diff --git a/sys/riscv/riscv/machdep.c b/sys/riscv/riscv/machdep.c
index b03d45b018ec..0821a29d11c1 100644
--- a/sys/riscv/riscv/machdep.c
+++ b/sys/riscv/riscv/machdep.c
@@ -1,599 +1,599 @@
/*-
* Copyright (c) 2014 Andrew Turner
* Copyright (c) 2015-2017 Ruslan Bukin
* All rights reserved.
*
* Portions of this software were developed by SRI International and the
* University of Cambridge Computer Laboratory under DARPA/AFRL contract
* FA8750-10-C-0237 ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Portions of this software were developed by the University of Cambridge
* Computer Laboratory as part of the CTSRD Project, with support from the
* UK Higher Education Innovation Fund (HEIF).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "opt_platform.h"
#include
__FBSDID("$FreeBSD$");
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef FPE
#include
#endif
#ifdef FDT
#include
#include
#include
#endif
struct pcpu __pcpu[MAXCPU];
static struct trapframe proc0_tf;
int early_boot = 1;
int cold = 1;
#define DTB_SIZE_MAX (1024 * 1024)
struct kva_md_info kmi;
int64_t dcache_line_size; /* The minimum D cache line size */
int64_t icache_line_size; /* The minimum I cache line size */
int64_t idcache_line_size; /* The minimum cache line size */
#define BOOT_HART_INVALID 0xffffffff
uint32_t boot_hart = BOOT_HART_INVALID; /* The hart we booted on. */
cpuset_t all_harts;
extern int *end;
static char static_kenv[PAGE_SIZE];
static void
cpu_startup(void *dummy)
{
sbi_print_version();
identify_cpu();
printf("real memory = %ju (%ju MB)\n", ptoa((uintmax_t)realmem),
ptoa((uintmax_t)realmem) / (1024 * 1024));
/*
* Display any holes after the first chunk of extended memory.
*/
if (bootverbose) {
int indx;
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
vm_paddr_t size;
size = phys_avail[indx + 1] - phys_avail[indx];
printf(
"0x%016jx - 0x%016jx, %ju bytes (%ju pages)\n",
(uintmax_t)phys_avail[indx],
(uintmax_t)phys_avail[indx + 1] - 1,
(uintmax_t)size, (uintmax_t)size / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ju (%ju MB)\n",
ptoa((uintmax_t)vm_free_count()),
ptoa((uintmax_t)vm_free_count()) / (1024 * 1024));
if (bootverbose)
devmap_print_table();
bufinit();
vm_pager_bufferinit();
}
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
int
cpu_idle_wakeup(int cpu)
{
return (0);
}
void
cpu_idle(int busy)
{
spinlock_enter();
if (!busy)
cpu_idleclock();
if (!sched_runnable())
__asm __volatile(
"fence \n"
"wfi \n");
if (!busy)
cpu_activeclock();
spinlock_exit();
}
void
cpu_halt(void)
{
/*
* Try to power down using the HSM SBI extension and fall back to a
* simple wfi loop.
*/
intr_disable();
if (sbi_probe_extension(SBI_EXT_ID_HSM) != 0)
sbi_hsm_hart_stop();
for (;;)
__asm __volatile("wfi");
/* NOTREACHED */
}
/*
* Flush the D-cache for non-DMA I/O so that the I-cache can
* be made coherent later.
*/
void
cpu_flush_dcache(void *ptr, size_t len)
{
/* TBD */
}
/* Get current clock frequency for the given CPU ID. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
panic("cpu_est_clockrate");
}
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
{
}
void
spinlock_enter(void)
{
struct thread *td;
register_t reg;
td = curthread;
if (td->td_md.md_spinlock_count == 0) {
reg = intr_disable();
td->td_md.md_spinlock_count = 1;
td->td_md.md_saved_sstatus_ie = reg;
critical_enter();
} else
td->td_md.md_spinlock_count++;
}
void
spinlock_exit(void)
{
struct thread *td;
register_t sstatus_ie;
td = curthread;
sstatus_ie = td->td_md.md_saved_sstatus_ie;
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0) {
critical_exit();
intr_restore(sstatus_ie);
}
}
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
memcpy(pcb->pcb_s, tf->tf_s, sizeof(tf->tf_s));
pcb->pcb_ra = tf->tf_sepc;
pcb->pcb_sp = tf->tf_sp;
pcb->pcb_gp = tf->tf_gp;
pcb->pcb_tp = tf->tf_tp;
}
static void
init_proc0(vm_offset_t kstack)
{
struct pcpu *pcpup;
pcpup = &__pcpu[0];
proc_linkup0(&proc0, &thread0);
thread0.td_kstack = kstack;
- thread0.td_kstack_pages = KSTACK_PAGES;
+ thread0.td_kstack_pages = kstack_pages;
thread0.td_pcb = (struct pcb *)(thread0.td_kstack +
thread0.td_kstack_pages * PAGE_SIZE) - 1;
thread0.td_pcb->pcb_fpflags = 0;
thread0.td_frame = &proc0_tf;
pcpup->pc_curpcb = thread0.td_pcb;
}
#ifdef FDT
static void
try_load_dtb(caddr_t kmdp)
{
vm_offset_t dtbp;
dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
#if defined(FDT_DTB_STATIC)
/*
* In case the device tree blob was not retrieved (from metadata) try
* to use the statically embedded one.
