diff --git a/sys/amd64/amd64/pmap.c b/sys/amd64/amd64/pmap.c
index 4d4ecc8ea4e2..dee208fc9145 100644
--- a/sys/amd64/amd64/pmap.c
+++ b/sys/amd64/amd64/pmap.c
@@ -1,12293 +1,12296 @@
 /*-
  * SPDX-License-Identifier: BSD-4-Clause
  *
  * Copyright (c) 1991 Regents of the University of California.
  * All rights reserved.
  * Copyright (c) 1994 John S. Dyson
  * All rights reserved.
  * Copyright (c) 1994 David Greenman
  * All rights reserved.
  * Copyright (c) 2003 Peter Wemm
  * All rights reserved.
  * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
  * All rights reserved.
  *
  * This code is derived from software contributed to Berkeley by
  * the Systems Programming Group of the University of Utah Computer
  * Science Department and William Jolitz of UUNET Technologies Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. All advertising materials mentioning features or use of this software
  *    must display the following acknowledgement:
  *	This product includes software developed by the University of
  *	California, Berkeley and its contributors.
  * 4. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 /*-
  * Copyright (c) 2003 Networks Associates Technology, Inc.
  * Copyright (c) 2014-2020 The FreeBSD Foundation
  * All rights reserved.
  *
  * This software was developed for the FreeBSD Project by Jake Burkholder,
  * Safeport Network Services, and Network Associates Laboratories, the
  * Security Research Division of Network Associates, Inc. under
  * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
  * CHATS research program.
  *
  * Portions of this software were developed by
  * Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
  * the FreeBSD Foundation.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #define	AMD64_NPT_AWARE
 
 #include <sys/cdefs.h>
 /*
  *	Manages physical address maps.
  *
  *	Since the information managed by this module is
  *	also stored by the logical address mapping module,
  *	this module may throw away valid virtual-to-physical
  *	mappings at almost any time.  However, invalidations
  *	of virtual-to-physical mappings must be done as
  *	requested.
  *
  *	In order to cope with hardware architectures which
  *	make virtual-to-physical map invalidates expensive,
  *	this module may delay invalidate or reduced protection
  *	operations until such time as they are actually
  *	necessary.  This module is given full information as
  *	to which processors are currently using which maps,
  *	and to when physical maps must be made correct.
  */
 
 #include "opt_ddb.h"
 #include "opt_pmap.h"
 #include "opt_vm.h"
 
 #include <sys/param.h>
 #include <sys/asan.h>
 #include <sys/bitstring.h>
 #include <sys/bus.h>
 #include <sys/systm.h>
 #include <sys/counter.h>
 #include <sys/kernel.h>
 #include <sys/ktr.h>
 #include <sys/lock.h>
 #include <sys/malloc.h>
 #include <sys/mman.h>
 #include <sys/msan.h>
 #include <sys/mutex.h>
 #include <sys/proc.h>
 #include <sys/rangeset.h>
 #include <sys/rwlock.h>
 #include <sys/sbuf.h>
 #include <sys/smr.h>
 #include <sys/sx.h>
 #include <sys/turnstile.h>
 #include <sys/vmem.h>
 #include <sys/vmmeter.h>
 #include <sys/sched.h>
 #include <sys/sysctl.h>
 #include <sys/smp.h>
 #ifdef DDB
 #include <sys/kdb.h>
 #include <ddb/ddb.h>
 #endif
 
 #include <vm/vm.h>
 #include <vm/vm_param.h>
 #include <vm/vm_kern.h>
 #include <vm/vm_page.h>
 #include <vm/vm_map.h>
 #include <vm/vm_object.h>
 #include <vm/vm_extern.h>
 #include <vm/vm_pageout.h>
 #include <vm/vm_pager.h>
 #include <vm/vm_phys.h>
 #include <vm/vm_radix.h>
 #include <vm/vm_reserv.h>
 #include <vm/vm_dumpset.h>
 #include <vm/uma.h>
 
 #include <machine/asan.h>
 #include <machine/intr_machdep.h>
 #include <x86/apicvar.h>
 #include <x86/ifunc.h>
 #include <machine/cpu.h>
 #include <machine/cputypes.h>
 #include <machine/md_var.h>
 #include <machine/msan.h>
 #include <machine/pcb.h>
 #include <machine/specialreg.h>
 #ifdef SMP
 #include <machine/smp.h>
 #endif
 #include <machine/sysarch.h>
 #include <machine/tss.h>
 
 #ifdef NUMA
 #define	PMAP_MEMDOM	MAXMEMDOM
 #else
 #define	PMAP_MEMDOM	1
 #endif
 
 static __inline bool
 pmap_type_guest(pmap_t pmap)
 {
 
 	return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
 }
 
 static __inline bool
 pmap_emulate_ad_bits(pmap_t pmap)
 {
 
 	return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
 }
 
 static __inline pt_entry_t
 pmap_valid_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_V;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_EMUL_V;
 		else
 			mask = EPT_PG_READ;
 		break;
 	default:
 		panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_rw_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_RW;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_EMUL_RW;
 		else
 			mask = EPT_PG_WRITE;
 		break;
 	default:
 		panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static pt_entry_t pg_g;
 
 static __inline pt_entry_t
 pmap_global_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 		mask = pg_g;
 		break;
 	case PT_RVI:
 	case PT_EPT:
 		mask = 0;
 		break;
 	default:
 		panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_accessed_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_A;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_READ;
 		else
 			mask = EPT_PG_A;
 		break;
 	default:
 		panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_modified_bit(pmap_t pmap)
 {
 	pt_entry_t mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = X86_PG_M;
 		break;
 	case PT_EPT:
 		if (pmap_emulate_ad_bits(pmap))
 			mask = EPT_PG_WRITE;
 		else
 			mask = EPT_PG_M;
 		break;
 	default:
 		panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static __inline pt_entry_t
 pmap_pku_mask_bit(pmap_t pmap)
 {
 
 	return (pmap->pm_type == PT_X86 ? X86_PG_PKU_MASK : 0);
 }
 
 static __inline bool
 safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
 {
 
 	if (!pmap_emulate_ad_bits(pmap))
 		return (true);
 
 	KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
 
 	/*
 	 * XWR = 010 or 110 will cause an unconditional EPT misconfiguration
 	 * so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
 	 * if the EPT_PG_WRITE bit is set.
 	 */
 	if ((pte & EPT_PG_WRITE) != 0)
 		return (false);
 
 	/*
 	 * XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
 	 */
 	if ((pte & EPT_PG_EXECUTE) == 0 ||
 	    ((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
 		return (true);
 	else
 		return (false);
 }
 
 #ifdef PV_STATS
 #define PV_STAT(x)	do { x ; } while (0)
 #else
 #define PV_STAT(x)	do { } while (0)
 #endif
 
 #undef pa_index
 #ifdef NUMA
 #define	pa_index(pa)	({					\
 	KASSERT((pa) <= vm_phys_segs[vm_phys_nsegs - 1].end,	\
 	    ("address %lx beyond the last segment", (pa)));	\
 	(pa) >> PDRSHIFT;					\
 })
 #define	pa_to_pmdp(pa)	(&pv_table[pa_index(pa)])
 #define	pa_to_pvh(pa)	(&(pa_to_pmdp(pa)->pv_page))
 #define	PHYS_TO_PV_LIST_LOCK(pa)	({			\
 	struct rwlock *_lock;					\
 	if (__predict_false((pa) > pmap_last_pa))		\
 		_lock = &pv_dummy_large.pv_lock;		\
 	else							\
 		_lock = &(pa_to_pmdp(pa)->pv_lock);		\
 	_lock;							\
 })
 #else
 #define	pa_index(pa)	((pa) >> PDRSHIFT)
 #define	pa_to_pvh(pa)	(&pv_table[pa_index(pa)])
 
 #define	NPV_LIST_LOCKS	MAXCPU
 
 #define	PHYS_TO_PV_LIST_LOCK(pa)	\
 			(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
 #endif
 
 #define	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa)	do {	\
 	struct rwlock **_lockp = (lockp);		\
 	struct rwlock *_new_lock;			\
 							\
 	_new_lock = PHYS_TO_PV_LIST_LOCK(pa);		\
 	if (_new_lock != *_lockp) {			\
 		if (*_lockp != NULL)			\
 			rw_wunlock(*_lockp);		\
 		*_lockp = _new_lock;			\
 		rw_wlock(*_lockp);			\
 	}						\
 } while (0)
 
 #define	CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m)	\
 			CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
 
 #define	RELEASE_PV_LIST_LOCK(lockp)		do {	\
 	struct rwlock **_lockp = (lockp);		\
 							\
 	if (*_lockp != NULL) {				\
 		rw_wunlock(*_lockp);			\
 		*_lockp = NULL;				\
 	}						\
 } while (0)
 
 #define	VM_PAGE_TO_PV_LIST_LOCK(m)	\
 			PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
 
 /*
  * Statically allocate kernel pmap memory.  However, memory for
  * pm_pcids is obtained after the dynamic allocator is operational.
  * Initialize it with a non-canonical pointer to catch early accesses
  * regardless of the active mapping.
  */
 struct pmap kernel_pmap_store = {
 	.pm_pcidp = (void *)0xdeadbeefdeadbeef,
 };
 
 vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
 vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
 
 int nkpt;
 SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
     "Number of kernel page table pages allocated on bootup");
 
 static int ndmpdp;
 vm_paddr_t dmaplimit;
 vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
 pt_entry_t pg_nx;
 
 static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "VM/pmap parameters");
 
 static int __read_frequently pg_ps_enabled = 1;
 SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &pg_ps_enabled, 0, "Are large page mappings enabled?");
 
 int __read_frequently la57 = 0;
 SYSCTL_INT(_vm_pmap, OID_AUTO, la57, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &la57, 0,
     "5-level paging for host is enabled");
 
 static bool
 pmap_is_la57(pmap_t pmap)
 {
 	if (pmap->pm_type == PT_X86)
 		return (la57);
 	return (false);		/* XXXKIB handle EPT */
 }
 
 #define	PAT_INDEX_SIZE	8
 static int pat_index[PAT_INDEX_SIZE];	/* cache mode to PAT index conversion */
 
 static u_int64_t	KPTphys;	/* phys addr of kernel level 1 */
 static u_int64_t	KPDphys;	/* phys addr of kernel level 2 */
 static u_int64_t	KPDPphys;	/* phys addr of kernel level 3 */
 u_int64_t		KPML4phys;	/* phys addr of kernel level 4 */
 u_int64_t		KPML5phys;	/* phys addr of kernel level 5,
 					   if supported */
 
 #ifdef KASAN
 static uint64_t		KASANPDPphys;
 #endif
 #ifdef KMSAN
 static uint64_t		KMSANSHADPDPphys;
 static uint64_t		KMSANORIGPDPphys;
 
 /*
  * To support systems with large amounts of memory, it is necessary to extend
  * the maximum size of the direct map.  This could eat into the space reserved
  * for the shadow map.
  */
 _Static_assert(DMPML4I + NDMPML4E <= KMSANSHADPML4I, "direct map overflow");
 #endif
 
 static pml4_entry_t	*kernel_pml4;
 static u_int64_t	DMPDphys;	/* phys addr of direct mapped level 2 */
 static u_int64_t	DMPDPphys;	/* phys addr of direct mapped level 3 */
 static int		ndmpdpphys;	/* number of DMPDPphys pages */
 
 vm_paddr_t		kernphys;	/* phys addr of start of bootstrap data */
 vm_paddr_t		KERNend;	/* and the end */
 
 /*
  * pmap_mapdev support pre initialization (i.e. console)
  */
 #define	PMAP_PREINIT_MAPPING_COUNT	8
 static struct pmap_preinit_mapping {
 	vm_paddr_t	pa;
 	vm_offset_t	va;
 	vm_size_t	sz;
 	int		mode;
 } pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
 static int pmap_initialized;
 
 /*
  * Data for the pv entry allocation mechanism.
  * Updates to pv_invl_gen are protected by the pv list lock but reads are not.
  */
 #ifdef NUMA
 static __inline int
 pc_to_domain(struct pv_chunk *pc)
 {
 
 	return (vm_phys_domain(DMAP_TO_PHYS((vm_offset_t)pc)));
 }
 #else
 static __inline int
 pc_to_domain(struct pv_chunk *pc __unused)
 {
 
 	return (0);
 }
 #endif
 
 struct pv_chunks_list {
 	struct mtx pvc_lock;
 	TAILQ_HEAD(pch, pv_chunk) pvc_list;
 	int active_reclaims;
 } __aligned(CACHE_LINE_SIZE);
 
 struct pv_chunks_list __exclusive_cache_line pv_chunks[PMAP_MEMDOM];
 
 #ifdef	NUMA
 struct pmap_large_md_page {
 	struct rwlock   pv_lock;
 	struct md_page  pv_page;
 	u_long pv_invl_gen;
 };
 __exclusive_cache_line static struct pmap_large_md_page pv_dummy_large;
 #define pv_dummy pv_dummy_large.pv_page
 __read_mostly static struct pmap_large_md_page *pv_table;
 __read_mostly vm_paddr_t pmap_last_pa;
 #else
 static struct rwlock __exclusive_cache_line pv_list_locks[NPV_LIST_LOCKS];
 static u_long pv_invl_gen[NPV_LIST_LOCKS];
 static struct md_page *pv_table;
 static struct md_page pv_dummy;
 #endif
 
 /*
  * All those kernel PT submaps that BSD is so fond of
  */
 pt_entry_t *CMAP1 = NULL;
 caddr_t CADDR1 = 0;
 static vm_offset_t qframe = 0;
 static struct mtx qframe_mtx;
 
 static int pmap_flags = PMAP_PDE_SUPERPAGE;	/* flags for x86 pmaps */
 
 static vmem_t *large_vmem;
 static u_int lm_ents;
 #define	PMAP_ADDRESS_IN_LARGEMAP(va)	((va) >= LARGEMAP_MIN_ADDRESS && \
 	(va) < LARGEMAP_MIN_ADDRESS + NBPML4 * (u_long)lm_ents)
 
 int pmap_pcid_enabled = 1;
 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
 int invpcid_works = 0;
 SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
     "Is the invpcid instruction available ?");
 int pmap_pcid_invlpg_workaround = 0;
 SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_invlpg_workaround,
     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &pmap_pcid_invlpg_workaround, 0,
     "Enable small core PCID/INVLPG workaround");
 int pmap_pcid_invlpg_workaround_uena = 1;
 
 int __read_frequently pti = 0;
 SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
     &pti, 0,
     "Page Table Isolation enabled");
 static vm_object_t pti_obj;
 static pml4_entry_t *pti_pml4;
 static vm_pindex_t pti_pg_idx;
 static bool pti_finalized;
 
 struct pmap_pkru_range {
 	struct rs_el	pkru_rs_el;
 	u_int		pkru_keyidx;
 	int		pkru_flags;
 };
 
 static uma_zone_t pmap_pkru_ranges_zone;
 static bool pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
 static pt_entry_t pmap_pkru_get(pmap_t pmap, vm_offset_t va);
 static void pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
 static void *pkru_dup_range(void *ctx, void *data);
 static void pkru_free_range(void *ctx, void *node);
 static int pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap);
 static int pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva);
 static void pmap_pkru_deassign_all(pmap_t pmap);
 
 static COUNTER_U64_DEFINE_EARLY(pcid_save_cnt);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLFLAG_RD,
     &pcid_save_cnt, "Count of saved TLB context on switch");
 
 static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
     LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
 static struct mtx invl_gen_mtx;
 /* Fake lock object to satisfy turnstiles interface. */
 static struct lock_object invl_gen_ts = {
 	.lo_name = "invlts",
 };
 static struct pmap_invl_gen pmap_invl_gen_head = {
 	.gen = 1,
 	.next = NULL,
 };
 static u_long pmap_invl_gen = 1;
 static int pmap_invl_waiters;
 static struct callout pmap_invl_callout;
 static bool pmap_invl_callout_inited;
 
 #define	PMAP_ASSERT_NOT_IN_DI() \
     KASSERT(pmap_not_in_di(), ("DI already started"))
 
 static bool
 pmap_di_locked(void)
 {
 	int tun;
 
 	if ((cpu_feature2 & CPUID2_CX16) == 0)
 		return (true);
 	tun = 0;
 	TUNABLE_INT_FETCH("vm.pmap.di_locked", &tun);
 	return (tun != 0);
 }
 
 static int
 sysctl_pmap_di_locked(SYSCTL_HANDLER_ARGS)
 {
 	int locked;
 
 	locked = pmap_di_locked();
 	return (sysctl_handle_int(oidp, &locked, 0, req));
 }
 SYSCTL_PROC(_vm_pmap, OID_AUTO, di_locked, CTLTYPE_INT | CTLFLAG_RDTUN |
     CTLFLAG_MPSAFE, 0, 0, sysctl_pmap_di_locked, "",
     "Locked delayed invalidation");
 
 static bool pmap_not_in_di_l(void);
 static bool pmap_not_in_di_u(void);
 DEFINE_IFUNC(, bool, pmap_not_in_di, (void))
 {
 
 	return (pmap_di_locked() ? pmap_not_in_di_l : pmap_not_in_di_u);
 }
 
 static bool
 pmap_not_in_di_l(void)
 {
 	struct pmap_invl_gen *invl_gen;
 
 	invl_gen = &curthread->td_md.md_invl_gen;
 	return (invl_gen->gen == 0);
 }
 
 static void
 pmap_thread_init_invl_gen_l(struct thread *td)
 {
 	struct pmap_invl_gen *invl_gen;
 
 	invl_gen = &td->td_md.md_invl_gen;
 	invl_gen->gen = 0;
 }
 
 static void
 pmap_delayed_invl_wait_block(u_long *m_gen, u_long *invl_gen)
 {
 	struct turnstile *ts;
 
 	ts = turnstile_trywait(&invl_gen_ts);
 	if (*m_gen > atomic_load_long(invl_gen))
 		turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
 	else
 		turnstile_cancel(ts);
 }
 
 static void
 pmap_delayed_invl_finish_unblock(u_long new_gen)
 {
 	struct turnstile *ts;
 
 	turnstile_chain_lock(&invl_gen_ts);
 	ts = turnstile_lookup(&invl_gen_ts);
 	if (new_gen != 0)
 		pmap_invl_gen = new_gen;
 	if (ts != NULL) {
 		turnstile_broadcast(ts, TS_SHARED_QUEUE);
 		turnstile_unpend(ts);
 	}
 	turnstile_chain_unlock(&invl_gen_ts);
 }
 
 /*
  * Start a new Delayed Invalidation (DI) block of code, executed by
  * the current thread.  Within a DI block, the current thread may
  * destroy both the page table and PV list entries for a mapping and
  * then release the corresponding PV list lock before ensuring that
  * the mapping is flushed from the TLBs of any processors with the
  * pmap active.
  */
 static void
 pmap_delayed_invl_start_l(void)
 {
 	struct pmap_invl_gen *invl_gen;
 	u_long currgen;
 
 	invl_gen = &curthread->td_md.md_invl_gen;
 	PMAP_ASSERT_NOT_IN_DI();
 	mtx_lock(&invl_gen_mtx);
 	if (LIST_EMPTY(&pmap_invl_gen_tracker))
 		currgen = pmap_invl_gen;
 	else
 		currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
 	invl_gen->gen = currgen + 1;
 	LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
 	mtx_unlock(&invl_gen_mtx);
 }
 
 /*
  * Finish the DI block, previously started by the current thread.  All
  * required TLB flushes for the pages marked by
  * pmap_delayed_invl_page() must be finished before this function is
  * called.
  *
  * This function works by bumping the global DI generation number to
  * the generation number of the current thread's DI, unless there is a
  * pending DI that started earlier.  In the latter case, bumping the
  * global DI generation number would incorrectly signal that the
  * earlier DI had finished.  Instead, this function bumps the earlier
  * DI's generation number to match the generation number of the
  * current thread's DI.
  */
 static void
 pmap_delayed_invl_finish_l(void)
 {
 	struct pmap_invl_gen *invl_gen, *next;
 
 	invl_gen = &curthread->td_md.md_invl_gen;
 	KASSERT(invl_gen->gen != 0, ("missed invl_start"));
 	mtx_lock(&invl_gen_mtx);
 	next = LIST_NEXT(invl_gen, link);
 	if (next == NULL)
 		pmap_delayed_invl_finish_unblock(invl_gen->gen);
 	else
 		next->gen = invl_gen->gen;
 	LIST_REMOVE(invl_gen, link);
 	mtx_unlock(&invl_gen_mtx);
 	invl_gen->gen = 0;
 }
 
 static bool
 pmap_not_in_di_u(void)
 {
 	struct pmap_invl_gen *invl_gen;
 
 	invl_gen = &curthread->td_md.md_invl_gen;
 	return (((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) != 0);
 }
 
 static void
 pmap_thread_init_invl_gen_u(struct thread *td)
 {
 	struct pmap_invl_gen *invl_gen;
 
 	invl_gen = &td->td_md.md_invl_gen;
 	invl_gen->gen = 0;
 	invl_gen->next = (void *)PMAP_INVL_GEN_NEXT_INVALID;
 }
 
 static bool
 pmap_di_load_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *out)
 {
 	uint64_t new_high, new_low, old_high, old_low;
 	char res;
 
 	old_low = new_low = 0;
 	old_high = new_high = (uintptr_t)0;
 
 	__asm volatile("lock;cmpxchg16b\t%1"
 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
 	    : "b"(new_low), "c" (new_high)
 	    : "memory", "cc");
 	if (res == 0) {
 		if ((old_high & PMAP_INVL_GEN_NEXT_INVALID) != 0)
 			return (false);
 		out->gen = old_low;
 		out->next = (void *)old_high;
 	} else {
 		out->gen = new_low;
 		out->next = (void *)new_high;
 	}
 	return (true);
 }
 
 static bool
 pmap_di_store_invl(struct pmap_invl_gen *ptr, struct pmap_invl_gen *old_val,
     struct pmap_invl_gen *new_val)
 {
 	uint64_t new_high, new_low, old_high, old_low;
 	char res;
 
 	new_low = new_val->gen;
 	new_high = (uintptr_t)new_val->next;
 	old_low = old_val->gen;
 	old_high = (uintptr_t)old_val->next;
 
 	__asm volatile("lock;cmpxchg16b\t%1"
 	    : "=@cce" (res), "+m" (*ptr), "+a" (old_low), "+d" (old_high)
 	    : "b"(new_low), "c" (new_high)
 	    : "memory", "cc");
 	return (res);
 }
 
 static COUNTER_U64_DEFINE_EARLY(pv_page_count);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_page_count, CTLFLAG_RD,
     &pv_page_count, "Current number of allocated pv pages");
 
 static COUNTER_U64_DEFINE_EARLY(user_pt_page_count);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, user_pt_page_count, CTLFLAG_RD,
     &user_pt_page_count,
     "Current number of allocated page table pages for userspace");
 
 static COUNTER_U64_DEFINE_EARLY(kernel_pt_page_count);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, kernel_pt_page_count, CTLFLAG_RD,
     &kernel_pt_page_count,
     "Current number of allocated page table pages for the kernel");
 
 #ifdef PV_STATS
 
 static COUNTER_U64_DEFINE_EARLY(invl_start_restart);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_start_restart,
     CTLFLAG_RD, &invl_start_restart,
     "Number of delayed TLB invalidation request restarts");
 
 static COUNTER_U64_DEFINE_EARLY(invl_finish_restart);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_finish_restart, CTLFLAG_RD,
     &invl_finish_restart,
     "Number of delayed TLB invalidation completion restarts");
 
 static int invl_max_qlen;
 SYSCTL_INT(_vm_pmap, OID_AUTO, invl_max_qlen, CTLFLAG_RD,
     &invl_max_qlen, 0,
     "Maximum delayed TLB invalidation request queue length");
 #endif
 
 #define di_delay	locks_delay
 
 static void
 pmap_delayed_invl_start_u(void)
 {
 	struct pmap_invl_gen *invl_gen, *p, prev, new_prev;
 	struct thread *td;
 	struct lock_delay_arg lda;
 	uintptr_t prevl;
 	u_char pri;
 #ifdef PV_STATS
 	int i, ii;
 #endif
 
 	td = curthread;
 	invl_gen = &td->td_md.md_invl_gen;
 	PMAP_ASSERT_NOT_IN_DI();
 	lock_delay_arg_init(&lda, &di_delay);
 	invl_gen->saved_pri = 0;
 	pri = td->td_base_pri;
 	if (pri > PVM) {
 		thread_lock(td);
 		pri = td->td_base_pri;
 		if (pri > PVM) {
 			invl_gen->saved_pri = pri;
 			sched_prio(td, PVM);
 		}
 		thread_unlock(td);
 	}
 again:
 	PV_STAT(i = 0);
 	for (p = &pmap_invl_gen_head;; p = prev.next) {
 		PV_STAT(i++);
 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
 			PV_STAT(counter_u64_add(invl_start_restart, 1));
 			lock_delay(&lda);
 			goto again;
 		}
 		if (prevl == 0)
 			break;
 		prev.next = (void *)prevl;
 	}
 #ifdef PV_STATS
 	if ((ii = invl_max_qlen) < i)
 		atomic_cmpset_int(&invl_max_qlen, ii, i);
 #endif
 
 	if (!pmap_di_load_invl(p, &prev) || prev.next != NULL) {
 		PV_STAT(counter_u64_add(invl_start_restart, 1));
 		lock_delay(&lda);
 		goto again;
 	}
 
 	new_prev.gen = prev.gen;
 	new_prev.next = invl_gen;
 	invl_gen->gen = prev.gen + 1;
 
 	/* Formal fence between store to invl->gen and updating *p. */
 	atomic_thread_fence_rel();
 
 	/*
 	 * After inserting an invl_gen element with invalid bit set,
 	 * this thread blocks any other thread trying to enter the
 	 * delayed invalidation block.  Do not allow to remove us from
 	 * the CPU, because it causes starvation for other threads.
 	 */
 	critical_enter();
 
 	/*
 	 * ABA for *p is not possible there, since p->gen can only
 	 * increase.  So if the *p thread finished its di, then
 	 * started a new one and got inserted into the list at the
 	 * same place, its gen will appear greater than the previously
 	 * read gen.
 	 */
 	if (!pmap_di_store_invl(p, &prev, &new_prev)) {
 		critical_exit();
 		PV_STAT(counter_u64_add(invl_start_restart, 1));
 		lock_delay(&lda);
 		goto again;
 	}
 
 	/*
 	 * There we clear PMAP_INVL_GEN_NEXT_INVALID in
 	 * invl_gen->next, allowing other threads to iterate past us.
 	 * pmap_di_store_invl() provides fence between the generation
 	 * write and the update of next.
 	 */
 	invl_gen->next = NULL;
 	critical_exit();
 }
 
 static bool
 pmap_delayed_invl_finish_u_crit(struct pmap_invl_gen *invl_gen,
     struct pmap_invl_gen *p)
 {
 	struct pmap_invl_gen prev, new_prev;
 	u_long mygen;
 
 	/*
 	 * Load invl_gen->gen after setting invl_gen->next
 	 * PMAP_INVL_GEN_NEXT_INVALID.  This prevents larger
 	 * generations to propagate to our invl_gen->gen.  Lock prefix
 	 * in atomic_set_ptr() worked as seq_cst fence.
 	 */
 	mygen = atomic_load_long(&invl_gen->gen);
 
 	if (!pmap_di_load_invl(p, &prev) || prev.next != invl_gen)
 		return (false);
 
 	KASSERT(prev.gen < mygen,
 	    ("invalid di gen sequence %lu %lu", prev.gen, mygen));
 	new_prev.gen = mygen;
 	new_prev.next = (void *)((uintptr_t)invl_gen->next &
 	    ~PMAP_INVL_GEN_NEXT_INVALID);
 
 	/* Formal fence between load of prev and storing update to it. */
 	atomic_thread_fence_rel();
 
 	return (pmap_di_store_invl(p, &prev, &new_prev));
 }
 
 static void
 pmap_delayed_invl_finish_u(void)
 {
 	struct pmap_invl_gen *invl_gen, *p;
 	struct thread *td;
 	struct lock_delay_arg lda;
 	uintptr_t prevl;
 
 	td = curthread;
 	invl_gen = &td->td_md.md_invl_gen;
 	KASSERT(invl_gen->gen != 0, ("missed invl_start: gen 0"));
 	KASSERT(((uintptr_t)invl_gen->next & PMAP_INVL_GEN_NEXT_INVALID) == 0,
 	    ("missed invl_start: INVALID"));
 	lock_delay_arg_init(&lda, &di_delay);
 
 again:
 	for (p = &pmap_invl_gen_head; p != NULL; p = (void *)prevl) {
 		prevl = (uintptr_t)atomic_load_ptr(&p->next);
 		if ((prevl & PMAP_INVL_GEN_NEXT_INVALID) != 0) {
 			PV_STAT(counter_u64_add(invl_finish_restart, 1));
 			lock_delay(&lda);
 			goto again;
 		}
 		if ((void *)prevl == invl_gen)
 			break;
 	}
 
 	/*
 	 * It is legitimate to not find ourself on the list if a
 	 * thread before us finished its DI and started it again.
 	 */
 	if (__predict_false(p == NULL)) {
 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
 		lock_delay(&lda);
 		goto again;
 	}
 
 	critical_enter();
 	atomic_set_ptr((uintptr_t *)&invl_gen->next,
 	    PMAP_INVL_GEN_NEXT_INVALID);
 	if (!pmap_delayed_invl_finish_u_crit(invl_gen, p)) {
 		atomic_clear_ptr((uintptr_t *)&invl_gen->next,
 		    PMAP_INVL_GEN_NEXT_INVALID);
 		critical_exit();
 		PV_STAT(counter_u64_add(invl_finish_restart, 1));
 		lock_delay(&lda);
 		goto again;
 	}
 	critical_exit();
 	if (atomic_load_int(&pmap_invl_waiters) > 0)
 		pmap_delayed_invl_finish_unblock(0);
 	if (invl_gen->saved_pri != 0) {
 		thread_lock(td);
 		sched_prio(td, invl_gen->saved_pri);
 		thread_unlock(td);
 	}
 }
 
 #ifdef DDB
 DB_SHOW_COMMAND(di_queue, pmap_di_queue)
 {
 	struct pmap_invl_gen *p, *pn;
 	struct thread *td;
 	uintptr_t nextl;
 	bool first;
 
 	for (p = &pmap_invl_gen_head, first = true; p != NULL; p = pn,
 	    first = false) {
 		nextl = (uintptr_t)atomic_load_ptr(&p->next);
 		pn = (void *)(nextl & ~PMAP_INVL_GEN_NEXT_INVALID);
 		td = first ? NULL : __containerof(p, struct thread,
 		    td_md.md_invl_gen);
 		db_printf("gen %lu inv %d td %p tid %d\n", p->gen,
 		    (nextl & PMAP_INVL_GEN_NEXT_INVALID) != 0, td,
 		    td != NULL ? td->td_tid : -1);
 	}
 }
 #endif
 
 #ifdef PV_STATS
 static COUNTER_U64_DEFINE_EARLY(invl_wait);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait,
     CTLFLAG_RD, &invl_wait,
     "Number of times DI invalidation blocked pmap_remove_all/write");
 
 static COUNTER_U64_DEFINE_EARLY(invl_wait_slow);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, invl_wait_slow, CTLFLAG_RD,
      &invl_wait_slow, "Number of slow invalidation waits for lockless DI");
 
 #endif
 
 #ifdef NUMA
 static u_long *
 pmap_delayed_invl_genp(vm_page_t m)
 {
 	vm_paddr_t pa;
 	u_long *gen;
 
 	pa = VM_PAGE_TO_PHYS(m);
 	if (__predict_false((pa) > pmap_last_pa))
 		gen = &pv_dummy_large.pv_invl_gen;
 	else
 		gen = &(pa_to_pmdp(pa)->pv_invl_gen);
 
 	return (gen);
 }
 #else
 static u_long *
 pmap_delayed_invl_genp(vm_page_t m)
 {
 
 	return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
 }
 #endif
 
 static void
 pmap_delayed_invl_callout_func(void *arg __unused)
 {
 
 	if (atomic_load_int(&pmap_invl_waiters) == 0)
 		return;
 	pmap_delayed_invl_finish_unblock(0);
 }
 
 static void
 pmap_delayed_invl_callout_init(void *arg __unused)
 {
 
 	if (pmap_di_locked())
 		return;
 	callout_init(&pmap_invl_callout, 1);
 	pmap_invl_callout_inited = true;
 }
 SYSINIT(pmap_di_callout, SI_SUB_CPU + 1, SI_ORDER_ANY,
     pmap_delayed_invl_callout_init, NULL);
 
 /*
  * Ensure that all currently executing DI blocks, that need to flush
  * TLB for the given page m, actually flushed the TLB at the time the
  * function returned.  If the page m has an empty PV list and we call
  * pmap_delayed_invl_wait(), upon its return we know that no CPU has a
  * valid mapping for the page m in either its page table or TLB.
  *
  * This function works by blocking until the global DI generation
  * number catches up with the generation number associated with the
  * given page m and its PV list.  Since this function's callers
  * typically own an object lock and sometimes own a page lock, it
  * cannot sleep.  Instead, it blocks on a turnstile to relinquish the
  * processor.
  */
 static void
 pmap_delayed_invl_wait_l(vm_page_t m)
 {
 	u_long *m_gen;
 #ifdef PV_STATS
 	bool accounted = false;
 #endif
 
 	m_gen = pmap_delayed_invl_genp(m);
 	while (*m_gen > pmap_invl_gen) {
 #ifdef PV_STATS
 		if (!accounted) {
 			counter_u64_add(invl_wait, 1);
 			accounted = true;
 		}
 #endif
 		pmap_delayed_invl_wait_block(m_gen, &pmap_invl_gen);
 	}
 }
 
 static void
 pmap_delayed_invl_wait_u(vm_page_t m)
 {
 	u_long *m_gen;
 	struct lock_delay_arg lda;
 	bool fast;
 
 	fast = true;
 	m_gen = pmap_delayed_invl_genp(m);
 	lock_delay_arg_init(&lda, &di_delay);
 	while (*m_gen > atomic_load_long(&pmap_invl_gen_head.gen)) {
 		if (fast || !pmap_invl_callout_inited) {
 			PV_STAT(counter_u64_add(invl_wait, 1));
 			lock_delay(&lda);
 			fast = false;
 		} else {
 			/*
 			 * The page's invalidation generation number
 			 * is still below the current thread's number.
 			 * Prepare to block so that we do not waste
 			 * CPU cycles or worse, suffer livelock.
 			 *
 			 * Since it is impossible to block without
 			 * racing with pmap_delayed_invl_finish_u(),
 			 * prepare for the race by incrementing
 			 * pmap_invl_waiters and arming a 1-tick
 			 * callout which will unblock us if we lose
 			 * the race.
 			 */
 			atomic_add_int(&pmap_invl_waiters, 1);
 
 			/*
 			 * Re-check the current thread's invalidation
 			 * generation after incrementing
 			 * pmap_invl_waiters, so that there is no race
 			 * with pmap_delayed_invl_finish_u() setting
 			 * the page generation and checking
 			 * pmap_invl_waiters.  The only race allowed
 			 * is for a missed unblock, which is handled
 			 * by the callout.
 			 */
 			if (*m_gen >
 			    atomic_load_long(&pmap_invl_gen_head.gen)) {
 				callout_reset(&pmap_invl_callout, 1,
 				    pmap_delayed_invl_callout_func, NULL);
 				PV_STAT(counter_u64_add(invl_wait_slow, 1));
 				pmap_delayed_invl_wait_block(m_gen,
 				    &pmap_invl_gen_head.gen);
 			}
 			atomic_add_int(&pmap_invl_waiters, -1);
 		}
 	}
 }
 
 DEFINE_IFUNC(, void, pmap_thread_init_invl_gen, (struct thread *))
 {
 
 	return (pmap_di_locked() ? pmap_thread_init_invl_gen_l :
 	    pmap_thread_init_invl_gen_u);
 }
 
 DEFINE_IFUNC(static, void, pmap_delayed_invl_start, (void))
 {
 
 	return (pmap_di_locked() ? pmap_delayed_invl_start_l :
 	    pmap_delayed_invl_start_u);
 }
 
 DEFINE_IFUNC(static, void, pmap_delayed_invl_finish, (void))
 {
 
 	return (pmap_di_locked() ? pmap_delayed_invl_finish_l :
 	    pmap_delayed_invl_finish_u);
 }
 
 DEFINE_IFUNC(static, void, pmap_delayed_invl_wait, (vm_page_t))
 {
 
 	return (pmap_di_locked() ? pmap_delayed_invl_wait_l :
 	    pmap_delayed_invl_wait_u);
 }
 
 /*
  * Mark the page m's PV list as participating in the current thread's
  * DI block.  Any threads concurrently using m's PV list to remove or
  * restrict all mappings to m will wait for the current thread's DI
  * block to complete before proceeding.
  *
  * The function works by setting the DI generation number for m's PV
  * list to at least the DI generation number of the current thread.
  * This forces a caller of pmap_delayed_invl_wait() to block until
  * current thread calls pmap_delayed_invl_finish().
  */
 static void
 pmap_delayed_invl_page(vm_page_t m)
 {
 	u_long gen, *m_gen;
 
 	rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
 	gen = curthread->td_md.md_invl_gen.gen;
 	if (gen == 0)
 		return;
 	m_gen = pmap_delayed_invl_genp(m);
 	if (*m_gen < gen)
 		*m_gen = gen;
 }
 
 /*
  * Crashdump maps.
  */
 static caddr_t crashdumpmap;
 
 /*
  * Internal flags for pmap_enter()'s helper functions.
  */
 #define	PMAP_ENTER_NORECLAIM	0x1000000	/* Don't reclaim PV entries. */
 #define	PMAP_ENTER_NOREPLACE	0x2000000	/* Don't replace mappings. */
 
 /*
  * Internal flags for pmap_mapdev_internal() and
  * pmap_change_props_locked().
  */
 #define	MAPDEV_FLUSHCACHE	0x00000001	/* Flush cache after mapping. */
 #define	MAPDEV_SETATTR		0x00000002	/* Modify existing attrs. */
 #define	MAPDEV_ASSERTVALID	0x00000004	/* Assert mapping validity. */
 
 TAILQ_HEAD(pv_chunklist, pv_chunk);
 
 static void	free_pv_chunk(struct pv_chunk *pc);
 static void	free_pv_chunk_batch(struct pv_chunklist *batch);
 static void	free_pv_entry(pmap_t pmap, pv_entry_t pv);
 static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
 static int	popcnt_pc_map_pq(uint64_t *map);
 static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
 static void	reserve_pv_entries(pmap_t pmap, int needed,
 		    struct rwlock **lockp);
 static void	pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
 		    struct rwlock **lockp);
 static bool	pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
 		    u_int flags, struct rwlock **lockp);
 #if VM_NRESERVLEVEL > 0
 static void	pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
 		    struct rwlock **lockp);
 #endif
 static void	pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
 static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
 		    vm_offset_t va);
 
 static void	pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte);
 static int pmap_change_props_locked(vm_offset_t va, vm_size_t size,
     vm_prot_t prot, int mode, int flags);
 static bool	pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
 static bool	pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
     vm_offset_t va, struct rwlock **lockp);
 static bool	pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
     vm_offset_t va);
 static int	pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
 		    vm_prot_t prot, struct rwlock **lockp);
 static int	pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
 		    u_int flags, vm_page_t m, struct rwlock **lockp);
 static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
     vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
 static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
 static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
     bool allpte_PG_A_set);
 static void pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva,
     vm_offset_t eva);
 static void pmap_invalidate_cache_range_all(vm_offset_t sva,
     vm_offset_t eva);
 static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
 		    pd_entry_t pde);
 static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
 static vm_page_t pmap_large_map_getptp_unlocked(void);
 static vm_paddr_t pmap_large_map_kextract(vm_offset_t va);
 #if VM_NRESERVLEVEL > 0
 static bool pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
     vm_page_t mpte, struct rwlock **lockp);
 #endif
 static bool pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
     vm_prot_t prot);
 static void pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask);
 static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
     bool exec);
 static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
 static pd_entry_t *pmap_pti_pde(vm_offset_t va);
 static void pmap_pti_wire_pte(void *pte);
 static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
     struct spglist *free, struct rwlock **lockp);
 static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
 static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
 static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
     struct spglist *free);
 static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
 		    pd_entry_t *pde, struct spglist *free,
 		    struct rwlock **lockp);
 static bool pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
     vm_page_t m, struct rwlock **lockp);
 static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
     pd_entry_t newpde);
 static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
 
 static pd_entry_t *pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
 		struct rwlock **lockp);
 static vm_page_t pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex,
 		struct rwlock **lockp, vm_offset_t va);
 static vm_page_t pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex,
 		struct rwlock **lockp, vm_offset_t va);
 static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
 		struct rwlock **lockp);
 
 static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
     struct spglist *free);
 static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
 
 static vm_page_t pmap_alloc_pt_page(pmap_t, vm_pindex_t, int);
 static void pmap_free_pt_page(pmap_t, vm_page_t, bool);
 
 /********************/
 /* Inline functions */
 /********************/
 
 /*
  * Return a non-clipped indexes for a given VA, which are page table
  * pages indexes at the corresponding level.
  */
 static __inline vm_pindex_t
 pmap_pde_pindex(vm_offset_t va)
 {
 	return (va >> PDRSHIFT);
 }
 
 static __inline vm_pindex_t
 pmap_pdpe_pindex(vm_offset_t va)
 {
 	return (NUPDE + (va >> PDPSHIFT));
 }
 
 static __inline vm_pindex_t
 pmap_pml4e_pindex(vm_offset_t va)
 {
 	return (NUPDE + NUPDPE + (va >> PML4SHIFT));
 }
 
 static __inline vm_pindex_t
 pmap_pml5e_pindex(vm_offset_t va)
 {
 	return (NUPDE + NUPDPE + NUPML4E + (va >> PML5SHIFT));
 }
 
 static __inline pml4_entry_t *
 pmap_pml5e(pmap_t pmap, vm_offset_t va)
 {
 
 	MPASS(pmap_is_la57(pmap));
 	return (&pmap->pm_pmltop[pmap_pml5e_index(va)]);
 }
 
 static __inline pml4_entry_t *
 pmap_pml5e_u(pmap_t pmap, vm_offset_t va)
 {
 
 	MPASS(pmap_is_la57(pmap));
 	return (&pmap->pm_pmltopu[pmap_pml5e_index(va)]);
 }
 
 static __inline pml4_entry_t *
 pmap_pml5e_to_pml4e(pml5_entry_t *pml5e, vm_offset_t va)
 {
 	pml4_entry_t *pml4e;
 
 	/* XXX MPASS(pmap_is_la57(pmap); */
 	pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
 	return (&pml4e[pmap_pml4e_index(va)]);
 }
 
 /* Return a pointer to the PML4 slot that corresponds to a VA */
 static __inline pml4_entry_t *
 pmap_pml4e(pmap_t pmap, vm_offset_t va)
 {
 	pml5_entry_t *pml5e;
 	pml4_entry_t *pml4e;
 	pt_entry_t PG_V;
 
 	if (pmap_is_la57(pmap)) {
 		pml5e = pmap_pml5e(pmap, va);
 		PG_V = pmap_valid_bit(pmap);
 		if ((*pml5e & PG_V) == 0)
 			return (NULL);
 		pml4e = (pml4_entry_t *)PHYS_TO_DMAP(*pml5e & PG_FRAME);
 	} else {
 		pml4e = pmap->pm_pmltop;
 	}
 	return (&pml4e[pmap_pml4e_index(va)]);
 }
 
 static __inline pml4_entry_t *
 pmap_pml4e_u(pmap_t pmap, vm_offset_t va)
 {
 	MPASS(!pmap_is_la57(pmap));
 	return (&pmap->pm_pmltopu[pmap_pml4e_index(va)]);
 }
 
 /* Return a pointer to the PDP slot that corresponds to a VA */
 static __inline pdp_entry_t *
 pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 
 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
 	return (&pdpe[pmap_pdpe_index(va)]);
 }
 
 /* Return a pointer to the PDP slot that corresponds to a VA */
 static __inline pdp_entry_t *
 pmap_pdpe(pmap_t pmap, vm_offset_t va)
 {
 	pml4_entry_t *pml4e;
 	pt_entry_t PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	pml4e = pmap_pml4e(pmap, va);
 	if (pml4e == NULL || (*pml4e & PG_V) == 0)
 		return (NULL);
 	return (pmap_pml4e_to_pdpe(pml4e, va));
 }
 
 /* Return a pointer to the PD slot that corresponds to a VA */
 static __inline pd_entry_t *
 pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
 {
 	pd_entry_t *pde;
 
 	KASSERT((*pdpe & PG_PS) == 0,
 	    ("%s: pdpe %#lx is a leaf", __func__, *pdpe));
 	pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
 	return (&pde[pmap_pde_index(va)]);
 }
 
 /* Return a pointer to the PD slot that corresponds to a VA */
 static __inline pd_entry_t *
 pmap_pde(pmap_t pmap, vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 	pt_entry_t PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	pdpe = pmap_pdpe(pmap, va);
 	if (pdpe == NULL || (*pdpe & PG_V) == 0)
 		return (NULL);
 	KASSERT((*pdpe & PG_PS) == 0,
 	    ("pmap_pde for 1G page, pmap %p va %#lx", pmap, va));
 	return (pmap_pdpe_to_pde(pdpe, va));
 }
 
 /* Return a pointer to the PT slot that corresponds to a VA */
 static __inline pt_entry_t *
 pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
 {
 	pt_entry_t *pte;
 
 	KASSERT((*pde & PG_PS) == 0,
 	    ("%s: pde %#lx is a leaf", __func__, *pde));
 	pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
 	return (&pte[pmap_pte_index(va)]);
 }
 
 /* Return a pointer to the PT slot that corresponds to a VA */
 static __inline pt_entry_t *
 pmap_pte(pmap_t pmap, vm_offset_t va)
 {
 	pd_entry_t *pde;
 	pt_entry_t PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	pde = pmap_pde(pmap, va);
 	if (pde == NULL || (*pde & PG_V) == 0)
 		return (NULL);
 	if ((*pde & PG_PS) != 0)	/* compat with i386 pmap_pte() */
 		return ((pt_entry_t *)pde);
 	return (pmap_pde_to_pte(pde, va));
 }
 
 static __inline void
 pmap_resident_count_adj(pmap_t pmap, int count)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
 	    ("pmap %p resident count underflow %ld %d", pmap,
 	    pmap->pm_stats.resident_count, count));
 	pmap->pm_stats.resident_count += count;
 }
 
 static __inline void
 pmap_pt_page_count_pinit(pmap_t pmap, int count)
 {
 	KASSERT(pmap->pm_stats.resident_count + count >= 0,
 	    ("pmap %p resident count underflow %ld %d", pmap,
 	    pmap->pm_stats.resident_count, count));
 	pmap->pm_stats.resident_count += count;
 }
 
 static __inline void
 pmap_pt_page_count_adj(pmap_t pmap, int count)
 {
 	if (pmap == kernel_pmap)
 		counter_u64_add(kernel_pt_page_count, count);
 	else {
 		if (pmap != NULL)
 			pmap_resident_count_adj(pmap, count);
 		counter_u64_add(user_pt_page_count, count);
 	}
 }
 
 pt_entry_t vtoptem __read_mostly = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT +
     NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1) << 3;
 vm_offset_t PTmap __read_mostly = (vm_offset_t)P4Tmap;
 
 pt_entry_t *
 vtopte(vm_offset_t va)
 {
 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
 
 	return ((pt_entry_t *)(PTmap + ((va >> (PAGE_SHIFT - 3)) & vtoptem)));
 }
 
 pd_entry_t vtopdem __read_mostly = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
     NPML4EPGSHIFT)) - 1) << 3;
 vm_offset_t PDmap __read_mostly = (vm_offset_t)P4Dmap;
 
 static __inline pd_entry_t *
 vtopde(vm_offset_t va)
 {
 	KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
 
 	return ((pt_entry_t *)(PDmap + ((va >> (PDRSHIFT - 3)) & vtopdem)));
 }
 
 static u_int64_t
 allocpages(vm_paddr_t *firstaddr, int n)
 {
 	u_int64_t ret;
 
 	ret = *firstaddr;
 	bzero((void *)ret, n * PAGE_SIZE);
 	*firstaddr += n * PAGE_SIZE;
 	return (ret);
 }
 
 CTASSERT(powerof2(NDMPML4E));
 
 /* number of kernel PDP slots */
 #define	NKPDPE(ptpgs)		howmany(ptpgs, NPDEPG)
 
 static void
 nkpt_init(vm_paddr_t addr)
 {
 	int pt_pages;
 
 #ifdef NKPT
 	pt_pages = NKPT;
 #else
 	pt_pages = howmany(addr - kernphys, NBPDR) + 1; /* +1 for 2M hole @0 */
 	pt_pages += NKPDPE(pt_pages);
 
 	/*
 	 * Add some slop beyond the bare minimum required for bootstrapping
 	 * the kernel.
 	 *
 	 * This is quite important when allocating KVA for kernel modules.
 	 * The modules are required to be linked in the negative 2GB of
 	 * the address space.  If we run out of KVA in this region then
 	 * pmap_growkernel() will need to allocate page table pages to map
 	 * the entire 512GB of KVA space which is an unnecessary tax on
 	 * physical memory.
 	 *
 	 * Secondly, device memory mapped as part of setting up the low-
 	 * level console(s) is taken from KVA, starting at virtual_avail.
 	 * This is because cninit() is called after pmap_bootstrap() but
 	 * before vm_mem_init() and pmap_init(). 20MB for a frame buffer
 	 * is not uncommon.
 	 */
 	pt_pages += 32;		/* 64MB additional slop. */
 #endif
 	nkpt = pt_pages;
 }
 
