diff --git a/cmd/zilstat.in b/cmd/zilstat.in index cf4e2e0dd0c8..e8678e20cafa 100755 --- a/cmd/zilstat.in +++ b/cmd/zilstat.in @@ -1,467 +1,551 @@ #!/usr/bin/env @PYTHON_SHEBANG@ # # Print out statistics for all zil stats. This information is # available through the zil kstat. # # CDDL HEADER START # # The contents of this file are subject to the terms of the # Common Development and Distribution License, Version 1.0 only # (the "License"). You may not use this file except in compliance # with the License. # # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE # or https://opensource.org/licenses/CDDL-1.0. # See the License for the specific language governing permissions # and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each # file and include the License file at usr/src/OPENSOLARIS.LICENSE. # If applicable, add the following below this CDDL HEADER, with the # fields enclosed by brackets "[]" replaced with your own identifying # information: Portions Copyright [yyyy] [name of copyright owner] # # This script must remain compatible with Python 3.6+. # import sys import subprocess import time import copy import os import re import signal from collections import defaultdict import argparse from argparse import RawTextHelpFormatter cols = { - # hdr: [size, scale, kstat name] + # hdr: [size, scale, kstat name] "time": [8, -1, "time"], "pool": [12, -1, "pool"], "ds": [12, -1, "dataset_name"], "obj": [12, -1, "objset"], - "zcc": [10, 1000, "zil_commit_count"], - "zcwc": [10, 1000, "zil_commit_writer_count"], - "ziic": [10, 1000, "zil_itx_indirect_count"], - "zic": [10, 1000, "zil_itx_count"], - "ziib": [10, 1024, "zil_itx_indirect_bytes"], - "zicc": [10, 1000, "zil_itx_copied_count"], - "zicb": [10, 1024, "zil_itx_copied_bytes"], - "zinc": [10, 1000, "zil_itx_needcopy_count"], - "zinb": [10, 1024, "zil_itx_needcopy_bytes"], - "zimnc": [10, 1000, "zil_itx_metaslab_normal_count"], - "zimnb": [10, 1024, "zil_itx_metaslab_normal_bytes"], - "zimsc": [10, 1000, "zil_itx_metaslab_slog_count"], - "zimsb": [10, 1024, "zil_itx_metaslab_slog_bytes"], + "cc": [5, 1000, "zil_commit_count"], + "cwc": [5, 1000, "zil_commit_writer_count"], + "ic": [5, 1000, "zil_itx_count"], + "iic": [5, 1000, "zil_itx_indirect_count"], + "iib": [5, 1024, "zil_itx_indirect_bytes"], + "icc": [5, 1000, "zil_itx_copied_count"], + "icb": [5, 1024, "zil_itx_copied_bytes"], + "inc": [5, 1000, "zil_itx_needcopy_count"], + "inb": [5, 1024, "zil_itx_needcopy_bytes"], + "idc": [5, 1000, "icc+inc"], + "idb": [5, 1024, "icb+inb"], + "iwc": [5, 1000, "iic+idc"], + "iwb": [5, 1024, "iib+idb"], + "imnc": [6, 1000, "zil_itx_metaslab_normal_count"], + "imnb": [6, 1024, "zil_itx_metaslab_normal_bytes"], + "imnw": [6, 1024, "zil_itx_metaslab_normal_write"], + "imna": [6, 1024, "zil_itx_metaslab_normal_alloc"], + "imsc": [6, 1000, "zil_itx_metaslab_slog_count"], + "imsb": [6, 1024, "zil_itx_metaslab_slog_bytes"], + "imsw": [6, 1024, "zil_itx_metaslab_slog_write"], + "imsa": [6, 1024, "zil_itx_metaslab_slog_alloc"], + "imc": [5, 1000, "imnc+imsc"], + "imb": [5, 1024, "imnb+imsb"], + "imw": [5, 1024, "imnw+imsw"], + "ima": [5, 1024, "imna+imsa"], + "se%": [3, 100, "imb/ima"], + "sen%": [4, 100, "imnb/imna"], + "ses%": [4, 100, "imsb/imsa"], + "te%": [3, 100, "imb/imw"], + "ten%": [4, 100, "imnb/imnw"], + "tes%": [4, 100, "imsb/imsw"], } -hdr = ["time", "pool", "ds", "obj", "zcc", "zcwc", "ziic", "zic", "ziib", \ - "zicc", "zicb", "zinc", "zinb", "zimnc", "zimnb", "zimsc", "zimsb"] +hdr = ["time", "ds", "cc", "ic", "idc", "idb", "iic", "iib", + "imnc", "imnw", "imsc", "imsw"] -ghdr = ["time", "zcc", "zcwc", "ziic", "zic", "ziib", "zicc", "zicb", - "zinc", "zinb", "zimnc", "zimnb", "zimsc", "zimsb"] +ghdr = ["time", "cc", "ic", "idc", "idb", "iic", "iib", + "imnc", "imnw", "imsc", "imsw"] cmd = ("Usage: zilstat [-hgdv] [-i interval] [-p pool_name]") curr = {} diff = {} kstat = {} ds_pairs = {} pool_name = None dataset_name = None interval = 0 sep = " " gFlag = True dsFlag = False def prettynum(sz, scale, num=0): suffix = [' ', 'K', 'M', 'G', 'T', 'P', 'E', 'Z'] index = 0 save = 0 if scale == -1: return "%*s" % (sz, num) # Rounding error, return 0 elif 0 < num < 1: num = 0 while num > scale and index < 5: save = num num = num / scale index += 1 if index == 0: return "%*d" % (sz, num) if (save / scale) < 10: return "%*.1f%s" % (sz - 1, num, suffix[index]) else: return "%*d%s" % (sz - 1, num, suffix[index]) def print_header(): global hdr global sep for col in hdr: new_col = col - if interval > 0 and col not in ['time', 'pool', 'ds', 'obj']: + if interval > 0 and cols[col][1] > 100: new_col += "/s" sys.stdout.write("%*s%s" % (cols[col][0], new_col, sep)) sys.stdout.write("\n") def print_values(v): global hdr global sep for col in hdr: val = v[cols[col][2]] - if col not in ['time', 'pool', 'ds', 'obj'] and interval > 0: + if interval > 0 and cols[col][1] > 100: val = v[cols[col][2]] // interval sys.stdout.write("%s%s" % ( prettynum(cols[col][0], cols[col][1], val), sep)) sys.stdout.write("\n") def print_dict(d): for pool in d: for objset in d[pool]: print_values(d[pool][objset]) def detailed_usage(): sys.stderr.write("%s\n" % cmd) sys.stderr.write("Field definitions are as follows:\n") for key in cols: sys.stderr.write("%11s : %s\n" % (key, cols[key][2])) sys.stderr.write("\n") sys.exit(0) def init(): global pool_name global dataset_name global interval global hdr global curr global gFlag global sep curr = dict() parser = argparse.ArgumentParser(description='Program to print zilstats', add_help=True, formatter_class=RawTextHelpFormatter, epilog="\nUsage Examples\n"\ "Note: Global zilstats is shown by default,"\ " if none of a|p|d option is not provided\n"\ "\tzilstat -a\n"\ '\tzilstat -v\n'\ '\tzilstat -p tank\n'\ '\tzilstat -d tank/d1,tank/d2,tank/zv1\n'\ '\tzilstat -i 1\n'\ '\tzilstat -s \"***\"\n'\ '\tzilstat -f zcwc,zimnb,zimsb\n') parser.add_argument( "-v", "--verbose", action="store_true", help="List field headers and definitions" ) pool_grp = parser.add_mutually_exclusive_group() pool_grp.add_argument( "-a", "--all", action="store_true", dest="all", help="Print all dataset stats" ) pool_grp.add_argument( "-p", "--pool", type=str, help="Print stats for all datasets of a speicfied pool" ) pool_grp.add_argument( "-d", "--dataset", type=str, help="Print given dataset(s) (Comma separated)" ) parser.add_argument( "-f", "--columns", type=str, help="Specify specific fields to print (see -v)" ) parser.add_argument( "-s", "--separator", type=str, help="Override default field separator with custom " "character or string" ) parser.add_argument( "-i", "--interval", type=int, dest="interval", help="Print stats between specified interval" " (in seconds)" ) parsed_args = parser.parse_args() if parsed_args.verbose: detailed_usage() if parsed_args.all: gFlag = False if parsed_args.interval: interval = parsed_args.interval if parsed_args.pool: pool_name = parsed_args.pool gFlag = False if parsed_args.dataset: dataset_name = parsed_args.dataset gFlag = False if parsed_args.separator: sep = parsed_args.separator if gFlag: hdr = ghdr if parsed_args.columns: hdr = parsed_args.columns.split(",") invalid = [] for ele in hdr: - if gFlag and ele not in ghdr: - invalid.append(ele) - elif ele not in cols: + if ele not in cols: invalid.append(ele) if len(invalid) > 0: sys.stderr.write("Invalid column definition! -- %s\n" % invalid) sys.exit(1) if pool_name and dataset_name: print ("Error: Can not filter both dataset and pool") sys.exit(1) def FileCheck(fname): try: return (open(fname)) except IOError: print ("Unable to open zilstat proc file: " + fname) sys.exit(1) if sys.platform.startswith('freebsd'): # Requires py-sysctl on FreeBSD import sysctl def kstat_update(pool = None, objid = None): global kstat kstat = {} if not pool: file = "kstat.zfs.misc.zil" k = [ctl for ctl in sysctl.filter(file) \ if ctl.type != sysctl.CTLTYPE_NODE] kstat_process_str(k, file, "GLOBAL", len(file + ".")) elif objid: file = "kstat.zfs." + pool + ".dataset.objset-" + objid k = [ctl for ctl in sysctl.filter(file) if ctl.type \ != sysctl.CTLTYPE_NODE] kstat_process_str(k, file, objid, len(file + ".")) else: file = "kstat.zfs." + pool + ".dataset" zil_start = len(file + ".") obj_start = len("kstat.zfs." + pool + ".") k = [ctl for ctl in sysctl.filter(file) if ctl.type != sysctl.CTLTYPE_NODE] for s in k: if not s or (s.name.find("zil") == -1 and \ s.name.find("dataset_name") == -1): continue name, value = s.name, s.value objid = re.findall(r'0x[0-9A-F]+', \ name[obj_start:], re.I)[0] if objid not in kstat: kstat[objid] = dict() zil_start = len(file + ".objset-" + \ objid + ".") kstat[objid][name[zil_start:]] = value \ if (name.find("dataset_name")) \ else int(value) def kstat_process_str(k, file, objset = "GLOBAL", zil_start = 0): global kstat if not k: print("Unable to process kstat for: " + file) sys.exit(1) kstat[objset] = dict() for s in k: if not s or (s.name.find("zil") == -1 and \ s.name.find("dataset_name") == -1): continue name, value = s.name, s.value kstat[objset][name[zil_start:]] = value \ if (name.find("dataset_name")) else int(value) elif sys.platform.startswith('linux'): def kstat_update(pool = None, objid = None): global kstat kstat = {} if not pool: k = [line.strip() for line in \ FileCheck("/proc/spl/kstat/zfs/zil")] kstat_process_str(k, "/proc/spl/kstat/zfs/zil") elif objid: file = "/proc/spl/kstat/zfs/" + pool + "/objset-" + objid k = [line.strip() for line in FileCheck(file)] kstat_process_str(k, file, objid) else: if not os.path.exists(f"/proc/spl/kstat/zfs/{pool}"): print("Pool \"" + pool + "\" does not exist, Exitting") sys.exit(1) objsets = os.listdir(f'/proc/spl/kstat/zfs/{pool}') for objid in objsets: if objid.find("objset-") == -1: continue file = "/proc/spl/kstat/zfs/" + pool + "/" + objid k = [line.strip() for line in FileCheck(file)] kstat_process_str(k, file, objid.replace("objset-", "")) def kstat_process_str(k, file, objset = "GLOBAL", zil_start = 0): global kstat if not k: print("Unable to process kstat for: " + file) sys.exit(1) kstat[objset] = dict() for s in k: if not s or (s.find("zil") == -1 and \ s.find("dataset_name") == -1): continue name, unused, value = s.split() kstat[objset][name] = value \ if (name == "dataset_name") else int(value) def zil_process_kstat(): global curr, pool_name, dataset_name, dsFlag, ds_pairs curr.clear() if gFlag == True: kstat_update() zil_build_dict() else: if pool_name: kstat_update(pool_name) zil_build_dict(pool_name) elif dataset_name: if dsFlag == False: dsFlag = True datasets = dataset_name.split(',') ds_pairs = defaultdict(list) for ds in datasets: try: objid = subprocess.check_output(['zfs', 'list', '-Hpo', 'objsetid', ds], \ stderr=subprocess.DEVNULL) \ .decode('utf-8').strip() except subprocess.CalledProcessError as e: print("Command: \"zfs list -Hpo objset "\ + str(ds) + "\" failed with error code:"\ + str(e.returncode)) print("Please make sure that dataset \""\ + str(ds) + "\" exists") sys.exit(1) if not objid: continue ds_pairs[ds.split('/')[0]]. \ append(hex(int(objid))) for pool, objids in ds_pairs.items(): for objid in objids: kstat_update(pool, objid) zil_build_dict(pool) else: try: pools = subprocess.check_output(['zpool', 'list', '-Hpo',\ 'name']).decode('utf-8').split() except subprocess.CalledProcessError as e: print("Command: \"zpool list -Hpo name\" failed with error"\ "code: " + str(e.returncode)) sys.exit(1) for pool in pools: kstat_update(pool) zil_build_dict(pool) def calculate_diff(): global curr, diff prev = copy.deepcopy(curr) zil_process_kstat() diff = copy.deepcopy(curr) for pool in curr: for objset in curr[pool]: - for col in hdr: - if col not in ['time', 'pool', 'ds', 'obj']: - key = cols[col][2] - # If prev is NULL, this is the - # first time we are here - if not prev: - diff[pool][objset][key] = 0 - else: - diff[pool][objset][key] \ - = curr[pool][objset][key] \ - - prev[pool][objset][key] + for key in curr[pool][objset]: + if not isinstance(diff[pool][objset][key], int): + continue + # If prev is NULL, this is the + # first time we are here + if not prev: + diff[pool][objset][key] = 0 + else: + diff[pool][objset][key] \ + = curr[pool][objset][key] \ + - prev[pool][objset][key] def zil_build_dict(pool = "GLOBAL"): global kstat for objset in kstat: for key in kstat[objset]: val = kstat[objset][key] if pool not in curr: curr[pool] = dict() if objset not in curr[pool]: curr[pool][objset] = dict() curr[pool][objset][key] = val - curr[pool][objset]["pool"] = pool - curr[pool][objset]["objset"] = objset - curr[pool][objset]["time"] = time.strftime("%H:%M:%S", \ - time.localtime()) + +def zil_extend_dict(): + global diff + for pool in diff: + for objset in diff[pool]: + diff[pool][objset]["pool"] = pool + diff[pool][objset]["objset"] = objset + diff[pool][objset]["time"] = time.strftime("%H:%M:%S", \ + time.localtime()) + diff[pool][objset]["icc+inc"] = \ + diff[pool][objset]["zil_itx_copied_count"] + \ + diff[pool][objset]["zil_itx_needcopy_count"] + diff[pool][objset]["icb+inb"] = \ + diff[pool][objset]["zil_itx_copied_bytes"] + \ + diff[pool][objset]["zil_itx_needcopy_bytes"] + diff[pool][objset]["iic+idc"] = \ + diff[pool][objset]["zil_itx_indirect_count"] + \ + diff[pool][objset]["zil_itx_copied_count"] + \ + diff[pool][objset]["zil_itx_needcopy_count"] + diff[pool][objset]["iib+idb"] = \ + diff[pool][objset]["zil_itx_indirect_bytes"] + \ + diff[pool][objset]["zil_itx_copied_bytes"] + \ + diff[pool][objset]["zil_itx_needcopy_bytes"] + diff[pool][objset]["imnc+imsc"] = \ + diff[pool][objset]["zil_itx_metaslab_normal_count"] + \ + diff[pool][objset]["zil_itx_metaslab_slog_count"] + diff[pool][objset]["imnb+imsb"] = \ + diff[pool][objset]["zil_itx_metaslab_normal_bytes"] + \ + diff[pool][objset]["zil_itx_metaslab_slog_bytes"] + diff[pool][objset]["imnw+imsw"] = \ + diff[pool][objset]["zil_itx_metaslab_normal_write"] + \ + diff[pool][objset]["zil_itx_metaslab_slog_write"] + diff[pool][objset]["imna+imsa"] = \ + diff[pool][objset]["zil_itx_metaslab_normal_alloc"] + \ + diff[pool][objset]["zil_itx_metaslab_slog_alloc"] + if diff[pool][objset]["imna+imsa"] > 0: + diff[pool][objset]["imb/ima"] = 100 * \ + diff[pool][objset]["imnb+imsb"] // \ + diff[pool][objset]["imna+imsa"] + else: + diff[pool][objset]["imb/ima"] = 100 + if diff[pool][objset]["zil_itx_metaslab_normal_alloc"] > 0: + diff[pool][objset]["imnb/imna"] = 100 * \ + diff[pool][objset]["zil_itx_metaslab_normal_bytes"] // \ + diff[pool][objset]["zil_itx_metaslab_normal_alloc"] + else: + diff[pool][objset]["imnb/imna"] = 100 + if diff[pool][objset]["zil_itx_metaslab_slog_alloc"] > 0: + diff[pool][objset]["imsb/imsa"] = 100 * \ + diff[pool][objset]["zil_itx_metaslab_slog_bytes"] // \ + diff[pool][objset]["zil_itx_metaslab_slog_alloc"] + else: + diff[pool][objset]["imsb/imsa"] = 100 + if diff[pool][objset]["imnw+imsw"] > 0: + diff[pool][objset]["imb/imw"] = 100 * \ + diff[pool][objset]["imnb+imsb"] // \ + diff[pool][objset]["imnw+imsw"] + else: + diff[pool][objset]["imb/imw"] = 100 + if diff[pool][objset]["zil_itx_metaslab_normal_alloc"] > 0: + diff[pool][objset]["imnb/imnw"] = 100 * \ + diff[pool][objset]["zil_itx_metaslab_normal_bytes"] // \ + diff[pool][objset]["zil_itx_metaslab_normal_write"] + else: + diff[pool][objset]["imnb/imnw"] = 100 + if diff[pool][objset]["zil_itx_metaslab_slog_alloc"] > 0: + diff[pool][objset]["imsb/imsw"] = 100 * \ + diff[pool][objset]["zil_itx_metaslab_slog_bytes"] // \ + diff[pool][objset]["zil_itx_metaslab_slog_write"] + else: + diff[pool][objset]["imsb/imsw"] = 100 def sign_handler_epipe(sig, frame): print("Caught EPIPE signal: " + str(frame)) print("Exitting...") sys.exit(0) def main(): global interval - global curr + global curr, diff hprint = False init() signal.signal(signal.SIGINT, signal.SIG_DFL) signal.signal(signal.SIGPIPE, sign_handler_epipe) + zil_process_kstat() + if not curr: + print ("Error: No stats to show") + sys.exit(0) + print_header() if interval > 0: + time.sleep(interval) while True: calculate_diff() if not diff: print ("Error: No stats to show") sys.exit(0) - if hprint == False: - print_header() - hprint = True + zil_extend_dict() print_dict(diff) time.sleep(interval) else: - zil_process_kstat() - if not curr: - print ("Error: No stats to show") - sys.exit(0) - print_header() - print_dict(curr) + diff = curr + zil_extend_dict() + print_dict(diff) if __name__ == '__main__': main() diff --git a/include/os/linux/zfs/sys/trace_zil.h b/include/os/linux/zfs/sys/trace_zil.h index 7bddd9d1f469..afa1a274e43c 100644 --- a/include/os/linux/zfs/sys/trace_zil.h +++ b/include/os/linux/zfs/sys/trace_zil.h @@ -1,233 +1,267 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ #if defined(_KERNEL) #if defined(HAVE_DECLARE_EVENT_CLASS) #undef TRACE_SYSTEM #define TRACE_SYSTEM zfs #undef TRACE_SYSTEM_VAR #define TRACE_SYSTEM_VAR zfs_zil #if !defined(_TRACE_ZIL_H) || defined(TRACE_HEADER_MULTI_READ) #define _TRACE_ZIL_H #include #include #define ZILOG_TP_STRUCT_ENTRY \ __field(uint64_t, zl_lr_seq) \ __field(uint64_t, zl_commit_lr_seq) \ __field(uint64_t, zl_destroy_txg) \ __field(uint64_t, zl_replaying_seq) \ __field(uint32_t, zl_suspend) \ __field(uint8_t, zl_suspending) \ __field(uint8_t, zl_keep_first) \ __field(uint8_t, zl_replay) \ __field(uint8_t, zl_stop_sync) \ __field(uint8_t, zl_logbias) \ __field(uint8_t, zl_sync) \ __field(int, zl_parse_error) \ __field(uint64_t, zl_parse_blk_seq) \ __field(uint64_t, zl_parse_lr_seq) \ __field(uint64_t, zl_parse_blk_count) \ __field(uint64_t, zl_parse_lr_count) \ __field(uint64_t, zl_cur_used) \ __field(clock_t, zl_replay_time) \ __field(uint64_t, zl_replay_blks) #define ZILOG_TP_FAST_ASSIGN \ __entry->zl_lr_seq = zilog->zl_lr_seq; \ __entry->zl_commit_lr_seq = zilog->zl_commit_lr_seq; \ __entry->zl_destroy_txg = zilog->zl_destroy_txg; \ __entry->zl_replaying_seq = zilog->zl_replaying_seq; \ __entry->zl_suspend = zilog->zl_suspend; \ __entry->zl_suspending = zilog->zl_suspending; \ __entry->zl_keep_first = zilog->zl_keep_first; \ __entry->zl_replay = zilog->zl_replay; \ __entry->zl_stop_sync = zilog->zl_stop_sync; \ __entry->zl_logbias = zilog->zl_logbias; \ __entry->zl_sync = zilog->zl_sync; \ __entry->zl_parse_error = zilog->zl_parse_error; \ __entry->zl_parse_blk_seq = zilog->zl_parse_blk_seq; \ __entry->zl_parse_lr_seq = zilog->zl_parse_lr_seq; \ __entry->zl_parse_blk_count = zilog->zl_parse_blk_count;\ __entry->zl_parse_lr_count = zilog->zl_parse_lr_count; \ __entry->zl_cur_used = zilog->zl_cur_used; \ __entry->zl_replay_time = zilog->zl_replay_time; \ __entry->zl_replay_blks = zilog->zl_replay_blks; #define ZILOG_TP_PRINTK_FMT \ "zl { lr_seq %llu commit_lr_seq %llu destroy_txg %llu " \ "replaying_seq %llu suspend %u suspending %u keep_first %u " \ "replay %u stop_sync %u logbias %u sync %u " \ "parse_error %u parse_blk_seq %llu parse_lr_seq %llu " \ "parse_blk_count %llu parse_lr_count %llu " \ "cur_used %llu replay_time %lu replay_blks %llu }" #define ZILOG_TP_PRINTK_ARGS \ __entry->zl_lr_seq, __entry->zl_commit_lr_seq, \ __entry->zl_destroy_txg, __entry->zl_replaying_seq, \ __entry->zl_suspend, __entry->zl_suspending, \ __entry->zl_keep_first, __entry->zl_replay, \ __entry->zl_stop_sync, __entry->zl_logbias, __entry->zl_sync, \ __entry->zl_parse_error, __entry->zl_parse_blk_seq, \ __entry->zl_parse_lr_seq, __entry->zl_parse_blk_count, \ __entry->zl_parse_lr_count, __entry->zl_cur_used, \ __entry->zl_replay_time, __entry->zl_replay_blks #define ITX_TP_STRUCT_ENTRY \ __field(itx_wr_state_t, itx_wr_state) \ __field(uint8_t, itx_sync) \ __field(zil_callback_t, itx_callback) \ __field(void *, itx_callback_data) \ __field(uint64_t, itx_oid) \ \ __field(uint64_t, lrc_txtype) \ __field(uint64_t, lrc_reclen) \ __field(uint64_t, lrc_txg) \ __field(uint64_t, lrc_seq) #define ITX_TP_FAST_ASSIGN \ __entry->itx_wr_state = itx->itx_wr_state; \ __entry->itx_sync = itx->itx_sync; \ __entry->itx_callback = itx->itx_callback; \ __entry->itx_callback_data = itx->itx_callback_data; \ __entry->itx_oid = itx->itx_oid; \ \ __entry->lrc_txtype = itx->itx_lr.lrc_txtype; \ __entry->lrc_reclen = itx->itx_lr.lrc_reclen; \ __entry->lrc_txg = itx->itx_lr.lrc_txg; \ __entry->lrc_seq = itx->itx_lr.lrc_seq; #define ITX_TP_PRINTK_FMT \ "itx { wr_state %u sync %u callback %p callback_data %p oid %llu" \ " { txtype %llu reclen %llu txg %llu seq %llu } }" #define ITX_TP_PRINTK_ARGS \ __entry->itx_wr_state, __entry->itx_sync, __entry->itx_callback,\ __entry->itx_callback_data, __entry->itx_oid, \ __entry->lrc_txtype, __entry->lrc_reclen, __entry->lrc_txg, \ __entry->lrc_seq #define ZCW_TP_STRUCT_ENTRY \ __field(lwb_t *, zcw_lwb) \ __field(boolean_t, zcw_done) \ __field(int, zcw_zio_error) \ #define ZCW_TP_FAST_ASSIGN \ __entry->zcw_lwb = zcw->zcw_lwb; \ __entry->zcw_done = zcw->zcw_done; \ __entry->zcw_zio_error = zcw->zcw_zio_error; #define ZCW_TP_PRINTK_FMT \ "zcw { lwb %p done %u error %u }" #define ZCW_TP_PRINTK_ARGS \ __entry->zcw_lwb, __entry->zcw_done, __entry->zcw_zio_error /* * Generic support for two argument tracepoints of the form: * * DTRACE_PROBE2(..., * zilog_t *, ..., * itx_t *, ...); */ #if defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wordered-compare-function-pointers" #endif /* BEGIN CSTYLED */ DECLARE_EVENT_CLASS(zfs_zil_process_itx_class, TP_PROTO(zilog_t *zilog, itx_t *itx), TP_ARGS(zilog, itx), TP_STRUCT__entry( ZILOG_TP_STRUCT_ENTRY ITX_TP_STRUCT_ENTRY ), TP_fast_assign( ZILOG_TP_FAST_ASSIGN ITX_TP_FAST_ASSIGN ), TP_printk( ZILOG_TP_PRINTK_FMT " " ITX_TP_PRINTK_FMT, ZILOG_TP_PRINTK_ARGS, ITX_TP_PRINTK_ARGS) ); /* END CSTYLED */ #if defined(__clang__) #pragma clang diagnostic pop #endif #define DEFINE_ZIL_PROCESS_ITX_EVENT(name) \ DEFINE_EVENT(zfs_zil_process_itx_class, name, \ TP_PROTO(zilog_t *zilog, itx_t *itx), \ TP_ARGS(zilog, itx)) DEFINE_ZIL_PROCESS_ITX_EVENT(zfs_zil__process__commit__itx); DEFINE_ZIL_PROCESS_ITX_EVENT(zfs_zil__process__normal__itx); /* * Generic support for two argument tracepoints of the form: * * DTRACE_PROBE2(..., * zilog_t *, ..., * zil_commit_waiter_t *, ...); */ /* BEGIN CSTYLED */ DECLARE_EVENT_CLASS(zfs_zil_commit_io_error_class, TP_PROTO(zilog_t *zilog, zil_commit_waiter_t *zcw), TP_ARGS(zilog, zcw), TP_STRUCT__entry( ZILOG_TP_STRUCT_ENTRY ZCW_TP_STRUCT_ENTRY ), TP_fast_assign( ZILOG_TP_FAST_ASSIGN ZCW_TP_FAST_ASSIGN ), TP_printk( ZILOG_TP_PRINTK_FMT " " ZCW_TP_PRINTK_FMT, ZILOG_TP_PRINTK_ARGS, ZCW_TP_PRINTK_ARGS) ); #define DEFINE_ZIL_COMMIT_IO_ERROR_EVENT(name) \ DEFINE_EVENT(zfs_zil_commit_io_error_class, name, \ TP_PROTO(zilog_t *zilog, zil_commit_waiter_t *zcw), \ TP_ARGS(zilog, zcw)) DEFINE_ZIL_COMMIT_IO_ERROR_EVENT(zfs_zil__commit__io__error); +/* + * Generic support for three argument tracepoints of the form: + * + * DTRACE_PROBE3(..., + * zilog_t *, ..., + * uint64_t, ..., + * uint64_t, ...); + */ +/* BEGIN CSTYLED */ +DECLARE_EVENT_CLASS(zfs_zil_block_size_class, + TP_PROTO(zilog_t *zilog, uint64_t res, uint64_t s1), + TP_ARGS(zilog, res, s1), + TP_STRUCT__entry( + ZILOG_TP_STRUCT_ENTRY + __field(uint64_t, res) + __field(uint64_t, s1) + ), + TP_fast_assign( + ZILOG_TP_FAST_ASSIGN + __entry->res = res; + __entry->s1 = s1; + ), + TP_printk( + ZILOG_TP_PRINTK_FMT " res %llu s1 %llu", + ZILOG_TP_PRINTK_ARGS, __entry->res, __entry->s1) +); + +#define DEFINE_ZIL_BLOCK_SIZE_EVENT(name) \ +DEFINE_EVENT(zfs_zil_block_size_class, name, \ + TP_PROTO(zilog_t *zilog, uint64_t res, uint64_t s1), \ + TP_ARGS(zilog, res, s1)) +DEFINE_ZIL_BLOCK_SIZE_EVENT(zfs_zil__block__size); + #endif /* _TRACE_ZIL_H */ #undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_FILE #define TRACE_INCLUDE_PATH sys #define TRACE_INCLUDE_FILE trace_zil #include #else DEFINE_DTRACE_PROBE2(zil__process__commit__itx); DEFINE_DTRACE_PROBE2(zil__process__normal__itx); DEFINE_DTRACE_PROBE2(zil__commit__io__error); +DEFINE_DTRACE_PROBE3(zil__block__size); #endif /* HAVE_DECLARE_EVENT_CLASS */ #endif /* _KERNEL */ diff --git a/include/sys/zil.h b/include/sys/zil.h index cff8ebcad819..4747ecc067a9 100644 --- a/include/sys/zil.h +++ b/include/sys/zil.h @@ -1,603 +1,611 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #ifndef _SYS_ZIL_H #define _SYS_ZIL_H #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif struct dsl_pool; struct dsl_dataset; struct lwb; /* * Intent log format: * * Each objset has its own intent log. The log header (zil_header_t) * for objset N's intent log is kept in the Nth object of the SPA's * intent_log objset. The log header points to a chain of log blocks, * each of which contains log records (i.e., transactions) followed by * a log block trailer (zil_trailer_t). The format of a log record * depends on the record (or transaction) type, but all records begin * with a common structure that defines the type, length, and txg. */ /* * Intent log header - this on disk structure holds fields to manage * the log. All fields are 64 bit to easily handle cross architectures. */ typedef struct zil_header { uint64_t zh_claim_txg; /* txg in which log blocks were claimed */ uint64_t zh_replay_seq; /* highest replayed sequence number */ blkptr_t zh_log; /* log chain */ uint64_t zh_claim_blk_seq; /* highest claimed block sequence number */ uint64_t zh_flags; /* header flags */ uint64_t zh_claim_lr_seq; /* highest claimed lr sequence number */ uint64_t zh_pad[3]; } zil_header_t; /* * zh_flags bit settings */ #define ZIL_REPLAY_NEEDED 0x1 /* replay needed - internal only */ #define ZIL_CLAIM_LR_SEQ_VALID 0x2 /* zh_claim_lr_seq field is valid */ /* * Log block chaining. * * Log blocks are chained together. Originally they were chained at the * end of the block. For performance reasons the chain was moved to the * beginning of the block which allows writes for only the data being used. * The older position is supported for backwards compatibility. * * The zio_eck_t contains a zec_cksum which for the intent log is * the sequence number of this log block. A seq of 0 is invalid. * The zec_cksum is checked by the SPA against the sequence * number passed in the blk_cksum field of the blkptr_t */ typedef struct zil_chain { uint64_t zc_pad; blkptr_t zc_next_blk; /* next block in chain */ uint64_t zc_nused; /* bytes in log block used */ zio_eck_t zc_eck; /* block trailer */ } zil_chain_t; #define ZIL_MIN_BLKSZ 4096ULL /* * ziltest is by and large an ugly hack, but very useful in * checking replay without tedious work. * When running ziltest we want to keep all itx's and so maintain * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG * We subtract TXG_CONCURRENT_STATES to allow for common code. */ #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES) /* * The words of a log block checksum. */ #define ZIL_ZC_GUID_0 0 #define ZIL_ZC_GUID_1 1 #define ZIL_ZC_OBJSET 2 #define ZIL_ZC_SEQ 3 typedef enum zil_create { Z_FILE, Z_DIR, Z_XATTRDIR, } zil_create_t; /* * size of xvattr log section. * its composed of lr_attr_t + xvattr bitmap + 2 64 bit timestamps * for create time and a single 64 bit integer for all of the attributes, * and 4 64 bit integers (32 bytes) for the scanstamp. * */ #define ZIL_XVAT_SIZE(mapsize) \ sizeof (lr_attr_t) + (sizeof (uint32_t) * (mapsize - 1)) + \ (sizeof (uint64_t) * 7) /* * Size of ACL in log. The ACE data is padded out to properly align * on 8 byte boundary. */ #define ZIL_ACE_LENGTH(x) (roundup(x, sizeof (uint64_t))) /* * Intent log transaction types and record structures */ #define TX_COMMIT 0 /* Commit marker (no on-disk state) */ #define TX_CREATE 1 /* Create file */ #define TX_MKDIR 2 /* Make directory */ #define TX_MKXATTR 3 /* Make XATTR directory */ #define TX_SYMLINK 4 /* Create symbolic link to a file */ #define TX_REMOVE 5 /* Remove file */ #define TX_RMDIR 6 /* Remove directory */ #define TX_LINK 7 /* Create hard link to a file */ #define TX_RENAME 8 /* Rename a file */ #define TX_WRITE 9 /* File write */ #define TX_TRUNCATE 10 /* Truncate a file */ #define TX_SETATTR 11 /* Set file attributes */ #define TX_ACL_V0 12 /* Set old formatted ACL */ #define TX_ACL 13 /* Set ACL */ #define TX_CREATE_ACL 14 /* create with ACL */ #define TX_CREATE_ATTR 15 /* create + attrs */ #define TX_CREATE_ACL_ATTR 16 /* create with ACL + attrs */ #define TX_MKDIR_ACL 17 /* mkdir with ACL */ #define TX_MKDIR_ATTR 18 /* mkdir with attr */ #define TX_MKDIR_ACL_ATTR 19 /* mkdir with ACL + attrs */ #define TX_WRITE2 20 /* dmu_sync EALREADY write */ #define TX_SETSAXATTR 21 /* Set sa xattrs on file */ #define TX_RENAME_EXCHANGE 22 /* Atomic swap via renameat2 */ #define TX_RENAME_WHITEOUT 23 /* Atomic whiteout via renameat2 */ #define TX_CLONE_RANGE 24 /* Clone a file range */ #define TX_MAX_TYPE 25 /* Max transaction type */ /* * The transactions for mkdir, symlink, remove, rmdir, link, and rename * may have the following bit set, indicating the original request * specified case-insensitive handling of names. */ #define TX_CI ((uint64_t)0x1 << 63) /* case-insensitive behavior requested */ /* * Transactions for operations below can be logged out of order. * For convenience in the code, all such records must have lr_foid * at the same offset. */ #define TX_OOO(txtype) \ ((txtype) == TX_WRITE || \ (txtype) == TX_TRUNCATE || \ (txtype) == TX_SETATTR || \ (txtype) == TX_ACL_V0 || \ (txtype) == TX_ACL || \ (txtype) == TX_WRITE2 || \ (txtype) == TX_SETSAXATTR || \ (txtype) == TX_CLONE_RANGE) /* * The number of dnode slots consumed by the object is stored in the 8 * unused upper bits of the object ID. We subtract 1 from the value * stored on disk for compatibility with implementations that don't * support large dnodes. The slot count for a single-slot dnode will * contain 0 for those bits to preserve the log record format for * "small" dnodes. */ #define LR_FOID_GET_SLOTS(oid) (BF64_GET((oid), 56, 8) + 1) #define LR_FOID_SET_SLOTS(oid, x) BF64_SET((oid), 56, 8, (x) - 1) #define LR_FOID_GET_OBJ(oid) BF64_GET((oid), 0, DN_MAX_OBJECT_SHIFT) #define LR_FOID_SET_OBJ(oid, x) BF64_SET((oid), 0, DN_MAX_OBJECT_SHIFT, (x)) /* * Format of log records. * The fields are carefully defined to allow them to be aligned * and sized the same on sparc & intel architectures. * Each log record has a common structure at the beginning. * * The log record on disk (lrc_seq) holds the sequence number of all log * records which is used to ensure we don't replay the same record. */ typedef struct { /* common log record header */ uint64_t lrc_txtype; /* intent log transaction type */ uint64_t lrc_reclen; /* transaction record length */ uint64_t lrc_txg; /* dmu transaction group number */ uint64_t lrc_seq; /* see comment above */ } lr_t; /* * Common start of all out-of-order record types (TX_OOO() above). */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id */ } lr_ooo_t; /* * Additional lr_attr_t fields. */ typedef struct { uint64_t lr_attr_attrs; /* all of the attributes */ uint64_t lr_attr_crtime[2]; /* create time */ uint8_t lr_attr_scanstamp[32]; } lr_attr_end_t; /* * Handle option extended vattr attributes. * * Whenever new attributes are added the version number * will need to be updated as will code in * zfs_log.c and zfs_replay.c */ typedef struct { uint32_t lr_attr_masksize; /* number of elements in array */ uint32_t lr_attr_bitmap; /* First entry of array */ /* remainder of array and additional lr_attr_end_t fields */ } lr_attr_t; /* * log record for creates without optional ACL. * This log record does support optional xvattr_t attributes. */ typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* object id of directory */ uint64_t lr_foid; /* object id of created file object */ uint64_t lr_mode; /* mode of object */ uint64_t lr_uid; /* uid of object */ uint64_t lr_gid; /* gid of object */ uint64_t lr_gen; /* generation (txg of creation) */ uint64_t lr_crtime[2]; /* creation time */ uint64_t lr_rdev; /* rdev of object to create */ /* name of object to create follows this */ /* for symlinks, link content follows name */ /* for creates with xvattr data, the name follows the xvattr info */ } lr_create_t; /* * FUID ACL record will be an array of ACEs from the original ACL. * If this array includes ephemeral IDs, the record will also include * an array of log-specific FUIDs to replace the ephemeral IDs. * Only one copy of each unique domain will be present, so the log-specific * FUIDs will use an index into a compressed domain table. On replay this * information will be used to construct real FUIDs (and bypass idmap, * since it may not be available). */ /* * Log record for creates with optional ACL * This log record is also used for recording any FUID * information needed for replaying the create. If the * file doesn't have any actual ACEs then the lr_aclcnt * would be zero. * * After lr_acl_flags, there are a lr_acl_bytes number of variable sized ace's. * If create is also setting xvattr's, then acl data follows xvattr. * If ACE FUIDs are needed then they will follow the xvattr_t. Following * the FUIDs will be the domain table information. The FUIDs for the owner * and group will be in lr_create. Name follows ACL data. */ typedef struct { lr_create_t lr_create; /* common create portion */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ } lr_acl_create_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ /* name of object to remove follows this */ } lr_remove_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_doid; /* obj id of directory */ uint64_t lr_link_obj; /* obj id of link */ /* name of object to link follows this */ } lr_link_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_sdoid; /* obj id of source directory */ uint64_t lr_tdoid; /* obj id of target directory */ /* 2 strings: names of source and destination follow this */ } lr_rename_t; typedef struct { lr_rename_t lr_rename; /* common rename portion */ /* members related to the whiteout file (based on lr_create_t) */ uint64_t lr_wfoid; /* obj id of the new whiteout file */ uint64_t lr_wmode; /* mode of object */ uint64_t lr_wuid; /* uid of whiteout */ uint64_t lr_wgid; /* gid of whiteout */ uint64_t lr_wgen; /* generation (txg of creation) */ uint64_t lr_wcrtime[2]; /* creation time */ uint64_t lr_wrdev; /* always makedev(0, 0) */ /* 2 strings: names of source and destination follow this */ } lr_rename_whiteout_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to write */ uint64_t lr_offset; /* offset to write to */ uint64_t lr_length; /* user data length to write */ uint64_t lr_blkoff; /* no longer used */ blkptr_t lr_blkptr; /* spa block pointer for replay */ /* write data will follow for small writes */ } lr_write_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* object id of file to truncate */ uint64_t lr_offset; /* offset to truncate from */ uint64_t lr_length; /* length to truncate */ } lr_truncate_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to change attributes */ uint64_t lr_mask; /* mask of attributes to set */ uint64_t lr_mode; /* mode to set */ uint64_t lr_uid; /* uid to set */ uint64_t lr_gid; /* gid to set */ uint64_t lr_size; /* size to set */ uint64_t lr_atime[2]; /* access time */ uint64_t lr_mtime[2]; /* modification time */ /* optional attribute lr_attr_t may be here */ } lr_setattr_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to change attributes */ uint64_t lr_size; /* xattr name and value follows */ } lr_setsaxattr_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of acl entries */ /* lr_aclcnt number of ace_t entries follow this */ } lr_acl_v0_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* obj id of file */ uint64_t lr_aclcnt; /* number of ACEs in ACL */ uint64_t lr_domcnt; /* number of unique domains */ uint64_t lr_fuidcnt; /* number of real fuids */ uint64_t lr_acl_bytes; /* number of bytes in ACL */ uint64_t lr_acl_flags; /* ACL flags */ /* lr_acl_bytes number of variable sized ace's follows */ } lr_acl_t; typedef struct { lr_t lr_common; /* common portion of log record */ uint64_t lr_foid; /* file object to clone into */ uint64_t lr_offset; /* offset to clone to */ uint64_t lr_length; /* length of the blocks to clone */ uint64_t lr_blksz; /* file's block size */ uint64_t lr_nbps; /* number of block pointers */ blkptr_t lr_bps[]; /* block pointers of the blocks to clone follows */ } lr_clone_range_t; /* * ZIL structure definitions, interface function prototype and globals. */ /* * Writes are handled in three different ways: * * WR_INDIRECT: * In this mode, if we need to commit the write later, then the block * is immediately written into the file system (using dmu_sync), * and a pointer to the block is put into the log record. * When the txg commits the block is linked in. * This saves additionally writing the data into the log record. * There are a few requirements for this to occur: * - write is greater than zfs/zvol_immediate_write_sz * - not using slogs (as slogs are assumed to always be faster * than writing into the main pool) * - the write occupies only one block * WR_COPIED: * If we know we'll immediately be committing the * transaction (O_SYNC or O_DSYNC), then we allocate a larger * log record here for the data and copy the data in. * WR_NEED_COPY: * Otherwise we don't allocate a buffer, and *if* we need to * flush the write later then a buffer is allocated and * we retrieve the data using the dmu. */ typedef enum { WR_INDIRECT, /* indirect - a large write (dmu_sync() data */ /* and put blkptr in log, rather than actual data) */ WR_COPIED, /* immediate - data is copied into lr_write_t */ WR_NEED_COPY, /* immediate - data needs to be copied if pushed */ WR_NUM_STATES /* number of states */ } itx_wr_state_t; typedef void (*zil_callback_t)(void *data); typedef struct itx { list_node_t itx_node; /* linkage on zl_itx_list */ void *itx_private; /* type-specific opaque data */ itx_wr_state_t itx_wr_state; /* write state */ uint8_t itx_sync; /* synchronous transaction */ zil_callback_t itx_callback; /* Called when the itx is persistent */ void *itx_callback_data; /* User data for the callback */ size_t itx_size; /* allocated itx structure size */ uint64_t itx_oid; /* object id */ uint64_t itx_gen; /* gen number for zfs_get_data */ lr_t itx_lr; /* common part of log record */ /* followed by type-specific part of lr_xx_t and its immediate data */ } itx_t; /* * Used for zil kstat. */ typedef struct zil_stats { /* * Number of times a ZIL commit (e.g. fsync) has been requested. */ kstat_named_t zil_commit_count; /* * Number of times the ZIL has been flushed to stable storage. * This is less than zil_commit_count when commits are "merged" * (see the documentation above zil_commit()). */ kstat_named_t zil_commit_writer_count; /* * Number of transactions (reads, writes, renames, etc.) * that have been committed. */ kstat_named_t zil_itx_count; /* * See the documentation for itx_wr_state_t above. * Note that "bytes" accumulates the length of the transactions * (i.e. data), not the actual log record sizes. */ kstat_named_t zil_itx_indirect_count; kstat_named_t zil_itx_indirect_bytes; kstat_named_t zil_itx_copied_count; kstat_named_t zil_itx_copied_bytes; kstat_named_t zil_itx_needcopy_count; kstat_named_t zil_itx_needcopy_bytes; /* * Transactions which have been allocated to the "normal" * (i.e. not slog) storage pool. Note that "bytes" accumulate * the actual log record sizes - which do not include the actual - * data in case of indirect writes. + * data in case of indirect writes. bytes <= write <= alloc. */ kstat_named_t zil_itx_metaslab_normal_count; kstat_named_t zil_itx_metaslab_normal_bytes; + kstat_named_t zil_itx_metaslab_normal_write; + kstat_named_t zil_itx_metaslab_normal_alloc; /* * Transactions which have been allocated to the "slog" storage pool. * If there are no separate log devices, this is the same as the - * "normal" pool. + * "normal" pool. bytes <= write <= alloc. */ kstat_named_t zil_itx_metaslab_slog_count; kstat_named_t zil_itx_metaslab_slog_bytes; + kstat_named_t zil_itx_metaslab_slog_write; + kstat_named_t zil_itx_metaslab_slog_alloc; } zil_kstat_values_t; typedef struct zil_sums { wmsum_t zil_commit_count; wmsum_t zil_commit_writer_count; wmsum_t zil_itx_count; wmsum_t zil_itx_indirect_count; wmsum_t zil_itx_indirect_bytes; wmsum_t zil_itx_copied_count; wmsum_t zil_itx_copied_bytes; wmsum_t zil_itx_needcopy_count; wmsum_t zil_itx_needcopy_bytes; wmsum_t zil_itx_metaslab_normal_count; wmsum_t zil_itx_metaslab_normal_bytes; + wmsum_t zil_itx_metaslab_normal_write; + wmsum_t zil_itx_metaslab_normal_alloc; wmsum_t zil_itx_metaslab_slog_count; wmsum_t zil_itx_metaslab_slog_bytes; + wmsum_t zil_itx_metaslab_slog_write; + wmsum_t zil_itx_metaslab_slog_alloc; } zil_sums_t; #define ZIL_STAT_INCR(zil, stat, val) \ do { \ int64_t tmpval = (val); \ wmsum_add(&(zil_sums_global.stat), tmpval); \ if ((zil)->zl_sums) \ wmsum_add(&((zil)->zl_sums->stat), tmpval); \ } while (0) #define ZIL_STAT_BUMP(zil, stat) \ ZIL_STAT_INCR(zil, stat, 1); typedef int zil_parse_blk_func_t(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t txg); typedef int zil_parse_lr_func_t(zilog_t *zilog, const lr_t *lr, void *arg, uint64_t txg); typedef int zil_replay_func_t(void *arg1, void *arg2, boolean_t byteswap); typedef int zil_get_data_t(void *arg, uint64_t arg2, lr_write_t *lr, char *dbuf, struct lwb *lwb, zio_t *zio); extern int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, boolean_t decrypt); extern void zil_init(void); extern void zil_fini(void); extern zilog_t *zil_alloc(objset_t *os, zil_header_t *zh_phys); extern void zil_free(zilog_t *zilog); extern zilog_t *zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums); extern void zil_close(zilog_t *zilog); extern boolean_t zil_replay(objset_t *os, void *arg, zil_replay_func_t *const replay_func[TX_MAX_TYPE]); extern boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx); extern boolean_t zil_destroy(zilog_t *zilog, boolean_t keep_first); extern void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx); extern itx_t *zil_itx_create(uint64_t txtype, size_t lrsize); extern void zil_itx_destroy(itx_t *itx); extern void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx); extern void zil_async_to_sync(zilog_t *zilog, uint64_t oid); extern void zil_commit(zilog_t *zilog, uint64_t oid); extern void zil_commit_impl(zilog_t *zilog, uint64_t oid); extern void zil_remove_async(zilog_t *zilog, uint64_t oid); extern int zil_reset(const char *osname, void *txarg); extern int zil_claim(struct dsl_pool *dp, struct dsl_dataset *ds, void *txarg); extern int zil_check_log_chain(struct dsl_pool *dp, struct dsl_dataset *ds, void *tx); extern void zil_sync(zilog_t *zilog, dmu_tx_t *tx); extern void zil_clean(zilog_t *zilog, uint64_t synced_txg); extern