    }
     }
 
     ld_debug = ld_get_env_var(LD_DEBUG);
     if (ld_bind_now == NULL)
 	    ld_bind_not = ld_get_env_var(LD_BIND_NOT) != NULL;
     ld_dynamic_weak = ld_get_env_var(LD_DYNAMIC_WEAK) == NULL;
     libmap_disable = ld_get_env_var(LD_LIBMAP_DISABLE) != NULL;
     libmap_override = ld_get_env_var(LD_LIBMAP);
     ld_library_path = ld_get_env_var(LD_LIBRARY_PATH);
     ld_library_dirs = ld_get_env_var(LD_LIBRARY_PATH_FDS);
     ld_preload = ld_get_env_var(LD_PRELOAD);
     ld_preload_fds = ld_get_env_var(LD_PRELOAD_FDS);
     ld_elf_hints_path = ld_get_env_var(LD_ELF_HINTS_PATH);
     ld_loadfltr = ld_get_env_var(LD_LOADFLTR) != NULL;
     library_path_rpath = ld_get_env_var(LD_LIBRARY_PATH_RPATH);
     if (library_path_rpath != NULL) {
 	    if (library_path_rpath[0] == 'y' ||
 		library_path_rpath[0] == 'Y' ||
 		library_path_rpath[0] == '1')
 		    ld_library_path_rpath = true;
 	    else
 		    ld_library_path_rpath = false;
     }
     dangerous_ld_env = libmap_disable || libmap_override != NULL ||
 	ld_library_path != NULL || ld_preload != NULL ||
 	ld_elf_hints_path != NULL || ld_loadfltr || !ld_dynamic_weak;
     ld_tracing = ld_get_env_var(LD_TRACE_LOADED_OBJECTS);
     ld_utrace = ld_get_env_var(LD_UTRACE);
 
     set_ld_elf_hints_path();
     if (ld_debug != NULL && *ld_debug != '\0')
 	debug = 1;
     dbg("%s is initialized, base address = %p", __progname,
 	(caddr_t) aux_info[AT_BASE]->a_un.a_ptr);
     dbg("RTLD dynamic = %p", obj_rtld.dynamic);
     dbg("RTLD pltgot  = %p", obj_rtld.pltgot);
 
     dbg("initializing thread locks");
     lockdflt_init();
 
     /*
      * Load the main program, or process its program header if it is
      * already loaded.
      */
     if (fd != -1) {	/* Load the main program. */
 	dbg("loading main program");
 	obj_main = map_object(fd, argv0, NULL);
 	close(fd);
 	if (obj_main == NULL)
 	    rtld_die();
 	max_stack_flags = obj_main->stack_flags;
     } else {				/* Main program already loaded. */
 	dbg("processing main program's program header");
 	assert(aux_info[AT_PHDR] != NULL);
 	phdr = (const Elf_Phdr *) aux_info[AT_PHDR]->a_un.a_ptr;
 	assert(aux_info[AT_PHNUM] != NULL);
 	phnum = aux_info[AT_PHNUM]->a_un.a_val;
 	assert(aux_info[AT_PHENT] != NULL);
 	assert(aux_info[AT_PHENT]->a_un.a_val == sizeof(Elf_Phdr));
 	assert(aux_info[AT_ENTRY] != NULL);
 	imgentry = (caddr_t) aux_info[AT_ENTRY]->a_un.a_ptr;
 	if ((obj_main = digest_phdr(phdr, phnum, imgentry, argv0)) == NULL)
 	    rtld_die();
     }
 
     if (aux_info[AT_EXECPATH] != NULL && fd == -1) {
 	    kexecpath = aux_info[AT_EXECPATH]->a_un.a_ptr;
 	    dbg("AT_EXECPATH %p %s", kexecpath, kexecpath);
 	    if (kexecpath[0] == '/')
 		    obj_main->path = kexecpath;
 	    else if (getcwd(buf, sizeof(buf)) == NULL ||
 		     strlcat(buf, "/", sizeof(buf)) >= sizeof(buf) ||
 		     strlcat(buf, kexecpath, sizeof(buf)) >= sizeof(buf))
 		    obj_main->path = xstrdup(argv0);
 	    else
 		    obj_main->path = xstrdup(buf);
     } else {
 	    dbg("No AT_EXECPATH or direct exec");
 	    obj_main->path = xstrdup(argv0);
     }
     dbg("obj_main path %s", obj_main->path);
     obj_main->mainprog = true;
 
     if (aux_info[AT_STACKPROT] != NULL &&
       aux_info[AT_STACKPROT]->a_un.a_val != 0)
 	    stack_prot = aux_info[AT_STACKPROT]->a_un.a_val;
 
 #ifndef COMPAT_32BIT
     /*
      * Get the actual dynamic linker pathname from the executable if
      * possible.  (It should always be possible.)  That ensures that
      * gdb will find the right dynamic linker even if a non-standard
      * one is being used.
      */
     if (obj_main->interp != NULL &&
       strcmp(obj_main->interp, obj_rtld.path) != 0) {
 	free(obj_rtld.path);
 	obj_rtld.path = xstrdup(obj_main->interp);
         __progname = obj_rtld.path;
     }
 #endif
 
     if (!digest_dynamic(obj_main, 0))
 	rtld_die();
     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d",
 	obj_main->path, obj_main->valid_hash_sysv, obj_main->valid_hash_gnu,
 	obj_main->dynsymcount);
 
     linkmap_add(obj_main);
     linkmap_add(&obj_rtld);
 
     /* Link the main program into the list of objects. */
     TAILQ_INSERT_HEAD(&obj_list, obj_main, next);
     obj_count++;
     obj_loads++;
 
     /* Initialize a fake symbol for resolving undefined weak references. */
     sym_zero.st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
     sym_zero.st_shndx = SHN_UNDEF;
     sym_zero.st_value = -(uintptr_t)obj_main->relocbase;
 
     if (!libmap_disable)
         libmap_disable = (bool)lm_init(libmap_override);
 
     if (aux_info[AT_KPRELOAD] != NULL &&
       aux_info[AT_KPRELOAD]->a_un.a_ptr != NULL) {
 	dbg("loading kernel vdso");
 	if (load_kpreload(aux_info[AT_KPRELOAD]->a_un.a_ptr) == -1)
 	    rtld_die();
     }
 
     dbg("loading LD_PRELOAD_FDS libraries");
     if (load_preload_objects(ld_preload_fds, true) == -1)
 	rtld_die();
 
     dbg("loading LD_PRELOAD libraries");
     if (load_preload_objects(ld_preload, false) == -1)
 	rtld_die();
     preload_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
 
     dbg("loading needed objects");
     if (load_needed_objects(obj_main, ld_tracing != NULL ? RTLD_LO_TRACE :
       0) == -1)
 	rtld_die();
 
     /* Make a list of all objects loaded at startup. */
     last_interposer = obj_main;
     TAILQ_FOREACH(obj, &obj_list, next) {
 	if (obj->marker)
 	    continue;
 	if (obj->z_interpose && obj != obj_main) {
 	    objlist_put_after(&list_main, last_interposer, obj);
 	    last_interposer = obj;
 	} else {
 	    objlist_push_tail(&list_main, obj);
 	}
     	obj->refcount++;
     }
 
     dbg("checking for required versions");
     if (rtld_verify_versions(&list_main) == -1 && !ld_tracing)
 	rtld_die();
 
     if (ld_get_env_var(LD_SHOW_AUXV) != NULL)
        dump_auxv(aux_info);
 
     if (ld_tracing) {		/* We're done */
 	trace_loaded_objects(obj_main, true);
 	exit(0);
     }
 
     if (ld_get_env_var(LD_DUMP_REL_PRE) != NULL) {
        dump_relocations(obj_main);
        exit (0);
     }
 
     /*
      * Processing tls relocations requires having the tls offsets
      * initialized.  Prepare offsets before starting initial
      * relocation processing.
      */
     dbg("initializing initial thread local storage offsets");
     STAILQ_FOREACH(entry, &list_main, link) {
 	/*
 	 * Allocate all the initial objects out of the static TLS
 	 * block even if they didn't ask for it.
 	 */
 	allocate_tls_offset(entry->obj);
     }
 
     if (relocate_objects(obj_main,
       ld_bind_now != NULL && *ld_bind_now != '\0',
       &obj_rtld, SYMLOOK_EARLY, NULL) == -1)
 	rtld_die();
 
     dbg("doing copy relocations");
     if (do_copy_relocations(obj_main) == -1)
 	rtld_die();
 
     if (ld_get_env_var(LD_DUMP_REL_POST) != NULL) {
        dump_relocations(obj_main);
        exit (0);
     }
 
     ifunc_init(aux);
 
     /*
      * Setup TLS for main thread.  This must be done after the
      * relocations are processed, since tls initialization section
      * might be the subject for relocations.
      */
     dbg("initializing initial thread local storage");
     allocate_initial_tls(globallist_curr(TAILQ_FIRST(&obj_list)));
 
     dbg("initializing key program variables");
     set_program_var("__progname", argv[0] != NULL ? basename(argv[0]) : "");
     set_program_var("environ", env);
     set_program_var("__elf_aux_vector", aux);
 
     /* Make a list of init functions to call. */
     objlist_init(&initlist);
     initlist_add_objects(globallist_curr(TAILQ_FIRST(&obj_list)),
       preload_tail, &initlist);
 
     r_debug_state(NULL, &obj_main->linkmap); /* say hello to gdb! */
 
     map_stacks_exec(NULL);
 
     if (!obj_main->crt_no_init) {
 	/*
 	 * Make sure we don't call the main program's init and fini
 	 * functions for binaries linked with old crt1 which calls
 	 * _init itself.
 	 */
 	obj_main->init = obj_main->fini = (Elf_Addr)NULL;
 	obj_main->preinit_array = obj_main->init_array =
 	    obj_main->fini_array = (Elf_Addr)NULL;
     }
 
     if (direct_exec) {
 	/* Set osrel for direct-execed binary */
 	mib[0] = CTL_KERN;
 	mib[1] = KERN_PROC;
 	mib[2] = KERN_PROC_OSREL;
 	mib[3] = getpid();
 	osrel = obj_main->osrel;
 	sz = sizeof(old_osrel);
 	dbg("setting osrel to %d", osrel);
 	(void)sysctl(mib, 4, &old_osrel, &sz, &osrel, sizeof(osrel));
     }
 
     wlock_acquire(rtld_bind_lock, &lockstate);
 
     dbg("resolving ifuncs");
     if (initlist_objects_ifunc(&initlist, ld_bind_now != NULL &&
       *ld_bind_now != '\0', SYMLOOK_EARLY, &lockstate) == -1)
 	rtld_die();
 
     rtld_exit_ptr = rtld_exit;
     if (obj_main->crt_no_init)
 	preinit_main();
     objlist_call_init(&initlist, &lockstate);
     _r_debug_postinit(&obj_main->linkmap);
     objlist_clear(&initlist);
     dbg("loading filtees");
     TAILQ_FOREACH(obj, &obj_list, next) {
 	if (obj->marker)
 	    continue;
 	if (ld_loadfltr || obj->z_loadfltr)
 	    load_filtees(obj, 0, &lockstate);
     }
 
     dbg("enforcing main obj relro");
     if (obj_enforce_relro(obj_main) == -1)
 	rtld_die();
 
     lock_release(rtld_bind_lock, &lockstate);
 
     dbg("transferring control to program entry point = %p", obj_main->entry);
 
     /* Return the exit procedure and the program entry point. */
     *exit_proc = rtld_exit_ptr;
     *objp = obj_main;
     return ((func_ptr_type)obj_main->entry);
 }
 
 void *
 rtld_resolve_ifunc(const Obj_Entry *obj, const Elf_Sym *def)
 {
 	void *ptr;
 	Elf_Addr target;
 
 	ptr = (void *)make_function_pointer(def, obj);
 	target = call_ifunc_resolver(ptr);
 	return ((void *)target);
 }
 
 Elf_Addr
 _rtld_bind(Obj_Entry *obj, Elf_Size reloff)
 {
     const Elf_Rel *rel;
     const Elf_Sym *def;
     const Obj_Entry *defobj;
     Elf_Addr *where;
     Elf_Addr target;
     RtldLockState lockstate;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
     if (sigsetjmp(lockstate.env, 0) != 0)
 	    lock_upgrade(rtld_bind_lock, &lockstate);
     if (obj->pltrel)
 	rel = (const Elf_Rel *)((const char *)obj->pltrel + reloff);
     else
 	rel = (const Elf_Rel *)((const char *)obj->pltrela + reloff);
 
     where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
     def = find_symdef(ELF_R_SYM(rel->r_info), obj, &defobj, SYMLOOK_IN_PLT,
 	NULL, &lockstate);
     if (def == NULL)
 	rtld_die();
     if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
 	target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
     else
 	target = (Elf_Addr)(defobj->relocbase + def->st_value);
 
     dbg("\"%s\" in \"%s\" ==> %p in \"%s\"",
       defobj->strtab + def->st_name,
       obj->path == NULL ? NULL : basename(obj->path),
       (void *)target,
       defobj->path == NULL ? NULL : basename(defobj->path));
 
     /*
      * Write the new contents for the jmpslot. Note that depending on
      * architecture, the value which we need to return back to the
      * lazy binding trampoline may or may not be the target
      * address. The value returned from reloc_jmpslot() is the value
      * that the trampoline needs.
      */
     target = reloc_jmpslot(where, target, defobj, obj, rel);
     lock_release(rtld_bind_lock, &lockstate);
     return (target);
 }
 
 /*
  * Error reporting function.  Use it like printf.  If formats the message
  * into a buffer, and sets things up so that the next call to dlerror()
  * will return the message.
  */
 void
 _rtld_error(const char *fmt, ...)
 {
 	va_list ap;
 
 	va_start(ap, fmt);
 	rtld_vsnprintf(lockinfo.dlerror_loc(), lockinfo.dlerror_loc_sz,
 	    fmt, ap);
 	va_end(ap);
 	*lockinfo.dlerror_seen() = 0;
 	LD_UTRACE(UTRACE_RTLD_ERROR, NULL, NULL, 0, 0, lockinfo.dlerror_loc());
 }
 
 /*
  * Return a dynamically-allocated copy of the current error message, if any.
  */
 static struct dlerror_save *
 errmsg_save(void)
 {
 	struct dlerror_save *res;
 
 	res = xmalloc(sizeof(*res));
 	res->seen = *lockinfo.dlerror_seen();
 	if (res->seen == 0)
 		res->msg = xstrdup(lockinfo.dlerror_loc());
 	return (res);
 }
 
 /*
  * Restore the current error message from a copy which was previously saved
  * by errmsg_save().  The copy is freed.
  */
 static void
 errmsg_restore(struct dlerror_save *saved_msg)
 {
 	if (saved_msg == NULL || saved_msg->seen == 1) {
 		*lockinfo.dlerror_seen() = 1;
 	} else {
 		*lockinfo.dlerror_seen() = 0;
 		strlcpy(lockinfo.dlerror_loc(), saved_msg->msg,
 		    lockinfo.dlerror_loc_sz);
 		free(saved_msg->msg);
 	}
 	free(saved_msg);
 }
 
 static const char *
 basename(const char *name)
 {
 	const char *p;
 
 	p = strrchr(name, '/');
 	return (p != NULL ? p + 1 : name);
 }
 
 static struct utsname uts;
 
 static char *
 origin_subst_one(Obj_Entry *obj, char *real, const char *kw,
     const char *subst, bool may_free)
 {
 	char *p, *p1, *res, *resp;
 	int subst_len, kw_len, subst_count, old_len, new_len;
 
 	kw_len = strlen(kw);
 
 	/*
 	 * First, count the number of the keyword occurrences, to
 	 * preallocate the final string.
 	 */
 	for (p = real, subst_count = 0;; p = p1 + kw_len, subst_count++) {
 		p1 = strstr(p, kw);
 		if (p1 == NULL)
 			break;
 	}
 
 	/*
 	 * If the keyword is not found, just return.
 	 *
 	 * Return non-substituted string if resolution failed.  We
 	 * cannot do anything more reasonable, the failure mode of the
 	 * caller is unresolved library anyway.
 	 */
 	if (subst_count == 0 || (obj != NULL && !obj_resolve_origin(obj)))
 		return (may_free ? real : xstrdup(real));
 	if (obj != NULL)
 		subst = obj->origin_path;
 
 	/*
 	 * There is indeed something to substitute.  Calculate the
 	 * length of the resulting string, and allocate it.
 	 */
 	subst_len = strlen(subst);
 	old_len = strlen(real);
 	new_len = old_len + (subst_len - kw_len) * subst_count;
 	res = xmalloc(new_len + 1);
 
 	/*
 	 * Now, execute the substitution loop.
 	 */
 	for (p = real, resp = res, *resp = '\0';;) {
 		p1 = strstr(p, kw);
 		if (p1 != NULL) {
 			/* Copy the prefix before keyword. */
 			memcpy(resp, p, p1 - p);
 			resp += p1 - p;
 			/* Keyword replacement. */
 			memcpy(resp, subst, subst_len);
 			resp += subst_len;
 			*resp = '\0';
 			p = p1 + kw_len;
 		} else
 			break;
 	}
 
 	/* Copy to the end of string and finish. */
 	strcat(resp, p);
 	if (may_free)
 		free(real);
 	return (res);
 }
 
 static const struct {
 	const char *kw;
 	bool pass_obj;
 	const char *subst;
 } tokens[] = {
 	{ .kw = "$ORIGIN", .pass_obj = true, .subst = NULL },
 	{ .kw = "${ORIGIN}", .pass_obj = true, .subst = NULL },
 	{ .kw = "$OSNAME", .pass_obj = false, .subst = uts.sysname },
 	{ .kw = "${OSNAME}", .pass_obj = false, .subst = uts.sysname },
 	{ .kw = "$OSREL", .pass_obj = false, .subst = uts.release },
 	{ .kw = "${OSREL}", .pass_obj = false, .subst = uts.release },
 	{ .kw = "$PLATFORM", .pass_obj = false, .subst = uts.machine },
 	{ .kw = "${PLATFORM}", .pass_obj = false, .subst = uts.machine },
 };
 
 static char *
 origin_subst(Obj_Entry *obj, const char *real)
 {
 	char *res;
 	int i;
 
 	if (obj == NULL || !trust)
 		return (xstrdup(real));
 	if (uts.sysname[0] == '\0') {
 		if (uname(&uts) != 0) {
 			_rtld_error("utsname failed: %d", errno);
 			return (NULL);
 		}
 	}
 
 	/* __DECONST is safe here since without may_free real is unchanged */
 	res = __DECONST(char *, real);
 	for (i = 0; i < (int)nitems(tokens); i++) {
 		res = origin_subst_one(tokens[i].pass_obj ? obj : NULL,
-		    res, tokens[i].kw, tokens[i].subst, i == 0);
+		    res, tokens[i].kw, tokens[i].subst, i != 0);
 	}
 	return (res);
 }
 
 void
 rtld_die(void)
 {
     const char *msg = dlerror();
 
     if (msg == NULL)
 	msg = "Fatal error";
     rtld_fdputstr(STDERR_FILENO, _BASENAME_RTLD ": ");
     rtld_fdputstr(STDERR_FILENO, msg);
     rtld_fdputchar(STDERR_FILENO, '\n');
     _exit(1);
 }
 
 /*
  * Process a shared object's DYNAMIC section, and save the important
  * information in its Obj_Entry structure.
  */
 static void
 digest_dynamic1(Obj_Entry *obj, int early, const Elf_Dyn **dyn_rpath,
     const Elf_Dyn **dyn_soname, const Elf_Dyn **dyn_runpath)
 {
     const Elf_Dyn *dynp;
     Needed_Entry **needed_tail = &obj->needed;
     Needed_Entry **needed_filtees_tail = &obj->needed_filtees;
     Needed_Entry **needed_aux_filtees_tail = &obj->needed_aux_filtees;
     const Elf_Hashelt *hashtab;
     const Elf32_Word *hashval;
     Elf32_Word bkt, nmaskwords;
     int bloom_size32;
     int plttype = DT_REL;
 
     *dyn_rpath = NULL;
     *dyn_soname = NULL;
     *dyn_runpath = NULL;
 
     obj->bind_now = false;
     dynp = obj->dynamic;
     if (dynp == NULL)
 	return;
     for (;  dynp->d_tag != DT_NULL;  dynp++) {
 	switch (dynp->d_tag) {
 
 	case DT_REL:
 	    obj->rel = (const Elf_Rel *)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_RELSZ:
 	    obj->relsize = dynp->d_un.d_val;
 	    break;
 
 	case DT_RELENT:
 	    assert(dynp->d_un.d_val == sizeof(Elf_Rel));
 	    break;
 
 	case DT_JMPREL:
 	    obj->pltrel = (const Elf_Rel *)
 	      (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_PLTRELSZ:
 	    obj->pltrelsize = dynp->d_un.d_val;
 	    break;
 
 	case DT_RELA:
 	    obj->rela = (const Elf_Rela *)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_RELASZ:
 	    obj->relasize = dynp->d_un.d_val;
 	    break;
 
 	case DT_RELAENT:
 	    assert(dynp->d_un.d_val == sizeof(Elf_Rela));
 	    break;
 
 	case DT_RELR:
 	    obj->relr = (const Elf_Relr *)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_RELRSZ:
 	    obj->relrsize = dynp->d_un.d_val;
 	    break;
 
 	case DT_RELRENT:
 	    assert(dynp->d_un.d_val == sizeof(Elf_Relr));
 	    break;
 
 	case DT_PLTREL:
 	    plttype = dynp->d_un.d_val;
 	    assert(dynp->d_un.d_val == DT_REL || plttype == DT_RELA);
 	    break;
 
 	case DT_SYMTAB:
 	    obj->symtab = (const Elf_Sym *)
 	      (obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_SYMENT:
 	    assert(dynp->d_un.d_val == sizeof(Elf_Sym));
 	    break;
 
 	case DT_STRTAB:
 	    obj->strtab = (const char *)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_STRSZ:
 	    obj->strsize = dynp->d_un.d_val;
 	    break;
 
 	case DT_VERNEED:
 	    obj->verneed = (const Elf_Verneed *)(obj->relocbase +
 		dynp->d_un.d_val);
 	    break;
 
 	case DT_VERNEEDNUM:
 	    obj->verneednum = dynp->d_un.d_val;
 	    break;
 
 	case DT_VERDEF:
 	    obj->verdef = (const Elf_Verdef *)(obj->relocbase +
 		dynp->d_un.d_val);
 	    break;
 
 	case DT_VERDEFNUM:
 	    obj->verdefnum = dynp->d_un.d_val;
 	    break;
 
 	case DT_VERSYM:
 	    obj->versyms = (const Elf_Versym *)(obj->relocbase +
 		dynp->d_un.d_val);
 	    break;
 
 	case DT_HASH:
 	    {
 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
 		    dynp->d_un.d_ptr);
 		obj->nbuckets = hashtab[0];
 		obj->nchains = hashtab[1];
 		obj->buckets = hashtab + 2;
 		obj->chains = obj->buckets + obj->nbuckets;
 		obj->valid_hash_sysv = obj->nbuckets > 0 && obj->nchains > 0 &&
 		  obj->buckets != NULL;
 	    }
 	    break;
 
 	case DT_GNU_HASH:
 	    {
 		hashtab = (const Elf_Hashelt *)(obj->relocbase +
 		    dynp->d_un.d_ptr);
 		obj->nbuckets_gnu = hashtab[0];
 		obj->symndx_gnu = hashtab[1];
 		nmaskwords = hashtab[2];
 		bloom_size32 = (__ELF_WORD_SIZE / 32) * nmaskwords;
 		obj->maskwords_bm_gnu = nmaskwords - 1;
 		obj->shift2_gnu = hashtab[3];
 		obj->bloom_gnu = (const Elf_Addr *)(hashtab + 4);
 		obj->buckets_gnu = hashtab + 4 + bloom_size32;
 		obj->chain_zero_gnu = obj->buckets_gnu + obj->nbuckets_gnu -
 		  obj->symndx_gnu;
 		/* Number of bitmask words is required to be power of 2 */
 		obj->valid_hash_gnu = powerof2(nmaskwords) &&
 		    obj->nbuckets_gnu > 0 && obj->buckets_gnu != NULL;
 	    }
 	    break;
 
 	case DT_NEEDED:
 	    if (!obj->rtld) {
 		Needed_Entry *nep = NEW(Needed_Entry);
 		nep->name = dynp->d_un.d_val;
 		nep->obj = NULL;
 		nep->next = NULL;
 
