diff --git a/sys/dev/ena/ena.c b/sys/dev/ena/ena.c
index 74dcd37973b5..82f8d42ea0b0 100644
--- a/sys/dev/ena/ena.c
+++ b/sys/dev/ena/ena.c
@@ -1,3975 +1,3976 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2015-2021 Amazon.com, Inc. or its affiliates.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  *
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  *
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_rss.h"
 
 #include <sys/param.h>
 #include <sys/systm.h>
 #include <sys/bus.h>
 #include <sys/endian.h>
 #include <sys/kernel.h>
 #include <sys/kthread.h>
 #include <sys/malloc.h>
 #include <sys/mbuf.h>
 #include <sys/module.h>
 #include <sys/rman.h>
 #include <sys/smp.h>
 #include <sys/socket.h>
 #include <sys/sockio.h>
 #include <sys/sysctl.h>
 #include <sys/taskqueue.h>
 #include <sys/time.h>
 #include <sys/eventhandler.h>
 
+#include <machine/atomic.h>
 #include <machine/bus.h>
 #include <machine/resource.h>
 #include <machine/in_cksum.h>
 
 #include <net/bpf.h>
 #include <net/ethernet.h>
 #include <net/if.h>
 #include <net/if_var.h>
 #include <net/if_arp.h>
 #include <net/if_dl.h>
 #include <net/if_media.h>
 #include <net/if_types.h>
 #include <net/if_vlan_var.h>
 
 #include <netinet/in_systm.h>
 #include <netinet/in.h>
 #include <netinet/if_ether.h>
 #include <netinet/ip.h>
 #include <netinet/ip6.h>
 #include <netinet/tcp.h>
 #include <netinet/udp.h>
 
 #include <dev/pci/pcivar.h>
 #include <dev/pci/pcireg.h>
 
 #include <vm/vm.h>
 #include <vm/pmap.h>
 
 #include "ena_datapath.h"
 #include "ena.h"
 #include "ena_sysctl.h"
 #include "ena_rss.h"
 
 #ifdef DEV_NETMAP
 #include "ena_netmap.h"
 #endif /* DEV_NETMAP */
 
 /*********************************************************
  *  Function prototypes
  *********************************************************/
 static int	ena_probe(device_t);
 static void	ena_intr_msix_mgmnt(void *);
 static void	ena_free_pci_resources(struct ena_adapter *);
 static int	ena_change_mtu(if_t, int);
 static inline void ena_alloc_counters(counter_u64_t *, int);
 static inline void ena_free_counters(counter_u64_t *, int);
 static inline void ena_reset_counters(counter_u64_t *, int);
 static void	ena_init_io_rings_common(struct ena_adapter *,
     struct ena_ring *, uint16_t);
 static void	ena_init_io_rings_basic(struct ena_adapter *);
 static void	ena_init_io_rings_advanced(struct ena_adapter *);
 static void	ena_init_io_rings(struct ena_adapter *);
 static void	ena_free_io_ring_resources(struct ena_adapter *, unsigned int);
 static void	ena_free_all_io_rings_resources(struct ena_adapter *);
 static int	ena_setup_tx_dma_tag(struct ena_adapter *);
 static int	ena_free_tx_dma_tag(struct ena_adapter *);
 static int	ena_setup_rx_dma_tag(struct ena_adapter *);
 static int	ena_free_rx_dma_tag(struct ena_adapter *);
 static void	ena_release_all_tx_dmamap(struct ena_ring *);
 static int	ena_setup_tx_resources(struct ena_adapter *, int);
 static void	ena_free_tx_resources(struct ena_adapter *, int);
 static int	ena_setup_all_tx_resources(struct ena_adapter *);
 static void	ena_free_all_tx_resources(struct ena_adapter *);
 static int	ena_setup_rx_resources(struct ena_adapter *, unsigned int);
 static void	ena_free_rx_resources(struct ena_adapter *, unsigned int);
 static int	ena_setup_all_rx_resources(struct ena_adapter *);
 static void	ena_free_all_rx_resources(struct ena_adapter *);
 static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     struct ena_rx_buffer *);
 static void	ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *,
     struct ena_rx_buffer *);
 static void	ena_free_rx_bufs(struct ena_adapter *, unsigned int);
 static void	ena_refill_all_rx_bufs(struct ena_adapter *);
 static void	ena_free_all_rx_bufs(struct ena_adapter *);
 static void	ena_free_tx_bufs(struct ena_adapter *, unsigned int);
 static void	ena_free_all_tx_bufs(struct ena_adapter *);
 static void	ena_destroy_all_tx_queues(struct ena_adapter *);
 static void	ena_destroy_all_rx_queues(struct ena_adapter *);
 static void	ena_destroy_all_io_queues(struct ena_adapter *);
 static int	ena_create_io_queues(struct ena_adapter *);
 static int	ena_handle_msix(void *);
 static int	ena_enable_msix(struct ena_adapter *);
 static void	ena_setup_mgmnt_intr(struct ena_adapter *);
 static int	ena_setup_io_intr(struct ena_adapter *);
 static int	ena_request_mgmnt_irq(struct ena_adapter *);
 static int	ena_request_io_irq(struct ena_adapter *);
 static void	ena_free_mgmnt_irq(struct ena_adapter *);
 static void	ena_free_io_irq(struct ena_adapter *);
 static void	ena_free_irqs(struct ena_adapter*);
 static void	ena_disable_msix(struct ena_adapter *);
 static void	ena_unmask_all_io_irqs(struct ena_adapter *);
 static int	ena_up_complete(struct ena_adapter *);
 static uint64_t	ena_get_counter(if_t, ift_counter);
 static int	ena_media_change(if_t);
 static void	ena_media_status(if_t, struct ifmediareq *);
 static void	ena_init(void *);
 static int	ena_ioctl(if_t, u_long, caddr_t);
 static int	ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *);
 static void	ena_update_host_info(struct ena_admin_host_info *, if_t);
 static void	ena_update_hwassist(struct ena_adapter *);
 static int	ena_setup_ifnet(device_t, struct ena_adapter *,
     struct ena_com_dev_get_features_ctx *);
 static int	ena_enable_wc(device_t, struct resource *);
 static int	ena_set_queues_placement_policy(device_t, struct ena_com_dev *,
     struct ena_admin_feature_llq_desc *, struct ena_llq_configurations *);
 static int	ena_map_llq_mem_bar(device_t, struct ena_com_dev *);
 static uint32_t	ena_calc_max_io_queue_num(device_t, struct ena_com_dev *,
     struct ena_com_dev_get_features_ctx *);
 static int	ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *);
 static void	ena_config_host_info(struct ena_com_dev *, device_t);
 static int	ena_attach(device_t);
 static int	ena_detach(device_t);
 static int	ena_device_init(struct ena_adapter *, device_t,
     struct ena_com_dev_get_features_ctx *, int *);
 static int	ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *);
 static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *);
 static void	unimplemented_aenq_handler(void *,
     struct ena_admin_aenq_entry *);
 static int	ena_copy_eni_metrics(struct ena_adapter *);
 static void	ena_timer_service(void *);
 
 static char ena_version[] = DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION;
 
 static ena_vendor_info_t ena_vendor_info_array[] = {
     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0},
     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF_RSERV0, 0},
     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0},
     { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF_RSERV0, 0},
     /* Last entry */
     { 0, 0, 0 }
 };
 
 struct sx ena_global_lock;
 
 /*
  * Contains pointers to event handlers, e.g. link state chage.
  */
 static struct ena_aenq_handlers aenq_handlers;
 
 void
 ena_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
 {
 	if (error != 0)
 		return;
 	*(bus_addr_t *) arg = segs[0].ds_addr;
 }
 
 int
 ena_dma_alloc(device_t dmadev, bus_size_t size,
     ena_mem_handle_t *dma, int mapflags, bus_size_t alignment, int domain)
 {
 	struct ena_adapter* adapter = device_get_softc(dmadev);
 	device_t pdev = adapter->pdev;
 	uint32_t maxsize;
 	uint64_t dma_space_addr;
 	int error;
 
 	maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE;
 
 	dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width);
 	if (unlikely(dma_space_addr == 0))
 		dma_space_addr = BUS_SPACE_MAXADDR;
 
 	error = bus_dma_tag_create(bus_get_dma_tag(dmadev), /* parent */
 	    alignment, 0,     /* alignment, bounds 		*/
 	    dma_space_addr,   /* lowaddr of exclusion window	*/
 	    BUS_SPACE_MAXADDR,/* highaddr of exclusion window	*/
 	    NULL, NULL,	      /* filter, filterarg 		*/
 	    maxsize,	      /* maxsize 			*/
 	    1,		      /* nsegments 			*/
 	    maxsize,	      /* maxsegsize 			*/
 	    BUS_DMA_ALLOCNOW, /* flags 				*/
 	    NULL,	      /* lockfunc 			*/
 	    NULL,	      /* lockarg 			*/
 	    &dma->tag);
 	if (unlikely(error != 0)) {
 		ena_log(pdev, ERR, "bus_dma_tag_create failed: %d\n", error);
 		goto fail_tag;
 	}
 
 	error = bus_dma_tag_set_domain(dma->tag, domain);
 	if (unlikely(error != 0)) {
 		ena_log(pdev, ERR, "bus_dma_tag_set_domain failed: %d\n",
 		    error);
 		goto fail_map_create;
 	}
 
 	error = bus_dmamem_alloc(dma->tag, (void**) &dma->vaddr,
 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &dma->map);
 	if (unlikely(error != 0)) {
 		ena_log(pdev, ERR, "bus_dmamem_alloc(%ju) failed: %d\n",
 		    (uintmax_t)size, error);
 		goto fail_map_create;
 	}
 
 	dma->paddr = 0;
 	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
 	    size, ena_dmamap_callback, &dma->paddr, mapflags);
 	if (unlikely((error != 0) || (dma->paddr == 0))) {
 		ena_log(pdev, ERR, "bus_dmamap_load failed: %d\n", error);
 		goto fail_map_load;
 	}
 
 	bus_dmamap_sync(dma->tag, dma->map,
 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
 
 	return (0);
 
 fail_map_load:
 	bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
 fail_map_create:
 	bus_dma_tag_destroy(dma->tag);
 fail_tag:
 	dma->tag = NULL;
 	dma->vaddr = NULL;
 	dma->paddr = 0;
 
 	return (error);
 }
 
 static void
 ena_free_pci_resources(struct ena_adapter *adapter)
 {
 	device_t pdev = adapter->pdev;
 
 	if (adapter->memory != NULL) {
 		bus_release_resource(pdev, SYS_RES_MEMORY,
 		    PCIR_BAR(ENA_MEM_BAR), adapter->memory);
 	}
 
 	if (adapter->registers != NULL) {
 		bus_release_resource(pdev, SYS_RES_MEMORY,
 		    PCIR_BAR(ENA_REG_BAR), adapter->registers);
 	}
 
 	if (adapter->msix != NULL) {
 		bus_release_resource(pdev, SYS_RES_MEMORY,
 		    adapter->msix_rid, adapter->msix);
 	}
 }
 
 static int
 ena_probe(device_t dev)
 {
 	ena_vendor_info_t *ent;
 	char		adapter_name[60];
 	uint16_t	pci_vendor_id = 0;
 	uint16_t	pci_device_id = 0;
 
 	pci_vendor_id = pci_get_vendor(dev);
 	pci_device_id = pci_get_device(dev);
 
 	ent = ena_vendor_info_array;
 	while (ent->vendor_id != 0) {
 		if ((pci_vendor_id == ent->vendor_id) &&
 		    (pci_device_id == ent->device_id)) {
 			ena_log_raw(DBG, "vendor=%x device=%x\n",
 			    pci_vendor_id, pci_device_id);
 
 			sprintf(adapter_name, DEVICE_DESC);
 			device_set_desc_copy(dev, adapter_name);
 			return (BUS_PROBE_DEFAULT);
 		}
 
 		ent++;
 
 	}
 
 	return (ENXIO);
 }
 
 static int
 ena_change_mtu(if_t ifp, int new_mtu)
 {
 	struct ena_adapter *adapter = if_getsoftc(ifp);
 	device_t pdev = adapter->pdev;
 	int rc;
 
 	if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) {
 		ena_log(pdev, ERR, "Invalid MTU setting. "
 		    "new_mtu: %d max mtu: %d min mtu: %d\n",
 		    new_mtu, adapter->max_mtu, ENA_MIN_MTU);
 		return (EINVAL);
 	}
 
 	rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu);
 	if (likely(rc == 0)) {
 		ena_log(pdev, DBG, "set MTU to %d\n", new_mtu);
 		if_setmtu(ifp, new_mtu);
 	} else {
 		ena_log(pdev, ERR, "Failed to set MTU to %d\n", new_mtu);
 	}
 
 	return (rc);
 }
 
 static inline void
 ena_alloc_counters(counter_u64_t *begin, int size)
 {
 	counter_u64_t *end = (counter_u64_t *)((char *)begin + size);
 
 	for (; begin < end; ++begin)
 		*begin = counter_u64_alloc(M_WAITOK);
 }
 
 static inline void
 ena_free_counters(counter_u64_t *begin, int size)
 {
 	counter_u64_t *end = (counter_u64_t *)((char *)begin + size);
 
 	for (; begin < end; ++begin)
 		counter_u64_free(*begin);
 }
 
 static inline void
 ena_reset_counters(counter_u64_t *begin, int size)
 {
 	counter_u64_t *end = (counter_u64_t *)((char *)begin + size);
 
 	for (; begin < end; ++begin)
 		counter_u64_zero(*begin);
 }
 
 static void
 ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring,
     uint16_t qid)
 {
 
 	ring->qid = qid;
 	ring->adapter = adapter;
 	ring->ena_dev = adapter->ena_dev;
-	ring->first_interrupt = false;
+	atomic_store_8(&ring->first_interrupt, false);
 	ring->no_interrupt_event_cnt = 0;
 }
 
 static void
 ena_init_io_rings_basic(struct ena_adapter *adapter)
 {
 	struct ena_com_dev *ena_dev;
 	struct ena_ring *txr, *rxr;
 	struct ena_que *que;
 	int i;
 
 	ena_dev = adapter->ena_dev;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		txr = &adapter->tx_ring[i];
 		rxr = &adapter->rx_ring[i];
 
 		/* TX/RX common ring state */
 		ena_init_io_rings_common(adapter, txr, i);
 		ena_init_io_rings_common(adapter, rxr, i);
 
 		/* TX specific ring state */
 		txr->tx_max_header_size = ena_dev->tx_max_header_size;
 		txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type;
 
 		que = &adapter->que[i];
 		que->adapter = adapter;
 		que->id = i;
 		que->tx_ring = txr;
 		que->rx_ring = rxr;
 
 		txr->que = que;
 		rxr->que = que;
 
 		rxr->empty_rx_queue = 0;
 		rxr->rx_mbuf_sz = ena_mbuf_sz;
 	}
 }
 
 static void
 ena_init_io_rings_advanced(struct ena_adapter *adapter)
 {
 	struct ena_ring *txr, *rxr;
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		txr = &adapter->tx_ring[i];
 		rxr = &adapter->rx_ring[i];
 
 		/* Allocate a buf ring */
 		txr->buf_ring_size = adapter->buf_ring_size;
 		txr->br = buf_ring_alloc(txr->buf_ring_size, M_DEVBUF,
 		    M_WAITOK, &txr->ring_mtx);
 
 		/* Allocate Tx statistics. */
 		ena_alloc_counters((counter_u64_t *)&txr->tx_stats,
 		    sizeof(txr->tx_stats));
 		txr->tx_last_cleanup_ticks = ticks;
 
 		/* Allocate Rx statistics. */
 		ena_alloc_counters((counter_u64_t *)&rxr->rx_stats,
 		    sizeof(rxr->rx_stats));
 
 		/* Initialize locks */
 		snprintf(txr->mtx_name, nitems(txr->mtx_name), "%s:tx(%d)",
 		    device_get_nameunit(adapter->pdev), i);
 		snprintf(rxr->mtx_name, nitems(rxr->mtx_name), "%s:rx(%d)",
 		    device_get_nameunit(adapter->pdev), i);
 
 		mtx_init(&txr->ring_mtx, txr->mtx_name, NULL, MTX_DEF);
 	}
 }
 
 static void
 ena_init_io_rings(struct ena_adapter *adapter)
 {
 	/*
 	 * IO rings initialization can be divided into the 2 steps:
 	 *   1. Initialize variables and fields with initial values and copy
 	 *      them from adapter/ena_dev (basic)
 	 *   2. Allocate mutex, counters and buf_ring (advanced)
 	 */
 	ena_init_io_rings_basic(adapter);
 	ena_init_io_rings_advanced(adapter);
 }
 
 static void
 ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid)
 {
 	struct ena_ring *txr = &adapter->tx_ring[qid];
 	struct ena_ring *rxr = &adapter->rx_ring[qid];
 
 	ena_free_counters((counter_u64_t *)&txr->tx_stats,
 	    sizeof(txr->tx_stats));
 	ena_free_counters((counter_u64_t *)&rxr->rx_stats,
 	    sizeof(rxr->rx_stats));
 
 	ENA_RING_MTX_LOCK(txr);
 	drbr_free(txr->br, M_DEVBUF);
 	ENA_RING_MTX_UNLOCK(txr);
 
 	mtx_destroy(&txr->ring_mtx);
 }
 
 static void
 ena_free_all_io_rings_resources(struct ena_adapter *adapter)
 {
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++)
 		ena_free_io_ring_resources(adapter, i);
 
 }
 
 static int
 ena_setup_tx_dma_tag(struct ena_adapter *adapter)
 {
 	int ret;
 
 	/* Create DMA tag for Tx buffers */
 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev),
 	    1, 0,				  /* alignment, bounds 	     */
 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
 	    NULL, NULL,				  /* filter, filterarg 	     */
 	    ENA_TSO_MAXSIZE,			  /* maxsize 		     */
 	    adapter->max_tx_sgl_size - 1,	  /* nsegments 		     */
 	    ENA_TSO_MAXSIZE,			  /* maxsegsize 	     */
 	    0,					  /* flags 		     */
 	    NULL,				  /* lockfunc 		     */
 	    NULL,				  /* lockfuncarg 	     */
 	    &adapter->tx_buf_tag);
 
 	return (ret);
 }
 
 static int
 ena_free_tx_dma_tag(struct ena_adapter *adapter)
 {
 	int ret;
 
 	ret = bus_dma_tag_destroy(adapter->tx_buf_tag);
 
 	if (likely(ret == 0))
 		adapter->tx_buf_tag = NULL;
 
 	return (ret);
 }
 
 static int
 ena_setup_rx_dma_tag(struct ena_adapter *adapter)
 {
 	int ret;
 
 	/* Create DMA tag for Rx buffers*/
 	ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent   */
 	    1, 0,				  /* alignment, bounds 	     */
 	    ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window  */
 	    BUS_SPACE_MAXADDR, 			  /* highaddr of excl window */
 	    NULL, NULL,				  /* filter, filterarg 	     */
 	    ena_mbuf_sz,			  /* maxsize 		     */
 	    adapter->max_rx_sgl_size,		  /* nsegments 		     */
 	    ena_mbuf_sz,			  /* maxsegsize 	     */
 	    0,					  /* flags 		     */
 	    NULL,				  /* lockfunc 		     */
 	    NULL,				  /* lockarg 		     */
 	    &adapter->rx_buf_tag);
 
 	return (ret);
 }
 
 static int
 ena_free_rx_dma_tag(struct ena_adapter *adapter)
 {
 	int ret;
 
 	ret = bus_dma_tag_destroy(adapter->rx_buf_tag);
 
 	if (likely(ret == 0))
 		adapter->rx_buf_tag = NULL;
 
 	return (ret);
 }
 
 static void
 ena_release_all_tx_dmamap(struct ena_ring *tx_ring)
 {
 	struct ena_adapter *adapter = tx_ring->adapter;
 	struct ena_tx_buffer *tx_info;
 	bus_dma_tag_t tx_tag = adapter->tx_buf_tag;;
 	int i;
 #ifdef DEV_NETMAP
 	struct ena_netmap_tx_info *nm_info;
 	int j;
 #endif /* DEV_NETMAP */
 
 	for (i = 0; i < tx_ring->ring_size; ++i) {
 		tx_info = &tx_ring->tx_buffer_info[i];
 #ifdef DEV_NETMAP
 		if (adapter->ifp->if_capenable & IFCAP_NETMAP) {
 			nm_info = &tx_info->nm_info;
 			for (j = 0; j < ENA_PKT_MAX_BUFS; ++j) {
 				if (nm_info->map_seg[j] != NULL) {
 					bus_dmamap_destroy(tx_tag,
 					    nm_info->map_seg[j]);
 					nm_info->map_seg[j] = NULL;
 				}
 			}
 		}
 #endif /* DEV_NETMAP */
 		if (tx_info->dmamap != NULL) {
 			bus_dmamap_destroy(tx_tag, tx_info->dmamap);
 			tx_info->dmamap = NULL;
 		}
 	}
 }
 