int zil_suspend(const char *osname, void **cookiep); extern void zil_resume(void *cookie); extern void zil_lwb_add_block(struct lwb *lwb, const blkptr_t *bp); extern void zil_lwb_add_txg(struct lwb *lwb, uint64_t txg); extern int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp); extern void zil_set_sync(zilog_t *zilog, uint64_t syncval); extern void zil_set_logbias(zilog_t *zilog, uint64_t slogval); extern uint64_t zil_max_copied_data(zilog_t *zilog); extern uint64_t zil_max_log_data(zilog_t *zilog, size_t hdrsize); extern void zil_sums_init(zil_sums_t *zs); extern void zil_sums_fini(zil_sums_t *zs); extern void zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums); extern int zil_replay_disable; #ifdef __cplusplus } #endif #endif /* _SYS_ZIL_H */ diff --git a/module/zfs/dataset_kstats.c b/module/zfs/dataset_kstats.c index 57b8faf213eb..767a461e0026 100644 --- a/module/zfs/dataset_kstats.c +++ b/module/zfs/dataset_kstats.c @@ -1,239 +1,243 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2018 by Delphix. All rights reserved. * Copyright (c) 2018 Datto Inc. */ #include #include #include #include static dataset_kstat_values_t empty_dataset_kstats = { { "dataset_name", KSTAT_DATA_STRING }, { "writes", KSTAT_DATA_UINT64 }, { "nwritten", KSTAT_DATA_UINT64 }, { "reads", KSTAT_DATA_UINT64 }, { "nread", KSTAT_DATA_UINT64 }, { "nunlinks", KSTAT_DATA_UINT64 }, { "nunlinked", KSTAT_DATA_UINT64 }, { { "zil_commit_count", KSTAT_DATA_UINT64 }, { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, { "zil_itx_count", KSTAT_DATA_UINT64 }, { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, - { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 } + { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 } } }; static int dataset_kstats_update(kstat_t *ksp, int rw) { dataset_kstats_t *dk = ksp->ks_private; dataset_kstat_values_t *dkv = ksp->ks_data; ASSERT3P(dk->dk_kstats->ks_data, ==, dkv); if (rw == KSTAT_WRITE) return (EACCES); dkv->dkv_writes.value.ui64 = wmsum_value(&dk->dk_sums.dss_writes); dkv->dkv_nwritten.value.ui64 = wmsum_value(&dk->dk_sums.dss_nwritten); dkv->dkv_reads.value.ui64 = wmsum_value(&dk->dk_sums.dss_reads); dkv->dkv_nread.value.ui64 = wmsum_value(&dk->dk_sums.dss_nread); dkv->dkv_nunlinks.value.ui64 = wmsum_value(&dk->dk_sums.dss_nunlinks); dkv->dkv_nunlinked.value.ui64 = wmsum_value(&dk->dk_sums.dss_nunlinked); zil_kstat_values_update(&dkv->dkv_zil_stats, &dk->dk_zil_sums); return (0); } int dataset_kstats_create(dataset_kstats_t *dk, objset_t *objset) { /* * There should not be anything wrong with having kstats for * snapshots. Since we are not sure how useful they would be * though nor how much their memory overhead would matter in * a filesystem with many snapshots, we skip them for now. */ if (dmu_objset_is_snapshot(objset)) return (0); /* * At the time of this writing, KSTAT_STRLEN is 255 in Linux, * and the spa_name can theoretically be up to 256 characters. * In reality though the spa_name can be 240 characters max * [see origin directory name check in pool_namecheck()]. Thus, * the naming scheme for the module name below should not cause * any truncations. In the event that a truncation does happen * though, due to some future change, we silently skip creating * the kstat and log the event. */ char kstat_module_name[KSTAT_STRLEN]; int n = snprintf(kstat_module_name, sizeof (kstat_module_name), "zfs/%s", spa_name(dmu_objset_spa(objset))); if (n < 0) { zfs_dbgmsg("failed to create dataset kstat for objset %lld: " " snprintf() for kstat module name returned %d", (unsigned long long)dmu_objset_id(objset), n); return (SET_ERROR(EINVAL)); } else if (n >= KSTAT_STRLEN) { zfs_dbgmsg("failed to create dataset kstat for objset %lld: " "kstat module name length (%d) exceeds limit (%d)", (unsigned long long)dmu_objset_id(objset), n, KSTAT_STRLEN); return (SET_ERROR(ENAMETOOLONG)); } char kstat_name[KSTAT_STRLEN]; n = snprintf(kstat_name, sizeof (kstat_name), "objset-0x%llx", (unsigned long long)dmu_objset_id(objset)); if (n < 0) { zfs_dbgmsg("failed to create dataset kstat for objset %lld: " " snprintf() for kstat name returned %d", (unsigned long long)dmu_objset_id(objset), n); return (SET_ERROR(EINVAL)); } else if (n >= KSTAT_STRLEN) { zfs_dbgmsg("failed to create dataset kstat for objset %lld: " "kstat name length (%d) exceeds limit (%d)", (unsigned long long)dmu_objset_id(objset), n, KSTAT_STRLEN); return (SET_ERROR(ENAMETOOLONG)); } kstat_t *kstat = kstat_create(kstat_module_name, 0, kstat_name, "dataset", KSTAT_TYPE_NAMED, sizeof (empty_dataset_kstats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (kstat == NULL) return (SET_ERROR(ENOMEM)); dataset_kstat_values_t *dk_kstats = kmem_alloc(sizeof (empty_dataset_kstats), KM_SLEEP); memcpy(dk_kstats, &empty_dataset_kstats, sizeof (empty_dataset_kstats)); char *ds_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP); dsl_dataset_name(objset->os_dsl_dataset, ds_name); KSTAT_NAMED_STR_PTR(&dk_kstats->dkv_ds_name) = ds_name; KSTAT_NAMED_STR_BUFLEN(&dk_kstats->dkv_ds_name) = ZFS_MAX_DATASET_NAME_LEN; kstat->ks_data = dk_kstats; kstat->ks_update = dataset_kstats_update; kstat->ks_private = dk; kstat->ks_data_size += ZFS_MAX_DATASET_NAME_LEN; wmsum_init(&dk->dk_sums.dss_writes, 0); wmsum_init(&dk->dk_sums.dss_nwritten, 0); wmsum_init(&dk->dk_sums.dss_reads, 0); wmsum_init(&dk->dk_sums.dss_nread, 0); wmsum_init(&dk->dk_sums.dss_nunlinks, 0); wmsum_init(&dk->dk_sums.dss_nunlinked, 0); zil_sums_init(&dk->dk_zil_sums); dk->dk_kstats = kstat; kstat_install(kstat); return (0); } void dataset_kstats_destroy(dataset_kstats_t *dk) { if (dk->dk_kstats == NULL) return; dataset_kstat_values_t *dkv = dk->dk_kstats->ks_data; kstat_delete(dk->dk_kstats); dk->dk_kstats = NULL; kmem_free(KSTAT_NAMED_STR_PTR(&dkv->dkv_ds_name), KSTAT_NAMED_STR_BUFLEN(&dkv->dkv_ds_name)); kmem_free(dkv, sizeof (empty_dataset_kstats)); wmsum_fini(&dk->dk_sums.dss_writes); wmsum_fini(&dk->dk_sums.dss_nwritten); wmsum_fini(&dk->dk_sums.dss_reads); wmsum_fini(&dk->dk_sums.dss_nread); wmsum_fini(&dk->dk_sums.dss_nunlinks); wmsum_fini(&dk->dk_sums.dss_nunlinked); zil_sums_fini(&dk->dk_zil_sums); } void dataset_kstats_update_write_kstats(dataset_kstats_t *dk, int64_t nwritten) { ASSERT3S(nwritten, >=, 0); if (dk->dk_kstats == NULL) return; wmsum_add(&dk->dk_sums.dss_writes, 1); wmsum_add(&dk->dk_sums.dss_nwritten, nwritten); } void dataset_kstats_update_read_kstats(dataset_kstats_t *dk, int64_t nread) { ASSERT3S(nread, >=, 0); if (dk->dk_kstats == NULL) return; wmsum_add(&dk->dk_sums.dss_reads, 1); wmsum_add(&dk->dk_sums.dss_nread, nread); } void dataset_kstats_update_nunlinks_kstat(dataset_kstats_t *dk, int64_t delta) { if (dk->dk_kstats == NULL) return; wmsum_add(&dk->dk_sums.dss_nunlinks, delta); } void dataset_kstats_update_nunlinked_kstat(dataset_kstats_t *dk, int64_t delta) { if (dk->dk_kstats == NULL) return; wmsum_add(&dk->dk_sums.dss_nunlinked, delta); } diff --git a/module/zfs/zil.c b/module/zfs/zil.c index f2798270a8a2..509fd39d3590 100644 --- a/module/zfs/zil.c +++ b/module/zfs/zil.c @@ -1,4221 +1,4252 @@ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2018 by Delphix. All rights reserved. * Copyright (c) 2014 Integros [integros.com] * Copyright (c) 2018 Datto Inc. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system * calls that change the file system. Each itx has enough information to * be able to replay them after a system crash, power loss, or * equivalent failure mode. These are stored in memory until either: * * 1. they are committed to the pool by the DMU transaction group * (txg), at which point they can be discarded; or * 2. they are committed to the on-disk ZIL for the dataset being * modified (e.g. due to an fsync, O_DSYNC, or other synchronous * requirement). * * In the event of a crash or power loss, the itxs contained by each * dataset's on-disk ZIL will be replayed when that dataset is first * instantiated (e.g. if the dataset is a normal filesystem, when it is * first mounted). * * As hinted at above, there is one ZIL per dataset (both the in-memory * representation, and the on-disk representation). The on-disk format * consists of 3 parts: * * - a single, per-dataset, ZIL header; which points to a chain of * - zero or more ZIL blocks; each of which contains * - zero or more ZIL records * * A ZIL record holds the information necessary to replay a single * system call transaction. A ZIL block can hold many ZIL records, and * the blocks are chained together, similarly to a singly linked list. * * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL * block in the chain, and the ZIL header points to the first block in * the chain. * * Note, there is not a fixed place in the pool to hold these ZIL * blocks; they are dynamically allocated and freed as needed from the * blocks available on the pool, though they can be preferentially * allocated from a dedicated "log" vdev. */ /* * This controls the amount of time that a ZIL block (lwb) will remain * "open" when it isn't "full", and it has a thread waiting for it to be * committed to stable storage. Please refer to the zil_commit_waiter() * function (and the comments within it) for more details. */ static uint_t zfs_commit_timeout_pct = 5; /* * Minimal time we care to delay commit waiting for more ZIL records. * At least FreeBSD kernel can't sleep for less than 2us at its best. * So requests to sleep for less then 5us is a waste of CPU time with * a risk of significant log latency increase due to oversleep. */ static uint64_t zil_min_commit_timeout = 5000; /* * See zil.h for more information about these fields. */ static zil_kstat_values_t zil_stats = { { "zil_commit_count", KSTAT_DATA_UINT64 }, { "zil_commit_writer_count", KSTAT_DATA_UINT64 }, { "zil_itx_count", KSTAT_DATA_UINT64 }, { "zil_itx_indirect_count", KSTAT_DATA_UINT64 }, { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_copied_count", KSTAT_DATA_UINT64 }, { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 }, { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 }, { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 }, + { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 }, }; static zil_sums_t zil_sums_global; static kstat_t *zil_kstats_global; /* * Disable intent logging replay. This global ZIL switch affects all pools. */ int zil_replay_disable = 0; /* * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to * the disk(s) by the ZIL after an LWB write has completed. Setting this * will cause ZIL corruption on power loss if a volatile out-of-order * write cache is enabled. */ static int zil_nocacheflush = 0; /* * Limit SLOG write size per commit executed with synchronous priority. * Any writes above that will be executed with lower (asynchronous) priority * to limit potential SLOG device abuse by single active ZIL writer. */ static uint64_t zil_slog_bulk = 768 * 1024; static kmem_cache_t *zil_lwb_cache; static kmem_cache_t *zil_zcw_cache; static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx); static itx_t *zil_itx_clone(itx_t *oitx); static int zil_bp_compare(const void *x1, const void *x2) { const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva; const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva; int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); if (likely(cmp)) return (cmp); return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2))); } static void zil_bp_tree_init(zilog_t *zilog) { avl_create(&zilog->zl_bp_tree, zil_bp_compare, sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node)); } static void zil_bp_tree_fini(zilog_t *zilog) { avl_tree_t *t = &zilog->zl_bp_tree; zil_bp_node_t *zn; void *cookie = NULL; while ((zn = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zn, sizeof (zil_bp_node_t)); avl_destroy(t); } int zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp) { avl_tree_t *t = &zilog->zl_bp_tree; const dva_t *dva; zil_bp_node_t *zn; avl_index_t where; if (BP_IS_EMBEDDED(bp)) return (0); dva = BP_IDENTITY(bp); if (avl_find(t, dva, &where) != NULL) return (SET_ERROR(EEXIST)); zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP); zn->zn_dva = *dva; avl_insert(t, zn, where); return (0); } static zil_header_t * zil_header_in_syncing_context(zilog_t *zilog) { return ((zil_header_t *)zilog->zl_header); } static void zil_init_log_chain(zilog_t *zilog, blkptr_t *bp) { zio_cksum_t *zc = &bp->blk_cksum; (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0], sizeof (zc->zc_word[ZIL_ZC_GUID_0])); (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1], sizeof (zc->zc_word[ZIL_ZC_GUID_1])); zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os); zc->zc_word[ZIL_ZC_SEQ] = 1ULL; } static int zil_kstats_global_update(kstat_t *ksp, int rw) { zil_kstat_values_t *zs = ksp->ks_data; ASSERT3P(&zil_stats, ==, zs); if (rw == KSTAT_WRITE) { return (SET_ERROR(EACCES)); } zil_kstat_values_update(zs, &zil_sums_global); return (0); } /* * Read a log block and make sure it's valid. */ static int zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp, blkptr_t *nbp, void *dst, char **end) { zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) zio_flags |= ZIO_FLAG_SPECULATIVE; if (!decrypt) zio_flags |= ZIO_FLAG_RAW; SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { zio_cksum_t cksum = bp->blk_cksum; /* * Validate the checksummed log block. * * Sequence numbers should be... sequential. The checksum * verifier for the next block should be bp's checksum plus 1. * * Also check the log chain linkage and size used. */ cksum.zc_word[ZIL_ZC_SEQ]++; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { zil_chain_t *zilc = abuf->b_data; char *lr = (char *)(zilc + 1); uint64_t len = zilc->zc_nused - sizeof (zil_chain_t); if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE); memcpy(dst, lr, len); *end = (char *)dst + len; *nbp = zilc->zc_next_blk; } } else { char *lr = abuf->b_data; uint64_t size = BP_GET_LSIZE(bp); zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1; if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum, sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) || (zilc->zc_nused > (size - sizeof (*zilc)))) { error = SET_ERROR(ECKSUM); } else { ASSERT3U(zilc->zc_nused, <=, SPA_OLD_MAXBLOCKSIZE); memcpy(dst, lr, zilc->zc_nused); *end = (char *)dst + zilc->zc_nused; *nbp = zilc->zc_next_blk; } } arc_buf_destroy(abuf, &abuf); } return (error); } /* * Read a TX_WRITE log data block. */ static int zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf) { zio_flag_t zio_flags = ZIO_FLAG_CANFAIL; const blkptr_t *bp = &lr->lr_blkptr; arc_flags_t aflags = ARC_FLAG_WAIT; arc_buf_t *abuf = NULL; zbookmark_phys_t zb; int error; if (BP_IS_HOLE(bp)) { if (wbuf != NULL) memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length)); return (0); } if (zilog->zl_header->zh_claim_txg == 0) zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB; /* * If we are not using the resulting data, we are just checking that * it hasn't been corrupted so we don't need to waste CPU time * decompressing and decrypting it. */ if (wbuf == NULL) zio_flags |= ZIO_FLAG_RAW; ASSERT3U(BP_GET_LSIZE(bp), !=, 0); SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid, ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp)); error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb); if (error == 0) { if (wbuf != NULL) memcpy(wbuf, abuf->b_data, arc_buf_size(abuf)); arc_buf_destroy(abuf, &abuf); } return (error); } void zil_sums_init(zil_sums_t *zs) { wmsum_init(&zs->zil_commit_count, 0); wmsum_init(&zs->zil_commit_writer_count, 0); wmsum_init(&zs->zil_itx_count, 0); wmsum_init(&zs->zil_itx_indirect_count, 0); wmsum_init(&zs->zil_itx_indirect_bytes, 0); wmsum_init(&zs->zil_itx_copied_count, 0); wmsum_init(&zs->zil_itx_copied_bytes, 0); wmsum_init(&zs->zil_itx_needcopy_count, 0); wmsum_init(&zs->zil_itx_needcopy_bytes, 0); wmsum_init(&zs->zil_itx_metaslab_normal_count, 0); wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0); + wmsum_init(&zs->zil_itx_metaslab_normal_write, 0); + wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0); wmsum_init(&zs->zil_itx_metaslab_slog_count, 0); wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0); + wmsum_init(&zs->zil_itx_metaslab_slog_write, 0); + wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0); } void zil_sums_fini(zil_sums_t *zs) { wmsum_fini(&zs->zil_commit_count); wmsum_fini(&zs->zil_commit_writer_count); wmsum_fini(&zs->zil_itx_count); wmsum_fini(&zs->zil_itx_indirect_count); wmsum_fini(&zs->zil_itx_indirect_bytes); wmsum_fini(&zs->zil_itx_copied_count); wmsum_fini(&zs->zil_itx_copied_bytes); wmsum_fini(&zs->zil_itx_needcopy_count); wmsum_fini(&zs->zil_itx_needcopy_bytes); wmsum_fini(&zs->zil_itx_metaslab_normal_count); wmsum_fini(&zs->zil_itx_metaslab_normal_bytes); + wmsum_fini(&zs->zil_itx_metaslab_normal_write); + wmsum_fini(&zs->zil_itx_metaslab_normal_alloc); wmsum_fini(&zs->zil_itx_metaslab_slog_count); wmsum_fini(&zs->zil_itx_metaslab_slog_bytes); + wmsum_fini(&zs->zil_itx_metaslab_slog_write); + wmsum_fini(&zs->zil_itx_metaslab_slog_alloc); } void zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums) { zs->zil_commit_count.value.ui64 = wmsum_value(&zil_sums->zil_commit_count); zs->zil_commit_writer_count.value.ui64 = wmsum_value(&zil_sums->zil_commit_writer_count); zs->zil_itx_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_count); zs->zil_itx_indirect_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_indirect_count); zs->zil_itx_indirect_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_indirect_bytes); zs->zil_itx_copied_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_copied_count); zs->zil_itx_copied_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_copied_bytes); zs->zil_itx_needcopy_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_needcopy_count); zs->zil_itx_needcopy_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_needcopy_bytes); zs->zil_itx_metaslab_normal_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_normal_count); zs->zil_itx_metaslab_normal_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes); + zs->zil_itx_metaslab_normal_write.value.ui64 = + wmsum_value(&zil_sums->zil_itx_metaslab_normal_write); + zs->zil_itx_metaslab_normal_alloc.value.ui64 = + wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc); zs->zil_itx_metaslab_slog_count.