 		*needed_tail = nep;
 		needed_tail = &nep->next;
 	    }
 	    break;
 
 	case DT_FILTER:
 	    if (!obj->rtld) {
 		Needed_Entry *nep = NEW(Needed_Entry);
 		nep->name = dynp->d_un.d_val;
 		nep->obj = NULL;
 		nep->next = NULL;
 
 		*needed_filtees_tail = nep;
 		needed_filtees_tail = &nep->next;
 
 		if (obj->linkmap.l_refname == NULL)
 		    obj->linkmap.l_refname = (char *)dynp->d_un.d_val;
 	    }
 	    break;
 
 	case DT_AUXILIARY:
 	    if (!obj->rtld) {
 		Needed_Entry *nep = NEW(Needed_Entry);
 		nep->name = dynp->d_un.d_val;
 		nep->obj = NULL;
 		nep->next = NULL;
 
 		*needed_aux_filtees_tail = nep;
 		needed_aux_filtees_tail = &nep->next;
 	    }
 	    break;
 
 	case DT_PLTGOT:
 	    obj->pltgot = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_TEXTREL:
 	    obj->textrel = true;
 	    break;
 
 	case DT_SYMBOLIC:
 	    obj->symbolic = true;
 	    break;
 
 	case DT_RPATH:
 	    /*
 	     * We have to wait until later to process this, because we
 	     * might not have gotten the address of the string table yet.
 	     */
 	    *dyn_rpath = dynp;
 	    break;
 
 	case DT_SONAME:
 	    *dyn_soname = dynp;
 	    break;
 
 	case DT_RUNPATH:
 	    *dyn_runpath = dynp;
 	    break;
 
 	case DT_INIT:
 	    obj->init = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_PREINIT_ARRAY:
 	    obj->preinit_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_PREINIT_ARRAYSZ:
 	    obj->preinit_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
 	    break;
 
 	case DT_INIT_ARRAY:
 	    obj->init_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_INIT_ARRAYSZ:
 	    obj->init_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
 	    break;
 
 	case DT_FINI:
 	    obj->fini = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_FINI_ARRAY:
 	    obj->fini_array = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 	    break;
 
 	case DT_FINI_ARRAYSZ:
 	    obj->fini_array_num = dynp->d_un.d_val / sizeof(Elf_Addr);
 	    break;
 
 	case DT_DEBUG:
 	    if (!early)
 		dbg("Filling in DT_DEBUG entry");
 	    (__DECONST(Elf_Dyn *, dynp))->d_un.d_ptr = (Elf_Addr)&r_debug;
 	    break;
 
 	case DT_FLAGS:
 		if (dynp->d_un.d_val & DF_ORIGIN)
 		    obj->z_origin = true;
 		if (dynp->d_un.d_val & DF_SYMBOLIC)
 		    obj->symbolic = true;
 		if (dynp->d_un.d_val & DF_TEXTREL)
 		    obj->textrel = true;
 		if (dynp->d_un.d_val & DF_BIND_NOW)
 		    obj->bind_now = true;
 		if (dynp->d_un.d_val & DF_STATIC_TLS)
 		    obj->static_tls = true;
 	    break;
 
 #ifdef __powerpc__
 #ifdef __powerpc64__
 	case DT_PPC64_GLINK:
 		obj->glink = (Elf_Addr)(obj->relocbase + dynp->d_un.d_ptr);
 		break;
 #else
 	case DT_PPC_GOT:
 		obj->gotptr = (Elf_Addr *)(obj->relocbase + dynp->d_un.d_ptr);
 		break;
 #endif
 #endif
 
 	case DT_FLAGS_1:
 		if (dynp->d_un.d_val & DF_1_NOOPEN)
 		    obj->z_noopen = true;
 		if (dynp->d_un.d_val & DF_1_ORIGIN)
 		    obj->z_origin = true;
 		if (dynp->d_un.d_val & DF_1_GLOBAL)
 		    obj->z_global = true;
 		if (dynp->d_un.d_val & DF_1_BIND_NOW)
 		    obj->bind_now = true;
 		if (dynp->d_un.d_val & DF_1_NODELETE)
 		    obj->z_nodelete = true;
 		if (dynp->d_un.d_val & DF_1_LOADFLTR)
 		    obj->z_loadfltr = true;
 		if (dynp->d_un.d_val & DF_1_INTERPOSE)
 		    obj->z_interpose = true;
 		if (dynp->d_un.d_val & DF_1_NODEFLIB)
 		    obj->z_nodeflib = true;
 		if (dynp->d_un.d_val & DF_1_PIE)
 		    obj->z_pie = true;
 	    break;
 
 	default:
 	    if (!early) {
 		dbg("Ignoring d_tag %ld = %#lx", (long)dynp->d_tag,
 		    (long)dynp->d_tag);
 	    }
 	    break;
 	}
     }
 
     obj->traced = false;
 
     if (plttype == DT_RELA) {
 	obj->pltrela = (const Elf_Rela *) obj->pltrel;
 	obj->pltrel = NULL;
 	obj->pltrelasize = obj->pltrelsize;
 	obj->pltrelsize = 0;
     }
 
     /* Determine size of dynsym table (equal to nchains of sysv hash) */
     if (obj->valid_hash_sysv)
 	obj->dynsymcount = obj->nchains;
     else if (obj->valid_hash_gnu) {
 	obj->dynsymcount = 0;
 	for (bkt = 0; bkt < obj->nbuckets_gnu; bkt++) {
 	    if (obj->buckets_gnu[bkt] == 0)
 		continue;
 	    hashval = &obj->chain_zero_gnu[obj->buckets_gnu[bkt]];
 	    do
 		obj->dynsymcount++;
 	    while ((*hashval++ & 1u) == 0);
 	}
 	obj->dynsymcount += obj->symndx_gnu;
     }
 
     if (obj->linkmap.l_refname != NULL)
 	obj->linkmap.l_refname = obj->strtab + (unsigned long)obj->
 	  linkmap.l_refname;
 }
 
 static bool
 obj_resolve_origin(Obj_Entry *obj)
 {
 
 	if (obj->origin_path != NULL)
 		return (true);
 	obj->origin_path = xmalloc(PATH_MAX);
 	return (rtld_dirname_abs(obj->path, obj->origin_path) != -1);
 }
 
 static bool
 digest_dynamic2(Obj_Entry *obj, const Elf_Dyn *dyn_rpath,
     const Elf_Dyn *dyn_soname, const Elf_Dyn *dyn_runpath)
 {
 
 	if (obj->z_origin && !obj_resolve_origin(obj))
 		return (false);
 
 	if (dyn_runpath != NULL) {
 		obj->runpath = (const char *)obj->strtab + dyn_runpath->d_un.d_val;
 		obj->runpath = origin_subst(obj, obj->runpath);
 	} else if (dyn_rpath != NULL) {
 		obj->rpath = (const char *)obj->strtab + dyn_rpath->d_un.d_val;
 		obj->rpath = origin_subst(obj, obj->rpath);
 	}
 	if (dyn_soname != NULL)
 		object_add_name(obj, obj->strtab + dyn_soname->d_un.d_val);
 	return (true);
 }
 
 static bool
 digest_dynamic(Obj_Entry *obj, int early)
 {
 	const Elf_Dyn *dyn_rpath;
 	const Elf_Dyn *dyn_soname;
 	const Elf_Dyn *dyn_runpath;
 
 	digest_dynamic1(obj, early, &dyn_rpath, &dyn_soname, &dyn_runpath);
 	return (digest_dynamic2(obj, dyn_rpath, dyn_soname, dyn_runpath));
 }
 
 /*
  * Process a shared object's program header.  This is used only for the
  * main program, when the kernel has already loaded the main program
  * into memory before calling the dynamic linker.  It creates and
  * returns an Obj_Entry structure.
  */
 static Obj_Entry *
 digest_phdr(const Elf_Phdr *phdr, int phnum, caddr_t entry, const char *path)
 {
     Obj_Entry *obj;
     const Elf_Phdr *phlimit = phdr + phnum;
     const Elf_Phdr *ph;
     Elf_Addr note_start, note_end;
     int nsegs = 0;
 
     obj = obj_new();
     for (ph = phdr;  ph < phlimit;  ph++) {
 	if (ph->p_type != PT_PHDR)
 	    continue;
 
 	obj->phdr = phdr;
 	obj->phsize = ph->p_memsz;
 	obj->relocbase = __DECONST(char *, phdr) - ph->p_vaddr;
 	break;
     }
 
     obj->stack_flags = PF_X | PF_R | PF_W;
 
     for (ph = phdr;  ph < phlimit;  ph++) {
 	switch (ph->p_type) {
 
 	case PT_INTERP:
 	    obj->interp = (const char *)(ph->p_vaddr + obj->relocbase);
 	    break;
 
 	case PT_LOAD:
 	    if (nsegs == 0) {	/* First load segment */
 		obj->vaddrbase = rtld_trunc_page(ph->p_vaddr);
 		obj->mapbase = obj->vaddrbase + obj->relocbase;
 	    } else {		/* Last load segment */
 		obj->mapsize = rtld_round_page(ph->p_vaddr + ph->p_memsz) -
 		  obj->vaddrbase;
 	    }
 	    nsegs++;
 	    break;
 
 	case PT_DYNAMIC:
 	    obj->dynamic = (const Elf_Dyn *)(ph->p_vaddr + obj->relocbase);
 	    break;
 
 	case PT_TLS:
 	    obj->tlsindex = 1;
 	    obj->tlssize = ph->p_memsz;
 	    obj->tlsalign = ph->p_align;
 	    obj->tlsinitsize = ph->p_filesz;
 	    obj->tlsinit = (void*)(ph->p_vaddr + obj->relocbase);
 	    obj->tlspoffset = ph->p_offset;
 	    break;
 
 	case PT_GNU_STACK:
 	    obj->stack_flags = ph->p_flags;
 	    break;
 
 	case PT_GNU_RELRO:
 	    obj->relro_page = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
 	    obj->relro_size = rtld_trunc_page(ph->p_vaddr + ph->p_memsz) -
 	      rtld_trunc_page(ph->p_vaddr);
 	    break;
 
 	case PT_NOTE:
 	    note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
 	    note_end = note_start + ph->p_filesz;
 	    digest_notes(obj, note_start, note_end);
 	    break;
 	}
     }
     if (nsegs < 1) {
 	_rtld_error("%s: too few PT_LOAD segments", path);
 	return (NULL);
     }
 
     obj->entry = entry;
     return (obj);
 }
 
 void
 digest_notes(Obj_Entry *obj, Elf_Addr note_start, Elf_Addr note_end)
 {
 	const Elf_Note *note;
 	const char *note_name;
 	uintptr_t p;
 
 	for (note = (const Elf_Note *)note_start; (Elf_Addr)note < note_end;
 	    note = (const Elf_Note *)((const char *)(note + 1) +
 	      roundup2(note->n_namesz, sizeof(Elf32_Addr)) +
 	      roundup2(note->n_descsz, sizeof(Elf32_Addr)))) {
 		if (note->n_namesz != sizeof(NOTE_FREEBSD_VENDOR) ||
 		    note->n_descsz != sizeof(int32_t))
 			continue;
 		if (note->n_type != NT_FREEBSD_ABI_TAG &&
 		    note->n_type != NT_FREEBSD_FEATURE_CTL &&
 		    note->n_type != NT_FREEBSD_NOINIT_TAG)
 			continue;
 		note_name = (const char *)(note + 1);
 		if (strncmp(NOTE_FREEBSD_VENDOR, note_name,
 		    sizeof(NOTE_FREEBSD_VENDOR)) != 0)
 			continue;
 		switch (note->n_type) {
 		case NT_FREEBSD_ABI_TAG:
 			/* FreeBSD osrel note */
 			p = (uintptr_t)(note + 1);
 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
 			obj->osrel = *(const int32_t *)(p);
 			dbg("note osrel %d", obj->osrel);
 			break;
 		case NT_FREEBSD_FEATURE_CTL:
 			/* FreeBSD ABI feature control note */
 			p = (uintptr_t)(note + 1);
 			p += roundup2(note->n_namesz, sizeof(Elf32_Addr));
 			obj->fctl0 = *(const uint32_t *)(p);
 			dbg("note fctl0 %#x", obj->fctl0);
 			break;
 		case NT_FREEBSD_NOINIT_TAG:
 			/* FreeBSD 'crt does not call init' note */
 			obj->crt_no_init = true;
 			dbg("note crt_no_init");
 			break;
 		}
 	}
 }
 
 static Obj_Entry *
 dlcheck(void *handle)
 {
     Obj_Entry *obj;
 
     TAILQ_FOREACH(obj, &obj_list, next) {
 	if (obj == (Obj_Entry *) handle)
 	    break;
     }
 
     if (obj == NULL || obj->refcount == 0 || obj->dl_refcount == 0) {
 	_rtld_error("Invalid shared object handle %p", handle);
 	return (NULL);
     }
     return (obj);
 }
 
 /*
  * If the given object is already in the donelist, return true.  Otherwise
  * add the object to the list and return false.
  */
 static bool
 donelist_check(DoneList *dlp, const Obj_Entry *obj)
 {
     unsigned int i;
 
     for (i = 0;  i < dlp->num_used;  i++)
 	if (dlp->objs[i] == obj)
 	    return (true);
     /*
      * Our donelist allocation should always be sufficient.  But if
      * our threads locking isn't working properly, more shared objects
      * could have been loaded since we allocated the list.  That should
      * never happen, but we'll handle it properly just in case it does.
      */
     if (dlp->num_used < dlp->num_alloc)
 	dlp->objs[dlp->num_used++] = obj;
     return (false);
 }
 
 /*
  * Hash function for symbol table lookup.  Don't even think about changing
  * this.  It is specified by the System V ABI.
  */
 unsigned long
 elf_hash(const char *name)
 {
     const unsigned char *p = (const unsigned char *) name;
     unsigned long h = 0;
     unsigned long g;
 
     while (*p != '\0') {
 	h = (h << 4) + *p++;
 	if ((g = h & 0xf0000000) != 0)
 	    h ^= g >> 24;
 	h &= ~g;
     }
     return (h);
 }
 
 /*
  * The GNU hash function is the Daniel J. Bernstein hash clipped to 32 bits
  * unsigned in case it's implemented with a wider type.
  */
 static uint32_t
 gnu_hash(const char *s)
 {
 	uint32_t h;
 	unsigned char c;
 
 	h = 5381;
 	for (c = *s; c != '\0'; c = *++s)
 		h = h * 33 + c;
 	return (h & 0xffffffff);
 }
 
 
 /*
  * Find the library with the given name, and return its full pathname.
  * The returned string is dynamically allocated.  Generates an error
  * message and returns NULL if the library cannot be found.
  *
  * If the second argument is non-NULL, then it refers to an already-
  * loaded shared object, whose library search path will be searched.
  *
  * If a library is successfully located via LD_LIBRARY_PATH_FDS, its
  * descriptor (which is close-on-exec) will be passed out via the third
  * argument.
  *
  * The search order is:
  *   DT_RPATH in the referencing file _unless_ DT_RUNPATH is present (1)
  *   DT_RPATH of the main object if DSO without defined DT_RUNPATH (1)
  *   LD_LIBRARY_PATH
  *   DT_RUNPATH in the referencing file
  *   ldconfig hints (if -z nodefaultlib, filter out default library directories
  *	 from list)
  *   /lib:/usr/lib _unless_ the referencing file is linked with -z nodefaultlib
  *
  * (1) Handled in digest_dynamic2 - rpath left NULL if runpath defined.
  */
 static char *
 find_library(const char *xname, const Obj_Entry *refobj, int *fdp)
 {
 	char *pathname, *refobj_path;
 	const char *name;
 	bool nodeflib, objgiven;
 
 	objgiven = refobj != NULL;
 
 	if (libmap_disable || !objgiven ||
 	    (name = lm_find(refobj->path, xname)) == NULL)
 		name = xname;
 
 	if (strchr(name, '/') != NULL) {	/* Hard coded pathname */
 		if (name[0] != '/' && !trust) {
 			_rtld_error("Absolute pathname required "
 			    "for shared object \"%s\"", name);
 			return (NULL);
 		}
 		return (origin_subst(__DECONST(Obj_Entry *, refobj),
 		    __DECONST(char *, name)));
 	}
 
 	dbg(" Searching for \"%s\"", name);
 	refobj_path = objgiven ? refobj->path : NULL;
 
 	/*
 	 * If refobj->rpath != NULL, then refobj->runpath is NULL.  Fall
 	 * back to pre-conforming behaviour if user requested so with
 	 * LD_LIBRARY_PATH_RPATH environment variable and ignore -z
 	 * nodeflib.
 	 */
 	if (objgiven && refobj->rpath != NULL && ld_library_path_rpath) {
 		pathname = search_library_path(name, ld_library_path,
 		    refobj_path, fdp);
 		if (pathname != NULL)
 			return (pathname);
 		if (refobj != NULL) {
 			pathname = search_library_path(name, refobj->rpath,
 			    refobj_path, fdp);
 			if (pathname != NULL)
 				return (pathname);
 		}
 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
 		if (pathname != NULL)
 			return (pathname);
 		pathname = search_library_path(name, gethints(false),
 		    refobj_path, fdp);
 		if (pathname != NULL)
 			return (pathname);
 		pathname = search_library_path(name, ld_standard_library_path,
 		    refobj_path, fdp);
 		if (pathname != NULL)
 			return (pathname);
 	} else {
 		nodeflib = objgiven ? refobj->z_nodeflib : false;
 		if (objgiven) {
 			pathname = search_library_path(name, refobj->rpath,
 			    refobj->path, fdp);
 			if (pathname != NULL)
 				return (pathname);
 		}
 		if (objgiven && refobj->runpath == NULL && refobj != obj_main) {
 			pathname = search_library_path(name, obj_main->rpath,
 			    refobj_path, fdp);
 			if (pathname != NULL)
 				return (pathname);
 		}
 		pathname = search_library_path(name, ld_library_path,
 		    refobj_path, fdp);
 		if (pathname != NULL)
 			return (pathname);
 		if (objgiven) {
 			pathname = search_library_path(name, refobj->runpath,
 			    refobj_path, fdp);
 			if (pathname != NULL)
 				return (pathname);
 		}
 		pathname = search_library_pathfds(name, ld_library_dirs, fdp);
 		if (pathname != NULL)
 			return (pathname);
 		pathname = search_library_path(name, gethints(nodeflib),
 		    refobj_path, fdp);
 		if (pathname != NULL)
 			return (pathname);
 		if (objgiven && !nodeflib) {
 			pathname = search_library_path(name,
 			    ld_standard_library_path, refobj_path, fdp);
 			if (pathname != NULL)
 				return (pathname);
 		}
 	}
 
 	if (objgiven && refobj->path != NULL) {
 		_rtld_error("Shared object \"%s\" not found, "
 		    "required by \"%s\"", name, basename(refobj->path));
 	} else {
 		_rtld_error("Shared object \"%s\" not found", name);
 	}
 	return (NULL);
 }
 
 /*
  * Given a symbol number in a referencing object, find the corresponding
  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
  * no definition was found.  Returns a pointer to the Obj_Entry of the
  * defining object via the reference parameter DEFOBJ_OUT.
  */
 const Elf_Sym *
 find_symdef(unsigned long symnum, const Obj_Entry *refobj,
     const Obj_Entry **defobj_out, int flags, SymCache *cache,
     RtldLockState *lockstate)
 {
     const Elf_Sym *ref;
     const Elf_Sym *def;
     const Obj_Entry *defobj;
     const Ver_Entry *ve;
     SymLook req;
     const char *name;
     int res;
 
     /*
      * If we have already found this symbol, get the information from
      * the cache.
      */
     if (symnum >= refobj->dynsymcount)
 	return (NULL);	/* Bad object */
     if (cache != NULL && cache[symnum].sym != NULL) {
 	*defobj_out = cache[symnum].obj;
 	return (cache[symnum].sym);
     }
 
     ref = refobj->symtab + symnum;
     name = refobj->strtab + ref->st_name;
     def = NULL;
     defobj = NULL;
     ve = NULL;
 
     /*
      * We don't have to do a full scale lookup if the symbol is local.
      * We know it will bind to the instance in this load module; to
      * which we already have a pointer (ie ref). By not doing a lookup,
      * we not only improve performance, but it also avoids unresolvable
      * symbols when local symbols are not in the hash table. This has
      * been seen with the ia64 toolchain.
      */
     if (ELF_ST_BIND(ref->st_info) != STB_LOCAL) {
 	if (ELF_ST_TYPE(ref->st_info) == STT_SECTION) {
 	    _rtld_error("%s: Bogus symbol table entry %lu", refobj->path,
 		symnum);
 	}
 	symlook_init(&req, name);
 	req.flags = flags;
 	ve = req.ventry = fetch_ventry(refobj, symnum);
 	req.lockstate = lockstate;
 	res = symlook_default(&req, refobj);
 	if (res == 0) {
 	    def = req.sym_out;
 	    defobj = req.defobj_out;
 	}
     } else {
 	def = ref;
 	defobj = refobj;
     }
 
     /*
      * If we found no definition and the reference is weak, treat the
      * symbol as having the value zero.
      */
     if (def == NULL && ELF_ST_BIND(ref->st_info) == STB_WEAK) {
 	def = &sym_zero;
 	defobj = obj_main;
     }
 
     if (def != NULL) {
 	*defobj_out = defobj;
 	/* Record the information in the cache to avoid subsequent lookups. */
 	if (cache != NULL) {
 	    cache[symnum].sym = def;
 	    cache[symnum].obj = defobj;
 	}
     } else {
 	if (refobj != &obj_rtld)
 	    _rtld_error("%s: Undefined symbol \"%s%s%s\"", refobj->path, name,
 	      ve != NULL ? "@" : "", ve != NULL ? ve->name : "");
     }
     return (def);
 }
 
