diff --git a/sys/net/if.c b/sys/net/if.c index 24a97329d232..906f2256dd54 100644 --- a/sys/net/if.c +++ b/sys/net/if.c @@ -1,4786 +1,4772 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 2010 Bjoern A. Zeeb * Copyright (c) 1980, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)if.c 8.5 (Berkeley) 1/9/95 * $FreeBSD$ */ #include "opt_bpf.h" #include "opt_inet6.h" #include "opt_inet.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(INET) || defined(INET6) #include #include #include #include #include #ifdef INET #include #include #endif /* INET */ #ifdef INET6 #include #include #endif /* INET6 */ #endif /* INET || INET6 */ #include /* * Consumers of struct ifreq such as tcpdump assume no pad between ifr_name * and ifr_ifru when it is used in SIOCGIFCONF. */ _Static_assert(sizeof(((struct ifreq *)0)->ifr_name) == offsetof(struct ifreq, ifr_ifru), "gap between ifr_name and ifr_ifru"); __read_mostly epoch_t net_epoch_preempt; #ifdef COMPAT_FREEBSD32 #include #include struct ifreq_buffer32 { uint32_t length; /* (size_t) */ uint32_t buffer; /* (void *) */ }; /* * Interface request structure used for socket * ioctl's. All interface ioctl's must have parameter * definitions which begin with ifr_name. The * remainder may be interface specific. */ struct ifreq32 { char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */ union { struct sockaddr ifru_addr; struct sockaddr ifru_dstaddr; struct sockaddr ifru_broadaddr; struct ifreq_buffer32 ifru_buffer; short ifru_flags[2]; short ifru_index; int ifru_jid; int ifru_metric; int ifru_mtu; int ifru_phys; int ifru_media; uint32_t ifru_data; int ifru_cap[2]; u_int ifru_fib; u_char ifru_vlan_pcp; } ifr_ifru; }; CTASSERT(sizeof(struct ifreq) == sizeof(struct ifreq32)); CTASSERT(__offsetof(struct ifreq, ifr_ifru) == __offsetof(struct ifreq32, ifr_ifru)); struct ifconf32 { int32_t ifc_len; union { uint32_t ifcu_buf; uint32_t ifcu_req; } ifc_ifcu; }; #define SIOCGIFCONF32 _IOWR('i', 36, struct ifconf32) struct ifdrv32 { char ifd_name[IFNAMSIZ]; uint32_t ifd_cmd; uint32_t ifd_len; uint32_t ifd_data; }; #define SIOCSDRVSPEC32 _IOC_NEWTYPE(SIOCSDRVSPEC, struct ifdrv32) #define SIOCGDRVSPEC32 _IOC_NEWTYPE(SIOCGDRVSPEC, struct ifdrv32) struct ifgroupreq32 { char ifgr_name[IFNAMSIZ]; u_int ifgr_len; union { char ifgru_group[IFNAMSIZ]; uint32_t ifgru_groups; } ifgr_ifgru; }; #define SIOCAIFGROUP32 _IOC_NEWTYPE(SIOCAIFGROUP, struct ifgroupreq32) #define SIOCGIFGROUP32 _IOC_NEWTYPE(SIOCGIFGROUP, struct ifgroupreq32) #define SIOCDIFGROUP32 _IOC_NEWTYPE(SIOCDIFGROUP, struct ifgroupreq32) #define SIOCGIFGMEMB32 _IOC_NEWTYPE(SIOCGIFGMEMB, struct ifgroupreq32) struct ifmediareq32 { char ifm_name[IFNAMSIZ]; int ifm_current; int ifm_mask; int ifm_status; int ifm_active; int ifm_count; uint32_t ifm_ulist; /* (int *) */ }; #define SIOCGIFMEDIA32 _IOC_NEWTYPE(SIOCGIFMEDIA, struct ifmediareq32) #define SIOCGIFXMEDIA32 _IOC_NEWTYPE(SIOCGIFXMEDIA, struct ifmediareq32) #endif /* COMPAT_FREEBSD32 */ union ifreq_union { struct ifreq ifr; #ifdef COMPAT_FREEBSD32 struct ifreq32 ifr32; #endif }; SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Link layers"); SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Generic link-management"); SYSCTL_INT(_net_link, OID_AUTO, ifqmaxlen, CTLFLAG_RDTUN, &ifqmaxlen, 0, "max send queue size"); /* Log link state change events */ static int log_link_state_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW, &log_link_state_change, 0, "log interface link state change events"); /* Log promiscuous mode change events */ static int log_promisc_mode_change = 1; SYSCTL_INT(_net_link, OID_AUTO, log_promisc_mode_change, CTLFLAG_RDTUN, &log_promisc_mode_change, 1, "log promiscuous mode change events"); /* Interface description */ static unsigned int ifdescr_maxlen = 1024; SYSCTL_UINT(_net, OID_AUTO, ifdescr_maxlen, CTLFLAG_RW, &ifdescr_maxlen, 0, "administrative maximum length for interface description"); static MALLOC_DEFINE(M_IFDESCR, "ifdescr", "ifnet descriptions"); /* global sx for non-critical path ifdescr */ static struct sx ifdescr_sx; SX_SYSINIT(ifdescr_sx, &ifdescr_sx, "ifnet descr"); void (*ng_ether_link_state_p)(struct ifnet *ifp, int state); void (*lagg_linkstate_p)(struct ifnet *ifp, int state); /* These are external hooks for CARP. */ void (*carp_linkstate_p)(struct ifnet *ifp); void (*carp_demote_adj_p)(int, char *); int (*carp_master_p)(struct ifaddr *); #if defined(INET) || defined(INET6) int (*carp_forus_p)(struct ifnet *ifp, u_char *dhost); int (*carp_output_p)(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *sa); int (*carp_ioctl_p)(struct ifreq *, u_long, struct thread *); int (*carp_attach_p)(struct ifaddr *, int); void (*carp_detach_p)(struct ifaddr *, bool); #endif #ifdef INET int (*carp_iamatch_p)(struct ifaddr *, uint8_t **); #endif #ifdef INET6 struct ifaddr *(*carp_iamatch6_p)(struct ifnet *ifp, struct in6_addr *taddr6); caddr_t (*carp_macmatch6_p)(struct ifnet *ifp, struct mbuf *m, const struct in6_addr *taddr); #endif struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL; /* * XXX: Style; these should be sorted alphabetically, and unprototyped * static functions should be prototyped. Currently they are sorted by * declaration order. */ static void if_attachdomain(void *); static void if_attachdomain1(struct ifnet *); static int ifconf(u_long, caddr_t); static void if_input_default(struct ifnet *, struct mbuf *); static int if_requestencap_default(struct ifnet *, struct if_encap_req *); static void if_route(struct ifnet *, int flag, int fam); static int if_setflag(struct ifnet *, int, int, int *, int); static int if_transmit(struct ifnet *ifp, struct mbuf *m); static void if_unroute(struct ifnet *, int flag, int fam); static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int); static void do_link_state_change(void *, int); static int if_getgroup(struct ifgroupreq *, struct ifnet *); static int if_getgroupmembers(struct ifgroupreq *); static void if_delgroups(struct ifnet *); static void if_attach_internal(struct ifnet *, bool); static int if_detach_internal(struct ifnet *, bool); static void if_siocaddmulti(void *, int); static void if_link_ifnet(struct ifnet *); static bool if_unlink_ifnet(struct ifnet *, bool); #ifdef VIMAGE static int if_vmove(struct ifnet *, struct vnet *); #endif #ifdef INET6 /* * XXX: declare here to avoid to include many inet6 related files.. * should be more generalized? */ extern void nd6_setmtu(struct ifnet *); #endif /* ipsec helper hooks */ VNET_DEFINE(struct hhook_head *, ipsec_hhh_in[HHOOK_IPSEC_COUNT]); VNET_DEFINE(struct hhook_head *, ipsec_hhh_out[HHOOK_IPSEC_COUNT]); int ifqmaxlen = IFQ_MAXLEN; VNET_DEFINE(struct ifnethead, ifnet); /* depend on static init XXX */ VNET_DEFINE(struct ifgrouphead, ifg_head); /* Table of ifnet by index. */ static int if_index; static int if_indexlim = 8; static struct ifindex_entry { struct ifnet *ife_ifnet; uint16_t ife_gencnt; } *ifindex_table; SYSCTL_NODE(_net_link_generic, IFMIB_SYSTEM, system, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "Variables global to all interfaces"); static int sysctl_ifcount(SYSCTL_HANDLER_ARGS) { int rv = 0; IFNET_RLOCK(); for (int i = 1; i <= if_index; i++) if (ifindex_table[i].ife_ifnet != NULL && ifindex_table[i].ife_ifnet->if_vnet == curvnet) rv = i; IFNET_RUNLOCK(); return (sysctl_handle_int(oidp, &rv, 0, req)); } SYSCTL_PROC(_net_link_generic_system, IFMIB_IFCOUNT, ifcount, CTLTYPE_INT | CTLFLAG_VNET | CTLFLAG_RD, NULL, 0, sysctl_ifcount, "I", "Maximum known interface index"); /* * The global network interface list (V_ifnet) and related state (such as * if_index, if_indexlim, and ifindex_table) are protected by an sxlock. * This may be acquired to stabilise the list, or we may rely on NET_EPOCH. */ struct sx ifnet_sxlock; SX_SYSINIT_FLAGS(ifnet_sx, &ifnet_sxlock, "ifnet_sx", SX_RECURSE); struct sx ifnet_detach_sxlock; SX_SYSINIT_FLAGS(ifnet_detach, &ifnet_detach_sxlock, "ifnet_detach_sx", SX_RECURSE); #ifdef VIMAGE #define VNET_IS_SHUTTING_DOWN(_vnet) \ ((_vnet)->vnet_shutdown && (_vnet)->vnet_state < SI_SUB_VNET_DONE) #endif static if_com_alloc_t *if_com_alloc[256]; static if_com_free_t *if_com_free[256]; static MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals"); MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address"); MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address"); struct ifnet * ifnet_byindex(u_int idx) { struct ifnet *ifp; NET_EPOCH_ASSERT(); if (__predict_false(idx > if_index)) return (NULL); ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); if (curvnet != NULL && ifp != NULL && ifp->if_vnet != curvnet) ifp = NULL; return (ifp); } struct ifnet * ifnet_byindex_ref(u_int idx) { struct ifnet *ifp; ifp = ifnet_byindex(idx); if (ifp == NULL || (ifp->if_flags & IFF_DYING)) return (NULL); if (!if_try_ref(ifp)) return (NULL); return (ifp); } struct ifnet * ifnet_byindexgen(uint16_t idx, uint16_t gen) { struct ifnet *ifp; NET_EPOCH_ASSERT(); if (__predict_false(idx > if_index)) return (NULL); ifp = ck_pr_load_ptr(&ifindex_table[idx].ife_ifnet); if (ifindex_table[idx].ife_gencnt == gen) return (ifp); else return (NULL); } /* * Network interface utility routines. * * Routines with ifa_ifwith* names take sockaddr *'s as * parameters. */ static void if_init(void *arg __unused) { ifindex_table = malloc(if_indexlim * sizeof(*ifindex_table), M_IFNET, M_WAITOK | M_ZERO); } SYSINIT(if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, if_init, NULL); static void vnet_if_init(const void *unused __unused) { CK_STAILQ_INIT(&V_ifnet); CK_STAILQ_INIT(&V_ifg_head); vnet_if_clone_init(); } VNET_SYSINIT(vnet_if_init, SI_SUB_INIT_IF, SI_ORDER_SECOND, vnet_if_init, NULL); static void if_link_ifnet(struct ifnet *ifp) { IFNET_WLOCK(); CK_STAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link); #ifdef VIMAGE curvnet->vnet_ifcnt++; #endif IFNET_WUNLOCK(); } static bool if_unlink_ifnet(struct ifnet *ifp, bool vmove) { struct ifnet *iter; int found = 0; IFNET_WLOCK(); CK_STAILQ_FOREACH(iter, &V_ifnet, if_link) if (iter == ifp) { CK_STAILQ_REMOVE(&V_ifnet, ifp, ifnet, if_link); if (!vmove) ifp->if_flags |= IFF_DYING; found = 1; break; } #ifdef VIMAGE curvnet->vnet_ifcnt--; #endif IFNET_WUNLOCK(); return (found); } #ifdef VIMAGE static void vnet_if_return(const void *unused __unused) { struct ifnet *ifp, *nifp; struct ifnet **pending; int found __diagused; int i; i = 0; /* * We need to protect our access to the V_ifnet tailq. Ordinarily we'd * enter NET_EPOCH, but that's not possible, because if_vmove() calls * if_detach_internal(), which waits for NET_EPOCH callbacks to * complete. We can't do that from within NET_EPOCH. * * However, we can also use the IFNET_xLOCK, which is the V_ifnet * read/write lock. We cannot hold the lock as we call if_vmove() * though, as that presents LOR w.r.t ifnet_sx, in_multi_sx and iflib * ctx lock. */ IFNET_WLOCK(); pending = malloc(sizeof(struct ifnet *) * curvnet->vnet_ifcnt, M_IFNET, M_WAITOK | M_ZERO); /* Return all inherited interfaces to their parent vnets. */ CK_STAILQ_FOREACH_SAFE(ifp, &V_ifnet, if_link, nifp) { if (ifp->if_home_vnet != ifp->if_vnet) { found = if_unlink_ifnet(ifp, true); MPASS(found); pending[i++] = ifp; } } IFNET_WUNLOCK(); for (int j = 0; j < i; j++) { sx_xlock(&ifnet_detach_sxlock); if_vmove(pending[j], pending[j]->if_home_vnet); sx_xunlock(&ifnet_detach_sxlock); } free(pending, M_IFNET); } VNET_SYSUNINIT(vnet_if_return, SI_SUB_VNET_DONE, SI_ORDER_ANY, vnet_if_return, NULL); #endif /* * Allocate a struct ifnet and an index for an interface. A layer 2 * common structure will also be allocated if an allocation routine is * registered for the passed type. */ static struct ifnet * if_alloc_domain(u_char type, int numa_domain) { struct ifnet *ifp; u_short idx; KASSERT(numa_domain <= IF_NODOM, ("numa_domain too large")); if (numa_domain == IF_NODOM) ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK | M_ZERO); else ifp = malloc_domainset(sizeof(struct ifnet), M_IFNET, DOMAINSET_PREF(numa_domain), M_WAITOK | M_ZERO); ifp->if_type = type; ifp->if_alloctype = type; ifp->if_numa_domain = numa_domain; #ifdef VIMAGE ifp->if_vnet = curvnet; #endif if (if_com_alloc[type] != NULL) { ifp->if_l2com = if_com_alloc[type](type, ifp); KASSERT(ifp->if_l2com, ("%s: if_com_alloc[%u] failed", __func__, type)); } IF_ADDR_LOCK_INIT(ifp); TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp); TASK_INIT(&ifp->if_addmultitask, 0, if_siocaddmulti, ifp); ifp->if_afdata_initialized = 0; IF_AFDATA_LOCK_INIT(ifp); CK_STAILQ_INIT(&ifp->if_addrhead); CK_STAILQ_INIT(&ifp->if_multiaddrs); CK_STAILQ_INIT(&ifp->if_groups); #ifdef MAC mac_ifnet_init(ifp); #endif ifq_init(&ifp->if_snd, ifp); refcount_init(&ifp->if_refcount, 1); /* Index reference. */ for (int i = 0; i < IFCOUNTERS; i++) ifp->if_counters[i] = counter_u64_alloc(M_WAITOK); ifp->if_get_counter = if_get_counter_default; ifp->if_pcp = IFNET_PCP_NONE; /* Allocate an ifindex array entry. */ IFNET_WLOCK(); /* * Try to find an empty slot below if_index. If we fail, take the * next slot. */ for (idx = 1; idx <= if_index; idx++) { if (ifindex_table[idx].ife_ifnet == NULL) break; } /* Catch if_index overflow. */ if (idx >= if_indexlim) { struct ifindex_entry *new, *old; int newlim; newlim = if_indexlim * 2; new = malloc(newlim * sizeof(*new), M_IFNET, M_WAITOK | M_ZERO); memcpy(new, ifindex_table, if_indexlim * sizeof(*new)); old = ifindex_table; ck_pr_store_ptr(&ifindex_table, new); if_indexlim = newlim; epoch_wait_preempt(net_epoch_preempt); free(old, M_IFNET); } if (idx > if_index) if_index = idx; ifp->if_index = idx; ifp->if_idxgen = ifindex_table[idx].ife_gencnt; ck_pr_store_ptr(&ifindex_table[idx].ife_ifnet, ifp); IFNET_WUNLOCK(); return (ifp); } struct ifnet * if_alloc_dev(u_char type, device_t dev) { int numa_domain; if (dev == NULL || bus_get_domain(dev, &numa_domain) != 0) return (if_alloc_domain(type, IF_NODOM)); return (if_alloc_domain(type, numa_domain)); } struct ifnet * if_alloc(u_char type) { return (if_alloc_domain(type, IF_NODOM)); } /* * Do the actual work of freeing a struct ifnet, and layer 2 common * structure. This call is made when the network epoch guarantees * us that nobody holds a pointer to the interface. */ static void if_free_deferred(epoch_context_t ctx) { struct ifnet *ifp = __containerof(ctx, struct ifnet, if_epoch_ctx); KASSERT((ifp->if_flags & IFF_DYING), ("%s: interface not dying", __func__)); if (if_com_free[ifp->if_alloctype] != NULL) if_com_free[ifp->if_alloctype](ifp->if_l2com, ifp->if_alloctype); #ifdef MAC mac_ifnet_destroy(ifp); #endif /* MAC */ IF_AFDATA_DESTROY(ifp); IF_ADDR_LOCK_DESTROY(ifp); ifq_delete(&ifp->if_snd); for (int i = 0; i < IFCOUNTERS; i++) counter_u64_free(ifp->if_counters[i]); free(ifp->if_description, M_IFDESCR); free(ifp->if_hw_addr, M_IFADDR); free(ifp, M_IFNET); } /* * Deregister an interface and free the associated storage. */ void if_free(struct ifnet *ifp) { ifp->if_flags |= IFF_DYING; /* XXX: Locking */ /* * XXXGL: An interface index is really an alias to ifp pointer. * Why would we clear the alias now, and not in the deferred * context? Indeed there is nothing wrong with some network * thread obtaining ifp via ifnet_byindex() inside the network * epoch and then dereferencing ifp while we perform if_free(), * and after if_free() finished, too. * * This early index freeing was important back when ifindex was * virtualized and interface would outlive the vnet. */ IFNET_WLOCK(); MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); ck_pr_store_ptr(&ifindex_table[ifp->if_index].ife_ifnet, NULL); ifindex_table[ifp->if_index].ife_gencnt++; while (if_index > 0 && ifindex_table[if_index].ife_ifnet == NULL) if_index--; IFNET_WUNLOCK(); if (refcount_release(&ifp->if_refcount)) NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); } /* * Interfaces to keep an ifnet type-stable despite the possibility of the * driver calling if_free(). If there are additional references, we defer * freeing the underlying data structure. */ void if_ref(struct ifnet *ifp) { u_int old __diagused; /* We don't assert the ifnet list lock here, but arguably should. */ old = refcount_acquire(&ifp->if_refcount); KASSERT(old > 0, ("%s: ifp %p has 0 refs", __func__, ifp)); } bool if_try_ref(struct ifnet *ifp) { NET_EPOCH_ASSERT(); return (refcount_acquire_if_not_zero(&ifp->if_refcount)); } void if_rele(struct ifnet *ifp) { if (!refcount_release(&ifp->if_refcount)) return; NET_EPOCH_CALL(if_free_deferred, &ifp->if_epoch_ctx); } void ifq_init(struct ifaltq *ifq, struct ifnet *ifp) { mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF); if (ifq->ifq_maxlen == 0) ifq->ifq_maxlen = ifqmaxlen; ifq->altq_type = 0; ifq->altq_disc = NULL; ifq->altq_flags &= ALTQF_CANTCHANGE; ifq->altq_tbr = NULL; ifq->altq_ifp = ifp; } void ifq_delete(struct ifaltq *ifq) { mtx_destroy(&ifq->ifq_mtx); } /* * Perform generic interface initialization tasks and attach the interface * to the list of "active" interfaces. If vmove flag is set on entry * to if_attach_internal(), perform only a limited subset of initialization * tasks, given that we are moving from one vnet to another an ifnet which * has already been fully initialized. * * Note that if_detach_internal() removes group membership unconditionally * even when vmove flag is set, and if_attach_internal() adds only IFG_ALL. * Thus, when if_vmove() is applied to a cloned interface, group membership * is lost while a cloned one always joins a group whose name is * ifc->ifc_name. To recover this after if_detach_internal() and * if_attach_internal(), the cloner should be specified to * if_attach_internal() via ifc. If it is non-NULL, if_attach_internal() * attempts to join a group whose name is ifc->ifc_name. * * XXX: * - The decision to return void and thus require this function to * succeed is questionable. * - We should probably do more sanity checking. For instance we don't * do anything to insure if_xname is unique or non-empty. */ void if_attach(struct ifnet *ifp) { if_attach_internal(ifp, false); } /* * Compute the least common TSO limit. */ void if_hw_tsomax_common(if_t ifp, struct ifnet_hw_tsomax *pmax) { /* * 1) If there is no limit currently, take the limit from * the network adapter. * * 2) If the network adapter has a limit below the current * limit, apply it. */ if (pmax->tsomaxbytes == 0 || (ifp->if_hw_tsomax != 0 && ifp->if_hw_tsomax < pmax->tsomaxbytes)) { pmax->tsomaxbytes = ifp->if_hw_tsomax; } if (pmax->tsomaxsegcount == 0 || (ifp->if_hw_tsomaxsegcount != 0 && ifp->if_hw_tsomaxsegcount < pmax->tsomaxsegcount)) { pmax->tsomaxsegcount = ifp->if_hw_tsomaxsegcount; } if (pmax->tsomaxsegsize == 0 || (ifp->if_hw_tsomaxsegsize != 0 && ifp->if_hw_tsomaxsegsize < pmax->tsomaxsegsize)) { pmax->tsomaxsegsize = ifp->if_hw_tsomaxsegsize; } } /* * Update TSO limit of a network adapter. * * Returns zero if no change. Else non-zero. */ int if_hw_tsomax_update(if_t ifp, struct ifnet_hw_tsomax *pmax) { int retval = 0; if (ifp->if_hw_tsomax != pmax->tsomaxbytes) { ifp->if_hw_tsomax = pmax->tsomaxbytes; retval++; } if (ifp->if_hw_tsomaxsegsize != pmax->tsomaxsegsize) { ifp->if_hw_tsomaxsegsize = pmax->tsomaxsegsize; retval++; } if (ifp->if_hw_tsomaxsegcount != pmax->tsomaxsegcount) { ifp->if_hw_tsomaxsegcount = pmax->tsomaxsegcount; retval++; } return (retval); } static void if_attach_internal(struct ifnet *ifp, bool vmove) { unsigned socksize, ifasize; int namelen, masklen; struct sockaddr_dl *sdl; struct ifaddr *ifa; MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); #ifdef VIMAGE ifp->if_vnet = curvnet; if (ifp->if_home_vnet == NULL) ifp->if_home_vnet = curvnet; #endif if_addgroup(ifp, IFG_ALL); #ifdef VIMAGE /* Restore group membership for cloned interface. */ if (vmove) if_clone_restoregroup(ifp); #endif getmicrotime(&ifp->if_lastchange); ifp->if_epoch = time_uptime; KASSERT((ifp->if_transmit == NULL && ifp->if_qflush == NULL) || (ifp->if_transmit != NULL && ifp->if_qflush != NULL), ("transmit and qflush must both either be set or both be NULL")); if (ifp->if_transmit == NULL) { ifp->if_transmit = if_transmit; ifp->if_qflush = if_qflush; } if (ifp->if_input == NULL) ifp->if_input = if_input_default; if (ifp->if_requestencap == NULL) ifp->if_requestencap = if_requestencap_default; if (!vmove) { #ifdef MAC mac_ifnet_create(ifp); #endif /* * Create a Link Level name for this device. */ namelen = strlen(ifp->if_xname); /* * Always save enough space for any possiable name so we * can do a rename in place later. */ masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ; socksize = masklen + ifp->if_addrlen; if (socksize < sizeof(*sdl)) socksize = sizeof(*sdl); socksize = roundup2(socksize, sizeof(long)); ifasize = sizeof(*ifa) + 2 * socksize; ifa = ifa_alloc(ifasize, M_WAITOK); sdl = (struct sockaddr_dl *)(ifa + 1); sdl->sdl_len = socksize; sdl->sdl_family = AF_LINK; bcopy(ifp->if_xname, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; ifp->if_addr = ifa; ifa->ifa_ifp = ifp; ifa->ifa_addr = (struct sockaddr *)sdl; sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl); ifa->ifa_netmask = (struct sockaddr *)sdl; sdl->sdl_len = masklen; while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; CK_STAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link); /* Reliably crash if used uninitialized. */ ifp->if_broadcastaddr = NULL; if (ifp->if_type == IFT_ETHER) { ifp->if_hw_addr = malloc(ifp->if_addrlen, M_IFADDR, M_WAITOK | M_ZERO); } #if defined(INET) || defined(INET6) /* Use defaults for TSO, if nothing is set */ if (ifp->if_hw_tsomax == 0 && ifp->if_hw_tsomaxsegcount == 0 && ifp->if_hw_tsomaxsegsize == 0) { /* * The TSO defaults needs to be such that an * NFS mbuf list of 35 mbufs totalling just * below 64K works and that a chain of mbufs * can be defragged into at most 32 segments: */ ifp->if_hw_tsomax = min(IP_MAXPACKET, (32 * MCLBYTES) - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN)); ifp->if_hw_tsomaxsegcount = 35; ifp->if_hw_tsomaxsegsize = 2048; /* 2K */ /* XXX some drivers set IFCAP_TSO after ethernet attach */ if (ifp->if_capabilities & IFCAP_TSO) { if_printf(ifp, "Using defaults for TSO: %u/%u/%u\n", ifp->if_hw_tsomax, ifp->if_hw_tsomaxsegcount, ifp->if_hw_tsomaxsegsize); } } #endif } #ifdef VIMAGE else { /* * Update the interface index in the link layer address * of the interface. */ for (ifa = ifp->if_addr; ifa != NULL; ifa = CK_STAILQ_NEXT(ifa, ifa_link)) { if (ifa->ifa_addr->sa_family == AF_LINK) { sdl = (struct sockaddr_dl *)ifa->ifa_addr; sdl->sdl_index = ifp->if_index; } } } #endif if_link_ifnet(ifp); if (domain_init_status >= 2) if_attachdomain1(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL); /* Announce the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); } static void if_epochalloc(void *dummy __unused) { net_epoch_preempt = epoch_alloc("Net preemptible", EPOCH_PREEMPT); } SYSINIT(ifepochalloc, SI_SUB_EPOCH, SI_ORDER_ANY, if_epochalloc, NULL); static void if_attachdomain(void *dummy) { struct ifnet *ifp; CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) if_attachdomain1(ifp); } SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND, if_attachdomain, NULL); static void if_attachdomain1(struct ifnet *ifp) { struct domain *dp; /* * Since dp->dom_ifattach calls malloc() with M_WAITOK, we * cannot lock ifp->if_afdata initialization, entirely. */ IF_AFDATA_LOCK(ifp); if (ifp->if_afdata_initialized >= domain_init_status) { IF_AFDATA_UNLOCK(ifp); log(LOG_WARNING, "%s called more than once on %s\n", __func__, ifp->if_xname); return; } ifp->if_afdata_initialized = domain_init_status; IF_AFDATA_UNLOCK(ifp); /* address family dependent data region */ bzero(ifp->if_afdata, sizeof(ifp->if_afdata)); for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_ifattach) ifp->if_afdata[dp->dom_family] = (*dp->dom_ifattach)(ifp); } } /* * Remove any unicast or broadcast network addresses from an interface. */ void if_purgeaddrs(struct ifnet *ifp) { struct ifaddr *ifa; #ifdef INET6 /* * Need to leave multicast addresses of proxy NDP llentries * before in6_purgeifaddr() because the llentries are keys * for in6_multi objects of proxy NDP entries. * in6_purgeifaddr()s clean up llentries including proxy NDPs * then we would lose the keys if they are called earlier. */ in6_purge_proxy_ndp(ifp); #endif while (1) { struct epoch_tracker et; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) break; } NET_EPOCH_EXIT(et); if (ifa == NULL) break; #ifdef INET /* XXX: Ugly!! ad hoc just for INET */ if (ifa->ifa_addr->sa_family == AF_INET) { struct ifaliasreq ifr; bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL) == 0) continue; } #endif /* INET */ #ifdef INET6 if (ifa->ifa_addr->sa_family == AF_INET6) { in6_purgeifaddr((struct in6_ifaddr *)ifa); /* ifp_addrhead is already updated */ continue; } #endif /* INET6 */ IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } } /* * Remove any multicast network addresses from an interface when an ifnet * is going away. */ static void if_purgemaddrs(struct ifnet *ifp) { struct ifmultiaddr *ifma; IF_ADDR_WLOCK(ifp); while (!CK_STAILQ_EMPTY(&ifp->if_multiaddrs)) { ifma = CK_STAILQ_FIRST(&ifp->if_multiaddrs); CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); if_delmulti_locked(ifp, ifma, 1); } IF_ADDR_WUNLOCK(ifp); } /* * Detach an interface, removing it from the list of "active" interfaces. * If vmove flag is set on entry to if_detach_internal(), perform only a * limited subset of cleanup tasks, given that we are moving an ifnet from * one vnet to another, where it must be fully operational. * * XXXRW: There are some significant questions about event ordering, and * how to prevent things from starting to use the interface during detach. */ void if_detach(struct ifnet *ifp) { bool found; CURVNET_SET_QUIET(ifp->if_vnet); found = if_unlink_ifnet(ifp, false); if (found) { sx_xlock(&ifnet_detach_sxlock); if_detach_internal(ifp, false); sx_xunlock(&ifnet_detach_sxlock); } CURVNET_RESTORE(); } /* * The vmove flag, if set, indicates that we are called from a callpath * that is moving an interface to a different vnet instance. * * The shutdown flag, if set, indicates that we are called in the * process of shutting down a vnet instance. Currently only the * vnet_if_return SYSUNINIT function sets it. Note: we can be called * on a vnet instance shutdown without this flag being set, e.g., when * the cloned interfaces are destoyed as first thing of teardown. */ static int if_detach_internal(struct ifnet *ifp, bool vmove) { struct ifaddr *ifa; int i; struct domain *dp; #ifdef VIMAGE bool shutdown; shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); #endif /* * At this point we know the interface still was on the ifnet list * and we removed it so we are in a stable state. */ epoch_wait_preempt(net_epoch_preempt); /* * Ensure all pending EPOCH(9) callbacks have been executed. This * fixes issues about late destruction of multicast options * which lead to leave group calls, which in turn access the * belonging ifnet structure: */ NET_EPOCH_DRAIN_CALLBACKS(); /* * In any case (destroy or vmove) detach us from the groups * and remove/wait for pending events on the taskq. * XXX-BZ in theory an interface could still enqueue a taskq change? */ if_delgroups(ifp); taskqueue_drain(taskqueue_swi, &ifp->if_linktask); taskqueue_drain(taskqueue_swi, &ifp->if_addmultitask); if_down(ifp); #ifdef VIMAGE /* * On VNET shutdown abort here as the stack teardown will do all * the work top-down for us. */ if (shutdown) { /* Give interface users the chance to clean up. */ EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); /* * In case of a vmove we are done here without error. * If we would signal an error it would lead to the same * abort as if we did not find the ifnet anymore. * if_detach() calls us in void context and does not care * about an early abort notification, so life is splendid :) */ goto finish_vnet_shutdown; } #endif /* * At this point we are not tearing down a VNET and are either * going to destroy or vmove the interface and have to cleanup * accordingly. */ /* * Remove routes and flush queues. */ #ifdef ALTQ if (ALTQ_IS_ENABLED(&ifp->if_snd)) altq_disable(&ifp->if_snd); if (ALTQ_IS_ATTACHED(&ifp->if_snd)) altq_detach(&ifp->if_snd); #endif if_purgeaddrs(ifp); #ifdef INET in_ifdetach(ifp); #endif #ifdef INET6 /* * Remove all IPv6 kernel structs related to ifp. This should be done * before removing routing entries below, since IPv6 interface direct * routes are expected to be removed by the IPv6-specific kernel API. * Otherwise, the kernel will detect some inconsistency and bark it. */ in6_ifdetach(ifp); #endif if_purgemaddrs(ifp); /* Announce that the interface is gone. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL); if (!vmove) { /* * Prevent further calls into the device driver via ifnet. */ if_dead(ifp); /* * Clean up all addresses. */ IF_ADDR_WLOCK(ifp); if (!CK_STAILQ_EMPTY(&ifp->if_addrhead)) { ifa = CK_STAILQ_FIRST(&ifp->if_addrhead); CK_STAILQ_REMOVE(&ifp->if_addrhead, ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(ifa); } else IF_ADDR_WUNLOCK(ifp); } rt_flushifroutes(ifp); #ifdef VIMAGE finish_vnet_shutdown: #endif /* * We cannot hold the lock over dom_ifdetach calls as they might * sleep, for example trying to drain a callout, thus open up the * theoretical race with re-attaching. */ IF_AFDATA_LOCK(ifp); i = ifp->if_afdata_initialized; ifp->if_afdata_initialized = 0; IF_AFDATA_UNLOCK(ifp); for (dp = domains; i > 0 && dp; dp = dp->dom_next) { if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family]) { (*dp->dom_ifdetach)(ifp, ifp->if_afdata[dp->dom_family]); ifp->if_afdata[dp->dom_family] = NULL; } } return (0); } #ifdef VIMAGE /* * if_vmove() performs a limited version of if_detach() in current * vnet and if_attach()es the ifnet to the vnet specified as 2nd arg. */ static int if_vmove(struct ifnet *ifp, struct vnet *new_vnet) { #ifdef DEV_BPF u_int bif_dlt, bif_hdrlen; #endif int rc; #ifdef DEV_BPF /* * if_detach_internal() will call the eventhandler to notify * interface departure. That will detach if_bpf. We need to * safe the dlt and hdrlen so we can re-attach it later. */ bpf_get_bp_params(ifp->if_bpf, &bif_dlt, &bif_hdrlen); #endif /* * Detach from current vnet, but preserve LLADDR info, do not * mark as dead etc. so that the ifnet can be reattached later. * If we cannot find it, we lost the race to someone else. */ rc = if_detach_internal(ifp, true); if (rc != 0) return (rc); /* * Perform interface-specific reassignment tasks, if provided by * the driver. */ if (ifp->if_reassign != NULL) ifp->if_reassign(ifp, new_vnet, NULL); /* * Switch to the context of the target vnet. */ CURVNET_SET_QUIET(new_vnet); if_attach_internal(ifp, true); #ifdef DEV_BPF if (ifp->if_bpf == NULL) bpfattach(ifp, bif_dlt, bif_hdrlen); #endif CURVNET_RESTORE(); return (0); } /* * Move an ifnet to or from another child prison/vnet, specified by the jail id. */ static int if_vmove_loan(struct thread *td, struct ifnet *ifp, char *ifname, int jid) { struct prison *pr; struct ifnet *difp; int error; bool found __diagused; bool shutdown; MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Do not try to move the iface from and to the same prison. */ if (pr->pr_vnet == ifp->if_vnet) { prison_free(pr); return (EEXIST); } /* Make sure the named iface does not exists in the dst. prison/vnet. */ /* XXX Lock interfaces to avoid races. */ CURVNET_SET_QUIET(pr->pr_vnet); difp = ifunit(ifname); if (difp != NULL) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } sx_xlock(&ifnet_detach_sxlock); /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); if (shutdown) { sx_xunlock(&ifnet_detach_sxlock); CURVNET_RESTORE(); prison_free(pr); return (EBUSY); } CURVNET_RESTORE(); found = if_unlink_ifnet(ifp, true); if (! found) { sx_xunlock(&ifnet_detach_sxlock); CURVNET_RESTORE(); prison_free(pr); return (ENODEV); } /* Move the interface into the child jail/vnet. */ error = if_vmove(ifp, pr->pr_vnet); /* Report the new if_xname back to the userland on success. */ if (error == 0) sprintf(ifname, "%s", ifp->if_xname); sx_xunlock(&ifnet_detach_sxlock); prison_free(pr); return (error); } static int if_vmove_reclaim(struct thread *td, char *ifname, int jid) { struct prison *pr; struct vnet *vnet_dst; struct ifnet *ifp; int error, found __diagused; bool shutdown; /* Try to find the prison within our visibility. */ sx_slock(&allprison_lock); pr = prison_find_child(td->td_ucred->cr_prison, jid); sx_sunlock(&allprison_lock); if (pr == NULL) return (ENXIO); prison_hold_locked(pr); mtx_unlock(&pr->pr_mtx); /* Make sure the named iface exists in the source prison/vnet. */ CURVNET_SET(pr->pr_vnet); ifp = ifunit(ifname); /* XXX Lock to avoid races. */ if (ifp == NULL) { CURVNET_RESTORE(); prison_free(pr); return (ENXIO); } /* Do not try to move the iface from and to the same prison. */ vnet_dst = TD_TO_VNET(td); if (vnet_dst == ifp->if_vnet) { CURVNET_RESTORE(); prison_free(pr); return (EEXIST); } /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(ifp->if_vnet); if (shutdown) { CURVNET_RESTORE(); prison_free(pr); return (EBUSY); } /* Get interface back from child jail/vnet. */ found = if_unlink_ifnet(ifp, true); MPASS(found); sx_xlock(&ifnet_detach_sxlock); error = if_vmove(ifp, vnet_dst); sx_xunlock(&ifnet_detach_sxlock); CURVNET_RESTORE(); /* Report the new if_xname back to the userland on success. */ if (error == 0) sprintf(ifname, "%s", ifp->if_xname); prison_free(pr); return (error); } #endif /* VIMAGE */ /* * Add a group to an interface */ int if_addgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; struct ifg_group *ifg = NULL; struct ifg_member *ifgm; int new = 0; if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' && groupname[strlen(groupname) - 1] <= '9') return (EINVAL); IFNET_WLOCK(); CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) { IFNET_WUNLOCK(); return (EEXIST); } if ((ifgl = malloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL) { IFNET_WUNLOCK(); return (ENOMEM); } if ((ifgm = malloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (!strcmp(ifg->ifg_group, groupname)) break; if (ifg == NULL) { if ((ifg = malloc(sizeof(*ifg), M_TEMP, M_NOWAIT)) == NULL) { free(ifgl, M_TEMP); free(ifgm, M_TEMP); IFNET_WUNLOCK(); return (ENOMEM); } strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group)); ifg->ifg_refcnt = 0; CK_STAILQ_INIT(&ifg->ifg_members); CK_STAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next); new = 1; } ifg->ifg_refcnt++; ifgl->ifgl_group = ifg; ifgm->ifgm_ifp = ifp; IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next); CK_STAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next); IF_ADDR_WUNLOCK(ifp); IFNET_WUNLOCK(); if (new) EVENTHANDLER_INVOKE(group_attach_event, ifg); EVENTHANDLER_INVOKE(group_change_event, groupname); return (0); } /* * Helper function to remove a group out of an interface. Expects the global * ifnet lock to be write-locked, and drops it before returning. */ static void _if_delgroup_locked(struct ifnet *ifp, struct ifg_list *ifgl, const char *groupname) { struct ifg_member *ifgm; bool freeifgl; IFNET_WLOCK_ASSERT(); IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_groups, ifgl, ifg_list, ifgl_next); IF_ADDR_WUNLOCK(ifp); CK_STAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next) { if (ifgm->ifgm_ifp == ifp) { CK_STAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifg_member, ifgm_next); break; } } if (--ifgl->ifgl_group->ifg_refcnt == 0) { CK_STAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_group, ifg_next); freeifgl = true; } else { freeifgl = false; } IFNET_WUNLOCK(); epoch_wait_preempt(net_epoch_preempt); if (freeifgl) { EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group); free(ifgl->ifgl_group, M_TEMP); } free(ifgm, M_TEMP); free(ifgl, M_TEMP); EVENTHANDLER_INVOKE(group_change_event, groupname); } /* * Remove a group from an interface */ int if_delgroup(struct ifnet *ifp, const char *groupname) { struct ifg_list *ifgl; IFNET_WLOCK(); CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) if (strcmp(ifgl->ifgl_group->ifg_group, groupname) == 0) break; if (ifgl == NULL) { IFNET_WUNLOCK(); return (ENOENT); } _if_delgroup_locked(ifp, ifgl, groupname); return (0); } /* * Remove an interface from all groups */ static void if_delgroups(struct ifnet *ifp) { struct ifg_list *ifgl; char groupname[IFNAMSIZ]; IFNET_WLOCK(); while ((ifgl = CK_STAILQ_FIRST(&ifp->if_groups)) != NULL) { strlcpy(groupname, ifgl->ifgl_group->ifg_group, IFNAMSIZ); _if_delgroup_locked(ifp, ifgl, groupname); IFNET_WLOCK(); } IFNET_WUNLOCK(); } /* * Stores all groups from an interface in memory pointed to by ifgr. */ static int if_getgroup(struct ifgroupreq *ifgr, struct ifnet *ifp) { int len, error; struct ifg_list *ifgl; struct ifg_req ifgrq, *ifgp; NET_EPOCH_ASSERT(); if (ifgr->ifgr_len == 0) { CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) ifgr->ifgr_len += sizeof(struct ifg_req); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; /* XXX: wire */ CK_STAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) { if (len < sizeof(ifgrq)) return (EINVAL); bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group, sizeof(ifgrq.ifgrq_group)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) return (error); len -= sizeof(ifgrq); ifgp++; } return (0); } /* * Stores all members of a group in memory pointed to by igfr */ static int if_getgroupmembers(struct ifgroupreq *ifgr) { struct ifg_group *ifg; struct ifg_member *ifgm; struct ifg_req ifgrq, *ifgp; int len, error; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifg, &V_ifg_head, ifg_next) if (strcmp(ifg->ifg_group, ifgr->ifgr_name) == 0) break; if (ifg == NULL) { IFNET_RUNLOCK(); return (ENOENT); } if (ifgr->ifgr_len == 0) { CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) ifgr->ifgr_len += sizeof(ifgrq); IFNET_RUNLOCK(); return (0); } len = ifgr->ifgr_len; ifgp = ifgr->ifgr_groups; CK_STAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) { if (len < sizeof(ifgrq)) { IFNET_RUNLOCK(); return (EINVAL); } bzero(&ifgrq, sizeof ifgrq); strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname, sizeof(ifgrq.ifgrq_member)); if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) { IFNET_RUNLOCK(); return (error); } len -= sizeof(ifgrq); ifgp++; } IFNET_RUNLOCK(); return (0); } /* * Return counter values from counter(9)s stored in ifnet. */ uint64_t if_get_counter_default(struct ifnet *ifp, ift_counter cnt) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); return (counter_u64_fetch(ifp->if_counters[cnt])); } /* * Increase an ifnet counter. Usually used for counters shared * between the stack and a driver, but function supports them all. */ void if_inc_counter(struct ifnet *ifp, ift_counter cnt, int64_t inc) { KASSERT(cnt < IFCOUNTERS, ("%s: invalid cnt %d", __func__, cnt)); counter_u64_add(ifp->if_counters[cnt], inc); } /* * Copy data from ifnet to userland API structure if_data. */ void if_data_copy(struct ifnet *ifp, struct if_data *ifd) { ifd->ifi_type = ifp->if_type; ifd->ifi_physical = 0; ifd->ifi_addrlen = ifp->if_addrlen; ifd->ifi_hdrlen = ifp->if_hdrlen; ifd->ifi_link_state = ifp->if_link_state; ifd->ifi_vhid = 0; ifd->ifi_datalen = sizeof(struct if_data); ifd->ifi_mtu = ifp->if_mtu; ifd->ifi_metric = ifp->if_metric; ifd->ifi_baudrate = ifp->if_baudrate; ifd->ifi_hwassist = ifp->if_hwassist; ifd->ifi_epoch = ifp->if_epoch; ifd->ifi_lastchange = ifp->if_lastchange; ifd->ifi_ipackets = ifp->if_get_counter(ifp, IFCOUNTER_IPACKETS); ifd->ifi_ierrors = ifp->if_get_counter(ifp, IFCOUNTER_IERRORS); ifd->ifi_opackets = ifp->if_get_counter(ifp, IFCOUNTER_OPACKETS); ifd->ifi_oerrors = ifp->if_get_counter(ifp, IFCOUNTER_OERRORS); ifd->ifi_collisions = ifp->if_get_counter(ifp, IFCOUNTER_COLLISIONS); ifd->ifi_ibytes = ifp->if_get_counter(ifp, IFCOUNTER_IBYTES); ifd->ifi_obytes = ifp->if_get_counter(ifp, IFCOUNTER_OBYTES); ifd->ifi_imcasts = ifp->if_get_counter(ifp, IFCOUNTER_IMCASTS); ifd->ifi_omcasts = ifp->if_get_counter(ifp, IFCOUNTER_OMCASTS); ifd->ifi_iqdrops = ifp->if_get_counter(ifp, IFCOUNTER_IQDROPS); ifd->ifi_oqdrops = ifp->if_get_counter(ifp, IFCOUNTER_OQDROPS); ifd->ifi_noproto = ifp->if_get_counter(ifp, IFCOUNTER_NOPROTO); } /* * Initialization, destruction and refcounting functions for ifaddrs. */ struct ifaddr * ifa_alloc(size_t size, int flags) { struct ifaddr *ifa; KASSERT(size >= sizeof(struct ifaddr), ("%s: invalid size %zu", __func__, size)); ifa = malloc(size, M_IFADDR, M_ZERO | flags); if (ifa == NULL) return (NULL); if ((ifa->ifa_opackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ipackets = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_obytes = counter_u64_alloc(flags)) == NULL) goto fail; if ((ifa->ifa_ibytes = counter_u64_alloc(flags)) == NULL) goto fail; refcount_init(&ifa->ifa_refcnt, 1); return (ifa); fail: /* free(NULL) is okay */ counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); return (NULL); } void ifa_ref(struct ifaddr *ifa) { u_int old __diagused; old = refcount_acquire(&ifa->ifa_refcnt); KASSERT(old > 0, ("%s: ifa %p has 0 refs", __func__, ifa)); } int ifa_try_ref(struct ifaddr *ifa) { NET_EPOCH_ASSERT(); return (refcount_acquire_if_not_zero(&ifa->ifa_refcnt)); } static void ifa_destroy(epoch_context_t ctx) { struct ifaddr *ifa; ifa = __containerof(ctx, struct ifaddr, ifa_epoch_ctx); counter_u64_free(ifa->ifa_opackets); counter_u64_free(ifa->ifa_ipackets); counter_u64_free(ifa->ifa_obytes); counter_u64_free(ifa->ifa_ibytes); free(ifa, M_IFADDR); } void ifa_free(struct ifaddr *ifa) { if (refcount_release(&ifa->ifa_refcnt)) NET_EPOCH_CALL(ifa_destroy, &ifa->ifa_epoch_ctx); } /* * XXX: Because sockaddr_dl has deeper structure than the sockaddr * structs used to represent other address families, it is necessary * to perform a different comparison. */ #define sa_dl_equal(a1, a2) \ ((((const struct sockaddr_dl *)(a1))->sdl_len == \ ((const struct sockaddr_dl *)(a2))->sdl_len) && \ (bcmp(CLLADDR((const struct sockaddr_dl *)(a1)), \ CLLADDR((const struct sockaddr_dl *)(a2)), \ ((const struct sockaddr_dl *)(a1))->sdl_alen) == 0)) /* * Locate an interface based on a complete address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithaddr(const struct sockaddr *addr) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (sa_equal(addr, ifa->ifa_addr)) { goto done; } /* IP6 doesn't have broadcast */ if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { goto done; } } } ifa = NULL; done: return (ifa); } int ifa_ifwithaddr_check(const struct sockaddr *addr) { struct epoch_tracker et; int rc; NET_EPOCH_ENTER(et); rc = (ifa_ifwithaddr(addr) != NULL); NET_EPOCH_EXIT(et); return (rc); } /* * Locate an interface based on the broadcast address. */ /* ARGSUSED */ struct ifaddr * ifa_ifwithbroadaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if ((ifp->if_flags & IFF_BROADCAST) && ifa->ifa_broadaddr && ifa->ifa_broadaddr->sa_len != 0 && sa_equal(ifa->ifa_broadaddr, addr)) { goto done; } } } ifa = NULL; done: return (ifa); } /* * Locate the point to point interface with a given destination address. */ /*ARGSUSED*/ struct ifaddr * ifa_ifwithdstaddr(const struct sockaddr *addr, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((ifp->if_flags & IFF_POINTOPOINT) == 0) continue; if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != addr->sa_family) continue; if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { goto done; } } } ifa = NULL; done: return (ifa); } /* * Find an interface on a specific network. If many, choice * is most specific found. */ struct ifaddr * ifa_ifwithnet(const struct sockaddr *addr, int ignore_ptp, int fibnum) { struct ifnet *ifp; struct ifaddr *ifa; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; const char *addr_data = addr->sa_data, *cplim; NET_EPOCH_ASSERT(); /* * AF_LINK addresses can be looked up directly by their index number, * so do that if we can. */ if (af == AF_LINK) { ifp = ifnet_byindex( ((const struct sockaddr_dl *)addr)->sdl_index); return (ifp ? ifp->if_addr : NULL); } /* * Scan though each interface, looking for ones that have addresses * in this address family and the requested fib. */ CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if ((fibnum != RT_ALL_FIBS) && (ifp->if_fib != fibnum)) continue; CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { const char *cp, *cp2, *cp3; if (ifa->ifa_addr->sa_family != af) next: continue; if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT && !ignore_ptp) { /* * This is a bit broken as it doesn't * take into account that the remote end may * be a single node in the network we are * looking for. * The trouble is that we don't know the * netmask for the remote end. */ if (ifa->ifa_dstaddr != NULL && sa_equal(addr, ifa->ifa_dstaddr)) { goto done; } } else { /* * Scan all the bits in the ifa's address. * If a bit dissagrees with what we are * looking for, mask it with the netmask * to see if it really matters. * (A byte at a time) */ if (ifa->ifa_netmask == 0) continue; cp = addr_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; while (cp3 < cplim) if ((*cp++ ^ *cp2++) & *cp3++) goto next; /* next address! */ /* * If the netmask of what we just found * is more specific than what we had before * (if we had one), or if the virtual status * of new prefix is better than of the old one, * then remember the new one before continuing * to search for an even better one. */ if (ifa_maybe == NULL || ifa_preferred(ifa_maybe, ifa) || rn_refines((caddr_t)ifa->ifa_netmask, (caddr_t)ifa_maybe->ifa_netmask)) { ifa_maybe = ifa; } } } } ifa = ifa_maybe; ifa_maybe = NULL; done: return (ifa); } /* * Find an interface address specific to an interface best matching * a given address. */ struct ifaddr * ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp) { struct ifaddr *ifa; const char *cp, *cp2, *cp3; char *cplim; struct ifaddr *ifa_maybe = NULL; u_int af = addr->sa_family; if (af >= AF_MAX) return (NULL); NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != af) continue; if (ifa_maybe == NULL) ifa_maybe = ifa; if (ifa->ifa_netmask == 0) { if (sa_equal(addr, ifa->ifa_addr) || (ifa->ifa_dstaddr && sa_equal(addr, ifa->ifa_dstaddr))) goto done; continue; } if (ifp->if_flags & IFF_POINTOPOINT) { if (sa_equal(addr, ifa->ifa_dstaddr)) goto done; } else { cp = addr->sa_data; cp2 = ifa->ifa_addr->sa_data; cp3 = ifa->ifa_netmask->sa_data; cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask; for (; cp3 < cplim; cp3++) if ((*cp++ ^ *cp2++) & *cp3) break; if (cp3 == cplim) goto done; } } ifa = ifa_maybe; done: return (ifa); } /* * See whether new ifa is better than current one: * 1) A non-virtual one is preferred over virtual. * 2) A virtual in master state preferred over any other state. * * Used in several address selecting functions. */ int ifa_preferred(struct ifaddr *cur, struct ifaddr *next) { return (cur->ifa_carp && (!next->ifa_carp || ((*carp_master_p)(next) && !