diff --git a/sys/kern/kern_prot.c b/sys/kern/kern_prot.c index 901753f1e5b7..6cdfea2774c0 100644 --- a/sys/kern/kern_prot.c +++ b/sys/kern/kern_prot.c @@ -1,2549 +1,2639 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1989, 1990, 1991, 1993 * The Regents of the University of California. * (c) UNIX System Laboratories, Inc. * Copyright (c) 2000-2001 Robert N. M. Watson. * All rights reserved. * * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_prot.c 8.6 (Berkeley) 1/21/94 */ /* * System calls related to processes and protection */ #include #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef COMPAT_43 #include #endif #include #include #include #include #include #include #include #include #include #ifdef REGRESSION FEATURE(regression, "Kernel support for interfaces necessary for regression testing (SECURITY RISK!)"); #endif #include #include static MALLOC_DEFINE(M_CRED, "cred", "credentials"); SYSCTL_NODE(_security, OID_AUTO, bsd, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "BSD security policy"); static void crfree_final(struct ucred *cr); -static void crsetgroups_locked(struct ucred *cr, int ngrp, - gid_t *groups); + +static inline void +groups_check_positive_len(int ngrp) +{ + MPASS2(ngrp >= 0, "negative number of groups"); + MPASS2(ngrp != 0, "at least one group expected (effective GID)"); +} +static inline void +groups_check_max_len(int ngrp) +{ + MPASS2(ngrp <= ngroups_max + 1, "too many groups"); +} + +static void groups_normalize(int *ngrp, gid_t *groups); +static void crsetgroups_internal(struct ucred *cr, int ngrp, + const gid_t *groups); #ifndef _SYS_SYSPROTO_H_ struct getpid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getpid(struct thread *td, struct getpid_args *uap) { struct proc *p = td->td_proc; td->td_retval[0] = p->p_pid; #if defined(COMPAT_43) if (SV_PROC_FLAG(p, SV_AOUT)) td->td_retval[1] = kern_getppid(td); #endif return (0); } #ifndef _SYS_SYSPROTO_H_ struct getppid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getppid(struct thread *td, struct getppid_args *uap) { td->td_retval[0] = kern_getppid(td); return (0); } int kern_getppid(struct thread *td) { struct proc *p = td->td_proc; return (p->p_oppid); } /* * Get process group ID; note that POSIX getpgrp takes no parameter. */ #ifndef _SYS_SYSPROTO_H_ struct getpgrp_args { int dummy; }; #endif int sys_getpgrp(struct thread *td, struct getpgrp_args *uap) { struct proc *p = td->td_proc; PROC_LOCK(p); td->td_retval[0] = p->p_pgrp->pg_id; PROC_UNLOCK(p); return (0); } /* Get an arbitrary pid's process group id */ #ifndef _SYS_SYSPROTO_H_ struct getpgid_args { pid_t pid; }; #endif int sys_getpgid(struct thread *td, struct getpgid_args *uap) { struct proc *p; int error; if (uap->pid == 0) { p = td->td_proc; PROC_LOCK(p); } else { p = pfind(uap->pid); if (p == NULL) return (ESRCH); error = p_cansee(td, p); if (error) { PROC_UNLOCK(p); return (error); } } td->td_retval[0] = p->p_pgrp->pg_id; PROC_UNLOCK(p); return (0); } /* * Get an arbitrary pid's session id. */ #ifndef _SYS_SYSPROTO_H_ struct getsid_args { pid_t pid; }; #endif int sys_getsid(struct thread *td, struct getsid_args *uap) { return (kern_getsid(td, uap->pid)); } int kern_getsid(struct thread *td, pid_t pid) { struct proc *p; int error; if (pid == 0) { p = td->td_proc; PROC_LOCK(p); } else { p = pfind(pid); if (p == NULL) return (ESRCH); error = p_cansee(td, p); if (error) { PROC_UNLOCK(p); return (error); } } td->td_retval[0] = p->p_session->s_sid; PROC_UNLOCK(p); return (0); } #ifndef _SYS_SYSPROTO_H_ struct getuid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getuid(struct thread *td, struct getuid_args *uap) { td->td_retval[0] = td->td_ucred->cr_ruid; #if defined(COMPAT_43) td->td_retval[1] = td->td_ucred->cr_uid; #endif return (0); } #ifndef _SYS_SYSPROTO_H_ struct geteuid_args { int dummy; }; #endif /* ARGSUSED */ int sys_geteuid(struct thread *td, struct geteuid_args *uap) { td->td_retval[0] = td->td_ucred->cr_uid; return (0); } #ifndef _SYS_SYSPROTO_H_ struct getgid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getgid(struct thread *td, struct getgid_args *uap) { td->td_retval[0] = td->td_ucred->cr_rgid; #if defined(COMPAT_43) td->td_retval[1] = td->td_ucred->cr_groups[0]; #endif return (0); } /* * Get effective group ID. The "egid" is groups[0], and could be obtained * via getgroups. This syscall exists because it is somewhat painful to do * correctly in a library function. */ #ifndef _SYS_SYSPROTO_H_ struct getegid_args { int dummy; }; #endif /* ARGSUSED */ int sys_getegid(struct thread *td, struct getegid_args *uap) { td->td_retval[0] = td->td_ucred->cr_groups[0]; return (0); } #ifndef _SYS_SYSPROTO_H_ struct getgroups_args { int gidsetsize; gid_t *gidset; }; #endif int sys_getgroups(struct thread *td, struct getgroups_args *uap) { struct ucred *cred; int ngrp, error; cred = td->td_ucred; ngrp = cred->cr_ngroups; if (uap->gidsetsize == 0) { error = 0; goto out; } if (uap->gidsetsize < ngrp) return (EINVAL); error = copyout(cred->cr_groups, uap->gidset, ngrp * sizeof(gid_t)); out: td->td_retval[0] = ngrp; return (error); } #ifndef _SYS_SYSPROTO_H_ struct setsid_args { int dummy; }; #endif /* ARGSUSED */ int sys_setsid(struct thread *td, struct setsid_args *uap) { struct pgrp *pgrp; int error; struct proc *p = td->td_proc; struct pgrp *newpgrp; struct session *newsess; pgrp = NULL; newpgrp = uma_zalloc(pgrp_zone, M_WAITOK); newsess = malloc(sizeof(struct session), M_SESSION, M_WAITOK | M_ZERO); again: error = 0; sx_xlock(&proctree_lock); if (p->p_pgid == p->p_pid || (pgrp = pgfind(p->p_pid)) != NULL) { if (pgrp != NULL) PGRP_UNLOCK(pgrp); error = EPERM; } else { error = enterpgrp(p, p->p_pid, newpgrp, newsess); if (error == ERESTART) goto again; MPASS(error == 0); td->td_retval[0] = p->p_pid; newpgrp = NULL; newsess = NULL; } sx_xunlock(&proctree_lock); uma_zfree(pgrp_zone, newpgrp); free(newsess, M_SESSION); return (error); } /* * set process group (setpgid/old setpgrp) * * caller does setpgid(targpid, targpgid) * * pid must be caller or child of caller (ESRCH) * if a child * pid must be in same session (EPERM) * pid can't have done an exec (EACCES) * if pgid != pid * there must exist some pid in same session having pgid (EPERM) * pid must not be session leader (EPERM) */ #ifndef _SYS_SYSPROTO_H_ struct setpgid_args { int pid; /* target process id */ int pgid; /* target pgrp id */ }; #endif /* ARGSUSED */ int sys_setpgid(struct thread *td, struct setpgid_args *uap) { struct proc *curp = td->td_proc; struct proc *targp; /* target process */ struct pgrp *pgrp; /* target pgrp */ int error; struct pgrp *newpgrp; if (uap->pgid < 0) return (EINVAL); newpgrp = uma_zalloc(pgrp_zone, M_WAITOK); again: error = 0; sx_xlock(&proctree_lock); if (uap->pid != 0 && uap->pid != curp->p_pid) { if ((targp = pfind(uap->pid)) == NULL) { error = ESRCH; goto done; } if (!inferior(targp)) { PROC_UNLOCK(targp); error = ESRCH; goto done; } if ((error = p_cansee(td, targp))) { PROC_UNLOCK(targp); goto done; } if (targp->p_pgrp == NULL || targp->p_session != curp->p_session) { PROC_UNLOCK(targp); error = EPERM; goto done; } if (targp->p_flag & P_EXEC) { PROC_UNLOCK(targp); error = EACCES; goto done; } PROC_UNLOCK(targp); } else targp = curp; if (SESS_LEADER(targp)) { error = EPERM; goto done; } if (uap->pgid == 0) uap->pgid = targp->p_pid; if ((pgrp = pgfind(uap->pgid)) == NULL) { if (uap->pgid == targp->p_pid) { error = enterpgrp(targp, uap->pgid, newpgrp, NULL); if (error == 0) newpgrp = NULL; } else error = EPERM; } else { if (pgrp == targp->p_pgrp) { PGRP_UNLOCK(pgrp); goto done; } if (pgrp->pg_id != targp->p_pid && pgrp->pg_session != curp->p_session) { PGRP_UNLOCK(pgrp); error = EPERM; goto done; } PGRP_UNLOCK(pgrp); error = enterthispgrp(targp, pgrp); } done: KASSERT(error == 0 || newpgrp != NULL, ("setpgid failed and newpgrp is NULL")); if (error == ERESTART) goto again; sx_xunlock(&proctree_lock); uma_zfree(pgrp_zone, newpgrp); return (error); } /* * Use the clause in B.4.2.2 that allows setuid/setgid to be 4.2/4.3BSD * compatible. It says that setting the uid/gid to euid/egid is a special * case of "appropriate privilege". Once the rules are expanded out, this * basically means that setuid(nnn) sets all three id's, in all permitted * cases unless _POSIX_SAVED_IDS is enabled. In that case, setuid(getuid()) * does not set the saved id - this is dangerous for traditional BSD * programs. For this reason, we *really* do not want to set * _POSIX_SAVED_IDS and do not want to clear POSIX_APPENDIX_B_4_2_2. */ #define POSIX_APPENDIX_B_4_2_2 #ifndef _SYS_SYSPROTO_H_ struct setuid_args { uid_t uid; }; #endif /* ARGSUSED */ int sys_setuid(struct thread *td, struct setuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t uid; struct uidinfo *uip; int error; uid = uap->uid; AUDIT_ARG_UID(uid); newcred = crget(); uip = uifind(uid); PROC_LOCK(p); /* * Copy credentials so other references do not see our changes. */ oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setuid(oldcred, uid); if (error) goto fail; #endif /* * See if we have "permission" by POSIX 1003.1 rules. * * Note that setuid(geteuid()) is a special case of * "appropriate privileges" in appendix B.4.2.2. We need * to use this clause to be compatible with traditional BSD * semantics. Basically, it means that "setuid(xx)" sets all * three id's (assuming you have privs). * * Notes on the logic. We do things in three steps. * 1: We determine if the euid is going to change, and do EPERM * right away. We unconditionally change the euid later if this * test is satisfied, simplifying that part of the logic. * 2: We determine if the real and/or saved uids are going to * change. Determined by compile options. * 3: Change euid last. (after tests in #2 for "appropriate privs") */ if (uid != oldcred->cr_ruid && /* allow setuid(getuid()) */ #ifdef _POSIX_SAVED_IDS uid != oldcred->cr_svuid && /* allow setuid(saved gid) */ #endif #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ uid != oldcred->cr_uid && /* allow setuid(geteuid()) */ #endif (error = priv_check_cred(oldcred, PRIV_CRED_SETUID)) != 0) goto fail; #ifdef _POSIX_SAVED_IDS /* * Do we have "appropriate privileges" (are we root or uid == euid) * If so, we are changing the real uid and/or saved uid. */ if ( #ifdef POSIX_APPENDIX_B_4_2_2 /* Use the clause from B.4.2.2 */ uid == oldcred->cr_uid || #endif /* We are using privs. */ priv_check_cred(oldcred, PRIV_CRED_SETUID) == 0) #endif { /* * Set the real uid and transfer proc count to new user. */ if (uid != oldcred->cr_ruid) { change_ruid(newcred, uip); setsugid(p); } /* * Set saved uid * * XXX always set saved uid even if not _POSIX_SAVED_IDS, as * the security of seteuid() depends on it. B.4.2.2 says it * is important that we should do this. */ if (uid != oldcred->cr_svuid) { change_svuid(newcred, uid); setsugid(p); } } /* * In all permitted cases, we are changing the euid. */ if (uid != oldcred->cr_uid) { change_euid(newcred, uip); setsugid(p); } proc_set_cred(p, newcred); #ifdef RACCT racct_proc_ucred_changed(p, oldcred, newcred); crhold(newcred); #endif PROC_UNLOCK(p); #ifdef RCTL rctl_proc_ucred_changed(p, newcred); crfree(newcred); #endif uifree(uip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(uip); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct seteuid_args { uid_t euid; }; #endif /* ARGSUSED */ int sys_seteuid(struct thread *td, struct seteuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t euid; struct uidinfo *euip; int error; euid = uap->euid; AUDIT_ARG_EUID(euid); newcred = crget(); euip = uifind(euid); PROC_LOCK(p); /* * Copy credentials so other references do not see our changes. */ oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_seteuid(oldcred, euid); if (error) goto fail; #endif if (euid != oldcred->cr_ruid && /* allow seteuid(getuid()) */ euid != oldcred->cr_svuid && /* allow seteuid(saved uid) */ (error = priv_check_cred(oldcred, PRIV_CRED_SETEUID)) != 0) goto fail; /* * Everything's okay, do it. */ if (oldcred->cr_uid != euid) { change_euid(newcred, euip); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); uifree(euip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(euip); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setgid_args { gid_t gid; }; #endif /* ARGSUSED */ int sys_setgid(struct thread *td, struct setgid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t gid; int error; gid = uap->gid; AUDIT_ARG_GID(gid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setgid(oldcred, gid); if (error) goto fail; #endif /* * See if we have "permission" by POSIX 1003.1 rules. * * Note that setgid(getegid()) is a special case of * "appropriate privileges" in appendix B.4.2.2. We need * to use this clause to be compatible with traditional BSD * semantics. Basically, it means that "setgid(xx)" sets all * three id's (assuming you have privs). * * For notes on the logic here, see setuid() above. */ if (gid != oldcred->cr_rgid && /* allow setgid(getgid()) */ #ifdef _POSIX_SAVED_IDS gid != oldcred->cr_svgid && /* allow setgid(saved gid) */ #endif #ifdef POSIX_APPENDIX_B_4_2_2 /* Use BSD-compat clause from B.4.2.2 */ gid != oldcred->cr_groups[0] && /* allow setgid(getegid()) */ #endif (error = priv_check_cred(oldcred, PRIV_CRED_SETGID)) != 0) goto fail; #ifdef _POSIX_SAVED_IDS /* * Do we have "appropriate privileges" (are we root or gid == egid) * If so, we are changing the real uid and saved gid. */ if ( #ifdef POSIX_APPENDIX_B_4_2_2 /* use the clause from B.4.2.2 */ gid == oldcred->cr_groups[0] || #endif /* We are using privs. */ priv_check_cred(oldcred, PRIV_CRED_SETGID) == 0) #endif { /* * Set real gid */ if (oldcred->cr_rgid != gid) { change_rgid(newcred, gid); setsugid(p); } /* * Set saved gid * * XXX always set saved gid even if not _POSIX_SAVED_IDS, as * the security of setegid() depends on it. B.4.2.2 says it * is important that we should do this. */ if (oldcred->cr_svgid != gid) { change_svgid(newcred, gid); setsugid(p); } } /* * In all cases permitted cases, we are changing the egid. * Copy credentials so other references do not see our changes. */ if (oldcred->cr_groups[0] != gid) { change_egid(newcred, gid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setegid_args { gid_t egid; }; #endif /* ARGSUSED */ int sys_setegid(struct thread *td, struct setegid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t egid; int error; egid = uap->egid; AUDIT_ARG_EGID(egid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setegid(oldcred, egid); if (error) goto fail; #endif if (egid != oldcred->cr_rgid && /* allow setegid(getgid()) */ egid != oldcred->cr_svgid && /* allow setegid(saved gid) */ (error = priv_check_cred(oldcred, PRIV_CRED_SETEGID)) != 0) goto fail; if (oldcred->cr_groups[0] != egid) { change_egid(newcred, egid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setgroups_args { int gidsetsize; gid_t *gidset; }; #endif /* ARGSUSED */ int sys_setgroups(struct thread *td, struct setgroups_args *uap) { gid_t smallgroups[CRED_SMALLGROUPS_NB]; gid_t *groups; int gidsetsize, error; /* * Sanity check size now to avoid passing too big a value to copyin(), * even if kern_setgroups() will do it again. * * Ideally, the 'gidsetsize' argument should have been a 'u_int' (and it * was, in this implementation, for a long time), but POSIX standardized * getgroups() to take an 'int' and it would be quite entrapping to have * setgroups() differ. */ gidsetsize = uap->gidsetsize; if (gidsetsize > ngroups_max + 1 || gidsetsize < 0) return (EINVAL); if (gidsetsize > CRED_SMALLGROUPS_NB) groups = malloc(gidsetsize * sizeof(gid_t), M_TEMP, M_WAITOK); else groups = smallgroups; error = copyin(uap->gidset, groups, gidsetsize * sizeof(gid_t)); if (error == 0) - error = kern_setgroups(td, gidsetsize, groups); + error = kern_setgroups(td, &gidsetsize, groups); - if (gidsetsize > CRED_SMALLGROUPS_NB) + if (groups != smallgroups) free(groups, M_TEMP); return (error); } static int gidp_cmp(const void *p1, const void *p2) { const gid_t g1 = *(const gid_t *)p1; const gid_t g2 = *(const gid_t *)p2; return ((g1 > g2) - (g1 < g2)); } +/* + * CAUTION: This function normalizes 'groups', possibly also changing the value + * of '*ngrpp' as a consequence. + */ int -kern_setgroups(struct thread *td, int ngrp, gid_t *groups) +kern_setgroups(struct thread *td, int *ngrpp, gid_t *groups) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; - int error; + int ngrp, error; + ngrp = *ngrpp; /* Sanity check size. */ if (ngrp < 0 || ngrp > ngroups_max + 1) return (EINVAL); AUDIT_ARG_GROUPSET(groups, ngrp); + if (ngrp != 0) { + /* We allow and treat 0 specially below. */ + groups_normalize(ngrpp, groups); + ngrp = *ngrpp; + } newcred = crget(); crextend(newcred, ngrp); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC - error = mac_cred_check_setgroups(oldcred, ngrp, groups); + error = ngrp == 0 ? + /* If 'ngrp' is 0, we'll keep just the current effective GID. */ + mac_cred_check_setgroups(oldcred, 1, oldcred->cr_groups) : + mac_cred_check_setgroups(oldcred, ngrp, groups); if (error) goto fail; #endif error = priv_check_cred(oldcred, PRIV_CRED_SETGROUPS); if (error) goto fail; if (ngrp == 0) { /* * setgroups(0, NULL) is a legitimate way of clearing the * groups vector on non-BSD systems (which generally do not * have the egid in the groups[0]). We risk security holes * when running non-BSD software if we do not do the same. */ newcred->cr_ngroups = 1; - } else { - crsetgroups_locked(newcred, ngrp, groups); - } + } else + crsetgroups_internal(newcred, ngrp, groups); + setsugid(p); proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setreuid_args { uid_t ruid; uid_t euid; }; #endif /* ARGSUSED */ int sys_setreuid(struct thread *td, struct setreuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t euid, ruid; struct uidinfo *euip, *ruip; int error; euid = uap->euid; ruid = uap->ruid; AUDIT_ARG_EUID(euid); AUDIT_ARG_RUID(ruid); newcred = crget(); euip = uifind(euid); ruip = uifind(ruid); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setreuid(oldcred, ruid, euid); if (error) goto fail; #endif if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && ruid != oldcred->cr_svuid) || (euid != (uid_t)-1 && euid != oldcred->cr_uid && euid != oldcred->cr_ruid && euid != oldcred->cr_svuid)) && (error = priv_check_cred(oldcred, PRIV_CRED_SETREUID)) != 0) goto fail; if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { change_euid(newcred, euip); setsugid(p); } if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { change_ruid(newcred, ruip); setsugid(p); } if ((ruid != (uid_t)-1 || newcred->cr_uid != newcred->cr_ruid) && newcred->cr_svuid != newcred->cr_uid) { change_svuid(newcred, newcred->cr_uid); setsugid(p); } proc_set_cred(p, newcred); #ifdef RACCT racct_proc_ucred_changed(p, oldcred, newcred); crhold(newcred); #endif PROC_UNLOCK(p); #ifdef RCTL rctl_proc_ucred_changed(p, newcred); crfree(newcred); #endif uifree(ruip); uifree(euip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(ruip); uifree(euip); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct setregid_args { gid_t rgid; gid_t egid; }; #endif /* ARGSUSED */ int sys_setregid(struct thread *td, struct setregid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t egid, rgid; int error; egid = uap->egid; rgid = uap->rgid; AUDIT_ARG_EGID(egid); AUDIT_ARG_RGID(rgid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setregid(oldcred, rgid, egid); if (error) goto fail; #endif if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && rgid != oldcred->cr_svgid) || (egid != (gid_t)-1 && egid != oldcred->cr_groups[0] && egid != oldcred->cr_rgid && egid != oldcred->cr_svgid)) && (error = priv_check_cred(oldcred, PRIV_CRED_SETREGID)) != 0) goto fail; if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) { change_egid(newcred, egid); setsugid(p); } if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { change_rgid(newcred, rgid); setsugid(p); } if ((rgid != (gid_t)-1 || newcred->cr_groups[0] != newcred->cr_rgid) && newcred->cr_svgid != newcred->cr_groups[0]) { change_svgid(newcred, newcred->cr_groups[0]); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } /* * setresuid(ruid, euid, suid) is like setreuid except control over the saved * uid is explicit. */ #ifndef _SYS_SYSPROTO_H_ struct setresuid_args { uid_t ruid; uid_t euid; uid_t suid; }; #endif /* ARGSUSED */ int sys_setresuid(struct thread *td, struct setresuid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; uid_t euid, ruid, suid; struct uidinfo *euip, *ruip; int error; euid = uap->euid; ruid = uap->ruid; suid = uap->suid; AUDIT_ARG_EUID(euid); AUDIT_ARG_RUID(ruid); AUDIT_ARG_SUID(suid); newcred = crget(); euip = uifind(euid); ruip = uifind(ruid); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setresuid(oldcred, ruid, euid, suid); if (error) goto fail; #endif if (((ruid != (uid_t)-1 && ruid != oldcred->cr_ruid && ruid != oldcred->cr_svuid && ruid != oldcred->cr_uid) || (euid != (uid_t)-1 && euid != oldcred->cr_ruid && euid != oldcred->cr_svuid && euid != oldcred->cr_uid) || (suid != (uid_t)-1 && suid != oldcred->cr_ruid && suid != oldcred->cr_svuid && suid != oldcred->cr_uid)) && (error = priv_check_cred(oldcred, PRIV_CRED_SETRESUID)) != 0) goto fail; if (euid != (uid_t)-1 && oldcred->cr_uid != euid) { change_euid(newcred, euip); setsugid(p); } if (ruid != (uid_t)-1 && oldcred->cr_ruid != ruid) { change_ruid(newcred, ruip); setsugid(p); } if (suid != (uid_t)-1 && oldcred->cr_svuid != suid) { change_svuid(newcred, suid); setsugid(p); } proc_set_cred(p, newcred); #ifdef RACCT racct_proc_ucred_changed(p, oldcred, newcred); crhold(newcred); #endif PROC_UNLOCK(p); #ifdef RCTL rctl_proc_ucred_changed(p, newcred); crfree(newcred); #endif uifree(ruip); uifree(euip); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); uifree(ruip); uifree(euip); crfree(newcred); return (error); } /* * setresgid(rgid, egid, sgid) is like setregid except control over the saved * gid is explicit. */ #ifndef _SYS_SYSPROTO_H_ struct setresgid_args { gid_t rgid; gid_t egid; gid_t sgid; }; #endif /* ARGSUSED */ int sys_setresgid(struct thread *td, struct setresgid_args *uap) { struct proc *p = td->td_proc; struct ucred *newcred, *oldcred; gid_t egid, rgid, sgid; int error; egid = uap->egid; rgid = uap->rgid; sgid = uap->sgid; AUDIT_ARG_EGID(egid); AUDIT_ARG_RGID(rgid); AUDIT_ARG_SGID(sgid); newcred = crget(); PROC_LOCK(p); oldcred = crcopysafe(p, newcred); #ifdef MAC error = mac_cred_check_setresgid(oldcred, rgid, egid, sgid); if (error) goto fail; #endif if (((rgid != (gid_t)-1 && rgid != oldcred->cr_rgid && rgid != oldcred->cr_svgid && rgid != oldcred->cr_groups[0]) || (egid != (gid_t)-1 && egid != oldcred->cr_rgid && egid != oldcred->cr_svgid && egid != oldcred->cr_groups[0]) || (sgid != (gid_t)-1 && sgid != oldcred->cr_rgid && sgid != oldcred->cr_svgid && sgid != oldcred->cr_groups[0])) && (error = priv_check_cred(oldcred, PRIV_CRED_SETRESGID)) != 0) goto fail; if (egid != (gid_t)-1 && oldcred->cr_groups[0] != egid) { change_egid(newcred, egid); setsugid(p); } if (rgid != (gid_t)-1 && oldcred->cr_rgid != rgid) { change_rgid(newcred, rgid); setsugid(p); } if (sgid != (gid_t)-1 && oldcred->cr_svgid != sgid) { change_svgid(newcred, sgid); setsugid(p); } proc_set_cred(p, newcred); PROC_UNLOCK(p); crfree(oldcred); return (0); fail: PROC_UNLOCK(p); crfree(newcred); return (error); } #ifndef _SYS_SYSPROTO_H_ struct getresuid_args { uid_t *ruid; uid_t *euid; uid_t *suid; }; #endif /* ARGSUSED */ int sys_getresuid(struct thread *td, struct getresuid_args *uap) { struct ucred *cred; int error1 = 0, error2 = 0, error3 = 0; cred = td->td_ucred; if (uap->ruid) error1 = copyout(&cred->cr_ruid, uap->ruid, sizeof(cred->cr_ruid)); if (uap->euid) error2 = copyout(&cred->cr_uid, uap->euid, sizeof(cred->cr_uid)); if (uap->suid) error3 = copyout(&cred->cr_svuid, uap->suid, sizeof(cred->cr_svuid)); return (error1 ? error1 : error2 ? error2 : error3); } #ifndef _SYS_SYSPROTO_H_ struct getresgid_args { gid_t *rgid; gid_t *egid; gid_t *sgid; }; #endif /* ARGSUSED */ int sys_getresgid(struct thread *td, struct getresgid_args *uap) { struct ucred *cred; int error1 = 0, error2 = 0, error3 = 0; cred = td->td_ucred; if (uap->rgid) error1 = copyout(&cred->cr_rgid, uap->rgid, sizeof(cred->cr_rgid)); if (uap->egid) error2 = copyout(&cred->cr_groups[0], uap->egid, sizeof(cred->cr_groups[0])); if (uap->sgid) error3 = copyout(&cred->cr_svgid, uap->sgid, sizeof(cred->cr_svgid)); return (error1 ? error1 : error2 ? error2 : error3); } #ifndef _SYS_SYSPROTO_H_ struct issetugid_args { int dummy; }; #endif /* ARGSUSED */ int sys_issetugid(struct thread *td, struct issetugid_args *uap) { struct proc *p = td->td_proc; /* * Note: OpenBSD sets a P_SUGIDEXEC flag set at execve() time, * we use P_SUGID because we consider changing the owners as * "tainting" as well. * This is significant for procs that start as root and "become" * a user without an exec - programs cannot know *everything* * that libc *might* have put in their data segment. */ td->td_retval[0] = (p->p_flag & P_SUGID) ? 1 : 0; return (0); } int sys___setugid(struct thread *td, struct __setugid_args *uap) { #ifdef REGRESSION struct proc *p; p = td->td_proc; switch (uap->flag) { case 0: PROC_LOCK(p); p->p_flag &= ~P_SUGID; PROC_UNLOCK(p); return (0); case 1: PROC_LOCK(p); p->p_flag |= P_SUGID; PROC_UNLOCK(p); return (0); default: return (EINVAL); } #else /* !REGRESSION */ return (ENOSYS); #endif /* REGRESSION */ } +#ifdef INVARIANTS +static void +groups_check_normalized(int ngrp, const gid_t *groups) +{ + gid_t prev_g; + + groups_check_positive_len(ngrp); + groups_check_max_len(ngrp); + + if (ngrp == 1) + return; + + prev_g = groups[1]; + for (int i = 2; i < ngrp; ++i) { + const gid_t g = groups[i]; + + if (prev_g >= g) + panic("%s: groups[%d] (%u) >= groups[%d] (%u)", + __func__, i - 1, prev_g, i, g); + prev_g = g; + } +} +#else +#define groups_check_normalized(...) +#endif + /* * Returns whether gid designates a supplementary group in cred. */ int group_is_supplementary(const gid_t gid, const struct ucred *const cred) { /* * Perform a binary search of the supplementary groups. This is * possible because we sort the groups in crsetgroups(). */ return (bsearch(&gid, cred->cr_groups + 1, cred->cr_ngroups - 1, sizeof(gid), gidp_cmp) != NULL); } /* * Check if gid is a member of the (effective) group set (i.e., effective and * supplementary groups). */ int groupmember(gid_t gid, const struct ucred *cred) { /* * The nfsd server can use a credential with zero groups in it * when certain mapped export credentials are specified via exports(5). */ if (cred->cr_ngroups == 0) return (0); if (cred->cr_groups[0] == gid) return (1); return (group_is_supplementary(gid, cred)); } /* * Check if gid is a member of the real group set (i.e., real and supplementary * groups). */ int realgroupmember(gid_t gid, const struct ucred *cred) { if (gid == cred->cr_rgid) return (1); return (group_is_supplementary(gid, cred)); } /* * Test the active securelevel against a given level. securelevel_gt() * implements (securelevel > level). securelevel_ge() implements * (securelevel >= level). Note that the logic is inverted -- these * functions return EPERM on "success" and 0 on "failure". * * Due to care taken when setting the securelevel, we know that no jail will * be less secure that its parent (or the physical system), so it is sufficient * to test the current jail only. * * XXXRW: Possibly since this has to do with privilege, it should move to * kern_priv.c. */ int securelevel_gt(struct ucred *cr, int level) { return (cr->cr_prison->pr_securelevel > level ? EPERM : 0); } int securelevel_ge(struct ucred *cr, int level) { return (cr->cr_prison->pr_securelevel >= level ? EPERM : 0); } /* * 'see_other_uids' determines whether or not visibility of processes * and sockets with credentials holding different real uids is possible * using a variety of system MIBs. * XXX: data declarations should be together near the beginning of the file. */ static int see_other_uids = 1; SYSCTL_INT(_security_bsd, OID_AUTO, see_other_uids, CTLFLAG_RW, &see_other_uids, 0, "Unprivileged processes may see subjects/objects with different real uid"); /*- * Determine if u1 "can see" the subject specified by u2, according to the * 'see_other_uids' policy. * Returns: 0 for permitted, ESRCH otherwise * Locks: none * References: *u1 and *u2 must not change during the call * u1 may equal u2, in which case only one reference is required */ int cr_canseeotheruids(struct ucred *u1, struct ucred *u2) { if (!see_other_uids && u1->cr_ruid != u2->cr_ruid) { if (priv_check_cred(u1, PRIV_SEEOTHERUIDS) != 0) return (ESRCH); } return (0); } /* * 'see_other_gids' determines whether or not visibility of processes * and sockets with credentials holding different real gids is possible * using a variety of system MIBs. * XXX: data declarations should be together near the beginning of the file. */ static int see_other_gids = 1; SYSCTL_INT(_security_bsd, OID_AUTO, see_other_gids, CTLFLAG_RW, &see_other_gids, 0, "Unprivileged processes may see subjects/objects with different real gid"); /* * Determine if u1 can "see" the subject specified by u2, according to the * 'see_other_gids' policy. * Returns: 0 for permitted, ESRCH otherwise * Locks: none * References: *u1 and *u2 must not change