 /*
  * Return the search path from the ldconfig hints file, reading it if
  * necessary.  If nostdlib is true, then the default search paths are
  * not added to result.
  *
  * Returns NULL if there are problems with the hints file,
  * or if the search path there is empty.
  */
 static const char *
 gethints(bool nostdlib)
 {
 	static char *filtered_path;
 	static const char *hints;
 	static struct elfhints_hdr hdr;
 	struct fill_search_info_args sargs, hargs;
 	struct dl_serinfo smeta, hmeta, *SLPinfo, *hintinfo;
 	struct dl_serpath *SLPpath, *hintpath;
 	char *p;
 	struct stat hint_stat;
 	unsigned int SLPndx, hintndx, fndx, fcount;
 	int fd;
 	size_t flen;
 	uint32_t dl;
 	bool skip;
 
 	/* First call, read the hints file */
 	if (hints == NULL) {
 		/* Keep from trying again in case the hints file is bad. */
 		hints = "";
 
 		if ((fd = open(ld_elf_hints_path, O_RDONLY | O_CLOEXEC)) == -1)
 			return (NULL);
 
 		/*
 		 * Check of hdr.dirlistlen value against type limit
 		 * intends to pacify static analyzers.  Further
 		 * paranoia leads to checks that dirlist is fully
 		 * contained in the file range.
 		 */
 		if (read(fd, &hdr, sizeof hdr) != sizeof hdr ||
 		    hdr.magic != ELFHINTS_MAGIC ||
 		    hdr.version != 1 || hdr.dirlistlen > UINT_MAX / 2 ||
 		    fstat(fd, &hint_stat) == -1) {
 cleanup1:
 			close(fd);
 			hdr.dirlistlen = 0;
 			return (NULL);
 		}
 		dl = hdr.strtab;
 		if (dl + hdr.dirlist < dl)
 			goto cleanup1;
 		dl += hdr.dirlist;
 		if (dl + hdr.dirlistlen < dl)
 			goto cleanup1;
 		dl += hdr.dirlistlen;
 		if (dl > hint_stat.st_size)
 			goto cleanup1;
 		p = xmalloc(hdr.dirlistlen + 1);
 		if (pread(fd, p, hdr.dirlistlen + 1,
 		    hdr.strtab + hdr.dirlist) != (ssize_t)hdr.dirlistlen + 1 ||
 		    p[hdr.dirlistlen] != '\0') {
 			free(p);
 			goto cleanup1;
 		}
 		hints = p;
 		close(fd);
 	}
 
 	/*
 	 * If caller agreed to receive list which includes the default
 	 * paths, we are done. Otherwise, if we still did not
 	 * calculated filtered result, do it now.
 	 */
 	if (!nostdlib)
 		return (hints[0] != '\0' ? hints : NULL);
 	if (filtered_path != NULL)
 		goto filt_ret;
 
 	/*
 	 * Obtain the list of all configured search paths, and the
 	 * list of the default paths.
 	 *
 	 * First estimate the size of the results.
 	 */
 	smeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
 	smeta.dls_cnt = 0;
 	hmeta.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
 	hmeta.dls_cnt = 0;
 
 	sargs.request = RTLD_DI_SERINFOSIZE;
 	sargs.serinfo = &smeta;
 	hargs.request = RTLD_DI_SERINFOSIZE;
 	hargs.serinfo = &hmeta;
 
 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
 	    &sargs);
 	path_enumerate(hints, fill_search_info, NULL, &hargs);
 
 	SLPinfo = xmalloc(smeta.dls_size);
 	hintinfo = xmalloc(hmeta.dls_size);
 
 	/*
 	 * Next fetch both sets of paths.
 	 */
 	sargs.request = RTLD_DI_SERINFO;
 	sargs.serinfo = SLPinfo;
 	sargs.serpath = &SLPinfo->dls_serpath[0];
 	sargs.strspace = (char *)&SLPinfo->dls_serpath[smeta.dls_cnt];
 
 	hargs.request = RTLD_DI_SERINFO;
 	hargs.serinfo = hintinfo;
 	hargs.serpath = &hintinfo->dls_serpath[0];
 	hargs.strspace = (char *)&hintinfo->dls_serpath[hmeta.dls_cnt];
 
 	path_enumerate(ld_standard_library_path, fill_search_info, NULL,
 	    &sargs);
 	path_enumerate(hints, fill_search_info, NULL, &hargs);
 
 	/*
 	 * Now calculate the difference between two sets, by excluding
 	 * standard paths from the full set.
 	 */
 	fndx = 0;
 	fcount = 0;
 	filtered_path = xmalloc(hdr.dirlistlen + 1);
 	hintpath = &hintinfo->dls_serpath[0];
 	for (hintndx = 0; hintndx < hmeta.dls_cnt; hintndx++, hintpath++) {
 		skip = false;
 		SLPpath = &SLPinfo->dls_serpath[0];
 		/*
 		 * Check each standard path against current.
 		 */
 		for (SLPndx = 0; SLPndx < smeta.dls_cnt; SLPndx++, SLPpath++) {
 			/* matched, skip the path */
 			if (!strcmp(hintpath->dls_name, SLPpath->dls_name)) {
 				skip = true;
 				break;
 			}
 		}
 		if (skip)
 			continue;
 		/*
 		 * Not matched against any standard path, add the path
 		 * to result. Separate consequtive paths with ':'.
 		 */
 		if (fcount > 0) {
 			filtered_path[fndx] = ':';
 			fndx++;
 		}
 		fcount++;
 		flen = strlen(hintpath->dls_name);
 		strncpy((filtered_path + fndx),	hintpath->dls_name, flen);
 		fndx += flen;
 	}
 	filtered_path[fndx] = '\0';
 
 	free(SLPinfo);
 	free(hintinfo);
 
 filt_ret:
 	return (filtered_path[0] != '\0' ? filtered_path : NULL);
 }
 
 static void
 init_dag(Obj_Entry *root)
 {
     const Needed_Entry *needed;
     const Objlist_Entry *elm;
     DoneList donelist;
 
     if (root->dag_inited)
 	return;
     donelist_init(&donelist);
 
     /* Root object belongs to own DAG. */
     objlist_push_tail(&root->dldags, root);
     objlist_push_tail(&root->dagmembers, root);
     donelist_check(&donelist, root);
 
     /*
      * Add dependencies of root object to DAG in breadth order
      * by exploiting the fact that each new object get added
      * to the tail of the dagmembers list.
      */
     STAILQ_FOREACH(elm, &root->dagmembers, link) {
 	for (needed = elm->obj->needed; needed != NULL; needed = needed->next) {
 	    if (needed->obj == NULL || donelist_check(&donelist, needed->obj))
 		continue;
 	    objlist_push_tail(&needed->obj->dldags, root);
 	    objlist_push_tail(&root->dagmembers, needed->obj);
 	}
     }
     root->dag_inited = true;
 }
 
 static void
 init_marker(Obj_Entry *marker)
 {
 
 	bzero(marker, sizeof(*marker));
 	marker->marker = true;
 }
 
 Obj_Entry *
 globallist_curr(const Obj_Entry *obj)
 {
 
 	for (;;) {
 		if (obj == NULL)
 			return (NULL);
 		if (!obj->marker)
 			return (__DECONST(Obj_Entry *, obj));
 		obj = TAILQ_PREV(obj, obj_entry_q, next);
 	}
 }
 
 Obj_Entry *
 globallist_next(const Obj_Entry *obj)
 {
 
 	for (;;) {
 		obj = TAILQ_NEXT(obj, next);
 		if (obj == NULL)
 			return (NULL);
 		if (!obj->marker)
 			return (__DECONST(Obj_Entry *, obj));
 	}
 }
 
 /* Prevent the object from being unmapped while the bind lock is dropped. */
 static void
 hold_object(Obj_Entry *obj)
 {
 
 	obj->holdcount++;
 }
 
 static void
 unhold_object(Obj_Entry *obj)
 {
 
 	assert(obj->holdcount > 0);
 	if (--obj->holdcount == 0 && obj->unholdfree)
 		release_object(obj);
 }
 
 static void
 process_z(Obj_Entry *root)
 {
 	const Objlist_Entry *elm;
 	Obj_Entry *obj;
 
 	/*
 	 * Walk over object DAG and process every dependent object
 	 * that is marked as DF_1_NODELETE or DF_1_GLOBAL. They need
 	 * to grow their own DAG.
 	 *
 	 * For DF_1_GLOBAL, DAG is required for symbol lookups in
 	 * symlook_global() to work.
 	 *
 	 * For DF_1_NODELETE, the DAG should have its reference upped.
 	 */
 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
 		obj = elm->obj;
 		if (obj == NULL)
 			continue;
 		if (obj->z_nodelete && !obj->ref_nodel) {
 			dbg("obj %s -z nodelete", obj->path);
 			init_dag(obj);
 			ref_dag(obj);
 			obj->ref_nodel = true;
 		}
 		if (obj->z_global && objlist_find(&list_global, obj) == NULL) {
 			dbg("obj %s -z global", obj->path);
 			objlist_push_tail(&list_global, obj);
 			init_dag(obj);
 		}
 	}
 }
 
 static void
 parse_rtld_phdr(Obj_Entry *obj)
 {
 	const Elf_Phdr *ph;
 	Elf_Addr note_start, note_end;
 
 	obj->stack_flags = PF_X | PF_R | PF_W;
 	for (ph = obj->phdr;  (const char *)ph < (const char *)obj->phdr +
 	    obj->phsize; ph++) {
 		switch (ph->p_type) {
 		case PT_GNU_STACK:
 			obj->stack_flags = ph->p_flags;
 			break;
 		case PT_GNU_RELRO:
 			obj->relro_page = obj->relocbase +
 			    rtld_trunc_page(ph->p_vaddr);
 			obj->relro_size = rtld_round_page(ph->p_memsz);
 			break;
 		case PT_NOTE:
 			note_start = (Elf_Addr)obj->relocbase + ph->p_vaddr;
 			note_end = note_start + ph->p_filesz;
 			digest_notes(obj, note_start, note_end);
 			break;
 		}
 	}
 }
 
 /*
  * Initialize the dynamic linker.  The argument is the address at which
  * the dynamic linker has been mapped into memory.  The primary task of
  * this function is to relocate the dynamic linker.
  */
 static void
 init_rtld(caddr_t mapbase, Elf_Auxinfo **aux_info)
 {
     Obj_Entry objtmp;	/* Temporary rtld object */
     const Elf_Ehdr *ehdr;
     const Elf_Dyn *dyn_rpath;
     const Elf_Dyn *dyn_soname;
     const Elf_Dyn *dyn_runpath;
 
 #ifdef RTLD_INIT_PAGESIZES_EARLY
     /* The page size is required by the dynamic memory allocator. */
     init_pagesizes(aux_info);
 #endif
 
     /*
      * Conjure up an Obj_Entry structure for the dynamic linker.
      *
      * The "path" member can't be initialized yet because string constants
      * cannot yet be accessed. Below we will set it correctly.
      */
     memset(&objtmp, 0, sizeof(objtmp));
     objtmp.path = NULL;
     objtmp.rtld = true;
     objtmp.mapbase = mapbase;
 #ifdef PIC
     objtmp.relocbase = mapbase;
 #endif
 
     objtmp.dynamic = rtld_dynamic(&objtmp);
     digest_dynamic1(&objtmp, 1, &dyn_rpath, &dyn_soname, &dyn_runpath);
     assert(objtmp.needed == NULL);
     assert(!objtmp.textrel);
     /*
      * Temporarily put the dynamic linker entry into the object list, so
      * that symbols can be found.
      */
     relocate_objects(&objtmp, true, &objtmp, 0, NULL);
 
     ehdr = (Elf_Ehdr *)mapbase;
     objtmp.phdr = (Elf_Phdr *)((char *)mapbase + ehdr->e_phoff);
     objtmp.phsize = ehdr->e_phnum * sizeof(objtmp.phdr[0]);
 
     /* Initialize the object list. */
     TAILQ_INIT(&obj_list);
 
     /* Now that non-local variables can be accesses, copy out obj_rtld. */
     memcpy(&obj_rtld, &objtmp, sizeof(obj_rtld));
 
 #ifndef RTLD_INIT_PAGESIZES_EARLY
     /* The page size is required by the dynamic memory allocator. */
     init_pagesizes(aux_info);
 #endif
 
     if (aux_info[AT_OSRELDATE] != NULL)
 	    osreldate = aux_info[AT_OSRELDATE]->a_un.a_val;
 
     digest_dynamic2(&obj_rtld, dyn_rpath, dyn_soname, dyn_runpath);
 
     /* Replace the path with a dynamically allocated copy. */
     obj_rtld.path = xstrdup(ld_path_rtld);
 
     parse_rtld_phdr(&obj_rtld);
     if (obj_enforce_relro(&obj_rtld) == -1)
 	rtld_die();
 
     r_debug.r_version = R_DEBUG_VERSION;
     r_debug.r_brk = r_debug_state;
     r_debug.r_state = RT_CONSISTENT;
     r_debug.r_ldbase = obj_rtld.relocbase;
 }
 
 /*
  * Retrieve the array of supported page sizes.  The kernel provides the page
  * sizes in increasing order.
  */
 static void
 init_pagesizes(Elf_Auxinfo **aux_info)
 {
 	static size_t psa[MAXPAGESIZES];
 	int mib[2];
 	size_t len, size;
 
 	if (aux_info[AT_PAGESIZES] != NULL && aux_info[AT_PAGESIZESLEN] !=
 	    NULL) {
 		size = aux_info[AT_PAGESIZESLEN]->a_un.a_val;
 		pagesizes = aux_info[AT_PAGESIZES]->a_un.a_ptr;
 	} else {
 		len = 2;
 		if (sysctlnametomib("hw.pagesizes", mib, &len) == 0)
 			size = sizeof(psa);
 		else {
 			/* As a fallback, retrieve the base page size. */
 			size = sizeof(psa[0]);
 			if (aux_info[AT_PAGESZ] != NULL) {
 				psa[0] = aux_info[AT_PAGESZ]->a_un.a_val;
 				goto psa_filled;
 			} else {
 				mib[0] = CTL_HW;
 				mib[1] = HW_PAGESIZE;
 				len = 2;
 			}
 		}
 		if (sysctl(mib, len, psa, &size, NULL, 0) == -1) {
 			_rtld_error("sysctl for hw.pagesize(s) failed");
 			rtld_die();
 		}
 psa_filled:
 		pagesizes = psa;
 	}
 	npagesizes = size / sizeof(pagesizes[0]);
 	/* Discard any invalid entries at the end of the array. */
 	while (npagesizes > 0 && pagesizes[npagesizes - 1] == 0)
 		npagesizes--;
 
 	page_size = pagesizes[0];
 }
 
 /*
  * Add the init functions from a needed object list (and its recursive
  * needed objects) to "list".  This is not used directly; it is a helper
  * function for initlist_add_objects().  The write lock must be held
  * when this function is called.
  */
 static void
 initlist_add_neededs(Needed_Entry *needed, Objlist *list)
 {
     /* Recursively process the successor needed objects. */
     if (needed->next != NULL)
 	initlist_add_neededs(needed->next, list);
 
     /* Process the current needed object. */
     if (needed->obj != NULL)
 	initlist_add_objects(needed->obj, needed->obj, list);
 }
 
 /*
  * Scan all of the DAGs rooted in the range of objects from "obj" to
  * "tail" and add their init functions to "list".  This recurses over
  * the DAGs and ensure the proper init ordering such that each object's
  * needed libraries are initialized before the object itself.  At the
  * same time, this function adds the objects to the global finalization
  * list "list_fini" in the opposite order.  The write lock must be
  * held when this function is called.
  */
 static void
 initlist_add_objects(Obj_Entry *obj, Obj_Entry *tail, Objlist *list)
 {
     Obj_Entry *nobj;
 
     if (obj->init_scanned || obj->init_done)
 	return;
     obj->init_scanned = true;
 
     /* Recursively process the successor objects. */
     nobj = globallist_next(obj);
     if (nobj != NULL && obj != tail)
 	initlist_add_objects(nobj, tail, list);
 
     /* Recursively process the needed objects. */
     if (obj->needed != NULL)
 	initlist_add_neededs(obj->needed, list);
     if (obj->needed_filtees != NULL)
 	initlist_add_neededs(obj->needed_filtees, list);
     if (obj->needed_aux_filtees != NULL)
 	initlist_add_neededs(obj->needed_aux_filtees, list);
 
     /* Add the object to the init list. */
     objlist_push_tail(list, obj);
 
     /* Add the object to the global fini list in the reverse order. */
     if ((obj->fini != (Elf_Addr)NULL || obj->fini_array != (Elf_Addr)NULL)
       && !obj->on_fini_list) {
 	objlist_push_head(&list_fini, obj);
 	obj->on_fini_list = true;
     }
 }
 
 #ifndef FPTR_TARGET
 #define FPTR_TARGET(f)	((Elf_Addr) (f))
 #endif
 
 static void
 free_needed_filtees(Needed_Entry *n, RtldLockState *lockstate)
 {
     Needed_Entry *needed, *needed1;
 
     for (needed = n; needed != NULL; needed = needed->next) {
 	if (needed->obj != NULL) {
 	    dlclose_locked(needed->obj, lockstate);
 	    needed->obj = NULL;
 	}
     }
     for (needed = n; needed != NULL; needed = needed1) {
 	needed1 = needed->next;
 	free(needed);
     }
 }
 
 static void
 unload_filtees(Obj_Entry *obj, RtldLockState *lockstate)
 {
 
 	free_needed_filtees(obj->needed_filtees, lockstate);
 	obj->needed_filtees = NULL;
 	free_needed_filtees(obj->needed_aux_filtees, lockstate);
 	obj->needed_aux_filtees = NULL;
 	obj->filtees_loaded = false;
 }
 
 static void
 load_filtee1(Obj_Entry *obj, Needed_Entry *needed, int flags,
     RtldLockState *lockstate)
 {
 
     for (; needed != NULL; needed = needed->next) {
 	needed->obj = dlopen_object(obj->strtab + needed->name, -1, obj,
 	  flags, ((ld_loadfltr || obj->z_loadfltr) ? RTLD_NOW : RTLD_LAZY) |
 	  RTLD_LOCAL, lockstate);
     }
 }
 
 static void
 load_filtees(Obj_Entry *obj, int flags, RtldLockState *lockstate)
 {
 
     lock_restart_for_upgrade(lockstate);
     if (!obj->filtees_loaded) {
 	load_filtee1(obj, obj->needed_filtees, flags, lockstate);
 	load_filtee1(obj, obj->needed_aux_filtees, flags, lockstate);
 	obj->filtees_loaded = true;
     }
 }
 
 static int
 process_needed(Obj_Entry *obj, Needed_Entry *needed, int flags)
 {
     Obj_Entry *obj1;
 
     for (; needed != NULL; needed = needed->next) {
 	obj1 = needed->obj = load_object(obj->strtab + needed->name, -1, obj,
 	  flags & ~RTLD_LO_NOLOAD);
 	if (obj1 == NULL && !ld_tracing && (flags & RTLD_LO_FILTEES) == 0)
 	    return (-1);
     }
     return (0);
 }
 
 /*
  * Given a shared object, traverse its list of needed objects, and load
  * each of them.  Returns 0 on success.  Generates an error message and
  * returns -1 on failure.
  */
 static int
 load_needed_objects(Obj_Entry *first, int flags)
 {
     Obj_Entry *obj;
 
     for (obj = first; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
 	if (obj->marker)
 	    continue;
 	if (process_needed(obj, obj->needed, flags) == -1)
 	    return (-1);
     }
     return (0);
 }
 
 static int
 load_preload_objects(const char *penv, bool isfd)
 {
 	Obj_Entry *obj;
 	const char *name;
 	size_t len;
 	char savech, *p, *psave;
 	int fd;
 	static const char delim[] = " \t:;";
 
 	if (penv == NULL)
 		return (0);
 
 	p = psave = xstrdup(penv);
 	p += strspn(p, delim);
 	while (*p != '\0') {
 		len = strcspn(p, delim);
 
 		savech = p[len];
 		p[len] = '\0';
 		if (isfd) {
 			name = NULL;
 			fd = parse_integer(p);
 			if (fd == -1) {
 				free(psave);
 				return (-1);
 			}
 		} else {
 			name = p;
 			fd = -1;
 		}
 
 		obj = load_object(name, fd, NULL, 0);
 		if (obj == NULL) {
 			free(psave);
 			return (-1);	/* XXX - cleanup */
 		}
 		obj->z_interpose = true;
 		p[len] = savech;
 		p += len;
 		p += strspn(p, delim);
 	}
 	LD_UTRACE(UTRACE_PRELOAD_FINISHED, NULL, NULL, 0, 0, NULL);
 
 	free(psave);
 	return (0);
 }
 
 static const char *
 printable_path(const char *path)
 {
 
 	return (path == NULL ? "<unknown>" : path);
 }
 
 /*
  * Load a shared object into memory, if it is not already loaded.  The
  * object may be specified by name or by user-supplied file descriptor
  * fd_u. In the later case, the fd_u descriptor is not closed, but its
  * duplicate is.
  *
  * Returns a pointer to the Obj_Entry for the object.  Returns NULL
  * on failure.
  */
 static Obj_Entry *
 load_object(const char *name, int fd_u, const Obj_Entry *refobj, int flags)
 {
     Obj_Entry *obj;
     int fd;
     struct stat sb;
     char *path;
 
     fd = -1;
     if (name != NULL) {
 	TAILQ_FOREACH(obj, &obj_list, next) {
 	    if (obj->marker || obj->doomed)
 		continue;
 	    if (object_match_name(obj, name))
 		return (obj);
 	}
 
 	path = find_library(name, refobj, &fd);
 	if (path == NULL)
 	    return (NULL);
     } else
 	path = NULL;
 
     if (fd >= 0) {
 	/*
 	 * search_library_pathfds() opens a fresh file descriptor for the
 	 * library, so there is no need to dup().
 	 */
     } else if (fd_u == -1) {
 	/*
 	 * If we didn't find a match by pathname, or the name is not
 	 * supplied, open the file and check again by device and inode.
 	 * This avoids false mismatches caused by multiple links or ".."
 	 * in pathnames.
 	 *
 	 * To avoid a race, we open the file and use fstat() rather than
 	 * using stat().
 	 */
 	if ((fd = open(path, O_RDONLY | O_CLOEXEC | O_VERIFY)) == -1) {
 	    _rtld_error("Cannot open \"%s\"", path);
 	    free(path);
 	    return (NULL);
 	}
     } else {
 	fd = fcntl(fd_u, F_DUPFD_CLOEXEC, 0);
 	if (fd == -1) {
 	    _rtld_error("Cannot dup fd");
 	    free(path);
 	    return (NULL);
 	}
     }
     if (fstat(fd, &sb) == -1) {
 	_rtld_error("Cannot fstat \"%s\"", printable_path(path));
 	close(fd);
 	free(path);
 	return (NULL);
     }
     TAILQ_FOREACH(obj, &obj_list, next) {
 	if (obj->marker || obj->doomed)
 	    continue;
 	if (obj->ino == sb.st_ino && obj->dev == sb.st_dev)
 	    break;
     }
     if (obj != NULL && name != NULL) {
 	object_add_name(obj, name);
 	free(path);
 	close(fd);
 	return (obj);
     }
     if (flags & RTLD_LO_NOLOAD) {
 	free(path);
 	close(fd);
 	return (NULL);
     }
 