(*carp_master_p)(cur)))); } struct sockaddr_dl * link_alloc_sdl(size_t size, int flags) { return (malloc(size, M_TEMP, flags)); } void link_free_sdl(struct sockaddr *sa) { free(sa, M_TEMP); } /* * Fills in given sdl with interface basic info. * Returns pointer to filled sdl. */ struct sockaddr_dl * link_init_sdl(struct ifnet *ifp, struct sockaddr *paddr, u_char iftype) { struct sockaddr_dl *sdl; sdl = (struct sockaddr_dl *)paddr; memset(sdl, 0, sizeof(struct sockaddr_dl)); sdl->sdl_len = sizeof(struct sockaddr_dl); sdl->sdl_family = AF_LINK; sdl->sdl_index = ifp->if_index; sdl->sdl_type = iftype; return (sdl); } /* * Mark an interface down and notify protocols of * the transition. */ static void if_unroute(struct ifnet *ifp, int flag, int fam) { - struct ifaddr *ifa; - struct epoch_tracker et; KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP")); ifp->if_flags &= ~flag; getmicrotime(&ifp->if_lastchange); - NET_EPOCH_ENTER(et); - CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) - if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) - pfctlinput(PRC_IFDOWN, ifa->ifa_addr); - NET_EPOCH_EXIT(et); ifp->if_qflush(ifp); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); } /* * Mark an interface up and notify protocols of * the transition. */ static void if_route(struct ifnet *ifp, int flag, int fam) { - struct ifaddr *ifa; - struct epoch_tracker et; KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP")); ifp->if_flags |= flag; getmicrotime(&ifp->if_lastchange); - NET_EPOCH_ENTER(et); - CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) - if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family)) - pfctlinput(PRC_IFUP, ifa->ifa_addr); - NET_EPOCH_EXIT(et); if (ifp->if_carp) (*carp_linkstate_p)(ifp); rt_ifmsg(ifp); #ifdef INET6 in6_if_up(ifp); #endif } void (*vlan_link_state_p)(struct ifnet *); /* XXX: private from if_vlan */ void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */ struct ifnet *(*vlan_trunkdev_p)(struct ifnet *); struct ifnet *(*vlan_devat_p)(struct ifnet *, uint16_t); int (*vlan_tag_p)(struct ifnet *, uint16_t *); int (*vlan_pcp_p)(struct ifnet *, uint16_t *); int (*vlan_setcookie_p)(struct ifnet *, void *); void *(*vlan_cookie_p)(struct ifnet *); /* * Handle a change in the interface link state. To avoid LORs * between driver lock and upper layer locks, as well as possible * recursions, we post event to taskqueue, and all job * is done in static do_link_state_change(). */ void if_link_state_change(struct ifnet *ifp, int link_state) { /* Return if state hasn't changed. */ if (ifp->if_link_state == link_state) return; ifp->if_link_state = link_state; /* XXXGL: reference ifp? */ taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask); } static void do_link_state_change(void *arg, int pending) { struct ifnet *ifp; int link_state; ifp = arg; link_state = ifp->if_link_state; CURVNET_SET(ifp->if_vnet); rt_ifmsg(ifp); if (ifp->if_vlantrunk != NULL) (*vlan_link_state_p)(ifp); if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) && ifp->if_l2com != NULL) (*ng_ether_link_state_p)(ifp, link_state); if (ifp->if_carp) (*carp_linkstate_p)(ifp); if (ifp->if_bridge) ifp->if_bridge_linkstate(ifp); if (ifp->if_lagg) (*lagg_linkstate_p)(ifp, link_state); if (IS_DEFAULT_VNET(curvnet)) devctl_notify("IFNET", ifp->if_xname, (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL); if (pending > 1) if_printf(ifp, "%d link states coalesced\n", pending); if (log_link_state_change) if_printf(ifp, "link state changed to %s\n", (link_state == LINK_STATE_UP) ? "UP" : "DOWN" ); EVENTHANDLER_INVOKE(ifnet_link_event, ifp, link_state); CURVNET_RESTORE(); } /* * Mark an interface down and notify protocols of * the transition. */ void if_down(struct ifnet *ifp) { EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_DOWN); if_unroute(ifp, IFF_UP, AF_UNSPEC); } /* * Mark an interface up and notify protocols of * the transition. */ void if_up(struct ifnet *ifp) { if_route(ifp, IFF_UP, AF_UNSPEC); EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_UP); } /* * Flush an interface queue. */ void if_qflush(struct ifnet *ifp) { struct mbuf *m, *n; struct ifaltq *ifq; ifq = &ifp->if_snd; IFQ_LOCK(ifq); #ifdef ALTQ if (ALTQ_IS_ENABLED(ifq)) ALTQ_PURGE(ifq); #endif n = ifq->ifq_head; while ((m = n) != NULL) { n = m->m_nextpkt; m_freem(m); } ifq->ifq_head = 0; ifq->ifq_tail = 0; ifq->ifq_len = 0; IFQ_UNLOCK(ifq); } /* * Map interface name to interface structure pointer, with or without * returning a reference. */ struct ifnet * ifunit_ref(const char *name) { struct epoch_tracker et; struct ifnet *ifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0 && !(ifp->if_flags & IFF_DYING)) break; } if (ifp != NULL) { if_ref(ifp); MPASS(ifindex_table[ifp->if_index].ife_ifnet == ifp); } NET_EPOCH_EXIT(et); return (ifp); } struct ifnet * ifunit(const char *name) { struct epoch_tracker et; struct ifnet *ifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0) break; } NET_EPOCH_EXIT(et); return (ifp); } void * ifr_buffer_get_buffer(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return ((void *)(uintptr_t) ifrup->ifr32.ifr_ifru.ifru_buffer.buffer); #endif return (ifrup->ifr.ifr_ifru.ifru_buffer.buffer); } static void ifr_buffer_set_buffer_null(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) ifrup->ifr32.ifr_ifru.ifru_buffer.buffer = 0; else #endif ifrup->ifr.ifr_ifru.ifru_buffer.buffer = NULL; } size_t ifr_buffer_get_length(void *data) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return (ifrup->ifr32.ifr_ifru.ifru_buffer.length); #endif return (ifrup->ifr.ifr_ifru.ifru_buffer.length); } static void ifr_buffer_set_length(void *data, size_t len) { union ifreq_union *ifrup; ifrup = data; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) ifrup->ifr32.ifr_ifru.ifru_buffer.length = len; else #endif ifrup->ifr.ifr_ifru.ifru_buffer.length = len; } void * ifr_data_get_ptr(void *ifrp) { union ifreq_union *ifrup; ifrup = ifrp; #ifdef COMPAT_FREEBSD32 if (SV_CURPROC_FLAG(SV_ILP32)) return ((void *)(uintptr_t) ifrup->ifr32.ifr_ifru.ifru_data); #endif return (ifrup->ifr.ifr_ifru.ifru_data); } struct ifcap_nv_bit_name { int cap_bit; const char *cap_name; }; #define CAPNV(x) {.cap_bit = IFCAP_##x, \ .cap_name = __CONCAT(IFCAP_, __CONCAT(x, _NAME)) } const struct ifcap_nv_bit_name ifcap_nv_bit_names[] = { CAPNV(RXCSUM), CAPNV(TXCSUM), CAPNV(NETCONS), CAPNV(VLAN_MTU), CAPNV(VLAN_HWTAGGING), CAPNV(JUMBO_MTU), CAPNV(POLLING), CAPNV(VLAN_HWCSUM), CAPNV(TSO4), CAPNV(TSO6), CAPNV(LRO), CAPNV(WOL_UCAST), CAPNV(WOL_MCAST), CAPNV(WOL_MAGIC), CAPNV(TOE4), CAPNV(TOE6), CAPNV(VLAN_HWFILTER), CAPNV(VLAN_HWTSO), CAPNV(LINKSTATE), CAPNV(NETMAP), CAPNV(RXCSUM_IPV6), CAPNV(TXCSUM_IPV6), CAPNV(HWSTATS), CAPNV(TXRTLMT), CAPNV(HWRXTSTMP), CAPNV(MEXTPG), CAPNV(TXTLS4), CAPNV(TXTLS6), CAPNV(VXLAN_HWCSUM), CAPNV(VXLAN_HWTSO), CAPNV(TXTLS_RTLMT), {0, NULL} }; #define CAP2NV(x) {.cap_bit = IFCAP2_##x, \ .cap_name = __CONCAT(IFCAP2_, __CONCAT(x, _NAME)) } const struct ifcap_nv_bit_name ifcap2_nv_bit_names[] = { CAP2NV(RXTLS4), CAP2NV(RXTLS6), {0, NULL} }; #undef CAPNV #undef CAP2NV int if_capnv_to_capint(const nvlist_t *nv, int *old_cap, const struct ifcap_nv_bit_name *nn, bool all) { int i, res; res = 0; for (i = 0; nn[i].cap_name != NULL; i++) { if (nvlist_exists_bool(nv, nn[i].cap_name)) { if (all || nvlist_get_bool(nv, nn[i].cap_name)) res |= nn[i].cap_bit; } else { res |= *old_cap & nn[i].cap_bit; } } return (res); } void if_capint_to_capnv(nvlist_t *nv, const struct ifcap_nv_bit_name *nn, int ifr_cap, int ifr_req) { int i; for (i = 0; nn[i].cap_name != NULL; i++) { if ((nn[i].cap_bit & ifr_cap) != 0) { nvlist_add_bool(nv, nn[i].cap_name, (nn[i].cap_bit & ifr_req) != 0); } } } /* * Hardware specific interface ioctls. */ int ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td) { struct ifreq *ifr; int error = 0, do_ifup = 0; int new_flags, temp_flags; size_t namelen, onamelen; size_t descrlen, nvbuflen; char *descrbuf, *odescrbuf; char new_name[IFNAMSIZ]; char old_name[IFNAMSIZ], strbuf[IFNAMSIZ + 8]; struct ifaddr *ifa; struct sockaddr_dl *sdl; void *buf; nvlist_t *nvcap; struct siocsifcapnv_driver_data drv_ioctl_data; ifr = (struct ifreq *)data; switch (cmd) { case SIOCGIFINDEX: ifr->ifr_index = ifp->if_index; break; case SIOCGIFFLAGS: temp_flags = ifp->if_flags | ifp->if_drv_flags; ifr->ifr_flags = temp_flags & 0xffff; ifr->ifr_flagshigh = temp_flags >> 16; break; case SIOCGIFCAP: ifr->ifr_reqcap = ifp->if_capabilities; ifr->ifr_curcap = ifp->if_capenable; break; case SIOCGIFCAPNV: if ((ifp->if_capabilities & IFCAP_NV) == 0) { error = EINVAL; break; } buf = NULL; nvcap = nvlist_create(0); for (;;) { if_capint_to_capnv(nvcap, ifcap_nv_bit_names, ifp->if_capabilities, ifp->if_capenable); if_capint_to_capnv(nvcap, ifcap2_nv_bit_names, ifp->if_capabilities2, ifp->if_capenable2); error = (*ifp->if_ioctl)(ifp, SIOCGIFCAPNV, __DECONST(caddr_t, nvcap)); if (error != 0) { if_printf(ifp, "SIOCGIFCAPNV driver mistake: nvlist error %d\n", error); break; } buf = nvlist_pack(nvcap, &nvbuflen); if (buf == NULL) { error = nvlist_error(nvcap); if (error == 0) error = EDOOFUS; break; } if (nvbuflen > ifr->ifr_cap_nv.buf_length) { ifr->ifr_cap_nv.length = nvbuflen; ifr->ifr_cap_nv.buffer = NULL; error = EFBIG; break; } ifr->ifr_cap_nv.length = nvbuflen; error = copyout(buf, ifr->ifr_cap_nv.buffer, nvbuflen); break; } free(buf, M_NVLIST); nvlist_destroy(nvcap); break; case SIOCGIFDATA: { struct if_data ifd; /* Ensure uninitialised padding is not leaked. */ memset(&ifd, 0, sizeof(ifd)); if_data_copy(ifp, &ifd); error = copyout(&ifd, ifr_data_get_ptr(ifr), sizeof(ifd)); break; } #ifdef MAC case SIOCGIFMAC: error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp); break; #endif case SIOCGIFMETRIC: ifr->ifr_metric = ifp->if_metric; break; case SIOCGIFMTU: ifr->ifr_mtu = ifp->if_mtu; break; case SIOCGIFPHYS: /* XXXGL: did this ever worked? */ ifr->ifr_phys = 0; break; case SIOCGIFDESCR: error = 0; sx_slock(&ifdescr_sx); if (ifp->if_description == NULL) error = ENOMSG; else { /* space for terminating nul */ descrlen = strlen(ifp->if_description) + 1; if (ifr_buffer_get_length(ifr) < descrlen) ifr_buffer_set_buffer_null(ifr); else error = copyout(ifp->if_description, ifr_buffer_get_buffer(ifr), descrlen); ifr_buffer_set_length(ifr, descrlen); } sx_sunlock(&ifdescr_sx); break; case SIOCSIFDESCR: error = priv_check(td, PRIV_NET_SETIFDESCR); if (error) return (error); /* * Copy only (length-1) bytes to make sure that * if_description is always nul terminated. The * length parameter is supposed to count the * terminating nul in. */ if (ifr_buffer_get_length(ifr) > ifdescr_maxlen) return (ENAMETOOLONG); else if (ifr_buffer_get_length(ifr) == 0) descrbuf = NULL; else { descrbuf = malloc(ifr_buffer_get_length(ifr), M_IFDESCR, M_WAITOK | M_ZERO); error = copyin(ifr_buffer_get_buffer(ifr), descrbuf, ifr_buffer_get_length(ifr) - 1); if (error) { free(descrbuf, M_IFDESCR); break; } } sx_xlock(&ifdescr_sx); odescrbuf = ifp->if_description; ifp->if_description = descrbuf; sx_xunlock(&ifdescr_sx); getmicrotime(&ifp->if_lastchange); free(odescrbuf, M_IFDESCR); break; case SIOCGIFFIB: ifr->ifr_fib = ifp->if_fib; break; case SIOCSIFFIB: error = priv_check(td, PRIV_NET_SETIFFIB); if (error) return (error); if (ifr->ifr_fib >= rt_numfibs) return (EINVAL); ifp->if_fib = ifr->ifr_fib; break; case SIOCSIFFLAGS: error = priv_check(td, PRIV_NET_SETIFFLAGS); if (error) return (error); /* * Currently, no driver owned flags pass the IFF_CANTCHANGE * check, so we don't need special handling here yet. */ new_flags = (ifr->ifr_flags & 0xffff) | (ifr->ifr_flagshigh << 16); if (ifp->if_flags & IFF_UP && (new_flags & IFF_UP) == 0) { if_down(ifp); } else if (new_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) { do_ifup = 1; } /* See if permanently promiscuous mode bit is about to flip */ if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) { if (new_flags & IFF_PPROMISC) ifp->if_flags |= IFF_PROMISC; else if (ifp->if_pcount == 0) ifp->if_flags &= ~IFF_PROMISC; if (log_promisc_mode_change) if_printf(ifp, "permanently promiscuous mode %s\n", ((new_flags & IFF_PPROMISC) ? "enabled" : "disabled")); } ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) | (new_flags &~ IFF_CANTCHANGE); if (ifp->if_ioctl) { (void) (*ifp->if_ioctl)(ifp, cmd, data); } if (do_ifup) if_up(ifp); getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAP: error = priv_check(td, PRIV_NET_SETIFCAP); if (error != 0) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if (ifr->ifr_reqcap & ~ifp->if_capabilities) return (EINVAL); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFCAPNV: error = priv_check(td, PRIV_NET_SETIFCAP); if (error != 0) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); if ((ifp->if_capabilities & IFCAP_NV) == 0) return (EINVAL); if (ifr->ifr_cap_nv.length > IFR_CAP_NV_MAXBUFSIZE) return (EINVAL); nvcap = NULL; buf = malloc(ifr->ifr_cap_nv.length, M_TEMP, M_WAITOK); for (;;) { error = copyin(ifr->ifr_cap_nv.buffer, buf, ifr->ifr_cap_nv.length); if (error != 0) break; nvcap = nvlist_unpack(buf, ifr->ifr_cap_nv.length, 0); if (nvcap == NULL) { error = EINVAL; break; } drv_ioctl_data.reqcap = if_capnv_to_capint(nvcap, &ifp->if_capenable, ifcap_nv_bit_names, false); if ((drv_ioctl_data.reqcap & ~ifp->if_capabilities) != 0) { error = EINVAL; break; } drv_ioctl_data.reqcap2 = if_capnv_to_capint(nvcap, &ifp->if_capenable2, ifcap2_nv_bit_names, false); if ((drv_ioctl_data.reqcap2 & ~ifp->if_capabilities2) != 0) { error = EINVAL; break; } drv_ioctl_data.nvcap = nvcap; error = (*ifp->if_ioctl)(ifp, SIOCSIFCAPNV, (caddr_t)&drv_ioctl_data); break; } nvlist_destroy(nvcap); free(buf, M_TEMP); if (error == 0) getmicrotime(&ifp->if_lastchange); break; #ifdef MAC case SIOCSIFMAC: error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp); break; #endif case SIOCSIFNAME: error = priv_check(td, PRIV_NET_SETIFNAME); if (error) return (error); error = copyinstr(ifr_data_get_ptr(ifr), new_name, IFNAMSIZ, NULL); if (error != 0) return (error); if (new_name[0] == '\0') return (EINVAL); if (strcmp(new_name, ifp->if_xname) == 0) break; if (ifunit(new_name) != NULL) return (EEXIST); /* * XXX: Locking. Nothing else seems to lock if_flags, * and there are numerous other races with the * ifunit() checks not being atomic with namespace * changes (renames, vmoves, if_attach, etc). */ ifp->if_flags |= IFF_RENAMING; /* Announce the departure of the interface. */ rt_ifannouncemsg(ifp, IFAN_DEPARTURE); EVENTHANDLER_INVOKE(ifnet_departure_event, ifp); if_printf(ifp, "changing name to '%s'\n", new_name); IF_ADDR_WLOCK(ifp); strlcpy(old_name, ifp->if_xname, sizeof(old_name)); strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname)); ifa = ifp->if_addr; sdl = (struct sockaddr_dl *)ifa->ifa_addr; namelen = strlen(new_name); onamelen = sdl->sdl_nlen; /* * Move the address if needed. This is safe because we * allocate space for a name of length IFNAMSIZ when we * create this in if_attach(). */ if (namelen != onamelen) { bcopy(sdl->sdl_data + onamelen, sdl->sdl_data + namelen, sdl->sdl_alen); } bcopy(new_name, sdl->sdl_data, namelen); sdl->sdl_nlen = namelen; sdl = (struct sockaddr_dl *)ifa->ifa_netmask; bzero(sdl->sdl_data, onamelen); while (namelen != 0) sdl->sdl_data[--namelen] = 0xff; IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp); /* Announce the return of the interface. */ rt_ifannouncemsg(ifp, IFAN_ARRIVAL); ifp->if_flags &= ~IFF_RENAMING; snprintf(strbuf, sizeof(strbuf), "name=%s", new_name); devctl_notify("IFNET", old_name, "RENAME", strbuf); break; #ifdef VIMAGE case SIOCSIFVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error) return (error); error = if_vmove_loan(td, ifp, ifr->ifr_name, ifr->ifr_jid); break; #endif case SIOCSIFMETRIC: error = priv_check(td, PRIV_NET_SETIFMETRIC); if (error) return (error); ifp->if_metric = ifr->ifr_metric; getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYS: error = priv_check(td, PRIV_NET_SETIFPHYS); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFMTU: { u_long oldmtu = ifp->if_mtu; error = priv_check(td, PRIV_NET_SETIFMTU); if (error) return (error); if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) return (EINVAL); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); /* Disallow MTU changes on bridge member interfaces. */ if (ifp->if_bridge) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) { getmicrotime(&ifp->if_lastchange); rt_ifmsg(ifp); #ifdef INET DEBUGNET_NOTIFY_MTU(ifp); #endif } /* * If the link MTU changed, do network layer specific procedure. */ if (ifp->if_mtu != oldmtu) { #ifdef INET6 nd6_setmtu(ifp); #endif rt_updatemtu(ifp); } break; } case SIOCADDMULTI: case SIOCDELMULTI: if (cmd == SIOCADDMULTI) error = priv_check(td, PRIV_NET_ADDMULTI); else error = priv_check(td, PRIV_NET_DELMULTI); if (error) return (error); /* Don't allow group membership on non-multicast interfaces. */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return (EOPNOTSUPP); /* Don't let users screw up protocols' entries. */ if (ifr->ifr_addr.sa_family != AF_LINK) return (EINVAL); if (cmd == SIOCADDMULTI) { struct epoch_tracker et; struct ifmultiaddr *ifma; /* * Userland is only permitted to join groups once * via the if_addmulti() KPI, because it cannot hold * struct ifmultiaddr * between calls. It may also * lose a race while we check if the membership * already exists. */ NET_EPOCH_ENTER(et); ifma = if_findmulti(ifp, &ifr->ifr_addr); NET_EPOCH_EXIT(et); if (ifma != NULL) error = EADDRINUSE; else error = if_addmulti(ifp, &ifr->ifr_addr, &ifma); } else { error = if_delmulti(ifp, &ifr->ifr_addr); } if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCSIFPHYADDR: case SIOCDIFPHYADDR: #ifdef INET6 case SIOCSIFPHYADDR_IN6: #endif case SIOCSIFMEDIA: case SIOCSIFGENERIC: error = priv_check(td, PRIV_NET_HWIOCTL); if (error) return (error); if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); if (error == 0) getmicrotime(&ifp->if_lastchange); break; case SIOCGIFSTATUS: case SIOCGIFPSRCADDR: case SIOCGIFPDSTADDR: case SIOCGIFMEDIA: case SIOCGIFXMEDIA: case SIOCGIFGENERIC: case SIOCGIFRSSKEY: case SIOCGIFRSSHASH: case SIOCGIFDOWNREASON: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); error = (*ifp->if_ioctl)(ifp, cmd, data); break; case SIOCSIFLLADDR: error = priv_check(td, PRIV_NET_SETLLADDR); if (error) return (error); error = if_setlladdr(ifp, ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len); break; case SIOCGHWADDR: error = if_gethwaddr(ifp, ifr); break; case SIOCAIFGROUP: error = priv_check(td, PRIV_NET_ADDIFGROUP); if (error) return (error); error = if_addgroup(ifp, ((struct ifgroupreq *)data)->ifgr_group); if (error != 0) return (error); break; case SIOCGIFGROUP: { struct epoch_tracker et; NET_EPOCH_ENTER(et); error = if_getgroup((struct ifgroupreq *)data, ifp); NET_EPOCH_EXIT(et); break; } case SIOCDIFGROUP: error = priv_check(td, PRIV_NET_DELIFGROUP); if (error) return (error); error = if_delgroup(ifp, ((struct ifgroupreq *)data)->ifgr_group); if (error != 0) return (error); break; default: error = ENOIOCTL; break; } return (error); } /* * Interface ioctls. */ int ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td) { #ifdef COMPAT_FREEBSD32 union { struct ifconf ifc; struct ifdrv ifd; struct ifgroupreq ifgr; struct ifmediareq ifmr; } thunk; u_long saved_cmd; struct ifconf32 *ifc32; struct ifdrv32 *ifd32; struct ifgroupreq32 *ifgr32; struct ifmediareq32 *ifmr32; #endif struct ifnet *ifp; struct ifreq *ifr; int error; int oif_flags; #ifdef VIMAGE bool shutdown; #endif CURVNET_SET(so->so_vnet); #ifdef VIMAGE /* Make sure the VNET is stable. */ shutdown = VNET_IS_SHUTTING_DOWN(so->so_vnet); if (shutdown) { CURVNET_RESTORE(); return (EBUSY); } #endif #ifdef COMPAT_FREEBSD32 saved_cmd = cmd; switch (cmd) { case SIOCGIFCONF32: ifc32 = (struct ifconf32 *)data; thunk.ifc.ifc_len = ifc32->ifc_len; thunk.ifc.ifc_buf = PTRIN(ifc32->ifc_buf); data = (caddr_t)&thunk.ifc; cmd = SIOCGIFCONF; break; case SIOCGDRVSPEC32: case SIOCSDRVSPEC32: ifd32 = (struct ifdrv32 *)data; memcpy(thunk.ifd.ifd_name, ifd32->ifd_name, sizeof(thunk.ifd.ifd_name)); thunk.ifd.ifd_cmd = ifd32->ifd_cmd; thunk.ifd.ifd_len = ifd32->ifd_len; thunk.ifd.ifd_data = PTRIN(ifd32->ifd_data); data = (caddr_t)&thunk.ifd; cmd = _IOC_NEWTYPE(cmd, struct ifdrv); break; case SIOCAIFGROUP32: case SIOCGIFGROUP32: case SIOCDIFGROUP32: case SIOCGIFGMEMB32: ifgr32 = (struct ifgroupreq32 *)data; memcpy(thunk.ifgr.ifgr_name, ifgr32->ifgr_name, sizeof(thunk.ifgr.ifgr_name)); thunk.ifgr.ifgr_len = ifgr32->ifgr_len; switch (cmd) { case SIOCAIFGROUP32: case SIOCDIFGROUP32: memcpy(thunk.ifgr.ifgr_group, ifgr32->ifgr_group, sizeof(thunk.ifgr.ifgr_group)); break; case SIOCGIFGROUP32: case SIOCGIFGMEMB32: thunk.ifgr.ifgr_groups = PTRIN(ifgr32->ifgr_groups); break; } data = (caddr_t)&thunk.ifgr; cmd = _IOC_NEWTYPE(cmd, struct ifgroupreq); break; case SIOCGIFMEDIA32: case SIOCGIFXMEDIA32: ifmr32 = (struct ifmediareq32 *)data; memcpy(thunk.ifmr.ifm_name, ifmr32->ifm_name, sizeof(thunk.ifmr.ifm_name)); thunk.ifmr.ifm_current = ifmr32->ifm_current; thunk.ifmr.ifm_mask = ifmr32->ifm_mask; thunk.ifmr.ifm_status = ifmr32->ifm_status; thunk.ifmr.ifm_active = ifmr32->ifm_active; thunk.ifmr.ifm_count = ifmr32->ifm_count; thunk.ifmr.ifm_ulist = PTRIN(ifmr32->ifm_ulist); data = (caddr_t)&thunk.ifmr; cmd = _IOC_NEWTYPE(cmd, struct ifmediareq); break; } #endif switch (cmd) { case SIOCGIFCONF: error = ifconf(cmd, data); goto out_noref; } ifr = (struct ifreq *)data; switch (cmd) { #ifdef VIMAGE case SIOCSIFRVNET: error = priv_check(td, PRIV_NET_SETIFVNET); if (error == 0) error = if_vmove_reclaim(td, ifr->ifr_name, ifr->ifr_jid); goto out_noref; #endif case SIOCIFCREATE: case SIOCIFCREATE2: error = priv_check(td, PRIV_NET_IFCREATE); if (error == 0) error = if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name), cmd == SIOCIFCREATE2 ? ifr_data_get_ptr(ifr) : NULL); goto out_noref; case SIOCIFDESTROY: error = priv_check(td, PRIV_NET_IFDESTROY); if (error == 0) { sx_xlock(&ifnet_detach_sxlock); error = if_clone_destroy(ifr->ifr_name); sx_xunlock(&ifnet_detach_sxlock); } goto out_noref; case SIOCIFGCLONERS: error = if_clone_list((struct if_clonereq *)data); goto out_noref; case SIOCGIFGMEMB: error = if_getgroupmembers((struct ifgroupreq *)data); goto out_noref; #if defined(INET) || defined(INET6) case SIOCSVH: case SIOCGVH: if (carp_ioctl_p == NULL) error = EPROTONOSUPPORT; else error = (*carp_ioctl_p)(ifr, cmd, td); goto out_noref; #endif } ifp = ifunit_ref(ifr->ifr_name); if (ifp == NULL) { error = ENXIO; goto out_noref; } error = ifhwioctl(cmd, ifp, data, td); if (error != ENOIOCTL) goto out_ref; oif_flags = ifp->if_flags; if (so->so_proto == NULL) { error = EOPNOTSUPP; goto out_ref; } /* * Pass the request on to the socket control method, and if the * latter returns EOPNOTSUPP, directly to the interface. * * Make an exception for the legacy SIOCSIF* requests. Drivers * trust SIOCSIFADDR et al to come from an already privileged * layer, and do not perform any credentials checks or input * validation. */ error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd, data, ifp, td)); if (error == EOPNOTSUPP && ifp != NULL && ifp->if_ioctl != NULL && cmd != SIOCSIFADDR && cmd != SIOCSIFBRDADDR && cmd != SIOCSIFDSTADDR && cmd != SIOCSIFNETMASK) error = (*ifp->if_ioctl)(ifp, cmd, data); if ((oif_flags ^ ifp->if_flags) & IFF_UP) { #ifdef INET6 if (ifp->if_flags & IFF_UP) in6_if_up(ifp); #endif } out_ref: if_rele(ifp); out_noref: CURVNET_RESTORE(); #ifdef COMPAT_FREEBSD32 if (error != 0) return (error); switch (saved_cmd) { case SIOCGIFCONF32: ifc32->ifc_len = thunk.ifc.ifc_len; break; case SIOCGDRVSPEC32: /* * SIOCGDRVSPEC is IOWR, but nothing actually touches * the struct so just assert that ifd_len (the only * field it might make sense to update) hasn't * changed. */ KASSERT(thunk.ifd.ifd_len == ifd32->ifd_len, ("ifd_len was updated %u -> %zu", ifd32->ifd_len, thunk.ifd.ifd_len)); break; case SIOCGIFGROUP32: case SIOCGIFGMEMB32: ifgr32->ifgr_len = thunk.ifgr.ifgr_len; break; case SIOCGIFMEDIA32: case SIOCGIFXMEDIA32: ifmr32->ifm_current = thunk.ifmr.ifm_current; ifmr32->ifm_mask = thunk.ifmr.ifm_mask; ifmr32->ifm_status = thunk.ifmr.ifm_status; ifmr32->ifm_active = thunk.ifmr.ifm_active; ifmr32->ifm_count = thunk.ifmr.ifm_count; break; } #endif return (error); } /* * The code common to handling reference counted flags, * e.g., in ifpromisc() and if_allmulti(). * The "pflag" argument can specify a permanent mode flag to check, * such as IFF_PPROMISC for promiscuous mode; should be 0 if none. * * Only to be used on stack-owned flags, not driver-owned flags. */ static int if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch) { struct ifreq ifr; int error; int oldflags, oldcount; /* Sanity checks to catch programming errors */ KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0, ("%s: setting driver-owned flag %d", __func__, flag)); if (onswitch) KASSERT(*refcount >= 0, ("%s: increment negative refcount %d for flag %d", __func__, *refcount, flag)); else KASSERT(*refcount > 0, ("%s: decrement non-positive refcount %d for flag %d", __func__, *refcount, flag)); /* In case this mode is permanent, just touch refcount */ if (ifp->if_flags & pflag) { *refcount += onswitch ? 