diff --git a/sys/netinet/ip_mroute.c b/sys/netinet/ip_mroute.c index 15abe168e5c2..ac5e1c5f09c6 100644 --- a/sys/netinet/ip_mroute.c +++ b/sys/netinet/ip_mroute.c @@ -1,2896 +1,2891 @@ /*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1989 Stephen Deering * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This code is derived from software contributed to Berkeley by * Stephen Deering of Stanford University. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ip_mroute.c 8.2 (Berkeley) 11/15/93 */ /* * IP multicast forwarding procedures * * Written by David Waitzman, BBN Labs, August 1988. * Modified by Steve Deering, Stanford, February 1989. * Modified by Mark J. Steiglitz, Stanford, May, 1991 * Modified by Van Jacobson, LBL, January 1993 * Modified by Ajit Thyagarajan, PARC, August 1993 * Modified by Bill Fenner, PARC, April 1995 * Modified by Ahmed Helmy, SGI, June 1996 * Modified by George Edmond Eddy (Rusty), ISI, February 1998 * Modified by Pavlin Radoslavov, USC/ISI, May 1998, August 1999, October 2000 * Modified by Hitoshi Asaeda, WIDE, August 2000 * Modified by Pavlin Radoslavov, ICSI, October 2002 * Modified by Wojciech Macek, Semihalf, May 2021 * * MROUTING Revision: 3.5 * and PIM-SMv2 and PIM-DM support, advanced API support, * bandwidth metering and signaling */ /* * TODO: Prefix functions with ipmf_. * TODO: Maintain a refcount on if_allmulti() in ifnet or in the protocol * domain attachment (if_afdata) so we can track consumers of that service. * TODO: Deprecate routing socket path for SIOCGETSGCNT and SIOCGETVIFCNT, * move it to socket options. * TODO: Cleanup LSRR removal further. * TODO: Push RSVP stubs into raw_ip.c. * TODO: Use bitstring.h for vif set. * TODO: Fix mrt6_ioctl dangling ref when dynamically loaded. * TODO: Sync ip6_mroute.c with this file. */ #include __FBSDID("$FreeBSD$"); #include "opt_inet.h" #include "opt_mrouting.h" #define _PIM_VT 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef KTR_IPMF #define KTR_IPMF KTR_INET #endif #define VIFI_INVALID ((vifi_t) -1) static MALLOC_DEFINE(M_MRTABLE, "mroutetbl", "multicast forwarding cache"); /* * Locking. We use two locks: one for the virtual interface table and * one for the forwarding table. These locks may be nested in which case * the VIF lock must always be taken first. Note that each lock is used * to cover not only the specific data structure but also related data * structures. */ static struct rwlock mrouter_lock; #define MRW_RLOCK() rw_rlock(&mrouter_lock) #define MRW_WLOCK() rw_wlock(&mrouter_lock) #define MRW_RUNLOCK() rw_runlock(&mrouter_lock) #define MRW_WUNLOCK() rw_wunlock(&mrouter_lock) #define MRW_UNLOCK() rw_unlock(&mrouter_lock) #define MRW_LOCK_ASSERT() rw_assert(&mrouter_lock, RA_LOCKED) #define MRW_WLOCK_ASSERT() rw_assert(&mrouter_lock, RA_WLOCKED) #define MRW_LOCK_TRY_UPGRADE() rw_try_upgrade(&mrouter_lock) #define MRW_WOWNED() rw_wowned(&mrouter_lock) #define MRW_LOCK_INIT() \ rw_init(&mrouter_lock, "IPv4 multicast forwarding") #define MRW_LOCK_DESTROY() rw_destroy(&mrouter_lock) static int ip_mrouter_cnt; /* # of vnets with active mrouters */ static int ip_mrouter_unloading; /* Allow no more V_ip_mrouter sockets */ VNET_PCPUSTAT_DEFINE_STATIC(struct mrtstat, mrtstat); VNET_PCPUSTAT_SYSINIT(mrtstat); VNET_PCPUSTAT_SYSUNINIT(mrtstat); SYSCTL_VNET_PCPUSTAT(_net_inet_ip, OID_AUTO, mrtstat, struct mrtstat, mrtstat, "IPv4 Multicast Forwarding Statistics (struct mrtstat, " "netinet/ip_mroute.h)"); VNET_DEFINE_STATIC(u_long, mfchash); #define V_mfchash VNET(mfchash) #define MFCHASH(a, g) \ ((((a).s_addr >> 20) ^ ((a).s_addr >> 10) ^ (a).s_addr ^ \ ((g).s_addr >> 20) ^ ((g).s_addr >> 10) ^ (g).s_addr) & V_mfchash) #define MFCHASHSIZE 256 static u_long mfchashsize; /* Hash size */ VNET_DEFINE_STATIC(u_char *, nexpire); /* 0..mfchashsize-1 */ #define V_nexpire VNET(nexpire) VNET_DEFINE_STATIC(LIST_HEAD(mfchashhdr, mfc)*, mfchashtbl); #define V_mfchashtbl VNET(mfchashtbl) VNET_DEFINE_STATIC(struct taskqueue *, task_queue); #define V_task_queue VNET(task_queue) VNET_DEFINE_STATIC(struct task, task); #define V_task VNET(task) VNET_DEFINE_STATIC(vifi_t, numvifs); #define V_numvifs VNET(numvifs) VNET_DEFINE_STATIC(struct vif *, viftable); #define V_viftable VNET(viftable) static eventhandler_tag if_detach_event_tag = NULL; VNET_DEFINE_STATIC(struct callout, expire_upcalls_ch); #define V_expire_upcalls_ch VNET(expire_upcalls_ch) VNET_DEFINE_STATIC(struct mtx, buf_ring_mtx); #define V_buf_ring_mtx VNET(buf_ring_mtx) #define EXPIRE_TIMEOUT (hz / 4) /* 4x / second */ #define UPCALL_EXPIRE 6 /* number of timeouts */ /* * Bandwidth meter variables and constants */ static MALLOC_DEFINE(M_BWMETER, "bwmeter", "multicast upcall bw meters"); /* * Pending upcalls are stored in a ring which is flushed when * full, or periodically */ VNET_DEFINE_STATIC(struct callout, bw_upcalls_ch); #define V_bw_upcalls_ch VNET(bw_upcalls_ch) VNET_DEFINE_STATIC(struct buf_ring *, bw_upcalls_ring); #define V_bw_upcalls_ring VNET(bw_upcalls_ring) VNET_DEFINE_STATIC(struct mtx, bw_upcalls_ring_mtx); #define V_bw_upcalls_ring_mtx VNET(bw_upcalls_ring_mtx) #define BW_UPCALLS_PERIOD (hz) /* periodical flush of bw upcalls */ VNET_PCPUSTAT_DEFINE_STATIC(struct pimstat, pimstat); VNET_PCPUSTAT_SYSINIT(pimstat); VNET_PCPUSTAT_SYSUNINIT(pimstat); SYSCTL_NODE(_net_inet, IPPROTO_PIM, pim, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, "PIM"); SYSCTL_VNET_PCPUSTAT(_net_inet_pim, PIMCTL_STATS, stats, struct pimstat, pimstat, "PIM Statistics (struct pimstat, netinet/pim_var.h)"); static u_long pim_squelch_wholepkt = 0; SYSCTL_ULONG(_net_inet_pim, OID_AUTO, squelch_wholepkt, CTLFLAG_RW, &pim_squelch_wholepkt, 0, "Disable IGMP_WHOLEPKT notifications if rendezvous point is unspecified"); static const struct encaptab *pim_encap_cookie; static int pim_encapcheck(const struct mbuf *, int, int, void *); static int pim_input(struct mbuf *, int, int, void *); extern int in_mcast_loop; static const struct encap_config ipv4_encap_cfg = { .proto = IPPROTO_PIM, .min_length = sizeof(struct ip) + PIM_MINLEN, .exact_match = 8, .check = pim_encapcheck, .input = pim_input }; /* * Note: the PIM Register encapsulation adds the following in front of a * data packet: * * struct pim_encap_hdr { * struct ip ip; * struct pim_encap_pimhdr pim; * } * */ struct pim_encap_pimhdr { struct pim pim; uint32_t flags; }; #define PIM_ENCAP_TTL 64 static struct ip pim_encap_iphdr = { #if BYTE_ORDER == LITTLE_ENDIAN sizeof(struct ip) >> 2, IPVERSION, #else IPVERSION, sizeof(struct ip) >> 2, #endif 0, /* tos */ sizeof(struct ip), /* total length */ 0, /* id */ 0, /* frag offset */ PIM_ENCAP_TTL, IPPROTO_PIM, 0, /* checksum */ }; static struct pim_encap_pimhdr pim_encap_pimhdr = { { PIM_MAKE_VT(PIM_VERSION, PIM_REGISTER), /* PIM vers and message type */ 0, /* reserved */ 0, /* checksum */ }, 0 /* flags */ }; VNET_DEFINE_STATIC(vifi_t, reg_vif_num) = VIFI_INVALID; #define V_reg_vif_num VNET(reg_vif_num) VNET_DEFINE_STATIC(struct ifnet *, multicast_register_if); #define V_multicast_register_if VNET(multicast_register_if) /* * Private variables. */ static u_long X_ip_mcast_src(int); static int X_ip_mforward(struct ip *, struct ifnet *, struct mbuf *, struct ip_moptions *); static int X_ip_mrouter_done(void); static int X_ip_mrouter_get(struct socket *, struct sockopt *); static int X_ip_mrouter_set(struct socket *, struct sockopt *); static int X_legal_vif_num(int); static int X_mrt_ioctl(u_long, caddr_t, int); static int add_bw_upcall(struct bw_upcall *); static int add_mfc(struct mfcctl2 *); static int add_vif(struct vifctl *); static void bw_meter_prepare_upcall(struct bw_meter *, struct timeval *); static void bw_meter_geq_receive_packet(struct bw_meter *, int, struct timeval *); static void bw_upcalls_send(void); static int del_bw_upcall(struct bw_upcall *); static int del_mfc(struct mfcctl2 *); static int del_vif(vifi_t); static int del_vif_locked(vifi_t, struct ifnet **); static void expire_bw_upcalls_send(void *); static void expire_mfc(struct mfc *); static void expire_upcalls(void *); static void free_bw_list(struct bw_meter *); static int get_sg_cnt(struct sioc_sg_req *); static int get_vif_cnt(struct sioc_vif_req *); static void if_detached_event(void *, struct ifnet *); static int ip_mdq(struct mbuf *, struct ifnet *, struct mfc *, vifi_t); static int ip_mrouter_init(struct socket *, int); static __inline struct mfc * mfc_find(struct in_addr *, struct in_addr *); static void phyint_send(struct ip *, struct vif *, struct mbuf *); static struct mbuf * pim_register_prepare(struct ip *, struct mbuf *); static int pim_register_send(struct ip *, struct vif *, struct mbuf *, struct mfc *); static int pim_register_send_rp(struct ip *, struct vif *, struct mbuf *, struct mfc *); static int pim_register_send_upcall(struct ip *, struct vif *, struct mbuf *, struct mfc *); static void send_packet(struct vif *, struct mbuf *); static int set_api_config(uint32_t *); static int set_assert(int); static int socket_send(struct socket *, struct mbuf *, struct sockaddr_in *); /* * Kernel multicast forwarding API capabilities and setup. * If more API capabilities are added to the kernel, they should be * recorded in `mrt_api_support'. */ #define MRT_API_VERSION 0x0305 static const int mrt_api_version = MRT_API_VERSION; static const uint32_t mrt_api_support = (MRT_MFC_FLAGS_DISABLE_WRONGVIF | MRT_MFC_FLAGS_BORDER_VIF | MRT_MFC_RP | MRT_MFC_BW_UPCALL); VNET_DEFINE_STATIC(uint32_t, mrt_api_config); #define V_mrt_api_config VNET(mrt_api_config) VNET_DEFINE_STATIC(int, pim_assert_enabled); #define V_pim_assert_enabled VNET(pim_assert_enabled) static struct timeval pim_assert_interval = { 3, 0 }; /* Rate limit */ /* * Find a route for a given origin IP address and multicast group address. * Statistics must be updated by the caller. */ static __inline struct mfc * mfc_find(struct in_addr *o, struct in_addr *g) { struct mfc *rt; /* * Might be called both RLOCK and WLOCK. * Check if any, it's caller responsibility * to choose correct option. */ MRW_LOCK_ASSERT(); LIST_FOREACH(rt, &V_mfchashtbl[MFCHASH(*o, *g)], mfc_hash) { if (in_hosteq(rt->mfc_origin, *o) && in_hosteq(rt->mfc_mcastgrp, *g) && buf_ring_empty(rt->mfc_stall_ring)) break; } return (rt); } static __inline struct mfc * mfc_alloc(void) { struct mfc *rt; rt = malloc(sizeof(*rt), M_MRTABLE, M_NOWAIT | M_ZERO); if (rt == NULL) return rt; rt->mfc_stall_ring = buf_ring_alloc(MAX_UPQ, M_MRTABLE, M_NOWAIT, &V_buf_ring_mtx); if (rt->mfc_stall_ring == NULL) { free(rt, M_MRTABLE); return NULL; } return rt; } /* * Handle MRT setsockopt commands to modify the multicast forwarding tables. */ static int X_ip_mrouter_set(struct socket *so, struct sockopt *sopt) { int error, optval; vifi_t vifi; struct vifctl vifc; struct mfcctl2 mfc; struct bw_upcall bw_upcall; uint32_t i; if (so != V_ip_mrouter && sopt->sopt_name != MRT_INIT) return EPERM; error = 0; switch (sopt->sopt_name) { case MRT_INIT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; error = ip_mrouter_init(so, optval); break; case MRT_DONE: error = ip_mrouter_done(); break; case MRT_ADD_VIF: error = sooptcopyin(sopt, &vifc, sizeof vifc, sizeof vifc); if (error) break; error = add_vif(&vifc); break; case MRT_DEL_VIF: error = sooptcopyin(sopt, &vifi, sizeof vifi, sizeof vifi); if (error) break; error = del_vif(vifi); break; case MRT_ADD_MFC: case MRT_DEL_MFC: /* * select data size depending on API version. */ if (sopt->sopt_name == MRT_ADD_MFC && V_mrt_api_config & MRT_API_FLAGS_ALL) { error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl2), sizeof(struct mfcctl2)); } else { error = sooptcopyin(sopt, &mfc, sizeof(struct mfcctl), sizeof(struct mfcctl)); bzero((caddr_t)&mfc + sizeof(struct mfcctl), sizeof(mfc) - sizeof(struct mfcctl)); } if (error) break; if (sopt->sopt_name == MRT_ADD_MFC) error = add_mfc(&mfc); else error = del_mfc(&mfc); break; case MRT_ASSERT: error = sooptcopyin(sopt, &optval, sizeof optval, sizeof optval); if (error) break; set_assert(optval); break; case MRT_API_CONFIG: error = sooptcopyin(sopt, &i, sizeof i, sizeof i); if (!error) error = set_api_config(&i); if (!error) error = sooptcopyout(sopt, &i, sizeof i); break; case MRT_ADD_BW_UPCALL: case MRT_DEL_BW_UPCALL: error = sooptcopyin(sopt, &bw_upcall, sizeof bw_upcall, sizeof bw_upcall); if (error) break; if (sopt->sopt_name == MRT_ADD_BW_UPCALL) error = add_bw_upcall(&bw_upcall); else error = del_bw_upcall(&bw_upcall); break; default: error = EOPNOTSUPP; break; } return error; } /* * Handle MRT getsockopt commands */ static int X_ip_mrouter_get(struct socket *so, struct sockopt *sopt) { int error; switch (sopt->sopt_name) { case MRT_VERSION: error = sooptcopyout(sopt, &mrt_api_version, sizeof mrt_api_version); break; case MRT_ASSERT: error = sooptcopyout(sopt, &V_pim_assert_enabled, sizeof V_pim_assert_enabled); break; case MRT_API_SUPPORT: error = sooptcopyout(sopt, &mrt_api_support, sizeof mrt_api_support); break; case MRT_API_CONFIG: error = sooptcopyout(sopt, &V_mrt_api_config, sizeof V_mrt_api_config); break; default: error = EOPNOTSUPP; break; } return error; } /* * Handle ioctl commands to obtain information from the cache */ static int X_mrt_ioctl(u_long cmd, caddr_t data, int fibnum __unused) { int error; /* * Currently the only function calling this ioctl routine is rtioctl_fib(). * Typically, only root can create the raw socket in order to execute * this ioctl method, however the request might be coming from a prison */ error = priv_check(curthread, PRIV_NETINET_MROUTE); if (error) return (error); switch (cmd) { case (SIOCGETVIFCNT): error = get_vif_cnt((struct sioc_vif_req *)data); break; case (SIOCGETSGCNT): error = get_sg_cnt((struct sioc_sg_req *)data); break; default: error = EINVAL; break; } return error; } /* * returns the packet, byte, rpf-failure count for the source group provided */ static int get_sg_cnt(struct sioc_sg_req *req) { struct mfc *rt; MRW_RLOCK(); rt = mfc_find(&req->src, &req->grp); if (rt == NULL) { MRW_RUNLOCK(); req->pktcnt = req->bytecnt = req->wrong_if = 0xffffffff; return EADDRNOTAVAIL; } req->pktcnt = rt->mfc_pkt_cnt; req->bytecnt = rt->mfc_byte_cnt; req->wrong_if = rt->mfc_wrong_if; MRW_RUNLOCK(); return 0; } /* * returns the input and output packet and byte counts on the vif provided */ static int get_vif_cnt(struct sioc_vif_req *req) { vifi_t vifi = req->vifi; MRW_RLOCK(); if (vifi >= V_numvifs) { MRW_RUNLOCK(); return EINVAL; } mtx_lock_spin(&V_viftable[vifi].v_spin); req->icount = V_viftable[vifi].v_pkt_in; req->ocount = V_viftable[vifi].v_pkt_out; req->ibytes = V_viftable[vifi].v_bytes_in; req->obytes = V_viftable[vifi].v_bytes_out; mtx_unlock_spin(&V_viftable[vifi].v_spin); MRW_RUNLOCK(); return 0; } static void if_detached_event(void *arg __unused, struct ifnet *ifp) { vifi_t vifi; u_long i, vifi_cnt = 0; struct ifnet *free_ptr; MRW_WLOCK(); if (V_ip_mrouter == NULL) { MRW_WUNLOCK(); return; } /* * Tear down multicast forwarder state associated with this ifnet. * 1. Walk the vif list, matching vifs against this ifnet. * 2. Walk the multicast forwarding cache (mfc) looking for * inner matches with this vif's index. * 3. Expire any matching multicast forwarding cache entries. * 4. Free vif state. This should disable ALLMULTI on the interface. */ for (vifi = 0; vifi < V_numvifs; vifi++) { if (V_viftable[vifi].v_ifp != ifp) continue; for (i = 0; i < mfchashsize; i++) { struct mfc *rt, *nrt; LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { if (rt->mfc_parent == vifi) { expire_mfc(rt); } } } del_vif_locked(vifi, &free_ptr); if (free_ptr != NULL) vifi_cnt++; } MRW_WUNLOCK(); /* * Free IFP. We don't have to use free_ptr here as it is the same * that ifp. Perform free as many times as required in case * refcount is greater than 1. */ for (i = 0; i < vifi_cnt; i++) if_free(ifp); } static void ip_mrouter_upcall_thread(void *arg, int pending __unused) { CURVNET_SET((struct vnet *) arg); MRW_WLOCK(); bw_upcalls_send(); MRW_WUNLOCK(); CURVNET_RESTORE(); } /* * Enable multicast forwarding. */ static int ip_mrouter_init(struct socket *so, int version) { CTR2(KTR_IPMF, "%s: so %p", __func__, so); if (version != 1) return ENOPROTOOPT; MRW_WLOCK(); if (ip_mrouter_unloading) { MRW_WUNLOCK(); return ENOPROTOOPT; } if (V_ip_mrouter != NULL) { MRW_WUNLOCK(); return EADDRINUSE; } V_mfchashtbl = hashinit_flags(mfchashsize, M_MRTABLE, &V_mfchash, HASH_NOWAIT); /* Create upcall ring */ mtx_init(&V_bw_upcalls_ring_mtx, "mroute upcall buf_ring mtx", NULL, MTX_DEF); V_bw_upcalls_ring = buf_ring_alloc(BW_UPCALLS_MAX, M_MRTABLE, M_NOWAIT, &V_bw_upcalls_ring_mtx); if (!V_bw_upcalls_ring) { MRW_WUNLOCK(); return (ENOMEM); } TASK_INIT(&V_task, 