diff --git a/cmd/zdb/zdb.c b/cmd/zdb/zdb.c index 45b27b0a4500..891cb9c209df 100644 --- a/cmd/zdb/zdb.c +++ b/cmd/zdb/zdb.c @@ -1,3176 +1,3176 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef ZFS_MAXNAMELEN #undef verify #include #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ zio_compress_table[(idx)].ci_name : "UNKNOWN") #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ zio_checksum_table[(idx)].ci_name : "UNKNOWN") #define ZDB_OT_NAME(idx) ((idx) < DMU_OT_NUMTYPES ? \ dmu_ot[(idx)].ot_name : "UNKNOWN") #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : DMU_OT_NUMTYPES) #ifndef lint extern int zfs_recover; #else int zfs_recover; #endif const char cmdname[] = "zdb"; uint8_t dump_opt[256]; typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); extern void dump_intent_log(zilog_t *); uint64_t *zopt_object = NULL; int zopt_objects = 0; libzfs_handle_t *g_zfs; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void usage(void) { (void) fprintf(stderr, "Usage: %s [-CumdibcsDvhL] poolname [object...]\n" " %s [-div] dataset [object...]\n" " %s -m [-L] poolname [vdev [metaslab...]]\n" " %s -R poolname vdev:offset:size[:flags]\n" " %s -S poolname\n" " %s -l [-u] device\n" " %s -C\n\n", cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname); (void) fprintf(stderr, " Dataset name must include at least one " "separator character '/' or '@'\n"); (void) fprintf(stderr, " If dataset name is specified, only that " "dataset is dumped\n"); (void) fprintf(stderr, " If object numbers are specified, only " "those objects are dumped\n\n"); (void) fprintf(stderr, " Options to control amount of output:\n"); (void) fprintf(stderr, " -u uberblock\n"); (void) fprintf(stderr, " -d dataset(s)\n"); (void) fprintf(stderr, " -i intent logs\n"); (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); (void) fprintf(stderr, " -h pool history\n"); (void) fprintf(stderr, " -b block statistics\n"); (void) fprintf(stderr, " -m metaslabs\n"); (void) fprintf(stderr, " -c checksum all metadata (twice for " "all data) blocks\n"); (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); (void) fprintf(stderr, " -D dedup statistics\n"); (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); (void) fprintf(stderr, " -v verbose (applies to all others)\n"); (void) fprintf(stderr, " -l dump label contents\n"); (void) fprintf(stderr, " -L disable leak tracking (do not " "load spacemaps)\n"); (void) fprintf(stderr, " -R read and display block from a " "device\n\n"); (void) fprintf(stderr, " Below options are intended for use " "with other options (except -l):\n"); (void) fprintf(stderr, " -A ignore assertions (-A), enable " "panic recovery (-AA) or both (-AAA)\n"); (void) fprintf(stderr, " -F attempt automatic rewind within " "safe range of transaction groups\n"); (void) fprintf(stderr, " -U -- use alternate " "cachefile\n"); (void) fprintf(stderr, " -X attempt extreme rewind (does not " "work with dataset)\n"); (void) fprintf(stderr, " -e pool is exported/destroyed/" "has altroot/not in a cachefile\n"); (void) fprintf(stderr, " -p -- use one or more with " "-e to specify path to vdev dir\n"); (void) fprintf(stderr, " -P print numbers parsable\n"); (void) fprintf(stderr, " -t -- highest txg to use when " "searching for uberblocks\n"); (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " "to make only that option verbose\n"); (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); exit(1); } /* * Called for usage errors that are discovered after a call to spa_open(), * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. */ static void fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) fprintf(stderr, "%s: ", cmdname); (void) vfprintf(stderr, fmt, ap); va_end(ap); (void) fprintf(stderr, "\n"); exit(1); } /* ARGSUSED */ static void dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) { nvlist_t *nv; size_t nvsize = *(uint64_t *)data; char *packed = umem_alloc(nvsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); umem_free(packed, nvsize); dump_nvlist(nv, 8); nvlist_free(nv); } static void zdb_nicenum(uint64_t num, char *buf) { if (dump_opt['P']) (void) sprintf(buf, "%llu", (longlong_t)num); else nicenum(num, buf); } const char dump_zap_stars[] = "****************************************"; const int dump_zap_width = sizeof (dump_zap_stars) - 1; static void dump_zap_histogram(uint64_t histo[ZAP_HISTOGRAM_SIZE]) { int i; int minidx = ZAP_HISTOGRAM_SIZE - 1; int maxidx = 0; uint64_t max = 0; for (i = 0; i < ZAP_HISTOGRAM_SIZE; i++) { if (histo[i] > max) max = histo[i]; if (histo[i] > 0 && i > maxidx) maxidx = i; if (histo[i] > 0 && i < minidx) minidx = i; } if (max < dump_zap_width) max = dump_zap_width; for (i = minidx; i <= maxidx; i++) (void) printf("\t\t\t%u: %6llu %s\n", i, (u_longlong_t)histo[i], &dump_zap_stars[(max - histo[i]) * dump_zap_width / max]); } static void dump_zap_stats(objset_t *os, uint64_t object) { int error; zap_stats_t zs; error = zap_get_stats(os, object, &zs); if (error) return; if (zs.zs_ptrtbl_len == 0) { ASSERT(zs.zs_num_blocks == 1); (void) printf("\tmicrozap: %llu bytes, %llu entries\n", (u_longlong_t)zs.zs_blocksize, (u_longlong_t)zs.zs_num_entries); return; } (void) printf("\tFat ZAP stats:\n"); (void) printf("\t\tPointer table:\n"); (void) printf("\t\t\t%llu elements\n", (u_longlong_t)zs.zs_ptrtbl_len); (void) printf("\t\t\tzt_blk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_blk); (void) printf("\t\t\tzt_numblks: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_numblks); (void) printf("\t\t\tzt_shift: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_shift); (void) printf("\t\t\tzt_blks_copied: %llu\n", (u_longlong_t)zs.zs_ptrtbl_blks_copied); (void) printf("\t\t\tzt_nextblk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_nextblk); (void) printf("\t\tZAP entries: %llu\n", (u_longlong_t)zs.zs_num_entries); (void) printf("\t\tLeaf blocks: %llu\n", (u_longlong_t)zs.zs_num_leafs); (void) printf("\t\tTotal blocks: %llu\n", (u_longlong_t)zs.zs_num_blocks); (void) printf("\t\tzap_block_type: 0x%llx\n", (u_longlong_t)zs.zs_block_type); (void) printf("\t\tzap_magic: 0x%llx\n", (u_longlong_t)zs.zs_magic); (void) printf("\t\tzap_salt: 0x%llx\n", (u_longlong_t)zs.zs_salt); (void) printf("\t\tLeafs with 2^n pointers:\n"); dump_zap_histogram(zs.zs_leafs_with_2n_pointers); (void) printf("\t\tBlocks with n*5 entries:\n"); dump_zap_histogram(zs.zs_blocks_with_n5_entries); (void) printf("\t\tBlocks n/10 full:\n"); dump_zap_histogram(zs.zs_blocks_n_tenths_full); (void) printf("\t\tEntries with n chunks:\n"); dump_zap_histogram(zs.zs_entries_using_n_chunks); (void) printf("\t\tBuckets with n entries:\n"); dump_zap_histogram(zs.zs_buckets_with_n_entries); } /*ARGSUSED*/ static void dump_none(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) { (void) printf("\tUNKNOWN OBJECT TYPE\n"); } /*ARGSUSED*/ void dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_zap(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; void *prop; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } prop = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); (void) zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, prop); if (attr.za_integer_length == 1) { (void) printf("%s", (char *)prop); } else { for (i = 0; i < attr.za_num_integers; i++) { switch (attr.za_integer_length) { case 2: (void) printf("%u ", ((uint16_t *)prop)[i]); break; case 4: (void) printf("%u ", ((uint32_t *)prop)[i]); break; case 8: (void) printf("%lld ", (u_longlong_t)((int64_t *)prop)[i]); break; } } } (void) printf("\n"); umem_free(prop, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) { dump_zap_stats(os, object); /* contents are printed elsewhere, properly decoded */ } /*ARGSUSED*/ static void dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } (void) printf(" %llx : [%d:%d:%d]\n", (u_longlong_t)attr.za_first_integer, (int)ATTR_LENGTH(attr.za_first_integer), (int)ATTR_BSWAP(attr.za_first_integer), (int)ATTR_NUM(attr.za_first_integer)); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; uint16_t *layout_attrs; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = [", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } VERIFY(attr.za_integer_length == 2); layout_attrs = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); VERIFY(zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, layout_attrs) == 0); for (i = 0; i != attr.za_num_integers; i++) (void) printf(" %d ", (int)layout_attrs[i]); (void) printf("]\n"); umem_free(layout_attrs, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; const char *typenames[] = { /* 0 */ "not specified", /* 1 */ "FIFO", /* 2 */ "Character Device", /* 3 */ "3 (invalid)", /* 4 */ "Directory", /* 5 */ "5 (invalid)", /* 6 */ "Block Device", /* 7 */ "7 (invalid)", /* 8 */ "Regular File", /* 9 */ "9 (invalid)", /* 10 */ "Symbolic Link", /* 11 */ "11 (invalid)", /* 12 */ "Socket", /* 13 */ "Door", /* 14 */ "Event Port", /* 15 */ "15 (invalid)", }; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = %lld (type: %s)\n", attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); } zap_cursor_fini(&zc); } static void dump_spacemap(objset_t *os, space_map_obj_t *smo, space_map_t *sm) { uint64_t alloc, offset, entry; uint8_t mapshift = sm->sm_shift; uint64_t mapstart = sm->sm_start; char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", "INVALID", "INVALID", "INVALID", "INVALID" }; if (smo->smo_object == 0) return; /* * Print out the freelist entries in both encoded and decoded form. */ alloc = 0; for (offset = 0; offset < smo->smo_objsize; offset += sizeof (entry)) { VERIFY3U(0, ==, dmu_read(os, smo->smo_object, offset, sizeof (entry), &entry, DMU_READ_PREFETCH)); if (SM_DEBUG_DECODE(entry)) { (void) printf("\t [%6llu] %s: txg %llu, pass %llu\n", (u_longlong_t)(offset / sizeof (entry)), ddata[SM_DEBUG_ACTION_DECODE(entry)], (u_longlong_t)SM_DEBUG_TXG_DECODE(entry), (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(entry)); } else { (void) printf("\t [%6llu] %c range:" " %010llx-%010llx size: %06llx\n", (u_longlong_t)(offset / sizeof (entry)), SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F', (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + mapstart), (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + mapstart + (SM_RUN_DECODE(entry) << mapshift)), (u_longlong_t)(SM_RUN_DECODE(entry) << mapshift)); if (SM_TYPE_DECODE(entry) == SM_ALLOC) alloc += SM_RUN_DECODE(entry) << mapshift; else alloc -= SM_RUN_DECODE(entry) << mapshift; } } if (alloc != smo->smo_alloc) { (void) printf("space_map_object alloc (%llu) INCONSISTENT " "with space map summary (%llu)\n", (u_longlong_t)smo->smo_alloc, (u_longlong_t)alloc); } } static void dump_metaslab_stats(metaslab_t *msp) { char maxbuf[32]; space_map_t *sm = &msp->ms_map; avl_tree_t *t = sm->sm_pp_root; int free_pct = sm->sm_space * 100 / sm->sm_size; zdb_nicenum(space_map_maxsize(sm), maxbuf); (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", "segments", avl_numnodes(t), "maxsize", maxbuf, "freepct", free_pct); } static void dump_metaslab(metaslab_t *msp) { vdev_t *vd = msp->ms_group->mg_vd; spa_t *spa = vd->vdev_spa; space_map_t *sm = &msp->ms_map; space_map_obj_t *smo = &msp->ms_smo; char freebuf[32]; zdb_nicenum(sm->sm_size - smo->smo_alloc, freebuf); (void) printf( "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", (u_longlong_t)(sm->sm_start / sm->sm_size), (u_longlong_t)sm->sm_start, (u_longlong_t)smo->smo_object, freebuf); if (dump_opt['m'] > 1 && !dump_opt['L']) { mutex_enter(&msp->ms_lock); space_map_load_wait(sm); if (!sm->sm_loaded) VERIFY(space_map_load(sm, zfs_metaslab_ops, SM_FREE, smo, spa->spa_meta_objset) == 0); dump_metaslab_stats(msp); space_map_unload(sm); mutex_exit(&msp->ms_lock); } if (dump_opt['d'] > 5 || dump_opt['m'] > 2) { ASSERT(sm->sm_size == (1ULL << vd->vdev_ms_shift)); mutex_enter(&msp->ms_lock); dump_spacemap(spa->spa_meta_objset, smo, sm); mutex_exit(&msp->ms_lock); } } static void print_vdev_metaslab_header(vdev_t *vd) { (void) printf("\tvdev %10llu\n\t%-10s%5llu %-19s %-15s %-10s\n", (u_longlong_t)vd->vdev_id, "metaslabs", (u_longlong_t)vd->vdev_ms_count, "offset", "spacemap", "free"); (void) printf("\t%15s %19s %15s %10s\n", "---------------", "-------------------", "---------------", "-------------"); } static void dump_metaslabs(spa_t *spa) { vdev_t *vd, *rvd = spa->spa_root_vdev; uint64_t m, c = 0, children = rvd->vdev_children; (void) printf("\nMetaslabs:\n"); if (!dump_opt['d'] && zopt_objects > 0) { c = zopt_object[0]; if (c >= children) (void) fatal("bad vdev id: %llu", (u_longlong_t)c); if (zopt_objects > 1) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 1; m < zopt_objects; m++) { if (zopt_object[m] < vd->vdev_ms_count) dump_metaslab( vd->vdev_ms[zopt_object[m]]); else (void) fprintf(stderr, "bad metaslab " "number %llu\n", (u_longlong_t)zopt_object[m]); } (void) printf("\n"); return; } children = c + 1; } for (; c < children; c++) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 0; m < vd->vdev_ms_count; m++) dump_metaslab(vd->vdev_ms[m]); (void) printf("\n"); } } static void dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) { const ddt_phys_t *ddp = dde->dde_phys; const ddt_key_t *ddk = &dde->dde_key; char *types[4] = { "ditto", "single", "double", "triple" }; char blkbuf[BP_SPRINTF_LEN]; blkptr_t blk; int p; for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); sprintf_blkptr(blkbuf, &blk); (void) printf("index %llx refcnt %llu %s %s\n", (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, types[p], blkbuf); } } static void dump_dedup_ratio(const ddt_stat_t *dds) { double rL, rP, rD, D, dedup, compress, copies; if (dds->dds_blocks == 0) return; rL = (double)dds->dds_ref_lsize; rP = (double)dds->dds_ref_psize; rD = (double)dds->dds_ref_dsize; D = (double)dds->dds_dsize; dedup = rD / D; compress = rL / rP; copies = rD / rP; (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " "dedup * compress / copies = %.2f\n\n", dedup, compress, copies, dedup * compress / copies); } static void dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { char name[DDT_NAMELEN]; ddt_entry_t dde; uint64_t walk = 0; dmu_object_info_t doi; uint64_t count, dspace, mspace; int error; error = ddt_object_info(ddt, type, class, &doi); if (error == ENOENT) return; ASSERT(error == 0); if ((count = ddt_object_count(ddt, type, class)) == 0) return; dspace = doi.doi_physical_blocks_512 << 9; mspace = doi.doi_fill_count * doi.doi_data_block_size; ddt_object_name(ddt, type, class, name); (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", name, (u_longlong_t)count, (u_longlong_t)(dspace / count), (u_longlong_t)(mspace / count)); if (dump_opt['D'] < 3) return; zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); if (dump_opt['D'] < 4) return; if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) return; (void) printf("%s contents:\n\n", name); while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) dump_dde(ddt, &dde, walk); ASSERT(error == ENOENT); (void) printf("\n"); } static void dump_all_ddts(spa_t *spa) { ddt_histogram_t ddh_total; ddt_stat_t dds_total; enum zio_checksum c; enum ddt_type type; enum ddt_class class; bzero(&ddh_total, sizeof (ddt_histogram_t)); bzero(&dds_total, sizeof (ddt_stat_t)); for (c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (type = 0; type < DDT_TYPES; type++) { for (class = 0; class < DDT_CLASSES; class++) { dump_ddt(ddt, type, class); } } } ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_blocks == 0) { (void) printf("All DDTs are empty\n"); return; } (void) printf("\n"); if (dump_opt['D'] > 1) { (void) printf("DDT histogram (aggregated over all DDTs):\n"); ddt_get_dedup_histogram(spa, &ddh_total); zpool_dump_ddt(&dds_total, &ddh_total); } dump_dedup_ratio(&dds_total); } static void dump_dtl_seg(space_map_t *sm, uint64_t start, uint64_t size) { char *prefix = (void *)sm; (void) printf("%s [%llu,%llu) length %llu\n", prefix, (u_longlong_t)start, (u_longlong_t)(start + size), (u_longlong_t)(size)); } static void dump_dtl(vdev_t *vd, int indent) { spa_t *spa = vd->vdev_spa; boolean_t required; char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" }; char prefix[256]; int c, t; spa_vdev_state_enter(spa, SCL_NONE); required = vdev_dtl_required(vd); (void) spa_vdev_state_exit(spa, NULL, 0); if (indent == 0) (void) printf("\nDirty time logs:\n\n"); (void) printf("\t%*s%s [%s]\n", indent, "", vd->vdev_path ? vd->vdev_path : vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), required ? "DTL-required" : "DTL-expendable"); for (t = 0; t < DTL_TYPES; t++) { space_map_t *sm = &vd->vdev_dtl[t]; if (sm->sm_space == 0) continue; (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", indent + 2, "", name[t]); mutex_enter(sm->sm_lock); space_map_walk(sm, dump_dtl_seg, (void *)prefix); mutex_exit(sm->sm_lock); if (dump_opt['d'] > 5 && vd->vdev_children == 0) dump_spacemap(spa->spa_meta_objset, &vd->vdev_dtl_smo, sm); } for (c = 0; c < vd->vdev_children; c++) dump_dtl(vd->vdev_child[c], indent + 4); } static void dump_history(spa_t *spa) { nvlist_t **events = NULL; char buf[SPA_MAXBLOCKSIZE]; uint64_t resid, len, off = 0; uint_t num = 0; int error; time_t tsec; struct tm t; char tbuf[30]; char internalstr[MAXPATHLEN]; int i; do { len = sizeof (buf); if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { (void) fprintf(stderr, "Unable to read history: " "error %d\n", error); return; } if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) break; off -= resid; } while (len != 0); (void) printf("\nHistory:\n"); for (i = 0; i < num; i++) { uint64_t time, txg, ievent; char *cmd, *intstr; if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, &time) != 0) continue; if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, &cmd) != 0) { if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_INT_EVENT, &ievent) != 0) continue; verify(nvlist_lookup_uint64(events[i], ZPOOL_HIST_TXG, &txg) == 0); verify(nvlist_lookup_string(events[i], ZPOOL_HIST_INT_STR, &intstr) == 0); if (ievent >= LOG_END) continue; (void) snprintf(internalstr, sizeof (internalstr), "[internal %s txg:%lld] %s", - zfs_history_event_names[ievent], txg, - intstr); + zfs_history_event_names[ievent], + (longlong_t)txg, intstr); cmd = internalstr; } tsec = time; (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); (void) printf("%s %s\n", tbuf, cmd); } } /*ARGSUSED*/ static void dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) { } static uint64_t blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_t *zb) { if (dnp == NULL) { ASSERT(zb->zb_level < 0); if (zb->zb_object == 0) return (zb->zb_blkid); return (zb->zb_blkid * BP_GET_LSIZE(bp)); } ASSERT(zb->zb_level >= 0); return ((zb->zb_blkid << (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } static void sprintf_blkptr_compact(char *blkbuf, const blkptr_t *bp) { const dva_t *dva = bp->blk_dva; int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; int i; if (dump_opt['b'] >= 5) { sprintf_blkptr(blkbuf, bp); return; } blkbuf[0] = '\0'; for (i = 0; i < ndvas; i++) (void) sprintf(blkbuf + strlen(blkbuf), "%llu:%llx:%llx ", (u_longlong_t)DVA_GET_VDEV(&dva[i]), (u_longlong_t)DVA_GET_OFFSET(&dva[i]), (u_longlong_t)DVA_GET_ASIZE(&dva[i])); (void) sprintf(blkbuf + strlen(blkbuf), "%llxL/%llxP F=%llu B=%llu/%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)BP_GET_PSIZE(bp), (u_longlong_t)bp->blk_fill, (u_longlong_t)bp->blk_birth, (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); } static void print_indirect(blkptr_t *bp, const zbookmark_t *zb, const dnode_phys_t *dnp) { char blkbuf[BP_SPRINTF_LEN]; int l; ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); ASSERT(zb->zb_level >= 0); for (l = dnp->dn_nlevels - 1; l >= -1; l--) { if (l == zb->zb_level) { (void) printf("L%llx", (u_longlong_t)zb->zb_level); } else { (void) printf(" "); } } sprintf_blkptr_compact(blkbuf, bp); (void) printf("%s\n", blkbuf); } static int visit_indirect(spa_t *spa, const dnode_phys_t *dnp, blkptr_t *bp, const zbookmark_t *zb) { int err = 0; if (bp->blk_birth == 0) return (0); print_indirect(bp, zb, dnp); if (BP_GET_LEVEL(bp) > 0) { uint32_t flags = ARC_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; uint64_t fill = 0; err = arc_read_nolock(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err) return (err); ASSERT(buf->b_data); /* recursively visit blocks below this */ cbp = buf->b_data; for (i = 0; i < epb; i++, cbp++) { zbookmark_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); err = visit_indirect(spa, dnp, cbp, &czb); if (err) break; fill += cbp->blk_fill; } if (!err) ASSERT3U(fill, ==, bp->blk_fill); (void) arc_buf_remove_ref(buf, &buf); } return (err); } /*ARGSUSED*/ static void dump_indirect(dnode_t *dn) { dnode_phys_t *dnp = dn->dn_phys; int j; zbookmark_t czb; (void) printf("Indirect blocks:\n"); SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), dn->dn_object, dnp->dn_nlevels - 1, 0); for (j = 0; j < dnp->dn_nblkptr; j++) { czb.zb_blkid = j; (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, &dnp->dn_blkptr[j], &czb); } (void) printf("\n"); } /*ARGSUSED*/ static void dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dir_phys_t *dd = data; time_t crtime; char nice[32]; if (dd == NULL) return; ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); crtime = dd->dd_creation_time; (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\thead_dataset_obj = %llu\n", (u_longlong_t)dd->dd_head_dataset_obj); (void) printf("\t\tparent_dir_obj = %llu\n", (u_longlong_t)dd->dd_parent_obj); (void) printf("\t\torigin_obj = %llu\n", (u_longlong_t)dd->dd_origin_obj); (void) printf("\t\tchild_dir_zapobj = %llu\n", (u_longlong_t)dd->dd_child_dir_zapobj); zdb_nicenum(dd->dd_used_bytes, nice); (void) printf("\t\tused_bytes = %s\n", nice); zdb_nicenum(dd->dd_compressed_bytes, nice); (void) printf("\t\tcompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_uncompressed_bytes, nice); (void) printf("\t\tuncompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_quota, nice); (void) printf("\t\tquota = %s\n", nice); zdb_nicenum(dd->dd_reserved, nice); (void) printf("\t\treserved = %s\n", nice); (void) printf("\t\tprops_zapobj = %llu\n", (u_longlong_t)dd->dd_props_zapobj); (void) printf("\t\tdeleg_zapobj = %llu\n", (u_longlong_t)dd->dd_deleg_zapobj); (void) printf("\t\tflags = %llx\n", (u_longlong_t)dd->dd_flags); #define DO(which) \ zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice); \ (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) DO(HEAD); DO(SNAP); DO(CHILD); DO(CHILD_RSRV); DO(REFRSRV); #undef DO } /*ARGSUSED*/ static void dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dataset_phys_t *ds = data; time_t crtime; char used[32], compressed[32], uncompressed[32], unique[32]; char blkbuf[BP_SPRINTF_LEN]; if (ds == NULL) return; ASSERT(size == sizeof (*ds)); crtime = ds->ds_creation_time; zdb_nicenum(ds->ds_used_bytes, used); zdb_nicenum(ds->ds_compressed_bytes, compressed); zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed); zdb_nicenum(ds->ds_unique_bytes, unique); sprintf_blkptr(blkbuf, &ds->ds_bp); (void) printf("\t\tdir_obj = %llu\n", (u_longlong_t)ds->ds_dir_obj); (void) printf("\t\tprev_snap_obj = %llu\n", (u_longlong_t)ds->ds_prev_snap_obj); (void) printf("\t\tprev_snap_txg = %llu\n", (u_longlong_t)ds->ds_prev_snap_txg); (void) printf("\t\tnext_snap_obj = %llu\n", (u_longlong_t)ds->ds_next_snap_obj); (void) printf("\t\tsnapnames_zapobj = %llu\n", (u_longlong_t)ds->ds_snapnames_zapobj); (void) printf("\t\tnum_children = %llu\n", (u_longlong_t)ds->ds_num_children); (void) printf("\t\tuserrefs_obj = %llu\n", (u_longlong_t)ds->ds_userrefs_obj); (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\tcreation_txg = %llu\n", (u_longlong_t)ds->ds_creation_txg); (void) printf("\t\tdeadlist_obj = %llu\n", (u_longlong_t)ds->ds_deadlist_obj); (void) printf("\t\tused_bytes = %s\n", used); (void) printf("\t\tcompressed_bytes = %s\n", compressed); (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); (void) printf("\t\tunique = %s\n", unique); (void) printf("\t\tfsid_guid = %llu\n", (u_longlong_t)ds->ds_fsid_guid); (void) printf("\t\tguid = %llu\n", (u_longlong_t)ds->ds_guid); (void) printf("\t\tflags = %llx\n", (u_longlong_t)ds->ds_flags); (void) printf("\t\tnext_clones_obj = %llu\n", (u_longlong_t)ds->ds_next_clones_obj); (void) printf("\t\tprops_obj = %llu\n", (u_longlong_t)ds->ds_props_obj); (void) printf("\t\tbp = %s\n", blkbuf); } /* ARGSUSED */ static int dump_bpobj_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; ASSERT(bp->blk_birth != 0); sprintf_blkptr_compact(blkbuf, bp); (void) printf("\t%s\n", blkbuf); return (0); } static void dump_bpobj(bpobj_t *bpo, char *name) { char bytes[32]; char comp[32]; char uncomp[32]; if (dump_opt['d'] < 3) return; zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes); if (bpo->bpo_havesubobj) { zdb_nicenum(bpo->bpo_phys->bpo_comp, comp); zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp); (void) printf("\n %s: %llu local blkptrs, %llu subobjs, " "%s (%s/%s comp)\n", name, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, bytes, comp, uncomp); } else { (void) printf("\n %s: %llu blkptrs, %s\n", name, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, bytes); } if (dump_opt['d'] < 5) return; (void) printf("\n"); (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); } static void dump_deadlist(dsl_deadlist_t *dl) { dsl_deadlist_entry_t *dle; char bytes[32]; char comp[32]; char uncomp[32]; if (dump_opt['d'] < 3) return; zdb_nicenum(dl->dl_phys->dl_used, bytes); zdb_nicenum(dl->dl_phys->dl_comp, comp); zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp); (void) printf("\n Deadlist: %s (%s/%s comp)\n", bytes, comp, uncomp); if (dump_opt['d'] < 4) return; (void) printf("\n"); for (dle = avl_first(&dl->dl_tree); dle; dle = AVL_NEXT(&dl->dl_tree, dle)) { (void) printf(" mintxg %llu -> obj %llu\n", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); if (dump_opt['d'] >= 5) dump_bpobj(&dle->dle_bpobj, ""); } } static avl_tree_t idx_tree; static avl_tree_t domain_tree; static boolean_t fuid_table_loaded; static boolean_t sa_loaded; sa_attr_type_t *sa_attr_table; static void fuid_table_destroy() { if (fuid_table_loaded) { zfs_fuid_table_destroy(&idx_tree, &domain_tree); fuid_table_loaded = B_FALSE; } } /* * print uid or gid information. * For normal POSIX id just the id is printed in decimal format. * For CIFS files with FUID the fuid is printed in hex followed by * the doman-rid string. */ static void print_idstr(uint64_t id, const char *id_type) { if (FUID_INDEX(id)) { char *domain; domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); (void) printf("\t%s %llx [%s-%d]\n", id_type, (u_longlong_t)id, domain, (int)FUID_RID(id)); } else { (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); } } static void dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) { uint32_t uid_idx, gid_idx; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); /* Load domain table, if not already loaded */ if (!fuid_table_loaded && (uid_idx || gid_idx)) { uint64_t fuid_obj; /* first find the fuid object. It lives in the master node */ VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &fuid_obj) == 0); zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); (void) zfs_fuid_table_load(os, fuid_obj, &idx_tree, &domain_tree); fuid_table_loaded = B_TRUE; } print_idstr(uid, "uid"); print_idstr(gid, "gid"); } /*ARGSUSED*/ static void dump_znode(objset_t *os, uint64_t object, void *data, size_t size) { char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ sa_handle_t *hdl; uint64_t xattr, rdev, gen; uint64_t uid, gid, mode, fsize, parent, links; uint64_t pflags; uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; time_t z_crtime, z_atime, z_mtime, z_ctime; sa_bulk_attr_t bulk[12]; int idx = 0; int error; if (!sa_loaded) { uint64_t sa_attrs = 0; uint64_t version; VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &version) == 0); if (version >= ZPL_VERSION_SA) { VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_attrs) == 0); } if ((error = sa_setup(os, sa_attrs, zfs_attr_table, ZPL_END, &sa_attr_table)) != 0) { (void) printf("sa_setup failed errno %d, can't " "display znode contents\n", error); return; } sa_loaded = B_TRUE; } if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { (void) printf("Failed to get handle for SA znode\n"); return; } SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, &links, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, &fsize, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, acctm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, modtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, crtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, chgtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, &pflags, 8); if (sa_bulk_lookup(hdl, bulk, idx)) { (void) sa_handle_destroy(hdl); return; } error = zfs_obj_to_path(os, object, path, sizeof (path)); if (error != 0) { (void) snprintf(path, sizeof (path), "\?\?\?", (u_longlong_t)object); } if (dump_opt['d'] < 3) { (void) printf("\t%s\n", path); (void) sa_handle_destroy(hdl); return; } z_crtime = (time_t)crtm[0]; z_atime = (time_t)acctm[0]; z_mtime = (time_t)modtm[0]; z_ctime = (time_t)chgtm[0]; (void) printf("\tpath %s\n", path); dump_uidgid(os, uid, gid); (void) printf("\tatime %s", ctime(&z_atime)); (void) printf("\tmtime %s", ctime(&z_mtime)); (void) printf("\tctime %s", ctime(&z_ctime)); (void) printf("\tcrtime %s", ctime(&z_crtime)); (void) printf("\tgen %llu\n", (u_longlong_t)gen); (void) printf("\tmode %llo\n", (u_longlong_t)mode); (void) printf("\tsize %llu\n", (u_longlong_t)fsize); (void) printf("\tparent %llu\n", (u_longlong_t)parent); (void) printf("\tlinks %llu\n", (u_longlong_t)links); (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, sizeof (uint64_t)) == 0) (void) printf("\txattr %llu\n", (u_longlong_t)xattr); if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, sizeof (uint64_t)) == 0) (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); sa_handle_destroy(hdl); } /*ARGSUSED*/ static void dump_acl(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) { } static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { dump_none, /* unallocated */ dump_zap, /* object directory */ dump_uint64, /* object array */ dump_none, /* packed nvlist */ dump_packed_nvlist, /* packed nvlist size */ dump_none, /* bplist */ dump_none, /* bplist header */ dump_none, /* SPA space map header */ dump_none, /* SPA space map */ dump_none, /* ZIL intent log */ dump_dnode, /* DMU dnode */ dump_dmu_objset, /* DMU objset */ dump_dsl_dir, /* DSL directory */ dump_zap, /* DSL directory child map */ dump_zap, /* DSL dataset snap map */ dump_zap, /* DSL props */ dump_dsl_dataset, /* DSL dataset */ dump_znode, /* ZFS znode */ dump_acl, /* ZFS V0 ACL */ dump_uint8, /* ZFS plain file */ dump_zpldir, /* ZFS directory */ dump_zap, /* ZFS master node */ dump_zap, /* ZFS delete queue */ dump_uint8, /* zvol object */ dump_zap, /* zvol prop */ dump_uint8, /* other uint8[] */ dump_uint64, /* other uint64[] */ dump_zap, /* other ZAP */ dump_zap, /* persistent error log */ dump_uint8, /* SPA history */ dump_uint64, /* SPA history offsets */ dump_zap, /* Pool properties */ dump_zap, /* DSL permissions */ dump_acl, /* ZFS ACL */ dump_uint8, /* ZFS SYSACL */ dump_none, /* FUID nvlist */ dump_packed_nvlist, /* FUID nvlist size */ dump_zap, /* DSL dataset next clones */ dump_zap, /* DSL scrub queue */ dump_zap, /* ZFS user/group used */ dump_zap, /* ZFS user/group quota */ dump_zap, /* snapshot refcount tags */ dump_ddt_zap, /* DDT ZAP object */ dump_zap, /* DDT statistics */ dump_znode, /* SA object */ dump_zap, /* SA Master Node */ dump_sa_attrs, /* SA attribute registration */ dump_sa_layouts, /* SA attribute layouts */ dump_zap, /* DSL scrub translations */ dump_none, /* fake dedup BP */ dump_zap, /* deadlist */ dump_none, /* deadlist hdr */ dump_zap, /* dsl clones */ dump_none, /* bpobj subobjs */ dump_unknown, /* Unknown type, must be last */ }; static void dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header) { dmu_buf_t *db = NULL; dmu_object_info_t doi; dnode_t *dn; void *bonus = NULL; size_t bsize = 0; char iblk[32], dblk[32], lsize[32], asize[32], fill[32]; char bonus_size[32]; char aux[50]; int error; if (*print_header) { (void) printf("\n%10s %3s %5s %5s %5s %5s %6s %s\n", "Object", "lvl", "iblk", "dblk", "dsize", "lsize", "%full", "type"); *print_header = 0; } if (object == 0) { dn = DMU_META_DNODE(os); } else { error = dmu_bonus_hold(os, object, FTAG, &db); if (error) fatal("dmu_bonus_hold(%llu) failed, errno %u", object, error); bonus = db->db_data; bsize = db->db_size; dn = DB_DNODE((dmu_buf_impl_t *)db); } dmu_object_info_from_dnode(dn, &doi); zdb_nicenum(doi.doi_metadata_block_size, iblk); zdb_nicenum(doi.doi_data_block_size, dblk); zdb_nicenum(doi.doi_max_offset, lsize); zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize); zdb_nicenum(doi.doi_bonus_size, bonus_size); (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / doi.doi_max_offset); aux[0] = '\0'; if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); } if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); } (void) printf("%10lld %3u %5s %5s %5s %5s %6s %s%s\n", (u_longlong_t)object, doi.doi_indirection, iblk, dblk, asize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux); if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { (void) printf("%10s %3s %5s %5s %5s %5s %6s %s\n", "", "", "", "", "", bonus_size, "bonus", ZDB_OT_NAME(doi.doi_bonus_type)); } if (verbosity >= 4) { (void) printf("\tdnode flags: %s%s%s\n", (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? "USED_BYTES " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? "USERUSED_ACCOUNTED " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? "SPILL_BLKPTR" : ""); (void) printf("\tdnode maxblkid: %llu\n", (longlong_t)dn->dn_phys->dn_maxblkid); object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, object, bonus, bsize); object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, NULL, 0); *print_header = 1; } if (verbosity >= 5) dump_indirect(dn); if (verbosity >= 5) { /* * Report the list of segments that comprise the object. */ uint64_t start = 0; uint64_t end; uint64_t blkfill = 1; int minlvl = 1; if (dn->dn_type == DMU_OT_DNODE) { minlvl = 0; blkfill = DNODES_PER_BLOCK; } for (;;) { char segsize[32]; error = dnode_next_offset(dn, 0, &start, minlvl, blkfill, 0); if (error) break; end = start; error = dnode_next_offset(dn, DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); zdb_nicenum(end - start, segsize); (void) printf("\t\tsegment [%016llx, %016llx)" " size %5s\n", (u_longlong_t)start, (u_longlong_t)end, segsize); if (error) break; start = end; } } if (db != NULL) dmu_buf_rele(db, FTAG); } static char *objset_types[DMU_OST_NUMTYPES] = { "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; static void dump_dir(objset_t *os) { dmu_objset_stats_t dds; uint64_t object, object_count; uint64_t refdbytes, usedobjs, scratch; char numbuf[32]; char blkbuf[BP_SPRINTF_LEN + 20]; char osname[MAXNAMELEN]; char *type = "UNKNOWN"; int verbosity = dump_opt['d']; int print_header = 1; int i, error; dmu_objset_fast_stat(os, &dds); if (dds.dds_type < DMU_OST_NUMTYPES) type = objset_types[dds.dds_type]; if (dds.dds_type == DMU_OST_META) { dds.dds_creation_txg = TXG_INITIAL; usedobjs = os->os_rootbp->blk_fill; refdbytes = os->os_spa->spa_dsl_pool-> dp_mos_dir->dd_phys->dd_used_bytes; } else { dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); } ASSERT3U(usedobjs, ==, os->os_rootbp->blk_fill); zdb_nicenum(refdbytes, numbuf); if (verbosity >= 4) { (void) sprintf(blkbuf, ", rootbp "); (void) sprintf_blkptr(blkbuf + strlen(blkbuf), os->os_rootbp); } else { blkbuf[0] = '\0'; } dmu_objset_name(os, osname); (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " "%s, %llu objects%s\n", osname, type, (u_longlong_t)dmu_objset_id(os), (u_longlong_t)dds.dds_creation_txg, numbuf, (u_longlong_t)usedobjs, blkbuf); if (zopt_objects != 0) { for (i = 0; i < zopt_objects; i++) dump_object(os, zopt_object[i], verbosity, &print_header); (void) printf("\n"); return; } if (dump_opt['i'] != 0 || verbosity >= 2) dump_intent_log(dmu_objset_zil(os)); if (dmu_objset_ds(os) != NULL) dump_deadlist(&dmu_objset_ds(os)->ds_deadlist); if (verbosity < 2) return; if (os->os_rootbp->blk_birth == 0) return; dump_object(os, 0, verbosity, &print_header); object_count = 0; if (DMU_USERUSED_DNODE(os) != NULL && DMU_USERUSED_DNODE(os)->dn_type != 0) { dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header); dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header); } object = 0; while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { dump_object(os, object, verbosity, &print_header); object_count++; } ASSERT3U(object_count, ==, usedobjs); (void) printf("\n"); if (error != ESRCH) { (void) fprintf(stderr, "dmu_object_next() = %d\n", error); abort(); } } static void dump_uberblock(uberblock_t *ub, const char *header, const char *footer) { time_t timestamp = ub->ub_timestamp; (void) printf(header ? header : ""); (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); (void) printf("\ttimestamp = %llu UTC = %s", (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); if (dump_opt['u'] >= 3) { char blkbuf[BP_SPRINTF_LEN]; sprintf_blkptr(blkbuf, &ub->ub_rootbp); (void) printf("\trootbp = %s\n", blkbuf); } (void) printf(footer ? footer : ""); } static void dump_config(spa_t *spa) { dmu_buf_t *db; size_t nvsize = 0; int error = 0; error = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object, FTAG, &db); if (error == 0) { nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); (void) printf("\nMOS Configuration:\n"); dump_packed_nvlist(spa->spa_meta_objset, spa->spa_config_object, (void *)&nvsize, 1); } else { (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", (u_longlong_t)spa->spa_config_object, error); } } static void dump_cachefile(const char *cachefile) { int fd; struct stat64 statbuf; char *buf; nvlist_t *config; if ((fd = open64(cachefile, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", cachefile, strerror(errno)); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", cachefile, strerror(errno)); exit(1); } if ((buf = malloc(statbuf.st_size)) == NULL) { (void) fprintf(stderr, "failed to allocate %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) fprintf(stderr, "failed to read %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { (void) fprintf(stderr, "failed to unpack nvlist\n"); exit(1); } free(buf); dump_nvlist(config, 0); nvlist_free(config); } #define ZDB_MAX_UB_HEADER_SIZE 32 static void dump_label_uberblocks(vdev_label_t *lbl, uint64_t ashift) { vdev_t vd; vdev_t *vdp = &vd; char header[ZDB_MAX_UB_HEADER_SIZE]; int i; vd.vdev_ashift = ashift; vdp->vdev_top = vdp; for (i = 0; i < VDEV_UBERBLOCK_COUNT(vdp); i++) { uint64_t uoff = VDEV_UBERBLOCK_OFFSET(vdp, i); uberblock_t *ub = (void *)((char *)lbl + uoff); if (uberblock_verify(ub)) continue; (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, "Uberblock[%d]\n", i); dump_uberblock(ub, header, ""); } } static void dump_label(const char *dev) { int fd; vdev_label_t label; char *path, *buf = label.vl_vdev_phys.vp_nvlist; size_t buflen = sizeof (label.vl_vdev_phys.vp_nvlist); struct stat64 statbuf; uint64_t psize, ashift; int len = strlen(dev) + 1; int l; if (strncmp(dev, "/dev/dsk/", 9) == 0) { len++; path = malloc(len); (void) snprintf(path, len, "%s%s", "/dev/rdsk/", dev + 9); } else { path = strdup(dev); } if ((fd = open64(path, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", path, strerror(errno)); free(path); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", path, strerror(errno)); free(path); (void) close(fd); exit(1); } if (S_ISBLK(statbuf.st_mode)) { (void) printf("cannot use '%s': character device required\n", path); free(path); (void) close(fd); exit(1); } psize = statbuf.st_size; psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); for (l = 0; l < VDEV_LABELS; l++) { nvlist_t *config = NULL; (void) printf("--------------------------------------------\n"); (void) printf("LABEL %d\n", l); (void) printf("--------------------------------------------\n"); if (pread64(fd, &label, sizeof (label), vdev_label_offset(psize, l, 0)) != sizeof (label)) { (void) printf("failed to read label %d\n", l); continue; } if (nvlist_unpack(buf, buflen, &config, 0) != 0) { (void) printf("failed to unpack label %d\n", l); ashift = SPA_MINBLOCKSHIFT; } else { nvlist_t *vdev_tree = NULL; dump_nvlist(config, 4); if ((nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || (nvlist_lookup_uint64(vdev_tree, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) ashift = SPA_MINBLOCKSHIFT; nvlist_free(config); } if (dump_opt['u']) dump_label_uberblocks(&label, ashift); } free(path); (void) close(fd); } /*ARGSUSED*/ static int dump_one_dir(const char *dsname, void *arg) { int error; objset_t *os; error = dmu_objset_own(dsname, DMU_OST_ANY, B_TRUE, FTAG, &os); if (error) { (void) printf("Could not open %s, error %d\n", dsname, error); return (0); } dump_dir(os); dmu_objset_disown(os, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; return (0); } /* * Block statistics. */ typedef struct zdb_blkstats { uint64_t zb_asize; uint64_t zb_lsize; uint64_t zb_psize; uint64_t zb_count; } zdb_blkstats_t; /* * Extended object types to report deferred frees and dedup auto-ditto blocks. */ #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 2) static char *zdb_ot_extname[] = { "deferred free", "dedup ditto", "Total", }; #define ZB_TOTAL DN_MAX_LEVELS typedef struct zdb_cb { zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; uint64_t zcb_dedup_asize; uint64_t zcb_dedup_blocks; uint64_t zcb_errors[256]; int zcb_readfails; int zcb_haderrors; spa_t *zcb_spa; } zdb_cb_t; static void zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, dmu_object_type_t type) { uint64_t refcnt = 0; int i; ASSERT(type < ZDB_OT_TOTAL); if (zilog && zil_bp_tree_add(zilog, bp) != 0) return; for (i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; int t = (i & 1) ? type : ZDB_OT_TOTAL; zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_count++; } if (dump_opt['L']) return; if (BP_GET_DEDUP(bp)) { ddt_t *ddt; ddt_entry_t *dde; ddt = ddt_select(zcb->zcb_spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_FALSE); if (dde == NULL) { refcnt = 0; } else { ddt_phys_t *ddp = ddt_phys_select(dde, bp); ddt_phys_decref(ddp); refcnt = ddp->ddp_refcnt; if (ddt_phys_total_refcnt(dde) == 0) ddt_remove(ddt, dde); } ddt_exit(ddt); } VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, refcnt ? 0 : spa_first_txg(zcb->zcb_spa), bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); } /* ARGSUSED */ static int zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) { zdb_cb_t *zcb = arg; char blkbuf[BP_SPRINTF_LEN]; dmu_object_type_t type; boolean_t is_metadata; if (bp == NULL) return (0); type = BP_GET_TYPE(bp); zdb_count_block(zcb, zilog, bp, type); is_metadata = (BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata); if (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata)) { int ioerr; size_t size = BP_GET_PSIZE(bp); void *data = malloc(size); int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) flags |= ZIO_FLAG_SPECULATIVE; ioerr = zio_wait(zio_read(NULL, spa, bp, data, size, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, flags, zb)); free(data); if (ioerr && !(flags & ZIO_FLAG_SPECULATIVE)) { zcb->zcb_haderrors = 1; zcb->zcb_errors[ioerr]++; if (dump_opt['b'] >= 2) sprintf_blkptr(blkbuf, bp); else blkbuf[0] = '\0'; (void) printf("zdb_blkptr_cb: " "Got error %d reading " "<%llu, %llu, %lld, %llx> %s -- skipping\n", ioerr, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, blkbuf); } } zcb->zcb_readfails = 0; if (dump_opt['b'] >= 4) { sprintf_blkptr(blkbuf, bp); (void) printf("objset %llu object %llu " "level %lld offset 0x%llx %s\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (u_longlong_t)blkid2offset(dnp, bp, zb), blkbuf); } return (0); } static void zdb_leak(space_map_t *sm, uint64_t start, uint64_t size) { vdev_t *vd = sm->sm_ppd; (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); } /* ARGSUSED */ static void zdb_space_map_load(space_map_t *sm) { } static void zdb_space_map_unload(space_map_t *sm) { space_map_vacate(sm, zdb_leak, sm); } /* ARGSUSED */ static void zdb_space_map_claim(space_map_t *sm, uint64_t start, uint64_t size) { } static space_map_ops_t zdb_space_map_ops = { zdb_space_map_load, zdb_space_map_unload, NULL, /* alloc */ zdb_space_map_claim, NULL, /* free */ NULL /* maxsize */ }; static void zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) { ddt_bookmark_t ddb = { 0 }; ddt_entry_t dde; int error; int p; while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { blkptr_t blk; ddt_phys_t *ddp = dde.dde_phys; if (ddb.ddb_class == DDT_CLASS_UNIQUE) return; ASSERT(ddt_phys_total_refcnt(&dde) > 1); for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddb.ddb_checksum, &dde.dde_key, ddp, &blk); if (p == DDT_PHYS_DITTO) { zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); } else { zcb->zcb_dedup_asize += BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); zcb->zcb_dedup_blocks++; } } if (!dump_opt['L']) { ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; ddt_enter(ddt); VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); ddt_exit(ddt); } } ASSERT(error == ENOENT); } static void zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) { zcb->zcb_spa = spa; int c, m; if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); space_map_unload(&msp->ms_map); VERIFY(space_map_load(&msp->ms_map, &zdb_space_map_ops, SM_ALLOC, &msp->ms_smo, spa->spa_meta_objset) == 0); msp->ms_map.sm_ppd = vd; mutex_exit(&msp->ms_lock); } } } spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); zdb_ddt_leak_init(spa, zcb); spa_config_exit(spa, SCL_CONFIG, FTAG); } static void zdb_leak_fini(spa_t *spa) { int c, m; if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); space_map_unload(&msp->ms_map); mutex_exit(&msp->ms_lock); } } } } /* ARGSUSED */ static int count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zdb_cb_t *zcb = arg; if (dump_opt['b'] >= 4) { char blkbuf[BP_SPRINTF_LEN]; sprintf_blkptr(blkbuf, bp); (void) printf("[%s] %s\n", "deferred free", blkbuf); } zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); return (0); } static int dump_block_stats(spa_t *spa) { zdb_cb_t zcb = { 0 }; zdb_blkstats_t *zb, *tzb; uint64_t norm_alloc, norm_space, total_alloc, total_found; int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_HARD; int leaks = 0; int e; (void) printf("\nTraversing all blocks %s%s%s%s%s...\n", (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", (dump_opt['c'] == 1) ? "metadata " : "", dump_opt['c'] ? "checksums " : "", (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", !dump_opt['L'] ? "nothing leaked " : ""); /* * Load all space maps as SM_ALLOC maps, then traverse the pool * claiming each block we discover. If the pool is perfectly * consistent, the space maps will be empty when we're done. * Anything left over is a leak; any block we can't claim (because * it's not part of any space map) is a double allocation, * reference to a freed block, or an unclaimed log block. */ zdb_leak_init(spa, &zcb); /* * If there's a deferred-free bplist, process that first. */ (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, count_block_cb, &zcb, NULL); (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, count_block_cb, &zcb, NULL); if (dump_opt['c'] > 1) flags |= TRAVERSE_PREFETCH_DATA; zcb.zcb_haderrors |= traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); if (zcb.zcb_haderrors) { (void) printf("\nError counts:\n\n"); (void) printf("\t%5s %s\n", "errno", "count"); for (e = 0; e < 256; e++) { if (zcb.zcb_errors[e] != 0) { (void) printf("\t%5d %llu\n", e, (u_longlong_t)zcb.zcb_errors[e]); } } } /* * Report any leaked segments. */ zdb_leak_fini(spa); tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); norm_space = metaslab_class_get_space(spa_normal_class(spa)); total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa)); total_found = tzb->zb_asize - zcb.zcb_dedup_asize; if (total_found == total_alloc) { if (!dump_opt['L']) (void) printf("\n\tNo leaks (block sum matches space" " maps exactly)\n"); } else { (void) printf("block traversal size %llu != alloc %llu " "(%s %lld)\n", (u_longlong_t)total_found, (u_longlong_t)total_alloc, (dump_opt['L']) ? "unreachable" : "leaked", (longlong_t)(total_alloc - total_found)); leaks = 1; } if (tzb->zb_count == 0) return (2); (void) printf("\n"); (void) printf("\tbp count: %10llu\n", (u_longlong_t)tzb->zb_count); (void) printf("\tbp logical: %10llu avg: %6llu\n", (u_longlong_t)tzb->zb_lsize, (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); (void) printf("\tbp physical: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_psize, (u_longlong_t)(tzb->zb_psize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_psize); (void) printf("\tbp allocated: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_asize, (u_longlong_t)(tzb->zb_asize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_asize); (void) printf("\tbp deduped: %10llu ref>1:" " %6llu deduplication: %6.2f\n", (u_longlong_t)zcb.zcb_dedup_asize, (u_longlong_t)zcb.zcb_dedup_blocks, (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); (void) printf("\tSPA allocated: %10llu used: %5.2f%%\n", (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); if (dump_opt['b'] >= 2) { int l, t, level; (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" "\t avg\t comp\t%%Total\tType\n"); for (t = 0; t <= ZDB_OT_TOTAL; t++) { char csize[32], lsize[32], psize[32], asize[32]; char avg[32]; char *typename; if (t < DMU_OT_NUMTYPES) typename = dmu_ot[t].ot_name; else typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { (void) printf("%6s\t%5s\t%5s\t%5s" "\t%5s\t%5s\t%6s\t%s\n", "-", "-", "-", "-", "-", "-", "-", typename); continue; } for (l = ZB_TOTAL - 1; l >= -1; l--) { level = (l == -1 ? ZB_TOTAL : l); zb = &zcb.zcb_type[level][t]; if (zb->zb_asize == 0) continue; if (dump_opt['b'] < 3 && level != ZB_TOTAL) continue; if (level == 0 && zb->zb_asize == zcb.zcb_type[ZB_TOTAL][t].zb_asize) continue; zdb_nicenum(zb->zb_count, csize); zdb_nicenum(zb->zb_lsize, lsize); zdb_nicenum(zb->zb_psize, psize); zdb_nicenum(zb->zb_asize, asize); zdb_nicenum(zb->zb_asize / zb->zb_count, avg); (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5.2f\t%6.2f\t", csize, lsize, psize, asize, avg, (double)zb->zb_lsize / zb->zb_psize, 100.0 * zb->zb_asize / tzb->zb_asize); if (level == ZB_TOTAL) (void) printf("%s\n", typename); else (void) printf(" L%d %s\n", level, typename); } } } (void) printf("\n"); if (leaks) return (2); if (zcb.zcb_haderrors) return (3); return (0); } typedef struct zdb_ddt_entry { ddt_key_t zdde_key; uint64_t zdde_ref_blocks; uint64_t zdde_ref_lsize; uint64_t zdde_ref_psize; uint64_t zdde_ref_dsize; avl_node_t zdde_node; } zdb_ddt_entry_t; /* ARGSUSED */ static int zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) { avl_tree_t *t = arg; avl_index_t where; zdb_ddt_entry_t *zdde, zdde_search; if (bp == NULL) return (0); if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { (void) printf("traversing objset %llu, %llu objects, " "%lu blocks so far\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)bp->blk_fill, avl_numnodes(t)); } if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) return (0); ddt_key_fill(&zdde_search.zdde_key, bp); zdde = avl_find(t, &zdde_search, &where); if (zdde == NULL) { zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); zdde->zdde_key = zdde_search.zdde_key; avl_insert(t, zdde, where); } zdde->zdde_ref_blocks += 1; zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); zdde->zdde_ref_psize += BP_GET_PSIZE(bp); zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); return (0); } static void dump_simulated_ddt(spa_t *spa) { avl_tree_t t; void *cookie = NULL; zdb_ddt_entry_t *zdde; ddt_histogram_t ddh_total = { 0 }; ddt_stat_t dds_total = { 0 }; avl_create(&t, ddt_entry_compare, sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zdb_ddt_add_cb, &t); spa_config_exit(spa, SCL_CONFIG, FTAG); while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { ddt_stat_t dds; uint64_t refcnt = zdde->zdde_ref_blocks; ASSERT(refcnt != 0); dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; dds.dds_psize = zdde->zdde_ref_psize / refcnt; dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; dds.dds_ref_blocks = zdde->zdde_ref_blocks; dds.dds_ref_lsize = zdde->zdde_ref_lsize; dds.dds_ref_psize = zdde->zdde_ref_psize; dds.dds_ref_dsize = zdde->zdde_ref_dsize; ddt_stat_add(&ddh_total.ddh_stat[highbit(refcnt) - 1], &dds, 0); umem_free(zdde, sizeof (*zdde)); } avl_destroy(&t); ddt_histogram_stat(&dds_total, &ddh_total); (void) printf("Simulated DDT histogram:\n"); zpool_dump_ddt(&dds_total, &ddh_total); dump_dedup_ratio(&dds_total); } static void dump_zpool(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); int rc = 0; if (dump_opt['S']) { dump_simulated_ddt(spa); return; } if (!dump_opt['e'] && dump_opt['C'] > 1) { (void) printf("\nCached configuration:\n"); dump_nvlist(spa->spa_config, 8); } if (dump_opt['C']) dump_config(spa); if (dump_opt['u']) dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); if (dump_opt['D']) dump_all_ddts(spa); if (dump_opt['d'] > 2 || dump_opt['m']) dump_metaslabs(spa); if (dump_opt['d'] || dump_opt['i']) { dump_dir(dp->dp_meta_objset); if (dump_opt['d'] >= 3) { dump_bpobj(&spa->spa_deferred_bpobj, "Deferred frees"); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { dump_bpobj(&spa->spa_dsl_pool->dp_free_bpobj, "Pool frees"); } dump_dtl(spa->spa_root_vdev, 0); } (void) dmu_objset_find(spa_name(spa), dump_one_dir, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } if (dump_opt['b'] || dump_opt['c']) rc = dump_block_stats(spa); if (dump_opt['s']) show_pool_stats(spa); if (dump_opt['h']) dump_history(spa); if (rc != 0) exit(rc); } #define ZDB_FLAG_CHECKSUM 0x0001 #define ZDB_FLAG_DECOMPRESS 0x0002 #define ZDB_FLAG_BSWAP 0x0004 #define ZDB_FLAG_GBH 0x0008 #define ZDB_FLAG_INDIRECT 0x0010 #define ZDB_FLAG_PHYS 0x0020 #define ZDB_FLAG_RAW 0x0040 #define ZDB_FLAG_PRINT_BLKPTR 0x0080 int flagbits[256]; static void zdb_print_blkptr(blkptr_t *bp, int flags) { char blkbuf[BP_SPRINTF_LEN]; if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); sprintf_blkptr(blkbuf, bp); (void) printf("%s\n", blkbuf); } static void zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) { int i; for (i = 0; i < nbps; i++) zdb_print_blkptr(&bp[i], flags); } static void zdb_dump_gbh(void *buf, int flags) { zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); } static void zdb_dump_block_raw(void *buf, uint64_t size, int flags) { if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array(buf, size); (void) write(1, buf, size); } static void zdb_dump_block(char *label, void *buf, uint64_t size, int flags) { uint64_t *d = (uint64_t *)buf; int nwords = size / sizeof (uint64_t); int do_bswap = !!(flags & ZDB_FLAG_BSWAP); int i, j; char *hdr, *c; if (do_bswap) hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; else hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); for (i = 0; i < nwords; i += 2) { (void) printf("%06llx: %016llx %016llx ", (u_longlong_t)(i * sizeof (uint64_t)), (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); c = (char *)&d[i]; for (j = 0; j < 2 * sizeof (uint64_t); j++) (void) printf("%c", isprint(c[j]) ? c[j] : '.'); (void) printf("\n"); } } /* * There are two acceptable formats: * leaf_name - For example: c1t0d0 or /tmp/ztest.0a * child[.child]* - For example: 0.1.1 * * The second form can be used to specify arbitrary vdevs anywhere * in the heirarchy. For example, in a pool with a mirror of * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . */ static vdev_t * zdb_vdev_lookup(vdev_t *vdev, char *path) { char *s, *p, *q; int i; if (vdev == NULL) return (NULL); /* First, assume the x.x.x.x format */ i = (int)strtoul(path, &s, 10); if (s == path || (s && *s != '.' && *s != '\0')) goto name; if (i < 0 || i >= vdev->vdev_children) return (NULL); vdev = vdev->vdev_child[i]; if (*s == '\0') return (vdev); return (zdb_vdev_lookup(vdev, s+1)); name: for (i = 0; i < vdev->vdev_children; i++) { vdev_t *vc = vdev->vdev_child[i]; if (vc->vdev_path == NULL) { vc = zdb_vdev_lookup(vc, path); if (vc == NULL) continue; else return (vc); } p = strrchr(vc->vdev_path, '/'); p = p ? p + 1 : vc->vdev_path; q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; if (strcmp(vc->vdev_path, path) == 0) return (vc); if (strcmp(p, path) == 0) return (vc); if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) return (vc); } return (NULL); } /* * Read a block from a pool and print it out. The syntax of the * block descriptor is: * * pool:vdev_specifier:offset:size[:flags] * * pool - The name of the pool you wish to read from * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) * offset - offset, in hex, in bytes * size - Amount of data to read, in hex, in bytes * flags - A string of characters specifying options * b: Decode a blkptr at given offset within block * *c: Calculate and display checksums * d: Decompress data before dumping * e: Byteswap data before dumping * g: Display data as a gang block header * i: Display as an indirect block * p: Do I/O to physical offset * r: Dump raw data to stdout * * * = not yet implemented */ static void zdb_read_block(char *thing, spa_t *spa) { blkptr_t blk, *bp = &blk; dva_t *dva = bp->blk_dva; int flags = 0; uint64_t offset = 0, size = 0, psize = 0, lsize = 0, blkptr_offset = 0; zio_t *zio; vdev_t *vd; void *pbuf, *lbuf, *buf; char *s, *p, *dup, *vdev, *flagstr; int i, error; dup = strdup(thing); s = strtok(dup, ":"); vdev = s ? s : ""; s = strtok(NULL, ":"); offset = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); size = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); flagstr = s ? s : ""; s = NULL; if (size == 0) s = "size must not be zero"; if (!IS_P2ALIGNED(size, DEV_BSIZE)) s = "size must be a multiple of sector size"; if (!IS_P2ALIGNED(offset, DEV_BSIZE)) s = "offset must be a multiple of sector size"; if (s) { (void) printf("Invalid block specifier: %s - %s\n", thing, s); free(dup); return; } for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { for (i = 0; flagstr[i]; i++) { int bit = flagbits[(uchar_t)flagstr[i]]; if (bit == 0) { (void) printf("***Invalid flag: %c\n", flagstr[i]); continue; } flags |= bit; /* If it's not something with an argument, keep going */ if ((bit & (ZDB_FLAG_CHECKSUM | ZDB_FLAG_PRINT_BLKPTR)) == 0) continue; p = &flagstr[i + 1]; if (bit == ZDB_FLAG_PRINT_BLKPTR) blkptr_offset = strtoull(p, &p, 16); if (*p != ':' && *p != '\0') { (void) printf("***Invalid flag arg: '%s'\n", s); free(dup); return; } } } vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); if (vd == NULL) { (void) printf("***Invalid vdev: %s\n", vdev); free(dup); return; } else { if (vd->vdev_path) (void) fprintf(stderr, "Found vdev: %s\n", vd->vdev_path); else (void) fprintf(stderr, "Found vdev type: %s\n", vd->vdev_ops->vdev_op_type); } psize = size; lsize = size; pbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); BP_ZERO(bp); DVA_SET_VDEV(&dva[0], vd->vdev_id); DVA_SET_OFFSET(&dva[0], offset); DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); BP_SET_LSIZE(bp, lsize); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); BP_SET_TYPE(bp, DMU_OT_NONE); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 0); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, 0); if (vd == vd->vdev_top) { /* * Treat this as a normal block read. */ zio_nowait(zio_read(zio, spa, bp, pbuf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); } else { /* * Treat this as a vdev child I/O. */ zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pbuf, psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL, NULL)); } error = zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); if (error) { (void) printf("Read of %s failed, error: %d\n", thing, error); goto out; } if (flags & ZDB_FLAG_DECOMPRESS) { /* * We don't know how the data was compressed, so just try * every decompress function at every inflated blocksize. */ enum zio_compress c; void *pbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); bcopy(pbuf, pbuf2, psize); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf + psize, SPA_MAXBLOCKSIZE - psize) == 0); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf2 + psize, SPA_MAXBLOCKSIZE - psize) == 0); for (lsize = SPA_MAXBLOCKSIZE; lsize > psize; lsize -= SPA_MINBLOCKSIZE) { for (c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) { if (zio_decompress_data(c, pbuf, lbuf, psize, lsize) == 0 && zio_decompress_data(c, pbuf2, lbuf2, psize, lsize) == 0 && bcmp(lbuf, lbuf2, lsize) == 0) break; } if (c != ZIO_COMPRESS_FUNCTIONS) break; lsize -= SPA_MINBLOCKSIZE; } umem_free(pbuf2, SPA_MAXBLOCKSIZE); umem_free(lbuf2, SPA_MAXBLOCKSIZE); if (lsize <= psize) { (void) printf("Decompress of %s failed\n", thing); goto out; } buf = lbuf; size = lsize; } else { buf = pbuf; size = psize; } if (flags & ZDB_FLAG_PRINT_BLKPTR) zdb_print_blkptr((blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); else if (flags & ZDB_FLAG_RAW) zdb_dump_block_raw(buf, size, flags); else if (flags & ZDB_FLAG_INDIRECT) zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t), flags); else if (flags & ZDB_FLAG_GBH) zdb_dump_gbh(buf, flags); else zdb_dump_block(thing, buf, size, flags); out: umem_free(pbuf, SPA_MAXBLOCKSIZE); umem_free(lbuf, SPA_MAXBLOCKSIZE); free(dup); } static boolean_t pool_match(nvlist_t *cfg, char *tgt) { uint64_t v, guid = strtoull(tgt, NULL, 0); char *s; if (guid != 0) { if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) return (v == guid); } else { if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) return (strcmp(s, tgt) == 0); } return (B_FALSE); } static char * find_zpool(char **target, nvlist_t **configp, int dirc, char **dirv) { nvlist_t *pools; nvlist_t *match = NULL; char *name = NULL; char *sepp = NULL; char sep; int count = 0; importargs_t args = { 0 }; args.paths = dirc; args.path = dirv; args.can_be_active = B_TRUE; if ((sepp = strpbrk(*target, "/@")) != NULL) { sep = *sepp; *sepp = '\0'; } pools = zpool_search_import(g_zfs, &args); if (pools != NULL) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { verify(nvpair_value_nvlist(elem, configp) == 0); if (pool_match(*configp, *target)) { count++; if (match != NULL) { /* print previously found config */ if (name != NULL) { (void) printf("%s\n", name); dump_nvlist(match, 8); name = NULL; } (void) printf("%s\n", nvpair_name(elem)); dump_nvlist(*configp, 8); } else { match = *configp; name = nvpair_name(elem); } } } } if (count > 1) (void) fatal("\tMatched %d pools - use pool GUID " "instead of pool name or \n" "\tpool name part of a dataset name to select pool", count); if (sepp) *sepp = sep; /* * If pool GUID was specified for pool id, replace it with pool name */ if (name && (strstr(*target, name) != *target)) { int sz = 1 + strlen(name) + ((sepp) ? strlen(sepp) : 0); *target = umem_alloc(sz, UMEM_NOFAIL); (void) snprintf(*target, sz, "%s%s", name, sepp ? sepp : ""); } *configp = name ? match : NULL; return (name); } int main(int argc, char **argv) { int i, c; struct rlimit rl = { 1024, 1024 }; spa_t *spa = NULL; objset_t *os = NULL; int dump_all = 1; int verbose = 0; int error = 0; char **searchdirs = NULL; int nsearch = 0; char *target; nvlist_t *policy = NULL; uint64_t max_txg = UINT64_MAX; int rewind = ZPOOL_NEVER_REWIND; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) enable_extended_FILE_stdio(-1, -1); dprintf_setup(&argc, argv); while ((c = getopt(argc, argv, "bcdhilmsuCDRSAFLXevp:t:U:P")) != -1) { switch (c) { case 'b': case 'c': case 'd': case 'h': case 'i': case 'l': case 'm': case 's': case 'u': case 'C': case 'D': case 'R': case 'S': dump_opt[c]++; dump_all = 0; break; case 'A': case 'F': case 'L': case 'X': case 'e': case 'P': dump_opt[c]++; break; case 'v': verbose++; break; case 'p': if (searchdirs == NULL) { searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); } else { char **tmp = umem_alloc((nsearch + 1) * sizeof (char *), UMEM_NOFAIL); bcopy(searchdirs, tmp, nsearch * sizeof (char *)); umem_free(searchdirs, nsearch * sizeof (char *)); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 't': max_txg = strtoull(optarg, NULL, 0); if (max_txg < TXG_INITIAL) { (void) fprintf(stderr, "incorrect txg " "specified: %s\n", optarg); usage(); } break; case 'U': spa_config_path = optarg; break; default: usage(); break; } } if (!dump_opt['e'] && searchdirs != NULL) { (void) fprintf(stderr, "-p option requires use of -e\n"); usage(); } kernel_init(FREAD); g_zfs = libzfs_init(); ASSERT(g_zfs != NULL); if (dump_all) verbose = MAX(verbose, 1); for (c = 0; c < 256; c++) { if (dump_all && !strchr("elAFLRSXP", c)) dump_opt[c] = 1; if (dump_opt[c]) dump_opt[c] += verbose; } aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); zfs_recover = (dump_opt['A'] > 1); argc -= optind; argv += optind; if (argc < 2 && dump_opt['R']) usage(); if (argc < 1) { if (!dump_opt['e'] && dump_opt['C']) { dump_cachefile(spa_config_path); return (0); } usage(); } if (dump_opt['l']) { dump_label(argv[0]); return (0); } if (dump_opt['X'] || dump_opt['F']) rewind = ZPOOL_DO_REWIND | (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_REWIND_REQUEST_TXG, max_txg) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind) != 0) fatal("internal error: %s", strerror(ENOMEM)); error = 0; target = argv[0]; if (dump_opt['e']) { nvlist_t *cfg = NULL; char *name = find_zpool(&target, &cfg, nsearch, searchdirs); error = ENOENT; if (name) { if (dump_opt['C'] > 1) { (void) printf("\nConfiguration for import:\n"); dump_nvlist(cfg, 8); } if (nvlist_add_nvlist(cfg, ZPOOL_REWIND_POLICY, policy) != 0) { fatal("can't open '%s': %s", target, strerror(ENOMEM)); } if ((error = spa_import(name, cfg, NULL, ZFS_IMPORT_MISSING_LOG)) != 0) { error = spa_import(name, cfg, NULL, ZFS_IMPORT_VERBATIM); } } } if (error == 0) { if (strpbrk(target, "/@") == NULL || dump_opt['R']) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); if (error) { /* * If we're missing the log device then * try opening the pool after clearing the * log state. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(target)) != NULL && spa->spa_log_state == SPA_LOG_MISSING) { spa->spa_log_state = SPA_LOG_CLEAR; error = 0; } mutex_exit(&spa_namespace_lock); if (!error) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); } } } else { error = dmu_objset_own(target, DMU_OST_ANY, B_TRUE, FTAG, &os); } } nvlist_free(policy); if (error) fatal("can't open '%s': %s", target, strerror(error)); argv++; argc--; if (!dump_opt['R']) { if (argc > 0) { zopt_objects = argc; zopt_object = calloc(zopt_objects, sizeof (uint64_t)); for (i = 0; i < zopt_objects; i++) { errno = 0; zopt_object[i] = strtoull(argv[i], NULL, 0); if (zopt_object[i] == 0 && errno != 0) fatal("bad number %s: %s", argv[i], strerror(errno)); } } (os != NULL) ? dump_dir(os) : dump_zpool(spa); } else { flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; flagbits['c'] = ZDB_FLAG_CHECKSUM; flagbits['d'] = ZDB_FLAG_DECOMPRESS; flagbits['e'] = ZDB_FLAG_BSWAP; flagbits['g'] = ZDB_FLAG_GBH; flagbits['i'] = ZDB_FLAG_INDIRECT; flagbits['p'] = ZDB_FLAG_PHYS; flagbits['r'] = ZDB_FLAG_RAW; for (i = 0; i < argc; i++) zdb_read_block(argv[i], spa); } (os != NULL) ? dmu_objset_disown(os, FTAG) : spa_close(spa, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; libzfs_fini(g_zfs); kernel_fini(); return (0); } diff --git a/cmd/zfs/zfs_main.c b/cmd/zfs/zfs_main.c index f694ee18fb0c..5be1263e9a3d 100644 --- a/cmd/zfs/zfs_main.c +++ b/cmd/zfs/zfs_main.c @@ -1,4160 +1,4160 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_iter.h" #include "zfs_util.h" #include "zfs_comutil.h" libzfs_handle_t *g_zfs; static FILE *mnttab_file; static char history_str[HIS_MAX_RECORD_LEN]; const char *pypath = "/usr/lib/zfs/pyzfs.py"; static int zfs_do_clone(int argc, char **argv); static int zfs_do_create(int argc, char **argv); static int zfs_do_destroy(int argc, char **argv); static int zfs_do_get(int argc, char **argv); static int zfs_do_inherit(int argc, char **argv); static int zfs_do_list(int argc, char **argv); static int zfs_do_mount(int argc, char **argv); static int zfs_do_rename(int argc, char **argv); static int zfs_do_rollback(int argc, char **argv); static int zfs_do_set(int argc, char **argv); static int zfs_do_upgrade(int argc, char **argv); static int zfs_do_snapshot(int argc, char **argv); static int zfs_do_unmount(int argc, char **argv); static int zfs_do_share(int argc, char **argv); static int zfs_do_unshare(int argc, char **argv); static int zfs_do_send(int argc, char **argv); static int zfs_do_receive(int argc, char **argv); static int zfs_do_promote(int argc, char **argv); static int zfs_do_userspace(int argc, char **argv); static int zfs_do_python(int argc, char **argv); static int zfs_do_hold(int argc, char **argv); static int zfs_do_release(int argc, char **argv); static int zfs_do_diff(int argc, char **argv); /* * Enable a reasonable set of defaults for libumem debugging on DEBUG builds. */ #ifdef DEBUG const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #endif typedef enum { HELP_CLONE, HELP_CREATE, HELP_DESTROY, HELP_GET, HELP_INHERIT, HELP_UPGRADE, HELP_LIST, HELP_MOUNT, HELP_PROMOTE, HELP_RECEIVE, HELP_RENAME, HELP_ROLLBACK, HELP_SEND, HELP_SET, HELP_SHARE, HELP_SNAPSHOT, HELP_UNMOUNT, HELP_UNSHARE, HELP_ALLOW, HELP_UNALLOW, HELP_USERSPACE, HELP_GROUPSPACE, HELP_HOLD, HELP_HOLDS, HELP_RELEASE, HELP_DIFF } zfs_help_t; typedef struct zfs_command { const char *name; int (*func)(int argc, char **argv); zfs_help_t usage; } zfs_command_t; /* * Master command table. Each ZFS command has a name, associated function, and * usage message. The usage messages need to be internationalized, so we have * to have a function to return the usage message based on a command index. * * These commands are organized according to how they are displayed in the usage * message. An empty command (one with a NULL name) indicates an empty line in * the generic usage message. */ static zfs_command_t command_table[] = { { "create", zfs_do_create, HELP_CREATE }, { "destroy", zfs_do_destroy, HELP_DESTROY }, { NULL }, { "snapshot", zfs_do_snapshot, HELP_SNAPSHOT }, { "rollback", zfs_do_rollback, HELP_ROLLBACK }, { "clone", zfs_do_clone, HELP_CLONE }, { "promote", zfs_do_promote, HELP_PROMOTE }, { "rename", zfs_do_rename, HELP_RENAME }, { NULL }, { "list", zfs_do_list, HELP_LIST }, { NULL }, { "set", zfs_do_set, HELP_SET }, { "get", zfs_do_get, HELP_GET }, { "inherit", zfs_do_inherit, HELP_INHERIT }, { "upgrade", zfs_do_upgrade, HELP_UPGRADE }, { "userspace", zfs_do_userspace, HELP_USERSPACE }, { "groupspace", zfs_do_userspace, HELP_GROUPSPACE }, { NULL }, { "mount", zfs_do_mount, HELP_MOUNT }, { "unmount", zfs_do_unmount, HELP_UNMOUNT }, { "share", zfs_do_share, HELP_SHARE }, { "unshare", zfs_do_unshare, HELP_UNSHARE }, { NULL }, { "send", zfs_do_send, HELP_SEND }, { "receive", zfs_do_receive, HELP_RECEIVE }, { NULL }, { "allow", zfs_do_python, HELP_ALLOW }, { NULL }, { "unallow", zfs_do_python, HELP_UNALLOW }, { NULL }, { "hold", zfs_do_hold, HELP_HOLD }, { "holds", zfs_do_python, HELP_HOLDS }, { "release", zfs_do_release, HELP_RELEASE }, { "diff", zfs_do_diff, HELP_DIFF }, }; #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0])) zfs_command_t *current_command; static const char * get_usage(zfs_help_t idx) { switch (idx) { case HELP_CLONE: return (gettext("\tclone [-p] [-o property=value] ... " " \n")); case HELP_CREATE: return (gettext("\tcreate [-p] [-o property=value] ... " "\n" "\tcreate [-ps] [-b blocksize] [-o property=value] ... " "-V \n")); case HELP_DESTROY: return (gettext("\tdestroy [-rRf] \n" "\tdestroy [-rRd] \n")); case HELP_GET: return (gettext("\tget [-rHp] [-d max] " "[-o \"all\" | field[,...]] [-s source[,...]]\n" "\t <\"all\" | property[,...]> " "[filesystem|volume|snapshot] ...\n")); case HELP_INHERIT: return (gettext("\tinherit [-rS] " " ...\n")); case HELP_UPGRADE: return (gettext("\tupgrade [-v]\n" "\tupgrade [-r] [-V version] <-a | filesystem ...>\n")); case HELP_LIST: return (gettext("\tlist [-rH][-d max] " "[-o property[,...]] [-t type[,...]] [-s property] ...\n" "\t [-S property] ... " "[filesystem|volume|snapshot] ...\n")); case HELP_MOUNT: return (gettext("\tmount\n" "\tmount [-vO] [-o opts] <-a | filesystem>\n")); case HELP_PROMOTE: return (gettext("\tpromote \n")); case HELP_RECEIVE: return (gettext("\treceive [-vnFu] \n" "\treceive [-vnFu] [-d | -e] \n")); case HELP_RENAME: return (gettext("\trename " "\n" "\trename -p \n" "\trename -r ")); case HELP_ROLLBACK: return (gettext("\trollback [-rRf] \n")); case HELP_SEND: return (gettext("\tsend [-RDp] [-[iI] snapshot] \n")); case HELP_SET: return (gettext("\tset " " ...\n")); case HELP_SHARE: return (gettext("\tshare <-a | filesystem>\n")); case HELP_SNAPSHOT: return (gettext("\tsnapshot [-r] [-o property=value] ... " "\n")); case HELP_UNMOUNT: return (gettext("\tunmount [-f] " "<-a | filesystem|mountpoint>\n")); case HELP_UNSHARE: return (gettext("\tunshare " "<-a | filesystem|mountpoint>\n")); case HELP_ALLOW: return (gettext("\tallow \n" "\tallow [-ldug] " "<\"everyone\"|user|group>[,...] [,...]\n" "\t \n" "\tallow [-ld] -e [,...] " "\n" "\tallow -c [,...] \n" "\tallow -s @setname [,...] " "\n")); case HELP_UNALLOW: return (gettext("\tunallow [-rldug] " "<\"everyone\"|user|group>[,...]\n" "\t [[,...]] \n" "\tunallow [-rld] -e [[,...]] " "\n" "\tunallow [-r] -c [[,...]] " "\n" "\tunallow [-r] -s @setname [[,...]] " "\n")); case HELP_USERSPACE: return (gettext("\tuserspace [-hniHp] [-o field[,...]] " "[-sS field] ... [-t type[,...]]\n" "\t \n")); case HELP_GROUPSPACE: return (gettext("\tgroupspace [-hniHpU] [-o field[,...]] " "[-sS field] ... [-t type[,...]]\n" "\t \n")); case HELP_HOLD: return (gettext("\thold [-r] ...\n")); case HELP_HOLDS: return (gettext("\tholds [-r] ...\n")); case HELP_RELEASE: return (gettext("\trelease [-r] ...\n")); case HELP_DIFF: return (gettext("\tdiff [-FHt] " "[snapshot|filesystem]\n")); } abort(); /* NOTREACHED */ } void nomem(void) { (void) fprintf(stderr, gettext("internal error: out of memory\n")); exit(1); } /* * Utility function to guarantee malloc() success. */ void * safe_malloc(size_t size) { void *data; if ((data = calloc(1, size)) == NULL) nomem(); return (data); } static char * safe_strdup(char *str) { char *dupstr = strdup(str); if (dupstr == NULL) nomem(); return (dupstr); } /* * Callback routine that will print out information for each of * the properties. */ static int usage_prop_cb(int prop, void *cb) { FILE *fp = cb; (void) fprintf(fp, "\t%-15s ", zfs_prop_to_name(prop)); if (zfs_prop_readonly(prop)) (void) fprintf(fp, " NO "); else (void) fprintf(fp, "YES "); if (zfs_prop_inheritable(prop)) (void) fprintf(fp, " YES "); else (void) fprintf(fp, " NO "); if (zfs_prop_values(prop) == NULL) (void) fprintf(fp, "-\n"); else (void) fprintf(fp, "%s\n", zfs_prop_values(prop)); return (ZPROP_CONT); } /* * Display usage message. If we're inside a command, display only the usage for * that command. Otherwise, iterate over the entire command table and display * a complete usage message. */ static void usage(boolean_t requested) { int i; boolean_t show_properties = B_FALSE; FILE *fp = requested ? stdout : stderr; if (current_command == NULL) { (void) fprintf(fp, gettext("usage: zfs command args ...\n")); (void) fprintf(fp, gettext("where 'command' is one of the following:\n\n")); for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) (void) fprintf(fp, "\n"); else (void) fprintf(fp, "%s", get_usage(command_table[i].usage)); } (void) fprintf(fp, gettext("\nEach dataset is of the form: " "pool/[dataset/]*dataset[@name]\n")); } else { (void) fprintf(fp, gettext("usage:\n")); (void) fprintf(fp, "%s", get_usage(current_command->usage)); } if (current_command != NULL && (strcmp(current_command->name, "set") == 0 || strcmp(current_command->name, "get") == 0 || strcmp(current_command->name, "inherit") == 0 || strcmp(current_command->name, "list") == 0)) show_properties = B_TRUE; if (show_properties) { (void) fprintf(fp, gettext("\nThe following properties are supported:\n")); (void) fprintf(fp, "\n\t%-14s %s %s %s\n\n", "PROPERTY", "EDIT", "INHERIT", "VALUES"); /* Iterate over all properties */ (void) zprop_iter(usage_prop_cb, fp, B_FALSE, B_TRUE, ZFS_TYPE_DATASET); (void) fprintf(fp, "\t%-15s ", "userused@..."); (void) fprintf(fp, " NO NO \n"); (void) fprintf(fp, "\t%-15s ", "groupused@..."); (void) fprintf(fp, " NO NO \n"); (void) fprintf(fp, "\t%-15s ", "userquota@..."); (void) fprintf(fp, "YES NO | none\n"); (void) fprintf(fp, "\t%-15s ", "groupquota@..."); (void) fprintf(fp, "YES NO | none\n"); (void) fprintf(fp, gettext("\nSizes are specified in bytes " "with standard units such as K, M, G, etc.\n")); (void) fprintf(fp, gettext("\nUser-defined properties can " "be specified by using a name containing a colon (:).\n")); (void) fprintf(fp, gettext("\nThe {user|group}{used|quota}@ " "properties must be appended with\n" "a user or group specifier of one of these forms:\n" " POSIX name (eg: \"matt\")\n" " POSIX id (eg: \"126829\")\n" " SMB name@domain (eg: \"matt@sun\")\n" " SMB SID (eg: \"S-1-234-567-89\")\n")); } else { (void) fprintf(fp, gettext("\nFor the property list, run: %s\n"), "zfs set|get"); (void) fprintf(fp, gettext("\nFor the delegated permission list, run: %s\n"), "zfs allow|unallow"); } /* * See comments at end of main(). */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } exit(requested ? 0 : 2); } static int parseprop(nvlist_t *props) { char *propname = optarg; char *propval, *strval; if ((propval = strchr(propname, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -o option\n")); return (-1); } *propval = '\0'; propval++; if (nvlist_lookup_string(props, propname, &strval) == 0) { (void) fprintf(stderr, gettext("property '%s' " "specified multiple times\n"), propname); return (-1); } if (nvlist_add_string(props, propname, propval) != 0) nomem(); return (0); } static int parse_depth(char *opt, int *flags) { char *tmp; int depth; depth = (int)strtol(opt, &tmp, 0); if (*tmp) { (void) fprintf(stderr, gettext("%s is not an integer\n"), optarg); usage(B_FALSE); } if (depth < 0) { (void) fprintf(stderr, gettext("Depth can not be negative.\n")); usage(B_FALSE); } *flags |= (ZFS_ITER_DEPTH_LIMIT|ZFS_ITER_RECURSE); return (depth); } #define PROGRESS_DELAY 2 /* seconds */ static char *pt_reverse = "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"; static time_t pt_begin; static char *pt_header = NULL; static boolean_t pt_shown; static void start_progress_timer(void) { pt_begin = time(NULL) + PROGRESS_DELAY; pt_shown = B_FALSE; } static void set_progress_header(char *header) { assert(pt_header == NULL); pt_header = safe_strdup(header); if (pt_shown) { (void) printf("%s: ", header); (void) fflush(stdout); } } static void update_progress(char *update) { if (!pt_shown && time(NULL) > pt_begin) { int len = strlen(update); (void) printf("%s: %s%*.*s", pt_header, update, len, len, pt_reverse); (void) fflush(stdout); pt_shown = B_TRUE; } else if (pt_shown) { int len = strlen(update); (void) printf("%s%*.*s", update, len, len, pt_reverse); (void) fflush(stdout); } } static void finish_progress(char *done) { if (pt_shown) { (void) printf("%s\n", done); (void) fflush(stdout); } free(pt_header); pt_header = NULL; } /* * zfs clone [-p] [-o prop=value] ... * * Given an existing dataset, create a writable copy whose initial contents * are the same as the source. The newly created dataset maintains a * dependency on the original; the original cannot be destroyed so long as * the clone exists. * * The '-p' flag creates all the non-existing ancestors of the target first. */ static int zfs_do_clone(int argc, char **argv) { zfs_handle_t *zhp = NULL; boolean_t parents = B_FALSE; nvlist_t *props; int ret; int c; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) nomem(); /* check options */ while ((c = getopt(argc, argv, "o:p")) != -1) { switch (c) { case 'o': if (parseprop(props)) return (1); break; case 'p': parents = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto usage; } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); goto usage; } if (argc < 2) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); goto usage; } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); goto usage; } /* open the source dataset */ if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); if (parents && zfs_name_valid(argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) { /* * Now create the ancestors of the target dataset. If the * target already exists and '-p' option was used we should not * complain. */ if (zfs_dataset_exists(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) return (0); if (zfs_create_ancestors(g_zfs, argv[1]) != 0) return (1); } /* pass to libzfs */ ret = zfs_clone(zhp, argv[1], props); /* create the mountpoint if necessary */ if (ret == 0) { zfs_handle_t *clone; clone = zfs_open(g_zfs, argv[1], ZFS_TYPE_DATASET); if (clone != NULL) { if (zfs_get_type(clone) != ZFS_TYPE_VOLUME) if ((ret = zfs_mount(clone, NULL, 0)) == 0) ret = zfs_share(clone); zfs_close(clone); } } zfs_close(zhp); nvlist_free(props); return (!!ret); usage: if (zhp) zfs_close(zhp); nvlist_free(props); usage(B_FALSE); return (-1); } /* * zfs create [-p] [-o prop=value] ... fs * zfs create [-ps] [-b blocksize] [-o prop=value] ... -V vol size * * Create a new dataset. This command can be used to create filesystems * and volumes. Snapshot creation is handled by 'zfs snapshot'. * For volumes, the user must specify a size to be used. * * The '-s' flag applies only to volumes, and indicates that we should not try * to set the reservation for this volume. By default we set a reservation * equal to the size for any volume. For pools with SPA_VERSION >= * SPA_VERSION_REFRESERVATION, we set a refreservation instead. * * The '-p' flag creates all the non-existing ancestors of the target first. */ static int zfs_do_create(int argc, char **argv) { zfs_type_t type = ZFS_TYPE_FILESYSTEM; zfs_handle_t *zhp = NULL; uint64_t volsize; int c; boolean_t noreserve = B_FALSE; boolean_t bflag = B_FALSE; boolean_t parents = B_FALSE; int ret = 1; nvlist_t *props; uint64_t intval; int canmount = ZFS_CANMOUNT_OFF; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) nomem(); /* check options */ while ((c = getopt(argc, argv, ":V:b:so:p")) != -1) { switch (c) { case 'V': type = ZFS_TYPE_VOLUME; if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), intval) != 0) nomem(); volsize = intval; break; case 'p': parents = B_TRUE; break; case 'b': bflag = B_TRUE; if (zfs_nicestrtonum(g_zfs, optarg, &intval) != 0) { (void) fprintf(stderr, gettext("bad volume " "block size '%s': %s\n"), optarg, libzfs_error_description(g_zfs)); goto error; } if (nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), intval) != 0) nomem(); break; case 'o': if (parseprop(props)) goto error; break; case 's': noreserve = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing size " "argument\n")); goto badusage; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto badusage; } } if ((bflag || noreserve) && type != ZFS_TYPE_VOLUME) { (void) fprintf(stderr, gettext("'-s' and '-b' can only be " "used when creating a volume\n")); goto badusage; } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing %s argument\n"), zfs_type_to_name(type)); goto badusage; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); goto badusage; } if (type == ZFS_TYPE_VOLUME && !noreserve) { zpool_handle_t *zpool_handle; uint64_t spa_version; char *p; zfs_prop_t resv_prop; char *strval; if (p = strchr(argv[0], '/')) *p = '\0'; zpool_handle = zpool_open(g_zfs, argv[0]); if (p != NULL) *p = '/'; if (zpool_handle == NULL) goto error; spa_version = zpool_get_prop_int(zpool_handle, ZPOOL_PROP_VERSION, NULL); zpool_close(zpool_handle); if (spa_version >= SPA_VERSION_REFRESERVATION) resv_prop = ZFS_PROP_REFRESERVATION; else resv_prop = ZFS_PROP_RESERVATION; volsize = zvol_volsize_to_reservation(volsize, props); if (nvlist_lookup_string(props, zfs_prop_to_name(resv_prop), &strval) != 0) { if (nvlist_add_uint64(props, zfs_prop_to_name(resv_prop), volsize) != 0) { nvlist_free(props); nomem(); } } } if (parents && zfs_name_valid(argv[0], type)) { /* * Now create the ancestors of target dataset. If the target * already exists and '-p' option was used we should not * complain. */ if (zfs_dataset_exists(g_zfs, argv[0], type)) { ret = 0; goto error; } if (zfs_create_ancestors(g_zfs, argv[0]) != 0) goto error; } /* pass to libzfs */ if (zfs_create(g_zfs, argv[0], type, props) != 0) goto error; if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL) goto error; ret = 0; /* * if the user doesn't want the dataset automatically mounted, * then skip the mount/share step */ if (zfs_prop_valid_for_type(ZFS_PROP_CANMOUNT, type)) canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT); /* * Mount and/or share the new filesystem as appropriate. We provide a * verbose error message to let the user know that their filesystem was * in fact created, even if we failed to mount or share it. */ if (canmount == ZFS_CANMOUNT_ON) { if (zfs_mount(zhp, NULL, 0) != 0) { (void) fprintf(stderr, gettext("filesystem " "successfully created, but not mounted\n")); ret = 1; } else if (zfs_share(zhp) != 0) { (void) fprintf(stderr, gettext("filesystem " "successfully created, but not shared\n")); ret = 1; } } error: if (zhp) zfs_close(zhp); nvlist_free(props); return (ret); badusage: nvlist_free(props); usage(B_FALSE); return (2); } /* * zfs destroy [-rRf] * zfs destroy [-rRd] * * -r Recursively destroy all children * -R Recursively destroy all dependents, including clones * -f Force unmounting of any dependents * -d If we can't destroy now, mark for deferred destruction * * Destroys the given dataset. By default, it will unmount any filesystems, * and refuse to destroy a dataset that has any dependents. A dependent can * either be a child, or a clone of a child. */ typedef struct destroy_cbdata { boolean_t cb_first; int cb_force; int cb_recurse; int cb_error; int cb_needforce; int cb_doclones; boolean_t cb_closezhp; zfs_handle_t *cb_target; char *cb_snapname; boolean_t cb_defer_destroy; } destroy_cbdata_t; /* * Check for any dependents based on the '-r' or '-R' flags. */ static int destroy_check_dependent(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cbp = data; const char *tname = zfs_get_name(cbp->cb_target); const char *name = zfs_get_name(zhp); if (strncmp(tname, name, strlen(tname)) == 0 && (name[strlen(tname)] == '/' || name[strlen(tname)] == '@')) { /* * This is a direct descendant, not a clone somewhere else in * the hierarchy. */ if (cbp->cb_recurse) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has children\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-r' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } else { /* * This is a clone. We only want to report this if the '-r' * wasn't specified, or the target is a snapshot. */ if (!cbp->cb_recurse && zfs_get_type(cbp->cb_target) != ZFS_TYPE_SNAPSHOT) goto out; if (cbp->cb_first) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "%s has dependent clones\n"), zfs_get_name(cbp->cb_target), zfs_type_to_name(zfs_get_type(cbp->cb_target))); (void) fprintf(stderr, gettext("use '-R' to destroy " "the following datasets:\n")); cbp->cb_first = B_FALSE; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } out: zfs_close(zhp); return (0); } static int destroy_callback(zfs_handle_t *zhp, void *data) { destroy_cbdata_t *cbp = data; /* * Ignore pools (which we've already flagged as an error before getting * here). */ if (strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { zfs_close(zhp); return (0); } /* * Bail out on the first error. */ if (zfs_unmount(zhp, NULL, cbp->cb_force ? MS_FORCE : 0) != 0 || zfs_destroy(zhp, cbp->cb_defer_destroy) != 0) { zfs_close(zhp); return (-1); } zfs_close(zhp); return (0); } static int destroy_snap_clones(zfs_handle_t *zhp, void *arg) { destroy_cbdata_t *cbp = arg; char thissnap[MAXPATHLEN]; zfs_handle_t *szhp; boolean_t closezhp = cbp->cb_closezhp; int rv; (void) snprintf(thissnap, sizeof (thissnap), "%s@%s", zfs_get_name(zhp), cbp->cb_snapname); libzfs_print_on_error(g_zfs, B_FALSE); szhp = zfs_open(g_zfs, thissnap, ZFS_TYPE_SNAPSHOT); libzfs_print_on_error(g_zfs, B_TRUE); if (szhp) { /* * Destroy any clones of this snapshot */ if (zfs_iter_dependents(szhp, B_FALSE, destroy_callback, cbp) != 0) { zfs_close(szhp); if (closezhp) zfs_close(zhp); return (-1); } zfs_close(szhp); } cbp->cb_closezhp = B_TRUE; rv = zfs_iter_filesystems(zhp, destroy_snap_clones, arg); if (closezhp) zfs_close(zhp); return (rv); } static int zfs_do_destroy(int argc, char **argv) { destroy_cbdata_t cb = { 0 }; int c; zfs_handle_t *zhp; char *cp; zfs_type_t type = ZFS_TYPE_DATASET; /* check options */ while ((c = getopt(argc, argv, "dfrR")) != -1) { switch (c) { case 'd': cb.cb_defer_destroy = B_TRUE; type = ZFS_TYPE_SNAPSHOT; break; case 'f': cb.cb_force = 1; break; case 'r': cb.cb_recurse = 1; break; case 'R': cb.cb_recurse = 1; cb.cb_doclones = 1; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc == 0) { (void) fprintf(stderr, gettext("missing path argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * If we are doing recursive destroy of a snapshot, then the * named snapshot may not exist. Go straight to libzfs. */ if (cb.cb_recurse && (cp = strchr(argv[0], '@'))) { int ret; *cp = '\0'; if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_DATASET)) == NULL) return (1); *cp = '@'; cp++; if (cb.cb_doclones) { boolean_t defer = cb.cb_defer_destroy; /* * Temporarily ignore the defer_destroy setting since * it's not supported for clones. */ cb.cb_defer_destroy = B_FALSE; cb.cb_snapname = cp; if (destroy_snap_clones(zhp, &cb) != 0) { zfs_close(zhp); return (1); } cb.cb_defer_destroy = defer; } ret = zfs_destroy_snaps(zhp, cp, cb.cb_defer_destroy); zfs_close(zhp); if (ret) { (void) fprintf(stderr, gettext("no snapshots destroyed\n")); } return (ret != 0); } /* Open the given dataset */ if ((zhp = zfs_open(g_zfs, argv[0], type)) == NULL) return (1); cb.cb_target = zhp; /* * Perform an explicit check for pools before going any further. */ if (!cb.cb_recurse && strchr(zfs_get_name(zhp), '/') == NULL && zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) { (void) fprintf(stderr, gettext("cannot destroy '%s': " "operation does not apply to pools\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zfs destroy -r " "%s' to destroy all datasets in the pool\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use 'zpool destroy %s' " "to destroy the pool itself\n"), zfs_get_name(zhp)); zfs_close(zhp); return (1); } /* * Check for any dependents and/or clones. */ cb.cb_first = B_TRUE; if (!cb.cb_doclones && !cb.cb_defer_destroy && zfs_iter_dependents(zhp, B_TRUE, destroy_check_dependent, &cb) != 0) { zfs_close(zhp); return (1); } if (cb.cb_error || (!cb.cb_defer_destroy && (zfs_iter_dependents(zhp, B_FALSE, destroy_callback, &cb) != 0))) { zfs_close(zhp); return (1); } /* * Do the real thing. The callback will close the handle regardless of * whether it succeeds or not. */ if (destroy_callback(zhp, &cb) != 0) return (1); return (0); } static boolean_t is_recvd_column(zprop_get_cbdata_t *cbp) { int i; zfs_get_column_t col; for (i = 0; i < ZFS_GET_NCOLS && (col = cbp->cb_columns[i]) != GET_COL_NONE; i++) if (col == GET_COL_RECVD) return (B_TRUE); return (B_FALSE); } /* * zfs get [-rHp] [-o all | field[,field]...] [-s source[,source]...] * < all | property[,property]... > < fs | snap | vol > ... * * -r recurse over any child datasets * -H scripted mode. Headers are stripped, and fields are separated * by tabs instead of spaces. * -o Set of fields to display. One of "name,property,value, * received,source". Default is "name,property,value,source". * "all" is an alias for all five. * -s Set of sources to allow. One of * "local,default,inherited,received,temporary,none". Default is * all six. * -p Display values in parsable (literal) format. * * Prints properties for the given datasets. The user can control which * columns to display as well as which property types to allow. */ /* * Invoked to display the properties for a single dataset. */ static int get_callback(zfs_handle_t *zhp, void *data) { char buf[ZFS_MAXPROPLEN]; char rbuf[ZFS_MAXPROPLEN]; zprop_source_t sourcetype; char source[ZFS_MAXNAMELEN]; zprop_get_cbdata_t *cbp = data; nvlist_t *user_props = zfs_get_user_props(zhp); zprop_list_t *pl = cbp->cb_proplist; nvlist_t *propval; char *strval; char *sourceval; boolean_t received = is_recvd_column(cbp); for (; pl != NULL; pl = pl->pl_next) { char *recvdval = NULL; /* * Skip the special fake placeholder. This will also skip over * the name property when 'all' is specified. */ if (pl->pl_prop == ZFS_PROP_NAME && pl == cbp->cb_proplist) continue; if (pl->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, buf, sizeof (buf), &sourcetype, source, sizeof (source), cbp->cb_literal) != 0) { if (pl->pl_all) continue; if (!zfs_prop_valid_for_type(pl->pl_prop, ZFS_TYPE_DATASET)) { (void) fprintf(stderr, gettext("No such property '%s'\n"), zfs_prop_to_name(pl->pl_prop)); continue; } sourcetype = ZPROP_SRC_NONE; (void) strlcpy(buf, "-", sizeof (buf)); } if (received && (zfs_prop_get_recvd(zhp, zfs_prop_to_name(pl->pl_prop), rbuf, sizeof (rbuf), cbp->cb_literal) == 0)) recvdval = rbuf; zprop_print_one_property(zfs_get_name(zhp), cbp, zfs_prop_to_name(pl->pl_prop), buf, sourcetype, source, recvdval); } else if (zfs_prop_userquota(pl->pl_user_prop)) { sourcetype = ZPROP_SRC_LOCAL; if (zfs_prop_get_userquota(zhp, pl->pl_user_prop, buf, sizeof (buf), cbp->cb_literal) != 0) { sourcetype = ZPROP_SRC_NONE; (void) strlcpy(buf, "-", sizeof (buf)); } zprop_print_one_property(zfs_get_name(zhp), cbp, pl->pl_user_prop, buf, sourcetype, source, NULL); } else { if (nvlist_lookup_nvlist(user_props, pl->pl_user_prop, &propval) != 0) { if (pl->pl_all) continue; sourcetype = ZPROP_SRC_NONE; strval = "-"; } else { verify(nvlist_lookup_string(propval, ZPROP_VALUE, &strval) == 0); verify(nvlist_lookup_string(propval, ZPROP_SOURCE, &sourceval) == 0); if (strcmp(sourceval, zfs_get_name(zhp)) == 0) { sourcetype = ZPROP_SRC_LOCAL; } else if (strcmp(sourceval, ZPROP_SOURCE_VAL_RECVD) == 0) { sourcetype = ZPROP_SRC_RECEIVED; } else { sourcetype = ZPROP_SRC_INHERITED; (void) strlcpy(source, sourceval, sizeof (source)); } } if (received && (zfs_prop_get_recvd(zhp, pl->pl_user_prop, rbuf, sizeof (rbuf), cbp->cb_literal) == 0)) recvdval = rbuf; zprop_print_one_property(zfs_get_name(zhp), cbp, pl->pl_user_prop, strval, sourcetype, source, recvdval); } } return (0); } static int zfs_do_get(int argc, char **argv) { zprop_get_cbdata_t cb = { 0 }; int i, c, flags = 0; char *value, *fields; int ret; int limit = 0; zprop_list_t fake_name = { 0 }; /* * Set up default columns and sources. */ cb.cb_sources = ZPROP_SRC_ALL; cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_SOURCE; cb.cb_type = ZFS_TYPE_DATASET; /* check options */ while ((c = getopt(argc, argv, ":d:o:s:rHp")) != -1) { switch (c) { case 'p': cb.cb_literal = B_TRUE; break; case 'd': limit = parse_depth(optarg, &flags); break; case 'r': flags |= ZFS_ITER_RECURSE; break; case 'H': cb.cb_scripted = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case 'o': /* * Process the set of columns to display. We zero out * the structure to give us a blank slate. */ bzero(&cb.cb_columns, sizeof (cb.cb_columns)); i = 0; while (*optarg != '\0') { static char *col_subopts[] = { "name", "property", "value", "received", "source", "all", NULL }; if (i == ZFS_GET_NCOLS) { (void) fprintf(stderr, gettext("too " "many fields given to -o " "option\n")); usage(B_FALSE); } switch (getsubopt(&optarg, col_subopts, &value)) { case 0: cb.cb_columns[i++] = GET_COL_NAME; break; case 1: cb.cb_columns[i++] = GET_COL_PROPERTY; break; case 2: cb.cb_columns[i++] = GET_COL_VALUE; break; case 3: cb.cb_columns[i++] = GET_COL_RECVD; flags |= ZFS_ITER_RECVD_PROPS; break; case 4: cb.cb_columns[i++] = GET_COL_SOURCE; break; case 5: if (i > 0) { (void) fprintf(stderr, gettext("\"all\" conflicts " "with specific fields " "given to -o option\n")); usage(B_FALSE); } cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_RECVD; cb.cb_columns[4] = GET_COL_SOURCE; flags |= ZFS_ITER_RECVD_PROPS; i = ZFS_GET_NCOLS; break; default: (void) fprintf(stderr, gettext("invalid column name " "'%s'\n"), value); usage(B_FALSE); } } break; case 's': cb.cb_sources = 0; while (*optarg != '\0') { static char *source_subopts[] = { "local", "default", "inherited", "received", "temporary", "none", NULL }; switch (getsubopt(&optarg, source_subopts, &value)) { case 0: cb.cb_sources |= ZPROP_SRC_LOCAL; break; case 1: cb.cb_sources |= ZPROP_SRC_DEFAULT; break; case 2: cb.cb_sources |= ZPROP_SRC_INHERITED; break; case 3: cb.cb_sources |= ZPROP_SRC_RECEIVED; break; case 4: cb.cb_sources |= ZPROP_SRC_TEMPORARY; break; case 5: cb.cb_sources |= ZPROP_SRC_NONE; break; default: (void) fprintf(stderr, gettext("invalid source " "'%s'\n"), value); usage(B_FALSE); } } break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing property " "argument\n")); usage(B_FALSE); } fields = argv[0]; if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET) != 0) usage(B_FALSE); argc--; argv++; /* * As part of zfs_expand_proplist(), we keep track of the maximum column * width for each property. For the 'NAME' (and 'SOURCE') columns, we * need to know the maximum name length. However, the user likely did * not specify 'name' as one of the properties to fetch, so we need to * make sure we always include at least this property for * print_get_headers() to work properly. */ if (cb.cb_proplist != NULL) { fake_name.pl_prop = ZFS_PROP_NAME; fake_name.pl_width = strlen(gettext("NAME")); fake_name.pl_next = cb.cb_proplist; cb.cb_proplist = &fake_name; } cb.cb_first = B_TRUE; /* run for each object */ ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, &cb.cb_proplist, limit, get_callback, &cb); if (cb.cb_proplist == &fake_name) zprop_free_list(fake_name.pl_next); else zprop_free_list(cb.cb_proplist); return (ret); } /* * inherit [-rS] ... * * -r Recurse over all children * -S Revert to received value, if any * * For each dataset specified on the command line, inherit the given property * from its parent. Inheriting a property at the pool level will cause it to * use the default value. The '-r' flag will recurse over all children, and is * useful for setting a property on a hierarchy-wide basis, regardless of any * local modifications for each dataset. */ typedef struct inherit_cbdata { const char *cb_propname; boolean_t cb_received; } inherit_cbdata_t; static int inherit_recurse_cb(zfs_handle_t *zhp, void *data) { inherit_cbdata_t *cb = data; zfs_prop_t prop = zfs_name_to_prop(cb->cb_propname); /* * If we're doing it recursively, then ignore properties that * are not valid for this type of dataset. */ if (prop != ZPROP_INVAL && !zfs_prop_valid_for_type(prop, zfs_get_type(zhp))) return (0); return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0); } static int inherit_cb(zfs_handle_t *zhp, void *data) { inherit_cbdata_t *cb = data; return (zfs_prop_inherit(zhp, cb->cb_propname, cb->cb_received) != 0); } static int zfs_do_inherit(int argc, char **argv) { int c; zfs_prop_t prop; inherit_cbdata_t cb = { 0 }; char *propname; int ret; int flags = 0; boolean_t received = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "rS")) != -1) { switch (c) { case 'r': flags |= ZFS_ITER_RECURSE; break; case 'S': received = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing property argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } propname = argv[0]; argc--; argv++; if ((prop = zfs_name_to_prop(propname)) != ZPROP_INVAL) { if (zfs_prop_readonly(prop)) { (void) fprintf(stderr, gettext( "%s property is read-only\n"), propname); return (1); } if (!zfs_prop_inheritable(prop) && !received) { (void) fprintf(stderr, gettext("'%s' property cannot " "be inherited\n"), propname); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION || prop == ZFS_PROP_REFQUOTA || prop == ZFS_PROP_REFRESERVATION) (void) fprintf(stderr, gettext("use 'zfs set " "%s=none' to clear\n"), propname); return (1); } if (received && (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION)) { (void) fprintf(stderr, gettext("'%s' property cannot " "be reverted to a received value\n"), propname); return (1); } } else if (!zfs_prop_user(propname)) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), propname); usage(B_FALSE); } cb.cb_propname = propname; cb.cb_received = received; if (flags & ZFS_ITER_RECURSE) { ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, NULL, 0, inherit_recurse_cb, &cb); } else { ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_DATASET, NULL, NULL, 0, inherit_cb, &cb); } return (ret); } typedef struct upgrade_cbdata { uint64_t cb_numupgraded; uint64_t cb_numsamegraded; uint64_t cb_numfailed; uint64_t cb_version; boolean_t cb_newer; boolean_t cb_foundone; char cb_lastfs[ZFS_MAXNAMELEN]; } upgrade_cbdata_t; static int same_pool(zfs_handle_t *zhp, const char *name) { int len1 = strcspn(name, "/@"); const char *zhname = zfs_get_name(zhp); int len2 = strcspn(zhname, "/@"); if (len1 != len2) return (B_FALSE); return (strncmp(name, zhname, len1) == 0); } static int upgrade_list_callback(zfs_handle_t *zhp, void *data) { upgrade_cbdata_t *cb = data; int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); /* list if it's old/new */ if ((!cb->cb_newer && version < ZPL_VERSION) || (cb->cb_newer && version > ZPL_VERSION)) { char *str; if (cb->cb_newer) { str = gettext("The following filesystems are " "formatted using a newer software version and\n" "cannot be accessed on the current system.\n\n"); } else { str = gettext("The following filesystems are " "out of date, and can be upgraded. After being\n" "upgraded, these filesystems (and any 'zfs send' " "streams generated from\n" "subsequent snapshots) will no longer be " "accessible by older software versions.\n\n"); } if (!cb->cb_foundone) { (void) puts(str); (void) printf(gettext("VER FILESYSTEM\n")); (void) printf(gettext("--- ------------\n")); cb->cb_foundone = B_TRUE; } (void) printf("%2u %s\n", version, zfs_get_name(zhp)); } return (0); } static int upgrade_set_callback(zfs_handle_t *zhp, void *data) { upgrade_cbdata_t *cb = data; int version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); int needed_spa_version; int spa_version; if (zfs_spa_version(zhp, &spa_version) < 0) return (-1); needed_spa_version = zfs_spa_version_map(cb->cb_version); if (needed_spa_version < 0) return (-1); if (spa_version < needed_spa_version) { /* can't upgrade */ (void) printf(gettext("%s: can not be " "upgraded; the pool version needs to first " "be upgraded\nto version %d\n\n"), zfs_get_name(zhp), needed_spa_version); cb->cb_numfailed++; return (0); } /* upgrade */ if (version < cb->cb_version) { char verstr[16]; (void) snprintf(verstr, sizeof (verstr), - "%llu", cb->cb_version); + "%llu", (u_longlong_t)cb->cb_version); if (cb->cb_lastfs[0] && !same_pool(zhp, cb->cb_lastfs)) { /* * If they did "zfs upgrade -a", then we could * be doing ioctls to different pools. We need * to log this history once to each pool. */ verify(zpool_stage_history(g_zfs, history_str) == 0); } if (zfs_prop_set(zhp, "version", verstr) == 0) cb->cb_numupgraded++; else cb->cb_numfailed++; (void) strcpy(cb->cb_lastfs, zfs_get_name(zhp)); } else if (version > cb->cb_version) { /* can't downgrade */ (void) printf(gettext("%s: can not be downgraded; " "it is already at version %u\n"), zfs_get_name(zhp), version); cb->cb_numfailed++; } else { cb->cb_numsamegraded++; } return (0); } /* * zfs upgrade * zfs upgrade -v * zfs upgrade [-r] [-V ] <-a | filesystem> */ static int zfs_do_upgrade(int argc, char **argv) { boolean_t all = B_FALSE; boolean_t showversions = B_FALSE; int ret; upgrade_cbdata_t cb = { 0 }; - char c; + signed char c; int flags = ZFS_ITER_ARGS_CAN_BE_PATHS; /* check options */ while ((c = getopt(argc, argv, "rvV:a")) != -1) { switch (c) { case 'r': flags |= ZFS_ITER_RECURSE; break; case 'v': showversions = B_TRUE; break; case 'V': if (zfs_prop_string_to_index(ZFS_PROP_VERSION, optarg, &cb.cb_version) != 0) { (void) fprintf(stderr, gettext("invalid version %s\n"), optarg); usage(B_FALSE); } break; case 'a': all = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if ((!all && !argc) && ((flags & ZFS_ITER_RECURSE) | cb.cb_version)) usage(B_FALSE); if (showversions && (flags & ZFS_ITER_RECURSE || all || cb.cb_version || argc)) usage(B_FALSE); if ((all || argc) && (showversions)) usage(B_FALSE); if (all && argc) usage(B_FALSE); if (showversions) { /* Show info on available versions. */ (void) printf(gettext("The following filesystem versions are " "supported:\n\n")); (void) printf(gettext("VER DESCRIPTION\n")); (void) printf("--- -----------------------------------------" "---------------\n"); (void) printf(gettext(" 1 Initial ZFS filesystem version\n")); (void) printf(gettext(" 2 Enhanced directory entries\n")); (void) printf(gettext(" 3 Case insensitive and File system " "unique identifier (FUID)\n")); (void) printf(gettext(" 4 userquota, groupquota " "properties\n")); (void) printf(gettext(" 5 System attributes\n")); (void) printf(gettext("\nFor more information on a particular " "version, including supported releases,\n")); (void) printf("see the ZFS Administration Guide.\n\n"); ret = 0; } else if (argc || all) { /* Upgrade filesystems */ if (cb.cb_version == 0) cb.cb_version = ZPL_VERSION; ret = zfs_for_each(argc, argv, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, 0, upgrade_set_callback, &cb); (void) printf(gettext("%llu filesystems upgraded\n"), - cb.cb_numupgraded); + (u_longlong_t)cb.cb_numupgraded); if (cb.cb_numsamegraded) { (void) printf(gettext("%llu filesystems already at " "this version\n"), - cb.cb_numsamegraded); + (u_longlong_t)cb.cb_numsamegraded); } if (cb.cb_numfailed != 0) ret = 1; } else { /* List old-version filesytems */ boolean_t found; (void) printf(gettext("This system is currently running " "ZFS filesystem version %llu.\n\n"), ZPL_VERSION); flags |= ZFS_ITER_RECURSE; ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, 0, upgrade_list_callback, &cb); found = cb.cb_foundone; cb.cb_foundone = B_FALSE; cb.cb_newer = B_TRUE; ret = zfs_for_each(0, NULL, flags, ZFS_TYPE_FILESYSTEM, NULL, NULL, 0, upgrade_list_callback, &cb); if (!cb.cb_foundone && !found) { (void) printf(gettext("All filesystems are " "formatted with the current version.\n")); } } return (ret); } /* * zfs userspace */ static int userspace_cb(void *arg, const char *domain, uid_t rid, uint64_t space) { zfs_userquota_prop_t *typep = arg; zfs_userquota_prop_t p = *typep; char *name = NULL; char *ug, *propname; char namebuf[32]; char sizebuf[32]; if (domain == NULL || domain[0] == '\0') { if (p == ZFS_PROP_GROUPUSED || p == ZFS_PROP_GROUPQUOTA) { struct group *g = getgrgid(rid); if (g) name = g->gr_name; } else { struct passwd *p = getpwuid(rid); if (p) name = p->pw_name; } } if (p == ZFS_PROP_GROUPUSED || p == ZFS_PROP_GROUPQUOTA) ug = "group"; else ug = "user"; if (p == ZFS_PROP_USERUSED || p == ZFS_PROP_GROUPUSED) propname = "used"; else propname = "quota"; if (name == NULL) { (void) snprintf(namebuf, sizeof (namebuf), "%llu", (longlong_t)rid); name = namebuf; } zfs_nicenum(space, sizebuf, sizeof (sizebuf)); (void) printf("%s %s %s%c%s %s\n", propname, ug, domain, domain[0] ? '-' : ' ', name, sizebuf); return (0); } static int zfs_do_userspace(int argc, char **argv) { zfs_handle_t *zhp; zfs_userquota_prop_t p; int error; /* * Try the python version. If the execv fails, we'll continue * and do a simplistic implementation. */ (void) execv(pypath, argv-1); (void) printf("internal error: %s not found\n" "falling back on built-in implementation, " "some features will not work\n", pypath); if ((zhp = zfs_open(g_zfs, argv[argc-1], ZFS_TYPE_DATASET)) == NULL) return (1); (void) printf("PROP TYPE NAME VALUE\n"); for (p = 0; p < ZFS_NUM_USERQUOTA_PROPS; p++) { error = zfs_userspace(zhp, p, userspace_cb, &p); if (error) break; } return (error); } /* * list [-r][-d max] [-H] [-o property[,property]...] [-t type[,type]...] * [-s property [-s property]...] [-S property [-S property]...] * ... * * -r Recurse over all children * -d Limit recursion by depth. * -H Scripted mode; elide headers and separate columns by tabs * -o Control which fields to display. * -t Control which object types to display. * -s Specify sort columns, descending order. * -S Specify sort columns, ascending order. * * When given no arguments, lists all filesystems in the system. * Otherwise, list the specified datasets, optionally recursing down them if * '-r' is specified. */ typedef struct list_cbdata { boolean_t cb_first; boolean_t cb_scripted; zprop_list_t *cb_proplist; } list_cbdata_t; /* * Given a list of columns to display, output appropriate headers for each one. */ static void print_header(zprop_list_t *pl) { char headerbuf[ZFS_MAXPROPLEN]; const char *header; int i; boolean_t first = B_TRUE; boolean_t right_justify; for (; pl != NULL; pl = pl->pl_next) { if (!first) { (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZPROP_INVAL) { header = zfs_prop_column_name(pl->pl_prop); right_justify = zfs_prop_align_right(pl->pl_prop); } else { for (i = 0; pl->pl_user_prop[i] != '\0'; i++) headerbuf[i] = toupper(pl->pl_user_prop[i]); headerbuf[i] = '\0'; header = headerbuf; } if (pl->pl_next == NULL && !right_justify) (void) printf("%s", header); else if (right_justify) - (void) printf("%*s", pl->pl_width, header); + (void) printf("%*s", (int)pl->pl_width, header); else - (void) printf("%-*s", pl->pl_width, header); + (void) printf("%-*s", (int)pl->pl_width, header); } (void) printf("\n"); } /* * Given a dataset and a list of fields, print out all the properties according * to the described layout. */ static void print_dataset(zfs_handle_t *zhp, zprop_list_t *pl, boolean_t scripted) { boolean_t first = B_TRUE; char property[ZFS_MAXPROPLEN]; nvlist_t *userprops = zfs_get_user_props(zhp); nvlist_t *propval; char *propstr; boolean_t right_justify; int width; for (; pl != NULL; pl = pl->pl_next) { if (!first) { if (scripted) (void) printf("\t"); else (void) printf(" "); } else { first = B_FALSE; } if (pl->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, pl->pl_prop, property, sizeof (property), NULL, NULL, 0, B_FALSE) != 0) propstr = "-"; else propstr = property; right_justify = zfs_prop_align_right(pl->pl_prop); } else if (zfs_prop_userquota(pl->pl_user_prop)) { if (zfs_prop_get_userquota(zhp, pl->pl_user_prop, property, sizeof (property), B_FALSE) != 0) propstr = "-"; else propstr = property; right_justify = B_TRUE; } else { if (nvlist_lookup_nvlist(userprops, pl->pl_user_prop, &propval) != 0) propstr = "-"; else verify(nvlist_lookup_string(propval, ZPROP_VALUE, &propstr) == 0); right_justify = B_FALSE; } width = pl->pl_width; /* * If this is being called in scripted mode, or if this is the * last column and it is left-justified, don't include a width * format specifier. */ if (scripted || (pl->pl_next == NULL && !right_justify)) (void) printf("%s", propstr); else if (right_justify) (void) printf("%*s", width, propstr); else (void) printf("%-*s", width, propstr); } (void) printf("\n"); } /* * Generic callback function to list a dataset or snapshot. */ static int list_callback(zfs_handle_t *zhp, void *data) { list_cbdata_t *cbp = data; if (cbp->cb_first) { if (!cbp->cb_scripted) print_header(cbp->cb_proplist); cbp->cb_first = B_FALSE; } print_dataset(zhp, cbp->cb_proplist, cbp->cb_scripted); return (0); } static int zfs_do_list(int argc, char **argv) { int c; boolean_t scripted = B_FALSE; static char default_fields[] = "name,used,available,referenced,mountpoint"; int types = ZFS_TYPE_DATASET; boolean_t types_specified = B_FALSE; char *fields = NULL; list_cbdata_t cb = { 0 }; char *value; int limit = 0; int ret; zfs_sort_column_t *sortcol = NULL; int flags = ZFS_ITER_PROP_LISTSNAPS | ZFS_ITER_ARGS_CAN_BE_PATHS; /* check options */ while ((c = getopt(argc, argv, ":d:o:rt:Hs:S:")) != -1) { switch (c) { case 'o': fields = optarg; break; case 'd': limit = parse_depth(optarg, &flags); break; case 'r': flags |= ZFS_ITER_RECURSE; break; case 'H': scripted = B_TRUE; break; case 's': if (zfs_add_sort_column(&sortcol, optarg, B_FALSE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 'S': if (zfs_add_sort_column(&sortcol, optarg, B_TRUE) != 0) { (void) fprintf(stderr, gettext("invalid property '%s'\n"), optarg); usage(B_FALSE); } break; case 't': types = 0; types_specified = B_TRUE; flags &= ~ZFS_ITER_PROP_LISTSNAPS; while (*optarg != '\0') { static char *type_subopts[] = { "filesystem", "volume", "snapshot", "all", NULL }; switch (getsubopt(&optarg, type_subopts, &value)) { case 0: types |= ZFS_TYPE_FILESYSTEM; break; case 1: types |= ZFS_TYPE_VOLUME; break; case 2: types |= ZFS_TYPE_SNAPSHOT; break; case 3: types = ZFS_TYPE_DATASET; break; default: (void) fprintf(stderr, gettext("invalid type '%s'\n"), value); usage(B_FALSE); } } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (fields == NULL) fields = default_fields; /* * If "-o space" and no types were specified, don't display snapshots. */ if (strcmp(fields, "space") == 0 && types_specified == B_FALSE) types &= ~ZFS_TYPE_SNAPSHOT; /* * If the user specifies '-o all', the zprop_get_list() doesn't * normally include the name of the dataset. For 'zfs list', we always * want this property to be first. */ if (zprop_get_list(g_zfs, fields, &cb.cb_proplist, ZFS_TYPE_DATASET) != 0) usage(B_FALSE); cb.cb_scripted = scripted; cb.cb_first = B_TRUE; ret = zfs_for_each(argc, argv, flags, types, sortcol, &cb.cb_proplist, limit, list_callback, &cb); zprop_free_list(cb.cb_proplist); zfs_free_sort_columns(sortcol); if (ret == 0 && cb.cb_first && !cb.cb_scripted) (void) printf(gettext("no datasets available\n")); return (ret); } /* * zfs rename * zfs rename -p * zfs rename -r * * Renames the given dataset to another of the same type. * * The '-p' flag creates all the non-existing ancestors of the target first. */ /* ARGSUSED */ static int zfs_do_rename(int argc, char **argv) { zfs_handle_t *zhp; int c; int ret; boolean_t recurse = B_FALSE; boolean_t parents = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "pr")) != -1) { switch (c) { case 'p': parents = B_TRUE; break; case 'r': recurse = B_TRUE; break; case '?': default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing source dataset " "argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing target dataset " "argument\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (recurse && parents) { (void) fprintf(stderr, gettext("-p and -r options are mutually " "exclusive\n")); usage(B_FALSE); } if (recurse && strchr(argv[0], '@') == 0) { (void) fprintf(stderr, gettext("source dataset for recursive " "rename must be a snapshot\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[0], parents ? ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME : ZFS_TYPE_DATASET)) == NULL) return (1); /* If we were asked and the name looks good, try to create ancestors. */ if (parents && zfs_name_valid(argv[1], zfs_get_type(zhp)) && zfs_create_ancestors(g_zfs, argv[1]) != 0) { zfs_close(zhp); return (1); } ret = (zfs_rename(zhp, argv[1], recurse) != 0); zfs_close(zhp); return (ret); } /* * zfs promote * * Promotes the given clone fs to be the parent */ /* ARGSUSED */ static int zfs_do_promote(int argc, char **argv) { zfs_handle_t *zhp; int ret; /* check options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing clone filesystem" " argument\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } zhp = zfs_open(g_zfs, argv[1], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); ret = (zfs_promote(zhp) != 0); zfs_close(zhp); return (ret); } /* * zfs rollback [-rRf] * * -r Delete any intervening snapshots before doing rollback * -R Delete any snapshots and their clones * -f ignored for backwards compatability * * Given a filesystem, rollback to a specific snapshot, discarding any changes * since then and making it the active dataset. If more recent snapshots exist, * the command will complain unless the '-r' flag is given. */ typedef struct rollback_cbdata { uint64_t cb_create; boolean_t cb_first; int cb_doclones; char *cb_target; int cb_error; boolean_t cb_recurse; boolean_t cb_dependent; } rollback_cbdata_t; /* * Report any snapshots more recent than the one specified. Used when '-r' is * not specified. We reuse this same callback for the snapshot dependents - if * 'cb_dependent' is set, then this is a dependent and we should report it * without checking the transaction group. */ static int rollback_check(zfs_handle_t *zhp, void *data) { rollback_cbdata_t *cbp = data; if (cbp->cb_doclones) { zfs_close(zhp); return (0); } if (!cbp->cb_dependent) { if (strcmp(zfs_get_name(zhp), cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { if (cbp->cb_first && !cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot " "rollback to '%s': more recent snapshots " "exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-r' to " "force deletion of the following " "snapshots:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } if (cbp->cb_recurse) { cbp->cb_dependent = B_TRUE; if (zfs_iter_dependents(zhp, B_TRUE, rollback_check, cbp) != 0) { zfs_close(zhp); return (-1); } cbp->cb_dependent = B_FALSE; } else { (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } } } else { if (cbp->cb_first && cbp->cb_recurse) { (void) fprintf(stderr, gettext("cannot rollback to " "'%s': clones of previous snapshots exist\n"), cbp->cb_target); (void) fprintf(stderr, gettext("use '-R' to " "force deletion of the following clones and " "dependents:\n")); cbp->cb_first = 0; cbp->cb_error = 1; } (void) fprintf(stderr, "%s\n", zfs_get_name(zhp)); } zfs_close(zhp); return (0); } static int zfs_do_rollback(int argc, char **argv) { int ret; int c; boolean_t force = B_FALSE; rollback_cbdata_t cb = { 0 }; zfs_handle_t *zhp, *snap; char parentname[ZFS_MAXNAMELEN]; char *delim; /* check options */ while ((c = getopt(argc, argv, "rRf")) != -1) { switch (c) { case 'r': cb.cb_recurse = 1; break; case 'R': cb.cb_recurse = 1; cb.cb_doclones = 1; break; case 'f': force = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing dataset argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* open the snapshot */ if ((snap = zfs_open(g_zfs, argv[0], ZFS_TYPE_SNAPSHOT)) == NULL) return (1); /* open the parent dataset */ (void) strlcpy(parentname, argv[0], sizeof (parentname)); verify((delim = strrchr(parentname, '@')) != NULL); *delim = '\0'; if ((zhp = zfs_open(g_zfs, parentname, ZFS_TYPE_DATASET)) == NULL) { zfs_close(snap); return (1); } /* * Check for more recent snapshots and/or clones based on the presence * of '-r' and '-R'. */ cb.cb_target = argv[0]; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); cb.cb_first = B_TRUE; cb.cb_error = 0; if ((ret = zfs_iter_children(zhp, rollback_check, &cb)) != 0) goto out; if ((ret = cb.cb_error) != 0) goto out; /* * Rollback parent to the given snapshot. */ ret = zfs_rollback(zhp, snap, force); out: zfs_close(snap); zfs_close(zhp); if (ret == 0) return (0); else return (1); } /* * zfs set property=value { fs | snap | vol } ... * * Sets the given property for all datasets specified on the command line. */ typedef struct set_cbdata { char *cb_propname; char *cb_value; } set_cbdata_t; static int set_callback(zfs_handle_t *zhp, void *data) { set_cbdata_t *cbp = data; if (zfs_prop_set(zhp, cbp->cb_propname, cbp->cb_value) != 0) { switch (libzfs_errno(g_zfs)) { case EZFS_MOUNTFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to remount filesystem\n")); break; case EZFS_SHARENFSFAILED: (void) fprintf(stderr, gettext("property may be set " "but unable to reshare filesystem\n")); break; } return (1); } return (0); } static int zfs_do_set(int argc, char **argv) { set_cbdata_t cb; int ret; /* check for options */ if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } /* check number of arguments */ if (argc < 2) { (void) fprintf(stderr, gettext("missing property=value " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing dataset name\n")); usage(B_FALSE); } /* validate property=value argument */ cb.cb_propname = argv[1]; if (((cb.cb_value = strchr(cb.cb_propname, '=')) == NULL) || (cb.cb_value[1] == '\0')) { (void) fprintf(stderr, gettext("missing value in " "property=value argument\n")); usage(B_FALSE); } *cb.cb_value = '\0'; cb.cb_value++; if (*cb.cb_propname == '\0') { (void) fprintf(stderr, gettext("missing property in property=value argument\n")); usage(B_FALSE); } - ret = zfs_for_each(argc - 2, argv + 2, NULL, + ret = zfs_for_each(argc - 2, argv + 2, 0, ZFS_TYPE_DATASET, NULL, NULL, 0, set_callback, &cb); return (ret); } /* * zfs snapshot [-r] [-o prop=value] ... * * Creates a snapshot with the given name. While functionally equivalent to * 'zfs create', it is a separate command to differentiate intent. */ static int zfs_do_snapshot(int argc, char **argv) { boolean_t recursive = B_FALSE; int ret; - char c; + signed char c; nvlist_t *props; if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) nomem(); /* check options */ while ((c = getopt(argc, argv, "ro:")) != -1) { switch (c) { case 'o': if (parseprop(props)) return (1); break; case 'r': recursive = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto usage; } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); goto usage; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); goto usage; } ret = zfs_snapshot(g_zfs, argv[0], recursive, props); nvlist_free(props); if (ret && recursive) (void) fprintf(stderr, gettext("no snapshots were created\n")); return (ret != 0); usage: nvlist_free(props); usage(B_FALSE); return (-1); } /* * zfs send [-vDp] -R [-i|-I <@snap>] * zfs send [-vDp] [-i|-I <@snap>] * * Send a backup stream to stdout. */ static int zfs_do_send(int argc, char **argv) { char *fromname = NULL; char *toname = NULL; char *cp; zfs_handle_t *zhp; sendflags_t flags = { 0 }; int c, err; nvlist_t *dbgnv; boolean_t extraverbose = B_FALSE; /* check options */ while ((c = getopt(argc, argv, ":i:I:RDpv")) != -1) { switch (c) { case 'i': if (fromname) usage(B_FALSE); fromname = optarg; break; case 'I': if (fromname) usage(B_FALSE); fromname = optarg; flags.doall = B_TRUE; break; case 'R': flags.replicate = B_TRUE; break; case 'p': flags.props = B_TRUE; break; case 'v': if (flags.verbose) extraverbose = B_TRUE; flags.verbose = B_TRUE; break; case 'D': flags.dedup = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (isatty(STDOUT_FILENO)) { (void) fprintf(stderr, gettext("Error: Stream can not be written to a terminal.\n" "You must redirect standard output.\n")); return (1); } cp = strchr(argv[0], '@'); if (cp == NULL) { (void) fprintf(stderr, gettext("argument must be a snapshot\n")); usage(B_FALSE); } *cp = '\0'; toname = cp + 1; zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (1); /* * If they specified the full path to the snapshot, chop off * everything except the short name of the snapshot, but special * case if they specify the origin. */ if (fromname && (cp = strchr(fromname, '@')) != NULL) { char origin[ZFS_MAXNAMELEN]; zprop_source_t src; (void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN, origin, sizeof (origin), &src, NULL, 0, B_FALSE); if (strcmp(origin, fromname) == 0) { fromname = NULL; flags.fromorigin = B_TRUE; } else { *cp = '\0'; if (cp != fromname && strcmp(argv[0], fromname)) { (void) fprintf(stderr, gettext("incremental source must be " "in same filesystem\n")); usage(B_FALSE); } fromname = cp + 1; if (strchr(fromname, '@') || strchr(fromname, '/')) { (void) fprintf(stderr, gettext("invalid incremental source\n")); usage(B_FALSE); } } } if (flags.replicate && fromname == NULL) flags.doall = B_TRUE; err = zfs_send(zhp, fromname, toname, flags, STDOUT_FILENO, NULL, 0, extraverbose ? &dbgnv : NULL); if (extraverbose) { /* * dump_nvlist prints to stdout, but that's been * redirected to a file. Make it print to stderr * instead. */ (void) dup2(STDERR_FILENO, STDOUT_FILENO); dump_nvlist(dbgnv, 0); nvlist_free(dbgnv); } zfs_close(zhp); return (err != 0); } /* * zfs receive [-vnFu] [-d | -e] * * Restore a backup stream from stdin. */ static int zfs_do_receive(int argc, char **argv) { int c, err; recvflags_t flags = { 0 }; /* check options */ while ((c = getopt(argc, argv, ":denuvF")) != -1) { switch (c) { case 'd': flags.isprefix = B_TRUE; break; case 'e': flags.isprefix = B_TRUE; flags.istail = B_TRUE; break; case 'n': flags.dryrun = B_TRUE; break; case 'u': flags.nomount = B_TRUE; break; case 'v': flags.verbose = B_TRUE; break; case 'F': flags.force = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing snapshot argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (isatty(STDIN_FILENO)) { (void) fprintf(stderr, gettext("Error: Backup stream can not be read " "from a terminal.\n" "You must redirect standard input.\n")); return (1); } err = zfs_receive(g_zfs, argv[0], flags, STDIN_FILENO, NULL); return (err != 0); } static int zfs_do_hold_rele_impl(int argc, char **argv, boolean_t holding) { int errors = 0; int i; const char *tag; boolean_t recursive = B_FALSE; boolean_t temphold = B_FALSE; const char *opts = holding ? "rt" : "r"; int c; /* check options */ while ((c = getopt(argc, argv, opts)) != -1) { switch (c) { case 'r': recursive = B_TRUE; break; case 't': temphold = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (argc < 2) usage(B_FALSE); tag = argv[0]; --argc; ++argv; if (holding && tag[0] == '.') { /* tags starting with '.' are reserved for libzfs */ (void) fprintf(stderr, gettext("tag may not start with '.'