diff --git a/sys/dev/cxgbe/tom/t4_tom.c b/sys/dev/cxgbe/tom/t4_tom.c index c423ca011977..b1982341f4d5 100644 --- a/sys/dev/cxgbe/tom/t4_tom.c +++ b/sys/dev/cxgbe/tom/t4_tom.c @@ -1,1948 +1,1948 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include "opt_kern_tls.h" #include "opt_ratelimit.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #ifdef TCP_OFFLOAD #include "common/common.h" #include "common/t4_msg.h" #include "common/t4_regs.h" #include "common/t4_regs_values.h" #include "common/t4_tcb.h" #include "t4_clip.h" #include "tom/t4_tom_l2t.h" #include "tom/t4_tom.h" #include "tom/t4_tls.h" static struct protosw *tcp_protosw; static struct protosw toe_protosw; static struct pr_usrreqs toe_usrreqs; static struct protosw *tcp6_protosw; static struct protosw toe6_protosw; static struct pr_usrreqs toe6_usrreqs; /* Module ops */ static int t4_tom_mod_load(void); static int t4_tom_mod_unload(void); static int t4_tom_modevent(module_t, int, void *); /* ULD ops and helpers */ static int t4_tom_activate(struct adapter *); static int t4_tom_deactivate(struct adapter *); static struct uld_info tom_uld_info = { .uld_id = ULD_TOM, .activate = t4_tom_activate, .deactivate = t4_tom_deactivate, }; static void release_offload_resources(struct toepcb *); static int alloc_tid_tabs(struct tid_info *); static void free_tid_tabs(struct tid_info *); static void free_tom_data(struct adapter *, struct tom_data *); static void reclaim_wr_resources(void *, int); struct toepcb * alloc_toepcb(struct vi_info *vi, int flags) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct toepcb *toep; int tx_credits, txsd_total, len; /* * The firmware counts tx work request credits in units of 16 bytes * each. Reserve room for an ABORT_REQ so the driver never has to worry * about tx credits if it wants to abort a connection. */ tx_credits = sc->params.ofldq_wr_cred; tx_credits -= howmany(sizeof(struct cpl_abort_req), 16); /* * Shortest possible tx work request is a fw_ofld_tx_data_wr + 1 byte * immediate payload, and firmware counts tx work request credits in * units of 16 byte. Calculate the maximum work requests possible. */ txsd_total = tx_credits / howmany(sizeof(struct fw_ofld_tx_data_wr) + 1, 16); len = offsetof(struct toepcb, txsd) + txsd_total * sizeof(struct ofld_tx_sdesc); toep = malloc(len, M_CXGBE, M_ZERO | flags); if (toep == NULL) return (NULL); refcount_init(&toep->refcount, 1); toep->td = sc->tom_softc; toep->vi = vi; toep->tid = -1; toep->tx_total = tx_credits; toep->tx_credits = tx_credits; mbufq_init(&toep->ulp_pduq, INT_MAX); mbufq_init(&toep->ulp_pdu_reclaimq, INT_MAX); toep->txsd_total = txsd_total; toep->txsd_avail = txsd_total; toep->txsd_pidx = 0; toep->txsd_cidx = 0; aiotx_init_toep(toep); return (toep); } /* * Initialize a toepcb after its params have been filled out. */ int init_toepcb(struct vi_info *vi, struct toepcb *toep) { struct conn_params *cp = &toep->params; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct tx_cl_rl_params *tc; if (cp->tc_idx >= 0 && cp->tc_idx < sc->params.nsched_cls) { tc = &pi->sched_params->cl_rl[cp->tc_idx]; mtx_lock(&sc->tc_lock); if (tc->state != CS_HW_CONFIGURED) { CH_ERR(vi, "tid %d cannot be bound to traffic class %d " "because it is not configured (its state is %d)\n", toep->tid, cp->tc_idx, tc->state); cp->tc_idx = -1; } else { tc->refcount++; } mtx_unlock(&sc->tc_lock); } toep->ofld_txq = &sc->sge.ofld_txq[cp->txq_idx]; toep->ofld_rxq = &sc->sge.ofld_rxq[cp->rxq_idx]; toep->ctrlq = &sc->sge.ctrlq[pi->port_id]; tls_init_toep(toep); if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_init_toep(toep); toep->flags |= TPF_INITIALIZED; return (0); } struct toepcb * hold_toepcb(struct toepcb *toep) { refcount_acquire(&toep->refcount); return (toep); } void free_toepcb(struct toepcb *toep) { if (refcount_release(&toep->refcount) == 0) return; KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: attached to an inpcb", __func__)); KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: CPL pending", __func__)); if (toep->flags & TPF_INITIALIZED) { if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_uninit_toep(toep); tls_uninit_toep(toep); } free(toep, M_CXGBE); } /* * Set up the socket for TCP offload. */ void offload_socket(struct socket *so, struct toepcb *toep) { struct tom_data *td = toep->td; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct sockbuf *sb; INP_WLOCK_ASSERT(inp); /* Update socket */ sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags |= SB_NOCOALESCE; if (inp->inp_vflag & INP_IPV6) so->so_proto = &toe6_protosw; else so->so_proto = &toe_protosw; SOCKBUF_UNLOCK(sb); /* Update TCP PCB */ tp->tod = &td->tod; tp->t_toe = toep; tp->t_flags |= TF_TOE; /* Install an extra hold on inp */ toep->inp = inp; toep->flags |= TPF_ATTACHED; in_pcbref(inp); /* Add the TOE PCB to the active list */ mtx_lock(&td->toep_list_lock); TAILQ_INSERT_HEAD(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } void restore_so_proto(struct socket *so, bool v6) { if (v6) so->so_proto = tcp6_protosw; else so->so_proto = tcp_protosw; } /* This is _not_ the normal way to "unoffload" a socket. */ void undo_offload_socket(struct socket *so) { struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); struct toepcb *toep = tp->t_toe; struct tom_data *td = toep->td; struct sockbuf *sb; INP_WLOCK_ASSERT(inp); sb = &so->so_snd; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; SOCKBUF_UNLOCK(sb); sb = &so->so_rcv; SOCKBUF_LOCK(sb); sb->sb_flags &= ~SB_NOCOALESCE; restore_so_proto(so, inp->inp_vflag & INP_IPV6); SOCKBUF_UNLOCK(sb); tp->tod = NULL; tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->inp = NULL; toep->flags &= ~TPF_ATTACHED; if (in_pcbrele_wlocked(inp)) panic("%s: inp freed.", __func__); mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); } static void release_offload_resources(struct toepcb *toep) { struct tom_data *td = toep->td; struct adapter *sc = td_adapter(td); int tid = toep->tid; KASSERT(!(toep->flags & TPF_CPL_PENDING), ("%s: %p has CPL pending.", __func__, toep)); KASSERT(!(toep->flags & TPF_ATTACHED), ("%s: %p is still attached.", __func__, toep)); CTR5(KTR_CXGBE, "%s: toep %p (tid %d, l2te %p, ce %p)", __func__, toep, tid, toep->l2te, toep->ce); /* * These queues should have been emptied at approximately the same time * that a normal connection's socket's so_snd would have been purged or * drained. Do _not_ clean up here. */ MPASS(mbufq_len(&toep->ulp_pduq) == 0); MPASS(mbufq_len(&toep->ulp_pdu_reclaimq) == 0); #ifdef INVARIANTS if (ulp_mode(toep) == ULP_MODE_TCPDDP) ddp_assert_empty(toep); #endif MPASS(TAILQ_EMPTY(&toep->aiotx_jobq)); if (toep->l2te) t4_l2t_release(toep->l2te); if (tid >= 0) { remove_tid(sc, tid, toep->ce ? 2 : 1); release_tid(sc, tid, toep->ctrlq); } if (toep->ce) t4_release_clip_entry(sc, toep->ce); if (toep->params.tc_idx != -1) t4_release_cl_rl(sc, toep->vi->pi->port_id, toep->params.tc_idx); mtx_lock(&td->toep_list_lock); TAILQ_REMOVE(&td->toep_list, toep, link); mtx_unlock(&td->toep_list_lock); free_toepcb(toep); } /* * The kernel is done with the TCP PCB and this is our opportunity to unhook the * toepcb hanging off of it. If the TOE driver is also done with the toepcb (no * pending CPL) then it is time to release all resources tied to the toepcb. * * Also gets called when an offloaded active open fails and the TOM wants the * kernel to take the TCP PCB back. */ static void t4_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp) { #if defined(KTR) || defined(INVARIANTS) struct inpcb *inp = tp->t_inpcb; #endif struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(inp); KASSERT(toep != NULL, ("%s: toep is NULL", __func__)); KASSERT(toep->flags & TPF_ATTACHED, ("%s: not attached", __func__)); #ifdef KTR if (tp->t_state == TCPS_SYN_SENT) { CTR6(KTR_CXGBE, "%s: atid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); } else { CTR6(KTR_CXGBE, "t4_pcb_detach: tid %d (%s), toep %p (0x%x), inp %p (0x%x)", toep->tid, tcpstates[tp->t_state], toep, toep->flags, inp, inp->inp_flags); } #endif if (ulp_mode(toep) == ULP_MODE_TLS) tls_detach(toep); tp->tod = NULL; tp->t_toe = NULL; tp->t_flags &= ~TF_TOE; toep->flags &= ~TPF_ATTACHED; if (!(toep->flags & TPF_CPL_PENDING)) release_offload_resources(toep); } /* * setsockopt handler. */ static void t4_ctloutput(struct toedev *tod, struct tcpcb *tp, int dir, int name) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = tp->t_toe; if (dir == SOPT_GET) return; CTR4(KTR_CXGBE, "%s: tp %p, dir %u, name %u", __func__, tp, dir, name); switch (name) { case TCP_NODELAY: if (tp->t_state != TCPS_ESTABLISHED) break; toep->params.nagle = tp->t_flags & TF_NODELAY ? 0 : 1; t4_set_tcb_field(sc, toep->ctrlq, toep, W_TCB_T_FLAGS, V_TF_NAGLE(1), V_TF_NAGLE(toep->params.nagle), 0, 0); break; default: break; } } static inline uint64_t get_tcb_tflags(const uint64_t *tcb) { return ((be64toh(tcb[14]) << 32) | (be64toh(tcb[15]) >> 32)); } static inline uint32_t get_tcb_field(const uint64_t *tcb, u_int word, uint32_t mask, u_int shift) { #define LAST_WORD ((TCB_SIZE / 4) - 1) uint64_t t1, t2; int flit_idx; MPASS(mask != 0); MPASS(word <= LAST_WORD); MPASS(shift < 32); flit_idx = (LAST_WORD - word) / 2; if (word & 0x1) shift += 32; t1 = be64toh(tcb[flit_idx]) >> shift; t2 = 0; if (fls(mask) > 64 - shift) { /* * Will spill over into the next logical flit, which is the flit * before this one. The flit_idx before this one must be valid. */ MPASS(flit_idx > 0); t2 = be64toh(tcb[flit_idx - 1]) << (64 - shift); } return ((t2 | t1) & mask); #undef LAST_WORD } #define GET_TCB_FIELD(tcb, F) \ get_tcb_field(tcb, W_TCB_##F, M_TCB_##F, S_TCB_##F) /* * Issues a CPL_GET_TCB to read the entire TCB for the tid. */ static int send_get_tcb(struct adapter *sc, u_int tid) { struct cpl_get_tcb *cpl; struct wrq_cookie cookie; MPASS(tid >= sc->tids.tid_base); MPASS(tid - sc->tids.tid_base < sc->tids.ntids); cpl = start_wrq_wr(&sc->sge.ctrlq[0], howmany(sizeof(*cpl), 16), &cookie); if (__predict_false(cpl == NULL)) return (ENOMEM); bzero(cpl, sizeof(*cpl)); INIT_TP_WR(cpl, tid); OPCODE_TID(cpl) = htobe32(MK_OPCODE_TID(CPL_GET_TCB, tid)); cpl->reply_ctrl = htobe16(V_REPLY_CHAN(0) | V_QUEUENO(sc->sge.ofld_rxq[0].iq.cntxt_id)); cpl->cookie = 0xff; commit_wrq_wr(&sc->sge.ctrlq[0], cpl, &cookie); return (0); } static struct tcb_histent * alloc_tcb_histent(struct adapter *sc, u_int tid, int flags) { struct tcb_histent *te; MPASS(flags == M_NOWAIT || flags == M_WAITOK); te = malloc(sizeof(*te), M_CXGBE, M_ZERO | flags); if (te == NULL) return (NULL); mtx_init(&te->te_lock, "TCB entry", NULL, MTX_DEF); callout_init_mtx(&te->te_callout, &te->te_lock, 0); te->te_adapter = sc; te->te_tid = tid; return (te); } static void free_tcb_histent(struct tcb_histent *te) { mtx_destroy(&te->te_lock); free(te, M_CXGBE); } /* * Start tracking the tid in the TCB history. */ int add_tid_to_history(struct adapter *sc, u_int tid) { struct tcb_histent *te = NULL; struct tom_data *td = sc->tom_softc; int rc; MPASS(tid >= sc->tids.tid_base); MPASS(tid - sc->tids.tid_base < sc->tids.ntids); if (td->tcb_history == NULL) return (ENXIO); rw_wlock(&td->tcb_history_lock); if (td->tcb_history[tid] != NULL) { rc = EEXIST; goto done; } te = alloc_tcb_histent(sc, tid, M_NOWAIT); if (te == NULL) { rc = ENOMEM; goto done; } mtx_lock(&te->te_lock); rc = send_get_tcb(sc, tid); if (rc == 0) { te->te_flags |= TE_RPL_PENDING; td->tcb_history[tid] = te; } else { free(te, M_CXGBE); } mtx_unlock(&te->te_lock); done: rw_wunlock(&td->tcb_history_lock); return (rc); } static void remove_tcb_histent(struct tcb_histent *te) { struct adapter *sc = te->te_adapter; struct tom_data *td = sc->tom_softc; rw_assert(&td->tcb_history_lock, RA_WLOCKED); mtx_assert(&te->te_lock, MA_OWNED); MPASS(td->tcb_history[te->te_tid] == te); td->tcb_history[te->te_tid] = NULL; free_tcb_histent(te); rw_wunlock(&td->tcb_history_lock); } static inline struct tcb_histent * lookup_tcb_histent(struct adapter *sc, u_int tid, bool addrem) { struct tcb_histent *te; struct tom_data *td = sc->tom_softc; MPASS(tid >= sc->tids.tid_base); MPASS(tid - sc->tids.tid_base < sc->tids.ntids); if (td->tcb_history == NULL) return (NULL); if (addrem) rw_wlock(&td->tcb_history_lock); else rw_rlock(&td->tcb_history_lock); te = td->tcb_history[tid]; if (te != NULL) { mtx_lock(&te->te_lock); return (te); /* with both locks held */ } if (addrem) rw_wunlock(&td->tcb_history_lock); else rw_runlock(&td->tcb_history_lock); return (te); } static inline void release_tcb_histent(struct tcb_histent *te) { struct adapter *sc = te->te_adapter; struct tom_data *td = sc->tom_softc; mtx_assert(&te->te_lock, MA_OWNED); mtx_unlock(&te->te_lock); rw_assert(&td->tcb_history_lock, RA_RLOCKED); rw_runlock(&td->tcb_history_lock); } static void request_tcb(void *arg) { struct tcb_histent *te = arg; mtx_assert(&te->te_lock, MA_OWNED); /* Noone else is supposed to update the histent. */ MPASS(!(te->te_flags & TE_RPL_PENDING)); if (send_get_tcb(te->te_adapter, te->te_tid) == 0) te->te_flags |= TE_RPL_PENDING; else callout_schedule(&te->te_callout, hz / 100); } static void update_tcb_histent(struct tcb_histent *te, const uint64_t *tcb) { struct tom_data *td = te->te_adapter->tom_softc; uint64_t tflags = get_tcb_tflags(tcb); uint8_t sample = 0; if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != GET_TCB_FIELD(tcb, SND_UNA_RAW)) { if (GET_TCB_FIELD(tcb, T_RXTSHIFT) != 0) sample |= TS_RTO; if (GET_TCB_FIELD(tcb, T_DUPACKS) != 0) sample |= TS_DUPACKS; if (GET_TCB_FIELD(tcb, T_DUPACKS) >= td->dupack_threshold) sample |= TS_FASTREXMT; } if (GET_TCB_FIELD(tcb, SND_MAX_RAW) != 0) { uint32_t snd_wnd; sample |= TS_SND_BACKLOGGED; /* for whatever reason. */ snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); if (tflags & V_TF_RECV_SCALE(1)) snd_wnd <<= GET_TCB_FIELD(tcb, RCV_SCALE); if (GET_TCB_FIELD(tcb, SND_CWND) < snd_wnd) sample |= TS_CWND_LIMITED; /* maybe due to CWND */ } if (tflags & V_TF_CCTRL_ECN(1)) { /* * CE marker on incoming IP hdr, echoing ECE back in the TCP * hdr. Indicates congestion somewhere on the way from the peer * to this node. */ if (tflags & V_TF_CCTRL_ECE(1)) sample |= TS_ECN_ECE; /* * ECE seen and CWR sent (or about to be sent). Might indicate * congestion on the way to the peer. This node is reducing its * congestion window in response. */ if (tflags & (V_TF_CCTRL_CWR(1) | V_TF_CCTRL_RFR(1))) sample |= TS_ECN_CWR; } te->te_sample[te->te_pidx] = sample; if (++te->te_pidx == nitems(te->te_sample)) te->te_pidx = 0; memcpy(te->te_tcb, tcb, TCB_SIZE); te->te_flags |= TE_ACTIVE; } static int do_get_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m) { struct adapter *sc = iq->adapter; const struct cpl_get_tcb_rpl *cpl = mtod(m, const void *); const uint64_t *tcb = (const uint64_t *)(const void *)(cpl + 1); struct tcb_histent *te; const u_int tid = GET_TID(cpl); bool remove; remove = GET_TCB_FIELD(tcb, T_STATE) == TCPS_CLOSED; te = lookup_tcb_histent(sc, tid, remove); if (te == NULL) { /* Not in the history. Who issued the GET_TCB for this? */ device_printf(sc->dev, "tcb %u: flags 0x%016jx, state %u, " "srtt %u, sscale %u, rscale %u, cookie 0x%x\n", tid, (uintmax_t)get_tcb_tflags(tcb), GET_TCB_FIELD(tcb, T_STATE), GET_TCB_FIELD(tcb, T_SRTT), GET_TCB_FIELD(tcb, SND_SCALE), GET_TCB_FIELD(tcb, RCV_SCALE), cpl->cookie); goto done; } MPASS(te->te_flags & TE_RPL_PENDING); te->te_flags &= ~TE_RPL_PENDING; if (remove) { remove_tcb_histent(te); } else { update_tcb_histent(te, tcb); callout_reset(&te->te_callout, hz / 10, request_tcb, te); release_tcb_histent(te); } done: m_freem(m); return (0); } static void fill_tcp_info_from_tcb(struct adapter *sc, uint64_t *tcb, struct tcp_info *ti) { uint32_t v; ti->tcpi_state = GET_TCB_FIELD(tcb, T_STATE); v = GET_TCB_FIELD(tcb, T_SRTT); ti->tcpi_rtt = tcp_ticks_to_us(sc, v); v = GET_TCB_FIELD(tcb, T_RTTVAR); ti->tcpi_rttvar = tcp_ticks_to_us(sc, v); ti->tcpi_snd_ssthresh = GET_TCB_FIELD(tcb, SND_SSTHRESH); ti->tcpi_snd_cwnd = GET_TCB_FIELD(tcb, SND_CWND); ti->tcpi_rcv_nxt = GET_TCB_FIELD(tcb, RCV_NXT); v = GET_TCB_FIELD(tcb, TX_MAX); ti->tcpi_snd_nxt = v - GET_TCB_FIELD(tcb, SND_NXT_RAW); /* Receive window being advertised by us. */ ti->tcpi_rcv_wscale = GET_TCB_FIELD(tcb, SND_SCALE); /* Yes, SND. */ ti->tcpi_rcv_space = GET_TCB_FIELD(tcb, RCV_WND); /* Send window */ ti->tcpi_snd_wscale = GET_TCB_FIELD(tcb, RCV_SCALE); /* Yes, RCV. */ ti->tcpi_snd_wnd = GET_TCB_FIELD(tcb, RCV_ADV); if (get_tcb_tflags(tcb) & V_TF_RECV_SCALE(1)) ti->tcpi_snd_wnd <<= ti->tcpi_snd_wscale; else ti->tcpi_snd_wscale = 0; } static void fill_tcp_info_from_history(struct adapter *sc, struct tcb_histent *te, struct tcp_info *ti) { fill_tcp_info_from_tcb(sc, te->te_tcb, ti); } /* * Reads the TCB for the given tid using a memory window and copies it to 'buf' * in the same format as CPL_GET_TCB_RPL. */ static void read_tcb_using_memwin(struct adapter *sc, u_int tid, uint64_t *buf) { int i, j, k, rc; uint32_t addr; u_char *tcb, tmp; MPASS(tid >= sc->tids.tid_base); MPASS(tid - sc->tids.tid_base < sc->tids.ntids); addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) + tid * TCB_SIZE; rc = read_via_memwin(sc, 2, addr, (uint32_t *)buf, TCB_SIZE); if (rc != 0) return; tcb = (u_char *)buf; for (i = 0, j = TCB_SIZE - 16; i < j; i += 16, j -= 16) { for (k = 0; k < 16; k++) { tmp = tcb[i + k]; tcb[i + k] = tcb[j + k]; tcb[j + k] = tmp; } } } static void fill_tcp_info(struct adapter *sc, u_int tid, struct tcp_info *ti) { uint64_t tcb[TCB_SIZE / sizeof(uint64_t)]; struct tcb_histent *te; ti->tcpi_toe_tid = tid; te = lookup_tcb_histent(sc, tid, false); if (te != NULL) { fill_tcp_info_from_history(sc, te, ti); release_tcb_histent(te); } else { if (!