0, ip_mrouter_upcall_thread, curvnet); taskqueue_cancel(V_task_queue, &V_task, NULL); taskqueue_unblock(V_task_queue); callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, curvnet); callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, curvnet); V_ip_mrouter = so; atomic_add_int(&ip_mrouter_cnt, 1); /* This is a mutex required by buf_ring init, but not used internally */ mtx_init(&V_buf_ring_mtx, "mroute buf_ring mtx", NULL, MTX_DEF); MRW_WUNLOCK(); CTR1(KTR_IPMF, "%s: done", __func__); return 0; } /* * Disable multicast forwarding. */ static int X_ip_mrouter_done(void) { struct ifnet **ifps; int nifp; u_long i; vifi_t vifi; struct bw_upcall *bu; if (V_ip_mrouter == NULL) return (EINVAL); /* * Detach/disable hooks to the reset of the system. */ V_ip_mrouter = NULL; atomic_subtract_int(&ip_mrouter_cnt, 1); V_mrt_api_config = 0; /* * Wait for all epoch sections to complete to ensure * V_ip_mrouter = NULL is visible to others. */ epoch_wait_preempt(net_epoch_preempt); /* Stop and drain task queue */ taskqueue_block(V_task_queue); while (taskqueue_cancel(V_task_queue, &V_task, NULL)) { taskqueue_drain(V_task_queue, &V_task); } ifps = malloc(MAXVIFS * sizeof(*ifps), M_TEMP, M_WAITOK); MRW_WLOCK(); taskqueue_cancel(V_task_queue, &V_task, NULL); /* Destroy upcall ring */ while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { free(bu, M_MRTABLE); } buf_ring_free(V_bw_upcalls_ring, M_MRTABLE); mtx_destroy(&V_bw_upcalls_ring_mtx); /* * For each phyint in use, prepare to disable promiscuous reception * of all IP multicasts. Defer the actual call until the lock is released; * just record the list of interfaces while locked. Some interfaces use * sx locks in their ioctl routines, which is not allowed while holding * a non-sleepable lock. */ KASSERT(V_numvifs <= MAXVIFS, ("More vifs than possible")); for (vifi = 0, nifp = 0; vifi < V_numvifs; vifi++) { if (!in_nullhost(V_viftable[vifi].v_lcl_addr) && !(V_viftable[vifi].v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) { ifps[nifp++] = V_viftable[vifi].v_ifp; } } bzero((caddr_t)V_viftable, sizeof(*V_viftable) * MAXVIFS); V_numvifs = 0; V_pim_assert_enabled = 0; callout_stop(&V_expire_upcalls_ch); callout_stop(&V_bw_upcalls_ch); /* * Free all multicast forwarding cache entries. * Do not use hashdestroy(), as we must perform other cleanup. */ for (i = 0; i < mfchashsize; i++) { struct mfc *rt, *nrt; LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { expire_mfc(rt); } } free(V_mfchashtbl, M_MRTABLE); V_mfchashtbl = NULL; bzero(V_nexpire, sizeof(V_nexpire[0]) * mfchashsize); V_reg_vif_num = VIFI_INVALID; mtx_destroy(&V_buf_ring_mtx); MRW_WUNLOCK(); /* * Now drop our claim on promiscuous multicast on the interfaces recorded * above. This is safe to do now because ALLMULTI is reference counted. */ for (vifi = 0; vifi < nifp; vifi++) if_allmulti(ifps[vifi], 0); free(ifps, M_TEMP); CTR1(KTR_IPMF, "%s: done", __func__); return 0; } /* * Set PIM assert processing global */ static int set_assert(int i) { if ((i != 1) && (i != 0)) return EINVAL; V_pim_assert_enabled = i; return 0; } /* * Configure API capabilities */ int set_api_config(uint32_t *apival) { u_long i; /* * We can set the API capabilities only if it is the first operation * after MRT_INIT. I.e.: * - there are no vifs installed * - pim_assert is not enabled * - the MFC table is empty */ if (V_numvifs > 0) { *apival = 0; return EPERM; } if (V_pim_assert_enabled) { *apival = 0; return EPERM; } MRW_RLOCK(); for (i = 0; i < mfchashsize; i++) { if (LIST_FIRST(&V_mfchashtbl[i]) != NULL) { MRW_RUNLOCK(); *apival = 0; return EPERM; } } MRW_RUNLOCK(); V_mrt_api_config = *apival & mrt_api_support; *apival = V_mrt_api_config; return 0; } /* * Add a vif to the vif table */ static int add_vif(struct vifctl *vifcp) { struct vif *vifp = V_viftable + vifcp->vifc_vifi; struct sockaddr_in sin = {sizeof sin, AF_INET}; struct ifaddr *ifa; struct ifnet *ifp; int error; if (vifcp->vifc_vifi >= MAXVIFS) return EINVAL; /* rate limiting is no longer supported by this code */ if (vifcp->vifc_rate_limit != 0) { log(LOG_ERR, "rate limiting is no longer supported\n"); return EINVAL; } if (in_nullhost(vifcp->vifc_lcl_addr)) return EADDRNOTAVAIL; /* Find the interface with an address in AF_INET family */ if (vifcp->vifc_flags & VIFF_REGISTER) { /* * XXX: Because VIFF_REGISTER does not really need a valid * local interface (e.g. it could be 127.0.0.2), we don't * check its address. */ ifp = NULL; } else { struct epoch_tracker et; sin.sin_addr = vifcp->vifc_lcl_addr; NET_EPOCH_ENTER(et); ifa = ifa_ifwithaddr((struct sockaddr *)&sin); if (ifa == NULL) { NET_EPOCH_EXIT(et); return EADDRNOTAVAIL; } ifp = ifa->ifa_ifp; /* XXX FIXME we need to take a ref on ifp and cleanup properly! */ NET_EPOCH_EXIT(et); } if ((vifcp->vifc_flags & VIFF_TUNNEL) != 0) { CTR1(KTR_IPMF, "%s: tunnels are no longer supported", __func__); return EOPNOTSUPP; } else if (vifcp->vifc_flags & VIFF_REGISTER) { ifp = V_multicast_register_if = if_alloc(IFT_LOOP); CTR2(KTR_IPMF, "%s: add register vif for ifp %p", __func__, ifp); if (V_reg_vif_num == VIFI_INVALID) { if_initname(V_multicast_register_if, "register_vif", 0); V_reg_vif_num = vifcp->vifc_vifi; } } else { /* Make sure the interface supports multicast */ if ((ifp->if_flags & IFF_MULTICAST) == 0) return EOPNOTSUPP; /* Enable promiscuous reception of all IP multicasts from the if */ error = if_allmulti(ifp, 1); if (error) return error; } MRW_WLOCK(); if (!in_nullhost(vifp->v_lcl_addr)) { if (ifp) V_multicast_register_if = NULL; MRW_WUNLOCK(); if (ifp) if_free(ifp); return EADDRINUSE; } vifp->v_flags = vifcp->vifc_flags; vifp->v_threshold = vifcp->vifc_threshold; vifp->v_lcl_addr = vifcp->vifc_lcl_addr; vifp->v_rmt_addr = vifcp->vifc_rmt_addr; vifp->v_ifp = ifp; /* initialize per vif pkt counters */ vifp->v_pkt_in = 0; vifp->v_pkt_out = 0; vifp->v_bytes_in = 0; vifp->v_bytes_out = 0; sprintf(vifp->v_spin_name, "BM[%d] spin", vifcp->vifc_vifi); mtx_init(&vifp->v_spin, vifp->v_spin_name, NULL, MTX_SPIN); /* Adjust numvifs up if the vifi is higher than numvifs */ if (V_numvifs <= vifcp->vifc_vifi) V_numvifs = vifcp->vifc_vifi + 1; MRW_WUNLOCK(); CTR4(KTR_IPMF, "%s: add vif %d laddr 0x%08x thresh %x", __func__, (int)vifcp->vifc_vifi, ntohl(vifcp->vifc_lcl_addr.s_addr), (int)vifcp->vifc_threshold); return 0; } /* * Delete a vif from the vif table */ static int del_vif_locked(vifi_t vifi, struct ifnet **ifp_free) { struct vif *vifp; *ifp_free = NULL; MRW_WLOCK_ASSERT(); if (vifi >= V_numvifs) { return EINVAL; } vifp = &V_viftable[vifi]; if (in_nullhost(vifp->v_lcl_addr)) { return EADDRNOTAVAIL; } if (!(vifp->v_flags & (VIFF_TUNNEL | VIFF_REGISTER))) if_allmulti(vifp->v_ifp, 0); if (vifp->v_flags & VIFF_REGISTER) { V_reg_vif_num = VIFI_INVALID; if (vifp->v_ifp) { if (vifp->v_ifp == V_multicast_register_if) V_multicast_register_if = NULL; *ifp_free = vifp->v_ifp; } } mtx_destroy(&vifp->v_spin); bzero((caddr_t)vifp, sizeof (*vifp)); CTR2(KTR_IPMF, "%s: delete vif %d", __func__, (int)vifi); /* Adjust numvifs down */ for (vifi = V_numvifs; vifi > 0; vifi--) if (!in_nullhost(V_viftable[vifi-1].v_lcl_addr)) break; V_numvifs = vifi; return 0; } static int del_vif(vifi_t vifi) { int cc; struct ifnet *free_ptr; MRW_WLOCK(); cc = del_vif_locked(vifi, &free_ptr); MRW_WUNLOCK(); if (free_ptr) if_free(free_ptr); return cc; } /* * update an mfc entry without resetting counters and S,G addresses. */ static void update_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) { int i; rt->mfc_parent = mfccp->mfcc_parent; for (i = 0; i < V_numvifs; i++) { rt->mfc_ttls[i] = mfccp->mfcc_ttls[i]; rt->mfc_flags[i] = mfccp->mfcc_flags[i] & V_mrt_api_config & MRT_MFC_FLAGS_ALL; } /* set the RP address */ if (V_mrt_api_config & MRT_MFC_RP) rt->mfc_rp = mfccp->mfcc_rp; else rt->mfc_rp.s_addr = INADDR_ANY; } /* * fully initialize an mfc entry from the parameter. */ static void init_mfc_params(struct mfc *rt, struct mfcctl2 *mfccp) { rt->mfc_origin = mfccp->mfcc_origin; rt->mfc_mcastgrp = mfccp->mfcc_mcastgrp; update_mfc_params(rt, mfccp); /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; timevalclear(&rt->mfc_last_assert); } static void expire_mfc(struct mfc *rt) { struct rtdetq *rte; MRW_WLOCK_ASSERT(); free_bw_list(rt->mfc_bw_meter_leq); free_bw_list(rt->mfc_bw_meter_geq); while (!buf_ring_empty(rt->mfc_stall_ring)) { rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); if (rte) { m_freem(rte->m); free(rte, M_MRTABLE); } } buf_ring_free(rt->mfc_stall_ring, M_MRTABLE); LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); } /* * Add an mfc entry */ static int add_mfc(struct mfcctl2 *mfccp) { struct mfc *rt; struct rtdetq *rte; u_long hash = 0; u_short nstl; struct epoch_tracker et; MRW_WLOCK(); rt = mfc_find(&mfccp->mfcc_origin, &mfccp->mfcc_mcastgrp); /* If an entry already exists, just update the fields */ if (rt) { CTR4(KTR_IPMF, "%s: update mfc orig 0x%08x group %lx parent %x", __func__, ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent); update_mfc_params(rt, mfccp); MRW_WUNLOCK(); return (0); } /* * Find the entry for which the upcall was made and update */ nstl = 0; hash = MFCHASH(mfccp->mfcc_origin, mfccp->mfcc_mcastgrp); NET_EPOCH_ENTER(et); LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp) && !buf_ring_empty(rt->mfc_stall_ring)) { CTR5(KTR_IPMF, "%s: add mfc orig 0x%08x group %lx parent %x qh %p", __func__, ntohl(mfccp->mfcc_origin.s_addr), (u_long)ntohl(mfccp->mfcc_mcastgrp.s_addr), mfccp->mfcc_parent, rt->mfc_stall_ring); if (nstl++) CTR1(KTR_IPMF, "%s: multiple matches", __func__); init_mfc_params(rt, mfccp); rt->mfc_expire = 0; /* Don't clean this guy up */ V_nexpire[hash]--; /* Free queued packets, but attempt to forward them first. */ while (!buf_ring_empty(rt->mfc_stall_ring)) { rte = buf_ring_dequeue_mc(rt->mfc_stall_ring); if (rte->ifp != NULL) ip_mdq(rte->m, rte->ifp, rt, -1); m_freem(rte->m); free(rte, M_MRTABLE); } } } NET_EPOCH_EXIT(et); /* * It is possible that an entry is being inserted without an upcall */ if (nstl == 0) { CTR1(KTR_IPMF, "%s: adding mfc w/o upcall", __func__); LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { if (in_hosteq(rt->mfc_origin, mfccp->mfcc_origin) && in_hosteq(rt->mfc_mcastgrp, mfccp->mfcc_mcastgrp)) { init_mfc_params(rt, mfccp); if (rt->mfc_expire) V_nexpire[hash]--; rt->mfc_expire = 0; break; /* XXX */ } } if (rt == NULL) { /* no upcall, so make a new entry */ rt = mfc_alloc(); if (rt == NULL) { MRW_WUNLOCK(); return (ENOBUFS); } init_mfc_params(rt, mfccp); rt->mfc_expire = 0; rt->mfc_bw_meter_leq = NULL; rt->mfc_bw_meter_geq = NULL; /* insert new entry at head of hash chain */ LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); } } MRW_WUNLOCK(); return (0); } /* * Delete an mfc entry */ static int del_mfc(struct mfcctl2 *mfccp) { struct in_addr origin; struct in_addr mcastgrp; struct mfc *rt; origin = mfccp->mfcc_origin; mcastgrp = mfccp->mfcc_mcastgrp; CTR3(KTR_IPMF, "%s: delete mfc orig 0x%08x group %lx", __func__, ntohl(origin.s_addr), (u_long)ntohl(mcastgrp.s_addr)); MRW_WLOCK(); rt = mfc_find(&origin, &mcastgrp); if (rt == NULL) { MRW_WUNLOCK(); return EADDRNOTAVAIL; } /* * free the bw_meter entries */ free_bw_list(rt->mfc_bw_meter_leq); rt->mfc_bw_meter_leq = NULL; free_bw_list(rt->mfc_bw_meter_geq); rt->mfc_bw_meter_geq = NULL; LIST_REMOVE(rt, mfc_hash); free(rt, M_MRTABLE); MRW_WUNLOCK(); return (0); } /* * Send a message to the routing daemon on the multicast routing socket. */ static int socket_send(struct socket *s, struct mbuf *mm, struct sockaddr_in *src) { if (s) { SOCKBUF_LOCK(&s->so_rcv); if (sbappendaddr_locked(&s->so_rcv, (struct sockaddr *)src, mm, NULL) != 0) { sorwakeup_locked(s); return 0; } soroverflow_locked(s); } m_freem(mm); return -1; } /* * IP multicast forwarding function. This function assumes that the packet * pointed to by "ip" has arrived on (or is about to be sent to) the interface * pointed to by "ifp", and the packet is to be relayed to other networks * that have members of the packet's destination IP multicast group. * * The packet is returned unscathed to the caller, unless it is * erroneous, in which case a non-zero return value tells the caller to * discard it. */ #define TUNNEL_LEN 12 /* # bytes of IP option for tunnel encapsulation */ static int X_ip_mforward(struct ip *ip, struct ifnet *ifp, struct mbuf *m, struct ip_moptions *imo) { struct mfc *rt; int error; vifi_t vifi; struct mbuf *mb0; struct rtdetq *rte; u_long hash; int hlen; CTR3(KTR_IPMF, "ip_mforward: delete mfc orig 0x%08x group %lx ifp %p", ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr), ifp); if (ip->ip_hl < (sizeof(struct ip) + TUNNEL_LEN) >> 2 || ((u_char *)(ip + 1))[1] != IPOPT_LSRR) { /* * Packet arrived via a physical interface or * an encapsulated tunnel or a register_vif. */ } else { /* * Packet arrived through a source-route tunnel. * Source-route tunnels are no longer supported. */ return (1); } /* * BEGIN: MCAST ROUTING HOT PATH */ MRW_RLOCK(); if (imo && ((vifi = imo->imo_multicast_vif) < V_numvifs)) { if (ip->ip_ttl < MAXTTL) ip->ip_ttl++; /* compensate for -1 in *_send routines */ error = ip_mdq(m, ifp, NULL, vifi); MRW_RUNLOCK(); return error; } /* * Don't forward a packet with time-to-live of zero or one, * or a packet destined to a local-only group. */ if (ip->ip_ttl <= 1 || IN_LOCAL_GROUP(ntohl(ip->ip_dst.s_addr))) { MRW_RUNLOCK(); return 0; } mfc_find_retry: /* * Determine forwarding vifs from the forwarding cache table */ MRTSTAT_INC(mrts_mfc_lookups); rt = mfc_find(&ip->ip_src, &ip->ip_dst); /* Entry exists, so forward if necessary */ if (rt != NULL) { error = ip_mdq(m, ifp, rt, -1); /* Generic unlock here as we might release R or W lock */ MRW_UNLOCK(); return error; } /* * END: MCAST ROUTING HOT PATH */ /* Further processing must be done with WLOCK taken */ if ((MRW_WOWNED() == 0) && (MRW_LOCK_TRY_UPGRADE() == 0)) { MRW_RUNLOCK(); MRW_WLOCK(); goto mfc_find_retry; } /* * If we don't have a route for packet's origin, * Make a copy of the packet & send message to routing daemon */ hlen = ip->ip_hl << 2; MRTSTAT_INC(mrts_mfc_misses); MRTSTAT_INC(mrts_no_route); CTR2(KTR_IPMF, "ip_mforward: no mfc for (0x%08x,%lx)", ntohl(ip->ip_src.s_addr), (u_long)ntohl(ip->ip_dst.s_addr)); /* * Allocate mbufs early so that we don't do extra work if we are * just going to fail anyway. Make sure to pullup the header so * that other people can't step on it. */ rte = malloc((sizeof *rte), M_MRTABLE, M_NOWAIT|M_ZERO); if (rte == NULL) { MRW_WUNLOCK(); return ENOBUFS; } mb0 = m_copypacket(m, M_NOWAIT); if (mb0 && (!M_WRITABLE(mb0) || mb0->m_len < hlen)) mb0 = m_pullup(mb0, hlen); if (mb0 == NULL) { free(rte, M_MRTABLE); MRW_WUNLOCK(); return ENOBUFS; } /* is there an upcall waiting for this flow ? */ hash = MFCHASH(ip->ip_src, ip->ip_dst); LIST_FOREACH(rt, &V_mfchashtbl[hash], mfc_hash) { if (in_hosteq(ip->ip_src, rt->mfc_origin) && in_hosteq(ip->ip_dst, rt->mfc_mcastgrp) && !buf_ring_empty(rt->mfc_stall_ring)) break; } if (rt == NULL) { int i; struct igmpmsg *im; struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; struct mbuf *mm; /* * Locate the vifi for the incoming interface for this packet. * If none found, drop packet. */ for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) ; if (vifi >= V_numvifs) /* vif not found, drop packet */ goto non_fatal; /* no upcall, so make a new entry */ rt = mfc_alloc(); if (rt == NULL) goto fail; /* Make a copy of the header to send to the user level process */ mm = m_copym(mb0, 0, hlen, M_NOWAIT); if (mm == NULL) goto fail1; /* * Send message to routing daemon to install * a route into the kernel table */ im = mtod(mm, struct igmpmsg*); im->im_msgtype = IGMPMSG_NOCACHE; im->im_mbz = 0; im->im_vif = vifi; MRTSTAT_INC(mrts_upcalls); k_igmpsrc.sin_addr = ip->ip_src; if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { CTR0(KTR_IPMF, "ip_mforward: socket queue full"); MRTSTAT_INC(mrts_upq_sockfull); fail1: free(rt, M_MRTABLE); fail: free(rte, M_MRTABLE); m_freem(mb0); MRW_WUNLOCK(); return ENOBUFS; } /* insert new entry at head of hash chain */ rt->mfc_origin.s_addr = ip->ip_src.s_addr; rt->mfc_mcastgrp.s_addr = ip->ip_dst.s_addr; rt->mfc_expire = UPCALL_EXPIRE; V_nexpire[hash]++; for (i = 0; i < V_numvifs; i++) { rt->mfc_ttls[i] = 0; rt->mfc_flags[i] = 0; } rt->mfc_parent = -1; /* clear the RP address */ rt->mfc_rp.s_addr = INADDR_ANY; rt->mfc_bw_meter_leq = NULL; rt->mfc_bw_meter_geq = NULL; /* initialize pkt counters per src-grp */ rt->mfc_pkt_cnt = 0; rt->mfc_byte_cnt = 0; rt->mfc_wrong_if = 0; timevalclear(&rt->mfc_last_assert); buf_ring_enqueue(rt->mfc_stall_ring, rte); /* Add RT to hashtable as it didn't exist before */ LIST_INSERT_HEAD(&V_mfchashtbl[hash], rt, mfc_hash); } else { /* determine if queue has overflowed */ if (buf_ring_full(rt->mfc_stall_ring)) { MRTSTAT_INC(mrts_upq_ovflw); non_fatal: free(rte, M_MRTABLE); m_freem(mb0); MRW_WUNLOCK(); return (0); } buf_ring_enqueue(rt->mfc_stall_ring, rte); } rte->m = mb0; rte->ifp = ifp; MRW_WUNLOCK(); return 0; } /* * Clean up the cache entry if upcall is not serviced */ static void expire_upcalls(void *arg) { u_long i; CURVNET_SET((struct vnet *) arg); /*This callout is always run with MRW_WLOCK taken. */ for (i = 0; i < mfchashsize; i++) { struct mfc *rt, *nrt; if (V_nexpire[i] == 0) continue; LIST_FOREACH_SAFE(rt, &V_mfchashtbl[i], mfc_hash, nrt) { if (buf_ring_empty(rt->mfc_stall_ring)) continue; if (rt->mfc_expire == 0 || --rt->mfc_expire > 0) continue; MRTSTAT_INC(mrts_cache_cleanups); CTR3(KTR_IPMF, "%s: expire (%lx, %lx)", __func__, (u_long)ntohl(rt->mfc_origin.s_addr), (u_long)ntohl(rt->mfc_mcastgrp.s_addr)); expire_mfc(rt); } } callout_reset(&V_expire_upcalls_ch, EXPIRE_TIMEOUT, expire_upcalls, curvnet); CURVNET_RESTORE(); } /* * Packet forwarding routine once entry in the cache is made */ static int ip_mdq(struct mbuf *m, struct ifnet *ifp, struct mfc *rt, vifi_t xmt_vif) { struct ip *ip = mtod(m, struct ip *); vifi_t vifi; int plen = ntohs(ip->ip_len); MRW_LOCK_ASSERT(); NET_EPOCH_ASSERT(); /* * If xmt_vif is not -1, send on only the requested vif. * * (since vifi_t is u_short, -1 becomes MAXUSHORT, which > numvifs.) */ if (xmt_vif < V_numvifs) { if (V_viftable[xmt_vif].v_flags & VIFF_REGISTER) pim_register_send(ip, V_viftable + xmt_vif, m, rt); else phyint_send(ip, V_viftable + xmt_vif, m); return 1; } /* * Don't forward if it didn't arrive from the parent vif for its origin. */ vifi = rt->mfc_parent; if ((vifi >= V_numvifs) || (V_viftable[vifi].v_ifp != ifp)) { CTR4(KTR_IPMF, "%s: rx on wrong ifp %p (vifi %d, v_ifp %p)", __func__, ifp, (int)vifi, V_viftable[vifi].v_ifp); MRTSTAT_INC(mrts_wrong_if); ++rt->mfc_wrong_if; /* * If we are doing PIM assert processing, send a message * to the routing daemon. * * XXX: A PIM-SM router needs the WRONGVIF detection so it * can complete the SPT switch, regardless of the type * of the iif (broadcast media, GRE tunnel, etc). */ if (V_pim_assert_enabled && (vifi < V_numvifs) && V_viftable[vifi].v_ifp) { if (ifp == V_multicast_register_if) PIMSTAT_INC(pims_rcv_registers_wrongiif); /* Get vifi for the incoming packet */ for (vifi = 0; vifi < V_numvifs && V_viftable[vifi].v_ifp != ifp; vifi++) ; if (vifi >= V_numvifs) return 0; /* The iif is not found: ignore the packet. */ if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_DISABLE_WRONGVIF) return 0; /* WRONGVIF disabled: ignore the packet */ if (ratecheck(&rt->mfc_last_assert, &pim_assert_interval)) { struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; struct igmpmsg *im; int hlen = ip->ip_hl << 2; struct mbuf *mm = m_copym(m, 0, hlen, M_NOWAIT); if (mm && (!M_WRITABLE(mm) || mm->m_len < hlen)) mm = m_pullup(mm, hlen); if (mm == NULL) return ENOBUFS; im = mtod(mm, struct igmpmsg *); im->im_msgtype = IGMPMSG_WRONGVIF; im->im_mbz = 0; im->im_vif = vifi; MRTSTAT_INC(mrts_upcalls); k_igmpsrc.sin_addr = im->im_src; if (socket_send(V_ip_mrouter, mm, &k_igmpsrc) < 0) { CTR1(KTR_IPMF, "%s: socket queue full", __func__); MRTSTAT_INC(mrts_upq_sockfull); return ENOBUFS; } } } return 0; } /* If I sourced this packet, it counts as output, else it was input. */ mtx_lock_spin(&V_viftable[vifi].v_spin); if (in_hosteq(ip->ip_src, V_viftable[vifi].v_lcl_addr)) { V_viftable[vifi].v_pkt_out++; V_viftable[vifi].v_bytes_out += plen; } else { V_viftable[vifi].v_pkt_in++; V_viftable[vifi].v_bytes_in += plen; } mtx_unlock_spin(&V_viftable[vifi].v_spin); rt->mfc_pkt_cnt++; rt->mfc_byte_cnt += plen; /* * For each vif, decide if a copy of the packet should be forwarded. * Forward if: * - the ttl exceeds the vif's threshold * - there are group members downstream on interface */ for (vifi = 0; vifi < V_numvifs; vifi++) if ((rt->mfc_ttls[vifi] > 0) && (ip->ip_ttl > rt->mfc_ttls[vifi])) { V_viftable[vifi].v_pkt_out++; V_viftable[vifi].v_bytes_out += plen; if (V_viftable[vifi].v_flags & VIFF_REGISTER) pim_register_send(ip, V_viftable + vifi, m, rt); else phyint_send(ip, V_viftable + vifi, m); } /* * Perform upcall-related bw measuring. */ if ((rt->mfc_bw_meter_geq != NULL) || (rt->mfc_bw_meter_leq != NULL)) { struct bw_meter *x; struct timeval now; microtime(&now); /* Process meters for Greater-or-EQual case */ for (x = rt->mfc_bw_meter_geq; x != NULL; x = x->bm_mfc_next) bw_meter_geq_receive_packet(x, plen, &now); /* Process meters for Lower-or-EQual case */ for (x = rt->mfc_bw_meter_leq; x != NULL; x = x->bm_mfc_next) { /* * Record that a packet is received. * Spin lock has to be taken as callout context * (expire_bw_meter_leq) might modify these fields * as well */ mtx_lock_spin(&x->bm_spin); x->bm_measured.b_packets++; x->bm_measured.b_bytes += plen; mtx_unlock_spin(&x->bm_spin); } } return 0; } /* * Check if a vif number is legal/ok. This is used by in_mcast.c. */ static int X_legal_vif_num(int vif) { int ret; ret = 0; if (vif < 0) return (ret); MRW_RLOCK(); if (vif < V_numvifs) ret = 1; MRW_RUNLOCK(); return (ret); } /* * Return the local address used by this vif */ static u_long X_ip_mcast_src(int vifi) { in_addr_t addr; addr = INADDR_ANY; if (vifi < 0) return (addr); MRW_RLOCK(); if (vifi < V_numvifs) addr = V_viftable[vifi].v_lcl_addr.s_addr; MRW_RUNLOCK(); return (addr); } static void phyint_send(struct ip *ip, struct vif *vifp, struct mbuf *m) { struct mbuf *mb_copy; int hlen = ip->ip_hl << 2; MRW_LOCK_ASSERT(); /* * Make a new reference to the packet; make sure that * the IP header is actually copied, not just referenced, * so that ip_output() only scribbles on the copy. */ mb_copy = m_copypacket(m, M_NOWAIT); if (mb_copy && (!M_WRITABLE(mb_copy) || mb_copy->m_len < hlen)) mb_copy = m_pullup(mb_copy, hlen); if (mb_copy == NULL) return; send_packet(vifp, mb_copy); } static void send_packet(struct vif *vifp, struct mbuf *m) { struct ip_moptions imo; int error __unused; MRW_LOCK_ASSERT(); NET_EPOCH_ASSERT(); imo.imo_multicast_ifp = vifp->v_ifp; imo.imo_multicast_ttl = mtod(m, struct ip *)->ip_ttl - 1; imo.imo_multicast_loop = !!in_mcast_loop; imo.imo_multicast_vif = -1; STAILQ_INIT(&imo.imo_head); /* * Re-entrancy should not be a problem here, because * the packets that we send out and are looped back at us * should get rejected because they appear to come from * the loopback interface, thus preventing looping. */ error = ip_output(m, NULL, NULL, IP_FORWARDING, &imo, NULL); CTR3(KTR_IPMF, "%s: vif %td err %d", __func__, (ptrdiff_t)(vifp - V_viftable), error); } /* * Stubs for old RSVP socket shim implementation. */ static int X_ip_rsvp_vif(struct socket *so __unused, struct sockopt *sopt __unused) { return (EOPNOTSUPP); } static void X_ip_rsvp_force_done(struct socket *so __unused) { } static int X_rsvp_input(struct mbuf **mp, int *offp, int proto) { struct mbuf *m; m = *mp; *mp = NULL; if (!V_rsvp_on) m_freem(m); return (IPPROTO_DONE); } /* * Code for bandwidth monitors */ /* * Define common interface for timeval-related methods */ #define BW_TIMEVALCMP(tvp, uvp, cmp) timevalcmp((tvp), (uvp), cmp) #define BW_TIMEVALDECR(vvp, uvp) timevalsub((vvp), (uvp)) #define BW_TIMEVALADD(vvp, uvp) timevaladd((vvp), (uvp)) static uint32_t compute_bw_meter_flags(struct bw_upcall *req) { uint32_t flags = 0; if (req->bu_flags & BW_UPCALL_UNIT_PACKETS) flags |= BW_METER_UNIT_PACKETS; if (req->bu_flags & BW_UPCALL_UNIT_BYTES) flags |= BW_METER_UNIT_BYTES; if (req->bu_flags & BW_UPCALL_GEQ) flags |= BW_METER_GEQ; if (req->bu_flags & BW_UPCALL_LEQ) flags |= BW_METER_LEQ; return flags; } static void expire_bw_meter_leq(void *arg) { struct bw_meter *x = arg; struct timeval now; /* * INFO: * callout is always executed with MRW_WLOCK taken */ CURVNET_SET((struct vnet *)x->arg); microtime(&now); /* * Test if we should deliver an upcall */ if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets <= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes <= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, &now); } /* Send all upcalls that are pending delivery */ taskqueue_enqueue(V_task_queue, &V_task); /* Reset counters */ x->bm_start_time = now; /* Spin lock has to be taken as ip_forward context * might modify these fields as well */ mtx_lock_spin(&x->bm_spin); x->bm_measured.b_bytes = 0; x->bm_measured.b_packets = 0; mtx_unlock_spin(&x->bm_spin); callout_schedule(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time)); CURVNET_RESTORE(); } /* * Add a bw_meter entry */ static int add_bw_upcall(struct bw_upcall *req) { struct mfc *mfc; struct timeval delta = { BW_UPCALL_THRESHOLD_INTERVAL_MIN_SEC, BW_UPCALL_THRESHOLD_INTERVAL_MIN_USEC }; struct timeval now; struct bw_meter *x, **bwm_ptr; uint32_t flags; if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) return EOPNOTSUPP; /* Test if the flags are valid */ if (!