\n")); usage(B_FALSE); } for (i = 0; i < argc; ++i) { zfs_handle_t *zhp; char parent[ZFS_MAXNAMELEN]; const char *delim; char *path = argv[i]; delim = strchr(path, '@'); if (delim == NULL) { (void) fprintf(stderr, gettext("'%s' is not a snapshot\n"), path); ++errors; continue; } (void) strncpy(parent, path, delim - path); parent[delim - path] = '\0'; zhp = zfs_open(g_zfs, parent, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) { ++errors; continue; } if (holding) { if (zfs_hold(zhp, delim+1, tag, recursive, temphold, B_FALSE, -1, 0, 0) != 0) ++errors; } else { if (zfs_release(zhp, delim+1, tag, recursive) != 0) ++errors; } zfs_close(zhp); } return (errors != 0); } /* * zfs hold [-r] [-t] ... * * -r Recursively hold * -t Temporary hold (hidden option) * * Apply a user-hold with the given tag to the list of snapshots. */ static int zfs_do_hold(int argc, char **argv) { return (zfs_do_hold_rele_impl(argc, argv, B_TRUE)); } /* * zfs release [-r] ... * * -r Recursively release * * Release a user-hold with the given tag from the list of snapshots. */ static int zfs_do_release(int argc, char **argv) { return (zfs_do_hold_rele_impl(argc, argv, B_FALSE)); } #define CHECK_SPINNER 30 #define SPINNER_TIME 3 /* seconds */ #define MOUNT_TIME 5 /* seconds */ static int get_one_dataset(zfs_handle_t *zhp, void *data) { static char *spin[] = { "-", "\\", "|", "/" }; static int spinval = 0; static int spincheck = 0; static time_t last_spin_time = (time_t)0; get_all_cb_t *cbp = data; zfs_type_t type = zfs_get_type(zhp); if (cbp->cb_verbose) { if (--spincheck < 0) { time_t now = time(NULL); if (last_spin_time + SPINNER_TIME < now) { update_progress(spin[spinval++ % 4]); last_spin_time = now; } spincheck = CHECK_SPINNER; } } /* * Interate over any nested datasets. */ if (zfs_iter_filesystems(zhp, get_one_dataset, data) != 0) { zfs_close(zhp); return (1); } /* * Skip any datasets whose type does not match. */ if ((type & ZFS_TYPE_FILESYSTEM) == 0) { zfs_close(zhp); return (0); } libzfs_add_handle(cbp, zhp); assert(cbp->cb_used <= cbp->cb_alloc); return (0); } static void get_all_datasets(zfs_handle_t ***dslist, size_t *count, boolean_t verbose) { get_all_cb_t cb = { 0 }; cb.cb_verbose = verbose; cb.cb_getone = get_one_dataset; if (verbose) set_progress_header(gettext("Reading ZFS config")); (void) zfs_iter_root(g_zfs, get_one_dataset, &cb); *dslist = cb.cb_handles; *count = cb.cb_used; if (verbose) finish_progress(gettext("done.")); } /* * Generic callback for sharing or mounting filesystems. Because the code is so * similar, we have a common function with an extra parameter to determine which * mode we are using. */ #define OP_SHARE 0x1 #define OP_MOUNT 0x2 /* * Share or mount a dataset. */ static int share_mount_one(zfs_handle_t *zhp, int op, int flags, char *protocol, boolean_t explicit, const char *options) { char mountpoint[ZFS_MAXPROPLEN]; char shareopts[ZFS_MAXPROPLEN]; char smbshareopts[ZFS_MAXPROPLEN]; const char *cmdname = op == OP_SHARE ? "share" : "mount"; struct mnttab mnt; uint64_t zoned, canmount; boolean_t shared_nfs, shared_smb; assert(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM); /* * Check to make sure we can mount/share this dataset. If we * are in the global zone and the filesystem is exported to a * local zone, or if we are in a local zone and the * filesystem is not exported, then it is an error. */ zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); if (zoned && getzoneid() == GLOBAL_ZONEID) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "dataset is exported to a local zone\n"), cmdname, zfs_get_name(zhp)); return (1); } else if (!zoned && getzoneid() != GLOBAL_ZONEID) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "permission denied\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * Ignore any filesystems which don't apply to us. This * includes those with a legacy mountpoint, or those with * legacy share options. */ verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, shareopts, sizeof (shareopts), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshareopts, sizeof (smbshareopts), NULL, NULL, 0, B_FALSE) == 0); if (op == OP_SHARE && strcmp(shareopts, "off") == 0 && strcmp(smbshareopts, "off") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share '%s': " "legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use share(1M) to " "share this filesystem, or set " "sharenfs property on\n")); return (1); } /* * We cannot share or mount legacy filesystems. If the * shareopts is non-legacy but the mountpoint is legacy, we * treat it as a legacy share. */ if (strcmp(mountpoint, "legacy") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "legacy mountpoint\n"), cmdname, zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use %s(1M) to " "%s this filesystem\n"), cmdname, cmdname); return (1); } if (strcmp(mountpoint, "none") == 0) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': no " "mountpoint set\n"), cmdname, zfs_get_name(zhp)); return (1); } /* * canmount explicit outcome * on no pass through * on yes pass through * off no return 0 * off yes display error, return 1 * noauto no return 0 * noauto yes pass through */ canmount = zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT); if (canmount == ZFS_CANMOUNT_OFF) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot %s '%s': " "'canmount' property is set to 'off'\n"), cmdname, zfs_get_name(zhp)); return (1); } else if (canmount == ZFS_CANMOUNT_NOAUTO && !explicit) { return (0); } /* * At this point, we have verified that the mountpoint and/or * shareopts are appropriate for auto management. If the * filesystem is already mounted or shared, return (failing * for explicit requests); otherwise mount or share the * filesystem. */ switch (op) { case OP_SHARE: shared_nfs = zfs_is_shared_nfs(zhp, NULL); shared_smb = zfs_is_shared_smb(zhp, NULL); if (shared_nfs && shared_smb || (shared_nfs && strcmp(shareopts, "on") == 0 && strcmp(smbshareopts, "off") == 0) || (shared_smb && strcmp(smbshareopts, "on") == 0 && strcmp(shareopts, "off") == 0)) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot share " "'%s': filesystem already shared\n"), zfs_get_name(zhp)); return (1); } if (!zfs_is_mounted(zhp, NULL) && zfs_mount(zhp, NULL, 0) != 0) return (1); if (protocol == NULL) { if (zfs_shareall(zhp) != 0) return (1); } else if (strcmp(protocol, "nfs") == 0) { if (zfs_share_nfs(zhp)) return (1); } else if (strcmp(protocol, "smb") == 0) { if (zfs_share_smb(zhp)) return (1); } else { (void) fprintf(stderr, gettext("cannot share " "'%s': invalid share type '%s' " "specified\n"), zfs_get_name(zhp), protocol); return (1); } break; case OP_MOUNT: if (options == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = (char *)options; if (!hasmntopt(&mnt, MNTOPT_REMOUNT) && zfs_is_mounted(zhp, NULL)) { if (!explicit) return (0); (void) fprintf(stderr, gettext("cannot mount " "'%s': filesystem already mounted\n"), zfs_get_name(zhp)); return (1); } if (zfs_mount(zhp, options, flags) != 0) return (1); break; } return (0); } /* * Reports progress in the form "(current/total)". Not thread-safe. */ static void report_mount_progress(int current, int total) { static time_t last_progress_time = 0; time_t now = time(NULL); char info[32]; /* report 1..n instead of 0..n-1 */ ++current; /* display header if we're here for the first time */ if (current == 1) { set_progress_header(gettext("Mounting ZFS filesystems")); } else if (current != total && last_progress_time + MOUNT_TIME >= now) { /* too soon to report again */ return; } last_progress_time = now; (void) sprintf(info, "(%d/%d)", current, total); if (current == total) finish_progress(info); else update_progress(info); } static void append_options(char *mntopts, char *newopts) { int len = strlen(mntopts); /* original length plus new string to append plus 1 for the comma */ if (len + 1 + strlen(newopts) >= MNT_LINE_MAX) { (void) fprintf(stderr, gettext("the opts argument for " "'%s' option is too long (more than %d chars)\n"), "-o", MNT_LINE_MAX); usage(B_FALSE); } if (*mntopts) mntopts[len++] = ','; (void) strcpy(&mntopts[len], newopts); } static int share_mount(int op, int argc, char **argv) { int do_all = 0; boolean_t verbose = B_FALSE; int c, ret = 0; char *options = NULL; int flags = 0; /* check options */ while ((c = getopt(argc, argv, op == OP_MOUNT ? ":avo:O" : "a")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'v': verbose = B_TRUE; break; case 'o': if (*optarg == '\0') { (void) fprintf(stderr, gettext("empty mount " "options (-o) specified\n")); usage(B_FALSE); } if (options == NULL) options = safe_malloc(MNT_LINE_MAX + 1); /* option validation is done later */ append_options(options, optarg); break; case 'O': flags |= MS_OVERLAY; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check number of arguments */ if (do_all) { zfs_handle_t **dslist = NULL; size_t i, count = 0; char *protocol = NULL; if (op == OP_SHARE && argc > 0) { if (strcmp(argv[0], "nfs") != 0 && strcmp(argv[0], "smb") != 0) { (void) fprintf(stderr, gettext("share type " "must be 'nfs' or 'smb'\n")); usage(B_FALSE); } protocol = argv[0]; argc--; argv++; } if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } start_progress_timer(); get_all_datasets(&dslist, &count, verbose); if (count == 0) return (0); qsort(dslist, count, sizeof (void *), libzfs_dataset_cmp); for (i = 0; i < count; i++) { if (verbose) report_mount_progress(i, count); if (share_mount_one(dslist[i], op, flags, protocol, B_FALSE, options) != 0) ret = 1; zfs_close(dslist[i]); } free(dslist); } else if (argc == 0) { struct mnttab entry; if ((op == OP_SHARE) || (options != NULL)) { (void) fprintf(stderr, gettext("missing filesystem " "argument (specify -a for all)\n")); usage(B_FALSE); } /* * When mount is given no arguments, go through /etc/mnttab and * display any active ZFS mounts. We hide any snapshots, since * they are controlled automatically. */ rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0 || strchr(entry.mnt_special, '@') != NULL) continue; (void) printf("%-30s %s\n", entry.mnt_special, entry.mnt_mountp); } } else { zfs_handle_t *zhp; if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM)) == NULL) { ret = 1; } else { ret = share_mount_one(zhp, op, flags, NULL, B_TRUE, options); zfs_close(zhp); } } return (ret); } /* * zfs mount -a [nfs] * zfs mount filesystem * * Mount all filesystems, or mount the given filesystem. */ static int zfs_do_mount(int argc, char **argv) { return (share_mount(OP_MOUNT, argc, argv)); } /* * zfs share -a [nfs | smb] * zfs share filesystem * * Share all filesystems, or share the given filesystem. */ static int zfs_do_share(int argc, char **argv) { return (share_mount(OP_SHARE, argc, argv)); } typedef struct unshare_unmount_node { zfs_handle_t *un_zhp; char *un_mountp; uu_avl_node_t un_avlnode; } unshare_unmount_node_t; /* ARGSUSED */ static int unshare_unmount_compare(const void *larg, const void *rarg, void *unused) { const unshare_unmount_node_t *l = larg; const unshare_unmount_node_t *r = rarg; return (strcmp(l->un_mountp, r->un_mountp)); } /* * Convenience routine used by zfs_do_umount() and manual_unmount(). Given an * absolute path, find the entry /etc/mnttab, verify that its a ZFS filesystem, * and unmount it appropriately. */ static int unshare_unmount_path(int op, char *path, int flags, boolean_t is_manual) { zfs_handle_t *zhp; int ret; struct stat64 statbuf; struct extmnttab entry; const char *cmdname = (op == OP_SHARE) ? "unshare" : "unmount"; ino_t path_inode; /* * Search for the path in /etc/mnttab. Rather than looking for the * specific path, which can be fooled by non-standard paths (i.e. ".." * or "//"), we stat() the path and search for the corresponding * (major,minor) device pair. */ if (stat64(path, &statbuf) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': %s\n"), cmdname, path, strerror(errno)); return (1); } path_inode = statbuf.st_ino; /* * Search for the given (major,minor) pair in the mount table. */ rewind(mnttab_file); while ((ret = getextmntent(mnttab_file, &entry, 0)) == 0) { if (entry.mnt_major == major(statbuf.st_dev) && entry.mnt_minor == minor(statbuf.st_dev)) break; } if (ret != 0) { if (op == OP_SHARE) { (void) fprintf(stderr, gettext("cannot %s '%s': not " "currently mounted\n"), cmdname, path); return (1); } (void) fprintf(stderr, gettext("warning: %s not in mnttab\n"), path); if ((ret = umount2(path, flags)) != 0) (void) fprintf(stderr, gettext("%s: %s\n"), path, strerror(errno)); return (ret != 0); } if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': not a ZFS " "filesystem\n"), cmdname, path); return (1); } if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); ret = 1; if (stat64(entry.mnt_mountp, &statbuf) != 0) { (void) fprintf(stderr, gettext("cannot %s '%s': %s\n"), cmdname, path, strerror(errno)); goto out; } else if (statbuf.st_ino != path_inode) { (void) fprintf(stderr, gettext("cannot " "%s '%s': not a mountpoint\n"), cmdname, path); goto out; } if (op == OP_SHARE) { char nfs_mnt_prop[ZFS_MAXPROPLEN]; char smbshare_prop[ZFS_MAXPROPLEN]; verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, smbshare_prop, sizeof (smbshare_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") == 0 && strcmp(smbshare_prop, "off") == 0) { (void) fprintf(stderr, gettext("cannot unshare " "'%s': legacy share\n"), path); (void) fprintf(stderr, gettext("use " "unshare(1M) to unshare this filesystem\n")); } else if (!zfs_is_shared(zhp)) { (void) fprintf(stderr, gettext("cannot unshare '%s': " "not currently shared\n"), path); } else { ret = zfs_unshareall_bypath(zhp, path); } } else { char mtpt_prop[ZFS_MAXPROPLEN]; verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mtpt_prop, sizeof (mtpt_prop), NULL, NULL, 0, B_FALSE) == 0); if (is_manual) { ret = zfs_unmount(zhp, NULL, flags); } else if (strcmp(mtpt_prop, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot unmount " "'%s': legacy mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use umount(1M) " "to unmount this filesystem\n")); } else { ret = zfs_unmountall(zhp, flags); } } out: zfs_close(zhp); return (ret != 0); } /* * Generic callback for unsharing or unmounting a filesystem. */ static int unshare_unmount(int op, int argc, char **argv) { int do_all = 0; int flags = 0; int ret = 0; int c; zfs_handle_t *zhp; char nfs_mnt_prop[ZFS_MAXPROPLEN]; char sharesmb[ZFS_MAXPROPLEN]; /* check options */ while ((c = getopt(argc, argv, op == OP_SHARE ? "a" : "af")) != -1) { switch (c) { case 'a': do_all = 1; break; case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (do_all) { /* * We could make use of zfs_for_each() to walk all datasets in * the system, but this would be very inefficient, especially * since we would have to linearly search /etc/mnttab for each * one. Instead, do one pass through /etc/mnttab looking for * zfs entries and call zfs_unmount() for each one. * * Things get a little tricky if the administrator has created * mountpoints beneath other ZFS filesystems. In this case, we * have to unmount the deepest filesystems first. To accomplish * this, we place all the mountpoints in an AVL tree sorted by * the special type (dataset name), and walk the result in * reverse to make sure to get any snapshots first. */ struct mnttab entry; uu_avl_pool_t *pool; uu_avl_t *tree; unshare_unmount_node_t *node; uu_avl_index_t idx; uu_avl_walk_t *walk; if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if (((pool = uu_avl_pool_create("unmount_pool", sizeof (unshare_unmount_node_t), offsetof(unshare_unmount_node_t, un_avlnode), unshare_unmount_compare, UU_DEFAULT)) == NULL) || ((tree = uu_avl_create(pool, NULL, UU_DEFAULT)) == NULL)) nomem(); rewind(mnttab_file); while (getmntent(mnttab_file, &entry) == 0) { /* ignore non-ZFS entries */ if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; /* ignore snapshots */ if (strchr(entry.mnt_special, '@') != NULL) continue; if ((zhp = zfs_open(g_zfs, entry.mnt_special, ZFS_TYPE_FILESYSTEM)) == NULL) { ret = 1; continue; } switch (op) { case OP_SHARE: verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") != 0) break; verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") == 0) continue; break; case OP_MOUNT: /* Ignore legacy mounts */ verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "legacy") == 0) continue; /* Ignore canmount=noauto mounts */ if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) continue; default: break; } node = safe_malloc(sizeof (unshare_unmount_node_t)); node->un_zhp = zhp; node->un_mountp = safe_strdup(entry.mnt_mountp); uu_avl_node_init(node, &node->un_avlnode, pool); if (uu_avl_find(tree, node, NULL, &idx) == NULL) { uu_avl_insert(tree, node, idx); } else { zfs_close(node->un_zhp); free(node->un_mountp); free(node); } } /* * Walk the AVL tree in reverse, unmounting each filesystem and * removing it from the AVL tree in the process. */ if ((walk = uu_avl_walk_start(tree, UU_WALK_REVERSE | UU_WALK_ROBUST)) == NULL) nomem(); while ((node = uu_avl_walk_next(walk)) != NULL) { uu_avl_remove(tree, node); switch (op) { case OP_SHARE: if (zfs_unshareall_bypath(node->un_zhp, node->un_mountp) != 0) ret = 1; break; case OP_MOUNT: if (zfs_unmount(node->un_zhp, node->un_mountp, flags) != 0) ret = 1; break; } zfs_close(node->un_zhp); free(node->un_mountp); free(node); } uu_avl_walk_end(walk); uu_avl_destroy(tree); uu_avl_pool_destroy(pool); } else { if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing filesystem argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * We have an argument, but it may be a full path or a ZFS * filesystem. Pass full paths off to unmount_path() (shared by * manual_unmount), otherwise open the filesystem and pass to * zfs_unmount(). */ if (argv[0][0] == '/') return (unshare_unmount_path(op, argv[0], flags, B_FALSE)); if ((zhp = zfs_open(g_zfs, argv[0], ZFS_TYPE_FILESYSTEM)) == NULL) return (1); verify(zfs_prop_get(zhp, op == OP_SHARE ? ZFS_PROP_SHARENFS : ZFS_PROP_MOUNTPOINT, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); switch (op) { case OP_SHARE: verify(zfs_prop_get(zhp, ZFS_PROP_SHARENFS, nfs_mnt_prop, sizeof (nfs_mnt_prop), NULL, NULL, 0, B_FALSE) == 0); verify(zfs_prop_get(zhp, ZFS_PROP_SHARESMB, sharesmb, sizeof (sharesmb), NULL, NULL, 0, B_FALSE) == 0); if (strcmp(nfs_mnt_prop, "off") == 0 && strcmp(sharesmb, "off") == 0) { (void) fprintf(stderr, gettext("cannot " "unshare '%s': legacy share\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use " "unshare(1M) to unshare this " "filesystem\n")); ret = 1; } else if (!zfs_is_shared(zhp)) { (void) fprintf(stderr, gettext("cannot " "unshare '%s': not currently " "shared\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unshareall(zhp) != 0) { ret = 1; } break; case OP_MOUNT: if (strcmp(nfs_mnt_prop, "legacy") == 0) { (void) fprintf(stderr, gettext("cannot " "unmount '%s': legacy " "mountpoint\n"), zfs_get_name(zhp)); (void) fprintf(stderr, gettext("use " "umount(1M) to unmount this " "filesystem\n")); ret = 1; } else if (!zfs_is_mounted(zhp, NULL)) { (void) fprintf(stderr, gettext("cannot " "unmount '%s': not currently " "mounted\n"), zfs_get_name(zhp)); ret = 1; } else if (zfs_unmountall(zhp, flags) != 0) { ret = 1; } break; } zfs_close(zhp); } return (ret); } /* * zfs unmount -a * zfs unmount filesystem * * Unmount all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unmount(int argc, char **argv) { return (unshare_unmount(OP_MOUNT, argc, argv)); } /* * zfs unshare -a * zfs unshare filesystem * * Unshare all filesystems, or a specific ZFS filesystem. */ static int zfs_do_unshare(int argc, char **argv) { return (unshare_unmount(OP_SHARE, argc, argv)); } /* ARGSUSED */ static int zfs_do_python(int argc, char **argv) { (void) execv(pypath, argv-1); (void) printf("internal error: %s not found\n", pypath); return (-1); } /* * Called when invoked as /etc/fs/zfs/mount. Do the mount if the mountpoint is * 'legacy'. Otherwise, complain that use should be using 'zfs mount'. */ static int manual_mount(int argc, char **argv) { zfs_handle_t *zhp; char mountpoint[ZFS_MAXPROPLEN]; char mntopts[MNT_LINE_MAX] = { '\0' }; int ret; int c; int flags = 0; char *dataset, *path; /* check options */ while ((c = getopt(argc, argv, ":mo:O")) != -1) { switch (c) { case 'o': (void) strlcpy(mntopts, optarg, sizeof (mntopts)); break; case 'O': flags |= MS_OVERLAY; break; case 'm': flags |= MS_NOMNTTAB; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: mount [-o opts] " "\n")); return (2); } } argc -= optind; argv += optind; /* check that we only have two arguments */ if (argc != 2) { if (argc == 0) (void) fprintf(stderr, gettext("missing dataset " "argument\n")); else if (argc == 1) (void) fprintf(stderr, gettext("missing mountpoint argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, "usage: mount \n"); return (2); } dataset = argv[0]; path = argv[1]; /* try to open the dataset */ if ((zhp = zfs_open(g_zfs, dataset, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); (void) zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, mountpoint, sizeof (mountpoint), NULL, NULL, 0, B_FALSE); /* check for legacy mountpoint and complain appropriately */ ret = 0; if (strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) == 0) { if (mount(dataset, path, MS_OPTIONSTR | flags, MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { (void) fprintf(stderr, gettext("mount failed: %s\n"), strerror(errno)); ret = 1; } } else { (void) fprintf(stderr, gettext("filesystem '%s' cannot be " "mounted using 'mount -F zfs'\n"), dataset); (void) fprintf(stderr, gettext("Use 'zfs set mountpoint=%s' " "instead.\n"), path); (void) fprintf(stderr, gettext("If you must use 'mount -F zfs' " "or /etc/vfstab, use 'zfs set mountpoint=legacy'.\n")); (void) fprintf(stderr, gettext("See zfs(1M) for more " "information.\n")); ret = 1; } return (ret); } /* * Called when invoked as /etc/fs/zfs/umount. Unlike a manual mount, we allow * unmounts of non-legacy filesystems, as this is the dominant administrative * interface. */ static int manual_unmount(int argc, char **argv) { int flags = 0; int c; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': flags = MS_FORCE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); (void) fprintf(stderr, gettext("usage: unmount [-f] " "\n")); return (2); } } argc -= optind; argv += optind; /* check arguments */ if (argc != 1) { if (argc == 0) (void) fprintf(stderr, gettext("missing path " "argument\n")); else (void) fprintf(stderr, gettext("too many arguments\n")); (void) fprintf(stderr, gettext("usage: unmount [-f] \n")); return (2); } return (unshare_unmount_path(OP_MOUNT, argv[0], flags, B_TRUE)); } static int find_command_idx(char *command, int *idx) { int i; for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) continue; if (strcmp(command, command_table[i].name) == 0) { *idx = i; return (0); } } return (1); } static int zfs_do_diff(int argc, char **argv) { zfs_handle_t *zhp; int flags = 0; char *tosnap = NULL; char *fromsnap = NULL; char *atp, *copy; int err; int c; while ((c = getopt(argc, argv, "FHt")) != -1) { switch (c) { case 'F': flags |= ZFS_DIFF_CLASSIFY; break; case 'H': flags |= ZFS_DIFF_PARSEABLE; break; case 't': flags |= ZFS_DIFF_TIMESTAMP; break; default: (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("must provide at least one snapshot name\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } fromsnap = argv[0]; tosnap = (argc == 2) ? argv[1] : NULL; copy = NULL; if (*fromsnap != '@') copy = strdup(fromsnap); else if (tosnap) copy = strdup(tosnap); if (copy == NULL) usage(B_FALSE); if (atp = strchr(copy, '@')) *atp = '\0'; if ((zhp = zfs_open(g_zfs, copy, ZFS_TYPE_FILESYSTEM)) == NULL) return (1); free(copy); /* * Ignore SIGPIPE so that the library can give us * information on any failure */ (void) sigignore(SIGPIPE); err = zfs_show_diffs(zhp, STDOUT_FILENO, fromsnap, tosnap, flags); zfs_close(zhp); return (err != 0); } int main(int argc, char **argv) { int ret; int i; char *progname; char *cmdname; (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); opterr = 0; if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, gettext("internal error: failed to " "initialize ZFS library\n")); return (1); } zpool_set_history_str("zfs", argc, argv, history_str); verify(zpool_stage_history(g_zfs, history_str) == 0); libzfs_print_on_error(g_zfs, B_TRUE); if ((mnttab_file = fopen(MNTTAB, "r")) == NULL) { (void) fprintf(stderr, gettext("internal error: unable to " "open %s\n"), MNTTAB); return (1); } /* * This command also doubles as the /etc/fs mount and unmount program. * Determine if we should take this behavior based on argv[0]. */ progname = basename(argv[0]); if (strcmp(progname, "mount") == 0) { ret = manual_mount(argc, argv); } else if (strcmp(progname, "umount") == 0) { ret = manual_unmount(argc, argv); } else { /* * Make sure the user has specified some command. */ if (argc < 2) { (void) fprintf(stderr, gettext("missing command\n")); usage(B_FALSE); } cmdname = argv[1]; /* * The 'umount' command is an alias for 'unmount' */ if (strcmp(cmdname, "umount") == 0) cmdname = "unmount"; /* * The 'recv' command is an alias for 'receive' */ if (strcmp(cmdname, "recv") == 0) cmdname = "receive"; /* * Special case '-?' */ if (strcmp(cmdname, "-?") == 0) usage(B_TRUE); /* * Run the appropriate command. */ libzfs_mnttab_cache(g_zfs, B_TRUE); if (find_command_idx(cmdname, &i) == 0) { current_command = &command_table[i]; ret = command_table[i].func(argc - 1, argv + 1); } else if (strchr(cmdname, '=') != NULL) { verify(find_command_idx("set", &i) == 0); current_command = &command_table[i]; ret = command_table[i].func(argc, argv); } else { (void) fprintf(stderr, gettext("unrecognized " "command '%s'\n"), cmdname); usage(B_FALSE); } libzfs_mnttab_cache(g_zfs, B_FALSE); } (void) fclose(mnttab_file); libzfs_fini(g_zfs); /* * The 'ZFS_ABORT' environment variable causes us to dump core on exit * for the purposes of running ::findleaks. */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } return (ret); } diff --git a/cmd/zpool/zpool_main.c b/cmd/zpool/zpool_main.c index 8aa985b1a552..4fe14c827984 100644 --- a/cmd/zpool/zpool_main.c +++ b/cmd/zpool/zpool_main.c @@ -1,4467 +1,4467 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zpool_util.h" #include "zfs_comutil.h" #include "statcommon.h" static int zpool_do_create(int, char **); static int zpool_do_destroy(int, char **); static int zpool_do_add(int, char **); static int zpool_do_remove(int, char **); static int zpool_do_list(int, char **); static int zpool_do_iostat(int, char **); static int zpool_do_status(int, char **); static int zpool_do_online(int, char **); static int zpool_do_offline(int, char **); static int zpool_do_clear(int, char **); static int zpool_do_attach(int, char **); static int zpool_do_detach(int, char **); static int zpool_do_replace(int, char **); static int zpool_do_split(int, char **); static int zpool_do_scrub(int, char **); static int zpool_do_import(int, char **); static int zpool_do_export(int, char **); static int zpool_do_upgrade(int, char **); static int zpool_do_history(int, char **); static int zpool_do_get(int, char **); static int zpool_do_set(int, char **); /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ #ifdef DEBUG const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #endif typedef enum { HELP_ADD, HELP_ATTACH, HELP_CLEAR, HELP_CREATE, HELP_DESTROY, HELP_DETACH, HELP_EXPORT, HELP_HISTORY, HELP_IMPORT, HELP_IOSTAT, HELP_LIST, HELP_OFFLINE, HELP_ONLINE, HELP_REPLACE, HELP_REMOVE, HELP_SCRUB, HELP_STATUS, HELP_UPGRADE, HELP_GET, HELP_SET, HELP_SPLIT } zpool_help_t; typedef struct zpool_command { const char *name; int (*func)(int, char **); zpool_help_t usage; } zpool_command_t; /* * Master command table. Each ZFS command has a name, associated function, and * usage message. The usage messages need to be internationalized, so we have * to have a function to return the usage message based on a command index. * * These commands are organized according to how they are displayed in the usage * message. An empty command (one with a NULL name) indicates an empty line in * the generic usage message. */ static zpool_command_t command_table[] = { { "create", zpool_do_create, HELP_CREATE }, { "destroy", zpool_do_destroy, HELP_DESTROY }, { NULL }, { "add", zpool_do_add, HELP_ADD }, { "remove", zpool_do_remove, HELP_REMOVE }, { NULL }, { "list", zpool_do_list, HELP_LIST }, { "iostat", zpool_do_iostat, HELP_IOSTAT }, { "status", zpool_do_status, HELP_STATUS }, { NULL }, { "online", zpool_do_online, HELP_ONLINE }, { "offline", zpool_do_offline, HELP_OFFLINE }, { "clear", zpool_do_clear, HELP_CLEAR }, { NULL }, { "attach", zpool_do_attach, HELP_ATTACH }, { "detach", zpool_do_detach, HELP_DETACH }, { "replace", zpool_do_replace, HELP_REPLACE }, { "split", zpool_do_split, HELP_SPLIT }, { NULL }, { "scrub", zpool_do_scrub, HELP_SCRUB }, { NULL }, { "import", zpool_do_import, HELP_IMPORT }, { "export", zpool_do_export, HELP_EXPORT }, { "upgrade", zpool_do_upgrade, HELP_UPGRADE }, { NULL }, { "history", zpool_do_history, HELP_HISTORY }, { "get", zpool_do_get, HELP_GET }, { "set", zpool_do_set, HELP_SET }, }; #define NCOMMAND (sizeof (command_table) / sizeof (command_table[0])) zpool_command_t *current_command; static char history_str[HIS_MAX_RECORD_LEN]; static uint_t timestamp_fmt = NODATE; static const char * get_usage(zpool_help_t idx) { switch (idx) { case HELP_ADD: return (gettext("\tadd [-fn] ...\n")); case HELP_ATTACH: return (gettext("\tattach [-f] " "\n")); case HELP_CLEAR: return (gettext("\tclear [-nF] [device]\n")); case HELP_CREATE: return (gettext("\tcreate [-fn] [-o property=value] ... \n" "\t [-O file-system-property=value] ... \n" "\t [-m mountpoint] [-R root] ...\n")); case HELP_DESTROY: return (gettext("\tdestroy [-f] \n")); case HELP_DETACH: return (gettext("\tdetach \n")); case HELP_EXPORT: return (gettext("\texport [-f] ...\n")); case HELP_HISTORY: return (gettext("\thistory [-il] [] ...\n")); case HELP_IMPORT: return (gettext("\timport [-d dir] [-D]\n" "\timport [-d dir | -c cachefile] [-F [-n]] \n" "\timport [-o mntopts] [-o property=value] ... \n" "\t [-d dir | -c cachefile] [-D] [-f] [-m] [-N] " "[-R root] [-F [-n]] -a\n" "\timport [-o mntopts] [-o property=value] ... \n" "\t [-d dir | -c cachefile] [-D] [-f] [-m] [-N] " "[-R root] [-F [-n]]\n" "\t [newpool]\n")); case HELP_IOSTAT: return (gettext("\tiostat [-v] [-T d|u] [pool] ... [interval " "[count]]\n")); case HELP_LIST: return (gettext("\tlist [-H] [-o property[,...]] " "[-T d|u] [pool] ... [interval [count]]\n")); case HELP_OFFLINE: return (gettext("\toffline [-t] ...\n")); case HELP_ONLINE: return (gettext("\tonline ...\n")); case HELP_REPLACE: return (gettext("\treplace [-f] " "[new-device]\n")); case HELP_REMOVE: return (gettext("\tremove ...\n")); case HELP_SCRUB: return (gettext("\tscrub [-s] ...\n")); case HELP_STATUS: return (gettext("\tstatus [-vx] [-T d|u] [pool] ... [interval " "[count]]\n")); case HELP_UPGRADE: return (gettext("\tupgrade\n" "\tupgrade -v\n" "\tupgrade [-V version] <-a | pool ...>\n")); case HELP_GET: return (gettext("\tget <\"all\" | property[,...]> " " ...\n")); case HELP_SET: return (gettext("\tset \n")); case HELP_SPLIT: return (gettext("\tsplit [-n] [-R altroot] [-o mntopts]\n" "\t [-o property=value] " "[ ...]\n")); } abort(); /* NOTREACHED */ } /* * Callback routine that will print out a pool property value. */ static int print_prop_cb(int prop, void *cb) { FILE *fp = cb; (void) fprintf(fp, "\t%-15s ", zpool_prop_to_name(prop)); if (zpool_prop_readonly(prop)) (void) fprintf(fp, " NO "); else (void) fprintf(fp, " YES "); if (zpool_prop_values(prop) == NULL) (void) fprintf(fp, "-\n"); else (void) fprintf(fp, "%s\n", zpool_prop_values(prop)); return (ZPROP_CONT); } /* * Display usage message. If we're inside a command, display only the usage for * that command. Otherwise, iterate over the entire command table and display * a complete usage message. */ void usage(boolean_t requested) { FILE *fp = requested ? stdout : stderr; if (current_command == NULL) { int i; (void) fprintf(fp, gettext("usage: zpool command args ...\n")); (void) fprintf(fp, gettext("where 'command' is one of the following:\n\n")); for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) (void) fprintf(fp, "\n"); else (void) fprintf(fp, "%s", get_usage(command_table[i].usage)); } } else { (void) fprintf(fp, gettext("usage:\n")); (void) fprintf(fp, "%s", get_usage(current_command->usage)); } if (current_command != NULL && ((strcmp(current_command->name, "set") == 0) || (strcmp(current_command->name, "get") == 0) || (strcmp(current_command->name, "list") == 0))) { (void) fprintf(fp, gettext("\nthe following properties are supported:\n")); (void) fprintf(fp, "\n\t%-15s %s %s\n\n", "PROPERTY", "EDIT", "VALUES"); /* Iterate over all properties */ (void) zprop_iter(print_prop_cb, fp, B_FALSE, B_TRUE, ZFS_TYPE_POOL); } /* * See comments at end of main(). */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } exit(requested ? 0 : 2); } void print_vdev_tree(zpool_handle_t *zhp, const char *name, nvlist_t *nv, int indent, boolean_t print_logs) { nvlist_t **child; uint_t c, children; char *vname; if (name != NULL) (void) printf("\t%*s%s\n", indent, "", name); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); if ((is_log && !print_logs) || (!is_log && print_logs)) continue; vname = zpool_vdev_name(g_zfs, zhp, child[c], B_FALSE); print_vdev_tree(zhp, vname, child[c], indent + 2, B_FALSE); free(vname); } } /* * Add a property pair (name, string-value) into a property nvlist. */ static int add_prop_list(const char *propname, char *propval, nvlist_t **props, boolean_t poolprop) { zpool_prop_t prop = ZPROP_INVAL; zfs_prop_t fprop; nvlist_t *proplist; const char *normnm; char *strval; if (*props == NULL && nvlist_alloc(props, NV_UNIQUE_NAME, 0) != 0) { (void) fprintf(stderr, gettext("internal error: out of memory\n")); return (1); } proplist = *props; if (poolprop) { if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) { (void) fprintf(stderr, gettext("property '%s' is " "not a valid pool property\n"), propname); return (2); } normnm = zpool_prop_to_name(prop); } else { if ((fprop = zfs_name_to_prop(propname)) != ZPROP_INVAL) { normnm = zfs_prop_to_name(fprop); } else { normnm = propname; } } if (nvlist_lookup_string(proplist, normnm, &strval) == 0 && prop != ZPOOL_PROP_CACHEFILE) { (void) fprintf(stderr, gettext("property '%s' " "specified multiple times\n"), propname); return (2); } if (nvlist_add_string(proplist, normnm, propval) != 0) { (void) fprintf(stderr, gettext("internal " "error: out of memory\n")); return (1); } return (0); } /* * zpool add [-fn] ... * * -f Force addition of devices, even if they appear in use * -n Do not add the devices, but display the resulting layout if * they were to be added. * * Adds the given vdevs to 'pool'. As with create, the bulk of this work is * handled by get_vdev_spec(), which constructs the nvlist needed to pass to * libzfs. */ int zpool_do_add(int argc, char **argv) { boolean_t force = B_FALSE; boolean_t dryrun = B_FALSE; int c; nvlist_t *nvroot; char *poolname; int ret; zpool_handle_t *zhp; nvlist_t *config; /* check options */ while ((c = getopt(argc, argv, "fn")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case 'n': dryrun = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing vdev specification\n")); usage(B_FALSE); } poolname = argv[0]; argc--; argv++; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); if ((config = zpool_get_config(zhp, NULL)) == NULL) { (void) fprintf(stderr, gettext("pool '%s' is unavailable\n"), poolname); zpool_close(zhp); return (1); } /* pass off to get_vdev_spec for processing */ nvroot = make_root_vdev(zhp, force, !force, B_FALSE, dryrun, argc, argv); if (nvroot == NULL) { zpool_close(zhp); return (1); } if (dryrun) { nvlist_t *poolnvroot; verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &poolnvroot) == 0); (void) printf(gettext("would update '%s' to the following " "configuration:\n"), zpool_get_name(zhp)); /* print original main pool and new tree */ print_vdev_tree(zhp, poolname, poolnvroot, 0, B_FALSE); print_vdev_tree(zhp, NULL, nvroot, 0, B_FALSE); /* Do the same for the logs */ if (num_logs(poolnvroot) > 0) { print_vdev_tree(zhp, "logs", poolnvroot, 0, B_TRUE); print_vdev_tree(zhp, NULL, nvroot, 0, B_TRUE); } else if (num_logs(nvroot) > 0) { print_vdev_tree(zhp, "logs", nvroot, 0, B_TRUE); } ret = 0; } else { ret = (zpool_add(zhp, nvroot) != 0); } nvlist_free(nvroot); zpool_close(zhp); return (ret); } /* * zpool remove ... * * Removes the given vdev from the pool. Currently, this supports removing * spares, cache, and log devices from the pool. */ int zpool_do_remove(int argc, char **argv) { char *poolname; int i, ret = 0; zpool_handle_t *zhp; argc--; argv++; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing device\n")); usage(B_FALSE); } poolname = argv[0]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); for (i = 1; i < argc; i++) { if (zpool_vdev_remove(zhp, argv[i]) != 0) ret = 1; } return (ret); } /* * zpool create [-fn] [-o property=value] ... * [-O file-system-property=value] ... * [-R root] [-m mountpoint] ... * * -f Force creation, even if devices appear in use * -n Do not create the pool, but display the resulting layout if it * were to be created. * -R Create a pool under an alternate root * -m Set default mountpoint for the root dataset. By default it's * '/' * -o Set property=value. * -O Set fsproperty=value in the pool's root file system * * Creates the named pool according to the given vdev specification. The * bulk of the vdev processing is done in get_vdev_spec() in zpool_vdev.c. Once * we get the nvlist back from get_vdev_spec(), we either print out the contents * (if '-n' was specified), or pass it to libzfs to do the creation. */ int zpool_do_create(int argc, char **argv) { boolean_t force = B_FALSE; boolean_t dryrun = B_FALSE; int c; nvlist_t *nvroot = NULL; char *poolname; int ret = 1; char *altroot = NULL; char *mountpoint = NULL; nvlist_t *fsprops = NULL; nvlist_t *props = NULL; char *propval; /* check options */ while ((c = getopt(argc, argv, ":fnR:m:o:O:")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case 'n': dryrun = B_TRUE; break; case 'R': altroot = optarg; if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_ALTROOT), optarg, &props, B_TRUE)) goto errout; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &propval) == 0) break; if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_CACHEFILE), "none", &props, B_TRUE)) goto errout; break; case 'm': mountpoint = optarg; break; case 'o': if ((propval = strchr(optarg, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -o option\n")); goto errout; } *propval = '\0'; propval++; if (add_prop_list(optarg, propval, &props, B_TRUE)) goto errout; break; case 'O': if ((propval = strchr(optarg, '=')) == NULL) { (void) fprintf(stderr, gettext("missing " "'=' for -O option\n")); goto errout; } *propval = '\0'; propval++; if (add_prop_list(optarg, propval, &fsprops, B_FALSE)) goto errout; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); goto badusage; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); goto badusage; } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); goto badusage; } if (argc < 2) { (void) fprintf(stderr, gettext("missing vdev specification\n")); goto badusage; } poolname = argv[0]; /* * As a special case, check for use of '/' in the name, and direct the * user to use 'zfs create' instead. */ if (strchr(poolname, '/') != NULL) { (void) fprintf(stderr, gettext("cannot create '%s': invalid " "character '/' in pool name\n"), poolname); (void) fprintf(stderr, gettext("use 'zfs create' to " "create a dataset\n")); goto errout; } /* pass off to get_vdev_spec for bulk processing */ nvroot = make_root_vdev(NULL, force, !force, B_FALSE, dryrun, argc - 1, argv + 1); if (nvroot == NULL) goto errout; /* make_root_vdev() allows 0 toplevel children if there are spares */ if (!zfs_allocatable_devs(nvroot)) { (void) fprintf(stderr, gettext("invalid vdev " "specification: at least one toplevel vdev must be " "specified\n")); goto errout; } if (altroot != NULL && altroot[0] != '/') { (void) fprintf(stderr, gettext("invalid alternate root '%s': " "must be an absolute path\n"), altroot); goto errout; } /* * Check the validity of the mountpoint and direct the user to use the * '-m' mountpoint option if it looks like its in use. */ if (mountpoint == NULL || (strcmp(mountpoint, ZFS_MOUNTPOINT_LEGACY) != 0 && strcmp(mountpoint, ZFS_MOUNTPOINT_NONE) != 0)) { char buf[MAXPATHLEN]; DIR *dirp; if (mountpoint && mountpoint[0] != '/') { (void) fprintf(stderr, gettext("invalid mountpoint " "'%s': must be an absolute path, 'legacy', or " "'none'\n"), mountpoint); goto errout; } if (mountpoint == NULL) { if (altroot != NULL) (void) snprintf(buf, sizeof (buf), "%s/%s", altroot, poolname); else (void) snprintf(buf, sizeof (buf), "/%s", poolname); } else { if (altroot != NULL) (void) snprintf(buf, sizeof (buf), "%s%s", altroot, mountpoint); else (void) snprintf(buf, sizeof (buf), "%s", mountpoint); } if ((dirp = opendir(buf)) == NULL && errno != ENOENT) { (void) fprintf(stderr, gettext("mountpoint '%s' : " "%s\n"), buf, strerror(errno)); (void) fprintf(stderr, gettext("use '-m' " "option to provide a different default\n")); goto errout; } else if (dirp) { int count = 0; while (count < 3 && readdir(dirp) != NULL) count++; (void) closedir(dirp); if (count > 2) { (void) fprintf(stderr, gettext("mountpoint " "'%s' exists and is not empty\n"), buf); (void) fprintf(stderr, gettext("use '-m' " "option to provide a " "different default\n")); goto errout; } } } if (dryrun) { /* * For a dry run invocation, print out a basic message and run * through all the vdevs in the list and print out in an * appropriate hierarchy. */ (void) printf(gettext("would create '%s' with the " "following layout:\n\n"), poolname); print_vdev_tree(NULL, poolname, nvroot, 0, B_FALSE); if (num_logs(nvroot) > 0) print_vdev_tree(NULL, "logs", nvroot, 0, B_TRUE); ret = 0; } else { /* * Hand off to libzfs. */ if (zpool_create(g_zfs, poolname, nvroot, props, fsprops) == 0) { zfs_handle_t *pool = zfs_open(g_zfs, poolname, ZFS_TYPE_FILESYSTEM); if (pool != NULL) { if (mountpoint != NULL) verify(zfs_prop_set(pool, zfs_prop_to_name( ZFS_PROP_MOUNTPOINT), mountpoint) == 0); if (zfs_mount(pool, NULL, 0) == 0) ret = zfs_shareall(pool); zfs_close(pool); } } else if (libzfs_errno(g_zfs) == EZFS_INVALIDNAME) { (void) fprintf(stderr, gettext("pool name may have " "been omitted\n")); } } errout: nvlist_free(nvroot); nvlist_free(fsprops); nvlist_free(props); return (ret); badusage: nvlist_free(fsprops); nvlist_free(props); usage(B_FALSE); return (2); } /* * zpool destroy * * -f Forcefully unmount any datasets * * Destroy the given pool. Automatically unmounts any datasets in the pool. */ int zpool_do_destroy(int argc, char **argv) { boolean_t force = B_FALSE; int c; char *pool; zpool_handle_t *zhp; int ret; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool argument\n")); usage(B_FALSE); } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } pool = argv[0]; if ((zhp = zpool_open_canfail(g_zfs, pool)) == NULL) { /* * As a special case, check for use of '/' in the name, and * direct the user to use 'zfs destroy' instead. */ if (strchr(pool, '/') != NULL) (void) fprintf(stderr, gettext("use 'zfs destroy' to " "destroy a dataset\n")); return (1); } if (zpool_disable_datasets(zhp, force) != 0) { (void) fprintf(stderr, gettext("could not destroy '%s': " "could not unmount datasets\n"), zpool_get_name(zhp)); return (1); } ret = (zpool_destroy(zhp) != 0); zpool_close(zhp); return (ret); } /* * zpool export [-f] ... * * -f Forcefully unmount datasets * * Export the given pools. By default, the command will attempt to cleanly * unmount any active datasets within the pool. If the '-f' flag is specified, * then the datasets will be forcefully unmounted. */ int zpool_do_export(int argc, char **argv) { boolean_t force = B_FALSE; boolean_t hardforce = B_FALSE; int c; zpool_handle_t *zhp; int ret; int i; /* check options */ while ((c = getopt(argc, argv, "fF")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case 'F': hardforce = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* check arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool argument\n")); usage(B_FALSE); } ret = 0; for (i = 0; i < argc; i++) { if ((zhp = zpool_open_canfail(g_zfs, argv[i])) == NULL) { ret = 1; continue; } if (zpool_disable_datasets(zhp, force) != 0) { ret = 1; zpool_close(zhp); continue; } if (hardforce) { if (zpool_export_force(zhp) != 0) ret = 1; } else if (zpool_export(zhp, force) != 0) { ret = 1; } zpool_close(zhp); } return (ret); } /* * Given a vdev configuration, determine the maximum width needed for the device * name column. */ static int max_width(zpool_handle_t *zhp, nvlist_t *nv, int depth, int max) { char *name = zpool_vdev_name(g_zfs, zhp, nv, B_TRUE); nvlist_t **child; uint_t c, children; int ret; if (strlen(name) + depth > max) max = strlen(name) + depth; free(name); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { for (c = 0; c < children; c++) if ((ret = max_width(zhp, child[c], depth + 2, max)) > max) max = ret; } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { for (c = 0; c < children; c++) if ((ret = max_width(zhp, child[c], depth + 2, max)) > max) max = ret; } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if ((ret = max_width(zhp, child[c], depth + 2, max)) > max) max = ret; } return (max); } typedef struct spare_cbdata { uint64_t cb_guid; zpool_handle_t *cb_zhp; } spare_cbdata_t; static boolean_t find_vdev(nvlist_t *nv, uint64_t search) { uint64_t guid; nvlist_t **child; uint_t c, children; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 && search == guid) return (B_TRUE); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (find_vdev(child[c], search)) return (B_TRUE); } return (B_FALSE); } static int find_spare(zpool_handle_t *zhp, void *data) { spare_cbdata_t *cbp = data; nvlist_t *config, *nvroot; config = zpool_get_config(zhp, NULL); verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (find_vdev(nvroot, cbp->cb_guid)) { cbp->cb_zhp = zhp; return (1); } zpool_close(zhp); return (0); } /* * Print out configuration state as requested by status_callback. */ void print_status_config(zpool_handle_t *zhp, const char *name, nvlist_t *nv, int namewidth, int depth, boolean_t isspare) { nvlist_t **child; uint_t c, children; pool_scan_stat_t *ps = NULL; vdev_stat_t *vs; char rbuf[6], wbuf[6], cbuf[6]; char *vname; uint64_t notpresent; spare_cbdata_t cb; char *state; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) children = 0; verify(nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); state = zpool_state_to_name(vs->vs_state, vs->vs_aux); if (isspare) { /* * For hot spares, we use the terms 'INUSE' and 'AVAILABLE' for * online drives. */ if (vs->vs_aux == VDEV_AUX_SPARED) state = "INUSE"; else if (vs->vs_state == VDEV_STATE_HEALTHY) state = "AVAIL"; } (void) printf("\t%*s%-*s %-8s", depth, "", namewidth - depth, name, state); if (!isspare) { zfs_nicenum(vs->vs_read_errors, rbuf, sizeof (rbuf)); zfs_nicenum(vs->vs_write_errors, wbuf, sizeof (wbuf)); zfs_nicenum(vs->vs_checksum_errors, cbuf, sizeof (cbuf)); (void) printf(" %5s %5s %5s", rbuf, wbuf, cbuf); } if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, ¬present) == 0) { char *path; verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); (void) printf(" was %s", path); } else if (vs->vs_aux != 0) { (void) printf(" "); switch (vs->vs_aux) { case VDEV_AUX_OPEN_FAILED: (void) printf(gettext("cannot open")); break; case VDEV_AUX_BAD_GUID_SUM: (void) printf(gettext("missing device")); break; case VDEV_AUX_NO_REPLICAS: (void) printf(gettext("insufficient replicas")); break; case VDEV_AUX_VERSION_NEWER: (void) printf(gettext("newer version")); break; case VDEV_AUX_SPARED: verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &cb.cb_guid) == 0); if (zpool_iter(g_zfs, find_spare, &cb) == 1) { if (strcmp(zpool_get_name(cb.cb_zhp), zpool_get_name(zhp)) == 0) (void) printf(gettext("currently in " "use")); else (void) printf(gettext("in use by " "pool '%s'"), zpool_get_name(cb.cb_zhp)); zpool_close(cb.cb_zhp); } else { (void) printf(gettext("currently in use")); } break; case VDEV_AUX_ERR_EXCEEDED: (void) printf(gettext("too many errors")); break; case VDEV_AUX_IO_FAILURE: (void) printf(gettext("experienced I/O failures")); break; case VDEV_AUX_BAD_LOG: (void) printf(gettext("bad intent log")); break; case VDEV_AUX_EXTERNAL: (void) printf(gettext("external device fault")); break; case VDEV_AUX_SPLIT_POOL: (void) printf(gettext("split into new pool")); break; default: (void) printf(gettext("corrupted data")); break; } } (void) nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_SCAN_STATS, (uint64_t **)&ps, &c); if (ps && ps->pss_state == DSS_SCANNING && vs->vs_scan_processed != 0 && children == 0) { (void) printf(gettext(" (%s)"), (ps->pss_func == POOL_SCAN_RESILVER) ? "resilvering" : "repairing"); } (void) printf("\n"); for (c = 0; c < children; c++) { uint64_t islog = B_FALSE, ishole = B_FALSE; /* Don't print logs or holes here */ (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &islog); (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &ishole); if (islog || ishole) continue; vname = zpool_vdev_name(g_zfs, zhp, child[c], B_TRUE); print_status_config(zhp, vname, child[c], namewidth, depth + 2, isspare); free(vname); } } /* * Print the configuration of an exported pool. Iterate over all vdevs in the * pool, printing out the name and status for each one. */ void print_import_config(const char *name, nvlist_t *nv, int namewidth, int depth) { nvlist_t **child; uint_t c, children; vdev_stat_t *vs; char *type, *vname; verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_MISSING) == 0 || strcmp(type, VDEV_TYPE_HOLE) == 0) return; verify(nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); (void) printf("\t%*s%-*s", depth, "", namewidth - depth, name); (void) printf(" %s", zpool_state_to_name(vs->vs_state, vs->vs_aux)); if (vs->vs_aux != 0) { (void) printf(" "); switch (vs->vs_aux) { case VDEV_AUX_OPEN_FAILED: (void) printf(gettext("cannot open")); break; case VDEV_AUX_BAD_GUID_SUM: (void) printf(gettext("missing device")); break; case VDEV_AUX_NO_REPLICAS: (void) printf(gettext("insufficient replicas")); break; case VDEV_AUX_VERSION_NEWER: (void) printf(gettext("newer version")); break; case VDEV_AUX_ERR_EXCEEDED: (void) printf(gettext("too many errors")); break; default: (void) printf(gettext("corrupted data")); break; } } (void) printf("\n"); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); if (is_log) continue; vname = zpool_vdev_name(g_zfs, NULL, child[c], B_TRUE); print_import_config(vname, child[c], namewidth, depth + 2); free(vname); } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { (void) printf(gettext("\tcache\n")); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, NULL, child[c], B_FALSE); (void) printf("\t %s\n", vname); free(vname); } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { (void) printf(gettext("\tspares\n")); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, NULL, child[c], B_FALSE); (void) printf("\t %s\n", vname); free(vname); } } } /* * Print log vdevs. * Logs are recorded as top level vdevs in the main pool child array * but with "is_log" set to 1. We use either print_status_config() or * print_import_config() to print the top level logs then any log * children (eg mirrored slogs) are printed recursively - which * works because only the top level vdev is marked "is_log" */ static void print_logs(zpool_handle_t *zhp, nvlist_t *nv, int namewidth, boolean_t verbose) { uint_t c, children; nvlist_t **child; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; (void) printf(gettext("\tlogs\n")); for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE; char *name; (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); if (!is_log) continue; name = zpool_vdev_name(g_zfs, zhp, child[c], B_TRUE); if (verbose) print_status_config(zhp, name, child[c], namewidth, 2, B_FALSE); else print_import_config(name, child[c], namewidth, 2); free(name); } } /* * Display the status for the given pool. */ static void show_import(nvlist_t *config) { uint64_t pool_state; vdev_stat_t *vs; char *name; uint64_t guid; char *msgid; nvlist_t *nvroot; int reason; const char *health; uint_t vsc; int namewidth; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &pool_state) == 0); verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); health = zpool_state_to_name(vs->vs_state, vs->vs_aux); reason = zpool_import_status(config, &msgid); (void) printf(gettext(" pool: %s\n"), name); (void) printf(gettext(" id: %llu\n"), (u_longlong_t)guid); (void) printf(gettext(" state: %s"), health); if (pool_state == POOL_STATE_DESTROYED) (void) printf(gettext(" (DESTROYED)")); (void) printf("\n"); switch (reason) { case ZPOOL_STATUS_MISSING_DEV_R: case ZPOOL_STATUS_MISSING_DEV_NR: case ZPOOL_STATUS_BAD_GUID_SUM: (void) printf(gettext("status: One or more devices are missing " "from the system.\n")); break; case ZPOOL_STATUS_CORRUPT_LABEL_R: case ZPOOL_STATUS_CORRUPT_LABEL_NR: (void) printf(gettext("status: One or more devices contains " "corrupted data.\n")); break; case ZPOOL_STATUS_CORRUPT_DATA: (void) printf(gettext("status: The pool data is corrupted.\n")); break; case ZPOOL_STATUS_OFFLINE_DEV: (void) printf(gettext("status: One or more devices " "are offlined.\n")); break; case ZPOOL_STATUS_CORRUPT_POOL: (void) printf(gettext("status: The pool metadata is " "corrupted.\n")); break; case ZPOOL_STATUS_VERSION_OLDER: (void) printf(gettext("status: The pool is formatted using an " "older on-disk version.\n")); break; case ZPOOL_STATUS_VERSION_NEWER: (void) printf(gettext("status: The pool is formatted using an " "incompatible version.\n")); break; case ZPOOL_STATUS_HOSTID_MISMATCH: (void) printf(gettext("status: The pool was last accessed by " "another system.\n")); break; case ZPOOL_STATUS_FAULTED_DEV_R: case ZPOOL_STATUS_FAULTED_DEV_NR: (void) printf(gettext("status: One or more devices are " "faulted.\n")); break; case ZPOOL_STATUS_BAD_LOG: (void) printf(gettext("status: An intent log record cannot be " "read.\n")); break; case ZPOOL_STATUS_RESILVERING: (void) printf(gettext("status: One or more devices were being " "resilvered.\n")); break; default: /* * No other status can be seen when importing pools. */ assert(reason == ZPOOL_STATUS_OK); } /* * Print out an action according to the overall state of the pool. */ if (vs->vs_state == VDEV_STATE_HEALTHY) { if (reason == ZPOOL_STATUS_VERSION_OLDER) (void) printf(gettext("action: The pool can be " "imported using its name or numeric identifier, " "though\n\tsome features will not be available " "without an explicit 'zpool upgrade'.\n")); else if (reason == ZPOOL_STATUS_HOSTID_MISMATCH) (void) printf(gettext("action: The pool can be " "imported using its name or numeric " "identifier and\n\tthe '-f' flag.\n")); else (void) printf(gettext("action: The pool can be " "imported using its name or numeric " "identifier.\n")); } else if (vs->vs_state == VDEV_STATE_DEGRADED) { (void) printf(gettext("action: The pool can be imported " "despite missing or damaged devices. The\n\tfault " "tolerance of the pool may be compromised if imported.\n")); } else { switch (reason) { case ZPOOL_STATUS_VERSION_NEWER: (void) printf(gettext("action: The pool cannot be " "imported. Access the pool on a system running " "newer\n\tsoftware, or recreate the pool from " "backup.\n")); break; case ZPOOL_STATUS_MISSING_DEV_R: case ZPOOL_STATUS_MISSING_DEV_NR: case ZPOOL_STATUS_BAD_GUID_SUM: (void) printf(gettext("action: The pool cannot be " "imported. Attach the missing\n\tdevices and try " "again.\n")); break; default: (void) printf(gettext("action: The pool cannot be " "imported due to damaged devices or data.\n")); } } /* * If the state is "closed" or "can't open", and the aux state * is "corrupt data": */ if (((vs->vs_state == VDEV_STATE_CLOSED) || (vs->vs_state == VDEV_STATE_CANT_OPEN)) && (vs->vs_aux == VDEV_AUX_CORRUPT_DATA)) { if (pool_state == POOL_STATE_DESTROYED) (void) printf(gettext("\tThe pool was destroyed, " "but can be imported using the '-Df' flags.\n")); else if (pool_state != POOL_STATE_EXPORTED) (void) printf(gettext("\tThe pool may be active on " "another system, but can be imported using\n\t" "the '-f' flag.\n")); } if (msgid != NULL) (void) printf(gettext(" see: http://www.sun.com/msg/%s\n"), msgid); (void) printf(gettext("config:\n\n")); namewidth = max_width(NULL, nvroot, 0, 0); if (namewidth < 10) namewidth = 10; print_import_config(name, nvroot, namewidth, 0); if (num_logs(nvroot) > 0) print_logs(NULL, nvroot, namewidth, B_FALSE); if (reason == ZPOOL_STATUS_BAD_GUID_SUM) { (void) printf(gettext("\n\tAdditional devices are known to " "be part of this pool, though their\n\texact " "configuration cannot be determined.\n")); } } /* * Perform the import for the given configuration. This passes the heavy * lifting off to zpool_import_props(), and then mounts the datasets contained * within the pool. */ static int do_import(nvlist_t *config, const char *newname, const char *mntopts, nvlist_t *props, int flags) { zpool_handle_t *zhp; char *name; uint64_t state; uint64_t version; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); if (version > SPA_VERSION) { (void) fprintf(stderr, gettext("cannot import '%s': pool " "is formatted using a newer ZFS version\n"), name); return (1); } else if (state != POOL_STATE_EXPORTED && !(flags & ZFS_IMPORT_ANY_HOST)) { uint64_t hostid; if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { if ((unsigned long)hostid != gethostid()) { char *hostname; uint64_t timestamp; time_t t; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, ×tamp) == 0); t = timestamp; (void) fprintf(stderr, gettext("cannot import " "'%s': pool may be in use from other " "system, it was last accessed by %s " "(hostid: 0x%lx) on %s"), name, hostname, (unsigned long)hostid, asctime(localtime(&t))); (void) fprintf(stderr, gettext("use '-f' to " "import anyway\n")); return (1); } } else { (void) fprintf(stderr, gettext("cannot import '%s': " "pool may be in use from other system\n"), name); (void) fprintf(stderr, gettext("use '-f' to import " "anyway\n")); return (1); } } if (zpool_import_props(g_zfs, config, newname, props, flags) != 0) return (1); if (newname != NULL) name = (char *)newname; if ((zhp = zpool_open_canfail(g_zfs, name)) == NULL) return (1); if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL && !(flags & ZFS_IMPORT_ONLY) && zpool_enable_datasets(zhp, mntopts, 0) != 0) { zpool_close(zhp); return (1); } zpool_close(zhp); return (0); } /* * zpool import [-d dir] [-D] * import [-o mntopts] [-o prop=value] ... [-R root] [-D] * [-d dir | -c cachefile] [-f] -a * import [-o mntopts] [-o prop=value] ... [-R root] [-D] * [-d dir | -c cachefile] [-f] [-n] [-F] [newpool] * * -c Read pool information from a cachefile instead of searching * devices. * * -d Scan in a specific directory, other than /dev/dsk. More than * one directory can be specified using multiple '-d' options. * * -D Scan for previously destroyed pools or import all or only * specified destroyed pools. * * -R Temporarily import the pool, with all mountpoints relative to * the given root. The pool will remain exported when the machine * is rebooted. * * -V Import even in the presence of faulted vdevs. This is an * intentionally undocumented option for testing purposes, and * treats the pool configuration as complete, leaving any bad * vdevs in the FAULTED state. In other words, it does verbatim * import. * * -f Force import, even if it appears that the pool is active. * * -F Attempt rewind if necessary. * * -n See if rewind would work, but don't actually rewind. * * -N Import the pool but don't mount datasets. * * -T Specify a starting txg to use for import. This option is * intentionally undocumented option for testing purposes. * * -a Import all pools found. * * -o Set property=value and/or temporary mount options (without '='). * * The import command scans for pools to import, and import pools based on pool * name and GUID. The pool can also be renamed as part of the import process. */ int zpool_do_import(int argc, char **argv) { char **searchdirs = NULL; int nsearch = 0; int c; int err = 0; nvlist_t *pools = NULL; boolean_t do_all = B_FALSE; boolean_t do_destroyed = B_FALSE; char *mntopts = NULL; nvpair_t *elem; nvlist_t *config; uint64_t searchguid = 0; char *searchname = NULL; char *propval; nvlist_t *found_config; nvlist_t *policy = NULL; nvlist_t *props = NULL; boolean_t first; int flags = ZFS_IMPORT_NORMAL; uint32_t rewind_policy = ZPOOL_NO_REWIND; boolean_t dryrun = B_FALSE; boolean_t do_rewind = B_FALSE; boolean_t xtreme_rewind = B_FALSE; uint64_t pool_state, txg = -1ULL; char *cachefile = NULL; importargs_t idata = { 0 }; char *endptr; /* check options */ while ((c = getopt(argc, argv, ":aCc:d:DEfFmnNo:rR:T:VX")) != -1) { switch (c) { case 'a': do_all = B_TRUE; break; case 'c': cachefile = optarg; break; case 'd': if (searchdirs == NULL) { searchdirs = safe_malloc(sizeof (char *)); } else { char **tmp = safe_malloc((nsearch + 1) * sizeof (char *)); bcopy(searchdirs, tmp, nsearch * sizeof (char *)); free(searchdirs); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 'D': do_destroyed = B_TRUE; break; case 'f': flags |= ZFS_IMPORT_ANY_HOST; break; case 'F': do_rewind = B_TRUE; break; case 'm': flags |= ZFS_IMPORT_MISSING_LOG; break; case 'n': dryrun = B_TRUE; break; case 'N': flags |= ZFS_IMPORT_ONLY; break; case 'o': if ((propval = strchr(optarg, '=')) != NULL) { *propval = '\0'; propval++; if (add_prop_list(optarg, propval, &props, B_TRUE)) goto error; } else { mntopts = optarg; } break; case 'R': if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_ALTROOT), optarg, &props, B_TRUE)) goto error; if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), &propval) == 0) break; if (add_prop_list(zpool_prop_to_name( ZPOOL_PROP_CACHEFILE), "none", &props, B_TRUE)) goto error; break; case 'T': errno = 0; txg = strtoull(optarg, &endptr, 10); if (errno != 0 || *endptr != '\0') { (void) fprintf(stderr, gettext("invalid txg value\n")); usage(B_FALSE); } rewind_policy = ZPOOL_DO_REWIND | ZPOOL_EXTREME_REWIND; break; case 'V': flags |= ZFS_IMPORT_VERBATIM; break; case 'X': xtreme_rewind = B_TRUE; break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (cachefile && nsearch != 0) { (void) fprintf(stderr, gettext("-c is incompatible with -d\n")); usage(B_FALSE); } if ((dryrun || xtreme_rewind) && !do_rewind) { (void) fprintf(stderr, gettext("-n or -X only meaningful with -F\n")); usage(B_FALSE); } if (dryrun) rewind_policy = ZPOOL_TRY_REWIND; else if (do_rewind) rewind_policy = ZPOOL_DO_REWIND; if (xtreme_rewind) rewind_policy |= ZPOOL_EXTREME_REWIND; /* In the future, we can capture further policy and include it here */ if (nvlist_alloc(&policy, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_REWIND_REQUEST_TXG, txg) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind_policy) != 0) goto error; if (searchdirs == NULL) { searchdirs = safe_malloc(sizeof (char *)); searchdirs[0] = "/dev/dsk"; nsearch = 1; } /* check argument count */ if (do_all) { if (argc != 0) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } } else { if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } /* * Check for the SYS_CONFIG privilege. We do this explicitly * here because otherwise any attempt to discover pools will * silently fail. */ if (argc == 0 && !priv_ineffect(PRIV_SYS_CONFIG)) { (void) fprintf(stderr, gettext("cannot " "discover pools: permission denied\n")); free(searchdirs); nvlist_free(policy); return (1); } } /* * Depending on the arguments given, we do one of the following: * * Iterate through all pools and display information about * each one. * * -a Iterate through all pools and try to import each one. * * Find the pool that corresponds to the given GUID/pool * name and import that one. * * -D Above options applies only to destroyed pools. */ if (argc != 0) { char *endptr; errno = 0; searchguid = strtoull(argv[0], &endptr, 10); if (errno != 0 || *endptr != '\0') searchname = argv[0]; found_config = NULL; /* * User specified a name or guid. Ensure it's unique. */ idata.unique = B_TRUE; } idata.path = searchdirs; idata.paths = nsearch; idata.poolname = searchname; idata.guid = searchguid; idata.cachefile = cachefile; pools = zpool_search_import(g_zfs, &idata); if (pools != NULL && idata.exists && (argc == 1 || strcmp(argv[0], argv[1]) == 0)) { (void) fprintf(stderr, gettext("cannot import '%s': " "a pool with that name already exists\n"), argv[0]); (void) fprintf(stderr, gettext("use the form '%s " " ' to give it a new name\n"), "zpool import"); err = 1; } else if (pools == NULL && idata.exists) { (void) fprintf(stderr, gettext("cannot import '%s': " "a pool with that name is already created/imported,\n"), argv[0]); (void) fprintf(stderr, gettext("and no additional pools " "with that name were found\n")); err = 1; } else if (pools == NULL) { if (argc != 0) { (void) fprintf(stderr, gettext("cannot import '%s': " "no such pool available\n"), argv[0]); } err = 1; } if (err == 1) { free(searchdirs); nvlist_free(policy); return (1); } /* * At this point we have a list of import candidate configs. Even if * we were searching by pool name or guid, we still need to * post-process the list to deal with pool state and possible * duplicate names. */ err = 0; elem = NULL; first = B_TRUE; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { verify(nvpair_value_nvlist(elem, &config) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &pool_state) == 0); if (!do_destroyed && pool_state == POOL_STATE_DESTROYED) continue; if (do_destroyed && pool_state != POOL_STATE_DESTROYED) continue; verify(nvlist_add_nvlist(config, ZPOOL_REWIND_POLICY, policy) == 0); if (argc == 0) { if (first) first = B_FALSE; else if (!do_all) (void) printf("\n"); if (do_all) { err |= do_import(config, NULL, mntopts, props, flags); } else { show_import(config); } } else if (searchname != NULL) { char *name; /* * We are searching for a pool based on name. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); if (strcmp(name, searchname) == 0) { if (found_config != NULL) { (void) fprintf(stderr, gettext( "cannot import '%s': more than " "one matching pool\n"), searchname); (void) fprintf(stderr, gettext( "import by numeric ID instead\n")); err = B_TRUE; } found_config = config; } } else { uint64_t guid; /* * Search for a pool by guid. */ verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); if (guid == searchguid) found_config = config; } } /* * If we were searching for a specific pool, verify that we found a * pool, and then do the import. */ if (argc != 0 && err == 0) { if (found_config == NULL) { (void) fprintf(stderr, gettext("cannot import '%s': " "no such pool available\n"), argv[0]); err = B_TRUE; } else { err |= do_import(found_config, argc == 1 ? NULL : argv[1], mntopts, props, flags); } } /* * If we were just looking for pools, report an error if none were * found. */ if (argc == 0 && first) (void) fprintf(stderr, gettext("no pools available to import\n")); error: nvlist_free(props); nvlist_free(pools); nvlist_free(policy); free(searchdirs); return (err ? 1 : 0); } typedef struct iostat_cbdata { zpool_list_t *cb_list; int cb_verbose; int cb_iteration; int cb_namewidth; } iostat_cbdata_t; static void print_iostat_separator(iostat_cbdata_t *cb) { int i = 0; for (i = 0; i < cb->cb_namewidth; i++) (void) printf("-"); (void) printf(" ----- ----- ----- ----- ----- -----\n"); } static void print_iostat_header(iostat_cbdata_t *cb) { (void) printf("%*s capacity operations bandwidth\n", cb->cb_namewidth, ""); (void) printf("%-*s alloc free read write read write\n", cb->cb_namewidth, "pool"); print_iostat_separator(cb); } /* * Display a single statistic. */ static void print_one_stat(uint64_t value) { char buf[64]; zfs_nicenum(value, buf, sizeof (buf)); (void) printf(" %5s", buf); } /* * Print out all the statistics for the given vdev. This can either be the * toplevel configuration, or called recursively. If 'name' is NULL, then this * is a verbose output, and we don't want to display the toplevel pool stats. */ void print_vdev_stats(zpool_handle_t *zhp, const char *name, nvlist_t *oldnv, nvlist_t *newnv, iostat_cbdata_t *cb, int depth) { nvlist_t **oldchild, **newchild; uint_t c, children; vdev_stat_t *oldvs, *newvs; vdev_stat_t zerovs = { 0 }; uint64_t tdelta; double scale; char *vname; if (oldnv != NULL) { verify(nvlist_lookup_uint64_array(oldnv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&oldvs, &c) == 0); } else { oldvs = &zerovs; } verify(nvlist_lookup_uint64_array(newnv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&newvs, &c) == 0); if (strlen(name) + depth > cb->cb_namewidth) (void) printf("%*s%s", depth, "", name); else (void) printf("%*s%s%*s", depth, "", name, (int)(cb->cb_namewidth - strlen(name) - depth), ""); tdelta = newvs->vs_timestamp - oldvs->vs_timestamp; if (tdelta == 0) scale = 1.0; else scale = (double)NANOSEC / tdelta; /* only toplevel vdevs have capacity stats */ if (newvs->vs_space == 0) { (void) printf(" - -"); } else { print_one_stat(newvs->vs_alloc); print_one_stat(newvs->vs_space - newvs->vs_alloc); } print_one_stat((uint64_t)(scale * (newvs->vs_ops[ZIO_TYPE_READ] - oldvs->vs_ops[ZIO_TYPE_READ]))); print_one_stat((uint64_t)(scale * (newvs->vs_ops[ZIO_TYPE_WRITE] - oldvs->vs_ops[ZIO_TYPE_WRITE]))); print_one_stat((uint64_t)(scale * (newvs->vs_bytes[ZIO_TYPE_READ] - oldvs->vs_bytes[ZIO_TYPE_READ]))); print_one_stat((uint64_t)(scale * (newvs->vs_bytes[ZIO_TYPE_WRITE] - oldvs->vs_bytes[ZIO_TYPE_WRITE]))); (void) printf("\n"); if (!cb->cb_verbose) return; if (nvlist_lookup_nvlist_array(newnv, ZPOOL_CONFIG_CHILDREN, &newchild, &children) != 0) return; if (oldnv && nvlist_lookup_nvlist_array(oldnv, ZPOOL_CONFIG_CHILDREN, &oldchild, &c) != 0) return; for (c = 0; c < children; c++) { uint64_t ishole = B_FALSE; if (nvlist_lookup_uint64(newchild[c], ZPOOL_CONFIG_IS_HOLE, &ishole) == 0 && ishole) continue; vname = zpool_vdev_name(g_zfs, zhp, newchild[c], B_FALSE); print_vdev_stats(zhp, vname, oldnv ? oldchild[c] : NULL, newchild[c], cb, depth + 2); free(vname); } /* * Include level 2 ARC devices in iostat output */ if (nvlist_lookup_nvlist_array(newnv, ZPOOL_CONFIG_L2CACHE, &newchild, &children) != 0) return; if (oldnv && nvlist_lookup_nvlist_array(oldnv, ZPOOL_CONFIG_L2CACHE, &oldchild, &c) != 0) return; if (children > 0) { (void) printf("%-*s - - - - - " "-\n", cb->cb_namewidth, "cache"); for (c = 0; c < children; c++) { vname = zpool_vdev_name(g_zfs, zhp, newchild[c], B_FALSE); print_vdev_stats(zhp, vname, oldnv ? oldchild[c] : NULL, newchild[c], cb, depth + 2); free(vname); } } } static int refresh_iostat(zpool_handle_t *zhp, void *data) { iostat_cbdata_t *cb = data; boolean_t missing; /* * If the pool has disappeared, remove it from the list and continue. */ if (zpool_refresh_stats(zhp, &missing) != 0) return (-1); if (missing) pool_list_remove(cb->cb_list, zhp); return (0); } /* * Callback to print out the iostats for the given pool. */ int print_iostat(zpool_handle_t *zhp, void *data) { iostat_cbdata_t *cb = data; nvlist_t *oldconfig, *newconfig; nvlist_t *oldnvroot, *newnvroot; newconfig = zpool_get_config(zhp, &oldconfig); if (cb->cb_iteration == 1) oldconfig = NULL; verify(nvlist_lookup_nvlist(newconfig, ZPOOL_CONFIG_VDEV_TREE, &newnvroot) == 0); if (oldconfig == NULL) oldnvroot = NULL; else verify(nvlist_lookup_nvlist(oldconfig, ZPOOL_CONFIG_VDEV_TREE, &oldnvroot) == 0); /* * Print out the statistics for the pool. */ print_vdev_stats(zhp, zpool_get_name(zhp), oldnvroot, newnvroot, cb, 0); if (cb->cb_verbose) print_iostat_separator(cb); return (0); } int get_namewidth(zpool_handle_t *zhp, void *data) { iostat_cbdata_t *cb = data; nvlist_t *config, *nvroot; if ((config = zpool_get_config(zhp, NULL)) != NULL) { verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (!cb->cb_verbose) cb->cb_namewidth = strlen(zpool_get_name(zhp)); else cb->cb_namewidth = max_width(zhp, nvroot, 0, 0); } /* * The width must fall into the range [10,38]. The upper limit is the * maximum we can have and still fit in 80 columns. */ if (cb->cb_namewidth < 10) cb->cb_namewidth = 10; if (cb->cb_namewidth > 38) cb->cb_namewidth = 38; return (0); } /* * Parse the input string, get the 'interval' and 'count' value if there is one. */ static void get_interval_count(int *argcp, char **argv, unsigned long *iv, unsigned long *cnt) { unsigned long interval = 0, count = 0; int argc = *argcp, errno; /* * Determine if the last argument is an integer or a pool name */ if (argc > 0 && isdigit(argv[argc - 1][0])) { char *end; errno = 0; interval = strtoul(argv[argc - 1], &end, 10); if (*end == '\0' && errno == 0) { if (interval == 0) { (void) fprintf(stderr, gettext("interval " "cannot be zero\n")); usage(B_FALSE); } /* * Ignore the last parameter */ argc--; } else { /* * If this is not a valid number, just plow on. The * user will get a more informative error message later * on. */ interval = 0; } } /* * If the last argument is also an integer, then we have both a count * and an interval. */ if (argc > 0 && isdigit(argv[argc - 1][0])) { char *end; errno = 0; count = interval; interval = strtoul(argv[argc - 1], &end, 10); if (*end == '\0' && errno == 0) { if (interval == 0) { (void) fprintf(stderr, gettext("interval " "cannot be zero\n")); usage(B_FALSE); } /* * Ignore the last parameter */ argc--; } else { interval = 0; } } *iv = interval; *cnt = count; *argcp = argc; } static void get_timestamp_arg(char c) { if (c == 'u') timestamp_fmt = UDATE; else if (c == 'd') timestamp_fmt = DDATE; else usage(B_FALSE); } /* * zpool iostat [-v] [-T d|u] [pool] ... [interval [count]] * * -v Display statistics for individual vdevs * -T Display a timestamp in date(1) or Unix format * * This command can be tricky because we want to be able to deal with pool * creation/destruction as well as vdev configuration changes. The bulk of this * processing is handled by the pool_list_* routines in zpool_iter.c. We rely * on pool_list_update() to detect the addition of new pools. Configuration * changes are all handled within libzfs. */ int zpool_do_iostat(int argc, char **argv) { int c; int ret; int npools; unsigned long interval = 0, count = 0; zpool_list_t *list; boolean_t verbose = B_FALSE; iostat_cbdata_t cb; /* check options */ while ((c = getopt(argc, argv, "T:v")) != -1) { switch (c) { case 'T': get_timestamp_arg(*optarg); break; case 'v': verbose = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; get_interval_count(&argc, argv, &interval, &count); /* * Construct the list of all interesting pools. */ ret = 0; if ((list = pool_list_get(argc, argv, NULL, &ret)) == NULL) return (1); if (pool_list_count(list) == 0 && argc != 0) { pool_list_free(list); return (1); } if (pool_list_count(list) == 0 && interval == 0) { pool_list_free(list); (void) fprintf(stderr, gettext("no pools available\n")); return (1); } /* * Enter the main iostat loop. */ cb.cb_list = list; cb.cb_verbose = verbose; cb.cb_iteration = 0; cb.cb_namewidth = 0; for (;;) { pool_list_update(list); if ((npools = pool_list_count(list)) == 0) break; /* * Refresh all statistics. This is done as an explicit step * before calculating the maximum name width, so that any * configuration changes are properly accounted for. */ (void) pool_list_iter(list, B_FALSE, refresh_iostat, &cb); /* * Iterate over all pools to determine the maximum width * for the pool / device name column across all pools. */ cb.cb_namewidth = 0; (void) pool_list_iter(list, B_FALSE, get_namewidth, &cb); if (timestamp_fmt != NODATE) print_timestamp(timestamp_fmt); /* * If it's the first time, or verbose mode, print the header. */ if (++cb.cb_iteration == 1 || verbose) print_iostat_header(&cb); (void) pool_list_iter(list, B_FALSE, print_iostat, &cb); /* * If there's more than one pool, and we're not in verbose mode * (which prints a separator for us), then print a separator. */ if (npools > 1 && !verbose) print_iostat_separator(&cb); if (verbose) (void) printf("\n"); /* * Flush the output so that redirection to a file isn't buffered * indefinitely. */ (void) fflush(stdout); if (interval == 0) break; if (count != 0 && --count == 0) break; (void) sleep(interval); } pool_list_free(list); return (ret); } typedef struct list_cbdata { boolean_t cb_scripted; boolean_t cb_first; zprop_list_t *cb_proplist; } list_cbdata_t; /* * Given a list of columns to display, output appropriate headers for each one. */ static void print_header(zprop_list_t *pl) { const char *header; boolean_t first = B_TRUE; boolean_t right_justify; for (; pl != NULL; pl = pl->pl_next) { if (pl->pl_prop == ZPROP_INVAL) continue; if (!first) (void) printf(" "); else first = B_FALSE; header = zpool_prop_column_name(pl->pl_prop); right_justify = zpool_prop_align_right(pl->pl_prop); if (pl->pl_next == NULL && !right_justify) (void) printf("%s", header); else if (right_justify) - (void) printf("%*s", pl->pl_width, header); + (void) printf("%*s", (int)pl->pl_width, header); else - (void) printf("%-*s", pl->pl_width, header); + (void) printf("%-*s", (int)pl->pl_width, header); } (void) printf("\n"); } /* * Given a pool and a list of properties, print out all the properties according * to the described layout. */ static void print_pool(zpool_handle_t *zhp, zprop_list_t *pl, int scripted) { boolean_t first = B_TRUE; char property[ZPOOL_MAXPROPLEN]; char *propstr; boolean_t right_justify; int width; for (; pl != NULL; pl = pl->pl_next) { if (!first) { if (scripted) (void) printf("\t"); else (void) printf(" "); } else { first = B_FALSE; } right_justify = B_FALSE; if (pl->pl_prop != ZPROP_INVAL) { if (zpool_get_prop(zhp, pl->pl_prop, property, sizeof (property), NULL) != 0) propstr = "-"; else propstr = property; right_justify = zpool_prop_align_right(pl->pl_prop); } else { propstr = "-"; } width = pl->pl_width; /* * If this is being called in scripted mode, or if this is the * last column and it is left-justified, don't include a width * format specifier. */ if (scripted || (pl->pl_next == NULL && !right_justify)) (void) printf("%s", propstr); else if (right_justify) (void) printf("%*s", width, propstr); else (void) printf("%-*s", width, propstr); } (void) printf("\n"); } /* * Generic callback function to list a pool. */ int list_callback(zpool_handle_t *zhp, void *data) { list_cbdata_t *cbp = data; if (cbp->cb_first) { if (!cbp->cb_scripted) print_header(cbp->cb_proplist); cbp->cb_first = B_FALSE; } print_pool(zhp, cbp->cb_proplist, cbp->cb_scripted); return (0); } /* * zpool list [-H] [-o prop[,prop]*] [-T d|u] [pool] ... [interval [count]] * * -H Scripted mode. Don't display headers, and separate properties * by a single tab. * -o List of properties to display. Defaults to * "name,size,allocated,free,capacity,health,altroot" * -T Display a timestamp in date(1) or Unix format * * List all pools in the system, whether or not they're healthy. Output space * statistics for each one, as well as health status summary. */ int zpool_do_list(int argc, char **argv) { int c; int ret; list_cbdata_t cb = { 0 }; static char default_props[] = "name,size,allocated,free,capacity,dedupratio,health,altroot"; char *props = default_props; unsigned long interval = 0, count = 0; /* check options */ while ((c = getopt(argc, argv, ":Ho:T:")) != -1) { switch (c) { case 'H': cb.cb_scripted = B_TRUE; break; case 'o': props = optarg; break; case 'T': get_timestamp_arg(*optarg); break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; get_interval_count(&argc, argv, &interval, &count); if (zprop_get_list(g_zfs, props, &cb.cb_proplist, ZFS_TYPE_POOL) != 0) usage(B_FALSE); cb.cb_first = B_TRUE; for (;;) { if (timestamp_fmt != NODATE) print_timestamp(timestamp_fmt); ret = for_each_pool(argc, argv, B_TRUE, &cb.cb_proplist, list_callback, &cb); if (argc == 0 && cb.cb_first && !cb.cb_scripted) { (void) printf(gettext("no pools available\n")); zprop_free_list(cb.cb_proplist); return (0); } if (interval == 0) break; if (count != 0 && --count == 0) break; (void) sleep(interval); } zprop_free_list(cb.cb_proplist); return (ret); } static nvlist_t * zpool_get_vdev_by_name(nvlist_t *nv, char *name) { nvlist_t **child; uint_t c, children; nvlist_t *match; char *path; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); if (strncmp(name, "/dev/dsk/", 9) == 0) name += 9; if (strncmp(path, "/dev/dsk/", 9) == 0) path += 9; if (strcmp(name, path) == 0) return (nv); return (NULL); } for (c = 0; c < children; c++) if ((match = zpool_get_vdev_by_name(child[c], name)) != NULL) return (match); return (NULL); } static int zpool_do_attach_or_replace(int argc, char **argv, int replacing) { boolean_t force = B_FALSE; int c; nvlist_t *nvroot; char *poolname, *old_disk, *new_disk; zpool_handle_t *zhp; int ret; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': force = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } poolname = argv[0]; if (argc < 2) { (void) fprintf(stderr, gettext("missing specification\n")); usage(B_FALSE); } old_disk = argv[1]; if (argc < 3) { if (!replacing) { (void) fprintf(stderr, gettext("missing specification\n")); usage(B_FALSE); } new_disk = old_disk; argc -= 1; argv += 1; } else { new_disk = argv[2]; argc -= 2; argv += 2; } if (argc > 1) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); if (zpool_get_config(zhp, NULL) == NULL) { (void) fprintf(stderr, gettext("pool '%s' is unavailable\n"), poolname); zpool_close(zhp); return (1); } nvroot = make_root_vdev(zhp, force, B_FALSE, replacing, B_FALSE, argc, argv); if (nvroot == NULL) { zpool_close(zhp); return (1); } ret = zpool_vdev_attach(zhp, old_disk, new_disk, nvroot, replacing); nvlist_free(nvroot); zpool_close(zhp); return (ret); } /* * zpool replace [-f] * * -f Force attach, even if appears to be in use. * * Replace with . */ /* ARGSUSED */ int zpool_do_replace(int argc, char **argv) { return (zpool_do_attach_or_replace(argc, argv, B_TRUE)); } /* * zpool attach [-f] * * -f Force attach, even if appears to be in use. * * Attach to the mirror containing . If is not * part of a mirror, then will be transformed into a mirror of * and . In either case, will begin life * with a DTL of [0, now], and will immediately begin to resilver itself. */ int zpool_do_attach(int argc, char **argv) { return (zpool_do_attach_or_replace(argc, argv, B_FALSE)); } /* * zpool detach [-f] * * -f Force detach of , even if DTLs argue against it * (not supported yet) * * Detach a device from a mirror. The operation will be refused if * is the last device in the mirror, or if the DTLs indicate that this device * has the only valid copy of some data. */ /* ARGSUSED */ int zpool_do_detach(int argc, char **argv) { int c; char *poolname, *path; zpool_handle_t *zhp; int ret; /* check options */ while ((c = getopt(argc, argv, "f")) != -1) { switch (c) { case 'f': case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing specification\n")); usage(B_FALSE); } poolname = argv[0]; path = argv[1]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); ret = zpool_vdev_detach(zhp, path); zpool_close(zhp); return (ret); } /* * zpool split [-n] [-o prop=val] ... * [-o mntopt] ... * [-R altroot] [ ...] * * -n Do not split the pool, but display the resulting layout if * it were to be split. * -o Set property=value, or set mount options. * -R Mount the split-off pool under an alternate root. * * Splits the named pool and gives it the new pool name. Devices to be split * off may be listed, provided that no more than one device is specified * per top-level vdev mirror. The newly split pool is left in an exported * state unless -R is specified. * * Restrictions: the top-level of the pool pool must only be made up of * mirrors; all devices in the pool must be healthy; no device may be * undergoing a resilvering operation. */ int zpool_do_split(int argc, char **argv) { char *srcpool, *newpool, *propval; char *mntopts = NULL; splitflags_t flags; int c, ret = 0; zpool_handle_t *zhp; nvlist_t *config, *props = NULL; flags.dryrun = B_FALSE; flags.import = B_FALSE; /* check options */ while ((c = getopt(argc, argv, ":R:no:")) != -1) { switch (c) { case 'R': flags.import = B_TRUE; if (add_prop_list( zpool_prop_to_name(ZPOOL_PROP_ALTROOT), optarg, &props, B_TRUE) != 0) { if (props) nvlist_free(props); usage(B_FALSE); } break; case 'n': flags.dryrun = B_TRUE; break; case 'o': if ((propval = strchr(optarg, '=')) != NULL) { *propval = '\0'; propval++; if (add_prop_list(optarg, propval, &props, B_TRUE) != 0) { if (props) nvlist_free(props); usage(B_FALSE); } } else { mntopts = optarg; } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); break; } } if (!flags.import && mntopts != NULL) { (void) fprintf(stderr, gettext("setting mntopts is only " "valid when importing the pool\n")); usage(B_FALSE); } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("Missing pool name\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("Missing new pool name\n")); usage(B_FALSE); } srcpool = argv[0]; newpool = argv[1]; argc -= 2; argv += 2; if ((zhp = zpool_open(g_zfs, srcpool)) == NULL) return (1); config = split_mirror_vdev(zhp, newpool, props, flags, argc, argv); if (config == NULL) { ret = 1; } else { if (flags.dryrun) { (void) printf(gettext("would create '%s' with the " "following layout:\n\n"), newpool); print_vdev_tree(NULL, newpool, config, 0, B_FALSE); } nvlist_free(config); } zpool_close(zhp); if (ret != 0 || flags.dryrun || !flags.import) return (ret); /* * The split was successful. Now we need to open the new * pool and import it. */ if ((zhp = zpool_open_canfail(g_zfs, newpool)) == NULL) return (1); if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL && zpool_enable_datasets(zhp, mntopts, 0) != 0) { ret = 1; (void) fprintf(stderr, gettext("Split was succssful, but " "the datasets could not all be mounted\n")); (void) fprintf(stderr, gettext("Try doing '%s' with a " "different altroot\n"), "zpool import"); } zpool_close(zhp); return (ret); } /* * zpool online ... */ int zpool_do_online(int argc, char **argv) { int c, i; char *poolname; zpool_handle_t *zhp; int ret = 0; vdev_state_t newstate; int flags = 0; /* check options */ while ((c = getopt(argc, argv, "et")) != -1) { switch (c) { case 'e': flags |= ZFS_ONLINE_EXPAND; break; case 't': case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing device name\n")); usage(B_FALSE); } poolname = argv[0]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); for (i = 1; i < argc; i++) { if (zpool_vdev_online(zhp, argv[i], flags, &newstate) == 0) { if (newstate != VDEV_STATE_HEALTHY) { (void) printf(gettext("warning: device '%s' " "onlined, but remains in faulted state\n"), argv[i]); if (newstate == VDEV_STATE_FAULTED) (void) printf(gettext("use 'zpool " "clear' to restore a faulted " "device\n")); else (void) printf(gettext("use 'zpool " "replace' to replace devices " "that are no longer present\n")); } } else { ret = 1; } } zpool_close(zhp); return (ret); } /* * zpool offline [-ft] ... * * -f Force the device into the offline state, even if doing * so would appear to compromise pool availability. * (not supported yet) * * -t Only take the device off-line temporarily. The offline * state will not be persistent across reboots. */ /* ARGSUSED */ int zpool_do_offline(int argc, char **argv) { int c, i; char *poolname; zpool_handle_t *zhp; int ret = 0; boolean_t istmp = B_FALSE; /* check options */ while ((c = getopt(argc, argv, "ft")) != -1) { switch (c) { case 't': istmp = B_TRUE; break; case 'f': case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; /* get pool name and check number of arguments */ if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing device name\n")); usage(B_FALSE); } poolname = argv[0]; if ((zhp = zpool_open(g_zfs, poolname)) == NULL) return (1); for (i = 1; i < argc; i++) { if (zpool_vdev_offline(zhp, argv[i], istmp) != 0) ret = 1; } zpool_close(zhp); return (ret); } /* * zpool clear [device] * * Clear all errors associated with a pool or a particular device. */ int zpool_do_clear(int argc, char **argv) { int c; int ret = 0; boolean_t dryrun = B_FALSE; boolean_t do_rewind = B_FALSE; boolean_t xtreme_rewind = B_FALSE; uint32_t rewind_policy = ZPOOL_NO_REWIND; nvlist_t *policy = NULL; zpool_handle_t *zhp; char *pool, *device; /* check options */ while ((c = getopt(argc, argv, "FnX")) != -1) { switch (c) { case 'F': do_rewind = B_TRUE; break; case 'n': dryrun = B_TRUE; break; case 'X': xtreme_rewind = B_TRUE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc > 2) { (void) fprintf(stderr, gettext("too many arguments\n")); usage(B_FALSE); } if ((dryrun || xtreme_rewind) && !do_rewind) { (void) fprintf(stderr, gettext("-n or -X only meaningful with -F\n")); usage(B_FALSE); } if (dryrun) rewind_policy = ZPOOL_TRY_REWIND; else if (do_rewind) rewind_policy = ZPOOL_DO_REWIND; if (xtreme_rewind) rewind_policy |= ZPOOL_EXTREME_REWIND; /* In future, further rewind policy choices can be passed along here */ if (nvlist_alloc(&policy, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind_policy) != 0) return (1); pool = argv[0]; device = argc == 2 ? argv[1] : NULL; if ((zhp = zpool_open_canfail(g_zfs, pool)) == NULL) { nvlist_free(policy); return (1); } if (zpool_clear(zhp, device, policy) != 0) ret = 1; zpool_close(zhp); nvlist_free(policy); return (ret); } typedef struct scrub_cbdata { int cb_type; int cb_argc; char **cb_argv; } scrub_cbdata_t; int scrub_callback(zpool_handle_t *zhp, void *data) { scrub_cbdata_t *cb = data; int err; /* * Ignore faulted pools. */ if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { (void) fprintf(stderr, gettext("cannot scrub '%s': pool is " "currently unavailable\n"), zpool_get_name(zhp)); return (1); } err = zpool_scan(zhp, cb->cb_type); return (err != 0); } /* * zpool scrub [-s] ... * * -s Stop. Stops any in-progress scrub. */ int zpool_do_scrub(int argc, char **argv) { int c; scrub_cbdata_t cb; cb.cb_type = POOL_SCAN_SCRUB; /* check options */ while ((c = getopt(argc, argv, "s")) != -1) { switch (c) { case 's': cb.cb_type = POOL_SCAN_NONE; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } cb.cb_argc = argc; cb.cb_argv = argv; argc -= optind; argv += optind; if (argc < 1) { (void) fprintf(stderr, gettext("missing pool name argument\n")); usage(B_FALSE); } return (for_each_pool(argc, argv, B_TRUE, NULL, scrub_callback, &cb)); } typedef struct status_cbdata { int cb_count; boolean_t cb_allpools; boolean_t cb_verbose; boolean_t cb_explain; boolean_t cb_first; boolean_t cb_dedup_stats; } status_cbdata_t; /* * Print out detailed scrub status. */ void print_scan_status(pool_scan_stat_t *ps) { time_t start, end; uint64_t elapsed, mins_left, hours_left; uint64_t pass_exam, examined, total; uint_t rate; double fraction_done; char processed_buf[7], examined_buf[7], total_buf[7], rate_buf[7]; (void) printf(gettext(" scan: ")); /* If there's never been a scan, there's not much to say. */ if (ps == NULL || ps->pss_func == POOL_SCAN_NONE || ps->pss_func >= POOL_SCAN_FUNCS) { (void) printf(gettext("none requested\n")); return; } start = ps->pss_start_time; end = ps->pss_end_time; zfs_nicenum(ps->pss_processed, processed_buf, sizeof (processed_buf)); assert(ps->pss_func == POOL_SCAN_SCRUB || ps->pss_func == POOL_SCAN_RESILVER); /* * Scan is finished or canceled. */ if (ps->pss_state == DSS_FINISHED) { uint64_t minutes_taken = (end - start) / 60; char *fmt; if (ps->pss_func == POOL_SCAN_SCRUB) { fmt = gettext("scrub repaired %s in %lluh%um with " "%llu errors on %s"); } else if (ps->pss_func == POOL_SCAN_RESILVER) { fmt = gettext("resilvered %s in %lluh%um with " "%llu errors on %s"); } /* LINTED */ (void) printf(fmt, processed_buf, (u_longlong_t)(minutes_taken / 60), (uint_t)(minutes_taken % 60), (u_longlong_t)ps->pss_errors, ctime((time_t *)&end)); return; } else if (ps->pss_state == DSS_CANCELED) { if (ps->pss_func == POOL_SCAN_SCRUB) { (void) printf(gettext("scrub canceled on %s"), ctime(&end)); } else if (ps->pss_func == POOL_SCAN_RESILVER) { (void) printf(gettext("resilver canceled on %s"), ctime(&end)); } return; } assert(ps->pss_state == DSS_SCANNING); /* * Scan is in progress. */ if (ps->pss_func == POOL_SCAN_SCRUB) { (void) printf(gettext("scrub in progress since %s"), ctime(&start)); } else if (ps->pss_func == POOL_SCAN_RESILVER) { (void) printf(gettext("resilver in progress since %s"), ctime(&start)); } examined = ps->pss_examined ? ps->pss_examined : 1; total = ps->pss_to_examine; fraction_done = (double)examined / total; /* elapsed time for this pass */ elapsed = time(NULL) - ps->pss_pass_start; elapsed = elapsed ? elapsed : 1; pass_exam = ps->pss_pass_exam ? ps->pss_pass_exam : 1; rate = pass_exam / elapsed; rate = rate ? rate : 1; mins_left = ((total - examined) / rate) / 60; hours_left = mins_left / 60; zfs_nicenum(examined, examined_buf, sizeof (examined_buf)); zfs_nicenum(total, total_buf, sizeof (total_buf)); zfs_nicenum(rate, rate_buf, sizeof (rate_buf)); /* * do not print estimated time if hours_left is more than 30 days */ (void) printf(gettext(" %s scanned out of %s at %s/s"), examined_buf, total_buf, rate_buf); if (hours_left < (30 * 24)) { (void) printf(gettext(", %lluh%um to go\n"), (u_longlong_t)hours_left, (uint_t)(mins_left % 60)); } else { (void) printf(gettext( ", (scan is slow, no estimated time)\n")); } if (ps->pss_func == POOL_SCAN_RESILVER) { (void) printf(gettext(" %s resilvered, %.2f%% done\n"), processed_buf, 100 * fraction_done); } else if (ps->pss_func == POOL_SCAN_SCRUB) { (void) printf(gettext(" %s repaired, %.2f%% done\n"), processed_buf, 100 * fraction_done); } } static void print_error_log(zpool_handle_t *zhp) { nvlist_t *nverrlist = NULL; nvpair_t *elem; char *pathname; size_t len = MAXPATHLEN * 2; if (zpool_get_errlog(zhp, &nverrlist) != 0) { (void) printf("errors: List of errors unavailable " "(insufficient privileges)\n"); return; } (void) printf("errors: Permanent errors have been " "detected in the following files:\n\n"); pathname = safe_malloc(len); elem = NULL; while ((elem = nvlist_next_nvpair(nverrlist, elem)) != NULL) { nvlist_t *nv; uint64_t dsobj, obj; verify(nvpair_value_nvlist(elem, &nv) == 0); verify(nvlist_lookup_uint64(nv, ZPOOL_ERR_DATASET, &dsobj) == 0); verify(nvlist_lookup_uint64(nv, ZPOOL_ERR_OBJECT, &obj) == 0); zpool_obj_to_path(zhp, dsobj, obj, pathname, len); (void) printf("%7s %s\n", "", pathname); } free(pathname); nvlist_free(nverrlist); } static void print_spares(zpool_handle_t *zhp, nvlist_t **spares, uint_t nspares, int namewidth) { uint_t i; char *name; if (nspares == 0) return; (void) printf(gettext("\tspares\n")); for (i = 0; i < nspares; i++) { name = zpool_vdev_name(g_zfs, zhp, spares[i], B_FALSE); print_status_config(zhp, name, spares[i], namewidth, 2, B_TRUE); free(name); } } static void print_l2cache(zpool_handle_t *zhp, nvlist_t **l2cache, uint_t nl2cache, int namewidth) { uint_t i; char *name; if (nl2cache == 0) return; (void) printf(gettext("\tcache\n")); for (i = 0; i < nl2cache; i++) { name = zpool_vdev_name(g_zfs, zhp, l2cache[i], B_FALSE); print_status_config(zhp, name, l2cache[i], namewidth, 2, B_FALSE); free(name); } } static void print_dedup_stats(nvlist_t *config) { ddt_histogram_t *ddh; ddt_stat_t *dds; ddt_object_t *ddo; uint_t c; /* * If the pool was faulted then we may not have been able to * obtain the config. Otherwise, if have anything in the dedup * table continue processing the stats. */ if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_DDT_OBJ_STATS, (uint64_t **)&ddo, &c) != 0 || ddo->ddo_count == 0) return; (void) printf("\n"); (void) printf("DDT entries %llu, size %llu on disk, %llu in core\n", (u_longlong_t)ddo->ddo_count, (u_longlong_t)ddo->ddo_dspace, (u_longlong_t)ddo->ddo_mspace); verify(nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_DDT_STATS, (uint64_t **)&dds, &c) == 0); verify(nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_DDT_HISTOGRAM, (uint64_t **)&ddh, &c) == 0); zpool_dump_ddt(dds, ddh); } /* * Display a summary of pool status. Displays a summary such as: * * pool: tank * status: DEGRADED * reason: One or more devices ... * see: http://www.sun.com/msg/ZFS-xxxx-01 * config: * mirror DEGRADED * c1t0d0 OK * c2t0d0 UNAVAIL * * When given the '-v' option, we print out the complete config. If the '-e' * option is specified, then we print out error rate information as well. */ int status_callback(zpool_handle_t *zhp, void *data) { status_cbdata_t *cbp = data; nvlist_t *config, *nvroot; char *msgid; int reason; const char *health; uint_t c; vdev_stat_t *vs; config = zpool_get_config(zhp, NULL); reason = zpool_get_status(zhp, &msgid); cbp->cb_count++; /* * If we were given 'zpool status -x', only report those pools with * problems. */ if (reason == ZPOOL_STATUS_OK && cbp->cb_explain) { if (!cbp->cb_allpools) { (void) printf(gettext("pool '%s' is healthy\n"), zpool_get_name(zhp)); if (cbp->cb_first) cbp->cb_first = B_FALSE; } return (0); } if (cbp->cb_first) cbp->cb_first = B_FALSE; else (void) printf("\n"); verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); health = zpool_state_to_name(vs->vs_state, vs->vs_aux); (void) printf(gettext(" pool: %s\n"), zpool_get_name(zhp)); (void) printf(gettext(" state: %s\n"), health); switch (reason) { case ZPOOL_STATUS_MISSING_DEV_R: (void) printf(gettext("status: One or more devices could not " "be opened. Sufficient replicas exist for\n\tthe pool to " "continue functioning in a degraded state.\n")); (void) printf(gettext("action: Attach the missing device and " "online it using 'zpool online'.\n")); break; case ZPOOL_STATUS_MISSING_DEV_NR: (void) printf(gettext("status: One or more devices could not " "be opened. There are insufficient\n\treplicas for the " "pool to continue functioning.\n")); (void) printf(gettext("action: Attach the missing device and " "online it using 'zpool online'.\n")); break; case ZPOOL_STATUS_CORRUPT_LABEL_R: (void) printf(gettext("status: One or more devices could not " "be used because the label is missing or\n\tinvalid. " "Sufficient replicas exist for the pool to continue\n\t" "functioning in a degraded state.\n")); (void) printf(gettext("action: Replace the device using " "'zpool replace'.\n")); break; case ZPOOL_STATUS_CORRUPT_LABEL_NR: (void) printf(gettext("status: One or more devices could not " "be used because the label is missing \n\tor invalid. " "There are insufficient replicas for the pool to " "continue\n\tfunctioning.\n")); zpool_explain_recover(zpool_get_handle(zhp), zpool_get_name(zhp), reason, config); break; case ZPOOL_STATUS_FAILING_DEV: (void) printf(gettext("status: One or more devices has " "experienced an unrecoverable error. An\n\tattempt was " "made to correct the error. Applications are " "unaffected.\n")); (void) printf(gettext("action: Determine if the device needs " "to be replaced, and clear the errors\n\tusing " "'zpool clear' or replace the device with 'zpool " "replace'.\n")); break; case ZPOOL_STATUS_OFFLINE_DEV: (void) printf(gettext("status: One or more devices has " "been taken offline by the administrator.\n\tSufficient " "replicas exist for the pool to continue functioning in " "a\n\tdegraded state.\n")); (void) printf(gettext("action: Online the device using " "'zpool online' or replace the device with\n\t'zpool " "replace'.\n")); break; case ZPOOL_STATUS_REMOVED_DEV: (void) printf(gettext("status: One or more devices has " "been removed by the administrator.\n\tSufficient " "replicas exist for the pool to continue functioning in " "a\n\tdegraded state.\n")); (void) printf(gettext("action: Online the device using " "'zpool online' or replace the device with\n\t'zpool " "replace'.\n")); break; case ZPOOL_STATUS_RESILVERING: (void) printf(gettext("status: One or more devices is " "currently being resilvered. The pool will\n\tcontinue " "to function, possibly in a degraded state.\n")); (void) printf(gettext("action: Wait for the resilver to " "complete.\n")); break; case ZPOOL_STATUS_CORRUPT_DATA: (void) printf(gettext("status: One or more devices has " "experienced an error resulting in data\n\tcorruption. " "Applications may be affected.\n")); (void) printf(gettext("action: Restore the file in question " "if possible. Otherwise restore the\n\tentire pool from " "backup.\n")); break; case ZPOOL_STATUS_CORRUPT_POOL: (void) printf(gettext("status: The pool metadata is corrupted " "and the pool cannot be opened.\n")); zpool_explain_recover(zpool_get_handle(zhp), zpool_get_name(zhp), reason, config); break; case ZPOOL_STATUS_VERSION_OLDER: (void) printf(gettext("status: The pool is formatted using an " "older on-disk format. The pool can\n\tstill be used, but " "some features are unavailable.\n")); (void) printf(gettext("action: Upgrade the pool using 'zpool " "upgrade'. Once this is done, the\n\tpool will no longer " "be accessible on older software versions.\n")); break; case ZPOOL_STATUS_VERSION_NEWER: (void) printf(gettext("status: The pool has been upgraded to a " "newer, incompatible on-disk version.\n\tThe pool cannot " "be accessed on this system.\n")); (void) printf(gettext("action: Access the pool from a system " "running more recent software, or\n\trestore the pool from " "backup.\n")); break; case ZPOOL_STATUS_FAULTED_DEV_R: (void) printf(gettext("status: One or more devices are " "faulted in response to persistent errors.\n\tSufficient " "replicas exist for the pool to continue functioning " "in a\n\tdegraded state.\n")); (void) printf(gettext("action: Replace the faulted device, " "or use 'zpool clear' to mark the device\n\trepaired.\n")); break; case ZPOOL_STATUS_FAULTED_DEV_NR: (void) printf(gettext("status: One or more devices are " "faulted in response to persistent errors. There are " "insufficient replicas for the pool to\n\tcontinue " "functioning.\n")); (void) printf(gettext("action: Destroy and re-create the pool " "from a backup source. Manually marking the device\n" "\trepaired using 'zpool clear' may allow some data " "to be recovered.\n")); break; case ZPOOL_STATUS_IO_FAILURE_WAIT: case ZPOOL_STATUS_IO_FAILURE_CONTINUE: (void) printf(gettext("status: One or more devices are " "faulted in response to IO failures.\n")); (void) printf(gettext("action: Make sure the affected devices " "are connected, then run 'zpool clear'.\n")); break; case ZPOOL_STATUS_BAD_LOG: (void) printf(gettext("status: An intent log record " "could not be read.\n" "\tWaiting for adminstrator intervention to fix the " "faulted pool.\n")); (void) printf(gettext("action: Either restore the affected " "device(s) and run 'zpool online',\n" "\tor ignore the intent log records by running " "'zpool clear'.\n")); break; default: /* * The remaining errors can't actually be generated, yet. */ assert(reason == ZPOOL_STATUS_OK); } if (msgid != NULL) (void) printf(gettext(" see: http://www.sun.com/msg/%s\n"), msgid); if (config != NULL) { int namewidth; uint64_t nerr; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; pool_scan_stat_t *ps = NULL; (void) nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_SCAN_STATS, (uint64_t **)&ps, &c); print_scan_status(ps); namewidth = max_width(zhp, nvroot, 0, 0); if (namewidth < 10) namewidth = 10; (void) printf(gettext("config:\n\n")); (void) printf(gettext("\t%-*s %-8s %5s %5s %5s\n"), namewidth, "NAME", "STATE", "READ", "WRITE", "CKSUM"); print_status_config(zhp, zpool_get_name(zhp), nvroot, namewidth, 0, B_FALSE); if (num_logs(nvroot) > 0) print_logs(zhp, nvroot, namewidth, B_TRUE); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) print_l2cache(zhp, l2cache, nl2cache, namewidth); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) print_spares(zhp, spares, nspares, namewidth); if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_ERRCOUNT, &nerr) == 0) { nvlist_t *nverrlist = NULL; /* * If the approximate error count is small, get a * precise count by fetching the entire log and * uniquifying the results. */ if (nerr > 0 && nerr < 100 && !cbp->cb_verbose && zpool_get_errlog(zhp, &nverrlist) == 0) { nvpair_t *elem; elem = NULL; nerr = 0; while ((elem = nvlist_next_nvpair(nverrlist, elem)) != NULL) { nerr++; } } nvlist_free(nverrlist); (void) printf("\n"); if (nerr == 0) (void) printf(gettext("errors: No known data " "errors\n")); else if (!cbp->cb_verbose) (void) printf(gettext("errors: %llu data " "errors, use '-v' for a list\n"), (u_longlong_t)nerr); else print_error_log(zhp); } if (cbp->cb_dedup_stats) print_dedup_stats(config); } else { (void) printf(gettext("config: The configuration cannot be " "determined.\n")); } return (0); } /* * zpool status [-vx] [-T d|u] [pool] ... [interval [count]] * * -v Display complete error logs * -x Display only pools with potential problems * -D Display dedup status (undocumented) * -T Display a timestamp in date(1) or Unix format * * Describes the health status of all pools or some subset. */ int zpool_do_status(int argc, char **argv) { int c; int ret; unsigned long interval = 0, count = 0; status_cbdata_t cb = { 0 }; /* check options */ while ((c = getopt(argc, argv, "vxDT:")) != -1) { switch (c) { case 'v': cb.cb_verbose = B_TRUE; break; case 'x': cb.cb_explain = B_TRUE; break; case 'D': cb.cb_dedup_stats = B_TRUE; break; case 'T': get_timestamp_arg(*optarg); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; get_interval_count(&argc, argv, &interval, &count); if (argc == 0) cb.cb_allpools = B_TRUE; cb.cb_first = B_TRUE; for (;;) { if (timestamp_fmt != NODATE) print_timestamp(timestamp_fmt); ret = for_each_pool(argc, argv, B_TRUE, NULL, status_callback, &cb); if (argc == 0 && cb.cb_count == 0) (void) printf(gettext("no pools available\n")); else if (cb.cb_explain && cb.cb_first && cb.cb_allpools) (void) printf(gettext("all pools are healthy\n")); if (ret != 0) return (ret); if (interval == 0) break; if (count != 0 && --count == 0) break; (void) sleep(interval); } return (0); } typedef struct upgrade_cbdata { int cb_all; int cb_first; int cb_newer; int cb_argc; uint64_t cb_version; char **cb_argv; } upgrade_cbdata_t; static int upgrade_cb(zpool_handle_t *zhp, void *arg) { upgrade_cbdata_t *cbp = arg; nvlist_t *config; uint64_t version; int ret = 0; config = zpool_get_config(zhp, NULL); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); if (!cbp->cb_newer && version < SPA_VERSION) { if (!cbp->cb_all) { if (cbp->cb_first) { (void) printf(gettext("The following pools are " "out of date, and can be upgraded. After " "being\nupgraded, these pools will no " "longer be accessible by older software " "versions.\n\n")); (void) printf(gettext("VER POOL\n")); (void) printf(gettext("--- ------------\n")); cbp->cb_first = B_FALSE; } (void) printf("%2llu %s\n", (u_longlong_t)version, zpool_get_name(zhp)); } else { cbp->cb_first = B_FALSE; ret = zpool_upgrade(zhp, cbp->cb_version); if (!ret) { (void) printf(gettext("Successfully upgraded " "'%s'\n\n"), zpool_get_name(zhp)); } } } else if (cbp->cb_newer && version > SPA_VERSION) { assert(!cbp->cb_all); if (cbp->cb_first) { (void) printf(gettext("The following pools are " "formatted using a newer software version and\n" "cannot be accessed on the current system.\n\n")); (void) printf(gettext("VER POOL\n")); (void) printf(gettext("--- ------------\n")); cbp->cb_first = B_FALSE; } (void) printf("%2llu %s\n", (u_longlong_t)version, zpool_get_name(zhp)); } zpool_close(zhp); return (ret); } /* ARGSUSED */ static int upgrade_one(zpool_handle_t *zhp, void *data) { upgrade_cbdata_t *cbp = data; uint64_t cur_version; int ret; if (strcmp("log", zpool_get_name(zhp)) == 0) { (void) printf(gettext("'log' is now a reserved word\n" "Pool 'log' must be renamed using export and import" " to upgrade.\n")); return (1); } cur_version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (cur_version > cbp->cb_version) { (void) printf(gettext("Pool '%s' is already formatted " "using more current version '%llu'.\n"), - zpool_get_name(zhp), cur_version); + zpool_get_name(zhp), (u_longlong_t) cur_version); return (0); } if (cur_version == cbp->cb_version) { (void) printf(gettext("Pool '%s' is already formatted " "using the current version.\n"), zpool_get_name(zhp)); return (0); } ret = zpool_upgrade(zhp, cbp->cb_version); if (!ret) { (void) printf(gettext("Successfully upgraded '%s' " "from version %llu to version %llu\n\n"), zpool_get_name(zhp), (u_longlong_t)cur_version, (u_longlong_t)cbp->cb_version); } return (ret != 0); } /* * zpool upgrade * zpool upgrade -v * zpool upgrade [-V version] <-a | pool ...> * * With no arguments, display downrev'd ZFS pool available for upgrade. * Individual pools can be upgraded by specifying the pool, and '-a' will * upgrade all pools. */ int zpool_do_upgrade(int argc, char **argv) { int c; upgrade_cbdata_t cb = { 0 }; int ret = 0; boolean_t showversions = B_FALSE; char *end; /* check options */ while ((c = getopt(argc, argv, ":avV:")) != -1) { switch (c) { case 'a': cb.cb_all = B_TRUE; break; case 'v': showversions = B_TRUE; break; case 'V': cb.cb_version = strtoll(optarg, &end, 10); if (*end != '\0' || cb.cb_version > SPA_VERSION || cb.cb_version < SPA_VERSION_1) { (void) fprintf(stderr, gettext("invalid version '%s'\n"), optarg); usage(B_FALSE); } break; case ':': (void) fprintf(stderr, gettext("missing argument for " "'%c' option\n"), optopt); usage(B_FALSE); break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } cb.cb_argc = argc; cb.cb_argv = argv; argc -= optind; argv += optind; if (cb.cb_version == 0) { cb.cb_version = SPA_VERSION; } else if (!cb.cb_all && argc == 0) { (void) fprintf(stderr, gettext("-V option is " "incompatible with other arguments\n")); usage(B_FALSE); } if (showversions) { if (cb.cb_all || argc != 0) { (void) fprintf(stderr, gettext("-v option is " "incompatible with other arguments\n")); usage(B_FALSE); } } else if (cb.cb_all) { if (argc != 0) { (void) fprintf(stderr, gettext("-a option should not " "be used along with a pool name\n")); usage(B_FALSE); } } (void) printf(gettext("This system is currently running " "ZFS pool version %llu.\n\n"), SPA_VERSION); cb.cb_first = B_TRUE; if (showversions) { (void) printf(gettext("The following versions are " "supported:\n\n")); (void) printf(gettext("VER DESCRIPTION\n")); (void) printf("--- -----------------------------------------" "---------------\n"); (void) printf(gettext(" 1 Initial ZFS version\n")); (void) printf(gettext(" 2 Ditto blocks " "(replicated metadata)\n")); (void) printf(gettext(" 3 Hot spares and double parity " "RAID-Z\n")); (void) printf(gettext(" 4 zpool history\n")); (void) printf(gettext(" 5 Compression using the gzip " "algorithm\n")); (void) printf(gettext(" 6 bootfs pool property\n")); (void) printf(gettext(" 7 Separate intent log devices\n")); (void) printf(gettext(" 8 Delegated administration\n")); (void) printf(gettext(" 9 refquota and refreservation " "properties\n")); (void) printf(gettext(" 10 Cache devices\n")); (void) printf(gettext(" 11 Improved scrub performance\n")); (void) printf(gettext(" 12 Snapshot properties\n")); (void) printf(gettext(" 13 snapused property\n")); (void) printf(gettext(" 14 passthrough-x aclinherit\n")); (void) printf(gettext(" 15 user/group space accounting\n")); (void) printf(gettext(" 16 stmf property support\n")); (void) printf(gettext(" 17 Triple-parity RAID-Z\n")); (void) printf(gettext(" 18 Snapshot user holds\n")); (void) printf(gettext(" 19 Log device removal\n")); (void) printf(gettext(" 20 Compression using zle " "(zero-length encoding)\n")); (void) printf(gettext(" 21 Deduplication\n")); (void) printf(gettext(" 22 Received properties\n")); (void) printf(gettext(" 23 Slim ZIL\n")); (void) printf(gettext(" 24 System attributes\n")); (void) printf(gettext(" 25 Improved scrub stats\n")); (void) printf(gettext(" 26 Improved snapshot deletion " "performance\n")); (void) printf(gettext(" 27 Improved snapshot creation " "performance\n")); (void) printf(gettext(" 28 Multiple vdev replacements\n")); (void) printf(gettext("\nFor more information on a particular " "version, including supported releases,\n")); (void) printf(gettext("see the ZFS Administration Guide.\n\n")); } else if (argc == 0) { int notfound; ret = zpool_iter(g_zfs, upgrade_cb, &cb); notfound = cb.cb_first; if (!cb.cb_all && ret == 0) { if (!cb.cb_first) (void) printf("\n"); cb.cb_first = B_TRUE; cb.cb_newer = B_TRUE; ret = zpool_iter(g_zfs, upgrade_cb, &cb); if (!cb.cb_first) { notfound = B_FALSE; (void) printf("\n"); } } if (ret == 0) { if (notfound) (void) printf(gettext("All pools are formatted " "using this version.\n")); else if (!cb.cb_all) (void) printf(gettext("Use 'zpool upgrade -v' " "for a list of available versions and " "their associated\nfeatures.\n")); } } else { ret = for_each_pool(argc, argv, B_FALSE, NULL, upgrade_one, &cb); } return (ret); } typedef struct hist_cbdata { boolean_t first; int longfmt; int internal; } hist_cbdata_t; /* * Print out the command history for a specific pool. */ static int get_history_one(zpool_handle_t *zhp, void *data) { nvlist_t *nvhis; nvlist_t **records; uint_t numrecords; char *cmdstr; char *pathstr; uint64_t dst_time; time_t tsec; struct tm t; char tbuf[30]; int ret, i; uint64_t who; struct passwd *pwd; char *hostname; char *zonename; char internalstr[MAXPATHLEN]; hist_cbdata_t *cb = (hist_cbdata_t *)data; uint64_t txg; uint64_t ievent; cb->first = B_FALSE; (void) printf(gettext("History for '%s':\n"), zpool_get_name(zhp)); if ((ret = zpool_get_history(zhp, &nvhis)) != 0) return (ret); verify(nvlist_lookup_nvlist_array(nvhis, ZPOOL_HIST_RECORD, &records, &numrecords) == 0); for (i = 0; i < numrecords; i++) { if (nvlist_lookup_uint64(records[i], ZPOOL_HIST_TIME, &dst_time) != 0) continue; /* is it an internal event or a standard event? */ if (nvlist_lookup_string(records[i], ZPOOL_HIST_CMD, &cmdstr) != 0) { if (cb->internal == 0) continue; if (nvlist_lookup_uint64(records[i], ZPOOL_HIST_INT_EVENT, &ievent) != 0) continue; verify(nvlist_lookup_uint64(records[i], ZPOOL_HIST_TXG, &txg) == 0); verify(nvlist_lookup_string(records[i], ZPOOL_HIST_INT_STR, &pathstr) == 0); if (ievent >= LOG_END) continue; (void) snprintf(internalstr, sizeof (internalstr), - "[internal %s txg:%lld] %s", - zfs_history_event_names[ievent], txg, + "[internal %s txg:%llu] %s", + zfs_history_event_names[ievent], (u_longlong_t)txg, pathstr); cmdstr = internalstr; } tsec = dst_time; (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); (void) printf("%s %s", tbuf, cmdstr); if (!cb->longfmt) { (void) printf("\n"); continue; } (void) printf(" ["); if (nvlist_lookup_uint64(records[i], ZPOOL_HIST_WHO, &who) == 0) { pwd = getpwuid((uid_t)who); if (pwd) (void) printf("user %s on", pwd->pw_name); else (void) printf("user %d on", (int)who); } else { (void) printf(gettext("no info]\n")); continue; } if (nvlist_lookup_string(records[i], ZPOOL_HIST_HOST, &hostname) == 0) { (void) printf(" %s", hostname); } if (nvlist_lookup_string(records[i], ZPOOL_HIST_ZONE, &zonename) == 0) { (void) printf(":%s", zonename); } (void) printf("]"); (void) printf("\n"); } (void) printf("\n"); nvlist_free(nvhis); return (ret); } /* * zpool history * * Displays the history of commands that modified pools. */ int zpool_do_history(int argc, char **argv) { hist_cbdata_t cbdata = { 0 }; int ret; int c; cbdata.first = B_TRUE; /* check options */ while ((c = getopt(argc, argv, "li")) != -1) { switch (c) { case 'l': cbdata.longfmt = 1; break; case 'i': cbdata.internal = 1; break; case '?': (void) fprintf(stderr, gettext("invalid option '%c'\n"), optopt); usage(B_FALSE); } } argc -= optind; argv += optind; ret = for_each_pool(argc, argv, B_FALSE, NULL, get_history_one, &cbdata); if (argc == 0 && cbdata.first == B_TRUE) { (void) printf(gettext("no pools available\n")); return (0); } return (ret); } static int get_callback(zpool_handle_t *zhp, void *data) { zprop_get_cbdata_t *cbp = (zprop_get_cbdata_t *)data; char value[MAXNAMELEN]; zprop_source_t srctype; zprop_list_t *pl; for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) { /* * Skip the special fake placeholder. This will also skip * over the name property when 'all' is specified. */ if (pl->pl_prop == ZPOOL_PROP_NAME && pl == cbp->cb_proplist) continue; if (zpool_get_prop(zhp, pl->pl_prop, value, sizeof (value), &srctype) != 0) continue; zprop_print_one_property(zpool_get_name(zhp), cbp, zpool_prop_to_name(pl->pl_prop), value, srctype, NULL, NULL); } return (0); } int zpool_do_get(int argc, char **argv) { zprop_get_cbdata_t cb = { 0 }; zprop_list_t fake_name = { 0 }; int ret; if (argc < 3) usage(B_FALSE); cb.cb_first = B_TRUE; cb.cb_sources = ZPROP_SRC_ALL; cb.cb_columns[0] = GET_COL_NAME; cb.cb_columns[1] = GET_COL_PROPERTY; cb.cb_columns[2] = GET_COL_VALUE; cb.cb_columns[3] = GET_COL_SOURCE; cb.cb_type = ZFS_TYPE_POOL; if (zprop_get_list(g_zfs, argv[1], &cb.cb_proplist, ZFS_TYPE_POOL) != 0) usage(B_FALSE); if (cb.cb_proplist != NULL) { fake_name.pl_prop = ZPOOL_PROP_NAME; fake_name.pl_width = strlen(gettext("NAME")); fake_name.pl_next = cb.cb_proplist; cb.cb_proplist = &fake_name; } ret = for_each_pool(argc - 2, argv + 2, B_TRUE, &cb.cb_proplist, get_callback, &cb); if (cb.cb_proplist == &fake_name) zprop_free_list(fake_name.pl_next); else zprop_free_list(cb.cb_proplist); return (ret); } typedef struct set_cbdata { char *cb_propname; char *cb_value; boolean_t cb_any_successful; } set_cbdata_t; int set_callback(zpool_handle_t *zhp, void *data) { int error; set_cbdata_t *cb = (set_cbdata_t *)data; error = zpool_set_prop(zhp, cb->cb_propname, cb->cb_value); if (!error) cb->cb_any_successful = B_TRUE; return (error); } int zpool_do_set(int argc, char **argv) { set_cbdata_t cb = { 0 }; int error; if (argc > 1 && argv[1][0] == '-') { (void) fprintf(stderr, gettext("invalid option '%c'\n"), argv[1][1]); usage(B_FALSE); } if (argc < 2) { (void) fprintf(stderr, gettext("missing property=value " "argument\n")); usage(B_FALSE); } if (argc < 3) { (void) fprintf(stderr, gettext("missing pool name\n")); usage(B_FALSE); } if (argc > 3) { (void) fprintf(stderr, gettext("too many pool names\n")); usage(B_FALSE); } cb.cb_propname = argv[1]; cb.cb_value = strchr(cb.cb_propname, '='); if (cb.cb_value == NULL) { (void) fprintf(stderr, gettext("missing value in " "property=value argument\n")); usage(B_FALSE); } *(cb.cb_value) = '\0'; cb.cb_value++; error = for_each_pool(argc - 2, argv + 2, B_TRUE, NULL, set_callback, &cb); return (error); } static int find_command_idx(char *command, int *idx) { int i; for (i = 0; i < NCOMMAND; i++) { if (command_table[i].name == NULL) continue; if (strcmp(command, command_table[i].name) == 0) { *idx = i; return (0); } } return (1); } int main(int argc, char **argv) { int ret; int i; char *cmdname; (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, gettext("internal error: failed to " "initialize ZFS library\n")); return (1); } libzfs_print_on_error(g_zfs, B_TRUE); opterr = 0; /* * Make sure the user has specified some command. */ if (argc < 2) { (void) fprintf(stderr, gettext("missing command\n")); usage(B_FALSE); } cmdname = argv[1]; /* * Special case '-?' */ if (strcmp(cmdname, "-?") == 0) usage(B_TRUE); zpool_set_history_str("zpool", argc, argv, history_str); verify(zpool_stage_history(g_zfs, history_str) == 0); /* * Run the appropriate command. */ if (find_command_idx(cmdname, &i) == 0) { current_command = &command_table[i]; ret = command_table[i].func(argc - 1, argv + 1); } else if (strchr(cmdname, '=')) { verify(find_command_idx("set", &i) == 0); current_command = &command_table[i]; ret = command_table[i].func(argc, argv); } else if (strcmp(cmdname, "freeze") == 0 && argc == 3) { /* * 'freeze' is a vile debugging abomination, so we treat * it as such. */ char buf[16384]; int fd = open(ZFS_DEV, O_RDWR); (void) strcpy((void *)buf, argv[2]); return (!!ioctl(fd, ZFS_IOC_POOL_FREEZE, buf)); } else { (void) fprintf(stderr, gettext("unrecognized " "command '%s'\n"), cmdname); usage(B_FALSE); } libzfs_fini(g_zfs); /* * The 'ZFS_ABORT' environment variable causes us to dump core on exit * for the purposes of running ::findleaks. */ if (getenv("ZFS_ABORT") != NULL) { (void) printf("dumping core by request\n"); abort(); } return (ret); } diff --git a/cmd/ztest/ztest.c b/cmd/ztest/ztest.c index a6503f477b9c..771f1427e37a 100644 --- a/cmd/ztest/ztest.c +++ b/cmd/ztest/ztest.c @@ -1,5622 +1,5632 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * The objective of this program is to provide a DMU/ZAP/SPA stress test * that runs entirely in userland, is easy to use, and easy to extend. * * The overall design of the ztest program is as follows: * * (1) For each major functional area (e.g. adding vdevs to a pool, * creating and destroying datasets, reading and writing objects, etc) * we have a simple routine to test that functionality. These * individual routines do not have to do anything "stressful". * * (2) We turn these simple functionality tests into a stress test by * running them all in parallel, with as many threads as desired, * and spread across as many datasets, objects, and vdevs as desired. * * (3) While all this is happening, we inject faults into the pool to * verify that self-healing data really works. * * (4) Every time we open a dataset, we change its checksum and compression * functions. Thus even individual objects vary from block to block * in which checksum they use and whether they're compressed. * * (5) To verify that we never lose on-disk consistency after a crash, * we run the entire test in a child of the main process. * At random times, the child self-immolates with a SIGKILL. * This is the software equivalent of pulling the power cord. * The parent then runs the test again, using the existing * storage pool, as many times as desired. * * (6) To verify that we don't have future leaks or temporal incursions, * many of the functional tests record the transaction group number * as part of their data. When reading old data, they verify that * the transaction group number is less than the current, open txg. * If you add a new test, please do this if applicable. * * When run with no arguments, ztest runs for about five minutes and * produces no output if successful. To get a little bit of information, * specify -V. To get more information, specify -VV, and so on. * * To turn this into an overnight stress test, use -T to specify run time. * * You can ask more more vdevs [-v], datasets [-d], or threads [-t] * to increase the pool capacity, fanout, and overall stress level. * * The -N(okill) option will suppress kills, so each child runs to completion. * This can be useful when you're trying to distinguish temporal incursions * from plain old race conditions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static char cmdname[] = "ztest"; static char *zopt_pool = cmdname; static uint64_t zopt_vdevs = 5; static uint64_t zopt_vdevtime; static int zopt_ashift = SPA_MINBLOCKSHIFT; static int zopt_mirrors = 2; static int zopt_raidz = 4; static int zopt_raidz_parity = 1; static size_t zopt_vdev_size = SPA_MINDEVSIZE; static int zopt_datasets = 7; static int zopt_threads = 23; static uint64_t zopt_passtime = 60; /* 60 seconds */ static uint64_t zopt_killrate = 70; /* 70% kill rate */ static int zopt_verbose = 0; static int zopt_init = 1; static char *zopt_dir = "/tmp"; static uint64_t zopt_time = 300; /* 5 minutes */ static uint64_t zopt_maxloops = 50; /* max loops during spa_freeze() */ #define BT_MAGIC 0x123456789abcdefULL #define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1) enum ztest_io_type { ZTEST_IO_WRITE_TAG, ZTEST_IO_WRITE_PATTERN, ZTEST_IO_WRITE_ZEROES, ZTEST_IO_TRUNCATE, ZTEST_IO_SETATTR, ZTEST_IO_TYPES }; typedef struct ztest_block_tag { uint64_t bt_magic; uint64_t bt_objset; uint64_t bt_object; uint64_t bt_offset; uint64_t bt_gen; uint64_t bt_txg; uint64_t bt_crtxg; } ztest_block_tag_t; typedef struct bufwad { uint64_t bw_index; uint64_t bw_txg; uint64_t bw_data; } bufwad_t; /* * XXX -- fix zfs range locks to be generic so we can use them here. */ typedef enum { RL_READER, RL_WRITER, RL_APPEND } rl_type_t; typedef struct rll { void *rll_writer; int rll_readers; mutex_t rll_lock; cond_t rll_cv; } rll_t; typedef struct rl { uint64_t rl_object; uint64_t rl_offset; uint64_t rl_size; rll_t *rl_lock; } rl_t; #define ZTEST_RANGE_LOCKS 64 #define ZTEST_OBJECT_LOCKS 64 /* * Object descriptor. Used as a template for object lookup/create/remove. */ typedef struct ztest_od { uint64_t od_dir; uint64_t od_object; dmu_object_type_t od_type; dmu_object_type_t od_crtype; uint64_t od_blocksize; uint64_t od_crblocksize; uint64_t od_gen; uint64_t od_crgen; char od_name[MAXNAMELEN]; } ztest_od_t; /* * Per-dataset state. */ typedef struct ztest_ds { objset_t *zd_os; zilog_t *zd_zilog; uint64_t zd_seq; ztest_od_t *zd_od; /* debugging aid */ char zd_name[MAXNAMELEN]; mutex_t zd_dirobj_lock; rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; } ztest_ds_t; /* * Per-iteration state. */ typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); typedef struct ztest_info { ztest_func_t *zi_func; /* test function */ uint64_t zi_iters; /* iterations per execution */ uint64_t *zi_interval; /* execute every seconds */ uint64_t zi_call_count; /* per-pass count */ uint64_t zi_call_time; /* per-pass time */ uint64_t zi_call_next; /* next time to call this function */ } ztest_info_t; /* * Note: these aren't static because we want dladdr() to work. */ ztest_func_t ztest_dmu_read_write; ztest_func_t ztest_dmu_write_parallel; ztest_func_t ztest_dmu_object_alloc_free; ztest_func_t ztest_dmu_commit_callbacks; ztest_func_t ztest_zap; ztest_func_t ztest_zap_parallel; ztest_func_t ztest_zil_commit; ztest_func_t ztest_dmu_read_write_zcopy; ztest_func_t ztest_dmu_objset_create_destroy; ztest_func_t ztest_dmu_prealloc; ztest_func_t ztest_fzap; ztest_func_t ztest_dmu_snapshot_create_destroy; ztest_func_t ztest_dsl_prop_get_set; ztest_func_t ztest_spa_prop_get_set; ztest_func_t ztest_spa_create_destroy; ztest_func_t ztest_fault_inject; ztest_func_t ztest_ddt_repair; ztest_func_t ztest_dmu_snapshot_hold; ztest_func_t ztest_spa_rename; ztest_func_t ztest_scrub; ztest_func_t ztest_dsl_dataset_promote_busy; ztest_func_t ztest_vdev_attach_detach; ztest_func_t ztest_vdev_LUN_growth; ztest_func_t ztest_vdev_add_remove; ztest_func_t ztest_vdev_aux_add_remove; ztest_func_t ztest_split_pool; uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ ztest_info_t ztest_info[] = { { ztest_dmu_read_write, 1, &zopt_always }, { ztest_dmu_write_parallel, 10, &zopt_always }, { ztest_dmu_object_alloc_free, 1, &zopt_always }, { ztest_dmu_commit_callbacks, 1, &zopt_always }, { ztest_zap, 30, &zopt_always }, { ztest_zap_parallel, 100, &zopt_always }, { ztest_split_pool, 1, &zopt_always }, { ztest_zil_commit, 1, &zopt_incessant }, { ztest_dmu_read_write_zcopy, 1, &zopt_often }, { ztest_dmu_objset_create_destroy, 1, &zopt_often }, { ztest_dsl_prop_get_set, 1, &zopt_often }, { ztest_spa_prop_get_set, 1, &zopt_sometimes }, #if 0 { ztest_dmu_prealloc, 1, &zopt_sometimes }, #endif { ztest_fzap, 1, &zopt_sometimes }, { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, { ztest_spa_create_destroy, 1, &zopt_sometimes }, { ztest_fault_inject, 1, &zopt_sometimes }, { ztest_ddt_repair, 1, &zopt_sometimes }, { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, { ztest_spa_rename, 1, &zopt_rarely }, { ztest_scrub, 1, &zopt_rarely }, { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, { ztest_vdev_attach_detach, 1, &zopt_rarely }, { ztest_vdev_LUN_growth, 1, &zopt_rarely }, { ztest_vdev_add_remove, 1, &zopt_vdevtime }, { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, }; #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) /* * The following struct is used to hold a list of uncalled commit callbacks. * The callbacks are ordered by txg number. */ typedef struct ztest_cb_list { mutex_t zcl_callbacks_lock; list_t zcl_callbacks; } ztest_cb_list_t; /* * Stuff we need to share writably between parent and child. */ typedef struct ztest_shared { char *zs_pool; spa_t *zs_spa; hrtime_t zs_proc_start; hrtime_t zs_proc_stop; hrtime_t zs_thread_start; hrtime_t zs_thread_stop; hrtime_t zs_thread_kill; uint64_t zs_enospc_count; uint64_t zs_vdev_next_leaf; uint64_t zs_vdev_aux; uint64_t zs_alloc; uint64_t zs_space; mutex_t zs_vdev_lock; rwlock_t zs_name_lock; ztest_info_t zs_info[ZTEST_FUNCS]; uint64_t zs_splits; uint64_t zs_mirrors; ztest_ds_t zs_zd[]; } ztest_shared_t; #define ID_PARALLEL -1ULL static char ztest_dev_template[] = "%s/%s.%llua"; static char ztest_aux_template[] = "%s/%s.%s.