 /*
  * Returns the proper write/execute permission for a physical page that is
  * part of the initial boot allocations.
  *
  * If the page has kernel text, it is marked as read-only. If the page has
  * kernel read-only data, it is marked as read-only/not-executable. If the
  * page has only read-write data, it is marked as read-write/not-executable.
  * If the page is below/above the kernel range, it is marked as read-write.
  *
  * This function operates on 2M pages, since we map the kernel space that
  * way.
  */
 static inline pt_entry_t
 bootaddr_rwx(vm_paddr_t pa)
 {
 	/*
 	 * The kernel is loaded at a 2MB-aligned address, and memory below that
 	 * need not be executable.  The .bss section is padded to a 2MB
 	 * boundary, so memory following the kernel need not be executable
 	 * either.  Preloaded kernel modules have their mapping permissions
 	 * fixed up by the linker.
 	 */
 	if (pa < trunc_2mpage(kernphys + btext - KERNSTART) ||
 	    pa >= trunc_2mpage(kernphys + _end - KERNSTART))
 		return (X86_PG_RW | pg_nx);
 
 	/*
 	 * The linker should ensure that the read-only and read-write
 	 * portions don't share the same 2M page, so this shouldn't
 	 * impact read-only data. However, in any case, any page with
 	 * read-write data needs to be read-write.
 	 */
 	if (pa >= trunc_2mpage(kernphys + brwsection - KERNSTART))
 		return (X86_PG_RW | pg_nx);
 
 	/*
 	 * Mark any 2M page containing kernel text as read-only. Mark
 	 * other pages with read-only data as read-only and not executable.
 	 * (It is likely a small portion of the read-only data section will
 	 * be marked as read-only, but executable. This should be acceptable
 	 * since the read-only protection will keep the data from changing.)
 	 * Note that fixups to the .text section will still work until we
 	 * set CR0.WP.
 	 */
 	if (pa < round_2mpage(kernphys + etext - KERNSTART))
 		return (0);
 	return (pg_nx);
 }
 
 static void
 create_pagetables(vm_paddr_t *firstaddr)
 {
 	pd_entry_t *pd_p;
 	pdp_entry_t *pdp_p;
 	pml4_entry_t *p4_p;
 	uint64_t DMPDkernphys;
 	vm_paddr_t pax;
 #ifdef KASAN
 	pt_entry_t *pt_p;
 	uint64_t KASANPDphys, KASANPTphys, KASANphys;
 	vm_offset_t kasankernbase;
 	int kasankpdpi, kasankpdi, nkasanpte;
 #endif
 	int i, j, ndm1g, nkpdpe, nkdmpde;
 
 	TSENTER();
 	/* Allocate page table pages for the direct map */
 	ndmpdp = howmany(ptoa(Maxmem), NBPDP);
 	if (ndmpdp < 4)		/* Minimum 4GB of dirmap */
 		ndmpdp = 4;
 	ndmpdpphys = howmany(ndmpdp, NPDPEPG);
 	if (ndmpdpphys > NDMPML4E) {
 		/*
 		 * Each NDMPML4E allows 512 GB, so limit to that,
 		 * and then readjust ndmpdp and ndmpdpphys.
 		 */
 		printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
 		Maxmem = atop(NDMPML4E * NBPML4);
 		ndmpdpphys = NDMPML4E;
 		ndmpdp = NDMPML4E * NPDEPG;
 	}
 	DMPDPphys = allocpages(firstaddr, ndmpdpphys);
 	ndm1g = 0;
 	if ((amd_feature & AMDID_PAGE1GB) != 0) {
 		/*
 		 * Calculate the number of 1G pages that will fully fit in
 		 * Maxmem.
 		 */
 		ndm1g = ptoa(Maxmem) >> PDPSHIFT;
 
 		/*
 		 * Allocate 2M pages for the kernel. These will be used in
 		 * place of the one or more 1G pages from ndm1g that maps
 		 * kernel memory into DMAP.
 		 */
 		nkdmpde = howmany((vm_offset_t)brwsection - KERNSTART +
 		    kernphys - rounddown2(kernphys, NBPDP), NBPDP);
 		DMPDkernphys = allocpages(firstaddr, nkdmpde);
 	}
 	if (ndm1g < ndmpdp)
 		DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
 	dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
 
 	/* Allocate pages. */
 	KPML4phys = allocpages(firstaddr, 1);
 	KPDPphys = allocpages(firstaddr, NKPML4E);
 #ifdef KASAN
 	KASANPDPphys = allocpages(firstaddr, NKASANPML4E);
 	KASANPDphys = allocpages(firstaddr, 1);
 #endif
 #ifdef KMSAN
 	/*
 	 * The KMSAN shadow maps are initially left unpopulated, since there is
 	 * no need to shadow memory above KERNBASE.
 	 */
 	KMSANSHADPDPphys = allocpages(firstaddr, NKMSANSHADPML4E);
 	KMSANORIGPDPphys = allocpages(firstaddr, NKMSANORIGPML4E);
 #endif
 
 	/*
 	 * Allocate the initial number of kernel page table pages required to
 	 * bootstrap.  We defer this until after all memory-size dependent
 	 * allocations are done (e.g. direct map), so that we don't have to
 	 * build in too much slop in our estimate.
 	 *
 	 * Note that when NKPML4E > 1, we have an empty page underneath
 	 * all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
 	 * pages.  (pmap_enter requires a PD page to exist for each KPML4E.)
 	 */
 	nkpt_init(*firstaddr);
 	nkpdpe = NKPDPE(nkpt);
 
 	KPTphys = allocpages(firstaddr, nkpt);
 	KPDphys = allocpages(firstaddr, nkpdpe);
 
 #ifdef KASAN
 	nkasanpte = howmany(nkpt, KASAN_SHADOW_SCALE);
 	KASANPTphys = allocpages(firstaddr, nkasanpte);
 	KASANphys = allocpages(firstaddr, nkasanpte * NPTEPG);
 #endif
 
 	/*
 	 * Connect the zero-filled PT pages to their PD entries.  This
 	 * implicitly maps the PT pages at their correct locations within
 	 * the PTmap.
 	 */
 	pd_p = (pd_entry_t *)KPDphys;
 	for (i = 0; i < nkpt; i++)
 		pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
 
 	/*
 	 * Map from start of the kernel in physical memory (staging
 	 * area) to the end of loader preallocated memory using 2MB
 	 * pages.  This replaces some of the PD entries created above.
 	 * For compatibility, identity map 2M at the start.
 	 */
 	pd_p[0] = X86_PG_V | PG_PS | pg_g | X86_PG_M | X86_PG_A |
 	    X86_PG_RW | pg_nx;
 	for (i = 1, pax = kernphys; pax < KERNend; i++, pax += NBPDR) {
 		/* Preset PG_M and PG_A because demotion expects it. */
 		pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
 		    X86_PG_A | bootaddr_rwx(pax);
 	}
 
 	/*
 	 * Because we map the physical blocks in 2M pages, adjust firstaddr
 	 * to record the physical blocks we've actually mapped into kernel
 	 * virtual address space.
 	 */
 	if (*firstaddr < round_2mpage(KERNend))
 		*firstaddr = round_2mpage(KERNend);
 
 	/* And connect up the PD to the PDP (leaving room for L4 pages) */
 	pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
 	for (i = 0; i < nkpdpe; i++)
 		pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
 
 #ifdef KASAN
 	kasankernbase = kasan_md_addr_to_shad(KERNBASE);
 	kasankpdpi = pmap_pdpe_index(kasankernbase);
 	kasankpdi = pmap_pde_index(kasankernbase);
 
 	pdp_p = (pdp_entry_t *)KASANPDPphys;
 	pdp_p[kasankpdpi] = (KASANPDphys | X86_PG_RW | X86_PG_V | pg_nx);
 
 	pd_p = (pd_entry_t *)KASANPDphys;
 	for (i = 0; i < nkasanpte; i++)
 		pd_p[i + kasankpdi] = (KASANPTphys + ptoa(i)) | X86_PG_RW |
 		    X86_PG_V | pg_nx;
 
 	pt_p = (pt_entry_t *)KASANPTphys;
 	for (i = 0; i < nkasanpte * NPTEPG; i++)
 		pt_p[i] = (KASANphys + ptoa(i)) | X86_PG_RW | X86_PG_V |
 		    X86_PG_M | X86_PG_A | pg_nx;
 #endif
 
 	/*
 	 * Now, set up the direct map region using 2MB and/or 1GB pages.  If
 	 * the end of physical memory is not aligned to a 1GB page boundary,
 	 * then the residual physical memory is mapped with 2MB pages.  Later,
 	 * if pmap_mapdev{_attr}() uses the direct map for non-write-back
 	 * memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
 	 * that are partially used. 
 	 */
 	pd_p = (pd_entry_t *)DMPDphys;
 	for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
 		pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
 		/* Preset PG_M and PG_A because demotion expects it. */
 		pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
 		    X86_PG_M | X86_PG_A | pg_nx;
 	}
 	pdp_p = (pdp_entry_t *)DMPDPphys;
 	for (i = 0; i < ndm1g; i++) {
 		pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
 		/* Preset PG_M and PG_A because demotion expects it. */
 		pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
 		    X86_PG_M | X86_PG_A | pg_nx;
 	}
 	for (j = 0; i < ndmpdp; i++, j++) {
 		pdp_p[i] = DMPDphys + ptoa(j);
 		pdp_p[i] |= X86_PG_RW | X86_PG_V | pg_nx;
 	}
 
 	/*
 	 * Instead of using a 1G page for the memory containing the kernel,
 	 * use 2M pages with read-only and no-execute permissions.  (If using 1G
 	 * pages, this will partially overwrite the PDPEs above.)
 	 */
 	if (ndm1g > 0) {
 		pd_p = (pd_entry_t *)DMPDkernphys;
 		for (i = 0, pax = rounddown2(kernphys, NBPDP);
 		    i < NPDEPG * nkdmpde; i++, pax += NBPDR) {
 			pd_p[i] = pax | X86_PG_V | PG_PS | pg_g | X86_PG_M |
 			    X86_PG_A | pg_nx | bootaddr_rwx(pax);
 		}
 		j = rounddown2(kernphys, NBPDP) >> PDPSHIFT;
 		for (i = 0; i < nkdmpde; i++) {
 			pdp_p[i + j] = (DMPDkernphys + ptoa(i)) |
 			    X86_PG_RW | X86_PG_V | pg_nx;
 		}
 	}
 
 	/* And recursively map PML4 to itself in order to get PTmap */
 	p4_p = (pml4_entry_t *)KPML4phys;
 	p4_p[PML4PML4I] = KPML4phys;
 	p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
 
 #ifdef KASAN
 	/* Connect the KASAN shadow map slots up to the PML4. */
 	for (i = 0; i < NKASANPML4E; i++) {
 		p4_p[KASANPML4I + i] = KASANPDPphys + ptoa(i);
 		p4_p[KASANPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
 	}
 #endif
 
 #ifdef KMSAN
 	/* Connect the KMSAN shadow map slots up to the PML4. */
 	for (i = 0; i < NKMSANSHADPML4E; i++) {
 		p4_p[KMSANSHADPML4I + i] = KMSANSHADPDPphys + ptoa(i);
 		p4_p[KMSANSHADPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
 	}
 
 	/* Connect the KMSAN origin map slots up to the PML4. */
 	for (i = 0; i < NKMSANORIGPML4E; i++) {
 		p4_p[KMSANORIGPML4I + i] = KMSANORIGPDPphys + ptoa(i);
 		p4_p[KMSANORIGPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
 	}
 #endif
 
 	/* Connect the Direct Map slots up to the PML4. */
 	for (i = 0; i < ndmpdpphys; i++) {
 		p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
 		p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V | pg_nx;
 	}
 
 	/* Connect the KVA slots up to the PML4 */
 	for (i = 0; i < NKPML4E; i++) {
 		p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
 		p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
 	}
 
 	kernel_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
 	TSEXIT();
 }
 
 /*
  *	Bootstrap the system enough to run with virtual memory.
  *
  *	On amd64 this is called after mapping has already been enabled
  *	and just syncs the pmap module with what has already been done.
  *	[We can't call it easily with mapping off since the kernel is not
  *	mapped with PA == VA, hence we would have to relocate every address
  *	from the linked base (virtual) address "KERNBASE" to the actual
  *	(physical) address starting relative to 0]
  */
 void
 pmap_bootstrap(vm_paddr_t *firstaddr)
 {
 	vm_offset_t va;
 	pt_entry_t *pte, *pcpu_pte;
 	struct region_descriptor r_gdt;
 	uint64_t cr4, pcpu0_phys;
 	u_long res;
 	int i;
 
 	TSENTER();
 	KERNend = *firstaddr;
 	res = atop(KERNend - (vm_paddr_t)kernphys);
 
 	if (!pti)
 		pg_g = X86_PG_G;
 
 	/*
 	 * Create an initial set of page tables to run the kernel in.
 	 */
 	create_pagetables(firstaddr);
 
 	pcpu0_phys = allocpages(firstaddr, 1);
 
 	/*
 	 * Add a physical memory segment (vm_phys_seg) corresponding to the
 	 * preallocated kernel page table pages so that vm_page structures
 	 * representing these pages will be created.  The vm_page structures
 	 * are required for promotion of the corresponding kernel virtual
 	 * addresses to superpage mappings.
 	 */
 	vm_phys_early_add_seg(KPTphys, KPTphys + ptoa(nkpt));
 
 	/*
 	 * Account for the virtual addresses mapped by create_pagetables().
 	 */
 	virtual_avail = (vm_offset_t)KERNSTART + round_2mpage(KERNend -
 	    (vm_paddr_t)kernphys);
 	virtual_end = VM_MAX_KERNEL_ADDRESS;
 
 	/*
 	 * Enable PG_G global pages, then switch to the kernel page
 	 * table from the bootstrap page table.  After the switch, it
 	 * is possible to enable SMEP and SMAP since PG_U bits are
 	 * correct now.
 	 */
 	cr4 = rcr4();
 	cr4 |= CR4_PGE;
 	load_cr4(cr4);
 	load_cr3(KPML4phys);
 	if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
 		cr4 |= CR4_SMEP;
 	if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
 		cr4 |= CR4_SMAP;
 	load_cr4(cr4);
 
 	/*
 	 * Initialize the kernel pmap (which is statically allocated).
 	 * Count bootstrap data as being resident in case any of this data is
 	 * later unmapped (using pmap_remove()) and freed.
 	 */
 	PMAP_LOCK_INIT(kernel_pmap);
 	kernel_pmap->pm_pmltop = kernel_pml4;
 	kernel_pmap->pm_cr3 = KPML4phys;
 	kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
 	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
 	kernel_pmap->pm_stats.resident_count = res;
 	vm_radix_init(&kernel_pmap->pm_root);
 	kernel_pmap->pm_flags = pmap_flags;
 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
 		rangeset_init(&kernel_pmap->pm_pkru, pkru_dup_range,
 		    pkru_free_range, kernel_pmap, M_NOWAIT);
 	}
 
 	/*
 	 * The kernel pmap is always active on all CPUs.  Once CPUs are
 	 * enumerated, the mask will be set equal to all_cpus.
 	 */
 	CPU_FILL(&kernel_pmap->pm_active);
 
  	/*
 	 * Initialize the TLB invalidations generation number lock.
 	 */
 	mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
 
 	/*
 	 * Reserve some special page table entries/VA space for temporary
 	 * mapping of pages.
 	 */
 #define	SYSMAP(c, p, v, n)	\
 	v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
 
 	va = virtual_avail;
 	pte = vtopte(va);
 
 	/*
 	 * Crashdump maps.  The first page is reused as CMAP1 for the
 	 * memory test.
 	 */
 	SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
 	CADDR1 = crashdumpmap;
 
 	SYSMAP(struct pcpu *, pcpu_pte, __pcpu, MAXCPU);
 	virtual_avail = va;
 
 	/*
 	 * Map the BSP PCPU now, the rest of the PCPUs are mapped by
 	 * amd64_mp_alloc_pcpu()/start_all_aps() when we know the
 	 * number of CPUs and NUMA affinity.
 	 */
 	pcpu_pte[0] = pcpu0_phys | X86_PG_V | X86_PG_RW | pg_g | pg_nx |
 	    X86_PG_M | X86_PG_A;
 	for (i = 1; i < MAXCPU; i++)
 		pcpu_pte[i] = 0;
 
 	/*
 	 * Re-initialize PCPU area for BSP after switching.
 	 * Make hardware use gdt and common_tss from the new PCPU.
 	 */
 	STAILQ_INIT(&cpuhead);
 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
 	pcpu_init(&__pcpu[0], 0, sizeof(struct pcpu));
 	amd64_bsp_pcpu_init1(&__pcpu[0]);
 	amd64_bsp_ist_init(&__pcpu[0]);
 	__pcpu[0].pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
 	    IOPERM_BITMAP_SIZE;
 	memcpy(__pcpu[0].pc_gdt, temp_bsp_pcpu.pc_gdt, NGDT *
 	    sizeof(struct user_segment_descriptor));
 	gdt_segs[GPROC0_SEL].ssd_base = (uintptr_t)&__pcpu[0].pc_common_tss;
 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
 	lgdt(&r_gdt);
 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
 	__pcpu[0].pc_dynamic = temp_bsp_pcpu.pc_dynamic;
 	__pcpu[0].pc_acpi_id = temp_bsp_pcpu.pc_acpi_id;
 
 	/*
 	 * Initialize the PAT MSR.
 	 * pmap_init_pat() clears and sets CR4_PGE, which, as a
 	 * side-effect, invalidates stale PG_G TLB entries that might
 	 * have been created in our pre-boot environment.
 	 */
 	pmap_init_pat();
 
 	/* Initialize TLB Context Id. */
 	if (pmap_pcid_enabled) {
 		kernel_pmap->pm_pcidp = (void *)(uintptr_t)
 		    offsetof(struct pcpu, pc_kpmap_store);
 
 		PCPU_SET(kpmap_store.pm_pcid, PMAP_PCID_KERN);
 		PCPU_SET(kpmap_store.pm_gen, 1);
 
 		/*
 		 * PMAP_PCID_KERN + 1 is used for initialization of
 		 * proc0 pmap.  The pmap' pcid state might be used by
 		 * EFIRT entry before first context switch, so it
 		 * needs to be valid.
 		 */
 		PCPU_SET(pcid_next, PMAP_PCID_KERN + 2);
 		PCPU_SET(pcid_gen, 1);
 
 		/*
 		 * pcpu area for APs is zeroed during AP startup.
 		 * pc_pcid_next and pc_pcid_gen are initialized by AP
 		 * during pcpu setup.
 		 */
 		load_cr4(rcr4() | CR4_PCIDE);
 	}
 	TSEXIT();
 }
 
 /*
  * Setup the PAT MSR.
  */
 void
 pmap_init_pat(void)
 {
 	uint64_t pat_msr;
 	u_long cr0, cr4;
 	int i;
 
 	/* Bail if this CPU doesn't implement PAT. */
 	if ((cpu_feature & CPUID_PAT) == 0)
 		panic("no PAT??");
 
 	/* Set default PAT index table. */
 	for (i = 0; i < PAT_INDEX_SIZE; i++)
 		pat_index[i] = -1;
 	pat_index[PAT_WRITE_BACK] = 0;
 	pat_index[PAT_WRITE_THROUGH] = 1;
 	pat_index[PAT_UNCACHEABLE] = 3;
 	pat_index[PAT_WRITE_COMBINING] = 6;
 	pat_index[PAT_WRITE_PROTECTED] = 5;
 	pat_index[PAT_UNCACHED] = 2;
 
 	/*
 	 * Initialize default PAT entries.
 	 * Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
 	 * Program 5 and 6 as WP and WC.
 	 *
 	 * Leave 4 and 7 as WB and UC.  Note that a recursive page table
 	 * mapping for a 2M page uses a PAT value with the bit 3 set due
 	 * to its overload with PG_PS.
 	 */
 	pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
 	    PAT_VALUE(1, PAT_WRITE_THROUGH) |
 	    PAT_VALUE(2, PAT_UNCACHED) |
 	    PAT_VALUE(3, PAT_UNCACHEABLE) |
 	    PAT_VALUE(4, PAT_WRITE_BACK) |
 	    PAT_VALUE(5, PAT_WRITE_PROTECTED) |
 	    PAT_VALUE(6, PAT_WRITE_COMBINING) |
 	    PAT_VALUE(7, PAT_UNCACHEABLE);
 
 	/* Disable PGE. */
 	cr4 = rcr4();
 	load_cr4(cr4 & ~CR4_PGE);
 
 	/* Disable caches (CD = 1, NW = 0). */
 	cr0 = rcr0();
 	load_cr0((cr0 & ~CR0_NW) | CR0_CD);
 
 	/* Flushes caches and TLBs. */
 	wbinvd();
 	invltlb();
 
 	/* Update PAT and index table. */
 	wrmsr(MSR_PAT, pat_msr);
 
 	/* Flush caches and TLBs again. */
 	wbinvd();
 	invltlb();
 
 	/* Restore caches and PGE. */
 	load_cr0(cr0);
 	load_cr4(cr4);
 }
 
 vm_page_t
 pmap_page_alloc_below_4g(bool zeroed)
 {
 	return (vm_page_alloc_noobj_contig((zeroed ? VM_ALLOC_ZERO : 0),
 	    1, 0, (1ULL << 32), PAGE_SIZE, 0, VM_MEMATTR_DEFAULT));
 }
 
 extern const char la57_trampoline[], la57_trampoline_gdt_desc[],
     la57_trampoline_gdt[], la57_trampoline_end[];
 
 static void
 pmap_bootstrap_la57(void *arg __unused)
 {
 	char *v_code;
 	pml5_entry_t *v_pml5;
 	pml4_entry_t *v_pml4;
 	pdp_entry_t *v_pdp;
 	pd_entry_t *v_pd;
 	pt_entry_t *v_pt;
 	vm_page_t m_code, m_pml4, m_pdp, m_pd, m_pt, m_pml5;
 	void (*la57_tramp)(uint64_t pml5);
 	struct region_descriptor r_gdt;
 
 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_LA57) == 0)
 		return;
 	TUNABLE_INT_FETCH("vm.pmap.la57", &la57);
 	if (!la57)
 		return;
 
 	r_gdt.rd_limit = NGDT * sizeof(struct user_segment_descriptor) - 1;
 	r_gdt.rd_base = (long)__pcpu[0].pc_gdt;
 
 	m_code = pmap_page_alloc_below_4g(true);
 	v_code = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_code));
 	m_pml5 = pmap_page_alloc_below_4g(true);
 	KPML5phys = VM_PAGE_TO_PHYS(m_pml5);
 	v_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(KPML5phys);
 	m_pml4 = pmap_page_alloc_below_4g(true);
 	v_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
 	m_pdp = pmap_page_alloc_below_4g(true);
 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
 	m_pd = pmap_page_alloc_below_4g(true);
 	v_pd = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd));
 	m_pt = pmap_page_alloc_below_4g(true);
 	v_pt = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pt));
 
 	/*
 	 * Map m_code 1:1, it appears below 4G in KVA due to physical
 	 * address being below 4G.  Since kernel KVA is in upper half,
 	 * the pml4e should be zero and free for temporary use.
 	 */
 	kernel_pmap->pm_pmltop[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
 	    X86_PG_M;
 	v_pdp[pmap_pdpe_index(VM_PAGE_TO_PHYS(m_code))] =
 	    VM_PAGE_TO_PHYS(m_pd) | X86_PG_V | X86_PG_RW | X86_PG_A |
 	    X86_PG_M;
 	v_pd[pmap_pde_index(VM_PAGE_TO_PHYS(m_code))] =
 	    VM_PAGE_TO_PHYS(m_pt) | X86_PG_V | X86_PG_RW | X86_PG_A |
 	    X86_PG_M;
 	v_pt[pmap_pte_index(VM_PAGE_TO_PHYS(m_code))] =
 	    VM_PAGE_TO_PHYS(m_code) | X86_PG_V | X86_PG_RW | X86_PG_A |
 	    X86_PG_M;
 
 	/*
 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
 	 * entering all existing kernel mappings into level 5 table.
 	 */
 	v_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g;
 
 	/*
 	 * Add pml5 entry for 1:1 trampoline mapping after LA57 is turned on.
 	 */
 	v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))] =
 	    VM_PAGE_TO_PHYS(m_pml4) | X86_PG_V | X86_PG_RW | X86_PG_A |
 	    X86_PG_M;
 	v_pml4[pmap_pml4e_index(VM_PAGE_TO_PHYS(m_code))] =
 	    VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V | X86_PG_RW | X86_PG_A |
 	    X86_PG_M;
 
 	/*
 	 * Copy and call the 48->57 trampoline, hope we return there, alive.
 	 */
 	bcopy(la57_trampoline, v_code, la57_trampoline_end - la57_trampoline);
 	*(u_long *)(v_code + 2 + (la57_trampoline_gdt_desc - la57_trampoline)) =
 	    la57_trampoline_gdt - la57_trampoline + VM_PAGE_TO_PHYS(m_code);
 	la57_tramp = (void (*)(uint64_t))VM_PAGE_TO_PHYS(m_code);
 	invlpg((vm_offset_t)la57_tramp);
 	la57_tramp(KPML5phys);
 
 	/*
 	 * gdt was necessary reset, switch back to our gdt.
 	 */
 	lgdt(&r_gdt);
 	wrmsr(MSR_GSBASE, (uint64_t)&__pcpu[0]);
 	load_ds(_udatasel);
 	load_es(_udatasel);
 	load_fs(_ufssel);
 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
 	    (struct system_segment_descriptor *)&__pcpu[0].pc_gdt[GPROC0_SEL]);
 	ltr(GSEL(GPROC0_SEL, SEL_KPL));
 
 	/*
 	 * Now unmap the trampoline, and free the pages.
 	 * Clear pml5 entry used for 1:1 trampoline mapping.
 	 */
 	pte_clear(&v_pml5[pmap_pml5e_index(VM_PAGE_TO_PHYS(m_code))]);
 	invlpg((vm_offset_t)v_code);
 	vm_page_free(m_code);
 	vm_page_free(m_pdp);
 	vm_page_free(m_pd);
 	vm_page_free(m_pt);
 
 	/* 
 	 * Recursively map PML5 to itself in order to get PTmap and
 	 * PDmap.
 	 */
 	v_pml5[PML5PML5I] = KPML5phys | X86_PG_RW | X86_PG_V | pg_nx;
 
 	vtoptem = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT +
 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
 	PTmap = (vm_offset_t)P5Tmap;
 	vtopdem = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT +
 	    NPML4EPGSHIFT + NPML5EPGSHIFT)) - 1) << 3;
 	PDmap = (vm_offset_t)P5Dmap;
 
 	kernel_pmap->pm_cr3 = KPML5phys;
 	kernel_pmap->pm_pmltop = v_pml5;
 	pmap_pt_page_count_adj(kernel_pmap, 1);
 }
 SYSINIT(la57, SI_SUB_KMEM, SI_ORDER_ANY, pmap_bootstrap_la57, NULL);
 
 /*
  *	Initialize a vm_page's machine-dependent fields.
  */
 void
 pmap_page_init(vm_page_t m)
 {
 
 	TAILQ_INIT(&m->md.pv_list);
 	m->md.pat_mode = PAT_WRITE_BACK;
 }
 
 static int pmap_allow_2m_x_ept;
 SYSCTL_INT(_vm_pmap, OID_AUTO, allow_2m_x_ept, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
     &pmap_allow_2m_x_ept, 0,
     "Allow executable superpage mappings in EPT");
 
 void
 pmap_allow_2m_x_ept_recalculate(void)
 {
 	/*
 	 * SKL002, SKL012S.  Since the EPT format is only used by
 	 * Intel CPUs, the vendor check is merely a formality.
 	 */
 	if (!(cpu_vendor_id != CPU_VENDOR_INTEL ||
 	    (cpu_ia32_arch_caps & IA32_ARCH_CAP_IF_PSCHANGE_MC_NO) != 0 ||
 	    (CPUID_TO_FAMILY(cpu_id) == 0x6 &&
 	    (CPUID_TO_MODEL(cpu_id) == 0x26 ||	/* Atoms */
 	    CPUID_TO_MODEL(cpu_id) == 0x27 ||
 	    CPUID_TO_MODEL(cpu_id) == 0x35 ||
 	    CPUID_TO_MODEL(cpu_id) == 0x36 ||
 	    CPUID_TO_MODEL(cpu_id) == 0x37 ||
 	    CPUID_TO_MODEL(cpu_id) == 0x86 ||
 	    CPUID_TO_MODEL(cpu_id) == 0x1c ||
 	    CPUID_TO_MODEL(cpu_id) == 0x4a ||
 	    CPUID_TO_MODEL(cpu_id) == 0x4c ||
 	    CPUID_TO_MODEL(cpu_id) == 0x4d ||
 	    CPUID_TO_MODEL(cpu_id) == 0x5a ||
 	    CPUID_TO_MODEL(cpu_id) == 0x5c ||
 	    CPUID_TO_MODEL(cpu_id) == 0x5d ||
 	    CPUID_TO_MODEL(cpu_id) == 0x5f ||
 	    CPUID_TO_MODEL(cpu_id) == 0x6e ||
 	    CPUID_TO_MODEL(cpu_id) == 0x7a ||
 	    CPUID_TO_MODEL(cpu_id) == 0x57 ||	/* Knights */
 	    CPUID_TO_MODEL(cpu_id) == 0x85))))
 		pmap_allow_2m_x_ept = 1;
 #ifndef BURN_BRIDGES
 	TUNABLE_INT_FETCH("hw.allow_2m_x_ept", &pmap_allow_2m_x_ept);
 #endif
 	TUNABLE_INT_FETCH("vm.pmap.allow_2m_x_ept", &pmap_allow_2m_x_ept);
 }
 
 static bool
 pmap_allow_2m_x_page(pmap_t pmap, bool executable)
 {
 
 	return (pmap->pm_type != PT_EPT || !executable ||
 	    !pmap_allow_2m_x_ept);
 }
 
 #ifdef NUMA
 static void
 pmap_init_pv_table(void)
 {
 	struct pmap_large_md_page *pvd;
 	vm_size_t s;
 	long start, end, highest, pv_npg;
 	int domain, i, j, pages;
 
 	/*
 	 * For correctness we depend on the size being evenly divisible into a
 	 * page. As a tradeoff between performance and total memory use, the
 	 * entry is 64 bytes (aka one cacheline) in size. Not being smaller
 	 * avoids false-sharing, but not being 128 bytes potentially allows for
 	 * avoidable traffic due to adjacent cacheline prefetcher.
 	 *
 	 * Assert the size so that accidental changes fail to compile.
 	 */
 	CTASSERT((sizeof(*pvd) == 64));
 
 	/*
 	 * Calculate the size of the array.
 	 */
 	pmap_last_pa = vm_phys_segs[vm_phys_nsegs - 1].end;
 	pv_npg = howmany(pmap_last_pa, NBPDR);
 	s = (vm_size_t)pv_npg * sizeof(struct pmap_large_md_page);
 	s = round_page(s);
 	pv_table = (struct pmap_large_md_page *)kva_alloc(s);
 	if (pv_table == NULL)
 		panic("%s: kva_alloc failed\n", __func__);
 
 	/*
 	 * Iterate physical segments to allocate space for respective pages.
 	 */
 	highest = -1;
 	s = 0;
 	for (i = 0; i < vm_phys_nsegs; i++) {
 		end = vm_phys_segs[i].end / NBPDR;
 		domain = vm_phys_segs[i].domain;
 
 		if (highest >= end)
 			continue;
 
 		start = highest + 1;
 		pvd = &pv_table[start];
 
 		pages = end - start + 1;
 		s = round_page(pages * sizeof(*pvd));
 		highest = start + (s / sizeof(*pvd)) - 1;
 
 		for (j = 0; j < s; j += PAGE_SIZE) {
 			vm_page_t m = vm_page_alloc_noobj_domain(domain, 0);
 			if (m == NULL)
 				panic("failed to allocate PV table page");
 			pmap_qenter((vm_offset_t)pvd + j, &m, 1);
 		}
 
 		for (j = 0; j < s / sizeof(*pvd); j++) {
 			rw_init_flags(&pvd->pv_lock, "pmap pv list", RW_NEW);
 			TAILQ_INIT(&pvd->pv_page.pv_list);
 			pvd->pv_page.pv_gen = 0;
 			pvd->pv_page.pat_mode = 0;
 			pvd->pv_invl_gen = 0;
 			pvd++;
 		}
 	}
 	pvd = &pv_dummy_large;
 	rw_init_flags(&pvd->pv_lock, "pmap pv list dummy", RW_NEW);
 	TAILQ_INIT(&pvd->pv_page.pv_list);
 	pvd->pv_page.pv_gen = 0;
 	pvd->pv_page.pat_mode = 0;
 	pvd->pv_invl_gen = 0;
 }
 #else
 static void
 pmap_init_pv_table(void)
 {
 	vm_size_t s;
 	long i, pv_npg;
 
 	/*
 	 * Initialize the pool of pv list locks.
 	 */
 	for (i = 0; i < NPV_LIST_LOCKS; i++)
 		rw_init(&pv_list_locks[i], "pmap pv list");
 
 	/*
 	 * Calculate the size of the pv head table for superpages.
 	 */
 	pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
 
 	/*
 	 * Allocate memory for the pv head table for superpages.
 	 */
 	s = (vm_size_t)pv_npg * sizeof(struct md_page);
 	s = round_page(s);
 	pv_table = kmem_malloc(s, M_WAITOK | M_ZERO);
 	for (i = 0; i < pv_npg; i++)
 		TAILQ_INIT(&pv_table[i].pv_list);
 	TAILQ_INIT(&pv_dummy.pv_list);
 }
 #endif
 
 /*
  *	Initialize the pmap module.
  *
  *	Called by vm_mem_init(), to initialize any structures that the pmap
  *	system needs to map virtual memory.
  */
 void
 pmap_init(void)
 {
 	struct pmap_preinit_mapping *ppim;
 	vm_page_t m, mpte;
 	int error, i, ret, skz63;
 
 	/* L1TF, reserve page @0 unconditionally */
 	vm_page_blacklist_add(0, bootverbose);
 
 	/* Detect bare-metal Skylake Server and Skylake-X. */
 	if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
 	    CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
 		/*
 		 * Skylake-X errata SKZ63. Processor May Hang When
 		 * Executing Code In an HLE Transaction Region between
 		 * 40000000H and 403FFFFFH.
 		 *
 		 * Mark the pages in the range as preallocated.  It
 		 * seems to be impossible to distinguish between
 		 * Skylake Server and Skylake X.
 		 */
 		skz63 = 1;
 		TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
 		if (skz63 != 0) {
 			if (bootverbose)
 				printf("SKZ63: skipping 4M RAM starting "
 				    "at physical 1G\n");
 			for (i = 0; i < atop(0x400000); i++) {
 				ret = vm_page_blacklist_add(0x40000000 +
 				    ptoa(i), false);
 				if (!ret && bootverbose)
 					printf("page at %#lx already used\n",
 					    0x40000000 + ptoa(i));
 			}
 		}
 	}
 
 	/* IFU */
 	pmap_allow_2m_x_ept_recalculate();
 
 	/*
 	 * Initialize the vm page array entries for the kernel pmap's
 	 * page table pages.
 	 */ 
 	PMAP_LOCK(kernel_pmap);
 	for (i = 0; i < nkpt; i++) {
 		mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
 		KASSERT(mpte >= vm_page_array &&
 		    mpte < &vm_page_array[vm_page_array_size],
 		    ("pmap_init: page table page is out of range"));
 		mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
 		mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
 		mpte->ref_count = 1;
 
 		/*
 		 * Collect the page table pages that were replaced by a 2MB
 		 * page in create_pagetables().  They are zero filled.
 		 */
 		if ((i == 0 ||
 		    kernphys + ((vm_paddr_t)(i - 1) << PDRSHIFT) < KERNend) &&
 		    pmap_insert_pt_page(kernel_pmap, mpte, false, false))
 			panic("pmap_init: pmap_insert_pt_page failed");
 	}
 	PMAP_UNLOCK(kernel_pmap);
 	vm_wire_add(nkpt);
 
 	/*
 	 * If the kernel is running on a virtual machine, then it must assume
 	 * that MCA is enabled by the hypervisor.  Moreover, the kernel must
 	 * be prepared for the hypervisor changing the vendor and family that
 	 * are reported by CPUID.  Consequently, the workaround for AMD Family
 	 * 10h Erratum 383 is enabled if the processor's feature set does not
 	 * include at least one feature that is only supported by older Intel
 	 * or newer AMD processors.
 	 */
 	if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
 	    (cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
 	    CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
 	    AMDID2_FMA4)) == 0)
 		workaround_erratum383 = 1;
 
 	/*
 	 * Are large page mappings enabled?
 	 */
 	TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
 	if (pg_ps_enabled) {
 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
 		    ("pmap_init: can't assign to pagesizes[1]"));
 		pagesizes[1] = NBPDR;
 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
 			KASSERT(MAXPAGESIZES > 2 && pagesizes[2] == 0,
 			    ("pmap_init: can't assign to pagesizes[2]"));
 			pagesizes[2] = NBPDP;
 		}
 	}
 
 	/*
 	 * Initialize pv chunk lists.
 	 */
 	for (i = 0; i < PMAP_MEMDOM; i++) {
 		mtx_init(&pv_chunks[i].pvc_lock, "pmap pv chunk list", NULL, MTX_DEF);
 		TAILQ_INIT(&pv_chunks[i].pvc_list);
 	}
 	pmap_init_pv_table();
 
 	pmap_initialized = 1;
 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 		ppim = pmap_preinit_mapping + i;
 		if (ppim->va == 0)
 			continue;
 		/* Make the direct map consistent */
 		if (ppim->pa < dmaplimit && ppim->pa + ppim->sz <= dmaplimit) {
 			(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
 			    ppim->sz, ppim->mode);
 		}
 		if (!bootverbose)
 			continue;
 		printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
 		    ppim->pa, ppim->va, ppim->sz, ppim->mode);
 	}
 
 	mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
 	    (vmem_addr_t *)&qframe);
 	if (error != 0)
 		panic("qframe allocation failed");
 
 	lm_ents = 8;
 	TUNABLE_INT_FETCH("vm.pmap.large_map_pml4_entries", &lm_ents);
 	if (lm_ents > LMEPML4I - LMSPML4I + 1)
 		lm_ents = LMEPML4I - LMSPML4I + 1;
 #ifdef KMSAN
 	if (lm_ents > KMSANORIGPML4I - LMSPML4I) {
 		printf(
 	    "pmap: shrinking large map for KMSAN (%d slots to %ld slots)\n",
 		    lm_ents, KMSANORIGPML4I - LMSPML4I);
 		lm_ents = KMSANORIGPML4I - LMSPML4I;
 	}
 #endif
 	if (bootverbose)
 		printf("pmap: large map %u PML4 slots (%lu GB)\n",
 		    lm_ents, (u_long)lm_ents * (NBPML4 / 1024 / 1024 / 1024));
 	if (lm_ents != 0) {
 		large_vmem = vmem_create("large", LARGEMAP_MIN_ADDRESS,
 		    (vmem_size_t)lm_ents * NBPML4, PAGE_SIZE, 0, M_WAITOK);
 		if (large_vmem == NULL) {
 			printf("pmap: cannot create large map\n");
 			lm_ents = 0;
 		}
 		for (i = 0; i < lm_ents; i++) {
 			m = pmap_large_map_getptp_unlocked();
 			/* XXXKIB la57 */
 			kernel_pml4[LMSPML4I + i] = X86_PG_V |
 			    X86_PG_RW | X86_PG_A | X86_PG_M | pg_nx |
 			    VM_PAGE_TO_PHYS(m);
 		}
 	}
 }
 
 SYSCTL_UINT(_vm_pmap, OID_AUTO, large_map_pml4_entries,
     CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &lm_ents, 0,
     "Maximum number of PML4 entries for use by large map (tunable).  "
     "Each entry corresponds to 512GB of address space.");
 
 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "2MB page mapping counters");
 
 static COUNTER_U64_DEFINE_EARLY(pmap_pde_demotions);
 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, demotions,
     CTLFLAG_RD, &pmap_pde_demotions, "2MB page demotions");
 
 static COUNTER_U64_DEFINE_EARLY(pmap_pde_mappings);
 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
     &pmap_pde_mappings, "2MB page mappings");
 
 static COUNTER_U64_DEFINE_EARLY(pmap_pde_p_failures);
 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
     &pmap_pde_p_failures, "2MB page promotion failures");
 
 static COUNTER_U64_DEFINE_EARLY(pmap_pde_promotions);
 SYSCTL_COUNTER_U64(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
     &pmap_pde_promotions, "2MB page promotions");
 
 static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "1GB page mapping counters");
 
 static COUNTER_U64_DEFINE_EARLY(pmap_pdpe_demotions);
 SYSCTL_COUNTER_U64(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
     &pmap_pdpe_demotions, "1GB page demotions");
 
 /***************************************************
  * Low level helper routines.....
  ***************************************************/
 
 static pt_entry_t
 pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
 {
 	int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		/* Verify that both PAT bits are not set at the same time */
 		KASSERT((entry & x86_pat_bits) != x86_pat_bits,
 		    ("Invalid PAT bits in entry %#lx", entry));
 
 		/* Swap the PAT bits if one of them is set */
 		if ((entry & x86_pat_bits) != 0)
 			entry ^= x86_pat_bits;
 		break;
 	case PT_EPT:
 		/*
 		 * Nothing to do - the memory attributes are represented
 		 * the same way for regular pages and superpages.
 		 */
 		break;
 	default:
 		panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
 	}
 
 	return (entry);
 }
 
 bool
 pmap_is_valid_memattr(pmap_t pmap __unused, vm_memattr_t mode)
 {
 
 	return (mode >= 0 && mode < PAT_INDEX_SIZE &&
 	    pat_index[(int)mode] >= 0);
 }
 
 /*
  * Determine the appropriate bits to set in a PTE or PDE for a specified
  * caching mode.
  */
 int
 pmap_cache_bits(pmap_t pmap, int mode, bool is_pde)
 {
 	int cache_bits, pat_flag, pat_idx;
 
 	if (!pmap_is_valid_memattr(pmap, mode))
 		panic("Unknown caching mode %d\n", mode);
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		/* The PAT bit is different for PTE's and PDE's. */
 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
 
 		/* Map the caching mode to a PAT index. */
 		pat_idx = pat_index[mode];
 
 		/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
 		cache_bits = 0;
 		if (pat_idx & 0x4)
 			cache_bits |= pat_flag;
 		if (pat_idx & 0x2)
 			cache_bits |= PG_NC_PCD;
 		if (pat_idx & 0x1)
 			cache_bits |= PG_NC_PWT;
 		break;
 
 	case PT_EPT:
 		cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
 		break;
 
 	default:
 		panic("unsupported pmap type %d", pmap->pm_type);
 	}
 
 	return (cache_bits);
 }
 
 static int
 pmap_cache_mask(pmap_t pmap, bool is_pde)
 {
 	int mask;
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
 		break;
 	case PT_EPT:
 		mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
 		break;
 	default:
 		panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
 	}
 
 	return (mask);
 }
 
 static int
 pmap_pat_index(pmap_t pmap, pt_entry_t pte, bool is_pde)
 {
 	int pat_flag, pat_idx;
 
 	pat_idx = 0;
 	switch (pmap->pm_type) {
 	case PT_X86:
 	case PT_RVI:
 		/* The PAT bit is different for PTE's and PDE's. */
 		pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
 
 		if ((pte & pat_flag) != 0)
 			pat_idx |= 0x4;
 		if ((pte & PG_NC_PCD) != 0)
 			pat_idx |= 0x2;
 		if ((pte & PG_NC_PWT) != 0)
 			pat_idx |= 0x1;
 		break;
 	case PT_EPT:
 		if ((pte & EPT_PG_IGNORE_PAT) != 0)
 			panic("EPT PTE %#lx has no PAT memory type", pte);
 		pat_idx = (pte & EPT_PG_MEMORY_TYPE(0x7)) >> 3;
 		break;
 	}
 
 	/* See pmap_init_pat(). */
 	if (pat_idx == 4)
 		pat_idx = 0;
 	if (pat_idx == 7)
 		pat_idx = 3;
 
 	return (pat_idx);
 }
 
 bool
 pmap_ps_enabled(pmap_t pmap)
 {
 
 	return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
 }
 
 static void
 pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
 {
 
 	switch (pmap->pm_type) {
 	case PT_X86:
 		break;
 	case PT_RVI:
 	case PT_EPT:
 		/*
 		 * XXX
 		 * This is a little bogus since the generation number is
 		 * supposed to be bumped up when a region of the address
 		 * space is invalidated in the page tables.
 		 *
 		 * In this case the old PDE entry is valid but yet we want
 		 * to make sure that any mappings using the old entry are
 		 * invalidated in the TLB.
 		 *
 		 * The reason this works as expected is because we rendezvous
 		 * "all" host cpus and force any vcpu context to exit as a
 		 * side-effect.
 		 */
 		atomic_add_long(&pmap->pm_eptgen, 1);
 		break;
 	default:
 		panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
 	}
 	pde_store(pde, newpde);
 }
 
 /*
  * After changing the page size for the specified virtual address in the page
  * table, flush the corresponding entries from the processor's TLB.  Only the
  * calling processor's TLB is affected.
  *
  * The calling thread must be pinned to a processor.
  */
 static void
 pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
 {
 	pt_entry_t PG_G;
 
 	if (pmap_type_guest(pmap))
 		return;
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
 
 	PG_G = pmap_global_bit(pmap);
 
 	if ((newpde & PG_PS) == 0)
 		/* Demotion: flush a specific 2MB page mapping. */
 		pmap_invlpg(pmap, va);
 	else if ((newpde & PG_G) == 0)
 		/*
 		 * Promotion: flush every 4KB page mapping from the TLB
 		 * because there are too many to flush individually.
 		 */
 		invltlb();
 	else {
 		/*
 		 * Promotion: flush every 4KB page mapping from the TLB,
 		 * including any global (PG_G) mappings.
 		 */
 		invltlb_glob();
 	}
 }
 
 /*
  * The amd64 pmap uses different approaches to TLB invalidation
  * depending on the kernel configuration, available hardware features,
  * and known hardware errata.  The kernel configuration option that
  * has the greatest operational impact on TLB invalidation is PTI,
  * which is enabled automatically on affected Intel CPUs.  The most
  * impactful hardware features are first PCID, and then INVPCID
  * instruction presence.  PCID usage is quite different for PTI
  * vs. non-PTI.
  *
  * * Kernel Page Table Isolation (PTI or KPTI) is used to mitigate
  *   the Meltdown bug in some Intel CPUs.  Under PTI, each user address
  *   space is served by two page tables, user and kernel.  The user
  *   page table only maps user space and a kernel trampoline.  The
  *   kernel trampoline includes the entirety of the kernel text but
  *   only the kernel data that is needed to switch from user to kernel
  *   mode.  The kernel page table maps the user and kernel address
  *   spaces in their entirety.  It is identical to the per-process
  *   page table used in non-PTI mode.
  *
  *   User page tables are only used when the CPU is in user mode.
  *   Consequently, some TLB invalidations can be postponed until the
  *   switch from kernel to user mode.  In contrast, the user
  *   space part of the kernel page table is used for copyout(9), so
  *   TLB invalidations on this page table cannot be similarly postponed.
  *
  *   The existence of a user mode page table for the given pmap is
  *   indicated by a pm_ucr3 value that differs from PMAP_NO_CR3, in
  *   which case pm_ucr3 contains the %cr3 register value for the user
  *   mode page table's root.
  *
  * * The pm_active bitmask indicates which CPUs currently have the
  *   pmap active.  A CPU's bit is set on context switch to the pmap, and
  *   cleared on switching off this CPU.  For the kernel page table,
  *   the pm_active field is immutable and contains all CPUs.  The
  *   kernel page table is always logically active on every processor,
  *   but not necessarily in use by the hardware, e.g., in PTI mode.
  *
  *   When requesting invalidation of virtual addresses with
  *   pmap_invalidate_XXX() functions, the pmap sends shootdown IPIs to
  *   all CPUs recorded as active in pm_active.  Updates to and reads
  *   from pm_active are not synchronized, and so they may race with
  *   each other.  Shootdown handlers are prepared to handle the race.
  *
  * * PCID is an optional feature of the long mode x86 MMU where TLB
  *   entries are tagged with the 'Process ID' of the address space
  *   they belong to.  This feature provides a limited namespace for
  *   process identifiers, 12 bits, supporting 4095 simultaneous IDs
  *   total.
  *
  *   Allocation of a PCID to a pmap is done by an algorithm described
  *   in section 15.12, "Other TLB Consistency Algorithms", of
  *   Vahalia's book "Unix Internals".  A PCID cannot be allocated for
  *   the whole lifetime of a pmap in pmap_pinit() due to the limited
  *   namespace.  Instead, a per-CPU, per-pmap PCID is assigned when
  *   the CPU is about to start caching TLB entries from a pmap,
  *   i.e., on the context switch that activates the pmap on the CPU.
  *
  *   The PCID allocator maintains a per-CPU, per-pmap generation
  *   count, pm_gen, which is incremented each time a new PCID is
  *   allocated.  On TLB invalidation, the generation counters for the
  *   pmap are zeroed, which signals the context switch code that the
  *   previously allocated PCID is no longer valid.  Effectively,
  *   zeroing any of these counters triggers a TLB shootdown for the
  *   given CPU/address space, due to the allocation of a new PCID.
  *
  *   Zeroing can be performed remotely.  Consequently, if a pmap is
  *   inactive on a CPU, then a TLB shootdown for that pmap and CPU can
  *   be initiated by an ordinary memory access to reset the target
  *   CPU's generation count within the pmap.  The CPU initiating the
  *   TLB shootdown does not need to send an IPI to the target CPU.
  *
  * * PTI + PCID.  The available PCIDs are divided into two sets: PCIDs
  *   for complete (kernel) page tables, and PCIDs for user mode page
  *   tables.  A user PCID value is obtained from the kernel PCID value
  *   by setting the highest bit, 11, to 1 (0x800 == PMAP_PCID_USER_PT).
  *
  *   User space page tables are activated on return to user mode, by
  *   loading pm_ucr3 into %cr3.  If the PCPU(ucr3_load_mask) requests
  *   clearing bit 63 of the loaded ucr3, this effectively causes
  *   complete invalidation of the user mode TLB entries for the
  *   current pmap.  In which case, local invalidations of individual
  *   pages in the user page table are skipped.
  *
  * * Local invalidation, all modes.  If the requested invalidation is
  *   for a specific address or the total invalidation of a currently
  *   active pmap, then the TLB is flushed using INVLPG for a kernel
  *   page table, and INVPCID(INVPCID_CTXGLOB)/invltlb_glob() for a
  *   user space page table(s).
  *
  *   If the INVPCID instruction is available, it is used to flush user
  *   entries from the kernel page table.
  *
  *   When PCID is enabled, the INVLPG instruction invalidates all TLB
  *   entries for the given page that either match the current PCID or
  *   are global. Since TLB entries for the same page under different
  *   PCIDs are unaffected, kernel pages which reside in all address
  *   spaces could be problematic.  We avoid the problem by creating
  *   all kernel PTEs with the global flag (PG_G) set, when PTI is
  *   disabled.
  *
  * * mode: PTI disabled, PCID present.  The kernel reserves PCID 0 for its
  *   address space, all other 4095 PCIDs are used for user mode spaces
  *   as described above.  A context switch allocates a new PCID if
  *   the recorded PCID is zero or the recorded generation does not match
  *   the CPU's generation, effectively flushing the TLB for this address space.
  *   Total remote invalidation is performed by zeroing pm_gen for all CPUs.
  *	local user page: INVLPG
  *	local kernel page: INVLPG
  *	local user total: INVPCID(CTX)
  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
  *	remote user page, inactive pmap: zero pm_gen
  *	remote user page, active pmap: zero pm_gen + IPI:INVLPG
  *	(Both actions are required to handle the aforementioned pm_active races.)
  *	remote kernel page: IPI:INVLPG
  *	remote user total, inactive pmap: zero pm_gen
  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) or
  *          reload %cr3)
  *	(See note above about pm_active races.)
  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
  *
  * PTI enabled, PCID present.
  *	local user page: INVLPG for kpt, INVPCID(ADDR) or (INVLPG for ucr3)
  *          for upt
  *	local kernel page: INVLPG
  *	local user total: INVPCID(CTX) or reload %cr3 for kpt, clear PCID_SAVE
  *          on loading UCR3 into %cr3 for upt
  *	local kernel total: INVPCID(CTXGLOB) or invltlb_glob()
  *	remote user page, inactive pmap: zero pm_gen
  *	remote user page, active pmap: zero pm_gen + IPI:(INVLPG for kpt,
  *          INVPCID(ADDR) for upt)
  *	remote kernel page: IPI:INVLPG
  *	remote user total, inactive pmap: zero pm_gen
  *	remote user total, active pmap: zero pm_gen + IPI:(INVPCID(CTX) for kpt,
  *          clear PCID_SAVE on loading UCR3 into $cr3 for upt)
  *	remote kernel total: IPI:(INVPCID(CTXGLOB) or invltlb_glob())
  *
  *  No PCID.
  *	local user page: INVLPG
  *	local kernel page: INVLPG
  *	local user total: reload %cr3
  *	local kernel total: invltlb_glob()
  *	remote user page, inactive pmap: -
  *	remote user page, active pmap: IPI:INVLPG
  *	remote kernel page: IPI:INVLPG
  *	remote user total, inactive pmap: -
  *	remote user total, active pmap: IPI:(reload %cr3)
  *	remote kernel total: IPI:invltlb_glob()
  *  Since on return to user mode, the reload of %cr3 with ucr3 causes
  *  TLB invalidation, no specific action is required for user page table.
  *
  * EPT.  EPT pmaps do not map KVA, all mappings are userspace.
  * XXX TODO
  */
 
