diff --git a/sys/kern/uipc_ktls.c b/sys/kern/uipc_ktls.c
index b4b169c4daf2..294a196db60d 100644
--- a/sys/kern/uipc_ktls.c
+++ b/sys/kern/uipc_ktls.c
@@ -1,3334 +1,3353 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2014-2019 Netflix Inc.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/cdefs.h>
 #include "opt_inet.h"
 #include "opt_inet6.h"
 #include "opt_kern_tls.h"
 #include "opt_ratelimit.h"
 #include "opt_rss.h"
 
 #include <sys/param.h>
 #include <sys/kernel.h>
 #include <sys/domainset.h>
 #include <sys/endian.h>
 #include <sys/ktls.h>
 #include <sys/lock.h>
 #include <sys/mbuf.h>
 #include <sys/mutex.h>
 #include <sys/rmlock.h>
 #include <sys/proc.h>
 #include <sys/protosw.h>
 #include <sys/refcount.h>
 #include <sys/smp.h>
 #include <sys/socket.h>
 #include <sys/socketvar.h>
 #include <sys/sysctl.h>
 #include <sys/taskqueue.h>
 #include <sys/kthread.h>
 #include <sys/uio.h>
 #include <sys/vmmeter.h>
 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
 #include <machine/pcb.h>
 #endif
 #include <machine/vmparam.h>
 #include <net/if.h>
 #include <net/if_var.h>
 #ifdef RSS
 #include <net/netisr.h>
 #include <net/rss_config.h>
 #endif
 #include <net/route.h>
 #include <net/route/nhop.h>
 #include <netinet/in.h>
 #include <netinet/in_pcb.h>
 #include <netinet/tcp_var.h>
 #ifdef TCP_OFFLOAD
 #include <netinet/tcp_offload.h>
 #endif
 #include <opencrypto/cryptodev.h>
 #include <opencrypto/ktls.h>
 #include <vm/vm.h>
 #include <vm/vm_pageout.h>
 #include <vm/vm_page.h>
 #include <vm/vm_pagequeue.h>
 
 struct ktls_wq {
 	struct mtx	mtx;
 	STAILQ_HEAD(, mbuf) m_head;
 	STAILQ_HEAD(, socket) so_head;
 	bool		running;
 	int		lastallocfail;
 } __aligned(CACHE_LINE_SIZE);
 
 struct ktls_reclaim_thread {
 	uint64_t wakeups;
 	uint64_t reclaims;
 	struct thread *td;
 	int running;
 };
 
 struct ktls_domain_info {
 	int count;
 	int cpu[MAXCPU];
 	struct ktls_reclaim_thread reclaim_td;
 };
 
 struct ktls_domain_info ktls_domains[MAXMEMDOM];
 static struct ktls_wq *ktls_wq;
 static struct proc *ktls_proc;
 static uma_zone_t ktls_session_zone;
 static uma_zone_t ktls_buffer_zone;
 static uint16_t ktls_cpuid_lookup[MAXCPU];
 static int ktls_init_state;
 static struct sx ktls_init_lock;
 SX_SYSINIT(ktls_init_lock, &ktls_init_lock, "ktls init");
 
 SYSCTL_NODE(_kern_ipc, OID_AUTO, tls, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Kernel TLS offload");
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
     "Kernel TLS offload stats");
 
 #ifdef RSS
 static int ktls_bind_threads = 1;
 #else
 static int ktls_bind_threads;
 #endif
 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, bind_threads, CTLFLAG_RDTUN,
     &ktls_bind_threads, 0,
     "Bind crypto threads to cores (1) or cores and domains (2) at boot");
 
 static u_int ktls_maxlen = 16384;
 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, maxlen, CTLFLAG_RDTUN,
     &ktls_maxlen, 0, "Maximum TLS record size");
 
 static int ktls_number_threads;
 SYSCTL_INT(_kern_ipc_tls_stats, OID_AUTO, threads, CTLFLAG_RD,
     &ktls_number_threads, 0,
     "Number of TLS threads in thread-pool");
 
 unsigned int ktls_ifnet_max_rexmit_pct = 2;
 SYSCTL_UINT(_kern_ipc_tls, OID_AUTO, ifnet_max_rexmit_pct, CTLFLAG_RWTUN,
     &ktls_ifnet_max_rexmit_pct, 2,
     "Max percent bytes retransmitted before ifnet TLS is disabled");
 
 static bool ktls_offload_enable;
 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, enable, CTLFLAG_RWTUN,
     &ktls_offload_enable, 0,
     "Enable support for kernel TLS offload");
 
 static bool ktls_cbc_enable = true;
 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, cbc_enable, CTLFLAG_RWTUN,
     &ktls_cbc_enable, 1,
     "Enable support of AES-CBC crypto for kernel TLS");
 
 static bool ktls_sw_buffer_cache = true;
 SYSCTL_BOOL(_kern_ipc_tls, OID_AUTO, sw_buffer_cache, CTLFLAG_RDTUN,
     &ktls_sw_buffer_cache, 1,
     "Enable caching of output buffers for SW encryption");
 
 static int ktls_max_reclaim = 1024;
 SYSCTL_INT(_kern_ipc_tls, OID_AUTO, max_reclaim, CTLFLAG_RWTUN,
     &ktls_max_reclaim, 128,
     "Max number of 16k buffers to reclaim in thread context");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_tasks_active);
 SYSCTL_COUNTER_U64(_kern_ipc_tls, OID_AUTO, tasks_active, CTLFLAG_RD,
     &ktls_tasks_active, "Number of active tasks");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_pending);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_pending, CTLFLAG_RD,
     &ktls_cnt_tx_pending,
     "Number of TLS 1.0 records waiting for earlier TLS records");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_tx_queued);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_tx_inqueue, CTLFLAG_RD,
     &ktls_cnt_tx_queued,
     "Number of TLS records in queue to tasks for SW encryption");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_cnt_rx_queued);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, sw_rx_inqueue, CTLFLAG_RD,
     &ktls_cnt_rx_queued,
     "Number of TLS sockets in queue to tasks for SW decryption");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_total);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, offload_total,
     CTLFLAG_RD, &ktls_offload_total,
     "Total successful TLS setups (parameters set)");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_enable_calls);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, enable_calls,
     CTLFLAG_RD, &ktls_offload_enable_calls,
     "Total number of TLS enable calls made");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_active);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, active, CTLFLAG_RD,
     &ktls_offload_active, "Total Active TLS sessions");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_corrupted_records);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, corrupted_records, CTLFLAG_RD,
     &ktls_offload_corrupted_records, "Total corrupted TLS records received");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_offload_failed_crypto);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, failed_crypto, CTLFLAG_RD,
     &ktls_offload_failed_crypto, "Total TLS crypto failures");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_ifnet);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_ifnet, CTLFLAG_RD,
     &ktls_switch_to_ifnet, "TLS sessions switched from SW to ifnet");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_switch_to_sw);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_to_sw, CTLFLAG_RD,
     &ktls_switch_to_sw, "TLS sessions switched from ifnet to SW");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_switch_failed);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, switch_failed, CTLFLAG_RD,
     &ktls_switch_failed, "TLS sessions unable to switch between SW and ifnet");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_fail);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_failed, CTLFLAG_RD,
     &ktls_ifnet_disable_fail, "TLS sessions unable to switch to SW from ifnet");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_disable_ok);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, ifnet_disable_ok, CTLFLAG_RD,
     &ktls_ifnet_disable_ok, "TLS sessions able to switch to SW from ifnet");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_destroy_task);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_stats, OID_AUTO, destroy_task, CTLFLAG_RD,
     &ktls_destroy_task,
     "Number of times ktls session was destroyed via taskqueue");
 
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, sw, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "Software TLS session stats");
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, ifnet, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "Hardware (ifnet) TLS session stats");
 #ifdef TCP_OFFLOAD
 SYSCTL_NODE(_kern_ipc_tls, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
     "TOE TLS session stats");
 #endif
 
 static COUNTER_U64_DEFINE_EARLY(ktls_sw_cbc);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, cbc, CTLFLAG_RD, &ktls_sw_cbc,
     "Active number of software TLS sessions using AES-CBC");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_sw_gcm);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, gcm, CTLFLAG_RD, &ktls_sw_gcm,
     "Active number of software TLS sessions using AES-GCM");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_sw_chacha20);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_sw, OID_AUTO, chacha20, CTLFLAG_RD,
     &ktls_sw_chacha20,
     "Active number of software TLS sessions using Chacha20-Poly1305");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_cbc);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, cbc, CTLFLAG_RD,
     &ktls_ifnet_cbc,
     "Active number of ifnet TLS sessions using AES-CBC");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_gcm);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, gcm, CTLFLAG_RD,
     &ktls_ifnet_gcm,
     "Active number of ifnet TLS sessions using AES-GCM");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_chacha20);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, chacha20, CTLFLAG_RD,
     &ktls_ifnet_chacha20,
     "Active number of ifnet TLS sessions using Chacha20-Poly1305");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset, CTLFLAG_RD,
     &ktls_ifnet_reset, "TLS sessions updated to a new ifnet send tag");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_dropped);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_dropped, CTLFLAG_RD,
     &ktls_ifnet_reset_dropped,
     "TLS sessions dropped after failing to update ifnet send tag");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_ifnet_reset_failed);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_ifnet, OID_AUTO, reset_failed, CTLFLAG_RD,
     &ktls_ifnet_reset_failed,
     "TLS sessions that failed to allocate a new ifnet send tag");
 
 static int ktls_ifnet_permitted;
 SYSCTL_UINT(_kern_ipc_tls_ifnet, OID_AUTO, permitted, CTLFLAG_RWTUN,
     &ktls_ifnet_permitted, 1,
     "Whether to permit hardware (ifnet) TLS sessions");
 
 #ifdef TCP_OFFLOAD
 static COUNTER_U64_DEFINE_EARLY(ktls_toe_cbc);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, cbc, CTLFLAG_RD,
     &ktls_toe_cbc,
     "Active number of TOE TLS sessions using AES-CBC");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_toe_gcm);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, gcm, CTLFLAG_RD,
     &ktls_toe_gcm,
     "Active number of TOE TLS sessions using AES-GCM");
 
 static COUNTER_U64_DEFINE_EARLY(ktls_toe_chacha20);
 SYSCTL_COUNTER_U64(_kern_ipc_tls_toe, OID_AUTO, chacha20, CTLFLAG_RD,
     &ktls_toe_chacha20,
     "Active number of TOE TLS sessions using Chacha20-Poly1305");
 #endif
 
 static MALLOC_DEFINE(M_KTLS, "ktls", "Kernel TLS");
 
 static void ktls_reset_receive_tag(void *context, int pending);
 static void ktls_reset_send_tag(void *context, int pending);
 static void ktls_work_thread(void *ctx);
 static void ktls_reclaim_thread(void *ctx);
 
 static u_int
 ktls_get_cpu(struct socket *so)
 {
 	struct inpcb *inp;
 #ifdef NUMA
 	struct ktls_domain_info *di;
 #endif
 	u_int cpuid;
 
 	inp = sotoinpcb(so);
 #ifdef RSS
 	cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype);
 	if (cpuid != NETISR_CPUID_NONE)
 		return (cpuid);
 #endif
 	/*
 	 * Just use the flowid to shard connections in a repeatable
 	 * fashion.  Note that TLS 1.0 sessions rely on the
 	 * serialization provided by having the same connection use
 	 * the same queue.
 	 */
 #ifdef NUMA
 	if (ktls_bind_threads > 1 && inp->inp_numa_domain != M_NODOM) {
 		di = &ktls_domains[inp->inp_numa_domain];
 		cpuid = di->cpu[inp->inp_flowid % di->count];
 	} else
 #endif
 		cpuid = ktls_cpuid_lookup[inp->inp_flowid % ktls_number_threads];
 	return (cpuid);
 }
 
 static int
 ktls_buffer_import(void *arg, void **store, int count, int domain, int flags)
 {
 	vm_page_t m;
 	int i, req;
 
 	KASSERT((ktls_maxlen & PAGE_MASK) == 0,
 	    ("%s: ktls max length %d is not page size-aligned",
 	    __func__, ktls_maxlen));
 
 	req = VM_ALLOC_WIRED | VM_ALLOC_NODUMP | malloc2vm_flags(flags);
 	for (i = 0; i < count; i++) {
 		m = vm_page_alloc_noobj_contig_domain(domain, req,
 		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0,
 		    VM_MEMATTR_DEFAULT);
 		if (m == NULL)
 			break;
 		store[i] = (void *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
 	}
 	return (i);
 }
 
 static void
 ktls_buffer_release(void *arg __unused, void **store, int count)
 {
 	vm_page_t m;
 	int i, j;
 
 	for (i = 0; i < count; i++) {
 		m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)store[i]));
 		for (j = 0; j < atop(ktls_maxlen); j++) {
 			(void)vm_page_unwire_noq(m + j);
 			vm_page_free(m + j);
 		}
 	}
 }
 
 static void
 ktls_free_mext_contig(struct mbuf *m)
 {
 	M_ASSERTEXTPG(m);
 	uma_zfree(ktls_buffer_zone, (void *)PHYS_TO_DMAP(m->m_epg_pa[0]));
 }
 
 static int
 ktls_init(void)
 {
 	struct thread *td;
 	struct pcpu *pc;
 	int count, domain, error, i;
 
 	ktls_wq = malloc(sizeof(*ktls_wq) * (mp_maxid + 1), M_KTLS,
 	    M_WAITOK | M_ZERO);
 
 	ktls_session_zone = uma_zcreate("ktls_session",
 	    sizeof(struct ktls_session),
 	    NULL, NULL, NULL, NULL,
 	    UMA_ALIGN_CACHE, 0);
 
 	if (ktls_sw_buffer_cache) {
 		ktls_buffer_zone = uma_zcache_create("ktls_buffers",
 		    roundup2(ktls_maxlen, PAGE_SIZE), NULL, NULL, NULL, NULL,
 		    ktls_buffer_import, ktls_buffer_release, NULL,
 		    UMA_ZONE_FIRSTTOUCH);
 	}
 
 	/*
 	 * Initialize the workqueues to run the TLS work.  We create a
 	 * work queue for each CPU.
 	 */
 	CPU_FOREACH(i) {
 		STAILQ_INIT(&ktls_wq[i].m_head);
 		STAILQ_INIT(&ktls_wq[i].so_head);
 		mtx_init(&ktls_wq[i].mtx, "ktls work queue", NULL, MTX_DEF);
 		if (ktls_bind_threads > 1) {
 			pc = pcpu_find(i);
 			domain = pc->pc_domain;
 			count = ktls_domains[domain].count;
 			ktls_domains[domain].cpu[count] = i;
 			ktls_domains[domain].count++;
 		}
 		ktls_cpuid_lookup[ktls_number_threads] = i;
 		ktls_number_threads++;
 	}
 
 	/*
 	 * If we somehow have an empty domain, fall back to choosing
 	 * among all KTLS threads.
 	 */
 	if (ktls_bind_threads > 1) {
 		for (i = 0; i < vm_ndomains; i++) {
 			if (ktls_domains[i].count == 0) {
 				ktls_bind_threads = 1;
 				break;
 			}
 		}
 	}
 
 	/* Start kthreads for each workqueue. */
 	CPU_FOREACH(i) {
 		error = kproc_kthread_add(ktls_work_thread, &ktls_wq[i],
 		    &ktls_proc, &td, 0, 0, "KTLS", "thr_%d", i);
 		if (error) {
 			printf("Can't add KTLS thread %d error %d\n", i, error);
 			return (error);
 		}
 	}
 
 	/*
 	 * Start an allocation thread per-domain to perform blocking allocations
 	 * of 16k physically contiguous TLS crypto destination buffers.
 	 */
 	if (ktls_sw_buffer_cache) {
 		for (domain = 0; domain < vm_ndomains; domain++) {
 			if (VM_DOMAIN_EMPTY(domain))
 				continue;
 			if (CPU_EMPTY(&cpuset_domain[domain]))
 				continue;
 			error = kproc_kthread_add(ktls_reclaim_thread,
 			    &ktls_domains[domain], &ktls_proc,
 			    &ktls_domains[domain].reclaim_td.td,
 			    0, 0, "KTLS", "reclaim_%d", domain);
 			if (error) {
 				printf("Can't add KTLS reclaim thread %d error %d\n",
 				    domain, error);
 				return (error);
 			}
 		}
 	}
 
 	if (bootverbose)
 		printf("KTLS: Initialized %d threads\n", ktls_number_threads);
 	return (0);
 }
 
 static int
 ktls_start_kthreads(void)
 {
 	int error, state;
 
 start:
 	state = atomic_load_acq_int(&ktls_init_state);
 	if (__predict_true(state > 0))
 		return (0);
 	if (state < 0)
 		return (ENXIO);
 
 	sx_xlock(&ktls_init_lock);
 	if (ktls_init_state != 0) {
 		sx_xunlock(&ktls_init_lock);
 		goto start;
 	}
 
 	error = ktls_init();
 	if (error == 0)
 		state = 1;
 	else
 		state = -1;
 	atomic_store_rel_int(&ktls_init_state, state);
 	sx_xunlock(&ktls_init_lock);
 	return (error);
 }
 
 static int
 ktls_create_session(struct socket *so, struct tls_enable *en,
     struct ktls_session **tlsp, int direction)
 {
 	struct ktls_session *tls;
 	int error;
 
 	/* Only TLS 1.0 - 1.3 are supported. */
 	if (en->tls_vmajor != TLS_MAJOR_VER_ONE)
 		return (EINVAL);
 	if (en->tls_vminor < TLS_MINOR_VER_ZERO ||
 	    en->tls_vminor > TLS_MINOR_VER_THREE)
 		return (EINVAL);
 
 	if (en->auth_key_len < 0 || en->auth_key_len > TLS_MAX_PARAM_SIZE)
 		return (EINVAL);
 	if (en->cipher_key_len < 0 || en->cipher_key_len > TLS_MAX_PARAM_SIZE)
 		return (EINVAL);
 	if (en->iv_len < 0 || en->iv_len > sizeof(tls->params.iv))
 		return (EINVAL);
 
 	/* All supported algorithms require a cipher key. */
 	if (en->cipher_key_len == 0)
 		return (EINVAL);
 
 	/* No flags are currently supported. */
 	if (en->flags != 0)
 		return (EINVAL);
 
 	/* Common checks for supported algorithms. */
 	switch (en->cipher_algorithm) {
 	case CRYPTO_AES_NIST_GCM_16:
 		/*
 		 * auth_algorithm isn't used, but permit GMAC values
 		 * for compatibility.
 		 */
 		switch (en->auth_algorithm) {
 		case 0:
 #ifdef COMPAT_FREEBSD12
 		/* XXX: Really 13.0-current COMPAT. */
 		case CRYPTO_AES_128_NIST_GMAC:
 		case CRYPTO_AES_192_NIST_GMAC:
 		case CRYPTO_AES_256_NIST_GMAC:
 #endif
 			break;
 		default:
 			return (EINVAL);
 		}
 		if (en->auth_key_len != 0)
 			return (EINVAL);
 		switch (en->tls_vminor) {
 		case TLS_MINOR_VER_TWO:
 			if (en->iv_len != TLS_AEAD_GCM_LEN)
 				return (EINVAL);
 			break;
 		case TLS_MINOR_VER_THREE:
 			if (en->iv_len != TLS_1_3_GCM_IV_LEN)
 				return (EINVAL);
 			break;
 		default:
 			return (EINVAL);
 		}
 		break;
 	case CRYPTO_AES_CBC:
 		switch (en->auth_algorithm) {
 		case CRYPTO_SHA1_HMAC:
 			break;
 		case CRYPTO_SHA2_256_HMAC:
 		case CRYPTO_SHA2_384_HMAC:
 			if (en->tls_vminor != TLS_MINOR_VER_TWO)
 				return (EINVAL);
 			break;
 		default:
 			return (EINVAL);
 		}
 		if (en->auth_key_len == 0)
 			return (EINVAL);
 
 		/*
 		 * TLS 1.0 requires an implicit IV.  TLS 1.1 and 1.2
 		 * use explicit IVs.
 		 */
 		switch (en->tls_vminor) {
 		case TLS_MINOR_VER_ZERO:
 			if (en->iv_len != TLS_CBC_IMPLICIT_IV_LEN)
 				return (EINVAL);
 			break;
 		case TLS_MINOR_VER_ONE:
 		case TLS_MINOR_VER_TWO:
 			/* Ignore any supplied IV. */
 			en->iv_len = 0;
 			break;
 		default:
 			return (EINVAL);
 		}
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		if (en->auth_algorithm != 0 || en->auth_key_len != 0)
 			return (EINVAL);
 		if (en->tls_vminor != TLS_MINOR_VER_TWO &&
 		    en->tls_vminor != TLS_MINOR_VER_THREE)
 			return (EINVAL);
 		if (en->iv_len != TLS_CHACHA20_IV_LEN)
 			return (EINVAL);
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	error = ktls_start_kthreads();
 	if (error != 0)
 		return (error);
 
 	tls = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
 
 	counter_u64_add(ktls_offload_active, 1);
 
 	refcount_init(&tls->refcount, 1);
 	if (direction == KTLS_RX) {
 		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_receive_tag, tls);
 	} else {
 		TASK_INIT(&tls->reset_tag_task, 0, ktls_reset_send_tag, tls);
 		tls->inp = so->so_pcb;
 		in_pcbref(tls->inp);
 		tls->tx = true;
 	}
 
 	tls->wq_index = ktls_get_cpu(so);
 
 	tls->params.cipher_algorithm = en->cipher_algorithm;
 	tls->params.auth_algorithm = en->auth_algorithm;
 	tls->params.tls_vmajor = en->tls_vmajor;
 	tls->params.tls_vminor = en->tls_vminor;
 	tls->params.flags = en->flags;
 	tls->params.max_frame_len = min(TLS_MAX_MSG_SIZE_V10_2, ktls_maxlen);
 
 	/* Set the header and trailer lengths. */
 	tls->params.tls_hlen = sizeof(struct tls_record_layer);
 	switch (en->cipher_algorithm) {
 	case CRYPTO_AES_NIST_GCM_16:
 		/*
 		 * TLS 1.2 uses a 4 byte implicit IV with an explicit 8 byte
 		 * nonce.  TLS 1.3 uses a 12 byte implicit IV.
 		 */
 		if (en->tls_vminor < TLS_MINOR_VER_THREE)
 			tls->params.tls_hlen += sizeof(uint64_t);
 		tls->params.tls_tlen = AES_GMAC_HASH_LEN;
 		tls->params.tls_bs = 1;
 		break;
 	case CRYPTO_AES_CBC:
 		switch (en->auth_algorithm) {
 		case CRYPTO_SHA1_HMAC:
 			if (en->tls_vminor == TLS_MINOR_VER_ZERO) {
 				/* Implicit IV, no nonce. */
 				tls->sequential_records = true;
 				tls->next_seqno = be64dec(en->rec_seq);
 				STAILQ_INIT(&tls->pending_records);
 			} else {
 				tls->params.tls_hlen += AES_BLOCK_LEN;
 			}
 			tls->params.tls_tlen = AES_BLOCK_LEN +
 			    SHA1_HASH_LEN;
 			break;
 		case CRYPTO_SHA2_256_HMAC:
 			tls->params.tls_hlen += AES_BLOCK_LEN;
 			tls->params.tls_tlen = AES_BLOCK_LEN +
 			    SHA2_256_HASH_LEN;
 			break;
 		case CRYPTO_SHA2_384_HMAC:
 			tls->params.tls_hlen += AES_BLOCK_LEN;
 			tls->params.tls_tlen = AES_BLOCK_LEN +
 			    SHA2_384_HASH_LEN;
 			break;
 		default:
 			panic("invalid hmac");
 		}
 		tls->params.tls_bs = AES_BLOCK_LEN;
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		/*
 		 * Chacha20 uses a 12 byte implicit IV.
 		 */
 		tls->params.tls_tlen = POLY1305_HASH_LEN;
 		tls->params.tls_bs = 1;
 		break;
 	default:
 		panic("invalid cipher");
 	}
 
 	/*
 	 * TLS 1.3 includes optional padding which we do not support,
 	 * and also puts the "real" record type at the end of the
 	 * encrypted data.
 	 */
 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
 		tls->params.tls_tlen += sizeof(uint8_t);
 
 	KASSERT(tls->params.tls_hlen <= MBUF_PEXT_HDR_LEN,
 	    ("TLS header length too long: %d", tls->params.tls_hlen));
 	KASSERT(tls->params.tls_tlen <= MBUF_PEXT_TRAIL_LEN,
 	    ("TLS trailer length too long: %d", tls->params.tls_tlen));
 
 	if (en->auth_key_len != 0) {
 		tls->params.auth_key_len = en->auth_key_len;
 		tls->params.auth_key = malloc(en->auth_key_len, M_KTLS,
 		    M_WAITOK);
 		error = copyin(en->auth_key, tls->params.auth_key,
 		    en->auth_key_len);
 		if (error)
 			goto out;
 	}
 
 	tls->params.cipher_key_len = en->cipher_key_len;
 	tls->params.cipher_key = malloc(en->cipher_key_len, M_KTLS, M_WAITOK);
 	error = copyin(en->cipher_key, tls->params.cipher_key,
 	    en->cipher_key_len);
 	if (error)
 		goto out;
 
 	/*
 	 * This holds the implicit portion of the nonce for AEAD
 	 * ciphers and the initial implicit IV for TLS 1.0.  The
 	 * explicit portions of the IV are generated in ktls_frame().
 	 */
 	if (en->iv_len != 0) {
 		tls->params.iv_len = en->iv_len;
 		error = copyin(en->iv, tls->params.iv, en->iv_len);
 		if (error)
 			goto out;
 
 		/*
 		 * For TLS 1.2 with GCM, generate an 8-byte nonce as a
 		 * counter to generate unique explicit IVs.
 		 *
 		 * Store this counter in the last 8 bytes of the IV
 		 * array so that it is 8-byte aligned.
 		 */
 		if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
 		    en->tls_vminor == TLS_MINOR_VER_TWO)
 			arc4rand(tls->params.iv + 8, sizeof(uint64_t), 0);
 	}
 
 	*tlsp = tls;
 	return (0);
 
 out:
 	ktls_free(tls);
 	return (error);
 }
 
 static struct ktls_session *
 ktls_clone_session(struct ktls_session *tls, int direction)
 {
 	struct ktls_session *tls_new;
 
 	tls_new = uma_zalloc(ktls_session_zone, M_WAITOK | M_ZERO);
 
 	counter_u64_add(ktls_offload_active, 1);
 
 	refcount_init(&tls_new->refcount, 1);
 	if (direction == KTLS_RX) {
 		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_receive_tag,
 		    tls_new);
 	} else {
 		TASK_INIT(&tls_new->reset_tag_task, 0, ktls_reset_send_tag,
 		    tls_new);
 		tls_new->inp = tls->inp;
 		tls_new->tx = true;
 		in_pcbref(tls_new->inp);
 	}
 
 	/* Copy fields from existing session. */
 	tls_new->params = tls->params;
 	tls_new->wq_index = tls->wq_index;
 