1 : -1; return (0); } /* Save ifnet parameters for if_ioctl() may fail */ oldcount = *refcount; oldflags = ifp->if_flags; /* * See if we aren't the only and touching refcount is enough. * Actually toggle interface flag if we are the first or last. */ if (onswitch) { if ((*refcount)++) return (0); ifp->if_flags |= flag; } else { if (--(*refcount)) return (0); ifp->if_flags &= ~flag; } /* Call down the driver since we've changed interface flags */ if (ifp->if_ioctl == NULL) { error = EOPNOTSUPP; goto recover; } ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); if (error) goto recover; /* Notify userland that interface flags have changed */ rt_ifmsg(ifp); return (0); recover: /* Recover after driver error */ *refcount = oldcount; ifp->if_flags = oldflags; return (error); } /* * Set/clear promiscuous mode on interface ifp based on the truth value * of pswitch. The calls are reference counted so that only the first * "on" request actually has an effect, as does the final "off" request. * Results are undefined if the "off" and "on" requests are not matched. */ int ifpromisc(struct ifnet *ifp, int pswitch) { int error; int oldflags = ifp->if_flags; error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC, &ifp->if_pcount, pswitch); /* If promiscuous mode status has changed, log a message */ if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC) && log_promisc_mode_change) if_printf(ifp, "promiscuous mode %s\n", (ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled"); return (error); } /* * Return interface configuration * of system. List may be used * in later ioctl's (above) to get * other information. */ /*ARGSUSED*/ static int ifconf(u_long cmd, caddr_t data) { struct ifconf *ifc = (struct ifconf *)data; struct ifnet *ifp; struct ifaddr *ifa; struct ifreq ifr; struct sbuf *sb; int error, full = 0, valid_len, max_len; /* Limit initial buffer size to maxphys to avoid DoS from userspace. */ max_len = maxphys - 1; /* Prevent hostile input from being able to crash the system */ if (ifc->ifc_len <= 0) return (EINVAL); again: if (ifc->ifc_len <= max_len) { max_len = ifc->ifc_len; full = 1; } sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN); max_len = 0; valid_len = 0; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { struct epoch_tracker et; int addrs; /* * Zero the ifr to make sure we don't disclose the contents * of the stack. */ memset(&ifr, 0, sizeof(ifr)); if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name)) >= sizeof(ifr.ifr_name)) { sbuf_delete(sb); IFNET_RUNLOCK(); return (ENAMETOOLONG); } addrs = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct sockaddr *sa = ifa->ifa_addr; if (prison_if(curthread->td_ucred, sa) != 0) continue; addrs++; if (sa->sa_len <= sizeof(*sa)) { if (sa->sa_len < sizeof(*sa)) { memset(&ifr.ifr_ifru.ifru_addr, 0, sizeof(ifr.ifr_ifru.ifru_addr)); memcpy(&ifr.ifr_ifru.ifru_addr, sa, sa->sa_len); } else ifr.ifr_ifru.ifru_addr = *sa; sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); } else { sbuf_bcat(sb, &ifr, offsetof(struct ifreq, ifr_addr)); max_len += offsetof(struct ifreq, ifr_addr); sbuf_bcat(sb, sa, sa->sa_len); max_len += sa->sa_len; } if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } NET_EPOCH_EXIT(et); if (addrs == 0) { sbuf_bcat(sb, &ifr, sizeof(ifr)); max_len += sizeof(ifr); if (sbuf_error(sb) == 0) valid_len = sbuf_len(sb); } } IFNET_RUNLOCK(); /* * If we didn't allocate enough space (uncommon), try again. If * we have already allocated as much space as we are allowed, * return what we've got. */ if (valid_len != max_len && !full) { sbuf_delete(sb); goto again; } ifc->ifc_len = valid_len; sbuf_finish(sb); error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len); sbuf_delete(sb); return (error); } /* * Just like ifpromisc(), but for all-multicast-reception mode. */ int if_allmulti(struct ifnet *ifp, int onswitch) { return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch)); } struct ifmultiaddr * if_findmulti(struct ifnet *ifp, const struct sockaddr *sa) { struct ifmultiaddr *ifma; IF_ADDR_LOCK_ASSERT(ifp); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (sa->sa_family == AF_LINK) { if (sa_dl_equal(ifma->ifma_addr, sa)) break; } else { if (sa_equal(ifma->ifma_addr, sa)) break; } } return ifma; } /* * Allocate a new ifmultiaddr and initialize based on passed arguments. We * make copies of passed sockaddrs. The ifmultiaddr will not be added to * the ifnet multicast address list here, so the caller must do that and * other setup work (such as notifying the device driver). The reference * count is initialized to 1. */ static struct ifmultiaddr * if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa, int mflags) { struct ifmultiaddr *ifma; struct sockaddr *dupsa; ifma = malloc(sizeof *ifma, M_IFMADDR, mflags | M_ZERO); if (ifma == NULL) return (NULL); dupsa = malloc(sa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma, M_IFMADDR); return (NULL); } bcopy(sa, dupsa, sa->sa_len); ifma->ifma_addr = dupsa; ifma->ifma_ifp = ifp; ifma->ifma_refcount = 1; ifma->ifma_protospec = NULL; if (llsa == NULL) { ifma->ifma_lladdr = NULL; return (ifma); } dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags); if (dupsa == NULL) { free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); return (NULL); } bcopy(llsa, dupsa, llsa->sa_len); ifma->ifma_lladdr = dupsa; return (ifma); } /* * if_freemulti: free ifmultiaddr structure and possibly attached related * addresses. The caller is responsible for implementing reference * counting, notifying the driver, handling routing messages, and releasing * any dependent link layer state. */ #ifdef MCAST_VERBOSE extern void kdb_backtrace(void); #endif static void if_freemulti_internal(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d", ifma->ifma_refcount)); if (ifma->ifma_lladdr != NULL) free(ifma->ifma_lladdr, M_IFMADDR); #ifdef MCAST_VERBOSE kdb_backtrace(); printf("%s freeing ifma: %p\n", __func__, ifma); #endif free(ifma->ifma_addr, M_IFMADDR); free(ifma, M_IFMADDR); } static void if_destroymulti(epoch_context_t ctx) { struct ifmultiaddr *ifma; ifma = __containerof(ctx, struct ifmultiaddr, ifma_epoch_ctx); if_freemulti_internal(ifma); } void if_freemulti(struct ifmultiaddr *ifma) { KASSERT(ifma->ifma_refcount == 0, ("if_freemulti_epoch: refcount %d", ifma->ifma_refcount)); NET_EPOCH_CALL(if_destroymulti, &ifma->ifma_epoch_ctx); } /* * Register an additional multicast address with a network interface. * * - If the address is already present, bump the reference count on the * address and return. * - If the address is not link-layer, look up a link layer address. * - Allocate address structures for one or both addresses, and attach to the * multicast address list on the interface. If automatically adding a link * layer address, the protocol address will own a reference to the link * layer address, to be freed when it is freed. * - Notify the network device driver of an addition to the multicast address * list. * * 'sa' points to caller-owned memory with the desired multicast address. * * 'retifma' will be used to return a pointer to the resulting multicast * address reference, if desired. */ int if_addmulti(struct ifnet *ifp, struct sockaddr *sa, struct ifmultiaddr **retifma) { struct ifmultiaddr *ifma, *ll_ifma; struct sockaddr *llsa; struct sockaddr_dl sdl; int error; #ifdef INET IN_MULTI_LIST_UNLOCK_ASSERT(); #endif #ifdef INET6 IN6_MULTI_LIST_UNLOCK_ASSERT(); #endif /* * If the address is already present, return a new reference to it; * otherwise, allocate storage and set up a new address. */ IF_ADDR_WLOCK(ifp); ifma = if_findmulti(ifp, sa); if (ifma != NULL) { ifma->ifma_refcount++; if (retifma != NULL) *retifma = ifma; IF_ADDR_WUNLOCK(ifp); return (0); } /* * The address isn't already present; resolve the protocol address * into a link layer address, and then look that up, bump its * refcount or allocate an ifma for that also. * Most link layer resolving functions returns address data which * fits inside default sockaddr_dl structure. However callback * can allocate another sockaddr structure, in that case we need to * free it later. */ llsa = NULL; ll_ifma = NULL; if (ifp->if_resolvemulti != NULL) { /* Provide called function with buffer size information */ sdl.sdl_len = sizeof(sdl); llsa = (struct sockaddr *)&sdl; error = ifp->if_resolvemulti(ifp, &llsa, sa); if (error) goto unlock_out; } /* * Allocate the new address. Don't hook it up yet, as we may also * need to allocate a link layer multicast address. */ ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT); if (ifma == NULL) { error = ENOMEM; goto free_llsa_out; } /* * If a link layer address is found, we'll need to see if it's * already present in the address list, or allocate is as well. * When this block finishes, the link layer address will be on the * list. */ if (llsa != NULL) { ll_ifma = if_findmulti(ifp, llsa); if (ll_ifma == NULL) { ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT); if (ll_ifma == NULL) { --ifma->ifma_refcount; if_freemulti(ifma); error = ENOMEM; goto free_llsa_out; } ll_ifma->ifma_flags |= IFMA_F_ENQUEUED; CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma, ifma_link); } else ll_ifma->ifma_refcount++; ifma->ifma_llifma = ll_ifma; } /* * We now have a new multicast address, ifma, and possibly a new or * referenced link layer address. Add the primary address to the * ifnet address list. */ ifma->ifma_flags |= IFMA_F_ENQUEUED; CK_STAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link); if (retifma != NULL) *retifma = ifma; /* * Must generate the message while holding the lock so that 'ifma' * pointer is still valid. */ rt_newmaddrmsg(RTM_NEWMADDR, ifma); IF_ADDR_WUNLOCK(ifp); /* * We are certain we have added something, so call down to the * interface to let them know about it. */ if (ifp->if_ioctl != NULL) { if (THREAD_CAN_SLEEP()) (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); else taskqueue_enqueue(taskqueue_swi, &ifp->if_addmultitask); } if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); return (0); free_llsa_out: if ((llsa != NULL) && (llsa != (struct sockaddr *)&sdl)) link_free_sdl(llsa); unlock_out: IF_ADDR_WUNLOCK(ifp); return (error); } static void if_siocaddmulti(void *arg, int pending) { struct ifnet *ifp; ifp = arg; #ifdef DIAGNOSTIC if (pending > 1) if_printf(ifp, "%d SIOCADDMULTI coalesced\n", pending); #endif CURVNET_SET(ifp->if_vnet); (void )(*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0); CURVNET_RESTORE(); } /* * Delete a multicast group membership by network-layer group address. * * Returns ENOENT if the entry could not be found. If ifp no longer * exists, results are undefined. This entry point should only be used * from subsystems which do appropriate locking to hold ifp for the * duration of the call. * Network-layer protocol domains must use if_delmulti_ifma(). */ int if_delmulti(struct ifnet *ifp, struct sockaddr *sa) { struct ifmultiaddr *ifma; int lastref; KASSERT(ifp, ("%s: NULL ifp", __func__)); IF_ADDR_WLOCK(ifp); lastref = 0; ifma = if_findmulti(ifp, sa); if (ifma != NULL) lastref = if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); if (ifma == NULL) return (ENOENT); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } return (0); } /* * Delete all multicast group membership for an interface. * Should be used to quickly flush all multicast filters. */ void if_delallmulti(struct ifnet *ifp) { struct ifmultiaddr *ifma; struct ifmultiaddr *next; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) if_delmulti_locked(ifp, ifma, 0); IF_ADDR_WUNLOCK(ifp); } void if_delmulti_ifma(struct ifmultiaddr *ifma) { if_delmulti_ifma_flags(ifma, 0); } /* * Delete a multicast group membership by group membership pointer. * Network-layer protocol domains must use this routine. * * It is safe to call this routine if the ifp disappeared. */ void if_delmulti_ifma_flags(struct ifmultiaddr *ifma, int flags) { struct ifnet *ifp; int lastref; MCDPRINTF("%s freeing ifma: %p\n", __func__, ifma); #ifdef INET IN_MULTI_LIST_UNLOCK_ASSERT(); #endif ifp = ifma->ifma_ifp; #ifdef DIAGNOSTIC if (ifp == NULL) { printf("%s: ifma_ifp seems to be detached\n", __func__); } else { struct epoch_tracker et; struct ifnet *oifp; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(oifp, &V_ifnet, if_link) if (ifp == oifp) break; NET_EPOCH_EXIT(et); if (ifp != oifp) ifp = NULL; } #endif /* * If and only if the ifnet instance exists: Acquire the address lock. */ if (ifp != NULL) IF_ADDR_WLOCK(ifp); lastref = if_delmulti_locked(ifp, ifma, flags); if (ifp != NULL) { /* * If and only if the ifnet instance exists: * Release the address lock. * If the group was left: update the hardware hash filter. */ IF_ADDR_WUNLOCK(ifp); if (lastref && ifp->if_ioctl != NULL) { (void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0); } } } /* * Perform deletion of network-layer and/or link-layer multicast address. * * Return 0 if the reference count was decremented. * Return 1 if the final reference was released, indicating that the * hardware hash filter should be reprogrammed. */ static int if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching) { struct ifmultiaddr *ll_ifma; if (ifp != NULL && ifma->ifma_ifp != NULL) { KASSERT(ifma->ifma_ifp == ifp, ("%s: inconsistent ifp %p", __func__, ifp)); IF_ADDR_WLOCK_ASSERT(ifp); } ifp = ifma->ifma_ifp; MCDPRINTF("%s freeing %p from %s \n", __func__, ifma, ifp ? ifp->if_xname : ""); /* * If the ifnet is detaching, null out references to ifnet, * so that upper protocol layers will notice, and not attempt * to obtain locks for an ifnet which no longer exists. The * routing socket announcement must happen before the ifnet * instance is detached from the system. */ if (detaching) { #ifdef DIAGNOSTIC printf("%s: detaching ifnet instance %p\n", __func__, ifp); #endif /* * ifp may already be nulled out if we are being reentered * to delete the ll_ifma. */ if (ifp != NULL) { rt_newmaddrmsg(RTM_DELMADDR, ifma); ifma->ifma_ifp = NULL; } } if (--ifma->ifma_refcount > 0) return 0; if (ifp != NULL && detaching == 0 && (ifma->ifma_flags & IFMA_F_ENQUEUED)) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifmultiaddr, ifma_link); ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } /* * If this ifma is a network-layer ifma, a link-layer ifma may * have been associated with it. Release it first if so. */ ll_ifma = ifma->ifma_llifma; if (ll_ifma != NULL) { KASSERT(ifma->ifma_lladdr != NULL, ("%s: llifma w/o lladdr", __func__)); if (detaching) ll_ifma->ifma_ifp = NULL; /* XXX */ if (--ll_ifma->ifma_refcount == 0) { if (ifp != NULL) { if (ll_ifma->ifma_flags & IFMA_F_ENQUEUED) { CK_STAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma, ifmultiaddr, ifma_link); ll_ifma->ifma_flags &= ~IFMA_F_ENQUEUED; } } if_freemulti(ll_ifma); } } #ifdef INVARIANTS if (ifp) { struct ifmultiaddr *ifmatmp; CK_STAILQ_FOREACH(ifmatmp, &ifp->if_multiaddrs, ifma_link) MPASS(ifma != ifmatmp); } #endif if_freemulti(ifma); /* * The last reference to this instance of struct ifmultiaddr * was released; the hardware should be notified of this change. */ return 1; } /* * Set the link layer address on an interface. * * At this time we only support certain types of interfaces, * and we don't allow the length of the address to change. * * Set noinline to be dtrace-friendly */ __noinline int if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len) { struct sockaddr_dl *sdl; struct ifaddr *ifa; struct ifreq ifr; ifa = ifp->if_addr; if (ifa == NULL) return (EINVAL); sdl = (struct sockaddr_dl *)ifa->ifa_addr; if (sdl == NULL) return (EINVAL); if (len != sdl->sdl_alen) /* don't allow length to change */ return (EINVAL); switch (ifp->if_type) { case IFT_ETHER: case IFT_XETHER: case IFT_L2VLAN: case IFT_BRIDGE: case IFT_IEEE8023ADLAG: bcopy(lladdr, LLADDR(sdl), len); break; default: return (ENODEV); } /* * If the interface is already up, we need * to re-init it in order to reprogram its * address filter. */ if ((ifp->if_flags & IFF_UP) != 0) { if (ifp->if_ioctl) { ifp->if_flags &= ~IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); ifp->if_flags |= IFF_UP; ifr.ifr_flags = ifp->if_flags & 0xffff; ifr.ifr_flagshigh = ifp->if_flags >> 16; (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr); } } EVENTHANDLER_INVOKE(iflladdr_event, ifp); return (0); } /* * Compat function for handling basic encapsulation requests. * Not converted stacks (FDDI, IB, ..) supports traditional * output model: ARP (and other similar L2 protocols) are handled * inside output routine, arpresolve/nd6_resolve() returns MAC * address instead of full prepend. * * This function creates calculated header==MAC for IPv4/IPv6 and * returns EAFNOSUPPORT (which is then handled in ARP code) for other * address families. */ static int if_requestencap_default(struct ifnet *ifp, struct if_encap_req *req) { if (req->rtype != IFENCAP_LL) return (EOPNOTSUPP); if (req->bufsize < req->lladdr_len) return (ENOMEM); switch (req->family) { case AF_INET: case AF_INET6: break; default: return (EAFNOSUPPORT); } /* Copy lladdr to storage as is */ memmove(req->buf, req->lladdr, req->lladdr_len); req->bufsize = req->lladdr_len; req->lladdr_off = 0; return (0); } /* * Tunnel interfaces can nest, also they may cause infinite recursion * calls when misconfigured. We'll prevent this by detecting loops. * High nesting level may cause stack exhaustion. We'll prevent this * by introducing upper limit. * * Return 0, if tunnel nesting count is equal or less than limit. */ int if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, uint32_t cookie, int limit) { struct m_tag *mtag; int count; count = 1; mtag = NULL; while ((mtag = m_tag_locate(m, cookie, 0, mtag)) != NULL) { if (*(struct ifnet **)(mtag + 1) == ifp) { log(LOG_NOTICE, "%s: loop detected\n", if_name(ifp)); return (EIO); } count++; } if (count > limit) { log(LOG_NOTICE, "%s: if_output recursively called too many times(%d)\n", if_name(ifp), count); return (EIO); } mtag = m_tag_alloc(cookie, 0, sizeof(struct ifnet *), M_NOWAIT); if (mtag == NULL) return (ENOMEM); *(struct ifnet **)(mtag + 1) = ifp; m_tag_prepend(m, mtag); return (0); } /* * Get the link layer address that was read from the hardware at attach. * * This is only set by Ethernet NICs (IFT_ETHER), but laggX interfaces re-type * their component interfaces as IFT_IEEE8023ADLAG. */ int if_gethwaddr(struct ifnet *ifp, struct ifreq *ifr) { if (ifp->if_hw_addr == NULL) return (ENODEV); switch (ifp->if_type) { case IFT_ETHER: case IFT_IEEE8023ADLAG: bcopy(ifp->if_hw_addr, ifr->ifr_addr.sa_data, ifp->if_addrlen); return (0); default: return (ENODEV); } } /* * The name argument must be a pointer to storage which will last as * long as the interface does. For physical devices, the result of * device_get_name(dev) is a good choice and for pseudo-devices a * static string works well. */ void if_initname(struct ifnet *ifp, const char *name, int unit) { ifp->if_dname = name; ifp->if_dunit = unit; if (unit != IF_DUNIT_NONE) snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit); else strlcpy(ifp->if_xname, name, IFNAMSIZ); } static int if_vlog(struct ifnet *ifp, int pri, const char *fmt, va_list ap) { char if_fmt[256]; snprintf(if_fmt, sizeof(if_fmt), "%s: %s", ifp->if_xname, fmt); vlog(pri, if_fmt, ap); return (0); } int if_printf(struct ifnet *ifp, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if_vlog(ifp, LOG_INFO, fmt, ap); va_end(ap); return (0); } int if_log(struct ifnet *ifp, int pri, const char *fmt, ...) { va_list ap; va_start(ap, fmt); if_vlog(ifp, pri, fmt, ap); va_end(ap); return (0); } void if_start(struct ifnet *ifp) { (*(ifp)->if_start)(ifp); } /* * Backwards compatibility interface for drivers * that have not implemented it */ static int if_transmit(struct ifnet *ifp, struct mbuf *m) { int error; IFQ_HANDOFF(ifp, m, error); return (error); } static void if_input_default(struct ifnet *ifp __unused, struct mbuf *m) { m_freem(m); } int if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust) { int active = 0; IF_LOCK(ifq); if (_IF_QFULL(ifq)) { IF_UNLOCK(ifq); if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1); m_freem(m); return (0); } if (ifp != NULL) { if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len + adjust); if (m->m_flags & (M_BCAST|M_MCAST)) if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); active = ifp->if_drv_flags & IFF_DRV_OACTIVE; } _IF_ENQUEUE(ifq, m); IF_UNLOCK(ifq); if (ifp != NULL && !active) (*(ifp)->if_start)(ifp); return (1); } void if_register_com_alloc(u_char type, if_com_alloc_t *a, if_com_free_t *f) { KASSERT(if_com_alloc[type] == NULL, ("if_register_com_alloc: %d already registered", type)); KASSERT(if_com_free[type] == NULL, ("if_register_com_alloc: %d free already registered", type)); if_com_alloc[type] = a; if_com_free[type] = f; } void if_deregister_com_alloc(u_char type) { KASSERT(if_com_alloc[type] != NULL, ("if_deregister_com_alloc: %d not registered", type)); KASSERT(if_com_free[type] != NULL, ("if_deregister_com_alloc: %d free not registered", type)); /* * Ensure all pending EPOCH(9) callbacks have been executed. This * fixes issues about late invocation of if_destroy(), which leads * to memory leak from if_com_alloc[type] allocated if_l2com. */ NET_EPOCH_DRAIN_CALLBACKS(); if_com_alloc[type] = NULL; if_com_free[type] = NULL; } /* API for driver access to network stack owned ifnet.*/ uint64_t if_setbaudrate(struct ifnet *ifp, uint64_t baudrate) { uint64_t oldbrate; oldbrate = ifp->if_baudrate; ifp->if_baudrate = baudrate; return (oldbrate); } uint64_t if_getbaudrate(if_t ifp) { return (((struct ifnet *)ifp)->if_baudrate); } int if_setcapabilities(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capabilities = capabilities; return (0); } int if_setcapabilitiesbit(if_t ifp, int setbit, int clearbit) { ((struct ifnet *)ifp)->if_capabilities |= setbit; ((struct ifnet *)ifp)->if_capabilities &= ~clearbit; return (0); } int if_getcapabilities(if_t ifp) { return ((struct ifnet *)ifp)->if_capabilities; } int if_setcapenable(if_t ifp, int capabilities) { ((struct ifnet *)ifp)->if_capenable = capabilities; return (0); } int if_setcapenablebit(if_t ifp, int setcap, int clearcap) { if(setcap) ((struct ifnet *)ifp)->if_capenable |= setcap; if(clearcap) ((struct ifnet *)ifp)->if_capenable &= ~clearcap; return (0); } const char * if_getdname(if_t ifp) { return ((struct ifnet *)ifp)->if_dname; } int if_togglecapenable(if_t ifp, int togglecap) { ((struct ifnet *)ifp)->if_capenable ^= togglecap; return (0); } int if_getcapenable(if_t ifp) { return ((struct ifnet *)ifp)->if_capenable; } /* * This is largely undesirable because it ties ifnet to a device, but does * provide flexiblity for an embedded product vendor. Should be used with * the understanding that it violates the interface boundaries, and should be * a last resort only. */ int if_setdev(if_t ifp, void *dev) { return (0); } int if_setdrvflagbits(if_t ifp, int set_flags, int clear_flags) { ((struct ifnet *)ifp)->if_drv_flags |= set_flags; ((struct ifnet *)ifp)->if_drv_flags &= ~clear_flags; return (0); } int if_getdrvflags(if_t ifp) { return ((struct ifnet *)ifp)->if_drv_flags; } int if_setdrvflags(if_t ifp, int flags) { ((struct ifnet *)ifp)->if_drv_flags = flags; return (0); } int if_setflags(if_t ifp, int flags) { ifp->if_flags = flags; return (0); } int if_setflagbits(if_t ifp, int set, int clear) { ((struct ifnet *)ifp)->if_flags |= set; ((struct ifnet *)ifp)->if_flags &= ~clear; return (0); } int if_getflags(if_t ifp) { return ((struct ifnet *)ifp)->if_flags; } int if_clearhwassist(if_t ifp) { ((struct ifnet *)ifp)->if_hwassist = 0; return (0); } int if_sethwassistbits(if_t ifp, int toset, int toclear) { ((struct ifnet *)ifp)->if_hwassist |= toset; ((struct ifnet *)ifp)->if_hwassist &= ~toclear; return (0); } int if_sethwassist(if_t ifp, int hwassist_bit) { ((struct ifnet *)ifp)->if_hwassist = hwassist_bit; return (0); } int if_gethwassist(if_t ifp) { return ((struct ifnet *)ifp)->if_hwassist; } int if_setmtu(if_t ifp, int mtu) { ((struct ifnet *)ifp)->if_mtu = mtu; return (0); } int if_getmtu(if_t ifp) { return ((struct ifnet *)ifp)->if_mtu; } int if_getmtu_family(if_t ifp, int family) { struct domain *dp; for (dp = domains; dp; dp = dp->dom_next) { if (dp->dom_family == family && dp->dom_ifmtu != NULL) return (dp->dom_ifmtu((struct ifnet *)ifp)); } return (((struct ifnet *)ifp)->if_mtu); } /* * Methods for drivers to access interface unicast and multicast * link level addresses. Driver shall not know 'struct ifaddr' neither * 'struct ifmultiaddr'. */ u_int if_lladdr_count(if_t ifp) { struct epoch_tracker et; struct ifaddr *ifa; u_int count; count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_LINK) count++; NET_EPOCH_EXIT(et); return (count); } u_int if_foreach_lladdr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) { struct epoch_tracker et; struct ifaddr *ifa; u_int count; MPASS(cb); count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_LINK) continue; count += (*cb)(cb_arg, (struct sockaddr_dl *)ifa->ifa_addr, count); } NET_EPOCH_EXIT(et); return (count); } u_int if_llmaddr_count(if_t ifp) { struct epoch_tracker et; struct ifmultiaddr *ifma; int count; count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) if (ifma->ifma_addr->sa_family == AF_LINK) count++; NET_EPOCH_EXIT(et); return (count); } u_int if_foreach_llmaddr(if_t ifp, iflladdr_cb_t cb, void *cb_arg) { struct