     /* First use of this object, so we must map it in */
     obj = do_load_object(fd, name, path, &sb, flags);
     if (obj == NULL)
 	free(path);
     close(fd);
 
     return (obj);
 }
 
 static Obj_Entry *
 do_load_object(int fd, const char *name, char *path, struct stat *sbp,
   int flags)
 {
     Obj_Entry *obj;
     struct statfs fs;
 
     /*
      * First, make sure that environment variables haven't been
      * used to circumvent the noexec flag on a filesystem.
      * We ignore fstatfs(2) failures, since fd might reference
      * not a file, e.g. shmfd.
      */
     if (dangerous_ld_env && fstatfs(fd, &fs) == 0 &&
 	(fs.f_flags & MNT_NOEXEC) != 0) {
 	    _rtld_error("Cannot execute objects on %s", fs.f_mntonname);
 	    return (NULL);
     }
 
     dbg("loading \"%s\"", printable_path(path));
     obj = map_object(fd, printable_path(path), sbp);
     if (obj == NULL)
         return (NULL);
 
     /*
      * If DT_SONAME is present in the object, digest_dynamic2 already
      * added it to the object names.
      */
     if (name != NULL)
 	object_add_name(obj, name);
     obj->path = path;
     if (!digest_dynamic(obj, 0))
 	goto errp;
     dbg("%s valid_hash_sysv %d valid_hash_gnu %d dynsymcount %d", obj->path,
 	obj->valid_hash_sysv, obj->valid_hash_gnu, obj->dynsymcount);
     if (obj->z_pie && (flags & RTLD_LO_TRACE) == 0) {
 	dbg("refusing to load PIE executable \"%s\"", obj->path);
 	_rtld_error("Cannot load PIE binary %s as DSO", obj->path);
 	goto errp;
     }
     if (obj->z_noopen && (flags & (RTLD_LO_DLOPEN | RTLD_LO_TRACE)) ==
       RTLD_LO_DLOPEN) {
 	dbg("refusing to load non-loadable \"%s\"", obj->path);
 	_rtld_error("Cannot dlopen non-loadable %s", obj->path);
 	goto errp;
     }
 
     obj->dlopened = (flags & RTLD_LO_DLOPEN) != 0;
     TAILQ_INSERT_TAIL(&obj_list, obj, next);
     obj_count++;
     obj_loads++;
     linkmap_add(obj);	/* for GDB & dlinfo() */
     max_stack_flags |= obj->stack_flags;
 
     dbg("  %p .. %p: %s", obj->mapbase,
          obj->mapbase + obj->mapsize - 1, obj->path);
     if (obj->textrel)
 	dbg("  WARNING: %s has impure text", obj->path);
     LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, obj->mapsize, 0,
 	obj->path);    
 
     return (obj);
 
 errp:
     munmap(obj->mapbase, obj->mapsize);
     obj_free(obj);
     return (NULL);
 }
 
 static int
 load_kpreload(const void *addr)
 {
 	Obj_Entry *obj;
 	const Elf_Ehdr *ehdr;
 	const Elf_Phdr *phdr, *phlimit, *phdyn, *seg0, *segn;
 	static const char kname[] = "[vdso]";
 
 	ehdr = addr;
 	if (!check_elf_headers(ehdr, "kpreload"))
 		return (-1);
 	obj = obj_new();
 	phdr = (const Elf_Phdr *)((const char *)addr + ehdr->e_phoff);
 	obj->phdr = phdr;
 	obj->phsize = ehdr->e_phnum * sizeof(*phdr);
 	phlimit = phdr + ehdr->e_phnum;
 	seg0 = segn = NULL;
 
 	for (; phdr < phlimit; phdr++) {
 		switch (phdr->p_type) {
 		case PT_DYNAMIC:
 			phdyn = phdr;
 			break;
 		case PT_GNU_STACK:
 			/* Absense of PT_GNU_STACK implies stack_flags == 0. */
 			obj->stack_flags = phdr->p_flags;
 			break;
 		case PT_LOAD:
 			if (seg0 == NULL || seg0->p_vaddr > phdr->p_vaddr)
 				seg0 = phdr;
 			if (segn == NULL || segn->p_vaddr + segn->p_memsz <
 			    phdr->p_vaddr + phdr->p_memsz)
 				segn = phdr;
 			break;
 		}
 	}
 
 	obj->mapbase = __DECONST(caddr_t, addr);
 	obj->mapsize = segn->p_vaddr + segn->p_memsz - (Elf_Addr)addr;
 	obj->vaddrbase = 0;
 	obj->relocbase = obj->mapbase;
 
 	object_add_name(obj, kname);
 	obj->path = xstrdup(kname);
 	obj->dynamic = (const Elf_Dyn *)(obj->relocbase + phdyn->p_vaddr);
 
 	if (!digest_dynamic(obj, 0)) {
 		obj_free(obj);
 		return (-1);
 	}
 
 	/*
 	 * We assume that kernel-preloaded object does not need
 	 * relocation.  It is currently written into read-only page,
 	 * handling relocations would mean we need to allocate at
 	 * least one additional page per AS.
 	 */
 	dbg("%s mapbase %p phdrs %p PT_LOAD phdr %p vaddr %p dynamic %p",
 	    obj->path, obj->mapbase, obj->phdr, seg0,
 	    obj->relocbase + seg0->p_vaddr, obj->dynamic);
 
 	TAILQ_INSERT_TAIL(&obj_list, obj, next);
 	obj_count++;
 	obj_loads++;
 	linkmap_add(obj);	/* for GDB & dlinfo() */
 	max_stack_flags |= obj->stack_flags;
 
 	LD_UTRACE(UTRACE_LOAD_OBJECT, obj, obj->mapbase, 0, 0, obj->path);
 	return (0);
 }
 
 Obj_Entry *
 obj_from_addr(const void *addr)
 {
     Obj_Entry *obj;
 
     TAILQ_FOREACH(obj, &obj_list, next) {
 	if (obj->marker)
 	    continue;
 	if (addr < (void *) obj->mapbase)
 	    continue;
 	if (addr < (void *)(obj->mapbase + obj->mapsize))
 	    return obj;
     }
     return (NULL);
 }
 
 static void
 preinit_main(void)
 {
     Elf_Addr *preinit_addr;
     int index;
 
     preinit_addr = (Elf_Addr *)obj_main->preinit_array;
     if (preinit_addr == NULL)
 	return;
 
     for (index = 0; index < obj_main->preinit_array_num; index++) {
 	if (preinit_addr[index] != 0 && preinit_addr[index] != 1) {
 	    dbg("calling preinit function for %s at %p", obj_main->path,
 	      (void *)preinit_addr[index]);
 	    LD_UTRACE(UTRACE_INIT_CALL, obj_main, (void *)preinit_addr[index],
 	      0, 0, obj_main->path);
 	    call_init_pointer(obj_main, preinit_addr[index]);
 	}
     }
 }
 
 /*
  * Call the finalization functions for each of the objects in "list"
  * belonging to the DAG of "root" and referenced once. If NULL "root"
  * is specified, every finalization function will be called regardless
  * of the reference count and the list elements won't be freed. All of
  * the objects are expected to have non-NULL fini functions.
  */
 static void
 objlist_call_fini(Objlist *list, Obj_Entry *root, RtldLockState *lockstate)
 {
     Objlist_Entry *elm;
     struct dlerror_save *saved_msg;
     Elf_Addr *fini_addr;
     int index;
 
     assert(root == NULL || root->refcount == 1);
 
     if (root != NULL)
 	root->doomed = true;
 
     /*
      * Preserve the current error message since a fini function might
      * call into the dynamic linker and overwrite it.
      */
     saved_msg = errmsg_save();
     do {
 	STAILQ_FOREACH(elm, list, link) {
 	    if (root != NULL && (elm->obj->refcount != 1 ||
 	      objlist_find(&root->dagmembers, elm->obj) == NULL))
 		continue;
 	    /* Remove object from fini list to prevent recursive invocation. */
 	    STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
 	    /* Ensure that new references cannot be acquired. */
 	    elm->obj->doomed = true;
 
 	    hold_object(elm->obj);
 	    lock_release(rtld_bind_lock, lockstate);
 	    /*
 	     * It is legal to have both DT_FINI and DT_FINI_ARRAY defined.
 	     * When this happens, DT_FINI_ARRAY is processed first.
 	     */
 	    fini_addr = (Elf_Addr *)elm->obj->fini_array;
 	    if (fini_addr != NULL && elm->obj->fini_array_num > 0) {
 		for (index = elm->obj->fini_array_num - 1; index >= 0;
 		  index--) {
 		    if (fini_addr[index] != 0 && fini_addr[index] != 1) {
 			dbg("calling fini function for %s at %p",
 			    elm->obj->path, (void *)fini_addr[index]);
 			LD_UTRACE(UTRACE_FINI_CALL, elm->obj,
 			    (void *)fini_addr[index], 0, 0, elm->obj->path);
 			call_initfini_pointer(elm->obj, fini_addr[index]);
 		    }
 		}
 	    }
 	    if (elm->obj->fini != (Elf_Addr)NULL) {
 		dbg("calling fini function for %s at %p", elm->obj->path,
 		    (void *)elm->obj->fini);
 		LD_UTRACE(UTRACE_FINI_CALL, elm->obj, (void *)elm->obj->fini,
 		    0, 0, elm->obj->path);
 		call_initfini_pointer(elm->obj, elm->obj->fini);
 	    }
 	    wlock_acquire(rtld_bind_lock, lockstate);
 	    unhold_object(elm->obj);
 	    /* No need to free anything if process is going down. */
 	    if (root != NULL)
 	    	free(elm);
 	    /*
 	     * We must restart the list traversal after every fini call
 	     * because a dlclose() call from the fini function or from
 	     * another thread might have modified the reference counts.
 	     */
 	    break;
 	}
     } while (elm != NULL);
     errmsg_restore(saved_msg);
 }
 
 /*
  * Call the initialization functions for each of the objects in
  * "list".  All of the objects are expected to have non-NULL init
  * functions.
  */
 static void
 objlist_call_init(Objlist *list, RtldLockState *lockstate)
 {
     Objlist_Entry *elm;
     Obj_Entry *obj;
     struct dlerror_save *saved_msg;
     Elf_Addr *init_addr;
     void (*reg)(void (*)(void));
     int index;
 
     /*
      * Clean init_scanned flag so that objects can be rechecked and
      * possibly initialized earlier if any of vectors called below
      * cause the change by using dlopen.
      */
     TAILQ_FOREACH(obj, &obj_list, next) {
 	if (obj->marker)
 	    continue;
 	obj->init_scanned = false;
     }
 
     /*
      * Preserve the current error message since an init function might
      * call into the dynamic linker and overwrite it.
      */
     saved_msg = errmsg_save();
     STAILQ_FOREACH(elm, list, link) {
 	if (elm->obj->init_done) /* Initialized early. */
 	    continue;
 	/*
 	 * Race: other thread might try to use this object before current
 	 * one completes the initialization. Not much can be done here
 	 * without better locking.
 	 */
 	elm->obj->init_done = true;
 	hold_object(elm->obj);
 	reg = NULL;
 	if (elm->obj == obj_main && obj_main->crt_no_init) {
 		reg = (void (*)(void (*)(void)))get_program_var_addr(
 		    "__libc_atexit", lockstate);
 	}
 	lock_release(rtld_bind_lock, lockstate);
 	if (reg != NULL) {
 		reg(rtld_exit);
 		rtld_exit_ptr = rtld_nop_exit;
 	}
 
         /*
          * It is legal to have both DT_INIT and DT_INIT_ARRAY defined.
          * When this happens, DT_INIT is processed first.
          */
 	if (elm->obj->init != (Elf_Addr)NULL) {
 	    dbg("calling init function for %s at %p", elm->obj->path,
 	        (void *)elm->obj->init);
 	    LD_UTRACE(UTRACE_INIT_CALL, elm->obj, (void *)elm->obj->init,
 	        0, 0, elm->obj->path);
 	    call_init_pointer(elm->obj, elm->obj->init);
 	}
 	init_addr = (Elf_Addr *)elm->obj->init_array;
 	if (init_addr != NULL) {
 	    for (index = 0; index < elm->obj->init_array_num; index++) {
 		if (init_addr[index] != 0 && init_addr[index] != 1) {
 		    dbg("calling init function for %s at %p", elm->obj->path,
 			(void *)init_addr[index]);
 		    LD_UTRACE(UTRACE_INIT_CALL, elm->obj,
 			(void *)init_addr[index], 0, 0, elm->obj->path);
 		    call_init_pointer(elm->obj, init_addr[index]);
 		}
 	    }
 	}
 	wlock_acquire(rtld_bind_lock, lockstate);
 	unhold_object(elm->obj);
     }
     errmsg_restore(saved_msg);
 }
 
 static void
 objlist_clear(Objlist *list)
 {
     Objlist_Entry *elm;
 
     while (!STAILQ_EMPTY(list)) {
 	elm = STAILQ_FIRST(list);
 	STAILQ_REMOVE_HEAD(list, link);
 	free(elm);
     }
 }
 
 static Objlist_Entry *
 objlist_find(Objlist *list, const Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     STAILQ_FOREACH(elm, list, link)
 	if (elm->obj == obj)
 	    return elm;
     return (NULL);
 }
 
 static void
 objlist_init(Objlist *list)
 {
     STAILQ_INIT(list);
 }
 
 static void
 objlist_push_head(Objlist *list, Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     elm = NEW(Objlist_Entry);
     elm->obj = obj;
     STAILQ_INSERT_HEAD(list, elm, link);
 }
 
 static void
 objlist_push_tail(Objlist *list, Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     elm = NEW(Objlist_Entry);
     elm->obj = obj;
     STAILQ_INSERT_TAIL(list, elm, link);
 }
 
 static void
 objlist_put_after(Objlist *list, Obj_Entry *listobj, Obj_Entry *obj)
 {
 	Objlist_Entry *elm, *listelm;
 
 	STAILQ_FOREACH(listelm, list, link) {
 		if (listelm->obj == listobj)
 			break;
 	}
 	elm = NEW(Objlist_Entry);
 	elm->obj = obj;
 	if (listelm != NULL)
 		STAILQ_INSERT_AFTER(list, listelm, elm, link);
 	else
 		STAILQ_INSERT_TAIL(list, elm, link);
 }
 
 static void
 objlist_remove(Objlist *list, Obj_Entry *obj)
 {
     Objlist_Entry *elm;
 
     if ((elm = objlist_find(list, obj)) != NULL) {
 	STAILQ_REMOVE(list, elm, Struct_Objlist_Entry, link);
 	free(elm);
     }
 }
 
 /*
  * Relocate dag rooted in the specified object.
  * Returns 0 on success, or -1 on failure.
  */
 
 static int
 relocate_object_dag(Obj_Entry *root, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate)
 {
 	Objlist_Entry *elm;
 	int error;
 
 	error = 0;
 	STAILQ_FOREACH(elm, &root->dagmembers, link) {
 		error = relocate_object(elm->obj, bind_now, rtldobj, flags,
 		    lockstate);
 		if (error == -1)
 			break;
 	}
 	return (error);
 }
 
 /*
  * Prepare for, or clean after, relocating an object marked with
  * DT_TEXTREL or DF_TEXTREL.  Before relocating, all read-only
  * segments are remapped read-write.  After relocations are done, the
  * segment's permissions are returned back to the modes specified in
  * the phdrs.  If any relocation happened, or always for wired
  * program, COW is triggered.
  */
 static int
 reloc_textrel_prot(Obj_Entry *obj, bool before)
 {
 	const Elf_Phdr *ph;
 	void *base;
 	size_t l, sz;
 	int prot;
 
 	for (l = obj->phsize / sizeof(*ph), ph = obj->phdr; l > 0;
 	    l--, ph++) {
 		if (ph->p_type != PT_LOAD || (ph->p_flags & PF_W) != 0)
 			continue;
 		base = obj->relocbase + rtld_trunc_page(ph->p_vaddr);
 		sz = rtld_round_page(ph->p_vaddr + ph->p_filesz) -
 		    rtld_trunc_page(ph->p_vaddr);
 		prot = before ? (PROT_READ | PROT_WRITE) :
 		    convert_prot(ph->p_flags);
 		if (mprotect(base, sz, prot) == -1) {
 			_rtld_error("%s: Cannot write-%sable text segment: %s",
 			    obj->path, before ? "en" : "dis",
 			    rtld_strerror(errno));
 			return (-1);
 		}
 	}
 	return (0);
 }
 
 /* Process RELR relative relocations. */
 static void
 reloc_relr(Obj_Entry *obj)
 {
 	const Elf_Relr *relr, *relrlim;
 	Elf_Addr *where;
 
 	relrlim = (const Elf_Relr *)((const char *)obj->relr + obj->relrsize);
 	for (relr = obj->relr; relr < relrlim; relr++) {
 	    Elf_Relr entry = *relr;
 
 	    if ((entry & 1) == 0) {
 		where = (Elf_Addr *)(obj->relocbase + entry);
 		*where++ += (Elf_Addr)obj->relocbase;
 	    } else {
 		for (long i = 0; (entry >>= 1) != 0; i++)
 		    if ((entry & 1) != 0)
 			where[i] += (Elf_Addr)obj->relocbase;
 		where += CHAR_BIT * sizeof(Elf_Relr) - 1;
 	    }
 	}
 }
 
 /*
  * Relocate single object.
  * Returns 0 on success, or -1 on failure.
  */
 static int
 relocate_object(Obj_Entry *obj, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate)
 {
 
 	if (obj->relocated)
 		return (0);
 	obj->relocated = true;
 	if (obj != rtldobj)
 		dbg("relocating \"%s\"", obj->path);
 
 	if (obj->symtab == NULL || obj->strtab == NULL ||
 	    !(obj->valid_hash_sysv || obj->valid_hash_gnu))
 		dbg("object %s has no run-time symbol table", obj->path);
 
 	/* There are relocations to the write-protected text segment. */
 	if (obj->textrel && reloc_textrel_prot(obj, true) != 0)
 		return (-1);
 
 	/* Process the non-PLT non-IFUNC relocations. */
 	if (reloc_non_plt(obj, rtldobj, flags, lockstate))
 		return (-1);
 	reloc_relr(obj);
 
 	/* Re-protected the text segment. */
 	if (obj->textrel && reloc_textrel_prot(obj, false) != 0)
 		return (-1);
 
 	/* Set the special PLT or GOT entries. */
 	init_pltgot(obj);
 
 	/* Process the PLT relocations. */
 	if (reloc_plt(obj, flags, lockstate) == -1)
 		return (-1);
 	/* Relocate the jump slots if we are doing immediate binding. */
 	if ((obj->bind_now || bind_now) && reloc_jmpslots(obj, flags,
 	    lockstate) == -1)
 		return (-1);
 
 	if (!obj->mainprog && obj_enforce_relro(obj) == -1)
 		return (-1);
 
 	/*
 	 * Set up the magic number and version in the Obj_Entry.  These
 	 * were checked in the crt1.o from the original ElfKit, so we
 	 * set them for backward compatibility.
 	 */
 	obj->magic = RTLD_MAGIC;
 	obj->version = RTLD_VERSION;
 
 	return (0);
 }
 
 /*
  * Relocate newly-loaded shared objects.  The argument is a pointer to
  * the Obj_Entry for the first such object.  All objects from the first
  * to the end of the list of objects are relocated.  Returns 0 on success,
  * or -1 on failure.
  */
 static int
 relocate_objects(Obj_Entry *first, bool bind_now, Obj_Entry *rtldobj,
     int flags, RtldLockState *lockstate)
 {
 	Obj_Entry *obj;
 	int error;
 
 	for (error = 0, obj = first;  obj != NULL;
 	    obj = TAILQ_NEXT(obj, next)) {
 		if (obj->marker)
 			continue;
 		error = relocate_object(obj, bind_now, rtldobj, flags,
 		    lockstate);
 		if (error == -1)
 			break;
 	}
 	return (error);
 }
 
 /*
  * The handling of R_MACHINE_IRELATIVE relocations and jumpslots
  * referencing STT_GNU_IFUNC symbols is postponed till the other
  * relocations are done.  The indirect functions specified as
  * ifunc are allowed to call other symbols, so we need to have
  * objects relocated before asking for resolution from indirects.
  *
  * The R_MACHINE_IRELATIVE slots are resolved in greedy fashion,
  * instead of the usual lazy handling of PLT slots.  It is
  * consistent with how GNU does it.
  */
 static int
 resolve_object_ifunc(Obj_Entry *obj, bool bind_now, int flags,
     RtldLockState *lockstate)
 {
 
 	if (obj->ifuncs_resolved)
 		return (0);
 	obj->ifuncs_resolved = true;
 	if (!obj->irelative && !obj->irelative_nonplt &&
 	    !((obj->bind_now || bind_now) && obj->gnu_ifunc) &&
 	    !obj->non_plt_gnu_ifunc)
 		return (0);
 	if (obj_disable_relro(obj) == -1 ||
 	    (obj->irelative && reloc_iresolve(obj, lockstate) == -1) ||
 	    (obj->irelative_nonplt && reloc_iresolve_nonplt(obj,
 	    lockstate) == -1) ||
 	    ((obj->bind_now || bind_now) && obj->gnu_ifunc &&
 	    reloc_gnu_ifunc(obj, flags, lockstate) == -1) ||
 	    (obj->non_plt_gnu_ifunc && reloc_non_plt(obj, &obj_rtld,
 	    flags | SYMLOOK_IFUNC, lockstate) == -1) ||
 	    obj_enforce_relro(obj) == -1)
 		return (-1);
 	return (0);
 }
 
 static int
 initlist_objects_ifunc(Objlist *list, bool bind_now, int flags,
     RtldLockState *lockstate)
 {
 	Objlist_Entry *elm;
 	Obj_Entry *obj;
 
 	STAILQ_FOREACH(elm, list, link) {
 		obj = elm->obj;
 		if (obj->marker)
 			continue;
 		if (resolve_object_ifunc(obj, bind_now, flags,
 		    lockstate) == -1)
 			return (-1);
 	}
 	return (0);
 }
 