 	/* Deep copy keys. */
 	if (tls_new->params.auth_key != NULL) {
 		tls_new->params.auth_key = malloc(tls->params.auth_key_len,
 		    M_KTLS, M_WAITOK);
 		memcpy(tls_new->params.auth_key, tls->params.auth_key,
 		    tls->params.auth_key_len);
 	}
 
 	tls_new->params.cipher_key = malloc(tls->params.cipher_key_len, M_KTLS,
 	    M_WAITOK);
 	memcpy(tls_new->params.cipher_key, tls->params.cipher_key,
 	    tls->params.cipher_key_len);
 
 	return (tls_new);
 }
 
 #ifdef TCP_OFFLOAD
 static int
 ktls_try_toe(struct socket *so, struct ktls_session *tls, int direction)
 {
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	int error;
 
 	inp = so->so_pcb;
 	INP_WLOCK(inp);
 	if (inp->inp_flags & INP_DROPPED) {
 		INP_WUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	if (inp->inp_socket == NULL) {
 		INP_WUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	tp = intotcpcb(inp);
 	if (!(tp->t_flags & TF_TOE)) {
 		INP_WUNLOCK(inp);
 		return (EOPNOTSUPP);
 	}
 
 	error = tcp_offload_alloc_tls_session(tp, tls, direction);
 	INP_WUNLOCK(inp);
 	if (error == 0) {
 		tls->mode = TCP_TLS_MODE_TOE;
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_toe_cbc, 1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_toe_gcm, 1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_toe_chacha20, 1);
 			break;
 		}
 	}
 	return (error);
 }
 #endif
 
 /*
  * Common code used when first enabling ifnet TLS on a connection or
  * when allocating a new ifnet TLS session due to a routing change.
  * This function allocates a new TLS send tag on whatever interface
  * the connection is currently routed over.
  */
 static int
 ktls_alloc_snd_tag(struct inpcb *inp, struct ktls_session *tls, bool force,
     struct m_snd_tag **mstp)
 {
 	union if_snd_tag_alloc_params params;
 	struct ifnet *ifp;
 	struct nhop_object *nh;
 	struct tcpcb *tp;
 	int error;
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & INP_DROPPED) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	if (inp->inp_socket == NULL) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	tp = intotcpcb(inp);
 
 	/*
 	 * Check administrative controls on ifnet TLS to determine if
 	 * ifnet TLS should be denied.
 	 *
 	 * - Always permit 'force' requests.
 	 * - ktls_ifnet_permitted == 0: always deny.
 	 */
 	if (!force && ktls_ifnet_permitted == 0) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 
 	/*
 	 * XXX: Use the cached route in the inpcb to find the
 	 * interface.  This should perhaps instead use
 	 * rtalloc1_fib(dst, 0, 0, fibnum).  Since KTLS is only
 	 * enabled after a connection has completed key negotiation in
 	 * userland, the cached route will be present in practice.
 	 */
 	nh = inp->inp_route.ro_nh;
 	if (nh == NULL) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 	ifp = nh->nh_ifp;
 	if_ref(ifp);
 
 	/*
 	 * Allocate a TLS + ratelimit tag if the connection has an
 	 * existing pacing rate.
 	 */
 	if (tp->t_pacing_rate != -1 &&
 	    (if_getcapenable(ifp) & IFCAP_TXTLS_RTLMT) != 0) {
 		params.hdr.type = IF_SND_TAG_TYPE_TLS_RATE_LIMIT;
 		params.tls_rate_limit.inp = inp;
 		params.tls_rate_limit.tls = tls;
 		params.tls_rate_limit.max_rate = tp->t_pacing_rate;
 	} else {
 		params.hdr.type = IF_SND_TAG_TYPE_TLS;
 		params.tls.inp = inp;
 		params.tls.tls = tls;
 	}
 	params.hdr.flowid = inp->inp_flowid;
 	params.hdr.flowtype = inp->inp_flowtype;
 	params.hdr.numa_domain = inp->inp_numa_domain;
 	INP_RUNLOCK(inp);
 
 	if ((if_getcapenable(ifp) & IFCAP_MEXTPG) == 0) {
 		error = EOPNOTSUPP;
 		goto out;
 	}
 	if (inp->inp_vflag & INP_IPV6) {
 		if ((if_getcapenable(ifp) & IFCAP_TXTLS6) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	} else {
 		if ((if_getcapenable(ifp) & IFCAP_TXTLS4) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	}
 	error = m_snd_tag_alloc(ifp, &params, mstp);
 out:
 	if_rele(ifp);
 	return (error);
 }
 
 /*
  * Allocate an initial TLS receive tag for doing HW decryption of TLS
  * data.
  *
  * This function allocates a new TLS receive tag on whatever interface
  * the connection is currently routed over.  If the connection ends up
  * using a different interface for receive this will get fixed up via
  * ktls_input_ifp_mismatch as future packets arrive.
  */
 static int
 ktls_alloc_rcv_tag(struct inpcb *inp, struct ktls_session *tls,
     struct m_snd_tag **mstp)
 {
 	union if_snd_tag_alloc_params params;
 	struct ifnet *ifp;
 	struct nhop_object *nh;
 	int error;
 
 	if (!ktls_ocf_recrypt_supported(tls))
 		return (ENXIO);
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & INP_DROPPED) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 	if (inp->inp_socket == NULL) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 
 	/*
 	 * Check administrative controls on ifnet TLS to determine if
 	 * ifnet TLS should be denied.
 	 */
 	if (ktls_ifnet_permitted == 0) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 
 	/*
 	 * XXX: As with ktls_alloc_snd_tag, use the cached route in
 	 * the inpcb to find the interface.
 	 */
 	nh = inp->inp_route.ro_nh;
 	if (nh == NULL) {
 		INP_RUNLOCK(inp);
 		return (ENXIO);
 	}
 	ifp = nh->nh_ifp;
 	if_ref(ifp);
 	tls->rx_ifp = ifp;
 
 	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
 	params.hdr.flowid = inp->inp_flowid;
 	params.hdr.flowtype = inp->inp_flowtype;
 	params.hdr.numa_domain = inp->inp_numa_domain;
 	params.tls_rx.inp = inp;
 	params.tls_rx.tls = tls;
 	params.tls_rx.vlan_id = 0;
 
 	INP_RUNLOCK(inp);
 
 	if (inp->inp_vflag & INP_IPV6) {
 		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS6)) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	} else {
 		if ((if_getcapenable2(ifp) & IFCAP2_BIT(IFCAP2_RXTLS4)) == 0) {
 			error = EOPNOTSUPP;
 			goto out;
 		}
 	}
 	error = m_snd_tag_alloc(ifp, &params, mstp);
 
 	/*
 	 * If this connection is over a vlan, vlan_snd_tag_alloc
 	 * rewrites vlan_id with the saved interface.  Save the VLAN
 	 * ID for use in ktls_reset_receive_tag which allocates new
 	 * receive tags directly from the leaf interface bypassing
 	 * if_vlan.
 	 */
 	if (error == 0)
 		tls->rx_vlan_id = params.tls_rx.vlan_id;
 out:
 	return (error);
 }
 
 static int
 ktls_try_ifnet(struct socket *so, struct ktls_session *tls, int direction,
     bool force)
 {
 	struct m_snd_tag *mst;
 	int error;
 
 	switch (direction) {
 	case KTLS_TX:
 		error = ktls_alloc_snd_tag(so->so_pcb, tls, force, &mst);
 		if (__predict_false(error != 0))
 			goto done;
 		break;
 	case KTLS_RX:
 		KASSERT(!force, ("%s: forced receive tag", __func__));
 		error = ktls_alloc_rcv_tag(so->so_pcb, tls, &mst);
 		if (__predict_false(error != 0))
 			goto done;
 		break;
 	default:
 		__assert_unreachable();
 	}
 
 	tls->mode = TCP_TLS_MODE_IFNET;
 	tls->snd_tag = mst;
 
 	switch (tls->params.cipher_algorithm) {
 	case CRYPTO_AES_CBC:
 		counter_u64_add(ktls_ifnet_cbc, 1);
 		break;
 	case CRYPTO_AES_NIST_GCM_16:
 		counter_u64_add(ktls_ifnet_gcm, 1);
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		counter_u64_add(ktls_ifnet_chacha20, 1);
 		break;
 	default:
 		break;
 	}
 done:
 	return (error);
 }
 
 static void
 ktls_use_sw(struct ktls_session *tls)
 {
 	tls->mode = TCP_TLS_MODE_SW;
 	switch (tls->params.cipher_algorithm) {
 	case CRYPTO_AES_CBC:
 		counter_u64_add(ktls_sw_cbc, 1);
 		break;
 	case CRYPTO_AES_NIST_GCM_16:
 		counter_u64_add(ktls_sw_gcm, 1);
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		counter_u64_add(ktls_sw_chacha20, 1);
 		break;
 	}
 }
 
 static int
 ktls_try_sw(struct ktls_session *tls, int direction)
 {
 	int error;
 
 	error = ktls_ocf_try(tls, direction);
 	if (error)
 		return (error);
 	ktls_use_sw(tls);
 	return (0);
 }
 
 /*
  * KTLS RX stores data in the socket buffer as a list of TLS records,
  * where each record is stored as a control message containg the TLS
  * header followed by data mbufs containing the decrypted data.  This
  * is different from KTLS TX which always uses an mb_ext_pgs mbuf for
  * both encrypted and decrypted data.  TLS records decrypted by a NIC
  * should be queued to the socket buffer as records, but encrypted
  * data which needs to be decrypted by software arrives as a stream of
  * regular mbufs which need to be converted.  In addition, there may
  * already be pending encrypted data in the socket buffer when KTLS RX
  * is enabled.
  *
  * To manage not-yet-decrypted data for KTLS RX, the following scheme
  * is used:
  *
  * - A single chain of NOTREADY mbufs is hung off of sb_mtls.
  *
  * - ktls_check_rx checks this chain of mbufs reading the TLS header
  *   from the first mbuf.  Once all of the data for that TLS record is
  *   queued, the socket is queued to a worker thread.
  *
  * - The worker thread calls ktls_decrypt to decrypt TLS records in
  *   the TLS chain.  Each TLS record is detached from the TLS chain,
  *   decrypted, and inserted into the regular socket buffer chain as
  *   record starting with a control message holding the TLS header and
  *   a chain of mbufs holding the encrypted data.
  */
 
 static void
 sb_mark_notready(struct sockbuf *sb)
 {
 	struct mbuf *m;
 
 	m = sb->sb_mb;
 	sb->sb_mtls = m;
 	sb->sb_mb = NULL;
 	sb->sb_mbtail = NULL;
 	sb->sb_lastrecord = NULL;
 	for (; m != NULL; m = m->m_next) {
 		KASSERT(m->m_nextpkt == NULL, ("%s: m_nextpkt != NULL",
 		    __func__));
 		KASSERT((m->m_flags & M_NOTAVAIL) == 0, ("%s: mbuf not avail",
 		    __func__));
 		KASSERT(sb->sb_acc >= m->m_len, ("%s: sb_acc < m->m_len",
 		    __func__));
 		m->m_flags |= M_NOTREADY;
 		sb->sb_acc -= m->m_len;
 		sb->sb_tlscc += m->m_len;
 		sb->sb_mtlstail = m;
 	}
 	KASSERT(sb->sb_acc == 0 && sb->sb_tlscc == sb->sb_ccc,
 	    ("%s: acc %u tlscc %u ccc %u", __func__, sb->sb_acc, sb->sb_tlscc,
 	    sb->sb_ccc));
 }
 
 /*
  * Return information about the pending TLS data in a socket
  * buffer.  On return, 'seqno' is set to the sequence number
  * of the next TLS record to be received, 'resid' is set to
  * the amount of bytes still needed for the last pending
  * record.  The function returns 'false' if the last pending
  * record contains a partial TLS header.  In that case, 'resid'
  * is the number of bytes needed to complete the TLS header.
  */
 bool
 ktls_pending_rx_info(struct sockbuf *sb, uint64_t *seqnop, size_t *residp)
 {
 	struct tls_record_layer hdr;
 	struct mbuf *m;
 	uint64_t seqno;
 	size_t resid;
 	u_int offset, record_len;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	MPASS(sb->sb_flags & SB_TLS_RX);
 	seqno = sb->sb_tls_seqno;
 	resid = sb->sb_tlscc;
 	m = sb->sb_mtls;
 	offset = 0;
 
 	if (resid == 0) {
 		*seqnop = seqno;
 		*residp = 0;
 		return (true);
 	}
 
 	for (;;) {
 		seqno++;
 
 		if (resid < sizeof(hdr)) {
 			*seqnop = seqno;
 			*residp = sizeof(hdr) - resid;
 			return (false);
 		}
 
 		m_copydata(m, offset, sizeof(hdr), (void *)&hdr);
 
 		record_len = sizeof(hdr) + ntohs(hdr.tls_length);
 		if (resid <= record_len) {
 			*seqnop = seqno;
 			*residp = record_len - resid;
 			return (true);
 		}
 		resid -= record_len;
 
 		while (record_len != 0) {
 			if (m->m_len - offset > record_len) {
 				offset += record_len;
 				break;
 			}
 
 			record_len -= (m->m_len - offset);
 			offset = 0;
 			m = m->m_next;
 		}
 	}
 }
 
 int
 ktls_enable_rx(struct socket *so, struct tls_enable *en)
 {
 	struct ktls_session *tls;
 	int error;
 
 	if (!ktls_offload_enable)
 		return (ENOTSUP);
 
 	counter_u64_add(ktls_offload_enable_calls, 1);
 
 	/*
 	 * This should always be true since only the TCP socket option
 	 * invokes this function.
 	 */
 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
 		return (EINVAL);
 
 	/*
 	 * XXX: Don't overwrite existing sessions.  We should permit
 	 * this to support rekeying in the future.
 	 */
 	if (so->so_rcv.sb_tls_info != NULL)
 		return (EALREADY);
 
 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
 		return (ENOTSUP);
 
 	error = ktls_create_session(so, en, &tls, KTLS_RX);
 	if (error)
 		return (error);
 
 	error = ktls_ocf_try(tls, KTLS_RX);
 	if (error) {
 		ktls_free(tls);
 		return (error);
 	}
 
+	/*
+	 * Serialize with soreceive_generic() and make sure that we're not
+	 * operating on a listening socket.
+	 */
+	error = SOCK_IO_RECV_LOCK(so, SBL_WAIT);
+	if (error) {
+		ktls_free(tls);
+		return (error);
+	}
+
 	/* Mark the socket as using TLS offload. */
 	SOCK_RECVBUF_LOCK(so);
-	if (SOLISTENING(so)) {
+	if (__predict_false(so->so_rcv.sb_tls_info != NULL)) {
 		SOCK_RECVBUF_UNLOCK(so);
+		SOCK_IO_RECV_UNLOCK(so);
 		ktls_free(tls);
-		return (EINVAL);
+		return (EALREADY);
 	}
 	so->so_rcv.sb_tls_seqno = be64dec(en->rec_seq);
 	so->so_rcv.sb_tls_info = tls;
 	so->so_rcv.sb_flags |= SB_TLS_RX;
 
 	/* Mark existing data as not ready until it can be decrypted. */
 	sb_mark_notready(&so->so_rcv);
 	ktls_check_rx(&so->so_rcv);
 	SOCK_RECVBUF_UNLOCK(so);
+	SOCK_IO_RECV_UNLOCK(so);
 
 	/* Prefer TOE -> ifnet TLS -> software TLS. */
 #ifdef TCP_OFFLOAD
 	error = ktls_try_toe(so, tls, KTLS_RX);
 	if (error)
 #endif
 		error = ktls_try_ifnet(so, tls, KTLS_RX, false);
 	if (error)
 		ktls_use_sw(tls);
 
 	counter_u64_add(ktls_offload_total, 1);
 
 	return (0);
 }
 
 int
 ktls_enable_tx(struct socket *so, struct tls_enable *en)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	int error;
 
 	if (!ktls_offload_enable)
 		return (ENOTSUP);
 
 	counter_u64_add(ktls_offload_enable_calls, 1);
 
 	/*
 	 * This should always be true since only the TCP socket option
 	 * invokes this function.
 	 */
 	if (so->so_proto->pr_protocol != IPPROTO_TCP)
 		return (EINVAL);
 
 	/*
 	 * XXX: Don't overwrite existing sessions.  We should permit
 	 * this to support rekeying in the future.
 	 */
 	if (so->so_snd.sb_tls_info != NULL)
 		return (EALREADY);
 
 	if (en->cipher_algorithm == CRYPTO_AES_CBC && !ktls_cbc_enable)
 		return (ENOTSUP);
 
 	/* TLS requires ext pgs */
 	if (mb_use_ext_pgs == 0)
 		return (ENXIO);
 
 	error = ktls_create_session(so, en, &tls, KTLS_TX);
 	if (error)
 		return (error);
 
 	/* Prefer TOE -> ifnet TLS -> software TLS. */
 #ifdef TCP_OFFLOAD
 	error = ktls_try_toe(so, tls, KTLS_TX);
 	if (error)
 #endif
 		error = ktls_try_ifnet(so, tls, KTLS_TX, false);
 	if (error)
 		error = ktls_try_sw(tls, KTLS_TX);
 
 	if (error) {
 		ktls_free(tls);
 		return (error);
 	}
 
 	/*
 	 * Serialize with sosend_generic() and make sure that we're not
 	 * operating on a listening socket.
 	 */
 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
 	if (error) {
 		ktls_free(tls);
 		return (error);
 	}
 
 	/*
 	 * Write lock the INP when setting sb_tls_info so that
 	 * routines in tcp_ratelimit.c can read sb_tls_info while
 	 * holding the INP lock.
 	 */
 	inp = so->so_pcb;
 	INP_WLOCK(inp);
 	SOCK_SENDBUF_LOCK(so);
+	if (__predict_false(so->so_snd.sb_tls_info != NULL)) {
+		SOCK_SENDBUF_UNLOCK(so);
+		INP_WUNLOCK(inp);
+		SOCK_IO_SEND_UNLOCK(so);
+		ktls_free(tls);
+		return (EALREADY);
+	}
 	so->so_snd.sb_tls_seqno = be64dec(en->rec_seq);
 	so->so_snd.sb_tls_info = tls;
 	if (tls->mode != TCP_TLS_MODE_SW) {
 		tp = intotcpcb(inp);
 		MPASS(tp->t_nic_ktls_xmit == 0);
 		tp->t_nic_ktls_xmit = 1;
 		if (tp->t_fb->tfb_hwtls_change != NULL)
 			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
 	}
 	SOCK_SENDBUF_UNLOCK(so);
 	INP_WUNLOCK(inp);
 	SOCK_IO_SEND_UNLOCK(so);
 
 	counter_u64_add(ktls_offload_total, 1);
 
 	return (0);
 }
 
 int
 ktls_get_rx_mode(struct socket *so, int *modep)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp __diagused;
 
 	if (SOLISTENING(so))
 		return (EINVAL);
 	inp = so->so_pcb;
 	INP_WLOCK_ASSERT(inp);
 	SOCK_RECVBUF_LOCK(so);
 	tls = so->so_rcv.sb_tls_info;
 	if (tls == NULL)
 		*modep = TCP_TLS_MODE_NONE;
 	else
 		*modep = tls->mode;
 	SOCK_RECVBUF_UNLOCK(so);
 	return (0);
 }
 
 /*
  * ktls_get_rx_sequence - get the next TCP- and TLS- sequence number.
  *
  * This function gets information about the next TCP- and TLS-
  * sequence number to be processed by the TLS receive worker
  * thread. The information is extracted from the given "inpcb"
  * structure. The values are stored in host endian format at the two
  * given output pointer locations. The TCP sequence number points to
  * the beginning of the TLS header.
  *
  * This function returns zero on success, else a non-zero error code
  * is returned.
  */
 int
 ktls_get_rx_sequence(struct inpcb *inp, uint32_t *tcpseq, uint64_t *tlsseq)
 {
 	struct socket *so;
 	struct tcpcb *tp;
 
 	INP_RLOCK(inp);
 	so = inp->inp_socket;
 	if (__predict_false(so == NULL)) {
 		INP_RUNLOCK(inp);
 		return (EINVAL);
 	}
 	if (inp->inp_flags & INP_DROPPED) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 
 	tp = intotcpcb(inp);
 	MPASS(tp != NULL);
 
 	SOCKBUF_LOCK(&so->so_rcv);
 	*tcpseq = tp->rcv_nxt - so->so_rcv.sb_tlscc;
 	*tlsseq = so->so_rcv.sb_tls_seqno;
 	SOCKBUF_UNLOCK(&so->so_rcv);
 
 	INP_RUNLOCK(inp);
 
 	return (0);
 }
 
 int
 ktls_get_tx_mode(struct socket *so, int *modep)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp __diagused;
 
 	if (SOLISTENING(so))
 		return (EINVAL);
 	inp = so->so_pcb;
 	INP_WLOCK_ASSERT(inp);
 	SOCK_SENDBUF_LOCK(so);
 	tls = so->so_snd.sb_tls_info;
 	if (tls == NULL)
 		*modep = TCP_TLS_MODE_NONE;
 	else
 		*modep = tls->mode;
 	SOCK_SENDBUF_UNLOCK(so);
 	return (0);
 }
 
 /*
  * Switch between SW and ifnet TLS sessions as requested.
  */
 int
 ktls_set_tx_mode(struct socket *so, int mode)
 {
 	struct ktls_session *tls, *tls_new;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	int error;
 
 	if (SOLISTENING(so))
 		return (EINVAL);
 	switch (mode) {
 	case TCP_TLS_MODE_SW:
 	case TCP_TLS_MODE_IFNET:
 		break;
 	default:
 		return (EINVAL);
 	}
 
 	inp = so->so_pcb;
 	INP_WLOCK_ASSERT(inp);
 	tp = intotcpcb(inp);
 
 	if (mode == TCP_TLS_MODE_IFNET) {
 		/* Don't allow enabling ifnet ktls multiple times */
 		if (tp->t_nic_ktls_xmit)
 			return (EALREADY);
 
 		/*
 		 * Don't enable ifnet ktls if we disabled it due to an
 		 * excessive retransmission rate
 		 */
 		if (tp->t_nic_ktls_xmit_dis)
 			return (ENXIO);
 	}
 
 	SOCKBUF_LOCK(&so->so_snd);
 	tls = so->so_snd.sb_tls_info;
 	if (tls == NULL) {
 		SOCKBUF_UNLOCK(&so->so_snd);
 		return (0);
 	}
 
 	if (tls->mode == mode) {
 		SOCKBUF_UNLOCK(&so->so_snd);
 		return (0);
 	}
 
 	tls = ktls_hold(tls);
 	SOCKBUF_UNLOCK(&so->so_snd);
 	INP_WUNLOCK(inp);
 
 	tls_new = ktls_clone_session(tls, KTLS_TX);
 
 	if (mode == TCP_TLS_MODE_IFNET)
 		error = ktls_try_ifnet(so, tls_new, KTLS_TX, true);
 	else
 		error = ktls_try_sw(tls_new, KTLS_TX);
 	if (error) {
 		counter_u64_add(ktls_switch_failed, 1);
 		ktls_free(tls_new);
 		ktls_free(tls);
 		INP_WLOCK(inp);
 		return (error);
 	}
 
 	error = SOCK_IO_SEND_LOCK(so, SBL_WAIT);
 	if (error) {
 		counter_u64_add(ktls_switch_failed, 1);
 		ktls_free(tls_new);
 		ktls_free(tls);
 		INP_WLOCK(inp);
 		return (error);
 	}
 
 	/*
 	 * If we raced with another session change, keep the existing
 	 * session.
 	 */
 	if (tls != so->so_snd.sb_tls_info) {
 		counter_u64_add(ktls_switch_failed, 1);
 		SOCK_IO_SEND_UNLOCK(so);
 		ktls_free(tls_new);
 		ktls_free(tls);
 		INP_WLOCK(inp);
 		return (EBUSY);
 	}
 
 	INP_WLOCK(inp);
 	SOCKBUF_LOCK(&so->so_snd);
 	so->so_snd.sb_tls_info = tls_new;
 	if (tls_new->mode != TCP_TLS_MODE_SW) {
 		MPASS(tp->t_nic_ktls_xmit == 0);
 		tp->t_nic_ktls_xmit = 1;
 		if (tp->t_fb->tfb_hwtls_change != NULL)
 			(*tp->t_fb->tfb_hwtls_change)(tp, 1);
 	}
 	SOCKBUF_UNLOCK(&so->so_snd);
 	SOCK_IO_SEND_UNLOCK(so);
 
 	/*
 	 * Drop two references on 'tls'.  The first is for the
 	 * ktls_hold() above.  The second drops the reference from the
 	 * socket buffer.
 	 */
 	KASSERT(tls->refcount >= 2, ("too few references on old session"));
 	ktls_free(tls);
 	ktls_free(tls);
 
 	if (mode == TCP_TLS_MODE_IFNET)
 		counter_u64_add(ktls_switch_to_ifnet, 1);
 	else
 		counter_u64_add(ktls_switch_to_sw, 1);
 
 	return (0);
 }
 
 /*
  * Try to allocate a new TLS receive tag.  This task is scheduled when
  * sbappend_ktls_rx detects an input path change.  If a new tag is
  * allocated, replace the tag in the TLS session.  If a new tag cannot
  * be allocated, let the session fall back to software decryption.
  */
 static void
 ktls_reset_receive_tag(void *context, int pending)
 {
 	union if_snd_tag_alloc_params params;
 	struct ktls_session *tls;
 	struct m_snd_tag *mst;
 	struct inpcb *inp;
 	struct ifnet *ifp;
 	struct socket *so;
 	int error;
 
 	MPASS(pending == 1);
 
 	tls = context;
 	so = tls->so;
 	inp = so->so_pcb;
 	ifp = NULL;
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & INP_DROPPED) {
 		INP_RUNLOCK(inp);
 		goto out;
 	}
 
 	SOCKBUF_LOCK(&so->so_rcv);
 	mst = tls->snd_tag;
 	tls->snd_tag = NULL;
 	if (mst != NULL)
 		m_snd_tag_rele(mst);
 
 	ifp = tls->rx_ifp;
 	if_ref(ifp);
 	SOCKBUF_UNLOCK(&so->so_rcv);
 
 	params.hdr.type = IF_SND_TAG_TYPE_TLS_RX;
 	params.hdr.flowid = inp->inp_flowid;
 	params.hdr.flowtype = inp->inp_flowtype;
 	params.hdr.numa_domain = inp->inp_numa_domain;
 	params.tls_rx.inp = inp;
 	params.tls_rx.tls = tls;
 	params.tls_rx.vlan_id = tls->rx_vlan_id;
 	INP_RUNLOCK(inp);
 
 	if (inp->inp_vflag & INP_IPV6) {
 		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS6) == 0)
 			goto out;
 	} else {
 		if ((if_getcapenable2(ifp) & IFCAP2_RXTLS4) == 0)
 			goto out;
 	}
 
 	error = m_snd_tag_alloc(ifp, &params, &mst);
 	if (error == 0) {
 		SOCKBUF_LOCK(&so->so_rcv);
 		tls->snd_tag = mst;
 		SOCKBUF_UNLOCK(&so->so_rcv);
 
 		counter_u64_add(ktls_ifnet_reset, 1);
 	} else {
 		/*
 		 * Just fall back to software decryption if a tag
 		 * cannot be allocated leaving the connection intact.
 		 * If a future input path change switches to another
 		 * interface this connection will resume ifnet TLS.
 		 */
 		counter_u64_add(ktls_ifnet_reset_failed, 1);
 	}
 
 out:
 	mtx_pool_lock(mtxpool_sleep, tls);
 	tls->reset_pending = false;
 	mtx_pool_unlock(mtxpool_sleep, tls);
 
 	if (ifp != NULL)
 		if_rele(ifp);
 	CURVNET_SET(so->so_vnet);
 	sorele(so);
 	CURVNET_RESTORE();
 	ktls_free(tls);
 }
 