epoch_tracker et; struct ifmultiaddr *ifma; u_int count; MPASS(cb); count = 0; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; count += (*cb)(cb_arg, (struct sockaddr_dl *)ifma->ifma_addr, count); } NET_EPOCH_EXIT(et); return (count); } int if_setsoftc(if_t ifp, void *softc) { ((struct ifnet *)ifp)->if_softc = softc; return (0); } void * if_getsoftc(if_t ifp) { return ((struct ifnet *)ifp)->if_softc; } void if_setrcvif(struct mbuf *m, if_t ifp) { MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); m->m_pkthdr.rcvif = (struct ifnet *)ifp; } void if_setvtag(struct mbuf *m, uint16_t tag) { m->m_pkthdr.ether_vtag = tag; } uint16_t if_getvtag(struct mbuf *m) { return (m->m_pkthdr.ether_vtag); } int if_sendq_empty(if_t ifp) { return IFQ_DRV_IS_EMPTY(&((struct ifnet *)ifp)->if_snd); } struct ifaddr * if_getifaddr(if_t ifp) { return ((struct ifnet *)ifp)->if_addr; } int if_getamcount(if_t ifp) { return ((struct ifnet *)ifp)->if_amcount; } int if_setsendqready(if_t ifp) { IFQ_SET_READY(&((struct ifnet *)ifp)->if_snd); return (0); } int if_setsendqlen(if_t ifp, int tx_desc_count) { IFQ_SET_MAXLEN(&((struct ifnet *)ifp)->if_snd, tx_desc_count); ((struct ifnet *)ifp)->if_snd.ifq_drv_maxlen = tx_desc_count; return (0); } int if_vlantrunkinuse(if_t ifp) { return ((struct ifnet *)ifp)->if_vlantrunk != NULL?1:0; } int if_input(if_t ifp, struct mbuf* sendmp) { (*((struct ifnet *)ifp)->if_input)((struct ifnet *)ifp, sendmp); return (0); } struct mbuf * if_dequeue(if_t ifp) { struct mbuf *m; IFQ_DRV_DEQUEUE(&((struct ifnet *)ifp)->if_snd, m); return (m); } int if_sendq_prepend(if_t ifp, struct mbuf *m) { IFQ_DRV_PREPEND(&((struct ifnet *)ifp)->if_snd, m); return (0); } int if_setifheaderlen(if_t ifp, int len) { ((struct ifnet *)ifp)->if_hdrlen = len; return (0); } caddr_t if_getlladdr(if_t ifp) { return (IF_LLADDR((struct ifnet *)ifp)); } void * if_gethandle(u_char type) { return (if_alloc(type)); } void if_bpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; BPF_MTAP(ifp, m); } void if_etherbpfmtap(if_t ifh, struct mbuf *m) { struct ifnet *ifp = (struct ifnet *)ifh; ETHER_BPF_MTAP(ifp, m); } void if_vlancap(if_t ifh) { struct ifnet *ifp = (struct ifnet *)ifh; VLAN_CAPABILITIES(ifp); } int if_sethwtsomax(if_t ifp, u_int if_hw_tsomax) { ((struct ifnet *)ifp)->if_hw_tsomax = if_hw_tsomax; return (0); } int if_sethwtsomaxsegcount(if_t ifp, u_int if_hw_tsomaxsegcount) { ((struct ifnet *)ifp)->if_hw_tsomaxsegcount = if_hw_tsomaxsegcount; return (0); } int if_sethwtsomaxsegsize(if_t ifp, u_int if_hw_tsomaxsegsize) { ((struct ifnet *)ifp)->if_hw_tsomaxsegsize = if_hw_tsomaxsegsize; return (0); } u_int if_gethwtsomax(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomax); } u_int if_gethwtsomaxsegcount(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomaxsegcount); } u_int if_gethwtsomaxsegsize(if_t ifp) { return (((struct ifnet *)ifp)->if_hw_tsomaxsegsize); } void if_setinitfn(if_t ifp, void (*init_fn)(void *)) { ((struct ifnet *)ifp)->if_init = init_fn; } void if_setioctlfn(if_t ifp, int (*ioctl_fn)(if_t, u_long, caddr_t)) { ((struct ifnet *)ifp)->if_ioctl = (void *)ioctl_fn; } void if_setstartfn(if_t ifp, void (*start_fn)(if_t)) { ((struct ifnet *)ifp)->if_start = (void *)start_fn; } void if_settransmitfn(if_t ifp, if_transmit_fn_t start_fn) { ((struct ifnet *)ifp)->if_transmit = start_fn; } void if_setqflushfn(if_t ifp, if_qflush_fn_t flush_fn) { ((struct ifnet *)ifp)->if_qflush = flush_fn; } void if_setgetcounterfn(if_t ifp, if_get_counter_t fn) { ifp->if_get_counter = fn; } #ifdef DDB static void if_show_ifnet(struct ifnet *ifp) { if (ifp == NULL) return; db_printf("%s:\n", ifp->if_xname); #define IF_DB_PRINTF(f, e) db_printf(" %s = " f "\n", #e, ifp->e); IF_DB_PRINTF("%s", if_dname); IF_DB_PRINTF("%d", if_dunit); IF_DB_PRINTF("%s", if_description); IF_DB_PRINTF("%u", if_index); IF_DB_PRINTF("%d", if_idxgen); IF_DB_PRINTF("%u", if_refcount); IF_DB_PRINTF("%p", if_softc); IF_DB_PRINTF("%p", if_l2com); IF_DB_PRINTF("%p", if_llsoftc); IF_DB_PRINTF("%d", if_amcount); IF_DB_PRINTF("%p", if_addr); IF_DB_PRINTF("%p", if_broadcastaddr); IF_DB_PRINTF("%p", if_afdata); IF_DB_PRINTF("%d", if_afdata_initialized); IF_DB_PRINTF("%u", if_fib); IF_DB_PRINTF("%p", if_vnet); IF_DB_PRINTF("%p", if_home_vnet); IF_DB_PRINTF("%p", if_vlantrunk); IF_DB_PRINTF("%p", if_bpf); IF_DB_PRINTF("%u", if_pcount); IF_DB_PRINTF("%p", if_bridge); IF_DB_PRINTF("%p", if_lagg); IF_DB_PRINTF("%p", if_pf_kif); IF_DB_PRINTF("%p", if_carp); IF_DB_PRINTF("%p", if_label); IF_DB_PRINTF("%p", if_netmap); IF_DB_PRINTF("0x%08x", if_flags); IF_DB_PRINTF("0x%08x", if_drv_flags); IF_DB_PRINTF("0x%08x", if_capabilities); IF_DB_PRINTF("0x%08x", if_capenable); IF_DB_PRINTF("%p", if_snd.ifq_head); IF_DB_PRINTF("%p", if_snd.ifq_tail); IF_DB_PRINTF("%d", if_snd.ifq_len); IF_DB_PRINTF("%d", if_snd.ifq_maxlen); IF_DB_PRINTF("%p", if_snd.ifq_drv_head); IF_DB_PRINTF("%p", if_snd.ifq_drv_tail); IF_DB_PRINTF("%d", if_snd.ifq_drv_len); IF_DB_PRINTF("%d", if_snd.ifq_drv_maxlen); IF_DB_PRINTF("%d", if_snd.altq_type); IF_DB_PRINTF("%x", if_snd.altq_flags); #undef IF_DB_PRINTF } DB_SHOW_COMMAND(ifnet, db_show_ifnet) { if (!have_addr) { db_printf("usage: show ifnet \n"); return; } if_show_ifnet((struct ifnet *)addr); } DB_SHOW_ALL_COMMAND(ifnets, db_show_all_ifnets) { struct ifnet *ifp; u_short idx; for (idx = 1; idx <= if_index; idx++) { ifp = ifindex_table[idx].ife_ifnet; if (ifp == NULL) continue; db_printf( "%20s ifp=%p\n", ifp->if_xname, ifp); if (db_pager_quit) break; } } #endif /* DDB */ diff --git a/sys/netinet/in.c b/sys/netinet/in.c index 1c44623bdec1..e394af68ac23 100644 --- a/sys/netinet/in.c +++ b/sys/netinet/in.c @@ -1,1797 +1,1852 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1991, 1993 * The Regents of the University of California. All rights reserved. * Copyright (C) 2001 WIDE Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in.c 8.4 (Berkeley) 1/9/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #define IN_HISTORICAL_NETS /* include class masks */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int in_aifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_difaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static int in_gifaddr_ioctl(u_long, caddr_t, struct ifnet *, struct thread *); static void in_socktrim(struct sockaddr_in *); static void in_purgemaddrs(struct ifnet *); static bool ia_need_loopback_route(const struct in_ifaddr *); VNET_DEFINE_STATIC(int, nosameprefix); #define V_nosameprefix VNET(nosameprefix) SYSCTL_INT(_net_inet_ip, OID_AUTO, no_same_prefix, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nosameprefix), 0, "Refuse to create same prefixes on different interfaces"); VNET_DEFINE_STATIC(bool, broadcast_lowest); #define V_broadcast_lowest VNET(broadcast_lowest) SYSCTL_BOOL(_net_inet_ip, OID_AUTO, broadcast_lowest, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(broadcast_lowest), 0, "Treat lowest address on a subnet (host 0) as broadcast"); VNET_DEFINE(bool, ip_allow_net240) = false; #define V_ip_allow_net240 VNET(ip_allow_net240) SYSCTL_BOOL(_net_inet_ip, OID_AUTO, allow_net240, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_allow_net240), 0, "Allow use of Experimental addresses, aka Class E (240/4)"); /* see https://datatracker.ietf.org/doc/draft-schoen-intarea-unicast-240 */ VNET_DEFINE(bool, ip_allow_net0) = false; SYSCTL_BOOL(_net_inet_ip, OID_AUTO, allow_net0, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_allow_net0), 0, "Allow use of addresses in network 0/8"); /* see https://datatracker.ietf.org/doc/draft-schoen-intarea-unicast-0 */ VNET_DEFINE(uint32_t, in_loopback_mask) = IN_LOOPBACK_MASK_DFLT; #define V_in_loopback_mask VNET(in_loopback_mask) static int sysctl_loopback_prefixlen(SYSCTL_HANDLER_ARGS); SYSCTL_PROC(_net_inet_ip, OID_AUTO, loopback_prefixlen, CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW, NULL, 0, sysctl_loopback_prefixlen, "I", "Prefix length of address space reserved for loopback"); /* see https://datatracker.ietf.org/doc/draft-schoen-intarea-unicast-127 */ VNET_DECLARE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) static struct sx in_control_sx; SX_SYSINIT(in_control_sx, &in_control_sx, "in_control"); /* * Return 1 if an internet address is for a ``local'' host * (one to which we have a connection). */ int in_localaddr(struct in_addr in) { u_long i = ntohl(in.s_addr); struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { if ((i & ia->ia_subnetmask) == ia->ia_subnet) return (1); } return (0); } /* * Return 1 if an internet address is for the local host and configured * on one of its interfaces. */ bool in_localip(struct in_addr in) { struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr) return (true); return (false); } /* * Like in_localip(), but FIB-aware. */ bool in_localip_fib(struct in_addr in, uint16_t fib) { struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_LIST_FOREACH(ia, INADDR_HASH(in.s_addr), ia_hash) if (IA_SIN(ia)->sin_addr.s_addr == in.s_addr && ia->ia_ifa.ifa_ifp->if_fib == fib) return (true); return (false); } /* * Return 1 if an internet address is configured on an interface. */ int in_ifhasaddr(struct ifnet *ifp, struct in_addr in) { struct ifaddr *ifa; struct in_ifaddr *ia; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == in.s_addr) return (1); } return (0); } /* * Return a reference to the interface address which is different to * the supplied one but with same IP address value. */ static struct in_ifaddr * in_localip_more(struct in_ifaddr *original_ia) { struct epoch_tracker et; in_addr_t original_addr = IA_SIN(original_ia)->sin_addr.s_addr; uint32_t original_fib = original_ia->ia_ifa.ifa_ifp->if_fib; struct in_ifaddr *ia; NET_EPOCH_ENTER(et); CK_LIST_FOREACH(ia, INADDR_HASH(original_addr), ia_hash) { in_addr_t addr = IA_SIN(ia)->sin_addr.s_addr; uint32_t fib = ia->ia_ifa.ifa_ifp->if_fib; if (!V_rt_add_addr_allfibs && (original_fib != fib)) continue; if ((original_ia != ia) && (original_addr == addr)) { ifa_ref(&ia->ia_ifa); NET_EPOCH_EXIT(et); return (ia); } } NET_EPOCH_EXIT(et); return (NULL); } /* * Tries to find first IPv4 address in the provided fib. * Prefers non-loopback addresses and return loopback IFF * @loopback_ok is set. * * Returns ifa or NULL. */ struct in_ifaddr * in_findlocal(uint32_t fibnum, bool loopback_ok) { struct in_ifaddr *ia = NULL, *ia_lo = NULL; NET_EPOCH_ASSERT(); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { uint32_t ia_fib = ia->ia_ifa.ifa_ifp->if_fib; if (!V_rt_add_addr_allfibs && (fibnum != ia_fib)) continue; if (!IN_LOOPBACK(ntohl(IA_SIN(ia)->sin_addr.s_addr))) break; if (loopback_ok) ia_lo = ia; } if (ia == NULL) ia = ia_lo; return (ia); } /* * Determine whether an IP address is in a reserved set of addresses * that may not be forwarded, or whether datagrams to that destination * may be forwarded. */ int in_canforward(struct in_addr in) { u_long i = ntohl(in.s_addr); if (IN_MULTICAST(i) || IN_LINKLOCAL(i) || IN_LOOPBACK(i)) return (0); if (IN_EXPERIMENTAL(i) && !V_ip_allow_net240) return (0); if (IN_ZERONET(i) && !V_ip_allow_net0) return (0); return (1); } /* * Sysctl to manage prefix of reserved loopback network; translate * to/from mask. The mask is always contiguous high-order 1 bits * followed by all 0 bits. */ static int sysctl_loopback_prefixlen(SYSCTL_HANDLER_ARGS) { int error, preflen; /* ffs is 1-based; compensate. */ preflen = 33 - ffs(V_in_loopback_mask); error = sysctl_handle_int(oidp, &preflen, 0, req); if (error || !req->newptr) return (error); if (preflen < 8 || preflen > 31) return (EINVAL); V_in_loopback_mask = 0xffffffff << (32 - preflen); return (0); } /* * Trim a mask in a sockaddr */ static void in_socktrim(struct sockaddr_in *ap) { char *cplim = (char *) &ap->sin_addr; char *cp = (char *) (&ap->sin_addr + 1); ap->sin_len = 0; while (--cp >= cplim) if (*cp) { (ap)->sin_len = cp - (char *) (ap) + 1; break; } } /* * Generic internet control operations (ioctl's). */ int in_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct ifreq *ifr = (struct ifreq *)data; struct sockaddr_in *addr = (struct sockaddr_in *)&ifr->ifr_addr; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; int error; if (ifp == NULL) return (EADDRNOTAVAIL); /* * Filter out 4 ioctls we implement directly. Forward the rest * to specific functions and ifp->if_ioctl(). */ switch (cmd) { case SIOCGIFADDR: case SIOCGIFBRDADDR: case SIOCGIFDSTADDR: case SIOCGIFNETMASK: break; case SIOCGIFALIAS: sx_xlock(&in_control_sx); error = in_gifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCDIFADDR: sx_xlock(&in_control_sx); error = in_difaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case OSIOCAIFADDR: /* 9.x compat */ case SIOCAIFADDR: sx_xlock(&in_control_sx); error = in_aifaddr_ioctl(cmd, data, ifp, td); sx_xunlock(&in_control_sx); return (error); case SIOCSIFADDR: case SIOCSIFBRDADDR: case SIOCSIFDSTADDR: case SIOCSIFNETMASK: /* We no longer support that old commands. */ return (EINVAL); default: if (ifp->if_ioctl == NULL) return (EOPNOTSUPP); return ((*ifp->if_ioctl)(ifp, cmd, data)); } if (addr->sin_addr.s_addr != INADDR_ANY && prison_check_ip4(td->td_ucred, &addr->sin_addr) != 0) return (EADDRNOTAVAIL); /* * Find address for this interface, if it exists. If an * address was specified, find that one instead of the * first one on the interface, if possible. */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { if (ifa->ifa_addr->sa_family != AF_INET) continue; ia = (struct in_ifaddr *)ifa; if (ia->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr) break; } if (ifa == NULL) CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET) { ia = (struct in_ifaddr *)ifa; if (prison_check_ip4(td->td_ucred, &ia->ia_addr.sin_addr) == 0) break; } if (ifa == NULL) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } error = 0; switch (cmd) { case SIOCGIFADDR: *addr = ia->ia_addr; break; case SIOCGIFBRDADDR: if ((ifp->if_flags & IFF_BROADCAST) == 0) { error = EINVAL; break; } *addr = ia->ia_broadaddr; break; case SIOCGIFDSTADDR: if ((ifp->if_flags & IFF_POINTOPOINT) == 0) { error = EINVAL; break; } *addr = ia->ia_dstaddr; break; case SIOCGIFNETMASK: *addr = ia->ia_sockmask; break; } NET_EPOCH_EXIT(et); return (error); } static int in_aifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; const struct sockaddr_in *broadaddr = &ifra->ifra_broadaddr; const struct sockaddr_in *mask = &ifra->ifra_mask; const struct sockaddr_in *dstaddr = &ifra->ifra_dstaddr; const int vhid = (cmd == SIOCAIFADDR) ? ifra->ifra_vhid : 0; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; bool iaIsFirst; int error = 0; error = priv_check(td, PRIV_NET_ADDIFADDR); if (error) return (error); /* * ifra_addr must be present and be of INET family. * ifra_broadaddr/ifra_dstaddr and ifra_mask are optional. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); if (broadaddr->sin_len != 0 && (broadaddr->sin_len != sizeof(struct sockaddr_in) || broadaddr->sin_family != AF_INET)) return (EINVAL); if (mask->sin_len != 0 && (mask->sin_len != sizeof(struct sockaddr_in) || mask->sin_family != AF_INET)) return (EINVAL); if ((ifp->if_flags & IFF_POINTOPOINT) && (dstaddr->sin_len != sizeof(struct sockaddr_in) || dstaddr->sin_addr.s_addr == INADDR_ANY)) return (EDESTADDRREQ); if (vhid != 0 && carp_attach_p == NULL) return (EPROTONOSUPPORT); /* * See whether address already exist. */ iaIsFirst = true; ia = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) ia = it; else iaIsFirst = false; } NET_EPOCH_EXIT(et); if (ia != NULL) (void )in_difaddr_ioctl(cmd, data, ifp, td); ifa = ifa_alloc(sizeof(struct in_ifaddr), M_WAITOK); ia = (struct in_ifaddr *)ifa; ifa->ifa_addr = (struct sockaddr *)&ia->ia_addr; ifa->ifa_dstaddr = (struct sockaddr *)&ia->ia_dstaddr; ifa->ifa_netmask = (struct sockaddr *)&ia->ia_sockmask; callout_init_rw(&ia->ia_garp_timer, &ifp->if_addr_lock, CALLOUT_RETURNUNLOCKED); ia->ia_ifp = ifp; ia->ia_addr = *addr; if (mask->sin_len != 0) { ia->ia_sockmask = *mask; ia->ia_subnetmask = ntohl(ia->ia_sockmask.sin_addr.s_addr); } else { in_addr_t i = ntohl(addr->sin_addr.s_addr); /* * If netmask isn't supplied, use historical default. * This is deprecated for interfaces other than loopback * or point-to-point; warn in other cases. In the future * we should return an error rather than warning. */ if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) printf("%s: set address: WARNING: network mask " "should be specified; using historical default\n", ifp->if_xname); if (IN_CLASSA(i)) ia->ia_subnetmask = IN_CLASSA_NET; else if (IN_CLASSB(i)) ia->ia_subnetmask = IN_CLASSB_NET; else ia->ia_subnetmask = IN_CLASSC_NET; ia->ia_sockmask.sin_addr.s_addr = htonl(ia->ia_subnetmask); } ia->ia_subnet = ntohl(addr->sin_addr.s_addr) & ia->ia_subnetmask; in_socktrim(&ia->ia_sockmask); if (ifp->if_flags & IFF_BROADCAST) { if (broadaddr->sin_len != 0) { ia->ia_broadaddr = *broadaddr; } else if (ia->ia_subnetmask == IN_RFC3021_MASK) { ia->ia_broadaddr.sin_addr.s_addr = INADDR_BROADCAST; ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } else { ia->ia_broadaddr.sin_addr.s_addr = htonl(ia->ia_subnet | ~ia->ia_subnetmask); ia->ia_broadaddr.sin_len = sizeof(struct sockaddr_in); ia->ia_broadaddr.sin_family = AF_INET; } } if (ifp->if_flags & IFF_POINTOPOINT) ia->ia_dstaddr = *dstaddr; if (vhid != 0) { error = (*carp_attach_p)(&ia->ia_ifa, vhid); if (error) return (error); } /* if_addrhead is already referenced by ifa_alloc() */ IF_ADDR_WLOCK(ifp); CK_STAILQ_INSERT_TAIL(&ifp->if_addrhead, ifa, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_ref(ifa); /* in_ifaddrhead */ sx_assert(&in_control_sx, SA_XLOCKED); CK_STAILQ_INSERT_TAIL(&V_in_ifaddrhead, ia, ia_link); CK_LIST_INSERT_HEAD(INADDR_HASH(ia->ia_addr.sin_addr.s_addr), ia, ia_hash); /* * Give the interface a chance to initialize * if this is its first address, * and to validate the address if necessary. */ if (ifp->if_ioctl != NULL) { error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia); if (error) goto fail1; } /* * Add route for the network. */ if (vhid == 0) { error = in_addprefix(ia); if (error) goto fail1; } /* * Add a loopback route to self. */ if (vhid == 0 && ia_need_loopback_route(ia)) { struct in_ifaddr *eia; eia = in_localip_more(ia); if (eia == NULL) { error = ifa_add_loopback_route((struct ifaddr *)ia, (struct sockaddr *)&ia->ia_addr); if (error) goto fail2; } else ifa_free(&eia->ia_ifa); } if (iaIsFirst && (ifp->if_flags & IFF_MULTICAST)) { struct in_addr allhosts_addr; struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); allhosts_addr.s_addr = htonl(INADDR_ALLHOSTS_GROUP); error = in_joingroup(ifp, &allhosts_addr, NULL, &ii->ii_allhosts); } /* * Note: we don't need extra reference for ifa, since we called * with sx lock held, and ifaddr can not be deleted in concurrent * thread. */ EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, ifa, IFADDR_EVENT_ADD); return (error); fail2: if (vhid == 0) (void )in_scrubprefix(ia, LLE_STATIC); fail1: if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, false); IF_ADDR_WLOCK(ifp); CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ sx_assert(&in_control_sx, SA_XLOCKED); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); CK_LIST_REMOVE(ia, ia_hash); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (error); } static int in_difaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { const struct ifreq *ifr = (struct ifreq *)data; const struct sockaddr_in *addr = (const struct sockaddr_in *) &ifr->ifr_addr; struct ifaddr *ifa; struct in_ifaddr *ia; bool deleteAny, iaIsLast; int error; if (td != NULL) { error = priv_check(td, PRIV_NET_DELIFADDR); if (error) return (error); } if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) deleteAny = true; else deleteAny = false; iaIsLast = true; ia = NULL; IF_ADDR_WLOCK(ifp); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (deleteAny && ia == NULL && (td == NULL || prison_check_ip4(td->td_ucred, &it->ia_addr.sin_addr) == 0)) ia = it; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && (td == NULL || prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0)) ia = it; if (it != ia) iaIsLast = false; } if (ia == NULL) { IF_ADDR_WUNLOCK(ifp); return (EADDRNOTAVAIL); } CK_STAILQ_REMOVE(&ifp->if_addrhead, &ia->ia_ifa, ifaddr, ifa_link); IF_ADDR_WUNLOCK(ifp); ifa_free(&ia->ia_ifa); /* if_addrhead */ sx_assert(&in_control_sx, SA_XLOCKED); CK_STAILQ_REMOVE(&V_in_ifaddrhead, ia, in_ifaddr, ia_link); CK_LIST_REMOVE(ia, ia_hash); /* * in_scrubprefix() kills the interface route. */ in_scrubprefix(ia, LLE_STATIC); /* * in_ifadown gets rid of all the rest of * the routes. This is not quite the right * thing to do, but at least if we are running * a routing process they will come back. */ in_ifadown(&ia->ia_ifa, 1); if (ia->ia_ifa.ifa_carp) (*carp_detach_p)(&ia->ia_ifa, cmd == SIOCAIFADDR); /* * If this is the last IPv4 address configured on this * interface, leave the all-hosts group. * No state-change report need be transmitted. */ if (iaIsLast && (ifp->if_flags & IFF_MULTICAST)) { struct in_ifinfo *ii; ii = ((struct in_ifinfo *)ifp->if_afdata[AF_INET]); if (ii->ii_allhosts) { (void)in_leavegroup(ii->ii_allhosts, NULL); ii->ii_allhosts = NULL; } } IF_ADDR_WLOCK(ifp); if (callout_stop(&ia->ia_garp_timer) == 1) { ifa_free(&ia->ia_ifa); } IF_ADDR_WUNLOCK(ifp); EVENTHANDLER_INVOKE(ifaddr_event_ext, ifp, &ia->ia_ifa, IFADDR_EVENT_DEL); ifa_free(&ia->ia_ifa); /* in_ifaddrhead */ return (0); } static int in_gifaddr_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { struct in_aliasreq *ifra = (struct in_aliasreq *)data; const struct sockaddr_in *addr = &ifra->ifra_addr; struct epoch_tracker et; struct ifaddr *ifa; struct in_ifaddr *ia; /* * ifra_addr must be present and be of INET family. */ if (addr->sin_len != sizeof(struct sockaddr_in) || addr->sin_family != AF_INET) return (EINVAL); /* * See whether address exist. */ ia = NULL; NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { struct in_ifaddr *it; if (ifa->ifa_addr->sa_family != AF_INET) continue; it = (struct in_ifaddr *)ifa; if (it->ia_addr.sin_addr.s_addr == addr->sin_addr.s_addr && prison_check_ip4(td->td_ucred, &addr->sin_addr) == 0) { ia = it; break; } } if (ia == NULL) { NET_EPOCH_EXIT(et); return (EADDRNOTAVAIL); } ifra->ifra_mask = ia->ia_sockmask; if ((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_family == AF_INET) ifra->ifra_dstaddr = ia->ia_dstaddr; else if ((ifp->if_flags & IFF_BROADCAST) && ia->ia_broadaddr.sin_family == AF_INET) ifra->ifra_broadaddr = ia->ia_broadaddr; else memset(&ifra->ifra_broadaddr, 0, sizeof(ifra->ifra_broadaddr)); NET_EPOCH_EXIT(et); return (0); } static int in_match_ifaddr(const struct rtentry *rt, const struct nhop_object *nh, void *arg) { if (nh->nh_ifa == (struct ifaddr *)arg) return (1); return (0); } static int in_handle_prefix_route(uint32_t fibnum, int cmd, struct sockaddr_in *dst, struct sockaddr_in *netmask, struct ifaddr *ifa, struct ifnet *ifp) { NET_EPOCH_ASSERT(); /* Prepare gateway */ struct sockaddr_dl_short sdl = { .sdl_family = AF_LINK, .sdl_len = sizeof(struct sockaddr_dl_short), .sdl_type = ifa->ifa_ifp->if_type, .sdl_index = ifa->ifa_ifp->if_index, }; struct rt_addrinfo info = { .rti_ifa = ifa, .rti_ifp = ifp, .rti_flags = RTF_PINNED | ((netmask != NULL) ? 