*/
if (dtbp == (vm_offset_t)NULL)
dtbp = (vm_offset_t)&fdt_static_dtb;
#endif
if (dtbp == (vm_offset_t)NULL) {
printf("ERROR loading DTB\n");
return;
}
if (OF_install(OFW_FDT, 0) == FALSE)
panic("Cannot install FDT");
if (OF_init((void *)dtbp) != 0)
panic("OF_init failed with the found device tree");
}
#endif
static void
cache_setup(void)
{
/* TODO */
dcache_line_size = 0;
icache_line_size = 0;
idcache_line_size = 0;
}
/*
* Fake up a boot descriptor table.
*/
static void
fake_preload_metadata(struct riscv_bootparams *rvbp)
{
static uint32_t fake_preload[48];
vm_offset_t lastaddr;
size_t fake_size, dtb_size;
#define PRELOAD_PUSH_VALUE(type, value) do { \
*(type *)((char *)fake_preload + fake_size) = (value); \
fake_size += sizeof(type); \
} while (0)
#define PRELOAD_PUSH_STRING(str) do { \
uint32_t ssize; \
ssize = strlen(str) + 1; \
PRELOAD_PUSH_VALUE(uint32_t, ssize); \
strcpy(((char *)fake_preload + fake_size), str); \
fake_size += ssize; \
fake_size = roundup(fake_size, sizeof(u_long)); \
} while (0)
fake_size = 0;
lastaddr = (vm_offset_t)&end;
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_NAME);
PRELOAD_PUSH_STRING("kernel");
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_TYPE);
PRELOAD_PUSH_STRING("elf kernel");
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_ADDR);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(vm_offset_t));
PRELOAD_PUSH_VALUE(uint64_t, KERNBASE);
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_SIZE);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(size_t));
PRELOAD_PUSH_VALUE(uint64_t, (size_t)((vm_offset_t)&end - KERNBASE));
/* Copy the DTB to KVA space. */
lastaddr = roundup(lastaddr, sizeof(int));
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_METADATA | MODINFOMD_DTBP);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(vm_offset_t));
PRELOAD_PUSH_VALUE(vm_offset_t, lastaddr);
dtb_size = fdt_totalsize(rvbp->dtbp_virt);
memmove((void *)lastaddr, (const void *)rvbp->dtbp_virt, dtb_size);
lastaddr = roundup(lastaddr + dtb_size, sizeof(int));
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_METADATA | MODINFOMD_KERNEND);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(vm_offset_t));
PRELOAD_PUSH_VALUE(vm_offset_t, lastaddr);
PRELOAD_PUSH_VALUE(uint32_t, MODINFO_METADATA | MODINFOMD_HOWTO);
PRELOAD_PUSH_VALUE(uint32_t, sizeof(int));
PRELOAD_PUSH_VALUE(int, RB_VERBOSE);
/* End marker */
PRELOAD_PUSH_VALUE(uint32_t, 0);
PRELOAD_PUSH_VALUE(uint32_t, 0);
preload_metadata = (caddr_t)fake_preload;
/* Check if bootloader clobbered part of the kernel with the DTB. */
KASSERT(rvbp->dtbp_phys + dtb_size <= rvbp->kern_phys ||
rvbp->dtbp_phys >= rvbp->kern_phys + (lastaddr - KERNBASE),
("FDT (%lx-%lx) and kernel (%lx-%lx) overlap", rvbp->dtbp_phys,
rvbp->dtbp_phys + dtb_size, rvbp->kern_phys,
rvbp->kern_phys + (lastaddr - KERNBASE)));
KASSERT(fake_size < sizeof(fake_preload),
("Too many fake_preload items"));
if (boothowto & RB_VERBOSE)
printf("FDT phys (%lx-%lx), kernel phys (%lx-%lx)\n",
rvbp->dtbp_phys, rvbp->dtbp_phys + dtb_size,
rvbp->kern_phys, rvbp->kern_phys + (lastaddr - KERNBASE));
}
/* Support for FDT configurations only. */
CTASSERT(FDT);
#ifdef FDT
static void
parse_fdt_bootargs(void)
{
char bootargs[512];
bootargs[sizeof(bootargs) - 1] = '\0';
if (fdt_get_chosen_bootargs(bootargs, sizeof(bootargs) - 1) == 0) {
boothowto |= boot_parse_cmdline(bootargs);
}
}
#endif
static vm_offset_t
parse_metadata(void)
{
caddr_t kmdp;
vm_offset_t lastaddr;
#ifdef DDB
vm_offset_t ksym_start, ksym_end;
#endif
char *kern_envp;
/* Find the kernel address */
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