 /**
  * ena_setup_tx_resources - allocate Tx resources (Descriptors)
  * @adapter: network interface device structure
  * @qid: queue index
  *
  * Returns 0 on success, otherwise on failure.
  **/
 static int
 ena_setup_tx_resources(struct ena_adapter *adapter, int qid)
 {
 	device_t pdev = adapter->pdev;
 	char thread_name[MAXCOMLEN + 1];
 	struct ena_que *que = &adapter->que[qid];
 	struct ena_ring *tx_ring = que->tx_ring;
 	cpuset_t *cpu_mask = NULL;
 	int size, i, err;
 #ifdef DEV_NETMAP
 	bus_dmamap_t *map;
 	int j;
 
 	ena_netmap_reset_tx_ring(adapter, qid);
 #endif /* DEV_NETMAP */
 
 	size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size;
 
 	tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
 	if (unlikely(tx_ring->tx_buffer_info == NULL))
 		return (ENOMEM);
 
 	size = sizeof(uint16_t) * tx_ring->ring_size;
 	tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO);
 	if (unlikely(tx_ring->free_tx_ids == NULL))
 		goto err_buf_info_free;
 
 	size = tx_ring->tx_max_header_size;
 	tx_ring->push_buf_intermediate_buf = malloc(size, M_DEVBUF,
 	    M_NOWAIT | M_ZERO);
 	if (unlikely(tx_ring->push_buf_intermediate_buf == NULL))
 		goto err_tx_ids_free;
 
 	/* Req id stack for TX OOO completions */
 	for (i = 0; i < tx_ring->ring_size; i++)
 		tx_ring->free_tx_ids[i] = i;
 
 	/* Reset TX statistics. */
 	ena_reset_counters((counter_u64_t *)&tx_ring->tx_stats,
 	    sizeof(tx_ring->tx_stats));
 
 	tx_ring->next_to_use = 0;
 	tx_ring->next_to_clean = 0;
 	tx_ring->acum_pkts = 0;
 
 	/* Make sure that drbr is empty */
 	ENA_RING_MTX_LOCK(tx_ring);
 	drbr_flush(adapter->ifp, tx_ring->br);
 	ENA_RING_MTX_UNLOCK(tx_ring);
 
 	/* ... and create the buffer DMA maps */
 	for (i = 0; i < tx_ring->ring_size; i++) {
 		err = bus_dmamap_create(adapter->tx_buf_tag, 0,
 		    &tx_ring->tx_buffer_info[i].dmamap);
 		if (unlikely(err != 0)) {
 			ena_log(pdev, ERR,
 			    "Unable to create Tx DMA map for buffer %d\n",
 			    i);
 			goto err_map_release;
 		}
 
 #ifdef DEV_NETMAP
 		if (adapter->ifp->if_capenable & IFCAP_NETMAP) {
 			map = tx_ring->tx_buffer_info[i].nm_info.map_seg;
 			for (j = 0; j < ENA_PKT_MAX_BUFS; j++) {
 				err = bus_dmamap_create(adapter->tx_buf_tag, 0,
 				    &map[j]);
 				if (unlikely(err != 0)) {
 					ena_log(pdev, ERR,
 					    "Unable to create "
 					    "Tx DMA for buffer %d %d\n", i, j);
 					goto err_map_release;
 				}
 			}
 		}
 #endif /* DEV_NETMAP */
 	}
 
 	/* Allocate taskqueues */
 	TASK_INIT(&tx_ring->enqueue_task, 0, ena_deferred_mq_start, tx_ring);
 	tx_ring->enqueue_tq = taskqueue_create_fast("ena_tx_enque", M_NOWAIT,
 	    taskqueue_thread_enqueue, &tx_ring->enqueue_tq);
 	if (unlikely(tx_ring->enqueue_tq == NULL)) {
 		ena_log(pdev, ERR,
 		    "Unable to create taskqueue for enqueue task\n");
 		i = tx_ring->ring_size;
 		goto err_map_release;
 	}
 
 	tx_ring->running = true;
 
 #ifdef RSS
 	cpu_mask = &que->cpu_mask;
 	snprintf(thread_name, sizeof(thread_name), "%s txeq %d",
 	    device_get_nameunit(adapter->pdev), que->cpu);
 #else
 	snprintf(thread_name, sizeof(thread_name), "%s txeq %d",
 	    device_get_nameunit(adapter->pdev), que->id);
 #endif
 	taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, PI_NET,
 	    cpu_mask, "%s", thread_name);
 
 	return (0);
 
 err_map_release:
 	ena_release_all_tx_dmamap(tx_ring);
 err_tx_ids_free:
 	free(tx_ring->free_tx_ids, M_DEVBUF);
 	tx_ring->free_tx_ids = NULL;
 err_buf_info_free:
 	free(tx_ring->tx_buffer_info, M_DEVBUF);
 	tx_ring->tx_buffer_info = NULL;
 
 	return (ENOMEM);
 }
 
 /**
  * ena_free_tx_resources - Free Tx Resources per Queue
  * @adapter: network interface device structure
  * @qid: queue index
  *
  * Free all transmit software resources
  **/
 static void
 ena_free_tx_resources(struct ena_adapter *adapter, int qid)
 {
 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
 #ifdef DEV_NETMAP
 	struct ena_netmap_tx_info *nm_info;
 	int j;
 #endif /* DEV_NETMAP */
 
 	while (taskqueue_cancel(tx_ring->enqueue_tq, &tx_ring->enqueue_task,
 	    NULL))
 		taskqueue_drain(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
 
 	taskqueue_free(tx_ring->enqueue_tq);
 
 	ENA_RING_MTX_LOCK(tx_ring);
 	/* Flush buffer ring, */
 	drbr_flush(adapter->ifp, tx_ring->br);
 
 	/* Free buffer DMA maps, */
 	for (int i = 0; i < tx_ring->ring_size; i++) {
 		bus_dmamap_sync(adapter->tx_buf_tag,
 		    tx_ring->tx_buffer_info[i].dmamap, BUS_DMASYNC_POSTWRITE);
 		bus_dmamap_unload(adapter->tx_buf_tag,
 		    tx_ring->tx_buffer_info[i].dmamap);
 		bus_dmamap_destroy(adapter->tx_buf_tag,
 		    tx_ring->tx_buffer_info[i].dmamap);
 
 #ifdef DEV_NETMAP
 		if (adapter->ifp->if_capenable & IFCAP_NETMAP) {
 			nm_info = &tx_ring->tx_buffer_info[i].nm_info;
 			for (j = 0; j < ENA_PKT_MAX_BUFS; j++) {
 				if (nm_info->socket_buf_idx[j] != 0) {
 					bus_dmamap_sync(adapter->tx_buf_tag,
 					    nm_info->map_seg[j],
 					    BUS_DMASYNC_POSTWRITE);
 					ena_netmap_unload(adapter,
 					    nm_info->map_seg[j]);
 				}
 				bus_dmamap_destroy(adapter->tx_buf_tag,
 				    nm_info->map_seg[j]);
 				nm_info->socket_buf_idx[j] = 0;
 			}
 		}
 #endif /* DEV_NETMAP */
 
 		m_freem(tx_ring->tx_buffer_info[i].mbuf);
 		tx_ring->tx_buffer_info[i].mbuf = NULL;
 	}
 	ENA_RING_MTX_UNLOCK(tx_ring);
 
 	/* And free allocated memory. */
 	free(tx_ring->tx_buffer_info, M_DEVBUF);
 	tx_ring->tx_buffer_info = NULL;
 
 	free(tx_ring->free_tx_ids, M_DEVBUF);
 	tx_ring->free_tx_ids = NULL;
 
 	free(tx_ring->push_buf_intermediate_buf, M_DEVBUF);
 	tx_ring->push_buf_intermediate_buf = NULL;
 }
 
 /**
  * ena_setup_all_tx_resources - allocate all queues Tx resources
  * @adapter: network interface device structure
  *
  * Returns 0 on success, otherwise on failure.
  **/
 static int
 ena_setup_all_tx_resources(struct ena_adapter *adapter)
 {
 	int i, rc;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		rc = ena_setup_tx_resources(adapter, i);
 		if (rc != 0) {
 			ena_log(adapter->pdev, ERR,
 			    "Allocation for Tx Queue %u failed\n", i);
 			goto err_setup_tx;
 		}
 	}
 
 	return (0);
 
 err_setup_tx:
 	/* Rewind the index freeing the rings as we go */
 	while (i--)
 		ena_free_tx_resources(adapter, i);
 	return (rc);
 }
 
 /**
  * ena_free_all_tx_resources - Free Tx Resources for All Queues
  * @adapter: network interface device structure
  *
  * Free all transmit software resources
  **/
 static void
 ena_free_all_tx_resources(struct ena_adapter *adapter)
 {
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++)
 		ena_free_tx_resources(adapter, i);
 }
 
 /**
  * ena_setup_rx_resources - allocate Rx resources (Descriptors)
  * @adapter: network interface device structure
  * @qid: queue index
  *
  * Returns 0 on success, otherwise on failure.
  **/
 static int
 ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid)
 {
 	device_t pdev = adapter->pdev;
 	struct ena_que *que = &adapter->que[qid];
 	struct ena_ring *rx_ring = que->rx_ring;
 	int size, err, i;
 
 	size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size;
 
 #ifdef DEV_NETMAP
 	ena_netmap_reset_rx_ring(adapter, qid);
 	rx_ring->initialized = false;
 #endif /* DEV_NETMAP */
 
 	/*
 	 * Alloc extra element so in rx path
 	 * we can always prefetch rx_info + 1
 	 */
 	size += sizeof(struct ena_rx_buffer);
 
 	rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO);
 
 	size = sizeof(uint16_t) * rx_ring->ring_size;
 	rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK);
 
 	for (i = 0; i < rx_ring->ring_size; i++)
 		rx_ring->free_rx_ids[i] = i;
 
 	/* Reset RX statistics. */
 	ena_reset_counters((counter_u64_t *)&rx_ring->rx_stats,
 	    sizeof(rx_ring->rx_stats));
 
 	rx_ring->next_to_clean = 0;
 	rx_ring->next_to_use = 0;
 
 	/* ... and create the buffer DMA maps */
 	for (i = 0; i < rx_ring->ring_size; i++) {
 		err = bus_dmamap_create(adapter->rx_buf_tag, 0,
 		    &(rx_ring->rx_buffer_info[i].map));
 		if (err != 0) {
 			ena_log(pdev, ERR,
 			    "Unable to create Rx DMA map for buffer %d\n", i);
 			goto err_buf_info_unmap;
 		}
 	}
 
 	/* Create LRO for the ring */
 	if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) {
 		int err = tcp_lro_init(&rx_ring->lro);
 		if (err != 0) {
 			ena_log(pdev, ERR, "LRO[%d] Initialization failed!\n",
 			    qid);
 		} else {
 			ena_log(pdev, DBG, "RX Soft LRO[%d] Initialized\n",
 			    qid);
 			rx_ring->lro.ifp = adapter->ifp;
 		}
 	}
 
 	return (0);
 
 err_buf_info_unmap:
 	while (i--) {
 		bus_dmamap_destroy(adapter->rx_buf_tag,
 		    rx_ring->rx_buffer_info[i].map);
 	}
 
 	free(rx_ring->free_rx_ids, M_DEVBUF);
 	rx_ring->free_rx_ids = NULL;
 	free(rx_ring->rx_buffer_info, M_DEVBUF);
 	rx_ring->rx_buffer_info = NULL;
 	return (ENOMEM);
 }
 
 /**
  * ena_free_rx_resources - Free Rx Resources
  * @adapter: network interface device structure
  * @qid: queue index
  *
  * Free all receive software resources
  **/
 static void
 ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid)
 {
 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
 
 	/* Free buffer DMA maps, */
 	for (int i = 0; i < rx_ring->ring_size; i++) {
 		bus_dmamap_sync(adapter->rx_buf_tag,
 		    rx_ring->rx_buffer_info[i].map, BUS_DMASYNC_POSTREAD);
 		m_freem(rx_ring->rx_buffer_info[i].mbuf);
 		rx_ring->rx_buffer_info[i].mbuf = NULL;
 		bus_dmamap_unload(adapter->rx_buf_tag,
 		    rx_ring->rx_buffer_info[i].map);
 		bus_dmamap_destroy(adapter->rx_buf_tag,
 		    rx_ring->rx_buffer_info[i].map);
 	}
 
 	/* free LRO resources, */
 	tcp_lro_free(&rx_ring->lro);
 
 	/* free allocated memory */
 	free(rx_ring->rx_buffer_info, M_DEVBUF);
 	rx_ring->rx_buffer_info = NULL;
 
 	free(rx_ring->free_rx_ids, M_DEVBUF);
 	rx_ring->free_rx_ids = NULL;
 }
 
 /**
  * ena_setup_all_rx_resources - allocate all queues Rx resources
  * @adapter: network interface device structure
  *
  * Returns 0 on success, otherwise on failure.
  **/
 static int
 ena_setup_all_rx_resources(struct ena_adapter *adapter)
 {
 	int i, rc = 0;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		rc = ena_setup_rx_resources(adapter, i);
 		if (rc != 0) {
 			ena_log(adapter->pdev, ERR,
 			    "Allocation for Rx Queue %u failed\n", i);
 			goto err_setup_rx;
 		}
 	}
 	return (0);
 
 err_setup_rx:
 	/* rewind the index freeing the rings as we go */
 	while (i--)
 		ena_free_rx_resources(adapter, i);
 	return (rc);
 }
 
 /**
  * ena_free_all_rx_resources - Free Rx resources for all queues
  * @adapter: network interface device structure
  *
  * Free all receive software resources
  **/
 static void
 ena_free_all_rx_resources(struct ena_adapter *adapter)
 {
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++)
 		ena_free_rx_resources(adapter, i);
 }
 
 static inline int
 ena_alloc_rx_mbuf(struct ena_adapter *adapter,
     struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info)
 {
 	device_t pdev = adapter->pdev;
 	struct ena_com_buf *ena_buf;
 	bus_dma_segment_t segs[1];
 	int nsegs, error;
 	int mlen;
 
 	/* if previous allocated frag is not used */
 	if (unlikely(rx_info->mbuf != NULL))
 		return (0);
 
 	/* Get mbuf using UMA allocator */
 	rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
 	    rx_ring->rx_mbuf_sz);
 
 	if (unlikely(rx_info->mbuf == NULL)) {
 		counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1);
 		rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
 		if (unlikely(rx_info->mbuf == NULL)) {
 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
 			return (ENOMEM);
 		}
 		mlen = MCLBYTES;
 	} else {
 		mlen = rx_ring->rx_mbuf_sz;
 	}
 	/* Set mbuf length*/
 	rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen;
 
 	/* Map packets for DMA */
 	ena_log(pdev, DBG, "Using tag %p for buffers' DMA mapping, mbuf %p len: %d\n",
 	    adapter->rx_buf_tag,rx_info->mbuf, rx_info->mbuf->m_len);
 	error = bus_dmamap_load_mbuf_sg(adapter->rx_buf_tag, rx_info->map,
 	    rx_info->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
 	if (unlikely((error != 0) || (nsegs != 1))) {
 		ena_log(pdev, WARN,
 		    "failed to map mbuf, error: %d, nsegs: %d\n", error, nsegs);
 		counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1);
 		goto exit;
 
 	}
 
 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map, BUS_DMASYNC_PREREAD);
 
 	ena_buf = &rx_info->ena_buf;
 	ena_buf->paddr = segs[0].ds_addr;
 	ena_buf->len = mlen;
 
 	ena_log(pdev, DBG, "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n",
 	    rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr);
 
 	return (0);
 
 exit:
 	m_freem(rx_info->mbuf);
 	rx_info->mbuf = NULL;
 	return (EFAULT);
 }
 
 static void
 ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring,
     struct ena_rx_buffer *rx_info)
 {
 
 	if (rx_info->mbuf == NULL) {
 		ena_log(adapter->pdev, WARN,
 		    "Trying to free unallocated buffer\n");
 		return;
 	}
 
 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
 	    BUS_DMASYNC_POSTREAD);
 	bus_dmamap_unload(adapter->rx_buf_tag, rx_info->map);
 	m_freem(rx_info->mbuf);
 	rx_info->mbuf = NULL;
 }
 
 /**
  * ena_refill_rx_bufs - Refills ring with descriptors
  * @rx_ring: the ring which we want to feed with free descriptors
  * @num: number of descriptors to refill
  * Refills the ring with newly allocated DMA-mapped mbufs for receiving
  **/
 int
 ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num)
 {
 	struct ena_adapter *adapter = rx_ring->adapter;
 	device_t pdev = adapter->pdev;
 	uint16_t next_to_use, req_id;
 	uint32_t i;
 	int rc;
 
 	ena_log_io(adapter->pdev, DBG, "refill qid: %d\n", rx_ring->qid);
 
 	next_to_use = rx_ring->next_to_use;
 
 	for (i = 0; i < num; i++) {
 		struct ena_rx_buffer *rx_info;
 
 		ena_log_io(pdev, DBG, "RX buffer - next to use: %d\n",
 		    next_to_use);
 
 		req_id = rx_ring->free_rx_ids[next_to_use];
 		rx_info = &rx_ring->rx_buffer_info[req_id];
 #ifdef DEV_NETMAP
 		if (ena_rx_ring_in_netmap(adapter, rx_ring->qid))
 			rc = ena_netmap_alloc_rx_slot(adapter, rx_ring, rx_info);
 		else
 #endif /* DEV_NETMAP */
 			rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info);
 		if (unlikely(rc != 0)) {
 			ena_log_io(pdev, WARN,
 			    "failed to alloc buffer for rx queue %d\n",
 			    rx_ring->qid);
 			break;
 		}
 		rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq,
 		    &rx_info->ena_buf, req_id);
 		if (unlikely(rc != 0)) {
 			ena_log_io(pdev, WARN,
 			    "failed to add buffer for rx queue %d\n",
 			    rx_ring->qid);
 			break;
 		}
 		next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use,
 		    rx_ring->ring_size);
 	}
 
 	if (unlikely(i < num)) {
 		counter_u64_add(rx_ring->rx_stats.refil_partial, 1);
 		ena_log_io(pdev, WARN,
 		     "refilled rx qid %d with only %d mbufs (from %d)\n",
 		     rx_ring->qid, i, num);
 	}
 
 	if (likely(i != 0))
 		ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq);
 
 	rx_ring->next_to_use = next_to_use;
 	return (i);
 }
 
 int
 ena_update_buf_ring_size(struct ena_adapter *adapter,
     uint32_t new_buf_ring_size)
 {
 	uint32_t old_buf_ring_size;
 	int rc = 0;
 	bool dev_was_up;
 
 	old_buf_ring_size = adapter->buf_ring_size;
 	adapter->buf_ring_size = new_buf_ring_size;
 
 	dev_was_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);
 	ena_down(adapter);
 
 	/* Reconfigure buf ring for all Tx rings. */
 	ena_free_all_io_rings_resources(adapter);
 	ena_init_io_rings_advanced(adapter);
 	if (dev_was_up) {
 		/*
 		 * If ena_up() fails, it's not because of recent buf_ring size
 		 * changes. Because of that, we just want to revert old drbr
 		 * value and trigger the reset because something else had to
 		 * go wrong.
 		 */
 		rc = ena_up(adapter);
 		if (unlikely(rc != 0)) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to configure device after setting new drbr size: %u. Reverting old value: %u and triggering the reset\n",
 			    new_buf_ring_size, old_buf_ring_size);
 
 			/* Revert old size and trigger the reset */
 			adapter->buf_ring_size = old_buf_ring_size;
 			ena_free_all_io_rings_resources(adapter);
 			ena_init_io_rings_advanced(adapter);
 
 			ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP_BEFORE_RESET,
 			    adapter);
 			ena_trigger_reset(adapter, ENA_REGS_RESET_OS_TRIGGER);
 
 		}
 	}
 
 	return (rc);
 }
 
 int
 ena_update_queue_size(struct ena_adapter *adapter, uint32_t new_tx_size,
     uint32_t new_rx_size)
 {
 	uint32_t old_tx_size, old_rx_size;
 	int rc = 0;
 	bool dev_was_up;
 
 	old_tx_size = adapter->requested_tx_ring_size;
 	old_rx_size = adapter->requested_rx_ring_size;
 	adapter->requested_tx_ring_size = new_tx_size;
 	adapter->requested_rx_ring_size = new_rx_size;
 
 	dev_was_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);
 	ena_down(adapter);
 
 	/* Configure queues with new size. */
 	ena_init_io_rings_basic(adapter);
 	if (dev_was_up) {
 		rc = ena_up(adapter);
 		if (unlikely(rc != 0)) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to configure device with the new sizes - Tx: %u Rx: %u. Reverting old values - Tx: %u Rx: %u\n",
 			    new_tx_size, new_rx_size, old_tx_size, old_rx_size);
 
 			/* Revert old size. */
 			adapter->requested_tx_ring_size = old_tx_size;
 			adapter->requested_rx_ring_size = old_rx_size;
 			ena_init_io_rings_basic(adapter);
 