%llu"; ztest_shared_t *ztest_shared; uint64_t *ztest_seq; static int ztest_random_fd; static int ztest_dump_core = 1; static boolean_t ztest_exiting; /* Global commit callback list */ static ztest_cb_list_t zcl; extern uint64_t metaslab_gang_bang; extern uint64_t metaslab_df_alloc_threshold; static uint64_t metaslab_sz; enum ztest_object { ZTEST_META_DNODE = 0, ZTEST_DIROBJ, ZTEST_OBJECTS }; static void usage(boolean_t) __NORETURN; /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init() { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } #define FATAL_MSG_SZ 1024 char *fatal_msg; static void fatal(int do_perror, char *message, ...) { va_list args; int save_errno = errno; char buf[FATAL_MSG_SZ]; (void) fflush(stdout); va_start(args, message); (void) sprintf(buf, "ztest: "); /* LINTED */ (void) vsprintf(buf + strlen(buf), message, args); va_end(args); if (do_perror) { (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), ": %s", strerror(save_errno)); } (void) fprintf(stderr, "%s\n", buf); fatal_msg = buf; /* to ease debugging */ if (ztest_dump_core) abort(); exit(3); } static int str2shift(const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); } if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { return (10*i); } (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); usage(B_FALSE); /* NOTREACHED */ } static uint64_t nicenumtoull(const char *buf) { char *end; uint64_t val; val = strtoull(buf, &end, 0); if (end == buf) { (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); usage(B_FALSE); } else if (end[0] == '.') { double fval = strtod(buf, &end); fval *= pow(2, str2shift(end)); if (fval > UINT64_MAX) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val = (uint64_t)fval; } else { int shift = str2shift(end); if (shift >= 64 || (val << shift) >> shift != val) { (void) fprintf(stderr, "ztest: value too large: %s\n", buf); usage(B_FALSE); } val <<= shift; } return (val); } static void usage(boolean_t requested) { char nice_vdev_size[10]; char nice_gang_bang[10]; FILE *fp = requested ? stdout : stderr; nicenum(zopt_vdev_size, nice_vdev_size); nicenum(metaslab_gang_bang, nice_gang_bang); (void) fprintf(fp, "Usage: %s\n" "\t[-v vdevs (default: %llu)]\n" "\t[-s size_of_each_vdev (default: %s)]\n" "\t[-a alignment_shift (default: %d)] use 0 for random\n" "\t[-m mirror_copies (default: %d)]\n" "\t[-r raidz_disks (default: %d)]\n" "\t[-R raidz_parity (default: %d)]\n" "\t[-d datasets (default: %d)]\n" "\t[-t threads (default: %d)]\n" "\t[-g gang_block_threshold (default: %s)]\n" "\t[-i init_count (default: %d)] initialize pool i times\n" "\t[-k kill_percentage (default: %llu%%)]\n" "\t[-p pool_name (default: %s)]\n" "\t[-f dir (default: %s)] file directory for vdev files\n" "\t[-V] verbose (use multiple times for ever more blather)\n" "\t[-E] use existing pool instead of creating new one\n" "\t[-T time (default: %llu sec)] total run time\n" "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" "\t[-P passtime (default: %llu sec)] time per pass\n" "\t[-h] (print help)\n" "", cmdname, (u_longlong_t)zopt_vdevs, /* -v */ nice_vdev_size, /* -s */ zopt_ashift, /* -a */ zopt_mirrors, /* -m */ zopt_raidz, /* -r */ zopt_raidz_parity, /* -R */ zopt_datasets, /* -d */ zopt_threads, /* -t */ nice_gang_bang, /* -g */ zopt_init, /* -i */ (u_longlong_t)zopt_killrate, /* -k */ zopt_pool, /* -p */ zopt_dir, /* -f */ (u_longlong_t)zopt_time, /* -T */ (u_longlong_t)zopt_maxloops, /* -F */ (u_longlong_t)zopt_passtime); /* -P */ exit(requested ? 0 : 1); } static void process_options(int argc, char **argv) { int opt; uint64_t value; /* By default, test gang blocks for blocks 32K and greater */ metaslab_gang_bang = 32 << 10; while ((opt = getopt(argc, argv, "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) { value = 0; switch (opt) { case 'v': case 's': case 'a': case 'm': case 'r': case 'R': case 'd': case 't': case 'g': case 'i': case 'k': case 'T': case 'P': case 'F': value = nicenumtoull(optarg); } switch (opt) { case 'v': zopt_vdevs = value; break; case 's': zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); break; case 'a': zopt_ashift = value; break; case 'm': zopt_mirrors = value; break; case 'r': zopt_raidz = MAX(1, value); break; case 'R': zopt_raidz_parity = MIN(MAX(value, 1), 3); break; case 'd': zopt_datasets = MAX(1, value); break; case 't': zopt_threads = MAX(1, value); break; case 'g': metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); break; case 'i': zopt_init = value; break; case 'k': zopt_killrate = value; break; case 'p': zopt_pool = strdup(optarg); break; case 'f': zopt_dir = strdup(optarg); break; case 'V': zopt_verbose++; break; case 'E': zopt_init = 0; break; case 'T': zopt_time = value; break; case 'P': zopt_passtime = MAX(1, value); break; case 'F': zopt_maxloops = MAX(1, value); break; case 'h': usage(B_TRUE); break; case '?': default: usage(B_FALSE); break; } } zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : UINT64_MAX >> 2); } static void ztest_kill(ztest_shared_t *zs) { zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); (void) kill(getpid(), SIGKILL); } static uint64_t ztest_random(uint64_t range) { uint64_t r; if (range == 0) return (0); if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) fatal(1, "short read from /dev/urandom"); return (r % range); } /* ARGSUSED */ static void ztest_record_enospc(const char *s) { ztest_shared->zs_enospc_count++; } static uint64_t ztest_get_ashift(void) { if (zopt_ashift == 0) return (SPA_MINBLOCKSHIFT + ztest_random(3)); return (zopt_ashift); } static nvlist_t * make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) { char pathbuf[MAXPATHLEN]; uint64_t vdev; nvlist_t *file; if (ashift == 0) ashift = ztest_get_ashift(); if (path == NULL) { path = pathbuf; if (aux != NULL) { vdev = ztest_shared->zs_vdev_aux; (void) sprintf(path, ztest_aux_template, zopt_dir, zopt_pool, aux, vdev); } else { vdev = ztest_shared->zs_vdev_next_leaf++; (void) sprintf(path, ztest_dev_template, zopt_dir, zopt_pool, vdev); } } if (size != 0) { int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); if (fd == -1) fatal(1, "can't open %s", path); if (ftruncate(fd, size) != 0) fatal(1, "can't ftruncate %s", path); (void) close(fd); } VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); return (file); } static nvlist_t * make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) { nvlist_t *raidz, **child; int c; if (r < 2) return (make_vdev_file(path, aux, size, ashift)); child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < r; c++) child[c] = make_vdev_file(path, aux, size, ashift); VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, VDEV_TYPE_RAIDZ) == 0); VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, zopt_raidz_parity) == 0); VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, child, r) == 0); for (c = 0; c < r; c++) nvlist_free(child[c]); umem_free(child, r * sizeof (nvlist_t *)); return (raidz); } static nvlist_t * make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, int r, int m) { nvlist_t *mirror, **child; int c; if (m < 1) return (make_vdev_raidz(path, aux, size, ashift, r)); child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < m; c++) child[c] = make_vdev_raidz(path, aux, size, ashift, r); VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR) == 0); VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, child, m) == 0); for (c = 0; c < m; c++) nvlist_free(child[c]); umem_free(child, m * sizeof (nvlist_t *)); return (mirror); } static nvlist_t * make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, int log, int r, int m, int t) { nvlist_t *root, **child; int c; ASSERT(t > 0); child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); for (c = 0; c < t; c++) { child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log) == 0); } VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, child, t) == 0); for (c = 0; c < t; c++) nvlist_free(child[c]); umem_free(child, t * sizeof (nvlist_t *)); return (root); } static int ztest_random_blocksize(void) { return (1 << (SPA_MINBLOCKSHIFT + ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); } static int ztest_random_ibshift(void) { return (DN_MIN_INDBLKSHIFT + ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); } static uint64_t ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) { uint64_t top; vdev_t *rvd = spa->spa_root_vdev; vdev_t *tvd; ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); do { top = ztest_random(rvd->vdev_children); tvd = rvd->vdev_child[top]; } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); return (top); } static uint64_t ztest_random_dsl_prop(zfs_prop_t prop) { uint64_t value; do { value = zfs_prop_random_value(prop, ztest_random(-1ULL)); } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); return (value); } static int ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, boolean_t inherit) { const char *propname = zfs_prop_to_name(prop); const char *valname; char setpoint[MAXPATHLEN]; uint64_t curval; int error; error = dsl_prop_set(osname, propname, (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), sizeof (value), 1, &value); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT3U(error, ==, 0); VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 1, &curval, setpoint), ==, 0); if (zopt_verbose >= 6) { VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); (void) printf("%s %s = %s at '%s'\n", osname, propname, valname, setpoint); } return (error); } static int ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) { spa_t *spa = zs->zs_spa; nvlist_t *props = NULL; int error; VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); error = spa_prop_set(spa, props); nvlist_free(props); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (error); } ASSERT3U(error, ==, 0); return (error); } static void ztest_rll_init(rll_t *rll) { rll->rll_writer = NULL; rll->rll_readers = 0; VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); } static void ztest_rll_destroy(rll_t *rll) { ASSERT(rll->rll_writer == NULL); ASSERT(rll->rll_readers == 0); VERIFY(_mutex_destroy(&rll->rll_lock) == 0); VERIFY(cond_destroy(&rll->rll_cv) == 0); } static void ztest_rll_lock(rll_t *rll, rl_type_t type) { VERIFY(mutex_lock(&rll->rll_lock) == 0); if (type == RL_READER) { while (rll->rll_writer != NULL) (void) cond_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_readers++; } else { while (rll->rll_writer != NULL || rll->rll_readers) (void) cond_wait(&rll->rll_cv, &rll->rll_lock); rll->rll_writer = curthread; } VERIFY(mutex_unlock(&rll->rll_lock) == 0); } static void ztest_rll_unlock(rll_t *rll) { VERIFY(mutex_lock(&rll->rll_lock) == 0); if (rll->rll_writer) { ASSERT(rll->rll_readers == 0); rll->rll_writer = NULL; } else { ASSERT(rll->rll_readers != 0); ASSERT(rll->rll_writer == NULL); rll->rll_readers--; } if (rll->rll_writer == NULL && rll->rll_readers == 0) VERIFY(cond_broadcast(&rll->rll_cv) == 0); VERIFY(mutex_unlock(&rll->rll_lock) == 0); } static void ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_lock(rll, type); } static void ztest_object_unlock(ztest_ds_t *zd, uint64_t object) { rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; ztest_rll_unlock(rll); } static rl_t * ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, rl_type_t type) { uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; rl_t *rl; rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); rl->rl_object = object; rl->rl_offset = offset; rl->rl_size = size; rl->rl_lock = rll; ztest_rll_lock(rll, type); return (rl); } static void ztest_range_unlock(rl_t *rl) { rll_t *rll = rl->rl_lock; ztest_rll_unlock(rll); umem_free(rl, sizeof (*rl)); } static void ztest_zd_init(ztest_ds_t *zd, objset_t *os) { zd->zd_os = os; zd->zd_zilog = dmu_objset_zil(os); zd->zd_seq = 0; dmu_objset_name(os, zd->zd_name); int l; VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_init(&zd->zd_object_lock[l]); for (l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_init(&zd->zd_range_lock[l]); } static void ztest_zd_fini(ztest_ds_t *zd) { int l; VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); for (l = 0; l < ZTEST_OBJECT_LOCKS; l++) ztest_rll_destroy(&zd->zd_object_lock[l]); for (l = 0; l < ZTEST_RANGE_LOCKS; l++) ztest_rll_destroy(&zd->zd_range_lock[l]); } #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) static uint64_t ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) { uint64_t txg; int error; /* * Attempt to assign tx to some transaction group. */ error = dmu_tx_assign(tx, txg_how); if (error) { if (error == ERESTART) { ASSERT(txg_how == TXG_NOWAIT); dmu_tx_wait(tx); } else { ASSERT3U(error, ==, ENOSPC); ztest_record_enospc(tag); } dmu_tx_abort(tx); return (0); } txg = dmu_tx_get_txg(tx); ASSERT(txg != 0); return (txg); } static void ztest_pattern_set(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); while (ip < ip_end) *ip++ = value; } static boolean_t ztest_pattern_match(void *buf, uint64_t size, uint64_t value) { uint64_t *ip = buf; uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); uint64_t diff = 0; while (ip < ip_end) diff |= (value - *ip++); return (diff == 0); } static void ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { bt->bt_magic = BT_MAGIC; bt->bt_objset = dmu_objset_id(os); bt->bt_object = object; bt->bt_offset = offset; bt->bt_gen = gen; bt->bt_txg = txg; bt->bt_crtxg = crtxg; } static void ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) { ASSERT(bt->bt_magic == BT_MAGIC); ASSERT(bt->bt_objset == dmu_objset_id(os)); ASSERT(bt->bt_object == object); ASSERT(bt->bt_offset == offset); ASSERT(bt->bt_gen <= gen); ASSERT(bt->bt_txg <= txg); ASSERT(bt->bt_crtxg == crtxg); } static ztest_block_tag_t * ztest_bt_bonus(dmu_buf_t *db) { dmu_object_info_t doi; ztest_block_tag_t *bt; dmu_object_info_from_db(db, &doi); ASSERT3U(doi.doi_bonus_size, <=, db->db_size); ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); return (bt); } /* * ZIL logging ops */ #define lrz_type lr_mode #define lrz_blocksize lr_uid #define lrz_ibshift lr_gid #define lrz_bonustype lr_rdev #define lrz_bonuslen lr_crtime[1] static void ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) { char *name = (void *)(lr + 1); /* name follows lr */ size_t namesize = strlen(name) + 1; itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) + namesize - sizeof (lr_t)); itx->itx_oid = object; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) { itx_t *itx; itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); if (zil_replaying(zd->zd_zilog, tx)) return; if (lr->lr_length > ZIL_MAX_LOG_DATA) write_state = WR_INDIRECT; itx = zil_itx_create(TX_WRITE, sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); if (write_state == WR_COPIED && dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { zil_itx_destroy(itx); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); write_state = WR_NEED_COPY; } itx->itx_private = zd; itx->itx_wr_state = write_state; itx->itx_sync = (ztest_random(8) == 0); itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } static void ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) { itx_t *itx; if (zil_replaying(zd->zd_zilog, tx)) return; itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, sizeof (*lr) - sizeof (lr_t)); itx->itx_sync = B_FALSE; zil_itx_assign(zd->zd_zilog, itx, tx); } /* * ZIL replay ops */ static int ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) { char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; ztest_block_tag_t *bbt; dmu_buf_t *db; dmu_tx_t *tx; uint64_t txg; int error = 0; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); } else { dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); } txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) return (ENOSPC); ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); if (lr->lrz_type == DMU_OT_ZAP_OTHER) { if (lr->lr_foid == 0) { lr->lr_foid = zap_create(os, lr->lrz_type, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } else { error = zap_create_claim(os, lr->lr_foid, lr->lrz_type, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } } else { if (lr->lr_foid == 0) { lr->lr_foid = dmu_object_alloc(os, lr->lrz_type, 0, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } else { error = dmu_object_claim(os, lr->lr_foid, lr->lrz_type, 0, lr->lrz_bonustype, lr->lrz_bonuslen, tx); } } if (error) { ASSERT3U(error, ==, EEXIST); ASSERT(zd->zd_zilog->zl_replay); dmu_tx_commit(tx); return (error); } ASSERT(lr->lr_foid != 0); if (lr->lrz_type != DMU_OT_ZAP_OTHER) VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, lr->lrz_blocksize, lr->lrz_ibshift, tx)); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); bbt = ztest_bt_bonus(db); dmu_buf_will_dirty(db, tx); ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); dmu_buf_rele(db, FTAG); VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, &lr->lr_foid, tx)); (void) ztest_log_create(zd, tx, lr); dmu_tx_commit(tx); return (0); } static int ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) { char *name = (void *)(lr + 1); /* name follows lr */ objset_t *os = zd->zd_os; dmu_object_info_t doi; dmu_tx_t *tx; uint64_t object, txg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ASSERT(lr->lr_doid == ZTEST_DIROBJ); ASSERT(name[0] != '\0'); VERIFY3U(0, ==, zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); ASSERT(object != 0); ztest_object_lock(zd, object, RL_WRITER); VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_object_unlock(zd, object); return (ENOSPC); } if (doi.doi_type == DMU_OT_ZAP_OTHER) { VERIFY3U(0, ==, zap_destroy(os, object, tx)); } else { VERIFY3U(0, ==, dmu_object_free(os, object, tx)); } VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); (void) ztest_log_remove(zd, tx, lr, object); dmu_tx_commit(tx); ztest_object_unlock(zd, object); return (0); } static int ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) { objset_t *os = zd->zd_os; void *data = lr + 1; /* data follows lr */ uint64_t offset, length; ztest_block_tag_t *bt = data; ztest_block_tag_t *bbt; uint64_t gen, txg, lrtxg, crtxg; dmu_object_info_t doi; dmu_tx_t *tx; dmu_buf_t *db; arc_buf_t *abuf = NULL; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); offset = lr->lr_offset; length = lr->lr_length; /* If it's a dmu_sync() block, write the whole block */ if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); if (length < blocksize) { offset -= offset % blocksize; length = blocksize; } } if (bt->bt_magic == BSWAP_64(BT_MAGIC)) byteswap_uint64_array(bt, sizeof (*bt)); if (bt->bt_magic != BT_MAGIC) bt = NULL; ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); gen = bbt->bt_gen; crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; tx = dmu_tx_create(os); dmu_tx_hold_write(tx, lr->lr_foid, offset, length); if (ztest_random(8) == 0 && length == doi.doi_data_block_size && P2PHASE(offset, length) == 0) abuf = dmu_request_arcbuf(db, length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { if (abuf != NULL) dmu_return_arcbuf(abuf); dmu_buf_rele(db, FTAG); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } if (bt != NULL) { /* * Usually, verify the old data before writing new data -- * but not always, because we also want to verify correct * behavior when the data was not recently read into cache. */ ASSERT(offset % doi.doi_data_block_size == 0); if (ztest_random(4) != 0) { int prefetch = ztest_random(2) ? DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; ztest_block_tag_t rbt; VERIFY(dmu_read(os, lr->lr_foid, offset, sizeof (rbt), &rbt, prefetch) == 0); if (rbt.bt_magic == BT_MAGIC) { ztest_bt_verify(&rbt, os, lr->lr_foid, offset, gen, txg, crtxg); } } /* * Writes can appear to be newer than the bonus buffer because * the ztest_get_data() callback does a dmu_read() of the * open-context data, which may be different than the data * as it was when the write was generated. */ if (zd->zd_zilog->zl_replay) { ztest_bt_verify(bt, os, lr->lr_foid, offset, MAX(gen, bt->bt_gen), MAX(txg, lrtxg), bt->bt_crtxg); } /* * Set the bt's gen/txg to the bonus buffer's gen/txg * so that all of the usual ASSERTs will work. */ ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); } if (abuf == NULL) { dmu_write(os, lr->lr_foid, offset, length, data, tx); } else { bcopy(data, abuf->b_data, length); dmu_assign_arcbuf(db, offset, abuf, tx); } (void) ztest_log_write(zd, tx, lr); dmu_buf_rele(db, FTAG); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_READER); rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, lr->lr_length, tx) == 0); (void) ztest_log_truncate(zd, tx, lr); dmu_tx_commit(tx); ztest_range_unlock(rl); ztest_object_unlock(zd, lr->lr_foid); return (0); } static int ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) { objset_t *os = zd->zd_os; dmu_tx_t *tx; dmu_buf_t *db; ztest_block_tag_t *bbt; uint64_t txg, lrtxg, crtxg; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); ztest_object_lock(zd, lr->lr_foid, RL_WRITER); VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); tx = dmu_tx_create(os); dmu_tx_hold_bonus(tx, lr->lr_foid); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, lr->lr_foid); return (ENOSPC); } bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); crtxg = bbt->bt_crtxg; lrtxg = lr->lr_common.lrc_txg; if (zd->zd_zilog->zl_replay) { ASSERT(lr->lr_size != 0); ASSERT(lr->lr_mode != 0); ASSERT(lrtxg != 0); } else { /* * Randomly change the size and increment the generation. */ lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * sizeof (*bbt); lr->lr_mode = bbt->bt_gen + 1; ASSERT(lrtxg == 0); } /* * Verify that the current bonus buffer is not newer than our txg. */ ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, MAX(txg, lrtxg), crtxg); dmu_buf_will_dirty(db, tx); ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); ASSERT3U(lr->lr_size, <=, db->db_size); VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); bbt = ztest_bt_bonus(db); ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); dmu_buf_rele(db, FTAG); (void) ztest_log_setattr(zd, tx, lr); dmu_tx_commit(tx); ztest_object_unlock(zd, lr->lr_foid); return (0); } zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { NULL, /* 0 no such transaction type */ ztest_replay_create, /* TX_CREATE */ NULL, /* TX_MKDIR */ NULL, /* TX_MKXATTR */ NULL, /* TX_SYMLINK */ ztest_replay_remove, /* TX_REMOVE */ NULL, /* TX_RMDIR */ NULL, /* TX_LINK */ NULL, /* TX_RENAME */ ztest_replay_write, /* TX_WRITE */ ztest_replay_truncate, /* TX_TRUNCATE */ ztest_replay_setattr, /* TX_SETATTR */ NULL, /* TX_ACL */ NULL, /* TX_CREATE_ACL */ NULL, /* TX_CREATE_ATTR */ NULL, /* TX_CREATE_ACL_ATTR */ NULL, /* TX_MKDIR_ACL */ NULL, /* TX_MKDIR_ATTR */ NULL, /* TX_MKDIR_ACL_ATTR */ NULL, /* TX_WRITE2 */ }; /* * ZIL get_data callbacks */ static void ztest_get_done(zgd_t *zgd, int error) { ztest_ds_t *zd = zgd->zgd_private; uint64_t object = zgd->zgd_rl->rl_object; if (zgd->zgd_db) dmu_buf_rele(zgd->zgd_db, zgd); ztest_range_unlock(zgd->zgd_rl); ztest_object_unlock(zd, object); if (error == 0 && zgd->zgd_bp) zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); umem_free(zgd, sizeof (*zgd)); } static int ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) { ztest_ds_t *zd = arg; objset_t *os = zd->zd_os; uint64_t object = lr->lr_foid; uint64_t offset = lr->lr_offset; uint64_t size = lr->lr_length; blkptr_t *bp = &lr->lr_blkptr; uint64_t txg = lr->lr_common.lrc_txg; uint64_t crtxg; dmu_object_info_t doi; dmu_buf_t *db; zgd_t *zgd; int error; ztest_object_lock(zd, object, RL_READER); error = dmu_bonus_hold(os, object, FTAG, &db); if (error) { ztest_object_unlock(zd, object); return (error); } crtxg = ztest_bt_bonus(db)->bt_crtxg; if (crtxg == 0 || crtxg > txg) { dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, object); return (ENOENT); } dmu_object_info_from_db(db, &doi); dmu_buf_rele(db, FTAG); db = NULL; zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); zgd->zgd_zilog = zd->zd_zilog; zgd->zgd_private = zd; if (buf != NULL) { /* immediate write */ zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_read(os, object, offset, size, buf, DMU_READ_NO_PREFETCH); ASSERT(error == 0); } else { size = doi.doi_data_block_size; if (ISP2(size)) { offset = P2ALIGN(offset, size); } else { ASSERT(offset < size); offset = 0; } zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, RL_READER); error = dmu_buf_hold(os, object, offset, zgd, &db, DMU_READ_NO_PREFETCH); if (error == 0) { zgd->zgd_db = db; zgd->zgd_bp = bp; ASSERT(db->db_offset == offset); ASSERT(db->db_size == size); error = dmu_sync(zio, lr->lr_common.lrc_txg, ztest_get_done, zgd); if (error == 0) return (0); } } ztest_get_done(zgd, error); return (error); } static void * ztest_lr_alloc(size_t lrsize, char *name) { char *lr; size_t namesize = name ? strlen(name) + 1 : 0; lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); if (name) bcopy(name, lr + lrsize, namesize); return (lr); } void ztest_lr_free(void *lr, size_t lrsize, char *name) { size_t namesize = name ? strlen(name) + 1 : 0; umem_free(lr, lrsize + namesize); } /* * Lookup a bunch of objects. Returns the number of objects not found. */ static int ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; int i; ASSERT(_mutex_held(&zd->zd_dirobj_lock)); for (i = 0; i < count; i++, od++) { od->od_object = 0; error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, sizeof (uint64_t), 1, &od->od_object); if (error) { ASSERT(error == ENOENT); ASSERT(od->od_object == 0); missing++; } else { dmu_buf_t *db; ztest_block_tag_t *bbt; dmu_object_info_t doi; ASSERT(od->od_object != 0); ASSERT(missing == 0); /* there should be no gaps */ ztest_object_lock(zd, od->od_object, RL_READER); VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, od->od_object, FTAG, &db)); dmu_object_info_from_db(db, &doi); bbt = ztest_bt_bonus(db); ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); od->od_type = doi.doi_type; od->od_blocksize = doi.doi_data_block_size; od->od_gen = bbt->bt_gen; dmu_buf_rele(db, FTAG); ztest_object_unlock(zd, od->od_object); } } return (missing); } static int ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int i; ASSERT(_mutex_held(&zd->zd_dirobj_lock)); for (i = 0; i < count; i++, od++) { if (missing) { od->od_object = 0; missing++; continue; } lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ lr->lrz_type = od->od_crtype; lr->lrz_blocksize = od->od_crblocksize; lr->lrz_ibshift = ztest_random_ibshift(); lr->lrz_bonustype = DMU_OT_UINT64_OTHER; lr->lrz_bonuslen = dmu_bonus_max(); lr->lr_gen = od->od_crgen; lr->lr_crtime[0] = time(NULL); if (ztest_replay_create(zd, lr, B_FALSE) != 0) { ASSERT(missing == 0); od->od_object = 0; missing++; } else { od->od_object = lr->lr_foid; od->od_type = od->od_crtype; od->od_blocksize = od->od_crblocksize; od->od_gen = od->od_crgen; ASSERT(od->od_object != 0); } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) { int missing = 0; int error; int i; ASSERT(_mutex_held(&zd->zd_dirobj_lock)); od += count - 1; for (i = count - 1; i >= 0; i--, od--) { if (missing) { missing++; continue; } if (od->od_object == 0) continue; lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); lr->lr_doid = od->od_dir; if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { ASSERT3U(error, ==, ENOSPC); missing++; } else { od->od_object = 0; } ztest_lr_free(lr, sizeof (*lr), od->od_name); } return (missing); } static int ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, void *data) { lr_write_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); bcopy(data, lr + 1, size); error = ztest_replay_write(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr) + size, NULL); return (error); } static int ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { lr_truncate_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_offset = offset; lr->lr_length = size; error = ztest_replay_truncate(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static int ztest_setattr(ztest_ds_t *zd, uint64_t object) { lr_setattr_t *lr; int error; lr = ztest_lr_alloc(sizeof (*lr), NULL); lr->lr_foid = object; lr->lr_size = 0; lr->lr_mode = 0; error = ztest_replay_setattr(zd, lr, B_FALSE); ztest_lr_free(lr, sizeof (*lr), NULL); return (error); } static void ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) { objset_t *os = zd->zd_os; dmu_tx_t *tx; uint64_t txg; rl_t *rl; txg_wait_synced(dmu_objset_pool(os), 0); ztest_object_lock(zd, object, RL_READER); rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, offset, size); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg != 0) { dmu_prealloc(os, object, offset, size, tx); dmu_tx_commit(tx); txg_wait_synced(dmu_objset_pool(os), txg); } else { (void) dmu_free_long_range(os, object, offset, size); } ztest_range_unlock(rl); ztest_object_unlock(zd, object); } static void ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) { ztest_block_tag_t wbt; dmu_object_info_t doi; enum ztest_io_type io_type; uint64_t blocksize; void *data; VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); blocksize = doi.doi_data_block_size; data = umem_alloc(blocksize, UMEM_NOFAIL); /* * Pick an i/o type at random, biased toward writing block tags. */ io_type = ztest_random(ZTEST_IO_TYPES); if (ztest_random(2) == 0) io_type = ZTEST_IO_WRITE_TAG; switch (io_type) { case ZTEST_IO_WRITE_TAG: ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); break; case ZTEST_IO_WRITE_PATTERN: (void) memset(data, 'a' + (object + offset) % 5, blocksize); if (ztest_random(2) == 0) { /* * Induce fletcher2 collisions to ensure that * zio_ddt_collision() detects and resolves them * when using fletcher2-verify for deduplication. */ ((uint64_t *)data)[0] ^= 1ULL << 63; ((uint64_t *)data)[4] ^= 1ULL << 63; } (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_WRITE_ZEROES: bzero(data, blocksize); (void) ztest_write(zd, object, offset, blocksize, data); break; case ZTEST_IO_TRUNCATE: (void) ztest_truncate(zd, object, offset, blocksize); break; case ZTEST_IO_SETATTR: (void) ztest_setattr(zd, object); break; } umem_free(data, blocksize); } /* * Initialize an object description template. */ static void ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, dmu_object_type_t type, uint64_t blocksize, uint64_t gen) { od->od_dir = ZTEST_DIROBJ; od->od_object = 0; od->od_crtype = type; od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); od->od_crgen = gen; od->od_type = DMU_OT_NONE; od->od_blocksize = 0; od->od_gen = 0; (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", - tag, (int64_t)id, index); + tag, (longlong_t)id, (u_longlong_t)index); } /* * Lookup or create the objects for a test using the od template. * If the objects do not all exist, or if 'remove' is specified, * remove any existing objects and create new ones. Otherwise, * use the existing objects. */ static int ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) { int count = size / sizeof (*od); int rv = 0; VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); if ((ztest_lookup(zd, od, count) != 0 || remove) && (ztest_remove(zd, od, count) != 0 || ztest_create(zd, od, count) != 0)) rv = -1; zd->zd_od = od; VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); return (rv); } /* ARGSUSED */ void ztest_zil_commit(ztest_ds_t *zd, uint64_t id) { zilog_t *zilog = zd->zd_zilog; zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); /* * Remember the committed values in zd, which is in parent/child * shared memory. If we die, the next iteration of ztest_run() * will verify that the log really does contain this record. */ mutex_enter(&zilog->zl_lock); ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); zd->zd_seq = zilog->zl_commit_lr_seq; mutex_exit(&zilog->zl_lock); } /* * Verify that we can't destroy an active pool, create an existing pool, * or create a pool with a bad vdev spec. */ /* ARGSUSED */ void ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa; nvlist_t *nvroot; /* * Attempt to create using a bad file. */ nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create using a bad mirror. */ nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); VERIFY3U(ENOENT, ==, spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); nvlist_free(nvroot); /* * Attempt to create an existing pool. It shouldn't matter * what's in the nvroot; we should fail with EEXIST. */ (void) rw_rdlock(&zs->zs_name_lock); nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); nvlist_free(nvroot); VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); spa_close(spa, FTAG); (void) rw_unlock(&zs->zs_name_lock); } static vdev_t * vdev_lookup_by_path(vdev_t *vd, const char *path) { vdev_t *mvd; int c; if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) return (vd); for (c = 0; c < vd->vdev_children; c++) if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != NULL) return (mvd); return (NULL); } /* * Find the first available hole which can be used as a top-level. */ int find_vdev_hole(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; int c; ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); for (c = 0; c < rvd->vdev_children; c++) { vdev_t *cvd = rvd->vdev_child[c]; if (cvd->vdev_ishole) break; } return (c); } /* * Verify that vdev_add() works as expected. */ /* ARGSUSED */ void ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; uint64_t leaves; uint64_t guid; nvlist_t *nvroot; int error; VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; /* * If we have slogs then remove them 1/4 of the time. */ if (spa_has_slogs(spa) && ztest_random(4) == 0) { /* * Grab the guid from the head of the log class rotor. */ guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; spa_config_exit(spa, SCL_VDEV, FTAG); /* * We have to grab the zs_name_lock as writer to * prevent a race between removing a slog (dmu_objset_find) * and destroying a dataset. Removing the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); error = spa_vdev_remove(spa, guid, B_FALSE); VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); if (error && error != EEXIST) fatal(0, "spa_vdev_remove() = %d", error); } else { spa_config_exit(spa, SCL_VDEV, FTAG); /* * Make 1/4 of the devices be log devices. */ nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1); error = spa_vdev_add(spa, nvroot); nvlist_free(nvroot); if (error == ENOSPC) ztest_record_enospc("spa_vdev_add"); else if (error != 0) fatal(0, "spa_vdev_add() = %d", error); } VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); } /* * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. */ /* ARGSUSED */ void ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; vdev_t *rvd = spa->spa_root_vdev; spa_aux_vdev_t *sav; char *aux; uint64_t guid = 0; int error; if (ztest_random(2) == 0) { sav = &spa->spa_spares; aux = ZPOOL_CONFIG_SPARES; } else { sav = &spa->spa_l2cache; aux = ZPOOL_CONFIG_L2CACHE; } VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); if (sav->sav_count != 0 && ztest_random(4) == 0) { /* * Pick a random device to remove. */ guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; } else { /* * Find an unused device we can add. */ zs->zs_vdev_aux = 0; for (;;) { char path[MAXPATHLEN]; int c; (void) sprintf(path, ztest_aux_template, zopt_dir, zopt_pool, aux, zs->zs_vdev_aux); for (c = 0; c < sav->sav_count; c++) if (strcmp(sav->sav_vdevs[c]->vdev_path, path) == 0) break; if (c == sav->sav_count && vdev_lookup_by_path(rvd, path) == NULL) break; zs->zs_vdev_aux++; } } spa_config_exit(spa, SCL_VDEV, FTAG); if (guid == 0) { /* * Add a new device. */ nvlist_t *nvroot = make_vdev_root(NULL, aux, (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); error = spa_vdev_add(spa, nvroot); if (error != 0) fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); nvlist_free(nvroot); } else { /* * Remove an existing device. Sometimes, dirty its * vdev state first to make sure we handle removal * of devices that have pending state changes. */ if (ztest_random(2) == 0) (void) vdev_online(spa, guid, 0, NULL); error = spa_vdev_remove(spa, guid, B_FALSE); if (error != 0 && error != EBUSY) fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); } VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); } /* * split a pool if it has mirror tlvdevs */ /* ARGSUSED */ void ztest_split_pool(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; vdev_t *rvd = spa->spa_root_vdev; nvlist_t *tree, **child, *config, *split, **schild; uint_t c, children, schildren = 0, lastlogid = 0; int error = 0; VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); /* ensure we have a useable config; mirrors of raidz aren't supported */ if (zs->zs_mirrors < 3 || zopt_raidz > 1) { VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); return; } /* clean up the old pool, if any */ (void) spa_destroy("splitp"); spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* generate a config from the existing config */ mutex_enter(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, &tree) == 0); mutex_exit(&spa->spa_props_lock); VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0); schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); for (c = 0; c < children; c++) { vdev_t *tvd = rvd->vdev_child[c]; nvlist_t **mchild; uint_t mchildren; if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(schild[schildren], ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); VERIFY(nvlist_add_uint64(schild[schildren], ZPOOL_CONFIG_IS_HOLE, 1) == 0); if (lastlogid == 0) lastlogid = schildren; ++schildren; continue; } lastlogid = 0; VERIFY(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); } /* OK, create a config that can be used to split */ VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, lastlogid != 0 ? lastlogid : schildren) == 0); VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); for (c = 0; c < schildren; c++) nvlist_free(schild[c]); free(schild); nvlist_free(split); spa_config_exit(spa, SCL_VDEV, FTAG); (void) rw_wrlock(&zs->zs_name_lock); error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); (void) rw_unlock(&zs->zs_name_lock); nvlist_free(config); if (error == 0) { (void) printf("successful split - results:\n"); mutex_enter(&spa_namespace_lock); show_pool_stats(spa); show_pool_stats(spa_lookup("splitp")); mutex_exit(&spa_namespace_lock); ++zs->zs_splits; --zs->zs_mirrors; } VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); } /* * Verify that we can attach and detach devices. */ /* ARGSUSED */ void ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; spa_aux_vdev_t *sav = &spa->spa_spares; vdev_t *rvd = spa->spa_root_vdev; vdev_t *oldvd, *newvd, *pvd; nvlist_t *root; uint64_t leaves; uint64_t leaf, top; uint64_t ashift = ztest_get_ashift(); uint64_t oldguid, pguid; size_t oldsize, newsize; char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; int replacing; int oldvd_has_siblings = B_FALSE; int newvd_is_spare = B_FALSE; int oldvd_is_log; int error, expected_error; VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); /* * Decide whether to do an attach or a replace. */ replacing = ztest_random(2); /* * Pick a random top-level vdev. */ top = ztest_random_vdev_top(spa, B_TRUE); /* * Pick a random leaf within it. */ leaf = ztest_random(leaves); /* * Locate this vdev. */ oldvd = rvd->vdev_child[top]; if (zs->zs_mirrors >= 1) { ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); ASSERT(oldvd->vdev_children >= zs->zs_mirrors); oldvd = oldvd->vdev_child[leaf / zopt_raidz]; } if (zopt_raidz > 1) { ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); ASSERT(oldvd->vdev_children == zopt_raidz); oldvd = oldvd->vdev_child[leaf % zopt_raidz]; } /* * If we're already doing an attach or replace, oldvd may be a * mirror vdev -- in which case, pick a random child. */ while (oldvd->vdev_children != 0) { oldvd_has_siblings = B_TRUE; ASSERT(oldvd->vdev_children >= 2); oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; } oldguid = oldvd->vdev_guid; oldsize = vdev_get_min_asize(oldvd); oldvd_is_log = oldvd->vdev_top->vdev_islog; (void) strcpy(oldpath, oldvd->vdev_path); pvd = oldvd->vdev_parent; pguid = pvd->vdev_guid; /* * If oldvd has siblings, then half of the time, detach it. */ if (oldvd_has_siblings && ztest_random(2) == 0) { spa_config_exit(spa, SCL_VDEV, FTAG); error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); if (error != 0 && error != ENODEV && error != EBUSY && error != ENOTSUP) fatal(0, "detach (%s) returned %d", oldpath, error); VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); return; } /* * For the new vdev, choose with equal probability between the two * standard paths (ending in either 'a' or 'b') or a random hot spare. */ if (sav->sav_count != 0 && ztest_random(3) == 0) { newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; newvd_is_spare = B_TRUE; (void) strcpy(newpath, newvd->vdev_path); } else { (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); if (ztest_random(2) == 0) newpath[strlen(newpath) - 1] = 'b'; newvd = vdev_lookup_by_path(rvd, newpath); } if (newvd) { newsize = vdev_get_min_asize(newvd); } else { /* * Make newsize a little bigger or smaller than oldsize. * If it's smaller, the attach should fail. * If it's larger, and we're doing a replace, * we should get dynamic LUN growth when we're done. */ newsize = 10 * oldsize / (9 + ztest_random(3)); } /* * If pvd is not a mirror or root, the attach should fail with ENOTSUP, * unless it's a replace; in that case any non-replacing parent is OK. * * If newvd is already part of the pool, it should fail with EBUSY. * * If newvd is too small, it should fail with EOVERFLOW. */ if (pvd->vdev_ops != &vdev_mirror_ops && pvd->vdev_ops != &vdev_root_ops && (!replacing || pvd->vdev_ops == &vdev_replacing_ops || pvd->vdev_ops == &vdev_spare_ops)) expected_error = ENOTSUP; else if (newvd_is_spare && (!replacing || oldvd_is_log)) expected_error = ENOTSUP; else if (newvd == oldvd) expected_error = replacing ? 0 : EBUSY; else if (vdev_lookup_by_path(rvd, newpath) != NULL) expected_error = EBUSY; else if (newsize < oldsize) expected_error = EOVERFLOW; else if (ashift > oldvd->vdev_top->vdev_ashift) expected_error = EDOM; else expected_error = 0; spa_config_exit(spa, SCL_VDEV, FTAG); /* * Build the nvlist describing newpath. */ root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, ashift, 0, 0, 0, 1); error = spa_vdev_attach(spa, oldguid, root, replacing); nvlist_free(root); /* * If our parent was the replacing vdev, but the replace completed, * then instead of failing with ENOTSUP we may either succeed, * fail with ENODEV, or fail with EOVERFLOW. */ if (expected_error == ENOTSUP && (error == 0 || error == ENODEV || error == EOVERFLOW)) expected_error = error; /* * If someone grew the LUN, the replacement may be too small. */ if (error == EOVERFLOW || error == EBUSY) expected_error = error; /* XXX workaround 6690467 */ if (error != expected_error && expected_error != EBUSY) { fatal(0, "attach (%s %llu, %s %llu, %d) " "returned %d, expected %d", oldpath, (longlong_t)oldsize, newpath, (longlong_t)newsize, replacing, error, expected_error); } VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); } /* * Callback function which expands the physical size of the vdev. */ vdev_t * grow_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; size_t *newsize = arg; size_t fsize; int fd; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); if ((fd = open(vd->vdev_path, O_RDWR)) == -1) return (vd); fsize = lseek(fd, 0, SEEK_END); (void) ftruncate(fd, *newsize); if (zopt_verbose >= 6) { (void) printf("%s grew from %lu to %lu bytes\n", vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); } (void) close(fd); return (NULL); } /* * Callback function which expands a given vdev by calling vdev_online(). */ /* ARGSUSED */ vdev_t * online_vdev(vdev_t *vd, void *arg) { spa_t *spa = vd->vdev_spa; vdev_t *tvd = vd->vdev_top; uint64_t guid = vd->vdev_guid; uint64_t generation = spa->spa_config_generation + 1; vdev_state_t newstate = VDEV_STATE_UNKNOWN; int error; ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); ASSERT(vd->vdev_ops->vdev_op_leaf); /* Calling vdev_online will initialize the new metaslabs */ spa_config_exit(spa, SCL_STATE, spa); error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); spa_config_enter(spa, SCL_STATE, spa, RW_READER); /* * If vdev_online returned an error or the underlying vdev_open * failed then we abort the expand. The only way to know that * vdev_open fails is by checking the returned newstate. */ if (error || newstate != VDEV_STATE_HEALTHY) { if (zopt_verbose >= 5) { (void) printf("Unable to expand vdev, state %llu, " "error %d\n", (u_longlong_t)newstate, error); } return (vd); } ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); /* * Since we dropped the lock we need to ensure that we're * still talking to the original vdev. It's possible this * vdev may have been detached/replaced while we were * trying to online it. */ if (generation != spa->spa_config_generation) { if (zopt_verbose >= 5) { (void) printf("vdev configuration has changed, " "guid %llu, state %llu, expected gen %llu, " "got gen %llu\n", (u_longlong_t)guid, (u_longlong_t)tvd->vdev_state, (u_longlong_t)generation, (u_longlong_t)spa->spa_config_generation); } return (vd); } return (NULL); } /* * Traverse the vdev tree calling the supplied function. * We continue to walk the tree until we either have walked all * children or we receive a non-NULL return from the callback. * If a NULL callback is passed, then we just return back the first * leaf vdev we encounter. */ vdev_t * vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) { uint_t c; if (vd->vdev_ops->vdev_op_leaf) { if (func == NULL) return (vd); else return (func(vd, arg)); } for (c = 0; c < vd->vdev_children; c++) { vdev_t *cvd = vd->vdev_child[c]; if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) return (cvd); } return (NULL); } /* * Verify that dynamic LUN growth works as expected. */ /* ARGSUSED */ void ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; vdev_t *vd, *tvd; metaslab_class_t *mc; metaslab_group_t *mg; size_t psize, newsize; uint64_t top; uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); spa_config_enter(spa, SCL_STATE, spa, RW_READER); top = ztest_random_vdev_top(spa, B_TRUE); tvd = spa->spa_root_vdev->vdev_child[top]; mg = tvd->vdev_mg; mc = mg->mg_class; old_ms_count = tvd->vdev_ms_count; old_class_space = metaslab_class_get_space(mc); /* * Determine the size of the first leaf vdev associated with * our top-level device. */ vd = vdev_walk_tree(tvd, NULL, NULL); ASSERT3P(vd, !=, NULL); ASSERT(vd->vdev_ops->vdev_op_leaf); psize = vd->vdev_psize; /* * We only try to expand the vdev if it's healthy, less than 4x its * original size, and it has a valid psize. */ if (tvd->vdev_state != VDEV_STATE_HEALTHY || psize == 0 || psize >= 4 * zopt_vdev_size) { spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); return; } ASSERT(psize > 0); newsize = psize + psize / 8; ASSERT3U(newsize, >, psize); if (zopt_verbose >= 6) { (void) printf("Expanding LUN %s from %lu to %lu\n", vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); } /* * Growing the vdev is a two step process: * 1). expand the physical size (i.e. relabel) * 2). online the vdev to create the new metaslabs */ if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || vdev_walk_tree(tvd, online_vdev, NULL) != NULL || tvd->vdev_state != VDEV_STATE_HEALTHY) { if (zopt_verbose >= 5) { (void) printf("Could not expand LUN because " "the vdev configuration changed.\n"); } spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); return; } spa_config_exit(spa, SCL_STATE, spa); /* * Expanding the LUN will update the config asynchronously, * thus we must wait for the async thread to complete any * pending tasks before proceeding. */ for (;;) { boolean_t done; mutex_enter(&spa->spa_async_lock); done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); mutex_exit(&spa->spa_async_lock); if (done) break; txg_wait_synced(spa_get_dsl(spa), 0); (void) poll(NULL, 0, 100); } spa_config_enter(spa, SCL_STATE, spa, RW_READER); tvd = spa->spa_root_vdev->vdev_child[top]; new_ms_count = tvd->vdev_ms_count; new_class_space = metaslab_class_get_space(mc); if (tvd->vdev_mg != mg || mg->mg_class != mc) { if (zopt_verbose >= 5) { (void) printf("Could not verify LUN expansion due to " "intervening vdev offline or remove.\n"); } spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); return; } /* * Make sure we were able to grow the vdev. */ if (new_ms_count <= old_ms_count) fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", old_ms_count, new_ms_count); /* * Make sure we were able to grow the pool. */ if (new_class_space <= old_class_space) fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", old_class_space, new_class_space); if (zopt_verbose >= 5) { char oldnumbuf[6], newnumbuf[6]; nicenum(old_class_space, oldnumbuf); nicenum(new_class_space, newnumbuf); (void) printf("%s grew from %s to %s\n", spa->spa_name, oldnumbuf, newnumbuf); } spa_config_exit(spa, SCL_STATE, spa); VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); } /* * Verify that dmu_objset_{create,destroy,open,close} work as expected. */ /* ARGSUSED */ static void ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { /* * Create the objects common to all ztest datasets. */ VERIFY(zap_create_claim(os, ZTEST_DIROBJ, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); } static int ztest_dataset_create(char *dsname) { uint64_t zilset = ztest_random(100); int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, ztest_objset_create_cb, NULL); if (err || zilset < 80) return (err); (void) printf("Setting dataset %s to sync always\n", dsname); return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, ZFS_SYNC_ALWAYS, B_FALSE)); } /* ARGSUSED */ static int ztest_objset_destroy_cb(const char *name, void *arg) { objset_t *os; dmu_object_info_t doi; int error; /* * Verify that the dataset contains a directory object. */ VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); error = dmu_object_info(os, ZTEST_DIROBJ, &doi); if (error != ENOENT) { /* We could have crashed in the middle of destroying it */ ASSERT3U(error, ==, 0); ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); ASSERT3S(doi.doi_physical_blocks_512, >=, 0); } dmu_objset_rele(os, FTAG); /* * Destroy the dataset. */ VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); return (0); } static boolean_t ztest_snapshot_create(char *osname, uint64_t id) { char snapname[MAXNAMELEN]; int error; (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, (u_longlong_t)id); error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, NULL, NULL, B_FALSE, B_FALSE, -1); if (error == ENOSPC) { ztest_record_enospc(FTAG); return (B_FALSE); } if (error != 0 && error != EEXIST) fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); return (B_TRUE); } static boolean_t ztest_snapshot_destroy(char *osname, uint64_t id) { char snapname[MAXNAMELEN]; int error; (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, (u_longlong_t)id); error = dmu_objset_destroy(snapname, B_FALSE); if (error != 0 && error != ENOENT) fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); return (B_TRUE); } /* ARGSUSED */ void ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; ztest_ds_t zdtmp; int iters; int error; objset_t *os, *os2; char name[MAXNAMELEN]; zilog_t *zilog; int i; (void) rw_rdlock(&zs->zs_name_lock); (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", zs->zs_pool, (u_longlong_t)id); /* * If this dataset exists from a previous run, process its replay log * half of the time. If we don't replay it, then dmu_objset_destroy() * (invoked from ztest_objset_destroy_cb()) should just throw it away. */ if (ztest_random(2) == 0 && dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { ztest_zd_init(&zdtmp, os); zil_replay(os, &zdtmp, ztest_replay_vector); ztest_zd_fini(&zdtmp); dmu_objset_disown(os, FTAG); } /* * There may be an old instance of the dataset we're about to * create lying around from a previous run. If so, destroy it * and all of its snapshots. */ (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); /* * Verify that the destroyed dataset is no longer in the namespace. */ VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); /* * Verify that we can create a new dataset. */ error = ztest_dataset_create(name); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); (void) rw_unlock(&zs->zs_name_lock); return; } fatal(0, "dmu_objset_create(%s) = %d", name, error); } VERIFY3U(0, ==, dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); ztest_zd_init(&zdtmp, os); /* * Open the intent log for it. */ zilog = zil_open(os, ztest_get_data); /* * Put some objects in there, do a little I/O to them, * and randomly take a couple of snapshots along the way. */ iters = ztest_random(5); for (i = 0; i < iters; i++) { ztest_dmu_object_alloc_free(&zdtmp, id); if (ztest_random(iters) == 0) (void) ztest_snapshot_create(name, i); } /* * Verify that we cannot create an existing dataset. */ VERIFY3U(EEXIST, ==, dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); /* * Verify that we can hold an objset that is also owned. */ VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); dmu_objset_rele(os2, FTAG); /* * Verify that we cannot own an objset that is already owned. */ VERIFY3U(EBUSY, ==, dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); zil_close(zilog); dmu_objset_disown(os, FTAG); ztest_zd_fini(&zdtmp); (void) rw_unlock(&zs->zs_name_lock); } /* * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. */ void ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; (void) rw_rdlock(&zs->zs_name_lock); (void) ztest_snapshot_destroy(zd->zd_name, id); (void) ztest_snapshot_create(zd->zd_name, id); (void) rw_unlock(&zs->zs_name_lock); } /* * Cleanup non-standard snapshots and clones. */ void ztest_dsl_dataset_cleanup(char *osname, uint64_t id) { char snap1name[MAXNAMELEN]; char clone1name[MAXNAMELEN]; char snap2name[MAXNAMELEN]; char clone2name[MAXNAMELEN]; char snap3name[MAXNAMELEN]; int error; - (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); - (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); - (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); - (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); - (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); + (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", + osname, (u_longlong_t)id); + (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", + osname, (u_longlong_t)id); + (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", + clone1name, (u_longlong_t)id); + (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", + osname, (u_longlong_t)id); + (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", + clone1name, (u_longlong_t)id); error = dmu_objset_destroy(clone2name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); error = dmu_objset_destroy(snap3name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); error = dmu_objset_destroy(snap2name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); error = dmu_objset_destroy(clone1name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); error = dmu_objset_destroy(snap1name, B_FALSE); if (error && error != ENOENT) fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); } /* * Verify dsl_dataset_promote handles EBUSY */ void ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; objset_t *clone; dsl_dataset_t *ds; char snap1name[MAXNAMELEN]; char clone1name[MAXNAMELEN]; char snap2name[MAXNAMELEN]; char clone2name[MAXNAMELEN]; char snap3name[MAXNAMELEN]; char *osname = zd->zd_name; int error; (void) rw_rdlock(&zs->zs_name_lock); ztest_dsl_dataset_cleanup(osname, id); - (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); - (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); - (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); - (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); - (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); + (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", + osname, (u_longlong_t)id); + (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", + osname, (u_longlong_t)id); + (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", + clone1name, (u_longlong_t)id); + (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", + osname, (u_longlong_t)id); + (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", + clone1name, (u_longlong_t)id); error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, NULL, NULL, B_FALSE, B_FALSE, -1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); } error = dmu_objset_hold(snap1name, FTAG, &clone); if (error) fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); dmu_objset_rele(clone, FTAG); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); } error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, NULL, NULL, B_FALSE, B_FALSE, -1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); } error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, NULL, NULL, B_FALSE, B_FALSE, -1); if (error && error != EEXIST) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); } error = dmu_objset_hold(snap3name, FTAG, &clone); if (error) fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); dmu_objset_rele(clone, FTAG); if (error) { if (error == ENOSPC) { ztest_record_enospc(FTAG); goto out; } fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); } error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds); if (error) fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error); error = dsl_dataset_promote(clone2name, NULL); if (error != EBUSY) fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, error); dsl_dataset_disown(ds, FTAG); out: ztest_dsl_dataset_cleanup(osname, id); (void) rw_unlock(&zs->zs_name_lock); } /* * Verify that dmu_object_{alloc,free} work as expected. */ void ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[4]; int batchsize = sizeof (od) / sizeof (od[0]); int b; for (b = 0; b < batchsize; b++) ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); /* * Destroy the previous batch of objects, create a new batch, * and do some I/O on the new objects. */ if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) return; while (ztest_random(4 * batchsize) != 0) ztest_io(zd, od[ztest_random(batchsize)].od_object, ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); } /* * Verify that dmu_{read,write} work as expected. */ void ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; int i, freeit, error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 40; int free_percent = 5; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is arbitrary. It doesn't have to be a power of two, * and it doesn't have any relation to the object blocksize. * The only requirement is that it can hold at least two bufwads. * * Normally, we write the bufwad to each of these locations. * However, free_percent of the time we instead write zeroes to * packobj and perform a dmu_free_range() on bigobj. By comparing * bigobj to packobj, we can verify that the DMU is correctly * tracking which parts of an object are allocated and free, * and that the contents of the allocated blocks are correct. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; chunksize = od[0].od_gen; ASSERT(chunksize == od[1].od_gen); /* * Prefetch a random chunk of the big object. * Our aim here is to get some async reads in flight * for blocks that we may free below; the DMU should * handle this race correctly. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(2 * width - 1); dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_alloc(packsize, UMEM_NOFAIL); bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); /* * free_percent of the time, free a range of bigobj rather than * overwriting it. */ freeit = (ztest_random(100) < free_percent); /* * Read the current contents of our objects. */ error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); if (freeit) dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); else dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); return; } dmu_object_set_checksum(os, bigobj, (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); dmu_object_set_compress(os, bigobj, (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); if (freeit) { bzero(pack, sizeof (bufwad_t)); } else { pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); } *bigH = *pack; *bigT = *pack; } /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (freeit) { if (zopt_verbose >= 7) { (void) printf("freeing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); } else { if (zopt_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); } void compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) { uint64_t i; bufwad_t *pack; bufwad_t *bigH; bufwad_t *bigT; /* * For each index from n to n + s, verify that the existing bufwad * in packobj matches the bufwads at the head and tail of the * corresponding chunk in bigobj. Then update all three bufwads * with the new values we want to write out. */ for (i = 0; i < s; i++) { /* LINTED */ pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); /* LINTED */ bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); /* LINTED */ bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); if (pack->bw_txg > txg) fatal(0, "future leak: got %llx, open txg is %llx", pack->bw_txg, txg); if (pack->bw_data != 0 && pack->bw_index != n + i) fatal(0, "wrong index: got %llx, wanted %llx+%llx", pack->bw_index, n, i); if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); pack->bw_index = n + i; pack->bw_txg = txg; pack->bw_data = 1 + ztest_random(-2ULL); *bigH = *pack; *bigT = *pack; } } void ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[2]; dmu_tx_t *tx; uint64_t i; int error; uint64_t n, s, txg; bufwad_t *packbuf, *bigbuf; uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; uint64_t blocksize = ztest_random_blocksize(); uint64_t chunksize = blocksize; uint64_t regions = 997; uint64_t stride = 123456789ULL; uint64_t width = 9; dmu_buf_t *bonus_db; arc_buf_t **bigbuf_arcbufs; dmu_object_info_t doi; /* * This test uses two objects, packobj and bigobj, that are always * updated together (i.e. in the same tx) so that their contents are * in sync and can be compared. Their contents relate to each other * in a simple way: packobj is a dense array of 'bufwad' structures, * while bigobj is a sparse array of the same bufwads. Specifically, * for any index n, there are three bufwads that should be identical: * * packobj, at offset n * sizeof (bufwad_t) * bigobj, at the head of the nth chunk * bigobj, at the tail of the nth chunk * * The chunk size is set equal to bigobj block size so that * dmu_assign_arcbuf() can be tested for object updates. */ /* * Read the directory info. If it's the first time, set things up. */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; bigobj = od[0].od_object; packobj = od[1].od_object; blocksize = od[0].od_blocksize; chunksize = blocksize; ASSERT(chunksize == od[1].od_gen); VERIFY(dmu_object_info(os, bigobj, &doi) == 0); VERIFY(ISP2(doi.doi_data_block_size)); VERIFY(chunksize == doi.doi_data_block_size); VERIFY(chunksize >= 2 * sizeof (bufwad_t)); /* * Pick a random index and compute the offsets into packobj and bigobj. */ n = ztest_random(regions) * stride + ztest_random(width); s = 1 + ztest_random(width - 1); packoff = n * sizeof (bufwad_t); packsize = s * sizeof (bufwad_t); bigoff = n * chunksize; bigsize = s * chunksize; packbuf = umem_zalloc(packsize, UMEM_NOFAIL); bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); /* * Iteration 0 test zcopy for DB_UNCACHED dbufs. * Iteration 1 test zcopy to already referenced dbufs. * Iteration 2 test zcopy to dirty dbuf in the same txg. * Iteration 3 test zcopy to dbuf dirty in previous txg. * Iteration 4 test zcopy when dbuf is no longer dirty. * Iteration 5 test zcopy when it can't be done. * Iteration 6 one more zcopy write. */ for (i = 0; i < 7; i++) { uint64_t j; uint64_t off; /* * In iteration 5 (i == 5) use arcbufs * that don't match bigobj blksz to test * dmu_assign_arcbuf() when it can't directly * assign an arcbuf to a dbuf. */ for (j = 0; j < s; j++) { if (i != 5) { bigbuf_arcbufs[j] = dmu_request_arcbuf(bonus_db, chunksize); } else { bigbuf_arcbufs[2 * j] = dmu_request_arcbuf(bonus_db, chunksize / 2); bigbuf_arcbufs[2 * j + 1] = dmu_request_arcbuf(bonus_db, chunksize / 2); } } /* * Get a tx for the mods to both packobj and bigobj. */ tx = dmu_tx_create(os); dmu_tx_hold_write(tx, packobj, packoff, packsize); dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) { umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); for (j = 0; j < s; j++) { if (i != 5) { dmu_return_arcbuf(bigbuf_arcbufs[j]); } else { dmu_return_arcbuf( bigbuf_arcbufs[2 * j]); dmu_return_arcbuf( bigbuf_arcbufs[2 * j + 1]); } } umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); dmu_buf_rele(bonus_db, FTAG); return; } /* * 50% of the time don't read objects in the 1st iteration to * test dmu_assign_arcbuf() for the case when there're no * existing dbufs for the specified offsets. */ if (i != 0 || ztest_random(2) != 0) { error = dmu_read(os, packobj, packoff, packsize, packbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, DMU_READ_PREFETCH); ASSERT3U(error, ==, 0); } compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, n, chunksize, txg); /* * We've verified all the old bufwads, and made new ones. * Now write them out. */ dmu_write(os, packobj, packoff, packsize, packbuf, tx); if (zopt_verbose >= 7) { (void) printf("writing offset %llx size %llx" " txg %llx\n", (u_longlong_t)bigoff, (u_longlong_t)bigsize, (u_longlong_t)txg); } for (off = bigoff, j = 0; j < s; j++, off += chunksize) { dmu_buf_t *dbt; if (i != 5) { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[j]->b_data, chunksize); } else { bcopy((caddr_t)bigbuf + (off - bigoff), bigbuf_arcbufs[2 * j]->b_data, chunksize / 2); bcopy((caddr_t)bigbuf + (off - bigoff) + chunksize / 2, bigbuf_arcbufs[2 * j + 1]->b_data, chunksize / 2); } if (i == 1) { VERIFY(dmu_buf_hold(os, bigobj, off, FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); } if (i != 5) { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[j], tx); } else { dmu_assign_arcbuf(bonus_db, off, bigbuf_arcbufs[2 * j], tx); dmu_assign_arcbuf(bonus_db, off + chunksize / 2, bigbuf_arcbufs[2 * j + 1], tx); } if (i == 1) { dmu_buf_rele(dbt, FTAG); } } dmu_tx_commit(tx); /* * Sanity check the stuff we just wrote. */ { void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, packobj, packoff, packsize, packcheck, DMU_READ_PREFETCH)); VERIFY(0 == dmu_read(os, bigobj, bigoff, bigsize, bigcheck, DMU_READ_PREFETCH)); ASSERT(bcmp(packbuf, packcheck, packsize) == 0); ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); umem_free(packcheck, packsize); umem_free(bigcheck, bigsize); } if (i == 2) { txg_wait_open(dmu_objset_pool(os), 0); } else if (i == 3) { txg_wait_synced(dmu_objset_pool(os), 0); } } dmu_buf_rele(bonus_db, FTAG); umem_free(packbuf, packsize); umem_free(bigbuf, bigsize); umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); } /* ARGSUSED */ void ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(20) + 43)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); /* * Have multiple threads write to large offsets in an object * to verify that parallel writes to an object -- even to the * same blocks within the object -- doesn't cause any trouble. */ ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; while (ztest_random(10) != 0) ztest_io(zd, od[0].od_object, offset); } void ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) { ztest_od_t od[1]; uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); uint64_t count = ztest_random(20) + 1; uint64_t blocksize = ztest_random_blocksize(); void *data; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) return; ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); data = umem_zalloc(blocksize, UMEM_NOFAIL); while (ztest_random(count) != 0) { uint64_t randoff = offset + (ztest_random(count) * blocksize); if (ztest_write(zd, od[0].od_object, randoff, blocksize, data) != 0) break; while (ztest_random(4) != 0) ztest_io(zd, od[0].od_object, randoff); } umem_free(data, blocksize); } /* * Verify that zap_{create,destroy,add,remove,update} work as expected. */ #define ZTEST_ZAP_MIN_INTS 1 #define ZTEST_ZAP_MAX_INTS 4 #define ZTEST_ZAP_MAX_PROPS 1000 void ztest_zap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object; uint64_t txg, last_txg; uint64_t value[ZTEST_ZAP_MAX_INTS]; uint64_t zl_ints, zl_intsize, prop; int i, ints; dmu_tx_t *tx; char propname[100], txgname[100]; int error; char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Generate a known hash collision, and verify that * we can lookup and remove both entries. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; for (i = 0; i < 2; i++) { value[i] = i; VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); } for (i = 0; i < 2; i++) { VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 1, &value[i], tx)); VERIFY3U(0, ==, zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); } for (i = 0; i < 2; i++) { VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); } dmu_tx_commit(tx); /* * Generate a buch of random entries. */ ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); bzero(value, sizeof (value)); last_txg = 0; /* * If these zap entries already exist, validate their contents. */ error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == 0) { ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, 1); VERIFY(zap_lookup(os, object, txgname, zl_intsize, zl_ints, &last_txg) == 0); VERIFY(zap_length(os, object, propname, &zl_intsize, &zl_ints) == 0); ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); ASSERT3U(zl_ints, ==, ints); VERIFY(zap_lookup(os, object, propname, zl_intsize, zl_ints, value) == 0); for (i = 0; i < ints; i++) { ASSERT3U(value[i], ==, last_txg + object + i); } } else { ASSERT3U(error, ==, ENOENT); } /* * Atomically update two entries in our zap object. * The first is named txg_%llu, and contains the txg * in which the property was last updated. The second * is named prop_%llu, and the nth element of its value * should be txg + object + n. */ tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; if (last_txg > txg) fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); for (i = 0; i < ints; i++) value[i] = txg + object + i; VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx)); VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), ints, value, tx)); dmu_tx_commit(tx); /* * Remove a random pair of entries. */ prop = ztest_random(ZTEST_ZAP_MAX_PROPS); (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); if (error == ENOENT) return; ASSERT3U(error, ==, 0); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); dmu_tx_commit(tx); } /* * Testcase to test the upgrading of a microzap to fatzap. */ void ztest_fzap(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, txg; int i; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) return; object = od[0].od_object; /* * Add entries to this ZAP and make sure it spills over * and gets upgraded to a fatzap. Also, since we are adding * 2050 entries we should see ptrtbl growth and leaf-block split. */ for (i = 0; i < 2050; i++) { char name[MAXNAMELEN]; uint64_t value = i; dmu_tx_t *tx; int error; (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", - id, value); + (u_longlong_t)id, (u_longlong_t)value); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, name); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; error = zap_add(os, object, name, sizeof (uint64_t), 1, &value, tx); ASSERT(error == 0 || error == EEXIST); dmu_tx_commit(tx); } } /* ARGSUSED */ void ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; dmu_tx_t *tx; int i, namelen, error; int micro = ztest_random(2); char name[20], string_value[20]; void *data; ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; object = od[0].od_object; /* * Generate a random name of the form 'xxx.....' where each * x is a random printable character and the dots are dots. * There are 94 such characters, and the name length goes from * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. */ namelen = ztest_random(sizeof (name) - 5) + 5 + 1; for (i = 0; i < 3; i++) name[i] = '!' + ztest_random('~' - '!' + 1); for (; i < namelen - 1; i++) name[i] = '.'; name[i] = '\0'; if ((namelen & 1) || micro) { wsize = sizeof (txg); wc = 1; data = &txg; } else { wsize = 1; wc = namelen; data = string_value; } count = -1ULL; VERIFY(zap_count(os, object, &count) == 0); ASSERT(count != -1ULL); /* * Select an operation: length, lookup, add, update, remove. */ i = ztest_random(5); if (i >= 2) { tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, object, B_TRUE, NULL); txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); if (txg == 0) return; bcopy(name, string_value, namelen); } else { tx = NULL; txg = 0; bzero(string_value, namelen); } switch (i) { case 0: error = zap_length(os, object, name, &zl_wsize, &zl_wc); if (error == 0) { ASSERT3U(wsize, ==, zl_wsize); ASSERT3U(wc, ==, zl_wc); } else { ASSERT3U(error, ==, ENOENT); } break; case 1: error = zap_lookup(os, object, name, wsize, wc, data); if (error == 0) { if (data == string_value && bcmp(name, data, namelen) != 0) fatal(0, "name '%s' != val '%s' len %d", name, data, namelen); } else { ASSERT3U(error, ==, ENOENT); } break; case 2: error = zap_add(os, object, name, wsize, wc, data, tx); ASSERT(error == 0 || error == EEXIST); break; case 3: VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); break; case 4: error = zap_remove(os, object, name, tx); ASSERT(error == 0 || error == ENOENT); break; } if (tx != NULL) dmu_tx_commit(tx); } /* * Commit callback data. */ typedef struct ztest_cb_data { list_node_t zcd_node; uint64_t zcd_txg; int zcd_expected_err; boolean_t zcd_added; boolean_t zcd_called; spa_t *zcd_spa; } ztest_cb_data_t; /* This is the actual commit callback function */ static void ztest_commit_callback(void *arg, int error) { ztest_cb_data_t *data = arg; uint64_t synced_txg; VERIFY(data != NULL); VERIFY3S(data->zcd_expected_err, ==, error); VERIFY(!data->zcd_called); synced_txg = spa_last_synced_txg(data->zcd_spa); if (data->zcd_txg > synced_txg) fatal(0, "commit callback of txg %" PRIu64 " called prematurely" ", last synced txg = %" PRIu64 "\n", data->zcd_txg, synced_txg); data->zcd_called = B_TRUE; if (error == ECANCELED) { ASSERT3U(data->zcd_txg, ==, 0); ASSERT(!data->zcd_added); /* * The private callback data should be destroyed here, but * since we are going to check the zcd_called field after * dmu_tx_abort(), we will destroy it there. */ return; } /* Was this callback added to the global callback list? */ if (!data->zcd_added) goto out; ASSERT3U(data->zcd_txg, !=, 0); /* Remove our callback from the list */ (void) mutex_lock(&zcl.zcl_callbacks_lock); list_remove(&zcl.zcl_callbacks, data); (void) mutex_unlock(&zcl.zcl_callbacks_lock); out: umem_free(data, sizeof (ztest_cb_data_t)); } /* Allocate and initialize callback data structure */ static ztest_cb_data_t * ztest_create_cb_data(objset_t *os, uint64_t txg) { ztest_cb_data_t *cb_data; cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); cb_data->zcd_txg = txg; cb_data->zcd_spa = dmu_objset_spa(os); return (cb_data); } /* * If a number of txgs equal to this threshold have been created after a commit * callback has been registered but not called, then we assume there is an * implementation bug. */ #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) /* * Commit callback test. */ void ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) { objset_t *os = zd->zd_os; ztest_od_t od[1]; dmu_tx_t *tx; ztest_cb_data_t *cb_data[3], *tmp_cb; uint64_t old_txg, txg; int i, error; ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; tx = dmu_tx_create(os); cb_data[0] = ztest_create_cb_data(os, 0); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); /* Every once in a while, abort the transaction on purpose */ if (ztest_random(100) == 0) error = -1; if (!error) error = dmu_tx_assign(tx, TXG_NOWAIT); txg = error ? 0 : dmu_tx_get_txg(tx); cb_data[0]->zcd_txg = txg; cb_data[1] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); if (error) { /* * It's not a strict requirement to call the registered * callbacks from inside dmu_tx_abort(), but that's what * it's supposed to happen in the current implementation * so we will check for that. */ for (i = 0; i < 2; i++) { cb_data[i]->zcd_expected_err = ECANCELED; VERIFY(!cb_data[i]->zcd_called); } dmu_tx_abort(tx); for (i = 0; i < 2; i++) { VERIFY(cb_data[i]->zcd_called); umem_free(cb_data[i], sizeof (ztest_cb_data_t)); } return; } cb_data[2] = ztest_create_cb_data(os, txg); dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); /* * Read existing data to make sure there isn't a future leak. */ VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), &old_txg, DMU_READ_PREFETCH)); if (old_txg > txg) fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, old_txg, txg); dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); (void) mutex_lock(&zcl.zcl_callbacks_lock); /* * Since commit callbacks don't have any ordering requirement and since * it is theoretically possible for a commit callback to be called * after an arbitrary amount of time has elapsed since its txg has been * synced, it is difficult to reliably determine whether a commit * callback hasn't been called due to high load or due to a flawed * implementation. * * In practice, we will assume that if after a certain number of txgs a * commit callback hasn't been called, then most likely there's an * implementation bug.. */ tmp_cb = list_head(&zcl.zcl_callbacks); if (tmp_cb != NULL && tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { fatal(0, "Commit callback threshold exceeded, oldest txg: %" PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); } /* * Let's find the place to insert our callbacks. * * Even though the list is ordered by txg, it is possible for the * insertion point to not be the end because our txg may already be * quiescing at this point and other callbacks in the open txg * (from other objsets) may have sneaked in. */ tmp_cb = list_tail(&zcl.zcl_callbacks); while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); /* Add the 3 callbacks to the list */ for (i = 0; i < 3; i++) { if (tmp_cb == NULL) list_insert_head(&zcl.zcl_callbacks, cb_data[i]); else list_insert_after(&zcl.zcl_callbacks, tmp_cb, cb_data[i]); cb_data[i]->zcd_added = B_TRUE; VERIFY(!cb_data[i]->zcd_called); tmp_cb = cb_data[i]; } (void) mutex_unlock(&zcl.zcl_callbacks_lock); dmu_tx_commit(tx); } /* ARGSUSED */ void ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) { zfs_prop_t proplist[] = { ZFS_PROP_CHECKSUM, ZFS_PROP_COMPRESSION, ZFS_PROP_COPIES, ZFS_PROP_DEDUP }; ztest_shared_t *zs = ztest_shared; int p; (void) rw_rdlock(&zs->zs_name_lock); for (p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); (void) rw_unlock(&zs->zs_name_lock); } /* ARGSUSED */ void ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; nvlist_t *props = NULL; (void) rw_rdlock(&zs->zs_name_lock); (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); if (zopt_verbose >= 6) dump_nvlist(props, 4); nvlist_free(props); (void) rw_unlock(&zs->zs_name_lock); } /* * Test snapshot hold/release and deferred destroy. */ void ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) { int error; objset_t *os = zd->zd_os; objset_t *origin; char snapname[100]; char fullname[100]; char clonename[100]; char tag[100]; char osname[MAXNAMELEN]; (void) rw_rdlock(&ztest_shared->zs_name_lock); dmu_objset_name(os, osname); (void) snprintf(snapname, 100, "sh1_%llu", id); (void) snprintf(fullname, 100, "%s@%s", osname, snapname); (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); (void) snprintf(tag, 100, "%tag_%llu", id); /* * Clean up from any previous run. */ (void) dmu_objset_destroy(clonename, B_FALSE); (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); (void) dmu_objset_destroy(fullname, B_FALSE); /* * Create snapshot, clone it, mark snap for deferred destroy, * destroy clone, verify snap was also destroyed. */ error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE, FALSE, -1); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dmu_objset_hold(fullname, FTAG, &origin); if (error) fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); dmu_objset_rele(origin, FTAG); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_clone"); goto out; } fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); } error = dmu_objset_destroy(fullname, B_TRUE); if (error) { fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", fullname, error); } error = dmu_objset_destroy(clonename, B_FALSE); if (error) fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); error = dmu_objset_hold(fullname, FTAG, &origin); if (error != ENOENT) fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); /* * Create snapshot, add temporary hold, verify that we can't * destroy a held snapshot, mark for deferred destroy, * release hold, verify snapshot was destroyed. */ error = dmu_objset_snapshot(osname, snapname, NULL, NULL, FALSE, FALSE, -1); if (error) { if (error == ENOSPC) { ztest_record_enospc("dmu_objset_snapshot"); goto out; } fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); } error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE, -1); if (error) fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); error = dmu_objset_destroy(fullname, B_FALSE); if (error != EBUSY) { fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", fullname, error); } error = dmu_objset_destroy(fullname, B_TRUE); if (error) { fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", fullname, error); } error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); if (error) fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); out: (void) rw_unlock(&ztest_shared->zs_name_lock); } /* * Inject random faults into the on-disk data. */ /* ARGSUSED */ void ztest_fault_inject(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; int fd; uint64_t offset; uint64_t leaves; uint64_t bad = 0x1990c0ffeedecadeull; uint64_t top, leaf; char path0[MAXPATHLEN]; char pathrand[MAXPATHLEN]; size_t fsize; int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ int iters = 1000; int maxfaults; int mirror_save; vdev_t *vd0 = NULL; uint64_t guid0 = 0; boolean_t islog = B_FALSE; VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); maxfaults = MAXFAULTS(); leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; mirror_save = zs->zs_mirrors; VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); ASSERT(leaves >= 1); /* * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. */ spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); if (ztest_random(2) == 0) { /* * Inject errors on a normal data device or slog device. */ top = ztest_random_vdev_top(spa, B_TRUE); leaf = ztest_random(leaves) + zs->zs_splits; /* * Generate paths to the first leaf in this top-level vdev, * and to the random leaf we selected. We'll induce transient * write failures and random online/offline activity on leaf 0, * and we'll write random garbage to the randomly chosen leaf. */ (void) snprintf(path0, sizeof (path0), ztest_dev_template, zopt_dir, zopt_pool, top * leaves + zs->zs_splits); (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); if (vd0 != NULL && vd0->vdev_top->vdev_islog) islog = B_TRUE; if (vd0 != NULL && maxfaults != 1) { /* * Make vd0 explicitly claim to be unreadable, * or unwriteable, or reach behind its back * and close the underlying fd. We can do this if * maxfaults == 0 because we'll fail and reexecute, * and we can do it if maxfaults >= 2 because we'll * have enough redundancy. If maxfaults == 1, the * combination of this with injection of random data * corruption below exceeds the pool's fault tolerance. */ vdev_file_t *vf = vd0->vdev_tsd; if (vf != NULL && ztest_random(3) == 0) { (void) close(vf->vf_vnode->v_fd); vf->vf_vnode->v_fd = -1; } else if (ztest_random(2) == 0) { vd0->vdev_cant_read = B_TRUE; } else { vd0->vdev_cant_write = B_TRUE; } guid0 = vd0->vdev_guid; } } else { /* * Inject errors on an l2cache device. */ spa_aux_vdev_t *sav = &spa->spa_l2cache; if (sav->sav_count == 0) { spa_config_exit(spa, SCL_STATE, FTAG); return; } vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; guid0 = vd0->vdev_guid; (void) strcpy(path0, vd0->vdev_path); (void) strcpy(pathrand, vd0->vdev_path); leaf = 0; leaves = 1; maxfaults = INT_MAX; /* no limit on cache devices */ } spa_config_exit(spa, SCL_STATE, FTAG); /* * If we can tolerate two or more faults, or we're dealing * with a slog, randomly online/offline vd0. */ if ((maxfaults >= 2 || islog) && guid0 != 0) { if (ztest_random(10) < 6) { int flags = (ztest_random(2) == 0 ? ZFS_OFFLINE_TEMPORARY : 0); /* * We have to grab the zs_name_lock as writer to * prevent a race between offlining a slog and * destroying a dataset. Offlining the slog will * grab a reference on the dataset which may cause * dmu_objset_destroy() to fail with EBUSY thus * leaving the dataset in an inconsistent state. */ if (islog) (void) rw_wrlock(&ztest_shared->zs_name_lock); VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); if (islog) (void) rw_unlock(&ztest_shared->zs_name_lock); } else { (void) vdev_online(spa, guid0, 0, NULL); } } if (maxfaults == 0) return; /* * We have at least single-fault tolerance, so inject data corruption. */ fd = open(pathrand, O_RDWR); if (fd == -1) /* we hit a gap in the device namespace */ return; fsize = lseek(fd, 0, SEEK_END); while (--iters != 0) { offset = ztest_random(fsize / (leaves << bshift)) * (leaves << bshift) + (leaf << bshift) + (ztest_random(1ULL << (bshift - 1)) & -8ULL); if (offset >= fsize) continue; VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); if (mirror_save != zs->zs_mirrors) { VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); (void) close(fd); return; } if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) fatal(1, "can't inject bad word at 0x%llx in %s", offset, pathrand); VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); if (zopt_verbose >= 7) (void) printf("injected bad word into %s," " offset 0x%llx\n", pathrand, (u_longlong_t)offset); } (void) close(fd); } /* * Verify that DDT repair works as expected. */ void ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; objset_t *os = zd->zd_os; ztest_od_t od[1]; uint64_t object, blocksize, txg, pattern, psize; enum zio_checksum checksum = spa_dedup_checksum(spa); dmu_buf_t *db; dmu_tx_t *tx; void *buf; blkptr_t blk; int copies = 2 * ZIO_DEDUPDITTO_MIN; int i; blocksize = ztest_random_blocksize(); blocksize = MIN(blocksize, 2048); /* because we write so many */ ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) return; /* * Take the name lock as writer to prevent anyone else from changing * the pool and dataset properies we need to maintain during this test. */ (void) rw_wrlock(&zs->zs_name_lock); if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, B_FALSE) != 0 || ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, B_FALSE) != 0) { (void) rw_unlock(&zs->zs_name_lock); return; } object = od[0].od_object; blocksize = od[0].od_blocksize; pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); ASSERT(object != 0); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, object, 0, copies * blocksize); txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); if (txg == 0) { (void) rw_unlock(&zs->zs_name_lock); return; } /* * Write all the copies of our block. */ for (i = 0; i < copies; i++) { uint64_t offset = i * blocksize; VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db, DMU_READ_NO_PREFETCH) == 0); ASSERT(db->db_offset == offset); ASSERT(db->db_size == blocksize); ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || ztest_pattern_match(db->db_data, db->db_size, 0ULL)); dmu_buf_will_fill(db, tx); ztest_pattern_set(db->db_data, db->db_size, pattern); dmu_buf_rele(db, FTAG); } dmu_tx_commit(tx); txg_wait_synced(spa_get_dsl(spa), txg); /* * Find out what block we got. */ VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db, DMU_READ_NO_PREFETCH) == 0); blk = *((dmu_buf_impl_t *)db)->db_blkptr; dmu_buf_rele(db, FTAG); /* * Damage the block. Dedup-ditto will save us when we read it later. */ psize = BP_GET_PSIZE(&blk); buf = zio_buf_alloc(psize); ztest_pattern_set(buf, psize, ~pattern); (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); zio_buf_free(buf, psize); (void) rw_unlock(&zs->zs_name_lock); } /* * Scrub the pool. */ /* ARGSUSED */ void ztest_scrub(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; spa_t *spa = zs->zs_spa; (void) spa_scan(spa, POOL_SCAN_SCRUB); (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ (void) spa_scan(spa, POOL_SCAN_SCRUB); } /* * Rename the pool to a different name and then rename it back. */ /* ARGSUSED */ void ztest_spa_rename(ztest_ds_t *zd, uint64_t id) { ztest_shared_t *zs = ztest_shared; char *oldname, *newname; spa_t *spa; (void) rw_wrlock(&zs->zs_name_lock); oldname = zs->zs_pool; newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); (void) strcpy(newname, oldname); (void) strcat(newname, "_tmp"); /* * Do the rename */ VERIFY3U(0, ==, spa_rename(oldname, newname)); /* * Try to open it under the old name, which shouldn't exist */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Open it under the new name and make sure it's still the same spa_t. */ VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); ASSERT(spa == zs->zs_spa); spa_close(spa, FTAG); /* * Rename it back to the original */ VERIFY3U(0, ==, spa_rename(newname, oldname)); /* * Make sure it can still be opened */ VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); ASSERT(spa == zs->zs_spa); spa_close(spa, FTAG); umem_free(newname, strlen(newname) + 1); (void) rw_unlock(&zs->zs_name_lock); } /* * Verify pool integrity by running zdb. */ static void ztest_run_zdb(char *pool) { int status; char zdb[MAXPATHLEN + MAXNAMELEN + 20]; char zbuf[1024]; char *bin; char *ztest; char *isa; int isalen; FILE *fp; (void) realpath(getexecname(), zdb); /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ bin = strstr(zdb, "/usr/bin/"); ztest = strstr(bin, "/ztest"); isa = bin + 8; isalen = ztest - isa; isa = strdup(isa); /* LINTED */ (void) sprintf(bin, "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", isalen, isa, zopt_verbose >= 3 ? "s" : "", zopt_verbose >= 4 ? "v" : "", spa_config_path, pool); free(isa); if (zopt_verbose >= 5) (void) printf("Executing %s\n", strstr(zdb, "zdb ")); fp = popen(zdb, "r"); while (fgets(zbuf, sizeof (zbuf), fp) != NULL) if (zopt_verbose >= 3) (void) printf("%s", zbuf); status = pclose(fp); if (status == 0) return; ztest_dump_core = 0; if (WIFEXITED(status)) fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); else fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); } static void ztest_walk_pool_directory(char *header) { spa_t *spa = NULL; if (zopt_verbose >= 6) (void) printf("%s\n", header); mutex_enter(&spa_namespace_lock); while ((spa = spa_next(spa)) != NULL) if (zopt_verbose >= 6) (void) printf("\t%s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); } static void ztest_spa_import_export(char *oldname, char *newname) { nvlist_t *config, *newconfig; uint64_t pool_guid; spa_t *spa; if (zopt_verbose >= 4) { (void) printf("import/export: old = %s, new = %s\n", oldname, newname); } /* * Clean up from previous runs. */ (void) spa_destroy(newname); /* * Get the pool's configuration and guid. */ VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); /* * Kick off a scrub to tickle scrub/export races. */ if (ztest_random(2) == 0) (void) spa_scan(spa, POOL_SCAN_SCRUB); pool_guid = spa_guid(spa); spa_close(spa, FTAG); ztest_walk_pool_directory("pools before export"); /* * Export it. */ VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); ztest_walk_pool_directory("pools after export"); /* * Try to import it. */ newconfig = spa_tryimport(config); ASSERT(newconfig != NULL); nvlist_free(newconfig); /* * Import it under the new name. */ VERIFY3U(0, ==, spa_import(newname, config, NULL, 0)); ztest_walk_pool_directory("pools after import"); /* * Try to import it again -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); /* * Try to import it under a different name -- should fail with EEXIST. */ VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); /* * Verify that the pool is no longer visible under the old name. */ VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); /* * Verify that we can open and close the pool using the new name. */ VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); ASSERT(pool_guid == spa_guid(spa)); spa_close(spa, FTAG); nvlist_free(config); } static void ztest_resume(spa_t *spa) { if (spa_suspended(spa) && zopt_verbose >= 6) (void) printf("resuming from suspended state\n"); spa_vdev_state_enter(spa, SCL_NONE); vdev_clear(spa, NULL); (void) spa_vdev_state_exit(spa, NULL, 0); (void) zio_resume(spa); } static void * ztest_resume_thread(void *arg) { spa_t *spa = arg; while (!ztest_exiting) { if (spa_suspended(spa)) ztest_resume(spa); (void) poll(NULL, 0, 100); } return (NULL); } static void * ztest_deadman_thread(void *arg) { ztest_shared_t *zs = arg; int grace = 300; hrtime_t delta; delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; (void) poll(NULL, 0, (int)(1000 * delta)); fatal(0, "failed to complete within %d seconds of deadline", grace); return (NULL); } static void ztest_execute(ztest_info_t *zi, uint64_t id) { ztest_shared_t *zs = ztest_shared; ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; hrtime_t functime = gethrtime(); int i; for (i = 0; i < zi->zi_iters; i++) zi->zi_func(zd, id); functime = gethrtime() - functime; atomic_add_64(&zi->zi_call_count, 1); atomic_add_64(&zi->zi_call_time, functime); if (zopt_verbose >= 4) { Dl_info dli; (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%6.2f sec in %s\n", (double)functime / NANOSEC, dli.dli_sname); } } static void * ztest_thread(void *arg) { uint64_t id = (uintptr_t)arg; ztest_shared_t *zs = ztest_shared; uint64_t call_next; hrtime_t now; ztest_info_t *zi; while ((now = gethrtime()) < zs->zs_thread_stop) { /* * See if it's time to force a crash. */ if (now > zs->zs_thread_kill) ztest_kill(zs); /* * If we're getting ENOSPC with some regularity, stop. */ if (zs->zs_enospc_count > 10) break; /* * Pick a random function to execute. */ zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; call_next = zi->zi_call_next; if (now >= call_next && atomic_cas_64(&zi->zi_call_next, call_next, call_next + ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) ztest_execute(zi, id); } return (NULL); } static void ztest_dataset_name(char *dsname, char *pool, int d) { (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); } static void ztest_dataset_destroy(ztest_shared_t *zs, int d) { char name[MAXNAMELEN]; int t; ztest_dataset_name(name, zs->zs_pool, d); if (zopt_verbose >= 3) (void) printf("Destroying %s to free up space\n", name); /* * Cleanup any non-standard clones and snapshots. In general, * ztest thread t operates on dataset (t % zopt_datasets), * so there may be more than one thing to clean up. */ for (t = d; t < zopt_threads; t += zopt_datasets) ztest_dsl_dataset_cleanup(name, t); (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); } static void ztest_dataset_dirobj_verify(ztest_ds_t *zd) { uint64_t usedobjs, dirobjs, scratch; /* * ZTEST_DIROBJ is the object directory for the entire dataset. * Therefore, the number of objects in use should equal the * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. * If not, we have an object leak. * * Note that we can only check this in ztest_dataset_open(), * when the open-context and syncing-context values agree. * That's because zap_count() returns the open-context value, * while dmu_objset_space() returns the rootbp fill count. */ VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); ASSERT3U(dirobjs + 1, ==, usedobjs); } static int ztest_dataset_open(ztest_shared_t *zs, int d) { ztest_ds_t *zd = &zs->zs_zd[d]; uint64_t committed_seq = zd->zd_seq; objset_t *os; zilog_t *zilog; char name[MAXNAMELEN]; int error; ztest_dataset_name(name, zs->zs_pool, d); (void) rw_rdlock(&zs->zs_name_lock); error = ztest_dataset_create(name); if (error == ENOSPC) { (void) rw_unlock(&zs->zs_name_lock); ztest_record_enospc(FTAG); return (error); } ASSERT(error == 0 || error == EEXIST); VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); (void) rw_unlock(&zs->zs_name_lock); ztest_zd_init(zd, os); zilog = zd->zd_zilog; if (zilog->zl_header->zh_claim_lr_seq != 0 && zilog->zl_header->zh_claim_lr_seq < committed_seq) fatal(0, "missing log records: claimed %llu < committed %llu", zilog->zl_header->zh_claim_lr_seq, committed_seq); ztest_dataset_dirobj_verify(zd); zil_replay(os, zd, ztest_replay_vector); ztest_dataset_dirobj_verify(zd); if (zopt_verbose >= 6) (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", zd->zd_name, (u_longlong_t)zilog->zl_parse_blk_count, (u_longlong_t)zilog->zl_parse_lr_count, (u_longlong_t)zilog->zl_replaying_seq); zilog = zil_open(os, ztest_get_data); if (zilog->zl_replaying_seq != 0 && zilog->zl_replaying_seq < committed_seq) fatal(0, "missing log records: replayed %llu < committed %llu", zilog->zl_replaying_seq, committed_seq); return (0); } static void ztest_dataset_close(ztest_shared_t *zs, int d) { ztest_ds_t *zd = &zs->zs_zd[d]; zil_close(zd->zd_zilog); dmu_objset_rele(zd->zd_os, zd); ztest_zd_fini(zd); } /* * Kick off threads to run tests on all datasets in parallel. */ static void ztest_run(ztest_shared_t *zs) { thread_t *tid; spa_t *spa; thread_t resume_tid; int error; int t, d; ztest_exiting = B_FALSE; /* * Initialize parent/child shared state. */ VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); zs->zs_thread_start = gethrtime(); zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); zs->zs_thread_kill = zs->zs_thread_stop; if (ztest_random(100) < zopt_killrate) zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), offsetof(ztest_cb_data_t, zcd_node)); /* * Open our pool. */ kernel_init(FREAD | FWRITE); VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); zs->zs_spa = spa; spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; /* * We don't expect the pool to suspend unless maxfaults == 0, * in which case ztest_fault_inject() temporarily takes away * the only valid replica. */ if (MAXFAULTS() == 0) spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; else spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; /* * Create a thread to periodically resume suspended I/O. */ VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, &resume_tid) == 0); /* * Create a deadman thread to abort() if we hang. */ VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, NULL) == 0); /* * Verify that we can safely inquire about about any object, * whether it's allocated or not. To make it interesting, * we probe a 5-wide window around each power of two. * This hits all edge cases, including zero and the max. */ for (t = 0; t < 64; t++) { for (d = -5; d <= 5; d++) { error = dmu_object_info(spa->spa_meta_objset, (1ULL << t) + d, NULL); ASSERT(error == 0 || error == ENOENT || error == EINVAL); } } /* * If we got any ENOSPC errors on the previous run, destroy something. */ if (zs->zs_enospc_count != 0) { int d = ztest_random(zopt_datasets); ztest_dataset_destroy(zs, d); } zs->zs_enospc_count = 0; tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); if (zopt_verbose >= 4) (void) printf("starting main threads...\n"); /* * Kick off all the tests that run in parallel. */ for (t = 0; t < zopt_threads; t++) { if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) return; VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, THR_BOUND, &tid[t]) == 0); } /* * Wait for all of the tests to complete. We go in reverse order * so we don't close datasets while threads are still using them. */ for (t = zopt_threads - 1; t >= 0; t--) { VERIFY(thr_join(tid[t], NULL, NULL) == 0); if (t < zopt_datasets) ztest_dataset_close(zs, t); } txg_wait_synced(spa_get_dsl(spa), 0); zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); umem_free(tid, zopt_threads * sizeof (thread_t)); /* Kill the resume thread */ ztest_exiting = B_TRUE; VERIFY(thr_join(resume_tid, NULL, NULL) == 0); ztest_resume(spa); /* * Right before closing the pool, kick off a bunch of async I/O; * spa_close() should wait for it to complete. */ for (uint64_t object = 1; object < 50; object++) dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); spa_close(spa, FTAG); /* * Verify that we can loop over all pools. */ mutex_enter(&spa_namespace_lock); for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) if (zopt_verbose > 3) (void) printf("spa_next: found %s\n", spa_name(spa)); mutex_exit(&spa_namespace_lock); /* * Verify that we can export the pool and reimport it under a * different name. */ if (ztest_random(2) == 0) { char name[MAXNAMELEN]; (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); ztest_spa_import_export(zs->zs_pool, name); ztest_spa_import_export(name, zs->zs_pool); } kernel_fini(); list_destroy(&zcl.zcl_callbacks); (void) _mutex_destroy(&zcl.zcl_callbacks_lock); (void) rwlock_destroy(&zs->zs_name_lock); (void) _mutex_destroy(&zs->zs_vdev_lock); } static void ztest_freeze(ztest_shared_t *zs) { ztest_ds_t *zd = &zs->zs_zd[0]; spa_t *spa; int numloops = 0; if (zopt_verbose >= 3) (void) printf("testing spa_freeze()...\n"); kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); /* * Force the first log block to be transactionally allocated. * We have to do this before we freeze the pool -- otherwise * the log chain won't be anchored. */ while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { ztest_dmu_object_alloc_free(zd, 0); zil_commit(zd->zd_zilog, 0); } txg_wait_synced(spa_get_dsl(spa), 0); /* * Freeze the pool. This stops spa_sync() from doing anything, * so that the only way to record changes from now on is the ZIL. */ spa_freeze(spa); /* * Run tests that generate log records but don't alter the pool config * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). * We do a txg_wait_synced() after each iteration to force the txg * to increase well beyond the last synced value in the uberblock. * The ZIL should be OK with that. */ while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) { ztest_dmu_write_parallel(zd, 0); ztest_dmu_object_alloc_free(zd, 0); txg_wait_synced(spa_get_dsl(spa), 0); } /* * Commit all of the changes we just generated. */ zil_commit(zd->zd_zilog, 0); txg_wait_synced(spa_get_dsl(spa), 0); /* * Close our dataset and close the pool. */ ztest_dataset_close(zs, 0); spa_close(spa, FTAG); kernel_fini(); /* * Open and close the pool and dataset to induce log replay. */ kernel_init(FREAD | FWRITE); VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); ztest_dataset_close(zs, 0); spa_close(spa, FTAG); kernel_fini(); } void print_time(hrtime_t t, char *timebuf) { hrtime_t s = t / NANOSEC; hrtime_t m = s / 60; hrtime_t h = m / 60; hrtime_t d = h / 24; s -= m * 60; m -= h * 60; h -= d * 24; timebuf[0] = '\0'; if (d) (void) sprintf(timebuf, "%llud%02lluh%02llum%02llus", d, h, m, s); else if (h) (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); else if (m) (void) sprintf(timebuf, "%llum%02llus", m, s); else (void) sprintf(timebuf, "%llus", s); } static nvlist_t * make_random_props() { nvlist_t *props; if (ztest_random(2) == 0) return (NULL); VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); (void) printf("props:\n"); dump_nvlist(props, 4); return (props); } /* * Create a storage pool with the given name and initial vdev size. * Then test spa_freeze() functionality. */ static void ztest_init(ztest_shared_t *zs) { spa_t *spa; nvlist_t *nvroot, *props; VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); kernel_init(FREAD | FWRITE); /* * Create the storage pool. */ (void) spa_destroy(zs->zs_pool); ztest_shared->zs_vdev_next_leaf = 0; zs->zs_splits = 0; zs->zs_mirrors = zopt_mirrors; nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 0, zopt_raidz, zs->zs_mirrors, 1); props = make_random_props(); VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL)); nvlist_free(nvroot); VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; spa_close(spa, FTAG); kernel_fini(); ztest_run_zdb(zs->zs_pool); ztest_freeze(zs); ztest_run_zdb(zs->zs_pool); (void) rwlock_destroy(&zs->zs_name_lock); (void) _mutex_destroy(&zs->zs_vdev_lock); } int main(int argc, char **argv) { int kills = 0; int iters = 0; ztest_shared_t *zs; size_t shared_size; ztest_info_t *zi; char timebuf[100]; char numbuf[6]; spa_t *spa; int i, f; (void) setvbuf(stdout, NULL, _IOLBF, 0); ztest_random_fd = open("/dev/urandom", O_RDONLY); process_options(argc, argv); /* Override location of zpool.cache */ (void) asprintf((char **)&spa_config_path, "%s/zpool.cache", zopt_dir); /* * Blow away any existing copy of zpool.cache */ if (zopt_init != 0) (void) remove(spa_config_path); shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); zs = ztest_shared = (void *)mmap(0, P2ROUNDUP(shared_size, getpagesize()), PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); if (zopt_verbose >= 1) { (void) printf("%llu vdevs, %d datasets, %d threads," " %llu seconds...\n", (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, (u_longlong_t)zopt_time); } /* * Create and initialize our storage pool. */ for (i = 1; i <= zopt_init; i++) { bzero(zs, sizeof (ztest_shared_t)); if (zopt_verbose >= 3 && zopt_init != 1) (void) printf("ztest_init(), pass %d\n", i); zs->zs_pool = zopt_pool; ztest_init(zs); } zs->zs_pool = zopt_pool; zs->zs_proc_start = gethrtime(); zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; for (f = 0; f < ZTEST_FUNCS; f++) { zi = &zs->zs_info[f]; *zi = ztest_info[f]; if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) zi->zi_call_next = UINT64_MAX; else zi->zi_call_next = zs->zs_proc_start + ztest_random(2 * zi->zi_interval[0] + 1); } /* * Run the tests in a loop. These tests include fault injection * to verify that self-healing data works, and forced crashes * to verify that we never lose on-disk consistency. */ while (gethrtime() < zs->zs_proc_stop) { int status; pid_t pid; /* * Initialize the workload counters for each function. */ for (f = 0; f < ZTEST_FUNCS; f++) { zi = &zs->zs_info[f]; zi->zi_call_count = 0; zi->zi_call_time = 0; } /* Set the allocation switch size */ metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; pid = fork(); if (pid == -1) fatal(1, "fork failed"); if (pid == 0) { /* child */ struct rlimit rl = { 1024, 1024 }; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) enable_extended_FILE_stdio(-1, -1); ztest_run(zs); exit(0); } while (waitpid(pid, &status, 0) != pid) continue; if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { (void) fprintf(stderr, "child exited with code %d\n", WEXITSTATUS(status)); exit(2); } } else if (WIFSIGNALED(status)) { if (WTERMSIG(status) != SIGKILL) { (void) fprintf(stderr, "child died with signal %d\n", WTERMSIG(status)); exit(3); } kills++; } else { (void) fprintf(stderr, "something strange happened " "to child\n"); exit(4); } iters++; if (zopt_verbose >= 1) { hrtime_t now = gethrtime(); now = MIN(now, zs->zs_proc_stop); print_time(zs->zs_proc_stop - now, timebuf); nicenum(zs->zs_space, numbuf); (void) printf("Pass %3d, %8s, %3llu ENOSPC, " "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", iters, WIFEXITED(status) ? "Complete" : "SIGKILL", (u_longlong_t)zs->zs_enospc_count, 100.0 * zs->zs_alloc / zs->zs_space, numbuf, 100.0 * (now - zs->zs_proc_start) / (zopt_time * NANOSEC), timebuf); } if (zopt_verbose >= 2) { (void) printf("\nWorkload summary:\n\n"); (void) printf("%7s %9s %s\n", "Calls", "Time", "Function"); (void) printf("%7s %9s %s\n", "-----", "----", "--------"); for (f = 0; f < ZTEST_FUNCS; f++) { Dl_info dli; zi = &zs->zs_info[f]; print_time(zi->zi_call_time, timebuf); (void) dladdr((void *)zi->zi_func, &dli); (void) printf("%7llu %9s %s\n", (u_longlong_t)zi->zi_call_count, timebuf, dli.dli_sname); } (void) printf("\n"); } /* * It's possible that we killed a child during a rename test, * in which case we'll have a 'ztest_tmp' pool lying around * instead of 'ztest'. Do a blind rename in case this happened. */ kernel_init(FREAD); if (spa_open(zopt_pool, &spa, FTAG) == 0) { spa_close(spa, FTAG); } else { char tmpname[MAXNAMELEN]; kernel_fini(); kernel_init(FREAD | FWRITE); (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", zopt_pool); (void) spa_rename(tmpname, zopt_pool); } kernel_fini(); ztest_run_zdb(zopt_pool); } if (zopt_verbose >= 1) { (void) printf("%d killed, %d completed, %.0f%% kill rate\n", kills, iters - kills, (100.0 * kills) / MAX(1, iters)); } return (0); } diff --git a/lib/libnvpair/libnvpair.c b/lib/libnvpair/libnvpair.c index 16bce483bee5..f669f9a893bf 100644 --- a/lib/libnvpair/libnvpair.c +++ b/lib/libnvpair/libnvpair.c @@ -1,1269 +1,1269 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include "libnvpair.h" /* * libnvpair - A tools library for manipulating pairs. * * This library provides routines packing an unpacking nv pairs * for transporting data across process boundaries, transporting * between kernel and userland, and possibly saving onto disk files. */ /* * Print control structure. */ #define DEFINEOP(opname, vtype) \ struct { \ int (*op)(struct nvlist_prtctl *, void *, nvlist_t *, \ const char *, vtype); \ void *arg; \ } opname #define DEFINEARROP(opname, vtype) \ struct { \ int (*op)(struct nvlist_prtctl *, void *, nvlist_t *, \ const char *, vtype, uint_t); \ void *arg; \ } opname struct nvlist_printops { DEFINEOP(print_boolean, int); DEFINEOP(print_boolean_value, boolean_t); DEFINEOP(print_byte, uchar_t); DEFINEOP(print_int8, int8_t); DEFINEOP(print_uint8, uint8_t); DEFINEOP(print_int16, int16_t); DEFINEOP(print_uint16, uint16_t); DEFINEOP(print_int32, int32_t); DEFINEOP(print_uint32, uint32_t); DEFINEOP(print_int64, int64_t); DEFINEOP(print_uint64, uint64_t); DEFINEOP(print_double, double); DEFINEOP(print_string, char *); DEFINEOP(print_hrtime, hrtime_t); DEFINEOP(print_nvlist, nvlist_t *); DEFINEARROP(print_boolean_array, boolean_t *); DEFINEARROP(print_byte_array, uchar_t *); DEFINEARROP(print_int8_array, int8_t *); DEFINEARROP(print_uint8_array, uint8_t *); DEFINEARROP(print_int16_array, int16_t *); DEFINEARROP(print_uint16_array, uint16_t *); DEFINEARROP(print_int32_array, int32_t *); DEFINEARROP(print_uint32_array, uint32_t *); DEFINEARROP(print_int64_array, int64_t *); DEFINEARROP(print_uint64_array, uint64_t *); DEFINEARROP(print_string_array, char **); DEFINEARROP(print_nvlist_array, nvlist_t **); }; struct nvlist_prtctl { FILE *nvprt_fp; /* output destination */ enum nvlist_indent_mode nvprt_indent_mode; /* see above */ int nvprt_indent; /* absolute indent, or tab depth */ int nvprt_indentinc; /* indent or tab increment */ const char *nvprt_nmfmt; /* member name format, max one %s */ const char *nvprt_eomfmt; /* after member format, e.g. "\n" */ const char *nvprt_btwnarrfmt; /* between array members */ int nvprt_btwnarrfmt_nl; /* nvprt_eoamfmt includes newline? */ struct nvlist_printops *nvprt_dfltops; struct nvlist_printops *nvprt_custops; }; #define DFLTPRTOP(pctl, type) \ ((pctl)->nvprt_dfltops->print_##type.op) #define DFLTPRTOPARG(pctl, type) \ ((pctl)->nvprt_dfltops->print_##type.arg) #define CUSTPRTOP(pctl, type) \ ((pctl)->nvprt_custops->print_##type.op) #define CUSTPRTOPARG(pctl, type) \ ((pctl)->nvprt_custops->print_##type.arg) #define RENDER(pctl, type, nvl, name, val) \ { \ int done = 0; \ if ((pctl)->nvprt_custops && CUSTPRTOP(pctl, type)) { \ done = CUSTPRTOP(pctl, type)(pctl, \ CUSTPRTOPARG(pctl, type), nvl, name, val); \ } \ if (!done) { \ (void) DFLTPRTOP(pctl, type)(pctl, \ DFLTPRTOPARG(pctl, type), nvl, name, val); \ } \ (void) fprintf(pctl->nvprt_fp, pctl->nvprt_eomfmt); \ } #define ARENDER(pctl, type, nvl, name, arrp, count) \ { \ int done = 0; \ if ((pctl)->nvprt_custops && CUSTPRTOP(pctl, type)) { \ done = CUSTPRTOP(pctl, type)(pctl, \ CUSTPRTOPARG(pctl, type), nvl, name, arrp, count); \ } \ if (!done) { \ (void) DFLTPRTOP(pctl, type)(pctl, \ DFLTPRTOPARG(pctl, type), nvl, name, arrp, count); \ } \ (void) fprintf(pctl->nvprt_fp, pctl->nvprt_eomfmt); \ } static void nvlist_print_with_indent(nvlist_t *, nvlist_prtctl_t); /* * ====================================================================== * | | * | Indentation | * | | * ====================================================================== */ static void indent(nvlist_prtctl_t pctl, int onemore) { int depth; switch (pctl->nvprt_indent_mode) { case NVLIST_INDENT_ABS: (void) fprintf(pctl->nvprt_fp, "%*s", pctl->nvprt_indent + onemore * pctl->nvprt_indentinc, ""); break; case NVLIST_INDENT_TABBED: depth = pctl->nvprt_indent + onemore; while (depth-- > 0) (void) fprintf(pctl->nvprt_fp, "\t"); } } /* * ====================================================================== * | | * | Default nvlist member rendering functions. | * | | * ====================================================================== */ /* * Generate functions to print single-valued nvlist members. * * type_and_variant - suffix to form function name * vtype - C type for the member value * ptype - C type to cast value to for printing * vfmt - format string for pair value, e.g "%d" or "0x%llx" */ #define NVLIST_PRTFUNC(type_and_variant, vtype, ptype, vfmt) \ static int \ nvprint_##type_and_variant(nvlist_prtctl_t pctl, void *private, \ nvlist_t *nvl, const char *name, vtype value) \ { \ FILE *fp = pctl->nvprt_fp; \ NOTE(ARGUNUSED(private)) \ NOTE(ARGUNUSED(nvl)) \ indent(pctl, 1); \ (void) fprintf(fp, pctl->nvprt_nmfmt, name); \ (void) fprintf(fp, vfmt, (ptype)value); \ return (1); \ } NVLIST_PRTFUNC(boolean, int, int, "%d") NVLIST_PRTFUNC(boolean_value, boolean_t, int, "%d") NVLIST_PRTFUNC(byte, uchar_t, uchar_t, "0x%2.2x") NVLIST_PRTFUNC(int8, int8_t, int, "%d") NVLIST_PRTFUNC(uint8, uint8_t, uint8_t, "0x%x") NVLIST_PRTFUNC(int16, int16_t, int16_t, "%d") NVLIST_PRTFUNC(uint16, uint16_t, uint16_t, "0x%x") NVLIST_PRTFUNC(int32, int32_t, int32_t, "%d") NVLIST_PRTFUNC(uint32, uint32_t, uint32_t, "0x%x") NVLIST_PRTFUNC(int64, int64_t, longlong_t, "%lld") NVLIST_PRTFUNC(uint64, uint64_t, u_longlong_t, "0x%llx") -NVLIST_PRTFUNC(double, double, double, "0x%llf") +NVLIST_PRTFUNC(double, double, double, "0x%f") NVLIST_PRTFUNC(string, char *, char *, "%s") NVLIST_PRTFUNC(hrtime, hrtime_t, hrtime_t, "0x%llx") /* * Generate functions to print array-valued nvlist members. */ #define NVLIST_ARRPRTFUNC(type_and_variant, vtype, ptype, vfmt) \ static int \ nvaprint_##type_and_variant(nvlist_prtctl_t pctl, void *private, \ nvlist_t *nvl, const char *name, vtype *valuep, uint_t count) \ { \ FILE *fp = pctl->nvprt_fp; \ uint_t i; \ NOTE(ARGUNUSED(private)) \ NOTE(ARGUNUSED(nvl)) \ for (i = 0; i < count; i++) { \ if (i == 0 || pctl->nvprt_btwnarrfmt_nl) { \ indent(pctl, 1); \ (void) fprintf(fp, pctl->nvprt_nmfmt, name); \ if (pctl->nvprt_btwnarrfmt_nl) \ (void) fprintf(fp, "[%d]: ", i); \ } \ if (i != 0) \ (void) fprintf(fp, pctl->nvprt_btwnarrfmt); \ (void) fprintf(fp, vfmt, (ptype)valuep[i]); \ } \ return (1); \ } NVLIST_ARRPRTFUNC(boolean_array, boolean_t, boolean_t, "%d") NVLIST_ARRPRTFUNC(byte_array, uchar_t, uchar_t, "0x%2.2x") NVLIST_ARRPRTFUNC(int8_array, int8_t, int8_t, "%d") NVLIST_ARRPRTFUNC(uint8_array, uint8_t, uint8_t, "0x%x") NVLIST_ARRPRTFUNC(int16_array, int16_t, int16_t, "%d") NVLIST_ARRPRTFUNC(uint16_array, uint16_t, uint16_t, "0x%x") NVLIST_ARRPRTFUNC(int32_array, int32_t, int32_t, "%d") NVLIST_ARRPRTFUNC(uint32_array, uint32_t, uint32_t, "0x%x") NVLIST_ARRPRTFUNC(int64_array, int64_t, longlong_t, "%lld") NVLIST_ARRPRTFUNC(uint64_array, uint64_t, u_longlong_t, "0x%llx") NVLIST_ARRPRTFUNC(string_array, char *, char *, "%s") /*ARGSUSED*/ static int nvprint_nvlist(nvlist_prtctl_t pctl, void *private, nvlist_t *nvl, const char *name, nvlist_t *value) { FILE *fp = pctl->nvprt_fp; indent(pctl, 1); (void) fprintf(fp, "%s = (embedded nvlist)\n", name); pctl->nvprt_indent += pctl->nvprt_indentinc; nvlist_print_with_indent(value, pctl); pctl->nvprt_indent -= pctl->nvprt_indentinc; indent(pctl, 1); (void) fprintf(fp, "(end %s)\n", name); return (1); } /*ARGSUSED*/ static int nvaprint_nvlist_array(nvlist_prtctl_t pctl, void *private, nvlist_t *nvl, const char *name, nvlist_t **valuep, uint_t count) { FILE *fp = pctl->nvprt_fp; uint_t i; indent(pctl, 1); (void) fprintf(fp, "%s = (array of embedded nvlists)\n", name); for (i = 0; i < count; i++) { indent(pctl, 1); (void) fprintf(fp, "(start %s[%d])\n", name, i); pctl->nvprt_indent += pctl->nvprt_indentinc; nvlist_print_with_indent(valuep[i], pctl); pctl->nvprt_indent -= pctl->nvprt_indentinc; indent(pctl, 1); (void) fprintf(fp, "(end %s[%d])\n", name, i); } return (1); } /* * ====================================================================== * | | * | Interfaces that allow control over formatting. | * | | * ====================================================================== */ void nvlist_prtctl_setdest(nvlist_prtctl_t pctl, FILE *fp) { pctl->nvprt_fp = fp; } FILE * nvlist_prtctl_getdest(nvlist_prtctl_t pctl) { return (pctl->nvprt_fp); } void nvlist_prtctl_setindent(nvlist_prtctl_t pctl, enum nvlist_indent_mode mode, int start, int inc) { if (mode < NVLIST_INDENT_ABS || mode > NVLIST_INDENT_TABBED) mode = NVLIST_INDENT_TABBED; if (start < 0) start = 0; if (inc < 0) inc = 1; pctl->nvprt_indent_mode = mode; pctl->nvprt_indent = start; pctl->nvprt_indentinc = inc; } void nvlist_prtctl_doindent(nvlist_prtctl_t pctl, int onemore) { indent(pctl, onemore); } void nvlist_prtctl_setfmt(nvlist_prtctl_t pctl, enum nvlist_prtctl_fmt which, const char *fmt) { switch (which) { case NVLIST_FMT_MEMBER_NAME: if (fmt == NULL) fmt = "%s = "; pctl->nvprt_nmfmt = fmt; break; case NVLIST_FMT_MEMBER_POSTAMBLE: if (fmt == NULL) fmt = "\n"; pctl->nvprt_eomfmt = fmt; break; case NVLIST_FMT_BTWN_ARRAY: if (fmt == NULL) { pctl->nvprt_btwnarrfmt = " "; pctl->nvprt_btwnarrfmt_nl = 0; } else { pctl->nvprt_btwnarrfmt = fmt; pctl->nvprt_btwnarrfmt_nl = (strstr(fmt, "\n") != NULL); } break; default: break; } } void nvlist_prtctl_dofmt(nvlist_prtctl_t pctl, enum nvlist_prtctl_fmt which, ...) { FILE *fp = pctl->nvprt_fp; va_list ap; char *name; va_start(ap, which); switch (which) { case NVLIST_FMT_MEMBER_NAME: name = va_arg(ap, char *); (void) fprintf(fp, pctl->nvprt_nmfmt, name); break; case NVLIST_FMT_MEMBER_POSTAMBLE: (void) fprintf(fp, pctl->nvprt_eomfmt); break; case NVLIST_FMT_BTWN_ARRAY: (void) fprintf(fp, pctl->nvprt_btwnarrfmt); \ break; default: break; } va_end(ap); } /* * ====================================================================== * | | * | Interfaces to allow appointment of replacement rendering functions.