 #ifdef SMP
 /*
  * Interrupt the cpus that are executing in the guest context.
  * This will force the vcpu to exit and the cached EPT mappings
  * will be invalidated by the host before the next vmresume.
  */
 static __inline void
 pmap_invalidate_ept(pmap_t pmap)
 {
 	smr_seq_t goal;
 	int ipinum;
 
 	sched_pin();
 	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
 	    ("pmap_invalidate_ept: absurd pm_active"));
 
 	/*
 	 * The TLB mappings associated with a vcpu context are not
 	 * flushed each time a different vcpu is chosen to execute.
 	 *
 	 * This is in contrast with a process's vtop mappings that
 	 * are flushed from the TLB on each context switch.
 	 *
 	 * Therefore we need to do more than just a TLB shootdown on
 	 * the active cpus in 'pmap->pm_active'. To do this we keep
 	 * track of the number of invalidations performed on this pmap.
 	 *
 	 * Each vcpu keeps a cache of this counter and compares it
 	 * just before a vmresume. If the counter is out-of-date an
 	 * invept will be done to flush stale mappings from the TLB.
 	 *
 	 * To ensure that all vCPU threads have observed the new counter
 	 * value before returning, we use SMR.  Ordering is important here:
 	 * the VMM enters an SMR read section before loading the counter
 	 * and after updating the pm_active bit set.  Thus, pm_active is
 	 * a superset of active readers, and any reader that has observed
 	 * the goal has observed the new counter value.
 	 */
 	atomic_add_long(&pmap->pm_eptgen, 1);
 
 	goal = smr_advance(pmap->pm_eptsmr);
 
 	/*
 	 * Force the vcpu to exit and trap back into the hypervisor.
 	 */
 	ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
 	ipi_selected(pmap->pm_active, ipinum);
 	sched_unpin();
 
 	/*
 	 * Ensure that all active vCPUs will observe the new generation counter
 	 * value before executing any more guest instructions.
 	 */
 	smr_wait(pmap->pm_eptsmr, goal);
 }
 
 static inline void
 pmap_invalidate_preipi_pcid(pmap_t pmap)
 {
 	struct pmap_pcid *pcidp;
 	u_int cpuid, i;
 
 	sched_pin();
 
 	cpuid = PCPU_GET(cpuid);
 	if (pmap != PCPU_GET(curpmap))
 		cpuid = 0xffffffff;	/* An impossible value */
 
 	CPU_FOREACH(i) {
 		if (cpuid != i) {
 			pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
 			pcidp->pm_gen = 0;
 		}
 	}
 
 	/*
 	 * The fence is between stores to pm_gen and the read of the
 	 * pm_active mask.  We need to ensure that it is impossible
 	 * for us to miss the bit update in pm_active and
 	 * simultaneously observe a non-zero pm_gen in
 	 * pmap_activate_sw(), otherwise TLB update is missed.
 	 * Without the fence, IA32 allows such an outcome.  Note that
 	 * pm_active is updated by a locked operation, which provides
 	 * the reciprocal fence.
 	 */
 	atomic_thread_fence_seq_cst();
 }
 
 static void
 pmap_invalidate_preipi_nopcid(pmap_t pmap __unused)
 {
 	sched_pin();
 }
 
 DEFINE_IFUNC(static, void, pmap_invalidate_preipi, (pmap_t))
 {
 	return (pmap_pcid_enabled ? pmap_invalidate_preipi_pcid :
 	    pmap_invalidate_preipi_nopcid);
 }
 
 static inline void
 pmap_invalidate_page_pcid_cb(pmap_t pmap, vm_offset_t va,
     const bool invpcid_works1)
 {
 	struct invpcid_descr d;
 	uint64_t kcr3, ucr3;
 	uint32_t pcid;
 
 	/*
 	 * Because pm_pcid is recalculated on a context switch, we
 	 * must ensure there is no preemption, not just pinning.
 	 * Otherwise, we might use a stale value below.
 	 */
 	CRITICAL_ASSERT(curthread);
 
 	/*
 	 * No need to do anything with user page tables invalidation
 	 * if there is no user page table, or invalidation is deferred
 	 * until the return to userspace.  ucr3_load_mask is stable
 	 * because we have preemption disabled.
 	 */
 	if (pmap->pm_ucr3 == PMAP_NO_CR3 ||
 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
 		return;
 
 	pcid = pmap_get_pcid(pmap);
 	if (invpcid_works1) {
 		d.pcid = pcid | PMAP_PCID_USER_PT;
 		d.pad = 0;
 		d.addr = va;
 		invpcid(&d, INVPCID_ADDR);
 	} else {
 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
 		pmap_pti_pcid_invlpg(ucr3, kcr3, va);
 	}
 }
 
 static void
 pmap_invalidate_page_pcid_invpcid_cb(pmap_t pmap, vm_offset_t va)
 {
 	pmap_invalidate_page_pcid_cb(pmap, va, true);
 }
 
 static void
 pmap_invalidate_page_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t va)
 {
 	pmap_invalidate_page_pcid_cb(pmap, va, false);
 }
 
 static void
 pmap_invalidate_page_nopcid_cb(pmap_t pmap __unused, vm_offset_t va __unused)
 {
 }
 
 DEFINE_IFUNC(static, void, pmap_invalidate_page_cb, (pmap_t, vm_offset_t))
 {
 	if (pmap_pcid_enabled)
 		return (invpcid_works ? pmap_invalidate_page_pcid_invpcid_cb :
 		    pmap_invalidate_page_pcid_noinvpcid_cb);
 	return (pmap_invalidate_page_nopcid_cb);
 }
 
 static void
 pmap_invalidate_page_curcpu_cb(pmap_t pmap, vm_offset_t va,
     vm_offset_t addr2 __unused)
 {
 	if (pmap == kernel_pmap) {
 		pmap_invlpg(kernel_pmap, va);
 	} else if (pmap == PCPU_GET(curpmap)) {
 		invlpg(va);
 		pmap_invalidate_page_cb(pmap, va);
 	}
 }
 
 void
 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 {
 	if (pmap_type_guest(pmap)) {
 		pmap_invalidate_ept(pmap);
 		return;
 	}
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_page: invalid type %d", pmap->pm_type));
 
 	pmap_invalidate_preipi(pmap);
 	smp_masked_invlpg(va, pmap, pmap_invalidate_page_curcpu_cb);
 }
 
 /* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
 #define	PMAP_INVLPG_THRESHOLD	(4 * 1024 * PAGE_SIZE)
 
 static void
 pmap_invalidate_range_pcid_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
     const bool invpcid_works1)
 {
 	struct invpcid_descr d;
 	uint64_t kcr3, ucr3;
 	uint32_t pcid;
 
 	CRITICAL_ASSERT(curthread);
 
 	if (pmap != PCPU_GET(curpmap) ||
 	    pmap->pm_ucr3 == PMAP_NO_CR3 ||
 	    PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK)
 		return;
 
 	pcid = pmap_get_pcid(pmap);
 	if (invpcid_works1) {
 		d.pcid = pcid | PMAP_PCID_USER_PT;
 		d.pad = 0;
 		for (d.addr = sva; d.addr < eva; d.addr += PAGE_SIZE)
 			invpcid(&d, INVPCID_ADDR);
 	} else {
 		kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
 		ucr3 = pmap->pm_ucr3 | pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
 		pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
 	}
 }
 
 static void
 pmap_invalidate_range_pcid_invpcid_cb(pmap_t pmap, vm_offset_t sva,
     vm_offset_t eva)
 {
 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, true);
 }
 
 static void
 pmap_invalidate_range_pcid_noinvpcid_cb(pmap_t pmap, vm_offset_t sva,
     vm_offset_t eva)
 {
 	pmap_invalidate_range_pcid_cb(pmap, sva, eva, false);
 }
 
 static void
 pmap_invalidate_range_nopcid_cb(pmap_t pmap __unused, vm_offset_t sva __unused,
     vm_offset_t eva __unused)
 {
 }
 
 DEFINE_IFUNC(static, void, pmap_invalidate_range_cb, (pmap_t, vm_offset_t,
     vm_offset_t))
 {
 	if (pmap_pcid_enabled)
 		return (invpcid_works ? pmap_invalidate_range_pcid_invpcid_cb :
 		    pmap_invalidate_range_pcid_noinvpcid_cb);
 	return (pmap_invalidate_range_nopcid_cb);
 }
 
 static void
 pmap_invalidate_range_curcpu_cb(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	vm_offset_t addr;
 
 	if (pmap == kernel_pmap) {
 		if (PCPU_GET(pcid_invlpg_workaround)) {
 			struct invpcid_descr d = { 0 };
 
 			invpcid(&d, INVPCID_CTXGLOB);
 		} else {
 			for (addr = sva; addr < eva; addr += PAGE_SIZE)
 				invlpg(addr);
 		}
 	} else if (pmap == PCPU_GET(curpmap)) {
 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
 			invlpg(addr);
 		pmap_invalidate_range_cb(pmap, sva, eva);
 	}
 }
 
 void
 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
 		pmap_invalidate_all(pmap);
 		return;
 	}
 
 	if (pmap_type_guest(pmap)) {
 		pmap_invalidate_ept(pmap);
 		return;
 	}
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_range: invalid type %d", pmap->pm_type));
 
 	pmap_invalidate_preipi(pmap);
 	smp_masked_invlpg_range(sva, eva, pmap,
 	    pmap_invalidate_range_curcpu_cb);
 }
 
 static inline void
 pmap_invalidate_all_pcid_cb(pmap_t pmap, bool invpcid_works1)
 {
 	struct invpcid_descr d;
 	uint64_t kcr3;
 	uint32_t pcid;
 
 	if (pmap == kernel_pmap) {
 		if (invpcid_works1) {
 			bzero(&d, sizeof(d));
 			invpcid(&d, INVPCID_CTXGLOB);
 		} else {
 			invltlb_glob();
 		}
 	} else if (pmap == PCPU_GET(curpmap)) {
 		CRITICAL_ASSERT(curthread);
 
 		pcid = pmap_get_pcid(pmap);
 		if (invpcid_works1) {
 			d.pcid = pcid;
 			d.pad = 0;
 			d.addr = 0;
 			invpcid(&d, INVPCID_CTX);
 		} else {
 			kcr3 = pmap->pm_cr3 | pcid;
 			load_cr3(kcr3);
 		}
 		if (pmap->pm_ucr3 != PMAP_NO_CR3)
 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
 	}
 }
 
 static void
 pmap_invalidate_all_pcid_invpcid_cb(pmap_t pmap)
 {
 	pmap_invalidate_all_pcid_cb(pmap, true);
 }
 
 static void
 pmap_invalidate_all_pcid_noinvpcid_cb(pmap_t pmap)
 {
 	pmap_invalidate_all_pcid_cb(pmap, false);
 }
 
 static void
 pmap_invalidate_all_nopcid_cb(pmap_t pmap)
 {
 	if (pmap == kernel_pmap)
 		invltlb_glob();
 	else if (pmap == PCPU_GET(curpmap))
 		invltlb();
 }
 
 DEFINE_IFUNC(static, void, pmap_invalidate_all_cb, (pmap_t))
 {
 	if (pmap_pcid_enabled)
 		return (invpcid_works ? pmap_invalidate_all_pcid_invpcid_cb :
 		    pmap_invalidate_all_pcid_noinvpcid_cb);
 	return (pmap_invalidate_all_nopcid_cb);
 }
 
 static void
 pmap_invalidate_all_curcpu_cb(pmap_t pmap, vm_offset_t addr1 __unused,
     vm_offset_t addr2 __unused)
 {
 	pmap_invalidate_all_cb(pmap);
 }
 
 void
 pmap_invalidate_all(pmap_t pmap)
 {
 	if (pmap_type_guest(pmap)) {
 		pmap_invalidate_ept(pmap);
 		return;
 	}
 
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_all: invalid type %d", pmap->pm_type));
 
 	pmap_invalidate_preipi(pmap);
 	smp_masked_invltlb(pmap, pmap_invalidate_all_curcpu_cb);
 }
 
 static void
 pmap_invalidate_cache_curcpu_cb(pmap_t pmap __unused, vm_offset_t va __unused,
     vm_offset_t addr2 __unused)
 {
 	wbinvd();
 }
 
 void
 pmap_invalidate_cache(void)
 {
 	sched_pin();
 	smp_cache_flush(pmap_invalidate_cache_curcpu_cb);
 }
 
 struct pde_action {
 	cpuset_t invalidate;	/* processors that invalidate their TLB */
 	pmap_t pmap;
 	vm_offset_t va;
 	pd_entry_t *pde;
 	pd_entry_t newpde;
 	u_int store;		/* processor that updates the PDE */
 };
 
 static void
 pmap_update_pde_action(void *arg)
 {
 	struct pde_action *act = arg;
 
 	if (act->store == PCPU_GET(cpuid))
 		pmap_update_pde_store(act->pmap, act->pde, act->newpde);
 }
 
 static void
 pmap_update_pde_teardown(void *arg)
 {
 	struct pde_action *act = arg;
 
 	if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
 		pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
 }
 
 /*
  * Change the page size for the specified virtual address in a way that
  * prevents any possibility of the TLB ever having two entries that map the
  * same virtual address using different page sizes.  This is the recommended
  * workaround for Erratum 383 on AMD Family 10h processors.  It prevents a
  * machine check exception for a TLB state that is improperly diagnosed as a
  * hardware error.
  */
 static void
 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 {
 	struct pde_action act;
 	cpuset_t active, other_cpus;
 	u_int cpuid;
 
 	sched_pin();
 	cpuid = PCPU_GET(cpuid);
 	other_cpus = all_cpus;
 	CPU_CLR(cpuid, &other_cpus);
 	if (pmap == kernel_pmap || pmap_type_guest(pmap)) 
 		active = all_cpus;
 	else {
 		active = pmap->pm_active;
 	}
 	if (CPU_OVERLAP(&active, &other_cpus)) { 
 		act.store = cpuid;
 		act.invalidate = active;
 		act.va = va;
 		act.pmap = pmap;
 		act.pde = pde;
 		act.newpde = newpde;
 		CPU_SET(cpuid, &active);
 		smp_rendezvous_cpus(active,
 		    smp_no_rendezvous_barrier, pmap_update_pde_action,
 		    pmap_update_pde_teardown, &act);
 	} else {
 		pmap_update_pde_store(pmap, pde, newpde);
 		if (CPU_ISSET(cpuid, &active))
 			pmap_update_pde_invalidate(pmap, va, newpde);
 	}
 	sched_unpin();
 }
 #else /* !SMP */
 /*
  * Normal, non-SMP, invalidation functions.
  */
 void
 pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
 {
 	struct invpcid_descr d;
 	struct pmap_pcid *pcidp;
 	uint64_t kcr3, ucr3;
 	uint32_t pcid;
 
 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
 		pmap->pm_eptgen++;
 		return;
 	}
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
 
 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
 		invlpg(va);
 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
 			critical_enter();
 			pcid = pmap_get_pcid(pmap);
 			if (invpcid_works) {
 				d.pcid = pcid | PMAP_PCID_USER_PT;
 				d.pad = 0;
 				d.addr = va;
 				invpcid(&d, INVPCID_ADDR);
 			} else {
 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
 				ucr3 = pmap->pm_ucr3 | pcid |
 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
 				pmap_pti_pcid_invlpg(ucr3, kcr3, va);
 			}
 			critical_exit();
 		}
 	} else if (pmap_pcid_enabled) {
 		pcidp = zpcpu_get(pmap->pm_pcidp);
 		pcidp->pm_gen = 0;
 	}
 }
 
 void
 pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	struct invpcid_descr d;
 	struct pmap_pcid *pcidp;
 	vm_offset_t addr;
 	uint64_t kcr3, ucr3;
 	uint32_t pcid;
 
 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
 		pmap->pm_eptgen++;
 		return;
 	}
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_range: unknown type %d", pmap->pm_type));
 
 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
 		for (addr = sva; addr < eva; addr += PAGE_SIZE)
 			invlpg(addr);
 		if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
 		    pmap->pm_ucr3 != PMAP_NO_CR3) {
 			critical_enter();
 			pcid = pmap_get_pcid(pmap);
 			if (invpcid_works) {
 				d.pcid = pcid | PMAP_PCID_USER_PT;
 				d.pad = 0;
 				d.addr = sva;
 				for (; d.addr < eva; d.addr += PAGE_SIZE)
 					invpcid(&d, INVPCID_ADDR);
 			} else {
 				kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
 				ucr3 = pmap->pm_ucr3 | pcid |
 				    PMAP_PCID_USER_PT | CR3_PCID_SAVE;
 				pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
 			}
 			critical_exit();
 		}
 	} else if (pmap_pcid_enabled) {
 		pcidp = zpcpu_get(pmap->pm_pcidp);
 		pcidp->pm_gen = 0;
 	}
 }
 
 void
 pmap_invalidate_all(pmap_t pmap)
 {
 	struct invpcid_descr d;
 	struct pmap_pcid *pcidp;
 	uint64_t kcr3, ucr3;
 	uint32_t pcid;
 
 	if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
 		pmap->pm_eptgen++;
 		return;
 	}
 	KASSERT(pmap->pm_type == PT_X86,
 	    ("pmap_invalidate_all: unknown type %d", pmap->pm_type));
 
 	if (pmap == kernel_pmap) {
 		if (pmap_pcid_enabled && invpcid_works) {
 			bzero(&d, sizeof(d));
 			invpcid(&d, INVPCID_CTXGLOB);
 		} else {
 			invltlb_glob();
 		}
 	} else if (pmap == PCPU_GET(curpmap)) {
 		if (pmap_pcid_enabled) {
 			critical_enter();
 			pcid = pmap_get_pcid(pmap);
 			if (invpcid_works) {
 				d.pcid = pcid;
 				d.pad = 0;
 				d.addr = 0;
 				invpcid(&d, INVPCID_CTX);
 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
 					d.pcid |= PMAP_PCID_USER_PT;
 					invpcid(&d, INVPCID_CTX);
 				}
 			} else {
 				kcr3 = pmap->pm_cr3 | pcid;
 				if (pmap->pm_ucr3 != PMAP_NO_CR3) {
 					ucr3 = pmap->pm_ucr3 | pcid |
 					    PMAP_PCID_USER_PT;
 					pmap_pti_pcid_invalidate(ucr3, kcr3);
 				} else
 					load_cr3(kcr3);
 			}
 			critical_exit();
 		} else {
 			invltlb();
 		}
 	} else if (pmap_pcid_enabled) {
 		pcidp = zpcpu_get(pmap->pm_pcidp);
 		pcidp->pm_gen = 0;
 	}
 }
 
 void
 pmap_invalidate_cache(void)
 {
 
 	wbinvd();
 }
 
 static void
 pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
 {
 	struct pmap_pcid *pcidp;
 
 	pmap_update_pde_store(pmap, pde, newpde);
 	if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
 		pmap_update_pde_invalidate(pmap, va, newpde);
 	else {
 		pcidp = zpcpu_get(pmap->pm_pcidp);
 		pcidp->pm_gen = 0;
 	}
 }
 #endif /* !SMP */
 
 static void
 pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
 {
 
 	/*
 	 * When the PDE has PG_PROMOTED set, the 2MB page mapping was created
 	 * by a promotion that did not invalidate the 512 4KB page mappings
 	 * that might exist in the TLB.  Consequently, at this point, the TLB
 	 * may hold both 4KB and 2MB page mappings for the address range [va,
 	 * va + NBPDR).  Therefore, the entire range must be invalidated here.
 	 * In contrast, when PG_PROMOTED is clear, the TLB will not hold any
 	 * 4KB page mappings for the address range [va, va + NBPDR), and so a
 	 * single INVLPG suffices to invalidate the 2MB page mapping from the
 	 * TLB.
 	 */
 	if ((pde & PG_PROMOTED) != 0)
 		pmap_invalidate_range(pmap, va, va + NBPDR - 1);
 	else
 		pmap_invalidate_page(pmap, va);
 }
 
 DEFINE_IFUNC(, void, pmap_invalidate_cache_range,
     (vm_offset_t sva, vm_offset_t eva))
 {
 
 	if ((cpu_feature & CPUID_SS) != 0)
 		return (pmap_invalidate_cache_range_selfsnoop);
 	if ((cpu_feature & CPUID_CLFSH) != 0)
 		return (pmap_force_invalidate_cache_range);
 	return (pmap_invalidate_cache_range_all);
 }
 
 #define PMAP_CLFLUSH_THRESHOLD   (2 * 1024 * 1024)
 
 static void
 pmap_invalidate_cache_range_check_align(vm_offset_t sva, vm_offset_t eva)
 {
 
 	KASSERT((sva & PAGE_MASK) == 0,
 	    ("pmap_invalidate_cache_range: sva not page-aligned"));
 	KASSERT((eva & PAGE_MASK) == 0,
 	    ("pmap_invalidate_cache_range: eva not page-aligned"));
 }
 
 static void
 pmap_invalidate_cache_range_selfsnoop(vm_offset_t sva, vm_offset_t eva)
 {
 
 	pmap_invalidate_cache_range_check_align(sva, eva);
 }
 
 void
 pmap_force_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva)
 {
 
 	sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
 
 	/*
 	 * XXX: Some CPUs fault, hang, or trash the local APIC
 	 * registers if we use CLFLUSH on the local APIC range.  The
 	 * local APIC is always uncached, so we don't need to flush
 	 * for that range anyway.
 	 */
 	if (pmap_kextract(sva) == lapic_paddr)
 		return;
 
 	if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0) {
 		/*
 		 * Do per-cache line flush.  Use a locked
 		 * instruction to insure that previous stores are
 		 * included in the write-back.  The processor
 		 * propagates flush to other processors in the cache
 		 * coherence domain.
 		 */
 		atomic_thread_fence_seq_cst();
 		for (; sva < eva; sva += cpu_clflush_line_size)
 			clflushopt(sva);
 		atomic_thread_fence_seq_cst();
 	} else {
 		/*
 		 * Writes are ordered by CLFLUSH on Intel CPUs.
 		 */
 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 		for (; sva < eva; sva += cpu_clflush_line_size)
 			clflush(sva);
 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 	}
 }
 
 static void
 pmap_invalidate_cache_range_all(vm_offset_t sva, vm_offset_t eva)
 {
 
 	pmap_invalidate_cache_range_check_align(sva, eva);
 	pmap_invalidate_cache();
 }
 
 /*
  * Remove the specified set of pages from the data and instruction caches.
  *
  * In contrast to pmap_invalidate_cache_range(), this function does not
  * rely on the CPU's self-snoop feature, because it is intended for use
  * when moving pages into a different cache domain.
  */
 void
 pmap_invalidate_cache_pages(vm_page_t *pages, int count)
 {
 	vm_offset_t daddr, eva;
 	int i;
 	bool useclflushopt;
 
 	useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
 	if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
 	    ((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
 		pmap_invalidate_cache();
 	else {
 		if (useclflushopt)
 			atomic_thread_fence_seq_cst();
 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 		for (i = 0; i < count; i++) {
 			daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
 			eva = daddr + PAGE_SIZE;
 			for (; daddr < eva; daddr += cpu_clflush_line_size) {
 				if (useclflushopt)
 					clflushopt(daddr);
 				else
 					clflush(daddr);
 			}
 		}
 		if (useclflushopt)
 			atomic_thread_fence_seq_cst();
 		else if (cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 	}
 }
 
 void
 pmap_flush_cache_range(vm_offset_t sva, vm_offset_t eva)
 {
 
 	pmap_invalidate_cache_range_check_align(sva, eva);
 
 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) == 0) {
 		pmap_force_invalidate_cache_range(sva, eva);
 		return;
 	}
 
 	/* See comment in pmap_force_invalidate_cache_range(). */
 	if (pmap_kextract(sva) == lapic_paddr)
 		return;
 
 	atomic_thread_fence_seq_cst();
 	for (; sva < eva; sva += cpu_clflush_line_size)
 		clwb(sva);
 	atomic_thread_fence_seq_cst();
 }
 
 void
 pmap_flush_cache_phys_range(vm_paddr_t spa, vm_paddr_t epa, vm_memattr_t mattr)
 {
 	pt_entry_t *pte;
 	vm_offset_t vaddr;
 	int error __diagused;
 	int pte_bits;
 
 	KASSERT((spa & PAGE_MASK) == 0,
 	    ("pmap_flush_cache_phys_range: spa not page-aligned"));
 	KASSERT((epa & PAGE_MASK) == 0,
 	    ("pmap_flush_cache_phys_range: epa not page-aligned"));
 
 	if (spa < dmaplimit) {
 		pmap_flush_cache_range(PHYS_TO_DMAP(spa), PHYS_TO_DMAP(MIN(
 		    dmaplimit, epa)));
 		if (dmaplimit >= epa)
 			return;
 		spa = dmaplimit;
 	}
 
 	pte_bits = pmap_cache_bits(kernel_pmap, mattr, false) | X86_PG_RW |
 	    X86_PG_V;
 	error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
 	    &vaddr);
 	KASSERT(error == 0, ("vmem_alloc failed: %d", error));
 	pte = vtopte(vaddr);
 	for (; spa < epa; spa += PAGE_SIZE) {
 		sched_pin();
 		pte_store(pte, spa | pte_bits);
 		pmap_invlpg(kernel_pmap, vaddr);
 		/* XXXKIB atomic inside flush_cache_range are excessive */
 		pmap_flush_cache_range(vaddr, vaddr + PAGE_SIZE);
 		sched_unpin();
 	}
 	vmem_free(kernel_arena, vaddr, PAGE_SIZE);
 }
 
 /*
  *	Routine:	pmap_extract
  *	Function:
  *		Extract the physical page address associated
  *		with the given map/virtual_address pair.
  */
 vm_paddr_t
 pmap_extract(pmap_t pmap, vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	vm_paddr_t pa;
 
 	pa = 0;
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK(pmap);
 	pdpe = pmap_pdpe(pmap, va);
 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
 		if ((*pdpe & PG_PS) != 0)
 			pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
 		else {
 			pde = pmap_pdpe_to_pde(pdpe, va);
 			if ((*pde & PG_V) != 0) {
 				if ((*pde & PG_PS) != 0) {
 					pa = (*pde & PG_PS_FRAME) |
 					    (va & PDRMASK);
 				} else {
 					pte = pmap_pde_to_pte(pde, va);
 					pa = (*pte & PG_FRAME) |
 					    (va & PAGE_MASK);
 				}
 			}
 		}
 	}
 	PMAP_UNLOCK(pmap);
 	return (pa);
 }
 
 /*
  *	Routine:	pmap_extract_and_hold
  *	Function:
  *		Atomically extract and hold the physical page
  *		with the given pmap and virtual address pair
  *		if that mapping permits the given protection.
  */
 vm_page_t
 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
 {
 	pdp_entry_t pdpe, *pdpep;
 	pd_entry_t pde, *pdep;
 	pt_entry_t pte, PG_RW, PG_V;
 	vm_page_t m;
 
 	m = NULL;
 	PG_RW = pmap_rw_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK(pmap);
 
 	pdpep = pmap_pdpe(pmap, va);
 	if (pdpep == NULL || ((pdpe = *pdpep) & PG_V) == 0)
 		goto out;
 	if ((pdpe & PG_PS) != 0) {
 		if ((pdpe & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
 			goto out;
 		m = PHYS_TO_VM_PAGE((pdpe & PG_PS_FRAME) | (va & PDPMASK));
 		goto check_page;
 	}
 
 	pdep = pmap_pdpe_to_pde(pdpep, va);
 	if (pdep == NULL || ((pde = *pdep) & PG_V) == 0)
 		goto out;
 	if ((pde & PG_PS) != 0) {
 		if ((pde & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0)
 			goto out;
 		m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) | (va & PDRMASK));
 		goto check_page;
 	}
 
 	pte = *pmap_pde_to_pte(pdep, va);
 	if ((pte & PG_V) == 0 ||
 	    ((pte & PG_RW) == 0 && (prot & VM_PROT_WRITE) != 0))
 		goto out;
 	m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
 
 check_page:
 	if (m != NULL && !vm_page_wire_mapped(m))
 		m = NULL;
 out:
 	PMAP_UNLOCK(pmap);
 	return (m);
 }
 
 /*
  *	Routine:	pmap_kextract
  *	Function:
  *		Extract the physical page address associated with the given kernel
  *		virtual address.
  */
 vm_paddr_t
 pmap_kextract(vm_offset_t va)
 {
 	pd_entry_t pde;
 	vm_paddr_t pa;
 
 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
 		pa = DMAP_TO_PHYS(va);
 	} else if (PMAP_ADDRESS_IN_LARGEMAP(va)) {
 		pa = pmap_large_map_kextract(va);
 	} else {
 		pde = *vtopde(va);
 		if (pde & PG_PS) {
 			pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
 		} else {
 			/*
 			 * Beware of a concurrent promotion that changes the
 			 * PDE at this point!  For example, vtopte() must not
 			 * be used to access the PTE because it would use the
 			 * new PDE.  It is, however, safe to use the old PDE
 			 * because the page table page is preserved by the
 			 * promotion.
 			 */
 			pa = *pmap_pde_to_pte(&pde, va);
 			pa = (pa & PG_FRAME) | (va & PAGE_MASK);
 		}
 	}
 	return (pa);
 }
 
 /***************************************************
  * Low level mapping routines.....
  ***************************************************/
 
 /*
  * Add a wired page to the kva.
  * Note: not SMP coherent.
  */
 void
 pmap_kenter(vm_offset_t va, vm_paddr_t pa)
 {
 	pt_entry_t *pte;
 
 	pte = vtopte(va);
 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
 	    X86_PG_RW | X86_PG_V);
 }
 
 static __inline void
 pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
 {
 	pt_entry_t *pte;
 	int cache_bits;
 
 	pte = vtopte(va);
 	cache_bits = pmap_cache_bits(kernel_pmap, mode, false);
 	pte_store(pte, pa | pg_g | pg_nx | X86_PG_A | X86_PG_M |
 	    X86_PG_RW | X86_PG_V | cache_bits);
 }
 
 /*
  * Remove a page from the kernel pagetables.
  * Note: not SMP coherent.
  */
 void
 pmap_kremove(vm_offset_t va)
 {
 	pt_entry_t *pte;
 
 	pte = vtopte(va);
 	pte_clear(pte);
 }
 
 /*
  *	Used to map a range of physical addresses into kernel
  *	virtual address space.
  *
  *	The value passed in '*virt' is a suggested virtual address for
  *	the mapping. Architectures which can support a direct-mapped
  *	physical to virtual region can return the appropriate address
  *	within that region, leaving '*virt' unchanged. Other
  *	architectures should map the pages starting at '*virt' and
  *	update '*virt' with the first usable address after the mapped
  *	region.
  */
 vm_offset_t
 pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
 {
 	return PHYS_TO_DMAP(start);
 }
 
 /*
  * Add a list of wired pages to the kva
  * this routine is only used for temporary
  * kernel mappings that do not need to have
  * page modification or references recorded.
  * Note that old mappings are simply written
  * over.  The page *must* be wired.
  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  */
 void
 pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
 {
 	pt_entry_t *endpte, oldpte, pa, *pte;
 	vm_page_t m;
 	int cache_bits;
 
 	oldpte = 0;
 	pte = vtopte(sva);
 	endpte = pte + count;
 	while (pte < endpte) {
 		m = *ma++;
 		cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, false);
 		pa = VM_PAGE_TO_PHYS(m) | cache_bits;
 		if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
 			oldpte |= *pte;
 			pte_store(pte, pa | pg_g | pg_nx | X86_PG_A |
 			    X86_PG_M | X86_PG_RW | X86_PG_V);
 		}
 		pte++;
 	}
 	if (__predict_false((oldpte & X86_PG_V) != 0))
 		pmap_invalidate_range(kernel_pmap, sva, sva + count *
 		    PAGE_SIZE);
 }
 
 /*
  * This routine tears out page mappings from the
  * kernel -- it is meant only for temporary mappings.
  * Note: SMP coherent.  Uses a ranged shootdown IPI.
  */
 void
 pmap_qremove(vm_offset_t sva, int count)
 {
 	vm_offset_t va;
 
 	va = sva;
 	while (count-- > 0) {
 		KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
 		pmap_kremove(va);
 		va += PAGE_SIZE;
 	}
 	pmap_invalidate_range(kernel_pmap, sva, va);
 }
 
 /***************************************************
  * Page table page management routines.....
  ***************************************************/
 /*
  * Schedule the specified unused page table page to be freed.  Specifically,
  * add the page to the specified list of pages that will be released to the
  * physical memory manager after the TLB has been updated.
  */
 static __inline void
 pmap_add_delayed_free_list(vm_page_t m, struct spglist *free, bool set_PG_ZERO)
 {
 
 	if (set_PG_ZERO)
 		m->flags |= PG_ZERO;
 	else
 		m->flags &= ~PG_ZERO;
 	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
 }
 
 /*
  * Inserts the specified page table page into the specified pmap's collection
  * of idle page table pages.  Each of a pmap's page table pages is responsible
  * for mapping a distinct range of virtual addresses.  The pmap's collection is
  * ordered by this virtual address range.
  *
  * If "promoted" is false, then the page table page "mpte" must be zero filled;
  * "mpte"'s valid field will be set to 0.
  *
  * If "promoted" is true and "allpte_PG_A_set" is false, then "mpte" must
  * contain valid mappings with identical attributes except for PG_A; "mpte"'s
  * valid field will be set to 1.
  *
  * If "promoted" and "allpte_PG_A_set" are both true, then "mpte" must contain
  * valid mappings with identical attributes including PG_A; "mpte"'s valid
  * field will be set to VM_PAGE_BITS_ALL.
  */
 static __inline int
 pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte, bool promoted,
     bool allpte_PG_A_set)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT(promoted || !allpte_PG_A_set,
 	    ("a zero-filled PTP can't have PG_A set in every PTE"));
 	mpte->valid = promoted ? (allpte_PG_A_set ? VM_PAGE_BITS_ALL : 1) : 0;
 	return (vm_radix_insert(&pmap->pm_root, mpte));
 }
 
 /*
  * Removes the page table page mapping the specified virtual address from the
  * specified pmap's collection of idle page table pages, and returns it.
  * Otherwise, returns NULL if there is no page table page corresponding to the
  * specified virtual address.
  */
 static __inline vm_page_t
 pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
 }
 
 /*
  * Decrements a page table page's reference count, which is used to record the
  * number of valid page table entries within the page.  If the reference count
  * drops to zero, then the page table page is unmapped.  Returns true if the
  * page table page was unmapped and false otherwise.
  */
 static inline bool
 pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
 {
 
 	--m->ref_count;
 	if (m->ref_count == 0) {
 		_pmap_unwire_ptp(pmap, va, m, free);
 		return (true);
 	} else
 		return (false);
 }
 
 static void
 _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
 {
 	pml5_entry_t *pml5;
 	pml4_entry_t *pml4;
 	pdp_entry_t *pdp;
 	pd_entry_t *pd;
 	vm_page_t pdpg, pdppg, pml4pg;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 
 	/*
 	 * unmap the page table page
 	 */
 	if (m->pindex >= NUPDE + NUPDPE + NUPML4E) {
 		/* PML4 page */
 		MPASS(pmap_is_la57(pmap));
 		pml5 = pmap_pml5e(pmap, va);
 		*pml5 = 0;
 		if (pmap->pm_pmltopu != NULL && va <= VM_MAXUSER_ADDRESS) {
 			pml5 = pmap_pml5e_u(pmap, va);
 			*pml5 = 0;
 		}
 	} else if (m->pindex >= NUPDE + NUPDPE) {
 		/* PDP page */
 		pml4 = pmap_pml4e(pmap, va);
 		*pml4 = 0;
 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
 		    va <= VM_MAXUSER_ADDRESS) {
 			pml4 = pmap_pml4e_u(pmap, va);
 			*pml4 = 0;
 		}
 	} else if (m->pindex >= NUPDE) {
 		/* PD page */
 		pdp = pmap_pdpe(pmap, va);
 		*pdp = 0;
 	} else {
 		/* PTE page */
 		pd = pmap_pde(pmap, va);
 		*pd = 0;
 	}
 	if (m->pindex < NUPDE) {
 		/* We just released a PT, unhold the matching PD */
 		pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
 		pmap_unwire_ptp(pmap, va, pdpg, free);
 	} else if (m->pindex < NUPDE + NUPDPE) {
 		/* We just released a PD, unhold the matching PDP */
 		pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
 		pmap_unwire_ptp(pmap, va, pdppg, free);
 	} else if (m->pindex < NUPDE + NUPDPE + NUPML4E && pmap_is_la57(pmap)) {
 		/* We just released a PDP, unhold the matching PML4 */
 		pml4pg = PHYS_TO_VM_PAGE(*pmap_pml5e(pmap, va) & PG_FRAME);
 		pmap_unwire_ptp(pmap, va, pml4pg, free);
 	}
 
 	pmap_pt_page_count_adj(pmap, -1);
 
 	/* 
 	 * Put page on a list so that it is released after
 	 * *ALL* TLB shootdown is done
 	 */
 	pmap_add_delayed_free_list(m, free, true);
 }
 
 /*
  * After removing a page table entry, this routine is used to
  * conditionally free the page, and manage the reference count.
  */
 static int
 pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
     struct spglist *free)
 {
 	vm_page_t mpte;
 
 	if (va >= VM_MAXUSER_ADDRESS)
 		return (0);
 	KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
 	mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
 	return (pmap_unwire_ptp(pmap, va, mpte, free));
 }
 
 /*
  * Release a page table page reference after a failed attempt to create a
  * mapping.
  */
 static void
 pmap_abort_ptp(pmap_t pmap, vm_offset_t va, vm_page_t mpte)
 {
 	struct spglist free;
 
 	SLIST_INIT(&free);
 	if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
 		/*
 		 * Although "va" was never mapped, paging-structure caches
 		 * could nonetheless have entries that refer to the freed
 		 * page table pages.  Invalidate those entries.
 		 */
 		pmap_invalidate_page(pmap, va);
 		vm_page_free_pages_toq(&free, true);
 	}
 }
 
 static void
 pmap_pinit_pcids(pmap_t pmap, uint32_t pcid, int gen)
 {
 	struct pmap_pcid *pcidp;
 	int i;
 
 	CPU_FOREACH(i) {
 		pcidp = zpcpu_get_cpu(pmap->pm_pcidp, i);
 		pcidp->pm_pcid = pcid;
 		pcidp->pm_gen = gen;
 	}
 }
 
 void
 pmap_pinit0(pmap_t pmap)
 {
 	struct proc *p;
 	struct thread *td;
 
 	PMAP_LOCK_INIT(pmap);
 	pmap->pm_pmltop = kernel_pmap->pm_pmltop;
 	pmap->pm_pmltopu = NULL;
 	pmap->pm_cr3 = kernel_pmap->pm_cr3;
 	/* hack to keep pmap_pti_pcid_invalidate() alive */
 	pmap->pm_ucr3 = PMAP_NO_CR3;
 	vm_radix_init(&pmap->pm_root);
 	CPU_ZERO(&pmap->pm_active);
 	TAILQ_INIT(&pmap->pm_pvchunk);
 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 	pmap->pm_flags = pmap_flags;
 	pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8, M_WAITOK);
 	pmap_pinit_pcids(pmap, PMAP_PCID_KERN + 1, 1);
 	pmap_activate_boot(pmap);
 	td = curthread;
 	if (pti) {
 		p = td->td_proc;
 		PROC_LOCK(p);
 		p->p_md.md_flags |= P_MD_KPTI;
 		PROC_UNLOCK(p);
 	}
 	pmap_thread_init_invl_gen(td);
 
 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
 		pmap_pkru_ranges_zone = uma_zcreate("pkru ranges",
 		    sizeof(struct pmap_pkru_range), NULL, NULL, NULL, NULL,
 		    UMA_ALIGN_PTR, 0);
 	}
 }
 
 void
 pmap_pinit_pml4(vm_page_t pml4pg)
 {
 	pml4_entry_t *pm_pml4;
 	int i;
 
 	pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
 
 	/* Wire in kernel global address entries. */
 	for (i = 0; i < NKPML4E; i++) {
 		pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
 		    X86_PG_V;
 	}
 #ifdef KASAN
 	for (i = 0; i < NKASANPML4E; i++) {
 		pm_pml4[KASANPML4I + i] = (KASANPDPphys + ptoa(i)) | X86_PG_RW |
 		    X86_PG_V | pg_nx;
 	}
 #endif
 #ifdef KMSAN
 	for (i = 0; i < NKMSANSHADPML4E; i++) {
 		pm_pml4[KMSANSHADPML4I + i] = (KMSANSHADPDPphys + ptoa(i)) |
 		    X86_PG_RW | X86_PG_V | pg_nx;
 	}
 	for (i = 0; i < NKMSANORIGPML4E; i++) {
 		pm_pml4[KMSANORIGPML4I + i] = (KMSANORIGPDPphys + ptoa(i)) |
 		    X86_PG_RW | X86_PG_V | pg_nx;
 	}
 #endif
 	for (i = 0; i < ndmpdpphys; i++) {
 		pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
 		    X86_PG_V;
 	}
 
 	/* install self-referential address mapping entry(s) */
 	pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
 	    X86_PG_A | X86_PG_M;
 
 	/* install large map entries if configured */
 	for (i = 0; i < lm_ents; i++)
 		pm_pml4[LMSPML4I + i] = kernel_pmap->pm_pmltop[LMSPML4I + i];
 }
 
 void
 pmap_pinit_pml5(vm_page_t pml5pg)
 {
 	pml5_entry_t *pm_pml5;
 
 	pm_pml5 = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pg));
 
 	/*
 	 * Add pml5 entry at top of KVA pointing to existing pml4 table,
 	 * entering all existing kernel mappings into level 5 table.
 	 */
 	pm_pml5[pmap_pml5e_index(UPT_MAX_ADDRESS)] = KPML4phys | X86_PG_V |
 	    X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
 
 	/* 
 	 * Install self-referential address mapping entry.
 	 */
 	pm_pml5[PML5PML5I] = VM_PAGE_TO_PHYS(pml5pg) |
 	    X86_PG_RW | X86_PG_V | X86_PG_M | X86_PG_A |
 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
 }
 
 static void
 pmap_pinit_pml4_pti(vm_page_t pml4pgu)
 {
 	pml4_entry_t *pm_pml4u;
 	int i;
 
 	pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pgu));
 	for (i = 0; i < NPML4EPG; i++)
 		pm_pml4u[i] = pti_pml4[i];
 }
 
 static void
 pmap_pinit_pml5_pti(vm_page_t pml5pgu)
 {
 	pml5_entry_t *pm_pml5u;
 
 	pm_pml5u = (pml5_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml5pgu));
 	pagezero(pm_pml5u);
 
 	/*
 	 * Add pml5 entry at top of KVA pointing to existing pml4 pti
 	 * table, entering all kernel mappings needed for usermode
 	 * into level 5 table.
 	 */
 	pm_pml5u[pmap_pml5e_index(UPT_MAX_ADDRESS)] =
 	    pmap_kextract((vm_offset_t)pti_pml4) |
 	    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M | pg_g |
 	    pmap_cache_bits(kernel_pmap, VM_MEMATTR_DEFAULT, false);
 }
 
 /* Allocate a page table page and do related bookkeeping */
 static vm_page_t
 pmap_alloc_pt_page(pmap_t pmap, vm_pindex_t pindex, int flags)
 {
 	vm_page_t m;
 
 	m = vm_page_alloc_noobj(flags);
 	if (__predict_false(m == NULL))
 		return (NULL);
 	m->pindex = pindex;
 	pmap_pt_page_count_adj(pmap, 1);
 	return (m);
 }
 
 static void
 pmap_free_pt_page(pmap_t pmap, vm_page_t m, bool zerofilled)
 {
 	/*
 	 * This function assumes the page will need to be unwired,
 	 * even though the counterpart allocation in pmap_alloc_pt_page()
 	 * doesn't enforce VM_ALLOC_WIRED.  However, all current uses
 	 * of pmap_free_pt_page() require unwiring.  The case in which
 	 * a PT page doesn't require unwiring because its ref_count has
 	 * naturally reached 0 is handled through _pmap_unwire_ptp().
 	 */
 	vm_page_unwire_noq(m);
 	if (zerofilled)
 		vm_page_free_zero(m);
 	else
 		vm_page_free(m);
 
 	pmap_pt_page_count_adj(pmap, -1);
 }
 
 _Static_assert(sizeof(struct pmap_pcid) == 8, "Fix pcpu zone for pm_pcidp");
 
 /*
  * Initialize a preallocated and zeroed pmap structure,
  * such as one in a vmspace structure.
  */
 int
 pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
 {
 	vm_page_t pmltop_pg, pmltop_pgu;
 	vm_paddr_t pmltop_phys;
 
 	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
 
 	/*
 	 * Allocate the page directory page.  Pass NULL instead of a
 	 * pointer to the pmap here to avoid calling
 	 * pmap_resident_count_adj() through pmap_pt_page_count_adj(),
 	 * since that requires pmap lock.  Instead do the accounting
 	 * manually.
 	 *
 	 * Note that final call to pmap_remove() optimization that
 	 * checks for zero resident_count is basically disabled by
 	 * accounting for top-level page.  But the optimization was
 	 * not effective since we started using non-managed mapping of
 	 * the shared page.
 	 */
 	pmltop_pg = pmap_alloc_pt_page(NULL, 0, VM_ALLOC_WIRED | VM_ALLOC_ZERO |
 	    VM_ALLOC_WAITOK);
 	pmap_pt_page_count_pinit(pmap, 1);
 
 	pmltop_phys = VM_PAGE_TO_PHYS(pmltop_pg);
 	pmap->pm_pmltop = (pml5_entry_t *)PHYS_TO_DMAP(pmltop_phys);
 
 	if (pmap_pcid_enabled) {
 		if (pmap->pm_pcidp == NULL)
 			pmap->pm_pcidp = uma_zalloc_pcpu(pcpu_zone_8,
 			    M_WAITOK);
 		pmap_pinit_pcids(pmap, PMAP_PCID_NONE, 0);
 	}
 	pmap->pm_cr3 = PMAP_NO_CR3;	/* initialize to an invalid value */
 	pmap->pm_ucr3 = PMAP_NO_CR3;
 	pmap->pm_pmltopu = NULL;
 
 	pmap->pm_type = pm_type;
 