 			/* And try again. */
 			rc = ena_up(adapter);
 			if (unlikely(rc != 0)) {
 				ena_log(adapter->pdev, ERR,
 				    "Failed to revert old queue sizes. Triggering device reset.\n");
 				/*
 				 * If we've failed again, something had to go
 				 * wrong. After reset, the device should try to
 				 * go up
 				 */
 				ENA_FLAG_SET_ATOMIC(
 				    ENA_FLAG_DEV_UP_BEFORE_RESET, adapter);
 				ena_trigger_reset(adapter,
 				    ENA_REGS_RESET_OS_TRIGGER);
 			}
 		}
 	}
 
 	return (rc);
 }
 
 static void
 ena_update_io_rings(struct ena_adapter *adapter, uint32_t num)
 {
 	ena_free_all_io_rings_resources(adapter);
 	/* Force indirection table to be reinitialized */
 	ena_com_rss_destroy(adapter->ena_dev);
 
 	adapter->num_io_queues = num;
 	ena_init_io_rings(adapter);
 }
 
 /* Caller should sanitize new_num */
 int
 ena_update_io_queue_nb(struct ena_adapter *adapter, uint32_t new_num)
 {
 	uint32_t old_num;
 	int rc = 0;
 	bool dev_was_up;
 
 	dev_was_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);
 	old_num = adapter->num_io_queues;
 	ena_down(adapter);
 
 	ena_update_io_rings(adapter, new_num);
 
 	if (dev_was_up) {
 		rc = ena_up(adapter);
 		if (unlikely(rc != 0)) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to configure device with %u IO queues. "
 			    "Reverting to previous value: %u\n",
 			    new_num, old_num);
 
 			ena_update_io_rings(adapter, old_num);
 
 			rc = ena_up(adapter);
 			if (unlikely(rc != 0)) {
 				ena_log(adapter->pdev, ERR,
 				    "Failed to revert to previous setup IO "
 				    "queues. Triggering device reset.\n");
 				ENA_FLAG_SET_ATOMIC(
 				    ENA_FLAG_DEV_UP_BEFORE_RESET, adapter);
 				ena_trigger_reset(adapter,
 				    ENA_REGS_RESET_OS_TRIGGER);
 			}
 		}
 	}
 
 	return (rc);
 }
 
 static void
 ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid)
 {
 	struct ena_ring *rx_ring = &adapter->rx_ring[qid];
 	unsigned int i;
 
 	for (i = 0; i < rx_ring->ring_size; i++) {
 		struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i];
 
 		if (rx_info->mbuf != NULL)
 			ena_free_rx_mbuf(adapter, rx_ring, rx_info);
 #ifdef DEV_NETMAP
 		if (((if_getflags(adapter->ifp) & IFF_DYING) == 0) &&
 		    (adapter->ifp->if_capenable & IFCAP_NETMAP)) {
 			if (rx_info->netmap_buf_idx != 0)
 				ena_netmap_free_rx_slot(adapter, rx_ring,
 				    rx_info);
 		}
 #endif /* DEV_NETMAP */
 	}
 }
 
 /**
  * ena_refill_all_rx_bufs - allocate all queues Rx buffers
  * @adapter: network interface device structure
  *
  */
 static void
 ena_refill_all_rx_bufs(struct ena_adapter *adapter)
 {
 	struct ena_ring *rx_ring;
 	int i, rc, bufs_num;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		rx_ring = &adapter->rx_ring[i];
 		bufs_num = rx_ring->ring_size - 1;
 		rc = ena_refill_rx_bufs(rx_ring, bufs_num);
 		if (unlikely(rc != bufs_num))
 			ena_log_io(adapter->pdev, WARN,
 			    "refilling Queue %d failed. "
 			    "Allocated %d buffers from: %d\n", i, rc, bufs_num);
 #ifdef DEV_NETMAP
 		rx_ring->initialized = true;
 #endif /* DEV_NETMAP */
 	}
 }
 
 static void
 ena_free_all_rx_bufs(struct ena_adapter *adapter)
 {
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++)
 		ena_free_rx_bufs(adapter, i);
 }
 
 /**
  * ena_free_tx_bufs - Free Tx Buffers per Queue
  * @adapter: network interface device structure
  * @qid: queue index
  **/
 static void
 ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid)
 {
 	bool print_once = true;
 	struct ena_ring *tx_ring = &adapter->tx_ring[qid];
 
 	ENA_RING_MTX_LOCK(tx_ring);
 	for (int i = 0; i < tx_ring->ring_size; i++) {
 		struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i];
 
 		if (tx_info->mbuf == NULL)
 			continue;
 
 		if (print_once) {
 			ena_log(adapter->pdev, WARN,
 			    "free uncompleted tx mbuf qid %d idx 0x%x\n",
 			    qid, i);
 			print_once = false;
 		} else {
 			ena_log(adapter->pdev, DBG,
 			    "free uncompleted tx mbuf qid %d idx 0x%x\n",
 			     qid, i);
 		}
 
 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
 		    BUS_DMASYNC_POSTWRITE);
 		bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
 
 		m_free(tx_info->mbuf);
 		tx_info->mbuf = NULL;
 	}
 	ENA_RING_MTX_UNLOCK(tx_ring);
 }
 
 static void
 ena_free_all_tx_bufs(struct ena_adapter *adapter)
 {
 
 	for (int i = 0; i < adapter->num_io_queues; i++)
 		ena_free_tx_bufs(adapter, i);
 }
 
 static void
 ena_destroy_all_tx_queues(struct ena_adapter *adapter)
 {
 	uint16_t ena_qid;
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		ena_qid = ENA_IO_TXQ_IDX(i);
 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
 	}
 }
 
 static void
 ena_destroy_all_rx_queues(struct ena_adapter *adapter)
 {
 	uint16_t ena_qid;
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		ena_qid = ENA_IO_RXQ_IDX(i);
 		ena_com_destroy_io_queue(adapter->ena_dev, ena_qid);
 	}
 }
 
 static void
 ena_destroy_all_io_queues(struct ena_adapter *adapter)
 {
 	struct ena_que *queue;
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		queue = &adapter->que[i];
 		while (taskqueue_cancel(queue->cleanup_tq,
 		    &queue->cleanup_task, NULL))
 			taskqueue_drain(queue->cleanup_tq,
 			    &queue->cleanup_task);
 		taskqueue_free(queue->cleanup_tq);
 	}
 
 	ena_destroy_all_tx_queues(adapter);
 	ena_destroy_all_rx_queues(adapter);
 }
 
 static int
 ena_create_io_queues(struct ena_adapter *adapter)
 {
 	struct ena_com_dev *ena_dev = adapter->ena_dev;
 	struct ena_com_create_io_ctx ctx;
 	struct ena_ring *ring;
 	struct ena_que *queue;
 	uint16_t ena_qid;
 	uint32_t msix_vector;
 	cpuset_t *cpu_mask = NULL;
 	int rc, i;
 
 	/* Create TX queues */
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		msix_vector = ENA_IO_IRQ_IDX(i);
 		ena_qid = ENA_IO_TXQ_IDX(i);
 		ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
 		ctx.queue_size = adapter->requested_tx_ring_size;
 		ctx.msix_vector = msix_vector;
 		ctx.qid = ena_qid;
 		ctx.numa_node = adapter->que[i].domain;
 
 		rc = ena_com_create_io_queue(ena_dev, &ctx);
 		if (rc != 0) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to create io TX queue #%d rc: %d\n", i, rc);
 			goto err_tx;
 		}
 		ring = &adapter->tx_ring[i];
 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
 		    &ring->ena_com_io_sq,
 		    &ring->ena_com_io_cq);
 		if (rc != 0) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to get TX queue handlers. TX queue num"
 			    " %d rc: %d\n", i, rc);
 			ena_com_destroy_io_queue(ena_dev, ena_qid);
 			goto err_tx;
 		}
 
 		if (ctx.numa_node >= 0) {
 			ena_com_update_numa_node(ring->ena_com_io_cq,
 			    ctx.numa_node);
 		}
 	}
 
 	/* Create RX queues */
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		msix_vector = ENA_IO_IRQ_IDX(i);
 		ena_qid = ENA_IO_RXQ_IDX(i);
 		ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
 		ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
 		ctx.queue_size = adapter->requested_rx_ring_size;
 		ctx.msix_vector = msix_vector;
 		ctx.qid = ena_qid;
 		ctx.numa_node = adapter->que[i].domain;
 
 		rc = ena_com_create_io_queue(ena_dev, &ctx);
 		if (unlikely(rc != 0)) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to create io RX queue[%d] rc: %d\n", i, rc);
 			goto err_rx;
 		}
 
 		ring = &adapter->rx_ring[i];
 		rc = ena_com_get_io_handlers(ena_dev, ena_qid,
 		    &ring->ena_com_io_sq,
 		    &ring->ena_com_io_cq);
 		if (unlikely(rc != 0)) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to get RX queue handlers. RX queue num"
 			    " %d rc: %d\n", i, rc);
 			ena_com_destroy_io_queue(ena_dev, ena_qid);
 			goto err_rx;
 		}
 
 		if (ctx.numa_node >= 0) {
 			ena_com_update_numa_node(ring->ena_com_io_cq,
 			    ctx.numa_node);
 		}
 	}
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		queue = &adapter->que[i];
 
 		TASK_INIT(&queue->cleanup_task, 0, ena_cleanup, queue);
 		queue->cleanup_tq = taskqueue_create_fast("ena cleanup",
 		    M_WAITOK, taskqueue_thread_enqueue, &queue->cleanup_tq);
 
 #ifdef RSS
 		cpu_mask = &queue->cpu_mask;
 #endif
 		taskqueue_start_threads_cpuset(&queue->cleanup_tq, 1, PI_NET,
 		    cpu_mask,
 		    "%s queue %d cleanup",
 		    device_get_nameunit(adapter->pdev), i);
 	}
 
 	return (0);
 
 err_rx:
 	while (i--)
 		ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i));
 	i = adapter->num_io_queues;
 err_tx:
 	while (i--)
 		ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i));
 
 	return (ENXIO);
 }
 
 /*********************************************************************
  *
  *  MSIX & Interrupt Service routine
  *
  **********************************************************************/
 
 /**
  * ena_handle_msix - MSIX Interrupt Handler for admin/async queue
  * @arg: interrupt number
  **/
 static void
 ena_intr_msix_mgmnt(void *arg)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
 
 	ena_com_admin_q_comp_intr_handler(adapter->ena_dev);
 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter)))
 		ena_com_aenq_intr_handler(adapter->ena_dev, arg);
 }
 
 /**
  * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx
  * @arg: queue
  **/
 static int
 ena_handle_msix(void *arg)
 {
 	struct ena_que *queue = arg;
 	struct ena_adapter *adapter = queue->adapter;
 	if_t ifp = adapter->ifp;
 
 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
 		return (FILTER_STRAY);
 
 	taskqueue_enqueue(queue->cleanup_tq, &queue->cleanup_task);
 
 	return (FILTER_HANDLED);
 }
 
 static int
 ena_enable_msix(struct ena_adapter *adapter)
 {
 	device_t dev = adapter->pdev;
 	int msix_vecs, msix_req;
 	int i, rc = 0;
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_MSIX_ENABLED, adapter)) {
 		ena_log(dev, ERR, "Error, MSI-X is already enabled\n");
 		return (EINVAL);
 	}
 
 	/* Reserved the max msix vectors we might need */
 	msix_vecs = ENA_MAX_MSIX_VEC(adapter->max_num_io_queues);
 
 	adapter->msix_entries = malloc(msix_vecs * sizeof(struct msix_entry),
 	    M_DEVBUF, M_WAITOK | M_ZERO);
 
 	ena_log(dev, DBG, "trying to enable MSI-X, vectors: %d\n",
 	    msix_vecs);
 
 	for (i = 0; i < msix_vecs; i++) {
 		adapter->msix_entries[i].entry = i;
 		/* Vectors must start from 1 */
 		adapter->msix_entries[i].vector = i + 1;
 	}
 
 	msix_req = msix_vecs;
 	rc = pci_alloc_msix(dev, &msix_vecs);
 	if (unlikely(rc != 0)) {
 		ena_log(dev, ERR,
 		    "Failed to enable MSIX, vectors %d rc %d\n", msix_vecs, rc);
 
 		rc = ENOSPC;
 		goto err_msix_free;
 	}
 
 	if (msix_vecs != msix_req) {
 		if (msix_vecs == ENA_ADMIN_MSIX_VEC) {
 			ena_log(dev, ERR,
 			    "Not enough number of MSI-x allocated: %d\n",
 			    msix_vecs);
 			pci_release_msi(dev);
 			rc = ENOSPC;
 			goto err_msix_free;
 		}
 		ena_log(dev, ERR, "Enable only %d MSI-x (out of %d), reduce "
 		    "the number of queues\n", msix_vecs, msix_req);
 	}
 
 	adapter->msix_vecs = msix_vecs;
 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_MSIX_ENABLED, adapter);
 
 	return (0);
 
 err_msix_free:
 	free(adapter->msix_entries, M_DEVBUF);
 	adapter->msix_entries = NULL;
 
 	return (rc);
 }
 
 static void
 ena_setup_mgmnt_intr(struct ena_adapter *adapter)
 {
 
 	snprintf(adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].name,
 	    ENA_IRQNAME_SIZE, "ena-mgmnt@pci:%s",
 	    device_get_nameunit(adapter->pdev));
 	/*
 	 * Handler is NULL on purpose, it will be set
 	 * when mgmnt interrupt is acquired
 	 */
 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].handler = NULL;
 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].data = adapter;
 	adapter->irq_tbl[ENA_MGMNT_IRQ_IDX].vector =
 	    adapter->msix_entries[ENA_MGMNT_IRQ_IDX].vector;
 }
 
 static int
 ena_setup_io_intr(struct ena_adapter *adapter)
 {
 #ifdef RSS
 	int num_buckets = rss_getnumbuckets();
 	static int last_bind = 0;
 	int cur_bind;
 	int idx;
 #endif
 	int irq_idx;
 
 	if (adapter->msix_entries == NULL)
 		return (EINVAL);
 
 #ifdef RSS
 	if (adapter->first_bind < 0) {
 		adapter->first_bind = last_bind;
 		last_bind = (last_bind + adapter->num_io_queues) % num_buckets;
 	}
 	cur_bind = adapter->first_bind;
 #endif
 
 	for (int i = 0; i < adapter->num_io_queues; i++) {
 		irq_idx = ENA_IO_IRQ_IDX(i);
 
 		snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE,
 		    "%s-TxRx-%d", device_get_nameunit(adapter->pdev), i);
 		adapter->irq_tbl[irq_idx].handler = ena_handle_msix;
 		adapter->irq_tbl[irq_idx].data = &adapter->que[i];
 		adapter->irq_tbl[irq_idx].vector =
 		    adapter->msix_entries[irq_idx].vector;
 		ena_log(adapter->pdev, DBG, "ena_setup_io_intr vector: %d\n",
 		    adapter->msix_entries[irq_idx].vector);
 
 #ifdef RSS
 		adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu =
 		    rss_getcpu(cur_bind);
 		cur_bind = (cur_bind + 1) % num_buckets;
 		CPU_SETOF(adapter->que[i].cpu, &adapter->que[i].cpu_mask);
 
 		for (idx = 0; idx < MAXMEMDOM; ++idx) {
 			if (CPU_ISSET(adapter->que[i].cpu, &cpuset_domain[idx]))
 				break;
 		}
 		adapter->que[i].domain = idx;
 #else
 		adapter->que[i].domain = -1;
 #endif
 	}
 
 	return (0);
 }
 
 static int
 ena_request_mgmnt_irq(struct ena_adapter *adapter)
 {
 	device_t pdev = adapter->pdev;
 	struct ena_irq *irq;
 	unsigned long flags;
 	int rc, rcc;
 
 	flags = RF_ACTIVE | RF_SHAREABLE;
 
 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
 	irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ,
 	    &irq->vector, flags);
 
 	if (unlikely(irq->res == NULL)) {
 		ena_log(pdev, ERR, "could not allocate irq vector: %d\n",
 		    irq->vector);
 		return (ENXIO);
 	}
 
 	rc = bus_setup_intr(adapter->pdev, irq->res,
 	    INTR_TYPE_NET | INTR_MPSAFE, NULL, ena_intr_msix_mgmnt,
 	    irq->data, &irq->cookie);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "failed to register "
 		    "interrupt handler for irq %ju: %d\n",
 		    rman_get_start(irq->res), rc);
 		goto err_res_free;
 	}
 	irq->requested = true;
 
 	return (rc);
 
 err_res_free:
 	ena_log(pdev, INFO, "releasing resource for irq %d\n", irq->vector);
 	rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
 	    irq->vector, irq->res);
 	if (unlikely(rcc != 0))
 		ena_log(pdev, ERR, "dev has no parent while "
 		    "releasing res for irq: %d\n", irq->vector);
 	irq->res = NULL;
 
 	return (rc);
 }
 
 static int
 ena_request_io_irq(struct ena_adapter *adapter)
 {
 	device_t pdev = adapter->pdev;
 	struct ena_irq *irq;
 	unsigned long flags = 0;
 	int rc = 0, i, rcc;
 
 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_MSIX_ENABLED, adapter))) {
 		ena_log(pdev, ERR,
 		    "failed to request I/O IRQ: MSI-X is not enabled\n");
 		return (EINVAL);
 	} else {
 		flags = RF_ACTIVE | RF_SHAREABLE;
 	}
 
 	for (i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
 		irq = &adapter->irq_tbl[i];
 
 		if (unlikely(irq->requested))
 			continue;
 
 		irq->res = bus_alloc_resource_any(adapter->pdev, SYS_RES_IRQ,
 		    &irq->vector, flags);
 		if (unlikely(irq->res == NULL)) {
 			rc = ENOMEM;
 			ena_log(pdev, ERR, "could not allocate irq vector: %d\n",
 			    irq->vector);
 			goto err;
 		}
 
 		rc = bus_setup_intr(adapter->pdev, irq->res,
 		    INTR_TYPE_NET | INTR_MPSAFE, irq->handler, NULL,
 		    irq->data, &irq->cookie);
 		 if (unlikely(rc != 0)) {
 			ena_log(pdev, ERR, "failed to register "
 			    "interrupt handler for irq %ju: %d\n",
 			    rman_get_start(irq->res), rc);
 			goto err;
 		}
 		irq->requested = true;
 
 #ifdef RSS
 		rc = bus_bind_intr(adapter->pdev, irq->res, irq->cpu);
 		if (unlikely(rc != 0)) {
 			ena_log(pdev, ERR, "failed to bind "
 			    "interrupt handler for irq %ju to cpu %d: %d\n",
 			    rman_get_start(irq->res), irq->cpu, rc);
 			goto err;
 		}
 
 		ena_log(pdev, INFO, "queue %d - cpu %d\n",
 		    i - ENA_IO_IRQ_FIRST_IDX, irq->cpu);
 #endif
 	}
 
 	return (rc);
 
 err:
 
 	for (; i >= ENA_IO_IRQ_FIRST_IDX; i--) {
 		irq = &adapter->irq_tbl[i];
 		rcc = 0;
 
 		/* Once we entered err: section and irq->requested is true we
 		   free both intr and resources */
 		if (irq->requested)
 			rcc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie);
 		if (unlikely(rcc != 0))
 			ena_log(pdev, ERR, "could not release irq: %d, error: %d\n",
 			    irq->vector, rcc);
 
 		/* If we entered err: section without irq->requested set we know
 		   it was bus_alloc_resource_any() that needs cleanup, provided
 		   res is not NULL. In case res is NULL no work in needed in
 		   this iteration */
 		rcc = 0;
 		if (irq->res != NULL) {
 			rcc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
 			    irq->vector, irq->res);
 		}
 		if (unlikely(rcc != 0))
 			ena_log(pdev, ERR, "dev has no parent while "
 			    "releasing res for irq: %d\n", irq->vector);
 		irq->requested = false;
 		irq->res = NULL;
 	}
 
 	return (rc);
 }
 
 static void
 ena_free_mgmnt_irq(struct ena_adapter *adapter)
 {
 	device_t pdev = adapter->pdev;
 	struct ena_irq *irq;
 	int rc;
 
 	irq = &adapter->irq_tbl[ENA_MGMNT_IRQ_IDX];
 	if (irq->requested) {
 		ena_log(pdev, DBG, "tear down irq: %d\n", irq->vector);
 		rc = bus_teardown_intr(adapter->pdev, irq->res, irq->cookie);
 		if (unlikely(rc != 0))
 			ena_log(pdev, ERR, "failed to tear down irq: %d\n",
 			    irq->vector);
 		irq->requested = 0;
 	}
 
 	if (irq->res != NULL) {
 		ena_log(pdev, DBG, "release resource irq: %d\n", irq->vector);
 		rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
 		    irq->vector, irq->res);
 		irq->res = NULL;
 		if (unlikely(rc != 0))
 			ena_log(pdev, ERR, "dev has no parent while "
 			    "releasing res for irq: %d\n", irq->vector);
 	}
 }
 
 static void
 ena_free_io_irq(struct ena_adapter *adapter)
 {
 	device_t pdev = adapter->pdev;
 	struct ena_irq *irq;
 	int rc;
 
 	for (int i = ENA_IO_IRQ_FIRST_IDX; i < adapter->msix_vecs; i++) {
 		irq = &adapter->irq_tbl[i];
 		if (irq->requested) {
 			ena_log(pdev, DBG, "tear down irq: %d\n", irq->vector);
 			rc = bus_teardown_intr(adapter->pdev, irq->res,
 			    irq->cookie);
 			if (unlikely(rc != 0)) {
 				ena_log(pdev, ERR, "failed to tear down irq: %d\n",
 				    irq->vector);
 			}
 			irq->requested = 0;
 		}
 
 		if (irq->res != NULL) {
 			ena_log(pdev, DBG, "release resource irq: %d\n",
 			    irq->vector);
 			rc = bus_release_resource(adapter->pdev, SYS_RES_IRQ,
 			    irq->vector, irq->res);
 			irq->res = NULL;
 			if (unlikely(rc != 0)) {
 				ena_log(pdev, ERR, "dev has no parent"
 				    " while releasing res for irq: %d\n",
 				    irq->vector);
 			}
 		}
 	}
 }
 
 static void
 ena_free_irqs(struct ena_adapter* adapter)
 {
 
 	ena_free_io_irq(adapter);
 	ena_free_mgmnt_irq(adapter);
 	ena_disable_msix(adapter);
 }
 
 static void
 ena_disable_msix(struct ena_adapter *adapter)
 {
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_MSIX_ENABLED, adapter)) {
 		ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_MSIX_ENABLED, adapter);
 		pci_release_msi(adapter->pdev);
 	}
 
 	adapter->msix_vecs = 0;
 	free(adapter->msix_entries, M_DEVBUF);
 	adapter->msix_entries = NULL;
 }
 
 static void
 ena_unmask_all_io_irqs(struct ena_adapter *adapter)
 {
 	struct ena_com_io_cq* io_cq;
 	struct ena_eth_io_intr_reg intr_reg;
 	struct ena_ring *tx_ring;
 	uint16_t ena_qid;
 	int i;
 