during the call * u1 may equal u2, in which case only one reference is required */ int cr_canseeothergids(struct ucred *u1, struct ucred *u2) { if (!see_other_gids) { if (realgroupmember(u1->cr_rgid, u2)) return (0); for (int i = 1; i < u1->cr_ngroups; i++) if (realgroupmember(u1->cr_groups[i], u2)) return (0); if (priv_check_cred(u1, PRIV_SEEOTHERGIDS) != 0) return (ESRCH); } return (0); } /* * 'see_jail_proc' determines whether or not visibility of processes and * sockets with credentials holding different jail ids is possible using a * variety of system MIBs. * * XXX: data declarations should be together near the beginning of the file. */ static int see_jail_proc = 1; SYSCTL_INT(_security_bsd, OID_AUTO, see_jail_proc, CTLFLAG_RW, &see_jail_proc, 0, "Unprivileged processes may see subjects/objects with different jail ids"); /*- * Determine if u1 "can see" the subject specified by u2, according to the * 'see_jail_proc' policy. * Returns: 0 for permitted, ESRCH otherwise * Locks: none * References: *u1 and *u2 must not change during the call * u1 may equal u2, in which case only one reference is required */ int cr_canseejailproc(struct ucred *u1, struct ucred *u2) { if (see_jail_proc || /* Policy deactivated. */ u1->cr_prison == u2->cr_prison || /* Same jail. */ priv_check_cred(u1, PRIV_SEEJAILPROC) == 0) /* Privileged. */ return (0); return (ESRCH); } /* * Helper for cr_cansee*() functions to abide by system-wide security.bsd.see_* * policies. Determines if u1 "can see" u2 according to these policies. * Returns: 0 for permitted, ESRCH otherwise */ int cr_bsd_visible(struct ucred *u1, struct ucred *u2) { int error; error = cr_canseeotheruids(u1, u2); if (error != 0) return (error); error = cr_canseeothergids(u1, u2); if (error != 0) return (error); error = cr_canseejailproc(u1, u2); if (error != 0) return (error); return (0); } /*- * Determine if u1 "can see" the subject specified by u2. * Returns: 0 for permitted, an errno value otherwise * Locks: none * References: *u1 and *u2 must not change during the call * u1 may equal u2, in which case only one reference is required */ int cr_cansee(struct ucred *u1, struct ucred *u2) { int error; if ((error = prison_check(u1, u2))) return (error); #ifdef MAC if ((error = mac_cred_check_visible(u1, u2))) return (error); #endif if ((error = cr_bsd_visible(u1, u2))) return (error); return (0); } /*- * Determine if td "can see" the subject specified by p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect p->p_ucred must be held. td really * should be curthread. * References: td and p must be valid for the lifetime of the call */ int p_cansee(struct thread *td, struct proc *p) { /* Wrap cr_cansee() for all functionality. */ KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if (td->td_proc == p) return (0); return (cr_cansee(td->td_ucred, p->p_ucred)); } /* * 'conservative_signals' prevents the delivery of a broad class of * signals by unprivileged processes to processes that have changed their * credentials since the last invocation of execve(). This can prevent * the leakage of cached information or retained privileges as a result * of a common class of signal-related vulnerabilities. However, this * may interfere with some applications that expect to be able to * deliver these signals to peer processes after having given up * privilege. */ static int conservative_signals = 1; SYSCTL_INT(_security_bsd, OID_AUTO, conservative_signals, CTLFLAG_RW, &conservative_signals, 0, "Unprivileged processes prevented from " "sending certain signals to processes whose credentials have changed"); /*- * Determine whether cred may deliver the specified signal to proc. * Returns: 0 for permitted, an errno value otherwise. * Locks: A lock must be held for proc. * References: cred and proc must be valid for the lifetime of the call. */ int cr_cansignal(struct ucred *cred, struct proc *proc, int signum) { int error; PROC_LOCK_ASSERT(proc, MA_OWNED); /* * Jail semantics limit the scope of signalling to proc in the * same jail as cred, if cred is in jail. */ error = prison_check(cred, proc->p_ucred); if (error) return (error); #ifdef MAC if ((error = mac_proc_check_signal(cred, proc, signum))) return (error); #endif if ((error = cr_bsd_visible(cred, proc->p_ucred))) return (error); /* * UNIX signal semantics depend on the status of the P_SUGID * bit on the target process. If the bit is set, then additional * restrictions are placed on the set of available signals. */ if (conservative_signals && (proc->p_flag & P_SUGID)) { switch (signum) { case 0: case SIGKILL: case SIGINT: case SIGTERM: case SIGALRM: case SIGSTOP: case SIGTTIN: case SIGTTOU: case SIGTSTP: case SIGHUP: case SIGUSR1: case SIGUSR2: /* * Generally, permit job and terminal control * signals. */ break; default: /* Not permitted without privilege. */ error = priv_check_cred(cred, PRIV_SIGNAL_SUGID); if (error) return (error); } } /* * Generally, the target credential's ruid or svuid must match the * subject credential's ruid or euid. */ if (cred->cr_ruid != proc->p_ucred->cr_ruid && cred->cr_ruid != proc->p_ucred->cr_svuid && cred->cr_uid != proc->p_ucred->cr_ruid && cred->cr_uid != proc->p_ucred->cr_svuid) { error = priv_check_cred(cred, PRIV_SIGNAL_DIFFCRED); if (error) return (error); } return (0); } /*- * Determine whether td may deliver the specified signal to p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must be * held for p. * References: td and p must be valid for the lifetime of the call */ int p_cansignal(struct thread *td, struct proc *p, int signum) { KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if (td->td_proc == p) return (0); /* * UNIX signalling semantics require that processes in the same * session always be able to deliver SIGCONT to one another, * overriding the remaining protections. */ /* XXX: This will require an additional lock of some sort. */ if (signum == SIGCONT && td->td_proc->p_session == p->p_session) return (0); /* * Some compat layers use SIGTHR and higher signals for * communication between different kernel threads of the same * process, so that they expect that it's always possible to * deliver them, even for suid applications where cr_cansignal() can * deny such ability for security consideration. It should be * pretty safe to do since the only way to create two processes * with the same p_leader is via rfork(2). */ if (td->td_proc->p_leader != NULL && signum >= SIGTHR && signum < SIGTHR + 4 && td->td_proc->p_leader == p->p_leader) return (0); return (cr_cansignal(td->td_ucred, p, signum)); } /*- * Determine whether td may reschedule p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must * be held for p. * References: td and p must be valid for the lifetime of the call */ int p_cansched(struct thread *td, struct proc *p) { int error; KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if (td->td_proc == p) return (0); if ((error = prison_check(td->td_ucred, p->p_ucred))) return (error); #ifdef MAC if ((error = mac_proc_check_sched(td->td_ucred, p))) return (error); #endif if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred))) return (error); if (td->td_ucred->cr_ruid != p->p_ucred->cr_ruid && td->td_ucred->cr_uid != p->p_ucred->cr_ruid) { error = priv_check(td, PRIV_SCHED_DIFFCRED); if (error) return (error); } return (0); } /* * Handle getting or setting the prison's unprivileged_proc_debug * value. */ static int sysctl_unprivileged_proc_debug(SYSCTL_HANDLER_ARGS) { int error, val; val = prison_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG); error = sysctl_handle_int(oidp, &val, 0, req); if (error != 0 || req->newptr == NULL) return (error); if (val != 0 && val != 1) return (EINVAL); prison_set_allow(req->td->td_ucred, PR_ALLOW_UNPRIV_DEBUG, val); return (0); } /* * The 'unprivileged_proc_debug' flag may be used to disable a variety of * unprivileged inter-process debugging services, including some procfs * functionality, ptrace(), and ktrace(). In the past, inter-process * debugging has been involved in a variety of security problems, and sites * not requiring the service might choose to disable it when hardening * systems. */ SYSCTL_PROC(_security_bsd, OID_AUTO, unprivileged_proc_debug, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_SECURE | CTLFLAG_MPSAFE, 0, 0, sysctl_unprivileged_proc_debug, "I", "Unprivileged processes may use process debugging facilities"); /*- * Determine whether td may debug p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must * be held for p. * References: td and p must be valid for the lifetime of the call */ int p_candebug(struct thread *td, struct proc *p) { int credentialchanged, error, grpsubset, i, uidsubset; KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if (td->td_proc == p) return (0); if ((error = priv_check(td, PRIV_DEBUG_UNPRIV))) return (error); if ((error = prison_check(td->td_ucred, p->p_ucred))) return (error); #ifdef MAC if ((error = mac_proc_check_debug(td->td_ucred, p))) return (error); #endif if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred))) return (error); /* * Is p's group set a subset of td's effective group set? This * includes p's egid, group access list, rgid, and svgid. */ grpsubset = 1; for (i = 0; i < p->p_ucred->cr_ngroups; i++) { if (!groupmember(p->p_ucred->cr_groups[i], td->td_ucred)) { grpsubset = 0; break; } } grpsubset = grpsubset && groupmember(p->p_ucred->cr_rgid, td->td_ucred) && groupmember(p->p_ucred->cr_svgid, td->td_ucred); /* * Are the uids present in p's credential equal to td's * effective uid? This includes p's euid, svuid, and ruid. */ uidsubset = (td->td_ucred->cr_uid == p->p_ucred->cr_uid && td->td_ucred->cr_uid == p->p_ucred->cr_svuid && td->td_ucred->cr_uid == p->p_ucred->cr_ruid); /* * Has the credential of the process