(sc->debug_flags & DF_DISABLE_TCB_CACHE)) { /* XXX: tell firmware to flush TCB cache. */ } read_tcb_using_memwin(sc, tid, tcb); fill_tcp_info_from_tcb(sc, tcb, ti); } } /* * Called by the kernel to allow the TOE driver to "refine" values filled up in * the tcp_info for an offloaded connection. */ static void -t4_tcp_info(struct toedev *tod, struct tcpcb *tp, struct tcp_info *ti) +t4_tcp_info(struct toedev *tod, const struct tcpcb *tp, struct tcp_info *ti) { struct adapter *sc = tod->tod_softc; struct toepcb *toep = tp->t_toe; - INP_WLOCK_ASSERT(tp->t_inpcb); + INP_LOCK_ASSERT(tp->t_inpcb); MPASS(ti != NULL); fill_tcp_info(sc, toep->tid, ti); } #ifdef KERN_TLS static int t4_alloc_tls_session(struct toedev *tod, struct tcpcb *tp, struct ktls_session *tls, int direction) { struct toepcb *toep = tp->t_toe; INP_WLOCK_ASSERT(tp->t_inpcb); MPASS(tls != NULL); return (tls_alloc_ktls(toep, tls, direction)); } #endif /* * The TOE driver will not receive any more CPLs for the tid associated with the * toepcb; release the hold on the inpcb. */ void final_cpl_received(struct toepcb *toep) { struct inpcb *inp = toep->inp; bool need_wakeup; KASSERT(inp != NULL, ("%s: inp is NULL", __func__)); INP_WLOCK_ASSERT(inp); KASSERT(toep->flags & TPF_CPL_PENDING, ("%s: CPL not pending already?", __func__)); CTR6(KTR_CXGBE, "%s: tid %d, toep %p (0x%x), inp %p (0x%x)", __func__, toep->tid, toep, toep->flags, inp, inp->inp_flags); if (ulp_mode(toep) == ULP_MODE_TCPDDP) release_ddp_resources(toep); else if (ulp_mode(toep) == ULP_MODE_TLS) tls_detach(toep); toep->inp = NULL; need_wakeup = (toep->flags & TPF_WAITING_FOR_FINAL) != 0; toep->flags &= ~(TPF_CPL_PENDING | TPF_WAITING_FOR_FINAL); mbufq_drain(&toep->ulp_pduq); mbufq_drain(&toep->ulp_pdu_reclaimq); if (!(toep->flags & TPF_ATTACHED)) release_offload_resources(toep); if (!in_pcbrele_wlocked(inp)) INP_WUNLOCK(inp); if (need_wakeup) { struct mtx *lock = mtx_pool_find(mtxpool_sleep, toep); mtx_lock(lock); wakeup(toep); mtx_unlock(lock); } } void insert_tid(struct adapter *sc, int tid, void *ctx, int ntids) { struct tid_info *t = &sc->tids; MPASS(tid >= t->tid_base); MPASS(tid - t->tid_base < t->ntids); t->tid_tab[tid - t->tid_base] = ctx; atomic_add_int(&t->tids_in_use, ntids); } void * lookup_tid(struct adapter *sc, int tid) { struct tid_info *t = &sc->tids; return (t->tid_tab[tid - t->tid_base]); } void update_tid(struct adapter *sc, int tid, void *ctx) { struct tid_info *t = &sc->tids; t->tid_tab[tid - t->tid_base] = ctx; } void remove_tid(struct adapter *sc, int tid, int ntids) { struct tid_info *t = &sc->tids; t->tid_tab[tid - t->tid_base] = NULL; atomic_subtract_int(&t->tids_in_use, ntids); } /* * What mtu_idx to use, given a 4-tuple. Note that both s->mss and tcp_mssopt * have the MSS that we should advertise in our SYN. Advertised MSS doesn't * account for any TCP options so the effective MSS (only payload, no headers or * options) could be different. */ static int find_best_mtu_idx(struct adapter *sc, struct in_conninfo *inc, struct offload_settings *s) { unsigned short *mtus = &sc->params.mtus[0]; int i, mss, mtu; MPASS(inc != NULL); mss = s->mss > 0 ? s->mss : tcp_mssopt(inc); if (inc->inc_flags & INC_ISIPV6) mtu = mss + sizeof(struct ip6_hdr) + sizeof(struct tcphdr); else mtu = mss + sizeof(struct ip) + sizeof(struct tcphdr); for (i = 0; i < NMTUS - 1 && mtus[i + 1] <= mtu; i++) continue; return (i); } /* * Determine the receive window size for a socket. */ u_long select_rcv_wnd(struct socket *so) { unsigned long wnd; SOCKBUF_LOCK_ASSERT(&so->so_rcv); wnd = sbspace(&so->so_rcv); if (wnd < MIN_RCV_WND) wnd = MIN_RCV_WND; return min(wnd, MAX_RCV_WND); } int select_rcv_wscale(void) { int wscale = 0; unsigned long space = sb_max; if (space > MAX_RCV_WND) space = MAX_RCV_WND; while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < space) wscale++; return (wscale); } __be64 calc_options0(struct vi_info *vi, struct conn_params *cp) { uint64_t opt0 = 0; opt0 |= F_TCAM_BYPASS; MPASS(cp->wscale >= 0 && cp->wscale <= M_WND_SCALE); opt0 |= V_WND_SCALE(cp->wscale); MPASS(cp->mtu_idx >= 0 && cp->mtu_idx < NMTUS); opt0 |= V_MSS_IDX(cp->mtu_idx); MPASS(cp->ulp_mode >= 0 && cp->ulp_mode <= M_ULP_MODE); opt0 |= V_ULP_MODE(cp->ulp_mode); MPASS(cp->opt0_bufsize >= 0 && cp->opt0_bufsize <= M_RCV_BUFSIZ); opt0 |= V_RCV_BUFSIZ(cp->opt0_bufsize); MPASS(cp->l2t_idx >= 0 && cp->l2t_idx < vi->adapter->vres.l2t.size); opt0 |= V_L2T_IDX(cp->l2t_idx); opt0 |= V_SMAC_SEL(vi->smt_idx); opt0 |= V_TX_CHAN(vi->pi->tx_chan); MPASS(cp->keepalive == 0 || cp->keepalive == 1); opt0 |= V_KEEP_ALIVE(cp->keepalive); MPASS(cp->nagle == 0 || cp->nagle == 1); opt0 |= V_NAGLE(cp->nagle); return (htobe64(opt0)); } __be32 calc_options2(struct vi_info *vi, struct conn_params *cp) { uint32_t opt2 = 0; struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; /* * rx flow control, rx coalesce, congestion control, and tx pace are all * explicitly set by the driver. On T5+ the ISS is also set by the * driver to the value picked by the kernel. */ if (is_t4(sc)) { opt2 |= F_RX_FC_VALID | F_RX_COALESCE_VALID; opt2 |= F_CONG_CNTRL_VALID | F_PACE_VALID; } else { opt2 |= F_T5_OPT_2_VALID; /* all 4 valid */ opt2 |= F_T5_ISS; /* ISS provided in CPL */ } MPASS(cp->sack == 0 || cp->sack == 1); opt2 |= V_SACK_EN(cp->sack); MPASS(cp->tstamp == 0 || cp->tstamp == 1); opt2 |= V_TSTAMPS_EN(cp->tstamp); if (cp->wscale > 0) opt2 |= F_WND_SCALE_EN; MPASS(cp->ecn == 0 || cp->ecn == 1); opt2 |= V_CCTRL_ECN(cp->ecn); /* XXX: F_RX_CHANNEL for multiple rx c-chan support goes here. */ opt2 |= V_TX_QUEUE(sc->params.tp.tx_modq[pi->tx_chan]); opt2 |= V_PACE(0); opt2 |= F_RSS_QUEUE_VALID; opt2 |= V_RSS_QUEUE(sc->sge.ofld_rxq[cp->rxq_idx].iq.abs_id); MPASS(cp->cong_algo >= 0 && cp->cong_algo <= M_CONG_CNTRL); opt2 |= V_CONG_CNTRL(cp->cong_algo); MPASS(cp->rx_coalesce == 0 || cp->rx_coalesce == 1); if (cp->rx_coalesce == 1) opt2 |= V_RX_COALESCE(M_RX_COALESCE); opt2 |= V_RX_FC_DDP(0) | V_RX_FC_DISABLE(0); #ifdef USE_DDP_RX_FLOW_CONTROL if (cp->ulp_mode == ULP_MODE_TCPDDP) opt2 |= F_RX_FC_DDP; #endif return (htobe32(opt2)); } uint64_t select_ntuple(struct vi_info *vi, struct l2t_entry *e) { struct adapter *sc = vi->adapter; struct tp_params *tp = &sc->params.tp; uint64_t ntuple = 0; /* * Initialize each of the fields which we care about which are present * in the Compressed Filter Tuple. */ if (tp->vlan_shift >= 0 && EVL_VLANOFTAG(e->vlan) != CPL_L2T_VLAN_NONE) ntuple |= (uint64_t)(F_FT_VLAN_VLD | e->vlan) << tp->vlan_shift; if (tp->port_shift >= 0) ntuple |= (uint64_t)e->lport << tp->port_shift; if (tp->protocol_shift >= 0) ntuple |= (uint64_t)IPPROTO_TCP << tp->protocol_shift; if (tp->vnic_shift >= 0 && tp->vnic_mode == FW_VNIC_MODE_PF_VF) { ntuple |= (uint64_t)(V_FT_VNID_ID_VF(vi->vin) | V_FT_VNID_ID_PF(sc->pf) | V_FT_VNID_ID_VLD(vi->vfvld)) << tp->vnic_shift; } if (is_t4(sc)) return (htobe32((uint32_t)ntuple)); else return (htobe64(V_FILTER_TUPLE(ntuple))); } static int is_tls_sock(struct socket *so, struct adapter *sc) { struct inpcb *inp = sotoinpcb(so); int i, rc; /* XXX: Eventually add a SO_WANT_TLS socket option perhaps? */ rc = 0; ADAPTER_LOCK(sc); for (i = 0; i < sc->tt.num_tls_rx_ports; i++) { if (inp->inp_lport == htons(sc->tt.tls_rx_ports[i]) || inp->inp_fport == htons(sc->tt.tls_rx_ports[i])) { rc = 1; break; } } ADAPTER_UNLOCK(sc); return (rc); } /* * Initialize various connection parameters. */ void init_conn_params(struct vi_info *vi , struct offload_settings *s, struct in_conninfo *inc, struct socket *so, const struct tcp_options *tcpopt, int16_t l2t_idx, struct conn_params *cp) { struct port_info *pi = vi->pi; struct adapter *sc = pi->adapter; struct tom_tunables *tt = &sc->tt; struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp); u_long wnd; u_int q_idx; MPASS(s->offload != 0); /* Congestion control algorithm */ if (s->cong_algo >= 0) cp->cong_algo = s->cong_algo & M_CONG_CNTRL; else if (sc->tt.cong_algorithm >= 0) cp->cong_algo = tt->cong_algorithm & M_CONG_CNTRL; else { struct cc_algo *cc = CC_ALGO(tp); if (strcasecmp(cc->name, "reno") == 0) cp->cong_algo = CONG_ALG_RENO; else if (strcasecmp(cc->name, "tahoe") == 0) cp->cong_algo = CONG_ALG_TAHOE; if (strcasecmp(cc->name, "newreno") == 0) cp->cong_algo = CONG_ALG_NEWRENO; if (strcasecmp(cc->name, "highspeed") == 0) cp->cong_algo = CONG_ALG_HIGHSPEED; else { /* * Use newreno in case the algorithm selected by the * host stack is not supported by the hardware. */ cp->cong_algo = CONG_ALG_NEWRENO; } } /* Tx traffic scheduling class. */ if (s->sched_class >= 0 && s->sched_class < sc->params.nsched_cls) cp->tc_idx = s->sched_class; else cp->tc_idx = -1; /* Nagle's algorithm. */ if (s->nagle >= 0) cp->nagle = s->nagle > 0 ? 1 : 0; else cp->nagle = tp->t_flags & TF_NODELAY ? 0 : 1; /* TCP Keepalive. */ if (V_tcp_always_keepalive || so_options_get(so) & SO_KEEPALIVE) cp->keepalive = 1; else cp->keepalive = 0; /* Optimization that's specific to T5 @ 40G. */ if (tt->tx_align >= 0) cp->tx_align = tt->tx_align > 0 ? 1 : 0; else if (chip_id(sc) == CHELSIO_T5 && (port_top_speed(pi) > 10 || sc->params.nports > 2)) cp->tx_align = 1; else cp->tx_align = 0; /* ULP mode. */ if (can_tls_offload(sc) && (s->tls > 0 || (s->tls < 0 && is_tls_sock(so, sc)))) cp->ulp_mode = ULP_MODE_TLS; else if (s->ddp > 0 || (s->ddp < 0 && sc->tt.ddp && (so_options_get(so) & SO_NO_DDP) == 0)) cp->ulp_mode = ULP_MODE_TCPDDP; else cp->ulp_mode = ULP_MODE_NONE; /* Rx coalescing. */ if (s->rx_coalesce >= 0) cp->rx_coalesce = s->rx_coalesce > 0 ? 1 : 0; else if (cp->ulp_mode == ULP_MODE_TLS) cp->rx_coalesce = 0; else if (tt->rx_coalesce >= 0) cp->rx_coalesce = tt->rx_coalesce > 0 ? 1 : 0; else cp->rx_coalesce = 1; /* default */ /* * Index in the PMTU table. This controls the MSS that we announce in * our SYN initially, but after ESTABLISHED it controls the MSS that we * use to send data. */ cp->mtu_idx = find_best_mtu_idx(sc, inc, s); /* Tx queue for this connection. */ if (s->txq == QUEUE_RANDOM) q_idx = arc4random(); else if (s->txq == QUEUE_ROUNDROBIN) q_idx = atomic_fetchadd_int(&vi->txq_rr, 1); else q_idx = s->txq; cp->txq_idx = vi->first_ofld_txq + q_idx % vi->nofldtxq; /* Rx queue for this connection. */ if (s->rxq == QUEUE_RANDOM) q_idx = arc4random(); else if (s->rxq == QUEUE_ROUNDROBIN) q_idx = atomic_fetchadd_int(&vi->rxq_rr, 1); else q_idx = s->rxq; cp->rxq_idx = vi->first_ofld_rxq + q_idx % vi->nofldrxq; if (SOLISTENING(so)) { /* Passive open */ MPASS(tcpopt != NULL); /* TCP timestamp option */ if (tcpopt->tstamp && (s->tstamp > 0 || (s->tstamp < 0 && V_tcp_do_rfc1323))) cp->tstamp = 1; else cp->tstamp = 0; /* SACK */ if (tcpopt->sack && (s->sack > 0 || (s->sack < 0 && V_tcp_do_sack))) cp->sack = 1; else cp->sack = 0; /* Receive window scaling. */ if (tcpopt->wsf > 0 && tcpopt->wsf < 15 && V_tcp_do_rfc1323) cp->wscale = select_rcv_wscale(); else cp->wscale = 0; /* ECN */ if (tcpopt->ecn && /* XXX: review. */ (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn))) cp->ecn = 1; else cp->ecn = 0; wnd = max(so->sol_sbrcv_hiwat, MIN_RCV_WND); cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); if (tt->sndbuf > 0) cp->sndbuf = tt->sndbuf; else if (so->sol_sbsnd_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf) cp->sndbuf = 256 * 1024; else cp->sndbuf = so->sol_sbsnd_hiwat; } else { /* Active open */ /* TCP timestamp option */ if (s->tstamp > 0 || (s->tstamp < 0 && (tp->t_flags & TF_REQ_TSTMP))) cp->tstamp = 1; else cp->tstamp = 0; /* SACK */ if (s->sack > 0 || (s->sack < 0 && (tp->t_flags & TF_SACK_PERMIT))) cp->sack = 1; else cp->sack = 0; /* Receive window scaling */ if (tp->t_flags & TF_REQ_SCALE) cp->wscale = select_rcv_wscale(); else cp->wscale = 0; /* ECN */ if (s->ecn > 0 || (s->ecn < 0 && V_tcp_do_ecn == 1)) cp->ecn = 1; else cp->ecn = 0; SOCKBUF_LOCK(&so->so_rcv); wnd = max(select_rcv_wnd(so), MIN_RCV_WND); SOCKBUF_UNLOCK(&so->so_rcv); cp->opt0_bufsize = min(wnd >> 10, M_RCV_BUFSIZ); if (tt->sndbuf > 0) cp->sndbuf = tt->sndbuf; else { SOCKBUF_LOCK(&so->so_snd); if (so->so_snd.sb_flags & SB_AUTOSIZE && V_tcp_do_autosndbuf) cp->sndbuf = 256 * 1024; else cp->sndbuf = so->so_snd.sb_hiwat; SOCKBUF_UNLOCK(&so->so_snd); } } cp->l2t_idx = l2t_idx; /* This will be initialized on ESTABLISHED. */ cp->emss = 0; } int negative_advice(int status) { return (status == CPL_ERR_RTX_NEG_ADVICE || status == CPL_ERR_PERSIST_NEG_ADVICE || status == CPL_ERR_KEEPALV_NEG_ADVICE); } static int alloc_tid_tab(struct tid_info *t, int flags) { MPASS(t->ntids > 0); MPASS(t->tid_tab == NULL); t->tid_tab = malloc(t->ntids * sizeof(*t->tid_tab), M_CXGBE, M_ZERO | flags); if (t->tid_tab == NULL) return (ENOMEM); atomic_store_rel_int(&t->tids_in_use, 0); return (0); } static void free_tid_tab(struct tid_info *t) { KASSERT(t->tids_in_use == 0, ("%s: %d tids still in use.", __func__, t->tids_in_use)); free(t->tid_tab, M_CXGBE); t->tid_tab = NULL; } static int alloc_stid_tab(struct tid_info *t, int flags) { MPASS(t->nstids > 0); MPASS(t->stid_tab == NULL); t->stid_tab = malloc(t->nstids * sizeof(*t->stid_tab), M_CXGBE, M_ZERO | flags); if (t->stid_tab == NULL) return (ENOMEM); mtx_init(&t->stid_lock, "stid lock", NULL, MTX_DEF); t->stids_in_use = 0; TAILQ_INIT(&t->stids); t->nstids_free_head = t->nstids; return (0); } static void free_stid_tab(struct tid_info *t) { KASSERT(t->stids_in_use == 0, ("%s: %d tids still in use.", __func__, t->stids_in_use)); if (mtx_initialized(&t->stid_lock)) mtx_destroy(&t->stid_lock); free(t->stid_tab, M_CXGBE); t->stid_tab = NULL; } static void free_tid_tabs(struct tid_info *t) { free_tid_tab(t); free_stid_tab(t); } static int alloc_tid_tabs(struct tid_info *t) { int rc; rc = alloc_tid_tab(t, M_NOWAIT); if (rc != 0) goto failed; rc = alloc_stid_tab(t, M_NOWAIT); if (rc != 0) goto failed; return (0); failed: free_tid_tabs(t); return (rc); } static inline void alloc_tcb_history(struct adapter *sc, struct tom_data *td) { if (sc->tids.ntids == 0 || sc->tids.ntids > 1024) return; rw_init(&td->tcb_history_lock, "TCB history"); td->tcb_history = malloc(sc->tids.ntids * sizeof(*td->tcb_history), M_CXGBE, M_ZERO | M_NOWAIT); td->dupack_threshold = G_DUPACKTHRESH(t4_read_reg(sc, A_TP_PARA_REG0)); } static inline void free_tcb_history(struct adapter *sc, struct tom_data *td) { #ifdef INVARIANTS int i; if (td->tcb_history != NULL) { for (i = 0; i < sc->tids.ntids; i++) { MPASS(td->tcb_history[i] == NULL); } } #endif free(td->tcb_history, M_CXGBE); if (rw_initialized(&td->tcb_history_lock)) rw_destroy(&td->tcb_history_lock); } static void free_tom_data(struct adapter *sc, struct tom_data *td) { ASSERT_SYNCHRONIZED_OP(sc); KASSERT(TAILQ_EMPTY(&td->toep_list), ("%s: TOE PCB list is not empty.", __func__)); KASSERT(td->lctx_count == 0, ("%s: lctx hash table is not empty.", __func__)); t4_free_ppod_region(&td->pr); if (td->listen_mask != 0) hashdestroy(td->listen_hash, M_CXGBE, td->listen_mask); if (mtx_initialized(&td->unsent_wr_lock)) mtx_destroy(&td->unsent_wr_lock); if (mtx_initialized(&td->lctx_hash_lock)) mtx_destroy(&td->lctx_hash_lock); if (mtx_initialized(&td->toep_list_lock)) mtx_destroy(&td->toep_list_lock); free_tcb_history(sc, td); free_tid_tabs(&sc->tids); free(td, M_CXGBE); } static char * prepare_pkt(int open_type, uint16_t vtag, struct inpcb *inp, int *pktlen, int *buflen) { char *pkt; struct tcphdr *th; int ipv6, len; const int maxlen = max(sizeof(struct ether_header), sizeof(struct ether_vlan_header)) + max(sizeof(struct ip), sizeof(struct ip6_hdr)) + sizeof(struct tcphdr); MPASS(open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN); pkt = malloc(maxlen, M_CXGBE, M_ZERO | M_NOWAIT); if (pkt == NULL) return (NULL); ipv6 = inp->inp_vflag & INP_IPV6; len = 0; if (EVL_VLANOFTAG(vtag) == 0xfff) { struct ether_header *eh = (void *)pkt; if (ipv6) eh->ether_type = htons(ETHERTYPE_IPV6); else eh->ether_type = htons(ETHERTYPE_IP); len += sizeof(*eh); } else { struct ether_vlan_header *evh = (void *)pkt; evh->evl_encap_proto = htons(ETHERTYPE_VLAN); evh->evl_tag = htons(vtag); if (ipv6) evh->evl_proto = htons(ETHERTYPE_IPV6); else evh->evl_proto = htons(ETHERTYPE_IP); len += sizeof(*evh); } if (ipv6) { struct ip6_hdr *ip6 = (void *)&pkt[len]; ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = htons(sizeof(struct tcphdr)); ip6->ip6_nxt = IPPROTO_TCP; if (open_type == OPEN_TYPE_ACTIVE) { ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = inp->in6p_faddr; } else if (open_type == OPEN_TYPE_LISTEN) { ip6->ip6_src = inp->in6p_laddr; ip6->ip6_dst = ip6->ip6_src; } len += sizeof(*ip6); } else { struct ip *ip = (void *)&pkt[len]; ip->ip_v = IPVERSION; ip->ip_hl = sizeof(*ip) >> 2; ip->ip_tos = inp->inp_ip_tos; ip->ip_len = htons(sizeof(struct ip) + sizeof(struct tcphdr)); ip->ip_ttl = inp->inp_ip_ttl; ip->ip_p = IPPROTO_TCP; if (open_type == OPEN_TYPE_ACTIVE) { ip->ip_src = inp->inp_laddr; ip->ip_dst = inp->inp_faddr; } else if (open_type == OPEN_TYPE_LISTEN) { ip->ip_src = inp->inp_laddr; ip->ip_dst = ip->ip_src; } len += sizeof(*ip); } th = (void *)&pkt[len]; if (open_type == OPEN_TYPE_ACTIVE) { th->th_sport = inp->inp_lport; /* network byte order already */ th->th_dport = inp->inp_fport; /* ditto */ } else if (open_type == OPEN_TYPE_LISTEN) { th->th_sport = inp->inp_lport; /* network byte order already */ th->th_dport = th->th_sport; } len += sizeof(th); *pktlen = *buflen = len; return (pkt); } const struct offload_settings * lookup_offload_policy(struct adapter *sc, int open_type, struct mbuf *m, uint16_t vtag, struct inpcb *inp) { const struct t4_offload_policy *op; char *pkt; struct offload_rule *r; int i, matched, pktlen, buflen; static const struct offload_settings allow_offloading_settings = { .offload = 1, .rx_coalesce = -1, .cong_algo = -1, .sched_class = -1, .tstamp = -1, .sack = -1, .nagle = -1, .ecn = -1, .ddp = -1, .tls = -1, .txq = QUEUE_RANDOM, .rxq = QUEUE_RANDOM, .mss = -1, }; static const struct offload_settings disallow_offloading_settings = { .offload = 0, /* rest is irrelevant when offload is off. */ }; rw_assert(&sc->policy_lock, RA_LOCKED); /* * If there's no Connection Offloading Policy attached to the device * then we need to return a default static policy. If * "cop_managed_offloading" is true, then we need to disallow * offloading until a COP is attached to the device. Otherwise we * allow offloading ... */ op = sc->policy; if (op == NULL) { if (sc->tt.cop_managed_offloading) return (&disallow_offloading_settings); else return (&allow_offloading_settings); } switch (open_type) { case OPEN_TYPE_ACTIVE: case OPEN_TYPE_LISTEN: pkt = prepare_pkt(open_type, vtag, inp, &pktlen, &buflen); break; case OPEN_TYPE_PASSIVE: MPASS(m != NULL); pkt = mtod(m, char *); MPASS(*pkt == CPL_PASS_ACCEPT_REQ); pkt += sizeof(struct cpl_pass_accept_req); pktlen = m->m_pkthdr.len - sizeof(struct cpl_pass_accept_req); buflen = m->m_len - sizeof(struct cpl_pass_accept_req); break; default: MPASS(0); return (&disallow_offloading_settings); } if (pkt == NULL || pktlen == 0 || buflen == 0) return (&disallow_offloading_settings); matched = 0; r = &op->rule[0]; for (i = 0; i < op->nrules; i++, r++) { if (r->open_type != open_type && r->open_type != OPEN_TYPE_DONTCARE) { continue; } matched = bpf_filter(r->bpf_prog.bf_insns, pkt, pktlen, buflen); if (matched) break; } if (open_type == OPEN_TYPE_ACTIVE || open_type == OPEN_TYPE_LISTEN) free(pkt, M_CXGBE); return (matched ? &r->settings : &disallow_offloading_settings); } static void reclaim_wr_resources(void *arg, int count) { struct tom_data *td = arg; STAILQ_HEAD(, wrqe) twr_list = STAILQ_HEAD_INITIALIZER(twr_list); struct cpl_act_open_req *cpl; u_int opcode, atid, tid; struct wrqe *wr; struct adapter *sc = td_adapter(td); mtx_lock(&td->unsent_wr_lock); STAILQ_SWAP(&td->unsent_wr_list, &twr_list, wrqe); mtx_unlock(&td->unsent_wr_lock); while ((wr = STAILQ_FIRST(&twr_list)) != NULL) { STAILQ_REMOVE_HEAD(&twr_list, link); cpl = wrtod(wr); opcode = GET_OPCODE(cpl); switch (opcode) { case CPL_ACT_OPEN_REQ: case CPL_ACT_OPEN_REQ6: atid = G_TID_TID(be32toh(OPCODE_TID(cpl))); CTR2(KTR_CXGBE, "%s: atid %u ", __func__, atid); act_open_failure_cleanup(sc, atid, EHOSTUNREACH); free(wr, M_CXGBE); break; case CPL_PASS_ACCEPT_RPL: tid = GET_TID(cpl); CTR2(KTR_CXGBE, "%s: tid %u ", __func__, tid); synack_failure_cleanup(sc, tid); free(wr, M_CXGBE); break; default: log(LOG_ERR, "%s: leaked work request %p, wr_len %d, " "opcode %x\n", __func__, wr, wr->wr_len, opcode); /* WR not freed here; go look at it with a debugger. */ } } } /* * Ground control to Major TOM * Commencing countdown, engines on */ static int t4_tom_activate(struct adapter *sc) { struct tom_data *td; struct toedev *tod; struct vi_info *vi; int i, rc, v; ASSERT_SYNCHRONIZED_OP(sc); /* per-adapter softc for TOM */ td = malloc(sizeof(*td), M_CXGBE, M_ZERO | M_NOWAIT); if (td == NULL) return (ENOMEM); /* List of TOE PCBs and associated lock */ mtx_init(&td->toep_list_lock, "PCB list lock", NULL, MTX_DEF); TAILQ_INIT(&td->toep_list); /* Listen context */ mtx_init(&td->lctx_hash_lock, "lctx hash lock", NULL, MTX_DEF); td->listen_hash = hashinit_flags(LISTEN_HASH_SIZE, M_CXGBE, &td->listen_mask, HASH_NOWAIT); /* List of WRs for which L2 resolution failed */ mtx_init(&td->unsent_wr_lock, "Unsent WR list lock", NULL, MTX_DEF); STAILQ_INIT(&td->unsent_wr_list); TASK_INIT(&td->reclaim_wr_resources, 0, reclaim_wr_resources, td); /* TID tables */ rc = alloc_tid_tabs(&sc->tids); if (rc != 0) goto done; rc = t4_init_ppod_region(&td->pr, &sc->vres.ddp, t4_read_reg(sc, A_ULP_RX_TDDP_PSZ), "TDDP page pods"); if (rc != 0) goto done; t4_set_reg_field(sc, A_ULP_RX_TDDP_TAGMASK, V_TDDPTAGMASK(M_TDDPTAGMASK), td->pr.pr_tag_mask); alloc_tcb_history(sc, td); /* toedev ops */ tod = &td->tod; init_toedev(tod); tod->tod_softc = sc; tod->tod_connect = t4_connect; tod->tod_listen_start = t4_listen_start; tod->tod_listen_stop = t4_listen_stop; tod->tod_rcvd = t4_rcvd; tod->tod_output = t4_tod_output; tod->tod_send_rst = t4_send_rst; tod->tod_send_fin = t4_send_fin; tod->tod_pcb_detach = t4_pcb_detach; tod->tod_l2_update = t4_l2_update; tod->tod_syncache_added = t4_syncache_added; tod->tod_syncache_removed = t4_syncache_removed; tod->tod_syncache_respond = t4_syncache_respond; tod->tod_offload_socket = t4_offload_socket; tod->tod_ctloutput = t4_ctloutput; tod->tod_tcp_info = t4_tcp_info; #ifdef KERN_TLS tod->tod_alloc_tls_session = t4_alloc_tls_session; #endif for_each_port(sc, i) { for_each_vi(sc->port[i], v, vi) { TOEDEV(vi->ifp) = &td->tod; } } sc->tom_softc = td; register_toedev(sc->tom_softc); done: if (rc != 0) free_tom_data(sc, td); return (rc); } static int t4_tom_deactivate(struct adapter *sc) { int rc = 0; struct tom_data *td = sc->tom_softc; ASSERT_SYNCHRONIZED_OP(sc); if (td == NULL) return (0); /* XXX. KASSERT? */ if (sc->offload_map != 0) return (EBUSY); /* at least one port has IFCAP_TOE enabled */ if (uld_active(sc, ULD_IWARP) || uld_active(sc, ULD_ISCSI)) return (EBUSY); /* both iWARP and iSCSI rely on the TOE. */ mtx_lock(&td->toep_list_lock); if (!TAILQ_EMPTY(&td->toep_list)) rc = EBUSY; mtx_unlock(&td->toep_list_lock); mtx_lock(&td->lctx_hash_lock); if (td->lctx_count > 0) rc = EBUSY; mtx_unlock(&td->lctx_hash_lock); taskqueue_drain(taskqueue_thread, &td->reclaim_wr_resources); mtx_lock(&td->unsent_wr_lock); if (!STAILQ_EMPTY(&td->unsent_wr_list)) rc = EBUSY; mtx_unlock(&td->unsent_wr_lock); if (rc == 0) { unregister_toedev(sc->tom_softc); free_tom_data(sc, td); sc->tom_softc = NULL; } return (rc); } static int t4_aio_queue_tom(struct socket *so, struct kaiocb *job) { struct tcpcb *tp = so_sototcpcb(so); struct toepcb *toep = tp->t_toe; int error; if (ulp_mode(toep) == ULP_MODE_TCPDDP) { error = t4_aio_queue_ddp(so, job); if (error != EOPNOTSUPP) return (error); } return (t4_aio_queue_aiotx(so, job)); } static int t4_tom_mod_load(void) { /* CPL handlers */ t4_register_cpl_handler(CPL_GET_TCB_RPL, do_get_tcb_rpl); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl2, CPL_COOKIE_TOM); t4_init_connect_cpl_handlers(); t4_init_listen_cpl_handlers(); t4_init_cpl_io_handlers(); t4_ddp_mod_load(); t4_tls_mod_load(); tcp_protosw = pffindproto(PF_INET, IPPROTO_TCP, SOCK_STREAM); if (tcp_protosw == NULL) return (ENOPROTOOPT); bcopy(tcp_protosw, &toe_protosw, sizeof(toe_protosw)); bcopy(tcp_protosw->pr_usrreqs, &toe_usrreqs, sizeof(toe_usrreqs)); toe_usrreqs.pru_aio_queue = t4_aio_queue_tom; toe_protosw.pr_usrreqs = &toe_usrreqs; tcp6_protosw = pffindproto(PF_INET6, IPPROTO_TCP, SOCK_STREAM); if (tcp6_protosw == NULL) return (ENOPROTOOPT); bcopy(tcp6_protosw, &toe6_protosw, sizeof(toe6_protosw)); bcopy(tcp6_protosw->pr_usrreqs, &toe6_usrreqs, sizeof(toe6_usrreqs)); toe6_usrreqs.pru_aio_queue = t4_aio_queue_tom; toe6_protosw.pr_usrreqs = &toe6_usrreqs; return (t4_register_uld(&tom_uld_info)); } static void tom_uninit(struct adapter *sc, void *arg __unused) { if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tomun")) return; /* Try to free resources (works only if no port has IFCAP_TOE) */ if (uld_active(sc, ULD_TOM)) t4_deactivate_uld(sc, ULD_TOM); end_synchronized_op(sc, 0); } static int t4_tom_mod_unload(void) { t4_iterate(tom_uninit, NULL); if (t4_unregister_uld(&tom_uld_info) == EBUSY) return (EBUSY); t4_tls_mod_unload(); t4_ddp_mod_unload(); t4_uninit_connect_cpl_handlers(); t4_uninit_listen_cpl_handlers(); t4_uninit_cpl_io_handlers(); t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, NULL, CPL_COOKIE_TOM); t4_register_cpl_handler(CPL_GET_TCB_RPL, NULL); return (0); } #endif /* TCP_OFFLOAD */ static int t4_tom_modevent(module_t mod, int cmd, void *arg) { int rc = 0; #ifdef TCP_OFFLOAD switch (cmd) { case MOD_LOAD: rc = t4_tom_mod_load(); break; case MOD_UNLOAD: rc = t4_tom_mod_unload(); break; default: rc = EINVAL; } #else printf("t4_tom: compiled without TCP_OFFLOAD support.\n"); rc = EOPNOTSUPP; #endif return (rc); } static moduledata_t t4_tom_moddata= { "t4_tom", t4_tom_modevent, 0 }; MODULE_VERSION(t4_tom, 1); MODULE_DEPEND(t4_tom, toecore, 1, 1, 1); MODULE_DEPEND(t4_tom, t4nex, 1, 1, 1); DECLARE_MODULE(t4_tom, t4_tom_moddata, SI_SUB_EXEC, SI_ORDER_ANY); diff --git a/sys/netinet/tcp_offload.c b/sys/netinet/tcp_offload.c index 71a5d51b5f22..b04251712580 100644 --- a/sys/netinet/tcp_offload.c +++ b/sys/netinet/tcp_offload.c @@ -1,219 +1,219 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPOUTFLAGS #include #include #include int registered_toedevs; /* * Provide an opportunity for a TOE driver to offload. */ int tcp_offload_connect(struct socket *so, struct sockaddr *nam) { struct ifnet *ifp; struct toedev *tod; struct nhop_object *nh; struct epoch_tracker et; int error = EOPNOTSUPP; INP_WLOCK_ASSERT(sotoinpcb(so)); KASSERT(nam->sa_family == AF_INET || nam->sa_family == AF_INET6, ("%s: called with sa_family %d", __func__, nam->sa_family)); if (registered_toedevs == 0) return (error); NET_EPOCH_ENTER(et); nh = NULL; #ifdef INET if (nam->sa_family == AF_INET) nh = fib4_lookup(0, ((struct sockaddr_in *)nam)->sin_addr, NHR_NONE, 0, 0); #endif #if defined(INET) && defined(INET6) else #endif #ifdef INET6 if (nam->sa_family == AF_INET6) nh = fib6_lookup(0, &((struct sockaddr_in6 *)nam)->sin6_addr, NHR_NONE, 0, 0); #endif if (nh == NULL) { NET_EPOCH_EXIT(et); return (EHOSTUNREACH); } ifp = nh->nh_ifp; if (nam->sa_family == AF_INET && !(ifp->if_capenable & IFCAP_TOE4)) goto done; if (nam->sa_family == AF_INET6 && !(ifp->if_capenable & IFCAP_TOE6)) goto done; tod = TOEDEV(ifp); if (tod != NULL) error = tod->tod_connect(tod, so, nh, nam); done: NET_EPOCH_EXIT(et); return (error); } void tcp_offload_listen_start(struct tcpcb *tp) { INP_WLOCK_ASSERT(tp->t_inpcb); EVENTHANDLER_INVOKE(tcp_offload_listen_start, tp); } void tcp_offload_listen_stop(struct tcpcb *tp) { INP_WLOCK_ASSERT(tp->t_inpcb); EVENTHANDLER_INVOKE(tcp_offload_listen_stop, tp); } void tcp_offload_input(struct tcpcb *tp, struct mbuf *m) { struct toedev *tod = tp->tod; KASSERT(tod != NULL, ("%s: tp->tod is NULL, tp %p", __func__, tp)); INP_WLOCK_ASSERT(tp->t_inpcb); tod->tod_input(tod, tp, m); } int tcp_offload_output(struct tcpcb *tp) { struct toedev *tod = tp->tod; int error, flags; KASSERT(tod != NULL, ("%s: tp->tod is NULL, tp %p", __func__, tp)); INP_WLOCK_ASSERT(tp->t_inpcb); flags = tcp_outflags[tp->t_state]; if (flags & TH_RST) { /* XXX: avoid repeated calls like we do for FIN */ error = tod->tod_send_rst(tod, tp); } else if ((flags & TH_FIN || tp->t_flags & TF_NEEDFIN) && (tp->t_flags & TF_SENTFIN) == 0) { error = tod->tod_send_fin(tod, tp); if (error == 0) tp->t_flags |= TF_SENTFIN; } else error = tod->tod_output(tod, tp); return (error); } void tcp_offload_rcvd(struct tcpcb *tp) { struct toedev *tod = tp->tod; KASSERT(tod != NULL, ("%s: tp->tod is NULL, tp %p", __func__, tp)); INP_WLOCK_ASSERT(tp->t_inpcb); tod->tod_rcvd(tod, tp); } void tcp_offload_ctloutput(struct tcpcb *tp, int sopt_dir, int sopt_name) { struct toedev *tod = tp->tod; KASSERT(tod != NULL, ("%s: tp->tod is NULL, tp %p", __func__, tp)); INP_WLOCK_ASSERT(tp->t_inpcb); tod->tod_ctloutput(tod, tp, sopt_dir, sopt_name); } void -tcp_offload_tcp_info(struct tcpcb *tp, struct tcp_info *ti) +tcp_offload_tcp_info(const struct tcpcb *tp, struct tcp_info *ti) { struct toedev *tod = tp->tod; KASSERT(tod != NULL, ("%s: tp->tod is NULL, tp %p", __func__, tp)); - INP_WLOCK_ASSERT(tp->t_inpcb); + INP_LOCK_ASSERT(tp->t_inpcb); tod->tod_tcp_info(tod, tp, ti); } int tcp_offload_alloc_tls_session(struct tcpcb *tp, struct ktls_session *tls, int direction) { struct toedev *tod = tp->tod; KASSERT(tod != NULL, ("%s: tp->tod is NULL, tp %p", __func__, tp)); INP_WLOCK_ASSERT(tp->t_inpcb); return (tod->tod_alloc_tls_session(tod, tp, tls, direction)); } void tcp_offload_detach(struct tcpcb *tp) { struct toedev *tod = tp->tod; KASSERT(tod != NULL, ("%s: tp->tod is NULL, tp %p", __func__, tp)); INP_WLOCK_ASSERT(tp->t_inpcb); tod->tod_pcb_detach(tod, tp); } diff --git a/sys/netinet/tcp_offload.h b/sys/netinet/tcp_offload.h index 855c28e01385..8f299f57fd33 100644 --- a/sys/netinet/tcp_offload.h +++ b/sys/netinet/tcp_offload.h @@ -1,50 +1,50 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #ifndef _NETINET_TCP_OFFLOAD_H_ #define _NETINET_TCP_OFFLOAD_H_ #ifndef _KERNEL #error "no user-serviceable parts inside" #endif extern int registered_toedevs; int tcp_offload_connect(struct socket *, struct sockaddr *); void tcp_offload_listen_start(struct tcpcb *); void tcp_offload_listen_stop(struct tcpcb *); void tcp_offload_input(struct tcpcb *, struct mbuf *); int tcp_offload_output(struct tcpcb *); void tcp_offload_rcvd(struct tcpcb *); void tcp_offload_ctloutput(struct tcpcb *, int, int); -void tcp_offload_tcp_info(struct tcpcb *, struct tcp_info *); +void tcp_offload_tcp_info(const struct tcpcb *, struct tcp_info *); int tcp_offload_alloc_tls_session(struct tcpcb *, struct ktls_session *, int); void tcp_offload_detach(struct tcpcb *); #endif diff --git a/sys/netinet/tcp_usrreq.c b/sys/netinet/tcp_usrreq.c index df322b03a59a..7e9c871df87a 100644 --- a/sys/netinet/tcp_usrreq.c +++ b/sys/netinet/tcp_usrreq.c @@ -1,2978 +1,2978 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * Copyright (c) 2006-2007 Robert N. M. Watson * Copyright (c) 2010-2011 Juniper Networks, Inc. * All rights reserved. * * Portions of this software were developed by Robert N. M. Watson under * contract to Juniper Networks, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * From: @(#)tcp_usrreq.c 8.2 (Berkeley) 1/3/94 */ #include #include "opt_ddb.h" #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_kern_tls.h" #include "opt_tcpdebug.