 	/* Unmask interrupts for all queues */
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		ena_qid = ENA_IO_TXQ_IDX(i);
 		io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
 		ena_com_update_intr_reg(&intr_reg, 0, 0, true);
 		tx_ring = &adapter->tx_ring[i];
 		counter_u64_add(tx_ring->tx_stats.unmask_interrupt_num, 1);
 		ena_com_unmask_intr(io_cq, &intr_reg);
 	}
 }
 
 static int
 ena_up_complete(struct ena_adapter *adapter)
 {
 	int rc;
 
 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
 		rc = ena_rss_configure(adapter);
 		if (rc != 0) {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to configure RSS\n");
 			return (rc);
 		}
 	}
 
 	rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu);
 	if (unlikely(rc != 0))
 		return (rc);
 
 	ena_refill_all_rx_bufs(adapter);
 	ena_reset_counters((counter_u64_t *)&adapter->hw_stats,
 	    sizeof(adapter->hw_stats));
 
 	return (0);
 }
 
 static void
 set_io_rings_size(struct ena_adapter *adapter, int new_tx_size,
     int new_rx_size)
 {
 	int i;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		adapter->tx_ring[i].ring_size = new_tx_size;
 		adapter->rx_ring[i].ring_size = new_rx_size;
 	}
 }
 
 static int
 create_queues_with_size_backoff(struct ena_adapter *adapter)
 {
 	device_t pdev = adapter->pdev;
 	int rc;
 	uint32_t cur_rx_ring_size, cur_tx_ring_size;
 	uint32_t new_rx_ring_size, new_tx_ring_size;
 
 	/*
 	 * Current queue sizes might be set to smaller than the requested
 	 * ones due to past queue allocation failures.
 	 */
 	set_io_rings_size(adapter, adapter->requested_tx_ring_size,
 	    adapter->requested_rx_ring_size);
 
 	while (1) {
 		/* Allocate transmit descriptors */
 		rc = ena_setup_all_tx_resources(adapter);
 		if (unlikely(rc != 0)) {
 			ena_log(pdev, ERR, "err_setup_tx\n");
 			goto err_setup_tx;
 		}
 
 		/* Allocate receive descriptors */
 		rc = ena_setup_all_rx_resources(adapter);
 		if (unlikely(rc != 0)) {
 			ena_log(pdev, ERR, "err_setup_rx\n");
 			goto err_setup_rx;
 		}
 
 		/* Create IO queues for Rx & Tx */
 		rc = ena_create_io_queues(adapter);
 		if (unlikely(rc != 0)) {
 			ena_log(pdev, ERR,
 			    "create IO queues failed\n");
 			goto err_io_que;
 		}
 
 		return (0);
 
 err_io_que:
 		ena_free_all_rx_resources(adapter);
 err_setup_rx:
 		ena_free_all_tx_resources(adapter);
 err_setup_tx:
 		/*
 		 * Lower the ring size if ENOMEM. Otherwise, return the
 		 * error straightaway.
 		 */
 		if (unlikely(rc != ENOMEM)) {
 			ena_log(pdev, ERR,
 			    "Queue creation failed with error code: %d\n", rc);
 			return (rc);
 		}
 
 		cur_tx_ring_size = adapter->tx_ring[0].ring_size;
 		cur_rx_ring_size = adapter->rx_ring[0].ring_size;
 
 		ena_log(pdev, ERR,
 		    "Not enough memory to create queues with sizes TX=%d, RX=%d\n",
 		    cur_tx_ring_size, cur_rx_ring_size);
 
 		new_tx_ring_size = cur_tx_ring_size;
 		new_rx_ring_size = cur_rx_ring_size;
 
 		/*
 		 * Decrease the size of a larger queue, or decrease both if they are
 		 * the same size.
 		 */
 		if (cur_rx_ring_size <= cur_tx_ring_size)
 			new_tx_ring_size = cur_tx_ring_size / 2;
 		if (cur_rx_ring_size >= cur_tx_ring_size)
 			new_rx_ring_size = cur_rx_ring_size / 2;
 
 		if (new_tx_ring_size < ENA_MIN_RING_SIZE ||
 		    new_rx_ring_size < ENA_MIN_RING_SIZE) {
 			ena_log(pdev, ERR,
 			    "Queue creation failed with the smallest possible queue size"
 			    "of %d for both queues. Not retrying with smaller queues\n",
 			    ENA_MIN_RING_SIZE);
 			return (rc);
 		}
 
 		ena_log(pdev, INFO,
 		    "Retrying queue creation with sizes TX=%d, RX=%d\n",
 		    new_tx_ring_size, new_rx_ring_size);
 
 		set_io_rings_size(adapter, new_tx_ring_size, new_rx_ring_size);
 	}
 }
 
 int
 ena_up(struct ena_adapter *adapter)
 {
 	int rc = 0;
 
 	ENA_LOCK_ASSERT();
 
 	if (unlikely(device_is_attached(adapter->pdev) == 0)) {
 		ena_log(adapter->pdev, ERR, "device is not attached!\n");
 		return (ENXIO);
 	}
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
 		return (0);
 
 	ena_log(adapter->pdev, INFO, "device is going UP\n");
 
 	/*
 	 * ena_timer_service can use functions, which write to the admin queue.
 	 * Those calls are not protected by ENA_LOCK, and because of that, the
 	 * timer should be stopped when bringing the device up or down.
 	 */
 	ENA_TIMER_DRAIN(adapter);
 
 	/* setup interrupts for IO queues */
 	rc = ena_setup_io_intr(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(adapter->pdev, ERR, "error setting up IO interrupt\n");
 		goto error;
 	}
 	rc = ena_request_io_irq(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(adapter->pdev, ERR, "err_req_irq\n");
 		goto error;
 	}
 
 	ena_log(adapter->pdev, INFO,
 	    "Creating %u IO queues. Rx queue size: %d, Tx queue size: %d, "
 	    "LLQ is %s\n",
 	    adapter->num_io_queues,
 	    adapter->requested_rx_ring_size,
 	    adapter->requested_tx_ring_size,
 	    (adapter->ena_dev->tx_mem_queue_type ==
 	        ENA_ADMIN_PLACEMENT_POLICY_DEV) ?  "ENABLED" : "DISABLED");
 
 	rc = create_queues_with_size_backoff(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(adapter->pdev, ERR,
 		    "error creating queues with size backoff\n");
 		goto err_create_queues_with_backoff;
 	}
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter))
 		if_link_state_change(adapter->ifp, LINK_STATE_UP);
 
 	rc = ena_up_complete(adapter);
 	if (unlikely(rc != 0))
 		goto err_up_complete;
 
 	counter_u64_add(adapter->dev_stats.interface_up, 1);
 
 	ena_update_hwassist(adapter);
 
 	if_setdrvflagbits(adapter->ifp, IFF_DRV_RUNNING,
 		IFF_DRV_OACTIVE);
 
 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP, adapter);
 
 	ena_unmask_all_io_irqs(adapter);
 
 	ENA_TIMER_RESET(adapter);
 
 	return (0);
 
 err_up_complete:
 	ena_destroy_all_io_queues(adapter);
 	ena_free_all_rx_resources(adapter);
 	ena_free_all_tx_resources(adapter);
 err_create_queues_with_backoff:
 	ena_free_io_irq(adapter);
 error:
 	ENA_TIMER_RESET(adapter);
 
 	return (rc);
 }
 
 static uint64_t
 ena_get_counter(if_t ifp, ift_counter cnt)
 {
 	struct ena_adapter *adapter;
 	struct ena_hw_stats *stats;
 
 	adapter = if_getsoftc(ifp);
 	stats = &adapter->hw_stats;
 
 	switch (cnt) {
 	case IFCOUNTER_IPACKETS:
 		return (counter_u64_fetch(stats->rx_packets));
 	case IFCOUNTER_OPACKETS:
 		return (counter_u64_fetch(stats->tx_packets));
 	case IFCOUNTER_IBYTES:
 		return (counter_u64_fetch(stats->rx_bytes));
 	case IFCOUNTER_OBYTES:
 		return (counter_u64_fetch(stats->tx_bytes));
 	case IFCOUNTER_IQDROPS:
 		return (counter_u64_fetch(stats->rx_drops));
 	case IFCOUNTER_OQDROPS:
 		return (counter_u64_fetch(stats->tx_drops));
 	default:
 		return (if_get_counter_default(ifp, cnt));
 	}
 }
 
 static int
 ena_media_change(if_t ifp)
 {
 	/* Media Change is not supported by firmware */
 	return (0);
 }
 
 static void
 ena_media_status(if_t ifp, struct ifmediareq *ifmr)
 {
 	struct ena_adapter *adapter = if_getsoftc(ifp);
 	ena_log(adapter->pdev, DBG, "Media status update\n");
 
 	ENA_LOCK_LOCK();
 
 	ifmr->ifm_status = IFM_AVALID;
 	ifmr->ifm_active = IFM_ETHER;
 
 	if (!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)) {
 		ENA_LOCK_UNLOCK();
 		ena_log(adapter->pdev, INFO, "Link is down\n");
 		return;
 	}
 
 	ifmr->ifm_status |= IFM_ACTIVE;
 	ifmr->ifm_active |= IFM_UNKNOWN | IFM_FDX;
 
 	ENA_LOCK_UNLOCK();
 }
 
 static void
 ena_init(void *arg)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
 
 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter)) {
 		ENA_LOCK_LOCK();
 		ena_up(adapter);
 		ENA_LOCK_UNLOCK();
 	}
 }
 
 static int
 ena_ioctl(if_t ifp, u_long command, caddr_t data)
 {
 	struct ena_adapter *adapter;
 	struct ifreq *ifr;
 	int rc;
 
 	adapter = ifp->if_softc;
 	ifr = (struct ifreq *)data;
 
 	/*
 	 * Acquiring lock to prevent from running up and down routines parallel.
 	 */
 	rc = 0;
 	switch (command) {
 	case SIOCSIFMTU:
 		if (ifp->if_mtu == ifr->ifr_mtu)
 			break;
 		ENA_LOCK_LOCK();
 		ena_down(adapter);
 
 		ena_change_mtu(ifp, ifr->ifr_mtu);
 
 		rc = ena_up(adapter);
 		ENA_LOCK_UNLOCK();
 		break;
 
 	case SIOCSIFFLAGS:
 		if ((ifp->if_flags & IFF_UP) != 0) {
 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
 				if ((ifp->if_flags & (IFF_PROMISC |
 				    IFF_ALLMULTI)) != 0) {
 					ena_log(adapter->pdev, INFO,
 					    "ioctl promisc/allmulti\n");
 				}
 			} else {
 				ENA_LOCK_LOCK();
 				rc = ena_up(adapter);
 				ENA_LOCK_UNLOCK();
 			}
 		} else {
 			if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
 				ENA_LOCK_LOCK();
 				ena_down(adapter);
 				ENA_LOCK_UNLOCK();
 			}
 		}
 		break;
 
 	case SIOCADDMULTI:
 	case SIOCDELMULTI:
 		break;
 
 	case SIOCSIFMEDIA:
 	case SIOCGIFMEDIA:
 		rc = ifmedia_ioctl(ifp, ifr, &adapter->media, command);
 		break;
 
 	case SIOCSIFCAP:
 		{
 			int reinit = 0;
 
 			if (ifr->ifr_reqcap != ifp->if_capenable) {
 				ifp->if_capenable = ifr->ifr_reqcap;
 				reinit = 1;
 			}
 
 			if ((reinit != 0) &&
 			    ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)) {
 				ENA_LOCK_LOCK();
 				ena_down(adapter);
 				rc = ena_up(adapter);
 				ENA_LOCK_UNLOCK();
 			}
 		}
 
 		break;
 	default:
 		rc = ether_ioctl(ifp, command, data);
 		break;
 	}
 
 	return (rc);
 }
 
 static int
 ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat)
 {
 	int caps = 0;
 
 	if ((feat->offload.tx &
 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK |
 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0)
 		caps |= IFCAP_TXCSUM;
 
 	if ((feat->offload.tx &
 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK |
 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0)
 		caps |= IFCAP_TXCSUM_IPV6;
 
 	if ((feat->offload.tx &
 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0)
 		caps |= IFCAP_TSO4;
 
 	if ((feat->offload.tx &
 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0)
 		caps |= IFCAP_TSO6;
 
 	if ((feat->offload.rx_supported &
 	    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK |
 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0)
 		caps |= IFCAP_RXCSUM;
 
 	if ((feat->offload.rx_supported &
 	    ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0)
 		caps |= IFCAP_RXCSUM_IPV6;
 
 	caps |= IFCAP_LRO | IFCAP_JUMBO_MTU;
 
 	return (caps);
 }
 
 static void
 ena_update_host_info(struct ena_admin_host_info *host_info, if_t ifp)
 {
 
 	host_info->supported_network_features[0] =
 	    (uint32_t)if_getcapabilities(ifp);
 }
 
 static void
 ena_update_hwassist(struct ena_adapter *adapter)
 {
 	if_t ifp = adapter->ifp;
 	uint32_t feat = adapter->tx_offload_cap;
 	int cap = if_getcapenable(ifp);
 	int flags = 0;
 
 	if_clearhwassist(ifp);
 
 	if ((cap & IFCAP_TXCSUM) != 0) {
 		if ((feat &
 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0)
 			flags |= CSUM_IP;
 		if ((feat &
 		    (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK |
 		    ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0)
 			flags |= CSUM_IP_UDP | CSUM_IP_TCP;
 	}
 
 	if ((cap & IFCAP_TXCSUM_IPV6) != 0)
 		flags |= CSUM_IP6_UDP | CSUM_IP6_TCP;
 
 	if ((cap & IFCAP_TSO4) != 0)
 		flags |= CSUM_IP_TSO;
 
 	if ((cap & IFCAP_TSO6) != 0)
 		flags |= CSUM_IP6_TSO;
 
 	if_sethwassistbits(ifp, flags, 0);
 }
 
 static int
 ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter,
     struct ena_com_dev_get_features_ctx *feat)
 {
 	if_t ifp;
 	int caps = 0;
 
 	ifp = adapter->ifp = if_gethandle(IFT_ETHER);
 	if (unlikely(ifp == NULL)) {
 		ena_log(pdev, ERR, "can not allocate ifnet structure\n");
 		return (ENXIO);
 	}
 	if_initname(ifp, device_get_name(pdev), device_get_unit(pdev));
 	if_setdev(ifp, pdev);
 	if_setsoftc(ifp, adapter);
 
 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
 	if_setinitfn(ifp, ena_init);
 	if_settransmitfn(ifp, ena_mq_start);
 	if_setqflushfn(ifp, ena_qflush);
 	if_setioctlfn(ifp, ena_ioctl);
 	if_setgetcounterfn(ifp, ena_get_counter);
 
 	if_setsendqlen(ifp, adapter->requested_tx_ring_size);
 	if_setsendqready(ifp);
 	if_setmtu(ifp, ETHERMTU);
 	if_setbaudrate(ifp, 0);
 	/* Zeroize capabilities... */
 	if_setcapabilities(ifp, 0);
 	if_setcapenable(ifp, 0);
 	/* check hardware support */
 	caps = ena_get_dev_offloads(feat);
 	/* ... and set them */
 	if_setcapabilitiesbit(ifp, caps, 0);
 
 	/* TSO parameters */
 	ifp->if_hw_tsomax = ENA_TSO_MAXSIZE -
 	    (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
 	ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1;
 	ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE;
 
 	if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
 	if_setcapenable(ifp, if_getcapabilities(ifp));
 
 	/*
 	 * Specify the media types supported by this adapter and register
 	 * callbacks to update media and link information
 	 */
 	ifmedia_init(&adapter->media, IFM_IMASK,
 	    ena_media_change, ena_media_status);
 	ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL);
 	ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO);
 
 	ether_ifattach(ifp, adapter->mac_addr);
 
 	return (0);
 }
 
 void
 ena_down(struct ena_adapter *adapter)
 {
 	int rc;
 
 	ENA_LOCK_ASSERT();
 
 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
 		return;
 
 	/* Drain timer service to avoid admin queue race condition. */
 	ENA_TIMER_DRAIN(adapter);
 
 	ena_log(adapter->pdev, INFO, "device is going DOWN\n");
 
 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP, adapter);
 	if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE,
 		IFF_DRV_RUNNING);
 
 	ena_free_io_irq(adapter);
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter)) {
 		rc = ena_com_dev_reset(adapter->ena_dev,
 			adapter->reset_reason);
 		if (unlikely(rc != 0))
 			ena_log(adapter->pdev, ERR,
 				"Device reset failed\n");
 	}
 
 	ena_destroy_all_io_queues(adapter);
 
 	ena_free_all_tx_bufs(adapter);
 	ena_free_all_rx_bufs(adapter);
 	ena_free_all_tx_resources(adapter);
 	ena_free_all_rx_resources(adapter);
 
 	counter_u64_add(adapter->dev_stats.interface_down, 1);
 
 	ENA_TIMER_RESET(adapter);
 }
 
 static uint32_t
 ena_calc_max_io_queue_num(device_t pdev, struct ena_com_dev *ena_dev,
     struct ena_com_dev_get_features_ctx *get_feat_ctx)
 {
 	uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
 
 	/* Regular queues capabilities */
 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
 		    &get_feat_ctx->max_queue_ext.max_queue_ext;
 		io_rx_num = min_t(int, max_queue_ext->max_rx_sq_num,
 			max_queue_ext->max_rx_cq_num);
 
 		io_tx_sq_num = max_queue_ext->max_tx_sq_num;
 		io_tx_cq_num = max_queue_ext->max_tx_cq_num;
 	} else {
 		struct ena_admin_queue_feature_desc *max_queues =
 		    &get_feat_ctx->max_queues;
 		io_tx_sq_num = max_queues->max_sq_num;
 		io_tx_cq_num = max_queues->max_cq_num;
 		io_rx_num = min_t(int, io_tx_sq_num, io_tx_cq_num);
 	}
 
 	/* In case of LLQ use the llq fields for the tx SQ/CQ */
 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
 		io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
 
 	max_num_io_queues = min_t(uint32_t, mp_ncpus, ENA_MAX_NUM_IO_QUEUES);
 	max_num_io_queues = min_t(uint32_t, max_num_io_queues, io_rx_num);
 	max_num_io_queues = min_t(uint32_t, max_num_io_queues, io_tx_sq_num);
 	max_num_io_queues = min_t(uint32_t, max_num_io_queues, io_tx_cq_num);
 	/* 1 IRQ for mgmnt and 1 IRQ for each TX/RX pair */
 	max_num_io_queues = min_t(uint32_t, max_num_io_queues,
 	    pci_msix_count(pdev) - 1);
 #ifdef RSS
 	max_num_io_queues = min_t(uint32_t, max_num_io_queues,
 	    rss_getnumbuckets());
 #endif
 
 	return (max_num_io_queues);
 }
 
 static int
 ena_enable_wc(device_t pdev, struct resource *res)
 {
 #if defined(__i386) || defined(__amd64) || defined(__aarch64__)
 	vm_offset_t va;
 	vm_size_t len;
 
 	va = (vm_offset_t)rman_get_virtual(res);
 	len = rman_get_size(res);
 #if defined(__i386) || defined(__amd64)
 	int rc;
 	rc = pmap_change_attr(va, len, VM_MEMATTR_WRITE_COMBINING);
 	if (unlikely(rc != 0))
 		ena_log(pdev, ERR, "pmap_change_attr failed, %d\n", rc);
 
 	return (rc);
 #else /* defined(__aarch64__) */
 	vm_paddr_t pa;
 	pa = rman_get_start(res);
 	pmap_kenter(va, len, pa, VM_MEMATTR_WRITE_COMBINING);
 
 	return (0);
 #endif /* defined(__i386) || defined(__amd64) */
 #endif
 	return (EOPNOTSUPP);
 }
 
 static int
 ena_set_queues_placement_policy(device_t pdev, struct ena_com_dev *ena_dev,
     struct ena_admin_feature_llq_desc *llq,
     struct ena_llq_configurations *llq_default_configurations)
 {
 	int rc;
 	uint32_t llq_feature_mask;
 
 	llq_feature_mask = 1 << ENA_ADMIN_LLQ;
 	if (!(ena_dev->supported_features & llq_feature_mask)) {
 		ena_log(pdev, WARN,
 		    "LLQ is not supported. Fallback to host mode policy.\n");
 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
 		return (0);
 	}
 
 	if (ena_dev->mem_bar == NULL) {
 		ena_log(pdev, WARN,
 		    "LLQ is advertised as supported but device doesn't expose mem bar.\n");
 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
 		return (0);
 	}
 
 	rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, WARN, "Failed to configure the device mode. "
 		    "Fallback to host mode policy.\n");
 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
 	}
 
 	return (0);
 }
 
 static int
 ena_map_llq_mem_bar(device_t pdev, struct ena_com_dev *ena_dev)
 {
 	struct ena_adapter *adapter = device_get_softc(pdev);
 	int rc, rid;
 
 	/* Try to allocate resources for LLQ bar */
 	rid = PCIR_BAR(ENA_MEM_BAR);
 	adapter->memory = bus_alloc_resource_any(pdev, SYS_RES_MEMORY,
 	    &rid, RF_ACTIVE);
 	if (unlikely(adapter->memory == NULL)) {
 		ena_log(pdev, WARN, "unable to allocate LLQ bar resource. "
 		    "Fallback to host mode policy.\n");
 		ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
 		return (0);
 	}
 