| * | | * ====================================================================== */ #define NVLIST_PRINTCTL_REPLACE(type, vtype) \ void \ nvlist_prtctlop_##type(nvlist_prtctl_t pctl, \ int (*func)(nvlist_prtctl_t, void *, nvlist_t *, const char *, vtype), \ void *private) \ { \ CUSTPRTOP(pctl, type) = func; \ CUSTPRTOPARG(pctl, type) = private; \ } NVLIST_PRINTCTL_REPLACE(boolean, int) NVLIST_PRINTCTL_REPLACE(boolean_value, boolean_t) NVLIST_PRINTCTL_REPLACE(byte, uchar_t) NVLIST_PRINTCTL_REPLACE(int8, int8_t) NVLIST_PRINTCTL_REPLACE(uint8, uint8_t) NVLIST_PRINTCTL_REPLACE(int16, int16_t) NVLIST_PRINTCTL_REPLACE(uint16, uint16_t) NVLIST_PRINTCTL_REPLACE(int32, int32_t) NVLIST_PRINTCTL_REPLACE(uint32, uint32_t) NVLIST_PRINTCTL_REPLACE(int64, int64_t) NVLIST_PRINTCTL_REPLACE(uint64, uint64_t) NVLIST_PRINTCTL_REPLACE(double, double) NVLIST_PRINTCTL_REPLACE(string, char *) NVLIST_PRINTCTL_REPLACE(hrtime, hrtime_t) NVLIST_PRINTCTL_REPLACE(nvlist, nvlist_t *) #define NVLIST_PRINTCTL_AREPLACE(type, vtype) \ void \ nvlist_prtctlop_##type(nvlist_prtctl_t pctl, \ int (*func)(nvlist_prtctl_t, void *, nvlist_t *, const char *, vtype, \ uint_t), void *private) \ { \ CUSTPRTOP(pctl, type) = func; \ CUSTPRTOPARG(pctl, type) = private; \ } NVLIST_PRINTCTL_AREPLACE(boolean_array, boolean_t *) NVLIST_PRINTCTL_AREPLACE(byte_array, uchar_t *) NVLIST_PRINTCTL_AREPLACE(int8_array, int8_t *) NVLIST_PRINTCTL_AREPLACE(uint8_array, uint8_t *) NVLIST_PRINTCTL_AREPLACE(int16_array, int16_t *) NVLIST_PRINTCTL_AREPLACE(uint16_array, uint16_t *) NVLIST_PRINTCTL_AREPLACE(int32_array, int32_t *) NVLIST_PRINTCTL_AREPLACE(uint32_array, uint32_t *) NVLIST_PRINTCTL_AREPLACE(int64_array, int64_t *) NVLIST_PRINTCTL_AREPLACE(uint64_array, uint64_t *) NVLIST_PRINTCTL_AREPLACE(string_array, char **) NVLIST_PRINTCTL_AREPLACE(nvlist_array, nvlist_t **) /* * ====================================================================== * | | * | Interfaces to manage nvlist_prtctl_t cookies. | * | | * ====================================================================== */ static const struct nvlist_printops defprtops = { { nvprint_boolean, NULL }, { nvprint_boolean_value, NULL }, { nvprint_byte, NULL }, { nvprint_int8, NULL }, { nvprint_uint8, NULL }, { nvprint_int16, NULL }, { nvprint_uint16, NULL }, { nvprint_int32, NULL }, { nvprint_uint32, NULL }, { nvprint_int64, NULL }, { nvprint_uint64, NULL }, { nvprint_double, NULL }, { nvprint_string, NULL }, { nvprint_hrtime, NULL }, { nvprint_nvlist, NULL }, { nvaprint_boolean_array, NULL }, { nvaprint_byte_array, NULL }, { nvaprint_int8_array, NULL }, { nvaprint_uint8_array, NULL }, { nvaprint_int16_array, NULL }, { nvaprint_uint16_array, NULL }, { nvaprint_int32_array, NULL }, { nvaprint_uint32_array, NULL }, { nvaprint_int64_array, NULL }, { nvaprint_uint64_array, NULL }, { nvaprint_string_array, NULL }, { nvaprint_nvlist_array, NULL }, }; static void prtctl_defaults(FILE *fp, struct nvlist_prtctl *pctl, struct nvlist_printops *ops) { pctl->nvprt_fp = fp; pctl->nvprt_indent_mode = NVLIST_INDENT_TABBED; pctl->nvprt_indent = 0; pctl->nvprt_indentinc = 1; pctl->nvprt_nmfmt = "%s = "; pctl->nvprt_eomfmt = "\n"; pctl->nvprt_btwnarrfmt = " "; pctl->nvprt_btwnarrfmt_nl = 0; pctl->nvprt_dfltops = (struct nvlist_printops *)&defprtops; pctl->nvprt_custops = ops; } nvlist_prtctl_t nvlist_prtctl_alloc(void) { struct nvlist_prtctl *pctl; struct nvlist_printops *ops; if ((pctl = malloc(sizeof (*pctl))) == NULL) return (NULL); if ((ops = calloc(1, sizeof (*ops))) == NULL) { free(pctl); return (NULL); } prtctl_defaults(stdout, pctl, ops); return (pctl); } void nvlist_prtctl_free(nvlist_prtctl_t pctl) { if (pctl != NULL) { free(pctl->nvprt_custops); free(pctl); } } /* * ====================================================================== * | | * | Top-level print request interfaces. | * | | * ====================================================================== */ /* * nvlist_print - Prints elements in an event buffer */ static void nvlist_print_with_indent(nvlist_t *nvl, nvlist_prtctl_t pctl) { FILE *fp = pctl->nvprt_fp; char *name; uint_t nelem; nvpair_t *nvp; if (nvl == NULL) return; indent(pctl, 0); (void) fprintf(fp, "nvlist version: %d\n", NVL_VERSION(nvl)); nvp = nvlist_next_nvpair(nvl, NULL); while (nvp) { data_type_t type = nvpair_type(nvp); name = nvpair_name(nvp); nelem = 0; switch (type) { case DATA_TYPE_BOOLEAN: { RENDER(pctl, boolean, nvl, name, 1); break; } case DATA_TYPE_BOOLEAN_VALUE: { boolean_t val; (void) nvpair_value_boolean_value(nvp, &val); RENDER(pctl, boolean_value, nvl, name, val); break; } case DATA_TYPE_BYTE: { uchar_t val; (void) nvpair_value_byte(nvp, &val); RENDER(pctl, byte, nvl, name, val); break; } case DATA_TYPE_INT8: { int8_t val; (void) nvpair_value_int8(nvp, &val); RENDER(pctl, int8, nvl, name, val); break; } case DATA_TYPE_UINT8: { uint8_t val; (void) nvpair_value_uint8(nvp, &val); RENDER(pctl, uint8, nvl, name, val); break; } case DATA_TYPE_INT16: { int16_t val; (void) nvpair_value_int16(nvp, &val); RENDER(pctl, int16, nvl, name, val); break; } case DATA_TYPE_UINT16: { uint16_t val; (void) nvpair_value_uint16(nvp, &val); RENDER(pctl, uint16, nvl, name, val); break; } case DATA_TYPE_INT32: { int32_t val; (void) nvpair_value_int32(nvp, &val); RENDER(pctl, int32, nvl, name, val); break; } case DATA_TYPE_UINT32: { uint32_t val; (void) nvpair_value_uint32(nvp, &val); RENDER(pctl, uint32, nvl, name, val); break; } case DATA_TYPE_INT64: { int64_t val; (void) nvpair_value_int64(nvp, &val); RENDER(pctl, int64, nvl, name, val); break; } case DATA_TYPE_UINT64: { uint64_t val; (void) nvpair_value_uint64(nvp, &val); RENDER(pctl, uint64, nvl, name, val); break; } case DATA_TYPE_DOUBLE: { double val; (void) nvpair_value_double(nvp, &val); RENDER(pctl, double, nvl, name, val); break; } case DATA_TYPE_STRING: { char *val; (void) nvpair_value_string(nvp, &val); RENDER(pctl, string, nvl, name, val); break; } case DATA_TYPE_BOOLEAN_ARRAY: { boolean_t *val; (void) nvpair_value_boolean_array(nvp, &val, &nelem); ARENDER(pctl, boolean_array, nvl, name, val, nelem); break; } case DATA_TYPE_BYTE_ARRAY: { uchar_t *val; (void) nvpair_value_byte_array(nvp, &val, &nelem); ARENDER(pctl, byte_array, nvl, name, val, nelem); break; } case DATA_TYPE_INT8_ARRAY: { int8_t *val; (void) nvpair_value_int8_array(nvp, &val, &nelem); ARENDER(pctl, int8_array, nvl, name, val, nelem); break; } case DATA_TYPE_UINT8_ARRAY: { uint8_t *val; (void) nvpair_value_uint8_array(nvp, &val, &nelem); ARENDER(pctl, uint8_array, nvl, name, val, nelem); break; } case DATA_TYPE_INT16_ARRAY: { int16_t *val; (void) nvpair_value_int16_array(nvp, &val, &nelem); ARENDER(pctl, int16_array, nvl, name, val, nelem); break; } case DATA_TYPE_UINT16_ARRAY: { uint16_t *val; (void) nvpair_value_uint16_array(nvp, &val, &nelem); ARENDER(pctl, uint16_array, nvl, name, val, nelem); break; } case DATA_TYPE_INT32_ARRAY: { int32_t *val; (void) nvpair_value_int32_array(nvp, &val, &nelem); ARENDER(pctl, int32_array, nvl, name, val, nelem); break; } case DATA_TYPE_UINT32_ARRAY: { uint32_t *val; (void) nvpair_value_uint32_array(nvp, &val, &nelem); ARENDER(pctl, uint32_array, nvl, name, val, nelem); break; } case DATA_TYPE_INT64_ARRAY: { int64_t *val; (void) nvpair_value_int64_array(nvp, &val, &nelem); ARENDER(pctl, int64_array, nvl, name, val, nelem); break; } case DATA_TYPE_UINT64_ARRAY: { uint64_t *val; (void) nvpair_value_uint64_array(nvp, &val, &nelem); ARENDER(pctl, uint64_array, nvl, name, val, nelem); break; } case DATA_TYPE_STRING_ARRAY: { char **val; (void) nvpair_value_string_array(nvp, &val, &nelem); ARENDER(pctl, string_array, nvl, name, val, nelem); break; } case DATA_TYPE_HRTIME: { hrtime_t val; (void) nvpair_value_hrtime(nvp, &val); RENDER(pctl, hrtime, nvl, name, val); break; } case DATA_TYPE_NVLIST: { nvlist_t *val; (void) nvpair_value_nvlist(nvp, &val); RENDER(pctl, nvlist, nvl, name, val); break; } case DATA_TYPE_NVLIST_ARRAY: { nvlist_t **val; (void) nvpair_value_nvlist_array(nvp, &val, &nelem); ARENDER(pctl, nvlist_array, nvl, name, val, nelem); break; } default: (void) fprintf(fp, " unknown data type (%d)", type); break; } nvp = nvlist_next_nvpair(nvl, nvp); } } void nvlist_print(FILE *fp, nvlist_t *nvl) { struct nvlist_prtctl pc; prtctl_defaults(fp, &pc, NULL); nvlist_print_with_indent(nvl, &pc); } void nvlist_prt(nvlist_t *nvl, nvlist_prtctl_t pctl) { nvlist_print_with_indent(nvl, pctl); } #define NVP(elem, type, vtype, ptype, format) { \ vtype value; \ \ (void) nvpair_value_##type(elem, &value); \ (void) printf("%*s%s: " format "\n", indent, "", \ nvpair_name(elem), (ptype)value); \ } #define NVPA(elem, type, vtype, ptype, format) { \ uint_t i, count; \ vtype *value; \ \ (void) nvpair_value_##type(elem, &value, &count); \ for (i = 0; i < count; i++) { \ (void) printf("%*s%s[%d]: " format "\n", indent, "", \ nvpair_name(elem), i, (ptype)value[i]); \ } \ } /* * Similar to nvlist_print() but handles arrays slightly differently. */ void dump_nvlist(nvlist_t *list, int indent) { nvpair_t *elem = NULL; boolean_t bool_value; nvlist_t *nvlist_value; nvlist_t **nvlist_array_value; uint_t i, count; if (list == NULL) { return; } while ((elem = nvlist_next_nvpair(list, elem)) != NULL) { switch (nvpair_type(elem)) { case DATA_TYPE_BOOLEAN_VALUE: (void) nvpair_value_boolean_value(elem, &bool_value); (void) printf("%*s%s: %s\n", indent, "", nvpair_name(elem), bool_value ? "true" : "false"); break; case DATA_TYPE_BYTE: NVP(elem, byte, uchar_t, int, "%u"); break; case DATA_TYPE_INT8: NVP(elem, int8, int8_t, int, "%d"); break; case DATA_TYPE_UINT8: NVP(elem, uint8, uint8_t, int, "%u"); break; case DATA_TYPE_INT16: NVP(elem, int16, int16_t, int, "%d"); break; case DATA_TYPE_UINT16: NVP(elem, uint16, uint16_t, int, "%u"); break; case DATA_TYPE_INT32: NVP(elem, int32, int32_t, long, "%ld"); break; case DATA_TYPE_UINT32: NVP(elem, uint32, uint32_t, ulong_t, "%lu"); break; case DATA_TYPE_INT64: NVP(elem, int64, int64_t, longlong_t, "%lld"); break; case DATA_TYPE_UINT64: NVP(elem, uint64, uint64_t, u_longlong_t, "%llu"); break; case DATA_TYPE_STRING: NVP(elem, string, char *, char *, "'%s'"); break; case DATA_TYPE_BYTE_ARRAY: NVPA(elem, byte_array, uchar_t, int, "%u"); break; case DATA_TYPE_INT8_ARRAY: NVPA(elem, int8_array, int8_t, int, "%d"); break; case DATA_TYPE_UINT8_ARRAY: NVPA(elem, uint8_array, uint8_t, int, "%u"); break; case DATA_TYPE_INT16_ARRAY: NVPA(elem, int16_array, int16_t, int, "%d"); break; case DATA_TYPE_UINT16_ARRAY: NVPA(elem, uint16_array, uint16_t, int, "%u"); break; case DATA_TYPE_INT32_ARRAY: NVPA(elem, int32_array, int32_t, long, "%ld"); break; case DATA_TYPE_UINT32_ARRAY: NVPA(elem, uint32_array, uint32_t, ulong_t, "%lu"); break; case DATA_TYPE_INT64_ARRAY: NVPA(elem, int64_array, int64_t, longlong_t, "%lld"); break; case DATA_TYPE_UINT64_ARRAY: NVPA(elem, uint64_array, uint64_t, u_longlong_t, "%llu"); break; case DATA_TYPE_STRING_ARRAY: NVPA(elem, string_array, char *, char *, "'%s'"); break; case DATA_TYPE_NVLIST: (void) nvpair_value_nvlist(elem, &nvlist_value); (void) printf("%*s%s:\n", indent, "", nvpair_name(elem)); dump_nvlist(nvlist_value, indent + 4); break; case DATA_TYPE_NVLIST_ARRAY: (void) nvpair_value_nvlist_array(elem, &nvlist_array_value, &count); for (i = 0; i < count; i++) { (void) printf("%*s%s[%u]:\n", indent, "", nvpair_name(elem), i); dump_nvlist(nvlist_array_value[i], indent + 4); } break; default: (void) printf(dgettext(TEXT_DOMAIN, "bad config type " "%d for %s\n"), nvpair_type(elem), nvpair_name(elem)); } } } /* * ====================================================================== * | | * | Misc private interface. | * | | * ====================================================================== */ /* * Determine if string 'value' matches 'nvp' value. The 'value' string is * converted, depending on the type of 'nvp', prior to match. For numeric * types, a radix independent sscanf conversion of 'value' is used. If 'nvp' * is an array type, 'ai' is the index into the array against which we are * checking for match. If nvp is of DATA_TYPE_STRING*, the caller can pass * in a regex_t compilation of value in 'value_regex' to trigger regular * expression string match instead of simple strcmp(). * * Return 1 on match, 0 on no-match, and -1 on error. If the error is * related to value syntax error and 'ep' is non-NULL, *ep will point into * the 'value' string at the location where the error exists. * * NOTE: It may be possible to move the non-regex_t version of this into * common code used by library/kernel/boot. */ int nvpair_value_match_regex(nvpair_t *nvp, int ai, char *value, regex_t *value_regex, char **ep) { char *evalue; uint_t a_len; int sr; if (ep) *ep = NULL; if ((nvp == NULL) || (value == NULL)) return (-1); /* error fail match - invalid args */ /* make sure array and index combination make sense */ if ((nvpair_type_is_array(nvp) && (ai < 0)) || (!nvpair_type_is_array(nvp) && (ai >= 0))) return (-1); /* error fail match - bad index */ /* non-string values should be single 'chunk' */ if ((nvpair_type(nvp) != DATA_TYPE_STRING) && (nvpair_type(nvp) != DATA_TYPE_STRING_ARRAY)) { value += strspn(value, " \t"); evalue = value + strcspn(value, " \t"); if (*evalue) { if (ep) *ep = evalue; return (-1); /* error fail match - syntax */ } } sr = EOF; switch (nvpair_type(nvp)) { case DATA_TYPE_STRING: { char *val; /* check string value for match */ if (nvpair_value_string(nvp, &val) == 0) { if (value_regex) { if (regexec(value_regex, val, (size_t)0, NULL, 0) == 0) return (1); /* match */ } else { if (strcmp(value, val) == 0) return (1); /* match */ } } break; } case DATA_TYPE_STRING_ARRAY: { char **val_array; /* check indexed string value of array for match */ if ((nvpair_value_string_array(nvp, &val_array, &a_len) == 0) && (ai < a_len)) { if (value_regex) { if (regexec(value_regex, val_array[ai], (size_t)0, NULL, 0) == 0) return (1); } else { if (strcmp(value, val_array[ai]) == 0) return (1); } } break; } case DATA_TYPE_BYTE: { uchar_t val, val_arg; /* scanf uchar_t from value and check for match */ sr = sscanf(value, "%c", &val_arg); if ((sr == 1) && (nvpair_value_byte(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_BYTE_ARRAY: { uchar_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%c", &val_arg); if ((sr == 1) && (nvpair_value_byte_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_INT8: { int8_t val, val_arg; /* scanf int8_t from value and check for match */ sr = sscanf(value, "%"SCNi8, &val_arg); if ((sr == 1) && (nvpair_value_int8(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_INT8_ARRAY: { int8_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi8, &val_arg); if ((sr == 1) && (nvpair_value_int8_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_UINT8: { uint8_t val, val_arg; /* scanf uint8_t from value and check for match */ sr = sscanf(value, "%"SCNi8, (int8_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint8(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_UINT8_ARRAY: { uint8_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi8, (int8_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint8_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_INT16: { int16_t val, val_arg; /* scanf int16_t from value and check for match */ sr = sscanf(value, "%"SCNi16, &val_arg); if ((sr == 1) && (nvpair_value_int16(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_INT16_ARRAY: { int16_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi16, &val_arg); if ((sr == 1) && (nvpair_value_int16_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_UINT16: { uint16_t val, val_arg; /* scanf uint16_t from value and check for match */ sr = sscanf(value, "%"SCNi16, (int16_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint16(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_UINT16_ARRAY: { uint16_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi16, (int16_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint16_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_INT32: { int32_t val, val_arg; /* scanf int32_t from value and check for match */ sr = sscanf(value, "%"SCNi32, &val_arg); if ((sr == 1) && (nvpair_value_int32(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_INT32_ARRAY: { int32_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi32, &val_arg); if ((sr == 1) && (nvpair_value_int32_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_UINT32: { uint32_t val, val_arg; /* scanf uint32_t from value and check for match */ sr = sscanf(value, "%"SCNi32, (int32_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint32(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_UINT32_ARRAY: { uint32_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi32, (int32_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint32_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_INT64: { int64_t val, val_arg; /* scanf int64_t from value and check for match */ sr = sscanf(value, "%"SCNi64, &val_arg); if ((sr == 1) && (nvpair_value_int64(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_INT64_ARRAY: { int64_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi64, &val_arg); if ((sr == 1) && (nvpair_value_int64_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_UINT64: { uint64_t val_arg, val; /* scanf uint64_t from value and check for match */ sr = sscanf(value, "%"SCNi64, (int64_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint64(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_UINT64_ARRAY: { uint64_t *val_array, val_arg; /* check indexed value of array for match */ sr = sscanf(value, "%"SCNi64, (int64_t *)&val_arg); if ((sr == 1) && (nvpair_value_uint64_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_BOOLEAN_VALUE: { boolean_t val, val_arg; /* scanf boolean_t from value and check for match */ - sr = sscanf(value, "%"SCNi32, &val_arg); + sr = sscanf(value, "%"SCNi32, (int32_t *)&val_arg); if ((sr == 1) && (nvpair_value_boolean_value(nvp, &val) == 0) && (val == val_arg)) return (1); break; } case DATA_TYPE_BOOLEAN_ARRAY: { boolean_t *val_array, val_arg; /* check indexed value of array for match */ - sr = sscanf(value, "%"SCNi32, &val_arg); + sr = sscanf(value, "%"SCNi32, (int32_t *)&val_arg); if ((sr == 1) && (nvpair_value_boolean_array(nvp, &val_array, &a_len) == 0) && (ai < a_len) && (val_array[ai] == val_arg)) return (1); break; } case DATA_TYPE_HRTIME: case DATA_TYPE_NVLIST: case DATA_TYPE_NVLIST_ARRAY: case DATA_TYPE_BOOLEAN: case DATA_TYPE_DOUBLE: case DATA_TYPE_UNKNOWN: default: /* * unknown/unsupported data type */ return (-1); /* error fail match */ } /* * check to see if sscanf failed conversion, return approximate * pointer to problem */ if (sr != 1) { if (ep) *ep = value; return (-1); /* error fail match - syntax */ } return (0); /* fail match */ } int nvpair_value_match(nvpair_t *nvp, int ai, char *value, char **ep) { return (nvpair_value_match_regex(nvp, ai, value, NULL, ep)); } diff --git a/lib/libzfs/libzfs_dataset.c b/lib/libzfs/libzfs_dataset.c index b7c1360db4b7..3d31c106d356 100644 --- a/lib/libzfs/libzfs_dataset.c +++ b/lib/libzfs/libzfs_dataset.c @@ -1,4058 +1,4059 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" #include "zfs_deleg.h" static int userquota_propname_decode(const char *propname, boolean_t zoned, zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp); /* * Given a single type (not a mask of types), return the type in a human * readable form. */ const char * zfs_type_to_name(zfs_type_t type) { switch (type) { case ZFS_TYPE_FILESYSTEM: return (dgettext(TEXT_DOMAIN, "filesystem")); case ZFS_TYPE_SNAPSHOT: return (dgettext(TEXT_DOMAIN, "snapshot")); case ZFS_TYPE_VOLUME: return (dgettext(TEXT_DOMAIN, "volume")); } return (NULL); } /* * Given a path and mask of ZFS types, return a string describing this dataset. * This is used when we fail to open a dataset and we cannot get an exact type. * We guess what the type would have been based on the path and the mask of * acceptable types. */ static const char * path_to_str(const char *path, int types) { /* * When given a single type, always report the exact type. */ if (types == ZFS_TYPE_SNAPSHOT) return (dgettext(TEXT_DOMAIN, "snapshot")); if (types == ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); if (types == ZFS_TYPE_VOLUME) return (dgettext(TEXT_DOMAIN, "volume")); /* * The user is requesting more than one type of dataset. If this is the * case, consult the path itself. If we're looking for a snapshot, and * a '@' is found, then report it as "snapshot". Otherwise, remove the * snapshot attribute and try again. */ if (types & ZFS_TYPE_SNAPSHOT) { if (strchr(path, '@') != NULL) return (dgettext(TEXT_DOMAIN, "snapshot")); return (path_to_str(path, types & ~ZFS_TYPE_SNAPSHOT)); } /* * The user has requested either filesystems or volumes. * We have no way of knowing a priori what type this would be, so always * report it as "filesystem" or "volume", our two primitive types. */ if (types & ZFS_TYPE_FILESYSTEM) return (dgettext(TEXT_DOMAIN, "filesystem")); assert(types & ZFS_TYPE_VOLUME); return (dgettext(TEXT_DOMAIN, "volume")); } /* * Validate a ZFS path. This is used even before trying to open the dataset, to * provide a more meaningful error message. We call zfs_error_aux() to * explain exactly why the name was not valid. */ int zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type, boolean_t modifying) { namecheck_err_t why; char what; if (dataset_namecheck(path, &why, &what) != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in name"), what); break; case NAME_ERR_MULTIPLE_AT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' delimiters in name")); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool doesn't begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "reserved disk name")); break; } } return (0); } if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshot delimiter '@' in filesystem name")); return (0); } if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@') == NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing '@' delimiter in snapshot name")); return (0); } if (modifying && strchr(path, '%') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character %c in name"), '%'); return (0); } return (-1); } int zfs_name_valid(const char *name, zfs_type_t type) { if (type == ZFS_TYPE_POOL) return (zpool_name_valid(NULL, B_FALSE, name)); return (zfs_validate_name(NULL, name, type, B_FALSE)); } /* * This function takes the raw DSL properties, and filters out the user-defined * properties into a separate nvlist. */ static nvlist_t * process_user_props(zfs_handle_t *zhp, nvlist_t *props) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvpair_t *elem; nvlist_t *propval; nvlist_t *nvl; if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { if (!zfs_prop_user(nvpair_name(elem))) continue; verify(nvpair_value_nvlist(elem, &propval) == 0); if (nvlist_add_nvlist(nvl, nvpair_name(elem), propval) != 0) { nvlist_free(nvl); (void) no_memory(hdl); return (NULL); } } return (nvl); } static zpool_handle_t * zpool_add_handle(zfs_handle_t *zhp, const char *pool_name) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph; if ((zph = zpool_open_canfail(hdl, pool_name)) != NULL) { if (hdl->libzfs_pool_handles != NULL) zph->zpool_next = hdl->libzfs_pool_handles; hdl->libzfs_pool_handles = zph; } return (zph); } static zpool_handle_t * zpool_find_handle(zfs_handle_t *zhp, const char *pool_name, int len) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph = hdl->libzfs_pool_handles; while ((zph != NULL) && (strncmp(pool_name, zpool_get_name(zph), len) != 0)) zph = zph->zpool_next; return (zph); } /* * Returns a handle to the pool that contains the provided dataset. * If a handle to that pool already exists then that handle is returned. * Otherwise, a new handle is created and added to the list of handles. */ static zpool_handle_t * zpool_handle(zfs_handle_t *zhp) { char *pool_name; int len; zpool_handle_t *zph; len = strcspn(zhp->zfs_name, "/@") + 1; pool_name = zfs_alloc(zhp->zfs_hdl, len); (void) strlcpy(pool_name, zhp->zfs_name, len); zph = zpool_find_handle(zhp, pool_name, len); if (zph == NULL) zph = zpool_add_handle(zhp, pool_name); free(pool_name); return (zph); } void zpool_free_handles(libzfs_handle_t *hdl) { zpool_handle_t *next, *zph = hdl->libzfs_pool_handles; while (zph != NULL) { next = zph->zpool_next; zpool_close(zph); zph = next; } hdl->libzfs_pool_handles = NULL; } /* * Utility function to gather stats (objset and zpl) for the given object. */ static int get_stats_ioctl(zfs_handle_t *zhp, zfs_cmd_t *zc) { libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, zc) != 0) { return (-1); } } else { return (-1); } } return (0); } /* * Utility function to get the received properties of the given object. */ static int get_recvd_props_ioctl(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *recvdprops; zfs_cmd_t zc = { 0 }; int err; if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_RECVD_PROPS, &zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { return (-1); } } else { zcmd_free_nvlists(&zc); return (-1); } } err = zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &recvdprops); zcmd_free_nvlists(&zc); if (err != 0) return (-1); nvlist_free(zhp->zfs_recvd_props); zhp->zfs_recvd_props = recvdprops; return (0); } static int put_stats_zhdl(zfs_handle_t *zhp, zfs_cmd_t *zc) { nvlist_t *allprops, *userprops; zhp->zfs_dmustats = zc->zc_objset_stats; /* structure assignment */ if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) { return (-1); } /* * XXX Why do we store the user props separately, in addition to * storing them in zfs_props? */ if ((userprops = process_user_props(zhp, allprops)) == NULL) { nvlist_free(allprops); return (-1); } nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); zhp->zfs_props = allprops; zhp->zfs_user_props = userprops; return (0); } static int get_stats(zfs_handle_t *zhp) { int rc = 0; zfs_cmd_t zc = { 0 }; if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); if (get_stats_ioctl(zhp, &zc) != 0) rc = -1; else if (put_stats_zhdl(zhp, &zc) != 0) rc = -1; zcmd_free_nvlists(&zc); return (rc); } /* * Refresh the properties currently stored in the handle. */ void zfs_refresh_properties(zfs_handle_t *zhp) { (void) get_stats(zhp); } /* * Makes a handle from the given dataset name. Used by zfs_open() and * zfs_iter_* to create child handles on the fly. */ static int make_dataset_handle_common(zfs_handle_t *zhp, zfs_cmd_t *zc) { if (put_stats_zhdl(zhp, zc) != 0) return (-1); /* * We've managed to open the dataset and gather statistics. Determine * the high-level type. */ if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_head_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_head_type = ZFS_TYPE_FILESYSTEM; else abort(); if (zhp->zfs_dmustats.dds_is_snapshot) zhp->zfs_type = ZFS_TYPE_SNAPSHOT; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_type = ZFS_TYPE_FILESYSTEM; else abort(); /* we should never see any other types */ if ((zhp->zpool_hdl = zpool_handle(zhp)) == NULL) return (-1); return (0); } zfs_handle_t * make_dataset_handle(libzfs_handle_t *hdl, const char *path) { zfs_cmd_t zc = { 0 }; zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name)); if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) { free(zhp); return (NULL); } if (get_stats_ioctl(zhp, &zc) == -1) { zcmd_free_nvlists(&zc); free(zhp); return (NULL); } if (make_dataset_handle_common(zhp, &zc) == -1) { free(zhp); zhp = NULL; } zcmd_free_nvlists(&zc); return (zhp); } static zfs_handle_t * make_dataset_handle_zc(libzfs_handle_t *hdl, zfs_cmd_t *zc) { zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name)); if (make_dataset_handle_common(zhp, zc) == -1) { free(zhp); return (NULL); } return (zhp); } /* * Opens the given snapshot, filesystem, or volume. The 'types' * argument is a mask of acceptable types. The function will print an * appropriate error message and return NULL if it can't be opened. */ zfs_handle_t * zfs_open(libzfs_handle_t *hdl, const char *path, int types) { zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); /* * Validate the name before we even try to open it. */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_DATASET, B_FALSE)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid dataset name")); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); return (NULL); } /* * Try to get stats for the dataset, which will tell us if it exists. */ errno = 0; if ((zhp = make_dataset_handle(hdl, path)) == NULL) { (void) zfs_standard_error(hdl, errno, errbuf); return (NULL); } if (!(types & zhp->zfs_type)) { (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (NULL); } return (zhp); } /* * Release a ZFS handle. Nothing to do but free the associated memory. */ void zfs_close(zfs_handle_t *zhp) { if (zhp->zfs_mntopts) free(zhp->zfs_mntopts); nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); nvlist_free(zhp->zfs_recvd_props); free(zhp); } typedef struct mnttab_node { struct mnttab mtn_mt; avl_node_t mtn_node; } mnttab_node_t; static int libzfs_mnttab_cache_compare(const void *arg1, const void *arg2) { const mnttab_node_t *mtn1 = arg1; const mnttab_node_t *mtn2 = arg2; int rv; rv = strcmp(mtn1->mtn_mt.mnt_special, mtn2->mtn_mt.mnt_special); if (rv == 0) return (0); return (rv > 0 ? 1 : -1); } void libzfs_mnttab_init(libzfs_handle_t *hdl) { assert(avl_numnodes(&hdl->libzfs_mnttab_cache) == 0); avl_create(&hdl->libzfs_mnttab_cache, libzfs_mnttab_cache_compare, sizeof (mnttab_node_t), offsetof(mnttab_node_t, mtn_node)); } void libzfs_mnttab_update(libzfs_handle_t *hdl) { struct mnttab entry; rewind(hdl->libzfs_mnttab); while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { mnttab_node_t *mtn; if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, entry.mnt_special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, entry.mnt_mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, entry.mnt_fstype); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } } void libzfs_mnttab_fini(libzfs_handle_t *hdl) { void *cookie = NULL; mnttab_node_t *mtn; while (mtn = avl_destroy_nodes(&hdl->libzfs_mnttab_cache, &cookie)) { free(mtn->mtn_mt.mnt_special); free(mtn->mtn_mt.mnt_mountp); free(mtn->mtn_mt.mnt_fstype); free(mtn->mtn_mt.mnt_mntopts); free(mtn); } avl_destroy(&hdl->libzfs_mnttab_cache); } void libzfs_mnttab_cache(libzfs_handle_t *hdl, boolean_t enable) { hdl->libzfs_mnttab_enable = enable; } int libzfs_mnttab_find(libzfs_handle_t *hdl, const char *fsname, struct mnttab *entry) { mnttab_node_t find; mnttab_node_t *mtn; if (!hdl->libzfs_mnttab_enable) { struct mnttab srch = { 0 }; if (avl_numnodes(&hdl->libzfs_mnttab_cache)) libzfs_mnttab_fini(hdl); rewind(hdl->libzfs_mnttab); srch.mnt_special = (char *)fsname; srch.mnt_fstype = MNTTYPE_ZFS; if (getmntany(hdl->libzfs_mnttab, entry, &srch) == 0) return (0); else return (ENOENT); } if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) libzfs_mnttab_update(hdl); find.mtn_mt.mnt_special = (char *)fsname; mtn = avl_find(&hdl->libzfs_mnttab_cache, &find, NULL); if (mtn) { *entry = mtn->mtn_mt; return (0); } return (ENOENT); } void libzfs_mnttab_add(libzfs_handle_t *hdl, const char *special, const char *mountp, const char *mntopts) { mnttab_node_t *mtn; if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) return; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } void libzfs_mnttab_remove(libzfs_handle_t *hdl, const char *fsname) { mnttab_node_t find; mnttab_node_t *ret; find.mtn_mt.mnt_special = (char *)fsname; if (ret = avl_find(&hdl->libzfs_mnttab_cache, (void *)&find, NULL)) { avl_remove(&hdl->libzfs_mnttab_cache, ret); free(ret->mtn_mt.mnt_special); free(ret->mtn_mt.mnt_mountp); free(ret->mtn_mt.mnt_fstype); free(ret->mtn_mt.mnt_mntopts); free(ret); } } int zfs_spa_version(zfs_handle_t *zhp, int *spa_version) { zpool_handle_t *zpool_handle = zhp->zpool_hdl; if (zpool_handle == NULL) return (-1); *spa_version = zpool_get_prop_int(zpool_handle, ZPOOL_PROP_VERSION, NULL); return (0); } /* * The choice of reservation property depends on the SPA version. */ static int zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop) { int spa_version; if (zfs_spa_version(zhp, &spa_version) < 0) return (-1); if (spa_version >= SPA_VERSION_REFRESERVATION) *resv_prop = ZFS_PROP_REFRESERVATION; else *resv_prop = ZFS_PROP_RESERVATION; return (0); } /* * Given an nvlist of properties to set, validates that they are correct, and * parses any numeric properties (index, boolean, etc) if they are specified as * strings. */ nvlist_t * zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl, uint64_t zoned, zfs_handle_t *zhp, const char *errbuf) { nvpair_t *elem; uint64_t intval; char *strval; zfs_prop_t prop; nvlist_t *ret; int chosen_normal = -1; int chosen_utf = -1; if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } /* * Make sure this property is valid and applies to this type. */ elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { const char *propname = nvpair_name(elem); prop = zfs_name_to_prop(propname); if (prop == ZPROP_INVAL && zfs_prop_user(propname)) { /* * This is a user property: make sure it's a * string, and that it's less than ZAP_MAXNAMELEN. */ if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property name '%s' is too long"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } (void) nvpair_value_string(elem, &strval); if (nvlist_add_string(ret, propname, strval) != 0) { (void) no_memory(hdl); goto error; } continue; } /* * Currently, only user properties can be modified on * snapshots. */ if (type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "this property can not be modified for snapshots")); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (prop == ZPROP_INVAL && zfs_prop_userquota(propname)) { zfs_userquota_prop_t uqtype; char newpropname[128]; char domain[128]; uint64_t rid; uint64_t valary[3]; if (userquota_propname_decode(propname, zoned, &uqtype, domain, sizeof (domain), &rid) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' has an invalid user/group name"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (uqtype != ZFS_PROP_USERQUOTA && uqtype != ZFS_PROP_GROUPQUOTA) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (nvpair_type(elem) == DATA_TYPE_STRING) { (void) nvpair_value_string(elem, &strval); if (strcmp(strval, "none") == 0) { intval = 0; } else if (zfs_nicestrtonum(hdl, strval, &intval) != 0) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { (void) nvpair_value_uint64(elem, &intval); if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "use 'none' to disable " "userquota/groupquota")); goto error; } } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a number"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* * Encode the prop name as * userquota@-domain, to make it easy * for the kernel to decode. */ (void) snprintf(newpropname, sizeof (newpropname), "%s%llx-%s", zfs_userquota_prop_prefixes[uqtype], (longlong_t)rid, domain); valary[0] = uqtype; valary[1] = rid; valary[2] = intval; if (nvlist_add_uint64_array(ret, newpropname, valary, 3) != 0) { (void) no_memory(hdl); goto error; } continue; } if (prop == ZPROP_INVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (!zfs_prop_valid_for_type(prop, type)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' does not " "apply to datasets of this type"), propname); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (zfs_prop_readonly(prop) && (!zfs_prop_setonce(prop) || zhp != NULL)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (zprop_parse_value(hdl, elem, prop, type, ret, &strval, &intval, errbuf) != 0) goto error; /* * Perform some additional checks for specific properties. */ switch (prop) { case ZFS_PROP_VERSION: { int version; if (zhp == NULL) break; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (intval < version) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Can not downgrade; already at version %u"), version); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } case ZFS_PROP_RECORDSIZE: case ZFS_PROP_VOLBLOCKSIZE: /* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */ if (intval < SPA_MINBLOCKSIZE || intval > SPA_MAXBLOCKSIZE || !ISP2(intval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be power of 2 from %u " "to %uk"), propname, (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_MLSLABEL: { /* * Verify the mlslabel string and convert to * internal hex label string. */ m_label_t *new_sl; char *hex = NULL; /* internal label string */ /* Default value is already OK. */ if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) break; /* Verify the label can be converted to binary form */ if (((new_sl = m_label_alloc(MAC_LABEL)) == NULL) || (str_to_label(strval, &new_sl, MAC_LABEL, L_NO_CORRECTION, NULL) == -1)) { goto badlabel; } /* Now translate to hex internal label string */ if (label_to_str(new_sl, &hex, M_INTERNAL, DEF_NAMES) != 0) { if (hex) free(hex); goto badlabel; } m_label_free(new_sl); /* If string is already in internal form, we're done. */ if (strcmp(strval, hex) == 0) { free(hex); break; } /* Replace the label string with the internal form. */ (void) nvlist_remove(ret, zfs_prop_to_name(prop), DATA_TYPE_STRING); verify(nvlist_add_string(ret, zfs_prop_to_name(prop), hex) == 0); free(hex); break; badlabel: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid mlslabel '%s'"), strval); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); m_label_free(new_sl); /* OK if null */ goto error; } case ZFS_PROP_MOUNTPOINT: { namecheck_err_t why; if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 || strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0) break; if (mountpoint_namecheck(strval, &why)) { switch (why) { case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be an absolute path, " "'none', or 'legacy'"), propname); break; case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "component of '%s' is too long"), propname); break; } (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } /*FALLTHRU*/ case ZFS_PROP_SHARESMB: case ZFS_PROP_SHARENFS: /* * For the mountpoint and sharenfs or sharesmb * properties, check if it can be set in a * global/non-global zone based on * the zoned property value: * * global zone non-global zone * -------------------------------------------------- * zoned=on mountpoint (no) mountpoint (yes) * sharenfs (no) sharenfs (no) * sharesmb (no) sharesmb (no) * * zoned=off mountpoint (yes) N/A * sharenfs (yes) * sharesmb (yes) */ if (zoned) { if (getzoneid() == GLOBAL_ZONEID) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set on " "dataset in a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } else if (prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set in " "a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } } else if (getzoneid() != GLOBAL_ZONEID) { /* * If zoned property is 'off', this must be in * a global zone. If not, something is wrong. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set while dataset " "'zoned' property is set"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * At this point, it is legitimate to set the * property. Now we want to make sure that the * property value is valid if it is sharenfs. */ if ((prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) && strcmp(strval, "on") != 0 && strcmp(strval, "off") != 0) { zfs_share_proto_t proto; if (prop == ZFS_PROP_SHARESMB) proto = PROTO_SMB; else proto = PROTO_NFS; /* * Must be an valid sharing protocol * option string so init the libshare * in order to enable the parser and * then parse the options. We use the * control API since we don't care about * the current configuration and don't * want the overhead of loading it * until we actually do something. */ if (zfs_init_libshare(hdl, SA_INIT_CONTROL_API) != SA_OK) { /* * An error occurred so we can't do * anything */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set: problem " "in share initialization"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zfs_parse_options(strval, proto) != SA_OK) { /* * There was an error in parsing so * deal with it by issuing an error * message and leaving after * uninitializing the the libshare * interface. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set to invalid " "options"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); zfs_uninit_libshare(hdl); goto error; } zfs_uninit_libshare(hdl); } break; case ZFS_PROP_UTF8ONLY: chosen_utf = (int)intval; break; case ZFS_PROP_NORMALIZE: chosen_normal = (int)intval; break; } /* * For changes to existing volumes, we have some additional * checks to enforce. */ if (type == ZFS_TYPE_VOLUME && zhp != NULL) { uint64_t volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t blocksize = zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE); char buf[64]; switch (prop) { case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (intval > volsize) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is greater than current " "volume size"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_VOLSIZE: if (intval % blocksize != 0) { zfs_nicenum(blocksize, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a multiple of " "volume block size (%s)"), propname, buf); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be zero"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } } } /* * If normalization was chosen, but no UTF8 choice was made, * enforce rejection of non-UTF8 names. * * If normalization was chosen, but rejecting non-UTF8 names * was explicitly not chosen, it is an error. */ if (chosen_normal > 0 && chosen_utf < 0) { if (nvlist_add_uint64(ret, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), 1) != 0) { (void) no_memory(hdl); goto error; } } else if (chosen_normal > 0 && chosen_utf == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be set 'on' if normalization chosen"), zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } return (ret); error: nvlist_free(ret); return (NULL); } int zfs_add_synthetic_resv(zfs_handle_t *zhp, nvlist_t *nvl) { uint64_t old_volsize; uint64_t new_volsize; uint64_t old_reservation; uint64_t new_reservation; zfs_prop_t resv_prop; /* * If this is an existing volume, and someone is setting the volsize, * make sure that it matches the reservation, or add it if necessary. */ old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); if (zfs_which_resv_prop(zhp, &resv_prop) < 0) return (-1); old_reservation = zfs_prop_get_int(zhp, resv_prop); if ((zvol_volsize_to_reservation(old_volsize, zhp->zfs_props) != old_reservation) || nvlist_lookup_uint64(nvl, zfs_prop_to_name(resv_prop), &new_reservation) != ENOENT) { return (0); } if (nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &new_volsize) != 0) return (-1); new_reservation = zvol_volsize_to_reservation(new_volsize, zhp->zfs_props); if (nvlist_add_uint64(nvl, zfs_prop_to_name(resv_prop), new_reservation) != 0) { (void) no_memory(zhp->zfs_hdl); return (-1); } return (1); } void zfs_setprop_error(libzfs_handle_t *hdl, zfs_prop_t prop, int err, char *errbuf) { switch (err) { case ENOSPC: /* * For quotas and reservations, ENOSPC indicates * something different; setting a quota or reservation * doesn't use any disk space. */ switch (prop) { case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is less than current used or " "reserved space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is greater than available space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; default: (void) zfs_standard_error(hdl, err, errbuf); break; } break; case EBUSY: (void) zfs_standard_error(hdl, EBUSY, errbuf); break; case EROFS: (void) zfs_error(hdl, EZFS_DSREADONLY, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool and or dataset must be upgraded to set this " "property or value")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case ERANGE: if (prop == ZFS_PROP_COMPRESSION) { (void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property setting is not allowed on " "bootable datasets")); (void) zfs_error(hdl, EZFS_NOTSUP, errbuf); } else { (void) zfs_standard_error(hdl, err, errbuf); } break; case EINVAL: if (prop == ZPROP_INVAL) { (void) zfs_error(hdl, EZFS_BADPROP, errbuf); } else { (void) zfs_standard_error(hdl, err, errbuf); } break; case EOVERFLOW: /* * This platform can't address a volume this big. */ #ifdef _ILP32 if (prop == ZFS_PROP_VOLSIZE) { (void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf); break; } #endif /* FALLTHROUGH */ default: (void) zfs_standard_error(hdl, err, errbuf); } } /* * Given a property name and value, set the property for the given dataset. */ int zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = { 0 }; int ret = -1; prop_changelist_t *cl = NULL; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *nvl = NULL, *realprops; zfs_prop_t prop; boolean_t do_prefix; uint64_t idx; int added_resv; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zfs_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_string(nvl, propname, propval) != 0) { (void) no_memory(hdl); goto error; } if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL) goto error; nvlist_free(nvl); nvl = realprops; prop = zfs_name_to_prop(propname); if (prop == ZFS_PROP_VOLSIZE) { if ((added_resv = zfs_add_synthetic_resv(zhp, nvl)) == -1) goto error; } if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) goto error; if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * If the dataset's canmount property is being set to noauto, * then we want to prevent unmounting & remounting it. */ do_prefix = !((prop == ZFS_PROP_CANMOUNT) && (zprop_string_to_index(prop, propval, &idx, ZFS_TYPE_DATASET) == 0) && (idx == ZFS_CANMOUNT_NOAUTO)); if (do_prefix && (ret = changelist_prefix(cl)) != 0) goto error; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0) goto error; ret = zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); if (ret != 0) { zfs_setprop_error(hdl, prop, errno, errbuf); if (added_resv && errno == ENOSPC) { /* clean up the volsize property we tried to set */ uint64_t old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); nvlist_free(nvl); zcmd_free_nvlists(&zc); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) goto error; if (nvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_VOLSIZE), old_volsize) != 0) goto error; if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0) goto error; (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); } } else { if (do_prefix) ret = changelist_postfix(cl); /* * Refresh the statistics so the new property value * is reflected. */ if (ret == 0) (void) get_stats(zhp); } error: nvlist_free(nvl); zcmd_free_nvlists(&zc); if (cl) changelist_free(cl); return (ret); } /* * Given a property, inherit the value from the parent dataset, or if received * is TRUE, revert to the received value, if any. */ int zfs_prop_inherit(zfs_handle_t *zhp, const char *propname, boolean_t received) { zfs_cmd_t zc = { 0 }; int ret; prop_changelist_t *cl; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; zfs_prop_t prop; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s'"), propname, zhp->zfs_name); zc.zc_cookie = received; if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) { /* * For user properties, the amount of work we have to do is very * small, so just do it here. */ if (!zfs_prop_user(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc) != 0) return (zfs_standard_error(hdl, errno, errbuf)); return (0); } /* * Verify that this property is inheritable. */ if (zfs_prop_readonly(prop)) return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf)); if (!zfs_prop_inheritable(prop) && !received) return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf)); /* * Check to see if the value applies to this type */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (zfs_error(hdl, EZFS_PROPTYPE, errbuf)); /* * Normalize the name, to get rid of shorthand abbreviations. */ propname = zfs_prop_to_name(prop); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } /* * Determine datasets which will be affected by this change, if any. */ if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) return (-1); if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc)) != 0) { return (zfs_standard_error(hdl, errno, errbuf)); } else { if ((ret = changelist_postfix(cl)) != 0) goto error; /* * Refresh the statistics so the new property is reflected. */ (void) get_stats(zhp); } error: changelist_free(cl); return (ret); } /* * True DSL properties are stored in an nvlist. The following two functions * extract them appropriately. */ static uint64_t getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; uint64_t value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { verify(!zhp->zfs_props_table || zhp->zfs_props_table[prop] == B_TRUE); value = zfs_prop_default_numeric(prop); *source = ""; } return (value); } static char * getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; char *value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { verify(!zhp->zfs_props_table || zhp->zfs_props_table[prop] == B_TRUE); if ((value = (char *)zfs_prop_default_string(prop)) == NULL) value = ""; *source = ""; } return (value); } static boolean_t zfs_is_recvd_props_mode(zfs_handle_t *zhp) { return (zhp->zfs_props == zhp->zfs_recvd_props); } static void zfs_set_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie) { *cookie = (uint64_t)(uintptr_t)zhp->zfs_props; zhp->zfs_props = zhp->zfs_recvd_props; } static void zfs_unset_recvd_props_mode(zfs_handle_t *zhp, uint64_t *cookie) { zhp->zfs_props = (nvlist_t *)(uintptr_t)*cookie; *cookie = 0; } /* * Internal function for getting a numeric property. Both zfs_prop_get() and * zfs_prop_get_int() are built using this interface. * * Certain properties can be overridden using 'mount -o'. In this case, scan * the contents of the /etc/mnttab entry, searching for the appropriate options. * If they differ from the on-disk values, report the current values and mark * the source "temporary". */ static int get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src, char **source, uint64_t *val) { zfs_cmd_t zc = { 0 }; nvlist_t *zplprops = NULL; struct mnttab mnt; char *mntopt_on = NULL; char *mntopt_off = NULL; boolean_t received = zfs_is_recvd_props_mode(zhp); *source = NULL; switch (prop) { case ZFS_PROP_ATIME: mntopt_on = MNTOPT_ATIME; mntopt_off = MNTOPT_NOATIME; break; case ZFS_PROP_DEVICES: mntopt_on = MNTOPT_DEVICES; mntopt_off = MNTOPT_NODEVICES; break; case ZFS_PROP_EXEC: mntopt_on = MNTOPT_EXEC; mntopt_off = MNTOPT_NOEXEC; break; case ZFS_PROP_READONLY: mntopt_on = MNTOPT_RO; mntopt_off = MNTOPT_RW; break; case ZFS_PROP_SETUID: mntopt_on = MNTOPT_SETUID; mntopt_off = MNTOPT_NOSETUID; break; case ZFS_PROP_XATTR: mntopt_on = MNTOPT_XATTR; mntopt_off = MNTOPT_NOXATTR; break; case ZFS_PROP_NBMAND: mntopt_on = MNTOPT_NBMAND; mntopt_off = MNTOPT_NONBMAND; break; } /* * Because looking up the mount options is potentially expensive * (iterating over all of /etc/mnttab), we defer its calculation until * we're looking up a property which requires its presence. */ if (!zhp->zfs_mntcheck && (mntopt_on != NULL || prop == ZFS_PROP_MOUNTED)) { libzfs_handle_t *hdl = zhp->zfs_hdl; struct mnttab entry; if (libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0) { zhp->zfs_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); if (zhp->zfs_mntopts == NULL) return (-1); } zhp->zfs_mntcheck = B_TRUE; } if (zhp->zfs_mntopts == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = zhp->zfs_mntopts; switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: case ZFS_PROP_READONLY: case ZFS_PROP_SETUID: case ZFS_PROP_XATTR: case ZFS_PROP_NBMAND: *val = getprop_uint64(zhp, prop, source); if (received) break; if (hasmntopt(&mnt, mntopt_on) && !*val) { *val = B_TRUE; if (src) *src = ZPROP_SRC_TEMPORARY; } else if (hasmntopt(&mnt, mntopt_off) && *val) { *val = B_FALSE; if (src) *src = ZPROP_SRC_TEMPORARY; } break; case ZFS_PROP_CANMOUNT: case ZFS_PROP_VOLSIZE: case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: *val = getprop_uint64(zhp, prop, source); if (*source == NULL) { /* not default, must be local */ *source = zhp->zfs_name; } break; case ZFS_PROP_MOUNTED: *val = (zhp->zfs_mntopts != NULL); break; case ZFS_PROP_NUMCLONES: *val = zhp->zfs_dmustats.dds_num_clones; break; case ZFS_PROP_VERSION: case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: case ZFS_PROP_CASE: if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) || zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_OBJSET_ZPLPROPS, &zc)) { zcmd_free_nvlists(&zc); return (-1); } if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) != 0 || nvlist_lookup_uint64(zplprops, zfs_prop_to_name(prop), val) != 0) { zcmd_free_nvlists(&zc); return (-1); } if (zplprops) nvlist_free(zplprops); zcmd_free_nvlists(&zc); break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: *val = getprop_uint64(zhp, prop, source); /* * If we tried to use a default value for a * readonly property, it means that it was not * present. */ if (zfs_prop_readonly(prop) && *source != NULL && (*source)[0] == '\0') { *source = NULL; } break; case PROP_TYPE_STRING: default: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "cannot get non-numeric property")); return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "internal error"))); } } return (0); } /* * Calculate the source type, given the raw source string. */ static void get_source(zfs_handle_t *zhp, zprop_source_t *srctype, char *source, char *statbuf, size_t statlen) { if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY) return; if (source == NULL) { *srctype = ZPROP_SRC_NONE; } else if (source[0] == '\0') { *srctype = ZPROP_SRC_DEFAULT; } else if (strstr(source, ZPROP_SOURCE_VAL_RECVD) != NULL) { *srctype = ZPROP_SRC_RECEIVED; } else { if (strcmp(source, zhp->zfs_name) == 0) { *srctype = ZPROP_SRC_LOCAL; } else { (void) strlcpy(statbuf, source, statlen); *srctype = ZPROP_SRC_INHERITED; } } } int zfs_prop_get_recvd(zfs_handle_t *zhp, const char *propname, char *propbuf, size_t proplen, boolean_t literal) { zfs_prop_t prop; int err = 0; if (zhp->zfs_recvd_props == NULL) if (get_recvd_props_ioctl(zhp) != 0) return (-1); prop = zfs_name_to_prop(propname); if (prop != ZPROP_INVAL) { uint64_t cookie; if (!nvlist_exists(zhp->zfs_recvd_props, propname)) return (-1); zfs_set_recvd_props_mode(zhp, &cookie); err = zfs_prop_get(zhp, prop, propbuf, proplen, NULL, NULL, 0, literal); zfs_unset_recvd_props_mode(zhp, &cookie); } else if (zfs_prop_userquota(propname)) { return (-1); } else { nvlist_t *propval; char *recvdval; if (nvlist_lookup_nvlist(zhp->zfs_recvd_props, propname, &propval) != 0) return (-1); verify(nvlist_lookup_string(propval, ZPROP_VALUE, &recvdval) == 0); (void) strlcpy(propbuf, recvdval, proplen); } return (err == 0 ? 0 : -1); } /* * Retrieve a property from the given object. If 'literal' is specified, then * numbers are left as exact values. Otherwise, numbers are converted to a * human-readable form. * * Returns 0 on success, or -1 on error. */ int zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen, zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal) { char *source = NULL; uint64_t val; char *str; const char *strval; boolean_t received = zfs_is_recvd_props_mode(zhp); /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (-1); if (received && zfs_prop_readonly(prop)) return (-1); if (src) *src = ZPROP_SRC_NONE; switch (prop) { case ZFS_PROP_CREATION: /* * 'creation' is a time_t stored in the statistics. We convert * this into a string unless 'literal' is specified. */ { val = getprop_uint64(zhp, prop, &source); time_t time = (time_t)val; struct tm t; if (literal || localtime_r(&time, &t) == NULL || strftime(propbuf, proplen, "%a %b %e %k:%M %Y", &t) == 0) - (void) snprintf(propbuf, proplen, "%llu", val); + (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t) val); } break; case ZFS_PROP_MOUNTPOINT: /* * Getting the precise mountpoint can be tricky. * * - for 'none' or 'legacy', return those values. * - for inherited mountpoints, we want to take everything * after our ancestor and append it to the inherited value. * * If the pool has an alternate root, we want to prepend that * root to any values we return. */ str = getprop_string(zhp, prop, &source); if (str[0] == '/') { char buf[MAXPATHLEN]; char *root = buf; const char *relpath; /* * If we inherit the mountpoint, even from a dataset * with a received value, the source will be the path of * the dataset we inherit from. If source is * ZPROP_SOURCE_VAL_RECVD, the received value is not * inherited. */ if (strcmp(source, ZPROP_SOURCE_VAL_RECVD) == 0) { relpath = ""; } else { relpath = zhp->zfs_name + strlen(source); if (relpath[0] == '/') relpath++; } if ((zpool_get_prop(zhp->zpool_hdl, ZPOOL_PROP_ALTROOT, buf, MAXPATHLEN, NULL)) || (strcmp(root, "-") == 0)) root[0] = '\0'; /* * Special case an alternate root of '/'. This will * avoid having multiple leading slashes in the * mountpoint path. */ if (strcmp(root, "/") == 0) root++; /* * If the mountpoint is '/' then skip over this * if we are obtaining either an alternate root or * an inherited mountpoint. */ if (str[1] == '\0' && (root[0] != '\0' || relpath[0] != '\0')) str++; if (relpath[0] == '\0') (void) snprintf(propbuf, proplen, "%s%s", root, str); else (void) snprintf(propbuf, proplen, "%s%s%s%s", root, str, relpath[0] == '@' ? "" : "/", relpath); } else { /* 'legacy' or 'none' */ (void) strlcpy(propbuf, str, proplen); } break; case ZFS_PROP_ORIGIN: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); /* * If there is no parent at all, return failure to indicate that * it doesn't apply to this dataset. */ if (propbuf[0] == '\0') return (-1); break; case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); /* * If quota or reservation is 0, we translate this into 'none' * (unless literal is set), and indicate that it's the default * value. Otherwise, we print the number nicely and indicate * that its set locally. */ if (val == 0) { if (literal) (void) strlcpy(propbuf, "0", proplen); else (void) strlcpy(propbuf, "none", proplen); } else { if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); } break; case ZFS_PROP_COMPRESSRATIO: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); (void) snprintf(propbuf, proplen, "%llu.%02llux", (u_longlong_t)(val / 100), (u_longlong_t)(val % 100)); break; case ZFS_PROP_TYPE: switch (zhp->zfs_type) { case ZFS_TYPE_FILESYSTEM: str = "filesystem"; break; case ZFS_TYPE_VOLUME: str = "volume"; break; case ZFS_TYPE_SNAPSHOT: str = "snapshot"; break; default: abort(); } (void) snprintf(propbuf, proplen, "%s", str); break; case ZFS_PROP_MOUNTED: /* * The 'mounted' property is a pseudo-property that described * whether the filesystem is currently mounted. Even though * it's a boolean value, the typical values of "on" and "off" * don't make sense, so we translate to "yes" and "no". */ if (get_numeric_property(zhp, ZFS_PROP_MOUNTED, src, &source, &val) != 0) return (-1); if (val) (void) strlcpy(propbuf, "yes", proplen); else (void) strlcpy(propbuf, "no", proplen); break; case ZFS_PROP_NAME: /* * The 'name' property is a pseudo-property derived from the * dataset name. It is presented as a real property to simplify * consumers. */ (void) strlcpy(propbuf, zhp->zfs_name, proplen); break; case ZFS_PROP_MLSLABEL: { m_label_t *new_sl = NULL; char *ascii = NULL; /* human readable label */ (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); if (literal || (strcasecmp(propbuf, ZFS_MLSLABEL_DEFAULT) == 0)) break; /* * Try to translate the internal hex string to * human-readable output. If there are any * problems just use the hex string. */ if (str_to_label(propbuf, &new_sl, MAC_LABEL, L_NO_CORRECTION, NULL) == -1) { m_label_free(new_sl); break; } if (label_to_str(new_sl, &ascii, M_LABEL, DEF_NAMES) != 0) { if (ascii) free(ascii); m_label_free(new_sl); break; } m_label_free(new_sl); (void) strlcpy(propbuf, ascii, proplen); free(ascii); } break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); break; case PROP_TYPE_STRING: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); break; case PROP_TYPE_INDEX: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (zfs_prop_index_to_string(prop, val, &strval) != 0) return (-1); (void) strlcpy(propbuf, strval, proplen); break; default: abort(); } } get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Utility function to get the given numeric property. Does no validation that * the given property is the appropriate type; should only be used with * hard-coded property types. */ uint64_t zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop) { char *source; uint64_t val; (void) get_numeric_property(zhp, prop, NULL, &source, &val); return (val); } int zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val) { char buf[64]; (void) snprintf(buf, sizeof (buf), "%llu", (longlong_t)val); return (zfs_prop_set(zhp, zfs_prop_to_name(prop), buf)); } /* * Similar to zfs_prop_get(), but returns the value as an integer. */ int zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value, zprop_source_t *src, char *statbuf, size_t statlen) { char *source; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) { return (zfs_error_fmt(zhp->zfs_hdl, EZFS_PROPTYPE, dgettext(TEXT_DOMAIN, "cannot get property '%s'"), zfs_prop_to_name(prop))); } if (src) *src = ZPROP_SRC_NONE; if (get_numeric_property(zhp, prop, src, &source, value) != 0) return (-1); get_source(zhp, src, source, statbuf, statlen); return (0); } static int idmap_id_to_numeric_domain_rid(uid_t id, boolean_t isuser, char **domainp, idmap_rid_t *ridp) { idmap_get_handle_t *get_hdl = NULL; idmap_stat status; int err = EINVAL; if (idmap_get_create(&get_hdl) != IDMAP_SUCCESS) goto out; if (isuser) { err = idmap_get_sidbyuid(get_hdl, id, IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status); } else { err = idmap_get_sidbygid(get_hdl, id, IDMAP_REQ_FLG_USE_CACHE, domainp, ridp, &status); } if (err == IDMAP_SUCCESS && idmap_get_mappings(get_hdl) == IDMAP_SUCCESS && status == IDMAP_SUCCESS) err = 0; else err = EINVAL; out: if (get_hdl) idmap_get_destroy(get_hdl); return (err); } /* * convert the propname into parameters needed by kernel * Eg: userquota@ahrens -> ZFS_PROP_USERQUOTA, "", 126829 * Eg: userused@matt@domain -> ZFS_PROP_USERUSED, "S-1-123-456", 789 */ static int userquota_propname_decode(const char *propname, boolean_t zoned, zfs_userquota_prop_t *typep, char *domain, int domainlen, uint64_t *ridp) { zfs_userquota_prop_t type; char *cp, *end; char *numericsid = NULL; boolean_t isuser; domain[0] = '\0'; /* Figure out the property type ({user|group}{quota|space}) */ for (type = 0; type < ZFS_NUM_USERQUOTA_PROPS; type++) { if (strncmp(propname, zfs_userquota_prop_prefixes[type], strlen(zfs_userquota_prop_prefixes[type])) == 0) break; } if (type == ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); *typep = type; isuser = (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_USERUSED); cp = strchr(propname, '@') + 1; if (strchr(cp, '@')) { /* * It's a SID name (eg "user@domain") that needs to be * turned into S-1-domainID-RID. */ directory_error_t e; if (zoned && getzoneid() == GLOBAL_ZONEID) return (ENOENT); if (isuser) { e = directory_sid_from_user_name(NULL, cp, &numericsid); } else { e = directory_sid_from_group_name(NULL, cp, &numericsid); } if (e != NULL) { directory_error_free(e); return (ENOENT); } if (numericsid == NULL) return (ENOENT); cp = numericsid; /* will be further decoded below */ } if (strncmp(cp, "S-1-", 4) == 0) { /* It's a numeric SID (eg "S-1-234-567-89") */ (void) strlcpy(domain, cp, domainlen); cp = strrchr(domain, '-'); *cp = '\0'; cp++; errno = 0; *ridp = strtoull(cp, &end, 10); if (numericsid) { free(numericsid); numericsid = NULL; } if (errno != 0 || *end != '\0') return (EINVAL); } else if (!isdigit(*cp)) { /* * It's a user/group name (eg "user") that needs to be * turned into a uid/gid */ if (zoned && getzoneid() == GLOBAL_ZONEID) return (ENOENT); if (isuser) { struct passwd *pw; pw = getpwnam(cp); if (pw == NULL) return (ENOENT); *ridp = pw->pw_uid; } else { struct group *gr; gr = getgrnam(cp); if (gr == NULL) return (ENOENT); *ridp = gr->gr_gid; } } else { /* It's a user/group ID (eg "12345"). */ uid_t id = strtoul(cp, &end, 10); idmap_rid_t rid; char *mapdomain; if (*end != '\0') return (EINVAL); if (id > MAXUID) { /* It's an ephemeral ID. */ if (idmap_id_to_numeric_domain_rid(id, isuser, &mapdomain, &rid) != 0) return (ENOENT); (void) strlcpy(domain, mapdomain, domainlen); *ridp = rid; } else { *ridp = id; } } ASSERT3P(numericsid, ==, NULL); return (0); } static int zfs_prop_get_userquota_common(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue, zfs_userquota_prop_t *typep) { int err; zfs_cmd_t zc = { 0 }; (void) strncpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); err = userquota_propname_decode(propname, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), typep, zc.zc_value, sizeof (zc.zc_value), &zc.zc_guid); zc.zc_objset_type = *typep; if (err) return (err); err = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_USERSPACE_ONE, &zc); if (err) return (err); *propvalue = zc.zc_cookie; return (0); } int zfs_prop_get_userquota_int(zfs_handle_t *zhp, const char *propname, uint64_t *propvalue) { zfs_userquota_prop_t type; return (zfs_prop_get_userquota_common(zhp, propname, propvalue, &type)); } int zfs_prop_get_userquota(zfs_handle_t *zhp, const char *propname, char *propbuf, int proplen, boolean_t literal) { int err; uint64_t propvalue; zfs_userquota_prop_t type; err = zfs_prop_get_userquota_common(zhp, propname, &propvalue, &type); if (err) return (err); if (literal) { - (void) snprintf(propbuf, proplen, "%llu", propvalue); + (void) snprintf(propbuf, proplen, "%llu", + (u_longlong_t)propvalue); } else if (propvalue == 0 && (type == ZFS_PROP_USERQUOTA || type == ZFS_PROP_GROUPQUOTA)) { (void) strlcpy(propbuf, "none", proplen); } else { zfs_nicenum(propvalue, propbuf, proplen); } return (0); } /* * Returns the name of the given zfs handle. */ const char * zfs_get_name(const zfs_handle_t *zhp) { return (zhp->zfs_name); } /* * Returns the type of the given zfs handle. */ zfs_type_t zfs_get_type(const zfs_handle_t *zhp) { return (zhp->zfs_type); } static int zfs_do_list_ioctl(zfs_handle_t *zhp, int arg, zfs_cmd_t *zc) { int rc; uint64_t orig_cookie; orig_cookie = zc->zc_cookie; top: (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); rc = ioctl(zhp->zfs_hdl->libzfs_fd, arg, zc); if (rc == -1) { switch (errno) { case ENOMEM: /* expand nvlist memory and try again */ if (zcmd_expand_dst_nvlist(zhp->zfs_hdl, zc) != 0) { zcmd_free_nvlists(zc); return (-1); } zc->zc_cookie = orig_cookie; goto top; /* * An errno value of ESRCH indicates normal completion. * If ENOENT is returned, then the underlying dataset * has been removed since we obtained the handle. */ case ESRCH: case ENOENT: rc = 1; break; default: rc = zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot iterate filesystems")); break; } } return (rc); } /* * Iterate over all child filesystems */ int zfs_iter_filesystems(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; if (zhp->zfs_type != ZFS_TYPE_FILESYSTEM) return (0); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_DATASET_LIST_NEXT, &zc)) == 0) { /* * Silently ignore errors, as the only plausible explanation is * that the pool has since been removed. */ if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc)) == NULL) { continue; } if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); return (ret); } } zcmd_free_nvlists(&zc); return ((ret < 0) ? ret : 0); } /* * Iterate over all snapshots */ int zfs_iter_snapshots(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { 0 }; zfs_handle_t *nzhp; int ret; if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) return (0); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc)) == 0) { if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc)) == NULL) { continue; } if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); return (ret); } } zcmd_free_nvlists(&zc); return ((ret < 0) ? ret : 0); } /* * Iterate over all children, snapshots and filesystems */ int zfs_iter_children(zfs_handle_t *zhp, zfs_iter_f func, void *data) { int ret; if ((ret = zfs_iter_filesystems(zhp, func, data)) != 0) return (ret); return (zfs_iter_snapshots(zhp, func, data)); } /* * Is one dataset name a child dataset of another? * * Needs to handle these cases: * Dataset 1 "a/foo" "a/foo" "a/foo" "a/foo" * Dataset 2 "a/fo" "a/foobar" "a/bar/baz" "a/foo/bar" * Descendant? No. No. No. Yes. */ static boolean_t is_descendant(const char *ds1, const char *ds2) { size_t d1len = strlen(ds1); /* ds2 can't be a descendant if it's smaller */ if (strlen(ds2) < d1len) return (B_FALSE); /* otherwise, compare strings and verify that there's a '/' char */ return (ds2[d1len] == '/' && (strncmp(ds1, ds2, d1len) == 0)); } /* * Given a complete name, return just the portion that refers to the parent. * Can return NULL if this is a pool. */ static int parent_name(const char *path, char *buf, size_t buflen) { char *loc; if ((loc = strrchr(path, '/')) == NULL) return (-1); (void) strncpy(buf, path, MIN(buflen, loc - path)); buf[loc - path] = '\0'; return (0); } /* * If accept_ancestor is false, then check to make sure that the given path has * a parent, and that it exists. If accept_ancestor is true, then find the * closest existing ancestor for the given path. In prefixlen return the * length of already existing prefix of the given path. We also fetch the * 'zoned' property, which is used to validate property settings when creating * new datasets. */ static int check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned, boolean_t accept_ancestor, int *prefixlen) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; char *slash; zfs_handle_t *zhp; char errbuf[1024]; uint64_t is_zoned; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* get parent, and check to see if this is just a pool */ if (parent_name(path, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* check to see if the pool exists */ if ((slash = strchr(parent, '/')) == NULL) slash = parent + strlen(parent); (void) strncpy(zc.zc_name, parent, slash - parent); zc.zc_name[slash - parent] = '\0'; if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 && errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* check to see if the parent dataset exists */ while ((zhp = make_dataset_handle(hdl, parent)) == NULL) { if (errno == ENOENT && accept_ancestor) { /* * Go deeper to find an ancestor, give up on top level. */ if (parent_name(parent, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } } else if (errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent does not exist")); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } else return (zfs_standard_error(hdl, errno, errbuf)); } is_zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); if (zoned != NULL) *zoned = is_zoned; /* we are in a non-global zone, but parent is in the global zone */ if (getzoneid() != GLOBAL_ZONEID && !is_zoned) { (void) zfs_standard_error(hdl, EPERM, errbuf); zfs_close(zhp); return (-1); } /* make sure parent is a filesystem */ if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent is not a filesystem")); (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (-1); } zfs_close(zhp); if (prefixlen != NULL) *prefixlen = strlen(parent); return (0); } /* * Finds whether the dataset of the given type(s) exists. */ boolean_t zfs_dataset_exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types) { zfs_handle_t *zhp; if (!zfs_validate_name(hdl, path, types, B_FALSE)) return (B_FALSE); /* * Try to get stats for the dataset, which will tell us if it exists. */ if ((zhp = make_dataset_handle(hdl, path)) != NULL) { int ds_type = zhp->zfs_type; zfs_close(zhp); if (types & ds_type) return (B_TRUE); } return (B_FALSE); } /* * Given a path to 'target', create all the ancestors between * the prefixlen portion of the path, and the target itself. * Fail if the initial prefixlen-ancestor does not already exist. */ int create_parents(libzfs_handle_t *hdl, char *target, int prefixlen) { zfs_handle_t *h; char *cp; const char *opname; /* make sure prefix exists */ cp = target + prefixlen; if (*cp != '/') { assert(strchr(cp, '/') == NULL); h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); } else { *cp = '\0'; h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); *cp = '/'; } if (h == NULL) return (-1); zfs_close(h); /* * Attempt to create, mount, and share any ancestor filesystems, * up to the prefixlen-long one. */ for (cp = target + prefixlen + 1; cp = strchr(cp, '/'); *cp = '/', cp++) { char *logstr; *cp = '\0'; h = make_dataset_handle(hdl, target); if (h) { /* it already exists, nothing to do here */ zfs_close(h); continue; } logstr = hdl->libzfs_log_str; hdl->libzfs_log_str = NULL; if (zfs_create(hdl, target, ZFS_TYPE_FILESYSTEM, NULL) != 0) { hdl->libzfs_log_str = logstr; opname = dgettext(TEXT_DOMAIN, "create"); goto ancestorerr; } hdl->libzfs_log_str = logstr; h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); if (h == NULL) { opname = dgettext(TEXT_DOMAIN, "open"); goto ancestorerr; } if (zfs_mount(h, NULL, 0) != 0) { opname = dgettext(TEXT_DOMAIN, "mount"); goto ancestorerr; } if (zfs_share(h) != 0) { opname = dgettext(TEXT_DOMAIN, "share"); goto ancestorerr; } zfs_close(h); } return (0); ancestorerr: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to %s ancestor '%s'"), opname, target); return (-1); } /* * Creates non-existing ancestors of the given path. */ int zfs_create_ancestors(libzfs_handle_t *hdl, const char *path) { int prefix; char *path_copy; int rc; if (check_parents(hdl, path, NULL, B_TRUE, &prefix) != 0) return (-1); if ((path_copy = strdup(path)) != NULL) { rc = create_parents(hdl, path_copy, prefix); free(path_copy); } if (path_copy == NULL || rc != 0) return (-1); return (0); } /* * Create a new filesystem or volume. */ int zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type, nvlist_t *props) { zfs_cmd_t zc = { 0 }; int ret; uint64_t size = 0; uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); char errbuf[1024]; uint64_t zoned; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* validate the path, taking care to note the extended error message */ if (!zfs_validate_name(hdl, path, type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0) return (-1); /* * The failure modes when creating a dataset of a different type over * one that already exists is a little strange. In particular, if you * try to create a dataset on top of an existing dataset, the ioctl() * will return ENOENT, not EEXIST. To prevent this from happening, we * first try to see if the dataset exists. */ (void) strlcpy(zc.zc_name, path, sizeof (zc.zc_name)); if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset already exists")); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (type == ZFS_TYPE_VOLUME) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; if (props && (props = zfs_valid_proplist(hdl, type, props, zoned, NULL, errbuf)) == 0) return (-1); if (type == ZFS_TYPE_VOLUME) { /* * If we are creating a volume, the size and block size must * satisfy a few restraints. First, the blocksize must be a * valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the * volsize must be a multiple of the block size, and cannot be * zero. */ if (props == NULL || nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if ((ret = nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &blocksize)) != 0) { if (ret == ENOENT) { blocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); } else { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume block size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (size == 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size cannot be zero")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if (size % blocksize != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size must be a multiple of volume block " "size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (props && zcmd_write_src_nvlist(hdl, &zc, props) != 0) return (-1); nvlist_free(props); /* create the dataset */ ret = zfs_ioctl(hdl, ZFS_IOC_CREATE, &zc); zcmd_free_nvlists(&zc); /* check for failure */ if (ret != 0) { char parent[ZFS_MAXNAMELEN]; (void) parent_name(path, parent, sizeof (parent)); switch (errno) { case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent '%s' is not a filesystem"), parent); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); case EDOM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume block size must be power of 2 from " "%u to %uk"), (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to set this " "property or value")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); #ifdef _ILP32 case EOVERFLOW: /* * This platform can't address a volume this big. */ if (type == ZFS_TYPE_VOLUME) return (zfs_error(hdl, EZFS_VOLTOOBIG, errbuf)); #endif /* FALLTHROUGH */ default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (0); } /* * Destroys the given dataset. The caller must make sure that the filesystem * isn't mounted, and that there are no active dependents. */ int zfs_destroy(zfs_handle_t *zhp, boolean_t defer) { zfs_cmd_t zc = { 0 }; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) { zc.zc_objset_type = DMU_OST_ZVOL; } else { zc.zc_objset_type = DMU_OST_ZFS; } zc.zc_defer_destroy = defer; if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY, &zc) != 0) { return (zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zfs_name)); } remove_mountpoint(zhp); return (0); } struct destroydata { char *snapname; boolean_t gotone; boolean_t closezhp; }; static int zfs_check_snap_cb(zfs_handle_t *zhp, void *arg) { struct destroydata *dd = arg; zfs_handle_t *szhp; char name[ZFS_MAXNAMELEN]; boolean_t closezhp = dd->closezhp; int rv = 0; (void) strlcpy(name, zhp->zfs_name, sizeof (name)); (void) strlcat(name, "@", sizeof (name)); (void) strlcat(name, dd->snapname, sizeof (name)); szhp = make_dataset_handle(zhp->zfs_hdl, name); if (szhp) { dd->gotone = B_TRUE; zfs_close(szhp); } dd->closezhp = B_TRUE; if (!dd->gotone) rv = zfs_iter_filesystems(zhp, zfs_check_snap_cb, arg); if (closezhp) zfs_close(zhp); return (rv); } /* * Destroys all snapshots with the given name in zhp & descendants. */ int zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname, boolean_t defer) { zfs_cmd_t zc = { 0 }; int ret; struct destroydata dd = { 0 }; dd.snapname = snapname; (void) zfs_check_snap_cb(zhp, &dd); if (!dd.gotone) { return (zfs_standard_error_fmt(zhp->zfs_hdl, ENOENT, dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zhp->zfs_name, snapname)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); zc.zc_defer_destroy = defer; ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY_SNAPS, &zc); if (ret != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zc.zc_name, snapname); switch (errno) { case EEXIST: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "snapshot is cloned")); return (zfs_error(zhp->zfs_hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (0); } /* * Clones the given dataset. The target must be of the same type as the source. */ int zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props) { zfs_cmd_t zc = { 0 }; char parent[ZFS_MAXNAMELEN]; int ret; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_type_t type; uint64_t zoned; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), target); /* validate the target name */ if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, target, &zoned, B_FALSE, NULL) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* do the clone */ if (ZFS_IS_VOLUME(zhp)) { zc.zc_objset_type = DMU_OST_ZVOL; type = ZFS_TYPE_VOLUME; } else { zc.zc_objset_type = DMU_OST_ZFS; type = ZFS_TYPE_FILESYSTEM; } if (props) { if ((props = zfs_valid_proplist(hdl, type, props, zoned, zhp, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } (void) strlcpy(zc.zc_name, target, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, zhp->zfs_name, sizeof (zc.zc_value)); ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_CREATE, &zc); zcmd_free_nvlists(&zc); if (ret != 0) { switch (errno) { case ENOENT: /* * The parent doesn't exist. We should have caught this * above, but there may a race condition that has since * destroyed the parent. * * At this point, we don't know whether it's the source * that doesn't exist anymore, or whether the target * dataset doesn't exist. */ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); case EXDEV: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "source and target pools differ")); return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (ret); } /* * Promotes the given clone fs to be the clone parent. */ int zfs_promote(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_cmd_t zc = { 0 }; char parent[MAXPATHLEN]; int ret; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot promote '%s'"), zhp->zfs_name); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots can not be promoted")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(parent, zhp->zfs_dmustats.dds_origin, sizeof (parent)); if (parent[0] == '\0') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not a cloned filesystem")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(zc.zc_value, zhp->zfs_dmustats.dds_origin, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ret = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (ret != 0) { int save_errno = errno; switch (save_errno) { case EEXIST: /* There is a conflicting snapshot name. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "conflicting snapshot '%s' from parent '%s'"), zc.zc_string, parent); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(hdl, save_errno, errbuf)); } } return (ret); } /* * Takes a snapshot of the given dataset. */ int zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive, nvlist_t *props) { const char *delim; char parent[ZFS_MAXNAMELEN]; zfs_handle_t *zhp; zfs_cmd_t zc = { 0 }; int ret; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot snapshot '%s'"), path); /* validate the target name */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); if (props) { if ((props = zfs_valid_proplist(hdl, ZFS_TYPE_SNAPSHOT, props, B_FALSE, NULL, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } /* make sure the parent exists and is of the appropriate type */ delim = strchr(path, '@'); (void) strncpy(parent, path, delim - path); parent[delim - path] = '\0'; if ((zhp = zfs_open(hdl, parent, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { zcmd_free_nvlists(&zc); return (-1); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, delim+1, sizeof (zc.zc_value)); if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; zc.zc_cookie = recursive; ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SNAPSHOT, &zc); zcmd_free_nvlists(&zc); /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ if (ret != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create snapshot '%s@%s'"), zc.zc_name, zc.zc_value); (void) zfs_standard_error(hdl, errno, errbuf); } zfs_close(zhp); return (ret); } /* * Destroy any more recent snapshots. We invoke this callback on any dependents * of the snapshot first. If the 'cb_dependent' member is non-zero, then this * is a dependent and we should just destroy it without checking the transaction * group. */ typedef struct rollback_data { const char *cb_target; /* the snapshot */ uint64_t cb_create; /* creation time reference */ boolean_t cb_error; boolean_t cb_dependent; boolean_t cb_force; } rollback_data_t; static int rollback_destroy(zfs_handle_t *zhp, void *data) { rollback_data_t *cbp = data; if (!cbp->cb_dependent) { if (strcmp(zhp->zfs_name, cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { char *logstr; cbp->cb_dependent = B_TRUE; cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE, rollback_destroy, cbp); cbp->cb_dependent = B_FALSE; logstr = zhp->zfs_hdl->libzfs_log_str; zhp->zfs_hdl->libzfs_log_str = NULL; cbp->cb_error |= zfs_destroy(zhp, B_FALSE); zhp->zfs_hdl->libzfs_log_str = logstr; } } else { /* We must destroy this clone; first unmount it */ prop_changelist_t *clp; clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, cbp->cb_force ? MS_FORCE: 0); if (clp == NULL || changelist_prefix(clp) != 0) { cbp->cb_error = B_TRUE; zfs_close(zhp); return (0); } if (zfs_destroy(zhp, B_FALSE) != 0) cbp->cb_error = B_TRUE; else changelist_remove(clp, zhp->zfs_name); (void) changelist_postfix(clp); changelist_free(clp); } zfs_close(zhp); return (0); } /* * Given a dataset, rollback to a specific snapshot, discarding any * data changes since then and making it the active dataset. * * Any snapshots more recent than the target are destroyed, along with * their dependents. */ int zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, boolean_t force) { rollback_data_t cb = { 0 }; int err; zfs_cmd_t zc = { 0 }; boolean_t restore_resv = 0; uint64_t old_volsize, new_volsize; zfs_prop_t resv_prop; assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM || zhp->zfs_type == ZFS_TYPE_VOLUME); /* * Destroy all recent snapshots and its dependends. */ cb.cb_force = force; cb.cb_target = snap->zfs_name; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); (void) zfs_iter_children(zhp, rollback_destroy, &cb); if (cb.cb_error) return (-1); /* * Now that we have verified that the snapshot is the latest, * rollback to the given snapshot. */ if (zhp->zfs_type == ZFS_TYPE_VOLUME) { if (zfs_which_resv_prop(zhp, &resv_prop) < 0) return (-1); old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); restore_resv = (old_volsize == zfs_prop_get_int(zhp, resv_prop)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; /* * We rely on zfs_iter_children() to verify that there are no * newer snapshots for the given dataset. Therefore, we can * simply pass the name on to the ioctl() call. There is still * an unlikely race condition where the user has taken a * snapshot since we verified that this was the most recent. * */ if ((err = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_ROLLBACK, &zc)) != 0) { (void) zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot rollback '%s'"), zhp->zfs_name); return (err); } /* * For volumes, if the pre-rollback volsize matched the pre- * rollback reservation and the volsize has changed then set * the reservation property to the post-rollback volsize. * Make a new handle since the rollback closed the dataset. */ if ((zhp->zfs_type == ZFS_TYPE_VOLUME) && (zhp = make_dataset_handle(zhp->zfs_hdl, zhp->zfs_name))) { if (restore_resv) { new_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); if (old_volsize != new_volsize) err = zfs_prop_set_int(zhp, resv_prop, new_volsize); } zfs_close(zhp); } return (err); } /* * Iterate over all dependents for a given dataset. This includes both * hierarchical dependents (children) and data dependents (snapshots and * clones). The bulk of the processing occurs in get_dependents() in * libzfs_graph.c. */ int zfs_iter_dependents(zfs_handle_t *zhp, boolean_t allowrecursion, zfs_iter_f func, void *data) { char **dependents; size_t count; int i; zfs_handle_t *child; int ret = 0; if (get_dependents(zhp->zfs_hdl, allowrecursion, zhp->zfs_name, &dependents, &count) != 0) return (-1); for (i = 0; i < count; i++) { if ((child = make_dataset_handle(zhp->zfs_hdl, dependents[i])) == NULL) continue; if ((ret = func(child, data)) != 0) break; } for (i = 0; i < count; i++) free(dependents[i]); free(dependents); return (ret); } /* * Renames the given dataset. */ int zfs_rename(zfs_handle_t *zhp, const char *target, boolean_t recursive) { int ret; zfs_cmd_t zc = { 0 }; char *delim; prop_changelist_t *cl = NULL; zfs_handle_t *zhrp = NULL; char *parentname = NULL; char parent[ZFS_MAXNAMELEN]; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; /* if we have the same exact name, just return success */ if (strcmp(zhp->zfs_name, target) == 0) return (0); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename to '%s'"), target); /* * Make sure the target name is valid */ if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { if ((strchr(target, '@') == NULL) || *target == '@') { /* * Snapshot target name is abbreviated, * reconstruct full dataset name */ (void) strlcpy(parent, zhp->zfs_name, sizeof (parent)); delim = strchr(parent, '@'); if (strchr(target, '@') == NULL) *(++delim) = '\0'; else *delim = '\0'; (void) strlcat(parent, target, sizeof (parent)); target = parent; } else { /* * Make sure we're renaming within the same dataset. */ delim = strchr(target, '@'); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '@') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots must be part of same " "dataset")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } else { if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "recursive rename must be a snapshot")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents */ if (check_parents(hdl, target, NULL, B_FALSE, NULL) != 0) return (-1); /* make sure we're in the same pool */ verify((delim = strchr(target, '/')) != NULL); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "datasets must be within same pool")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } /* new name cannot be a child of the current dataset name */ if (is_descendant(zhp->zfs_name, target)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "New dataset name cannot be a descendant of " "current dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } } (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zhp->zfs_name); if (getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } if (recursive) { parentname = zfs_strdup(zhp->zfs_hdl, zhp->zfs_name); if (parentname == NULL) { ret = -1; goto error; } delim = strchr(parentname, '@'); *delim = '\0'; zhrp = zfs_open(zhp->zfs_hdl, parentname, ZFS_TYPE_DATASET); if (zhrp == NULL) { ret = -1; goto error; } } else { if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0)) == NULL) return (-1); if (changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; } if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value)); zc.zc_cookie = recursive; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_RENAME, &zc)) != 0) { /* * if it was recursive, the one that actually failed will * be in zc.zc_name */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zc.zc_name); if (recursive && errno == EEXIST) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "a child dataset already has a snapshot " "with the new name")); (void) zfs_error(hdl, EZFS_EXISTS, errbuf); } else { (void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf); } /* * On failure, we still want to remount any filesystems that * were previously mounted, so we don't alter the system state. */ if (!recursive) (void) changelist_postfix(cl); } else { if (!recursive) { changelist_rename(cl, zfs_get_name(zhp), target); ret = changelist_postfix(cl); } } error: if (parentname) { free(parentname); } if (zhrp) { zfs_close(zhrp); } if (cl) { changelist_free(cl); } return (ret); } nvlist_t * zfs_get_user_props(zfs_handle_t *zhp) { return (zhp->zfs_user_props); } nvlist_t * zfs_get_recvd_props(zfs_handle_t *zhp) { if (zhp->zfs_recvd_props == NULL) if (get_recvd_props_ioctl(zhp) != 0) return (NULL); return (zhp->zfs_recvd_props); } /* * This function is used by 'zfs list' to determine the exact set of columns to * display, and their maximum widths. This does two main things: * * - If this is a list of all properties, then expand the list to include * all native properties, and set a flag so that for each dataset we look * for new unique user properties and add them to the list. * * - For non fixed-width properties, keep track of the maximum width seen * so that we can size the column appropriately. If the user has * requested received property values, we also need to compute the width * of the RECEIVED column. */ int zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp, boolean_t received) { libzfs_handle_t *hdl = zhp->zfs_hdl; zprop_list_t *entry; zprop_list_t **last, **start; nvlist_t *userprops, *propval; nvpair_t *elem; char *strval; char buf[ZFS_MAXPROPLEN]; if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0) return (-1); userprops = zfs_get_user_props(zhp); entry = *plp; if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) { /* * Go through and add any user properties as necessary. We * start by incrementing our list pointer to the first * non-native property. */ start = plp; while (*start != NULL) { if ((*start)->pl_prop == ZPROP_INVAL) break; start = &(*start)->pl_next; } elem = NULL; while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) { /* * See if we've already found this property in our list. */ for (last = start; *last != NULL; last = &(*last)->pl_next) { if (strcmp((*last)->pl_user_prop, nvpair_name(elem)) == 0) break; } if (*last == NULL) { if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL || ((entry->pl_user_prop = zfs_strdup(hdl, nvpair_name(elem)))) == NULL) { free(entry); return (-1); } entry->pl_prop = ZPROP_INVAL; entry->pl_width = strlen(nvpair_name(elem)); entry->pl_all = B_TRUE; *last = entry; } } } /* * Now go through and check the width of any non-fixed columns */ for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed) continue; if (entry->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, entry->pl_prop, buf, sizeof (buf), NULL, NULL, 0, B_FALSE) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } if (received && zfs_prop_get_recvd(zhp, zfs_prop_to_name(entry->pl_prop), buf, sizeof (buf), B_FALSE) == 0) if (strlen(buf) > entry->pl_recvd_width) entry->pl_recvd_width = strlen(buf); } else { if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop, &propval) == 0) { verify(nvlist_lookup_string(propval, ZPROP_VALUE, &strval) == 0); if (strlen(strval) > entry->pl_width) entry->pl_width = strlen(strval); } if (received && zfs_prop_get_recvd(zhp, entry->pl_user_prop, buf, sizeof (buf), B_FALSE) == 0) if (strlen(buf) > entry->pl_recvd_width) entry->pl_recvd_width = strlen(buf); } } return (0); } int zfs_deleg_share_nfs(libzfs_handle_t *hdl, char *dataset, char *path, char *resource, void *export, void *sharetab, int sharemax, zfs_share_op_t operation) { zfs_cmd_t zc = { 0 }; int error; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); if (resource) (void) strlcpy(zc.zc_string, resource, sizeof (zc.zc_string)); zc.zc_share.z_sharedata = (uint64_t)(uintptr_t)sharetab; zc.zc_share.z_exportdata = (uint64_t)(uintptr_t)export; zc.zc_share.z_sharetype = operation; zc.zc_share.z_sharemax = sharemax; error = ioctl(hdl->libzfs_fd, ZFS_IOC_SHARE, &zc); return (error); } void zfs_prune_proplist(zfs_handle_t *zhp, uint8_t *props) { nvpair_t *curr; /* * Keep a reference to the props-table against which we prune the * properties. */ zhp->zfs_props_table = props; curr = nvlist_next_nvpair(zhp->zfs_props, NULL); while (curr) { zfs_prop_t zfs_prop = zfs_name_to_prop(nvpair_name(curr)); nvpair_t *next = nvlist_next_nvpair(zhp->zfs_props, curr); /* * User properties will result in ZPROP_INVAL, and since we * only know how to prune standard ZFS properties, we always * leave these in the list. This can also happen if we * encounter an unknown DSL property (when running older * software, for example). */ if (zfs_prop != ZPROP_INVAL && props[zfs_prop] == B_FALSE) (void) nvlist_remove(zhp->zfs_props, nvpair_name(curr), nvpair_type(curr)); curr = next; } } static int zfs_smb_acl_mgmt(libzfs_handle_t *hdl, char *dataset, char *path, zfs_smb_acl_op_t cmd, char *resource1, char *resource2) { zfs_cmd_t zc = { 0 }; nvlist_t *nvlist = NULL; int error; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); zc.zc_cookie = (uint64_t)cmd; if (cmd == ZFS_SMB_ACL_RENAME) { if (nvlist_alloc(&nvlist, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } } switch (cmd) { case ZFS_SMB_ACL_ADD: case ZFS_SMB_ACL_REMOVE: (void) strlcpy(zc.zc_string, resource1, sizeof (zc.zc_string)); break; case ZFS_SMB_ACL_RENAME: if (nvlist_add_string(nvlist, ZFS_SMB_ACL_SRC, resource1) != 0) { (void) no_memory(hdl); return (-1); } if (nvlist_add_string(nvlist, ZFS_SMB_ACL_TARGET, resource2) != 0) { (void) no_memory(hdl); return (-1); } if (zcmd_write_src_nvlist(hdl, &zc, nvlist) != 0) { nvlist_free(nvlist); return (-1); } break; case ZFS_SMB_ACL_PURGE: break; default: return (-1); } error = ioctl(hdl->libzfs_fd, ZFS_IOC_SMB_ACL, &zc); if (nvlist) nvlist_free(nvlist); return (error); } int zfs_smb_acl_add(libzfs_handle_t *hdl, char *dataset, char *path, char *resource) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_ADD, resource, NULL)); } int zfs_smb_acl_remove(libzfs_handle_t *hdl, char *dataset, char *path, char *resource) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_REMOVE, resource, NULL)); } int zfs_smb_acl_purge(libzfs_handle_t *hdl, char *dataset, char *path) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_PURGE, NULL, NULL)); } int zfs_smb_acl_rename(libzfs_handle_t *hdl, char *dataset, char *path, char *oldname, char *newname) { return (zfs_smb_acl_mgmt(hdl, dataset, path, ZFS_SMB_ACL_RENAME, oldname, newname)); } int zfs_userspace(zfs_handle_t *zhp, zfs_userquota_prop_t type, zfs_userspace_cb_t func, void *arg) { zfs_cmd_t zc = { 0 }; int error; zfs_useracct_t buf[100]; (void) strncpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_objset_type = type; zc.zc_nvlist_dst = (uintptr_t)buf; /* CONSTCOND */ while (1) { zfs_useracct_t *zua = buf; zc.zc_nvlist_dst_size = sizeof (buf); error = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_USERSPACE_MANY, &zc); if (error || zc.zc_nvlist_dst_size == 0) break; while (zc.zc_nvlist_dst_size > 0) { error = func(arg, zua->zu_domain, zua->zu_rid, zua->zu_space); if (error != 0) return (error); zua++; zc.zc_nvlist_dst_size -= sizeof (zfs_useracct_t); } } return (error); } int zfs_hold(zfs_handle_t *zhp, const char *snapname, const char *tag, boolean_t recursive, boolean_t temphold, boolean_t enoent_ok, int cleanup_fd, uint64_t dsobj, uint64_t createtxg) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; ASSERT(!recursive || dsobj == 0); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); if (strlcpy(zc.zc_string, tag, sizeof (zc.zc_string)) >= sizeof (zc.zc_string)) return (zfs_error(hdl, EZFS_TAGTOOLONG, tag)); zc.zc_cookie = recursive; zc.zc_temphold = temphold; zc.zc_cleanup_fd = cleanup_fd; zc.zc_sendobj = dsobj; zc.zc_createtxg = createtxg; if (zfs_ioctl(hdl, ZFS_IOC_HOLD, &zc) != 0) { char errbuf[ZFS_MAXNAMELEN+32]; /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot hold '%s@%s'"), zc.zc_name, snapname); switch (errno) { case E2BIG: /* * Temporary tags wind up having the ds object id * prepended. So even if we passed the length check * above, it's still possible for the tag to wind * up being slightly too long. */ return (zfs_error(hdl, EZFS_TAGTOOLONG, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); case EINVAL: return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); case EEXIST: return (zfs_error(hdl, EZFS_REFTAG_HOLD, errbuf)); case ENOENT: if (enoent_ok) return (ENOENT); /* FALLTHROUGH */ default: return (zfs_standard_error_fmt(hdl, errno, errbuf)); } } return (0); } int zfs_release(zfs_handle_t *zhp, const char *snapname, const char *tag, boolean_t recursive) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); if (strlcpy(zc.zc_string, tag, sizeof (zc.zc_string)) >= sizeof (zc.zc_string)) return (zfs_error(hdl, EZFS_TAGTOOLONG, tag)); zc.zc_cookie = recursive; if (zfs_ioctl(hdl, ZFS_IOC_RELEASE, &zc) != 0) { char errbuf[ZFS_MAXNAMELEN+32]; /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot release '%s' from '%s@%s'"), tag, zc.zc_name, snapname); switch (errno) { case ESRCH: return (zfs_error(hdl, EZFS_REFTAG_RELE, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); case EINVAL: return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); default: return (zfs_standard_error_fmt(hdl, errno, errbuf)); } } return (0); } uint64_t zvol_volsize_to_reservation(uint64_t volsize, nvlist_t *props) { uint64_t numdb; uint64_t nblocks, volblocksize; int ncopies; char *strval; if (nvlist_lookup_string(props, zfs_prop_to_name(ZFS_PROP_COPIES), &strval) == 0) ncopies = atoi(strval); else ncopies = 1; if (nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = ZVOL_DEFAULT_BLOCKSIZE; nblocks = volsize/volblocksize; /* start with metadnode L0-L6 */ numdb = 7; /* calculate number of indirects */ while (nblocks > 1) { nblocks += DNODES_PER_LEVEL - 1; nblocks /= DNODES_PER_LEVEL; numdb += nblocks; } numdb *= MIN(SPA_DVAS_PER_BP, ncopies + 1); volsize *= ncopies; /* * this is exactly DN_MAX_INDBLKSHIFT when metadata isn't * compressed, but in practice they compress down to about * 1100 bytes */ numdb *= 1ULL << DN_MAX_INDBLKSHIFT; volsize += numdb; return (volsize); } diff --git a/lib/libzfs/libzfs_diff.c b/lib/libzfs/libzfs_diff.c index 888224f3bc83..4614526cb4dc 100644 --- a/lib/libzfs/libzfs_diff.c +++ b/lib/libzfs/libzfs_diff.c @@ -1,826 +1,826 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ /* * zfs diff support */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libzfs_impl.h" #define ZDIFF_SNAPDIR "/.zfs/snapshot/" #define ZDIFF_SHARESDIR "/.zfs/shares/" #define ZDIFF_PREFIX "zfs-diff-%d" #define ZDIFF_ADDED '+' #define ZDIFF_MODIFIED 'M' #define ZDIFF_REMOVED '-' #define ZDIFF_RENAMED 'R' static boolean_t do_name_cmp(const char *fpath, const char *tpath) { char *fname, *tname; fname = strrchr(fpath, '/') + 1; tname = strrchr(tpath, '/') + 1; return (strcmp(fname, tname) == 0); } typedef struct differ_info { zfs_handle_t *zhp; char *fromsnap; char *frommnt; char *tosnap; char *tomnt; char *ds; char *dsmnt; char *tmpsnap; char errbuf[1024]; boolean_t isclone; boolean_t scripted; boolean_t classify; boolean_t timestamped; uint64_t shares; int zerr; int cleanupfd; int outputfd; int datafd; } differ_info_t; /* * Given a {dsname, object id}, get the object path */ static int get_stats_for_obj(differ_info_t *di, const char *dsname, uint64_t obj, char *pn, int maxlen, zfs_stat_t *sb) { zfs_cmd_t zc = { 0 }; int error; (void) strlcpy(zc.zc_name, dsname, sizeof (zc.zc_name)); zc.zc_obj = obj; errno = 0; error = ioctl(di->zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJ_TO_STATS, &zc); di->zerr = errno; /* we can get stats even if we failed to get a path */ (void) memcpy(sb, &zc.zc_stat, sizeof (zfs_stat_t)); if (error == 0) { ASSERT(di->zerr == 0); (void) strlcpy(pn, zc.zc_value, maxlen); return (0); } if (di->zerr == EPERM) { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "The sys_config privilege or diff delegated permission " "is needed\nto discover path names")); return (-1); } else { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Unable to determine path or stats for " - "object %lld in %s"), obj, dsname); + "object %lld in %s"), (longlong_t)obj, dsname); return (-1); } } /* * stream_bytes * * Prints a file name out a character at a time. If the character is * not in the range of what we consider "printable" ASCII, display it * as an escaped 3-digit octal value. ASCII values less than a space * are all control characters and we declare the upper end as the * DELete character. This also is the last 7-bit ASCII character. * We choose to treat all 8-bit ASCII as not printable for this * application. */ static void stream_bytes(FILE *fp, const char *string) { while (*string) { if (*string > ' ' && *string != '\\' && *string < '\177') (void) fprintf(fp, "%c", *string++); else (void) fprintf(fp, "\\%03o", *string++); } } static void print_what(FILE *fp, mode_t what) { char symbol; switch (what & S_IFMT) { case S_IFBLK: symbol = 'B'; break; case S_IFCHR: symbol = 'C'; break; case S_IFDIR: symbol = '/'; break; case S_IFDOOR: symbol = '>'; break; case S_IFIFO: symbol = '|'; break; case S_IFLNK: symbol = '@'; break; case S_IFPORT: symbol = 'P'; break; case S_IFSOCK: symbol = '='; break; case S_IFREG: symbol = 'F'; break; default: symbol = '?'; break; } (void) fprintf(fp, "%c", symbol); } static void print_cmn(FILE *fp, differ_info_t *di, const char *file) { stream_bytes(fp, di->dsmnt); stream_bytes(fp, file); } static void print_rename(FILE *fp, differ_info_t *di, const char *old, const char *new, zfs_stat_t *isb) { if (di->timestamped) (void) fprintf(fp, "%10lld.%09lld\t", (longlong_t)isb->zs_ctime[0], (longlong_t)isb->zs_ctime[1]); (void) fprintf(fp, "%c\t", ZDIFF_RENAMED); if (di->classify) { print_what(fp, isb->zs_mode); (void) fprintf(fp, "\t"); } print_cmn(fp, di, old); if (di->scripted) (void) fprintf(fp, "\t"); else (void) fprintf(fp, " -> "); print_cmn(fp, di, new); (void) fprintf(fp, "\n"); } static void print_link_change(FILE *fp, differ_info_t *di, int delta, const char *file, zfs_stat_t *isb) { if (di->timestamped) (void) fprintf(fp, "%10lld.%09lld\t", (longlong_t)isb->zs_ctime[0], (longlong_t)isb->zs_ctime[1]); (void) fprintf(fp, "%c\t", ZDIFF_MODIFIED); if (di->classify) { print_what(fp, isb->zs_mode); (void) fprintf(fp, "\t"); } print_cmn(fp, di, file); (void) fprintf(fp, "\t(%+d)", delta); (void) fprintf(fp, "\n"); } static void print_file(FILE *fp, differ_info_t *di, char type, const char *file, zfs_stat_t *isb) { if (di->timestamped) (void) fprintf(fp, "%10lld.%09lld\t", (longlong_t)isb->zs_ctime[0], (longlong_t)isb->zs_ctime[1]); (void) fprintf(fp, "%c\t", type); if (di->classify) { print_what(fp, isb->zs_mode); (void) fprintf(fp, "\t"); } print_cmn(fp, di, file); (void) fprintf(fp, "\n"); } static int write_inuse_diffs_one(FILE *fp, differ_info_t *di, uint64_t dobj) { struct zfs_stat fsb, tsb; boolean_t same_name; mode_t fmode, tmode; char fobjname[MAXPATHLEN], tobjname[MAXPATHLEN]; int fobjerr, tobjerr; int change; if (dobj == di->shares) return (0); /* * Check the from and to snapshots for info on the object. If * we get ENOENT, then the object just didn't exist in that * snapshot. If we get ENOTSUP, then we tried to get * info on a non-ZPL object, which we don't care about anyway. */ fobjerr = get_stats_for_obj(di, di->fromsnap, dobj, fobjname, MAXPATHLEN, &fsb); if (fobjerr && di->zerr != ENOENT && di->zerr != ENOTSUP) return (-1); tobjerr = get_stats_for_obj(di, di->tosnap, dobj, tobjname, MAXPATHLEN, &tsb); if (tobjerr && di->zerr != ENOENT && di->zerr != ENOTSUP) return (-1); /* * Unallocated object sharing the same meta dnode block */ if (fobjerr && tobjerr) { ASSERT(di->zerr == ENOENT || di->zerr == ENOTSUP); di->zerr = 0; return (0); } di->zerr = 0; /* negate get_stats_for_obj() from side that failed */ fmode = fsb.zs_mode & S_IFMT; tmode = tsb.zs_mode & S_IFMT; if (fmode == S_IFDIR || tmode == S_IFDIR || fsb.zs_links == 0 || tsb.zs_links == 0) change = 0; else change = tsb.zs_links - fsb.zs_links; if (fobjerr) { if (change) { print_link_change(fp, di, change, tobjname, &tsb); return (0); } print_file(fp, di, ZDIFF_ADDED, tobjname, &tsb); return (0); } else if (tobjerr) { if (change) { print_link_change(fp, di, change, fobjname, &fsb); return (0); } print_file(fp, di, ZDIFF_REMOVED, fobjname, &fsb); return (0); } if (fmode != tmode && fsb.zs_gen == tsb.zs_gen) tsb.zs_gen++; /* Force a generational difference */ same_name = do_name_cmp(fobjname, tobjname); /* Simple modification or no change */ if (fsb.zs_gen == tsb.zs_gen) { /* No apparent changes. Could we assert !this? */ if (fsb.zs_ctime[0] == tsb.zs_ctime[0] && fsb.zs_ctime[1] == tsb.zs_ctime[1]) return (0); if (change) { print_link_change(fp, di, change, change > 0 ? fobjname : tobjname, &tsb); } else if (same_name) { print_file(fp, di, ZDIFF_MODIFIED, fobjname, &tsb); } else { print_rename(fp, di, fobjname, tobjname, &tsb); } return (0); } else { /* file re-created or object re-used */ print_file(fp, di, ZDIFF_REMOVED, fobjname, &fsb); print_file(fp, di, ZDIFF_ADDED, tobjname, &tsb); return (0); } } static int write_inuse_diffs(FILE *fp, differ_info_t *di, dmu_diff_record_t *dr) { uint64_t o; int err; for (o = dr->ddr_first; o <= dr->ddr_last; o++) { if (err = write_inuse_diffs_one(fp, di, o)) return (err); } return (0); } static int describe_free(FILE *fp, differ_info_t *di, uint64_t object, char *namebuf, int maxlen) { struct zfs_stat sb; if (get_stats_for_obj(di, di->fromsnap, object, namebuf, maxlen, &sb) != 0) { /* Let it slide, if in the delete queue on from side */ if (di->zerr == ENOENT && sb.zs_links == 0) { di->zerr = 0; return (0); } return (-1); } print_file(fp, di, ZDIFF_REMOVED, namebuf, &sb); return (0); } static int write_free_diffs(FILE *fp, differ_info_t *di, dmu_diff_record_t *dr) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *lhdl = di->zhp->zfs_hdl; char fobjname[MAXPATHLEN]; (void) strlcpy(zc.zc_name, di->fromsnap, sizeof (zc.zc_name)); zc.zc_obj = dr->ddr_first - 1; ASSERT(di->zerr == 0); while (zc.zc_obj < dr->ddr_last) { int err; err = ioctl(lhdl->libzfs_fd, ZFS_IOC_NEXT_OBJ, &zc); if (err == 0) { if (zc.zc_obj == di->shares) { zc.zc_obj++; continue; } if (zc.zc_obj > dr->ddr_last) { break; } err = describe_free(fp, di, zc.zc_obj, fobjname, MAXPATHLEN); if (err) break; } else if (errno == ESRCH) { break; } else { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "next allocated object (> %lld) find failure"), - zc.zc_obj); + (longlong_t)zc.zc_obj); di->zerr = errno; break; } } if (di->zerr) return (-1); return (0); } static void * differ(void *arg) { differ_info_t *di = arg; dmu_diff_record_t dr; FILE *ofp; int err = 0; if ((ofp = fdopen(di->outputfd, "w")) == NULL) { di->zerr = errno; (void) strerror_r(errno, di->errbuf, sizeof (di->errbuf)); (void) close(di->datafd); return ((void *)-1); } for (;;) { char *cp = (char *)&dr; int len = sizeof (dr); int rv; do { rv = read(di->datafd, cp, len); cp += rv; len -= rv; } while (len > 0 && rv > 0); if (rv < 0 || (rv == 0 && len != sizeof (dr))) { di->zerr = EPIPE; break; } else if (rv == 0) { /* end of file at a natural breaking point */ break; } switch (dr.ddr_type) { case DDR_FREE: err = write_free_diffs(ofp, di, &dr); break; case DDR_INUSE: err = write_inuse_diffs(ofp, di, &dr); break; default: di->zerr = EPIPE; break; } if (err || di->zerr) break; } (void) fclose(ofp); (void) close(di->datafd); if (err) return ((void *)-1); if (di->zerr) { ASSERT(di->zerr == EINVAL); (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Internal error: bad data from diff IOCTL")); return ((void *)-1); } return ((void *)0); } static int find_shares_object(differ_info_t *di) { char fullpath[MAXPATHLEN]; struct stat64 sb = { 0 }; (void) strlcpy(fullpath, di->dsmnt, MAXPATHLEN); (void) strlcat(fullpath, ZDIFF_SHARESDIR, MAXPATHLEN); if (stat64(fullpath, &sb) != 0) { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Cannot stat %s"), fullpath); return (zfs_error(di->zhp->zfs_hdl, EZFS_DIFF, di->errbuf)); } di->shares = (uint64_t)sb.st_ino; return (0); } static int make_temp_snapshot(differ_info_t *di) { libzfs_handle_t *hdl = di->zhp->zfs_hdl; zfs_cmd_t zc = { 0 }; (void) snprintf(zc.zc_value, sizeof (zc.zc_value), ZDIFF_PREFIX, getpid()); (void) strlcpy(zc.zc_name, di->ds, sizeof (zc.zc_name)); zc.zc_cleanup_fd = di->cleanupfd; if (ioctl(hdl->libzfs_fd, ZFS_IOC_TMP_SNAPSHOT, &zc) != 0) { int err = errno; if (err == EPERM) { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "The diff delegated " "permission is needed in order\nto create a " "just-in-time snapshot for diffing\n")); return (zfs_error(hdl, EZFS_DIFF, di->errbuf)); } else { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Cannot create just-in-time " "snapshot of '%s'"), zc.zc_name); return (zfs_standard_error(hdl, err, di->errbuf)); } } di->tmpsnap = zfs_strdup(hdl, zc.zc_value); di->tosnap = zfs_asprintf(hdl, "%s@%s", di->ds, di->tmpsnap); return (0); } static void teardown_differ_info(differ_info_t *di) { free(di->ds); free(di->dsmnt); free(di->fromsnap); free(di->frommnt); free(di->tosnap); free(di->tmpsnap); free(di->tomnt); (void) close(di->cleanupfd); } static int get_snapshot_names(differ_info_t *di, const char *fromsnap, const char *tosnap) { libzfs_handle_t *hdl = di->zhp->zfs_hdl; char *atptrf = NULL; char *atptrt = NULL; int fdslen, fsnlen; int tdslen, tsnlen; /* * Can accept * dataset@snap1 * dataset@snap1 dataset@snap2 * dataset@snap1 @snap2 * dataset@snap1 dataset * @snap1 dataset@snap2 */ if (tosnap == NULL) { /* only a from snapshot given, must be valid */ (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Badly formed snapshot name %s"), fromsnap); if (!zfs_validate_name(hdl, fromsnap, ZFS_TYPE_SNAPSHOT, B_FALSE)) { return (zfs_error(hdl, EZFS_INVALIDNAME, di->errbuf)); } atptrf = strchr(fromsnap, '@'); ASSERT(atptrf != NULL); fdslen = atptrf - fromsnap; di->fromsnap = zfs_strdup(hdl, fromsnap); di->ds = zfs_strdup(hdl, fromsnap); di->ds[fdslen] = '\0'; /* the to snap will be a just-in-time snap of the head */ return (make_temp_snapshot(di)); } (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Unable to determine which snapshots to compare")); atptrf = strchr(fromsnap, '@'); atptrt = strchr(tosnap, '@'); fdslen = atptrf ? atptrf - fromsnap : strlen(fromsnap); tdslen = atptrt ? atptrt - tosnap : strlen(tosnap); fsnlen = strlen(fromsnap) - fdslen; /* includes @ sign */ tsnlen = strlen(tosnap) - tdslen; /* includes @ sign */ if (fsnlen <= 1 || tsnlen == 1 || (fdslen == 0 && tdslen == 0) || (fsnlen == 0 && tsnlen == 0)) { return (zfs_error(hdl, EZFS_INVALIDNAME, di->errbuf)); } else if ((fdslen > 0 && tdslen > 0) && ((tdslen != fdslen || strncmp(fromsnap, tosnap, fdslen) != 0))) { /* * not the same dataset name, might be okay if * tosnap is a clone of a fromsnap descendant. */ char origin[ZFS_MAXNAMELEN]; zprop_source_t src; zfs_handle_t *zhp; di->ds = zfs_alloc(di->zhp->zfs_hdl, tdslen + 1); (void) strncpy(di->ds, tosnap, tdslen); di->ds[tdslen] = '\0'; zhp = zfs_open(hdl, di->ds, ZFS_TYPE_FILESYSTEM); while (zhp != NULL) { (void) zfs_prop_get(zhp, ZFS_PROP_ORIGIN, origin, sizeof (origin), &src, NULL, 0, B_FALSE); if (strncmp(origin, fromsnap, fsnlen) == 0) break; (void) zfs_close(zhp); zhp = zfs_open(hdl, origin, ZFS_TYPE_FILESYSTEM); } if (zhp == NULL) { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_INVALIDNAME, di->errbuf)); } else { (void) zfs_close(zhp); } di->isclone = B_TRUE; di->fromsnap = zfs_strdup(hdl, fromsnap); if (tsnlen) { di->tosnap = zfs_strdup(hdl, tosnap); } else { return (make_temp_snapshot(di)); } } else { int dslen = fdslen ? fdslen : tdslen; di->ds = zfs_alloc(hdl, dslen + 1); (void) strncpy(di->ds, fdslen ? fromsnap : tosnap, dslen); di->ds[dslen] = '\0'; di->fromsnap = zfs_asprintf(hdl, "%s%s", di->ds, atptrf); if (tsnlen) { di->tosnap = zfs_asprintf(hdl, "%s%s", di->ds, atptrt); } else { return (make_temp_snapshot(di)); } } return (0); } static int get_mountpoint(differ_info_t *di, char *dsnm, char **mntpt) { boolean_t mounted; mounted = is_mounted(di->zhp->zfs_hdl, dsnm, mntpt); if (mounted == B_FALSE) { (void) snprintf(di->errbuf, sizeof (di->errbuf), dgettext(TEXT_DOMAIN, "Cannot diff an unmounted snapshot")); return (zfs_error(di->zhp->zfs_hdl, EZFS_BADTYPE, di->errbuf)); } /* Avoid a double slash at the beginning of root-mounted datasets */ if (**mntpt == '/' && *(*mntpt + 1) == '\0') **mntpt = '\0'; return (0); } static int get_mountpoints(differ_info_t *di) { char *strptr; char *frommntpt; /* * first get the mountpoint for the parent dataset */ if (get_mountpoint(di, di->ds, &di->dsmnt) != 0) return (-1); strptr = strchr(di->tosnap, '@'); ASSERT3P(strptr, !=, NULL); di->tomnt = zfs_asprintf(di->zhp->zfs_hdl, "%s%s%s", di->dsmnt, ZDIFF_SNAPDIR, ++strptr); strptr = strchr(di->fromsnap, '@'); ASSERT3P(strptr, !=, NULL); frommntpt = di->dsmnt; if (di->isclone) { char *mntpt; int err; *strptr = '\0'; err = get_mountpoint(di, di->fromsnap, &mntpt); *strptr = '@'; if (err != 0) return (-1); frommntpt = mntpt; } di->frommnt = zfs_asprintf(di->zhp->zfs_hdl, "%s%s%s", frommntpt, ZDIFF_SNAPDIR, ++strptr); if (di->isclone) free(frommntpt); return (0); } static int setup_differ_info(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap, differ_info_t *di) { di->zhp = zhp; di->cleanupfd = open(ZFS_DEV, O_RDWR|O_EXCL); VERIFY(di->cleanupfd >= 0); if (get_snapshot_names(di, fromsnap, tosnap) != 0) return (-1); if (get_mountpoints(di) != 0) return (-1); if (find_shares_object(di) != 0) return (-1); return (0); } int zfs_show_diffs(zfs_handle_t *zhp, int outfd, const char *fromsnap, const char *tosnap, int flags) { zfs_cmd_t zc = { 0 }; char errbuf[1024]; differ_info_t di = { 0 }; pthread_t tid; int pipefd[2]; int iocerr; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "zfs diff failed")); if (setup_differ_info(zhp, fromsnap, tosnap, &di)) { teardown_differ_info(&di); return (-1); } if (pipe(pipefd)) { zfs_error_aux(zhp->zfs_hdl, strerror(errno)); teardown_differ_info(&di); return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED, errbuf)); } di.scripted = (flags & ZFS_DIFF_PARSEABLE); di.classify = (flags & ZFS_DIFF_CLASSIFY); di.timestamped = (flags & ZFS_DIFF_TIMESTAMP); di.outputfd = outfd; di.datafd = pipefd[0]; if (pthread_create(&tid, NULL, differ, &di)) { zfs_error_aux(zhp->zfs_hdl, strerror(errno)); (void) close(pipefd[0]); (void) close(pipefd[1]); teardown_differ_info(&di); return (zfs_error(zhp->zfs_hdl, EZFS_THREADCREATEFAILED, errbuf)); } /* do the ioctl() */ (void) strlcpy(zc.zc_value, di.fromsnap, strlen(di.fromsnap) + 1); (void) strlcpy(zc.zc_name, di.tosnap, strlen(di.tosnap) + 1); zc.zc_cookie = pipefd[1]; iocerr = ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_DIFF, &zc); if (iocerr != 0) { (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "Unable to obtain diffs")); if (errno == EPERM) { zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "\n The sys_mount privilege or diff delegated " "permission is needed\n to execute the " "diff ioctl")); } else if (errno == EXDEV) { zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "\n Not an earlier snapshot from the same fs")); } else if (errno != EPIPE || di.zerr == 0) { zfs_error_aux(zhp->zfs_hdl, strerror(errno)); } (void) close(pipefd[1]); (void) pthread_cancel(tid); (void) pthread_join(tid, NULL); teardown_differ_info(&di); if (di.zerr != 0 && di.zerr != EPIPE) { zfs_error_aux(zhp->zfs_hdl, strerror(di.zerr)); return (zfs_error(zhp->zfs_hdl, EZFS_DIFF, di.errbuf)); } else { return (zfs_error(zhp->zfs_hdl, EZFS_DIFFDATA, errbuf)); } } (void) close(pipefd[1]); (void) pthread_join(tid, NULL); if (di.zerr != 0) { zfs_error_aux(zhp->zfs_hdl, strerror(di.zerr)); return (zfs_error(zhp->zfs_hdl, EZFS_DIFF, di.errbuf)); } teardown_differ_info(&di); return (0); } diff --git a/lib/libzfs/libzfs_pool.c b/lib/libzfs/libzfs_pool.c index 7df7e910ddc5..3cb7bbc911e5 100644 --- a/lib/libzfs/libzfs_pool.c +++ b/lib/libzfs/libzfs_pool.c @@ -1,3803 +1,3806 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" #include "zfs_comutil.h" static int read_efi_label(nvlist_t *config, diskaddr_t *sb); #define DISK_ROOT "/dev/dsk" #define RDISK_ROOT "/dev/rdsk" #define BACKUP_SLICE "s2" typedef struct prop_flags { int create:1; /* Validate property on creation */ int import:1; /* Validate property on import */ } prop_flags_t; /* * ==================================================================== * zpool property functions * ==================================================================== */ static int zpool_get_all_props(zpool_handle_t *zhp) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) return (-1); while (ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_GET_PROPS, &zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } else { zcmd_free_nvlists(&zc); return (-1); } } if (zcmd_read_dst_nvlist(hdl, &zc, &zhp->zpool_props) != 0) { zcmd_free_nvlists(&zc); return (-1); } zcmd_free_nvlists(&zc); return (0); } static int zpool_props_refresh(zpool_handle_t *zhp) { nvlist_t *old_props; old_props = zhp->zpool_props; if (zpool_get_all_props(zhp) != 0) return (-1); nvlist_free(old_props); return (0); } static char * zpool_get_prop_string(zpool_handle_t *zhp, zpool_prop_t prop, zprop_source_t *src) { nvlist_t *nv, *nvl; uint64_t ival; char *value; zprop_source_t source; nvl = zhp->zpool_props; if (nvlist_lookup_nvlist(nvl, zpool_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_SOURCE, &ival) == 0); source = ival; verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0); } else { source = ZPROP_SRC_DEFAULT; if ((value = (char *)zpool_prop_default_string(prop)) == NULL) value = "-"; } if (src) *src = source; return (value); } uint64_t zpool_get_prop_int(zpool_handle_t *zhp, zpool_prop_t prop, zprop_source_t *src) { nvlist_t *nv, *nvl; uint64_t value; zprop_source_t source; if (zhp->zpool_props == NULL && zpool_get_all_props(zhp)) { /* * zpool_get_all_props() has most likely failed because * the pool is faulted, but if all we need is the top level * vdev's guid then get it from the zhp config nvlist. */ if ((prop == ZPOOL_PROP_GUID) && (nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0) && (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &value) == 0)) { return (value); } return (zpool_prop_default_numeric(prop)); } nvl = zhp->zpool_props; if (nvlist_lookup_nvlist(nvl, zpool_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_SOURCE, &value) == 0); source = value; verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0); } else { source = ZPROP_SRC_DEFAULT; value = zpool_prop_default_numeric(prop); } if (src) *src = source; return (value); } /* * Map VDEV STATE to printed strings. */ char * zpool_state_to_name(vdev_state_t state, vdev_aux_t aux) { switch (state) { case VDEV_STATE_CLOSED: case VDEV_STATE_OFFLINE: return (gettext("OFFLINE")); case VDEV_STATE_REMOVED: return (gettext("REMOVED")); case VDEV_STATE_CANT_OPEN: if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) return (gettext("FAULTED")); else if (aux == VDEV_AUX_SPLIT_POOL) return (gettext("SPLIT")); else return (gettext("UNAVAIL")); case VDEV_STATE_FAULTED: return (gettext("FAULTED")); case VDEV_STATE_DEGRADED: return (gettext("DEGRADED")); case VDEV_STATE_HEALTHY: return (gettext("ONLINE")); } return (gettext("UNKNOWN")); } /* * Get a zpool property value for 'prop' and return the value in * a pre-allocated buffer. */ int zpool_get_prop(zpool_handle_t *zhp, zpool_prop_t prop, char *buf, size_t len, zprop_source_t *srctype) { uint64_t intval; const char *strval; zprop_source_t src = ZPROP_SRC_NONE; nvlist_t *nvroot; vdev_stat_t *vs; uint_t vsc; if (zpool_get_state(zhp) == POOL_STATE_UNAVAIL) { switch (prop) { case ZPOOL_PROP_NAME: (void) strlcpy(buf, zpool_get_name(zhp), len); break; case ZPOOL_PROP_HEALTH: (void) strlcpy(buf, "FAULTED", len); break; case ZPOOL_PROP_GUID: intval = zpool_get_prop_int(zhp, prop, &src); - (void) snprintf(buf, len, "%llu", intval); + (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); break; case ZPOOL_PROP_ALTROOT: case ZPOOL_PROP_CACHEFILE: if (zhp->zpool_props != NULL || zpool_get_all_props(zhp) == 0) { (void) strlcpy(buf, zpool_get_prop_string(zhp, prop, &src), len); if (srctype != NULL) *srctype = src; return (0); } /* FALLTHROUGH */ default: (void) strlcpy(buf, "-", len); break; } if (srctype != NULL) *srctype = src; return (0); } if (zhp->zpool_props == NULL && zpool_get_all_props(zhp) && prop != ZPOOL_PROP_NAME) return (-1); switch (zpool_prop_get_type(prop)) { case PROP_TYPE_STRING: (void) strlcpy(buf, zpool_get_prop_string(zhp, prop, &src), len); break; case PROP_TYPE_NUMBER: intval = zpool_get_prop_int(zhp, prop, &src); switch (prop) { case ZPOOL_PROP_SIZE: case ZPOOL_PROP_ALLOCATED: case ZPOOL_PROP_FREE: (void) zfs_nicenum(intval, buf, len); break; case ZPOOL_PROP_CAPACITY: (void) snprintf(buf, len, "%llu%%", (u_longlong_t)intval); break; case ZPOOL_PROP_DEDUPRATIO: (void) snprintf(buf, len, "%llu.%02llux", (u_longlong_t)(intval / 100), (u_longlong_t)(intval % 100)); break; case ZPOOL_PROP_HEALTH: verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) == 0); (void) strlcpy(buf, zpool_state_to_name(intval, vs->vs_aux), len); break; default: - (void) snprintf(buf, len, "%llu", intval); + (void) snprintf(buf, len, "%llu", (u_longlong_t)intval); } break; case PROP_TYPE_INDEX: intval = zpool_get_prop_int(zhp, prop, &src); if (zpool_prop_index_to_string(prop, intval, &strval) != 0) return (-1); (void) strlcpy(buf, strval, len); break; default: abort(); } if (srctype) *srctype = src; return (0); } /* * Check if the bootfs name has the same pool name as it is set to. * Assuming bootfs is a valid dataset name. */ static boolean_t bootfs_name_valid(const char *pool, char *bootfs) { int len = strlen(pool); if (!zfs_name_valid(bootfs, ZFS_TYPE_FILESYSTEM|ZFS_TYPE_SNAPSHOT)) return (B_FALSE); if (strncmp(pool, bootfs, len) == 0 && (bootfs[len] == '/' || bootfs[len] == '\0')) return (B_TRUE); return (B_FALSE); } /* * Inspect the configuration to determine if any of the devices contain * an EFI label. */ static boolean_t pool_uses_efi(nvlist_t *config) { nvlist_t **child; uint_t c, children; if (nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (read_efi_label(config, NULL) >= 0); for (c = 0; c < children; c++) { if (pool_uses_efi(child[c])) return (B_TRUE); } return (B_FALSE); } static boolean_t pool_is_bootable(zpool_handle_t *zhp) { char bootfs[ZPOOL_MAXNAMELEN]; return (zpool_get_prop(zhp, ZPOOL_PROP_BOOTFS, bootfs, sizeof (bootfs), NULL) == 0 && strncmp(bootfs, "-", sizeof (bootfs)) != 0); } /* * Given an nvlist of zpool properties to be set, validate that they are * correct, and parse any numeric properties (index, boolean, etc) if they are * specified as strings. */ static nvlist_t * zpool_valid_proplist(libzfs_handle_t *hdl, const char *poolname, nvlist_t *props, uint64_t version, prop_flags_t flags, char *errbuf) { nvpair_t *elem; nvlist_t *retprops; zpool_prop_t prop; char *strval; uint64_t intval; char *slash; struct stat64 statbuf; zpool_handle_t *zhp; nvlist_t *nvroot; if (nvlist_alloc(&retprops, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { const char *propname = nvpair_name(elem); /* * Make sure this property is valid and applies to this type. */ if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zpool_prop_readonly(prop)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' " "is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (zprop_parse_value(hdl, elem, prop, ZFS_TYPE_POOL, retprops, &strval, &intval, errbuf) != 0) goto error; /* * Perform additional checking for specific properties. */ switch (prop) { case ZPOOL_PROP_VERSION: if (intval < version || intval > SPA_VERSION) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' number %d is invalid."), propname, intval); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); goto error; } break; case ZPOOL_PROP_BOOTFS: if (flags.create || flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' cannot be set at creation " "or import time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (version < SPA_VERSION_BOOTFS) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to support " "'%s' property"), propname); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); goto error; } /* * bootfs property value has to be a dataset name and * the dataset has to be in the same pool as it sets to. */ if (strval[0] != '\0' && !bootfs_name_valid(poolname, strval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' " "is an invalid name"), strval); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); goto error; } if ((zhp = zpool_open_canfail(hdl, poolname)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "could not open pool '%s'"), poolname); (void) zfs_error(hdl, EZFS_OPENFAILED, errbuf); goto error; } verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); /* * bootfs property cannot be set on a disk which has * been EFI labeled. */ if (pool_uses_efi(nvroot)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' not supported on " "EFI labeled devices"), propname); (void) zfs_error(hdl, EZFS_POOL_NOTSUP, errbuf); zpool_close(zhp); goto error; } zpool_close(zhp); break; case ZPOOL_PROP_ALTROOT: if (!flags.create && !flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set during pool " "creation or import"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strval[0] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "bad alternate root '%s'"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } break; case ZPOOL_PROP_CACHEFILE: if (strval[0] == '\0') break; if (strcmp(strval, "none") == 0) break; if (strval[0] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' must be empty, an " "absolute path, or 'none'"), propname); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } slash = strrchr(strval, '/'); if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || strcmp(slash, "/..") == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is not a valid file"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } *slash = '\0'; if (strval[0] != '\0' && (stat64(strval, &statbuf) != 0 || !S_ISDIR(statbuf.st_mode))) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is not a valid directory"), strval); (void) zfs_error(hdl, EZFS_BADPATH, errbuf); goto error; } *slash = '/'; break; case ZPOOL_PROP_READONLY: if (!flags.import) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property '%s' can only be set at " "import time"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } } return (retprops); error: nvlist_free(retprops); return (NULL); } /* * Set zpool property : propname=propval. */ int zpool_set_prop(zpool_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = { 0 }; int ret = -1; char errbuf[1024]; nvlist_t *nvl = NULL; nvlist_t *realprops; uint64_t version; prop_flags_t flags = { 0 }; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zpool_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) return (no_memory(zhp->zpool_hdl)); if (nvlist_add_string(nvl, propname, propval) != 0) { nvlist_free(nvl); return (no_memory(zhp->zpool_hdl)); } version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if ((realprops = zpool_valid_proplist(zhp->zpool_hdl, zhp->zpool_name, nvl, version, flags, errbuf)) == NULL) { nvlist_free(nvl); return (-1); } nvlist_free(nvl); nvl = realprops; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(zhp->zpool_hdl, &zc, nvl) != 0) { nvlist_free(nvl); return (-1); } ret = zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_POOL_SET_PROPS, &zc); zcmd_free_nvlists(&zc); nvlist_free(nvl); if (ret) (void) zpool_standard_error(zhp->zpool_hdl, errno, errbuf); else (void) zpool_props_refresh(zhp); return (ret); } int zpool_expand_proplist(zpool_handle_t *zhp, zprop_list_t **plp) { libzfs_handle_t *hdl = zhp->zpool_hdl; zprop_list_t *entry; char buf[ZFS_MAXPROPLEN]; if (zprop_expand_list(hdl, plp, ZFS_TYPE_POOL) != 0) return (-1); for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed) continue; if (entry->pl_prop != ZPROP_INVAL && zpool_get_prop(zhp, entry->pl_prop, buf, sizeof (buf), NULL) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } } return (0); } /* * Don't start the slice at the default block of 34; many storage * devices will use a stripe width of 128k, so start there instead. */ #define NEW_START_BLOCK 256 /* * Validate the given pool name, optionally putting an extended error message in * 'buf'. */ boolean_t zpool_name_valid(libzfs_handle_t *hdl, boolean_t isopen, const char *pool) { namecheck_err_t why; char what; int ret; ret = pool_namecheck(pool, &why, &what); /* * The rules for reserved pool names were extended at a later point. * But we need to support users with existing pools that may now be * invalid. So we only check for this expanded set of names during a * create (or import), and only in userland. */ if (ret == 0 && !isopen && (strncmp(pool, "mirror", 6) == 0 || strncmp(pool, "raidz", 5) == 0 || strncmp(pool, "spare", 5) == 0 || strcmp(pool, "log") == 0)) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); return (B_FALSE); } if (ret != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in pool name"), what); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name must begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool name is reserved")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_MULTIPLE_AT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' delimiters in name")); break; } } return (B_FALSE); } return (B_TRUE); } /* * Open a handle to the given pool, even if the pool is currently in the FAULTED * state. */ zpool_handle_t * zpool_open_canfail(libzfs_handle_t *hdl, const char *pool) { zpool_handle_t *zhp; boolean_t missing; /* * Make sure the pool name is valid. */ if (!zpool_name_valid(hdl, B_TRUE, pool)) { (void) zfs_error_fmt(hdl, EZFS_INVALIDNAME, dgettext(TEXT_DOMAIN, "cannot open '%s'"), pool); return (NULL); } if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL) return (NULL); zhp->zpool_hdl = hdl; (void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name)); if (zpool_refresh_stats(zhp, &missing) != 0) { zpool_close(zhp); return (NULL); } if (missing) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool")); (void) zfs_error_fmt(hdl, EZFS_NOENT, dgettext(TEXT_DOMAIN, "cannot open '%s'"), pool); zpool_close(zhp); return (NULL); } return (zhp); } /* * Like the above, but silent on error. Used when iterating over pools (because * the configuration cache may be out of date). */ int zpool_open_silent(libzfs_handle_t *hdl, const char *pool, zpool_handle_t **ret) { zpool_handle_t *zhp; boolean_t missing; if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL) return (-1); zhp->zpool_hdl = hdl; (void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name)); if (zpool_refresh_stats(zhp, &missing) != 0) { zpool_close(zhp); return (-1); } if (missing) { zpool_close(zhp); *ret = NULL; return (0); } *ret = zhp; return (0); } /* * Similar to zpool_open_canfail(), but refuses to open pools in the faulted * state. */ zpool_handle_t * zpool_open(libzfs_handle_t *hdl, const char *pool) { zpool_handle_t *zhp; if ((zhp = zpool_open_canfail(hdl, pool)) == NULL) return (NULL); if (zhp->zpool_state == POOL_STATE_UNAVAIL) { (void) zfs_error_fmt(hdl, EZFS_POOLUNAVAIL, dgettext(TEXT_DOMAIN, "cannot open '%s'"), zhp->zpool_name); zpool_close(zhp); return (NULL); } return (zhp); } /* * Close the handle. Simply frees the memory associated with the handle. */ void zpool_close(zpool_handle_t *zhp) { if (zhp->zpool_config) nvlist_free(zhp->zpool_config); if (zhp->zpool_old_config) nvlist_free(zhp->zpool_old_config); if (zhp->zpool_props) nvlist_free(zhp->zpool_props); free(zhp); } /* * Return the name of the pool. */ const char * zpool_get_name(zpool_handle_t *zhp) { return (zhp->zpool_name); } /* * Return the state of the pool (ACTIVE or UNAVAILABLE) */ int zpool_get_state(zpool_handle_t *zhp) { return (zhp->zpool_state); } /* * Create the named pool, using the provided vdev list. It is assumed * that the consumer has already validated the contents of the nvlist, so we * don't have to worry about error semantics. */ int zpool_create(libzfs_handle_t *hdl, const char *pool, nvlist_t *nvroot, nvlist_t *props, nvlist_t *fsprops) { zfs_cmd_t zc = { 0 }; nvlist_t *zc_fsprops = NULL; nvlist_t *zc_props = NULL; char msg[1024]; char *altroot; int ret = -1; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot create '%s'"), pool); if (!zpool_name_valid(hdl, B_FALSE, pool)) return (zfs_error(hdl, EZFS_INVALIDNAME, msg)); if (zcmd_write_conf_nvlist(hdl, &zc, nvroot) != 0) return (-1); if (props) { prop_flags_t flags = { .create = B_TRUE, .import = B_FALSE }; if ((zc_props = zpool_valid_proplist(hdl, pool, props, SPA_VERSION_1, flags, msg)) == NULL) { goto create_failed; } } if (fsprops) { uint64_t zoned; char *zonestr; zoned = ((nvlist_lookup_string(fsprops, zfs_prop_to_name(ZFS_PROP_ZONED), &zonestr) == 0) && strcmp(zonestr, "on") == 0); if ((zc_fsprops = zfs_valid_proplist(hdl, ZFS_TYPE_FILESYSTEM, fsprops, zoned, NULL, msg)) == NULL) { goto create_failed; } if (!zc_props && (nvlist_alloc(&zc_props, NV_UNIQUE_NAME, 0) != 0)) { goto create_failed; } if (nvlist_add_nvlist(zc_props, ZPOOL_ROOTFS_PROPS, zc_fsprops) != 0) { goto create_failed; } } if (zc_props && zcmd_write_src_nvlist(hdl, &zc, zc_props) != 0) goto create_failed; (void) strlcpy(zc.zc_name, pool, sizeof (zc.zc_name)); if ((ret = zfs_ioctl(hdl, ZFS_IOC_POOL_CREATE, &zc)) != 0) { zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(zc_fsprops); switch (errno) { case EBUSY: /* * This can happen if the user has specified the same * device multiple times. We can't reliably detect this * until we try to add it and see we already have a * label. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more vdevs refer to the same device")); return (zfs_error(hdl, EZFS_BADDEV, msg)); case EOVERFLOW: /* * This occurs when one of the devices is below * SPA_MINDEVSIZE. Unfortunately, we can't detect which * device was the problem device since there's no * reliable way to determine device size from userland. */ { char buf[64]; zfs_nicenum(SPA_MINDEVSIZE, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is less than the " "minimum size (%s)"), buf); } return (zfs_error(hdl, EZFS_BADDEV, msg)); case ENOSPC: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is out of space")); return (zfs_error(hdl, EZFS_BADDEV, msg)); case ENOTBLK: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cache device must be a disk or disk slice")); return (zfs_error(hdl, EZFS_BADDEV, msg)); default: return (zpool_standard_error(hdl, errno, msg)); } } /* * If this is an alternate root pool, then we automatically set the * mountpoint of the root dataset to be '/'. */ if (nvlist_lookup_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot) == 0) { zfs_handle_t *zhp; verify((zhp = zfs_open(hdl, pool, ZFS_TYPE_DATASET)) != NULL); verify(zfs_prop_set(zhp, zfs_prop_to_name(ZFS_PROP_MOUNTPOINT), "/") == 0); zfs_close(zhp); } create_failed: zcmd_free_nvlists(&zc); nvlist_free(zc_props); nvlist_free(zc_fsprops); return (ret); } /* * Destroy the given pool. It is up to the caller to ensure that there are no * datasets left in the pool. */ int zpool_destroy(zpool_handle_t *zhp) { zfs_cmd_t zc = { 0 }; zfs_handle_t *zfp = NULL; libzfs_handle_t *hdl = zhp->zpool_hdl; char msg[1024]; if (zhp->zpool_state == POOL_STATE_ACTIVE && (zfp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_FILESYSTEM)) == NULL) return (-1); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_POOL_DESTROY, &zc) != 0) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zpool_name); if (errno == EROFS) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is read only")); (void) zfs_error(hdl, EZFS_BADDEV, msg); } else { (void) zpool_standard_error(hdl, errno, msg); } if (zfp) zfs_close(zfp); return (-1); } if (zfp) { remove_mountpoint(zfp); zfs_close(zfp); } return (0); } /* * Add the given vdevs to the pool. The caller must have already performed the * necessary verification to ensure that the vdev specification is well-formed. */ int zpool_add(zpool_handle_t *zhp, nvlist_t *nvroot) { zfs_cmd_t zc = { 0 }; int ret; libzfs_handle_t *hdl = zhp->zpool_hdl; char msg[1024]; nvlist_t **spares, **l2cache; uint_t nspares, nl2cache; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot add to '%s'"), zhp->zpool_name); if (zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL) < SPA_VERSION_SPARES && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be " "upgraded to add hot spares")); return (zfs_error(hdl, EZFS_BADVERSION, msg)); } if (pool_is_bootable(zhp) && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { uint64_t s; for (s = 0; s < nspares; s++) { char *path; if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH, &path) == 0 && pool_uses_efi(spares[s])) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device '%s' contains an EFI label and " "cannot be used on root pools."), zpool_vdev_name(hdl, NULL, spares[s], B_FALSE)); return (zfs_error(hdl, EZFS_POOL_NOTSUP, msg)); } } } if (zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL) < SPA_VERSION_L2CACHE && nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be " "upgraded to add cache devices")); return (zfs_error(hdl, EZFS_BADVERSION, msg)); } if (zcmd_write_conf_nvlist(hdl, &zc, nvroot) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_ADD, &zc) != 0) { switch (errno) { case EBUSY: /* * This can happen if the user has specified the same * device multiple times. We can't reliably detect this * until we try to add it and see we already have a * label. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more vdevs refer to the same device")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case EOVERFLOW: /* * This occurrs when one of the devices is below * SPA_MINDEVSIZE. Unfortunately, we can't detect which * device was the problem device since there's no * reliable way to determine device size from userland. */ { char buf[64]; zfs_nicenum(SPA_MINDEVSIZE, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device is less than the minimum " "size (%s)"), buf); } (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to add these vdevs")); (void) zfs_error(hdl, EZFS_BADVERSION, msg); break; case EDOM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "root pool can not have multiple vdevs" " or separate logs")); (void) zfs_error(hdl, EZFS_POOL_NOTSUP, msg); break; case ENOTBLK: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cache device must be a disk or disk slice")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; default: (void) zpool_standard_error(hdl, errno, msg); } ret = -1; } else { ret = 0; } zcmd_free_nvlists(&zc); return (ret); } /* * Exports the pool from the system. The caller must ensure that there are no * mounted datasets in the pool. */ int zpool_export_common(zpool_handle_t *zhp, boolean_t force, boolean_t hardforce) { zfs_cmd_t zc = { 0 }; char msg[1024]; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot export '%s'"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = force; zc.zc_guid = hardforce; if (zfs_ioctl(zhp->zpool_hdl, ZFS_IOC_POOL_EXPORT, &zc) != 0) { switch (errno) { case EXDEV: zfs_error_aux(zhp->zpool_hdl, dgettext(TEXT_DOMAIN, "use '-f' to override the following errors:\n" "'%s' has an active shared spare which could be" " used by other pools once '%s' is exported."), zhp->zpool_name, zhp->zpool_name); return (zfs_error(zhp->zpool_hdl, EZFS_ACTIVE_SPARE, msg)); default: return (zpool_standard_error_fmt(zhp->zpool_hdl, errno, msg)); } } return (0); } int zpool_export(zpool_handle_t *zhp, boolean_t force) { return (zpool_export_common(zhp, force, B_FALSE)); } int zpool_export_force(zpool_handle_t *zhp) { return (zpool_export_common(zhp, B_TRUE, B_TRUE)); } static void zpool_rewind_exclaim(libzfs_handle_t *hdl, const char *name, boolean_t dryrun, nvlist_t *config) { nvlist_t *nv = NULL; uint64_t rewindto; int64_t loss = -1; struct tm t; char timestr[128]; if (!hdl->libzfs_printerr || config == NULL) return; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, &nv) != 0) return; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_TIME, &rewindto) != 0) return; (void) nvlist_lookup_int64(nv, ZPOOL_CONFIG_REWIND_TIME, &loss); if (localtime_r((time_t *)&rewindto, &t) != NULL && - strftime(timestr, 128, 0, &t) != 0) { + strftime(timestr, 128, "%c", &t) != 0) { if (dryrun) { (void) printf(dgettext(TEXT_DOMAIN, "Would be able to return %s " "to its state as of %s.\n"), name, timestr); } else { (void) printf(dgettext(TEXT_DOMAIN, "Pool %s returned to its state as of %s.\n"), name, timestr); } if (loss > 120) { (void) printf(dgettext(TEXT_DOMAIN, "%s approximately %lld "), dryrun ? "Would discard" : "Discarded", - (loss + 30) / 60); + ((longlong_t)loss + 30) / 60); (void) printf(dgettext(TEXT_DOMAIN, "minutes of transactions.\n")); } else if (loss > 0) { (void) printf(dgettext(TEXT_DOMAIN, "%s approximately %lld "), - dryrun ? "Would discard" : "Discarded", loss); + dryrun ? "Would discard" : "Discarded", + (longlong_t)loss); (void) printf(dgettext(TEXT_DOMAIN, "seconds of transactions.\n")); } } } void zpool_explain_recover(libzfs_handle_t *hdl, const char *name, int reason, nvlist_t *config) { nvlist_t *nv = NULL; int64_t loss = -1; uint64_t edata = UINT64_MAX; uint64_t rewindto; struct tm t; char timestr[128]; if (!hdl->libzfs_printerr) return; if (reason >= 0) (void) printf(dgettext(TEXT_DOMAIN, "action: ")); else (void) printf(dgettext(TEXT_DOMAIN, "\t")); /* All attempted rewinds failed if ZPOOL_CONFIG_LOAD_TIME missing */ if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, &nv) != 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_TIME, &rewindto) != 0) goto no_info; (void) nvlist_lookup_int64(nv, ZPOOL_CONFIG_REWIND_TIME, &loss); (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_LOAD_DATA_ERRORS, &edata); (void) printf(dgettext(TEXT_DOMAIN, "Recovery is possible, but will result in some data loss.\n")); if (localtime_r((time_t *)&rewindto, &t) != NULL && - strftime(timestr, 128, 0, &t) != 0) { + strftime(timestr, 128, "%c", &t) != 0) { (void) printf(dgettext(TEXT_DOMAIN, "\tReturning the pool to its state as of %s\n" "\tshould correct the problem. "), timestr); } else { (void) printf(dgettext(TEXT_DOMAIN, "\tReverting the pool to an earlier state " "should correct the problem.\n\t")); } if (loss > 120) { (void) printf(dgettext(TEXT_DOMAIN, "Approximately %lld minutes of data\n" - "\tmust be discarded, irreversibly. "), (loss + 30) / 60); + "\tmust be discarded, irreversibly. "), + ((longlong_t)loss + 30) / 60); } else if (loss > 0) { (void) printf(dgettext(TEXT_DOMAIN, "Approximately %lld seconds of data\n" - "\tmust be discarded, irreversibly. "), loss); + "\tmust be discarded, irreversibly. "), + (longlong_t)loss); } if (edata != 0 && edata != UINT64_MAX) { if (edata == 1) { (void) printf(dgettext(TEXT_DOMAIN, "After rewind, at least\n" "\tone persistent user-data error will remain. ")); } else { (void) printf(dgettext(TEXT_DOMAIN, "After rewind, several\n" "\tpersistent user-data errors will remain. ")); } } (void) printf(dgettext(TEXT_DOMAIN, "Recovery can be attempted\n\tby executing 'zpool %s -F %s'. "), reason >= 0 ? "clear" : "import", name); (void) printf(dgettext(TEXT_DOMAIN, "A scrub of the pool\n" "\tis strongly recommended after recovery.\n")); return; no_info: (void) printf(dgettext(TEXT_DOMAIN, "Destroy and re-create the pool from\n\ta backup source.\n")); } /* * zpool_import() is a contracted interface. Should be kept the same * if possible. * * Applications should use zpool_import_props() to import a pool with * new properties value to be set. */ int zpool_import(libzfs_handle_t *hdl, nvlist_t *config, const char *newname, char *altroot) { nvlist_t *props = NULL; int ret; if (altroot != NULL) { if (nvlist_alloc(&props, NV_UNIQUE_NAME, 0) != 0) { return (zfs_error_fmt(hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); } if (nvlist_add_string(props, zpool_prop_to_name(ZPOOL_PROP_ALTROOT), altroot) != 0 || nvlist_add_string(props, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), "none") != 0) { nvlist_free(props); return (zfs_error_fmt(hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); } } ret = zpool_import_props(hdl, config, newname, props, ZFS_IMPORT_NORMAL); if (props) nvlist_free(props); return (ret); } static void print_vdev_tree(libzfs_handle_t *hdl, const char *name, nvlist_t *nv, int indent) { nvlist_t **child; uint_t c, children; char *vname; uint64_t is_log = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); if (name != NULL) (void) printf("\t%*s%s%s\n", indent, "", name, is_log ? " [log]" : ""); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return; for (c = 0; c < children; c++) { vname = zpool_vdev_name(hdl, NULL, child[c], B_TRUE); print_vdev_tree(hdl, vname, child[c], indent + 2); free(vname); } } /* * Import the given pool using the known configuration and a list of * properties to be set. The configuration should have come from * zpool_find_import(). The 'newname' parameters control whether the pool * is imported with a different name. */ int zpool_import_props(libzfs_handle_t *hdl, nvlist_t *config, const char *newname, nvlist_t *props, int flags) { zfs_cmd_t zc = { 0 }; zpool_rewind_policy_t policy; nvlist_t *nv = NULL; nvlist_t *nvinfo = NULL; nvlist_t *missing = NULL; char *thename; char *origname; int ret; int error = 0; char errbuf[1024]; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &origname) == 0); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot import pool '%s'"), origname); if (newname != NULL) { if (!zpool_name_valid(hdl, B_FALSE, newname)) return (zfs_error_fmt(hdl, EZFS_INVALIDNAME, dgettext(TEXT_DOMAIN, "cannot import '%s'"), newname)); thename = (char *)newname; } else { thename = origname; } if (props) { uint64_t version; prop_flags_t flags = { .create = B_FALSE, .import = B_TRUE }; verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) == 0); if ((props = zpool_valid_proplist(hdl, origname, props, version, flags, errbuf)) == NULL) { return (-1); } else if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } } (void) strlcpy(zc.zc_name, thename, sizeof (zc.zc_name)); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &zc.zc_guid) == 0); if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) { nvlist_free(props); return (-1); } if (zcmd_alloc_dst_nvlist(hdl, &zc, zc.zc_nvlist_conf_size * 2) != 0) { nvlist_free(props); return (-1); } zc.zc_cookie = flags; while ((ret = zfs_ioctl(hdl, ZFS_IOC_POOL_IMPORT, &zc)) != 0 && errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } if (ret != 0) error = errno; (void) zcmd_read_dst_nvlist(hdl, &zc, &nv); zpool_get_rewind_policy(config, &policy); if (error) { char desc[1024]; /* * Dry-run failed, but we print out what success * looks like if we found a best txg */ if (policy.zrp_request & ZPOOL_TRY_REWIND) { zpool_rewind_exclaim(hdl, newname ? origname : thename, B_TRUE, nv); nvlist_free(nv); return (-1); } if (newname == NULL) (void) snprintf(desc, sizeof (desc), dgettext(TEXT_DOMAIN, "cannot import '%s'"), thename); else (void) snprintf(desc, sizeof (desc), dgettext(TEXT_DOMAIN, "cannot import '%s' as '%s'"), origname, thename); switch (error) { case ENOTSUP: /* * Unsupported version. */ (void) zfs_error(hdl, EZFS_BADVERSION, desc); break; case EINVAL: (void) zfs_error(hdl, EZFS_INVALCONFIG, desc); break; case EROFS: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is read only")); (void) zfs_error(hdl, EZFS_BADDEV, desc); break; case ENXIO: if (nv && nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_LOAD_INFO, &nvinfo) == 0 && nvlist_lookup_nvlist(nvinfo, ZPOOL_CONFIG_MISSING_DEVICES, &missing) == 0) { (void) printf(dgettext(TEXT_DOMAIN, "The devices below are missing, use " "'-m' to import the pool anyway:\n")); print_vdev_tree(hdl, NULL, missing, 2); (void) printf("\n"); } (void) zpool_standard_error(hdl, error, desc); break; case EEXIST: (void) zpool_standard_error(hdl, error, desc); break; default: (void) zpool_standard_error(hdl, error, desc); zpool_explain_recover(hdl, newname ? origname : thename, -error, nv); break; } nvlist_free(nv); ret = -1; } else { zpool_handle_t *zhp; /* * This should never fail, but play it safe anyway. */ if (zpool_open_silent(hdl, thename, &zhp) != 0) ret = -1; else if (zhp != NULL) zpool_close(zhp); if (policy.zrp_request & (ZPOOL_DO_REWIND | ZPOOL_TRY_REWIND)) { zpool_rewind_exclaim(hdl, newname ? origname : thename, ((policy.zrp_request & ZPOOL_TRY_REWIND) != 0), nv); } nvlist_free(nv); return (0); } zcmd_free_nvlists(&zc); nvlist_free(props); return (ret); } /* * Scan the pool. */ int zpool_scan(zpool_handle_t *zhp, pool_scan_func_t func) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_cookie = func; if (zfs_ioctl(hdl, ZFS_IOC_POOL_SCAN, &zc) == 0 || (errno == ENOENT && func != POOL_SCAN_NONE)) return (0); if (func == POOL_SCAN_SCRUB) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot scrub %s"), zc.zc_name); } else if (func == POOL_SCAN_NONE) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot cancel scrubbing %s"), zc.zc_name); } else { assert(!"unexpected result"); } if (errno == EBUSY) { nvlist_t *nvroot; pool_scan_stat_t *ps = NULL; uint_t psc; verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); (void) nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_SCAN_STATS, (uint64_t **)&ps, &psc); if (ps && ps->pss_func == POOL_SCAN_SCRUB) return (zfs_error(hdl, EZFS_SCRUBBING, msg)); else return (zfs_error(hdl, EZFS_RESILVERING, msg)); } else if (errno == ENOENT) { return (zfs_error(hdl, EZFS_NO_SCRUB, msg)); } else { return (zpool_standard_error(hdl, errno, msg)); } } /* * This provides a very minimal check whether a given string is likely a * c#t#d# style string. Users of this are expected to do their own * verification of the s# part. */ #define CTD_CHECK(str) (str && str[0] == 'c' && isdigit(str[1])) /* * More elaborate version for ones which may start with "/dev/dsk/" * and the like. */ static int ctd_check_path(char *str) { /* * If it starts with a slash, check the last component. */ if (str && str[0] == '/') { char *tmp = strrchr(str, '/'); /* * If it ends in "/old", check the second-to-last * component of the string instead. */ if (tmp != str && strcmp(tmp, "/old") == 0) { for (tmp--; *tmp != '/'; tmp--) ; } str = tmp + 1; } return (CTD_CHECK(str)); } /* * Find a vdev that matches the search criteria specified. We use the * the nvpair name to determine how we should look for the device. * 'avail_spare' is set to TRUE if the provided guid refers to an AVAIL * spare; but FALSE if its an INUSE spare. */ static nvlist_t * vdev_to_nvlist_iter(nvlist_t *nv, nvlist_t *search, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { uint_t c, children; nvlist_t **child; nvlist_t *ret; uint64_t is_log; char *srchkey; nvpair_t *pair = nvlist_next_nvpair(search, NULL); /* Nothing to look for */ if (search == NULL || pair == NULL) return (NULL); /* Obtain the key we will use to search */ srchkey = nvpair_name(pair); switch (nvpair_type(pair)) { case DATA_TYPE_UINT64: if (strcmp(srchkey, ZPOOL_CONFIG_GUID) == 0) { uint64_t srchval, theguid; verify(nvpair_value_uint64(pair, &srchval) == 0); verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &theguid) == 0); if (theguid == srchval) return (nv); } break; case DATA_TYPE_STRING: { char *srchval, *val; verify(nvpair_value_string(pair, &srchval) == 0); if (nvlist_lookup_string(nv, srchkey, &val) != 0) break; /* * Search for the requested value. Special cases: * * - ZPOOL_CONFIG_PATH for whole disk entries. These end in * "s0" or "s0/old". The "s0" part is hidden from the user, * but included in the string, so this matches around it. * - looking for a top-level vdev name (i.e. ZPOOL_CONFIG_TYPE). * * Otherwise, all other searches are simple string compares. */ if (strcmp(srchkey, ZPOOL_CONFIG_PATH) == 0 && ctd_check_path(val)) { uint64_t wholedisk = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); if (wholedisk) { int slen = strlen(srchval); int vlen = strlen(val); if (slen != vlen - 2) break; /* * make_leaf_vdev() should only set * wholedisk for ZPOOL_CONFIG_PATHs which * will include "/dev/dsk/", giving plenty of * room for the indices used next. */ ASSERT(vlen >= 6); /* * strings identical except trailing "s0" */ if (strcmp(&val[vlen - 2], "s0") == 0 && strncmp(srchval, val, slen) == 0) return (nv); /* * strings identical except trailing "s0/old" */ if (strcmp(&val[vlen - 6], "s0/old") == 0 && strcmp(&srchval[slen - 4], "/old") == 0 && strncmp(srchval, val, slen - 4) == 0) return (nv); break; } } else if (strcmp(srchkey, ZPOOL_CONFIG_TYPE) == 0 && val) { char *type, *idx, *end, *p; uint64_t id, vdev_id; /* * Determine our vdev type, keeping in mind * that the srchval is composed of a type and * vdev id pair (i.e. mirror-4). */ if ((type = strdup(srchval)) == NULL) return (NULL); if ((p = strrchr(type, '-')) == NULL) { free(type); break; } idx = p + 1; *p = '\0'; /* * If the types don't match then keep looking. */ if (strncmp(val, type, strlen(val)) != 0) { free(type); break; } verify(strncmp(type, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 || strncmp(type, VDEV_TYPE_MIRROR, strlen(VDEV_TYPE_MIRROR)) == 0); verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &id) == 0); errno = 0; vdev_id = strtoull(idx, &end, 10); free(type); if (errno != 0) return (NULL); /* * Now verify that we have the correct vdev id. */ if (vdev_id == id) return (nv); } /* * Common case */ if (strcmp(srchval, val) == 0) return (nv); break; } default: break; } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (NULL); for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { /* * The 'is_log' value is only set for the toplevel * vdev, not the leaf vdevs. So we always lookup the * log device from the root of the vdev tree (where * 'log' is non-NULL). */ if (log != NULL && nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log) == 0 && is_log) { *log = B_TRUE; } return (ret); } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { *avail_spare = B_TRUE; return (ret); } } } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { for (c = 0; c < children; c++) { if ((ret = vdev_to_nvlist_iter(child[c], search, avail_spare, l2cache, NULL)) != NULL) { *l2cache = B_TRUE; return (ret); } } } return (NULL); } /* * Given a physical path (minus the "/devices" prefix), find the * associated vdev. */ nvlist_t * zpool_find_vdev_by_physpath(zpool_handle_t *zhp, const char *ppath, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { nvlist_t *search, *nvroot, *ret; verify(nvlist_alloc(&search, NV_UNIQUE_NAME, KM_SLEEP) == 0); verify(nvlist_add_string(search, ZPOOL_CONFIG_PHYS_PATH, ppath) == 0); verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); *avail_spare = B_FALSE; *l2cache = B_FALSE; if (log != NULL) *log = B_FALSE; ret = vdev_to_nvlist_iter(nvroot, search, avail_spare, l2cache, log); nvlist_free(search); return (ret); } /* * Determine if we have an "interior" top-level vdev (i.e mirror/raidz). */ boolean_t zpool_vdev_is_interior(const char *name) { if (strncmp(name, VDEV_TYPE_RAIDZ, strlen(VDEV_TYPE_RAIDZ)) == 0 || strncmp(name, VDEV_TYPE_MIRROR, strlen(VDEV_TYPE_MIRROR)) == 0) return (B_TRUE); return (B_FALSE); } nvlist_t * zpool_find_vdev(zpool_handle_t *zhp, const char *path, boolean_t *avail_spare, boolean_t *l2cache, boolean_t *log) { char buf[MAXPATHLEN]; char *end; nvlist_t *nvroot, *search, *ret; uint64_t guid; verify(nvlist_alloc(&search, NV_UNIQUE_NAME, KM_SLEEP) == 0); guid = strtoull(path, &end, 10); if (guid != 0 && *end == '\0') { verify(nvlist_add_uint64(search, ZPOOL_CONFIG_GUID, guid) == 0); } else if (zpool_vdev_is_interior(path)) { verify(nvlist_add_string(search, ZPOOL_CONFIG_TYPE, path) == 0); } else if (path[0] != '/') { (void) snprintf(buf, sizeof (buf), "%s%s", "/dev/dsk/", path); verify(nvlist_add_string(search, ZPOOL_CONFIG_PATH, buf) == 0); } else { verify(nvlist_add_string(search, ZPOOL_CONFIG_PATH, path) == 0); } verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); *avail_spare = B_FALSE; *l2cache = B_FALSE; if (log != NULL) *log = B_FALSE; ret = vdev_to_nvlist_iter(nvroot, search, avail_spare, l2cache, log); nvlist_free(search); return (ret); } static int vdev_online(nvlist_t *nv) { uint64_t ival; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 || nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0) return (0); return (1); } /* * Helper function for zpool_get_physpaths(). */ static int vdev_get_one_physpath(nvlist_t *config, char *physpath, size_t physpath_size, size_t *bytes_written) { size_t bytes_left, pos, rsz; char *tmppath; const char *format; if (nvlist_lookup_string(config, ZPOOL_CONFIG_PHYS_PATH, &tmppath) != 0) return (EZFS_NODEVICE); pos = *bytes_written; bytes_left = physpath_size - pos; format = (pos == 0) ? "%s" : " %s"; rsz = snprintf(physpath + pos, bytes_left, format, tmppath); *bytes_written += rsz; if (rsz >= bytes_left) { /* if physpath was not copied properly, clear it */ if (bytes_left != 0) { physpath[pos] = 0; } return (EZFS_NOSPC); } return (0); } static int vdev_get_physpaths(nvlist_t *nv, char *physpath, size_t phypath_size, size_t *rsz, boolean_t is_spare) { char *type; int ret; if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) return (EZFS_INVALCONFIG); if (strcmp(type, VDEV_TYPE_DISK) == 0) { /* * An active spare device has ZPOOL_CONFIG_IS_SPARE set. * For a spare vdev, we only want to boot from the active * spare device. */ if (is_spare) { uint64_t spare = 0; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, &spare); if (!spare) return (EZFS_INVALCONFIG); } if (vdev_online(nv)) { if ((ret = vdev_get_one_physpath(nv, physpath, phypath_size, rsz)) != 0) return (ret); } } else if (strcmp(type, VDEV_TYPE_MIRROR) == 0 || strcmp(type, VDEV_TYPE_REPLACING) == 0 || (is_spare = (strcmp(type, VDEV_TYPE_SPARE) == 0))) { nvlist_t **child; uint_t count; int i, ret; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &count) != 0) return (EZFS_INVALCONFIG); for (i = 0; i < count; i++) { ret = vdev_get_physpaths(child[i], physpath, phypath_size, rsz, is_spare); if (ret == EZFS_NOSPC) return (ret); } } return (EZFS_POOL_INVALARG); } /* * Get phys_path for a root pool config. * Return 0 on success; non-zero on failure. */ static int zpool_get_config_physpath(nvlist_t *config, char *physpath, size_t phypath_size) { size_t rsz; nvlist_t *vdev_root; nvlist_t **child; uint_t count; char *type; rsz = 0; if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_root) != 0) return (EZFS_INVALCONFIG); if (nvlist_lookup_string(vdev_root, ZPOOL_CONFIG_TYPE, &type) != 0 || nvlist_lookup_nvlist_array(vdev_root, ZPOOL_CONFIG_CHILDREN, &child, &count) != 0) return (EZFS_INVALCONFIG); /* * root pool can not have EFI labeled disks and can only have * a single top-level vdev. */ if (strcmp(type, VDEV_TYPE_ROOT) != 0 || count != 1 || pool_uses_efi(vdev_root)) return (EZFS_POOL_INVALARG); (void) vdev_get_physpaths(child[0], physpath, phypath_size, &rsz, B_FALSE); /* No online devices */ if (rsz == 0) return (EZFS_NODEVICE); return (0); } /* * Get phys_path for a root pool * Return 0 on success; non-zero on failure. */ int zpool_get_physpath(zpool_handle_t *zhp, char *physpath, size_t phypath_size) { return (zpool_get_config_physpath(zhp->zpool_config, physpath, phypath_size)); } /* * If the device has being dynamically expanded then we need to relabel * the disk to use the new unallocated space. */ static int zpool_relabel_disk(libzfs_handle_t *hdl, const char *name) { char path[MAXPATHLEN]; char errbuf[1024]; int fd, error; int (*_efi_use_whole_disk)(int); if ((_efi_use_whole_disk = (int (*)(int))dlsym(RTLD_DEFAULT, "efi_use_whole_disk")) == NULL) return (-1); (void) snprintf(path, sizeof (path), "%s/%s", RDISK_ROOT, name); if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot " "relabel '%s': unable to open device"), name); return (zfs_error(hdl, EZFS_OPENFAILED, errbuf)); } /* * It's possible that we might encounter an error if the device * does not have any unallocated space left. If so, we simply * ignore that error and continue on. */ error = _efi_use_whole_disk(fd); (void) close(fd); if (error && error != VT_ENOSPC) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot " "relabel '%s': unable to read disk capacity"), name); return (zfs_error(hdl, EZFS_NOCAP, errbuf)); } return (0); } /* * Bring the specified vdev online. The 'flags' parameter is a set of the * ZFS_ONLINE_* flags. */ int zpool_vdev_online(zpool_handle_t *zhp, const char *path, int flags, vdev_state_t *newstate) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; if (flags & ZFS_ONLINE_EXPAND) { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot expand %s"), path); } else { (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot online %s"), path); } (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); if (flags & ZFS_ONLINE_EXPAND || zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { char *pathname = NULL; uint64_t wholedisk = 0; (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); verify(nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &pathname) == 0); /* * XXX - L2ARC 1.0 devices can't support expansion. */ if (l2cache) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot expand cache devices")); return (zfs_error(hdl, EZFS_VDEVNOTSUP, msg)); } if (wholedisk) { pathname += strlen(DISK_ROOT) + 1; (void) zpool_relabel_disk(hdl, pathname); } } zc.zc_cookie = VDEV_STATE_ONLINE; zc.zc_obj = flags; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) != 0) { if (errno == EINVAL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "was split " "from this pool into a new one. Use '%s' " "instead"), "zpool detach"); return (zfs_error(hdl, EZFS_POSTSPLIT_ONLINE, msg)); } return (zpool_standard_error(hdl, errno, msg)); } *newstate = zc.zc_cookie; return (0); } /* * Take the specified vdev offline */ int zpool_vdev_offline(zpool_handle_t *zhp, const char *path, boolean_t istmp) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot offline %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == NULL) return (zfs_error(hdl, EZFS_NODEVICE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); zc.zc_cookie = VDEV_STATE_OFFLINE; zc.zc_obj = istmp ? ZFS_OFFLINE_TEMPORARY : 0; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); switch (errno) { case EBUSY: /* * There are no other replicas of this device. */ return (zfs_error(hdl, EZFS_NOREPLICAS, msg)); case EEXIST: /* * The log device has unplayed logs */ return (zfs_error(hdl, EZFS_UNPLAYED_LOGS, msg)); default: return (zpool_standard_error(hdl, errno, msg)); } } /* * Mark the given vdev faulted. */ int zpool_vdev_fault(zpool_handle_t *zhp, uint64_t guid, vdev_aux_t aux) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), - dgettext(TEXT_DOMAIN, "cannot fault %llu"), guid); + dgettext(TEXT_DOMAIN, "cannot fault %llu"), (u_longlong_t)guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = VDEV_STATE_FAULTED; zc.zc_obj = aux; if (ioctl(hdl->libzfs_fd, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); switch (errno) { case EBUSY: /* * There are no other replicas of this device. */ return (zfs_error(hdl, EZFS_NOREPLICAS, msg)); default: return (zpool_standard_error(hdl, errno, msg)); } } /* * Mark the given vdev degraded. */ int zpool_vdev_degrade(zpool_handle_t *zhp, uint64_t guid, vdev_aux_t aux) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), - dgettext(TEXT_DOMAIN, "cannot degrade %llu"), guid); + dgettext(TEXT_DOMAIN, "cannot degrade %llu"), (u_longlong_t)guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = VDEV_STATE_DEGRADED; zc.zc_obj = aux; if (ioctl(hdl->libzfs_fd, ZFS_IOC_VDEV_SET_STATE, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } /* * Returns TRUE if the given nvlist is a vdev that was originally swapped in as * a hot spare. */ static boolean_t is_replacing_spare(nvlist_t *search, nvlist_t *tgt, int which) { nvlist_t **child; uint_t c, children; char *type; if (nvlist_lookup_nvlist_array(search, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { verify(nvlist_lookup_string(search, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_SPARE) == 0 && children == 2 && child[which] == tgt) return (B_TRUE); for (c = 0; c < children; c++) if (is_replacing_spare(child[c], tgt, which)) return (B_TRUE); } return (B_FALSE); } /* * Attach new_disk (fully described by nvroot) to old_disk. * If 'replacing' is specified, the new disk will replace the old one. */ int zpool_vdev_attach(zpool_handle_t *zhp, const char *old_disk, const char *new_disk, nvlist_t *nvroot, int replacing) { zfs_cmd_t zc = { 0 }; char msg[1024]; int ret; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; uint64_t val; char *newname; nvlist_t **child; uint_t children; nvlist_t *config_root; libzfs_handle_t *hdl = zhp->zpool_hdl; boolean_t rootpool = pool_is_bootable(zhp); if (replacing) (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot replace %s with %s"), old_disk, new_disk); else (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot attach %s to %s"), new_disk, old_disk); /* * If this is a root pool, make sure that we're not attaching an * EFI labeled device. */ if (rootpool && pool_uses_efi(nvroot)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "EFI labeled devices are not supported on root pools.")); return (zfs_error(hdl, EZFS_POOL_NOTSUP, msg)); } (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, old_disk, &avail_spare, &l2cache, &islog)) == 0) return (zfs_error(hdl, EZFS_NODEVICE, msg)); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); if (l2cache) return (zfs_error(hdl, EZFS_ISL2CACHE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); zc.zc_cookie = replacing; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0 || children != 1) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new device must be a single disk")); return (zfs_error(hdl, EZFS_INVALCONFIG, msg)); } verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE, &config_root) == 0); if ((newname = zpool_vdev_name(NULL, NULL, child[0], B_FALSE)) == NULL) return (-1); /* * If the target is a hot spare that has been swapped in, we can only * replace it with another hot spare. */ if (replacing && nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_IS_SPARE, &val) == 0 && (zpool_find_vdev(zhp, newname, &avail_spare, &l2cache, NULL) == NULL || !avail_spare) && is_replacing_spare(config_root, tgt, 1)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "can only be replaced by another hot spare")); free(newname); return (zfs_error(hdl, EZFS_BADTARGET, msg)); } free(newname); if (zcmd_write_conf_nvlist(hdl, &zc, nvroot) != 0) return (-1); ret = zfs_ioctl(hdl, ZFS_IOC_VDEV_ATTACH, &zc); zcmd_free_nvlists(&zc); if (ret == 0) { if (rootpool) { /* * XXX need a better way to prevent user from * booting up a half-baked vdev. */ (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Make " "sure to wait until resilver is done " "before rebooting.\n")); } return (0); } switch (errno) { case ENOTSUP: /* * Can't attach to or replace this type of vdev. */ if (replacing) { uint64_t version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (islog) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot replace a log with a spare")); else if (version >= SPA_VERSION_MULTI_REPLACE) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "already in replacing/spare config; wait " "for completion or use 'zpool detach'")); else zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot replace a replacing device")); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "can only attach to mirrors and top-level " "disks")); } (void) zfs_error(hdl, EZFS_BADTARGET, msg); break; case EINVAL: /* * The new device must be a single disk. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "new device must be a single disk")); (void) zfs_error(hdl, EZFS_INVALCONFIG, msg); break; case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "%s is busy"), new_disk); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case EOVERFLOW: /* * The new device is too small. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "device is too small")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case EDOM: /* * The new device has a different alignment requirement. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "devices have different sector alignment")); (void) zfs_error(hdl, EZFS_BADDEV, msg); break; case ENAMETOOLONG: /* * The resulting top-level vdev spec won't fit in the label. */ (void) zfs_error(hdl, EZFS_DEVOVERFLOW, msg); break; default: (void) zpool_standard_error(hdl, errno, msg); } return (-1); } /* * Detach the specified device. */ int zpool_vdev_detach(zpool_handle_t *zhp, const char *path) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot detach %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == 0) return (zfs_error(hdl, EZFS_NODEVICE, msg)); if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); if (l2cache) return (zfs_error(hdl, EZFS_ISL2CACHE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_DETACH, &zc) == 0) return (0); switch (errno) { case ENOTSUP: /* * Can't detach from this type of vdev. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "only " "applicable to mirror and replacing vdevs")); (void) zfs_error(hdl, EZFS_BADTARGET, msg); break; case EBUSY: /* * There are no other replicas of this device. */ (void) zfs_error(hdl, EZFS_NOREPLICAS, msg); break; default: (void) zpool_standard_error(hdl, errno, msg); } return (-1); } /* * Find a mirror vdev in the source nvlist. * * The mchild array contains a list of disks in one of the top-level mirrors * of the source pool. The schild array contains a list of disks that the * user specified on the command line. We loop over the mchild array to * see if any entry in the schild array matches. * * If a disk in the mchild array is found in the schild array, we return * the index of that entry. Otherwise we return -1. */ static int find_vdev_entry(zpool_handle_t *zhp, nvlist_t **mchild, uint_t mchildren, nvlist_t **schild, uint_t schildren) { uint_t mc; for (mc = 0; mc < mchildren; mc++) { uint_t sc; char *mpath = zpool_vdev_name(zhp->zpool_hdl, zhp, mchild[mc], B_FALSE); for (sc = 0; sc < schildren; sc++) { char *spath = zpool_vdev_name(zhp->zpool_hdl, zhp, schild[sc], B_FALSE); boolean_t result = (strcmp(mpath, spath) == 0); free(spath); if (result) { free(mpath); return (mc); } } free(mpath); } return (-1); } /* * Split a mirror pool. If newroot points to null, then a new nvlist * is generated and it is the responsibility of the caller to free it. */ int zpool_vdev_split(zpool_handle_t *zhp, char *newname, nvlist_t **newroot, nvlist_t *props, splitflags_t flags) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tree, *config, **child, **newchild, *newconfig = NULL; nvlist_t **varray = NULL, *zc_props = NULL; uint_t c, children, newchildren, lastlog = 0, vcount, found = 0; libzfs_handle_t *hdl = zhp->zpool_hdl; uint64_t vers; boolean_t freelist = B_FALSE, memory_err = B_TRUE; int retval = 0; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "Unable to split %s"), zhp->zpool_name); if (!zpool_name_valid(hdl, B_FALSE, newname)) return (zfs_error(hdl, EZFS_INVALIDNAME, msg)); if ((config = zpool_get_config(zhp, NULL)) == NULL) { (void) fprintf(stderr, gettext("Internal error: unable to " "retrieve pool configuration\n")); return (-1); } verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &tree) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &vers) == 0); if (props) { prop_flags_t flags = { .create = B_FALSE, .import = B_TRUE }; if ((zc_props = zpool_valid_proplist(hdl, zhp->zpool_name, props, vers, flags, msg)) == NULL) return (-1); } if (nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Source pool is missing vdev tree")); if (zc_props) nvlist_free(zc_props); return (-1); } varray = zfs_alloc(hdl, children * sizeof (nvlist_t *)); vcount = 0; if (*newroot == NULL || nvlist_lookup_nvlist_array(*newroot, ZPOOL_CONFIG_CHILDREN, &newchild, &newchildren) != 0) newchildren = 0; for (c = 0; c < children; c++) { uint64_t is_log = B_FALSE, is_hole = B_FALSE; char *type; nvlist_t **mchild, *vdev; uint_t mchildren; int entry; /* * Unlike cache & spares, slogs are stored in the * ZPOOL_CONFIG_CHILDREN array. We filter them out here. */ (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG, &is_log); (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, &is_hole); if (is_log || is_hole) { /* * Create a hole vdev and put it in the config. */ if (nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) != 0) goto out; if (nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) != 0) goto out; if (nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_HOLE, 1) != 0) goto out; if (lastlog == 0) lastlog = vcount; varray[vcount++] = vdev; continue; } lastlog = 0; verify(nvlist_lookup_string(child[c], ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Source pool must be composed only of mirrors\n")); retval = zfs_error(hdl, EZFS_INVALCONFIG, msg); goto out; } verify(nvlist_lookup_nvlist_array(child[c], ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); /* find or add an entry for this top-level vdev */ if (newchildren > 0 && (entry = find_vdev_entry(zhp, mchild, mchildren, newchild, newchildren)) >= 0) { /* We found a disk that the user specified. */ vdev = mchild[entry]; ++found; } else { /* User didn't specify a disk for this vdev. */ vdev = mchild[mchildren - 1]; } if (nvlist_dup(vdev, &varray[vcount++], 0) != 0) goto out; } /* did we find every disk the user specified? */ if (found != newchildren) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Device list must " "include at most one disk from each mirror")); retval = zfs_error(hdl, EZFS_INVALCONFIG, msg); goto out; } /* Prepare the nvlist for populating. */ if (*newroot == NULL) { if (nvlist_alloc(newroot, NV_UNIQUE_NAME, 0) != 0) goto out; freelist = B_TRUE; if (nvlist_add_string(*newroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0) goto out; } else { verify(nvlist_remove_all(*newroot, ZPOOL_CONFIG_CHILDREN) == 0); } /* Add all the children we found */ if (nvlist_add_nvlist_array(*newroot, ZPOOL_CONFIG_CHILDREN, varray, lastlog == 0 ? vcount : lastlog) != 0) goto out; /* * If we're just doing a dry run, exit now with success. */ if (flags.dryrun) { memory_err = B_FALSE; freelist = B_FALSE; goto out; } /* now build up the config list & call the ioctl */ if (nvlist_alloc(&newconfig, NV_UNIQUE_NAME, 0) != 0) goto out; if (nvlist_add_nvlist(newconfig, ZPOOL_CONFIG_VDEV_TREE, *newroot) != 0 || nvlist_add_string(newconfig, ZPOOL_CONFIG_POOL_NAME, newname) != 0 || nvlist_add_uint64(newconfig, ZPOOL_CONFIG_VERSION, vers) != 0) goto out; /* * The new pool is automatically part of the namespace unless we * explicitly export it. */ if (!flags.import) zc.zc_cookie = ZPOOL_EXPORT_AFTER_SPLIT; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_string, newname, sizeof (zc.zc_string)); if (zcmd_write_conf_nvlist(hdl, &zc, newconfig) != 0) goto out; if (zc_props != NULL && zcmd_write_src_nvlist(hdl, &zc, zc_props) != 0) goto out; if (zfs_ioctl(hdl, ZFS_IOC_VDEV_SPLIT, &zc) != 0) { retval = zpool_standard_error(hdl, errno, msg); goto out; } freelist = B_FALSE; memory_err = B_FALSE; out: if (varray != NULL) { int v; for (v = 0; v < vcount; v++) nvlist_free(varray[v]); free(varray); } zcmd_free_nvlists(&zc); if (zc_props) nvlist_free(zc_props); if (newconfig) nvlist_free(newconfig); if (freelist) { nvlist_free(*newroot); *newroot = NULL; } if (retval != 0) return (retval); if (memory_err) return (no_memory(hdl)); return (0); } /* * Remove the given device. Currently, this is supported only for hot spares * and level 2 cache devices. */ int zpool_vdev_remove(zpool_handle_t *zhp, const char *path) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; boolean_t avail_spare, l2cache, islog; libzfs_handle_t *hdl = zhp->zpool_hdl; uint64_t version; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot remove %s"), path); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, &islog)) == 0) return (zfs_error(hdl, EZFS_NODEVICE, msg)); /* * XXX - this should just go away. */ if (!avail_spare && !l2cache && !islog) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "only inactive hot spares, cache, top-level, " "or log devices can be removed")); return (zfs_error(hdl, EZFS_NODEVICE, msg)); } version = zpool_get_prop_int(zhp, ZPOOL_PROP_VERSION, NULL); if (islog && version < SPA_VERSION_HOLES) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgrade to support log removal")); return (zfs_error(hdl, EZFS_BADVERSION, msg)); } verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); if (zfs_ioctl(hdl, ZFS_IOC_VDEV_REMOVE, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } /* * Clear the errors for the pool, or the particular device if specified. */ int zpool_clear(zpool_handle_t *zhp, const char *path, nvlist_t *rewindnvl) { zfs_cmd_t zc = { 0 }; char msg[1024]; nvlist_t *tgt; zpool_rewind_policy_t policy; boolean_t avail_spare, l2cache; libzfs_handle_t *hdl = zhp->zpool_hdl; nvlist_t *nvi = NULL; int error; if (path) (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot clear errors for %s"), path); else (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot clear errors for %s"), zhp->zpool_name); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); if (path) { if ((tgt = zpool_find_vdev(zhp, path, &avail_spare, &l2cache, NULL)) == 0) return (zfs_error(hdl, EZFS_NODEVICE, msg)); /* * Don't allow error clearing for hot spares. Do allow * error clearing for l2cache devices. */ if (avail_spare) return (zfs_error(hdl, EZFS_ISSPARE, msg)); verify(nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); } zpool_get_rewind_policy(rewindnvl, &policy); zc.zc_cookie = policy.zrp_request; if (zcmd_alloc_dst_nvlist(hdl, &zc, zhp->zpool_config_size * 2) != 0) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, rewindnvl) != 0) return (-1); while ((error = zfs_ioctl(hdl, ZFS_IOC_CLEAR, &zc)) != 0 && errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } if (!error || ((policy.zrp_request & ZPOOL_TRY_REWIND) && errno != EPERM && errno != EACCES)) { if (policy.zrp_request & (ZPOOL_DO_REWIND | ZPOOL_TRY_REWIND)) { (void) zcmd_read_dst_nvlist(hdl, &zc, &nvi); zpool_rewind_exclaim(hdl, zc.zc_name, ((policy.zrp_request & ZPOOL_TRY_REWIND) != 0), nvi); nvlist_free(nvi); } zcmd_free_nvlists(&zc); return (0); } zcmd_free_nvlists(&zc); return (zpool_standard_error(hdl, errno, msg)); } /* * Similar to zpool_clear(), but takes a GUID (used by fmd). */ int zpool_vdev_clear(zpool_handle_t *zhp, uint64_t guid) { zfs_cmd_t zc = { 0 }; char msg[1024]; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) snprintf(msg, sizeof (msg), dgettext(TEXT_DOMAIN, "cannot clear errors for %llx"), - guid); + (u_longlong_t)guid); (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_guid = guid; zc.zc_cookie = ZPOOL_NO_REWIND; if (ioctl(hdl->libzfs_fd, ZFS_IOC_CLEAR, &zc) == 0) return (0); return (zpool_standard_error(hdl, errno, msg)); } /* * Convert from a devid string to a path. */ static char * devid_to_path(char *devid_str) { ddi_devid_t devid; char *minor; char *path; devid_nmlist_t *list = NULL; int ret; if (devid_str_decode(devid_str, &devid, &minor) != 0) return (NULL); ret = devid_deviceid_to_nmlist("/dev", devid, minor, &list); devid_str_free(minor); devid_free(devid); if (ret != 0) return (NULL); if ((path = strdup(list[0].devname)) == NULL) return (NULL); devid_free_nmlist(list); return (path); } /* * Convert from a path to a devid string. */ static char * path_to_devid(const char *path) { int fd; ddi_devid_t devid; char *minor, *ret; if ((fd = open(path, O_RDONLY)) < 0) return (NULL); minor = NULL; ret = NULL; if (devid_get(fd, &devid) == 0) { if (devid_get_minor_name(fd, &minor) == 0) ret = devid_str_encode(devid, minor); if (minor != NULL) devid_str_free(minor); devid_free(devid); } (void) close(fd); return (ret); } /* * Issue the necessary ioctl() to update the stored path value for the vdev. We * ignore any failure here, since a common case is for an unprivileged user to * type 'zpool status', and we'll display the correct information anyway. */ static void set_path(zpool_handle_t *zhp, nvlist_t *nv, const char *path) { zfs_cmd_t zc = { 0 }; (void) strncpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); (void) strncpy(zc.zc_value, path, sizeof (zc.zc_value)); verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &zc.zc_guid) == 0); (void) ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_VDEV_SETPATH, &zc); } /* * Given a vdev, return the name to display in iostat. If the vdev has a path, * we use that, stripping off any leading "/dev/dsk/"; if not, we use the type. * We also check if this is a whole disk, in which case we strip off the * trailing 's0' slice name. * * This routine is also responsible for identifying when disks have been * reconfigured in a new location. The kernel will have opened the device by * devid, but the path will still refer to the old location. To catch this, we * first do a path -> devid translation (which is fast for the common case). If * the devid matches, we're done. If not, we do a reverse devid -> path * translation and issue the appropriate ioctl() to update the path of the vdev. * If 'zhp' is NULL, then this is an exported pool, and we don't need to do any * of these checks. */ char * zpool_vdev_name(libzfs_handle_t *hdl, zpool_handle_t *zhp, nvlist_t *nv, boolean_t verbose) { char *path, *devid; uint64_t value; char buf[64]; vdev_stat_t *vs; uint_t vsc; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, &value) == 0) { verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &value) == 0); (void) snprintf(buf, sizeof (buf), "%llu", (u_longlong_t)value); path = buf; } else if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0) { /* * If the device is dead (faulted, offline, etc) then don't * bother opening it. Otherwise we may be forcing the user to * open a misbehaving device, which can have undesirable * effects. */ if ((nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) != 0 || vs->vs_state >= VDEV_STATE_DEGRADED) && zhp != NULL && nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &devid) == 0) { /* * Determine if the current path is correct. */ char *newdevid = path_to_devid(path); if (newdevid == NULL || strcmp(devid, newdevid) != 0) { char *newpath; if ((newpath = devid_to_path(devid)) != NULL) { /* * Update the path appropriately. */ set_path(zhp, nv, newpath); if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, newpath) == 0) verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); free(newpath); } } if (newdevid) devid_str_free(newdevid); } if (strncmp(path, "/dev/dsk/", 9) == 0) path += 9; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &value) == 0 && value) { int pathlen = strlen(path); char *tmp = zfs_strdup(hdl, path); /* * If it starts with c#, and ends with "s0", chop * the "s0" off, or if it ends with "s0/old", remove * the "s0" from the middle. */ if (CTD_CHECK(tmp)) { if (strcmp(&tmp[pathlen - 2], "s0") == 0) { tmp[pathlen - 2] = '\0'; } else if (pathlen > 6 && strcmp(&tmp[pathlen - 6], "s0/old") == 0) { (void) strcpy(&tmp[pathlen - 6], "/old"); } } return (tmp); } } else { verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &path) == 0); /* * If it's a raidz device, we need to stick in the parity level. */ if (strcmp(path, VDEV_TYPE_RAIDZ) == 0) { verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &value) == 0); (void) snprintf(buf, sizeof (buf), "%s%llu", path, (u_longlong_t)value); path = buf; } /* * We identify each top-level vdev by using a * naming convention. */ if (verbose) { uint64_t id; verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &id) == 0); (void) snprintf(buf, sizeof (buf), "%s-%llu", path, (u_longlong_t)id); path = buf; } } return (zfs_strdup(hdl, path)); } static int zbookmark_compare(const void *a, const void *b) { return (memcmp(a, b, sizeof (zbookmark_t))); } /* * Retrieve the persistent error log, uniquify the members, and return to the * caller. */ int zpool_get_errlog(zpool_handle_t *zhp, nvlist_t **nverrlistp) { zfs_cmd_t zc = { 0 }; uint64_t count; zbookmark_t *zb = NULL; int i; /* * Retrieve the raw error list from the kernel. If the number of errors * has increased, allocate more space and continue until we get the * entire list. */ verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_ERRCOUNT, &count) == 0); if (count == 0) return (0); if ((zc.zc_nvlist_dst = (uintptr_t)zfs_alloc(zhp->zpool_hdl, count * sizeof (zbookmark_t))) == (uintptr_t)NULL) return (-1); zc.zc_nvlist_dst_size = count; (void) strcpy(zc.zc_name, zhp->zpool_name); for (;;) { if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_ERROR_LOG, &zc) != 0) { free((void *)(uintptr_t)zc.zc_nvlist_dst); if (errno == ENOMEM) { count = zc.zc_nvlist_dst_size; if ((zc.zc_nvlist_dst = (uintptr_t) zfs_alloc(zhp->zpool_hdl, count * sizeof (zbookmark_t))) == (uintptr_t)NULL) return (-1); } else { return (-1); } } else { break; } } /* * Sort the resulting bookmarks. This is a little confusing due to the * implementation of ZFS_IOC_ERROR_LOG. The bookmarks are copied last * to first, and 'zc_nvlist_dst_size' indicates the number of boomarks * _not_ copied as part of the process. So we point the start of our * array appropriate and decrement the total number of elements. */ zb = ((zbookmark_t *)(uintptr_t)zc.zc_nvlist_dst) + zc.zc_nvlist_dst_size; count -= zc.zc_nvlist_dst_size; qsort(zb, count, sizeof (zbookmark_t), zbookmark_compare); verify(nvlist_alloc(nverrlistp, 0, KM_SLEEP) == 0); /* * Fill in the nverrlistp with nvlist's of dataset and object numbers. */ for (i = 0; i < count; i++) { nvlist_t *nv; /* ignoring zb_blkid and zb_level for now */ if (i > 0 && zb[i-1].zb_objset == zb[i].zb_objset && zb[i-1].zb_object == zb[i].zb_object) continue; if (nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) != 0) goto nomem; if (nvlist_add_uint64(nv, ZPOOL_ERR_DATASET, zb[i].zb_objset) != 0) { nvlist_free(nv); goto nomem; } if (nvlist_add_uint64(nv, ZPOOL_ERR_OBJECT, zb[i].zb_object) != 0) { nvlist_free(nv); goto nomem; } if (nvlist_add_nvlist(*nverrlistp, "ejk", nv) != 0) { nvlist_free(nv); goto nomem; } nvlist_free(nv); } free((void *)(uintptr_t)zc.zc_nvlist_dst); return (0); nomem: free((void *)(uintptr_t)zc.zc_nvlist_dst); return (no_memory(zhp->zpool_hdl)); } /* * Upgrade a ZFS pool to the latest on-disk version. */ int zpool_upgrade(zpool_handle_t *zhp, uint64_t new_version) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strcpy(zc.zc_name, zhp->zpool_name); zc.zc_cookie = new_version; if (zfs_ioctl(hdl, ZFS_IOC_POOL_UPGRADE, &zc) != 0) return (zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot upgrade '%s'"), zhp->zpool_name)); return (0); } void zpool_set_history_str(const char *subcommand, int argc, char **argv, char *history_str) { int i; (void) strlcpy(history_str, subcommand, HIS_MAX_RECORD_LEN); for (i = 1; i < argc; i++) { if (strlen(history_str) + 1 + strlen(argv[i]) > HIS_MAX_RECORD_LEN) break; (void) strlcat(history_str, " ", HIS_MAX_RECORD_LEN); (void) strlcat(history_str, argv[i], HIS_MAX_RECORD_LEN); } } /* * Stage command history for logging. */ int zpool_stage_history(libzfs_handle_t *hdl, const char *history_str) { if (history_str == NULL) return (EINVAL); if (strlen(history_str) > HIS_MAX_RECORD_LEN) return (EINVAL); if (hdl->libzfs_log_str != NULL) free(hdl->libzfs_log_str); if ((hdl->libzfs_log_str = strdup(history_str)) == NULL) return (no_memory(hdl)); return (0); } /* * Perform ioctl to get some command history of a pool. * * 'buf' is the buffer to fill up to 'len' bytes. 'off' is the * logical offset of the history buffer to start reading from. * * Upon return, 'off' is the next logical offset to read from and * 'len' is the actual amount of bytes read into 'buf'. */ static int get_history(zpool_handle_t *zhp, char *buf, uint64_t *off, uint64_t *len) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zpool_hdl; (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_history = (uint64_t)(uintptr_t)buf; zc.zc_history_len = *len; zc.zc_history_offset = *off; if (ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_GET_HISTORY, &zc) != 0) { switch (errno) { case EPERM: return (zfs_error_fmt(hdl, EZFS_PERM, dgettext(TEXT_DOMAIN, "cannot show history for pool '%s'"), zhp->zpool_name)); case ENOENT: return (zfs_error_fmt(hdl, EZFS_NOHISTORY, dgettext(TEXT_DOMAIN, "cannot get history for pool " "'%s'"), zhp->zpool_name)); case ENOTSUP: return (zfs_error_fmt(hdl, EZFS_BADVERSION, dgettext(TEXT_DOMAIN, "cannot get history for pool " "'%s', pool must be upgraded"), zhp->zpool_name)); default: return (zpool_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot get history for '%s'"), zhp->zpool_name)); } } *len = zc.zc_history_len; *off = zc.zc_history_offset; return (0); } /* * Process the buffer of nvlists, unpacking and storing each nvlist record * into 'records'. 'leftover' is set to the number of bytes that weren't * processed as there wasn't a complete record. */ int zpool_history_unpack(char *buf, uint64_t bytes_read, uint64_t *leftover, nvlist_t ***records, uint_t *numrecords) { uint64_t reclen; nvlist_t *nv; int i; while (bytes_read > sizeof (reclen)) { /* get length of packed record (stored as little endian) */ for (i = 0, reclen = 0; i < sizeof (reclen); i++) reclen += (uint64_t)(((uchar_t *)buf)[i]) << (8*i); if (bytes_read < sizeof (reclen) + reclen) break; /* unpack record */ if (nvlist_unpack(buf + sizeof (reclen), reclen, &nv, 0) != 0) return (ENOMEM); bytes_read -= sizeof (reclen) + reclen; buf += sizeof (reclen) + reclen; /* add record to nvlist array */ (*numrecords)++; if (ISP2(*numrecords + 1)) { *records = realloc(*records, *numrecords * 2 * sizeof (nvlist_t *)); } (*records)[*numrecords - 1] = nv; } *leftover = bytes_read; return (0); } #define HIS_BUF_LEN (128*1024) /* * Retrieve the command history of a pool. */ int zpool_get_history(zpool_handle_t *zhp, nvlist_t **nvhisp) { char buf[HIS_BUF_LEN]; uint64_t off = 0; nvlist_t **records = NULL; uint_t numrecords = 0; int err, i; do { uint64_t bytes_read = sizeof (buf); uint64_t leftover; if ((err = get_history(zhp, buf, &off, &bytes_read)) != 0) break; /* if nothing else was read in, we're at EOF, just return */ if (!bytes_read) break; if ((err = zpool_history_unpack(buf, bytes_read, &leftover, &records, &numrecords)) != 0) break; off -= leftover; /* CONSTCOND */ } while (1); if (!err) { verify(nvlist_alloc(nvhisp, NV_UNIQUE_NAME, 0) == 0); verify(nvlist_add_nvlist_array(*nvhisp, ZPOOL_HIST_RECORD, records, numrecords) == 0); } for (i = 0; i < numrecords; i++) nvlist_free(records[i]); free(records); return (err); } void zpool_obj_to_path(zpool_handle_t *zhp, uint64_t dsobj, uint64_t obj, char *pathname, size_t len) { zfs_cmd_t zc = { 0 }; boolean_t mounted = B_FALSE; char *mntpnt = NULL; char dsname[MAXNAMELEN]; if (dsobj == 0) { /* special case for the MOS */ - (void) snprintf(pathname, len, ":<0x%llx>", obj); + (void) snprintf(pathname, len, ":<0x%llx>", (longlong_t)obj); return; } /* get the dataset's name */ (void) strlcpy(zc.zc_name, zhp->zpool_name, sizeof (zc.zc_name)); zc.zc_obj = dsobj; if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_DSOBJ_TO_DSNAME, &zc) != 0) { /* just write out a path of two object numbers */ (void) snprintf(pathname, len, "<0x%llx>:<0x%llx>", - dsobj, obj); + (longlong_t)dsobj, (longlong_t)obj); return; } (void) strlcpy(dsname, zc.zc_value, sizeof (dsname)); /* find out if the dataset is mounted */ mounted = is_mounted(zhp->zpool_hdl, dsname, &mntpnt); /* get the corrupted object's path */ (void) strlcpy(zc.zc_name, dsname, sizeof (zc.zc_name)); zc.zc_obj = obj; if (ioctl(zhp->zpool_hdl->libzfs_fd, ZFS_IOC_OBJ_TO_PATH, &zc) == 0) { if (mounted) { (void) snprintf(pathname, len, "%s%s", mntpnt, zc.zc_value); } else { (void) snprintf(pathname, len, "%s:%s", dsname, zc.zc_value); } } else { - (void) snprintf(pathname, len, "%s:<0x%llx>", dsname, obj); + (void) snprintf(pathname, len, "%s:<0x%llx>", dsname, (longlong_t)obj); } free(mntpnt); } /* * Read the EFI label from the config, if a label does not exist then * pass back the error to the caller. If the caller has passed a non-NULL * diskaddr argument then we set it to the starting address of the EFI * partition. */ static int read_efi_label(nvlist_t *config, diskaddr_t *sb) { char *path; int fd; char diskname[MAXPATHLEN]; int err = -1; if (nvlist_lookup_string(config, ZPOOL_CONFIG_PATH, &path) != 0) return (err); (void) snprintf(diskname, sizeof (diskname), "%s%s", RDISK_ROOT, strrchr(path, '/')); if ((fd = open(diskname, O_RDONLY|O_NDELAY)) >= 0) { struct dk_gpt *vtoc; if ((err = efi_alloc_and_read(fd, &vtoc)) >= 0) { if (sb != NULL) *sb = vtoc->efi_parts[0].p_start; efi_free(vtoc); } (void) close(fd); } return (err); } /* * determine where a partition starts on a disk in the current * configuration */ static diskaddr_t find_start_block(nvlist_t *config) { nvlist_t **child; uint_t c, children; diskaddr_t sb = MAXOFFSET_T; uint64_t wholedisk; if (nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk) != 0 || !wholedisk) { return (MAXOFFSET_T); } if (read_efi_label(config, &sb) < 0) sb = MAXOFFSET_T; return (sb); } for (c = 0; c < children; c++) { sb = find_start_block(child[c]); if (sb != MAXOFFSET_T) { return (sb); } } return (MAXOFFSET_T); } /* * Label an individual disk. The name provided is the short name, * stripped of any leading /dev path. */ int zpool_label_disk(libzfs_handle_t *hdl, zpool_handle_t *zhp, char *name) { char path[MAXPATHLEN]; struct dk_gpt *vtoc; int fd; size_t resv = EFI_MIN_RESV_SIZE; uint64_t slice_size; diskaddr_t start_block; char errbuf[1024]; /* prepare an error message just in case */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot label '%s'"), name); if (zhp) { nvlist_t *nvroot; if (pool_is_bootable(zhp)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "EFI labeled devices are not supported on root " "pools.")); return (zfs_error(hdl, EZFS_POOL_NOTSUP, errbuf)); } verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (zhp->zpool_start_block == 0) start_block = find_start_block(nvroot); else start_block = zhp->zpool_start_block; zhp->zpool_start_block = start_block; } else { /* new pool */ start_block = NEW_START_BLOCK; } (void) snprintf(path, sizeof (path), "%s/%s%s", RDISK_ROOT, name, BACKUP_SLICE); if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) { /* * This shouldn't happen. We've long since verified that this * is a valid device. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "unable to open device")); return (zfs_error(hdl, EZFS_OPENFAILED, errbuf)); } if (efi_alloc_and_init(fd, EFI_NUMPAR, &vtoc) != 0) { /* * The only way this can fail is if we run out of memory, or we * were unable to read the disk's capacity */ if (errno == ENOMEM) (void) no_memory(hdl); (void) close(fd); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "unable to read disk capacity"), name); return (zfs_error(hdl, EZFS_NOCAP, errbuf)); } slice_size = vtoc->efi_last_u_lba + 1; slice_size -= EFI_MIN_RESV_SIZE; if (start_block == MAXOFFSET_T) start_block = NEW_START_BLOCK; slice_size -= start_block; vtoc->efi_parts[0].p_start = start_block; vtoc->efi_parts[0].p_size = slice_size; /* * Why we use V_USR: V_BACKUP confuses users, and is considered * disposable by some EFI utilities (since EFI doesn't have a backup * slice). V_UNASSIGNED is supposed to be used only for zero size * partitions, and efi_write() will fail if we use it. V_ROOT, V_BOOT, * etc. were all pretty specific. V_USR is as close to reality as we * can get, in the absence of V_OTHER. */ vtoc->efi_parts[0].p_tag = V_USR; (void) strcpy(vtoc->efi_parts[0].p_name, "zfs"); vtoc->efi_parts[8].p_start = slice_size + start_block; vtoc->efi_parts[8].p_size = resv; vtoc->efi_parts[8].p_tag = V_RESERVED; if (efi_write(fd, vtoc) != 0) { /* * Some block drivers (like pcata) may not support EFI * GPT labels. Print out a helpful error message dir- * ecting the user to manually label the disk and give * a specific slice. */ (void) close(fd); efi_free(vtoc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "try using fdisk(1M) and then provide a specific slice")); return (zfs_error(hdl, EZFS_LABELFAILED, errbuf)); } (void) close(fd); efi_free(vtoc); return (0); } static boolean_t supported_dump_vdev_type(libzfs_handle_t *hdl, nvlist_t *config, char *errbuf) { char *type; nvlist_t **child; uint_t children, c; verify(nvlist_lookup_string(config, ZPOOL_CONFIG_TYPE, &type) == 0); if (strcmp(type, VDEV_TYPE_RAIDZ) == 0 || strcmp(type, VDEV_TYPE_FILE) == 0 || strcmp(type, VDEV_TYPE_LOG) == 0 || strcmp(type, VDEV_TYPE_HOLE) == 0 || strcmp(type, VDEV_TYPE_MISSING) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "vdev type '%s' is not supported"), type); (void) zfs_error(hdl, EZFS_VDEVNOTSUP, errbuf); return (B_FALSE); } if (nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) { if (!supported_dump_vdev_type(hdl, child[c], errbuf)) return (B_FALSE); } } return (B_TRUE); } /* * check if this zvol is allowable for use as a dump device; zero if * it is, > 0 if it isn't, < 0 if it isn't a zvol */ int zvol_check_dump_config(char *arg) { zpool_handle_t *zhp = NULL; nvlist_t *config, *nvroot; char *p, *volname; nvlist_t **top; uint_t toplevels; libzfs_handle_t *hdl; char errbuf[1024]; char poolname[ZPOOL_MAXNAMELEN]; int pathlen = strlen(ZVOL_FULL_DEV_DIR); int ret = 1; if (strncmp(arg, ZVOL_FULL_DEV_DIR, pathlen)) { return (-1); } (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "dump is not supported on device '%s'"), arg); if ((hdl = libzfs_init()) == NULL) return (1); libzfs_print_on_error(hdl, B_TRUE); volname = arg + pathlen; /* check the configuration of the pool */ if ((p = strchr(volname, '/')) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "malformed dataset name")); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); return (1); } else if (p - volname >= ZFS_MAXNAMELEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset name is too long")); (void) zfs_error(hdl, EZFS_NAMETOOLONG, errbuf); return (1); } else { (void) strncpy(poolname, volname, p - volname); poolname[p - volname] = '\0'; } if ((zhp = zpool_open(hdl, poolname)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "could not open pool '%s'"), poolname); (void) zfs_error(hdl, EZFS_OPENFAILED, errbuf); goto out; } config = zpool_get_config(zhp, NULL); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "could not obtain vdev configuration for '%s'"), poolname); (void) zfs_error(hdl, EZFS_INVALCONFIG, errbuf); goto out; } verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &top, &toplevels) == 0); if (toplevels != 1) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' has multiple top level vdevs"), poolname); (void) zfs_error(hdl, EZFS_DEVOVERFLOW, errbuf); goto out; } if (!supported_dump_vdev_type(hdl, top[0], errbuf)) { goto out; } ret = 0; out: if (zhp) zpool_close(zhp); libzfs_fini(hdl); return (ret); } diff --git a/lib/libzfs/libzfs_sendrecv.c b/lib/libzfs/libzfs_sendrecv.c index 3093ab974d06..8d6c43807e29 100644 --- a/lib/libzfs/libzfs_sendrecv.c +++ b/lib/libzfs/libzfs_sendrecv.c @@ -1,3021 +1,3021 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_fletcher.h" #include "libzfs_impl.h" #include #include #include /* in libzfs_dataset.c */ extern void zfs_setprop_error(libzfs_handle_t *, zfs_prop_t, int, char *); static int zfs_receive_impl(libzfs_handle_t *, const char *, recvflags_t, int, const char *, nvlist_t *, avl_tree_t *, char **, int, uint64_t *); static const zio_cksum_t zero_cksum = { 0 }; typedef struct dedup_arg { int inputfd; int outputfd; libzfs_handle_t *dedup_hdl; } dedup_arg_t; typedef struct dataref { uint64_t ref_guid; uint64_t ref_object; uint64_t ref_offset; } dataref_t; typedef struct dedup_entry { struct dedup_entry *dde_next; zio_cksum_t dde_chksum; uint64_t dde_prop; dataref_t dde_ref; } dedup_entry_t; #define MAX_DDT_PHYSMEM_PERCENT 20 #define SMALLEST_POSSIBLE_MAX_DDT_MB 128 typedef struct dedup_table { dedup_entry_t **dedup_hash_array; umem_cache_t *ddecache; uint64_t max_ddt_size; /* max dedup table size in bytes */ uint64_t cur_ddt_size; /* current dedup table size in bytes */ uint64_t ddt_count; int numhashbits; boolean_t ddt_full; } dedup_table_t; static int high_order_bit(uint64_t n) { int count; for (count = 0; n != 0; count++) n >>= 1; return (count); } static size_t ssread(void *buf, size_t len, FILE *stream) { size_t outlen; if ((outlen = fread(buf, len, 1, stream)) == 0) return (0); return (outlen); } static void ddt_hash_append(libzfs_handle_t *hdl, dedup_table_t *ddt, dedup_entry_t **ddepp, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { dedup_entry_t *dde; if (ddt->cur_ddt_size >= ddt->max_ddt_size) { if (ddt->ddt_full == B_FALSE) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Dedup table full. Deduplication will continue " "with existing table entries")); ddt->ddt_full = B_TRUE; } return; } if ((dde = umem_cache_alloc(ddt->ddecache, UMEM_DEFAULT)) != NULL) { assert(*ddepp == NULL); dde->dde_next = NULL; dde->dde_chksum = *cs; dde->dde_prop = prop; dde->dde_ref = *dr; *ddepp = dde; ddt->cur_ddt_size += sizeof (dedup_entry_t); ddt->ddt_count++; } } /* * Using the specified dedup table, do a lookup for an entry with * the checksum cs. If found, return the block's reference info * in *dr. Otherwise, insert a new entry in the dedup table, using * the reference information specified by *dr. * * return value: true - entry was found * false - entry was not found */ static boolean_t ddt_update(libzfs_handle_t *hdl, dedup_table_t *ddt, zio_cksum_t *cs, uint64_t prop, dataref_t *dr) { uint32_t hashcode; dedup_entry_t **ddepp; hashcode = BF64_GET(cs->zc_word[0], 0, ddt->numhashbits); for (ddepp = &(ddt->dedup_hash_array[hashcode]); *ddepp != NULL; ddepp = &((*ddepp)->dde_next)) { if (ZIO_CHECKSUM_EQUAL(((*ddepp)->dde_chksum), *cs) && (*ddepp)->dde_prop == prop) { *dr = (*ddepp)->dde_ref; return (B_TRUE); } } ddt_hash_append(hdl, ddt, ddepp, cs, prop, dr); return (B_FALSE); } static int cksum_and_write(const void *buf, uint64_t len, zio_cksum_t *zc, int outfd) { fletcher_4_incremental_native(buf, len, zc); return (write(outfd, buf, len)); } /* * This function is started in a separate thread when the dedup option * has been requested. The main send thread determines the list of * snapshots to be included in the send stream and makes the ioctl calls * for each one. But instead of having the ioctl send the output to the * the output fd specified by the caller of zfs_send()), the * ioctl is told to direct the output to a pipe, which is read by the * alternate thread running THIS function. This function does the * dedup'ing by: * 1. building a dedup table (the DDT) * 2. doing checksums on each data block and inserting a record in the DDT * 3. looking for matching checksums, and * 4. sending a DRR_WRITE_BYREF record instead of a write record whenever * a duplicate block is found. * The output of this function then goes to the output fd requested * by the caller of zfs_send(). */ static void * cksummer(void *arg) { dedup_arg_t *dda = arg; char *buf = malloc(1<<20); dmu_replay_record_t thedrr; dmu_replay_record_t *drr = &thedrr; struct drr_begin *drrb = &thedrr.drr_u.drr_begin; struct drr_end *drre = &thedrr.drr_u.drr_end; struct drr_object *drro = &thedrr.drr_u.drr_object; struct drr_write *drrw = &thedrr.drr_u.drr_write; struct drr_spill *drrs = &thedrr.drr_u.drr_spill; FILE *ofp; int outfd; dmu_replay_record_t wbr_drr = {0}; struct drr_write_byref *wbr_drrr = &wbr_drr.drr_u.drr_write_byref; dedup_table_t ddt; zio_cksum_t stream_cksum; uint64_t physmem = sysconf(_SC_PHYS_PAGES) * sysconf(_SC_PAGESIZE); uint64_t numbuckets; ddt.max_ddt_size = MAX((physmem * MAX_DDT_PHYSMEM_PERCENT)/100, SMALLEST_POSSIBLE_MAX_DDT_MB<<20); numbuckets = ddt.max_ddt_size/(sizeof (dedup_entry_t)); /* * numbuckets must be a power of 2. Increase number to * a power of 2 if necessary. */ if (!ISP2(numbuckets)) numbuckets = 1 << high_order_bit(numbuckets); ddt.dedup_hash_array = calloc(numbuckets, sizeof (dedup_entry_t *)); ddt.ddecache = umem_cache_create("dde", sizeof (dedup_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0); ddt.cur_ddt_size = numbuckets * sizeof (dedup_entry_t *); ddt.numhashbits = high_order_bit(numbuckets) - 1; ddt.ddt_full = B_FALSE; /* Initialize the write-by-reference block. */ wbr_drr.drr_type = DRR_WRITE_BYREF; wbr_drr.drr_payloadlen = 0; outfd = dda->outputfd; ofp = fdopen(dda->inputfd, "r"); while (ssread(drr, sizeof (dmu_replay_record_t), ofp) != 0) { switch (drr->drr_type) { case DRR_BEGIN: { int fflags; ZIO_SET_CHECKSUM(&stream_cksum, 0, 0, 0, 0); /* set the DEDUP feature flag for this stream */ fflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); fflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); DMU_SET_FEATUREFLAGS(drrb->drr_versioninfo, fflags); if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM && drr->drr_payloadlen != 0) { int sz = drr->drr_payloadlen; if (sz > 1<<20) { free(buf); buf = malloc(sz); } (void) ssread(buf, sz, ofp); if (ferror(stdin)) perror("fread"); if (cksum_and_write(buf, sz, &stream_cksum, outfd) == -1) goto out; } break; } case DRR_END: { /* use the recalculated checksum */ ZIO_SET_CHECKSUM(&drre->drr_checksum, stream_cksum.zc_word[0], stream_cksum.zc_word[1], stream_cksum.zc_word[2], stream_cksum.zc_word[3]); if ((write(outfd, drr, sizeof (dmu_replay_record_t))) == -1) goto out; break; } case DRR_OBJECT: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (drro->drr_bonuslen > 0) { (void) ssread(buf, P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8), ofp); if (cksum_and_write(buf, P2ROUNDUP((uint64_t)drro->drr_bonuslen, 8), &stream_cksum, outfd) == -1) goto out; } break; } case DRR_SPILL: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; (void) ssread(buf, drrs->drr_length, ofp); if (cksum_and_write(buf, drrs->drr_length, &stream_cksum, outfd) == -1) goto out; break; } case DRR_FREEOBJECTS: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; break; } case DRR_WRITE: { dataref_t dataref; (void) ssread(buf, drrw->drr_length, ofp); /* * Use the existing checksum if it's dedup-capable, * else calculate a SHA256 checksum for it. */ if (ZIO_CHECKSUM_EQUAL(drrw->drr_key.ddk_cksum, zero_cksum) || !DRR_IS_DEDUP_CAPABLE(drrw->drr_checksumflags)) { SHA256_CTX ctx; zio_cksum_t tmpsha256; SHA256Init(&ctx); SHA256Update(&ctx, buf, drrw->drr_length); SHA256Final(&tmpsha256, &ctx); drrw->drr_key.ddk_cksum.zc_word[0] = BE_64(tmpsha256.zc_word[0]); drrw->drr_key.ddk_cksum.zc_word[1] = BE_64(tmpsha256.zc_word[1]); drrw->drr_key.ddk_cksum.zc_word[2] = BE_64(tmpsha256.zc_word[2]); drrw->drr_key.ddk_cksum.zc_word[3] = BE_64(tmpsha256.zc_word[3]); drrw->drr_checksumtype = ZIO_CHECKSUM_SHA256; drrw->drr_checksumflags = DRR_CHECKSUM_DEDUP; } dataref.ref_guid = drrw->drr_toguid; dataref.ref_object = drrw->drr_object; dataref.ref_offset = drrw->drr_offset; if (ddt_update(dda->dedup_hdl, &ddt, &drrw->drr_key.ddk_cksum, drrw->drr_key.ddk_prop, &dataref)) { /* block already present in stream */ wbr_drrr->drr_object = drrw->drr_object; wbr_drrr->drr_offset = drrw->drr_offset; wbr_drrr->drr_length = drrw->drr_length; wbr_drrr->drr_toguid = drrw->drr_toguid; wbr_drrr->drr_refguid = dataref.ref_guid; wbr_drrr->drr_refobject = dataref.ref_object; wbr_drrr->drr_refoffset = dataref.ref_offset; wbr_drrr->drr_checksumtype = drrw->drr_checksumtype; wbr_drrr->drr_checksumflags = drrw->drr_checksumtype; wbr_drrr->drr_key.ddk_cksum = drrw->drr_key.ddk_cksum; wbr_drrr->drr_key.ddk_prop = drrw->drr_key.ddk_prop; if (cksum_and_write(&wbr_drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; } else { /* block not previously seen */ if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; if (cksum_and_write(buf, drrw->drr_length, &stream_cksum, outfd) == -1) goto out; } break; } case DRR_FREE: { if (cksum_and_write(drr, sizeof (dmu_replay_record_t), &stream_cksum, outfd) == -1) goto out; break; } default: (void) printf("INVALID record type 0x%x\n", drr->drr_type); /* should never happen, so assert */ assert(B_FALSE); } } out: umem_cache_destroy(ddt.ddecache); free(ddt.dedup_hash_array); free(buf); (void) fclose(ofp); return (NULL); } /* * Routines for dealing with the AVL tree of fs-nvlists */ typedef struct fsavl_node { avl_node_t fn_node; nvlist_t *fn_nvfs; char *fn_snapname; uint64_t fn_guid; } fsavl_node_t; static int fsavl_compare(const void *arg1, const void *arg2) { const fsavl_node_t *fn1 = arg1; const fsavl_node_t *fn2 = arg2; if (fn1->fn_guid > fn2->fn_guid) return (+1); else if (fn1->fn_guid < fn2->fn_guid) return (-1); else return (0); } /* * Given the GUID of a snapshot, find its containing filesystem and * (optionally) name. */ static nvlist_t * fsavl_find(avl_tree_t *avl, uint64_t snapguid, char **snapname) { fsavl_node_t fn_find; fsavl_node_t *fn; fn_find.fn_guid = snapguid; fn = avl_find(avl, &fn_find, NULL); if (fn) { if (snapname) *snapname = fn->fn_snapname; return (fn->fn_nvfs); } return (NULL); } static void fsavl_destroy(avl_tree_t *avl) { fsavl_node_t *fn; void *cookie; if (avl == NULL) return; cookie = NULL; while ((fn = avl_destroy_nodes(avl, &cookie)) != NULL) free(fn); avl_destroy(avl); free(avl); } /* * Given an nvlist, produce an avl tree of snapshots, ordered by guid */ static avl_tree_t * fsavl_create(nvlist_t *fss) { avl_tree_t *fsavl; nvpair_t *fselem = NULL; if ((fsavl = malloc(sizeof (avl_tree_t))) == NULL) return (NULL); avl_create(fsavl, fsavl_compare, sizeof (fsavl_node_t), offsetof(fsavl_node_t, fn_node)); while ((fselem = nvlist_next_nvpair(fss, fselem)) != NULL) { nvlist_t *nvfs, *snaps; nvpair_t *snapelem = NULL; VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); while ((snapelem = nvlist_next_nvpair(snaps, snapelem)) != NULL) { fsavl_node_t *fn; uint64_t guid; VERIFY(0 == nvpair_value_uint64(snapelem, &guid)); if ((fn = malloc(sizeof (fsavl_node_t))) == NULL) { fsavl_destroy(fsavl); return (NULL); } fn->fn_nvfs = nvfs; fn->fn_snapname = nvpair_name(snapelem); fn->fn_guid = guid; /* * Note: if there are multiple snaps with the * same GUID, we ignore all but one. */ if (avl_find(fsavl, fn, NULL) == NULL) avl_add(fsavl, fn); else free(fn); } } return (fsavl); } /* * Routines for dealing with the giant nvlist of fs-nvlists, etc. */ typedef struct send_data { uint64_t parent_fromsnap_guid; nvlist_t *parent_snaps; nvlist_t *fss; nvlist_t *snapprops; const char *fromsnap; const char *tosnap; boolean_t recursive; /* * The header nvlist is of the following format: * { * "tosnap" -> string * "fromsnap" -> string (if incremental) * "fss" -> { * id -> { * * "name" -> string (full name; for debugging) * "parentfromsnap" -> number (guid of fromsnap in parent) * * "props" -> { name -> value (only if set here) } * "snaps" -> { name (lastname) -> number (guid) } * "snapprops" -> { name (lastname) -> { name -> value } } * * "origin" -> number (guid) (if clone) * "sent" -> boolean (not on-disk) * } * } * } * */ } send_data_t; static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv); static int send_iterate_snap(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; uint64_t guid = zhp->zfs_dmustats.dds_guid; char *snapname; nvlist_t *nv; snapname = strrchr(zhp->zfs_name, '@')+1; VERIFY(0 == nvlist_add_uint64(sd->parent_snaps, snapname, guid)); /* * NB: if there is no fromsnap here (it's a newly created fs in * an incremental replication), we will substitute the tosnap. */ if ((sd->fromsnap && strcmp(snapname, sd->fromsnap) == 0) || (sd->parent_fromsnap_guid == 0 && sd->tosnap && strcmp(snapname, sd->tosnap) == 0)) { sd->parent_fromsnap_guid = guid; } VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, nv); VERIFY(0 == nvlist_add_nvlist(sd->snapprops, snapname, nv)); nvlist_free(nv); zfs_close(zhp); return (0); } static void send_iterate_prop(zfs_handle_t *zhp, nvlist_t *nv) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(zhp->zfs_props, elem)) != NULL) { char *propname = nvpair_name(elem); zfs_prop_t prop = zfs_name_to_prop(propname); nvlist_t *propnv; if (!zfs_prop_user(propname)) { /* * Realistically, this should never happen. However, * we want the ability to add DSL properties without * needing to make incompatible version changes. We * need to ignore unknown properties to allow older * software to still send datasets containing these * properties, with the unknown properties elided. */ if (prop == ZPROP_INVAL) continue; if (zfs_prop_readonly(prop)) continue; } verify(nvpair_value_nvlist(elem, &propnv) == 0); if (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_RESERVATION || prop == ZFS_PROP_REFQUOTA || prop == ZFS_PROP_REFRESERVATION) { char *source; uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) continue; /* * May have no source before SPA_VERSION_RECVD_PROPS, * but is still modifiable. */ if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) == 0) { if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } } else { char *source; if (nvlist_lookup_string(propnv, ZPROP_SOURCE, &source) != 0) continue; if ((strcmp(source, zhp->zfs_name) != 0) && (strcmp(source, ZPROP_SOURCE_VAL_RECVD) != 0)) continue; } if (zfs_prop_user(propname) || zfs_prop_get_type(prop) == PROP_TYPE_STRING) { char *value; verify(nvlist_lookup_string(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_string(nv, propname, value)); } else { uint64_t value; verify(nvlist_lookup_uint64(propnv, ZPROP_VALUE, &value) == 0); VERIFY(0 == nvlist_add_uint64(nv, propname, value)); } } } /* * recursively generate nvlists describing datasets. See comment * for the data structure send_data_t above for description of contents * of the nvlist. */ static int send_iterate_fs(zfs_handle_t *zhp, void *arg) { send_data_t *sd = arg; nvlist_t *nvfs, *nv; int rv = 0; uint64_t parent_fromsnap_guid_save = sd->parent_fromsnap_guid; uint64_t guid = zhp->zfs_dmustats.dds_guid; char guidstring[64]; VERIFY(0 == nvlist_alloc(&nvfs, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_add_string(nvfs, "name", zhp->zfs_name)); VERIFY(0 == nvlist_add_uint64(nvfs, "parentfromsnap", sd->parent_fromsnap_guid)); if (zhp->zfs_dmustats.dds_origin[0]) { zfs_handle_t *origin = zfs_open(zhp->zfs_hdl, zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT); if (origin == NULL) return (-1); VERIFY(0 == nvlist_add_uint64(nvfs, "origin", origin->zfs_dmustats.dds_guid)); } /* iterate over props */ VERIFY(0 == nvlist_alloc(&nv, NV_UNIQUE_NAME, 0)); send_iterate_prop(zhp, nv); VERIFY(0 == nvlist_add_nvlist(nvfs, "props", nv)); nvlist_free(nv); /* iterate over snaps, and set sd->parent_fromsnap_guid */ sd->parent_fromsnap_guid = 0; VERIFY(0 == nvlist_alloc(&sd->parent_snaps, NV_UNIQUE_NAME, 0)); VERIFY(0 == nvlist_alloc(&sd->snapprops, NV_UNIQUE_NAME, 0)); (void) zfs_iter_snapshots(zhp, send_iterate_snap, sd); VERIFY(0 == nvlist_add_nvlist(nvfs, "snaps", sd->parent_snaps)); VERIFY(0 == nvlist_add_nvlist(nvfs, "snapprops", sd->snapprops)); nvlist_free(sd->parent_snaps); nvlist_free(sd->snapprops); /* add this fs to nvlist */ (void) snprintf(guidstring, sizeof (guidstring), "0x%llx", (longlong_t)guid); VERIFY(0 == nvlist_add_nvlist(sd->fss, guidstring, nvfs)); nvlist_free(nvfs); /* iterate over children */ if (sd->recursive) rv = zfs_iter_filesystems(zhp, send_iterate_fs, sd); sd->parent_fromsnap_guid = parent_fromsnap_guid_save; zfs_close(zhp); return (rv); } static int gather_nvlist(libzfs_handle_t *hdl, const char *fsname, const char *fromsnap, const char *tosnap, boolean_t recursive, nvlist_t **nvlp, avl_tree_t **avlp) { zfs_handle_t *zhp; send_data_t sd = { 0 }; int error; zhp = zfs_open(hdl, fsname, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (zhp == NULL) return (EZFS_BADTYPE); VERIFY(0 == nvlist_alloc(&sd.fss, NV_UNIQUE_NAME, 0)); sd.fromsnap = fromsnap; sd.tosnap = tosnap; sd.recursive = recursive; if ((error = send_iterate_fs(zhp, &sd)) != 0) { nvlist_free(sd.fss); if (avlp != NULL) *avlp = NULL; *nvlp = NULL; return (error); } if (avlp != NULL && (*avlp = fsavl_create(sd.fss)) == NULL) { nvlist_free(sd.fss); *nvlp = NULL; return (EZFS_NOMEM); } *nvlp = sd.fss; return (0); } /* * Routines for dealing with the sorted snapshot functionality */ typedef struct zfs_node { zfs_handle_t *zn_handle; avl_node_t zn_avlnode; } zfs_node_t; static int zfs_sort_snaps(zfs_handle_t *zhp, void *data) { avl_tree_t *avl = data; zfs_node_t *node; zfs_node_t search; search.zn_handle = zhp; node = avl_find(avl, &search, NULL); if (node) { /* * If this snapshot was renamed while we were creating the * AVL tree, it's possible that we already inserted it under * its old name. Remove the old handle before adding the new * one. */ zfs_close(node->zn_handle); avl_remove(avl, node); free(node); } node = zfs_alloc(zhp->zfs_hdl, sizeof (zfs_node_t)); node->zn_handle = zhp; avl_add(avl, node); return (0); } static int zfs_snapshot_compare(const void *larg, const void *rarg) { zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; uint64_t lcreate, rcreate; /* * Sort them according to creation time. We use the hidden * CREATETXG property to get an absolute ordering of snapshots. */ lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); if (lcreate < rcreate) return (-1); else if (lcreate > rcreate) return (+1); else return (0); } int zfs_iter_snapshots_sorted(zfs_handle_t *zhp, zfs_iter_f callback, void *data) { int ret = 0; zfs_node_t *node; avl_tree_t avl; void *cookie = NULL; avl_create(&avl, zfs_snapshot_compare, sizeof (zfs_node_t), offsetof(zfs_node_t, zn_avlnode)); ret = zfs_iter_snapshots(zhp, zfs_sort_snaps, &avl); for (node = avl_first(&avl); node != NULL; node = AVL_NEXT(&avl, node)) ret |= callback(node->zn_handle, data); while ((node = avl_destroy_nodes(&avl, &cookie)) != NULL) free(node); avl_destroy(&avl); return (ret); } /* * Routines specific to "zfs send" */ typedef struct send_dump_data { /* these are all just the short snapname (the part after the @) */ const char *fromsnap; const char *tosnap; char prevsnap[ZFS_MAXNAMELEN]; uint64_t prevsnap_obj; boolean_t seenfrom, seento, replicate, doall, fromorigin; boolean_t verbose; int outfd; boolean_t err; nvlist_t *fss; avl_tree_t *fsavl; snapfilter_cb_t *filter_cb; void *filter_cb_arg; nvlist_t *debugnv; char holdtag[ZFS_MAXNAMELEN]; int cleanup_fd; } send_dump_data_t; /* * Dumps a backup of the given snapshot (incremental from fromsnap if it's not * NULL) to the file descriptor specified by outfd. */ static int dump_ioctl(zfs_handle_t *zhp, const char *fromsnap, uint64_t fromsnap_obj, boolean_t fromorigin, int outfd, nvlist_t *debugnv) { zfs_cmd_t zc = { 0 }; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *thisdbg; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); assert(fromsnap_obj == 0 || !fromorigin); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_cookie = outfd; zc.zc_obj = fromorigin; zc.zc_sendobj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zc.zc_fromobj = fromsnap_obj; VERIFY(0 == nvlist_alloc(&thisdbg, NV_UNIQUE_NAME, 0)); if (fromsnap && fromsnap[0] != '\0') { VERIFY(0 == nvlist_add_string(thisdbg, "fromsnap", fromsnap)); } if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_SEND, &zc) != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "warning: cannot send '%s'"), zhp->zfs_name); VERIFY(0 == nvlist_add_uint64(thisdbg, "error", errno)); if (debugnv) { VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); } nvlist_free(thisdbg); switch (errno) { case EXDEV: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not an earlier snapshot from the same fs")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); case ENOENT: if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_SNAPSHOT)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incremental source (@%s) does not exist"), zc.zc_value); } return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EDQUOT: case EFBIG: case EIO: case ENOLINK: case ENOSPC: case ENOSTR: case ENXIO: case EPIPE: case ERANGE: case EFAULT: case EROFS: zfs_error_aux(hdl, strerror(errno)); return (zfs_error(hdl, EZFS_BADBACKUP, errbuf)); default: return (zfs_standard_error(hdl, errno, errbuf)); } } if (debugnv) VERIFY(0 == nvlist_add_nvlist(debugnv, zhp->zfs_name, thisdbg)); nvlist_free(thisdbg); return (0); } static int hold_for_send(zfs_handle_t *zhp, send_dump_data_t *sdd) { zfs_handle_t *pzhp; int error = 0; char *thissnap; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); /* * zfs_send() only opens a cleanup_fd for sends that need it, * e.g. replication and doall. */ if (sdd->cleanup_fd == -1) return (0); thissnap = strchr(zhp->zfs_name, '@') + 1; *(thissnap - 1) = '\0'; pzhp = zfs_open(zhp->zfs_hdl, zhp->zfs_name, ZFS_TYPE_DATASET); *(thissnap - 1) = '@'; /* * It's OK if the parent no longer exists. The send code will * handle that error. */ if (pzhp) { error = zfs_hold(pzhp, thissnap, sdd->holdtag, B_FALSE, B_TRUE, B_TRUE, sdd->cleanup_fd, zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID), zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG)); zfs_close(pzhp); } return (error); } static int dump_snapshot(zfs_handle_t *zhp, void *arg) { send_dump_data_t *sdd = arg; char *thissnap; int err; boolean_t isfromsnap, istosnap; boolean_t exclude = B_FALSE; thissnap = strchr(zhp->zfs_name, '@') + 1; isfromsnap = (sdd->fromsnap != NULL && strcmp(sdd->fromsnap, thissnap) == 0); if (!sdd->seenfrom && isfromsnap) { err = hold_for_send(zhp, sdd); if (err == 0) { sdd->seenfrom = B_TRUE; (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); } else if (err == ENOENT) { err = 0; } zfs_close(zhp); return (err); } if (sdd->seento || !sdd->seenfrom) { zfs_close(zhp); return (0); } istosnap = (strcmp(sdd->tosnap, thissnap) == 0); if (istosnap) sdd->seento = B_TRUE; if (!sdd->doall && !isfromsnap && !istosnap) { if (sdd->replicate) { char *snapname; nvlist_t *snapprops; /* * Filter out all intermediate snapshots except origin * snapshots needed to replicate clones. */ nvlist_t *nvfs = fsavl_find(sdd->fsavl, zhp->zfs_dmustats.dds_guid, &snapname); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, thissnap, &snapprops)); exclude = !nvlist_exists(snapprops, "is_clone_origin"); } else { exclude = B_TRUE; } } /* * If a filter function exists, call it to determine whether * this snapshot will be sent. */ if (exclude || (sdd->filter_cb != NULL && sdd->filter_cb(zhp, sdd->filter_cb_arg) == B_FALSE)) { /* * This snapshot is filtered out. Don't send it, and don't * set prevsnap_obj, so it will be as if this snapshot didn't * exist, and the next accepted snapshot will be sent as * an incremental from the last accepted one, or as the * first (and full) snapshot in the case of a replication, * non-incremental send. */ zfs_close(zhp); return (0); } err = hold_for_send(zhp, sdd); if (err) { if (err == ENOENT) err = 0; zfs_close(zhp); return (err); } /* send it */ if (sdd->verbose) { (void) fprintf(stderr, "sending from @%s to %s\n", sdd->prevsnap, zhp->zfs_name); } err = dump_ioctl(zhp, sdd->prevsnap, sdd->prevsnap_obj, sdd->prevsnap[0] == '\0' && (sdd->fromorigin || sdd->replicate), sdd->outfd, sdd->debugnv); (void) strcpy(sdd->prevsnap, thissnap); sdd->prevsnap_obj = zfs_prop_get_int(zhp, ZFS_PROP_OBJSETID); zfs_close(zhp); return (err); } static int dump_filesystem(zfs_handle_t *zhp, void *arg) { int rv = 0; send_dump_data_t *sdd = arg; boolean_t missingfrom = B_FALSE; zfs_cmd_t zc = { 0 }; (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->tosnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { (void) fprintf(stderr, "WARNING: " "could not send %s@%s: does not exist\n", zhp->zfs_name, sdd->tosnap); sdd->err = B_TRUE; return (0); } if (sdd->replicate && sdd->fromsnap) { /* * If this fs does not have fromsnap, and we're doing * recursive, we need to send a full stream from the * beginning (or an incremental from the origin if this * is a clone). If we're doing non-recursive, then let * them get the error. */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", zhp->zfs_name, sdd->fromsnap); if (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) { missingfrom = B_TRUE; } } sdd->seenfrom = sdd->seento = sdd->prevsnap[0] = 0; sdd->prevsnap_obj = 0; if (sdd->fromsnap == NULL || missingfrom) sdd->seenfrom = B_TRUE; rv = zfs_iter_snapshots_sorted(zhp, dump_snapshot, arg); if (!sdd->seenfrom) { (void) fprintf(stderr, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) does not exist\n", zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); sdd->err = B_TRUE; } else if (!sdd->seento) { if (sdd->fromsnap) { (void) fprintf(stderr, "WARNING: could not send %s@%s:\n" "incremental source (%s@%s) " "is not earlier than it\n", zhp->zfs_name, sdd->tosnap, zhp->zfs_name, sdd->fromsnap); } else { (void) fprintf(stderr, "WARNING: " "could not send %s@%s: does not exist\n", zhp->zfs_name, sdd->tosnap); } sdd->err = B_TRUE; } return (rv); } static int dump_filesystems(zfs_handle_t *rzhp, void *arg) { send_dump_data_t *sdd = arg; nvpair_t *fspair; boolean_t needagain, progress; if (!sdd->replicate) return (dump_filesystem(rzhp, sdd)); /* Mark the clone origin snapshots. */ for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *nvfs; uint64_t origin_guid = 0; VERIFY(0 == nvpair_value_nvlist(fspair, &nvfs)); (void) nvlist_lookup_uint64(nvfs, "origin", &origin_guid); if (origin_guid != 0) { char *snapname; nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, &snapname); if (origin_nv != NULL) { nvlist_t *snapprops; VERIFY(0 == nvlist_lookup_nvlist(origin_nv, "snapprops", &snapprops)); VERIFY(0 == nvlist_lookup_nvlist(snapprops, snapname, &snapprops)); VERIFY(0 == nvlist_add_boolean( snapprops, "is_clone_origin")); } } } again: needagain = progress = B_FALSE; for (fspair = nvlist_next_nvpair(sdd->fss, NULL); fspair; fspair = nvlist_next_nvpair(sdd->fss, fspair)) { nvlist_t *fslist; char *fsname; zfs_handle_t *zhp; int err; uint64_t origin_guid = 0; VERIFY(nvpair_value_nvlist(fspair, &fslist) == 0); if (nvlist_lookup_boolean(fslist, "sent") == 0) continue; VERIFY(nvlist_lookup_string(fslist, "name", &fsname) == 0); (void) nvlist_lookup_uint64(fslist, "origin", &origin_guid); if (origin_guid != 0) { nvlist_t *origin_nv = fsavl_find(sdd->fsavl, origin_guid, NULL); if (origin_nv != NULL && nvlist_lookup_boolean(origin_nv, "sent") == ENOENT) { /* * origin has not been sent yet; * skip this clone. */ needagain = B_TRUE; continue; } } zhp = zfs_open(rzhp->zfs_hdl, fsname, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); err = dump_filesystem(zhp, sdd); VERIFY(nvlist_add_boolean(fslist, "sent") == 0); progress = B_TRUE; zfs_close(zhp); if (err) return (err); } if (needagain) { assert(progress); goto again; } return (0); } /* * Generate a send stream for the dataset identified by the argument zhp. * * The content of the send stream is the snapshot identified by * 'tosnap'. Incremental streams are requested in two ways: * - from the snapshot identified by "fromsnap" (if non-null) or * - from the origin of the dataset identified by zhp, which must * be a clone. In this case, "fromsnap" is null and "fromorigin" * is TRUE. * * The send stream is recursive (i.e. dumps a hierarchy of snapshots) and * uses a special header (with a hdrtype field of DMU_COMPOUNDSTREAM) * if "replicate" is set. If "doall" is set, dump all the intermediate * snapshots. The DMU_COMPOUNDSTREAM header is used in the "doall" * case too. If "props" is set, send properties. */ int zfs_send(zfs_handle_t *zhp, const char *fromsnap, const char *tosnap, sendflags_t flags, int outfd, snapfilter_cb_t filter_func, void *cb_arg, nvlist_t **debugnvp) { char errbuf[1024]; send_dump_data_t sdd = { 0 }; int err; nvlist_t *fss = NULL; avl_tree_t *fsavl = NULL; static uint64_t holdseq; int spa_version; boolean_t holdsnaps = B_FALSE; pthread_t tid; int pipefd[2]; dedup_arg_t dda = { 0 }; int featureflags = 0; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot send '%s'"), zhp->zfs_name); if (fromsnap && fromsnap[0] == '\0') { zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "zero-length incremental source")); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); } if (zhp->zfs_type == ZFS_TYPE_FILESYSTEM) { uint64_t version; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (version >= ZPL_VERSION_SA) { featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; } } if (zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS && (flags.doall || flags.replicate)) holdsnaps = B_TRUE; if (flags.dedup) { featureflags |= (DMU_BACKUP_FEATURE_DEDUP | DMU_BACKUP_FEATURE_DEDUPPROPS); if (err = pipe(pipefd)) { zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_PIPEFAILED, errbuf)); } dda.outputfd = outfd; dda.inputfd = pipefd[1]; dda.dedup_hdl = zhp->zfs_hdl; if (err = pthread_create(&tid, NULL, cksummer, &dda)) { (void) close(pipefd[0]); (void) close(pipefd[1]); zfs_error_aux(zhp->zfs_hdl, strerror(errno)); return (zfs_error(zhp->zfs_hdl, EZFS_THREADCREATEFAILED, errbuf)); } } if (flags.replicate || flags.doall || flags.props) { dmu_replay_record_t drr = { 0 }; char *packbuf = NULL; size_t buflen = 0; zio_cksum_t zc = { 0 }; if (flags.replicate || flags.props) { nvlist_t *hdrnv; VERIFY(0 == nvlist_alloc(&hdrnv, NV_UNIQUE_NAME, 0)); if (fromsnap) { VERIFY(0 == nvlist_add_string(hdrnv, "fromsnap", fromsnap)); } VERIFY(0 == nvlist_add_string(hdrnv, "tosnap", tosnap)); if (!flags.replicate) { VERIFY(0 == nvlist_add_boolean(hdrnv, "not_recursive")); } err = gather_nvlist(zhp->zfs_hdl, zhp->zfs_name, fromsnap, tosnap, flags.replicate, &fss, &fsavl); if (err) goto err_out; VERIFY(0 == nvlist_add_nvlist(hdrnv, "fss", fss)); err = nvlist_pack(hdrnv, &packbuf, &buflen, NV_ENCODE_XDR, 0); if (debugnvp) *debugnvp = hdrnv; else nvlist_free(hdrnv); if (err) { fsavl_destroy(fsavl); nvlist_free(fss); goto stderr_out; } } /* write first begin record */ drr.drr_type = DRR_BEGIN; drr.drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; DMU_SET_STREAM_HDRTYPE(drr.drr_u.drr_begin.drr_versioninfo, DMU_COMPOUNDSTREAM); DMU_SET_FEATUREFLAGS(drr.drr_u.drr_begin.drr_versioninfo, featureflags); (void) snprintf(drr.drr_u.drr_begin.drr_toname, sizeof (drr.drr_u.drr_begin.drr_toname), "%s@%s", zhp->zfs_name, tosnap); drr.drr_payloadlen = buflen; err = cksum_and_write(&drr, sizeof (drr), &zc, outfd); /* write header nvlist */ if (err != -1 && packbuf != NULL) { err = cksum_and_write(packbuf, buflen, &zc, outfd); } free(packbuf); if (err == -1) { fsavl_destroy(fsavl); nvlist_free(fss); err = errno; goto stderr_out; } /* write end record */ if (err != -1) { bzero(&drr, sizeof (drr)); drr.drr_type = DRR_END; drr.drr_u.drr_end.drr_checksum = zc; err = write(outfd, &drr, sizeof (drr)); if (err == -1) { fsavl_destroy(fsavl); nvlist_free(fss); err = errno; goto stderr_out; } } } /* dump each stream */ sdd.fromsnap = fromsnap; sdd.tosnap = tosnap; if (flags.dedup) sdd.outfd = pipefd[0]; else sdd.outfd = outfd; sdd.replicate = flags.replicate; sdd.doall = flags.doall; sdd.fromorigin = flags.fromorigin; sdd.fss = fss; sdd.fsavl = fsavl; sdd.verbose = flags.verbose; sdd.filter_cb = filter_func; sdd.filter_cb_arg = cb_arg; if (debugnvp) sdd.debugnv = *debugnvp; if (holdsnaps) { ++holdseq; (void) snprintf(sdd.holdtag, sizeof (sdd.holdtag), ".send-%d-%llu", getpid(), (u_longlong_t)holdseq); sdd.cleanup_fd = open(ZFS_DEV, O_RDWR|O_EXCL); if (sdd.cleanup_fd < 0) { err = errno; goto stderr_out; } } else { sdd.cleanup_fd = -1; } err = dump_filesystems(zhp, &sdd); fsavl_destroy(fsavl); nvlist_free(fss); if (flags.dedup) { (void) close(pipefd[0]); (void) pthread_join(tid, NULL); } if (sdd.cleanup_fd != -1) { VERIFY(0 == close(sdd.cleanup_fd)); sdd.cleanup_fd = -1; } if (flags.replicate || flags.doall || flags.props) { /* * write final end record. NB: want to do this even if * there was some error, because it might not be totally * failed. */ dmu_replay_record_t drr = { 0 }; drr.drr_type = DRR_END; if (write(outfd, &drr, sizeof (drr)) == -1) { return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (err || sdd.err); stderr_out: err = zfs_standard_error(zhp->zfs_hdl, err, errbuf); err_out: if (sdd.cleanup_fd != -1) VERIFY(0 == close(sdd.cleanup_fd)); if (flags.dedup) { (void) pthread_cancel(tid); (void) pthread_join(tid, NULL); (void) close(pipefd[0]); } return (err); } /* * Routines specific to "zfs recv" */ static int recv_read(libzfs_handle_t *hdl, int fd, void *buf, int ilen, boolean_t byteswap, zio_cksum_t *zc) { char *cp = buf; int rv; int len = ilen; do { rv = read(fd, cp, len); cp += rv; len -= rv; } while (rv > 0); if (rv < 0 || len != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to read from stream")); return (zfs_error(hdl, EZFS_BADSTREAM, dgettext(TEXT_DOMAIN, "cannot receive"))); } if (zc) { if (byteswap) fletcher_4_incremental_byteswap(buf, ilen, zc); else fletcher_4_incremental_native(buf, ilen, zc); } return (0); } static int recv_read_nvlist(libzfs_handle_t *hdl, int fd, int len, nvlist_t **nvp, boolean_t byteswap, zio_cksum_t *zc) { char *buf; int err; buf = zfs_alloc(hdl, len); if (buf == NULL) return (ENOMEM); err = recv_read(hdl, fd, buf, len, byteswap, zc); if (err != 0) { free(buf); return (err); } err = nvlist_unpack(buf, len, nvp, 0); free(buf); if (err != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (malformed nvlist)")); return (EINVAL); } return (0); } static int recv_rename(libzfs_handle_t *hdl, const char *name, const char *tryname, int baselen, char *newname, recvflags_t flags) { static int seq; zfs_cmd_t zc = { 0 }; int err; prop_changelist_t *clp; zfs_handle_t *zhp; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags.force ? MS_FORCE : 0); zfs_close(zhp); if (clp == NULL) return (-1); err = changelist_prefix(clp); if (err) return (err); zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); if (tryname) { (void) strcpy(newname, tryname); (void) strlcpy(zc.zc_value, tryname, sizeof (zc.zc_value)); if (flags.verbose) { (void) printf("attempting rename %s to %s\n", zc.zc_name, zc.zc_value); } err = ioctl(hdl->libzfs_fd, ZFS_IOC_RENAME, &zc); if (err == 0) changelist_rename(clp, name, tryname); } else { err = ENOENT; } if (err != 0 && strncmp(name+baselen, "recv-", 5) != 0) { seq++; (void) strncpy(newname, name, baselen); (void) snprintf(newname+baselen, ZFS_MAXNAMELEN-baselen, - "recv-%u-%u", getpid(), seq); + "recv-%ld-%u", (long) getpid(), seq); (void) strlcpy(zc.zc_value, newname, sizeof (zc.zc_value)); if (flags.verbose) { (void) printf("failed - trying rename %s to %s\n", zc.zc_name, zc.zc_value); } err = ioctl(hdl->libzfs_fd, ZFS_IOC_RENAME, &zc); if (err == 0) changelist_rename(clp, name, newname); if (err && flags.verbose) { (void) printf("failed (%u) - " "will try again on next pass\n", errno); } err = EAGAIN; } else if (flags.verbose) { if (err == 0) (void) printf("success\n"); else (void) printf("failed (%u)\n", errno); } (void) changelist_postfix(clp); changelist_free(clp); return (err); } static int recv_destroy(libzfs_handle_t *hdl, const char *name, int baselen, char *newname, recvflags_t flags) { zfs_cmd_t zc = { 0 }; int err = 0; prop_changelist_t *clp; zfs_handle_t *zhp; boolean_t defer = B_FALSE; int spa_version; zhp = zfs_open(hdl, name, ZFS_TYPE_DATASET); if (zhp == NULL) return (-1); clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, flags.force ? MS_FORCE : 0); if (zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_spa_version(zhp, &spa_version) == 0 && spa_version >= SPA_VERSION_USERREFS) defer = B_TRUE; zfs_close(zhp); if (clp == NULL) return (-1); err = changelist_prefix(clp); if (err) return (err); zc.zc_objset_type = DMU_OST_ZFS; zc.zc_defer_destroy = defer; (void) strlcpy(zc.zc_name, name, sizeof (zc.zc_name)); if (flags.verbose) (void) printf("attempting destroy %s\n", zc.zc_name); err = ioctl(hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc); if (err == 0) { if (flags.verbose) (void) printf("success\n"); changelist_remove(clp, zc.zc_name); } (void) changelist_postfix(clp); changelist_free(clp); /* * Deferred destroy might destroy the snapshot or only mark it to be * destroyed later, and it returns success in either case. */ if (err != 0 || (defer && zfs_dataset_exists(hdl, name, ZFS_TYPE_SNAPSHOT))) { err = recv_rename(hdl, name, NULL, baselen, newname, flags); } return (err); } typedef struct guid_to_name_data { uint64_t guid; char *name; } guid_to_name_data_t; static int guid_to_name_cb(zfs_handle_t *zhp, void *arg) { guid_to_name_data_t *gtnd = arg; int err; if (zhp->zfs_dmustats.dds_guid == gtnd->guid) { (void) strcpy(gtnd->name, zhp->zfs_name); zfs_close(zhp); return (EEXIST); } err = zfs_iter_children(zhp, guid_to_name_cb, gtnd); zfs_close(zhp); return (err); } static int guid_to_name(libzfs_handle_t *hdl, const char *parent, uint64_t guid, char *name) { /* exhaustive search all local snapshots */ guid_to_name_data_t gtnd; int err = 0; zfs_handle_t *zhp; char *cp; gtnd.guid = guid; gtnd.name = name; if (strchr(parent, '@') == NULL) { zhp = make_dataset_handle(hdl, parent); if (zhp != NULL) { err = zfs_iter_children(zhp, guid_to_name_cb, >nd); zfs_close(zhp); if (err == EEXIST) return (0); } } cp = strchr(parent, '/'); if (cp) *cp = '\0'; zhp = make_dataset_handle(hdl, parent); if (cp) *cp = '/'; if (zhp) { err = zfs_iter_children(zhp, guid_to_name_cb, >nd); zfs_close(zhp); } return (err == EEXIST ? 0 : ENOENT); } /* * Return true if dataset guid1 is created before guid2. */ static int created_before(libzfs_handle_t *hdl, avl_tree_t *avl, uint64_t guid1, uint64_t guid2) { nvlist_t *nvfs; char *fsname, *snapname; char buf[ZFS_MAXNAMELEN]; int rv; zfs_node_t zn1, zn2; if (guid2 == 0) return (0); if (guid1 == 0) return (1); nvfs = fsavl_find(avl, guid1, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); zn1.zn_handle = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (zn1.zn_handle == NULL) return (-1); nvfs = fsavl_find(avl, guid2, &snapname); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); (void) snprintf(buf, sizeof (buf), "%s@%s", fsname, snapname); zn2.zn_handle = zfs_open(hdl, buf, ZFS_TYPE_SNAPSHOT); if (zn2.zn_handle == NULL) { zfs_close(zn2.zn_handle); return (-1); } rv = (zfs_snapshot_compare(&zn1, &zn2) == -1); zfs_close(zn1.zn_handle); zfs_close(zn2.zn_handle); return (rv); } static int recv_incremental_replication(libzfs_handle_t *hdl, const char *tofs, recvflags_t flags, nvlist_t *stream_nv, avl_tree_t *stream_avl, nvlist_t *renamed) { nvlist_t *local_nv; avl_tree_t *local_avl; nvpair_t *fselem, *nextfselem; char *fromsnap; char newname[ZFS_MAXNAMELEN]; int error; boolean_t needagain, progress, recursive; char *s1, *s2; VERIFY(0 == nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap)); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (flags.dryrun) return (0); again: needagain = progress = B_FALSE; if ((error = gather_nvlist(hdl, tofs, fromsnap, NULL, recursive, &local_nv, &local_avl)) != 0) return (error); /* * Process deletes and renames */ for (fselem = nvlist_next_nvpair(local_nv, NULL); fselem; fselem = nextfselem) { nvlist_t *nvfs, *snaps; nvlist_t *stream_nvfs = NULL; nvpair_t *snapelem, *nextsnapelem; uint64_t fromguid = 0; uint64_t originguid = 0; uint64_t stream_originguid = 0; uint64_t parent_fromsnap_guid, stream_parent_fromsnap_guid; char *fsname, *stream_fsname; nextfselem = nvlist_next_nvpair(local_nv, fselem); VERIFY(0 == nvpair_value_nvlist(fselem, &nvfs)); VERIFY(0 == nvlist_lookup_nvlist(nvfs, "snaps", &snaps)); VERIFY(0 == nvlist_lookup_string(nvfs, "name", &fsname)); VERIFY(0 == nvlist_lookup_uint64(nvfs, "parentfromsnap", &parent_fromsnap_guid)); (void) nvlist_lookup_uint64(nvfs, "origin", &originguid); /* * First find the stream's fs, so we can check for * a different origin (due to "zfs promote") */ for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nvlist_next_nvpair(snaps, snapelem)) { uint64_t thisguid; VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); stream_nvfs = fsavl_find(stream_avl, thisguid, NULL); if (stream_nvfs != NULL) break; } /* check for promote */ (void) nvlist_lookup_uint64(stream_nvfs, "origin", &stream_originguid); if (stream_nvfs && originguid != stream_originguid) { switch (created_before(hdl, local_avl, stream_originguid, originguid)) { case 1: { /* promote it! */ zfs_cmd_t zc = { 0 }; nvlist_t *origin_nvfs; char *origin_fsname; if (flags.verbose) (void) printf("promoting %s\n", fsname); origin_nvfs = fsavl_find(local_avl, originguid, NULL); VERIFY(0 == nvlist_lookup_string(origin_nvfs, "name", &origin_fsname)); (void) strlcpy(zc.zc_value, origin_fsname, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, fsname, sizeof (zc.zc_name)); error = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (error == 0) progress = B_TRUE; break; } default: break; case -1: fsavl_destroy(local_avl); nvlist_free(local_nv); return (-1); } /* * We had/have the wrong origin, therefore our * list of snapshots is wrong. Need to handle * them on the next pass. */ needagain = B_TRUE; continue; } for (snapelem = nvlist_next_nvpair(snaps, NULL); snapelem; snapelem = nextsnapelem) { uint64_t thisguid; char *stream_snapname; nvlist_t *found, *props; nextsnapelem = nvlist_next_nvpair(snaps, snapelem); VERIFY(0 == nvpair_value_uint64(snapelem, &thisguid)); found = fsavl_find(stream_avl, thisguid, &stream_snapname); /* check for delete */ if (found == NULL) { char name[ZFS_MAXNAMELEN]; if (!flags.force) continue; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); error = recv_destroy(hdl, name, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; continue; } stream_nvfs = found; if (0 == nvlist_lookup_nvlist(stream_nvfs, "snapprops", &props) && 0 == nvlist_lookup_nvlist(props, stream_snapname, &props)) { zfs_cmd_t zc = { 0 }; zc.zc_cookie = B_TRUE; /* received */ (void) snprintf(zc.zc_name, sizeof (zc.zc_name), "%s@%s", fsname, nvpair_name(snapelem)); if (zcmd_write_src_nvlist(hdl, &zc, props) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); zcmd_free_nvlists(&zc); } } /* check for different snapname */ if (strcmp(nvpair_name(snapelem), stream_snapname) != 0) { char name[ZFS_MAXNAMELEN]; char tryname[ZFS_MAXNAMELEN]; (void) snprintf(name, sizeof (name), "%s@%s", fsname, nvpair_name(snapelem)); (void) snprintf(tryname, sizeof (name), "%s@%s", fsname, stream_snapname); error = recv_rename(hdl, name, tryname, strlen(fsname)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; } if (strcmp(stream_snapname, fromsnap) == 0) fromguid = thisguid; } /* check for delete */ if (stream_nvfs == NULL) { if (!flags.force) continue; error = recv_destroy(hdl, fsname, strlen(tofs)+1, newname, flags); if (error) needagain = B_TRUE; else progress = B_TRUE; continue; } if (fromguid == 0) { if (flags.verbose) { (void) printf("local fs %s does not have " "fromsnap (%s in stream); must have " "been deleted locally; ignoring\n", fsname, fromsnap); } continue; } VERIFY(0 == nvlist_lookup_string(stream_nvfs, "name", &stream_fsname)); VERIFY(0 == nvlist_lookup_uint64(stream_nvfs, "parentfromsnap", &stream_parent_fromsnap_guid)); s1 = strrchr(fsname, '/'); s2 = strrchr(stream_fsname, '/'); /* * Check for rename. If the exact receive path is specified, it * does not count as a rename, but we still need to check the * datasets beneath it. */ if ((stream_parent_fromsnap_guid != 0 && parent_fromsnap_guid != 0 && stream_parent_fromsnap_guid != parent_fromsnap_guid) || ((flags.isprefix || strcmp(tofs, fsname) != 0) && (s1 != NULL) && (s2 != NULL) && strcmp(s1, s2) != 0)) { nvlist_t *parent; char tryname[ZFS_MAXNAMELEN]; parent = fsavl_find(local_avl, stream_parent_fromsnap_guid, NULL); /* * NB: parent might not be found if we used the * tosnap for stream_parent_fromsnap_guid, * because the parent is a newly-created fs; * we'll be able to rename it after we recv the * new fs. */ if (parent != NULL) { char *pname; VERIFY(0 == nvlist_lookup_string(parent, "name", &pname)); (void) snprintf(tryname, sizeof (tryname), "%s%s", pname, strrchr(stream_fsname, '/')); } else { tryname[0] = '\0'; if (flags.verbose) { (void) printf("local fs %s new parent " "not found\n", fsname); } } newname[0] = '\0'; error = recv_rename(hdl, fsname, tryname, strlen(tofs)+1, newname, flags); if (renamed != NULL && newname[0] != '\0') { VERIFY(0 == nvlist_add_boolean(renamed, newname)); } if (error) needagain = B_TRUE; else progress = B_TRUE; } } fsavl_destroy(local_avl); nvlist_free(local_nv); if (needagain && progress) { /* do another pass to fix up temporary names */ if (flags.verbose) (void) printf("another pass:\n"); goto again; } return (needagain); } static int zfs_receive_package(libzfs_handle_t *hdl, int fd, const char *destname, recvflags_t flags, dmu_replay_record_t *drr, zio_cksum_t *zc, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { nvlist_t *stream_nv = NULL; avl_tree_t *stream_avl = NULL; char *fromsnap = NULL; char *cp; char tofs[ZFS_MAXNAMELEN]; char sendfs[ZFS_MAXNAMELEN]; char errbuf[1024]; dmu_replay_record_t drre; int error; boolean_t anyerr = B_FALSE; boolean_t softerr = B_FALSE; boolean_t recursive; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); assert(drr->drr_type == DRR_BEGIN); assert(drr->drr_u.drr_begin.drr_magic == DMU_BACKUP_MAGIC); assert(DMU_GET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo) == DMU_COMPOUNDSTREAM); /* * Read in the nvlist from the stream. */ if (drr->drr_payloadlen != 0) { error = recv_read_nvlist(hdl, fd, drr->drr_payloadlen, &stream_nv, flags.byteswap, zc); if (error) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } } recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (recursive && strchr(destname, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot stream")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } /* * Read in the end record and verify checksum. */ if (0 != (error = recv_read(hdl, fd, &drre, sizeof (drre), flags.byteswap, NULL))) goto out; if (flags.byteswap) { drre.drr_type = BSWAP_32(drre.drr_type); drre.drr_u.drr_end.drr_checksum.zc_word[0] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[0]); drre.drr_u.drr_end.drr_checksum.zc_word[1] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[1]); drre.drr_u.drr_end.drr_checksum.zc_word[2] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[2]); drre.drr_u.drr_end.drr_checksum.zc_word[3] = BSWAP_64(drre.drr_u.drr_end.drr_checksum.zc_word[3]); } if (drre.drr_type != DRR_END) { error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } if (!ZIO_CHECKSUM_EQUAL(drre.drr_u.drr_end.drr_checksum, *zc)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "incorrect header checksum")); error = zfs_error(hdl, EZFS_BADSTREAM, errbuf); goto out; } (void) nvlist_lookup_string(stream_nv, "fromsnap", &fromsnap); if (drr->drr_payloadlen != 0) { nvlist_t *stream_fss; VERIFY(0 == nvlist_lookup_nvlist(stream_nv, "fss", &stream_fss)); if ((stream_avl = fsavl_create(stream_fss)) == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "couldn't allocate avl tree")); error = zfs_error(hdl, EZFS_NOMEM, errbuf); goto out; } if (fromsnap != NULL) { nvlist_t *renamed = NULL; nvpair_t *pair = NULL; (void) strlcpy(tofs, destname, ZFS_MAXNAMELEN); if (flags.isprefix) { struct drr_begin *drrb = &drr->drr_u.drr_begin; int i; if (flags.istail) { cp = strrchr(drrb->drr_toname, '/'); if (cp == NULL) { (void) strlcat(tofs, "/", ZFS_MAXNAMELEN); i = 0; } else { i = (cp - drrb->drr_toname); } } else { i = strcspn(drrb->drr_toname, "/@"); } /* zfs_receive_one() will create_parents() */ (void) strlcat(tofs, &drrb->drr_toname[i], ZFS_MAXNAMELEN); *strchr(tofs, '@') = '\0'; } if (recursive && !flags.dryrun && !flags.nomount) { VERIFY(0 == nvlist_alloc(&renamed, NV_UNIQUE_NAME, 0)); } softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, renamed); /* Unmount renamed filesystems before receiving. */ while ((pair = nvlist_next_nvpair(renamed, pair)) != NULL) { zfs_handle_t *zhp; prop_changelist_t *clp = NULL; zhp = zfs_open(hdl, nvpair_name(pair), ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, 0); zfs_close(zhp); if (clp != NULL) { softerr |= changelist_prefix(clp); changelist_free(clp); } } } nvlist_free(renamed); } } /* * Get the fs specified by the first path in the stream (the top level * specified by 'zfs send') and pass it to each invocation of * zfs_receive_one(). */ (void) strlcpy(sendfs, drr->drr_u.drr_begin.drr_toname, ZFS_MAXNAMELEN); if ((cp = strchr(sendfs, '@')) != NULL) *cp = '\0'; /* Finally, receive each contained stream */ do { /* * we should figure out if it has a recoverable * error, in which case do a recv_skip() and drive on. * Note, if we fail due to already having this guid, * zfs_receive_one() will take care of it (ie, * recv_skip() and return 0). */ error = zfs_receive_impl(hdl, destname, flags, fd, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep); if (error == ENODATA) { error = 0; break; } anyerr |= error; } while (error == 0); if (drr->drr_payloadlen != 0 && fromsnap != NULL) { /* * Now that we have the fs's they sent us, try the * renames again. */ softerr = recv_incremental_replication(hdl, tofs, flags, stream_nv, stream_avl, NULL); } out: fsavl_destroy(stream_avl); if (stream_nv) nvlist_free(stream_nv); if (softerr) error = -2; if (anyerr) error = -1; return (error); } static void trunc_prop_errs(int truncated) { ASSERT(truncated != 0); if (truncated == 1) (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "1 more property could not be set\n")); else (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "%d more properties could not be set\n"), truncated); } static int recv_skip(libzfs_handle_t *hdl, int fd, boolean_t byteswap) { dmu_replay_record_t *drr; void *buf = malloc(1<<20); char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive:")); /* XXX would be great to use lseek if possible... */ drr = buf; while (recv_read(hdl, fd, drr, sizeof (dmu_replay_record_t), byteswap, NULL) == 0) { if (byteswap) drr->drr_type = BSWAP_32(drr->drr_type); switch (drr->drr_type) { case DRR_BEGIN: /* NB: not to be used on v2 stream packages */ if (drr->drr_payloadlen != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid substream header")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } break; case DRR_END: free(buf); return (0); case DRR_OBJECT: if (byteswap) { drr->drr_u.drr_object.drr_bonuslen = BSWAP_32(drr->drr_u.drr_object. drr_bonuslen); } (void) recv_read(hdl, fd, buf, P2ROUNDUP(drr->drr_u.drr_object.drr_bonuslen, 8), B_FALSE, NULL); break; case DRR_WRITE: if (byteswap) { drr->drr_u.drr_write.drr_length = BSWAP_64(drr->drr_u.drr_write.drr_length); } (void) recv_read(hdl, fd, buf, drr->drr_u.drr_write.drr_length, B_FALSE, NULL); break; case DRR_SPILL: if (byteswap) { drr->drr_u.drr_write.drr_length = BSWAP_64(drr->drr_u.drr_spill.drr_length); } (void) recv_read(hdl, fd, buf, drr->drr_u.drr_spill.drr_length, B_FALSE, NULL); break; case DRR_WRITE_BYREF: case DRR_FREEOBJECTS: case DRR_FREE: break; default: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid record type")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } } free(buf); return (-1); } /* * Restores a backup of tosnap from the file descriptor specified by infd. */ static int zfs_receive_one(libzfs_handle_t *hdl, int infd, const char *tosnap, recvflags_t flags, dmu_replay_record_t *drr, dmu_replay_record_t *drr_noswap, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { zfs_cmd_t zc = { 0 }; time_t begin_time; int ioctl_err, ioctl_errno, err; char *cp; struct drr_begin *drrb = &drr->drr_u.drr_begin; char errbuf[1024]; char prop_errbuf[1024]; const char *chopprefix; boolean_t newfs = B_FALSE; boolean_t stream_wantsnewfs; uint64_t parent_snapguid = 0; prop_changelist_t *clp = NULL; nvlist_t *snapprops_nvlist = NULL; zprop_errflags_t prop_errflags; boolean_t recursive; begin_time = time(NULL); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); recursive = (nvlist_lookup_boolean(stream_nv, "not_recursive") == ENOENT); if (stream_avl != NULL) { char *snapname; nvlist_t *fs = fsavl_find(stream_avl, drrb->drr_toguid, &snapname); nvlist_t *props; int ret; (void) nvlist_lookup_uint64(fs, "parentfromsnap", &parent_snapguid); err = nvlist_lookup_nvlist(fs, "props", &props); if (err) VERIFY(0 == nvlist_alloc(&props, NV_UNIQUE_NAME, 0)); if (flags.canmountoff) { VERIFY(0 == nvlist_add_uint64(props, zfs_prop_to_name(ZFS_PROP_CANMOUNT), 0)); } ret = zcmd_write_src_nvlist(hdl, &zc, props); if (err) nvlist_free(props); if (0 == nvlist_lookup_nvlist(fs, "snapprops", &props)) { VERIFY(0 == nvlist_lookup_nvlist(props, snapname, &snapprops_nvlist)); } if (ret != 0) return (-1); } cp = NULL; /* * Determine how much of the snapshot name stored in the stream * we are going to tack on to the name they specified on the * command line, and how much we are going to chop off. * * If they specified a snapshot, chop the entire name stored in * the stream. */ if (flags.istail) { /* * A filesystem was specified with -e. We want to tack on only * the tail of the sent snapshot path. */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -e")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } chopprefix = strrchr(sendfs, '/'); if (chopprefix == NULL) { /* * The tail is the poolname, so we need to * prepend a path separator. */ int len = strlen(drrb->drr_toname); cp = malloc(len + 2); cp[0] = '/'; (void) strcpy(&cp[1], drrb->drr_toname); chopprefix = cp; } else { chopprefix = drrb->drr_toname + (chopprefix - sendfs); } } else if (flags.isprefix) { /* * A filesystem was specified with -d. We want to tack on * everything but the first element of the sent snapshot path * (all but the pool name). */ if (strchr(tosnap, '@')) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "argument - snapshot not allowed with -d")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } chopprefix = strchr(drrb->drr_toname, '/'); if (chopprefix == NULL) chopprefix = strchr(drrb->drr_toname, '@'); } else if (strchr(tosnap, '@') == NULL) { /* * If a filesystem was specified without -d or -e, we want to * tack on everything after the fs specified by 'zfs send'. */ chopprefix = drrb->drr_toname + strlen(sendfs); } else { /* A snapshot was specified as an exact path (no -d or -e). */ if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "cannot specify snapshot name for multi-snapshot " "stream")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } chopprefix = drrb->drr_toname + strlen(drrb->drr_toname); } ASSERT(strstr(drrb->drr_toname, sendfs) == drrb->drr_toname); ASSERT(chopprefix > drrb->drr_toname); ASSERT(chopprefix <= drrb->drr_toname + strlen(drrb->drr_toname)); ASSERT(chopprefix[0] == '/' || chopprefix[0] == '@' || chopprefix[0] == '\0'); /* * Determine name of destination snapshot, store in zc_value. */ (void) strcpy(zc.zc_top_ds, tosnap); (void) strcpy(zc.zc_value, tosnap); (void) strncat(zc.zc_value, chopprefix, sizeof (zc.zc_value)); free(cp); if (!zfs_name_valid(zc.zc_value, ZFS_TYPE_SNAPSHOT)) { zcmd_free_nvlists(&zc); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* * Determine the name of the origin snapshot, store in zc_string. */ if (drrb->drr_flags & DRR_FLAG_CLONE) { if (guid_to_name(hdl, tosnap, drrb->drr_fromguid, zc.zc_string) != 0) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "local origin for clone %s does not exist"), zc.zc_value); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } if (flags.verbose) (void) printf("found clone origin %s\n", zc.zc_string); } - stream_wantsnewfs = (drrb->drr_fromguid == NULL || + stream_wantsnewfs = (drrb->drr_fromguid == 0 || (drrb->drr_flags & DRR_FLAG_CLONE)); if (stream_wantsnewfs) { /* * if the parent fs does not exist, look for it based on * the parent snap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive new filesystem stream")); (void) strcpy(zc.zc_name, zc.zc_value); cp = strrchr(zc.zc_name, '/'); if (cp) *cp = '\0'; if (cp && !zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { char suffix[ZFS_MAXNAMELEN]; (void) strcpy(suffix, strrchr(zc.zc_value, '/')); if (guid_to_name(hdl, tosnap, parent_snapguid, zc.zc_value) == 0) { *strchr(zc.zc_value, '@') = '\0'; (void) strcat(zc.zc_value, suffix); } } } else { /* * if the fs does not exist, look for it based on the * fromsnap GUID */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive incremental stream")); (void) strcpy(zc.zc_name, zc.zc_value); *strchr(zc.zc_name, '@') = '\0'; /* * If the exact receive path was specified and this is the * topmost path in the stream, then if the fs does not exist we * should look no further. */ if ((flags.isprefix || (*(chopprefix = drrb->drr_toname + strlen(sendfs)) != '\0' && *chopprefix != '@')) && !zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { char snap[ZFS_MAXNAMELEN]; (void) strcpy(snap, strchr(zc.zc_value, '@')); if (guid_to_name(hdl, tosnap, drrb->drr_fromguid, zc.zc_value) == 0) { *strchr(zc.zc_value, '@') = '\0'; (void) strcat(zc.zc_value, snap); } } } (void) strcpy(zc.zc_name, zc.zc_value); *strchr(zc.zc_name, '@') = '\0'; if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { zfs_handle_t *zhp; /* * Destination fs exists. Therefore this should either * be an incremental, or the stream specifies a new fs * (full stream or clone) and they want us to blow it * away (and have therefore specified -F and removed any * snapshots). */ if (stream_wantsnewfs) { if (!flags.force) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' exists\n" "must specify -F to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination has snapshots (eg. %s)\n" "must destroy them to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } } if ((zhp = zfs_open(hdl, zc.zc_name, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { zcmd_free_nvlists(&zc); return (-1); } if (stream_wantsnewfs && zhp->zfs_dmustats.dds_origin[0]) { zcmd_free_nvlists(&zc); zfs_close(zhp); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' is a clone\n" "must destroy it to overwrite it"), zc.zc_name); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (!flags.dryrun && zhp->zfs_type == ZFS_TYPE_FILESYSTEM && stream_wantsnewfs) { /* We can't do online recv in this case */ clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0); if (clp == NULL) { zfs_close(zhp); zcmd_free_nvlists(&zc); return (-1); } if (changelist_prefix(clp) != 0) { changelist_free(clp); zfs_close(zhp); zcmd_free_nvlists(&zc); return (-1); } } zfs_close(zhp); } else { /* * Destination filesystem does not exist. Therefore we better * be creating a new filesystem (either from a full backup, or * a clone). It would therefore be invalid if the user * specified only the pool name (i.e. if the destination name * contained no slash character). */ if (!stream_wantsnewfs || (cp = strrchr(zc.zc_name, '/')) == NULL) { zcmd_free_nvlists(&zc); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination '%s' does not exist"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* * Trim off the final dataset component so we perform the * recvbackup ioctl to the filesystems's parent. */ *cp = '\0'; if (flags.isprefix && !flags.istail && !flags.dryrun && create_parents(hdl, zc.zc_value, strlen(tosnap)) != 0) { zcmd_free_nvlists(&zc); return (zfs_error(hdl, EZFS_BADRESTORE, errbuf)); } newfs = B_TRUE; } zc.zc_begin_record = drr_noswap->drr_u.drr_begin; zc.zc_cookie = infd; zc.zc_guid = flags.force; if (flags.verbose) { (void) printf("%s %s stream of %s into %s\n", flags.dryrun ? "would receive" : "receiving", drrb->drr_fromguid ? "incremental" : "full", drrb->drr_toname, zc.zc_value); (void) fflush(stdout); } if (flags.dryrun) { zcmd_free_nvlists(&zc); return (recv_skip(hdl, infd, flags.byteswap)); } zc.zc_nvlist_dst = (uint64_t)(uintptr_t)prop_errbuf; zc.zc_nvlist_dst_size = sizeof (prop_errbuf); zc.zc_cleanup_fd = cleanup_fd; zc.zc_action_handle = *action_handlep; err = ioctl_err = zfs_ioctl(hdl, ZFS_IOC_RECV, &zc); ioctl_errno = errno; prop_errflags = (zprop_errflags_t)zc.zc_obj; if (err == 0) { nvlist_t *prop_errors; VERIFY(0 == nvlist_unpack((void *)(uintptr_t)zc.zc_nvlist_dst, zc.zc_nvlist_dst_size, &prop_errors, 0)); nvpair_t *prop_err = NULL; while ((prop_err = nvlist_next_nvpair(prop_errors, prop_err)) != NULL) { char tbuf[1024]; zfs_prop_t prop; int intval; prop = zfs_name_to_prop(nvpair_name(prop_err)); (void) nvpair_value_int32(prop_err, &intval); if (strcmp(nvpair_name(prop_err), ZPROP_N_MORE_ERRORS) == 0) { trunc_prop_errs(intval); break; } else { (void) snprintf(tbuf, sizeof (tbuf), dgettext(TEXT_DOMAIN, "cannot receive %s property on %s"), nvpair_name(prop_err), zc.zc_name); zfs_setprop_error(hdl, prop, intval, tbuf); } } nvlist_free(prop_errors); } zc.zc_nvlist_dst = 0; zc.zc_nvlist_dst_size = 0; zcmd_free_nvlists(&zc); if (err == 0 && snapprops_nvlist) { zfs_cmd_t zc2 = { 0 }; (void) strcpy(zc2.zc_name, zc.zc_value); zc2.zc_cookie = B_TRUE; /* received */ if (zcmd_write_src_nvlist(hdl, &zc2, snapprops_nvlist) == 0) { (void) zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc2); zcmd_free_nvlists(&zc2); } } if (err && (ioctl_errno == ENOENT || ioctl_errno == EEXIST)) { /* * It may be that this snapshot already exists, * in which case we want to consume & ignore it * rather than failing. */ avl_tree_t *local_avl; nvlist_t *local_nv, *fs; cp = strchr(zc.zc_value, '@'); /* * XXX Do this faster by just iterating over snaps in * this fs. Also if zc_value does not exist, we will * get a strange "does not exist" error message. */ *cp = '\0'; if (gather_nvlist(hdl, zc.zc_value, NULL, NULL, B_FALSE, &local_nv, &local_avl) == 0) { *cp = '@'; fs = fsavl_find(local_avl, drrb->drr_toguid, NULL); fsavl_destroy(local_avl); nvlist_free(local_nv); if (fs != NULL) { if (flags.verbose) { (void) printf("snap %s already exists; " "ignoring\n", zc.zc_value); } err = ioctl_err = recv_skip(hdl, infd, flags.byteswap); } } *cp = '@'; } if (ioctl_err != 0) { switch (ioctl_errno) { case ENODEV: cp = strchr(zc.zc_value, '@'); *cp = '\0'; zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "most recent snapshot of %s does not\n" "match incremental source"), zc.zc_value); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); *cp = '@'; break; case ETXTBSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s has been modified\n" "since most recent snapshot"), zc.zc_name); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); break; case EEXIST: cp = strchr(zc.zc_value, '@'); if (newfs) { /* it's the containing fs that exists */ *cp = '\0'; } zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination already exists")); (void) zfs_error_fmt(hdl, EZFS_EXISTS, dgettext(TEXT_DOMAIN, "cannot restore to %s"), zc.zc_value); *cp = '@'; break; case EINVAL: (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ECKSUM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid stream (checksum mismatch)")); (void) zfs_error(hdl, EZFS_BADSTREAM, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to receive this stream.")