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #endif /* INET6 */ #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef TCPPCAP #include #endif #ifdef TCPDEBUG #include #endif #ifdef TCP_OFFLOAD #include #endif #include #include #include #include #include #include #include /* * TCP protocol interface to socket abstraction. */ #ifdef INET static int tcp_connect(struct tcpcb *, struct sockaddr *, struct thread *td); #endif /* INET */ #ifdef INET6 static int tcp6_connect(struct tcpcb *, struct sockaddr *, struct thread *td); #endif /* INET6 */ static void tcp_disconnect(struct tcpcb *); static void tcp_usrclosed(struct tcpcb *); -static void tcp_fill_info(struct tcpcb *, struct tcp_info *); +static void tcp_fill_info(const struct tcpcb *, struct tcp_info *); static int tcp_pru_options_support(struct tcpcb *tp, int flags); #ifdef TCPDEBUG #define TCPDEBUG0 int ostate = 0 #define TCPDEBUG1() ostate = tp ? tp->t_state : 0 #define TCPDEBUG2(req) if (tp && (so->so_options & SO_DEBUG)) \ tcp_trace(TA_USER, ostate, tp, 0, 0, req) #else #define TCPDEBUG0 #define TCPDEBUG1() #define TCPDEBUG2(req) #endif /* * tcp_require_unique port requires a globally-unique source port for each * outgoing connection. The default is to require the 4-tuple to be unique. */ VNET_DEFINE(int, tcp_require_unique_port) = 0; SYSCTL_INT(_net_inet_tcp, OID_AUTO, require_unique_port, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_require_unique_port), 0, "Require globally-unique ephemeral port for outgoing connections"); #define V_tcp_require_unique_port VNET(tcp_require_unique_port) /* * TCP attaches to socket via pru_attach(), reserving space, * and an internet control block. */ static int tcp_usr_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; struct tcpcb *tp = NULL; int error; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp == NULL, ("tcp_usr_attach: inp != NULL")); TCPDEBUG1(); if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { error = soreserve(so, V_tcp_sendspace, V_tcp_recvspace); if (error) goto out; } so->so_rcv.sb_flags |= SB_AUTOSIZE; so->so_snd.sb_flags |= SB_AUTOSIZE; error = in_pcballoc(so, &V_tcbinfo); if (error) goto out; inp = sotoinpcb(so); #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { inp->inp_vflag |= INP_IPV6; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) inp->inp_vflag |= INP_IPV4; inp->in6p_hops = -1; /* use kernel default */ } else #endif inp->inp_vflag |= INP_IPV4; tp = tcp_newtcpcb(inp); if (tp == NULL) { error = ENOBUFS; in_pcbdetach(inp); in_pcbfree(inp); goto out; } tp->t_state = TCPS_CLOSED; INP_WUNLOCK(inp); TCPSTATES_INC(TCPS_CLOSED); out: TCPDEBUG2(PRU_ATTACH); TCP_PROBE2(debug__user, tp, PRU_ATTACH); return (error); } /* * tcp_usr_detach is called when the socket layer loses its final reference * to the socket, be it a file descriptor reference, a reference from TCP, * etc. At this point, there is only one case in which we will keep around * inpcb state: time wait. */ static void tcp_usr_detach(struct socket *so) { struct inpcb *inp; struct tcpcb *tp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); INP_WLOCK(inp); KASSERT(so->so_pcb == inp && inp->inp_socket == so, ("%s: socket %p inp %p mismatch", __func__, so, inp)); tp = intotcpcb(inp); if (inp->inp_flags & INP_TIMEWAIT) { /* * There are two cases to handle: one in which the time wait * state is being discarded (INP_DROPPED), and one in which * this connection will remain in timewait. In the former, * it is time to discard all state (except tcptw, which has * already been discarded by the timewait close code, which * should be further up the call stack somewhere). In the * latter case, we detach from the socket, but leave the pcb * present until timewait ends. * * XXXRW: Would it be cleaner to free the tcptw here? * * Astute question indeed, from twtcp perspective there are * four cases to consider: * * #1 tcp_usr_detach is called at tcptw creation time by * tcp_twstart, then do not discard the newly created tcptw * and leave inpcb present until timewait ends * #2 tcp_usr_detach is called at tcptw creation time by * tcp_twstart, but connection is local and tw will be * discarded immediately * #3 tcp_usr_detach is called at timewait end (or reuse) by * tcp_twclose, then the tcptw has already been discarded * (or reused) and inpcb is freed here * #4 tcp_usr_detach is called() after timewait ends (or reuse) * (e.g. by soclose), then tcptw has already been discarded * (or reused) and inpcb is freed here * * In all three cases the tcptw should not be freed here. */ if (inp->inp_flags & INP_DROPPED) { in_pcbdetach(inp); if (__predict_true(tp == NULL)) { in_pcbfree(inp); } else { /* * This case should not happen as in TIMEWAIT * state the inp should not be destroyed before * its tcptw. If INVARIANTS is defined, panic. */ #ifdef INVARIANTS panic("%s: Panic before an inp double-free: " "INP_TIMEWAIT && INP_DROPPED && tp != NULL" , __func__); #else log(LOG_ERR, "%s: Avoid an inp double-free: " "INP_TIMEWAIT && INP_DROPPED && tp != NULL" , __func__); #endif INP_WUNLOCK(inp); } } else { in_pcbdetach(inp); INP_WUNLOCK(inp); } } else { /* * If the connection is not in timewait, we consider two * two conditions: one in which no further processing is * necessary (dropped || embryonic), and one in which TCP is * not yet done, but no longer requires the socket, so the * pcb will persist for the time being. * * XXXRW: Does the second case still occur? */ if (inp->inp_flags & INP_DROPPED || tp->t_state < TCPS_SYN_SENT) { tcp_discardcb(tp); in_pcbdetach(inp); in_pcbfree(inp); } else { in_pcbdetach(inp); INP_WUNLOCK(inp); } } } #ifdef INET /* * Give the socket an address. */ static int tcp_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in *sinp; sinp = (struct sockaddr_in *)nam; if (nam->sa_family != AF_INET) { /* * Preserve compatibility with old programs. */ if (nam->sa_family != AF_UNSPEC || nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || sinp->sin_addr.s_addr != INADDR_ANY) return (EAFNOSUPPORT); nam->sa_family = AF_INET; } if (nam->sa_len != sizeof(*sinp)) return (EINVAL); /* * Must check for multicast addresses and disallow binding * to them. */ if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) return (EAFNOSUPPORT); TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_bind: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); INP_HASH_WLOCK(&V_tcbinfo); error = in_pcbbind(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); out: TCPDEBUG2(PRU_BIND); TCP_PROBE2(debug__user, tp, PRU_BIND); INP_WUNLOCK(inp); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_usr_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in6 *sin6; u_char vflagsav; sin6 = (struct sockaddr_in6 *)nam; if (nam->sa_family != AF_INET6) return (EAFNOSUPPORT); if (nam->sa_len != sizeof(*sin6)) return (EINVAL); /* * Must check for multicast addresses and disallow binding * to them. */ if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return (EAFNOSUPPORT); TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_bind: inp == NULL")); INP_WLOCK(inp); vflagsav = inp->inp_vflag; if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); INP_HASH_WLOCK(&V_tcbinfo); inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) { if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) inp->inp_vflag |= INP_IPV4; else if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { struct sockaddr_in sin; in6_sin6_2_sin(&sin, sin6); if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) { error = EAFNOSUPPORT; INP_HASH_WUNLOCK(&V_tcbinfo); goto out; } inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; error = in_pcbbind(inp, (struct sockaddr *)&sin, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); goto out; } } #endif error = in6_pcbbind(inp, nam, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); out: if (error != 0) inp->inp_vflag = vflagsav; TCPDEBUG2(PRU_BIND); TCP_PROBE2(debug__user, tp, PRU_BIND); INP_WUNLOCK(inp); return (error); } #endif /* INET6 */ #ifdef INET /* * Prepare to accept connections. */ static int tcp_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_listen: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); SOCK_LOCK(so); error = solisten_proto_check(so); INP_HASH_WLOCK(&V_tcbinfo); if (error == 0 && inp->inp_lport == 0) error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); INP_HASH_WUNLOCK(&V_tcbinfo); if (error == 0) { tcp_state_change(tp, TCPS_LISTEN); solisten_proto(so, backlog); #ifdef TCP_OFFLOAD if ((so->so_options & SO_NO_OFFLOAD) == 0) tcp_offload_listen_start(tp); #endif } SOCK_UNLOCK(so); if (IS_FASTOPEN(tp->t_flags)) tp->t_tfo_pending = tcp_fastopen_alloc_counter(); out: TCPDEBUG2(PRU_LISTEN); TCP_PROBE2(debug__user, tp, PRU_LISTEN); INP_WUNLOCK(inp); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; u_char vflagsav; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_listen: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } vflagsav = inp->inp_vflag; tp = intotcpcb(inp); TCPDEBUG1(); SOCK_LOCK(so); error = solisten_proto_check(so); INP_HASH_WLOCK(&V_tcbinfo); if (error == 0 && inp->inp_lport == 0) { inp->inp_vflag &= ~INP_IPV4; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) == 0) inp->inp_vflag |= INP_IPV4; error = in6_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); } INP_HASH_WUNLOCK(&V_tcbinfo); if (error == 0) { tcp_state_change(tp, TCPS_LISTEN); solisten_proto(so, backlog); #ifdef TCP_OFFLOAD if ((so->so_options & SO_NO_OFFLOAD) == 0) tcp_offload_listen_start(tp); #endif } SOCK_UNLOCK(so); if (IS_FASTOPEN(tp->t_flags)) tp->t_tfo_pending = tcp_fastopen_alloc_counter(); if (error != 0) inp->inp_vflag = vflagsav; out: TCPDEBUG2(PRU_LISTEN); TCP_PROBE2(debug__user, tp, PRU_LISTEN); INP_WUNLOCK(inp); return (error); } #endif /* INET6 */ #ifdef INET /* * Initiate connection to peer. * Create a template for use in transmissions on this connection. * Enter SYN_SENT state, and mark socket as connecting. * Start keep-alive timer, and seed output sequence space. * Send initial segment on connection. */ static int tcp_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct epoch_tracker et; int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in *sinp; sinp = (struct sockaddr_in *)nam; if (nam->sa_family != AF_INET) return (EAFNOSUPPORT); if (nam->sa_len != sizeof (*sinp)) return (EINVAL); /* * Must disallow TCP ``connections'' to multicast addresses. */ if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) return (EAFNOSUPPORT); if (ntohl(sinp->sin_addr.s_addr) == INADDR_BROADCAST) return (EACCES); if ((error = prison_remote_ip4(td->td_ucred, &sinp->sin_addr)) != 0) return (error); TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_connect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_TIMEWAIT) { error = EADDRINUSE; goto out; } if (inp->inp_flags & INP_DROPPED) { error = ECONNREFUSED; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); NET_EPOCH_ENTER(et); if ((error = tcp_connect(tp, nam, td)) != 0) goto out_in_epoch; #ifdef TCP_OFFLOAD if (registered_toedevs > 0 && (so->so_options & SO_NO_OFFLOAD) == 0 && (error = tcp_offload_connect(so, nam)) == 0) goto out_in_epoch; #endif tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); error = tp->t_fb->tfb_tcp_output(tp); out_in_epoch: NET_EPOCH_EXIT(et); out: TCPDEBUG2(PRU_CONNECT); TCP_PROBE2(debug__user, tp, PRU_CONNECT); INP_WUNLOCK(inp); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_usr_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct epoch_tracker et; int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct sockaddr_in6 *sin6; u_int8_t incflagsav; u_char vflagsav; TCPDEBUG0; sin6 = (struct sockaddr_in6 *)nam; if (nam->sa_family != AF_INET6) return (EAFNOSUPPORT); if (nam->sa_len != sizeof (*sin6)) return (EINVAL); /* * Must disallow TCP ``connections'' to multicast addresses. */ if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) return (EAFNOSUPPORT); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_connect: inp == NULL")); INP_WLOCK(inp); vflagsav = inp->inp_vflag; incflagsav = inp->inp_inc.inc_flags; if (inp->inp_flags & INP_TIMEWAIT) { error = EADDRINUSE; goto out; } if (inp->inp_flags & INP_DROPPED) { error = ECONNREFUSED; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); #ifdef INET /* * XXXRW: Some confusion: V4/V6 flags relate to binding, and * therefore probably require the hash lock, which isn't held here. * Is this a significant problem? */ if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { struct sockaddr_in sin; if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV4) == 0) { error = EAFNOSUPPORT; goto out; } in6_sin6_2_sin(&sin, sin6); if (IN_MULTICAST(ntohl(sin.sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if (ntohl(sin.sin_addr.s_addr) == INADDR_BROADCAST) { error = EACCES; goto out; } if ((error = prison_remote_ip4(td->td_ucred, &sin.sin_addr)) != 0) goto out; inp->inp_vflag |= INP_IPV4; inp->inp_vflag &= ~INP_IPV6; NET_EPOCH_ENTER(et); if ((error = tcp_connect(tp, (struct sockaddr *)&sin, td)) != 0) goto out_in_epoch; #ifdef TCP_OFFLOAD if (registered_toedevs > 0 && (so->so_options & SO_NO_OFFLOAD) == 0 && (error = tcp_offload_connect(so, nam)) == 0) goto out_in_epoch; #endif error = tp->t_fb->tfb_tcp_output(tp); goto out_in_epoch; } else { if ((inp->inp_vflag & INP_IPV6) == 0) { error = EAFNOSUPPORT; goto out; } } #endif if ((error = prison_remote_ip6(td->td_ucred, &sin6->sin6_addr)) != 0) goto out; inp->inp_vflag &= ~INP_IPV4; inp->inp_vflag |= INP_IPV6; inp->inp_inc.inc_flags |= INC_ISIPV6; NET_EPOCH_ENTER(et); if ((error = tcp6_connect(tp, nam, td)) != 0) goto out_in_epoch; #ifdef TCP_OFFLOAD if (registered_toedevs > 0 && (so->so_options & SO_NO_OFFLOAD) == 0 && (error = tcp_offload_connect(so, nam)) == 0) goto out_in_epoch; #endif tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); error = tp->t_fb->tfb_tcp_output(tp); out_in_epoch: NET_EPOCH_EXIT(et); out: /* * If the implicit bind in the connect call fails, restore * the flags we modified. */ if (error != 0 && inp->inp_lport == 0) { inp->inp_vflag = vflagsav; inp->inp_inc.inc_flags = incflagsav; } TCPDEBUG2(PRU_CONNECT); TCP_PROBE2(debug__user, tp, PRU_CONNECT); INP_WUNLOCK(inp); return (error); } #endif /* INET6 */ /* * Initiate disconnect from peer. * If connection never passed embryonic stage, just