 	/* Enable write combining for better LLQ performance */
 	rc = ena_enable_wc(adapter->pdev, adapter->memory);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "failed to enable write combining.\n");
 		return (rc);
 	}
 
 	/*
 	 * Save virtual address of the device's memory region
 	 * for the ena_com layer.
 	 */
 	ena_dev->mem_bar = rman_get_virtual(adapter->memory);
 
 	return (0);
 }
 
 static inline
 void set_default_llq_configurations(struct ena_llq_configurations *llq_config,
 	struct ena_admin_feature_llq_desc *llq)
 {
 
 	llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
 	llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
 	llq_config->llq_num_decs_before_header =
 	    ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
 	if ((llq->entry_size_ctrl_supported &
 	     ENA_ADMIN_LIST_ENTRY_SIZE_256B) != 0 &&
 	    ena_force_large_llq_header) {
 		llq_config->llq_ring_entry_size =
 		    ENA_ADMIN_LIST_ENTRY_SIZE_256B;
 		llq_config->llq_ring_entry_size_value = 256;
 	} else {
 		llq_config->llq_ring_entry_size =
 		    ENA_ADMIN_LIST_ENTRY_SIZE_128B;
 		llq_config->llq_ring_entry_size_value = 128;
 	}
 }
 
 static int
 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx)
 {
 	struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
 	struct ena_com_dev *ena_dev = ctx->ena_dev;
 	uint32_t tx_queue_size = ENA_DEFAULT_RING_SIZE;
 	uint32_t rx_queue_size = ENA_DEFAULT_RING_SIZE;
 	uint32_t max_tx_queue_size;
 	uint32_t max_rx_queue_size;
 
 	if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
 		struct ena_admin_queue_ext_feature_fields *max_queue_ext =
 		    &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
 		max_rx_queue_size = min_t(uint32_t,
 		    max_queue_ext->max_rx_cq_depth,
 		    max_queue_ext->max_rx_sq_depth);
 		max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
 
 		if (ena_dev->tx_mem_queue_type ==
 		    ENA_ADMIN_PLACEMENT_POLICY_DEV)
 			max_tx_queue_size = min_t(uint32_t, max_tx_queue_size,
 			    llq->max_llq_depth);
 		else
 			max_tx_queue_size = min_t(uint32_t, max_tx_queue_size,
 			    max_queue_ext->max_tx_sq_depth);
 
 		ctx->max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
 		    max_queue_ext->max_per_packet_tx_descs);
 		ctx->max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
 		    max_queue_ext->max_per_packet_rx_descs);
 	} else {
 		struct ena_admin_queue_feature_desc *max_queues =
 		    &ctx->get_feat_ctx->max_queues;
 		max_rx_queue_size = min_t(uint32_t,
 		    max_queues->max_cq_depth,
 		    max_queues->max_sq_depth);
 		max_tx_queue_size = max_queues->max_cq_depth;
 
 		if (ena_dev->tx_mem_queue_type ==
 		    ENA_ADMIN_PLACEMENT_POLICY_DEV)
 			max_tx_queue_size = min_t(uint32_t, max_tx_queue_size,
 			    llq->max_llq_depth);
 		else
 			max_tx_queue_size = min_t(uint32_t, max_tx_queue_size,
 			    max_queues->max_sq_depth);
 
 		ctx->max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
 		    max_queues->max_packet_tx_descs);
 		ctx->max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS,
 		    max_queues->max_packet_rx_descs);
 	}
 
 	/* round down to the nearest power of 2 */
 	max_tx_queue_size = 1 << (flsl(max_tx_queue_size) - 1);
 	max_rx_queue_size = 1 << (flsl(max_rx_queue_size) - 1);
 
 	/*
 	 * When forcing large headers, we multiply the entry size by 2,
 	 * and therefore divide the queue size by 2, leaving the amount
 	 * of memory used by the queues unchanged.
 	 */
 	if (ena_force_large_llq_header) {
 		if ((llq->entry_size_ctrl_supported &
 		     ENA_ADMIN_LIST_ENTRY_SIZE_256B) != 0 &&
 		    ena_dev->tx_mem_queue_type ==
 		     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
 			max_tx_queue_size /= 2;
 			ena_log(ctx->pdev, INFO,
 			    "Forcing large headers and decreasing maximum Tx queue size to %d\n",
 			    max_tx_queue_size);
 		} else {
 			ena_log(ctx->pdev, WARN,
 			    "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
 		}
 	}
 
 	tx_queue_size = clamp_val(tx_queue_size, ENA_MIN_RING_SIZE,
 	    max_tx_queue_size);
 	rx_queue_size = clamp_val(rx_queue_size, ENA_MIN_RING_SIZE,
 	    max_rx_queue_size);
 
 	tx_queue_size = 1 << (flsl(tx_queue_size) - 1);
 	rx_queue_size = 1 << (flsl(rx_queue_size) - 1);
 
 	ctx->max_tx_queue_size = max_tx_queue_size;
 	ctx->max_rx_queue_size = max_rx_queue_size;
 	ctx->tx_queue_size = tx_queue_size;
 	ctx->rx_queue_size = rx_queue_size;
 
 	return (0);
 }
 
 static void
 ena_config_host_info(struct ena_com_dev *ena_dev, device_t dev)
 {
 	struct ena_admin_host_info *host_info;
 	uintptr_t rid;
 	int rc;
 
 	/* Allocate only the host info */
 	rc = ena_com_allocate_host_info(ena_dev);
 	if (unlikely(rc != 0)) {
 		ena_log(dev, ERR, "Cannot allocate host info\n");
 		return;
 	}
 
 	host_info = ena_dev->host_attr.host_info;
 
 	if (pci_get_id(dev, PCI_ID_RID, &rid) == 0)
 		host_info->bdf = rid;
 	host_info->os_type = ENA_ADMIN_OS_FREEBSD;
 	host_info->kernel_ver = osreldate;
 
 	sprintf(host_info->kernel_ver_str, "%d", osreldate);
 	host_info->os_dist = 0;
 	strncpy(host_info->os_dist_str, osrelease,
 	    sizeof(host_info->os_dist_str) - 1);
 
 	host_info->driver_version =
 		(DRV_MODULE_VER_MAJOR) |
 		(DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
 		(DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
 	host_info->num_cpus = mp_ncpus;
 	host_info->driver_supported_features =
 	    ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK |
 	    ENA_ADMIN_HOST_INFO_RSS_CONFIGURABLE_FUNCTION_KEY_MASK;
 
 	rc = ena_com_set_host_attributes(ena_dev);
 	if (unlikely(rc != 0)) {
 		if (rc == EOPNOTSUPP)
 			ena_log(dev, WARN, "Cannot set host attributes\n");
 		else
 			ena_log(dev, ERR, "Cannot set host attributes\n");
 
 		goto err;
 	}
 
 	return;
 
 err:
 	ena_com_delete_host_info(ena_dev);
 }
 
 static int
 ena_device_init(struct ena_adapter *adapter, device_t pdev,
     struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active)
 {
 	struct ena_com_dev* ena_dev = adapter->ena_dev;
 	bool readless_supported;
 	uint32_t aenq_groups;
 	int dma_width;
 	int rc;
 
 	rc = ena_com_mmio_reg_read_request_init(ena_dev);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "failed to init mmio read less\n");
 		return (rc);
 	}
 
 	/*
 	 * The PCIe configuration space revision id indicate if mmio reg
 	 * read is disabled
 	 */
 	readless_supported = !(pci_get_revid(pdev) & ENA_MMIO_DISABLE_REG_READ);
 	ena_com_set_mmio_read_mode(ena_dev, readless_supported);
 
 	rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "Can not reset device\n");
 		goto err_mmio_read_less;
 	}
 
 	rc = ena_com_validate_version(ena_dev);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "device version is too low\n");
 		goto err_mmio_read_less;
 	}
 
 	dma_width = ena_com_get_dma_width(ena_dev);
 	if (unlikely(dma_width < 0)) {
 		ena_log(pdev, ERR, "Invalid dma width value %d", dma_width);
 		rc = dma_width;
 		goto err_mmio_read_less;
 	}
 	adapter->dma_width = dma_width;
 
 	/* ENA admin level init */
 	rc = ena_com_admin_init(ena_dev, &aenq_handlers);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR,
 		    "Can not initialize ena admin queue with device\n");
 		goto err_mmio_read_less;
 	}
 
 	/*
 	 * To enable the msix interrupts the driver needs to know the number
 	 * of queues. So the driver uses polling mode to retrieve this
 	 * information
 	 */
 	ena_com_set_admin_polling_mode(ena_dev, true);
 
 	ena_config_host_info(ena_dev, pdev);
 
 	/* Get Device Attributes */
 	rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR,
 		    "Cannot get attribute for ena device rc: %d\n", rc);
 		goto err_admin_init;
 	}
 
 	aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
 	    BIT(ENA_ADMIN_FATAL_ERROR) |
 	    BIT(ENA_ADMIN_WARNING) |
 	    BIT(ENA_ADMIN_NOTIFICATION) |
 	    BIT(ENA_ADMIN_KEEP_ALIVE);
 
 	aenq_groups &= get_feat_ctx->aenq.supported_groups;
 	rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "Cannot configure aenq groups rc: %d\n", rc);
 		goto err_admin_init;
 	}
 
 	*wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
 
 	return (0);
 
 err_admin_init:
 	ena_com_delete_host_info(ena_dev);
 	ena_com_admin_destroy(ena_dev);
 err_mmio_read_less:
 	ena_com_mmio_reg_read_request_destroy(ena_dev);
 
 	return (rc);
 }
 
 static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter)
 {
 	struct ena_com_dev *ena_dev = adapter->ena_dev;
 	int rc;
 
 	rc = ena_enable_msix(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(adapter->pdev, ERR, "Error with MSI-X enablement\n");
 		return (rc);
 	}
 
 	ena_setup_mgmnt_intr(adapter);
 
 	rc = ena_request_mgmnt_irq(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(adapter->pdev, ERR, "Cannot setup mgmnt queue intr\n");
 		goto err_disable_msix;
 	}
 
 	ena_com_set_admin_polling_mode(ena_dev, false);
 
 	ena_com_admin_aenq_enable(ena_dev);
 
 	return (0);
 
 err_disable_msix:
 	ena_disable_msix(adapter);
 
 	return (rc);
 }
 
 /* Function called on ENA_ADMIN_KEEP_ALIVE event */
 static void ena_keep_alive_wd(void *adapter_data,
     struct ena_admin_aenq_entry *aenq_e)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
 	struct ena_admin_aenq_keep_alive_desc *desc;
 	sbintime_t stime;
 	uint64_t rx_drops;
 	uint64_t tx_drops;
 
 	desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
 
 	rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
 	tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
 	counter_u64_zero(adapter->hw_stats.rx_drops);
 	counter_u64_add(adapter->hw_stats.rx_drops, rx_drops);
 	counter_u64_zero(adapter->hw_stats.tx_drops);
 	counter_u64_add(adapter->hw_stats.tx_drops, tx_drops);
 
 	stime = getsbinuptime();
 	atomic_store_rel_64(&adapter->keep_alive_timestamp, stime);
 }
 
 /* Check for keep alive expiration */
 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
 {
 	sbintime_t timestamp, time;
 
 	if (adapter->wd_active == 0)
 		return;
 
 	if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
 		return;
 
 	timestamp = atomic_load_acq_64(&adapter->keep_alive_timestamp);
 	time = getsbinuptime() - timestamp;
 	if (unlikely(time > adapter->keep_alive_timeout)) {
 		ena_log(adapter->pdev, ERR, "Keep alive watchdog timeout.\n");
 		counter_u64_add(adapter->dev_stats.wd_expired, 1);
 		ena_trigger_reset(adapter, ENA_REGS_RESET_KEEP_ALIVE_TO);
 	}
 }
 
 /* Check if admin queue is enabled */
 static void check_for_admin_com_state(struct ena_adapter *adapter)
 {
 	if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) ==
 	    false)) {
 		ena_log(adapter->pdev, ERR,
 		    "ENA admin queue is not in running state!\n");
 		counter_u64_add(adapter->dev_stats.admin_q_pause, 1);
 		ena_trigger_reset(adapter, ENA_REGS_RESET_ADMIN_TO);
 	}
 }
 
 static int
 check_for_rx_interrupt_queue(struct ena_adapter *adapter,
     struct ena_ring *rx_ring)
 {
-	if (likely(rx_ring->first_interrupt))
+	if (likely(atomic_load_8(&rx_ring->first_interrupt)))
 		return (0);
 
 	if (ena_com_cq_empty(rx_ring->ena_com_io_cq))
 		return (0);
 
 	rx_ring->no_interrupt_event_cnt++;
 
 	if (rx_ring->no_interrupt_event_cnt == ENA_MAX_NO_INTERRUPT_ITERATIONS) {
 		ena_log(adapter->pdev, ERR, "Potential MSIX issue on Rx side "
 		    "Queue = %d. Reset the device\n", rx_ring->qid);
 		ena_trigger_reset(adapter, ENA_REGS_RESET_MISS_INTERRUPT);
 		return (EIO);
 	}
 
 	return (0);
 }
 
 static int
 check_missing_comp_in_tx_queue(struct ena_adapter *adapter,
     struct ena_ring *tx_ring)
 {
 	device_t pdev = adapter->pdev;
 	struct bintime curtime, time;
 	struct ena_tx_buffer *tx_buf;
 	int time_since_last_cleanup;
 	int missing_tx_comp_to;
 	sbintime_t time_offset;
 	uint32_t missed_tx = 0;
 	int i, rc = 0;
 
 	getbinuptime(&curtime);
 
 	for (i = 0; i < tx_ring->ring_size; i++) {
 		tx_buf = &tx_ring->tx_buffer_info[i];
 
 		if (bintime_isset(&tx_buf->timestamp) == 0)
 			continue;
 
 		time = curtime;
 		bintime_sub(&time, &tx_buf->timestamp);
 		time_offset = bttosbt(time);
 
-		if (unlikely(!tx_ring->first_interrupt &&
+		if (unlikely(!atomic_load_8(&tx_ring->first_interrupt) &&
 		    time_offset > 2 * adapter->missing_tx_timeout)) {
 			/*
 			 * If after graceful period interrupt is still not
 			 * received, we schedule a reset.
 			 */
 			ena_log(pdev, ERR,
 			    "Potential MSIX issue on Tx side Queue = %d. "
 			    "Reset the device\n", tx_ring->qid);
 			ena_trigger_reset(adapter,
 			    ENA_REGS_RESET_MISS_INTERRUPT);
 			return (EIO);
 		}
 
 		/* Check again if packet is still waiting */
 		if (unlikely(time_offset > adapter->missing_tx_timeout)) {
 
 			if (!tx_buf->print_once) {
 				time_since_last_cleanup = TICKS_2_USEC(ticks -
 				    tx_ring->tx_last_cleanup_ticks);
 				missing_tx_comp_to =
 				    sbttoms(adapter->missing_tx_timeout);
 				ena_log(pdev, WARN, "Found a Tx that wasn't "
 				    "completed on time, qid %d, index %d."
 				    "%d usecs have passed since last cleanup."
 				    "Missing Tx timeout value %d msecs.\n",
 				    tx_ring->qid, i, time_since_last_cleanup,
 				    missing_tx_comp_to);
 			}
 
 			tx_buf->print_once = true;
 			missed_tx++;
 		}
 	}
 
 	if (unlikely(missed_tx > adapter->missing_tx_threshold)) {
 		ena_log(pdev, ERR,
 		    "The number of lost tx completion is above the threshold "
 		    "(%d > %d). Reset the device\n",
 		    missed_tx, adapter->missing_tx_threshold);
 		ena_trigger_reset(adapter, ENA_REGS_RESET_MISS_TX_CMPL);
 		rc = EIO;
 	}
 
 	counter_u64_add(tx_ring->tx_stats.missing_tx_comp, missed_tx);
 
 	return (rc);
 }
 
 /*
  * Check for TX which were not completed on time.
  * Timeout is defined by "missing_tx_timeout".
  * Reset will be performed if number of incompleted
  * transactions exceeds "missing_tx_threshold".
  */
 static void
 check_for_missing_completions(struct ena_adapter *adapter)
 {
 	struct ena_ring *tx_ring;
 	struct ena_ring *rx_ring;
 	int i, budget, rc;
 
 	/* Make sure the driver doesn't turn the device in other process */
 	rmb();
 
 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
 		return;
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
 		return;
 
 	if (adapter->missing_tx_timeout == ENA_HW_HINTS_NO_TIMEOUT)
 		return;
 
 	budget = adapter->missing_tx_max_queues;
 
 	for (i = adapter->next_monitored_tx_qid; i < adapter->num_io_queues; i++) {
 		tx_ring = &adapter->tx_ring[i];
 		rx_ring = &adapter->rx_ring[i];
 
 		rc = check_missing_comp_in_tx_queue(adapter, tx_ring);
 		if (unlikely(rc != 0))
 			return;
 
 		rc = check_for_rx_interrupt_queue(adapter, rx_ring);
 		if (unlikely(rc != 0))
 			return;
 
 		budget--;
 		if (budget == 0) {
 			i++;
 			break;
 		}
 	}
 
 	adapter->next_monitored_tx_qid = i % adapter->num_io_queues;
 }
 
 /* trigger rx cleanup after 2 consecutive detections */
 #define EMPTY_RX_REFILL 2
 /* For the rare case where the device runs out of Rx descriptors and the
  * msix handler failed to refill new Rx descriptors (due to a lack of memory
  * for example).
  * This case will lead to a deadlock:
  * The device won't send interrupts since all the new Rx packets will be dropped
  * The msix handler won't allocate new Rx descriptors so the device won't be
  * able to send new packets.
  *
  * When such a situation is detected - execute rx cleanup task in another thread
  */
 static void
 check_for_empty_rx_ring(struct ena_adapter *adapter)
 {
 	struct ena_ring *rx_ring;
 	int i, refill_required;
 
 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
 		return;
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))
 		return;
 
 	for (i = 0; i < adapter->num_io_queues; i++) {
 		rx_ring = &adapter->rx_ring[i];
 
 		refill_required = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
 		if (unlikely(refill_required == (rx_ring->ring_size - 1))) {
 			rx_ring->empty_rx_queue++;
 
 			if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL)	{
 				counter_u64_add(rx_ring->rx_stats.empty_rx_ring,
 				    1);
 
 				ena_log(adapter->pdev, WARN,
 				    "Rx ring %d is stalled. Triggering the refill function\n",
 				    i);
 
 				taskqueue_enqueue(rx_ring->que->cleanup_tq,
 				    &rx_ring->que->cleanup_task);
 				rx_ring->empty_rx_queue = 0;
 			}
 		} else {
 			rx_ring->empty_rx_queue = 0;
 		}
 	}
 }
 
 static void ena_update_hints(struct ena_adapter *adapter,
 			     struct ena_admin_ena_hw_hints *hints)
 {
 	struct ena_com_dev *ena_dev = adapter->ena_dev;
 
 	if (hints->admin_completion_tx_timeout)
 		ena_dev->admin_queue.completion_timeout =
 		    hints->admin_completion_tx_timeout * 1000;
 
 	if (hints->mmio_read_timeout)
 		/* convert to usec */
 		ena_dev->mmio_read.reg_read_to =
 		    hints->mmio_read_timeout * 1000;
 
 	if (hints->missed_tx_completion_count_threshold_to_reset)
 		adapter->missing_tx_threshold =
 		    hints->missed_tx_completion_count_threshold_to_reset;
 
 	if (hints->missing_tx_completion_timeout) {
 		if (hints->missing_tx_completion_timeout ==
 		     ENA_HW_HINTS_NO_TIMEOUT)
 			adapter->missing_tx_timeout = ENA_HW_HINTS_NO_TIMEOUT;
 		else
 			adapter->missing_tx_timeout =
 			    SBT_1MS * hints->missing_tx_completion_timeout;
 	}
 
 	if (hints->driver_watchdog_timeout) {
 		if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
 			adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
 		else
 			adapter->keep_alive_timeout =
 			    SBT_1MS * hints->driver_watchdog_timeout;
 	}
 }
 
 /**
  * ena_copy_eni_metrics - Get and copy ENI metrics from the HW.
  * @adapter: ENA device adapter
  *
  * Returns 0 on success, EOPNOTSUPP if current HW doesn't support those metrics
  * and other error codes on failure.
  *
  * This function can possibly cause a race with other calls to the admin queue.
  * Because of that, the caller should either lock this function or make sure
  * that there is no race in the current context.
  */
 static int
 ena_copy_eni_metrics(struct ena_adapter *adapter)
 {
 	static bool print_once = true;
 	int rc;
 
 	rc = ena_com_get_eni_stats(adapter->ena_dev, &adapter->eni_metrics);
 
 	if (rc != 0) {
 		if (rc == ENA_COM_UNSUPPORTED) {
 			if (print_once) {
 				ena_log(adapter->pdev, WARN,
 				    "Retrieving ENI metrics is not supported.\n");
 				print_once = false;
 			} else {
 				ena_log(adapter->pdev, DBG,
 				    "Retrieving ENI metrics is not supported.\n");
 			}
 		} else {
 			ena_log(adapter->pdev, ERR,
 			    "Failed to get ENI metrics: %d\n", rc);
 		}
 	}
 
 	return (rc);
 }
 
 static void
 ena_timer_service(void *data)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)data;
 	struct ena_admin_host_info *host_info =
 	    adapter->ena_dev->host_attr.host_info;
 
 	check_for_missing_keep_alive(adapter);
 
 	check_for_admin_com_state(adapter);
 
 	check_for_missing_completions(adapter);
 
 	check_for_empty_rx_ring(adapter);
 