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_slog_count); zs->zil_itx_metaslab_slog_bytes.value.ui64 = wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes); + zs->zil_itx_metaslab_slog_write.value.ui64 = + wmsum_value(&zil_sums->zil_itx_metaslab_slog_write); + zs->zil_itx_metaslab_slog_alloc.value.ui64 = + wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc); } /* * Parse the intent log, and call parse_func for each valid record within. */ int zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func, zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg, boolean_t decrypt) { const zil_header_t *zh = zilog->zl_header; boolean_t claimed = !!zh->zh_claim_txg; uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX; uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX; uint64_t max_blk_seq = 0; uint64_t max_lr_seq = 0; uint64_t blk_count = 0; uint64_t lr_count = 0; blkptr_t blk, next_blk = {{{{0}}}}; char *lrbuf, *lrp; int error = 0; /* * Old logs didn't record the maximum zh_claim_lr_seq. */ if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID)) claim_lr_seq = UINT64_MAX; /* * Starting at the block pointed to by zh_log we read the log chain. * For each block in the chain we strongly check that block to * ensure its validity. We stop when an invalid block is found. * For each block pointer in the chain we call parse_blk_func(). * For each record in each valid block we call parse_lr_func(). * If the log has been claimed, stop if we encounter a sequence * number greater than the highest claimed sequence number. */ lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE); zil_bp_tree_init(zilog); for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) { uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ]; int reclen; char *end = NULL; if (blk_seq > claim_blk_seq) break; error = parse_blk_func(zilog, &blk, arg, txg); if (error != 0) break; ASSERT3U(max_blk_seq, <, blk_seq); max_blk_seq = blk_seq; blk_count++; if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq) break; error = zil_read_log_block(zilog, decrypt, &blk, &next_blk, lrbuf, &end); if (error != 0) { if (claimed) { char name[ZFS_MAX_DATASET_NAME_LEN]; dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS read log block error %d, " "dataset %s, seq 0x%llx\n", error, name, (u_longlong_t)blk_seq); } break; } for (lrp = lrbuf; lrp < end; lrp += reclen) { lr_t *lr = (lr_t *)lrp; reclen = lr->lrc_reclen; ASSERT3U(reclen, >=, sizeof (lr_t)); if (lr->lrc_seq > claim_lr_seq) goto done; error = parse_lr_func(zilog, lr, arg, txg); if (error != 0) goto done; ASSERT3U(max_lr_seq, <, lr->lrc_seq); max_lr_seq = lr->lrc_seq; lr_count++; } } done: zilog->zl_parse_error = error; zilog->zl_parse_blk_seq = max_blk_seq; zilog->zl_parse_lr_seq = max_lr_seq; zilog->zl_parse_blk_count = blk_count; zilog->zl_parse_lr_count = lr_count; zil_bp_tree_fini(zilog); zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE); return (error); } static int zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, uint64_t first_txg) { (void) tx; ASSERT(!BP_IS_HOLE(bp)); /* * As we call this function from the context of a rewind to a * checkpoint, each ZIL block whose txg is later than the txg * that we rewind to is invalid. Thus, we return -1 so * zil_parse() doesn't attempt to read it. */ if (bp->blk_birth >= first_txg) return (-1); if (zil_bp_tree_add(zilog, bp) != 0) return (0); zio_free(zilog->zl_spa, first_txg, bp); return (0); } static int zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) { (void) zilog, (void) lrc, (void) tx, (void) first_txg; return (0); } static int zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, uint64_t first_txg) { /* * Claim log block if not already committed and not already claimed. * If tx == NULL, just verify that the block is claimable. */ if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0) return (0); return (zio_wait(zio_claim(NULL, zilog->zl_spa, tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB))); } static int zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) { lr_write_t *lr = (lr_write_t *)lrc; int error; ASSERT(lrc->lrc_txtype == TX_WRITE); /* * If the block is not readable, don't claim it. This can happen * in normal operation when a log block is written to disk before * some of the dmu_sync() blocks it points to. In this case, the * transaction cannot have been committed to anyone (we would have * waited for all writes to be stable first), so it is semantically * correct to declare this the end of the log. */ if (lr->lr_blkptr.blk_birth >= first_txg) { error = zil_read_log_data(zilog, lr, NULL); if (error != 0) return (error); } return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg)); } static int zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) { const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; const blkptr_t *bp; spa_t *spa; uint_t ii; ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); if (tx == NULL) { return (0); } /* * XXX: Do we need to byteswap lr? */ spa = zilog->zl_spa; for (ii = 0; ii < lr->lr_nbps; ii++) { bp = &lr->lr_bps[ii]; /* * When data in embedded into BP there is no need to create * BRT entry as there is no data block. Just copy the BP as * it contains the data. */ if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { brt_pending_add(spa, bp, tx); } } return (0); } static int zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg) { switch (lrc->lrc_txtype) { case TX_WRITE: return (zil_claim_write(zilog, lrc, tx, first_txg)); case TX_CLONE_RANGE: return (zil_claim_clone_range(zilog, lrc, tx)); default: return (0); } } static int zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx, uint64_t claim_txg) { (void) claim_txg; zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); return (0); } static int zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) { lr_write_t *lr = (lr_write_t *)lrc; blkptr_t *bp = &lr->lr_blkptr; ASSERT(lrc->lrc_txtype == TX_WRITE); /* * If we previously claimed it, we need to free it. */ if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 && !BP_IS_HOLE(bp)) { zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp); } return (0); } static int zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx) { const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc; const blkptr_t *bp; spa_t *spa; uint_t ii; ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE); if (tx == NULL) { return (0); } spa = zilog->zl_spa; for (ii = 0; ii < lr->lr_nbps; ii++) { bp = &lr->lr_bps[ii]; if (!BP_IS_HOLE(bp)) { zio_free(spa, dmu_tx_get_txg(tx), bp); } } return (0); } static int zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg) { if (claim_txg == 0) { return (0); } switch (lrc->lrc_txtype) { case TX_WRITE: return (zil_free_write(zilog, lrc, tx, claim_txg)); case TX_CLONE_RANGE: return (zil_free_clone_range(zilog, lrc, tx)); default: return (0); } } static int zil_lwb_vdev_compare(const void *x1, const void *x2) { const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev; const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev; return (TREE_CMP(v1, v2)); } static lwb_t * zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg, boolean_t fastwrite) { lwb_t *lwb; lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP); lwb->lwb_zilog = zilog; lwb->lwb_blk = *bp; lwb->lwb_fastwrite = fastwrite; lwb->lwb_slog = slog; lwb->lwb_indirect = B_FALSE; if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) { lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t); lwb->lwb_sz = BP_GET_LSIZE(bp); } else { lwb->lwb_nused = lwb->lwb_nfilled = 0; lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t); } lwb->lwb_state = LWB_STATE_CLOSED; lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp)); lwb->lwb_write_zio = NULL; lwb->lwb_root_zio = NULL; lwb->lwb_issued_timestamp = 0; lwb->lwb_issued_txg = 0; lwb->lwb_max_txg = txg; mutex_enter(&zilog->zl_lock); list_insert_tail(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); return (lwb); } static void zil_free_lwb(zilog_t *zilog, lwb_t *lwb) { ASSERT(MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock)); ASSERT(list_is_empty(&lwb->lwb_waiters)); ASSERT(list_is_empty(&lwb->lwb_itxs)); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); ASSERT3P(lwb->lwb_write_zio, ==, NULL); ASSERT3P(lwb->lwb_root_zio, ==, NULL); ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa)); ASSERT(lwb->lwb_state == LWB_STATE_CLOSED || lwb->lwb_state == LWB_STATE_FLUSH_DONE); /* * Clear the zilog's field to indicate this lwb is no longer * valid, and prevent use-after-free errors. */ if (zilog->zl_last_lwb_opened == lwb) zilog->zl_last_lwb_opened = NULL; kmem_cache_free(zil_lwb_cache, lwb); } /* * Called when we create in-memory log transactions so that we know * to cleanup the itxs at the end of spa_sync(). */ static void zilog_dirty(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); ASSERT(spa_writeable(zilog->zl_spa)); if (ds->ds_is_snapshot) panic("dirtying snapshot!"); if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) { /* up the hold count until we can be written out */ dmu_buf_add_ref(ds->ds_dbuf, zilog); zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg); } } /* * Determine if the zil is dirty in the specified txg. Callers wanting to * ensure that the dirty state does not change must hold the itxg_lock for * the specified txg. Holding the lock will ensure that the zil cannot be * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current * state. */ static boolean_t __maybe_unused zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg) { dsl_pool_t *dp = zilog->zl_dmu_pool; if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK)) return (B_TRUE); return (B_FALSE); } /* * Determine if the zil is dirty. The zil is considered dirty if it has * any pending itx records that have not been cleaned by zil_clean(). */ static boolean_t zilog_is_dirty(zilog_t *zilog) { dsl_pool_t *dp = zilog->zl_dmu_pool; for (int t = 0; t < TXG_SIZE; t++) { if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t)) return (B_TRUE); } return (B_FALSE); } /* * Its called in zil_commit context (zil_process_commit_list()/zil_create()). * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled. * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every * zil_commit. */ static void zil_commit_activate_saxattr_feature(zilog_t *zilog) { dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); uint64_t txg = 0; dmu_tx_t *tx = NULL; if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL && !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) { tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(ds, tx); txg = dmu_tx_get_txg(tx); mutex_enter(&ds->ds_lock); ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = (void *)B_TRUE; mutex_exit(&ds->ds_lock); dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } } /* * Create an on-disk intent log. */ static lwb_t * zil_create(zilog_t *zilog) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb = NULL; uint64_t txg = 0; dmu_tx_t *tx = NULL; blkptr_t blk; int error = 0; boolean_t fastwrite = FALSE; boolean_t slog = FALSE; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); ASSERT(zh->zh_claim_txg == 0); ASSERT(zh->zh_replay_seq == 0); blk = zh->zh_log; /* * Allocate an initial log block if: * - there isn't one already * - the existing block is the wrong endianness */ if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) { tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); if (!BP_IS_HOLE(&blk)) { zio_free(zilog->zl_spa, txg, &blk); BP_ZERO(&blk); } error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk, ZIL_MIN_BLKSZ, &slog); fastwrite = TRUE; if (error == 0) zil_init_log_chain(zilog, &blk); } /* * Allocate a log write block (lwb) for the first log block. */ if (error == 0) lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite); /* * If we just allocated the first log block, commit our transaction * and wait for zil_sync() to stuff the block pointer into zh_log. * (zh is part of the MOS, so we cannot modify it in open context.) */ if (tx != NULL) { /* * If "zilsaxattr" feature is enabled on zpool, then activate * it now when we're creating the ZIL chain. We can't wait with * this until we write the first xattr log record because we * need to wait for the feature activation to sync out. */ if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL) { mutex_enter(&ds->ds_lock); ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] = (void *)B_TRUE; mutex_exit(&ds->ds_lock); } dmu_tx_commit(tx); txg_wait_synced(zilog->zl_dmu_pool, txg); } else { /* * This branch covers the case where we enable the feature on a * zpool that has existing ZIL headers. */ zil_commit_activate_saxattr_feature(zilog); } IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL, dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)); ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0); IMPLY(error == 0, lwb != NULL); return (lwb); } /* * In one tx, free all log blocks and clear the log header. If keep_first * is set, then we're replaying a log with no content. We want to keep the * first block, however, so that the first synchronous transaction doesn't * require a txg_wait_synced() in zil_create(). We don't need to * txg_wait_synced() here either when keep_first is set, because both * zil_create() and zil_destroy() will wait for any in-progress destroys * to complete. * Return B_TRUE if there were any entries to replay. */ boolean_t zil_destroy(zilog_t *zilog, boolean_t keep_first) { const zil_header_t *zh = zilog->zl_header; lwb_t *lwb; dmu_tx_t *tx; uint64_t txg; /* * Wait for any previous destroy to complete. */ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_old_header = *zh; /* debugging aid */ if (BP_IS_HOLE(&zh->zh_log)) return (B_FALSE); tx = dmu_tx_create(zilog->zl_os); VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lock); ASSERT3U(zilog->zl_destroy_txg, <, txg); zilog->zl_destroy_txg = txg; zilog->zl_keep_first = keep_first; if (!list_is_empty(&zilog->zl_lwb_list)) { ASSERT(zh->zh_claim_txg == 0); VERIFY(!keep_first); while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) { if (lwb->lwb_fastwrite) metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); if (lwb->lwb_buf != NULL) zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zio_free(zilog->zl_spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); } } else if (!keep_first) { zil_destroy_sync(zilog, tx); } mutex_exit(&zilog->zl_lock); dmu_tx_commit(tx); return (B_TRUE); } void zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx) { ASSERT(list_is_empty(&zilog->zl_lwb_list)); (void) zil_parse(zilog, zil_free_log_block, zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE); } int zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg) { dmu_tx_t *tx = txarg; zilog_t *zilog; uint64_t first_txg; zil_header_t *zh; objset_t *os; int error; error = dmu_objset_own_obj(dp, ds->ds_object, DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os); if (error != 0) { /* * EBUSY indicates that the objset is inconsistent, in which * case it can not have a ZIL. */ if (error != EBUSY) { cmn_err(CE_WARN, "can't open objset for %llu, error %u", (unsigned long long)ds->ds_object, error); } return (0); } zilog = dmu_objset_zil(os); zh = zil_header_in_syncing_context(zilog); ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa)); first_txg = spa_min_claim_txg(zilog->zl_spa); /* * If the spa_log_state is not set to be cleared, check whether * the current uberblock is a checkpoint one and if the current * header has been claimed before moving on. * * If the current uberblock is a checkpointed uberblock then * one of the following scenarios took place: * * 1] We are currently rewinding to the checkpoint of the pool. * 2] We crashed in the middle of a checkpoint rewind but we * did manage to write the checkpointed uberblock to the * vdev labels, so when we tried to import the pool again * the checkpointed uberblock was selected from the import * procedure. * * In both cases we want to zero out all the ZIL blocks, except * the ones that have been claimed at the time of the checkpoint * (their zh_claim_txg != 0). The reason is that these blocks * may be corrupted since we may have reused their locations on * disk after we took the checkpoint. * * We could try to set spa_log_state to SPA_LOG_CLEAR earlier * when we first figure out whether the current uberblock is * checkpointed or not. Unfortunately, that would discard all * the logs, including the ones that are claimed, and we would * leak space. */ if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR || (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0)) { if (!BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_clear_log_block, zil_noop_log_record, tx, first_txg, B_FALSE); } BP_ZERO(&zh->zh_log); if (os->os_encrypted) os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; dsl_dataset_dirty(dmu_objset_ds(os), tx); dmu_objset_disown(os, B_FALSE, FTAG); return (0); } /* * If we are not rewinding and opening the pool normally, then * the min_claim_txg should be equal to the first txg of the pool. */ ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa)); /* * Claim all log blocks if we haven't already done so, and remember * the highest claimed sequence number. This ensures that if we can * read only part of the log now (e.g. due to a missing device), * but we can read the entire log later, we will not try to replay * or destroy beyond the last block we successfully claimed. */ ASSERT3U(zh->zh_claim_txg, <=, first_txg); if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) { (void) zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, first_txg, B_FALSE); zh->zh_claim_txg = first_txg; zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq; zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq; if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1) zh->zh_flags |= ZIL_REPLAY_NEEDED; zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID; if (os->os_encrypted) os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE; dsl_dataset_dirty(dmu_objset_ds(os), tx); } ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1)); dmu_objset_disown(os, B_FALSE, FTAG); return (0); } /* * Check the log by walking the log chain. * Checksum errors are ok as they indicate the end of the chain. * Any other error (no device or read failure) returns an error. */ int zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx) { (void) dp; zilog_t *zilog; objset_t *os; blkptr_t *bp; int error; ASSERT(tx == NULL); error = dmu_objset_from_ds(ds, &os); if (error != 0) { cmn_err(CE_WARN, "can't open objset %llu, error %d", (unsigned long long)ds->ds_object, error); return (0); } zilog = dmu_objset_zil(os); bp = (blkptr_t *)&zilog->zl_header->zh_log; if (!BP_IS_HOLE(bp)) { vdev_t *vd; boolean_t valid = B_TRUE; /* * Check the first block and determine if it's on a log device * which may have been removed or faulted prior to loading this * pool. If so, there's no point in checking the rest of the * log as its content should have already been synced to the * pool. */ spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER); vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0])); if (vd->vdev_islog && vdev_is_dead(vd)) valid = vdev_log_state_valid(vd); spa_config_exit(os->os_spa, SCL_STATE, FTAG); if (!valid) return (0); /* * Check whether the current uberblock is checkpointed (e.g. * we are rewinding) and whether the current header has been * claimed or not. If it hasn't then skip verifying it. We * do this because its ZIL blocks may be part of the pool's * state before the rewind, which is no longer valid. */ zil_header_t *zh = zil_header_in_syncing_context(zilog); if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 && zh->zh_claim_txg == 0) return (0); } /* * Because tx == NULL, zil_claim_log_block() will not actually claim * any blocks, but just determine whether it is possible to do so. * In addition to checking the log chain, zil_claim_log_block() * will invoke zio_claim() with a done func of spa_claim_notify(), * which will update spa_max_claim_txg. See spa_load() for details. */ error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx, zilog->zl_header->zh_claim_txg ? -1ULL : spa_min_claim_txg(os->os_spa), B_FALSE); return ((error == ECKSUM || error == ENOENT) ? 0 : error); } /* * When an itx is "skipped", this function is used to properly mark the * waiter as "done, and signal any thread(s) waiting on it. An itx can * be skipped (and not committed to an lwb) for a variety of reasons, * one of them being that the itx was committed via spa_sync(), prior to * it being committed to an lwb; this can happen if a thread calling * zil_commit() is racing with spa_sync(). */ static void zil_commit_waiter_skip(zil_commit_waiter_t *zcw) { mutex_enter(&zcw->zcw_lock); ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } /* * This function is used when the given waiter is to be linked into an * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb. * At this point, the waiter will no longer be referenced by the itx, * and instead, will be referenced by the lwb. */ static void zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb) { /* * The lwb_waiters field of the lwb is protected by the zilog's * zl_lock, thus it must be held when calling this function. */ ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock)); mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3P(lwb, !