 /*
  * Try to allocate a new TLS send tag.  This task is scheduled when
  * ip_output detects a route change while trying to transmit a packet
  * holding a TLS record.  If a new tag is allocated, replace the tag
  * in the TLS session.  Subsequent packets on the connection will use
  * the new tag.  If a new tag cannot be allocated, drop the
  * connection.
  */
 static void
 ktls_reset_send_tag(void *context, int pending)
 {
 	struct epoch_tracker et;
 	struct ktls_session *tls;
 	struct m_snd_tag *old, *new;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	int error;
 
 	MPASS(pending == 1);
 
 	tls = context;
 	inp = tls->inp;
 
 	/*
 	 * Free the old tag first before allocating a new one.
 	 * ip[6]_output_send() will treat a NULL send tag the same as
 	 * an ifp mismatch and drop packets until a new tag is
 	 * allocated.
 	 *
 	 * Write-lock the INP when changing tls->snd_tag since
 	 * ip[6]_output_send() holds a read-lock when reading the
 	 * pointer.
 	 */
 	INP_WLOCK(inp);
 	old = tls->snd_tag;
 	tls->snd_tag = NULL;
 	INP_WUNLOCK(inp);
 	if (old != NULL)
 		m_snd_tag_rele(old);
 
 	error = ktls_alloc_snd_tag(inp, tls, true, &new);
 
 	if (error == 0) {
 		INP_WLOCK(inp);
 		tls->snd_tag = new;
 		mtx_pool_lock(mtxpool_sleep, tls);
 		tls->reset_pending = false;
 		mtx_pool_unlock(mtxpool_sleep, tls);
 		INP_WUNLOCK(inp);
 
 		counter_u64_add(ktls_ifnet_reset, 1);
 
 		/*
 		 * XXX: Should we kick tcp_output explicitly now that
 		 * the send tag is fixed or just rely on timers?
 		 */
 	} else {
 		NET_EPOCH_ENTER(et);
 		INP_WLOCK(inp);
 		if (!(inp->inp_flags & INP_DROPPED)) {
 			tp = intotcpcb(inp);
 			CURVNET_SET(inp->inp_vnet);
 			tp = tcp_drop(tp, ECONNABORTED);
 			CURVNET_RESTORE();
 			if (tp != NULL) {
 				counter_u64_add(ktls_ifnet_reset_dropped, 1);
 				INP_WUNLOCK(inp);
 			}
 		} else
 			INP_WUNLOCK(inp);
 		NET_EPOCH_EXIT(et);
 
 		counter_u64_add(ktls_ifnet_reset_failed, 1);
 
 		/*
 		 * Leave reset_pending true to avoid future tasks while
 		 * the socket goes away.
 		 */
 	}
 
 	ktls_free(tls);
 }
 
 void
 ktls_input_ifp_mismatch(struct sockbuf *sb, struct ifnet *ifp)
 {
 	struct ktls_session *tls;
 	struct socket *so;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
 	    __func__, sb));
 	so = __containerof(sb, struct socket, so_rcv);
 
 	tls = sb->sb_tls_info;
 	if_rele(tls->rx_ifp);
 	if_ref(ifp);
 	tls->rx_ifp = ifp;
 
 	/*
 	 * See if we should schedule a task to update the receive tag for
 	 * this session.
 	 */
 	mtx_pool_lock(mtxpool_sleep, tls);
 	if (!tls->reset_pending) {
 		(void) ktls_hold(tls);
 		soref(so);
 		tls->so = so;
 		tls->reset_pending = true;
 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
 	}
 	mtx_pool_unlock(mtxpool_sleep, tls);
 }
 
 int
 ktls_output_eagain(struct inpcb *inp, struct ktls_session *tls)
 {
 
 	if (inp == NULL)
 		return (ENOBUFS);
 
 	INP_LOCK_ASSERT(inp);
 
 	/*
 	 * See if we should schedule a task to update the send tag for
 	 * this session.
 	 */
 	mtx_pool_lock(mtxpool_sleep, tls);
 	if (!tls->reset_pending) {
 		(void) ktls_hold(tls);
 		tls->reset_pending = true;
 		taskqueue_enqueue(taskqueue_thread, &tls->reset_tag_task);
 	}
 	mtx_pool_unlock(mtxpool_sleep, tls);
 	return (ENOBUFS);
 }
 
 #ifdef RATELIMIT
 int
 ktls_modify_txrtlmt(struct ktls_session *tls, uint64_t max_pacing_rate)
 {
 	union if_snd_tag_modify_params params = {
 		.rate_limit.max_rate = max_pacing_rate,
 		.rate_limit.flags = M_NOWAIT,
 	};
 	struct m_snd_tag *mst;
 
 	/* Can't get to the inp, but it should be locked. */
 	/* INP_LOCK_ASSERT(inp); */
 
 	MPASS(tls->mode == TCP_TLS_MODE_IFNET);
 
 	if (tls->snd_tag == NULL) {
 		/*
 		 * Resetting send tag, ignore this change.  The
 		 * pending reset may or may not see this updated rate
 		 * in the tcpcb.  If it doesn't, we will just lose
 		 * this rate change.
 		 */
 		return (0);
 	}
 
 	mst = tls->snd_tag;
 
 	MPASS(mst != NULL);
 	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RATE_LIMIT);
 
 	return (mst->sw->snd_tag_modify(mst, &params));
 }
 #endif
 
 static void
 ktls_destroy_help(void *context, int pending __unused)
 {
 	ktls_destroy(context);
 }
 
 void
 ktls_destroy(struct ktls_session *tls)
 {
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	bool wlocked;
 
 	MPASS(tls->refcount == 0);
 
 	inp = tls->inp;
 	if (tls->tx) {
 		wlocked = INP_WLOCKED(inp);
 		if (!wlocked && !INP_TRY_WLOCK(inp)) {
 			/*
 			 * rwlocks read locks are anonymous, and there
 			 * is no way to know if our current thread
 			 * holds an rlock on the inp.  As a rough
 			 * estimate, check to see if the thread holds
 			 * *any* rlocks at all.  If it does not, then we
 			 * know that we don't hold the inp rlock, and
 			 * can safely take the wlock
 			 */
 			if (curthread->td_rw_rlocks == 0) {
 				INP_WLOCK(inp);
 			} else {
 				/*
 				 * We might hold the rlock, so let's
 				 * do the destroy in a taskqueue
 				 * context to avoid a potential
 				 * deadlock.  This should be very
 				 * rare.
 				 */
 				counter_u64_add(ktls_destroy_task, 1);
 				TASK_INIT(&tls->destroy_task, 0,
 				    ktls_destroy_help, tls);
 				(void)taskqueue_enqueue(taskqueue_thread,
 				    &tls->destroy_task);
 				return;
 			}
 		}
 	}
 
 	if (tls->sequential_records) {
 		struct mbuf *m, *n;
 		int page_count;
 
 		STAILQ_FOREACH_SAFE(m, &tls->pending_records, m_epg_stailq, n) {
 			page_count = m->m_epg_enc_cnt;
 			while (page_count > 0) {
 				KASSERT(page_count >= m->m_epg_nrdy,
 				    ("%s: too few pages", __func__));
 				page_count -= m->m_epg_nrdy;
 				m = m_free(m);
 			}
 		}
 	}
 
 	counter_u64_add(ktls_offload_active, -1);
 	switch (tls->mode) {
 	case TCP_TLS_MODE_SW:
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_sw_cbc, -1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_sw_gcm, -1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_sw_chacha20, -1);
 			break;
 		}
 		break;
 	case TCP_TLS_MODE_IFNET:
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_ifnet_cbc, -1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_ifnet_gcm, -1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_ifnet_chacha20, -1);
 			break;
 		}
 		if (tls->snd_tag != NULL)
 			m_snd_tag_rele(tls->snd_tag);
 		if (tls->rx_ifp != NULL)
 			if_rele(tls->rx_ifp);
 		if (tls->tx) {
 			INP_WLOCK_ASSERT(inp);
 			tp = intotcpcb(inp);
 			MPASS(tp->t_nic_ktls_xmit == 1);
 			tp->t_nic_ktls_xmit = 0;
 		}
 		break;
 #ifdef TCP_OFFLOAD
 	case TCP_TLS_MODE_TOE:
 		switch (tls->params.cipher_algorithm) {
 		case CRYPTO_AES_CBC:
 			counter_u64_add(ktls_toe_cbc, -1);
 			break;
 		case CRYPTO_AES_NIST_GCM_16:
 			counter_u64_add(ktls_toe_gcm, -1);
 			break;
 		case CRYPTO_CHACHA20_POLY1305:
 			counter_u64_add(ktls_toe_chacha20, -1);
 			break;
 		}
 		break;
 #endif
 	}
 	if (tls->ocf_session != NULL)
 		ktls_ocf_free(tls);
 	if (tls->params.auth_key != NULL) {
 		zfree(tls->params.auth_key, M_KTLS);
 		tls->params.auth_key = NULL;
 		tls->params.auth_key_len = 0;
 	}
 	if (tls->params.cipher_key != NULL) {
 		zfree(tls->params.cipher_key, M_KTLS);
 		tls->params.cipher_key = NULL;
 		tls->params.cipher_key_len = 0;
 	}
 	if (tls->tx) {
 		INP_WLOCK_ASSERT(inp);
 		if (!in_pcbrele_wlocked(inp) && !wlocked)
 			INP_WUNLOCK(inp);
 	}
 	explicit_bzero(tls->params.iv, sizeof(tls->params.iv));
 
 	uma_zfree(ktls_session_zone, tls);
 }
 
 void
 ktls_seq(struct sockbuf *sb, struct mbuf *m)
 {
 
 	for (; m != NULL; m = m->m_next) {
 		KASSERT((m->m_flags & M_EXTPG) != 0,
 		    ("ktls_seq: mapped mbuf %p", m));
 
 		m->m_epg_seqno = sb->sb_tls_seqno;
 		sb->sb_tls_seqno++;
 	}
 }
 
 /*
  * Add TLS framing (headers and trailers) to a chain of mbufs.  Each
  * mbuf in the chain must be an unmapped mbuf.  The payload of the
  * mbuf must be populated with the payload of each TLS record.
  *
  * The record_type argument specifies the TLS record type used when
  * populating the TLS header.
  *
  * The enq_count argument on return is set to the number of pages of
  * payload data for this entire chain that need to be encrypted via SW
  * encryption.  The returned value should be passed to ktls_enqueue
  * when scheduling encryption of this chain of mbufs.  To handle the
  * special case of empty fragments for TLS 1.0 sessions, an empty
  * fragment counts as one page.
  */
 void
 ktls_frame(struct mbuf *top, struct ktls_session *tls, int *enq_cnt,
     uint8_t record_type)
 {
 	struct tls_record_layer *tlshdr;
 	struct mbuf *m;
 	uint64_t *noncep;
 	uint16_t tls_len;
 	int maxlen __diagused;
 
 	maxlen = tls->params.max_frame_len;
 	*enq_cnt = 0;
 	for (m = top; m != NULL; m = m->m_next) {
 		/*
 		 * All mbufs in the chain should be TLS records whose
 		 * payload does not exceed the maximum frame length.
 		 *
 		 * Empty TLS 1.0 records are permitted when using CBC.
 		 */
 		KASSERT(m->m_len <= maxlen && m->m_len >= 0 &&
 		    (m->m_len > 0 || ktls_permit_empty_frames(tls)),
 		    ("ktls_frame: m %p len %d", m, m->m_len));
 
 		/*
 		 * TLS frames require unmapped mbufs to store session
 		 * info.
 		 */
 		KASSERT((m->m_flags & M_EXTPG) != 0,
 		    ("ktls_frame: mapped mbuf %p (top = %p)", m, top));
 
 		tls_len = m->m_len;
 
 		/* Save a reference to the session. */
 		m->m_epg_tls = ktls_hold(tls);
 
 		m->m_epg_hdrlen = tls->params.tls_hlen;
 		m->m_epg_trllen = tls->params.tls_tlen;
 		if (tls->params.cipher_algorithm == CRYPTO_AES_CBC) {
 			int bs, delta;
 
 			/*
 			 * AES-CBC pads messages to a multiple of the
 			 * block size.  Note that the padding is
 			 * applied after the digest and the encryption
 			 * is done on the "plaintext || mac || padding".
 			 * At least one byte of padding is always
 			 * present.
 			 *
 			 * Compute the final trailer length assuming
 			 * at most one block of padding.
 			 * tls->params.tls_tlen is the maximum
 			 * possible trailer length (padding + digest).
 			 * delta holds the number of excess padding
 			 * bytes if the maximum were used.  Those
 			 * extra bytes are removed.
 			 */
 			bs = tls->params.tls_bs;
 			delta = (tls_len + tls->params.tls_tlen) & (bs - 1);
 			m->m_epg_trllen -= delta;
 		}
 		m->m_len += m->m_epg_hdrlen + m->m_epg_trllen;
 
 		/* Populate the TLS header. */
 		tlshdr = (void *)m->m_epg_hdr;
 		tlshdr->tls_vmajor = tls->params.tls_vmajor;
 
 		/*
 		 * TLS 1.3 masquarades as TLS 1.2 with a record type
 		 * of TLS_RLTYPE_APP.
 		 */
 		if (tls->params.tls_vminor == TLS_MINOR_VER_THREE &&
 		    tls->params.tls_vmajor == TLS_MAJOR_VER_ONE) {
 			tlshdr->tls_vminor = TLS_MINOR_VER_TWO;
 			tlshdr->tls_type = TLS_RLTYPE_APP;
 			/* save the real record type for later */
 			m->m_epg_record_type = record_type;
 			m->m_epg_trail[0] = record_type;
 		} else {
 			tlshdr->tls_vminor = tls->params.tls_vminor;
 			tlshdr->tls_type = record_type;
 		}
 		tlshdr->tls_length = htons(m->m_len - sizeof(*tlshdr));
 
 		/*
 		 * Store nonces / explicit IVs after the end of the
 		 * TLS header.
 		 *
 		 * For GCM with TLS 1.2, an 8 byte nonce is copied
 		 * from the end of the IV.  The nonce is then
 		 * incremented for use by the next record.
 		 *
 		 * For CBC, a random nonce is inserted for TLS 1.1+.
 		 */
 		if (tls->params.cipher_algorithm == CRYPTO_AES_NIST_GCM_16 &&
 		    tls->params.tls_vminor == TLS_MINOR_VER_TWO) {
 			noncep = (uint64_t *)(tls->params.iv + 8);
 			be64enc(tlshdr + 1, *noncep);
 			(*noncep)++;
 		} else if (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
 		    tls->params.tls_vminor >= TLS_MINOR_VER_ONE)
 			arc4rand(tlshdr + 1, AES_BLOCK_LEN, 0);
 
 		/*
 		 * When using SW encryption, mark the mbuf not ready.
 		 * It will be marked ready via sbready() after the
 		 * record has been encrypted.
 		 *
 		 * When using ifnet TLS, unencrypted TLS records are
 		 * sent down the stack to the NIC.
 		 */
 		if (tls->mode == TCP_TLS_MODE_SW) {
 			m->m_flags |= M_NOTREADY;
 			if (__predict_false(tls_len == 0)) {
 				/* TLS 1.0 empty fragment. */
 				m->m_epg_nrdy = 1;
 			} else
 				m->m_epg_nrdy = m->m_epg_npgs;
 			*enq_cnt += m->m_epg_nrdy;
 		}
 	}
 }
 
 bool
 ktls_permit_empty_frames(struct ktls_session *tls)
 {
 	return (tls->params.cipher_algorithm == CRYPTO_AES_CBC &&
 	    tls->params.tls_vminor == TLS_MINOR_VER_ZERO);
 }
 
 void
 ktls_check_rx(struct sockbuf *sb)
 {
 	struct tls_record_layer hdr;
 	struct ktls_wq *wq;
 	struct socket *so;
 	bool running;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	KASSERT(sb->sb_flags & SB_TLS_RX, ("%s: sockbuf %p isn't TLS RX",
 	    __func__, sb));
 	so = __containerof(sb, struct socket, so_rcv);
 
 	if (sb->sb_flags & SB_TLS_RX_RUNNING)
 		return;
 
 	/* Is there enough queued for a TLS header? */
 	if (sb->sb_tlscc < sizeof(hdr)) {
 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc != 0)
 			so->so_error = EMSGSIZE;
 		return;
 	}
 
 	m_copydata(sb->sb_mtls, 0, sizeof(hdr), (void *)&hdr);
 
 	/* Is the entire record queued? */
 	if (sb->sb_tlscc < sizeof(hdr) + ntohs(hdr.tls_length)) {
 		if ((sb->sb_state & SBS_CANTRCVMORE) != 0)
 			so->so_error = EMSGSIZE;
 		return;
 	}
 
 	sb->sb_flags |= SB_TLS_RX_RUNNING;
 
 	soref(so);
 	wq = &ktls_wq[so->so_rcv.sb_tls_info->wq_index];
 	mtx_lock(&wq->mtx);
 	STAILQ_INSERT_TAIL(&wq->so_head, so, so_ktls_rx_list);
 	running = wq->running;
 	mtx_unlock(&wq->mtx);
 	if (!running)
 		wakeup(wq);
 	counter_u64_add(ktls_cnt_rx_queued, 1);
 }
 
 static struct mbuf *
 ktls_detach_record(struct sockbuf *sb, int len)
 {
 	struct mbuf *m, *n, *top;
 	int remain;
 
 	SOCKBUF_LOCK_ASSERT(sb);
 	MPASS(len <= sb->sb_tlscc);
 
 	/*
 	 * If TLS chain is the exact size of the record,
 	 * just grab the whole record.
 	 */
 	top = sb->sb_mtls;
 	if (sb->sb_tlscc == len) {
 		sb->sb_mtls = NULL;
 		sb->sb_mtlstail = NULL;
 		goto out;
 	}
 
 	/*
 	 * While it would be nice to use m_split() here, we need
 	 * to know exactly what m_split() allocates to update the
 	 * accounting, so do it inline instead.
 	 */
 	remain = len;
 	for (m = top; remain > m->m_len; m = m->m_next)
 		remain -= m->m_len;
 
 	/* Easy case: don't have to split 'm'. */
 	if (remain == m->m_len) {
 		sb->sb_mtls = m->m_next;
 		if (sb->sb_mtls == NULL)
 			sb->sb_mtlstail = NULL;
 		m->m_next = NULL;
 		goto out;
 	}
 
 	/*
 	 * Need to allocate an mbuf to hold the remainder of 'm'.  Try
 	 * with M_NOWAIT first.
 	 */
 	n = m_get(M_NOWAIT, MT_DATA);
 	if (n == NULL) {
 		/*
 		 * Use M_WAITOK with socket buffer unlocked.  If
 		 * 'sb_mtls' changes while the lock is dropped, return
 		 * NULL to force the caller to retry.
 		 */
 		SOCKBUF_UNLOCK(sb);
 
 		n = m_get(M_WAITOK, MT_DATA);
 
 		SOCKBUF_LOCK(sb);
 		if (sb->sb_mtls != top) {
 			m_free(n);
 			return (NULL);
 		}
 	}
 	n->m_flags |= (m->m_flags & (M_NOTREADY | M_DECRYPTED));
 
 	/* Store remainder in 'n'. */
 	n->m_len = m->m_len - remain;
 	if (m->m_flags & M_EXT) {
 		n->m_data = m->m_data + remain;
 		mb_dupcl(n, m);
 	} else {
 		bcopy(mtod(m, caddr_t) + remain, mtod(n, caddr_t), n->m_len);
 	}
 
 	/* Trim 'm' and update accounting. */
 	m->m_len -= n->m_len;
 	sb->sb_tlscc -= n->m_len;
 	sb->sb_ccc -= n->m_len;
 
 	/* Account for 'n'. */
 	sballoc_ktls_rx(sb, n);
 
 	/* Insert 'n' into the TLS chain. */
 	sb->sb_mtls = n;
 	n->m_next = m->m_next;
 	if (sb->sb_mtlstail == m)
 		sb->sb_mtlstail = n;
 
 	/* Detach the record from the TLS chain. */
 	m->m_next = NULL;
 
 out:
 	MPASS(m_length(top, NULL) == len);
 	for (m = top; m != NULL; m = m->m_next)
 		sbfree_ktls_rx(sb, m);
 	sb->sb_tlsdcc = len;
 	sb->sb_ccc += len;
 	SBCHECK(sb);
 	return (top);
 }
 
 /*
  * Determine the length of the trailing zero padding and find the real
  * record type in the byte before the padding.
  *
  * Walking the mbuf chain backwards is clumsy, so another option would
  * be to scan forwards remembering the last non-zero byte before the
  * trailer.  However, it would be expensive to scan the entire record.
  * Instead, find the last non-zero byte of each mbuf in the chain
  * keeping track of the relative offset of that nonzero byte.
  *
  * trail_len is the size of the MAC/tag on input and is set to the
  * size of the full trailer including padding and the record type on
  * return.
  */
 static int
 tls13_find_record_type(struct ktls_session *tls, struct mbuf *m, int tls_len,
     int *trailer_len, uint8_t *record_typep)
 {
 	char *cp;
 	u_int digest_start, last_offset, m_len, offset;
 	uint8_t record_type;
 
 	digest_start = tls_len - *trailer_len;
 	last_offset = 0;
 	offset = 0;
 	for (; m != NULL && offset < digest_start;
 	     offset += m->m_len, m = m->m_next) {
 		/* Don't look for padding in the tag. */
 		m_len = min(digest_start - offset, m->m_len);
 		cp = mtod(m, char *);
 
 		/* Find last non-zero byte in this mbuf. */
 		while (m_len > 0 && cp[m_len - 1] == 0)
 			m_len--;
 		if (m_len > 0) {
 			record_type = cp[m_len - 1];
 			last_offset = offset + m_len;
 		}
 	}
 	if (last_offset < tls->params.tls_hlen)
 		return (EBADMSG);
 
 	*record_typep = record_type;
 	*trailer_len = tls_len - last_offset + 1;
 	return (0);
 }
 
 /*
  * Check if a mbuf chain is fully decrypted at the given offset and
  * length. Returns KTLS_MBUF_CRYPTO_ST_DECRYPTED if all data is
  * decrypted. KTLS_MBUF_CRYPTO_ST_MIXED if there is a mix of encrypted
  * and decrypted data. Else KTLS_MBUF_CRYPTO_ST_ENCRYPTED if all data
  * is encrypted.
  */
 ktls_mbuf_crypto_st_t
 ktls_mbuf_crypto_state(struct mbuf *mb, int offset, int len)
 {
 	int m_flags_ored = 0;
 	int m_flags_anded = -1;
 
 	for (; mb != NULL; mb = mb->m_next) {
 		if (offset < mb->m_len)
 			break;
 		offset -= mb->m_len;
 	}
 	offset += len;
 
 	for (; mb != NULL; mb = mb->m_next) {
 		m_flags_ored |= mb->m_flags;
 		m_flags_anded &= mb->m_flags;
 
 		if (offset <= mb->m_len)
 			break;
 		offset -= mb->m_len;
 	}
 	MPASS(mb != NULL || offset == 0);
 
 	if ((m_flags_ored ^ m_flags_anded) & M_DECRYPTED)
 		return (KTLS_MBUF_CRYPTO_ST_MIXED);
 	else
 		return ((m_flags_ored & M_DECRYPTED) ?
 		    KTLS_MBUF_CRYPTO_ST_DECRYPTED :
 		    KTLS_MBUF_CRYPTO_ST_ENCRYPTED);
 }
 
 /*
  * ktls_resync_ifnet - get HW TLS RX back on track after packet loss
  */
 static int
 ktls_resync_ifnet(struct socket *so, uint32_t tls_len, uint64_t tls_rcd_num)
 {
 	union if_snd_tag_modify_params params;
 	struct m_snd_tag *mst;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 
 	mst = so->so_rcv.sb_tls_info->snd_tag;
 	if (__predict_false(mst == NULL))
 		return (EINVAL);
 
 	inp = sotoinpcb(so);
 	if (__predict_false(inp == NULL))
 		return (EINVAL);
 
 	INP_RLOCK(inp);
 	if (inp->inp_flags & INP_DROPPED) {
 		INP_RUNLOCK(inp);
 		return (ECONNRESET);
 	}
 
 	tp = intotcpcb(inp);
 	MPASS(tp != NULL);
 
 	/* Get the TCP sequence number of the next valid TLS header. */
 	SOCKBUF_LOCK(&so->so_rcv);
 	params.tls_rx.tls_hdr_tcp_sn =
 	    tp->rcv_nxt - so->so_rcv.sb_tlscc - tls_len;
 	params.tls_rx.tls_rec_length = tls_len;
 	params.tls_rx.tls_seq_number = tls_rcd_num;
 	SOCKBUF_UNLOCK(&so->so_rcv);
 
 	INP_RUNLOCK(inp);
 
 	MPASS(mst->sw->type == IF_SND_TAG_TYPE_TLS_RX);
 	return (mst->sw->snd_tag_modify(mst, &params));
 }
 
 static void
 ktls_drop(struct socket *so, int error)
 {
 	struct epoch_tracker et;
 	struct inpcb *inp = sotoinpcb(so);
 	struct tcpcb *tp;
 