 	/*
 	 * User controller update of the ENI metrics.
 	 * If the delay was set to 0, then the stats shouldn't be updated at
 	 * all.
 	 * Otherwise, wait 'eni_metrics_sample_interval' seconds, before
 	 * updating stats.
 	 * As timer service is executed every second, it's enough to increment
 	 * appropriate counter each time the timer service is executed.
 	 */
 	if ((adapter->eni_metrics_sample_interval != 0) &&
 	    (++adapter->eni_metrics_sample_interval_cnt >=
 	     adapter->eni_metrics_sample_interval)) {
 		/*
 		 * There is no race with other admin queue calls, as:
 		 *   - Timer service runs after attach function ends, so all
 		 *     configuration calls to the admin queue are finished.
 		 *   - Timer service is temporarily stopped when bringing
 		 *     the interface up or down.
 		 *   - After interface is up, the driver doesn't use (at least
 		 *     for now) other functions writing to the admin queue.
 		 *
 		 * It may change in the future, so in that situation, the lock
 		 * will be needed. ENA_LOCK_*() cannot be used for that purpose,
 		 * as callout ena_timer_service is protected by them. It could
 		 * lead to the deadlock if callout_drain() would hold the lock
 		 * before ena_copy_eni_metrics() was executed. It's advised to
 		 * use separate lock in that situation which will be used only
 		 * for the admin queue.
 		 */
 		(void)ena_copy_eni_metrics(adapter);
 		adapter->eni_metrics_sample_interval_cnt = 0;
 	}
 
 
 	if (host_info != NULL)
 		ena_update_host_info(host_info, adapter->ifp);
 
 	if (unlikely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
 		/*
 		 * Timeout when validating version indicates that the device
 		 * became unresponsive. If that happens skip the reset and
 		 * reschedule timer service, so the reset can be retried later.
 		 */
 		if (ena_com_validate_version(adapter->ena_dev) ==
 		    ENA_COM_TIMER_EXPIRED) {
 			ena_log(adapter->pdev, WARN,
 			    "FW unresponsive, skipping reset\n");
 			ENA_TIMER_RESET(adapter);
 			return;
 		}
 		ena_log(adapter->pdev, WARN, "Trigger reset is on\n");
 		taskqueue_enqueue(adapter->reset_tq, &adapter->reset_task);
 		return;
 	}
 
 	/*
 	 * Schedule another timeout one second from now.
 	 */
 	ENA_TIMER_RESET(adapter);
 }
 
 void
 ena_destroy_device(struct ena_adapter *adapter, bool graceful)
 {
 	if_t ifp = adapter->ifp;
 	struct ena_com_dev *ena_dev = adapter->ena_dev;
 	bool dev_up;
 
 	if (!ENA_FLAG_ISSET(ENA_FLAG_DEVICE_RUNNING, adapter))
 		return;
 
 	if_link_state_change(ifp, LINK_STATE_DOWN);
 
 	ENA_TIMER_DRAIN(adapter);
 
 	dev_up = ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter);
 	if (dev_up)
 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter);
 
 	if (!graceful)
 		ena_com_set_admin_running_state(ena_dev, false);
 
 	if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP, adapter))
 		ena_down(adapter);
 
 	/*
 	 * Stop the device from sending AENQ events (if the device was up, and
 	 * the trigger reset was on, ena_down already performs device reset)
 	 */
 	if (!(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter) && dev_up))
 		ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason);
 
 	ena_free_mgmnt_irq(adapter);
 
 	ena_disable_msix(adapter);
 
 	/*
 	 * IO rings resources should be freed because `ena_restore_device()`
 	 * calls (not directly) `ena_enable_msix()`, which re-allocates MSIX
 	 * vectors. The amount of MSIX vectors after destroy-restore may be
 	 * different than before. Therefore, IO rings resources should be
 	 * established from scratch each time.
 	 */
 	ena_free_all_io_rings_resources(adapter);
 
 	ena_com_abort_admin_commands(ena_dev);
 
 	ena_com_wait_for_abort_completion(ena_dev);
 
 	ena_com_admin_destroy(ena_dev);
 
 	ena_com_mmio_reg_read_request_destroy(ena_dev);
 
 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
 
 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_TRIGGER_RESET, adapter);
 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
 }
 
 static int
 ena_device_validate_params(struct ena_adapter *adapter,
     struct ena_com_dev_get_features_ctx *get_feat_ctx)
 {
 
 	if (memcmp(get_feat_ctx->dev_attr.mac_addr, adapter->mac_addr,
 	    ETHER_ADDR_LEN) != 0) {
 		ena_log(adapter->pdev, ERR, "Error, mac addresses differ\n");
 		return (EINVAL);
 	}
 
 	if (get_feat_ctx->dev_attr.max_mtu < if_getmtu(adapter->ifp)) {
 		ena_log(adapter->pdev, ERR,
 		    "Error, device max mtu is smaller than ifp MTU\n");
 		return (EINVAL);
 	}
 
 	return 0;
 }
 
 int
 ena_restore_device(struct ena_adapter *adapter)
 {
 	struct ena_com_dev_get_features_ctx get_feat_ctx;
 	struct ena_com_dev *ena_dev = adapter->ena_dev;
 	if_t ifp = adapter->ifp;
 	device_t dev = adapter->pdev;
 	int wd_active;
 	int rc;
 
 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_ONGOING_RESET, adapter);
 
 	rc = ena_device_init(adapter, dev, &get_feat_ctx, &wd_active);
 	if (rc != 0) {
 		ena_log(dev, ERR, "Cannot initialize device\n");
 		goto err;
 	}
 	/*
 	 * Only enable WD if it was enabled before reset, so it won't override
 	 * value set by the user by the sysctl.
 	 */
 	if (adapter->wd_active != 0)
 		adapter->wd_active = wd_active;
 
 	rc = ena_device_validate_params(adapter, &get_feat_ctx);
 	if (rc != 0) {
 		ena_log(dev, ERR, "Validation of device parameters failed\n");
 		goto err_device_destroy;
 	}
 
 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_ONGOING_RESET, adapter);
 	/* Make sure we don't have a race with AENQ Links state handler */
 	if (ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter))
 		if_link_state_change(ifp, LINK_STATE_UP);
 
 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
 	if (rc != 0) {
 		ena_log(dev, ERR, "Enable MSI-X failed\n");
 		goto err_device_destroy;
 	}
 
 	/*
 	 * Effective value of used MSIX vectors should be the same as before
 	 * `ena_destroy_device()`, if possible, or closest to it if less vectors
 	 * are available.
 	 */
 	if ((adapter->msix_vecs - ENA_ADMIN_MSIX_VEC) < adapter->num_io_queues)
 		adapter->num_io_queues =
 		    adapter->msix_vecs - ENA_ADMIN_MSIX_VEC;
 
 	/* Re-initialize rings basic information */
 	ena_init_io_rings(adapter);
 
 	/* If the interface was up before the reset bring it up */
 	if (ENA_FLAG_ISSET(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter)) {
 		rc = ena_up(adapter);
 		if (rc != 0) {
 			ena_log(dev, ERR, "Failed to create I/O queues\n");
 			goto err_disable_msix;
 		}
 	}
 
 	/* Indicate that device is running again and ready to work */
 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
 
 	/*
 	 * As the AENQ handlers weren't executed during reset because
 	 * the flag ENA_FLAG_DEVICE_RUNNING was turned off, the
 	 * timestamp must be updated again That will prevent next reset
 	 * caused by missing keep alive.
 	 */
 	adapter->keep_alive_timestamp = getsbinuptime();
 	ENA_TIMER_RESET(adapter);
 
 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEV_UP_BEFORE_RESET, adapter);
 
 	return (rc);
 
 err_disable_msix:
 	ena_free_mgmnt_irq(adapter);
 	ena_disable_msix(adapter);
 err_device_destroy:
 	ena_com_abort_admin_commands(ena_dev);
 	ena_com_wait_for_abort_completion(ena_dev);
 	ena_com_admin_destroy(ena_dev);
 	ena_com_dev_reset(ena_dev, ENA_REGS_RESET_DRIVER_INVALID_STATE);
 	ena_com_mmio_reg_read_request_destroy(ena_dev);
 err:
 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
 	ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_ONGOING_RESET, adapter);
 	ena_log(dev, ERR, "Reset attempt failed. Can not reset the device\n");
 
 	ENA_TIMER_RESET(adapter);
 
 	return (rc);
 }
 
 static void
 ena_reset_task(void *arg, int pending)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)arg;
 
 	ENA_LOCK_LOCK();
 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_TRIGGER_RESET, adapter))) {
 		ena_destroy_device(adapter, false);
 		ena_restore_device(adapter);
 
 		ena_log(adapter->pdev, INFO,
 		    "Device reset completed successfully, Driver info: %s\n",
 		    ena_version);
 	}
 	ENA_LOCK_UNLOCK();
 }
 
 /**
  * ena_attach - Device Initialization Routine
  * @pdev: device information struct
  *
  * Returns 0 on success, otherwise on failure.
  *
  * ena_attach initializes an adapter identified by a device structure.
  * The OS initialization, configuring of the adapter private structure,
  * and a hardware reset occur.
  **/
 static int
 ena_attach(device_t pdev)
 {
 	struct ena_com_dev_get_features_ctx get_feat_ctx;
 	struct ena_llq_configurations llq_config;
 	struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
 	static int version_printed;
 	struct ena_adapter *adapter;
 	struct ena_com_dev *ena_dev = NULL;
 	uint32_t max_num_io_queues;
 	int msix_rid;
 	int rid, rc;
 
 	adapter = device_get_softc(pdev);
 	adapter->pdev = pdev;
 	adapter->first_bind = -1;
 
 	/*
 	 * Set up the timer service - driver is responsible for avoiding
 	 * concurrency, as the callout won't be using any locking inside.
 	 */
 	ENA_TIMER_INIT(adapter);
 	adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO;
 	adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO;
 	adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES;
 	adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD;
 
 	if (version_printed++ == 0)
 		ena_log(pdev, INFO, "%s\n", ena_version);
 
 	/* Allocate memory for ena_dev structure */
 	ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF,
 	    M_WAITOK | M_ZERO);
 
 	adapter->ena_dev = ena_dev;
 	ena_dev->dmadev = pdev;
 
 	rid = PCIR_BAR(ENA_REG_BAR);
 	adapter->memory = NULL;
 	adapter->registers = bus_alloc_resource_any(pdev, SYS_RES_MEMORY,
 	    &rid, RF_ACTIVE);
 	if (unlikely(adapter->registers == NULL)) {
 		ena_log(pdev, ERR,
 		    "unable to allocate bus resource: registers!\n");
 		rc = ENOMEM;
 		goto err_dev_free;
 	}
 
 	/* MSIx vector table may reside on BAR0 with registers or on BAR1. */
 	msix_rid = pci_msix_table_bar(pdev);
 	if (msix_rid != rid) {
 		adapter->msix = bus_alloc_resource_any(pdev, SYS_RES_MEMORY,
 		    &msix_rid, RF_ACTIVE);
 		if (unlikely(adapter->msix == NULL)) {
 			ena_log(pdev, ERR,
 			    "unable to allocate bus resource: msix!\n");
 			rc = ENOMEM;
 			goto err_pci_free;
 		}
 		adapter->msix_rid = msix_rid;
 	}
 
 	ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF,
 	    M_WAITOK | M_ZERO);
 
 	/* Store register resources */
 	((struct ena_bus*)(ena_dev->bus))->reg_bar_t =
 	    rman_get_bustag(adapter->registers);
 	((struct ena_bus*)(ena_dev->bus))->reg_bar_h =
 	    rman_get_bushandle(adapter->registers);
 
 	if (unlikely(((struct ena_bus*)(ena_dev->bus))->reg_bar_h == 0)) {
 		ena_log(pdev, ERR, "failed to pmap registers bar\n");
 		rc = ENXIO;
 		goto err_bus_free;
 	}
 
 	ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
 
 	/* Initially clear all the flags */
 	ENA_FLAG_ZERO(adapter);
 
 	/* Device initialization */
 	rc = ena_device_init(adapter, pdev, &get_feat_ctx, &adapter->wd_active);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "ENA device init failed! (err: %d)\n", rc);
 		rc = ENXIO;
 		goto err_bus_free;
 	}
 
 	set_default_llq_configurations(&llq_config, &get_feat_ctx.llq);
 
 	rc = ena_map_llq_mem_bar(pdev, ena_dev);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "failed to map ENA mem bar");
 		goto err_com_free;
 	}
 
 	rc = ena_set_queues_placement_policy(pdev, ena_dev, &get_feat_ctx.llq,
 	     &llq_config);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "failed to set placement policy\n");
 		goto err_com_free;
 	}
 
 	if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
 		adapter->disable_meta_caching =
 		    !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
 		    BIT(ENA_ADMIN_DISABLE_META_CACHING));
 
 	adapter->keep_alive_timestamp = getsbinuptime();
 
 	adapter->tx_offload_cap = get_feat_ctx.offload.tx;
 
 	memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr,
 	    ETHER_ADDR_LEN);
 
 	calc_queue_ctx.pdev = pdev;
 	calc_queue_ctx.ena_dev = ena_dev;
 	calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
 
 	/* Calculate initial and maximum IO queue number and size */
 	max_num_io_queues = ena_calc_max_io_queue_num(pdev, ena_dev,
 	    &get_feat_ctx);
 	rc = ena_calc_io_queue_size(&calc_queue_ctx);
 	if (unlikely((rc != 0) || (max_num_io_queues <= 0))) {
 		rc = EFAULT;
 		goto err_com_free;
 	}
 
 	adapter->requested_tx_ring_size = calc_queue_ctx.tx_queue_size;
 	adapter->requested_rx_ring_size = calc_queue_ctx.rx_queue_size;
 	adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
 	adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
 	adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
 	adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
 
 	adapter->max_num_io_queues = max_num_io_queues;
 
 	adapter->buf_ring_size = ENA_DEFAULT_BUF_RING_SIZE;
 
 	adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
 
 	adapter->reset_reason = ENA_REGS_RESET_NORMAL;
 
 	/* set up dma tags for rx and tx buffers */
 	rc = ena_setup_tx_dma_tag(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "Failed to create TX DMA tag\n");
 		goto err_com_free;
 	}
 
 	rc = ena_setup_rx_dma_tag(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "Failed to create RX DMA tag\n");
 		goto err_tx_tag_free;
 	}
 
 	/*
 	 * The amount of requested MSIX vectors is equal to
 	 * adapter::max_num_io_queues (see `ena_enable_msix()`), plus a constant
 	 * number of admin queue interrupts. The former is initially determined
 	 * by HW capabilities (see `ena_calc_max_io_queue_num())` but may not be
 	 * achieved if there are not enough system resources. By default, the
 	 * number of effectively used IO queues is the same but later on it can
 	 * be limited by the user using sysctl interface.
 	 */
 	rc = ena_enable_msix_and_set_admin_interrupts(adapter);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR,
 		    "Failed to enable and set the admin interrupts\n");
 		goto err_io_free;
 	}
 	/* By default all of allocated MSIX vectors are actively used */
 	adapter->num_io_queues = adapter->msix_vecs - ENA_ADMIN_MSIX_VEC;
 
 	/* initialize rings basic information */
 	ena_init_io_rings(adapter);
 
 	/* setup network interface */
 	rc = ena_setup_ifnet(pdev, adapter, &get_feat_ctx);
 	if (unlikely(rc != 0)) {
 		ena_log(pdev, ERR, "Error with network interface setup\n");
 		goto err_msix_free;
 	}
 
 	/* Initialize reset task queue */
 	TASK_INIT(&adapter->reset_task, 0, ena_reset_task, adapter);
 	adapter->reset_tq = taskqueue_create("ena_reset_enqueue",
 	    M_WAITOK | M_ZERO, taskqueue_thread_enqueue, &adapter->reset_tq);
 	taskqueue_start_threads(&adapter->reset_tq, 1, PI_NET,
 	    "%s rstq", device_get_nameunit(adapter->pdev));
 
 	/* Initialize statistics */
 	ena_alloc_counters((counter_u64_t *)&adapter->dev_stats,
 	    sizeof(struct ena_stats_dev));
 	ena_alloc_counters((counter_u64_t *)&adapter->hw_stats,
 	    sizeof(struct ena_hw_stats));
 	ena_sysctl_add_nodes(adapter);
 
 #ifdef DEV_NETMAP
 	rc = ena_netmap_attach(adapter);
 	if (rc != 0) {
 		ena_log(pdev, ERR, "netmap attach failed: %d\n", rc);
 		goto err_detach;
 	}
 #endif /* DEV_NETMAP */
 
 	/* Tell the stack that the interface is not active */
 	if_setdrvflagbits(adapter->ifp, IFF_DRV_OACTIVE, IFF_DRV_RUNNING);
 	ENA_FLAG_SET_ATOMIC(ENA_FLAG_DEVICE_RUNNING, adapter);
 
 	/* Run the timer service */
 	ENA_TIMER_RESET(adapter);
 
 	return (0);
 
 #ifdef DEV_NETMAP
 err_detach:
 	ether_ifdetach(adapter->ifp);
 #endif /* DEV_NETMAP */
 err_msix_free:
 	ena_com_dev_reset(adapter->ena_dev, ENA_REGS_RESET_INIT_ERR);
 	ena_free_mgmnt_irq(adapter);
 	ena_disable_msix(adapter);
 err_io_free:
 	ena_free_all_io_rings_resources(adapter);
 	ena_free_rx_dma_tag(adapter);
 err_tx_tag_free:
 	ena_free_tx_dma_tag(adapter);
 err_com_free:
 	ena_com_admin_destroy(ena_dev);
 	ena_com_delete_host_info(ena_dev);
 	ena_com_mmio_reg_read_request_destroy(ena_dev);
 err_bus_free:
 	free(ena_dev->bus, M_DEVBUF);
 err_pci_free:
 	ena_free_pci_resources(adapter);
 err_dev_free:
 	free(ena_dev, M_DEVBUF);
 
 	return (rc);
 }
 
 /**
  * ena_detach - Device Removal Routine
  * @pdev: device information struct
  *
  * ena_detach is called by the device subsystem to alert the driver
  * that it should release a PCI device.
  **/
 static int
 ena_detach(device_t pdev)
 {
 	struct ena_adapter *adapter = device_get_softc(pdev);
 	struct ena_com_dev *ena_dev = adapter->ena_dev;
 	int rc;
 
 	/* Make sure VLANS are not using driver */
 	if (adapter->ifp->if_vlantrunk != NULL) {
 		ena_log(adapter->pdev, ERR, "VLAN is in use, detach first\n");
 		return (EBUSY);
 	}
 
 	ether_ifdetach(adapter->ifp);
 
 	/* Stop timer service */
 	ENA_LOCK_LOCK();
 	ENA_TIMER_DRAIN(adapter);
 	ENA_LOCK_UNLOCK();
 
 	/* Release reset task */
 	while (taskqueue_cancel(adapter->reset_tq, &adapter->reset_task, NULL))
 		taskqueue_drain(adapter->reset_tq, &adapter->reset_task);
 	taskqueue_free(adapter->reset_tq);
 
 	ENA_LOCK_LOCK();
 	ena_down(adapter);
 	ena_destroy_device(adapter, true);
 	ENA_LOCK_UNLOCK();
 
 	/* Restore unregistered sysctl queue nodes. */
 	ena_sysctl_update_queue_node_nb(adapter, adapter->num_io_queues,
 	    adapter->max_num_io_queues);
 
 #ifdef DEV_NETMAP
 	netmap_detach(adapter->ifp);
 #endif /* DEV_NETMAP */
 
 	ena_free_counters((counter_u64_t *)&adapter->hw_stats,
 	    sizeof(struct ena_hw_stats));
 	ena_free_counters((counter_u64_t *)&adapter->dev_stats,
 	    sizeof(struct ena_stats_dev));
 
 	rc = ena_free_rx_dma_tag(adapter);
 	if (unlikely(rc != 0))
 		ena_log(adapter->pdev, WARN,
 		    "Unmapped RX DMA tag associations\n");
 
 	rc = ena_free_tx_dma_tag(adapter);
 	if (unlikely(rc != 0))
 		ena_log(adapter->pdev, WARN,
 		    "Unmapped TX DMA tag associations\n");
 
 	ena_free_irqs(adapter);
 
 	ena_free_pci_resources(adapter);
 
 	if (adapter->rss_indir != NULL)
 		free(adapter->rss_indir, M_DEVBUF);
 
 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter)))
 		ena_com_rss_destroy(ena_dev);
 
 	ena_com_delete_host_info(ena_dev);
 
 	if_free(adapter->ifp);
 
 	free(ena_dev->bus, M_DEVBUF);
 
 	free(ena_dev, M_DEVBUF);
 
 	return (bus_generic_detach(pdev));
 }
 
 /******************************************************************************
  ******************************** AENQ Handlers *******************************
  *****************************************************************************/
 /**
  * ena_update_on_link_change:
  * Notify the network interface about the change in link status
  **/
 static void
 ena_update_on_link_change(void *adapter_data,
     struct ena_admin_aenq_entry *aenq_e)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
 	struct ena_admin_aenq_link_change_desc *aenq_desc;
 	int status;
 	if_t ifp;
 
 	aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
 	ifp = adapter->ifp;
 	status = aenq_desc->flags &
 	    ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK;
 
 	if (status != 0) {
 		ena_log(adapter->pdev, INFO, "link is UP\n");
 		ENA_FLAG_SET_ATOMIC(ENA_FLAG_LINK_UP, adapter);
 		if (!ENA_FLAG_ISSET(ENA_FLAG_ONGOING_RESET, adapter))
 			if_link_state_change(ifp, LINK_STATE_UP);
 	} else {
 		ena_log(adapter->pdev, INFO, "link is DOWN\n");
 		if_link_state_change(ifp, LINK_STATE_DOWN);
 		ENA_FLAG_CLEAR_ATOMIC(ENA_FLAG_LINK_UP, adapter);
 	}
 }
 
 static void ena_notification(void *adapter_data,
     struct ena_admin_aenq_entry *aenq_e)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
 	struct ena_admin_ena_hw_hints *hints;
 