0 : RTF_HOST), .rti_info = { [RTAX_DST] = (struct sockaddr *)dst, [RTAX_NETMASK] = (struct sockaddr *)netmask, [RTAX_GATEWAY] = (struct sockaddr *)&sdl, }, /* Ensure we delete the prefix IFF prefix ifa matches */ .rti_filter = in_match_ifaddr, .rti_filterdata = ifa, }; return (rib_handle_ifaddr_info(fibnum, cmd, &info)); } /* * Routing table interaction with interface addresses. * * In general, two types of routes needs to be installed: * a) "interface" or "prefix" route, telling user that the addresses * behind the ifa prefix are reached directly. * b) "loopback" route installed for the ifa address, telling user that * the address belongs to local system. * * Handling for (a) and (b) differs in multi-fib aspects, hence they * are implemented in different functions below. * * The cases above may intersect - /32 interface aliases results in * the same prefix produced by (a) and (b). This blurs the definition * of the "loopback" route and complicate interactions. The interaction * table is defined below. The case numbers are used in the multiple * functions below to refer to the particular test case. * * There can be multiple options: * 1) Adding address with prefix on non-p2p/non-loopback interface. * Example: 192.0.2.1/24. Action: * * add "prefix" route towards 192.0.2.0/24 via @ia interface, * using @ia as an address source. * * add "loopback" route towards 192.0.2.1 via V_loif, saving * @ia ifp in the gateway and using @ia as an address source. * * 2) Adding address with /32 mask to non-p2p/non-loopback interface. * Example: 192.0.2.2/32. Action: * * add "prefix" host route via V_loif, using @ia as an address source. * * 3) Adding address with or without prefix to p2p interface. * Example: 10.0.0.1/24->10.0.0.2. Action: * * add "prefix" host route towards 10.0.0.2 via this interface, using @ia * as an address source. Note: no sense in installing full /24 as the interface * is point-to-point. * * add "loopback" route towards 10.0.9.1 via V_loif, saving * @ia ifp in the gateway and using @ia as an address source. * * 4) Adding address with or without prefix to loopback interface. * Example: 192.0.2.1/24. Action: * * add "prefix" host route via @ia interface, using @ia as an address source. * Note: Skip installing /24 prefix as it would introduce TTL loop * for the traffic destined to these addresses. */ /* * Checks if @ia needs to install loopback route to @ia address via * ifa_maintain_loopback_route(). * * Return true on success. */ static bool ia_need_loopback_route(const struct in_ifaddr *ia) { struct ifnet *ifp = ia->ia_ifp; /* Case 4: Skip loopback interfaces */ if ((ifp->if_flags & IFF_LOOPBACK) || (ia->ia_addr.sin_addr.s_addr == INADDR_ANY)) return (false); /* Clash avoidance: Skip p2p interfaces with both addresses are equal */ if ((ifp->if_flags & IFF_POINTOPOINT) && ia->ia_dstaddr.sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr) return (false); /* Case 2: skip /32 prefixes */ if (!(ifp->if_flags & IFF_POINTOPOINT) && (ia->ia_sockmask.sin_addr.s_addr == INADDR_BROADCAST)) return (false); return (true); } /* * Calculate "prefix" route corresponding to @ia. */ static void ia_getrtprefix(const struct in_ifaddr *ia, struct in_addr *prefix, struct in_addr *mask) { if (ia->ia_ifp->if_flags & IFF_POINTOPOINT) { /* Case 3: return host route for dstaddr */ *prefix = ia->ia_dstaddr.sin_addr; mask->s_addr = INADDR_BROADCAST; } else if (ia->ia_ifp->if_flags & IFF_LOOPBACK) { /* Case 4: return host route for ifaddr */ *prefix = ia->ia_addr.sin_addr; mask->s_addr = INADDR_BROADCAST; } else { /* Cases 1,2: return actual ia prefix */ *prefix = ia->ia_addr.sin_addr; *mask = ia->ia_sockmask.sin_addr; prefix->s_addr &= mask->s_addr; } } /* * Adds or delete interface "prefix" route corresponding to @ifa. * Returns 0 on success or errno. */ -int +static int in_handle_ifaddr_route(int cmd, struct in_ifaddr *ia) { struct ifaddr *ifa = &ia->ia_ifa; struct in_addr daddr, maddr; struct sockaddr_in *pmask; struct epoch_tracker et; int error; ia_getrtprefix(ia, &daddr, &maddr); struct sockaddr_in mask = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr = maddr, }; pmask = (maddr.s_addr != INADDR_BROADCAST) ? &mask : NULL; struct sockaddr_in dst = { .sin_family = AF_INET, .sin_len = sizeof(struct sockaddr_in), .sin_addr.s_addr = daddr.s_addr & maddr.s_addr, }; struct ifnet *ifp = ia->ia_ifp; if ((maddr.s_addr == INADDR_BROADCAST) && (!(ia->ia_ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)))) { /* Case 2: host route on broadcast interface */ ifp = V_loif; } uint32_t fibnum = ifa->ifa_ifp->if_fib; NET_EPOCH_ENTER(et); error = in_handle_prefix_route(fibnum, cmd, &dst, pmask, ifa, ifp); NET_EPOCH_EXIT(et); return (error); } /* * Check if we have a route for the given prefix already. */ static bool in_hasrtprefix(struct in_ifaddr *target) { struct epoch_tracker et; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; bool result = false; ia_getrtprefix(target, &prefix, &mask); /* Look for an existing address with the same prefix, mask, and fib */ NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { ia_getrtprefix(ia, &p, &m); if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; if (target->ia_ifp->if_fib != ia->ia_ifp->if_fib) continue; /* * If we got a matching prefix route inserted by other * interface address, we are done here. */ if (ia->ia_flags & IFA_ROUTE) { result = true; break; } } NET_EPOCH_EXIT(et); return (result); } int in_addprefix(struct in_ifaddr *target) { int error; if (in_hasrtprefix(target)) { if (V_nosameprefix) return (EEXIST); else { rt_addrmsg(RTM_ADD, &target->ia_ifa, target->ia_ifp->if_fib); return (0); } } /* * No-one seem to have this prefix route, so we try to insert it. */ rt_addrmsg(RTM_ADD, &target->ia_ifa, target->ia_ifp->if_fib); error = in_handle_ifaddr_route(RTM_ADD, target); if (!error) target->ia_flags |= IFA_ROUTE; return (error); } /* * Removes either all lle entries for given @ia, or lle * corresponding to @ia address. */ static void in_scrubprefixlle(struct in_ifaddr *ia, int all, u_int flags) { struct sockaddr_in addr, mask; struct sockaddr *saddr, *smask; struct ifnet *ifp; saddr = (struct sockaddr *)&addr; bzero(&addr, sizeof(addr)); addr.sin_len = sizeof(addr); addr.sin_family = AF_INET; smask = (struct sockaddr *)&mask; bzero(&mask, sizeof(mask)); mask.sin_len = sizeof(mask); mask.sin_family = AF_INET; mask.sin_addr.s_addr = ia->ia_subnetmask; ifp = ia->ia_ifp; if (all) { /* * Remove all L2 entries matching given prefix. * Convert address to host representation to avoid * doing this on every callback. ia_subnetmask is already * stored in host representation. */ addr.sin_addr.s_addr = ntohl(ia->ia_addr.sin_addr.s_addr); lltable_prefix_free(AF_INET, saddr, smask, flags); } else { /* Remove interface address only */ addr.sin_addr.s_addr = ia->ia_addr.sin_addr.s_addr; lltable_delete_addr(LLTABLE(ifp), LLE_IFADDR, saddr); } } /* * If there is no other address in the system that can serve a route to the * same prefix, remove the route. Hand over the route to the new address * otherwise. */ int in_scrubprefix(struct in_ifaddr *target, u_int flags) { struct epoch_tracker et; struct in_ifaddr *ia; struct in_addr prefix, mask, p, m; int error = 0; /* * Remove the loopback route to the interface address. */ if (ia_need_loopback_route(target) && (flags & LLE_STATIC)) { struct in_ifaddr *eia; eia = in_localip_more(target); if (eia != NULL) { error = ifa_switch_loopback_route((struct ifaddr *)eia, (struct sockaddr *)&target->ia_addr); ifa_free(&eia->ia_ifa); } else { error = ifa_del_loopback_route((struct ifaddr *)target, (struct sockaddr *)&target->ia_addr); } } ia_getrtprefix(target, &prefix, &mask); if ((target->ia_flags & IFA_ROUTE) == 0) { rt_addrmsg(RTM_DELETE, &target->ia_ifa, target->ia_ifp->if_fib); /* * Removing address from !IFF_UP interface or * prefix which exists on other interface (along with route). * No entries should exist here except target addr. * Given that, delete this entry only. */ in_scrubprefixlle(target, 0, flags); return (0); } NET_EPOCH_ENTER(et); CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { ia_getrtprefix(ia, &p, &m); if (prefix.s_addr != p.s_addr || mask.s_addr != m.s_addr) continue; if ((ia->ia_ifp->if_flags & IFF_UP) == 0) continue; /* * If we got a matching prefix address, move IFA_ROUTE and * the route itself to it. Make sure that routing daemons * get a heads-up. */ if ((ia->ia_flags & IFA_ROUTE) == 0) { ifa_ref(&ia->ia_ifa); NET_EPOCH_EXIT(et); error = in_handle_ifaddr_route(RTM_DELETE, target); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, old prefix delete failed\n", error); /* Scrub all entries IFF interface is different */ in_scrubprefixlle(target, target->ia_ifp != ia->ia_ifp, flags); error = in_handle_ifaddr_route(RTM_ADD, ia); if (error == 0) ia->ia_flags |= IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, new prefix add failed\n", error); ifa_free(&ia->ia_ifa); return (error); } } NET_EPOCH_EXIT(et); /* * remove all L2 entries on the given prefix */ in_scrubprefixlle(target, 1, flags); /* * As no-one seem to have this prefix, we can remove the route. */ rt_addrmsg(RTM_DELETE, &target->ia_ifa, target->ia_ifp->if_fib); error = in_handle_ifaddr_route(RTM_DELETE, target); if (error == 0) target->ia_flags &= ~IFA_ROUTE; else log(LOG_INFO, "in_scrubprefix: err=%d, prefix delete failed\n", error); return (error); } void in_ifscrub_all(void) { struct ifnet *ifp; struct ifaddr *ifa, *nifa; struct ifaliasreq ifr; IFNET_RLOCK(); CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { /* Cannot lock here - lock recursion. */ /* NET_EPOCH_ENTER(et); */ CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, nifa) { if (ifa->ifa_addr->sa_family != AF_INET) continue; /* * This is ugly but the only way for legacy IP to * cleanly remove addresses and everything attached. */ bzero(&ifr, sizeof(ifr)); ifr.ifra_addr = *ifa->ifa_addr; if (ifa->ifa_dstaddr) ifr.ifra_broadaddr = *ifa->ifa_dstaddr; (void)in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp, NULL); } /* NET_EPOCH_EXIT(et); */ in_purgemaddrs(ifp); igmp_domifdetach(ifp); } IFNET_RUNLOCK(); } int in_ifaddr_broadcast(struct in_addr in, struct in_ifaddr *ia) { return ((in.s_addr == ia->ia_broadaddr.sin_addr.s_addr || /* * Optionally check for old-style (host 0) broadcast, but * taking into account that RFC 3021 obsoletes it. */ (V_broadcast_lowest && ia->ia_subnetmask != IN_RFC3021_MASK && ntohl(in.s_addr) == ia->ia_subnet)) && /* * Check for an all one subnetmask. These * only exist when an interface gets a secondary * address. */ ia->ia_subnetmask != (u_long)0xffffffff); } /* * Return 1 if the address might be a local broadcast address. */ int in_broadcast(struct in_addr in, struct ifnet *ifp) { struct ifaddr *ifa; int found; NET_EPOCH_ASSERT(); if (in.s_addr == INADDR_BROADCAST || in.s_addr == INADDR_ANY) return (1); if ((ifp->if_flags & IFF_BROADCAST) == 0) return (0); found = 0; /* * Look through the list of addresses for a match * with a broadcast address. */ CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) if (ifa->ifa_addr->sa_family == AF_INET && in_ifaddr_broadcast(in, (struct in_ifaddr *)ifa)) { found = 1; break; } return (found); } /* * On interface removal, clean up IPv4 data structures hung off of the ifnet. */ void in_ifdetach(struct ifnet *ifp) { IN_MULTI_LOCK(); in_pcbpurgeif0(&V_ripcbinfo, ifp); in_pcbpurgeif0(&V_udbinfo, ifp); in_pcbpurgeif0(&V_ulitecbinfo, ifp); in_purgemaddrs(ifp); IN_MULTI_UNLOCK(); /* * Make sure all multicast deletions invoking if_ioctl() are * completed before returning. Else we risk accessing a freed * ifnet structure pointer. */ inm_release_wait(NULL); } +static void +in_ifnet_event(void *arg __unused, struct ifnet *ifp, int event) +{ + struct epoch_tracker et; + struct ifaddr *ifa; + struct in_ifaddr *ia; + int error; + + NET_EPOCH_ENTER(et); + switch (event) { + case IFNET_EVENT_DOWN: + CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { + if (ifa->ifa_addr->sa_family != AF_INET) + continue; + ia = (struct in_ifaddr *)ifa; + if ((ia->ia_flags & IFA_ROUTE) == 0) + continue; + ifa_ref(ifa); + /* + * in_scrubprefix() kills the interface route. + */ + in_scrubprefix(ia, 0); + /* + * in_ifadown gets rid of all the rest of the + * routes. This is not quite the right thing + * to do, but at least if we are running a + * routing process they will come back. + */ + in_ifadown(ifa, 0); + ifa_free(ifa); + } + break; + + case IFNET_EVENT_UP: + CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { + if (ifa->ifa_addr->sa_family != AF_INET) + continue; + ia = (struct in_ifaddr *)ifa; + if (ia->ia_flags & IFA_ROUTE) + continue; + ifa_ref(ifa); + error = ifa_del_loopback_route(ifa, ifa->ifa_addr); + rt_addrmsg(RTM_ADD, ifa, ifa->ifa_ifp->if_fib); + error = in_handle_ifaddr_route(RTM_ADD, ia); + if (error == 0) + ia->ia_flags |= IFA_ROUTE; + error = ifa_add_loopback_route(ifa, ifa->ifa_addr); + ifa_free(ifa); + } + break; + } + NET_EPOCH_EXIT(et); +} +EVENTHANDLER_DEFINE(ifnet_event, in_ifnet_event, NULL, EVENTHANDLER_PRI_ANY); + /* * Delete all IPv4 multicast address records, and associated link-layer * multicast address records, associated with ifp. * XXX It looks like domifdetach runs AFTER the link layer cleanup. * XXX This should not race with ifma_protospec being set during * a new allocation, if it does, we have bigger problems. */ static void in_purgemaddrs(struct ifnet *ifp) { struct in_multi_head purgeinms; struct in_multi *inm; struct ifmultiaddr *ifma, *next; SLIST_INIT(&purgeinms); IN_MULTI_LIST_LOCK(); /* * Extract list of in_multi associated with the detaching ifp * which the PF_INET layer is about to release. * We need to do this as IF_ADDR_LOCK() may be re-acquired * by code further down. */ IF_ADDR_WLOCK(ifp); restart: CK_STAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next) { if (ifma->ifma_addr->sa_family != AF_INET || ifma->ifma_protospec == NULL) continue; inm = (struct in_multi *)ifma->ifma_protospec; inm_rele_locked(&purgeinms, inm); if (__predict_false(ifma_restart)) { ifma_restart = true; goto restart; } } IF_ADDR_WUNLOCK(ifp); inm_release_list_deferred(&purgeinms); igmp_ifdetach(ifp); IN_MULTI_LIST_UNLOCK(); } struct in_llentry { struct llentry base; }; #define IN_LLTBL_DEFAULT_HSIZE 32 #define IN_LLTBL_HASH(k, h) \ (((((((k >> 8) ^ k) >> 8) ^ k) >> 8) ^ k) & ((h) - 1)) /* * Do actual deallocation of @lle. */ static void in_lltable_destroy_lle_unlocked(epoch_context_t ctx) { struct llentry *lle; lle = __containerof(ctx, struct llentry, lle_epoch_ctx); LLE_LOCK_DESTROY(lle); LLE_REQ_DESTROY(lle); free(lle, M_LLTABLE); } /* * Called by LLE_FREE_LOCKED when number of references * drops to zero. */ static void in_lltable_destroy_lle(struct llentry *lle) { LLE_WUNLOCK(lle); NET_EPOCH_CALL(in_lltable_destroy_lle_unlocked, &lle->lle_epoch_ctx); } static struct llentry * in_lltable_new(struct in_addr addr4, u_int flags) { struct in_llentry *lle; lle = malloc(sizeof(struct in_llentry), M_LLTABLE, M_NOWAIT | M_ZERO); if (lle == NULL) /* NB: caller generates msg */ return NULL; /* * For IPv4 this will trigger "arpresolve" to generate * an ARP request. */ lle->base.la_expire = time_uptime; /* mark expired */ lle->base.r_l3addr.addr4 = addr4; lle->base.lle_refcnt = 1; lle->base.lle_free = in_lltable_destroy_lle; LLE_LOCK_INIT(&lle->base); LLE_REQ_INIT(&lle->base); callout_init(&lle->base.lle_timer, 1); return (&lle->base); } #define IN_ARE_MASKED_ADDR_EQUAL(d, a, m) ( \ ((((d).s_addr ^ (a).s_addr) & (m).s_addr)) == 0 ) static int in_lltable_match_prefix(const struct sockaddr *saddr, const struct sockaddr *smask, u_int flags, struct llentry *lle) { struct in_addr addr, mask, lle_addr; addr = ((const struct sockaddr_in *)saddr)->sin_addr; mask = ((const struct sockaddr_in *)smask)->sin_addr; lle_addr.s_addr = ntohl(lle->r_l3addr.addr4.s_addr); if (IN_ARE_MASKED_ADDR_EQUAL(lle_addr, addr, mask) == 0) return (0); if (lle->la_flags & LLE_IFADDR) { /* * Delete LLE_IFADDR records IFF address & flag matches. * Note that addr is the interface address within prefix * being matched. * Note also we should handle 'ifdown' cases without removing * ifaddr macs. */ if (addr.s_addr == lle_addr.s_addr && (flags & LLE_STATIC) != 0) return (1); return (0); } /* flags & LLE_STATIC means deleting both dynamic and static entries */ if ((flags & LLE_STATIC) || !(lle->la_flags & LLE_STATIC)) return (1); return (0); } static void in_lltable_free_entry(struct lltable *llt, struct llentry *lle) { size_t pkts_dropped; LLE_WLOCK_ASSERT(lle); KASSERT(llt != NULL, ("lltable is NULL")); /* Unlink entry from table if not already */ if ((lle->la_flags & LLE_LINKED) != 0) { IF_AFDATA_WLOCK_ASSERT(llt->llt_ifp); lltable_unlink_entry(llt, lle); } /* Drop hold queue */ pkts_dropped = llentry_free(lle); ARPSTAT_ADD(dropped, pkts_dropped); } static int in_lltable_rtcheck(struct ifnet *ifp, u_int flags, const struct sockaddr *l3addr) { struct nhop_object *nh; struct in_addr addr; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); addr = ((const struct sockaddr_in *)l3addr)->sin_addr; nh = fib4_lookup(ifp->if_fib, addr, 0, NHR_NONE, 0); if (nh == NULL) return (EINVAL); /* * If the gateway for an existing host route matches the target L3 * address, which is a special route inserted by some implementation * such as MANET, and the interface is of the correct type, then * allow for ARP to proceed. */ if (nh->nh_flags & NHF_GATEWAY) { if (!(nh->nh_flags & NHF_HOST) || nh->nh_ifp->if_type != IFT_ETHER || (nh->nh_ifp->if_flags & (IFF_NOARP | IFF_STATICARP)) != 0 || memcmp(nh->gw_sa.sa_data, l3addr->sa_data, sizeof(in_addr_t)) != 0) { return (EINVAL); } } /* * Make sure that at least the destination address is covered * by the route. This is for handling the case where 2 or more * interfaces have the same prefix. An incoming packet arrives * on one interface and the corresponding outgoing packet leaves * another interface. */ if ((nh->nh_ifp != ifp) && (nh->nh_flags & NHF_HOST) == 0) { struct in_ifaddr *ia = (struct in_ifaddr *)ifaof_ifpforaddr(l3addr, ifp); struct in_addr dst_addr, mask_addr; if (ia == NULL) return (EINVAL); /* * ifaof_ifpforaddr() returns _best matching_ IFA. * It is possible that ifa prefix does not cover our address. * Explicitly verify and fail if that's the case. */ dst_addr = IA_SIN(ia)->sin_addr; mask_addr.s_addr = htonl(ia->ia_subnetmask); if (!IN_ARE_MASKED_ADDR_EQUAL(dst_addr, addr, mask_addr)) return (EINVAL); } return (0); } static inline uint32_t in_lltable_hash_dst(const struct in_addr dst, uint32_t hsize) { return (IN_LLTBL_HASH(dst.s_addr, hsize)); } static uint32_t in_lltable_hash(const struct llentry *lle, uint32_t hsize) { return (in_lltable_hash_dst(lle->r_l3addr.addr4, hsize)); } static void in_lltable_fill_sa_entry(const struct llentry *lle, struct sockaddr *sa) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)sa; bzero(sin, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_addr = lle->r_l3addr.addr4; } static inline struct llentry * in_lltable_find_dst(struct lltable *llt, struct in_addr dst) { struct llentry *lle; struct llentries *lleh; u_int hashidx; hashidx = in_lltable_hash_dst(dst, llt->llt_hsize); lleh = &llt->lle_head[hashidx]; CK_LIST_FOREACH(lle, lleh, lle_next) { if (lle->la_flags & LLE_DELETED) continue; if (lle->r_l3addr.addr4.s_addr == dst.s_addr) break; } return (lle); } static void in_lltable_delete_entry(struct lltable *llt, struct llentry *lle) { lle->la_flags |= LLE_DELETED; EVENTHANDLER_INVOKE(lle_event, lle, LLENTRY_DELETED); #ifdef DIAGNOSTIC log(LOG_INFO, "ifaddr cache = %p is deleted\n", lle); #endif llentry_free(lle); } static struct llentry * in_lltable_alloc(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct ifnet *ifp = llt->llt_ifp; struct llentry *lle; char linkhdr[LLE_MAX_LINKHDR]; size_t linkhdrsize; int lladdr_off; KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); /* * A route that covers the given address must have * been installed 1st because we are doing a resolution, * verify this. */ if (!(flags & LLE_IFADDR) && in_lltable_rtcheck(ifp, flags, l3addr) != 0) return (NULL); lle = in_lltable_new(sin->sin_addr, flags); if (lle == NULL) { log(LOG_INFO, "lla_lookup: new lle malloc failed\n"); return (NULL); } lle->la_flags = flags; if (flags & LLE_STATIC) lle->r_flags |= RLLE_VALID; if ((flags & LLE_IFADDR) == LLE_IFADDR) { linkhdrsize = LLE_MAX_LINKHDR; if (lltable_calc_llheader(ifp, AF_INET, IF_LLADDR(ifp), linkhdr, &linkhdrsize, &lladdr_off) != 0) { in_lltable_free_entry(llt, lle); return (NULL); } lltable_set_entry_addr(ifp, lle, linkhdr, linkhdrsize, lladdr_off); lle->la_flags |= LLE_STATIC; lle->r_flags |= (RLLE_VALID | RLLE_IFADDR); } return (lle); } /* * Return NULL if not found or marked for deletion. * If found return lle read locked. */ static struct llentry * in_lltable_lookup(struct lltable *llt, u_int flags, const struct sockaddr *l3addr) { const struct sockaddr_in *sin = (const struct sockaddr_in *)l3addr; struct llentry *lle; IF_AFDATA_LOCK_ASSERT(llt->llt_ifp); KASSERT(l3addr->sa_family == AF_INET, ("sin_family %d", l3addr->sa_family)); KASSERT((flags & (LLE_UNLOCKED | LLE_EXCLUSIVE)) != (LLE_UNLOCKED | LLE_EXCLUSIVE), ("wrong lle request flags: %#x", flags)); lle = in_lltable_find_dst(llt, sin->sin_addr); if (lle == NULL) return (NULL); if (flags & LLE_UNLOCKED) return (lle); if (flags & LLE_EXCLUSIVE) LLE_WLOCK(lle); else LLE_RLOCK(lle); /* * If the afdata lock is not held, the LLE may have been unlinked while * we were blocked on the LLE lock. Check for this case. */ if (__predict_false((lle->la_flags & LLE_LINKED) == 0)) { if (flags & LLE_EXCLUSIVE) LLE_WUNLOCK(lle); else LLE_RUNLOCK(lle); return (NULL); } return (lle); } static int in_lltable_dump_entry(struct lltable *llt, struct llentry *lle, struct sysctl_req *wr) { struct ifnet *ifp = llt->llt_ifp; /* XXX stack use */ struct { struct rt_msghdr rtm; struct sockaddr_in sin; struct sockaddr_dl sdl; } arpc; struct sockaddr_dl *sdl; int error; bzero(&arpc, sizeof(arpc)); /* skip deleted entries */ if ((lle->la_flags & LLE_DELETED) == LLE_DELETED) return (0); /* Skip if jailed and not a valid IP of the prison. */ lltable_fill_sa_entry(lle,(struct sockaddr *)&arpc.sin); if (prison_if(wr->td->td_ucred, (struct sockaddr *)&arpc.sin) != 0) return (0); /* * produce a msg made of: * struct rt_msghdr; * struct sockaddr_in; (IPv4) * struct sockaddr_dl; */ arpc.rtm.rtm_msglen = sizeof(arpc); arpc.rtm.rtm_version = RTM_VERSION; arpc.rtm.rtm_type = RTM_GET; arpc.rtm.rtm_flags = RTF_UP; arpc.rtm.rtm_addrs = RTA_DST | RTA_GATEWAY; /* publish */ if (lle->la_flags & LLE_PUB) arpc.rtm.rtm_flags |= RTF_ANNOUNCE; sdl = &arpc.sdl; sdl->sdl_family = AF_LINK; sdl->sdl_len = sizeof(*sdl); sdl->sdl_index = ifp->if_index; sdl->sdl_type = ifp->if_type; if ((lle->la_flags & LLE_VALID) == LLE_VALID) { sdl->sdl_alen = ifp->if_addrlen; bcopy(lle->ll_addr, LLADDR(sdl), ifp->if_addrlen); } else { sdl->sdl_alen = 0; bzero(LLADDR(sdl), ifp->if_addrlen); } arpc.rtm.rtm_rmx.rmx_expire = lle->la_flags & LLE_STATIC ? 