 	NET_EPOCH_ENTER(et);
 	INP_WLOCK(inp);
 	if (!(inp->inp_flags & INP_DROPPED)) {
 		tp = intotcpcb(inp);
 		CURVNET_SET(inp->inp_vnet);
 		tp = tcp_drop(tp, error);
 		CURVNET_RESTORE();
 		if (tp != NULL)
 			INP_WUNLOCK(inp);
 	} else {
 		so->so_error = error;
 		SOCK_RECVBUF_LOCK(so);
 		sorwakeup_locked(so);
 		INP_WUNLOCK(inp);
 	}
 	NET_EPOCH_EXIT(et);
 }
 
 static void
 ktls_decrypt(struct socket *so)
 {
 	char tls_header[MBUF_PEXT_HDR_LEN];
 	struct ktls_session *tls;
 	struct sockbuf *sb;
 	struct tls_record_layer *hdr;
 	struct tls_get_record tgr;
 	struct mbuf *control, *data, *m;
 	ktls_mbuf_crypto_st_t state;
 	uint64_t seqno;
 	int error, remain, tls_len, trail_len;
 	bool tls13;
 	uint8_t vminor, record_type;
 
 	hdr = (struct tls_record_layer *)tls_header;
 	sb = &so->so_rcv;
 	SOCKBUF_LOCK(sb);
 	KASSERT(sb->sb_flags & SB_TLS_RX_RUNNING,
 	    ("%s: socket %p not running", __func__, so));
 
 	tls = sb->sb_tls_info;
 	MPASS(tls != NULL);
 
 	tls13 = (tls->params.tls_vminor == TLS_MINOR_VER_THREE);
 	if (tls13)
 		vminor = TLS_MINOR_VER_TWO;
 	else
 		vminor = tls->params.tls_vminor;
 	for (;;) {
 		/* Is there enough queued for a TLS header? */
 		if (sb->sb_tlscc < tls->params.tls_hlen)
 			break;
 
 		m_copydata(sb->sb_mtls, 0, tls->params.tls_hlen, tls_header);
 		tls_len = sizeof(*hdr) + ntohs(hdr->tls_length);
 
 		if (hdr->tls_vmajor != tls->params.tls_vmajor ||
 		    hdr->tls_vminor != vminor)
 			error = EINVAL;
 		else if (tls13 && hdr->tls_type != TLS_RLTYPE_APP)
 			error = EINVAL;
 		else if (tls_len < tls->params.tls_hlen || tls_len >
 		    tls->params.tls_hlen + TLS_MAX_MSG_SIZE_V10_2 +
 		    tls->params.tls_tlen)
 			error = EMSGSIZE;
 		else
 			error = 0;
 		if (__predict_false(error != 0)) {
 			/*
 			 * We have a corrupted record and are likely
 			 * out of sync.  The connection isn't
 			 * recoverable at this point, so abort it.
 			 */
 			SOCKBUF_UNLOCK(sb);
 			counter_u64_add(ktls_offload_corrupted_records, 1);
 
 			ktls_drop(so, error);
 			goto deref;
 		}
 
 		/* Is the entire record queued? */
 		if (sb->sb_tlscc < tls_len)
 			break;
 
 		/*
 		 * Split out the portion of the mbuf chain containing
 		 * this TLS record.
 		 */
 		data = ktls_detach_record(sb, tls_len);
 		if (data == NULL)
 			continue;
 		MPASS(sb->sb_tlsdcc == tls_len);
 
 		seqno = sb->sb_tls_seqno;
 		sb->sb_tls_seqno++;
 		SBCHECK(sb);
 		SOCKBUF_UNLOCK(sb);
 
 		/* get crypto state for this TLS record */
 		state = ktls_mbuf_crypto_state(data, 0, tls_len);
 
 		switch (state) {
 		case KTLS_MBUF_CRYPTO_ST_MIXED:
 			error = ktls_ocf_recrypt(tls, hdr, data, seqno);
 			if (error)
 				break;
 			/* FALLTHROUGH */
 		case KTLS_MBUF_CRYPTO_ST_ENCRYPTED:
 			error = ktls_ocf_decrypt(tls, hdr, data, seqno,
 			    &trail_len);
 			if (__predict_true(error == 0)) {
 				if (tls13) {
 					error = tls13_find_record_type(tls, data,
 					    tls_len, &trail_len, &record_type);
 				} else {
 					record_type = hdr->tls_type;
 				}
 			}
 			break;
 		case KTLS_MBUF_CRYPTO_ST_DECRYPTED:
 			/*
 			 * NIC TLS is only supported for AEAD
 			 * ciphersuites which used a fixed sized
 			 * trailer.
 			 */
 			if (tls13) {
 				trail_len = tls->params.tls_tlen - 1;
 				error = tls13_find_record_type(tls, data,
 				    tls_len, &trail_len, &record_type);
 			} else {
 				trail_len = tls->params.tls_tlen;
 				error = 0;
 				record_type = hdr->tls_type;
 			}
 			break;
 		default:
 			error = EINVAL;
 			break;
 		}
 		if (error) {
 			counter_u64_add(ktls_offload_failed_crypto, 1);
 
 			SOCKBUF_LOCK(sb);
 			if (sb->sb_tlsdcc == 0) {
 				/*
 				 * sbcut/drop/flush discarded these
 				 * mbufs.
 				 */
 				m_freem(data);
 				break;
 			}
 
 			/*
 			 * Drop this TLS record's data, but keep
 			 * decrypting subsequent records.
 			 */
 			sb->sb_ccc -= tls_len;
 			sb->sb_tlsdcc = 0;
 
 			if (error != EMSGSIZE)
 				error = EBADMSG;
 			CURVNET_SET(so->so_vnet);
 			so->so_error = error;
 			sorwakeup_locked(so);
 			CURVNET_RESTORE();
 
 			m_freem(data);
 
 			SOCKBUF_LOCK(sb);
 			continue;
 		}
 
 		/* Allocate the control mbuf. */
 		memset(&tgr, 0, sizeof(tgr));
 		tgr.tls_type = record_type;
 		tgr.tls_vmajor = hdr->tls_vmajor;
 		tgr.tls_vminor = hdr->tls_vminor;
 		tgr.tls_length = htobe16(tls_len - tls->params.tls_hlen -
 		    trail_len);
 		control = sbcreatecontrol(&tgr, sizeof(tgr),
 		    TLS_GET_RECORD, IPPROTO_TCP, M_WAITOK);
 
 		SOCKBUF_LOCK(sb);
 		if (sb->sb_tlsdcc == 0) {
 			/* sbcut/drop/flush discarded these mbufs. */
 			MPASS(sb->sb_tlscc == 0);
 			m_freem(data);
 			m_freem(control);
 			break;
 		}
 
 		/*
 		 * Clear the 'dcc' accounting in preparation for
 		 * adding the decrypted record.
 		 */
 		sb->sb_ccc -= tls_len;
 		sb->sb_tlsdcc = 0;
 		SBCHECK(sb);
 
 		/* If there is no payload, drop all of the data. */
 		if (tgr.tls_length == htobe16(0)) {
 			m_freem(data);
 			data = NULL;
 		} else {
 			/* Trim header. */
 			remain = tls->params.tls_hlen;
 			while (remain > 0) {
 				if (data->m_len > remain) {
 					data->m_data += remain;
 					data->m_len -= remain;
 					break;
 				}
 				remain -= data->m_len;
 				data = m_free(data);
 			}
 
 			/* Trim trailer and clear M_NOTREADY. */
 			remain = be16toh(tgr.tls_length);
 			m = data;
 			for (m = data; remain > m->m_len; m = m->m_next) {
 				m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
 				remain -= m->m_len;
 			}
 			m->m_len = remain;
 			m_freem(m->m_next);
 			m->m_next = NULL;
 			m->m_flags &= ~(M_NOTREADY | M_DECRYPTED);
 
 			/* Set EOR on the final mbuf. */
 			m->m_flags |= M_EOR;
 		}
 
 		sbappendcontrol_locked(sb, data, control, 0);
 
 		if (__predict_false(state != KTLS_MBUF_CRYPTO_ST_DECRYPTED)) {
 			sb->sb_flags |= SB_TLS_RX_RESYNC;
 			SOCKBUF_UNLOCK(sb);
 			ktls_resync_ifnet(so, tls_len, seqno);
 			SOCKBUF_LOCK(sb);
 		} else if (__predict_false(sb->sb_flags & SB_TLS_RX_RESYNC)) {
 			sb->sb_flags &= ~SB_TLS_RX_RESYNC;
 			SOCKBUF_UNLOCK(sb);
 			ktls_resync_ifnet(so, 0, seqno);
 			SOCKBUF_LOCK(sb);
 		}
 	}
 
 	sb->sb_flags &= ~SB_TLS_RX_RUNNING;
 
 	if ((sb->sb_state & SBS_CANTRCVMORE) != 0 && sb->sb_tlscc > 0)
 		so->so_error = EMSGSIZE;
 
 	sorwakeup_locked(so);
 
 deref:
 	SOCKBUF_UNLOCK_ASSERT(sb);
 
 	CURVNET_SET(so->so_vnet);
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 void
 ktls_enqueue_to_free(struct mbuf *m)
 {
 	struct ktls_wq *wq;
 	bool running;
 
 	/* Mark it for freeing. */
 	m->m_epg_flags |= EPG_FLAG_2FREE;
 	wq = &ktls_wq[m->m_epg_tls->wq_index];
 	mtx_lock(&wq->mtx);
 	STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
 	running = wq->running;
 	mtx_unlock(&wq->mtx);
 	if (!running)
 		wakeup(wq);
 }
 
 static void *
 ktls_buffer_alloc(struct ktls_wq *wq, struct mbuf *m)
 {
 	void *buf;
 	int domain, running;
 
 	if (m->m_epg_npgs <= 2)
 		return (NULL);
 	if (ktls_buffer_zone == NULL)
 		return (NULL);
 	if ((u_int)(ticks - wq->lastallocfail) < hz) {
 		/*
 		 * Rate-limit allocation attempts after a failure.
 		 * ktls_buffer_import() will acquire a per-domain mutex to check
 		 * the free page queues and may fail consistently if memory is
 		 * fragmented.
 		 */
 		return (NULL);
 	}
 	buf = uma_zalloc(ktls_buffer_zone, M_NOWAIT | M_NORECLAIM);
 	if (buf == NULL) {
 		domain = PCPU_GET(domain);
 		wq->lastallocfail = ticks;
 
 		/*
 		 * Note that this check is "racy", but the races are
 		 * harmless, and are either a spurious wakeup if
 		 * multiple threads fail allocations before the alloc
 		 * thread wakes, or waiting an extra second in case we
 		 * see an old value of running == true.
 		 */
 		if (!VM_DOMAIN_EMPTY(domain)) {
 			running = atomic_load_int(&ktls_domains[domain].reclaim_td.running);
 			if (!running)
 				wakeup(&ktls_domains[domain].reclaim_td);
 		}
 	}
 	return (buf);
 }
 
 static int
 ktls_encrypt_record(struct ktls_wq *wq, struct mbuf *m,
     struct ktls_session *tls, struct ktls_ocf_encrypt_state *state)
 {
 	vm_page_t pg;
 	int error, i, len, off;
 
 	KASSERT((m->m_flags & (M_EXTPG | M_NOTREADY)) == (M_EXTPG | M_NOTREADY),
 	    ("%p not unready & nomap mbuf\n", m));
 	KASSERT(ptoa(m->m_epg_npgs) <= ktls_maxlen,
 	    ("page count %d larger than maximum frame length %d", m->m_epg_npgs,
 	    ktls_maxlen));
 
 	/* Anonymous mbufs are encrypted in place. */
 	if ((m->m_epg_flags & EPG_FLAG_ANON) != 0)
 		return (ktls_ocf_encrypt(state, tls, m, NULL, 0));
 
 	/*
 	 * For file-backed mbufs (from sendfile), anonymous wired
 	 * pages are allocated and used as the encryption destination.
 	 */
 	if ((state->cbuf = ktls_buffer_alloc(wq, m)) != NULL) {
 		len = ptoa(m->m_epg_npgs - 1) + m->m_epg_last_len -
 		    m->m_epg_1st_off;
 		state->dst_iov[0].iov_base = (char *)state->cbuf +
 		    m->m_epg_1st_off;
 		state->dst_iov[0].iov_len = len;
 		state->parray[0] = DMAP_TO_PHYS((vm_offset_t)state->cbuf);
 		i = 1;
 	} else {
 		off = m->m_epg_1st_off;
 		for (i = 0; i < m->m_epg_npgs; i++, off = 0) {
 			pg = vm_page_alloc_noobj(VM_ALLOC_NODUMP |
 			    VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
 			len = m_epg_pagelen(m, i, off);
 			state->parray[i] = VM_PAGE_TO_PHYS(pg);
 			state->dst_iov[i].iov_base =
 			    (char *)PHYS_TO_DMAP(state->parray[i]) + off;
 			state->dst_iov[i].iov_len = len;
 		}
 	}
 	KASSERT(i + 1 <= nitems(state->dst_iov), ("dst_iov is too small"));
 	state->dst_iov[i].iov_base = m->m_epg_trail;
 	state->dst_iov[i].iov_len = m->m_epg_trllen;
 
 	error = ktls_ocf_encrypt(state, tls, m, state->dst_iov, i + 1);
 
 	if (__predict_false(error != 0)) {
 		/* Free the anonymous pages. */
 		if (state->cbuf != NULL)
 			uma_zfree(ktls_buffer_zone, state->cbuf);
 		else {
 			for (i = 0; i < m->m_epg_npgs; i++) {
 				pg = PHYS_TO_VM_PAGE(state->parray[i]);
 				(void)vm_page_unwire_noq(pg);
 				vm_page_free(pg);
 			}
 		}
 	}
 	return (error);
 }
 
 /* Number of TLS records in a batch passed to ktls_enqueue(). */
 static u_int
 ktls_batched_records(struct mbuf *m)
 {
 	int page_count, records;
 
 	records = 0;
 	page_count = m->m_epg_enc_cnt;
 	while (page_count > 0) {
 		records++;
 		page_count -= m->m_epg_nrdy;
 		m = m->m_next;
 	}
 	KASSERT(page_count == 0, ("%s: mismatched page count", __func__));
 	return (records);
 }
 
 void
 ktls_enqueue(struct mbuf *m, struct socket *so, int page_count)
 {
 	struct ktls_session *tls;
 	struct ktls_wq *wq;
 	int queued;
 	bool running;
 
 	KASSERT(((m->m_flags & (M_EXTPG | M_NOTREADY)) ==
 	    (M_EXTPG | M_NOTREADY)),
 	    ("ktls_enqueue: %p not unready & nomap mbuf\n", m));
 	KASSERT(page_count != 0, ("enqueueing TLS mbuf with zero page count"));
 
 	KASSERT(m->m_epg_tls->mode == TCP_TLS_MODE_SW, ("!SW TLS mbuf"));
 
 	m->m_epg_enc_cnt = page_count;
 
 	/*
 	 * Save a pointer to the socket.  The caller is responsible
 	 * for taking an additional reference via soref().
 	 */
 	m->m_epg_so = so;
 
 	queued = 1;
 	tls = m->m_epg_tls;
 	wq = &ktls_wq[tls->wq_index];
 	mtx_lock(&wq->mtx);
 	if (__predict_false(tls->sequential_records)) {
 		/*
 		 * For TLS 1.0, records must be encrypted
 		 * sequentially.  For a given connection, all records
 		 * queued to the associated work queue are processed
 		 * sequentially.  However, sendfile(2) might complete
 		 * I/O requests spanning multiple TLS records out of
 		 * order.  Here we ensure TLS records are enqueued to
 		 * the work queue in FIFO order.
 		 *
 		 * tls->next_seqno holds the sequence number of the
 		 * next TLS record that should be enqueued to the work
 		 * queue.  If this next record is not tls->next_seqno,
 		 * it must be a future record, so insert it, sorted by
 		 * TLS sequence number, into tls->pending_records and
 		 * return.
 		 *
 		 * If this TLS record matches tls->next_seqno, place
 		 * it in the work queue and then check
 		 * tls->pending_records to see if any
 		 * previously-queued records are now ready for
 		 * encryption.
 		 */
 		if (m->m_epg_seqno != tls->next_seqno) {
 			struct mbuf *n, *p;
 
 			p = NULL;
 			STAILQ_FOREACH(n, &tls->pending_records, m_epg_stailq) {
 				if (n->m_epg_seqno > m->m_epg_seqno)
 					break;
 				p = n;
 			}
 			if (n == NULL)
 				STAILQ_INSERT_TAIL(&tls->pending_records, m,
 				    m_epg_stailq);
 			else if (p == NULL)
 				STAILQ_INSERT_HEAD(&tls->pending_records, m,
 				    m_epg_stailq);
 			else
 				STAILQ_INSERT_AFTER(&tls->pending_records, p, m,
 				    m_epg_stailq);
 			mtx_unlock(&wq->mtx);
 			counter_u64_add(ktls_cnt_tx_pending, 1);
 			return;
 		}
 
 		tls->next_seqno += ktls_batched_records(m);
 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
 
 		while (!STAILQ_EMPTY(&tls->pending_records)) {
 			struct mbuf *n;
 
 			n = STAILQ_FIRST(&tls->pending_records);
 			if (n->m_epg_seqno != tls->next_seqno)
 				break;
 
 			queued++;
 			STAILQ_REMOVE_HEAD(&tls->pending_records, m_epg_stailq);
 			tls->next_seqno += ktls_batched_records(n);
 			STAILQ_INSERT_TAIL(&wq->m_head, n, m_epg_stailq);
 		}
 		counter_u64_add(ktls_cnt_tx_pending, -(queued - 1));
 	} else
 		STAILQ_INSERT_TAIL(&wq->m_head, m, m_epg_stailq);
 
 	running = wq->running;
 	mtx_unlock(&wq->mtx);
 	if (!running)
 		wakeup(wq);
 	counter_u64_add(ktls_cnt_tx_queued, queued);
 }
 
 /*
  * Once a file-backed mbuf (from sendfile) has been encrypted, free
  * the pages from the file and replace them with the anonymous pages
  * allocated in ktls_encrypt_record().
  */
 static void
 ktls_finish_nonanon(struct mbuf *m, struct ktls_ocf_encrypt_state *state)
 {
 	int i;
 
 	MPASS((m->m_epg_flags & EPG_FLAG_ANON) == 0);
 
 	/* Free the old pages. */
 	m->m_ext.ext_free(m);
 
 	/* Replace them with the new pages. */
 	if (state->cbuf != NULL) {
 		for (i = 0; i < m->m_epg_npgs; i++)
 			m->m_epg_pa[i] = state->parray[0] + ptoa(i);
 
 		/* Contig pages should go back to the cache. */
 		m->m_ext.ext_free = ktls_free_mext_contig;
 	} else {
 		for (i = 0; i < m->m_epg_npgs; i++)
 			m->m_epg_pa[i] = state->parray[i];
 
 		/* Use the basic free routine. */
 		m->m_ext.ext_free = mb_free_mext_pgs;
 	}
 
 	/* Pages are now writable. */
 	m->m_epg_flags |= EPG_FLAG_ANON;
 }
 
 static __noinline void
 ktls_encrypt(struct ktls_wq *wq, struct mbuf *top)
 {
 	struct ktls_ocf_encrypt_state state;
 	struct ktls_session *tls;
 	struct socket *so;
 	struct mbuf *m;
 	int error, npages, total_pages;
 
 	so = top->m_epg_so;
 	tls = top->m_epg_tls;
 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
 #ifdef INVARIANTS
 	top->m_epg_so = NULL;
 #endif
 	total_pages = top->m_epg_enc_cnt;
 	npages = 0;
 
 	/*
 	 * Encrypt the TLS records in the chain of mbufs starting with
 	 * 'top'.  'total_pages' gives us a total count of pages and is
 	 * used to know when we have finished encrypting the TLS
 	 * records originally queued with 'top'.
 	 *
 	 * NB: These mbufs are queued in the socket buffer and
 	 * 'm_next' is traversing the mbufs in the socket buffer.  The
 	 * socket buffer lock is not held while traversing this chain.
 	 * Since the mbufs are all marked M_NOTREADY their 'm_next'
 	 * pointers should be stable.  However, the 'm_next' of the
 	 * last mbuf encrypted is not necessarily NULL.  It can point
 	 * to other mbufs appended while 'top' was on the TLS work
 	 * queue.
 	 *
 	 * Each mbuf holds an entire TLS record.
 	 */
 	error = 0;
 	for (m = top; npages != total_pages; m = m->m_next) {
 		KASSERT(m->m_epg_tls == tls,
 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
 		    tls, m->m_epg_tls));
 		KASSERT(npages + m->m_epg_npgs <= total_pages,
 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
 		    total_pages, m));
 
 		error = ktls_encrypt_record(wq, m, tls, &state);
 		if (error) {
 			counter_u64_add(ktls_offload_failed_crypto, 1);
 			break;
 		}
 
 		if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
 			ktls_finish_nonanon(m, &state);
 
 		npages += m->m_epg_nrdy;
 
 		/*
 		 * Drop a reference to the session now that it is no
 		 * longer needed.  Existing code depends on encrypted
 		 * records having no associated session vs
 		 * yet-to-be-encrypted records having an associated
 		 * session.
 		 */
 		m->m_epg_tls = NULL;
 		ktls_free(tls);
 	}
 
 	CURVNET_SET(so->so_vnet);
 	if (error == 0) {
 		(void)so->so_proto->pr_ready(so, top, npages);
 	} else {
 		ktls_drop(so, EIO);
 		mb_free_notready(top, total_pages);
 	}
 
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 void
 ktls_encrypt_cb(struct ktls_ocf_encrypt_state *state, int error)
 {
 	struct ktls_session *tls;
 	struct socket *so;
 	struct mbuf *m;
 	int npages;
 
 	m = state->m;
 
 	if ((m->m_epg_flags & EPG_FLAG_ANON) == 0)
 		ktls_finish_nonanon(m, state);
 
 	so = state->so;
 	free(state, M_KTLS);
 
 	/*
 	 * Drop a reference to the session now that it is no longer
 	 * needed.  Existing code depends on encrypted records having
 	 * no associated session vs yet-to-be-encrypted records having
 	 * an associated session.
 	 */
 	tls = m->m_epg_tls;
 	m->m_epg_tls = NULL;
 	ktls_free(tls);
 
 	if (error != 0)
 		counter_u64_add(ktls_offload_failed_crypto, 1);
 
 	CURVNET_SET(so->so_vnet);
 	npages = m->m_epg_nrdy;
 
 	if (error == 0) {
 		(void)so->so_proto->pr_ready(so, m, npages);
 	} else {
 		ktls_drop(so, EIO);
 		mb_free_notready(m, npages);
 	}
 
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 /*
  * Similar to ktls_encrypt, but used with asynchronous OCF backends
  * (coprocessors) where encryption does not use host CPU resources and
  * it can be beneficial to queue more requests than CPUs.
  */
 static __noinline void
 ktls_encrypt_async(struct ktls_wq *wq, struct mbuf *top)
 {
 	struct ktls_ocf_encrypt_state *state;
 	struct ktls_session *tls;
 	struct socket *so;
 	struct mbuf *m, *n;
 	int error, mpages, npages, total_pages;
 
 	so = top->m_epg_so;
 	tls = top->m_epg_tls;
 	KASSERT(tls != NULL, ("tls = NULL, top = %p\n", top));
 	KASSERT(so != NULL, ("so = NULL, top = %p\n", top));
 #ifdef INVARIANTS
 	top->m_epg_so = NULL;
 #endif
 	total_pages = top->m_epg_enc_cnt;
 	npages = 0;
 
 	error = 0;
 	for (m = top; npages != total_pages; m = n) {
 		KASSERT(m->m_epg_tls == tls,
 		    ("different TLS sessions in a single mbuf chain: %p vs %p",
 		    tls, m->m_epg_tls));
 		KASSERT(npages + m->m_epg_npgs <= total_pages,
 		    ("page count mismatch: top %p, total_pages %d, m %p", top,
 		    total_pages, m));
 
 		state = malloc(sizeof(*state), M_KTLS, M_WAITOK | M_ZERO);
 		soref(so);
 		state->so = so;
 		state->m = m;
 
 		mpages = m->m_epg_nrdy;
 		n = m->m_next;
 
 		error = ktls_encrypt_record(wq, m, tls, state);
 		if (error) {
 			counter_u64_add(ktls_offload_failed_crypto, 1);
 			free(state, M_KTLS);
 			CURVNET_SET(so->so_vnet);
 			sorele(so);
 			CURVNET_RESTORE();
 			break;
 		}
 
 		npages += mpages;
 	}
 
 	CURVNET_SET(so->so_vnet);
 	if (error != 0) {
 		ktls_drop(so, EIO);
 		mb_free_notready(m, total_pages - npages);
 	}
 
 	sorele(so);
 	CURVNET_RESTORE();
 }
 
 static int
 ktls_bind_domain(int domain)
 {
 	int error;
 
 	error = cpuset_setthread(curthread->td_tid, &cpuset_domain[domain]);
 	if (error != 0)
 		return (error);
 	curthread->td_domain.dr_policy = DOMAINSET_PREF(domain);
 	return (0);
 }
 
 static void
 ktls_reclaim_thread(void *ctx)
 {
 	struct ktls_domain_info *ktls_domain = ctx;
 	struct ktls_reclaim_thread *sc = &ktls_domain->reclaim_td;
 	struct sysctl_oid *oid;
 	char name[80];
 	int error, domain;
 
 	domain = ktls_domain - ktls_domains;
 	if (bootverbose)
 		printf("Starting KTLS reclaim thread for domain %d\n", domain);
 	error = ktls_bind_domain(domain);
 	if (error)
 		printf("Unable to bind KTLS reclaim thread for domain %d: error %d\n",
 		    domain, error);
 	snprintf(name, sizeof(name), "domain%d", domain);
 	oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_kern_ipc_tls), OID_AUTO,
 	    name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "reclaims",
 	    CTLFLAG_RD,  &sc->reclaims, 0, "buffers reclaimed");
 	SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "wakeups",
 	    CTLFLAG_RD,  &sc->wakeups, 0, "thread wakeups");
 	SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, "running",
 	    CTLFLAG_RD,  &sc->running, 0, "thread running");
 
 	for (;;) {
 		atomic_store_int(&sc->running, 0);
 		tsleep(sc, PZERO | PNOLOCK, "-",  0);
 		atomic_store_int(&sc->running, 1);
 		sc->wakeups++;
 		/*
 		 * Below we attempt to reclaim ktls_max_reclaim
 		 * buffers using vm_page_reclaim_contig_domain_ext().
 		 * We do this here, as this function can take several
 		 * seconds to scan all of memory and it does not
 		 * matter if this thread pauses for a while.  If we
 		 * block a ktls worker thread, we risk developing
 		 * backlogs of buffers to be encrypted, leading to
 		 * surges of traffic and potential NIC output drops.
 		 */
 		if (!vm_page_reclaim_contig_domain_ext(domain, VM_ALLOC_NORMAL,
 		    atop(ktls_maxlen), 0, ~0ul, PAGE_SIZE, 0, ktls_max_reclaim)) {
 			vm_wait_domain(domain);
 		} else {
 			sc->reclaims += ktls_max_reclaim;
 		}
 	}
 }
 
 static void
 ktls_work_thread(void *ctx)
 {
 	struct ktls_wq *wq = ctx;
 	struct mbuf *m, *n;
 	struct socket *so, *son;
 	STAILQ_HEAD(, mbuf) local_m_head;
 	STAILQ_HEAD(, socket) local_so_head;
 	int cpu;
 
 	cpu = wq - ktls_wq;
 	if (bootverbose)
 		printf("Starting KTLS worker thread for CPU %d\n", cpu);
 
 	/*
 	 * Bind to a core.  If ktls_bind_threads is > 1, then
 	 * we bind to the NUMA domain instead.
 	 */
 	if (ktls_bind_threads) {
 		int error;
 
 		if (ktls_bind_threads > 1) {
 			struct pcpu *pc = pcpu_find(cpu);
 
 			error = ktls_bind_domain(pc->pc_domain);
 		} else {
 			cpuset_t mask;
 