 	ENA_WARN(aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION, adapter->ena_dev,
 	    "Invalid group(%x) expected %x\n",	aenq_e->aenq_common_desc.group,
 	    ENA_ADMIN_NOTIFICATION);
 
 	switch (aenq_e->aenq_common_desc.syndrome) {
 	case ENA_ADMIN_UPDATE_HINTS:
 		hints =
 		    (struct ena_admin_ena_hw_hints *)(&aenq_e->inline_data_w4);
 		ena_update_hints(adapter, hints);
 		break;
 	default:
 		ena_log(adapter->pdev, ERR,
 		    "Invalid aenq notification link state %d\n",
 		    aenq_e->aenq_common_desc.syndrome);
 	}
 }
 
 static void
 ena_lock_init(void *arg)
 {
 	ENA_LOCK_INIT();
 }
 SYSINIT(ena_lock_init, SI_SUB_LOCK, SI_ORDER_FIRST, ena_lock_init, NULL);
 
 static void
 ena_lock_uninit(void *arg)
 {
 	ENA_LOCK_DESTROY();
 }
 SYSUNINIT(ena_lock_uninit, SI_SUB_LOCK, SI_ORDER_FIRST, ena_lock_uninit, NULL);
 
 /**
  * This handler will called for unknown event group or unimplemented handlers
  **/
 static void
 unimplemented_aenq_handler(void *adapter_data,
     struct ena_admin_aenq_entry *aenq_e)
 {
 	struct ena_adapter *adapter = (struct ena_adapter *)adapter_data;
 
 	ena_log(adapter->pdev, ERR,
 	    "Unknown event was received or event with unimplemented handler\n");
 }
 
 static struct ena_aenq_handlers aenq_handlers = {
     .handlers = {
 	    [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
 	    [ENA_ADMIN_NOTIFICATION] = ena_notification,
 	    [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd,
     },
     .unimplemented_handler = unimplemented_aenq_handler
 };
 
 /*********************************************************************
  *  FreeBSD Device Interface Entry Points
  *********************************************************************/
 
 static device_method_t ena_methods[] = {
     /* Device interface */
     DEVMETHOD(device_probe, ena_probe),
     DEVMETHOD(device_attach, ena_attach),
     DEVMETHOD(device_detach, ena_detach),
     DEVMETHOD_END
 };
 
 static driver_t ena_driver = {
     "ena", ena_methods, sizeof(struct ena_adapter),
 };
 
 devclass_t ena_devclass;
 DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0);
 MODULE_PNP_INFO("U16:vendor;U16:device", pci, ena, ena_vendor_info_array,
     nitems(ena_vendor_info_array) - 1);
 MODULE_DEPEND(ena, pci, 1, 1, 1);
 MODULE_DEPEND(ena, ether, 1, 1, 1);
 #ifdef DEV_NETMAP
 MODULE_DEPEND(ena, netmap, 1, 1, 1);
 #endif /* DEV_NETMAP */
 
 /*********************************************************************/
diff --git a/sys/dev/ena/ena_datapath.c b/sys/dev/ena/ena_datapath.c
index 31de514d4b19..f17bad380c09 100644
--- a/sys/dev/ena/ena_datapath.c
+++ b/sys/dev/ena/ena_datapath.c
@@ -1,1160 +1,1160 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  *
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  *
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  */
 #include <sys/cdefs.h>
 __FBSDID("$FreeBSD$");
 
 #include "opt_rss.h"
 
 #include "ena.h"
 #include "ena_datapath.h"
 #ifdef DEV_NETMAP
 #include "ena_netmap.h"
 #endif /* DEV_NETMAP */
 #ifdef RSS
 #include <net/rss_config.h>
 #endif /* RSS */
 
 #include <netinet6/ip6_var.h>
 
 /*********************************************************************
  *  Static functions prototypes
  *********************************************************************/
 
 static int	ena_tx_cleanup(struct ena_ring *);
 static int	ena_rx_cleanup(struct ena_ring *);
 static inline int ena_get_tx_req_id(struct ena_ring *tx_ring,
     struct ena_com_io_cq *io_cq, uint16_t *req_id);
 static void	ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *,
     struct mbuf *);
 static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *,
     struct ena_com_rx_ctx *, uint16_t *);
 static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *,
     struct mbuf *);
 static void	ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *, bool);
 static int	ena_check_and_collapse_mbuf(struct ena_ring *tx_ring,
     struct mbuf **mbuf);
 static int	ena_xmit_mbuf(struct ena_ring *, struct mbuf **);
 static void	ena_start_xmit(struct ena_ring *);
 
 /*********************************************************************
  *  Global functions
  *********************************************************************/
 
 void
 ena_cleanup(void *arg, int pending)
 {
 	struct ena_que	*que = arg;
 	struct ena_adapter *adapter = que->adapter;
 	if_t ifp = adapter->ifp;
 	struct ena_ring *tx_ring;
 	struct ena_ring *rx_ring;
 	struct ena_com_io_cq* io_cq;
 	struct ena_eth_io_intr_reg intr_reg;
 	int qid, ena_qid;
 	int txc, rxc, i;
 
 	if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
 		return;
 
 	ena_log_io(adapter->pdev, DBG, "MSI-X TX/RX routine\n");
 
 	tx_ring = que->tx_ring;
 	rx_ring = que->rx_ring;
 	qid = que->id;
 	ena_qid = ENA_IO_TXQ_IDX(qid);
 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
 
-	tx_ring->first_interrupt = true;
-	rx_ring->first_interrupt = true;
+	atomic_store_8(&tx_ring->first_interrupt, true);
+	atomic_store_8(&rx_ring->first_interrupt, true);
 
 	for (i = 0; i < CLEAN_BUDGET; ++i) {
 		rxc = ena_rx_cleanup(rx_ring);
 		txc = ena_tx_cleanup(tx_ring);
 
 		if (unlikely((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0))
 			return;
 
 		if ((txc != TX_BUDGET) && (rxc != RX_BUDGET))
 		       break;
 	}
 
 	/* Signal that work is done and unmask interrupt */
 	ena_com_update_intr_reg(&intr_reg,
 	    RX_IRQ_INTERVAL,
 	    TX_IRQ_INTERVAL,
 	    true);
 	counter_u64_add(tx_ring->tx_stats.unmask_interrupt_num, 1);
 	ena_com_unmask_intr(io_cq, &intr_reg);
 }
 
 void
 ena_deferred_mq_start(void *arg, int pending)
 {
 	struct ena_ring *tx_ring = (struct ena_ring *)arg;
 	struct ifnet *ifp = tx_ring->adapter->ifp;
 
 	while (!drbr_empty(ifp, tx_ring->br) &&
 	    tx_ring->running &&
 	    (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
 		ENA_RING_MTX_LOCK(tx_ring);
 		ena_start_xmit(tx_ring);
 		ENA_RING_MTX_UNLOCK(tx_ring);
 	}
 }
 
 int
 ena_mq_start(if_t ifp, struct mbuf *m)
 {
 	struct ena_adapter *adapter = ifp->if_softc;
 	struct ena_ring *tx_ring;
 	int ret, is_drbr_empty;
 	uint32_t i;
 #ifdef RSS
 	uint32_t bucket_id;
 #endif
 
 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
 		return (ENODEV);
 
 	/* Which queue to use */
 	/*
 	 * If everything is setup correctly, it should be the
 	 * same bucket that the current CPU we're on is.
 	 * It should improve performance.
 	 */
 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
 #ifdef RSS
 		if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m),
 		    &bucket_id) == 0)
 			i = bucket_id % adapter->num_io_queues;
 		else
 #endif
 			i = m->m_pkthdr.flowid % adapter->num_io_queues;
 	} else {
 		i = curcpu % adapter->num_io_queues;
 	}
 	tx_ring = &adapter->tx_ring[i];
 
 	/* Check if drbr is empty before putting packet */
 	is_drbr_empty = drbr_empty(ifp, tx_ring->br);
 	ret = drbr_enqueue(ifp, tx_ring->br, m);
 	if (unlikely(ret != 0)) {
 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
 		return (ret);
 	}
 
 	if (is_drbr_empty && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) {
 		ena_start_xmit(tx_ring);
 		ENA_RING_MTX_UNLOCK(tx_ring);
 	} else {
 		taskqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task);
 	}
 
 	return (0);
 }
 
 void
 ena_qflush(if_t ifp)
 {
 	struct ena_adapter *adapter = ifp->if_softc;
 	struct ena_ring *tx_ring = adapter->tx_ring;
 	int i;
 
 	for(i = 0; i < adapter->num_io_queues; ++i, ++tx_ring)
 		if (!drbr_empty(ifp, tx_ring->br)) {
 			ENA_RING_MTX_LOCK(tx_ring);
 			drbr_flush(ifp, tx_ring->br);
 			ENA_RING_MTX_UNLOCK(tx_ring);
 		}
 
 	if_qflush(ifp);
 }
 
 /*********************************************************************
  *  Static functions
  *********************************************************************/
 
 static inline int
 ena_get_tx_req_id(struct ena_ring *tx_ring, struct ena_com_io_cq *io_cq,
     uint16_t *req_id)
 {
 	struct ena_adapter *adapter = tx_ring->adapter;
 	int rc;
 
 	rc = ena_com_tx_comp_req_id_get(io_cq, req_id);
 	if (rc == ENA_COM_TRY_AGAIN)
 		return (EAGAIN);
 
 	if (unlikely(rc != 0)) {
 		ena_log(adapter->pdev, ERR, "Invalid req_id %hu in qid %hu\n",
 		    *req_id, tx_ring->qid);
 		counter_u64_add(tx_ring->tx_stats.bad_req_id, 1);
 		goto err;
 	}
 
 	if (tx_ring->tx_buffer_info[*req_id].mbuf != NULL)
 		return (0);
 
 	ena_log(adapter->pdev, ERR,
 	    "tx_info doesn't have valid mbuf. qid %hu req_id %hu\n",
 	    tx_ring->qid, *req_id);
 err:
 	ena_trigger_reset(adapter, ENA_REGS_RESET_INV_TX_REQ_ID);
 
 	return (EFAULT);
 }
 
 /**
  * ena_tx_cleanup - clear sent packets and corresponding descriptors
  * @tx_ring: ring for which we want to clean packets
  *
  * Once packets are sent, we ask the device in a loop for no longer used
  * descriptors. We find the related mbuf chain in a map (index in an array)
  * and free it, then update ring state.
  * This is performed in "endless" loop, updating ring pointers every
  * TX_COMMIT. The first check of free descriptor is performed before the actual
  * loop, then repeated at the loop end.
  **/
 static int
 ena_tx_cleanup(struct ena_ring *tx_ring)
 {
 	struct ena_adapter *adapter;
 	struct ena_com_io_cq* io_cq;
 	uint16_t next_to_clean;
 	uint16_t req_id;
 	uint16_t ena_qid;
 	unsigned int total_done = 0;
 	int rc;
 	int commit = TX_COMMIT;
 	int budget = TX_BUDGET;
 	int work_done;
 	bool above_thresh;
 
 	adapter = tx_ring->que->adapter;
 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
 	next_to_clean = tx_ring->next_to_clean;
 
 #ifdef DEV_NETMAP
 	if (netmap_tx_irq(adapter->ifp, tx_ring->qid) != NM_IRQ_PASS)
 		return (0);
 #endif /* DEV_NETMAP */
 
 	do {
 		struct ena_tx_buffer *tx_info;
 		struct mbuf *mbuf;
 
 		rc = ena_get_tx_req_id(tx_ring, io_cq, &req_id);
 		if (unlikely(rc != 0))
 			break;
 
 		tx_info = &tx_ring->tx_buffer_info[req_id];
 
 		mbuf = tx_info->mbuf;
 
 		tx_info->mbuf = NULL;
 		bintime_clear(&tx_info->timestamp);
 
 		bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
 		    BUS_DMASYNC_POSTWRITE);
 		bus_dmamap_unload(adapter->tx_buf_tag,
 		    tx_info->dmamap);
 
 		ena_log_io(adapter->pdev, DBG, "tx: q %d mbuf %p completed\n",
 		    tx_ring->qid, mbuf);
 
 		m_freem(mbuf);
 
 		total_done += tx_info->tx_descs;
 
 		tx_ring->free_tx_ids[next_to_clean] = req_id;
 		next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean,
 		    tx_ring->ring_size);
 
 		if (unlikely(--commit == 0)) {
 			commit = TX_COMMIT;
 			/* update ring state every TX_COMMIT descriptor */
 			tx_ring->next_to_clean = next_to_clean;
 			ena_com_comp_ack(
 			    &adapter->ena_dev->io_sq_queues[ena_qid],
 			    total_done);
 			ena_com_update_dev_comp_head(io_cq);
 			total_done = 0;
 		}
 	} while (likely(--budget));
 
 	work_done = TX_BUDGET - budget;
 
 	ena_log_io(adapter->pdev, DBG, "tx: q %d done. total pkts: %d\n",
 	    tx_ring->qid, work_done);
 
 	/* If there is still something to commit update ring state */
 	if (likely(commit != TX_COMMIT)) {
 		tx_ring->next_to_clean = next_to_clean;
 		ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid],
 		    total_done);
 		ena_com_update_dev_comp_head(io_cq);
 	}
 
 	/*
 	 * Need to make the rings circular update visible to
 	 * ena_xmit_mbuf() before checking for tx_ring->running.
 	 */
 	mb();
 
 	above_thresh = ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 	    ENA_TX_RESUME_THRESH);
 	if (unlikely(!tx_ring->running && above_thresh)) {
 		ENA_RING_MTX_LOCK(tx_ring);
 		above_thresh =
 		    ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 		    ENA_TX_RESUME_THRESH);
 		if (!tx_ring->running && above_thresh) {
 			tx_ring->running = true;
 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
 			taskqueue_enqueue(tx_ring->enqueue_tq,
 			    &tx_ring->enqueue_task);
 		}
 		ENA_RING_MTX_UNLOCK(tx_ring);
 	}
 
 	tx_ring->tx_last_cleanup_ticks = ticks;
 
 	return (work_done);
 }
 
 static void
 ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
     struct mbuf *mbuf)
 {
 	struct ena_adapter *adapter = rx_ring->adapter;
 
 	if (likely(ENA_FLAG_ISSET(ENA_FLAG_RSS_ACTIVE, adapter))) {
 		mbuf->m_pkthdr.flowid = ena_rx_ctx->hash;
 
 #ifdef RSS
 		/*
 		 * Hardware and software RSS are in agreement only when both are
 		 * configured to Toeplitz algorithm.  This driver configures
 		 * that algorithm only when software RSS is enabled and uses it.
 		 */
 		if (adapter->ena_dev->rss.hash_func != ENA_ADMIN_TOEPLITZ &&
 		    ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN) {
 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
 			return;
 		}
 #endif
 
 		if (ena_rx_ctx->frag &&
 		    (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) {
 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
 			return;
 		}
 
 		switch (ena_rx_ctx->l3_proto) {
 		case ENA_ETH_IO_L3_PROTO_IPV4:
 			switch (ena_rx_ctx->l4_proto) {
 			case ENA_ETH_IO_L4_PROTO_TCP:
 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4);
 				break;
 			case ENA_ETH_IO_L4_PROTO_UDP:
 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4);
 				break;
 			default:
 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4);
 			}
 			break;
 		case ENA_ETH_IO_L3_PROTO_IPV6:
 			switch (ena_rx_ctx->l4_proto) {
 			case ENA_ETH_IO_L4_PROTO_TCP:
 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6);
 				break;
 			case ENA_ETH_IO_L4_PROTO_UDP:
 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6);
 				break;
 			default:
 				M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6);
 			}
 			break;
 		case ENA_ETH_IO_L3_PROTO_UNKNOWN:
 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
 			break;
 		default:
 			M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH);
 		}
 	} else {
 		mbuf->m_pkthdr.flowid = rx_ring->qid;
 		M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE);
 	}
 }
 
 /**
  * ena_rx_mbuf - assemble mbuf from descriptors
  * @rx_ring: ring for which we want to clean packets
  * @ena_bufs: buffer info
  * @ena_rx_ctx: metadata for this packet(s)
  * @next_to_clean: ring pointer, will be updated only upon success
  *
  **/
 static struct mbuf*
 ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs,
     struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean)
 {
 	struct mbuf *mbuf;
 	struct ena_rx_buffer *rx_info;
 	struct ena_adapter *adapter;
 	device_t pdev;
 	unsigned int descs = ena_rx_ctx->descs;
 	uint16_t ntc, len, req_id, buf = 0;
 
 	ntc = *next_to_clean;
 	adapter = rx_ring->adapter;
 	pdev = adapter->pdev;
 
 	len = ena_bufs[buf].len;
 	req_id = ena_bufs[buf].req_id;
 	rx_info = &rx_ring->rx_buffer_info[req_id];
 	if (unlikely(rx_info->mbuf == NULL)) {
 		ena_log(pdev, ERR, "NULL mbuf in rx_info");
 		return (NULL);
 	}
 
 	ena_log_io(pdev, DBG, "rx_info %p, mbuf %p, paddr %jx\n", rx_info,
 	    rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr);
 
 	bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
 	    BUS_DMASYNC_POSTREAD);
 	mbuf = rx_info->mbuf;
 	mbuf->m_flags |= M_PKTHDR;
 	mbuf->m_pkthdr.len = len;
 	mbuf->m_len = len;
 	/* Only for the first segment the data starts at specific offset */
 	mbuf->m_data = mtodo(mbuf, ena_rx_ctx->pkt_offset);
 	ena_log_io(pdev, DBG, "Mbuf data offset=%u\n", ena_rx_ctx->pkt_offset);
 	mbuf->m_pkthdr.rcvif = rx_ring->que->adapter->ifp;
 
 	/* Fill mbuf with hash key and it's interpretation for optimization */
 	ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf);
 
 	ena_log_io(pdev, DBG, "rx mbuf 0x%p, flags=0x%x, len: %d\n", mbuf,
 	    mbuf->m_flags, mbuf->m_pkthdr.len);
 
 	/* DMA address is not needed anymore, unmap it */
 	bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
 
 	rx_info->mbuf = NULL;
 	rx_ring->free_rx_ids[ntc] = req_id;
 	ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
 
 	/*
 	 * While we have more than 1 descriptors for one rcvd packet, append
 	 * other mbufs to the main one
 	 */
 	while (--descs) {
 		++buf;
 		len = ena_bufs[buf].len;
 		req_id = ena_bufs[buf].req_id;
 		rx_info = &rx_ring->rx_buffer_info[req_id];
 
 		if (unlikely(rx_info->mbuf == NULL)) {
 			ena_log(pdev, ERR, "NULL mbuf in rx_info");
 			/*
 			 * If one of the required mbufs was not allocated yet,
 			 * we can break there.
 			 * All earlier used descriptors will be reallocated
 			 * later and not used mbufs can be reused.
 			 * The next_to_clean pointer will not be updated in case
 			 * of an error, so caller should advance it manually
 			 * in error handling routine to keep it up to date
 			 * with hw ring.
 			 */
 			m_freem(mbuf);
 			return (NULL);
 		}
 
 		bus_dmamap_sync(adapter->rx_buf_tag, rx_info->map,
 		    BUS_DMASYNC_POSTREAD);
 		if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) {
 			counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1);
 			ena_log_io(pdev, WARN, "Failed to append Rx mbuf %p\n",
 			    mbuf);
 		}
 
 		ena_log_io(pdev, DBG, "rx mbuf updated. len %d\n",
 		    mbuf->m_pkthdr.len);
 
 		/* Free already appended mbuf, it won't be useful anymore */
 		bus_dmamap_unload(rx_ring->adapter->rx_buf_tag, rx_info->map);
 		m_freem(rx_info->mbuf);
 		rx_info->mbuf = NULL;
 
 		rx_ring->free_rx_ids[ntc] = req_id;
 		ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size);
 	}
 
 	*next_to_clean = ntc;
 
 	return (mbuf);
 }
 
 /**
  * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum
  **/
 static inline void
 ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx,
     struct mbuf *mbuf)
 {
 	device_t pdev = rx_ring->adapter->pdev;
 
 	/* if IP and error */
 	if (unlikely((ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) &&
 	    ena_rx_ctx->l3_csum_err)) {
 		/* ipv4 checksum error */
 		mbuf->m_pkthdr.csum_flags = 0;
 		counter_u64_add(rx_ring->rx_stats.csum_bad, 1);
 		ena_log_io(pdev, DBG, "RX IPv4 header checksum error\n");
 		return;
 	}
 
 	/* if TCP/UDP */
 	if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ||
 	    (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) {
 		if (ena_rx_ctx->l4_csum_err) {
 			/* TCP/UDP checksum error */
 			mbuf->m_pkthdr.csum_flags = 0;
 			counter_u64_add(rx_ring->rx_stats.csum_bad, 1);
 			ena_log_io(pdev, DBG, "RX L4 checksum error\n");
 		} else {
 			mbuf->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
 			mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
 			counter_u64_add(rx_ring->rx_stats.csum_good, 1);
 		}
 	}
 }
 