 /*
  * Cleanup procedure.  It will be called (by the atexit mechanism) just
  * before the process exits.
  */
 static void
 rtld_exit(void)
 {
     RtldLockState lockstate;
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     dbg("rtld_exit()");
     objlist_call_fini(&list_fini, NULL, &lockstate);
     /* No need to remove the items from the list, since we are exiting. */
     if (!libmap_disable)
         lm_fini();
     lock_release(rtld_bind_lock, &lockstate);
 }
 
 static void
 rtld_nop_exit(void)
 {
 }
 
 /*
  * Iterate over a search path, translate each element, and invoke the
  * callback on the result.
  */
 static void *
 path_enumerate(const char *path, path_enum_proc callback,
     const char *refobj_path, void *arg)
 {
     const char *trans;
     if (path == NULL)
 	return (NULL);
 
     path += strspn(path, ":;");
     while (*path != '\0') {
 	size_t len;
 	char  *res;
 
 	len = strcspn(path, ":;");
 	trans = lm_findn(refobj_path, path, len);
 	if (trans)
 	    res = callback(trans, strlen(trans), arg);
 	else
 	    res = callback(path, len, arg);
 
 	if (res != NULL)
 	    return (res);
 
 	path += len;
 	path += strspn(path, ":;");
     }
 
     return (NULL);
 }
 
 struct try_library_args {
     const char	*name;
     size_t	 namelen;
     char	*buffer;
     size_t	 buflen;
     int		 fd;
 };
 
 static void *
 try_library_path(const char *dir, size_t dirlen, void *param)
 {
     struct try_library_args *arg;
     int fd;
 
     arg = param;
     if (*dir == '/' || trust) {
 	char *pathname;
 
 	if (dirlen + 1 + arg->namelen + 1 > arg->buflen)
 		return (NULL);
 
 	pathname = arg->buffer;
 	strncpy(pathname, dir, dirlen);
 	pathname[dirlen] = '/';
 	strcpy(pathname + dirlen + 1, arg->name);
 
 	dbg("  Trying \"%s\"", pathname);
 	fd = open(pathname, O_RDONLY | O_CLOEXEC | O_VERIFY);
 	if (fd >= 0) {
 	    dbg("  Opened \"%s\", fd %d", pathname, fd);
 	    pathname = xmalloc(dirlen + 1 + arg->namelen + 1);
 	    strcpy(pathname, arg->buffer);
 	    arg->fd = fd;
 	    return (pathname);
 	} else {
 	    dbg("  Failed to open \"%s\": %s",
 		pathname, rtld_strerror(errno));
 	}
     }
     return (NULL);
 }
 
 static char *
 search_library_path(const char *name, const char *path,
     const char *refobj_path, int *fdp)
 {
     char *p;
     struct try_library_args arg;
 
     if (path == NULL)
 	return (NULL);
 
     arg.name = name;
     arg.namelen = strlen(name);
     arg.buffer = xmalloc(PATH_MAX);
     arg.buflen = PATH_MAX;
     arg.fd = -1;
 
     p = path_enumerate(path, try_library_path, refobj_path, &arg);
     *fdp = arg.fd;
 
     free(arg.buffer);
 
     return (p);
 }
 
 
 /*
  * Finds the library with the given name using the directory descriptors
  * listed in the LD_LIBRARY_PATH_FDS environment variable.
  *
  * Returns a freshly-opened close-on-exec file descriptor for the library,
  * or -1 if the library cannot be found.
  */
 static char *
 search_library_pathfds(const char *name, const char *path, int *fdp)
 {
 	char *envcopy, *fdstr, *found, *last_token;
 	size_t len;
 	int dirfd, fd;
 
 	dbg("%s('%s', '%s', fdp)", __func__, name, path);
 
 	/* Don't load from user-specified libdirs into setuid binaries. */
 	if (!trust)
 		return (NULL);
 
 	/* We can't do anything if LD_LIBRARY_PATH_FDS isn't set. */
 	if (path == NULL)
 		return (NULL);
 
 	/* LD_LIBRARY_PATH_FDS only works with relative paths. */
 	if (name[0] == '/') {
 		dbg("Absolute path (%s) passed to %s", name, __func__);
 		return (NULL);
 	}
 
 	/*
 	 * Use strtok_r() to walk the FD:FD:FD list.  This requires a local
 	 * copy of the path, as strtok_r rewrites separator tokens
 	 * with '\0'.
 	 */
 	found = NULL;
 	envcopy = xstrdup(path);
 	for (fdstr = strtok_r(envcopy, ":", &last_token); fdstr != NULL;
 	    fdstr = strtok_r(NULL, ":", &last_token)) {
 		dirfd = parse_integer(fdstr);
 		if (dirfd < 0) {
 			_rtld_error("failed to parse directory FD: '%s'",
 				fdstr);
 			break;
 		}
 		fd = __sys_openat(dirfd, name, O_RDONLY | O_CLOEXEC | O_VERIFY);
 		if (fd >= 0) {
 			*fdp = fd;
 			len = strlen(fdstr) + strlen(name) + 3;
 			found = xmalloc(len);
 			if (rtld_snprintf(found, len, "#%d/%s", dirfd, name) < 0) {
 				_rtld_error("error generating '%d/%s'",
 				    dirfd, name);
 				rtld_die();
 			}
 			dbg("open('%s') => %d", found, fd);
 			break;
 		}
 	}
 	free(envcopy);
 
 	return (found);
 }
 
 
 int
 dlclose(void *handle)
 {
 	RtldLockState lockstate;
 	int error;
 
 	wlock_acquire(rtld_bind_lock, &lockstate);
 	error = dlclose_locked(handle, &lockstate);
 	lock_release(rtld_bind_lock, &lockstate);
 	return (error);
 }
 
 static int
 dlclose_locked(void *handle, RtldLockState *lockstate)
 {
     Obj_Entry *root;
 
     root = dlcheck(handle);
     if (root == NULL)
 	return (-1);
     LD_UTRACE(UTRACE_DLCLOSE_START, handle, NULL, 0, root->dl_refcount,
 	root->path);
 
     /* Unreference the object and its dependencies. */
     root->dl_refcount--;
 
     if (root->refcount == 1) {
 	/*
 	 * The object will be no longer referenced, so we must unload it.
 	 * First, call the fini functions.
 	 */
 	objlist_call_fini(&list_fini, root, lockstate);
 
 	unref_dag(root);
 
 	/* Finish cleaning up the newly-unreferenced objects. */
 	GDB_STATE(RT_DELETE,&root->linkmap);
 	unload_object(root, lockstate);
 	GDB_STATE(RT_CONSISTENT,NULL);
     } else
 	unref_dag(root);
 
     LD_UTRACE(UTRACE_DLCLOSE_STOP, handle, NULL, 0, 0, NULL);
     return (0);
 }
 
 char *
 dlerror(void)
 {
 	if (*(lockinfo.dlerror_seen()) != 0)
 		return (NULL);
 	*lockinfo.dlerror_seen() = 1;
 	return (lockinfo.dlerror_loc());
 }
 
 /*
  * This function is deprecated and has no effect.
  */
 void
 dllockinit(void *context,
     void *(*_lock_create)(void *context) __unused,
     void (*_rlock_acquire)(void *lock) __unused,
     void (*_wlock_acquire)(void *lock)  __unused,
     void (*_lock_release)(void *lock) __unused,
     void (*_lock_destroy)(void *lock) __unused,
     void (*context_destroy)(void *context))
 {
     static void *cur_context;
     static void (*cur_context_destroy)(void *);
 
     /* Just destroy the context from the previous call, if necessary. */
     if (cur_context_destroy != NULL)
 	cur_context_destroy(cur_context);
     cur_context = context;
     cur_context_destroy = context_destroy;
 }
 
 void *
 dlopen(const char *name, int mode)
 {
 
 	return (rtld_dlopen(name, -1, mode));
 }
 
 void *
 fdlopen(int fd, int mode)
 {
 
 	return (rtld_dlopen(NULL, fd, mode));
 }
 
 static void *
 rtld_dlopen(const char *name, int fd, int mode)
 {
     RtldLockState lockstate;
     int lo_flags;
 
     LD_UTRACE(UTRACE_DLOPEN_START, NULL, NULL, 0, mode, name);
     ld_tracing = (mode & RTLD_TRACE) == 0 ? NULL : "1";
     if (ld_tracing != NULL) {
 	rlock_acquire(rtld_bind_lock, &lockstate);
 	if (sigsetjmp(lockstate.env, 0) != 0)
 	    lock_upgrade(rtld_bind_lock, &lockstate);
 	environ = __DECONST(char **, *get_program_var_addr("environ", &lockstate));
 	lock_release(rtld_bind_lock, &lockstate);
     }
     lo_flags = RTLD_LO_DLOPEN;
     if (mode & RTLD_NODELETE)
 	    lo_flags |= RTLD_LO_NODELETE;
     if (mode & RTLD_NOLOAD)
 	    lo_flags |= RTLD_LO_NOLOAD;
     if (mode & RTLD_DEEPBIND)
 	    lo_flags |= RTLD_LO_DEEPBIND;
     if (ld_tracing != NULL)
 	    lo_flags |= RTLD_LO_TRACE | RTLD_LO_IGNSTLS;
 
     return (dlopen_object(name, fd, obj_main, lo_flags,
       mode & (RTLD_MODEMASK | RTLD_GLOBAL), NULL));
 }
 
 static void
 dlopen_cleanup(Obj_Entry *obj, RtldLockState *lockstate)
 {
 
 	obj->dl_refcount--;
 	unref_dag(obj);
 	if (obj->refcount == 0)
 		unload_object(obj, lockstate);
 }
 
 static Obj_Entry *
 dlopen_object(const char *name, int fd, Obj_Entry *refobj, int lo_flags,
     int mode, RtldLockState *lockstate)
 {
     Obj_Entry *old_obj_tail;
     Obj_Entry *obj;
     Objlist initlist;
     RtldLockState mlockstate;
     int result;
 
     dbg("dlopen_object name \"%s\" fd %d refobj \"%s\" lo_flags %#x mode %#x",
       name != NULL ? name : "<null>", fd, refobj == NULL ? "<null>" :
       refobj->path, lo_flags, mode);
     objlist_init(&initlist);
 
     if (lockstate == NULL && !(lo_flags & RTLD_LO_EARLY)) {
 	wlock_acquire(rtld_bind_lock, &mlockstate);
 	lockstate = &mlockstate;
     }
     GDB_STATE(RT_ADD,NULL);
 
     old_obj_tail = globallist_curr(TAILQ_LAST(&obj_list, obj_entry_q));
     obj = NULL;
     if (name == NULL && fd == -1) {
 	obj = obj_main;
 	obj->refcount++;
     } else {
 	obj = load_object(name, fd, refobj, lo_flags);
     }
 
     if (obj) {
 	obj->dl_refcount++;
 	if (mode & RTLD_GLOBAL && objlist_find(&list_global, obj) == NULL)
 	    objlist_push_tail(&list_global, obj);
 	if (globallist_next(old_obj_tail) != NULL) {
 	    /* We loaded something new. */
 	    assert(globallist_next(old_obj_tail) == obj);
 	    if ((lo_flags & RTLD_LO_DEEPBIND) != 0)
 		obj->symbolic = true;
 	    result = 0;
 	    if ((lo_flags & (RTLD_LO_EARLY | RTLD_LO_IGNSTLS)) == 0 &&
 	      obj->static_tls && !allocate_tls_offset(obj)) {
 		_rtld_error("%s: No space available "
 		  "for static Thread Local Storage", obj->path);
 		result = -1;
 	    }
 	    if (result != -1)
 		result = load_needed_objects(obj, lo_flags & (RTLD_LO_DLOPEN |
 		  RTLD_LO_EARLY | RTLD_LO_IGNSTLS | RTLD_LO_TRACE));
 	    init_dag(obj);
 	    ref_dag(obj);
 	    if (result != -1)
 		result = rtld_verify_versions(&obj->dagmembers);
 	    if (result != -1 && ld_tracing)
 		goto trace;
 	    if (result == -1 || relocate_object_dag(obj,
 	      (mode & RTLD_MODEMASK) == RTLD_NOW, &obj_rtld,
 	      (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
 	      lockstate) == -1) {
 		dlopen_cleanup(obj, lockstate);
 		obj = NULL;
 	    } else if (lo_flags & RTLD_LO_EARLY) {
 		/*
 		 * Do not call the init functions for early loaded
 		 * filtees.  The image is still not initialized enough
 		 * for them to work.
 		 *
 		 * Our object is found by the global object list and
 		 * will be ordered among all init calls done right
 		 * before transferring control to main.
 		 */
 	    } else {
 		/* Make list of init functions to call. */
 		initlist_add_objects(obj, obj, &initlist);
 	    }
 	    /*
 	     * Process all no_delete or global objects here, given
 	     * them own DAGs to prevent their dependencies from being
 	     * unloaded.  This has to be done after we have loaded all
 	     * of the dependencies, so that we do not miss any.
 	     */
 	    if (obj != NULL)
 		process_z(obj);
 	} else {
 	    /*
 	     * Bump the reference counts for objects on this DAG.  If
 	     * this is the first dlopen() call for the object that was
 	     * already loaded as a dependency, initialize the dag
 	     * starting at it.
 	     */
 	    init_dag(obj);
 	    ref_dag(obj);
 
 	    if ((lo_flags & RTLD_LO_TRACE) != 0)
 		goto trace;
 	}
 	if (obj != NULL && ((lo_flags & RTLD_LO_NODELETE) != 0 ||
 	  obj->z_nodelete) && !obj->ref_nodel) {
 	    dbg("obj %s nodelete", obj->path);
 	    ref_dag(obj);
 	    obj->z_nodelete = obj->ref_nodel = true;
 	}
     }
 
     LD_UTRACE(UTRACE_DLOPEN_STOP, obj, NULL, 0, obj ? obj->dl_refcount : 0,
 	name);
     GDB_STATE(RT_CONSISTENT,obj ? &obj->linkmap : NULL);
 
     if ((lo_flags & RTLD_LO_EARLY) == 0) {
 	map_stacks_exec(lockstate);
 	if (obj != NULL)
 	    distribute_static_tls(&initlist, lockstate);
     }
 
     if (initlist_objects_ifunc(&initlist, (mode & RTLD_MODEMASK) == RTLD_NOW,
       (lo_flags & RTLD_LO_EARLY) ? SYMLOOK_EARLY : 0,
       lockstate) == -1) {
 	objlist_clear(&initlist);
 	dlopen_cleanup(obj, lockstate);
 	if (lockstate == &mlockstate)
 	    lock_release(rtld_bind_lock, lockstate);
 	return (NULL);
     }
 
     if (!(lo_flags & RTLD_LO_EARLY)) {
 	/* Call the init functions. */
 	objlist_call_init(&initlist, lockstate);
     }
     objlist_clear(&initlist);
     if (lockstate == &mlockstate)
 	lock_release(rtld_bind_lock, lockstate);
     return (obj);
 trace:
     trace_loaded_objects(obj, false);
     if (lockstate == &mlockstate)
 	lock_release(rtld_bind_lock, lockstate);
     exit(0);
 }
 
 static void *
 do_dlsym(void *handle, const char *name, void *retaddr, const Ver_Entry *ve,
     int flags)
 {
     DoneList donelist;
     const Obj_Entry *obj, *defobj;
     const Elf_Sym *def;
     SymLook req;
     RtldLockState lockstate;
     tls_index ti;
     void *sym;
     int res;
 
     def = NULL;
     defobj = NULL;
     symlook_init(&req, name);
     req.ventry = ve;
     req.flags = flags | SYMLOOK_IN_PLT;
     req.lockstate = &lockstate;
 
     LD_UTRACE(UTRACE_DLSYM_START, handle, NULL, 0, 0, name);
     rlock_acquire(rtld_bind_lock, &lockstate);
     if (sigsetjmp(lockstate.env, 0) != 0)
 	    lock_upgrade(rtld_bind_lock, &lockstate);
     if (handle == NULL || handle == RTLD_NEXT ||
 	handle == RTLD_DEFAULT || handle == RTLD_SELF) {
 
 	if ((obj = obj_from_addr(retaddr)) == NULL) {
 	    _rtld_error("Cannot determine caller's shared object");
 	    lock_release(rtld_bind_lock, &lockstate);
 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
 	    return (NULL);
 	}
 	if (handle == NULL) {	/* Just the caller's shared object. */
 	    res = symlook_obj(&req, obj);
 	    if (res == 0) {
 		def = req.sym_out;
 		defobj = req.defobj_out;
 	    }
 	} else if (handle == RTLD_NEXT || /* Objects after caller's */
 		   handle == RTLD_SELF) { /* ... caller included */
 	    if (handle == RTLD_NEXT)
 		obj = globallist_next(obj);
 	    for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
 		if (obj->marker)
 		    continue;
 		res = symlook_obj(&req, obj);
 		if (res == 0) {
 		    if (def == NULL || (ld_dynamic_weak &&
                       ELF_ST_BIND(req.sym_out->st_info) != STB_WEAK)) {
 			def = req.sym_out;
 			defobj = req.defobj_out;
 			if (!ld_dynamic_weak ||
 			  ELF_ST_BIND(def->st_info) != STB_WEAK)
 			    break;
 		    }
 		}
 	    }
 	    /*
 	     * Search the dynamic linker itself, and possibly resolve the
 	     * symbol from there.  This is how the application links to
 	     * dynamic linker services such as dlopen.
 	     * Note that we ignore ld_dynamic_weak == false case,
 	     * always overriding weak symbols by rtld definitions.
 	     */
 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
 		res = symlook_obj(&req, &obj_rtld);
 		if (res == 0) {
 		    def = req.sym_out;
 		    defobj = req.defobj_out;
 		}
 	    }
 	} else {
 	    assert(handle == RTLD_DEFAULT);
 	    res = symlook_default(&req, obj);
 	    if (res == 0) {
 		defobj = req.defobj_out;
 		def = req.sym_out;
 	    }
 	}
     } else {
 	if ((obj = dlcheck(handle)) == NULL) {
 	    lock_release(rtld_bind_lock, &lockstate);
 	    LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
 	    return (NULL);
 	}
 
 	donelist_init(&donelist);
 	if (obj->mainprog) {
             /* Handle obtained by dlopen(NULL, ...) implies global scope. */
 	    res = symlook_global(&req, &donelist);
 	    if (res == 0) {
 		def = req.sym_out;
 		defobj = req.defobj_out;
 	    }
 	    /*
 	     * Search the dynamic linker itself, and possibly resolve the
 	     * symbol from there.  This is how the application links to
 	     * dynamic linker services such as dlopen.
 	     */
 	    if (def == NULL || ELF_ST_BIND(def->st_info) == STB_WEAK) {
 		res = symlook_obj(&req, &obj_rtld);
 		if (res == 0) {
 		    def = req.sym_out;
 		    defobj = req.defobj_out;
 		}
 	    }
 	}
 	else {
 	    /* Search the whole DAG rooted at the given object. */
 	    res = symlook_list(&req, &obj->dagmembers, &donelist);
 	    if (res == 0) {
 		def = req.sym_out;
 		defobj = req.defobj_out;
 	    }
 	}
     }
 
     if (def != NULL) {
 	lock_release(rtld_bind_lock, &lockstate);
 
 	/*
 	 * The value required by the caller is derived from the value
 	 * of the symbol. this is simply the relocated value of the
 	 * symbol.
 	 */
 	if (ELF_ST_TYPE(def->st_info) == STT_FUNC)
 	    sym = make_function_pointer(def, defobj);
 	else if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC)
 	    sym = rtld_resolve_ifunc(defobj, def);
 	else if (ELF_ST_TYPE(def->st_info) == STT_TLS) {
 	    ti.ti_module = defobj->tlsindex;
 	    ti.ti_offset = def->st_value;
 	    sym = __tls_get_addr(&ti);
 	} else
 	    sym = defobj->relocbase + def->st_value;
 	LD_UTRACE(UTRACE_DLSYM_STOP, handle, sym, 0, 0, name);
 	return (sym);
     }
 
     _rtld_error("Undefined symbol \"%s%s%s\"", name, ve != NULL ? "@" : "",
       ve != NULL ? ve->name : "");
     lock_release(rtld_bind_lock, &lockstate);
     LD_UTRACE(UTRACE_DLSYM_STOP, handle, NULL, 0, 0, name);
     return (NULL);
 }
 
 void *
 dlsym(void *handle, const char *name)
 {
 	return (do_dlsym(handle, name, __builtin_return_address(0), NULL,
 	    SYMLOOK_DLSYM));
 }
 
 dlfunc_t
 dlfunc(void *handle, const char *name)
 {
 	union {
 		void *d;
 		dlfunc_t f;
 	} rv;
 
 	rv.d = do_dlsym(handle, name, __builtin_return_address(0), NULL,
 	    SYMLOOK_DLSYM);
 	return (rv.f);
 }
 
 void *
 dlvsym(void *handle, const char *name, const char *version)
 {
 	Ver_Entry ventry;
 
 	ventry.name = version;
 	ventry.file = NULL;
 	ventry.hash = elf_hash(version);
 	ventry.flags= 0;
 	return (do_dlsym(handle, name, __builtin_return_address(0), &ventry,
 	    SYMLOOK_DLSYM));
 }
 
 int
 _rtld_addr_phdr(const void *addr, struct dl_phdr_info *phdr_info)
 {
     const Obj_Entry *obj;
     RtldLockState lockstate;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
     obj = obj_from_addr(addr);
     if (obj == NULL) {
         _rtld_error("No shared object contains address");
 	lock_release(rtld_bind_lock, &lockstate);
         return (0);
     }
     rtld_fill_dl_phdr_info(obj, phdr_info);
     lock_release(rtld_bind_lock, &lockstate);
     return (1);
 }
 
 int
 dladdr(const void *addr, Dl_info *info)
 {
     const Obj_Entry *obj;
     const Elf_Sym *def;
     void *symbol_addr;
     unsigned long symoffset;
     RtldLockState lockstate;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
     obj = obj_from_addr(addr);
     if (obj == NULL) {
         _rtld_error("No shared object contains address");
 	lock_release(rtld_bind_lock, &lockstate);
         return (0);
     }
     info->dli_fname = obj->path;
     info->dli_fbase = obj->mapbase;
     info->dli_saddr = (void *)0;
     info->dli_sname = NULL;
 
     /*
      * Walk the symbol list looking for the symbol whose address is
      * closest to the address sent in.
      */
     for (symoffset = 0; symoffset < obj->dynsymcount; symoffset++) {
         def = obj->symtab + symoffset;
 
         /*
          * For skip the symbol if st_shndx is either SHN_UNDEF or
          * SHN_COMMON.
          */
         if (def->st_shndx == SHN_UNDEF || def->st_shndx == SHN_COMMON)
             continue;
 
         /*
          * If the symbol is greater than the specified address, or if it
          * is further away from addr than the current nearest symbol,
          * then reject it.
          */
         symbol_addr = obj->relocbase + def->st_value;
         if (symbol_addr > addr || symbol_addr < info->dli_saddr)
             continue;
 
         /* Update our idea of the nearest symbol. */
         info->dli_sname = obj->strtab + def->st_name;
         info->dli_saddr = symbol_addr;
 