 			CPU_SETOF(cpu, &mask);
 			error = cpuset_setthread(curthread->td_tid, &mask);
 		}
 		if (error)
 			printf("Unable to bind KTLS worker thread for CPU %d: error %d\n",
 				cpu, error);
 	}
 #if defined(__aarch64__) || defined(__amd64__) || defined(__i386__)
 	fpu_kern_thread(0);
 #endif
 	for (;;) {
 		mtx_lock(&wq->mtx);
 		while (STAILQ_EMPTY(&wq->m_head) &&
 		    STAILQ_EMPTY(&wq->so_head)) {
 			wq->running = false;
 			mtx_sleep(wq, &wq->mtx, 0, "-", 0);
 			wq->running = true;
 		}
 
 		STAILQ_INIT(&local_m_head);
 		STAILQ_CONCAT(&local_m_head, &wq->m_head);
 		STAILQ_INIT(&local_so_head);
 		STAILQ_CONCAT(&local_so_head, &wq->so_head);
 		mtx_unlock(&wq->mtx);
 
 		STAILQ_FOREACH_SAFE(m, &local_m_head, m_epg_stailq, n) {
 			if (m->m_epg_flags & EPG_FLAG_2FREE) {
 				ktls_free(m->m_epg_tls);
 				m_free_raw(m);
 			} else {
 				if (m->m_epg_tls->sync_dispatch)
 					ktls_encrypt(wq, m);
 				else
 					ktls_encrypt_async(wq, m);
 				counter_u64_add(ktls_cnt_tx_queued, -1);
 			}
 		}
 
 		STAILQ_FOREACH_SAFE(so, &local_so_head, so_ktls_rx_list, son) {
 			ktls_decrypt(so);
 			counter_u64_add(ktls_cnt_rx_queued, -1);
 		}
 	}
 }
 
 static void
 ktls_disable_ifnet_help(void *context, int pending __unused)
 {
 	struct ktls_session *tls;
 	struct inpcb *inp;
 	struct tcpcb *tp;
 	struct socket *so;
 	int err;
 
 	tls = context;
 	inp = tls->inp;
 	if (inp == NULL)
 		return;
 	INP_WLOCK(inp);
 	so = inp->inp_socket;
 	MPASS(so != NULL);
 	if (inp->inp_flags & INP_DROPPED) {
 		goto out;
 	}
 
 	if (so->so_snd.sb_tls_info != NULL)
 		err = ktls_set_tx_mode(so, TCP_TLS_MODE_SW);
 	else
 		err = ENXIO;
 	if (err == 0) {
 		counter_u64_add(ktls_ifnet_disable_ok, 1);
 		/* ktls_set_tx_mode() drops inp wlock, so recheck flags */
 		if ((inp->inp_flags & INP_DROPPED) == 0 &&
 		    (tp = intotcpcb(inp)) != NULL &&
 		    tp->t_fb->tfb_hwtls_change != NULL)
 			(*tp->t_fb->tfb_hwtls_change)(tp, 0);
 	} else {
 		counter_u64_add(ktls_ifnet_disable_fail, 1);
 	}
 
 out:
 	CURVNET_SET(so->so_vnet);
 	sorele(so);
 	CURVNET_RESTORE();
 	INP_WUNLOCK(inp);
 	ktls_free(tls);
 }
 
 /*
  * Called when re-transmits are becoming a substantial portion of the
  * sends on this connection.  When this happens, we transition the
  * connection to software TLS.  This is needed because most inline TLS
  * NICs keep crypto state only for in-order transmits.  This means
  * that to handle a TCP rexmit (which is out-of-order), the NIC must
  * re-DMA the entire TLS record up to and including the current
  * segment.  This means that when re-transmitting the last ~1448 byte
  * segment of a 16KB TLS record, we could wind up re-DMA'ing an order
  * of magnitude more data than we are sending.  This can cause the
  * PCIe link to saturate well before the network, which can cause
  * output drops, and a general loss of capacity.
  */
 void
 ktls_disable_ifnet(void *arg)
 {
 	struct tcpcb *tp;
 	struct inpcb *inp;
 	struct socket *so;
 	struct ktls_session *tls;
 
 	tp = arg;
 	inp = tptoinpcb(tp);
 	INP_WLOCK_ASSERT(inp);
 	so = inp->inp_socket;
 	SOCK_LOCK(so);
 	tls = so->so_snd.sb_tls_info;
 	if (tp->t_nic_ktls_xmit_dis == 1) {
 		SOCK_UNLOCK(so);
 		return;
 	}
 
 	/*
 	 * note that t_nic_ktls_xmit_dis is never cleared; disabling
 	 * ifnet can only be done once per connection, so we never want
 	 * to do it again
 	 */
 
 	(void)ktls_hold(tls);
 	soref(so);
 	tp->t_nic_ktls_xmit_dis = 1;
 	SOCK_UNLOCK(so);
 	TASK_INIT(&tls->disable_ifnet_task, 0, ktls_disable_ifnet_help, tls);
 	(void)taskqueue_enqueue(taskqueue_thread, &tls->disable_ifnet_task);
 }
diff --git a/sys/sys/sockbuf.h b/sys/sys/sockbuf.h
index 14107f5b2a10..a6ec72975252 100644
--- a/sys/sys/sockbuf.h
+++ b/sys/sys/sockbuf.h
@@ -1,319 +1,320 @@
 /*-
  * SPDX-License-Identifier: BSD-3-Clause
  *
  * Copyright (c) 1982, 1986, 1990, 1993
  *	The Regents of the University of California.  All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  * 3. Neither the name of the University nor the names of its contributors
  *    may be used to endorse or promote products derived from this software
  *    without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  *
  *	@(#)socketvar.h	8.3 (Berkeley) 2/19/95
  */
 #ifndef _SYS_SOCKBUF_H_
 #define _SYS_SOCKBUF_H_
 
 /*
  * Constants for sb_flags field of struct sockbuf/xsockbuf.
  */
 #define	SB_TLS_RX	0x01		/* using KTLS on RX */
 #define	SB_TLS_RX_RUNNING 0x02		/* KTLS RX operation running */
 #define	SB_WAIT		0x04		/* someone is waiting for data/space */
 #define	SB_SEL		0x08		/* someone is selecting */
 #define	SB_ASYNC	0x10		/* ASYNC I/O, need signals */
 #define	SB_UPCALL	0x20		/* someone wants an upcall */
 #define	SB_NOINTR	0x40		/* operations not interruptible */
 #define	SB_AIO		0x80		/* AIO operations queued */
 #define	SB_KNOTE	0x100		/* kernel note attached */
 #define	SB_NOCOALESCE	0x200		/* don't coalesce new data into existing mbufs */
 #define	SB_IN_TOE	0x400		/* socket buffer is in the middle of an operation */
 #define	SB_AUTOSIZE	0x800		/* automatically size socket buffer */
 #define	SB_STOP		0x1000		/* backpressure indicator */
 #define	SB_AIO_RUNNING	0x2000		/* AIO operation running */
 #define	SB_UNUSED	0x4000		/* previously used for SB_TLS_IFNET */
 #define	SB_TLS_RX_RESYNC 0x8000		/* KTLS RX lost HW sync */
 
 #define	SBS_CANTSENDMORE	0x0010	/* can't send more data to peer */
 #define	SBS_CANTRCVMORE		0x0020	/* can't receive more data from peer */
 #define	SBS_RCVATMARK		0x0040	/* at mark on input */
 
 #if defined(_KERNEL) || defined(_WANT_SOCKET)
 #include <sys/_lock.h>
 #include <sys/_mutex.h>
 #include <sys/_sx.h>
 #include <sys/_task.h>
 
 #define	SB_MAX		(2*1024*1024)	/* default for max chars in sockbuf */
 
 struct ktls_session;
 struct mbuf;
 struct sockaddr;
 struct socket;
 struct sockopt;
 struct thread;
 struct selinfo;
 
 /*
  * Socket buffer
  *
  * A buffer starts with the fields that are accessed by I/O multiplexing
  * APIs like select(2), kevent(2) or AIO and thus are shared between different
  * buffer implementations.  They are protected by the SOCK_RECVBUF_LOCK()
  * or SOCK_SENDBUF_LOCK() of the owning socket.
  *
  * XXX: sb_acc, sb_ccc and sb_mbcnt shall become implementation specific
  * methods.
  *
  * Protocol specific implementations follow in a union.
  */
 struct sockbuf {
 	struct	selinfo *sb_sel;	/* process selecting read/write */
 	short	sb_state;		/* socket state on sockbuf */
 	short	sb_flags;		/* flags, see above */
 	u_int	sb_acc;			/* available chars in buffer */
 	u_int	sb_ccc;			/* claimed chars in buffer */
 	u_int	sb_mbcnt;		/* chars of mbufs used */
 	u_int	sb_ctl;			/* non-data chars in buffer */
 	u_int	sb_hiwat;		/* max actual char count */
 	u_int	sb_lowat;		/* low water mark */
 	u_int	sb_mbmax;		/* max chars of mbufs to use */
 	sbintime_t sb_timeo;		/* timeout for read/write */
 	int	(*sb_upcall)(struct socket *, void *, int);
 	void	*sb_upcallarg;
 	TAILQ_HEAD(, kaiocb) sb_aiojobq;	/* pending AIO ops */
 	struct	task sb_aiotask;		/* AIO task */
 	union {
 		/*
 		 * Classic BSD one-size-fits-all socket buffer, capable of
 		 * doing streams and datagrams. The stream part is able
 		 * to perform special features:
 		 * - not ready data (sendfile)
 		 * - TLS
 		 */
 		struct {
 			/* compat: sockbuf lock pointer */
 			struct	mtx *sb_mtx;
 			/* first and last mbufs in the chain */
 			struct	mbuf *sb_mb;
 			struct	mbuf *sb_mbtail;
 			/* first mbuf of last record in socket buffer */
 			struct	mbuf *sb_lastrecord;
 			/* pointer to data to send next (TCP */
 			struct	mbuf *sb_sndptr;
 			/* pointer to first not ready buffer */
 			struct	mbuf *sb_fnrdy;
 			/* byte offset of ptr into chain, used with sb_sndptr */
 			u_int	sb_sndptroff;
 			/* TLS */
 			u_int	sb_tlscc;	/* TLS chain characters */
 			u_int	sb_tlsdcc;	/* characters being decrypted */
 			struct	mbuf *sb_mtls;	/*  TLS mbuf chain */
 			struct	mbuf *sb_mtlstail; /* last mbuf in TLS chain */
 			uint64_t sb_tls_seqno;	/* TLS seqno */
-			struct	ktls_session *sb_tls_info; /* TLS state */
+			/* TLS state, locked by sockbuf and sock I/O mutexes. */
+			struct	ktls_session *sb_tls_info;
 		};
 		/*
 		 * PF_UNIX/SOCK_DGRAM
 		 *
 		 * Local protocol, thus we should buffer on the receive side
 		 * only.  However, in one to many configuration we don't want
 		 * a single receive buffer to be shared.  So we would link
 		 * send buffers onto receive buffer.  All the fields are locked
 		 * by the receive buffer lock.
 		 */
 		struct {
 			/*
 			 * For receive buffer: own queue of this buffer for
 			 * unconnected sends.  For send buffer: queue lended
 			 * to the peer receive buffer, to isolate ourselves
 			 * from other senders.
 			 */
 			STAILQ_HEAD(, mbuf)	uxdg_mb;
 			/* For receive buffer: datagram seen via MSG_PEEK. */
 			struct mbuf		*uxdg_peeked;
 			/*
 			 * For receive buffer: queue of send buffers of
 			 * connected peers.  For send buffer: linkage on
 			 * connected peer receive buffer queue.
 			 */
 			union {
 				TAILQ_HEAD(, sockbuf)	uxdg_conns;
 				TAILQ_ENTRY(sockbuf)	uxdg_clist;
 			};
 			/* Counters for this buffer uxdg_mb chain + peeked. */
 			u_int uxdg_cc;
 			u_int uxdg_ctl;
 			u_int uxdg_mbcnt;
 		};
 	};
 };
 
 #endif	/* defined(_KERNEL) || defined(_WANT_SOCKET) */
 #ifdef _KERNEL
 
 /* 'which' values for KPIs that operate on one buffer of a socket. */
 typedef enum { SO_RCV, SO_SND } sb_which;
 
 /*
  * Per-socket buffer mutex used to protect most fields in the socket buffer.
  * These make use of the mutex pointer embedded in struct sockbuf, which
  * currently just references mutexes in the containing socket.  The
  * SOCK_SENDBUF_LOCK() etc. macros can be used instead of or in combination with
  * these locking macros.
  */
 #define	SOCKBUF_MTX(_sb)		((_sb)->sb_mtx)
 #define	SOCKBUF_LOCK(_sb)		mtx_lock(SOCKBUF_MTX(_sb))
 #define	SOCKBUF_OWNED(_sb)		mtx_owned(SOCKBUF_MTX(_sb))
 #define	SOCKBUF_UNLOCK(_sb)		mtx_unlock(SOCKBUF_MTX(_sb))
 #define	SOCKBUF_LOCK_ASSERT(_sb)	mtx_assert(SOCKBUF_MTX(_sb), MA_OWNED)
 #define	SOCKBUF_UNLOCK_ASSERT(_sb)	mtx_assert(SOCKBUF_MTX(_sb), MA_NOTOWNED)
 
 /*
  * Socket buffer private mbuf(9) flags.
  */
 #define	M_NOTREADY	M_PROTO1	/* m_data not populated yet */
 #define	M_BLOCKED	M_PROTO2	/* M_NOTREADY in front of m */
 #define	M_NOTAVAIL	(M_NOTREADY | M_BLOCKED)
 
 void	sbappend(struct sockbuf *sb, struct mbuf *m, int flags);
 void	sbappend_locked(struct sockbuf *sb, struct mbuf *m, int flags);
 void	sbappendstream(struct sockbuf *sb, struct mbuf *m, int flags);
 void	sbappendstream_locked(struct sockbuf *sb, struct mbuf *m, int flags);
 int	sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
 	    struct mbuf *m0, struct mbuf *control);
 int	sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
 	    struct mbuf *m0, struct mbuf *control);
 int	sbappendaddr_nospacecheck_locked(struct sockbuf *sb,
 	    const struct sockaddr *asa, struct mbuf *m0, struct mbuf *control);
 void	sbappendcontrol(struct sockbuf *sb, struct mbuf *m0,
 	    struct mbuf *control, int flags);
 void	sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
 	    struct mbuf *control, int flags);
 void	sbappendrecord(struct sockbuf *sb, struct mbuf *m0);
 void	sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0);
 void	sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n);
 struct mbuf *
 	sbcreatecontrol(const void *p, u_int size, int type, int level,
 	    int wait);
 void	sbdestroy(struct socket *, sb_which);
 void	sbdrop(struct sockbuf *sb, int len);
 void	sbdrop_locked(struct sockbuf *sb, int len);
 struct mbuf *
 	sbcut_locked(struct sockbuf *sb, int len);
 void	sbdroprecord(struct sockbuf *sb);
 void	sbdroprecord_locked(struct sockbuf *sb);
 void	sbflush(struct sockbuf *sb);
 void	sbflush_locked(struct sockbuf *sb);
 void	sbrelease(struct socket *, sb_which);
 void	sbrelease_locked(struct socket *, sb_which);
 int	sbsetopt(struct socket *so, struct sockopt *);
 bool	sbreserve_locked(struct socket *so, sb_which which, u_long cc,
 	    struct thread *td);
 bool	sbreserve_locked_limit(struct socket *so, sb_which which, u_long cc,
 	    u_long buf_max, struct thread *td);
 void	sbsndptr_adv(struct sockbuf *sb, struct mbuf *mb, u_int len);
 struct mbuf *
 	sbsndptr_noadv(struct sockbuf *sb, u_int off, u_int *moff);
 struct mbuf *
 	sbsndmbuf(struct sockbuf *sb, u_int off, u_int *moff);
 int	sbwait(struct socket *, sb_which);
 void	sballoc(struct sockbuf *, struct mbuf *);
 void	sbfree(struct sockbuf *, struct mbuf *);
 void	sballoc_ktls_rx(struct sockbuf *sb, struct mbuf *m);
 void	sbfree_ktls_rx(struct sockbuf *sb, struct mbuf *m);
 int	sbready(struct sockbuf *, struct mbuf *, int);
 
 /*
  * Return how much data is available to be taken out of socket
  * buffer right now.
  */
 static inline u_int
 sbavail(struct sockbuf *sb)
 {
 
 #if 0
 	SOCKBUF_LOCK_ASSERT(sb);
 #endif
 	return (sb->sb_acc);
 }
 
 /*
  * Return how much data sits there in the socket buffer
  * It might be that some data is not yet ready to be read.
  */
 static inline u_int
 sbused(struct sockbuf *sb)
 {
 
 #if 0
 	SOCKBUF_LOCK_ASSERT(sb);
 #endif
 	return (sb->sb_ccc);
 }
 
 /*
  * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
  * This is problematical if the fields are unsigned, as the space might
  * still be negative (ccc > hiwat or mbcnt > mbmax).
  */
 static inline long
 sbspace(struct sockbuf *sb)
 {
 	int bleft, mleft;		/* size should match sockbuf fields */
 
 #if 0
 	SOCKBUF_LOCK_ASSERT(sb);
 #endif
 
 	if (sb->sb_flags & SB_STOP)
 		return(0);
 
 	bleft = sb->sb_hiwat - sb->sb_ccc;
 	mleft = sb->sb_mbmax - sb->sb_mbcnt;
 
 	return ((bleft < mleft) ? bleft : mleft);
 }
 
 #define SB_EMPTY_FIXUP(sb) do {						\
 	if ((sb)->sb_mb == NULL) {					\
 		(sb)->sb_mbtail = NULL;					\
 		(sb)->sb_lastrecord = NULL;				\
 	}								\
 } while (/*CONSTCOND*/0)
 
 #ifdef SOCKBUF_DEBUG
 void	sblastrecordchk(struct sockbuf *, const char *, int);
 void	sblastmbufchk(struct sockbuf *, const char *, int);
 void	sbcheck(struct sockbuf *, const char *, int);
 #define	SBLASTRECORDCHK(sb)	sblastrecordchk((sb), __FILE__, __LINE__)
 #define	SBLASTMBUFCHK(sb)	sblastmbufchk((sb), __FILE__, __LINE__)
 #define	SBCHECK(sb)		sbcheck((sb), __FILE__, __LINE__)
 #else
 #define	SBLASTRECORDCHK(sb)	do {} while (0)
 #define	SBLASTMBUFCHK(sb)	do {} while (0)
 #define	SBCHECK(sb)		do {} while (0)
 #endif /* SOCKBUF_DEBUG */
 
 #endif /* _KERNEL */
 
 #endif /* _SYS_SOCKBUF_H_ */
diff --git a/tests/sys/kern/ktls_test.c b/tests/sys/kern/ktls_test.c
index f57ae74112a2..72497196b945 100644
--- a/tests/sys/kern/ktls_test.c
+++ b/tests/sys/kern/ktls_test.c
@@ -1,2848 +1,2848 @@
 /*-
  * SPDX-License-Identifier: BSD-2-Clause
  *
  * Copyright (c) 2021 Netflix Inc.
  * Written by: John Baldwin <jhb@FreeBSD.org>
  *
  * Redistribution and use in source and binary forms, with or without
  * modification, are permitted provided that the following conditions
  * are met:
  * 1. Redistributions of source code must retain the above copyright
  *    notice, this list of conditions and the following disclaimer.
  * 2. Redistributions in binary form must reproduce the above copyright
  *    notice, this list of conditions and the following disclaimer in the
  *    documentation and/or other materials provided with the distribution.
  *
  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  * SUCH DAMAGE.
  */
 
 #include <sys/param.h>
 #include <sys/endian.h>
 #include <sys/event.h>
 #include <sys/ktls.h>
 #include <sys/socket.h>
 #include <sys/sysctl.h>
 #include <netinet/in.h>
 #include <netinet/tcp.h>
 #include <crypto/cryptodev.h>
 #include <assert.h>
 #include <err.h>
 #include <fcntl.h>
 #include <libutil.h>
 #include <netdb.h>
 #include <poll.h>
 #include <stdbool.h>
 #include <stdlib.h>
 #include <atf-c.h>
 
 #include <openssl/err.h>
 #include <openssl/evp.h>
 #include <openssl/hmac.h>
 
 static void
 require_ktls(void)
 {
 	size_t len;
 	bool enable;
 
 	len = sizeof(enable);
 	if (sysctlbyname("kern.ipc.tls.enable", &enable, &len, NULL, 0) == -1) {
 		if (errno == ENOENT)
 			atf_tc_skip("kernel does not support TLS offload");
 		atf_libc_error(errno, "Failed to read kern.ipc.tls.enable");
 	}
 
 	if (!enable)
 		atf_tc_skip("Kernel TLS is disabled");
 }
 
 #define	ATF_REQUIRE_KTLS()	require_ktls()
 
 static void
 check_tls_mode(const atf_tc_t *tc, int s, int sockopt)
 {
 	if (atf_tc_get_config_var_as_bool_wd(tc, "ktls.require_ifnet", false)) {
 		socklen_t len;
 		int mode;
 
 		len = sizeof(mode);
 		if (getsockopt(s, IPPROTO_TCP, sockopt, &mode, &len) == -1)
 			atf_libc_error(errno, "Failed to fetch TLS mode");
 
 		if (mode != TCP_TLS_MODE_IFNET)
 			atf_tc_skip("connection did not use ifnet TLS");
 	}
 
 	if (atf_tc_get_config_var_as_bool_wd(tc, "ktls.require_toe", false)) {
 		socklen_t len;
 		int mode;
 
 		len = sizeof(mode);
 		if (getsockopt(s, IPPROTO_TCP, sockopt, &mode, &len) == -1)
 			atf_libc_error(errno, "Failed to fetch TLS mode");
 
 		if (mode != TCP_TLS_MODE_TOE)
 			atf_tc_skip("connection did not use TOE TLS");
 	}
 }
 
 static void __printflike(2, 3)
 debug(const atf_tc_t *tc, const char *fmt, ...)
 {
 	if (!atf_tc_get_config_var_as_bool_wd(tc, "ktls.debug", false))
 		return;
 
 	va_list ap;
 	va_start(ap, fmt);
 	vprintf(fmt, ap);
 	va_end(ap);
 }
 
 static void
 debug_hexdump(const atf_tc_t *tc, const void *buf, int length,
     const char *label)
 {
 	if (!atf_tc_get_config_var_as_bool_wd(tc, "ktls.debug", false))
 		return;
 
 	if (label != NULL)
 		printf("%s:\n", label);
 	hexdump(buf, length, NULL, 0);
 }
 
 static char
 rdigit(void)
 {
 	/* ASCII printable values between 0x20 and 0x7e */
 	return (0x20 + random() % (0x7f - 0x20));
 }
 
 static char *
 alloc_buffer(size_t len)
 {
 	char *buf;
 	size_t i;
 
 	if (len == 0)
 		return (NULL);
 	buf = malloc(len);
 	for (i = 0; i < len; i++)
 		buf[i] = rdigit();
 	return (buf);
 }
 
 static bool
 socketpair_tcp(int sv[2])
 {
 	struct pollfd pfd;
 	struct sockaddr_in sin;
 	socklen_t len;
 	int as, cs, ls;
 
 	ls = socket(PF_INET, SOCK_STREAM, 0);
 	if (ls == -1) {
 		warn("socket() for listen");
 		return (false);
 	}
 
 	memset(&sin, 0, sizeof(sin));
 	sin.sin_len = sizeof(sin);
 	sin.sin_family = AF_INET;
 	sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
 	if (bind(ls, (struct sockaddr *)&sin, sizeof(sin)) == -1) {
 		warn("bind");
 		close(ls);
 		return (false);
 	}
 
 	if (listen(ls, 1) == -1) {
 		warn("listen");
 		close(ls);
 		return (false);
 	}
 
 	len = sizeof(sin);
 	if (getsockname(ls, (struct sockaddr *)&sin, &len) == -1) {
 		warn("getsockname");
 		close(ls);
 		return (false);
 	}
 
 	cs = socket(PF_INET, SOCK_STREAM | SOCK_NONBLOCK, 0);
 	if (cs == -1) {
 		warn("socket() for connect");
 		close(ls);
 		return (false);
 	}
 
 	if (connect(cs, (struct sockaddr *)&sin, sizeof(sin)) == -1) {
 		if (errno != EINPROGRESS) {
 			warn("connect");
 			close(ls);
 			close(cs);
 			return (false);
 		}
 	}
 
 	as = accept4(ls, NULL, NULL, SOCK_NONBLOCK);
 	if (as == -1) {
 		warn("accept4");
 		close(ls);
 		close(cs);
 		return (false);
 	}
 
 	close(ls);
 
 	pfd.fd = cs;
 	pfd.events = POLLOUT;
 	pfd.revents = 0;
 	ATF_REQUIRE_INTEQ(1, poll(&pfd, 1, INFTIM));
 	ATF_REQUIRE_INTEQ(POLLOUT, pfd.revents);
 
 	sv[0] = cs;
 	sv[1] = as;
 	return (true);
 }
 
 static bool
 echo_socket(const atf_tc_t *tc, int sv[2])
 {
 	const char *cause, *host, *port;
 	struct addrinfo hints, *ai, *tofree;
 	int error, flags, s;
 
 	host = atf_tc_get_config_var(tc, "ktls.host");
 	port = atf_tc_get_config_var_wd(tc, "ktls.port", "echo");
 	memset(&hints, 0, sizeof(hints));
 	hints.ai_family = AF_UNSPEC;
 	hints.ai_socktype = SOCK_STREAM;
 	hints.ai_protocol = IPPROTO_TCP;
 	error = getaddrinfo(host, port, &hints, &tofree);
 	if (error != 0) {
 		warnx("getaddrinfo(%s:%s) failed: %s", host, port,
 		    gai_strerror(error));
 		return (false);
 	}
 
 	cause = NULL;
 	for (ai = tofree; ai != NULL; ai = ai->ai_next) {
 		s = socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol);
 		if (s == -1) {
 			cause = "socket";
 			error = errno;
 			continue;
 		}
 
 		if (connect(s, ai->ai_addr, ai->ai_addrlen) == -1) {
 			cause = "connect";
 			error = errno;
 			close(s);
 			continue;
 		}
 
 		freeaddrinfo(tofree);
 
 		ATF_REQUIRE((flags = fcntl(s, F_GETFL)) != -1);
 		flags |= O_NONBLOCK;
 		ATF_REQUIRE(fcntl(s, F_SETFL, flags) != -1);
 
 		sv[0] = s;
 		sv[1] = s;
 		return (true);
 	}
 
 	warnc(error, "%s", cause);
 	freeaddrinfo(tofree);
 	return (false);
 }
 
 static bool
 open_sockets(const atf_tc_t *tc, int sv[2])
 {
 	if (atf_tc_has_config_var(tc, "ktls.host"))
 		return (echo_socket(tc, sv));
 	else
 		return (socketpair_tcp(sv));
 }
 
 static void
 close_sockets(int sv[2])
 {
 	if (sv[0] != sv[1])
 		ATF_REQUIRE(close(sv[1]) == 0);
 	ATF_REQUIRE(close(sv[0]) == 0);
 }
 
 static void
 close_sockets_ignore_errors(int sv[2])
 {
 	if (sv[0] != sv[1])
 		close(sv[1]);
 	close(sv[0]);
 }
 
 static void
 fd_set_blocking(int fd)
 {
 	int flags;
 