=, NULL); ASSERT(lwb->lwb_state == LWB_STATE_OPENED || lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE); list_insert_tail(&lwb->lwb_waiters, zcw); zcw->zcw_lwb = lwb; mutex_exit(&zcw->zcw_lock); } /* * This function is used when zio_alloc_zil() fails to allocate a ZIL * block, and the given waiter must be linked to the "nolwb waiters" * list inside of zil_process_commit_list(). */ static void zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb) { mutex_enter(&zcw->zcw_lock); ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); list_insert_tail(nolwb, zcw); mutex_exit(&zcw->zcw_lock); } void zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp) { avl_tree_t *t = &lwb->lwb_vdev_tree; avl_index_t where; zil_vdev_node_t *zv, zvsearch; int ndvas = BP_GET_NDVAS(bp); int i; if (zil_nocacheflush) return; mutex_enter(&lwb->lwb_vdev_lock); for (i = 0; i < ndvas; i++) { zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]); if (avl_find(t, &zvsearch, &where) == NULL) { zv = kmem_alloc(sizeof (*zv), KM_SLEEP); zv->zv_vdev = zvsearch.zv_vdev; avl_insert(t, zv, where); } } mutex_exit(&lwb->lwb_vdev_lock); } static void zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb) { avl_tree_t *src = &lwb->lwb_vdev_tree; avl_tree_t *dst = &nlwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does * not need the protection of lwb_vdev_lock (it will only be modified * while holding zilog->zl_lock) as its writes and those of its * children have all completed. The younger 'nlwb' may be waiting on * future writes to additional vdevs. */ mutex_enter(&nlwb->lwb_vdev_lock); /* * Tear down the 'lwb' vdev tree, ensuring that entries which do not * exist in 'nlwb' are moved to it, freeing any would-be duplicates. */ while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) { avl_index_t where; if (avl_find(dst, zv, &where) == NULL) { avl_insert(dst, zv, where); } else { kmem_free(zv, sizeof (*zv)); } } mutex_exit(&nlwb->lwb_vdev_lock); } void zil_lwb_add_txg(lwb_t *lwb, uint64_t txg) { lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg); } /* * This function is a called after all vdevs associated with a given lwb * write have completed their DKIOCFLUSHWRITECACHE command; or as soon * as the lwb write completes, if "zil_nocacheflush" is set. Further, * all "previous" lwb's will have completed before this function is * called; i.e. this function is called for all previous lwbs before * it's called for "this" lwb (enforced via zio the dependencies * configured in zil_lwb_set_zio_dependency()). * * The intention is for this function to be called as soon as the * contents of an lwb are considered "stable" on disk, and will survive * any sudden loss of power. At this point, any threads waiting for the * lwb to reach this state are signalled, and the "waiter" structures * are marked "done". */ static void zil_lwb_flush_vdevs_done(zio_t *zio) { lwb_t *lwb = zio->io_private; zilog_t *zilog = lwb->lwb_zilog; zil_commit_waiter_t *zcw; itx_t *itx; uint64_t txg; spa_config_exit(zilog->zl_spa, SCL_STATE, lwb); hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp; mutex_enter(&zilog->zl_lock); zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8; lwb->lwb_root_zio = NULL; ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE); lwb->lwb_state = LWB_STATE_FLUSH_DONE; if (zilog->zl_last_lwb_opened == lwb) { /* * Remember the highest committed log sequence number * for ztest. We only update this value when all the log * writes succeeded, because ztest wants to ASSERT that * it got the whole log chain. */ zilog->zl_commit_lr_seq = zilog->zl_lr_seq; } mutex_exit(&zilog->zl_lock); while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL) zil_itx_destroy(itx); while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) { mutex_enter(&zcw->zcw_lock); ASSERT3P(zcw->zcw_lwb, ==, lwb); zcw->zcw_lwb = NULL; /* * We expect any ZIO errors from child ZIOs to have been * propagated "up" to this specific LWB's root ZIO, in * order for this error handling to work correctly. This * includes ZIO errors from either this LWB's write or * flush, as well as any errors from other dependent LWBs * (e.g. a root LWB ZIO that might be a child of this LWB). * * With that said, it's important to note that LWB flush * errors are not propagated up to the LWB root ZIO. * This is incorrect behavior, and results in VDEV flush * errors not being handled correctly here. See the * comment above the call to "zio_flush" for details. */ zcw->zcw_zio_error = zio->io_error; ASSERT3B(zcw->zcw_done, ==, B_FALSE); zcw->zcw_done = B_TRUE; cv_broadcast(&zcw->zcw_cv); mutex_exit(&zcw->zcw_lock); } mutex_enter(&zilog->zl_lwb_io_lock); txg = lwb->lwb_issued_txg; ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0); zilog->zl_lwb_inflight[txg & TXG_MASK]--; if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0) cv_broadcast(&zilog->zl_lwb_io_cv); mutex_exit(&zilog->zl_lwb_io_lock); } /* * Wait for the completion of all issued write/flush of that txg provided. * It guarantees zil_lwb_flush_vdevs_done() is called and returned. */ static void zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg) { ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa)); mutex_enter(&zilog->zl_lwb_io_lock); while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0) cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock); mutex_exit(&zilog->zl_lwb_io_lock); #ifdef ZFS_DEBUG mutex_enter(&zilog->zl_lock); mutex_enter(&zilog->zl_lwb_io_lock); lwb_t *lwb = list_head(&zilog->zl_lwb_list); while (lwb != NULL && lwb->lwb_max_txg <= txg) { if (lwb->lwb_issued_txg <= txg) { ASSERT(lwb->lwb_state != LWB_STATE_ISSUED); ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE); IMPLY(lwb->lwb_issued_txg > 0, lwb->lwb_state == LWB_STATE_FLUSH_DONE); } IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE, lwb->lwb_buf == NULL); lwb = list_next(&zilog->zl_lwb_list, lwb); } mutex_exit(&zilog->zl_lwb_io_lock); mutex_exit(&zilog->zl_lock); #endif } /* * This is called when an lwb's write zio completes. The callback's * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved * in writing out this specific lwb's data, and in the case that cache * flushes have been deferred, vdevs involved in writing the data for * previous lwbs. The writes corresponding to all the vdevs in the * lwb_vdev_tree will have completed by the time this is called, due to * the zio dependencies configured in zil_lwb_set_zio_dependency(), * which takes deferred flushes into account. The lwb will be "done" * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio * completion callback for the lwb's root zio. */ static void zil_lwb_write_done(zio_t *zio) { lwb_t *lwb = zio->io_private; spa_t *spa = zio->io_spa; zilog_t *zilog = lwb->lwb_zilog; avl_tree_t *t = &lwb->lwb_vdev_tree; void *cookie = NULL; zil_vdev_node_t *zv; lwb_t *nlwb; ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0); ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF); ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG); ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER); ASSERT(!BP_IS_GANG(zio->io_bp)); ASSERT(!BP_IS_HOLE(zio->io_bp)); ASSERT(BP_GET_FILL(zio->io_bp) == 0); abd_free(zio->io_abd); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); lwb->lwb_buf = NULL; mutex_enter(&zilog->zl_lock); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED); lwb->lwb_state = LWB_STATE_WRITE_DONE; lwb->lwb_write_zio = NULL; lwb->lwb_fastwrite = FALSE; nlwb = list_next(&zilog->zl_lwb_list, lwb); mutex_exit(&zilog->zl_lock); if (avl_numnodes(t) == 0) return; /* * If there was an IO error, we're not going to call zio_flush() * on these vdevs, so we simply empty the tree and free the * nodes. We avoid calling zio_flush() since there isn't any * good reason for doing so, after the lwb block failed to be * written out. * * Additionally, we don't perform any further error handling at * this point (e.g. setting "zcw_zio_error" appropriately), as * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus, * we expect any error seen here, to have been propagated to * that function). */ if (zio->io_error != 0) { while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) kmem_free(zv, sizeof (*zv)); return; } /* * If this lwb does not have any threads waiting for it to * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE * command to the vdevs written to by "this" lwb, and instead * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE * command for those vdevs. Thus, we merge the vdev tree of * "this" lwb with the vdev tree of the "next" lwb in the list, * and assume the "next" lwb will handle flushing the vdevs (or * deferring the flush(s) again). * * This is a useful performance optimization, especially for * workloads with lots of async write activity and few sync * write and/or fsync activity, as it has the potential to * coalesce multiple flush commands to a vdev into one. */ if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) { zil_lwb_flush_defer(lwb, nlwb); ASSERT(avl_is_empty(&lwb->lwb_vdev_tree)); return; } while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) { vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev); if (vd != NULL && !vd->vdev_nowritecache) { /* * The "ZIO_FLAG_DONT_PROPAGATE" is currently * always used within "zio_flush". This means, * any errors when flushing the vdev(s), will * (unfortunately) not be handled correctly, * since these "zio_flush" errors will not be * propagated up to "zil_lwb_flush_vdevs_done". */ zio_flush(lwb->lwb_root_zio, vd); } kmem_free(zv, sizeof (*zv)); } } static void zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb) { lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zilog->zl_lock)); /* * The zilog's "zl_last_lwb_opened" field is used to build the * lwb/zio dependency chain, which is used to preserve the * ordering of lwb completions that is required by the semantics * of the ZIL. Each new lwb zio becomes a parent of the * "previous" lwb zio, such that the new lwb's zio cannot * complete until the "previous" lwb's zio completes. * * This is required by the semantics of zil_commit(); the commit * waiters attached to the lwbs will be woken in the lwb zio's * completion callback, so this zio dependency graph ensures the * waiters are woken in the correct order (the same order the * lwbs were created). */ if (last_lwb_opened != NULL && last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED || last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE); ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL); zio_add_child(lwb->lwb_root_zio, last_lwb_opened->lwb_root_zio); /* * If the previous lwb's write hasn't already completed, * we also want to order the completion of the lwb write * zios (above, we only order the completion of the lwb * root zios). This is required because of how we can * defer the DKIOCFLUSHWRITECACHE commands for each lwb. * * When the DKIOCFLUSHWRITECACHE commands are deferred, * the previous lwb will rely on this lwb to flush the * vdevs written to by that previous lwb. Thus, we need * to ensure this lwb doesn't issue the flush until * after the previous lwb's write completes. We ensure * this ordering by setting the zio parent/child * relationship here. * * Without this relationship on the lwb's write zio, * it's possible for this lwb's write to complete prior * to the previous lwb's write completing; and thus, the * vdevs for the previous lwb would be flushed prior to * that lwb's data being written to those vdevs (the * vdevs are flushed in the lwb write zio's completion * handler, zil_lwb_write_done()). */ if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) { ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED || last_lwb_opened->lwb_state == LWB_STATE_ISSUED); ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL); zio_add_child(lwb->lwb_write_zio, last_lwb_opened->lwb_write_zio); } } } /* * This function's purpose is to "open" an lwb such that it is ready to * accept new itxs being committed to it. To do this, the lwb's zio * structures are created, and linked to the lwb. This function is * idempotent; if the passed in lwb has already been opened, this * function is essentially a no-op. */ static void zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb) { zbookmark_phys_t zb; zio_priority_t prio; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED); EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED); if (lwb->lwb_root_zio != NULL) return; lwb->lwb_root_zio = zio_root(zilog->zl_spa, zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL); abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk)); if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk) prio = ZIO_PRIORITY_SYNC_WRITE; else prio = ZIO_PRIORITY_ASYNC_WRITE; SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET], ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]); /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */ mutex_enter(&zilog->zl_lock); if (!lwb->lwb_fastwrite) { metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk); lwb->lwb_fastwrite = 1; } lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb, prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb); lwb->lwb_state = LWB_STATE_OPENED; zil_lwb_set_zio_dependency(zilog, lwb); zilog->zl_last_lwb_opened = lwb; mutex_exit(&zilog->zl_lock); } /* * Define a limited set of intent log block sizes. * * These must be a multiple of 4KB. Note only the amount used (again * aligned to 4KB) actually gets written. However, we can't always just * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted. */ static const struct { uint64_t limit; uint64_t blksz; } zil_block_buckets[] = { { 4096, 4096 }, /* non TX_WRITE */ { 8192 + 4096, 8192 + 4096 }, /* database */ { 32768 + 4096, 32768 + 4096 }, /* NFS writes */ { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */ { 131072, 131072 }, /* < 128KB writes */ { 131072 +4096, 65536 + 4096 }, /* 128KB writes */ { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */ }; /* * Maximum block size used by the ZIL. This is picked up when the ZIL is * initialized. Otherwise this should not be used directly; see * zl_max_block_size instead. */ static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE; /* * Close the log block for being issued and allocate the next one. * Has to be called under zl_issuer_lock to chain more lwbs. */ static lwb_t * zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb) { lwb_t *nlwb = NULL; zil_chain_t *zilc; spa_t *spa = zilog->zl_spa; blkptr_t *bp; dmu_tx_t *tx; uint64_t txg; uint64_t zil_blksz; int i, error; boolean_t slog; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb->lwb_root_zio, !=, NULL); ASSERT3P(lwb->lwb_write_zio, !=, NULL); ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); /* * If this lwb includes indirect writes, we have to commit before * creating the transaction, otherwise we may end up in dead lock. */ if (lwb->lwb_indirect) { for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; itx = list_next(&lwb->lwb_itxs, itx)) zil_lwb_commit(zilog, lwb, itx); lwb->lwb_nused = lwb->lwb_nfilled; } /* * Allocate the next block and save its address in this block * before writing it in order to establish the log chain. */ tx = dmu_tx_create(zilog->zl_os); /* * Since we are not going to create any new dirty data, and we * can even help with clearing the existing dirty data, we * should not be subject to the dirty data based delays. We * use TXG_NOTHROTTLE to bypass the delay mechanism. */ VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); txg = dmu_tx_get_txg(tx); mutex_enter(&zilog->zl_lwb_io_lock); lwb->lwb_issued_txg = txg; zilog->zl_lwb_inflight[txg & TXG_MASK]++; zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg); mutex_exit(&zilog->zl_lwb_io_lock); /* * Log blocks are pre-allocated. Here we select the size of the next * block, based on size used in the last block. * - first find the smallest bucket that will fit the block from a * limited set of block sizes. This is because it's faster to write * blocks allocated from the same metaslab as they are adjacent or * close. * - next find the maximum from the new suggested size and an array of * previous sizes. This lessens a picket fence effect of wrongly * guessing the size if we have a stream of say 2k, 64k, 2k, 64k * requests. * * Note we only write what is used, but we can't just allocate * the maximum block size because we can exhaust the available * pool log space. */ zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t); for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++) continue; zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size); zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz; for (i = 0; i < ZIL_PREV_BLKS; i++) zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]); + DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, + uint64_t, zil_blksz, + uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]); zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1); if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) zilc = (zil_chain_t *)lwb->lwb_buf; else zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); bp = &zilc->zc_next_blk; BP_ZERO(bp); error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog); if (error == 0) { ASSERT3U(bp->blk_birth, ==, txg); bp->blk_cksum = lwb->lwb_blk.blk_cksum; bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++; /* * Allocate a new log write block (lwb). */ nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE); } lwb->lwb_state = LWB_STATE_ISSUED; dmu_tx_commit(tx); /* * If there was an allocation failure then nlwb will be null which * forces a txg_wait_synced(). */ return (nlwb); } /* * Finalize previously closed block and issue the write zio. * Does not require locking. */ static void zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb) { zil_chain_t *zilc; int wsz; /* Actually fill the lwb with the data if not yet. */ if (!lwb->lwb_indirect) { for (itx_t *itx = list_head(&lwb->lwb_itxs); itx; itx = list_next(&lwb->lwb_itxs, itx)) zil_lwb_commit(zilog, lwb, itx); lwb->lwb_nused = lwb->lwb_nfilled; } if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) { /* For Slim ZIL only write what is used. */ wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, int); ASSERT3S(wsz, <=, lwb->lwb_sz); zio_shrink(lwb->lwb_write_zio, wsz); wsz = lwb->lwb_write_zio->io_size; zilc = (zil_chain_t *)lwb->lwb_buf; } else { wsz = lwb->lwb_sz; zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz); } zilc->zc_pad = 0; zilc->zc_nused = lwb->lwb_nused; zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum; /* * clear unused data for security */ memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused); if (lwb->lwb_slog) { ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count); ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes, lwb->lwb_nused); + ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write, + wsz); + ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc, + BP_GET_LSIZE(&lwb->lwb_blk)); } else { ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count); ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes, lwb->lwb_nused); + ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write, + wsz); + ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc, + BP_GET_LSIZE(&lwb->lwb_blk)); } spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER); zil_lwb_add_block(lwb, &lwb->lwb_blk); lwb->lwb_issued_timestamp = gethrtime(); zio_nowait(lwb->lwb_root_zio); zio_nowait(lwb->lwb_write_zio); } /* * Maximum amount of data that can be put into single log block. */ uint64_t zil_max_log_data(zilog_t *zilog, size_t hdrsize) { return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize); } /* * Maximum amount of log space we agree to waste to reduce number of * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%). */ static inline uint64_t zil_max_waste_space(zilog_t *zilog) { return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 8); } /* * Maximum amount of write data for WR_COPIED. For correctness, consumers * must fall back to WR_NEED_COPY if we can't fit the entire record into one * maximum sized log block, because each WR_COPIED record must fit in a * single log block. For space efficiency, we want to fit two records into a * max-sized log block. */ uint64_t zil_max_copied_data(zilog_t *zilog) { return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 - sizeof (lr_write_t)); } /* * Estimate space needed in the lwb for the itx. Allocate more lwbs or * split the itx as needed, but don't touch the actual transaction data. * Has to be called under zl_issuer_lock to call zil_lwb_write_close() * to chain more lwbs. */ static lwb_t * zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs) { itx_t *citx; lr_t *lr, *clr; lr_write_t *lrw; uint64_t dlen, dnow, lwb_sp, reclen, max_log_data; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT3P(lwb, !=, NULL); ASSERT3P(lwb->lwb_buf, !