0 : lle->la_expire; arpc.rtm.rtm_flags |= (RTF_HOST | RTF_LLDATA); if (lle->la_flags & LLE_STATIC) arpc.rtm.rtm_flags |= RTF_STATIC; if (lle->la_flags & LLE_IFADDR) arpc.rtm.rtm_flags |= RTF_PINNED; arpc.rtm.rtm_index = ifp->if_index; error = SYSCTL_OUT(wr, &arpc, sizeof(arpc)); return (error); } static void in_lltable_post_resolved(struct lltable *llt, struct llentry *lle) { struct ifnet *ifp = llt->llt_ifp; /* gratuitous ARP */ if ((lle->la_flags & LLE_PUB) != 0) arprequest(ifp, &lle->r_l3addr.addr4, &lle->r_l3addr.addr4, lle->ll_addr); } static struct lltable * in_lltattach(struct ifnet *ifp) { struct lltable *llt; llt = lltable_allocate_htbl(IN_LLTBL_DEFAULT_HSIZE); llt->llt_af = AF_INET; llt->llt_ifp = ifp; llt->llt_lookup = in_lltable_lookup; llt->llt_alloc_entry = in_lltable_alloc; llt->llt_delete_entry = in_lltable_delete_entry; llt->llt_dump_entry = in_lltable_dump_entry; llt->llt_hash = in_lltable_hash; llt->llt_fill_sa_entry = in_lltable_fill_sa_entry; llt->llt_free_entry = in_lltable_free_entry; llt->llt_match_prefix = in_lltable_match_prefix; llt->llt_mark_used = llentry_mark_used; llt->llt_post_resolved = in_lltable_post_resolved; lltable_link(llt); return (llt); } struct lltable * in_lltable_get(struct ifnet *ifp) { struct lltable *llt = NULL; void *afdata_ptr = ifp->if_afdata[AF_INET]; if (afdata_ptr != NULL) llt = ((struct in_ifinfo *)afdata_ptr)->ii_llt; return (llt); } void * in_domifattach(struct ifnet *ifp) { struct in_ifinfo *ii; ii = malloc(sizeof(struct in_ifinfo), M_IFADDR, M_WAITOK|M_ZERO); ii->ii_llt = in_lltattach(ifp); ii->ii_igmp = igmp_domifattach(ifp); return (ii); } void in_domifdetach(struct ifnet *ifp, void *aux) { struct in_ifinfo *ii = (struct in_ifinfo *)aux; igmp_domifdetach(ifp); lltable_free(ii->ii_llt); free(ii, M_IFADDR); } diff --git a/sys/netinet/in_var.h b/sys/netinet/in_var.h index a6902159e739..c3f936b444dc 100644 --- a/sys/netinet/in_var.h +++ b/sys/netinet/in_var.h @@ -1,469 +1,468 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1985, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_var.h 8.2 (Berkeley) 1/9/95 * $FreeBSD$ */ #ifndef _NETINET_IN_VAR_H_ #define _NETINET_IN_VAR_H_ /* * Argument structure for SIOCAIFADDR. */ struct in_aliasreq { char ifra_name[IFNAMSIZ]; /* if name, e.g. "en0" */ struct sockaddr_in ifra_addr; struct sockaddr_in ifra_broadaddr; #define ifra_dstaddr ifra_broadaddr struct sockaddr_in ifra_mask; int ifra_vhid; }; #ifdef _KERNEL #include #include #include struct igmp_ifsoftc; struct in_multi; struct lltable; SLIST_HEAD(in_multi_head, in_multi); /* * IPv4 per-interface state. */ struct in_ifinfo { struct lltable *ii_llt; /* ARP state */ struct igmp_ifsoftc *ii_igmp; /* IGMP state */ struct in_multi *ii_allhosts; /* 224.0.0.1 membership */ }; /* * Interface address, Internet version. One of these structures * is allocated for each Internet address on an interface. * The ifaddr structure contains the protocol-independent part * of the structure and is assumed to be first. */ struct in_ifaddr { struct ifaddr ia_ifa; /* protocol-independent info */ #define ia_ifp ia_ifa.ifa_ifp #define ia_flags ia_ifa.ifa_flags /* ia_subnet{,mask} in host order */ u_long ia_subnet; /* subnet address */ u_long ia_subnetmask; /* mask of subnet */ CK_LIST_ENTRY(in_ifaddr) ia_hash; /* hash of internet addresses */ CK_STAILQ_ENTRY(in_ifaddr) ia_link; /* list of internet addresses */ struct sockaddr_in ia_addr; /* reserve space for interface name */ struct sockaddr_in ia_dstaddr; /* reserve space for broadcast addr */ #define ia_broadaddr ia_dstaddr struct sockaddr_in ia_sockmask; /* reserve space for general netmask */ struct callout ia_garp_timer; /* timer for retransmitting GARPs */ int ia_garp_count; /* count of retransmitted GARPs */ }; /* * Given a pointer to an in_ifaddr (ifaddr), * return a pointer to the addr as a sockaddr_in. */ #define IA_SIN(ia) (&(((struct in_ifaddr *)(ia))->ia_addr)) #define IA_DSTSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_dstaddr)) #define IA_MASKSIN(ia) (&(((struct in_ifaddr *)(ia))->ia_sockmask)) #define IN_LNAOF(in, ifa) \ ((ntohl((in).s_addr) & ~((struct in_ifaddr *)(ifa)->ia_subnetmask)) extern u_char inetctlerrmap[]; #define LLTABLE(ifp) \ ((struct in_ifinfo *)(ifp)->if_afdata[AF_INET])->ii_llt /* * Hash table for IP addresses. */ CK_STAILQ_HEAD(in_ifaddrhead, in_ifaddr); CK_LIST_HEAD(in_ifaddrhashhead, in_ifaddr); VNET_DECLARE(struct in_ifaddrhashhead *, in_ifaddrhashtbl); VNET_DECLARE(struct in_ifaddrhead, in_ifaddrhead); VNET_DECLARE(u_long, in_ifaddrhmask); /* mask for hash table */ #define V_in_ifaddrhashtbl VNET(in_ifaddrhashtbl) #define V_in_ifaddrhead VNET(in_ifaddrhead) #define V_in_ifaddrhmask VNET(in_ifaddrhmask) #define INADDR_NHASH_LOG2 9 #define INADDR_NHASH (1 << INADDR_NHASH_LOG2) #define INADDR_HASHVAL(x) fnv_32_buf((&(x)), sizeof(x), FNV1_32_INIT) #define INADDR_HASH(x) \ (&V_in_ifaddrhashtbl[INADDR_HASHVAL(x) & V_in_ifaddrhmask]) /* * Macro for finding the internet address structure (in_ifaddr) * corresponding to one of our IP addresses (in_addr). */ #define INADDR_TO_IFADDR(addr, ia) \ /* struct in_addr addr; */ \ /* struct in_ifaddr *ia; */ \ do { \ NET_EPOCH_ASSERT(); \ CK_LIST_FOREACH(ia, INADDR_HASH((addr).s_addr), ia_hash) \ if (IA_SIN(ia)->sin_addr.s_addr == (addr).s_addr) \ break; \ } while (0) /* * Macro for finding the interface (ifnet structure) corresponding to one * of our IP addresses. */ #define INADDR_TO_IFP(addr, ifp) \ /* struct in_addr addr; */ \ /* struct ifnet *ifp; */ \ { \ struct in_ifaddr *ia; \ \ INADDR_TO_IFADDR(addr, ia); \ (ifp) = (ia == NULL) ? NULL : ia->ia_ifp; \ } /* * Macro for finding the internet address structure (in_ifaddr) corresponding * to a given interface (ifnet structure). */ #define IFP_TO_IA(ifp, ia) \ /* struct ifnet *ifp; */ \ /* struct in_ifaddr *ia; */ \ do { \ NET_EPOCH_ASSERT(); \ for ((ia) = CK_STAILQ_FIRST(&V_in_ifaddrhead); \ (ia) != NULL && (ia)->ia_ifp != (ifp); \ (ia) = CK_STAILQ_NEXT((ia), ia_link)) \ continue; \ } while (0) /* * Legacy IPv4 IGMP per-link structure. */ struct router_info { struct ifnet *rti_ifp; int rti_type; /* type of router which is querier on this interface */ int rti_time; /* # of slow timeouts since last old query */ SLIST_ENTRY(router_info) rti_list; }; /* * IPv4 multicast IGMP-layer source entry. */ struct ip_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ struct ims_st { uint16_t ex; /* # of exclusive members */ uint16_t in; /* # of inclusive members */ } ims_st[2]; /* state at t0, t1 */ uint8_t ims_stp; /* pending query */ }; /* * IPv4 multicast PCB-layer source entry. */ struct in_msource { RB_ENTRY(ip_msource) ims_link; /* RB tree links */ in_addr_t ims_haddr; /* host byte order */ uint8_t imsl_st[2]; /* state before/at commit */ }; RB_HEAD(ip_msource_tree, ip_msource); /* define struct ip_msource_tree */ static __inline int ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b) { if (a->ims_haddr < b->ims_haddr) return (-1); if (a->ims_haddr == b->ims_haddr) return (0); return (1); } RB_PROTOTYPE(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp); /* * IPv4 multicast PCB-layer group filter descriptor. */ struct in_mfilter { struct ip_msource_tree imf_sources; /* source list for (S,G) */ u_long imf_nsrc; /* # of source entries */ uint8_t imf_st[2]; /* state before/at commit */ struct in_multi *imf_inm; /* associated multicast address */ STAILQ_ENTRY(in_mfilter) imf_entry; /* list entry */ }; /* * Helper types and functions for IPv4 multicast filters. */ STAILQ_HEAD(ip_mfilter_head, in_mfilter); struct in_mfilter *ip_mfilter_alloc(int mflags, int st0, int st1); void ip_mfilter_free(struct in_mfilter *); static inline void ip_mfilter_init(struct ip_mfilter_head *head) { STAILQ_INIT(head); } static inline struct in_mfilter * ip_mfilter_first(const struct ip_mfilter_head *head) { return (STAILQ_FIRST(head)); } static inline void ip_mfilter_insert(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_INSERT_TAIL(head, imf, imf_entry); } static inline void ip_mfilter_remove(struct ip_mfilter_head *head, struct in_mfilter *imf) { STAILQ_REMOVE(head, imf, in_mfilter, imf_entry); } #define IP_MFILTER_FOREACH(imf, head) \ STAILQ_FOREACH(imf, head, imf_entry) static inline size_t ip_mfilter_count(struct ip_mfilter_head *head) { struct in_mfilter *imf; size_t num = 0; STAILQ_FOREACH(imf, head, imf_entry) num++; return (num); } /* * IPv4 group descriptor. * * For every entry on an ifnet's if_multiaddrs list which represents * an IP multicast group, there is one of these structures. * * If any source filters are present, then a node will exist in the RB-tree * to permit fast lookup by source whenever an operation takes place. * This permits pre-order traversal when we issue reports. * Source filter trees are kept separately from the socket layer to * greatly simplify locking. * * When IGMPv3 is active, inm_timer is the response to group query timer. * The state-change timer inm_sctimer is separate; whenever state changes * for the group the state change record is generated and transmitted, * and kept if retransmissions are necessary. * * FUTURE: inm_link is now only used when groups are being purged * on a detaching ifnet. It could be demoted to a SLIST_ENTRY, but * because it is at the very start of the struct, we can't do this * w/o breaking the ABI for ifmcstat. */ struct in_multi { LIST_ENTRY(in_multi) inm_link; /* to-be-released by in_ifdetach */ struct in_addr inm_addr; /* IP multicast address, convenience */ struct ifnet *inm_ifp; /* back pointer to ifnet */ struct ifmultiaddr *inm_ifma; /* back pointer to ifmultiaddr */ u_int inm_timer; /* IGMPv1/v2 group / v3 query timer */ u_int inm_state; /* state of the membership */ void *inm_rti; /* unused, legacy field */ u_int inm_refcount; /* reference count */ /* New fields for IGMPv3 follow. */ struct igmp_ifsoftc *inm_igi; /* IGMP info */ SLIST_ENTRY(in_multi) inm_nrele; /* to-be-released by IGMP */ struct ip_msource_tree inm_srcs; /* tree of sources */ u_long inm_nsrc; /* # of tree entries */ struct mbufq inm_scq; /* queue of pending * state-change packets */ struct timeval inm_lastgsrtv; /* Time of last G-S-R query */ uint16_t inm_sctimer; /* state-change timer */ uint16_t inm_scrv; /* state-change rexmit count */ /* * SSM state counters which track state at T0 (the time the last * state-change report's RV timer went to zero) and T1 * (time of pending report, i.e. now). * Used for computing IGMPv3 state-change reports. Several refcounts * are maintained here to optimize for common use-cases. */ struct inm_st { uint16_t iss_fmode; /* IGMP filter mode */ uint16_t iss_asm; /* # of ASM listeners */ uint16_t iss_ex; /* # of exclusive members */ uint16_t iss_in; /* # of inclusive members */ uint16_t iss_rec; /* # of recorded sources */ } inm_st[2]; /* state at t0, t1 */ }; /* * Helper function to derive the filter mode on a source entry * from its internal counters. Predicates are: * A source is only excluded if all listeners exclude it. * A source is only included if no listeners exclude it, * and at least one listener includes it. * May be used by ifmcstat(8). */ static __inline uint8_t ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims, uint8_t t) { t = !!t; if (inm->inm_st[t].iss_ex > 0 && inm->inm_st[t].iss_ex == ims->ims_st[t].ex) return (MCAST_EXCLUDE); else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0) return (MCAST_INCLUDE); return (MCAST_UNDEFINED); } #ifdef SYSCTL_DECL SYSCTL_DECL(_net_inet); SYSCTL_DECL(_net_inet_ip); SYSCTL_DECL(_net_inet_raw); #endif /* * Lock macros for IPv4 layer multicast address lists. IPv4 lock goes * before link layer multicast locks in the lock order. In most cases, * consumers of IN_*_MULTI() macros should acquire the locks before * calling them; users of the in_{add,del}multi() functions should not. */ extern struct mtx in_multi_list_mtx; extern struct sx in_multi_sx; #define IN_MULTI_LIST_LOCK() mtx_lock(&in_multi_list_mtx) #define IN_MULTI_LIST_UNLOCK() mtx_unlock(&in_multi_list_mtx) #define IN_MULTI_LIST_LOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_OWNED) #define IN_MULTI_LIST_UNLOCK_ASSERT() mtx_assert(&in_multi_list_mtx, MA_NOTOWNED) #define IN_MULTI_LOCK() sx_xlock(&in_multi_sx) #define IN_MULTI_UNLOCK() sx_xunlock(&in_multi_sx) #define IN_MULTI_LOCK_ASSERT() sx_assert(&in_multi_sx, SA_XLOCKED) #define IN_MULTI_UNLOCK_ASSERT() sx_assert(&in_multi_sx, SA_XUNLOCKED) void inm_disconnect(struct in_multi *inm); extern int ifma_restart; /* Acquire an in_multi record. */ static __inline void inm_acquire_locked(struct in_multi *inm) { IN_MULTI_LIST_LOCK_ASSERT(); ++inm->inm_refcount; } static __inline void inm_acquire(struct in_multi *inm) { IN_MULTI_LIST_LOCK(); inm_acquire_locked(inm); IN_MULTI_LIST_UNLOCK(); } static __inline void inm_rele_locked(struct in_multi_head *inmh, struct in_multi *inm) { MPASS(inm->inm_refcount > 0); IN_MULTI_LIST_LOCK_ASSERT(); if (--inm->inm_refcount == 0) { MPASS(inmh != NULL); inm_disconnect(inm); inm->inm_ifma->ifma_protospec = NULL; SLIST_INSERT_HEAD(inmh, inm, inm_nrele); } } /* * Return values for imo_multi_filter(). */ #define MCAST_PASS 0 /* Pass */ #define MCAST_NOTGMEMBER 1 /* This host not a member of group */ #define MCAST_NOTSMEMBER 2 /* This host excluded source */ #define MCAST_MUTED 3 /* [deprecated] */ struct rib_head; struct ip_moptions; struct in_multi *inm_lookup_locked(struct ifnet *, const struct in_addr); struct in_multi *inm_lookup(struct ifnet *, const struct in_addr); int imo_multi_filter(const struct ip_moptions *, const struct ifnet *, const struct sockaddr *, const struct sockaddr *); void inm_commit(struct in_multi *); void inm_clear_recorded(struct in_multi *); void inm_print(const struct in_multi *); int inm_record_source(struct in_multi *inm, const in_addr_t); void inm_release_deferred(struct in_multi *); void inm_release_list_deferred(struct in_multi_head *); void inm_release_wait(void *); int in_joingroup(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_joingroup_locked(struct ifnet *, const struct in_addr *, /*const*/ struct in_mfilter *, struct in_multi **); int in_leavegroup(struct in_multi *, /*const*/ struct in_mfilter *); int in_leavegroup_locked(struct in_multi *, /*const*/ struct in_mfilter *); int in_control(struct socket *, u_long, caddr_t, struct ifnet *, struct thread *); int in_addprefix(struct in_ifaddr *); int in_scrubprefix(struct in_ifaddr *, u_int); void in_ifscrub_all(void); -int in_handle_ifaddr_route(int, struct in_ifaddr *); void ip_input(struct mbuf *); void ip_direct_input(struct mbuf *); void in_ifadown(struct ifaddr *ifa, int); struct mbuf *ip_tryforward(struct mbuf *); void *in_domifattach(struct ifnet *); void in_domifdetach(struct ifnet *, void *); struct rib_head *in_inithead(uint32_t fibnum); #ifdef VIMAGE void in_detachhead(struct rib_head *rh); #endif #endif /* _KERNEL */ /* INET6 stuff */ #include #endif /* _NETINET_IN_VAR_H_ */ diff --git a/sys/netinet/raw_ip.c b/sys/netinet/raw_ip.c index 1f631e108a49..0bd874c717e6 100644 --- a/sys/netinet/raw_ip.c +++ b/sys/netinet/raw_ip.c @@ -1,1157 +1,1104 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95 */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_inet6.h" #include "opt_ipsec.h" #include "opt_route.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include VNET_DEFINE(int, ip_defttl) = IPDEFTTL; SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ip_defttl), 0, "Maximum TTL on IP packets"); VNET_DEFINE(struct inpcbinfo, ripcbinfo); #define V_ripcbinfo VNET(ripcbinfo) /* * Control and data hooks for ipfw, dummynet, divert and so on. * The data hooks are not used here but it is convenient * to keep them all in one place. */ VNET_DEFINE(ip_fw_chk_ptr_t, ip_fw_chk_ptr) = NULL; VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL; int (*ip_dn_ctl_ptr)(struct sockopt *); int (*ip_dn_io_ptr)(struct mbuf **, struct ip_fw_args *); void (*ip_divert_ptr)(struct mbuf *, bool); int (*ng_ipfw_input_p)(struct mbuf **, struct ip_fw_args *, bool); #ifdef INET /* * Hooks for multicast routing. They all default to NULL, so leave them not * initialized and rely on BSS being set to 0. */ /* * The socket used to communicate with the multicast routing daemon. */ VNET_DEFINE(struct socket *, ip_mrouter); /* * The various mrouter and rsvp functions. */ int (*ip_mrouter_set)(struct socket *, struct sockopt *); int (*ip_mrouter_get)(struct socket *, struct sockopt *); int (*ip_mrouter_done)(void); int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *); int (*mrt_ioctl)(u_long, caddr_t, int); int (*legal_vif_num)(int); u_long (*ip_mcast_src)(int); int (*rsvp_input_p)(struct mbuf **, int *, int); int (*ip_rsvp_vif)(struct socket *, struct sockopt *); void (*ip_rsvp_force_done)(struct socket *); #endif /* INET */ extern struct protosw inetsw[]; u_long rip_sendspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW, &rip_sendspace, 0, "Maximum outgoing raw IP datagram size"); u_long rip_recvspace = 9216; SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW, &rip_recvspace, 0, "Maximum space for incoming raw IP datagrams"); /* * Hash functions */ #define INP_PCBHASH_RAW_SIZE 256 #define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \ (((proto) + (laddr) + (faddr)) % (mask) + 1) #ifdef INET static void rip_inshash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbhead *pcbhash; int hash; INP_HASH_WLOCK_ASSERT(pcbinfo); INP_WLOCK_ASSERT(inp); if (inp->inp_ip_p != 0 && inp->inp_laddr.s_addr != INADDR_ANY && inp->inp_faddr.s_addr != INADDR_ANY) { hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr, inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask); } else hash = 0; pcbhash = &pcbinfo->ipi_hashbase[hash]; CK_LIST_INSERT_HEAD(pcbhash, inp, inp_hash); } static void rip_delhash(struct inpcb *inp) { INP_HASH_WLOCK_ASSERT(inp->inp_pcbinfo); INP_WLOCK_ASSERT(inp); CK_LIST_REMOVE(inp, inp_hash); } #endif /* INET */ INPCBSTORAGE_DEFINE(ripcbstor, "rawinp", "ripcb", "rip", "riphash"); static void rip_init(void *arg __unused) { in_pcbinfo_init(&V_ripcbinfo, &ripcbstor, INP_PCBHASH_RAW_SIZE, 1); } VNET_SYSINIT(rip_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, rip_init, NULL); #ifdef VIMAGE static void rip_destroy(void *unused __unused) { in_pcbinfo_destroy(&V_ripcbinfo); } VNET_SYSUNINIT(raw_ip, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, rip_destroy, NULL); #endif #ifdef INET static int rip_append(struct inpcb *inp, struct ip *ip, struct mbuf *m, struct sockaddr_in *ripsrc) { struct socket *so = inp->inp_socket; struct mbuf *n, *opts = NULL; INP_LOCK_ASSERT(inp); #if defined(IPSEC) || defined(IPSEC_SUPPORT) /* check AH/ESP integrity. */ if (IPSEC_ENABLED(ipv4) && IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) return (0); #endif /* IPSEC */ #ifdef MAC if (mac_inpcb_check_deliver(inp, m) != 0) return (0); #endif /* Check the minimum TTL for socket. */ if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) return (0); if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) == NULL) return (0); if ((inp->inp_flags & INP_CONTROLOPTS) || (so->so_options & (SO_TIMESTAMP | SO_BINTIME))) ip_savecontrol(inp, &opts, ip, n); SOCKBUF_LOCK(&so->so_rcv); if (sbappendaddr_locked(&so->so_rcv, (struct sockaddr *)ripsrc, n, opts) == 0) { soroverflow_locked(so); m_freem(n); if (opts) m_freem(opts); return (0); } sorwakeup_locked(so); return (1); } struct rip_inp_match_ctx { struct ip *ip; int proto; }; static bool rip_inp_match1(const struct inpcb *inp, void *v) { struct rip_inp_match_ctx *ctx = v; if (inp->inp_ip_p != ctx->proto) return (false); #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) return (false); #endif if (inp->inp_laddr.s_addr != ctx->ip->ip_dst.s_addr) return (false); if (inp->inp_faddr.s_addr != ctx->ip->ip_src.s_addr) return (false); return (true); } static bool rip_inp_match2(const struct inpcb *inp, void *v) { struct rip_inp_match_ctx *ctx = v; if (inp->inp_ip_p && inp->inp_ip_p != ctx->proto) return (false); #ifdef INET6 /* XXX inp locking */ if ((inp->inp_vflag & INP_IPV4) == 0) return (false); #endif if (!in_nullhost(inp->inp_laddr) && !in_hosteq(inp->inp_laddr, ctx->ip->ip_dst)) return (false); if (!in_nullhost(inp->inp_faddr) && !in_hosteq(inp->inp_faddr, ctx->ip->ip_src)) return (false); return (true); } /* * Setup generic address and protocol structures for raw_input routine, then * pass them along with mbuf chain. */ int rip_input(struct mbuf **mp, int *offp, int proto) { struct rip_inp_match_ctx ctx = { .ip = mtod(*mp, struct ip *), .proto = proto, }; struct inpcb_iterator inpi = INP_ITERATOR(&V_ripcbinfo, INPLOOKUP_RLOCKPCB, rip_inp_match1, &ctx); struct ifnet *ifp; struct mbuf *m = *mp; struct inpcb *inp; struct sockaddr_in ripsrc; int appended; *mp = NULL; appended = 0; bzero(&ripsrc, sizeof(ripsrc)); ripsrc.sin_len = sizeof(ripsrc); ripsrc.sin_family = AF_INET; ripsrc.sin_addr = ctx.ip->ip_src; ifp = m->m_pkthdr.rcvif; inpi.hash = INP_PCBHASH_RAW(proto, ctx.ip->ip_src.s_addr, ctx.ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask); while ((inp = inp_next(&inpi)) != NULL) { INP_RLOCK_ASSERT(inp); if (jailed_without_vnet(inp->inp_cred) && prison_check_ip4(inp->inp_cred, &ctx.ip->ip_dst) != 0) { /* * XXX: If faddr was bound to multicast group, * jailed raw socket will drop datagram. */ continue; } appended += rip_append(inp, ctx.ip, m, &ripsrc); } inpi.hash = 0; inpi.match = rip_inp_match2; MPASS(inpi.inp == NULL); while ((inp = inp_next(&inpi)) != NULL) { INP_RLOCK_ASSERT(inp); if (jailed_without_vnet(inp->inp_cred) && !IN_MULTICAST(ntohl(ctx.ip->ip_dst.s_addr)) && prison_check_ip4(inp->inp_cred, &ctx.ip->ip_dst) != 0) /* * Allow raw socket in jail to receive multicast; * assume process had PRIV_NETINET_RAW at attach, * and fall through into normal filter path if so. */ continue; /* * If this raw socket has multicast state, and we * have received a multicast, check if this socket * should receive it, as multicast filtering is now * the responsibility of the transport layer. */ if (inp->inp_moptions != NULL && IN_MULTICAST(ntohl(ctx.ip->ip_dst.s_addr))) { /* * If the incoming datagram is for IGMP, allow it * through unconditionally to the raw socket. * * In the case of IGMPv2, we may not have explicitly * joined the group, and may have set IFF_ALLMULTI * on the interface. imo_multi_filter() may discard * control traffic we actually need to see. * * Userland multicast routing daemons should continue * filter the control traffic appropriately. */ int blocked; blocked = MCAST_PASS; if (proto != IPPROTO_IGMP) { struct sockaddr_in group; bzero(&group, sizeof(struct sockaddr_in)); group.sin_len = sizeof(struct sockaddr_in); group.sin_family = AF_INET; group.sin_addr = ctx.ip->ip_dst; blocked = imo_multi_filter(inp->inp_moptions, ifp, (struct sockaddr *)&group, (struct sockaddr *)&ripsrc); } if (blocked != MCAST_PASS) { IPSTAT_INC(ips_notmember); continue; } } appended += rip_append(inp, ctx.ip, m, &ripsrc); } if (appended == 0 && inetsw[ip_protox[ctx.ip->ip_p]].pr_input == rip_input) { IPSTAT_INC(ips_noproto); IPSTAT_DEC(ips_delivered); icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PROTOCOL, 0, 0); } else m_freem(m); return (IPPROTO_DONE); } /* * Generate IP header and pass packet to ip_output. Tack on options user may * have setup with control call. */ int rip_output(struct mbuf *m, struct socket *so, ...) { struct epoch_tracker et; struct ip *ip; int error; struct inpcb *inp = sotoinpcb(so); va_list ap; u_long dst; int flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) | IP_ALLOWBROADCAST; int cnt, hlen; u_char opttype, optlen, *cp; va_start(ap, so); dst = va_arg(ap, u_long); va_end(ap); /* * If the user handed us a complete IP packet, use it. Otherwise, * allocate an mbuf for a header and fill it in. */ if ((inp->inp_flags & INP_HDRINCL) == 0) { if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) { m_freem(m); return(EMSGSIZE); } M_PREPEND(m, sizeof(struct ip), M_NOWAIT); if (m == NULL) return(ENOBUFS); INP_RLOCK(inp); ip = mtod(m, struct ip *); ip->ip_tos = inp->inp_ip_tos; if (inp->inp_flags & INP_DONTFRAG) ip->ip_off = htons(IP_DF); else ip->ip_off = htons(0); ip->ip_p = inp->inp_ip_p; ip->ip_len = htons(m->m_pkthdr.len); ip->ip_src = inp->inp_laddr; ip->ip_dst.s_addr = dst; #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_type, hash_val; hash_val = fib4_calc_software_hash(ip->ip_src, ip->ip_dst, 0, 0, ip->ip_p, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); flags |= IP_NODEFAULTFLOWID; } #endif if (jailed(inp->inp_cred)) { /* * prison_local_ip4() would be good enough but would * let a source of INADDR_ANY pass, which we do not * want to see from jails. */ if (ip->ip_src.s_addr == INADDR_ANY) { NET_EPOCH_ENTER(et); error = in_pcbladdr(inp, &ip->ip_dst, &ip->ip_src, inp->inp_cred); NET_EPOCH_EXIT(et); } else { error = prison_local_ip4(inp->inp_cred, &ip->ip_src); } if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } } ip->ip_ttl = inp->inp_ip_ttl; } else { if (m->m_pkthdr.len > IP_MAXPACKET) { m_freem(m); return (EMSGSIZE); } if (m->m_pkthdr.len < sizeof(*ip)) { m_freem(m); return (EINVAL); } m = m_pullup(m, sizeof(*ip)); if (m == NULL) return (ENOMEM); ip = mtod(m, struct ip *); hlen = ip->ip_hl << 2; if (m->m_len < hlen) { m = m_pullup(m, hlen); if (m == NULL) return (EINVAL); ip = mtod(m, struct ip *); } #ifdef ROUTE_MPATH if (CALC_FLOWID_OUTBOUND) { uint32_t hash_type, hash_val; hash_val = fib4_calc_software_hash(ip->ip_dst, ip->ip_src, 0, 0, ip->ip_p, &hash_type); m->m_pkthdr.flowid = hash_val; M_HASHTYPE_SET(m, hash_type); flags |= IP_NODEFAULTFLOWID; } #endif INP_RLOCK(inp); /* * Don't allow both user specified and setsockopt options, * and don't allow packet length sizes that will crash. */ if ((hlen < sizeof (*ip)) || ((hlen > sizeof (*ip)) && inp->inp_options) || (ntohs(ip->ip_len) != m->m_pkthdr.len)) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } error = prison_check_ip4(inp->inp_cred, &ip->ip_src); if (error != 0) { INP_RUNLOCK(inp); m_freem(m); return (error); } /* * Don't allow IP options which do not have the required * structure as specified in section 3.1 of RFC 791 on * pages 15-23. */ cp = (u_char *)(ip + 1); cnt = hlen - sizeof (struct ip); for (; cnt > 0; cnt -= optlen, cp += optlen) { opttype = cp[IPOPT_OPTVAL]; if (opttype == IPOPT_EOL) break; if (opttype == IPOPT_NOP) { optlen = 1; continue; } if (cnt < IPOPT_OLEN + sizeof(u_char)) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } optlen = cp[IPOPT_OLEN]; if (optlen < IPOPT_OLEN + sizeof(u_char) || optlen > cnt) { INP_RUNLOCK(inp); m_freem(m); return (EINVAL); } } /* * This doesn't allow application to specify ID of zero, * but we got this limitation from the beginning of history. */ if (ip->ip_id == 0) ip_fillid(ip); /* * XXX prevent ip_output from overwriting header fields. */ flags |= IP_RAWOUTPUT; IPSTAT_INC(ips_rawout); } if (inp->inp_flags & INP_ONESBCAST) flags |= IP_SENDONES; #ifdef MAC mac_inpcb_create_mbuf(inp, m); #endif NET_EPOCH_ENTER(et); error = ip_output(m, inp->inp_options, NULL, flags, inp->inp_moptions, inp); NET_EPOCH_EXIT(et); INP_RUNLOCK(inp); return (error); } /* * Raw IP socket option processing. * * IMPORTANT NOTE regarding access control: Traditionally, raw sockets could * only be created by a privileged process, and as such, socket option * operations to manage system properties on any raw socket were allowed to * take place without explicit additional access control checks. However, * raw sockets can now also be created in jail(), and therefore explicit * checks are now required. Likewise, raw sockets can be used by a process * after it gives up privilege, so some caution is required. For options * passed down to the IP layer via ip_ctloutput(), checks are assumed to be * performed in ip_ctloutput() and therefore no check occurs here. * Unilaterally checking priv_check() here breaks normal IP socket option * operations on raw sockets. * * When adding new socket options here, make sure to add access control * checks here as necessary. * * XXX-BZ inp locking? */ int rip_ctloutput(struct socket *so, struct sockopt *sopt) { struct inpcb *inp = sotoinpcb(so); int error, optval; if (sopt->sopt_level != IPPROTO_IP) { if ((sopt->sopt_level == SOL_SOCKET) && (sopt->sopt_name == SO_SETFIB)) { inp->inp_inc.inc_fibnum = so->so_fibnum; return (0); } return (EINVAL); } error = 0; switch (sopt->sopt_dir) { case SOPT_GET: switch (sopt->sopt_name) { case IP_HDRINCL: optval = inp->inp_flags & INP_HDRINCL; error = sooptcopyout(sopt, &optval, sizeof optval); break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: /* ADD actually returns the body... */ case IP_FW_GET: case IP_FW_TABLE_GETSIZE: case IP_FW_TABLE_LIST: case IP_FW_NAT_GET_CONFIG: case IP_FW_NAT_GET_LOG: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_GET: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT; break ; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_get ? ip_mrouter_get(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; case SOPT_SET: switch (sopt->sopt_name) { case IP_HDRINCL: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; if (optval) inp->inp_flags |= INP_HDRINCL; else inp->inp_flags &= ~INP_HDRINCL; break; case IP_FW3: /* generic ipfw v.3 functions */ case IP_FW_ADD: case IP_FW_DEL: case IP_FW_FLUSH: case IP_FW_ZERO: case IP_FW_RESETLOG: case IP_FW_TABLE_ADD: case IP_FW_TABLE_DEL: case IP_FW_TABLE_FLUSH: case IP_FW_NAT_CFG: case IP_FW_NAT_DEL: if (V_ip_fw_ctl_ptr != NULL) error = V_ip_fw_ctl_ptr(sopt); else error = ENOPROTOOPT; break; case IP_DUMMYNET3: /* generic dummynet v.3 functions */ case IP_DUMMYNET_CONFIGURE: case IP_DUMMYNET_DEL: case IP_DUMMYNET_FLUSH: if (ip_dn_ctl_ptr != NULL) error = ip_dn_ctl_ptr(sopt); else error = ENOPROTOOPT ; break ; case IP_RSVP_ON: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_init(so); break; case IP_RSVP_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_done(); break; case IP_RSVP_VIF_ON: case IP_RSVP_VIF_OFF: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_rsvp_vif ? ip_rsvp_vif(so, sopt) : EINVAL; break; case MRT_INIT: case MRT_DONE: case MRT_ADD_VIF: case MRT_DEL_VIF: case MRT_ADD_MFC: case MRT_DEL_MFC: case MRT_VERSION: case MRT_ASSERT: case MRT_API_SUPPORT: case MRT_API_CONFIG: case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error != 0) return (error); error = ip_mrouter_set ? ip_mrouter_set(so, sopt) : EOPNOTSUPP; break; default: error = ip_ctloutput(so, sopt); break; } break; } return (error); } -/* - * This function exists solely to receive the PRC_IFDOWN messages which are - * sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, and calls - * in_ifadown() to remove all routes corresponding to that address. It also - * receives the PRC_IFUP messages from if_up() and reinstalls the interface - * routes. - */ void rip_ctlinput(int cmd, struct sockaddr *sa, void *vip) { - struct in_ifaddr *ia; - int err; - - NET_EPOCH_ASSERT(); switch (cmd) { - case PRC_IFDOWN: - CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { - if (ia->ia_ifa.ifa_addr == sa - && (ia->ia_flags & IFA_ROUTE)) { - ifa_ref(&ia->ia_ifa); - /* - * in_scrubprefix() kills the interface route. - */ - in_scrubprefix(ia, 0); - /* - * in_ifadown gets rid of all the rest of the - * routes. This is not quite the right thing - * to do, but at least if we are running a - * routing process they will come back. - */ - in_ifadown(&ia->ia_ifa, 0); - ifa_free(&ia->ia_ifa); - break; - } - } - break; - - case PRC_IFUP: - CK_STAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) { - if (ia->ia_ifa.ifa_addr == sa) - break; - } - if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) - return; - ifa_ref(&ia->ia_ifa); - - err = ifa_del_loopback_route((struct ifaddr *)ia, sa); - - rt_addrmsg(RTM_ADD, &ia->ia_ifa, ia->ia_ifp->if_fib); - err = in_handle_ifaddr_route(RTM_ADD, ia); - if (err == 0) - ia->ia_flags |= IFA_ROUTE; - - err = ifa_add_loopback_route((struct ifaddr *)ia, sa); - - ifa_free(&ia->ia_ifa); - break; #if defined(IPSEC) || defined(IPSEC_SUPPORT) case PRC_MSGSIZE: if (IPSEC_ENABLED(ipv4)) IPSEC_CTLINPUT(ipv4, cmd, sa, vip); break; #endif } } static int rip_attach(struct socket *so, int proto, struct thread *td) { struct inpcb *inp; int error; inp = sotoinpcb(so); KASSERT(inp == NULL, ("rip_attach: inp != NULL")); error = priv_check(td, PRIV_NETINET_RAW); if (error) return (error); if (proto >= IPPROTO_MAX || proto < 0) return EPROTONOSUPPORT; error = soreserve(so, rip_sendspace, rip_recvspace); if (error) return (error); error = in_pcballoc(so, &V_ripcbinfo); if (error) return (error); inp = (struct inpcb *)so->so_pcb; inp->inp_ip_p = proto; inp->inp_ip_ttl = V_ip_defttl; INP_HASH_WLOCK(&V_ripcbinfo); rip_inshash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); INP_WUNLOCK(inp); return (0); } static void rip_detach(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_detach: inp == NULL")); KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, ("rip_detach: not closed")); /* Disable mrouter first */ if (so == V_ip_mrouter && ip_mrouter_done) ip_mrouter_done(); INP_WLOCK(inp); INP_HASH_WLOCK(&V_ripcbinfo); rip_delhash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); if (ip_rsvp_force_done) ip_rsvp_force_done(so); if (so == V_ip_rsvpd) ip_rsvp_done(); in_pcbdetach(inp); in_pcbfree(inp); } static void rip_dodisconnect(struct socket *so, struct inpcb *inp) { struct inpcbinfo *pcbinfo; pcbinfo = inp->inp_pcbinfo; INP_WLOCK(inp); INP_HASH_WLOCK(pcbinfo); rip_delhash(inp); inp->inp_faddr.s_addr = INADDR_ANY; rip_inshash(inp); INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; SOCK_UNLOCK(so); INP_WUNLOCK(inp); } static void rip_abort(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_abort: inp == NULL")); rip_dodisconnect(so, inp); } static void rip_close(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_close: inp == NULL")); rip_dodisconnect(so, inp); } static int rip_disconnect(struct socket *so) { struct inpcb *inp; if ((so->so_state & SS_ISCONNECTED) == 0) return (ENOTCONN); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_disconnect: inp == NULL")); rip_dodisconnect(so, inp); return (0); } static int rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; int error; if (nam->sa_family != AF_INET) return (EAFNOSUPPORT); if (nam->sa_len != sizeof(*addr)) return (EINVAL); error = prison_check_ip4(td->td_ucred, &addr->sin_addr); if (error != 0) return (error); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_bind: inp == NULL")); if (CK_STAILQ_EMPTY(&V_ifnet) || (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) || (addr->sin_addr.s_addr && (inp->inp_flags & INP_BINDANY) == 0 && ifa_ifwithaddr_check((struct sockaddr *)addr) == 0)) return (EADDRNOTAVAIL); INP_WLOCK(inp); INP_HASH_WLOCK(&V_ripcbinfo); rip_delhash(inp); inp->inp_laddr = addr->sin_addr; rip_inshash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); INP_WUNLOCK(inp); return (0); } static int rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *addr = (struct sockaddr_in *)nam; struct inpcb *inp; if (nam->sa_len != sizeof(*addr)) return (EINVAL); if (CK_STAILQ_EMPTY(&V_ifnet)) return (EADDRNOTAVAIL); if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) return (EAFNOSUPPORT); inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_connect: inp == NULL")); INP_WLOCK(inp); INP_HASH_WLOCK(&V_ripcbinfo); rip_delhash(inp); inp->inp_faddr = addr->sin_addr; rip_inshash(inp); INP_HASH_WUNLOCK(&V_ripcbinfo); soisconnected(so); INP_WUNLOCK(inp); return (0); } static int rip_shutdown(struct socket *so) { struct inpcb *inp; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_shutdown: inp == NULL")); INP_WLOCK(inp); socantsendmore(so); INP_WUNLOCK(inp); return (0); } static int rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam, struct mbuf *control, struct thread *td) { struct inpcb *inp; u_long dst; int error; inp = sotoinpcb(so); KASSERT(inp != NULL, ("rip_send: inp == NULL")); if (control != NULL) { m_freem(control); control = NULL; } /* * Note: 'dst' reads below are unlocked. */ if (so->so_state & SS_ISCONNECTED) { if (nam) { error = EISCONN; goto release; } dst = inp->inp_faddr.s_addr; /* Unlocked read. */ } else { error = 0; if (nam == NULL) error = ENOTCONN; else if (nam->sa_family != AF_INET) error = EAFNOSUPPORT; else if (nam->sa_len != sizeof(struct sockaddr_in)) error = EINVAL; if (error != 0) goto release; dst = ((struct sockaddr_in *)nam)->sin_addr.s_addr; } return (rip_output(m, so, dst)); release: m_freem(m); return (error); } #endif /* INET */ static int rip_pcblist(SYSCTL_HANDLER_ARGS) { struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_ripcbinfo, INPLOOKUP_RLOCKPCB); struct xinpgen xig; struct inpcb *inp; int error; if (req->newptr != 0) return (EPERM); if (req->oldptr == 0) { int n; n = V_ripcbinfo.ipi_count; n += imax(n / 8, 10); req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); return (0); } if ((error = sysctl_wire_old_buffer(req, 0)) != 0) return (error); bzero(&xig, sizeof(xig)); xig.xig_len = sizeof xig; xig.xig_count = V_ripcbinfo.ipi_count; xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; error = SYSCTL_OUT(req, &xig, sizeof xig); if (error) return (error); while ((inp = inp_next(&inpi)) != NULL) { if (inp->inp_gencnt <= xig.xig_gen && cr_canseeinpcb(req->td->td_ucred, inp) == 0) { struct xinpcb xi; in_pcbtoxinpcb(inp, &xi); error = SYSCTL_OUT(req, &xi, sizeof xi); if (error) { INP_RUNLOCK(inp); break; } } } if (!error) { /* * Give the user an updated idea of our state. If the * generation differs from what we told her before, she knows * that something happened while we were processing this * request, and it might be necessary to retry. */ xig.xig_gen = V_ripcbinfo.ipi_gencnt; xig.xig_sogen = so_gencnt; xig.xig_count = V_ripcbinfo.ipi_count; error = SYSCTL_OUT(req, &xig, sizeof xig); } return (error); } SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, rip_pcblist, "S,xinpcb", "List of active raw IP sockets"); #ifdef INET struct pr_usrreqs rip_usrreqs = { .pru_abort = rip_abort, .pru_attach = rip_attach, .pru_bind = rip_bind, .pru_connect = rip_connect, .pru_control = in_control, .pru_detach = rip_detach, .pru_disconnect = rip_disconnect, .pru_peeraddr = in_getpeeraddr, .pru_send = rip_send, .pru_shutdown = rip_shutdown, .pru_sockaddr = in_getsockaddr, .pru_sosetlabel = in_pcbsosetlabel, .pru_close = rip_close, }; #endif /* INET */ diff --git a/sys/sys/protosw.h b/sys/sys/protosw.h index 26cd1bc3fc16..85761583c30a 100644 --- a/sys/sys/protosw.h +++ b/sys/sys/protosw.h @@ -1,357 +1,355 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1982, 1986, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)protosw.h 8.1 (Berkeley) 6/2/93 * $FreeBSD$ */ #ifndef _SYS_PROTOSW_H_ #define _SYS_PROTOSW_H_ #include /* Forward declare these structures referenced from prototypes below. */ struct kaiocb; struct mbuf; struct thread; struct sockaddr; struct socket; struct sockopt; /*#ifdef _KERNEL*/ /* * Protocol switch table. * * Each protocol has a handle initializing one of these structures, * which is used for protocol-protocol and system-protocol communication. * * Thereafter it is called every 200ms through the pr_fasttimo entry and * every 500ms through the pr_slowtimo for timer based actions. * The system will call the pr_drain entry if it is low on space and * this should throw away any non-critical data. * * Protocols pass data between themselves as chains of mbufs using * the pr_input and pr_output hooks. Pr_input passes data up (towards * the users) and pr_output passes it down (towards the interfaces); control * information passes up and down on pr_ctlinput and pr_ctloutput. * The protocol is responsible for the space occupied by any the * arguments to these entries and must dispose it. * * In retrospect, it would be a lot nicer to use an interface * similar to the vnode VOP interface. */ /* USE THESE FOR YOUR PROTOTYPES ! */ typedef int pr_input_t (struct mbuf **, int*, int); typedef int pr_output_t (struct mbuf *, struct socket *, ...); typedef void pr_ctlinput_t (int, struct sockaddr *, void *); typedef int pr_ctloutput_t (struct socket *, struct sockopt *); typedef void pr_fasttimo_t (void); typedef void pr_slowtimo_t (void); typedef void pr_drain_t (void); struct protosw { short pr_type; /* socket type used for */ struct domain *pr_domain; /* domain protocol a member of */ short pr_protocol; /* protocol number */ short pr_flags; /* see below */ /* protocol-protocol hooks */ pr_input_t *pr_input; /* input to protocol (from below) */ pr_output_t *pr_output; /* output to protocol (from above) */ pr_ctlinput_t *pr_ctlinput; /* control input (from below) */ pr_ctloutput_t *pr_ctloutput; /* control output (from above) */ /* utility hooks */ pr_fasttimo_t *pr_fasttimo; /* fast timeout (200ms) */ pr_slowtimo_t *pr_slowtimo; /* slow timeout (500ms) */ pr_drain_t *pr_drain; /* flush any excess space possible */ struct pr_usrreqs *pr_usrreqs; /* user-protocol hook */ LIST_ENTRY(protosw) pr_fasttimos; LIST_ENTRY(protosw) pr_slowtimos; }; /*#endif*/ #define PR_SLOWHZ 2 /* 2 slow timeouts per second */ #define PR_FASTHZ 5 /* 5 fast timeouts per second */ /* * This number should be defined again within each protocol family to avoid * confusion. */ #define PROTO_SPACER 32767 /* spacer for loadable protocols */ /* * Values for pr_flags. * PR_ADDR requires PR_ATOMIC; * PR_ADDR and PR_CONNREQUIRED are mutually exclusive. * PR_IMPLOPCL means that the protocol allows sendto without prior connect, * and the protocol understands the MSG_EOF flag. The first property is * is only relevant if PR_CONNREQUIRED is set (otherwise sendto is allowed * anyhow). * PR_SOCKBUF requires protocol to initialize and destroy its socket buffers * in its pr_attach and pr_detach. */ #define PR_ATOMIC 0x01 /* exchange atomic messages only */ #define PR_ADDR 0x02 /* addresses given with messages */ #define PR_CONNREQUIRED 0x04 /* connection required by protocol */ #define PR_WANTRCVD 0x08 /* want PRU_RCVD calls */ #define PR_RIGHTS 0x10 /* passes capabilities */ #define PR_IMPLOPCL 0x20 /* implied open/close */ #define PR_LASTHDR 0x40 /* enforce ipsec policy; last header */ #define PR_CAPATTACH 0x80 /* socket can attach in cap mode */ #define PR_SOCKBUF 0x100 /* private implementation of buffers */ /* * In earlier BSD network stacks, a single pr_usrreq() function pointer was * invoked with an operation number indicating what operation was desired. * We now provide individual function pointers which protocols can implement, * which offers a number of benefits (such as type checking for arguments). * These older constants are still present in order to support TCP debugging. */ #define PRU_ATTACH 0 /* attach protocol to up */ #define PRU_DETACH 1 /* detach protocol from up */ #define PRU_BIND 2 /* bind socket to address */ #define PRU_LISTEN 3 /* listen for connection */ #define PRU_CONNECT 4 /* establish connection to peer */ #define PRU_ACCEPT 5 /* accept connection from peer */ #define PRU_DISCONNECT 6 /* disconnect from peer */ #define PRU_SHUTDOWN 7 /* won't send any more data */ #define PRU_RCVD 8 /* have taken data; more room now */ #define PRU_SEND 9 /* send this data */ #define PRU_ABORT 10 /* abort (fast DISCONNECT, DETATCH) */ #define PRU_CONTROL 11 /* control operations on protocol */ #define PRU_SENSE 12 /* return status into m */ #define PRU_RCVOOB 13 /* retrieve out of band data */ #define PRU_SENDOOB 14 /* send out of band data */ #define PRU_SOCKADDR 15 /* fetch socket's address */ #define PRU_PEERADDR 16 /* fetch peer's address */ #define PRU_CONNECT2 17 /* connect two sockets */ /* begin for protocols internal use */ #define PRU_FASTTIMO 18 /* 200ms timeout */ #define PRU_SLOWTIMO 19 /* 500ms timeout */ #define PRU_PROTORCV 20 /* receive from below */ #define PRU_PROTOSEND 21 /* send to below */ /* end for protocol's internal use */ #define PRU_SEND_EOF 22 /* send and close */ #define PRU_SOSETLABEL 23 /* MAC label change */ #define PRU_CLOSE 24 /* socket close */ #define PRU_FLUSH 25 /* flush the socket */ #define PRU_NREQ 25 #ifdef PRUREQUESTS const char *prurequests[] = { "ATTACH", "DETACH", "BIND", "LISTEN", "CONNECT", "ACCEPT", "DISCONNECT", "SHUTDOWN", "RCVD", "SEND", "ABORT", "CONTROL", "SENSE", "RCVOOB", "SENDOOB", "SOCKADDR", "PEERADDR", "CONNECT2", "FASTTIMO", "SLOWTIMO", "PROTORCV", "PROTOSEND", "SEND_EOF", "SOSETLABEL", "CLOSE", "FLUSH", }; #endif #ifdef _KERNEL /* users shouldn't see this decl */ struct ifnet; struct stat; struct ucred; struct uio; /* * If the ordering here looks odd, that's because it's alphabetical. These * should eventually be merged back into struct protosw. * * Some fields initialized to defaults if they are NULL. */ struct pr_usrreqs { void (*pru_abort)(struct socket *so); int (*pru_accept)(struct socket *so, struct sockaddr **nam); int (*pru_attach)(struct socket *so, int proto, struct thread *td); int (*pru_bind)(struct socket *so, struct sockaddr *nam, struct thread *td); int (*pru_connect)(struct socket *so, struct sockaddr *nam, struct thread *td); int (*pru_connect2)(struct socket *so1, struct socket *so2); int (*pru_control)(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td); void (*pru_detach)(struct socket *so); int (*pru_disconnect)(struct socket *so); int (*pru_listen)(struct socket *so, int backlog, struct thread *td); int (*pru_peeraddr)(struct socket *so, struct sockaddr **nam); int (*pru_rcvd)(struct socket *so, int flags); int (*pru_rcvoob)(struct socket *so, struct mbuf *m, int flags); int (*pru_send)(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td); #define PRUS_OOB 0x1 #define PRUS_EOF 0x2 #define PRUS_MORETOCOME 0x4 #define PRUS_NOTREADY 0x8 #define PRUS_IPV6 0x10 int (*pru_ready)(struct socket *so, struct mbuf *m, int count); int (*pru_sense)(struct socket *so, struct stat *sb); int (*pru_shutdown)(struct socket *so); int (*pru_flush)(struct socket *so, int direction); int (*pru_sockaddr)(struct socket *so, struct sockaddr **nam); int (*pru_sosend)(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int (*pru_soreceive)(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int (*pru_sopoll)(struct socket *so, int events, struct ucred *cred, struct thread *td); void (*pru_sosetlabel)(struct socket *so); void (*pru_close)(struct socket *so); int (*pru_bindat)(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int (*pru_connectat)(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int (*pru_aio_queue)(struct socket *so, struct kaiocb *job); }; /* * All nonvoid pru_*() functions below return EOPNOTSUPP. */ int pru_accept_notsupp(struct socket *so, struct sockaddr **nam); int pru_aio_queue_notsupp(struct socket *so, struct kaiocb *job); int pru_attach_notsupp(struct socket *so, int proto, struct thread *td); int pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td); int pru_bindat_notsupp(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td); int pru_connectat_notsupp(int fd, struct socket *so, struct sockaddr *nam, struct thread *td); int pru_connect2_notsupp(struct socket *so1, struct socket *so2); int pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td); int pru_disconnect_notsupp(struct socket *so); int pru_listen_notsupp(struct socket *so, int backlog, struct thread *td); int pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam); int pru_rcvd_notsupp(struct socket *so, int flags); int pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags); int pru_send_notsupp(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct thread *td); int pru_ready_notsupp(struct socket *so, struct mbuf *m, int count); int pru_sense_null(struct socket *so, struct stat *sb); int pru_shutdown_notsupp(struct socket *so); int pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam); int pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio, struct mbuf *top, struct mbuf *control, int flags, struct thread *td); int pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr, struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp); int pru_sopoll_notsupp(struct socket *so, int events, struct ucred *cred, struct thread *td); #endif /* _KERNEL */ /* * The arguments to the ctlinput routine are * (*protosw[].pr_ctlinput)(cmd, sa, arg); * where cmd is one of the commands below, sa is a pointer to a sockaddr, * and arg is a `void *' argument used within a protocol family. */ -#define PRC_IFDOWN 0 /* interface transition */ #define PRC_ROUTEDEAD 1 /* select new route if possible ??? */ -#define PRC_IFUP 2 /* interface has come back up */ /* was PRC_QUENCH2 3 DEC congestion bit says slow down */ /* was PRC_QUENCH 4 Deprecated by RFC 6633 */ #define PRC_MSGSIZE 5 /* message size forced drop */ #define PRC_HOSTDEAD 6 /* host appears to be down */ #define PRC_HOSTUNREACH 7 /* deprecated (use PRC_UNREACH_HOST) */ #define PRC_UNREACH_NET 8 /* no route to network */ #define PRC_UNREACH_HOST 9 /* no route to host */ #define PRC_UNREACH_PROTOCOL 10 /* dst says bad protocol */ #define PRC_UNREACH_PORT 11 /* bad port # */ /* was PRC_UNREACH_NEEDFRAG 12 (use PRC_MSGSIZE) */ #define PRC_UNREACH_SRCFAIL 13 /* source route failed */ #define PRC_REDIRECT_NET 14 /* net routing redirect */ #define PRC_REDIRECT_HOST 15 /* host routing redirect */ #define PRC_REDIRECT_TOSNET 16 /* redirect for type of service & net */ #define PRC_REDIRECT_TOSHOST 17 /* redirect for tos & host */ #define PRC_TIMXCEED_INTRANS 18 /* packet lifetime expired in transit */ #define PRC_TIMXCEED_REASS 19 /* lifetime expired on reass q */ #define PRC_PARAMPROB 20 /* header incorrect */ #define PRC_UNREACH_ADMIN_PROHIB 21 /* packet administrativly prohibited */ #define PRC_NCMDS 22 #define PRC_IS_REDIRECT(cmd) \ ((cmd) >= PRC_REDIRECT_NET && (cmd) <= PRC_REDIRECT_TOSHOST) #ifdef PRCREQUESTS char *prcrequests[] = { "IFDOWN", "ROUTEDEAD", "IFUP", "DEC-BIT-QUENCH2", "QUENCH", "MSGSIZE", "HOSTDEAD", "#7", "NET-UNREACH", "HOST-UNREACH", "PROTO-UNREACH", "PORT-UNREACH", "#12", "SRCFAIL-UNREACH", "NET-REDIRECT", "HOST-REDIRECT", "TOSNET-REDIRECT", "TOSHOST-REDIRECT", "TX-INTRANS", "TX-REASS", "PARAMPROB", "ADMIN-UNREACH" }; #endif /* * The arguments to ctloutput are: * (*protosw[].pr_ctloutput)(req, so, level, optname, optval, p); * req is one of the actions listed below, so is a (struct socket *), * level is an indication of which protocol layer the option is intended. * optname is a protocol dependent socket option request, * optval is a pointer to a mbuf-chain pointer, for value-return results. * The protocol is responsible for disposal of the mbuf chain *optval * if supplied, * the caller is responsible for any space held by *optval, when returned. * A non-zero return from ctloutput gives an * UNIX error number which should be passed to higher level software. */ #define PRCO_GETOPT 0 #define PRCO_SETOPT 1 #define PRCO_NCMDS 2 #ifdef PRCOREQUESTS char *prcorequests[] = { "GETOPT", "SETOPT", }; #endif #ifdef _KERNEL void pfctlinput(int, struct sockaddr *); struct domain *pffinddomain(int family); struct protosw *pffindproto(int family, int protocol, int type); struct protosw *pffindtype(int family, int type); int pf_proto_register(int family, struct protosw *npr); int pf_proto_unregister(int family, int protocol, int type); #endif #endif