(req->bu_flags & (BW_UPCALL_UNIT_PACKETS | BW_UPCALL_UNIT_BYTES))) return EINVAL; if (!(req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ))) return EINVAL; if ((req->bu_flags & (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) == (BW_UPCALL_GEQ | BW_UPCALL_LEQ)) return EINVAL; /* Test if the threshold time interval is valid */ if (BW_TIMEVALCMP(&req->bu_threshold.b_time, &delta, <)) return EINVAL; flags = compute_bw_meter_flags(req); /* * Find if we have already same bw_meter entry */ MRW_WLOCK(); mfc = mfc_find(&req->bu_src, &req->bu_dst); if (mfc == NULL) { MRW_WUNLOCK(); return EADDRNOTAVAIL; } /* Choose an appropriate bw_meter list */ if (req->bu_flags & BW_UPCALL_GEQ) bwm_ptr = &mfc->mfc_bw_meter_geq; else bwm_ptr = &mfc->mfc_bw_meter_leq; for (x = *bwm_ptr; x != NULL; x = x->bm_mfc_next) { if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && (x->bm_flags & BW_METER_USER_FLAGS) == flags) { MRW_WUNLOCK(); return 0; /* XXX Already installed */ } } /* Allocate the new bw_meter entry */ x = malloc(sizeof(*x), M_BWMETER, M_ZERO | M_NOWAIT); if (x == NULL) { MRW_WUNLOCK(); return ENOBUFS; } /* Set the new bw_meter entry */ x->bm_threshold.b_time = req->bu_threshold.b_time; microtime(&now); x->bm_start_time = now; x->bm_threshold.b_packets = req->bu_threshold.b_packets; x->bm_threshold.b_bytes = req->bu_threshold.b_bytes; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags = flags; x->bm_time_next = NULL; x->bm_mfc = mfc; x->arg = curvnet; sprintf(x->bm_spin_name, "BM spin %p", x); mtx_init(&x->bm_spin, x->bm_spin_name, NULL, MTX_SPIN); /* For LEQ case create periodic callout */ if (req->bu_flags & BW_UPCALL_LEQ) { callout_init_rw(&x->bm_meter_callout, &mrouter_lock, CALLOUT_SHAREDLOCK); callout_reset(&x->bm_meter_callout, tvtohz(&x->bm_threshold.b_time), expire_bw_meter_leq, x); } /* Add the new bw_meter entry to the front of entries for this MFC */ x->bm_mfc_next = *bwm_ptr; *bwm_ptr = x; MRW_WUNLOCK(); return 0; } static void free_bw_list(struct bw_meter *list) { while (list != NULL) { struct bw_meter *x = list; /* MRW_WLOCK must be held here */ if (x->bm_flags & BW_METER_LEQ) { callout_drain(&x->bm_meter_callout); mtx_destroy(&x->bm_spin); } list = list->bm_mfc_next; free(x, M_BWMETER); } } /* * Delete one or multiple bw_meter entries */ static int del_bw_upcall(struct bw_upcall *req) { struct mfc *mfc; struct bw_meter *x, **bwm_ptr; if (!(V_mrt_api_config & MRT_MFC_BW_UPCALL)) return EOPNOTSUPP; MRW_WLOCK(); /* Find the corresponding MFC entry */ mfc = mfc_find(&req->bu_src, &req->bu_dst); if (mfc == NULL) { MRW_WUNLOCK(); return EADDRNOTAVAIL; } else if (req->bu_flags & BW_UPCALL_DELETE_ALL) { /* * Delete all bw_meter entries for this mfc */ struct bw_meter *list; /* Free LEQ list */ list = mfc->mfc_bw_meter_leq; mfc->mfc_bw_meter_leq = NULL; free_bw_list(list); /* Free GEQ list */ list = mfc->mfc_bw_meter_geq; mfc->mfc_bw_meter_geq = NULL; free_bw_list(list); MRW_WUNLOCK(); return 0; } else { /* Delete a single bw_meter entry */ struct bw_meter *prev; uint32_t flags = 0; flags = compute_bw_meter_flags(req); /* Choose an appropriate bw_meter list */ if (req->bu_flags & BW_UPCALL_GEQ) bwm_ptr = &mfc->mfc_bw_meter_geq; else bwm_ptr = &mfc->mfc_bw_meter_leq; /* Find the bw_meter entry to delete */ for (prev = NULL, x = *bwm_ptr; x != NULL; prev = x, x = x->bm_mfc_next) { if ((BW_TIMEVALCMP(&x->bm_threshold.b_time, &req->bu_threshold.b_time, ==)) && (x->bm_threshold.b_packets == req->bu_threshold.b_packets) && (x->bm_threshold.b_bytes == req->bu_threshold.b_bytes) && (x->bm_flags & BW_METER_USER_FLAGS) == flags) break; } if (x != NULL) { /* Delete entry from the list for this MFC */ if (prev != NULL) prev->bm_mfc_next = x->bm_mfc_next; /* remove from middle*/ else *bwm_ptr = x->bm_mfc_next;/* new head of list */ if (req->bu_flags & BW_UPCALL_LEQ) callout_stop(&x->bm_meter_callout); MRW_WUNLOCK(); /* Free the bw_meter entry */ free(x, M_BWMETER); return 0; } else { MRW_WUNLOCK(); return EINVAL; } } __assert_unreachable(); } /* * Perform bandwidth measurement processing that may result in an upcall */ static void bw_meter_geq_receive_packet(struct bw_meter *x, int plen, struct timeval *nowp) { struct timeval delta; MRW_LOCK_ASSERT(); delta = *nowp; BW_TIMEVALDECR(&delta, &x->bm_start_time); /* * Processing for ">=" type of bw_meter entry. * bm_spin does not have to be hold here as in GEQ * case this is the only context accessing bm_measured. */ if (BW_TIMEVALCMP(&delta, &x->bm_threshold.b_time, >)) { /* Reset the bw_meter entry */ x->bm_start_time = *nowp; x->bm_measured.b_packets = 0; x->bm_measured.b_bytes = 0; x->bm_flags &= ~BW_METER_UPCALL_DELIVERED; } /* Record that a packet is received */ x->bm_measured.b_packets++; x->bm_measured.b_bytes += plen; /* * Test if we should deliver an upcall */ if (!(x->bm_flags & BW_METER_UPCALL_DELIVERED)) { if (((x->bm_flags & BW_METER_UNIT_PACKETS) && (x->bm_measured.b_packets >= x->bm_threshold.b_packets)) || ((x->bm_flags & BW_METER_UNIT_BYTES) && (x->bm_measured.b_bytes >= x->bm_threshold.b_bytes))) { /* Prepare an upcall for delivery */ bw_meter_prepare_upcall(x, nowp); x->bm_flags |= BW_METER_UPCALL_DELIVERED; } } } /* * Prepare a bandwidth-related upcall */ static void bw_meter_prepare_upcall(struct bw_meter *x, struct timeval *nowp) { struct timeval delta; struct bw_upcall *u; MRW_LOCK_ASSERT(); /* * Compute the measured time interval */ delta = *nowp; BW_TIMEVALDECR(&delta, &x->bm_start_time); /* * Set the bw_upcall entry */ u = malloc(sizeof(struct bw_upcall), M_MRTABLE, M_NOWAIT | M_ZERO); if (!u) { log(LOG_WARNING, "bw_meter_prepare_upcall: cannot allocate entry\n"); return; } u->bu_src = x->bm_mfc->mfc_origin; u->bu_dst = x->bm_mfc->mfc_mcastgrp; u->bu_threshold.b_time = x->bm_threshold.b_time; u->bu_threshold.b_packets = x->bm_threshold.b_packets; u->bu_threshold.b_bytes = x->bm_threshold.b_bytes; u->bu_measured.b_time = delta; u->bu_measured.b_packets = x->bm_measured.b_packets; u->bu_measured.b_bytes = x->bm_measured.b_bytes; u->bu_flags = 0; if (x->bm_flags & BW_METER_UNIT_PACKETS) u->bu_flags |= BW_UPCALL_UNIT_PACKETS; if (x->bm_flags & BW_METER_UNIT_BYTES) u->bu_flags |= BW_UPCALL_UNIT_BYTES; if (x->bm_flags & BW_METER_GEQ) u->bu_flags |= BW_UPCALL_GEQ; if (x->bm_flags & BW_METER_LEQ) u->bu_flags |= BW_UPCALL_LEQ; if (buf_ring_enqueue(V_bw_upcalls_ring, u)) log(LOG_WARNING, "bw_meter_prepare_upcall: cannot enqueue upcall\n"); if (buf_ring_count(V_bw_upcalls_ring) > (BW_UPCALLS_MAX / 2)) { taskqueue_enqueue(V_task_queue, &V_task); } } /* * Send the pending bandwidth-related upcalls */ static void bw_upcalls_send(void) { struct mbuf *m; int len = 0; struct bw_upcall *bu; struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; static struct igmpmsg igmpmsg = { 0, /* unused1 */ 0, /* unused2 */ IGMPMSG_BW_UPCALL,/* im_msgtype */ 0, /* im_mbz */ 0, /* im_vif */ 0, /* unused3 */ { 0 }, /* im_src */ { 0 } /* im_dst */ }; MRW_LOCK_ASSERT(); if (buf_ring_empty(V_bw_upcalls_ring)) return; /* * Allocate a new mbuf, initialize it with the header and * the payload for the pending calls. */ m = m_gethdr(M_NOWAIT, MT_DATA); if (m == NULL) { log(LOG_WARNING, "bw_upcalls_send: cannot allocate mbuf\n"); return; } m_copyback(m, 0, sizeof(struct igmpmsg), (caddr_t)&igmpmsg); len += sizeof(struct igmpmsg); while ((bu = buf_ring_dequeue_mc(V_bw_upcalls_ring)) != NULL) { m_copyback(m, len, sizeof(struct bw_upcall), (caddr_t)bu); len += sizeof(struct bw_upcall); free(bu, M_MRTABLE); } /* * Send the upcalls * XXX do we need to set the address in k_igmpsrc ? */ MRTSTAT_INC(mrts_upcalls); if (socket_send(V_ip_mrouter, m, &k_igmpsrc) < 0) { log(LOG_WARNING, "bw_upcalls_send: ip_mrouter socket queue full\n"); MRTSTAT_INC(mrts_upq_sockfull); } } /* * A periodic function for sending all upcalls that are pending delivery */ static void expire_bw_upcalls_send(void *arg) { CURVNET_SET((struct