         /* Exact match? */
         if (info->dli_saddr == addr)
             break;
     }
     lock_release(rtld_bind_lock, &lockstate);
     return (1);
 }
 
 int
 dlinfo(void *handle, int request, void *p)
 {
     const Obj_Entry *obj;
     RtldLockState lockstate;
     int error;
 
     rlock_acquire(rtld_bind_lock, &lockstate);
 
     if (handle == NULL || handle == RTLD_SELF) {
 	void *retaddr;
 
 	retaddr = __builtin_return_address(0);	/* __GNUC__ only */
 	if ((obj = obj_from_addr(retaddr)) == NULL)
 	    _rtld_error("Cannot determine caller's shared object");
     } else
 	obj = dlcheck(handle);
 
     if (obj == NULL) {
 	lock_release(rtld_bind_lock, &lockstate);
 	return (-1);
     }
 
     error = 0;
     switch (request) {
     case RTLD_DI_LINKMAP:
 	*((struct link_map const **)p) = &obj->linkmap;
 	break;
     case RTLD_DI_ORIGIN:
 	error = rtld_dirname(obj->path, p);
 	break;
 
     case RTLD_DI_SERINFOSIZE:
     case RTLD_DI_SERINFO:
 	error = do_search_info(obj, request, (struct dl_serinfo *)p);
 	break;
 
     default:
 	_rtld_error("Invalid request %d passed to dlinfo()", request);
 	error = -1;
     }
 
     lock_release(rtld_bind_lock, &lockstate);
 
     return (error);
 }
 
 static void
 rtld_fill_dl_phdr_info(const Obj_Entry *obj, struct dl_phdr_info *phdr_info)
 {
 	uintptr_t **dtvp;
 
 	phdr_info->dlpi_addr = (Elf_Addr)obj->relocbase;
 	phdr_info->dlpi_name = obj->path;
 	phdr_info->dlpi_phdr = obj->phdr;
 	phdr_info->dlpi_phnum = obj->phsize / sizeof(obj->phdr[0]);
 	phdr_info->dlpi_tls_modid = obj->tlsindex;
 	dtvp = &_tcb_get()->tcb_dtv;
 	phdr_info->dlpi_tls_data = (char *)tls_get_addr_slow(dtvp,
 	    obj->tlsindex, 0, true) + TLS_DTV_OFFSET;
 	phdr_info->dlpi_adds = obj_loads;
 	phdr_info->dlpi_subs = obj_loads - obj_count;
 }
 
 int
 dl_iterate_phdr(__dl_iterate_hdr_callback callback, void *param)
 {
 	struct dl_phdr_info phdr_info;
 	Obj_Entry *obj, marker;
 	RtldLockState bind_lockstate, phdr_lockstate;
 	int error;
 
 	init_marker(&marker);
 	error = 0;
 
 	wlock_acquire(rtld_phdr_lock, &phdr_lockstate);
 	wlock_acquire(rtld_bind_lock, &bind_lockstate);
 	for (obj = globallist_curr(TAILQ_FIRST(&obj_list)); obj != NULL;) {
 		TAILQ_INSERT_AFTER(&obj_list, obj, &marker, next);
 		rtld_fill_dl_phdr_info(obj, &phdr_info);
 		hold_object(obj);
 		lock_release(rtld_bind_lock, &bind_lockstate);
 
 		error = callback(&phdr_info, sizeof phdr_info, param);
 
 		wlock_acquire(rtld_bind_lock, &bind_lockstate);
 		unhold_object(obj);
 		obj = globallist_next(&marker);
 		TAILQ_REMOVE(&obj_list, &marker, next);
 		if (error != 0) {
 			lock_release(rtld_bind_lock, &bind_lockstate);
 			lock_release(rtld_phdr_lock, &phdr_lockstate);
 			return (error);
 		}
 	}
 
 	if (error == 0) {
 		rtld_fill_dl_phdr_info(&obj_rtld, &phdr_info);
 		lock_release(rtld_bind_lock, &bind_lockstate);
 		error = callback(&phdr_info, sizeof(phdr_info), param);
 	}
 	lock_release(rtld_phdr_lock, &phdr_lockstate);
 	return (error);
 }
 
 static void *
 fill_search_info(const char *dir, size_t dirlen, void *param)
 {
     struct fill_search_info_args *arg;
 
     arg = param;
 
     if (arg->request == RTLD_DI_SERINFOSIZE) {
 	arg->serinfo->dls_cnt ++;
 	arg->serinfo->dls_size += sizeof(struct dl_serpath) + dirlen + 1;
     } else {
 	struct dl_serpath *s_entry;
 
 	s_entry = arg->serpath;
 	s_entry->dls_name  = arg->strspace;
 	s_entry->dls_flags = arg->flags;
 
 	strncpy(arg->strspace, dir, dirlen);
 	arg->strspace[dirlen] = '\0';
 
 	arg->strspace += dirlen + 1;
 	arg->serpath++;
     }
 
     return (NULL);
 }
 
 static int
 do_search_info(const Obj_Entry *obj, int request, struct dl_serinfo *info)
 {
     struct dl_serinfo _info;
     struct fill_search_info_args args;
 
     args.request = RTLD_DI_SERINFOSIZE;
     args.serinfo = &_info;
 
     _info.dls_size = __offsetof(struct dl_serinfo, dls_serpath);
     _info.dls_cnt  = 0;
 
     path_enumerate(obj->rpath, fill_search_info, NULL, &args);
     path_enumerate(ld_library_path, fill_search_info, NULL, &args);
     path_enumerate(obj->runpath, fill_search_info, NULL, &args);
     path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args);
     if (!obj->z_nodeflib)
       path_enumerate(ld_standard_library_path, fill_search_info, NULL, &args);
 
 
     if (request == RTLD_DI_SERINFOSIZE) {
 	info->dls_size = _info.dls_size;
 	info->dls_cnt = _info.dls_cnt;
 	return (0);
     }
 
     if (info->dls_cnt != _info.dls_cnt || info->dls_size != _info.dls_size) {
 	_rtld_error("Uninitialized Dl_serinfo struct passed to dlinfo()");
 	return (-1);
     }
 
     args.request  = RTLD_DI_SERINFO;
     args.serinfo  = info;
     args.serpath  = &info->dls_serpath[0];
     args.strspace = (char *)&info->dls_serpath[_info.dls_cnt];
 
     args.flags = LA_SER_RUNPATH;
     if (path_enumerate(obj->rpath, fill_search_info, NULL, &args) != NULL)
 	return (-1);
 
     args.flags = LA_SER_LIBPATH;
     if (path_enumerate(ld_library_path, fill_search_info, NULL, &args) != NULL)
 	return (-1);
 
     args.flags = LA_SER_RUNPATH;
     if (path_enumerate(obj->runpath, fill_search_info, NULL, &args) != NULL)
 	return (-1);
 
     args.flags = LA_SER_CONFIG;
     if (path_enumerate(gethints(obj->z_nodeflib), fill_search_info, NULL, &args)
       != NULL)
 	return (-1);
 
     args.flags = LA_SER_DEFAULT;
     if (!obj->z_nodeflib && path_enumerate(ld_standard_library_path,
       fill_search_info, NULL, &args) != NULL)
 	return (-1);
     return (0);
 }
 
 static int
 rtld_dirname(const char *path, char *bname)
 {
     const char *endp;
 
     /* Empty or NULL string gets treated as "." */
     if (path == NULL || *path == '\0') {
 	bname[0] = '.';
 	bname[1] = '\0';
 	return (0);
     }
 
     /* Strip trailing slashes */
     endp = path + strlen(path) - 1;
     while (endp > path && *endp == '/')
 	endp--;
 
     /* Find the start of the dir */
     while (endp > path && *endp != '/')
 	endp--;
 
     /* Either the dir is "/" or there are no slashes */
     if (endp == path) {
 	bname[0] = *endp == '/' ? '/' : '.';
 	bname[1] = '\0';
 	return (0);
     } else {
 	do {
 	    endp--;
 	} while (endp > path && *endp == '/');
     }
 
     if (endp - path + 2 > PATH_MAX)
     {
 	_rtld_error("Filename is too long: %s", path);
 	return(-1);
     }
 
     strncpy(bname, path, endp - path + 1);
     bname[endp - path + 1] = '\0';
     return (0);
 }
 
 static int
 rtld_dirname_abs(const char *path, char *base)
 {
 	char *last;
 
 	if (realpath(path, base) == NULL) {
 		_rtld_error("realpath \"%s\" failed (%s)", path,
 		    rtld_strerror(errno));
 		return (-1);
 	}
 	dbg("%s -> %s", path, base);
 	last = strrchr(base, '/');
 	if (last == NULL) {
 		_rtld_error("non-abs result from realpath \"%s\"", path);
 		return (-1);
 	}
 	if (last != base)
 		*last = '\0';
 	return (0);
 }
 
 static void
 linkmap_add(Obj_Entry *obj)
 {
 	struct link_map *l, *prev;
 
 	l = &obj->linkmap;
 	l->l_name = obj->path;
 	l->l_base = obj->mapbase;
 	l->l_ld = obj->dynamic;
 	l->l_addr = obj->relocbase;
 
 	if (r_debug.r_map == NULL) {
 		r_debug.r_map = l;
 		return;
 	}
 
 	/*
 	 * Scan to the end of the list, but not past the entry for the
 	 * dynamic linker, which we want to keep at the very end.
 	 */
 	for (prev = r_debug.r_map;
 	    prev->l_next != NULL && prev->l_next != &obj_rtld.linkmap;
 	     prev = prev->l_next)
 		;
 
 	/* Link in the new entry. */
 	l->l_prev = prev;
 	l->l_next = prev->l_next;
 	if (l->l_next != NULL)
 		l->l_next->l_prev = l;
 	prev->l_next = l;
 }
 
 static void
 linkmap_delete(Obj_Entry *obj)
 {
 	struct link_map *l;
 
 	l = &obj->linkmap;
 	if (l->l_prev == NULL) {
 		if ((r_debug.r_map = l->l_next) != NULL)
 			l->l_next->l_prev = NULL;
 		return;
 	}
 
 	if ((l->l_prev->l_next = l->l_next) != NULL)
 		l->l_next->l_prev = l->l_prev;
 }
 
 /*
  * Function for the debugger to set a breakpoint on to gain control.
  *
  * The two parameters allow the debugger to easily find and determine
  * what the runtime loader is doing and to whom it is doing it.
  *
  * When the loadhook trap is hit (r_debug_state, set at program
  * initialization), the arguments can be found on the stack:
  *
  *  +8   struct link_map *m
  *  +4   struct r_debug  *rd
  *  +0   RetAddr
  */
 void
 r_debug_state(struct r_debug* rd __unused, struct link_map *m  __unused)
 {
     /*
      * The following is a hack to force the compiler to emit calls to
      * this function, even when optimizing.  If the function is empty,
      * the compiler is not obliged to emit any code for calls to it,
      * even when marked __noinline.  However, gdb depends on those
      * calls being made.
      */
     __compiler_membar();
 }
 
 /*
  * A function called after init routines have completed. This can be used to
  * break before a program's entry routine is called, and can be used when
  * main is not available in the symbol table.
  */
 void
 _r_debug_postinit(struct link_map *m __unused)
 {
 
 	/* See r_debug_state(). */
 	__compiler_membar();
 }
 
 static void
 release_object(Obj_Entry *obj)
 {
 
 	if (obj->holdcount > 0) {
 		obj->unholdfree = true;
 		return;
 	}
 	munmap(obj->mapbase, obj->mapsize);
 	linkmap_delete(obj);
 	obj_free(obj);
 }
 
 /*
  * Get address of the pointer variable in the main program.
  * Prefer non-weak symbol over the weak one.
  */
 static const void **
 get_program_var_addr(const char *name, RtldLockState *lockstate)
 {
     SymLook req;
     DoneList donelist;
 
     symlook_init(&req, name);
     req.lockstate = lockstate;
     donelist_init(&donelist);
     if (symlook_global(&req, &donelist) != 0)
 	return (NULL);
     if (ELF_ST_TYPE(req.sym_out->st_info) == STT_FUNC)
 	return ((const void **)make_function_pointer(req.sym_out,
 	  req.defobj_out));
     else if (ELF_ST_TYPE(req.sym_out->st_info) == STT_GNU_IFUNC)
 	return ((const void **)rtld_resolve_ifunc(req.defobj_out, req.sym_out));
     else
 	return ((const void **)(req.defobj_out->relocbase +
 	  req.sym_out->st_value));
 }
 
 /*
  * Set a pointer variable in the main program to the given value.  This
  * is used to set key variables such as "environ" before any of the
  * init functions are called.
  */
 static void
 set_program_var(const char *name, const void *value)
 {
     const void **addr;
 
     if ((addr = get_program_var_addr(name, NULL)) != NULL) {
 	dbg("\"%s\": *%p <-- %p", name, addr, value);
 	*addr = value;
     }
 }
 
 /*
  * Search the global objects, including dependencies and main object,
  * for the given symbol.
  */
 static int
 symlook_global(SymLook *req, DoneList *donelist)
 {
     SymLook req1;
     const Objlist_Entry *elm;
     int res;
 
     symlook_init_from_req(&req1, req);
 
     /* Search all objects loaded at program start up. */
     if (req->defobj_out == NULL || (ld_dynamic_weak &&
       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK)) {
 	res = symlook_list(&req1, &list_main, donelist);
 	if (res == 0 && (!ld_dynamic_weak || req->defobj_out == NULL ||
 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     /* Search all DAGs whose roots are RTLD_GLOBAL objects. */
     STAILQ_FOREACH(elm, &list_global, link) {
 	if (req->defobj_out != NULL && (!ld_dynamic_weak ||
           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
 	    break;
 	res = symlook_list(&req1, &elm->obj->dagmembers, donelist);
 	if (res == 0 && (req->defobj_out == NULL ||
 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     return (req->sym_out != NULL ? 0 : ESRCH);
 }
 
 /*
  * Given a symbol name in a referencing object, find the corresponding
  * definition of the symbol.  Returns a pointer to the symbol, or NULL if
  * no definition was found.  Returns a pointer to the Obj_Entry of the
  * defining object via the reference parameter DEFOBJ_OUT.
  */
 static int
 symlook_default(SymLook *req, const Obj_Entry *refobj)
 {
     DoneList donelist;
     const Objlist_Entry *elm;
     SymLook req1;
     int res;
 
     donelist_init(&donelist);
     symlook_init_from_req(&req1, req);
 
     /*
      * Look first in the referencing object if linked symbolically,
      * and similarly handle protected symbols.
      */
     res = symlook_obj(&req1, refobj);
     if (res == 0 && (refobj->symbolic ||
       ELF_ST_VISIBILITY(req1.sym_out->st_other) == STV_PROTECTED)) {
 	req->sym_out = req1.sym_out;
 	req->defobj_out = req1.defobj_out;
 	assert(req->defobj_out != NULL);
     }
     if (refobj->symbolic || req->defobj_out != NULL)
 	donelist_check(&donelist, refobj);
 
     symlook_global(req, &donelist);
 
     /* Search all dlopened DAGs containing the referencing object. */
     STAILQ_FOREACH(elm, &refobj->dldags, link) {
 	if (req->sym_out != NULL && (!ld_dynamic_weak ||
           ELF_ST_BIND(req->sym_out->st_info) != STB_WEAK))
 	    break;
 	res = symlook_list(&req1, &elm->obj->dagmembers, &donelist);
 	if (res == 0 && (req->sym_out == NULL ||
 	  ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     /*
      * Search the dynamic linker itself, and possibly resolve the
      * symbol from there.  This is how the application links to
      * dynamic linker services such as dlopen.
      */
     if (req->sym_out == NULL ||
       ELF_ST_BIND(req->sym_out->st_info) == STB_WEAK) {
 	res = symlook_obj(&req1, &obj_rtld);
 	if (res == 0) {
 	    req->sym_out = req1.sym_out;
 	    req->defobj_out = req1.defobj_out;
 	    assert(req->defobj_out != NULL);
 	}
     }
 
     return (req->sym_out != NULL ? 0 : ESRCH);
 }
 
 static int
 symlook_list(SymLook *req, const Objlist *objlist, DoneList *dlp)
 {
     const Elf_Sym *def;
     const Obj_Entry *defobj;
     const Objlist_Entry *elm;
     SymLook req1;
     int res;
 
     def = NULL;
     defobj = NULL;
     STAILQ_FOREACH(elm, objlist, link) {
 	if (donelist_check(dlp, elm->obj))
 	    continue;
 	symlook_init_from_req(&req1, req);
 	if ((res = symlook_obj(&req1, elm->obj)) == 0) {
 	    if (def == NULL || (ld_dynamic_weak &&
               ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 		def = req1.sym_out;
 		defobj = req1.defobj_out;
 		if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
 		    break;
 	    }
 	}
     }
     if (def != NULL) {
 	req->sym_out = def;
 	req->defobj_out = defobj;
 	return (0);
     }
     return (ESRCH);
 }
 
 /*
  * Search the chain of DAGS cointed to by the given Needed_Entry
  * for a symbol of the given name.  Each DAG is scanned completely
  * before advancing to the next one.  Returns a pointer to the symbol,
  * or NULL if no definition was found.
  */
 static int
 symlook_needed(SymLook *req, const Needed_Entry *needed, DoneList *dlp)
 {
     const Elf_Sym *def;
     const Needed_Entry *n;
     const Obj_Entry *defobj;
     SymLook req1;
     int res;
 
     def = NULL;
     defobj = NULL;
     symlook_init_from_req(&req1, req);
     for (n = needed; n != NULL; n = n->next) {
 	if (n->obj == NULL ||
 	    (res = symlook_list(&req1, &n->obj->dagmembers, dlp)) != 0)
 	    continue;
 	if (def == NULL || (ld_dynamic_weak &&
           ELF_ST_BIND(req1.sym_out->st_info) != STB_WEAK)) {
 	    def = req1.sym_out;
 	    defobj = req1.defobj_out;
 	    if (!ld_dynamic_weak || ELF_ST_BIND(def->st_info) != STB_WEAK)
 		break;
 	}
     }
     if (def != NULL) {
 	req->sym_out = def;
 	req->defobj_out = defobj;
 	return (0);
     }
     return (ESRCH);
 }
 
 /*
  * Search the symbol table of a single shared object for a symbol of
  * the given name and version, if requested.  Returns a pointer to the
  * symbol, or NULL if no definition was found.  If the object is
  * filter, return filtered symbol from filtee.
  *
  * The symbol's hash value is passed in for efficiency reasons; that
  * eliminates many recomputations of the hash value.
  */
 int
 symlook_obj(SymLook *req, const Obj_Entry *obj)
 {
     DoneList donelist;
     SymLook req1;
     int flags, res, mres;
 
     /*
      * If there is at least one valid hash at this point, we prefer to
      * use the faster GNU version if available.
      */
     if (obj->valid_hash_gnu)
 	mres = symlook_obj1_gnu(req, obj);
     else if (obj->valid_hash_sysv)
 	mres = symlook_obj1_sysv(req, obj);
     else
 	return (EINVAL);
 
     if (mres == 0) {
 	if (obj->needed_filtees != NULL) {
 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
 	    donelist_init(&donelist);
 	    symlook_init_from_req(&req1, req);
 	    res = symlook_needed(&req1, obj->needed_filtees, &donelist);
 	    if (res == 0) {
 		req->sym_out = req1.sym_out;
 		req->defobj_out = req1.defobj_out;
 	    }
 	    return (res);
 	}
 	if (obj->needed_aux_filtees != NULL) {
 	    flags = (req->flags & SYMLOOK_EARLY) ? RTLD_LO_EARLY : 0;
 	    load_filtees(__DECONST(Obj_Entry *, obj), flags, req->lockstate);
 	    donelist_init(&donelist);
 	    symlook_init_from_req(&req1, req);
 	    res = symlook_needed(&req1, obj->needed_aux_filtees, &donelist);
 	    if (res == 0) {
 		req->sym_out = req1.sym_out;
 		req->defobj_out = req1.defobj_out;
 		return (res);
 	    }
 	}
     }
     return (mres);
 }
 
 /* Symbol match routine common to both hash functions */
 static bool
 matched_symbol(SymLook *req, const Obj_Entry *obj, Sym_Match_Result *result,
     const unsigned long symnum)
 {
 	Elf_Versym verndx;
 	const Elf_Sym *symp;
 	const char *strp;
 
 	symp = obj->symtab + symnum;
 	strp = obj->strtab + symp->st_name;
 
 	switch (ELF_ST_TYPE(symp->st_info)) {
 	case STT_FUNC:
 	case STT_NOTYPE:
 	case STT_OBJECT:
 	case STT_COMMON:
 	case STT_GNU_IFUNC:
 		if (symp->st_value == 0)
 			return (false);
 		/* fallthrough */
 	case STT_TLS:
 		if (symp->st_shndx != SHN_UNDEF)
 			break;
 		else if (((req->flags & SYMLOOK_IN_PLT) == 0) &&
 		    (ELF_ST_TYPE(symp->st_info) == STT_FUNC))
 			break;
 		/* fallthrough */
 	default:
 		return (false);
 	}
 	if (req->name[0] != strp[0] || strcmp(req->name, strp) != 0)
 		return (false);
 
 	if (req->ventry == NULL) {
 		if (obj->versyms != NULL) {
 			verndx = VER_NDX(obj->versyms[symnum]);
 			if (verndx > obj->vernum) {
 				_rtld_error(
 				    "%s: symbol %s references wrong version %d",
 				    obj->path, obj->strtab + symnum, verndx);
 				return (false);
 			}
 			/*
 			 * If we are not called from dlsym (i.e. this
 			 * is a normal relocation from unversioned
 			 * binary), accept the symbol immediately if
 			 * it happens to have first version after this
 			 * shared object became versioned.  Otherwise,
 			 * if symbol is versioned and not hidden,
 			 * remember it. If it is the only symbol with
 			 * this name exported by the shared object, it
 			 * will be returned as a match by the calling
 			 * function. If symbol is global (verndx < 2)
 			 * accept it unconditionally.
 			 */
 			if ((req->flags & SYMLOOK_DLSYM) == 0 &&
 			    verndx == VER_NDX_GIVEN) {
 				result->sym_out = symp;
 				return (true);
 			}
 			else if (verndx >= VER_NDX_GIVEN) {
 				if ((obj->versyms[symnum] & VER_NDX_HIDDEN)
 				    == 0) {
 					if (result->vsymp == NULL)
 						result->vsymp = symp;
 					result->vcount++;
 				}
 				return (false);
 			}
 		}
 		result->sym_out = symp;
 		return (true);
 	}
 	if (obj->versyms == NULL) {
 		if (object_match_name(obj, req->ventry->name)) {
 			_rtld_error("%s: object %s should provide version %s "
 			    "for symbol %s", obj_rtld.path, obj->path,
 			    req->ventry->name, obj->strtab + symnum);
 			return (false);
 		}
 	} else {
 		verndx = VER_NDX(obj->versyms[symnum]);
 		if (verndx > obj->vernum) {
 			_rtld_error("%s: symbol %s references wrong version %d",
 			    obj->path, obj->strtab + symnum, verndx);
 			return (false);
 		}
 		if (obj->vertab[verndx].hash != req->ventry->hash ||
 		    strcmp(obj->vertab[verndx].name, req->ventry->name)) {
 			/*
 			 * Version does not match. Look if this is a
 			 * global symbol and if it is not hidden. If
 			 * global symbol (verndx < 2) is available,
 			 * use it. Do not return symbol if we are
 			 * called by dlvsym, because dlvsym looks for
 			 * a specific version and default one is not
 			 * what dlvsym wants.
 			 */
 			if ((req->flags & SYMLOOK_DLSYM) ||
 			    (verndx >= VER_NDX_GIVEN) ||
 			    (obj->versyms[symnum] & VER_NDX_HIDDEN))
 				return (false);
 		}
 	}
 	result->sym_out = symp;
 	return (true);
 }
 
 /*
  * Search for symbol using SysV hash function.
  * obj->buckets is known not to be NULL at this point; the test for this was
  * performed with the obj->valid_hash_sysv assignment.
  */
 static int
 symlook_obj1_sysv(SymLook *req, const Obj_Entry *obj)
 {
 	unsigned long symnum;
 	Sym_Match_Result matchres;
 
 	matchres.sym_out = NULL;
 	matchres.vsymp = NULL;
 	matchres.vcount = 0;
 
 	for (symnum = obj->buckets[req->hash % obj->nbuckets];
 	    symnum != STN_UNDEF; symnum = obj->chains[symnum]) {
 		if (symnum >= obj->nchains)
 			return (ESRCH);	/* Bad object */
 
 		if (matched_symbol(req, obj, &matchres, symnum)) {
 			req->sym_out = matchres.sym_out;
 			req->defobj_out = obj;
 			return (0);
 		}
 	}
 	if (matchres.vcount == 1) {
 		req->sym_out = matchres.vsymp;
 		req->defobj_out = obj;
 		return (0);
 	}
 	return (ESRCH);
 }
 