=, NULL); zil_lwb_write_open(zilog, lwb); lr = &itx->itx_lr; lrw = (lr_write_t *)lr; /* * A commit itx doesn't represent any on-disk state; instead * it's simply used as a place holder on the commit list, and * provides a mechanism for attaching a "commit waiter" onto the * correct lwb (such that the waiter can be signalled upon * completion of that lwb). Thus, we don't process this itx's * log record if it's a commit itx (these itx's don't have log * records), and instead link the itx's waiter onto the lwb's * list of waiters. * * For more details, see the comment above zil_commit(). */ if (lr->lrc_txtype == TX_COMMIT) { mutex_enter(&zilog->zl_lock); zil_commit_waiter_link_lwb(itx->itx_private, lwb); itx->itx_private = NULL; mutex_exit(&zilog->zl_lock); list_insert_tail(&lwb->lwb_itxs, itx); return (lwb); } if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { dlen = P2ROUNDUP_TYPED( lrw->lr_length, sizeof (uint64_t), uint64_t); } else { dlen = 0; } reclen = lr->lrc_reclen; zilog->zl_cur_used += (reclen + dlen); cont: /* * If this record won't fit in the current log block, start a new one. * For WR_NEED_COPY optimize layout for minimal number of chunks. */ lwb_sp = lwb->lwb_sz - lwb->lwb_nused; max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t)); if (reclen > lwb_sp || (reclen + dlen > lwb_sp && lwb_sp < zil_max_waste_space(zilog) && (dlen % max_log_data == 0 || lwb_sp < reclen + dlen % max_log_data))) { list_insert_tail(ilwbs, lwb); lwb = zil_lwb_write_close(zilog, lwb); if (lwb == NULL) return (NULL); zil_lwb_write_open(zilog, lwb); lwb_sp = lwb->lwb_sz - lwb->lwb_nused; /* * There must be enough space in the new, empty log block to * hold reclen. For WR_COPIED, we need to fit the whole * record in one block, and reclen is the header size + the * data size. For WR_NEED_COPY, we can create multiple * records, splitting the data into multiple blocks, so we * only need to fit one word of data per block; in this case * reclen is just the header size (no data). */ ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp); } dnow = MIN(dlen, lwb_sp - reclen); if (dlen > dnow) { ASSERT3U(lr->lrc_txtype, ==, TX_WRITE); ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY); citx = zil_itx_clone(itx); clr = &citx->itx_lr; lr_write_t *clrw = (lr_write_t *)clr; clrw->lr_length = dnow; lrw->lr_offset += dnow; lrw->lr_length -= dnow; } else { citx = itx; clr = lr; } /* * We're actually making an entry, so update lrc_seq to be the * log record sequence number. Note that this is generally not * equal to the itx sequence number because not all transactions * are synchronous, and sometimes spa_sync() gets there first. */ clr->lrc_seq = ++zilog->zl_lr_seq; lwb->lwb_nused += reclen + dnow; ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz); ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t))); zil_lwb_add_txg(lwb, lr->lrc_txg); list_insert_tail(&lwb->lwb_itxs, citx); dlen -= dnow; if (dlen > 0) { zilog->zl_cur_used += reclen; goto cont; } /* * We have to really issue all queued LWBs before we may have to * wait for a txg sync. Otherwise we may end up in a dead lock. */ if (lr->lrc_txtype == TX_WRITE) { boolean_t frozen = lr->lrc_txg > spa_freeze_txg(zilog->zl_spa); if (frozen || itx->itx_wr_state == WR_INDIRECT) { lwb_t *tlwb; while ((tlwb = list_remove_head(ilwbs)) != NULL) zil_lwb_write_issue(zilog, tlwb); } if (itx->itx_wr_state == WR_INDIRECT) lwb->lwb_indirect = B_TRUE; if (frozen) txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); } return (lwb); } /* * Fill the actual transaction data into the lwb, following zil_lwb_assign(). * Does not require locking. */ static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx) { lr_t *lr, *lrb; lr_write_t *lrw, *lrwb; char *lr_buf; uint64_t dlen, reclen; lr = &itx->itx_lr; lrw = (lr_write_t *)lr; if (lr->lrc_txtype == TX_COMMIT) return; if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) { dlen = P2ROUNDUP_TYPED( lrw->lr_length, sizeof (uint64_t), uint64_t); } else { dlen = 0; } reclen = lr->lrc_reclen; ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled); lr_buf = lwb->lwb_buf + lwb->lwb_nfilled; memcpy(lr_buf, lr, reclen); lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */ lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */ ZIL_STAT_BUMP(zilog, zil_itx_count); /* * If it's a write, fetch the data or get its blkptr as appropriate. */ if (lr->lrc_txtype == TX_WRITE) { if (itx->itx_wr_state == WR_COPIED) { ZIL_STAT_BUMP(zilog, zil_itx_copied_count); ZIL_STAT_INCR(zilog, zil_itx_copied_bytes, lrw->lr_length); } else { char *dbuf; int error; if (itx->itx_wr_state == WR_NEED_COPY) { dbuf = lr_buf + reclen; lrb->lrc_reclen += dlen; ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count); ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes, dlen); } else { ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT); dbuf = NULL; ZIL_STAT_BUMP(zilog, zil_itx_indirect_count); ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes, lrw->lr_length); } /* * We pass in the "lwb_write_zio" rather than * "lwb_root_zio" so that the "lwb_write_zio" * becomes the parent of any zio's created by * the "zl_get_data" callback. The vdevs are * flushed after the "lwb_write_zio" completes, * so we want to make sure that completion * callback waits for these additional zio's, * such that the vdevs used by those zio's will * be included in the lwb's vdev tree, and those * vdevs will be properly flushed. If we passed * in "lwb_root_zio" here, then these additional * vdevs may not be flushed; e.g. if these zio's * completed after "lwb_write_zio" completed. */ error = zilog->zl_get_data(itx->itx_private, itx->itx_gen, lrwb, dbuf, lwb, lwb->lwb_write_zio); if (dbuf != NULL && error == 0) { /* Zero any padding bytes in the last block. */ memset((char *)dbuf + lrwb->lr_length, 0, dlen - lrwb->lr_length); } /* * Typically, the only return values we should see from * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or * EALREADY. However, it is also possible to see other * error values such as ENOSPC or EINVAL from * dmu_read() -> dnode_hold() -> dnode_hold_impl() or * ENXIO as well as a multitude of others from the * block layer through dmu_buf_hold() -> dbuf_read() * -> zio_wait(), as well as through dmu_read() -> * dnode_hold() -> dnode_hold_impl() -> dbuf_read() -> * zio_wait(). When these errors happen, we can assume * that neither an immediate write nor an indirect * write occurred, so we need to fall back to * txg_wait_synced(). This is unusual, so we print to * dmesg whenever one of these errors occurs. */ switch (error) { case 0: break; default: cmn_err(CE_WARN, "zil_lwb_commit() received " "unexpected error %d from ->zl_get_data()" ". Falling back to txg_wait_synced().", error); zfs_fallthrough; case EIO: if (lwb->lwb_indirect) { txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg); } else { lwb->lwb_write_zio->io_error = error; } zfs_fallthrough; case ENOENT: zfs_fallthrough; case EEXIST: zfs_fallthrough; case EALREADY: return; } } } lwb->lwb_nfilled += reclen + dlen; ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused); ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t))); } itx_t * zil_itx_create(uint64_t txtype, size_t olrsize) { size_t itxsize, lrsize; itx_t *itx; lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t); itxsize = offsetof(itx_t, itx_lr) + lrsize; itx = zio_data_buf_alloc(itxsize); itx->itx_lr.lrc_txtype = txtype; itx->itx_lr.lrc_reclen = lrsize; itx->itx_lr.lrc_seq = 0; /* defensive */ memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize); itx->itx_sync = B_TRUE; /* default is synchronous */ itx->itx_callback = NULL; itx->itx_callback_data = NULL; itx->itx_size = itxsize; return (itx); } static itx_t * zil_itx_clone(itx_t *oitx) { itx_t *itx = zio_data_buf_alloc(oitx->itx_size); memcpy(itx, oitx, oitx->itx_size); itx->itx_callback = NULL; itx->itx_callback_data = NULL; return (itx); } void zil_itx_destroy(itx_t *itx) { IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL); IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); if (itx->itx_callback != NULL) itx->itx_callback(itx->itx_callback_data); zio_data_buf_free(itx, itx->itx_size); } /* * Free up the sync and async itxs. The itxs_t has already been detached * so no locks are needed. */ static void zil_itxg_clean(void *arg) { itx_t *itx; list_t *list; avl_tree_t *t; void *cookie; itxs_t *itxs = arg; itx_async_node_t *ian; list = &itxs->i_sync_list; while ((itx = list_remove_head(list)) != NULL) { /* * In the general case, commit itxs will not be found * here, as they'll be committed to an lwb via * zil_lwb_assign(), and free'd in that function. Having * said that, it is still possible for commit itxs to be * found here, due to the following race: * * - a thread calls zil_commit() which assigns the * commit itx to a per-txg i_sync_list * - zil_itxg_clean() is called (e.g. via spa_sync()) * while the waiter is still on the i_sync_list * * There's nothing to prevent syncing the txg while the * waiter is on the i_sync_list. This normally doesn't * happen because spa_sync() is slower than zil_commit(), * but if zil_commit() calls txg_wait_synced() (e.g. * because zil_create() or zil_commit_writer_stall() is * called) we will hit this case. */ if (itx->itx_lr.lrc_txtype == TX_COMMIT) zil_commit_waiter_skip(itx->itx_private); zil_itx_destroy(itx); } cookie = NULL; t = &itxs->i_async_tree; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list = &ian->ia_list; while ((itx = list_remove_head(list)) != NULL) { /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(list); kmem_free(ian, sizeof (itx_async_node_t)); } avl_destroy(t); kmem_free(itxs, sizeof (itxs_t)); } static int zil_aitx_compare(const void *x1, const void *x2) { const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid; const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid; return (TREE_CMP(o1, o2)); } /* * Remove all async itx with the given oid. */ void zil_remove_async(zilog_t *zilog, uint64_t oid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; list_t clean_list; itx_t *itx; ASSERT(oid != 0); list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * Locate the object node and append its list. */ t = &itxg->itxg_itxs->i_async_tree; ian = avl_find(t, &oid, &where); if (ian != NULL) list_move_tail(&clean_list, &ian->ia_list); mutex_exit(&itxg->itxg_lock); } while ((itx = list_remove_head(&clean_list)) != NULL) { /* commit itxs should never be on the async lists. */ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } list_destroy(&clean_list); } void zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx) { uint64_t txg; itxg_t *itxg; itxs_t *itxs, *clean = NULL; /* * Ensure the data of a renamed file is committed before the rename. */ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME) zil_async_to_sync(zilog, itx->itx_oid); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) txg = ZILTEST_TXG; else txg = dmu_tx_get_txg(tx); itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); itxs = itxg->itxg_itxs; if (itxg->itxg_txg != txg) { if (itxs != NULL) { /* * The zil_clean callback hasn't got around to cleaning * this itxg. Save the itxs for release below. * This should be rare. */ zfs_dbgmsg("zil_itx_assign: missed itx cleanup for " "txg %llu", (u_longlong_t)itxg->itxg_txg); clean = itxg->itxg_itxs; } itxg->itxg_txg = txg; itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP); list_create(&itxs->i_sync_list, sizeof (itx_t), offsetof(itx_t, itx_node)); avl_create(&itxs->i_async_tree, zil_aitx_compare, sizeof (itx_async_node_t), offsetof(itx_async_node_t, ia_node)); } if (itx->itx_sync) { list_insert_tail(&itxs->i_sync_list, itx); } else { avl_tree_t *t = &itxs->i_async_tree; uint64_t foid = LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid); itx_async_node_t *ian; avl_index_t where; ian = avl_find(t, &foid, &where); if (ian == NULL) { ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP); list_create(&ian->ia_list, sizeof (itx_t), offsetof(itx_t, itx_node)); ian->ia_foid = foid; avl_insert(t, ian, where); } list_insert_tail(&ian->ia_list, itx); } itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx); /* * We don't want to dirty the ZIL using ZILTEST_TXG, because * zil_clean() will never be called using ZILTEST_TXG. Thus, we * need to be careful to always dirty the ZIL using the "real" * TXG (not itxg_txg) even when the SPA is frozen. */ zilog_dirty(zilog, dmu_tx_get_txg(tx)); mutex_exit(&itxg->itxg_lock); /* Release the old itxs now we've dropped the lock */ if (clean != NULL) zil_itxg_clean(clean); } /* * If there are any in-memory intent log transactions which have now been * synced then start up a taskq to free them. We should only do this after we * have written out the uberblocks (i.e. txg has been committed) so that * don't inadvertently clean out in-memory log records that would be required * by zil_commit(). */ void zil_clean(zilog_t *zilog, uint64_t synced_txg) { itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK]; itxs_t *clean_me; ASSERT3U(synced_txg, <, ZILTEST_TXG); mutex_enter(&itxg->itxg_lock); if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) { mutex_exit(&itxg->itxg_lock); return; } ASSERT3U(itxg->itxg_txg, <=, synced_txg); ASSERT3U(itxg->itxg_txg, !=, 0); clean_me = itxg->itxg_itxs; itxg->itxg_itxs = NULL; itxg->itxg_txg = 0; mutex_exit(&itxg->itxg_lock); /* * Preferably start a task queue to free up the old itxs but * if taskq_dispatch can't allocate resources to do that then * free it in-line. This should be rare. Note, using TQ_SLEEP * created a bad performance problem. */ ASSERT3P(zilog->zl_dmu_pool, !=, NULL); ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL); taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq, zil_itxg_clean, clean_me, TQ_NOSLEEP); if (id == TASKQID_INVALID) zil_itxg_clean(clean_me); } /* * This function will traverse the queue of itxs that need to be * committed, and move them onto the ZIL's zl_itx_commit_list. */ static void zil_get_commit_list(zilog_t *zilog) { uint64_t otxg, txg; list_t *commit_list = &zilog->zl_itx_commit_list; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. That's okay since we'll * only commit things in the future. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If we're adding itx records to the zl_itx_commit_list, * then the zil better be dirty in this "txg". We can assert * that here since we're holding the itxg_lock which will * prevent spa_sync from cleaning it. Once we add the itxs * to the zl_itx_commit_list we must commit it to disk even * if it's unnecessary (i.e. the txg was synced). */ ASSERT(zilog_is_dirty_in_txg(zilog, txg) || spa_freeze_txg(zilog->zl_spa) != UINT64_MAX); list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list); mutex_exit(&itxg->itxg_lock); } } /* * Move the async itxs for a specified object to commit into sync lists. */ void zil_async_to_sync(zilog_t *zilog, uint64_t foid) { uint64_t otxg, txg; itx_async_node_t *ian; avl_tree_t *t; avl_index_t where; if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */ otxg = ZILTEST_TXG; else otxg = spa_last_synced_txg(zilog->zl_spa) + 1; /* * This is inherently racy, since there is nothing to prevent * the last synced txg from changing. */ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) { itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK]; mutex_enter(&itxg->itxg_lock); if (itxg->itxg_txg != txg) { mutex_exit(&itxg->itxg_lock); continue; } /* * If a foid is specified then find that node and append its * list. Otherwise walk the tree appending all the lists * to the sync list. We add to the end rather than the * beginning to ensure the create has happened. */ t = &itxg->itxg_itxs->i_async_tree; if (foid != 0) { ian = avl_find(t, &foid, &where); if (ian != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); } } else { void *cookie = NULL; while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) { list_move_tail(&itxg->itxg_itxs->i_sync_list, &ian->ia_list); list_destroy(&ian->ia_list); kmem_free(ian, sizeof (itx_async_node_t)); } } mutex_exit(&itxg->itxg_lock); } } /* * This function will prune commit itxs that are at the head of the * commit list (it won't prune past the first non-commit itx), and * either: a) attach them to the last lwb that's still pending * completion, or b) skip them altogether. * * This is used as a performance optimization to prevent commit itxs * from generating new lwbs when it's unnecessary to do so. */ static void zil_prune_commit_list(zilog_t *zilog) { itx_t *itx; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) { lr_t *lrc = &itx->itx_lr; if (lrc->lrc_txtype != TX_COMMIT) break; mutex_enter(&zilog->zl_lock); lwb_t *last_lwb = zilog->zl_last_lwb_opened; if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) { /* * All of the itxs this waiter was waiting on * must have already completed (or there were * never any itx's for it to wait on), so it's * safe to skip this waiter and mark it done. */ zil_commit_waiter_skip(itx->itx_private); } else { zil_commit_waiter_link_lwb(itx->itx_private, last_lwb); itx->itx_private = NULL; } mutex_exit(&zilog->zl_lock); list_remove(&zilog->zl_itx_commit_list, itx); zil_itx_destroy(itx); } IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT); } static void zil_commit_writer_stall(zilog_t *zilog) { /* * When zio_alloc_zil() fails to allocate the next lwb block on * disk, we must call txg_wait_synced() to ensure all of the * lwbs in the zilog's zl_lwb_list are synced and then freed (in * zil_sync()), such that any subsequent ZIL writer (i.e. a call * to zil_process_commit_list()) will have to call zil_create(), * and start a new ZIL chain. * * Since zil_alloc_zil() failed, the lwb that was previously * issued does not have a pointer to the "next" lwb on disk. * Thus, if another ZIL writer thread was to allocate the "next" * on-disk lwb, that block could be leaked in the event of a * crash (because the previous lwb on-disk would not point to * it). * * We must hold the zilog's zl_issuer_lock while we do this, to * ensure no new threads enter zil_process_commit_list() until * all lwb's in the zl_lwb_list have been synced and freed * (which is achieved via the txg_wait_synced() call). */ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); txg_wait_synced(zilog->zl_dmu_pool, 0); ASSERT(list_is_empty(&zilog->zl_lwb_list)); } /* * This function will traverse the commit list, creating new lwbs as * needed, and committing the itxs from the commit list to these newly * created lwbs. Additionally, as a new lwb is created, the previous * lwb will be issued to the zio layer to be written to disk. */ static void zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs) { spa_t *spa = zilog->zl_spa; list_t nolwb_itxs; list_t nolwb_waiters; lwb_t *lwb, *plwb; itx_t *itx; boolean_t first = B_TRUE; ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock)); /* * Return if there's nothing to commit before we dirty the fs by * calling zil_create(). */ if (list_is_empty(&zilog->zl_itx_commit_list)) return; list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) { lwb = zil_create(zilog); } else { /* * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will * have already been created (zl_lwb_list not empty). */ zil_commit_activate_saxattr_feature(zilog); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); first = (lwb->lwb_state != LWB_STATE_OPENED) && ((plwb = list_prev(&zilog->zl_lwb_list, lwb)) == NULL || plwb->lwb_state == LWB_STATE_FLUSH_DONE); } while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) { lr_t *lrc = &itx->itx_lr; uint64_t txg = lrc->lrc_txg; ASSERT3U(txg, !=, 0); if (lrc->lrc_txtype == TX_COMMIT) { DTRACE_PROBE2(zil__process__commit__itx, zilog_t *, zilog, itx_t *, itx); } else { DTRACE_PROBE2(zil__process__normal__itx, zilog_t *, zilog, itx_t *, itx); } boolean_t synced = txg <= spa_last_synced_txg(spa); boolean_t frozen = txg > spa_freeze_txg(spa); /* * If the txg of this itx has already been synced out, then * we don't need to commit this itx to an lwb. This is * because the data of this itx will have already been * written to the main pool. This is inherently racy, and * it's still ok to commit an itx whose txg has already * been synced; this will result in a write that's * unnecessary, but will do no harm. * * With that said, we always want to commit TX_COMMIT itxs * to an lwb, regardless of whether or not that itx's txg * has been synced out. We do this to ensure any OPENED lwb * will always have at least one zil_commit_waiter_t linked * to the lwb. * * As a counter-example, if we skipped TX_COMMIT itx's * whose txg had already been synced, the following * situation could occur if we happened to be racing with * spa_sync: * * 1. We commit a non-TX_COMMIT itx to an lwb, where the * itx's txg is 10 and the last synced txg is 9. * 2. spa_sync finishes syncing out txg 10. * 3. We move to the next itx in the list, it's a TX_COMMIT * whose txg is 10, so we skip it rather than committing * it to the lwb used in (1). * * If the itx that is skipped in (3) is the last TX_COMMIT * itx in the commit list, than it's possible for the lwb * used in (1) to remain in the OPENED state indefinitely. * * To prevent the above scenario from occurring, ensuring * that once an lwb is OPENED it will transition to ISSUED * and eventually DONE, we always commit TX_COMMIT itx's to * an lwb here, even if that itx's txg has already been * synced. * * Finally, if the pool is frozen, we _always_ commit the * itx. The point of freezing the pool is to prevent data * from being written to the main pool via spa_sync, and * instead rely solely on the ZIL to persistently store the * data; i.e. when the pool is frozen, the last synced txg * value can't be trusted. */ if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) { if (lwb != NULL) { lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs); if (lwb == NULL) { list_insert_tail(&nolwb_itxs, itx); } else if ((zcw->zcw_lwb != NULL && zcw->zcw_lwb != lwb) || zcw->zcw_done) { /* * Our lwb is done, leave the rest of * itx list to somebody else who care. */ first = B_FALSE; break; } } else { if (lrc->lrc_txtype == TX_COMMIT) { zil_commit_waiter_link_nolwb( itx->itx_private, &nolwb_waiters); } list_insert_tail(&nolwb_itxs, itx); } } else { ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT); zil_itx_destroy(itx); } } if (lwb == NULL) { /* * This indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this happens, we must stall * the ZIL write pipeline; see the comment within * zil_commit_writer_stall() for more details. */ while ((lwb = list_remove_head(ilwbs)) != NULL) zil_lwb_write_issue(zilog, lwb); zil_commit_writer_stall(zilog); /* * Additionally, we have to signal and mark the "nolwb" * waiters as "done" here, since without an lwb, we * can't do this via zil_lwb_flush_vdevs_done() like * normal. */ zil_commit_waiter_t *zcw; while ((zcw = list_remove_head(&nolwb_waiters)) != NULL) zil_commit_waiter_skip(zcw); /* * And finally, we have to destroy the itx's that * couldn't be committed to an lwb; this will also call * the itx's callback if one exists for the itx. */ while ((itx = list_remove_head(&nolwb_itxs)) != NULL) zil_itx_destroy(itx); } else { ASSERT(list_is_empty(&nolwb_waiters)); ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE); /* * At this point, the ZIL block pointed at by the "lwb" * variable is in one of the following states: "closed" * or "open". * * If it's "closed", then no itxs have been committed to * it, so there's no point in issuing its zio (i.e. it's * "empty"). * * If it's "open", then it contains one or more itxs that * eventually need to be committed to stable storage. In * this case we intentionally do not issue the lwb's zio * to disk yet, and instead rely on one of the following * two mechanisms for issuing the zio: * * 1. Ideally, there will be more ZIL activity occurring * on the system, such that this function will be * immediately called again (not necessarily by the same * thread) and this lwb's zio will be issued via * zil_lwb_assign(). This way, the lwb is guaranteed to * be "full" when it is issued to disk, and we'll make * use of the lwb's size the best we can. * * 2. If there isn't sufficient ZIL activity occurring on * the system, such