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case EDQUOT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "destination %s space quota exceeded"), zc.zc_name); (void) zfs_error(hdl, EZFS_BADRESTORE, errbuf); break; default: (void) zfs_standard_error(hdl, ioctl_errno, errbuf); } } /* * Mount the target filesystem (if created). Also mount any * children of the target filesystem if we did a replication * receive (indicated by stream_avl being non-NULL). */ cp = strchr(zc.zc_value, '@'); if (cp && (ioctl_err == 0 || !newfs)) { zfs_handle_t *h; *cp = '\0'; h = zfs_open(hdl, zc.zc_value, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME); if (h != NULL) { if (h->zfs_type == ZFS_TYPE_VOLUME) { *cp = '@'; } else if (newfs || stream_avl) { /* * Track the first/top of hierarchy fs, * for mounting and sharing later. */ if (top_zfs && *top_zfs == NULL) *top_zfs = zfs_strdup(hdl, zc.zc_value); } zfs_close(h); } *cp = '@'; } if (clp) { err |= changelist_postfix(clp); changelist_free(clp); } if (prop_errflags & ZPROP_ERR_NOCLEAR) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to clear unreceived properties on %s"), zc.zc_name); (void) fprintf(stderr, "\n"); } if (prop_errflags & ZPROP_ERR_NORESTORE) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "Warning: " "failed to restore original properties on %s"), zc.zc_name); (void) fprintf(stderr, "\n"); } if (err || ioctl_err) return (-1); *action_handlep = zc.zc_action_handle; if (flags.verbose) { char buf1[64]; char buf2[64]; uint64_t bytes = zc.zc_cookie; time_t delta = time(NULL) - begin_time; if (delta == 0) delta = 1; zfs_nicenum(bytes, buf1, sizeof (buf1)); zfs_nicenum(bytes/delta, buf2, sizeof (buf1)); (void) printf("received %sB stream in %lu seconds (%sB/sec)\n", buf1, delta, buf2); } return (0); } static int zfs_receive_impl(libzfs_handle_t *hdl, const char *tosnap, recvflags_t flags, int infd, const char *sendfs, nvlist_t *stream_nv, avl_tree_t *stream_avl, char **top_zfs, int cleanup_fd, uint64_t *action_handlep) { int err; dmu_replay_record_t drr, drr_noswap; struct drr_begin *drrb = &drr.drr_u.drr_begin; char errbuf[1024]; zio_cksum_t zcksum = { 0 }; uint64_t featureflags; int hdrtype; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot receive")); if (flags.isprefix && !zfs_dataset_exists(hdl, tosnap, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "specified fs " "(%s) does not exist"), tosnap); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* read in the BEGIN record */ if (0 != (err = recv_read(hdl, infd, &drr, sizeof (drr), B_FALSE, &zcksum))) return (err); if (drr.drr_type == DRR_END || drr.drr_type == BSWAP_32(DRR_END)) { /* It's the double end record at the end of a package */ return (ENODATA); } /* the kernel needs the non-byteswapped begin record */ drr_noswap = drr; flags.byteswap = B_FALSE; if (drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { /* * We computed the checksum in the wrong byteorder in * recv_read() above; do it again correctly. */ bzero(&zcksum, sizeof (zio_cksum_t)); fletcher_4_incremental_byteswap(&drr, sizeof (drr), &zcksum); flags.byteswap = B_TRUE; drr.drr_type = BSWAP_32(drr.drr_type); drr.drr_payloadlen = BSWAP_32(drr.drr_payloadlen); drrb->drr_magic = BSWAP_64(drrb->drr_magic); drrb->drr_versioninfo = BSWAP_64(drrb->drr_versioninfo); drrb->drr_creation_time = BSWAP_64(drrb->drr_creation_time); drrb->drr_type = BSWAP_32(drrb->drr_type); drrb->drr_flags = BSWAP_32(drrb->drr_flags); drrb->drr_toguid = BSWAP_64(drrb->drr_toguid); drrb->drr_fromguid = BSWAP_64(drrb->drr_fromguid); } if (drrb->drr_magic != DMU_BACKUP_MAGIC || drr.drr_type != DRR_BEGIN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad magic number)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); hdrtype = DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo); if (!DMU_STREAM_SUPPORTED(featureflags) || (hdrtype != DMU_SUBSTREAM && hdrtype != DMU_COMPOUNDSTREAM)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "stream has unsupported feature, feature flags = %lx"), featureflags); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (strchr(drrb->drr_toname, '@') == NULL) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid " "stream (bad snapshot name)")); return (zfs_error(hdl, EZFS_BADSTREAM, errbuf)); } if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_SUBSTREAM) { char nonpackage_sendfs[ZFS_MAXNAMELEN]; if (sendfs == NULL) { /* * We were not called from zfs_receive_package(). Get * the fs specified by 'zfs send'. */ char *cp; (void) strlcpy(nonpackage_sendfs, drr.drr_u.drr_begin.drr_toname, ZFS_MAXNAMELEN); if ((cp = strchr(nonpackage_sendfs, '@')) != NULL) *cp = '\0'; sendfs = nonpackage_sendfs; } return (zfs_receive_one(hdl, infd, tosnap, flags, &drr, &drr_noswap, sendfs, stream_nv, stream_avl, top_zfs, cleanup_fd, action_handlep)); } else { assert(DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == DMU_COMPOUNDSTREAM); return (zfs_receive_package(hdl, infd, tosnap, flags, &drr, &zcksum, top_zfs, cleanup_fd, action_handlep)); } } /* * Restores a backup of tosnap from the file descriptor specified by infd. * Return 0 on total success, -2 if some things couldn't be * destroyed/renamed/promoted, -1 if some things couldn't be received. * (-1 will override -2). */ int zfs_receive(libzfs_handle_t *hdl, const char *tosnap, recvflags_t flags, int infd, avl_tree_t *stream_avl) { char *top_zfs = NULL; int err; int cleanup_fd; uint64_t action_handle = 0; cleanup_fd = open(ZFS_DEV, O_RDWR|O_EXCL); VERIFY(cleanup_fd >= 0); err = zfs_receive_impl(hdl, tosnap, flags, infd, NULL, NULL, stream_avl, &top_zfs, cleanup_fd, &action_handle); VERIFY(0 == close(cleanup_fd)); if (err == 0 && !flags.nomount && top_zfs) { zfs_handle_t *zhp; prop_changelist_t *clp; zhp = zfs_open(hdl, top_zfs, ZFS_TYPE_FILESYSTEM); if (zhp != NULL) { clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, CL_GATHER_MOUNT_ALWAYS, 0); zfs_close(zhp); if (clp != NULL) { /* mount and share received datasets */ err = changelist_postfix(clp); changelist_free(clp); } } if (zhp == NULL || clp == NULL || err) err = -1; } if (top_zfs) free(top_zfs); return (err); } diff --git a/lib/libzfs/libzfs_util.c b/lib/libzfs/libzfs_util.c index 01b7c8732efd..fbed42f066e1 100644 --- a/lib/libzfs/libzfs_util.c +++ b/lib/libzfs/libzfs_util.c @@ -1,1482 +1,1481 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * Internal utility routines for the ZFS library. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libzfs_impl.h" #include "zfs_prop.h" int libzfs_errno(libzfs_handle_t *hdl) { return (hdl->libzfs_error); } const char * libzfs_error_action(libzfs_handle_t *hdl) { return (hdl->libzfs_action); } const char * libzfs_error_description(libzfs_handle_t *hdl) { if (hdl->libzfs_desc[0] != '\0') return (hdl->libzfs_desc); switch (hdl->libzfs_error) { case EZFS_NOMEM: return (dgettext(TEXT_DOMAIN, "out of memory")); case EZFS_BADPROP: return (dgettext(TEXT_DOMAIN, "invalid property value")); case EZFS_PROPREADONLY: return (dgettext(TEXT_DOMAIN, "read-only property")); case EZFS_PROPTYPE: return (dgettext(TEXT_DOMAIN, "property doesn't apply to " "datasets of this type")); case EZFS_PROPNONINHERIT: return (dgettext(TEXT_DOMAIN, "property cannot be inherited")); case EZFS_PROPSPACE: return (dgettext(TEXT_DOMAIN, "invalid quota or reservation")); case EZFS_BADTYPE: return (dgettext(TEXT_DOMAIN, "operation not applicable to " "datasets of this type")); case EZFS_BUSY: return (dgettext(TEXT_DOMAIN, "pool or dataset is busy")); case EZFS_EXISTS: return (dgettext(TEXT_DOMAIN, "pool or dataset exists")); case EZFS_NOENT: return (dgettext(TEXT_DOMAIN, "no such pool or dataset")); case EZFS_BADSTREAM: return (dgettext(TEXT_DOMAIN, "invalid backup stream")); case EZFS_DSREADONLY: return (dgettext(TEXT_DOMAIN, "dataset is read-only")); case EZFS_VOLTOOBIG: return (dgettext(TEXT_DOMAIN, "volume size exceeds limit for " "this system")); case EZFS_INVALIDNAME: return (dgettext(TEXT_DOMAIN, "invalid name")); case EZFS_BADRESTORE: return (dgettext(TEXT_DOMAIN, "unable to restore to " "destination")); case EZFS_BADBACKUP: return (dgettext(TEXT_DOMAIN, "backup failed")); case EZFS_BADTARGET: return (dgettext(TEXT_DOMAIN, "invalid target vdev")); case EZFS_NODEVICE: return (dgettext(TEXT_DOMAIN, "no such device in pool")); case EZFS_BADDEV: return (dgettext(TEXT_DOMAIN, "invalid device")); case EZFS_NOREPLICAS: return (dgettext(TEXT_DOMAIN, "no valid replicas")); case EZFS_RESILVERING: return (dgettext(TEXT_DOMAIN, "currently resilvering")); case EZFS_BADVERSION: return (dgettext(TEXT_DOMAIN, "unsupported version")); case EZFS_POOLUNAVAIL: return (dgettext(TEXT_DOMAIN, "pool is unavailable")); case EZFS_DEVOVERFLOW: return (dgettext(TEXT_DOMAIN, "too many devices in one vdev")); case EZFS_BADPATH: return (dgettext(TEXT_DOMAIN, "must be an absolute path")); case EZFS_CROSSTARGET: return (dgettext(TEXT_DOMAIN, "operation crosses datasets or " "pools")); case EZFS_ZONED: return (dgettext(TEXT_DOMAIN, "dataset in use by local zone")); case EZFS_MOUNTFAILED: return (dgettext(TEXT_DOMAIN, "mount failed")); case EZFS_UMOUNTFAILED: return (dgettext(TEXT_DOMAIN, "umount failed")); case EZFS_UNSHARENFSFAILED: return (dgettext(TEXT_DOMAIN, "unshare(1M) failed")); case EZFS_SHARENFSFAILED: return (dgettext(TEXT_DOMAIN, "share(1M) failed")); case EZFS_UNSHARESMBFAILED: return (dgettext(TEXT_DOMAIN, "smb remove share failed")); case EZFS_SHARESMBFAILED: return (dgettext(TEXT_DOMAIN, "smb add share failed")); case EZFS_PERM: return (dgettext(TEXT_DOMAIN, "permission denied")); case EZFS_NOSPC: return (dgettext(TEXT_DOMAIN, "out of space")); case EZFS_FAULT: return (dgettext(TEXT_DOMAIN, "bad address")); case EZFS_IO: return (dgettext(TEXT_DOMAIN, "I/O error")); case EZFS_INTR: return (dgettext(TEXT_DOMAIN, "signal received")); case EZFS_ISSPARE: return (dgettext(TEXT_DOMAIN, "device is reserved as a hot " "spare")); case EZFS_INVALCONFIG: return (dgettext(TEXT_DOMAIN, "invalid vdev configuration")); case EZFS_RECURSIVE: return (dgettext(TEXT_DOMAIN, "recursive dataset dependency")); case EZFS_NOHISTORY: return (dgettext(TEXT_DOMAIN, "no history available")); case EZFS_POOLPROPS: return (dgettext(TEXT_DOMAIN, "failed to retrieve " "pool properties")); case EZFS_POOL_NOTSUP: return (dgettext(TEXT_DOMAIN, "operation not supported " "on this type of pool")); case EZFS_POOL_INVALARG: return (dgettext(TEXT_DOMAIN, "invalid argument for " "this pool operation")); case EZFS_NAMETOOLONG: return (dgettext(TEXT_DOMAIN, "dataset name is too long")); case EZFS_OPENFAILED: return (dgettext(TEXT_DOMAIN, "open failed")); case EZFS_NOCAP: return (dgettext(TEXT_DOMAIN, "disk capacity information could not be retrieved")); case EZFS_LABELFAILED: return (dgettext(TEXT_DOMAIN, "write of label failed")); case EZFS_BADWHO: return (dgettext(TEXT_DOMAIN, "invalid user/group")); case EZFS_BADPERM: return (dgettext(TEXT_DOMAIN, "invalid permission")); case EZFS_BADPERMSET: return (dgettext(TEXT_DOMAIN, "invalid permission set name")); case EZFS_NODELEGATION: return (dgettext(TEXT_DOMAIN, "delegated administration is " "disabled on pool")); case EZFS_BADCACHE: return (dgettext(TEXT_DOMAIN, "invalid or missing cache file")); case EZFS_ISL2CACHE: return (dgettext(TEXT_DOMAIN, "device is in use as a cache")); case EZFS_VDEVNOTSUP: return (dgettext(TEXT_DOMAIN, "vdev specification is not " "supported")); case EZFS_NOTSUP: return (dgettext(TEXT_DOMAIN, "operation not supported " "on this dataset")); case EZFS_ACTIVE_SPARE: return (dgettext(TEXT_DOMAIN, "pool has active shared spare " "device")); case EZFS_UNPLAYED_LOGS: return (dgettext(TEXT_DOMAIN, "log device has unplayed intent " "logs")); case EZFS_REFTAG_RELE: return (dgettext(TEXT_DOMAIN, "no such tag on this dataset")); case EZFS_REFTAG_HOLD: return (dgettext(TEXT_DOMAIN, "tag already exists on this " "dataset")); case EZFS_TAGTOOLONG: return (dgettext(TEXT_DOMAIN, "tag too long")); case EZFS_PIPEFAILED: return (dgettext(TEXT_DOMAIN, "pipe create failed")); case EZFS_THREADCREATEFAILED: return (dgettext(TEXT_DOMAIN, "thread create failed")); case EZFS_POSTSPLIT_ONLINE: return (dgettext(TEXT_DOMAIN, "disk was split from this pool " "into a new one")); case EZFS_SCRUBBING: return (dgettext(TEXT_DOMAIN, "currently scrubbing; " "use 'zpool scrub -s' to cancel current scrub")); case EZFS_NO_SCRUB: return (dgettext(TEXT_DOMAIN, "there is no active scrub")); case EZFS_DIFF: return (dgettext(TEXT_DOMAIN, "unable to generate diffs")); case EZFS_DIFFDATA: return (dgettext(TEXT_DOMAIN, "invalid diff data")); case EZFS_POOLREADONLY: return (dgettext(TEXT_DOMAIN, "pool is read-only")); case EZFS_UNKNOWN: return (dgettext(TEXT_DOMAIN, "unknown error")); default: assert(hdl->libzfs_error == 0); return (dgettext(TEXT_DOMAIN, "no error")); } } /*PRINTFLIKE2*/ void zfs_error_aux(libzfs_handle_t *hdl, const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) vsnprintf(hdl->libzfs_desc, sizeof (hdl->libzfs_desc), fmt, ap); hdl->libzfs_desc_active = 1; va_end(ap); } static void zfs_verror(libzfs_handle_t *hdl, int error, const char *fmt, va_list ap) { (void) vsnprintf(hdl->libzfs_action, sizeof (hdl->libzfs_action), fmt, ap); hdl->libzfs_error = error; if (hdl->libzfs_desc_active) hdl->libzfs_desc_active = 0; else hdl->libzfs_desc[0] = '\0'; if (hdl->libzfs_printerr) { if (error == EZFS_UNKNOWN) { (void) fprintf(stderr, dgettext(TEXT_DOMAIN, "internal " "error: %s\n"), libzfs_error_description(hdl)); abort(); } (void) fprintf(stderr, "%s: %s\n", hdl->libzfs_action, libzfs_error_description(hdl)); if (error == EZFS_NOMEM) exit(1); } } int zfs_error(libzfs_handle_t *hdl, int error, const char *msg) { return (zfs_error_fmt(hdl, error, "%s", msg)); } /*PRINTFLIKE3*/ int zfs_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...) { va_list ap; va_start(ap, fmt); zfs_verror(hdl, error, fmt, ap); va_end(ap); return (-1); } static int zfs_common_error(libzfs_handle_t *hdl, int error, const char *fmt, va_list ap) { switch (error) { case EPERM: case EACCES: zfs_verror(hdl, EZFS_PERM, fmt, ap); return (-1); case ECANCELED: zfs_verror(hdl, EZFS_NODELEGATION, fmt, ap); return (-1); case EIO: zfs_verror(hdl, EZFS_IO, fmt, ap); return (-1); case EFAULT: zfs_verror(hdl, EZFS_FAULT, fmt, ap); return (-1); case EINTR: zfs_verror(hdl, EZFS_INTR, fmt, ap); return (-1); } return (0); } int zfs_standard_error(libzfs_handle_t *hdl, int error, const char *msg) { return (zfs_standard_error_fmt(hdl, error, "%s", msg)); } /*PRINTFLIKE3*/ int zfs_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (zfs_common_error(hdl, error, fmt, ap) != 0) { va_end(ap); return (-1); } switch (error) { case ENXIO: case ENODEV: zfs_verror(hdl, EZFS_IO, fmt, ap); break; case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset does not exist")); zfs_verror(hdl, EZFS_NOENT, fmt, ap); break; case ENOSPC: case EDQUOT: zfs_verror(hdl, EZFS_NOSPC, fmt, ap); return (-1); case EEXIST: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset already exists")); zfs_verror(hdl, EZFS_EXISTS, fmt, ap); break; case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is busy")); zfs_verror(hdl, EZFS_BUSY, fmt, ap); break; case EROFS: zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap); break; case ENAMETOOLONG: zfs_verror(hdl, EZFS_NAMETOOLONG, fmt, ap); break; case ENOTSUP: zfs_verror(hdl, EZFS_BADVERSION, fmt, ap); break; case EAGAIN: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool I/O is currently suspended")); zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap); break; default: zfs_error_aux(hdl, strerror(error)); zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap); break; } va_end(ap); return (-1); } int zpool_standard_error(libzfs_handle_t *hdl, int error, const char *msg) { return (zpool_standard_error_fmt(hdl, error, "%s", msg)); } /*PRINTFLIKE3*/ int zpool_standard_error_fmt(libzfs_handle_t *hdl, int error, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if (zfs_common_error(hdl, error, fmt, ap) != 0) { va_end(ap); return (-1); } switch (error) { case ENODEV: zfs_verror(hdl, EZFS_NODEVICE, fmt, ap); break; case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool or dataset")); zfs_verror(hdl, EZFS_NOENT, fmt, ap); break; case EEXIST: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool already exists")); zfs_verror(hdl, EZFS_EXISTS, fmt, ap); break; case EBUSY: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool is busy")); zfs_verror(hdl, EZFS_BUSY, fmt, ap); break; case ENXIO: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "one or more devices is currently unavailable")); zfs_verror(hdl, EZFS_BADDEV, fmt, ap); break; case ENAMETOOLONG: zfs_verror(hdl, EZFS_DEVOVERFLOW, fmt, ap); break; case ENOTSUP: zfs_verror(hdl, EZFS_POOL_NOTSUP, fmt, ap); break; case EINVAL: zfs_verror(hdl, EZFS_POOL_INVALARG, fmt, ap); break; case ENOSPC: case EDQUOT: zfs_verror(hdl, EZFS_NOSPC, fmt, ap); return (-1); case EAGAIN: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool I/O is currently suspended")); zfs_verror(hdl, EZFS_POOLUNAVAIL, fmt, ap); break; case EROFS: zfs_verror(hdl, EZFS_POOLREADONLY, fmt, ap); break; default: zfs_error_aux(hdl, strerror(error)); zfs_verror(hdl, EZFS_UNKNOWN, fmt, ap); } va_end(ap); return (-1); } /* * Display an out of memory error message and abort the current program. */ int no_memory(libzfs_handle_t *hdl) { return (zfs_error(hdl, EZFS_NOMEM, "internal error")); } /* * A safe form of malloc() which will die if the allocation fails. */ void * zfs_alloc(libzfs_handle_t *hdl, size_t size) { void *data; if ((data = calloc(1, size)) == NULL) (void) no_memory(hdl); return (data); } /* * A safe form of asprintf() which will die if the allocation fails. */ /*PRINTFLIKE2*/ char * zfs_asprintf(libzfs_handle_t *hdl, const char *fmt, ...) { va_list ap; char *ret; int err; va_start(ap, fmt); err = vasprintf(&ret, fmt, ap); va_end(ap); if (err < 0) (void) no_memory(hdl); return (ret); } /* * A safe form of realloc(), which also zeroes newly allocated space. */ void * zfs_realloc(libzfs_handle_t *hdl, void *ptr, size_t oldsize, size_t newsize) { void *ret; if ((ret = realloc(ptr, newsize)) == NULL) { (void) no_memory(hdl); return (NULL); } bzero((char *)ret + oldsize, (newsize - oldsize)); return (ret); } /* * A safe form of strdup() which will die if the allocation fails. */ char * zfs_strdup(libzfs_handle_t *hdl, const char *str) { char *ret; if ((ret = strdup(str)) == NULL) (void) no_memory(hdl); return (ret); } /* * Convert a number to an appropriately human-readable output. */ void zfs_nicenum(uint64_t num, char *buf, size_t buflen) { uint64_t n = num; int index = 0; char u; while (n >= 1024) { n /= 1024; index++; } u = " KMGTPE"[index]; if (index == 0) { - (void) snprintf(buf, buflen, "%llu", n); + (void) snprintf(buf, buflen, "%llu", (u_longlong_t) n); } else if ((num & ((1ULL << 10 * index) - 1)) == 0) { /* * If this is an even multiple of the base, always display * without any decimal precision. */ - (void) snprintf(buf, buflen, "%llu%c", n, u); + (void) snprintf(buf, buflen, "%llu%c", (u_longlong_t) n, u); } else { /* * We want to choose a precision that reflects the best choice * for fitting in 5 characters. This can get rather tricky when * we have numbers that are very close to an order of magnitude. * For example, when displaying 10239 (which is really 9.999K), * we want only a single place of precision for 10.0K. We could * develop some complex heuristics for this, but it's much * easier just to try each combination in turn. */ int i; for (i = 2; i >= 0; i--) { if (snprintf(buf, buflen, "%.*f%c", i, (double)num / (1ULL << 10 * index), u) <= 5) break; } } } void libzfs_print_on_error(libzfs_handle_t *hdl, boolean_t printerr) { hdl->libzfs_printerr = printerr; } libzfs_handle_t * libzfs_init(void) { libzfs_handle_t *hdl; if ((hdl = calloc(1, sizeof (libzfs_handle_t))) == NULL) { return (NULL); } if ((hdl->libzfs_fd = open(ZFS_DEV, O_RDWR)) < 0) { free(hdl); return (NULL); } if ((hdl->libzfs_mnttab = fopen(MNTTAB, "r")) == NULL) { (void) close(hdl->libzfs_fd); free(hdl); return (NULL); } hdl->libzfs_sharetab = fopen("/etc/dfs/sharetab", "r"); zfs_prop_init(); zpool_prop_init(); libzfs_mnttab_init(hdl); return (hdl); } void libzfs_fini(libzfs_handle_t *hdl) { (void) close(hdl->libzfs_fd); if (hdl->libzfs_mnttab) (void) fclose(hdl->libzfs_mnttab); if (hdl->libzfs_sharetab) (void) fclose(hdl->libzfs_sharetab); zfs_uninit_libshare(hdl); if (hdl->libzfs_log_str) (void) free(hdl->libzfs_log_str); zpool_free_handles(hdl); libzfs_fru_clear(hdl, B_TRUE); namespace_clear(hdl); libzfs_mnttab_fini(hdl); free(hdl); } libzfs_handle_t * zpool_get_handle(zpool_handle_t *zhp) { return (zhp->zpool_hdl); } libzfs_handle_t * zfs_get_handle(zfs_handle_t *zhp) { return (zhp->zfs_hdl); } zpool_handle_t * zfs_get_pool_handle(const zfs_handle_t *zhp) { return (zhp->zpool_hdl); } /* * Given a name, determine whether or not it's a valid path * (starts with '/' or "./"). If so, walk the mnttab trying * to match the device number. If not, treat the path as an * fs/vol/snap name. */ zfs_handle_t * zfs_path_to_zhandle(libzfs_handle_t *hdl, char *path, zfs_type_t argtype) { struct stat64 statbuf; struct extmnttab entry; int ret; if (path[0] != '/' && strncmp(path, "./", strlen("./")) != 0) { /* * It's not a valid path, assume it's a name of type 'argtype'. */ return (zfs_open(hdl, path, argtype)); } if (stat64(path, &statbuf) != 0) { (void) fprintf(stderr, "%s: %s\n", path, strerror(errno)); return (NULL); } rewind(hdl->libzfs_mnttab); while ((ret = getextmntent(hdl->libzfs_mnttab, &entry, 0)) == 0) { if (makedevice(entry.mnt_major, entry.mnt_minor) == statbuf.st_dev) { break; } } if (ret != 0) { return (NULL); } if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) { (void) fprintf(stderr, gettext("'%s': not a ZFS filesystem\n"), path); return (NULL); } return (zfs_open(hdl, entry.mnt_special, ZFS_TYPE_FILESYSTEM)); } /* * Initialize the zc_nvlist_dst member to prepare for receiving an nvlist from * an ioctl(). */ int zcmd_alloc_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, size_t len) { if (len == 0) len = 16 * 1024; zc->zc_nvlist_dst_size = len; if ((zc->zc_nvlist_dst = (uint64_t)(uintptr_t) - zfs_alloc(hdl, zc->zc_nvlist_dst_size)) == NULL) + zfs_alloc(hdl, zc->zc_nvlist_dst_size)) == 0) return (-1); return (0); } /* * Called when an ioctl() which returns an nvlist fails with ENOMEM. This will * expand the nvlist to the size specified in 'zc_nvlist_dst_size', which was * filled in by the kernel to indicate the actual required size. */ int zcmd_expand_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc) { free((void *)(uintptr_t)zc->zc_nvlist_dst); if ((zc->zc_nvlist_dst = (uint64_t)(uintptr_t) - zfs_alloc(hdl, zc->zc_nvlist_dst_size)) - == NULL) + zfs_alloc(hdl, zc->zc_nvlist_dst_size)) == 0) return (-1); return (0); } /* * Called to free the src and dst nvlists stored in the command structure. */ void zcmd_free_nvlists(zfs_cmd_t *zc) { free((void *)(uintptr_t)zc->zc_nvlist_conf); free((void *)(uintptr_t)zc->zc_nvlist_src); free((void *)(uintptr_t)zc->zc_nvlist_dst); } static int zcmd_write_nvlist_com(libzfs_handle_t *hdl, uint64_t *outnv, uint64_t *outlen, nvlist_t *nvl) { char *packed; size_t len; verify(nvlist_size(nvl, &len, NV_ENCODE_NATIVE) == 0); if ((packed = zfs_alloc(hdl, len)) == NULL) return (-1); verify(nvlist_pack(nvl, &packed, &len, NV_ENCODE_NATIVE, 0) == 0); *outnv = (uint64_t)(uintptr_t)packed; *outlen = len; return (0); } int zcmd_write_conf_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl) { return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_conf, &zc->zc_nvlist_conf_size, nvl)); } int zcmd_write_src_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl) { return (zcmd_write_nvlist_com(hdl, &zc->zc_nvlist_src, &zc->zc_nvlist_src_size, nvl)); } /* * Unpacks an nvlist from the ZFS ioctl command structure. */ int zcmd_read_dst_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t **nvlp) { if (nvlist_unpack((void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size, nvlp, 0) != 0) return (no_memory(hdl)); return (0); } int zfs_ioctl(libzfs_handle_t *hdl, int request, zfs_cmd_t *zc) { int error; zc->zc_history = (uint64_t)(uintptr_t)hdl->libzfs_log_str; error = ioctl(hdl->libzfs_fd, request, zc); if (hdl->libzfs_log_str) { free(hdl->libzfs_log_str); hdl->libzfs_log_str = NULL; } zc->zc_history = 0; return (error); } /* * ================================================================ * API shared by zfs and zpool property management * ================================================================ */ static void zprop_print_headers(zprop_get_cbdata_t *cbp, zfs_type_t type) { zprop_list_t *pl = cbp->cb_proplist; int i; char *title; size_t len; cbp->cb_first = B_FALSE; if (cbp->cb_scripted) return; /* * Start with the length of the column headers. */ cbp->cb_colwidths[GET_COL_NAME] = strlen(dgettext(TEXT_DOMAIN, "NAME")); cbp->cb_colwidths[GET_COL_PROPERTY] = strlen(dgettext(TEXT_DOMAIN, "PROPERTY")); cbp->cb_colwidths[GET_COL_VALUE] = strlen(dgettext(TEXT_DOMAIN, "VALUE")); cbp->cb_colwidths[GET_COL_RECVD] = strlen(dgettext(TEXT_DOMAIN, "RECEIVED")); cbp->cb_colwidths[GET_COL_SOURCE] = strlen(dgettext(TEXT_DOMAIN, "SOURCE")); /* first property is always NAME */ assert(cbp->cb_proplist->pl_prop == ((type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME : ZFS_PROP_NAME)); /* * Go through and calculate the widths for each column. For the * 'source' column, we kludge it up by taking the worst-case scenario of * inheriting from the longest name. This is acceptable because in the * majority of cases 'SOURCE' is the last column displayed, and we don't * use the width anyway. Note that the 'VALUE' column can be oversized, * if the name of the property is much longer than any values we find. */ for (pl = cbp->cb_proplist; pl != NULL; pl = pl->pl_next) { /* * 'PROPERTY' column */ if (pl->pl_prop != ZPROP_INVAL) { const char *propname = (type == ZFS_TYPE_POOL) ? zpool_prop_to_name(pl->pl_prop) : zfs_prop_to_name(pl->pl_prop); len = strlen(propname); if (len > cbp->cb_colwidths[GET_COL_PROPERTY]) cbp->cb_colwidths[GET_COL_PROPERTY] = len; } else { len = strlen(pl->pl_user_prop); if (len > cbp->cb_colwidths[GET_COL_PROPERTY]) cbp->cb_colwidths[GET_COL_PROPERTY] = len; } /* * 'VALUE' column. The first property is always the 'name' * property that was tacked on either by /sbin/zfs's * zfs_do_get() or when calling zprop_expand_list(), so we * ignore its width. If the user specified the name property * to display, then it will be later in the list in any case. */ if (pl != cbp->cb_proplist && pl->pl_width > cbp->cb_colwidths[GET_COL_VALUE]) cbp->cb_colwidths[GET_COL_VALUE] = pl->pl_width; /* 'RECEIVED' column. */ if (pl != cbp->cb_proplist && pl->pl_recvd_width > cbp->cb_colwidths[GET_COL_RECVD]) cbp->cb_colwidths[GET_COL_RECVD] = pl->pl_recvd_width; /* * 'NAME' and 'SOURCE' columns */ if (pl->pl_prop == (type == ZFS_TYPE_POOL ? ZPOOL_PROP_NAME : ZFS_PROP_NAME) && pl->pl_width > cbp->cb_colwidths[GET_COL_NAME]) { cbp->cb_colwidths[GET_COL_NAME] = pl->pl_width; cbp->cb_colwidths[GET_COL_SOURCE] = pl->pl_width + strlen(dgettext(TEXT_DOMAIN, "inherited from")); } } /* * Now go through and print the headers. */ for (i = 0; i < ZFS_GET_NCOLS; i++) { switch (cbp->cb_columns[i]) { case GET_COL_NAME: title = dgettext(TEXT_DOMAIN, "NAME"); break; case GET_COL_PROPERTY: title = dgettext(TEXT_DOMAIN, "PROPERTY"); break; case GET_COL_VALUE: title = dgettext(TEXT_DOMAIN, "VALUE"); break; case GET_COL_RECVD: title = dgettext(TEXT_DOMAIN, "RECEIVED"); break; case GET_COL_SOURCE: title = dgettext(TEXT_DOMAIN, "SOURCE"); break; default: title = NULL; } if (title != NULL) { if (i == (ZFS_GET_NCOLS - 1) || cbp->cb_columns[i + 1] == GET_COL_NONE) (void) printf("%s", title); else (void) printf("%-*s ", cbp->cb_colwidths[cbp->cb_columns[i]], title); } } (void) printf("\n"); } /* * Display a single line of output, according to the settings in the callback * structure. */ void zprop_print_one_property(const char *name, zprop_get_cbdata_t *cbp, const char *propname, const char *value, zprop_source_t sourcetype, const char *source, const char *recvd_value) { int i; const char *str; char buf[128]; /* * Ignore those source types that the user has chosen to ignore. */ if ((sourcetype & cbp->cb_sources) == 0) return; if (cbp->cb_first) zprop_print_headers(cbp, cbp->cb_type); for (i = 0; i < ZFS_GET_NCOLS; i++) { switch (cbp->cb_columns[i]) { case GET_COL_NAME: str = name; break; case GET_COL_PROPERTY: str = propname; break; case GET_COL_VALUE: str = value; break; case GET_COL_SOURCE: switch (sourcetype) { case ZPROP_SRC_NONE: str = "-"; break; case ZPROP_SRC_DEFAULT: str = "default"; break; case ZPROP_SRC_LOCAL: str = "local"; break; case ZPROP_SRC_TEMPORARY: str = "temporary"; break; case ZPROP_SRC_INHERITED: (void) snprintf(buf, sizeof (buf), "inherited from %s", source); str = buf; break; case ZPROP_SRC_RECEIVED: str = "received"; break; } break; case GET_COL_RECVD: str = (recvd_value == NULL ? "-" : recvd_value); break; default: continue; } if (cbp->cb_columns[i + 1] == GET_COL_NONE) (void) printf("%s", str); else if (cbp->cb_scripted) (void) printf("%s\t", str); else (void) printf("%-*s ", cbp->cb_colwidths[cbp->cb_columns[i]], str); } (void) printf("\n"); } /* * Given a numeric suffix, convert the value into a number of bits that the * resulting value must be shifted. */ static int str2shift(libzfs_handle_t *hdl, const char *buf) { const char *ends = "BKMGTPEZ"; int i; if (buf[0] == '\0') return (0); for (i = 0; i < strlen(ends); i++) { if (toupper(buf[0]) == ends[i]) break; } if (i == strlen(ends)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid numeric suffix '%s'"), buf); return (-1); } /* * We want to allow trailing 'b' characters for 'GB' or 'Mb'. But don't * allow 'BB' - that's just weird. */ if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0' && toupper(buf[0]) != 'B')) return (10*i); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid numeric suffix '%s'"), buf); return (-1); } /* * Convert a string of the form '100G' into a real number. Used when setting * properties or creating a volume. 'buf' is used to place an extended error * message for the caller to use. */ int zfs_nicestrtonum(libzfs_handle_t *hdl, const char *value, uint64_t *num) { char *end; int shift; *num = 0; /* Check to see if this looks like a number. */ if ((value[0] < '0' || value[0] > '9') && value[0] != '.') { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "bad numeric value '%s'"), value); return (-1); } /* Rely on strtoull() to process the numeric portion. */ errno = 0; *num = strtoull(value, &end, 10); /* * Check for ERANGE, which indicates that the value is too large to fit * in a 64-bit value. */ if (errno == ERANGE) { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "numeric value is too large")); return (-1); } /* * If we have a decimal value, then do the computation with floating * point arithmetic. Otherwise, use standard arithmetic. */ if (*end == '.') { double fval = strtod(value, &end); if ((shift = str2shift(hdl, end)) == -1) return (-1); fval *= pow(2, shift); if (fval > UINT64_MAX) { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "numeric value is too large")); return (-1); } *num = (uint64_t)fval; } else { if ((shift = str2shift(hdl, end)) == -1) return (-1); /* Check for overflow */ if (shift >= 64 || (*num << shift) >> shift != *num) { if (hdl) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "numeric value is too large")); return (-1); } *num <<= shift; } return (0); } /* * Given a propname=value nvpair to set, parse any numeric properties * (index, boolean, etc) if they are specified as strings and add the * resulting nvpair to the returned nvlist. * * At the DSL layer, all properties are either 64-bit numbers or strings. * We want the user to be able to ignore this fact and specify properties * as native values (numbers, for example) or as strings (to simplify * command line utilities). This also handles converting index types * (compression, checksum, etc) from strings to their on-disk index. */ int zprop_parse_value(libzfs_handle_t *hdl, nvpair_t *elem, int prop, zfs_type_t type, nvlist_t *ret, char **svalp, uint64_t *ivalp, const char *errbuf) { data_type_t datatype = nvpair_type(elem); zprop_type_t proptype; const char *propname; char *value; boolean_t isnone = B_FALSE; if (type == ZFS_TYPE_POOL) { proptype = zpool_prop_get_type(prop); propname = zpool_prop_to_name(prop); } else { proptype = zfs_prop_get_type(prop); propname = zfs_prop_to_name(prop); } /* * Convert any properties to the internal DSL value types. */ *svalp = NULL; *ivalp = 0; switch (proptype) { case PROP_TYPE_STRING: if (datatype != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), nvpair_name(elem)); goto error; } (void) nvpair_value_string(elem, svalp); if (strlen(*svalp) >= ZFS_MAXPROPLEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is too long"), nvpair_name(elem)); goto error; } break; case PROP_TYPE_NUMBER: if (datatype == DATA_TYPE_STRING) { (void) nvpair_value_string(elem, &value); if (strcmp(value, "none") == 0) { isnone = B_TRUE; } else if (zfs_nicestrtonum(hdl, value, ivalp) != 0) { goto error; } } else if (datatype == DATA_TYPE_UINT64) { (void) nvpair_value_uint64(elem, ivalp); } else { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a number"), nvpair_name(elem)); goto error; } /* * Quota special: force 'none' and don't allow 0. */ if ((type & ZFS_TYPE_DATASET) && *ivalp == 0 && !isnone && (prop == ZFS_PROP_QUOTA || prop == ZFS_PROP_REFQUOTA)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "use 'none' to disable quota/refquota")); goto error; } break; case PROP_TYPE_INDEX: if (datatype != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), nvpair_name(elem)); goto error; } (void) nvpair_value_string(elem, &value); if (zprop_string_to_index(prop, value, ivalp, type) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be one of '%s'"), propname, zprop_values(prop, type)); goto error; } break; default: abort(); } /* * Add the result to our return set of properties. */ if (*svalp != NULL) { if (nvlist_add_string(ret, propname, *svalp) != 0) { (void) no_memory(hdl); return (-1); } } else { if (nvlist_add_uint64(ret, propname, *ivalp) != 0) { (void) no_memory(hdl); return (-1); } } return (0); error: (void) zfs_error(hdl, EZFS_BADPROP, errbuf); return (-1); } static int addlist(libzfs_handle_t *hdl, char *propname, zprop_list_t **listp, zfs_type_t type) { int prop; zprop_list_t *entry; prop = zprop_name_to_prop(propname, type); if (prop != ZPROP_INVAL && !zprop_valid_for_type(prop, type)) prop = ZPROP_INVAL; /* * When no property table entry can be found, return failure if * this is a pool property or if this isn't a user-defined * dataset property, */ if (prop == ZPROP_INVAL && (type == ZFS_TYPE_POOL || (!zfs_prop_user(propname) && !zfs_prop_userquota(propname)))) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "bad property list"))); } if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL) return (-1); entry->pl_prop = prop; if (prop == ZPROP_INVAL) { if ((entry->pl_user_prop = zfs_strdup(hdl, propname)) == NULL) { free(entry); return (-1); } entry->pl_width = strlen(propname); } else { entry->pl_width = zprop_width(prop, &entry->pl_fixed, type); } *listp = entry; return (0); } /* * Given a comma-separated list of properties, construct a property list * containing both user-defined and native properties. This function will * return a NULL list if 'all' is specified, which can later be expanded * by zprop_expand_list(). */ int zprop_get_list(libzfs_handle_t *hdl, char *props, zprop_list_t **listp, zfs_type_t type) { *listp = NULL; /* * If 'all' is specified, return a NULL list. */ if (strcmp(props, "all") == 0) return (0); /* * If no props were specified, return an error. */ if (props[0] == '\0') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no properties specified")); return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "bad property list"))); } /* * It would be nice to use getsubopt() here, but the inclusion of column * aliases makes this more effort than it's worth. */ while (*props != '\0') { size_t len; char *p; char c; if ((p = strchr(props, ',')) == NULL) { len = strlen(props); p = props + len; } else { len = p - props; } /* * Check for empty options. */ if (len == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty property name")); return (zfs_error(hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "bad property list"))); } /* * Check all regular property names. */ c = props[len]; props[len] = '\0'; if (strcmp(props, "space") == 0) { static char *spaceprops[] = { "name", "avail", "used", "usedbysnapshots", "usedbydataset", "usedbyrefreservation", "usedbychildren", NULL }; int i; for (i = 0; spaceprops[i]; i++) { if (addlist(hdl, spaceprops[i], listp, type)) return (-1); listp = &(*listp)->pl_next; } } else { if (addlist(hdl, props, listp, type)) return (-1); listp = &(*listp)->pl_next; } props = p; if (c == ',') props++; } return (0); } void zprop_free_list(zprop_list_t *pl) { zprop_list_t *next; while (pl != NULL) { next = pl->pl_next; free(pl->pl_user_prop); free(pl); pl = next; } } typedef struct expand_data { zprop_list_t **last; libzfs_handle_t *hdl; zfs_type_t type; } expand_data_t; int zprop_expand_list_cb(int prop, void *cb) { zprop_list_t *entry; expand_data_t *edp = cb; if ((entry = zfs_alloc(edp->hdl, sizeof (zprop_list_t))) == NULL) return (ZPROP_INVAL); entry->pl_prop = prop; entry->pl_width = zprop_width(prop, &entry->pl_fixed, edp->type); entry->pl_all = B_TRUE; *(edp->last) = entry; edp->last = &entry->pl_next; return (ZPROP_CONT); } int zprop_expand_list(libzfs_handle_t *hdl, zprop_list_t **plp, zfs_type_t type) { zprop_list_t *entry; zprop_list_t **last; expand_data_t exp; if (*plp == NULL) { /* * If this is the very first time we've been called for an 'all' * specification, expand the list to include all native * properties. */ last = plp; exp.last = last; exp.hdl = hdl; exp.type = type; if (zprop_iter_common(zprop_expand_list_cb, &exp, B_FALSE, B_FALSE, type) == ZPROP_INVAL) return (-1); /* * Add 'name' to the beginning of the list, which is handled * specially. */ if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL) return (-1); entry->pl_prop = (type == ZFS_TYPE_POOL) ? ZPOOL_PROP_NAME : ZFS_PROP_NAME; entry->pl_width = zprop_width(entry->pl_prop, &entry->pl_fixed, type); entry->pl_all = B_TRUE; entry->pl_next = *plp; *plp = entry; } return (0); } int zprop_iter(zprop_func func, void *cb, boolean_t show_all, boolean_t ordered, zfs_type_t type) { return (zprop_iter_common(func, cb, show_all, ordered, type)); } diff --git a/lib/libzpool/util.c b/lib/libzpool/util.c index 9b99531fd1c5..231043d75bed 100644 --- a/lib/libzpool/util.c +++ b/lib/libzpool/util.c @@ -1,155 +1,155 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include /* * Routines needed by more than one client of libzpool. */ void nicenum(uint64_t num, char *buf) { uint64_t n = num; int index = 0; char u; while (n >= 1024) { n = (n + (1024 / 2)) / 1024; /* Round up or down */ index++; } u = " KMGTPE"[index]; if (index == 0) { (void) sprintf(buf, "%llu", (u_longlong_t)n); } else if (n < 10 && (num & (num - 1)) != 0) { (void) sprintf(buf, "%.2f%c", (double)num / (1ULL << 10 * index), u); } else if (n < 100 && (num & (num - 1)) != 0) { (void) sprintf(buf, "%.1f%c", (double)num / (1ULL << 10 * index), u); } else { (void) sprintf(buf, "%llu%c", (u_longlong_t)n, u); } } static void show_vdev_stats(const char *desc, const char *ctype, nvlist_t *nv, int indent) { vdev_stat_t *vs; vdev_stat_t v0 = { 0 }; uint64_t sec; uint64_t is_log = 0; nvlist_t **child; uint_t c, children; char used[6], avail[6]; char rops[6], wops[6], rbytes[6], wbytes[6], rerr[6], werr[6], cerr[6]; char *prefix = ""; if (indent == 0 && desc != NULL) { (void) printf(" " " capacity operations bandwidth ---- errors ----\n"); (void) printf("description " "used avail read write read write read write cksum\n"); } if (desc != NULL) { (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); if (is_log) prefix = "log "; if (nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) != 0) vs = &v0; sec = MAX(1, vs->vs_timestamp / NANOSEC); nicenum(vs->vs_alloc, used); nicenum(vs->vs_space - vs->vs_alloc, avail); nicenum(vs->vs_ops[ZIO_TYPE_READ] / sec, rops); nicenum(vs->vs_ops[ZIO_TYPE_WRITE] / sec, wops); nicenum(vs->vs_bytes[ZIO_TYPE_READ] / sec, rbytes); nicenum(vs->vs_bytes[ZIO_TYPE_WRITE] / sec, wbytes); nicenum(vs->vs_read_errors, rerr); nicenum(vs->vs_write_errors, werr); nicenum(vs->vs_checksum_errors, cerr); (void) printf("%*s%s%*s%*s%*s %5s %5s %5s %5s %5s %5s %5s\n", indent, "", prefix, - indent + strlen(prefix) - 25 - (vs->vs_space ? 0 : 12), + (int)(indent+strlen(prefix)-25-(vs->vs_space ? 0 : 12)), desc, vs->vs_space ? 6 : 0, vs->vs_space ? used : "", vs->vs_space ? 6 : 0, vs->vs_space ? avail : "", rops, wops, rbytes, wbytes, rerr, werr, cerr); } if (nvlist_lookup_nvlist_array(nv, ctype, &child, &children) != 0) return; for (c = 0; c < children; c++) { nvlist_t *cnv = child[c]; char *cname, *tname; uint64_t np; if (nvlist_lookup_string(cnv, ZPOOL_CONFIG_PATH, &cname) && nvlist_lookup_string(cnv, ZPOOL_CONFIG_TYPE, &cname)) cname = ""; tname = calloc(1, strlen(cname) + 2); (void) strcpy(tname, cname); if (nvlist_lookup_uint64(cnv, ZPOOL_CONFIG_NPARITY, &np) == 0) tname[strlen(tname)] = '0' + np; show_vdev_stats(tname, ctype, cnv, indent + 2); free(tname); } } void show_pool_stats(spa_t *spa) { nvlist_t *config, *nvroot; char *name; VERIFY(spa_get_stats(spa_name(spa), &config, NULL, 0) == 0); VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); show_vdev_stats(name, ZPOOL_CONFIG_CHILDREN, nvroot, 0); show_vdev_stats(NULL, ZPOOL_CONFIG_L2CACHE, nvroot, 0); show_vdev_stats(NULL, ZPOOL_CONFIG_SPARES, nvroot, 0); nvlist_free(config); } diff --git a/module/zfs/arc.c b/module/zfs/arc.c index de09ca9a9a46..e9db5340ef7c 100644 --- a/module/zfs/arc.c +++ b/module/zfs/arc.c @@ -1,4660 +1,4660 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * DVA-based Adjustable Replacement Cache * * While much of the theory of operation used here is * based on the self-tuning, low overhead replacement cache * presented by Megiddo and Modha at FAST 2003, there are some * significant differences: * * 1. The Megiddo and Modha model assumes any page is evictable. * Pages in its cache cannot be "locked" into memory. This makes * the eviction algorithm simple: evict the last page in the list. * This also make the performance characteristics easy to reason * about. Our cache is not so simple. At any given moment, some * subset of the blocks in the cache are un-evictable because we * have handed out a reference to them. Blocks are only evictable * when there are no external references active. This makes * eviction far more problematic: we choose to evict the evictable * blocks that are the "lowest" in the list. * * There are times when it is not possible to evict the requested * space. In these circumstances we are unable to adjust the cache * size. To prevent the cache growing unbounded at these times we * implement a "cache throttle" that slows the flow of new data * into the cache until we can make space available. * * 2. The Megiddo and Modha model assumes a fixed cache size. * Pages are evicted when the cache is full and there is a cache * miss. Our model has a variable sized cache. It grows with * high use, but also tries to react to memory pressure from the * operating system: decreasing its size when system memory is * tight. * * 3. The Megiddo and Modha model assumes a fixed page size. All * elements of the cache are therefor exactly the same size. So * when adjusting the cache size following a cache miss, its simply * a matter of choosing a single page to evict. In our model, we * have variable sized cache blocks (rangeing from 512 bytes to * 128K bytes). We therefor choose a set of blocks to evict to make * space for a cache miss that approximates as closely as possible * the space used by the new block. * * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" * by N. Megiddo & D. Modha, FAST 2003 */ /* * The locking model: * * A new reference to a cache buffer can be obtained in two * ways: 1) via a hash table lookup using the DVA as a key, * or 2) via one of the ARC lists. The arc_read() interface * uses method 1, while the internal arc algorithms for * adjusting the cache use method 2. We therefor provide two * types of locks: 1) the hash table lock array, and 2) the * arc list locks. * * Buffers do not have their own mutexs, rather they rely on the * hash table mutexs for the bulk of their protection (i.e. most * fields in the arc_buf_hdr_t are protected by these mutexs). * * buf_hash_find() returns the appropriate mutex (held) when it * locates the requested buffer in the hash table. It returns * NULL for the mutex if the buffer was not in the table. * * buf_hash_remove() expects the appropriate hash mutex to be * already held before it is invoked. * * Each arc state also has a mutex which is used to protect the * buffer list associated with the state. When attempting to * obtain a hash table lock while holding an arc list lock you * must use: mutex_tryenter() to avoid deadlock. Also note that * the active state mutex must be held before the ghost state mutex. * * Arc buffers may have an associated eviction callback function. * This function will be invoked prior to removing the buffer (e.g. * in arc_do_user_evicts()). Note however that the data associated * with the buffer may be evicted prior to the callback. The callback * must be made with *no locks held* (to prevent deadlock). Additionally, * the users of callbacks must ensure that their private data is * protected from simultaneous callbacks from arc_buf_evict() * and arc_do_user_evicts(). * * Note that the majority of the performance stats are manipulated * with atomic operations. * * The L2ARC uses the l2arc_buflist_mtx global mutex for the following: * * - L2ARC buflist creation * - L2ARC buflist eviction * - L2ARC write completion, which walks L2ARC buflists * - ARC header destruction, as it removes from L2ARC buflists * - ARC header release, as it removes from L2ARC buflists */ #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #endif #include #include #include static kmutex_t arc_reclaim_thr_lock; static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */ static uint8_t arc_thread_exit; extern int zfs_write_limit_shift; extern uint64_t zfs_write_limit_max; extern kmutex_t zfs_write_limit_lock; #define ARC_REDUCE_DNLC_PERCENT 3 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT; typedef enum arc_reclaim_strategy { ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */ ARC_RECLAIM_CONS /* Conservative reclaim strategy */ } arc_reclaim_strategy_t; /* number of seconds before growing cache again */ static int arc_grow_retry = 60; /* shift of arc_c for calculating both min and max arc_p */ static int arc_p_min_shift = 4; /* log2(fraction of arc to reclaim) */ static int arc_shrink_shift = 5; /* * minimum lifespan of a prefetch block in clock ticks * (initialized in arc_init()) */ static int arc_min_prefetch_lifespan; static int arc_dead; /* * The arc has filled available memory and has now warmed up. */ static boolean_t arc_warm; /* * These tunables are for performance analysis. */ uint64_t zfs_arc_max; uint64_t zfs_arc_min; uint64_t zfs_arc_meta_limit = 0; int zfs_arc_grow_retry = 0; int zfs_arc_shrink_shift = 0; int zfs_arc_p_min_shift = 0; /* * Note that buffers can be in one of 6 states: * ARC_anon - anonymous (discussed below) * ARC_mru - recently used, currently cached * ARC_mru_ghost - recentely used, no longer in cache * ARC_mfu - frequently used, currently cached * ARC_mfu_ghost - frequently used, no longer in cache * ARC_l2c_only - exists in L2ARC but not other states * When there are no active references to the buffer, they are * are linked onto a list in one of these arc states. These are * the only buffers that can be evicted or deleted. Within each * state there are multiple lists, one for meta-data and one for * non-meta-data. Meta-data (indirect blocks, blocks of dnodes, * etc.) is tracked separately so that it can be managed more * explicitly: favored over data, limited explicitly. * * Anonymous buffers are buffers that are not associated with * a DVA. These are buffers that hold dirty block copies * before they are written to stable storage. By definition, * they are "ref'd" and are considered part of arc_mru * that cannot be freed. Generally, they will aquire a DVA * as they are written and migrate onto the arc_mru list. * * The ARC_l2c_only state is for buffers that are in the second * level ARC but no longer in any of the ARC_m* lists. The second * level ARC itself may also contain buffers that are in any of * the ARC_m* states - meaning that a buffer can exist in two * places. The reason for the ARC_l2c_only state is to keep the * buffer header in the hash table, so that reads that hit the * second level ARC benefit from these fast lookups. */ typedef struct arc_state { list_t arcs_list[ARC_BUFC_NUMTYPES]; /* list of evictable buffers */ uint64_t arcs_lsize[ARC_BUFC_NUMTYPES]; /* amount of evictable data */ uint64_t arcs_size; /* total amount of data in this state */ kmutex_t arcs_mtx; } arc_state_t; /* The 6 states: */ static arc_state_t ARC_anon; static arc_state_t ARC_mru; static arc_state_t ARC_mru_ghost; static arc_state_t ARC_mfu; static arc_state_t ARC_mfu_ghost; static arc_state_t ARC_l2c_only; typedef struct arc_stats { kstat_named_t arcstat_hits; kstat_named_t arcstat_misses; kstat_named_t arcstat_demand_data_hits; kstat_named_t arcstat_demand_data_misses; kstat_named_t arcstat_demand_metadata_hits; kstat_named_t arcstat_demand_metadata_misses; kstat_named_t arcstat_prefetch_data_hits; kstat_named_t arcstat_prefetch_data_misses; kstat_named_t arcstat_prefetch_metadata_hits; kstat_named_t arcstat_prefetch_metadata_misses; kstat_named_t arcstat_mru_hits; kstat_named_t arcstat_mru_ghost_hits; kstat_named_t arcstat_mfu_hits; kstat_named_t arcstat_mfu_ghost_hits; kstat_named_t arcstat_deleted; kstat_named_t arcstat_recycle_miss; kstat_named_t arcstat_mutex_miss; kstat_named_t arcstat_evict_skip; kstat_named_t arcstat_evict_l2_cached; kstat_named_t arcstat_evict_l2_eligible; kstat_named_t arcstat_evict_l2_ineligible; kstat_named_t arcstat_hash_elements; kstat_named_t arcstat_hash_elements_max; kstat_named_t arcstat_hash_collisions; kstat_named_t arcstat_hash_chains; kstat_named_t arcstat_hash_chain_max; kstat_named_t arcstat_p; kstat_named_t arcstat_c; kstat_named_t arcstat_c_min; kstat_named_t arcstat_c_max; kstat_named_t arcstat_size; kstat_named_t arcstat_hdr_size; kstat_named_t arcstat_data_size; kstat_named_t arcstat_other_size; kstat_named_t arcstat_l2_hits; kstat_named_t arcstat_l2_misses; kstat_named_t arcstat_l2_feeds; kstat_named_t arcstat_l2_rw_clash; kstat_named_t arcstat_l2_read_bytes; kstat_named_t arcstat_l2_write_bytes; kstat_named_t arcstat_l2_writes_sent; kstat_named_t arcstat_l2_writes_done; kstat_named_t arcstat_l2_writes_error; kstat_named_t arcstat_l2_writes_hdr_miss; kstat_named_t arcstat_l2_evict_lock_retry; kstat_named_t arcstat_l2_evict_reading; kstat_named_t arcstat_l2_free_on_write; kstat_named_t arcstat_l2_abort_lowmem; kstat_named_t arcstat_l2_cksum_bad; kstat_named_t arcstat_l2_io_error; kstat_named_t arcstat_l2_size; kstat_named_t arcstat_l2_hdr_size; kstat_named_t arcstat_memory_throttle_count; } arc_stats_t; static arc_stats_t arc_stats = { { "hits", KSTAT_DATA_UINT64 }, { "misses", KSTAT_DATA_UINT64 }, { "demand_data_hits", KSTAT_DATA_UINT64 }, { "demand_data_misses", KSTAT_DATA_UINT64 }, { "demand_metadata_hits", KSTAT_DATA_UINT64 }, { "demand_metadata_misses", KSTAT_DATA_UINT64 }, { "prefetch_data_hits", KSTAT_DATA_UINT64 }, { "prefetch_data_misses", KSTAT_DATA_UINT64 }, { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, { "mru_hits", KSTAT_DATA_UINT64 }, { "mru_ghost_hits", KSTAT_DATA_UINT64 }, { "mfu_hits", KSTAT_DATA_UINT64 }, { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, { "deleted", KSTAT_DATA_UINT64 }, { "recycle_miss", KSTAT_DATA_UINT64 }, { "mutex_miss", KSTAT_DATA_UINT64 }, { "evict_skip", KSTAT_DATA_UINT64 }, { "evict_l2_cached", KSTAT_DATA_UINT64 }, { "evict_l2_eligible", KSTAT_DATA_UINT64 }, { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, { "hash_elements", KSTAT_DATA_UINT64 }, { "hash_elements_max", KSTAT_DATA_UINT64 }, { "hash_collisions", KSTAT_DATA_UINT64 }, { "hash_chains", KSTAT_DATA_UINT64 }, { "hash_chain_max", KSTAT_DATA_UINT64 }, { "p", KSTAT_DATA_UINT64 }, { "c", KSTAT_DATA_UINT64 }, { "c_min", KSTAT_DATA_UINT64 }, { "c_max", KSTAT_DATA_UINT64 }, { "size", KSTAT_DATA_UINT64 }, { "hdr_size", KSTAT_DATA_UINT64 }, { "data_size", KSTAT_DATA_UINT64 }, { "other_size", KSTAT_DATA_UINT64 }, { "l2_hits", KSTAT_DATA_UINT64 }, { "l2_misses", KSTAT_DATA_UINT64 }, { "l2_feeds", KSTAT_DATA_UINT64 }, { "l2_rw_clash", KSTAT_DATA_UINT64 }, { "l2_read_bytes", KSTAT_DATA_UINT64 }, { "l2_write_bytes", KSTAT_DATA_UINT64 }, { "l2_writes_sent", KSTAT_DATA_UINT64 }, { "l2_writes_done", KSTAT_DATA_UINT64 }, { "l2_writes_error", KSTAT_DATA_UINT64 }, { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 }, { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, { "l2_evict_reading", KSTAT_DATA_UINT64 }, { "l2_free_on_write", KSTAT_DATA_UINT64 }, { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, { "l2_cksum_bad", KSTAT_DATA_UINT64 }, { "l2_io_error", KSTAT_DATA_UINT64 }, { "l2_size", KSTAT_DATA_UINT64 }, { "l2_hdr_size", KSTAT_DATA_UINT64 }, { "memory_throttle_count", KSTAT_DATA_UINT64 } }; #define ARCSTAT(stat) (arc_stats.stat.value.ui64) #define ARCSTAT_INCR(stat, val) \ atomic_add_64(&arc_stats.stat.value.ui64, (val)); #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1) #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1) #define ARCSTAT_MAX(stat, val) { \ uint64_t m; \ while ((val) > (m = arc_stats.stat.value.ui64) && \ (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ continue; \ } #define ARCSTAT_MAXSTAT(stat) \ ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) /* * We define a macro to allow ARC hits/misses to be easily broken down by * two separate conditions, giving a total of four different subtypes for * each of hits and misses (so eight statistics total). */ #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ if (cond1) { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ } \ } else { \ if (cond2) { \ ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ } else { \ ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ } \ } kstat_t *arc_ksp; static arc_state_t *arc_anon; static arc_state_t *arc_mru; static arc_state_t *arc_mru_ghost; static arc_state_t *arc_mfu; static arc_state_t *arc_mfu_ghost; static arc_state_t *arc_l2c_only; /* * There are several ARC variables that are critical to export as kstats -- * but we don't want to have to grovel around in the kstat whenever we wish to * manipulate them. For these variables, we therefore define them to be in * terms of the statistic variable. This assures that we are not introducing * the possibility of inconsistency by having shadow copies of the variables, * while still allowing the code to be readable. */ #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */ #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */ #define arc_c ARCSTAT(arcstat_c) /* target size of cache */ #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */ #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */ static int arc_no_grow; /* Don't try to grow cache size */ static uint64_t arc_tempreserve; static uint64_t arc_loaned_bytes; static uint64_t arc_meta_used; static uint64_t arc_meta_limit; static uint64_t arc_meta_max = 0; typedef struct l2arc_buf_hdr l2arc_buf_hdr_t; typedef struct arc_callback arc_callback_t; struct arc_callback { void *acb_private; arc_done_func_t *acb_done; arc_buf_t *acb_buf; zio_t *acb_zio_dummy; arc_callback_t *acb_next; }; typedef struct arc_write_callback arc_write_callback_t; struct arc_write_callback { void *awcb_private; arc_done_func_t *awcb_ready; arc_done_func_t *awcb_done; arc_buf_t *awcb_buf; }; struct arc_buf_hdr { /* protected by hash lock */ dva_t b_dva; uint64_t b_birth; uint64_t b_cksum0; kmutex_t b_freeze_lock; zio_cksum_t *b_freeze_cksum; void *b_thawed; arc_buf_hdr_t *b_hash_next; arc_buf_t *b_buf; uint32_t b_flags; uint32_t b_datacnt; arc_callback_t *b_acb; kcondvar_t b_cv; /* immutable */ arc_buf_contents_t b_type; uint64_t b_size; uint64_t b_spa; /* protected by arc state mutex */ arc_state_t *b_state; list_node_t b_arc_node; /* updated atomically */ clock_t b_arc_access; /* self protecting */ refcount_t b_refcnt; l2arc_buf_hdr_t *b_l2hdr; list_node_t b_l2node; }; static arc_buf_t *arc_eviction_list; static kmutex_t arc_eviction_mtx; static arc_buf_hdr_t arc_eviction_hdr; static void arc_get_data_buf(arc_buf_t *buf); static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock); static int arc_evict_needed(arc_buf_contents_t type); static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes); static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab); #define GHOST_STATE(state) \ ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ (state) == arc_l2c_only) /* * Private ARC flags. These flags are private ARC only flags that will show up * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can * be passed in as arc_flags in things like arc_read. However, these flags * should never be passed and should only be set by ARC code. When adding new * public flags, make sure not to smash the private ones. */ #define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */ #define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */ #define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */ #define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */ #define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */ #define ARC_INDIRECT (1 << 14) /* this is an indirect block */ #define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */ #define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */ #define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */ #define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */ #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE) #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS) #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR) #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH) #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ) #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE) #define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS) #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE) #define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \ (hdr)->b_l2hdr != NULL) #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING) #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED) #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD) /* * Other sizes */ #define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) #define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t)) /* * Hash table routines */ #define HT_LOCK_PAD 64 struct ht_lock { kmutex_t ht_lock; #ifdef _KERNEL unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))]; #endif }; #define BUF_LOCKS 256 typedef struct buf_hash_table { uint64_t ht_mask; arc_buf_hdr_t **ht_table; struct ht_lock ht_locks[BUF_LOCKS]; } buf_hash_table_t; static buf_hash_table_t buf_hash_table; #define BUF_HASH_INDEX(spa, dva, birth) \ (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) #define HDR_LOCK(hdr) \ (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) uint64_t zfs_crc64_table[256]; /* * Level 2 ARC */ #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ #define L2ARC_HEADROOM 2 /* num of writes */ #define L2ARC_FEED_SECS 1 /* caching interval secs */ #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) /* * L2ARC Performance Tunables */ uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */ uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */ uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */ uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */ boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */ boolean_t l2arc_norw = B_TRUE; /* no reads during writes */ /* * L2ARC Internals */ typedef struct l2arc_dev { vdev_t *l2ad_vdev; /* vdev */ spa_t *l2ad_spa; /* spa */ uint64_t l2ad_hand; /* next write location */ uint64_t l2ad_write; /* desired write size, bytes */ uint64_t l2ad_boost; /* warmup write boost, bytes */ uint64_t l2ad_start; /* first addr on device */ uint64_t l2ad_end; /* last addr on device */ uint64_t l2ad_evict; /* last addr eviction reached */ boolean_t l2ad_first; /* first sweep through */ boolean_t l2ad_writing; /* currently writing */ list_t *l2ad_buflist; /* buffer list */ list_node_t l2ad_node; /* device list node */ } l2arc_dev_t; static list_t L2ARC_dev_list; /* device list */ static list_t *l2arc_dev_list; /* device list pointer */ static kmutex_t l2arc_dev_mtx; /* device list mutex */ static l2arc_dev_t *l2arc_dev_last; /* last device used */ static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */ static list_t L2ARC_free_on_write; /* free after write buf list */ static list_t *l2arc_free_on_write; /* free after write list ptr */ static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ static uint64_t l2arc_ndev; /* number of devices */ typedef struct l2arc_read_callback { arc_buf_t *l2rcb_buf; /* read buffer */ spa_t *l2rcb_spa; /* spa */ blkptr_t l2rcb_bp; /* original blkptr */ zbookmark_t l2rcb_zb; /* original bookmark */ int l2rcb_flags; /* original flags */ } l2arc_read_callback_t; typedef struct l2arc_write_callback { l2arc_dev_t *l2wcb_dev; /* device info */ arc_buf_hdr_t *l2wcb_head; /* head of write buflist */ } l2arc_write_callback_t; struct l2arc_buf_hdr { /* protected by arc_buf_hdr mutex */ l2arc_dev_t *b_dev; /* L2ARC device */ uint64_t b_daddr; /* disk address, offset byte */ }; typedef struct l2arc_data_free { /* protected by l2arc_free_on_write_mtx */ void *l2df_data; size_t l2df_size; void (*l2df_func)(void *, size_t); list_node_t l2df_list_node; } l2arc_data_free_t; static kmutex_t l2arc_feed_thr_lock; static kcondvar_t l2arc_feed_thr_cv; static uint8_t l2arc_thread_exit; static void l2arc_read_done(zio_t *zio); static void l2arc_hdr_stat_add(void); static void l2arc_hdr_stat_remove(void); static uint64_t buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) { uint8_t *vdva = (uint8_t *)dva; uint64_t crc = -1ULL; int i; ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); for (i = 0; i < sizeof (dva_t); i++) crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF]; crc ^= (spa>>8) ^ birth; return (crc); } #define BUF_EMPTY(buf) \ ((buf)->b_dva.dva_word[0] == 0 && \ (buf)->b_dva.dva_word[1] == 0 && \ (buf)->b_birth == 0) #define BUF_EQUAL(spa, dva, birth, buf) \ ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ ((buf)->b_birth == birth) && ((buf)->b_spa == spa) static void buf_discard_identity(arc_buf_hdr_t *hdr) { hdr->b_dva.dva_word[0] = 0; hdr->b_dva.dva_word[1] = 0; hdr->b_birth = 0; hdr->b_cksum0 = 0; } static arc_buf_hdr_t * buf_hash_find(uint64_t spa, const dva_t *dva, uint64_t birth, kmutex_t **lockp) { uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *buf; mutex_enter(hash_lock); for (buf = buf_hash_table.ht_table[idx]; buf != NULL; buf = buf->b_hash_next) { if (BUF_EQUAL(spa, dva, birth, buf)) { *lockp = hash_lock; return (buf); } } mutex_exit(hash_lock); *lockp = NULL; return (NULL); } /* * Insert an entry into the hash table. If there is already an element * equal to elem in the hash table, then the already existing element * will be returned and the new element will not be inserted. * Otherwise returns NULL. */ static arc_buf_hdr_t * buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp) { uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); kmutex_t *hash_lock = BUF_HASH_LOCK(idx); arc_buf_hdr_t *fbuf; uint32_t i; ASSERT(!HDR_IN_HASH_TABLE(buf)); *lockp = hash_lock; mutex_enter(hash_lock); for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL; fbuf = fbuf->b_hash_next, i++) { if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf)) return (fbuf); } buf->b_hash_next = buf_hash_table.ht_table[idx]; buf_hash_table.ht_table[idx] = buf; buf->b_flags |= ARC_IN_HASH_TABLE; /* collect some hash table performance data */ if (i > 0) { ARCSTAT_BUMP(arcstat_hash_collisions); if (i == 1) ARCSTAT_BUMP(arcstat_hash_chains); ARCSTAT_MAX(arcstat_hash_chain_max, i); } ARCSTAT_BUMP(arcstat_hash_elements); ARCSTAT_MAXSTAT(arcstat_hash_elements); return (NULL); } static void buf_hash_remove(arc_buf_hdr_t *buf) { arc_buf_hdr_t *fbuf, **bufp; uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth); ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); ASSERT(HDR_IN_HASH_TABLE(buf)); bufp = &buf_hash_table.ht_table[idx]; while ((fbuf = *bufp) != buf) { ASSERT(fbuf != NULL); bufp = &fbuf->b_hash_next; } *bufp = buf->b_hash_next; buf->b_hash_next = NULL; buf->b_flags &= ~ARC_IN_HASH_TABLE; /* collect some hash table performance data */ ARCSTAT_BUMPDOWN(arcstat_hash_elements); if (buf_hash_table.ht_table[idx] && buf_hash_table.ht_table[idx]->b_hash_next == NULL) ARCSTAT_BUMPDOWN(arcstat_hash_chains); } /* * Global data structures and functions for the buf kmem cache. */ static kmem_cache_t *hdr_cache; static kmem_cache_t *buf_cache; static void buf_fini(void) { int i; kmem_free(buf_hash_table.ht_table, (buf_hash_table.ht_mask + 1) * sizeof (void *)); for (i = 0; i < BUF_LOCKS; i++) mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); kmem_cache_destroy(hdr_cache); kmem_cache_destroy(buf_cache); } /* * Constructor callback - called when the cache is empty * and a new buf is requested. */ /* ARGSUSED */ static int hdr_cons(void *vbuf, void *unused, int kmflag) { arc_buf_hdr_t *buf = vbuf; bzero(buf, sizeof (arc_buf_hdr_t)); refcount_create(&buf->b_refcnt); cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL); mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); return (0); } /* ARGSUSED */ static int buf_cons(void *vbuf, void *unused, int kmflag) { arc_buf_t *buf = vbuf; bzero(buf, sizeof (arc_buf_t)); mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); rw_init(&buf->b_data_lock, NULL, RW_DEFAULT, NULL); arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); return (0); } /* * Destructor callback - called when a cached buf is * no longer required. */ /* ARGSUSED */ static void hdr_dest(void *vbuf, void *unused) { arc_buf_hdr_t *buf = vbuf; ASSERT(BUF_EMPTY(buf)); refcount_destroy(&buf->b_refcnt); cv_destroy(&buf->b_cv); mutex_destroy(&buf->b_freeze_lock); arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS); } /* ARGSUSED */ static void buf_dest(void *vbuf, void *unused) { arc_buf_t *buf = vbuf; mutex_destroy(&buf->b_evict_lock); rw_destroy(&buf->b_data_lock); arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); } /* * Reclaim callback -- invoked when memory is low. */ /* ARGSUSED */ static void hdr_recl(void *unused) { dprintf("hdr_recl called\n"); /* * umem calls the reclaim func when we destroy the buf cache, * which is after we do arc_fini(). */ if (!arc_dead) cv_signal(&arc_reclaim_thr_cv); } static void buf_init(void) { uint64_t *ct; uint64_t hsize = 1ULL << 12; int i, j; /* * The hash table is big enough to fill all of physical memory * with an average 64K block size. The table will take up * totalmem*sizeof(void*)/64K (eg. 128KB/GB with 8-byte pointers). */ while (hsize * 65536 < physmem * PAGESIZE) hsize <<= 1; retry: buf_hash_table.ht_mask = hsize - 1; buf_hash_table.ht_table = kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); if (buf_hash_table.ht_table == NULL) { ASSERT(hsize > (1ULL << 8)); hsize >>= 1; goto retry; } hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t), 0, hdr_cons, hdr_dest, hdr_recl, NULL, NULL, 0); buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); for (i = 0; i < 256; i++) for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); for (i = 0; i < BUF_LOCKS; i++) { mutex_init(&buf_hash_table.ht_locks[i].ht_lock, NULL, MUTEX_DEFAULT, NULL); } } #define ARC_MINTIME (hz>>4) /* 62 ms */ static void arc_cksum_verify(arc_buf_t *buf) { zio_cksum_t zc; if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; mutex_enter(&buf->b_hdr->b_freeze_lock); if (buf->b_hdr->b_freeze_cksum == NULL || (buf->b_hdr->b_flags & ARC_IO_ERROR)) { mutex_exit(&buf->b_hdr->b_freeze_lock); return; } fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc)) panic("buffer modified while frozen!"); mutex_exit(&buf->b_hdr->b_freeze_lock); } static int arc_cksum_equal(arc_buf_t *buf) { zio_cksum_t zc; int equal; mutex_enter(&buf->b_hdr->b_freeze_lock); fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc); equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc); mutex_exit(&buf->b_hdr->b_freeze_lock); return (equal); } static void arc_cksum_compute(arc_buf_t *buf, boolean_t force) { if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY)) return; mutex_enter(&buf->b_hdr->b_freeze_lock); if (buf->b_hdr->b_freeze_cksum != NULL) { mutex_exit(&buf->b_hdr->b_freeze_lock); return; } buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP); fletcher_2_native(buf->b_data, buf->b_hdr->b_size, buf->b_hdr->b_freeze_cksum); mutex_exit(&buf->b_hdr->b_freeze_lock); } void arc_buf_thaw(arc_buf_t *buf) { if (zfs_flags & ZFS_DEBUG_MODIFY) { if (buf->b_hdr->b_state != arc_anon) panic("modifying non-anon buffer!"); if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS) panic("modifying buffer while i/o in progress!"); arc_cksum_verify(buf); } mutex_enter(&buf->b_hdr->b_freeze_lock); if (buf->b_hdr->b_freeze_cksum != NULL) { kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t)); buf->b_hdr->b_freeze_cksum = NULL; } if (zfs_flags & ZFS_DEBUG_MODIFY) { if (buf->b_hdr->b_thawed) kmem_free(buf->b_hdr->b_thawed, 1); buf->b_hdr->b_thawed = kmem_alloc(1, KM_SLEEP); } mutex_exit(&buf->b_hdr->b_freeze_lock); } void arc_buf_freeze(arc_buf_t *buf) { kmutex_t *hash_lock; if (!(zfs_flags & ZFS_DEBUG_MODIFY)) return; hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); ASSERT(buf->b_hdr->b_freeze_cksum != NULL || buf->b_hdr->b_state == arc_anon); arc_cksum_compute(buf, B_FALSE); mutex_exit(hash_lock); } static void add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) { ASSERT(MUTEX_HELD(hash_lock)); if ((refcount_add(&ab->b_refcnt, tag) == 1) && (ab->b_state != arc_anon)) { uint64_t delta = ab->b_size * ab->b_datacnt; list_t *list = &ab->b_state->arcs_list[ab->b_type]; uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type]; ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx)); mutex_enter(&ab->b_state->arcs_mtx); ASSERT(list_link_active(&ab->b_arc_node)); list_remove(list, ab); if (GHOST_STATE(ab->b_state)) { ASSERT3U(ab->b_datacnt, ==, 0); ASSERT3P(ab->b_buf, ==, NULL); delta = ab->b_size; } ASSERT(delta > 0); ASSERT3U(*size, >=, delta); atomic_add_64(size, -delta); mutex_exit(&ab->b_state->arcs_mtx); /* remove the prefetch flag if we get a reference */ if (ab->b_flags & ARC_PREFETCH) ab->b_flags &= ~ARC_PREFETCH; } } static int remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag) { int cnt; arc_state_t *state = ab->b_state; ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); ASSERT(!GHOST_STATE(state)); if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) && (state != arc_anon)) { uint64_t *size = &state->arcs_lsize[ab->b_type]; ASSERT(!MUTEX_HELD(&state->arcs_mtx)); mutex_enter(&state->arcs_mtx); ASSERT(!list_link_active(&ab->b_arc_node)); list_insert_head(&state->arcs_list[ab->b_type], ab); ASSERT(ab->b_datacnt > 0); atomic_add_64(size, ab->b_size * ab->b_datacnt); mutex_exit(&state->arcs_mtx); } return (cnt); } /* * Move the supplied buffer to the indicated state. The mutex * for the buffer must be held by the caller. */ static void arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock) { arc_state_t *old_state = ab->b_state; int64_t refcnt = refcount_count(&ab->b_refcnt); uint64_t from_delta, to_delta; ASSERT(MUTEX_HELD(hash_lock)); ASSERT(new_state != old_state); ASSERT(refcnt == 0 || ab->b_datacnt > 0); ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state)); ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon); from_delta = to_delta = ab->b_datacnt * ab->b_size; /* * If this buffer is evictable, transfer it from the * old state list to the new state list. */ if (refcnt == 0) { if (old_state != arc_anon) { int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx); uint64_t *size = &old_state->arcs_lsize[ab->b_type]; if (use_mutex) mutex_enter(&old_state->arcs_mtx); ASSERT(list_link_active(&ab->b_arc_node)); list_remove(&old_state->arcs_list[ab->b_type], ab); /* * If prefetching out of the ghost cache, * we will have a non-zero datacnt. */ if (GHOST_STATE(old_state) && ab->b_datacnt == 0) { /* ghost elements have a ghost size */ ASSERT(ab->b_buf == NULL); from_delta = ab->b_size; } ASSERT3U(*size, >=, from_delta); atomic_add_64(size, -from_delta); if (use_mutex) mutex_exit(&old_state->arcs_mtx); } if (new_state != arc_anon) { int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx); uint64_t *size = &new_state->arcs_lsize[ab->b_type]; if (use_mutex) mutex_enter(&new_state->arcs_mtx); list_insert_head(&new_state->arcs_list[ab->b_type], ab); /* ghost elements have a ghost size */ if (GHOST_STATE(new_state)) { ASSERT(ab->b_datacnt == 0); ASSERT(ab->b_buf == NULL); to_delta = ab->b_size; } atomic_add_64(size, to_delta); if (use_mutex) mutex_exit(&new_state->arcs_mtx); } } ASSERT(!BUF_EMPTY(ab)); if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab)) buf_hash_remove(ab); /* adjust state sizes */ if (to_delta) atomic_add_64(&new_state->arcs_size, to_delta); if (from_delta) { ASSERT3U(old_state->arcs_size, >=, from_delta); atomic_add_64(&old_state->arcs_size, -from_delta); } ab->b_state = new_state; /* adjust l2arc hdr stats */ if (new_state == arc_l2c_only) l2arc_hdr_stat_add(); else if (old_state == arc_l2c_only) l2arc_hdr_stat_remove(); } void arc_space_consume(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, space); break; case ARC_SPACE_OTHER: ARCSTAT_INCR(arcstat_other_size, space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, space); break; case ARC_SPACE_L2HDRS: ARCSTAT_INCR(arcstat_l2_hdr_size, space); break; } atomic_add_64(&arc_meta_used, space); atomic_add_64(&arc_size, space); } void arc_space_return(uint64_t space, arc_space_type_t type) { ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); switch (type) { case ARC_SPACE_DATA: ARCSTAT_INCR(arcstat_data_size, -space); break; case ARC_SPACE_OTHER: ARCSTAT_INCR(arcstat_other_size, -space); break; case ARC_SPACE_HDRS: ARCSTAT_INCR(arcstat_hdr_size, -space); break; case ARC_SPACE_L2HDRS: ARCSTAT_INCR(arcstat_l2_hdr_size, -space); break; } ASSERT(arc_meta_used >= space); if (arc_meta_max < arc_meta_used) arc_meta_max = arc_meta_used; atomic_add_64(&arc_meta_used, -space); ASSERT(arc_size >= space); atomic_add_64(&arc_size, -space); } void * arc_data_buf_alloc(uint64_t size) { if (arc_evict_needed(ARC_BUFC_DATA)) cv_signal(&arc_reclaim_thr_cv); atomic_add_64(&arc_size, size); return (zio_data_buf_alloc(size)); } void arc_data_buf_free(void *buf, uint64_t size) { zio_data_buf_free(buf, size); ASSERT(arc_size >= size); atomic_add_64(&arc_size, -size); } arc_buf_t * arc_buf_alloc(spa_t *spa, int size, void *tag, arc_buf_contents_t type) { arc_buf_hdr_t *hdr; arc_buf_t *buf; ASSERT3U(size, >, 0); hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); ASSERT(BUF_EMPTY(hdr)); hdr->b_size = size; hdr->b_type = type; hdr->b_spa = spa_guid(spa); hdr->b_state = arc_anon; hdr->b_arc_access = 0; buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = NULL; hdr->b_buf = buf; arc_get_data_buf(buf); hdr->b_datacnt = 1; hdr->b_flags = 0; ASSERT(refcount_is_zero(&hdr->b_refcnt)); (void) refcount_add(&hdr->b_refcnt, tag); return (buf); } static char *arc_onloan_tag = "onloan"; /* * Loan out an anonymous arc buffer. Loaned buffers are not counted as in * flight data by arc_tempreserve_space() until they are "returned". Loaned * buffers must be returned to the arc before they can be used by the DMU or * freed. */ arc_buf_t * arc_loan_buf(spa_t *spa, int size) { arc_buf_t *buf; buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA); atomic_add_64(&arc_loaned_bytes, size); return (buf); } /* * Return a loaned arc buffer to the arc. */ void arc_return_buf(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(buf->b_data != NULL); (void) refcount_add(&hdr->b_refcnt, tag); (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag); atomic_add_64(&arc_loaned_bytes, -hdr->b_size); } /* Detach an arc_buf from a dbuf (tag) */ void arc_loan_inuse_buf(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr; ASSERT(buf->b_data != NULL); hdr = buf->b_hdr; (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag); (void) refcount_remove(&hdr->b_refcnt, tag); buf->b_efunc = NULL; buf->b_private = NULL; atomic_add_64(&arc_loaned_bytes, hdr->b_size); } static arc_buf_t * arc_buf_clone(arc_buf_t *from) { arc_buf_t *buf; arc_buf_hdr_t *hdr = from->b_hdr; uint64_t size = hdr->b_size; ASSERT(hdr->b_state != arc_anon); buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = hdr->b_buf; hdr->b_buf = buf; arc_get_data_buf(buf); bcopy(from->b_data, buf->b_data, size); hdr->b_datacnt += 1; return (buf); } void arc_buf_add_ref(arc_buf_t *buf, void* tag) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; /* * Check to see if this buffer is evicted. Callers * must verify b_data != NULL to know if the add_ref * was successful. */ mutex_enter(&buf->b_evict_lock); if (buf->b_data == NULL) { mutex_exit(&buf->b_evict_lock); return; } hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); mutex_exit(&buf->b_evict_lock); ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); add_reference(hdr, hash_lock, tag); DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, hash_lock); mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, data, metadata, hits); } /* * Free the arc data buffer. If it is an l2arc write in progress, * the buffer is placed on l2arc_free_on_write to be freed later. */ static void arc_buf_data_free(arc_buf_hdr_t *hdr, void (*free_func)(void *, size_t), void *data, size_t size) { if (HDR_L2_WRITING(hdr)) { l2arc_data_free_t *df; df = kmem_alloc(sizeof (l2arc_data_free_t), KM_SLEEP); df->l2df_data = data; df->l2df_size = size; df->l2df_func = free_func; mutex_enter(&l2arc_free_on_write_mtx); list_insert_head(l2arc_free_on_write, df); mutex_exit(&l2arc_free_on_write_mtx); ARCSTAT_BUMP(arcstat_l2_free_on_write); } else { free_func(data, size); } } static void arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t all) { arc_buf_t **bufp; /* free up data associated with the buf */ if (buf->b_data) { arc_state_t *state = buf->b_hdr->b_state; uint64_t size = buf->b_hdr->b_size; arc_buf_contents_t type = buf->b_hdr->b_type; arc_cksum_verify(buf); if (!recycle) { if (type == ARC_BUFC_METADATA) { arc_buf_data_free(buf->b_hdr, zio_buf_free, buf->b_data, size); arc_space_return(size, ARC_SPACE_DATA); } else { ASSERT(type == ARC_BUFC_DATA); arc_buf_data_free(buf->b_hdr, zio_data_buf_free, buf->b_data, size); ARCSTAT_INCR(arcstat_data_size, -size); atomic_add_64(&arc_size, -size); } } if (list_link_active(&buf->b_hdr->b_arc_node)) { uint64_t *cnt = &state->arcs_lsize[type]; ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt)); ASSERT(state != arc_anon); ASSERT3U(*cnt, >=, size); atomic_add_64(cnt, -size); } ASSERT3U(state->arcs_size, >=, size); atomic_add_64(&state->arcs_size, -size); buf->b_data = NULL; ASSERT(buf->b_hdr->b_datacnt > 0); buf->b_hdr->b_datacnt -= 1; } /* only remove the buf if requested */ if (!all) return; /* remove the buf from the hdr list */ for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next) continue; *bufp = buf->b_next; buf->b_next = NULL; ASSERT(buf->b_efunc == NULL); /* clean up the buf */ buf->b_hdr = NULL; kmem_cache_free(buf_cache, buf); } static void arc_hdr_destroy(arc_buf_hdr_t *hdr) { l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr; ASSERT(refcount_is_zero(&hdr->b_refcnt)); ASSERT3P(hdr->b_state, ==, arc_anon); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); if (l2hdr != NULL) { boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx); /* * To prevent arc_free() and l2arc_evict() from * attempting to free the same buffer at the same time, * a FREE_IN_PROGRESS flag is given to arc_free() to * give it priority. l2arc_evict() can't destroy this * header while we are waiting on l2arc_buflist_mtx. * * The hdr may be removed from l2ad_buflist before we * grab l2arc_buflist_mtx, so b_l2hdr is rechecked. */ if (!buflist_held) { mutex_enter(&l2arc_buflist_mtx); l2hdr = hdr->b_l2hdr; } if (l2hdr != NULL) { list_remove(l2hdr->b_dev->l2ad_buflist, hdr); ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size); kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); if (hdr->b_state == arc_l2c_only) l2arc_hdr_stat_remove(); hdr->b_l2hdr = NULL; } if (!buflist_held) mutex_exit(&l2arc_buflist_mtx); } if (!BUF_EMPTY(hdr)) { ASSERT(!HDR_IN_HASH_TABLE(hdr)); buf_discard_identity(hdr); } while (hdr->b_buf) { arc_buf_t *buf = hdr->b_buf; if (buf->b_efunc) { mutex_enter(&arc_eviction_mtx); mutex_enter(&buf->b_evict_lock); ASSERT(buf->b_hdr != NULL); arc_buf_destroy(hdr->b_buf, FALSE, FALSE); hdr->b_buf = buf->b_next; buf->b_hdr = &arc_eviction_hdr; buf->b_next = arc_eviction_list; arc_eviction_list = buf; mutex_exit(&buf->b_evict_lock); mutex_exit(&arc_eviction_mtx); } else { arc_buf_destroy(hdr->b_buf, FALSE, TRUE); } } if (hdr->b_freeze_cksum != NULL) { kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); hdr->b_freeze_cksum = NULL; } if (hdr->b_thawed) { kmem_free(hdr->b_thawed, 1); hdr->b_thawed = NULL; } ASSERT(!list_link_active(&hdr->b_arc_node)); ASSERT3P(hdr->b_hash_next, ==, NULL); ASSERT3P(hdr->b_acb, ==, NULL); kmem_cache_free(hdr_cache, hdr); } void arc_buf_free(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr = buf->b_hdr; int hashed = hdr->b_state != arc_anon; ASSERT(buf->b_efunc == NULL); ASSERT(buf->b_data != NULL); if (hashed) { kmutex_t *hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); (void) remove_reference(hdr, hash_lock, tag); if (hdr->b_datacnt > 1) { arc_buf_destroy(buf, FALSE, TRUE); } else { ASSERT(buf == hdr->b_buf); ASSERT(buf->b_efunc == NULL); hdr->b_flags |= ARC_BUF_AVAILABLE; } mutex_exit(hash_lock); } else if (HDR_IO_IN_PROGRESS(hdr)) { int destroy_hdr; /* * We are in the middle of an async write. Don't destroy * this buffer unless the write completes before we finish * decrementing the reference count. */ mutex_enter(&arc_eviction_mtx); (void) remove_reference(hdr, NULL, tag); ASSERT(refcount_is_zero(&hdr->b_refcnt)); destroy_hdr = !HDR_IO_IN_PROGRESS(hdr); mutex_exit(&arc_eviction_mtx); if (destroy_hdr) arc_hdr_destroy(hdr); } else { if (remove_reference(hdr, NULL, tag) > 0) arc_buf_destroy(buf, FALSE, TRUE); else arc_hdr_destroy(hdr); } } int arc_buf_remove_ref(arc_buf_t *buf, void* tag) { arc_buf_hdr_t *hdr = buf->b_hdr; kmutex_t *hash_lock = HDR_LOCK(hdr); int no_callback = (buf->b_efunc == NULL); if (hdr->b_state == arc_anon) { ASSERT(hdr->b_datacnt == 1); arc_buf_free(buf, tag); return (no_callback); } mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT(hdr->b_state != arc_anon); ASSERT(buf->b_data != NULL); (void) remove_reference(hdr, hash_lock, tag); if (hdr->b_datacnt > 1) { if (no_callback) arc_buf_destroy(buf, FALSE, TRUE); } else if (no_callback) { ASSERT(hdr->b_buf == buf && buf->b_next == NULL); ASSERT(buf->b_efunc == NULL); hdr->b_flags |= ARC_BUF_AVAILABLE; } ASSERT(no_callback || hdr->b_datacnt > 1 || refcount_is_zero(&hdr->b_refcnt)); mutex_exit(hash_lock); return (no_callback); } int arc_buf_size(arc_buf_t *buf) { return (buf->b_hdr->b_size); } /* * Evict buffers from list until we've removed the specified number of * bytes. Move the removed buffers to the appropriate evict state. * If the recycle flag is set, then attempt to "recycle" a buffer: * - look for a buffer to evict that is `bytes' long. * - return the data block from this buffer rather than freeing it. * This flag is used by callers that are trying to make space for a * new buffer in a full arc cache. * * This function makes a "best effort". It skips over any buffers * it can't get a hash_lock on, and so may not catch all candidates. * It may also return without evicting as much space as requested. */ static void * arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle, arc_buf_contents_t type) { arc_state_t *evicted_state; uint64_t bytes_evicted = 0, skipped = 0, missed = 0; arc_buf_hdr_t *ab, *ab_prev = NULL; list_t *list = &state->arcs_list[type]; kmutex_t *hash_lock; boolean_t have_lock; void *stolen = NULL; ASSERT(state == arc_mru || state == arc_mfu); evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; mutex_enter(&state->arcs_mtx); mutex_enter(&evicted_state->arcs_mtx); for (ab = list_tail(list); ab; ab = ab_prev) { ab_prev = list_prev(list, ab); /* prefetch buffers have a minimum lifespan */ if (HDR_IO_IN_PROGRESS(ab) || (spa && ab->b_spa != spa) || (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) && ddi_get_lbolt() - ab->b_arc_access < arc_min_prefetch_lifespan)) { skipped++; continue; } /* "lookahead" for better eviction candidate */ if (recycle && ab->b_size != bytes && ab_prev && ab_prev->b_size == bytes) continue; hash_lock = HDR_LOCK(ab); have_lock = MUTEX_HELD(hash_lock); if (have_lock || mutex_tryenter(hash_lock)) { ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0); ASSERT(ab->b_datacnt > 0); while (ab->b_buf) { arc_buf_t *buf = ab->b_buf; if (!mutex_tryenter(&buf->b_evict_lock)) { missed += 1; break; } if (buf->b_data) { bytes_evicted += ab->b_size; if (recycle && ab->b_type == type && ab->b_size == bytes && !HDR_L2_WRITING(ab)) { stolen = buf->b_data; recycle = FALSE; } } if (buf->b_efunc) { mutex_enter(&arc_eviction_mtx); arc_buf_destroy(buf, buf->b_data == stolen, FALSE); ab->b_buf = buf->b_next; buf->b_hdr = &arc_eviction_hdr; buf->b_next = arc_eviction_list; arc_eviction_list = buf; mutex_exit(&arc_eviction_mtx); mutex_exit(&buf->b_evict_lock); } else { mutex_exit(&buf->b_evict_lock); arc_buf_destroy(buf, buf->b_data == stolen, TRUE); } } if (ab->b_l2hdr) { ARCSTAT_INCR(arcstat_evict_l2_cached, ab->b_size); } else { if (l2arc_write_eligible(ab->b_spa, ab)) { ARCSTAT_INCR(arcstat_evict_l2_eligible, ab->b_size); } else { ARCSTAT_INCR( arcstat_evict_l2_ineligible, ab->b_size); } } if (ab->b_datacnt == 0) { arc_change_state(evicted_state, ab, hash_lock); ASSERT(HDR_IN_HASH_TABLE(ab)); ab->b_flags |= ARC_IN_HASH_TABLE; ab->b_flags &= ~ARC_BUF_AVAILABLE; DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab); } if (!have_lock) mutex_exit(hash_lock); if (bytes >= 0 && bytes_evicted >= bytes) break; } else { missed += 1; } } mutex_exit(&evicted_state->arcs_mtx); mutex_exit(&state->arcs_mtx); if (bytes_evicted < bytes) dprintf("only evicted %lld bytes from %x", (longlong_t)bytes_evicted, state); if (skipped) ARCSTAT_INCR(arcstat_evict_skip, skipped); if (missed) ARCSTAT_INCR(arcstat_mutex_miss, missed); /* * We have just evicted some date into the ghost state, make * sure we also adjust the ghost state size if necessary. */ if (arc_no_grow && arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) { int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) { int64_t todelete = MIN(arc_mru_ghost->arcs_lsize[type], mru_over); - arc_evict_ghost(arc_mru_ghost, NULL, todelete); + arc_evict_ghost(arc_mru_ghost, 0, todelete); } else if (arc_mfu_ghost->arcs_lsize[type] > 0) { int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type], arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c); - arc_evict_ghost(arc_mfu_ghost, NULL, todelete); + arc_evict_ghost(arc_mfu_ghost, 0, todelete); } } return (stolen); } /* * Remove buffers from list until we've removed the specified number of * bytes. Destroy the buffers that are removed. */ static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes) { arc_buf_hdr_t *ab, *ab_prev; arc_buf_hdr_t marker = { 0 }; list_t *list = &state->arcs_list[ARC_BUFC_DATA]; kmutex_t *hash_lock; uint64_t bytes_deleted = 0; uint64_t bufs_skipped = 0; ASSERT(GHOST_STATE(state)); top: mutex_enter(&state->arcs_mtx); for (ab = list_tail(list); ab; ab = ab_prev) { ab_prev = list_prev(list, ab); if (spa && ab->b_spa != spa) continue; /* ignore markers */ if (ab->b_spa == 0) continue; hash_lock = HDR_LOCK(ab); /* caller may be trying to modify this buffer, skip it */ if (MUTEX_HELD(hash_lock)) continue; if (mutex_tryenter(hash_lock)) { ASSERT(!HDR_IO_IN_PROGRESS(ab)); ASSERT(ab->b_buf == NULL); ARCSTAT_BUMP(arcstat_deleted); bytes_deleted += ab->b_size; if (ab->b_l2hdr != NULL) { /* * This buffer is cached on the 2nd Level ARC; * don't destroy the header. */ arc_change_state(arc_l2c_only, ab, hash_lock); mutex_exit(hash_lock); } else { arc_change_state(arc_anon, ab, hash_lock); mutex_exit(hash_lock); arc_hdr_destroy(ab); } DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab); if (bytes >= 0 && bytes_deleted >= bytes) break; } else if (bytes < 0) { /* * Insert a list marker and then wait for the * hash lock to become available. Once its * available, restart from where we left off. */ list_insert_after(list, ab, &marker); mutex_exit(&state->arcs_mtx); mutex_enter(hash_lock); mutex_exit(hash_lock); mutex_enter(&state->arcs_mtx); ab_prev = list_prev(list, &marker); list_remove(list, &marker); } else bufs_skipped += 1; } mutex_exit(&state->arcs_mtx); if (list == &state->arcs_list[ARC_BUFC_DATA] && (bytes < 0 || bytes_deleted < bytes)) { list = &state->arcs_list[ARC_BUFC_METADATA]; goto top; } if (bufs_skipped) { ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped); ASSERT(bytes >= 0); } if (bytes_deleted < bytes) dprintf("only deleted %lld bytes from %p", (longlong_t)bytes_deleted, state); } static void arc_adjust(void) { int64_t adjustment, delta; /* * Adjust MRU size */ adjustment = MIN((int64_t)(arc_size - arc_c), (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size + arc_meta_used - arc_p)); if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_DATA] > 0) { delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_DATA], adjustment); - (void) arc_evict(arc_mru, NULL, delta, FALSE, ARC_BUFC_DATA); + (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA); adjustment -= delta; } if (adjustment > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) { delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustment); - (void) arc_evict(arc_mru, NULL, delta, FALSE, + (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA); } /* * Adjust MFU size */ adjustment = arc_size - arc_c; if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_DATA] > 0) { delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_DATA]); - (void) arc_evict(arc_mfu, NULL, delta, FALSE, ARC_BUFC_DATA); + (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA); adjustment -= delta; } if (adjustment > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) { int64_t delta = MIN(adjustment, arc_mfu->arcs_lsize[ARC_BUFC_METADATA]); - (void) arc_evict(arc_mfu, NULL, delta, FALSE, + (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA); } /* * Adjust ghost lists */ adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c; if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) { delta = MIN(arc_mru_ghost->arcs_size, adjustment); - arc_evict_ghost(arc_mru_ghost, NULL, delta); + arc_evict_ghost(arc_mru_ghost, 0, delta); } adjustment = arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c; if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) { delta = MIN(arc_mfu_ghost->arcs_size, adjustment); - arc_evict_ghost(arc_mfu_ghost, NULL, delta); + arc_evict_ghost(arc_mfu_ghost, 0, delta); } } static void arc_do_user_evicts(void) { mutex_enter(&arc_eviction_mtx); while (arc_eviction_list != NULL) { arc_buf_t *buf = arc_eviction_list; arc_eviction_list = buf->b_next; mutex_enter(&buf->b_evict_lock); buf->b_hdr = NULL; mutex_exit(&buf->b_evict_lock); mutex_exit(&arc_eviction_mtx); if (buf->b_efunc != NULL) VERIFY(buf->b_efunc(buf) == 0); buf->b_efunc = NULL; buf->b_private = NULL; kmem_cache_free(buf_cache, buf); mutex_enter(&arc_eviction_mtx); } mutex_exit(&arc_eviction_mtx); } /* * Flush all *evictable* data from the cache for the given spa. * NOTE: this will not touch "active" (i.e. referenced) data. */ void arc_flush(spa_t *spa) { uint64_t guid = 0; if (spa) guid = spa_guid(spa); while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) { (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA); if (spa) break; } while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) { (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA); if (spa) break; } while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) { (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA); if (spa) break; } while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) { (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA); if (spa) break; } arc_evict_ghost(arc_mru_ghost, guid, -1); arc_evict_ghost(arc_mfu_ghost, guid, -1); mutex_enter(&arc_reclaim_thr_lock); arc_do_user_evicts(); mutex_exit(&arc_reclaim_thr_lock); ASSERT(spa || arc_eviction_list == NULL); } void arc_shrink(void) { if (arc_c > arc_c_min) { uint64_t to_free; #ifdef _KERNEL to_free = MAX(arc_c >> arc_shrink_shift, ptob(needfree)); #else to_free = arc_c >> arc_shrink_shift; #endif if (arc_c > arc_c_min + to_free) atomic_add_64(&arc_c, -to_free); else arc_c = arc_c_min; atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); if (arc_c > arc_size) arc_c = MAX(arc_size, arc_c_min); if (arc_p > arc_c) arc_p = (arc_c >> 1); ASSERT(arc_c >= arc_c_min); ASSERT((int64_t)arc_p >= 0); } if (arc_size > arc_c) arc_adjust(); } static int arc_reclaim_needed(void) { uint64_t extra; #ifdef _KERNEL if (needfree) return (1); /* * take 'desfree' extra pages, so we reclaim sooner, rather than later */ extra = desfree; /* * check that we're out of range of the pageout scanner. It starts to * schedule paging if freemem is less than lotsfree and needfree. * lotsfree is the high-water mark for pageout, and needfree is the * number of needed free pages. We add extra pages here to make sure * the scanner doesn't start up while we're freeing memory. */ if (freemem < lotsfree + needfree + extra) return (1); /* * check to make sure that swapfs has enough space so that anon * reservations can still succeed. anon_resvmem() checks that the * availrmem is greater than swapfs_minfree, and the number of reserved * swap pages. We also add a bit of extra here just to prevent * circumstances from getting really dire. */ if (availrmem < swapfs_minfree + swapfs_reserve + extra) return (1); #if defined(__i386) /* * If we're on an i386 platform, it's possible that we'll exhaust the * kernel heap space before we ever run out of available physical * memory. Most checks of the size of the heap_area compare against * tune.t_minarmem, which is the minimum available real memory that we * can have in the system. However, this is generally fixed at 25 pages * which is so low that it's useless. In this comparison, we seek to * calculate the total heap-size, and reclaim if more than 3/4ths of the * heap is allocated. (Or, in the calculation, if less than 1/4th is * free) */ if (btop(vmem_size(heap_arena, VMEM_FREE)) < (btop(vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)) >> 2)) return (1); #endif #else if (spa_get_random(100) == 0) return (1); #endif return (0); } static void arc_kmem_reap_now(arc_reclaim_strategy_t strat) { size_t i; kmem_cache_t *prev_cache = NULL; kmem_cache_t *prev_data_cache = NULL; extern kmem_cache_t *zio_buf_cache[]; extern kmem_cache_t *zio_data_buf_cache[]; #ifdef _KERNEL if (arc_meta_used >= arc_meta_limit) { /* * We are exceeding our meta-data cache limit. * Purge some DNLC entries to release holds on meta-data. */ dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent); } #if defined(__i386) /* * Reclaim unused memory from all kmem caches. */ kmem_reap(); #endif #endif /* * An aggressive reclamation will shrink the cache size as well as * reap free buffers from the arc kmem caches. */ if (strat == ARC_RECLAIM_AGGR) arc_shrink(); for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { if (zio_buf_cache[i] != prev_cache) { prev_cache = zio_buf_cache[i]; kmem_cache_reap_now(zio_buf_cache[i]); } if (zio_data_buf_cache[i] != prev_data_cache) { prev_data_cache = zio_data_buf_cache[i]; kmem_cache_reap_now(zio_data_buf_cache[i]); } } kmem_cache_reap_now(buf_cache); kmem_cache_reap_now(hdr_cache); } static void arc_reclaim_thread(void) { clock_t growtime = 0; arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS; callb_cpr_t cpr; CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG); mutex_enter(&arc_reclaim_thr_lock); while (arc_thread_exit == 0) { if (arc_reclaim_needed()) { if (arc_no_grow) { if (last_reclaim == ARC_RECLAIM_CONS) { last_reclaim = ARC_RECLAIM_AGGR; } else { last_reclaim = ARC_RECLAIM_CONS; } } else { arc_no_grow = TRUE; last_reclaim = ARC_RECLAIM_AGGR; membar_producer(); } /* reset the growth delay for every reclaim */ growtime = ddi_get_lbolt() + (arc_grow_retry * hz); arc_kmem_reap_now(last_reclaim); arc_warm = B_TRUE; } else if (arc_no_grow && ddi_get_lbolt() >= growtime) { arc_no_grow = FALSE; } arc_adjust(); if (arc_eviction_list != NULL) arc_do_user_evicts(); /* block until needed, or one second, whichever is shorter */ CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz)); CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock); } arc_thread_exit = 0; cv_broadcast(&arc_reclaim_thr_cv); CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */ thread_exit(); } /* * Adapt arc info given the number of bytes we are trying to add and * the state that we are comming from. This function is only called * when we are adding new content to the cache. */ static void arc_adapt(int bytes, arc_state_t *state) { int mult; uint64_t arc_p_min = (arc_c >> arc_p_min_shift); if (state == arc_l2c_only) return; ASSERT(bytes > 0); /* * Adapt the target size of the MRU list: * - if we just hit in the MRU ghost list, then increase * the target size of the MRU list. * - if we just hit in the MFU ghost list, then increase * the target size of the MFU list by decreasing the * target size of the MRU list. */ if (state == arc_mru_ghost) { mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ? 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size)); mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); } else if (state == arc_mfu_ghost) { uint64_t delta; mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ? 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size)); mult = MIN(mult, 10); delta = MIN(bytes * mult, arc_p); arc_p = MAX(arc_p_min, arc_p - delta); } ASSERT((int64_t)arc_p >= 0); if (arc_reclaim_needed()) { cv_signal(&arc_reclaim_thr_cv); return; } if (arc_no_grow) return; if (arc_c >= arc_c_max) return; /* * If we're within (2 * maxblocksize) bytes of the target * cache size, increment the target cache size */ if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { atomic_add_64(&arc_c, (int64_t)bytes); if (arc_c > arc_c_max) arc_c = arc_c_max; else if (state == arc_anon) atomic_add_64(&arc_p, (int64_t)bytes); if (arc_p > arc_c) arc_p = arc_c; } ASSERT((int64_t)arc_p >= 0); } /* * Check if the cache has reached its limits and eviction is required * prior to insert. */ static int arc_evict_needed(arc_buf_contents_t type) { if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit) return (1); #ifdef _KERNEL /* * If zio data pages are being allocated out of a separate heap segment, * then enforce that the size of available vmem for this area remains * above about 1/32nd free. */ if (type == ARC_BUFC_DATA && zio_arena != NULL && vmem_size(zio_arena, VMEM_FREE) < (vmem_size(zio_arena, VMEM_ALLOC) >> 5)) return (1); #endif if (arc_reclaim_needed()) return (1); return (arc_size > arc_c); } /* * The buffer, supplied as the first argument, needs a data block. * So, if we are at cache max, determine which cache should be victimized. * We have the following cases: * * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) -> * In this situation if we're out of space, but the resident size of the MFU is * under the limit, victimize the MFU cache to satisfy this insertion request. * * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) -> * Here, we've used up all of the available space for the MRU, so we need to * evict from our own cache instead. Evict from the set of resident MRU * entries. * * 3. Insert for MFU (c - p) > sizeof(arc_mfu) -> * c minus p represents the MFU space in the cache, since p is the size of the * cache that is dedicated to the MRU. In this situation there's still space on * the MFU side, so the MRU side needs to be victimized. * * 4. Insert for MFU (c - p) < sizeof(arc_mfu) -> * MFU's resident set is consuming more space than it has been allotted. In * this situation, we must victimize our own cache, the MFU, for this insertion. */ static void arc_get_data_buf(arc_buf_t *buf) { arc_state_t *state = buf->b_hdr->b_state; uint64_t size = buf->b_hdr->b_size; arc_buf_contents_t type = buf->b_hdr->b_type; arc_adapt(size, state); /* * We have not yet reached cache maximum size, * just allocate a new buffer. */ if (!arc_evict_needed(type)) { if (type == ARC_BUFC_METADATA) { buf->b_data = zio_buf_alloc(size); arc_space_consume(size, ARC_SPACE_DATA); } else { ASSERT(type == ARC_BUFC_DATA); buf->b_data = zio_data_buf_alloc(size); ARCSTAT_INCR(arcstat_data_size, size); atomic_add_64(&arc_size, size); } goto out; } /* * If we are prefetching from the mfu ghost list, this buffer * will end up on the mru list; so steal space from there. */ if (state == arc_mfu_ghost) state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu; else if (state == arc_mru_ghost) state = arc_mru; if (state == arc_mru || state == arc_anon) { uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size; state = (arc_mfu->arcs_lsize[type] >= size && arc_p > mru_used) ? arc_mfu : arc_mru; } else { /* MFU cases */ uint64_t mfu_space = arc_c - arc_p; state = (arc_mru->arcs_lsize[type] >= size && mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu; } - if ((buf->b_data = arc_evict(state, NULL, size, TRUE, type)) == NULL) { + if ((buf->b_data = arc_evict(state, 0, size, TRUE, type)) == NULL) { if (type == ARC_BUFC_METADATA) { buf->b_data = zio_buf_alloc(size); arc_space_consume(size, ARC_SPACE_DATA); } else { ASSERT(type == ARC_BUFC_DATA); buf->b_data = zio_data_buf_alloc(size); ARCSTAT_INCR(arcstat_data_size, size); atomic_add_64(&arc_size, size); } ARCSTAT_BUMP(arcstat_recycle_miss); } ASSERT(buf->b_data != NULL); out: /* * Update the state size. Note that ghost states have a * "ghost size" and so don't need to be updated. */ if (!GHOST_STATE(buf->b_hdr->b_state)) { arc_buf_hdr_t *hdr = buf->b_hdr; atomic_add_64(&hdr->b_state->arcs_size, size); if (list_link_active(&hdr->b_arc_node)) { ASSERT(refcount_is_zero(&hdr->b_refcnt)); atomic_add_64(&hdr->b_state->arcs_lsize[type], size); } /* * If we are growing the cache, and we are adding anonymous * data, and we have outgrown arc_p, update arc_p */ if (arc_size < arc_c && hdr->b_state == arc_anon && arc_anon->arcs_size + arc_mru->arcs_size > arc_p) arc_p = MIN(arc_c, arc_p + size); } } /* * This routine is called whenever a buffer is accessed. * NOTE: the hash lock is dropped in this function. */ static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock) { clock_t now; ASSERT(MUTEX_HELD(hash_lock)); if (buf->b_state == arc_anon) { /* * This buffer is not in the cache, and does not * appear in our "ghost" list. Add the new buffer * to the MRU state. */ ASSERT(buf->b_arc_access == 0); buf->b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); arc_change_state(arc_mru, buf, hash_lock); } else if (buf->b_state == arc_mru) { now = ddi_get_lbolt(); /* * If this buffer is here because of a prefetch, then either: * - clear the flag if this is a "referencing" read * (any subsequent access will bump this into the MFU state). * or * - move the buffer to the head of the list if this is * another prefetch (to make it less likely to be evicted). */ if ((buf->b_flags & ARC_PREFETCH) != 0) { if (refcount_count(&buf->b_refcnt) == 0) { ASSERT(list_link_active(&buf->b_arc_node)); } else { buf->b_flags &= ~ARC_PREFETCH; ARCSTAT_BUMP(arcstat_mru_hits); } buf->b_arc_access = now; return; } /* * This buffer has been "accessed" only once so far, * but it is still in the cache. Move it to the MFU * state. */ if (now > buf->b_arc_access + ARC_MINTIME) { /* * More than 125ms have passed since we * instantiated this buffer. Move it to the * most frequently used state. */ buf->b_arc_access = now; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); arc_change_state(arc_mfu, buf, hash_lock); } ARCSTAT_BUMP(arcstat_mru_hits); } else if (buf->b_state == arc_mru_ghost) { arc_state_t *new_state; /* * This buffer has been "accessed" recently, but * was evicted from the cache. Move it to the * MFU state. */ if (buf->b_flags & ARC_PREFETCH) { new_state = arc_mru; if (refcount_count(&buf->b_refcnt) > 0) buf->b_flags &= ~ARC_PREFETCH; DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf); } else { new_state = arc_mfu; DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); } buf->b_arc_access = ddi_get_lbolt(); arc_change_state(new_state, buf, hash_lock); ARCSTAT_BUMP(arcstat_mru_ghost_hits); } else if (buf->b_state == arc_mfu) { /* * This buffer has been accessed more than once and is * still in the cache. Keep it in the MFU state. * * NOTE: an add_reference() that occurred when we did * the arc_read() will have kicked this off the list. * If it was a prefetch, we will explicitly move it to * the head of the list now. */ if ((buf->b_flags & ARC_PREFETCH) != 0) { ASSERT(refcount_count(&buf->b_refcnt) == 0); ASSERT(list_link_active(&buf->b_arc_node)); } ARCSTAT_BUMP(arcstat_mfu_hits); buf->b_arc_access = ddi_get_lbolt(); } else if (buf->b_state == arc_mfu_ghost) { arc_state_t *new_state = arc_mfu; /* * This buffer has been accessed more than once but has * been evicted from the cache. Move it back to the * MFU state. */ if (buf->b_flags & ARC_PREFETCH) { /* * This is a prefetch access... * move this block back to the MRU state. */ ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0); new_state = arc_mru; } buf->b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); arc_change_state(new_state, buf, hash_lock); ARCSTAT_BUMP(arcstat_mfu_ghost_hits); } else if (buf->b_state == arc_l2c_only) { /* * This buffer is on the 2nd Level ARC. */ buf->b_arc_access = ddi_get_lbolt(); DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf); arc_change_state(arc_mfu, buf, hash_lock); } else { ASSERT(!"invalid arc state"); } } /* a generic arc_done_func_t which you can use */ /* ARGSUSED */ void arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg) { if (zio == NULL || zio->io_error == 0) bcopy(buf->b_data, arg, buf->b_hdr->b_size); VERIFY(arc_buf_remove_ref(buf, arg) == 1); } /* a generic arc_done_func_t */ void arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg) { arc_buf_t **bufp = arg; if (zio && zio->io_error) { VERIFY(arc_buf_remove_ref(buf, arg) == 1); *bufp = NULL; } else { *bufp = buf; ASSERT(buf->b_data); } } static void arc_read_done(zio_t *zio) { arc_buf_hdr_t *hdr, *found; arc_buf_t *buf; arc_buf_t *abuf; /* buffer we're assigning to callback */ kmutex_t *hash_lock; arc_callback_t *callback_list, *acb; int freeable = FALSE; buf = zio->io_private; hdr = buf->b_hdr; /* * The hdr was inserted into hash-table and removed from lists * prior to starting I/O. We should find this header, since * it's in the hash table, and it should be legit since it's * not possible to evict it during the I/O. The only possible * reason for it not to be found is if we were freed during the * read. */ found = buf_hash_find(hdr->b_spa, &hdr->b_dva, hdr->b_birth, &hash_lock); ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) && hash_lock == NULL) || (found == hdr && DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || (found == hdr && HDR_L2_READING(hdr))); hdr->b_flags &= ~ARC_L2_EVICTED; if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH)) hdr->b_flags &= ~ARC_L2CACHE; /* byteswap if necessary */ callback_list = hdr->b_acb; ASSERT(callback_list != NULL); if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) { arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ? byteswap_uint64_array : dmu_ot[BP_GET_TYPE(zio->io_bp)].ot_byteswap; func(buf->b_data, hdr->b_size); } arc_cksum_compute(buf, B_FALSE); if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) { /* * Only call arc_access on anonymous buffers. This is because * if we've issued an I/O for an evicted buffer, we've already * called arc_access (to prevent any simultaneous readers from * getting confused). */ arc_access(hdr, hash_lock); } /* create copies of the data buffer for the callers */ abuf = buf; for (acb = callback_list; acb; acb = acb->acb_next) { if (acb->acb_done) { if (abuf == NULL) abuf = arc_buf_clone(buf); acb->acb_buf = abuf; abuf = NULL; } } hdr->b_acb = NULL; hdr->b_flags &= ~ARC_IO_IN_PROGRESS; ASSERT(!HDR_BUF_AVAILABLE(hdr)); if (abuf == buf) { ASSERT(buf->b_efunc == NULL); ASSERT(hdr->b_datacnt == 1); hdr->b_flags |= ARC_BUF_AVAILABLE; } ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL); if (zio->io_error != 0) { hdr->b_flags |= ARC_IO_ERROR; if (hdr->b_state != arc_anon) arc_change_state(arc_anon, hdr, hash_lock); if (HDR_IN_HASH_TABLE(hdr)) buf_hash_remove(hdr); freeable = refcount_is_zero(&hdr->b_refcnt); } /* * Broadcast before we drop the hash_lock to avoid the possibility * that the hdr (and hence the cv) might be freed before we get to * the cv_broadcast(). */ cv_broadcast(&hdr->b_cv); if (hash_lock) { mutex_exit(hash_lock); } else { /* * This block was freed while we waited for the read to * complete. It has been removed from the hash table and * moved to the anonymous state (so that it won't show up * in the cache). */ ASSERT3P(hdr->b_state, ==, arc_anon); freeable = refcount_is_zero(&hdr->b_refcnt); } /* execute each callback and free its structure */ while ((acb = callback_list) != NULL) { if (acb->acb_done) acb->acb_done(zio, acb->acb_buf, acb->acb_private); if (acb->acb_zio_dummy != NULL) { acb->acb_zio_dummy->io_error = zio->io_error; zio_nowait(acb->acb_zio_dummy); } callback_list = acb->acb_next; kmem_free(acb, sizeof (arc_callback_t)); } if (freeable) arc_hdr_destroy(hdr); } /* * "Read" the block block at the specified DVA (in bp) via the * cache. If the block is found in the cache, invoke the provided * callback immediately and return. Note that the `zio' parameter * in the callback will be NULL in this case, since no IO was * required. If the block is not in the cache pass the read request * on to the spa with a substitute callback function, so that the * requested block will be added to the cache. * * If a read request arrives for a block that has a read in-progress, * either wait for the in-progress read to complete (and return the * results); or, if this is a read with a "done" func, add a record * to the read to invoke the "done" func when the read completes, * and return; or just return. * * arc_read_done() will invoke all the requested "done" functions * for readers of this block. * * Normal callers should use arc_read and pass the arc buffer and offset * for the bp. But if you know you don't need locking, you can use * arc_read_bp. */ int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf, arc_done_func_t *done, void *private, int priority, int zio_flags, uint32_t *arc_flags, const zbookmark_t *zb) { int err; if (pbuf == NULL) { /* * XXX This happens from traverse callback funcs, for * the objset_phys_t block. */ return (arc_read_nolock(pio, spa, bp, done, private, priority, zio_flags, arc_flags, zb)); } ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt)); ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size); rw_enter(&pbuf->b_data_lock, RW_READER); err = arc_read_nolock(pio, spa, bp, done, private, priority, zio_flags, arc_flags, zb); rw_exit(&pbuf->b_data_lock); return (err); } int arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done, void *private, int priority, int zio_flags, uint32_t *arc_flags, const zbookmark_t *zb) { arc_buf_hdr_t *hdr; arc_buf_t *buf; kmutex_t *hash_lock; zio_t *rzio; uint64_t guid = spa_guid(spa); top: hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp), &hash_lock); if (hdr && hdr->b_datacnt > 0) { *arc_flags |= ARC_CACHED; if (HDR_IO_IN_PROGRESS(hdr)) { if (*arc_flags & ARC_WAIT) { cv_wait(&hdr->b_cv, hash_lock); mutex_exit(hash_lock); goto top; } ASSERT(*arc_flags & ARC_NOWAIT); if (done) { arc_callback_t *acb = NULL; acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); acb->acb_done = done; acb->acb_private = private; if (pio != NULL) acb->acb_zio_dummy = zio_null(pio, spa, NULL, NULL, NULL, zio_flags); ASSERT(acb->acb_done != NULL); acb->acb_next = hdr->b_acb; hdr->b_acb = acb; add_reference(hdr, hash_lock, private); mutex_exit(hash_lock); return (0); } mutex_exit(hash_lock); return (0); } ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); if (done) { add_reference(hdr, hash_lock, private); /* * If this block is already in use, create a new * copy of the data so that we will be guaranteed * that arc_release() will always succeed. */ buf = hdr->b_buf; ASSERT(buf); ASSERT(buf->b_data); if (HDR_BUF_AVAILABLE(hdr)) { ASSERT(buf->b_efunc == NULL); hdr->b_flags &= ~ARC_BUF_AVAILABLE; } else { buf = arc_buf_clone(buf); } } else if (*arc_flags & ARC_PREFETCH && refcount_count(&hdr->b_refcnt) == 0) { hdr->b_flags |= ARC_PREFETCH; } DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); arc_access(hdr, hash_lock); if (*arc_flags & ARC_L2CACHE) hdr->b_flags |= ARC_L2CACHE; mutex_exit(hash_lock); ARCSTAT_BUMP(arcstat_hits); ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, data, metadata, hits); if (done) done(NULL, buf, private); } else { uint64_t size = BP_GET_LSIZE(bp); arc_callback_t *acb; vdev_t *vd = NULL; uint64_t addr; boolean_t devw = B_FALSE; if (hdr == NULL) { /* this block is not in the cache */ arc_buf_hdr_t *exists; arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); buf = arc_buf_alloc(spa, size, private, type); hdr = buf->b_hdr; hdr->b_dva = *BP_IDENTITY(bp); hdr->b_birth = BP_PHYSICAL_BIRTH(bp); hdr->b_cksum0 = bp->blk_cksum.zc_word[0]; exists = buf_hash_insert(hdr, &hash_lock); if (exists) { /* somebody beat us to the hash insert */ mutex_exit(hash_lock); buf_discard_identity(hdr); (void) arc_buf_remove_ref(buf, private); goto top; /* restart the IO request */ } /* if this is a prefetch, we don't have a reference */ if (*arc_flags & ARC_PREFETCH) { (void) remove_reference(hdr, hash_lock, private); hdr->b_flags |= ARC_PREFETCH; } if (*arc_flags & ARC_L2CACHE) hdr->b_flags |= ARC_L2CACHE; if (BP_GET_LEVEL(bp) > 0) hdr->b_flags |= ARC_INDIRECT; } else { /* this block is in the ghost cache */ ASSERT(GHOST_STATE(hdr->b_state)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0); ASSERT(hdr->b_buf == NULL); /* if this is a prefetch, we don't have a reference */ if (*arc_flags & ARC_PREFETCH) hdr->b_flags |= ARC_PREFETCH; else add_reference(hdr, hash_lock, private); if (*arc_flags & ARC_L2CACHE) hdr->b_flags |= ARC_L2CACHE; buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); buf->b_hdr = hdr; buf->b_data = NULL; buf->b_efunc = NULL; buf->b_private = NULL; buf->b_next = NULL; hdr->b_buf = buf; ASSERT(hdr->b_datacnt == 0); hdr->b_datacnt = 1; arc_get_data_buf(buf); arc_access(hdr, hash_lock); } ASSERT(!GHOST_STATE(hdr->b_state)); acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); acb->acb_done = done; acb->acb_private = private; ASSERT(hdr->b_acb == NULL); hdr->b_acb = acb; hdr->b_flags |= ARC_IO_IN_PROGRESS; if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL && (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) { devw = hdr->b_l2hdr->b_dev->l2ad_writing; addr = hdr->b_l2hdr->b_daddr; /* * Lock out device removal. */ if (vdev_is_dead(vd) || !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) vd = NULL; } mutex_exit(hash_lock); ASSERT3U(hdr->b_size, ==, size); DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp, uint64_t, size, zbookmark_t *, zb); ARCSTAT_BUMP(arcstat_misses); ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH), demand, prefetch, hdr->b_type != ARC_BUFC_METADATA, data, metadata, misses); if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { /* * Read from the L2ARC if the following are true: * 1. The L2ARC vdev was previously cached. * 2. This buffer still has L2ARC metadata. * 3. This buffer isn't currently writing to the L2ARC. * 4. The L2ARC entry wasn't evicted, which may * also have invalidated the vdev. * 5. This isn't prefetch and l2arc_noprefetch is set. */ if (hdr->b_l2hdr != NULL && !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { l2arc_read_callback_t *cb; DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_hits); cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); cb->l2rcb_buf = buf; cb->l2rcb_spa = spa; cb->l2rcb_bp = *bp; cb->l2rcb_zb = *zb; cb->l2rcb_flags = zio_flags; /* * l2arc read. The SCL_L2ARC lock will be * released by l2arc_read_done(). */ rzio = zio_read_phys(pio, vd, addr, size, buf->b_data, ZIO_CHECKSUM_OFF, l2arc_read_done, cb, priority, zio_flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE); DTRACE_PROBE2(l2arc__read, vdev_t *, vd, zio_t *, rzio); ARCSTAT_INCR(arcstat_l2_read_bytes, size); if (*arc_flags & ARC_NOWAIT) { zio_nowait(rzio); return (0); } ASSERT(*arc_flags & ARC_WAIT); if (zio_wait(rzio) == 0) return (0); /* l2arc read error; goto zio_read() */ } else { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); if (HDR_L2_WRITING(hdr)) ARCSTAT_BUMP(arcstat_l2_rw_clash); spa_config_exit(spa, SCL_L2ARC, vd); } } else { if (vd != NULL) spa_config_exit(spa, SCL_L2ARC, vd); if (l2arc_ndev != 0) { DTRACE_PROBE1(l2arc__miss, arc_buf_hdr_t *, hdr); ARCSTAT_BUMP(arcstat_l2_misses); } } rzio = zio_read(pio, spa, bp, buf->b_data, size, arc_read_done, buf, priority, zio_flags, zb); if (*arc_flags & ARC_WAIT) return (zio_wait(rzio)); ASSERT(*arc_flags & ARC_NOWAIT); zio_nowait(rzio); } return (0); } void arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private) { ASSERT(buf->b_hdr != NULL); ASSERT(buf->b_hdr->b_state != arc_anon); ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL); ASSERT(buf->b_efunc == NULL); ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr)); buf->b_efunc = func; buf->b_private = private; } /* * This is used by the DMU to let the ARC know that a buffer is * being evicted, so the ARC should clean up. If this arc buf * is not yet in the evicted state, it will be put there. */ int arc_buf_evict(arc_buf_t *buf) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock; arc_buf_t **bufp; mutex_enter(&buf->b_evict_lock); hdr = buf->b_hdr; if (hdr == NULL) { /* * We are in arc_do_user_evicts(). */ ASSERT(buf->b_data == NULL); mutex_exit(&buf->b_evict_lock); return (0); } else if (buf->b_data == NULL) { arc_buf_t copy = *buf; /* structure assignment */ /* * We are on the eviction list; process this buffer now * but let arc_do_user_evicts() do the reaping. */ buf->b_efunc = NULL; mutex_exit(&buf->b_evict_lock); VERIFY(copy.b_efunc(©) == 0); return (1); } hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt); ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu); /* * Pull this buffer off of the hdr */ bufp = &hdr->b_buf; while (*bufp != buf) bufp = &(*bufp)->b_next; *bufp = buf->b_next; ASSERT(buf->b_data != NULL); arc_buf_destroy(buf, FALSE, FALSE); if (hdr->b_datacnt == 0) { arc_state_t *old_state = hdr->b_state; arc_state_t *evicted_state; ASSERT(hdr->b_buf == NULL); ASSERT(refcount_is_zero(&hdr->b_refcnt)); evicted_state = (old_state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; mutex_enter(&old_state->arcs_mtx); mutex_enter(&evicted_state->arcs_mtx); arc_change_state(evicted_state, hdr, hash_lock); ASSERT(HDR_IN_HASH_TABLE(hdr)); hdr->b_flags |= ARC_IN_HASH_TABLE; hdr->b_flags &= ~ARC_BUF_AVAILABLE; mutex_exit(&evicted_state->arcs_mtx); mutex_exit(&old_state->arcs_mtx); } mutex_exit(hash_lock); mutex_exit(&buf->b_evict_lock); VERIFY(buf->b_efunc(buf) == 0); buf->b_efunc = NULL; buf->b_private = NULL; buf->b_hdr = NULL; buf->b_next = NULL; kmem_cache_free(buf_cache, buf); return (1); } /* * Release this buffer from the cache. This must be done * after a read and prior to modifying the buffer contents. * If the buffer has more than one reference, we must make * a new hdr for the buffer. */ void arc_release(arc_buf_t *buf, void *tag) { arc_buf_hdr_t *hdr; kmutex_t *hash_lock = NULL; l2arc_buf_hdr_t *l2hdr; uint64_t buf_size; /* * It would be nice to assert that if it's DMU metadata (level > * 0 || it's the dnode file), then it must be syncing context. * But we don't know that information at this level. */ mutex_enter(&buf->b_evict_lock); hdr = buf->b_hdr; /* this buffer is not on any list */ ASSERT(refcount_count(&hdr->b_refcnt) > 0); if (hdr->b_state == arc_anon) { /* this buffer is already released */ ASSERT(buf->b_efunc == NULL); } else { hash_lock = HDR_LOCK(hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); } l2hdr = hdr->b_l2hdr; if (l2hdr) { mutex_enter(&l2arc_buflist_mtx); hdr->b_l2hdr = NULL; buf_size = hdr->b_size; } /* * Do we have more than one buf? */ if (hdr->b_datacnt > 1) { arc_buf_hdr_t *nhdr; arc_buf_t **bufp; uint64_t blksz = hdr->b_size; uint64_t spa = hdr->b_spa; arc_buf_contents_t type = hdr->b_type; uint32_t flags = hdr->b_flags; ASSERT(hdr->b_buf != buf || buf->b_next != NULL); /* * Pull the data off of this hdr and attach it to * a new anonymous hdr. */ (void) remove_reference(hdr, hash_lock, tag); bufp = &hdr->b_buf; while (*bufp != buf) bufp = &(*bufp)->b_next; *bufp = buf->b_next; buf->b_next = NULL; ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size); atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size); if (refcount_is_zero(&hdr->b_refcnt)) { uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type]; ASSERT3U(*size, >=, hdr->b_size); atomic_add_64(size, -hdr->b_size); } hdr->b_datacnt -= 1; arc_cksum_verify(buf); mutex_exit(hash_lock); nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); nhdr->b_size = blksz; nhdr->b_spa = spa; nhdr->b_type = type; nhdr->b_buf = buf; nhdr->b_state = arc_anon; nhdr->b_arc_access = 0; nhdr->b_flags = flags & ARC_L2_WRITING; nhdr->b_l2hdr = NULL; nhdr->b_datacnt = 1; nhdr->b_freeze_cksum = NULL; (void) refcount_add(&nhdr->b_refcnt, tag); buf->b_hdr = nhdr; mutex_exit(&buf->b_evict_lock); atomic_add_64(&arc_anon->arcs_size, blksz); } else { mutex_exit(&buf->b_evict_lock); ASSERT(refcount_count(&hdr->b_refcnt) == 1); ASSERT(!list_link_active(&hdr->b_arc_node)); ASSERT(!HDR_IO_IN_PROGRESS(hdr)); if (hdr->b_state != arc_anon) arc_change_state(arc_anon, hdr, hash_lock); hdr->b_arc_access = 0; if (hash_lock) mutex_exit(hash_lock); buf_discard_identity(hdr); arc_buf_thaw(buf); } buf->b_efunc = NULL; buf->b_private = NULL; if (l2hdr) { list_remove(l2hdr->b_dev->l2ad_buflist, hdr); kmem_free(l2hdr, sizeof (l2arc_buf_hdr_t)); ARCSTAT_INCR(arcstat_l2_size, -buf_size); mutex_exit(&l2arc_buflist_mtx); } } /* * Release this buffer. If it does not match the provided BP, fill it * with that block's contents. */ /* ARGSUSED */ int arc_release_bp(arc_buf_t *buf, void *tag, blkptr_t *bp, spa_t *spa, zbookmark_t *zb) { arc_release(buf, tag); return (0); } int arc_released(arc_buf_t *buf) { int released; mutex_enter(&buf->b_evict_lock); released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon); mutex_exit(&buf->b_evict_lock); return (released); } int arc_has_callback(arc_buf_t *buf) { int callback; mutex_enter(&buf->b_evict_lock); callback = (buf->b_efunc != NULL); mutex_exit(&buf->b_evict_lock); return (callback); } #ifdef ZFS_DEBUG int arc_referenced(arc_buf_t *buf) { int referenced; mutex_enter(&buf->b_evict_lock); referenced = (refcount_count(&buf->b_hdr->b_refcnt)); mutex_exit(&buf->b_evict_lock); return (referenced); } #endif static void arc_write_ready(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt)); callback->awcb_ready(zio, buf, callback->awcb_private); /* * If the IO is already in progress, then this is a re-write * attempt, so we need to thaw and re-compute the cksum. * It is the responsibility of the callback to handle the * accounting for any re-write attempt. */ if (HDR_IO_IN_PROGRESS(hdr)) { mutex_enter(&hdr->b_freeze_lock); if (hdr->b_freeze_cksum != NULL) { kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t)); hdr->b_freeze_cksum = NULL; } mutex_exit(&hdr->b_freeze_lock); } arc_cksum_compute(buf, B_FALSE); hdr->b_flags |= ARC_IO_IN_PROGRESS; } static void arc_write_done(zio_t *zio) { arc_write_callback_t *callback = zio->io_private; arc_buf_t *buf = callback->awcb_buf; arc_buf_hdr_t *hdr = buf->b_hdr; ASSERT(hdr->b_acb == NULL); if (zio->io_error == 0) { hdr->b_dva = *BP_IDENTITY(zio->io_bp); hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0]; } else { ASSERT(BUF_EMPTY(hdr)); } /* * If the block to be written was all-zero, we may have * compressed it away. In this case no write was performed * so there will be no dva/birth/checksum. The buffer must * therefore remain anonymous (and uncached). */ if (!BUF_EMPTY(hdr)) { arc_buf_hdr_t *exists; kmutex_t *hash_lock; ASSERT(zio->io_error == 0); arc_cksum_verify(buf); exists = buf_hash_insert(hdr, &hash_lock); if (exists) { /* * This can only happen if we overwrite for * sync-to-convergence, because we remove * buffers from the hash table when we arc_free(). */ if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) panic("bad overwrite, hdr=%p exists=%p", (void *)hdr, (void *)exists); ASSERT(refcount_is_zero(&exists->b_refcnt)); arc_change_state(arc_anon, exists, hash_lock); mutex_exit(hash_lock); arc_hdr_destroy(exists); exists = buf_hash_insert(hdr, &hash_lock); ASSERT3P(exists, ==, NULL); } else { /* Dedup */ ASSERT(hdr->b_datacnt == 1); ASSERT(hdr->b_state == arc_anon); ASSERT(BP_GET_DEDUP(zio->io_bp)); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); } } hdr->b_flags &= ~ARC_IO_IN_PROGRESS; /* if it's not anon, we are doing a scrub */ if (!exists && hdr->b_state == arc_anon) arc_access(hdr, hash_lock); mutex_exit(hash_lock); } else { hdr->b_flags &= ~ARC_IO_IN_PROGRESS; } ASSERT(!refcount_is_zero(&hdr->b_refcnt)); callback->awcb_done(zio, buf, callback->awcb_private); kmem_free(callback, sizeof (arc_write_callback_t)); } zio_t * arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *done, void *private, int priority, int zio_flags, const zbookmark_t *zb) { arc_buf_hdr_t *hdr = buf->b_hdr; arc_write_callback_t *callback; zio_t *zio; ASSERT(ready != NULL); ASSERT(done != NULL); ASSERT(!HDR_IO_ERROR(hdr)); ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0); ASSERT(hdr->b_acb == NULL); if (l2arc) hdr->b_flags |= ARC_L2CACHE; callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); callback->awcb_ready = ready; callback->awcb_done = done; callback->awcb_private = private; callback->awcb_buf = buf; zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp, arc_write_ready, arc_write_done, callback, priority, zio_flags, zb); return (zio); } static int arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg) { #ifdef _KERNEL uint64_t available_memory = ptob(freemem); static uint64_t page_load = 0; static uint64_t last_txg = 0; #if defined(__i386) available_memory = MIN(available_memory, vmem_size(heap_arena, VMEM_FREE)); #endif if (available_memory >= zfs_write_limit_max) return (0); if (txg > last_txg) { last_txg = txg; page_load = 0; } /* * If we are in pageout, we know that memory is already tight, * the arc is already going to be evicting, so we just want to * continue to let page writes occur as quickly as possible. */ if (curproc == proc_pageout) { if (page_load > MAX(ptob(minfree), available_memory) / 4) return (ERESTART); /* Note: reserve is inflated, so we deflate */ page_load += reserve / 8; return (0); } else if (page_load > 0 && arc_reclaim_needed()) { /* memory is low, delay before restarting */ ARCSTAT_INCR(arcstat_memory_throttle_count, 1); return (EAGAIN); } page_load = 0; if (arc_size > arc_c_min) { uint64_t evictable_memory = arc_mru->arcs_lsize[ARC_BUFC_DATA] + arc_mru->arcs_lsize[ARC_BUFC_METADATA] + arc_mfu->arcs_lsize[ARC_BUFC_DATA] + arc_mfu->arcs_lsize[ARC_BUFC_METADATA]; available_memory += MIN(evictable_memory, arc_size - arc_c_min); } if (inflight_data > available_memory / 4) { ARCSTAT_INCR(arcstat_memory_throttle_count, 1); return (ERESTART); } #endif return (0); } void arc_tempreserve_clear(uint64_t reserve) { atomic_add_64(&arc_tempreserve, -reserve); ASSERT((int64_t)arc_tempreserve >= 0); } int arc_tempreserve_space(uint64_t reserve, uint64_t txg) { int error; uint64_t anon_size; #ifdef ZFS_DEBUG /* * Once in a while, fail for no reason. Everything should cope. */ if (spa_get_random(10000) == 0) { dprintf("forcing random failure\n"); return (ERESTART); } #endif if (reserve > arc_c/4 && !arc_no_grow) arc_c = MIN(arc_c_max, reserve * 4); if (reserve > arc_c) return (ENOMEM); /* * Don't count loaned bufs as in flight dirty data to prevent long * network delays from blocking transactions that are ready to be * assigned to a txg. */ anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0); /* * Writes will, almost always, require additional memory allocations * in order to compress/encrypt/etc the data. We therefor need to * make sure that there is sufficient available memory for this. */ if (error = arc_memory_throttle(reserve, anon_size, txg)) return (error); /* * Throttle writes when the amount of dirty data in the cache * gets too large. We try to keep the cache less than half full * of dirty blocks so that our sync times don't grow too large. * Note: if two requests come in concurrently, we might let them * both succeed, when one of them should fail. Not a huge deal. */ if (reserve + arc_tempreserve + anon_size > arc_c / 2 && anon_size > arc_c / 4) { dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", arc_tempreserve>>10, arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10, arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10, reserve>>10, arc_c>>10); return (ERESTART); } atomic_add_64(&arc_tempreserve, reserve); return (0); } void arc_init(void) { mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL); /* Convert seconds to clock ticks */ arc_min_prefetch_lifespan = 1 * hz; /* Start out with 1/8 of all memory */ arc_c = physmem * PAGESIZE / 8; #ifdef _KERNEL /* * On architectures where the physical memory can be larger * than the addressable space (intel in 32-bit mode), we may * need to limit the cache to 1/8 of VM size. */ arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8); #endif /* set min cache to 1/32 of all memory, or 64MB, whichever is more */ arc_c_min = MAX(arc_c / 4, 64<<20); /* set max to 3/4 of all memory, or all but 1GB, whichever is more */ if (arc_c * 8 >= 1<<30) arc_c_max = (arc_c * 8) - (1<<30); else arc_c_max = arc_c_min; arc_c_max = MAX(arc_c * 6, arc_c_max); /* * Allow the tunables to override our calculations if they are * reasonable (ie. over 64MB) */ if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE) arc_c_max = zfs_arc_max; if (zfs_arc_min > 64<<20 && zfs_arc_min <= arc_c_max) arc_c_min = zfs_arc_min; arc_c = arc_c_max; arc_p = (arc_c >> 1); /* limit meta-data to 1/4 of the arc capacity */ arc_meta_limit = arc_c_max / 4; /* Allow the tunable to override if it is reasonable */ if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max) arc_meta_limit = zfs_arc_meta_limit; if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0) arc_c_min = arc_meta_limit / 2; if (zfs_arc_grow_retry > 0) arc_grow_retry = zfs_arc_grow_retry; if (zfs_arc_shrink_shift > 0) arc_shrink_shift = zfs_arc_shrink_shift; if (zfs_arc_p_min_shift > 0) arc_p_min_shift = zfs_arc_p_min_shift; /* if kmem_flags are set, lets try to use less memory */ if (kmem_debugging()) arc_c = arc_c / 2; if (arc_c < arc_c_min) arc_c = arc_c_min; arc_anon = &ARC_anon; arc_mru = &ARC_mru; arc_mru_ghost = &ARC_mru_ghost; arc_mfu = &ARC_mfu; arc_mfu_ghost = &ARC_mfu_ghost; arc_l2c_only = &ARC_l2c_only; arc_size = 0; mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL); list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mru->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA], sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node)); buf_init(); arc_thread_exit = 0; arc_eviction_list = NULL; mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL); bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t)); arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (arc_ksp != NULL) { arc_ksp->ks_data = &arc_stats; kstat_install(arc_ksp); } (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0, TS_RUN, minclsyspri); arc_dead = FALSE; arc_warm = B_FALSE; if (zfs_write_limit_max == 0) zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift; else zfs_write_limit_shift = 0; mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL); } void arc_fini(void) { mutex_enter(&arc_reclaim_thr_lock); arc_thread_exit = 1; while (arc_thread_exit != 0) cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock); mutex_exit(&arc_reclaim_thr_lock); arc_flush(NULL); arc_dead = TRUE; if (arc_ksp != NULL) { kstat_delete(arc_ksp); arc_ksp = NULL; } mutex_destroy(&arc_eviction_mtx); mutex_destroy(&arc_reclaim_thr_lock); cv_destroy(&arc_reclaim_thr_cv); list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]); list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]); list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); mutex_destroy(&arc_anon->arcs_mtx); mutex_destroy(&arc_mru->arcs_mtx); mutex_destroy(&arc_mru_ghost->arcs_mtx); mutex_destroy(&arc_mfu->arcs_mtx); mutex_destroy(&arc_mfu_ghost->arcs_mtx); mutex_destroy(&arc_l2c_only->arcs_mtx); mutex_destroy(&zfs_write_limit_lock); buf_fini(); ASSERT(arc_loaned_bytes == 0); } /* * Level 2 ARC * * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. * It uses dedicated storage devices to hold cached data, which are populated * using large infrequent writes. The main role of this cache is to boost * the performance of random read workloads. The intended L2ARC devices * include short-stroked disks, solid state disks, and other media with * substantially faster read latency than disk. * * +-----------------------+ * | ARC | * +-----------------------+ * | ^ ^ * | | | * l2arc_feed_thread() arc_read() * | | | * | l2arc read | * V | | * +---------------+ | * | L2ARC | | * +---------------+ | * | ^ | * l2arc_write() | | * | | | * V | | * +-------+ +-------+ * | vdev | | vdev | * | cache | | cache | * +-------+ +-------+ * +=========+ .