 /* Search for symbol using GNU hash function */
 static int
 symlook_obj1_gnu(SymLook *req, const Obj_Entry *obj)
 {
 	Elf_Addr bloom_word;
 	const Elf32_Word *hashval;
 	Elf32_Word bucket;
 	Sym_Match_Result matchres;
 	unsigned int h1, h2;
 	unsigned long symnum;
 
 	matchres.sym_out = NULL;
 	matchres.vsymp = NULL;
 	matchres.vcount = 0;
 
 	/* Pick right bitmask word from Bloom filter array */
 	bloom_word = obj->bloom_gnu[(req->hash_gnu / __ELF_WORD_SIZE) &
 	    obj->maskwords_bm_gnu];
 
 	/* Calculate modulus word size of gnu hash and its derivative */
 	h1 = req->hash_gnu & (__ELF_WORD_SIZE - 1);
 	h2 = ((req->hash_gnu >> obj->shift2_gnu) & (__ELF_WORD_SIZE - 1));
 
 	/* Filter out the "definitely not in set" queries */
 	if (((bloom_word >> h1) & (bloom_word >> h2) & 1) == 0)
 		return (ESRCH);
 
 	/* Locate hash chain and corresponding value element*/
 	bucket = obj->buckets_gnu[req->hash_gnu % obj->nbuckets_gnu];
 	if (bucket == 0)
 		return (ESRCH);
 	hashval = &obj->chain_zero_gnu[bucket];
 	do {
 		if (((*hashval ^ req->hash_gnu) >> 1) == 0) {
 			symnum = hashval - obj->chain_zero_gnu;
 			if (matched_symbol(req, obj, &matchres, symnum)) {
 				req->sym_out = matchres.sym_out;
 				req->defobj_out = obj;
 				return (0);
 			}
 		}
 	} while ((*hashval++ & 1) == 0);
 	if (matchres.vcount == 1) {
 		req->sym_out = matchres.vsymp;
 		req->defobj_out = obj;
 		return (0);
 	}
 	return (ESRCH);
 }
 
 static void
 trace_calc_fmts(const char **main_local, const char **fmt1, const char **fmt2)
 {
 	*main_local = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_PROGNAME);
 	if (*main_local == NULL)
 		*main_local = "";
 
 	*fmt1 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT1);
 	if (*fmt1 == NULL)
 		*fmt1 = "\t%o => %p (%x)\n";
 
 	*fmt2 = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_FMT2);
 	if (*fmt2 == NULL)
 		*fmt2 = "\t%o (%x)\n";
 }
 
 static void
 trace_print_obj(Obj_Entry *obj, const char *name, const char *path,
     const char *main_local, const char *fmt1, const char *fmt2)
 {
 	const char *fmt;
 	int c;
 
 	fmt = strncmp(name, "lib", 3) == 0 ? fmt1 : fmt2;	/* XXX bogus */
 	while ((c = *fmt++) != '\0') {
 		switch (c) {
 		default:
 			rtld_putchar(c);
 			continue;
 		case '\\':
 			switch (c = *fmt) {
 			case '\0':
 				continue;
 			case 'n':
 				rtld_putchar('\n');
 				break;
 			case 't':
 				rtld_putchar('\t');
 				break;
 			}
 			break;
 		case '%':
 			switch (c = *fmt) {
 			case '\0':
 				continue;
 			case '%':
 			default:
 				rtld_putchar(c);
 				break;
 			case 'A':
 				rtld_putstr(main_local);
 				break;
 			case 'a':
 				rtld_putstr(obj_main->path);
 				break;
 			case 'o':
 				rtld_putstr(name);
 				break;
 			case 'p':
 				rtld_putstr(path);
 				break;
 			case 'x':
 				rtld_printf("%p", obj != NULL ?
 				    obj->mapbase : NULL);
 				break;
 			}
 			break;
 		}
 		++fmt;
 	}
 }
 
 static void
 trace_loaded_objects(Obj_Entry *obj, bool show_preload)
 {
 	const char *fmt1, *fmt2, *main_local;
 	const char *name, *path;
 	bool first_spurious, list_containers;
 
 	trace_calc_fmts(&main_local, &fmt1, &fmt2);
 	list_containers = ld_get_env_var(LD_TRACE_LOADED_OBJECTS_ALL) != NULL;
 
 	for (; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
 		Needed_Entry *needed;
 
 		if (obj->marker)
 			continue;
 		if (list_containers && obj->needed != NULL)
 			rtld_printf("%s:\n", obj->path);
 		for (needed = obj->needed; needed; needed = needed->next) {
 			if (needed->obj != NULL) {
 				if (needed->obj->traced && !list_containers)
 					continue;
 				needed->obj->traced = true;
 				path = needed->obj->path;
 			} else
 				path = "not found";
 
 			name = obj->strtab + needed->name;
 			trace_print_obj(obj, name, path, main_local,
 			    fmt1, fmt2);
 		}
 	}
 
 	if (show_preload) {
 		first_spurious = true;
 		TAILQ_FOREACH(obj, &obj_list, next) {
 			if (obj->marker || obj == obj_main || obj->traced)
 				continue;
 
 			if (first_spurious) {
 				rtld_printf("[preloaded]\n");
 				first_spurious = false;
 			}
 			Name_Entry *fname = STAILQ_FIRST(&obj->names);
 			name = fname == NULL ? "<unknown>" : fname->name;
 			trace_print_obj(obj, name, obj->path, main_local,
 			    fmt1, fmt2);
 		}
 	}
 }
 
 /*
  * Unload a dlopened object and its dependencies from memory and from
  * our data structures.  It is assumed that the DAG rooted in the
  * object has already been unreferenced, and that the object has a
  * reference count of 0.
  */
 static void
 unload_object(Obj_Entry *root, RtldLockState *lockstate)
 {
 	Obj_Entry marker, *obj, *next;
 
 	assert(root->refcount == 0);
 
 	/*
 	 * Pass over the DAG removing unreferenced objects from
 	 * appropriate lists.
 	 */
 	unlink_object(root);
 
 	/* Unmap all objects that are no longer referenced. */
 	for (obj = TAILQ_FIRST(&obj_list); obj != NULL; obj = next) {
 		next = TAILQ_NEXT(obj, next);
 		if (obj->marker || obj->refcount != 0)
 			continue;
 		LD_UTRACE(UTRACE_UNLOAD_OBJECT, obj, obj->mapbase,
 		    obj->mapsize, 0, obj->path);
 		dbg("unloading \"%s\"", obj->path);
 		/*
 		 * Unlink the object now to prevent new references from
 		 * being acquired while the bind lock is dropped in
 		 * recursive dlclose() invocations.
 		 */
 		TAILQ_REMOVE(&obj_list, obj, next);
 		obj_count--;
 
 		if (obj->filtees_loaded) {
 			if (next != NULL) {
 				init_marker(&marker);
 				TAILQ_INSERT_BEFORE(next, &marker, next);
 				unload_filtees(obj, lockstate);
 				next = TAILQ_NEXT(&marker, next);
 				TAILQ_REMOVE(&obj_list, &marker, next);
 			} else
 				unload_filtees(obj, lockstate);
 		}
 		release_object(obj);
 	}
 }
 
 static void
 unlink_object(Obj_Entry *root)
 {
     Objlist_Entry *elm;
 
     if (root->refcount == 0) {
 	/* Remove the object from the RTLD_GLOBAL list. */
 	objlist_remove(&list_global, root);
 
     	/* Remove the object from all objects' DAG lists. */
     	STAILQ_FOREACH(elm, &root->dagmembers, link) {
 	    objlist_remove(&elm->obj->dldags, root);
 	    if (elm->obj != root)
 		unlink_object(elm->obj);
 	}
     }
 }
 
 static void
 ref_dag(Obj_Entry *root)
 {
     Objlist_Entry *elm;
 
     assert(root->dag_inited);
     STAILQ_FOREACH(elm, &root->dagmembers, link)
 	elm->obj->refcount++;
 }
 
 static void
 unref_dag(Obj_Entry *root)
 {
     Objlist_Entry *elm;
 
     assert(root->dag_inited);
     STAILQ_FOREACH(elm, &root->dagmembers, link)
 	elm->obj->refcount--;
 }
 
 /*
  * Common code for MD __tls_get_addr().
  */
 static void *
 tls_get_addr_slow(Elf_Addr **dtvp, int index, size_t offset, bool locked)
 {
 	Elf_Addr *newdtv, *dtv;
 	RtldLockState lockstate;
 	int to_copy;
 
 	dtv = *dtvp;
 	/* Check dtv generation in case new modules have arrived */
 	if (dtv[0] != tls_dtv_generation) {
 		if (!locked)
 			wlock_acquire(rtld_bind_lock, &lockstate);
 		newdtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
 		to_copy = dtv[1];
 		if (to_copy > tls_max_index)
 			to_copy = tls_max_index;
 		memcpy(&newdtv[2], &dtv[2], to_copy * sizeof(Elf_Addr));
 		newdtv[0] = tls_dtv_generation;
 		newdtv[1] = tls_max_index;
 		free(dtv);
 		if (!locked)
 			lock_release(rtld_bind_lock, &lockstate);
 		dtv = *dtvp = newdtv;
 	}
 
 	/* Dynamically allocate module TLS if necessary */
 	if (dtv[index + 1] == 0) {
 		/* Signal safe, wlock will block out signals. */
 		if (!locked)
 			wlock_acquire(rtld_bind_lock, &lockstate);
 		if (!dtv[index + 1])
 			dtv[index + 1] = (Elf_Addr)allocate_module_tls(index);
 		if (!locked)
 			lock_release(rtld_bind_lock, &lockstate);
 	}
 	return ((void *)(dtv[index + 1] + offset));
 }
 
 void *
 tls_get_addr_common(uintptr_t **dtvp, int index, size_t offset)
 {
 	uintptr_t *dtv;
 
 	dtv = *dtvp;
 	/* Check dtv generation in case new modules have arrived */
 	if (__predict_true(dtv[0] == tls_dtv_generation &&
 	    dtv[index + 1] != 0))
 		return ((void *)(dtv[index + 1] + offset));
 	return (tls_get_addr_slow(dtvp, index, offset, false));
 }
 
 #ifdef TLS_VARIANT_I
 
 /*
  * Return pointer to allocated TLS block
  */
 static void *
 get_tls_block_ptr(void *tcb, size_t tcbsize)
 {
     size_t extra_size, post_size, pre_size, tls_block_size;
     size_t tls_init_align;
 
     tls_init_align = MAX(obj_main->tlsalign, 1);
 
     /* Compute fragments sizes. */
     extra_size = tcbsize - TLS_TCB_SIZE;
     post_size = calculate_tls_post_size(tls_init_align);
     tls_block_size = tcbsize + post_size;
     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
 
     return ((char *)tcb - pre_size - extra_size);
 }
 
 /*
  * Allocate Static TLS using the Variant I method.
  *
  * For details on the layout, see lib/libc/gen/tls.c.
  *
  * NB: rtld's tls_static_space variable includes TLS_TCB_SIZE and post_size as
  *     it is based on tls_last_offset, and TLS offsets here are really TCB
  *     offsets, whereas libc's tls_static_space is just the executable's static
  *     TLS segment.
  */
 void *
 allocate_tls(Obj_Entry *objs, void *oldtcb, size_t tcbsize, size_t tcbalign)
 {
     Obj_Entry *obj;
     char *tls_block;
     Elf_Addr *dtv, **tcb;
     Elf_Addr addr;
     Elf_Addr i;
     size_t extra_size, maxalign, post_size, pre_size, tls_block_size;
     size_t tls_init_align, tls_init_offset;
 
     if (oldtcb != NULL && tcbsize == TLS_TCB_SIZE)
 	return (oldtcb);
 
     assert(tcbsize >= TLS_TCB_SIZE);
     maxalign = MAX(tcbalign, tls_static_max_align);
     tls_init_align = MAX(obj_main->tlsalign, 1);
 
     /* Compute fragmets sizes. */
     extra_size = tcbsize - TLS_TCB_SIZE;
     post_size = calculate_tls_post_size(tls_init_align);
     tls_block_size = tcbsize + post_size;
     pre_size = roundup2(tls_block_size, tls_init_align) - tls_block_size;
     tls_block_size += pre_size + tls_static_space - TLS_TCB_SIZE - post_size;
 
     /* Allocate whole TLS block */
     tls_block = malloc_aligned(tls_block_size, maxalign, 0);
     tcb = (Elf_Addr **)(tls_block + pre_size + extra_size);
 
     if (oldtcb != NULL) {
 	memcpy(tls_block, get_tls_block_ptr(oldtcb, tcbsize),
 	    tls_static_space);
 	free_aligned(get_tls_block_ptr(oldtcb, tcbsize));
 
 	/* Adjust the DTV. */
 	dtv = tcb[0];
 	for (i = 0; i < dtv[1]; i++) {
 	    if (dtv[i+2] >= (Elf_Addr)oldtcb &&
 		dtv[i+2] < (Elf_Addr)oldtcb + tls_static_space) {
 		dtv[i+2] = dtv[i+2] - (Elf_Addr)oldtcb + (Elf_Addr)tcb;
 	    }
 	}
     } else {
 	dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
 	tcb[0] = dtv;
 	dtv[0] = tls_dtv_generation;
 	dtv[1] = tls_max_index;
 
 	for (obj = globallist_curr(objs); obj != NULL;
 	  obj = globallist_next(obj)) {
 	    if (obj->tlsoffset == 0)
 		continue;
 	    tls_init_offset = obj->tlspoffset & (obj->tlsalign - 1);
 	    addr = (Elf_Addr)tcb + obj->tlsoffset;
 	    if (tls_init_offset > 0)
 		memset((void *)addr, 0, tls_init_offset);
 	    if (obj->tlsinitsize > 0) {
 		memcpy((void *)(addr + tls_init_offset), obj->tlsinit,
 		    obj->tlsinitsize);
 	    }
 	    if (obj->tlssize > obj->tlsinitsize) {
 		memset((void *)(addr + tls_init_offset + obj->tlsinitsize),
 		    0, obj->tlssize - obj->tlsinitsize - tls_init_offset);
 	    }
 	    dtv[obj->tlsindex + 1] = addr;
 	}
     }
 
     return (tcb);
 }
 
 void
 free_tls(void *tcb, size_t tcbsize, size_t tcbalign __unused)
 {
     Elf_Addr *dtv;
     Elf_Addr tlsstart, tlsend;
     size_t post_size;
     size_t dtvsize, i, tls_init_align;
 
     assert(tcbsize >= TLS_TCB_SIZE);
     tls_init_align = MAX(obj_main->tlsalign, 1);
 
     /* Compute fragments sizes. */
     post_size = calculate_tls_post_size(tls_init_align);
 
     tlsstart = (Elf_Addr)tcb + TLS_TCB_SIZE + post_size;
     tlsend = (Elf_Addr)tcb + tls_static_space;
 
     dtv = *(Elf_Addr **)tcb;
     dtvsize = dtv[1];
     for (i = 0; i < dtvsize; i++) {
 	if (dtv[i+2] && (dtv[i+2] < tlsstart || dtv[i+2] >= tlsend)) {
 	    free((void*)dtv[i+2]);
 	}
     }
     free(dtv);
     free_aligned(get_tls_block_ptr(tcb, tcbsize));
 }
 
 #endif	/* TLS_VARIANT_I */
 
 #ifdef TLS_VARIANT_II
 
 /*
  * Allocate Static TLS using the Variant II method.
  */
 void *
 allocate_tls(Obj_Entry *objs, void *oldtls, size_t tcbsize, size_t tcbalign)
 {
     Obj_Entry *obj;
     size_t size, ralign;
     char *tls;
     Elf_Addr *dtv, *olddtv;
     Elf_Addr segbase, oldsegbase, addr;
     size_t i;
 
     ralign = tcbalign;
     if (tls_static_max_align > ralign)
 	    ralign = tls_static_max_align;
     size = roundup(tls_static_space, ralign) + roundup(tcbsize, ralign);
 
     assert(tcbsize >= 2*sizeof(Elf_Addr));
     tls = malloc_aligned(size, ralign, 0 /* XXX */);
     dtv = xcalloc(tls_max_index + 2, sizeof(Elf_Addr));
 
     segbase = (Elf_Addr)(tls + roundup(tls_static_space, ralign));
     ((Elf_Addr *)segbase)[0] = segbase;
     ((Elf_Addr *)segbase)[1] = (Elf_Addr) dtv;
 
     dtv[0] = tls_dtv_generation;
     dtv[1] = tls_max_index;
 
     if (oldtls) {
 	/*
 	 * Copy the static TLS block over whole.
 	 */
 	oldsegbase = (Elf_Addr) oldtls;
 	memcpy((void *)(segbase - tls_static_space),
 	   (const void *)(oldsegbase - tls_static_space),
 	   tls_static_space);
 
 	/*
 	 * If any dynamic TLS blocks have been created tls_get_addr(),
 	 * move them over.
 	 */
 	olddtv = ((Elf_Addr **)oldsegbase)[1];
 	for (i = 0; i < olddtv[1]; i++) {
 	    if (olddtv[i + 2] < oldsegbase - size ||
 		olddtv[i + 2] > oldsegbase) {
 		    dtv[i + 2] = olddtv[i + 2];
 		    olddtv[i + 2] = 0;
 	    }
 	}
 
 	/*
 	 * We assume that this block was the one we created with
 	 * allocate_initial_tls().
 	 */
 	free_tls(oldtls, 2 * sizeof(Elf_Addr), sizeof(Elf_Addr));
     } else {
 	for (obj = objs; obj != NULL; obj = TAILQ_NEXT(obj, next)) {
 		if (obj->marker || obj->tlsoffset == 0)
 			continue;
 		addr = segbase - obj->tlsoffset;
 		memset((void *)(addr + obj->tlsinitsize),
 		    0, obj->tlssize - obj->tlsinitsize);
 		if (obj->tlsinit) {
 			memcpy((void *)addr, obj->tlsinit, obj->tlsinitsize);
 			obj->static_tls_copied = true;
 		}
 		dtv[obj->tlsindex + 1] = addr;
 	}
     }
 
     return ((void *)segbase);
 }
 
 void
 free_tls(void *tls, size_t tcbsize  __unused, size_t tcbalign)
 {
     Elf_Addr* dtv;
     size_t size, ralign;
     int dtvsize, i;
     Elf_Addr tlsstart, tlsend;
 
     /*
      * Figure out the size of the initial TLS block so that we can
      * find stuff which ___tls_get_addr() allocated dynamically.
      */
     ralign = tcbalign;
     if (tls_static_max_align > ralign)
 	    ralign = tls_static_max_align;
     size = roundup(tls_static_space, ralign);
 
     dtv = ((Elf_Addr **)tls)[1];
     dtvsize = dtv[1];
     tlsend = (Elf_Addr)tls;
     tlsstart = tlsend - size;
     for (i = 0; i < dtvsize; i++) {
 	    if (dtv[i + 2] != 0 && (dtv[i + 2] < tlsstart ||
 	        dtv[i + 2] > tlsend)) {
 		    free_aligned((void *)dtv[i + 2]);
 	}
     }
 
     free_aligned((void *)tlsstart);
     free((void *)dtv);
 }
 
 #endif	/* TLS_VARIANT_II */
 
 /*
  * Allocate TLS block for module with given index.
  */
 void *
 allocate_module_tls(int index)
 {
 	Obj_Entry *obj;
 	char *p;
 
 	TAILQ_FOREACH(obj, &obj_list, next) {
 		if (obj->marker)
 			continue;
 		if (obj->tlsindex == index)
 			break;
 	}
 	if (obj == NULL) {
 		_rtld_error("Can't find module with TLS index %d", index);
 		rtld_die();
 	}
 
 	p = malloc_aligned(obj->tlssize, obj->tlsalign, obj->tlspoffset);
 	memcpy(p, obj->tlsinit, obj->tlsinitsize);
 	memset(p + obj->tlsinitsize, 0, obj->tlssize - obj->tlsinitsize);
 	return (p);
 }
 
 bool
 allocate_tls_offset(Obj_Entry *obj)
 {
     size_t off;
 
     if (obj->tls_done)
 	return (true);
 
     if (obj->tlssize == 0) {
 	obj->tls_done = true;
 	return (true);
     }
 
     if (tls_last_offset == 0)
 	off = calculate_first_tls_offset(obj->tlssize, obj->tlsalign,
 	  obj->tlspoffset);
     else
 	off = calculate_tls_offset(tls_last_offset, tls_last_size,
 	  obj->tlssize, obj->tlsalign, obj->tlspoffset);
 
     obj->tlsoffset = off;
 #ifdef TLS_VARIANT_I
     off += obj->tlssize;
 #endif
 
     /*
      * If we have already fixed the size of the static TLS block, we
      * must stay within that size. When allocating the static TLS, we
      * leave a small amount of space spare to be used for dynamically
      * loading modules which use static TLS.
      */
     if (tls_static_space != 0) {
 	if (off > tls_static_space)
 	    return (false);
     } else if (obj->tlsalign > tls_static_max_align) {
 	    tls_static_max_align = obj->tlsalign;
     }
 
     tls_last_offset = off;
     tls_last_size = obj->tlssize;
     obj->tls_done = true;
 
     return (true);
 }
 
 void
 free_tls_offset(Obj_Entry *obj)
 {
 
     /*
      * If we were the last thing to allocate out of the static TLS
      * block, we give our space back to the 'allocator'. This is a
      * simplistic workaround to allow libGL.so.1 to be loaded and
      * unloaded multiple times.
      */
     size_t off = obj->tlsoffset;
 #ifdef TLS_VARIANT_I
     off += obj->tlssize;
 #endif
     if (off == tls_last_offset) {
 	tls_last_offset -= obj->tlssize;
 	tls_last_size = 0;
     }
 }
 
 void *
 _rtld_allocate_tls(void *oldtls, size_t tcbsize, size_t tcbalign)
 {
     void *ret;
     RtldLockState lockstate;
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     ret = allocate_tls(globallist_curr(TAILQ_FIRST(&obj_list)), oldtls,
       tcbsize, tcbalign);
     lock_release(rtld_bind_lock, &lockstate);
     return (ret);
 }
 
 void
 _rtld_free_tls(void *tcb, size_t tcbsize, size_t tcbalign)
 {
     RtldLockState lockstate;
 
     wlock_acquire(rtld_bind_lock, &lockstate);
     free_tls(tcb, tcbsize, tcbalign);
     lock_release(rtld_bind_lock, &lockstate);
 }
 
 static void
 object_add_name(Obj_Entry *obj, const char *name)
 {
     Name_Entry *entry;
     size_t len;
 
     len = strlen(name);
     entry = malloc(sizeof(Name_Entry) + len);
 
     if (entry != NULL) {
 	strcpy(entry->name, name);
 	STAILQ_INSERT_TAIL(&obj->names, entry, link);
     }
 }
 
 static int
 object_match_name(const Obj_Entry *obj, const char *name)
 {
     Name_Entry *entry;
 