changed since the last exec()? */ credentialchanged = (p->p_flag & P_SUGID); /* * If p's gids aren't a subset, or the uids aren't a subset, * or the credential has changed, require appropriate privilege * for td to debug p. */ if (!grpsubset || !uidsubset) { error = priv_check(td, PRIV_DEBUG_DIFFCRED); if (error) return (error); } if (credentialchanged) { error = priv_check(td, PRIV_DEBUG_SUGID); if (error) return (error); } /* Can't trace init when securelevel > 0. */ if (p == initproc) { error = securelevel_gt(td->td_ucred, 0); if (error) return (error); } /* * Can't trace a process that's currently exec'ing. * * XXX: Note, this is not a security policy decision, it's a * basic correctness/functionality decision. Therefore, this check * should be moved to the caller's of p_candebug(). */ if ((p->p_flag & P_INEXEC) != 0) return (EBUSY); /* Denied explicitly */ if ((p->p_flag2 & P2_NOTRACE) != 0) { error = priv_check(td, PRIV_DEBUG_DENIED); if (error != 0) return (error); } return (0); } /*- * Determine whether the subject represented by cred can "see" a socket. * Returns: 0 for permitted, ENOENT otherwise. */ int cr_canseesocket(struct ucred *cred, struct socket *so) { int error; error = prison_check(cred, so->so_cred); if (error) return (ENOENT); #ifdef MAC error = mac_socket_check_visible(cred, so); if (error) return (error); #endif if (cr_bsd_visible(cred, so->so_cred)) return (ENOENT); return (0); } /*- * Determine whether td can wait for the exit of p. * Returns: 0 for permitted, an errno value otherwise * Locks: Sufficient locks to protect various components of td and p * must be held. td must be curthread, and a lock must * be held for p. * References: td and p must be valid for the lifetime of the call */ int p_canwait(struct thread *td, struct proc *p) { int error; KASSERT(td == curthread, ("%s: td not curthread", __func__)); PROC_LOCK_ASSERT(p, MA_OWNED); if ((error = prison_check(td->td_ucred, p->p_ucred))) return (error); #ifdef MAC if ((error = mac_proc_check_wait(td->td_ucred, p))) return (error); #endif #if 0 /* XXXMAC: This could have odd effects on some shells. */ if ((error = cr_bsd_visible(td->td_ucred, p->p_ucred))) return (error); #endif return (0); } /* * Credential management. * * struct ucred objects are rarely allocated but gain and lose references all * the time (e.g., on struct file alloc/dealloc) turning refcount updates into * a significant source of cache-line ping ponging. Common cases are worked * around by modifying thread-local counter instead if the cred to operate on * matches td_realucred. * * The counter is split into 2 parts: * - cr_users -- total count of all struct proc and struct thread objects * which have given cred in p_ucred and td_ucred respectively * - cr_ref -- the actual ref count, only valid if cr_users == 0 * * If users == 0 then cr_ref behaves similarly to refcount(9), in particular if * the count reaches 0 the object is freeable. * If users > 0 and curthread->td_realucred == cred, then updates are performed * against td_ucredref. * In other cases updates are performed against cr_ref. * * Changing td_realucred into something else decrements cr_users and transfers * accumulated updates. */ struct ucred * crcowget(struct ucred *cr) { mtx_lock(&cr->cr_mtx); KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", __func__, cr->cr_users, cr)); cr->cr_users++; cr->cr_ref++; mtx_unlock(&cr->cr_mtx); return (cr); } static struct ucred * crunuse(struct thread *td) { struct ucred *cr, *crold; MPASS(td->td_realucred == td->td_ucred); cr = td->td_realucred; mtx_lock(&cr->cr_mtx); cr->cr_ref += td->td_ucredref; td->td_ucredref = 0; KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", __func__, cr->cr_users, cr)); cr->cr_users--; if (cr->cr_users == 0) { KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p", __func__, cr->cr_ref, cr)); crold = cr; } else { cr->cr_ref--; crold = NULL; } mtx_unlock(&cr->cr_mtx); td->td_realucred = NULL; return (crold); } static void crunusebatch(struct ucred *cr, int users, int ref) { KASSERT(users > 0, ("%s: passed users %d not > 0 ; cred %p", __func__, users, cr)); mtx_lock(&cr->cr_mtx); KASSERT(cr->cr_users >= users, ("%s: users %d not > %d on cred %p", __func__, cr->cr_users, users, cr)); cr->cr_users -= users; cr->cr_ref += ref; cr->cr_ref -= users; if (cr->cr_users > 0) { mtx_unlock(&cr->cr_mtx); return; } KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p", __func__, cr->cr_ref, cr)); if (cr->cr_ref > 0) { mtx_unlock(&cr->cr_mtx); return; } crfree_final(cr); } void crcowfree(struct thread *td) { struct ucred *cr; cr = crunuse(td); if (cr != NULL) crfree(cr); } struct ucred * crcowsync(void) { struct thread *td; struct proc *p; struct ucred *crnew, *crold; td = curthread; p = td->td_proc; PROC_LOCK_ASSERT(p, MA_OWNED); MPASS(td->td_realucred == td->td_ucred); if (td->td_realucred == p->p_ucred) return (NULL); crnew = crcowget(p->p_ucred); crold = crunuse(td); td->td_realucred = crnew; td->td_ucred = td->td_realucred; return (crold); } /* * Batching. */ void credbatch_add(struct credbatch *crb, struct thread *td) { struct ucred *cr; MPASS(td->td_realucred != NULL); MPASS(td->td_realucred == td->td_ucred); MPASS(td->td_state == TDS_INACTIVE); cr = td->td_realucred; KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", __func__, cr->cr_users, cr)); if (crb->cred != cr) { if (crb->users > 0) { MPASS(crb->cred != NULL); crunusebatch(crb->cred, crb->users, crb->ref); crb->users = 0; crb->ref = 0; } } crb->cred = cr; crb->users++; crb->ref += td->td_ucredref; td->td_ucredref = 0; td->td_realucred = NULL; } void credbatch_final(struct credbatch *crb) { MPASS(crb->cred != NULL); MPASS(crb->users > 0); crunusebatch(crb->cred, crb->users, crb->ref); } /* * Allocate a zeroed cred structure. */ struct ucred * crget(void) { struct ucred *cr; cr = malloc(sizeof(*cr), M_CRED, M_WAITOK | M_ZERO); mtx_init(&cr->cr_mtx, "cred", NULL, MTX_DEF); cr->cr_ref = 1; #ifdef AUDIT audit_cred_init(cr); #endif #ifdef MAC mac_cred_init(cr); #endif cr->cr_groups = cr->cr_smallgroups; cr->cr_agroups = sizeof(cr->cr_smallgroups) / sizeof(cr->cr_smallgroups[0]); return (cr); } /* * Claim another reference to a ucred structure. */ struct ucred * crhold(struct ucred *cr) { struct thread *td; td = curthread; if (__predict_true(td->td_realucred == cr)) { KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", __func__, cr->cr_users, cr)); td->td_ucredref++; return (cr); } mtx_lock(&cr->cr_mtx); cr->cr_ref++; mtx_unlock(&cr->cr_mtx); return (cr); } /* * Free a cred structure. Throws away space when ref count gets to 0. */ void crfree(struct ucred *cr) { struct thread *td; td = curthread; if (__predict_true(td->td_realucred == cr)) { KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", __func__, cr->cr_users, cr)); td->td_ucredref--; return; } mtx_lock(&cr->cr_mtx); KASSERT(cr->cr_users >= 0, ("%s: users %d not >= 0 on cred %p", __func__, cr->cr_users, cr)); cr->cr_ref--; if (cr->cr_users > 0) { mtx_unlock(&cr->cr_mtx); return; } KASSERT(cr->cr_ref >= 0, ("%s: ref %d not >= 0 on cred %p", __func__, cr->cr_ref, cr)); if (cr->cr_ref > 0) { mtx_unlock(&cr->cr_mtx); return; } crfree_final(cr); } static void crfree_final(struct ucred *cr) { KASSERT(cr->cr_users == 0, ("%s: users %d not == 0 on cred %p", __func__, cr->cr_users, cr)); KASSERT(cr->cr_ref == 0, ("%s: ref %d not == 0 on cred %p", __func__, cr->cr_ref, cr)); /* * Some callers of crget(), such as nfs_statfs(), allocate a temporary * credential, but don't allocate a uidinfo structure. */ if (cr->cr_uidinfo != NULL) uifree(cr->cr_uidinfo); if (cr->cr_ruidinfo != NULL) uifree(cr->cr_ruidinfo); if (cr->cr_prison != NULL) prison_free(cr->cr_prison); if (cr->cr_loginclass != NULL) loginclass_free(cr->cr_loginclass); #ifdef AUDIT audit_cred_destroy(cr); #endif #ifdef MAC mac_cred_destroy(cr); #endif mtx_destroy(&cr->cr_mtx); if (cr->cr_groups != cr->cr_smallgroups) free(cr->cr_groups, M_CRED); free(cr, M_CRED); } /* * Copy a ucred's contents from a template. Does not block. */ void crcopy(struct ucred *dest, struct ucred *src) { - KASSERT(dest->cr_ref == 1, ("crcopy of shared ucred")); bcopy(&src->cr_startcopy, &dest->cr_startcopy, (unsigned)((caddr_t)&src->cr_endcopy - (caddr_t)&src->cr_startcopy)); crsetgroups(dest, src->cr_ngroups, src->cr_groups); uihold(dest->cr_uidinfo); uihold(dest->cr_ruidinfo); prison_hold(dest->cr_prison); loginclass_hold(dest->cr_loginclass); #ifdef AUDIT audit_cred_copy(src, dest); #endif #ifdef MAC mac_cred_copy(src, dest); #endif } /* * Dup cred struct to a new held one. */ struct ucred * crdup(struct ucred *cr) { struct ucred *newcr; newcr = crget(); crcopy(newcr, cr); return (newcr); } /* * Fill in a struct xucred based on a struct ucred. */ void cru2x(struct ucred *cr, struct xucred *xcr) { int ngroups; bzero(xcr, sizeof(*xcr)); xcr->cr_version = XUCRED_VERSION; xcr->cr_uid = cr->cr_uid; ngroups = MIN(cr->cr_ngroups, XU_NGROUPS); xcr->cr_ngroups = ngroups; bcopy(cr->cr_groups, xcr->cr_groups, ngroups * sizeof(*cr->cr_groups)); } void cru2xt(struct thread *td, struct xucred *xcr) { cru2x(td->td_ucred, xcr); xcr->cr_pid = td->td_proc->p_pid; } /* * Set initial process credentials. * Callers are responsible for providing the reference for provided credentials. */ void proc_set_cred_init(struct proc *p, struct ucred *newcred) { p->p_ucred = crcowget(newcred); } /* * Change process credentials. * Callers are responsible for providing the reference for passed credentials * and for freeing old ones. * * Process has to be locked except when it does not have credentials (as it * should not be visible just yet) or when newcred is NULL (as this can be * only used when the process is about to be freed, at which point it should * not be visible anymore). */ void