 	ATF_REQUIRE((flags = fcntl(fd, F_GETFL)) != -1);
 	flags &= ~O_NONBLOCK;
 	ATF_REQUIRE(fcntl(fd, F_SETFL, flags) != -1);
 }
 
 static bool
 cbc_crypt(const EVP_CIPHER *cipher, const char *key, const char *iv,
     const char *input, char *output, size_t size, int enc)
 {
 	EVP_CIPHER_CTX *ctx;
 	int outl, total;
 
 	ctx = EVP_CIPHER_CTX_new();
 	if (ctx == NULL) {
 		warnx("EVP_CIPHER_CTX_new failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		return (false);
 	}
 	if (EVP_CipherInit_ex(ctx, cipher, NULL, (const u_char *)key,
 	    (const u_char *)iv, enc) != 1) {
 		warnx("EVP_CipherInit_ex failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	EVP_CIPHER_CTX_set_padding(ctx, 0);
 	if (EVP_CipherUpdate(ctx, (u_char *)output, &outl,
 	    (const u_char *)input, size) != 1) {
 		warnx("EVP_CipherUpdate failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	total = outl;
 	if (EVP_CipherFinal_ex(ctx, (u_char *)output + outl, &outl) != 1) {
 		warnx("EVP_CipherFinal_ex failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	total += outl;
 	if ((size_t)total != size) {
 		warnx("decrypt size mismatch: %zu vs %d", size, total);
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	EVP_CIPHER_CTX_free(ctx);
 	return (true);
 }
 
 static bool
 cbc_encrypt(const EVP_CIPHER *cipher, const char *key, const char *iv,
     const char *input, char *output, size_t size)
 {
 	return (cbc_crypt(cipher, key, iv, input, output, size, 1));
 }
 
 static bool
 cbc_decrypt(const EVP_CIPHER *cipher, const char *key, const char *iv,
     const char *input, char *output, size_t size)
 {
 	return (cbc_crypt(cipher, key, iv, input, output, size, 0));
 }
 
 static bool
 compute_hash(const EVP_MD *md, const void *key, size_t key_len, const void *aad,
     size_t aad_len, const void *buffer, size_t len, void *digest,
     u_int *digest_len)
 {
 	HMAC_CTX *ctx;
 
 	ctx = HMAC_CTX_new();
 	if (ctx == NULL) {
 		warnx("HMAC_CTX_new failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		return (false);
 	}
 	if (HMAC_Init_ex(ctx, key, key_len, md, NULL) != 1) {
 		warnx("HMAC_Init_ex failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		HMAC_CTX_free(ctx);
 		return (false);
 	}
 	if (HMAC_Update(ctx, aad, aad_len) != 1) {
 		warnx("HMAC_Update (aad) failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		HMAC_CTX_free(ctx);
 		return (false);
 	}
 	if (HMAC_Update(ctx, buffer, len) != 1) {
 		warnx("HMAC_Update (payload) failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		HMAC_CTX_free(ctx);
 		return (false);
 	}
 	if (HMAC_Final(ctx, digest, digest_len) != 1) {
 		warnx("HMAC_Final failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		HMAC_CTX_free(ctx);
 		return (false);
 	}
 	HMAC_CTX_free(ctx);
 	return (true);
 }
 
 static bool
 verify_hash(const EVP_MD *md, const void *key, size_t key_len, const void *aad,
     size_t aad_len, const void *buffer, size_t len, const void *digest)
 {
 	unsigned char digest2[EVP_MAX_MD_SIZE];
 	u_int digest_len;
 
 	if (!compute_hash(md, key, key_len, aad, aad_len, buffer, len, digest2,
 	    &digest_len))
 		return (false);
 	if (memcmp(digest, digest2, digest_len) != 0) {
 		warnx("HMAC mismatch");
 		return (false);
 	}
 	return (true);
 }
 
 static bool
 aead_encrypt(const EVP_CIPHER *cipher, const char *key, const char *nonce,
     const void *aad, size_t aad_len, const char *input, char *output,
     size_t size, char *tag, size_t tag_len)
 {
 	EVP_CIPHER_CTX *ctx;
 	int outl, total;
 
 	ctx = EVP_CIPHER_CTX_new();
 	if (ctx == NULL) {
 		warnx("EVP_CIPHER_CTX_new failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		return (false);
 	}
 	if (EVP_EncryptInit_ex(ctx, cipher, NULL, (const u_char *)key,
 	    (const u_char *)nonce) != 1) {
 		warnx("EVP_EncryptInit_ex failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	EVP_CIPHER_CTX_set_padding(ctx, 0);
 	if (aad != NULL) {
 		if (EVP_EncryptUpdate(ctx, NULL, &outl, (const u_char *)aad,
 		    aad_len) != 1) {
 			warnx("EVP_EncryptUpdate for AAD failed: %s",
 			    ERR_error_string(ERR_get_error(), NULL));
 			EVP_CIPHER_CTX_free(ctx);
 			return (false);
 		}
 	}
 	if (EVP_EncryptUpdate(ctx, (u_char *)output, &outl,
 	    (const u_char *)input, size) != 1) {
 		warnx("EVP_EncryptUpdate failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	total = outl;
 	if (EVP_EncryptFinal_ex(ctx, (u_char *)output + outl, &outl) != 1) {
 		warnx("EVP_EncryptFinal_ex failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	total += outl;
 	if ((size_t)total != size) {
 		warnx("encrypt size mismatch: %zu vs %d", size, total);
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, tag_len, tag) !=
 	    1) {
 		warnx("EVP_CIPHER_CTX_ctrl(EVP_CTRL_AEAD_GET_TAG) failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	EVP_CIPHER_CTX_free(ctx);
 	return (true);
 }
 
 static bool
 aead_decrypt(const EVP_CIPHER *cipher, const char *key, const char *nonce,
     const void *aad, size_t aad_len, const char *input, char *output,
     size_t size, const char *tag, size_t tag_len)
 {
 	EVP_CIPHER_CTX *ctx;
 	int outl, total;
 	bool valid;
 
 	ctx = EVP_CIPHER_CTX_new();
 	if (ctx == NULL) {
 		warnx("EVP_CIPHER_CTX_new failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		return (false);
 	}
 	if (EVP_DecryptInit_ex(ctx, cipher, NULL, (const u_char *)key,
 	    (const u_char *)nonce) != 1) {
 		warnx("EVP_DecryptInit_ex failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	EVP_CIPHER_CTX_set_padding(ctx, 0);
 	if (aad != NULL) {
 		if (EVP_DecryptUpdate(ctx, NULL, &outl, (const u_char *)aad,
 		    aad_len) != 1) {
 			warnx("EVP_DecryptUpdate for AAD failed: %s",
 			    ERR_error_string(ERR_get_error(), NULL));
 			EVP_CIPHER_CTX_free(ctx);
 			return (false);
 		}
 	}
 	if (EVP_DecryptUpdate(ctx, (u_char *)output, &outl,
 	    (const u_char *)input, size) != 1) {
 		warnx("EVP_DecryptUpdate failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	total = outl;
 	if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag_len,
 	    __DECONST(char *, tag)) != 1) {
 		warnx("EVP_CIPHER_CTX_ctrl(EVP_CTRL_AEAD_SET_TAG) failed: %s",
 		    ERR_error_string(ERR_get_error(), NULL));
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	valid = (EVP_DecryptFinal_ex(ctx, (u_char *)output + outl, &outl) == 1);
 	total += outl;
 	if ((size_t)total != size) {
 		warnx("decrypt size mismatch: %zu vs %d", size, total);
 		EVP_CIPHER_CTX_free(ctx);
 		return (false);
 	}
 	if (!valid)
 		warnx("tag mismatch");
 	EVP_CIPHER_CTX_free(ctx);
 	return (valid);
 }
 
 static void
 build_tls_enable(const atf_tc_t *tc, int cipher_alg, size_t cipher_key_len,
     int auth_alg, int minor, uint64_t seqno, struct tls_enable *en)
 {
 	u_int auth_key_len, iv_len;
 
 	memset(en, 0, sizeof(*en));
 
 	switch (cipher_alg) {
 	case CRYPTO_AES_CBC:
 		if (minor == TLS_MINOR_VER_ZERO)
 			iv_len = AES_BLOCK_LEN;
 		else
 			iv_len = 0;
 		break;
 	case CRYPTO_AES_NIST_GCM_16:
 		if (minor == TLS_MINOR_VER_TWO)
 			iv_len = TLS_AEAD_GCM_LEN;
 		else
 			iv_len = TLS_1_3_GCM_IV_LEN;
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		iv_len = TLS_CHACHA20_IV_LEN;
 		break;
 	default:
 		iv_len = 0;
 		break;
 	}
 	switch (auth_alg) {
 	case CRYPTO_SHA1_HMAC:
 		auth_key_len = SHA1_HASH_LEN;
 		break;
 	case CRYPTO_SHA2_256_HMAC:
 		auth_key_len = SHA2_256_HASH_LEN;
 		break;
 	case CRYPTO_SHA2_384_HMAC:
 		auth_key_len = SHA2_384_HASH_LEN;
 		break;
 	default:
 		auth_key_len = 0;
 		break;
 	}
 	en->cipher_key = alloc_buffer(cipher_key_len);
 	debug_hexdump(tc, en->cipher_key, cipher_key_len, "cipher key");
 	en->iv = alloc_buffer(iv_len);
 	if (iv_len != 0)
 		debug_hexdump(tc, en->iv, iv_len, "iv");
 	en->auth_key = alloc_buffer(auth_key_len);
 	if (auth_key_len != 0)
 		debug_hexdump(tc, en->auth_key, auth_key_len, "auth key");
 	en->cipher_algorithm = cipher_alg;
 	en->cipher_key_len = cipher_key_len;
 	en->iv_len = iv_len;
 	en->auth_algorithm = auth_alg;
 	en->auth_key_len = auth_key_len;
 	en->tls_vmajor = TLS_MAJOR_VER_ONE;
 	en->tls_vminor = minor;
 	be64enc(en->rec_seq, seqno);
 	debug(tc, "seqno: %ju\n", (uintmax_t)seqno);
 }
 
 static void
 free_tls_enable(struct tls_enable *en)
 {
 	free(__DECONST(void *, en->cipher_key));
 	free(__DECONST(void *, en->iv));
 	free(__DECONST(void *, en->auth_key));
 }
 
 static const EVP_CIPHER *
 tls_EVP_CIPHER(const struct tls_enable *en)
 {
 	switch (en->cipher_algorithm) {
 	case CRYPTO_AES_CBC:
 		switch (en->cipher_key_len) {
 		case 128 / 8:
 			return (EVP_aes_128_cbc());
 		case 256 / 8:
 			return (EVP_aes_256_cbc());
 		default:
 			return (NULL);
 		}
 		break;
 	case CRYPTO_AES_NIST_GCM_16:
 		switch (en->cipher_key_len) {
 		case 128 / 8:
 			return (EVP_aes_128_gcm());
 		case 256 / 8:
 			return (EVP_aes_256_gcm());
 		default:
 			return (NULL);
 		}
 		break;
 	case CRYPTO_CHACHA20_POLY1305:
 		return (EVP_chacha20_poly1305());
 	default:
 		return (NULL);
 	}
 }
 
 static const EVP_MD *
 tls_EVP_MD(const struct tls_enable *en)
 {
 	switch (en->auth_algorithm) {
 	case CRYPTO_SHA1_HMAC:
 		return (EVP_sha1());
 	case CRYPTO_SHA2_256_HMAC:
 		return (EVP_sha256());
 	case CRYPTO_SHA2_384_HMAC:
 		return (EVP_sha384());
 	default:
 		return (NULL);
 	}
 }
 
 static size_t
 tls_header_len(struct tls_enable *en)
 {
 	size_t len;
 
 	len = sizeof(struct tls_record_layer);
 	switch (en->cipher_algorithm) {
 	case CRYPTO_AES_CBC:
 		if (en->tls_vminor != TLS_MINOR_VER_ZERO)
 			len += AES_BLOCK_LEN;
 		return (len);
 	case CRYPTO_AES_NIST_GCM_16:
 		if (en->tls_vminor == TLS_MINOR_VER_TWO)
 			len += sizeof(uint64_t);
 		return (len);
 	case CRYPTO_CHACHA20_POLY1305:
 		return (len);
 	default:
 		return (0);
 	}
 }
 
 static size_t
 tls_mac_len(struct tls_enable *en)
 {
 	switch (en->cipher_algorithm) {
 	case CRYPTO_AES_CBC:
 		switch (en->auth_algorithm) {
 		case CRYPTO_SHA1_HMAC:
 			return (SHA1_HASH_LEN);
 		case CRYPTO_SHA2_256_HMAC:
 			return (SHA2_256_HASH_LEN);
 		case CRYPTO_SHA2_384_HMAC:
 			return (SHA2_384_HASH_LEN);
 		default:
 			return (0);
 		}
 	case CRYPTO_AES_NIST_GCM_16:
 		return (AES_GMAC_HASH_LEN);
 	case CRYPTO_CHACHA20_POLY1305:
 		return (POLY1305_HASH_LEN);
 	default:
 		return (0);
 	}
 }
 
 /* Includes maximum padding for MTE. */
 static size_t
 tls_trailer_len(struct tls_enable *en)
 {
 	size_t len;
 
 	len = tls_mac_len(en);
 	if (en->cipher_algorithm == CRYPTO_AES_CBC)
 		len += AES_BLOCK_LEN;
 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
 		len++;
 	return (len);
 }
 
 /* Minimum valid record payload size for a given cipher suite. */
 static size_t
 tls_minimum_record_payload(struct tls_enable *en)
 {
 	size_t len;
 
 	len = tls_header_len(en);
 	if (en->cipher_algorithm == CRYPTO_AES_CBC)
 		len += roundup2(tls_mac_len(en) + 1, AES_BLOCK_LEN);
 	else
 		len += tls_mac_len(en);
 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
 		len++;
 	return (len - sizeof(struct tls_record_layer));
 }
 
 /* 'len' is the length of the payload application data. */
 static void
 tls_mte_aad(struct tls_enable *en, size_t len,
     const struct tls_record_layer *hdr, uint64_t seqno, struct tls_mac_data *ad)
 {
 	ad->seq = htobe64(seqno);
 	ad->type = hdr->tls_type;
 	ad->tls_vmajor = hdr->tls_vmajor;
 	ad->tls_vminor = hdr->tls_vminor;
 	ad->tls_length = htons(len);
 }
 
 static void
 tls_12_aead_aad(struct tls_enable *en, size_t len,
     const struct tls_record_layer *hdr, uint64_t seqno,
     struct tls_aead_data *ad)
 {
 	ad->seq = htobe64(seqno);
 	ad->type = hdr->tls_type;
 	ad->tls_vmajor = hdr->tls_vmajor;
 	ad->tls_vminor = hdr->tls_vminor;
 	ad->tls_length = htons(len);
 }
 
 static void
 tls_13_aad(struct tls_enable *en, const struct tls_record_layer *hdr,
     uint64_t seqno, struct tls_aead_data_13 *ad)
 {
 	ad->type = hdr->tls_type;
 	ad->tls_vmajor = hdr->tls_vmajor;
 	ad->tls_vminor = hdr->tls_vminor;
 	ad->tls_length = hdr->tls_length;
 }
 
 static void
 tls_12_gcm_nonce(struct tls_enable *en, const struct tls_record_layer *hdr,
     char *nonce)
 {
 	memcpy(nonce, en->iv, TLS_AEAD_GCM_LEN);
 	memcpy(nonce + TLS_AEAD_GCM_LEN, hdr + 1, sizeof(uint64_t));
 }
 
 static void
 tls_13_nonce(struct tls_enable *en, uint64_t seqno, char *nonce)
 {
 	static_assert(TLS_1_3_GCM_IV_LEN == TLS_CHACHA20_IV_LEN,
 	    "TLS 1.3 nonce length mismatch");
 	memcpy(nonce, en->iv, TLS_1_3_GCM_IV_LEN);
 	*(uint64_t *)(nonce + 4) ^= htobe64(seqno);
 }
 
 /*
  * Decrypt a TLS record 'len' bytes long at 'src' and store the result at
  * 'dst'.  If the TLS record header length doesn't match or 'dst' doesn't
  * have sufficient room ('avail'), fail the test.
  */
 static size_t
 decrypt_tls_aes_cbc_mte(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, const void *src, size_t len, void *dst, size_t avail,
     uint8_t *record_type)
 {
 	const struct tls_record_layer *hdr;
 	struct tls_mac_data aad;
 	const char *iv;
 	char *buf;
 	size_t hdr_len, mac_len, payload_len;
 	int padding;
 
 	hdr = src;
 	hdr_len = tls_header_len(en);
 	mac_len = tls_mac_len(en);
 	ATF_REQUIRE_INTEQ(TLS_MAJOR_VER_ONE, hdr->tls_vmajor);
 	ATF_REQUIRE_INTEQ(en->tls_vminor, hdr->tls_vminor);
 	debug(tc, "decrypting MTE record seqno %ju:\n", (uintmax_t)seqno);
 	debug_hexdump(tc, src, len, NULL);
 
 	/* First, decrypt the outer payload into a temporary buffer. */
 	payload_len = len - hdr_len;
 	buf = malloc(payload_len);
 	if (en->tls_vminor == TLS_MINOR_VER_ZERO)
 		iv = en->iv;
 	else
 		iv = (void *)(hdr + 1);
 	debug_hexdump(tc, iv, AES_BLOCK_LEN, "iv");
 	ATF_REQUIRE(cbc_decrypt(tls_EVP_CIPHER(en), en->cipher_key, iv,
 	    (const u_char *)src + hdr_len, buf, payload_len));
 	debug_hexdump(tc, buf, payload_len, "decrypted buffer");
 
 	/*
 	 * Copy the last encrypted block to use as the IV for the next
 	 * record for TLS 1.0.
 	 */
 	if (en->tls_vminor == TLS_MINOR_VER_ZERO)
 		memcpy(__DECONST(uint8_t *, en->iv), (const u_char *)src +
 		    (len - AES_BLOCK_LEN), AES_BLOCK_LEN);
 
 	/*
 	 * Verify trailing padding and strip.
 	 *
 	 * The kernel always generates the smallest amount of padding.
 	 */
 	padding = buf[payload_len - 1] + 1;
 	ATF_REQUIRE_MSG(padding > 0 && padding <= AES_BLOCK_LEN,
 	    "invalid padding %d", padding);
 	ATF_REQUIRE_MSG(payload_len >= mac_len + padding,
 	    "payload_len (%zu) < mac_len (%zu) + padding (%d)", payload_len,
 	    mac_len, padding);
 	payload_len -= padding;
 
 	/* Verify HMAC. */
 	payload_len -= mac_len;
 	tls_mte_aad(en, payload_len, hdr, seqno, &aad);
 	debug_hexdump(tc, &aad, sizeof(aad), "aad");
 	ATF_REQUIRE(verify_hash(tls_EVP_MD(en), en->auth_key, en->auth_key_len,
 	    &aad, sizeof(aad), buf, payload_len, buf + payload_len));
 
 	ATF_REQUIRE_MSG(payload_len <= avail, "payload_len (%zu) < avail (%zu)",
 	    payload_len, avail);
 	memcpy(dst, buf, payload_len);
 	*record_type = hdr->tls_type;
 	return (payload_len);
 }
 
 static size_t
 decrypt_tls_12_aead(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
     const void *src, size_t len, void *dst, uint8_t *record_type)
 {
 	const struct tls_record_layer *hdr;
 	struct tls_aead_data aad;
 	char nonce[12];
 	size_t hdr_len, mac_len, payload_len;
 
 	hdr = src;
 
 	hdr_len = tls_header_len(en);
 	mac_len = tls_mac_len(en);
 	payload_len = len - (hdr_len + mac_len);
 	ATF_REQUIRE_INTEQ(TLS_MAJOR_VER_ONE, hdr->tls_vmajor);
 	ATF_REQUIRE_INTEQ(TLS_MINOR_VER_TWO, hdr->tls_vminor);
 	debug(tc, "decrypting TLS 1.2 record seqno %ju:\n", (uintmax_t)seqno);
 	debug_hexdump(tc, src, len, NULL);
 
 	tls_12_aead_aad(en, payload_len, hdr, seqno, &aad);
 	debug_hexdump(tc, &aad, sizeof(aad), "aad");
 	if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
 		tls_12_gcm_nonce(en, hdr, nonce);
 	else
 		tls_13_nonce(en, seqno, nonce);
 	debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
 
 	ATF_REQUIRE(aead_decrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
 	    &aad, sizeof(aad), (const char *)src + hdr_len, dst, payload_len,
 	    (const char *)src + hdr_len + payload_len, mac_len));
 
 	*record_type = hdr->tls_type;
 	return (payload_len);
 }
 
 static size_t
 decrypt_tls_13_aead(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
     const void *src, size_t len, void *dst, uint8_t *record_type)
 {
 	const struct tls_record_layer *hdr;
 	struct tls_aead_data_13 aad;
 	char nonce[12];
 	char *buf;
 	size_t hdr_len, mac_len, payload_len;
 
 	hdr = src;
 
 	hdr_len = tls_header_len(en);
 	mac_len = tls_mac_len(en);
 	payload_len = len - (hdr_len + mac_len);
 	ATF_REQUIRE_MSG(payload_len >= 1,
 	    "payload_len (%zu) too short: len %zu hdr_len %zu mac_len %zu",
 	    payload_len, len, hdr_len, mac_len);
 	ATF_REQUIRE_INTEQ(TLS_RLTYPE_APP, hdr->tls_type);
 	ATF_REQUIRE_INTEQ(TLS_MAJOR_VER_ONE, hdr->tls_vmajor);
 	ATF_REQUIRE_INTEQ(TLS_MINOR_VER_TWO, hdr->tls_vminor);
 	debug(tc, "decrypting TLS 1.3 record seqno %ju:\n", (uintmax_t)seqno);
 	debug_hexdump(tc, src, len, NULL);
 
 	tls_13_aad(en, hdr, seqno, &aad);
 	debug_hexdump(tc, &aad, sizeof(aad), "aad");
 	tls_13_nonce(en, seqno, nonce);
 	debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
 
 	/*
 	 * Have to use a temporary buffer for the output due to the
 	 * record type as the last byte of the trailer.
 	 */
 	buf = malloc(payload_len);
 
 	ATF_REQUIRE(aead_decrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
 	    &aad, sizeof(aad), (const char *)src + hdr_len, buf, payload_len,
 	    (const char *)src + hdr_len + payload_len, mac_len));
 	debug_hexdump(tc, buf, payload_len, "decrypted buffer");
 
 	/* Trim record type. */
 	*record_type = buf[payload_len - 1];
 	payload_len--;
 
 	memcpy(dst, buf, payload_len);
 	free(buf);
 
 	return (payload_len);
 }
 
 static size_t
 decrypt_tls_aead(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
     const void *src, size_t len, void *dst, size_t avail, uint8_t *record_type)
 {
 	const struct tls_record_layer *hdr;
 	size_t payload_len;
 
 	hdr = src;
 	ATF_REQUIRE_INTEQ(len, ntohs(hdr->tls_length) + sizeof(*hdr));
 
 	payload_len = len - (tls_header_len(en) + tls_trailer_len(en));
 	ATF_REQUIRE_MSG(payload_len <= avail, "payload_len (%zu) > avail (%zu)",
 	    payload_len, avail);
 
 	if (en->tls_vminor == TLS_MINOR_VER_TWO) {
 		ATF_REQUIRE_INTEQ(payload_len, decrypt_tls_12_aead(tc, en,
 		    seqno, src, len, dst, record_type));
 	} else {
 		ATF_REQUIRE_INTEQ(payload_len, decrypt_tls_13_aead(tc, en,
 		    seqno, src, len, dst, record_type));
 	}
 
 	return (payload_len);
 }
 
 static size_t
 decrypt_tls_record(const atf_tc_t *tc, struct tls_enable *en, uint64_t seqno,
     const void *src, size_t len, void *dst, size_t avail, uint8_t *record_type)
 {
 	if (en->cipher_algorithm == CRYPTO_AES_CBC)
 		return (decrypt_tls_aes_cbc_mte(tc, en, seqno, src, len, dst,
 		    avail, record_type));
 	else
 		return (decrypt_tls_aead(tc, en, seqno, src, len, dst, avail,
 		    record_type));
 }
 
 /*
  * Encrypt a TLS record of type 'record_type' with payload 'len' bytes
  * long at 'src' and store the result at 'dst'.  If 'dst' doesn't have
  * sufficient room ('avail'), fail the test.  'padding' is the amount
  * of additional padding to include beyond any amount mandated by the
  * cipher suite.
  */
 static size_t
 encrypt_tls_aes_cbc_mte(const atf_tc_t *tc, struct tls_enable *en,
     uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
     size_t avail, size_t padding)
 {
 	struct tls_record_layer *hdr;
 	struct tls_mac_data aad;
 	char *buf, *iv;
 	size_t hdr_len, mac_len, record_len;
 	u_int digest_len, i;
 
 	ATF_REQUIRE_INTEQ(0, padding % 16);
 
 	hdr = dst;
 	buf = dst;
 
 	debug(tc, "encrypting MTE record seqno %ju:\n", (uintmax_t)seqno);
 	hdr_len = tls_header_len(en);
 	mac_len = tls_mac_len(en);
 	padding += (AES_BLOCK_LEN - (len + mac_len) % AES_BLOCK_LEN);
 	ATF_REQUIRE_MSG(padding > 0 && padding <= 255, "invalid padding (%zu)",
 	    padding);
 
 	record_len = hdr_len + len + mac_len + padding;
 	ATF_REQUIRE_MSG(record_len <= avail, "record_len (%zu) > avail (%zu): "
 	    "hdr_len %zu, len %zu, mac_len %zu, padding %zu", record_len,
 	    avail, hdr_len, len, mac_len, padding);
 
 	hdr->tls_type = record_type;
 	hdr->tls_vmajor = TLS_MAJOR_VER_ONE;
 	hdr->tls_vminor = en->tls_vminor;
 	hdr->tls_length = htons(record_len - sizeof(*hdr));
 	iv = (char *)(hdr + 1);
 	for (i = 0; i < AES_BLOCK_LEN; i++)
 		iv[i] = rdigit();
 	debug_hexdump(tc, iv, AES_BLOCK_LEN, "explicit IV");
 
 	/* Copy plaintext to ciphertext region. */
 	memcpy(buf + hdr_len, src, len);
 