KASSERT(kmdp != NULL, ("No preload metadata found!"));
/* Read the boot metadata */
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
lastaddr = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
if (kern_envp != NULL)
init_static_kenv(kern_envp, 0);
else
init_static_kenv(static_kenv, sizeof(static_kenv));
#ifdef DDB
ksym_start = MD_FETCH(kmdp, MODINFOMD_SSYM, uintptr_t);
ksym_end = MD_FETCH(kmdp, MODINFOMD_ESYM, uintptr_t);
db_fetch_ksymtab(ksym_start, ksym_end);
#endif
#ifdef FDT
try_load_dtb(kmdp);
if (kern_envp == NULL)
parse_fdt_bootargs();
#endif
return (lastaddr);
}
void
initriscv(struct riscv_bootparams *rvbp)
{
struct mem_region mem_regions[FDT_MEM_REGIONS];
struct pcpu *pcpup;
int mem_regions_sz;
vm_offset_t lastaddr;
vm_size_t kernlen;
#ifdef FDT
phandle_t chosen;
uint32_t hart;
#endif
char *env;
TSRAW(&thread0, TS_ENTER, __func__, NULL);
/* Set the pcpu data, this is needed by pmap_bootstrap */
pcpup = &__pcpu[0];
pcpu_init(pcpup, 0, sizeof(struct pcpu));
/* Set the pcpu pointer */
__asm __volatile("mv tp, %0" :: "r"(pcpup));
PCPU_SET(curthread, &thread0);
/* Initialize SBI interface. */
sbi_init();
/* Parse the boot metadata. */
if (rvbp->modulep != 0) {
preload_metadata = (caddr_t)rvbp->modulep;
} else {
fake_preload_metadata(rvbp);
}
lastaddr = parse_metadata();
#ifdef FDT
/*
* Look for the boot hart ID. This was either passed in directly from
* the SBI firmware and handled by locore, or was stored in the device
* tree by an earlier boot stage.
*/
chosen = OF_finddevice("/chosen");
if (OF_getencprop(chosen, "boot-hartid", &hart, sizeof(hart)) != -1) {
boot_hart = hart;
}
#endif
if (boot_hart == BOOT_HART_INVALID) {
panic("Boot hart ID was not properly set");
}
pcpup->pc_hart = boot_hart;
#ifdef FDT
/*
* Exclude reserved memory specified by the device tree. Typically,
* this contains an entry for memory used by the runtime SBI firmware.
*/
if (fdt_get_reserved_mem(mem_regions, &mem_regions_sz) == 0) {
physmem_exclude_regions(mem_regions, mem_regions_sz,
EXFLAG_NODUMP | EXFLAG_NOALLOC);
}
/* Grab physical memory regions information from device tree. */
if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, NULL) != 0) {
panic("Cannot get physical memory regions");
}
physmem_hardware_regions(mem_regions, mem_regions_sz);
#endif
/* Do basic tuning, hz etc */
init_param1();
cache_setup();
/* Bootstrap enough of pmap to enter the kernel proper */
kernlen = (lastaddr - KERNBASE);
pmap_bootstrap(rvbp->kern_l1pt, rvbp->kern_phys, kernlen);
#ifdef FDT
/*
* XXX: Unconditionally exclude the lowest 2MB of physical memory, as
* this area is assumed to contain the SBI firmware. This is a little
* fragile, but it is consistent with the platforms we support so far.
*
* TODO: remove this when the all regular booting methods properly
* report their reserved memory in the device tree.
*/
physmem_exclude_region(mem_regions[0].mr_start, L2_SIZE,
EXFLAG_NODUMP | EXFLAG_NOALLOC);
#endif
physmem_init_kernel_globals();
/* Establish static device mappings */
devmap_bootstrap(0, NULL);
cninit();
/*
* Dump the boot metadata. We have to wait for cninit() since console
* output is required. If it's grossly incorrect the kernel will never
* make it this far.
*/
if (getenv_is_true("debug.dump_modinfo_at_boot"))
preload_dump();
init_proc0(rvbp->kern_stack);
msgbufinit(msgbufp, msgbufsize);
mutex_init();
init_param2(physmem);
kdb_init();
#ifdef KDB
if ((boothowto & RB_KDB) != 0)
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
#endif
env = kern_getenv("kernelname");
if (env != NULL)
strlcpy(kernelname, env, sizeof(kernelname));
if (boothowto & RB_VERBOSE)
physmem_print_tables();
early_boot = 0;
TSEXIT();
}