that this lwb's zio isn't issued via * zil_lwb_assign(), zil_commit_waiter() will issue the * lwb's zio. If this occurs, the lwb is not guaranteed * to be "full" by the time its zio is issued, and means * the size of the lwb was "too large" given the amount * of ZIL activity occurring on the system at that time. * * We do this for a couple of reasons: * * 1. To try and reduce the number of IOPs needed to * write the same number of itxs. If an lwb has space * available in its buffer for more itxs, and more itxs * will be committed relatively soon (relative to the * latency of performing a write), then it's beneficial * to wait for these "next" itxs. This way, more itxs * can be committed to stable storage with fewer writes. * * 2. To try and use the largest lwb block size that the * incoming rate of itxs can support. Again, this is to * try and pack as many itxs into as few lwbs as * possible, without significantly impacting the latency * of each individual itx. * * If we had no already running or open LWBs, it can be * the workload is single-threaded. And if the ZIL write * latency is very small or if the LWB is almost full, it * may be cheaper to bypass the delay. */ if (lwb->lwb_state == LWB_STATE_OPENED && first) { hrtime_t sleep = zilog->zl_last_lwb_latency * zfs_commit_timeout_pct / 100; if (sleep < zil_min_commit_timeout || lwb->lwb_sz - lwb->lwb_nused < lwb->lwb_sz / 8) { list_insert_tail(ilwbs, lwb); lwb = zil_lwb_write_close(zilog, lwb); zilog->zl_cur_used = 0; if (lwb == NULL) { while ((lwb = list_remove_head(ilwbs)) != NULL) zil_lwb_write_issue(zilog, lwb); zil_commit_writer_stall(zilog); } } } } } /* * This function is responsible for ensuring the passed in commit waiter * (and associated commit itx) is committed to an lwb. If the waiter is * not already committed to an lwb, all itxs in the zilog's queue of * itxs will be processed. The assumption is the passed in waiter's * commit itx will found in the queue just like the other non-commit * itxs, such that when the entire queue is processed, the waiter will * have been committed to an lwb. * * The lwb associated with the passed in waiter is not guaranteed to * have been issued by the time this function completes. If the lwb is * not issued, we rely on future calls to zil_commit_writer() to issue * the lwb, or the timeout mechanism found in zil_commit_waiter(). */ static void zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw) { list_t ilwbs; lwb_t *lwb; ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(spa_writeable(zilog->zl_spa)); list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node)); mutex_enter(&zilog->zl_issuer_lock); if (zcw->zcw_lwb != NULL || zcw->zcw_done) { /* * It's possible that, while we were waiting to acquire * the "zl_issuer_lock", another thread committed this * waiter to an lwb. If that occurs, we bail out early, * without processing any of the zilog's queue of itxs. * * On certain workloads and system configurations, the * "zl_issuer_lock" can become highly contended. In an * attempt to reduce this contention, we immediately drop * the lock if the waiter has already been processed. * * We've measured this optimization to reduce CPU spent * contending on this lock by up to 5%, using a system * with 32 CPUs, low latency storage (~50 usec writes), * and 1024 threads performing sync writes. */ goto out; } ZIL_STAT_BUMP(zilog, zil_commit_writer_count); zil_get_commit_list(zilog); zil_prune_commit_list(zilog); zil_process_commit_list(zilog, zcw, &ilwbs); out: mutex_exit(&zilog->zl_issuer_lock); while ((lwb = list_remove_head(&ilwbs)) != NULL) zil_lwb_write_issue(zilog, lwb); list_destroy(&ilwbs); } static void zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); ASSERT3B(zcw->zcw_done, ==, B_FALSE); lwb_t *lwb = zcw->zcw_lwb; ASSERT3P(lwb, !=, NULL); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED); /* * If the lwb has already been issued by another thread, we can * immediately return since there's no work to be done (the * point of this function is to issue the lwb). Additionally, we * do this prior to acquiring the zl_issuer_lock, to avoid * acquiring it when it's not necessary to do so. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) return; /* * In order to call zil_lwb_write_close() we must hold the * zilog's "zl_issuer_lock". We can't simply acquire that lock, * since we're already holding the commit waiter's "zcw_lock", * and those two locks are acquired in the opposite order * elsewhere. */ mutex_exit(&zcw->zcw_lock); mutex_enter(&zilog->zl_issuer_lock); mutex_enter(&zcw->zcw_lock); /* * Since we just dropped and re-acquired the commit waiter's * lock, we have to re-check to see if the waiter was marked * "done" during that process. If the waiter was marked "done", * the "lwb" pointer is no longer valid (it can be free'd after * the waiter is marked "done"), so without this check we could * wind up with a use-after-free error below. */ if (zcw->zcw_done) { lwb = NULL; goto out; } ASSERT3P(lwb, ==, zcw->zcw_lwb); /* * We've already checked this above, but since we hadn't acquired * the zilog's zl_issuer_lock, we have to perform this check a * second time while holding the lock. * * We don't need to hold the zl_lock since the lwb cannot transition * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb * _can_ transition from ISSUED to DONE, but it's OK to race with * that transition since we treat the lwb the same, whether it's in * the ISSUED or DONE states. * * The important thing, is we treat the lwb differently depending on * if it's ISSUED or OPENED, and block any other threads that might * attempt to issue this lwb. For that reason we hold the * zl_issuer_lock when checking the lwb_state; we must not call * zil_lwb_write_close() if the lwb had already been issued. * * See the comment above the lwb_state_t structure definition for * more details on the lwb states, and locking requirements. */ if (lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE) { lwb = NULL; goto out; } ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED); /* * As described in the comments above zil_commit_waiter() and * zil_process_commit_list(), we need to issue this lwb's zio * since we've reached the commit waiter's timeout and it still * hasn't been issued. */ lwb_t *nlwb = zil_lwb_write_close(zilog, lwb); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); /* * Since the lwb's zio hadn't been issued by the time this thread * reached its timeout, we reset the zilog's "zl_cur_used" field * to influence the zil block size selection algorithm. * * By having to issue the lwb's zio here, it means the size of the * lwb was too large, given the incoming throughput of itxs. By * setting "zl_cur_used" to zero, we communicate this fact to the * block size selection algorithm, so it can take this information * into account, and potentially select a smaller size for the * next lwb block that is allocated. */ zilog->zl_cur_used = 0; if (nlwb == NULL) { /* * When zil_lwb_write_close() returns NULL, this * indicates zio_alloc_zil() failed to allocate the * "next" lwb on-disk. When this occurs, the ZIL write * pipeline must be stalled; see the comment within the * zil_commit_writer_stall() function for more details. * * We must drop the commit waiter's lock prior to * calling zil_commit_writer_stall() or else we can wind * up with the following deadlock: * * - This thread is waiting for the txg to sync while * holding the waiter's lock; txg_wait_synced() is * used within txg_commit_writer_stall(). * * - The txg can't sync because it is waiting for this * lwb's zio callback to call dmu_tx_commit(). * * - The lwb's zio callback can't call dmu_tx_commit() * because it's blocked trying to acquire the waiter's * lock, which occurs prior to calling dmu_tx_commit() */ mutex_exit(&zcw->zcw_lock); zil_lwb_write_issue(zilog, lwb); lwb = NULL; zil_commit_writer_stall(zilog); mutex_enter(&zcw->zcw_lock); } out: mutex_exit(&zilog->zl_issuer_lock); if (lwb) zil_lwb_write_issue(zilog, lwb); ASSERT(MUTEX_HELD(&zcw->zcw_lock)); } /* * This function is responsible for performing the following two tasks: * * 1. its primary responsibility is to block until the given "commit * waiter" is considered "done". * * 2. its secondary responsibility is to issue the zio for the lwb that * the given "commit waiter" is waiting on, if this function has * waited "long enough" and the lwb is still in the "open" state. * * Given a sufficient amount of itxs being generated and written using * the ZIL, the lwb's zio will be issued via the zil_lwb_assign() * function. If this does not occur, this secondary responsibility will * ensure the lwb is issued even if there is not other synchronous * activity on the system. * * For more details, see zil_process_commit_list(); more specifically, * the comment at the bottom of that function. */ static void zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw) { ASSERT(!MUTEX_HELD(&zilog->zl_lock)); ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock)); ASSERT(spa_writeable(zilog->zl_spa)); mutex_enter(&zcw->zcw_lock); /* * The timeout is scaled based on the lwb latency to avoid * significantly impacting the latency of each individual itx. * For more details, see the comment at the bottom of the * zil_process_commit_list() function. */ int pct = MAX(zfs_commit_timeout_pct, 1); hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100; hrtime_t wakeup = gethrtime() + sleep; boolean_t timedout = B_FALSE; while (!zcw->zcw_done) { ASSERT(MUTEX_HELD(&zcw->zcw_lock)); lwb_t *lwb = zcw->zcw_lwb; /* * Usually, the waiter will have a non-NULL lwb field here, * but it's possible for it to be NULL as a result of * zil_commit() racing with spa_sync(). * * When zil_clean() is called, it's possible for the itxg * list (which may be cleaned via a taskq) to contain * commit itxs. When this occurs, the commit waiters linked * off of these commit itxs will not be committed to an * lwb. Additionally, these commit waiters will not be * marked done until zil_commit_waiter_skip() is called via * zil_itxg_clean(). * * Thus, it's possible for this commit waiter (i.e. the * "zcw" variable) to be found in this "in between" state; * where it's "zcw_lwb" field is NULL, and it hasn't yet * been skipped, so it's "zcw_done" field is still B_FALSE. */ IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED); if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) { ASSERT3B(timedout, ==, B_FALSE); /* * If the lwb hasn't been issued yet, then we * need to wait with a timeout, in case this * function needs to issue the lwb after the * timeout is reached; responsibility (2) from * the comment above this function. */ int rc = cv_timedwait_hires(&zcw->zcw_cv, &zcw->zcw_lock, wakeup, USEC2NSEC(1), CALLOUT_FLAG_ABSOLUTE); if (rc != -1 || zcw->zcw_done) continue; timedout = B_TRUE; zil_commit_waiter_timeout(zilog, zcw); if (!zcw->zcw_done) { /* * If the commit waiter has already been * marked "done", it's possible for the * waiter's lwb structure to have already * been freed. Thus, we can only reliably * make these assertions if the waiter * isn't done. */ ASSERT3P(lwb, ==, zcw->zcw_lwb); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED); } } else { /* * If the lwb isn't open, then it must have already * been issued. In that case, there's no need to * use a timeout when waiting for the lwb to * complete. * * Additionally, if the lwb is NULL, the waiter * will soon be signaled and marked done via * zil_clean() and zil_itxg_clean(), so no timeout * is required. */ IMPLY(lwb != NULL, lwb->lwb_state == LWB_STATE_ISSUED || lwb->lwb_state == LWB_STATE_WRITE_DONE || lwb->lwb_state == LWB_STATE_FLUSH_DONE); cv_wait(&zcw->zcw_cv, &zcw->zcw_lock); } } mutex_exit(&zcw->zcw_lock); } static zil_commit_waiter_t * zil_alloc_commit_waiter(void) { zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP); cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL); mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL); list_link_init(&zcw->zcw_node); zcw->zcw_lwb = NULL; zcw->zcw_done = B_FALSE; zcw->zcw_zio_error = 0; return (zcw); } static void zil_free_commit_waiter(zil_commit_waiter_t *zcw) { ASSERT(!list_link_active(&zcw->zcw_node)); ASSERT3P(zcw->zcw_lwb, ==, NULL); ASSERT3B(zcw->zcw_done, ==, B_TRUE); mutex_destroy(&zcw->zcw_lock); cv_destroy(&zcw->zcw_cv); kmem_cache_free(zil_zcw_cache, zcw); } /* * This function is used to create a TX_COMMIT itx and assign it. This * way, it will be linked into the ZIL's list of synchronous itxs, and * then later committed to an lwb (or skipped) when * zil_process_commit_list() is called. */ static void zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw) { dmu_tx_t *tx = dmu_tx_create(zilog->zl_os); /* * Since we are not going to create any new dirty data, and we * can even help with clearing the existing dirty data, we * should not be subject to the dirty data based delays. We * use TXG_NOTHROTTLE to bypass the delay mechanism. */ VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE)); itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t)); itx->itx_sync = B_TRUE; itx->itx_private = zcw; zil_itx_assign(zilog, itx, tx); dmu_tx_commit(tx); } /* * Commit ZFS Intent Log transactions (itxs) to stable storage. * * When writing ZIL transactions to the on-disk representation of the * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple * itxs can be committed to a single lwb. Once a lwb is written and * committed to stable storage (i.e. the lwb is written, and vdevs have * been flushed), each itx that was committed to that lwb is also * considered to be committed to stable storage. * * When an itx is committed to an lwb, the log record (lr_t) contained * by the itx is copied into the lwb's zio buffer, and once this buffer * is written to disk, it becomes an on-disk ZIL block. * * As itxs are generated, they're inserted into the ZIL's queue of * uncommitted itxs. The semantics of zil_commit() are such that it will * block until all itxs that were in the queue when it was called, are * committed to stable storage. * * If "foid" is zero, this means all "synchronous" and "asynchronous" * itxs, for all objects in the dataset, will be committed to stable * storage prior to zil_commit() returning. If "foid" is non-zero, all * "synchronous" itxs for all objects, but only "asynchronous" itxs * that correspond to the foid passed in, will be committed to stable * storage prior to zil_commit() returning. * * Generally speaking, when zil_commit() is called, the consumer doesn't * actually care about _all_ of the uncommitted itxs. Instead, they're * simply trying to waiting for a specific itx to be committed to disk, * but the interface(s) for interacting with the ZIL don't allow such * fine-grained communication. A better interface would allow a consumer * to create and assign an itx, and then pass a reference to this itx to * zil_commit(); such that zil_commit() would return as soon as that * specific itx was committed to disk (instead of waiting for _all_ * itxs to be committed). * * When a thread calls zil_commit() a special "commit itx" will be * generated, along with a corresponding "waiter" for this commit itx. * zil_commit() will wait on this waiter's CV, such that when the waiter * is marked done, and signaled, zil_commit() will return. * * This commit itx is inserted into the queue of uncommitted itxs. This * provides an easy mechanism for determining which itxs were in the * queue prior to zil_commit() having been called, and which itxs were * added after zil_commit() was called. * * The commit itx is special; it doesn't have any on-disk representation. * When a commit itx is "committed" to an lwb, the waiter associated * with it is linked onto the lwb's list of waiters. Then, when that lwb * completes, each waiter on the lwb's list is marked done and signaled * -- allowing the thread waiting on the waiter to return from zil_commit(). * * It's important to point out a few critical factors that allow us * to make use of the commit itxs, commit waiters, per-lwb lists of * commit waiters, and zio completion callbacks like we're doing: * * 1. The list of waiters for each lwb is traversed, and each commit * waiter is marked "done" and signaled, in the zio completion * callback of the lwb's zio[*]. * * * Actually, the waiters are signaled in the zio completion * callback of the root zio for the DKIOCFLUSHWRITECACHE commands * that are sent to the vdevs upon completion of the lwb zio. * * 2. When the itxs are inserted into the ZIL's queue of uncommitted * itxs, the order in which they are inserted is preserved[*]; as * itxs are added to the queue, they are added to the tail of * in-memory linked lists. * * When committing the itxs to lwbs (to be written to disk), they * are committed in the same order in which the itxs were added to * the uncommitted queue's linked list(s); i.e. the linked list of * itxs to commit is traversed from head to tail, and each itx is * committed to an lwb in that order. * * * To clarify: * * - the order of "sync" itxs is preserved w.r.t. other * "sync" itxs, regardless of the corresponding objects. * - the order of "async" itxs is preserved w.r.t. other * "async" itxs corresponding to the same object. * - the order of "async" itxs is *not* preserved w.r.t. other * "async" itxs corresponding to different objects. * - the order of "sync" itxs w.r.t. "async" itxs (or vice * versa) is *not* preserved, even for itxs that correspond * to the same object. * * For more details, see: zil_itx_assign(), zil_async_to_sync(), * zil_get_commit_list(), and zil_process_commit_list(). * * 3. The lwbs represent a linked list of blocks on disk. Thus, any * lwb cannot be considered committed to stable storage, until its * "previous" lwb is also committed to stable storage. This fact, * coupled with the fact described above, means that itxs are * committed in (roughly) the order in which they were generated. * This is essential because itxs are dependent on prior itxs. * Thus, we *must not* deem an itx as being committed to stable * storage, until *all* prior itxs have also been committed to * stable storage. * * To enforce this ordering of lwb zio's, while still leveraging as * much of the underlying storage performance as possible, we rely * on two fundamental concepts: * * 1. The creation and issuance of lwb zio's is protected by * the zilog's "zl_issuer_lock", which ensures only a single * thread is creating and/or issuing lwb's at a time * 2. The "previous" lwb is a child of the "current" lwb * (leveraging the zio parent-child dependency graph) * * By relying on this parent-child zio relationship, we can have * many lwb zio's concurrently issued to the underlying storage, * but the order in which they complete will be the same order in * which they were created. */ void zil_commit(zilog_t *zilog, uint64_t foid) { /* * We should never attempt to call zil_commit on a snapshot for * a couple of reasons: * * 1. A snapshot may never be modified, thus it cannot have any * in-flight itxs that would have modified the dataset. * * 2. By design, when zil_commit() is called, a commit itx will * be assigned to this zilog; as a result, the zilog will be * dirtied. We must not dirty the zilog of a snapshot; there's * checks in the code that enforce this invariant, and will * cause a panic if it's not upheld. */ ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE); if (zilog->zl_sync == ZFS_SYNC_DISABLED) return; if (!spa_writeable(zilog->zl_spa)) { /* * If the SPA is not writable, there should never be any * pending itxs waiting to be committed to disk. If that * weren't true, we'd skip writing those itxs out, and * would break the semantics of zil_commit(); thus, we're * verifying that truth before we return to the caller. */ ASSERT(list_is_empty(&zilog->zl_lwb_list)); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); for (int i = 0; i < TXG_SIZE; i++) ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL); return; } /* * If the ZIL is suspended, we don't want to dirty it by calling * zil_commit_itx_assign() below, nor can we write out * lwbs like would be done in zil_commit_write(). Thus, we * simply rely on txg_wait_synced() to maintain the necessary * semantics, and avoid calling those functions altogether. */ if (zilog->zl_suspend > 0) { txg_wait_synced(zilog->zl_dmu_pool, 0); return; } zil_commit_impl(zilog, foid); } void zil_commit_impl(zilog_t *zilog, uint64_t foid) { ZIL_STAT_BUMP(zilog, zil_commit_count); /* * Move the "async" itxs for the specified foid to the "sync" * queues, such that they will be later committed (or skipped) * to an lwb when zil_process_commit_list() is called. * * Since these "async" itxs must be committed prior to this * call to zil_commit returning, we must perform this operation * before we call zil_commit_itx_assign(). */ zil_async_to_sync(zilog, foid); /* * We allocate a new "waiter" structure which will initially be * linked to the commit itx using the itx's "itx_private" field. * Since the commit itx doesn't represent any on-disk state, * when it's committed to an lwb, rather than copying the its * lr_t into the lwb's buffer, the commit itx's "waiter" will be * added to the lwb's list of waiters. Then, when the lwb is * committed to stable