 	/* Compute HMAC. */
 	tls_mte_aad(en, len, hdr, seqno, &aad);
 	debug_hexdump(tc, &aad, sizeof(aad), "aad");
 	debug_hexdump(tc, src, len, "plaintext");
 	ATF_REQUIRE(compute_hash(tls_EVP_MD(en), en->auth_key, en->auth_key_len,
 	    &aad, sizeof(aad), src, len, buf + hdr_len + len, &digest_len));
 	ATF_REQUIRE_INTEQ(mac_len, digest_len);
 
 	/* Store padding. */
 	for (i = 0; i < padding; i++)
 		buf[hdr_len + len + mac_len + i] = padding - 1;
 	debug_hexdump(tc, buf + hdr_len + len, mac_len + padding,
 	    "MAC and padding");
 
 	/* Encrypt the record. */
 	ATF_REQUIRE(cbc_encrypt(tls_EVP_CIPHER(en), en->cipher_key, iv,
 	    buf + hdr_len, buf + hdr_len, len + mac_len + padding));
 	debug_hexdump(tc, dst, record_len, "encrypted record");
 
 	return (record_len);
 }
 
 static size_t
 encrypt_tls_12_aead(const atf_tc_t *tc, struct tls_enable *en,
     uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst)
 {
 	struct tls_record_layer *hdr;
 	struct tls_aead_data aad;
 	char nonce[12];
 	size_t hdr_len, mac_len, record_len;
 
 	hdr = dst;
 
 	debug(tc, "encrypting TLS 1.2 record seqno %ju:\n", (uintmax_t)seqno);
 	hdr_len = tls_header_len(en);
 	mac_len = tls_mac_len(en);
 	record_len = hdr_len + len + mac_len;
 
 	hdr->tls_type = record_type;
 	hdr->tls_vmajor = TLS_MAJOR_VER_ONE;
 	hdr->tls_vminor = TLS_MINOR_VER_TWO;
 	hdr->tls_length = htons(record_len - sizeof(*hdr));
 	if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
 		memcpy(hdr + 1, &seqno, sizeof(seqno));
 
 	tls_12_aead_aad(en, len, hdr, seqno, &aad);
 	debug_hexdump(tc, &aad, sizeof(aad), "aad");
 	if (en->cipher_algorithm == CRYPTO_AES_NIST_GCM_16)
 		tls_12_gcm_nonce(en, hdr, nonce);
 	else
 		tls_13_nonce(en, seqno, nonce);
 	debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
 
 	debug_hexdump(tc, src, len, "plaintext");
 	ATF_REQUIRE(aead_encrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
 	    &aad, sizeof(aad), src, (char *)dst + hdr_len, len,
 	    (char *)dst + hdr_len + len, mac_len));
 	debug_hexdump(tc, dst, record_len, "encrypted record");
 
 	return (record_len);
 }
 
 static size_t
 encrypt_tls_13_aead(const atf_tc_t *tc, struct tls_enable *en,
     uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
     size_t padding)
 {
 	struct tls_record_layer *hdr;
 	struct tls_aead_data_13 aad;
 	char nonce[12];
 	char *buf;
 	size_t hdr_len, mac_len, record_len;
 
 	hdr = dst;
 
 	debug(tc, "encrypting TLS 1.3 record seqno %ju:\n", (uintmax_t)seqno);
 	hdr_len = tls_header_len(en);
 	mac_len = tls_mac_len(en);
 	record_len = hdr_len + len + 1 + padding + mac_len;
 
 	hdr->tls_type = TLS_RLTYPE_APP;
 	hdr->tls_vmajor = TLS_MAJOR_VER_ONE;
 	hdr->tls_vminor = TLS_MINOR_VER_TWO;
 	hdr->tls_length = htons(record_len - sizeof(*hdr));
 
 	tls_13_aad(en, hdr, seqno, &aad);
 	debug_hexdump(tc, &aad, sizeof(aad), "aad");
 	tls_13_nonce(en, seqno, nonce);
 	debug_hexdump(tc, nonce, sizeof(nonce), "nonce");
 
 	/*
 	 * Have to use a temporary buffer for the input so that the record
 	 * type can be appended.
 	 */
 	buf = malloc(len + 1 + padding);
 	memcpy(buf, src, len);
 	buf[len] = record_type;
 	memset(buf + len + 1, 0, padding);
 	debug_hexdump(tc, buf, len + 1 + padding, "plaintext + type + padding");
 
 	ATF_REQUIRE(aead_encrypt(tls_EVP_CIPHER(en), en->cipher_key, nonce,
 	    &aad, sizeof(aad), buf, (char *)dst + hdr_len, len + 1 + padding,
 	    (char *)dst + hdr_len + len + 1 + padding, mac_len));
 	debug_hexdump(tc, dst, record_len, "encrypted record");
 
 	free(buf);
 
 	return (record_len);
 }
 
 static size_t
 encrypt_tls_aead(const atf_tc_t *tc, struct tls_enable *en,
     uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
     size_t avail, size_t padding)
 {
 	size_t record_len;
 
 	record_len = tls_header_len(en) + len + padding + tls_trailer_len(en);
 	ATF_REQUIRE_MSG(record_len <= avail, "record_len (%zu) > avail (%zu): "
 	    "header %zu len %zu padding %zu trailer %zu", record_len, avail,
 	    tls_header_len(en), len, padding, tls_trailer_len(en));
 
 	if (en->tls_vminor == TLS_MINOR_VER_TWO) {
 		ATF_REQUIRE_INTEQ(0, padding);
 		ATF_REQUIRE_INTEQ(record_len, encrypt_tls_12_aead(tc, en,
 		    record_type, seqno, src, len, dst));
 	} else
 		ATF_REQUIRE_INTEQ(record_len, encrypt_tls_13_aead(tc, en,
 		    record_type, seqno, src, len, dst, padding));
 
 	return (record_len);
 }
 
 static size_t
 encrypt_tls_record(const atf_tc_t *tc, struct tls_enable *en,
     uint8_t record_type, uint64_t seqno, const void *src, size_t len, void *dst,
     size_t avail, size_t padding)
 {
 	if (en->cipher_algorithm == CRYPTO_AES_CBC)
 		return (encrypt_tls_aes_cbc_mte(tc, en, record_type, seqno, src,
 		    len, dst, avail, padding));
 	else
 		return (encrypt_tls_aead(tc, en, record_type, seqno, src, len,
 		    dst, avail, padding));
 }
 
 static void
 test_ktls_transmit_app_data(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	struct kevent ev;
 	struct tls_record_layer *hdr;
 	char *plaintext, *decrypted, *outbuf;
 	size_t decrypted_len, outbuf_len, outbuf_cap, record_len, written;
 	ssize_t rv;
 	int kq, sockets[2];
 	uint8_t record_type;
 
 	plaintext = alloc_buffer(len);
 	debug_hexdump(tc, plaintext, len, "plaintext");
 	decrypted = malloc(len);
 	outbuf_cap = tls_header_len(en) + TLS_MAX_MSG_SIZE_V10_2 +
 	    tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 	hdr = (struct tls_record_layer *)outbuf;
 
 	ATF_REQUIRE((kq = kqueue()) != -1);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[1], IPPROTO_TCP, TCP_TXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[1], TCP_TXTLS_MODE);
 
 	EV_SET(&ev, sockets[0], EVFILT_READ, EV_ADD, 0, 0, NULL);
 	ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
 	EV_SET(&ev, sockets[1], EVFILT_WRITE, EV_ADD, 0, 0, NULL);
 	ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
 
 	decrypted_len = 0;
 	outbuf_len = 0;
 	written = 0;
 
 	while (decrypted_len != len) {
 		ATF_REQUIRE(kevent(kq, NULL, 0, &ev, 1, NULL) == 1);
 
 		switch (ev.filter) {
 		case EVFILT_WRITE:
 			/* Try to write any remaining data. */
 			rv = write(ev.ident, plaintext + written,
 			    len - written);
 			ATF_REQUIRE_MSG(rv > 0,
 			    "failed to write to socket");
 			written += rv;
 			if (written == len) {
 				ev.flags = EV_DISABLE;
 				ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0,
 				    NULL) == 0);
 			}
 			break;
 
 		case EVFILT_READ:
 			ATF_REQUIRE((ev.flags & EV_EOF) == 0);
 
 			/*
 			 * Try to read data for the next TLS record
 			 * into outbuf.  Start by reading the header
 			 * to determine how much additional data to
 			 * read.
 			 */
 			if (outbuf_len < sizeof(struct tls_record_layer)) {
 				rv = read(ev.ident, outbuf + outbuf_len,
 				    sizeof(struct tls_record_layer) -
 				    outbuf_len);
 				ATF_REQUIRE_MSG(rv > 0,
 				    "failed to read from socket");
 				outbuf_len += rv;
 
 				if (outbuf_len ==
 				    sizeof(struct tls_record_layer)) {
 					debug(tc, "TLS header for seqno %ju:\n",
 					    (uintmax_t)seqno);
 					debug_hexdump(tc, outbuf, outbuf_len,
 					    NULL);
 				}
 			}
 
 			if (outbuf_len < sizeof(struct tls_record_layer))
 				break;
 
 			record_len = sizeof(struct tls_record_layer) +
 			    ntohs(hdr->tls_length);
 			debug(tc, "record_len %zu outbuf_cap %zu\n",
 			    record_len, outbuf_cap);
 			ATF_REQUIRE(record_len <= outbuf_cap);
 			ATF_REQUIRE(record_len > outbuf_len);
 			rv = read(ev.ident, outbuf + outbuf_len,
 			    record_len - outbuf_len);
 			if (rv == -1 && errno == EAGAIN)
 				break;
 			ATF_REQUIRE_MSG(rv > 0,
 			    "failed to read from socket: %s", strerror(errno));
 
 			outbuf_len += rv;
 			if (outbuf_len == record_len) {
 				decrypted_len += decrypt_tls_record(tc, en,
 				    seqno, outbuf, outbuf_len,
 				    decrypted + decrypted_len,
 				    len - decrypted_len, &record_type);
 				ATF_REQUIRE_INTEQ(TLS_RLTYPE_APP, record_type);
 
 				seqno++;
 				outbuf_len = 0;
 			}
 			break;
 		}
 	}
 
 	ATF_REQUIRE_MSG(written == decrypted_len,
 	    "read %zu decrypted bytes, but wrote %zu", decrypted_len, written);
 
 	ATF_REQUIRE(memcmp(plaintext, decrypted, len) == 0);
 
 	free(outbuf);
 	free(decrypted);
 	free(plaintext);
 
 	close_sockets(sockets);
 	ATF_REQUIRE(close(kq) == 0);
 }
 
 static void
 ktls_send_control_message(int fd, uint8_t type, void *data, size_t len)
 {
 	struct msghdr msg;
 	struct cmsghdr *cmsg;
 	char cbuf[CMSG_SPACE(sizeof(type))];
 	struct iovec iov;
 
 	memset(&msg, 0, sizeof(msg));
 
 	msg.msg_control = cbuf;
 	msg.msg_controllen = sizeof(cbuf);
 	cmsg = CMSG_FIRSTHDR(&msg);
 	cmsg->cmsg_level = IPPROTO_TCP;
 	cmsg->cmsg_type = TLS_SET_RECORD_TYPE;
 	cmsg->cmsg_len = CMSG_LEN(sizeof(type));
 	*(uint8_t *)CMSG_DATA(cmsg) = type;
 
 	iov.iov_base = data;
 	iov.iov_len = len;
 	msg.msg_iov = &iov;
 	msg.msg_iovlen = 1;
 
 	ATF_REQUIRE_INTEQ((ssize_t)len, sendmsg(fd, &msg, 0));
 }
 
 static void
 test_ktls_transmit_control(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, uint8_t type, size_t len)
 {
 	struct tls_record_layer *hdr;
 	char *plaintext, *decrypted, *outbuf;
 	size_t outbuf_cap, payload_len, record_len;
 	ssize_t rv;
 	int sockets[2];
 	uint8_t record_type;
 
 	ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
 
 	plaintext = alloc_buffer(len);
 	decrypted = malloc(len);
 	outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 	hdr = (struct tls_record_layer *)outbuf;
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[1], IPPROTO_TCP, TCP_TXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[1], TCP_TXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	ktls_send_control_message(sockets[1], type, plaintext, len);
 
 	/*
 	 * First read the header to determine how much additional data
 	 * to read.
 	 */
 	rv = read(sockets[0], outbuf, sizeof(struct tls_record_layer));
 	ATF_REQUIRE_INTEQ(sizeof(struct tls_record_layer), rv);
 	payload_len = ntohs(hdr->tls_length);
 	record_len = payload_len + sizeof(struct tls_record_layer);
 	ATF_REQUIRE_MSG(record_len <= outbuf_cap,
 	    "record_len (%zu) > outbuf_cap (%zu)", record_len, outbuf_cap);
 	rv = read(sockets[0], outbuf + sizeof(struct tls_record_layer),
 	    payload_len);
 	ATF_REQUIRE_INTEQ((ssize_t)payload_len, rv);
 
 	rv = decrypt_tls_record(tc, en, seqno, outbuf, record_len, decrypted,
 	    len, &record_type);
 
 	ATF_REQUIRE_MSG((ssize_t)len == rv,
 	    "read %zd decrypted bytes, but wrote %zu", rv, len);
 	ATF_REQUIRE_INTEQ(type, record_type);
 
 	ATF_REQUIRE(memcmp(plaintext, decrypted, len) == 0);
 
 	free(outbuf);
 	free(decrypted);
 	free(plaintext);
 
 	close_sockets(sockets);
 }
 
 static void
 test_ktls_transmit_empty_fragment(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno)
 {
 	struct tls_record_layer *hdr;
 	char *outbuf;
 	size_t outbuf_cap, payload_len, record_len;
 	ssize_t rv;
 	int sockets[2];
 	uint8_t record_type;
 
 	outbuf_cap = tls_header_len(en) + tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 	hdr = (struct tls_record_layer *)outbuf;
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[1], IPPROTO_TCP, TCP_TXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[1], TCP_TXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	/*
 	 * A write of zero bytes should send an empty fragment only for
 	 * TLS 1.0, otherwise an error should be raised.
 	 */
 	rv = write(sockets[1], NULL, 0);
 	if (rv == 0) {
 		ATF_REQUIRE_INTEQ(CRYPTO_AES_CBC, en->cipher_algorithm);
 		ATF_REQUIRE_INTEQ(TLS_MINOR_VER_ZERO, en->tls_vminor);
 	} else {
 		ATF_REQUIRE_INTEQ(-1, rv);
 		ATF_REQUIRE_ERRNO(EINVAL, true);
 		goto out;
 	}
 
 	/*
 	 * First read the header to determine how much additional data
 	 * to read.
 	 */
 	rv = read(sockets[0], outbuf, sizeof(struct tls_record_layer));
 	ATF_REQUIRE_INTEQ(sizeof(struct tls_record_layer), rv);
 	payload_len = ntohs(hdr->tls_length);
 	record_len = payload_len + sizeof(struct tls_record_layer);
 	ATF_REQUIRE_MSG(record_len <= outbuf_cap,
 	    "record_len (%zu) > outbuf_cap (%zu)", record_len, outbuf_cap);
 	rv = read(sockets[0], outbuf + sizeof(struct tls_record_layer),
 	    payload_len);
 	ATF_REQUIRE_INTEQ((ssize_t)payload_len, rv);
 
 	rv = decrypt_tls_record(tc, en, seqno, outbuf, record_len, NULL, 0,
 	    &record_type);
 
 	ATF_REQUIRE_MSG(rv == 0,
 	    "read %zd decrypted bytes for an empty fragment", rv);
 	ATF_REQUIRE_INTEQ(TLS_RLTYPE_APP, record_type);
 
 out:
 	free(outbuf);
 
 	close_sockets(sockets);
 }
 
 static size_t
 ktls_receive_tls_record(struct tls_enable *en, int fd, uint8_t record_type,
     void *data, size_t len)
 {
 	struct msghdr msg;
 	struct cmsghdr *cmsg;
 	struct tls_get_record *tgr;
 	char cbuf[CMSG_SPACE(sizeof(*tgr))];
 	struct iovec iov;
 	ssize_t rv;
 
 	memset(&msg, 0, sizeof(msg));
 
 	msg.msg_control = cbuf;
 	msg.msg_controllen = sizeof(cbuf);
 
 	iov.iov_base = data;
 	iov.iov_len = len;
 	msg.msg_iov = &iov;
 	msg.msg_iovlen = 1;
 
 	ATF_REQUIRE((rv = recvmsg(fd, &msg, 0)) > 0);
 
 	ATF_REQUIRE((msg.msg_flags & (MSG_EOR | MSG_CTRUNC)) == MSG_EOR);
 
 	cmsg = CMSG_FIRSTHDR(&msg);
 	ATF_REQUIRE(cmsg != NULL);
 	ATF_REQUIRE_INTEQ(IPPROTO_TCP, cmsg->cmsg_level);
 	ATF_REQUIRE_INTEQ(TLS_GET_RECORD, cmsg->cmsg_type);
 	ATF_REQUIRE_INTEQ(CMSG_LEN(sizeof(*tgr)), cmsg->cmsg_len);
 
 	tgr = (struct tls_get_record *)CMSG_DATA(cmsg);
 	ATF_REQUIRE_INTEQ(record_type, tgr->tls_type);
 	ATF_REQUIRE_INTEQ(en->tls_vmajor, tgr->tls_vmajor);
 	/* XXX: Not sure if this is what OpenSSL expects? */
 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
 		ATF_REQUIRE_INTEQ(TLS_MINOR_VER_TWO, tgr->tls_vminor);
 	else
 		ATF_REQUIRE_INTEQ(en->tls_vminor, tgr->tls_vminor);
 	ATF_REQUIRE_INTEQ(htons(rv), tgr->tls_length);
 
 	return (rv);
 }
 
 static void
 test_ktls_receive_app_data(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len, size_t padding)
 {
 	struct kevent ev;
 	char *plaintext, *received, *outbuf;
 	size_t outbuf_cap, outbuf_len, outbuf_sent, received_len, todo, written;
 	ssize_t rv;
 	int kq, sockets[2];
 
 	plaintext = alloc_buffer(len);
 	received = malloc(len);
 	outbuf_cap = tls_header_len(en) + TLS_MAX_MSG_SIZE_V10_2 +
 	    tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 
 	ATF_REQUIRE((kq = kqueue()) != -1);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
 
 	EV_SET(&ev, sockets[0], EVFILT_READ, EV_ADD, 0, 0, NULL);
 	ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
 	EV_SET(&ev, sockets[1], EVFILT_WRITE, EV_ADD, 0, 0, NULL);
 	ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0, NULL) == 0);
 
 	received_len = 0;
 	outbuf_len = 0;
 	written = 0;
 
 	while (received_len != len) {
 		ATF_REQUIRE(kevent(kq, NULL, 0, &ev, 1, NULL) == 1);
 
 		switch (ev.filter) {
 		case EVFILT_WRITE:
 			/*
 			 * Compose the next TLS record to send.
 			 */
 			if (outbuf_len == 0) {
 				ATF_REQUIRE(written < len);
 				todo = len - written;
 				if (todo > TLS_MAX_MSG_SIZE_V10_2 - padding)
 					todo = TLS_MAX_MSG_SIZE_V10_2 - padding;
 				outbuf_len = encrypt_tls_record(tc, en,
 				    TLS_RLTYPE_APP, seqno, plaintext + written,
 				    todo, outbuf, outbuf_cap, padding);
 				outbuf_sent = 0;
 				written += todo;
 				seqno++;
 			}
 
 			/*
 			 * Try to write the remainder of the current
 			 * TLS record.
 			 */
 			rv = write(ev.ident, outbuf + outbuf_sent,
 			    outbuf_len - outbuf_sent);
 			ATF_REQUIRE_MSG(rv > 0,
 			    "failed to write to socket: %s", strerror(errno));
 			outbuf_sent += rv;
 			if (outbuf_sent == outbuf_len) {
 				outbuf_len = 0;
 				if (written == len) {
 					ev.flags = EV_DISABLE;
 					ATF_REQUIRE(kevent(kq, &ev, 1, NULL, 0,
 					    NULL) == 0);
 				}
 			}
 			break;
 
 		case EVFILT_READ:
 			ATF_REQUIRE((ev.flags & EV_EOF) == 0);
 
 			rv = ktls_receive_tls_record(en, ev.ident,
 			    TLS_RLTYPE_APP, received + received_len,
 			    len - received_len);
 			received_len += rv;
 			break;
 		}
 	}
 
 	ATF_REQUIRE_MSG(written == received_len,
 	    "read %zu decrypted bytes, but wrote %zu", received_len, written);
 
 	ATF_REQUIRE(memcmp(plaintext, received, len) == 0);
 
 	free(outbuf);
 	free(received);
 	free(plaintext);
 
 	close_sockets(sockets);
 	ATF_REQUIRE(close(kq) == 0);
 }
 
 static void
 ktls_receive_tls_error(int fd, int expected_error)
 {
 	struct msghdr msg;
 	struct tls_get_record *tgr;
 	char cbuf[CMSG_SPACE(sizeof(*tgr))];
 	char buf[64];
 	struct iovec iov;
 
 	memset(&msg, 0, sizeof(msg));
 
 	msg.msg_control = cbuf;
 	msg.msg_controllen = sizeof(cbuf);
 
 	iov.iov_base = buf;
 	iov.iov_len = sizeof(buf);
 	msg.msg_iov = &iov;
 	msg.msg_iovlen = 1;
 
 	ATF_REQUIRE(recvmsg(fd, &msg, 0) == -1);
 	if (expected_error != 0)
 		ATF_REQUIRE_ERRNO(expected_error, true);
 }
 
 static void
 test_ktls_receive_corrupted_record(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len, ssize_t offset)
 {
 	char *plaintext, *outbuf;
 	size_t outbuf_cap, outbuf_len;
 	ssize_t rv;
 	int sockets[2];
 
 	ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
 
 	plaintext = alloc_buffer(len);
 	outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
 	    plaintext, len, outbuf, outbuf_cap, 0);
 
 	/* A negative offset is an offset from the end. */
 	if (offset < 0)
 		offset += outbuf_len;
 	outbuf[offset] ^= 0x01;
 
 	rv = write(sockets[1], outbuf, outbuf_len);
 	ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
 
 	ktls_receive_tls_error(sockets[0], EBADMSG);
 
 	free(outbuf);
 	free(plaintext);
 
 	close_sockets_ignore_errors(sockets);
 }
 
 static void
 test_ktls_receive_corrupted_iv(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	ATF_REQUIRE(tls_header_len(en) > sizeof(struct tls_record_layer));
 
 	/* Corrupt the first byte of the explicit IV after the header. */
 	test_ktls_receive_corrupted_record(tc, en, seqno, len,
 	    sizeof(struct tls_record_layer));
 }
 
 static void
 test_ktls_receive_corrupted_data(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	ATF_REQUIRE(len > 0);
 
 	/* Corrupt the first ciphertext byte after the header. */
 	test_ktls_receive_corrupted_record(tc, en, seqno, len,
 	    tls_header_len(en));
 }
 
 static void
 test_ktls_receive_corrupted_mac(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	size_t offset;
 
 	/* Corrupt the first byte of the MAC. */
 	if (en->cipher_algorithm == CRYPTO_AES_CBC)
 		offset = tls_header_len(en) + len;
 	else
 		offset = -tls_mac_len(en);
 	test_ktls_receive_corrupted_record(tc, en, seqno, len, offset);
 }
 
 static void
 test_ktls_receive_corrupted_padding(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	ATF_REQUIRE_INTEQ(CRYPTO_AES_CBC, en->cipher_algorithm);
 
 	/* Corrupt the last byte of the padding. */
 	test_ktls_receive_corrupted_record(tc, en, seqno, len, -1);
 }
 
 static void
 test_ktls_receive_truncated_record(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	char *plaintext, *outbuf;
 	size_t outbuf_cap, outbuf_len;
 	ssize_t rv;
 	int sockets[2];
 
 	ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
 
 	plaintext = alloc_buffer(len);
 	outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
 	    plaintext, len, outbuf, outbuf_cap, 0);
 
 	rv = write(sockets[1], outbuf, outbuf_len / 2);
 	ATF_REQUIRE_INTEQ((ssize_t)(outbuf_len / 2), rv);
 
 	ATF_REQUIRE(shutdown(sockets[1], SHUT_WR) == 0);
 
 	ktls_receive_tls_error(sockets[0], EMSGSIZE);
 
 	free(outbuf);
 	free(plaintext);
 
 	close_sockets_ignore_errors(sockets);
 }
 
 static void
 test_ktls_receive_bad_major(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	struct tls_record_layer *hdr;
 	char *plaintext, *outbuf;
 	size_t outbuf_cap, outbuf_len;
 	ssize_t rv;
 	int sockets[2];
 
 	ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
 
 	plaintext = alloc_buffer(len);
 	outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
 	    plaintext, len, outbuf, outbuf_cap, 0);
 
 	hdr = (void *)outbuf;
 	hdr->tls_vmajor++;
 
 	rv = write(sockets[1], outbuf, outbuf_len);
 	ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
 
 	ktls_receive_tls_error(sockets[0], EINVAL);
 
 	free(outbuf);
 	free(plaintext);
 
 	close_sockets_ignore_errors(sockets);
 }
 
 static void
 test_ktls_receive_bad_minor(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	struct tls_record_layer *hdr;
 	char *plaintext, *outbuf;
 	size_t outbuf_cap, outbuf_len;
 	ssize_t rv;
 	int sockets[2];
 
 	ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
 
 	plaintext = alloc_buffer(len);
 	outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	outbuf_len = encrypt_tls_record(tc, en, TLS_RLTYPE_APP, seqno,
 	    plaintext, len, outbuf, outbuf_cap, 0);
 
 	hdr = (void *)outbuf;
 	hdr->tls_vminor++;
 
 	rv = write(sockets[1], outbuf, outbuf_len);
 	ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
 
 	ktls_receive_tls_error(sockets[0], EINVAL);
 
 	free(outbuf);
 	free(plaintext);
 
 	close_sockets_ignore_errors(sockets);
 }
 
 static void
 test_ktls_receive_bad_type(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	struct tls_record_layer *hdr;
 	char *plaintext, *outbuf;
 	size_t outbuf_cap, outbuf_len;
 	ssize_t rv;
 	int sockets[2];
 