 /**
  * ena_rx_cleanup - handle rx irq
  * @arg: ring for which irq is being handled
  **/
 static int
 ena_rx_cleanup(struct ena_ring *rx_ring)
 {
 	struct ena_adapter *adapter;
 	device_t pdev;
 	struct mbuf *mbuf;
 	struct ena_com_rx_ctx ena_rx_ctx;
 	struct ena_com_io_cq* io_cq;
 	struct ena_com_io_sq* io_sq;
 	enum ena_regs_reset_reason_types reset_reason;
 	if_t ifp;
 	uint16_t ena_qid;
 	uint16_t next_to_clean;
 	uint32_t refill_required;
 	uint32_t refill_threshold;
 	uint32_t do_if_input = 0;
 	unsigned int qid;
 	int rc, i;
 	int budget = RX_BUDGET;
 #ifdef DEV_NETMAP
 	int done;
 #endif /* DEV_NETMAP */
 
 	adapter = rx_ring->que->adapter;
 	pdev = adapter->pdev;
 	ifp = adapter->ifp;
 	qid = rx_ring->que->id;
 	ena_qid = ENA_IO_RXQ_IDX(qid);
 	io_cq = &adapter->ena_dev->io_cq_queues[ena_qid];
 	io_sq = &adapter->ena_dev->io_sq_queues[ena_qid];
 	next_to_clean = rx_ring->next_to_clean;
 
 #ifdef DEV_NETMAP
 	if (netmap_rx_irq(adapter->ifp, rx_ring->qid, &done) != NM_IRQ_PASS)
 		return (0);
 #endif /* DEV_NETMAP */
 
 	ena_log_io(pdev, DBG, "rx: qid %d\n", qid);
 
 	do {
 		ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
 		ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size;
 		ena_rx_ctx.descs = 0;
 		ena_rx_ctx.pkt_offset = 0;
 
 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_POSTREAD);
 		rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx);
 		if (unlikely(rc != 0)) {
 			if (rc == ENA_COM_NO_SPACE) {
 				counter_u64_add(rx_ring->rx_stats.bad_desc_num,
 				    1);
 				reset_reason = ENA_REGS_RESET_TOO_MANY_RX_DESCS;
 			} else {
 				counter_u64_add(rx_ring->rx_stats.bad_req_id,
 				    1);
 				reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
 			}
 			ena_trigger_reset(adapter, reset_reason);
 			return (0);
 		}
 
 		if (unlikely(ena_rx_ctx.descs == 0))
 			break;
 
 		ena_log_io(pdev, DBG, "rx: q %d got packet from ena. "
 		    "descs #: %d l3 proto %d l4 proto %d hash: %x\n",
 		    rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto,
 		    ena_rx_ctx.l4_proto, ena_rx_ctx.hash);
 
 		/* Receive mbuf from the ring */
 		mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs,
 		    &ena_rx_ctx, &next_to_clean);
 		bus_dmamap_sync(io_cq->cdesc_addr.mem_handle.tag,
 		    io_cq->cdesc_addr.mem_handle.map, BUS_DMASYNC_PREREAD);
 		/* Exit if we failed to retrieve a buffer */
 		if (unlikely(mbuf == NULL)) {
 			for (i = 0; i < ena_rx_ctx.descs; ++i) {
 				rx_ring->free_rx_ids[next_to_clean] =
 				    rx_ring->ena_bufs[i].req_id;
 				next_to_clean =
 				    ENA_RX_RING_IDX_NEXT(next_to_clean,
 				    rx_ring->ring_size);
 
 			}
 			break;
 		}
 
 		if (((ifp->if_capenable & IFCAP_RXCSUM) != 0) ||
 		    ((ifp->if_capenable & IFCAP_RXCSUM_IPV6) != 0)) {
 			ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf);
 		}
 
 		counter_enter();
 		counter_u64_add_protected(rx_ring->rx_stats.bytes,
 		    mbuf->m_pkthdr.len);
 		counter_u64_add_protected(adapter->hw_stats.rx_bytes,
 		    mbuf->m_pkthdr.len);
 		counter_exit();
 		/*
 		 * LRO is only for IP/TCP packets and TCP checksum of the packet
 		 * should be computed by hardware.
 		 */
 		do_if_input = 1;
 		if (((ifp->if_capenable & IFCAP_LRO) != 0)  &&
 		    ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) &&
 		    (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) {
 			/*
 			 * Send to the stack if:
 			 *  - LRO not enabled, or
 			 *  - no LRO resources, or
 			 *  - lro enqueue fails
 			 */
 			if ((rx_ring->lro.lro_cnt != 0) &&
 			    (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0))
 					do_if_input = 0;
 		}
 		if (do_if_input != 0) {
 			ena_log_io(pdev, DBG, "calling if_input() with mbuf %p\n",
 			    mbuf);
 			(*ifp->if_input)(ifp, mbuf);
 		}
 
 		counter_enter();
 		counter_u64_add_protected(rx_ring->rx_stats.cnt, 1);
 		counter_u64_add_protected(adapter->hw_stats.rx_packets, 1);
 		counter_exit();
 	} while (--budget);
 
 	rx_ring->next_to_clean = next_to_clean;
 
 	refill_required = ena_com_free_q_entries(io_sq);
 	refill_threshold = min_t(int,
 	    rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER,
 	    ENA_RX_REFILL_THRESH_PACKET);
 
 	if (refill_required > refill_threshold) {
 		ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
 		ena_refill_rx_bufs(rx_ring, refill_required);
 	}
 
 	tcp_lro_flush_all(&rx_ring->lro);
 
 	return (RX_BUDGET - budget);
 }
 
 static void
 ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf,
     bool disable_meta_caching)
 {
 	struct ena_com_tx_meta *ena_meta;
 	struct ether_vlan_header *eh;
 	struct mbuf *mbuf_next;
 	u32 mss;
 	bool offload;
 	uint16_t etype;
 	int ehdrlen;
 	struct ip *ip;
 	int ipproto;
 	int iphlen;
 	struct tcphdr *th;
 	int offset;
 
 	offload = false;
 	ena_meta = &ena_tx_ctx->ena_meta;
 	mss = mbuf->m_pkthdr.tso_segsz;
 
 	if (mss != 0)
 		offload = true;
 
 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0)
 		offload = true;
 
 	if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0)
 		offload = true;
 
 	if ((mbuf->m_pkthdr.csum_flags & CSUM6_OFFLOAD) != 0)
 		offload = true;
 
 	if (!offload) {
 		if (disable_meta_caching) {
 			memset(ena_meta, 0, sizeof(*ena_meta));
 			ena_tx_ctx->meta_valid = 1;
 		} else {
 			ena_tx_ctx->meta_valid = 0;
 		}
 		return;
 	}
 
 	/* Determine where frame payload starts. */
 	eh = mtod(mbuf, struct ether_vlan_header *);
 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
 		etype = ntohs(eh->evl_proto);
 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
 	} else {
 		etype = ntohs(eh->evl_encap_proto);
 		ehdrlen = ETHER_HDR_LEN;
 	}
 
 	mbuf_next = m_getptr(mbuf, ehdrlen, &offset);
 
 	switch (etype) {
 	case ETHERTYPE_IP:
 		ip = (struct ip *)(mtodo(mbuf_next, offset));
 		iphlen = ip->ip_hl << 2;
 		ipproto = ip->ip_p;
 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
 		if ((ip->ip_off & htons(IP_DF)) != 0)
 			ena_tx_ctx->df = 1;
 		break;
 	case ETHERTYPE_IPV6:
 		ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
 		iphlen = ip6_lasthdr(mbuf, ehdrlen, IPPROTO_IPV6, &ipproto);
 		iphlen -= ehdrlen;
 		ena_tx_ctx->df = 1;
 		break;
 	default:
 		iphlen = 0;
 		ipproto = 0;
 		break;
 	}
 
 	mbuf_next = m_getptr(mbuf, iphlen + ehdrlen, &offset);
 	th = (struct tcphdr *)(mtodo(mbuf_next, offset));
 
 	if ((mbuf->m_pkthdr.csum_flags & CSUM_IP) != 0) {
 		ena_tx_ctx->l3_csum_enable = 1;
 	}
 	if ((mbuf->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
 		ena_tx_ctx->tso_enable = 1;
 		ena_meta->l4_hdr_len = (th->th_off);
 	}
 
 	if (ipproto == IPPROTO_TCP) {
 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
 		if ((mbuf->m_pkthdr.csum_flags &
 		    (CSUM_IP_TCP | CSUM_IP6_TCP)) != 0)
 			ena_tx_ctx->l4_csum_enable = 1;
 		else
 			ena_tx_ctx->l4_csum_enable = 0;
 	} else if (ipproto == IPPROTO_UDP) {
 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
 		if ((mbuf->m_pkthdr.csum_flags &
 		    (CSUM_IP_UDP | CSUM_IP6_UDP)) != 0)
 			ena_tx_ctx->l4_csum_enable = 1;
 		else
 			ena_tx_ctx->l4_csum_enable = 0;
 	} else {
 		ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
 		ena_tx_ctx->l4_csum_enable = 0;
 	}
 
 	ena_meta->mss = mss;
 	ena_meta->l3_hdr_len = iphlen;
 	ena_meta->l3_hdr_offset = ehdrlen;
 	ena_tx_ctx->meta_valid = 1;
 }
 
 static int
 ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
 {
 	struct ena_adapter *adapter;
 	struct mbuf *collapsed_mbuf;
 	int num_frags;
 
 	adapter = tx_ring->adapter;
 	num_frags = ena_mbuf_count(*mbuf);
 
 	/* One segment must be reserved for configuration descriptor. */
 	if (num_frags < adapter->max_tx_sgl_size)
 		return (0);
 
 	if ((num_frags == adapter->max_tx_sgl_size) &&
 	    ((*mbuf)->m_pkthdr.len < tx_ring->tx_max_header_size))
 		return (0);
 
 	counter_u64_add(tx_ring->tx_stats.collapse, 1);
 
 	collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT,
 	    adapter->max_tx_sgl_size - 1);
 	if (unlikely(collapsed_mbuf == NULL)) {
 		counter_u64_add(tx_ring->tx_stats.collapse_err, 1);
 		return (ENOMEM);
 	}
 
 	/* If mbuf was collapsed succesfully, original mbuf is released. */
 	*mbuf = collapsed_mbuf;
 
 	return (0);
 }
 
 static int
 ena_tx_map_mbuf(struct ena_ring *tx_ring, struct ena_tx_buffer *tx_info,
     struct mbuf *mbuf, void **push_hdr, u16 *header_len)
 {
 	struct ena_adapter *adapter = tx_ring->adapter;
 	struct ena_com_buf *ena_buf;
 	bus_dma_segment_t segs[ENA_BUS_DMA_SEGS];
 	size_t iseg = 0;
 	uint32_t mbuf_head_len;
 	uint16_t offset;
 	int rc, nsegs;
 
 	mbuf_head_len = mbuf->m_len;
 	tx_info->mbuf = mbuf;
 	ena_buf = tx_info->bufs;
 
 	/*
 	 * For easier maintaining of the DMA map, map the whole mbuf even if
 	 * the LLQ is used. The descriptors will be filled using the segments.
 	 */
 	rc = bus_dmamap_load_mbuf_sg(adapter->tx_buf_tag, tx_info->dmamap, mbuf,
 	    segs, &nsegs, BUS_DMA_NOWAIT);
 	if (unlikely((rc != 0) || (nsegs == 0))) {
 		ena_log_io(adapter->pdev, WARN,
 		    "dmamap load failed! err: %d nsegs: %d\n", rc, nsegs);
 		goto dma_error;
 	}
 
 	if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
 		/*
 		 * When the device is LLQ mode, the driver will copy
 		 * the header into the device memory space.
 		 * the ena_com layer assumes the header is in a linear
 		 * memory space.
 		 * This assumption might be wrong since part of the header
 		 * can be in the fragmented buffers.
 		 * First check if header fits in the mbuf. If not, copy it to
 		 * separate buffer that will be holding linearized data.
 		 */
 		*header_len = min_t(uint32_t, mbuf->m_pkthdr.len, tx_ring->tx_max_header_size);
 
 		/* If header is in linear space, just point into mbuf's data. */
 		if (likely(*header_len <= mbuf_head_len)) {
 			*push_hdr = mbuf->m_data;
 		/*
 		 * Otherwise, copy whole portion of header from multiple mbufs
 		 * to intermediate buffer.
 		 */
 		} else {
 			m_copydata(mbuf, 0, *header_len, tx_ring->push_buf_intermediate_buf);
 			*push_hdr = tx_ring->push_buf_intermediate_buf;
 
 			counter_u64_add(tx_ring->tx_stats.llq_buffer_copy, 1);
 		}
 
 		ena_log_io(adapter->pdev, DBG, "mbuf: %p ""header_buf->vaddr: %p "
 		    "push_len: %d\n", mbuf, *push_hdr, *header_len);
 
 		/* If packet is fitted in LLQ header, no need for DMA segments. */
 		if (mbuf->m_pkthdr.len <= tx_ring->tx_max_header_size) {
 			return (0);
 		} else {
 			offset = tx_ring->tx_max_header_size;
 			/*
 			 * As Header part is mapped to LLQ header, we can skip it and just
 			 * map the residuum of the mbuf to DMA Segments.
 			 */
 			while (offset > 0) {
 				if (offset >= segs[iseg].ds_len) {
 					offset -= segs[iseg].ds_len;
 				} else {
 					ena_buf->paddr = segs[iseg].ds_addr + offset;
 					ena_buf->len = segs[iseg].ds_len - offset;
 					ena_buf++;
 					tx_info->num_of_bufs++;
 					offset = 0;
 				}
 				iseg++;
 			}
 		}
 	} else {
 		*push_hdr = NULL;
 		/*
 		* header_len is just a hint for the device. Because FreeBSD is not
 		* giving us information about packet header length and it is not
 		* guaranteed that all packet headers will be in the 1st mbuf, setting
 		* header_len to 0 is making the device ignore this value and resolve
 		* header on it's own.
 		*/
 		*header_len = 0;
 	}
 
 	/* Map rest of the mbuf */
 	while (iseg < nsegs) {
 		ena_buf->paddr = segs[iseg].ds_addr;
 		ena_buf->len = segs[iseg].ds_len;
 		ena_buf++;
 		iseg++;
 		tx_info->num_of_bufs++;
 	}
 
 	return (0);
 
 dma_error:
 	counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1);
 	tx_info->mbuf = NULL;
 	return (rc);
 }
 
 static int
 ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf)
 {
 	struct ena_adapter *adapter;
 	device_t pdev;
 	struct ena_tx_buffer *tx_info;
 	struct ena_com_tx_ctx ena_tx_ctx;
 	struct ena_com_dev *ena_dev;
 	struct ena_com_io_sq* io_sq;
 	void *push_hdr;
 	uint16_t next_to_use;
 	uint16_t req_id;
 	uint16_t ena_qid;
 	uint16_t header_len;
 	int rc;
 	int nb_hw_desc;
 
 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
 	adapter = tx_ring->que->adapter;
 	pdev = adapter->pdev;
 	ena_dev = adapter->ena_dev;
 	io_sq = &ena_dev->io_sq_queues[ena_qid];
 
 	rc = ena_check_and_collapse_mbuf(tx_ring, mbuf);
 	if (unlikely(rc != 0)) {
 		ena_log_io(pdev, WARN, "Failed to collapse mbuf! err: %d\n",
 		    rc);
 		return (rc);
 	}
 
 	ena_log_io(pdev, DBG, "Tx: %d bytes\n", (*mbuf)->m_pkthdr.len);
 
 	next_to_use = tx_ring->next_to_use;
 	req_id = tx_ring->free_tx_ids[next_to_use];
 	tx_info = &tx_ring->tx_buffer_info[req_id];
 	tx_info->num_of_bufs = 0;
 
 	ENA_WARN(tx_info->mbuf != NULL, adapter->ena_dev,
 	    "mbuf isn't NULL for req_id %d\n", req_id);
 
 	rc = ena_tx_map_mbuf(tx_ring, tx_info, *mbuf, &push_hdr, &header_len);
 	if (unlikely(rc != 0)) {
 		ena_log_io(pdev, WARN, "Failed to map TX mbuf\n");
 		return (rc);
 	}
 	memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
 	ena_tx_ctx.ena_bufs = tx_info->bufs;
 	ena_tx_ctx.push_header = push_hdr;
 	ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
 	ena_tx_ctx.req_id = req_id;
 	ena_tx_ctx.header_len = header_len;
 
 	/* Set flags and meta data */
 	ena_tx_csum(&ena_tx_ctx, *mbuf, adapter->disable_meta_caching);
 
 	if (tx_ring->acum_pkts == DB_THRESHOLD ||
 	    ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq, &ena_tx_ctx)) {
 		ena_log_io(pdev, DBG,
 		    "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
 		    tx_ring->que->id);
 		ena_ring_tx_doorbell(tx_ring);
 	}
 
 	/* Prepare the packet's descriptors and send them to device */
 	rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc);
 	if (unlikely(rc != 0)) {
 		if (likely(rc == ENA_COM_NO_MEM)) {
 			ena_log_io(pdev, DBG, "tx ring[%d] is out of space\n",
 			    tx_ring->que->id);
 		} else {
 			ena_log(pdev, ERR, "failed to prepare tx bufs\n");
 			ena_trigger_reset(adapter,
 			    ENA_REGS_RESET_DRIVER_INVALID_STATE);
 		}
 		counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1);
 		goto dma_error;
 	}
 
 	counter_enter();
 	counter_u64_add_protected(tx_ring->tx_stats.cnt, 1);
 	counter_u64_add_protected(tx_ring->tx_stats.bytes,
 	    (*mbuf)->m_pkthdr.len);
 
 	counter_u64_add_protected(adapter->hw_stats.tx_packets, 1);
 	counter_u64_add_protected(adapter->hw_stats.tx_bytes,
 	    (*mbuf)->m_pkthdr.len);
 	counter_exit();
 
 	tx_info->tx_descs = nb_hw_desc;
 	getbinuptime(&tx_info->timestamp);
 	tx_info->print_once = true;
 
 	tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use,
 	    tx_ring->ring_size);
 
 	/* stop the queue when no more space available, the packet can have up
 	 * to sgl_size + 2. one for the meta descriptor and one for header
 	 * (if the header is larger than tx_max_header_size).
 	 */
 	if (unlikely(!ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 	    adapter->max_tx_sgl_size + 2))) {
 		ena_log_io(pdev, DBG, "Stop queue %d\n", tx_ring->que->id);
 
 		tx_ring->running = false;
 		counter_u64_add(tx_ring->tx_stats.queue_stop, 1);
 
 		/* There is a rare condition where this function decides to
 		 * stop the queue but meanwhile tx_cleanup() updates
 		 * next_to_completion and terminates.
 		 * The queue will remain stopped forever.
 		 * To solve this issue this function performs mb(), checks
 		 * the wakeup condition and wakes up the queue if needed.
 		 */
 		mb();
 
 		if (ena_com_sq_have_enough_space(tx_ring->ena_com_io_sq,
 		    ENA_TX_RESUME_THRESH)) {
 			tx_ring->running = true;
 			counter_u64_add(tx_ring->tx_stats.queue_wakeup, 1);
 		}
 	}
 
 	bus_dmamap_sync(adapter->tx_buf_tag, tx_info->dmamap,
 	    BUS_DMASYNC_PREWRITE);
 
 	return (0);
 
 dma_error:
 	tx_info->mbuf = NULL;
 	bus_dmamap_unload(adapter->tx_buf_tag, tx_info->dmamap);
 
 	return (rc);
 }
 
 static void
 ena_start_xmit(struct ena_ring *tx_ring)
 {
 	struct mbuf *mbuf;
 	struct ena_adapter *adapter = tx_ring->adapter;
 	int ena_qid;
 	int ret = 0;
 
 	ENA_RING_MTX_ASSERT(tx_ring);
 
 	if (unlikely((if_getdrvflags(adapter->ifp) & IFF_DRV_RUNNING) == 0))
 		return;
 
 	if (unlikely(!ENA_FLAG_ISSET(ENA_FLAG_LINK_UP, adapter)))
 		return;
 
 	ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id);
 
 	while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) {
 		ena_log_io(adapter->pdev, DBG,
 		    "\ndequeued mbuf %p with flags %#x and header csum flags %#jx\n",
 		    mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags);
 
 		if (unlikely(!tx_ring->running)) {
 			drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 			break;
 		}
 
 		if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) {
 			if (ret == ENA_COM_NO_MEM) {
 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 			} else if (ret == ENA_COM_NO_SPACE) {
 				drbr_putback(adapter->ifp, tx_ring->br, mbuf);
 			} else {
 				m_freem(mbuf);
 				drbr_advance(adapter->ifp, tx_ring->br);
 			}
 
 			break;
 		}
 
 		drbr_advance(adapter->ifp, tx_ring->br);
 
 		if (unlikely((if_getdrvflags(adapter->ifp) &
 		    IFF_DRV_RUNNING) == 0))
 			return;
 
 		tx_ring->acum_pkts++;
 
 		BPF_MTAP(adapter->ifp, mbuf);
 	}
 
 	if (likely(tx_ring->acum_pkts != 0)) {
 		/* Trigger the dma engine */
 		ena_ring_tx_doorbell(tx_ring);
 	}
 
 	if (unlikely(!tx_ring->running))
 		taskqueue_enqueue(tx_ring->que->cleanup_tq,
 		    &tx_ring->que->cleanup_task);
 }