proc_set_cred(struct proc *p, struct ucred *newcred) { struct ucred *cr; cr = p->p_ucred; MPASS(cr != NULL); PROC_LOCK_ASSERT(p, MA_OWNED); KASSERT(newcred->cr_users == 0, ("%s: users %d not 0 on cred %p", __func__, newcred->cr_users, newcred)); mtx_lock(&cr->cr_mtx); KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", __func__, cr->cr_users, cr)); cr->cr_users--; mtx_unlock(&cr->cr_mtx); p->p_ucred = newcred; newcred->cr_users = 1; PROC_UPDATE_COW(p); } void proc_unset_cred(struct proc *p) { struct ucred *cr; MPASS(p->p_state == PRS_ZOMBIE || p->p_state == PRS_NEW); cr = p->p_ucred; p->p_ucred = NULL; KASSERT(cr->cr_users > 0, ("%s: users %d not > 0 on cred %p", __func__, cr->cr_users, cr)); mtx_lock(&cr->cr_mtx); cr->cr_users--; if (cr->cr_users == 0) KASSERT(cr->cr_ref > 0, ("%s: ref %d not > 0 on cred %p", __func__, cr->cr_ref, cr)); mtx_unlock(&cr->cr_mtx); crfree(cr); } struct ucred * crcopysafe(struct proc *p, struct ucred *cr) { struct ucred *oldcred; int groups; PROC_LOCK_ASSERT(p, MA_OWNED); oldcred = p->p_ucred; while (cr->cr_agroups < oldcred->cr_agroups) { groups = oldcred->cr_agroups; PROC_UNLOCK(p); crextend(cr, groups); PROC_LOCK(p); oldcred = p->p_ucred; } crcopy(cr, oldcred); return (oldcred); } /* * Extend the passed in credential to hold n items. */ void crextend(struct ucred *cr, int n) { int cnt; + MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)"); + /* Truncate? */ if (n <= cr->cr_agroups) return; /* * We extend by 2 each time since we're using a power of two * allocator until we need enough groups to fill a page. * Once we're allocating multiple pages, only allocate as many * as we actually need. The case of processes needing a * non-power of two number of pages seems more likely than * a real world process that adds thousands of groups one at a * time. */ if ( n < PAGE_SIZE / sizeof(gid_t) ) { if (cr->cr_agroups == 0) cnt = MAX(1, MINALLOCSIZE / sizeof(gid_t)); else cnt = cr->cr_agroups * 2; while (cnt < n) cnt *= 2; } else cnt = roundup2(n, PAGE_SIZE / sizeof(gid_t)); /* Free the old array. */ if (cr->cr_groups != cr->cr_smallgroups) free(cr->cr_groups, M_CRED); cr->cr_groups = malloc(cnt * sizeof(gid_t), M_CRED, M_WAITOK | M_ZERO); cr->cr_agroups = cnt; } /* - * Copy groups in to a credential, preserving any necessary invariants. - * Currently this includes the sorting of all supplementary gids. - * crextend() must have been called before hand to ensure sufficient - * space is available. + * Normalizes a set of groups to be applied to a 'struct ucred'. + * + * The set of groups is an array that must comprise the effective GID as its + * first element (so its length cannot be 0). + * + * Normalization ensures that elements after the first, which stand for the + * supplementary groups, are sorted in ascending order and do not contain + * duplicates. */ static void -crsetgroups_locked(struct ucred *cr, int ngrp, gid_t *groups) +groups_normalize(int *ngrp, gid_t *groups) { - int i; - int j; - gid_t g; + gid_t prev_g; + int ins_idx; - KASSERT(cr->cr_agroups >= ngrp, ("cr_ngroups is too small")); + groups_check_positive_len(*ngrp); + groups_check_max_len(*ngrp); - bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t)); - cr->cr_ngroups = ngrp; + if (*ngrp == 1) + return; - /* - * Sort all groups except cr_groups[0] to allow groupmember to - * perform a binary search. - * - * XXX: If large numbers of groups become common this should - * be replaced with shell sort like linux uses or possibly - * heap sort. - */ - for (i = 2; i < ngrp; i++) { - g = cr->cr_groups[i]; - for (j = i-1; j >= 1 && g < cr->cr_groups[j]; j--) - cr->cr_groups[j + 1] = cr->cr_groups[j]; - cr->cr_groups[j + 1] = g; + qsort(groups + 1, *ngrp - 1, sizeof(*groups), gidp_cmp); + + /* Remove duplicates. */ + prev_g = groups[1]; + ins_idx = 2; + for (int i = 2; i < *ngrp; ++i) { + const gid_t g = groups[i]; + + if (g != prev_g) { + if (i != ins_idx) + groups[ins_idx] = g; + ++ins_idx; + prev_g = g; + } } + *ngrp = ins_idx; + + groups_check_normalized(*ngrp, groups); +} + +/* + * Internal function copying groups into a credential. + * + * 'ngrp' must be strictly positive. Either the passed 'groups' array must have + * been normalized in advance (see groups_normalize()), else it must be so + * before the structure is to be used again. + * + * This function is suitable to be used under any lock (it doesn't take any lock + * itself nor sleep, and in particular doesn't allocate memory). crextend() + * must have been called beforehand to ensure sufficient space is available. + * See also crsetgroups(), which handles that. + */ +static void +crsetgroups_internal(struct ucred *cr, int ngrp, const gid_t *groups) +{ + + MPASS2(cr->cr_ref == 1, "'cr_ref' must be 1 (referenced, unshared)"); + MPASS2(cr->cr_agroups >= ngrp, "'cr_agroups' too small"); + groups_check_positive_len(ngrp); + + bcopy(groups, cr->cr_groups, ngrp * sizeof(gid_t)); + cr->cr_ngroups = ngrp; } /* * Copy groups in to a credential after expanding it if required. - * Truncate the list to (ngroups_max + 1) if it is too large. + * + * May sleep in order to allocate memory (except if, e.g., crextend() was called + * before with 'ngrp' or greater). Truncates the list to (ngroups_max + 1) if + * it is too large. Array 'groups' doesn't need to be sorted. 'ngrp' must be + * strictly positive. */ void -crsetgroups(struct ucred *cr, int ngrp, gid_t *groups) +crsetgroups(struct ucred *cr, int ngrp, const gid_t *groups) { if (ngrp > ngroups_max + 1) ngrp = ngroups_max + 1; - crextend(cr, ngrp); - crsetgroups_locked(cr, ngrp, groups); + crsetgroups_internal(cr, ngrp, groups); + groups_normalize(&cr->cr_ngroups, cr->cr_groups); } /* * Get login name, if available. */ #ifndef _SYS_SYSPROTO_H_ struct getlogin_args { char *namebuf; u_int namelen; }; #endif /* ARGSUSED */ int sys_getlogin(struct thread *td, struct getlogin_args *uap) { char login[MAXLOGNAME]; struct proc *p = td->td_proc; size_t len; if (uap->namelen > MAXLOGNAME) uap->namelen = MAXLOGNAME; PROC_LOCK(p); SESS_LOCK(p->p_session); len = strlcpy(login, p->p_session->s_login, uap->namelen) + 1; SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); if (len > uap->namelen) return (ERANGE); return (copyout(login, uap->namebuf, len)); } /* * Set login name. */ #ifndef _SYS_SYSPROTO_H_ struct setlogin_args { char *namebuf; }; #endif /* ARGSUSED */ int sys_setlogin(struct thread *td, struct setlogin_args *uap) { struct proc *p = td->td_proc; int error; char logintmp[MAXLOGNAME]; CTASSERT(sizeof(p->p_session->s_login) >= sizeof(logintmp)); error = priv_check(td, PRIV_PROC_SETLOGIN); if (error) return (error); error = copyinstr(uap->namebuf, logintmp, sizeof(logintmp), NULL); if (error != 0) { if (error == ENAMETOOLONG) error = EINVAL; return (error); } AUDIT_ARG_LOGIN(logintmp); PROC_LOCK(p); SESS_LOCK(p->p_session); strcpy(p->p_session->s_login, logintmp); SESS_UNLOCK(p->p_session); PROC_UNLOCK(p); return (0); } void setsugid(struct proc *p) { PROC_LOCK_ASSERT(p, MA_OWNED); p->p_flag |= P_SUGID; } /*- * Change a process's effective uid. * Side effects: newcred->cr_uid and newcred->cr_uidinfo will be modified. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_euid(struct ucred *newcred, struct uidinfo *euip) { newcred->cr_uid = euip->ui_uid; uihold(euip); uifree(newcred->cr_uidinfo); newcred->cr_uidinfo = euip; } /*- * Change a process's effective gid. * Side effects: newcred->cr_gid will be modified. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_egid(struct ucred *newcred, gid_t egid) { newcred->cr_groups[0] = egid; } /*- * Change a process's real uid. * Side effects: newcred->cr_ruid will be updated, newcred->cr_ruidinfo * will be updated, and the old and new cr_ruidinfo proc * counts will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_ruid(struct ucred *newcred, struct uidinfo *ruip) { (void)chgproccnt(newcred->cr_ruidinfo, -1, 0); newcred->cr_ruid = ruip->ui_uid; uihold(ruip); uifree(newcred->cr_ruidinfo); newcred->cr_ruidinfo = ruip; (void)chgproccnt(newcred->cr_ruidinfo, 1, 0); } /*- * Change a process's real gid. * Side effects: newcred->cr_rgid will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_rgid(struct ucred *newcred, gid_t rgid) { newcred->cr_rgid = rgid; } /*- * Change a process's saved uid. * Side effects: newcred->cr_svuid will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_svuid(struct ucred *newcred, uid_t svuid) { newcred->cr_svuid = svuid; } /*- * Change a process's saved gid. * Side effects: newcred->cr_svgid will be updated. * References: newcred must be an exclusive credential reference for the * duration of the call. */ void change_svgid(struct ucred *newcred, gid_t svgid) { newcred->cr_svgid = svgid; } bool allow_ptrace = true; SYSCTL_BOOL(_security_bsd, OID_AUTO, allow_ptrace, CTLFLAG_RWTUN, &allow_ptrace, 0, "Deny ptrace(2) use by returning ENOSYS"); diff --git a/sys/sys/syscallsubr.h b/sys/sys/syscallsubr.h index 9edd62729c38..78de8876e51b 100644 --- a/sys/sys/syscallsubr.h +++ b/sys/sys/syscallsubr.h @@ -1,369 +1,369 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2002 Ian Dowse. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _SYS_SYSCALLSUBR_H_ #define _SYS_SYSCALLSUBR_H_ #include #include #include #include #include #include #include struct __wrusage; struct cpuset_copy_cb; struct file; struct filecaps; enum idtype; struct itimerval; struct image_args; struct jail; struct kevent; struct kevent_copyops; struct kld_file_stat; struct ksiginfo; struct mbuf; struct msghdr; struct msqid_ds; struct pollfd; struct ogetdirentries_args; struct rlimit; struct rusage; struct sched_param; struct sembuf; union semun; struct sockaddr; struct stat; struct thr_param; struct timex; struct uio; struct vm_map; struct vmspace; typedef int (*mmap_check_fp_fn)(struct file *, int, int, int); struct mmap_req { vm_offset_t mr_hint; vm_size_t mr_len; int mr_prot; int mr_flags; int mr_fd; off_t mr_pos; mmap_check_fp_fn mr_check_fp_fn; }; uint64_t at2cnpflags(u_int at_flags, u_int mask); int kern___getcwd(struct thread *td, char *buf, enum uio_seg bufseg, size_t buflen, size_t path_max); int kern_accept(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, struct file **fp); int kern_accept4(struct thread *td, int s, struct sockaddr **name, socklen_t *namelen, int flags, struct file **fp); int kern_accessat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int flags, int mode); int kern_adjtime(struct thread *td, struct timeval *delta, struct timeval *olddelta); int kern_alternate_path(struct thread *td, const char *prefix, const char *path, enum uio_seg pathseg, char **pathbuf, int create, int dirfd); int kern_bindat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_break(struct thread *td, uintptr_t *addr); int kern_cap_ioctls_limit(struct thread *td, int fd, u_long *cmds, size_t ncmds); int kern_cap_rights_limit(struct thread *td, int fd, cap_rights_t *rights); int kern_chdir(struct thread *td, const char *path, enum uio_seg pathseg); int kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, clockid_t *clk_id); int kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts); int kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats); int kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, const struct timespec *rqtp, struct timespec *rmtp); int kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats); void kern_thread_cputime(struct thread *targettd, struct timespec *ats); void kern_process_cputime(struct proc *targetp, struct timespec *ats); int kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd); int kern_close(struct thread *td, int fd); int kern_connectat(struct thread *td, int dirfd, int fd, struct sockaddr *sa); int kern_copy_file_range(struct thread *td, int infd, off_t *inoffp, int outfd, off_t *outoffp, size_t len, unsigned int flags); int user_cpuset_getaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, cpuset_t *maskp, const struct cpuset_copy_cb *cb); int kern_cpuset_getaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, cpuset_t *mask); int kern_cpuset_setaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, cpuset_t *maskp); int user_cpuset_setaffinity(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t cpusetsize, const cpuset_t *maskp, const struct cpuset_copy_cb *cb); int kern_cpuset_getdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, domainset_t *maskp, int *policyp, const struct cpuset_copy_cb *cb); int kern_cpuset_setdomain(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, size_t domainsetsize, const domainset_t *maskp, int policy, const struct cpuset_copy_cb *cb); int kern_cpuset_getid(struct thread *td, cpulevel_t level, cpuwhich_t which, id_t id, cpusetid_t *setid); int kern_cpuset_setid(struct thread *td, cpuwhich_t which, id_t id, cpusetid_t setid); int kern_dup(struct thread *td, u_int mode, int flags, int old, int new); int kern_execve(struct thread *td, struct image_args *args, struct mac *mac_p, struct vmspace *oldvmspace); int kern_fchmodat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, mode_t mode, int flag); int kern_fchownat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int uid, int gid, int flag); int kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg); int kern_fcntl_freebsd(struct thread *td, int fd, int cmd, long arg); int kern_fhopen(struct thread *td, const struct fhandle *u_fhp, int flags); int kern_fhstat(struct thread *td, fhandle_t fh, struct stat *buf); int kern_fhstatfs(struct thread *td, fhandle_t fh, struct statfs *buf); int kern_fpathconf(struct thread *td, int fd, int name, long *valuep); int kern_fstat(struct thread *td, int fd, struct stat *sbp); int kern_fstatfs(struct thread *td, int fd, struct statfs *buf); int kern_fsync(struct thread *td, int fd, bool fullsync); int kern_ftruncate(struct thread *td, int fd, off_t length); int kern_futimes(struct thread *td, int fd, struct timeval *tptr, enum uio_seg tptrseg); int kern_futimens(struct thread *td, int fd, struct timespec *tptr, enum uio_seg tptrseg); int kern_getdirentries(struct thread *td, int fd, char *buf, size_t count, off_t *basep, ssize_t *residp, enum uio_seg bufseg); int kern_getfhat(struct thread *td, int flags, int fd, const char *path, enum uio_seg pathseg, fhandle_t *fhp, enum uio_seg fhseg); int kern_getfsstat(struct thread *td, struct statfs **buf, size_t bufsize, size_t *countp, enum uio_seg bufseg, int mode); int kern_getitimer(struct thread *, u_int, struct itimerval *); int kern_getppid(struct thread *); int kern_getpeername(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getpriority(struct thread *td, int which, int who); int kern_getrusage(struct thread *td, int who, struct rusage *rup); int kern_getsid(struct thread *td, pid_t pid); int kern_getsockname(struct thread *td, int fd, struct sockaddr **sa, socklen_t *alen); int kern_getsockopt(struct thread *td, int s, int level, int name, void *optval, enum uio_seg valseg, socklen_t *valsize); int kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data); int kern_jail(struct thread *td, struct jail *j); int kern_jail_get(struct thread *td, struct uio *options, int flags); int kern_jail_set(struct thread *td, struct uio *options, int flags); int kern_kcmp(struct thread *td, pid_t pid1, pid_t pid2, int type, uintptr_t idx1, uintptr_t idx2); int kern_kevent(struct thread *td, int fd, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kevent_anonymous(struct thread *td, int nevents, struct kevent_copyops *k_ops); int kern_kevent_fp(struct thread *td, struct file *fp, int nchanges, int nevents, struct kevent_copyops *k_ops, const struct timespec *timeout); int kern_kill(struct thread *td, pid_t pid, int signum); int kern_kqueue(struct thread *td, int flags, struct filecaps *fcaps); int kern_kldload(struct thread *td, const char *file, int *fileid); int kern_kldstat(struct thread *td, int fileid, struct kld_file_stat *stat); int kern_kldunload(struct thread *td, int fileid, int flags); int kern_linkat(struct thread *td, int fd1, int fd2, const char *path1, const char *path2, enum uio_seg segflg, int flag); int kern_listen(struct thread *td, int s, int backlog); int kern_lseek(struct thread *td, int fd, off_t offset, int whence); int kern_lutimes(struct thread *td, const char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_madvise(struct thread *td, uintptr_t addr, size_t len, int behav); int kern_membarrier(struct thread *td, int cmd, unsigned flags, int cpu_id); int kern_mincore(struct thread *td, uintptr_t addr, size_t len, char *vec); int kern_minherit(struct thread *td, uintptr_t addr, size_t len, int inherit); int kern_mkdirat(struct thread *td, int fd, const char *path, enum uio_seg segflg, int mode); int kern_mkfifoat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int mode); int kern_mknodat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, int mode, dev_t dev); int kern_mlock(struct proc *proc, struct ucred *cred, uintptr_t addr, size_t len); int kern_mmap(struct thread *td, uintptr_t addr, size_t len, int prot, int flags, int fd, off_t pos); int kern_mmap_racct_check(struct thread *td, struct vm_map *map, vm_size_t size); int kern_mmap_maxprot(struct proc *p, int prot); int kern_mmap_req(struct thread *td, const struct mmap_req *mrp); int kern_mprotect(struct thread *td, uintptr_t addr, size_t size, int prot, int flags); int kern_msgctl(struct thread *, int, int, struct msqid_ds *); int kern_msgrcv(struct thread *, int, void *, size_t, long, int, long *); int kern_msgsnd(struct thread *, int, const void *, size_t, int, long); int kern_msync(struct thread *td, uintptr_t addr, size_t size, int flags); int kern_munlock(struct thread *td, uintptr_t addr, size_t size); int kern_munmap(struct thread *td, uintptr_t addr, size_t size); int kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt); int kern_ntp_adjtime(struct thread *td, struct timex *ntv, int *retvalp); int kern_ogetdirentries(struct thread *td, struct ogetdirentries_args *uap, long *ploff); int kern_openat(struct thread *td, int dirfd, const char *path, enum uio_seg pathseg, int flags, int mode); int kern_openatfp(struct thread *td, int dirfd, const char *path, enum uio_seg pathseg, int flags, int mode, struct file **fpp); int kern_pathconf(struct thread *td, const char *path, enum uio_seg pathseg, int name, u_long flags, long *valuep); int kern_pipe(struct thread *td, int fildes[2], int flags, struct filecaps *fcaps1, struct filecaps *fcaps2); int kern_poll(struct thread *td, struct pollfd *fds, u_int nfds, struct timespec *tsp, sigset_t *uset); int kern_poll_kfds(struct thread *td, struct pollfd *fds, u_int nfds, struct timespec *tsp, sigset_t *uset); bool kern_poll_maxfds(u_int nfds); int kern_posix_error(struct thread *td, int error); int kern_posix_fadvise(struct thread *td, int fd, off_t offset, off_t len, int advice); int kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len); int kern_procctl(struct thread *td, enum idtype idtype, id_t id, int com, void *data); int kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset); int kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex, struct timeval *tvp, sigset_t *uset, int abi_nfdbits); int kern_ptrace(struct thread *td, int req, pid_t pid, void *addr, int data); int kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte, off_t offset); int kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset); int kern_readlinkat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, char *buf, enum uio_seg bufseg, size_t count); int kern_readv(struct thread *td, int fd, struct uio *auio); int kern_recvit(struct thread *td, int s, struct msghdr *mp, enum uio_seg fromseg, struct mbuf **controlp); int kern_renameat(struct thread *td, int oldfd, const char *old, int newfd, const char *new, enum uio_seg pathseg); int kern_frmdirat(struct thread *td, int dfd, const char *path, int fd, enum uio_seg pathseg, int flag); int kern_sched_getparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_getscheduler(struct thread *td, struct thread *targettd, int *policy); int kern_sched_setparam(struct thread *td, struct thread *targettd, struct sched_param *param); int kern_sched_setscheduler(struct thread *td, struct thread *targettd, int policy, struct sched_param *param); int kern_sched_rr_get_interval(struct thread *td, pid_t pid, struct timespec *ts); int kern_sched_rr_get_interval_td(struct thread *td, struct thread *targettd, struct timespec *ts); int kern_semctl(struct thread *td, int semid, int semnum, int cmd, union semun *arg, register_t *rval); int kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou, fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits); int kern_sendit(struct thread *td, int s, struct msghdr *mp, int flags, struct mbuf *control, enum uio_seg segflg); -int kern_setgroups(struct thread *td, int ngrp, gid_t *groups); +int kern_setgroups(struct thread *td, int *ngrpp, gid_t *groups); int kern_setitimer(struct thread *, u_int, struct itimerval *, struct itimerval *); int kern_setpriority(struct thread *td, int which, int who, int prio); int kern_setrlimit(struct thread *, u_int, struct rlimit *); int kern_setsockopt(struct thread *td, int s, int level, int name, const void *optval, enum uio_seg valseg, socklen_t valsize); int kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp); int kern_shm_open(struct thread *td, const char *userpath, int flags, mode_t mode, struct filecaps *fcaps); int kern_shm_open2(struct thread *td, const char *path, int flags, mode_t mode, int shmflags, struct filecaps *fcaps, const char *name); int kern_shmat(struct thread *td, int shmid, const void *shmaddr, int shmflg); int kern_shmctl(struct thread *td, int shmid, int cmd, void *buf, size_t *bufsz); int kern_shutdown(struct thread *td, int s, int how); int kern_sigaction(struct thread *td, int sig, const struct sigaction *act, struct sigaction *oact, int flags); int kern_sigaltstack(struct thread *td, stack_t *ss, stack_t *oss); int kern_sigprocmask(struct thread *td, int how, sigset_t *set, sigset_t *oset, int flags); int kern_sigsuspend(struct thread *td, sigset_t mask); int kern_sigtimedwait(struct thread *td, sigset_t waitset, struct ksiginfo *ksi, struct timespec *timeout); int kern_sigqueue(struct thread *td, pid_t pid, int signum, union sigval *value); int kern_socket(struct thread *td, int domain, int type, int protocol); int kern_statat(struct thread *td, int flag, int fd, const char *path, enum uio_seg pathseg, struct stat *sbp); int kern_specialfd(struct thread *td, int type, void *arg); int kern_statfs(struct thread *td, const char *path, enum uio_seg pathseg, struct statfs *buf); int kern_symlinkat(struct thread *td, const char *path1, int fd, const char *path2, enum uio_seg segflg); int kern_sync(struct thread *td); int kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, int *timerid, int preset_id); int kern_ktimer_delete(struct thread *, int); int kern_ktimer_settime(struct thread *td, int timer_id, int flags, struct itimerspec *val, struct itimerspec *oval); int kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val); int kern_ktimer_getoverrun(struct thread *td, int timer_id); int kern_semop(struct thread *td, int usemid, struct sembuf *usops, size_t nsops, struct timespec *timeout); int kern_thr_alloc(struct proc *, int pages, struct thread **); int kern_thr_exit(struct thread *td); int kern_thr_new(struct thread *td, struct thr_param *param); int kern_thr_suspend(struct thread *td, struct timespec *tsp); int kern_truncate(struct thread *td, const char *path, enum uio_seg pathseg, off_t length); int kern_funlinkat(struct thread *td, int dfd, const char *path, int fd, enum uio_seg pathseg, int flag, ino_t oldinum); int kern_utimesat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, struct timeval *tptr, enum uio_seg tptrseg); int kern_utimensat(struct thread *td, int fd, const char *path, enum uio_seg pathseg, struct timespec *tptr, enum uio_seg tptrseg, int flag); int kern_wait(struct thread *td, pid_t pid, int *status, int options, struct rusage *rup); int kern_wait6(struct thread *td, enum idtype idtype, id_t id, int *status, int options, struct __wrusage *wrup, siginfo_t *sip); int kern_writev(struct thread *td, int fd, struct uio *auio); int kern_socketpair(struct thread *td, int domain, int type, int protocol, int *rsv); int kern_unmount(struct thread *td, const char *path, int flags); /* flags for kern_sigaction */ #define KSA_OSIGSET 0x0001 /* uses osigact_t */ #define KSA_FREEBSD4 0x0002 /* uses ucontext4 */ struct freebsd11_dirent; int freebsd11_kern_getdirentries(struct thread *td, int fd, char *ubuf, u_int count, long *basep, void (*func)(struct freebsd11_dirent *)); #endif /* !_SYS_SYSCALLSUBR_H_ */ diff --git a/sys/sys/ucred.h b/sys/sys/ucred.h index 243a2431bd0b..8152f962f3cb 100644 --- a/sys/sys/ucred.h +++ b/sys/sys/ucred.h @@ -1,184 +1,184 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ucred.h 8.4 (Berkeley) 1/9/95 */ #ifndef _SYS_UCRED_H_ #define _SYS_UCRED_H_ #if defined(_KERNEL) || defined(_WANT_UCRED) #include #include #endif #include struct loginclass; #define XU_NGROUPS 16 #if defined(_KERNEL) || defined(_WANT_UCRED) /* * Number of groups inlined in 'struct ucred'. It must stay reasonably low as * it is also used by some functions to allocate an array of this size on the * stack. */ #define CRED_SMALLGROUPS_NB 16 /* * Credentials. * * Please do not inspect cr_uid directly to determine superuserness. The * priv(9) interface should be used to check for privilege. * * Lock reference: * c - cr_mtx * * Unmarked fields are constant after creation. * * See "Credential management" comment in kern_prot.c for more information. */ struct ucred { struct mtx cr_mtx; u_int cr_ref; /* (c) reference count */ u_int cr_users; /* (c) proc + thread using this cred */ struct auditinfo_addr cr_audit; /* Audit properties. */ #define cr_startcopy cr_uid uid_t cr_uid; /* effective user id */ uid_t cr_ruid; /* real user id */ uid_t cr_svuid; /* saved user id */ int cr_ngroups; /* number of groups */ gid_t cr_rgid; /* real group id */ gid_t cr_svgid; /* saved group id */ struct uidinfo *cr_uidinfo; /* per euid resource consumption */ struct uidinfo *cr_ruidinfo; /* per ruid resource consumption */ struct prison *cr_prison; /* jail(2) */ struct loginclass *cr_loginclass; /* login class */ u_int cr_flags; /* credential flags */ void *cr_pspare2[2]; /* general use 2 */ #define cr_endcopy cr_label struct label *cr_label; /* MAC label */ gid_t *cr_groups; /* groups */ int cr_agroups; /* Available groups */ /* storage for small groups */ gid_t cr_smallgroups[CRED_SMALLGROUPS_NB]; }; #define NOCRED ((struct ucred *)0) /* no credential available */ #define FSCRED ((struct ucred *)-1) /* filesystem credential */ #endif /* _KERNEL || _WANT_UCRED */ /* * Flags for cr_flags. */ #define CRED_FLAG_CAPMODE 0x00000001 /* In capability mode. */ /* * This is the external representation of struct ucred. */ struct xucred { u_int cr_version; /* structure layout version */ uid_t cr_uid; /* effective user id */ short cr_ngroups; /* number of groups */ gid_t cr_groups[XU_NGROUPS]; /* groups */ union { void *_cr_unused1; /* compatibility with old ucred */ pid_t cr_pid; }; }; #define XUCRED_VERSION 0 /* This can be used for both ucred and xucred structures. */ #define cr_gid cr_groups[0] #ifdef _KERNEL struct proc; struct thread; struct credbatch { struct ucred *cred; int users; int ref; }; static inline void credbatch_prep(struct credbatch *crb) { crb->cred = NULL; crb->users = 0; crb->ref = 0; } void credbatch_add(struct credbatch *crb, struct thread *td); static inline void credbatch_process(struct credbatch *crb __unused) { } void credbatch_final(struct credbatch *crb); void change_egid(struct ucred *newcred, gid_t egid); void change_euid(struct ucred *newcred, struct uidinfo *euip); void change_rgid(struct ucred *newcred, gid_t rgid); void change_ruid(struct ucred *newcred, struct uidinfo *ruip); void change_svgid(struct ucred *newcred, gid_t svgid); void change_svuid(struct ucred *newcred, uid_t svuid); void crcopy(struct ucred *dest, struct ucred *src); struct ucred *crcopysafe(struct proc *p, struct ucred *cr); struct ucred *crdup(struct ucred *cr); void crextend(struct ucred *cr, int n); void proc_set_cred_init(struct proc *p, struct ucred *cr); void proc_set_cred(struct proc *p, struct ucred *cr); void proc_unset_cred(struct proc *p); void crfree(struct ucred *cr); struct ucred *crcowsync(void); struct ucred *crget(void); struct ucred *crhold(struct ucred *cr); struct ucred *crcowget(struct ucred *cr); void crcowfree(struct thread *td); void cru2x(struct ucred *cr, struct xucred *xcr); void cru2xt(struct thread *td, struct xucred *xcr); -void crsetgroups(struct ucred *cr, int n, gid_t *groups); +void crsetgroups(struct ucred *cr, int ngrp, const gid_t *groups); /* * Returns whether gid designates a primary group in cred. */ static inline int group_is_primary(const gid_t gid, const struct ucred *const cred) { return (gid == cred->cr_groups[0] || gid == cred->cr_rgid || gid == cred->cr_svgid); } int group_is_supplementary(const gid_t gid, const struct ucred *const cred); int groupmember(gid_t gid, const struct ucred *cred); int realgroupmember(gid_t gid, const struct ucred *cred); #endif /* _KERNEL */ #endif /* !_SYS_UCRED_H_ */