 	/*
 	 * Do not install the host kernel mappings in the nested page
 	 * tables. These mappings are meaningless in the guest physical
 	 * address space.
 	 * Install minimal kernel mappings in PTI case.
 	 */
 	switch (pm_type) {
 	case PT_X86:
 		pmap->pm_cr3 = pmltop_phys;
 		if (pmap_is_la57(pmap))
 			pmap_pinit_pml5(pmltop_pg);
 		else
 			pmap_pinit_pml4(pmltop_pg);
 		if ((curproc->p_md.md_flags & P_MD_KPTI) != 0) {
 			/*
 			 * As with pmltop_pg, pass NULL instead of a
 			 * pointer to the pmap to ensure that the PTI
 			 * page counted explicitly.
 			 */
 			pmltop_pgu = pmap_alloc_pt_page(NULL, 0,
 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
 			pmap_pt_page_count_pinit(pmap, 1);
 			pmap->pm_pmltopu = (pml4_entry_t *)PHYS_TO_DMAP(
 			    VM_PAGE_TO_PHYS(pmltop_pgu));
 			if (pmap_is_la57(pmap))
 				pmap_pinit_pml5_pti(pmltop_pgu);
 			else
 				pmap_pinit_pml4_pti(pmltop_pgu);
 			pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pmltop_pgu);
 		}
 		if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
 			rangeset_init(&pmap->pm_pkru, pkru_dup_range,
 			    pkru_free_range, pmap, M_NOWAIT);
 		}
 		break;
 	case PT_EPT:
 	case PT_RVI:
 		pmap->pm_eptsmr = smr_create("pmap", 0, 0);
 		break;
 	}
 
 	vm_radix_init(&pmap->pm_root);
 	CPU_ZERO(&pmap->pm_active);
 	TAILQ_INIT(&pmap->pm_pvchunk);
 	pmap->pm_flags = flags;
 	pmap->pm_eptgen = 0;
 
 	return (1);
 }
 
 int
 pmap_pinit(pmap_t pmap)
 {
 
 	return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
 }
 
 static void
 pmap_allocpte_free_unref(pmap_t pmap, vm_offset_t va, pt_entry_t *pte)
 {
 	vm_page_t mpg;
 	struct spglist free;
 
 	mpg = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 	if (mpg->ref_count != 0)
 		return;
 	SLIST_INIT(&free);
 	_pmap_unwire_ptp(pmap, va, mpg, &free);
 	pmap_invalidate_page(pmap, va);
 	vm_page_free_pages_toq(&free, true);
 }
 
 static pml4_entry_t *
 pmap_allocpte_getpml4(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
     bool addref)
 {
 	vm_pindex_t pml5index;
 	pml5_entry_t *pml5;
 	pml4_entry_t *pml4;
 	vm_page_t pml4pg;
 	pt_entry_t PG_V;
 	bool allocated;
 
 	if (!pmap_is_la57(pmap))
 		return (&pmap->pm_pmltop[pmap_pml4e_index(va)]);
 
 	PG_V = pmap_valid_bit(pmap);
 	pml5index = pmap_pml5e_index(va);
 	pml5 = &pmap->pm_pmltop[pml5index];
 	if ((*pml5 & PG_V) == 0) {
 		if (pmap_allocpte_nosleep(pmap, pmap_pml5e_pindex(va), lockp,
 		    va) == NULL)
 			return (NULL);
 		allocated = true;
 	} else {
 		allocated = false;
 	}
 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(*pml5 & PG_FRAME);
 	pml4 = &pml4[pmap_pml4e_index(va)];
 	if ((*pml4 & PG_V) == 0) {
 		pml4pg = PHYS_TO_VM_PAGE(*pml5 & PG_FRAME);
 		if (allocated && !addref)
 			pml4pg->ref_count--;
 		else if (!allocated && addref)
 			pml4pg->ref_count++;
 	}
 	return (pml4);
 }
 
 static pdp_entry_t *
 pmap_allocpte_getpdp(pmap_t pmap, struct rwlock **lockp, vm_offset_t va,
     bool addref)
 {
 	vm_page_t pdppg;
 	pml4_entry_t *pml4;
 	pdp_entry_t *pdp;
 	pt_entry_t PG_V;
 	bool allocated;
 
 	PG_V = pmap_valid_bit(pmap);
 
 	pml4 = pmap_allocpte_getpml4(pmap, lockp, va, false);
 	if (pml4 == NULL)
 		return (NULL);
 
 	if ((*pml4 & PG_V) == 0) {
 		/* Have to allocate a new pdp, recurse */
 		if (pmap_allocpte_nosleep(pmap, pmap_pml4e_pindex(va), lockp,
 		    va) == NULL) {
 			if (pmap_is_la57(pmap))
 				pmap_allocpte_free_unref(pmap, va,
 				    pmap_pml5e(pmap, va));
 			return (NULL);
 		}
 		allocated = true;
 	} else {
 		allocated = false;
 	}
 	pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
 	pdp = &pdp[pmap_pdpe_index(va)];
 	if ((*pdp & PG_V) == 0) {
 		pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
 		if (allocated && !addref)
 			pdppg->ref_count--;
 		else if (!allocated && addref)
 			pdppg->ref_count++;
 	}
 	return (pdp);
 }
 
 /*
  * The ptepindexes, i.e. page indices, of the page table pages encountered
  * while translating virtual address va are defined as follows:
  * - for the page table page (last level),
  *      ptepindex = pmap_pde_pindex(va) = va >> PDRSHIFT,
  *   in other words, it is just the index of the PDE that maps the page
  *   table page.
  * - for the page directory page,
  *      ptepindex = NUPDE (number of userland PD entries) +
  *          (pmap_pde_index(va) >> NPDEPGSHIFT)
  *   i.e. index of PDPE is put after the last index of PDE,
  * - for the page directory pointer page,
  *      ptepindex = NUPDE + NUPDPE + (pmap_pde_index(va) >> (NPDEPGSHIFT +
  *          NPML4EPGSHIFT),
  *   i.e. index of pml4e is put after the last index of PDPE,
  * - for the PML4 page (if LA57 mode is enabled),
  *      ptepindex = NUPDE + NUPDPE + NUPML4E + (pmap_pde_index(va) >>
  *          (NPDEPGSHIFT + NPML4EPGSHIFT + NPML5EPGSHIFT),
  *   i.e. index of pml5e is put after the last index of PML4E.
  *
  * Define an order on the paging entries, where all entries of the
  * same height are put together, then heights are put from deepest to
  * root.  Then ptexpindex is the sequential number of the
  * corresponding paging entry in this order.
  *
  * The values of NUPDE, NUPDPE, and NUPML4E are determined by the size of
  * LA57 paging structures even in LA48 paging mode. Moreover, the
  * ptepindexes are calculated as if the paging structures were 5-level
  * regardless of the actual mode of operation.
  *
  * The root page at PML4/PML5 does not participate in this indexing scheme,
  * since it is statically allocated by pmap_pinit() and not by pmap_allocpte().
  */
 static vm_page_t
 pmap_allocpte_nosleep(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
     vm_offset_t va)
 {
 	vm_pindex_t pml5index, pml4index;
 	pml5_entry_t *pml5, *pml5u;
 	pml4_entry_t *pml4, *pml4u;
 	pdp_entry_t *pdp;
 	pd_entry_t *pd;
 	vm_page_t m, pdpg;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	/*
 	 * Allocate a page table page.
 	 */
 	m = pmap_alloc_pt_page(pmap, ptepindex,
 	    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 	if (m == NULL)
 		return (NULL);
 
 	/*
 	 * Map the pagetable page into the process address space, if
 	 * it isn't already there.
 	 */
 	if (ptepindex >= NUPDE + NUPDPE + NUPML4E) {
 		MPASS(pmap_is_la57(pmap));
 
 		pml5index = pmap_pml5e_index(va);
 		pml5 = &pmap->pm_pmltop[pml5index];
 		KASSERT((*pml5 & PG_V) == 0,
 		    ("pmap %p va %#lx pml5 %#lx", pmap, va, *pml5));
 		*pml5 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 
 		if (pmap->pm_pmltopu != NULL && pml5index < NUPML5E) {
 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
 				*pml5 |= pg_nx;
 
 			pml5u = &pmap->pm_pmltopu[pml5index];
 			*pml5u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
 			    PG_A | PG_M;
 		}
 	} else if (ptepindex >= NUPDE + NUPDPE) {
 		pml4index = pmap_pml4e_index(va);
 		/* Wire up a new PDPE page */
 		pml4 = pmap_allocpte_getpml4(pmap, lockp, va, true);
 		if (pml4 == NULL) {
 			pmap_free_pt_page(pmap, m, true);
 			return (NULL);
 		}
 		KASSERT((*pml4 & PG_V) == 0,
 		    ("pmap %p va %#lx pml4 %#lx", pmap, va, *pml4));
 		*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 
 		if (!pmap_is_la57(pmap) && pmap->pm_pmltopu != NULL &&
 		    pml4index < NUPML4E) {
 			/*
 			 * PTI: Make all user-space mappings in the
 			 * kernel-mode page table no-execute so that
 			 * we detect any programming errors that leave
 			 * the kernel-mode page table active on return
 			 * to user space.
 			 */
 			if (pmap->pm_ucr3 != PMAP_NO_CR3)
 				*pml4 |= pg_nx;
 
 			pml4u = &pmap->pm_pmltopu[pml4index];
 			*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
 			    PG_A | PG_M;
 		}
 	} else if (ptepindex >= NUPDE) {
 		/* Wire up a new PDE page */
 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, true);
 		if (pdp == NULL) {
 			pmap_free_pt_page(pmap, m, true);
 			return (NULL);
 		}
 		KASSERT((*pdp & PG_V) == 0,
 		    ("pmap %p va %#lx pdp %#lx", pmap, va, *pdp));
 		*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 	} else {
 		/* Wire up a new PTE page */
 		pdp = pmap_allocpte_getpdp(pmap, lockp, va, false);
 		if (pdp == NULL) {
 			pmap_free_pt_page(pmap, m, true);
 			return (NULL);
 		}
 		if ((*pdp & PG_V) == 0) {
 			/* Have to allocate a new pd, recurse */
 		  if (pmap_allocpte_nosleep(pmap, pmap_pdpe_pindex(va),
 		      lockp, va) == NULL) {
 				pmap_allocpte_free_unref(pmap, va,
 				    pmap_pml4e(pmap, va));
 				pmap_free_pt_page(pmap, m, true);
 				return (NULL);
 			}
 		} else {
 			/* Add reference to the pd page */
 			pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
 			pdpg->ref_count++;
 		}
 		pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
 
 		/* Now we know where the page directory page is */
 		pd = &pd[pmap_pde_index(va)];
 		KASSERT((*pd & PG_V) == 0,
 		    ("pmap %p va %#lx pd %#lx", pmap, va, *pd));
 		*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
 	}
 
 	return (m);
 }
 
 /*
  * This routine is called if the desired page table page does not exist.
  *
  * If page table page allocation fails, this routine may sleep before
  * returning NULL.  It sleeps only if a lock pointer was given.  Sleep
  * occurs right before returning to the caller. This way, we never
  * drop pmap lock to sleep while a page table page has ref_count == 0,
  * which prevents the page from being freed under us.
  */
 static vm_page_t
 pmap_allocpte_alloc(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp,
     vm_offset_t va)
 {
 	vm_page_t m;
 
 	m = pmap_allocpte_nosleep(pmap, ptepindex, lockp, va);
 	if (m == NULL && lockp != NULL) {
 		RELEASE_PV_LIST_LOCK(lockp);
 		PMAP_UNLOCK(pmap);
 		PMAP_ASSERT_NOT_IN_DI();
 		vm_wait(NULL);
 		PMAP_LOCK(pmap);
 	}
 	return (m);
 }
 
 static pd_entry_t *
 pmap_alloc_pde(pmap_t pmap, vm_offset_t va, vm_page_t *pdpgp,
     struct rwlock **lockp)
 {
 	pdp_entry_t *pdpe, PG_V;
 	pd_entry_t *pde;
 	vm_page_t pdpg;
 	vm_pindex_t pdpindex;
 
 	PG_V = pmap_valid_bit(pmap);
 
 retry:
 	pdpe = pmap_pdpe(pmap, va);
 	if (pdpe != NULL && (*pdpe & PG_V) != 0) {
 		pde = pmap_pdpe_to_pde(pdpe, va);
 		if (va < VM_MAXUSER_ADDRESS) {
 			/* Add a reference to the pd page. */
 			pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
 			pdpg->ref_count++;
 		} else
 			pdpg = NULL;
 	} else if (va < VM_MAXUSER_ADDRESS) {
 		/* Allocate a pd page. */
 		pdpindex = pmap_pde_pindex(va) >> NPDPEPGSHIFT;
 		pdpg = pmap_allocpte_alloc(pmap, NUPDE + pdpindex, lockp, va);
 		if (pdpg == NULL) {
 			if (lockp != NULL)
 				goto retry;
 			else
 				return (NULL);
 		}
 		pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
 		pde = &pde[pmap_pde_index(va)];
 	} else
 		panic("pmap_alloc_pde: missing page table page for va %#lx",
 		    va);
 	*pdpgp = pdpg;
 	return (pde);
 }
 
 static vm_page_t
 pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
 {
 	vm_pindex_t ptepindex;
 	pd_entry_t *pd, PG_V;
 	vm_page_t m;
 
 	PG_V = pmap_valid_bit(pmap);
 
 	/*
 	 * Calculate pagetable page index
 	 */
 	ptepindex = pmap_pde_pindex(va);
 retry:
 	/*
 	 * Get the page directory entry
 	 */
 	pd = pmap_pde(pmap, va);
 
 	/*
 	 * This supports switching from a 2MB page to a
 	 * normal 4K page.
 	 */
 	if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
 		if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
 			/*
 			 * Invalidation of the 2MB page mapping may have caused
 			 * the deallocation of the underlying PD page.
 			 */
 			pd = NULL;
 		}
 	}
 
 	/*
 	 * If the page table page is mapped, we just increment the
 	 * hold count, and activate it.
 	 */
 	if (pd != NULL && (*pd & PG_V) != 0) {
 		m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
 		m->ref_count++;
 	} else {
 		/*
 		 * Here if the pte page isn't mapped, or if it has been
 		 * deallocated.
 		 */
 		m = pmap_allocpte_alloc(pmap, ptepindex, lockp, va);
 		if (m == NULL && lockp != NULL)
 			goto retry;
 	}
 	return (m);
 }
 
 /***************************************************
  * Pmap allocation/deallocation routines.
  ***************************************************/
 
 /*
  * Release any resources held by the given physical map.
  * Called when a pmap initialized by pmap_pinit is being released.
  * Should only be called if the map contains no valid mappings.
  */
 void
 pmap_release(pmap_t pmap)
 {
 	vm_page_t m;
 	int i;
 
 	KASSERT(vm_radix_is_empty(&pmap->pm_root),
 	    ("pmap_release: pmap %p has reserved page table page(s)",
 	    pmap));
 	KASSERT(CPU_EMPTY(&pmap->pm_active),
 	    ("releasing active pmap %p", pmap));
 
 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pmltop));
 
 	if (pmap_is_la57(pmap)) {
 		pmap->pm_pmltop[pmap_pml5e_index(UPT_MAX_ADDRESS)] = 0;
 		pmap->pm_pmltop[PML5PML5I] = 0;
 	} else {
 		for (i = 0; i < NKPML4E; i++)	/* KVA */
 			pmap->pm_pmltop[KPML4BASE + i] = 0;
 #ifdef KASAN
 		for (i = 0; i < NKASANPML4E; i++) /* KASAN shadow map */
 			pmap->pm_pmltop[KASANPML4I + i] = 0;
 #endif
 #ifdef KMSAN
 		for (i = 0; i < NKMSANSHADPML4E; i++) /* KMSAN shadow map */
 			pmap->pm_pmltop[KMSANSHADPML4I + i] = 0;
 		for (i = 0; i < NKMSANORIGPML4E; i++) /* KMSAN shadow map */
 			pmap->pm_pmltop[KMSANORIGPML4I + i] = 0;
 #endif
 		for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
 			pmap->pm_pmltop[DMPML4I + i] = 0;
 		pmap->pm_pmltop[PML4PML4I] = 0;	/* Recursive Mapping */
 		for (i = 0; i < lm_ents; i++)	/* Large Map */
 			pmap->pm_pmltop[LMSPML4I + i] = 0;
 	}
 
 	pmap_free_pt_page(NULL, m, true);
 	pmap_pt_page_count_pinit(pmap, -1);
 
 	if (pmap->pm_pmltopu != NULL) {
 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->
 		    pm_pmltopu));
 		pmap_free_pt_page(NULL, m, false);
 		pmap_pt_page_count_pinit(pmap, -1);
 	}
 	if (pmap->pm_type == PT_X86 &&
 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
 		rangeset_fini(&pmap->pm_pkru);
 
 	KASSERT(pmap->pm_stats.resident_count == 0,
 	    ("pmap_release: pmap %p resident count %ld != 0",
 	    pmap, pmap->pm_stats.resident_count));
 }
 
 static int
 kvm_size(SYSCTL_HANDLER_ARGS)
 {
 	unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
 
 	return sysctl_handle_long(oidp, &ksize, 0, req);
 }
 SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
     0, 0, kvm_size, "LU",
     "Size of KVM");
 
 static int
 kvm_free(SYSCTL_HANDLER_ARGS)
 {
 	unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
 
 	return sysctl_handle_long(oidp, &kfree, 0, req);
 }
 SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG | CTLFLAG_RD | CTLFLAG_MPSAFE,
     0, 0, kvm_free, "LU",
     "Amount of KVM free");
 
 #ifdef KMSAN
 static void
 pmap_kmsan_shadow_map_page_array(vm_paddr_t pdppa, vm_size_t size)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte;
 	vm_paddr_t dummypa, dummypd, dummypt;
 	int i, npde, npdpg;
 
 	npdpg = howmany(size, NBPDP);
 	npde = size / NBPDR;
 
 	dummypa = vm_phys_early_alloc(-1, PAGE_SIZE);
 	pagezero((void *)PHYS_TO_DMAP(dummypa));
 
 	dummypt = vm_phys_early_alloc(-1, PAGE_SIZE);
 	pagezero((void *)PHYS_TO_DMAP(dummypt));
 	dummypd = vm_phys_early_alloc(-1, PAGE_SIZE * npdpg);
 	for (i = 0; i < npdpg; i++)
 		pagezero((void *)PHYS_TO_DMAP(dummypd + ptoa(i)));
 
 	pte = (pt_entry_t *)PHYS_TO_DMAP(dummypt);
 	for (i = 0; i < NPTEPG; i++)
 		pte[i] = (pt_entry_t)(dummypa | X86_PG_V | X86_PG_RW |
 		    X86_PG_A | X86_PG_M | pg_nx);
 
 	pde = (pd_entry_t *)PHYS_TO_DMAP(dummypd);
 	for (i = 0; i < npde; i++)
 		pde[i] = (pd_entry_t)(dummypt | X86_PG_V | X86_PG_RW | pg_nx);
 
 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(pdppa);
 	for (i = 0; i < npdpg; i++)
 		pdpe[i] = (pdp_entry_t)(dummypd + ptoa(i) | X86_PG_V |
 		    X86_PG_RW | pg_nx);
 }
 
 static void
 pmap_kmsan_page_array_startup(vm_offset_t start, vm_offset_t end)
 {
 	vm_size_t size;
 
 	KASSERT(start % NBPDP == 0, ("unaligned page array start address"));
 
 	/*
 	 * The end of the page array's KVA region is 2MB aligned, see
 	 * kmem_init().
 	 */
 	size = round_2mpage(end) - start;
 	pmap_kmsan_shadow_map_page_array(KMSANSHADPDPphys, size);
 	pmap_kmsan_shadow_map_page_array(KMSANORIGPDPphys, size);
 }
 #endif
 
 /*
  * Allocate physical memory for the vm_page array and map it into KVA,
  * attempting to back the vm_pages with domain-local memory.
  */
 void
 pmap_page_array_startup(long pages)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde, newpdir;
 	vm_offset_t va, start, end;
 	vm_paddr_t pa;
 	long pfn;
 	int domain, i;
 
 	vm_page_array_size = pages;
 
 	start = VM_MIN_KERNEL_ADDRESS;
 	end = start + pages * sizeof(struct vm_page);
 	for (va = start; va < end; va += NBPDR) {
 		pfn = first_page + (va - start) / sizeof(struct vm_page);
 		domain = vm_phys_domain(ptoa(pfn));
 		pdpe = pmap_pdpe(kernel_pmap, va);
 		if ((*pdpe & X86_PG_V) == 0) {
 			pa = vm_phys_early_alloc(domain, PAGE_SIZE);
 			dump_add_page(pa);
 			pagezero((void *)PHYS_TO_DMAP(pa));
 			*pdpe = (pdp_entry_t)(pa | X86_PG_V | X86_PG_RW |
 			    X86_PG_A | X86_PG_M);
 		}
 		pde = pmap_pdpe_to_pde(pdpe, va);
 		if ((*pde & X86_PG_V) != 0)
 			panic("Unexpected pde");
 		pa = vm_phys_early_alloc(domain, NBPDR);
 		for (i = 0; i < NPDEPG; i++)
 			dump_add_page(pa + i * PAGE_SIZE);
 		newpdir = (pd_entry_t)(pa | X86_PG_V | X86_PG_RW | X86_PG_A |
 		    X86_PG_M | PG_PS | pg_g | pg_nx);
 		pde_store(pde, newpdir);
 	}
 	vm_page_array = (vm_page_t)start;
 
 #ifdef KMSAN
 	pmap_kmsan_page_array_startup(start, end);
 #endif
 }
 
 /*
  * grow the number of kernel page table entries, if needed
  */
 void
 pmap_growkernel(vm_offset_t addr)
 {
 	vm_paddr_t paddr;
 	vm_page_t nkpg;
 	pd_entry_t *pde, newpdir;
 	pdp_entry_t *pdpe;
 	vm_offset_t end;
 
 	TSENTER();
 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 
 	/*
 	 * The kernel map covers two distinct regions of KVA: that used
 	 * for dynamic kernel memory allocations, and the uppermost 2GB
 	 * of the virtual address space.  The latter is used to map the
 	 * kernel and loadable kernel modules.  This scheme enables the
 	 * use of a special code generation model for kernel code which
 	 * takes advantage of compact addressing modes in machine code.
 	 *
 	 * Both regions grow upwards; to avoid wasting memory, the gap
 	 * in between is unmapped.  If "addr" is above "KERNBASE", the
 	 * kernel's region is grown, otherwise the kmem region is grown.
 	 *
 	 * The correctness of this action is based on the following
 	 * argument: vm_map_insert() allocates contiguous ranges of the
 	 * kernel virtual address space.  It calls this function if a range
 	 * ends after "kernel_vm_end".  If the kernel is mapped between
 	 * "kernel_vm_end" and "addr", then the range cannot begin at
 	 * "kernel_vm_end".  In fact, its beginning address cannot be less
 	 * than the kernel.  Thus, there is no immediate need to allocate
 	 * any new kernel page table pages between "kernel_vm_end" and
 	 * "KERNBASE".
 	 */
 	if (KERNBASE < addr) {
 		end = KERNBASE + nkpt * NBPDR;
 		if (end == 0) {
 			TSEXIT();
 			return;
 		}
 	} else {
 		end = kernel_vm_end;
 	}
 
 	addr = roundup2(addr, NBPDR);
 	if (addr - 1 >= vm_map_max(kernel_map))
 		addr = vm_map_max(kernel_map);
 	if (addr <= end) {
 		/*
 		 * The grown region is already mapped, so there is
 		 * nothing to do.
 		 */
 		TSEXIT();
 		return;
 	}
 
 	kasan_shadow_map(end, addr - end);
 	kmsan_shadow_map(end, addr - end);
 	while (end < addr) {
 		pdpe = pmap_pdpe(kernel_pmap, end);
 		if ((*pdpe & X86_PG_V) == 0) {
 			nkpg = pmap_alloc_pt_page(kernel_pmap,
 			    pmap_pdpe_pindex(end), VM_ALLOC_WIRED |
 			    VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
 			if (nkpg == NULL)
 				panic("pmap_growkernel: no memory to grow kernel");
 			paddr = VM_PAGE_TO_PHYS(nkpg);
 			*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
 			    X86_PG_A | X86_PG_M);
 			continue; /* try again */
 		}
 		pde = pmap_pdpe_to_pde(pdpe, end);
 		if ((*pde & X86_PG_V) != 0) {
 			end = (end + NBPDR) & ~PDRMASK;
 			if (end - 1 >= vm_map_max(kernel_map)) {
 				end = vm_map_max(kernel_map);
 				break;                       
 			}
 			continue;
 		}
 
 		nkpg = pmap_alloc_pt_page(kernel_pmap, pmap_pde_pindex(end),
 		    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT | VM_ALLOC_ZERO);
 		if (nkpg == NULL)
 			panic("pmap_growkernel: no memory to grow kernel");
 		paddr = VM_PAGE_TO_PHYS(nkpg);
 		newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
 		pde_store(pde, newpdir);
 
 		end = (end + NBPDR) & ~PDRMASK;
 		if (end - 1 >= vm_map_max(kernel_map)) {
 			end = vm_map_max(kernel_map);
 			break;                       
 		}
 	}
 
 	if (end <= KERNBASE)
 		kernel_vm_end = end;
 	else
 		nkpt = howmany(end - KERNBASE, NBPDR);
 	TSEXIT();
 }
 
 /***************************************************
  * page management routines.
  ***************************************************/
 
 static const uint64_t pc_freemask[_NPCM] = {
 	[0 ... _NPCM - 2] = PC_FREEN,
 	[_NPCM - 1] = PC_FREEL
 };
 
 #ifdef PV_STATS
 
 static COUNTER_U64_DEFINE_EARLY(pc_chunk_count);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD,
     &pc_chunk_count, "Current number of pv entry cnunks");
 
 static COUNTER_U64_DEFINE_EARLY(pc_chunk_allocs);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD,
     &pc_chunk_allocs, "Total number of pv entry chunks allocated");
 
 static COUNTER_U64_DEFINE_EARLY(pc_chunk_frees);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD,
     &pc_chunk_frees, "Total number of pv entry chunks freed");
 
 static COUNTER_U64_DEFINE_EARLY(pc_chunk_tryfail);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD,
     &pc_chunk_tryfail,
     "Number of failed attempts to get a pv entry chunk page");
 
 static COUNTER_U64_DEFINE_EARLY(pv_entry_frees);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD,
     &pv_entry_frees, "Total number of pv entries freed");
 
 static COUNTER_U64_DEFINE_EARLY(pv_entry_allocs);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD,
     &pv_entry_allocs, "Total number of pv entries allocated");
 
 static COUNTER_U64_DEFINE_EARLY(pv_entry_count);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD,
     &pv_entry_count, "Current number of pv entries");
 
 static COUNTER_U64_DEFINE_EARLY(pv_entry_spare);
 SYSCTL_COUNTER_U64(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD,
     &pv_entry_spare, "Current number of spare pv entries");
 #endif
 
 static void
 reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
 {
 
 	if (pmap == NULL)
 		return;
 	pmap_invalidate_all(pmap);
 	if (pmap != locked_pmap)
 		PMAP_UNLOCK(pmap);
 	if (start_di)
 		pmap_delayed_invl_finish();
 }
 
 /*
  * We are in a serious low memory condition.  Resort to
  * drastic measures to free some pages so we can allocate
  * another pv entry chunk.
  *
  * Returns NULL if PV entries were reclaimed from the specified pmap.
  *
  * We do not, however, unmap 2mpages because subsequent accesses will
  * allocate per-page pv entries until repromotion occurs, thereby
  * exacerbating the shortage of free pv entries.
  */
 static vm_page_t
 reclaim_pv_chunk_domain(pmap_t locked_pmap, struct rwlock **lockp, int domain)
 {
 	struct pv_chunks_list *pvc;
 	struct pv_chunk *pc, *pc_marker, *pc_marker_end;
 	struct pv_chunk_header pc_marker_b, pc_marker_end_b;
 	struct md_page *pvh;
 	pd_entry_t *pde;
 	pmap_t next_pmap, pmap;
 	pt_entry_t *pte, tpte;
 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
 	pv_entry_t pv;
 	vm_offset_t va;
 	vm_page_t m, m_pc;
 	struct spglist free;
 	uint64_t inuse;
 	int bit, field, freed;
 	bool start_di, restart;
 
 	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
 	KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
 	pmap = NULL;
 	m_pc = NULL;
 	PG_G = PG_A = PG_M = PG_RW = 0;
 	SLIST_INIT(&free);
 	bzero(&pc_marker_b, sizeof(pc_marker_b));
 	bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
 	pc_marker = (struct pv_chunk *)&pc_marker_b;
 	pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
 
 	/*
 	 * A delayed invalidation block should already be active if
 	 * pmap_advise() or pmap_remove() called this function by way
 	 * of pmap_demote_pde_locked().
 	 */
 	start_di = pmap_not_in_di();
 
 	pvc = &pv_chunks[domain];
 	mtx_lock(&pvc->pvc_lock);
 	pvc->active_reclaims++;
 	TAILQ_INSERT_HEAD(&pvc->pvc_list, pc_marker, pc_lru);
 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc_marker_end, pc_lru);
 	while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
 	    SLIST_EMPTY(&free)) {
 		next_pmap = pc->pc_pmap;
 		if (next_pmap == NULL) {
 			/*
 			 * The next chunk is a marker.  However, it is
 			 * not our marker, so active_reclaims must be
 			 * > 1.  Consequently, the next_chunk code
 			 * will not rotate the pv_chunks list.
 			 */
 			goto next_chunk;
 		}
 		mtx_unlock(&pvc->pvc_lock);
 
 		/*
 		 * A pv_chunk can only be removed from the pc_lru list
 		 * when both pc_chunks_mutex is owned and the
 		 * corresponding pmap is locked.
 		 */
 		if (pmap != next_pmap) {
 			restart = false;
 			reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
 			    start_di);
 			pmap = next_pmap;
 			/* Avoid deadlock and lock recursion. */
 			if (pmap > locked_pmap) {
 				RELEASE_PV_LIST_LOCK(lockp);
 				PMAP_LOCK(pmap);
 				if (start_di)
 					pmap_delayed_invl_start();
 				mtx_lock(&pvc->pvc_lock);
 				restart = true;
 			} else if (pmap != locked_pmap) {
 				if (PMAP_TRYLOCK(pmap)) {
 					if (start_di)
 						pmap_delayed_invl_start();
 					mtx_lock(&pvc->pvc_lock);
 					restart = true;
 				} else {
 					pmap = NULL; /* pmap is not locked */
 					mtx_lock(&pvc->pvc_lock);
 					pc = TAILQ_NEXT(pc_marker, pc_lru);
 					if (pc == NULL ||
 					    pc->pc_pmap != next_pmap)
 						continue;
 					goto next_chunk;
 				}
 			} else if (start_di)
 				pmap_delayed_invl_start();
 			PG_G = pmap_global_bit(pmap);
 			PG_A = pmap_accessed_bit(pmap);
 			PG_M = pmap_modified_bit(pmap);
 			PG_RW = pmap_rw_bit(pmap);
 			if (restart)
 				continue;
 		}
 
 		/*
 		 * Destroy every non-wired, 4 KB page mapping in the chunk.
 		 */
 		freed = 0;
 		for (field = 0; field < _NPCM; field++) {
 			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
 			    inuse != 0; inuse &= ~(1UL << bit)) {
 				bit = bsfq(inuse);
 				pv = &pc->pc_pventry[field * 64 + bit];
 				va = pv->pv_va;
 				pde = pmap_pde(pmap, va);
 				if ((*pde & PG_PS) != 0)
 					continue;
 				pte = pmap_pde_to_pte(pde, va);
 				if ((*pte & PG_W) != 0)
 					continue;
 				tpte = pte_load_clear(pte);
 				if ((tpte & PG_G) != 0)
 					pmap_invalidate_page(pmap, va);
 				m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 					vm_page_dirty(m);
 				if ((tpte & PG_A) != 0)
 					vm_page_aflag_set(m, PGA_REFERENCED);
 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
 				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 				m->md.pv_gen++;
 				if (TAILQ_EMPTY(&m->md.pv_list) &&
 				    (m->flags & PG_FICTITIOUS) == 0) {
 					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 					if (TAILQ_EMPTY(&pvh->pv_list)) {
 						vm_page_aflag_clear(m,
 						    PGA_WRITEABLE);
 					}
 				}
 				pmap_delayed_invl_page(m);
 				pc->pc_map[field] |= 1UL << bit;
 				pmap_unuse_pt(pmap, va, *pde, &free);
 				freed++;
 			}
 		}
 		if (freed == 0) {
 			mtx_lock(&pvc->pvc_lock);
 			goto next_chunk;
 		}
 		/* Every freed mapping is for a 4 KB page. */
 		pmap_resident_count_adj(pmap, -freed);
 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 		if (pc_is_free(pc)) {
 			PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
 			PV_STAT(counter_u64_add(pc_chunk_count, -1));
 			PV_STAT(counter_u64_add(pc_chunk_frees, 1));
 			/* Entire chunk is free; return it. */
 			m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
 			dump_drop_page(m_pc->phys_addr);
 			mtx_lock(&pvc->pvc_lock);
 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
 			break;
 		}
 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 		mtx_lock(&pvc->pvc_lock);
 		/* One freed pv entry in locked_pmap is sufficient. */
 		if (pmap == locked_pmap)
 			break;
 next_chunk:
 		TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
 		TAILQ_INSERT_AFTER(&pvc->pvc_list, pc, pc_marker, pc_lru);
 		if (pvc->active_reclaims == 1 && pmap != NULL) {
 			/*
 			 * Rotate the pv chunks list so that we do not
 			 * scan the same pv chunks that could not be
 			 * freed (because they contained a wired
 			 * and/or superpage mapping) on every
 			 * invocation of reclaim_pv_chunk().
 			 */
 			while ((pc = TAILQ_FIRST(&pvc->pvc_list)) != pc_marker) {
 				MPASS(pc->pc_pmap != NULL);
 				TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
 				TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
 			}
 		}
 	}
 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker, pc_lru);
 	TAILQ_REMOVE(&pvc->pvc_list, pc_marker_end, pc_lru);
 	pvc->active_reclaims--;
 	mtx_unlock(&pvc->pvc_lock);
 	reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
 	if (m_pc == NULL && !SLIST_EMPTY(&free)) {
 		m_pc = SLIST_FIRST(&free);
 		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
 		/* Recycle a freed page table page. */
 		m_pc->ref_count = 1;
 	}
 	vm_page_free_pages_toq(&free, true);
 	return (m_pc);
 }
 
 static vm_page_t
 reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
 {
 	vm_page_t m;
 	int i, domain;
 
 	domain = PCPU_GET(domain);
 	for (i = 0; i < vm_ndomains; i++) {
 		m = reclaim_pv_chunk_domain(locked_pmap, lockp, domain);
 		if (m != NULL)
 			break;
 		domain = (domain + 1) % vm_ndomains;
 	}
 
 	return (m);
 }
 
 /*
  * free the pv_entry back to the free list
  */
 static void
 free_pv_entry(pmap_t pmap, pv_entry_t pv)
 {
 	struct pv_chunk *pc;
 	int idx, field, bit;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	PV_STAT(counter_u64_add(pv_entry_frees, 1));
 	PV_STAT(counter_u64_add(pv_entry_spare, 1));
 	PV_STAT(counter_u64_add(pv_entry_count, -1));
 	pc = pv_to_chunk(pv);
 	idx = pv - &pc->pc_pventry[0];
 	field = idx / 64;
 	bit = idx % 64;
 	pc->pc_map[field] |= 1ul << bit;
 	if (!pc_is_free(pc)) {
 		/* 98% of the time, pc is already at the head of the list. */
 		if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 			TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 		}
 		return;
 	}
 	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 	free_pv_chunk(pc);
 }
 
 static void
 free_pv_chunk_dequeued(struct pv_chunk *pc)
 {
 	vm_page_t m;
 
 	PV_STAT(counter_u64_add(pv_entry_spare, -_NPCPV));
 	PV_STAT(counter_u64_add(pc_chunk_count, -1));
 	PV_STAT(counter_u64_add(pc_chunk_frees, 1));
 	counter_u64_add(pv_page_count, -1);
 	/* entire chunk is free, return it */
 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
 	dump_drop_page(m->phys_addr);
 	vm_page_unwire_noq(m);
 	vm_page_free(m);
 }
 
 static void
 free_pv_chunk(struct pv_chunk *pc)
 {
 	struct pv_chunks_list *pvc;
 
 	pvc = &pv_chunks[pc_to_domain(pc)];
 	mtx_lock(&pvc->pvc_lock);
 	TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
 	mtx_unlock(&pvc->pvc_lock);
 	free_pv_chunk_dequeued(pc);
 }
 
 static void
 free_pv_chunk_batch(struct pv_chunklist *batch)
 {
 	struct pv_chunks_list *pvc;
 	struct pv_chunk *pc, *npc;
 	int i;
 
 	for (i = 0; i < vm_ndomains; i++) {
 		if (TAILQ_EMPTY(&batch[i]))
 			continue;
 		pvc = &pv_chunks[i];
 		mtx_lock(&pvc->pvc_lock);
 		TAILQ_FOREACH(pc, &batch[i], pc_list) {
 			TAILQ_REMOVE(&pvc->pvc_list, pc, pc_lru);
 		}
 		mtx_unlock(&pvc->pvc_lock);
 	}
 
 	for (i = 0; i < vm_ndomains; i++) {
 		TAILQ_FOREACH_SAFE(pc, &batch[i], pc_list, npc) {
 			free_pv_chunk_dequeued(pc);
 		}
 	}
 }
 
 /*
  * Returns a new PV entry, allocating a new PV chunk from the system when
  * needed.  If this PV chunk allocation fails and a PV list lock pointer was
  * given, a PV chunk is reclaimed from an arbitrary pmap.  Otherwise, NULL is
  * returned.
  *
  * The given PV list lock may be released.
  */
 static pv_entry_t
 get_pv_entry(pmap_t pmap, struct rwlock **lockp)
 {
 	struct pv_chunks_list *pvc;
 	int bit, field;
 	pv_entry_t pv;
 	struct pv_chunk *pc;
 	vm_page_t m;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	PV_STAT(counter_u64_add(pv_entry_allocs, 1));
 retry:
 	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 	if (pc != NULL) {
 		for (field = 0; field < _NPCM; field++) {
 			if (pc->pc_map[field]) {
 				bit = bsfq(pc->pc_map[field]);
 				break;
 			}
 		}
 		if (field < _NPCM) {
 			pv = &pc->pc_pventry[field * 64 + bit];
 			pc->pc_map[field] &= ~(1ul << bit);
 			/* If this was the last item, move it to tail */
 			if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
 			    pc->pc_map[2] == 0) {
 				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 				TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
 				    pc_list);
 			}
 			PV_STAT(counter_u64_add(pv_entry_count, 1));
 			PV_STAT(counter_u64_add(pv_entry_spare, -1));
 			return (pv);
 		}
 	}
 	/* No free items, allocate another chunk */
 	m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
 	if (m == NULL) {
 		if (lockp == NULL) {
 			PV_STAT(counter_u64_add(pc_chunk_tryfail, 1));
 			return (NULL);
 		}
 		m = reclaim_pv_chunk(pmap, lockp);
 		if (m == NULL)
 			goto retry;
 	} else
 		counter_u64_add(pv_page_count, 1);
 	PV_STAT(counter_u64_add(pc_chunk_count, 1));
 	PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
 	dump_add_page(m->phys_addr);
 	pc = (void *)PHYS_TO_DMAP(m->phys_addr);
 	pc->pc_pmap = pmap;
 	pc->pc_map[0] = PC_FREEN & ~1ul;	/* preallocated bit 0 */
 	pc->pc_map[1] = PC_FREEN;
 	pc->pc_map[2] = PC_FREEL;
 	pvc = &pv_chunks[vm_page_domain(m)];
 	mtx_lock(&pvc->pvc_lock);
 	TAILQ_INSERT_TAIL(&pvc->pvc_list, pc, pc_lru);
 	mtx_unlock(&pvc->pvc_lock);
 	pv = &pc->pc_pventry[0];
 	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 	PV_STAT(counter_u64_add(pv_entry_count, 1));
 	PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV - 1));
 	return (pv);
 }
 
 /*
  * Returns the number of one bits within the given PV chunk map.
  *
  * The erratas for Intel processors state that "POPCNT Instruction May
  * Take Longer to Execute Than Expected".  It is believed that the
  * issue is the spurious dependency on the destination register.
  * Provide a hint to the register rename logic that the destination
  * value is overwritten, by clearing it, as suggested in the
  * optimization manual.  It should be cheap for unaffected processors
  * as well.
  *
  * Reference numbers for erratas are
  * 4th Gen Core: HSD146
  * 5th Gen Core: BDM85
  * 6th Gen Core: SKL029
  */
 static int
 popcnt_pc_map_pq(uint64_t *map)
 {
 	u_long result, tmp;
 
 	__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
 	    "xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
 	    "xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
 	    : "=&r" (result), "=&r" (tmp)
 	    : "m" (map[0]), "m" (map[1]), "m" (map[2]));
 	return (result);
 }
 
 /*
  * Ensure that the number of spare PV entries in the specified pmap meets or
  * exceeds the given count, "needed".
  *
  * The given PV list lock may be released.
  */
 static void
 reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
 {
 	struct pv_chunks_list *pvc;
 	struct pch new_tail[PMAP_MEMDOM];
 	struct pv_chunk *pc;
 	vm_page_t m;
 	int avail, free, i;
 	bool reclaimed;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
 
 	/*
 	 * Newly allocated PV chunks must be stored in a private list until
 	 * the required number of PV chunks have been allocated.  Otherwise,
 	 * reclaim_pv_chunk() could recycle one of these chunks.  In
 	 * contrast, these chunks must be added to the pmap upon allocation.
 	 */
 	for (i = 0; i < PMAP_MEMDOM; i++)
 		TAILQ_INIT(&new_tail[i]);
 retry:
 	avail = 0;
 	TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
 #ifndef __POPCNT__
 		if ((cpu_feature2 & CPUID2_POPCNT) == 0)
 			bit_count((bitstr_t *)pc->pc_map, 0,
 			    sizeof(pc->pc_map) * NBBY, &free);
 		else
 #endif
 		free = popcnt_pc_map_pq(pc->pc_map);
 		if (free == 0)
 			break;
 		avail += free;
 		if (avail >= needed)
 			break;
 	}
 	for (reclaimed = false; avail < needed; avail += _NPCPV) {
 		m = vm_page_alloc_noobj(VM_ALLOC_WIRED);
 		if (m == NULL) {
 			m = reclaim_pv_chunk(pmap, lockp);
 			if (m == NULL)
 				goto retry;
 			reclaimed = true;
 		} else
 			counter_u64_add(pv_page_count, 1);
 		PV_STAT(counter_u64_add(pc_chunk_count, 1));
 		PV_STAT(counter_u64_add(pc_chunk_allocs, 1));
 		dump_add_page(m->phys_addr);
 		pc = (void *)PHYS_TO_DMAP(m->phys_addr);
 		pc->pc_pmap = pmap;
 		pc->pc_map[0] = PC_FREEN;
 		pc->pc_map[1] = PC_FREEN;
 		pc->pc_map[2] = PC_FREEL;
 		TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
 		TAILQ_INSERT_TAIL(&new_tail[vm_page_domain(m)], pc, pc_lru);
 		PV_STAT(counter_u64_add(pv_entry_spare, _NPCPV));
 
 		/*
 		 * The reclaim might have freed a chunk from the current pmap.
 		 * If that chunk contained available entries, we need to
 		 * re-count the number of available entries.
 		 */
 		if (reclaimed)
 			goto retry;
 	}
 	for (i = 0; i < vm_ndomains; i++) {
 		if (TAILQ_EMPTY(&new_tail[i]))
 			continue;
 		pvc = &pv_chunks[i];
 		mtx_lock(&pvc->pvc_lock);
 		TAILQ_CONCAT(&pvc->pvc_list, &new_tail[i], pc_lru);
 		mtx_unlock(&pvc->pvc_lock);
 	}
 }
 
 /*
  * First find and then remove the pv entry for the specified pmap and virtual
  * address from the specified pv list.  Returns the pv entry if found and NULL
  * otherwise.  This operation can be performed on pv lists for either 4KB or
  * 2MB page mappings.
  */
 static __inline pv_entry_t
 pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 {
 	pv_entry_t pv;
 
 	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 			pvh->pv_gen++;
 			break;
 		}
 	}
 	return (pv);
 }
 
 /*
  * After demotion from a 2MB page mapping to 512 4KB page mappings,
  * destroy the pv entry for the 2MB page mapping and reinstantiate the pv
  * entries for each of the 4KB page mappings.
  */
 static void
 pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
     struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	struct pv_chunk *pc;
 	pv_entry_t pv;
 	vm_offset_t va_last;
 	vm_page_t m;
 	int bit, field;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT((pa & PDRMASK) == 0,
 	    ("pmap_pv_demote_pde: pa is not 2mpage aligned"));
 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
 
 	/*
 	 * Transfer the 2mpage's pv entry for this mapping to the first
 	 * page's pv list.  Once this transfer begins, the pv list lock
 	 * must not be released until the last pv entry is reinstantiated.
 	 */
 	pvh = pa_to_pvh(pa);
 	va = trunc_2mpage(va);
 	pv = pmap_pvh_remove(pvh, pmap, va);
 	KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
 	m = PHYS_TO_VM_PAGE(pa);
 	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 	m->md.pv_gen++;
 	/* Instantiate the remaining NPTEPG - 1 pv entries. */
 	PV_STAT(counter_u64_add(pv_entry_allocs, NPTEPG - 1));
 	va_last = va + NBPDR - PAGE_SIZE;
 	for (;;) {
 		pc = TAILQ_FIRST(&pmap->pm_pvchunk);
 		KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
 		    pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
 		for (field = 0; field < _NPCM; field++) {
 			while (pc->pc_map[field]) {
 				bit = bsfq(pc->pc_map[field]);
 				pc->pc_map[field] &= ~(1ul << bit);
 				pv = &pc->pc_pventry[field * 64 + bit];
 				va += PAGE_SIZE;
 				pv->pv_va = va;
 				m++;
 				KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 			    ("pmap_pv_demote_pde: page %p is not managed", m));
 				TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 				m->md.pv_gen++;
 				if (va == va_last)
 					goto out;
 			}
 		}
 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 	}
 out:
 	if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
 		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 		TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
 	}
 	PV_STAT(counter_u64_add(pv_entry_count, NPTEPG - 1));
 	PV_STAT(counter_u64_add(pv_entry_spare, -(NPTEPG - 1)));
 }
 
 #if VM_NRESERVLEVEL > 0
 /*
  * After promotion from 512 4KB page mappings to a single 2MB page mapping,
  * replace the many pv entries for the 4KB page mappings by a single pv entry
  * for the 2MB page mapping.
  */
 static void
 pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
     struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pv_entry_t pv;
 	vm_offset_t va_last;
 	vm_page_t m;
 
 	KASSERT((pa & PDRMASK) == 0,
 	    ("pmap_pv_promote_pde: pa is not 2mpage aligned"));
 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
 
 	/*
 	 * Transfer the first page's pv entry for this mapping to the 2mpage's
 	 * pv list.  Aside from avoiding the cost of a call to get_pv_entry(),
 	 * a transfer avoids the possibility that get_pv_entry() calls
 	 * reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
 	 * mappings that is being promoted.
 	 */
 	m = PHYS_TO_VM_PAGE(pa);
 	va = trunc_2mpage(va);
 	pv = pmap_pvh_remove(&m->md, pmap, va);
 	KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
 	pvh = pa_to_pvh(pa);
 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 	pvh->pv_gen++;
 	/* Free the remaining NPTEPG - 1 pv entries. */
 	va_last = va + NBPDR - PAGE_SIZE;
 	do {
 		m++;
 		va += PAGE_SIZE;
 		pmap_pvh_free(&m->md, pmap, va);
 	} while (va < va_last);
 }
 #endif /* VM_NRESERVLEVEL > 0 */
 
 /*
  * First find and then destroy the pv entry for the specified pmap and virtual
  * address.  This operation can be performed on pv lists for either 4KB or 2MB
  * page mappings.
  */
 static void
 pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
 {
 	pv_entry_t pv;
 
 	pv = pmap_pvh_remove(pvh, pmap, va);
 	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
 	free_pv_entry(pmap, pv);
 }
 
 /*
  * Conditionally create the PV entry for a 4KB page mapping if the required
  * memory can be allocated without resorting to reclamation.
  */
 static bool
 pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
     struct rwlock **lockp)
 {
 	pv_entry_t pv;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	/* Pass NULL instead of the lock pointer to disable reclamation. */
 	if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
 		pv->pv_va = va;
 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 		m->md.pv_gen++;
 		return (true);
 	} else
 		return (false);
 }
 
 /*
  * Create the PV entry for a 2MB page mapping.  Always returns true unless the
  * flag PMAP_ENTER_NORECLAIM is specified.  If that flag is specified, returns
  * false if the PV entry cannot be allocated without resorting to reclamation.
  */
 static bool
 pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
     struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pv_entry_t pv;
 	vm_paddr_t pa;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	/* Pass NULL instead of the lock pointer to disable reclamation. */
 	if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
 	    NULL : lockp)) == NULL)
 		return (false);
 	pv->pv_va = va;
 	pa = pde & PG_PS_FRAME;
 	CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
 	pvh = pa_to_pvh(pa);
 	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 	pvh->pv_gen++;
 	return (true);
 }
 
 /*
  * Fills a page table page with mappings to consecutive physical pages.
  */
 static void
 pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
 {
 	pt_entry_t *pte;
 
 	for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
 		*pte = newpte;
 		newpte += PAGE_SIZE;
 	}
 }
 