-----. * : L2ARC : |-_____-| * : devices : | Disks | * +=========+ `-_____-' * * Read requests are satisfied from the following sources, in order: * * 1) ARC * 2) vdev cache of L2ARC devices * 3) L2ARC devices * 4) vdev cache of disks * 5) disks * * Some L2ARC device types exhibit extremely slow write performance. * To accommodate for this there are some significant differences between * the L2ARC and traditional cache design: * * 1. There is no eviction path from the ARC to the L2ARC. Evictions from * the ARC behave as usual, freeing buffers and placing headers on ghost * lists. The ARC does not send buffers to the L2ARC during eviction as * this would add inflated write latencies for all ARC memory pressure. * * 2. The L2ARC attempts to cache data from the ARC before it is evicted. * It does this by periodically scanning buffers from the eviction-end of * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are * not already there. It scans until a headroom of buffers is satisfied, * which itself is a buffer for ARC eviction. The thread that does this is * l2arc_feed_thread(), illustrated below; example sizes are included to * provide a better sense of ratio than this diagram: * * head --> tail * +---------------------+----------+ * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC * +---------------------+----------+ | o L2ARC eligible * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer * +---------------------+----------+ | * 15.9 Gbytes ^ 32 Mbytes | * headroom | * l2arc_feed_thread() * | * l2arc write hand <--[oooo]--' * | 8 Mbyte * | write max * V * +==============================+ * L2ARC dev |####|#|###|###| |####| ... | * +==============================+ * 32 Gbytes * * 3. If an ARC buffer is copied to the L2ARC but then hit instead of * evicted, then the L2ARC has cached a buffer much sooner than it probably * needed to, potentially wasting L2ARC device bandwidth and storage. It is * safe to say that this is an uncommon case, since buffers at the end of * the ARC lists have moved there due to inactivity. * * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, * then the L2ARC simply misses copying some buffers. This serves as a * pressure valve to prevent heavy read workloads from both stalling the ARC * with waits and clogging the L2ARC with writes. This also helps prevent * the potential for the L2ARC to churn if it attempts to cache content too * quickly, such as during backups of the entire pool. * * 5. After system boot and before the ARC has filled main memory, there are * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru * lists can remain mostly static. Instead of searching from tail of these * lists as pictured, the l2arc_feed_thread() will search from the list heads * for eligible buffers, greatly increasing its chance of finding them. * * The L2ARC device write speed is also boosted during this time so that * the L2ARC warms up faster. Since there have been no ARC evictions yet, * there are no L2ARC reads, and no fear of degrading read performance * through increased writes. * * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that * the vdev queue can aggregate them into larger and fewer writes. Each * device is written to in a rotor fashion, sweeping writes through * available space then repeating. * * 7. The L2ARC does not store dirty content. It never needs to flush * write buffers back to disk based storage. * * 8. If an ARC buffer is written (and dirtied) which also exists in the * L2ARC, the now stale L2ARC buffer is immediately dropped. * * The performance of the L2ARC can be tweaked by a number of tunables, which * may be necessary for different workloads: * * l2arc_write_max max write bytes per interval * l2arc_write_boost extra write bytes during device warmup * l2arc_noprefetch skip caching prefetched buffers * l2arc_headroom number of max device writes to precache * l2arc_feed_secs seconds between L2ARC writing * * Tunables may be removed or added as future performance improvements are * integrated, and also may become zpool properties. * * There are three key functions that control how the L2ARC warms up: * * l2arc_write_eligible() check if a buffer is eligible to cache * l2arc_write_size() calculate how much to write * l2arc_write_interval() calculate sleep delay between writes * * These three functions determine what to write, how much, and how quickly * to send writes. */ static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab) { /* * A buffer is *not* eligible for the L2ARC if it: * 1. belongs to a different spa. * 2. is already cached on the L2ARC. * 3. has an I/O in progress (it may be an incomplete read). * 4. is flagged not eligible (zfs property). */ if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL || HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab)) return (B_FALSE); return (B_TRUE); } static uint64_t l2arc_write_size(l2arc_dev_t *dev) { uint64_t size; size = dev->l2ad_write; if (arc_warm == B_FALSE) size += dev->l2ad_boost; return (size); } static clock_t l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) { clock_t interval, next, now; /* * If the ARC lists are busy, increase our write rate; if the * lists are stale, idle back. This is achieved by checking * how much we previously wrote - if it was more than half of * what we wanted, schedule the next write much sooner. */ if (l2arc_feed_again && wrote > (wanted / 2)) interval = (hz * l2arc_feed_min_ms) / 1000; else interval = hz * l2arc_feed_secs; now = ddi_get_lbolt(); next = MAX(now, MIN(now + interval, began + interval)); return (next); } static void l2arc_hdr_stat_add(void) { ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE + L2HDR_SIZE); ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE); } static void l2arc_hdr_stat_remove(void) { ARCSTAT_INCR(arcstat_l2_hdr_size, -(HDR_SIZE + L2HDR_SIZE)); ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE); } /* * Cycle through L2ARC devices. This is how L2ARC load balances. * If a device is returned, this also returns holding the spa config lock. */ static l2arc_dev_t * l2arc_dev_get_next(void) { l2arc_dev_t *first, *next = NULL; /* * Lock out the removal of spas (spa_namespace_lock), then removal * of cache devices (l2arc_dev_mtx). Once a device has been selected, * both locks will be dropped and a spa config lock held instead. */ mutex_enter(&spa_namespace_lock); mutex_enter(&l2arc_dev_mtx); /* if there are no vdevs, there is nothing to do */ if (l2arc_ndev == 0) goto out; first = NULL; next = l2arc_dev_last; do { /* loop around the list looking for a non-faulted vdev */ if (next == NULL) { next = list_head(l2arc_dev_list); } else { next = list_next(l2arc_dev_list, next); if (next == NULL) next = list_head(l2arc_dev_list); } /* if we have come back to the start, bail out */ if (first == NULL) first = next; else if (next == first) break; } while (vdev_is_dead(next->l2ad_vdev)); /* if we were unable to find any usable vdevs, return NULL */ if (vdev_is_dead(next->l2ad_vdev)) next = NULL; l2arc_dev_last = next; out: mutex_exit(&l2arc_dev_mtx); /* * Grab the config lock to prevent the 'next' device from being * removed while we are writing to it. */ if (next != NULL) spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); mutex_exit(&spa_namespace_lock); return (next); } /* * Free buffers that were tagged for destruction. */ static void l2arc_do_free_on_write() { list_t *buflist; l2arc_data_free_t *df, *df_prev; mutex_enter(&l2arc_free_on_write_mtx); buflist = l2arc_free_on_write; for (df = list_tail(buflist); df; df = df_prev) { df_prev = list_prev(buflist, df); ASSERT(df->l2df_data != NULL); ASSERT(df->l2df_func != NULL); df->l2df_func(df->l2df_data, df->l2df_size); list_remove(buflist, df); kmem_free(df, sizeof (l2arc_data_free_t)); } mutex_exit(&l2arc_free_on_write_mtx); } /* * A write to a cache device has completed. Update all headers to allow * reads from these buffers to begin. */ static void l2arc_write_done(zio_t *zio) { l2arc_write_callback_t *cb; l2arc_dev_t *dev; list_t *buflist; arc_buf_hdr_t *head, *ab, *ab_prev; l2arc_buf_hdr_t *abl2; kmutex_t *hash_lock; cb = zio->io_private; ASSERT(cb != NULL); dev = cb->l2wcb_dev; ASSERT(dev != NULL); head = cb->l2wcb_head; ASSERT(head != NULL); buflist = dev->l2ad_buflist; ASSERT(buflist != NULL); DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, l2arc_write_callback_t *, cb); if (zio->io_error != 0) ARCSTAT_BUMP(arcstat_l2_writes_error); mutex_enter(&l2arc_buflist_mtx); /* * All writes completed, or an error was hit. */ for (ab = list_prev(buflist, head); ab; ab = ab_prev) { ab_prev = list_prev(buflist, ab); hash_lock = HDR_LOCK(ab); if (!mutex_tryenter(hash_lock)) { /* * This buffer misses out. It may be in a stage * of eviction. Its ARC_L2_WRITING flag will be * left set, denying reads to this buffer. */ ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss); continue; } if (zio->io_error != 0) { /* * Error - drop L2ARC entry. */ list_remove(buflist, ab); abl2 = ab->b_l2hdr; ab->b_l2hdr = NULL; kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); } /* * Allow ARC to begin reads to this L2ARC entry. */ ab->b_flags &= ~ARC_L2_WRITING; mutex_exit(hash_lock); } atomic_inc_64(&l2arc_writes_done); list_remove(buflist, head); kmem_cache_free(hdr_cache, head); mutex_exit(&l2arc_buflist_mtx); l2arc_do_free_on_write(); kmem_free(cb, sizeof (l2arc_write_callback_t)); } /* * A read to a cache device completed. Validate buffer contents before * handing over to the regular ARC routines. */ static void l2arc_read_done(zio_t *zio) { l2arc_read_callback_t *cb; arc_buf_hdr_t *hdr; arc_buf_t *buf; kmutex_t *hash_lock; int equal; ASSERT(zio->io_vd != NULL); ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); cb = zio->io_private; ASSERT(cb != NULL); buf = cb->l2rcb_buf; ASSERT(buf != NULL); hash_lock = HDR_LOCK(buf->b_hdr); mutex_enter(hash_lock); hdr = buf->b_hdr; ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); /* * Check this survived the L2ARC journey. */ equal = arc_cksum_equal(buf); if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) { mutex_exit(hash_lock); zio->io_private = buf; zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ arc_read_done(zio); } else { mutex_exit(hash_lock); /* * Buffer didn't survive caching. Increment stats and * reissue to the original storage device. */ if (zio->io_error != 0) { ARCSTAT_BUMP(arcstat_l2_io_error); } else { zio->io_error = EIO; } if (!equal) ARCSTAT_BUMP(arcstat_l2_cksum_bad); /* * If there's no waiter, issue an async i/o to the primary * storage now. If there *is* a waiter, the caller must * issue the i/o in a context where it's OK to block. */ if (zio->io_waiter == NULL) { zio_t *pio = zio_unique_parent(zio); ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp, buf->b_data, zio->io_size, arc_read_done, buf, zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb)); } } kmem_free(cb, sizeof (l2arc_read_callback_t)); } /* * This is the list priority from which the L2ARC will search for pages to * cache. This is used within loops (0..3) to cycle through lists in the * desired order. This order can have a significant effect on cache * performance. * * Currently the metadata lists are hit first, MFU then MRU, followed by * the data lists. This function returns a locked list, and also returns * the lock pointer. */ static list_t * l2arc_list_locked(int list_num, kmutex_t **lock) { list_t *list; ASSERT(list_num >= 0 && list_num <= 3); switch (list_num) { case 0: list = &arc_mfu->arcs_list[ARC_BUFC_METADATA]; *lock = &arc_mfu->arcs_mtx; break; case 1: list = &arc_mru->arcs_list[ARC_BUFC_METADATA]; *lock = &arc_mru->arcs_mtx; break; case 2: list = &arc_mfu->arcs_list[ARC_BUFC_DATA]; *lock = &arc_mfu->arcs_mtx; break; case 3: list = &arc_mru->arcs_list[ARC_BUFC_DATA]; *lock = &arc_mru->arcs_mtx; break; } ASSERT(!(MUTEX_HELD(*lock))); mutex_enter(*lock); return (list); } /* * Evict buffers from the device write hand to the distance specified in * bytes. This distance may span populated buffers, it may span nothing. * This is clearing a region on the L2ARC device ready for writing. * If the 'all' boolean is set, every buffer is evicted. */ static void l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) { list_t *buflist; l2arc_buf_hdr_t *abl2; arc_buf_hdr_t *ab, *ab_prev; kmutex_t *hash_lock; uint64_t taddr; buflist = dev->l2ad_buflist; if (buflist == NULL) return; if (!all && dev->l2ad_first) { /* * This is the first sweep through the device. There is * nothing to evict. */ return; } if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) { /* * When nearing the end of the device, evict to the end * before the device write hand jumps to the start. */ taddr = dev->l2ad_end; } else { taddr = dev->l2ad_hand + distance; } DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, uint64_t, taddr, boolean_t, all); top: mutex_enter(&l2arc_buflist_mtx); for (ab = list_tail(buflist); ab; ab = ab_prev) { ab_prev = list_prev(buflist, ab); hash_lock = HDR_LOCK(ab); if (!mutex_tryenter(hash_lock)) { /* * Missed the hash lock. Retry. */ ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); mutex_exit(&l2arc_buflist_mtx); mutex_enter(hash_lock); mutex_exit(hash_lock); goto top; } if (HDR_L2_WRITE_HEAD(ab)) { /* * We hit a write head node. Leave it for * l2arc_write_done(). */ list_remove(buflist, ab); mutex_exit(hash_lock); continue; } if (!all && ab->b_l2hdr != NULL && (ab->b_l2hdr->b_daddr > taddr || ab->b_l2hdr->b_daddr < dev->l2ad_hand)) { /* * We've evicted to the target address, * or the end of the device. */ mutex_exit(hash_lock); break; } if (HDR_FREE_IN_PROGRESS(ab)) { /* * Already on the path to destruction. */ mutex_exit(hash_lock); continue; } if (ab->b_state == arc_l2c_only) { ASSERT(!HDR_L2_READING(ab)); /* * This doesn't exist in the ARC. Destroy. * arc_hdr_destroy() will call list_remove() * and decrement arcstat_l2_size. */ arc_change_state(arc_anon, ab, hash_lock); arc_hdr_destroy(ab); } else { /* * Invalidate issued or about to be issued * reads, since we may be about to write * over this location. */ if (HDR_L2_READING(ab)) { ARCSTAT_BUMP(arcstat_l2_evict_reading); ab->b_flags |= ARC_L2_EVICTED; } /* * Tell ARC this no longer exists in L2ARC. */ if (ab->b_l2hdr != NULL) { abl2 = ab->b_l2hdr; ab->b_l2hdr = NULL; kmem_free(abl2, sizeof (l2arc_buf_hdr_t)); ARCSTAT_INCR(arcstat_l2_size, -ab->b_size); } list_remove(buflist, ab); /* * This may have been leftover after a * failed write. */ ab->b_flags &= ~ARC_L2_WRITING; } mutex_exit(hash_lock); } mutex_exit(&l2arc_buflist_mtx); vdev_space_update(dev->l2ad_vdev, -(taddr - dev->l2ad_evict), 0, 0); dev->l2ad_evict = taddr; } /* * Find and write ARC buffers to the L2ARC device. * * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid * for reading until they have completed writing. */ static uint64_t l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) { arc_buf_hdr_t *ab, *ab_prev, *head; l2arc_buf_hdr_t *hdrl2; list_t *list; uint64_t passed_sz, write_sz, buf_sz, headroom; void *buf_data; kmutex_t *hash_lock, *list_lock; boolean_t have_lock, full; l2arc_write_callback_t *cb; zio_t *pio, *wzio; uint64_t guid = spa_guid(spa); int try; ASSERT(dev->l2ad_vdev != NULL); pio = NULL; write_sz = 0; full = B_FALSE; head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE); head->b_flags |= ARC_L2_WRITE_HEAD; /* * Copy buffers for L2ARC writing. */ mutex_enter(&l2arc_buflist_mtx); for (try = 0; try <= 3; try++) { list = l2arc_list_locked(try, &list_lock); passed_sz = 0; /* * L2ARC fast warmup. * * Until the ARC is warm and starts to evict, read from the * head of the ARC lists rather than the tail. */ headroom = target_sz * l2arc_headroom; if (arc_warm == B_FALSE) ab = list_head(list); else ab = list_tail(list); for (; ab; ab = ab_prev) { if (arc_warm == B_FALSE) ab_prev = list_next(list, ab); else ab_prev = list_prev(list, ab); hash_lock = HDR_LOCK(ab); have_lock = MUTEX_HELD(hash_lock); if (!have_lock && !mutex_tryenter(hash_lock)) { /* * Skip this buffer rather than waiting. */ continue; } passed_sz += ab->b_size; if (passed_sz > headroom) { /* * Searched too far. */ mutex_exit(hash_lock); break; } if (!l2arc_write_eligible(guid, ab)) { mutex_exit(hash_lock); continue; } if ((write_sz + ab->b_size) > target_sz) { full = B_TRUE; mutex_exit(hash_lock); break; } if (pio == NULL) { /* * Insert a dummy header on the buflist so * l2arc_write_done() can find where the * write buffers begin without searching. */ list_insert_head(dev->l2ad_buflist, head); cb = kmem_alloc( sizeof (l2arc_write_callback_t), KM_SLEEP); cb->l2wcb_dev = dev; cb->l2wcb_head = head; pio = zio_root(spa, l2arc_write_done, cb, ZIO_FLAG_CANFAIL); } /* * Create and add a new L2ARC header. */ hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP); hdrl2->b_dev = dev; hdrl2->b_daddr = dev->l2ad_hand; ab->b_flags |= ARC_L2_WRITING; ab->b_l2hdr = hdrl2; list_insert_head(dev->l2ad_buflist, ab); buf_data = ab->b_buf->b_data; buf_sz = ab->b_size; /* * Compute and store the buffer cksum before * writing. On debug the cksum is verified first. */ arc_cksum_verify(ab->b_buf); arc_cksum_compute(ab->b_buf, B_TRUE); mutex_exit(hash_lock); wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF, NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); (void) zio_nowait(wzio); /* * Keep the clock hand suitably device-aligned. */ buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz); write_sz += buf_sz; dev->l2ad_hand += buf_sz; } mutex_exit(list_lock); if (full == B_TRUE) break; } mutex_exit(&l2arc_buflist_mtx); if (pio == NULL) { ASSERT3U(write_sz, ==, 0); kmem_cache_free(hdr_cache, head); return (0); } ASSERT3U(write_sz, <=, target_sz); ARCSTAT_BUMP(arcstat_l2_writes_sent); ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz); ARCSTAT_INCR(arcstat_l2_size, write_sz); vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0); /* * Bump device hand to the device start if it is approaching the end. * l2arc_evict() will already have evicted ahead for this case. */ if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) { vdev_space_update(dev->l2ad_vdev, dev->l2ad_end - dev->l2ad_hand, 0, 0); dev->l2ad_hand = dev->l2ad_start; dev->l2ad_evict = dev->l2ad_start; dev->l2ad_first = B_FALSE; } dev->l2ad_writing = B_TRUE; (void) zio_wait(pio); dev->l2ad_writing = B_FALSE; return (write_sz); } /* * This thread feeds the L2ARC at regular intervals. This is the beating * heart of the L2ARC. */ static void l2arc_feed_thread(void) { callb_cpr_t cpr; l2arc_dev_t *dev; spa_t *spa; uint64_t size, wrote; clock_t begin, next = ddi_get_lbolt(); CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); mutex_enter(&l2arc_feed_thr_lock); while (l2arc_thread_exit == 0) { CALLB_CPR_SAFE_BEGIN(&cpr); (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock, next); CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); next = ddi_get_lbolt() + hz; /* * Quick check for L2ARC devices. */ mutex_enter(&l2arc_dev_mtx); if (l2arc_ndev == 0) { mutex_exit(&l2arc_dev_mtx); continue; } mutex_exit(&l2arc_dev_mtx); begin = ddi_get_lbolt(); /* * This selects the next l2arc device to write to, and in * doing so the next spa to feed from: dev->l2ad_spa. This * will return NULL if there are now no l2arc devices or if * they are all faulted. * * If a device is returned, its spa's config lock is also * held to prevent device removal. l2arc_dev_get_next() * will grab and release l2arc_dev_mtx. */ if ((dev = l2arc_dev_get_next()) == NULL) continue; spa = dev->l2ad_spa; ASSERT(spa != NULL); /* * If the pool is read-only then force the feed thread to * sleep a little longer. */ if (!spa_writeable(spa)) { next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; spa_config_exit(spa, SCL_L2ARC, dev); continue; } /* * Avoid contributing to memory pressure. */ if (arc_reclaim_needed()) { ARCSTAT_BUMP(arcstat_l2_abort_lowmem); spa_config_exit(spa, SCL_L2ARC, dev); continue; } ARCSTAT_BUMP(arcstat_l2_feeds); size = l2arc_write_size(dev); /* * Evict L2ARC buffers that will be overwritten. */ l2arc_evict(dev, size, B_FALSE); /* * Write ARC buffers. */ wrote = l2arc_write_buffers(spa, dev, size); /* * Calculate interval between writes. */ next = l2arc_write_interval(begin, size, wrote); spa_config_exit(spa, SCL_L2ARC, dev); } l2arc_thread_exit = 0; cv_broadcast(&l2arc_feed_thr_cv); CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ thread_exit(); } boolean_t l2arc_vdev_present(vdev_t *vd) { l2arc_dev_t *dev; mutex_enter(&l2arc_dev_mtx); for (dev = list_head(l2arc_dev_list); dev != NULL; dev = list_next(l2arc_dev_list, dev)) { if (dev->l2ad_vdev == vd) break; } mutex_exit(&l2arc_dev_mtx); return (dev != NULL); } /* * Add a vdev for use by the L2ARC. By this point the spa has already * validated the vdev and opened it. */ void l2arc_add_vdev(spa_t *spa, vdev_t *vd) { l2arc_dev_t *adddev; ASSERT(!l2arc_vdev_present(vd)); /* * Create a new l2arc device entry. */ adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); adddev->l2ad_spa = spa; adddev->l2ad_vdev = vd; adddev->l2ad_write = l2arc_write_max; adddev->l2ad_boost = l2arc_write_boost; adddev->l2ad_start = VDEV_LABEL_START_SIZE; adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); adddev->l2ad_hand = adddev->l2ad_start; adddev->l2ad_evict = adddev->l2ad_start; adddev->l2ad_first = B_TRUE; adddev->l2ad_writing = B_FALSE; ASSERT3U(adddev->l2ad_write, >, 0); /* * This is a list of all ARC buffers that are still valid on the * device. */ adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP); list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_l2node)); vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); /* * Add device to global list */ mutex_enter(&l2arc_dev_mtx); list_insert_head(l2arc_dev_list, adddev); atomic_inc_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); } /* * Remove a vdev from the L2ARC. */ void l2arc_remove_vdev(vdev_t *vd) { l2arc_dev_t *dev, *nextdev, *remdev = NULL; /* * Find the device by vdev */ mutex_enter(&l2arc_dev_mtx); for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) { nextdev = list_next(l2arc_dev_list, dev); if (vd == dev->l2ad_vdev) { remdev = dev; break; } } ASSERT(remdev != NULL); /* * Remove device from global list */ list_remove(l2arc_dev_list, remdev); l2arc_dev_last = NULL; /* may have been invalidated */ atomic_dec_64(&l2arc_ndev); mutex_exit(&l2arc_dev_mtx); /* * Clear all buflists and ARC references. L2ARC device flush. */ l2arc_evict(remdev, 0, B_TRUE); list_destroy(remdev->l2ad_buflist); kmem_free(remdev->l2ad_buflist, sizeof (list_t)); kmem_free(remdev, sizeof (l2arc_dev_t)); } void l2arc_init(void) { l2arc_thread_exit = 0; l2arc_ndev = 0; l2arc_writes_sent = 0; l2arc_writes_done = 0; mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL); mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); l2arc_dev_list = &L2ARC_dev_list; l2arc_free_on_write = &L2ARC_free_on_write; list_create(l2arc_dev_list, sizeof (l2arc_dev_t), offsetof(l2arc_dev_t, l2ad_node)); list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), offsetof(l2arc_data_free_t, l2df_list_node)); } void l2arc_fini(void) { /* * This is called from dmu_fini(), which is called from spa_fini(); * Because of this, we can assume that all l2arc devices have * already been removed when the pools themselves were removed. */ l2arc_do_free_on_write(); mutex_destroy(&l2arc_feed_thr_lock); cv_destroy(&l2arc_feed_thr_cv); mutex_destroy(&l2arc_dev_mtx); mutex_destroy(&l2arc_buflist_mtx); mutex_destroy(&l2arc_free_on_write_mtx); list_destroy(l2arc_dev_list); list_destroy(l2arc_free_on_write); } void l2arc_start(void) { if (!(spa_mode_global & FWRITE)) return; (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, TS_RUN, minclsyspri); } void l2arc_stop(void) { if (!(spa_mode_global & FWRITE)) return; mutex_enter(&l2arc_feed_thr_lock); cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ l2arc_thread_exit = 1; while (l2arc_thread_exit != 0) cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); mutex_exit(&l2arc_feed_thr_lock); } diff --git a/module/zfs/sa.c b/module/zfs/sa.c index d5c985bf13cf..cf87c867e7ea 100644 --- a/module/zfs/sa.c +++ b/module/zfs/sa.c @@ -1,1970 +1,1970 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * ZFS System attributes: * * A generic mechanism to allow for arbitrary attributes * to be stored in a dnode. The data will be stored in the bonus buffer of * the dnode and if necessary a special "spill" block will be used to handle * overflow situations. The spill block will be sized to fit the data * from 512 - 128K. When a spill block is used the BP (blkptr_t) for the * spill block is stored at the end of the current bonus buffer. Any * attributes that would be in the way of the blkptr_t will be relocated * into the spill block. * * Attribute registration: * * Stored persistently on a per dataset basis * a mapping between attribute "string" names and their actual attribute * numeric values, length, and byteswap function. The names are only used * during registration. All attributes are known by their unique attribute * id value. If an attribute can have a variable size then the value * 0 will be used to indicate this. * * Attribute Layout: * * Attribute layouts are a way to compactly store multiple attributes, but * without taking the overhead associated with managing each attribute * individually. Since you will typically have the same set of attributes * stored in the same order a single table will be used to represent that * layout. The ZPL for example will usually have only about 10 different * layouts (regular files, device files, symlinks, * regular files + scanstamp, files/dir with extended attributes, and then * you have the possibility of all of those minus ACL, because it would * be kicked out into the spill block) * * Layouts are simply an array of the attributes and their * ordering i.e. [0, 1, 4, 5, 2] * * Each distinct layout is given a unique layout number and that is whats * stored in the header at the beginning of the SA data buffer. * * A layout only covers a single dbuf (bonus or spill). If a set of * attributes is split up between the bonus buffer and a spill buffer then * two different layouts will be used. This allows us to byteswap the * spill without looking at the bonus buffer and keeps the on disk format of * the bonus and spill buffer the same. * * Adding a single attribute will cause the entire set of attributes to * be rewritten and could result in a new layout number being constructed * as part of the rewrite if no such layout exists for the new set of * attribues. The new attribute will be appended to the end of the already * existing attributes. * * Both the attribute registration and attribute layout information are * stored in normal ZAP attributes. Their should be a small number of * known layouts and the set of attributes is assumed to typically be quite * small. * * The registered attributes and layout "table" information is maintained * in core and a special "sa_os_t" is attached to the objset_t. * * A special interface is provided to allow for quickly applying * a large set of attributes at once. sa_replace_all_by_template() is * used to set an array of attributes. This is used by the ZPL when * creating a brand new file. The template that is passed into the function * specifies the attribute, size for variable length attributes, location of * data and special "data locator" function if the data isn't in a contiguous * location. * * Byteswap implications: * Since the SA attributes are not entirely self describing we can't do * the normal byteswap processing. The special ZAP layout attribute and * attribute registration attributes define the byteswap function and the * size of the attributes, unless it is variable sized. * The normal ZFS byteswapping infrastructure assumes you don't need * to read any objects in order to do the necessary byteswapping. Whereas * SA attributes can only be properly byteswapped if the dataset is opened * and the layout/attribute ZAP attributes are available. Because of this * the SA attributes will be byteswapped when they are first accessed by * the SA code that will read the SA data. */ typedef void (sa_iterfunc_t)(void *hdr, void *addr, sa_attr_type_t, uint16_t length, int length_idx, boolean_t, void *userp); static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype); static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab); static void *sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, void *data); static void sa_idx_tab_rele(objset_t *os, void *arg); static void sa_copy_data(sa_data_locator_t *func, void *start, void *target, int buflen); static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr, sa_data_op_t action, sa_data_locator_t *locator, void *datastart, uint16_t buflen, dmu_tx_t *tx); arc_byteswap_func_t *sa_bswap_table[] = { byteswap_uint64_array, byteswap_uint32_array, byteswap_uint16_array, byteswap_uint8_array, zfs_acl_byteswap, }; #define SA_COPY_DATA(f, s, t, l) \ { \ if (f == NULL) { \ if (l == 8) { \ *(uint64_t *)t = *(uint64_t *)s; \ } else if (l == 16) { \ *(uint64_t *)t = *(uint64_t *)s; \ *(uint64_t *)((uintptr_t)t + 8) = \ *(uint64_t *)((uintptr_t)s + 8); \ } else { \ bcopy(s, t, l); \ } \ } else \ sa_copy_data(f, s, t, l); \ } /* * This table is fixed and cannot be changed. Its purpose is to * allow the SA code to work with both old/new ZPL file systems. * It contains the list of legacy attributes. These attributes aren't * stored in the "attribute" registry zap objects, since older ZPL file systems * won't have the registry. Only objsets of type ZFS_TYPE_FILESYSTEM will * use this static table. */ sa_attr_reg_t sa_legacy_attrs[] = { {"ZPL_ATIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 0}, {"ZPL_MTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 1}, {"ZPL_CTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 2}, {"ZPL_CRTIME", sizeof (uint64_t) * 2, SA_UINT64_ARRAY, 3}, {"ZPL_GEN", sizeof (uint64_t), SA_UINT64_ARRAY, 4}, {"ZPL_MODE", sizeof (uint64_t), SA_UINT64_ARRAY, 5}, {"ZPL_SIZE", sizeof (uint64_t), SA_UINT64_ARRAY, 6}, {"ZPL_PARENT", sizeof (uint64_t), SA_UINT64_ARRAY, 7}, {"ZPL_LINKS", sizeof (uint64_t), SA_UINT64_ARRAY, 8}, {"ZPL_XATTR", sizeof (uint64_t), SA_UINT64_ARRAY, 9}, {"ZPL_RDEV", sizeof (uint64_t), SA_UINT64_ARRAY, 10}, {"ZPL_FLAGS", sizeof (uint64_t), SA_UINT64_ARRAY, 11}, {"ZPL_UID", sizeof (uint64_t), SA_UINT64_ARRAY, 12}, {"ZPL_GID", sizeof (uint64_t), SA_UINT64_ARRAY, 13}, {"ZPL_PAD", sizeof (uint64_t) * 4, SA_UINT64_ARRAY, 14}, {"ZPL_ZNODE_ACL", 88, SA_UINT8_ARRAY, 15}, }; /* * ZPL legacy layout * This is only used for objects of type DMU_OT_ZNODE */ sa_attr_type_t sa_legacy_zpl_layout[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; /* * Special dummy layout used for buffers with no attributes. */ sa_attr_type_t sa_dummy_zpl_layout[] = { 0 }; static int sa_legacy_attr_count = 16; static kmem_cache_t *sa_cache = NULL; /*ARGSUSED*/ static int sa_cache_constructor(void *buf, void *unused, int kmflag) { sa_handle_t *hdl = buf; hdl->sa_bonus_tab = NULL; hdl->sa_spill_tab = NULL; hdl->sa_os = NULL; hdl->sa_userp = NULL; hdl->sa_bonus = NULL; hdl->sa_spill = NULL; mutex_init(&hdl->sa_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } /*ARGSUSED*/ static void sa_cache_destructor(void *buf, void *unused) { sa_handle_t *hdl = buf; mutex_destroy(&hdl->sa_lock); } void sa_cache_init(void) { sa_cache = kmem_cache_create("sa_cache", sizeof (sa_handle_t), 0, sa_cache_constructor, sa_cache_destructor, NULL, NULL, NULL, 0); } void sa_cache_fini(void) { if (sa_cache) kmem_cache_destroy(sa_cache); } static int layout_num_compare(const void *arg1, const void *arg2) { const sa_lot_t *node1 = arg1; const sa_lot_t *node2 = arg2; if (node1->lot_num > node2->lot_num) return (1); else if (node1->lot_num < node2->lot_num) return (-1); return (0); } static int layout_hash_compare(const void *arg1, const void *arg2) { const sa_lot_t *node1 = arg1; const sa_lot_t *node2 = arg2; if (node1->lot_hash > node2->lot_hash) return (1); if (node1->lot_hash < node2->lot_hash) return (-1); if (node1->lot_instance > node2->lot_instance) return (1); if (node1->lot_instance < node2->lot_instance) return (-1); return (0); } boolean_t sa_layout_equal(sa_lot_t *tbf, sa_attr_type_t *attrs, int count) { int i; if (count != tbf->lot_attr_count) return (1); for (i = 0; i != count; i++) { if (attrs[i] != tbf->lot_attrs[i]) return (1); } return (0); } #define SA_ATTR_HASH(attr) (zfs_crc64_table[(-1ULL ^ attr) & 0xFF]) static uint64_t sa_layout_info_hash(sa_attr_type_t *attrs, int attr_count) { int i; uint64_t crc = -1ULL; for (i = 0; i != attr_count; i++) crc ^= SA_ATTR_HASH(attrs[i]); return (crc); } static int sa_get_spill(sa_handle_t *hdl) { int rc; if (hdl->sa_spill == NULL) { if ((rc = dmu_spill_hold_existing(hdl->sa_bonus, NULL, &hdl->sa_spill)) == 0) VERIFY(0 == sa_build_index(hdl, SA_SPILL)); } else { rc = 0; } return (rc); } /* * Main attribute lookup/update function * returns 0 for success or non zero for failures * * Operates on bulk array, first failure will abort further processing */ int sa_attr_op(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count, sa_data_op_t data_op, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; int i; int error = 0; sa_buf_type_t buftypes; buftypes = 0; ASSERT(count > 0); for (i = 0; i != count; i++) { ASSERT(bulk[i].sa_attr <= hdl->sa_os->os_sa->sa_num_attrs); bulk[i].sa_addr = NULL; /* First check the bonus buffer */ if (hdl->sa_bonus_tab && TOC_ATTR_PRESENT( hdl->sa_bonus_tab->sa_idx_tab[bulk[i].sa_attr])) { SA_ATTR_INFO(sa, hdl->sa_bonus_tab, SA_GET_HDR(hdl, SA_BONUS), bulk[i].sa_attr, bulk[i], SA_BONUS, hdl); if (tx && !(buftypes & SA_BONUS)) { dmu_buf_will_dirty(hdl->sa_bonus, tx); buftypes |= SA_BONUS; } } if (bulk[i].sa_addr == NULL && ((error = sa_get_spill(hdl)) == 0)) { if (TOC_ATTR_PRESENT( hdl->sa_spill_tab->sa_idx_tab[bulk[i].sa_attr])) { SA_ATTR_INFO(sa, hdl->sa_spill_tab, SA_GET_HDR(hdl, SA_SPILL), bulk[i].sa_attr, bulk[i], SA_SPILL, hdl); if (tx && !(buftypes & SA_SPILL) && bulk[i].sa_size == bulk[i].sa_length) { dmu_buf_will_dirty(hdl->sa_spill, tx); buftypes |= SA_SPILL; } } } if (error && error != ENOENT) { return ((error == ECKSUM) ? EIO : error); } switch (data_op) { case SA_LOOKUP: if (bulk[i].sa_addr == NULL) return (ENOENT); if (bulk[i].sa_data) { SA_COPY_DATA(bulk[i].sa_data_func, bulk[i].sa_addr, bulk[i].sa_data, bulk[i].sa_size); } continue; case SA_UPDATE: /* existing rewrite of attr */ if (bulk[i].sa_addr && bulk[i].sa_size == bulk[i].sa_length) { SA_COPY_DATA(bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_addr, bulk[i].sa_length); continue; } else if (bulk[i].sa_addr) { /* attr size change */ error = sa_modify_attrs(hdl, bulk[i].sa_attr, SA_REPLACE, bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_length, tx); } else { /* adding new attribute */ error = sa_modify_attrs(hdl, bulk[i].sa_attr, SA_ADD, bulk[i].sa_data_func, bulk[i].sa_data, bulk[i].sa_length, tx); } if (error) return (error); break; } } return (error); } static sa_lot_t * sa_add_layout_entry(objset_t *os, sa_attr_type_t *attrs, int attr_count, uint64_t lot_num, uint64_t hash, boolean_t zapadd, dmu_tx_t *tx) { sa_os_t *sa = os->os_sa; sa_lot_t *tb, *findtb; int i; avl_index_t loc; ASSERT(MUTEX_HELD(&sa->sa_lock)); tb = kmem_zalloc(sizeof (sa_lot_t), KM_SLEEP); tb->lot_attr_count = attr_count; tb->lot_attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count, KM_SLEEP); bcopy(attrs, tb->lot_attrs, sizeof (sa_attr_type_t) * attr_count); tb->lot_num = lot_num; tb->lot_hash = hash; tb->lot_instance = 0; if (zapadd) { char attr_name[8]; if (sa->sa_layout_attr_obj == 0) { sa->sa_layout_attr_obj = zap_create(os, DMU_OT_SA_ATTR_LAYOUTS, DMU_OT_NONE, 0, tx); VERIFY(zap_add(os, sa->sa_master_obj, SA_LAYOUTS, 8, 1, &sa->sa_layout_attr_obj, tx) == 0); } (void) snprintf(attr_name, sizeof (attr_name), "%d", (int)lot_num); VERIFY(0 == zap_update(os, os->os_sa->sa_layout_attr_obj, attr_name, 2, attr_count, attrs, tx)); } list_create(&tb->lot_idx_tab, sizeof (sa_idx_tab_t), offsetof(sa_idx_tab_t, sa_next)); for (i = 0; i != attr_count; i++) { if (sa->sa_attr_table[tb->lot_attrs[i]].sa_length == 0) tb->lot_var_sizes++; } avl_add(&sa->sa_layout_num_tree, tb); /* verify we don't have a hash collision */ if ((findtb = avl_find(&sa->sa_layout_hash_tree, tb, &loc)) != NULL) { for (; findtb && findtb->lot_hash == hash; findtb = AVL_NEXT(&sa->sa_layout_hash_tree, findtb)) { if (findtb->lot_instance != tb->lot_instance) break; tb->lot_instance++; } } avl_add(&sa->sa_layout_hash_tree, tb); return (tb); } static void sa_find_layout(objset_t *os, uint64_t hash, sa_attr_type_t *attrs, int count, dmu_tx_t *tx, sa_lot_t **lot) { sa_lot_t *tb, tbsearch; avl_index_t loc; sa_os_t *sa = os->os_sa; boolean_t found = B_FALSE; mutex_enter(&sa->sa_lock); tbsearch.lot_hash = hash; tbsearch.lot_instance = 0; tb = avl_find(&sa->sa_layout_hash_tree, &tbsearch, &loc); if (tb) { for (; tb && tb->lot_hash == hash; tb = AVL_NEXT(&sa->sa_layout_hash_tree, tb)) { if (sa_layout_equal(tb, attrs, count) == 0) { found = B_TRUE; break; } } } if (!found) { tb = sa_add_layout_entry(os, attrs, count, avl_numnodes(&sa->sa_layout_num_tree), hash, B_TRUE, tx); } mutex_exit(&sa->sa_lock); *lot = tb; } static int sa_resize_spill(sa_handle_t *hdl, uint32_t size, dmu_tx_t *tx) { int error; uint32_t blocksize; if (size == 0) { blocksize = SPA_MINBLOCKSIZE; } else if (size > SPA_MAXBLOCKSIZE) { ASSERT(0); return (EFBIG); } else { blocksize = P2ROUNDUP_TYPED(size, SPA_MINBLOCKSIZE, uint32_t); } error = dbuf_spill_set_blksz(hdl->sa_spill, blocksize, tx); ASSERT(error == 0); return (error); } static void sa_copy_data(sa_data_locator_t *func, void *datastart, void *target, int buflen) { if (func == NULL) { bcopy(datastart, target, buflen); } else { boolean_t start; int bytes; void *dataptr; void *saptr = target; uint32_t length; start = B_TRUE; bytes = 0; while (bytes < buflen) { func(&dataptr, &length, buflen, start, datastart); bcopy(dataptr, saptr, length); saptr = (void *)((caddr_t)saptr + length); bytes += length; start = B_FALSE; } } } /* * Determine several different sizes * first the sa header size * the number of bytes to be stored * if spill would occur the index in the attribute array is returned * * the boolean will_spill will be set when spilling is necessary. It * is only set when the buftype is SA_BONUS */ static int sa_find_sizes(sa_os_t *sa, sa_bulk_attr_t *attr_desc, int attr_count, dmu_buf_t *db, sa_buf_type_t buftype, int *index, int *total, boolean_t *will_spill) { int var_size = 0; int i; int full_space; int hdrsize; boolean_t done = B_FALSE; if (buftype == SA_BONUS && sa->sa_force_spill) { *total = 0; *index = 0; *will_spill = B_TRUE; return (0); } *index = -1; *total = 0; if (buftype == SA_BONUS) *will_spill = B_FALSE; hdrsize = (SA_BONUSTYPE_FROM_DB(db) == DMU_OT_ZNODE) ? 0 : sizeof (sa_hdr_phys_t); full_space = (buftype == SA_BONUS) ? DN_MAX_BONUSLEN : db->db_size; for (i = 0; i != attr_count; i++) { boolean_t is_var_sz; *total += attr_desc[i].sa_length; if (done) goto next; is_var_sz = (SA_REGISTERED_LEN(sa, attr_desc[i].sa_attr) == 0); if (is_var_sz) { var_size++; } if (is_var_sz && var_size > 1) { if (P2ROUNDUP(hdrsize + sizeof (uint16_t), 8) + *total < full_space) { hdrsize += sizeof (uint16_t); } else { done = B_TRUE; *index = i; if (buftype == SA_BONUS) *will_spill = B_TRUE; continue; } } /* * find index of where spill *could* occur. * Then continue to count of remainder attribute * space. The sum is used later for sizing bonus * and spill buffer. */ if (buftype == SA_BONUS && *index == -1 && P2ROUNDUP(*total + hdrsize, 8) > (full_space - sizeof (blkptr_t))) { *index = i; done = B_TRUE; } next: if (P2ROUNDUP(*total + hdrsize, 8) > full_space && buftype == SA_BONUS) *will_spill = B_TRUE; } hdrsize = P2ROUNDUP(hdrsize, 8); return (hdrsize); } #define BUF_SPACE_NEEDED(total, header) (total + header) /* * Find layout that corresponds to ordering of attributes * If not found a new layout number is created and added to * persistent layout tables. */ static int sa_build_layouts(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; uint64_t hash; sa_buf_type_t buftype; sa_hdr_phys_t *sahdr; void *data_start; int buf_space; sa_attr_type_t *attrs, *attrs_start; int i, lot_count; int hdrsize, spillhdrsize; int used; dmu_object_type_t bonustype; sa_lot_t *lot; int len_idx; int spill_used; boolean_t spilling; dmu_buf_will_dirty(hdl->sa_bonus, tx); bonustype = SA_BONUSTYPE_FROM_DB(hdl->sa_bonus); /* first determine bonus header size and sum of all attributes */ hdrsize = sa_find_sizes(sa, attr_desc, attr_count, hdl->sa_bonus, SA_BONUS, &i, &used, &spilling); if (used > SPA_MAXBLOCKSIZE) return (EFBIG); VERIFY(0 == dmu_set_bonus(hdl->sa_bonus, spilling ? MIN(DN_MAX_BONUSLEN - sizeof (blkptr_t), used + hdrsize) : used + hdrsize, tx)); ASSERT((bonustype == DMU_OT_ZNODE && spilling == 0) || bonustype == DMU_OT_SA); /* setup and size spill buffer when needed */ if (spilling) { boolean_t dummy; if (hdl->sa_spill == NULL) { VERIFY(dmu_spill_hold_by_bonus(hdl->sa_bonus, NULL, &hdl->sa_spill) == 0); } dmu_buf_will_dirty(hdl->sa_spill, tx); spillhdrsize = sa_find_sizes(sa, &attr_desc[i], attr_count - i, hdl->sa_spill, SA_SPILL, &i, &spill_used, &dummy); if (spill_used > SPA_MAXBLOCKSIZE) return (EFBIG); buf_space = hdl->sa_spill->db_size - spillhdrsize; if (BUF_SPACE_NEEDED(spill_used, spillhdrsize) > hdl->sa_spill->db_size) VERIFY(0 == sa_resize_spill(hdl, BUF_SPACE_NEEDED(spill_used, spillhdrsize), tx)); } /* setup starting pointers to lay down data */ data_start = (void *)((uintptr_t)hdl->sa_bonus->db_data + hdrsize); sahdr = (sa_hdr_phys_t *)hdl->sa_bonus->db_data; buftype = SA_BONUS; if (spilling) buf_space = (sa->sa_force_spill) ? 0 : SA_BLKPTR_SPACE - hdrsize; else buf_space = hdl->sa_bonus->db_size - hdrsize; attrs_start = attrs = kmem_alloc(sizeof (sa_attr_type_t) * attr_count, KM_SLEEP); lot_count = 0; for (i = 0, len_idx = 0, hash = -1ULL; i != attr_count; i++) { uint16_t length; attrs[i] = attr_desc[i].sa_attr; length = SA_REGISTERED_LEN(sa, attrs[i]); if (length == 0) length = attr_desc[i].sa_length; if (buf_space < length) { /* switch to spill buffer */ VERIFY(bonustype == DMU_OT_SA); if (buftype == SA_BONUS && !sa->sa_force_spill) { sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot); SA_SET_HDR(sahdr, lot->lot_num, hdrsize); } buftype = SA_SPILL; hash = -1ULL; len_idx = 0; sahdr = (sa_hdr_phys_t *)hdl->sa_spill->db_data; sahdr->sa_magic = SA_MAGIC; data_start = (void *)((uintptr_t)sahdr + spillhdrsize); attrs_start = &attrs[i]; buf_space = hdl->sa_spill->db_size - spillhdrsize; lot_count = 0; } hash ^= SA_ATTR_HASH(attrs[i]); attr_desc[i].sa_addr = data_start; attr_desc[i].sa_size = length; SA_COPY_DATA(attr_desc[i].sa_data_func, attr_desc[i].sa_data, data_start, length); if (sa->sa_attr_table[attrs[i]].sa_length == 0) { sahdr->sa_lengths[len_idx++] = length; } data_start = (void *)P2ROUNDUP(((uintptr_t)data_start + length), 8); buf_space -= P2ROUNDUP(length, 8); lot_count++; } sa_find_layout(hdl->sa_os, hash, attrs_start, lot_count, tx, &lot); /* * Verify that old znodes always have layout number 0. * Must be DMU_OT_SA for arbitrary layouts */ VERIFY((bonustype == DMU_OT_ZNODE && lot->lot_num == 0) || (bonustype == DMU_OT_SA && lot->lot_num > 1)); if (bonustype == DMU_OT_SA) { SA_SET_HDR(sahdr, lot->lot_num, buftype == SA_BONUS ? hdrsize : spillhdrsize); } kmem_free(attrs, sizeof (sa_attr_type_t) * attr_count); if (hdl->sa_bonus_tab) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab); hdl->sa_bonus_tab = NULL; } if (!sa->sa_force_spill) VERIFY(0 == sa_build_index(hdl, SA_BONUS)); if (hdl->sa_spill) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab); if (!spilling) { /* * remove spill block that is no longer needed. */ dmu_buf_rele(hdl->sa_spill, NULL); hdl->sa_spill = NULL; hdl->sa_spill_tab = NULL; VERIFY(0 == dmu_rm_spill(hdl->sa_os, sa_handle_object(hdl), tx)); } else { VERIFY(0 == sa_build_index(hdl, SA_SPILL)); } } return (0); } static void sa_free_attr_table(sa_os_t *sa) { int i; if (sa->sa_attr_table == NULL) return; for (i = 0; i != sa->sa_num_attrs; i++) { if (sa->sa_attr_table[i].sa_name) kmem_free(sa->sa_attr_table[i].sa_name, strlen(sa->sa_attr_table[i].sa_name) + 1); } kmem_free(sa->sa_attr_table, sizeof (sa_attr_table_t) * sa->sa_num_attrs); sa->sa_attr_table = NULL; } static int sa_attr_table_setup(objset_t *os, sa_attr_reg_t *reg_attrs, int count) { sa_os_t *sa = os->os_sa; uint64_t sa_attr_count = 0; uint64_t sa_reg_count; int error = 0; uint64_t attr_value; sa_attr_table_t *tb; zap_cursor_t zc; zap_attribute_t za; int registered_count = 0; int i; dmu_objset_type_t ostype = dmu_objset_type(os); sa->sa_user_table = kmem_zalloc(count * sizeof (sa_attr_type_t), KM_SLEEP); sa->sa_user_table_sz = count * sizeof (sa_attr_type_t); if (sa->sa_reg_attr_obj != 0) { error = zap_count(os, sa->sa_reg_attr_obj, &sa_attr_count); /* * Make sure we retrieved a count and that it isn't zero */ if (error || (error == 0 && sa_attr_count == 0)) { if (error == 0) error = EINVAL; goto bail; } sa_reg_count = sa_attr_count; } if (ostype == DMU_OST_ZFS && sa_attr_count == 0) sa_attr_count += sa_legacy_attr_count; /* Allocate attribute numbers for attributes that aren't registered */ for (i = 0; i != count; i++) { boolean_t found = B_FALSE; int j; if (ostype == DMU_OST_ZFS) { for (j = 0; j != sa_legacy_attr_count; j++) { if (strcmp(reg_attrs[i].sa_name, sa_legacy_attrs[j].sa_name) == 0) { sa->sa_user_table[i] = sa_legacy_attrs[j].sa_attr; found = B_TRUE; } } } if (found) continue; if (sa->sa_reg_attr_obj) error = zap_lookup(os, sa->sa_reg_attr_obj, reg_attrs[i].sa_name, 8, 1, &attr_value); else error = ENOENT; switch (error) { case ENOENT: sa->sa_user_table[i] = (sa_attr_type_t)sa_attr_count; sa_attr_count++; break; case 0: sa->sa_user_table[i] = ATTR_NUM(attr_value); break; default: goto bail; } } sa->sa_num_attrs = sa_attr_count; tb = sa->sa_attr_table = kmem_zalloc(sizeof (sa_attr_table_t) * sa_attr_count, KM_SLEEP); /* * Attribute table is constructed from requested attribute list, * previously foreign registered attributes, and also the legacy * ZPL set of attributes. */ if (sa->sa_reg_attr_obj) { for (zap_cursor_init(&zc, os, sa->sa_reg_attr_obj); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { uint64_t value; value = za.za_first_integer; registered_count++; tb[ATTR_NUM(value)].sa_attr = ATTR_NUM(value); tb[ATTR_NUM(value)].sa_length = ATTR_LENGTH(value); tb[ATTR_NUM(value)].sa_byteswap = ATTR_BSWAP(value); tb[ATTR_NUM(value)].sa_registered = B_TRUE; if (tb[ATTR_NUM(value)].sa_name) { continue; } tb[ATTR_NUM(value)].sa_name = kmem_zalloc(strlen(za.za_name) +1, KM_SLEEP); (void) strlcpy(tb[ATTR_NUM(value)].sa_name, za.za_name, strlen(za.za_name) +1); } zap_cursor_fini(&zc); /* * Make sure we processed the correct number of registered * attributes */ if (registered_count != sa_reg_count) { ASSERT(error != 0); goto bail; } } if (ostype == DMU_OST_ZFS) { for (i = 0; i != sa_legacy_attr_count; i++) { if (tb[i].sa_name) continue; tb[i].sa_attr = sa_legacy_attrs[i].sa_attr; tb[i].sa_length = sa_legacy_attrs[i].sa_length; tb[i].sa_byteswap = sa_legacy_attrs[i].sa_byteswap; tb[i].sa_registered = B_FALSE; tb[i].sa_name = kmem_zalloc(strlen(sa_legacy_attrs[i].sa_name) +1, KM_SLEEP); (void) strlcpy(tb[i].sa_name, sa_legacy_attrs[i].sa_name, strlen(sa_legacy_attrs[i].sa_name) + 1); } } for (i = 0; i != count; i++) { sa_attr_type_t attr_id; attr_id = sa->sa_user_table[i]; if (tb[attr_id].sa_name) continue; tb[attr_id].sa_length = reg_attrs[i].sa_length; tb[attr_id].sa_byteswap = reg_attrs[i].sa_byteswap; tb[attr_id].sa_attr = attr_id; tb[attr_id].sa_name = kmem_zalloc(strlen(reg_attrs[i].sa_name) + 1, KM_SLEEP); (void) strlcpy(tb[attr_id].sa_name, reg_attrs[i].sa_name, strlen(reg_attrs[i].sa_name) + 1); } sa->sa_need_attr_registration = (sa_attr_count != registered_count); return (0); bail: kmem_free(sa->sa_user_table, count * sizeof (sa_attr_type_t)); sa->sa_user_table = NULL; sa_free_attr_table(sa); return ((error != 0) ? error : EINVAL); } int sa_setup(objset_t *os, uint64_t sa_obj, sa_attr_reg_t *reg_attrs, int count, sa_attr_type_t **user_table) { zap_cursor_t zc; zap_attribute_t za; sa_os_t *sa; dmu_objset_type_t ostype = dmu_objset_type(os); sa_attr_type_t *tb; int error; mutex_enter(&os->os_lock); if (os->os_sa) { mutex_enter(&os->os_sa->sa_lock); mutex_exit(&os->os_lock); tb = os->os_sa->sa_user_table; mutex_exit(&os->os_sa->sa_lock); *user_table = tb; return (0); } sa = kmem_zalloc(sizeof (sa_os_t), KM_SLEEP); mutex_init(&sa->sa_lock, NULL, MUTEX_DEFAULT, NULL); sa->sa_master_obj = sa_obj; os->os_sa = sa; mutex_enter(&sa->sa_lock); mutex_exit(&os->os_lock); avl_create(&sa->sa_layout_num_tree, layout_num_compare, sizeof (sa_lot_t), offsetof(sa_lot_t, lot_num_node)); avl_create(&sa->sa_layout_hash_tree, layout_hash_compare, sizeof (sa_lot_t), offsetof(sa_lot_t, lot_hash_node)); if (sa_obj) { error = zap_lookup(os, sa_obj, SA_LAYOUTS, 8, 1, &sa->sa_layout_attr_obj); if (error != 0 && error != ENOENT) goto fail; error = zap_lookup(os, sa_obj, SA_REGISTRY, 8, 1, &sa->sa_reg_attr_obj); if (error != 0 && error != ENOENT) goto fail; } if ((error = sa_attr_table_setup(os, reg_attrs, count)) != 0) goto fail; if (sa->sa_layout_attr_obj != 0) { uint64_t layout_count; error = zap_count(os, sa->sa_layout_attr_obj, &layout_count); /* * Layout number count should be > 0 */ if (error || (error == 0 && layout_count == 0)) { if (error == 0) error = EINVAL; goto fail; } for (zap_cursor_init(&zc, os, sa->sa_layout_attr_obj); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { sa_attr_type_t *lot_attrs; uint64_t lot_num; lot_attrs = kmem_zalloc(sizeof (sa_attr_type_t) * za.za_num_integers, KM_SLEEP); if ((error = (zap_lookup(os, sa->sa_layout_attr_obj, za.za_name, 2, za.za_num_integers, lot_attrs))) != 0) { kmem_free(lot_attrs, sizeof (sa_attr_type_t) * za.za_num_integers); break; } VERIFY(ddi_strtoull(za.za_name, NULL, 10, (unsigned long long *)&lot_num) == 0); (void) sa_add_layout_entry(os, lot_attrs, za.za_num_integers, lot_num, sa_layout_info_hash(lot_attrs, za.za_num_integers), B_FALSE, NULL); kmem_free(lot_attrs, sizeof (sa_attr_type_t) * za.za_num_integers); } zap_cursor_fini(&zc); /* * Make sure layout count matches number of entries added * to AVL tree */ if (avl_numnodes(&sa->sa_layout_num_tree) != layout_count) { ASSERT(error != 0); goto fail; } } /* Add special layout number for old ZNODES */ if (ostype == DMU_OST_ZFS) { (void) sa_add_layout_entry(os, sa_legacy_zpl_layout, sa_legacy_attr_count, 0, sa_layout_info_hash(sa_legacy_zpl_layout, sa_legacy_attr_count), B_FALSE, NULL); (void) sa_add_layout_entry(os, sa_dummy_zpl_layout, 0, 1, 0, B_FALSE, NULL); } *user_table = os->os_sa->sa_user_table; mutex_exit(&sa->sa_lock); return (0); fail: os->os_sa = NULL; sa_free_attr_table(sa); if (sa->sa_user_table) kmem_free(sa->sa_user_table, sa->sa_user_table_sz); mutex_exit(&sa->sa_lock); kmem_free(sa, sizeof (sa_os_t)); return ((error == ECKSUM) ? EIO : error); } void sa_tear_down(objset_t *os) { sa_os_t *sa = os->os_sa; sa_lot_t *layout; void *cookie; kmem_free(sa->sa_user_table, sa->sa_user_table_sz); /* Free up attr table */ sa_free_attr_table(sa); cookie = NULL; while (layout = avl_destroy_nodes(&sa->sa_layout_hash_tree, &cookie)) { sa_idx_tab_t *tab; while (tab = list_head(&layout->lot_idx_tab)) { ASSERT(refcount_count(&tab->sa_refcount)); sa_idx_tab_rele(os, tab); } } cookie = NULL; while (layout = avl_destroy_nodes(&sa->sa_layout_num_tree, &cookie)) { kmem_free(layout->lot_attrs, sizeof (sa_attr_type_t) * layout->lot_attr_count); kmem_free(layout, sizeof (sa_lot_t)); } avl_destroy(&sa->sa_layout_hash_tree); avl_destroy(&sa->sa_layout_num_tree); kmem_free(sa, sizeof (sa_os_t)); os->os_sa = NULL; } void sa_build_idx_tab(void *hdr, void *attr_addr, sa_attr_type_t attr, uint16_t length, int length_idx, boolean_t var_length, void *userp) { sa_idx_tab_t *idx_tab = userp; if (var_length) { ASSERT(idx_tab->sa_variable_lengths); idx_tab->sa_variable_lengths[length_idx] = length; } TOC_ATTR_ENCODE(idx_tab->sa_idx_tab[attr], length_idx, (uint32_t)((uintptr_t)attr_addr - (uintptr_t)hdr)); } static void sa_attr_iter(objset_t *os, sa_hdr_phys_t *hdr, dmu_object_type_t type, sa_iterfunc_t func, sa_lot_t *tab, void *userp) { void *data_start; sa_lot_t *tb = tab; sa_lot_t search; avl_index_t loc; sa_os_t *sa = os->os_sa; int i; uint16_t *length_start = NULL; uint8_t length_idx = 0; if (tab == NULL) { search.lot_num = SA_LAYOUT_NUM(hdr, type); tb = avl_find(&sa->sa_layout_num_tree, &search, &loc); ASSERT(tb); } if (IS_SA_BONUSTYPE(type)) { data_start = (void *)P2ROUNDUP(((uintptr_t)hdr + offsetof(sa_hdr_phys_t, sa_lengths) + (sizeof (uint16_t) * tb->lot_var_sizes)), 8); length_start = hdr->sa_lengths; } else { data_start = hdr; } for (i = 0; i != tb->lot_attr_count; i++) { int attr_length, reg_length; uint8_t idx_len; reg_length = sa->sa_attr_table[tb->lot_attrs[i]].sa_length; if (reg_length) { attr_length = reg_length; idx_len = 0; } else { attr_length = length_start[length_idx]; idx_len = length_idx++; } func(hdr, data_start, tb->lot_attrs[i], attr_length, idx_len, reg_length == 0 ? B_TRUE : B_FALSE, userp); data_start = (void *)P2ROUNDUP(((uintptr_t)data_start + attr_length), 8); } } /*ARGSUSED*/ void sa_byteswap_cb(void *hdr, void *attr_addr, sa_attr_type_t attr, uint16_t length, int length_idx, boolean_t variable_length, void *userp) { sa_handle_t *hdl = userp; sa_os_t *sa = hdl->sa_os->os_sa; sa_bswap_table[sa->sa_attr_table[attr].sa_byteswap](attr_addr, length); } void sa_byteswap(sa_handle_t *hdl, sa_buf_type_t buftype) { sa_hdr_phys_t *sa_hdr_phys = SA_GET_HDR(hdl, buftype); dmu_buf_impl_t *db; sa_os_t *sa = hdl->sa_os->os_sa; int num_lengths = 1; int i; ASSERT(MUTEX_HELD(&sa->sa_lock)); if (sa_hdr_phys->sa_magic == SA_MAGIC) return; db = SA_GET_DB(hdl, buftype); if (buftype == SA_SPILL) { arc_release(db->db_buf, NULL); arc_buf_thaw(db->db_buf); } sa_hdr_phys->sa_magic = BSWAP_32(sa_hdr_phys->sa_magic); sa_hdr_phys->sa_layout_info = BSWAP_16(sa_hdr_phys->sa_layout_info); /* * Determine number of variable lenghts in header * The standard 8 byte header has one for free and a * 16 byte header would have 4 + 1; */ if (SA_HDR_SIZE(sa_hdr_phys) > 8) num_lengths += (SA_HDR_SIZE(sa_hdr_phys) - 8) >> 1; for (i = 0; i != num_lengths; i++) sa_hdr_phys->sa_lengths[i] = BSWAP_16(sa_hdr_phys->sa_lengths[i]); sa_attr_iter(hdl->sa_os, sa_hdr_phys, DMU_OT_SA, sa_byteswap_cb, NULL, hdl); if (buftype == SA_SPILL) arc_buf_freeze(((dmu_buf_impl_t *)hdl->sa_spill)->db_buf); } static int sa_build_index(sa_handle_t *hdl, sa_buf_type_t buftype) { sa_hdr_phys_t *sa_hdr_phys; dmu_buf_impl_t *db = SA_GET_DB(hdl, buftype); dmu_object_type_t bonustype = SA_BONUSTYPE_FROM_DB(db); sa_os_t *sa = hdl->sa_os->os_sa; sa_idx_tab_t *idx_tab; sa_hdr_phys = SA_GET_HDR(hdl, buftype); mutex_enter(&sa->sa_lock); /* Do we need to byteswap? */ /* only check if not old znode */ if (IS_SA_BONUSTYPE(bonustype) && sa_hdr_phys->sa_magic != SA_MAGIC && sa_hdr_phys->sa_magic != 0) { VERIFY(BSWAP_32(sa_hdr_phys->sa_magic) == SA_MAGIC); sa_byteswap(hdl, buftype); } idx_tab = sa_find_idx_tab(hdl->sa_os, bonustype, sa_hdr_phys); if (buftype == SA_BONUS) hdl->sa_bonus_tab = idx_tab; else hdl->sa_spill_tab = idx_tab; mutex_exit(&sa->sa_lock); return (0); } /*ARGSUSED*/ void sa_evict(dmu_buf_t *db, void *sap) { panic("evicting sa dbuf %p\n", (void *)db); } static void sa_idx_tab_rele(objset_t *os, void *arg) { sa_os_t *sa = os->os_sa; sa_idx_tab_t *idx_tab = arg; if (idx_tab == NULL) return; mutex_enter(&sa->sa_lock); if (refcount_remove(&idx_tab->sa_refcount, NULL) == 0) { list_remove(&idx_tab->sa_layout->lot_idx_tab, idx_tab); if (idx_tab->sa_variable_lengths) kmem_free(idx_tab->sa_variable_lengths, sizeof (uint16_t) * idx_tab->sa_layout->lot_var_sizes); refcount_destroy(&idx_tab->sa_refcount); kmem_free(idx_tab->sa_idx_tab, sizeof (uint32_t) * sa->sa_num_attrs); kmem_free(idx_tab, sizeof (sa_idx_tab_t)); } mutex_exit(&sa->sa_lock); } static void sa_idx_tab_hold(objset_t *os, sa_idx_tab_t *idx_tab) { sa_os_t *sa = os->os_sa; ASSERT(MUTEX_HELD(&sa->sa_lock)); (void) refcount_add(&idx_tab->sa_refcount, NULL); } void sa_handle_destroy(sa_handle_t *hdl) { mutex_enter(&hdl->sa_lock); (void) dmu_buf_update_user((dmu_buf_t *)hdl->sa_bonus, hdl, NULL, NULL, NULL); if (hdl->sa_bonus_tab) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_bonus_tab); hdl->sa_bonus_tab = NULL; } if (hdl->sa_spill_tab) { sa_idx_tab_rele(hdl->sa_os, hdl->sa_spill_tab); hdl->sa_spill_tab = NULL; } dmu_buf_rele(hdl->sa_bonus, NULL); if (hdl->sa_spill) dmu_buf_rele((dmu_buf_t *)hdl->sa_spill, NULL); mutex_exit(&hdl->sa_lock); kmem_cache_free(sa_cache, hdl); } int sa_handle_get_from_db(objset_t *os, dmu_buf_t *db, void *userp, sa_handle_type_t hdl_type, sa_handle_t **handlepp) { int error = 0; dmu_object_info_t doi; sa_handle_t *handle; #ifdef ZFS_DEBUG dmu_object_info_from_db(db, &doi); ASSERT(doi.doi_bonus_type == DMU_OT_SA || doi.doi_bonus_type == DMU_OT_ZNODE); #endif /* find handle, if it exists */ /* if one doesn't exist then create a new one, and initialize it */ handle = (hdl_type == SA_HDL_SHARED) ? dmu_buf_get_user(db) : NULL; if (handle == NULL) { sa_handle_t *newhandle; handle = kmem_cache_alloc(sa_cache, KM_SLEEP); handle->sa_userp = userp; handle->sa_bonus = db; handle->sa_os = os; handle->sa_spill = NULL; error = sa_build_index(handle, SA_BONUS); newhandle = (hdl_type == SA_HDL_SHARED) ? dmu_buf_set_user_ie(db, handle, NULL, sa_evict) : NULL; if (newhandle != NULL) { kmem_cache_free(sa_cache, handle); handle = newhandle; } } *handlepp = handle; return (error); } int sa_handle_get(objset_t *objset, uint64_t objid, void *userp, sa_handle_type_t hdl_type, sa_handle_t **handlepp) { dmu_buf_t *db; int error; if (error = dmu_bonus_hold(objset, objid, NULL, &db)) return (error); return (sa_handle_get_from_db(objset, db, userp, hdl_type, handlepp)); } int sa_buf_hold(objset_t *objset, uint64_t obj_num, void *tag, dmu_buf_t **db) { return (dmu_bonus_hold(objset, obj_num, tag, db)); } void sa_buf_rele(dmu_buf_t *db, void *tag) { dmu_buf_rele(db, tag); } int sa_lookup_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count) { ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); return (sa_attr_op(hdl, bulk, count, SA_LOOKUP, NULL)); } int sa_lookup(sa_handle_t *hdl, sa_attr_type_t attr, void *buf, uint32_t buflen) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = attr; bulk.sa_data = buf; bulk.sa_length = buflen; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_lookup_impl(hdl, &bulk, 1); mutex_exit(&hdl->sa_lock); return (error); } #ifdef _KERNEL int sa_lookup_uio(sa_handle_t *hdl, sa_attr_type_t attr, uio_t *uio) { int error; sa_bulk_attr_t bulk; bulk.sa_data = NULL; bulk.sa_attr = attr; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) == 0) { error = uiomove((void *)bulk.sa_addr, MIN(bulk.sa_size, uio->uio_resid), UIO_READ, uio); } mutex_exit(&hdl->sa_lock); return (error); } #endif void * sa_find_idx_tab(objset_t *os, dmu_object_type_t bonustype, void *data) { sa_idx_tab_t *idx_tab; sa_hdr_phys_t *hdr = (sa_hdr_phys_t *)data; sa_os_t *sa = os->os_sa; sa_lot_t *tb, search; avl_index_t loc; /* * Deterimine layout number. If SA node and header == 0 then * force the index table to the dummy "1" empty layout. * * The layout number would only be zero for a newly created file * that has not added any attributes yet, or with crypto enabled which * doesn't write any attributes to the bonus buffer. */ search.lot_num = SA_LAYOUT_NUM(hdr, bonustype); tb = avl_find(&sa->sa_layout_num_tree, &search, &loc); /* Verify header size is consistent with layout information */ ASSERT(tb); ASSERT((IS_SA_BONUSTYPE(bonustype) && SA_HDR_SIZE_MATCH_LAYOUT(hdr, tb)) || !IS_SA_BONUSTYPE(bonustype) || (IS_SA_BONUSTYPE(bonustype) && hdr->sa_layout_info == 0)); /* * See if any of the already existing TOC entries can be reused? */ for (idx_tab = list_head(&tb->lot_idx_tab); idx_tab; idx_tab = list_next(&tb->lot_idx_tab, idx_tab)) { boolean_t valid_idx = B_TRUE; int i; if (tb->lot_var_sizes != 0 && idx_tab->sa_variable_lengths != NULL) { for (i = 0; i != tb->lot_var_sizes; i++) { if (hdr->sa_lengths[i] != idx_tab->sa_variable_lengths[i]) { valid_idx = B_FALSE; break; } } } if (valid_idx) { sa_idx_tab_hold(os, idx_tab); return (idx_tab); } } /* No such luck, create a new entry */ idx_tab = kmem_zalloc(sizeof (sa_idx_tab_t), KM_SLEEP); idx_tab->sa_idx_tab = kmem_zalloc(sizeof (uint32_t) * sa->sa_num_attrs, KM_SLEEP); idx_tab->sa_layout = tb; refcount_create(&idx_tab->sa_refcount); if (tb->lot_var_sizes) idx_tab->sa_variable_lengths = kmem_alloc(sizeof (uint16_t) * tb->lot_var_sizes, KM_SLEEP); sa_attr_iter(os, hdr, bonustype, sa_build_idx_tab, tb, idx_tab); sa_idx_tab_hold(os, idx_tab); /* one hold for consumer */ sa_idx_tab_hold(os, idx_tab); /* one for layout */ list_insert_tail(&tb->lot_idx_tab, idx_tab); return (idx_tab); } void sa_default_locator(void **dataptr, uint32_t *len, uint32_t total_len, boolean_t start, void *userdata) { ASSERT(start); *dataptr = userdata; *len = total_len; } static void sa_attr_register_sync(sa_handle_t *hdl, dmu_tx_t *tx) { uint64_t attr_value = 0; sa_os_t *sa = hdl->sa_os->os_sa; sa_attr_table_t *tb = sa->sa_attr_table; int i; mutex_enter(&sa->sa_lock); - if (!sa->sa_need_attr_registration || sa->sa_master_obj == NULL) { + if (!sa->sa_need_attr_registration || sa->sa_master_obj == 0) { mutex_exit(&sa->sa_lock); return; } - if (sa->sa_reg_attr_obj == NULL) { + if (sa->sa_reg_attr_obj == 0) { sa->sa_reg_attr_obj = zap_create(hdl->sa_os, DMU_OT_SA_ATTR_REGISTRATION, DMU_OT_NONE, 0, tx); VERIFY(zap_add(hdl->sa_os, sa->sa_master_obj, SA_REGISTRY, 8, 1, &sa->sa_reg_attr_obj, tx) == 0); } for (i = 0; i != sa->sa_num_attrs; i++) { if (sa->sa_attr_table[i].sa_registered) continue; ATTR_ENCODE(attr_value, tb[i].sa_attr, tb[i].sa_length, tb[i].sa_byteswap); VERIFY(0 == zap_update(hdl->sa_os, sa->sa_reg_attr_obj, tb[i].sa_name, 8, 1, &attr_value, tx)); tb[i].sa_registered = B_TRUE; } sa->sa_need_attr_registration = B_FALSE; mutex_exit(&sa->sa_lock); } /* * Replace all attributes with attributes specified in template. * If dnode had a spill buffer then those attributes will be * also be replaced, possibly with just an empty spill block * * This interface is intended to only be used for bulk adding of * attributes for a new file. It will also be used by the ZPL * when converting and old formatted znode to native SA support. */ int sa_replace_all_by_template_locked(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; if (sa->sa_need_attr_registration) sa_attr_register_sync(hdl, tx); return (sa_build_layouts(hdl, attr_desc, attr_count, tx)); } int sa_replace_all_by_template(sa_handle_t *hdl, sa_bulk_attr_t *attr_desc, int attr_count, dmu_tx_t *tx) { int error; mutex_enter(&hdl->sa_lock); error = sa_replace_all_by_template_locked(hdl, attr_desc, attr_count, tx); mutex_exit(&hdl->sa_lock); return (error); } /* * add/remove/replace a single attribute and then rewrite the entire set * of attributes. */ static int sa_modify_attrs(sa_handle_t *hdl, sa_attr_type_t newattr, sa_data_op_t action, sa_data_locator_t *locator, void *datastart, uint16_t buflen, dmu_tx_t *tx) { sa_os_t *sa = hdl->sa_os->os_sa; dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus; dnode_t *dn; sa_bulk_attr_t *attr_desc; void *old_data[2]; int bonus_attr_count = 0; int bonus_data_size, spill_data_size; int spill_attr_count = 0; int error; uint16_t length; int i, j, k, length_idx; sa_hdr_phys_t *hdr; sa_idx_tab_t *idx_tab; int attr_count; int count; ASSERT(MUTEX_HELD(&hdl->sa_lock)); /* First make of copy of the old data */ DB_DNODE_ENTER(db); dn = DB_DNODE(db); if (dn->dn_bonuslen != 0) { bonus_data_size = hdl->sa_bonus->db_size; old_data[0] = kmem_alloc(bonus_data_size, KM_SLEEP); bcopy(hdl->sa_bonus->db_data, old_data[0], hdl->sa_bonus->db_size); bonus_attr_count = hdl->sa_bonus_tab->sa_layout->lot_attr_count; } else { old_data[0] = NULL; } DB_DNODE_EXIT(db); /* Bring spill buffer online if it isn't currently */ if ((error = sa_get_spill(hdl)) == 0) { spill_data_size = hdl->sa_spill->db_size; old_data[1] = kmem_alloc(spill_data_size, KM_SLEEP); bcopy(hdl->sa_spill->db_data, old_data[1], hdl->sa_spill->db_size); spill_attr_count = hdl->sa_spill_tab->sa_layout->lot_attr_count; } else if (error && error != ENOENT) { if (old_data[0]) kmem_free(old_data[0], bonus_data_size); return (error); } else { old_data[1] = NULL; } /* build descriptor of all attributes */ attr_count = bonus_attr_count + spill_attr_count; if (action == SA_ADD) attr_count++; else if (action == SA_REMOVE) attr_count--; attr_desc = kmem_zalloc(sizeof (sa_bulk_attr_t) * attr_count, KM_SLEEP); /* * loop through bonus and spill buffer if it exists, and * build up new attr_descriptor to reset the attributes */ k = j = 0; count = bonus_attr_count; hdr = SA_GET_HDR(hdl, SA_BONUS); idx_tab = SA_IDX_TAB_GET(hdl, SA_BONUS); for (; k != 2; k++) { /* iterate over each attribute in layout */ for (i = 0, length_idx = 0; i != count; i++) { sa_attr_type_t attr; attr = idx_tab->sa_layout->lot_attrs[i]; if (attr == newattr) { if (action == SA_REMOVE) { j++; continue; } ASSERT(SA_REGISTERED_LEN(sa, attr) == 0); ASSERT(action == SA_REPLACE); SA_ADD_BULK_ATTR(attr_desc, j, attr, locator, datastart, buflen); } else { length = SA_REGISTERED_LEN(sa, attr); if (length == 0) { length = hdr->sa_lengths[length_idx++]; } SA_ADD_BULK_ATTR(attr_desc, j, attr, NULL, (void *) (TOC_OFF(idx_tab->sa_idx_tab[attr]) + (uintptr_t)old_data[k]), length); } } if (k == 0 && hdl->sa_spill) { hdr = SA_GET_HDR(hdl, SA_SPILL); idx_tab = SA_IDX_TAB_GET(hdl, SA_SPILL); count = spill_attr_count; } else { break; } } if (action == SA_ADD) { length = SA_REGISTERED_LEN(sa, newattr); if (length == 0) { length = buflen; } SA_ADD_BULK_ATTR(attr_desc, j, newattr, locator, datastart, buflen); } error = sa_build_layouts(hdl, attr_desc, attr_count, tx); if (old_data[0]) kmem_free(old_data[0], bonus_data_size); if (old_data[1]) kmem_free(old_data[1], spill_data_size); kmem_free(attr_desc, sizeof (sa_bulk_attr_t) * attr_count); return (error); } static int sa_bulk_update_impl(sa_handle_t *hdl, sa_bulk_attr_t *bulk, int count, dmu_tx_t *tx) { int error; sa_os_t *sa = hdl->sa_os->os_sa; dmu_object_type_t bonustype; bonustype = SA_BONUSTYPE_FROM_DB(SA_GET_DB(hdl, SA_BONUS)); ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); /* sync out registration table if necessary */ if (sa->sa_need_attr_registration) sa_attr_register_sync(hdl, tx); error = sa_attr_op(hdl, bulk, count, SA_UPDATE, tx); if (error == 0 && !IS_SA_BONUSTYPE(bonustype) && sa->sa_update_cb) sa->sa_update_cb(hdl, tx); return (error); } /* * update or add new attribute */ int sa_update(sa_handle_t *hdl, sa_attr_type_t type, void *buf, uint32_t buflen, dmu_tx_t *tx) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = type; bulk.sa_data_func = NULL; bulk.sa_length = buflen; bulk.sa_data = buf; mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, &bulk, 1, tx); mutex_exit(&hdl->sa_lock); return (error); } int sa_update_from_cb(sa_handle_t *hdl, sa_attr_type_t attr, uint32_t buflen, sa_data_locator_t *locator, void *userdata, dmu_tx_t *tx) { int error; sa_bulk_attr_t bulk; bulk.sa_attr = attr; bulk.sa_data = userdata; bulk.sa_data_func = locator; bulk.sa_length = buflen; mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, &bulk, 1, tx); mutex_exit(&hdl->sa_lock); return (error); } /* * Return size of an attribute */ int sa_size(sa_handle_t *hdl, sa_attr_type_t attr, int *size) { sa_bulk_attr_t bulk; int error; bulk.sa_data = NULL; bulk.sa_attr = attr; bulk.sa_data_func = NULL; ASSERT(hdl); mutex_enter(&hdl->sa_lock); if ((error = sa_attr_op(hdl, &bulk, 1, SA_LOOKUP, NULL)) != 0) { mutex_exit(&hdl->sa_lock); return (error); } *size = bulk.sa_size; mutex_exit(&hdl->sa_lock); return (0); } int sa_bulk_lookup_locked(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count) { ASSERT(hdl); ASSERT(MUTEX_HELD(&hdl->sa_lock)); return (sa_lookup_impl(hdl, attrs, count)); } int sa_bulk_lookup(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count) { int error; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_bulk_lookup_locked(hdl, attrs, count); mutex_exit(&hdl->sa_lock); return (error); } int sa_bulk_update(sa_handle_t *hdl, sa_bulk_attr_t *attrs, int count, dmu_tx_t *tx) { int error; ASSERT(hdl); mutex_enter(&hdl->sa_lock); error = sa_bulk_update_impl(hdl, attrs, count, tx); mutex_exit(&hdl->sa_lock); return (error); } int sa_remove(sa_handle_t *hdl, sa_attr_type_t attr, dmu_tx_t *tx) { int error; mutex_enter(&hdl->sa_lock); error = sa_modify_attrs(hdl, attr, SA_REMOVE, NULL, NULL, 0, tx); mutex_exit(&hdl->sa_lock); return (error); } void sa_object_info(sa_handle_t *hdl, dmu_object_info_t *doi) { dmu_object_info_from_db((dmu_buf_t *)hdl->sa_bonus, doi); } void sa_object_size(sa_handle_t *hdl, uint32_t *blksize, u_longlong_t *nblocks) { dmu_object_size_from_db((dmu_buf_t *)hdl->sa_bonus, blksize, nblocks); } void sa_update_user(sa_handle_t *newhdl, sa_handle_t *oldhdl) { (void) dmu_buf_update_user((dmu_buf_t *)newhdl->sa_bonus, oldhdl, newhdl, NULL, sa_evict); oldhdl->sa_bonus = NULL; } void sa_set_userp(sa_handle_t *hdl, void *ptr) { hdl->sa_userp = ptr; } dmu_buf_t * sa_get_db(sa_handle_t *hdl) { return ((dmu_buf_t *)hdl->sa_bonus); } void * sa_get_userdata(sa_handle_t *hdl) { return (hdl->sa_userp); } void sa_register_update_callback_locked(objset_t *os, sa_update_cb_t *func) { ASSERT(MUTEX_HELD(&os->os_sa->sa_lock)); os->os_sa->sa_update_cb = func; } void sa_register_update_callback(objset_t *os, sa_update_cb_t *func) { mutex_enter(&os->os_sa->sa_lock); sa_register_update_callback_locked(os, func); mutex_exit(&os->os_sa->sa_lock); } uint64_t sa_handle_object(sa_handle_t *hdl) { return (hdl->sa_bonus->db_object); } boolean_t sa_enabled(objset_t *os) { return (os->os_sa == NULL); } int sa_set_sa_object(objset_t *os, uint64_t sa_object) { sa_os_t *sa = os->os_sa; if (sa->sa_master_obj) return (1); sa->sa_master_obj = sa_object; return (0); } int sa_hdrsize(void *arg) { sa_hdr_phys_t *hdr = arg; return (SA_HDR_SIZE(hdr)); } void sa_handle_lock(sa_handle_t *hdl) { ASSERT(hdl); mutex_enter(&hdl->sa_lock); } void sa_handle_unlock(sa_handle_t *hdl) { ASSERT(hdl); mutex_exit(&hdl->sa_lock); } diff --git a/module/zfs/zap.c b/module/zfs/zap.c index 288a4d99ab25..89446a4fbdfc 100644 --- a/module/zfs/zap.c +++ b/module/zfs/zap.c @@ -1,1354 +1,1354 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ /* * This file contains the top half of the zfs directory structure * implementation. The bottom half is in zap_leaf.c. * * The zdir is an extendable hash data structure. There is a table of * pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are * each a constant size and hold a variable number of directory entries. * The buckets (aka "leaf nodes") are implemented in zap_leaf.c. * * The pointer table holds a power of 2 number of pointers. * (1<zd_data->zd_phys->zd_prefix_len). The bucket pointed to * by the pointer at index i in the table holds entries whose hash value * has a zd_prefix_len - bit prefix */ #include #include #include #include #include #include #include #include #include int fzap_default_block_shift = 14; /* 16k blocksize */ static void zap_leaf_pageout(dmu_buf_t *db, void *vl); static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks); void fzap_byteswap(void *vbuf, size_t size) { uint64_t block_type; block_type = *(uint64_t *)vbuf; if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF)) zap_leaf_byteswap(vbuf, size); else { /* it's a ptrtbl block */ byteswap_uint64_array(vbuf, size); } } void fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags) { dmu_buf_t *db; zap_leaf_t *l; int i; zap_phys_t *zp; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); zap->zap_ismicro = FALSE; (void) dmu_buf_update_user(zap->zap_dbuf, zap, zap, &zap->zap_f.zap_phys, zap_evict); mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); zap->zap_f.zap_block_shift = highbit(zap->zap_dbuf->db_size) - 1; zp = zap->zap_f.zap_phys; /* * explicitly zero it since it might be coming from an * initialized microzap */ bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size); zp->zap_block_type = ZBT_HEADER; zp->zap_magic = ZAP_MAGIC; zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap); zp->zap_freeblk = 2; /* block 1 will be the first leaf */ zp->zap_num_leafs = 1; zp->zap_num_entries = 0; zp->zap_salt = zap->zap_salt; zp->zap_normflags = zap->zap_normflags; zp->zap_flags = flags; /* block 1 will be the first leaf */ for (i = 0; i < (1<zap_ptrtbl.zt_shift); i++) ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1; /* * set up block 1 - the first leaf */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, 1<l_dbuf = db; l->l_phys = db->db_data; zap_leaf_init(l, zp->zap_normflags != 0); kmem_free(l, sizeof (zap_leaf_t)); dmu_buf_rele(db, FTAG); } static int zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx) { if (RW_WRITE_HELD(&zap->zap_rwlock)) return (1); if (rw_tryupgrade(&zap->zap_rwlock)) { dmu_buf_will_dirty(zap->zap_dbuf, tx); return (1); } return (0); } /* * Generic routines for dealing with the pointer & cookie tables. */ static int zap_table_grow(zap_t *zap, zap_table_phys_t *tbl, void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n), dmu_tx_t *tx) { uint64_t b, newblk; dmu_buf_t *db_old, *db_new; int err; int bs = FZAP_BLOCK_SHIFT(zap); int hepb = 1<<(bs-4); /* hepb = half the number of entries in a block */ ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); ASSERT(tbl->zt_numblks > 0); if (tbl->zt_nextblk != 0) { newblk = tbl->zt_nextblk; } else { newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2); tbl->zt_nextblk = newblk; ASSERT3U(tbl->zt_blks_copied, ==, 0); dmu_prefetch(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs); } /* * Copy the ptrtbl from the old to new location. */ b = tbl->zt_blks_copied; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH); if (err) return (err); /* first half of entries in old[b] go to new[2*b+0] */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func(db_old->db_data, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); /* second half of entries in old[b] go to new[2*b+1] */ VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH)); dmu_buf_will_dirty(db_new, tx); transfer_func((uint64_t *)db_old->db_data + hepb, db_new->db_data, hepb); dmu_buf_rele(db_new, FTAG); dmu_buf_rele(db_old, FTAG); tbl->zt_blks_copied++; dprintf("copied block %llu of %llu\n", tbl->zt_blks_copied, tbl->zt_numblks); if (tbl->zt_blks_copied == tbl->zt_numblks) { (void) dmu_free_range(zap->zap_objset, zap->zap_object, tbl->zt_blk << bs, tbl->zt_numblks << bs, tx); tbl->zt_blk = newblk; tbl->zt_numblks *= 2; tbl->zt_shift++; tbl->zt_nextblk = 0; tbl->zt_blks_copied = 0; dprintf("finished; numblocks now %llu (%lluk entries)\n", tbl->zt_numblks, 1<<(tbl->zt_shift-10)); } return (0); } static int zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val, dmu_tx_t *tx) { int err; uint64_t blk, off; int bs = FZAP_BLOCK_SHIFT(zap); dmu_buf_t *db; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(tbl->zt_blk != 0); dprintf("storing %llx at index %llx\n", val, idx); blk = idx >> (bs-3); off = idx & ((1<<(bs-3))-1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err) return (err); dmu_buf_will_dirty(db, tx); if (tbl->zt_nextblk != 0) { uint64_t idx2 = idx * 2; uint64_t blk2 = idx2 >> (bs-3); uint64_t off2 = idx2 & ((1<<(bs-3))-1); dmu_buf_t *db2; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_nextblk + blk2) << bs, FTAG, &db2, DMU_READ_NO_PREFETCH); if (err) { dmu_buf_rele(db, FTAG); return (err); } dmu_buf_will_dirty(db2, tx); ((uint64_t *)db2->db_data)[off2] = val; ((uint64_t *)db2->db_data)[off2+1] = val; dmu_buf_rele(db2, FTAG); } ((uint64_t *)db->db_data)[off] = val; dmu_buf_rele(db, FTAG); return (0); } static int zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp) { uint64_t blk, off; int err; dmu_buf_t *db; int bs = FZAP_BLOCK_SHIFT(zap); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); blk = idx >> (bs-3); off = idx & ((1<<(bs-3))-1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err) return (err); *valp = ((uint64_t *)db->db_data)[off]; dmu_buf_rele(db, FTAG); if (tbl->zt_nextblk != 0) { /* * read the nextblk for the sake of i/o error checking, * so that zap_table_load() will catch errors for * zap_table_store. */ blk = (idx*2) >> (bs-3); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (tbl->zt_nextblk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); dmu_buf_rele(db, FTAG); } return (err); } /* * Routines for growing the ptrtbl. */ static void zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n) { int i; for (i = 0; i < n; i++) { uint64_t lb = src[i]; dst[2*i+0] = lb; dst[2*i+1] = lb; } } static int zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx) { /* * The pointer table should never use more hash bits than we * have (otherwise we'd be using useless zero bits to index it). * If we are within 2 bits of running out, stop growing, since * this is already an aberrant condition. */ if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2) return (ENOSPC); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { /* * We are outgrowing the "embedded" ptrtbl (the one * stored in the header block). Give it its own entire * block, which will double the size of the ptrtbl. */ uint64_t newblk; dmu_buf_t *db_new; int err; ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk, ==, 0); newblk = zap_allocate_blocks(zap, 1); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new, DMU_READ_NO_PREFETCH); if (err) return (err); dmu_buf_will_dirty(db_new, tx); zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap)); dmu_buf_rele(db_new, FTAG); zap->zap_f.zap_phys->zap_ptrtbl.zt_blk = newblk; zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks = 1; zap->zap_f.zap_phys->zap_ptrtbl.zt_shift++; ASSERT3U(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==, zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << (FZAP_BLOCK_SHIFT(zap)-3)); return (0); } else { return (zap_table_grow(zap, &zap->zap_f.zap_phys->zap_ptrtbl, zap_ptrtbl_transfer, tx)); } } static void zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx) { dmu_buf_will_dirty(zap->zap_dbuf, tx); mutex_enter(&zap->zap_f.zap_num_entries_mtx); ASSERT(delta > 0 || zap->zap_f.zap_phys->zap_num_entries >= -delta); zap->zap_f.zap_phys->zap_num_entries += delta; mutex_exit(&zap->zap_f.zap_num_entries_mtx); } static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks) { uint64_t newblk; ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); newblk = zap->zap_f.zap_phys->zap_freeblk; zap->zap_f.zap_phys->zap_freeblk += nblocks; return (newblk); } static zap_leaf_t * zap_create_leaf(zap_t *zap, dmu_tx_t *tx) { void *winner; zap_leaf_t *l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); rw_init(&l->l_rwlock, 0, 0, 0); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = zap_allocate_blocks(zap, 1); l->l_dbuf = NULL; l->l_phys = NULL; VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object, l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf, DMU_READ_NO_PREFETCH)); winner = dmu_buf_set_user(l->l_dbuf, l, &l->l_phys, zap_leaf_pageout); ASSERT(winner == NULL); dmu_buf_will_dirty(l->l_dbuf, tx); zap_leaf_init(l, zap->zap_normflags != 0); zap->zap_f.zap_phys->zap_num_leafs++; return (l); } int fzap_count(zap_t *zap, uint64_t *count) { ASSERT(!zap->zap_ismicro); mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */ *count = zap->zap_f.zap_phys->zap_num_entries; mutex_exit(&zap->zap_f.zap_num_entries_mtx); return (0); } /* * Routines for obtaining zap_leaf_t's */ void zap_put_leaf(zap_leaf_t *l) { rw_exit(&l->l_rwlock); dmu_buf_rele(l->l_dbuf, NULL); } _NOTE(ARGSUSED(0)) static void zap_leaf_pageout(dmu_buf_t *db, void *vl) { zap_leaf_t *l = vl; rw_destroy(&l->l_rwlock); kmem_free(l, sizeof (zap_leaf_t)); } static zap_leaf_t * zap_open_leaf(uint64_t blkid, dmu_buf_t *db) { zap_leaf_t *l, *winner; ASSERT(blkid != 0); l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP); rw_init(&l->l_rwlock, 0, 0, 0); rw_enter(&l->l_rwlock, RW_WRITER); l->l_blkid = blkid; l->l_bs = highbit(db->db_size)-1; l->l_dbuf = db; l->l_phys = NULL; winner = dmu_buf_set_user(db, l, &l->l_phys, zap_leaf_pageout); rw_exit(&l->l_rwlock); if (winner != NULL) { /* someone else set it first */ zap_leaf_pageout(NULL, l); l = winner; } /* * lhr_pad was previously used for the next leaf in the leaf * chain. There should be no chained leafs (as we have removed * support for them). */ ASSERT3U(l->l_phys->l_hdr.lh_pad1, ==, 0); /* * There should be more hash entries than there can be * chunks to put in the hash table */ ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3); /* The chunks should begin at the end of the hash table */ - ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, + ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *) &l->l_phys->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]); /* The chunks should end at the end of the block */ ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) - (uintptr_t)l->l_phys, ==, l->l_dbuf->db_size); return (l); } static int zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { dmu_buf_t *db; zap_leaf_t *l; int bs = FZAP_BLOCK_SHIFT(zap); int err; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = dmu_buf_hold(zap->zap_objset, zap->zap_object, blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH); if (err) return (err); ASSERT3U(db->db_object, ==, zap->zap_object); ASSERT3U(db->db_offset, ==, blkid << bs); ASSERT3U(db->db_size, ==, 1 << bs); ASSERT(blkid != 0); l = dmu_buf_get_user(db); if (l == NULL) l = zap_open_leaf(blkid, db); rw_enter(&l->l_rwlock, lt); /* * Must lock before dirtying, otherwise l->l_phys could change, * causing ASSERT below to fail. */ if (lt == RW_WRITER) dmu_buf_will_dirty(db, tx); ASSERT3U(l->l_blkid, ==, blkid); ASSERT3P(l->l_dbuf, ==, db); ASSERT3P(l->l_phys, ==, l->l_dbuf->db_data); ASSERT3U(l->l_phys->l_hdr.lh_block_type, ==, ZBT_LEAF); ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); *lp = l; return (0); } static int zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp) { ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { ASSERT3U(idx, <, (1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift)); *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx); return (0); } else { return (zap_table_load(zap, &zap->zap_f.zap_phys->zap_ptrtbl, idx, valp)); } } static int zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx) { ASSERT(tx != NULL); ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) { ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk; return (0); } else { return (zap_table_store(zap, &zap->zap_f.zap_phys->zap_ptrtbl, idx, blk, tx)); } } static int zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp) { uint64_t idx, blk; int err; ASSERT(zap->zap_dbuf == NULL || zap->zap_f.zap_phys == zap->zap_dbuf->db_data); ASSERT3U(zap->zap_f.zap_phys->zap_magic, ==, ZAP_MAGIC); idx = ZAP_HASH_IDX(h, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); err = zap_idx_to_blk(zap, idx, &blk); if (err != 0) return (err); err = zap_get_leaf_byblk(zap, blk, tx, lt, lp); ASSERT(err || ZAP_HASH_IDX(h, (*lp)->l_phys->l_hdr.lh_prefix_len) == (*lp)->l_phys->l_hdr.lh_prefix); return (err); } static int zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx, zap_leaf_t **lp) { zap_t *zap = zn->zn_zap; uint64_t hash = zn->zn_hash; zap_leaf_t *nl; int prefix_diff, i, err; uint64_t sibling; int old_prefix_len = l->l_phys->l_hdr.lh_prefix_len; ASSERT3U(old_prefix_len, <=, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, l->l_phys->l_hdr.lh_prefix); if (zap_tryupgradedir(zap, tx) == 0 || old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { /* We failed to upgrade, or need to grow the pointer table */ objset_t *os = zap->zap_objset; uint64_t object = zap->zap_object; zap_put_leaf(l); zap_unlockdir(zap); err = zap_lockdir(os, object, tx, RW_WRITER, FALSE, FALSE, &zn->zn_zap); zap = zn->zn_zap; if (err) return (err); ASSERT(!zap->zap_ismicro); while (old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) { err = zap_grow_ptrtbl(zap, tx); if (err) return (err); } err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l); if (err) return (err); if (l->l_phys->l_hdr.lh_prefix_len != old_prefix_len) { /* it split while our locks were down */ *lp = l; return (0); } } ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); ASSERT3U(old_prefix_len, <, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==, l->l_phys->l_hdr.lh_prefix); prefix_diff = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - (old_prefix_len + 1); sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff; /* check for i/o errors before doing zap_leaf_split */ for (i = 0; i < (1ULL<l_blkid); } nl = zap_create_leaf(zap, tx); zap_leaf_split(l, nl, zap->zap_normflags != 0); /* set sibling pointers */ for (i = 0; i < (1ULL<l_blkid, tx); ASSERT3U(err, ==, 0); /* we checked for i/o errors above */ } if (hash & (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len))) { /* we want the sibling */ zap_put_leaf(l); *lp = nl; } else { zap_put_leaf(nl); *lp = l; } return (0); } static void zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx) { zap_t *zap = zn->zn_zap; int shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; int leaffull = (l->l_phys->l_hdr.lh_prefix_len == shift && l->l_phys->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER); zap_put_leaf(l); if (leaffull || zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk) { int err; /* * We are in the middle of growing the pointer table, or * this leaf will soon make us grow it. */ if (zap_tryupgradedir(zap, tx) == 0) { objset_t *os = zap->zap_objset; uint64_t zapobj = zap->zap_object; zap_unlockdir(zap); err = zap_lockdir(os, zapobj, tx, RW_WRITER, FALSE, FALSE, &zn->zn_zap); zap = zn->zn_zap; if (err) return; } /* could have finished growing while our locks were down */ if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift == shift) (void) zap_grow_ptrtbl(zap, tx); } } static int fzap_checkname(zap_name_t *zn) { if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) return (ENAMETOOLONG); return (0); } static int fzap_checksize(uint64_t integer_size, uint64_t num_integers) { /* Only integer sizes supported by C */ switch (integer_size) { case 1: case 2: case 4: case 8: break; default: return (EINVAL); } if (integer_size * num_integers > ZAP_MAXVALUELEN) return (E2BIG); return (0); } static int fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers) { int err; if ((err = fzap_checkname(zn)) != 0) return (err); return (fzap_checksize(integer_size, num_integers)); } /* * Routines for manipulating attributes. */ int fzap_lookup(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, void *buf, char *realname, int rn_len, boolean_t *ncp) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; if ((err = fzap_checkname(zn)) != 0) return (err); err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { if ((err = fzap_checksize(integer_size, num_integers)) != 0) { zap_put_leaf(l); return (err); } err = zap_entry_read(&zeh, integer_size, num_integers, buf); (void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname); if (ncp) { *ncp = zap_entry_normalization_conflict(&zeh, zn, NULL, zn->zn_zap); } } zap_put_leaf(l); return (err); } int fzap_add_cd(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, uint32_t cd, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); ASSERT(!zap->zap_ismicro); ASSERT(fzap_check(zn, integer_size, num_integers) == 0); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { err = EEXIST; goto out; } if (err != ENOENT) goto out; err = zap_entry_create(l, zn, cd, integer_size, num_integers, val, &zeh); if (err == 0) { zap_increment_num_entries(zap, 1, tx); } else if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } out: if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); return (err); } int fzap_add(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { int err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); return (fzap_add_cd(zn, integer_size, num_integers, val, ZAP_NEED_CD, tx)); } int fzap_update(zap_name_t *zn, int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) { zap_leaf_t *l; int err, create; zap_entry_handle_t zeh; zap_t *zap = zn->zn_zap; ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); err = fzap_check(zn, integer_size, num_integers); if (err != 0) return (err); err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); retry: err = zap_leaf_lookup(l, zn, &zeh); create = (err == ENOENT); ASSERT(err == 0 || err == ENOENT); if (create) { err = zap_entry_create(l, zn, ZAP_NEED_CD, integer_size, num_integers, val, &zeh); if (err == 0) zap_increment_num_entries(zap, 1, tx); } else { err = zap_entry_update(&zeh, integer_size, num_integers, val); } if (err == EAGAIN) { err = zap_expand_leaf(zn, l, tx, &l); zap = zn->zn_zap; /* zap_expand_leaf() may change zap */ if (err == 0) goto retry; } if (zap != NULL) zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx); return (err); } int fzap_length(zap_name_t *zn, uint64_t *integer_size, uint64_t *num_integers) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err != 0) goto out; if (integer_size) *integer_size = zeh.zeh_integer_size; if (num_integers) *num_integers = zeh.zeh_num_integers; out: zap_put_leaf(l); return (err); } int fzap_remove(zap_name_t *zn, dmu_tx_t *tx) { zap_leaf_t *l; int err; zap_entry_handle_t zeh; err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err == 0) { zap_entry_remove(&zeh); zap_increment_num_entries(zn->zn_zap, -1, tx); } zap_put_leaf(l); return (err); } void fzap_prefetch(zap_name_t *zn) { uint64_t idx, blk; zap_t *zap = zn->zn_zap; int bs; idx = ZAP_HASH_IDX(zn->zn_hash, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift); if (zap_idx_to_blk(zap, idx, &blk) != 0) return; bs = FZAP_BLOCK_SHIFT(zap); dmu_prefetch(zap->zap_objset, zap->zap_object, blk << bs, 1 << bs); } /* * Helper functions for consumers. */ int zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask, char *name) { zap_cursor_t zc; zap_attribute_t *za; int err; if (mask == 0) mask = -1ULL; za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); for (zap_cursor_init(&zc, os, zapobj); (err = zap_cursor_retrieve(&zc, za)) == 0; zap_cursor_advance(&zc)) { if ((za->za_first_integer & mask) == (value & mask)) { (void) strcpy(name, za->za_name); break; } } zap_cursor_fini(&zc); kmem_free(za, sizeof (zap_attribute_t)); return (err); } int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; int err; for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { if (za.za_integer_length != 8 || za.za_num_integers != 1) return (EINVAL); err = zap_add(os, intoobj, za.za_name, 8, 1, &za.za_first_integer, tx); if (err) return (err); } zap_cursor_fini(&zc); return (0); } int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, uint64_t value, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; int err; for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { if (za.za_integer_length != 8 || za.za_num_integers != 1) return (EINVAL); err = zap_add(os, intoobj, za.za_name, 8, 1, &value, tx); if (err) return (err); } zap_cursor_fini(&zc); return (0); } int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx) { zap_cursor_t zc; zap_attribute_t za; int err; for (zap_cursor_init(&zc, os, fromobj); zap_cursor_retrieve(&zc, &za) == 0; (void) zap_cursor_advance(&zc)) { uint64_t delta = 0; if (za.za_integer_length != 8 || za.za_num_integers != 1) return (EINVAL); err = zap_lookup(os, intoobj, za.za_name, 8, 1, &delta); if (err != 0 && err != ENOENT) return (err); delta += za.za_first_integer; err = zap_update(os, intoobj, za.za_name, 8, 1, &delta, tx); if (err) return (err); } zap_cursor_fini(&zc); return (0); } int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_remove(os, obj, name, tx)); } int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)value); return (zap_lookup(os, obj, name, 8, 1, &value)); } int zap_add_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t value, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_add(os, obj, name, 8, 1, &value, tx)); } int zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_lookup(os, obj, name, 8, 1, valuep)); } int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, dmu_tx_t *tx) { uint64_t value = 0; int err; if (delta == 0) return (0); err = zap_lookup(os, obj, name, 8, 1, &value); if (err != 0 && err != ENOENT) return (err); value += delta; if (value == 0) err = zap_remove(os, obj, name, tx); else err = zap_update(os, obj, name, 8, 1, &value, tx); return (err); } int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, dmu_tx_t *tx) { char name[20]; (void) snprintf(name, sizeof (name), "%llx", (longlong_t)key); return (zap_increment(os, obj, name, delta, tx)); } /* * Routines for iterating over the attributes. */ int fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za) { int err = ENOENT; zap_entry_handle_t zeh; zap_leaf_t *l; /* retrieve the next entry at or after zc_hash/zc_cd */ /* if no entry, return ENOENT */ if (zc->zc_leaf && (ZAP_HASH_IDX(zc->zc_hash, zc->zc_leaf->l_phys->l_hdr.lh_prefix_len) != zc->zc_leaf->l_phys->l_hdr.lh_prefix)) { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; } again: if (zc->zc_leaf == NULL) { err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER, &zc->zc_leaf); if (err != 0) return (err); } else { rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); } l = zc->zc_leaf; err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh); if (err == ENOENT) { uint64_t nocare = (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len)) - 1; zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1; zc->zc_cd = 0; if (l->l_phys->l_hdr.lh_prefix_len == 0 || zc->zc_hash == 0) { zc->zc_hash = -1ULL; } else { zap_put_leaf(zc->zc_leaf); zc->zc_leaf = NULL; goto again; } } if (err == 0) { zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; za->za_integer_length = zeh.zeh_integer_size; za->za_num_integers = zeh.zeh_num_integers; if (zeh.zeh_num_integers == 0) { za->za_first_integer = 0; } else { err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer); ASSERT(err == 0 || err == EOVERFLOW); } err = zap_entry_read_name(zap, &zeh, sizeof (za->za_name), za->za_name); ASSERT(err == 0); za->za_normalization_conflict = zap_entry_normalization_conflict(&zeh, NULL, za->za_name, zap); } rw_exit(&zc->zc_leaf->l_rwlock); return (err); } static void zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs) { int i, err; uint64_t lastblk = 0; /* * NB: if a leaf has more pointers than an entire ptrtbl block * can hold, then it'll be accounted for more than once, since * we won't have lastblk. */ for (i = 0; i < len; i++) { zap_leaf_t *l; if (tbl[i] == lastblk) continue; lastblk = tbl[i]; err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l); if (err == 0) { zap_leaf_stats(zap, l, zs); zap_put_leaf(l); } } } int fzap_cursor_move_to_key(zap_cursor_t *zc, zap_name_t *zn) { int err; zap_leaf_t *l; zap_entry_handle_t zeh; if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN) return (ENAMETOOLONG); err = zap_deref_leaf(zc->zc_zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) return (err); err = zap_leaf_lookup(l, zn, &zeh); if (err != 0) return (err); zc->zc_leaf = l; zc->zc_hash = zeh.zeh_hash; zc->zc_cd = zeh.zeh_cd; return (err); } void fzap_get_stats(zap_t *zap, zap_stats_t *zs) { int bs = FZAP_BLOCK_SHIFT(zap); zs->zs_blocksize = 1ULL << bs; /* * Set zap_phys_t fields */ zs->zs_num_leafs = zap->zap_f.zap_phys->zap_num_leafs; zs->zs_num_entries = zap->zap_f.zap_phys->zap_num_entries; zs->zs_num_blocks = zap->zap_f.zap_phys->zap_freeblk; zs->zs_block_type = zap->zap_f.zap_phys->zap_block_type; zs->zs_magic = zap->zap_f.zap_phys->zap_magic; zs->zs_salt = zap->zap_f.zap_phys->zap_salt; /* * Set zap_ptrtbl fields */ zs->zs_ptrtbl_len = 1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; zs->zs_ptrtbl_nextblk = zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk; zs->zs_ptrtbl_blks_copied = zap->zap_f.zap_phys->zap_ptrtbl.zt_blks_copied; zs->zs_ptrtbl_zt_blk = zap->zap_f.zap_phys->zap_ptrtbl.zt_blk; zs->zs_ptrtbl_zt_numblks = zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; zs->zs_ptrtbl_zt_shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift; if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) { /* the ptrtbl is entirely in the header block. */ zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs); } else { int b; dmu_prefetch(zap->zap_objset, zap->zap_object, zap->zap_f.zap_phys->zap_ptrtbl.zt_blk << bs, zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << bs); for (b = 0; b < zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks; b++) { dmu_buf_t *db; int err; err = dmu_buf_hold(zap->zap_objset, zap->zap_object, (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk + b) << bs, FTAG, &db, DMU_READ_NO_PREFETCH); if (err == 0) { zap_stats_ptrtbl(zap, db->db_data, 1<<(bs-3), zs); dmu_buf_rele(db, FTAG); } } } } int fzap_count_write(zap_name_t *zn, int add, uint64_t *towrite, uint64_t *tooverwrite) { zap_t *zap = zn->zn_zap; zap_leaf_t *l; int err; /* * Account for the header block of the fatzap. */ if (!add && dmu_buf_freeable(zap->zap_dbuf)) { *tooverwrite += zap->zap_dbuf->db_size; } else { *towrite += zap->zap_dbuf->db_size; } /* * Account for the pointer table blocks. * If we are adding we need to account for the following cases : * - If the pointer table is embedded, this operation could force an * external pointer table. * - If this already has an external pointer table this operation * could extend the table. */ if (add) { if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) *towrite += zap->zap_dbuf->db_size; else *towrite += (zap->zap_dbuf->db_size * 3); } /* * Now, check if the block containing leaf is freeable * and account accordingly. */ err = zap_deref_leaf(zap, zn->zn_hash, NULL, RW_READER, &l); if (err != 0) { return (err); } if (!add && dmu_buf_freeable(l->l_dbuf)) { *tooverwrite += l->l_dbuf->db_size; } else { /* * If this an add operation, the leaf block could split. * Hence, we need to account for an additional leaf block. */ *towrite += (add ? 2 : 1) * l->l_dbuf->db_size; } zap_put_leaf(l); return (0); } diff --git a/module/zfs/zfs_ioctl.c b/module/zfs/zfs_ioctl.c index 1b63c9bf45ef..ff31144d3633 100644 --- a/module/zfs/zfs_ioctl.c +++ b/module/zfs/zfs_ioctl.c @@ -1,5122 +1,5122 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "zfs_deleg.h" #include "zfs_comutil.h" extern struct modlfs zfs_modlfs; extern void zfs_init(void); extern void zfs_fini(void); ldi_ident_t zfs_li = NULL; dev_info_t *zfs_dip; typedef int zfs_ioc_func_t(zfs_cmd_t *); typedef int zfs_secpolicy_func_t(zfs_cmd_t *, cred_t *); typedef enum { NO_NAME, POOL_NAME, DATASET_NAME } zfs_ioc_namecheck_t; typedef enum { POOL_CHECK_NONE = 1 << 0, POOL_CHECK_SUSPENDED = 1 << 1, POOL_CHECK_READONLY = 1 << 2 } zfs_ioc_poolcheck_t; typedef struct zfs_ioc_vec { zfs_ioc_func_t *zvec_func; zfs_secpolicy_func_t *zvec_secpolicy; zfs_ioc_namecheck_t zvec_namecheck; boolean_t zvec_his_log; zfs_ioc_poolcheck_t zvec_pool_check; } zfs_ioc_vec_t; /* This array is indexed by zfs_userquota_prop_t */ static const char *userquota_perms[] = { ZFS_DELEG_PERM_USERUSED, ZFS_DELEG_PERM_USERQUOTA, ZFS_DELEG_PERM_GROUPUSED, ZFS_DELEG_PERM_GROUPQUOTA, }; static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc); static int zfs_check_settable(const char *name, nvpair_t *property, cred_t *cr); static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errors); static int zfs_fill_zplprops_root(uint64_t, nvlist_t *, nvlist_t *, boolean_t *); int zfs_set_prop_nvlist(const char *, zprop_source_t, nvlist_t *, nvlist_t **); /* _NOTE(PRINTFLIKE(4)) - this is printf-like, but lint is too whiney */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; char buf[512]; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } va_start(adx, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, adx); va_end(adx); /* * To get this data, use the zfs-dprintf probe as so: * dtrace -q -n 'zfs-dprintf \ * /stringof(arg0) == "dbuf.c"/ \ * {printf("%s: %s", stringof(arg1), stringof(arg3))}' * arg0 = file name * arg1 = function name * arg2 = line number * arg3 = message */ DTRACE_PROBE4(zfs__dprintf, char *, newfile, char *, func, int, line, char *, buf); } static void history_str_free(char *buf) { kmem_free(buf, HIS_MAX_RECORD_LEN); } static char * history_str_get(zfs_cmd_t *zc) { char *buf; - if (zc->zc_history == NULL) + if (zc->zc_history == 0) return (NULL); buf = kmem_alloc(HIS_MAX_RECORD_LEN, KM_SLEEP); if (copyinstr((void *)(uintptr_t)zc->zc_history, buf, HIS_MAX_RECORD_LEN, NULL) != 0) { history_str_free(buf); return (NULL); } buf[HIS_MAX_RECORD_LEN -1] = '\0'; return (buf); } /* * Check to see if the named dataset is currently defined as bootable */ static boolean_t zfs_is_bootfs(const char *name) { objset_t *os; if (dmu_objset_hold(name, FTAG, &os) == 0) { boolean_t ret; ret = (dmu_objset_id(os) == spa_bootfs(dmu_objset_spa(os))); dmu_objset_rele(os, FTAG); return (ret); } return (B_FALSE); } /* * zfs_earlier_version * * Return non-zero if the spa version is less than requested version. */ static int zfs_earlier_version(const char *name, int version) { spa_t *spa; if (spa_open(name, &spa, FTAG) == 0) { if (spa_version(spa) < version) { spa_close(spa, FTAG); return (1); } spa_close(spa, FTAG); } return (0); } /* * zpl_earlier_version * * Return TRUE if the ZPL version is less than requested version. */ static boolean_t zpl_earlier_version(const char *name, int version) { objset_t *os; boolean_t rc = B_TRUE; if (dmu_objset_hold(name, FTAG, &os) == 0) { uint64_t zplversion; if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (B_TRUE); } /* XXX reading from non-owned objset */ if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &zplversion) == 0) rc = zplversion < version; dmu_objset_rele(os, FTAG); } return (rc); } static void zfs_log_history(zfs_cmd_t *zc) { spa_t *spa; char *buf; if ((buf = history_str_get(zc)) == NULL) return; if (spa_open(zc->zc_name, &spa, FTAG) == 0) { if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY) (void) spa_history_log(spa, buf, LOG_CMD_NORMAL); spa_close(spa, FTAG); } history_str_free(buf); } /* * Policy for top-level read operations (list pools). Requires no privileges, * and can be used in the local zone, as there is no associated dataset. */ /* ARGSUSED */ static int zfs_secpolicy_none(zfs_cmd_t *zc, cred_t *cr) { return (0); } /* * Policy for dataset read operations (list children, get statistics). Requires * no privileges, but must be visible in the local zone. */ /* ARGSUSED */ static int zfs_secpolicy_read(zfs_cmd_t *zc, cred_t *cr) { if (INGLOBALZONE(curproc) || zone_dataset_visible(zc->zc_name, NULL)) return (0); return (ENOENT); } static int zfs_dozonecheck_impl(const char *dataset, uint64_t zoned, cred_t *cr) { int writable = 1; /* * The dataset must be visible by this zone -- check this first * so they don't see EPERM on something they shouldn't know about. */ if (!INGLOBALZONE(curproc) && !zone_dataset_visible(dataset, &writable)) return (ENOENT); if (INGLOBALZONE(curproc)) { /* * If the fs is zoned, only root can access it from the * global zone. */ if (secpolicy_zfs(cr) && zoned) return (EPERM); } else { /* * If we are in a local zone, the 'zoned' property must be set. */ if (!zoned) return (EPERM); /* must be writable by this zone */ if (!writable) return (EPERM); } return (0); } static int zfs_dozonecheck(const char *dataset, cred_t *cr) { uint64_t zoned; if (dsl_prop_get_integer(dataset, "zoned", &zoned, NULL)) return (ENOENT); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } static int zfs_dozonecheck_ds(const char *dataset, dsl_dataset_t *ds, cred_t *cr) { uint64_t zoned; rw_enter(&ds->ds_dir->dd_pool->dp_config_rwlock, RW_READER); if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL)) { rw_exit(&ds->ds_dir->dd_pool->dp_config_rwlock); return (ENOENT); } rw_exit(&ds->ds_dir->dd_pool->dp_config_rwlock); return (zfs_dozonecheck_impl(dataset, zoned, cr)); } int zfs_secpolicy_write_perms(const char *name, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck(name, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error) error = dsl_deleg_access(name, perm, cr); } return (error); } int zfs_secpolicy_write_perms_ds(const char *name, dsl_dataset_t *ds, const char *perm, cred_t *cr) { int error; error = zfs_dozonecheck_ds(name, ds, cr); if (error == 0) { error = secpolicy_zfs(cr); if (error) error = dsl_deleg_access_impl(ds, perm, cr); } return (error); } /* * Policy for setting the security label property. * * Returns 0 for success, non-zero for access and other errors. */ static int zfs_set_slabel_policy(const char *name, char *strval, cred_t *cr) { char ds_hexsl[MAXNAMELEN]; bslabel_t ds_sl, new_sl; boolean_t new_default = FALSE; uint64_t zoned; int needed_priv = -1; int error; /* First get the existing dataset label. */ error = dsl_prop_get(name, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error) return (EPERM); if (strcasecmp(strval, ZFS_MLSLABEL_DEFAULT) == 0) new_default = TRUE; /* The label must be translatable */ if (!new_default && (hexstr_to_label(strval, &new_sl) != 0)) return (EINVAL); /* * In a non-global zone, disallow attempts to set a label that * doesn't match that of the zone; otherwise no other checks * are needed. */ if (!INGLOBALZONE(curproc)) { if (new_default || !blequal(&new_sl, CR_SL(CRED()))) return (EPERM); return (0); } /* * For global-zone datasets (i.e., those whose zoned property is * "off", verify that the specified new label is valid for the * global zone. */ if (dsl_prop_get_integer(name, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (EPERM); if (!zoned) { if (zfs_check_global_label(name, strval) != 0) return (EPERM); } /* * If the existing dataset label is nondefault, check if the * dataset is mounted (label cannot be changed while mounted). * Get the zfsvfs; if there isn't one, then the dataset isn't * mounted (or isn't a dataset, doesn't exist, ...). */ if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) != 0) { objset_t *os; static char *setsl_tag = "setsl_tag"; /* * Try to own the dataset; abort if there is any error, * (e.g., already mounted, in use, or other error). */ error = dmu_objset_own(name, DMU_OST_ZFS, B_TRUE, setsl_tag, &os); if (error) return (EPERM); dmu_objset_disown(os, setsl_tag); if (new_default) { needed_priv = PRIV_FILE_DOWNGRADE_SL; goto out_check; } if (hexstr_to_label(strval, &new_sl) != 0) return (EPERM); if (blstrictdom(&ds_sl, &new_sl)) needed_priv = PRIV_FILE_DOWNGRADE_SL; else if (blstrictdom(&new_sl, &ds_sl)) needed_priv = PRIV_FILE_UPGRADE_SL; } else { /* dataset currently has a default label */ if (!new_default) needed_priv = PRIV_FILE_UPGRADE_SL; } out_check: if (needed_priv != -1) return (PRIV_POLICY(cr, needed_priv, B_FALSE, EPERM, NULL)); return (0); } static int zfs_secpolicy_setprop(const char *dsname, zfs_prop_t prop, nvpair_t *propval, cred_t *cr) { char *strval; /* * Check permissions for special properties. */ switch (prop) { case ZFS_PROP_ZONED: /* * Disallow setting of 'zoned' from within a local zone. */ if (!INGLOBALZONE(curproc)) return (EPERM); break; case ZFS_PROP_QUOTA: if (!INGLOBALZONE(curproc)) { uint64_t zoned; char setpoint[MAXNAMELEN]; /* * Unprivileged users are allowed to modify the * quota on things *under* (ie. contained by) * the thing they own. */ if (dsl_prop_get_integer(dsname, "zoned", &zoned, setpoint)) return (EPERM); if (!zoned || strlen(dsname) <= strlen(setpoint)) return (EPERM); } break; case ZFS_PROP_MLSLABEL: if (!is_system_labeled()) return (EPERM); if (nvpair_value_string(propval, &strval) == 0) { int err; err = zfs_set_slabel_policy(dsname, strval, CRED()); if (err != 0) return (err); } break; } return (zfs_secpolicy_write_perms(dsname, zfs_prop_to_name(prop), cr)); } int zfs_secpolicy_fsacl(zfs_cmd_t *zc, cred_t *cr) { int error; error = zfs_dozonecheck(zc->zc_name, cr); if (error) return (error); /* * permission to set permissions will be evaluated later in * dsl_deleg_can_allow() */ return (0); } int zfs_secpolicy_rollback(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_ROLLBACK, cr)); } int zfs_secpolicy_send(zfs_cmd_t *zc, cred_t *cr) { spa_t *spa; dsl_pool_t *dp; dsl_dataset_t *ds; char *cp; int error; /* * Generate the current snapshot name from the given objsetid, then * use that name for the secpolicy/zone checks. */ cp = strchr(zc->zc_name, '@'); if (cp == NULL) return (EINVAL); error = spa_open(zc->zc_name, &spa, FTAG); if (error) return (error); dp = spa_get_dsl(spa); rw_enter(&dp->dp_config_rwlock, RW_READER); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); rw_exit(&dp->dp_config_rwlock); spa_close(spa, FTAG); if (error) return (error); dsl_dataset_name(ds, zc->zc_name); error = zfs_secpolicy_write_perms_ds(zc->zc_name, ds, ZFS_DELEG_PERM_SEND, cr); dsl_dataset_rele(ds, FTAG); return (error); } static int zfs_secpolicy_deleg_share(zfs_cmd_t *zc, cred_t *cr) { vnode_t *vp; int error; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (EPERM); } VN_RELE(vp); return (dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_SHARE, cr)); } int zfs_secpolicy_share(zfs_cmd_t *zc, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (EPERM); if (secpolicy_nfs(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, cr)); } } int zfs_secpolicy_smb_acl(zfs_cmd_t *zc, cred_t *cr) { if (!INGLOBALZONE(curproc)) return (EPERM); if (secpolicy_smb(cr) == 0) { return (0); } else { return (zfs_secpolicy_deleg_share(zc, cr)); } } static int zfs_get_parent(const char *datasetname, char *parent, int parentsize) { char *cp; /* * Remove the @bla or /bla from the end of the name to get the parent. */ (void) strncpy(parent, datasetname, parentsize); cp = strrchr(parent, '@'); if (cp != NULL) { cp[0] = '\0'; } else { cp = strrchr(parent, '/'); if (cp == NULL) return (ENOENT); cp[0] = '\0'; } return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_DESTROY, cr)); } static int zfs_secpolicy_destroy(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_destroy_perms(zc->zc_name, cr)); } /* * Destroying snapshots with delegated permissions requires * descendent mount and destroy permissions. * Reassemble the full filesystem@snap name so dsl_deleg_access() * can do the correct permission check. * * Since this routine is used when doing a recursive destroy of snapshots * and destroying snapshots requires descendent permissions, a successfull * check of the top level snapshot applies to snapshots of all descendent * datasets as well. */ static int zfs_secpolicy_destroy_snaps(zfs_cmd_t *zc, cred_t *cr) { int error; char *dsname; dsname = kmem_asprintf("%s@%s", zc->zc_name, zc->zc_value); error = zfs_secpolicy_destroy_perms(dsname, cr); strfree(dsname); return (error); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { char parentname[MAXNAMELEN]; int error; if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_RENAME, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(from, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); if ((error = zfs_get_parent(to, parentname, sizeof (parentname))) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (error); } static int zfs_secpolicy_rename(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_rename_perms(zc->zc_name, zc->zc_value, cr)); } static int zfs_secpolicy_promote(zfs_cmd_t *zc, cred_t *cr) { char parentname[MAXNAMELEN]; objset_t *clone; int error; error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_PROMOTE, cr); if (error) return (error); error = dmu_objset_hold(zc->zc_name, FTAG, &clone); if (error == 0) { dsl_dataset_t *pclone = NULL; dsl_dir_t *dd; dd = clone->os_dsl_dataset->ds_dir; rw_enter(&dd->dd_pool->dp_config_rwlock, RW_READER); error = dsl_dataset_hold_obj(dd->dd_pool, dd->dd_phys->dd_origin_obj, FTAG, &pclone); rw_exit(&dd->dd_pool->dp_config_rwlock); if (error) { dmu_objset_rele(clone, FTAG); return (error); } error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr); dsl_dataset_name(pclone, parentname); dmu_objset_rele(clone, FTAG); dsl_dataset_rele(pclone, FTAG); if (error == 0) error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_PROMOTE, cr); } return (error); } static int zfs_secpolicy_receive(zfs_cmd_t *zc, cred_t *cr) { int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RECEIVE, cr)) != 0) return (error); if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr)) != 0) return (error); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_CREATE, cr)); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (zfs_secpolicy_write_perms(name, ZFS_DELEG_PERM_SNAPSHOT, cr)); } static int zfs_secpolicy_snapshot(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_snapshot_perms(zc->zc_name, cr)); } static int zfs_secpolicy_create(zfs_cmd_t *zc, cred_t *cr) { char parentname[MAXNAMELEN]; int error; if ((error = zfs_get_parent(zc->zc_name, parentname, sizeof (parentname))) != 0) return (error); if (zc->zc_value[0] != '\0') { if ((error = zfs_secpolicy_write_perms(zc->zc_value, ZFS_DELEG_PERM_CLONE, cr)) != 0) return (error); } if ((error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_CREATE, cr)) != 0) return (error); error = zfs_secpolicy_write_perms(parentname, ZFS_DELEG_PERM_MOUNT, cr); return (error); } static int zfs_secpolicy_umount(zfs_cmd_t *zc, cred_t *cr) { int error; error = secpolicy_fs_unmount(cr, NULL); if (error) { error = dsl_deleg_access(zc->zc_name, ZFS_DELEG_PERM_MOUNT, cr); } return (error); } /* * Policy for pool operations - create/destroy pools, add vdevs, etc. Requires * SYS_CONFIG privilege, which is not available in a local zone. */ /* ARGSUSED */ static int zfs_secpolicy_config(zfs_cmd_t *zc, cred_t *cr) { if (secpolicy_sys_config(cr, B_FALSE) != 0) return (EPERM); return (0); } /* * Policy for object to name lookups. */ /* ARGSUSED */ static int zfs_secpolicy_diff(zfs_cmd_t *zc, cred_t *cr) { int error; if ((error = secpolicy_sys_config(cr, B_FALSE)) == 0) return (0); error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr); return (error); } /* * Policy for fault injection. Requires all privileges. */ /* ARGSUSED */ static int zfs_secpolicy_inject(zfs_cmd_t *zc, cred_t *cr) { return (secpolicy_zinject(cr)); } static int zfs_secpolicy_inherit(zfs_cmd_t *zc, cred_t *cr) { zfs_prop_t prop = zfs_name_to_prop(zc->zc_value); if (prop == ZPROP_INVAL) { if (!zfs_prop_user(zc->zc_value)) return (EINVAL); return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_USERPROP, cr)); } else { return (zfs_secpolicy_setprop(zc->zc_name, prop, NULL, cr)); } } static int zfs_secpolicy_userspace_one(zfs_cmd_t *zc, cred_t *cr) { int err = zfs_secpolicy_read(zc, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); if (zc->zc_value[0] == 0) { /* * They are asking about a posix uid/gid. If it's * themself, allow it. */ if (zc->zc_objset_type == ZFS_PROP_USERUSED || zc->zc_objset_type == ZFS_PROP_USERQUOTA) { if (zc->zc_guid == crgetuid(cr)) return (0); } else { if (groupmember(zc->zc_guid, cr)) return (0); } } return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_many(zfs_cmd_t *zc, cred_t *cr) { int err = zfs_secpolicy_read(zc, cr); if (err) return (err); if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); return (zfs_secpolicy_write_perms(zc->zc_name, userquota_perms[zc->zc_objset_type], cr)); } static int zfs_secpolicy_userspace_upgrade(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_setprop(zc->zc_name, ZFS_PROP_VERSION, NULL, cr)); } static int zfs_secpolicy_hold(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_HOLD, cr)); } static int zfs_secpolicy_release(zfs_cmd_t *zc, cred_t *cr) { return (zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_RELEASE, cr)); } /* * Policy for allowing temporary snapshots to be taken or released */ static int zfs_secpolicy_tmp_snapshot(zfs_cmd_t *zc, cred_t *cr) { /* * A temporary snapshot is the same as a snapshot, * hold, destroy and release all rolled into one. * Delegated diff alone is sufficient that we allow this. */ int error; if ((error = zfs_secpolicy_write_perms(zc->zc_name, ZFS_DELEG_PERM_DIFF, cr)) == 0) return (0); error = zfs_secpolicy_snapshot(zc, cr); if (!error) error = zfs_secpolicy_hold(zc, cr); if (!error) error = zfs_secpolicy_release(zc, cr); if (!error) error = zfs_secpolicy_destroy(zc, cr); return (error); } /* * Returns the nvlist as specified by the user in the zfs_cmd_t. */ static int get_nvlist(uint64_t nvl, uint64_t size, int iflag, nvlist_t **nvp) { char *packed; int error; nvlist_t *list = NULL; /* * Read in and unpack the user-supplied nvlist. */ if (size == 0) return (EINVAL); packed = kmem_alloc(size, KM_SLEEP); if ((error = ddi_copyin((void *)(uintptr_t)nvl, packed, size, iflag)) != 0) { kmem_free(packed, size); return (error); } if ((error = nvlist_unpack(packed, size, &list, 0)) != 0) { kmem_free(packed, size); return (error); } kmem_free(packed, size); *nvp = list; return (0); } static int fit_error_list(zfs_cmd_t *zc, nvlist_t **errors) { size_t size; VERIFY(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0); if (size > zc->zc_nvlist_dst_size) { nvpair_t *more_errors; int n = 0; if (zc->zc_nvlist_dst_size < 1024) return (ENOMEM); VERIFY(nvlist_add_int32(*errors, ZPROP_N_MORE_ERRORS, 0) == 0); more_errors = nvlist_prev_nvpair(*errors, NULL); do { nvpair_t *pair = nvlist_prev_nvpair(*errors, more_errors); VERIFY(nvlist_remove_nvpair(*errors, pair) == 0); n++; VERIFY(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0); } while (size > zc->zc_nvlist_dst_size); VERIFY(nvlist_remove_nvpair(*errors, more_errors) == 0); VERIFY(nvlist_add_int32(*errors, ZPROP_N_MORE_ERRORS, n) == 0); ASSERT(nvlist_size(*errors, &size, NV_ENCODE_NATIVE) == 0); ASSERT(size <= zc->zc_nvlist_dst_size); } return (0); } static int put_nvlist(zfs_cmd_t *zc, nvlist_t *nvl) { char *packed = NULL; int error = 0; size_t size; VERIFY(nvlist_size(nvl, &size, NV_ENCODE_NATIVE) == 0); if (size > zc->zc_nvlist_dst_size) { error = ENOMEM; } else { packed = kmem_alloc(size, KM_SLEEP); VERIFY(nvlist_pack(nvl, &packed, &size, NV_ENCODE_NATIVE, KM_SLEEP) == 0); if (ddi_copyout(packed, (void *)(uintptr_t)zc->zc_nvlist_dst, size, zc->zc_iflags) != 0) error = EFAULT; kmem_free(packed, size); } zc->zc_nvlist_dst_size = size; return (error); } static int getzfsvfs(const char *dsname, zfsvfs_t **zfvp) { objset_t *os; int error; error = dmu_objset_hold(dsname, FTAG, &os); if (error) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (EINVAL); } mutex_enter(&os->os_user_ptr_lock); *zfvp = dmu_objset_get_user(os); if (*zfvp) { VFS_HOLD((*zfvp)->z_vfs); } else { error = ESRCH; } mutex_exit(&os->os_user_ptr_lock); dmu_objset_rele(os, FTAG); return (error); } /* * Find a zfsvfs_t for a mounted filesystem, or create our own, in which * case its z_vfs will be NULL, and it will be opened as the owner. */ static int zfsvfs_hold(const char *name, void *tag, zfsvfs_t **zfvp, boolean_t writer) { int error = 0; if (getzfsvfs(name, zfvp) != 0) error = zfsvfs_create(name, zfvp); if (error == 0) { rrw_enter(&(*zfvp)->z_teardown_lock, (writer) ? RW_WRITER : RW_READER, tag); if ((*zfvp)->z_unmounted) { /* * XXX we could probably try again, since the unmounting * thread should be just about to disassociate the * objset from the zfsvfs. */ rrw_exit(&(*zfvp)->z_teardown_lock, tag); return (EBUSY); } } return (error); } static void zfsvfs_rele(zfsvfs_t *zfsvfs, void *tag) { rrw_exit(&zfsvfs->z_teardown_lock, tag); if (zfsvfs->z_vfs) { VFS_RELE(zfsvfs->z_vfs); } else { dmu_objset_disown(zfsvfs->z_os, zfsvfs); zfsvfs_free(zfsvfs); } } static int zfs_ioc_pool_create(zfs_cmd_t *zc) { int error; nvlist_t *config, *props = NULL; nvlist_t *rootprops = NULL; nvlist_t *zplprops = NULL; char *buf; if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (props) { nvlist_t *nvl = NULL; uint64_t version = SPA_VERSION; (void) nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), &version); if (version < SPA_VERSION_INITIAL || version > SPA_VERSION) { error = EINVAL; goto pool_props_bad; } (void) nvlist_lookup_nvlist(props, ZPOOL_ROOTFS_PROPS, &nvl); if (nvl) { error = nvlist_dup(nvl, &rootprops, KM_SLEEP); if (error != 0) { nvlist_free(config); nvlist_free(props); return (error); } (void) nvlist_remove_all(props, ZPOOL_ROOTFS_PROPS); } VERIFY(nvlist_alloc(&zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops_root(version, rootprops, zplprops, NULL); if (error) goto pool_props_bad; } buf = history_str_get(zc); error = spa_create(zc->zc_name, config, props, buf, zplprops); /* * Set the remaining root properties */ if (!error && (error = zfs_set_prop_nvlist(zc->zc_name, ZPROP_SRC_LOCAL, rootprops, NULL)) != 0) (void) spa_destroy(zc->zc_name); if (buf != NULL) history_str_free(buf); pool_props_bad: nvlist_free(rootprops); nvlist_free(zplprops); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_pool_destroy(zfs_cmd_t *zc) { int error; zfs_log_history(zc); error = spa_destroy(zc->zc_name); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_import(zfs_cmd_t *zc) { nvlist_t *config, *props = NULL; uint64_t guid; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) != 0) return (error); if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { nvlist_free(config); return (error); } if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || guid != zc->zc_guid) error = EINVAL; else error = spa_import(zc->zc_name, config, props, zc->zc_cookie); if (zc->zc_nvlist_dst != 0) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; } nvlist_free(config); if (props) nvlist_free(props); return (error); } static int zfs_ioc_pool_export(zfs_cmd_t *zc) { int error; boolean_t force = (boolean_t)zc->zc_cookie; boolean_t hardforce = (boolean_t)zc->zc_guid; zfs_log_history(zc); error = spa_export(zc->zc_name, NULL, force, hardforce); if (error == 0) zvol_remove_minors(zc->zc_name); return (error); } static int zfs_ioc_pool_configs(zfs_cmd_t *zc) { nvlist_t *configs; int error; if ((configs = spa_all_configs(&zc->zc_cookie)) == NULL) return (EEXIST); error = put_nvlist(zc, configs); nvlist_free(configs); return (error); } static int zfs_ioc_pool_stats(zfs_cmd_t *zc) { nvlist_t *config; int error; int ret = 0; error = spa_get_stats(zc->zc_name, &config, zc->zc_value, sizeof (zc->zc_value)); if (config != NULL) { ret = put_nvlist(zc, config); nvlist_free(config); /* * The config may be present even if 'error' is non-zero. * In this case we return success, and preserve the real errno * in 'zc_cookie'. */ zc->zc_cookie = error; } else { ret = error; } return (ret); } /* * Try to import the given pool, returning pool stats as appropriate so that * user land knows which devices are available and overall pool health. */ static int zfs_ioc_pool_tryimport(zfs_cmd_t *zc) { nvlist_t *tryconfig, *config; int error; if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &tryconfig)) != 0) return (error); config = spa_tryimport(tryconfig); nvlist_free(tryconfig); if (config == NULL) return (EINVAL); error = put_nvlist(zc, config); nvlist_free(config); return (error); } /* * inputs: * zc_name name of the pool * zc_cookie scan func (pool_scan_func_t) */ static int zfs_ioc_pool_scan(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie == POOL_SCAN_NONE) error = spa_scan_stop(spa); else error = spa_scan(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_freeze(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error == 0) { spa_freeze(spa); spa_close(spa, FTAG); } return (error); } static int zfs_ioc_pool_upgrade(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (zc->zc_cookie < spa_version(spa) || zc->zc_cookie > SPA_VERSION) { spa_close(spa, FTAG); return (EINVAL); } spa_upgrade(spa, zc->zc_cookie); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_history(zfs_cmd_t *zc) { spa_t *spa; char *hist_buf; uint64_t size; int error; if ((size = zc->zc_history_len) == 0) return (EINVAL); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (spa_version(spa) < SPA_VERSION_ZPOOL_HISTORY) { spa_close(spa, FTAG); return (ENOTSUP); } hist_buf = kmem_alloc(size, KM_SLEEP); if ((error = spa_history_get(spa, &zc->zc_history_offset, &zc->zc_history_len, hist_buf)) == 0) { error = ddi_copyout(hist_buf, (void *)(uintptr_t)zc->zc_history, zc->zc_history_len, zc->zc_iflags); } spa_close(spa, FTAG); kmem_free(hist_buf, size); return (error); } static int zfs_ioc_dsobj_to_dsname(zfs_cmd_t *zc) { int error; if (error = dsl_dsobj_to_dsname(zc->zc_name, zc->zc_obj, zc->zc_value)) return (error); return (0); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_value name of object */ static int zfs_ioc_obj_to_path(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (EINVAL); } error = zfs_obj_to_path(os, zc->zc_obj, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_obj object to find * * outputs: * zc_stat stats on object * zc_value path to object */ static int zfs_ioc_obj_to_stats(zfs_cmd_t *zc) { objset_t *os; int error; /* XXX reading from objset not owned */ if ((error = dmu_objset_hold(zc->zc_name, FTAG, &os)) != 0) return (error); if (dmu_objset_type(os) != DMU_OST_ZFS) { dmu_objset_rele(os, FTAG); return (EINVAL); } error = zfs_obj_to_stats(os, zc->zc_obj, &zc->zc_stat, zc->zc_value, sizeof (zc->zc_value)); dmu_objset_rele(os, FTAG); return (error); } static int zfs_ioc_vdev_add(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *config, **l2cache, **spares; uint_t nl2cache = 0, nspares = 0; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache); (void) nvlist_lookup_nvlist_array(config, ZPOOL_CONFIG_SPARES, &spares, &nspares); /* * A root pool with concatenated devices is not supported. * Thus, can not add a device to a root pool. * * Intent log device can not be added to a rootpool because * during mountroot, zil is replayed, a seperated log device * can not be accessed during the mountroot time. * * l2cache and spare devices are ok to be added to a rootpool. */ if (spa_bootfs(spa) != 0 && nl2cache == 0 && nspares == 0) { nvlist_free(config); spa_close(spa, FTAG); return (EDOM); } if (error == 0) { error = spa_vdev_add(spa, config); nvlist_free(config); } spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of the pool * zc_nvlist_conf nvlist of devices to remove * zc_cookie to stop the remove? */ static int zfs_ioc_vdev_remove(zfs_cmd_t *zc) { spa_t *spa; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_remove(spa, zc->zc_guid, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_set_state(zfs_cmd_t *zc) { spa_t *spa; int error; vdev_state_t newstate = VDEV_STATE_UNKNOWN; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); switch (zc->zc_cookie) { case VDEV_STATE_ONLINE: error = vdev_online(spa, zc->zc_guid, zc->zc_obj, &newstate); break; case VDEV_STATE_OFFLINE: error = vdev_offline(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_FAULTED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_fault(spa, zc->zc_guid, zc->zc_obj); break; case VDEV_STATE_DEGRADED: if (zc->zc_obj != VDEV_AUX_ERR_EXCEEDED && zc->zc_obj != VDEV_AUX_EXTERNAL) zc->zc_obj = VDEV_AUX_ERR_EXCEEDED; error = vdev_degrade(spa, zc->zc_guid, zc->zc_obj); break; default: error = EINVAL; } zc->zc_cookie = newstate; spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_attach(zfs_cmd_t *zc) { spa_t *spa; int replacing = zc->zc_cookie; nvlist_t *config; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if ((error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) == 0) { error = spa_vdev_attach(spa, zc->zc_guid, config, replacing); nvlist_free(config); } spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_detach(zfs_cmd_t *zc) { spa_t *spa; int error; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_vdev_detach(spa, zc->zc_guid, 0, B_FALSE); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_split(zfs_cmd_t *zc) { spa_t *spa; nvlist_t *config, *props = NULL; int error; boolean_t exp = !!