 	ATF_REQUIRE(len <= TLS_MAX_MSG_SIZE_V10_2);
 	ATF_REQUIRE_INTEQ(TLS_MINOR_VER_THREE, en->tls_vminor);
 
 	plaintext = alloc_buffer(len);
 	outbuf_cap = tls_header_len(en) + len + tls_trailer_len(en);
 	outbuf = malloc(outbuf_cap);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	outbuf_len = encrypt_tls_record(tc, en, 0x21 /* Alert */, seqno,
 	    plaintext, len, outbuf, outbuf_cap, 0);
 
 	hdr = (void *)outbuf;
 	hdr->tls_type = TLS_RLTYPE_APP + 1;
 
 	rv = write(sockets[1], outbuf, outbuf_len);
 	ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
 
 	ktls_receive_tls_error(sockets[0], EINVAL);
 
 	free(outbuf);
 	free(plaintext);
 
 	close_sockets_ignore_errors(sockets);
 }
 
 static void
 test_ktls_receive_bad_size(const atf_tc_t *tc, struct tls_enable *en,
     uint64_t seqno, size_t len)
 {
 	struct tls_record_layer *hdr;
 	char *outbuf;
 	size_t outbuf_len;
 	ssize_t rv;
 	int sockets[2];
 
 	outbuf_len = sizeof(*hdr) + len;
 	outbuf = calloc(1, outbuf_len);
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE(setsockopt(sockets[0], IPPROTO_TCP, TCP_RXTLS_ENABLE, en,
 	    sizeof(*en)) == 0);
 	check_tls_mode(tc, sockets[0], TCP_RXTLS_MODE);
 
 	fd_set_blocking(sockets[0]);
 	fd_set_blocking(sockets[1]);
 
 	hdr = (void *)outbuf;
 	hdr->tls_vmajor = en->tls_vmajor;
 	if (en->tls_vminor == TLS_MINOR_VER_THREE)
 		hdr->tls_vminor = TLS_MINOR_VER_TWO;
 	else
 		hdr->tls_vminor = en->tls_vminor;
 	hdr->tls_type = TLS_RLTYPE_APP;
 	hdr->tls_length = htons(len);
 
 	rv = write(sockets[1], outbuf, outbuf_len);
 	ATF_REQUIRE_INTEQ((ssize_t)outbuf_len, rv);
 
 	/*
 	 * The other end may notice the error and drop the connection
 	 * before this executes resulting in shutdown() failing with
 	 * either ENOTCONN or ECONNRESET.  Ignore this error if it
 	 * occurs.
 	 */
 	if (shutdown(sockets[1], SHUT_WR) != 0) {
 		ATF_REQUIRE_MSG(errno == ENOTCONN || errno == ECONNRESET,
 		    "shutdown() failed: %s", strerror(errno));
 	}
 
 	ktls_receive_tls_error(sockets[0], EMSGSIZE);
 
 	free(outbuf);
 
 	close_sockets_ignore_errors(sockets);
 }
 
 #define	TLS_10_TESTS(M)							\
 	M(aes128_cbc_1_0_sha1, CRYPTO_AES_CBC, 128 / 8,			\
 	    CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ZERO)			\
 	M(aes256_cbc_1_0_sha1, CRYPTO_AES_CBC, 256 / 8,			\
 	    CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ZERO)
 
 #define	TLS_13_TESTS(M)							\
 	M(aes128_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,		\
 	    TLS_MINOR_VER_THREE)					\
 	M(aes256_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 256 / 8, 0,		\
 	    TLS_MINOR_VER_THREE)					\
 	M(chacha20_poly1305_1_3, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0,	\
 	    TLS_MINOR_VER_THREE)
 
 #define	AES_CBC_NONZERO_TESTS(M)					\
 	M(aes128_cbc_1_1_sha1, CRYPTO_AES_CBC, 128 / 8,			\
 	    CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ONE)			\
 	M(aes256_cbc_1_1_sha1, CRYPTO_AES_CBC, 256 / 8,			\
 	    CRYPTO_SHA1_HMAC, TLS_MINOR_VER_ONE)			\
 	M(aes128_cbc_1_2_sha1, CRYPTO_AES_CBC, 128 / 8,			\
 	    CRYPTO_SHA1_HMAC, TLS_MINOR_VER_TWO)			\
 	M(aes256_cbc_1_2_sha1, CRYPTO_AES_CBC, 256 / 8,			\
 	    CRYPTO_SHA1_HMAC, TLS_MINOR_VER_TWO)			\
 	M(aes128_cbc_1_2_sha256, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_TWO)			\
 	M(aes256_cbc_1_2_sha256, CRYPTO_AES_CBC, 256 / 8,		\
 	    CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_TWO)			\
 	M(aes128_cbc_1_2_sha384, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_TWO)			\
 	M(aes256_cbc_1_2_sha384, CRYPTO_AES_CBC, 256 / 8,		\
 	    CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_TWO)			\
 
 #define	AES_CBC_TESTS(M)						\
 	TLS_10_TESTS(M)							\
 	AES_CBC_NONZERO_TESTS(M)
 
 #define AES_GCM_12_TESTS(M)						\
 	M(aes128_gcm_1_2, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,		\
 	    TLS_MINOR_VER_TWO)						\
 	M(aes256_gcm_1_2, CRYPTO_AES_NIST_GCM_16, 256 / 8, 0,		\
 	    TLS_MINOR_VER_TWO)
 
 #define AES_GCM_TESTS(M)						\
 	AES_GCM_12_TESTS(M)						\
 	M(aes128_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,		\
 	    TLS_MINOR_VER_THREE)					\
 	M(aes256_gcm_1_3, CRYPTO_AES_NIST_GCM_16, 256 / 8, 0,		\
 	    TLS_MINOR_VER_THREE)
 
 #define CHACHA20_TESTS(M)						\
 	M(chacha20_poly1305_1_2, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0,	\
 	    TLS_MINOR_VER_TWO)						\
 	M(chacha20_poly1305_1_3, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0,	\
 	    TLS_MINOR_VER_THREE)
 
 #define GEN_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_transmit_##cipher_name##_##name);		\
 ATF_TC_BODY(ktls_transmit_##cipher_name##_##name, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_transmit_app_data(tc, &en, seqno, len);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name)					\
 	ATF_TP_ADD_TC(tp, ktls_transmit_##cipher_name##_##name);
 
 #define GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name, type, len)				\
 ATF_TC_WITHOUT_HEAD(ktls_transmit_##cipher_name##_##name);		\
 ATF_TC_BODY(ktls_transmit_##cipher_name##_##name, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_transmit_control(tc, &en, seqno, type, len);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name)					\
 	ATF_TP_ADD_TC(tp, ktls_transmit_##cipher_name##_##name);
 
 #define GEN_TRANSMIT_EMPTY_FRAGMENT_TEST(cipher_name, cipher_alg,	\
 	    key_size, auth_alg, minor)					\
 ATF_TC_WITHOUT_HEAD(ktls_transmit_##cipher_name##_empty_fragment);	\
 ATF_TC_BODY(ktls_transmit_##cipher_name##_empty_fragment, tc)		\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_transmit_empty_fragment(tc, &en, seqno);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_TRANSMIT_EMPTY_FRAGMENT_TEST(cipher_name, cipher_alg,	\
 	    key_size, auth_alg, minor)					\
 	ATF_TP_ADD_TC(tp, ktls_transmit_##cipher_name##_empty_fragment);
 
 #define GEN_TRANSMIT_TESTS(cipher_name, cipher_alg, key_size, auth_alg,	\
 	    minor)							\
 	GEN_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short, 64)					\
 	GEN_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, long, 64 * 1024)				\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, control, 0x21 /* Alert */, 32)
 
 #define ADD_TRANSMIT_TESTS(cipher_name, cipher_alg, key_size, auth_alg,	\
 	    minor)							\
 	ADD_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short)					\
 	ADD_TRANSMIT_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, long)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, control)
 
 /*
  * For each supported cipher suite, run three transmit tests:
  *
  * - a short test which sends 64 bytes of application data (likely as
  *   a single TLS record)
  *
  * - a long test which sends 64KB of application data (split across
  *   multiple TLS records)
  *
  * - a control test which sends a single record with a specific
  *   content type via sendmsg()
  */
 AES_CBC_TESTS(GEN_TRANSMIT_TESTS);
 AES_GCM_TESTS(GEN_TRANSMIT_TESTS);
 CHACHA20_TESTS(GEN_TRANSMIT_TESTS);
 
 #define GEN_TRANSMIT_PADDING_TESTS(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_1, 0x21 /* Alert */, 1)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_2, 0x21 /* Alert */, 2)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_3, 0x21 /* Alert */, 3)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_4, 0x21 /* Alert */, 4)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_5, 0x21 /* Alert */, 5)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_6, 0x21 /* Alert */, 6)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_7, 0x21 /* Alert */, 7)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_8, 0x21 /* Alert */, 8)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_9, 0x21 /* Alert */, 9)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_10, 0x21 /* Alert */, 10)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_11, 0x21 /* Alert */, 11)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_12, 0x21 /* Alert */, 12)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_13, 0x21 /* Alert */, 13)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_14, 0x21 /* Alert */, 14)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_15, 0x21 /* Alert */, 15)		\
 	GEN_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_16, 0x21 /* Alert */, 16)
 
 #define ADD_TRANSMIT_PADDING_TESTS(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_1)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_2)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_3)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_4)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_5)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_6)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_7)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_8)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_9)					\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_10)				\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_11)				\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_12)				\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_13)				\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_14)				\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_15)				\
 	ADD_TRANSMIT_CONTROL_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_16)
 
 /*
  * For AES-CBC MTE cipher suites using padding, add tests of messages
  * with each possible padding size.  Note that the padding_<N> tests
  * do not necessarily test <N> bytes of padding as the padding is a
  * function of the cipher suite's MAC length.  However, cycling
  * through all of the payload sizes from 1 to 16 should exercise all
  * of the possible padding lengths for each suite.
  */
 AES_CBC_TESTS(GEN_TRANSMIT_PADDING_TESTS);
 
 /*
  * Test "empty fragments" which are TLS records with no payload that
  * OpenSSL can send for TLS 1.0 connections.
  */
 AES_CBC_TESTS(GEN_TRANSMIT_EMPTY_FRAGMENT_TEST);
 AES_GCM_TESTS(GEN_TRANSMIT_EMPTY_FRAGMENT_TEST);
 CHACHA20_TESTS(GEN_TRANSMIT_EMPTY_FRAGMENT_TEST);
 
 static void
 test_ktls_invalid_transmit_cipher_suite(const atf_tc_t *tc,
     struct tls_enable *en)
 {
 	int sockets[2];
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE_ERRNO(EINVAL, setsockopt(sockets[1], IPPROTO_TCP,
 	    TCP_TXTLS_ENABLE, en, sizeof(*en)) == -1);
 
 	close_sockets(sockets);
 }
 
 #define GEN_INVALID_TRANSMIT_TEST(name, cipher_alg, key_size, auth_alg,	\
 	    minor)							\
 ATF_TC_WITHOUT_HEAD(ktls_transmit_invalid_##name);			\
 ATF_TC_BODY(ktls_transmit_invalid_##name, tc)				\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_invalid_transmit_cipher_suite(tc, &en);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_INVALID_TRANSMIT_TEST(name, cipher_alg, key_size, auth_alg, \
 	    minor)							\
 	ATF_TP_ADD_TC(tp, ktls_transmit_invalid_##name);
 
 #define	INVALID_CIPHER_SUITES(M)					\
 	M(aes128_cbc_1_0_sha256, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_ZERO)			\
 	M(aes128_cbc_1_0_sha384, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_ZERO)			\
 	M(aes128_gcm_1_0, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,		\
 	    TLS_MINOR_VER_ZERO)						\
 	M(chacha20_poly1305_1_0, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0,	\
 	    TLS_MINOR_VER_ZERO)						\
 	M(aes128_cbc_1_1_sha256, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_ONE)			\
 	M(aes128_cbc_1_1_sha384, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_ONE)			\
 	M(aes128_gcm_1_1, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,		\
 	    TLS_MINOR_VER_ONE)						\
 	M(chacha20_poly1305_1_1, CRYPTO_CHACHA20_POLY1305, 256 / 8, 0,	\
 	    TLS_MINOR_VER_ONE)						\
 	M(aes128_cbc_1_3_sha1, CRYPTO_AES_CBC, 128 / 8,			\
 	    CRYPTO_SHA1_HMAC, TLS_MINOR_VER_THREE)			\
 	M(aes128_cbc_1_3_sha256, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_256_HMAC, TLS_MINOR_VER_THREE)			\
 	M(aes128_cbc_1_3_sha384, CRYPTO_AES_CBC, 128 / 8,		\
 	    CRYPTO_SHA2_384_HMAC, TLS_MINOR_VER_THREE)
 
 /*
  * Ensure that invalid cipher suites are rejected for transmit.
  */
 INVALID_CIPHER_SUITES(GEN_INVALID_TRANSMIT_TEST);
 
 #define GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name, len, padding)			\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_##name);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_##name, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_app_data(tc, &en, seqno, len, padding);	\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name)					\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_##name);
 
 #define GEN_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_data);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_bad_data, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_corrupted_data(tc, &en, seqno, len);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_data);
 
 #define GEN_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_mac);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_bad_mac, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_corrupted_mac(tc, &en, seqno, len);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_mac);
 
 #define GEN_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_truncated_record);	\
 ATF_TC_BODY(ktls_receive_##cipher_name##_truncated_record, tc)		\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_truncated_record(tc, &en, seqno, len);	\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_truncated_record);
 
 #define GEN_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_major);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_bad_major, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_bad_major(tc, &en, seqno, len);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_major);
 
 #define GEN_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_minor);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_bad_minor, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_bad_minor(tc, &en, seqno, len);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_minor);
 
 #define GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_##name);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_##name, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_bad_size(tc, &en, seqno, (len));		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, name)					\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_##name);
 
 #define GEN_RECEIVE_TESTS(cipher_name, cipher_alg, key_size, auth_alg,	\
 	    minor)							\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short, 64, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, long, 64 * 1024, 0)			\
 	GEN_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, 64)					\
 	GEN_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, 64)					\
 	GEN_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, 64)					\
 	GEN_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, 64)					\
 	GEN_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, 64)					\
 	GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, small_record,				\
 	    tls_minimum_record_payload(&en) - 1)			\
 	GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, oversized_record,				\
 	    TLS_MAX_MSG_SIZE_V10_2 * 2)
 
 #define ADD_RECEIVE_TESTS(cipher_name, cipher_alg, key_size, auth_alg,	\
 	    minor)							\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, long)					\
 	ADD_RECEIVE_BAD_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_BAD_MAC_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_TRUNCATED_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_BAD_MAJOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_BAD_MINOR_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, small_record)				\
 	ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, oversized_record)
 
 /*
  * For each supported cipher suite, run several receive tests:
  *
  * - a short test which sends 64 bytes of application data (likely as
  *   a single TLS record)
  *
  * - a long test which sends 64KB of application data (split across
  *   multiple TLS records)
  *
  * - a test with corrupted payload data in a single TLS record
  *
  * - a test with a corrupted MAC in a single TLS record
  *
  * - a test with a truncated TLS record
  *
  * - tests with invalid TLS major and minor versions
  *
  * - a tests with a record whose is one less than the smallest valid
  *   size
  *
  * - a test with an oversized TLS record
  */
 AES_CBC_NONZERO_TESTS(GEN_RECEIVE_TESTS);
 AES_GCM_TESTS(GEN_RECEIVE_TESTS);
 CHACHA20_TESTS(GEN_RECEIVE_TESTS);
 
 #define	GEN_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg,		\
 	    key_size, auth_alg, minor)					\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_1, 1, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_2, 2, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_3, 3, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_4, 4, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_5, 5, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_6, 6, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_7, 7, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_8, 8, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_9, 9, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_10, 10, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_11, 11, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_12, 12, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_13, 13, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_14, 14, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_15, 15, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_16, 16, 0)				\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_16_extra, 16, 16)			\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_32_extra, 16, 32)
 
 #define ADD_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg,		\
 	    key_size, auth_alg, minor)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_1)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_2)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_3)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_4)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_5)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_6)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_7)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_8)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_9)					\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_10)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_11)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_12)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_13)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_14)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_15)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_16)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_16_extra)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, padding_32_extra)
 
 #define GEN_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_padding);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_bad_padding, tc)		\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_corrupted_padding(tc, &en, seqno, len);	\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_padding);
 
 #define	GEN_RECEIVE_MTE_TESTS(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	GEN_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg,		\
 	    key_size, auth_alg, minor)					\
 	GEN_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, 64)					\
 	GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, non_block_size,				\
 	    tls_minimum_record_payload(&en) + 1)
 
 #define	ADD_RECEIVE_MTE_TESTS(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_MTE_PADDING_TESTS(cipher_name, cipher_alg,		\
 	    key_size, auth_alg, minor)					\
 	ADD_RECEIVE_BAD_PADDING_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, non_block_size)
 
 /*
  * For AES-CBC MTE cipher suites using padding, add tests of messages
  * with each possible padding size.  Note that the padding_<N> tests
  * do not necessarily test <N> bytes of padding as the padding is a
  * function of the cipher suite's MAC length.  However, cycling
  * through all of the payload sizes from 1 to 16 should exercise all
  * of the possible padding lengths for each suite.
  *
  * Two additional tests check for additional padding with an extra
  * 16 or 32 bytes beyond the normal padding.
  *
  * Another test checks for corrupted padding.
  *
  * Another test checks for a record whose payload is not a multiple of
  * the AES block size.
  */
 AES_CBC_NONZERO_TESTS(GEN_RECEIVE_MTE_TESTS);
 
 #define GEN_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_iv);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_bad_iv, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_corrupted_iv(tc, &en, seqno, 64);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_iv);
 
 #define	GEN_RECEIVE_EXPLICIT_IV_TESTS(cipher_name, cipher_alg,		\
 	    key_size, auth_alg, minor)					\
 	GEN_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	GEN_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short_header,				\
 	    sizeof(struct tls_record_layer) + 1)
 
 #define	ADD_RECEIVE_EXPLICIT_IV_TESTS(cipher_name, cipher_alg,		\
 	    key_size, auth_alg, minor)					\
 	ADD_RECEIVE_BAD_IV_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_BAD_SIZE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short_header)
 
 /*
  * For cipher suites with an explicit IV, run a receive test where the
  * explicit IV has been corrupted.  Also run a receive test that sends
  * a short record without a complete IV.
  */
 AES_CBC_NONZERO_TESTS(GEN_RECEIVE_EXPLICIT_IV_TESTS);
 AES_GCM_12_TESTS(GEN_RECEIVE_EXPLICIT_IV_TESTS);
 
 #define GEN_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, len)					\
 ATF_TC_WITHOUT_HEAD(ktls_receive_##cipher_name##_bad_type);		\
 ATF_TC_BODY(ktls_receive_##cipher_name##_bad_type, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_receive_bad_type(tc, &en, seqno, len);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_##cipher_name##_bad_type);
 
 #define GEN_RECEIVE_TLS13_TESTS(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short_padded, 64, 16)			\
 	GEN_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, long_padded, 64 * 1024, 15)		\
 	GEN_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, 64)
 
 #define ADD_RECEIVE_TLS13_TESTS(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, short_padded)				\
 	ADD_RECEIVE_APP_DATA_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor, long_padded)				\
 	ADD_RECEIVE_BAD_TYPE_TEST(cipher_name, cipher_alg, key_size,	\
 	    auth_alg, minor)
 
 /*
  * For TLS 1.3 cipher suites, run two additional receive tests which
  * use add padding to each record.  Also run a test that uses an
  * invalid "outer" record type.
  */
 TLS_13_TESTS(GEN_RECEIVE_TLS13_TESTS);
 
 static void
 test_ktls_invalid_receive_cipher_suite(const atf_tc_t *tc,
     struct tls_enable *en)
 {
 	int sockets[2];
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE_ERRNO(EINVAL, setsockopt(sockets[1], IPPROTO_TCP,
 	    TCP_RXTLS_ENABLE, en, sizeof(*en)) == -1);
 
 	close_sockets(sockets);
 }
 
 #define GEN_INVALID_RECEIVE_TEST(name, cipher_alg, key_size, auth_alg,	\
 	    minor)							\
 ATF_TC_WITHOUT_HEAD(ktls_receive_invalid_##name);			\
 ATF_TC_BODY(ktls_receive_invalid_##name, tc)				\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_invalid_receive_cipher_suite(tc, &en);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_INVALID_RECEIVE_TEST(name, cipher_alg, key_size, auth_alg,	\
 	    minor)							\
 	ATF_TP_ADD_TC(tp, ktls_receive_invalid_##name);
 
 /*
  * Ensure that invalid cipher suites are rejected for receive.
  */
 INVALID_CIPHER_SUITES(GEN_INVALID_RECEIVE_TEST);
 
 static void
 test_ktls_unsupported_receive_cipher_suite(const atf_tc_t *tc,
     struct tls_enable *en)
 {
 	int sockets[2];
 
 	ATF_REQUIRE_MSG(open_sockets(tc, sockets), "failed to create sockets");
 
 	ATF_REQUIRE_ERRNO(EPROTONOSUPPORT, setsockopt(sockets[1], IPPROTO_TCP,
 	    TCP_RXTLS_ENABLE, en, sizeof(*en)) == -1);
 
 	close_sockets(sockets);
 }
 
 #define GEN_UNSUPPORTED_RECEIVE_TEST(name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 ATF_TC_WITHOUT_HEAD(ktls_receive_unsupported_##name);			\
 ATF_TC_BODY(ktls_receive_unsupported_##name, tc)			\
 {									\
 	struct tls_enable en;						\
 	uint64_t seqno;							\
 									\
 	ATF_REQUIRE_KTLS();						\
 	seqno = random();						\
 	build_tls_enable(tc, cipher_alg, key_size, auth_alg, minor,	\
 	    seqno, &en);						\
 	test_ktls_unsupported_receive_cipher_suite(tc, &en);		\
 	free_tls_enable(&en);						\
 }
 
 #define ADD_UNSUPPORTED_RECEIVE_TEST(name, cipher_alg, key_size,	\
 	    auth_alg, minor)						\
 	ATF_TP_ADD_TC(tp, ktls_receive_unsupported_##name);
 
 /*
  * Ensure that valid cipher suites not supported for receive are
  * rejected.
  */
 TLS_10_TESTS(GEN_UNSUPPORTED_RECEIVE_TEST);
 
 /*
  * Try to perform an invalid sendto(2) on a TXTLS-enabled socket, to exercise
  * KTLS error handling in the socket layer.
  */
 ATF_TC_WITHOUT_HEAD(ktls_sendto_baddst);
 ATF_TC_BODY(ktls_sendto_baddst, tc)
 {
 	char buf[32];
 	struct sockaddr_in dst;
 	struct tls_enable en;
 	ssize_t n;
 	int s;
 
 	ATF_REQUIRE_KTLS();
 
 	s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 	ATF_REQUIRE(s >= 0);
 
 	build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
 	    TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
 
 	ATF_REQUIRE(setsockopt(s, IPPROTO_TCP, TCP_TXTLS_ENABLE, &en,
 	    sizeof(en)) == 0);
 
 	memset(&dst, 0, sizeof(dst));
 	dst.sin_family = AF_INET;
 	dst.sin_len = sizeof(dst);
 	dst.sin_addr.s_addr = htonl(INADDR_BROADCAST);
 	dst.sin_port = htons(12345);
 
 	memset(buf, 0, sizeof(buf));
 	n = sendto(s, buf, sizeof(buf), 0, (struct sockaddr *)&dst,
 	    sizeof(dst));
 
 	/* Can't transmit to the broadcast address over TCP. */
 	ATF_REQUIRE_ERRNO(EACCES, n == -1);
 	ATF_REQUIRE(close(s) == 0);
 }
 
 /*
  * Make sure that listen(2) returns an error for KTLS-enabled sockets, and
  * verify that an attempt to enable KTLS on a listening socket fails.
  */
 ATF_TC_WITHOUT_HEAD(ktls_listening_socket);
 ATF_TC_BODY(ktls_listening_socket, tc)
 {
 	struct tls_enable en;
 	struct sockaddr_in sin;
 	int s;
 
 	ATF_REQUIRE_KTLS();
 
 	s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 	ATF_REQUIRE(s >= 0);
 	build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
 	    TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
 	ATF_REQUIRE(setsockopt(s, IPPROTO_TCP, TCP_TXTLS_ENABLE, &en,
 	    sizeof(en)) == 0);
 	ATF_REQUIRE_ERRNO(EINVAL, listen(s, 1) == -1);
 	ATF_REQUIRE(close(s) == 0);
 
 	s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 	ATF_REQUIRE(s >= 0);
 	build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
 	    TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
 	ATF_REQUIRE(setsockopt(s, IPPROTO_TCP, TCP_RXTLS_ENABLE, &en,
 	    sizeof(en)) == 0);
 	ATF_REQUIRE_ERRNO(EINVAL, listen(s, 1) == -1);
 	ATF_REQUIRE(close(s) == 0);
 
 	s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 	ATF_REQUIRE(s >= 0);
 	memset(&sin, 0, sizeof(sin));
 	sin.sin_family = AF_INET;
 	sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
 	ATF_REQUIRE(bind(s, (struct sockaddr *)&sin, sizeof(sin)) == 0);
 	ATF_REQUIRE(listen(s, 1) == 0);
 	build_tls_enable(tc, CRYPTO_AES_NIST_GCM_16, 128 / 8, 0,
 	    TLS_MINOR_VER_THREE, (uint64_t)random(), &en);
 	ATF_REQUIRE_ERRNO(ENOTCONN,
 	    setsockopt(s, IPPROTO_TCP, TCP_TXTLS_ENABLE, &en, sizeof(en)) != 0);
-	ATF_REQUIRE_ERRNO(EINVAL,
+	ATF_REQUIRE_ERRNO(ENOTCONN,
 	    setsockopt(s, IPPROTO_TCP, TCP_RXTLS_ENABLE, &en, sizeof(en)) != 0);
 	ATF_REQUIRE(close(s) == 0);
 }
 
 ATF_TP_ADD_TCS(tp)
 {
 	/* Transmit tests */
 	AES_CBC_TESTS(ADD_TRANSMIT_TESTS);
 	AES_GCM_TESTS(ADD_TRANSMIT_TESTS);
 	CHACHA20_TESTS(ADD_TRANSMIT_TESTS);
 	AES_CBC_TESTS(ADD_TRANSMIT_PADDING_TESTS);
 	AES_CBC_TESTS(ADD_TRANSMIT_EMPTY_FRAGMENT_TEST);
 	AES_GCM_TESTS(ADD_TRANSMIT_EMPTY_FRAGMENT_TEST);
 	CHACHA20_TESTS(ADD_TRANSMIT_EMPTY_FRAGMENT_TEST);
 	INVALID_CIPHER_SUITES(ADD_INVALID_TRANSMIT_TEST);
 
 	/* Receive tests */
 	TLS_10_TESTS(ADD_UNSUPPORTED_RECEIVE_TEST);
 	AES_CBC_NONZERO_TESTS(ADD_RECEIVE_TESTS);
 	AES_GCM_TESTS(ADD_RECEIVE_TESTS);
 	CHACHA20_TESTS(ADD_RECEIVE_TESTS);
 	AES_CBC_NONZERO_TESTS(ADD_RECEIVE_MTE_TESTS);
 	AES_CBC_NONZERO_TESTS(ADD_RECEIVE_EXPLICIT_IV_TESTS);
 	AES_GCM_12_TESTS(ADD_RECEIVE_EXPLICIT_IV_TESTS);
 	TLS_13_TESTS(ADD_RECEIVE_TLS13_TESTS);
 	INVALID_CIPHER_SUITES(ADD_INVALID_RECEIVE_TEST);
 
 	/* Miscellaneous */
 	ATF_TP_ADD_TC(tp, ktls_sendto_baddst);
 	ATF_TP_ADD_TC(tp, ktls_listening_socket);
 
 	return (atf_no_error());
 }