 /*
  * Tries to demote a 2MB page mapping.  If demotion fails, the 2MB page
  * mapping is invalidated.
  */
 static bool
 pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 {
 	struct rwlock *lock;
 	bool rv;
 
 	lock = NULL;
 	rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
 	if (lock != NULL)
 		rw_wunlock(lock);
 	return (rv);
 }
 
 static void
 pmap_demote_pde_check(pt_entry_t *firstpte __unused, pt_entry_t newpte __unused)
 {
 #ifdef INVARIANTS
 #ifdef DIAGNOSTIC
 	pt_entry_t *xpte, *ypte;
 
 	for (xpte = firstpte; xpte < firstpte + NPTEPG;
 	    xpte++, newpte += PAGE_SIZE) {
 		if ((*xpte & PG_FRAME) != (newpte & PG_FRAME)) {
 			printf("pmap_demote_pde: xpte %zd and newpte map "
 			    "different pages: found %#lx, expected %#lx\n",
 			    xpte - firstpte, *xpte, newpte);
 			printf("page table dump\n");
 			for (ypte = firstpte; ypte < firstpte + NPTEPG; ypte++)
 				printf("%zd %#lx\n", ypte - firstpte, *ypte);
 			panic("firstpte");
 		}
 	}
 #else
 	KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
 	    ("pmap_demote_pde: firstpte and newpte map different physical"
 	    " addresses"));
 #endif
 #endif
 }
 
 static void
 pmap_demote_pde_abort(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
     pd_entry_t oldpde, struct rwlock **lockp)
 {
 	struct spglist free;
 	vm_offset_t sva;
 
 	SLIST_INIT(&free);
 	sva = trunc_2mpage(va);
 	pmap_remove_pde(pmap, pde, sva, &free, lockp);
 	if ((oldpde & pmap_global_bit(pmap)) == 0)
 		pmap_invalidate_pde_page(pmap, sva, oldpde);
 	vm_page_free_pages_toq(&free, true);
 	CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx in pmap %p",
 	    va, pmap);
 }
 
 static bool
 pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
     struct rwlock **lockp)
 {
 	pd_entry_t newpde, oldpde;
 	pt_entry_t *firstpte, newpte;
 	pt_entry_t PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
 	vm_paddr_t mptepa;
 	vm_page_t mpte;
 	int PG_PTE_CACHE;
 	bool in_kernel;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	in_kernel = va >= VM_MAXUSER_ADDRESS;
 	oldpde = *pde;
 	KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
 	    ("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
 
 	/*
 	 * Invalidate the 2MB page mapping and return "failure" if the
 	 * mapping was never accessed.
 	 */
 	if ((oldpde & PG_A) == 0) {
 		KASSERT((oldpde & PG_W) == 0,
 		    ("pmap_demote_pde: a wired mapping is missing PG_A"));
 		pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
 		return (false);
 	}
 
 	mpte = pmap_remove_pt_page(pmap, va);
 	if (mpte == NULL) {
 		KASSERT((oldpde & PG_W) == 0,
 		    ("pmap_demote_pde: page table page for a wired mapping"
 		    " is missing"));
 
 		/*
 		 * If the page table page is missing and the mapping
 		 * is for a kernel address, the mapping must belong to
 		 * the direct map.  Page table pages are preallocated
 		 * for every other part of the kernel address space,
 		 * so the direct map region is the only part of the
 		 * kernel address space that must be handled here.
 		 */
 		KASSERT(!in_kernel || (va >= DMAP_MIN_ADDRESS &&
 		    va < DMAP_MAX_ADDRESS),
 		    ("pmap_demote_pde: No saved mpte for va %#lx", va));
 
 		/*
 		 * If the 2MB page mapping belongs to the direct map
 		 * region of the kernel's address space, then the page
 		 * allocation request specifies the highest possible
 		 * priority (VM_ALLOC_INTERRUPT).  Otherwise, the
 		 * priority is normal.
 		 */
 		mpte = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
 		    (in_kernel ? VM_ALLOC_INTERRUPT : 0) | VM_ALLOC_WIRED);
 
 		/*
 		 * If the allocation of the new page table page fails,
 		 * invalidate the 2MB page mapping and return "failure".
 		 */
 		if (mpte == NULL) {
 			pmap_demote_pde_abort(pmap, va, pde, oldpde, lockp);
 			return (false);
 		}
 
 		if (!in_kernel)
 			mpte->ref_count = NPTEPG;
 	}
 	mptepa = VM_PAGE_TO_PHYS(mpte);
 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
 	newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
 	KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
 	    ("pmap_demote_pde: oldpde is missing PG_M"));
 	newpte = oldpde & ~PG_PS;
 	newpte = pmap_swap_pat(pmap, newpte);
 
 	/*
 	 * If the PTP is not leftover from an earlier promotion or it does not
 	 * have PG_A set in every PTE, then fill it.  The new PTEs will all
 	 * have PG_A set.
 	 */
 	if (!vm_page_all_valid(mpte))
 		pmap_fill_ptp(firstpte, newpte);
 
 	pmap_demote_pde_check(firstpte, newpte);
 
 	/*
 	 * If the mapping has changed attributes, update the PTEs.
 	 */
 	if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
 		pmap_fill_ptp(firstpte, newpte);
 
 	/*
 	 * The spare PV entries must be reserved prior to demoting the
 	 * mapping, that is, prior to changing the PDE.  Otherwise, the state
 	 * of the PDE and the PV lists will be inconsistent, which can result
 	 * in reclaim_pv_chunk() attempting to remove a PV entry from the
 	 * wrong PV list and pmap_pv_demote_pde() failing to find the expected
 	 * PV entry for the 2MB page mapping that is being demoted.
 	 */
 	if ((oldpde & PG_MANAGED) != 0)
 		reserve_pv_entries(pmap, NPTEPG - 1, lockp);
 
 	/*
 	 * Demote the mapping.  This pmap is locked.  The old PDE has
 	 * PG_A set.  If the old PDE has PG_RW set, it also has PG_M
 	 * set.  Thus, there is no danger of a race with another
 	 * processor changing the setting of PG_A and/or PG_M between
 	 * the read above and the store below. 
 	 */
 	if (workaround_erratum383)
 		pmap_update_pde(pmap, va, pde, newpde);
 	else
 		pde_store(pde, newpde);
 
 	/*
 	 * Invalidate a stale recursive mapping of the page table page.
 	 */
 	if (in_kernel)
 		pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 
 	/*
 	 * Demote the PV entry.
 	 */
 	if ((oldpde & PG_MANAGED) != 0)
 		pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
 
 	counter_u64_add(pmap_pde_demotions, 1);
 	CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx in pmap %p",
 	    va, pmap);
 	return (true);
 }
 
 /*
  * pmap_remove_kernel_pde: Remove a kernel superpage mapping.
  */
 static void
 pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
 {
 	pd_entry_t newpde;
 	vm_paddr_t mptepa;
 	vm_page_t mpte;
 
 	KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	mpte = pmap_remove_pt_page(pmap, va);
 	if (mpte == NULL)
 		panic("pmap_remove_kernel_pde: Missing pt page.");
 
 	mptepa = VM_PAGE_TO_PHYS(mpte);
 	newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
 
 	/*
 	 * If this page table page was unmapped by a promotion, then it
 	 * contains valid mappings.  Zero it to invalidate those mappings.
 	 */
 	if (vm_page_any_valid(mpte))
 		pagezero((void *)PHYS_TO_DMAP(mptepa));
 
 	/*
 	 * Demote the mapping.
 	 */
 	if (workaround_erratum383)
 		pmap_update_pde(pmap, va, pde, newpde);
 	else
 		pde_store(pde, newpde);
 
 	/*
 	 * Invalidate a stale recursive mapping of the page table page.
 	 */
 	pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
 }
 
 /*
  * pmap_remove_pde: do the things to unmap a superpage in a process
  */
 static int
 pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
     struct spglist *free, struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pd_entry_t oldpde;
 	vm_offset_t eva, va;
 	vm_page_t m, mpte;
 	pt_entry_t PG_G, PG_A, PG_M, PG_RW;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT((sva & PDRMASK) == 0,
 	    ("pmap_remove_pde: sva is not 2mpage aligned"));
 	oldpde = pte_load_clear(pdq);
 	if (oldpde & PG_W)
 		pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
 	if ((oldpde & PG_G) != 0)
 		pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
 	pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
 	if (oldpde & PG_MANAGED) {
 		CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
 		pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
 		pmap_pvh_free(pvh, pmap, sva);
 		eva = sva + NBPDR;
 		for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 		    va < eva; va += PAGE_SIZE, m++) {
 			if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
 				vm_page_dirty(m);
 			if (oldpde & PG_A)
 				vm_page_aflag_set(m, PGA_REFERENCED);
 			if (TAILQ_EMPTY(&m->md.pv_list) &&
 			    TAILQ_EMPTY(&pvh->pv_list))
 				vm_page_aflag_clear(m, PGA_WRITEABLE);
 			pmap_delayed_invl_page(m);
 		}
 	}
 	if (pmap == kernel_pmap) {
 		pmap_remove_kernel_pde(pmap, pdq, sva);
 	} else {
 		mpte = pmap_remove_pt_page(pmap, sva);
 		if (mpte != NULL) {
 			KASSERT(vm_page_any_valid(mpte),
 			    ("pmap_remove_pde: pte page not promoted"));
 			pmap_pt_page_count_adj(pmap, -1);
 			KASSERT(mpte->ref_count == NPTEPG,
 			    ("pmap_remove_pde: pte page ref count error"));
 			mpte->ref_count = 0;
 			pmap_add_delayed_free_list(mpte, free, false);
 		}
 	}
 	return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
 }
 
 /*
  * pmap_remove_pte: do the things to unmap a page in a process
  */
 static int
 pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va, 
     pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
 {
 	struct md_page *pvh;
 	pt_entry_t oldpte, PG_A, PG_M, PG_RW;
 	vm_page_t m;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	oldpte = pte_load_clear(ptq);
 	if (oldpte & PG_W)
 		pmap->pm_stats.wired_count -= 1;
 	pmap_resident_count_adj(pmap, -1);
 	if (oldpte & PG_MANAGED) {
 		m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
 		if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			vm_page_dirty(m);
 		if (oldpte & PG_A)
 			vm_page_aflag_set(m, PGA_REFERENCED);
 		CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
 		pmap_pvh_free(&m->md, pmap, va);
 		if (TAILQ_EMPTY(&m->md.pv_list) &&
 		    (m->flags & PG_FICTITIOUS) == 0) {
 			pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 			if (TAILQ_EMPTY(&pvh->pv_list))
 				vm_page_aflag_clear(m, PGA_WRITEABLE);
 		}
 		pmap_delayed_invl_page(m);
 	}
 	return (pmap_unuse_pt(pmap, va, ptepde, free));
 }
 
 /*
  * Remove a single page from a process address space
  */
 static void
 pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
     struct spglist *free)
 {
 	struct rwlock *lock;
 	pt_entry_t *pte, PG_V;
 
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	if ((*pde & PG_V) == 0)
 		return;
 	pte = pmap_pde_to_pte(pde, va);
 	if ((*pte & PG_V) == 0)
 		return;
 	lock = NULL;
 	pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
 	if (lock != NULL)
 		rw_wunlock(lock);
 	pmap_invalidate_page(pmap, va);
 }
 
 /*
  * Removes the specified range of addresses from the page table page.
  */
 static bool
 pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
     pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
 {
 	pt_entry_t PG_G, *pte;
 	vm_offset_t va;
 	bool anyvalid;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	PG_G = pmap_global_bit(pmap);
 	anyvalid = false;
 	va = eva;
 	for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
 	    sva += PAGE_SIZE) {
 		if (*pte == 0) {
 			if (va != eva) {
 				pmap_invalidate_range(pmap, va, sva);
 				va = eva;
 			}
 			continue;
 		}
 		if ((*pte & PG_G) == 0)
 			anyvalid = true;
 		else if (va == eva)
 			va = sva;
 		if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
 			sva += PAGE_SIZE;
 			break;
 		}
 	}
 	if (va != eva)
 		pmap_invalidate_range(pmap, va, sva);
 	return (anyvalid);
 }
 
 static void
 pmap_remove1(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, bool map_delete)
 {
 	struct rwlock *lock;
 	vm_page_t mt;
 	vm_offset_t va_next;
 	pml5_entry_t *pml5e;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t ptpaddr, *pde;
 	pt_entry_t PG_G, PG_V;
 	struct spglist free;
 	int anyvalid;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 
 	/*
 	 * If there are no resident pages besides the top level page
 	 * table page(s), there is nothing to do.  Kernel pmap always
 	 * accounts whole preloaded area as resident, which makes its
 	 * resident count > 2.
 	 * Perform an unsynchronized read.  This is, however, safe.
 	 */
 	if (pmap->pm_stats.resident_count <= 1 + (pmap->pm_pmltopu != NULL ?
 	    1 : 0))
 		return;
 
 	anyvalid = 0;
 	SLIST_INIT(&free);
 
 	pmap_delayed_invl_start();
 	PMAP_LOCK(pmap);
 	if (map_delete)
 		pmap_pkru_on_remove(pmap, sva, eva);
 
 	/*
 	 * special handling of removing one page.  a very
 	 * common operation and easy to short circuit some
 	 * code.
 	 */
 	if (sva + PAGE_SIZE == eva) {
 		pde = pmap_pde(pmap, sva);
 		if (pde && (*pde & PG_PS) == 0) {
 			pmap_remove_page(pmap, sva, pde, &free);
 			goto out;
 		}
 	}
 
 	lock = NULL;
 	for (; sva < eva; sva = va_next) {
 		if (pmap->pm_stats.resident_count == 0)
 			break;
 
 		if (pmap_is_la57(pmap)) {
 			pml5e = pmap_pml5e(pmap, sva);
 			if ((*pml5e & PG_V) == 0) {
 				va_next = (sva + NBPML5) & ~PML5MASK;
 				if (va_next < sva)
 					va_next = eva;
 				continue;
 			}
 			pml4e = pmap_pml5e_to_pml4e(pml5e, sva);
 		} else {
 			pml4e = pmap_pml4e(pmap, sva);
 		}
 		if ((*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		va_next = (sva + NBPDP) & ~PDPMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0)
 			continue;
 		if ((*pdpe & PG_PS) != 0) {
 			KASSERT(va_next <= eva,
 			    ("partial update of non-transparent 1G mapping "
 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
 			    *pdpe, sva, eva, va_next));
 			MPASS(pmap != kernel_pmap); /* XXXKIB */
 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
 			anyvalid = 1;
 			*pdpe = 0;
 			pmap_resident_count_adj(pmap, -NBPDP / PAGE_SIZE);
 			mt = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, sva) & PG_FRAME);
 			pmap_unwire_ptp(pmap, sva, mt, &free);
 			continue;
 		}
 
 		/*
 		 * Calculate index for next page table.
 		 */
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		ptpaddr = *pde;
 
 		/*
 		 * Weed out invalid mappings.
 		 */
 		if (ptpaddr == 0)
 			continue;
 
 		/*
 		 * Check for large page.
 		 */
 		if ((ptpaddr & PG_PS) != 0) {
 			/*
 			 * Are we removing the entire large page?  If not,
 			 * demote the mapping and fall through.
 			 */
 			if (sva + NBPDR == va_next && eva >= va_next) {
 				/*
 				 * The TLB entry for a PG_G mapping is
 				 * invalidated by pmap_remove_pde().
 				 */
 				if ((ptpaddr & PG_G) == 0)
 					anyvalid = 1;
 				pmap_remove_pde(pmap, pde, sva, &free, &lock);
 				continue;
 			} else if (!pmap_demote_pde_locked(pmap, pde, sva,
 			    &lock)) {
 				/* The large page mapping was destroyed. */
 				continue;
 			} else
 				ptpaddr = *pde;
 		}
 
 		/*
 		 * Limit our scan to either the end of the va represented
 		 * by the current page table page, or to the end of the
 		 * range being removed.
 		 */
 		if (va_next > eva)
 			va_next = eva;
 
 		if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
 			anyvalid = 1;
 	}
 	if (lock != NULL)
 		rw_wunlock(lock);
 out:
 	if (anyvalid)
 		pmap_invalidate_all(pmap);
 	PMAP_UNLOCK(pmap);
 	pmap_delayed_invl_finish();
 	vm_page_free_pages_toq(&free, true);
 }
 
 /*
  *	Remove the given range of addresses from the specified map.
  *
  *	It is assumed that the start and end are properly
  *	rounded to the page size.
  */
 void
 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	pmap_remove1(pmap, sva, eva, false);
 }
 
 /*
  *	Remove the given range of addresses as part of a logical unmap
  *	operation. This has the effect of calling pmap_remove(), but
  *	also clears any metadata that should persist for the lifetime
  *	of a logical mapping.
  */
 void
 pmap_map_delete(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	pmap_remove1(pmap, sva, eva, true);
 }
 
 /*
  *	Routine:	pmap_remove_all
  *	Function:
  *		Removes this physical page from
  *		all physical maps in which it resides.
  *		Reflects back modify bits to the pager.
  *
  *	Notes:
  *		Original versions of this routine were very
  *		inefficient because they iteratively called
  *		pmap_remove (slow...)
  */
 
 void
 pmap_remove_all(vm_page_t m)
 {
 	struct md_page *pvh;
 	pv_entry_t pv;
 	pmap_t pmap;
 	struct rwlock *lock;
 	pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
 	pd_entry_t *pde;
 	vm_offset_t va;
 	struct spglist free;
 	int pvh_gen, md_gen;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_remove_all: page %p is not managed", m));
 	SLIST_INIT(&free);
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
 	rw_wlock(lock);
 retry:
 	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, va);
 		(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
 		PMAP_UNLOCK(pmap);
 	}
 	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			md_gen = m->md.pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_A = pmap_accessed_bit(pmap);
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pmap_resident_count_adj(pmap, -1);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
 		    " a 2mpage in page %p's pv list", m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 		tpte = pte_load_clear(pte);
 		if (tpte & PG_W)
 			pmap->pm_stats.wired_count--;
 		if (tpte & PG_A)
 			vm_page_aflag_set(m, PGA_REFERENCED);
 
 		/*
 		 * Update the vm_page_t clean and reference bits.
 		 */
 		if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			vm_page_dirty(m);
 		pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
 		pmap_invalidate_page(pmap, pv->pv_va);
 		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 		m->md.pv_gen++;
 		free_pv_entry(pmap, pv);
 		PMAP_UNLOCK(pmap);
 	}
 	vm_page_aflag_clear(m, PGA_WRITEABLE);
 	rw_wunlock(lock);
 	pmap_delayed_invl_wait(m);
 	vm_page_free_pages_toq(&free, true);
 }
 
 /*
  * pmap_protect_pde: do the things to protect a 2mpage in a process
  */
 static bool
 pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
 {
 	pd_entry_t newpde, oldpde;
 	vm_page_t m, mt;
 	bool anychanged;
 	pt_entry_t PG_G, PG_M, PG_RW;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT((sva & PDRMASK) == 0,
 	    ("pmap_protect_pde: sva is not 2mpage aligned"));
 	anychanged = false;
 retry:
 	oldpde = newpde = *pde;
 	if ((prot & VM_PROT_WRITE) == 0) {
 		if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
 		    (PG_MANAGED | PG_M | PG_RW)) {
 			m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 				vm_page_dirty(mt);
 		}
 		newpde &= ~(PG_RW | PG_M);
 	}
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		newpde |= pg_nx;
 	if (newpde != oldpde) {
 		/*
 		 * As an optimization to future operations on this PDE, clear
 		 * PG_PROMOTED.  The impending invalidation will remove any
 		 * lingering 4KB page mappings from the TLB.
 		 */
 		if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
 			goto retry;
 		if ((oldpde & PG_G) != 0)
 			pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
 		else
 			anychanged = true;
 	}
 	return (anychanged);
 }
 
 /*
  *	Set the physical protection on the
  *	specified range of this map as requested.
  */
 void
 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
 {
 	vm_page_t m;
 	vm_offset_t va_next;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t ptpaddr, *pde;
 	pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
 	pt_entry_t obits, pbits;
 	bool anychanged;
 
 	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
 	if (prot == VM_PROT_NONE) {
 		pmap_remove(pmap, sva, eva);
 		return;
 	}
 
 	if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
 	    (VM_PROT_WRITE|VM_PROT_EXECUTE))
 		return;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	anychanged = false;
 
 	/*
 	 * Although this function delays and batches the invalidation
 	 * of stale TLB entries, it does not need to call
 	 * pmap_delayed_invl_start() and
 	 * pmap_delayed_invl_finish(), because it does not
 	 * ordinarily destroy mappings.  Stale TLB entries from
 	 * protection-only changes need only be invalidated before the
 	 * pmap lock is released, because protection-only changes do
 	 * not destroy PV entries.  Even operations that iterate over
 	 * a physical page's PV list of mappings, like
 	 * pmap_remove_write(), acquire the pmap lock for each
 	 * mapping.  Consequently, for protection-only changes, the
 	 * pmap lock suffices to synchronize both page table and TLB
 	 * updates.
 	 *
 	 * This function only destroys a mapping if pmap_demote_pde()
 	 * fails.  In that case, stale TLB entries are immediately
 	 * invalidated.
 	 */
 
 	PMAP_LOCK(pmap);
 	for (; sva < eva; sva = va_next) {
 		pml4e = pmap_pml4e(pmap, sva);
 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		va_next = (sva + NBPDP) & ~PDPMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0)
 			continue;
 		if ((*pdpe & PG_PS) != 0) {
 			KASSERT(va_next <= eva,
 			    ("partial update of non-transparent 1G mapping "
 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
 			    *pdpe, sva, eva, va_next));
 retry_pdpe:
 			obits = pbits = *pdpe;
 			MPASS((pbits & (PG_MANAGED | PG_G)) == 0);
 			MPASS(pmap != kernel_pmap); /* XXXKIB */
 			if ((prot & VM_PROT_WRITE) == 0)
 				pbits &= ~(PG_RW | PG_M);
 			if ((prot & VM_PROT_EXECUTE) == 0)
 				pbits |= pg_nx;
 
 			if (pbits != obits) {
 				if (!atomic_cmpset_long(pdpe, obits, pbits))
 					/* PG_PS cannot be cleared under us, */
 					goto retry_pdpe;
 				anychanged = true;
 			}
 			continue;
 		}
 
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		ptpaddr = *pde;
 
 		/*
 		 * Weed out invalid mappings.
 		 */
 		if (ptpaddr == 0)
 			continue;
 
 		/*
 		 * Check for large page.
 		 */
 		if ((ptpaddr & PG_PS) != 0) {
 			/*
 			 * Are we protecting the entire large page?  If not,
 			 * demote the mapping and fall through.
 			 */
 			if (sva + NBPDR == va_next && eva >= va_next) {
 				/*
 				 * The TLB entry for a PG_G mapping is
 				 * invalidated by pmap_protect_pde().
 				 */
 				if (pmap_protect_pde(pmap, pde, sva, prot))
 					anychanged = true;
 				continue;
 			} else if (!pmap_demote_pde(pmap, pde, sva)) {
 				/*
 				 * The large page mapping was destroyed.
 				 */
 				continue;
 			}
 		}
 
 		if (va_next > eva)
 			va_next = eva;
 
 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 		    sva += PAGE_SIZE) {
 retry:
 			obits = pbits = *pte;
 			if ((pbits & PG_V) == 0)
 				continue;
 
 			if ((prot & VM_PROT_WRITE) == 0) {
 				if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
 				    (PG_MANAGED | PG_M | PG_RW)) {
 					m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
 					vm_page_dirty(m);
 				}
 				pbits &= ~(PG_RW | PG_M);
 			}
 			if ((prot & VM_PROT_EXECUTE) == 0)
 				pbits |= pg_nx;
 
 			if (pbits != obits) {
 				if (!atomic_cmpset_long(pte, obits, pbits))
 					goto retry;
 				if (obits & PG_G)
 					pmap_invalidate_page(pmap, sva);
 				else
 					anychanged = true;
 			}
 		}
 	}
 	if (anychanged)
 		pmap_invalidate_all(pmap);
 	PMAP_UNLOCK(pmap);
 }
 
 static bool
 pmap_pde_ept_executable(pmap_t pmap, pd_entry_t pde)
 {
 
 	if (pmap->pm_type != PT_EPT)
 		return (false);
 	return ((pde & EPT_PG_EXECUTE) != 0);
 }
 
 #if VM_NRESERVLEVEL > 0
 /*
  * Tries to promote the 512, contiguous 4KB page mappings that are within a
  * single page table page (PTP) to a single 2MB page mapping.  For promotion
  * to occur, two conditions must be met: (1) the 4KB page mappings must map
  * aligned, contiguous physical memory and (2) the 4KB page mappings must have
  * identical characteristics. 
  */
 static bool
 pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va, vm_page_t mpte,
     struct rwlock **lockp)
 {
 	pd_entry_t newpde;
 	pt_entry_t *firstpte, oldpte, pa, *pte;
 	pt_entry_t allpte_PG_A, PG_A, PG_G, PG_M, PG_PKU_MASK, PG_RW, PG_V;
 	int PG_PTE_CACHE;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	if (!pmap_ps_enabled(pmap))
 		return (false);
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	PG_PKU_MASK = pmap_pku_mask_bit(pmap);
 	PG_PTE_CACHE = pmap_cache_mask(pmap, false);
 
 	/*
 	 * Examine the first PTE in the specified PTP.  Abort if this PTE is
 	 * ineligible for promotion due to hardware errata, invalid, or does
 	 * not map the first 4KB physical page within a 2MB page.
 	 */
 	firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
 	newpde = *firstpte;
 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap, newpde)))
 		return (false);
 	if ((newpde & ((PG_FRAME & PDRMASK) | PG_V)) != PG_V) {
 		counter_u64_add(pmap_pde_p_failures, 1);
 		CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
 		    " in pmap %p", va, pmap);
 		return (false);
 	}
 
 	/*
 	 * Both here and in the below "for" loop, to allow for repromotion
 	 * after MADV_FREE, conditionally write protect a clean PTE before
 	 * possibly aborting the promotion due to other PTE attributes.  Why?
 	 * Suppose that MADV_FREE is applied to a part of a superpage, the
 	 * address range [S, E).  pmap_advise() will demote the superpage
 	 * mapping, destroy the 4KB page mapping at the end of [S, E), and
 	 * clear PG_M and PG_A in the PTEs for the rest of [S, E).  Later,
 	 * imagine that the memory in [S, E) is recycled, but the last 4KB
 	 * page in [S, E) is not the last to be rewritten, or simply accessed.
 	 * In other words, there is still a 4KB page in [S, E), call it P,
 	 * that is writeable but PG_M and PG_A are clear in P's PTE.  Unless
 	 * we write protect P before aborting the promotion, if and when P is
 	 * finally rewritten, there won't be a page fault to trigger
 	 * repromotion.
 	 */
 setpde:
 	if ((newpde & (PG_M | PG_RW)) == PG_RW) {
 		/*
 		 * When PG_M is already clear, PG_RW can be cleared without
 		 * a TLB invalidation.
 		 */
 		if (!atomic_fcmpset_long(firstpte, &newpde, newpde & ~PG_RW))
 			goto setpde;
 		newpde &= ~PG_RW;
 		CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
 		    " in pmap %p", va & ~PDRMASK, pmap);
 	}
 
 	/*
 	 * Examine each of the other PTEs in the specified PTP.  Abort if this
 	 * PTE maps an unexpected 4KB physical page or does not have identical
 	 * characteristics to the first PTE.
 	 */
 	allpte_PG_A = newpde & PG_A;
 	pa = (newpde & (PG_PS_FRAME | PG_V)) + NBPDR - PAGE_SIZE;
 	for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
 		oldpte = *pte;
 		if ((oldpte & (PG_FRAME | PG_V)) != pa) {
 			counter_u64_add(pmap_pde_p_failures, 1);
 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
 			    " in pmap %p", va, pmap);
 			return (false);
 		}
 setpte:
 		if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
 			/*
 			 * When PG_M is already clear, PG_RW can be cleared
 			 * without a TLB invalidation.
 			 */
 			if (!atomic_fcmpset_long(pte, &oldpte, oldpte & ~PG_RW))
 				goto setpte;
 			oldpte &= ~PG_RW;
 			CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
 			    " in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
 			    (va & ~PDRMASK), pmap);
 		}
 		if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
 			counter_u64_add(pmap_pde_p_failures, 1);
 			CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
 			    " in pmap %p", va, pmap);
 			return (false);
 		}
 		allpte_PG_A &= oldpte;
 		pa -= PAGE_SIZE;
 	}
 
 	/*
 	 * Unless all PTEs have PG_A set, clear it from the superpage mapping,
 	 * so that promotions triggered by speculative mappings, such as
 	 * pmap_enter_quick(), don't automatically mark the underlying pages
 	 * as referenced.
 	 */
 	newpde &= ~PG_A | allpte_PG_A;
 
 	/*
 	 * EPT PTEs with PG_M set and PG_A clear are not supported by early
 	 * MMUs supporting EPT.
 	 */
 	KASSERT((newpde & PG_A) != 0 || safe_to_clear_referenced(pmap, newpde),
 	    ("unsupported EPT PTE"));
 
 	/*
 	 * Save the PTP in its current state until the PDE mapping the
 	 * superpage is demoted by pmap_demote_pde() or destroyed by
 	 * pmap_remove_pde().  If PG_A is not set in every PTE, then request
 	 * that the PTP be refilled on demotion.
 	 */
 	if (mpte == NULL)
 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 	KASSERT(mpte >= vm_page_array &&
 	    mpte < &vm_page_array[vm_page_array_size],
 	    ("pmap_promote_pde: page table page is out of range"));
 	KASSERT(mpte->pindex == pmap_pde_pindex(va),
 	    ("pmap_promote_pde: page table page's pindex is wrong "
 	    "mpte %p pidx %#lx va %#lx va pde pidx %#lx",
 	    mpte, mpte->pindex, va, pmap_pde_pindex(va)));
 	if (pmap_insert_pt_page(pmap, mpte, true, allpte_PG_A != 0)) {
 		counter_u64_add(pmap_pde_p_failures, 1);
 		CTR2(KTR_PMAP,
 		    "pmap_promote_pde: failure for va %#lx in pmap %p", va,
 		    pmap);
 		return (false);
 	}
 
 	/*
 	 * Promote the pv entries.
 	 */
 	if ((newpde & PG_MANAGED) != 0)
 		pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
 
 	/*
 	 * Propagate the PAT index to its proper position.
 	 */
 	newpde = pmap_swap_pat(pmap, newpde);
 
 	/*
 	 * Map the superpage.
 	 */
 	if (workaround_erratum383)
 		pmap_update_pde(pmap, va, pde, PG_PS | newpde);
 	else
 		pde_store(pde, PG_PROMOTED | PG_PS | newpde);
 
 	counter_u64_add(pmap_pde_promotions, 1);
 	CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
 	    " in pmap %p", va, pmap);
 	return (true);
 }
 #endif /* VM_NRESERVLEVEL > 0 */
 
 static int
 pmap_enter_largepage(pmap_t pmap, vm_offset_t va, pt_entry_t newpte, int flags,
     int psind)
 {
 	vm_page_t mp;
 	pt_entry_t origpte, *pml4e, *pdpe, *pde, pten, PG_V;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	KASSERT(psind > 0 && psind < MAXPAGESIZES && pagesizes[psind] != 0,
 	    ("psind %d unexpected", psind));
 	KASSERT(((newpte & PG_FRAME) & (pagesizes[psind] - 1)) == 0,
 	    ("unaligned phys address %#lx newpte %#lx psind %d",
 	    newpte & PG_FRAME, newpte, psind));
 	KASSERT((va & (pagesizes[psind] - 1)) == 0,
 	    ("unaligned va %#lx psind %d", va, psind));
 	KASSERT(va < VM_MAXUSER_ADDRESS,
 	    ("kernel mode non-transparent superpage")); /* XXXKIB */
 	KASSERT(va + pagesizes[psind] < VM_MAXUSER_ADDRESS,
 	    ("overflowing user map va %#lx psind %d", va, psind)); /* XXXKIB */
 
 	PG_V = pmap_valid_bit(pmap);
 
 restart:
 	if (!pmap_pkru_same(pmap, va, va + pagesizes[psind]))
 		return (KERN_PROTECTION_FAILURE);
 	pten = newpte;
 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
 		pten |= pmap_pkru_get(pmap, va);
 
 	if (psind == 2) {	/* 1G */
 		pml4e = pmap_pml4e(pmap, va);
 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
 			mp = pmap_allocpte_alloc(pmap, pmap_pml4e_pindex(va),
 			    NULL, va);
 			if (mp == NULL)
 				goto allocf;
 			pdpe = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
 			pdpe = &pdpe[pmap_pdpe_index(va)];
 			origpte = *pdpe;
 			MPASS(origpte == 0);
 		} else {
 			pdpe = pmap_pml4e_to_pdpe(pml4e, va);
 			KASSERT(pdpe != NULL, ("va %#lx lost pdpe", va));
 			origpte = *pdpe;
 			if ((origpte & PG_V) == 0) {
 				mp = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
 				mp->ref_count++;
 			}
 		}
 		*pdpe = pten;
 	} else /* (psind == 1) */ {	/* 2M */
 		pde = pmap_pde(pmap, va);
 		if (pde == NULL) {
 			mp = pmap_allocpte_alloc(pmap, pmap_pdpe_pindex(va),
 			    NULL, va);
 			if (mp == NULL)
 				goto allocf;
 			pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mp));
 			pde = &pde[pmap_pde_index(va)];
 			origpte = *pde;
 			MPASS(origpte == 0);
 		} else {
 			origpte = *pde;
 			if ((origpte & PG_V) == 0) {
 				pdpe = pmap_pdpe(pmap, va);
 				MPASS(pdpe != NULL && (*pdpe & PG_V) != 0);
 				mp = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
 				mp->ref_count++;
 			}
 		}
 		*pde = pten;
 	}
 	KASSERT((origpte & PG_V) == 0 || ((origpte & PG_PS) != 0 &&
 	    (origpte & PG_PS_FRAME) == (pten & PG_PS_FRAME)),
 	    ("va %#lx changing %s phys page origpte %#lx pten %#lx",
 	    va, psind == 2 ? "1G" : "2M", origpte, pten));
 	if ((pten & PG_W) != 0 && (origpte & PG_W) == 0)
 		pmap->pm_stats.wired_count += pagesizes[psind] / PAGE_SIZE;
 	else if ((pten & PG_W) == 0 && (origpte & PG_W) != 0)
 		pmap->pm_stats.wired_count -= pagesizes[psind] / PAGE_SIZE;
 	if ((origpte & PG_V) == 0)
 		pmap_resident_count_adj(pmap, pagesizes[psind] / PAGE_SIZE);
 
 	return (KERN_SUCCESS);
 
 allocf:
 	if ((flags & PMAP_ENTER_NOSLEEP) != 0)
 		return (KERN_RESOURCE_SHORTAGE);
 	PMAP_UNLOCK(pmap);
 	vm_wait(NULL);
 	PMAP_LOCK(pmap);
 	goto restart;
 }
 
 /*
  *	Insert the given physical page (p) at
  *	the specified virtual address (v) in the
  *	target physical map with the protection requested.
  *
  *	If specified, the page will be wired down, meaning
  *	that the related pte can not be reclaimed.
  *
  *	NB:  This is the only routine which MAY NOT lazy-evaluate
  *	or lose information.  That is, this routine must actually
  *	insert this page into the given map NOW.
  *
  *	When destroying both a page table and PV entry, this function
  *	performs the TLB invalidation before releasing the PV list
  *	lock, so we do not need pmap_delayed_invl_page() calls here.
  */
 int
 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
     u_int flags, int8_t psind)
 {
 	struct rwlock *lock;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
 	pt_entry_t newpte, origpte;
 	pv_entry_t pv;
 	vm_paddr_t opa, pa;
 	vm_page_t mpte, om;
 	int rv;
 	bool nosleep;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	va = trunc_page(va);
 	KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
 	KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
 	    ("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
 	    va));
 	KASSERT((m->oflags & VPO_UNMANAGED) != 0 || !VA_IS_CLEANMAP(va),
 	    ("pmap_enter: managed mapping within the clean submap"));
 	if ((m->oflags & VPO_UNMANAGED) == 0)
 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
 	KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
 	    ("pmap_enter: flags %u has reserved bits set", flags));
 	pa = VM_PAGE_TO_PHYS(m);
 	newpte = (pt_entry_t)(pa | PG_A | PG_V);
 	if ((flags & VM_PROT_WRITE) != 0)
 		newpte |= PG_M;
 	if ((prot & VM_PROT_WRITE) != 0)
 		newpte |= PG_RW;
 	KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
 	    ("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		newpte |= pg_nx;
 	if ((flags & PMAP_ENTER_WIRED) != 0)
 		newpte |= PG_W;
 	if (va < VM_MAXUSER_ADDRESS)
 		newpte |= PG_U;
 	if (pmap == kernel_pmap)
 		newpte |= PG_G;
 	newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
 
 	/*
 	 * Set modified bit gratuitously for writeable mappings if
 	 * the page is unmanaged. We do not want to take a fault
 	 * to do the dirty bit accounting for these mappings.
 	 */
 	if ((m->oflags & VPO_UNMANAGED) != 0) {
 		if ((newpte & PG_RW) != 0)
 			newpte |= PG_M;
 	} else
 		newpte |= PG_MANAGED;
 
 	lock = NULL;
 	PMAP_LOCK(pmap);
 	if ((flags & PMAP_ENTER_LARGEPAGE) != 0) {
 		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
 		    ("managed largepage va %#lx flags %#x", va, flags));
 		rv = pmap_enter_largepage(pmap, va, newpte | PG_PS, flags,
 		    psind);
 		goto out;
 	}
 	if (psind == 1) {
 		/* Assert the required virtual and physical alignment. */ 
 		KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
 		KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
 		rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
 		goto out;
 	}
 	mpte = NULL;
 
 	/*
 	 * In the case that a page table page is not
 	 * resident, we are creating it here.
 	 */
 retry:
 	pde = pmap_pde(pmap, va);
 	if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
 	    pmap_demote_pde_locked(pmap, pde, va, &lock))) {
 		pte = pmap_pde_to_pte(pde, va);
 		if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
 			mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 			mpte->ref_count++;
 		}
 	} else if (va < VM_MAXUSER_ADDRESS) {
 		/*
 		 * Here if the pte page isn't mapped, or if it has been
 		 * deallocated.
 		 */
 		nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
 		mpte = pmap_allocpte_alloc(pmap, pmap_pde_pindex(va),
 		    nosleep ? NULL : &lock, va);
 		if (mpte == NULL && nosleep) {
 			rv = KERN_RESOURCE_SHORTAGE;
 			goto out;
 		}
 		goto retry;
 	} else
 		panic("pmap_enter: invalid page directory va=%#lx", va);
 
 	origpte = *pte;
 	pv = NULL;
 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86)
 		newpte |= pmap_pkru_get(pmap, va);
 
 	/*
 	 * Is the specified virtual address already mapped?
 	 */
 	if ((origpte & PG_V) != 0) {
 		/*
 		 * Wiring change, just update stats. We don't worry about
 		 * wiring PT pages as they remain resident as long as there
 		 * are valid mappings in them. Hence, if a user page is wired,
 		 * the PT page will be also.
 		 */
 		if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
 			pmap->pm_stats.wired_count++;
 		else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
 			pmap->pm_stats.wired_count--;
 
 		/*
 		 * Remove the extra PT page reference.
 		 */
 		if (mpte != NULL) {
 			mpte->ref_count--;
 			KASSERT(mpte->ref_count > 0,
 			    ("pmap_enter: missing reference to page table page,"
 			     " va: 0x%lx", va));
 		}
 
 		/*
 		 * Has the physical page changed?
 		 */
 		opa = origpte & PG_FRAME;
 		if (opa == pa) {
 			/*
 			 * No, might be a protection or wiring change.
 			 */
 			if ((origpte & PG_MANAGED) != 0 &&
 			    (newpte & PG_RW) != 0)
 				vm_page_aflag_set(m, PGA_WRITEABLE);
 			if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
 				goto unchanged;
 			goto validate;
 		}
 
 		/*
 		 * The physical page has changed.  Temporarily invalidate
 		 * the mapping.  This ensures that all threads sharing the
 		 * pmap keep a consistent view of the mapping, which is
 		 * necessary for the correct handling of COW faults.  It
 		 * also permits reuse of the old mapping's PV entry,
 		 * avoiding an allocation.
 		 *
 		 * For consistency, handle unmanaged mappings the same way.
 		 */
 		origpte = pte_load_clear(pte);
 		KASSERT((origpte & PG_FRAME) == opa,
 		    ("pmap_enter: unexpected pa update for %#lx", va));
 		if ((origpte & PG_MANAGED) != 0) {
 			om = PHYS_TO_VM_PAGE(opa);
 
 			/*
 			 * The pmap lock is sufficient to synchronize with
 			 * concurrent calls to pmap_page_test_mappings() and
 			 * pmap_ts_referenced().
 			 */
 			if ((origpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 				vm_page_dirty(om);
 			if ((origpte & PG_A) != 0) {
 				pmap_invalidate_page(pmap, va);
 				vm_page_aflag_set(om, PGA_REFERENCED);
 			}
 			CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
 			pv = pmap_pvh_remove(&om->md, pmap, va);
 			KASSERT(pv != NULL,
 			    ("pmap_enter: no PV entry for %#lx", va));
 			if ((newpte & PG_MANAGED) == 0)
 				free_pv_entry(pmap, pv);
 			if ((om->a.flags & PGA_WRITEABLE) != 0 &&
 			    TAILQ_EMPTY(&om->md.pv_list) &&
 			    ((om->flags & PG_FICTITIOUS) != 0 ||
 			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
 				vm_page_aflag_clear(om, PGA_WRITEABLE);
 		} else {
 			/*
 			 * Since this mapping is unmanaged, assume that PG_A
 			 * is set.
 			 */
 			pmap_invalidate_page(pmap, va);
 		}
 		origpte = 0;
 	} else {
 		/*
 		 * Increment the counters.
 		 */
 		if ((newpte & PG_W) != 0)
 			pmap->pm_stats.wired_count++;
 		pmap_resident_count_adj(pmap, 1);
 	}
 
 	/*
 	 * Enter on the PV list if part of our managed memory.
 	 */
 	if ((newpte & PG_MANAGED) != 0) {
 		if (pv == NULL) {
 			pv = get_pv_entry(pmap, &lock);
 			pv->pv_va = va;
 		}
 		CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
 		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 		m->md.pv_gen++;
 		if ((newpte & PG_RW) != 0)
 			vm_page_aflag_set(m, PGA_WRITEABLE);
 	}
 
 	/*
 	 * Update the PTE.
 	 */
 	if ((origpte & PG_V) != 0) {
 validate:
 		origpte = pte_load_store(pte, newpte);
 		KASSERT((origpte & PG_FRAME) == pa,
 		    ("pmap_enter: unexpected pa update for %#lx", va));
 		if ((newpte & PG_M) == 0 && (origpte & (PG_M | PG_RW)) ==
 		    (PG_M | PG_RW)) {
 			if ((origpte & PG_MANAGED) != 0)
 				vm_page_dirty(m);
 
 			/*
 			 * Although the PTE may still have PG_RW set, TLB
 			 * invalidation may nonetheless be required because
 			 * the PTE no longer has PG_M set.
 			 */
 		} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
 			/*
 			 * This PTE change does not require TLB invalidation.
 			 */
 			goto unchanged;
 		}
 		if ((origpte & PG_A) != 0)
 			pmap_invalidate_page(pmap, va);
 	} else
 		pte_store(pte, newpte);
 
 unchanged:
 
 #if VM_NRESERVLEVEL > 0
 	/*
 	 * If both the page table page and the reservation are fully
 	 * populated, then attempt promotion.
 	 */
 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
 	    (m->flags & PG_FICTITIOUS) == 0 &&
 	    vm_reserv_level_iffullpop(m) == 0)
 		(void)pmap_promote_pde(pmap, pde, va, mpte, &lock);
 #endif
 
 	rv = KERN_SUCCESS;
 out:
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 	return (rv);
 }
 
 /*
  * Tries to create a read- and/or execute-only 2MB page mapping.  Returns
  * KERN_SUCCESS if the mapping was created.  Otherwise, returns an error
  * value.  See pmap_enter_pde() for the possible error values when "no sleep",
  * "no replace", and "no reclaim" are specified.
  */
 static int
 pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
     struct rwlock **lockp)
 {
 	pd_entry_t newpde;
 	pt_entry_t PG_V;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	PG_V = pmap_valid_bit(pmap);
 	newpde = VM_PAGE_TO_PHYS(m) |
 	    pmap_cache_bits(pmap, m->md.pat_mode, true) | PG_PS | PG_V;
 	if ((m->oflags & VPO_UNMANAGED) == 0)
 		newpde |= PG_MANAGED;
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		newpde |= pg_nx;
 	if (va < VM_MAXUSER_ADDRESS)
 		newpde |= PG_U;
 	return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
 	    PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp));
 }
 
 /*
  * Returns true if every page table entry in the specified page table page is
  * zero.
  */
 static bool
 pmap_every_pte_zero(vm_paddr_t pa)
 {
 	pt_entry_t *pt_end, *pte;
 
 	KASSERT((pa & PAGE_MASK) == 0, ("pa is misaligned"));
 	pte = (pt_entry_t *)PHYS_TO_DMAP(pa);
 	for (pt_end = pte + NPTEPG; pte < pt_end; pte++) {
 		if (*pte != 0)
 			return (false);
 	}
 	return (true);
 }
 
 /*
  * Tries to create the specified 2MB page mapping.  Returns KERN_SUCCESS if
  * the mapping was created, and one of KERN_FAILURE, KERN_NO_SPACE,
  * KERN_PROTECTION_FAILURE, or KERN_RESOURCE_SHORTAGE otherwise.  Returns
  * KERN_FAILURE if either (1) PMAP_ENTER_NOREPLACE was specified and a 4KB
  * page mapping already exists within the 2MB virtual address range starting
  * at the specified virtual address or (2) the requested 2MB page mapping is
  * not supported due to hardware errata.  Returns KERN_NO_SPACE if
  * PMAP_ENTER_NOREPLACE was specified and a 2MB page mapping already exists at
  * the specified virtual address.  Returns KERN_PROTECTION_FAILURE if the PKRU
  * settings are not the same across the 2MB virtual address range starting at
  * the specified virtual address.  Returns KERN_RESOURCE_SHORTAGE if either
  * (1) PMAP_ENTER_NOSLEEP was specified and a page table page allocation
  * failed or (2) PMAP_ENTER_NORECLAIM was specified and a PV entry allocation
  * failed.
  *
  * The parameter "m" is only used when creating a managed, writeable mapping.
  */
 static int
 pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
     vm_page_t m, struct rwlock **lockp)
 {
 	struct spglist free;
 	pd_entry_t oldpde, *pde;
 	pt_entry_t PG_G, PG_RW, PG_V;
 	vm_page_t mt, pdpg;
 	vm_page_t uwptpg;
 
 	PG_G = pmap_global_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
 	    ("pmap_enter_pde: newpde is missing PG_M"));
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 
 	if (!pmap_allow_2m_x_page(pmap, pmap_pde_ept_executable(pmap,
 	    newpde))) {
 		CTR2(KTR_PMAP, "pmap_enter_pde: 2m x blocked for va %#lx"
 		    " in pmap %p", va, pmap);
 		return (KERN_FAILURE);
 	}
 	if ((pde = pmap_alloc_pde(pmap, va, &pdpg, (flags &
 	    PMAP_ENTER_NOSLEEP) != 0 ? NULL : lockp)) == NULL) {
 		CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 		    " in pmap %p", va, pmap);
 		return (KERN_RESOURCE_SHORTAGE);
 	}
 
 	/*
 	 * If pkru is not same for the whole pde range, return failure
 	 * and let vm_fault() cope.  Check after pde allocation, since
 	 * it could sleep.
 	 */
 	if (!pmap_pkru_same(pmap, va, va + NBPDR)) {
 		pmap_abort_ptp(pmap, va, pdpg);
 		return (KERN_PROTECTION_FAILURE);
 	}
 	if (va < VM_MAXUSER_ADDRESS && pmap->pm_type == PT_X86) {
 		newpde &= ~X86_PG_PKU_MASK;
 		newpde |= pmap_pkru_get(pmap, va);
 	}
 
 	/*
 	 * If there are existing mappings, either abort or remove them.
 	 */
 	oldpde = *pde;
 	if ((oldpde & PG_V) != 0) {
 		KASSERT(pdpg == NULL || pdpg->ref_count > 1,
 		    ("pmap_enter_pde: pdpg's reference count is too low"));
 		if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
 			if ((oldpde & PG_PS) != 0) {
 				if (pdpg != NULL)
 					pdpg->ref_count--;
 				CTR2(KTR_PMAP,
 				    "pmap_enter_pde: no space for va %#lx"
 				    " in pmap %p", va, pmap);
 				return (KERN_NO_SPACE);
 			} else if (va < VM_MAXUSER_ADDRESS ||
 			    !pmap_every_pte_zero(oldpde & PG_FRAME)) {
 				if (pdpg != NULL)
 					pdpg->ref_count--;
 				CTR2(KTR_PMAP,
 				    "pmap_enter_pde: failure for va %#lx"
 				    " in pmap %p", va, pmap);
 				return (KERN_FAILURE);
 			}
 		}
 		/* Break the existing mapping(s). */
 		SLIST_INIT(&free);
 		if ((oldpde & PG_PS) != 0) {
 			/*
 			 * The reference to the PD page that was acquired by
 			 * pmap_alloc_pde() ensures that it won't be freed.
 			 * However, if the PDE resulted from a promotion, then
 			 * a reserved PT page could be freed.
 			 */
 			(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
 			if ((oldpde & PG_G) == 0)
 				pmap_invalidate_pde_page(pmap, va, oldpde);
 		} else {
 			pmap_delayed_invl_start();
 			if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
 			    lockp))
 		               pmap_invalidate_all(pmap);
 			pmap_delayed_invl_finish();
 		}
 		if (va < VM_MAXUSER_ADDRESS) {
 			vm_page_free_pages_toq(&free, true);
 			KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
 			    pde));
 		} else {
 			KASSERT(SLIST_EMPTY(&free),
 			    ("pmap_enter_pde: freed kernel page table page"));
 
 			/*
 			 * Both pmap_remove_pde() and pmap_remove_ptes() will
 			 * leave the kernel page table page zero filled.
 			 */
 			mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 			if (pmap_insert_pt_page(pmap, mt, false, false))
 				panic("pmap_enter_pde: trie insert failed");
 		}
 	}
 
 	/*
 	 * Allocate leaf ptpage for wired userspace pages.
 	 */
 	uwptpg = NULL;
 	if ((newpde & PG_W) != 0 && pmap != kernel_pmap) {
 		uwptpg = pmap_alloc_pt_page(pmap, pmap_pde_pindex(va),
 		    VM_ALLOC_WIRED);
-		if (uwptpg == NULL)
+		if (uwptpg == NULL) {
+			pmap_abort_ptp(pmap, va, pdpg);
 			return (KERN_RESOURCE_SHORTAGE);
+		}
 		if (pmap_insert_pt_page(pmap, uwptpg, true, false)) {
 			pmap_free_pt_page(pmap, uwptpg, false);
+			pmap_abort_ptp(pmap, va, pdpg);
 			return (KERN_RESOURCE_SHORTAGE);
 		}
 
 		uwptpg->ref_count = NPTEPG;
 	}
 	if ((newpde & PG_MANAGED) != 0) {
 		/*
 		 * Abort this mapping if its PV entry could not be created.
 		 */
 		if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
 			if (pdpg != NULL)
 				pmap_abort_ptp(pmap, va, pdpg);
 			if (uwptpg != NULL) {
 				mt = pmap_remove_pt_page(pmap, va);
 				KASSERT(mt == uwptpg,
 				    ("removed pt page %p, expected %p", mt,
 				    uwptpg));
 				uwptpg->ref_count = 1;
 				pmap_free_pt_page(pmap, uwptpg, false);
 			}
 			CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
 			    " in pmap %p", va, pmap);
 			return (KERN_RESOURCE_SHORTAGE);
 		}
 		if ((newpde & PG_RW) != 0) {
 			for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 				vm_page_aflag_set(mt, PGA_WRITEABLE);
 		}
 	}
 
 	/*
 	 * Increment counters.
 	 */
 	if ((newpde & PG_W) != 0)
 		pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
 	pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
 
 	/*
 	 * Map the superpage.  (This is not a promoted mapping; there will not
 	 * be any lingering 4KB page mappings in the TLB.)
 	 */
 	pde_store(pde, newpde);
 
 	counter_u64_add(pmap_pde_mappings, 1);
 	CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx in pmap %p",
 	    va, pmap);
 	return (KERN_SUCCESS);
 }
 
 /*
  * Maps a sequence of resident pages belonging to the same object.
  * The sequence begins with the given page m_start.  This page is
  * mapped at the given virtual address start.  Each subsequent page is
  * mapped at a virtual address that is offset from start by the same
  * amount as the page is offset from m_start within the object.  The
  * last page in the sequence is the page with the largest offset from
  * m_start that can be mapped at a virtual address less than the given
  * virtual address end.  Not every virtual page between start and end
  * is mapped; only those for which a resident page exists with the
  * corresponding offset from m_start are mapped.
  */
 void
 pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
     vm_page_t m_start, vm_prot_t prot)
 {
 	struct rwlock *lock;
 	vm_offset_t va;
 	vm_page_t m, mpte;
 	vm_pindex_t diff, psize;
 	int rv;
 
 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
 
 	psize = atop(end - start);
 	mpte = NULL;
 	m = m_start;
 	lock = NULL;
 	PMAP_LOCK(pmap);
 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
 		va = start + ptoa(diff);
 		if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
 		    m->psind == 1 && pmap_ps_enabled(pmap) &&
 		    ((rv = pmap_enter_2mpage(pmap, va, m, prot, &lock)) ==
 		    KERN_SUCCESS || rv == KERN_NO_SPACE))
 			m = &m[NBPDR / PAGE_SIZE - 1];
 		else
 			mpte = pmap_enter_quick_locked(pmap, va, m, prot,
 			    mpte, &lock);
 		m = TAILQ_NEXT(m, listq);
 	}
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 }
 
 /*
  * this code makes some *MAJOR* assumptions:
  * 1. Current pmap & pmap exists.
  * 2. Not wired.
  * 3. Read access.
  * 4. No page table pages.
  * but is *MUCH* faster than pmap_enter...
  */
 
 void
 pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
 {
 	struct rwlock *lock;
 
 	lock = NULL;
 	PMAP_LOCK(pmap);
 	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 }
 
 static vm_page_t
 pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
     vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
 {
 	pd_entry_t *pde;
 	pt_entry_t newpte, *pte, PG_V;
 
 	KASSERT(!VA_IS_CLEANMAP(va) ||
 	    (m->oflags & VPO_UNMANAGED) != 0,
 	    ("pmap_enter_quick_locked: managed mapping within the clean submap"));
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	pde = NULL;
 
 	/*
 	 * In the case that a page table page is not
 	 * resident, we are creating it here.
 	 */
 	if (va < VM_MAXUSER_ADDRESS) {
 		pdp_entry_t *pdpe;
 		vm_pindex_t ptepindex;
 
 		/*
 		 * Calculate pagetable page index
 		 */
 		ptepindex = pmap_pde_pindex(va);
 		if (mpte && (mpte->pindex == ptepindex)) {
 			mpte->ref_count++;
 		} else {
 			/*
 			 * If the page table page is mapped, we just increment
 			 * the hold count, and activate it.  Otherwise, we
 			 * attempt to allocate a page table page, passing NULL
 			 * instead of the PV list lock pointer because we don't
 			 * intend to sleep.  If this attempt fails, we don't
 			 * retry.  Instead, we give up.
 			 */
 			pdpe = pmap_pdpe(pmap, va);
 			if (pdpe != NULL && (*pdpe & PG_V) != 0) {
 				if ((*pdpe & PG_PS) != 0)
 					return (NULL);
 				pde = pmap_pdpe_to_pde(pdpe, va);
 				if ((*pde & PG_V) != 0) {
 					if ((*pde & PG_PS) != 0)
 						return (NULL);
 					mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 					mpte->ref_count++;
 				} else {
 					mpte = pmap_allocpte_alloc(pmap,
 					    ptepindex, NULL, va);
 					if (mpte == NULL)
 						return (NULL);
 				}
 			} else {
 				mpte = pmap_allocpte_alloc(pmap, ptepindex,
 				    NULL, va);
 				if (mpte == NULL)
 					return (NULL);
 			}
 		}
 		pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
 		pte = &pte[pmap_pte_index(va)];
 	} else {
 		mpte = NULL;
 		pte = vtopte(va);
 	}
 	if (*pte) {
 		if (mpte != NULL)
 			mpte->ref_count--;
 		return (NULL);
 	}
 
 	/*
 	 * Enter on the PV list if part of our managed memory.
 	 */
 	if ((m->oflags & VPO_UNMANAGED) == 0 &&
 	    !pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
 		if (mpte != NULL)
 			pmap_abort_ptp(pmap, va, mpte);
 		return (NULL);
 	}
 
 	/*
 	 * Increment counters
 	 */
 	pmap_resident_count_adj(pmap, 1);
 
 	newpte = VM_PAGE_TO_PHYS(m) | PG_V |
 	    pmap_cache_bits(pmap, m->md.pat_mode, false);
 	if ((m->oflags & VPO_UNMANAGED) == 0)
 		newpte |= PG_MANAGED;
 	if ((prot & VM_PROT_EXECUTE) == 0)
 		newpte |= pg_nx;
 	if (va < VM_MAXUSER_ADDRESS)
 		newpte |= PG_U | pmap_pkru_get(pmap, va);
 	pte_store(pte, newpte);
 
 #if VM_NRESERVLEVEL > 0
 	/*
 	 * If both the PTP and the reservation are fully populated, then
 	 * attempt promotion.
 	 */
 	if ((prot & VM_PROT_NO_PROMOTE) == 0 &&
 	    (mpte == NULL || mpte->ref_count == NPTEPG) &&
 	    (m->flags & PG_FICTITIOUS) == 0 &&
 	    vm_reserv_level_iffullpop(m) == 0) {
 		if (pde == NULL)
 			pde = pmap_pde(pmap, va);
 
 		/*
 		 * If promotion succeeds, then the next call to this function
 		 * should not be given the unmapped PTP as a hint.
 		 */
 		if (pmap_promote_pde(pmap, pde, va, mpte, lockp))
 			mpte = NULL;
 	}
 #endif
 
 	return (mpte);
 }
 
 /*
  * Make a temporary mapping for a physical address.  This is only intended
  * to be used for panic dumps.
  */
 void *
 pmap_kenter_temporary(vm_paddr_t pa, int i)
 {
 	vm_offset_t va;
 
 	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
 	pmap_kenter(va, pa);
 	pmap_invlpg(kernel_pmap, va);
 	return ((void *)crashdumpmap);
 }
 
 /*
  * This code maps large physical mmap regions into the
  * processor address space.  Note that some shortcuts
  * are taken, but the code works.
  */
 void
 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
     vm_pindex_t pindex, vm_size_t size)
 {
 	pd_entry_t *pde;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 	vm_paddr_t pa, ptepa;
 	vm_page_t p, pdpg;
 	int pat_mode;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	VM_OBJECT_ASSERT_WLOCKED(object);
 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
 	    ("pmap_object_init_pt: non-device object"));
 	if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
 		if (!pmap_ps_enabled(pmap))
 			return;
 		if (!vm_object_populate(object, pindex, pindex + atop(size)))
 			return;
 		p = vm_page_lookup(object, pindex);
 		KASSERT(vm_page_all_valid(p),
 		    ("pmap_object_init_pt: invalid page %p", p));
 		pat_mode = p->md.pat_mode;
 
 		/*
 		 * Abort the mapping if the first page is not physically
 		 * aligned to a 2MB page boundary.
 		 */
 		ptepa = VM_PAGE_TO_PHYS(p);
 		if (ptepa & (NBPDR - 1))
 			return;
 
 		/*
 		 * Skip the first page.  Abort the mapping if the rest of
 		 * the pages are not physically contiguous or have differing
 		 * memory attributes.
 		 */
 		p = TAILQ_NEXT(p, listq);
 		for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
 		    pa += PAGE_SIZE) {
 			KASSERT(vm_page_all_valid(p),
 			    ("pmap_object_init_pt: invalid page %p", p));
 			if (pa != VM_PAGE_TO_PHYS(p) ||
 			    pat_mode != p->md.pat_mode)
 				return;
 			p = TAILQ_NEXT(p, listq);
 		}
 
 		/*
 		 * Map using 2MB pages.  Since "ptepa" is 2M aligned and
 		 * "size" is a multiple of 2M, adding the PAT setting to "pa"
 		 * will not affect the termination of this loop.
 		 */ 
 		PMAP_LOCK(pmap);
 		for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, true);
 		    pa < ptepa + size; pa += NBPDR) {
 			pde = pmap_alloc_pde(pmap, addr, &pdpg, NULL);
 			if (pde == NULL) {
 				/*
 				 * The creation of mappings below is only an
 				 * optimization.  If a page directory page
 				 * cannot be allocated without blocking,
 				 * continue on to the next mapping rather than
 				 * blocking.
 				 */
 				addr += NBPDR;
 				continue;
 			}
 			if ((*pde & PG_V) == 0) {
 				pde_store(pde, pa | PG_PS | PG_M | PG_A |
 				    PG_U | PG_RW | PG_V);
 				pmap_resident_count_adj(pmap, NBPDR / PAGE_SIZE);
 				counter_u64_add(pmap_pde_mappings, 1);
 			} else {
 				/* Continue on if the PDE is already valid. */
 				pdpg->ref_count--;
 				KASSERT(pdpg->ref_count > 0,
 				    ("pmap_object_init_pt: missing reference "
 				    "to page directory page, va: 0x%lx", addr));
 			}
 			addr += NBPDR;
 		}
 		PMAP_UNLOCK(pmap);
 	}
 }
 
 /*
  *	Clear the wired attribute from the mappings for the specified range of
  *	addresses in the given pmap.  Every valid mapping within that range
  *	must have the wired attribute set.  In contrast, invalid mappings
  *	cannot have the wired attribute set, so they are ignored.
  *
  *	The wired attribute of the page table entry is not a hardware
  *	feature, so there is no need to invalidate any TLB entries.
  *	Since pmap_demote_pde() for the wired entry must never fail,
  *	pmap_delayed_invl_start()/finish() calls around the
  *	function are not needed.
  */
 void
 pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	vm_offset_t va_next;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V, PG_G __diagused;
 
 	PG_V = pmap_valid_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PMAP_LOCK(pmap);
 	for (; sva < eva; sva = va_next) {
 		pml4e = pmap_pml4e(pmap, sva);
 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		va_next = (sva + NBPDP) & ~PDPMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0)
 			continue;
 		if ((*pdpe & PG_PS) != 0) {
 			KASSERT(va_next <= eva,
 			    ("partial update of non-transparent 1G mapping "
 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
 			    *pdpe, sva, eva, va_next));
 			MPASS(pmap != kernel_pmap); /* XXXKIB */
 			MPASS((*pdpe & (PG_MANAGED | PG_G)) == 0);
 			atomic_clear_long(pdpe, PG_W);
 			pmap->pm_stats.wired_count -= NBPDP / PAGE_SIZE;
 			continue;
 		}
 
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		if ((*pde & PG_V) == 0)
 			continue;
 		if ((*pde & PG_PS) != 0) {
 			if ((*pde & PG_W) == 0)
 				panic("pmap_unwire: pde %#jx is missing PG_W",
 				    (uintmax_t)*pde);
 
 			/*
 			 * Are we unwiring the entire large page?  If not,
 			 * demote the mapping and fall through.
 			 */
 			if (sva + NBPDR == va_next && eva >= va_next) {
 				atomic_clear_long(pde, PG_W);
 				pmap->pm_stats.wired_count -= NBPDR /
 				    PAGE_SIZE;
 				continue;
 			} else if (!pmap_demote_pde(pmap, pde, sva))
 				panic("pmap_unwire: demotion failed");
 		}
 		if (va_next > eva)
 			va_next = eva;
 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 		    sva += PAGE_SIZE) {
 			if ((*pte & PG_V) == 0)
 				continue;
 			if ((*pte & PG_W) == 0)
 				panic("pmap_unwire: pte %#jx is missing PG_W",
 				    (uintmax_t)*pte);
 
 			/*
 			 * PG_W must be cleared atomically.  Although the pmap
 			 * lock synchronizes access to PG_W, another processor
 			 * could be setting PG_M and/or PG_A concurrently.
 			 */
 			atomic_clear_long(pte, PG_W);
 			pmap->pm_stats.wired_count--;
 		}
 	}
 	PMAP_UNLOCK(pmap);
 }
 
 /*
  *	Copy the range specified by src_addr/len
  *	from the source map to the range dst_addr/len
  *	in the destination map.
  *
  *	This routine is only advisory and need not do anything.
  */
 void
 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
     vm_offset_t src_addr)
 {
 	struct rwlock *lock;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde, srcptepaddr;
 	pt_entry_t *dst_pte, PG_A, PG_M, PG_V, ptetemp, *src_pte;
 	vm_offset_t addr, end_addr, va_next;
 	vm_page_t dst_pdpg, dstmpte, srcmpte;
 
 	if (dst_addr != src_addr)
 		return;
 
 	if (dst_pmap->pm_type != src_pmap->pm_type)
 		return;
 
 	/*
 	 * EPT page table entries that require emulation of A/D bits are
 	 * sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
 	 * we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
 	 * (aka EPT_PG_EXECUTE) could still be set. Since some EPT
 	 * implementations flag an EPT misconfiguration for exec-only
 	 * mappings we skip this function entirely for emulated pmaps.
 	 */
 	if (pmap_emulate_ad_bits(dst_pmap))
 		return;
 
 	end_addr = src_addr + len;
 	lock = NULL;
 	if (dst_pmap < src_pmap) {
 		PMAP_LOCK(dst_pmap);
 		PMAP_LOCK(src_pmap);
 	} else {
 		PMAP_LOCK(src_pmap);
 		PMAP_LOCK(dst_pmap);
 	}
 
 	PG_A = pmap_accessed_bit(dst_pmap);
 	PG_M = pmap_modified_bit(dst_pmap);
 	PG_V = pmap_valid_bit(dst_pmap);
 
 	for (addr = src_addr; addr < end_addr; addr = va_next) {
 		KASSERT(addr < UPT_MIN_ADDRESS,
 		    ("pmap_copy: invalid to pmap_copy page tables"));
 
 		pml4e = pmap_pml4e(src_pmap, addr);
 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
 			va_next = (addr + NBPML4) & ~PML4MASK;
 			if (va_next < addr)
 				va_next = end_addr;
 			continue;
 		}
 
 		va_next = (addr + NBPDP) & ~PDPMASK;
 		if (va_next < addr)
 			va_next = end_addr;
 		pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
 		if ((*pdpe & PG_V) == 0)
 			continue;
 		if ((*pdpe & PG_PS) != 0) {
 			KASSERT(va_next <= end_addr,
 			    ("partial update of non-transparent 1G mapping "
 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
 			    *pdpe, addr, end_addr, va_next));
 			MPASS((addr & PDPMASK) == 0);
 			MPASS((*pdpe & PG_MANAGED) == 0);
 			srcptepaddr = *pdpe;
 			pdpe = pmap_pdpe(dst_pmap, addr);
 			if (pdpe == NULL) {
 				if (pmap_allocpte_alloc(dst_pmap,
 				    pmap_pml4e_pindex(addr), NULL, addr) ==
 				    NULL)
 					break;
 				pdpe = pmap_pdpe(dst_pmap, addr);
 			} else {
 				pml4e = pmap_pml4e(dst_pmap, addr);
 				dst_pdpg = PHYS_TO_VM_PAGE(*pml4e & PG_FRAME);
 				dst_pdpg->ref_count++;
 			}
 			KASSERT(*pdpe == 0,
 			    ("1G mapping present in dst pmap "
 			    "pdpe %#lx sva %#lx eva %#lx va_next %#lx",
 			    *pdpe, addr, end_addr, va_next));
 			*pdpe = srcptepaddr & ~PG_W;
 			pmap_resident_count_adj(dst_pmap, NBPDP / PAGE_SIZE);
 			continue;
 		}
 
 		va_next = (addr + NBPDR) & ~PDRMASK;
 		if (va_next < addr)
 			va_next = end_addr;
 
 		pde = pmap_pdpe_to_pde(pdpe, addr);
 		srcptepaddr = *pde;
 		if (srcptepaddr == 0)
 			continue;
 			
 		if (srcptepaddr & PG_PS) {
 			/*
 			 * We can only virtual copy whole superpages.
 			 */
 			if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
 				continue;
 			pde = pmap_alloc_pde(dst_pmap, addr, &dst_pdpg, NULL);
 			if (pde == NULL)
 				break;
 			if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
 			    pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
 			    PMAP_ENTER_NORECLAIM, &lock))) {
 				/*
 				 * We leave the dirty bit unchanged because
 				 * managed read/write superpage mappings are
 				 * required to be dirty.  However, managed
 				 * superpage mappings are not required to
 				 * have their accessed bit set, so we clear
 				 * it because we don't know if this mapping
 				 * will be used.
 				 */
 				srcptepaddr &= ~PG_W;
 				if ((srcptepaddr & PG_MANAGED) != 0)
 					srcptepaddr &= ~PG_A;
 				*pde = srcptepaddr;
 				pmap_resident_count_adj(dst_pmap, NBPDR /
 				    PAGE_SIZE);
 				counter_u64_add(pmap_pde_mappings, 1);
 			} else
 				pmap_abort_ptp(dst_pmap, addr, dst_pdpg);
 			continue;
 		}
 
 		srcptepaddr &= PG_FRAME;
 		srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
 		KASSERT(srcmpte->ref_count > 0,
 		    ("pmap_copy: source page table page is unused"));
 
 		if (va_next > end_addr)
 			va_next = end_addr;
 
 		src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
 		src_pte = &src_pte[pmap_pte_index(addr)];
 		dstmpte = NULL;
 		for (; addr < va_next; addr += PAGE_SIZE, src_pte++) {
 			ptetemp = *src_pte;
 
 			/*
 			 * We only virtual copy managed pages.
 			 */
 			if ((ptetemp & PG_MANAGED) == 0)
 				continue;
 
 			if (dstmpte != NULL) {
 				KASSERT(dstmpte->pindex ==
 				    pmap_pde_pindex(addr),
 				    ("dstmpte pindex/addr mismatch"));
 				dstmpte->ref_count++;
 			} else if ((dstmpte = pmap_allocpte(dst_pmap, addr,
 			    NULL)) == NULL)
 				goto out;
 			dst_pte = (pt_entry_t *)
 			    PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
 			dst_pte = &dst_pte[pmap_pte_index(addr)];
 			if (*dst_pte == 0 &&
 			    pmap_try_insert_pv_entry(dst_pmap, addr,
 			    PHYS_TO_VM_PAGE(ptetemp & PG_FRAME), &lock)) {
 				/*
 				 * Clear the wired, modified, and accessed
 				 * (referenced) bits during the copy.
 				 */
 				*dst_pte = ptetemp & ~(PG_W | PG_M | PG_A);
 				pmap_resident_count_adj(dst_pmap, 1);
 			} else {
 				pmap_abort_ptp(dst_pmap, addr, dstmpte);
 				goto out;
 			}
 			/* Have we copied all of the valid mappings? */ 
 			if (dstmpte->ref_count >= srcmpte->ref_count)
 				break;
 		}
 	}
 out:
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(src_pmap);
 	PMAP_UNLOCK(dst_pmap);
 }
 
 int
 pmap_vmspace_copy(pmap_t dst_pmap, pmap_t src_pmap)
 {
 	int error;
 
 	if (dst_pmap->pm_type != src_pmap->pm_type ||
 	    dst_pmap->pm_type != PT_X86 ||
 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
 		return (0);
 	for (;;) {
 		if (dst_pmap < src_pmap) {
 			PMAP_LOCK(dst_pmap);
 			PMAP_LOCK(src_pmap);
 		} else {
 			PMAP_LOCK(src_pmap);
 			PMAP_LOCK(dst_pmap);
 		}
 		error = pmap_pkru_copy(dst_pmap, src_pmap);
 		/* Clean up partial copy on failure due to no memory. */
 		if (error == ENOMEM)
 			pmap_pkru_deassign_all(dst_pmap);
 		PMAP_UNLOCK(src_pmap);
 		PMAP_UNLOCK(dst_pmap);
 		if (error != ENOMEM)
 			break;
 		vm_wait(NULL);
 	}
 	return (error);
 }
 
 /*
  * Zero the specified hardware page.
  */
 void
 pmap_zero_page(vm_page_t m)
 {
 	vm_offset_t va;
 
 #ifdef TSLOG_PAGEZERO
 	TSENTER();
 #endif
 	va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 	pagezero((void *)va);
 #ifdef TSLOG_PAGEZERO
 	TSEXIT();
 #endif
 }
 
 /*
  * Zero an area within a single hardware page.  off and size must not
  * cover an area beyond a single hardware page.
  */
 void
 pmap_zero_page_area(vm_page_t m, int off, int size)
 {
 	vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 
 	if (off == 0 && size == PAGE_SIZE)
 		pagezero((void *)va);
 	else
 		bzero((char *)va + off, size);
 }
 
 /*
  * Copy 1 specified hardware page to another.
  */
 void
 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
 {
 	vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
 	vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
 
 	pagecopy((void *)src, (void *)dst);
 }
 
 int unmapped_buf_allowed = 1;
 
 void
 pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
     vm_offset_t b_offset, int xfersize)
 {
 	void *a_cp, *b_cp;
 	vm_page_t pages[2];
 	vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
 	int cnt;
 	bool mapped;
 
 	while (xfersize > 0) {
 		a_pg_offset = a_offset & PAGE_MASK;
 		pages[0] = ma[a_offset >> PAGE_SHIFT];
 		b_pg_offset = b_offset & PAGE_MASK;
 		pages[1] = mb[b_offset >> PAGE_SHIFT];
 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
 		mapped = pmap_map_io_transient(pages, vaddr, 2, false);
 		a_cp = (char *)vaddr[0] + a_pg_offset;
 		b_cp = (char *)vaddr[1] + b_pg_offset;
 		bcopy(a_cp, b_cp, cnt);
 		if (__predict_false(mapped))
 			pmap_unmap_io_transient(pages, vaddr, 2, false);
 		a_offset += cnt;
 		b_offset += cnt;
 		xfersize -= cnt;
 	}
 }
 
 /*
  * Returns true if the pmap's pv is one of the first
  * 16 pvs linked to from this page.  This count may
  * be changed upwards or downwards in the future; it
  * is only necessary that true be returned for a small
  * subset of pmaps for proper page aging.
  */
 bool
 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
 {
 	struct md_page *pvh;
 	struct rwlock *lock;
 	pv_entry_t pv;
 	int loops = 0;
 	bool rv;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_page_exists_quick: page %p is not managed", m));
 	rv = false;
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		if (PV_PMAP(pv) == pmap) {
 			rv = true;
 			break;
 		}
 		loops++;
 		if (loops >= 16)
 			break;
 	}
 	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 			if (PV_PMAP(pv) == pmap) {
 				rv = true;
 				break;
 			}
 			loops++;
 			if (loops >= 16)
 				break;
 		}
 	}
 	rw_runlock(lock);
 	return (rv);
 }
 
 /*
  *	pmap_page_wired_mappings:
  *
  *	Return the number of managed mappings to the given physical page
  *	that are wired.
  */
 int
 pmap_page_wired_mappings(vm_page_t m)
 {
 	struct rwlock *lock;
 	struct md_page *pvh;
 	pmap_t pmap;
 	pt_entry_t *pte;
 	pv_entry_t pv;
 	int count, md_gen, pvh_gen;
 
 	if ((m->oflags & VPO_UNMANAGED) != 0)
 		return (0);
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 restart:
 	count = 0;
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			md_gen = m->md.pv_gen;
 			rw_runlock(lock);
 			PMAP_LOCK(pmap);
 			rw_rlock(lock);
 			if (md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		pte = pmap_pte(pmap, pv->pv_va);
 		if ((*pte & PG_W) != 0)
 			count++;
 		PMAP_UNLOCK(pmap);
 	}
 	if ((m->flags & PG_FICTITIOUS) == 0) {
 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 			pmap = PV_PMAP(pv);
 			if (!PMAP_TRYLOCK(pmap)) {
 				md_gen = m->md.pv_gen;
 				pvh_gen = pvh->pv_gen;
 				rw_runlock(lock);
 				PMAP_LOCK(pmap);
 				rw_rlock(lock);
 				if (md_gen != m->md.pv_gen ||
 				    pvh_gen != pvh->pv_gen) {
 					PMAP_UNLOCK(pmap);
 					goto restart;
 				}
 			}
 			pte = pmap_pde(pmap, pv->pv_va);
 			if ((*pte & PG_W) != 0)
 				count++;
 			PMAP_UNLOCK(pmap);
 		}
 	}
 	rw_runlock(lock);
 	return (count);
 }
 
 /*
  * Returns true if the given page is mapped individually or as part of
  * a 2mpage.  Otherwise, returns false.
  */
 bool
 pmap_page_is_mapped(vm_page_t m)
 {
 	struct rwlock *lock;
 	bool rv;
 
 	if ((m->oflags & VPO_UNMANAGED) != 0)
 		return (false);
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
 	    ((m->flags & PG_FICTITIOUS) == 0 &&
 	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
 	rw_runlock(lock);
 	return (rv);
 }
 
 /*
  * Destroy all managed, non-wired mappings in the given user-space
  * pmap.  This pmap cannot be active on any processor besides the
  * caller.
  *
  * This function cannot be applied to the kernel pmap.  Moreover, it
  * is not intended for general use.  It is only to be used during
  * process termination.  Consequently, it can be implemented in ways
  * that make it faster than pmap_remove().  First, it can more quickly
  * destroy mappings by iterating over the pmap's collection of PV
  * entries, rather than searching the page table.  Second, it doesn't
  * have to test and clear the page table entries atomically, because
  * no processor is currently accessing the user address space.  In
  * particular, a page table entry's dirty bit won't change state once
  * this function starts.
  *
  * Although this function destroys all of the pmap's managed,
  * non-wired mappings, it can delay and batch the invalidation of TLB
  * entries without calling pmap_delayed_invl_start() and
  * pmap_delayed_invl_finish().  Because the pmap is not active on
  * any other processor, none of these TLB entries will ever be used
  * before their eventual invalidation.  Consequently, there is no need
  * for either pmap_remove_all() or pmap_remove_write() to wait for
  * that eventual TLB invalidation.
  */
 void
 pmap_remove_pages(pmap_t pmap)
 {
 	pd_entry_t ptepde;
 	pt_entry_t *pte, tpte;
 	pt_entry_t PG_M, PG_RW, PG_V;
 	struct spglist free;
 	struct pv_chunklist free_chunks[PMAP_MEMDOM];
 	vm_page_t m, mpte, mt;
 	pv_entry_t pv;
 	struct md_page *pvh;
 	struct pv_chunk *pc, *npc;
 	struct rwlock *lock;
 	int64_t bit;
 	uint64_t inuse, bitmask;
 	int allfree, field, i, idx;
 #ifdef PV_STATS
 	int freed;
 #endif
 	bool superpage;
 	vm_paddr_t pa;
 
 	/*
 	 * Assert that the given pmap is only active on the current
 	 * CPU.  Unfortunately, we cannot block another CPU from
 	 * activating the pmap while this function is executing.
 	 */
 	KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
 #ifdef INVARIANTS
 	{
 		cpuset_t other_cpus;
 
 		other_cpus = all_cpus;
 		critical_enter();
 		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
 		CPU_AND(&other_cpus, &other_cpus, &pmap->pm_active);
 		critical_exit();
 		KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
 	}
 #endif
 
 	lock = NULL;
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	for (i = 0; i < PMAP_MEMDOM; i++)
 		TAILQ_INIT(&free_chunks[i]);
 	SLIST_INIT(&free);
 	PMAP_LOCK(pmap);
 	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
 		allfree = 1;
 #ifdef PV_STATS
 		freed = 0;
 #endif
 		for (field = 0; field < _NPCM; field++) {
 			inuse = ~pc->pc_map[field] & pc_freemask[field];
 			while (inuse != 0) {
 				bit = bsfq(inuse);
 				bitmask = 1UL << bit;
 				idx = field * 64 + bit;
 				pv = &pc->pc_pventry[idx];
 				inuse &= ~bitmask;
 
 				pte = pmap_pdpe(pmap, pv->pv_va);
 				ptepde = *pte;
 				pte = pmap_pdpe_to_pde(pte, pv->pv_va);
 				tpte = *pte;
 				if ((tpte & (PG_PS | PG_V)) == PG_V) {
 					superpage = false;
 					ptepde = tpte;
 					pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
 					    PG_FRAME);
 					pte = &pte[pmap_pte_index(pv->pv_va)];
 					tpte = *pte;
 				} else {
 					/*
 					 * Keep track whether 'tpte' is a
 					 * superpage explicitly instead of
 					 * relying on PG_PS being set.
 					 *
 					 * This is because PG_PS is numerically
 					 * identical to PG_PTE_PAT and thus a
 					 * regular page could be mistaken for
 					 * a superpage.
 					 */
 					superpage = true;
 				}
 
 				if ((tpte & PG_V) == 0) {
 					panic("bad pte va %lx pte %lx",
 					    pv->pv_va, tpte);
 				}
 
 /*
  * We cannot remove wired pages from a process' mapping at this time
  */
 				if (tpte & PG_W) {
 					allfree = 0;
 					continue;
 				}
 
 				/* Mark free */
 				pc->pc_map[field] |= bitmask;
 
 				/*
 				 * Because this pmap is not active on other
 				 * processors, the dirty bit cannot have
 				 * changed state since we last loaded pte.
 				 */
 				pte_clear(pte);
 
 				if (superpage)
 					pa = tpte & PG_PS_FRAME;
 				else
 					pa = tpte & PG_FRAME;
 
 				m = PHYS_TO_VM_PAGE(pa);
 				KASSERT(m->phys_addr == pa,
 				    ("vm_page_t %p phys_addr mismatch %016jx %016jx",
 				    m, (uintmax_t)m->phys_addr,
 				    (uintmax_t)tpte));
 
 				KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
 				    m < &vm_page_array[vm_page_array_size],
 				    ("pmap_remove_pages: bad tpte %#jx",
 				    (uintmax_t)tpte));
 
 				/*
 				 * Update the vm_page_t clean/reference bits.
 				 */
 				if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 					if (superpage) {
 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 							vm_page_dirty(mt);
 					} else
 						vm_page_dirty(m);
 				}
 
 				CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
 
 				if (superpage) {
 					pmap_resident_count_adj(pmap, -NBPDR / PAGE_SIZE);
 					pvh = pa_to_pvh(tpte & PG_PS_FRAME);
 					TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 					pvh->pv_gen++;
 					if (TAILQ_EMPTY(&pvh->pv_list)) {
 						for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
 							if ((mt->a.flags & PGA_WRITEABLE) != 0 &&
 							    TAILQ_EMPTY(&mt->md.pv_list))
 								vm_page_aflag_clear(mt, PGA_WRITEABLE);
 					}
 					mpte = pmap_remove_pt_page(pmap, pv->pv_va);
 					if (mpte != NULL) {
 						KASSERT(vm_page_any_valid(mpte),
 						    ("pmap_remove_pages: pte page not promoted"));
 						pmap_pt_page_count_adj(pmap, -1);
 						KASSERT(mpte->ref_count == NPTEPG,
 						    ("pmap_remove_pages: pte page reference count error"));
 						mpte->ref_count = 0;
 						pmap_add_delayed_free_list(mpte, &free, false);
 					}
 				} else {
 					pmap_resident_count_adj(pmap, -1);
 					TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 					m->md.pv_gen++;
 					if ((m->a.flags & PGA_WRITEABLE) != 0 &&
 					    TAILQ_EMPTY(&m->md.pv_list) &&
 					    (m->flags & PG_FICTITIOUS) == 0) {
 						pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 						if (TAILQ_EMPTY(&pvh->pv_list))
 							vm_page_aflag_clear(m, PGA_WRITEABLE);
 					}
 				}
 				pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
 #ifdef PV_STATS
 				freed++;
 #endif
 			}
 		}
 		PV_STAT(counter_u64_add(pv_entry_frees, freed));
 		PV_STAT(counter_u64_add(pv_entry_spare, freed));
 		PV_STAT(counter_u64_add(pv_entry_count, -freed));
 		if (allfree) {
 			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
 			TAILQ_INSERT_TAIL(&free_chunks[pc_to_domain(pc)], pc, pc_list);
 		}
 	}
 	if (lock != NULL)
 		rw_wunlock(lock);
 	pmap_invalidate_all(pmap);
 	pmap_pkru_deassign_all(pmap);
 	free_pv_chunk_batch((struct pv_chunklist *)&free_chunks);
 	PMAP_UNLOCK(pmap);
 	vm_page_free_pages_toq(&free, true);
 }
 
 static bool
 pmap_page_test_mappings(vm_page_t m, bool accessed, bool modified)
 {
 	struct rwlock *lock;
 	pv_entry_t pv;
 	struct md_page *pvh;
 	pt_entry_t *pte, mask;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 	pmap_t pmap;
 	int md_gen, pvh_gen;
 	bool rv;
 
 	rv = false;
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_rlock(lock);
 restart:
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			md_gen = m->md.pv_gen;
 			rw_runlock(lock);
 			PMAP_LOCK(pmap);
 			rw_rlock(lock);
 			if (md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		pte = pmap_pte(pmap, pv->pv_va);
 		mask = 0;
 		if (modified) {
 			PG_M = pmap_modified_bit(pmap);
 			PG_RW = pmap_rw_bit(pmap);
 			mask |= PG_RW | PG_M;
 		}
 		if (accessed) {
 			PG_A = pmap_accessed_bit(pmap);
 			PG_V = pmap_valid_bit(pmap);
 			mask |= PG_V | PG_A;
 		}
 		rv = (*pte & mask) == mask;
 		PMAP_UNLOCK(pmap);
 		if (rv)
 			goto out;
 	}
 	if ((m->flags & PG_FICTITIOUS) == 0) {
 		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
 		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
 			pmap = PV_PMAP(pv);
 			if (!PMAP_TRYLOCK(pmap)) {
 				md_gen = m->md.pv_gen;
 				pvh_gen = pvh->pv_gen;
 				rw_runlock(lock);
 				PMAP_LOCK(pmap);
 				rw_rlock(lock);
 				if (md_gen != m->md.pv_gen ||
 				    pvh_gen != pvh->pv_gen) {
 					PMAP_UNLOCK(pmap);
 					goto restart;
 				}
 			}
 			pte = pmap_pde(pmap, pv->pv_va);
 			mask = 0;
 			if (modified) {
 				PG_M = pmap_modified_bit(pmap);
 				PG_RW = pmap_rw_bit(pmap);
 				mask |= PG_RW | PG_M;
 			}
 			if (accessed) {
 				PG_A = pmap_accessed_bit(pmap);
 				PG_V = pmap_valid_bit(pmap);
 				mask |= PG_V | PG_A;
 			}
 			rv = (*pte & mask) == mask;
 			PMAP_UNLOCK(pmap);
 			if (rv)
 				goto out;
 		}
 	}
 out:
 	rw_runlock(lock);
 	return (rv);
 }
 
 /*
  *	pmap_is_modified:
  *
  *	Return whether or not the specified physical page was modified
  *	in any physical maps.
  */
 bool
 pmap_is_modified(vm_page_t m)
 {
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_is_modified: page %p is not managed", m));
 
 	/*
 	 * If the page is not busied then this check is racy.
 	 */
 	if (!pmap_page_is_write_mapped(m))
 		return (false);
 	return (pmap_page_test_mappings(m, false, true));
 }
 
 /*
  *	pmap_is_prefaultable:
  *
  *	Return whether or not the specified virtual address is eligible
  *	for prefault.
  */
 bool
 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
 {
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	bool rv;
 
 	PG_V = pmap_valid_bit(pmap);
 
 	/*
 	 * Return true if and only if the PTE for the specified virtual
 	 * address is allocated but invalid.
 	 */
 	rv = false;
 	PMAP_LOCK(pmap);
 	pde = pmap_pde(pmap, addr);
 	if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
 		pte = pmap_pde_to_pte(pde, addr);
 		rv = (*pte & PG_V) == 0;
 	}
 	PMAP_UNLOCK(pmap);
 	return (rv);
 }
 
 /*
  *	pmap_is_referenced:
  *
  *	Return whether or not the specified physical page was referenced
  *	in any physical maps.
  */
 bool
 pmap_is_referenced(vm_page_t m)
 {
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_is_referenced: page %p is not managed", m));
 	return (pmap_page_test_mappings(m, true, false));
 }
 
 /*
  * Clear the write and modified bits in each of the given page's mappings.
  */
 void
 pmap_remove_write(vm_page_t m)
 {
 	struct md_page *pvh;
 	pmap_t pmap;
 	struct rwlock *lock;
 	pv_entry_t next_pv, pv;
 	pd_entry_t *pde;
 	pt_entry_t oldpte, *pte, PG_M, PG_RW;
 	vm_offset_t va;
 	int pvh_gen, md_gen;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_remove_write: page %p is not managed", m));
 
 	vm_page_assert_busied(m);
 	if (!pmap_page_is_write_mapped(m))
 		return;
 
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
 	rw_wlock(lock);
 retry:
 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_RW = pmap_rw_bit(pmap);
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, va);
 		if ((*pde & PG_RW) != 0)
 			(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
 		KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
 		    ("inconsistent pv lock %p %p for page %p",
 		    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
 		PMAP_UNLOCK(pmap);
 	}
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			md_gen = m->md.pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen ||
 			    md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0,
 		    ("pmap_remove_write: found a 2mpage in page %p's pv list",
 		    m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 		oldpte = *pte;
 		if (oldpte & PG_RW) {
 			while (!atomic_fcmpset_long(pte, &oldpte, oldpte &
 			    ~(PG_RW | PG_M)))
 				cpu_spinwait();
 			if ((oldpte & PG_M) != 0)
 				vm_page_dirty(m);
 			pmap_invalidate_page(pmap, pv->pv_va);
 		}
 		PMAP_UNLOCK(pmap);
 	}
 	rw_wunlock(lock);
 	vm_page_aflag_clear(m, PGA_WRITEABLE);
 	pmap_delayed_invl_wait(m);
 }
 
 /*
  *	pmap_ts_referenced:
  *
  *	Return a count of reference bits for a page, clearing those bits.
  *	It is not necessary for every reference bit to be cleared, but it
  *	is necessary that 0 only be returned when there are truly no
  *	reference bits set.
  *
  *	As an optimization, update the page's dirty field if a modified bit is
  *	found while counting reference bits.  This opportunistic update can be
  *	performed at low cost and can eliminate the need for some future calls
  *	to pmap_is_modified().  However, since this function stops after
  *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
  *	dirty pages.  Those dirty pages will only be detected by a future call
  *	to pmap_is_modified().
  *
  *	A DI block is not needed within this function, because
  *	invalidations are performed before the PV list lock is
  *	released.
  */
 int
 pmap_ts_referenced(vm_page_t m)
 {
 	struct md_page *pvh;
 	pv_entry_t pv, pvf;
 	pmap_t pmap;
 	struct rwlock *lock;
 	pd_entry_t oldpde, *pde;
 	pt_entry_t *pte, PG_A, PG_M, PG_RW;
 	vm_offset_t va;
 	vm_paddr_t pa;
 	int cleared, md_gen, not_cleared, pvh_gen;
 	struct spglist free;
 	bool demoted;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_ts_referenced: page %p is not managed", m));
 	SLIST_INIT(&free);
 	cleared = 0;
 	pa = VM_PAGE_TO_PHYS(m);
 	lock = PHYS_TO_PV_LIST_LOCK(pa);
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
 	rw_wlock(lock);
 retry:
 	not_cleared = 0;
 	if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
 		goto small_mappings;
 	pv = pvf;
 	do {
 		if (pvf == NULL)
 			pvf = pv;
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_A = pmap_accessed_bit(pmap);
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, pv->pv_va);
 		oldpde = *pde;
 		if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 			/*
 			 * Although "oldpde" is mapping a 2MB page, because
 			 * this function is called at a 4KB page granularity,
 			 * we only update the 4KB page under test.
 			 */
 			vm_page_dirty(m);
 		}
 		if ((oldpde & PG_A) != 0) {
 			/*
 			 * Since this reference bit is shared by 512 4KB
 			 * pages, it should not be cleared every time it is
 			 * tested.  Apply a simple "hash" function on the
 			 * physical page number, the virtual superpage number,
 			 * and the pmap address to select one 4KB page out of
 			 * the 512 on which testing the reference bit will
 			 * result in clearing that reference bit.  This
 			 * function is designed to avoid the selection of the
 			 * same 4KB page for every 2MB page mapping.
 			 *
 			 * On demotion, a mapping that hasn't been referenced
 			 * is simply destroyed.  To avoid the possibility of a
 			 * subsequent page fault on a demoted wired mapping,
 			 * always leave its reference bit set.  Moreover,
 			 * since the superpage is wired, the current state of
 			 * its reference bit won't affect page replacement.
 			 */
 			if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
 			    (uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
 			    (oldpde & PG_W) == 0) {
 				if (safe_to_clear_referenced(pmap, oldpde)) {
 					atomic_clear_long(pde, PG_A);
 					pmap_invalidate_page(pmap, pv->pv_va);
 					demoted = false;
 				} else if (pmap_demote_pde_locked(pmap, pde,
 				    pv->pv_va, &lock)) {
 					/*
 					 * Remove the mapping to a single page
 					 * so that a subsequent access may
 					 * repromote.  Since the underlying
 					 * page table page is fully populated,
 					 * this removal never frees a page
 					 * table page.
 					 */
 					demoted = true;
 					va += VM_PAGE_TO_PHYS(m) - (oldpde &
 					    PG_PS_FRAME);
 					pte = pmap_pde_to_pte(pde, va);
 					pmap_remove_pte(pmap, pte, va, *pde,
 					    NULL, &lock);
 					pmap_invalidate_page(pmap, va);
 				} else
 					demoted = true;
 
 				if (demoted) {
 					/*
 					 * The superpage mapping was removed
 					 * entirely and therefore 'pv' is no
 					 * longer valid.
 					 */
 					if (pvf == pv)
 						pvf = NULL;
 					pv = NULL;
 				}
 				cleared++;
 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
 				    ("inconsistent pv lock %p %p for page %p",
 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
 			} else
 				not_cleared++;
 		}
 		PMAP_UNLOCK(pmap);
 		/* Rotate the PV list if it has more than one entry. */
 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
 			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
 			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
 			pvh->pv_gen++;
 		}
 		if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
 			goto out;
 	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
 small_mappings:
 	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
 		goto out;
 	pv = pvf;
 	do {
 		if (pvf == NULL)
 			pvf = pv;
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			md_gen = m->md.pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto retry;
 			}
 		}
 		PG_A = pmap_accessed_bit(pmap);
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0,
 		    ("pmap_ts_referenced: found a 2mpage in page %p's pv list",
 		    m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			vm_page_dirty(m);
 		if ((*pte & PG_A) != 0) {
 			if (safe_to_clear_referenced(pmap, *pte)) {
 				atomic_clear_long(pte, PG_A);
 				pmap_invalidate_page(pmap, pv->pv_va);
 				cleared++;
 			} else if ((*pte & PG_W) == 0) {
 				/*
 				 * Wired pages cannot be paged out so
 				 * doing accessed bit emulation for
 				 * them is wasted effort. We do the
 				 * hard work for unwired pages only.
 				 */
 				pmap_remove_pte(pmap, pte, pv->pv_va,
 				    *pde, &free, &lock);
 				pmap_invalidate_page(pmap, pv->pv_va);
 				cleared++;
 				if (pvf == pv)
 					pvf = NULL;
 				pv = NULL;
 				KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
 				    ("inconsistent pv lock %p %p for page %p",
 				    lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
 			} else
 				not_cleared++;
 		}
 		PMAP_UNLOCK(pmap);
 		/* Rotate the PV list if it has more than one entry. */
 		if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
 			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
 			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
 			m->md.pv_gen++;
 		}
 	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
 	    not_cleared < PMAP_TS_REFERENCED_MAX);
 out:
 	rw_wunlock(lock);
 	vm_page_free_pages_toq(&free, true);
 	return (cleared + not_cleared);
 }
 
 /*
  *	Apply the given advice to the specified range of addresses within the
  *	given pmap.  Depending on the advice, clear the referenced and/or
  *	modified flags in each mapping and set the mapped page's dirty field.
  */
 void
 pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
 {
 	struct rwlock *lock;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t oldpde, *pde;
 	pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
 	vm_offset_t va, va_next;
 	vm_page_t m;
 	bool anychanged;
 
 	if (advice != MADV_DONTNEED && advice != MADV_FREE)
 		return;
 
 	/*
 	 * A/D bit emulation requires an alternate code path when clearing
 	 * the modified and accessed bits below. Since this function is
 	 * advisory in nature we skip it entirely for pmaps that require
 	 * A/D bit emulation.
 	 */
 	if (pmap_emulate_ad_bits(pmap))
 		return;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_G = pmap_global_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 	anychanged = false;
 	pmap_delayed_invl_start();
 	PMAP_LOCK(pmap);
 	for (; sva < eva; sva = va_next) {
 		pml4e = pmap_pml4e(pmap, sva);
 		if (pml4e == NULL || (*pml4e & PG_V) == 0) {
 			va_next = (sva + NBPML4) & ~PML4MASK;
 			if (va_next < sva)
 				va_next = eva;
 			continue;
 		}
 
 		va_next = (sva + NBPDP) & ~PDPMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
 		if ((*pdpe & PG_V) == 0)
 			continue;
 		if ((*pdpe & PG_PS) != 0)
 			continue;
 
 		va_next = (sva + NBPDR) & ~PDRMASK;
 		if (va_next < sva)
 			va_next = eva;
 		pde = pmap_pdpe_to_pde(pdpe, sva);
 		oldpde = *pde;
 		if ((oldpde & PG_V) == 0)
 			continue;
 		else if ((oldpde & PG_PS) != 0) {
 			if ((oldpde & PG_MANAGED) == 0)
 				continue;
 			lock = NULL;
 			if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
 				if (lock != NULL)
 					rw_wunlock(lock);
 
 				/*
 				 * The large page mapping was destroyed.
 				 */
 				continue;
 			}
 
 			/*
 			 * Unless the page mappings are wired, remove the
 			 * mapping to a single page so that a subsequent
 			 * access may repromote.  Choosing the last page
 			 * within the address range [sva, min(va_next, eva))
 			 * generally results in more repromotions.  Since the
 			 * underlying page table page is fully populated, this
 			 * removal never frees a page table page.
 			 */
 			if ((oldpde & PG_W) == 0) {
 				va = eva;
 				if (va > va_next)
 					va = va_next;
 				va -= PAGE_SIZE;
 				KASSERT(va >= sva,
 				    ("pmap_advise: no address gap"));
 				pte = pmap_pde_to_pte(pde, va);
 				KASSERT((*pte & PG_V) != 0,
 				    ("pmap_advise: invalid PTE"));
 				pmap_remove_pte(pmap, pte, va, *pde, NULL,
 				    &lock);
 				anychanged = true;
 			}
 			if (lock != NULL)
 				rw_wunlock(lock);
 		}
 		if (va_next > eva)
 			va_next = eva;
 		va = va_next;
 		for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
 		    sva += PAGE_SIZE) {
 			if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
 				goto maybe_invlrng;
 			else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 				if (advice == MADV_DONTNEED) {
 					/*
 					 * Future calls to pmap_is_modified()
 					 * can be avoided by making the page
 					 * dirty now.
 					 */
 					m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 					vm_page_dirty(m);
 				}
 				atomic_clear_long(pte, PG_M | PG_A);
 			} else if ((*pte & PG_A) != 0)
 				atomic_clear_long(pte, PG_A);
 			else
 				goto maybe_invlrng;
 
 			if ((*pte & PG_G) != 0) {
 				if (va == va_next)
 					va = sva;
 			} else
 				anychanged = true;
 			continue;
 maybe_invlrng:
 			if (va != va_next) {
 				pmap_invalidate_range(pmap, va, sva);
 				va = va_next;
 			}
 		}
 		if (va != va_next)
 			pmap_invalidate_range(pmap, va, sva);
 	}
 	if (anychanged)
 		pmap_invalidate_all(pmap);
 	PMAP_UNLOCK(pmap);
 	pmap_delayed_invl_finish();
 }
 