drop; * else if don't need to let data drain, then can just drop anyways, * else have to begin TCP shutdown process: mark socket disconnecting, * drain unread data, state switch to reflect user close, and * send segment (e.g. FIN) to peer. Socket will be really disconnected * when peer sends FIN and acks ours. * * SHOULD IMPLEMENT LATER PRU_CONNECT VIA REALLOC TCPCB. */ static int tcp_usr_disconnect(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; struct epoch_tracker et; int error = 0; TCPDEBUG0; NET_EPOCH_ENTER(et); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_disconnect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & INP_TIMEWAIT) goto out; if (inp->inp_flags & INP_DROPPED) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); tcp_disconnect(tp); out: TCPDEBUG2(PRU_DISCONNECT); TCP_PROBE2(debug__user, tp, PRU_DISCONNECT); INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); return (error); } #ifdef INET /* * Accept a connection. Essentially all the work is done at higher levels; * just return the address of the peer, storing through addr. */ static int tcp_usr_accept(struct socket *so, struct sockaddr **nam) { int error = 0; struct inpcb *inp = NULL; struct tcpcb *tp = NULL; struct in_addr addr; in_port_t port = 0; TCPDEBUG0; if (so->so_state & SS_ISDISCONNECTED) return (ECONNABORTED); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_accept: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNABORTED; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); /* * We inline in_getpeeraddr and COMMON_END here, so that we can * copy the data of interest and defer the malloc until after we * release the lock. */ port = inp->inp_fport; addr = inp->inp_faddr; out: TCPDEBUG2(PRU_ACCEPT); TCP_PROBE2(debug__user, tp, PRU_ACCEPT); INP_WUNLOCK(inp); if (error == 0) *nam = in_sockaddr(port, &addr); return error; } #endif /* INET */ #ifdef INET6 static int tcp6_usr_accept(struct socket *so, struct sockaddr **nam) { struct inpcb *inp = NULL; int error = 0; struct tcpcb *tp = NULL; struct in_addr addr; struct in6_addr addr6; struct epoch_tracker et; in_port_t port = 0; int v4 = 0; TCPDEBUG0; if (so->so_state & SS_ISDISCONNECTED) return (ECONNABORTED); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp6_usr_accept: inp == NULL")); NET_EPOCH_ENTER(et); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNABORTED; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); /* * We inline in6_mapped_peeraddr and COMMON_END here, so that we can * copy the data of interest and defer the malloc until after we * release the lock. */ if (inp->inp_vflag & INP_IPV4) { v4 = 1; port = inp->inp_fport; addr = inp->inp_faddr; } else { port = inp->inp_fport; addr6 = inp->in6p_faddr; } out: TCPDEBUG2(PRU_ACCEPT); TCP_PROBE2(debug__user, tp, PRU_ACCEPT); INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); if (error == 0) { if (v4) *nam = in6_v4mapsin6_sockaddr(port, &addr); else *nam = in6_sockaddr(port, &addr6); } return error; } #endif /* INET6 */ /* * Mark the connection as being incapable of further output. */ static int tcp_usr_shutdown(struct socket *so) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; struct epoch_tracker et; TCPDEBUG0; NET_EPOCH_ENTER(et); inp = sotoinpcb(so); KASSERT(inp != NULL, ("inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); socantsendmore(so); tcp_usrclosed(tp); if (!(inp->inp_flags & INP_DROPPED)) error = tp->t_fb->tfb_tcp_output(tp); out: TCPDEBUG2(PRU_SHUTDOWN); TCP_PROBE2(debug__user, tp, PRU_SHUTDOWN); INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); return (error); } /* * After a receive, possibly send window update to peer. */ static int tcp_usr_rcvd(struct socket *so, int flags) { struct epoch_tracker et; struct inpcb *inp; struct tcpcb *tp = NULL; int error = 0; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_rcvd: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); /* * For passively-created TFO connections, don't attempt a window * update while still in SYN_RECEIVED as this may trigger an early * SYN|ACK. It is preferable to have the SYN|ACK be sent along with * application response data, or failing that, when the DELACK timer * expires. */ if (IS_FASTOPEN(tp->t_flags) && (tp->t_state == TCPS_SYN_RECEIVED)) goto out; NET_EPOCH_ENTER(et); #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) tcp_offload_rcvd(tp); else #endif tp->t_fb->tfb_tcp_output(tp); NET_EPOCH_EXIT(et); out: TCPDEBUG2(PRU_RCVD); TCP_PROBE2(debug__user, tp, PRU_RCVD); INP_WUNLOCK(inp); return (error); } /* * Do a send by putting data in output queue and updating urgent * marker if URG set. Possibly send more data. Unlike the other * pru_*() routines, the mbuf chains are our responsibility. We * must either enqueue them or free them. The other pru_* routines * generally are caller-frees. */ static int tcp_usr_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct epoch_tracker et; int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; #ifdef INET #ifdef INET6 struct sockaddr_in sin; #endif struct sockaddr_in *sinp; #endif #ifdef INET6 int isipv6; #endif u_int8_t incflagsav; u_char vflagsav; bool restoreflags; TCPDEBUG0; /* * We require the pcbinfo "read lock" if we will close the socket * as part of this call. */ NET_EPOCH_ENTER(et); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_send: inp == NULL")); INP_WLOCK(inp); vflagsav = inp->inp_vflag; incflagsav = inp->inp_inc.inc_flags; restoreflags = false; if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { if (control) m_freem(control); error = ECONNRESET; goto out; } if (control != NULL) { /* TCP doesn't do control messages (rights, creds, etc) */ if (control->m_len) { m_freem(control); error = EINVAL; goto out; } m_freem(control); /* empty control, just free it */ control = NULL; } tp = intotcpcb(inp); if ((flags & PRUS_OOB) != 0 && (error = tcp_pru_options_support(tp, PRUS_OOB)) != 0) goto out; TCPDEBUG1(); if (nam != NULL && tp->t_state < TCPS_SYN_SENT) { switch (nam->sa_family) { #ifdef INET case AF_INET: sinp = (struct sockaddr_in *)nam; if (sinp->sin_len != sizeof(struct sockaddr_in)) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV6) != 0) { error = EAFNOSUPPORT; goto out; } if (IN_MULTICAST(ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if (ntohl(sinp->sin_addr.s_addr) == INADDR_BROADCAST) { error = EACCES; goto out; } if ((error = prison_remote_ip4(td->td_ucred, &sinp->sin_addr))) goto out; #ifdef INET6 isipv6 = 0; #endif break; #endif /* INET */ #ifdef INET6 case AF_INET6: { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)nam; if (sin6->sin6_len != sizeof(*sin6)) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV6PROTO) == 0) { error = EAFNOSUPPORT; goto out; } if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) { error = EAFNOSUPPORT; goto out; } if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { #ifdef INET if ((inp->inp_flags & IN6P_IPV6_V6ONLY) != 0) { error = EINVAL; goto out; } if ((inp->inp_vflag & INP_IPV4) == 0) { error = EAFNOSUPPORT; goto out; } restoreflags = true; inp->inp_vflag &= ~INP_IPV6; sinp = &sin; in6_sin6_2_sin(sinp, sin6); if (IN_MULTICAST( ntohl(sinp->sin_addr.s_addr))) { error = EAFNOSUPPORT; goto out; } if ((error = prison_remote_ip4(td->td_ucred, &sinp->sin_addr))) goto out; isipv6 = 0; #else /* !INET */ error = EAFNOSUPPORT; goto out; #endif /* INET */ } else { if ((inp->inp_vflag & INP_IPV6) == 0) { error = EAFNOSUPPORT; goto out; } restoreflags = true; inp->inp_vflag &= ~INP_IPV4; inp->inp_inc.inc_flags |= INC_ISIPV6; if ((error = prison_remote_ip6(td->td_ucred, &sin6->sin6_addr))) goto out; isipv6 = 1; } break; } #endif /* INET6 */ default: error = EAFNOSUPPORT; goto out; } } if (!(flags & PRUS_OOB)) { sbappendstream(&so->so_snd, m, flags); m = NULL; if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg using peer's cached MSS. */ #ifdef INET6 if (isipv6) error = tcp6_connect(tp, nam, td); #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET error = tcp_connect(tp, (struct sockaddr *)sinp, td); #endif /* * The bind operation in tcp_connect succeeded. We * no longer want to restore the flags if later * operations fail. */ if (error == 0 || inp->inp_lport != 0) restoreflags = false; if (error) { /* m is freed if PRUS_NOTREADY is unset. */ sbflush(&so->so_snd); goto out; } if (IS_FASTOPEN(tp->t_flags)) tcp_fastopen_connect(tp); else { tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1); } } if (flags & PRUS_EOF) { /* * Close the send side of the connection after * the data is sent. */ socantsendmore(so); tcp_usrclosed(tp); } if (TCPS_HAVEESTABLISHED(tp->t_state) && ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) && (tp->t_fbyte_out == 0) && (so->so_snd.sb_ccc > 0)) { tp->t_fbyte_out = ticks; if (tp->t_fbyte_out == 0) tp->t_fbyte_out = 1; if (tp->t_fbyte_out && tp->t_fbyte_in) tp->t_flags2 |= TF2_FBYTES_COMPLETE; } if (!(inp->inp_flags & INP_DROPPED) && !(flags & PRUS_NOTREADY)) { if (flags & PRUS_MORETOCOME) tp->t_flags |= TF_MORETOCOME; error = tp->t_fb->tfb_tcp_output(tp); if (flags & PRUS_MORETOCOME) tp->t_flags &= ~TF_MORETOCOME; } } else { /* * XXXRW: PRUS_EOF not implemented with PRUS_OOB? */ SOCKBUF_LOCK(&so->so_snd); if (sbspace(&so->so_snd) < -512) { SOCKBUF_UNLOCK(&so->so_snd); error = ENOBUFS; goto out; } /* * According to RFC961 (Assigned Protocols), * the urgent pointer points to the last octet * of urgent data. We continue, however, * to consider it to indicate the first octet * of data past the urgent section. * Otherwise, snd_up should be one lower. */ sbappendstream_locked(&so->so_snd, m, flags); SOCKBUF_UNLOCK(&so->so_snd); m = NULL; if (nam && tp->t_state < TCPS_SYN_SENT) { /* * Do implied connect if not yet connected, * initialize window to default value, and * initialize maxseg using peer's cached MSS. */ /* * Not going to contemplate SYN|URG */ if (IS_FASTOPEN(tp->t_flags)) tp->t_flags &= ~TF_FASTOPEN; #ifdef INET6 if (isipv6) error = tcp6_connect(tp, nam, td); #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET error = tcp_connect(tp, (struct sockaddr *)sinp, td); #endif /* * The bind operation in tcp_connect succeeded. We * no longer want to restore the flags if later * operations fail. */ if (error == 0 || inp->inp_lport != 0) restoreflags = false; if (error != 0) { /* m is freed if PRUS_NOTREADY is unset. */ sbflush(&so->so_snd); goto out; } tp->snd_wnd = TTCP_CLIENT_SND_WND; tcp_mss(tp, -1); } tp->snd_up = tp->snd_una + sbavail(&so->so_snd); if ((flags & PRUS_NOTREADY) == 0) { tp->t_flags |= TF_FORCEDATA; error = tp->t_fb->tfb_tcp_output(tp); tp->t_flags &= ~TF_FORCEDATA; } } TCP_LOG_EVENT(tp, NULL, &inp->inp_socket->so_rcv, &inp->inp_socket->so_snd, TCP_LOG_USERSEND, error, 0, NULL, false); out: /* * In case of PRUS_NOTREADY, the caller or tcp_usr_ready() is * responsible for freeing memory. */ if (m != NULL && (flags & PRUS_NOTREADY) == 0) m_freem(m); /* * If the request was unsuccessful and we changed flags, * restore the original flags. */ if (error != 0 && restoreflags) { inp->inp_vflag = vflagsav; inp->inp_inc.inc_flags = incflagsav; } TCPDEBUG2((flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); TCP_PROBE2(debug__user, tp, (flags & PRUS_OOB) ? PRU_SENDOOB : ((flags & PRUS_EOF) ? PRU_SEND_EOF : PRU_SEND)); INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); return (error); } static int tcp_usr_ready(struct socket *so, struct mbuf *m, int count) { struct epoch_tracker et; struct inpcb *inp; struct tcpcb *tp; int error; inp = sotoinpcb(so); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); mb_free_notready(m, count); return (ECONNRESET); } tp = intotcpcb(inp); SOCKBUF_LOCK(&so->so_snd); error = sbready(&so->so_snd, m, count); SOCKBUF_UNLOCK(&so->so_snd); if (error == 0) { NET_EPOCH_ENTER(et); error = tp->t_fb->tfb_tcp_output(tp); NET_EPOCH_EXIT(et); } INP_WUNLOCK(inp); return (error); } /* * Abort the TCP. Drop the connection abruptly. */ static void tcp_usr_abort(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; struct epoch_tracker et; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_abort: inp == NULL")); NET_EPOCH_ENTER(et); INP_WLOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_abort: inp_socket == NULL")); /* * If we still have full TCP state, and we're not dropped, drop. */ if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); TCPDEBUG1(); tp = tcp_drop(tp, ECONNABORTED); if (tp == NULL) goto dropped; TCPDEBUG2(PRU_ABORT); TCP_PROBE2(debug__user, tp, PRU_ABORT); } if (!(inp->inp_flags & INP_DROPPED)) { SOCK_LOCK(so); so->so_state |= SS_PROTOREF; SOCK_UNLOCK(so); inp->inp_flags |= INP_SOCKREF; } INP_WUNLOCK(inp); dropped: NET_EPOCH_EXIT(et); } /* * TCP socket is closed. Start friendly disconnect. */ static void tcp_usr_close(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; struct epoch_tracker et; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_close: inp == NULL")); NET_EPOCH_ENTER(et); INP_WLOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_close: inp_socket == NULL")); /* * If we still have full TCP state, and we're not dropped, initiate * a disconnect. */ if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); TCPDEBUG1(); tcp_disconnect(tp); TCPDEBUG2(PRU_CLOSE); TCP_PROBE2(debug__user, tp, PRU_CLOSE); } if (!(inp->inp_flags & INP_DROPPED)) { SOCK_LOCK(so); so->so_state |= SS_PROTOREF; SOCK_UNLOCK(so); inp->inp_flags |= INP_SOCKREF; } INP_WUNLOCK(inp); NET_EPOCH_EXIT(et); } static int tcp_pru_options_support(struct tcpcb *tp, int flags) { /* * If the specific TCP stack has a pru_options * specified then it does not always support * all the PRU_XX options and we must ask it. * If the function is not specified then all * of the PRU_XX options are supported. */ int ret = 0; if (tp->t_fb->tfb_pru_options) { ret = (*tp->t_fb->tfb_pru_options)(tp, flags); } return (ret); } /* * Receive out-of-band data. */ static int tcp_usr_rcvoob(struct socket *so, struct mbuf *m, int flags) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_rcvoob: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = ECONNRESET; goto out; } tp = intotcpcb(inp); error = tcp_pru_options_support(tp, PRUS_OOB); if (error) { goto out; } TCPDEBUG1(); if ((so->so_oobmark == 0 && (so->so_rcv.sb_state & SBS_RCVATMARK) == 0) || so->so_options & SO_OOBINLINE || tp->t_oobflags & TCPOOB_HADDATA) { error = EINVAL; goto out; } if ((tp->t_oobflags & TCPOOB_HAVEDATA) == 0) { error = EWOULDBLOCK; goto out; } m->m_len = 1; *mtod(m, caddr_t) = tp->t_iobc; if ((flags & MSG_PEEK) == 0) tp->t_oobflags ^= (TCPOOB_HAVEDATA | TCPOOB_HADDATA); out: TCPDEBUG2(PRU_RCVOOB); TCP_PROBE2(debug__user, tp, PRU_RCVOOB); INP_WUNLOCK(inp); return (error); } #ifdef INET struct pr_usrreqs tcp_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp_usr_bind, .pru_connect = tcp_usr_connect, .pru_control = in_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_listen = tcp_usr_listen, .pru_peeraddr = in_getpeeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_ready = tcp_usr_ready, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = tcp_usr_close, }; #endif /* INET */ #ifdef INET6 struct pr_usrreqs tcp6_usrreqs = { .pru_abort = tcp_usr_abort, .pru_accept = tcp6_usr_accept, .pru_attach = tcp_usr_attach, .pru_bind = tcp6_usr_bind, .pru_connect = tcp6_usr_connect, .pru_control = in6_control, .pru_detach = tcp_usr_detach, .pru_disconnect = tcp_usr_disconnect, .pru_listen = tcp6_usr_listen, .pru_peeraddr = in6_mapped_peeraddr, .pru_rcvd = tcp_usr_rcvd, .pru_rcvoob = tcp_usr_rcvoob, .pru_send = tcp_usr_send, .pru_ready = tcp_usr_ready, .pru_shutdown = tcp_usr_shutdown, .pru_sockaddr = in6_mapped_sockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = tcp_usr_close, }; #endif /* INET6 */ #ifdef INET /* * Common subroutine to open a TCP connection to remote host specified * by struct sockaddr_in in mbuf *nam. Call in_pcbbind to assign a local * port number if