(zc->zc_cookie & ZPOOL_EXPORT_AFTER_SPLIT); if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); if (error = get_nvlist(zc->zc_nvlist_conf, zc->zc_nvlist_conf_size, zc->zc_iflags, &config)) { spa_close(spa, FTAG); return (error); } if (zc->zc_nvlist_src_size != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props))) { spa_close(spa, FTAG); nvlist_free(config); return (error); } error = spa_vdev_split_mirror(spa, zc->zc_string, config, props, exp); spa_close(spa, FTAG); nvlist_free(config); nvlist_free(props); return (error); } static int zfs_ioc_vdev_setpath(zfs_cmd_t *zc) { spa_t *spa; char *path = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setpath(spa, guid, path); spa_close(spa, FTAG); return (error); } static int zfs_ioc_vdev_setfru(zfs_cmd_t *zc) { spa_t *spa; char *fru = zc->zc_value; uint64_t guid = zc->zc_guid; int error; error = spa_open(zc->zc_name, &spa, FTAG); if (error != 0) return (error); error = spa_vdev_setfru(spa, guid, fru); spa_close(spa, FTAG); return (error); } static int zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os) { int error = 0; nvlist_t *nv; dmu_objset_fast_stat(os, &zc->zc_objset_stats); if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_all(os, &nv)) == 0) { dmu_objset_stats(os, nv); /* * NB: zvol_get_stats() will read the objset contents, * which we aren't supposed to do with a * DS_MODE_USER hold, because it could be * inconsistent. So this is a bit of a workaround... * XXX reading with out owning */ if (!zc->zc_objset_stats.dds_inconsistent) { if (dmu_objset_type(os) == DMU_OST_ZVOL) VERIFY(zvol_get_stats(os, nv) == 0); } error = put_nvlist(zc, nv); nvlist_free(nv); } return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_objset_stats(zfs_cmd_t *zc) { objset_t *os = NULL; int error; if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (error); error = zfs_ioc_objset_stats_impl(zc, os); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_nvlist_dst received property nvlist * zc_nvlist_dst_size size of received property nvlist * * Gets received properties (distinct from local properties on or after * SPA_VERSION_RECVD_PROPS) for callers who want to differentiate received from * local property values. */ static int zfs_ioc_objset_recvd_props(zfs_cmd_t *zc) { objset_t *os = NULL; int error; nvlist_t *nv; if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (error); /* * Without this check, we would return local property values if the * caller has not already received properties on or after * SPA_VERSION_RECVD_PROPS. */ if (!dsl_prop_get_hasrecvd(os)) { dmu_objset_rele(os, FTAG); return (ENOTSUP); } if (zc->zc_nvlist_dst != 0 && (error = dsl_prop_get_received(os, &nv)) == 0) { error = put_nvlist(zc, nv); nvlist_free(nv); } dmu_objset_rele(os, FTAG); return (error); } static int nvl_add_zplprop(objset_t *os, nvlist_t *props, zfs_prop_t prop) { uint64_t value; int error; /* * zfs_get_zplprop() will either find a value or give us * the default value (if there is one). */ if ((error = zfs_get_zplprop(os, prop, &value)) != 0) return (error); VERIFY(nvlist_add_uint64(props, zfs_prop_to_name(prop), value) == 0); return (0); } /* * inputs: * zc_name name of filesystem * zc_nvlist_dst_size size of buffer for zpl property nvlist * * outputs: * zc_nvlist_dst zpl property nvlist * zc_nvlist_dst_size size of zpl property nvlist */ static int zfs_ioc_objset_zplprops(zfs_cmd_t *zc) { objset_t *os; int err; /* XXX reading without owning */ if (err = dmu_objset_hold(zc->zc_name, FTAG, &os)) return (err); dmu_objset_fast_stat(os, &zc->zc_objset_stats); /* * NB: nvl_add_zplprop() will read the objset contents, * which we aren't supposed to do with a DS_MODE_USER * hold, because it could be inconsistent. */ - if (zc->zc_nvlist_dst != NULL && + if (zc->zc_nvlist_dst != 0 && !zc->zc_objset_stats.dds_inconsistent && dmu_objset_type(os) == DMU_OST_ZFS) { nvlist_t *nv; VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); if ((err = nvl_add_zplprop(os, nv, ZFS_PROP_VERSION)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_NORMALIZE)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_UTF8ONLY)) == 0 && (err = nvl_add_zplprop(os, nv, ZFS_PROP_CASE)) == 0) err = put_nvlist(zc, nv); nvlist_free(nv); } else { err = ENOENT; } dmu_objset_rele(os, FTAG); return (err); } static boolean_t dataset_name_hidden(const char *name) { /* * Skip over datasets that are not visible in this zone, * internal datasets (which have a $ in their name), and * temporary datasets (which have a % in their name). */ if (strchr(name, '$') != NULL) return (B_TRUE); if (strchr(name, '%') != NULL) return (B_TRUE); if (!INGLOBALZONE(curproc) && !zone_dataset_visible(name, NULL)) return (B_TRUE); return (B_FALSE); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next filesystem * zc_cookie zap cursor * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_dataset_list_next(zfs_cmd_t *zc) { objset_t *os; int error; char *p; size_t orig_len = strlen(zc->zc_name); top: if (error = dmu_objset_hold(zc->zc_name, FTAG, &os)) { if (error == ENOENT) error = ESRCH; return (error); } p = strrchr(zc->zc_name, '/'); if (p == NULL || p[1] != '\0') (void) strlcat(zc->zc_name, "/", sizeof (zc->zc_name)); p = zc->zc_name + strlen(zc->zc_name); /* * Pre-fetch the datasets. dmu_objset_prefetch() always returns 0 * but is not declared void because its called by dmu_objset_find(). */ if (zc->zc_cookie == 0) { uint64_t cookie = 0; int len = sizeof (zc->zc_name) - (p - zc->zc_name); while (dmu_dir_list_next(os, len, p, NULL, &cookie) == 0) (void) dmu_objset_prefetch(p, NULL); } do { error = dmu_dir_list_next(os, sizeof (zc->zc_name) - (p - zc->zc_name), p, NULL, &zc->zc_cookie); if (error == ENOENT) error = ESRCH; } while (error == 0 && dataset_name_hidden(zc->zc_name) && !(zc->zc_iflags & FKIOCTL)); dmu_objset_rele(os, FTAG); /* * If it's an internal dataset (ie. with a '$' in its name), * don't try to get stats for it, otherwise we'll return ENOENT. */ if (error == 0 && strchr(zc->zc_name, '$') == NULL) { error = zfs_ioc_objset_stats(zc); /* fill in the stats */ if (error == ENOENT) { /* We lost a race with destroy, get the next one. */ zc->zc_name[orig_len] = '\0'; goto top; } } return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_nvlist_dst_size size of buffer for property nvlist * * outputs: * zc_name name of next snapshot * zc_objset_stats stats * zc_nvlist_dst property nvlist * zc_nvlist_dst_size size of property nvlist */ static int zfs_ioc_snapshot_list_next(zfs_cmd_t *zc) { objset_t *os; int error; top: if (zc->zc_cookie == 0) (void) dmu_objset_find(zc->zc_name, dmu_objset_prefetch, NULL, DS_FIND_SNAPSHOTS); error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error) return (error == ENOENT ? ESRCH : error); /* * A dataset name of maximum length cannot have any snapshots, * so exit immediately. */ if (strlcat(zc->zc_name, "@", sizeof (zc->zc_name)) >= MAXNAMELEN) { dmu_objset_rele(os, FTAG); return (ESRCH); } error = dmu_snapshot_list_next(os, sizeof (zc->zc_name) - strlen(zc->zc_name), zc->zc_name + strlen(zc->zc_name), &zc->zc_obj, &zc->zc_cookie, NULL); if (error == 0) { dsl_dataset_t *ds; dsl_pool_t *dp = os->os_dsl_dataset->ds_dir->dd_pool; /* * Since we probably don't have a hold on this snapshot, * it's possible that the objsetid could have been destroyed * and reused for a new objset. It's OK if this happens during * a zfs send operation, since the new createtxg will be * beyond the range we're interested in. */ rw_enter(&dp->dp_config_rwlock, RW_READER); error = dsl_dataset_hold_obj(dp, zc->zc_obj, FTAG, &ds); rw_exit(&dp->dp_config_rwlock); if (error) { if (error == ENOENT) { /* Racing with destroy, get the next one. */ *strchr(zc->zc_name, '@') = '\0'; dmu_objset_rele(os, FTAG); goto top; } } else { objset_t *ossnap; error = dmu_objset_from_ds(ds, &ossnap); if (error == 0) error = zfs_ioc_objset_stats_impl(zc, ossnap); dsl_dataset_rele(ds, FTAG); } } else if (error == ENOENT) { error = ESRCH; } dmu_objset_rele(os, FTAG); /* if we failed, undo the @ that we tacked on to zc_name */ if (error) *strchr(zc->zc_name, '@') = '\0'; return (error); } static int zfs_prop_set_userquota(const char *dsname, nvpair_t *pair) { const char *propname = nvpair_name(pair); uint64_t *valary; unsigned int vallen; const char *domain; char *dash; zfs_userquota_prop_t type; uint64_t rid; uint64_t quota; zfsvfs_t *zfsvfs; int err; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) != 0) return (EINVAL); } /* * A correctly constructed propname is encoded as * userquota@-. */ if ((dash = strchr(propname, '-')) == NULL || nvpair_value_uint64_array(pair, &valary, &vallen) != 0 || vallen != 3) return (EINVAL); domain = dash + 1; type = valary[0]; rid = valary[1]; quota = valary[2]; err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_FALSE); if (err == 0) { err = zfs_set_userquota(zfsvfs, type, domain, rid, quota); zfsvfs_rele(zfsvfs, FTAG); } return (err); } /* * If the named property is one that has a special function to set its value, * return 0 on success and a positive error code on failure; otherwise if it is * not one of the special properties handled by this function, return -1. * * XXX: It would be better for callers of the property interface if we handled * these special cases in dsl_prop.c (in the dsl layer). */ static int zfs_prop_set_special(const char *dsname, zprop_source_t source, nvpair_t *pair) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err; if (prop == ZPROP_INVAL) { if (zfs_prop_userquota(propname)) return (zfs_prop_set_userquota(dsname, pair)); return (-1); } if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } if (zfs_prop_get_type(prop) == PROP_TYPE_STRING) return (-1); VERIFY(0 == nvpair_value_uint64(pair, &intval)); switch (prop) { case ZFS_PROP_QUOTA: err = dsl_dir_set_quota(dsname, source, intval); break; case ZFS_PROP_REFQUOTA: err = dsl_dataset_set_quota(dsname, source, intval); break; case ZFS_PROP_RESERVATION: err = dsl_dir_set_reservation(dsname, source, intval); break; case ZFS_PROP_REFRESERVATION: err = dsl_dataset_set_reservation(dsname, source, intval); break; case ZFS_PROP_VOLSIZE: err = zvol_set_volsize(dsname, ddi_driver_major(zfs_dip), intval); break; case ZFS_PROP_VERSION: { zfsvfs_t *zfsvfs; if ((err = zfsvfs_hold(dsname, FTAG, &zfsvfs, B_TRUE)) != 0) break; err = zfs_set_version(zfsvfs, intval); zfsvfs_rele(zfsvfs, FTAG); if (err == 0 && intval >= ZPL_VERSION_USERSPACE) { zfs_cmd_t *zc; zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dsname); (void) zfs_ioc_userspace_upgrade(zc); kmem_free(zc, sizeof (zfs_cmd_t)); } break; } default: err = -1; } return (err); } /* * This function is best effort. If it fails to set any of the given properties, * it continues to set as many as it can and returns the first error * encountered. If the caller provides a non-NULL errlist, it also gives the * complete list of names of all the properties it failed to set along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property is set successfully, zero is returned and the list pointed * at by errlist is NULL. */ int zfs_set_prop_nvlist(const char *dsname, zprop_source_t source, nvlist_t *nvl, nvlist_t **errlist) { nvpair_t *pair; nvpair_t *propval; int rv = 0; uint64_t intval; char *strval; nvlist_t *genericnvl; nvlist_t *errors; nvlist_t *retrynvl; VERIFY(nvlist_alloc(&genericnvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); VERIFY(nvlist_alloc(&retrynvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); retry: pair = NULL; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); zfs_prop_t prop = zfs_name_to_prop(propname); int err = 0; /* decode the property value */ propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); if (nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) != 0) err = EINVAL; } /* Validate value type */ if (err == 0 && prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (nvpair_type(propval) != DATA_TYPE_STRING) err = EINVAL; } else if (zfs_prop_userquota(propname)) { if (nvpair_type(propval) != DATA_TYPE_UINT64_ARRAY) err = EINVAL; } } else if (err == 0) { if (nvpair_type(propval) == DATA_TYPE_STRING) { if (zfs_prop_get_type(prop) != PROP_TYPE_STRING) err = EINVAL; } else if (nvpair_type(propval) == DATA_TYPE_UINT64) { const char *unused; VERIFY(nvpair_value_uint64(propval, &intval) == 0); switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: break; case PROP_TYPE_STRING: err = EINVAL; break; case PROP_TYPE_INDEX: if (zfs_prop_index_to_string(prop, intval, &unused) != 0) err = EINVAL; break; default: cmn_err(CE_PANIC, "unknown property type"); } } else { err = EINVAL; } } /* Validate permissions */ if (err == 0) err = zfs_check_settable(dsname, pair, CRED()); if (err == 0) { err = zfs_prop_set_special(dsname, source, pair); if (err == -1) { /* * For better performance we build up a list of * properties to set in a single transaction. */ err = nvlist_add_nvpair(genericnvl, pair); } else if (err != 0 && nvl != retrynvl) { /* * This may be a spurious error caused by * receiving quota and reservation out of order. * Try again in a second pass. */ err = nvlist_add_nvpair(retrynvl, pair); } } if (err != 0) VERIFY(nvlist_add_int32(errors, propname, err) == 0); } if (nvl != retrynvl && !nvlist_empty(retrynvl)) { nvl = retrynvl; goto retry; } if (!nvlist_empty(genericnvl) && dsl_props_set(dsname, source, genericnvl) != 0) { /* * If this fails, we still want to set as many properties as we * can, so try setting them individually. */ pair = NULL; while ((pair = nvlist_next_nvpair(genericnvl, pair)) != NULL) { const char *propname = nvpair_name(pair); int err = 0; propval = pair; if (nvpair_type(pair) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &propval) == 0); } if (nvpair_type(propval) == DATA_TYPE_STRING) { VERIFY(nvpair_value_string(propval, &strval) == 0); err = dsl_prop_set(dsname, propname, source, 1, strlen(strval) + 1, strval); } else { VERIFY(nvpair_value_uint64(propval, &intval) == 0); err = dsl_prop_set(dsname, propname, source, 8, 1, &intval); } if (err != 0) { VERIFY(nvlist_add_int32(errors, propname, err) == 0); } } } nvlist_free(genericnvl); nvlist_free(retrynvl); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } /* * Check that all the properties are valid user properties. */ static int zfs_check_userprops(char *fsname, nvlist_t *nvl) { nvpair_t *pair = NULL; int error = 0; while ((pair = nvlist_next_nvpair(nvl, pair)) != NULL) { const char *propname = nvpair_name(pair); char *valstr; if (!zfs_prop_user(propname) || nvpair_type(pair) != DATA_TYPE_STRING) return (EINVAL); if (error = zfs_secpolicy_write_perms(fsname, ZFS_DELEG_PERM_USERPROP, CRED())) return (error); if (strlen(propname) >= ZAP_MAXNAMELEN) return (ENAMETOOLONG); VERIFY(nvpair_value_string(pair, &valstr) == 0); if (strlen(valstr) >= ZAP_MAXVALUELEN) return (E2BIG); } return (0); } static void props_skip(nvlist_t *props, nvlist_t *skipped, nvlist_t **newprops) { nvpair_t *pair; VERIFY(nvlist_alloc(newprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); pair = NULL; while ((pair = nvlist_next_nvpair(props, pair)) != NULL) { if (nvlist_exists(skipped, nvpair_name(pair))) continue; VERIFY(nvlist_add_nvpair(*newprops, pair) == 0); } } static int clear_received_props(objset_t *os, const char *fs, nvlist_t *props, nvlist_t *skipped) { int err = 0; nvlist_t *cleared_props = NULL; props_skip(props, skipped, &cleared_props); if (!nvlist_empty(cleared_props)) { /* * Acts on local properties until the dataset has received * properties at least once on or after SPA_VERSION_RECVD_PROPS. */ zprop_source_t flags = (ZPROP_SRC_NONE | (dsl_prop_get_hasrecvd(os) ? ZPROP_SRC_RECEIVED : 0)); err = zfs_set_prop_nvlist(fs, flags, cleared_props, NULL); } nvlist_free(cleared_props); return (err); } /* * inputs: * zc_name name of filesystem * zc_value name of property to set * zc_nvlist_src{_size} nvlist of properties to apply * zc_cookie received properties flag * * outputs: * zc_nvlist_dst{_size} error for each unapplied received property */ static int zfs_ioc_set_prop(zfs_cmd_t *zc) { nvlist_t *nvl; boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_RECEIVED : ZPROP_SRC_LOCAL); nvlist_t *errors = NULL; int error; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvl)) != 0) return (error); if (received) { nvlist_t *origprops; objset_t *os; if (dmu_objset_hold(zc->zc_name, FTAG, &os) == 0) { if (dsl_prop_get_received(os, &origprops) == 0) { (void) clear_received_props(os, zc->zc_name, origprops, nvl); nvlist_free(origprops); } dsl_prop_set_hasrecvd(os); dmu_objset_rele(os, FTAG); } } error = zfs_set_prop_nvlist(zc->zc_name, source, nvl, &errors); - if (zc->zc_nvlist_dst != NULL && errors != NULL) { + if (zc->zc_nvlist_dst != 0 && errors != NULL) { (void) put_nvlist(zc, errors); } nvlist_free(errors); nvlist_free(nvl); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of property to inherit * zc_cookie revert to received value if TRUE * * outputs: none */ static int zfs_ioc_inherit_prop(zfs_cmd_t *zc) { const char *propname = zc->zc_value; zfs_prop_t prop = zfs_name_to_prop(propname); boolean_t received = zc->zc_cookie; zprop_source_t source = (received ? ZPROP_SRC_NONE /* revert to received value, if any */ : ZPROP_SRC_INHERITED); /* explicitly inherit */ if (received) { nvlist_t *dummy; nvpair_t *pair; zprop_type_t type; int err; /* * zfs_prop_set_special() expects properties in the form of an * nvpair with type info. */ if (prop == ZPROP_INVAL) { if (!zfs_prop_user(propname)) return (EINVAL); type = PROP_TYPE_STRING; } else if (prop == ZFS_PROP_VOLSIZE || prop == ZFS_PROP_VERSION) { return (EINVAL); } else { type = zfs_prop_get_type(prop); } VERIFY(nvlist_alloc(&dummy, NV_UNIQUE_NAME, KM_SLEEP) == 0); switch (type) { case PROP_TYPE_STRING: VERIFY(0 == nvlist_add_string(dummy, propname, "")); break; case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: VERIFY(0 == nvlist_add_uint64(dummy, propname, 0)); break; default: nvlist_free(dummy); return (EINVAL); } pair = nvlist_next_nvpair(dummy, NULL); err = zfs_prop_set_special(zc->zc_name, source, pair); nvlist_free(dummy); if (err != -1) return (err); /* special property already handled */ } else { /* * Only check this in the non-received case. We want to allow * 'inherit -S' to revert non-inheritable properties like quota * and reservation to the received or default values even though * they are not considered inheritable. */ if (prop != ZPROP_INVAL && !zfs_prop_inheritable(prop)) return (EINVAL); } /* the property name has been validated by zfs_secpolicy_inherit() */ return (dsl_prop_set(zc->zc_name, zc->zc_value, source, 0, 0, NULL)); } static int zfs_ioc_pool_set_props(zfs_cmd_t *zc) { nvlist_t *props; spa_t *spa; int error; nvpair_t *pair; if (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) return (error); /* * If the only property is the configfile, then just do a spa_lookup() * to handle the faulted case. */ pair = nvlist_next_nvpair(props, NULL); if (pair != NULL && strcmp(nvpair_name(pair), zpool_prop_to_name(ZPOOL_PROP_CACHEFILE)) == 0 && nvlist_next_nvpair(props, pair) == NULL) { mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) { spa_configfile_set(spa, props, B_FALSE); spa_config_sync(spa, B_FALSE, B_TRUE); } mutex_exit(&spa_namespace_lock); if (spa != NULL) { nvlist_free(props); return (0); } } if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { nvlist_free(props); return (error); } error = spa_prop_set(spa, props); nvlist_free(props); spa_close(spa, FTAG); return (error); } static int zfs_ioc_pool_get_props(zfs_cmd_t *zc) { spa_t *spa; int error; nvlist_t *nvp = NULL; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) { /* * If the pool is faulted, there may be properties we can still * get (such as altroot and cachefile), so attempt to get them * anyway. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(zc->zc_name)) != NULL) error = spa_prop_get(spa, &nvp); mutex_exit(&spa_namespace_lock); } else { error = spa_prop_get(spa, &nvp); spa_close(spa, FTAG); } - if (error == 0 && zc->zc_nvlist_dst != NULL) + if (error == 0 && zc->zc_nvlist_dst != 0) error = put_nvlist(zc, nvp); else error = EFAULT; nvlist_free(nvp); return (error); } /* * inputs: * zc_name name of filesystem * zc_nvlist_src{_size} nvlist of delegated permissions * zc_perm_action allow/unallow flag * * outputs: none */ static int zfs_ioc_set_fsacl(zfs_cmd_t *zc) { int error; nvlist_t *fsaclnv = NULL; if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &fsaclnv)) != 0) return (error); /* * Verify nvlist is constructed correctly */ if ((error = zfs_deleg_verify_nvlist(fsaclnv)) != 0) { nvlist_free(fsaclnv); return (EINVAL); } /* * If we don't have PRIV_SYS_MOUNT, then validate * that user is allowed to hand out each permission in * the nvlist(s) */ error = secpolicy_zfs(CRED()); if (error) { if (zc->zc_perm_action == B_FALSE) { error = dsl_deleg_can_allow(zc->zc_name, fsaclnv, CRED()); } else { error = dsl_deleg_can_unallow(zc->zc_name, fsaclnv, CRED()); } } if (error == 0) error = dsl_deleg_set(zc->zc_name, fsaclnv, zc->zc_perm_action); nvlist_free(fsaclnv); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of delegated permissions */ static int zfs_ioc_get_fsacl(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_deleg_get(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } /* * Search the vfs list for a specified resource. Returns a pointer to it * or NULL if no suitable entry is found. The caller of this routine * is responsible for releasing the returned vfs pointer. */ static vfs_t * zfs_get_vfs(const char *resource) { struct vfs *vfsp; struct vfs *vfs_found = NULL; vfs_list_read_lock(); vfsp = rootvfs; do { if (strcmp(refstr_value(vfsp->vfs_resource), resource) == 0) { VFS_HOLD(vfsp); vfs_found = vfsp; break; } vfsp = vfsp->vfs_next; } while (vfsp != rootvfs); vfs_list_unlock(); return (vfs_found); } /* ARGSUSED */ static void zfs_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) { zfs_creat_t *zct = arg; zfs_create_fs(os, cr, zct->zct_zplprops, tx); } #define ZFS_PROP_UNDEFINED ((uint64_t)-1) /* * inputs: * createprops list of properties requested by creator * default_zplver zpl version to use if unspecified in createprops * fuids_ok fuids allowed in this version of the spa? * os parent objset pointer (NULL if root fs) * * outputs: * zplprops values for the zplprops we attach to the master node object * is_ci true if requested file system will be purely case-insensitive * * Determine the settings for utf8only, normalization and * casesensitivity. Specific values may have been requested by the * creator and/or we can inherit values from the parent dataset. If * the file system is of too early a vintage, a creator can not * request settings for these properties, even if the requested * setting is the default value. We don't actually want to create dsl * properties for these, so remove them from the source nvlist after * processing. */ static int zfs_fill_zplprops_impl(objset_t *os, uint64_t zplver, boolean_t fuids_ok, boolean_t sa_ok, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { uint64_t sense = ZFS_PROP_UNDEFINED; uint64_t norm = ZFS_PROP_UNDEFINED; uint64_t u8 = ZFS_PROP_UNDEFINED; ASSERT(zplprops != NULL); /* * Pull out creator prop choices, if any. */ if (createprops) { (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_VERSION), &zplver); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), &norm); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), &u8); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) nvlist_lookup_uint64(createprops, zfs_prop_to_name(ZFS_PROP_CASE), &sense); (void) nvlist_remove_all(createprops, zfs_prop_to_name(ZFS_PROP_CASE)); } /* * If the zpl version requested is whacky or the file system * or pool is version is too "young" to support normalization * and the creator tried to set a value for one of the props, * error out. */ if ((zplver < ZPL_VERSION_INITIAL || zplver > ZPL_VERSION) || (zplver >= ZPL_VERSION_FUID && !fuids_ok) || (zplver >= ZPL_VERSION_SA && !sa_ok) || (zplver < ZPL_VERSION_NORMALIZATION && (norm != ZFS_PROP_UNDEFINED || u8 != ZFS_PROP_UNDEFINED || sense != ZFS_PROP_UNDEFINED))) return (ENOTSUP); /* * Put the version in the zplprops */ VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_VERSION), zplver) == 0); if (norm == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &norm) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_NORMALIZE), norm) == 0); /* * If we're normalizing, names must always be valid UTF-8 strings. */ if (norm) u8 = 1; if (u8 == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &u8) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), u8) == 0); if (sense == ZFS_PROP_UNDEFINED) VERIFY(zfs_get_zplprop(os, ZFS_PROP_CASE, &sense) == 0); VERIFY(nvlist_add_uint64(zplprops, zfs_prop_to_name(ZFS_PROP_CASE), sense) == 0); if (is_ci) *is_ci = (sense == ZFS_CASE_INSENSITIVE); return (0); } static int zfs_fill_zplprops(const char *dataset, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok, sa_ok; uint64_t zplver = ZPL_VERSION; objset_t *os = NULL; char parentname[MAXNAMELEN]; char *cp; spa_t *spa; uint64_t spa_vers; int error; (void) strlcpy(parentname, dataset, sizeof (parentname)); cp = strrchr(parentname, '/'); ASSERT(cp != NULL); cp[0] = '\0'; if ((error = spa_open(dataset, &spa, FTAG)) != 0) return (error); spa_vers = spa_version(spa); spa_close(spa, FTAG); zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); /* * Open parent object set so we can inherit zplprop values. */ if ((error = dmu_objset_hold(parentname, FTAG, &os)) != 0) return (error); error = zfs_fill_zplprops_impl(os, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); dmu_objset_rele(os, FTAG); return (error); } static int zfs_fill_zplprops_root(uint64_t spa_vers, nvlist_t *createprops, nvlist_t *zplprops, boolean_t *is_ci) { boolean_t fuids_ok; boolean_t sa_ok; uint64_t zplver = ZPL_VERSION; int error; zplver = zfs_zpl_version_map(spa_vers); fuids_ok = (zplver >= ZPL_VERSION_FUID); sa_ok = (zplver >= ZPL_VERSION_SA); error = zfs_fill_zplprops_impl(NULL, zplver, fuids_ok, sa_ok, createprops, zplprops, is_ci); return (error); } /* * inputs: * zc_objset_type type of objset to create (fs vs zvol) * zc_name name of new objset * zc_value name of snapshot to clone from (may be empty) * zc_nvlist_src{_size} nvlist of properties to apply * * outputs: none */ static int zfs_ioc_create(zfs_cmd_t *zc) { objset_t *clone; int error = 0; zfs_creat_t zct; nvlist_t *nvprops = NULL; void (*cbfunc)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx); dmu_objset_type_t type = zc->zc_objset_type; switch (type) { case DMU_OST_ZFS: cbfunc = zfs_create_cb; break; case DMU_OST_ZVOL: cbfunc = zvol_create_cb; break; default: cbfunc = NULL; break; } if (strchr(zc->zc_name, '@') || strchr(zc->zc_name, '%')) return (EINVAL); - if (zc->zc_nvlist_src != NULL && + if (zc->zc_nvlist_src != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvprops)) != 0) return (error); zct.zct_zplprops = NULL; zct.zct_props = nvprops; if (zc->zc_value[0] != '\0') { /* * We're creating a clone of an existing snapshot. */ zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0) { nvlist_free(nvprops); return (EINVAL); } error = dmu_objset_hold(zc->zc_value, FTAG, &clone); if (error) { nvlist_free(nvprops); return (error); } error = dmu_objset_clone(zc->zc_name, dmu_objset_ds(clone), 0); dmu_objset_rele(clone, FTAG); if (error) { nvlist_free(nvprops); return (error); } } else { boolean_t is_insensitive = B_FALSE; if (cbfunc == NULL) { nvlist_free(nvprops); return (EINVAL); } if (type == DMU_OST_ZVOL) { uint64_t volsize, volblocksize; if (nvprops == NULL || nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) != 0) { nvlist_free(nvprops); return (EINVAL); } if ((error = nvlist_lookup_uint64(nvprops, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize)) != 0 && error != ENOENT) { nvlist_free(nvprops); return (EINVAL); } if (error != 0) volblocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); if ((error = zvol_check_volblocksize( volblocksize)) != 0 || (error = zvol_check_volsize(volsize, volblocksize)) != 0) { nvlist_free(nvprops); return (error); } } else if (type == DMU_OST_ZFS) { int error; /* * We have to have normalization and * case-folding flags correct when we do the * file system creation, so go figure them out * now. */ VERIFY(nvlist_alloc(&zct.zct_zplprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); error = zfs_fill_zplprops(zc->zc_name, nvprops, zct.zct_zplprops, &is_insensitive); if (error != 0) { nvlist_free(nvprops); nvlist_free(zct.zct_zplprops); return (error); } } error = dmu_objset_create(zc->zc_name, type, is_insensitive ? DS_FLAG_CI_DATASET : 0, cbfunc, &zct); nvlist_free(zct.zct_zplprops); } /* * It would be nice to do this atomically. */ if (error == 0) { error = zfs_set_prop_nvlist(zc->zc_name, ZPROP_SRC_LOCAL, nvprops, NULL); if (error != 0) (void) dmu_objset_destroy(zc->zc_name, B_FALSE); } nvlist_free(nvprops); return (error); } /* * inputs: * zc_name name of filesystem * zc_value short name of snapshot * zc_cookie recursive flag * zc_nvlist_src[_size] property list * * outputs: * zc_value short snapname (i.e. part after the '@') */ static int zfs_ioc_snapshot(zfs_cmd_t *zc) { nvlist_t *nvprops = NULL; int error; boolean_t recursive = zc->zc_cookie; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); - if (zc->zc_nvlist_src != NULL && + if (zc->zc_nvlist_src != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvprops)) != 0) return (error); error = zfs_check_userprops(zc->zc_name, nvprops); if (error) goto out; if (!nvlist_empty(nvprops) && zfs_earlier_version(zc->zc_name, SPA_VERSION_SNAP_PROPS)) { error = ENOTSUP; goto out; } error = dmu_objset_snapshot(zc->zc_name, zc->zc_value, NULL, nvprops, recursive, B_FALSE, -1); out: nvlist_free(nvprops); return (error); } int zfs_unmount_snap(const char *name, void *arg) { vfs_t *vfsp = NULL; if (arg) { char *snapname = arg; char *fullname = kmem_asprintf("%s@%s", name, snapname); vfsp = zfs_get_vfs(fullname); strfree(fullname); } else if (strchr(name, '@')) { vfsp = zfs_get_vfs(name); } if (vfsp) { /* * Always force the unmount for snapshots. */ int flag = MS_FORCE; int err; if ((err = vn_vfswlock(vfsp->vfs_vnodecovered)) != 0) { VFS_RELE(vfsp); return (err); } VFS_RELE(vfsp); if ((err = dounmount(vfsp, flag, kcred)) != 0) return (err); } return (0); } /* * inputs: * zc_name name of filesystem * zc_value short name of snapshot * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy_snaps(zfs_cmd_t *zc) { int err; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); err = dmu_objset_find(zc->zc_name, zfs_unmount_snap, zc->zc_value, DS_FIND_CHILDREN); if (err) return (err); return (dmu_snapshots_destroy(zc->zc_name, zc->zc_value, zc->zc_defer_destroy)); } /* * inputs: * zc_name name of dataset to destroy * zc_objset_type type of objset * zc_defer_destroy mark for deferred destroy * * outputs: none */ static int zfs_ioc_destroy(zfs_cmd_t *zc) { int err; if (strchr(zc->zc_name, '@') && zc->zc_objset_type == DMU_OST_ZFS) { err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } err = dmu_objset_destroy(zc->zc_name, zc->zc_defer_destroy); if (zc->zc_objset_type == DMU_OST_ZVOL && err == 0) (void) zvol_remove_minor(zc->zc_name); return (err); } /* * inputs: * zc_name name of dataset to rollback (to most recent snapshot) * * outputs: none */ static int zfs_ioc_rollback(zfs_cmd_t *zc) { dsl_dataset_t *ds, *clone; int error; zfsvfs_t *zfsvfs; char *clone_name; error = dsl_dataset_hold(zc->zc_name, FTAG, &ds); if (error) return (error); /* must not be a snapshot */ if (dsl_dataset_is_snapshot(ds)) { dsl_dataset_rele(ds, FTAG); return (EINVAL); } /* must have a most recent snapshot */ if (ds->ds_phys->ds_prev_snap_txg < TXG_INITIAL) { dsl_dataset_rele(ds, FTAG); return (EINVAL); } /* * Create clone of most recent snapshot. */ clone_name = kmem_asprintf("%s/%%rollback", zc->zc_name); error = dmu_objset_clone(clone_name, ds->ds_prev, DS_FLAG_INCONSISTENT); if (error) goto out; error = dsl_dataset_own(clone_name, B_TRUE, FTAG, &clone); if (error) goto out; /* * Do clone swap. */ if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { error = zfs_suspend_fs(zfsvfs); if (error == 0) { int resume_err; if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) { error = dsl_dataset_clone_swap(clone, ds, B_TRUE); dsl_dataset_disown(ds, FTAG); ds = NULL; } else { error = EBUSY; } resume_err = zfs_resume_fs(zfsvfs, zc->zc_name); error = error ? error : resume_err; } VFS_RELE(zfsvfs->z_vfs); } else { if (dsl_dataset_tryown(ds, B_FALSE, FTAG)) { error = dsl_dataset_clone_swap(clone, ds, B_TRUE); dsl_dataset_disown(ds, FTAG); ds = NULL; } else { error = EBUSY; } } /* * Destroy clone (which also closes it). */ (void) dsl_dataset_destroy(clone, FTAG, B_FALSE); out: strfree(clone_name); if (ds) dsl_dataset_rele(ds, FTAG); return (error); } /* * inputs: * zc_name old name of dataset * zc_value new name of dataset * zc_cookie recursive flag (only valid for snapshots) * * outputs: none */ static int zfs_ioc_rename(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie & 1; zc->zc_value[sizeof (zc->zc_value) - 1] = '\0'; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '%')) return (EINVAL); /* * Unmount snapshot unless we're doing a recursive rename, * in which case the dataset code figures out which snapshots * to unmount. */ if (!recursive && strchr(zc->zc_name, '@') != NULL && zc->zc_objset_type == DMU_OST_ZFS) { int err = zfs_unmount_snap(zc->zc_name, NULL); if (err) return (err); } if (zc->zc_objset_type == DMU_OST_ZVOL) (void) zvol_remove_minor(zc->zc_name); return (dmu_objset_rename(zc->zc_name, zc->zc_value, recursive)); } static int zfs_check_settable(const char *dsname, nvpair_t *pair, cred_t *cr) { const char *propname = nvpair_name(pair); boolean_t issnap = (strchr(dsname, '@') != NULL); zfs_prop_t prop = zfs_name_to_prop(propname); uint64_t intval; int err; if (prop == ZPROP_INVAL) { if (zfs_prop_user(propname)) { if (err = zfs_secpolicy_write_perms(dsname, ZFS_DELEG_PERM_USERPROP, cr)) return (err); return (0); } if (!issnap && zfs_prop_userquota(propname)) { const char *perm = NULL; const char *uq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA]; const char *gq_prefix = zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA]; if (strncmp(propname, uq_prefix, strlen(uq_prefix)) == 0) { perm = ZFS_DELEG_PERM_USERQUOTA; } else if (strncmp(propname, gq_prefix, strlen(gq_prefix)) == 0) { perm = ZFS_DELEG_PERM_GROUPQUOTA; } else { /* USERUSED and GROUPUSED are read-only */ return (EINVAL); } if (err = zfs_secpolicy_write_perms(dsname, perm, cr)) return (err); return (0); } return (EINVAL); } if (issnap) return (EINVAL); if (nvpair_type(pair) == DATA_TYPE_NVLIST) { /* * dsl_prop_get_all_impl() returns properties in this * format. */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(pair, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &pair) == 0); } /* * Check that this value is valid for this pool version */ switch (prop) { case ZFS_PROP_COMPRESSION: /* * If the user specified gzip compression, make sure * the SPA supports it. We ignore any errors here since * we'll catch them later. */ if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval >= ZIO_COMPRESS_GZIP_1 && intval <= ZIO_COMPRESS_GZIP_9 && zfs_earlier_version(dsname, SPA_VERSION_GZIP_COMPRESSION)) { return (ENOTSUP); } if (intval == ZIO_COMPRESS_ZLE && zfs_earlier_version(dsname, SPA_VERSION_ZLE_COMPRESSION)) return (ENOTSUP); /* * If this is a bootable dataset then * verify that the compression algorithm * is supported for booting. We must return * something other than ENOTSUP since it * implies a downrev pool version. */ if (zfs_is_bootfs(dsname) && !BOOTFS_COMPRESS_VALID(intval)) { return (ERANGE); } } break; case ZFS_PROP_COPIES: if (zfs_earlier_version(dsname, SPA_VERSION_DITTO_BLOCKS)) return (ENOTSUP); break; case ZFS_PROP_DEDUP: if (zfs_earlier_version(dsname, SPA_VERSION_DEDUP)) return (ENOTSUP); break; case ZFS_PROP_SHARESMB: if (zpl_earlier_version(dsname, ZPL_VERSION_FUID)) return (ENOTSUP); break; case ZFS_PROP_ACLINHERIT: if (nvpair_type(pair) == DATA_TYPE_UINT64 && nvpair_value_uint64(pair, &intval) == 0) { if (intval == ZFS_ACL_PASSTHROUGH_X && zfs_earlier_version(dsname, SPA_VERSION_PASSTHROUGH_X)) return (ENOTSUP); } break; } return (zfs_secpolicy_setprop(dsname, prop, pair, CRED())); } /* * Removes properties from the given props list that fail permission checks * needed to clear them and to restore them in case of a receive error. For each * property, make sure we have both set and inherit permissions. * * Returns the first error encountered if any permission checks fail. If the * caller provides a non-NULL errlist, it also gives the complete list of names * of all the properties that failed a permission check along with the * corresponding error numbers. The caller is responsible for freeing the * returned errlist. * * If every property checks out successfully, zero is returned and the list * pointed at by errlist is NULL. */ static int zfs_check_clearable(char *dataset, nvlist_t *props, nvlist_t **errlist) { zfs_cmd_t *zc; nvpair_t *pair, *next_pair; nvlist_t *errors; int err, rv = 0; if (props == NULL) return (0); VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); zc = kmem_alloc(sizeof (zfs_cmd_t), KM_SLEEP); (void) strcpy(zc->zc_name, dataset); pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { next_pair = nvlist_next_nvpair(props, pair); (void) strcpy(zc->zc_value, nvpair_name(pair)); if ((err = zfs_check_settable(dataset, pair, CRED())) != 0 || (err = zfs_secpolicy_inherit(zc, CRED())) != 0) { VERIFY(nvlist_remove_nvpair(props, pair) == 0); VERIFY(nvlist_add_int32(errors, zc->zc_value, err) == 0); } pair = next_pair; } kmem_free(zc, sizeof (zfs_cmd_t)); if ((pair = nvlist_next_nvpair(errors, NULL)) == NULL) { nvlist_free(errors); errors = NULL; } else { VERIFY(nvpair_value_int32(pair, &rv) == 0); } if (errlist == NULL) nvlist_free(errors); else *errlist = errors; return (rv); } static boolean_t propval_equals(nvpair_t *p1, nvpair_t *p2) { if (nvpair_type(p1) == DATA_TYPE_NVLIST) { /* dsl_prop_get_all_impl() format */ nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p1, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p1) == 0); } if (nvpair_type(p2) == DATA_TYPE_NVLIST) { nvlist_t *attrs; VERIFY(nvpair_value_nvlist(p2, &attrs) == 0); VERIFY(nvlist_lookup_nvpair(attrs, ZPROP_VALUE, &p2) == 0); } if (nvpair_type(p1) != nvpair_type(p2)) return (B_FALSE); if (nvpair_type(p1) == DATA_TYPE_STRING) { char *valstr1, *valstr2; VERIFY(nvpair_value_string(p1, (char **)&valstr1) == 0); VERIFY(nvpair_value_string(p2, (char **)&valstr2) == 0); return (strcmp(valstr1, valstr2) == 0); } else { uint64_t intval1, intval2; VERIFY(nvpair_value_uint64(p1, &intval1) == 0); VERIFY(nvpair_value_uint64(p2, &intval2) == 0); return (intval1 == intval2); } } /* * Remove properties from props if they are not going to change (as determined * by comparison with origprops). Remove them from origprops as well, since we * do not need to clear or restore properties that won't change. */ static void props_reduce(nvlist_t *props, nvlist_t *origprops) { nvpair_t *pair, *next_pair; if (origprops == NULL) return; /* all props need to be received */ pair = nvlist_next_nvpair(props, NULL); while (pair != NULL) { const char *propname = nvpair_name(pair); nvpair_t *match; next_pair = nvlist_next_nvpair(props, pair); if ((nvlist_lookup_nvpair(origprops, propname, &match) != 0) || !propval_equals(pair, match)) goto next; /* need to set received value */ /* don't clear the existing received value */ (void) nvlist_remove_nvpair(origprops, match); /* don't bother receiving the property */ (void) nvlist_remove_nvpair(props, pair); next: pair = next_pair; } } #ifdef DEBUG static boolean_t zfs_ioc_recv_inject_err; #endif /* * inputs: * zc_name name of containing filesystem * zc_nvlist_src{_size} nvlist of properties to apply * zc_value name of snapshot to create * zc_string name of clone origin (if DRR_FLAG_CLONE) * zc_cookie file descriptor to recv from * zc_begin_record the BEGIN record of the stream (not byteswapped) * zc_guid force flag * zc_cleanup_fd cleanup-on-exit file descriptor * zc_action_handle handle for this guid/ds mapping (or zero on first call) * * outputs: * zc_cookie number of bytes read * zc_nvlist_dst{_size} error for each unapplied received property * zc_obj zprop_errflags_t * zc_action_handle handle for this guid/ds mapping */ static int zfs_ioc_recv(zfs_cmd_t *zc) { file_t *fp; objset_t *os; dmu_recv_cookie_t drc; boolean_t force = (boolean_t)zc->zc_guid; int fd; int error = 0; int props_error = 0; nvlist_t *errors; offset_t off; nvlist_t *props = NULL; /* sent properties */ nvlist_t *origprops = NULL; /* existing properties */ objset_t *origin = NULL; char *tosnap; char tofs[ZFS_MAXNAMELEN]; boolean_t first_recvd_props = B_FALSE; if (dataset_namecheck(zc->zc_value, NULL, NULL) != 0 || strchr(zc->zc_value, '@') == NULL || strchr(zc->zc_value, '%')) return (EINVAL); (void) strcpy(tofs, zc->zc_value); tosnap = strchr(tofs, '@'); *tosnap++ = '\0'; - if (zc->zc_nvlist_src != NULL && + if (zc->zc_nvlist_src != 0 && (error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &props)) != 0) return (error); fd = zc->zc_cookie; fp = getf(fd); if (fp == NULL) { nvlist_free(props); return (EBADF); } VERIFY(nvlist_alloc(&errors, NV_UNIQUE_NAME, KM_SLEEP) == 0); if (props && dmu_objset_hold(tofs, FTAG, &os) == 0) { if ((spa_version(os->os_spa) >= SPA_VERSION_RECVD_PROPS) && !dsl_prop_get_hasrecvd(os)) { first_recvd_props = B_TRUE; } /* * If new received properties are supplied, they are to * completely replace the existing received properties, so stash * away the existing ones. */ if (dsl_prop_get_received(os, &origprops) == 0) { nvlist_t *errlist = NULL; /* * Don't bother writing a property if its value won't * change (and avoid the unnecessary security checks). * * The first receive after SPA_VERSION_RECVD_PROPS is a * special case where we blow away all local properties * regardless. */ if (!first_recvd_props) props_reduce(props, origprops); if (zfs_check_clearable(tofs, origprops, &errlist) != 0) (void) nvlist_merge(errors, errlist, 0); nvlist_free(errlist); } dmu_objset_rele(os, FTAG); } if (zc->zc_string[0]) { error = dmu_objset_hold(zc->zc_string, FTAG, &origin); if (error) goto out; } error = dmu_recv_begin(tofs, tosnap, zc->zc_top_ds, &zc->zc_begin_record, force, origin, &drc); if (origin) dmu_objset_rele(origin, FTAG); if (error) goto out; /* * Set properties before we receive the stream so that they are applied * to the new data. Note that we must call dmu_recv_stream() if * dmu_recv_begin() succeeds. */ if (props) { nvlist_t *errlist; if (dmu_objset_from_ds(drc.drc_logical_ds, &os) == 0) { if (drc.drc_newfs) { if (spa_version(os->os_spa) >= SPA_VERSION_RECVD_PROPS) first_recvd_props = B_TRUE; } else if (origprops != NULL) { if (clear_received_props(os, tofs, origprops, first_recvd_props ? NULL : props) != 0) zc->zc_obj |= ZPROP_ERR_NOCLEAR; } else { zc->zc_obj |= ZPROP_ERR_NOCLEAR; } dsl_prop_set_hasrecvd(os); } else if (!drc.drc_newfs) { zc->zc_obj |= ZPROP_ERR_NOCLEAR; } (void) zfs_set_prop_nvlist(tofs, ZPROP_SRC_RECEIVED, props, &errlist); (void) nvlist_merge(errors, errlist, 0); nvlist_free(errlist); } if (fit_error_list(zc, &errors) != 0 || put_nvlist(zc, errors) != 0) { /* * Caller made zc->zc_nvlist_dst less than the minimum expected * size or supplied an invalid address. */ props_error = EINVAL; } off = fp->f_offset; error = dmu_recv_stream(&drc, fp->f_vnode, &off, zc->zc_cleanup_fd, &zc->zc_action_handle); if (error == 0) { zfsvfs_t *zfsvfs = NULL; if (getzfsvfs(tofs, &zfsvfs) == 0) { /* online recv */ int end_err; error = zfs_suspend_fs(zfsvfs); /* * If the suspend fails, then the recv_end will * likely also fail, and clean up after itself. */ end_err = dmu_recv_end(&drc); if (error == 0) error = zfs_resume_fs(zfsvfs, tofs); error = error ? error : end_err; VFS_RELE(zfsvfs->z_vfs); } else { error = dmu_recv_end(&drc); } } zc->zc_cookie = off - fp->f_offset; if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; #ifdef DEBUG if (zfs_ioc_recv_inject_err) { zfs_ioc_recv_inject_err = B_FALSE; error = 1; } #endif /* * On error, restore the original props. */ if (error && props) { if (dmu_objset_hold(tofs, FTAG, &os) == 0) { if (clear_received_props(os, tofs, props, NULL) != 0) { /* * We failed to clear the received properties. * Since we may have left a $recvd value on the * system, we can't clear the $hasrecvd flag. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } else if (first_recvd_props) { dsl_prop_unset_hasrecvd(os); } dmu_objset_rele(os, FTAG); } else if (!drc.drc_newfs) { /* We failed to clear the received properties. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } if (origprops == NULL && !drc.drc_newfs) { /* We failed to stash the original properties. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } /* * dsl_props_set() will not convert RECEIVED to LOCAL on or * after SPA_VERSION_RECVD_PROPS, so we need to specify LOCAL * explictly if we're restoring local properties cleared in the * first new-style receive. */ if (origprops != NULL && zfs_set_prop_nvlist(tofs, (first_recvd_props ? ZPROP_SRC_LOCAL : ZPROP_SRC_RECEIVED), origprops, NULL) != 0) { /* * We stashed the original properties but failed to * restore them. */ zc->zc_obj |= ZPROP_ERR_NORESTORE; } } out: nvlist_free(props); nvlist_free(origprops); nvlist_free(errors); releasef(fd); if (error == 0) error = props_error; return (error); } /* * inputs: * zc_name name of snapshot to send * zc_cookie file descriptor to send stream to * zc_obj fromorigin flag (mutually exclusive with zc_fromobj) * zc_sendobj objsetid of snapshot to send * zc_fromobj objsetid of incremental fromsnap (may be zero) * * outputs: none */ static int zfs_ioc_send(zfs_cmd_t *zc) { objset_t *fromsnap = NULL; objset_t *tosnap; file_t *fp; int error; offset_t off; dsl_dataset_t *ds; dsl_dataset_t *dsfrom = NULL; spa_t *spa; dsl_pool_t *dp; error = spa_open(zc->zc_name, &spa, FTAG); if (error) return (error); dp = spa_get_dsl(spa); rw_enter(&dp->dp_config_rwlock, RW_READER); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); rw_exit(&dp->dp_config_rwlock); if (error) { spa_close(spa, FTAG); return (error); } error = dmu_objset_from_ds(ds, &tosnap); if (error) { dsl_dataset_rele(ds, FTAG); spa_close(spa, FTAG); return (error); } if (zc->zc_fromobj != 0) { rw_enter(&dp->dp_config_rwlock, RW_READER); error = dsl_dataset_hold_obj(dp, zc->zc_fromobj, FTAG, &dsfrom); rw_exit(&dp->dp_config_rwlock); spa_close(spa, FTAG); if (error) { dsl_dataset_rele(ds, FTAG); return (error); } error = dmu_objset_from_ds(dsfrom, &fromsnap); if (error) { dsl_dataset_rele(dsfrom, FTAG); dsl_dataset_rele(ds, FTAG); return (error); } } else { spa_close(spa, FTAG); } fp = getf(zc->zc_cookie); if (fp == NULL) { dsl_dataset_rele(ds, FTAG); if (dsfrom) dsl_dataset_rele(dsfrom, FTAG); return (EBADF); } off = fp->f_offset; error = dmu_sendbackup(tosnap, fromsnap, zc->zc_obj, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); if (dsfrom) dsl_dataset_rele(dsfrom, FTAG); dsl_dataset_rele(ds, FTAG); return (error); } static int zfs_ioc_inject_fault(zfs_cmd_t *zc) { int id, error; error = zio_inject_fault(zc->zc_name, (int)zc->zc_guid, &id, &zc->zc_inject_record); if (error == 0) zc->zc_guid = (uint64_t)id; return (error); } static int zfs_ioc_clear_fault(zfs_cmd_t *zc) { return (zio_clear_fault((int)zc->zc_guid)); } static int zfs_ioc_inject_list_next(zfs_cmd_t *zc) { int id = (int)zc->zc_guid; int error; error = zio_inject_list_next(&id, zc->zc_name, sizeof (zc->zc_name), &zc->zc_inject_record); zc->zc_guid = id; return (error); } static int zfs_ioc_error_log(zfs_cmd_t *zc) { spa_t *spa; int error; size_t count = (size_t)zc->zc_nvlist_dst_size; if ((error = spa_open(zc->zc_name, &spa, FTAG)) != 0) return (error); error = spa_get_errlog(spa, (void *)(uintptr_t)zc->zc_nvlist_dst, &count); if (error == 0) zc->zc_nvlist_dst_size = count; else zc->zc_nvlist_dst_size = spa_get_errlog_size(spa); spa_close(spa, FTAG); return (error); } static int zfs_ioc_clear(zfs_cmd_t *zc) { spa_t *spa; vdev_t *vd; int error; /* * On zpool clear we also fix up missing slogs */ mutex_enter(&spa_namespace_lock); spa = spa_lookup(zc->zc_name); if (spa == NULL) { mutex_exit(&spa_namespace_lock); return (EIO); } if (spa_get_log_state(spa) == SPA_LOG_MISSING) { /* we need to let spa_open/spa_load clear the chains */ spa_set_log_state(spa, SPA_LOG_CLEAR); } spa->spa_last_open_failed = 0; mutex_exit(&spa_namespace_lock); if (zc->zc_cookie & ZPOOL_NO_REWIND) { error = spa_open(zc->zc_name, &spa, FTAG); } else { nvlist_t *policy; nvlist_t *config = NULL; - if (zc->zc_nvlist_src == NULL) + if (zc->zc_nvlist_src == 0) return (EINVAL); if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &policy)) == 0) { error = spa_open_rewind(zc->zc_name, &spa, FTAG, policy, &config); if (config != NULL) { int err; if ((err = put_nvlist(zc, config)) != 0) error = err; nvlist_free(config); } nvlist_free(policy); } } if (error) return (error); spa_vdev_state_enter(spa, SCL_NONE); if (zc->zc_guid == 0) { vd = NULL; } else { vd = spa_lookup_by_guid(spa, zc->zc_guid, B_TRUE); if (vd == NULL) { (void) spa_vdev_state_exit(spa, NULL, ENODEV); spa_close(spa, FTAG); return (ENODEV); } } vdev_clear(spa, vd); (void) spa_vdev_state_exit(spa, NULL, 0); /* * Resume any suspended I/Os. */ if (zio_resume(spa) != 0) error = EIO; spa_close(spa, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value name of origin snapshot * * outputs: * zc_string name of conflicting snapshot, if there is one */ static int zfs_ioc_promote(zfs_cmd_t *zc) { char *cp; /* * We don't need to unmount *all* the origin fs's snapshots, but * it's easier. */ cp = strchr(zc->zc_value, '@'); if (cp) *cp = '\0'; (void) dmu_objset_find(zc->zc_value, zfs_unmount_snap, NULL, DS_FIND_SNAPSHOTS); return (dsl_dataset_promote(zc->zc_name, zc->zc_string)); } /* * Retrieve a single {user|group}{used|quota}@... property. * * inputs: * zc_name name of filesystem * zc_objset_type zfs_userquota_prop_t * zc_value domain name (eg. "S-1-234-567-89") * zc_guid RID/UID/GID * * outputs: * zc_cookie property value */ static int zfs_ioc_userspace_one(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int error; if (zc->zc_objset_type >= ZFS_NUM_USERQUOTA_PROPS) return (EINVAL); error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error) return (error); error = zfs_userspace_one(zfsvfs, zc->zc_objset_type, zc->zc_value, zc->zc_guid, &zc->zc_cookie); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_cookie zap cursor * zc_objset_type zfs_userquota_prop_t * zc_nvlist_dst[_size] buffer to fill (not really an nvlist) * * outputs: * zc_nvlist_dst[_size] data buffer (array of zfs_useracct_t) * zc_cookie zap cursor */ static int zfs_ioc_userspace_many(zfs_cmd_t *zc) { zfsvfs_t *zfsvfs; int bufsize = zc->zc_nvlist_dst_size; if (bufsize <= 0) return (ENOMEM); int error = zfsvfs_hold(zc->zc_name, FTAG, &zfsvfs, B_FALSE); if (error) return (error); void *buf = kmem_alloc(bufsize, KM_SLEEP); error = zfs_userspace_many(zfsvfs, zc->zc_objset_type, &zc->zc_cookie, buf, &zc->zc_nvlist_dst_size); if (error == 0) { error = xcopyout(buf, (void *)(uintptr_t)zc->zc_nvlist_dst, zc->zc_nvlist_dst_size); } kmem_free(buf, bufsize); zfsvfs_rele(zfsvfs, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * * outputs: * none */ static int zfs_ioc_userspace_upgrade(zfs_cmd_t *zc) { objset_t *os; int error = 0; zfsvfs_t *zfsvfs; if (getzfsvfs(zc->zc_name, &zfsvfs) == 0) { if (!dmu_objset_userused_enabled(zfsvfs->z_os)) { /* * If userused is not enabled, it may be because the * objset needs to be closed & reopened (to grow the * objset_phys_t). Suspend/resume the fs will do that. */ error = zfs_suspend_fs(zfsvfs); if (error == 0) error = zfs_resume_fs(zfsvfs, zc->zc_name); } if (error == 0) error = dmu_objset_userspace_upgrade(zfsvfs->z_os); VFS_RELE(zfsvfs->z_vfs); } else { /* XXX kind of reading contents without owning */ error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error) return (error); error = dmu_objset_userspace_upgrade(os); dmu_objset_rele(os, FTAG); } return (error); } /* * We don't want to have a hard dependency * against some special symbols in sharefs * nfs, and smbsrv. Determine them if needed when * the first file system is shared. * Neither sharefs, nfs or smbsrv are unloadable modules. */ int (*znfsexport_fs)(void *arg); int (*zshare_fs)(enum sharefs_sys_op, share_t *, uint32_t); int (*zsmbexport_fs)(void *arg, boolean_t add_share); int zfs_nfsshare_inited; int zfs_smbshare_inited; ddi_modhandle_t nfs_mod; ddi_modhandle_t sharefs_mod; ddi_modhandle_t smbsrv_mod; kmutex_t zfs_share_lock; static int zfs_init_sharefs() { int error; ASSERT(MUTEX_HELD(&zfs_share_lock)); /* Both NFS and SMB shares also require sharetab support. */ if (sharefs_mod == NULL && ((sharefs_mod = ddi_modopen("fs/sharefs", KRTLD_MODE_FIRST, &error)) == NULL)) { return (ENOSYS); } if (zshare_fs == NULL && ((zshare_fs = (int (*)(enum sharefs_sys_op, share_t *, uint32_t)) ddi_modsym(sharefs_mod, "sharefs_impl", &error)) == NULL)) { return (ENOSYS); } return (0); } static int zfs_ioc_share(zfs_cmd_t *zc) { int error; int opcode; switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (zfs_nfsshare_inited == 0) { mutex_enter(&zfs_share_lock); if (nfs_mod == NULL && ((nfs_mod = ddi_modopen("fs/nfs", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } if (znfsexport_fs == NULL && ((znfsexport_fs = (int (*)(void *)) ddi_modsym(nfs_mod, "nfs_export", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } error = zfs_init_sharefs(); if (error) { mutex_exit(&zfs_share_lock); return (ENOSYS); } zfs_nfsshare_inited = 1; mutex_exit(&zfs_share_lock); } break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (zfs_smbshare_inited == 0) { mutex_enter(&zfs_share_lock); if (smbsrv_mod == NULL && ((smbsrv_mod = ddi_modopen("drv/smbsrv", KRTLD_MODE_FIRST, &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } if (zsmbexport_fs == NULL && ((zsmbexport_fs = (int (*)(void *, boolean_t))ddi_modsym(smbsrv_mod, "smb_server_share", &error)) == NULL)) { mutex_exit(&zfs_share_lock); return (ENOSYS); } error = zfs_init_sharefs(); if (error) { mutex_exit(&zfs_share_lock); return (ENOSYS); } zfs_smbshare_inited = 1; mutex_exit(&zfs_share_lock); } break; default: return (EINVAL); } switch (zc->zc_share.z_sharetype) { case ZFS_SHARE_NFS: case ZFS_UNSHARE_NFS: if (error = znfsexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata)) return (error); break; case ZFS_SHARE_SMB: case ZFS_UNSHARE_SMB: if (error = zsmbexport_fs((void *) (uintptr_t)zc->zc_share.z_exportdata, zc->zc_share.z_sharetype == ZFS_SHARE_SMB ? B_TRUE: B_FALSE)) { return (error); } break; } opcode = (zc->zc_share.z_sharetype == ZFS_SHARE_NFS || zc->zc_share.z_sharetype == ZFS_SHARE_SMB) ? SHAREFS_ADD : SHAREFS_REMOVE; /* * Add or remove share from sharetab */ error = zshare_fs(opcode, (void *)(uintptr_t)zc->zc_share.z_sharedata, zc->zc_share.z_sharemax); return (error); } ace_t full_access[] = { {(uid_t)-1, ACE_ALL_PERMS, ACE_EVERYONE, 0} }; /* * inputs: * zc_name name of containing filesystem * zc_obj object # beyond which we want next in-use object # * * outputs: * zc_obj next in-use object # */ static int zfs_ioc_next_obj(zfs_cmd_t *zc) { objset_t *os = NULL; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &os); if (error) return (error); error = dmu_object_next(os, &zc->zc_obj, B_FALSE, os->os_dsl_dataset->ds_phys->ds_prev_snap_txg); dmu_objset_rele(os, FTAG); return (error); } /* * inputs: * zc_name name of filesystem * zc_value prefix name for snapshot * zc_cleanup_fd cleanup-on-exit file descriptor for calling process * * outputs: */ static int zfs_ioc_tmp_snapshot(zfs_cmd_t *zc) { char *snap_name; int error; snap_name = kmem_asprintf("%s-%016llx", zc->zc_value, (u_longlong_t)ddi_get_lbolt64()); if (strlen(snap_name) >= MAXNAMELEN) { strfree(snap_name); return (E2BIG); } error = dmu_objset_snapshot(zc->zc_name, snap_name, snap_name, NULL, B_FALSE, B_TRUE, zc->zc_cleanup_fd); if (error != 0) { strfree(snap_name); return (error); } (void) strcpy(zc->zc_value, snap_name); strfree(snap_name); return (0); } /* * inputs: * zc_name name of "to" snapshot * zc_value name of "from" snapshot * zc_cookie file descriptor to write diff data on * * outputs: * dmu_diff_record_t's to the file descriptor */ static int zfs_ioc_diff(zfs_cmd_t *zc) { objset_t *fromsnap; objset_t *tosnap; file_t *fp; offset_t off; int error; error = dmu_objset_hold(zc->zc_name, FTAG, &tosnap); if (error) return (error); error = dmu_objset_hold(zc->zc_value, FTAG, &fromsnap); if (error) { dmu_objset_rele(tosnap, FTAG); return (error); } fp = getf(zc->zc_cookie); if (fp == NULL) { dmu_objset_rele(fromsnap, FTAG); dmu_objset_rele(tosnap, FTAG); return (EBADF); } off = fp->f_offset; error = dmu_diff(tosnap, fromsnap, fp->f_vnode, &off); if (VOP_SEEK(fp->f_vnode, fp->f_offset, &off, NULL) == 0) fp->f_offset = off; releasef(zc->zc_cookie); dmu_objset_rele(fromsnap, FTAG); dmu_objset_rele(tosnap, FTAG); return (error); } /* * Remove all ACL files in shares dir */ static int zfs_smb_acl_purge(znode_t *dzp) { zap_cursor_t zc; zap_attribute_t zap; zfsvfs_t *zfsvfs = dzp->z_zfsvfs; int error; for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); (error = zap_cursor_retrieve(&zc, &zap)) == 0; zap_cursor_advance(&zc)) { if ((error = VOP_REMOVE(ZTOV(dzp), zap.za_name, kcred, NULL, 0)) != 0) break; } zap_cursor_fini(&zc); return (error); } static int zfs_ioc_smb_acl(zfs_cmd_t *zc) { vnode_t *vp; znode_t *dzp; vnode_t *resourcevp = NULL; znode_t *sharedir; zfsvfs_t *zfsvfs; nvlist_t *nvlist; char *src, *target; vattr_t vattr; vsecattr_t vsec; int error = 0; if ((error = lookupname(zc->zc_value, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp)) != 0) return (error); /* Now make sure mntpnt and dataset are ZFS */ if (vp->v_vfsp->vfs_fstype != zfsfstype || (strcmp((char *)refstr_value(vp->v_vfsp->vfs_resource), zc->zc_name) != 0)) { VN_RELE(vp); return (EINVAL); } dzp = VTOZ(vp); zfsvfs = dzp->z_zfsvfs; ZFS_ENTER(zfsvfs); /* * Create share dir if its missing. */ mutex_enter(&zfsvfs->z_lock); if (zfsvfs->z_shares_dir == 0) { dmu_tx_t *tx; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, TRUE, ZFS_SHARES_DIR); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { error = zfs_create_share_dir(zfsvfs, tx); dmu_tx_commit(tx); } if (error) { mutex_exit(&zfsvfs->z_lock); VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } } mutex_exit(&zfsvfs->z_lock); ASSERT(zfsvfs->z_shares_dir); if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &sharedir)) != 0) { VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } switch (zc->zc_cookie) { case ZFS_SMB_ACL_ADD: vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; vattr.va_type = VREG; vattr.va_mode = S_IFREG|0777; vattr.va_uid = 0; vattr.va_gid = 0; vsec.vsa_mask = VSA_ACE; vsec.vsa_aclentp = &full_access; vsec.vsa_aclentsz = sizeof (full_access); vsec.vsa_aclcnt = 1; error = VOP_CREATE(ZTOV(sharedir), zc->zc_string, &vattr, EXCL, 0, &resourcevp, kcred, 0, NULL, &vsec); if (resourcevp) VN_RELE(resourcevp); break; case ZFS_SMB_ACL_REMOVE: error = VOP_REMOVE(ZTOV(sharedir), zc->zc_string, kcred, NULL, 0); break; case ZFS_SMB_ACL_RENAME: if ((error = get_nvlist(zc->zc_nvlist_src, zc->zc_nvlist_src_size, zc->zc_iflags, &nvlist)) != 0) { VN_RELE(vp); ZFS_EXIT(zfsvfs); return (error); } if (nvlist_lookup_string(nvlist, ZFS_SMB_ACL_SRC, &src) || nvlist_lookup_string(nvlist, ZFS_SMB_ACL_TARGET, &target)) { VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); nvlist_free(nvlist); return (error); } error = VOP_RENAME(ZTOV(sharedir), src, ZTOV(sharedir), target, kcred, NULL, 0); nvlist_free(nvlist); break; case ZFS_SMB_ACL_PURGE: error = zfs_smb_acl_purge(sharedir); break; default: error = EINVAL; break; } VN_RELE(vp); VN_RELE(ZTOV(sharedir)); ZFS_EXIT(zfsvfs); return (error); } /* * inputs: * zc_name name of filesystem * zc_value short name of snap * zc_string user-supplied tag for this hold * zc_cookie recursive flag * zc_temphold set if hold is temporary * zc_cleanup_fd cleanup-on-exit file descriptor for calling process * zc_sendobj if non-zero, the objid for zc_name@zc_value * zc_createtxg if zc_sendobj is non-zero, snap must have zc_createtxg * * outputs: none */ static int zfs_ioc_hold(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie; spa_t *spa; dsl_pool_t *dp; dsl_dataset_t *ds; int error; minor_t minor = 0; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); if (zc->zc_sendobj == 0) { return (dsl_dataset_user_hold(zc->zc_name, zc->zc_value, zc->zc_string, recursive, zc->zc_temphold, zc->zc_cleanup_fd)); } if (recursive) return (EINVAL); error = spa_open(zc->zc_name, &spa, FTAG); if (error) return (error); dp = spa_get_dsl(spa); rw_enter(&dp->dp_config_rwlock, RW_READER); error = dsl_dataset_hold_obj(dp, zc->zc_sendobj, FTAG, &ds); rw_exit(&dp->dp_config_rwlock); spa_close(spa, FTAG); if (error) return (error); /* * Until we have a hold on this snapshot, it's possible that * zc_sendobj could've been destroyed and reused as part * of a later txg. Make sure we're looking at the right object. */ if (zc->zc_createtxg != ds->ds_phys->ds_creation_txg) { dsl_dataset_rele(ds, FTAG); return (ENOENT); } if (zc->zc_cleanup_fd != -1 && zc->zc_temphold) { error = zfs_onexit_fd_hold(zc->zc_cleanup_fd, &minor); if (error) { dsl_dataset_rele(ds, FTAG); return (error); } } error = dsl_dataset_user_hold_for_send(ds, zc->zc_string, zc->zc_temphold); if (minor != 0) { if (error == 0) { dsl_register_onexit_hold_cleanup(ds, zc->zc_string, minor); } zfs_onexit_fd_rele(zc->zc_cleanup_fd); } dsl_dataset_rele(ds, FTAG); return (error); } /* * inputs: * zc_name name of dataset from which we're releasing a user hold * zc_value short name of snap * zc_string user-supplied tag for this hold * zc_cookie recursive flag * * outputs: none */ static int zfs_ioc_release(zfs_cmd_t *zc) { boolean_t recursive = zc->zc_cookie; if (snapshot_namecheck(zc->zc_value, NULL, NULL) != 0) return (EINVAL); return (dsl_dataset_user_release(zc->zc_name, zc->zc_value, zc->zc_string, recursive)); } /* * inputs: * zc_name name of filesystem * * outputs: * zc_nvlist_src{_size} nvlist of snapshot holds */ static int zfs_ioc_get_holds(zfs_cmd_t *zc) { nvlist_t *nvp; int error; if ((error = dsl_dataset_get_holds(zc->zc_name, &nvp)) == 0) { error = put_nvlist(zc, nvp); nvlist_free(nvp); } return (error); } /* * pool create, destroy, and export don't log the history as part of * zfsdev_ioctl, but rather zfs_ioc_pool_create, and zfs_ioc_pool_export * do the logging of those commands. */ static zfs_ioc_vec_t zfs_ioc_vec[] = { { zfs_ioc_pool_create, zfs_secpolicy_config, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_pool_destroy, zfs_secpolicy_config, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_pool_import, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_NONE }, { zfs_ioc_pool_export, zfs_secpolicy_config, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_pool_configs, zfs_secpolicy_none, NO_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_pool_stats, zfs_secpolicy_read, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_pool_tryimport, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_pool_scan, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_pool_freeze, zfs_secpolicy_config, NO_NAME, B_FALSE, POOL_CHECK_READONLY }, { zfs_ioc_pool_upgrade, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_pool_get_history, zfs_secpolicy_config, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_vdev_add, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_vdev_remove, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_vdev_set_state, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_vdev_attach, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_vdev_detach, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_vdev_setpath, zfs_secpolicy_config, POOL_NAME, B_FALSE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_vdev_setfru, zfs_secpolicy_config, POOL_NAME, B_FALSE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_objset_stats, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED }, { zfs_ioc_objset_zplprops, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_dataset_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED }, { zfs_ioc_snapshot_list_next, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED }, { zfs_ioc_set_prop, zfs_secpolicy_none, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_create, zfs_secpolicy_create, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_destroy, zfs_secpolicy_destroy, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_rollback, zfs_secpolicy_rollback, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_rename, zfs_secpolicy_rename, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_recv, zfs_secpolicy_receive, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_send, zfs_secpolicy_send, DATASET_NAME, B_TRUE, POOL_CHECK_NONE }, { zfs_ioc_inject_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_clear_fault, zfs_secpolicy_inject, NO_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_inject_list_next, zfs_secpolicy_inject, NO_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_error_log, zfs_secpolicy_inject, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_clear, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_NONE }, { zfs_ioc_promote, zfs_secpolicy_promote, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_destroy_snaps, zfs_secpolicy_destroy_snaps, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_snapshot, zfs_secpolicy_snapshot, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_dsobj_to_dsname, zfs_secpolicy_diff, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_obj_to_path, zfs_secpolicy_diff, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED }, { zfs_ioc_pool_set_props, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_pool_get_props, zfs_secpolicy_read, POOL_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_set_fsacl, zfs_secpolicy_fsacl, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_get_fsacl, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_share, zfs_secpolicy_share, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_inherit_prop, zfs_secpolicy_inherit, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_smb_acl, zfs_secpolicy_smb_acl, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_userspace_one, zfs_secpolicy_userspace_one, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_userspace_many, zfs_secpolicy_userspace_many, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_userspace_upgrade, zfs_secpolicy_userspace_upgrade, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_hold, zfs_secpolicy_hold, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_release, zfs_secpolicy_release, DATASET_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_get_holds, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED }, { zfs_ioc_objset_recvd_props, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_vdev_split, zfs_secpolicy_config, POOL_NAME, B_TRUE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_next_obj, zfs_secpolicy_read, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_diff, zfs_secpolicy_diff, DATASET_NAME, B_FALSE, POOL_CHECK_NONE }, { zfs_ioc_tmp_snapshot, zfs_secpolicy_tmp_snapshot, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED | POOL_CHECK_READONLY }, { zfs_ioc_obj_to_stats, zfs_secpolicy_diff, DATASET_NAME, B_FALSE, POOL_CHECK_SUSPENDED } }; int pool_status_check(const char *name, zfs_ioc_namecheck_t type, zfs_ioc_poolcheck_t check) { spa_t *spa; int error; ASSERT(type == POOL_NAME || type == DATASET_NAME); if (check & POOL_CHECK_NONE) return (0); error = spa_open(name, &spa, FTAG); if (error == 0) { if ((check & POOL_CHECK_SUSPENDED) && spa_suspended(spa)) error = EAGAIN; else if ((check & POOL_CHECK_READONLY) && !spa_writeable(spa)) error = EROFS; spa_close(spa, FTAG); } return (error); } /* * Find a free minor number. */ minor_t zfsdev_minor_alloc(void) { static minor_t last_minor; minor_t m; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); for (m = last_minor + 1; m != last_minor; m++) { if (m > ZFSDEV_MAX_MINOR) m = 1; if (ddi_get_soft_state(zfsdev_state, m) == NULL) { last_minor = m; return (m); } } return (0); } static int zfs_ctldev_init(dev_t *devp) { minor_t minor; zfs_soft_state_t *zs; ASSERT(MUTEX_HELD(&zfsdev_state_lock)); ASSERT(getminor(*devp) == 0); minor = zfsdev_minor_alloc(); if (minor == 0) return (ENXIO); if (ddi_soft_state_zalloc(zfsdev_state, minor) != DDI_SUCCESS) return (EAGAIN); *devp = makedevice(getemajor(*devp), minor); zs = ddi_get_soft_state(zfsdev_state, minor); zs->zss_type = ZSST_CTLDEV; zfs_onexit_init((zfs_onexit_t **)&zs->zss_data); return (0); } static void zfs_ctldev_destroy(zfs_onexit_t *zo, minor_t minor) { ASSERT(MUTEX_HELD(&zfsdev_state_lock)); zfs_onexit_destroy(zo); ddi_soft_state_free(zfsdev_state, minor); } void * zfsdev_get_soft_state(minor_t minor, enum zfs_soft_state_type which) { zfs_soft_state_t *zp; zp = ddi_get_soft_state(zfsdev_state, minor); if (zp == NULL || zp->zss_type != which) return (NULL); return (zp->zss_data); } static int zfsdev_open(dev_t *devp, int flag, int otyp, cred_t *cr) { int error = 0; if (getminor(*devp) != 0) return (zvol_open(devp, flag, otyp, cr)); /* This is the control device. Allocate a new minor if requested. */ if (flag & FEXCL) { mutex_enter(&zfsdev_state_lock); error = zfs_ctldev_init(devp); mutex_exit(&zfsdev_state_lock); } return (error); } static int zfsdev_close(dev_t dev, int flag, int otyp, cred_t *cr) { zfs_onexit_t *zo; minor_t minor = getminor(dev); if (minor == 0) return (0); mutex_enter(&zfsdev_state_lock); zo = zfsdev_get_soft_state(minor, ZSST_CTLDEV); if (zo == NULL) { mutex_exit(&zfsdev_state_lock); return (zvol_close(dev, flag, otyp, cr)); } zfs_ctldev_destroy(zo, minor); mutex_exit(&zfsdev_state_lock); return (0); } static int zfsdev_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zfs_cmd_t *zc; uint_t vec; int error, rc; minor_t minor = getminor(dev); if (minor != 0 && zfsdev_get_soft_state(minor, ZSST_CTLDEV) == NULL) return (zvol_ioctl(dev, cmd, arg, flag, cr, rvalp)); vec = cmd - ZFS_IOC; ASSERT3U(getmajor(dev), ==, ddi_driver_major(zfs_dip)); if (vec >= sizeof (zfs_ioc_vec) / sizeof (zfs_ioc_vec[0])) return (EINVAL); zc = kmem_zalloc(sizeof (zfs_cmd_t), KM_SLEEP); error = ddi_copyin((void *)arg, zc, sizeof (zfs_cmd_t), flag); if (error != 0) error = EFAULT; if ((error == 0) && !(flag & FKIOCTL)) error = zfs_ioc_vec[vec].zvec_secpolicy(zc, cr); /* * Ensure that all pool/dataset names are valid before we pass down to * the lower layers. */ if (error == 0) { zc->zc_name[sizeof (zc->zc_name) - 1] = '\0'; zc->zc_iflags = flag & FKIOCTL; switch (zfs_ioc_vec[vec].zvec_namecheck) { case POOL_NAME: if (pool_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; error = pool_status_check(zc->zc_name, zfs_ioc_vec[vec].zvec_namecheck, zfs_ioc_vec[vec].zvec_pool_check); break; case DATASET_NAME: if (dataset_namecheck(zc->zc_name, NULL, NULL) != 0) error = EINVAL; error = pool_status_check(zc->zc_name, zfs_ioc_vec[vec].zvec_namecheck, zfs_ioc_vec[vec].zvec_pool_check); break; case NO_NAME: break; } } if (error == 0) error = zfs_ioc_vec[vec].zvec_func(zc); rc = ddi_copyout(zc, (void *)arg, sizeof (zfs_cmd_t), flag); if (error == 0) { if (rc != 0) error = EFAULT; if (zfs_ioc_vec[vec].zvec_his_log) zfs_log_history(zc); } kmem_free(zc, sizeof (zfs_cmd_t)); return (error); } static int zfs_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { if (cmd != DDI_ATTACH) return (DDI_FAILURE); if (ddi_create_minor_node(dip, "zfs", S_IFCHR, 0, DDI_PSEUDO, 0) == DDI_FAILURE) return (DDI_FAILURE); zfs_dip = dip; ddi_report_dev(dip); return (DDI_SUCCESS); } static int zfs_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { if (spa_busy() || zfs_busy() || zvol_busy()) return (DDI_FAILURE); if (cmd != DDI_DETACH) return (DDI_FAILURE); zfs_dip = NULL; ddi_prop_remove_all(dip); ddi_remove_minor_node(dip, NULL); return (DDI_SUCCESS); } /*ARGSUSED*/ static int zfs_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) { switch (infocmd) { case DDI_INFO_DEVT2DEVINFO: *result = zfs_dip; return (DDI_SUCCESS); case DDI_INFO_DEVT2INSTANCE: *result = (void *)0; return (DDI_SUCCESS); } return (DDI_FAILURE); } /* * OK, so this is a little weird. * * /dev/zfs is the control node, i.e. minor 0. * /dev/zvol/[r]dsk/pool/dataset are the zvols, minor > 0. * * /dev/zfs has basically nothing to do except serve up ioctls, * so most of the standard driver entry points are in zvol.c. */ static struct cb_ops zfs_cb_ops = { zfsdev_open, /* open */ zfsdev_close, /* close */ zvol_strategy, /* strategy */ nodev, /* print */ zvol_dump, /* dump */ zvol_read, /* read */ zvol_write, /* write */ zfsdev_ioctl, /* ioctl */ nodev, /* devmap */ nodev, /* mmap */ nodev, /* segmap */ nochpoll, /* poll */ ddi_prop_op, /* prop_op */ NULL, /* streamtab */ D_NEW | D_MP | D_64BIT, /* Driver compatibility flag */ CB_REV, /* version */ nodev, /* async read */ nodev, /* async write */ }; static struct dev_ops zfs_dev_ops = { DEVO_REV, /* version */ 0, /* refcnt */ zfs_info, /* info */ nulldev, /* identify */ nulldev, /* probe */ zfs_attach, /* attach */ zfs_detach, /* detach */ nodev, /* reset */ &zfs_cb_ops, /* driver operations */ NULL, /* no bus operations */ NULL, /* power */ ddi_quiesce_not_needed, /* quiesce */ }; static struct modldrv zfs_modldrv = { &mod_driverops, "ZFS storage pool", &zfs_dev_ops }; static struct modlinkage modlinkage = { MODREV_1, (void *)&zfs_modlfs, (void *)&zfs_modldrv, NULL }; uint_t zfs_fsyncer_key; extern uint_t rrw_tsd_key; int _init(void) { int error; spa_init(FREAD | FWRITE); zfs_init(); zvol_init(); if ((error = mod_install(&modlinkage)) != 0) { zvol_fini(); zfs_fini(); spa_fini(); return (error); } tsd_create(&zfs_fsyncer_key, NULL); tsd_create(&rrw_tsd_key, NULL); error = ldi_ident_from_mod(&modlinkage, &zfs_li); ASSERT(error == 0); mutex_init(&zfs_share_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } int _fini(void) { int error; if (spa_busy() || zfs_busy() || zvol_busy() || zio_injection_enabled) return (EBUSY); if ((error = mod_remove(&modlinkage)) != 0) return (error); zvol_fini(); zfs_fini(); spa_fini(); if (zfs_nfsshare_inited) (void) ddi_modclose(nfs_mod); if (zfs_smbshare_inited) (void) ddi_modclose(smbsrv_mod); if (zfs_nfsshare_inited || zfs_smbshare_inited) (void) ddi_modclose(sharefs_mod); tsd_destroy(&zfs_fsyncer_key); ldi_ident_release(zfs_li); zfs_li = NULL; mutex_destroy(&zfs_share_lock); return (error); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } diff --git a/module/zfs/zil.c b/module/zfs/zil.c index e89a24e41936..fd4d76821428 100644 --- a/module/zfs/zil.c +++ b/module/zfs/zil.c @@ -1,1994 +1,1994 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The zfs intent log (ZIL) saves transaction records of system calls * that change the file system in memory with enough information * to be able to replay them. These are stored in memory until * either the DMU transaction group (txg) commits them to the stable pool * and they can be discarded, or they are flushed to the stable log * (also in the pool) due to a fsync, O_DSYNC or other synchronous * requirement. In the event of a panic or power fail then those log * records (transactions) are replayed. * * There is one ZIL per file system. Its on-disk (pool) format consists * of 3 parts: * * - ZIL header * - ZIL blocks * - ZIL records * * A log record holds a system call transaction. Log blocks can * hold many log records and the blocks are chained together. * Each ZIL block contains a block pointer (blkptr_t) to the next * ZIL block in the chain. The ZIL header points to the first * block in the chain. Note there is not a fixed place in the pool * to hold blocks. They are dynamically allocated and freed as * needed from the blocks available. Figure X shows the ZIL structure: */ /* * This global ZIL switch affects all pools */ int zil_replay_disable = 0; /* disable intent logging replay */ /* * Tunable parameter for debugging or performance analysis. Setting * zfs_nocacheflush will cause corruption on power loss if a volatile * out-of-order write cache is enabled. */ boolean_t zfs_nocacheflush = B_FALSE; static kmem_cache_t *zil_lwb_cache; static void zil_async_to_sync(zilog_t *zilog, uint64_t foid); #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \ sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused)) /* * ziltest is by and large an ugly hack, but very useful in * checking replay without tedious work. * When running ziltest we want to keep all itx's and so maintain * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG * We subtract TXG_CONCURRENT_STATES to allow for common code. */ #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) static int zil_bp_compare(const void *x1, const void *x2) { const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2)) return (-1); if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2)) return (1); if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2)) return (-1); if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2)) return (1); return (0); } static void zil_bp_tree_init(zilog_t *zilog) { avl_create(&zilog->zl_bp_tree, zil_bp_compare, sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); } static void zil_bp_tree_fini(zilog_t *zilog) { avl_tree_t *t = &zilog->zl_bp_tree; zil_bp_node_t *zn; void *cookie = NULL; while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zn, sizeof (zil_bp_node_t)); avl_destroy(t); } int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_bp_tree; const dva_t *dva = BP_IDENTITY(bp); zil_bp_node_t *zn; avl_index_t where; if (avl_find(t, dva, &where) != NULL) return (EEXIST); zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); zn->zn_dva = *dva; avl_insert(t, zn, where); return (0); } static zil_header_t * zil_header_in_syncing_context(zilog_t *zilog) { return ((zil_header_t *)zilog->zl_header); } static void zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) { zio_cksum_t *zc = &bp->blk_cksum; zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL); zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); zc->zc_word[ZIL_ZC_SEQ] = 1ULL; } /* * Read a log block and make sure it's valid. */ static int zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst, char **end) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; uint32_t aflags = ARC_WAIT; arc_buf_t *abuf = NULL; zbookmark_t zb; int error; if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) zio_flags |= ZIO_FLAG_SPECULATIVE; SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { zio_cksum_t cksum = bp->blk_cksum; /* * Validate the checksummed log block. * * Sequence numbers should be... sequential. The checksum * verifier for the next block should be bp's checksum plus 1. * * Also check the log chain linkage and size used. */ cksum.zc_word[ZIL_ZC_SEQ]++; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { zil_chain_t *zilc = abuf->b_data; char *lr = (char *)(zilc + 1); uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { error = ECKSUM; } else { bcopy(lr, dst, len); *end = (char *)dst + len; *nbp = zilc->zc_next_blk; } } else { char *lr = abuf->b_data; uint64_t size = BP_GET_LSIZE(bp); zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || (zilc->zc_nused > (size - sizeof (*zilc)))) { error = ECKSUM; } else { bcopy(lr, dst, zilc->zc_nused); *end = (char *)dst + zilc->zc_nused; *nbp = zilc->zc_next_blk; } } VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1); } return (error); } /* * Read a TX_WRITE log data block. */ static int zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) { enum zio_flag zio_flags = ZIO_FLAG_CANFAIL; const blkptr_t *bp = &lr->lr_blkptr; uint32_t aflags = ARC_WAIT; arc_buf_t *abuf = NULL; zbookmark_t zb; int error; if (BP_IS_HOLE(bp)) { if (wbuf != NULL) bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length)); return (0); } if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { if (wbuf != NULL) bcopy(abuf->b_data, wbuf, arc_buf_size(abuf)); (void) arc_buf_remove_ref(abuf, &abuf); } return (error); } /* * Parse the intent log, and call parse_func for each valid record within. */ int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg) { const zil_header_t *zh = zilog->zl_header; boolean_t claimed = !!zh->zh_claim_txg; uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; uint64_t max_blk_seq = 0; uint64_t max_lr_seq = 0; uint64_t blk_count = 0; uint64_t lr_count = 0; blkptr_t blk, next_blk; char *lrbuf, *lrp; int error = 0; /* * Old logs didn't record the maximum zh_claim_lr_seq. */ if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) claim_lr_seq = UINT64_MAX; /* * Starting at the block pointed to by zh_log we read the log chain. * For each block in the chain we strongly check that block to * ensure its validity. We stop when an invalid block is found. * For each block pointer in the chain we call parse_blk_func(). * For each record in each valid block we call parse_lr_func(). * If the log has been claimed, stop if we encounter a sequence * number greater than the highest claimed sequence number. */ lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE); zil_bp_tree_init(zilog); for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; int reclen; char *end; if (blk_seq > claim_blk_seq) break; if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0) break; ASSERT3U(max_blk_seq, <, blk_seq); max_blk_seq = blk_seq; blk_count++; if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) break; error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end); if (error) break; for (lrp = lrbuf; lrp < end; lrp += reclen) { lr_t *lr = (lr_t *)lrp; reclen = lr->lrc_reclen; ASSERT3U(reclen, >=, sizeof (lr_t)); if (lr->lrc_seq > claim_lr_seq) goto done; if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0) goto done; ASSERT3U(max_lr_seq, <, lr->lrc_seq); max_lr_seq = lr->lrc_seq; lr_count++; } } done: zilog->zl_parse_error = error; zilog->zl_parse_blk_seq = max_blk_seq; zilog->zl_parse_lr_seq = max_lr_seq; zilog->zl_parse_blk_count = blk_count; zilog->zl_parse_lr_count = lr_count; ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) || (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq)); zil_bp_tree_fini(zilog); zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE); return (error); } static int zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg) { /* * Claim log block if not already committed and not already claimed. * If tx == NULL, just verify that the block is claimable. */ if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) return (0); return (zio_wait(zio_claim(NULL, zilog->zl_spa, tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); } static int zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg) { lr_write_t *lr = (lr_write_t *)lrc; int error; if (lrc->lrc_txtype != TX_WRITE) return (0); /* * If the block is not readable, don't claim it. This can happen * in normal operation when a log block is written to disk before * some of the dmu_sync() blocks it points to. In this case, the * transaction cannot have been committed to anyone (we would have * waited for all writes to be stable first), so it is semantically * correct to declare this the end of the log. */ if (lr->lr_blkptr.blk_birth >= first_txg && (error = zil_read_log_data(zilog, lr, NULL)) != 0) return (error); return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); } /* ARGSUSED */ static int zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg) { zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; /* * If we previously claimed it, we need to free it. */ if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE && bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0) zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static lwb_t * zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg) { lwb_t *lwb; lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); lwb->lwb_zilog = zilog; lwb->lwb_blk = *bp; lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); lwb->lwb_max_txg = txg; lwb->lwb_zio = NULL; lwb->lwb_tx = NULL; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { lwb->lwb_nused = sizeof (zil_chain_t); lwb->lwb_sz = BP_GET_LSIZE(bp); } else { lwb->lwb_nused = 0; lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); } mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); return (lwb); } /* * Create an on-disk intent log. */ static lwb_t * zil_create(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb = NULL; uint64_t txg = 0; dmu_tx_t *tx = NULL; blkptr_t blk; int error = 0; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); ASSERT(zh->zh_claim_txg == 0); ASSERT(zh->zh_replay_seq == 0); blk = zh->zh_log; /* * Allocate an initial log block if: * - there isn't one already * - the existing block is the wrong endianess */ if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { tx = dmu_tx_create(zilog->zl_os); VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); if (!BP_IS_HOLE(&blk)) { zio_free_zil(zilog->zl_spa, txg, &blk); BP_ZERO(&blk); } error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL, ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY); if (error == 0) zil_init_log_chain(zilog, &blk); } /* * Allocate a log write buffer (lwb) for the first log block. */ if (error == 0) lwb = zil_alloc_lwb(zilog, &blk, txg); /* * If we just allocated the first log block, commit our transaction * and wait for zil_sync() to stuff the block poiner into zh_log. * (zh is part of the MOS, so we cannot modify it in open context.) */ if (tx != NULL) { dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); return (lwb); } /* * In one tx, free all log blocks and clear the log header. * If keep_first is set, then we're replaying a log with no content. * We want to keep the first block, however, so that the first * synchronous transaction doesn't require a txg_wait_synced() * in zil_create(). We don't need to txg_wait_synced() here either * when keep_first is set, because both zil_create() and zil_destroy() * will wait for any in-progress destroys to complete. */ void zil_destroy(zilog_t *zilog, boolean_t keep_first) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; dmu_tx_t *tx; uint64_t txg; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_old_header = *zh; /* debugging aid */ if (BP_IS_HOLE(&zh->zh_log)) return; tx = dmu_tx_create(zilog->zl_os); VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lock); ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = keep_first; if (!list_is_empty(&zilog->zl_lwb_list)) { ASSERT(zh->zh_claim_txg == 0); ASSERT(!keep_first); while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { list_remove(&zilog->zl_lwb_list, lwb); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk); kmem_cache_free(zil_lwb_cache, lwb); } } else if (!keep_first) { (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zh->zh_claim_txg); } mutex_exit(&zilog->zl_lock); dmu_tx_commit(tx); } int zil_claim(const char *osname, void *txarg) { dmu_tx_t *tx = txarg; uint64_t first_txg = dmu_tx_get_txg(tx); zilog_t *zilog; zil_header_t *zh; objset_t *os; int error; error = dmu_objset_hold(osname, FTAG, &os); if (error) { cmn_err(CE_WARN, "can't open objset for %s", osname); return (0); } zilog = dmu_objset_zil(os); zh = zil_header_in_syncing_context(zilog); if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) { if (!BP_IS_HOLE(&zh->zh_log)) zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log); BP_ZERO(&zh->zh_log); dsl_dataset_dirty(dmu_objset_ds(os), tx); dmu_objset_rele(os, FTAG); return (0); } /* * Claim all log blocks if we haven't already done so, and remember * the highest claimed sequence number. This ensures that if we can * read only part of the log now (e.g. due to a missing device), * but we can read the entire log later, we will not try to replay * or destroy beyond the last block we successfully claimed. */ ASSERT3U(zh->zh_claim_txg, <=, first_txg); if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, first_txg); zh->zh_claim_txg = first_txg; zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) zh->zh_flags |= ZIL_REPLAY_NEEDED; zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; dsl_dataset_dirty(dmu_objset_ds(os), tx); } ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); dmu_objset_rele(os, FTAG); return (0); } /* * Check the log by walking the log chain. * Checksum errors are ok as they indicate the end of the chain. * Any other error (no device or read failure) returns an error. */ int zil_check_log_chain(const char *osname, void *tx) { zilog_t *zilog; objset_t *os; blkptr_t *bp; int error; ASSERT(tx == NULL); error = dmu_objset_hold(osname, FTAG, &os); if (error) { cmn_err(CE_WARN, "can't open objset for %s", osname); return (0); } zilog = dmu_objset_zil(os); bp = (blkptr_t *)&zilog->zl_header->zh_log; /* * Check the first block and determine if it's on a log device * which may have been removed or faulted prior to loading this * pool. If so, there's no point in checking the rest of the log * as its content should have already been synced to the pool. */ if (!BP_IS_HOLE(bp)) { vdev_t *vd; boolean_t valid = B_TRUE; spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (vd->vdev_islog && vdev_is_dead(vd)) valid = vdev_log_state_valid(vd); spa_config_exit(os->os_spa, SCL_STATE, FTAG); if (!valid) { dmu_objset_rele(os, FTAG); return (0); } } /* * Because tx == NULL, zil_claim_log_block() will not actually claim * any blocks, but just determine whether it is possible to do so. * In addition to checking the log chain, zil_claim_log_block() * will invoke zio_claim() with a done func of spa_claim_notify(), * which will update spa_max_claim_txg. See spa_load() for details. */ error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa)); dmu_objset_rele(os, FTAG); return ((error == ECKSUM || error == ENOENT) ? 0 : error); } static int zil_vdev_compare(const void *x1, const void *x2) { const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; if (v1 < v2) return (-1); if (v1 > v2) return (1); return (0); } void zil_add_block(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_vdev_tree; avl_index_t where; zil_vdev_node_t *zv, zvsearch; int ndvas = BP_GET_NDVAS(bp); int i; if (zfs_nocacheflush) return; ASSERT(zilog->zl_writer); /* * Even though we're zl_writer, we still need a lock because the * zl_get_data() callbacks may have dmu_sync() done callbacks * that will run concurrently. */ mutex_enter(&zilog->zl_vdev_lock); for (i = 0; i < ndvas; i++) { zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); if (avl_find(t, &zvsearch, &where) == NULL) { zv = kmem_alloc(sizeof (*zv), KM_SLEEP); zv->zv_vdev = zvsearch.zv_vdev; avl_insert(t, zv, where); } } mutex_exit(&zilog->zl_vdev_lock); } static void zil_flush_vdevs(zilog_t *zilog) { spa_t *spa = zilog->zl_spa; avl_tree_t *t = &zilog->zl_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; zio_t *zio; ASSERT(zilog->zl_writer); /* * We don't need zl_vdev_lock here because we're the zl_writer, * and all zl_get_data() callbacks are done. */ if (avl_numnodes(t) == 0) return; spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); if (vd != NULL) zio_flush(zio, vd); kmem_free(zv, sizeof (*zv)); } /* * Wait for all the flushes to complete. Not all devices actually * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails. */ (void) zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); } /* * Function called when a log block write completes */ static void zil_lwb_write_done(zio_t *zio) { lwb_t *lwb = zio->io_private; zilog_t *zilog = lwb->lwb_zilog; dmu_tx_t *tx = lwb->lwb_tx; ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); ASSERT(!BP_IS_GANG(zio->io_bp)); ASSERT(!BP_IS_HOLE(zio->io_bp)); ASSERT(zio->io_bp->blk_fill == 0); /* * Ensure the lwb buffer pointer is cleared before releasing * the txg. If we have had an allocation failure and * the txg is waiting to sync then we want want zil_sync() * to remove the lwb so that it's not picked up as the next new * one in zil_commit_writer(). zil_sync() will only remove * the lwb if lwb_buf is null. */ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); mutex_enter(&zilog->zl_lock); lwb->lwb_buf = NULL; lwb->lwb_tx = NULL; mutex_exit(&zilog->zl_lock); /* * Now that we've written this log block, we have a stable pointer * to the next block in the chain, so it's OK to let the txg in * which we allocated the next block sync. */ dmu_tx_commit(tx); } /* * Initialize the io for a log block. */ static void zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb) { zbookmark_t zb; SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); if (zilog->zl_root_zio == NULL) { zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL, ZIO_FLAG_CANFAIL); } if (lwb->lwb_zio == NULL) { lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa, 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb); } } /* * Define a limited set of intent log block sizes. * These must be a multiple of 4KB. Note only the amount used (again * aligned to 4KB) actually gets written. However, we can't always just * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted. */ uint64_t zil_block_buckets[] = { 4096, /* non TX_WRITE */ 8192+4096, /* data base */ 32*1024 + 4096, /* NFS writes */ UINT64_MAX }; /* * Use the slog as long as the logbias is 'latency' and the current commit size * is less than the limit or the total list size is less than 2X the limit. * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX. */ uint64_t zil_slog_limit = 1024 * 1024; #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \ (((zilog)->zl_cur_used < zil_slog_limit) || \ ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))) /* * Start a log block write and advance to the next log block. * Calls are serialized. */ static lwb_t * zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb) { lwb_t *nlwb = NULL; zil_chain_t *zilc; spa_t *spa = zilog->zl_spa; blkptr_t *bp; dmu_tx_t *tx; uint64_t txg; uint64_t zil_blksz, wsz; int i, error; if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { zilc = (zil_chain_t *)lwb->lwb_buf; bp = &zilc->zc_next_blk; } else { zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); bp = &zilc->zc_next_blk; } ASSERT(lwb->lwb_nused <= lwb->lwb_sz); /* * Allocate the next block and save its address in this block * before writing it in order to establish the log chain. * Note that if the allocation of nlwb synced before we wrote * the block that points at it (lwb), we'd leak it if we crashed. * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done(). * We dirty the dataset to ensure that zil_sync() will be called * to clean up in the event of allocation failure or I/O failure. */ tx = dmu_tx_create(zilog->zl_os); VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); lwb->lwb_tx = tx; /* * Log blocks are pre-allocated. Here we select the size of the next * block, based on size used in the last block. * - first find the smallest bucket that will fit the block from a * limited set of block sizes. This is because it's faster to write * blocks allocated from the same metaslab as they are adjacent or * close. * - next find the maximum from the new suggested size and an array of * previous sizes. This lessens a picket fence effect of wrongly * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k * requests. * * Note we only write what is used, but we can't just allocate * the maximum block size because we can exhaust the available * pool log space. */ zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); for (i = 0; zil_blksz > zil_block_buckets[i]; i++) continue; zil_blksz = zil_block_buckets[i]; if (zil_blksz == UINT64_MAX) zil_blksz = SPA_MAXBLOCKSIZE; zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; for (i = 0; i < ZIL_PREV_BLKS; i++) zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); BP_ZERO(bp); /* pass the old blkptr in order to spread log blocks across devs */ error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, USE_SLOG(zilog)); if (!error) { ASSERT3U(bp->blk_birth, ==, txg); bp->blk_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; /* * Allocate a new log write buffer (lwb). */ nlwb = zil_alloc_lwb(zilog, bp, txg); /* Record the block for later vdev flushing */ zil_add_block(zilog, &lwb->lwb_blk); } if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { /* For Slim ZIL only write what is used. */ wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t); ASSERT3U(wsz, <=, lwb->lwb_sz); zio_shrink(lwb->lwb_zio, wsz); } else { wsz = lwb->lwb_sz; } zilc->zc_pad = 0; zilc->zc_nused = lwb->lwb_nused; zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; /* * clear unused data for security */ bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused); zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */ /* * If there was an allocation failure then nlwb will be null which * forces a txg_wait_synced(). */ return (nlwb); } static lwb_t * zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb) { lr_t *lrc = &itx->itx_lr; /* common log record */ lr_write_t *lrw = (lr_write_t *)lrc; char *lr_buf; uint64_t txg = lrc->lrc_txg; uint64_t reclen = lrc->lrc_reclen; uint64_t dlen = 0; if (lwb == NULL) return (NULL); ASSERT(lwb->lwb_buf != NULL); if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) dlen = P2ROUNDUP_TYPED( lrw->lr_length, sizeof (uint64_t), uint64_t); zilog->zl_cur_used += (reclen + dlen); zil_lwb_write_init(zilog, lwb); /* * If this record won't fit in the current log block, start a new one. */ if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { lwb = zil_lwb_write_start(zilog, lwb); if (lwb == NULL) return (NULL); zil_lwb_write_init(zilog, lwb); ASSERT(LWB_EMPTY(lwb)); if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) { txg_wait_synced(zilog->zl_dmu_pool, txg); return (lwb); } } lr_buf = lwb->lwb_buf + lwb->lwb_nused; bcopy(lrc, lr_buf, reclen); lrc = (lr_t *)lr_buf; lrw = (lr_write_t *)lrc; /* * If it's a write, fetch the data or get its blkptr as appropriate. */ if (lrc->lrc_txtype == TX_WRITE) { if (txg > spa_freeze_txg(zilog->zl_spa)) txg_wait_synced(zilog->zl_dmu_pool, txg); if (itx->itx_wr_state != WR_COPIED) { char *dbuf; int error; if (dlen) { ASSERT(itx->itx_wr_state == WR_NEED_COPY); dbuf = lr_buf + reclen; lrw->lr_common.lrc_reclen += dlen; } else { ASSERT(itx->itx_wr_state == WR_INDIRECT); dbuf = NULL; } error = zilog->zl_get_data( itx->itx_private, lrw, dbuf, lwb->lwb_zio); if (error == EIO) { txg_wait_synced(zilog->zl_dmu_pool, txg); return (lwb); } if (error) { ASSERT(error == ENOENT || error == EEXIST || error == EALREADY); return (lwb); } } } /* * We're actually making an entry, so update lrc_seq to be the * log record sequence number. Note that this is generally not * equal to the itx sequence number because not all transactions * are synchronous, and sometimes spa_sync() gets there first. */ lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */ lwb->lwb_nused += reclen + dlen; lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0); return (lwb); } itx_t * zil_itx_create(uint64_t txtype, size_t lrsize) { itx_t *itx; lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t); itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP); itx->itx_lr.lrc_txtype = txtype; itx->itx_lr.lrc_reclen = lrsize; itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */ itx->itx_lr.lrc_seq = 0; /* defensive */ itx->itx_sync = B_TRUE; /* default is synchronous */ return (itx); } void zil_itx_destroy(itx_t *itx) { kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } /* * Free up the sync and async itxs. The itxs_t has already been detached * so no locks are needed. */ static void zil_itxg_clean(itxs_t *itxs) { itx_t *itx; list_t *list; avl_tree_t *t; void *cookie; itx_async_node_t *ian; list = &itxs->i_sync_list; while ((itx = list_head(list)) != NULL) { list_remove(list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } cookie = NULL; t = &itxs->i_async_tree; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list = &ian->ia_list; while ((itx = list_head(list)) != NULL) { list_remove(list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } list_destroy(list); kmem_free(ian, sizeof (itx_async_node_t)); } avl_destroy(t); kmem_free(itxs, sizeof (itxs_t)); } static int zil_aitx_compare(const void *x1, const void *x2) { const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; if (o1 < o2) return (-1); if (o1 > o2) return (1); return (0); } /* * Remove all async itx with the given oid. */ static void zil_remove_async(zilog_t *zilog, uint64_t oid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; list_t clean_list; itx_t *itx; ASSERT(oid != 0); list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * Locate the object node and append its list. */ t = &itxg->itxg_itxs->i_async_tree; ian = avl_find(t, &oid, &where); if (ian != NULL) list_move_tail(&clean_list, &ian->ia_list); mutex_exit(&itxg->itxg_lock); } while ((itx = list_head(&clean_list)) != NULL) { list_remove(&clean_list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } list_destroy(&clean_list); } void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) { uint64_t txg; itxg_t *itxg; itxs_t *itxs, *clean = NULL; /* * Object ids can be re-instantiated in the next txg so * remove any async transactions to avoid future leaks. * This can happen if a fsync occurs on the re-instantiated * object for a WR_INDIRECT or WR_NEED_COPY write, which gets * the new file data and flushes a write record for the old object. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE) zil_remove_async(zilog, itx->itx_oid); /* * Ensure the data of a renamed file is committed before the rename. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) zil_async_to_sync(zilog, itx->itx_oid); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) txg = ZILTEST_TXG; else txg = dmu_tx_get_txg(tx); itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); itxs = itxg->itxg_itxs; if (itxg->itxg_txg != txg) { if (itxs != NULL) { /* * The zil_clean callback hasn't got around to cleaning * this itxg. Save the itxs for release below. * This should be rare. */ atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); itxg->itxg_sod = 0; clean = itxg->itxg_itxs; } ASSERT(itxg->itxg_sod == 0); itxg->itxg_txg = txg; itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); list_create(&itxs->i_sync_list, sizeof (itx_t), offsetof(itx_t, itx_node)); avl_create(&itxs->i_async_tree, zil_aitx_compare, sizeof (itx_async_node_t), offsetof(itx_async_node_t, ia_node)); } if (itx->itx_sync) { list_insert_tail(&itxs->i_sync_list, itx); atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod); itxg->itxg_sod += itx->itx_sod; } else { avl_tree_t *t = &itxs->i_async_tree; uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid; itx_async_node_t *ian; avl_index_t where; ian = avl_find(t, &foid, &where); if (ian == NULL) { ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); list_create(&ian->ia_list, sizeof (itx_t), offsetof(itx_t, itx_node)); ian->ia_foid = foid; avl_insert(t, ian, where); } list_insert_tail(&ian->ia_list, itx); } itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); mutex_exit(&itxg->itxg_lock); /* Release the old itxs now we've dropped the lock */ if (clean != NULL) zil_itxg_clean(clean); } /* * If there are any in-memory intent log transactions which have now been * synced then start up a taskq to free them. */ void zil_clean(zilog_t *zilog, uint64_t synced_txg) { itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; itxs_t *clean_me; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { mutex_exit(&itxg->itxg_lock); return; } ASSERT3U(itxg->itxg_txg, <=, synced_txg); ASSERT(itxg->itxg_txg != 0); ASSERT(zilog->zl_clean_taskq != NULL); atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod); itxg->itxg_sod = 0; clean_me = itxg->itxg_itxs; itxg->itxg_itxs = NULL; itxg->itxg_txg = 0; mutex_exit(&itxg->itxg_lock); /* * Preferably start a task queue to free up the old itxs but * if taskq_dispatch can't allocate resources to do that then * free it in-line. This should be rare. Note, using TQ_SLEEP * created a bad performance problem. */ if (taskq_dispatch(zilog->zl_clean_taskq, - (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == NULL) + (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0) zil_itxg_clean(clean_me); } /* * Get the list of itxs to commit into zl_itx_commit_list. */ static void zil_get_commit_list(zilog_t *zilog) { uint64_t otxg, txg; list_t *commit_list = &zilog->zl_itx_commit_list; uint64_t push_sod = 0; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); push_sod += itxg->itxg_sod; itxg->itxg_sod = 0; mutex_exit(&itxg->itxg_lock); } atomic_add_64(&zilog->zl_itx_list_sz, -push_sod); } /* * Move the async itxs for a specified object to commit into sync lists. */ static void zil_async_to_sync(zilog_t *zilog, uint64_t foid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If a foid is specified then find that node and append its * list. Otherwise walk the tree appending all the lists * to the sync list. We add to the end rather than the * beginning to ensure the create has happened. */ t = &itxg->itxg_itxs->i_async_tree; if (foid != 0) { ian = avl_find(t, &foid, &where); if (ian != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); } } else { void *cookie = NULL; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); list_destroy(&ian->ia_list); kmem_free(ian, sizeof (itx_async_node_t)); } } mutex_exit(&itxg->itxg_lock); } } static void zil_commit_writer(zilog_t *zilog) { uint64_t txg; itx_t *itx; lwb_t *lwb; spa_t *spa = zilog->zl_spa; int error = 0; ASSERT(zilog->zl_root_zio == NULL); mutex_exit(&zilog->zl_lock); zil_get_commit_list(zilog); /* * Return if there's nothing to commit before we dirty the fs by * calling zil_create(). */ if (list_head(&zilog->zl_itx_commit_list) == NULL) { mutex_enter(&zilog->zl_lock); return; } if (zilog->zl_suspend) { lwb = NULL; } else { lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) lwb = zil_create(zilog); } DTRACE_PROBE1(zil__cw1, zilog_t *, zilog); while (itx = list_head(&zilog->zl_itx_commit_list)) { txg = itx->itx_lr.lrc_txg; ASSERT(txg); if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa)) lwb = zil_lwb_commit(zilog, itx, lwb); list_remove(&zilog->zl_itx_commit_list, itx); kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen); } DTRACE_PROBE1(zil__cw2, zilog_t *, zilog); /* write the last block out */ if (lwb != NULL && lwb->lwb_zio != NULL) lwb = zil_lwb_write_start(zilog, lwb); zilog->zl_cur_used = 0; /* * Wait if necessary for the log blocks to be on stable storage. */ if (zilog->zl_root_zio) { error = zio_wait(zilog->zl_root_zio); zilog->zl_root_zio = NULL; zil_flush_vdevs(zilog); } if (error || lwb == NULL) txg_wait_synced(zilog->zl_dmu_pool, 0); mutex_enter(&zilog->zl_lock); /* * Remember the highest committed log sequence number for ztest. * We only update this value when all the log writes succeeded, * because ztest wants to ASSERT that it got the whole log chain. */ if (error == 0 && lwb != NULL) zilog->zl_commit_lr_seq = zilog->zl_lr_seq; } /* * Commit zfs transactions to stable storage. * If foid is 0 push out all transactions, otherwise push only those * for that object or might reference that object. * * itxs are committed in batches. In a heavily stressed zil there will be * a commit writer thread who is writing out a bunch of itxs to the log * for a set of committing threads (cthreads) in the same batch as the writer. * Those cthreads are all waiting on the same cv for that batch. * * There will also be a different and growing batch of threads that are * waiting to commit (qthreads). When the committing batch completes * a transition occurs such that the cthreads exit and the qthreads become * cthreads. One of the new cthreads becomes the writer thread for the * batch. Any new threads arriving become new qthreads. * * Only 2 condition variables are needed and there's no transition * between the two cvs needed. They just flip-flop between qthreads * and cthreads. * * Using this scheme we can efficiently wakeup up only those threads * that have been committed. */ void zil_commit(zilog_t *zilog, uint64_t foid) { uint64_t mybatch; if (zilog->zl_sync == ZFS_SYNC_DISABLED) return; /* move the async itxs for the foid to the sync queues */ zil_async_to_sync(zilog, foid); mutex_enter(&zilog->zl_lock); mybatch = zilog->zl_next_batch; while (zilog->zl_writer) { cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock); if (mybatch <= zilog->zl_com_batch) { mutex_exit(&zilog->zl_lock); return; } } zilog->zl_next_batch++; zilog->zl_writer = B_TRUE; zil_commit_writer(zilog); zilog->zl_com_batch = mybatch; zilog->zl_writer = B_FALSE; mutex_exit(&zilog->zl_lock); /* wake up one thread to become the next writer */ cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]); /* wake up all threads waiting for this batch to be committed */ cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]); } /* * Called in syncing context to free committed log blocks and update log header. */ void zil_sync(zilog_t *zilog, dmu_tx_t *tx) { zil_header_t *zh = zil_header_in_syncing_context(zilog); uint64_t txg = dmu_tx_get_txg(tx); spa_t *spa = zilog->zl_spa; uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; lwb_t *lwb; /* * We don't zero out zl_destroy_txg, so make sure we don't try * to destroy it twice. */ if (spa_sync_pass(spa) != 1) return; mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_stop_sync == 0); if (*replayed_seq != 0) { ASSERT(zh->zh_replay_seq < *replayed_seq); zh->zh_replay_seq = *replayed_seq; *replayed_seq = 0; } if (zilog->zl_destroy_txg == txg) { blkptr_t blk = zh->zh_log; ASSERT(list_head(&zilog->zl_lwb_list) == NULL); bzero(zh, sizeof (zil_header_t)); bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq)); if (zilog->zl_keep_first) { /* * If this block was part of log chain that couldn't * be claimed because a device was missing during * zil_claim(), but that device later returns, * then this block could erroneously appear valid. * To guard against this, assign a new GUID to the new * log chain so it doesn't matter what blk points to. */ zil_init_log_chain(zilog, &blk); zh->zh_log = blk; } } while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { zh->zh_log = lwb->lwb_blk; if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg) break; list_remove(&zilog->zl_lwb_list, lwb); zio_free_zil(spa, txg, &lwb->lwb_blk); kmem_cache_free(zil_lwb_cache, lwb); /* * If we don't have anything left in the lwb list then * we've had an allocation failure and we need to zero * out the zil_header blkptr so that we don't end * up freeing the same block twice. */ if (list_head(&zilog->zl_lwb_list) == NULL) BP_ZERO(&zh->zh_log); } mutex_exit(&zilog->zl_lock); } void zil_init(void) { zil_lwb_cache = kmem_cache_create("zil_lwb_cache", sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0); } void zil_fini(void) { kmem_cache_destroy(zil_lwb_cache); } void zil_set_sync(zilog_t *zilog, uint64_t sync) { zilog->zl_sync = sync; } void zil_set_logbias(zilog_t *zilog, uint64_t logbias) { zilog->zl_logbias = logbias; } zilog_t * zil_alloc(objset_t *os, zil_header_t *zh_phys) { zilog_t *zilog; int i; zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); zilog->zl_header = zh_phys; zilog->zl_os = os; zilog->zl_spa = dmu_objset_spa(os); zilog->zl_dmu_pool = dmu_objset_pool(os); zilog->zl_destroy_txg = TXG_INITIAL - 1; zilog->zl_logbias = dmu_objset_logbias(os); zilog->zl_sync = dmu_objset_syncprop(os); zilog->zl_next_batch = 1; mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); for (i = 0; i < TXG_SIZE; i++) { mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, MUTEX_DEFAULT, NULL); } list_create(&zilog->zl_lwb_list, sizeof (lwb_t), offsetof(lwb_t, lwb_node)); list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), offsetof(itx_t, itx_node)); mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&zilog->zl_vdev_tree, zil_vdev_compare, sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL); return (zilog); } void zil_free(zilog_t *zilog) { lwb_t *head_lwb; int i; zilog->zl_stop_sync = 1; /* * After zil_close() there should only be one lwb with a buffer. */ head_lwb = list_head(&zilog->zl_lwb_list); if (head_lwb) { ASSERT(head_lwb == list_tail(&zilog->zl_lwb_list)); list_remove(&zilog->zl_lwb_list, head_lwb); zio_buf_free(head_lwb->lwb_buf, head_lwb->lwb_sz); kmem_cache_free(zil_lwb_cache, head_lwb); } list_destroy(&zilog->zl_lwb_list); avl_destroy(&zilog->zl_vdev_tree); mutex_destroy(&zilog->zl_vdev_lock); ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); list_destroy(&zilog->zl_itx_commit_list); for (i = 0; i < TXG_SIZE; i++) { /* * It's possible for an itx to be generated that doesn't dirty * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() * callback to remove the entry. We remove those here. * * Also free up the ziltest itxs. */ if (zilog->zl_itxg[i].itxg_itxs) zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); mutex_destroy(&zilog->zl_itxg[i].itxg_lock); } mutex_destroy(&zilog->zl_lock); cv_destroy(&zilog->zl_cv_writer); cv_destroy(&zilog->zl_cv_suspend); cv_destroy(&zilog->zl_cv_batch[0]); cv_destroy(&zilog->zl_cv_batch[1]); kmem_free(zilog, sizeof (zilog_t)); } /* * Open an intent log. */ zilog_t * zil_open(objset_t *os, zil_get_data_t *get_data) { zilog_t *zilog = dmu_objset_zil(os); zilog->zl_get_data = get_data; zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri, 2, 2, TASKQ_PREPOPULATE); return (zilog); } /* * Close an intent log. */ void zil_close(zilog_t *zilog) { lwb_t *tail_lwb; uint64_t txg = 0; zil_commit(zilog, 0); /* commit all itx */ /* * The lwb_max_txg for the stubby lwb will reflect the last activity * for the zil. After a txg_wait_synced() on the txg we know all the * callbacks have occurred that may clean the zil. Only then can we * destroy the zl_clean_taskq. */ mutex_enter(&zilog->zl_lock); tail_lwb = list_tail(&zilog->zl_lwb_list); if (tail_lwb != NULL) txg = tail_lwb->lwb_max_txg; mutex_exit(&zilog->zl_lock); if (txg) txg_wait_synced(zilog->zl_dmu_pool, txg); taskq_destroy(zilog->zl_clean_taskq); zilog->zl_clean_taskq = NULL; zilog->zl_get_data = NULL; } /* * Suspend an intent log. While in suspended mode, we still honor * synchronous semantics, but we rely on txg_wait_synced() to do it. * We suspend the log briefly when taking a snapshot so that the snapshot * contains all the data it's supposed to, and has an empty intent log. */ int zil_suspend(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; mutex_enter(&zilog->zl_lock); if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ mutex_exit(&zilog->zl_lock); return (EBUSY); } if (zilog->zl_suspend++ != 0) { /* * Someone else already began a suspend. * Just wait for them to finish. */ while (zilog->zl_suspending) cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); mutex_exit(&zilog->zl_lock); return (0); } zilog->zl_suspending = B_TRUE; mutex_exit(&zilog->zl_lock); zil_commit(zilog, 0); zil_destroy(zilog, B_FALSE); mutex_enter(&zilog->zl_lock); zilog->zl_suspending = B_FALSE; cv_broadcast(&zilog->zl_cv_suspend); mutex_exit(&zilog->zl_lock); return (0); } void zil_resume(zilog_t *zilog) { mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_suspend != 0); zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); } typedef struct zil_replay_arg { zil_replay_func_t **zr_replay; void *zr_arg; boolean_t zr_byteswap; char *zr_lr; } zil_replay_arg_t; static int zil_replay_error(zilog_t *zilog, lr_t *lr, int error) { char name[MAXNAMELEN]; zilog->zl_replaying_seq--; /* didn't actually replay this one */ dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS replay transaction error %d, " "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)(lr->lrc_txtype & ~TX_CI), (lr->lrc_txtype & TX_CI) ? "CI" : ""); return (error); } static int zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg) { zil_replay_arg_t *zr = zra; const zil_header_t *zh = zilog->zl_header; uint64_t reclen = lr->lrc_reclen; uint64_t txtype = lr->lrc_txtype; int error = 0; zilog->zl_replaying_seq = lr->lrc_seq; if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ return (0); if (lr->lrc_txg < claim_txg) /* already committed */ return (0); /* Strip case-insensitive bit, still present in log record */ txtype &= ~TX_CI; if (txtype == 0 || txtype >= TX_MAX_TYPE) return (zil_replay_error(zilog, lr, EINVAL)); /* * If this record type can be logged out of order, the object * (lr_foid) may no longer exist. That's legitimate, not an error. */ if (TX_OOO(txtype)) { error = dmu_object_info(zilog->zl_os, ((lr_ooo_t *)lr)->lr_foid, NULL); if (error == ENOENT || error == EEXIST) return (0); } /* * Make a copy of the data so we can revise and extend it. */ bcopy(lr, zr->zr_lr, reclen); /* * If this is a TX_WRITE with a blkptr, suck in the data. */ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { error = zil_read_log_data(zilog, (lr_write_t *)lr, zr->zr_lr + reclen); if (error) return (zil_replay_error(zilog, lr, error)); } /* * The log block containing this lr may have been byteswapped * so that we can easily examine common fields like lrc_txtype. * However, the log is a mix of different record types, and only the * replay vectors know how to byteswap their records. Therefore, if * the lr was byteswapped, undo it before invoking the replay vector. */ if (zr->zr_byteswap) byteswap_uint64_array(zr->zr_lr, reclen); /* * We must now do two things atomically: replay this log record, * and update the log header sequence number to reflect the fact that * we did so. At the end of each replay function the sequence number * is updated if we are in replay mode. */ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); if (error) { /* * The DMU's dnode layer doesn't see removes until the txg * commits, so a subsequent claim can spuriously fail with * EEXIST. So if we receive any error we try syncing out * any removes then retry the transaction. Note that we * specify B_FALSE for byteswap now, so we don't do it twice. */ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); if (error) return (zil_replay_error(zilog, lr, error)); } return (0); } /* ARGSUSED */ static int zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg) { zilog->zl_replay_blks++; return (0); } /* * If this dataset has a non-empty intent log, replay it and destroy it. */ void zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE]) { zilog_t *zilog = dmu_objset_zil(os); const zil_header_t *zh = zilog->zl_header; zil_replay_arg_t zr; if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { zil_destroy(zilog, B_TRUE); return; } zr.zr_replay = replay_func; zr.zr_arg = arg; zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); /* * Wait for in-progress removes to sync before starting replay. */ txg_wait_synced(zilog->zl_dmu_pool, 0); zilog->zl_replay = B_TRUE; zilog->zl_replay_time = ddi_get_lbolt(); ASSERT(zilog->zl_replay_blks == 0); (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, zh->zh_claim_txg); kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); zil_destroy(zilog, B_FALSE); txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_replay = B_FALSE; } boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx) { if (zilog->zl_sync == ZFS_SYNC_DISABLED) return (B_TRUE); if (zilog->zl_replay) { dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = zilog->zl_replaying_seq; return (B_TRUE); } return (B_FALSE); } /* ARGSUSED */ int zil_vdev_offline(const char *osname, void *arg) { objset_t *os; zilog_t *zilog; int error; error = dmu_objset_hold(osname, FTAG, &os); if (error) return (error); zilog = dmu_objset_zil(os); if (zil_suspend(zilog) != 0) error = EEXIST; else zil_resume(zilog); dmu_objset_rele(os, FTAG); return (error); }