storage, each waiter in the lwb's list of * waiters will be marked "done", and signalled. * * We must create the waiter and assign the commit itx prior to * calling zil_commit_writer(), or else our specific commit itx * is not guaranteed to be committed to an lwb prior to calling * zil_commit_waiter(). */ zil_commit_waiter_t *zcw = zil_alloc_commit_waiter(); zil_commit_itx_assign(zilog, zcw); zil_commit_writer(zilog, zcw); zil_commit_waiter(zilog, zcw); if (zcw->zcw_zio_error != 0) { /* * If there was an error writing out the ZIL blocks that * this thread is waiting on, then we fallback to * relying on spa_sync() to write out the data this * thread is waiting on. Obviously this has performance * implications, but the expectation is for this to be * an exceptional case, and shouldn't occur often. */ DTRACE_PROBE2(zil__commit__io__error, zilog_t *, zilog, zil_commit_waiter_t *, zcw); txg_wait_synced(zilog->zl_dmu_pool, 0); } zil_free_commit_waiter(zcw); } /* * Called in syncing context to free committed log blocks and update log header. */ void zil_sync(zilog_t *zilog, dmu_tx_t *tx) { zil_header_t *zh = zil_header_in_syncing_context(zilog); uint64_t txg = dmu_tx_get_txg(tx); spa_t *spa = zilog->zl_spa; uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK]; lwb_t *lwb; /* * We don't zero out zl_destroy_txg, so make sure we don't try * to destroy it twice. */ if (spa_sync_pass(spa) != 1) return; zil_lwb_flush_wait_all(zilog, txg); mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_stop_sync == 0); if (*replayed_seq != 0) { ASSERT(zh->zh_replay_seq < *replayed_seq); zh->zh_replay_seq = *replayed_seq; *replayed_seq = 0; } if (zilog->zl_destroy_txg == txg) { blkptr_t blk = zh->zh_log; dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os); ASSERT(list_is_empty(&zilog->zl_lwb_list)); memset(zh, 0, sizeof (zil_header_t)); memset(zilog->zl_replayed_seq, 0, sizeof (zilog->zl_replayed_seq)); if (zilog->zl_keep_first) { /* * If this block was part of log chain that couldn't * be claimed because a device was missing during * zil_claim(), but that device later returns, * then this block could erroneously appear valid. * To guard against this, assign a new GUID to the new * log chain so it doesn't matter what blk points to. */ zil_init_log_chain(zilog, &blk); zh->zh_log = blk; } else { /* * A destroyed ZIL chain can't contain any TX_SETSAXATTR * records. So, deactivate the feature for this dataset. * We activate it again when we start a new ZIL chain. */ if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) dsl_dataset_deactivate_feature(ds, SPA_FEATURE_ZILSAXATTR, tx); } } while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) { zh->zh_log = lwb->lwb_blk; if (lwb->lwb_state != LWB_STATE_FLUSH_DONE || lwb->lwb_max_txg > txg) break; list_remove(&zilog->zl_lwb_list, lwb); zio_free(spa, txg, &lwb->lwb_blk); zil_free_lwb(zilog, lwb); /* * If we don't have anything left in the lwb list then * we've had an allocation failure and we need to zero * out the zil_header blkptr so that we don't end * up freeing the same block twice. */ if (list_is_empty(&zilog->zl_lwb_list)) BP_ZERO(&zh->zh_log); } /* * Remove fastwrite on any blocks that have been pre-allocated for * the next commit. This prevents fastwrite counter pollution by * unused, long-lived LWBs. */ for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) { if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) { metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); lwb->lwb_fastwrite = 0; } } mutex_exit(&zilog->zl_lock); } static int zil_lwb_cons(void *vbuf, void *unused, int kmflag) { (void) unused, (void) kmflag; lwb_t *lwb = vbuf; list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node)); list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t), offsetof(zil_commit_waiter_t, zcw_node)); avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare, sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node)); mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } static void zil_lwb_dest(void *vbuf, void *unused) { (void) unused; lwb_t *lwb = vbuf; mutex_destroy(&lwb->lwb_vdev_lock); avl_destroy(&lwb->lwb_vdev_tree); list_destroy(&lwb->lwb_waiters); list_destroy(&lwb->lwb_itxs); } void zil_init(void) { zil_lwb_cache = kmem_cache_create("zil_lwb_cache", sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0); zil_zcw_cache = kmem_cache_create("zil_zcw_cache", sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0); zil_sums_init(&zil_sums_global); zil_kstats_global = kstat_create("zfs", 0, "zil", "misc", KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (zil_kstats_global != NULL) { zil_kstats_global->ks_data = &zil_stats; zil_kstats_global->ks_update = zil_kstats_global_update; zil_kstats_global->ks_private = NULL; kstat_install(zil_kstats_global); } } void zil_fini(void) { kmem_cache_destroy(zil_zcw_cache); kmem_cache_destroy(zil_lwb_cache); if (zil_kstats_global != NULL) { kstat_delete(zil_kstats_global); zil_kstats_global = NULL; } zil_sums_fini(&zil_sums_global); } void zil_set_sync(zilog_t *zilog, uint64_t sync) { zilog->zl_sync = sync; } void zil_set_logbias(zilog_t *zilog, uint64_t logbias) { zilog->zl_logbias = logbias; } zilog_t * zil_alloc(objset_t *os, zil_header_t *zh_phys) { zilog_t *zilog; zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP); zilog->zl_header = zh_phys; zilog->zl_os = os; zilog->zl_spa = dmu_objset_spa(os); zilog->zl_dmu_pool = dmu_objset_pool(os); zilog->zl_destroy_txg = TXG_INITIAL - 1; zilog->zl_logbias = dmu_objset_logbias(os); zilog->zl_sync = dmu_objset_syncprop(os); zilog->zl_dirty_max_txg = 0; zilog->zl_last_lwb_opened = NULL; zilog->zl_last_lwb_latency = 0; zilog->zl_max_block_size = zil_maxblocksize; mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL); for (int i = 0; i < TXG_SIZE; i++) { mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL, MUTEX_DEFAULT, NULL); } list_create(&zilog->zl_lwb_list, sizeof (lwb_t), offsetof(lwb_t, lwb_node)); list_create(&zilog->zl_itx_commit_list, sizeof (itx_t), offsetof(itx_t, itx_node)); cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL); cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL); return (zilog); } void zil_free(zilog_t *zilog) { int i; zilog->zl_stop_sync = 1; ASSERT0(zilog->zl_suspend); ASSERT0(zilog->zl_suspending); ASSERT(list_is_empty(&zilog->zl_lwb_list)); list_destroy(&zilog->zl_lwb_list); ASSERT(list_is_empty(&zilog->zl_itx_commit_list)); list_destroy(&zilog->zl_itx_commit_list); for (i = 0; i < TXG_SIZE; i++) { /* * It's possible for an itx to be generated that doesn't dirty * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean() * callback to remove the entry. We remove those here. * * Also free up the ziltest itxs. */ if (zilog->zl_itxg[i].itxg_itxs) zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs); mutex_destroy(&zilog->zl_itxg[i].itxg_lock); } mutex_destroy(&zilog->zl_issuer_lock); mutex_destroy(&zilog->zl_lock); mutex_destroy(&zilog->zl_lwb_io_lock); cv_destroy(&zilog->zl_cv_suspend); cv_destroy(&zilog->zl_lwb_io_cv); kmem_free(zilog, sizeof (zilog_t)); } /* * Open an intent log. */ zilog_t * zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums) { zilog_t *zilog = dmu_objset_zil(os); ASSERT3P(zilog->zl_get_data, ==, NULL); ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL); ASSERT(list_is_empty(&zilog->zl_lwb_list)); zilog->zl_get_data = get_data; zilog->zl_sums = zil_sums; return (zilog); } /* * Close an intent log. */ void zil_close(zilog_t *zilog) { lwb_t *lwb; uint64_t txg; if (!dmu_objset_is_snapshot(zilog->zl_os)) { zil_commit(zilog, 0); } else { ASSERT(list_is_empty(&zilog->zl_lwb_list)); ASSERT0(zilog->zl_dirty_max_txg); ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE); } mutex_enter(&zilog->zl_lock); lwb = list_tail(&zilog->zl_lwb_list); if (lwb == NULL) txg = zilog->zl_dirty_max_txg; else txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg); mutex_exit(&zilog->zl_lock); /* * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends * on the time when the dmu_tx transaction is assigned in * zil_lwb_write_close(). */ mutex_enter(&zilog->zl_lwb_io_lock); txg = MAX(zilog->zl_lwb_max_issued_txg, txg); mutex_exit(&zilog->zl_lwb_io_lock); /* * We need to use txg_wait_synced() to wait until that txg is synced. * zil_sync() will guarantee all lwbs up to that txg have been * written out, flushed, and cleaned. */ if (txg != 0) txg_wait_synced(zilog->zl_dmu_pool, txg); if (zilog_is_dirty(zilog)) zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog, (u_longlong_t)txg); if (txg < spa_freeze_txg(zilog->zl_spa)) VERIFY(!zilog_is_dirty(zilog)); zilog->zl_get_data = NULL; /* * We should have only one lwb left on the list; remove it now. */ mutex_enter(&zilog->zl_lock); lwb = list_remove_head(&zilog->zl_lwb_list); if (lwb != NULL) { ASSERT(list_is_empty(&zilog->zl_lwb_list)); ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED); if (lwb->lwb_fastwrite) metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk); zio_buf_free(lwb->lwb_buf, lwb->lwb_sz); zil_free_lwb(zilog, lwb); } mutex_exit(&zilog->zl_lock); } static const char *suspend_tag = "zil suspending"; /* * Suspend an intent log. While in suspended mode, we still honor * synchronous semantics, but we rely on txg_wait_synced() to do it. * On old version pools, we suspend the log briefly when taking a * snapshot so that it will have an empty intent log. * * Long holds are not really intended to be used the way we do here -- * held for such a short time. A concurrent caller of dsl_dataset_long_held() * could fail. Therefore we take pains to only put a long hold if it is * actually necessary. Fortunately, it will only be necessary if the * objset is currently mounted (or the ZVOL equivalent). In that case it * will already have a long hold, so we are not really making things any worse. * * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or * zvol_state_t), and use their mechanism to prevent their hold from being * dropped (e.g. VFS_HOLD()). However, that would be even more pain for * very little gain. * * if cookiep == NULL, this does both the suspend & resume. * Otherwise, it returns with the dataset "long held", and the cookie * should be passed into zil_resume(). */ int zil_suspend(const char *osname, void **cookiep) { objset_t *os; zilog_t *zilog; const zil_header_t *zh; int error; error = dmu_objset_hold(osname, suspend_tag, &os); if (error != 0) return (error); zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); zh = zilog->zl_header; if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */ mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (SET_ERROR(EBUSY)); } /* * Don't put a long hold in the cases where we can avoid it. This * is when there is no cookie so we are doing a suspend & resume * (i.e. called from zil_vdev_offline()), and there's nothing to do * for the suspend because it's already suspended, or there's no ZIL. */ if (cookiep == NULL && !zilog->zl_suspending && (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) { mutex_exit(&zilog->zl_lock); dmu_objset_rele(os, suspend_tag); return (0); } dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag); dsl_pool_rele(dmu_objset_pool(os), suspend_tag); zilog->zl_suspend++; if (zilog->zl_suspend > 1) { /* * Someone else is already suspending it. * Just wait for them to finish. */ while (zilog->zl_suspending) cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock); mutex_exit(&zilog->zl_lock); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } /* * If there is no pointer to an on-disk block, this ZIL must not * be active (e.g. filesystem not mounted), so there's nothing * to clean up. */ if (BP_IS_HOLE(&zh->zh_log)) { ASSERT(cookiep != NULL); /* fast path already handled */ *cookiep = os; mutex_exit(&zilog->zl_lock); return (0); } /* * The ZIL has work to do. Ensure that the associated encryption * key will remain mapped while we are committing the log by * grabbing a reference to it. If the key isn't loaded we have no * choice but to return an error until the wrapping key is loaded. */ if (os->os_encrypted && dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) { zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); return (SET_ERROR(EACCES)); } zilog->zl_suspending = B_TRUE; mutex_exit(&zilog->zl_lock); /* * We need to use zil_commit_impl to ensure we wait for all * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed * to disk before proceeding. If we used zil_commit instead, it * would just call txg_wait_synced(), because zl_suspend is set. * txg_wait_synced() doesn't wait for these lwb's to be * LWB_STATE_FLUSH_DONE before returning. */ zil_commit_impl(zilog, 0); /* * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we * use txg_wait_synced() to ensure the data from the zilog has * migrated to the main pool before calling zil_destroy(). */ txg_wait_synced(zilog->zl_dmu_pool, 0); zil_destroy(zilog, B_FALSE); mutex_enter(&zilog->zl_lock); zilog->zl_suspending = B_FALSE; cv_broadcast(&zilog->zl_cv_suspend); mutex_exit(&zilog->zl_lock); if (os->os_encrypted) dsl_dataset_remove_key_mapping(dmu_objset_ds(os)); if (cookiep == NULL) zil_resume(os); else *cookiep = os; return (0); } void zil_resume(void *cookie) { objset_t *os = cookie; zilog_t *zilog = dmu_objset_zil(os); mutex_enter(&zilog->zl_lock); ASSERT(zilog->zl_suspend != 0); zilog->zl_suspend--; mutex_exit(&zilog->zl_lock); dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag); dsl_dataset_rele(dmu_objset_ds(os), suspend_tag); } typedef struct zil_replay_arg { zil_replay_func_t *const *zr_replay; void *zr_arg; boolean_t zr_byteswap; char *zr_lr; } zil_replay_arg_t; static int zil_replay_error(zilog_t *zilog, const lr_t *lr, int error) { char name[ZFS_MAX_DATASET_NAME_LEN]; zilog->zl_replaying_seq--; /* didn't actually replay this one */ dmu_objset_name(zilog->zl_os, name); cmn_err(CE_WARN, "ZFS replay transaction error %d, " "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)(lr->lrc_txtype & ~TX_CI), (lr->lrc_txtype & TX_CI) ? "CI" : ""); return (error); } static int zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra, uint64_t claim_txg) { zil_replay_arg_t *zr = zra; const zil_header_t *zh = zilog->zl_header; uint64_t reclen = lr->lrc_reclen; uint64_t txtype = lr->lrc_txtype; int error = 0; zilog->zl_replaying_seq = lr->lrc_seq; if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */ return (0); if (lr->lrc_txg < claim_txg) /* already committed */ return (0); /* Strip case-insensitive bit, still present in log record */ txtype &= ~TX_CI; if (txtype == 0 || txtype >= TX_MAX_TYPE) return (zil_replay_error(zilog, lr, EINVAL)); /* * If this record type can be logged out of order, the object * (lr_foid) may no longer exist. That's legitimate, not an error. */ if (TX_OOO(txtype)) { error = dmu_object_info(zilog->zl_os, LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL); if (error == ENOENT || error == EEXIST) return (0); } /* * Make a copy of the data so we can revise and extend it. */ memcpy(zr->zr_lr, lr, reclen); /* * If this is a TX_WRITE with a blkptr, suck in the data. */ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) { error = zil_read_log_data(zilog, (lr_write_t *)lr, zr->zr_lr + reclen); if (error != 0) return (zil_replay_error(zilog, lr, error)); } /* * The log block containing this lr may have been byteswapped * so that we can easily examine common fields like lrc_txtype. * However, the log is a mix of different record types, and only the * replay vectors know how to byteswap their records. Therefore, if * the lr was byteswapped, undo it before invoking the replay vector. */ if (zr->zr_byteswap) byteswap_uint64_array(zr->zr_lr, reclen); /* * We must now do two things atomically: replay this log record, * and update the log header sequence number to reflect the fact that * we did so. At the end of each replay function the sequence number * is updated if we are in replay mode. */ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap); if (error != 0) { /* * The DMU's dnode layer doesn't see removes until the txg * commits, so a subsequent claim can spuriously fail with * EEXIST. So if we receive any error we try syncing out * any removes then retry the transaction. Note that we * specify B_FALSE for byteswap now, so we don't do it twice. */ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0); error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE); if (error != 0) return (zil_replay_error(zilog, lr, error)); } return (0); } static int zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg) { (void) bp, (void) arg, (void) claim_txg; zilog->zl_replay_blks++; return (0); } /* * If this dataset has a non-empty intent log, replay it and destroy it. * Return B_TRUE if there were any entries to replay. */ boolean_t zil_replay(objset_t *os, void *arg, zil_replay_func_t *const replay_func[TX_MAX_TYPE]) { zilog_t *zilog = dmu_objset_zil(os); const zil_header_t *zh = zilog->zl_header; zil_replay_arg_t zr; if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) { return (zil_destroy(zilog, B_TRUE)); } zr.zr_replay = replay_func; zr.zr_arg = arg; zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log); zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP); /* * Wait for in-progress removes to sync before starting replay. */ txg_wait_synced(zilog->zl_dmu_pool, 0); zilog->zl_replay = B_TRUE; zilog->zl_replay_time = ddi_get_lbolt(); ASSERT(zilog->zl_replay_blks == 0); (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr, zh->zh_claim_txg, B_TRUE); vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE); zil_destroy(zilog, B_FALSE); txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg); zilog->zl_replay = B_FALSE; return (B_TRUE); } boolean_t zil_replaying(zilog_t *zilog, dmu_tx_t *tx) { if (zilog->zl_sync == ZFS_SYNC_DISABLED) return (B_TRUE); if (zilog->zl_replay) { dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx); zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] = zilog->zl_replaying_seq; return (B_TRUE); } return (B_FALSE); } int zil_reset(const char *osname, void *arg) { (void) arg; int error = zil_suspend(osname, NULL); /* EACCES means crypto key not loaded */ if ((error == EACCES) || (error == EBUSY)) return (SET_ERROR(error)); if (error != 0) return (SET_ERROR(EEXIST)); return (0); } EXPORT_SYMBOL(zil_alloc); EXPORT_SYMBOL(zil_free); EXPORT_SYMBOL(zil_open); EXPORT_SYMBOL(zil_close); EXPORT_SYMBOL(zil_replay); EXPORT_SYMBOL(zil_replaying); EXPORT_SYMBOL(zil_destroy); EXPORT_SYMBOL(zil_destroy_sync); EXPORT_SYMBOL(zil_itx_create); EXPORT_SYMBOL(zil_itx_destroy); EXPORT_SYMBOL(zil_itx_assign); EXPORT_SYMBOL(zil_commit); EXPORT_SYMBOL(zil_claim); EXPORT_SYMBOL(zil_check_log_chain); EXPORT_SYMBOL(zil_sync); EXPORT_SYMBOL(zil_clean); EXPORT_SYMBOL(zil_suspend); EXPORT_SYMBOL(zil_resume); EXPORT_SYMBOL(zil_lwb_add_block); EXPORT_SYMBOL(zil_bp_tree_add); EXPORT_SYMBOL(zil_set_sync); EXPORT_SYMBOL(zil_set_logbias); EXPORT_SYMBOL(zil_sums_init); EXPORT_SYMBOL(zil_sums_fini); EXPORT_SYMBOL(zil_kstat_values_update); ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW, "ZIL block open timeout percentage"); ZFS_MODULE_PARAM(zfs_zil, zil_, min_commit_timeout, U64, ZMOD_RW, "Minimum delay we care for ZIL block commit"); ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW, "Disable intent logging replay"); ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW, "Disable ZIL cache flushes"); ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW, "Limit in bytes slog sync writes per commit"); ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW, "Limit in bytes of ZIL log block size"); diff --git a/tests/zfs-tests/tests/functional/cli_user/misc/zilstat_001_pos.ksh b/tests/zfs-tests/tests/functional/cli_user/misc/zilstat_001_pos.ksh index 9bf6a94cfc84..9deee67a56ca 100755 --- a/tests/zfs-tests/tests/functional/cli_user/misc/zilstat_001_pos.ksh +++ b/tests/zfs-tests/tests/functional/cli_user/misc/zilstat_001_pos.ksh @@ -1,37 +1,37 @@ #!/bin/ksh -p # # CDDL HEADER START # # The contents of this file are subject to the terms of the # Common Development and Distribution License (the "License"). # You may not use this file except in compliance with the License. # # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE # or https://opensource.org/licenses/CDDL-1.0. # See the License for the specific language governing permissions # and limitations under the License. # # When distributing Covered Code, include this CDDL HEADER in each # file and include the License file at usr/src/OPENSOLARIS.LICENSE. # If applicable, add the following below this CDDL HEADER, with the # fields enclosed by brackets "[]" replaced with your own identifying # information: Portions Copyright [yyyy] [name of copyright owner] # # CDDL HEADER END # . $STF_SUITE/include/libtest.shlib is_freebsd && ! python3 -c 'import sysctl' 2>/dev/null && log_unsupported "python3 sysctl module missing" set -A args "" "-s \",\"" "-v" \ - "-f time,zcwc,zimnb,zimsb" + "-f time,cwc,imnb,imsb" log_assert "zilstat generates output and doesn't return an error code" typeset -i i=0 while [[ $i -lt ${#args[*]} ]]; do log_must eval "zilstat ${args[i]} > /dev/null" ((i = i + 1)) done log_pass "zilstat generates output and doesn't return an error code"