needed. Call in_pcbconnect_setup to do the routing and * to choose a local host address (interface). If there is an existing * incarnation of the same connection in TIME-WAIT state and if the remote * host was sending CC options and if the connection duration was < MSL, then * truncate the previous TIME-WAIT state and proceed. * Initialize connection parameters and enter SYN-SENT state. */ static int tcp_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td) { struct inpcb *inp = tp->t_inpcb, *oinp; struct socket *so = inp->inp_socket; struct in_addr laddr; u_short lport; int error; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK(&V_tcbinfo); if (V_tcp_require_unique_port && inp->inp_lport == 0) { error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); if (error) goto out; } /* * Cannot simply call in_pcbconnect, because there might be an * earlier incarnation of this same connection still in * TIME_WAIT state, creating an ADDRINUSE error. */ laddr = inp->inp_laddr; lport = inp->inp_lport; error = in_pcbconnect_setup(inp, nam, &laddr.s_addr, &lport, &inp->inp_faddr.s_addr, &inp->inp_fport, &oinp, td->td_ucred); if (error && oinp == NULL) goto out; if (oinp) { error = EADDRINUSE; goto out; } /* Handle initial bind if it hadn't been done in advance. */ if (inp->inp_lport == 0) { inp->inp_lport = lport; if (in_pcbinshash(inp) != 0) { inp->inp_lport = 0; error = EAGAIN; goto out; } } inp->inp_laddr = laddr; in_pcbrehash(inp); INP_HASH_WUNLOCK(&V_tcbinfo); /* * Compute window scaling to request: * Scale to fit into sweet spot. See tcp_syncache.c. * XXX: This should move to tcp_output(). */ while (tp->request_r_scale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << tp->request_r_scale) < sb_max) tp->request_r_scale++; soisconnecting(so); TCPSTAT_INC(tcps_connattempt); tcp_state_change(tp, TCPS_SYN_SENT); tp->iss = tcp_new_isn(&inp->inp_inc); if (tp->t_flags & TF_REQ_TSTMP) tp->ts_offset = tcp_new_ts_offset(&inp->inp_inc); tcp_sendseqinit(tp); return 0; out: INP_HASH_WUNLOCK(&V_tcbinfo); return (error); } #endif /* INET */ #ifdef INET6 static int tcp6_connect(struct tcpcb *tp, struct sockaddr *nam, struct thread *td) { struct inpcb *inp = tp->t_inpcb; int error; INP_WLOCK_ASSERT(inp); INP_HASH_WLOCK(&V_tcbinfo); if (V_tcp_require_unique_port && inp->inp_lport == 0) { error = in6_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); if (error) goto out; } error = in6_pcbconnect(inp, nam, td->td_ucred); if (error != 0) goto out; INP_HASH_WUNLOCK(&V_tcbinfo); /* Compute window scaling to request. */ while (tp->request_r_scale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << tp->request_r_scale) < sb_max) tp->request_r_scale++; soisconnecting(inp->inp_socket); TCPSTAT_INC(tcps_connattempt); tcp_state_change(tp, TCPS_SYN_SENT); tp->iss = tcp_new_isn(&inp->inp_inc); if (tp->t_flags & TF_REQ_TSTMP) tp->ts_offset = tcp_new_ts_offset(&inp->inp_inc); tcp_sendseqinit(tp); return 0; out: INP_HASH_WUNLOCK(&V_tcbinfo); return error; } #endif /* INET6 */ /* * Export TCP internal state information via a struct tcp_info, based on the * Linux 2.6 API. Not ABI compatible as our constants are mapped differently * (TCP state machine, etc). We export all information using FreeBSD-native * constants -- for example, the numeric values for tcpi_state will differ * from Linux. */ -static void -tcp_fill_info(struct tcpcb *tp, struct tcp_info *ti) +void +tcp_fill_info(const struct tcpcb *tp, struct tcp_info *ti) { - INP_WLOCK_ASSERT(tp->t_inpcb); + INP_LOCK_ASSERT(tp->t_inpcb); bzero(ti, sizeof(*ti)); ti->tcpi_state = tp->t_state; if ((tp->t_flags & TF_REQ_TSTMP) && (tp->t_flags & TF_RCVD_TSTMP)) ti->tcpi_options |= TCPI_OPT_TIMESTAMPS; if (tp->t_flags & TF_SACK_PERMIT) ti->tcpi_options |= TCPI_OPT_SACK; if ((tp->t_flags & TF_REQ_SCALE) && (tp->t_flags & TF_RCVD_SCALE)) { ti->tcpi_options |= TCPI_OPT_WSCALE; ti->tcpi_snd_wscale = tp->snd_scale; ti->tcpi_rcv_wscale = tp->rcv_scale; } if (tp->t_flags2 & TF2_ECN_PERMIT) ti->tcpi_options |= TCPI_OPT_ECN; ti->tcpi_rto = tp->t_rxtcur * tick; ti->tcpi_last_data_recv = ((uint32_t)ticks - tp->t_rcvtime) * tick; ti->tcpi_rtt = ((u_int64_t)tp->t_srtt * tick) >> TCP_RTT_SHIFT; ti->tcpi_rttvar = ((u_int64_t)tp->t_rttvar * tick) >> TCP_RTTVAR_SHIFT; ti->tcpi_snd_ssthresh = tp->snd_ssthresh; ti->tcpi_snd_cwnd = tp->snd_cwnd; /* * FreeBSD-specific extension fields for tcp_info. */ ti->tcpi_rcv_space = tp->rcv_wnd; ti->tcpi_rcv_nxt = tp->rcv_nxt; ti->tcpi_snd_wnd = tp->snd_wnd; ti->tcpi_snd_bwnd = 0; /* Unused, kept for compat. */ ti->tcpi_snd_nxt = tp->snd_nxt; ti->tcpi_snd_mss = tp->t_maxseg; ti->tcpi_rcv_mss = tp->t_maxseg; ti->tcpi_snd_rexmitpack = tp->t_sndrexmitpack; ti->tcpi_rcv_ooopack = tp->t_rcvoopack; ti->tcpi_snd_zerowin = tp->t_sndzerowin; #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { ti->tcpi_options |= TCPI_OPT_TOE; tcp_offload_tcp_info(tp, ti); } #endif } /* * tcp_ctloutput() must drop the inpcb lock before performing copyin on * socket option arguments. When it re-acquires the lock after the copy, it * has to revalidate that the connection is still valid for the socket * option. */ #define INP_WLOCK_RECHECK_CLEANUP(inp, cleanup) do { \ INP_WLOCK(inp); \ if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ INP_WUNLOCK(inp); \ cleanup; \ return (ECONNRESET); \ } \ tp = intotcpcb(inp); \ } while(0) #define INP_WLOCK_RECHECK(inp) INP_WLOCK_RECHECK_CLEANUP((inp), /* noop */) int tcp_ctloutput(struct socket *so, struct sockopt *sopt) { int error; struct inpcb *inp; struct tcpcb *tp; struct tcp_function_block *blk; struct tcp_function_set fsn; error = 0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_ctloutput: inp == NULL")); if (sopt->sopt_level != IPPROTO_TCP) { #ifdef INET6 if (inp->inp_vflag & INP_IPV6PROTO) { error = ip6_ctloutput(so, sopt); /* * In case of the IPV6_USE_MIN_MTU socket option, * the INC_IPV6MINMTU flag to announce a corresponding * MSS during the initial handshake. * If the TCP connection is not in the front states, * just reduce the MSS being used. * This avoids the sending of TCP segments which will * be fragmented at the IPv6 layer. */ if ((error == 0) && (sopt->sopt_dir == SOPT_SET) && (sopt->sopt_level == IPPROTO_IPV6) && (sopt->sopt_name == IPV6_USE_MIN_MTU)) { INP_WLOCK(inp); if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED))) { INP_WUNLOCK(inp); return (ECONNRESET); } inp->inp_inc.inc_flags |= INC_IPV6MINMTU; tp = intotcpcb(inp); if ((tp->t_state >= TCPS_SYN_SENT) && (inp->inp_inc.inc_flags & INC_ISIPV6)) { struct ip6_pktopts *opt; opt = inp->in6p_outputopts; if ((opt != NULL) && (opt->ip6po_minmtu == IP6PO_MINMTU_ALL)) { if (tp->t_maxseg > TCP6_MSS) { tp->t_maxseg = TCP6_MSS; } } } INP_WUNLOCK(inp); } } #endif /* INET6 */ #if defined(INET6) && defined(INET) else #endif #ifdef INET { error = ip_ctloutput(so, sopt); } #endif return (error); } INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { INP_WUNLOCK(inp); return (ECONNRESET); } tp = intotcpcb(inp); /* * Protect the TCP option TCP_FUNCTION_BLK so * that a sub-function can *never* overwrite this. */ if ((sopt->sopt_dir == SOPT_SET) && (sopt->sopt_name == TCP_FUNCTION_BLK)) { INP_WUNLOCK(inp); error = sooptcopyin(sopt, &fsn, sizeof fsn, sizeof fsn); if (error) return (error); INP_WLOCK_RECHECK(inp); blk = find_and_ref_tcp_functions(&fsn); if (blk == NULL) { INP_WUNLOCK(inp); return (ENOENT); } if (tp->t_fb == blk) { /* You already have this */ refcount_release(&blk->tfb_refcnt); INP_WUNLOCK(inp); return (0); } if (tp->t_state != TCPS_CLOSED) { /* * The user has advanced the state * past the initial point, we may not * be able to switch. */ if (blk->tfb_tcp_handoff_ok != NULL) { /* * Does the stack provide a * query mechanism, if so it may * still be possible? */ error = (*blk->tfb_tcp_handoff_ok)(tp); } else error = EINVAL; if (error) { refcount_release(&blk->tfb_refcnt); INP_WUNLOCK(inp); return(error); } } if (blk->tfb_flags & TCP_FUNC_BEING_REMOVED) { refcount_release(&blk->tfb_refcnt); INP_WUNLOCK(inp); return (ENOENT); } /* * Release the old refcnt, the * lookup acquired a ref on the * new one already. */ if (tp->t_fb->tfb_tcp_fb_fini) { struct epoch_tracker et; /* * Tell the stack to cleanup with 0 i.e. * the tcb is not going away. */ NET_EPOCH_ENTER(et); (*tp->t_fb->tfb_tcp_fb_fini)(tp, 0); NET_EPOCH_EXIT(et); } #ifdef TCPHPTS /* Assure that we are not on any hpts */ tcp_hpts_remove(tp->t_inpcb, HPTS_REMOVE_ALL); #endif if (blk->tfb_tcp_fb_init) { error = (*blk->tfb_tcp_fb_init)(tp); if (error) { refcount_release(&blk->tfb_refcnt); if (tp->t_fb->tfb_tcp_fb_init) { if((*tp->t_fb->tfb_tcp_fb_init)(tp) != 0) { /* Fall back failed, drop the connection */ INP_WUNLOCK(inp); soabort(so); return(error); } } goto err_out; } } refcount_release(&tp->t_fb->tfb_refcnt); tp->t_fb = blk; #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { tcp_offload_ctloutput(tp, sopt->sopt_dir, sopt->sopt_name); } #endif err_out: INP_WUNLOCK(inp); return (error); } else if ((sopt->sopt_dir == SOPT_GET) && (sopt->sopt_name == TCP_FUNCTION_BLK)) { strncpy(fsn.function_set_name, tp->t_fb->tfb_tcp_block_name, TCP_FUNCTION_NAME_LEN_MAX); fsn.function_set_name[TCP_FUNCTION_NAME_LEN_MAX - 1] = '\0'; fsn.pcbcnt = tp->t_fb->tfb_refcnt; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &fsn, sizeof fsn); return (error); } /* Pass in the INP locked, called must unlock it */ return (tp->t_fb->tfb_tcp_ctloutput(so, sopt, inp, tp)); } /* * If this assert becomes untrue, we need to change the size of the buf * variable in tcp_default_ctloutput(). */ #ifdef CTASSERT CTASSERT(TCP_CA_NAME_MAX <= TCP_LOG_ID_LEN); CTASSERT(TCP_LOG_REASON_LEN <= TCP_LOG_ID_LEN); #endif #ifdef KERN_TLS static int copyin_tls_enable(struct sockopt *sopt, struct tls_enable *tls) { struct tls_enable_v0 tls_v0; int error; if (sopt->sopt_valsize == sizeof(tls_v0)) { error = sooptcopyin(sopt, &tls_v0, sizeof(tls_v0), sizeof(tls_v0)); if (error) return (error); memset(tls, 0, sizeof(*tls)); tls->cipher_key = tls_v0.cipher_key; tls->iv = tls_v0.iv; tls->auth_key = tls_v0.auth_key; tls->cipher_algorithm = tls_v0.cipher_algorithm; tls->cipher_key_len = tls_v0.cipher_key_len; tls->iv_len = tls_v0.iv_len; tls->auth_algorithm = tls_v0.auth_algorithm; tls->auth_key_len = tls_v0.auth_key_len; tls->flags = tls_v0.flags; tls->tls_vmajor = tls_v0.tls_vmajor; tls->tls_vminor = tls_v0.tls_vminor; return (0); } return (sooptcopyin(sopt, tls, sizeof(*tls), sizeof(*tls))); } #endif int tcp_default_ctloutput(struct socket *so, struct sockopt *sopt, struct inpcb *inp, struct tcpcb *tp) { int error, opt, optval; u_int ui; struct tcp_info ti; #ifdef KERN_TLS struct tls_enable tls; #endif struct cc_algo *algo; char *pbuf, buf[TCP_LOG_ID_LEN]; #ifdef STATS struct statsblob *sbp; #endif size_t len; /* * For TCP_CCALGOOPT forward the control to CC module, for both * SOPT_SET and SOPT_GET. */ switch (sopt->sopt_name) { case TCP_CCALGOOPT: INP_WUNLOCK(inp); if (sopt->sopt_valsize > CC_ALGOOPT_LIMIT) return (EINVAL); pbuf = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK | M_ZERO); error = sooptcopyin(sopt, pbuf, sopt->sopt_valsize, sopt->sopt_valsize); if (error) { free(pbuf, M_TEMP); return (error); } INP_WLOCK_RECHECK_CLEANUP(inp, free(pbuf, M_TEMP)); if (CC_ALGO(tp)->ctl_output != NULL) error = CC_ALGO(tp)->ctl_output(tp->ccv, sopt, pbuf); else error = ENOENT; INP_WUNLOCK(inp); if (error == 0 && sopt->sopt_dir == SOPT_GET) error = sooptcopyout(sopt, pbuf, sopt->sopt_valsize); free(pbuf, M_TEMP); return (error); } switch (sopt->sopt_dir) { case SOPT_SET: switch (sopt->sopt_name) { #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) case TCP_MD5SIG: INP_WUNLOCK(inp); if (!TCPMD5_ENABLED()) return (ENOPROTOOPT); error = TCPMD5_PCBCTL(inp, sopt); if (error) return (error); INP_WLOCK_RECHECK(inp); goto unlock_and_done; #endif /* IPSEC */ case TCP_NODELAY: case TCP_NOOPT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); switch (sopt->sopt_name) { case TCP_NODELAY: opt = TF_NODELAY; break; case TCP_NOOPT: opt = TF_NOOPT; break; default: opt = 0; /* dead code to fool gcc */ break; } if (optval) tp->t_flags |= opt; else tp->t_flags &= ~opt; unlock_and_done: #ifdef TCP_OFFLOAD if (tp->t_flags & TF_TOE) { tcp_offload_ctloutput(tp, sopt->sopt_dir, sopt->sopt_name); } #endif INP_WUNLOCK(inp); break; case TCP_NOPUSH: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); if (optval) tp->t_flags |= TF_NOPUSH; else if (tp->t_flags & TF_NOPUSH) { tp->t_flags &= ~TF_NOPUSH; if (TCPS_HAVEESTABLISHED(tp->t_state)) { struct epoch_tracker et; NET_EPOCH_ENTER(et); error = tp->t_fb->tfb_tcp_output(tp); NET_EPOCH_EXIT(et); } } goto unlock_and_done; case TCP_REMOTE_UDP_ENCAPS_PORT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); if ((optval < TCP_TUNNELING_PORT_MIN) || (optval > TCP_TUNNELING_PORT_MAX)) { /* Its got to be in range */ return (EINVAL); } if ((V_tcp_udp_tunneling_port == 0) && (optval != 0)) { /* You have to have enabled a UDP tunneling port first */ return (EINVAL); } INP_WLOCK_RECHECK(inp); if (tp->t_state != TCPS_CLOSED) { /* You can't change after you are connected */ error = EINVAL; } else { /* Ok we are all good set the port */ tp->t_port = htons(optval); } goto unlock_and_done; case TCP_MAXSEG: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); if (optval > 0 && optval <= tp->t_maxseg && optval + 40 >= V_tcp_minmss) tp->t_maxseg = optval; else error = EINVAL; goto unlock_and_done; case TCP_INFO: INP_WUNLOCK(inp); error = EINVAL; break; case TCP_STATS: INP_WUNLOCK(inp); #ifdef STATS error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); if (optval > 0) sbp = stats_blob_alloc( V_tcp_perconn_stats_dflt_tpl, 0); else sbp = NULL; INP_WLOCK_RECHECK(inp); if ((tp->t_stats != NULL && sbp == NULL) || (tp->t_stats == NULL && sbp != NULL)) { struct statsblob *t = tp->t_stats; tp->t_stats = sbp; sbp = t; } INP_WUNLOCK(inp); stats_blob_destroy(sbp); #else return (EOPNOTSUPP); #endif /* !STATS */ break; case TCP_CONGESTION: INP_WUNLOCK(inp); error = sooptcopyin(sopt, buf, TCP_CA_NAME_MAX - 1, 1); if (error) break; buf[sopt->sopt_valsize] = '\0'; INP_WLOCK_RECHECK(inp); CC_LIST_RLOCK(); STAILQ_FOREACH(algo, &cc_list, entries) if (strncmp(buf, algo->name, TCP_CA_NAME_MAX) == 0) break; CC_LIST_RUNLOCK(); if (algo == NULL) { INP_WUNLOCK(inp); error = EINVAL; break; } /* * We hold a write lock over the tcb so it's safe to * do these things without ordering concerns. */ if (CC_ALGO(tp)->cb_destroy != NULL) CC_ALGO(tp)->cb_destroy(tp->ccv); CC_DATA(tp) = NULL; CC_ALGO(tp) = algo; /* * If something goes pear shaped initialising the new * algo, fall back to newreno (which does not * require initialisation). */ if (algo->cb_init != NULL && algo->cb_init(tp->ccv) != 0) { CC_ALGO(tp) = &newreno_cc_algo; /* * The only reason init should fail is * because of malloc. */ error = ENOMEM; } INP_WUNLOCK(inp); break; case TCP_REUSPORT_LB_NUMA: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof(optval), sizeof(optval)); INP_WLOCK_RECHECK(inp); if (!error) error = in_pcblbgroup_numa(inp, optval); INP_WUNLOCK(inp); break; #ifdef KERN_TLS case TCP_TXTLS_ENABLE: INP_WUNLOCK(inp); error = copyin_tls_enable(sopt, &tls); if (error) break; error = ktls_enable_tx(so, &tls); break; case TCP_TXTLS_MODE: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui)); if (error) return (error); INP_WLOCK_RECHECK(inp); error = ktls_set_tx_mode(so, ui); INP_WUNLOCK(inp); break; case TCP_RXTLS_ENABLE: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &tls, sizeof(tls), sizeof(tls)); if (error) break; error = ktls_enable_rx(so, &tls); break; #endif case TCP_KEEPIDLE: case TCP_KEEPINTVL: case TCP_KEEPINIT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui)); if (error) return (error); if (ui > (UINT_MAX / hz)) { error = EINVAL; break; } ui *= hz; INP_WLOCK_RECHECK(inp); switch (sopt->sopt_name) { case TCP_KEEPIDLE: tp->t_keepidle = ui; /* * XXX: better check current remaining * timeout and "merge" it with new value. */ if ((tp->t_state > TCPS_LISTEN) && (tp->t_state <= TCPS_CLOSING)) tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp)); break; case TCP_KEEPINTVL: tp->t_keepintvl = ui; if ((tp->t_state == TCPS_FIN_WAIT_2) && (TP_MAXIDLE(tp) > 0)) tcp_timer_activate(tp, TT_2MSL, TP_MAXIDLE(tp)); break; case TCP_KEEPINIT: tp->t_keepinit = ui; if (tp->t_state == TCPS_SYN_RECEIVED || tp->t_state == TCPS_SYN_SENT) tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); break; } goto unlock_and_done; case TCP_KEEPCNT: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &ui, sizeof(ui), sizeof(ui)); if (error) return (error); INP_WLOCK_RECHECK(inp); tp->t_keepcnt = ui; if ((tp->t_state == TCPS_FIN_WAIT_2) && (TP_MAXIDLE(tp) > 0)) tcp_timer_activate(tp, TT_2MSL, TP_MAXIDLE(tp)); goto unlock_and_done; #ifdef TCPPCAP case TCP_PCAP_OUT: case TCP_PCAP_IN: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); if (optval >= 0) tcp_pcap_set_sock_max( (sopt->sopt_name == TCP_PCAP_OUT) ? &(tp->t_outpkts) : &(tp->t_inpkts), optval); else error = EINVAL; goto unlock_and_done; #endif case TCP_FASTOPEN: { struct tcp_fastopen tfo_optval; INP_WUNLOCK(inp); if (!V_tcp_fastopen_client_enable && !V_tcp_fastopen_server_enable) return (EPERM); error = sooptcopyin(sopt, &tfo_optval, sizeof(tfo_optval), sizeof(int)); if (error) return (error); INP_WLOCK_RECHECK(inp); if ((tp->t_state != TCPS_CLOSED) && (tp->t_state != TCPS_LISTEN)) { error = EINVAL; goto unlock_and_done; } if (tfo_optval.enable) { if (tp->t_state == TCPS_LISTEN) { if (!V_tcp_fastopen_server_enable) { error = EPERM; goto unlock_and_done; } if (tp->t_tfo_pending == NULL) tp->t_tfo_pending = tcp_fastopen_alloc_counter(); } else { /* * If a pre-shared key was provided, * stash it in the client cookie * field of the tcpcb for use during * connect. */ if (sopt->sopt_valsize == sizeof(tfo_optval)) { memcpy(tp->t_tfo_cookie.client, tfo_optval.psk, TCP_FASTOPEN_PSK_LEN); tp->t_tfo_client_cookie_len = TCP_FASTOPEN_PSK_LEN; } } tp->t_flags |= TF_FASTOPEN; } else tp->t_flags &= ~TF_FASTOPEN; goto unlock_and_done; } #ifdef TCP_BLACKBOX case TCP_LOG: INP_WUNLOCK(inp); error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) return (error); INP_WLOCK_RECHECK(inp); error = tcp_log_state_change(tp, optval); goto unlock_and_done; case TCP_LOGBUF: INP_WUNLOCK(inp); error = EINVAL; break; case TCP_LOGID: INP_WUNLOCK(inp); error = sooptcopyin(sopt, buf, TCP_LOG_ID_LEN - 1, 0); if (error) break; buf[sopt->sopt_valsize] = '\0'; INP_WLOCK_RECHECK(inp); error = tcp_log_set_id(tp, buf); /* tcp_log_set_id() unlocks the INP. */ break; case TCP_LOGDUMP: case TCP_LOGDUMPID: INP_WUNLOCK(inp); error = sooptcopyin(sopt, buf, TCP_LOG_REASON_LEN - 1, 0); if (error) break; buf[sopt->sopt_valsize] = '\0'; INP_WLOCK_RECHECK(inp); if (sopt->sopt_name == TCP_LOGDUMP) { error = tcp_log_dump_tp_logbuf(tp, buf, M_WAITOK, true); INP_WUNLOCK(inp); } else { tcp_log_dump_tp_bucket_logbufs(tp, buf); /* * tcp_log_dump_tp_bucket_logbufs() drops the * INP lock. */ } break; #endif default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; case SOPT_GET: tp = intotcpcb(inp); switch (sopt->sopt_name) { #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE) case TCP_MD5SIG: INP_WUNLOCK(inp); if (!TCPMD5_ENABLED()) return (ENOPROTOOPT); error = TCPMD5_PCBCTL(inp, sopt); break; #endif case TCP_NODELAY: optval = tp->t_flags & TF_NODELAY; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_MAXSEG: optval = tp->t_maxseg; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_REMOTE_UDP_ENCAPS_PORT: optval = ntohs(tp->t_port); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_NOOPT: optval = tp->t_flags & TF_NOOPT; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_NOPUSH: optval = tp->t_flags & TF_NOPUSH; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; case TCP_INFO: tcp_fill_info(tp, &ti); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &ti, sizeof ti); break; case TCP_STATS: { #ifdef STATS int nheld; TYPEOF_MEMBER(struct statsblob, flags) sbflags = 0; error = 0; socklen_t outsbsz = sopt->sopt_valsize; if (tp->t_stats == NULL) error = ENOENT; else if (outsbsz >= tp->t_stats->cursz) outsbsz = tp->t_stats->cursz; else if (outsbsz >= sizeof(struct statsblob)) outsbsz = sizeof(struct statsblob); else error = EINVAL; INP_WUNLOCK(inp); if (error) break; sbp = sopt->sopt_val; nheld = atop(round_page(((vm_offset_t)sbp) + (vm_size_t)outsbsz) - trunc_page((vm_offset_t)sbp)); vm_page_t ma[nheld]; if (vm_fault_quick_hold_pages( &curproc->p_vmspace->vm_map, (vm_offset_t)sbp, outsbsz, VM_PROT_READ | VM_PROT_WRITE, ma, nheld) < 0) { error = EFAULT; break; } if ((error = copyin_nofault(&(sbp->flags), &sbflags, SIZEOF_MEMBER(struct statsblob, flags)))) goto unhold; INP_WLOCK_RECHECK(inp); error = stats_blob_snapshot(&sbp, outsbsz, tp->t_stats, sbflags | SB_CLONE_USRDSTNOFAULT); INP_WUNLOCK(inp); sopt->sopt_valsize = outsbsz; unhold: vm_page_unhold_pages(ma, nheld); #else INP_WUNLOCK(inp); error = EOPNOTSUPP; #endif /* !STATS */ break; } case TCP_CONGESTION: len = strlcpy(buf, CC_ALGO(tp)->name, TCP_CA_NAME_MAX); INP_WUNLOCK(inp); error = sooptcopyout(sopt, buf, len + 1); break; case TCP_KEEPIDLE: case TCP_KEEPINTVL: case TCP_KEEPINIT: case TCP_KEEPCNT: switch (sopt->sopt_name) { case TCP_KEEPIDLE: ui = TP_KEEPIDLE(tp) / hz; break; case TCP_KEEPINTVL: ui = TP_KEEPINTVL(tp) / hz; break; case TCP_KEEPINIT: ui = TP_KEEPINIT(tp) / hz; break; case TCP_KEEPCNT: ui = TP_KEEPCNT(tp); break; } INP_WUNLOCK(inp); error = sooptcopyout(sopt, &ui, sizeof(ui)); break; #ifdef TCPPCAP case TCP_PCAP_OUT: case TCP_PCAP_IN: optval = tcp_pcap_get_sock_max( (sopt->sopt_name == TCP_PCAP_OUT) ? &(tp->t_outpkts) : &(tp->t_inpkts)); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; #endif case TCP_FASTOPEN: optval = tp->t_flags & TF_FASTOPEN; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof optval); break; #ifdef TCP_BLACKBOX case TCP_LOG: optval = tp->t_logstate; INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case TCP_LOGBUF: /* tcp_log_getlogbuf() does INP_WUNLOCK(inp) */ error = tcp_log_getlogbuf(sopt, tp); break; case TCP_LOGID: len = tcp_log_get_id(tp, buf); INP_WUNLOCK(inp); error = sooptcopyout(sopt, buf, len + 1); break; case TCP_LOGDUMP: case TCP_LOGDUMPID: INP_WUNLOCK(inp); error = EINVAL; break; #endif #ifdef KERN_TLS case TCP_TXTLS_MODE: optval = ktls_get_tx_mode(so); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; case TCP_RXTLS_MODE: optval = ktls_get_rx_mode(so); INP_WUNLOCK(inp); error = sooptcopyout(sopt, &optval, sizeof(optval)); break; #endif default: INP_WUNLOCK(inp); error = ENOPROTOOPT; break; } break; } return (error); } #undef INP_WLOCK_RECHECK #undef INP_WLOCK_RECHECK_CLEANUP /* * Initiate (or continue) disconnect. * If embryonic state, just send reset (once). * If in ``let data drain'' option and linger null, just drop. * Otherwise (hard), mark socket disconnecting and drop * current input data; switch states based on user close, and * send segment to peer (with FIN). */ static void tcp_disconnect(struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; struct socket *so = inp->inp_socket; NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); /* * Neither tcp_close() nor tcp_drop() should return NULL, as the * socket is still open. */ if (tp->t_state < TCPS_ESTABLISHED && !(tp->t_state > TCPS_LISTEN && IS_FASTOPEN(tp->t_flags))) { tp = tcp_close(tp); KASSERT(tp != NULL, ("tcp_disconnect: tcp_close() returned NULL")); } else if ((so->so_options & SO_LINGER) && so->so_linger == 0) { tp = tcp_drop(tp, 0); KASSERT(tp != NULL, ("tcp_disconnect: tcp_drop() returned NULL")); } else { soisdisconnecting(so); sbflush(&so->so_rcv); tcp_usrclosed(tp); if (!(inp->inp_flags & INP_DROPPED)) tp->t_fb->tfb_tcp_output(tp); } } /* * User issued close, and wish to trail through shutdown states: * if never received SYN, just forget it. If got a SYN from peer, * but haven't sent FIN, then go to FIN_WAIT_1 state to send peer a FIN. * If already got a FIN from peer, then almost done; go to LAST_ACK * state. In all other cases, have already sent FIN to peer (e.g. * after PRU_SHUTDOWN), and just have to play tedious game waiting * for peer to send FIN or not respond to keep-alives, etc. * We can let the user exit from the close as soon as the FIN is acked. */ static void tcp_usrclosed(struct tcpcb *tp) { NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(tp->t_inpcb); switch (tp->t_state) { case TCPS_LISTEN: #ifdef TCP_OFFLOAD tcp_offload_listen_stop(tp); #endif tcp_state_change(tp, TCPS_CLOSED); /* FALLTHROUGH */ case TCPS_CLOSED: tp = tcp_close(tp); /* * tcp_close() should never return NULL here as the socket is * still open. */ KASSERT(tp != NULL, ("tcp_usrclosed: tcp_close() returned NULL")); break; case TCPS_SYN_SENT: case TCPS_SYN_RECEIVED: tp->t_flags |= TF_NEEDFIN; break; case TCPS_ESTABLISHED: tcp_state_change(tp, TCPS_FIN_WAIT_1); break; case TCPS_CLOSE_WAIT: tcp_state_change(tp, TCPS_LAST_ACK); break; } if (tp->t_state >= TCPS_FIN_WAIT_2) { soisdisconnected(tp->t_inpcb->inp_socket); /* Prevent the connection hanging in FIN_WAIT_2 forever. */ if (tp->t_state == TCPS_FIN_WAIT_2) { int timeout; timeout = (tcp_fast_finwait2_recycle) ? tcp_finwait2_timeout : TP_MAXIDLE(tp); tcp_timer_activate(tp, TT_2MSL, timeout); } } } #ifdef DDB static void db_print_indent(int indent) { int i; for (i = 0; i < indent; i++) db_printf(" "); } static void db_print_tstate(int t_state) { switch (t_state) { case TCPS_CLOSED: db_printf("TCPS_CLOSED"); return; case TCPS_LISTEN: db_printf("TCPS_LISTEN"); return; case TCPS_SYN_SENT: db_printf("TCPS_SYN_SENT"); return; case TCPS_SYN_RECEIVED: db_printf("TCPS_SYN_RECEIVED"); return; case TCPS_ESTABLISHED: db_printf("TCPS_ESTABLISHED"); return; case TCPS_CLOSE_WAIT: db_printf("TCPS_CLOSE_WAIT"); return; case TCPS_FIN_WAIT_1: db_printf("TCPS_FIN_WAIT_1"); return; case TCPS_CLOSING: db_printf("TCPS_CLOSING"); return; case TCPS_LAST_ACK: db_printf("TCPS_LAST_ACK"); return; case TCPS_FIN_WAIT_2: db_printf("TCPS_FIN_WAIT_2"); return; case TCPS_TIME_WAIT: db_printf("TCPS_TIME_WAIT"); return; default: db_printf("unknown"); return; } } static void db_print_tflags(u_int t_flags) { int comma; comma = 0; if (t_flags & TF_ACKNOW) { db_printf("%sTF_ACKNOW", comma ? ", " : ""); comma = 1; } if (t_flags & TF_DELACK) { db_printf("%sTF_DELACK", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NODELAY) { db_printf("%sTF_NODELAY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NOOPT) { db_printf("%sTF_NOOPT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SENTFIN) { db_printf("%sTF_SENTFIN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_REQ_SCALE) { db_printf("%sTF_REQ_SCALE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RCVD_SCALE) { db_printf("%sTF_RECVD_SCALE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_REQ_TSTMP) { db_printf("%sTF_REQ_TSTMP", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RCVD_TSTMP) { db_printf("%sTF_RCVD_TSTMP", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SACK_PERMIT) { db_printf("%sTF_SACK_PERMIT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NEEDSYN) { db_printf("%sTF_NEEDSYN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NEEDFIN) { db_printf("%sTF_NEEDFIN", comma ? ", " : ""); comma = 1; } if (t_flags & TF_NOPUSH) { db_printf("%sTF_NOPUSH", comma ? ", " : ""); comma = 1; } if (t_flags & TF_MORETOCOME) { db_printf("%sTF_MORETOCOME", comma ? ", " : ""); comma = 1; } if (t_flags & TF_LQ_OVERFLOW) { db_printf("%sTF_LQ_OVERFLOW", comma ? ", " : ""); comma = 1; } if (t_flags & TF_LASTIDLE) { db_printf("%sTF_LASTIDLE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_RXWIN0SENT) { db_printf("%sTF_RXWIN0SENT", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FASTRECOVERY) { db_printf("%sTF_FASTRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_CONGRECOVERY) { db_printf("%sTF_CONGRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_WASFRECOVERY) { db_printf("%sTF_WASFRECOVERY", comma ? ", " : ""); comma = 1; } if (t_flags & TF_SIGNATURE) { db_printf("%sTF_SIGNATURE", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FORCEDATA) { db_printf("%sTF_FORCEDATA", comma ? ", " : ""); comma = 1; } if (t_flags & TF_TSO) { db_printf("%sTF_TSO", comma ? ", " : ""); comma = 1; } if (t_flags & TF_FASTOPEN) { db_printf("%sTF_FASTOPEN", comma ? ", " : ""); comma = 1; } } static void db_print_tflags2(u_int t_flags2) { int comma; comma = 0; if (t_flags2 & TF2_ECN_PERMIT) { db_printf("%sTF2_ECN_PERMIT", comma ? ", " : ""); comma = 1; } } static void db_print_toobflags(char t_oobflags) { int comma; comma = 0; if (t_oobflags & TCPOOB_HAVEDATA) { db_printf("%sTCPOOB_HAVEDATA", comma ? ", " : ""); comma = 1; } if (t_oobflags & TCPOOB_HADDATA) { db_printf("%sTCPOOB_HADDATA", comma ? ", " : ""); comma = 1; } } static void db_print_tcpcb(struct tcpcb *tp, const char *name, int indent) { db_print_indent(indent); db_printf("%s at %p\n", name, tp); indent += 2; db_print_indent(indent); db_printf("t_segq first: %p t_segqlen: %d t_dupacks: %d\n", TAILQ_FIRST(&tp->t_segq), tp->t_segqlen, tp->t_dupacks); db_print_indent(indent); db_printf("tt_rexmt: %p tt_persist: %p tt_keep: %p\n", &tp->t_timers->tt_rexmt, &tp->t_timers->tt_persist, &tp->t_timers->tt_keep); db_print_indent(indent); db_printf("tt_2msl: %p tt_delack: %p t_inpcb: %p\n", &tp->t_timers->tt_2msl, &tp->t_timers->tt_delack, tp->t_inpcb); db_print_indent(indent); db_printf("t_state: %d (", tp->t_state); db_print_tstate(tp->t_state); db_printf(")\n"); db_print_indent(indent); db_printf("t_flags: 0x%x (", tp->t_flags); db_print_tflags(tp->t_flags); db_printf(")\n"); db_print_indent(indent); db_printf("t_flags2: 0x%x (", tp->t_flags2); db_print_tflags2(tp->t_flags2); db_printf(")\n"); db_print_indent(indent); db_printf("snd_una: 0x%08x snd_max: 0x%08x snd_nxt: x0%08x\n", tp->snd_una, tp->snd_max, tp->snd_nxt); db_print_indent(indent); db_printf("snd_up: 0x%08x snd_wl1: 0x%08x snd_wl2: 0x%08x\n", tp->snd_up, tp->snd_wl1, tp->snd_wl2); db_print_indent(indent); db_printf("iss: 0x%08x irs: 0x%08x rcv_nxt: 0x%08x\n", tp->iss, tp->irs, tp->rcv_nxt); db_print_indent(indent); db_printf("rcv_adv: 0x%08x rcv_wnd: %u rcv_up: 0x%08x\n", tp->rcv_adv, tp->rcv_wnd, tp->rcv_up); db_print_indent(indent); db_printf("snd_wnd: %u snd_cwnd: %u\n", tp->snd_wnd, tp->snd_cwnd); db_print_indent(indent); db_printf("snd_ssthresh: %u snd_recover: " "0x%08x\n", tp->snd_ssthresh, tp->snd_recover); db_print_indent(indent); db_printf("t_rcvtime: %u t_startime: %u\n", tp->t_rcvtime, tp->t_starttime); db_print_indent(indent); db_printf("t_rttime: %u t_rtsq: 0x%08x\n", tp->t_rtttime, tp->t_rtseq); db_print_indent(indent); db_printf("t_rxtcur: %d t_maxseg: %u t_srtt: %d\n", tp->t_rxtcur, tp->t_maxseg, tp->t_srtt); db_print_indent(indent); db_printf("t_rttvar: %d t_rxtshift: %d t_rttmin: %u\n", tp->t_rttvar, tp->t_rxtshift, tp->t_rttmin); db_print_indent(indent); db_printf("t_rttupdated: %lu max_sndwnd: %u t_softerror: %d\n", tp->t_rttupdated, tp->max_sndwnd, tp->t_softerror); db_print_indent(indent); db_printf("t_oobflags: 0x%x (", tp->t_oobflags); db_print_toobflags(tp->t_oobflags); db_printf(") t_iobc: 0x%02x\n", tp->t_iobc); db_print_indent(indent); db_printf("snd_scale: %u rcv_scale: %u request_r_scale: %u\n", tp->snd_scale, tp->rcv_scale, tp->request_r_scale); db_print_indent(indent); db_printf("ts_recent: %u ts_recent_age: %u\n", tp->ts_recent, tp->ts_recent_age); db_print_indent(indent); db_printf("ts_offset: %u last_ack_sent: 0x%08x snd_cwnd_prev: " "%u\n", tp->ts_offset, tp->last_ack_sent, tp->snd_cwnd_prev); db_print_indent(indent); db_printf("snd_ssthresh_prev: %u snd_recover_prev: 0x%08x " "t_badrxtwin: %u\n", tp->snd_ssthresh_prev, tp->snd_recover_prev, tp->t_badrxtwin); db_print_indent(indent); db_printf("snd_numholes: %d snd_holes first: %p\n", tp->snd_numholes, TAILQ_FIRST(&tp->snd_holes)); db_print_indent(indent); db_printf("snd_fack: 0x%08x rcv_numsacks: %d\n", tp->snd_fack, tp->rcv_numsacks); /* Skip sackblks, sackhint. */ db_print_indent(indent); db_printf("t_rttlow: %d rfbuf_ts: %u rfbuf_cnt: %d\n", tp->t_rttlow, tp->rfbuf_ts, tp->rfbuf_cnt); } DB_SHOW_COMMAND(tcpcb, db_show_tcpcb) { struct tcpcb *tp; if (!have_addr) { db_printf("usage: show tcpcb \n"); return; } tp = (struct tcpcb *)addr; db_print_tcpcb(tp, "tcpcb", 0); } #endif diff --git a/sys/netinet/toecore.c b/sys/netinet/toecore.c index 7ccff2c3eeed..4bb5f706de06 100644 --- a/sys/netinet/toecore.c +++ b/sys/netinet/toecore.c @@ -1,591 +1,591 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * Written by: Navdeep Parhar * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "opt_inet.