 /*
  *	Clear the modify bits on the specified physical page.
  */
 void
 pmap_clear_modify(vm_page_t m)
 {
 	struct md_page *pvh;
 	pmap_t pmap;
 	pv_entry_t next_pv, pv;
 	pd_entry_t oldpde, *pde;
 	pt_entry_t *pte, PG_M, PG_RW;
 	struct rwlock *lock;
 	vm_offset_t va;
 	int md_gen, pvh_gen;
 
 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
 	    ("pmap_clear_modify: page %p is not managed", m));
 	vm_page_assert_busied(m);
 
 	if (!pmap_page_is_write_mapped(m))
 		return;
 	pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
 	    pa_to_pvh(VM_PAGE_TO_PHYS(m));
 	lock = VM_PAGE_TO_PV_LIST_LOCK(m);
 	rw_wlock(lock);
 restart:
 	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		va = pv->pv_va;
 		pde = pmap_pde(pmap, va);
 		oldpde = *pde;
 		/* If oldpde has PG_RW set, then it also has PG_M set. */
 		if ((oldpde & PG_RW) != 0 &&
 		    pmap_demote_pde_locked(pmap, pde, va, &lock) &&
 		    (oldpde & PG_W) == 0) {
 			/*
 			 * Write protect the mapping to a single page so that
 			 * a subsequent write access may repromote.
 			 */
 			va += VM_PAGE_TO_PHYS(m) - (oldpde & PG_PS_FRAME);
 			pte = pmap_pde_to_pte(pde, va);
 			atomic_clear_long(pte, PG_M | PG_RW);
 			vm_page_dirty(m);
 			pmap_invalidate_page(pmap, va);
 		}
 		PMAP_UNLOCK(pmap);
 	}
 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
 		pmap = PV_PMAP(pv);
 		if (!PMAP_TRYLOCK(pmap)) {
 			md_gen = m->md.pv_gen;
 			pvh_gen = pvh->pv_gen;
 			rw_wunlock(lock);
 			PMAP_LOCK(pmap);
 			rw_wlock(lock);
 			if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
 				PMAP_UNLOCK(pmap);
 				goto restart;
 			}
 		}
 		PG_M = pmap_modified_bit(pmap);
 		PG_RW = pmap_rw_bit(pmap);
 		pde = pmap_pde(pmap, pv->pv_va);
 		KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
 		    " a 2mpage in page %p's pv list", m));
 		pte = pmap_pde_to_pte(pde, pv->pv_va);
 		if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
 			atomic_clear_long(pte, PG_M);
 			pmap_invalidate_page(pmap, pv->pv_va);
 		}
 		PMAP_UNLOCK(pmap);
 	}
 	rw_wunlock(lock);
 }
 
 /*
  * Miscellaneous support routines follow
  */
 
 /* Adjust the properties for a leaf page table entry. */
 static __inline void
 pmap_pte_props(pt_entry_t *pte, u_long bits, u_long mask)
 {
 	u_long opte, npte;
 
 	opte = *(u_long *)pte;
 	do {
 		npte = opte & ~mask;
 		npte |= bits;
 	} while (npte != opte && !atomic_fcmpset_long((u_long *)pte, &opte,
 	    npte));
 }
 
 /*
  * Map a set of physical memory pages into the kernel virtual
  * address space. Return a pointer to where it is mapped. This
  * routine is intended to be used for mapping device memory,
  * NOT real memory.
  */
 static void *
 pmap_mapdev_internal(vm_paddr_t pa, vm_size_t size, int mode, int flags)
 {
 	struct pmap_preinit_mapping *ppim;
 	vm_offset_t va, offset;
 	vm_size_t tmpsize;
 	int i;
 
 	offset = pa & PAGE_MASK;
 	size = round_page(offset + size);
 	pa = trunc_page(pa);
 
 	if (!pmap_initialized) {
 		va = 0;
 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 			ppim = pmap_preinit_mapping + i;
 			if (ppim->va == 0) {
 				ppim->pa = pa;
 				ppim->sz = size;
 				ppim->mode = mode;
 				ppim->va = virtual_avail;
 				virtual_avail += size;
 				va = ppim->va;
 				break;
 			}
 		}
 		if (va == 0)
 			panic("%s: too many preinit mappings", __func__);
 	} else {
 		/*
 		 * If we have a preinit mapping, reuse it.
 		 */
 		for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 			ppim = pmap_preinit_mapping + i;
 			if (ppim->pa == pa && ppim->sz == size &&
 			    (ppim->mode == mode ||
 			    (flags & MAPDEV_SETATTR) == 0))
 				return ((void *)(ppim->va + offset));
 		}
 		/*
 		 * If the specified range of physical addresses fits within
 		 * the direct map window, use the direct map.
 		 */
 		if (pa < dmaplimit && pa + size <= dmaplimit) {
 			va = PHYS_TO_DMAP(pa);
 			if ((flags & MAPDEV_SETATTR) != 0) {
 				PMAP_LOCK(kernel_pmap);
 				i = pmap_change_props_locked(va, size,
 				    PROT_NONE, mode, flags);
 				PMAP_UNLOCK(kernel_pmap);
 			} else
 				i = 0;
 			if (!i)
 				return ((void *)(va + offset));
 		}
 		va = kva_alloc(size);
 		if (va == 0)
 			panic("%s: Couldn't allocate KVA", __func__);
 	}
 	for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
 		pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
 	pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
 	if ((flags & MAPDEV_FLUSHCACHE) != 0)
 		pmap_invalidate_cache_range(va, va + tmpsize);
 	return ((void *)(va + offset));
 }
 
 void *
 pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
 {
 
 	return (pmap_mapdev_internal(pa, size, mode, MAPDEV_FLUSHCACHE |
 	    MAPDEV_SETATTR));
 }
 
 void *
 pmap_mapdev(vm_paddr_t pa, vm_size_t size)
 {
 
 	return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
 }
 
 void *
 pmap_mapdev_pciecfg(vm_paddr_t pa, vm_size_t size)
 {
 
 	return (pmap_mapdev_internal(pa, size, PAT_UNCACHEABLE,
 	    MAPDEV_SETATTR));
 }
 
 void *
 pmap_mapbios(vm_paddr_t pa, vm_size_t size)
 {
 
 	return (pmap_mapdev_internal(pa, size, PAT_WRITE_BACK,
 	    MAPDEV_FLUSHCACHE));
 }
 
 void
 pmap_unmapdev(void *p, vm_size_t size)
 {
 	struct pmap_preinit_mapping *ppim;
 	vm_offset_t offset, va;
 	int i;
 
 	va = (vm_offset_t)p;
 
 	/* If we gave a direct map region in pmap_mapdev, do nothing */
 	if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
 		return;
 	offset = va & PAGE_MASK;
 	size = round_page(offset + size);
 	va = trunc_page(va);
 	for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
 		ppim = pmap_preinit_mapping + i;
 		if (ppim->va == va && ppim->sz == size) {
 			if (pmap_initialized)
 				return;
 			ppim->pa = 0;
 			ppim->va = 0;
 			ppim->sz = 0;
 			ppim->mode = 0;
 			if (va + size == virtual_avail)
 				virtual_avail = va;
 			return;
 		}
 	}
 	if (pmap_initialized) {
 		pmap_qremove(va, atop(size));
 		kva_free(va, size);
 	}
 }
 
 /*
  * Tries to demote a 1GB page mapping.
  */
 static bool
 pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
 {
 	pdp_entry_t newpdpe, oldpdpe;
 	pd_entry_t *firstpde, newpde, *pde;
 	pt_entry_t PG_A, PG_M, PG_RW, PG_V;
 	vm_paddr_t pdpgpa;
 	vm_page_t pdpg;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	oldpdpe = *pdpe;
 	KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
 	    ("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
 	pdpg = pmap_alloc_pt_page(pmap, va >> PDPSHIFT,
 	    VM_ALLOC_WIRED | VM_ALLOC_INTERRUPT);
 	if (pdpg  == NULL) {
 		CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
 		    " in pmap %p", va, pmap);
 		return (false);
 	}
 	pdpgpa = VM_PAGE_TO_PHYS(pdpg);
 	firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
 	newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
 	KASSERT((oldpdpe & PG_A) != 0,
 	    ("pmap_demote_pdpe: oldpdpe is missing PG_A"));
 	KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
 	    ("pmap_demote_pdpe: oldpdpe is missing PG_M"));
 	newpde = oldpdpe;
 
 	/*
 	 * Initialize the page directory page.
 	 */
 	for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
 		*pde = newpde;
 		newpde += NBPDR;
 	}
 
 	/*
 	 * Demote the mapping.
 	 */
 	*pdpe = newpdpe;
 
 	/*
 	 * Invalidate a stale recursive mapping of the page directory page.
 	 */
 	pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
 
 	counter_u64_add(pmap_pdpe_demotions, 1);
 	CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
 	    " in pmap %p", va, pmap);
 	return (true);
 }
 
 /*
  * Sets the memory attribute for the specified page.
  */
 void
 pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
 {
 
 	m->md.pat_mode = ma;
 
 	/*
 	 * If "m" is a normal page, update its direct mapping.  This update
 	 * can be relied upon to perform any cache operations that are
 	 * required for data coherence.
 	 */
 	if ((m->flags & PG_FICTITIOUS) == 0 &&
 	    pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
 	    m->md.pat_mode))
 		panic("memory attribute change on the direct map failed");
 }
 
 void
 pmap_page_set_memattr_noflush(vm_page_t m, vm_memattr_t ma)
 {
 	int error;
 
 	m->md.pat_mode = ma;
 
 	if ((m->flags & PG_FICTITIOUS) != 0)
 		return;
 	PMAP_LOCK(kernel_pmap);
 	error = pmap_change_props_locked(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)),
 	    PAGE_SIZE, PROT_NONE, m->md.pat_mode, 0);
 	PMAP_UNLOCK(kernel_pmap);
 	if (error != 0)
 		panic("memory attribute change on the direct map failed");
 }
 
 /*
  * Changes the specified virtual address range's memory type to that given by
  * the parameter "mode".  The specified virtual address range must be
  * completely contained within either the direct map or the kernel map.  If
  * the virtual address range is contained within the kernel map, then the
  * memory type for each of the corresponding ranges of the direct map is also
  * changed.  (The corresponding ranges of the direct map are those ranges that
  * map the same physical pages as the specified virtual address range.)  These
  * changes to the direct map are necessary because Intel describes the
  * behavior of their processors as "undefined" if two or more mappings to the
  * same physical page have different memory types.
  *
  * Returns zero if the change completed successfully, and either EINVAL or
  * ENOMEM if the change failed.  Specifically, EINVAL is returned if some part
  * of the virtual address range was not mapped, and ENOMEM is returned if
  * there was insufficient memory available to complete the change.  In the
  * latter case, the memory type may have been changed on some part of the
  * virtual address range or the direct map.
  */
 int
 pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
 {
 	int error;
 
 	PMAP_LOCK(kernel_pmap);
 	error = pmap_change_props_locked(va, size, PROT_NONE, mode,
 	    MAPDEV_FLUSHCACHE);
 	PMAP_UNLOCK(kernel_pmap);
 	return (error);
 }
 
 /*
  * Changes the specified virtual address range's protections to those
  * specified by "prot".  Like pmap_change_attr(), protections for aliases
  * in the direct map are updated as well.  Protections on aliasing mappings may
  * be a subset of the requested protections; for example, mappings in the direct
  * map are never executable.
  */
 int
 pmap_change_prot(vm_offset_t va, vm_size_t size, vm_prot_t prot)
 {
 	int error;
 
 	/* Only supported within the kernel map. */
 	if (va < VM_MIN_KERNEL_ADDRESS)
 		return (EINVAL);
 
 	PMAP_LOCK(kernel_pmap);
 	error = pmap_change_props_locked(va, size, prot, -1,
 	    MAPDEV_ASSERTVALID);
 	PMAP_UNLOCK(kernel_pmap);
 	return (error);
 }
 
 static int
 pmap_change_props_locked(vm_offset_t va, vm_size_t size, vm_prot_t prot,
     int mode, int flags)
 {
 	vm_offset_t base, offset, tmpva;
 	vm_paddr_t pa_start, pa_end, pa_end1;
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde, pde_bits, pde_mask;
 	pt_entry_t *pte, pte_bits, pte_mask;
 	int error;
 	bool changed;
 
 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
 	base = trunc_page(va);
 	offset = va & PAGE_MASK;
 	size = round_page(offset + size);
 
 	/*
 	 * Only supported on kernel virtual addresses, including the direct
 	 * map but excluding the recursive map.
 	 */
 	if (base < DMAP_MIN_ADDRESS)
 		return (EINVAL);
 
 	/*
 	 * Construct our flag sets and masks.  "bits" is the subset of
 	 * "mask" that will be set in each modified PTE.
 	 *
 	 * Mappings in the direct map are never allowed to be executable.
 	 */
 	pde_bits = pte_bits = 0;
 	pde_mask = pte_mask = 0;
 	if (mode != -1) {
 		pde_bits |= pmap_cache_bits(kernel_pmap, mode, true);
 		pde_mask |= X86_PG_PDE_CACHE;
 		pte_bits |= pmap_cache_bits(kernel_pmap, mode, false);
 		pte_mask |= X86_PG_PTE_CACHE;
 	}
 	if (prot != VM_PROT_NONE) {
 		if ((prot & VM_PROT_WRITE) != 0) {
 			pde_bits |= X86_PG_RW;
 			pte_bits |= X86_PG_RW;
 		}
 		if ((prot & VM_PROT_EXECUTE) == 0 ||
 		    va < VM_MIN_KERNEL_ADDRESS) {
 			pde_bits |= pg_nx;
 			pte_bits |= pg_nx;
 		}
 		pde_mask |= X86_PG_RW | pg_nx;
 		pte_mask |= X86_PG_RW | pg_nx;
 	}
 
 	/*
 	 * Pages that aren't mapped aren't supported.  Also break down 2MB pages
 	 * into 4KB pages if required.
 	 */
 	for (tmpva = base; tmpva < base + size; ) {
 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
 		if (pdpe == NULL || *pdpe == 0) {
 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
 			return (EINVAL);
 		}
 		if (*pdpe & PG_PS) {
 			/*
 			 * If the current 1GB page already has the required
 			 * properties, then we need not demote this page.  Just
 			 * increment tmpva to the next 1GB page frame.
 			 */
 			if ((*pdpe & pde_mask) == pde_bits) {
 				tmpva = trunc_1gpage(tmpva) + NBPDP;
 				continue;
 			}
 
 			/*
 			 * If the current offset aligns with a 1GB page frame
 			 * and there is at least 1GB left within the range, then
 			 * we need not break down this page into 2MB pages.
 			 */
 			if ((tmpva & PDPMASK) == 0 &&
 			    tmpva + PDPMASK < base + size) {
 				tmpva += NBPDP;
 				continue;
 			}
 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
 				return (ENOMEM);
 		}
 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
 		if (*pde == 0) {
 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
 			return (EINVAL);
 		}
 		if (*pde & PG_PS) {
 			/*
 			 * If the current 2MB page already has the required
 			 * properties, then we need not demote this page.  Just
 			 * increment tmpva to the next 2MB page frame.
 			 */
 			if ((*pde & pde_mask) == pde_bits) {
 				tmpva = trunc_2mpage(tmpva) + NBPDR;
 				continue;
 			}
 
 			/*
 			 * If the current offset aligns with a 2MB page frame
 			 * and there is at least 2MB left within the range, then
 			 * we need not break down this page into 4KB pages.
 			 */
 			if ((tmpva & PDRMASK) == 0 &&
 			    tmpva + PDRMASK < base + size) {
 				tmpva += NBPDR;
 				continue;
 			}
 			if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
 				return (ENOMEM);
 		}
 		pte = pmap_pde_to_pte(pde, tmpva);
 		if (*pte == 0) {
 			KASSERT((flags & MAPDEV_ASSERTVALID) == 0,
 			    ("%s: addr %#lx is not mapped", __func__, tmpva));
 			return (EINVAL);
 		}
 		tmpva += PAGE_SIZE;
 	}
 	error = 0;
 
 	/*
 	 * Ok, all the pages exist, so run through them updating their
 	 * properties if required.
 	 */
 	changed = false;
 	pa_start = pa_end = 0;
 	for (tmpva = base; tmpva < base + size; ) {
 		pdpe = pmap_pdpe(kernel_pmap, tmpva);
 		if (*pdpe & PG_PS) {
 			if ((*pdpe & pde_mask) != pde_bits) {
 				pmap_pte_props(pdpe, pde_bits, pde_mask);
 				changed = true;
 			}
 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
 			    (*pdpe & PG_PS_FRAME) < dmaplimit) {
 				if (pa_start == pa_end) {
 					/* Start physical address run. */
 					pa_start = *pdpe & PG_PS_FRAME;
 					pa_end = pa_start + NBPDP;
 				} else if (pa_end == (*pdpe & PG_PS_FRAME))
 					pa_end += NBPDP;
 				else {
 					/* Run ended, update direct map. */
 					error = pmap_change_props_locked(
 					    PHYS_TO_DMAP(pa_start),
 					    pa_end - pa_start, prot, mode,
 					    flags);
 					if (error != 0)
 						break;
 					/* Start physical address run. */
 					pa_start = *pdpe & PG_PS_FRAME;
 					pa_end = pa_start + NBPDP;
 				}
 			}
 			tmpva = trunc_1gpage(tmpva) + NBPDP;
 			continue;
 		}
 		pde = pmap_pdpe_to_pde(pdpe, tmpva);
 		if (*pde & PG_PS) {
 			if ((*pde & pde_mask) != pde_bits) {
 				pmap_pte_props(pde, pde_bits, pde_mask);
 				changed = true;
 			}
 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
 			    (*pde & PG_PS_FRAME) < dmaplimit) {
 				if (pa_start == pa_end) {
 					/* Start physical address run. */
 					pa_start = *pde & PG_PS_FRAME;
 					pa_end = pa_start + NBPDR;
 				} else if (pa_end == (*pde & PG_PS_FRAME))
 					pa_end += NBPDR;
 				else {
 					/* Run ended, update direct map. */
 					error = pmap_change_props_locked(
 					    PHYS_TO_DMAP(pa_start),
 					    pa_end - pa_start, prot, mode,
 					    flags);
 					if (error != 0)
 						break;
 					/* Start physical address run. */
 					pa_start = *pde & PG_PS_FRAME;
 					pa_end = pa_start + NBPDR;
 				}
 			}
 			tmpva = trunc_2mpage(tmpva) + NBPDR;
 		} else {
 			pte = pmap_pde_to_pte(pde, tmpva);
 			if ((*pte & pte_mask) != pte_bits) {
 				pmap_pte_props(pte, pte_bits, pte_mask);
 				changed = true;
 			}
 			if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
 			    (*pte & PG_FRAME) < dmaplimit) {
 				if (pa_start == pa_end) {
 					/* Start physical address run. */
 					pa_start = *pte & PG_FRAME;
 					pa_end = pa_start + PAGE_SIZE;
 				} else if (pa_end == (*pte & PG_FRAME))
 					pa_end += PAGE_SIZE;
 				else {
 					/* Run ended, update direct map. */
 					error = pmap_change_props_locked(
 					    PHYS_TO_DMAP(pa_start),
 					    pa_end - pa_start, prot, mode,
 					    flags);
 					if (error != 0)
 						break;
 					/* Start physical address run. */
 					pa_start = *pte & PG_FRAME;
 					pa_end = pa_start + PAGE_SIZE;
 				}
 			}
 			tmpva += PAGE_SIZE;
 		}
 	}
 	if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
 		pa_end1 = MIN(pa_end, dmaplimit);
 		if (pa_start != pa_end1)
 			error = pmap_change_props_locked(PHYS_TO_DMAP(pa_start),
 			    pa_end1 - pa_start, prot, mode, flags);
 	}
 
 	/*
 	 * Flush CPU caches if required to make sure any data isn't cached that
 	 * shouldn't be, etc.
 	 */
 	if (changed) {
 		pmap_invalidate_range(kernel_pmap, base, tmpva);
 		if ((flags & MAPDEV_FLUSHCACHE) != 0)
 			pmap_invalidate_cache_range(base, tmpva);
 	}
 	return (error);
 }
 
 /*
  * Demotes any mapping within the direct map region that covers more than the
  * specified range of physical addresses.  This range's size must be a power
  * of two and its starting address must be a multiple of its size.  Since the
  * demotion does not change any attributes of the mapping, a TLB invalidation
  * is not mandatory.  The caller may, however, request a TLB invalidation.
  */
 void
 pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, bool invalidate)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	vm_offset_t va;
 	bool changed;
 
 	if (len == 0)
 		return;
 	KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
 	KASSERT((base & (len - 1)) == 0,
 	    ("pmap_demote_DMAP: base is not a multiple of len"));
 	if (len < NBPDP && base < dmaplimit) {
 		va = PHYS_TO_DMAP(base);
 		changed = false;
 		PMAP_LOCK(kernel_pmap);
 		pdpe = pmap_pdpe(kernel_pmap, va);
 		if ((*pdpe & X86_PG_V) == 0)
 			panic("pmap_demote_DMAP: invalid PDPE");
 		if ((*pdpe & PG_PS) != 0) {
 			if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
 				panic("pmap_demote_DMAP: PDPE failed");
 			changed = true;
 		}
 		if (len < NBPDR) {
 			pde = pmap_pdpe_to_pde(pdpe, va);
 			if ((*pde & X86_PG_V) == 0)
 				panic("pmap_demote_DMAP: invalid PDE");
 			if ((*pde & PG_PS) != 0) {
 				if (!pmap_demote_pde(kernel_pmap, pde, va))
 					panic("pmap_demote_DMAP: PDE failed");
 				changed = true;
 			}
 		}
 		if (changed && invalidate)
 			pmap_invalidate_page(kernel_pmap, va);
 		PMAP_UNLOCK(kernel_pmap);
 	}
 }
 
 /*
  * Perform the pmap work for mincore(2).  If the page is not both referenced and
  * modified by this pmap, returns its physical address so that the caller can
  * find other mappings.
  */
 int
 pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pdep;
 	pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
 	vm_paddr_t pa;
 	int val;
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	PMAP_LOCK(pmap);
 	pte = 0;
 	pa = 0;
 	val = 0;
 	pdpe = pmap_pdpe(pmap, addr);
 	if (pdpe == NULL)
 		goto out;
 	if ((*pdpe & PG_V) != 0) {
 		if ((*pdpe & PG_PS) != 0) {
 			pte = *pdpe;
 			pa = ((pte & PG_PS_PDP_FRAME) | (addr & PDPMASK)) &
 			    PG_FRAME;
 			val = MINCORE_PSIND(2);
 		} else {
 			pdep = pmap_pde(pmap, addr);
 			if (pdep != NULL && (*pdep & PG_V) != 0) {
 				if ((*pdep & PG_PS) != 0) {
 					pte = *pdep;
 			/* Compute the physical address of the 4KB page. */
 					pa = ((pte & PG_PS_FRAME) | (addr &
 					    PDRMASK)) & PG_FRAME;
 					val = MINCORE_PSIND(1);
 				} else {
 					pte = *pmap_pde_to_pte(pdep, addr);
 					pa = pte & PG_FRAME;
 					val = 0;
 				}
 			}
 		}
 	}
 	if ((pte & PG_V) != 0) {
 		val |= MINCORE_INCORE;
 		if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
 		if ((pte & PG_A) != 0)
 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
 	}
 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
 	    (pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
 		*pap = pa;
 	}
 out:
 	PMAP_UNLOCK(pmap);
 	return (val);
 }
 
 static uint64_t
 pmap_pcid_alloc(pmap_t pmap, struct pmap_pcid *pcidp)
 {
 	uint32_t gen, new_gen, pcid_next;
 
 	CRITICAL_ASSERT(curthread);
 	gen = PCPU_GET(pcid_gen);
 	if (pcidp->pm_pcid == PMAP_PCID_KERN)
 		return (pti ? 0 : CR3_PCID_SAVE);
 	if (pcidp->pm_gen == gen)
 		return (CR3_PCID_SAVE);
 	pcid_next = PCPU_GET(pcid_next);
 	KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
 	    (pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
 	    ("cpu %d pcid_next %#x", PCPU_GET(cpuid), pcid_next));
 	if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
 	    (pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
 		new_gen = gen + 1;
 		if (new_gen == 0)
 			new_gen = 1;
 		PCPU_SET(pcid_gen, new_gen);
 		pcid_next = PMAP_PCID_KERN + 1;
 	} else {
 		new_gen = gen;
 	}
 	pcidp->pm_pcid = pcid_next;
 	pcidp->pm_gen = new_gen;
 	PCPU_SET(pcid_next, pcid_next + 1);
 	return (0);
 }
 
 static uint64_t
 pmap_pcid_alloc_checked(pmap_t pmap, struct pmap_pcid *pcidp)
 {
 	uint64_t cached;
 
 	cached = pmap_pcid_alloc(pmap, pcidp);
 	KASSERT(pcidp->pm_pcid < PMAP_PCID_OVERMAX,
 	    ("pmap %p cpu %d pcid %#x", pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
 	KASSERT(pcidp->pm_pcid != PMAP_PCID_KERN || pmap == kernel_pmap,
 	    ("non-kernel pmap pmap %p cpu %d pcid %#x",
 	    pmap, PCPU_GET(cpuid), pcidp->pm_pcid));
 	return (cached);
 }
 
 static void
 pmap_activate_sw_pti_post(struct thread *td, pmap_t pmap)
 {
 
 	PCPU_GET(tssp)->tss_rsp0 = pmap->pm_ucr3 != PMAP_NO_CR3 ?
 	    PCPU_GET(pti_rsp0) : (uintptr_t)td->td_md.md_stack_base;
 }
 
 static void
 pmap_activate_sw_pcid_pti(struct thread *td, pmap_t pmap, u_int cpuid)
 {
 	pmap_t old_pmap;
 	struct pmap_pcid *pcidp, *old_pcidp;
 	uint64_t cached, cr3, kcr3, ucr3;
 
 	KASSERT((read_rflags() & PSL_I) == 0,
 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
 
 	/* See the comment in pmap_invalidate_page_pcid(). */
 	if (PCPU_GET(ucr3_load_mask) != PMAP_UCR3_NOMASK) {
 		PCPU_SET(ucr3_load_mask, PMAP_UCR3_NOMASK);
 		old_pmap = PCPU_GET(curpmap);
 		MPASS(old_pmap->pm_ucr3 != PMAP_NO_CR3);
 		old_pcidp = zpcpu_get_cpu(old_pmap->pm_pcidp, cpuid);
 		old_pcidp->pm_gen = 0;
 	}
 
 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
 	cr3 = rcr3();
 	if ((cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid);
 	PCPU_SET(curpmap, pmap);
 	kcr3 = pmap->pm_cr3 | pcidp->pm_pcid;
 	ucr3 = pmap->pm_ucr3 | pcidp->pm_pcid | PMAP_PCID_USER_PT;
 
 	if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3)
 		PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
 
 	PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
 	PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
 	if (cached)
 		counter_u64_add(pcid_save_cnt, 1);
 
 	pmap_activate_sw_pti_post(td, pmap);
 }
 
 static void
 pmap_activate_sw_pcid_nopti(struct thread *td __unused, pmap_t pmap,
     u_int cpuid)
 {
 	struct pmap_pcid *pcidp;
 	uint64_t cached, cr3;
 
 	KASSERT((read_rflags() & PSL_I) == 0,
 	    ("PCID needs interrupts disabled in pmap_activate_sw()"));
 
 	pcidp = zpcpu_get_cpu(pmap->pm_pcidp, cpuid);
 	cached = pmap_pcid_alloc_checked(pmap, pcidp);
 	cr3 = rcr3();
 	if (!cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3)
 		load_cr3(pmap->pm_cr3 | pcidp->pm_pcid | cached);
 	PCPU_SET(curpmap, pmap);
 	if (cached)
 		counter_u64_add(pcid_save_cnt, 1);
 }
 
 static void
 pmap_activate_sw_nopcid_nopti(struct thread *td __unused, pmap_t pmap,
     u_int cpuid __unused)
 {
 
 	load_cr3(pmap->pm_cr3);
 	PCPU_SET(curpmap, pmap);
 }
 
 static void
 pmap_activate_sw_nopcid_pti(struct thread *td, pmap_t pmap,
     u_int cpuid __unused)
 {
 
 	pmap_activate_sw_nopcid_nopti(td, pmap, cpuid);
 	PCPU_SET(kcr3, pmap->pm_cr3);
 	PCPU_SET(ucr3, pmap->pm_ucr3);
 	pmap_activate_sw_pti_post(td, pmap);
 }
 
 DEFINE_IFUNC(static, void, pmap_activate_sw_mode, (struct thread *, pmap_t,
     u_int))
 {
 
 	if (pmap_pcid_enabled && pti)
 		return (pmap_activate_sw_pcid_pti);
 	else if (pmap_pcid_enabled && !pti)
 		return (pmap_activate_sw_pcid_nopti);
 	else if (!pmap_pcid_enabled && pti)
 		return (pmap_activate_sw_nopcid_pti);
 	else /* if (!pmap_pcid_enabled && !pti) */
 		return (pmap_activate_sw_nopcid_nopti);
 }
 
 void
 pmap_activate_sw(struct thread *td)
 {
 	pmap_t oldpmap, pmap;
 	u_int cpuid;
 
 	oldpmap = PCPU_GET(curpmap);
 	pmap = vmspace_pmap(td->td_proc->p_vmspace);
 	if (oldpmap == pmap) {
 		if (cpu_vendor_id != CPU_VENDOR_INTEL)
 			mfence();
 		return;
 	}
 	cpuid = PCPU_GET(cpuid);
 #ifdef SMP
 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 #else
 	CPU_SET(cpuid, &pmap->pm_active);
 #endif
 	pmap_activate_sw_mode(td, pmap, cpuid);
 #ifdef SMP
 	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
 #else
 	CPU_CLR(cpuid, &oldpmap->pm_active);
 #endif
 }
 
 void
 pmap_activate(struct thread *td)
 {
 	/*
 	 * invltlb_{invpcid,}_pcid_handler() is used to handle an
 	 * invalidate_all IPI, which checks for curpmap ==
 	 * smp_tlb_pmap.  The below sequence of operations has a
 	 * window where %CR3 is loaded with the new pmap's PML4
 	 * address, but the curpmap value has not yet been updated.
 	 * This causes the invltlb IPI handler, which is called
 	 * between the updates, to execute as a NOP, which leaves
 	 * stale TLB entries.
 	 *
 	 * Note that the most common use of pmap_activate_sw(), from
 	 * a context switch, is immune to this race, because
 	 * interrupts are disabled (while the thread lock is owned),
 	 * so the IPI is delayed until after curpmap is updated.  Protect
 	 * other callers in a similar way, by disabling interrupts
 	 * around the %cr3 register reload and curpmap assignment.
 	 */
 	spinlock_enter();
 	pmap_activate_sw(td);
 	spinlock_exit();
 }
 
 void
 pmap_activate_boot(pmap_t pmap)
 {
 	uint64_t kcr3;
 	u_int cpuid;
 
 	/*
 	 * kernel_pmap must be never deactivated, and we ensure that
 	 * by never activating it at all.
 	 */
 	MPASS(pmap != kernel_pmap);
 
 	cpuid = PCPU_GET(cpuid);
 #ifdef SMP
 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
 #else
 	CPU_SET(cpuid, &pmap->pm_active);
 #endif
 	PCPU_SET(curpmap, pmap);
 	if (pti) {
 		kcr3 = pmap->pm_cr3;
 		if (pmap_pcid_enabled)
 			kcr3 |= pmap_get_pcid(pmap) | CR3_PCID_SAVE;
 	} else {
 		kcr3 = PMAP_NO_CR3;
 	}
 	PCPU_SET(kcr3, kcr3);
 	PCPU_SET(ucr3, PMAP_NO_CR3);
 }
 
 void
 pmap_active_cpus(pmap_t pmap, cpuset_t *res)
 {
 	*res = pmap->pm_active;
 }
 
 void
 pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
 {
 }
 
 /*
  *	Increase the starting virtual address of the given mapping if a
  *	different alignment might result in more superpage mappings.
  */
 void
 pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
     vm_offset_t *addr, vm_size_t size)
 {
 	vm_offset_t superpage_offset;
 
 	if (size < NBPDR)
 		return;
 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
 		offset += ptoa(object->pg_color);
 	superpage_offset = offset & PDRMASK;
 	if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
 	    (*addr & PDRMASK) == superpage_offset)
 		return;
 	if ((*addr & PDRMASK) < superpage_offset)
 		*addr = (*addr & ~PDRMASK) + superpage_offset;
 	else
 		*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
 }
 
 #ifdef INVARIANTS
 static unsigned long num_dirty_emulations;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
 	     &num_dirty_emulations, 0, NULL);
 
 static unsigned long num_accessed_emulations;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
 	     &num_accessed_emulations, 0, NULL);
 
 static unsigned long num_superpage_accessed_emulations;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
 	     &num_superpage_accessed_emulations, 0, NULL);
 
 static unsigned long ad_emulation_superpage_promotions;
 SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
 	     &ad_emulation_superpage_promotions, 0, NULL);
 #endif	/* INVARIANTS */
 
 int
 pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
 {
 	int rv;
 	struct rwlock *lock;
 #if VM_NRESERVLEVEL > 0
 	vm_page_t m, mpte;
 #endif
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
 
 	KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
 	    ("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
 
 	if (!pmap_emulate_ad_bits(pmap))
 		return (-1);
 
 	PG_A = pmap_accessed_bit(pmap);
 	PG_M = pmap_modified_bit(pmap);
 	PG_V = pmap_valid_bit(pmap);
 	PG_RW = pmap_rw_bit(pmap);
 
 	rv = -1;
 	lock = NULL;
 	PMAP_LOCK(pmap);
 
 	pde = pmap_pde(pmap, va);
 	if (pde == NULL || (*pde & PG_V) == 0)
 		goto done;
 
 	if ((*pde & PG_PS) != 0) {
 		if (ftype == VM_PROT_READ) {
 #ifdef INVARIANTS
 			atomic_add_long(&num_superpage_accessed_emulations, 1);
 #endif
 			*pde |= PG_A;
 			rv = 0;
 		}
 		goto done;
 	}
 
 	pte = pmap_pde_to_pte(pde, va);
 	if ((*pte & PG_V) == 0)
 		goto done;
 
 	if (ftype == VM_PROT_WRITE) {
 		if ((*pte & PG_RW) == 0)
 			goto done;
 		/*
 		 * Set the modified and accessed bits simultaneously.
 		 *
 		 * Intel EPT PTEs that do software emulation of A/D bits map
 		 * PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
 		 * An EPT misconfiguration is triggered if the PTE is writable
 		 * but not readable (WR=10). This is avoided by setting PG_A
 		 * and PG_M simultaneously.
 		 */
 		*pte |= PG_M | PG_A;
 	} else {
 		*pte |= PG_A;
 	}
 
 #if VM_NRESERVLEVEL > 0
 	/* try to promote the mapping */
 	if (va < VM_MAXUSER_ADDRESS)
 		mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
 	else
 		mpte = NULL;
 
 	m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
 
 	if ((mpte == NULL || mpte->ref_count == NPTEPG) &&
 	    (m->flags & PG_FICTITIOUS) == 0 &&
 	    vm_reserv_level_iffullpop(m) == 0 &&
 	    pmap_promote_pde(pmap, pde, va, mpte, &lock)) {
 #ifdef INVARIANTS
 		atomic_add_long(&ad_emulation_superpage_promotions, 1);
 #endif
 	}
 #endif
 
 #ifdef INVARIANTS
 	if (ftype == VM_PROT_WRITE)
 		atomic_add_long(&num_dirty_emulations, 1);
 	else
 		atomic_add_long(&num_accessed_emulations, 1);
 #endif
 	rv = 0;		/* success */
 done:
 	if (lock != NULL)
 		rw_wunlock(lock);
 	PMAP_UNLOCK(pmap);
 	return (rv);
 }
 
 void
 pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
 {
 	pml4_entry_t *pml4;
 	pdp_entry_t *pdp;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	int idx;
 
 	idx = 0;
 	PG_V = pmap_valid_bit(pmap);
 	PMAP_LOCK(pmap);
 
 	pml4 = pmap_pml4e(pmap, va);
 	if (pml4 == NULL)
 		goto done;
 	ptr[idx++] = *pml4;
 	if ((*pml4 & PG_V) == 0)
 		goto done;
 
 	pdp = pmap_pml4e_to_pdpe(pml4, va);
 	ptr[idx++] = *pdp;
 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
 		goto done;
 
 	pde = pmap_pdpe_to_pde(pdp, va);
 	ptr[idx++] = *pde;
 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
 		goto done;
 
 	pte = pmap_pde_to_pte(pde, va);
 	ptr[idx++] = *pte;
 
 done:
 	PMAP_UNLOCK(pmap);
 	*num = idx;
 }
 
 /**
  * Get the kernel virtual address of a set of physical pages. If there are
  * physical addresses not covered by the DMAP perform a transient mapping
  * that will be removed when calling pmap_unmap_io_transient.
  *
  * \param page        The pages the caller wishes to obtain the virtual
  *                    address on the kernel memory map.
  * \param vaddr       On return contains the kernel virtual memory address
  *                    of the pages passed in the page parameter.
  * \param count       Number of pages passed in.
  * \param can_fault   true if the thread using the mapped pages can take
  *                    page faults, false otherwise.
  *
  * \returns true if the caller must call pmap_unmap_io_transient when
  *          finished or false otherwise.
  *
  */
 bool
 pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
     bool can_fault)
 {
 	vm_paddr_t paddr;
 	bool needs_mapping;
 	pt_entry_t *pte;
 	int cache_bits, error __unused, i;
 
 	/*
 	 * Allocate any KVA space that we need, this is done in a separate
 	 * loop to prevent calling vmem_alloc while pinned.
 	 */
 	needs_mapping = false;
 	for (i = 0; i < count; i++) {
 		paddr = VM_PAGE_TO_PHYS(page[i]);
 		if (__predict_false(paddr >= dmaplimit)) {
 			error = vmem_alloc(kernel_arena, PAGE_SIZE,
 			    M_BESTFIT | M_WAITOK, &vaddr[i]);
 			KASSERT(error == 0, ("vmem_alloc failed: %d", error));
 			needs_mapping = true;
 		} else {
 			vaddr[i] = PHYS_TO_DMAP(paddr);
 		}
 	}
 
 	/* Exit early if everything is covered by the DMAP */
 	if (!needs_mapping)
 		return (false);
 
 	/*
 	 * NB:  The sequence of updating a page table followed by accesses
 	 * to the corresponding pages used in the !DMAP case is subject to
 	 * the situation described in the "AMD64 Architecture Programmer's
 	 * Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
 	 * Coherency Considerations".  Therefore, issuing the INVLPG right
 	 * after modifying the PTE bits is crucial.
 	 */
 	if (!can_fault)
 		sched_pin();
 	for (i = 0; i < count; i++) {
 		paddr = VM_PAGE_TO_PHYS(page[i]);
 		if (paddr >= dmaplimit) {
 			if (can_fault) {
 				/*
 				 * Slow path, since we can get page faults
 				 * while mappings are active don't pin the
 				 * thread to the CPU and instead add a global
 				 * mapping visible to all CPUs.
 				 */
 				pmap_qenter(vaddr[i], &page[i], 1);
 			} else {
 				pte = vtopte(vaddr[i]);
 				cache_bits = pmap_cache_bits(kernel_pmap,
 				    page[i]->md.pat_mode, false);
 				pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
 				    cache_bits);
 				pmap_invlpg(kernel_pmap, vaddr[i]);
 			}
 		}
 	}
 
 	return (needs_mapping);
 }
 
 void
 pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
     bool can_fault)
 {
 	vm_paddr_t paddr;
 	int i;
 
 	if (!can_fault)
 		sched_unpin();
 	for (i = 0; i < count; i++) {
 		paddr = VM_PAGE_TO_PHYS(page[i]);
 		if (paddr >= dmaplimit) {
 			if (can_fault)
 				pmap_qremove(vaddr[i], 1);
 			vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
 		}
 	}
 }
 
 vm_offset_t
 pmap_quick_enter_page(vm_page_t m)
 {
 	vm_paddr_t paddr;
 
 	paddr = VM_PAGE_TO_PHYS(m);
 	if (paddr < dmaplimit)
 		return (PHYS_TO_DMAP(paddr));
 	mtx_lock_spin(&qframe_mtx);
 	KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
 
 	/*
 	 * Since qframe is exclusively mapped by us, and we do not set
 	 * PG_G, we can use INVLPG here.
 	 */
 	invlpg(qframe);
 
 	pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
 	    X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, false));
 	return (qframe);
 }
 
 void
 pmap_quick_remove_page(vm_offset_t addr)
 {
 
 	if (addr != qframe)
 		return;
 	pte_store(vtopte(qframe), 0);
 	mtx_unlock_spin(&qframe_mtx);
 }
 
 /*
  * Pdp pages from the large map are managed differently from either
  * kernel or user page table pages.  They are permanently allocated at
  * initialization time, and their reference count is permanently set to
  * zero.  The pml4 entries pointing to those pages are copied into
  * each allocated pmap.
  *
  * In contrast, pd and pt pages are managed like user page table
  * pages.  They are dynamically allocated, and their reference count
  * represents the number of valid entries within the page.
  */
 static vm_page_t
 pmap_large_map_getptp_unlocked(void)
 {
 	return (pmap_alloc_pt_page(kernel_pmap, 0, VM_ALLOC_ZERO));
 }
 
 static vm_page_t
 pmap_large_map_getptp(void)
 {
 	vm_page_t m;
 
 	PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
 	m = pmap_large_map_getptp_unlocked();
 	if (m == NULL) {
 		PMAP_UNLOCK(kernel_pmap);
 		vm_wait(NULL);
 		PMAP_LOCK(kernel_pmap);
 		/* Callers retry. */
 	}
 	return (m);
 }
 
 static pdp_entry_t *
 pmap_large_map_pdpe(vm_offset_t va)
 {
 	vm_pindex_t pml4_idx;
 	vm_paddr_t mphys;
 
 	pml4_idx = pmap_pml4e_index(va);
 	KASSERT(LMSPML4I <= pml4_idx && pml4_idx < LMSPML4I + lm_ents,
 	    ("pmap_large_map_pdpe: va %#jx out of range idx %#jx LMSPML4I "
 	    "%#jx lm_ents %d",
 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
 	KASSERT((kernel_pml4[pml4_idx] & X86_PG_V) != 0,
 	    ("pmap_large_map_pdpe: invalid pml4 for va %#jx idx %#jx "
 	    "LMSPML4I %#jx lm_ents %d",
 	    (uintmax_t)va, (uintmax_t)pml4_idx, LMSPML4I, lm_ents));
 	mphys = kernel_pml4[pml4_idx] & PG_FRAME;
 	return ((pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va));
 }
 
 static pd_entry_t *
 pmap_large_map_pde(vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 	vm_page_t m;
 	vm_paddr_t mphys;
 
 retry:
 	pdpe = pmap_large_map_pdpe(va);
 	if (*pdpe == 0) {
 		m = pmap_large_map_getptp();
 		if (m == NULL)
 			goto retry;
 		mphys = VM_PAGE_TO_PHYS(m);
 		*pdpe = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
 	} else {
 		MPASS((*pdpe & X86_PG_PS) == 0);
 		mphys = *pdpe & PG_FRAME;
 	}
 	return ((pd_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pde_index(va));
 }
 
 static pt_entry_t *
 pmap_large_map_pte(vm_offset_t va)
 {
 	pd_entry_t *pde;
 	vm_page_t m;
 	vm_paddr_t mphys;
 
 retry:
 	pde = pmap_large_map_pde(va);
 	if (*pde == 0) {
 		m = pmap_large_map_getptp();
 		if (m == NULL)
 			goto retry;
 		mphys = VM_PAGE_TO_PHYS(m);
 		*pde = mphys | X86_PG_A | X86_PG_RW | X86_PG_V | pg_nx;
 		PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->ref_count++;
 	} else {
 		MPASS((*pde & X86_PG_PS) == 0);
 		mphys = *pde & PG_FRAME;
 	}
 	return ((pt_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pte_index(va));
 }
 
 static vm_paddr_t
 pmap_large_map_kextract(vm_offset_t va)
 {
 	pdp_entry_t *pdpe, pdp;
 	pd_entry_t *pde, pd;
 	pt_entry_t *pte, pt;
 
 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(va),
 	    ("not largemap range %#lx", (u_long)va));
 	pdpe = pmap_large_map_pdpe(va);
 	pdp = *pdpe;
 	KASSERT((pdp & X86_PG_V) != 0,
 	    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
 	    (u_long)pdpe, pdp));
 	if ((pdp & X86_PG_PS) != 0) {
 		KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
 		    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
 		    (u_long)pdpe, pdp));
 		return ((pdp & PG_PS_PDP_FRAME) | (va & PDPMASK));
 	}
 	pde = pmap_pdpe_to_pde(pdpe, va);
 	pd = *pde;
 	KASSERT((pd & X86_PG_V) != 0,
 	    ("invalid pd va %#lx pde %#lx pd %#lx", va, (u_long)pde, pd));
 	if ((pd & X86_PG_PS) != 0)
 		return ((pd & PG_PS_FRAME) | (va & PDRMASK));
 	pte = pmap_pde_to_pte(pde, va);
 	pt = *pte;
 	KASSERT((pt & X86_PG_V) != 0,
 	    ("invalid pte va %#lx pte %#lx pt %#lx", va, (u_long)pte, pt));
 	return ((pt & PG_FRAME) | (va & PAGE_MASK));
 }
 
 static int
 pmap_large_map_getva(vm_size_t len, vm_offset_t align, vm_offset_t phase,
     vmem_addr_t *vmem_res)
 {
 
 	/*
 	 * Large mappings are all but static.  Consequently, there
 	 * is no point in waiting for an earlier allocation to be
 	 * freed.
 	 */
 	return (vmem_xalloc(large_vmem, len, align, phase, 0, VMEM_ADDR_MIN,
 	    VMEM_ADDR_MAX, M_NOWAIT | M_BESTFIT, vmem_res));
 }
 
 int
 pmap_large_map(vm_paddr_t spa, vm_size_t len, void **addr,
     vm_memattr_t mattr)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte;
 	vm_offset_t va, inc;
 	vmem_addr_t vmem_res;
 	vm_paddr_t pa;
 	int error;
 
 	if (len == 0 || spa + len < spa)
 		return (EINVAL);
 
 	/* See if DMAP can serve. */
 	if (spa + len <= dmaplimit) {
 		va = PHYS_TO_DMAP(spa);
 		*addr = (void *)va;
 		return (pmap_change_attr(va, len, mattr));
 	}
 
 	/*
 	 * No, allocate KVA.  Fit the address with best possible
 	 * alignment for superpages.  Fall back to worse align if
 	 * failed.
 	 */
 	error = ENOMEM;
 	if ((amd_feature & AMDID_PAGE1GB) != 0 && rounddown2(spa + len,
 	    NBPDP) >= roundup2(spa, NBPDP) + NBPDP)
 		error = pmap_large_map_getva(len, NBPDP, spa & PDPMASK,
 		    &vmem_res);
 	if (error != 0 && rounddown2(spa + len, NBPDR) >= roundup2(spa,
 	    NBPDR) + NBPDR)
 		error = pmap_large_map_getva(len, NBPDR, spa & PDRMASK,
 		    &vmem_res);
 	if (error != 0)
 		error = pmap_large_map_getva(len, PAGE_SIZE, 0, &vmem_res);
 	if (error != 0)
 		return (error);
 
 	/*
 	 * Fill pagetable.  PG_M is not pre-set, we scan modified bits
 	 * in the pagetable to minimize flushing.  No need to
 	 * invalidate TLB, since we only update invalid entries.
 	 */
 	PMAP_LOCK(kernel_pmap);
 	for (pa = spa, va = vmem_res; len > 0; pa += inc, va += inc,
 	    len -= inc) {
 		if ((amd_feature & AMDID_PAGE1GB) != 0 && len >= NBPDP &&
 		    (pa & PDPMASK) == 0 && (va & PDPMASK) == 0) {
 			pdpe = pmap_large_map_pdpe(va);
 			MPASS(*pdpe == 0);
 			*pdpe = pa | pg_g | X86_PG_PS | X86_PG_RW |
 			    X86_PG_V | X86_PG_A | pg_nx |
 			    pmap_cache_bits(kernel_pmap, mattr, true);
 			inc = NBPDP;
 		} else if (len >= NBPDR && (pa & PDRMASK) == 0 &&
 		    (va & PDRMASK) == 0) {
 			pde = pmap_large_map_pde(va);
 			MPASS(*pde == 0);
 			*pde = pa | pg_g | X86_PG_PS | X86_PG_RW |
 			    X86_PG_V | X86_PG_A | pg_nx |
 			    pmap_cache_bits(kernel_pmap, mattr, true);
 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde))->
 			    ref_count++;
 			inc = NBPDR;
 		} else {
 			pte = pmap_large_map_pte(va);
 			MPASS(*pte == 0);
 			*pte = pa | pg_g | X86_PG_RW | X86_PG_V |
 			    X86_PG_A | pg_nx | pmap_cache_bits(kernel_pmap,
 			    mattr, false);
 			PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte))->
 			    ref_count++;
 			inc = PAGE_SIZE;
 		}
 	}
 	PMAP_UNLOCK(kernel_pmap);
 	MPASS(len == 0);
 