     STAILQ_FOREACH(entry, &obj->names, link) {
 	if (strcmp(name, entry->name) == 0)
 	    return (1);
     }
     return (0);
 }
 
 static Obj_Entry *
 locate_dependency(const Obj_Entry *obj, const char *name)
 {
     const Objlist_Entry *entry;
     const Needed_Entry *needed;
 
     STAILQ_FOREACH(entry, &list_main, link) {
 	if (object_match_name(entry->obj, name))
 	    return (entry->obj);
     }
 
     for (needed = obj->needed;  needed != NULL;  needed = needed->next) {
 	if (strcmp(obj->strtab + needed->name, name) == 0 ||
 	  (needed->obj != NULL && object_match_name(needed->obj, name))) {
 	    /*
 	     * If there is DT_NEEDED for the name we are looking for,
 	     * we are all set.  Note that object might not be found if
 	     * dependency was not loaded yet, so the function can
 	     * return NULL here.  This is expected and handled
 	     * properly by the caller.
 	     */
 	    return (needed->obj);
 	}
     }
     _rtld_error("%s: Unexpected inconsistency: dependency %s not found",
 	obj->path, name);
     rtld_die();
 }
 
 static int
 check_object_provided_version(Obj_Entry *refobj, const Obj_Entry *depobj,
     const Elf_Vernaux *vna)
 {
     const Elf_Verdef *vd;
     const char *vername;
 
     vername = refobj->strtab + vna->vna_name;
     vd = depobj->verdef;
     if (vd == NULL) {
 	_rtld_error("%s: version %s required by %s not defined",
 	    depobj->path, vername, refobj->path);
 	return (-1);
     }
     for (;;) {
 	if (vd->vd_version != VER_DEF_CURRENT) {
 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
 		depobj->path, vd->vd_version);
 	    return (-1);
 	}
 	if (vna->vna_hash == vd->vd_hash) {
 	    const Elf_Verdaux *aux = (const Elf_Verdaux *)
 		((const char *)vd + vd->vd_aux);
 	    if (strcmp(vername, depobj->strtab + aux->vda_name) == 0)
 		return (0);
 	}
 	if (vd->vd_next == 0)
 	    break;
 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
     }
     if (vna->vna_flags & VER_FLG_WEAK)
 	return (0);
     _rtld_error("%s: version %s required by %s not found",
 	depobj->path, vername, refobj->path);
     return (-1);
 }
 
 static int
 rtld_verify_object_versions(Obj_Entry *obj)
 {
     const Elf_Verneed *vn;
     const Elf_Verdef  *vd;
     const Elf_Verdaux *vda;
     const Elf_Vernaux *vna;
     const Obj_Entry *depobj;
     int maxvernum, vernum;
 
     if (obj->ver_checked)
 	return (0);
     obj->ver_checked = true;
 
     maxvernum = 0;
     /*
      * Walk over defined and required version records and figure out
      * max index used by any of them. Do very basic sanity checking
      * while there.
      */
     vn = obj->verneed;
     while (vn != NULL) {
 	if (vn->vn_version != VER_NEED_CURRENT) {
 	    _rtld_error("%s: Unsupported version %d of Elf_Verneed entry",
 		obj->path, vn->vn_version);
 	    return (-1);
 	}
 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
 	for (;;) {
 	    vernum = VER_NEED_IDX(vna->vna_other);
 	    if (vernum > maxvernum)
 		maxvernum = vernum;
 	    if (vna->vna_next == 0)
 		 break;
 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
 	}
 	if (vn->vn_next == 0)
 	    break;
 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
     }
 
     vd = obj->verdef;
     while (vd != NULL) {
 	if (vd->vd_version != VER_DEF_CURRENT) {
 	    _rtld_error("%s: Unsupported version %d of Elf_Verdef entry",
 		obj->path, vd->vd_version);
 	    return (-1);
 	}
 	vernum = VER_DEF_IDX(vd->vd_ndx);
 	if (vernum > maxvernum)
 		maxvernum = vernum;
 	if (vd->vd_next == 0)
 	    break;
 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
     }
 
     if (maxvernum == 0)
 	return (0);
 
     /*
      * Store version information in array indexable by version index.
      * Verify that object version requirements are satisfied along the
      * way.
      */
     obj->vernum = maxvernum + 1;
     obj->vertab = xcalloc(obj->vernum, sizeof(Ver_Entry));
 
     vd = obj->verdef;
     while (vd != NULL) {
 	if ((vd->vd_flags & VER_FLG_BASE) == 0) {
 	    vernum = VER_DEF_IDX(vd->vd_ndx);
 	    assert(vernum <= maxvernum);
 	    vda = (const Elf_Verdaux *)((const char *)vd + vd->vd_aux);
 	    obj->vertab[vernum].hash = vd->vd_hash;
 	    obj->vertab[vernum].name = obj->strtab + vda->vda_name;
 	    obj->vertab[vernum].file = NULL;
 	    obj->vertab[vernum].flags = 0;
 	}
 	if (vd->vd_next == 0)
 	    break;
 	vd = (const Elf_Verdef *)((const char *)vd + vd->vd_next);
     }
 
     vn = obj->verneed;
     while (vn != NULL) {
 	depobj = locate_dependency(obj, obj->strtab + vn->vn_file);
 	if (depobj == NULL)
 	    return (-1);
 	vna = (const Elf_Vernaux *)((const char *)vn + vn->vn_aux);
 	for (;;) {
 	    if (check_object_provided_version(obj, depobj, vna))
 		return (-1);
 	    vernum = VER_NEED_IDX(vna->vna_other);
 	    assert(vernum <= maxvernum);
 	    obj->vertab[vernum].hash = vna->vna_hash;
 	    obj->vertab[vernum].name = obj->strtab + vna->vna_name;
 	    obj->vertab[vernum].file = obj->strtab + vn->vn_file;
 	    obj->vertab[vernum].flags = (vna->vna_other & VER_NEED_HIDDEN) ?
 		VER_INFO_HIDDEN : 0;
 	    if (vna->vna_next == 0)
 		 break;
 	    vna = (const Elf_Vernaux *)((const char *)vna + vna->vna_next);
 	}
 	if (vn->vn_next == 0)
 	    break;
 	vn = (const Elf_Verneed *)((const char *)vn + vn->vn_next);
     }
     return (0);
 }
 
 static int
 rtld_verify_versions(const Objlist *objlist)
 {
     Objlist_Entry *entry;
     int rc;
 
     rc = 0;
     STAILQ_FOREACH(entry, objlist, link) {
 	/*
 	 * Skip dummy objects or objects that have their version requirements
 	 * already checked.
 	 */
 	if (entry->obj->strtab == NULL || entry->obj->vertab != NULL)
 	    continue;
 	if (rtld_verify_object_versions(entry->obj) == -1) {
 	    rc = -1;
 	    if (ld_tracing == NULL)
 		break;
 	}
     }
     if (rc == 0 || ld_tracing != NULL)
     	rc = rtld_verify_object_versions(&obj_rtld);
     return (rc);
 }
 
 const Ver_Entry *
 fetch_ventry(const Obj_Entry *obj, unsigned long symnum)
 {
     Elf_Versym vernum;
 
     if (obj->vertab) {
 	vernum = VER_NDX(obj->versyms[symnum]);
 	if (vernum >= obj->vernum) {
 	    _rtld_error("%s: symbol %s has wrong verneed value %d",
 		obj->path, obj->strtab + symnum, vernum);
 	} else if (obj->vertab[vernum].hash != 0) {
 	    return (&obj->vertab[vernum]);
 	}
     }
     return (NULL);
 }
 
 int
 _rtld_get_stack_prot(void)
 {
 
 	return (stack_prot);
 }
 
 int
 _rtld_is_dlopened(void *arg)
 {
 	Obj_Entry *obj;
 	RtldLockState lockstate;
 	int res;
 
 	rlock_acquire(rtld_bind_lock, &lockstate);
 	obj = dlcheck(arg);
 	if (obj == NULL)
 		obj = obj_from_addr(arg);
 	if (obj == NULL) {
 		_rtld_error("No shared object contains address");
 		lock_release(rtld_bind_lock, &lockstate);
 		return (-1);
 	}
 	res = obj->dlopened ? 1 : 0;
 	lock_release(rtld_bind_lock, &lockstate);
 	return (res);
 }
 
 static int
 obj_remap_relro(Obj_Entry *obj, int prot)
 {
 
 	if (obj->relro_size > 0 && mprotect(obj->relro_page, obj->relro_size,
 	    prot) == -1) {
 		_rtld_error("%s: Cannot set relro protection to %#x: %s",
 		    obj->path, prot, rtld_strerror(errno));
 		return (-1);
 	}
 	return (0);
 }
 
 static int
 obj_disable_relro(Obj_Entry *obj)
 {
 
 	return (obj_remap_relro(obj, PROT_READ | PROT_WRITE));
 }
 
 static int
 obj_enforce_relro(Obj_Entry *obj)
 {
 
 	return (obj_remap_relro(obj, PROT_READ));
 }
 
 static void
 map_stacks_exec(RtldLockState *lockstate)
 {
 	void (*thr_map_stacks_exec)(void);
 
 	if ((max_stack_flags & PF_X) == 0 || (stack_prot & PROT_EXEC) != 0)
 		return;
 	thr_map_stacks_exec = (void (*)(void))(uintptr_t)
 	    get_program_var_addr("__pthread_map_stacks_exec", lockstate);
 	if (thr_map_stacks_exec != NULL) {
 		stack_prot |= PROT_EXEC;
 		thr_map_stacks_exec();
 	}
 }
 
 static void
 distribute_static_tls(Objlist *list, RtldLockState *lockstate)
 {
 	Objlist_Entry *elm;
 	Obj_Entry *obj;
 	void (*distrib)(size_t, void *, size_t, size_t);
 
 	distrib = (void (*)(size_t, void *, size_t, size_t))(uintptr_t)
 	    get_program_var_addr("__pthread_distribute_static_tls", lockstate);
 	if (distrib == NULL)
 		return;
 	STAILQ_FOREACH(elm, list, link) {
 		obj = elm->obj;
 		if (obj->marker || !obj->tls_done || obj->static_tls_copied)
 			continue;
 		distrib(obj->tlsoffset, obj->tlsinit, obj->tlsinitsize,
 		    obj->tlssize);
 		obj->static_tls_copied = true;
 	}
 }
 
 void
 symlook_init(SymLook *dst, const char *name)
 {
 
 	bzero(dst, sizeof(*dst));
 	dst->name = name;
 	dst->hash = elf_hash(name);
 	dst->hash_gnu = gnu_hash(name);
 }
 
 static void
 symlook_init_from_req(SymLook *dst, const SymLook *src)
 {
 
 	dst->name = src->name;
 	dst->hash = src->hash;
 	dst->hash_gnu = src->hash_gnu;
 	dst->ventry = src->ventry;
 	dst->flags = src->flags;
 	dst->defobj_out = NULL;
 	dst->sym_out = NULL;
 	dst->lockstate = src->lockstate;
 }
 
 static int
 open_binary_fd(const char *argv0, bool search_in_path,
     const char **binpath_res)
 {
 	char *binpath, *pathenv, *pe, *res1;
 	const char *res;
 	int fd;
 
 	binpath = NULL;
 	res = NULL;
 	if (search_in_path && strchr(argv0, '/') == NULL) {
 		binpath = xmalloc(PATH_MAX);
 		pathenv = getenv("PATH");
 		if (pathenv == NULL) {
 			_rtld_error("-p and no PATH environment variable");
 			rtld_die();
 		}
 		pathenv = strdup(pathenv);
 		if (pathenv == NULL) {
 			_rtld_error("Cannot allocate memory");
 			rtld_die();
 		}
 		fd = -1;
 		errno = ENOENT;
 		while ((pe = strsep(&pathenv, ":")) != NULL) {
 			if (strlcpy(binpath, pe, PATH_MAX) >= PATH_MAX)
 				continue;
 			if (binpath[0] != '\0' &&
 			    strlcat(binpath, "/", PATH_MAX) >= PATH_MAX)
 				continue;
 			if (strlcat(binpath, argv0, PATH_MAX) >= PATH_MAX)
 				continue;
 			fd = open(binpath, O_RDONLY | O_CLOEXEC | O_VERIFY);
 			if (fd != -1 || errno != ENOENT) {
 				res = binpath;
 				break;
 			}
 		}
 		free(pathenv);
 	} else {
 		fd = open(argv0, O_RDONLY | O_CLOEXEC | O_VERIFY);
 		res = argv0;
 	}
 
 	if (fd == -1) {
 		_rtld_error("Cannot open %s: %s", argv0, rtld_strerror(errno));
 		rtld_die();
 	}
 	if (res != NULL && res[0] != '/') {
 		res1 = xmalloc(PATH_MAX);
 		if (realpath(res, res1) != NULL) {
 			if (res != argv0)
 				free(__DECONST(char *, res));
 			res = res1;
 		} else {
 			free(res1);
 		}
 	}
 	*binpath_res = res;
 	return (fd);
 }
 
 /*
  * Parse a set of command-line arguments.
  */
 static int
 parse_args(char* argv[], int argc, bool *use_pathp, int *fdp,
     const char **argv0, bool *dir_ignore)
 {
 	const char *arg;
 	char machine[64];
 	size_t sz;
 	int arglen, fd, i, j, mib[2];
 	char opt;
 	bool seen_b, seen_f;
 
 	dbg("Parsing command-line arguments");
 	*use_pathp = false;
 	*fdp = -1;
 	*dir_ignore = false;
 	seen_b = seen_f = false;
 
 	for (i = 1; i < argc; i++ ) {
 		arg = argv[i];
 		dbg("argv[%d]: '%s'", i, arg);
 
 		/*
 		 * rtld arguments end with an explicit "--" or with the first
 		 * non-prefixed argument.
 		 */
 		if (strcmp(arg, "--") == 0) {
 			i++;
 			break;
 		}
 		if (arg[0] != '-')
 			break;
 
 		/*
 		 * All other arguments are single-character options that can
 		 * be combined, so we need to search through `arg` for them.
 		 */
 		arglen = strlen(arg);
 		for (j = 1; j < arglen; j++) {
 			opt = arg[j];
 			if (opt == 'h') {
 				print_usage(argv[0]);
 				_exit(0);
 			} else if (opt == 'b') {
 				if (seen_f) {
 					_rtld_error("Both -b and -f specified");
 					rtld_die();
 				}
 				i++;
 				*argv0 = argv[i];
 				seen_b = true;
 				break;
 			} else if (opt == 'd') {
 				*dir_ignore = true;
 				break;
 			} else if (opt == 'f') {
 				if (seen_b) {
 					_rtld_error("Both -b and -f specified");
 					rtld_die();
 				}
 
 				/*
 				 * -f XX can be used to specify a
 				 * descriptor for the binary named at
 				 * the command line (i.e., the later
 				 * argument will specify the process
 				 * name but the descriptor is what
 				 * will actually be executed).
 				 *
 				 * -f must be the last option in, e.g., -abcf.
 				 */
 				if (j != arglen - 1) {
 					_rtld_error("Invalid options: %s", arg);
 					rtld_die();
 				}
 				i++;
 				fd = parse_integer(argv[i]);
 				if (fd == -1) {
 					_rtld_error(
 					    "Invalid file descriptor: '%s'",
 					    argv[i]);
 					rtld_die();
 				}
 				*fdp = fd;
 				seen_f = true;
 				break;
 			} else if (opt == 'p') {
 				*use_pathp = true;
 			} else if (opt == 'u') {
 				trust = false;
 			} else if (opt == 'v') {
 				machine[0] = '\0';
 				mib[0] = CTL_HW;
 				mib[1] = HW_MACHINE;
 				sz = sizeof(machine);
 				sysctl(mib, nitems(mib), machine, &sz, NULL, 0);
 				ld_elf_hints_path = ld_get_env_var(
 				    LD_ELF_HINTS_PATH);
 				set_ld_elf_hints_path();
 				rtld_printf(
 				    "FreeBSD ld-elf.so.1 %s\n"
 				    "FreeBSD_version %d\n"
 				    "Default lib path %s\n"
 				    "Hints lib path %s\n"
 				    "Env prefix %s\n"
 				    "Default hint file %s\n"
 				    "Hint file %s\n"
 				    "libmap file %s\n",
 				    machine,
 				    __FreeBSD_version, ld_standard_library_path,
 				    gethints(false),
 				    ld_env_prefix, ld_elf_hints_default,
 				    ld_elf_hints_path,
 				    ld_path_libmap_conf);
 				_exit(0);
 			} else {
 				_rtld_error("Invalid argument: '%s'", arg);
 				print_usage(argv[0]);
 				rtld_die();
 			}
 		}
 	}
 
 	if (!seen_b)
 		*argv0 = argv[i];
 	return (i);
 }
 
 /*
  * Parse a file descriptor number without pulling in more of libc (e.g. atoi).
  */
 static int
 parse_integer(const char *str)
 {
 	static const int RADIX = 10;  /* XXXJA: possibly support hex? */
 	const char *orig;
 	int n;
 	char c;
 
 	orig = str;
 	n = 0;
 	for (c = *str; c != '\0'; c = *++str) {
 		if (c < '0' || c > '9')
 			return (-1);
 
 		n *= RADIX;
 		n += c - '0';
 	}
 
 	/* Make sure we actually parsed something. */
 	if (str == orig)
 		return (-1);
 	return (n);
 }
 
 static void
 print_usage(const char *argv0)
 {
 
 	rtld_printf(
 	    "Usage: %s [-h] [-b <exe>] [-d] [-f <FD>] [-p] [--] <binary> [<args>]\n"
 	    "\n"
 	    "Options:\n"
 	    "  -h        Display this help message\n"
 	    "  -b <exe>  Execute <exe> instead of <binary>, arg0 is <binary>\n"
 	    "  -d        Ignore lack of exec permissions for the binary\n"
 	    "  -f <FD>   Execute <FD> instead of searching for <binary>\n"
 	    "  -p        Search in PATH for named binary\n"
 	    "  -u        Ignore LD_ environment variables\n"
 	    "  -v        Display identification information\n"
 	    "  --        End of RTLD options\n"
 	    "  <binary>  Name of process to execute\n"
 	    "  <args>    Arguments to the executed process\n", argv0);
 }
 
 #define	AUXFMT(at, xfmt) [at] = { .name = #at, .fmt = xfmt }
 static const struct auxfmt {
 	const char *name;
 	const char *fmt;
 } auxfmts[] = {
 	AUXFMT(AT_NULL, NULL),
 	AUXFMT(AT_IGNORE, NULL),
 	AUXFMT(AT_EXECFD, "%ld"),
 	AUXFMT(AT_PHDR, "%p"),
 	AUXFMT(AT_PHENT, "%lu"),
 	AUXFMT(AT_PHNUM, "%lu"),
 	AUXFMT(AT_PAGESZ, "%lu"),
 	AUXFMT(AT_BASE, "%#lx"),
 	AUXFMT(AT_FLAGS, "%#lx"),
 	AUXFMT(AT_ENTRY, "%p"),
 	AUXFMT(AT_NOTELF, NULL),
 	AUXFMT(AT_UID, "%ld"),
 	AUXFMT(AT_EUID, "%ld"),
 	AUXFMT(AT_GID, "%ld"),
 	AUXFMT(AT_EGID, "%ld"),
 	AUXFMT(AT_EXECPATH, "%s"),
 	AUXFMT(AT_CANARY, "%p"),
 	AUXFMT(AT_CANARYLEN, "%lu"),
 	AUXFMT(AT_OSRELDATE, "%lu"),
 	AUXFMT(AT_NCPUS, "%lu"),
 	AUXFMT(AT_PAGESIZES, "%p"),
 	AUXFMT(AT_PAGESIZESLEN, "%lu"),
 	AUXFMT(AT_TIMEKEEP, "%p"),
 	AUXFMT(AT_STACKPROT, "%#lx"),
 	AUXFMT(AT_EHDRFLAGS, "%#lx"),
 	AUXFMT(AT_HWCAP, "%#lx"),
 	AUXFMT(AT_HWCAP2, "%#lx"),
 	AUXFMT(AT_BSDFLAGS, "%#lx"),
 	AUXFMT(AT_ARGC, "%lu"),
 	AUXFMT(AT_ARGV, "%p"),
 	AUXFMT(AT_ENVC, "%p"),
 	AUXFMT(AT_ENVV, "%p"),
 	AUXFMT(AT_PS_STRINGS, "%p"),
 	AUXFMT(AT_FXRNG, "%p"),
 	AUXFMT(AT_KPRELOAD, "%p"),
 };
 
 static bool
 is_ptr_fmt(const char *fmt)
 {
 	char last;
 
 	last = fmt[strlen(fmt) - 1];
 	return (last == 'p' || last == 's');
 }
 
 static void
 dump_auxv(Elf_Auxinfo **aux_info)
 {
 	Elf_Auxinfo *auxp;
 	const struct auxfmt *fmt;
 	int i;
 
 	for (i = 0; i < AT_COUNT; i++) {
 		auxp = aux_info[i];
 		if (auxp == NULL)
 			continue;
 		fmt = &auxfmts[i];
 		if (fmt->fmt == NULL)
 			continue;
 		rtld_fdprintf(STDOUT_FILENO, "%s:\t", fmt->name);
 		if (is_ptr_fmt(fmt->fmt)) {
 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
 			    auxp->a_un.a_ptr);
 		} else {
 			rtld_fdprintfx(STDOUT_FILENO, fmt->fmt,
 			    auxp->a_un.a_val);
 		}
 		rtld_fdprintf(STDOUT_FILENO, "\n");
 	}
 }
 
 /*
  * Overrides for libc_pic-provided functions.
  */
 
 int
 __getosreldate(void)
 {
 	size_t len;
 	int oid[2];
 	int error, osrel;
 
 	if (osreldate != 0)
 		return (osreldate);
 
 	oid[0] = CTL_KERN;
 	oid[1] = KERN_OSRELDATE;
 	osrel = 0;
 	len = sizeof(osrel);
 	error = sysctl(oid, 2, &osrel, &len, NULL, 0);
 	if (error == 0 && osrel > 0 && len == sizeof(osrel))
 		osreldate = osrel;
 	return (osreldate);
 }
 const char *
 rtld_strerror(int errnum)
 {
 
 	if (errnum < 0 || errnum >= sys_nerr)
 		return ("Unknown error");
 	return (sys_errlist[errnum]);
 }
 
 char *
 getenv(const char *name)
 {
 	return (__DECONST(char *, rtld_get_env_val(environ, name,
 	    strlen(name))));
 }
 
 /* malloc */
 void *
 malloc(size_t nbytes)
 {
 
 	return (__crt_malloc(nbytes));
 }
 
 void *
 calloc(size_t num, size_t size)
 {
 
 	return (__crt_calloc(num, size));
 }
 
 void
 free(void *cp)
 {
 
 	__crt_free(cp);
 }
 
 void *
 realloc(void *cp, size_t nbytes)
 {
 
 	return (__crt_realloc(cp, nbytes));
 }
 
 extern int _rtld_version__FreeBSD_version __exported;
 int _rtld_version__FreeBSD_version = __FreeBSD_version;
 
 extern char _rtld_version_laddr_offset __exported;
 char _rtld_version_laddr_offset;
 
 extern char _rtld_version_dlpi_tls_data __exported;
 char _rtld_version_dlpi_tls_data;