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TCPSTATES #include #include #include #include #include #include #include static struct mtx toedev_lock; static TAILQ_HEAD(, toedev) toedev_list; static eventhandler_tag listen_start_eh; static eventhandler_tag listen_stop_eh; static eventhandler_tag lle_event_eh; static int toedev_connect(struct toedev *tod __unused, struct socket *so __unused, struct nhop_object *nh __unused, struct sockaddr *nam __unused) { return (ENOTSUP); } static int toedev_listen_start(struct toedev *tod __unused, struct tcpcb *tp __unused) { return (ENOTSUP); } static int toedev_listen_stop(struct toedev *tod __unused, struct tcpcb *tp __unused) { return (ENOTSUP); } static void toedev_input(struct toedev *tod __unused, struct tcpcb *tp __unused, struct mbuf *m) { m_freem(m); return; } static void toedev_rcvd(struct toedev *tod __unused, struct tcpcb *tp __unused) { return; } static int toedev_output(struct toedev *tod __unused, struct tcpcb *tp __unused) { return (ENOTSUP); } static void toedev_pcb_detach(struct toedev *tod __unused, struct tcpcb *tp __unused) { return; } static void toedev_l2_update(struct toedev *tod __unused, struct ifnet *ifp __unused, struct sockaddr *sa __unused, uint8_t *lladdr __unused, uint16_t vtag __unused) { return; } static void toedev_route_redirect(struct toedev *tod __unused, struct ifnet *ifp __unused, struct nhop_object *nh0 __unused, struct nhop_object *nh1 __unused) { return; } static void toedev_syncache_added(struct toedev *tod __unused, void *ctx __unused) { return; } static void toedev_syncache_removed(struct toedev *tod __unused, void *ctx __unused) { return; } static int toedev_syncache_respond(struct toedev *tod __unused, void *ctx __unused, struct mbuf *m) { m_freem(m); return (0); } static void toedev_offload_socket(struct toedev *tod __unused, void *ctx __unused, struct socket *so __unused) { return; } static void toedev_ctloutput(struct toedev *tod __unused, struct tcpcb *tp __unused, int sopt_dir __unused, int sopt_name __unused) { return; } static void -toedev_tcp_info(struct toedev *tod __unused, struct tcpcb *tp __unused, +toedev_tcp_info(struct toedev *tod __unused, const struct tcpcb *tp __unused, struct tcp_info *ti __unused) { return; } static int toedev_alloc_tls_session(struct toedev *tod __unused, struct tcpcb *tp __unused, struct ktls_session *tls __unused, int direction __unused) { return (EINVAL); } /* * Inform one or more TOE devices about a listening socket. */ static void toe_listen_start(struct inpcb *inp, void *arg) { struct toedev *t, *tod; struct tcpcb *tp; INP_WLOCK_ASSERT(inp); KASSERT(inp->inp_pcbinfo == &V_tcbinfo, ("%s: inp is not a TCP inp", __func__)); if (inp->inp_flags & (INP_DROPPED | INP_TIMEWAIT)) return; tp = intotcpcb(inp); if (tp->t_state != TCPS_LISTEN) return; t = arg; mtx_lock(&toedev_lock); TAILQ_FOREACH(tod, &toedev_list, link) { if (t == NULL || t == tod) tod->tod_listen_start(tod, tp); } mtx_unlock(&toedev_lock); } static void toe_listen_start_event(void *arg __unused, struct tcpcb *tp) { struct inpcb *inp = tp->t_inpcb; INP_WLOCK_ASSERT(inp); KASSERT(tp->t_state == TCPS_LISTEN, ("%s: t_state %s", __func__, tcpstates[tp->t_state])); toe_listen_start(inp, NULL); } static void toe_listen_stop_event(void *arg __unused, struct tcpcb *tp) { struct toedev *tod; #ifdef INVARIANTS struct inpcb *inp = tp->t_inpcb; #endif INP_WLOCK_ASSERT(inp); KASSERT(tp->t_state == TCPS_LISTEN, ("%s: t_state %s", __func__, tcpstates[tp->t_state])); mtx_lock(&toedev_lock); TAILQ_FOREACH(tod, &toedev_list, link) tod->tod_listen_stop(tod, tp); mtx_unlock(&toedev_lock); } /* * Fill up a freshly allocated toedev struct with reasonable defaults. */ void init_toedev(struct toedev *tod) { tod->tod_softc = NULL; /* * Provide no-op defaults so that the kernel can call any toedev * function without having to check whether the TOE driver supplied one * or not. */ tod->tod_connect = toedev_connect; tod->tod_listen_start = toedev_listen_start; tod->tod_listen_stop = toedev_listen_stop; tod->tod_input = toedev_input; tod->tod_rcvd = toedev_rcvd; tod->tod_output = toedev_output; tod->tod_send_rst = toedev_output; tod->tod_send_fin = toedev_output; tod->tod_pcb_detach = toedev_pcb_detach; tod->tod_l2_update = toedev_l2_update; tod->tod_route_redirect = toedev_route_redirect; tod->tod_syncache_added = toedev_syncache_added; tod->tod_syncache_removed = toedev_syncache_removed; tod->tod_syncache_respond = toedev_syncache_respond; tod->tod_offload_socket = toedev_offload_socket; tod->tod_ctloutput = toedev_ctloutput; tod->tod_tcp_info = toedev_tcp_info; tod->tod_alloc_tls_session = toedev_alloc_tls_session; } /* * Register an active TOE device with the system. This allows it to receive * notifications from the kernel. */ int register_toedev(struct toedev *tod) { struct toedev *t; mtx_lock(&toedev_lock); TAILQ_FOREACH(t, &toedev_list, link) { if (t == tod) { mtx_unlock(&toedev_lock); return (EEXIST); } } TAILQ_INSERT_TAIL(&toedev_list, tod, link); registered_toedevs++; mtx_unlock(&toedev_lock); inp_apply_all(toe_listen_start, tod); return (0); } /* * Remove the TOE device from the global list of active TOE devices. It is the * caller's responsibility to ensure that the TOE device is quiesced prior to * this call. */ int unregister_toedev(struct toedev *tod) { struct toedev *t, *t2; int rc = ENODEV; mtx_lock(&toedev_lock); TAILQ_FOREACH_SAFE(t, &toedev_list, link, t2) { if (t == tod) { TAILQ_REMOVE(&toedev_list, tod, link); registered_toedevs--; rc = 0; break; } } KASSERT(registered_toedevs >= 0, ("%s: registered_toedevs (%d) < 0", __func__, registered_toedevs)); mtx_unlock(&toedev_lock); return (rc); } void toe_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct inpcb *inp, void *tod, void *todctx, uint8_t iptos) { struct socket *lso = inp->inp_socket; INP_WLOCK_ASSERT(inp); syncache_add(inc, to, th, inp, &lso, NULL, tod, todctx, iptos, htons(0)); } int toe_syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th, struct socket **lsop) { NET_EPOCH_ASSERT(); return (syncache_expand(inc, to, th, lsop, NULL, htons(0))); } /* * General purpose check to see if a 4-tuple is in use by the kernel. If a TCP * header (presumably for an incoming SYN) is also provided, an existing 4-tuple * in TIME_WAIT may be assassinated freeing it up for re-use. * * Note that the TCP header must have been run through tcp_fields_to_host() or * equivalent. */ int toe_4tuple_check(struct in_conninfo *inc, struct tcphdr *th, struct ifnet *ifp) { struct inpcb *inp; if (inc->inc_flags & INC_ISIPV6) { inp = in6_pcblookup(&V_tcbinfo, &inc->inc6_faddr, inc->inc_fport, &inc->inc6_laddr, inc->inc_lport, INPLOOKUP_WLOCKPCB, ifp); } else { inp = in_pcblookup(&V_tcbinfo, inc->inc_faddr, inc->inc_fport, inc->inc_laddr, inc->inc_lport, INPLOOKUP_WLOCKPCB, ifp); } if (inp != NULL) { INP_WLOCK_ASSERT(inp); if ((inp->inp_flags & INP_TIMEWAIT) && th != NULL) { if (!tcp_twcheck(inp, NULL, th, NULL, 0)) return (EADDRINUSE); } else { INP_WUNLOCK(inp); return (EADDRINUSE); } } return (0); } static void toe_lle_event(void *arg __unused, struct llentry *lle, int evt) { struct toedev *tod; struct ifnet *ifp; struct sockaddr *sa; uint8_t *lladdr; uint16_t vid, pcp; int family; struct sockaddr_in6 sin6; LLE_WLOCK_ASSERT(lle); ifp = lltable_get_ifp(lle->lle_tbl); family = lltable_get_af(lle->lle_tbl); if (family != AF_INET && family != AF_INET6) return; /* * Not interested if the interface's TOE capability is not enabled. */ if ((family == AF_INET && !(ifp->if_capenable & IFCAP_TOE4)) || (family == AF_INET6 && !(ifp->if_capenable & IFCAP_TOE6))) return; tod = TOEDEV(ifp); if (tod == NULL) return; sa = (struct sockaddr *)&sin6; lltable_fill_sa_entry(lle, sa); vid = 0xfff; pcp = 0; if (evt != LLENTRY_RESOLVED) { /* * LLENTRY_TIMEDOUT, LLENTRY_DELETED, LLENTRY_EXPIRED all mean * this entry is going to be deleted. */ lladdr = NULL; } else { KASSERT(lle->la_flags & LLE_VALID, ("%s: %p resolved but not valid?", __func__, lle)); lladdr = (uint8_t *)lle->ll_addr; VLAN_TAG(ifp, &vid); VLAN_PCP(ifp, &pcp); } tod->tod_l2_update(tod, ifp, sa, lladdr, EVL_MAKETAG(vid, pcp, 0)); } /* * Returns 0 or EWOULDBLOCK on success (any other value is an error). 0 means * lladdr and vtag are valid on return, EWOULDBLOCK means the TOE driver's * tod_l2_update will be called later, when the entry is resolved or times out. */ int toe_l2_resolve(struct toedev *tod, struct ifnet *ifp, struct sockaddr *sa, uint8_t *lladdr, uint16_t *vtag) { int rc; uint16_t vid, pcp; switch (sa->sa_family) { #ifdef INET case AF_INET: rc = arpresolve(ifp, 0, NULL, sa, lladdr, NULL, NULL); break; #endif #ifdef INET6 case AF_INET6: rc = nd6_resolve(ifp, LLE_SF(AF_INET6, 0), NULL, sa, lladdr, NULL, NULL); break; #endif default: return (EPROTONOSUPPORT); } if (rc == 0) { vid = 0xfff; pcp = 0; if (ifp->if_type == IFT_L2VLAN) { VLAN_TAG(ifp, &vid); VLAN_PCP(ifp, &pcp); } else if (ifp->if_pcp != IFNET_PCP_NONE) { vid = 0; pcp = ifp->if_pcp; } *vtag = EVL_MAKETAG(vid, pcp, 0); } return (rc); } void toe_connect_failed(struct toedev *tod, struct inpcb *inp, int err) { NET_EPOCH_ASSERT(); INP_WLOCK_ASSERT(inp); if (!(inp->inp_flags & INP_DROPPED)) { struct tcpcb *tp = intotcpcb(inp); KASSERT(tp->t_flags & TF_TOE, ("%s: tp %p not offloaded.", __func__, tp)); if (err == EAGAIN) { /* * Temporary failure during offload, take this PCB back. * Detach from the TOE driver and do the rest of what * TCP's pru_connect would have done if the connection * wasn't offloaded. */ tod->tod_pcb_detach(tod, tp); KASSERT(!(tp->t_flags & TF_TOE), ("%s: tp %p still offloaded.", __func__, tp)); tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp)); (void) tp->t_fb->tfb_tcp_output(tp); } else { tp = tcp_drop(tp, err); if (tp == NULL) INP_WLOCK(inp); /* re-acquire */ } } INP_WLOCK_ASSERT(inp); } static int toecore_load(void) { mtx_init(&toedev_lock, "toedev lock", NULL, MTX_DEF); TAILQ_INIT(&toedev_list); listen_start_eh = EVENTHANDLER_REGISTER(tcp_offload_listen_start, toe_listen_start_event, NULL, EVENTHANDLER_PRI_ANY); listen_stop_eh = EVENTHANDLER_REGISTER(tcp_offload_listen_stop, toe_listen_stop_event, NULL, EVENTHANDLER_PRI_ANY); lle_event_eh = EVENTHANDLER_REGISTER(lle_event, toe_lle_event, NULL, EVENTHANDLER_PRI_ANY); return (0); } static int toecore_unload(void) { mtx_lock(&toedev_lock); if (!TAILQ_EMPTY(&toedev_list)) { mtx_unlock(&toedev_lock); return (EBUSY); } EVENTHANDLER_DEREGISTER(tcp_offload_listen_start, listen_start_eh); EVENTHANDLER_DEREGISTER(tcp_offload_listen_stop, listen_stop_eh); EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); mtx_unlock(&toedev_lock); mtx_destroy(&toedev_lock); return (0); } static int toecore_mod_handler(module_t mod, int cmd, void *arg) { if (cmd == MOD_LOAD) return (toecore_load()); if (cmd == MOD_UNLOAD) return (toecore_unload()); return (EOPNOTSUPP); } static moduledata_t mod_data= { "toecore", toecore_mod_handler, 0 }; MODULE_VERSION(toecore, 1); DECLARE_MODULE(toecore, mod_data, SI_SUB_EXEC, SI_ORDER_ANY); diff --git a/sys/netinet/toecore.h b/sys/netinet/toecore.h index 8a25a95799d5..6523c3a110fc 100644 --- a/sys/netinet/toecore.h +++ b/sys/netinet/toecore.h @@ -1,142 +1,142 @@ /*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2012 Chelsio Communications, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #ifndef _NETINET_TOE_H_ #define _NETINET_TOE_H_ #ifndef _KERNEL #error "no user-serviceable parts inside" #endif #include struct tcpopt; struct tcphdr; struct in_conninfo; struct tcp_info; struct nhop_object; struct ktls_session; struct toedev { TAILQ_ENTRY(toedev) link; /* glue for toedev_list */ void *tod_softc; /* TOE driver private data */ /* * Active open. If a failure occurs, it is reported back by the driver * via toe_connect_failed. */ int (*tod_connect)(struct toedev *, struct socket *, struct nhop_object *, struct sockaddr *); /* Passive open. */ int (*tod_listen_start)(struct toedev *, struct tcpcb *); int (*tod_listen_stop)(struct toedev *, struct tcpcb *); /* * The kernel uses this routine to pass on any frame it receives for an * offloaded connection to the TOE driver. This is an unusual event. */ void (*tod_input)(struct toedev *, struct tcpcb *, struct mbuf *); /* * This is called by the kernel during pru_rcvd for an offloaded TCP * connection and provides an opportunity for the TOE driver to manage * its rx window and credits. */ void (*tod_rcvd)(struct toedev *, struct tcpcb *); /* * Transmit routine. The kernel calls this to have the TOE driver * evaluate whether there is data to be transmitted, and transmit it. */ int (*tod_output)(struct toedev *, struct tcpcb *); /* Immediate teardown: send RST to peer. */ int (*tod_send_rst)(struct toedev *, struct tcpcb *); /* Initiate orderly disconnect by sending FIN to the peer. */ int (*tod_send_fin)(struct toedev *, struct tcpcb *); /* Called to indicate that the kernel is done with this TCP PCB. */ void (*tod_pcb_detach)(struct toedev *, struct tcpcb *); /* * The kernel calls this once it has information about an L2 entry that * the TOE driver enquired about previously (via toe_l2_resolve). */ void (*tod_l2_update)(struct toedev *, struct ifnet *, struct sockaddr *, uint8_t *, uint16_t); /* XXX. Route has been redirected. */ void (*tod_route_redirect)(struct toedev *, struct ifnet *, struct nhop_object *, struct nhop_object *); /* Syncache interaction. */ void (*tod_syncache_added)(struct toedev *, void *); void (*tod_syncache_removed)(struct toedev *, void *); int (*tod_syncache_respond)(struct toedev *, void *, struct mbuf *); void (*tod_offload_socket)(struct toedev *, void *, struct socket *); /* TCP socket option */ void (*tod_ctloutput)(struct toedev *, struct tcpcb *, int, int); /* Update software state */ - void (*tod_tcp_info)(struct toedev *, struct tcpcb *, + void (*tod_tcp_info)(struct toedev *, const struct tcpcb *, struct tcp_info *); /* Create a TLS session */ int (*tod_alloc_tls_session)(struct toedev *, struct tcpcb *, struct ktls_session *, int); }; typedef void (*tcp_offload_listen_start_fn)(void *, struct tcpcb *); typedef void (*tcp_offload_listen_stop_fn)(void *, struct tcpcb *); EVENTHANDLER_DECLARE(tcp_offload_listen_start, tcp_offload_listen_start_fn); EVENTHANDLER_DECLARE(tcp_offload_listen_stop, tcp_offload_listen_stop_fn); void init_toedev(struct toedev *); int register_toedev(struct toedev *); int unregister_toedev(struct toedev *); /* * General interface for looking up L2 information for an IP address. If an * answer is not available right away then the TOE driver's tod_l2_update will * be called later. */ int toe_l2_resolve(struct toedev *, struct ifnet *, struct sockaddr *, uint8_t *, uint16_t *); void toe_connect_failed(struct toedev *, struct inpcb *, int); void toe_syncache_add(struct in_conninfo *, struct tcpopt *, struct tcphdr *, struct inpcb *, void *, void *, uint8_t); int toe_syncache_expand(struct in_conninfo *, struct tcpopt *, struct tcphdr *, struct socket **); int toe_4tuple_check(struct in_conninfo *, struct tcphdr *, struct ifnet *); #endif