 	*addr = (void *)vmem_res;
 	return (0);
 }
 
 void
 pmap_large_unmap(void *svaa, vm_size_t len)
 {
 	vm_offset_t sva, va;
 	vm_size_t inc;
 	pdp_entry_t *pdpe, pdp;
 	pd_entry_t *pde, pd;
 	pt_entry_t *pte;
 	vm_page_t m;
 	struct spglist spgf;
 
 	sva = (vm_offset_t)svaa;
 	if (len == 0 || sva + len < sva || (sva >= DMAP_MIN_ADDRESS &&
 	    sva + len <= DMAP_MIN_ADDRESS + dmaplimit))
 		return;
 
 	SLIST_INIT(&spgf);
 	KASSERT(PMAP_ADDRESS_IN_LARGEMAP(sva) &&
 	    PMAP_ADDRESS_IN_LARGEMAP(sva + len - 1),
 	    ("not largemap range %#lx %#lx", (u_long)svaa, (u_long)svaa + len));
 	PMAP_LOCK(kernel_pmap);
 	for (va = sva; va < sva + len; va += inc) {
 		pdpe = pmap_large_map_pdpe(va);
 		pdp = *pdpe;
 		KASSERT((pdp & X86_PG_V) != 0,
 		    ("invalid pdp va %#lx pdpe %#lx pdp %#lx", va,
 		    (u_long)pdpe, pdp));
 		if ((pdp & X86_PG_PS) != 0) {
 			KASSERT((amd_feature & AMDID_PAGE1GB) != 0,
 			    ("no 1G pages, va %#lx pdpe %#lx pdp %#lx", va,
 			    (u_long)pdpe, pdp));
 			KASSERT((va & PDPMASK) == 0,
 			    ("PDPMASK bit set, va %#lx pdpe %#lx pdp %#lx", va,
 			    (u_long)pdpe, pdp));
 			KASSERT(va + NBPDP <= sva + len,
 			    ("unmap covers partial 1GB page, sva %#lx va %#lx "
 			    "pdpe %#lx pdp %#lx len %#lx", sva, va,
 			    (u_long)pdpe, pdp, len));
 			*pdpe = 0;
 			inc = NBPDP;
 			continue;
 		}
 		pde = pmap_pdpe_to_pde(pdpe, va);
 		pd = *pde;
 		KASSERT((pd & X86_PG_V) != 0,
 		    ("invalid pd va %#lx pde %#lx pd %#lx", va,
 		    (u_long)pde, pd));
 		if ((pd & X86_PG_PS) != 0) {
 			KASSERT((va & PDRMASK) == 0,
 			    ("PDRMASK bit set, va %#lx pde %#lx pd %#lx", va,
 			    (u_long)pde, pd));
 			KASSERT(va + NBPDR <= sva + len,
 			    ("unmap covers partial 2MB page, sva %#lx va %#lx "
 			    "pde %#lx pd %#lx len %#lx", sva, va, (u_long)pde,
 			    pd, len));
 			pde_store(pde, 0);
 			inc = NBPDR;
 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
 			m->ref_count--;
 			if (m->ref_count == 0) {
 				*pdpe = 0;
 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
 			}
 			continue;
 		}
 		pte = pmap_pde_to_pte(pde, va);
 		KASSERT((*pte & X86_PG_V) != 0,
 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
 		    (u_long)pte, *pte));
 		pte_clear(pte);
 		inc = PAGE_SIZE;
 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pte));
 		m->ref_count--;
 		if (m->ref_count == 0) {
 			*pde = 0;
 			SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
 			m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pde));
 			m->ref_count--;
 			if (m->ref_count == 0) {
 				*pdpe = 0;
 				SLIST_INSERT_HEAD(&spgf, m, plinks.s.ss);
 			}
 		}
 	}
 	pmap_invalidate_range(kernel_pmap, sva, sva + len);
 	PMAP_UNLOCK(kernel_pmap);
 	vm_page_free_pages_toq(&spgf, false);
 	vmem_free(large_vmem, sva, len);
 }
 
 static void
 pmap_large_map_wb_fence_mfence(void)
 {
 
 	mfence();
 }
 
 static void
 pmap_large_map_wb_fence_atomic(void)
 {
 
 	atomic_thread_fence_seq_cst();
 }
 
 static void
 pmap_large_map_wb_fence_nop(void)
 {
 }
 
 DEFINE_IFUNC(static, void, pmap_large_map_wb_fence, (void))
 {
 
 	if (cpu_vendor_id != CPU_VENDOR_INTEL)
 		return (pmap_large_map_wb_fence_mfence);
 	else if ((cpu_stdext_feature & (CPUID_STDEXT_CLWB |
 	    CPUID_STDEXT_CLFLUSHOPT)) == 0)
 		return (pmap_large_map_wb_fence_atomic);
 	else
 		/* clflush is strongly enough ordered */
 		return (pmap_large_map_wb_fence_nop);
 }
 
 static void
 pmap_large_map_flush_range_clwb(vm_offset_t va, vm_size_t len)
 {
 
 	for (; len > 0; len -= cpu_clflush_line_size,
 	    va += cpu_clflush_line_size)
 		clwb(va);
 }
 
 static void
 pmap_large_map_flush_range_clflushopt(vm_offset_t va, vm_size_t len)
 {
 
 	for (; len > 0; len -= cpu_clflush_line_size,
 	    va += cpu_clflush_line_size)
 		clflushopt(va);
 }
 
 static void
 pmap_large_map_flush_range_clflush(vm_offset_t va, vm_size_t len)
 {
 
 	for (; len > 0; len -= cpu_clflush_line_size,
 	    va += cpu_clflush_line_size)
 		clflush(va);
 }
 
 static void
 pmap_large_map_flush_range_nop(vm_offset_t sva __unused, vm_size_t len __unused)
 {
 }
 
 DEFINE_IFUNC(static, void, pmap_large_map_flush_range, (vm_offset_t, vm_size_t))
 {
 
 	if ((cpu_stdext_feature & CPUID_STDEXT_CLWB) != 0)
 		return (pmap_large_map_flush_range_clwb);
 	else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0)
 		return (pmap_large_map_flush_range_clflushopt);
 	else if ((cpu_feature & CPUID_CLFSH) != 0)
 		return (pmap_large_map_flush_range_clflush);
 	else
 		return (pmap_large_map_flush_range_nop);
 }
 
 static void
 pmap_large_map_wb_large(vm_offset_t sva, vm_offset_t eva)
 {
 	volatile u_long *pe;
 	u_long p;
 	vm_offset_t va;
 	vm_size_t inc;
 	bool seen_other;
 
 	for (va = sva; va < eva; va += inc) {
 		inc = 0;
 		if ((amd_feature & AMDID_PAGE1GB) != 0) {
 			pe = (volatile u_long *)pmap_large_map_pdpe(va);
 			p = *pe;
 			if ((p & X86_PG_PS) != 0)
 				inc = NBPDP;
 		}
 		if (inc == 0) {
 			pe = (volatile u_long *)pmap_large_map_pde(va);
 			p = *pe;
 			if ((p & X86_PG_PS) != 0)
 				inc = NBPDR;
 		}
 		if (inc == 0) {
 			pe = (volatile u_long *)pmap_large_map_pte(va);
 			p = *pe;
 			inc = PAGE_SIZE;
 		}
 		seen_other = false;
 		for (;;) {
 			if ((p & X86_PG_AVAIL1) != 0) {
 				/*
 				 * Spin-wait for the end of a parallel
 				 * write-back.
 				 */
 				cpu_spinwait();
 				p = *pe;
 
 				/*
 				 * If we saw other write-back
 				 * occurring, we cannot rely on PG_M to
 				 * indicate state of the cache.  The
 				 * PG_M bit is cleared before the
 				 * flush to avoid ignoring new writes,
 				 * and writes which are relevant for
 				 * us might happen after.
 				 */
 				seen_other = true;
 				continue;
 			}
 
 			if ((p & X86_PG_M) != 0 || seen_other) {
 				if (!atomic_fcmpset_long(pe, &p,
 				    (p & ~X86_PG_M) | X86_PG_AVAIL1))
 					/*
 					 * If we saw PG_M without
 					 * PG_AVAIL1, and then on the
 					 * next attempt we do not
 					 * observe either PG_M or
 					 * PG_AVAIL1, the other
 					 * write-back started after us
 					 * and finished before us.  We
 					 * can rely on it doing our
 					 * work.
 					 */
 					continue;
 				pmap_large_map_flush_range(va, inc);
 				atomic_clear_long(pe, X86_PG_AVAIL1);
 			}
 			break;
 		}
 		maybe_yield();
 	}
 }
 
 /*
  * Write-back cache lines for the given address range.
  *
  * Must be called only on the range or sub-range returned from
  * pmap_large_map().  Must not be called on the coalesced ranges.
  *
  * Does nothing on CPUs without CLWB, CLFLUSHOPT, or CLFLUSH
  * instructions support.
  */
 void
 pmap_large_map_wb(void *svap, vm_size_t len)
 {
 	vm_offset_t eva, sva;
 
 	sva = (vm_offset_t)svap;
 	eva = sva + len;
 	pmap_large_map_wb_fence();
 	if (sva >= DMAP_MIN_ADDRESS && eva <= DMAP_MIN_ADDRESS + dmaplimit) {
 		pmap_large_map_flush_range(sva, len);
 	} else {
 		KASSERT(sva >= LARGEMAP_MIN_ADDRESS &&
 		    eva <= LARGEMAP_MIN_ADDRESS + lm_ents * NBPML4,
 		    ("pmap_large_map_wb: not largemap %#lx %#lx", sva, len));
 		pmap_large_map_wb_large(sva, eva);
 	}
 	pmap_large_map_wb_fence();
 }
 
 static vm_page_t
 pmap_pti_alloc_page(void)
 {
 	vm_page_t m;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 	m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_WIRED | VM_ALLOC_ZERO);
 	return (m);
 }
 
 static bool
 pmap_pti_free_page(vm_page_t m)
 {
 	if (!vm_page_unwire_noq(m))
 		return (false);
 	vm_page_xbusy_claim(m);
 	vm_page_free_zero(m);
 	return (true);
 }
 
 static void
 pmap_pti_init(void)
 {
 	vm_page_t pml4_pg;
 	pdp_entry_t *pdpe;
 	vm_offset_t va;
 	int i;
 
 	if (!pti)
 		return;
 	pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
 	VM_OBJECT_WLOCK(pti_obj);
 	pml4_pg = pmap_pti_alloc_page();
 	pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
 	for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
 	    va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
 		pdpe = pmap_pti_pdpe(va);
 		pmap_pti_wire_pte(pdpe);
 	}
 	pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
 	    (vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
 	pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
 	    sizeof(struct gate_descriptor) * NIDT, false);
 	CPU_FOREACH(i) {
 		/* Doublefault stack IST 1 */
 		va = __pcpu[i].pc_common_tss.tss_ist1 + sizeof(struct nmi_pcpu);
 		pmap_pti_add_kva_locked(va - DBLFAULT_STACK_SIZE, va, false);
 		/* NMI stack IST 2 */
 		va = __pcpu[i].pc_common_tss.tss_ist2 + sizeof(struct nmi_pcpu);
 		pmap_pti_add_kva_locked(va - NMI_STACK_SIZE, va, false);
 		/* MC# stack IST 3 */
 		va = __pcpu[i].pc_common_tss.tss_ist3 +
 		    sizeof(struct nmi_pcpu);
 		pmap_pti_add_kva_locked(va - MCE_STACK_SIZE, va, false);
 		/* DB# stack IST 4 */
 		va = __pcpu[i].pc_common_tss.tss_ist4 + sizeof(struct nmi_pcpu);
 		pmap_pti_add_kva_locked(va - DBG_STACK_SIZE, va, false);
 	}
 	pmap_pti_add_kva_locked((vm_offset_t)KERNSTART, (vm_offset_t)etext,
 	    true);
 	pti_finalized = true;
 	VM_OBJECT_WUNLOCK(pti_obj);
 }
 
 static void
 pmap_cpu_init(void *arg __unused)
 {
 	CPU_COPY(&all_cpus, &kernel_pmap->pm_active);
 	pmap_pti_init();
 }
 SYSINIT(pmap_cpu, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_cpu_init, NULL);
 
 static pdp_entry_t *
 pmap_pti_pdpe(vm_offset_t va)
 {
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	vm_page_t m;
 	vm_pindex_t pml4_idx;
 	vm_paddr_t mphys;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 
 	pml4_idx = pmap_pml4e_index(va);
 	pml4e = &pti_pml4[pml4_idx];
 	m = NULL;
 	if (*pml4e == 0) {
 		if (pti_finalized)
 			panic("pml4 alloc after finalization\n");
 		m = pmap_pti_alloc_page();
 		if (*pml4e != 0) {
 			pmap_pti_free_page(m);
 			mphys = *pml4e & ~PAGE_MASK;
 		} else {
 			mphys = VM_PAGE_TO_PHYS(m);
 			*pml4e = mphys | X86_PG_RW | X86_PG_V;
 		}
 	} else {
 		mphys = *pml4e & ~PAGE_MASK;
 	}
 	pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
 	return (pdpe);
 }
 
 static void
 pmap_pti_wire_pte(void *pte)
 {
 	vm_page_t m;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
 	m->ref_count++;
 }
 
 static void
 pmap_pti_unwire_pde(void *pde, bool only_ref)
 {
 	vm_page_t m;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
 	MPASS(only_ref || m->ref_count > 1);
 	pmap_pti_free_page(m);
 }
 
 static void
 pmap_pti_unwire_pte(void *pte, vm_offset_t va)
 {
 	vm_page_t m;
 	pd_entry_t *pde;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 	m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
 	if (pmap_pti_free_page(m)) {
 		pde = pmap_pti_pde(va);
 		MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
 		*pde = 0;
 		pmap_pti_unwire_pde(pde, false);
 	}
 }
 
 static pd_entry_t *
 pmap_pti_pde(vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	vm_page_t m;
 	vm_pindex_t pd_idx;
 	vm_paddr_t mphys;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 
 	pdpe = pmap_pti_pdpe(va);
 	if (*pdpe == 0) {
 		m = pmap_pti_alloc_page();
 		if (*pdpe != 0) {
 			pmap_pti_free_page(m);
 			MPASS((*pdpe & X86_PG_PS) == 0);
 			mphys = *pdpe & ~PAGE_MASK;
 		} else {
 			mphys =  VM_PAGE_TO_PHYS(m);
 			*pdpe = mphys | X86_PG_RW | X86_PG_V;
 		}
 	} else {
 		MPASS((*pdpe & X86_PG_PS) == 0);
 		mphys = *pdpe & ~PAGE_MASK;
 	}
 
 	pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
 	pd_idx = pmap_pde_index(va);
 	pde += pd_idx;
 	return (pde);
 }
 
 static pt_entry_t *
 pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
 {
 	pd_entry_t *pde;
 	pt_entry_t *pte;
 	vm_page_t m;
 	vm_paddr_t mphys;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 
 	pde = pmap_pti_pde(va);
 	if (unwire_pde != NULL) {
 		*unwire_pde = true;
 		pmap_pti_wire_pte(pde);
 	}
 	if (*pde == 0) {
 		m = pmap_pti_alloc_page();
 		if (*pde != 0) {
 			pmap_pti_free_page(m);
 			MPASS((*pde & X86_PG_PS) == 0);
 			mphys = *pde & ~(PAGE_MASK | pg_nx);
 		} else {
 			mphys = VM_PAGE_TO_PHYS(m);
 			*pde = mphys | X86_PG_RW | X86_PG_V;
 			if (unwire_pde != NULL)
 				*unwire_pde = false;
 		}
 	} else {
 		MPASS((*pde & X86_PG_PS) == 0);
 		mphys = *pde & ~(PAGE_MASK | pg_nx);
 	}
 
 	pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
 	pte += pmap_pte_index(va);
 
 	return (pte);
 }
 
 static void
 pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
 {
 	vm_paddr_t pa;
 	pd_entry_t *pde;
 	pt_entry_t *pte, ptev;
 	bool unwire_pde;
 
 	VM_OBJECT_ASSERT_WLOCKED(pti_obj);
 
 	sva = trunc_page(sva);
 	MPASS(sva > VM_MAXUSER_ADDRESS);
 	eva = round_page(eva);
 	MPASS(sva < eva);
 	for (; sva < eva; sva += PAGE_SIZE) {
 		pte = pmap_pti_pte(sva, &unwire_pde);
 		pa = pmap_kextract(sva);
 		ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
 		    (exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
 		    VM_MEMATTR_DEFAULT, false);
 		if (*pte == 0) {
 			pte_store(pte, ptev);
 			pmap_pti_wire_pte(pte);
 		} else {
 			KASSERT(!pti_finalized,
 			    ("pti overlap after fin %#lx %#lx %#lx",
 			    sva, *pte, ptev));
 			KASSERT(*pte == ptev,
 			    ("pti non-identical pte after fin %#lx %#lx %#lx",
 			    sva, *pte, ptev));
 		}
 		if (unwire_pde) {
 			pde = pmap_pti_pde(sva);
 			pmap_pti_unwire_pde(pde, true);
 		}
 	}
 }
 
 void
 pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
 {
 
 	if (!pti)
 		return;
 	VM_OBJECT_WLOCK(pti_obj);
 	pmap_pti_add_kva_locked(sva, eva, exec);
 	VM_OBJECT_WUNLOCK(pti_obj);
 }
 
 void
 pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
 {
 	pt_entry_t *pte;
 	vm_offset_t va;
 
 	if (!pti)
 		return;
 	sva = rounddown2(sva, PAGE_SIZE);
 	MPASS(sva > VM_MAXUSER_ADDRESS);
 	eva = roundup2(eva, PAGE_SIZE);
 	MPASS(sva < eva);
 	VM_OBJECT_WLOCK(pti_obj);
 	for (va = sva; va < eva; va += PAGE_SIZE) {
 		pte = pmap_pti_pte(va, NULL);
 		KASSERT((*pte & X86_PG_V) != 0,
 		    ("invalid pte va %#lx pte %#lx pt %#lx", va,
 		    (u_long)pte, *pte));
 		pte_clear(pte);
 		pmap_pti_unwire_pte(pte, va);
 	}
 	pmap_invalidate_range(kernel_pmap, sva, eva);
 	VM_OBJECT_WUNLOCK(pti_obj);
 }
 
 static void *
 pkru_dup_range(void *ctx __unused, void *data)
 {
 	struct pmap_pkru_range *node, *new_node;
 
 	new_node = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
 	if (new_node == NULL)
 		return (NULL);
 	node = data;
 	memcpy(new_node, node, sizeof(*node));
 	return (new_node);
 }
 
 static void
 pkru_free_range(void *ctx __unused, void *node)
 {
 
 	uma_zfree(pmap_pkru_ranges_zone, node);
 }
 
 static int
 pmap_pkru_assign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
     int flags)
 {
 	struct pmap_pkru_range *ppr;
 	int error;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	MPASS(pmap->pm_type == PT_X86);
 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
 	if ((flags & AMD64_PKRU_EXCL) != 0 &&
 	    !rangeset_check_empty(&pmap->pm_pkru, sva, eva))
 		return (EBUSY);
 	ppr = uma_zalloc(pmap_pkru_ranges_zone, M_NOWAIT);
 	if (ppr == NULL)
 		return (ENOMEM);
 	ppr->pkru_keyidx = keyidx;
 	ppr->pkru_flags = flags & AMD64_PKRU_PERSIST;
 	error = rangeset_insert(&pmap->pm_pkru, sva, eva, ppr);
 	if (error != 0)
 		uma_zfree(pmap_pkru_ranges_zone, ppr);
 	return (error);
 }
 
 static int
 pmap_pkru_deassign(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	MPASS(pmap->pm_type == PT_X86);
 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
 	return (rangeset_remove(&pmap->pm_pkru, sva, eva));
 }
 
 static void
 pmap_pkru_deassign_all(pmap_t pmap)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	if (pmap->pm_type == PT_X86 &&
 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0)
 		rangeset_remove_all(&pmap->pm_pkru);
 }
 
 static bool
 pmap_pkru_same(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	struct pmap_pkru_range *next_ppr, *ppr;
 	vm_offset_t va;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	if (pmap->pm_type != PT_X86 ||
 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
 	    sva >= VM_MAXUSER_ADDRESS)
 		return (true);
 	MPASS(eva <= VM_MAXUSER_ADDRESS);
 	ppr = rangeset_lookup(&pmap->pm_pkru, sva);
 	if (ppr == NULL) {
 		ppr = rangeset_next(&pmap->pm_pkru, sva);
 		return (ppr == NULL ||
 		    ppr->pkru_rs_el.re_start >= eva);
 	}
 	while ((va = ppr->pkru_rs_el.re_end) < eva) {
 		next_ppr = rangeset_next(&pmap->pm_pkru, va);
 		if (next_ppr == NULL ||
 		    va != next_ppr->pkru_rs_el.re_start ||
 		    ppr->pkru_keyidx != next_ppr->pkru_keyidx)
 			return (false);
 		ppr = next_ppr;
 	}
 	return (true);
 }
 
 static pt_entry_t
 pmap_pkru_get(pmap_t pmap, vm_offset_t va)
 {
 	struct pmap_pkru_range *ppr;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	if (pmap->pm_type != PT_X86 ||
 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0 ||
 	    va >= VM_MAXUSER_ADDRESS)
 		return (0);
 	ppr = rangeset_lookup(&pmap->pm_pkru, va);
 	if (ppr != NULL)
 		return (X86_PG_PKU(ppr->pkru_keyidx));
 	return (0);
 }
 
 static bool
 pred_pkru_on_remove(void *ctx __unused, void *r)
 {
 	struct pmap_pkru_range *ppr;
 
 	ppr = r;
 	return ((ppr->pkru_flags & AMD64_PKRU_PERSIST) == 0);
 }
 
 static void
 pmap_pkru_on_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	if (pmap->pm_type == PT_X86 &&
 	    (cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0) {
 		rangeset_remove_pred(&pmap->pm_pkru, sva, eva,
 		    pred_pkru_on_remove);
 	}
 }
 
 static int
 pmap_pkru_copy(pmap_t dst_pmap, pmap_t src_pmap)
 {
 
 	PMAP_LOCK_ASSERT(dst_pmap, MA_OWNED);
 	PMAP_LOCK_ASSERT(src_pmap, MA_OWNED);
 	MPASS(dst_pmap->pm_type == PT_X86);
 	MPASS(src_pmap->pm_type == PT_X86);
 	MPASS((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) != 0);
 	if (src_pmap->pm_pkru.rs_data_ctx == NULL)
 		return (0);
 	return (rangeset_copy(&dst_pmap->pm_pkru, &src_pmap->pm_pkru));
 }
 
 static void
 pmap_pkru_update_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
     u_int keyidx)
 {
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t newpde, ptpaddr, *pde;
 	pt_entry_t newpte, *ptep, pte;
 	vm_offset_t va, va_next;
 	bool changed;
 
 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
 	MPASS(pmap->pm_type == PT_X86);
 	MPASS(keyidx <= PMAP_MAX_PKRU_IDX);
 
 	for (changed = false, va = sva; va < eva; va = va_next) {
 		pml4e = pmap_pml4e(pmap, va);
 		if (pml4e == NULL || (*pml4e & X86_PG_V) == 0) {
 			va_next = (va + NBPML4) & ~PML4MASK;
 			if (va_next < va)
 				va_next = eva;
 			continue;
 		}
 
 		pdpe = pmap_pml4e_to_pdpe(pml4e, va);
 		if ((*pdpe & X86_PG_V) == 0) {
 			va_next = (va + NBPDP) & ~PDPMASK;
 			if (va_next < va)
 				va_next = eva;
 			continue;
 		}
 
 		va_next = (va + NBPDR) & ~PDRMASK;
 		if (va_next < va)
 			va_next = eva;
 
 		pde = pmap_pdpe_to_pde(pdpe, va);
 		ptpaddr = *pde;
 		if (ptpaddr == 0)
 			continue;
 
 		MPASS((ptpaddr & X86_PG_V) != 0);
 		if ((ptpaddr & PG_PS) != 0) {
 			if (va + NBPDR == va_next && eva >= va_next) {
 				newpde = (ptpaddr & ~X86_PG_PKU_MASK) |
 				    X86_PG_PKU(keyidx);
 				if (newpde != ptpaddr) {
 					*pde = newpde;
 					changed = true;
 				}
 				continue;
 			} else if (!pmap_demote_pde(pmap, pde, va)) {
 				continue;
 			}
 		}
 
 		if (va_next > eva)
 			va_next = eva;
 
 		for (ptep = pmap_pde_to_pte(pde, va); va != va_next;
 		    ptep++, va += PAGE_SIZE) {
 			pte = *ptep;
 			if ((pte & X86_PG_V) == 0)
 				continue;
 			newpte = (pte & ~X86_PG_PKU_MASK) | X86_PG_PKU(keyidx);
 			if (newpte != pte) {
 				*ptep = newpte;
 				changed = true;
 			}
 		}
 	}
 	if (changed)
 		pmap_invalidate_range(pmap, sva, eva);
 }
 
 static int
 pmap_pkru_check_uargs(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
     u_int keyidx, int flags)
 {
 
 	if (pmap->pm_type != PT_X86 || keyidx > PMAP_MAX_PKRU_IDX ||
 	    (flags & ~(AMD64_PKRU_PERSIST | AMD64_PKRU_EXCL)) != 0)
 		return (EINVAL);
 	if (eva <= sva || eva > VM_MAXUSER_ADDRESS)
 		return (EFAULT);
 	if ((cpu_stdext_feature2 & CPUID_STDEXT2_PKU) == 0)
 		return (ENOTSUP);
 	return (0);
 }
 
 int
 pmap_pkru_set(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, u_int keyidx,
     int flags)
 {
 	int error;
 
 	sva = trunc_page(sva);
 	eva = round_page(eva);
 	error = pmap_pkru_check_uargs(pmap, sva, eva, keyidx, flags);
 	if (error != 0)
 		return (error);
 	for (;;) {
 		PMAP_LOCK(pmap);
 		error = pmap_pkru_assign(pmap, sva, eva, keyidx, flags);
 		if (error == 0)
 			pmap_pkru_update_range(pmap, sva, eva, keyidx);
 		PMAP_UNLOCK(pmap);
 		if (error != ENOMEM)
 			break;
 		vm_wait(NULL);
 	}
 	return (error);
 }
 
 int
 pmap_pkru_clear(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
 {
 	int error;
 
 	sva = trunc_page(sva);
 	eva = round_page(eva);
 	error = pmap_pkru_check_uargs(pmap, sva, eva, 0, 0);
 	if (error != 0)
 		return (error);
 	for (;;) {
 		PMAP_LOCK(pmap);
 		error = pmap_pkru_deassign(pmap, sva, eva);
 		if (error == 0)
 			pmap_pkru_update_range(pmap, sva, eva, 0);
 		PMAP_UNLOCK(pmap);
 		if (error != ENOMEM)
 			break;
 		vm_wait(NULL);
 	}
 	return (error);
 }
 
 #if defined(KASAN) || defined(KMSAN)
 
 /*
  * Reserve enough memory to:
  * 1) allocate PDP pages for the shadow map(s),
  * 2) shadow the boot stack of KSTACK_PAGES pages,
  * so we need one PD page, one or two PT pages, and KSTACK_PAGES shadow pages
  * per shadow map.
  */
 #ifdef KASAN
 #define	SAN_EARLY_PAGES	\
 	(NKASANPML4E + 1 + 2 + howmany(KSTACK_PAGES, KASAN_SHADOW_SCALE))
 #else
 #define	SAN_EARLY_PAGES	\
 	(NKMSANSHADPML4E + NKMSANORIGPML4E + 2 * (1 + 2 + KSTACK_PAGES))
 #endif
 
 static uint64_t __nosanitizeaddress __nosanitizememory
 pmap_san_enter_early_alloc_4k(uint64_t pabase)
 {
 	static uint8_t data[PAGE_SIZE * SAN_EARLY_PAGES] __aligned(PAGE_SIZE);
 	static size_t offset = 0;
 	uint64_t pa;
 
 	if (offset == sizeof(data)) {
 		panic("%s: ran out of memory for the bootstrap shadow map",
 		    __func__);
 	}
 
 	pa = pabase + ((vm_offset_t)&data[offset] - KERNSTART);
 	offset += PAGE_SIZE;
 	return (pa);
 }
 
 /*
  * Map a shadow page, before the kernel has bootstrapped its page tables.  This
  * is currently only used to shadow the temporary boot stack set up by locore.
  */
 static void __nosanitizeaddress __nosanitizememory
 pmap_san_enter_early(vm_offset_t va)
 {
 	static bool first = true;
 	pml4_entry_t *pml4e;
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte;
 	uint64_t cr3, pa, base;
 	int i;
 
 	base = amd64_loadaddr();
 	cr3 = rcr3();
 
 	if (first) {
 		/*
 		 * If this the first call, we need to allocate new PML4Es for
 		 * the bootstrap shadow map(s).  We don't know how the PML4 page
 		 * was initialized by the boot loader, so we can't simply test
 		 * whether the shadow map's PML4Es are zero.
 		 */
 		first = false;
 #ifdef KASAN
 		for (i = 0; i < NKASANPML4E; i++) {
 			pa = pmap_san_enter_early_alloc_4k(base);
 
 			pml4e = (pml4_entry_t *)cr3 +
 			    pmap_pml4e_index(KASAN_MIN_ADDRESS + i * NBPML4);
 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
 		}
 #else
 		for (i = 0; i < NKMSANORIGPML4E; i++) {
 			pa = pmap_san_enter_early_alloc_4k(base);
 
 			pml4e = (pml4_entry_t *)cr3 +
 			    pmap_pml4e_index(KMSAN_ORIG_MIN_ADDRESS +
 			    i * NBPML4);
 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
 		}
 		for (i = 0; i < NKMSANSHADPML4E; i++) {
 			pa = pmap_san_enter_early_alloc_4k(base);
 
 			pml4e = (pml4_entry_t *)cr3 +
 			    pmap_pml4e_index(KMSAN_SHAD_MIN_ADDRESS +
 			    i * NBPML4);
 			*pml4e = (pml4_entry_t)(pa | X86_PG_RW | X86_PG_V);
 		}
 #endif
 	}
 	pml4e = (pml4_entry_t *)cr3 + pmap_pml4e_index(va);
 	pdpe = (pdp_entry_t *)(*pml4e & PG_FRAME) + pmap_pdpe_index(va);
 	if (*pdpe == 0) {
 		pa = pmap_san_enter_early_alloc_4k(base);
 		*pdpe = (pdp_entry_t)(pa | X86_PG_RW | X86_PG_V);
 	}
 	pde = (pd_entry_t *)(*pdpe & PG_FRAME) + pmap_pde_index(va);
 	if (*pde == 0) {
 		pa = pmap_san_enter_early_alloc_4k(base);
 		*pde = (pd_entry_t)(pa | X86_PG_RW | X86_PG_V);
 	}
 	pte = (pt_entry_t *)(*pde & PG_FRAME) + pmap_pte_index(va);
 	if (*pte != 0)
 		panic("%s: PTE for %#lx is already initialized", __func__, va);
 	pa = pmap_san_enter_early_alloc_4k(base);
 	*pte = (pt_entry_t)(pa | X86_PG_A | X86_PG_M | X86_PG_RW | X86_PG_V);
 }
 
 static vm_page_t
 pmap_san_enter_alloc_4k(void)
 {
 	vm_page_t m;
 
 	m = vm_page_alloc_noobj(VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED |
 	    VM_ALLOC_ZERO);
 	if (m == NULL)
 		panic("%s: no memory to grow shadow map", __func__);
 	return (m);
 }
 
 static vm_page_t
 pmap_san_enter_alloc_2m(void)
 {
 	return (vm_page_alloc_noobj_contig(VM_ALLOC_WIRED | VM_ALLOC_ZERO,
 	    NPTEPG, 0, ~0ul, NBPDR, 0, VM_MEMATTR_DEFAULT));
 }
 
 /*
  * Grow a shadow map by at least one 4KB page at the specified address.  Use 2MB
  * pages when possible.
  */
 void __nosanitizeaddress __nosanitizememory
 pmap_san_enter(vm_offset_t va)
 {
 	pdp_entry_t *pdpe;
 	pd_entry_t *pde;
 	pt_entry_t *pte;
 	vm_page_t m;
 
 	if (kernphys == 0) {
 		/*
 		 * We're creating a temporary shadow map for the boot stack.
 		 */
 		pmap_san_enter_early(va);
 		return;
 	}
 
 	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
 
 	pdpe = pmap_pdpe(kernel_pmap, va);
 	if ((*pdpe & X86_PG_V) == 0) {
 		m = pmap_san_enter_alloc_4k();
 		*pdpe = (pdp_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
 		    X86_PG_V | pg_nx);
 	}
 	pde = pmap_pdpe_to_pde(pdpe, va);
 	if ((*pde & X86_PG_V) == 0) {
 		m = pmap_san_enter_alloc_2m();
 		if (m != NULL) {
 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
 			    X86_PG_PS | X86_PG_V | X86_PG_A | X86_PG_M | pg_nx);
 		} else {
 			m = pmap_san_enter_alloc_4k();
 			*pde = (pd_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW |
 			    X86_PG_V | pg_nx);
 		}
 	}
 	if ((*pde & X86_PG_PS) != 0)
 		return;
 	pte = pmap_pde_to_pte(pde, va);
 	if ((*pte & X86_PG_V) != 0)
 		return;
 	m = pmap_san_enter_alloc_4k();
 	*pte = (pt_entry_t)(VM_PAGE_TO_PHYS(m) | X86_PG_RW | X86_PG_V |
 	    X86_PG_M | X86_PG_A | pg_nx);
 }
 #endif
 
 /*
  * Track a range of the kernel's virtual address space that is contiguous
  * in various mapping attributes.
  */
 struct pmap_kernel_map_range {
 	vm_offset_t sva;
 	pt_entry_t attrs;
 	int ptes;
 	int pdes;
 	int pdpes;
 };
 
 static void
 sysctl_kmaps_dump(struct sbuf *sb, struct pmap_kernel_map_range *range,
     vm_offset_t eva)
 {
 	const char *mode;
 	int i, pat_idx;
 
 	if (eva <= range->sva)
 		return;
 
 	pat_idx = pmap_pat_index(kernel_pmap, range->attrs, true);
 	for (i = 0; i < PAT_INDEX_SIZE; i++)
 		if (pat_index[i] == pat_idx)
 			break;
 
 	switch (i) {
 	case PAT_WRITE_BACK:
 		mode = "WB";
 		break;
 	case PAT_WRITE_THROUGH:
 		mode = "WT";
 		break;
 	case PAT_UNCACHEABLE:
 		mode = "UC";
 		break;
 	case PAT_UNCACHED:
 		mode = "U-";
 		break;
 	case PAT_WRITE_PROTECTED:
 		mode = "WP";
 		break;
 	case PAT_WRITE_COMBINING:
 		mode = "WC";
 		break;
 	default:
 		printf("%s: unknown PAT mode %#x for range 0x%016lx-0x%016lx\n",
 		    __func__, pat_idx, range->sva, eva);
 		mode = "??";
 		break;
 	}
 
 	sbuf_printf(sb, "0x%016lx-0x%016lx r%c%c%c%c %s %d %d %d\n",
 	    range->sva, eva,
 	    (range->attrs & X86_PG_RW) != 0 ? 'w' : '-',
 	    (range->attrs & pg_nx) != 0 ? '-' : 'x',
 	    (range->attrs & X86_PG_U) != 0 ? 'u' : 's',
 	    (range->attrs & X86_PG_G) != 0 ? 'g' : '-',
 	    mode, range->pdpes, range->pdes, range->ptes);
 
 	/* Reset to sentinel value. */
 	range->sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
 	    NPDEPG - 1, NPTEPG - 1);
 }
 
 /*
  * Determine whether the attributes specified by a page table entry match those
  * being tracked by the current range.  This is not quite as simple as a direct
  * flag comparison since some PAT modes have multiple representations.
  */
 static bool
 sysctl_kmaps_match(struct pmap_kernel_map_range *range, pt_entry_t attrs)
 {
 	pt_entry_t diff, mask;
 
 	mask = X86_PG_G | X86_PG_RW | X86_PG_U | X86_PG_PDE_CACHE | pg_nx;
 	diff = (range->attrs ^ attrs) & mask;
 	if (diff == 0)
 		return (true);
 	if ((diff & ~X86_PG_PDE_PAT) == 0 &&
 	    pmap_pat_index(kernel_pmap, range->attrs, true) ==
 	    pmap_pat_index(kernel_pmap, attrs, true))
 		return (true);
 	return (false);
 }
 
 static void
 sysctl_kmaps_reinit(struct pmap_kernel_map_range *range, vm_offset_t va,
     pt_entry_t attrs)
 {
 
 	memset(range, 0, sizeof(*range));
 	range->sva = va;
 	range->attrs = attrs;
 }
 
 /*
  * Given a leaf PTE, derive the mapping's attributes.  If they do not match
  * those of the current run, dump the address range and its attributes, and
  * begin a new run.
  */
 static void
 sysctl_kmaps_check(struct sbuf *sb, struct pmap_kernel_map_range *range,
     vm_offset_t va, pml4_entry_t pml4e, pdp_entry_t pdpe, pd_entry_t pde,
     pt_entry_t pte)
 {
 	pt_entry_t attrs;
 
 	attrs = pml4e & (X86_PG_RW | X86_PG_U | pg_nx);
 
 	attrs |= pdpe & pg_nx;
 	attrs &= pg_nx | (pdpe & (X86_PG_RW | X86_PG_U));
 	if ((pdpe & PG_PS) != 0) {
 		attrs |= pdpe & (X86_PG_G | X86_PG_PDE_CACHE);
 	} else if (pde != 0) {
 		attrs |= pde & pg_nx;
 		attrs &= pg_nx | (pde & (X86_PG_RW | X86_PG_U));
 	}
 	if ((pde & PG_PS) != 0) {
 		attrs |= pde & (X86_PG_G | X86_PG_PDE_CACHE);
 	} else if (pte != 0) {
 		attrs |= pte & pg_nx;
 		attrs &= pg_nx | (pte & (X86_PG_RW | X86_PG_U));
 		attrs |= pte & (X86_PG_G | X86_PG_PTE_CACHE);
 
 		/* Canonicalize by always using the PDE PAT bit. */
 		if ((attrs & X86_PG_PTE_PAT) != 0)
 			attrs ^= X86_PG_PDE_PAT | X86_PG_PTE_PAT;
 	}
 
 	if (range->sva > va || !sysctl_kmaps_match(range, attrs)) {
 		sysctl_kmaps_dump(sb, range, va);
 		sysctl_kmaps_reinit(range, va, attrs);
 	}
 }
 
 static int
 sysctl_kmaps(SYSCTL_HANDLER_ARGS)
 {
 	struct pmap_kernel_map_range range;
 	struct sbuf sbuf, *sb;
 	pml4_entry_t pml4e;
 	pdp_entry_t *pdp, pdpe;
 	pd_entry_t *pd, pde;
 	pt_entry_t *pt, pte;
 	vm_offset_t sva;
 	vm_paddr_t pa;
 	int error, i, j, k, l;
 
 	error = sysctl_wire_old_buffer(req, 0);
 	if (error != 0)
 		return (error);
 	sb = &sbuf;
 	sbuf_new_for_sysctl(sb, NULL, PAGE_SIZE, req);
 
 	/* Sentinel value. */
 	range.sva = la57 ? KV5ADDR(NPML5EPG - 1, NPML4EPG - 1, NPDPEPG - 1,
 	    NPDEPG - 1, NPTEPG - 1) : KV4ADDR(NPML4EPG - 1, NPDPEPG - 1,
 	    NPDEPG - 1, NPTEPG - 1);
 
 	/*
 	 * Iterate over the kernel page tables without holding the kernel pmap
 	 * lock.  Outside of the large map, kernel page table pages are never
 	 * freed, so at worst we will observe inconsistencies in the output.
 	 * Within the large map, ensure that PDP and PD page addresses are
 	 * valid before descending.
 	 */
 	for (sva = 0, i = pmap_pml4e_index(sva); i < NPML4EPG; i++) {
 		switch (i) {
 		case PML4PML4I:
 			sbuf_printf(sb, "\nRecursive map:\n");
 			break;
 		case DMPML4I:
 			sbuf_printf(sb, "\nDirect map:\n");
 			break;
 #ifdef KASAN
 		case KASANPML4I:
 			sbuf_printf(sb, "\nKASAN shadow map:\n");
 			break;
 #endif
 #ifdef KMSAN
 		case KMSANSHADPML4I:
 			sbuf_printf(sb, "\nKMSAN shadow map:\n");
 			break;
 		case KMSANORIGPML4I:
 			sbuf_printf(sb, "\nKMSAN origin map:\n");
 			break;
 #endif
 		case KPML4BASE:
 			sbuf_printf(sb, "\nKernel map:\n");
 			break;
 		case LMSPML4I:
 			sbuf_printf(sb, "\nLarge map:\n");
 			break;
 		}
 
 		/* Convert to canonical form. */
 		if (sva == 1ul << 47)
 			sva |= -1ul << 48;
 
 restart:
 		pml4e = kernel_pml4[i];
 		if ((pml4e & X86_PG_V) == 0) {
 			sva = rounddown2(sva, NBPML4);
 			sysctl_kmaps_dump(sb, &range, sva);
 			sva += NBPML4;
 			continue;
 		}
 		pa = pml4e & PG_FRAME;
 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(pa);
 
 		for (j = pmap_pdpe_index(sva); j < NPDPEPG; j++) {
 			pdpe = pdp[j];
 			if ((pdpe & X86_PG_V) == 0) {
 				sva = rounddown2(sva, NBPDP);
 				sysctl_kmaps_dump(sb, &range, sva);
 				sva += NBPDP;
 				continue;
 			}
 			pa = pdpe & PG_FRAME;
 			if ((pdpe & PG_PS) != 0) {
 				sva = rounddown2(sva, NBPDP);
 				sysctl_kmaps_check(sb, &range, sva, pml4e, pdpe,
 				    0, 0);
 				range.pdpes++;
 				sva += NBPDP;
 				continue;
 			}
 			if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
 			    vm_phys_paddr_to_vm_page(pa) == NULL) {
 				/*
 				 * Page table pages for the large map may be
 				 * freed.  Validate the next-level address
 				 * before descending.
 				 */
 				goto restart;
 			}
 			pd = (pd_entry_t *)PHYS_TO_DMAP(pa);
 
 			for (k = pmap_pde_index(sva); k < NPDEPG; k++) {
 				pde = pd[k];
 				if ((pde & X86_PG_V) == 0) {
 					sva = rounddown2(sva, NBPDR);
 					sysctl_kmaps_dump(sb, &range, sva);
 					sva += NBPDR;
 					continue;
 				}
 				pa = pde & PG_FRAME;
 				if ((pde & PG_PS) != 0) {
 					sva = rounddown2(sva, NBPDR);
 					sysctl_kmaps_check(sb, &range, sva,
 					    pml4e, pdpe, pde, 0);
 					range.pdes++;
 					sva += NBPDR;
 					continue;
 				}
 				if (PMAP_ADDRESS_IN_LARGEMAP(sva) &&
 				    vm_phys_paddr_to_vm_page(pa) == NULL) {
 					/*
 					 * Page table pages for the large map
 					 * may be freed.  Validate the
 					 * next-level address before descending.
 					 */
 					goto restart;
 				}
 				pt = (pt_entry_t *)PHYS_TO_DMAP(pa);
 
 				for (l = pmap_pte_index(sva); l < NPTEPG; l++,
 				    sva += PAGE_SIZE) {
 					pte = pt[l];
 					if ((pte & X86_PG_V) == 0) {
 						sysctl_kmaps_dump(sb, &range,
 						    sva);
 						continue;
 					}
 					sysctl_kmaps_check(sb, &range, sva,
 					    pml4e, pdpe, pde, pte);
 					range.ptes++;
 				}
 			}
 		}
 	}
 
 	error = sbuf_finish(sb);
 	sbuf_delete(sb);
 	return (error);
 }
 SYSCTL_OID(_vm_pmap, OID_AUTO, kernel_maps,
     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP,
     NULL, 0, sysctl_kmaps, "A",
     "Dump kernel address layout");
 
 #ifdef DDB
 DB_SHOW_COMMAND(pte, pmap_print_pte)
 {
 	pmap_t pmap;
 	pml5_entry_t *pml5;
 	pml4_entry_t *pml4;
 	pdp_entry_t *pdp;
 	pd_entry_t *pde;
 	pt_entry_t *pte, PG_V;
 	vm_offset_t va;
 
 	if (!have_addr) {
 		db_printf("show pte addr\n");
 		return;
 	}
 	va = (vm_offset_t)addr;
 
 	if (kdb_thread != NULL)
 		pmap = vmspace_pmap(kdb_thread->td_proc->p_vmspace);
 	else
 		pmap = PCPU_GET(curpmap);
 
 	PG_V = pmap_valid_bit(pmap);
 	db_printf("VA 0x%016lx", va);
 
 	if (pmap_is_la57(pmap)) {
 		pml5 = pmap_pml5e(pmap, va);
 		db_printf(" pml5e 0x%016lx", *pml5);
 		if ((*pml5 & PG_V) == 0) {
 			db_printf("\n");
 			return;
 		}
 		pml4 = pmap_pml5e_to_pml4e(pml5, va);
 	} else {
 		pml4 = pmap_pml4e(pmap, va);
 	}
 	db_printf(" pml4e 0x%016lx", *pml4);
 	if ((*pml4 & PG_V) == 0) {
 		db_printf("\n");
 		return;
 	}
 	pdp = pmap_pml4e_to_pdpe(pml4, va);
 	db_printf(" pdpe 0x%016lx", *pdp);
 	if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
 		db_printf("\n");
 		return;
 	}
 	pde = pmap_pdpe_to_pde(pdp, va);
 	db_printf(" pde 0x%016lx", *pde);
 	if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
 		db_printf("\n");
 		return;
 	}
 	pte = pmap_pde_to_pte(pde, va);
 	db_printf(" pte 0x%016lx\n", *pte);
 }
 
 DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
 {
 	vm_paddr_t a;
 
 	if (have_addr) {
 		a = (vm_paddr_t)addr;
 		db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
 	} else {
 		db_printf("show phys2dmap addr\n");
 	}
 }
 
 static void
 ptpages_show_page(int level, int idx, vm_page_t pg)
 {
 	db_printf("l %d i %d pg %p phys %#lx ref %x\n",
 	    level, idx, pg, VM_PAGE_TO_PHYS(pg), pg->ref_count);
 }
 
 static void
 ptpages_show_complain(int level, int idx, uint64_t pte)
 {
 	db_printf("l %d i %d pte %#lx\n", level, idx, pte);
 }
 
 static void
 ptpages_show_pml4(vm_page_t pg4, int num_entries, uint64_t PG_V)
 {
 	vm_page_t pg3, pg2, pg1;
 	pml4_entry_t *pml4;
 	pdp_entry_t *pdp;
 	pd_entry_t *pd;
 	int i4, i3, i2;
 
 	pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg4));
 	for (i4 = 0; i4 < num_entries; i4++) {
 		if ((pml4[i4] & PG_V) == 0)
 			continue;
 		pg3 = PHYS_TO_VM_PAGE(pml4[i4] & PG_FRAME);
 		if (pg3 == NULL) {
 			ptpages_show_complain(3, i4, pml4[i4]);
 			continue;
 		}
 		ptpages_show_page(3, i4, pg3);
 		pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg3));
 		for (i3 = 0; i3 < NPDPEPG; i3++) {
 			if ((pdp[i3] & PG_V) == 0)
 				continue;
 			pg2 = PHYS_TO_VM_PAGE(pdp[i3] & PG_FRAME);
 			if (pg3 == NULL) {
 				ptpages_show_complain(2, i3, pdp[i3]);
 				continue;
 			}
 			ptpages_show_page(2, i3, pg2);
 			pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pg2));
 			for (i2 = 0; i2 < NPDEPG; i2++) {
 				if ((pd[i2] & PG_V) == 0)
 					continue;
 				pg1 = PHYS_TO_VM_PAGE(pd[i2] & PG_FRAME);
 				if (pg1 == NULL) {
 					ptpages_show_complain(1, i2, pd[i2]);
 					continue;
 				}
 				ptpages_show_page(1, i2, pg1);
 			}
 		}
 	}
 }
 
 DB_SHOW_COMMAND(ptpages, pmap_ptpages)
 {
 	pmap_t pmap;
 	vm_page_t pg;
 	pml5_entry_t *pml5;
 	uint64_t PG_V;
 	int i5;
 
 	if (have_addr)
 		pmap = (pmap_t)addr;
 	else
 		pmap = PCPU_GET(curpmap);
 
 	PG_V = pmap_valid_bit(pmap);
 
 	if (pmap_is_la57(pmap)) {
 		pml5 = pmap->pm_pmltop;
 		for (i5 = 0; i5 < NUPML5E; i5++) {
 			if ((pml5[i5] & PG_V) == 0)
 				continue;
 			pg = PHYS_TO_VM_PAGE(pml5[i5] & PG_FRAME);
 			if (pg == NULL) {
 				ptpages_show_complain(4, i5, pml5[i5]);
 				continue;
 			}
 			ptpages_show_page(4, i5, pg);
 			ptpages_show_pml4(pg, NPML4EPG, PG_V);
 		}
 	} else {
 		ptpages_show_pml4(PHYS_TO_VM_PAGE(DMAP_TO_PHYS(
 		    (vm_offset_t)pmap->pm_pmltop)), NUP4ML4E, PG_V);
 	}
 }
 #endif