vnet *) arg); /* This callout is run with MRW_RLOCK taken */ bw_upcalls_send(); callout_reset(&V_bw_upcalls_ch, BW_UPCALLS_PERIOD, expire_bw_upcalls_send, curvnet); CURVNET_RESTORE(); } /* * End of bandwidth monitoring code */ /* * Send the packet up to the user daemon, or eventually do kernel encapsulation * */ static int pim_register_send(struct ip *ip, struct vif *vifp, struct mbuf *m, struct mfc *rt) { struct mbuf *mb_copy, *mm; /* * Do not send IGMP_WHOLEPKT notifications to userland, if the * rendezvous point was unspecified, and we were told not to. */ if (pim_squelch_wholepkt != 0 && (V_mrt_api_config & MRT_MFC_RP) && in_nullhost(rt->mfc_rp)) return 0; mb_copy = pim_register_prepare(ip, m); if (mb_copy == NULL) return ENOBUFS; /* * Send all the fragments. Note that the mbuf for each fragment * is freed by the sending machinery. */ for (mm = mb_copy; mm; mm = mb_copy) { mb_copy = mm->m_nextpkt; mm->m_nextpkt = 0; mm = m_pullup(mm, sizeof(struct ip)); if (mm != NULL) { ip = mtod(mm, struct ip *); if ((V_mrt_api_config & MRT_MFC_RP) && !in_nullhost(rt->mfc_rp)) { pim_register_send_rp(ip, vifp, mm, rt); } else { pim_register_send_upcall(ip, vifp, mm, rt); } } } return 0; } /* * Return a copy of the data packet that is ready for PIM Register * encapsulation. * XXX: Note that in the returned copy the IP header is a valid one. */ static struct mbuf * pim_register_prepare(struct ip *ip, struct mbuf *m) { struct mbuf *mb_copy = NULL; int mtu; /* Take care of delayed checksums */ if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) { in_delayed_cksum(m); m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; } /* * Copy the old packet & pullup its IP header into the * new mbuf so we can modify it. */ mb_copy = m_copypacket(m, M_NOWAIT); if (mb_copy == NULL) return NULL; mb_copy = m_pullup(mb_copy, ip->ip_hl << 2); if (mb_copy == NULL) return NULL; /* take care of the TTL */ ip = mtod(mb_copy, struct ip *); --ip->ip_ttl; /* Compute the MTU after the PIM Register encapsulation */ mtu = 0xffff - sizeof(pim_encap_iphdr) - sizeof(pim_encap_pimhdr); if (ntohs(ip->ip_len) <= mtu) { /* Turn the IP header into a valid one */ ip->ip_sum = 0; ip->ip_sum = in_cksum(mb_copy, ip->ip_hl << 2); } else { /* Fragment the packet */ mb_copy->m_pkthdr.csum_flags |= CSUM_IP; if (ip_fragment(ip, &mb_copy, mtu, 0) != 0) { m_freem(mb_copy); return NULL; } } return mb_copy; } /* * Send an upcall with the data packet to the user-level process. */ static int pim_register_send_upcall(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, struct mfc *rt) { struct mbuf *mb_first; int len = ntohs(ip->ip_len); struct igmpmsg *im; struct sockaddr_in k_igmpsrc = { sizeof k_igmpsrc, AF_INET }; MRW_LOCK_ASSERT(); /* * Add a new mbuf with an upcall header */ mb_first = m_gethdr(M_NOWAIT, MT_DATA); if (mb_first == NULL) { m_freem(mb_copy); return ENOBUFS; } mb_first->m_data += max_linkhdr; mb_first->m_pkthdr.len = len + sizeof(struct igmpmsg); mb_first->m_len = sizeof(struct igmpmsg); mb_first->m_next = mb_copy; /* Send message to routing daemon */ im = mtod(mb_first, struct igmpmsg *); im->im_msgtype = IGMPMSG_WHOLEPKT; im->im_mbz = 0; im->im_vif = vifp - V_viftable; im->im_src = ip->ip_src; im->im_dst = ip->ip_dst; k_igmpsrc.sin_addr = ip->ip_src; MRTSTAT_INC(mrts_upcalls); if (socket_send(V_ip_mrouter, mb_first, &k_igmpsrc) < 0) { CTR1(KTR_IPMF, "%s: socket queue full", __func__); MRTSTAT_INC(mrts_upq_sockfull); return ENOBUFS; } /* Keep statistics */ PIMSTAT_INC(pims_snd_registers_msgs); PIMSTAT_ADD(pims_snd_registers_bytes, len); return 0; } /* * Encapsulate the data packet in PIM Register message and send it to the RP. */ static int pim_register_send_rp(struct ip *ip, struct vif *vifp, struct mbuf *mb_copy, struct mfc *rt) { struct mbuf *mb_first; struct ip *ip_outer; struct pim_encap_pimhdr *pimhdr; int len = ntohs(ip->ip_len); vifi_t vifi = rt->mfc_parent; MRW_LOCK_ASSERT(); if ((vifi >= V_numvifs) || in_nullhost(V_viftable[vifi].v_lcl_addr)) { m_freem(mb_copy); return EADDRNOTAVAIL; /* The iif vif is invalid */ } /* * Add a new mbuf with the encapsulating header */ mb_first = m_gethdr(M_NOWAIT, MT_DATA); if (mb_first == NULL) { m_freem(mb_copy); return ENOBUFS; } mb_first->m_data += max_linkhdr; mb_first->m_len = sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr); mb_first->m_next = mb_copy; mb_first->m_pkthdr.len = len + mb_first->m_len; /* * Fill in the encapsulating IP and PIM header */ ip_outer = mtod(mb_first, struct ip *); *ip_outer = pim_encap_iphdr; ip_outer->ip_len = htons(len + sizeof(pim_encap_iphdr) + sizeof(pim_encap_pimhdr)); ip_outer->ip_src = V_viftable[vifi].v_lcl_addr; ip_outer->ip_dst = rt->mfc_rp; /* * Copy the inner header TOS to the outer header, and take care of the * IP_DF bit. */ ip_outer->ip_tos = ip->ip_tos; if (ip->ip_off & htons(IP_DF)) ip_outer->ip_off |= htons(IP_DF); ip_fillid(ip_outer); pimhdr = (struct pim_encap_pimhdr *)((caddr_t)ip_outer + sizeof(pim_encap_iphdr)); *pimhdr = pim_encap_pimhdr; /* If the iif crosses a border, set the Border-bit */ if (rt->mfc_flags[vifi] & MRT_MFC_FLAGS_BORDER_VIF & V_mrt_api_config) pimhdr->flags |= htonl(PIM_BORDER_REGISTER); mb_first->m_data += sizeof(pim_encap_iphdr); pimhdr->pim.pim_cksum = in_cksum(mb_first, sizeof(pim_encap_pimhdr)); mb_first->m_data -= sizeof(pim_encap_iphdr); send_packet(vifp, mb_first); /* Keep statistics */ PIMSTAT_INC(pims_snd_registers_msgs); PIMSTAT_ADD(pims_snd_registers_bytes, len); return 0; } /* * pim_encapcheck() is called by the encap4_input() path at runtime to * determine if a packet is for PIM; allowing PIM to be dynamically loaded * into the kernel. */ static int pim_encapcheck(const struct mbuf *m __unused, int off __unused, int proto __unused, void *arg __unused) { KASSERT(proto == IPPROTO_PIM, ("not for IPPROTO_PIM")); return (8); /* claim the datagram. */ } /* * PIM-SMv2 and PIM-DM messages processing. * Receives and verifies the PIM control messages, and passes them * up to the listening socket, using rip_input(). * The only message with special processing is the PIM_REGISTER message * (used by PIM-SM): the PIM header is stripped off, and the inner packet * is passed to if_simloop(). */ static int pim_input(struct mbuf *m, int off, int proto, void *arg __unused) { struct ip *ip = mtod(m, struct ip *); struct pim *pim; int iphlen = off; int minlen; int datalen = ntohs(ip->ip_len) - iphlen; int ip_tos; /* Keep statistics */ PIMSTAT_INC(pims_rcv_total_msgs); PIMSTAT_ADD(pims_rcv_total_bytes, datalen); /* * Validate lengths */ if (datalen < PIM_MINLEN) { PIMSTAT_INC(pims_rcv_tooshort); CTR3(KTR_IPMF, "%s: short packet (%d) from 0x%08x", __func__, datalen, ntohl(ip->ip_src.s_addr)); m_freem(m); return (IPPROTO_DONE); } /* * If the packet is at least as big as a REGISTER, go agead * and grab the PIM REGISTER header size, to avoid another * possible m_pullup() later. * * PIM_MINLEN == pimhdr + u_int32_t == 4 + 4 = 8 * PIM_REG_MINLEN == pimhdr + reghdr + encap_iphdr == 4 + 4 + 20 = 28 */ minlen = iphlen + (datalen >= PIM_REG_MINLEN ? PIM_REG_MINLEN : PIM_MINLEN); /* * Get the IP and PIM headers in contiguous memory, and * possibly the PIM REGISTER header. */ if (m->m_len < minlen && (m = m_pullup(m, minlen)) == NULL) { CTR1(KTR_IPMF, "%s: m_pullup() failed", __func__); return (IPPROTO_DONE); } /* m_pullup() may have given us a new mbuf so reset ip. */ ip = mtod(m, struct ip *); ip_tos = ip->ip_tos; /* adjust mbuf to point to the PIM header */ m->m_data += iphlen; m->m_len -= iphlen; pim = mtod(m, struct pim *); /* * Validate checksum. If PIM REGISTER, exclude the data packet. * * XXX: some older PIMv2 implementations don't make this distinction, * so for compatibility reason perform the checksum over part of the * message, and if error, then over the whole message. */ if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER && in_cksum(m, PIM_MINLEN) == 0) { /* do nothing, checksum okay */ } else if (in_cksum(m, datalen)) { PIMSTAT_INC(pims_rcv_badsum); CTR1(KTR_IPMF, "%s: invalid checksum", __func__); m_freem(m); return (IPPROTO_DONE); } /* PIM version check */ if (PIM_VT_V(pim->pim_vt) < PIM_VERSION) { PIMSTAT_INC(pims_rcv_badversion); CTR3(KTR_IPMF, "%s: bad version %d expect %d", __func__, (int)PIM_VT_V(pim->pim_vt), PIM_VERSION); m_freem(m); return (IPPROTO_DONE); } /* restore mbuf back to the outer IP */ m->m_data -= iphlen; m->m_len += iphlen; if (PIM_VT_T(pim->pim_vt) == PIM_REGISTER) { /* * Since this is a REGISTER, we'll make a copy of the register * headers ip + pim + u_int32 + encap_ip, to be passed up to the * routing daemon. */ struct sockaddr_in dst = { sizeof(dst), AF_INET }; struct mbuf *mcp; struct ip *encap_ip; u_int32_t *reghdr; struct ifnet *vifp; MRW_RLOCK(); if ((V_reg_vif_num >= V_numvifs) || (V_reg_vif_num == VIFI_INVALID)) { MRW_RUNLOCK(); CTR2(KTR_IPMF, "%s: register vif not set: %d", __func__, (int)V_reg_vif_num); m_freem(m); return (IPPROTO_DONE); } /* XXX need refcnt? */ vifp = V_viftable[V_reg_vif_num].v_ifp; MRW_RUNLOCK(); /* * Validate length */ if (datalen < PIM_REG_MINLEN) { PIMSTAT_INC(pims_rcv_tooshort); PIMSTAT_INC(pims_rcv_badregisters); CTR1(KTR_IPMF, "%s: register packet size too small", __func__); m_freem(m); return (IPPROTO_DONE); } reghdr = (u_int32_t *)(pim + 1); encap_ip = (struct ip *)(reghdr + 1); CTR3(KTR_IPMF, "%s: register: encap ip src 0x%08x len %d", __func__, ntohl(encap_ip->ip_src.s_addr), ntohs(encap_ip->ip_len)); /* verify the version number of the inner packet */ if (encap_ip->ip_v != IPVERSION) { PIMSTAT_INC(pims_rcv_badregisters); CTR1(KTR_IPMF, "%s: bad encap ip version", __func__); m_freem(m); return (IPPROTO_DONE); } /* verify the inner packet is destined to a mcast group */ if (!IN_MULTICAST(ntohl(encap_ip->ip_dst.s_addr))) { PIMSTAT_INC(pims_rcv_badregisters); CTR2(KTR_IPMF, "%s: bad encap ip dest 0x%08x", __func__, ntohl(encap_ip->ip_dst.s_addr)); m_freem(m); return (IPPROTO_DONE); } /* If a NULL_REGISTER, pass it to the daemon */ if ((ntohl(*reghdr) & PIM_NULL_REGISTER)) goto pim_input_to_daemon; /* * Copy the TOS from the outer IP header to the inner IP header. */ if (encap_ip->ip_tos != ip_tos) { /* Outer TOS -> inner TOS */ encap_ip->ip_tos = ip_tos; /* Recompute the inner header checksum. Sigh... */ /* adjust mbuf to point to the inner IP header */ m->m_data += (iphlen + PIM_MINLEN); m->m_len -= (iphlen + PIM_MINLEN); encap_ip->ip_sum = 0; encap_ip->ip_sum = in_cksum(m, encap_ip->ip_hl << 2); /* restore mbuf to point back to the outer IP header */ m->m_data -= (iphlen + PIM_MINLEN); m->m_len += (iphlen + PIM_MINLEN); } /* * Decapsulate the inner IP packet and loopback to forward it * as a normal multicast packet. Also, make a copy of the * outer_iphdr + pimhdr + reghdr + encap_iphdr * to pass to the daemon later, so it can take the appropriate * actions (e.g., send back PIM_REGISTER_STOP). * XXX: here m->m_data points to the outer IP header. */ mcp = m_copym(m, 0, iphlen + PIM_REG_MINLEN, M_NOWAIT); if (mcp == NULL) { CTR1(KTR_IPMF, "%s: m_copym() failed", __func__); m_freem(m); return (IPPROTO_DONE); } /* Keep statistics */ /* XXX: registers_bytes include only the encap. mcast pkt */ PIMSTAT_INC(pims_rcv_registers_msgs); PIMSTAT_ADD(pims_rcv_registers_bytes, ntohs(encap_ip->ip_len)); /* * forward the inner ip packet; point m_data at the inner ip. */ m_adj(m, iphlen + PIM_MINLEN); CTR4(KTR_IPMF, "%s: forward decap'd REGISTER: src %lx dst %lx vif %d", __func__, (u_long)ntohl(encap_ip->ip_src.s_addr), (u_long)ntohl(encap_ip->ip_dst.s_addr), (int)V_reg_vif_num); /* NB: vifp was collected above; can it change on us? */ if_simloop(vifp, m, dst.sin_family, 0); /* prepare the register head to send to the mrouting daemon */ m = mcp; } pim_input_to_daemon: /* * Pass the PIM message up to the daemon; if it is a Register message, * pass the 'head' only up to the daemon. This includes the * outer IP header, PIM header, PIM-Register header and the * inner IP header. * XXX: the outer IP header pkt size of a Register is not adjust to * reflect the fact that the inner multicast data is truncated. */ return (rip_input(&m, &off, proto)); } static int sysctl_mfctable(SYSCTL_HANDLER_ARGS) { struct mfc *rt; int error, i; if (req->newptr) return (EPERM); if (V_mfchashtbl == NULL) /* XXX unlocked */ return (0); error = sysctl_wire_old_buffer(req, 0); if (error) return (error); MRW_RLOCK(); for (i = 0; i < mfchashsize; i++) { LIST_FOREACH(rt, &V_mfchashtbl[i], mfc_hash) { error = SYSCTL_OUT(req, rt, sizeof(struct mfc)); if (error) goto out_locked; } } out_locked: MRW_RUNLOCK(); return (error); } static SYSCTL_NODE(_net_inet_ip, OID_AUTO, mfctable, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mfctable, "IPv4 Multicast Forwarding Table " "(struct *mfc[mfchashsize], netinet/ip_mroute.h)"); static int sysctl_viflist(SYSCTL_HANDLER_ARGS) { int error, i; if (req->newptr) return (EPERM); if (V_viftable == NULL) /* XXX unlocked */ return (0); error = sysctl_wire_old_buffer(req, MROUTE_VIF_SYSCTL_LEN * MAXVIFS); if (error) return (error); MRW_RLOCK(); /* Copy out user-visible portion of vif entry. */ for (i = 0; i < MAXVIFS; i++) { error = SYSCTL_OUT(req, &V_viftable[i], MROUTE_VIF_SYSCTL_LEN); if (error) break; } MRW_RUNLOCK(); return (error); } SYSCTL_PROC(_net_inet_ip, OID_AUTO, viftable, CTLTYPE_OPAQUE | CTLFLAG_VNET | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_viflist, "S,vif[MAXVIFS]", "IPv4 Multicast Interfaces (struct vif[MAXVIFS], netinet/ip_mroute.h)"); static void vnet_mroute_init(const void *unused __unused) { V_nexpire = malloc(mfchashsize, M_MRTABLE, M_WAITOK|M_ZERO); V_viftable = mallocarray(MAXVIFS, sizeof(*V_viftable), M_MRTABLE, M_WAITOK|M_ZERO); callout_init_rw(&V_expire_upcalls_ch, &mrouter_lock, 0); callout_init_rw(&V_bw_upcalls_ch, &mrouter_lock, 0); /* Prepare taskqueue */ V_task_queue = taskqueue_create_fast("ip_mroute_tskq", M_NOWAIT, taskqueue_thread_enqueue, &V_task_queue); taskqueue_start_threads(&V_task_queue, 1, PI_NET, "ip_mroute_tskq task"); } VNET_SYSINIT(vnet_mroute_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mroute_init, NULL); static void vnet_mroute_uninit(const void *unused __unused) { /* Taskqueue should be cancelled and drained before freeing */ taskqueue_free(V_task_queue); free(V_viftable, M_MRTABLE); free(V_nexpire, M_MRTABLE); V_nexpire = NULL; } VNET_SYSUNINIT(vnet_mroute_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, vnet_mroute_uninit, NULL); static int ip_mroute_modevent(module_t mod, int type, void *unused) { switch (type) { case MOD_LOAD: MRW_LOCK_INIT(); if_detach_event_tag = EVENTHANDLER_REGISTER(ifnet_departure_event, if_detached_event, NULL, EVENTHANDLER_PRI_ANY); if (if_detach_event_tag == NULL) { printf("ip_mroute: unable to register " "ifnet_departure_event handler\n"); MRW_LOCK_DESTROY(); return (EINVAL); } mfchashsize = MFCHASHSIZE; if (TUNABLE_ULONG_FETCH("net.inet.ip.mfchashsize", &mfchashsize) && !powerof2(mfchashsize)) { printf("WARNING: %s not a power of 2; using default\n", "net.inet.ip.mfchashsize"); mfchashsize = MFCHASHSIZE; } pim_squelch_wholepkt = 0; TUNABLE_ULONG_FETCH("net.inet.pim.squelch_wholepkt", &pim_squelch_wholepkt); pim_encap_cookie = ip_encap_attach(&ipv4_encap_cfg, NULL, M_WAITOK); - if (pim_encap_cookie == NULL) { - printf("ip_mroute: unable to attach pim encap\n"); - MRW_LOCK_DESTROY(); - return (EINVAL); - } ip_mcast_src = X_ip_mcast_src; ip_mforward = X_ip_mforward; ip_mrouter_done = X_ip_mrouter_done; ip_mrouter_get = X_ip_mrouter_get; ip_mrouter_set = X_ip_mrouter_set; ip_rsvp_force_done = X_ip_rsvp_force_done; ip_rsvp_vif = X_ip_rsvp_vif; legal_vif_num = X_legal_vif_num; mrt_ioctl = X_mrt_ioctl; rsvp_input_p = X_rsvp_input; break; case MOD_UNLOAD: /* * Typically module unload happens after the user-level * process has shutdown the kernel services (the check * below insures someone can't just yank the module out * from under a running process). But if the module is * just loaded and then unloaded w/o starting up a user * process we still need to cleanup. */ MRW_WLOCK(); if (ip_mrouter_cnt != 0) { MRW_WUNLOCK(); return (EINVAL); } ip_mrouter_unloading = 1; MRW_WUNLOCK(); EVENTHANDLER_DEREGISTER(ifnet_departure_event, if_detach_event_tag); if (pim_encap_cookie) { ip_encap_detach(pim_encap_cookie); pim_encap_cookie = NULL; } ip_mcast_src = NULL; ip_mforward = NULL; ip_mrouter_done = NULL; ip_mrouter_get = NULL; ip_mrouter_set = NULL; ip_rsvp_force_done = NULL; ip_rsvp_vif = NULL; legal_vif_num = NULL; mrt_ioctl = NULL; rsvp_input_p = NULL; MRW_LOCK_DESTROY(); break; default: return EOPNOTSUPP; } return 0; } static moduledata_t ip_mroutemod = { "ip_mroute", ip_mroute_modevent, 0 }; DECLARE_MODULE(ip_mroute, ip_mroutemod, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE);